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1 

PREFACE 

Data analysis in sensory science has traditionally been performed with univariate statistical 
tools such as Analysis of Variance. During the last decade, the emerging capacity of computers 
has made multivariate techniques more appropriate for increased understanding of these 
complex data. The intriguing data generated by sensory panels and consumers demand models 
with capabilities to handle non-linear aspects as well as to simplify the large amounts of data, in 
order to facilitate interpretation and prediction. The development in this sector has been very 
rapid. From the simple Principal Component models available in mainframe computers in the 
late seventiedearly eighties, 1995 offers a large spectrum of models with very different 
applications. Common to many of the techniques is the principle of extracting central or 
common information in large data matrices presented in understandable and simplified formats. 
Therefore this book starts with a discussion of principles in understanding of results from the 
Principal Component models, as they can be seen as a conceptual representative for all the 
families of models represented later in the book. 

The present textbook is prepared in collaboration between a group of scientists involved in 
sensory science at an advanced applied and academic level. Chapters are included to cover 
basic understanding of the principles behind the methods, experimental design as well as a 
variety of techniques described in detail. The book has been written to give a reasonable 
updated selection of methods applied to the sensory field. The editors have intended to 
generate a book well suited for educational purposes, with sufficient references for 
complementing the presented text. The authors have all followed the same set of instructions, 
where theoretical background and practical examples have been given equal importance. The 
book is made for use by sensory scientists in a practical situation and also in a training 
situation, to give good and sufficient knowledge about advanced methods applied in sensory 
science. The examples discussed in the text provide sufficient support for users in a beginner’s 
phase of exploration of the techniques. Statisticians may find the text incomplete, but the 
references given should provide sufficient additional information for their needs as well. 
Sensory scientists on the other hand may find the theoretical information on the difficult side 
thus, providing room for developing skillshowledge. 

The present text has no ambition to cover all existing techniques available for analysing 
sensory data. The field is in very rapid development and new and modified methods appear 
“every day”. The chapters illustrate a cross section of what is available on a theoretical and 
practical level. Not all the presented methods are readily available in practical statistical 
software, while others exist in many versions implemented in a variety of software. This is a 
situation in very rapid change, which makes the need for material to help in a process of 
increased knowledge more urgent than new software. The editors hope this book is a 
contribution in that direction. 

As described above the book starts with a discussion about the conceptual basis for the 
multivariate methods treated later in the book. One of the themes in this discussion is the 
concept of latent variables or latent phenomena. In mathematical terms latent variables can be 



2 

referred to as projections or linear combinations of the data, but they can also be given a much 
broader, deeper and more philosophical interpretation. This is the topic of Chapter 1 .  

For all scientific investigations, the design of the experiments involved is an extremely 
important aspect of the whole analytical process. Sensory analysis is no exception and this 
important topic is covered in Chapter 2. Main emphasis is given to the design of sensory 
tasting experiments, but treatment designs are discussed as well. The main principles for 
experimental design are covered and illustrated by examples. The importance of the principles 
for multivariate analyses is emphasised. 

After having presented an account on the philosophical basis for the methods and the 
principles for obtaining good data, the next two sections (Part I1 and 111) are devoted to the 
multivariate methods themselves. Part I1 focuses on methods mainly developed for analysing 
aggregated sensory data, i.e. obtained by averaging data over assessors. Part I11 on the 
other hand is devoted to methods which use the individual sensory data for all the assessors in 
the analyses. The majority of the presented methods in the latter chapter are relatively new and 
represent an area of research where the goal is to examine both the individual differences and 
similarities among the assessors and the samples. 

Part I1 has a strong focus on methods for relating sensory data to external information, but 
techniques for analysing the sensory data themselves are also presented. Chapter 3 gives a 
treatment of the main principles for so-called preference mapping. This is a family of methods 
for relating sensory and consumer data based on graphical illustrations of latent variables. 
Chapter 4 is a study of the potential usefulness of applying neural networks in sensory science. 
The neural networks are non-linear and flexible methods for relating data matrices to each 
other. So far they seem to be little used in this area of research. In the same chapter a brief 
discussion of the well established linear methods PCR and PLS is also given. Chapter 5 treats 
the important field of extracting information from images which can be correlated to sensory 
properties of the products. This is a quite new area of research and the present contribution 
discusses some of the basic principles for it. 

Chapter 6 is about MDS. Both methods for aggregated and individual profile data will be 
presented. The data needed for this type of analysis are distance- or similarity data about 
samples and can be obtained directly from a specially designed sensory experiment or from 
computations on data from standard sensory profiling. The important method of GPA is the 
topic of Chapter 7. This is a method which translates, rotates and shrinks the individual sensory 
profile matrices in such a way that the match among them is optimal in a LS sense. The 
STATIS method is another method for individual profile data which looks for similarities and 
differences. This method is treated in Chapter 9. The method is based on &sing 
correlations among the profiles and provides plots/maps of a similar type as most other 
methods treated in the book. GCA is a non-linear generalisation of CCA and is presented 
Chapter 8. The method can handle several sets of variables and is based on latent variable plots 
of the main directions of common information in the data matrices. The different matrices will 
typically represent different assessors, but can also represent for instance sensory, chemical and 
physical data from the same set of samples. The last chapter of the book is about 3-way factor 
analysis methods. These methods are generalisations of the standard PCA and look for 
common latent structures among the assessors and/or the samples. 

Comparisons among the methods are treated in the different chapters of the book. Some of 
the methods are developed for quite different situations, but in many cases they can certainly 
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be considered as complimentary to each other. This will also be discussed in the different 
chapters. 

The book ends with an index of all the chapters. 

We would like to thank all contributors to this book for their valuable contributions. It has 
been a pleasure to work with you! We will also thank MATFORSK for allowing us to work 
with this project. FLAIR-SENS is thanked for financial support to some of the contributions at 
an early stage the planning process. 

Tormod Naes and Einar Risvik, June 1995. 
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UNDERSTANDING LATENT PHENOMENA 

E. Risvik 

MATFORSK, Norwegian Food Research Institute, Osloveien 1, N-1430 As, Norway 

1. INTRODUCTION 

The first chapter has the ambition to introduce the multivariate thinking this book is based on, 
in order to provide a frame of reference for the reader. To be able to understand later chapters 
the ccphilosophy)) of multivariate analysis is discussed. This is done with two different 
perspectives. First of all the conceptual understanding is focused, that is the understanding per 
se. The intention with this has been to exemplifL the multi-disciplinary understanding needed in 
order to utilise the true potential inherent in data from sensory science. To illustrate this, 
sensory profiling is chosen as an example. This is not the only approach to generate complex 
data in sensory science. Other approaches can be scaling methods, projective methods, 
magnitude estimation, questionnaires, observations, consumer responses of different kinds, 
comparisons, rankings and methods close to profiling like free choice profiling. Conventional 
profiling is chosen as this is very commonly used, very convenient for this discussion and 
because the author has the most experience with this method. The second perspective into this 
material is through a few sensory examples, simple in their interpretation. Non-statisticians’ 
examples are chosen, and these are focused on the understanding of results from conventional 
profiling, rather than the statistical terminology. This is not a discussion in depth, rather a 
framework which can be useful when reading later chapters. 

Necessary statistical terminology to understand the following chapters will not be 
introduced here, as the different authors are expected to do this. 

For the practical statistical example the frequently used Principal Components Analysis 
(PCA) is utilised as an example. PCA fits well for sensory profiling data and at the same time 
illustrates some of the more fundamental concepts involved in analysis. The other methods 
represented in this book cover a wide variety of approaches, (non-linear artificial neural 
networks, multidimensional scaling, generalised canonical correlation analysis and three-way 
factor analysis) and will be introduced by each author. 
This chapter does not pretend to give complete answers to any of the very fundamental and 
complex questions related to understanding of sensory data, but rather to open up for 
exploratory, creative and critical thinking around the potentials for utilisation of multivariate 
statistics. Some of the expressed views can be interpreted to be contrasting to each other. This 
is intentional, as many of the hdamental discussions touched upon provide no answer to 
these questions. To some extent the (choice of the right model)) lies more in a choice of belief 
rather than fact. The author has therefore made a point of presenting the discussion between 
philosophies of science, and left the answers to be found by the reader. 
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The aim of this chapter is to show the multi-disciplinary thinking needed in research where 
sensory data are analysed by multivariate statistics. This perspective is chosen in order to build 
the links between cognitive science, psychology, physiology, experimental design and basic 
philosophy. Several of the very basic problems in sensory science are related to this interface. 

2. TASTE, EXPERIENCE AND CHEMISTRY 

Drinking a glass of wine can be described in many ways. The wine can have a great potential, 
be a bit masculine, with a strong body and a good balance between fruity aromas and acids, 
and it can have a long aftertaste. Said in a different language the wine can be astringent, have 
strong aromas from black currant, plum, asparagus, and a hint of burnt match, kerosene, 
vanilla and hazelnut. The same wine can also be characterised with it's absorption spectrum or 
a gas chromatography profile. Other chemical analyses can also contribute strongly to the 
chemical characterisation of the wine. 

In total there are more than 800 aroma components (Rapp, A. 1988) in wine. Together 
these compose a complex aroma structure, experienced when wine is consumed. The 
experience consists of chemical components in interaction with our senses, and the 
interpretation of the perceived entity by the individual. 

The traditional approach by chemists has been to identify and quantify components one 
one for at a later stage to ask about their importance. This has been a tedious task, as very 
often the analytical tool has needed development at the same time. Analytical chemistry today 
is capable of identifying and quantifying very low concentrations of advanced molecular 
structure (Rapp, A. 1988). When identification and quantification is no longer a problem, it is 
relevant to ask questions concerning the importance of the identified components. 

After most of the influential variables have been characterised the problem of how the wine 
tastes is still not solved. The human perception translates and expresses this in a far less 
explicit vocabulary than chemical analyses, and as such is very difficult to model. It is not at all 
obvious that the most abundant components have the biggest influence. Very often, in the 
work with off-flavours, one finds taints associated with components present in very small 
concentrations, but at the same time giving rise to strong affective reactions. 

Aromas are today described with several hundred words, and they show no apparent logic. 
Several psychologists have tried to classify aromas according to a standard nomenclature. The 
Zwaardemaker classification of smells into nine classes (1 895), refined by Henning (1 91 6) into 
six classes are examples of this (see also Wada, 1953). The relationship between these 
proposed structures and an inner and perceived structure is not obvious, and certainly not 
verified in a satisfactory way. The terminology for wine description in itself shows strong 
inconsistencies. This is best characterised with examples of two types of descriptors: The 
descriptive aroma terminology (Noble, A.C. et al. 1987) with descriptors like black-currant, 
nutmeg, peach and black-pepper, and the more complex terminology with attributes described 
by words like body, potential and harmony in its simple form, and in the most abstract form 
words like feminine, cosmopolitan and stylish. More than 1700 words (Peynaud, E. 1987; 
Rabourdin, 1991) are being used for this purpose from the last groups of complex and 
integrated attributes. 

If the words used to describe a wine were all unique descriptors, each related to one aroma 
component, our vocabulary would still be sadly insufficient to express the experience of 
drinking a wine. Like with colours, where the eye can distinguish 6 million different shades of 
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colours, it is likely that there must be another, underlying and simpler structure which can be 
used to relate descriptors and aroma components. For colours this is often referred to as the 
colour space: a three dimensional structure where all colours can be described by a set of three 
orthogonal variables, the dimensions of the space. This will be discussed in some detail later. 

For flavour/aroma, one must conclude, there is no such simple structure known. For texture 
perception, simplified structures are indicated (Risvik, E. 1994; Harris, J.M. et 1972), 
although they cannot be understood to be finalised models and texture must be understood to 
be of similar complexity as for flavour/aroma. 

This chapter will deal with aspects related to the understanding and interpretation of 
sensory data with two different perspectives: 

PART I: Understanding concepts related to multivariate data analysis 

This will simplify the process involved in understanding of how statistical tools extract latent 
structures and how they can be utilised for understanding of products. The second section will 
thus be: 

PART How data structures can be extracted and interpreted from a set of data utilising 
multivariate statistical techniques. 

This second section will visualise the mathematical principles involved in analysis, with 
graphical representations and simple examples to illustrate this. 

PART I 

3. UNDERSTANDING CONCEPTS RELATED TO MULTIVARIATE ANALYSIS 

3.1 The role of perception 

The perception of a product can be interpreted with at least 2 different perspectives. The 
sweetness of a carrot tells the individual that the carrot is sweet, which is obvious, but it 
informs, in a general sense, that the senses have the capability to perceive sweetness, which 
does not have to be the same. One example from sensory science, where this is not true is 
the case of bitter blindness (PTC) (Brantzaeg, M.B. 1958; Amerine, M.A. et 1965), where 
two humans will perceive different qualities (bitter and no bitterness) in the same sample. The 
stimulus can be argued to be the same, but the perceived entity is different for the two 
individuals. As all individuals only experience their own perceived intensities there will be no 
proof that this is the exact same perceived quality or intensity in all humans, still most of the 
time we take this for granted. Another example is androstenone, the hormone found in pig 
meat. This chemical signal component gives strong negative reactions in some humans (mostly 
females) and is not perceived at all by others (mostly males) (Dorries, K.M. et 1989; 
Wysocki, C.J. and Beauchamp, G.K. 1984; Wysocki, C.J. et 1989). 

In sensory experiments these two perspectives, both the chemical signal (the given signal) 
and the human response (the meaning of the information), have potential interest for the 
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experimenter, and these are difficult to distinguish depending on the given design of the 
experiment and also in the interpretation of results. To a large extent this is a similar difficulty 
as distinguishing between latent and manifest structures. Latent meaning: a structure 
expressed in terms of varieties or variables which are latent in the sense of not being directly 
observable (Kendall, M.G. and Buckland, W.R. and manifest meaning: to make evident 
to the eye or the understanding; to reveal the presence of or to expound, enfold (The Oxford 
English Dictionary 2. ed. 1989). This needs some explanation. Consider the following example 
as an illustration. 

To purchase an apple can be difficult for someone with no previous concept of what an 
apple is. Even when having been told in advance, (that is when the concept of an apple has 
been communicated, but with no previous experience), it will be a very time consuming and 
difficult task to choose among apples on display in a supermarket shelf. In order to say ((it 
looks juicy)) (latent structure), it is necessary with previous experience of juiciness in apples. 
To be able to explain why an apple ((looks juicy)) is even more difficult. It demands an 
understanding of how previous experience relates to visual keys (manifest variables), for there 
has at this point not been an experience of the juiciness of this actual apple. The only part of 
experience available for interpretation has come through the eyes. 

Most persons do not analyse the situation in this way, they just know which apple to 
choose. To buy an apple is normally a very fast decision with no conscious evaluation of 
specific attributes, nor detailed consultation with previous experience. If this was the case, 
shopping at the green-grocers would be turned into a major undertaking. 

Implicit in this example lies the assumption that humans organise experience into simplified 
structures (latent structures) used for consultation when some decisions are to be made. The 
more experience collected (manifest variables), the more conceptual structures are being 
formed. The process is getting very complex when previous experience interacts with 
perception. When we know the brains ability to reconsider, discuss experience and to change 
opinions based on exchange of information with other humans, this model becomes not only 
difficult to understand, but also susceptible to changes over time. 

In order to be able to buy cdhe right)) apple it is necessary to know what an apple is. The 
data available in the experience, the ((apple)) data, aggregate in ((apple related phenomena)) or 
latent ((apple)) structures in order to simplify the search for the crright)) apple. Rather than 
scanning through all previous times an apple was seen, eaten or talked about, the latent 
structures or concepts are consulted in an upcoming ((apple)) situation. This makes the search 
simpler and faster. 

This situation, where ((apple)) concepts are being formed is very similar to analysis of data 
from a sensory profiling exercise, where first the experience data base is generated as profiles 
(apple data are provided by a panel). Then the data base is used as ((apple)) data in order to 
describe ((apple variation)). Finally the data are used (a statistical model) in order to calculate 
central tendencies in data structures, which can later be used for predictions. 

What an apple is will after this, for an individual, default into a conclusion which might be 
as simple as ((dark green apples are always juicy)), as no previous experience contradicts this 
assumption. This conclusion or central tendency does not necessarily represent a conscious or 
permanent or fixed structure, but stands until the experience data base indicates that this is no 
longer valid. In a similar manner, central tendencies are extracted from data from sensory 
analysis. The experience is in this case given by the experimental design and the central 
tendencies in the data are represented by the latent structures. 
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Both the perceived and the calculated structures are representations of data collected from 
the objects. Both structures are simplified and are being used as a reference for conclusions. 
Both sets of initial data contain sensory information. It is therefore of great interest in sensory 
science to see how these two paths create sirniladdifferent conclusions and to what extent one 
can be utilised as a tool to understand the other in a better way. 

To summarise: Manifest (directly observed information) or ((given data)) (Idhe, I. 1986), as 
they are interpreted in the perception of apples, show great similarities to data from a sensory 
profiling exercise of apples. In both situations latent structures (((meant)) structures, Idhe, 
1986) are extracted. In the one case by human and in the other by a 
statistical model. 

In a more condensed and maybe complex way this can be expressed as in the following: 

sensory analysis the latent phenomena can be observed through a reflection or a 
projected structure, performed by a statistical model. Similar analyses are performed by the 
senses, where the latent structure is a reflection underlying phenomena in the human being, 
based on experience in this sample space. The manifest structures are represented by the 
objective differences between the samples described by basic attributes. Since these two views 
are dfjcult to separate it is not obvious how each can be characterised in experiments 
without influence on the other. 

3.2 Data from sensory analysis 

In a sensory profile the attributes are rarely made up from simple stimuli, each related to one 
observable variable. Most attributes utilised in a profile are already complex responses to 
mixtures of several visual, chemical or structural components (examples are fruity, rancid, juicy 
and sweet). This turns most sensory attributes themselves into latent structures, as they only 
can be understood indirectly through observations. In statistical analysis, where attributes 
contribute to yet another level of latent structures, these are of course also latent. 

In our minds eye the product is never perceived as a sum of attributes. Whether we focus on 
key attributes, aggregate attributes into concepts, perceive holistic forms or make up an 
iterative process with a mixture of the above is not certain. Most likely our consciousness 
contains at any time a totality of fewer attributeskoncepts than a complete sensory profile, 
when a product is being perceived. This implies that some form of aggregation of information 
will take place in our information processing. Whether this takes place in our senses or in the 
processing in the brain is not implied. 

The previous mentioned descriptors utilised as a part of wine terminology exemplify also 
the degree of complexity involved. Words like nutmeg, vanilla and asparagus can be 
understood as a descriptor related to chemical components, while ccpotentiab hardly can be 
characterised as related in a simple way to chemistry. Still it is possible to understand the 
potential of a wine as either high in the intensities of colour tone and fruity, floral notes, or it 
can be understood as a wine high in colour intensity and astringensy. These two different ways 
of interpreting the descriptor potential, could both be possible interpretations of the research 
performed by Sivertsen, H.K. and Risvik, E. (1994). It also shows that more complex 
descriptors can be related to well defined tcsimplem descriptors, which again imply that even 
more complex descriptors like feminine and cosmopolitan could be defined as latent structures 
inherent in other latent structures. It is also possible to understand how these complex 
relationships are susceptible to large individual variations as word rarely are well defined in 
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their relationship from one level of complexity to another. Another way of expressing this is to 
say that these are words built on several incomplete layers of latency. In many ways this 
resembles very much the world described by fractal geometry (Gleick, J. 1987) and as such 
build a very interesting link between several areas of research including cognitive science, 
linguistics, chaos research and statistical modelling. This also resembles the philosophy of 
neural networks or fuzzy logics. The interaction in all these fields are of great interest to 
sensory analysts. There are two reasons for this. First of all because these tools can be of great 
importance in simulation of human processing, but also because the interaction between human 
processing and simulated processing can reveal new knowledge of several of the still open 
questions in both sensory science and cognitive research. 

3.3 Latency, complexity and holism 

Trying to understand language development is not the aim of this chapter. Still words are of 
great importance in sensory profiling. It is impossible and not very practical to avoid attributes 
chosen from different levels of complexity, simply because levels of complexity do not exist 
and were never defined. It is therefore of utmost importance to perform analysis of data with 
capabilities to handle this aspect, and to utilise this information for interpretation in the 
analysis. 

One different and important aspect of sensory profiling language, not yet discussed, 
inherent in the nature of the words. To generate a vocabulary for descriptive analysis, the 
words are chosen to profile, or to describe a projection of an aspect of the product. The idea is 
that when a comprehensive vocabulary is developed this will together describe all aspects of 
the product and thus make up the whole of the product. The assumption that the sum of the 
parts make up the whole is in this case not necessarily true, as several aspects of product 
perception also are related to complex words describing so called holistic aspects and these 
can, because of the nature of these words, rather be understood as semiotic signs, and 
therefore not always be suitable for profiling. The word Quality is one such word, and one of 
the few words to describe a holistic experience, others are Form, Essence, Beauty and 
Preference. In contemporary natural science these play a minor but increasingly important role, 
maybe because of the influential reductionist tradition most of these sciences have followed 
since Descartes (1 596 1650). 

The first serious attempt to describe a classification of sciences was written by Francis 
Bacon (1605, selections). This classification incorporates both natural sciences, 
humaniora and metaphysics. With the reductionist tradition since Descartes these have become 
contrasts and sometimes in conflict to each other rather than aspects of a holistic scientific 
view, as intended by Bacon. Bacon’s view may in many aspects seem old-fashion in a modem 
world, but this basic thought, that all sciences join together as parts of a whole can also be 
interpreted as refreshing (not new, but forgotten). The return back to basic logical deductions, 
describing Mathematics as a branch of Metaphysics, is to consider Mathematics as apriori 
representation of attributes while Metaphysics ..handeleth the Formal and Final Causes)). 
This the representation in Mathematics a part of the understanding behind the real cause 
of the experiment. sensory science, the semiotic representation of the object as a sign has to 
be interpreted with both these perspectives. First of all, the representation of the attributes, the 
true description is understood through a mathematical description in sensory descriptive 
profiles (apriori information). At the same time, this has no interpretation unless the meaning is 
sought at a metaphysical level (posteriori information). 
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The relationship to Poetry (on the level with Natural Science by Bacon, that is above 
Metaphysics) is an even more challenging thought. As Metaphysics seek the formal and final 
causes for observations, Poetry denote communication (delivery) and interpretation (thinking). 
For Bacon it is of equal importance to seek language representation of complex ideas, as to be 
able to communicate the results. 

The paradox in sensory science is that already sensory profiles are represented in language. 
Interpretation of latent structures is already sometimes a metaphysical problem, as it looks for 
causes behind observed structures and relationships back to formal interpretation. When this is 
to be communicated it is raised to yet another level of complexity, and a component of 
individual artistry cannot bc avoided. 

This brings us back into a circle when sensory profiling perspectives can be de3ned as a 

latent structure, given the nature the words and how these are utilised in the 

language. This is again an interesting observation. Since words holistic nature can be 
interpreted as a latent structure built on several hierarchical levels other latent 

phenomena, and since they at the same time can be seen as primaiy attributes with holistic 

characteristics, this can be interpreted as a network interrelated attributes with large 
overlaps and feedbacks, all the characteristics a typical neural network. 

3.4 Latent structures in sensory data 

There might be several reasons for the development of sciences in a reductionist direction, and 
one of these can be related to the complexity of the problems to be explored. The investigation 
of holistic aspects will always have to deal with a large number of variables with strong 
influence on the problem. This has been a problem until recently, where computers have made 
development of statistical tools possible, where large amounts of data can be analysed 
simultaneously. The statistical methods have been available for quite a long time, as principles 
(Cattell, R.B. 1952; Horst, P. 1965; Harman, H.H. 1967; Wold, H. 1966), but practical 
applications have been delayed until computers were manufactured and made the analysis 
feasible. 

Roland Harper (Thomson, D.M.H. 1988) were one of the first to apply a factor analysis on 
sensory data, as early as in the late forties. In a presentation at the Food Acceptability 
symposium in Reading in 1987, he told the audience that an analysis of 15 attribute profiles 
took a month to complete, when this was performed by a group of students, without the aid of 
electronic devices. In the early eighties a similar analysis would take as much as half an hour on 
a main frame computer, and in the early nineties, less than one second on a personal computer. 

This is also reflected in the amount of literature available. In an overview by Martens, M. 
and Hames, J. 983), they report 225 papers with applications of multivariate statistical 
analysis in food science from 1949 to Sept 1982, one third of which have been published after 
1980. Few of these papers are related to sensory analysis. A search in the most commercial 
bases in 1994 give more than 400 articles related to sensory analysis alone, published after 
1980. 

Most applications in sensory analysis generate vast amounts of data. To get a good 
understanding of the information buried in this, a reduction of the information, to a reasonable 
size, is necessary. In addition, sensory variables, like in a descriptive profile, are always 
strongly intercorrelated. In a descriptive profile it is not unusual to find 15-20 attributes. This 
is not because there is necessarily 15-20 unique attributes describing these products. Most of 
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them will be interacting and overlapping and maybe some will be unique. The majority of the 
attributes will only show slightly different perspectives into the understanding of the product. 

With this perspective on the analysis of profiling data, it is rare to find papers which 
describe more than 10 unique latent dimensions. Most often 1-3 dimensions contain the 
essential information in the data (each dimension being a combination of attributes) (Martens 
1986). This is of course very dependent of the product and panel in question, but the range 
between 1 and 10 covers quite well. To some extent this is a reflection of our processing 
capabilities more than our senses. Trincker, D. claimed in 1966 that our consciousness only 
perceive one part in a million from what our senses collect of information. Ten years earlier 
Miller (1956) published an article in Psychological Review where he claims that humans only 
can handle 5-9 independent phenomena in our consciousness simultaneously. Together they 
both contribute to the assumption that the complex human sensory perception is reduced to a 
maximum of 5-9 independent structures in the human consciousness. This opens up for a very 
interesting discussion on effects of training of assessors for sensory analysis. 

In sensory profiling we attempt to train assessors to score intensities of attributes on a scale. 
In expert evaluations of for instance coffee and wine, the training very often starts with 
knowledge of coffee or grape varieties. From this the experts are trained to recognise 
characteristics. typical of grape and bean variety, processing, storage and blending. Later, in a 
profiling situation it is possible these experts do not only profile the given samples. They may 
also, by unconscious information processing, recognise the coffee bean and the grape variety, 
and immediately score the attributes they know by previous learning should be present and not 
only the way they appear in the samples (Cabernet Sauvignon as having blackberry aroma and 
dark roasted coffee as not fruity). In this case the consciousness is overruled by preconceived 
information, established in strong latent structures already available and triggered by the 
perception of the product. This shows how concept formation can be an important aspect of 
panel training, as it is in everyday life. And from a sensory point of view it is very important to 
understand this in detail, in order to reveal conflicting approaches in methodology, such 
asking for information related to strongly established concepts such as preference, at the same 
time as the individual is asked to rate intensities of attributes in a profile. It is obvious that 
preferences, in this case, can influence strongly the profiling exercise. The nature of this effect 
is difficult to establish, since this is not necessarily a conscious process, and also with a strong 
individual component. 

As statistical analysis sometimes is supposed to reflect perception of a product, either as a 
whole or to describe aspects of a product, it should not be far fetched to suggest that the 
statistical analysis is some sort of analogy or reflection similar to the human perception of food 
products. Each perceived dimension, latent in the product is then composed of a contribution 
from the product attributes. It is interesting to note that different products may have very 
different dimensionality (wine is reported to have up to seven dimensions (Sivertsen, H.K. and 
Risvik, E. 1994) while whole meat texture have two or three (Risvik, E. 1994). In addition, 
different persons will be able to perceive different number of dimensions at different times. 
Some interesting questions for us in analysis of these data will then be: 

Does information from different individuals contain commonalties? 
Is it possible to simulate the human processing in a statistical model? 

it possible to describe dimensions in a product which will be understood in very similar 
ways by humans and in the presentation from a statistical software? 
Are there similarities in the models based on large groups of people? 
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Are there common denominators between these groups? 
0 Or are some dimensions common to all humans? 
These questions are not for the author to answer, although it would have been nice to be 

able to do so. The last will be touched upon as a part of the Colour section, and to some extent 
under experimental design. 

The statistical models calculate latent phenomena from sensory profiles. Most of the time 
the results are presented without any further comments, as if this in itself contain information. 
In other cases these are interpreted by individuals seeking resonance in themselves for 
structures that remind them of a previously familiar concept. When this is recognised it is said 
to confirm a hypothesis. By tradition experiments have been conducted to confinddisconfirm 
pre-set hypotheses incorporated into the experimental design. This implies that the 
experimenter already before the experiment has made up hisher mind as to what can be 
deduced from the performed test. In the exploratory nature of multivariate statistics it also 
opens up for an approach where multivariate statistics can be understood as an interactive tool 
between experimenter and data. Very often, analysis of sensory profiles generate more 
hypotheses than they solve. Latent structures appear to be of similar nature to previous 
experiments, as in the case with wine (Sivertsen, H.K and Risvik, E. 1994; Pages, J. 
1987; Heymann, H. and Noble A.C. 1987) and whole meat (Harries, J.M. al. 1972; Risvik, 
E. 1994). These structures show resonance between papers and also resemble sensible models 
in a phenomenologist tradition. Still no causal proof in a determinist tradition exist. Meta 
analysis (Mann, C .  1990; Longnecker, M.P. et al. 1988) would have been an attractive tool for 
further analysis, but this would again add, yet another latent layer in the interaction between 
the deductive and inductive thinking implied in this approach. In the mid 90's meta analysis is 
still only available at this conceptual level, as no practical tool for analysis is made commercial 
available. Interpretation of results from sensory analysis rely therefore very much on 
verification through previous experience. 

3.5 Processing the information 

Different perceived aspects of a product can best be separated for independent discussion, as 
the information is perceived through independent channels. It can be discussed whether 
statistical analysis also better could be performed separately. These areas will be the basic 
aspects for definition of the variables utilised for description of a product. These variables may 
in their own sense build latenthndependent structures reflecting the way the senses have 
organised their information collection. For some senses like vision this is well described, but 
for others like odour/flavour perception this is not at all established yet. 

3.6 Colour 

The first suggested structures for colours are very old. The principle in these systems is 
illustrated by the colour space from the Natural Color System (NCS) (Figure 1). The best 
known one is probably suggested by Goethe (1749-1832) in his colour system. The description 
of the perceived structure is later refined and described in the Munsell Color System (1 929), 
but the initial and general structure is still maintained. This consist of a three dimensional space 
with directions described by the grey scale from white to black, colour intensity and the hue 
described by the colour circle. This three dimensional structure corresponds well with the 
structure of how the sensations are collected from the eye, with one channel for lightness and 
two for colour separation (reagreen and blue/yellow) and as such could be understood as a 
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manifest structure. The perceptual space can be described as a double cone which is expanded 
in the areas where the eye is most sensitive (yellow-green area). This space is described in 
Figure 1 .  To generate the perceived space from spectral information has demanded a lot of 
labour as it has shown difficult to find a good transfer function between the standard observer 
to the perceived space. 

An illustrative example on how this structure can reveal itself from not too obvious data is 
given by Kobaya3hi (1981). He collected information on colours using coloured samples and 
had them profiled with a series of attributes which describe strongly emotional aspects of 
colours, such as: polite, reliable, wild, modern, stylish, safe, forgetful, conservative, happy, 
vulgar and cultivated. The aim of the study was to look for commonalties in colours with 
reference to fashion and design. 

Figure 1 a) Colour space from NCS (Natural Colour System) where all colours at 
intensity are defined to be 100 and b) adapted from the Munsell Color System (based on 
perceived differences). Note the expansion of the space in the green and yellow areas, where 
the eye is the most sensitive 

The first three dimensional solution of a factor analysis revealed an underlying space very 
similar to the perceptual colour space (Figure 2) and it is remarkable to see this emerge from 
data based on evaluations of colours with these highly emotional descriptors. 

These latent structures extracted from perceptive data resemble very much structures which 
also can be interpreted as derived from manifest response curves for the eye receptors. This is 
a very interesting resemblance and further research should be conducted to establish how this 
has occurred. Multivariate techniques have the potential of revealing this type of information, 
as the principle of the techniques are based on the calculation of latent phenomena. This fact is 
surprisingly little used in experimental design and analysis, but the potential for 
cognitivdsensory research in this field is great with these methods. 
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Figure 2 Adapted from Figure 8 plate 3 Kobayashi, S. 1981 The aim and method of the color 
image scale. Color, 6,2,93-107. Adjectives corresponding to color 

3.7 Taste 

Taste is still maybe the most simple area to describe the structure of. Most people agree to a 
description of the 4 basic tastes: Sweet, sour, salt and bitter. There is also a discussion whether 
there are at least two more, and umami and metallic are among the candidates. 

Four or six unique tastes make up 4 to 6 dimensions. In practice these dimensions seldom 
will be orthogonal in a product space, since these attributes always will have certain degree of 
covariance in a product. For evaluation of a natural product range, such as in the ripening of 

fruits, it is also possible to observe a high degree of correlation (negative) between attributes 
such as bitterness and fruitiness. 

3.8 SmeWflavour 

A generalised structure for odours/aromas have been sought for centuries, as mentioned 
earlier. So far, to the author’s knowledge, no obvious model based on the understanding of the 
structure for collection of aroma information through the senses, is available. Enormous 
amounts of information on flavour materials exist, and a model for structure, for food flavours 
is suggested by Ashirst, (1 99 1) and Yoshida, M. (1 964). These models would become 
very complex once expanded to all aromas/flavours, but would provide excellent starting 
points for such research. 

If the earlier assumptions hold, a similar approach to the understanding of the colour space 
can be applied by the sensory scientist, to reveal valuable information into the difficult area of 
how aromas are organised in simplified mental structures. Generalising the previous 
assumption that the human consciousness can handle no more than 5-9 independent pieces of 
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information simultaneously, the final structure should contain somewhere in this range as a 
maximum of independent latent structures after processing. The amount of information needed 
might be quite substantial, and the initial structure will be quite complex, but this will have to 
be rationalised down to few dimensions where the diversity of smell still is maintained. 

Recent developments of an electronic nose (Winquist, F. et al. 1993) can also contribute 
strongly towards a more fundamental understanding of how smellhlavour data are organised 
by human perception. 

3.9 Texture 

According to Kramer (1973) and Sherman (1969), the term ‘texture’ has been defined as ‘a 
major division of sensory quality covering all kinaesthetic responses of foods in whatever state 
they are in’. This is further divided into primary, secondary and tertiary characteristics of the 
food, and initial perception, mastication and residuals for the human experience. Alternative 
definitions for texture is given in Texture (Bourne, M.C. 1982). 

The number of words utilised to describe sensory characteristics of food texture is 
enormous, and contains words for everything from particle size to attributes describing the 
food matrix, like elasticity, gummy, greasy and viscosity, and to mechanical properties like 
hard, brittle, creamy and powdery. The majority of these descriptors are difficult to attribute to 
a stringent definition, although lots of work has been put into the effort, especially related to 
instrumental measurements of these variables. Even when the instrumental definition is exact, 
the sensory perception of the attribute is not always clearly described. This arrives from the 
fact that instrumental measures are not always developed in order to reflect perception, but 
rather to describe a systematic variation in a range of food products. The correlation to 
perceived entities has sometimes been difficult to establish, like in the case with Instron 
measurements. For some practical purposes the instrumental measurement have been sufficient, 
but for a fundamental understanding of perceived texture it has not been adequate. Again 
underlying limitations in the physiology of the senses do not compare in complexity to the 
vocabulary utilised to describe sensory perception. Even if this can be explained, it is not 
obvious how the descriptors fit together in an overall structure. A similar structure to the one 
of colours is maybe not possible to expect, because the time domain is of utmost 
importance in texture perception. Still, the relationship between attributes, how they overlap 
and interact will be easier to understand when this is investigated using multivariate statistics. 
One good example is given by Yoshikawa et (1970). A few attempts on meta analysis have 
been made (Hams, J.M. et 1972; Risvik, E. 1994) but this must be seen only as initial 
attempts along this road. 

4. PLANNING AN EXPERIMENT 

The information collected through the senses reflect two types of information as suggested in 
the beginning of this chapter. First of all the physiological structure of the senses, that is the 
channels for information collection. When understood, this normally will be treated as manifest 
structures like in the case with colours. At the same time the information also reflects the 
samples in the test, that is the selected space described by the samples, or in other words the 
latent structures inherent in the experimental design. These two representations cannot be 
separated in sensory experiments, like in other experiments. and will thus have to be carefully 
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planned before data are collected. This is one reason why experimental design and 
interpretation of results are so closely connected in sensory science. 

In a sensory profiling experiment the selected attributes limit the amount of information 
available for analysis. When important attributes are omitted, essential information for the 
perception of the product will be lost. An important attribute in this context does not 
necessarily imply an attribute with significant variation. Even attributes with less or small 
variations between the samples may represent significant information for the perception of the 
product. The importance of juiciness of apples will not be made available for interpretation if 
all apples in the experiment have the same juiciness. This is not the same as to say that juiciness 
is not important. 

To design good experiments is not always simple. When manifest variables for observation 
are all given it is possible to utilise these for experimental design. The most obvious is when 
physical measures such as length, weight and size can be varied and used in factorial or similar 
designs. In sensory science, the relationship between the observed variables: the attributes, and 
the design variables are not always known. In some cases these are also a part of the 
experimental purpose to be investigated, like in the case of varietal testing of agricultural 
crops. Here, a part of the test, is to investigate which growth conditions will affect sensory 
quality; for example of carrots (Martens, M. 1986). The attributes selected are expected to 
describe variation in carrots, and the experimental design to reflect the variation in crops 
caused by factors of importance for perceived carrot quality. 

This brings the complex decisions to be made, once again, back to the discussions 
concerning the given and the meant (the relationship between the manifest and the latent). 

5. PHILOSOPHY FOR SENSORY SCIENCE 

In retrospect, the discussion so far into this chapter can be traced back directly to most of the 
classical and modem philosophers. This implies a much greater framework for exploration of 
ideas. To give reference for a few central philosophers a very brief discussion of latent 
structures in light of philosophy is included. 

5.1 Form 

Latent phenomena, described in the form of language must be understood as rather fuzzy 
structures. Words rarely have very specific definitions, and if they do have, they certainly are 
not used this way in everyday communication. More so, these structures do not have 
independent definitions without overlap. It is therefore not possible to handle words as if they 
were orthogonal phenomena. If human communication had to rely on exactness, a simple 
conversation would hardly be possible. 

The Form, Essence or Beauty of an object, as described by Plato (in: The Republic, 
Symposium and Phaedrus) and Aristotle (in: DeAnima and Metaphysics), can be understood 
the physical form of the object, the fimctionality or better as an abstract form synonymous to 
the latent structure inherent in the object. It is my allegation that this structure is, through the 
use of multivariate statistics possible to understand as a form of learned or experienced latent 
structure, unconsciously triggered as a primary signal or holism when new and more complex 
experiences are to be characterised. Since our consciousness have limited capacity for 
simultaneous experiencing, data have to be presented as a compressed structure with reduced 
dimensionality. This demands efficient processing with strong resemblance to multivariate 



analysis of sensory profiles when these are transformed from large complexity down to the 
simpler latent structures. This is why principal components often trigger resonance structures, 
when analysed data are being interpreted. 

Kvalheim, O.M. (1992) explained the latent variable to be ((the (missing link>, between 
Aristotle and Plato in the sense that the latent variable approximates the ideal world 
constructs from the real world)). 

5.2 Phenomenology 

Already Kant and Heidegger have strong contributions to a first discussion of a 
phenomenology of perception. This has been continued by Husserl towards a multidimensional 
paradigm for perception, as suggested by Idhe (1986). The introduction of the ((given)) 
(manifest) and the (meant)) (latent) links the object and the observer in phenomenological 
analysis of perception. This has also been one of the central concerns of Merleau-Ponty (1962), 
which also brings in ambiguity of perception. In total this can be seen as a development where 
increasing degrees of complexity have been added to the simplistic models of Plato and 
Aristotle. Similar or parallel development can be seen from application of Cartesian 
mathematics towards multivariate statistics, algorithms and neural network models, 
applied in sensory science. 

The philosophers provide paradigms for understanding, the statisticians transform this 

into practical tools, while sensory science has the unique opportunity to live the interaction of 

the two realms in experimental settings. 

5.3 Poetry 

Bacon has suggested a classification of sciences and the intellectual sphere where Poetry was 
evaluated as a separate branch of science on the same level as Natural Science. Allegorical 
poetry has always been an advanced form of communication through verbal pictures. The art 
of creating good poetry, implies the ability to create structures within a strict framework and to 
communicate, very often a complex idea without being specific. The resemblance between this 
and the interactive process between statistical presentation and the seeking of resonance from 
data structures in personal experience is striking. It is not difficult to understand Bacons 
respect for poetry, which made him suggest this to be on the level with Natural Sciences in his 
structuring of the intellectual sphere. 
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PART 

6. HOW DATA STRUCTURES CAN BE EXTRACTED AND INTERPRETED FROM 
A SET OF DATA UTILISING MULTIVARIATE STATISTICAL TECHNIQUES 

6.1 What is a latent structure? 

A very simple example first will help to visualise the concept. Imagine a banana (Martens, H. 1985). 
To understand the spatial information in this banana we need to define a reference system, the space 
the banana can be found in. If it lies on a table it is possible to use the tabletop as a dimensional 
space, with one third dimension going up. Distances along the sides of the table give coordinates for 
the location of the banana in a two dimensional projection. Depending on how it lies, it will descn i  
different shapes in these two dimensional coordinate system. It can be a straight line (the banana lies 
with the curvature up), it can be a C-shape (it lies flat on the table), or it can be a sort of circle the 
banana hangs in a string fi-om the ceiling. These projections can separately give some information 
a b u t  the banana, but is not complete until all three projections are combined. Since this only is a 
projection of physical object fi-om 3 to 2 dimensions, it is obvious that information will be lost in the 
process. This is because the original variables already are orthogonal. When the original space (the 
reference system) contains variables with a high degree of correlation, a projection korn a higher 
dimensional space down to fewer will not necessarily loose a lot of information. Thls is what is 
exemplified in the following discussion. 

A constructed example, easy to follow, is chosen to help understanding and to explain theory 
and concepts in modelling. 

Consider car accidents. Most people have a personal view on the most important causes for car 
accidents. Depending on who you ask, you might get answers like: 

the low standard on vehicles in this country 
because of drinking and driving, 
women drivers, 
young men driving too fast, 
old m n  driving, 
icy roads, 
because drivers do not respect speed h i t s  and more. 

Each of these reflect attitudes and values of the person saying it, and it may also be a potential 
cause, but not necessarily. 
To investigate this further, instead of fighting over who has the right answer, it is possible to 
perform an analysis on collected data from real accidents. This will generate a data table (matrix) 
like this: 
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Table 
Data from car accidents 

Standard of vehicle 
Accident 1 a1 
Accident 2 
Accident 3 a3 

Accident N an 

Ageofdnver Age ofcar Sex Speed 
b l  cl nl 
b2 

When all accidents (samples) are recorded with information on all causes (variables), this makes 
up a large table or a matrix of information. In a multivariate analysis of this matrix, methods are 
employed to seek a projection where variation in variables are expressed. This is usehl in 
order to understand how variables are important for a description of causes behind car accidents. 

This new and projected space is developed with the aid of an algorithm, where the principles 
be exemplified in the following: 

First of all a multidimensional space is built fiom the data matrix. Each variable, that is each 
registered information (standard of vehicle, age of driver, and so on) is considered to be one 
dimension. In a three dimensional space this is to understand like in Figure 3. 

The accident be d e s c n i  a point in this coordinate system with the values a l ,  bl, c l  
on each of the coordinates. When all accidents are introduced into the space they will make up 
a cloud of accidents like in the next figure, where all points are descnid with coordinates in the 
three dimensions. 

Age of driver 
Y 

Accident 1 (a l ,  bl ,cl) 

Standard 
a1 of vehicle 

X 

Figure 3. Accident 1 is represented a point in a 3-dimensional space. 
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Figure 4. accidents from Table 1 represented each as a point in a 3-dimensional space (the 
three first variables only) 

This space, for the sake of simplicity, only contains 3 dimensions. In practice there is no reason 
why this dimensionality cannot be expanded to any number of dimensions. In this case this is the 
number of variables recorded for each of the car accidents, denominated with "n" in Table 1. For 
each object (accident) in this n-dimensional space a string of coordinates (al, bl, cl, nl) will be 
sufficient information to describe the place of this object in the n-dimensional space. 

If the variables descniing the objects show no systematic variation in this space, the swarm of 
dots wiU cover the whole space with an even distniution. In this case the original variables descriie 
unique information in the objects, and there is no relationship between them Further analysis would, 
in this case, not be meaningful. 

In most cases there will be a relationship, or a covariance between variables. This will be seen as 
a concentration of points in a specific direction. In a simple and well established relationship 
between variables this can be illustrated as in Figure 5, where all points are close to a line going 
through the space. 
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Ageof 
driver 

Standard of 

Figure 5 .  Data for all samples showing a high degree of covariance for all variables 

If accidents organise in this plot, they are correlated with an interpretable structure. The way 
accidents organise along this direction in space will give an indication to this systematic 
relationship being an indicator of importance for interpretation, for severity of car accidents. 

With few variables in a matrix these plots would very often be sufficient analysis, with the plots, 
the regression and the correlation coefficients to explain the relationships. With large number of 
variables two by two plots and correlation coefficients soon exceed the amount of information 
possible to hold for interpretation at the time. 

To simpli@ even Wher it is possible to utilise the covariance between variables to reduce 
dimensionahty in the original space, or in other words to come up with a projection where 
important aspects of the original information still is maintained. 

STEP 1 

A new line is introduced in the original space. The direction of this line is given by the longest 
distance described in the of data points, that is the best fit to the data. This is illustrated in 
Figure 6. 
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x 

Figure 6. First principal component is introduced, in order to describe the most important 
direction in space, for interpretation of variance 

new line is characterised by three important aspects illustrated in the next figure. 

Figure 7. Features of importance for interpretation of a principal component 
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I The direction in space relative to the original axes indicates how much is explained of each 
variable. In this case more of x (standard of vehicle) is explained, while less of y (age of driver). 
This indicates that in the collected data for mtandard of vehicle)) show greater importance to 
explain the variation in this direction than ((age of driven). For real data this would maybe not be 
true unless variables are stretched to a standard length (example: multiplication with xavgstd for 
all variables (the analysis defaults to analysis of correlations)). In this variables are 
comparable, and the relative variation reflect unportance of the variable for the found direction in 
space (there are several concerns connected to this approach, which will be dealt with in later 
chapters). 
To this new line in space often called principal component one (pcl), be 
characterised by its direction in space relative to the original variables. This tells how much of 
this original variation is explained by the line. In Principal Component Analysis (PCA) this is 
called the loadings, and the loadings informs how well variables are explained by the principal 
component. 

2) Each object in the new space is characterised by how they are fiom the centre of the space 
(distance from xavg, the grand mean). These values, or scores they are called in PCA, explain 
the relationship between the objects. When objects, in this case car accidents, organise and show 
systematic variation along a direction in space, this is an indication that the direction is being 
important for explanation of the way objects organise. 

statement is possible to visualise a move from an external perspective (seeing data 
from the outside) over to a perspective where the observer is standing in the centre; seeing data 
from xavg. 
In the case of car accidents, one could assume that the line in Figure 7 descn i  standard of 
vehicle of relative greater importance than age of driver for the descnid main variation. If 
scores are organised along this line, that accidents of less severity can be observed at the 
lower end and severe accidents at the higher end, it implies that standard of vehicle is of relative 
greater importance for interpretation of severe accidents than age of driver (since the line is tilted 
in this direction). If the accidents are organised in a different way along the principal component 
this will indicate a different relationship. 

3) If all objects showed 100% correlation in this 2-dimensional space they would all be exactly on a 
line between the variables. In the case of a perfect linear relationship, this could be d e s c n i  by 
the principal component to 100% (non linear relationships will not be discussed in this chapter). 
For realistic experimental data this will normally not be the case. Each object will also, to be fully 
characterised, be described by E, the distance away fiom the principal component (the error in 
the model). Another way of explaining this is by calling it lack of fit, noise or remaining variance, 
not accounted for by the model. 
This, left-over information, can be collected for all objects and variables in a new matrix, the 
error matrix, fiom the left over information in the calculation of the first principal component. 

STEP 2 
The error matrix, or unexplained variance fiom the calculation of the fist principal component 
descnhes information not accounted for. Since the pc is calculated to be in the distance ofmost 
variation this can be illustrated in Figure 8. 
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Figure 8. Principal component and 3 

The remaining information will often be distributed around pcl in something like an oval shape. 
The procedure from the calculation of pcl can be repeated again and a new dimension will emerge. 
In most models the criterion for calculating the new dimension is that it will descnk as much as 
possible of the remaining information and at the same time be orthogonal to the previous principal 
component. 

This second pc will be less to the explanation of the variation in the material 
(importance in this case is different from being important for interpretation of results). 

Since it is orthogonal to the first principal component they can be plotted against one another. 
This information can be presented in two different ways. 

1. First of a loading plot (direction in space with relationship back to the original variables) 
will give a map of all variables and their relationships. 

A score plot will be illustration of how accidents are distniuted in this space, and systematic 
variation in this space might give indication of underlying structure or meaning (that is one 
reason why they are called latent phenomena). 



26 

price cars speed 

Figure 9. Illustration of possible loading plot for mock car accident data 

Figure 10.Illustration of possible score plot for mock car accident data 
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In a biplot these two spaces are superimposed into the space (not shown here). 
The plots are made up to illustrate several difficulties normally met when loading and score plots 

are to be interpreted. There is no attempt from the author to make the plots resemble what would 
be the reality in a case study, but rather a more humorist view playing on known prejudices. 

7. INTERPRETATION 

Interpretation of principal component plots is not always simple. Vev  often, in literature, only a 
description is found of how loadings are placed along the principal components. This leaves the 
interpretation to the reader. 

7.1 Principal components 

In this case, the first two dimensions are constructed to give example of a group of two 
correlated attriiutes and one other attribute uncorrelated. Correlated means that changes in one 
variable is parallel to a change in another variable. When these are plotted against each other the 
objects will on a straight line between the two. ((Price of cars)) and dcohol  concentration in the 
blood)) seem to be correlated in the first two dimensions, while the attriiute (cage of cars)) is not 
correlated to these. In the score plots each of these factors give rise to a group of severe accidents 

indicated in the figure. 
Two attributes with no correlation indicate a relationship between the two variables where 

variation in one, will not show an effect on the other. In this case the price of the car show no 
relationship to the age of the car, when it comes to accidents. This implies that both old and new 
cars descni  accidents in the same way whether they are cheap or expensive (independent 
variables). 

The two correlated attriiutes, price and alcohol concentration indicate that expensive cars tend 
to appear in accidents were alcohol also is important, while cheap cars tend do not. In the plot there 
is an indication of a separation of these in the third dimension, which also might make the 
interpretation more difficuk. 

Two attniutes in the plot lie along the diagonals, in-between the principal components. These 
are (age of men)) and ((age of womem. They both show a high degree of correlation with the 
attribute (cage of cars)); that is: a relationship between the age of the car and the age of the driver in 
accidents can be seen. At the time old women (high on age of women) tend to dnve more 
expensive cars, while old men drive inexpensive cars (opposite to high on price of cars). Old women 
also tend to have a higher alcohol content in the blood, while old men tend to lie on the opposite 
end of the scale (that implies that young men show the opposite behaviour). 

Two attriiutes are located near to the centre of the plot. They have low loadings and do 
therefore not play an important role for the interpretation of the relationship between the attriites. 

The two first pcs of the analysis always give most of the information available in the data, but 
there might be several dmensions possible to utilise for interpretation. To establish the optimal 
number of pcs for interpretation is always difficult. A whole series of techniques called validation 
techniques are developed for this purpose. Some of these techniques will be introduced in 
relationship to analysis methods in other chapters of this book. 

Let assume that in this case three pcs were found to be optimal using crossvalidation (Stone, 
M. 1974). The third dimension, orthogonal on the two first would then create a cube of the loading 
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plot, where speed and icy roads were to be found on either end of dimension three (indicated in the 
plot). All the other loadings would also have to move up or down along this axis if they had any 
correlation with the two attniutes. Let us assume that also the old men show some relationships 
with high alcohol content in the blood, but to a lesser degree than old women. If both (age of men 
and alcohol content in the blood) were projected down in the structure, it would suggest that there 
is a grouping of old men, on icy roads with high alcohol content in their blood, important for car 
accidents. On the other end driving older women with expensive cars show another grouping. 

So far this has only been a description of the distniution of the loadings along the pcs. To 
understand whether this gives any meaning it is necessary to compare the loading plot with the 
score plot. 

To recapitulate: The scores descni  the relationship between the principal components and the 
accidents (samples). In this case the distniution of accidents show systematic variation in two areas 
where severe accidents seem to concentrate, can be identified. These can be related to the 
loadingplot and explained by attniutes pointing in this direction. 

Already from the visual inspection of the plots it is possible to see emerging hypotheses in the 
data. To investigate this fiuther it is necessary to employ other statistical models. One approach 
could go through the use of Clustes analysis (CA) and or Discriminant Analysis (DA) to look for 
groupings in objects or variables. For many instances the initial PCA will suggest groups for 
investigation in complementary and subsequent analyses such CA or DA. In order to quantlfL 
differences and to test for significance, other models like STATIS and Canonical Discriminant 
Analysis (Schlich, P. 1993) can be of help. Several of these and similar models be included in 
later chapters. 

8. EXPERIMENTAL DESIGN 

Traditional statistical analysis developed for descriptive purposes and to support 
conclusions based on data from experiments. This has very often been factorial designed 
experiments where few variables have been involved. In standard Analysis of Variance (ANOVA) 
variables are treated one at a time, and the influence from other variables giving the effect 
(inter-correlations) are, in the simplest ANOVA models, ignored. 

From Cartesian mathematics to the interpretation of latent structures there is a conceptual jump. 
Still Cartesian coordinates are the whole basis of multivariate statistics, while interpretations and use 
of latent structures very often belong to a very different school ofthought. 

A latent structure is a combination of variables which together make up the structures in 
the data in a simpler way. An example can be found in wine profiling (Sivertsen, H.K. and Risvik, E. 

1994; Pages, J. 1987; Noble, A.C 1987; Heymann, H. and Noble A.C. 1987) where 
similar structures are found. The attniutes of a wine very often aggregate on both sides of the first 
principal component. In one group the fruity and flowery aromas and on the other side, animal 
vegetative and astringent flavours. This, also being the main difference between young and aged 
wines. It implies that the first pc very often is related, among others, to wine ageing. It is simple to 
understand how this would be different if all the wines in the experimental design included only 
young wines, only the one side of the pc being represented in the data. 

In the wine example, the structure to be descnkd will focus information from one group of 
attniutes and the distniution of both attniutes and samples will appear very different in the loading 
and the score plot. The relationship between experimental design and the latent structures d e s c n i  
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in the analysis is thus obvious. In this case the latent structure observed indirectly in wine can be 
named ageing. It would be dangerous to suggest a causal relationship, since also many other 
variables can be confounded or highly correlated with this information. To suggest that principal 
components describe causal relationships or manifest structures is difficult to say unless relationships 
is considered together with the information on its experimental design. A few examples will be 
needed for a sufficient illustration: 
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In the example of carrots and tomatoes it is easy to understand why the value of the experiment 
is reduced unless the odd sample is recognised and removed from the analysis. In reality the odd 
sample can be difficult to distinguish. In investigations of crop variety among different cultivars, a 
pest on one sample might cause a surnlar situation, although not recognised by the experimenter. In 
this case the analysis will descn i  the effect of pest and not how cultivars are different. 

When these if$ and buts are taken into consideration: Why is it that even when obviously 
limited sample sets are chosen, similar structures emerge? 

The answer can be one out of many. The structures descnid by latent phenomena can be very 
stable, not yet established manifest structures. It is possible that several confounded effects work 
together to stabilise certain structures. In a similar way there might be strong indirect correlations 

(of unknown cause) to causal relationships. And of course the observed similarities rnight be 
artifacts. For these reasons the validation of results through specialised techniques or in 
complementary analyses are of great importance. 

Several of the techniques introduced in this book will give complementary views into a set of 
data, and should be considered not in competition, but rather supplemnts to each other in 
data analysis. 

One other appropriate question to be asked at this point concerns the interpretability of latent 
structures. From a deterministic tradition of science we have been trained to seek causal factors or 
to test pre-set hypotheses. The commonalties or lack of such in similar sensory experiments for 
meta-analysis of data, in order to investigate possible manifest relationships between design factors 
and reoccurring data structures. This is a way of thinking with traditions from humaniora and 
such, very often seen in contrast to the previous. In sensoIy science the meeting point of 
humaniora and technology, the opportunity is present for both approaches at the time. This 
implies a very exiting research environment with a great potential of new and exiting contnbutions 
to contemporary science. 

9. GEOMETRICAL REPRESENTATION OF LATENT STRUCTURES 

#en all considerations concerning experimental design is taken into account, and its effect on the 
results are handled with care, the actual interpretation still remain. To help in this, real data are used 
in an example. 

9.1 Imposing causal interpretations on latent structures 

For the sake of simplicity this example illustrates simple features in multivariate analysis and 
compares this to analysis of variance. This interpretation goes one step further than before. That is 
because interpretation on a causal or fundamental level is indicated. In experiments this level 
of interpretation is not included, being considered a bit premature based on only one experiment. 
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Latent structures can be understood as a geometrical representation of data measured indirectly, 
or a projection of higher dimensional space made up by manifest variables, down into a space with 
fewer dimensions. A well known example of this is a regular map of an area. The information in the 
map can contain both the shape (two dimensions), the altitude in the form of contour lines 
(dimension three) and geological information in the form of colour (dmension four) presented in 
two dimensional latent structure on a piece of paper. Similar can higher other dimensions be 
projected down into a representation in fewer dimensions. For sensory data, very often, 2-4 
dimensions contain most of the systematic information in a 10-30 dimensional profile. 

From sensory science, sensory profiling of raspberries is chosen. The example contains sensory 
profiles (Risvik, E. 1986; Martens, M. al. 1994) from raspberries harvested at 3 different times 
for 4 different cultivars. The profiles contain 12 attniutes profiled by a panel of 12 in 3 sensory 
replicates. 

Panel data were first averaged over assessors and replicates. In an analysis of variance all 
attributes came out with significant differences on a 5% level for cultivar, while the harvesting time 
only showed significant differences for half the attniutes. It was also observed interactions between 
cultivar and harvesting time for two attniutes (sweet and viscous). In the PCA, four dimensions 
were descnied as possible to interpret after validation with leverage corrections (Figure 11). 
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Figure 11. Loadings and scores for principal components 1 4 for 4 cultivars of raspberry, 
harvested on three occasions, and profiled on 12 attributes. Figure 1 la&c pcl&2. Figure 
1 lb&d pc3&4 
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In the interpretation of the dimensions, the loading and score plots give simple explanations. In 
the following the principal components will be discussed one by one and interpretations imposed on 
to the data structures. 

Dimension one. pcl, distinguishes between a group of attniutes on the right side: redness, 
intensity colour. juicy, shiny, sour, intensity of smell and flavour, on the other side are off-flavour, 
bitterness and chewy aspects. Cultivars 2 and 4 show large differences between first and second 
harvest, with a decrease in off-flavour, bitter and chewy and then an increase for the third harvest, 
while cultivar 1 and 3 show more of a mirrored pattern. Cultivar 1 have more off-flavour, bitterness 
and chewiness than the other cultivars. It is possible to suspect that the changes along pcl for 
cultivar 1 and 4 are examples of how bemes within the field can be at very different 
development stages when picked at three different times and that the fields also can be different. 
Maybe even more important for sensory attniutes than variety are growth conditions (temperature 
and water). For bemes, ripened with intervals of three weeks, in this the development of 
juiciness, sourness and also off-flavour can be at very different levels each time, an expression of 
how the weather has been different in the fields in the mean time. 

The second pc descn i  colour variation and viscosity, that is colour and texture changes with 
high degree of correlation between them Sourness correlates well with this direction. When colour 
intensity increases viscosity decreases. Knowing that more mature raspbemes have less viscous 
texture and more intense and red colour this is explainable, provided the samples organise fiom less 
mature to more mature in the direction as the attriiute changes. In the score plot this can be 
seen to be true. But in addition it is possible to see that the changes are not at all comparable for the 
4 cultivars. The order of the cultivars in direction of increasing maturity is the but the level 
and the magnitude (if these can be interpreted) are different. AU cultivars increase in redness and 
colour intensity during ripening. while cultivar 3 already at the beghning at harvest one more 
redness and colour intensity and less viscous texture than the other three cultivars. Cultivar 2 and 4 
show little change at all. There are at least two interpretations of the results: 1) That the cultivars 
have different ripening w e s ,  that is a difference in how they ripen. 2) The four cultivars 
represented here ripen at different times, so that cultivar 3 already at the harvesting is more ripe 
than the three others at the third harvesting time. To distinguish between the two interpretations is 
not possible from the existing design, although an interpretation of pcl and 2 together would favour 
the last interpretation. The three harvesting times for each cultivar are linked with a line to show 
this. 

An interpretation pc3 shows that while 3 cultivars increase in sweetness and redness during 
maturation, cultivar no 2 show slightly different behaviour. After the second harvest the cultivar 
decrease in sweetness, which would be expected to cause interaction term in the ANOVA. This 
is also seen for the term sweetness. 

A very similar explanation can be given for pc4 on sweetness, where sample 2 and 3 have very 
different orders of sweetness for the 3 harvesting times. For the terms viscous there may not be a 
difference in the orders of the samples on pcl, but in pc4 where viscous also plays a role the 
patterns for sample 1 and 2 are different. This may be the cause for the interaction term in the 
ANOVA. 

The interpretation of pc3 and 4 is not obvious, as for pcl and 2 with the growth condhons 
and maturation curves. It more linked to differences in patterns for the actual cultivars. 
Cultivar 1 is more on the sweet and juicy side, while 4 is less sweet, more viscous, but still juicy. 
This can then be interpreted the cultivar differences. 
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As can be seen by the interpretation of pcl to 4 the information in the loading and score plots 
can be related to underlymg information in very simple ways. It is not the intent with this discussion 
to indicate causal or fundamental relationships, as this is not yet proven. Still the data in this 
projection of the data, opens up for such hypotheses to be made. In these data there are indications 
that it could be possible to recognise effects fiom growth conditions (pcl), fiom ripening (pc2) and 
fiom cultivars (pc3 and 4). Far fetched interpretation fiom such a small material, but very interesting 
if it maintains validity in reproduced experiments. 

In order to strengthen the interpretation, the data should be transferred into other models 
order to get other perspectives into the interpretation. This is not performed here. 

10. CONCLUSIONS 

This chapter has discussed sensory profiling with a wide perspective. The intention has been to give 
a platform for understanding of multivariate statistics in sensory science. In order to do so it is 
necessary to incorporate a discussion of the more fundamental issues related to the use of 
multivariate statistics and to the interpretation of results. 

Eating a food or drinking a glass of wine is the meeting point between the subject and the object, 
and such it touches upon some of the most fundamental discussions of human philosophy, that of 

and death, identity, and that of the good versus the bad. Analysis of sensory data eventually 
touch upon these or related aspects a d  the sensory analyst is therefore best prepared when these 
discussions always are kept alive, a part of a continuous education in the field. 
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EXPERIMENTAL DESIGN 

Edward Anthony Hunter 

Biomathematics Statistics Scotland, The University of Edinburgh, Scotland, 
United Kingdom. 

1. INTRODUCTION 

Good experimental design is extremely important in all areas of science; especially where 
treatment effects are small relative to uncontrolled variation, as in sensory studies. It is 
generally accepted that a well designed study that is analysed using s q l e  methods will yield 
more information than a hastily designed study analysed using sophisticated methods. Careful 
design of sensory experiments is essential in order to derive the maximum amount of u se l l  
information from the work of the sensory assessors and the technicians who run the 
experiments. 

Organising a program of sensory research, defining the objectives of each individual 
experiment and running the experiments efficiently requires an appreciation of many disciplines 
in addition to the statistical design and analysis of experiments. The book by Stone and Sidal 
(1993) will be found to offer much useful advice. 

1.1 Historical Perspective 

Experiments are carried out to test hypotheses and also to estimate parameters in statistical or 
mathematical models. The sole purpose of experimental work is to provide information. 
Statistical design of experiments identifies sources of variation, (both random and systematic) 
and then takes them into account in designing the experiment and in the subsequent analysis. 
Thus the resources expended in carrying out a well designed experiment result in the 
amount of information. Statistical design of experiments is widely used in applied biology, 
medical and clinical science. 

The foundation of modem experimental design and analysis is due to the work of R A 
Fisher at Rothamsted Experimental Station, Harpenden, England in the 1920's. Fisher devised 
efficient methods of designing and analysing agricultural experiments which have been 
successfully applied throughout the world. For an account of this work see primarily Cochran 
and Cox (1957) but also John and Quenouille (1977) and Mead (1988). 

Fisher's methods have been adapted for use in the chemical and other continuous process 
industries and in the engineering industries by G E P Box and colleagues at Madison, 
Wisconsin, USA. These methods have been used throughout the English speaking world, and 
many are directly applicable to the food processing industry. 

From a very different starting point and with knowledge of Fisher's original work, the 
Japanese engineer Taguchi has developed a philosophy of quality improvement 
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manufacturing industry which incorporates a substantial component of experimental design and 
analysis, albeit in an industrial context. 

Bradford Hill introduced statistical ideas of designing and analysing experiments to clinical 
studies of new pharmaceutical products and other therapies. The randomised, double-blind trial 
is the accepted way of testing new treatments. 

The use of statistical experiments in perceptual psychology has a long history, Robson 
(1973). The issues that arise in this area of application also arise in sensory evaluation. 

In each area of application, the same statistical principles are applied, but are adapted to 
meet the special needs of the experimental work and data. It is important that sensory scientists 
realise that their experiments can be seen as being part of a much wider scenario with a large 
literature, some of which is relevant to their requirements. 

Finally, other authors have considered the problems of experimental design in sensory 
studies. MacFie (1 986) provides check-lists and covers many practical points in his Chapter in 
a book edited by Piggott. OMahony (1985) gives a gentle introduction to the use of 
experimental design in sensory evaluation and covers some of the points made in this Chapter 
in more detail. Many practical matters concerned with setting up a sensory laboratory and 
running sensory experiments are covered in Stone and Sidal(l993). 

1.2 Blind Testing 

When people are used as experimental subjects, it is important that they are unaware what 
treatment combination (=sample) they are assessing. In clinical trials neither the experimental 
subject nor their physician know which treatment is received; this is known as double-blinding. 

For example, suppose a supplier of chocolate to a supermarket chain (who then sells it 
under the supermarket's own label) is required to demonstrate that the product is similar to 
branded products. This can be achieved, by setting up an experiment to compare the sensory 
properties of the suppliel's chocolate with other brands. In such an experiment all packaging 
and even the brand names are removed from the surface of the chocolate. Care must be taken 
to present sub-samples of the same dimensions from each sample. This ensures that assessors 
are influenced only by the sensory properties of a brand, not by its image or other extraneous 
factors. 

The order of presentation of the sensory tasks within a session is known to systematically 
affect the results. It is desirable that the sensory technician works from a previously prepared 
plan giving the order of tasks for each assessor. 

It is desirable that sensory assessors are screened from each other during testing so that they 
are not aware of the reactions of their colleagues to the samples being assessed. Opinions differ 
about how much feedback of sensory performance should be given to assessors or whether 
assessors should receive information on the results of experiments. At one extreme, some 
laboratories routinely provide diagrams for each assessor which show performance relative to 
other assessors. These are often the laboratories which hold training sessions round a table in 
which samples are examined and scores for attributes agreed. Other laboratories are more 
sceptical about the value of hying to align assessors. There is, however, no dispute about the 
value of external standards and the need to ensure that assessors produce consistent ratings for 
repeated samples. It is important that assessors are valued for the contribution that their special 
skills make to the work of the sensory laboratory. 
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1.3 Randomisation 

After systematic sources of variation have been identified and designs devised which take them 
into account (see later), randomisation is the next step in the process of producing the order of 
samples for each assessor. This process ensures that the true differences between samples are 
estimated free of biases and also allows variability to be estimated. If there is laxity about 
randomisation then it is likely that undesirable systematic effects will bias the sample effects 
and invalidate the estimates of variation. 

One additional hazard of sensory analysis is the ability of assessors to remember previous 
experiments, to perceive pattern in the samples that they were allocated and then to anticipate 
this pattern in future experiments. example will help to clarify the hazards. 

Suppose that the sensory laboratory (unwisely) uses the same allocation of samples to 
assessors each time it compares, say, 4 samples. Suppose also the laboratory performs many 
experiments on the effect of sweeteners on the sensory properties of products. If the samples 
are allocated to numbers in increasing order of inclusion of sweetener then, unless there is 
randomisation of samples to sample symbols or assessors to assessor symbols, assessors will 
receive the same pattern of sweetness of samples in each experiment. Assessors will quickly 
learn to anticipate the sweetness of the sample they are assessing and this will prejudice the 
integrity of their ratings of sweetness and all other sensory attributes. 

The only fully satisfactory method of randomisation is to independently randomise the 
assessors to assessor symbols and the samples to sample symbols for each experiment. This 
can be conveniently done by a computer program with a different seed for each randomisation. 
Using this process will ensure that a different order of testing of samples for each assessor is 
produced every time a design is generated. 

1.4 Factors which Influence Success 

The factors which influence the success of sensory work are: 

1 .  
2. 

3. 

5. careful analysis of data, 
6. perceptive interpretation. 

the clear statement of objectives, 
the careful design of the treatment structure to satisfy these objectives, 
the allocation of treatment combinations (=samples) to assessors, 
the careful execution of the experiment so that no systematic or unnecessary 
error variation is introduced, 

By far the most important factor is the clear definition of objectives. The next most 
important factor is the design of the allocation of treatments to assessors and the design of the 
treatment structure (dealt with in this Chapter). Good design allows informative univanate 
analysis of the data, see this Chapter. Advanced multivariate methods, which can do much to 
summarise voluminous data, also require the experiment to be properly designed despite the 
misconceptions of some sensory scientists. 



1.5 Power of the Experiment 

In planning experiments, it is always wise to consider whether the proposed experiment 
capable of detecting the differences of interest. A surprising number of experiments fail this 
test and so are a misuse of resources. In clinical trials, the codes of practice require power 
calculations to be done. These are illustrated later in section 7. 

2. TYPES OF SENSORY EXPERIMENTS 

Sensory experiments can be divided into two kinds: difference experiments and profile 
experiments. In difference experiments, in which the "odd" sample or samples are identified 
the assessor, overall differences between samples are assessed. In experiments where the 
quantitative difference between two samples is assessed, it is possible to ask assessors to rate 
the difference in aroma, flavour or texture etc. This can be taken one step further and 
assessors can be asked to rate differences in a particular attribute, such as lemon flavour etc. 
Where the questions are general, it can be difficult to determine the precise nature of the 
differences. Reliance must then be placed on assessors notes and possibly a panel discussion. In 
contrast, in profile experiments the samples are rated for a number of sensory characteristics SO 

that those which define differences between samples are identified. 
Difference experiments are extremely useful when a new product is being evaluated for the 

first time. For example, a laboratory which usually evaluates cheese and other dairy products 
might well start with difference tests when it begins evaluating a new product, such as fruit 
cordials. After experience has been accumulated, more detailed information can be gained from 
profile experiments. 

Difference tests can be subdivided into two classes: 

1. 
2. quantitative difference tests. 

triangular and other similar tests, 

Triangular tests, one of the more common and simpler paired comparison tests, make only 
light demands on the sensory assessors but have limitations and must be carried out with 
attention to detail. Quantitative difference tests make greater demands on the assessors but less 
than profile experiments. When many samples are being compared, they require large quantities 
of sample and extensive preparation of the sub-samples for the assessors. 

In sensory profile experiments, the assessors rate samples for many attributes. This 
vocabulary can be fixed for all assessors as with almost all profile experiments, or can be 
personal to each assessor as in free choice profile experiments. In both cases the vocabulary 
should encompass the differences between the samples. For products which are frequently 
profiled, a vocabulary will exist and be continuously modified to reflect changes in the 
products over time and increasing knowledge of the sensory properties. 



3. TRIANGULAR AND OTHER SIMILAR TESTS 

The duo, duo-trio, triangular, polygonal and polyhedral tests are all variants of tests for 
comparing two samples. 

The best known of these tests is the triangular test in which three sub-samples (two from 
one sample and one from another) are presented to each assessor who is asked to pick out the 
odd sub-sample. The nature of the differences between the samples are not defined, only 
whether or not assessors can perceive a difference. 

When viewed from a psychophysical standpoint the triangular test is (surprisingly) subtle 
and experimenters should refer to the psychological literature for guidance on asking the 
question in an appropriate way (see for example OMahony, 1985). 

It is important that the assessors do not receive clues to the odd sub-sample from the sub- 
sample numbers or mode of presentation. For example, if the sub-samples from one sample 
are put on plates of a distinctive size or colour, or if the sample is cut into sub-samples of a 
distinctive size or shape, then the assessors could receive clues from the presentation of the 
sub-samples. 

With a Triangular test there are six possible ways in which the sub-samples can be 
presented. Suppose the samples are A and B. Then the possible orders of presentation are 
AAB, ABA, BAA, BBA, BAB and ABB. 

Two scenarios will be considered: 

1. each assessor performs one test, 
2.  each assessor repeats the test several times. 

The data from each test consist of either a 0 the assessor identifies the wrong sub-sample 
being "odd' or the assessor correctly identifies the correct sub-sample as being "odd". 

The data are thus b i n q  data. In the usual form of the test the probability of identifying the 
"odd' sub-sample entirely due to chance is p=1/3. This is called the null hypothesis. 

The results from these trials are analysed by using the binomial distribution to calculate the 
probability of getting such a result or a more extreme result due to chance ie on the assumption 
that the null hypothesis is true (Type 1 error). In (too) many triangular test experiments a 
statistically non-significant result is accepted as confirmation that there is no sensoIy effect of 
sample. However, small experiments are insensitive to large differences in the value of p. It is 
instructive to calculate Type 2 errors (Schlich,l993a) by calculating the probability of getting 
the experimental result or a less extreme result with p set to 0.5 or 0.6. 

Simple triangular tests in which each assessor canies out the test only once are only 
sensitive when large numbers of assessors are available; when (for example) institute staff, 
students or shoppers in supermarkets are used. 

Consider this example. An experimenter wishes to test whether there are sensory 
differences in the milk produced by two methods of heat treatment of raw milk. Milk is taken 
from the institute bulk tank (which is continuously stirred) and divided into two parts. At 
random, one part receives each heat treatment (A and B). 
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3.1 One Observation per Assessor 

Seventy two people working at the institute are asked to cany out a triangular test. All are 
familiar with triangular testing having previously participated in this form of sensory test. The 
way in which the sub-samples are presented is randomised independently for each of the 
assessors. Thirty participants correctly identified the "odd" sample ie p=0.417, compared to 24 
that would have been expected to identify it under the null hypothesis of p=1/3. The probability 
of getting this result or one more extreme ie 30-72 correct results under the null hypothesis can 
be got from the binomial distribution. This distribution is tabulated in Stone and Sidal (1993) 
and also in Gacula and Singh (1984). It is also available in many computer programs. The 
probability is 0.086 which is appreciably more than the usual 0.05 criterion for statistical 
significance. It is concluded that the sensory differences between treatments A and B are not 
large enough to be detected by the experiment ie there is no statistical evidence that p is 
greater than 1/3. 

It is instructive to consider the power of the experiment. Suppose the true value of p=0.5 
what is the probability of getting 30 correct or less? Using the binomial calculations this is 
found to be 0.097 whereas for 0.6 it is 0.001. From these calculations, it can be seen that the 
experiment was of sufficient size to detect modest differences in the level of p from 113. This 
test can reasonably be assumed to have tested the consumers ability to differentiate between 
the treatments. Using the generalized linear model with binomial variation (Collett, 1991), it is 
possible to explore the effects of the different presentations of sub-samples. 

3.2 Several Observations per Assessor 

If a trained panel is being used, which seldom numbers more than 15 assessors, the experiment 
will intrinsically have a poor ability to distinguish small differences between samples. In order 
to increase the power of the experiment, there is merit in repeating the test several times for 
each assessor. Six replicates of the test or multiples of six are particularly convenient. This may 
now cause problems since there are two levels of variation within the system: between 
assessors and within assessors, If there are no real differences between assessors in their ability 
to differentiate between treatments, then the assessor component of variance is zero. 
Satisfactory methods of handling this kind of data are being developed but have yet to be made 
known to the sensory community. 

In fact these results were derived from the sensory panel at the institute. The 12 assessors 
performed 6 tests each using a design based on Latin Squares. First a Latin Square of order n 
is defined: 

A Latin Square order n is an arrangement n symbols in n rows and n columns such 
that each symbol appears once in each row and once in each column. 
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Table 
A Latin Square of order 6 is given below: 

Column 

I IV v 
Row A a b C d e f 

B b C f a d e 
C C f b e a d 
D d e a b f C 

E e a d f C b 
F f d e C b a 

It can be seen that the symbols "a", "b", "c", "d", "el' and appear once in each row and 
each column. The properties of Latin Squares have been extensively studied by mathematicians 
and special kinds of Latin Squares are frequently used to produce experimental designs with 
desirable statistical properties. 

Two order 6 Latin Squares were used to determine the particular randomisation for each 
assessor. Rows were regarded as assessors and columns as the order of testing. Symbol "a" 
corresponded to the set of test sub-samples "b" to ABA, "c" to BAA, " d  to BBA, "e" 
to BAB and "f' to ABB. Generalised linear modelling of the binomial response did not 
reveal any statistically significant order of presentation or form of test effects. The results for 
each assessor are: 

Table 2. 

Assessor Correct 

1 
2 
3 
4 
5 

6 

8 
9 

10 
11 
12 

3 
3 
1 
2 
5 
2 
3 
3 
0 
3 

No assessors detected the "odd sub-samples correctly 6 times and only one assessor 
detected them correctly 5 times. 
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A statistical test is required to evaluate whether there are differences in assessors ability to 
correctly identify the "odd" sub-sample. Multilevel models with binomial variation are not yet 
fully developed so a simpler, and arguably less statistically efficient, technique based on 
randomisation is used. 

As a test statistic the variance of the variate of number correct for each assessor is 
computed. The formula is: 

where is the number of correct answers for assessor i. 

For the data the value of the variance is 1.909. By randomising the data 100 times and 
recalculating the variance, a reference distribution is obtained. 

Table 3. 

Variance Frequency Cumulative Frequency 

<1.0 16 16 
1.0 1.2 16 32 
1.2 1.4 11 43 
1.4 1.6 17 60 
1.6 1.8 8 68 
1.8 2.0 12 80 

>2.0 20 100 

The test statistic into this distribution at the 80 percentile. It is concluded that there is 

Finally, it should be remembered that the triangular test is not necessarily the most 
little difference between assessors in their ability to distinguish between the two treatments. 

appropriate test, for example the duo-trio test may be more appropriate. 

4. QUANTITATIVE DIFFERENCE 

Tests two or usually more samples are compared in the same 
experiment. Difference between each pair of samples is assessed directly. This can be done 
using an ordered scale with for instance 5, 7 or 9 points or by using an undifferentiated line 
scale and asking assessors to mark a line at the appropriate point (see also section 5.5 of this 
Chapter). Schiffman, Reynolds and Young (1981) provide more details. The analysis aims to 
estimate the magnitude of differences between samples in the underlying sensory dimensions. 

The advantage of the quantitative difference experiment over a set of experiments using the 
triangular test for each pair of differences is that the sizes of the differences between samples 
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are quantified. The advantage over sensory profiling is that a vocabulary does not need to be 
developed. The technique is specially useful in the early stages of working with a product when 
expertise in its sensory properties is still being rapidly accumulated. 

A disadvantage of quantitative difference testing, compared to sensory profiling, is that 
larger quantities of sample are required and that sample preparation is a longer and more 
exacting task. Each assessor is required to assess each pair of samples, so for 6 samples there 
are 15 pairs whereas for 8 samples there are 28 pairs and for 10 samples 45 pairs. Thus, for 
each assessor, 5 sub-samples of each sample are required when there are 6 samples, 7 sub- 
samples with 8 samples and 9 sub-samples with 10 samples. The underlying concept of the test 
does not easily permit these levels of sub-sampling to be broken. This technique is therefore 
constrained to experiments in which modest numbers of samples are being compared. There is 
merit in replicating the test but most sensory scientists argue that replication requires too many 
resources. Another disadvantage of the test is that it is not easy to interpret the sensory 
dimensions. 

The number of pairs of samples ofken exceeds the number that can be readily tested in one 
session by an assessor. The pairs of samples then have to be broken into subsets that can be 
tested in a number of sessions. Furthermore, the order of testing within a session requires to be 
determined. Within a pair the order of presentation also requires to be determined. 

In a well organised laboratory full information will be recorded ie assessor, day of testing, 
session within day, order within session, sub-samples being compared and presentation order 
within the pair as well as the magnitude of the difference. For a sensory laboratory with a large 
throughput, computerised data collection is cost effective but pencil and paper methods are 
perfectly adequate even though they take a great deal of time and effort to manage effectively. 

The usual method of analysing this kind of data is by Multidimensional Scaling Methods 
(MDS) which are dealt with in Chapter 4.1. 

4.1 Example 

Suppose that the aromas of 9 samples of cheese (A-I) are being compared by a panel of 12 
assessors. There are 36 different pairs of samples. This is too many assessments to make one 
session, so the experiment is over 4 sessions in which each assessor evaluates 9 pairs of 
sub-samples. One of the first questions to be asked is how the pairs of sub-samples for each 
assessor in each session are to be chosen. The most convenient solution (at least for the 
sensory technician) is for all assessors in each session to evaluate the same pairs of sub- 
samples. However, there are many potential hazards to this approach, even when the 36 pairs 
are allocated to sessions at random. It is possible, perhaps even inevitable, that assessors will 
experience a learning curve and that pairs of samples assessed in later sessions will be assessed 
more stringently than those assessed earlier. A more cautious approach is for the 36 samples to 
be divided into 4 sessions of 9 pairs using a different random process for each assessor. It 
known that there are order effects within sessions, the largest difference being between the first 
evaluation and later evaluations. For each assessor and for each session the order within 
session should be randomised. Finally the order of testing within a pair should be randomised 
independently for each assessor by pair combination. 
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Table 4. 
The randomisation process is illustrated below: 

n assessor sessions order pairs reverse finally 

1 DE no DE 
2 1 2 CG yes 
3 1 1 3 BI no BI 
4 1 1 4 EF no EF 

19 1 3 1 BD Yes DB 
20 1 3 2 CD no CD 
21 1 3 3 no AE 

25 1 3 7 AB Yes BA 
26 1 3 8 EG Yes GE 
27 1 3 9 BC Yes 

34 4 DI no DI 
35 1 4 8 EI no EI 
36 1 4 9 EH no EH 

The above randomisation was produced using a computer program written in the 
GENSTAT statistical computing language. The assessor, session and order within session 
structure was set up in systematic order. The 36 sample-pairs were generated for each assessor 
using the labels AB, AC HI. These treatment labels are given in alphabetic order. The 
sample-pairs were then randomised within assessor. If the sub-samples are given in alphabetic 
order, this creates a bias which is determined by the initial listing of the treatments. It can be 
remedied by creating for each assessor a factor "reverse" with 18 "no" and 18 "yes" labels. 
This is then randomised and determines whether or not the alphabetic order is reversed. The 
"pairs" and the "reverse" variables then give the final order of the sub-samples. In this 
particular example the bias from effects of session and order within session have been 
minimised by randomising over these effects. Given more work and knowledge of the variation 

this kind of experiment, it would be possible to produce elegant designs in which each pair 
of sub-samples is compared three times in each session and which are better balanced for order 
effects. Nevertheless, the randomisation process illustrated above leads to a valid experiment. 

4.2 Analysis 

In any experiment, it is important to do a little preliminary work learning about the data before 
proceeding to the definitive analysis. Here, the data can be regarded as one factor (treatment) 



with 36 levels by 12 assessors. One way of looking at the data is to regard the assessors as a 
block factor and to do a randomised block analysis of variance of the following form: 

Table 5. 
ANALYSIS OF VARIANCE 

Source of variation df 

assessor 
"pairs" 

11 
35 

Residual 385 

Total 43 1 

This analysis of variance allows a preliminary evaluation of the differences between "pairs". 
Because of the structure of the 36 "pairs", the means should be displayed in a lower triangular 
format. Re-ordering of the rows and columns may improve the clarity of the results. 

The particular structure of the treatments can be further exploited by taking the lower 
triangular matrix of mean differences and applying the multi-dimensional scaling (MDS) 
technique to produce the coordinates in the principal sensory dimensions. This analysis and 
also the analysis of variance are based on the assumption that assessors perceive the differences 
in the same way and that differences between the results are solely the result of positional 
factors or random (uncontrolled) variation. However, it is possible to perform more 
complicated analysis which allows differences between assessors to be taken account of. The 
best known of these methods is INDSCAL which is available in the SPSS computer program 
and elsewhere. This method not only provides information about the samples but also about 
the assessors. In certain circumstances, it may be reasonable to group the assessors and to 
perform a separate analysis for each group or alternatively to exclude an aberrant assessor. A 
hller account of MDS techniques are given in Chapter 6. 

The greatest difficulty in using the MDS technique on directly assessed differences is in 
attributing meaning to the sensory dimensions. Strictly, all that one can know from a difference 
experiment is whether or not there are sensory differences in the characteristics on which the 
assessors are comparing samples. 

The value of this technique could be greatly improved for work in food research, if it could 
be shown that each assessor was required to assess only a part of the possible treatment 
combinations. 

Finally, it may not be necessary to directly estimate differences between samples. Given 
certain assumptions it is possible to compute them from sensory profile 

There are two advantages in using this route: 

1. it is easier to attribute meaning to the underlying sensoly dimensions, 
2. many more samples can be tested in one experiment. 



However, there is undoubtedly a loss of sensitivity in moving to a less direct form of 
comparison. 

5. SENSORY PROFILE EXPERIMENTS 

Sensory profile experiments are the most common form of sensory experiment. In the usual 
form samples are presented sequentially to the assessors, who rate them for attributes given 
a vocabulary. The vocabulary is usually for each experiment (fixed profile) but can be a 
vocabulary personal to each assessor in the case of free choice profiling. In this special case 
there is less need for a panel to agree sensory terms and to use external reference standards 
to clarifj the meaning of terms. Other forms of profiling are based on ranking samples for a 
number of attributes. This form of profiling is not widely used and will not be discussed 
fhrther. 

5.1 Vocabulary Development 

For many sensory experiments, in which familiar products are being profiled, a vocabulary will 
already be in existence. For new products either an existing vocabulary has to be taken over 
from another laboratory and adapted or an entirely new vocabulary has to be created. In both 
cases substantial efforts are required before profiling can commence. 

A very common way of developing a vocabulary is for the sensory assessors to have a 
round table discussion with many samples of the product available for rating. At this meeting 
assessors suggest appropriate terms and by discussion a vocabulary is agreed. 

alternative procedure is to start with a list of possible sensory terms and to present 
assessors with a wide spectrum of samples and ask them to identifL which terms are relevant to 
each sample. If the assessors carry out this work under normal sensory conditions of isolation 
then there is value in analysing the data. illustration of this approach is given in Hunter and 
Muir 1993). 

5.2 Design of Experiment 

Sensory profile experiments can be considered to be special of crossover trials (see 
Jones and Kenward, 1989), which are widely used in medical and biological science. The 
special feature of sensory profile experiments is that the experimental subjects (the assessors) 
are not regarded as replicating the measurements. If replication is required then the whole 
experiment is repeated. Methods of analysis given in the rest of this Chapter assume that there 
are only simple differences between assessors in the way in which they rate samples. In the 
following Chapters more complicated ways of modelling the differences between assessors are 
described. 

A well designed experiment takes account of sources of variation by building them 
into the design. It also randomizes over unknown and uncontrolled sources of variation. In 
order to maximise the amount of information from the work of the sensory assessors, a sensory 
scientist must understand how to design an experiment. In addition the experiment must be 
in such a way that the design is respected and variation attributable to experimental procedures 
does not bias the estimates of differences between treatments. 
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Let us consider an experiment to compare a Cheddar cheese from the institute's 
experimental dairy A with brands B and C, on sale in the local supermarket. Consider the 
variable flavour intensity. 

The process starts by posing the question, "What is ,known about variability?" From a 
great deal of previous work it has been established that: 

1. 
2. 

assessors use different parts of the scale, 
assessors use different amounts of the scale. 

This can be illustrated by: 

Assessor 1 

Assessor 2 

Assessor 3 

It can be seen that Assessor 1 rates the three cheeses higher for Cheddar intensity than does 
Assessor 2 but nevertheless the differences between the samples are similar. Assessor 3 rates 
the samples in the same order as Assessors 1 and 2 but uses a larger part of the scale. The 
question then arises about the design required to minimise these effects. If each assessor rates 
every sample then the effect of the part of the scale used will have no effect on the differences 
between samples. By taking means over assessors, the use of different proportions of the scale 
by different assessors is minimised. It is possible to apply a scaling factor to each assessor's 
data or to standardise it by calculating normal deviates. Both of these techniques require 
substantial quantities of data to be effective. Training of assessors and experience in using a 
vocabulary can help to reduce these kinds of differences between assessors. 

Two further features of sensory data are well established: 

3. Trends with order of tasting, 
Carryover effects. 
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It is well established that there are effects of order of presentation (see for example Muir 
and Hunter 199112). For example in a session in which assessors test 4 products, for positive 
factors the first tested is often rated higher than justified and the fourth tasted lower. For 
negative factors the first tested is rated too low and the fourth tested too high. The largest 
differences are between the sample tested first and those tested later. This effect can be 
counteracted by asking assessors to make use of a control (unrecorded) sample before the start 
of a session to familiarise themselves with the product. Alternatively, by ensuring that each 
sample is tested an equal number of times in each order in a session, it is possible to nullify this 
effect. 

A sample with a strong or otherwise distinctive quality may influence the assessment of 
subsequent samples (Williams and Arnold, 1991/2). This effect is less well established than the 
three effects previously discussed. Nevertheless, it is good practice to design sensory 
experiments with this effect in mind. Special data analysis will then allow this effect to be 
tested statistically. Schlich (1 993b), in a particularly well designed experiment, detected 
carryover effects in the analysis of the data from an experiment in which four kinds of 
restructured steaks were compared in a sensory profile experiment. Because the design was 
balanced for carryover effects, he was able to estimate both the "direct" and "residual" effects 
of treatment and to calculate the "permanent" effect. Although statistical analysis can adjust for 
the residual effects of previous treatments, it is preferable that they are minimised by sensory 
procedures. These procedures include washing out the mouth with water and/or eating a plain 
(cracker) biscuit between samples, to cleanse the palate. If sensory effects are consistently 
found then it suggests that the sensory procedures should be modified. 

5.2.1 Design possibilities 

It is instructive to consider the following possibilities for a design in which 4 samples, with no 
factorial structure, are compared by 8 or 12 assessors, Below, modules of the designs are given 
for 4 assessors. The module is repeated twice for 8 assessors and three times for 12 assessors. 

Table 6. 
@tion Different sample for each assessor 

Order 

I I11 IV 

Assessor A a a a a 
B b b b b 
C C C C C 

D d d d d 



In this design each assessor receives only one treatment. This has two undesirable 
consequences: 

1. Differences between treatments are confounded (confused) with differences between 
assessors. If assessor A rates sample "a" four times and no other assessor rates this sample 
and similarly for samples "b", "c" and "d" then any systematic differences between 
assessors will contaminate the assessment of treatment differences. Since it is known that 
different assessors use different parts of the scale (even after extensive training) this design 
will provide very poor estimates of the differences between samples. 

2. If a design such as this is commonly used in a sensory laboratory then assessors will soon 
learn that the same sample is repeated many times. The consequence will be that the 
second and subsequent ratings will not be independent because assessors will strive to be 
consistent with the first rating. Consequently they will add very little information to the 
first rating. Sensory assessors can be very quick to identify pattern in the sequence of 
samples being presented and can be expected to react to these perceptions. 

Table 7. 
Option 2 Same order for each assessor 

Order 

I 111 IV 

Assessor A a b C d 
B a b C d 
C a b C d 
D a C d 

In this design each assessor receives each sample, so differences between samples are not 
confounded with differences between assessors. However samples are given to each assessor 
the same order. This has two consequences: 

1. Differences between treatments are now confounded with order differences. Although 
this is less serious than confounding sample differences with assessor differences (Option 
l), it is not desirable. For some sensory trials of hot foods it may not be possible to use 
different orders of presentation for each assessor. In these circumstances, it is very 
important for sensory assessors to receive a priming sample prior to rating the 
experimental samples. 
In experiments in which the sample order is the same for every assessor, it is difficult to 
ensure that assessors are unaware of the samples they are assessing, particularly if the 
assessments are not done simultaneously. Assessors who have completed the task m y  
pass information to other assessors who will not then make independent ratings of the 
products. 

2. 
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Table 8. 
Option 3 Latin Square 

Order 

I I1 I11 IV 

Assessor A a b C d 
B b C d a 
C C d a b 
D d a b C 

This design is based a Latin Square which is produced by cyclic development of an initial 
row which is in the same order as the first column. 

This is a special kind of Latin Square which can always be generated. It allows for assessor 
and order effects and is thus better than 1 and 2. Nevertheless, inspection reveals that 
in this particular form of cyclic Latin Square, sample "a", for example, always follows sample 
"d". The other defect of this design is that the sequence of treatments is the same for each 
assessor, though not the order, and so susceptible to anticipation by assessors. 

Table 9. 
Option 4 Williams Latin Square 

Order 

I I11 IV 

Assessor A a d b C 

B b a C d 
C C b d a 
D d C a b 

This design, too, is a Latin Square also generated by a cyclic method of construction from 
an initial row and has the property that each treatment follows every other treatment once. 
The first row is generated by a method due to Williams (1949). For an even number of rows, 
columns and treatments balance can be achieved by one square whilst for an odd number two 
squares are required. This method of design has been promoted in the context of consumer 
trials by MacFie, Greenhoff, Bratchell and Vallis (1 989). In Order "a" follows "b", Order 

"a" follows "c" and in Order "a" follows "d" thus overcoming the defect of Option 3. 
Only Option 4 is wholly satisfactory for sensory experiments. 

5.2.2 Designs based on mutually orthogonal Latin Squares 

If a design for 4 treatments and assessors is required then it is possible to generate a design 
with a higher level of balance for previous treatments than by simply repeating three the 
module for 4 assessors given by Option 4. Two Latin Squares (of side are said to be 
mutually orthogonal, if, when they are superimposed, for each of the symbols of the first 



square the n symbols of the second square are different. At most there can be n-1 mutually 
orthogonal Latin Squares, however for many integers a full set does not exist. Fisher and 
Yates tables (1963) give 2 squares for side 3 ,3  for 4,4 for 5,  1 for 6,6 for 7, 7 for 8, 8 for 9. 
Mutually orthogonal Latin Squares are available for higher orders in specialised books. 

Table 10 
Option 5 Orthogonal Latin Squares 

Order 

I TI I11 IV 

Assessor A a b C d 
B b a d C 

C C d a b 
D d C b a 

E a C d b 
F b d C a 
G C a b d 
H d b a C 

I a d b C 

J b C a d 
K C b d a 
L d a C b 

Inspection of the above design reveals that each assessor rates each sample once and that 
each sample is tested 3 times in each Order. This design is also balanced for previous treatment 
in every Order. For example in Order 11, treatment "a" follows "b", "c" and "d". However, it 
should be noted that if the design module for the first four assessors is inspected, treatment "a" 
follows "b" in Order 11, " d  in Order I11 and "b" again in Order IV. Consequently, although a 
design based on two or more orthogonal squares may have better properties than a design 
based on the Williams Latin Square, a design based on one square is not superior. 

5.2.3 Replication of assessor by sample allocations 

In the sensory literature the meaning of replication is not always as clear as in biological 
experimentation. If sensory experiments are viewed from this standpoint, then assessors may 
be regarded as replicate blocks. This leads to experiments in which each assessor rates each 
sample once and to a randomised block form of analysis of variance for each variable with 

However, most statisticians working with sensory data would not 
regard this as being a replicated experiment. If the assessor by sample measurements are 
replicated by repeating the design, with a different randomisation, then it is possible to quantify 
the ability of each assessor to reliably measure each attribute, Nzes and Solheim (1991). Also, it 



is possible to explore the assessor by sample space and so monitor each assessors use of 
vocabulary and training needs. Three replicates are usually sufficient to allow this to be done. 

In a replicated experiment, the sub-samples for all replicates are usually drawn from the 
same samples. Differences between replicates or interactions between sample and replicate, in 
addition to sampling and testing variation, may be attributed to the effects of storage of the 
samples and to the small differences in the environment for each replicate of the experiment. 

Sensory experiments which test differences between husbandry or carcass processing 
treatments on meat yielding animals are particularly difficult to organise. Overall differences 
between treatments are likely to be small and there is a great deal of variation between animals. 
This is often increased by the lack of control of important variables at slaughter, during 
processing of the carcasses and during cooking. Freezing samples of meat and later thawing 
them may be convenient for the sensory laboratory but it will reduce differences between 
treatments. A more subtle disadvantage is that the experiment then makes inferences about 
samples of meat that have been frozen and not about fresh meat. Finally, there are technical 
problems in canying out the sensory work where it is known that small differences 
temperature at serving can have a major effect on the sensory characteristics. It is 
recommended that in replicated experiments on meat, samples from different carcasses are 
used for each replicate, see for example Vipond, Marie and Hunter (1995). 

5.3 More Than One Session Per Replicate 

Assessors can usually only assess a small number of samples in a session before suffering 
sensory fatigue and a lowering of the level of performance. Depending on the product, the 
assessor's experience and the workload of the test, as few as three sub-samples may be rated 
a session or as many as eight. In normal circumstances it is not usual to exceed this limit. It is 
not sensible to restrict experiments to the number of sub-samples that can readily be rated in 
one session. 

Supposing a food manufacturer has commissioned the sensory laboratory to profile 
blackcurrant cordials on sale in the local supermarket shelves. Twelve different products are 
found, coincidently 12 assessors are available. A number of different ways of organising the 
sensory testing are discussed below. 

5.3.1 Three separate experiments 

Samples a-d are evaluated in experiment 1 (Orders I-IV), samples e-h in experiment 2 (Orders 
V-VIII) and i-1 in experiment 3 (Orders IX-XII). Three copies of 4 or preferably 
Option 5 are used to give the order of sub-samples for each assessor. The advantage of the 
design is that only four samples are used in each experiment and work can be completed on the 
first four samples before proceeding to the second four samples etc. The disadvantage of this 
design is that whilst samples within an experiment are compared with the highest level of 
precision, differences between samples evaluated in different experiments are confounded 
the overall effects of experiment. These effects are unlikely to be negligible relative to the 
within experiment variation. 
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5.3.2 Split plot designs 

If the design is replicated, say 3 times, then the alternatives are to do all replicates of 
"experiment" 1, then all replicates of "experiment" 2 and finally all replicates of "experiment" 3 
(Design A below). The design thus takes 9 sessions in each of which 4 samples are rated. An 

alternative arrangement of sessions is to perform all the first replicates, followed by all the 
second replicates followed by all the third replicates. Possible arrangements of sessions are: 

Table 1 1 .  

Session Design A Design B 

1 a-d a-d 
a-d 
a-d 
e-h 
e-h 
e-h 
i-1 
i-1 
i-1 

e-h 
i-1 
e-h 
a-d 
i-1 
i-1 
e-h 
a-d 

Design A completes work on samples a-d before starting on samples e-h and i-1. Assessors 
will become increasingly familiar with the product with each session and so it is possible that 
the later samples (i-1) will be more precisely rated than the earlier samples (a-d). Design B 
allows for trends over time and makes particularly good sense if three sessions are done per 
day. The sessions form a Latin Square with columns equal to days and rows equal to order in 
the day. In all but exceptional circumstances Design B should be preferred to Design A. 

If ideas about split plots from biology are applied to this sensory experiment, in each session 
some assessors would test samples a-d, others e-h whilst others tested i-1. This is of little 
advantage to the sensory technician and there is consequently no reason for using this type of 
design. Only in exceptional circumstances, related to the nature of the samples, will a 
traditional split plot design have advantages. 

5.3.3 Williams Latin Square designs 

Consider a Latin Square of size 12 for 12 assessors, 12 periods and 12 samples. By using the 
first four columns (Orders I-IV) for the first session, the second four columns (Orders V-VIII) 
for the second session and the last four columns (Orders M-XII) for the third session a design 
is produced which preserves balance for assessor, session and Order within session. Although 
there is no longer complete balance for previous effects, each treatment appears first in a 
session three times and follows 9 of the 1 1  other treatments in the second, third and fourth 
order within each session. 



Table 12. 

Assessor Order 

I I1 IT1 IV v VII VIII XI VII 

A 

B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

a l b k  
b a c l  
c b d a  
d c e b  
e d f c  
f e g d  
g f h e  
h g i f  
i h j g  
j i k h  
k j l i  
l k a j  

c j d i  
d k e j  
e l f k  
f a g 1  
g b h a  
h c i b  
i d j c  
j e k d  
k f l e  
l g a f  
a h b g  
b i c h  

Session 1 Session 2 

e h f g  
f i g h  
g j h i  
h k i j  
i l j k  
j a k l  
k b l a  
l c a b  
a d b c  
b e c d  
c f d e  
d g e f  

Session 3 

This is a very general method of construction for even numbers of treatments. The 
advantage is that all differences between pairs of treatments are estimated with almost 
precision. The disadvantage is that the number of assessors must equal the number of 
treatments. Also, another disadvantage of such a design is that the sensory technician has to 
manage all 12 samples in each session. a well organised sensory laboratory with trained 
experienced sensory technicians, this will usually be possible for products tested when cold but 
may be difficult or even impossible for products tested when hot. The only sound reason for 
not testing all samples in each session is that practical considerations do not allow it. An 
example of this design of experiment is given by Muir and Hunter (1 99 1/2). 

Incomplete block designs 

From a combinatorial standpoint incomplete block designs have excited the curiosity of 
statisticians for 60 years. Much work has concentrated on the identification of balanced and 
partially balanced designs. Apart from their intrinsic interest these designs can be analysed 
using a calculator. However, partially balanced designs are not necessarily statistically efficient 
designs nor are they available for all combinations of numbers of samples, assessors and 
samples per session. Except in exceptional circumstances, data from the sensory laboratory 
be analysed using a statistical package, so ease of analysis by hand calculator is not a necessary 
property. For crop variety trials Patterson, Williams and Hunter (1978) and for consumer trials 
MacFie, Greenhoff, Bratchell and Vallis (1989) give catalogues of efficient designs. There is a 
need for the publication of catalogues of designs especially for sensory work. Both balanced 
incomplete block designs and partially balanced incomplete block designs have been advocated 
for sensory work by several authors. In general the utility of these designs is compromised 



the lack of balance for order and carryover effects and by constraints on the number of 
assessors. 

In sensory experiments, it is very important that each assessor evaluates every sample even 
if testing extends over many sessions. However, experiments involving consumers are 
different; they can only reasonably be asked to rate a small number of samples, probably no 
more than four, and replication is not possible. The experimental design given above for twelve 
assessors could be adapted for thirty six consumers (each rating four samples) by defining each 
consumer as an assessor by session. This design would confound some information between 
samples with differences between consumers. Nevertheless, it allows twelve samples to be 
compared simultaneously. Similar designs can be generated for other numbers of samples. 

5.4 Tailoring Standard Designs 

The designs given in this Chapter are for fixed numbers of assessors. The methods of 
construction lead to designs in which the number of assessors is determined by the number of 
samples. This does not correspond to the situation that the sensory scientist experiences in the 
laboratory. When working with an (trained) external panel, the number of assessors is fixed by 
those available on the day. It is not feasible to increase (or reduce) this number to utilise a 
particular design for the number of samples being tested. Also, it is not uncommon for one or 
more assessors to be absent from a session or to fail to complete it. Both the design and 
analysis systems must be sufficiently robust to deal with the realities of running a sensory 
laboratory. 

For example, suppose there is a trained panel of fourteen subjects but that the number 
available for sensory work is thirteen. If the first experiment of the day is to profile 12 cheeses, 
the design given above for 12 assessors may be adapted by using each row of the design once 
for an assessor and then choosing an extra row from the design (at random) for the thirteenth 
assessor. Conversely, suppose that the second experiment requires 16 h i t  cordials to be rated. 
A design can be produced for 16 assessors using the Williams Latin Square method of 
construction for 16 treatments and 16 assessors. At random 3 rows can be dropped from the 
design. The design will not be as balanced as the full design but nevertheless will still have 
good statistical properties. The cost of tailoring the design to fit the circumstances of the 
sensory laboratory is to make the analysis dependent on using more complicated general 
statistical methods rather than relatively simple methods. 

If it is envisaged that the design, given in the previous section, is to be replicated three times 
then at present the best advice is to randomise the assessors to rows independently for each 
replicate. An added precaution is to randomise the samples to the sample labels separately for 
each replicate. This leads to a three replicate design with good but not optimal properties. 

There is a need to improve the designs in use in sensory laboratories. Schlich (1993b) gives 
a design, based on mutually orthogonal Latin Squares, in which there is exceptional degree 
of balance over replicates for each assessor and also within replicates. However, design work 
must pay attention to the fact that sensory experiments are changeover designs with assessor, 
assessor by replicate, assessor by replicate by session, order and carryover effects. 
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5.5 Data 

As with the direct assessment of differences (see section 4) assessors often rate samples on 
a 0-5, 1-7 or 0-9 scale. There is often an attempt to improve the performance of short scales 
by allowing half points. Very often these half points are infrequently used and the data become 
potentially more difficult to analyse. These difficulties are seldom recognised and almost 
always ignored. If a scale is to be used then it is more sensible to use a longer scale ie 0-9 
rather than a shorter scale with half points. The most satisfactory method of recording 
responses is to use an undifferentiated line scale which consists of a line with anchor points at 
both ends. Assessors record their ratings for a sub-sample by making a mark on the line 
corresponding to the intensity of the sensory stimulus. The data can be collected using pencil 
and paper but is more efficiently organised by a computerised data collection system which 
captures data directly from the assessor by allowing the use of a mouse to move a cursor along 
a line on a screen. It also simplifies data management and is justified for all but the smallest 
sensory laboratories. 

5.6 Analysis 

Data are collected on many variates in each profile experiment. These data deserve to be 
analysed one variate at a time ie on a univariate basis. Chapter 4 deals with the summary of this 
data on a multivariate basis. 

Both univariate and multivariate analysis have a part to play in understanding the results. 
Experimenters with little knowledge of available statistical methods for the analysis of data 
often use only univariate methods. Frequently, even these methods are poorly implemented. In 
this Chapter, it is assumed that the sensory scientist has access to a computer and that it is 
loaded with a relatively simple, easy to use statistics package such as STATGRAPHICS, 
MINITAB, SYSTAT or SPSS. Descriptions of how to calculate simple statistics using a 
calculator are given in O'Mahony (1 985). 

All the methods described in this section assume that data are from a continuous 
distribution and are on an interval scale. Although this is unlikely to be fully true, the methods 
of analysis advocated are robust to these assumptions. 

5.6.1 Methods of analysis 

Assuming that data are from a properly designed experiment, six models (Model 1 Model 6 )  
can be fitted. The simplest method of analysis is to find an (arithmetic) and a standard 
error of mean for each sample (Model 1). However, the error is contaminated by between 
assessor, order and other effects which inflate the error and reduce the power of tests of 
significance. Also, if a separate error is determined for each sample, it will be based on few 
degrees of freedom. Since there is no reason to expect that errors will be different for each 
sample, pooled errors should be used. Means and pooled errors are conveniently obtained from 
a one way analysis of variance with sample as the treatment factor. A more precise analysis is 
obtained by allowing for assessors (Model 2). This can be done using the analysis of variance. 
More generally, it can be done using a general(ised) least squares method, sometimes called 
regression with factors. It is also possible to allow for order of presentation (Model 3). Since 
assessor effects are large, it is reasonable to allow for replicate-by-assessor effects (Model 4). 
All sensory scientists should endeavour to get to this stage of univariate analysis. They should 
find the results informative and well worth the extra effort involved. A further stage is to allow 
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for assessor by replicate by session effects and estimate sample effects solely sessions 
for each assessor (Model 5) .  Information on samples that is partially confounded with sessions 
is lost. There is thus a trade off between lower mean squares and loss of statistical efficiency. 

For those with access to more sophisticated statistical programs (SAS, GENSTAT) there is 
some merit in fitting a (general) mixed model to the data. It is reasonable to regard the 
assessor, the replicate within assessor and the session within replicate within assessor 
random effects (Model 6). This type of model allows the information on samples confounded 
with sessions to be properly weighted and thus the standard errors from this analysis are 
invariably and correctly lower than those from Model 5. The main advantage is that the 
sources of variation can be carefully modelled and the information can be used to plan more 
precise experiments in the future. 

For replicated experiments, it is useful to obtain estimates of sample by replicate effects for 
further analysis. Given these effects, it is possible to do a standard two way analysis of variance 
free of the effects of sensory measurement. When the samples have structure (section 6) the 
degrees of freedom and sums of squares for sample can be partitioned in an informative way. 

Few laboratories routinely estimate carryover effects. However, it is important to check that 
these effects are relatively small by carrying out a special analysis of the data from time to time. 
Schlich (1993b) shows how this can be done for a special design using analysis of variance. 
Using the mixed model approach, an analysis to estimate residual effects can be carried out 
using either GENSTAT or SAS. 

5.6.2 Example 

A sensory panel of 13 assessors tested 8 blackcurrant cordials in two replicates each of two 
sessions. Four cordials were rated on a continuous scale 0-100 in each session. A design based 
on Williams Latin Square was used to determine the treatment sequences for each assessor. 
One assessor was not able to attend one of the sessions of the second replicate so the assessor 
by replicate by treatment table was not complete. 

The purpose of analysis is the estimation of sample effects with an appropriate estimate of 
their variability ie standard error of mean (sem). The results of fitting all six models to the 
flavour intensity variable are given below. 
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Table 13. 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Sample Mean sem 
1 53.6 3.94 
2 58.6 4.00 
3 60.6 3.67 
4 59.8 3.72 
5 59.8 4.33 
6 65.8 3.55 
7 65.0 4.06 
8 68.0 3.89 

MCXll 
53.5 
58.7 
60.7 
59.8 
59.7 
65.9 
65.2 
68.0 

Meall 
53.7 
58.6 
60.8 
59.8 
59.7 
65.7 
65.2 
68.0 

Mean Mean 
53.3 55.4 
58.1 57.4 
60.2 58.3 
59.4 57.8 
59.3 60.6 
65.1 62.9 
64.6 63.4 
67.6 67.2 

Mean 
54.5 
58.4 
60.4 
60.0 
60.7 
64.9 
64.9 
68.3 

av sem 3.90 3.29 3.3 1 3.19 3.28 3.17 
EMS 3 72 264 267 248 222 230 

The Error Mean Square (EMS) provides overall evidence of how well the model fitted the 
data. Allowing for the assessor effect (Model 2) reduces the EMS from 372 to 264. Allowing 
for order of presentation (Model 3) does not reduce the EMS further whereas allowing for a 
separate assessor effect for each replicate (Model 4) reduces the EMS to 248. By allowing for 
session (Model 5) the EMS is reduced to 222 but because some infomation on treatments 
lost between sessions the sem rises to 3.28 from 3.19. However, regarding assessor, replicate 
within assessor and session within replicate within assessor as random effects causes the 
estimate of the EMS to fall to 230 and the sem to 3.17. Model 6 is arguably the most 
appropriate analysis. 

Because the experiment was carefully designed there are only minimal differences in the 
estimates of sample effects between the models. 

6. DESIGN 

In sections 4 and 5 of this Chapter, the assignment of order of testing of samples for each 
assessor has been considered. In this section, the structure of the sample space is considered. 
In studies of the sensory properties of products on sale in supermarkets the samples do not 
have a simple structure but in research or development studies the opportunity exists to impose 
a factorial treatment structure on samples. In planning the treatment structure, it is very 
important to define the objectives carefilly and not to artificially restrict the problem to one 
that is assumed to be susceptible to experimentation. It is also very important to review 
existing knowledge and to separate hard information from conjecture. 

It should be remembered that sensory experiments have much in common with other 
scientific experiments and accordingly, methods in use in other areas of science and technology 
are relevant. Many sensory analysts instinctively feel that in a multifactor situation, an 
experiment should be performed with each factor in holding the levels of all other factors 
constant. It has been shown that this is a very bad strategy which uses experimental resources 
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wastehlly and in addition often fails to determine the optimum, Chapter 5 of Cochran and COX 
(1957). A better strategy is to evaluate all relevant factors simultaneously in a sequence of 
experiments. It is recommended that only about 25% of available resources should be allocated 
to each experiment. In the light of the results obtained later experiments in the series can be 
planned. This strategy puts a high premium on being able to quickly analyse experimental data, 
formulate the conclusions and design the next experiment. 

6.1 Dose Response Experiments 

The simplest treatment structure arises when the experimenter wishes to investigate only one 
factor. Suppose that the effect of level of sweetener in a h i t  cordial is to be investigated and 
there are resources to a sensory experiment with 4 samples. It is a relatively simple matter 
to devise four factor levels. If the experimenter expects a linear response to the factor then the 
best way to arrange the treatments is at equal intervals. Using existing knowledge a base level 
is determined and a suitable increment. 

Table 14. 

Sample Treatment 
Level 

1 base 
2 base incr*(2-l) 
3 base incr*(3-l) 
4 base incr*(4-l) 

If the base is 50g of sugar per litre and the increment is log then the levels are 50,60,70 and 
80g of sugar per litre. 

For many sensory stimuli, the response may be related to the log of the treatment. For 
example, sensory sweetness may be proportional to the log of the added sweetener. In these 
cases the treatments levels should have a ratio relationship to each other. 

Table 15. 

Sample Treatment 
Level 

1 base incr 
2 base incr*r 
3 base incr*q 
4 base incr*? 
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Suitable values of r can be as large as 10.0 or as small as 1.5. If the base is 0 and the 
increment log of sugar per litre and r=2 then the levels are 10, 20, 40 and 8Og of sugar per 
litre. 

The choice of treatment levels depends on hard information and on prior knowledge or 
conjectures about the shape of the response. 

In different replicates of the sensory experiment, it is an advantage to have different 
realisations of the treatment specification. In this experiment it would mean making up a fresh 
set of samples for each replicate. This provides a more severe test of the treatments. 

6.2 FuU Factorial 

In a full factorial design the samples consist of all possible combinations of two or more 
treatment factors each with at least two levels. The number of samples required is given below. 

Table 16. 
Levels per factor 

No of factors 2 3 4 5 

2 4 9 16 25 
3 8 27 64 125 
4 16 81 256 625 
5 32 243 1012 3125 

Few sensory scientists are prepared to contemplate testing more than 30 samples in an 
experiment. From a sensory viewpoint, it is therefore only feasible to do a full factorial with 
two, three, four or five factors each at two levels; two or three factors each at three levels and 
only two factors at four or five levels. 

An example will help to illustrate this class of design. Suppose that work is being done on 
very low fat yogurts. Three factors which are under control of the experimenter are the Type 
(A or B) of homogeniser, the homogenisation Pressure (low or high) and the Temperature at 
homogenisation (low or high). All these factors may effect the sensory properties of the h a l  
product. 

Setting the levels for quantitative factors such as Pressure and Temperature requires some 
knowledge of the possible operating range. These will usually be defined by existing 
knowledge but can be defined by a phase of experimentation prior to sensory profiling when 
physical or chemical measurements are made on the samples. 

The process illustrated above can be generalised to factors with more than two levels. It is 
possible to have several treatment factors with different numbers of levels one experiment. 
For design purposes a mixture of factors with 2 and 4 levels are preferable to mixtures of 2 and 
3 levels. 
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Table 17. 
The treatment combinations for the samples are: 

Sample Type Pressure Temperature 

1 A low low 
2 A low 
3 A high low 
4 A high high 
5 B low low 
6 B low high 
7 B low 

8 B 

The interaction between two factors with two levels is defined as the difference in the effect 
of the second factor between the levels of the first factor or conversely the difference in the 
effect of the first factor between the levels of the second factor. Three factor interactions are 
defined similarly. The advantage of a full factorial experiment is that all the degrees of freedom 
between samples can be uniquely attributed to a main effect of a factor or an interaction. 

It is recommended that the analysis of sensory data proceeds as follows. In the first part of 
the analysis, tables of sample by replicate effects are obtained adjusted for the effect of 
assessor. These tables are then further analysed by analysis of variance or by regression in the 
case of response surface data (section 6.5). 

If there are three replicates of the 8 samples in the experiment outlined above, the form of 
the analysis of variance will be: 

Table 18. 
ANALYSIS OF VARIANCE 

Source df 
Replicates 2 
Samples 7 
Partitioned 
Type 1 

Pressure 1 
Temperature 1 
Type.Pressure 1 
Type .Temperature 1 
Pressure.Temperature 1 
Type.Pres sure. Temperature 1 
Error or Residual 14 

Total 23 



An example of the use of this type of design is given by Muir, Banks and Hunter (1992). 

6.3 Fractional Factorial 

In most research and development projects there are many potential factors which could affect 
the sensory variables. There is a natural tendency for sensory scientists to simplify the problem 
or to partition the problem into a number of experiments in order to allow full factorial designs 
to be used. As shown by the table at the start of the previous section, too many samples are 
required for a 1 1 1  factorial experiment with five or more factors. However, it is possible to 
cany out informative experiments requiring a small number of samples by making some 
assumptions. In all areas of experimentation it is to find that effects are much larger 
than two factor interactions, which are larger than three factor interactions etc. Only seldom 
are interactions important when effects are small. Fractional factorial designs confound 
information on high order interactions with effects or low order interactions. Thus if 
effect is significant, it is assumed that the main effect or lower order interaction is responsible. 

Fractional factorial designs were first discussed by Finney (1945). Box, Hunter and Hunter 
(1978) give a relatively gentle treatment of this topic. A more comprehensive account is given 
in Cochran and Cox (1957). 

It is instructive to review the design that was considered in the previous section and add the 
maximum number of factors using the fractional factorial method of construction. From the 
catalogue of designs given in Cochran and Cox (1957), a fractional factorial design for 5 

factors, each at two levels, requiring 8 samples is found. Thus two additional factors, Extra 1 
and Extra 2 can be added. 

Table 19. 

Sample Type Pressure Temperature Extra 1 Extra 2 

1 A low low low low 
low 

high 
2 A low high 
3 A Ksh low 

low 4 A high high 
5 B low low 

low 6 B low high 
low 

low 
7 B hish 
8 B high high 

low low 
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The consequences for the analysis of variance are: 

Table 20. 
ANALYSIS OF VARIANCE 

Source 
Replicates 
Samples 
Partitioned 

Type 
Pressure 
Temperature 
Extra 1 
Extra 2 
Type .Temperature (=Pressure .Extra 1 
Pressure. Temperature (=Type.Extra 1 
Error or Residual 

7 

1 
1 
1 
1 
1 

1 
14 

Total 23 

Of the 10 potential two factor interactions only two effects can be estimated orthogonal to 
the main effects. By simple algebra it is possible to show that each of these effects corresponds 
to two two factor interactions which are said to be aliased ie inseparable. Of the remaining two 
factor interactions, four are uniquely aliased to main effects and two are aliased to the same 
main effect. There is thus only minimal information available on interactions. However, the five 
main effects are estimable. Provided that the experimenter is willing to assume that interactions 
are likely to be unimportant then this type of design can be justified. 

For 4 and 8 samples it is possible to take the fractional factorial method of construction a 
stage further and to construct designs in which all the degrees of freedom between samples are 
uniquely identified with a main effect. Such designs are referred to as saturated designs and are 
of great utility in the exploratory stage of development studies. A design for 7 factors at two 
levels for 8 samples is given below: 

Table 2 1. 

Factors 

S m l e  1 2 3 4 5 6 7 

1 low 

2 high 
3 high 
4 high 
5 high 
6 low 
7 low 
8 low 

low 
high 

high 
low 
low 

high 
high 
low 

low 

low 

low 

high 

high 

high 
high 
low 

low low 

high low 

low low 
low 

high high 
low high 
high low 

low 
low 

high 
high 

high 
high 

low 
low 

low 
low 
low 

high 
high 
high 
high 
low 
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Plackett and Burman (1946) give a more general method of construction for saturated 
designs which gives designs for factors all with the same prime number of levels 

Taguchi, the Japanese engineering management guru, has popularised the use of designs 
with many factors and few samples in an engineering context. These designs have come to be 
known as Taguchi designs or arrays and are given in a number of books (see, for example, 
hgothetis and Wynn, 1989). 

6.4 Response Surface Designs 

If the purpose of an experiment is to optimise the settings of a number of quantitative 
factors, then it is of advantage to use response surface designs. Simple response surface 
designs are fractional factorial designs with centre points. The so called "star" points can be 
added in a second replicate. A response surface design allows the data to be analysed by fitting 
a regression type model to the sample by replicate means. Contour plots can be drawn in the 
parameter space and an optimum located. An account of these designs is given in Box, Hunter 
and Hunter (1978) and in Box and Draper (1 987). An example of the use of a response surface 
design in a sensory experiment is given by Muir, Hunter, Guillaume, Rychembusch and West 
(1 993). 

6.5 Replication of Fractional Replicate And Response Surface Designs 

For these designs, there are advantages selecting a complimentary set of samples for the 
second and subsequent replicates. In many cases it will be wise to analyse each replicate as it is 
completed and to judge whether the treatment levels should be modified for the next replicate. 

7. POWER OF EXPERIMENTS 

When planning experiments sensory scientists should be aware of the precision and should 
to avoid planning experiments which are doomed to failure. Because the differences between 
two treatments are not significant, it does not mean that differences do not exist but only that 
they are smaller than the detection threshold. On occasion statistically significant differences 
will be found which are too small to be of any economic, technological or scientific 
importance. 

Using an estimate of the EMS it is possible to calculate a minimum detectable difference 
between two samples for an experiment with n, replicates and n, assessors from the formula 

Detectable Difference 3 
n, x n, 

The factor 3 is an ad hoc value derived from the "t" value augmented to allow for the fact 
that the error is estimated from the data. If measurements are on the scale 0-100, then 
estimates of the EMS vary from 100-500 with 300 representing an acceptable level of 
variability for a variable with differences between samples. In general the bigger the differences 
between samples the bigger the EMS. For laboratories which use a different scale, a factor can 

be derived by dividing the range by 100 and dividing the EMS in the table below by the factor 



squared and the table entries by the factor. The table illustrates the consequences of this 
formula for the detectable difference: 

Table 22. 

EMS 

100 300 500 

1 8 15.0 26.0 33.5 
1 12 12.2 21.2 27.4 
1 16 10.6 18.4 23.7 
2 8 10.6 18.4 23.7 
2 12 8.7 15.0 19.4 
2 16 7.5 13.0 16.8 
3 8 8.7 15.0 19.4 
3 12 7.1 12.2 15.8 
3 16 6.1 10.6 13.7 

Small differences are unlikely to be detected with a modest sized experiment. 

8. RELATIONSHIP OF UNIVARIATE METHODS TO MULTIVARIATE 
METHODS 

In addition to assuming that data are from a continuous distribution and are on a linear scale, 
the univariate methods assume that each assessor measures the samples in the same way. 
Assessors are known to use different proportions of the scale, and use sensory terms in 
different ways. Selection, training and reference standard have a part to play in reducing these 
differences but can seldom eliminate them. Another weakness of presenting many univariate 
analyses is that there is the implication that there is more information than truly exists. Principal 
Component Analysis of tables of sample means or replicate by sample means nearly always 
reveals a very highly related set of variables with few significant components. 

The multivariate methods described in the rest of this book model the differences between 
assessors more realistically than univariate analysis and present the results in the principal 
sensory dimensions. 

The validity of the results from multivariate analysis depends on proper experimental design 
and particularly on randomisation and blinding. Caution must be exercised in interpreting the 
multivariate analysis of sets of sub-experiments (section 5.3.1) and split-plot experiments 
(section 5.3.2) because differences between samples are measured with different degrees of 
precision. 
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9. CONCLUSIONS 

The key to successful experimentation is clear analysis of the problem followed by careful 
design of the sensory experiment and skilful analysis of the data which is followed 
perceptive interpretation of the results. 

Much work remains to be done to develop designs for sensory experiments and in particular 
sensory profile experiments which are free of artificial constraints on numbers of assessors and 
numbers of samples per session. Knowledge of good designs should be disseminated by 
catalogues or preferably by computer programs which produce properly randomised designs 

minimal inputs from the sensory scientist. 
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PREFERENCE MAPPING FOR PRODUCT OPTIMIZATION 

Jean A. McEwan 
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Chipping Campden, Gloucestershire, GL55 6LD, United Kingdom 

1. INTRODUCTION 

1.1 Background 

Product optimization is the aim of every food manufacturer. A company's ability to produce a 
product which satisfies the consumers' sensory requirements has a distinct lead to success and 
profitability. Clearly other factors do come into play, such as packaging and brand image, but 
these are not the subject of this chapter. 

In writing about product optimization from the sensory point of view, it is important to 
realise the complexity of achieving the ideal product, either for an individual consumer, or a 
group of consumers making up a market segment. It is critical to understand the requirements 
of the consumers within the market segments of interest to the company, and thus to design 
and target products to meet these requirements. 

Sensory analysis is frequently camed out by companies in the initial steps of product 
development or as a quality control tool, and provides valuable information in these instances. 
Consumer information, on the other hand, is routinely used by companies when researching 
new and existing market products, and this information forms the basis of many important 
company decisions regarding the launch of new products or the reformulation of existing lines. 
However, using sensory analysis and consumer information independently does not always 
enable the company to derive most benefit from available resources. By using these sensory 
and consumer techniques in conjunction, a more complete picture can be obtained. Reference 
mapping offers a group of techniques which can be used to relate these two groups of 
information. 

Sensory assessors are sometimes required to give preference or acceptability information, 
but this is a dangerous practice as sensory assessors are unlikely to be representative of the 
target population, and by their training are more perceptive, in an analytical sense, than the 
average consumer. Likewise consumers are frequently asked to give reasons for their 
judgements or descriptors, but while these can provide some useN information, they need to 
be interpreted with care. Consumer descriptors are rarely detailed enough or reproducible, and 
can therefore lead to misleading results due to the difficulties encountered in the interpretation 
process. Reference mapping techniques offer the opportunity to use information generated 
from the best source in each instant. It is only the consumer who can realistically provide 
hedonic data, while a trained sensory panel is able to provide reliable descriptive information. 
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By relating these two data sets, one compliments the other, thus maximising the information 
available. 

The size, number of samples required, and the apparent complexity of experiments designed 
for preference mapping are often given by companies as reasons for dismissing it without 
further consideration. However, these companies will often conduct numerous individual 
sensory and consumer tests comparing say a new formulation against the original, and perhaps 
a benchmark such as a competitors product. This approach, when compared with the 
preference mapping approach appears to be rather hit and miss. 

When opting for the preference mapping approach, the experiment is carefully designed, 
often to consider several parameters at once. Accepting the fact that many product 
characteristics are interrelated, this approach will enable the product developer, not only to 
identify the need to adjust one component, but will indicate the effect other characteristics 
were having on liking. The approach also provides information on consumer segmentation, 
allowing the product developer to 'target' his product appropriately. While at the outset, the 
approach may appear to require excessive resource, it may in fact reduce the overall input 
scientifically designing the ideal product. 

A product resulting from a study using techniques such as preference mapping will be 
'designed', and while the structured approach and combination of sensory analysis and 
consumer research cannot replace the creativity of the product developer, they can assist in 
identifjmg and summarizing market place opinions, thus helping the product developer to pin 
point the 'ideal' product. Therefore this product, given appropriate marketing, should achieve 
the competitive edge in the market place. 

1.2 Use of the Technique 

Preference mapping is used to answer a number of questions relating to improving the 
acceptability of the sensory aspects of a product. In one instance a company may simply wish 
to identify the attributes of a range of competitive products, which are important to 
acceptability, with the aim of moving their product into a more desirable position. Preference 
mapping projects involving market place products, may also enable the company to identify 
potential market opportunities through product gaps. In another scenario, the company may be 
working on a range of new product formulations, suggested by market research information, 
and wish to identify which formulation is most acceptable, and then if and how can the product 
be improved. 

There are many ways in which a company will approach product optimization, and the 
preference mapping method is only one. The decision to choose this approach will depend on 
the importance of the project in terms of financial commitment and time, the status of sensory 
analysis in the company and of course the number and range of samples available for 
evaluation. 

There should be no doubt, the preference mapping approach is expensive, involving both 
sensory and consumer panels. Equally the cost of product failure on market launch is 
expensive. Preference mapping as part of a well thought out product development exercise 
well worth the expense. However, a decision on the relative feasibility of different options must 
be taken. While client projects and discussions remain confidential, the author has witnessed 
numerous examples where the preference mapping approach of utilizing both sensory and 
consumer information has led to improved formulations and more acceptable products. 
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2. PREFERENCE MAPPING AS A METHOD 

2.1 Internal Preference Mapping 

Before considering the method in some detail, it is first necessary to understand the terms 
metric and non-metric, as these terms are used a lot in relation to the method. A metric method 
is one where the data are assumed to be linear, or have interval properties. Such data are 
continuous (e.g., measurement of height). Non-metric methods are used to deal with non-linear 
data, and for the purposes of this chapter can be considered ordinal. In other words the data 
are whole numbers, but do have the property of representing an increase or decrease 
intensity of a particular attribute. 

The method of internal preference mapping (MDPREF) is similar to a principal component 
analysis (PCA) on a matrix of data, consisting of samples (objects) and consumers (variables). 
This analysis normally uses the covariance matrix (non-normalized matrix) rather than the 
correlation matrix. This means that a consumer with small or zero preferences, and 
consequently a low standard deviation, will not adversely affect the structure of the preference 
map. However, the correlation matrix is used by some packages, or the user has the option. In 
order that the geometry of the preference map is correct, it is necessary to normalize the 
principal components. 

The result of internal preference mapping is a sample map, based on the product 
acceptability information provided by each consumer. A segmentation analysis of consumers is 
then possible by visually examining the plot of consumer preference directions, or by using a 
classification algorithm using the PCA parameters. 

The more complex the structure of the population preferences, the greater the number of 
principal components that are required to be interpreted. However, the synthesis power of 
multidimensional analysis decreases with the number of axes to be interpreted. In fact, the non 
metric version of K A  allows the user to limit the number of axes to be determined. Non 
metric PCA involves calculating, for each consumer, the best monotonic transformation 
(Kruskal, 1964) of the preference data, in order to maximise the variance explained by the first 
k principal components of the transformed PCA data. It is common practice to choose only 
two or three preference axes, as after this the solutions become difficult to interpret. 

It is an assumption of non metric PCA that the preference data are ordinal, not interval or 
ratio. When this is the case, it is important to exercise caution, as in effect only product ranks 
for each consumer are considered. However, the benefit of this is that the variance explained 
by the first k non metric PCA axes can then be taken as representing only the differences 
between product preference scores without the distortion to the ranks. 

Whether metric or non metric, this form of principal component analysis is mmonly  
referred to as Internal Preference Mapping or MDPREF, as first described by Carroll (1972). 

Unlike external preference mapping, this method only uses the consumer data, and thus no 
information about why the samples are liked or disliked is given. It is possible to link sensory 
information to the internal preference mapping space, by correlating the mean sample ratings 
for each attribute with the derived preference dimensions. 



2.2 External Preference Mapping 

The basic idea behind external preference mapping ( S c h i h  et al., 1981) is to map 
acceptability data for each consumer onto an existing perceptual map of the products, usually 
obtained from profiling. In effect, the profile space is external to the acceptability data. 

Preference mapping can simply be thought of as performing regression analysis the data, 
where the dimensions of the profile space are the explanatory (or predictor) variables, while 
acceptability is the response (or dependent) variable (Schlich and McEwan, 1992; Schlich, 
1995). It should be noted that the predictor space is, in fact, a decomposed space. This is 
because it is derived from a multivariate procedure such as principal component analysis or 
generalized Procrustes analysis, which decomposes the data into a smaller number of 
dimensions to adequately summarise the data. 

In practice, there are two types of preference behaviour; that which fits a linear regression 
(vector model) and that which a quadratic regression (ideal point model). These are 
described below. 

2.2.1 The Vector Model 
The vector model pertains to 'the more, the better' type acceptance behaviour. Basically, this 
means that there is sample which is perceived as having too much or too little of the 
characteristics which determine acceptability. 

In practice, a multiple linear regression equation is derived for each consumer, and from this 
a vector depicting the direction of increasing preference can be drawn onto the sample space. 
The fitting of this model is often referred to as the Phase 4 (or Phase model. This is 
represented in Figure 1. 

Equally spaced 
ISO-contours for each point 
on the hedonic scale 

6 

b 

b 

Figure 1. Graphical representation of the Phase 4 vector model. 
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2.2.2 The Ideal Point Model 
The ideal point model pertains to the 'some amount is ideal' type acceptance behaviour. 
Basically, this means that there are samples in the space which are perceived as having 
excessive or insufficient amounts of one or more of the sensory attributes. Underlying the ideal 
point model is the assumption that there is some combination of attributes which make the 
ideal product. Whether it is realistic to assume that each consumer has only one ideal product 
is another matter. 

There are three types of ideal point model which are often referred to; the circular ideal 
point model (Phase 3ffhase 111), the elliptical ideal point model (Phase 2ffhase 11) and the 
elliptical ideal point model with rotation (Phase lffhase I). The lower the phase number, the 
more complex (and less general) the model. Figures 2 (a) to (c) graphically display the format 
of these three ideal point models. All ideal points can be either positive or negative. A positive 
ideal point represents a point of maximum preference, whilst a negative ideal point is a point of 
anti-preference. 

1 

Figure 2a. Graphical representation of the Phase 3 ideal point model. 
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Positive ideal point 

Negative ideal point 

Figure 2b. Graphical representation of the Phase 2 ideal point model. 
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Figure 2c. Graphical representation of the Phase 1 ideal point model. 



In practice Phase 1 (quadratic ideal point) tends to be ignored, as it assumes that the sample 
space is not 'optimal' and so rotates it to tty to achieve a better fit with the acceptability data. 

this is somewhat complex for interpretation it is seldom used, seldom recommended and 
therefore will not be discussed in terms of the worked example, presented in Section 6 of this 
chapter. Phase 2 (elliptical ideal point) is also quite complex as the ideal points can be both 
positive and negative at the same time, in other words a saddle point. In other words, one 
dimension optimises preference, while the other dimension optimises anti-preference. For this 
reason Phase 2 is little used in sensory evaluation, though it is useful if interpreted carefully. 
Phase 3 (circular ideal point) is the simplest of the ideal point models, and in effect fits a simple 
quadratic model to the data. In other words, there is an optimum (maximum or minimum) 
point on the space which is equally influenced by all the sensory dimensions being used to 
determine it. Thus, the contours round this optimum point are circular. 

2.2.3 A Mathematical Explanation 
The external preference mapping methods consist of calculating a polynomial regression for 
each consumer, by utilizing the sensory dimensions XI, X2, to explain the response (Y) 
of preference for each consumer. The X variables are called the independent or explanatoly 
variables, while the Y is the dependent or response variable. Theoretically, the model can be 
written as shown in Equations 1 to 4. In each equation, a is the intercept term. 

Y Xipix i  6cixi2 i 1, k Eqn (2) 

i 1, k 

Equation 1 shows the vector model, which takes the format of a simple linear regression for 
each consumer. The pi are the slopes of the regression line (vector) for each consumer. 

In Equation 2, a quadratic term, C x i 2 ,  is added, where pi and 6 are parameters to be 
estimated. The 6 are all the same, as equal weight is attached to all dimensions in the circular 
model. 

Equation 3 is the same as Equation 2, except that 6i are different, according to the 
weighting attached to the dimensions. In other words, in the elliptical model, changes in 
preference along one dimension may be more important than changes along another dimension. 

Equation 4 is Equation 3 with the addition of an interaction term. It is this term that 
provides the rotation in space of the preference map. 

The designation of which phase to use is based on the way the models fit into one another. 
In fact, it can readily be seen that one model is actually a submodel of the other. Phase 1 
(rotated model ideal point) is the most general model, and under this the models fit into each 
other, by becoming more specific. Therefore, Phase 4 (vector) is the most specific with the 
most constraints being placed on it. The type of data collected will determine the most 
appropriate model for a particular application. Fisher's test is normally used to establish which 
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model is best (Schiffman et al., 1981). The principle behind this is very similar to testing for, 
say, a sample effect in analysis of variance. In this case the analysis of variance is undertaken 
on the regression equation to determine how well the fitted model represents the data. By 
looking up the Fisher (F) tables (Neave, 1978), at the degrees of freedom for the regression 
equation against the degrees of freedom for the error term, it is possible to identi@ what 
significance level can be attached to the fitted model. It is then up to the user to decide the 
level of significance he is willing to accept. 

For the vector model (Phase 4), the least squares estimators for are used to help define 
the arrow representing the direction of the consumer's preference on the sensory map. The 
length of this arrow is proportional to the square of the multiple correlation coefficient 
squared, which indicates the goodness of fit of the model. Small arrows indicate that the 
consumer preferences cannot be explained by the sensory characteristics of the products, at 
least through the linear (vector) model. the other hand, following a long arrow to infinity, it 
is possible to find the 'ideal' product of the consumer under investigation. The graphical 
interpretation of the consumers' preference arrows is similar to that of internal preference 
mapping. The interpretation of the actual sensory correlations is based on the previous 
multivariate analysis used to obtain the sensory map. In practice the user may choose that the 
preference vectors of consumers who fit Phase 4 (vector), are scaled to the unit circle round 
the sensory space. This is usually to make interpretation of consumer segmentation easier. 

The other models, circular, elliptical and rotated elliptical, have response areas which are 
quadratic in shape. A quadratic can have either a maximum or minimum or a saddle point. A 
maximum represents the consumer's ideal point, whereas a m i h u m  represents a negative 
ideal point. The interpretation of a saddle point is somewhat more difficult, as the preference 
signs are reversed, in other words one dimension is positive ideal while the other is negative 
ideal. In practice, only the maxima and minima are represented on the sensory map with a or 

On the preference plot of ideal points, the situation of the and I-' signs and their density, 
provides an impression of the distribution of consumers' ideal points. In cases where the ideal 
point lies outside the sample space, the vector model may well be more appropriate. 

The circular model (Phase 3) cannot result in a saddle point, and as its name suggests, the 
consumers' preference data are represented as circles surrounding the ideal point. With a 
positive ideal point, the circles direct towards the centre to a common point. However, with a 
negative ideal point consumer preference increase in any direction away from the centre of the 
circle. 

The elliptical model (Phase 2) will result in a saddle point if the 6i estimators have different 
signs. In this case there is usually no sensible interpretation in terms of identifymg the 
consumer's ideal product. The interpretation of the elliptical model is similar to the circular 
model, but in this case the preference level lines elliptically surround the ideal point. The 
sensory attributes on the longest axis of the ellipse are of less importance than the sensory 
attributes of the shortest axis of the ellipse. Using a large number of consumers in the 
preference mapping exercise results in great difficulty in building the elliptical model to identify 
the common ideal point. This is because, consumers may be attaching different levels of 
importance to each preference dimension, and have different orders in terms of which 
preference dimension is most important to them. This makes the task of segmenting consumers 
more difficult, and for the lay user is a very complex and, perhaps, impossible task. 

1 ,  
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The quadratic (Phase I), or complete model, takes into account the interactions between the 
sensory map's components: terms yijXiXj in Equation 4. This results in a rotated PCA, 
removing the original interpretation of the sensory map. For this reason, this model is not used 
for sensory analysis external preference mapping. 

Although all four models are normally presented together in the literature, in practice only 
the vector (Phase 4) and circular (Phase 3) models are routinely used by sensory analysts. 

2.3 Advantages and Disadvantages of External Preference Mapping 

Preference mapping offers a very useful tool in the product optimization process, but perhaps 
its biggest drawback is that it is often misused due to lack of understanding. It is hoped that 
this chapter will go some way towards overcoming this problem. The purpose of this particular 
section is to consider some specific advantages of external preference mapping. 

Advantages 

Offers a 'relatively' straight forward procedure for relating sensory and consumer 
information, for product optimization. Specifically where a preference mapping program has 
been purchased. 

0 Helps identify new markets. 
Provides direction for future product development. 

0 Provides information on market segmentation, with respect to sensory 
preferences. Can identi@ the need to make alternative types of product 
for different market segments. 
Using market samples, the technique can be a first 

step in looking at products currently available to the consumer, before 
developing specific formulations for a more detailed study. 

Dkadvantages 

0 A fairly large number of samples (e.g., 12-20) are often required to ensure 
that the preference mapping can be undertaken successfully. 
At present, every consumer must evaluate all the samples put forward to 
the consumer trial. This can be expensive. 

0 Can be complex to program the procedure, if the user has not bought a ready written 
preference mapping program. 

0 Preference data is not always directly related to the sensory profile map, as the way 

trained panels perceive products is different from consumers. However, note that lower 
dimensions of the profile map often relate better to preference than the commonly used first 
two dimensions. 

0 Tends to be used for understanding and direction, not prediction. 

Not all consumers well represented by the models. 

2.4 Advantages and Disadvantages of Internal Preference Mapping 

Internal preference mapping is useful to provide a sample map, based only on preference data. 
Therefore, it cannot be used to understand reasons for preference on its own. It has been 
known to use internal preference mapping to produce preference dimensions, and to use 
external preference mapping to map the sensory attributes onto the preference space. The 



advantage of this is that the attributes are directly related to preference dimensions. However, 
in practice users may feel that this approach detracts from the benefits of linking a profile map 
directly back to the product processing and formulation parameters. A summary of the 
advantages and disadvantages on internal preference mapping are listed below. 

Easier to use and understand than external preference mapping, as 

similar to principal component analysis. 
Allows actual preference dimensions to be determined, as only 
acceptability data is used. 
Can be used as a screening procedure without sensory profiling, 
to develop samples worthy of further sensory and consumer work. 

The program tends to break down after two dimensions in terms of 
interpretation. 

0 Percentage variance explained by the dimensions is often very low. 

2.5 Software Availability 

A number of software packages can be used to undertake preference mapping, though few 
readily allow the analysis without some work from the user. PC-MDS has a program for both 
internal and external preference mapping. In addition, the two sensory based statistical 
packages, SEIWAK and SENSTAT also allow preference mapping to be undertaken. In each 
case running the analyses is fairly straightforward. 

The major packages, such SAS, Genstat, SPSS, S-Plus, SYSTAT and Minitab will allow 
all or most of the analyses options to be programmed. However, this requires the aid of an 
experienced statistician. In the event of this option being available, much more flexibility tends 
to be achieved over the output and graphical displays. 

A comprehensive list of packages is provided in Appendix 1, together with the supplier. 

3. PRACTICAL CONSIDERATIONS FOR SAMPLES 

3.1 Sources of Samples 

The sources of samples for a preference mapping study depends very much on the project brief 
and the objectives within this. If the objective is to characterise the product on the market of 
interest, e.g., all dairy block chocolate bars, then samples will normally be obtained from 
retail outlets. As with any sensory trial, it is usually advisable that samples within the same 
batch are purchased for use throughout both the sensory and consumer trials. This is because 
batch to batch variation may occur within samples. For example, in a crisp trial, the crisps may 
differ slightly in terms of bake level from batch to batch. Thus, if the consumer trial 
undertaken on a different batch of samples from the sensory trial, then a 'true' relationship may 
not be found. If batch-to-batch variation is a problem, for example seasonal differences 
potatoes, it may be important to build this into the design, by undertaking trials at different 
times of year. 
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Samples produced by the company themselves are used where the objective is to investigate 
different formulation and/or processing alternatives, to establish which combination of 
variables maximise the acceptability of the product. This may be as a follow on to an initial 
market evaluation as described above, or based on market research information. It can, of 
course, result from a change of supplier, a legal requirement to reduce an ingredient, or change 
to a different process. This course assumes that a difference is wanted. In practice these 
situations usually require no product change, and therefore difference tests are used. 

3.2 Design Considerations 

Good experimental design is central to successful experiments, as discussed more fully in 
Chapter 2 of this book. However, it is important to take a look at what options tend to be 
available to industry, recognising that these may be improved through technology transfer and 
by illustrating the benefits that can be obtained. 

The first and most important consideration, is establishing if a preference mapping study is 
to take place. This in determines the number of samples that can be used. For 
example, a descriptive profile can take place on samples, but not a preference mapping study. 
Recommending the number of samples for preference mapping is fraught with 
difficulties, as the statistician or sensory scientist must often compromise between what is 
statistically ideal and what is practically possible within the time and financial constraints of the 
company undertaking or commissioning the work. 

Taking the practical perspective as the starting point, and assuming the samples are well 
spread on the sample map, the user can sometimes get by with an absolute of six 
samples for the vector model and seven to eight for the ideal point model (Phase 3). This, from 
a statistical point of view, allows a few spare degrees of freedom in the regression analysis. 
However, the point about a good spread of samples is important, as a sample space with one 
very different sample, and the rest close together, will not allow a good model to be fitted to 
the data. 

Taking the problem, as viewed by the statistician, a larger number of samples than 
mentioned above is desirable. However, the larger the number the better, is not always true 
after a point, as no extra information will be gained. For example, if there are thrirty-two 
possible treatment combinations in a factorially designed experiment, as much information is 
likely to be obtained on a half replicate of sixteen samples. The number of samples necessary 
will often depend on whether the samples are produced according to an experimental design 
and its format, or selected from those in the market. Both cases will now be considered. 

Studies with market place samples are often the most difficult, as it is impossible to know in 
advance whether they will have a good spread on the sample map. Where a wide range of 
samples is available, it may be necessary to look at twenty to thirty samples on the sensory 
profile, and then select a representative range of twelve to sixteen samples for the consumer 
trial. In this case, when undertaking the preference mapping, the sample coordinates to be used 
will simply be chosen from the results the multivariate analysis on all the samples used in the 
profile. It is important not to re-run the multivariate analysis on sensory profile data, using the 
reduced number of samples before preference mapping, as this will change the sensory map 
definition. However, the number of samples selected should still be sufficient to allow the 
preference mapping to be undertaken, as discussed earlier. If the market is small, and only a 
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few samples exist, then perhaps preliminary acceptability and sensory work can be used as an 
exploratory tool to setting up a designed experiment, as discussed below. 

Preference mapping studies can be carried out on samples which are formulated to a 
carefully thought out design. For example, while under-used, factorially design experiments are 
a very efficient way of product development, providing preliminary work has been undertaken 
to establish the key factors important to preference, and pilot work has been undertaken to 
establish realistic levels of each of the factors. simple factorial experiment may produce eight 
samples, by using three ingredients each with two levels 

Four or five ingredients may be 
used, or three levels, thus making more samples. In such cases the concept of fractional 
factorial experimental designs can be used to reduce the number of samples to a manageable 
number. With well designed experiments eight samples may well prove to be adequate for 
preference mapping studies. This approach also has the added advantage that other statistical 
tools (e.g., factorial analysis of variance and response surface methodology) can be used to 
extract detailed information as to the best combination of ingredients to use. 

final point to note is that each consumer must taste all the samples put forward to the 
consumer trial. mentioned previously, this could be a subset from the sensory trial, or all the 
samples used in the sensory trial. Work is ongoing to determine whether incomplete designs 
can be used, as mentioned in Section From a sensory point of view, the logistics of tasting 
a large number of samples in a consumer trial must be considered. OAen consumers must be 
recalled to attend several tasting sessions, or be pre-recruited to attend a half day or whole day 
tasting, with suitable breaks to prevent sensory fatigue. 

3.3 Sensory Methodology 

There are a two main sensory techniques which are used to provide a perceptual map of 
samples: dissimilarity scaling (Schiffman et al., and descriptive profiling (Stone and 
Sidel, 

Dissimilarity scaling provides a perceptual map of the samples using the statistical tool of 
multidimensional scaling. However, it provides no descriptive information about why the 
samples are different. For this reason, and other practical reasons, descriptive profiling is more 
widely used both as a tool in its own right as well as for preference mapping studies. 

Profiling data is normally analysed by principal component analysis, generalized Procrustes 
analysis, factor analysis or correspondence analysis. In each case, sample coordinates are 
produced to position the samples on the map. These coordinates are the input to external 
preference mapping to define the sample space onto which consumer preference is mapped. 

3.4 Consumer Methodology 

The key point about collecting the consumer data is that each consumer should evaluate 
every sample selected for the trial, as discussed in Section 3.1. Acceptability data is normally 
collected on a or point hedonic category scale (Peryam and Pilgrim, or on a 
suitable anchored continuous line scale. In many instance, separate measurement may be made 
for appearance, flavour, texture (mouthfeel) and overall acceptability, in order that each aspect 
of the product can be considered in detail. The format of the data for input to external or 
internal preference mapping is matrix, where the consumers are the rows and the samples the 
columns. 
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4. INTERPRETATION AND PRESENTATION OF RESULTS: PREFMAP 

The purpose of this section is to illustrate how results from external preference mapping can 
be interpreted and presented. It utilizes the output format from the PC-MDS package, but can 
be easily applicable to most other programs. In addition, it was decided to concentrate only on 
the Phase 3 (circular ideal point) and Phase 4 (vector) models, as Phases 1 (quadratic ideal 
point) and 2 (elliptical ideal point) are seldom applicable to sensory applications. 

4.1 Information from the Analysis 

Tables 1 and 2 list the type of information provided by an external preference mapping 
analysis, and what each refers to, and how usehl it is in practice. This is based on specifymg 
Phase (vector) and Phases 3 (ideal), respectively. 

Table 1 
Comments on phase 4 (vector) output. 

Output Description Comments 

Onginal configuration 
@-matrix) 

These are the scores of the sample space. They should 
the same throughout the analysis. 

Vector of scale values 
(preferences) 

These are the normalized preference data, with sum zero and 
of squares equal to 1 ,  as the preference scores are centered 

by subtracting the preference data from the mean and dividing 
by the standard deviation. 

Dimension cosines of 
fitted subjects 

These are the coordinates representing the point at which to 
draw the vector from the origin. They are coordinates to enable 
preference directions to be drawn. 

Table 2 Comments on Phase 3 (ideal point) output. 

Output Description Comment 

Original configuration 
(X-matrix) 

These are the scores of the sample space. They should remain 
the same throughout the analysis 

Vector of scale values These are the normalized preference data, with values 
(preferences) (preferences) sum zero and of squares equal to 1. 

Coordinates of ideal points- These are the values (coordinates) for plotting the ideal point 
with repect to old axes position on each of the dimensions specified in the analysis. 
(coordinates of ideal points) 

These are the weightings for each individual on the axes 



Importance of new axes 
(weights of axes) 

(preference dimensions). The weighting on each axis is the 
same within an individual. The higher the weighting, the 
greater the profile map structure is in accounting for that 
individual's preference. A negative set of weights implies a 
negative ideal point (anti-preference), while a positive set of 
weights implies a positive ideal point. 

At the end of the output the user will find the correlation and F-ratio for the model for each 
individual and for each Phase. For interpreting the correlation (R) for the regression model, the 
same principles are used as when using regression methods for other applications. The R can 
take a value from 0 to 1, with the closer to 1 the correlation is, the better the fit of the model. 
Correlation tables can be used to establish the significance of the relationship between the 
preference data and sensory dimensions. In practice many users choose a correlation of, say, 
0.6 based on past experience with the method, as representing at least a 5% significant level for 
sample sizes of greater than 10, or a 10% significance level for sample sizes of greater than 8. 
This is fine when the method is being used as exploratory tool to suggest future directions 
with some confidence, rather than a predictive tool in the mathematical sense. However, it is 
suggested that individual models with correlations of less than 0.5 are unacceptable to use in 
the interpretation process. This is because the confidence in such data, even for exploratory 
interpretation would be low. Consumers not satisfying the required goodness of fit level are 
removed from the analysis, and not considered further. A lot of information is lost if many 
consumers fall into this category. 

The statistical significance of the regression model can be tested using the F-ratio provided 
by the analysis, and comparing it to the Fisher tables (e.g., Neave, 1978). This is just another 
way of measuring how well each consumer's data fits the model used by the preference 
mapping program. The degrees of freedom to use are given on the output, and therefore can be 
used to find the critical value for comparison. If the critical value is less than the F-ratio in the 
output, then the model is well fitted at the level of significance tested. It is usual to use a 5% 
significance level, but this is often too severe for the purpose of the work being undertaken, 
many consumers being ignored at this cut-off level. 

In addition, the analysis provides a between phase F-ratio, which allows the user to decide if 
moving to a more complex model offers a better fitting model for a particular individual. In 
other words the between phase F-ratio helps establish whether a quadratic term should be 
present in the model. This information is seldom used in practice, as the interpretation process 
tends to eliminate individuals who could have been represented by the more complex model, 
determined by the F-ratio mentioned in the above paragraph. It is important, for segmentation 
and interpretation purposes, that as many 'good' subjects as possible are represented in each 
phase, to allow meaningfid conclusions to be drawn. 

4.2 Presentation of Results 

In practice, presentation of the results tends to centre round the plots, both vector and ideal 
point, as appropriate. In the case of the vector model, the sample plot is produced, with 
individual directions of preference represented as vectors on the sample map. example, 
illustrating this, is provided in Section 6.4.1. If all individuals have preference vectors in the 
same, or similar, direction, then there is a clear preference for samples with attributes that 





86 

4.4 The Extent of the Conclusions 

The extent to which conclusions can be drawn from external preference mapping will depend 
very much on the number of samples, goodness of fit of the models used, etc. In fact, 
consideration needs to be given to all the factors previously discussed. Generally speaking, it 
should be recognised that the preference mapping approach, in a well thought out experiment, 
will provide excellent direction for future product development. However, it would be 
unrealistic to expect it to pinpoint the precise level of each product ingredient or process 
combination to achieve the perfect product from a sensory point of view. Nonetheless from 
previous work with industry, major product improvements have been achieved. It is also worth 
noting, that in factorially designed experiments, further value can be added to preference 
mapping by undertaking response surface analysis. 

Preference mapping can, and is used, to identify the major segments of the target market, 
and can be used to make products for different segments. In saying this, it is important to 
recognise that a manufacturer cannot go to extremes and make a product for every consumer. 
Therefore, for a particular segment, the best compromise product can be identified on the basis 
of preference mapping. 

5. INTERPRETATION AND PRESENTATION OF RESULTS: MDPREF 

As previously mentioned, internal preference mapping is a form of principal component 
analysis, but with the option to pre-treat the data in a number of ways, and/or to scale the 
resultant scores and loadings. In running a MDPREF, there are generally four possible options. 
There are two possible data pre-treatments, and the choice of whether or not to normalize each 
consumer's preference vector to fit a unit circle. 

Pre-treatment of the data will be considered first. Both methods are forms of centering each 
consumers preference data. The standard option is to pre-treat the preference data of each 
individual, by subtracting the mean preference rating from the original sample preference 
rating. This in effect acts as a translation of the scale used and relocates the data round the 
centre point, the mean (average) value. The second method uses the relocated data 
described, and then divides the sample preference ratings by the standard deviation of the 
original sample scores. In this way all samples have a standard deviation of 1, which practice 
may distort the acceptability data if there are samples with greatly different standard deviations. 

Normalization is the second option, and usually the normalization option is chosen to enable 
the geometry of the preference map to be correct. However, some MDPREF programs allow 
the user to choose not to normalize. This is not recommended, as the map produced may be 
misleading. 

One option which has not been considered here is whether to scale the preference vectors to 
unit variance. Some programs do this automatically, while others give the option of allowing 
the vector lengths to represent the variance contributed by the consumer to the preference 

map- 
In terms of use of internal preference mapping with sensory attributes, a common procedure 

is to correlate the mean sensory attribute scores with the each preference dimension. The 
results are simply plotted as vectors on the internal preference map, and this will be illustrated 
in Section 6. 



6. CASE STUDY: DRINKS 

6.1 Introduction 

The example, used to illustrate Phase 3 and Phase 4 of external preference mapping and 
internal preference mapping, is based on work undertaken on a selection of orange drinks to 
investigate effect of citric acid and sweetener on product acceptability. 

The background to the project was to investigate labelling of diet and regular drinks, and 
whether this affected the acceptability of the product. The work presented here, to illustrate 
preference mapping, will concentrate only on blind assessment of the products, which was the 
first step in the exercise. 

6.2 Selection of Samples for Profiling 

The samples were selected with the objective of the experiment in mind. Orange drinks of this 
type are sweetened with sucrose and/or aspartame. Thus, sweetener type was a factor in the 
experiment with three combinations being chosen. These were sucrose only, aspartame only 
and a 25% sucrose/75% aspartame mix. The levels of sweetener chosen were based on existing 
work undertaken at the School of Psychology, University of Birmingham (Booth and Freeman, 
1992), using this type of orange drink. However, a preliminary experiment was undertaken to 
ensure equi-sweetness of the solutions. 

A second factor, acidity at three levels, was included in the experiment to investigate the 
interaction between sweetener and acidulent. In addition, Carboxymethyl-cellulose (CMC) was 
used with the aspartame samples, to mask differences in viscosity. 

The final design of fifteen samples (Tables 3 and 4) was chosen to provide a good range of 
samples for profiling, as well as to minimize the inter-correlations between the samples from a 
psychological point of view (Booth and Freeman1992). The rationale is that, for any 
experiment that seeks to distinguish main effects of two (or more) independent variables, the 
aim is to minimise the inter-correlations between the levels of the factors in the samples. In this 
way, for example, problems of multicollinearity in regression are avoided or reduced. In this 
particular example, if the rank correlation between the sweetener levels and acid levels are 
calculated from Table 3/4, a value of near zero is obtained This is because the filled cells in 
Table 3 are 'square', that is high and low levels of one factor are equally represented at high 
and at low levels of the other. 

As this design is somewhat different from the traditional approach of undertaking a 
factorial design or mixture model design, a few comments on the background will be made. 
The primary purpose of the orange drink experiment was to compare a psychological approach 
to product optimization to the traditional sensory approach. In addition, it was important to 
produce realistic mixtures for assessment, and again this was based on previous unpublished 
work at Birmingham University. The actual design is based on the recognition that the 
psychological approach to the analysis is based on an unfolding procedure as described 
Conner (1994). Clearly, from a purely sensory point of view, this type of deign runs the risk of 
not obtaining sufficient good information on the sensory interactions. Ideally, for the traditional 
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sensory approach a proper factorial or mixture model would have been used. However, this 
particular example does illustrate well the preference mapping methods. 

115 

Table 3 
Design used for sample selection. Bold letters aspartame only, underlined letters sucrose 
only. 

L 
M 

N 
0 

Levels Citric Acid 

4.69 3.05 18.73 0.37 150 
4.69 12.22 26.22 0.56 145 

4.69 53.62 0.00 130 
4.69 6.1 1 13.40 0.26 155 

LOW Medium 
High 7 1 

6 E D 
Levels of 5 B G M 
sweetener 4 L A H 

3 0 K 
2 F C 

Low 1 J 

Table 4 

Samples used for profiling exercise, where all ingredient quantities were measured per litre of 
water. 

Sample Orange Citric Acid Sucrose Aspartame CMC (ml) 

B 3.05 104.89 0.00 95 
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the three replicate positions for each sample. GPA was used in order to produce a consensus 
map, which took into account differences in scale use by the sensory assessors (Arnold and 
Williams, 1986). The GPA sample map was used as input to the preference mapping in this 
particular example, but remembering that the attribute plot tells the user why the samples are 
placed in a particular way on the sample map. 

Descriptor 

Like extremely 
Like very much 
Like moderately 
Like slightly 
Neither like nor dislike 
Dislike slightly 
Dislike moderately 
Dislike very much 
Dislike extremely 

Selection of Samples 

It is often impractical to evaluate a large numbers of samples in a consumer trial, due to time 
and cost considerations. As mentioned previously, preference mapping works when each 
consumer has evaluated all samples under investigation. 

In this example, it was decided to select eight of the original fifteen samples for the 
preference mapping study. This was considered the absolute minimum to illustrate the Phase 3 
model. Ideally, however, all fifteen samples should have gone through. 

Samples were selected to represent the range on the sample map (Figure 3), and these were 
A, C,  D, F, H, I, L. Acceptability data were collected using sixty-two staff at Campden, not 
involved in sensory analysis. Samples were evaluated over two sessions, using a nine point 
hedonic scale (Table 5) to measure overall acceptability. 
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Figure 3. Sample map derived from generalized Procrustes analysis on a 
conventional profile of fifteen orange drink samples. 

Figure 4. Attribute map derived from generalized Procrustes analysis on a 
conventional profile of fifteen orange drink samples. 



6.4 External Preference Mapping 

External preference mapping was run specifying Phases 3 and 4, the ideal point model and the 
vector model. The sample scores, averaged across replicates, from GPA are shown in 
Appendix 2, and the acceptability data in Appendix 3. 

On running this analysis, the first part of the output examined was the root mean square 
correlation values for both phases. These take values from 0 to where 1 represents a perfect 
fit, and 0 represents no fit at all. This measure is an overall measure which takes into account 
the correlation fits of each assessor's model. For this analysis, root mean square values were 
0.758 and 0.693 for Phases 3 and 4, respectively. Both values being over 0.500 are acceptable, 
and in addition, there was no real improvement in using the ideal point model over the vector 
model. As is often the case, both models were examined. The choice of 0.5 as the cut-off point 
is somewhat arbitrary, and tends to be based on number of samples. As the root mean square 
correlation is analogous to correlation coefficients, the rules for significance apply. At 20% 
significance a value of 0.507 is required, while for 5% significance a value of 0.707 is needed. 

Before considering both models, the correlations for each individual consumer are usually 
examined, to obtain an idea as to the number of consumers likely to be included in the final plot 
for interpretation. These values are provided in Table 6. 

6.4.1 Vector Model 
The first step was to determine which consumers fitted the model. This can be achieved 
looking at the correlations at the end of the output (Table 6).  In this instance there were eight 
samples, which required a correlation value of 0.707 for 5% significance or 0.621 for 10% 
significance. On this occasion, a 10% significance level selection was used. In this way thirty- 
three of the sixty-two consumer were included for plotting the graphical representation of the 
results. If a correlation at 20% significance was used (0.507), then additional twelve 
consumers would have been included in the final analysis. In many cases this provides further 
useful information, but at the expense of reducing confidence in a statistical sense. 
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Table 6 
Consumer (subject) correlations for Phases 3 and 4. 

1 0.917 0.914 
2 0.634 
3 0.984 
4 0.720 
5 0.628 
6 0.708 
7 0.885 
8 0.914 
9 0.890 
10 0.703 
11 0.457 
12 0.754 
13 0.9 18 
14 0.709 
15 0.904 
16 0.824 
17 0.649 
18 0.841 
19 0.810 
20 0.545 
21 0.530 
22 0.780 
23 0.672 
24 0.625 
25 0.799 
26 0.794 
27 0.726 
28 0.779 
29 0.866 
30 0.730 
31 0.6 

0.436 
0.950 
0.683 
0.477 
0.601 
0.870 
0.844 
0.820 
0.700 
0.084 
0.565 
0.904 
0.49 
0.873 
0.823 
0.488 
0.829 
0.809 
0.539 
0.523 
0.780 
0.394 
0.526 
0.421 
0.767 
0.418 
0.772 
0.836 
0.327 
0.595 

32 0.723 0.567 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

0.706 0.63 I 
0.71 1 
0.683 
0.616 
0.692 
0.607 
0.533 
0.656 
0.559 
0.824 
0.797 
0.673 
0.780 
0.530 
0.893 
0.817 
0.406 
0.804 
0.849 
0.849 
0.874 
0.979 
0.778 
0.842 
0.503 
0.814 
0.698 
0.473 
0.923 
0.549 

0.696 
0.668 
0.591 
0.462 
0.593 
0.389 
0.599 
0.509 
0.65 1 
0.757 
0.648 
0.777 
0.28 1 
0.884 
0.680 
0.402 
0.556 
0.849 
0.836 
0.839 
0.948 
0.763 
0.804 
0.392 
0.801 
0.694 
0.473 
0.784 
0.463 

4verage 0.906 0.867 

The next step is to create a plot of the samples using the coordinates of Appendix 2, and 
then draw on the vectors using the coordinates shown in Table 7. These are normally identified 
as 'dimension cosines of subject vectors'. 
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Table 7 
Coordinates for the vector model, for each consumer. 

Consumer Dim 1 2 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

-0.765 
-0.955 
-0.958 
-0.663 
-0.907 
-0.468 
-0.162 
-0.559 
-0.53 1 

0.709 
-0.849 
-0.439 

-0.485 

-0.264 
-0.966 
-0.489 
-0.676 
-0.638 
-0.965 
0.058 

-0.636 
-0.998 
-0.183 
-0.595 
-0.552 
0.998 

-0.676 
-0.467 
-0.787 
0.132 

0.644 
0.297 

0.749 

0.884 
0.987 
0.829 

0.874 

-0.288 

-0.421 

-0.847 

-0.705 
-0.529 
-0.899 
-0.965 
-0.259 
-0.872 

0.770 
0.262 

0.772 

0.983 
0.804 
0.834 

0.737 
0.885 

0.991 

-0.737 

-0.998 

-0.064 

-0.064 

-0.6 17 

31 -0.852 0.524 

Consumer Dim1 Dim 2 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

-0.795 
-0.641 
-0.723 
-0.148 
-0.168 
-0.061 
-0.288 
0.508 

-0.426 
-0.75 1 
-0.950 
-0.301 
-0.999 
-0.952 
-0.950 
-0.961 
-0.346 
-0.558 
0.847 

-0.719 
-0.925 
-0.617 
-0.991 
-0.456 
-0.966 
0.587 

-0.826 
-0.8 11 
-0.998 
-0.266 

62 -0.0 14 

-0.607 
0.768 
0.691 
0.989 
0.986 
0.998 
0.958 
0.862 
0.905 

0.3 11 
0.934 
0.042 

0.3 12 
0.278 
0.938 
0.830 

0.695 
0.381 
0.787 

0.890 
0.260 

0.564 
0.585 
0.070 
0.964 
0.999 

-0.660 

-0.307 

-0.532 

-0.133 

-0.8 10 

The vector model (Phase 4) plot is shown in Figure 5, where a clear direction of preference 
towards the left of Dimension 1 can be observed. In fact, Samples D and L are most acceptable 
overall. By examining Figure 4, the attribute plot, it can be observed that the most acceptable 
samples are sweet, tangerine, thick and are high in strength of flavour. It is also interesting to 
observe in this example, that the profile sample map and the internal preference map are very 
similar. This is not always the case. 
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'61.3 

0 
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Figure 5. The Phase 4 vector map derived undertaking external 
preference mappingusing the sensory profile map in Figure 3. 

6.4.2 Ideal Point Model 
Again, the first step was to determine which consumers fitted the model satisfactorily 
looking at the correlations (Table 6). Taking a 10% significance level, of the sixty-two 
consumers were included for plotting the graphical representation of the results. If a 
correlation at 20% significance was used (0.507), then an additional eight consumers would 
have been included in the final analysis. At this point, another two steps are required, firstly to 
identify positive and negative ideal points, and then to establish which of these actually lie 
within the sample space. 

To determine whether an ideal point is positive or negative, the user should look at the 
'importance of new axes' part of the output (see Table 2 for explanation). This information is 
provided in Table 8, together with whether the consumer had a positive or negative ideal point. 
There were forty-two positive and twenty negative ideal points in total. An asterisk by the 
consumer identity number in Table 8 highlights the fifty consumers who are included for 
further analysis at the first step. 

The coordinates for the ideal points (Table 9) now need to be examined to determine which 
are to be plotted. A decision is normally taken to plot and interpret only those ideal points 
within the sample space. This is because ideal points outside the space are really better 
described by the vector model, as they are ideal points tending towards infinity. In Table 9 a 
single asterisk represents consumers fitting the model, whilst a double asterisk represents those 
whose ideal points also fall within the sample space. There were forty consumers to take 
forward to the plotting stage, of which twenty-eight had positive ideal points and twelve had 
negative ideal points. 
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Table 8 
Positive and negative ideal points and their coordinates. 

Consumer Importance Sign 

of New Axes 

1* 
2* 
3* 
4* 
5* 

6* 
7* 
8* 
9* 

10* 
11* 
12* 
13* 
14* 
15* 
16* 
17* 
18* 
19* 
20 
21 
22* 
23 
24* 
25* 
26* 
27* 
28* 
29* 
30* 

(-4.6, -4.6) 
(27.6,27.6) 
(15.4, 15.4) 
(13.8, 13.8) 
(24.4,24.4) 
(22.4, 22.4) 
(9.7,9.7) 
21.0,21.0) 
(20.7,20.7) 
(4.0,4.0) 
(26.9,26.9) 
(29.9,29.9) 
(9.6, 9.6) 
(30.6, 30.6) 

(27,2.7) 

(8.8, 8.8) 
(3.0, 3.0) 

(-14.1,-14.1) 

(-25.6,-25.6) 

(4.7,4.7) 
(-5.2, -5.2) 
(-0.8, -0.8) 
(32.6,32.6) 

(40.7,40.7) 
(-20.3,-20.3) 

(-12.2,-12.2) 
(-35.6,-35.6) 
(6.4,6.4) 
(13.3, 13.5) 
(39.1, 39.1) 

31 (8.1, 8.1) 

Consumer Importance Sign 

of New Axes 
32* (26.9,26.9) 

33* 
34* 
35* 
36* 
37* 
38 
39 
40* 
41 
42* 
43 

45 
46 
47* 
48 
49 
50* 
51* 
52 
53* 
54* 
55* 

56* 
57 
58* 
59* 
60 
61 
62 

19.0,- 19.0) 
(-8.7, -8.7) 
(8.5, 8.5) 
(10.5, 10.5) 
(30.8,30.9) 
(78, 7.8) 
(21.8 21.8) 
(16.0, 16.0) 
(13.9, 13.9) 
(30.2,30.2) 
(14.8, 14.8) 

(4.1,4.1) 
(26.9,26.9) 

10.9,- 10.9) 

(-7.5, -7.5) 

(-324-3.5) 
(-27.1,-27.1) 

(34.8, 34.8) 
(0.8, 0.8) 

(14.7, 14.7) 
(-8.7, -8.7) 

(-14.5,-14.5) 
(-9.1, -9.1) 
(15.0, 15.0) 
(18.9, 18.9) 
(8.7, 8.7) 
(-4.7, -4.7) 
(-0.7, -0.7) 
(29.2,29.2) 
(7.8, 7.8) 

Figure 6 shows the ideal point model plot, from which it is evident that the majority of positive 
ideal points are to the left of Sample A on Dimension 1. This, therefore, suggests a similar 
result to the vector model map. This picture suggest that the attributes on this side of the plot 
are acceptable, but also that the shouldn't be quite as strong as perceived in Samples L and D. 
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Table 
Coordinates of the ideal points, for each consumer. 

8** 

15** 
-0.055 

M** 

50** 

55** 

58** 
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L 

F 

- H  

Figure 6. The Phase 3 ideal point map derived from undertaking external 
preference mapping using the sensory profile map in Figure 3. 

6.5 Internal Preference Mapping 

6.5.1 MDPREF: First Example 
The data were input to the MDPREF program of PC-MDS, in the format shown in Appendix 
3, where consumers are rows and samples are columns. In this of the analysis, it was 
decided to pre-treat each consumer's acceptability data by subtracting the row mean and 
dividing by the standard deviation, and then to scale each consumer's preference vector to unit 
variance, that is so they fit on a unit circle. The correlation matrix was used, as the analysis was 
run using PC-MDS. It should be remembered that in doing this pre-treatment, some consumers 
may be given more weight than perhaps they should. 

The resulting plot is shown in Figure 7, which shows the samples as letters, and the 
consumers as directions of increasing preference. All vectors are scaled to fit a unit circle. This 
example is particularly good, as most consumers prefer samples on the left hand side of 
Dimension 1, with Sample L being the most acceptable overall. 

6.5.2 MDPREF: Second Example 
The data were input to a MDPREF program in Genstat, in the format shown in Appendix 3. In 
this run of the analysis, the data were pre-treated as before by subtracting the row mean and 
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dividing by the standard deviation. However, in this case the preference vectors were not 
scaled. 

The resulting plot is shown in Figure 8, which shows the samples letters, and the 
consumers as directions of increasing preference. The length of the vectors indicate how much 
infomation an individual consumer is contributing to the preference map. Consumers with 
shorter vectors have preference data which are contributing less information to the sample map 
than those with longer preference vectors. It is clear from Figure 8 that some consumers are 
contributing less information than others. However, the same general conclusions to those 
Figure 7 can be drawn. The fact that the space has rotated 180" is unimportant, its the 
structure that is the key aspect for interpretation. 

- 1  0 1 

Dimension 35.5% 

Figure 7. Internal preference mapping plot derived from specifying the option of centering the 
data and scaling each consumer's preference vector to unit variance. 

ta 

I 

Dimension 35.5% 

Figure 8. Internal preference mapping plot derived from specifying the 
option of not scaling each consumer's preference vector to unit variance. 
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Relationship with Sensory 
The correlation coefficients between the sensory attributes and the two preference dimensions 
were calculated. These are represented in Figure 9, for the preference map of Figure 5 .  The 
points are simply obtained by plotting an (x,y) coordinate for each attribute, as two correlation 
values are obtained for each attribute, one with the first preference dimension (x) and one with 
the second preference dimension (y). It can be seen that the attributes drying, harsh, tongue 
tingling, acid, mouthwatering, bitter, rindy/pithy and lemon are all strongly associated with 
Dimension 1, and the way the samples are separated along this dimension in terms of 
preference. Examining the direction of the preference vectors on Figure 7 indicates that these 
characteristics were negative for acceptability. 

The attributes sweet and tangerine were associated with preference in both Dimensions 1 
and 2, whilst strength of flavour, artificial sweet and thick were more associated with 
preference Dimension 2. These attributes relate to the preferences of consumers in this upper 
left quadrant of the plot in Figure 7. 

-1  0 1 

Dimension 35.5% 

Figure 9. Correlations between preference dimensions in Figure 7 and 
sensory attributes as rated by a trained sensory panel. 

7. CONCLUSIONS 

In conclusion, this chapter has highlighted some of the advantages of using both internal and 
external preference mapping. Emphasis has been on some of the pitfalls awaiting the unwary 
user. It is therefore worth re-iterating the importance of good experimental design, and of the 
need to seek advice at the early stages in the learning process, particularly when using external 
preference mapping. It is hoped that the examples and provision of the necessary data, 
allow potential users the chance to experience for themselves the process of running and 
interpreting data from a preference mapping study. 
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APPENDIX 1: SOFTWARE SUPPLIERS 

GENSTAT 

MINITAB 

PC-MDS 

RsI1 

SAS 

SENPAK 

SENSTAT 

STAT-GRAPHICS 

s-Plus 

SPSS 

SYSTAT 

NAG Ltd., Wilkinson House, Jordon Hill Road, Oxford, OX2 
8DR, Great Britain. [Tel: 01865-532331 
CLECOM Ltd., The Research Park, Vincent Drive, 
Edgbaston, Birmingham, B15 2SQ. [Tel: 0121-471-41991 
Minitab Inc., 3081 Enterprise Drive, State College, PA 
16801, USA. 
Scott M. Smith, Insitutute of Business Management, Brigham 
Young University, Provo, Utah, 84602. This has a series of 
MDS programs including PREFMAP. [Tel: 010-1-801-378- 
463 615 5 691 
BBN UK Ltd., Software Products Division, One Heathrow 
Boulevard, 286 Bath Road, West Drayton, Middlesex, UB7 
ODQ, Great Britain. [Tel: 0181-745-2800] 
BBN Software Products, Marketing Communications, 10 
Fawcett Street, Cambridge, MA 02138, USA. 
SAS Software Ltd., Wittington House, Henley Road, 
Medmenham, Marlow, SL7 2EB. [Tel: 01628-4869331 
SAS Institute Inc., Box 8000, SAS Circle, Cary, NC 275 11- 
8000, USA. 
Reading Scientific Services Ltd., Lord Zuckennan Research 
Centre, Whiteknights, P.O. Box 234, Reading RG6 2LA, 
Great Britain. [Tel: 01734-8685411 
Sensory Research Laboratories Ltd., 4 High Street, Nailsea, 
Bristol, BS19 1BW. [Tel: 01275-8101831 
Statistical Graphics Coroporation, 5 Indepence Way, 
Princeton Corp. Ctr., Princeton, NJ 08540, USA. 
Cocking and Drury Ltd., 180 Tottenham Court Road, 
London, W1P 9LE, Great Britain. [Tel: 0171-43694811 
Statistical Sciences UK Ltd, 52 Sandfield Road, Oxford, OX3 

[Tel: 01865-61000] 
SPSS UK Ltd, 9-11 Queens Road, Walton-on-Thames, 
Surrey, KT12 5LU. [Tel: 01932-5662621 SPSS Inc., 
North Michigan Avenue, Chicago, IL, 606 1 1, USA. 
SYSTAT UK, 47 Hartfield Crescent, West Wickham, Kent, 
BR4 9DW. [Tel: 0181-46200931 
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Sample 

A 
C 
D 
F 
H 

I 

L 

Dimension 1 Dimension 2 

0.3200 0.0162 
0.0908 0.0455 
-0.103 -0.0395 
0.0193 0.0866 
0.0801 -0.0704 
-0.0328 -0.0848 
0.1649 -0.0021 
-0.0875 0.0485 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

iPPENDM 3: ACCEPTABILITY DATA 

Z o n s A C D F H I  J L  
10 0 14 14 3 4 0 22 
2 9 1 1 1 1  8 4 3 1 5  

18 16 9 17 13 7 7 6 
20 5 26 10 8 21 1 17 
6 5 2 4  8 10 7 5 2 2  
3 6 6 6  6 3 3 1 7  
9 1 1  5 1 8  8 4 5 1 6  

17 24 7 11 25 23 16 22 
3 14 6 24 11 3 1 16 
6 1 0  0 1 9  0 0 0 1 0  
2 7 8 1 7  5 0 2 8 

23 25 3 21 17 7 12 23 
22 6 11 12 1 13 3 26 
13 0 5 4 0 1 0 1 3  
14 8 14 11 9 12 8 15 
24 2 3 7 0  1 0 2 0  
15 13 7 5 11 10 9 6 
15 18 12 24 22 5 5 21 
3 0 6 1 1  3 3 0 9  

23 24 11 8 27 16 16 16 
23 4 20 15 1 10 1 22 
23 18 2 10 4 2 24 10 
27 5 24 23 3 5 0 28 
21 5 6 7 15 10 1 24 
21 9 10 24 10 11 11 22 
8 8 11 23 19 6 2 27 
6 3 2 1  3 7 1 4  3 6 

18 4 19 5 21 19 5 10 
14 3 27 2 24 15 18 22 
3 5 23 7 19 14 4 20 

31 25 10 20 18 6 9 5 4 

Zons A C D F H I  J L 

32 10 1 0  6 1 0  0 2 2  

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

14 5 14 10 11 5 5 15 
7 3 3 4 8 1 0 3  8 
5 0 2 4 1 4  4 2 0 10 

12 13 9 12 10 11 8 15 
27 3 19 24 13 25 2 21 

8 0 24 17 7 16 3 22 
19 23 16 18 8 15 7 19 
7 2 4 2 0 9 0  6 

25 1 3  6 1 7  6 9 15 
6 23 21 14 12 17 6 18 

19 8 1 6  3 6 8 3 8 
16 10 13 17 3 10 4 13 
25 11 10 24 6 5 4 17 
19 22 11 7 11 3 8 18 
1 0  7 5 0 1 9  0 21 
2 3 2 2 7  4 2 1 2 8  

1 3 7 3 1 0 9 8  3 7 
8 1 6 1 3 2 4  0 1 8  

1 0 4 4 4 7 5 4 5  
8 0 1 1  8 1 0 1 6  0 5 

16 6 19 11 21 18 7 22 
25 7 7 15 10 6 1 16 
0 0 2 9  0 0 2 9  0 29 

26 9 19 5 13 0 3 10 
15 10 19 15 14 19 6 18 
9 5 1 9  9 1 0  7 6 14 
5 1 4  5 7 3 8 1 4  11 

19 14 5 12 12 9 19 22 
9 11 23 20 10 7 3 18 

20 6 23 8 16 17 3 17 
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ANALYSING COMPLEX SENSORY DATA BY NON-LINEAR 
ARTIFICIAL NEURAL NETWORKS 

b u t  Kvaal" and Jean A. McEwanb 

"MATFORSK, Norwegian Food Research Institute, Osloveien 1,1430 As, Norway 

bDepartment of Sensory Science, Campden Chorleywood Food Research Association, 
Chipping Campden, Gloucestershire, GL55 6LD, United Kingdom 

1. INTRODUCTION 

Prediction of one data set from another has been the goal of researchers in wide ranging 
disciplines, including medicine, economic forecasting, market research, physics, chemistry, 
weather forecasting, quality control, and so on. In the area of sensory science this is also an 
important goal. The methods used in modelling sensory attributes to physical and chemical 
measurements have mainly been traditional statistical. These methods are mostly based on a 
linear approach. Sensory data is often non linear in nature. By introducing non linear methods 
like neural network, it will be possible to model sensory data in a better way. Neural network 
modelling is not so much in use in sensory analysis. During the last years there has been a 
growing interest of using neural networking to describe food quality and preference. By 
combining statistical methods like PCR and neural nets we will have a new powerful approach 
of modelling sensory data. 

If sensory science is taken in its broadest sense to encompass chemical and instrumental 
measurements of food, as well as consumer response, then the scope of prediction in this 
discipline is clear. Predicting the sensory acceptability of new products within a particular 
product range from sensory information may be cheaper than conducting a full scale consumer 
survey. It may be cheaper and easier to predict physical measurement from key sensory 
parameters, or perhaps it may be easier to use instrumental and/or chemical measurements to 
predict the key sensory parameters which are known to be important to consumer preference. 

A variety of regression methods have been used for prediction purposes by those working m 
sensory science, and related fields. Most commonly these include principal component 
regression (PCR) and partial least squares regression (PLS Martens et al., 1989). Each of these 
methods have been shown to work and provide meaninghl results for certain types of data. 
PCR and PLS tend to be used for more serious model building exercises, as programs 
encompassing these tools allow the flexibility of exploring the best combination of X-variables 
to provide a good prediction of the Y-data. 

The problems associated with prediction in sensory science can be seen as two fold. The 
first is that data are often non-linear. Simple transformations such as logarithms may help, but 
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it may be that the non-linearities are more complex. A second problem is that while good 
models may be obtained where the variation between samples is large, this is seldom the case 
where variation between samples is very small. In such cases linear models may not provide 
robust models. It is therefore very important to use data that spans the space we want to 
investigate and that there is as little collinearity as possible between the variables. To achieve 
this we will use statistical pre-processing of the data. By using the principal components 
inputs to a neural network, it is possible to reduce the collinearity. The principal components 
are constructed in such way that their bases are orthogonal and that the main variation of the 
data is to be described in the first components. The noise is being effectively taken away in the 
higher components. 

Working with neural networks is a challenge of trial and error, and it is also very important 
to have a good knowledge of the history of the data being analysed. There is, however, a 
growing market for more "intelligent" programs to guide the user in the modelling process. 
Good programs for building neural networks seems to grow in strength and neural networking 
will be a good add-on to model building in sensory science. 

2. METHODOLOGY 

2.1 Neural Networks 

"Neural computing is the study of networks of adaptable nodes, which through a process of 
learning from task examples, store experimental knowledge and make it available for use." 
(Aleksander and Morton, 1990). 

Neural computing is not a topic immediately associated with sensory science, yet its 
potential, at least from a theoretical point of view, may have far reaching consequences. First it 
would be useful to have a look at what neural networks are about. Inspired by biological 
neuron activity and a mathematical analogy led a group of researchers to explore the possibility 
of programming a computer to adopt the functionality of the brain (Neuralware, 1991). 

Considering human processing and response (behaviour), it can readily be seen that the 
brain is constantly learning and updating infomation on all aspects of that person's 
experiences, whether these be active or passive. If a person places his hand a hot plate, then 
he learns that the result is pain. This response is recorded and his future behaviour with hot 
plates will be influenced by this learning. There are many such examples, and the reader 
interested in human processing and cognition should refer to one of the may textbooks this 
subject (e.g., Stillings et al, 1987). 

It is very important to mention that the neural network philosophy based biological 
modelling of the brain is more of an artefact. We will emphasise that the neural network is a 
method of a mathematical and statistical visualisation based some fundamental ideas. We 
will also in this chapter restrict ourselves to a network topology based function mapping or 
pattern recogtioning. Discussion will be restricted to the so calledfeedforwurd layer The 
information flow between the different neurones in a feed forward layer network always flow 
towards the output. In feed forward nets, each neurone has its own life getting input and 
sending the local calculated output to other neurones in the next layer. The training process 
will force the connection weights to be adjusted to the prediction errors. With 



these neurones processing simultaneously and independently, a computer is needed that has the 
ability to do parallel task processing. On a sequential computer like the PC, neurone activity 
needs to be simulated sequentially. Therefore, each neurone activity is calculated in the 
direction from input to output. 

In order to translate the functionality of the brain into a computer environment, it is first 
necessary to break the processing of information into a number of levels and components. The 
first level will be the input of which there may be several components. For example, 
individual is given some chocolate from which he perceives a number of sensory attributes. The 
chocolate and the individual form the stimulus, and for the sake of argument it will be assumed 
that the sensory attributes are the input variables, as these can be recorded in the physical 
world. 

At the output level, that is the observable response or behaviour, is one component called 
acceptability, which can also be measured. The hidden layers will process the information 
initiated at the input. The fundamental building block in a neural network is the neurone. The 
neuron receives input from the neurones in a earlier layer and adds the inputs after having 
weighted the inputs. The response of the neurone is a result of a non linear treatment in 
different regions in the inputspace. The neurones in the hidden layer may be identified 
@atwe detectors. Several hidden layers may exist, but in practice only one is sufficient. This is 
represented in Figure Ib. The next problem is how to join the levels of the network. In the 
human brain there is a complex network of connections between the different levels, and the 
complexity of their use will depend on the amount and type of information processing required. 

So far the concepts of input, output and hidden layers have been explained. The next 
concept is that of a neurone as the processing element. Each neurone has one or more input 
paths called dendrites. The input paths to processing elements in the hidden layers are 
combined in the form of a weighted summation (Figure la), sometimes referred to as the 
internal activation. A transfer function is then used to get to the output level. This transfer 
function is usually either linear, sigmoid or hyperbolic. The sigmoid transfer function is 
illustrated in Figure Ic. This transfer function behaves linear or non linear according to the 
range of input. The function acts as a threshold when low level input values are presented. It 
acts as a saturating function when high level input values are presented. In between it acts as a 
linear function. In this way we achieve a very flexible function mapping. 

The feed-forward neural network in Figure is defined by equation of the form 

where y is the output variable, the x’s are the input variables, e is a random error term, f is the 
transfer function and bi, wij, al and a2 are constants to be determined. The constants Wij are the 
weights that each input element must be multiplied by before their contributions are added in 
node i in the hidden layer. In this node, the sum over j of all elements wijxj is used as input to 
the transfer function f. This is in turn multiplied by a weight constants bi before the summation 
over i. The constants bi are the weights that each output from the hidden layer must be 
multiplied by before their contributions are added in the output neurone. At last the sum over i 
is used as input for the transfer function f. More than one hidden layer can be used resulting 
a similar, but more complicated, function. The constants al and a2 acts as bias signals to the 
network. They play the same role as the intercept constants in linear regression. 
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Figure 1. (a) A diagram illustrating the structure of a simple neural network. The fundamental 
building block in a neural network is the neurone. The connections between different 
connections in the neural network. The input paths to processing elements in the hidden layers 
are combined in the form of a weighted summation. (c) A sigmoid transfer function is then 
used to get to the output level. 

2.1.1 Learning and backpropagation 

The word backpropagation originates from the special learning rule invented by several 
workers (Hertz et a1,1991 page 115). The method is used to optimise a cost@nction (error 
function) of the squared differences in predicted output and wanted output. In short, 
information flows from the input towards output, and error propagates back from output to 
input. The error in the output layer is calculated as the difference of the actual and the desired 
output. This error is transferred to the neurones in a middle layer. The middle layer errors are 
calculated as the weighted sum of the error contributions from the nearest layer. The derivative 
of the transfer function with respect to the input is used to calculate the so called deltas. The 
deltas are used to update the weights. The derivative of the transfer function will be zero for 
very small summed inputs and for very large summed inputs. the derivative of the transfer 
hction stabilizates the learning process. 
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The backpropagation algorithm minimises the error along the steepest decent path. This 
may introduce problems with local minima. Finding the global minimum of the error in a model 
is equivalent of estimation of an optimal set of weights. Learning in a neural network is the 
process of estimating the set of weights that minimise the error. A trained neural network has 
the ability to predict responses from a new pattern. The training process may be performed 
using different learning rules. This chapter will focus on the backpropagation delta rule. Here 
the errors for each layer will propagate as a backward information in the network. The weights 
are updated based on these errors. 

The weights are calculated in an iteration process. The weights are given initially random 
values. By presenting a pattern to net network, the weights are updated by computing the layer 
errors and the weight changes. The learning process will stop when the network has reached a 
proper minimum error. The learning process is controlled by the learning constants lrate and 
momentum. The learning constants are chosen between 0 and 1 .  Small values slow down the 
learning. Typical values are 0.5. The lrate controls the update rate according to the new 
weights change. The momentum acts as a stabilisator being aware of the previous weight 
changes. In this way the momentum minimises oscillation of the weights. The learning 
estimating the weights is described for each layer by 

where W, are the new and updated weights, Wold are the weights before updating, dW, are 
the new deltaweights calculated by the backpropagaton learning rule and dWold are the old 
deltaweights. The error is calculated as the difference between the actual and calculated 
outputs. The updates of the weights may be done after each pattern presentation or after all the 
patterns have been presented to the network (epoch). 

There are many modifications of this rule. One approach is to v a q ~  the learning constants in 
a manner to speed the learning process. The method of self adapting constants is considered to 
be of great value to reduce the computing time during the learning phase. Each weight may 
also have its own learning rate and momentum term. This approach together with the 
adapting learning rates, speeds the learning and therefore it is not so important to choose 
proper starting values (delta-bar-delta rule). For a more extensive discussion of the 
mathematics of the backpropagation algorithm, the reader should see the Chapter 6 of Hertz 
(1991). 

2.1.2 Local and Global Minima of the Error 

One of the major disadvantages of the backpropagation learning rule is its ability to get stuck 
in local minima. The error is a function of all the weights in a multidimensional space. This may 
be visualised as the error surface in a three dimensional space as a landscape with hills and 
valleys. There is no proof that the global minimum of the error surface has been reached. 
Starting with different randomised weights leads to different minima if the error surface is 
rugged. It is important to consider this when analysing the final minimum. The learning is run 
repeatedly at different starting locations to show that the minimum is reasonable. 
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2.2 Normalisation 

Normalisation is a pre-processing of the data. Many techniques are being used. (Masters, 
1995) Here we will present one approach that has shown great effect on the kind of data we 
are working with. 

The data being presented to the network program has to be normalised to a level that does 
not drive the transfer functions into saturation. Saturation occurs when the change in output of 
the transfer function is almost zero due to high input values. Another aspect is also to insure 
that variables with large variations do not overrun variables with small variations. By using the 

and values of each input and output variable, the network program will 
normalise the inputs between 0 and 1. The output is normalised between 0.2 and 0.8. If the 
output transfer function is linear, then there is no need to normalise the output in this way. If 
several outputs are being used in the modelling, then it is iniportant to normalise according to 
the variation of the output variables. When the variables are presented to the prediction they 
are recalculated according to the min/max values. It is important to be aware of the 
normalisation, but it is mostly handled automatically by the neural network program being 
used. The used here are well designed to the sigmoid transfer function. If a hyperbolic 
transfer function is used one could normalise between -1 and 1 for the inputs and between -0.8 
and 0.8 for the outputs. 

2.2.1 Validation of the Performance 

Validation of the performance is very important when we want to monitor the generalisation 
ability of the network. By adding more neurones in the hidden layer, the network becomes a 
very flexible function mapper. This in rises the danger of overfitting. The network may be 
able to map the learning data perfect, but the predictions on test data may be poor. The 
validation is by this concept not only to find the iteration count in the learning process, but also 
a very important process when evaluating the number of nodes in the hidden layers. 

Validating the network performance by using a separate test set must be considered. The 
data is split into two sets, the learning set and the test set. The learning set is used to train the 
network and find the set of constants that the prediction error. The testing 
performed on the test set. It is important to design the learning and test set in such manner that 
they span most of the variable ranges. The test set is considered to be a set of unknown 
objects. Ideally a complete independent validation set should be used to test the networks 
modelling ability. The neural net is a very flexible modelling system. Therefore the test set used 
in optimisation of network topology may not be satisfactory in validating the generalisation 
ability of the network. our presentation we do not use this extra validation set. This is due to 
the lack of objects and our presentation serves as an illustration. Validation of the network 
performance is done using the root mean square error of prediction (RMSEP) (Martens et al, 
1989). 

Another method to be considered is the cross-validation. Cross-validation may be used to 
validate how single objects are modelled against all the other. By leaving one out to the test set 
and using all the other objects leaming set, we may get a measure of the average 
performance of the network. (Leave One Out). (Kvaal et al, 1995). It is also possible to divide 
the objects into test segments and learn segments in such way that the objects are being tested 
only once. This will construct network models based on learn and test sets the way that 
the objects in turn will be test objects. One major problem in using cross-validation on neural 
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nets is the danger of getting into local minima. There will be one new model at each segment 
validation. This in gives different local minima. 

This neural network cross validation is similar to PCA/PLS cross-validation but the number 
of iterations instead of number of factors will be considered. The RMSEP will be a mean for 
the models constructed. By using cross-validation the network topology may be optimised. 
One major problem with the cross-validation applied on neural nets is the huge amount of 
computing time needed. It is also a problem to interpret the different models being constructed. 
A main preference of using the cross-validation is the information of the average model 
performance. It is also a preference to get information of objects that is difficult to model. 

2.3 When and Why Neural Networks Should Be Used 

With neural network modelling still in its early stages of development and understanding, 
addressing the questions on when and why neural networks should be used poses some 
problems. However, through reading and discussion, a number of general guidelines should be 
considered. 

The cwhen)t question will be considered first. Neural computing can be used if the problem 
is to predict either responses recorded on a continuous scale, or to do classifications. A neural 
network may be considered as a function mapping device. It may also be considered to be a 
kind of pattern recognition memory which can generalise on unknown samples. The design of 
the transfer function is essential in the design of what kind of problems the user wants to solve. 
Most often the sigmoid transfer function gives useful results. Most software packages have the 
possibility to change to other transfer functions according to the data taken into account. This 
process on choosing the right network design is a trial and error process. However some 
guidelines might be considered. 

Different software packages integrate statistical tools and graphic visualisations. Unlike the 
PCRPLS where there is a lot of information in the score- and loading plots, it is not easy to 
interpret the weights of the neural network. There are methods, however, to optimise neurones 
and find variables that are essential and have an effect on the model. We have already 
mentioned the cross-validation. It is still an area of research to develop good diagnostic tool 
used on feed forward networks particularly. 

As neural networks may detect non linearities it is a natural choice to use this method. If the 
data is purely linear methods like and PLS is most likely to be used. The user is 
recommended to start with PCR/PLS to get a good knowledge of the data set with the tools 
that this methods have. This will indicate that there might exist non linear relations that a 
neural network might be able to solve. The flexible nature of neural nets forces the user to be 
aware of the overfitting problem. A neural net is supposed to model a relation. The 
problem is the generalisation on unknown Y's. It is very important to understand this fact, 
because we often see neural network models that is perfect in respect to the actual being 
used in the learning. 

The question on (why)) use neural networks must be answered on what precision of 
generalisations the user wants. Neural computing should be used as it provides a powerful 
alternative to traditional statistical methods for the prediction of responses. If only 

generalisations are wanted the neural network computes this more easy in a well defined 
function. If diagnostic tools are essential together with generalisations, a mixture of linear and 
non linear methods should be taken into account. 
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2.4 Relationship to Other Methods 

The artificial neural network models have strong relations to other statistical methods that 
have been frequently used in the past. An extensive discussion of the relations will be found in 
Naes et al, 1993. When a network is trained, the weights are estimated in such way that 
prediction error is as small as possible. The design of the feed forward network is closely 
related to multiple linear regression (MLR) when the linear transfer function is used and the 
hidden layer is removed. In this case the neural network may be solved directly and no training 
is necessary. If the data has a purely linear relationship, the MLR method may give good 
results. If, however, the data has non linear relationship, the MLR method will not give 
satisfactory predictions. Non-linear methods like neural networks should be taken into account 
to detect the non-linear relations in the data. The transfer hnction used in the neural net is 
designed to detect both linear and non-linear relations in the data. Reports in combining MLR 
and neural nets into one network topology claims success to guarantee optimal solutions on 
data sets with unknown relationships (Borgaard et al, 1992). 

2.4.1 Data Pre-processing and Compression 

Near Infrared Spectroscopy (NIR) can be used to directly determine water, most organic 
molecules and some inorganic molecules by using the absorbance spectra. The variables are 
described by the wavelength and the absorbance at this wavelength. The variables are strongly 
correlated and it is generally not possible to select single variables to describe properties. We 
have to use a multivariate approach to solve this problem. (Hildrum et al, 1992). NIR data may 
be composed of several hundred variables (wavelengths). This implies large networks and 
probably very heavy computing when the network is trained. Using methods for compressing 
the data to fewer number of variables gives networks with lesser number of nodes. Data 
compression using principal components scores has been reported to be successful in 
constructing NIR based networks (Borggard et al, 1992, Naes et all, 1993). Typically 250 
variables will be compressed to, say, 5 variables. This gives a network with 5 inputs instead of 
250. All the major information is described in the principal component scores. Training a 
network based on scores is very fast. There is often a need to optimise the number of inputs 
and the number of hidden nodes to give the best predictions. The number of inputs 
corresponds very often to the optimal factor number in PCRPLS. This is explained by the fact 
that the most dominant information is contained in the variables up to the optimal factor 
number. Higher order variables will contain noise with respect to the attribute we are 
considering. (Naes et al, 1992). It is therefore a good practice to run PCRlPLS before the 
network is constructed. Using pc-scores does not always guarantee a better performance. This 
will be demonstrated by example later. By using a proper number of pc-scores as inputs, the 
noise is removed more effectively from the data. This ensures that the noise is not a dominant 
factor in the modelling an overfitting problems may be reduced. 

2.5 Advantages, Disadvantages and Limitations 

Neural nets are normally easy to implement using a standard program with a user friendly 
interface. One problem is often that networks based on many input variables like NIR raw data 
need a long computing time. If time is no problem, then neural networks will be okay. 



However, if time is a problem, then data compression is recommended. The main advantage is 
that a possible solution to a non-linear data problem has good chance of being a success. One 
solution to a time problem is to run the network on a fast pc and with a floating point 
coprosessor. One disadvantage using neural nets is the limited set of interpretative tools. It is 
difficult to interpret the hidden layer weights. Smaller networks, however, are easier to 
interpret. When training a neural network the initial values of the weights may be randomised 
differently when the same network is run twice. This gives different results but in the same 
range. Running PCR/PLS with the same parameters set, will result in a reproduction of the 
earlier It is important to be aware of this. 

2.6 How to Apply the Method 

This section provides some guidance on the process in setting up an experiment for analysis 
neural computing. A list a key steps is given below and these steps will be further explained 
later. 

1. Prepare the data 

2. Optimise the learning rates or use self adapting learning rates. 

3. Train the network using raw data or PC scores. 

4. Optimise the network model using different number of nodes in the hidden layer. 

5 .  When PC scores are being used, optimise the number of inputs and number of nodes in 
the hidden layer. 

6. Validate the network by consider the RMSEP using a separate test set. (Do a cross- 
validation of the network if the number of samples are small) 

2.6.1 Data Preparation 

Data preparation is often a problem when the planning has been bad. Data presented to the 
neural network needs to be organised in a special way. The data set consists of rows and 
columns. The rows are the different objects, and the columns are the different variables. The 
variables are normalised by using a minimum/maximum table as described earlier. This will 
ensure that variables with great variability do not overrun variables with small variability. The 
variables describe the pattern that is presented to the network. Input- and output patterns are 
presented simultaneously to the network. The data set is divided into a training set and a test 
set. These sets are often separated in two different files, but they might be combined in one file. 
The training set is the first block of rows and the test set is the last block of rows. This data 
preparation is often a problem to users of scientific software and statistical packages. Many 
programs have import facilities to read spreadsheet files to easy handle the problem. 
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2.6.2 Setting Start values of the Network Parameters 

The neural network design needs initial values of learning rates and weights. These initial 
values are highly dependent on the kind of problem that is being solved. Algorithms exist to set 
the initial values according to the data set (Demuth H, et al, 1994). If a network has learning 
rates which are too strong, then the weights will give oscillating and unstable networks. Learn 
rates which are too low will give extremely long learning time. It is a good practice to start 
with a relatively strong learning and gradually reduce it as the learning goes on. Typically learn 
rates and momentum of 0.8 are used. We have so far considered a global learning rate. It is, 
however, possible to construct learning mechanisms so that each weight is assigned a leaming 
rate. These learning rates are adapted to reasonable values during leaming and the network will 
learn faster. 

Initialisation of the weights is often done by randomisation. The weights will typically be 
initialised to values in the range of M.1. This depends on the number of nodes in use. Some 
software packages used in neural computing have implemented algorithms to do an 
initialisation of the weights optimally, This will give a good starting point for further training of 
the network. 

2.6.3 Training the Network 

When the network parameters have been initialised the training is done by updating the weights 
according to a learning rule. In this work the backpropagation learning rule has been used. 
Commercial network programs often have different modifications of the standard 
backpropagation. The user need to obtain experience in their own application. By running the 
network models based on different learning rates, momentum and weights initialisations, 
number of hidden neurones, etc, the user gets experience of what to by trial and error. 

Randomisation gives a new starting point every time it is performed. If a network gets into 
a local there will be methods for getting out by giving the weights small random 
variations. It is therefore a common practice to run the network several times to see if different 
starting points gives different results. It is the randomisation algorithms that decides the 
different starting points when the network is trained. 

The training is stopped when the output error has reached a error on a test set. It 
is important to have a test set to avoid ovefitting of the network. The prediction error will 
reach a after a set of iterations (calculations). Hopefilly the network will generalise 
well on a separate data set. This validation is important the network proceeds to learn. This 
will be discussed more closely later. 

2.6.4 Inputs and Nodes 

Input variables in the data set are fed to the input nodes. These input nodes are connected to 
the hidden layer nodes which in are connected to the output nodes. How to decide which 
inputs to use, how many hidden neurones and how many outputs to use simultaneously is not 
an task. This is often done by trial and error. A golden rule is to keep the number of 
hidden nodes at a low number and vary this number to find an Using one or several 
outputs is also done by trial and error. This will be demonstrated by an example later in this 
chapter. 
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2.6.5 Validation of the Network 

It is important to validate the network on a data set that consist of input/output 
patterns. The validation is a process that follows the learning of the network. It is also a 
process that has to be done on the final result of the learning. Many newcomers to neural 
computing forget about the fact that testing on the learning set will in most cases give very 
small errors. The network's ability to generalise is, however, not guaranteed because of the 
possibility of overfitting. If learning is halted at selected points and tested against a separate 
data set not used in learning one will assure proper learning. A measure often used is the Root 
Mean Square Error of Prediction (RMSEP) (Naes et a1,1989). Here the prediction errors of 
the test set are compared with the wanted outputs of the network. A typical situation during 
the learning process is shown in Figure 2. Here the error on the learning set gets smaller and 
smaller as the learning goes on. The error on the test set, however, will reach a minimum at a 
special number of epochs E, (number of times all the patterns have been presented to the 
network). Beyond the E, we may have underfitting, and above E, we may have overfitting. 
The criteria of when to stop is usually set to E, but because the network often converges to 
a stable solution this point might not be so critical. Then we would select an epoch count 
where the network seems stable (no change in output error from one epoch to the next). 

If only a small number of samples are available special techniques for validation of the 
network should be used. A popular validation method is to select learning and test samples 
from a population of samples in such way that every sample will be located in a test sample 
only once ("Jack knifing" or cross-validation). Every time a new learn- and test set is made a 
network is trained. This can be useful to optimise a network topology. 

2.1 Software 

Several software packages are available. The software most familiar to the authors, is 
Neuralworks Professional IWLUS package (Neuralware Inc, USA). This package has the 
advantage of being a self-contained neural network constructing tool and it has a some 
diagnostic tools available. 

A lot of users, including the authors, do the implementation of special network applications 
by programming. A lot of textbooks are available telling how to implement a neural network. 
Some of the standard software tools have, however, the possibilities to be customised. A very 
popular toolkit is the Mathworks inc Neural Nework Toolbox for Matlab. 

Other popular packages on the market are listed in several sources, among them is 
Expert, February 1993 or updated in later issues. Lists of packages are also available on the 
Internet. Here there are several neural network packages available for free. 
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Figure 2. Over- and underfitting of Peaflavour. The learnset is being fitted better and better, 
but the network has an optimal generalisation ability about 100 epochs. 

3. DESIGN CONSIDERATIONS 

3.1 Choice and Selection of Samples 

Like all prediction modelling problems, it is desirable to have a large number of representative 
samples. The question of how large is often difficult to answer, as this depends on the selection 
of samples chosen. A well designed selection of samples can often be less in number and 
produce a robust and reliable model, than a large number of samples which do not adequately 
represent the range of available possibilities. 

In general, large in the context of neural networks means in the region of 100 samples for 
initial training, plus a suitable test set of at least 50 samples. 

Often the samples are obtained from a factorially designed experiment. In this way more 
information can be obtained to help understand the reasons underlying the final response. In 
other applications, a representative range of samples is chosen, such as in the case of predicting 
the authenticity status of fruit juices. 



3.2 Data Collection 

The most obvious sensory methodology to use is the method of profiling (quantitative 
descriptive analysis). This is because from the sensory scientist's point of view sensory 
attributes are being used to predict some other less easy or more expensive measurement or set 
of measurements. For example, consumer perception of quality, preference, etc. Within the 
context of this area, the possibility of wishing to predict sensory characteristics from chemical 
or other instrumental measures must also be considered. Thus, while profiling is the most 
common sensory approach, methods for measuring single sensory attributes, sensory quality or 
sensory difference may be used as the variable to be predicted. It is not intended to cover the 
collection of the sensory or instrumental data, as this is covered in other textbooks (e.g., 
Piggott, 1984). The key point about these methods is that they should not only describe the 
samples, but provide reliable information about the differences between samples. 

Instrumental methods include the use of NIRS, GC, Instron, HPLC etc, and collection of 
these data are covered in texts such as Kress-Rogers( 1993). 

4. ANALYSIS AND INTERPRETATION OF RESULTS: AN EXAMPLE 

4.1 Background 

The data used to illustrate the methodology of neural networks in relation to PCR and PLS 
was provided by MATFORSK (Kjarlstad et al., 1988; Nzs and Kowalski, 1989). The interested 
reader should refer to the former reference for a detailed explanation of the samples and data 
collection procedures. 

The reason for including analysis by PCR and PLS is to provide a basis for comparing the 
performance of neural networks to approaches of known performance ability. 

4.1.1 Samples 

Samples were 60 independent batches of green peas, collected from 27 different varieties at 
different degrees of maturity. All samples were freeze dried. 

4.1.2 Instrumental Analysis 

Near infra red spectroscopy (NIR) analysis was performed on the 60 samples of peas using an 
Infra Analyser 500 instrument. The data were subjected to a multiplicative scatter correction 
(MSC) prior to calibration to reduce the effect of different light scatter caused by NIR analysis. 
This MSC was based on the average spectrum of all 60 samples. A reduction procedure was 
used to obtain 116 variables from the original 700 wavelengths. The instrumental data forms 
the X-matrix of 60 samples by 116 variables. 

4.1.3 Sensory Analysis 

Sensory analysis was camed out using profiling (quantitative descriptive analysis). A trained 
panel of 12 assessors agreed on and defined 12 sensory attributes to describe a range of pea 
samples. In previous work (Naes and Kowalski, 1989) six of these attributes were selected 
being related to the quality of peas; pea flavour, sweetness, fruity, off-flavour, mealiness and 
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hardness. The data were averaged over assessors and replicates, thus providing a 60 samples 
by 6 variable Y-matrix. 

4.1.4 The Problem 

The problem presented is to predict the sensory attributes of peas from the NIR wavelengths. 
It is of great interest to see how the neural network may model sensory attributes and NIR 
data. In this way we may use this method to predict and do classifications on later samples 
using NIR and the network and not the assessors. To test the predictability it was decided to 
select 40 samples to build the calibration model, and use the other 20 as the test set for 
prediction. Clearly this number is less than that which is ideal, however, this example will serve 
its illustrative purpose. It is intended to focus pea flavour as an example for visualisation in 
this chapter. 

4.2 Neural Network Modelling Procedures 

4.2.1 Data Pre-treatment 

The data were submitted to the neural network program in two forms. The first comprised the 
raw data, whilst the second used the principal component scores from the NIR data. Using 
principal component scores has been shown to provide better neural network models than the 
raw data in some instances (Nm et al., 1993). Forty samples were used as the learning set, and 
20 as the test set. The MR data are normalised between 0 and 1, and the sensory attributes are 
normalised between 0.2 and 0.8. before being presented to the network. Each variable is 
normalised between minimum and values. Normalisation of variables may be critical 
and we recommend the reader to do an extensive investigation of this topic (Masters T, 1993 
page 262). 

4.2.2 Approach to Data Analysis 

The decision of when to use principal component scores as inputs to the network has to be 
made by trial and error. In this approach, the raw data were used first, then the principal 
components were used as input variables to the network. It should be possible to have a 
network model with at least the same degree of as PCR. The optimal number of scores 
from PCR were used as the number of score inputs to our network. It is also recommended to 
optimise the number of score inputs and the number of neurones in the hidden layer to find 
optimal network model. 

When the network model is constructed, some parameters have to be supplied; the learning 
constants. This will be the learning rate and the momentum term. The network will to find 
the optimal learning rates. In order to achieve optimal conditions prior to fitting the neural 
network model, a design could be constructed to compare the performance of different levels 
of learning rate and different momentum rates. As mentioned in Section 2, there is also the 
possibility to use self adapting learning rates. It is also possible to construct learning based 
self adapting learning constants. In this approach it is easier to train a network model and to 
minimise the prediction error because we do not need to pay a great attention to the starting 
values of the learning constants and the strength of learning process. 

When building the network model, the number of simultaneous outputs have to be taken 
into account. In our approach, a network to predict all the sensory attributes at the same time 
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will be sought. Generally it is more difficult to predict several attributes at the same time than 
predicting only one attribute. This has to do with a more complex error surface, as some 
attributes may not model well by NIR. When training the network, test at interval iteration 
counts and stop when the RMSEP is at an optimum to prevent over-fitting. 

4.2.3 Optimising Learning Rate and Momentum 

The starting point is a network model based on the raw data and all six sensory attributes. The 
network is run repeatedly by varying the learning rate and momentum systematically from 0.2 
to 0.8 in steps of 0.2, and the networks are all trained to a fixed iteration counts. The step 
length were found by experience. By using a smaller step we did not get more information. The 
number of hidden neurones is held at a fixed value of 1. Performance is always measured 
RMSEP (validation of test set). Previous experimentation has shown that optimisation of 
learning rates is mostly independent of the number of neurones in hidden layer. (Masters, 1994, 

Page 7) 
From Figure 3 it was concluded that learning rate of 0.8 and momentum of 0.8 would 

converge fast until a point where the weights are unstable. By gradually reducing the learning 
rates from this point (3000 iterations) it is possible to get stable weights during the rest of the 
learning process. We see from equation (2) that when the weight change is large we may get 
an oscillatory change in the weights by using relative large learning constants. We may prevent 
this effect by gradually reducing the learning constants. We also observe that the momentum 
term takes care of the old weight change. The momentum term is designed to prevent 
oscillatory behaviour of the learning. By reducing the momentum it is a danger to reduce 
original purpose of the momentum. Experience have shown that reducing both the learn rate 
and the momentum by 50 percent has a good effect. Figure 4 shows the corresponding learning 
rate and momentum when using four principal components. When the principal component 
scores are used as input we deal with the variant part of the data. It can be seen that the 
convergence is more smooth due to the fact that the noise has been removed from the data. 
Choosing a learning rate of 0.8 and momentum of 0.8 gives a fast convergence. This 
corresponds to the values found for raw data. 

4.2.4 Optimising the Number of Inputs and the Number of Hidden Neurones 

When raw data are being used, the need to optimise the of number of inputs often results in 
finding the inputs that do not contribute to the network response. It is possible to exclude 
some inputs in most network programs. In this example the inputs in raw data are not varied. 
Using PC scores this number has to be optimised. We will also mention the principle of 
pruning the network. In this technique nodes are deactivated or simply destroyed. The 
resulting network is more optimal and based on lesser neurones. Hopefully it performs as good 
as the original network topology. 
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Figure 3. Learning rates optimisation (raw data). The learning rate and momentum are varied 
systematically from 0.2 to 0.8 in steps of 0.2, and the networks are all trained to a fixed 
iteration counts. Oscillatory behaviour occurs when the learning is to strong. 

Varying the number of hidden nodes between 1 and 30, it can be seen from Figure 5 that 
there is an optimum at about 10 hidden neurones when using raw data. This indicates that 
the hidden layer acts as a feature detector and that more than one hidden neurone is needed to 
give optimal results. The least flexible model is obtained by using only one hidden neurone. 
adding more hidden neurones this will result in a network that is able to detect more features. 
It is also experienced that overfitting is not so critical with one hidden as it is more hidden 
neurones. This is very important to have in mind when optimising the hidden layer. It therefore 
important to start the optimisation from 1 and not in the opposite direction. @timising the 
number of inputs by varying the number of PC-scores as inputs and using one hidden neurone 
in the hidden layer will give a similar result. It can be seen from Figure 6 that there is an 
optimum at four inputs corresponding to the optimal number of factors from PCA. 
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Figure 4. Learning rates optimisation when using four principal components. When the 
principal component scores are used as input we deal with the main variant part of the data. It 
can be seen that the convergence is more smooth due to the fact that the noise has been 
removed from the data. Choosing a learning rate of 0.8 and momentum of 0.8 gives a fast 
convergence. 

Undertaking a variation of the number of nodes in input layer and the hidden layer at the 
same time gives an indication that four components are optimal. From Figure 7, it can be seen 
that as many as 8 neurones in the hidden layer gives optimal models. By examining this 
contourplot we may conclude that there exist an optimal area starting at 4 inputs and 5 hidden 
neurones. By choosing this topology the 4 inputs corresponds to 4 optimal principal 
components and the 5 hidden neurones acts as feature detectors for the attributes. We also 
observe from the contour plot in Figure 7 that there is an area starting at 4 inputs and only one 
hidden neurone that gives a relative small error. This network topology may be usable because 
the number of iterations is not so critical when it comes to the danger of overfitting. Later we 
will see that this is corresponding to the PCR model optimum. 
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Figure 5 .  Hidden nodes optimisation (raw data). By varying the number of hidden nodes 
between 1 and 30, the optimum at about 10 hidden neurones indicates that the hidden layer 
acts as a "feature detector" and that more than one hidden neurone is needed to give optimal 
results. 

4.2.5 Training Optimal Topology to Find the Global Error Minimum 

By the process we have described we have achieved a network topology that should be optimal 
for the data being used. It is now possible to the network with this topology more 
extensive and elaborate. Varying the starting point by different weights initialisations may be 
effective. Proper initialisation may speed the learning process and may also enable better 
performance. New and popular methods is to use methods like genetic algorithms and 
simulated annealing (Masters, 1993). During learning it is also important to stop the learning 
when one suspects a local minimum, do some small perturbation of the network weights 
Gogging) and continue the learning hopefully outside the local minimum. 

stated earlier, it is often a good practice to gradually reduce the learning constants from 
a point where the weights are unstable. The practice is to reduce the constants at iteration 
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Figure 6. Input nodes optimisation (PC-scores) using one hidden neurone. By varying the 
number of inputs between 1 and 10, the optimum at about 4 neurones indicates verifies that 4 
principal components are optimal. 

intervals by a factor of 0.5-0.75. This ensures a more stable weights change. 
The results from modelling with test set validation are listed in Table 1. It can be seen that 

the raw data model gives predictions at the same level or some better than the PC-score model. 
This shows that it is not always the case that better models are obtained with PC-scores. 
However, it is a positive point that only four inputs are needed using PC-scores. This will use a 
lot less computing power to calculate predictions. It is also important to observe that using 
PC-scores improves interpretation of the results. By doing an analysis by PCR and then 
building a neural network based on the scores, it is possible to have a better understanding of 
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RMSEP WITH VARYING INPUTMIDDEN NODES (PGSCORES) 

Figure Inputhidden nodes optimisation. (PC-scores). Variation of the number of nodes in 

input layer and the hidden layer gives the resulting contour plot when the RMSEP is used 
response variable. The optimal area is indicated as a shaded region. 

the neural network model. The first principal components may contain information about 
selective sensory attributes. It is therefore possible to relate this information to the role of the 
input nodes. 

Predicting all sensory attributes in the same network model will give overall optimal 
minimum of the error function. The overall RMSEP by modelling all attributes at the same time 
is at the level of PLS shown in a later section. If for some reason some attributes are difficult 
to model, then models should be made with single predictions of attributes. 



123 

Pea Flavour 

The results in Table are obtained by test set validation. It should be noted that a test set 
validation is more overoptimistic than doing cross-validation. It is also a fact that the neural 
network model is more flexible than the PCR model. In many cases it seems that the test set 
validation thus may be more serious to the network when interpreting the results. It should be 
a good practice to use an independent second test set to do the validation. 

0.24 0.3 1 0.25 0.42 (4) 0.40 (3) 

Table 1 
Root Mean Square Error of Prediction (RMSEP) for each attribute, where each attribute is 
predicted using the same model based on raw data and PC-scores and for PCWLS. The 
number of factors used in PCR and PLS modelling is given. 

Sweetness 
Fruityness 
Off-flavour 
Mealiness 
Hardness 

Model 
RMSEP 

ATTRIBUTE 

0.35 0.32 0.33 0.38 (4) 0.37 (3) 
0.24 0.26 0.25 0.28 (4) 0.29 (2) 
0.30 0.37 0.27 0.62 (7) 0.43 (7) 

0.37 0.44 0.39 0.44 (4) 0.42 (2) 

0.24 0.28 0.22 0.39 (4) 0.37 (3) 

0.30 0.34 0.29 0.43 0.38 

4.2.6 Cross validation 

Standard cross-validation method used in PLS/PCR may be used to validate how well the 
models describe the data. The main goal of our cross-validation using neural nets is to monitor 
the modelability of single objects. The data are divided into several test segments. The training 
set and test set are constructed in such way that the objects will be tested only once. Models 
are constructed and run until convergence. By using the scores of the combined calibration set 
and the validation set this would lead to a very overoptimistic model. When PC scores are 
being used, it is necessary to compute scores for the training set and test set for each segment 
model. In this way we project the validation set on the principal axes estimated for the 
calibration set. The network is trained to a fixed number of iterations. We choose the number 

iterations where the network seems stable. The Absolute Error (RMSEP of one single 
object) is then calculated as a mean for all the segments at a fixed number iterations. Cross- 
validation in neural network gives the ability to compare modelling performance to the 
PLSPCA cross validation method. In addition, this method can be used to monitor single 
objects and possibly detect outliers. Neural network cross-validation may also be used to 
optimise the network topology. 

In neural network cross-validation single output models are used. This gives simpler 
interpretations. Some attributes are more difficult to model simultaneously in multi output 
models. 
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Figure 8. Residuals of each object predicted in cross-validation 20 segments. The barplot of 
the Absolute Error as a function of the objects indicates the single attribute's ability to be 
modelled. 

In the first instance, the pea flavour attribute was used as the response variable, and a 20 
segment cross-validation This gave 3 objects in each test set and 57 objects for learning. 
The objects were selected randomly. The barplot in Figure 8 of the Absolute Error indicated 
the single attribute's ability to be modelled. If we choose objects with Absolute Error better 
than 0.5 we will see objects 3 and 36 to be difficult to model. If these objects fall into the 
outlier category is somewhat difficult to decide. 

4.2.7 Results of Prediction 

The results the predictions from the raw and the PC scores gives an indication that the 
raw data may be used directly. The reason for the conclusion can be seen in examining Figure 3 
and Figure 4, which shows the RMSEP as a function of the number iterations in the leaming 
process, for both input types. Table 1 clearly shows this in the model RMSEP for the two input 
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types. It must be pointed out that the results shown are for single runs and not an average of 
several runs. The random starting point of the weights gives trained models about in the same 
order of magnitude. 

The network has the ability to predict all the sensory attributes simultaneously. Models that 
predict only one sensory attribute at a time will, however, give better RMSEP in some 
instances and worse in other. This is demonstrated in Table 1, which shows the model RMSEP 
for the prediction of all attributes simultaneously compared to the prediction of each attribute 
separately. The overall RMSEP is, however, the same for separate and simultan prediction 
using raw data. Using all attributes simultaneously will give a more complex error surface and 
a more difficult path to find the global minimum. One will find, however, that correlated 
attributes might stabilise a model giving better performance for some attributes than using a 
single attribute model. The predictions of peaflavour using neural net gives a correlation 
coefficient of 0.97. This indicates a good prediction ability using NIR raw data and a neural 
network. 

5. PCR AND PLS MODELS 

5.1 Approach 

Principal component regression is a tool which is used to predict one set of variables (Y- 
matrix) from another set of variables (X-matrix). The procedure is based on undertaking 
principal component analysis on the X-matrix, and then using the principal components as the 
predictor variables. 

Partial least squares regression (PLS) (Wold, 1982) is an extension of the PCR approach, 
and was developed by Wold as a method for econometric modelling. It was later applied in 
chemometrics (Kowalski et al., 1982; Wold et al., 1983; 1984) where it has gained acceptance. 
Users of PLS argue that this approach is more robust than MLR or PCR, and, hence, 
calibration and prediction models are more stable. For a more elaborate and tutorial discussion 
of the PCR and PLS modelling methods we refer to Esbensen et a1 (1 995). 

As mentioned above, in a typical (<relating data)) problem there are two blocks of data, the 
Y matrix and the X matrix. In PCR a model is formulated to measure the airmen) relation 
between Y and X, with the of explaining/predicting Y. PLS also measures the ((innen) 
relationship, but also uses (touter)) relations (Geladi and Kowalski, 1986) of X and Y 
separately. By using the additional information on the (touter)) relations, it is possible to rotate 
components to lie closer to the regression line, hence providing a better explanation of Y. 

In this example, as previously mentioned, there were 116 variables wavelengths) in the 
Y-matrix, and 6 sensory variables in the X-matrix. The idea is to determine if the NIR data can 
be used to predict the 6 sensory variables, one at a time, and together. 

In order to do this, and test the model, the same plan as for the neural network problem was 
used. Out of the 60 samples, 40 were submitted to the calibration matrix, whilst the remaining 
20 formed the test set. 
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5.1.1 Performance of Models 

The model was where the MR spectra were scaled to unit variance by subtracting the 
sample mean and dividing by the standard deviation for each sample. The sensory data were 
not standardised, as it is usual to retain the original variance structure of these data. 

running the PCR analysis where all six sensory attributes were predicted at the same 
time, four factors were found to provide an optimal solution to calibration model. Table 2 
shows the percentage variance explained in the validation X and Y data, after calibration. The 
PLS model indicated that 3 factors were optimal, and the percentage variance explained in the 
X and Y data are provided in Table 2. It is clear that the PLS model is performing slightly 
better than PCR in terms of percentage variance explained. 

64.8 66.1 63.9 86.6 
77.2 14.2 82.9 89.6 
93.9 89.6 93.3 89.7 
96.5 89.3 95.4 89.5 
97.8 90.0 97.1 90.0 

Table 2. Percentage variance explained in the X (NIR) and Y (sensory) validation data using 
the PCR and PLS calibration models. 

FACTOR XDATA IllA TA XDATA YZlA TA 
NUMBER 

1 I 42.2 50.7 36.6 63.7 

PCR was undertaken, using the NIR data to predict each sensory attribute, one by one. 
Figure 9 shows the residual variances of some important sensory attributes. Here we see that 4 
factors are needed to explain the variables. We have used the Pea Flavour as an example our 
neural net part. The Pea Flavour modelled using PCR and PLS is shown in Figure 10. Here it is 
verified what is shown in Table 2. The PLS performs slightly better than the PCR. The number 
of factors needed to model the Pea Flavour is 3 using PLS and 4 using PCR. The RMSEP, 
however, is shown to be nearly equal for both modelling systems as shown in Table 1. The 
PLS is slightly better. Off-flavour is more difficult to model using PCR, but 7 factors are 
needed to explain this attribute using PCR and PLS. The idea behind PLS is to take the 
information in Y into account when the modelling is done. This approach leads to the result of 
lesser factors in the model than using PCR. 

This verifies the results from optimisation of number of inputs to a neural network based on 
pc-scores. (Figure 6) In the model there was a need of the 4 first pc-scores. Just 
many as the optimal number of factors needed in the PCR model. 

We have used a test set as validation of the modelling ability. Using full cross-validation to 
validate the model gives a good indication how the validation method performs. Figure 10 
shows the full cross-validation compared to the test set validation in the case of Pea Flavour. 

Each object is tested against all the other objects in 111 cross validation. The resulting 
RMSEP is calculated as a mean PLS modelling ability of Pea Flavour. We see that the cross- 
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Figure 9. The residual variances of some important sensory attributes using PCR. We observe 
that 4 factors are needed to explain most variables. Off flavour needs 7 factors. 

validation is more conservative when compared to the test set validation. The test set 
validation in general gives more optimistic results and it is a good practice to compare this to a 
full cross-validation. If there are very many objects available it is possible to use segmented 
cross-validation as we have explained earlier in this chapter. 

5.1.2 Diagnostic tools. The biplot 

The principal components estimated in PCR may be plotted in several ways. A good 
interpretation tool is the In this plot the relations between the original variables and the 
different objects may be resembled. The loading plot shows the relations between the variables. 
Figure 11 shows that the group consisting of hardness, off-flavour and mealiness are strongly 
correlated. The other group consisting of pea flavour, sweetness and h t iness  are correlated. 
The two groups are negatively correlated. The score plot shows objects that are positioned 
relative to these two groups. These objects are described by the relative positioning to the two 
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Figure 10. The Pea Flavour modelled using PCR and PLS test set validation and PLS full 
cross-validaton. The PLS performs slightly better than the PCR. The number of factors needed 
to model the Pea Flavour is 3 using PLS and 4 using PCR. The cross-validation is more 
conservative when compared to the test set validation. 

groups. This indicates that for instance object 12 has a lot of hardness, off-flavour and 
mealiness while object 52 has very little of these attributes. Object 52 has very much of pea 
flavour, sweetness and fruitiness. 

There is no correspondence to the biplot when it comes to the feed forward neural net. It is, 
however, other network topologies that is capable of mapping variables. Just like the principal 
component variable reduction, the self organising map will reduce multi dimensionality to for 
example two. The self organising map is designed to act as a feature map like the biplot. 
(Kohonen, 1988). 
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Figure 1 1. The PCR loading plot shows the relations between the variables (NIR variables are 
shown as numbers, sensory attributes are shown by name). The group consisting of hardness, 
off-flavour and mealiness are strongly correlated. The other group consisting of pea flavour, 
sweetness and fruitiness are correlated. The two groups are negatively correlated. The PCR 
score plot shows objects that are positioned relative to these two groups. 
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Figure 12. Neural net and predictions plotted against the residual values of pea flavour. 
This illustrates how well the neural net models a non-linear relationship when compared to the 
linear PCR model. 
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PREDICTIONS OF PEA FLAVOUR (RAWDATA) 

Original peaflavour 

PCR-PREDICTIONS OF PEA FLAVOUR 

Figure 13. Original pea flavour plotted against the predicted values using PCR and neural net 
modelling. The correlation coefficient for the PCR model is 0.90 and 0.97 for the neural net 
model. 
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5.2 Comparison of Performance 

Predictions from PCR compared with the neural network shows a non linear relationship in the 
data. We select the prediction of pea flavour as an example. Figure 12 shows the residual 
plotted against the predicted pea flavour for PCR. Here we see a non-linear curvature. Figure 
12 also shows the same for neural net raw data model. The network tends to fit the model in 
such way that the residuals are nearly the same in the whole range of pea flavour. This shows 
the neural network is good in predicting non linear data relations. 

Figure 13 shows the PCR and neural net predictions versus wanted values of pea flavour 
from raw data. The correlation coefficient estimated using the PCR is 0.90. Compared with the 
correlation coefficient of 0.97 for neural network predictions this shows that the neural 
networks is able to detect non-linearities in the data. Comparing the results in Table 1 we see 
that the neural network also performs better in prediction of all attributes. The non linearity in 
the data and the fact that neural networks performs much better than PCIUPLS indicates that 
neural network is a reasonable choice when it comes to predictions of sensory attributes. 

6. CONCLUSIONS 

Analysing complex sensory data is not a straight forward process. We have shown that using 
different tools gives corresponding results but with different degrees of accuracy. It is very 
important for the user of neural nets and PCIUPLS to understand the limitations and pitfalls. In 
any case it is a very good practice to have a good knowledge of the origin of the data. Neural 
network should be used when we need a good prediction ability. This is due to the fact that 
neural network is able to detect non linear relations in the data. When the network is trained it 
is a simple calculation task to use it as a good predictor. The good diagnostic tools of 
PCIUPLS are, however, very important when we want to monitor the relations between the 
different attributes and variables. The feed forward network is specially designed to do a 
pattern recognition and has its strength in classification. I lacks, however, the diagnostic tools 
like score plots and loading plots of PCIUPLS. A combination of neural network modelling 
and PCRPLS diagnoses gives a more deep understanding of the complexity of sensory data. 
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RELATIONSHIPS BETWEEN SENSORY MEASUREMENTS 
FEATURES EXTRACTED FROM IMAGES 

b u t  Kvaal, Pernille Baardseth, Ulf G Indahl and Tomas Isaksson 

MATFORSK, Osloveien 1,1430 As, Norway 

1. INTRODUCTION 

Analysing complex sensory data is normally done by using traditional statistical tools like 
Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The approach of 
using imaging techniques and relating images of the products to sensory attributes is, however, 
not so common. Traditional image analysis of measuring distances, counting objects and 
looking for hidden phenomena in the images are used on a single variable basis. The 
multivariate approach by processing several images of the product simultaneously is more 
elaborate but has some great advantages. This work is a preliminary study of the possibility of 
relating sensory quality parameters of white bread baguettes to features extracted from image 
analysis. The success of this work will make it possible to use image analysis to optimise 
bakmg processes and select components important to achieve the optimal and best quality 
products. It is also an important aspect to point at the use of Singular Value Decomposition 
(SVD) and image analysis in on-line process control. 

Sensory analysis and texture analysis of bread are traditionally performed by sensory 
analysis using trained assessors. The analysis is done by statistical methods like ANOVA 
and/or multivariate techniques. (Maxim0 Singh, 1984, OMahony, 1986). The problem 
of using the sensory techniques in process optimisation and on-line techniques is the time it 
takes to get the information. New technology for video cameras connected to computers have 
given alternative solutions to this problem. This requires fast and precise methods for 
extracting relevant information from the video images. Traditional image analysis of counting 
objects, measuring area, performing statistical analysis and combining information in several 
ways makes it possible to extract information to be handled in further statistical processing 
(Haralick, 1979). These traditional image processing techniques are, however, rigorous and 
needs a lot of statistical computations and human interaction (Pratt, 1991). There is an 
increased interest of using data transformations in pre-processing the images before they are 
handled by a modelling system. Special focus is put on the Fast Fourier Transform (FFT), the 
Wavelet transform and the Gabor transform (Masters, 1994). These transforms result 
complex numbers, and the modelling needs to take this into account. The SVD is a real number 
transform and is therefore simpler to handle. Statistical pattern recognition and parameter 
estimation is handled very extensively by van der Heijden (1994). Success in using 
extracting features of different textures have been reported (Ashjari, 1982). Here the singular 
values of the image are used to identify different textures and the identification is done 
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calculating the Bhattacharyya distance of the different texture sets. Looking at image 
feature extraction in a multivariate way, however, gives new possibilities to extract relevant 
information in a straightforward way. The singular values estimated from the algorithm 
identifies a (SV-spectrum) for a particular texture sample. Different 
images of samples give rise to different SV-spectra. These SV-spectra are used as the X matrix 
in a multivariate modelling. The SV-spectra may then be modelled together with relevant Y- 
information like sensory attributes, process variables and image features like object area. 
Multivariate modelling like PCR and PLS are good diagnostic tools to monitor the hidden 
relations between X and Y. 

We will in the first part of the paper focus on the theoretical aspects of feature extraction of 
images using the SVD. We will also focus on the multivariate techniques to be used in 
classification and prediction of sensory attributes, especially the porosity of white bread 
baguettes and the area of the bread slices. The paper will also focus on the prediction of a 
physical measurement of the area of the bread slices. It is of special interest to see how well the 
area may be modelled at the same time as sensory attributes. If area is of interest as a quality 
parameter, this reduces the need of doing a physical measurement in addition to sensory 
measurements. 

2. FEATURE EXTRACTION 

2.1 Singular Value Decomposition 

For a technical description of the algorithm we refer to Press (1992). our approach the 
image is considered as a matrix of pixels ordered in rows and columns. We normally consider 
grey scale images. Colour images can be considered as separate greyscale images in red, green 
and blue components. 

Consider the image A of size (m x The theorem states that there exists unitary 
orthogonal matrices and V of size (m r) and (n x r), respectively, and a diagonal matrix S 
of size (r x r) (where r is the rank of A )  such that 

A = U * S * V ’  (1) 

The matrix S={si,} is considered to be a generalised spectrum of the image (Hansen 
Nilsen, 1983). The matrix S can be written as 

where the diagonal elements are the singular values of A. The singular values are sorted in 
descending order. By applying the on the image A this is the equivalent of estimating the 
principal components of A using the rows as objects and the columns as variables. The 
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estimation of singular values may also be done on the A' or A*A' matrix as well. We will only 
consider the first approach (Martens and Nas, 1989). 

The SV-spectrum h of an image sample is composed of the diagonal elements of S 
estimated from an image: 

h =diag(S) (3) 

A reconstruction, A,,of an image with p factors is given by 

A, Up S, V, (4) 

and we have 

where Ep is a residual image at p factors. 
The image A is fully reconstructed by applying the multiplication of (1). By using 

less principal component factors p<n we have a situation of image compression. This is a lossy 
compression, but the main structure is described by the first p factors of the image represented 
by A,. The number of factors to use is a matter of choice and depends on the property of the 
images. 

Figure 1 illustrates the use of SVD as an image compression technique of the image using 
different factors. The illustration clearly shows that with p=l the information is given 
the rectangle convolving the object. With p=5 the shape is being described and with p=50 the 
poring structure is contained in the restored image. The residuals show remaining structure 
where p=l and 5 but only noise when p=50. In this work we will show that the use of less 
factors than n will enhance the model predictions and classification abilities. Thus the SV- 
spectrum of an image sample taken into account is described by 

hp diag(S,) (p<=n) (6)  

The SV-spectra estimated using p factors from a set of k images are described by the matrix 
A,, consisting of the hp as the rows of the 

The singular values of the image are assumed to contain information of the image texture. 

The matrix A,, is used in classification and prediction using multivariate statistics and neural 
networks. In supervised classification and predictions the A,, is used as the X matrix and 
sensory and/or process variables correspond to the Y matrix. In unsupervised classifications the 
A,, is used as the data to be classified. 



Figure 1. Example of the image compression and restoration using the routine. 
The corresponding residual images are also shown. 

2.2 Modelling techniques 

Multivariate methods have been used in spectroscopy and sensory analysis with great success. 
Principal Component Regression and Partial Least Squares (PLS) are evaluated as good 
tools in classification and predictions of chemical, physical and sensory attributes. (Kjslstad et 
al, 1990). The variables of the SV-spectra are like the variables of MR spectra strongly 
correlated with respect to several variables. It may be possible to use univariate regression to 
make proper modelling of the data, but the diagnostic strength of PCR and PLS makes these 
modelling systems very interesting. The use of multivariate techniques enables both linear and 
non-linear modelling using all, or a range, of variables. The choice of using PCRPLS is done 
because of their good diagnostic tools. The modelling is linear. If there is a non linear 
relationship the data we could have chosen neural networks. There is a good 
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correspondence between these methods et al, 1993). For a good description of 
PCAPCR we refer to Martens and NES (1989). Analysing complex sensory data by artificial 
neural networks is described by chapter 3 of this book. 

Supervised methods like PCR and PLS both have similar estimation procedures. The 
principal components used in PCA are solely based on maximising the variance of the X 

matrix. PLSR, however, uses the variation in Y also in the estimation of the components. In 
this way the modelling ability of PLS highly depends on the Y (Martens and Nes, 1989). 
Predicting unknown samples by calibration of known samples is done in a similar way by the 
two methods. A regression equation is obtained by regressing Y on the components. It is of 
interest to verify if it is an advantage to guide the modelling by taking the information in Y into 
account in the calibration process. 

We will use a standard cross-validation technique to verify the modelling ability of the 
images in relation to each other. Cross-validation is performed by using all but one object 
calibration set and the rest one single object as test set in a calibration. This process is done 
until all single elements have been used once as a test set. The cross-validation technique used 
validates single objects against all the other objects and the result is an average prediction 
ability of the model. We will also use test set validation. By using this technique we will test 
the modelling ability on a data set that has not been used in the calibration (Esbensen et al, 
1995). 

3. EXPERIMENTAL 

3.1 Design 

We will use texture images of baguette slices baked by different process parameters and 
ingredients as an example. A fractional factorial design was constructed for each type. 
The parameters varied at two levels. This resulted in a 2"' design for each of the 4 flour types 
giving 32 samples. The parameters taken into account were Flour type, Carlic Concentration, 
Mixing Time, Vitamin C Concentration and Baking Process. Special attention was given to the 
Baking Process and the Flour Type variables. The experiment was also performed to see the 
effect of garlic on the baking. The design is shown in Table 1. 



Table 1. The design of the White Bread baguettes. The and 1 symbolise low and high level. 

SampleNo FIourType GarlicCons Mixing Vitamin C Baking Process 
time 

Methods 

We will consider the images being recorded from wheat bread baguettes based on process data 
from different types of and different baking processes. The different types of had 
different protein content (percent) and water absorbtion abilities. The resulting bread slices 
were analysed by sensory analysis. The main attribute considered here were porosity,>nnness, 
glossiness, ji-esh smell, ji-esh taste, saltiness, crust breakage, juiciness and sponginess. The 



area of the baguette slices were calculated from images of size 512 by 5 12 pixels by counting 
the number of pixels that the bread sample covered. These areas were used as reference values 
in the later modelling. The modelling was performed on images resized to 128 by 128 pixels. 
By resizing the images, we loose some precision of the area estimate. 

The images were produced using a modified standard video camera (SilvaCam). This 
camera has shown to be very well suited in texture recordings. The video signal was captured 
using a Microway 9000 frame grabber. The SilvaCam is a standard RGB camera (the output is 
given as red, green and blue signals) with the B channel modified to detect light in the near 
infrared region. The camera is constructed in such a way that the standard red/green/blue 
W G B )  channels are modified to NIR, red and green (C, WG). These absorb light in the 
(760-900 (580-680 nm) and (490-580 nm) regions respectively. The CNIR W G  
components may be used separately or combined in a grey scale image with the channels 
averaged as (C, +R+G)/3. It has been shown in parallel work, however, that Y/C (the ouptut 
is given as luminance and chrominance signals) video cameras and high quality RGB cameras 
give equally good results. 

Different experimentation with illumination conditions lead us to use 45 degree illumination 
from both sides. The objects were illuminated using four tungsten lamps, two from each side. 
This light covers the visible and near infrared spectral region. The production of the baguettes 
was done on two separate days. The illumination conditions were kept constant as possible 
during the recording. Calculations of the images showed, however, a little in light 
conditions giving a small luminance difference. There is also detected a slight gradient in the 
area distribution of light. This has not shown to be critical, but the results may possibly be 
better if the lighting conditions were controlled better. In an on-line situation this lighting 
problem may, however, be existent and robust feature extraction systems are important. 

The bread samples were produced by cutting the bread in two parts. One half was analysed 
by the sensory panel and the other half was recorded by the camera. Thus the surfaces to be 
analysed were complementary and approximately the same. Twelve trained assessors were 
used in the sensory analysis. Special attention was given to the sensory attribute of porosity. 
Other attributes like fzrmness, glossiness, fresh smell, fresh taste, saltiness, crust breakage, 
juiciness and sponginess were also measured. Bread samples from three selected assessors 
were used to produce 3 32 96 images of bread slices. They were given samples from 
different productions based on the same design. We used bread samples presented to assessor 
2, 11 and 12 in the image recording. These were chosen by random. We did not use the actual 
values for each acessor, but the mean values of the sensory attributes were used to produce the 
reference data (Y-data). The reference data for the area of baguette slices was obtained 
counting pixels. This was performed using standard image analysis. 

The sequence of samples corresponds to the SampleNo in Table 1. The calibration set is 
composed of the 64 images of baguettes presented to assessor 2 and 11 and the test set is 
composed of the 32 images of baguettes presented to assessor 12 as shown in Figure 2. In the 
full cross-validation the calibration set is construcet by selecting 95 images from the total of 96 
images of baguettes. The test set is the single left image. The process of cross-validation is 
performed by calibrating iteratively until1 all objects have been tested once. 
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Figure 2. The images presented to assessor 12 and with the design given in Table Variations 
in size, form and porosity are shown. The rowwise sequence of images corresponds to 
SampleNo in Table 1 .  These images are used in predictions. 

The images were analysed as two main classes of images. The first class was composed of 
images of the whole bread object with the background filtered out (OBJ). The second class 
was composed of cut outs of center parts of breads (CUT). The idea was that the CUT 
contained texture information about porosity and the OBJ images in addition contained 
information on the size and shape of the baguettes. The CUT images were 128 by 128 cut outs 
of 512 by 512 images. The OBJ images were rescaled from 512 by 512 to 128 by 128. In this 
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way the computing time was reduced significantly. The main poring structure was still 
remaining in the OBJ images. The reason for dividing the images in these two groups was that 
we wanted to find out whether the information of process, flour type and porosity was given 
by the poring structure alone or whether additional size and shape information was needed. 

3.3 Computations 

Standard image analysis was performed using the ImagePro software package 
(MediaCybemetics, 1995). The area of the baguettes were estimated by masking the objects 
from the background and counting the number of pixels contained in the mask. Calculations of 
the singular value spectra (SV-spectra) were done using the MATLAB software package (The 
Mathworks, 1995). The PCR and PLS were performed using the Unscrambler software 
package (Cam0 AS, 1995). 

We mainly considered the prediction of baking process, the different flour types, the area of 
the baguettes and sensory porosity. The area of the slices of the baguettes are easily computed 
by counting pixels. This process is time consuming. We wanted to show that this procedure 
could be included in the modelling and predicted at a reasonable level at the same time as other 
important sensory attributes. The area of the slice is an important quality parameter. We also 
considered other sensory attributes like texture, smell and taste to see how these correlated to 
the main variables mentioned. The modelling was done using PCR and PLS. The validation 
was performed using full cross-validation and test set validation (see part 2.2, Modelling 
Techniques). Using test set validation we used the above described 32 samples as prediction 
set and 64 samples as calibration set. Both the OBJ, CUT and a combination of OBJ and CUT 
images were considered. 

Data pre-processing like sharpening was used to enhance the modelling ability of the SV- 
spectra. We wanted as small modifications as possible of the original images. A calculation of 
the greyscale representation was performed before the SV-spectra were calculated. In the CUT 
representation the NIR component was used. The images were mean centered to equal 
lighthness due to some in the lightning conditions. All channels (Cm/G/B) were used to 
produce greyscale images of the OBJ representations. The pixels were not mean centred in this 
representation. The process of doing the data pre-processing was performed by a rather 
pragmatic optimisation. By trying out different pre-processing techniques and then doing the 
modelling we found the method which seemed to be satisfactory. It is therefore possible to 
enhance the modelling ability by looking at this topic in later work. 

The porosity scale ranged from 1 to 8 with 1 as the densest value. Porosity was predicted 
using PCR and PLS. The area of the baguettes could range from 0 to 26*104 pixels but in 
practice they waried between 5 1 O4 and 12* 1 O4 pixels. Other sensory attributes ranged from 1 
to 9 on a nominal scale. The sensory attributes were all calculated using the mean value taken 
over all 11 assessors. The 1 values of the baking process variable were coded in a binary 
way (0 and 1). The flour types were coded by 4 binary variables. 

The calculations were first performed in two steps to estimate the number of variables 
(factors) to use from the SV-specta. The SV-spectra were estimated using equation (6). The 
number of factors used to restore an image depends on what degree of loss is accepted. How 
well the attributes are modelled depends on the number of factors to be used constructing 
the SV-spectra. Equation (5) gives an estimate of the residual image with p factors. This is 
visualised in Figure 1 where the residual images based on some selected factors are shown. 
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Figure 3. Samples of some estimated SV-specra (Vsingular value) from the images presented 
in Figure 2 are shown in Figure 3. Only the first 50 factors are shown. 

Samples of some estimated SV-spectra (I/singular value) from the images presented in 
Figure 2 are shown in Figure 3. Only the first 50 factors are shown. This indicates that the 
SVD produces distinct SV-spectra to be modelled. 

By looking at the image structures visually in Figure 1, we observe that the porosity 
structure is gradually becoming visible as more factors are being used. The residuals, however, 
gradually become more noisy as more factors are being used. Other structures may be 
visible in the residual image. We suggest the following method to estimate a reasonable 
number of factors, p, (variables) to be used from the SV-spectra. 

Sensory porosity was used as the Y-variable. Cross-validation was performed by varying 
the number of SV-spectra variables. We used 10 segment cross-validation and random object 
selection because this is faster than a full cross-validation and the results will be at the same 
level. The of the cross-validated models were compared to find the optimal model 
which in gives the optimal number of variables to use from the SV-spectra. Figure 4 
shows the of cross-validation for different number of variables. We observe that there 
is optimum at about 90 variables. This optimum is reached after 2 components. Using more 
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Figure 4. RMSEP for porosity (cross-validated) for different OBJ PCR models. The number of 
singular values (SV-variables) used in the different models are shown. 

than 95 variables introduced only noise. This situation is the same for all other Y variables to 
be modelled and we conclude that it is reasonable to select the SV-variables 1 through 90. 

This illustrates two different noise levels: The Image Level Noise (ILN) is the residual 
found by the feature extractor (SVD). The ILN should not be input to the PCIUPLS modelling 
of the sensory attributes and process variables. The Multivariate model Level Noise (MLN) is 
the residual of the modelling of attributes and process variables using PCWLS. By reducing 
the ILN in front of the modelling, it is possible to enhance the model performance. 

4. RESULTS AND DISCUSSION 

4.1 Feature extraction and multivariate modelling 

The results from PCR and PLS are of the same order and we will focus the discussion on the 
PCR case only. We will focus on the determination of sensory porosity, the area of bread 
slices, the baking process and the flour types. Garlic concentration, vitamin C concentration 
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Figure 5. Explained variances of the CUT and OBJ models (test set). The flour types are 
symboled by Fl-F4. 
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and mixing time had no influence on the texture. These variables are not included in this work. 
We will also discuss other relevant sensory attributes. 

The suggested number of factors to be used is given by looking at the residual Y-variances. 
The choice of using the test set residual Y-variances as measures for choosing the number of 
factors, is justified by the fact that test set validation is in correspondence with the full cross- 
validation. The explained variances of PCR performed on CUT and OBJ data sets are shown in 
Figure 5. We see that the porosity was modelled equally well using either CUT or OBJ images 
and the area was modelled best using the OBJ images. The explained variance of the porosity 
was 60 percent at 3 factors using the OBJ images and 57 percent at 4 factors using the CUT 
images. The explained variance of area was 25 percent at one factor using CUT images and 90 
percent at 3 factors using OBJ images. 

The prediction ability of area and porosity are given as root mean square error of 
predictions (RMSEP) (Martens and Nzes, 1989) and the correlation, R, (estimated by The 
Unscrambler) in Table 2. The RMSEP gives a direct measure in the attributes units of the 
model error while the Correlation factor measures the linear relationship between the 
measurements and the predicted values. The results show that due to the correlation of area 
and porosity it is possible to predict the area at a correlation of 0.5 from images that do not 
contain the shape of the bread (CUT). The corresponding RMSEP is 1.42*104 pixels. The 
area, however, is predicted with a correlation of 0.95 when the information of size and shape is 
represented in the images (OBJ). The corresponding RMSEP is 0.52*104 pixels. The 
prediction of porosity has correlations at the same level (0.76 and 0.78) by using the CUT and 
OBJ image classes respectively. The corresponding RMSEPs are 0.80 and 0.77. This verifies 
the results given by the explained variances. 

Table 2. RMSEP and correlation coefficient for different models and image classes. CV means 
111 cross-validation. 

IMAGE VALIDATION AREA l@ POROSITY 

CUT 

OBJ 

CUT/OBJ 

-eP corr corr 
test set 1.42( 1) 0.50 0.80(4) 0.76 
cv 1.30(2) 0.84(4) 
test set 0.52(3) 0.95 0.77(3) 0.78 
cv 0.5 l(3) 0.84(2) 
test set 0.5 2( 5) 0.95 0.67(3) 0.84 
cv 0.60(5) 0.72(4) 

The modelling ability of the process variables @aking process (PRl and PR2) and flour 
types (Fl, F2, F3 and F4)) are shown in Figure 5 for the PCR models of OBJ and CUT images. 
The explained variances of the two baking processes are equal as a result of the binary design 
of PR1 and PR2 and symboled by PROCESS in Figure 5. The explained variances of flour 
types 2 and 3 are 60 and 37 percent at 4 factors using the OBJ images. The modelling of these 
variables is more complicated using the CUT images. The explained variances of flour type 3 is 



percent at 4 factors. For flour type 2 it is 20 percent at 5 factors. The modelling ability of 
flour type 2 and 3 is reversed for the two image classes. 

The explained variances of flour types 1 and are 20 and 18 percent at 4 factors using the 
OBJ images. The modelling ability of these variables is not so clear using the CUT images. A 
full cross-validation shows that very little of these variables is explained using the CUT images. 
This indicates that the OBJ images are better in describing the flour types. It is probably the 
size and shape that mainly contributes to this information. 

The variables describing the baking processes 1 and 2 are best described using the OBJ 
images. About 30 percent of the variance is explained at 2 factors with the CUT images. 
much as 55 percent of the baking process variance is explained at 4 factors with the OBJ 
images. It seems that the modelling of the baking process needs information of the size and 
shapes. This is also true for the modelling of types. 

4.2 Classifications of process variables and sensory quality 

The relations between the variables are shown using the PCR loading plot of both X and Y 
loadings of OBJ class images in Figure 6. The relations between the different bread slice 
samples are shown using the score plot. The first component PC1 accounts for 85% of the 
variation. The second and third components account for 4 of the variation. The 
corresponding loadings and scores for the CUT class images show a similar structure and we 
will restrict the discussion to the OBJ class images. 

There is a tendency that the porosity correlates strongly to the area of the baguettes. This is 
expected and this also shows that it is possible to predict the area of the baguettes using the 
CUT class images that do not visually contain size and shape information. The baking process 
2 is negatively correlated to the area and porosity along PCl We see fiom the score plot that 
the baking process 1 is correlated to area and porosity. The flour types are separated in the 
loading plot. We see that the two flour types 2 and 3 are negatively correlated to each other 
along PC1. Along the PCl this shows that flour type 2 gives smaller and dense baguettes and 
flour type 3 gives bigger and less dense baguettes. The flour types 1 and 4 do not seem to vary 
along the PCl but are separated from flour types 2 and 3 along PC2. This is also the case when 
PCl is plotted versus PC3. 

The score plot in Figure 6 is used to classify the objects baked with different baking 
processes. Objects baked with process 1 are mainly located in the right half plane separated 
the PC2 axis while objects baked with process 2 are mainly located in the left half plane. There 
is a zone in between consisting of both types of objects. The loading plot in Figure 6 shows 
that the right half plane describes locations of objects with high degree of porosity and big area 
slices. This shows that bread baked with process 1 resulted in relative bread slices with 
relatively large area and with a high degree of porosity. The bread baked with process 2, 
however, resulted in a low degree of porosity and they were small. This plot gives a good 
visual map of the resulting quality of the bread samples due to the two different baking 
processes. Objects labelled with the different flour types are also shown in the same score plot. 
We see a distinct separation and classification of flour types 2 and 3 in the PCl direction. 
Samples with flourtype 3 are mainly located in the area where big samples with high degree of 
porosity are located. Samples with flour type 2 are mainly located in the area where small 

samples with low degree of porosity are located. If large area slices and high degree of 
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Figure 6.  The loading and score plot of the OBJ PCR model. The loading plot shows the X and 
Y variables. The datapoints are shown by a character symbol: Flour type (1-4) and baking 
process (1-2). The variables of the SV-spectra are labelled oxx. The SV-variables are shown 
oxx in the loading plot. 



porosity are preferred, we conclude that flour type 3 bread gives high quality products despite 
of baking process while flour type 2 gives low quality products despite of baking process. 

The flour types 1 and 4 are separated from flour types 2 and 3 in the PC2 direction. The 
area and porosity of breads based on flour types 1 and 4 seem to be highly dependent on the 
baking process. Again, if large area slices of bread with high degree of porosity is preferred 
then we must use baking process 1 when dealing with flour types 1 and 4. 

4.3 Combined image models 

The above analysis has shown that the porosity is modelled better by using CUT class images. 
The area is best modelled by the OBJ class images. This may be due to the fact that the OBJ 
images have lost some of the information on porosity when they were reduced in size. This 
was, however, necessary because of the huge amount of computing power needed on large 
images. Ideally one should use images with good resolution for both porosity and shape. This 
leads to arranging CUT and OBJ class SV-spectra in one matrix resulting in one model. 

The plots of the explained variances shown in Figure 7 indicate the advantage of this 
approach. The area and porosity are best described using 5 and 3 factors respectively. The 
porosity is now explained better. The flour types 2 and 3 are described using 5 and 6 factors 
respectively. The flour types 1 and 4 are best described using 5 factors. We observe that flour 

Figure 7. The explained Y variances of the combined CUT/OBJ PCR models. The baking 
processes PRI and PR2 are symbolised by and flour types (Fl-F4). 
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Figure 8. Predictions of area and sensory porosity of the baguettes using the combined 
CUT/OBJ PCR model. The datapoints are shown by a two character symbol: Flour type (1-4) 
and process (1 -2). 



types 1 and 4 now are being explained better than models based on either CUT or OBJ class 
images. The baking process variables are quite well described using 6 factors. 

The porosity is predicted better than by the former CUT class model. The correlation is 
0.84 and the RMSEP is 0.67. The area is predicted with the same degree of precision 
before. This is shown in Table 2. Figure 8 shows the predictions of area using the test set and a 
5 factor model is also shown. The prediction ability of the porosity using test set and a 3 factor 
model. The labelling of the objects show the flour types (1,2,3,4) as first digit and the baking 
process (1,2) as the last digit. We observe a classification of bread samples corresponding to 
the score plot shown in figure 6. This indicates that bread slices produced with baking process 
1 are big area bread samples and have a high degree of porosity. Flour type 2 samples are 
grouped at the lower left and flour type 3 samples at the upper right (Figure 8). 

The computing power needed for this suggested combined modelling is considered not to 
be critical. By splitting the image information in a texture part (CUT) and a size and shape part 
(OBJ), it is possible to model more features simultaneously. Most of the computing power is 
for the SVD. Modifications of the SVD routine to compute only the p first factors may be 
needed. It is then possible to implement larger images that contain more information. 

4.4 Sensory analysis based on images 

Strong correlations between several sensory attributes make it possible to model several 
interesting sensory attributes simultaneously. 

The loading (X and Y variables) and score plots of the combined PCR model show 
interesting features of the OBJKUT model (Figure 9). The first principal component (PC1) 
accounts for 62% ov the variation while the second and third principal component (PC2 and 
PC3) account for 22% and 5 respectively. The score plot in Figure 9 shows that the OBJ 
images have information describing the area and porosity. It also shows the correlations 
between area, porosity, flour type 3 and baking process 1. The CUT images, however, are 
mainly located in the negative PC1 direction. The first CUT variables (cO1-c10) are located 
along the positive PCl direction and correlates positively to the baking process 1 and flour 
type 3. They also vary together with the flour type 2 and baking process 2 in the negative PC1 
direction. None of the OBJ variables are located along the negative PCl direction. This shows 
that the combination of CUT and OBJ images may enhance the modelling ability. 

The process and area variables vary along the PCl direction. It is not possible to separate 
the flour types 1 and 4 in the process-area direction. They are slightly separated in the PC2 
direction. Flour types 2 and 3 are separated in the PCl direction and also separated by the PC2 
direction. This leads to a suggestion that the first principal component is a baking 
procesdardporosity dimension. This direction is spanned by the two different image classes. 
By adding other sensory variables to the Y matrix we obtain a very informative map of the 
relations between process variables and the sensory attributes. By the strong correlations of 
these attributes, it is possible to model taste and smell using and image analysis. In 
addition to the area and porosity we see that the sensory attributes of juiciness and sponginess 
are described along the PC1 direction. This is reasonable when compared to the large area 
samples with high degree of porosity. Firmness is described along the PC2 direction. We 
observe that firmness is mainly described by the CUT class images. Attributes like fresh taste 
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Figure 9. Loading and score plot of the combined CUT/OBJ PCR model. The datapoints in the 
score plot are shown by a two character symbol: Flour Type (1-4) and process (1-2). In the 
loading plot the characters and cxx symbolise OBJ and CUT SV-spectra variables 
respectively. 
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glossiness and fresh smell is not described in the PClPC2 plane. They are described better in 
the PClPC3 plane. 

It is interesting to see how the sensory attributes like firmness, glossiness, fresh smell, fresh 
taste, saltiness, juiciness and sponginess are all being modelled by the SV-spectra (Figure 10). 
We observe that even though it is quite impossible to detect taste and smell by imaging, the 
strong correlation of smell and taste variables to the texture makes this possible. It is also 
possitle that other textural properties are related and described by the SV-spectra of the 
images. The explained variances of some selected attributes are shown in Figure 10. It may be 
possible that other feature detectors may be better to detect these attributes. 

The loading plot also indicates that the flour type 2 gives products much firmness. The flour 
type 3 may result in products that are crisp and have high degree of crust breakage. (Crust 
breakage describes the breakage of the outer crust due to the cooling). 

This shows an interesting feature in this modelling. By combining sensory analysis and video 
images, it is possible to build models to be used in on line control of the baking process. In a 
product optimisation this should be a valuable tool and give a good indication of how to vary 
the process to obtain an optimum. The proposed method also has a potential of suggesting 
what ingredients and baking process one should choose to achieve an optimal product. The 
PCR combined loading and score plot, the biplot, is a very usefil tool in this process. 

%Y-va?a[lc.e .em 

I ;-r 
1 . . : . / . .  

Figure 10. Plot of the explained Y variances of some sensory attributes by applying additional 
sensory attributes using the combined CUT/OBJ PCR model. 
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Figure 11. Plot of predicted area versus predicted sensory porosity using the combined 
CUT/OBJ PCR model. The datapoints are shown by a two character symbol: Flour type (1-4) 
and process -2). 

4.5 Alternative predictions of porosity 

The prediction ability of porosity and the area of the baguette samples show a strong relation. 
Figure 11 shows predictions of porosity versus the predicted area using the combined 
CUT/OBJ model. This shows that it is possible to estimate the porosity from the predictions of 
the area and vice versa with a correlation of 0.90. Univariate modelling may be used in 
situations where precision is not so important and we want quick estimates of the relationship. 
It is also interesting to observe the close relation of the first factor of the SV-spectra to the 
area and the porosity as well. It is possible to get a quick estimate of the relationship by using 
univariate regression and the first component of the SV-spectras. The main preference is that 
multivariate modelling of the images using the also simultaneously models process 
variables and results in classifications that are very informative. 
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5. CONCLUSIONS 

The algorithm has proved to be a possible feature extractor and a fundamental building 
block in correlating raw images of bread to sensory attributes, especially the porosity. Strong 
correlation between the sensory attributes give possibilities to model other sensory attributes 
like smell and taste. It suggests a way to estimate the area of the final products based on the 
process variables. The models show a strong correlation between porosity and the size of 
bread samples. It is also possible to observe the effect the baking process has to the different 
ingredients of flour types. This leads to the conclusion that this method is possible to use in on- 
line processes control. 

Large images limit the practical use of the By combining images based on porosity 
and texture information with images based on both texture and shapes, it may possible to 
enhance the modelling ability. It is also possible to classifl baking process. This information 
can possibly be used to optimise the products. 

The SVD algorithm shows its strength in using raw images with no filtering applied. 
Standard image analysis often needs a pragmatic way of finding the optimal filter to extract the 
wanted features of the images. The technique uses SV-spectra and models these with 
multivariate PCR or PLS. Used in on-line processes this is important because of the speed of 
computations. It may be possible to optimise the modelling by further investigation of the 
Image Level Noise and multivariate modelling techniques. We will also point at the possiblity 
of combining several feature extractors to be used in the modelling. 
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1. INTRODUCTION 

Multidimensional scaling (MDS) is a technique employed to display certain kinds of data spatially 
using a map. The basic concept of MDS is demonstrated in an example of Kruskal and Wish 
(1991). Consider the intercity flying distances among ten U.S. cities shown in Table 1. This table is 
easily constructed from a map of the United States by using a ruler and measuring the distances 
between the cities. Suppose, however, that one is presented with the intercity distances and asked 
to construct a map based on these distances. This is a more difficult problem, one that MDS is 
designed to solve. By applying MDS to the intercity distances, one obtains the map shown in Figure 
1, which almost perfectly recreates the spatial arrangement of cities from which the distances were 
derived.' 

Of course, in real applications of MDS the situation is more complicated. Unlike the intercity 
distances, real data contain measurement error, so the researcher must make a number of decisions 
concerning how best to model the data. Although the analysis of the intercity distances is an 
artificial example, it demonstrates the core idea underlying MDS: based on the distances among a 
set of objects, MDS constructs a picture in which these objects appear points on a map. 

MDS is applicable to a variety of data not just actual distances. In fact, MDS can be used to 
analyze any data that represent how similar (or dissimilarobjects or events are to one another. For 
ths reason, MDS has found application in a broad range of disciplines, including physics, 
psychology, physiology, hguistics, political science, and market research (Romney, Shepard, and 
Nerlove, 1972; Green and Wind, 1973; Schiffinan, Reynolds and Young, 1981; Golledge and 
Raper, 1982; Rosenberg, 1982; Young and Hamer, 1987). In each case, MDS is used to construct 
a spatial representation of the similarity among objects, with the purpose of discovering 
relationships or patterns. Usually two or three spatial dimensions are sufficient to reveal the 
lmportant relationships among the objects. 

Section 11 contains a list of the widely used computer programs for MDS. This analysis was conducted using 
the ALSCAL procedure in SPSS. 
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Table 1 
Intercity Qmg distances 

City 1 2 3 4 5 6 7  8 9 10 

1. Atlanta 587 1212 701 1936 604 748 2139 2182 543 
2. Chicago 587 920 940 1745 1188 713 1858 1737 597 
3. Denver 1212 920 879 831 1726 1631 949 1021 1494 
4. Houston 701 940 879 1374 966 1420 1654 1891 1220 
5.LosAngeles 1936 1745 831 1374 2339 2451 347 959 2300 
6. Miami 604 1188 1726 966 2339 1092 2594 2734 923 
7. New York 748 713 1631 1420 2451 1092 2571 2408 205 
8.SanFrancisco 2139 1858 949 1654 347 2594 2571 678 2442 
9. Seattle 2182 1737 1021 1891 959 2734 2408 678 2329 
10. Washington,DC 543 597 1494 1220 2300 923 205 2442 2329 

0 Seattle 
NewYork 

0 

Chicago Washington. 

San Francisco 
0 

Denver 

Atlanta 

Los Angeles 
0 0 

Houston Miam 

Figure 1. Location of ten U.S. cities determined by an MDS analysis of intercity Qmg distances. 

The development of MDS was largely motivated by a desire for a psychophysical scaling method 
that did not presuppose a knowledge of the attniutes on which differ (Torgerson, 1958; 
Young and Hamer, 1987). MDS is often applied in situations where the researcher may not 
understand what specific attriiutes distinguish objects kom one another. The advantage of MDS 
that it requires input only a measure of overall dissimilarity (or similarity) among objects. 
Difference measures on specific attniutes are not required. 

For example, a researcher may be interested in how categorize beverages such soft 
drinks, juices, alcoholic beverages, teas, and coffees. By asking to rate the perceived 
smlanty among beverages and analyzing the ratings using MDS, the researcher to 
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learn, based on the location of the products in the MDS map, which dimensions are important to 
consumers in differentiating among beverages. An example of the application of MDS to the study 
of the beverage market can be found in Hofkan and Young (1983). 

2. MDS AND SENSORY ANALYSIS 

MacFie and Thomson (1 984) list several reasons for applying MDS in sensory analysis. The specific 
attniutes that constitute a complex sensation, such meat flavor, may not be known. When the 
attriiutes are MDS be used to differentiate among the products because panelists 
need rate dissimilarity. Even when the attriiutes are extensive training might be 
required for a sensory panel to measure the attniutes reliably. Training is not only time consuming, 
but may be undesirable i fa  naive response is desired, fiom a consumer panel. MDS, which 
requires the respondent to judge only overall (dis)sirnilarity, provides a potential alternative in these 
situations. 

Another reason for using MDS in sensory analysis is that often only two or three dimensions are 
needed to depict the important differences among samples. Simply by inspecting the position of the 
samples in the space and by noting which samples cluster together, the investigator is sometimes 
able to reach conclusions about the most salient differences and the possible basis for these 
differences. Other data analysis methods, such principal component analysis, require the 
experimenter to collect data on multiple attniutes, many of which are redundant or irrelevant to the 
panelists for distinguishing among the samples. 

Finally, certain MDS procedures (Caroll and Chang, 1970) allow for the modeling of individual 
differences. Individual differences are of great interest, both in descriptive analysis and consumer 
research. In descriptive analysis, there is often a concern with differences (or inconsistencies) in 
sensory perception among individual panelists. The existence of such differences may suggest the 
need for better panel training. In consumer research, the question fiequently asked is whether there 
are segments of consumers that differ in their preference for certain foods. For example, some 
consumers may prefer a mild tomato sauce, others a spicy one. Later in this chapter, examples 
be presented of how MDS be used to study individual differences among sensory panelists. The 
multidimensional scaling of preference data is the subject of Chapter 3. of this book. 

example from sensory analysis will help clari@ some of the concepts discussed fix. 

Heymann (1994a) evaluated the aroma differences among four types of vanilla (Pure Bourbon, 
Bourbon Processed Bali, Indonesian, and Indonesian Nonmky), each processed to 3-fold, 
10-fold, and 20-fold strength. Vanillin was also included among the samples (at 3-fold strength). 
Untrained panelists sorted the samples into groups based on their odor similarity, and the results 
were used to compute similarity scores among the samples (see Section 3 for details on the sorting 
procedure). A two-dimensional MDS analysis of the similarity scores (using SAS PROC MDS) fit 
the data well and yielded the map in Figure 2. The results shows that along the horizontal dimension 
panelists clearly differentiated the Indonesian samples fkom the Bourbon and Bourbon Processed 
Bali samples (and vanillin). No differentiation is apparent between the Indonesian and Indonesian 
Nonsmoky samples, or between the Bourbon and Bourbon Processed Bali samples. Within the 
Indonesian and Bourbon groups, samples of similar fold tend to group together. The vertical 
dimension may be related to concentration, although the ordering of fold levels along that dimension 
is not the for the Indonesian and Bourbon type samples. 
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Figure 2. MDS representation of the aroma of vanillin and twelve vanilla samples. B=Bourbon, 
BPB=Bourbon Processed Bali, Hndonesian, MS=Indonesian nonsmoky. Numbers represent 
strength of concentration (3-, lo-, or 20-fold). 

The example illustrates several points about MDS. First, using untrained panelists and a snndanty 
judgment task, it was possible to uncover meaningfbl groupings among the samples. Secondly, 
these groupings were readdy apparent from a two-dimensional map and several conclusions were 
possible based on the configuration of samples in the plot. However, there is a limitation on one's 
abhty to further interpret these results. Without an a priori knowledge of some of the aroma 
characteristics of these samples, it is not possible to conclude from this study what particular 
attniutes were the basis for the groupings. In the absence of such knowledge, additional 
information, such attniute ratings or physical measurements (for example, gas chromatographic 
readings), is often needed for interpreting MDS results Section 8). 

MDS widely used in the study of chemoreception and in the sensory evaluation of 
foods and beverages. Schifhan used MDS extensively to map odor and taste quality using simple 
chemicals and tastants (SchifEnan, Reynolds, and Young, 1981; Schiffiman, 1984). The perception 
of alternative sweeteners was studied in model systems by Schifhm, Redly, and Clark (1979) and 
Thomson, Tunaley, and van Trijp (1987), and in simple beverages by Schiibim, Crofton, and 
Beeker (1 985). The saltiness of gum solutions was studied using MDS by Rosett, et al. (1 995) and 
Rosett and Klein (1995). 

Lawless applied MDS to study odor perception using aroma chemicals and fragrances (Lawless, 
1989, Lawless and Glatter, 1990, and Lawless, 1993); to understand mouthfeel attributes (Bertino 
and Lawless, 1993), and to investigate cheese perception (Lawless, Cheng, and Knoops, 1995). 
Heymann used MDS in studies of vanilla flavor (Heymann, 1994a), apple essences (GiIbert and 
Heymann, 1995), and creaminess perception (Skiiba and Heymann, 1994% 1994b; Gwartney and 
Heymann, 1995). 

MDS also used to study the different qualities of food sounds (Vickers and Wasserman, 
1979, Vickers, 1983), the storage-related changes in orange juice aroma (Velez, et 1993), and 
the sensory characteristics of spreads (Tuorila, et al. 1989, Matuszewska, et al. 1991/2), rye breads 
(Hellemam, et 1987), yogurt (Poste and Patterson, 1988), meat (Francombe and MacFie, 
1985), and soft drinks (Chauhan and Harper, 1986). 
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3. DATA COLLECTION PROCEDURES 

A number of methods exist for collecting data for an MDS study. Regardless of how the data are 
collected, MDS techniques require that the experimental results be organized in the form of a 
matrix of dissimilanties (or similarities), as shown in Table for the intercity flying distances.* 
Among the applicable data collection methods, one can distinguish between those that involve an 
explicit evaluation of sample dissimilarity by the panelist and those that derive a dissmlanty matrix 
fkom other measurements (e.g., attniute ratings)’. 

Explicit evaluation methods include pair-wise dissimilarity scaling, conditional rank ordering and 
sorting. In cases, the panelist’s is to evaluate dissimilarity among the samples based either on 
an attniute defined by the experimenter or based on unspecified attniutes. For example, 
experimenter might ask panelists to judge dissimilarity based on a specific attribute, such as color or 
odor. On the other hand, the experimenter may choose not to  spec^ an attniute, in which case 
panelists are fiee to use their own criteria for judging dissimilarity. 

Panel inconsistencies can arise if panelists have ddiiculty evaluating samples on the 
criteria and change their basis for judging dissimilarity depending on the samples. Such a change in 
judgment can result in an MDS space which underrepresents the number of dimensions 
relevant to the judgment task. Cohen and Jones (1974) simulated the effects of random error and 
sub-sampling of dimensions and found that dimensions which panelists consistently observed were 
well recovered in the final MDS configuration, but those dimensions which were not used 
consistently were not. 

Several preparatory steps need to be completed prior to sensory data collection. These steps, 
also common to other sensory techniques, are those involved in recruiting and screening of panelists 
(Stone and Sidel, 1994; Meilgaard, Civille and Carr, 1991; SchifEnan and Knecht, 1993). It is 
important that panelists be able to ascertain differences among samples and that they are capable of 
making judgments of dissimilarity. Additionally, the researcher to decide which of the possible 
techniques, discussed in this section, should be used to collect the data (see also Green and Wind, 
1973). During the data collection phase the researcher should use standard sensory methods to 
ensure the validity of the data (see Stone and Sidel, 1994; Meilgaard, Civille and Carr, 1991, for 
more information). 

Traditionally, panelists evaluate dissimilarity between all possible pairs of products and indicate 
the perceived dissimilanty of each pair using category or line scales. Schifbm, Robinson and 
Erickson (1977) used a five inch line scale anchored with ‘exactly same’ on the left and ‘completely 
different’ on the right. In this case larger numbers indicated greater dissmhty. These pair-wise 
comparisons provide a set of dissimilarity measurements that are then used in the calculation of the 
multidimensional spatial distances among samples. 

The pair-wise method of sample presentation can quickly lead to an excessive number of 
evaluations for the panelists, can be seen by the following calculation. The number of pairs used 

Not all MDS techniques are based on dissimilarity matrices. In particular, multidimensional unfolding 
methods (Schifhan, Reynolds and Young, 1981) have been developed that can accept as input or 
hedonic attribute ratings and do not require the data to be transformed into dissimilarity scores. The 

unfolding models are not considered here. 
In most of what follows, there is no need to distinguish between similarity and dissimilarity scaling. The 
difference amounts to whether larger numbers reflect increasing similarity or dissimilarity MDS programs 
often accept data in either form. When only one form is acceptable, similarity judgments are easily 
transformed to dissimilarities (or vice versa) prior to analysis. 
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to pair-wise compare all samples in a set of size n is n(n- 1)/2. With seven samples there are 2 pairs, 
with ten samples there are 45, and with 25 samples there are 300 pairs. This would lead to excessive 
sensory fatigue and would be very time consuming for the panelists, especially if the study is to be 
replicated. However, the techmque has used successfuuy (see, for example, Schiffman, 
Robinson and Erickson, 1977; Thomson and MacFie, 1983; Williams and Amold, 1985; Gilbert and 
Heymann, 1995). 

Due to the problem of sensory htigue, especially with studies involving odor and flavor, 
researchers often attempt to fmd other methods of data collection. Incomplete data designs can be 
used to reduce the number of comparisons that each panelists must make (SchifJhn and Knecht, 
1993; MaIhotra, Jain and Pinson, 1988). These incomplete designs can be simple having twice 

many panelists with each panelist evaluating half of the sample pairs. The panelists can be 
assigned sample pairs at random or through the use of a selection scheme (Spence and Domoney, 
1974). A simulation by Whelehan, MacFie and Baust (1987) indicated that up to 40% of the 
dissimilarities in a complete pair-wise design can be omitted, if replications indicated that the error 
levels are not large. Moskowitz and Gerbers (1974) studied dimensional si@cance of odors 
through the use of an incomplete similanty scaling technique. More complex incomplete designs, 
such cyclic designs, may also be used (Spence, 1982). For example, Rosett and Klein (1995b) in 
a study of saltiness perception in sixteen gum solutions, calculated that panelists would have to 
evaluate 120 pairs of solutions. They used incomplete cyclic designs in which half of the panelists 
evaluated 80 pairs of a potential 120 samples and the other half evaluated 75 sample pairs. The 
cyclic designs were chosen to overlap so that 35 of the pairs were the for both groups. 

Conditional rank order can also be used to decrease the number of samples that each panelist 
evaluates. In this procedure, each sample is a standard and the panelist ranks the remaining 
samples according to their similarity to the standard (Rao and Katz, 1971). For example, consider a 
study in which panelists are asked to evaluate the slrmlanty of five products: sour cream, cream 
cheese, ice cream, milk and cream. A panelist first ranks the similarity of the samples using milk as a 
reference. Next, the panelist ranks the samples using cream a reference, and subsequently, using 
sour cream, cream cheese and ice cream references. Each panelist completes five rank orders, 
with the order of the standards balanced across panelists. This method works very well with visual 
stimuli but not with more htiguing odor or flavor samples. It is possible to make the task less 
htiguing by elirmnating a sample &om the comparison set once it has been used a standard. In the 
above example, milk would be eliminated after round one, cream after round two and so on. 
However, collection of the full data set allows the researcher to check for panelist consistency and 
reliablllty (Deutscher, 1982). Special MDS models are required for an-g conditional rank order 
data (Schifihm, Reynolds and Young, 1981). 

Sorting has also been used to decrease the number of samples that the panelist evaluates. In this 
case, the panelist receives the entire set of samples at once and then sorts them into mutually 
exclusive groups based on similarity (Rao and Katz, 1971; Wish, 1976; Rosenberg and Kim, 1975; 
Rosenberg, 1982). Panelists are often told that they must sort the samples into no fewer than two 
groups and into no more groups than one less than the total number of samples in the set. This 
ensures that each panelist creates at least two groups yet cannot place each sample into its own 
group. The panel leader then counts how often any two samples were placed into the group, 
thus deriving a matrix in which larger indicate increased sinrilarty. The 
assumption underlymg this method is that samples occurring in the group are more 
than samples occuning in different groups. Panelists intuitively seem to understand the find it 
easy and perform it rapidly. This technique has been used extensively by Lawless Gwless, 1989; 
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Lawless and Glatter, 1990; Lawless, 1993; Lawless, Cheng and Knoops, 1995) and Heymann 
(Heymann, 1994a; Gilbert and Heymann, 1995; Skibba and Heymann, 1994a,b) well others 
(MacRae et al., 1990; 1992). 

With all of the above methods, the researcher to consider how he or she will interpret the 
dimensions of the spatial configuration that MDS derives (Lawless, 1993). A number of options 
exist (Hair, Anderson and Tathaq 1984). Researchers can simply use their own judgment, based on 
prior knowledge of the sample set, to arrive at a dmensional interpretation. In contrast, the 
researcher can present the final spatial arrangement to the panelists and them for suggestions 
to its interpretation. The researcher can also ask the panelists, immediately after the data collection, 
to list the criteria which they used to judge or sort the products. However, panelists are frequently 
not able to articulate the criteria they used. A separate study, with the or different subjects, 
using either consumer test methods or analytic descriptive techniques, can be conducted to generate 
information helpfbl to the interpretation of MDS dimensions. Examples of studies using the 
panelists for that purpose are contained in Moskowitz and Gerbers (1974), Rosett and Klein 
(1 995b) and Gilbert and Heymann (1995). Heymann (1994a) and Skiiba and Heymann (1994a,b) 
used different panelists. 

Instead of measuring dissimilarity directly, it is possible to derive dissimilarity scores from other 
kinds of data, such as from ratings collected part of a descriptive study or in consumer research. 
Data collection procedures appropriate for such studies are descnkd elsewhere (Einstein, 1991; 
Meilgaard, Civille and Cam, 1991; Heymann, Holt, and Cliff, 1993; Stone and Sidel, 1994). A 
number of transformations are possible for converting rating data to dissmihities, including 
correlations and Euclidean distance computations (see Section 7 for an example). 

4. STATISTICAL ASPECTS OF CLASSICAL MDS 

An introduction to the statistical aspects of MDS can be found in Kruskal and Wish (1991). The 
mathematical foundations of MDS are discussed by Davison (1983) and Young and Hamer (1987). 
S c h i h ,  Reynolds, and Young (1981), MacFie and Thornson (1984), S c h i h  and Beeker 
(1986), and Sc- and Knecht (1993) explain in detail the statistical aspects of MDS using 
sensoy applications examples. In this chapter, a few of the key statistical concepts will be 
reviewed. 

The slmplest type of multidimensional scaling model is called Classical MDS (CMDS) (Young 
and Hamer, 1987). The majority of applications of MDS involve this model. CMDS analyses a 
square data matrix, similar to the kind shown in Table 1 for intercity distances. As another example 
of a data matrix appropriate for analysis by CMDS, consider experiment in which the 
investigator has collected pair-wise dissimilarity ratings from several panelists on four samples, 
using an unstructured line scale of the kind discussed in Section 3.4 The hypothetical results of this 
experiment are shown in Table 2, in which the numerical entries represent average dissimilarity 
ratings for the pairs of samples. According to the results, samples C and B were the most dissinrilar, 
samples D and A the most similar. 

The number of samples in actual MDS study would need to be greater than four, see Section 



Table 2 is an example of a square symmetric matrix. The matrix is square, because there are 
many rows columns. The matrix is symmetric, because the dissimilarity of sample A to B 
that of sample B to A. The cells in the diagonal are blank, because panelists were not asked to rate 
the dissimilarity of a sample to itself.’ 

Table 2 
Hypothetical dissmhty data for four samples 

Sample A Sample B Sample C Sample D 
Sample A 2.5 7.6 1.2 
Sample B 2.5 13.0 4.5 
Sample C 7.6 13.0 10.6 
Sample D 1.2 4.5 10.6 

While CMDS analyses square matrices, other MDS models exist for analyzmg rectangular 
data matrices, such multiple attribute ratings or preference data, where the columns of the matrix 
represent samples, and the rows attributes or people. Such models will not be discussed here, but 
are reviewed by Schiikm, Reynolds and Young (1981). 

A CMDS analysis be either metric or nonmetric. In nonmetric CMDS, the dissimilarity data 
are treated ordinal This means that the order the dissimkitiesin the input data 
matrix is used in determining the spatial configuration. In metric CMDS, the other hand, the 
dlssdarities are assumed to have been measured on interval or ratio level scale. Interval and 
ratio scales are more quantitative than ordinal scales. Ratio scales, for example, include those 
commonly used for measuring length and weight. Interval scales are sirrrilar to ratio scales, except 
that they lack a true zero point. Examples of interval scales are the Celsius and Fahrenheit scales of 
temperature. In CMDS, the researcher can choose whether to treat the data metric or nonmetnc. 

It might that a nonmetric MDS analysis, which uses only the rank order of dissimilarities, 
would result in a less precise solution than a metric analysis of the data. However, Shepard 
(1962) demonstrated that the order of dissimilarities is sufficient to derive a spatial 
configuration that closely matches that based on a metric analysis. For example, in Section the 
intercity distances shown in Table 1 were analyzed using nonmetric CMDS, even though the 
distances represent ratio-level measurements. A metric analysis (not shown) of the same data results 
in a spatial configuration identical to that obtained using nonmetric CMDS. 

Shepard’s demonstration important in the history of MDS, because many MDS applications 
involve scales whose measurement level is probably ordinal. The level of measurement of 
sensory scales varies depending on the scale used. Rating scales, including category and 
unstructured line scales, are often to be interval scales. However, the interval scale 
properties of these scales have not demonstrated. MacFie and Thomson (1984) provide 
example of why dissmnhty ratings common in sensory analysis may not satisrjl the assumptions of 
a metric MDS analysis. Therefore, in sensory applications, the data are almost always treated 
nonmetric. For example, the analysis of the vanilla data in Section 2 was nonmetric. 

most sensory studies, symmetry is and the experimenter enters the same numbers in the lower 
and upper half of the data matrix. However, Ch4DS programs can accept nonsymmetric data matrices, 
well as data matrices with nonzero entries in the diagonal. 
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A variety of computer algorithms exist for performing CMDS (see Section 11). They have a 
common objective, namely that of finding the spatial configuration of the samples that best agrees 
with the dissinnlarities in the data matrix. The search for configuration is an iterative process, 
one that terminates when further adjustments in the spatial configuration yield 
improvements in fitting the data. The degree of fit between the final configuration and the original 
data is expressed in a number of different ways. Perhaps the most common measure is called 
"stress", which is a "badness-of-it" measure (lower stress mans a better fit). In MDS, stress is 
defined the following formula: 

( d u  iu)2 

Ci dg2 
Stress 

where dij represents the distance between objects i and j in the MDS space and 2u the distance that 

best fits the dissimilarity between i and j. The formula shown above is often termd "stress formula 
1" or "Kruskal's stress formula'' (Kruskal 1964). All MDS algorithms arrive at their final 
configuration by minhking Kruskal's stress or a similar quantity. 

It is possible to gain an intuitive understanding of stress by considering how MDS evaluates the 
fit between a spatial configuration and a set of dissimilarities. The distance between any pair of 
objects in the spatial configuration is compared with the size of the corresponding dissimilarity (a 
number given by the raw data.) If the spatial configuration fits the data well, a large distance will 
correspond to a large dissimilarity, a distance to a small dissimilarity. In metric MDS, the 
degree of fit is quantified by using least squares regression to fit a straight line to the relationship 
between distance and dissimilarity. Stress measures the amount of deviation around this straight 
line. The larger the amount of deviation around that straight line, the poorer the fit and the larger the 
stress. 

In nometric MDS, the stress formula is used, except that instead of using linear regression 
to fit the distances to the dissimhities, a least squares monotone regression is used, which fits a 
curve to the data that preserves the rank order of the dissimilarities, but is otherwise unconstrained. 

In addition to stress, another measure of the degree of fit is the squared correlation coefficient 
between the interpoint distances in the spatial configuration and the dissimilarities (the original 
data). This correlation, sometimes designated RSQ, can be interpreted the proportion of variance 
in the data that is accounted for by the distances in the MDS model. As is the case for any 
correlation-based measure, RSQ ranges between 0 and 1, where 0 indicates no fit and 1 a perfect fit. 

For the intercity flymg distances, which were analyzed using nontnetric CMDS, the stress for the 
two-dimensional solution was 0.008 and RSQ was 1.0 (after rounding). This excellent fit is 
expected, since the data were error fi-ee. For the vanilla data described in Section 2, the 
two-dimensional space was with a stress of 0.12 and an RSQ of 0.93. Kruskal(1964) has stated 
that a stress below 0.05 indicates a good fit, whereas stress values above 0.20 represent poor fits. 

More detailed guidelines exist (Kruskal and Wish, 1991) for determining what level of stress 
represents a "good" fit. These guidelines take into consideration that several fsctors, in addition to 
the amount of error in the data, influence the magnitude of stress. These include the number of 
samples in the data set and the number of dimensions used to fit the data. In light of the influence of 
these and other factors, Krzanowski (1988) concluded that Kruskal's (1964) guidelines were overly 
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these and other factors, Krzanowski (1 988) concluded that Kruskal’s (1964) guidelines were overly 
simplistic. often it is the researcher‘s past experience MDS and or her judgment that 
ultimately determine whether the fit of a particular MDS solution is acceptable or not. 

Another related judgment the experimenter must make is how many dimensions to to fit the 
data. Several considerations enter into this decision, including ease of interpretation, the number of 
samples in the data set Section 10 for guidelines) and the level of stress. Stress decreases the 
number of dimensions increases. However, there is often a number of dimensions beyond 
which stress does not greatly improve. TIIS point is easily identified by plotting stress versus 
the number of dimensions. The point of diminishing improvemnt in stress appears an “elbow” in 
the curve and Wish, 1991). This elbow defines the number of dimensions to be selected for 
fitting the data. 

5. A CASE STUDY: PERCEPTION OF CREAMINESS 

The perception of creaminess in foods is very complex. Textural creaminess is not a primary sensory 
attntbute and may encompass thicknesshriscosity, smoothness and htty mouthfeel characteristics 
(CiviUe and Lawless, 1987). This study was part of a larger study whose objective was to gain 
a more comprehensive understanding of creaminess perception. The study was exploratory and 
compared the actual “in mouth creaminess with expected creaminess based on product concepts 
communicated by package labels. Both creamy and non-creamy products were evaluated (Skiiba 
and Heymann, 1994a; 1 994b; Gwartney and Heymann, 1995). 

Unlike other MDS studies, in this study panelists were asked to evaluate samples based on one 
very specific, though complex, attribute (creaminess). Twenty food products (Table 3) were chosen 
to represent a wide range of textural perceptions. For “in mouth‘’ evaluations, the samples were 
served 30 servings in plastic cups with lids. Panelists received all samples simultaneously and 
were asked to sort them based on their smlanty in textural creaminess. Panelists received 
water for use in cleansing the palate. samples and water were expectorated. The 
mouth” sorting was replicated in two different sessions. For the concept evaluations, the panelists 
received the product labels pasted onto individual and were asked to sort them based 
on the creaminess smlanty of the products descnbed on the label. Panelists did not replicate the 
label sorting. In all cases the panelists were restricted to sorting the products or the labels into no 
more than 19 and no less than 2 mutually exclusive groups. 

The twenty four panehas, staff and students at the University of Missouri, were with 
sensory testing but were otherwise untrained. Twelve of the twenty four panelists first sorted the 
products based on mouth” creaminess and subsequently sorted the food labels. The other twelve 
did the in reverse order. Smlanty scores were calculated by counting the number of times a 
pair of food products or labels was sorted into the group. The snnihnty estimates were 
summarized in surnlanty matrices and submitted to the SYSTAT (Macintosh Version 3.2) MDS 
program for non-metric multidimensional scaling using Kruskal’s stress formula. The results did not 
differ depending on the order in which the conditions were run, so only the composite of the data 
will be discussed. 
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Table 3 
Case study: Food products and used in creaminess evaluation 

Apple Sauce (Schnucks) 
Chocolate Pudding @el Monte) 
Chocolate Syrup (Hershey) 
Chocolate/hazelnut spread (Nutella, Ferrero) 
Chocolate (Schnucks) 
Cream Soda (A W) 
Creamy Peanut Butter (Schnucks) 
Evaporated Light Skimmed (PET) 
Half and Half (Schnucks) 
Marshmallow Creme (Schnucks) 
Non-dairy Creamer (CoffeeMate, Carnation) 
Non-fat Sour Cream (Land-0-Lakes) 
Part-skim Ricotta Cheese (Schnucks) 
Ranch Creamy Dressing (Hidden Valley Ranch) 
Skim (Schnucks) 
Soft Philadelphia Cream Cheese (M) 
Sour Cream (Schnucks) 
Sweetened Condensed Milk (Meadow Gold) 
Water (Culligan) 
Whole (Schnucks) 

The subjects sorted both the products and the labels into a mean of seven groups (range four to 
eleven). Figure 3 is a two-dimensional MDS map of the “in mouth” sorting results. The analysis had 
a stress value of 0.10 and explained of the data set variance. Figure is a two-dimensional 
MDS map of the label sorting results, with a stress value of 0.06 and explaining of the data set 
variance. According to Kruskal (1964), the stress values indicate a for the product 
condition and a “good‘ fit for the label condition. 

Based on inspection, the dimensions of the product map (Figure 3) should be rotated by about 
45’ in a clockwise direction (see vectors). Rotation of MDS configurations, with the exception of 
individual difference MDS (see Section 6), is permissible if it improves the interpretability of the 
space (Kruskal and Wish, 1991). After rotation, one dimension can be interpreted as a perceived 
thickness or viscosity dimension, whereas the other dimension tends to correspond to variations in 
grittiness or lack of smoothness. 
The dimensions of the label map (Figure are less clear-cut, but by inspection it that rotating 
the horizontal dimension by in a counterclockwise direction would lead to it being a contrast of 
“thin” and “thick”. There are also two neighborhoods, one defined by liquids (on the 
right) and the other by semi-solids (on the left). It is interesting to note that the panelists thought 
that conceptually (based on the labels) marshmallow creme, chocolate/nut spread and peanut butter 
would be similar in creaminess to soft cream cheese and chocolate pudding. However, when the 
panelists evaluated these products “in mouth”, the marsWow creme, peanut butter and 
chocolate/nut spread were less creamy and less smooth (more than the cream cheese and 
chocolate pudding. Based on these exploratory data, panelists appear to respond differently to the 
perceived creaminess “in mouth than to the creaminess communicated by the package labels. 
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6. STATISTICAL ASPECTS OF INDIVIDUAL DIFFERENCES SCALING 

So only applications of CMDS have discussed. Another important type of MDS model 
called weighted MDS ( W M D S )  (Schitfitnan, Reynolds and Young, 1981; Young and Hamer, 1987). 



The fist model for individual differences scaling, called INDSCAL, was proposed by Carroll and 
Chang (1970), and their work served the foundation for the development of most subsequent 
individual differences scaling approaches (see Young and Hamer, 1987; Krzanowski, 1988). 
Whereas C M D S  analyses only one data matrix of the kind shown in Table 2, WMDSanalyses 
several such data matrices at the same In WMDS, each matrix represents the results of a 
separate experimental condition, a separate individual, or group of individuals. In MDS terms, the 
data for CMDS are called "two-way data", because a single data matrix always two ways: the 
rows and the columns. When the data consist of a series of such matrices, the data are "three way", 
the third way corresponding to the factor that distinguishes the matrices fiom one another. Perhaps 
the most common application of WMDS is in the scaling of individual differences, where a series of 
data matrices are submitted to WMDS, one matrix for each individual tested. In that case, the "third 
way" corresponds to individuals. 

In WMDS, differences among individuals are reflected differences in weights for a set of 
common underlymg dimensions. In addition to a group stimulus space (or consensus spatial 
configuration), WMDS derives dimension weights for each individual that can range fiom 0 to 1 

and reflect the relative importance of each dimension to the individual. 
an example, consider an experiment in which three individuals are asked to rate the 

dissimilarity of six colors that vary only in hue. Suppose that the subject normal color 
vision, but the second and third subjects do not. Table 4 presents three disslrmlanty matrices, one 
for each individual, where the numbers are hypothetical dissimilarity ratings. For the results of an 
actual WMDS analysis of color data, see Helm (1964) and Wish and Carroll (1973). 

A two-dimensional analysis of WMDS analysis of these data using the ALSCAL procedure in 
SPSS results in the group or consensus space shown in the upper left of Figure 5, which reflects the 
information fiom three individuals. In the group space, the colors are arranged in the shape of the 
familiar color circle, where opposing colors are located roughly opposite one another. WMDS also 
computes individual subject weights, shown in Table 5 that reflect the salience of each dimension 
for that individual. Table 5 shows that the three individuals weight the dimensions differently. In 
particular, subject 1 weights both dimensions about equally, whereas subject 2 and 3 weight one 
dimension much less than the other. The individual subject spaces, shown in Figure 5, 
demonstrate the differences among the three individuals graphically. These individual subject spaces 
are derived from the group space by multiplying the stimulus coordinates on each dimension in the 
group space by the square root of the individual subject weight for that dimension (Schiffinan, 
Reynolds and Young, 1981), according to the formula: 

X h  Wh" xi,, 

where Xha is the coordinate of object i on dimension a for subject Wh is the weight for subject k 

on dimension a, and Xia is the coordinate of object i on dimension a of the group space. The 
differences in weights for the three subjects have resulted in differential stretching (and shrinking) of 
the two dimensions. Figure 5 shows that for subject 2, distances along the horizontal dimension are 
reduced, indicative of the low dimensional weight attached to that dimension. For subject 3, 
distances along the vertical dimension are reduced. Subject 2 suffers fiom a red-green color 
deficiency, subject 3 fiom a blue-yellow deficiency. 
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Table 4 
Three hypothetical matrices of dissimilarity ratings of color* 

red purple blue green yellowlgreen yellow 
red 
Purple 55 

blue 95 65 
105 85 30 

yellowlgreen 90 100 65 
yellow 60 95 95 90 

red 
Purple 45 I 

blue 45 
green 25 55 33 

yellow/green 43 90 75 45 
yellow 50 95 55 

50 

15 

red 
purple 34 
blue 89 60 
green 105 75 15 
yellowlgreen 80 55 22 25 
yellow 35 35 65 75 50 

*Note: The upper of each matrix identical to the lower and has been omitted. 

Y 

YIG 

G .  * R  

Figure 5. Individual differences scaling of hypothetical color ratings. G=green, YIGyellowlgreen, 
Yyellow, R=red, €'=purple, B=blue. 
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In applications of WMDS, individual differences might result fiom individual differences in 
sensation, perception or cognition. In each case, WMDS reflects these differences in the weights 
attached to a set of common underlying dimensions. 

Subject Number 1 2 

WMDS shares many features in common with CMDS. WMDS can be metric or nonmetric (the 
analysis of the color ratings was nonmetric). The degree of fit is evaluated in the fashion in 
the case of CMDS, except that there are measures of fit for the group space as well as for the 
individual spaces. 

There is one technical difference between CMDS and WMDS. In CMDS, the dimensions can 
be rotated in the creaminess example. In WMDS, the dimensions cannot be rotated. This means 
that the dimensions in WMDS should be interpreted is. Sc-, Reynolds, and Young (1981), 
however, point out that this non-rotatability is true strictly only when the data contain no error. In 
the presence of error, some amount of rotation is permissible. 

Finally, it should be noted that WMDS is based on a particular view of individual differences, 
namely that individuals differ in the relative importance they assign to a set of common dimensions. 
This is the only point of Merence among individuals, according to the WMDS model. 
Mathematical extensions of WMDS models (see Young and Hamer, 1987) include differences 
among individuals in rotation of the group space and in the number of dimensions of the personal 
spaces. These extensions of the basic WMDS model, however, have found relatively few 
applications to date. 

7. APPLICATIONS OF INDIVIDUAL DIFFERENCES SCALING 

Gilbert and Heymann (1995) reported the results of an experiment in which panelists rated the 
d issmhty  in aroma among seven apple essences and a reconstituted apple base without essence 
added. Untrained panelists (N=18) rated the dissdanty among twenty-eight possible pairs of 
samples in three replications, using an unstructured 15 cm line scale. The average dissitllilarity 
ratings were analyzed using CMDS. 

In this section, the data are reanalyzed using nonmetric WMDS. Eighteen dissimilarity matrices, 
representing data fiom the individual panelists averaged across replications, were analyzed using the 
ALSCAL procedure in SPSS. 

Solutions in two and three dimensions were explored. For the two-dimensional solution, the 
average stress (across the eighteen matrices) was high (0.30), and RSQ low (0.45). By comparison, 
a C M D S  analysis of the group-averaged data yielded a very good fit (stress 0.05, RSQ 0.99). 
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This indicates that there was sistllficant variation among the panelists that was not apparent in the 
C M D S  analysis. Bertino and Lawless (1993) came to a similar conclusion regarding WMDS vs. 
CMDS results. 
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Figure 6. WMDS representation of the aroma of seven apple essences and an apple juice base 
without essence. text for explanation of symbols. 
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Figure 7. Dimensional weights for 18 panelists evaluating the aroma of apple essences. 

Even though the stress was the two-dimensional individual difference solution obtained 
WMDS was explored further. (The fit for the three dimensional solution was not much better.) 



Figure 6 shows the sample space in which dimension 1 separates the apple juice base no 
essence (BA) from the samples containing essence. Dimension 2 differentiates among apple essence 
varieties. Two clusters are apparent along this dimension. One is comprised of the Gala (GA), Cox's 
Orange Pippin (CO), and Granny Smith (GS) varieties, the other of the Royal Gala (RG), Red 
Delicious and Braebum (BR) varieties. The Fuji (FU) sample may belong to neither cluster. 

In Figure 7, individual panelists' weights for each dimension are plotted. Figure 7 shows a fairly 
wide distnition of weights for dimension 1 (from about 0.2 to 0.8), whereas the weights are more 
tightly clustered along dimension 2 (note the difference in scales on the vertical and horizontal axes). 
Panelists 4 and 5 were unusual in that they assigned very low weight to dimension 2. For these two 
panelists, dimensions 1 was important, indicating that they attended only to the distinction 
between sample BA and the other samples. For the remaining panelists, the differences among the 
essence types were more salient, as indicated by their numerically larger weights on dimension 2. 
One implication of this analysis is that in the absence of training, the perception of these apple 
essences is quite variable, and the average solution may not be very representative of any one 
panelist. 

The example above represents an application of WMDS to the scaling of individual dissimilarity 
matrices. WMDS can also be applied to traditional descriptive data or other attniute ratings. 
order to do so, the data first be transformed to dissimilarity form. The method for deriving 
d issmhty  data from attniute ratings involves the calculation of the distance between samples, 
based on the Euclidean distance formula: 

where d,j is the dissmhty between objects i and j, Xi, Xj, is the difference between the two 
objects on attniute a, and the summation extends over all r attriiutes. 

This method for deriving dissimilanty scores was applied to data from a study by Heymann 
(1994b). The study consisted of a descriptive analysis of the thirteen vanilla samples d e s c n i  in 
Section 2, using a panel different from the one which performed the similarity sorting task. This 
panel @=lo) rated the vanilla samples on fourteen attniutes using standard descriptive methods. 
The data were reanalyzed by computing, for each judge, dissimilarity scores among the 
samples, using the Euclidean distance measure. The ten dissimilanty matrices, one per judge, were 
then submitted to WMDS. 

The average stress for a two-dimensional solution over the thirteen matrices was 0.28, with 
RSQ of 0.70, indicating that a substantial amount of the individual variation could be explained by 
the model. The two-dimensional map, shown in Figure 8 is somewhat different from that shown in 
Figure 2, might be expected given the differences in panelists, data collection method, and MDS 
model. Figure 9 shows the weight for the ten panelists. There are several notable differences 
among the panelists. Panelist 2 weights dimension 2 altlhost exclusively over dimension 1. Panelists 
3, 5 and 10, on the other hand, weight dimension 1 over dimension 2. If this situation were 
encountered early in a project, the panel leader would need to decide whether these panelist 
differences are ones that should be addressed by fiuther training. An investigation of which 
descriptive attnites correlated most strongly with dimensions 1 and 2 would help to iden* those 
sample attriiutes that may need to be clarified. If this kind of a result were encountered at the end of 
a project, the researcher would need to decide whether to omit certain panelists that are outliers 
(such panelist 2) from the analysis. 
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Figure 8. WMDS representation of the aroma of vanillin and twelve vanilla samples. Figure 2 
for legend. 
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Figure 9. I)lmensional weights for ten panelists evaluating the aroma of vanillin and twelve vanilla 
samples. 

The examples above have illustrated the application of WMDS to the analysis of dissimilarity and 
attniute ratings. Udomte ly ,  while the suntlarq sorting procedure d e s c n i  in Section 3 is 
simple and to use, sorting data do not readdy lend themselves to an individual differences 
analysis. This is due to the that the sorting data for any one individual consist of a matrix of 



177 

zeros and ones, indicating whether the individual grouped two products together or not. Even with 
replications, the number of times a product was sorted into the same group by one individual may 
not be a sufficiently graded m u r e  to allow for the derivation of individual subject spaces. 
Lawless, Sherry and Knoops (1995) discuss a potential variation of the sorting procedure that may 
yield data that are scalable by WMDS. However, Lawless et al. indicate that to date they have 
conducted only limited testing using this procedure. 

8. ISSUES IN INTERPRETATION OF MDS SPACES 

The studies discussed above illustrate how MDS can be used to derive spatial representations 
of the simihrities and differences among samples. The interpretation of MDS spaces involves a 
degree ofjudgment on the part of the researcher. Often the grouping of the samples, together with 
prior knowledge of sample characteristics, suggests on what basis samples are being differentiated. 
This can lead to a "naming" of the underlymg dimensions of the MDS space, in the creaminess 
study (see Figures 3 and 4). In other instances, naming of the dimensions is difficult, but the 
clustering of samples still can be informative. Without knowing the characteristics on which vanilla 
samples dser, it is clear from Figure 2 that judges are able to distinguish the Indonesian fi-om the 
Bourbon types of vanilla samples. This itself can be useful information, for example in deciding 
whether Indonesian samples can be used as substitutes for the more expensive Bourbon type 
samples. The results in Figure 2 suggest that there are systematic differences between the two types 
of vanilla samples, although the salience of that difference might depend on actual product 
application. 

In some cases, the researcher may want additional information regarding why the samples group 
they do. This is especially the case when the researcher lacks prior knowledge of the sample 

characteristics or when visual inspection of the map is insufficient to generate hypotheses about the 
nature of the underlymg differences. In such instances, ancdhy data are often used to aid in the 
interpretation of MDS spaces. These data most commonly consist of ratings of the samples on 
specific attniutes, collected either from the panel that judged the similarity of the samples, or from a 
separate panel. Instead of attniute ratings, analytical measurements, such as pH, amount of an 
ingredient present in the sample, etc. also can be used to interpret MDS results. If the panel is 
used to collect both and attniute data, the attniute ratings should be collected after the 

judgments to avoid potent@ biking judges by focusing their attention on a limited set of 
attriiutes. 

A of attniutes for use in a rating task can be generated in several ways. The panelists who 
judged the samples for slnnlanty can be asked to idente which attniutes they thought most 
distinguished the samples. Alternatively, the researcher, independent of any panelist feedback, can 
postulate what attniutes are likely to be relevant to judging sample smlanty and can collect data 
from the snndanty panel (or another panel) on these attniutes. Fmdly, an independent panel can 
generate attniute ratings of the individual samples using standard descriptive methods Section 

3). 
There are several methods for relating attriiute ratings or instrumental measurements to the 

MDS space. The simplest (and most frequently used) method is to determine how each attniute is 
correlated with the dimensions of the MDS The mathematical procedure is d e s c n i  by 
SchifEnan, Reynolds and Young (1981) and involves a multiple regression in which each attnhte, 



taken one at a time, regressed against the coordinates of the MDS dimensions. Alternatively, 
multivariate techniques exist for simultaneously Wing several attriiutes to the dimensions of the 
MDS space. These techniques include canonical correlation (ScMinan, Reynolds, and Young, 
1981; ScMinan and Beeker, 1986) and partial least squaresregression (Schiffinan and Beeker, 
1986; Popper, et a1 1987). 

To illustrate the multiple regression approach, the MDS space of the vanilla samples shown in 
Figure 2 is interpreted using ratings provided by an independent descriptive panel (Heymann, 
1994b). In this analysis, each of the fourteen descriptive attniutes served, one at a time, the 
dependent variable, while the coordinates of the vanilla samples played the role of the independent 
variables. There are two independent variables, since the MDS solution was two-dimensional. The 
analysis be accomplished using either standard multiple regression software or specialized 
computer programs, such PROFIT (which for PROperty FITting) or PREFMAP (which 
stands for PREFerence w i n g ) .  Both these programs were developed by Carroll and Chang at 
Bell Laboratories and are included, in form, in the PC-MDS computer package for 
multidimensional statistics Section 1 l)6. 

In order to interpret the MDS space, Figure 10 shows the attriiutes projected vectors in the 
space. The attniute vectors point in the direction of increasing magnitude, and their angle indicates 
the correlation with the vertical and horizontal dimensions. The length of the vectors drawn in 
proportion to the magnitude of the correlation between the attniute and the MDS dimensions. 
Thus, it appears from Figure 10 that the horizontal dimension contrasts the woody, and 
nutty aroma of the Indonesian samples and on the leR with the butterscotch and milk 

aroma of the Bourbon samples and BPB) and vanillin, located on the right. Also, from the 
lengths of the various vectors it appears that the almond, raisin and characteristics are much 
less relevant to distinguishing among the vanilla samples than the other attriiutes. 

9. RELATIONSHIP OF MDS TO OTHER METHODS 

The resemblances of graphical depictions of data spaces derived from multidimensional scaling, 
descriptive and free-choice profiling data have been studied by Chauhan, Harper and Knanowski 
(1983), Williams and h o l d  (1985), Lawless (1993), Heymann (1994a), Skiiba and Heymann 
(1994b) and Gilbert and Heymann (1  995). These authors concluded that the data spaces derived 
by MDS are 'similar' to those derived by the other techniques. In most cases, the similarity was 
determined based either on visual inspection or correlation. 

Chauhan, Harper and Kcanowski (1983) compared the results of smlanty scaling of pairs of 
soft drinks with profiling data derived by the panelists. They used multidimensional unfolding 
to compare the results of the two methods and found that the results were essentially identical for 
five of the seven drinks in the study. 

Gilbert and Hey~nann (1995) compared the data spaces obtained from multidimensional sorting, 
multidimensional smnlanty scaling, free-choice profiling and descriptive analysis of apple essences. 
They found that the sorting and group-averaged scaling results Mered markedly. However, the 
MDS space derived from the sorting data was very similar to the pMcipal component space derived 

PRJZFMAP, which can be used to fit both attribute and preference data to MDS spaces, includes several 
different of models, of which the vector model is applicable here. See Schiffman, Reynolds and Young 
(1981), MacFie and Thomson (1984) and Chapter 3 of this for a discussion of preference mapping. 
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Figure 10. Attriiute vectors fit to the CMDS analysis of the vanilla samples shown in Figure 2. 
Athiiutes represent different aroma characteristics. mote: butter=butterscotch, marsh= 
marshrmllow, and swtmlk=sweet milk.] 

from the descriptive data of the essences and the Procrustes space derived &om the apple essence 
free-choice profile data. These authors compared the data spaces visually and through the use of 
correlation and Procrustes analysis. 

How do different types of MDS analyses compare to one another and how reliable are the results 
of any one analysis? As noted above, Gilbert and Heymann found that the MDS maps for sorting 
and group-averaged similarity scaling differed. Rao and Katz (1971) concluded that 
multidimensional sorting methods usually performed worse other multidimensional data 
collection methods. However, Bertino and Lawless (1993) compared the results of similarity scaling 
to those of sorting and found that the MDS configurations for the sorting and group-averaged 
similarity scaling tasks were similar. They also found that an individual differences scaling analysis of 
the rating data had very large stress, indicating that the group-averaged data did not capture 
nuances found by individd panelists. Only a few studies have concerned themselves with the 
reliabhty of any one MDS method, using either real data or Monte Car10 simulations, and the 
results have not been conclusive (Golledge and Rayner, 1982; Krzanowski, 1988). 

Multidimensional scaling, principal component analysis, cluster analysis, partial least squares 
(PLS) analysis and Procrustes analysis are multivariate statistical techniques that be used to 
analyze the dissimilarity scores or attribute ratings. of these methods can aid in ascertaining 
latent phenomena in the data. For example, Bieber and Smith (1986) compared multidimensional 
scaling, factor analysis and cluster analysis and noted both similardies and differences. Krzanowki 
(1988) explained the connection between principal component analysis and metric multidimensional 
scaling. He noted the similarity in results between metric multidimensional scaling and 
canonical variate analysis using data obtained from a study of British water voles. However, no 
studies have compared MDS to other methods regarding results on individual differences. 



It should be emphasized that the MDS models considered in this chapter are exploratory 
nature. These models do not allow for inferential tests of hypotheses concerning the size of sample 
differences. As stated by Rosett and Klein (1995), MDS and inferential techniques, such analysis 
of variance, should be viewed complimentary techniques in applications. 

In more recent MDS models, Ramsey (1982) employed the principle of likelihood 
developing tests of statistical sisntficance for the appropriate number of dimensions and the type of 
h4DS model. These models also include confidence regions for samples or subjects (in the case of 
WMDS). However, the assumptions underlymg these models remain controversial (Young and 
H e r ,  1987), and applications of these models in sensory analysis have not been reported. 

10. FURTHER GUIDELINES FOR DESIGNING MDS EXPERIMENTS 

SchBnan and Knecht (1993) suggest that the ‘it is preferable to use 12 stimuli for two dimensional 
solutions and 18 stimuli for three-dimensional solutions‘. Kruskal and Wish (1991) indicate that the 
number of samples less one should be at least four times larger than the number of dimensions to the 
solution. With fewer samples, subtle differences among the samples may not be captured in the 
solution. Thus, it is better to use more rather fewer samples. 

SchifFrnan and Knecht also suggest that the number of samples may be decreased if data fiom 
more than one subject are However, they do not support this statement data. 
Unfortunately, the minimum number of panelists needed is not clearly stated by any author. 

Green and Wind (1973) point out that depending on the purpose of the study the samples in the 
stimulus set be physical objects (like the “in mouth” creamy and non-creamy samples), pictoral 
or graphical representations of objects (like the of the creamy and non-creamy samples), or 
verbal descriptions of the objects or sensations (Martens, al., 1988; Bertino and Lawless, 1993). 

11. COMPUTER SOFTWARE FOR MDS 

The first computer program for MDS were available only universities or research centers and 
were designed to operate on mainhme computers SclifEnan, Reynolds and Young, 1981 for 
details on how to obtain and use some of these programs). With the of MDS a data 
analysis tool and with the in the power of personal computers, access to MDS software 
greatly increased. Several of the original MDS programs have been made available in versions for 
the PC in a package called PC-MDS (S.M. Smith, Brigham Young University, Provo, 84602). 
A limited version of these programs is available on supplied the book by Green, Carmone 
and Smith (1989). 

Several PC-based statistical packages include MDS procedures. SYSTAT (Systat Inc., 1800 
Sherman Avenue, Evanston, IL 60201) performs O S ,  but not WMDS. The PC-versions of SAS 
(SAS Institute Inc., Campus Drive, Caq, NC 275 13) and SPSS (SPSS Inc., N. Mchigan 
Avenue, Chicago, IL 60611) include versions of ALSCAL, a very comprehensive program 
developed by Forrest Young. ALSCAL offers the range of options for performing both C M D S  

and WMDS, well other variations of MDS. excellent introduction to MDS is contained in 
the documentation accompanying the SPSS-PC program. 
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1. INTRODUCTION 

Since its adoption in the seventies (e.g. Banfield and Harries 1975, Harries and MacFie 1976), 
Procrustes analysis has become a popular tool for sensory scientists (Williams and Langron 
1984, Arnold and Williams 1985), and still the method is used frequently and is studied and 
extended by several authors (Oreskovich et al. 1991, Dijksterhuis and Gower 1991/2, 
Wakeling et al. 1992). Procrustes analysis was originally developed as a technique to match the 
solutions of two Factor Analyses (Hurley Cattell 1962). The method was generalised to 
match more than two data sets by Kristof and Wingersky (1 97 and Gower (1 975). Recently 
the method has received increasing attention, partly through the availability of softwe 
programs for generalised Procrustes analysis (GPA), partly through some critisisms on the 
method. 

In this chapter the kinds of sensory data to which GPA can be applied are introduced, along 
with the rationale for using the method. Next some background and theory of GPA is provided 
with special attention for the Procrustes analysis of variance. Finally, two applications of GPA 
to sensory profiling data, one conventional and one free-choice, are shown. 

1.1 Sensory profiling 

A very large number of applications of generalised Procrustes analysis is found in the analysis 
of sensory profiling data. There are two different kinds of profiling data, that can both be 
analysed by means of generalised Procrustes analysis. Conventional profiling data can also be 
analysed by averaging and applying factor analysis or PCA to it. Free choice profiling FCP, 
(Williams Langron 1984, Williams and Arnold 1985) results in data that can not be averaged 
over assessors, generalised Procrustes analysis or other, so-called, K-sets methods are suited 
for the analysis of free choice profiling data. 

The scores from either profiling technique are derived from the position of marks along a 
line-scale. The assessor marks hisher perceived intensity of some attribute along a line scale 
(Figure Often the scores range from 0 to 100, but the range is unimportant, in the following 
a range from 0 to 100 is assumed. 



186 

very 

I I 

very 

I 
Sweet 

I 

very 

Figure 1. Example of a line-scale often used in sensory profiling experiments. 

1.1.1 Conventional profiling 

In conventional profiling a fixed vocabulary of descriptive terms is used by the sensory panel to 
judge the products. A sensory panel is often trained in the use of these terms. In the case of 
QDA (Quantitative Descriptive Analysis, see Stone Side1 1985) the panel starts with the 
generation of a lot of terms that are thought useful to describe the products under 
consideration. The whole procedure of attribute generation and training can take considerable 
time. Because of this training it is assumed that all assessors are able to use the attriiutes in the 
same way, so individual differences in use of the attributes are minimized. Because of this the 
individual judgements are sometimes averaged and factor analysis or FCA is applied to the 
average scores. However, methods genedised Procrustes analysis can of course also be 
applied to conventional profiling data. Such analyses show that the assumption of all assessors 
using the attributes in the same way is not always justified (see e.g. Dijksterhuis Punter 
1990). 

The data from conventional profiling experiments can be seen a 3-mode data structure 
built from Nproducts, M attributes and K assessors (see Figure 2). 

(NXM) datamatrix% 
for one assessor 

8 

z 
g 

M attributes 

Figure 2. 3-Mode data structure representing conventional profiling data: N products are 
judged by judges using M attributes. 
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The (NxMxK) data block in Figure 2 consists of K layers, each with the (NxM) datamatrix 
of one assessor. Other slices of this block may be analysed but generalised Procrustes analysis 
focusses on the agreement of the matrices from the individual assessors. 

1.1.2 Free choice profiling 

In free choice profiling the assessors are free to come up with their own attributes, which they 
use for judging the products. So between the assessors there is no agreement about attributes. 
As a result it is impossible to average the individual data, because it makes no sense to 
combine different attributes. The data from free choice profiling experiments must be analysed 
by individual difference methods, or rather ‘K-sets’ methods, of wich generalised Procrustes 
analysis is one. Unlike conventional profiting data, free choice profiling data cannot be 
rearranged in some kind of 3-mode data structure. Because each assessor k l , .  may have a 
different number of attributes (Mk), furthermore thejth attributes of the assessors are not the 
same. Figure 3 shows the structure of a FCP data set. 

K assessors 

M attributes 
1 

M attributes 
3 

M attributes 

Figure 3. Data structure representing free choice profiling data: N products are judged by K 
judges using Mk attributes. 

Figure 3 shows that the individual datamatrices cannot be arranged such that the 
attributes match because each assessor’s individual datamatrix has different attributes. 

1.2 Sensory-instrumental Relations 

One of the fields in which Procrustes analysis can be applied is the study of sensory- 
instrumental relations. Though Procrustes analysis appears not to be often used in this field it 
can be a useful method to analyse sensory-instrumental relations (see e.g. Dijksterhuis 1994). 
The idea behind the study of sensory-instrumental relations is that sensory perceptions have 
ChemicaVphysical counterparts in the substance under investigation. A simple example is e.g. 
the amount of caffeine in a certain drink, which of course determines the bitterness perceived 
by someone drinking it. In real life the sensory-instrumental research is much more 
complicated, and involves multivariate, not univariate, data, and consequently needs 
multivariate data-analysis. 



The original, not generalised, Procrustes analysis can be applied to sensory-instrumental 
data, because two-data sets are involved. One data set contains the sensory judgements on a 
number of, say N, products. The second data set contains a number of instrumental measures 
on the same N products. These can be results of chemical analyses, physical properties or of 
other measurements. 

1.3 Designed experiments and incomplete data 

In some cases it is conceivable that at a profiling experiment, be it conventional or free choice, 
the data may be gathered according to some experimental design. When the design has been an 
incomplete one, the datamatrices of the assessors may not all have scores on the same set of 
products. In this case it is impossible to analyse these data by means of ordinary generalised 
Procrustes analysis. Special generalised Procrustes analysis methods that can handle missing 
data must be used. They are outside the scope of this chapter but can be found in Commandeur 
(1991) and Ten Berge, Kiers Commandeur (1993). 

2. THEORY AND BACKGROUND OF PROCRUSTES ANALYSIS 

In this section generalised Procrustes analysis is introduced in two different ways, first a 
geometrical way and next in a somewhat more formal mathematical way. 

2.1 A geometrical look 

Each assessor’s datamatrix, consists of N rows with scores on Mk attributes. This 
datamatrix contains elements where is the index over the N products, j = I , . .  the 
number of attributes of the assessor and the of assessors. In this section 
no distinction between conventional profiling and Free choice profiling will be made. 

The scores in an assessor’s datamatrix describe N objects using M attributes. Geometrically 
the Npoints can be seen as to lie in an M-dimensional space. With M=2 attributes we can draw 
a plane with the N points in it, but in general M will be (much) larger. Figure 4 shows a 
configuration of N points from the data of an assessor judging on only 2 attributes. 
Mathematically high dimensional spaces are no problem, though we may have trouble 
imagining them, but this we don’t need to. When the analysis is done we don’t look at the high 
dimensional space but at a projection onto an imaginable lower dimensional space, often two 
dimensions, so it can be plotted on paper. This projection is often accomplished by means of 
performing a principal component analysis and plotting the first two dimensions. 
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Figure 4. Two configurations with points representing scores on four products from assessor 
1 (A1, Bl, C1, D1) and from assessor 2 (A2, B2, C2, D2) with their centroids and M2. 

We have M-dimensional configurations of N points for all assessors. Suppose that we 
deal with two assessors, to keep this example simple. We can draw the two different 
configurations of the N=4 points (Figure 4). The objective of generalised Procrustes analysis 
to try to get the same objects as close to each other as is possible by shifting entire 
configurations, rotating them and reflecting them if necessary. The important underlying 
assumption is that the distances between the N objects for one assessor may not be changed 
during these transformations. When the configurations are also allowed to stretch or shrink the 
relative distances between the objects remain the same. 

The distances between the objects reflect the relations between the objects. Objects close 
together are similar, objects far apart are different. The reason to keep the distances invariant 
is that in the process of matching, the relations between the N objects of one assessor should 
not change. Similar objects must remain similar, different objects must remain different. 

2.2 Transformations 

The transformations mentioned above, i.e. shifting, rotating, reflecting and stretching or 
shrinking, that make up a generalised Procrustes analysis, out to correct for a number of 
assessor effects (see Arnold Williams 1985). 
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2.2.1 The Level-Effect: Translation 

The so-called level-effect manifests itself by the different average scoring position on a line 
scale of different assessors. One assessor may give all N products scores that lie between, say, 
5 and 25 and another assessor may use scores from 60 to 100 (assuming a 1 to line-scale 
score). These two extreme assessors could very well perceive the objects identically, and 
would perhaps agree with one another completely, had not they possessed such different 
scaling behaviour. This level-effect can easily be corrected for by expressing the scores 
deviations from the average score of an assessor an attribute. Geometrically this results in 
translating the entire configuration of an assessor such that the centre of the N object-points 
coincides with the origin of the space (see Figure 5). The centres M1 and M2 in Figure 4 are 
shifted onto each other and this point is labled in Figure 5. Mathematically this translation 
operation is known as column-centring, in ‘Analysis of Variance’ terms the assessor main- 
effect is removed. 

Figure 5 .  Centred configuration of two assessors. 

2.2.2 The interpretation-effect: RotatiodReflection 

The transformations which allow for the fact that the attributes do not have to be the same (the 
interpretation-effect) for all assessors are rotation and reflection. The entire configuration of an 
assessor can be rotated to bring the Nobject-points in agreement with the Npoints of the other 
configurations. If necessary the configuration can be reflected in a particular dimension too. 
can be seen from Figure 5, the object-points are not very close yet, the lines between the pairs 



of points (A1, A2), (€31, B2) etc. indicate the distance that is to be minimised. Mathematically 
the rotation and (reflection) are represented in a rotation matrix Hb for the configuration of 
assessor 

Figure 6 shows the two example configurations after rotation. Note that the N points 
actually are closer (A1 to A2, B1 to B2, C1 to C2, D1 to D2) than in Figure 5 .  

Figure 6 .  Configurations after centring and rotation. 

e- 

2.2.3 The range-effect: Isotropic Scaling 

Another individual scaling effect is the so-called ffect. This is shown by the different 
ranges of scoring that theassessors use. One assessor may give scores ranging between 10 and 
95 and another assessor uses scores from 60 to 80. This difference in range is another 
unwanted effect caused by individual differences in scoring behaviour. The underlying 
perception is believed not to depend on these differences in scaling range, so the effect is 
controlled for. The correction that is used is called isotropic scaling, which means that a 
configuration is shrunk or stretched in its entirity, i.e. alike in all directions of the space. 

A different scaling range shows as a different extensiveness of the configurations. Figure 6 
showed the two example configurations after centring and after rotation. It can be seen that the 
second configuration is contained whithin the first. The second assessor must have used a 
smaller range of the line-scale. The thick lines can be shortend by stretching the inner 
configuration a little bit. The result of this operation is shown in Figure 7. 
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Figure 7. The two example configurations after centring, rotating and isotropic scaling. 

The scaling factors are represented by a number pk A configuration is shrunk when 
O<pk<l and stretched when l<pk 

2.3 Generalised Procrustes analysis more formally 

Mathematically the matching process is expressed by minimizing the distances between the 
same objects for different assessors, under the conditions that the distances between the 
objects of one assessor may not change. Gower (1975) gives a mathematical derivation of 
generalised Procrustes analysis. 

The above mentioned distances can be expressed as the differences between the individual 
matrices: 

Z(Xd stands for a certain transformation Tof the matrices and 

llMll= tr(MM’) 
i j  
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for the of the squared elements of M. The transformation T has to maintain relative 

distances between the product-points. Such transformations were introduced in 82.1, now they 

are presented more formally. Firstly minimising (1) can be shown to be equivalent to 

minimising: 

when 

Y K - ' x T ( X k )  
k=1 

the mean of the individudal transformed datamatrices ?(Xk). The transformations applied 

Procrustes analysis are translations, rotations and isotropic scaling and they can be expressed 

as follows: 

where pk is the isotropic scaling factor, Hk the rotationmatrix and Tk the translation. The 
translation can be taken care of by centring the matrices XK, as was shown by Gower 
(1975). To keep the formulae in this section from growing long, the translation is not 
mentioned anymore. It is assumed that the columns in are expressed deviations from 
their means. Removing the means in this way is effectively removing the assessor main effect. 

The criterion minimised by generalised Procrustes analysis is the sum of all the squared 
distances between the individual transformed matrices which by (2) can be written as: 

Some constraints are necessary, to assure non-trivial solutions. One constraint is in the Hk 
being rotation matrices, which are orthonormal matrices, hence: 

A constraint the isotropic scaling factors pk is needed to prevent them from becoming 
zero to minimise (4) in a trivial way. The constraint scales the total variance to K, the number 
of sets: 
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It has been assumed hitherto that all the matrices Xk are of the same order (N M), which 
is the case with conventional profiling data. When Free choice profiling data are analysed this 
assumption does not hold. In this case the Xk are made of the same order by padding columns 
of zero’s until all Xk are of the same order max(Mk}). See Dijksterhuis and Gower 
(199112) for some discussion about this custom. Another possibility is using Projecting 
Procrustes analysis (Peay 1988) which differs from the classical (Gower 1975) Procrustes 
analysis. The criterion maximised by Projecting Procrustes analysis is 

where the superscript [PI stands for the first p dimensions of the configuration Note that 
the variance contained in the resulting, p-dimensional group average space is maximised, while 
in the classical Procrustes analysis the residual variance beteween the corresponding objects 
the entire M-dimensional individual configurations is minimised. The important difference with 
GPA is that the rotationmatrices are no longer proper rotationmatrices but they include a 
projection onto p dimensions well. This means that it is not necessary to pad all Xk to the 
same order. This also means that it is not needed to perform a PCA on the group average 
space afterwards, because this space already exists in p dimensions. 

Another difference proposed by Peay (1988) is the constraint on the isotropic scaling 
factors pk as follows: 

which is equal to (6) in case all sets are of the same order (N M). The scaling of the 
variance, formula (6) or does not influence the GPA solution. Dijksterhuis and Punter 
(1 990) suggest to scale the total variance to 100. This means that all subsequent variances can 
be read as percentages explained, or residual, variance. 

More about GPA and some variants can be found in Ten Berge (1977) and Ten Berge and 
see also Dijksterhuis and Gower 199 1/2). 

2.4 Variables and dimensions 

When analysing the raw data from the assessors in a sensory panel the columns of the 
datamatrices are the variables or attributes the assessors used in judging. When analysing 
sensory-instrumental data, often only two datamatrices are involved of which one may contain 
the results of some previous analysis like PCA or even another GPA. Such a datamatrix with 
the PCA or GPA result does not have variables as columns but dimensions. This is a different 
situation from the analysis of raw, sensory, datamatrices from different assessors. Different 
ways of scaling and standardizing are needed when analysing sensory-instrumental data 
compared to the data from a sensory panel. 

The result of prior analyses (e.g. factor analysis, or MDS) will often be normalised 
configurations, which do not need pre-scaling for the Procrustes analysis. Different 
instrumental measures (e.g. pH, Instron-measures etc.) will have very different ranges and 
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levels of scores. In these cases standardisation of each variable may be useful. The sensory 
scores of a panel are much more homogeneous than different instnunental measures, so they 
may not need to be standardised individually. 

For an application of generalised Procrustes analysis to sensory-instrumental data see 
Dijksterhuis (1994). Dijksterhuis Gower (1991/2) also discuss some matters related to the 
pre-scaling of the datamatrices. 

3. RESULTS OF A PROCRUSTES ANALYSIS 

This section presents matters related to the results of a GPA. The analysis of variance is an 
important tool in interpreting the results, as is the PCA which enables inspection of a low- 
dimensional projection of the group average. 

3.1 Analysis of variance 

After the analysis, the distances between the corresponding points can be interpreted in the 
translated, scaled and rotated configurations. These distances are precisely those which are 
minimized by the generalised Procrustes analysis process. It is not possible to get the objects 
closer under the assumptions of generalised Procrustes analysis. There are different ways of 
looking at these distances. 

3.1.1 Total fit/loss 

Squaring the distances, resulting in ‘variances’, and adding them, gives a overall measure of 
loss which can be compared with the squared distances before the generalised Procrustes 
analysis. It is convenient to express these variances relative to the total variance before the 
generalised Procrustes analysis (see also Dijksterhuis Punter, 1990). The thick lines 
remaining in Figure 7 cannot be made shorter, and these lines represent the loss, i.e. that what 
cannot be modelled by the GPA process. The complement of the percentage loss to 100% 
gives thefit of the obtained solution. Remember that the group average is subjected to a PCA 
to find a projection onto a low-dimensional space. The aforementionedfit can be broken down 
per dimension, to infer an optimal dimensionality to best represent the results in. Dijksterhuis 
Punter (1990) use a scree-graph to infer an optimal dimensionality. 

When the variances -squared distances between the objects- are added over the N objects, 
per assessor, a measure results which shows the agreement of a particular assessor with the 
group average. When these variances are added over the assessors, a measure for each 
product can be obtained, which shows how much agreement there is among the assessors 
about a particular product. Both outlying assessors and products can be thus identified. 

These variance measures for assessors and for objects can be split over dimenions too, this 
enables identification of assessors or objects which need an extra dimension, or cases which 
one assessor or one object accounts for an extra dimension by itself. 

3.1.2 Geometry of the variance measures 

The different variances in a Procrustes analysis have a clear geometrical meaning. In Figure 8 
the different variance measures (‘group average’, ‘Residual’ and ‘Total’) for the different 
products are illustrated. In this figure the position of product A is shown for three assessors 
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(A1, A2, A3), their ‘group average’ point is labelled A. The variances are, as variances usually 
are, measured relative to the origin, labelled C (Centre). 

-Group Average variance for product A 

Residual variance for product A 

variance for product A 

Figure 8. Geometrical interpretation of the group average, residual and total variances for the 
objects in a Procrustes analysis. 

In Figure 8 the lines between the points represent the variances. The squared lenghts of 
these lines is the variance. 

When the residuals or total variances are regarded per subject instead of per product, 
variance measures for assessors result (see Figure 9). In this figure only three assessors (1, 2 
and 3) and two products (A and B) are used to keep the plot from cluttering. 

Total -Assessor1 

Residual Assessor 2 

Assessor 3 

B3 

B? 

Figure 9. Geometrical interpretation of the group average, residual and total variance for two 
assessors in a Procrustes analysis. 
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In Figure 9 the dashed lines represent the residual variances, the plain lines the total 
variances. The three assessors are represented by different thicknesses of the lines. For assessor 
1 the residual is computed by adding all its residual parts from all products, the same holds for 
the total parts. Note that the residuals and the totals are not part of the same ‘average assessor- 
point’, as was the case with the product-points. This is the reason that a group average 
variance is not available for assessors but only for products. 

3.2 Principal component analysis 

It is time to expand a little on the matter of the dimensionality of the solution. The classical 
generalised Procrustes analysis according to Gower (1975) applies all the transformations 
(translation, rotatiodreflection, scaling) in the highest possible dimensionality, i.e. 100% the 
data is involved throughout the entire analysis. When the optimal solution is obtained, it is in 
this high, say M, dimensional space. In order to obtain a convenient representation in a low 
number of dimenions, say two, a PCA is applied to the M dimensional GPA group average. 
This final PCA gives a number of dimensions of which the first two can be plotted for 
inspection. The percentages explained variances of these dimensions can be used to infer a 
dimensionality of the solution. Perhaps a third or fourth dimension is decided to be needed in 
order to interpret the results. A scree graph of the explained variance of this PCA can help in 
deciding on the dimensionality of the representation. 

The PCA on the group average space results in a low-dimensional representation of 
this space. The PCA gives this space a certain orientation. Because one wants to compare the 
group average space to all individual spaces, the latter are given the same orientation as the 
low-dimensional group average space. 

3.2.1 Representing the original variables 

The original variables, the attributes of a sensory panel or instrumental variables in sensory- 
instrumental data, can be represented in the GPA group average. Basically there are two ways 
of doing this. One is to use the coordinates of the rotationmatrices, these are called the 
loadings the variables. These matrices, Hk rotate the individual datamatrices to 
The matrices Hk are of order (M x M) and their rows represent the M columns of on the 
new -rotated- M dimensions XkHk These dimensions are represented in the Hk as their M 
columns. Plotting the column-points from Hk thus result in points that represent the original 
variables in the rotated spaces XkHk 

Another way of representing the original variables is to calculate their correlation with the 
dimensions of the group average space. Plotting the correlations results in a representation of 
the original variables often much alike the one using the loadings. 

Theoretically the loadings may be interpreted as biplot axes (see e.g. Gower and 
Dijksterhuis 1994), which can be a reason to prefer the loadings. Others may prefer the 
correlations because sometimes they may give mdre explicit results. Which one prefers seems 

to amount to a matter of taste. 

3.3 Statistical matters 

There is no formal test of significance available for the results of a generalised Procrustes 
analysis. In Langron and Collins (1985) such a test is derived, but the assumptions may be 
unrealistic (cf. Dijksterhuis and Gower 1991/2). GPA is most often used an exploratory 
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tool, especially in sensory analysis. Recently some papers are publised which address the 
matter of significance in a generalised Procrustes analysis context. King and Arents (1991) 
devise a test based on the analysis of random data-matrices. Their approach is the same as the 
one used by Langeheine (1982). In this approach random datamatrices, the size of the original 
data, are analysed, and this is repeated a number, say 100, of times with different random data. 
The position of the original result in the distribution of the results from the random data 
analyses, is an indication of the statistical significance of the GPA result. The permutation test 
approach (see e.g. Wakeling et al. 1992) uses the same distribution as the original data, in fact 
it uses the very same data, to obtain a measure of the statistical significance. In a permutation 
test the hypothesis of no structure in the data, or no relation between the data sets, is 
simulated by means of permuting the rows of the datamatrices. For the permuted data set a 
relevant statistic, here e.g. the Procrustes-loss, is calculated. This process is repeated a large 
number of times, say 100. The empirical result, i.e. the Procrustes loss of the unpermuted, 
original, data set, is compared to the distribution of the loss-values obtained after permutation 
of the data sets. Analogously to the random data approach, the position of this empirical loss- 
value in the distribution of loss-values gives the statistical significance. In Dijksterhuis and 
Heiser (1995) a brief evaluation of the random data- and the permutation methods is given. 

Analytical approaches (Sibson 1978, Langron and Collins 1985) to find a theoretical 
distribution for the Procrustes loss values, suffer from the fact that the data must follow a 
multivariate normal distribution, which may not occur in practice. a result the results of 
these studies not work satisfactory in practice. 

3.4 Methods for missing data 

Generalised Procrustes analysis as an exploratory research tool in sensory analysis presupposes 
a complete data set for each assessor. Until recently there were no Procrustes models which 
would hanlde missing values properly. Commandeur (1 99 1) developed a generalised 
Procrustes analysis in which it is allowed to have arbritmy rows of individual data sets 
missing. The model is able to fit data sets which are of unequal row-order. This situation could 
arise in a sensory context when not all assessors tasted or smelled all objects because e.g. 
some assessors failed to appear at a certain experimental session. Ten Berge et al. (1993) 
expanded the method of Commandeur to include missing cells. This means that each of the 
individual data sets can have missing values for some products on some attributes. 

3.5 Comparison with other MVA techniques 

3.5.1 Procrustes variants 

The original generalised Procrustes analysis is developed by Gower (1975). Earlier Procrustes 
analysis methods were developed to match two data sets. Table 1 presents a concise overview 
of the most cited contributions to the development of Procrustes analysis. 



Table 1 
Some papers in the histow of Procrustes analysis. 

Author Year 
Green 1952 
Hurley Cattell 1962 
Cliff 1966 
Schonemann 1968 
Schonemann Carroll 1970 
Kristof Wingersky 1971 
Gower 1975 
Ten Berge 1977 
Ten Berge Knol 1984 
PMY 1988 
Gower 1995 

Another approach to generalised Procrustes analysis is described by Peay (1988). The 
‘classic’ generalised Procrustes analysis of Gower (1975, see also Ten Berge 1977) performs 
all transformations in the highest possible dimensional space. The results are subjected to PCA 
afterwards to create a low-dimensional representation. The method according to (Peay 1988) 
has a different approach to make a low dimensional representation. The rotatiodreflection step 
of the process includes a projection onto a low dimensional space. Hence this method will be 
called projection Procrustes analysis in contrast with orthogonal Procrustes analysis (see 
Gower 1995). A PCA is not needed afterwards. A result of the projecting approach of 
projecting Procrustes analysis is that the dimensions of the result of this method are not nested. 
This means that a P-dimensional solution is not the same as the first P dimensions of a P+p 
@>O) solution as is the case with classical GPA. 

What method is to be preferred is perhaps more a matter of philosophy than of supremacy 
of one of the methods. Dijksterhuis Gower (1991/2) compare the ‘classical’ Gower (1975) 
method with the Peay (1988) method. 

3.5.2 Other MVA techniques 

Before talking about the relationship of GPA with other MVA methods there are two 
distinctions to make: 

between 2-way methods and individual difference methods 

between 3-way and K-sets techniques. 
Section (‘Analysing aggregated sensory data’) treats a number of different 2-way MVA 

methods. These methods work on matrices that are aggregated. The aggregation is often done 
by means of averaging over assessors, so there are no individuals present in the data. It is 
argued by some (see e.g. Dijksterhuis and Punter 1991, Dijksterhuis 1995a, 1995b) that it is 
seldom justified to average over assessors in sensory data analysis because the attributes 
actually are different for each assessor, despite training of the panel. 

The methods that respect the individuals in the data are called ‘individual difference 
methods’ and they are treated in Section (‘Analysing individual sensory profiles’). Two 
kinds of individual difference methods must be distinguished: 3-way methods and K-sets 
methods. There is a fundamental difference between these two methods and between the 
corresponding two of data: 3-way data and K-sets data. Figure 2 shows the structure of 



a 3-way data matrix, in sensory applications this means that all attributes are the same for 
assessors. In Figure 3 it is illustrated that the attributes are different for the assessors. 3-Way 
MVA methods assume that all sets -the assessors- have the same variables, hence it is useless 
to use these methods for K-sets data. K-sets methods do not make this assumption, so they are 
fit for the analysis of K-sets data as well as for the analysis of 3-way data. Analysing 3-way 
data by a K-sets method provides a manner to find out if the variables are really commensurate 
in all sets. 

The 3-way factor analytic methods in Chapter 10 (‘Analysing individual profiles by three- 
way factor analysis’) are, as their name suggests, 3-way methods. GPA and GCA, Chapter 7 
(‘Procrustes analysis in sensory research’) and Chapter 8 (‘Generalised canonical analysis of 
individual sensory profiles and instrumental data’) respectively, are K-sets methods. Chapter 6 
(‘Analysing differences and similarities among products and among assessors 
Multidimensional Scaling‘) treats Multidimensional Scaling methods, which come in a 2-way 
and an individual-difference variety. The individual-difference MDS methods work differently 
from GPA and GCA, but they effectively analyse K-sets data. This is because individual 
difference MDS methods study the relationships (distances) between the objects of each 
individual data set, so that the variables dissapear in the process. When the variables dissapear 
it does not matter anymore whether the data were K-sets, or 3-way. 

4. CONVENTIONAL PROFILING 

In this section a data set is analysed using the program Procrustes-PC v2.2 (OP&P, 1992, 
Dijksterhuis et al. 1991). 

4.1 Data 

The cheese data set analysed in this paragraph is made available by Matforsk and is part of a 
study by Hirst et al. (1994). This data set is also analysed in Dijksterhuis (1995a) in the context 
of a study of ‘panel consonance’, i.e. the agreement of the individuals in a sensory panel on 
each attribute separately. 

The data consist of the scores of 10 judges scoring 12 kinds of hard cheese using 19 
attributes. The QDA procedure (Stone and Side1 1985) is used so the data are ‘conventional 
profiling’ data. GPA is applied to this data set to study individual differences between judges 
and to construct a ‘group average’ configuration of the 12 cheeses. It is the same data set that 
is studied in the chapter on 3-way factor analysis (chapter 4.4, ‘Analysing individual profiles 
three-way factor analysis‘). The analysis in this chapter is to illustrate the method of 
generalised Procrustes analysis, it is not meant as a study of the cheese data. 

Each of the 12 cheeses is presented twice to each subject. Each replication is analysed as a 
separate ‘product’ in the GPA, so 24 ‘products’ are used in the analysis. 

4.2 Dimensionality of the GPA group average 

Most often the results of GPA are displayed in a two dimensional plot. At this point it is useful 
to consider the differences between the projection Procrustes analysis according to Peay 
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(1988) and the original Procrustes analysis according to Gower (1975). The differences 
between the two methods will be illustrated using the cheese 

4.2.1 Projection Procrustes analysis 

This variant of GPA combines the Procrustes transformations with a projection onto a low 
dimensional space. This means that when the researcher chooses to calulate a two-dimensional 
GPA solution, the data are projected onto a 2-dimensional space and that higher dimensions 
are not used for the calculation of the optimal solution. This does not mean that the solution is 
sub-optimal, it is the best solution in two-dimensions, but at the cost of loosing sight of any 
interesting information that could have been captured in the third, forth or higher dimensions. 
To be sure, in addition a three-, four-, five-, etc. dimensional analysis should be carried out. 

4.2.2 Classical Procrustes analysis 

The original GPA applies all Procrustes transformations in the 1 1 1  dimensional configuration, 
and the result of the analysis is a group average in the maximum number of dimensions 
possible. Any potentially interesting information is available. The resulting high-dimensional 
configuration is subjected to a principal component analysis in order to be able to give a low 
dimensional representation of it. The researcher can Q posteriori decide to use only two or 
three dimensions of the total result. 

4.2.3 Cheese group average 

To find-out the optimum dimensionality to represent the group average in, all dimensions are 
considered. Note that a projection Procrustes analysis with the maximum number of 

50 

40 

30 

0 

'B 

10 

1 2 3 4 5 6 7 8 9 1011121314151617181~ 

dimension 

Figure 10. Percentages group average- and total variance explained in the dimensions of the 
group average space. 
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dimensions is identical to the classic Procrustes analysis because there are no dimenions left to 
project onto. In this case the projections are onto the full dimensional space, which is of course 
the same thing as not projecting at all.Figure 10 presents a scree-graph in which the 
percentages explained variance of all dimensions are shown. 

Figure 10 shows that approximately 40% of the group average variance and 46% of the 
total variance is explained in the first dimension. Remember that the total variance is the 
variance explained by the configurations of all the assessors. When these configurations are 
averaged, becoming the ‘group average’ configuration, the group average variance remains. 
The averaging of individual configurations results in the loss of variance. It is exactly this loss, 
the residual variance, which is minimized by the classical orthogonal procrustes analysis. The 
projection procrustes analysis maximises the group average variance, in a particular number of 
dimensions. In this fulldimensional analysis, the two are identical. 

Table 2 

Cumulative explained variance for the dimensions of the group average and of the individual 

configurations (‘Total’) of the GPA result of the (10 x 12 x 19) Cheese set. 

Dimensions group average Total 

1 40.37 46.62 

2 48.59 58.09 

3 53.78 66.08 

4 57.08 71.19 

5 59.92 75.61 

6 62.33 79.62 

7 64.32 82.98 

8 65.97 85.73 

9 67.48 88.28 

10 68.68 90.25 

11 69.81 92.38 

12 70.73 93.87 

13 7 1.55 95.33 

14 72.20 96.5 1 

15 72.76 97.5 1 

16 73.22 98.40 

17 73.59 99.12 

18 73.86 99.62 

19 74.04 100.00 
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In Table 2 it can be seen that a two dimensional solution explains 48.59% variance of the 
group average configuration. The total variance in two dimensions is 58.09%, i.e. the variance 
explained by the inidividual configurations of all the assessors. Both from Table 2 and Figure 
10 two- or three-dimensions seem enough to represent the results in. When we decide that two 
(or three) dimensions will suffice we can use the first two (three) dimensions of the results of 
the fulldimensional analysis above. Alternativeley we can perform a new analysis using the 
projecting Procrustes technique in two (or three) dimensions, which will result in a slightly 
increased fit in the first two (three) dimensions. The disadvantage is that there are no higher 
dimensions available, all higher dimensions are explicitely regarded as noise by this decision. 
Table 3 shows the percentage variance explained by these additional Projecting Procrustes 
Analysesl. 

Table 3 

Cumulative explained group average variance for the separate 2 and 3 dimensional Projection 

Procrustes Analyses of the Cheese data (corresponding classic GPA percentage from Table 2 

between brackets). 

Dimension 2D analysis 3D analysis 

1 49.764 40.628 

2 49.540 (48.59) 49.238 

3 54.940 (53.78) 

Table 3 shows a slight increase in explained variance for the dimensions of the group 
average compared with the results in Table 2. For the presentation of the cheese data analysis 
we will choose the result of the two dimensional projection Procrustes analysis. 

4.3 Group average configuration 

One of the most interesting results from a Procrustes analysis is the 'group average-', or 
'Consensus-'configuration. This configuration contains the products, here the 24 cheeses. 
Figure 11 shows this configuration. 

that the program, that was for the analyses in this 
chapter, allows for both 'classical' orthogonal procrustes analysis and projection procrustes 
analysis. Most other Procrustes soRware is based on the 'classical' orthogonal procrustes 
EWllySis 
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Figure 1 1.  Group average configuration of the Procrustes analysis of the cheese data. Replicate 
cheeses are connected by a line. 

The configuration in Figure 1 1  shows the 24 cheeses. The replicates are connected by a line. 
Including replicates in a profiling study is very important, especially when the data are analysed 
by Procrustes analysis or another multivariate analysis. In Figure 1 1  the lines connecting the 
replicates are relatively short, which is an indication that the judges assessed the replicates 
almost identically, hence an indication of the validity of the obtained result. In this case 
interpretations of this configuration can be made safely. 

Taking a closer look at Figure 1 1  reveals some groups of cheeses. Two releatively clear 
groups are indicated in the figure. At the lower left part are the cheeses (9, 10, 11 ,  12, 13, 14, 
21, 22), at the lower right part of the plot are (3, 4, 7, 8). At the upper right part there is a 
group, though looser than the previous two groups, that seems to consist of the cheeses (15, 
16, 19, 20, 23, 24). At the upper left part of the figure clearly the pair ($6) is different from 
the other cheeses. Cheese number 1 and 2 lie in that part of the plot too. The numbers 17 and 
18 lie almost at the centre of the plot, this usually means that there is no clear agreement 
between the judges on these cheeses. The numbers 17 and 18 probably show a relatively 
high residual variance. The Procrustes ‘analysis of variance’ can be used to further interpret the 
results. 

4.4 Analysis of variance 

In this section the Procrustes analysis of variance tables are shown and interpreted. To 
illustrate the tables they plotted as bar-charts (cf. Dijksterhuis and Punter, 1990). 

4.4.1 Analysis of variance for objects (cheeses) 

Figure 12 shows the group average (explained) variance and the residual (not explained) 
variance for the 24 cheeses. The ‘Total’ variance can directly be read from the plot the total 
hight of the bars because: 
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total variance residual variance group average variance 

The order of the cheeses along the horizontal axis in Figure is in increasing size of their 
residual variance. 

Figure Percentage variance explained (group average) and unexplained (Residual) for the 
cheeses. The order of the cheeses is in increasing size of Residual variance. 

The cheeses at the left hand side of Figure have the smallest residuals. This means that 
there was not much difference between the scores of the assessors on these cheeses. The panel 
agreed well on these cheeses. 

The cheeses with a larger part of residual variance (right hand side of the picture) did not fit 
well in the group average, there were differences between the scores of the assessors. In Figure 

the cheeses 3, and have relatively large residual variances. There must have been 
less agreement on these cheeses. 

Analysis of variance for assessors 

In this section the residual variances for assessors are studied. Table shows the residual 
variance per assessor. 
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Table 4. 

Percentage unexplained (‘residual’) variance for the assessors. 

judge no Residual 

9 0.772 
7 0.8 18 
5 0.970 
2 1.015 

10 1.075 
4 1.344 
6 1.418 
1 1.489 
3 1.624 
8 1.882 

From Table 4 it can be seen that assessors 1 ,  3 and 8 have the highest residual variances. 
These assessors‘ individual configurations of the 24 cheeses differ most from the group 
average configuration. Assessors 7 and 9 are among the lowest-residual assessors. 

When selecting an analytical sensory panel, an homogeneous group of judges is desired. 
Suppose that a selection of judges is to be made from Table 4, judges with high residual 
variances will be deleted from the panel, or subjected to extra training. 

4.4.3 Individual configurations 

To illustrate differences between individual configurations Figure 13 and Figure 14 show the 
group average position of the 24 cheeses, connected with the position of the same cheeses 
the individual result of respectively assessor 7 -a low-residual assessor- and assessor 8 -a high- 
residual assessor. 

-1  

dimension 

Figure 13. Group average position of the 24 cheeses, connected to the position of the same 
cheeses according to the configuration of assessor 7. 
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Though the differences are not large, over-all the lines in Figure 14 are longer than the lines 
in Figure 13. The sum of the squared lengths of the lines is the residual variance for the 
assessors 7 and 8, and is shown in Table 4. 

Figure Group average position of the 24 cheeses, connected to the position of the same 
cheeses according to the configuration of assessor 8. 

Figure 15. Isotropic scaling factors (sorted) for the 10 individual assessors’ configurations. 
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4.5 Scaling factors 

The isotropic scaling factors (see 52.2.3) reflect the amount of stretching or shrinking the 
individual configurations of the 10 assessors underwent in the Procrustes analysis. Figure 15 
presents the 10 scaling weights. 

The horizontal line in Figure 15 is at p 1. Bars extending above this line show stretched 

configurations (p >l), bars below this line represent shrunk configurations (O<p<l). Assessor 
9, 5 and 3 have their configurations shrunk, they used a larger range of scores than the other 
assessors. It’s the other way around for assessors 1, 4 ,7 and 8, their configurations are 
stretched. They used a limited range of scores. The assessors 6, 2 and 10 had their 
configurations hardly changed by the scaling. 

4.6 Representing the original variables 

Until now the objects, i.e. the 24 cheeses, and the assessors are studied. The 19 attributes the 
assessors used remain to be studied now. The attributes can be subdivided into odour-, flavour 
and texture attribtutes and are presented in Table 5. 

Table 5. 

Attributes used in the cheese study (Hirst et al. 1994). 

odour flavour texture 

1 odour intensity 7 flavour intensity 15 hardness 
2 creamy/milky 8 creamy/milky 16 rubbery 
3 ammonia/sulphur 9 sour 17 doughy 
4 10 ammonia 18 grainy 
5 sour 11 nutty/fiuity/sweet 19 sticky 
6 other 12 bitter 

13 
14 other (cheddar) 

Note that the arrangement in the table does not indicate any relation between 
attributes in the same row. 

The loadings or correlations from the Procrustes analysis output give representations of the 
original attributes. Both the coordinates of the loadings and of the correlations can be used to 
draw the original attributes in the group average configuration. In this example the correlations 
will be used. 

Each assessor used these 19 attributes, this means that each individual configuration 
contains 19 attributes. The total configuration with all judges together will consequently 
contain 10.19=190 attributes. These are far too many attributes to draw in a picture. With 
conventional profiling like this cheese data set, it is possible to average the attributes over 
the assessors, to make group average attributes. This is analogous to the averaging of the 
individual product-positions to make group average product points. Figure 16 presents the 
resulting group average attribute points based the correlations of the original attributes with 
the group average dimensions. Of course averaging is only justified with a reasonable fit. When 
the fit is very low, the group average configuration is to be doubted. 
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Figure 16. Averaged (‘group average’) attributes in the group average space of the cheese 
data. 

In Figure 16 the relations between the attributes can be inferred. It shows that some odour and 
flavour attributes match: odour with nutty flavour, creamy/miky odour with 
creamy/miky flavour, sour odour with sour flavour, ammonia odour with ammonia flavour, 
and odour intensity with flavour intensity. The texture attributes seem to divide the cheeses 
into sticky, doughy, grainy and rubberyhardness. When dimensions have to be reified the first 
dimension may be approximately interpreted as a bitter/sour odour/taste and rubbery versus 
sticky dimension, and the second dimension as a nuttyhweet odourhaste and doughy versus 
grainy dimension. 

Figure 16 can be compared to Figure 11 to infer properties of the cheeses. The lower left 
group of cheeses (9, 10, 11, 12, 13, 14, 21, 22) appear to be characterised by creamy/milky 
flavour and taste, their texture is mainly doughy. The cheeses 9, 10, 21, 22 seem to tend to a 
rubbery texture. The group at the lower right part of the plot (3, 4, 7, 8) has a sticky texture 
and a somewhat more salty and sour flavour. The cheeses 19, 20, 15 and 16 have a high 
flavour and taste intensity, a bitter/sour/ammonia flavourhaste. Because these cheeses lay 
opposite to the texture attributes rubbery and hardness, they do not have these properties, they 
are mainly soft cheeses. The cheeses number 5 and 6 (1 and 2 to a lesser extent) are the 
nutty/hity/sweet cheeses. These cheeses are among the harder, more rubbery and grainy 
cheeses. 

The above interpretation of the GPA group average space and the positions of the 
correlations of the original attributes is a kind of biplot-interpretation. For more about biplots 
in a GPA context see Gower and Dijksterhuis (1992), for biplots in general see (Gabriel 1971, 
Gower 1992). 
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5. FREE CHOICE PROFILING 

In this section a free choice profiling data set is analysed by means of GPA. For this analysis 
the Procrustes-PC v2.2 program (OP&P 1992) was used. This same data is analysed by GCA 
in Chapter 8 too. 

5.1 Data 

The data consist of the judgements of 20 different mineral waters by eleven assessors2. Each 
assessor used herhis own attributes to judge the waters, so the data are FCP data. FCP data 
can only be analysed by individual difference method of the K-sets type, or an individual- 
difference MDS method (e.g. Indscal; Carrol and Chang 1970). this section GPA is used to 
analyse this data set. What is presented here is a standard GPA analysis of an FCP data set. 
The GPA method used is the classic GPA (Gower 1975) so the smaller data sets are padded 
with zero’s to make all sets of the same order. 

Some of the 20 mineral waters were presented, blindly, two or three times. These 
replications are very useful, they will be represented as connected points in the Group Averge 
plot (compare Figure 11) .  

Group Average 
Total 

50 

30 

20 

0 

C 
m 

1 2  3 5 6 7 8 9 10 
dimension 

Figure 17. Percentages group average and total variance explained by the dimensions of the 
GPA group average space. 

The data were made available by Dr. Pascal Schlich, INRA, Dion, France. 
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5.2 Analysis of variance 

First the dimensionality to represent the results in must be chosen. To this end the explained 
variance, distributed over the dimensions are needed. Figure 17 presents this scree for the 
dimensions of the water data. 

The scree for the total variance shows that the first dimension explains 63% of the variance, 
the second dimension adds about 18%, the third adds another 7%. The line for the group 
average variance has the same shape, but the variances are lower. They should be, the 
differences are the residual variances per dimension. It seems that a 2-dimensional solution 
would do as a reasonable approximation of the data. In Table 6 the cumulative percentages 
explained variance are given, a two-dimensional solution explains 81% in all individual 
configurations together and 45% in the group average. 

Table 6 

Cumulative explained variance for the dimensions of the group average and of the individual 

configurations (Total) of the GPA result of the water data. 

dimension group average Total 
1 38.837 62.908 
2 44.729 80.963 
3 46.607 88.084 
4 47.918 93.231 
5 48.722 97.078 
6 49.091 99.05 
7 49.155 99.46 
8 49.202 99.765 
9 49.23 1 99.945 

10 49.240 100 

Note that in Table 6 the total explained variance in 10 dimensions is loo%, as it should be 
because in the maximum dimensionality all data are included and of course nothing is lost. 

5.3 Configurations 

5.3.1 Group average configuration 

Figure 18 shows the GPA group average configuration of the 49 mineral waters. Replications 
are connected by lines. It can be seen from Figure 18 that e.g. water no. 15, 16 and 17, are 
judged more different than the waters 21 and 22, because the lines connecting the former are 
much longer than the lines connecting the latter. 

Figure 18 enables identification of four approximate groups. At the left are two waters: 15, 
16, 17 and 21,22. Somewhat more to the right are two other waters: 2 and 43, The big 
cluster of the remaining waters may be subdivided into the waters 25, 26; 47, 48, 49; 10,11, 
which appear at the rightmost bottom part. This group also includes 45, which is connected 
a rather long line to 46, these two waters were not very consistently assessed, they are rather 
far apart. In the set remaining waters it is hard to distinghuish separate groups. Note that the 
lines connecting replicates cross through this cluster, so there apear no clearly separated 
groups of waters. 
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Figure 18. GPA group average configuration of the 49 mineral waters. Replicate waters are 
connected by lines. 

Figure 19 shows the residual and total variances of the ten judges in the mineral water data 
set. Note that all the residual variances are about equal, and the total variances differ. 

Figure 19. Total and residual variances of the assessors in the water study. 

The judges 6 and 4 differ the most in the amount of total variance. It may be interesting here 
to study the total variances per judge, for dimensions separately. Table 7 presents these 
variances. 
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Table 7 

Total variance in the first four dimensions, per judge. 

judge no. 1 2 3 4 

1 8.920 0.509 0.134 0.486 
2 5.895 1.83 1 0.598 0.224 
3 5.293 1.8 19 1.444 0.572 
4 9.361 0.725 0.285 0.498 
5 4.891 3.540 0.45 1 0.320 
6 1.134 1.933 0.288 0.527 
7 7.352 1.401 1.01 1 0.572 
8 2.439 2.210 0.969 0.05 1 
9 7.605 0.5 14 0.816 0.553 

10 6.993 1.81 1 0.633 0.545 
11 3.027 1.761 0.490 0.799 

Table 7 shows that some judges (1, 4, 9) have a large proportion of variance in the first 
dimension, and relative low proportions in the second. In contrast judge 5, 6, 8 have relatively 
much more variance in the second dimensions, compared to what they have in the first. 

5.4 Scaling factors 

Table 8 gives the isotropic scaling factors for the individual sets. Two sets (7 and 10) needed 
to be stretched by a factor 2.6 and 2 respectively. Apparantly the judges 7 and 10 used a rather 
small range of scores. Judge 11 used a large range of scores, the corresponding configuration 
is shrunk by a factor 0.6. 

Table 8 

Scaling weights of the judges in the GPA of the water data. 

judge weight 
11 0.627 
6 0.769 
8 0.785 
1 0.855 
2 0.920 
3 0.959 
4 1.007 
9 1.065 
5 1.389 

10 2.001 
7 2.571 

5.5 Representing the original variables 

Table 9 shows the attributes and their use by the assessors. Note that 8 of the 11 judges used 
the term bitterness, the terms neutral and metal were used by six assessors. There are a lot of 



unique attributes, i.e. which were only used by one assessor. Notably assessor 4 and 5 
generated most unique attributes. 

Table 9 

Attributes used in the FCP of the mineral waters and the no. of the judge that used it. 
Attribute judge no. Attribute judge no. 
bitter 1,2,3,5,6,8,9,11 balanced 4 
neutral 1 ,2 ,4 ,6 ,8 ,9  persistent 4,6 
taste 1 mineral 5 
metal 1,3,7,9,  10, 11 stagnant 5 
fluid 1 river 5 

2,4,7,8 cool 5 
2,4, 7, 11 sugar 6 

salty 
earth 
hard 2 old 6 
acid 3,4,11 mushroom 7 

7 
9 

Paper 3, 10 miw. 
flat 475 energx 

4 hazelnut 10 
4 soft 11 pungent 

rubber 4 
Note that the arrangement in the table does not indicate any relation between attributes in the 
same row. 

For the interpretation of the clusters of waters that appeared in Figure 18 it is needed to 
represent the original attributes in the group average configuration. In Figure 20 the 
correlations of the original attributes with the dimensions of the group average space are 
presented. 

8 
dimension 1 

Figure 20. Configurations of the individual attributes based on the correlations of the attributes 
with the dimensions of the group average. The number following the term indicates the 
assessor number. 
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In Figure 20 there appear two main groups of attributes. In the lower right quadrant: fluid, 
milky, hazelnut, salt (2,7, 8), soft, stagnant, neutral (8), acid (3), earth (1 1) (assessor numbers 
between parentheses) and in the upper left quadrant most other attributes. 

Inspecting the configuration in Figure 20 enables one to draw some interesting conclusions 
with respect to the use of the attributes. The term ‘metal’ was used by six assessors (1,3,7,9,  
10, 1 l), and there seems to be reasonable agreement between them. This agreement is larger 
than the agreement found between the use of the term ‘neutral’, also used by six assessors (1, 
2,4,6,8,9). The agreement on ‘bitter’ appears less than that on ‘neutral’, assessors 5 ,  6 and 8 
have scored bitter somewhat differently than assessors 1,2,3,9, 11. 

Figure 20 and Figure 18 show the same plane, so they can be superimposed. This results 
a kind of biplot, containing both the mineral water object points and the positions of the 
attributes. This plot is not presented here -it would be too cluttered-, but through comparison 
of the figures Figure 20 and Figure 18 a biplot-like interpretation can also be given. The set of 
waters (15, 16, 17, 21, 22) lies in a region in the plane that is characterised by a lot of 
attributes, including most ‘metal’ and ‘bitter’ attributes. The set (25, 26, 47, 48, 49, 10, 11, 
45) lies in a region characterised by the attributes salt (for 3 assessors), soft, stagnant, acid, 
earth, hazelnut, fluid. The remaining waters are mainly characterised as not having a 
certain property. Most lay opposite the remaining attributes. 

It is conceivable that mineral waters have rather low amounts of clear tastes. So, after the 
attributes are generated, a lot of the waters will out not to possess this attribute, or just 
have it in a very low intensity. In addition, when the tastes are not clear, the differences 
between the assessors may become rather outspoken. A clear bitter taste may not cause much 
confusion in a sensory panel, but when the taste is only just above the detection threshold, as it 
may be in mineral waters, individual differences may arise. This could result in the use of other 
terms. 

6. ALGORITM AND SOFTWARE FOR PROCRUSTES ANALYSIS 

6.1 Generalised Procrustes analysis algorithm 

The original generalised Procrustes analysis algorithm is presented in Gower (1975). Ten 
Berge (1 977) presents a slightly modified algorithm. These algorithms concern the heart of the 
Procrustes analysis: the rotation and isotropic scaling. In a somewhat broader view, and in 
most applied situations a Procrustes analysis consists of three different parts: 

Pre-steps (translation, ‘pre-scaling’) 

Analysis (rotatiodreflection, isotropic scaling) 

Post-steps (PCA, analysis of variance) 

6.1.1 Pre 

The pre-steps consist of the translation operation which amounts to centering the individual 
datamatrices Xk It is also possible to give differential weights to sets or to variables. This is 
pre-scaling, it is not part of the actual Procrustes analysis. Depending on the wishes of the 
analist the data may be pre-scaled to have a certain total variance. 
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6.1.2 Procrustes analysis 

The heart of the analysis consists of the two Procrustes transformations, rotatiodreflection and 
isotropic scaling. The rotatiodreflection is computed for all individual matrices Xk to fit the 
group average matrix. This computation results in a rotationmatrix Hk The reflection is a part 
of this rotationmatrix and will not be mentioned any further for this reason. After each 
individual rotationmatrix is computed, the new rotated individual matrix is XkHk and the 
group average matrix recomputed (see Ten Berge 1977). This is repeated for all sets 
k l , .  .,K. After one run over the sets the isotropic scaling is performed, 

The isotropic scaling factors pk are computed for each At this point one iteration of the 
generalised Procrustes process is completed and a new average matrix, now with inclusion of 
the scaling factors, is computed. One iteration is seldom enough. The decrease of the sum of 
squared distances between the individual sets p&.Hk over two subsequent iterations is taken 
as the criterion to judge whether a satisfactory result is obtained. This criterion is usually set to 
a very small value, e.g. 0.001, After a of iterations the criterion approaches this value 
and will finally become smaller than 0.001. Then the process is said to have converged and the 
iterative process is terminated. 

6.1.3 Post 

said before, the result is in the highest possible dimensionality and PCA is applied to the 
resulting average configuration. Suppose we take two dimensions from this PCA to inspect the 
group average space. In order to be able to compare this two-dimensional representation With 
the individual sets, the individual matrices pkXkHk are given the same orientation as the PCA 
result of the group average. We must assure that we compare the individual sets and the group 
average in the same plane. 

Further post-steps include the computation of several ways of partitioning of the residual, 
explained and total variance, and the computation of the correlations of the original attributes 
with the dimensions. Finally the tabling and plotting of the results is the obvious final step of 
the Procrustes program. 

6.2 Software for Procrustes analysis 

There are several computer programs available that can perform a GPA. A macro in the 
GENSTAT language was written by Arnold (1 986). Schlich (1989) wrote a GPA macro in the 
SAS IML language. These programs work fine, but have the disadvantage that they run 
macro’s whithin a large statistical program. The user needs to be able to ‘speak’ either SAS or 
GENSTAT. In 1988 a special Procrustes program for the personal computer was developed, 
which is called Procrustes-PC 1988, Dijksterhuis and van Buuren 1988). At the 
moment version 2.2 is the latest one (OP&P 1992, Dijksterhuis et al. 1992). Recently a new 
GPA program -Procrustes for Windows- been developed (OP&P 1995). 
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1. INTRODUCTION 

Generalised Canonical Analysis or GCA is a multivariate data analysis technique that studies 
the relationship between sets of variables. In sensory research, data often consist of sets of 
variables, consequently it is worthwhile taking a closer look at GCA. In the GCA model the 
sets may contain the same variables but also different variables. the case of a 3-way table, 
e.g. products x attributes x assessors, the sets contain the same variables (here attributes). 
Different variables in each set are obtained in free choice profiling, where every assessor 
chooses individual attributes. Different variables also occur if various sources of variation are 
studied. For instance external aspects (e.g. package, image and availability) of one type of food 
products, price and sales figures of the same products, and in addition, taste aspects and 
quality judgements. 

GCA is a technique that gives answer to the question: ‘What is common between the 
sets’. Put in another way, GCA is a technique that searches for common underlying dimensions 
in the sets. Van der Burg and Dijksterhuis (1989) an application of GCA to a three-way 
data-table is presented. Several brands of smoked sausages were judged by ten assessors on 
five aspects (e.g. appearance, taste, odour). In that application the data from one judge form a 
set, and the next question is addressed: ‘On which aspects of smoked sausages do the 
assessors agree?’ 

The computer program that performs GCA is called OVERALS der Burg, De Leeuw 
and Verdegaal, 1988; 1990, chap. 5; SPSS, 1990, chap. 9). A less technical overview of 
OVERALS is given by Van der Burg, De Leeuw and Dijksterhuis, 1994. The program 
OVERALS can handle data measured on different measurement levels (numerical, ordinal and 
nominal, and a mixture of these levels). Especially ordinal data may occur in sensory research 
as assessments measured on a category or line scale are used frequently. Nominal data also 
occur in sensory research, for instance characteristics like the packaging of products (e.g. 
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in glass bottles, plastic bottles or cartons). In general, data are often interpreted as measured 
on interval level (numerical) although they may be rather measured on an ordinal scale. 

The data of the applications in this chapter stem from the assessments of products 
different judges, thus individual sensory data. addition to this type of data, in one case 
instrumental data are provided. In the following section the different data types and scales 
occurring in sensory research are discussed. Subsequent sections discuss the data types and 
data scales and introduce the GCA technique and the corresponding computer program. The 
relation between GCA and canonical correlation analysis is discussed (section 3.3) and also an 
overview is given of the relations between the OVERALS program and other multivariate 
techniques (section 4.4). Following sections describe examples of applying Generalised 
Canonical Analyses to sensory data. 

2. DATA TYPES AND DATA SCALES IN SENSORY RESEARCH 

Two types of data occurring in sensory research are sensory profiling data and instrumental 
data. Both individual sensory profiles and combined sensory-instrumental data can be analysed 
by means of GCA. In the following paragraphs these two types of data are discussed. 

Apart from different types of data, also different scales of data exist. This means that data 
can be measured on different levels. Usually three measurement levels are distinguished: 
nominal (e.g. package type), ordinal (e.g. ranking) and numerical or interval (e.g. temperature 
in degrees). In the literature also the ratio (e.g. weights) and the absolute measurement level 
(e.g. percentages) are known. However, data measured on the latter two levels are usually 
treated in a numerical way. Therefore only the first three measurement levels are discussed 
here. 

GCA, as realised in the O V E N S  program, is a technique that can handle data measured 
on nominal, ordinal and numerical measurement levels, both mixed as well as not mixed. Most 
data analysis techniques presume one type of scale, either nominal (e.g. correspondence 
analysis) or numerical (e.g. most classic multivariate analysis techniques). Some techniques can 
handle mixed measurement levels, for instance MANOVA where the dependent set is treated 
in a numerical way and the independent set in a nominal way. 

2.1 Sensory profiling 

There are two kinds of profiling data, that can both be analysed by means of GCA: 
conventional profiling data and free choice profiling data. Conventional profiling data are 
sometimes analysed by averaging and applying for instance Factor Analysis or Principal 
Component Analysis to the averaged data. Free choice profiling (Williams and Langron, 1984; 
Arnold and Williams, 1986) is a kind of profiling resulting in data that can not be averaged 
over assessors (see also chapter 7.2). GCA or other ‘k-sets’ methods are suited for the analysis 
of free choice profiling data. The scores from either profiling technique are derived from the 
position of marks along a line scale. The marks correspond to the assessor’s perceived intensity 
of some attribute. 
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2.1.1 Conventional profiling 

In conventional profiling a fixed vocabulary of descriptive terms is used by the sensory panel to 
judge the products. A sensory panel is often trained in the use of these terms. Because of this 
training it is assumed that all assessors are able to use the attributes in the same way, so that 
individual differences in use of the attributes are minimised. The individual judgements are 
sometimes averaged and Factor Analysis or PCA is applied to the average scores. However, 
individual difference models as GCA can also be applied to conventional profiling data. 
Analysis results from individual difference techniques show that the assumption of all assessors 
using the attributes in the same way is not always justified (see e.g. Dijksterhuis and Punter 
1990, Van der Burg and Dijksterhuis, 1989, 1993b; Dijksterhuis 1995b, part 1). In the case of 
untrained assessors, averaging over judges is hardly ever justified and we have to use a 
technique that can handle individual differences. 

The data from conventional profiling experiments can be seen as a 3-mode data structure 
built from K assessors, N products and attributes. This KxNxM data block consists of 

layers, each with the NxM data matrix of one assessor. Other slices of this block may be 
analysed, but in sensory research the focus is mostly on the agreement between the matrices of 
the individual assessors (see Dijksterhuis 1995b, chap. 1). 

The 3-mode data matrix can be analysed in its entirety too, e.g. using 3-mode Principal 
Component Analysis (Kroonenberg, 1983). See also Chapter 10 for this method. 

2.1.2. Free choice profiling 

In free choice profiling (Arnold and Williams, 1986) the assessors are free to come up with 
their own attributes, which they use for judging the products. So there is no a priori agreement 
on attributes between the assessors. As a result it is impossible to average the individual data, 
because it makes no sense to combine different attributes. The data from FCP experiments 
must be analysed by individual difference methods, of which GCA is one. Unlike Conventional 
Profiling data, FCP data cannot be rearranged in some kind of 3-mode data structure, because 
each assessor may use different attributes as well as in number as in meaning. 

2.2 Sensory-instrumental relations 

One of the fields in which GCA can be applied is the study of Sensory-Instrumental (S-I) 
relations. Though GCA appears not to be often applied in this field it can be a useful method to 
analyse sensory-instrumental relations (e.g. Van der Burg and Dijksterhuis, 1993a). The idea 
behind the study of S-I relations is that sensory perceptions have ChemicaWphysical 
counterparts the substance under investigation. A simple example is the amount of caffeine 
in a certain which of course determines the bitterness perceived by someone drinking it. 
In real life S-I research is much more complicated, and involves multivariate data, and 
consequently needs multivariate data analysis. 

Usually two data sets are involved in studying sensory instrumental-relations One data set 
contains the sensory judgements on the products. The second data set contains a number of 
instrumental measures on the same products. These can be results of chemical analyses, 
physical properties or results of other measurements. In case of two sets of variables, two-sets- 
canonical correlation analysis can be applied to study what is common between the sensory 
assessments and the instrumental measurements. 
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When the instrumental measurements are divided into several sets, for instance chemical and 
physical measurements, a three-sets-GCA can analyse the sensory-instrumental relations. It is 
also possible that even more sets are involved. For instance, suppose that also sales figures and 
prices of the products are known. Then a four-set-problem has to be analysed. 

2.3 Scale types 

The most common scale types in research are the nominal, the ordinal and the numerical scale. 
The nominal scale reflects a classification of the objects. If the objects are food products, we 
may think for instance of package type (bottle, carton, tin), colour (red, brown, green) or 
product type (frozen, fluid, dried). 

The ordinal scale reflects an ordered classification or a ranking of the objects (products). In 
our opinion sensory profiling data is probably best considered as rankings. We discuss this later 

this section. Other examples of ordinal scales are measurements as size-class (small, 
medium, large) or storage temperature (very low, low, normal). In the apple study (see section 
5 )  we find these variables. 

The numerical measurement level assumes a ranking of the objects and a constant ratio of 
difference scores. Numerical measurement levels may occur rather seldom in sensory data, 
although many statistical techniques assume the numerical measurement level. In general only 
physical or chemical measures are supposed to be on a numerical measurement level. In 
addition, frequencies and percentages (which are data measured on absolute level) are 
usually treated as numerical measurements, for instance the percentage of rotten apples in a 
sample. 

We mentioned already that we will consider sensory profiles as rankings. Although it is 
common practise to treat sensory profiling data as measured on a numerical level, we do not 
always support this habit. The task of measuring products on a line scale cannot be done in 
exact way by assessors. For instance, if judges assess the sweetness of cups of tea, we cannot 
always expect the judges to score the exact amount of sweetness. We can expect the judges to 
say which cup of tea is more sweet than other cups, or to the cups of tea according to 
sweetness. Although the judges will to guess the amount of sweetness by scoring a very 
sweet cup very high and a medium sweet cup in the middle, we do not expect that the assessor 
means a cup of tea is two times sweeter than another cup of tea, if he or she gives a score two 
times higher. For this reason it may be more appropriate to treat sensory profile data in an 
ordinal way (i.e. as rankings) than in a numerical way. 

Another common practise in sensory research is using averaged data for sensory profiles. 
Averaging supposes that the various judges use the line scale in a similar way. In addition, 
averaging supposes the numerical measurement level. If we treat similar attributes for each 
judge as separate variables, we get rid of the idea that all assessors score in a similar way. If we 
assume an ordinal measurement level for each line scale, we get rid of the numerical 
assumptions too. In case of trained assessors, it may be that the judges use the line scales in a 
similar way, although we will most often not know this for certain. In case of untrained 
assessors, however, there is no reason to expect the judges to use the line scales ~imilarly. 
Therefore a separate treatment of the line scales, for each attribute and judge is recommended. 
In that case the results can show whether judges differ or not. 

We can also check if the assumption of a numerical measurement level was correct. For 
instance, we can compare analysis results obtained under ordinal constraints with results 
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obtained under numerical constraints. Sometimes this does not give different results, so that we 
know that the numerical measurement level was not too restrictive. If the solutions differ, it 
means that relations between the nonlinearly transformed attributes play a role. This pertains to 
GCA as well as to other multivariate techniques. Van der Burg and Dijksterhuis (1993b) study 
vegetable soups assessed by 19 judges. They find that the solutions under ordinal and 
(approximate) numerical assumptions are very similar, showing that a numerical treatment does 
not restrict the data too much. At the other hand these authors also find that some judges differ 
from the other judges in using the attributes. Consequently, averaging these data over judges 
would be a bad idea. 

3. THEORY AND BACKGROUND OF GENERALISED CANONICAL ANALYSIS 

The original form of generalised canonical analysis is a technique that studies what is common 
between sets of (numerical) variables. The technique must provide answers on questions like: 
‘Can we predict the quality of a product from instrumental measures of the same product?’ or 
‘Do several assessors agree in their judgements of a product and on what attributes do they 
agree?’ When considering to use GCA, several (two or more) sets of variables must be 
involved in the research question. 

Sets of variables can be related in many ways. In GCA they are related in a rather 
straightforward way, namely as weighted sums of attributes per set. Assuming that a weighted 

represents a set, the weights can be made such that the sets (in fact the weighted sums per 
set) are as similar as possible to each other. Suppose the sets of variables are denoted by 

matrices Yk (of order NxMk) and the weights by vectors ak (of order Mk) with Mk the number 
of variables in set (k=l ,...,a and N the number of products. Each set is represented by the 
weighted sums Ypk. The aim of GCA is to find the weights ak such that we get 

Y p k  as similar as possible to each other for each k=l (1) 

By using a weighted sum we let one attribute be more important than other attributes. The 
magnitude of the weight reflects the importance of the attributes, but this is not 
straightforward, as we will explain later in this section. 

Another way to make weighted sums as similar as possible to each other is to make them 
as similar as possible to an unknown vector (see Carroll, 1968 or Van der Burg and 
Dijksterhuis, 1993b). Let us denote this unknown vector as (of order N). The elements of 
vector are scores for each object (product), and we refer to as object scores. Let US 

suppose that the object scores are standardised (mean zero and variance one). In GCA the 
object scores and weights are such that we get 

x and Y,pk as similar as possible for each k l  

with object scores and variables, columns of Yk, standardised. Note that expression (1) deals 
with similarities, whereas there are only similarities in expression (2). Until now we 
did not specify what ‘similar’ means, therefore expression can be interpreted in many ways. 
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For instance, we can take for similarity the squared correlations which leads to Carroll's 
(1 968) formulation of GCA: 

K 

correlations [x,Ypk 3 12 (3) 
k = l  

Another way of defining similarities is by minimising the sum of squared differences or the 
between object scores and weighted variables. This gives a formulation of GCA which is 

equivalent with expression (3) (see for a proof Van der Burg and Dijksterhuis, 1993b). 
Denoting the sum of squares of a matrix by SSQ (i.e. SSQ(Z)=trace(Z'Z) if matrix Z is in 
deviation from its column means), we get 

over x and ah with x and (the columns of) Yk (kl, ...,a standardised. The GCA formulation 
in terms of loss is used by Van der Burg, De Leeuw and Verdegaal(l988) and by Gifi (1990, 
chap. 5). 

course one might wonder if a one-dimensional solution of object scores suffices to 
represent what is common between the sets. If one decides that a one-dimensional solution is 
not enough, a two-dimensional solution can be taken. As it is not interesting to have correlated 
dimensions, a second dimension of object scores is constructed such that it is uncorrelated to 
the first one. This means that the axes representing the object scores are perpendicular, and we 
have a rectangular coordinate system in which we can plot a configuration of products. This 
configuration is standardised, that is, it has zero and unit variance in the directions of the 
axes. 

If one is interested in a solution of more than two dimensions, the same procedure can be 
followed. The third dimension of the object scores is taken uncorrelated to the first and the 
second one. The fourth one is taken uncorrelated to all the preceding dimensions, and so forth. 
If we deal with a P-dimensional solution we find a standardised configuration of products on 
perpendicular axes, which is represented by a matrix of order (NxP). This matrix consists of 
uncorrelated and standardised columns that is, with the identity matrix. The 
weights are represented by matrices Ak (of order MkxP). The weighted sums for each set k are 
denoted by YkAk. Then the GCA problem for dimensions is written as 

loss SSQ YkAk] minimal 
k = l  

over and A h  with the columns of X uncorrelated and standardised and the columns of Yk 
( k l ,  ...,Q standardised. The object scores can be plotted, just like in PCA. An interpretation 
of this plot corresponds to an interpretation of the solution. Interpreting the solution can be 
done via the variables within the analysis, but also by using external variables. To interpret the 
configuration we have to find out what the various directions in the plot of object scores 
represent. We do this by checking the component loadings, which correspond to the 
correlations between the object scores (for each dimension) and the variables. The term 
'component loadings' is used in analogy with the component loadings from PCA. We can 



221 

make a plot of the variables in the object scores space with coordinates equal to the component 
loadings, which are available for the variables from each set. Usually, in this plot, the variables 
are represented by vectors from the origin. Interpreting this plot is done in the same way 
interpreting the component loadings in PCA. This means that variables far from the origin are 
more important than those close to the origin. In addition, two variables that are very similar 
and important will have vectors close to each other with comparable lengths. Variables with 
short vectors are badly represented in the solution. However, this does not mean that these 
variables have a low explained variance in a PCA sense. It means that such variables represent 
variance in the data that cannot be found in the other sets. 

If a correlation between one attribute and, say, the first (dimension of a) solution of object 
scores is high, then this attribute has a high contribution to the first dimension. Sometimes it is 
interesting to rei@ the object score axes from the contributions of the variables (compare 
interpreting the principal axes in Factor Analysis). In that case it may be interesting to use a 
rotation of the solution to facilitate the interpretation of the axes (see Kers and Van der Burg, 
1994). Often, however, only the configuration of products and of variables is interesting in 
itself, so that axes need not be labelled. 

Another way to interpret the configuration of object scores is with the help of an external 
variable. In some cases there is information provided about the data which is not used in the 
analysis. For instance, in Van der Burg and Dijksterhuis (1 989) sausages are studied. There the 
GCA solution of the profiles can be (among other things) interpreted by means of the variable 
‘make’ (factory-made versus butcher-made). Another example is found in Van der Burg and 
Dijksterhuis (1993b), where vegetable soups are analysed. The researchers use the external 
variables ‘package’ and ‘type’ to help interpreting the GCA solution. 

Earlier in this section it was mentioned that the weights for the linear combinations indicate 
the importance of each variable. However, if an assessor behaves similarly on two attributes, 
the weight is not a good measure for comparing the importance of the various attributes, as the 
influence of one attribute can be expressed via the other attribute. For instance, it may happen 
that, although two attributes belonging to the same set measure nearly the same thing (are 
scored the same), one weight is high and the other one is small. In that case the weight of the 
first attribute contains the effect of the second attribute. The reason is that the two attributes 
explain the same variation and that this variation can be explained only once. When there is a 
lot of multicollinearity between attributes within a set, an attribute can be dropped from the set 
even without changing the quality of the relation with the other set(s). That is, the weight of 
this attribute can be zero. As the weights do not always give a good insight in the structure of 
the sets (unless we keep the correlation matrix in mind), it is much easier to interpret a solution 
via the correlations between the variables and the object scores: the component loadings. 
These correlations indicate the importance of every variable to the solution, independent from 
the contribution of the other variables in the set. 

3.1 Optimal scaling 

In the preceding discussion on GCA, nothing is said about the measurement level and the 
corresponding transformation of the variables. If variables are considered to be numerical, this 
implies that the original scores can be transformed in a linear way without destroying the 
information in the original data. If a variable is seen as measured on an ordinal level, the scores 
of this variable can be rescaled in an ordinal way without loss of information. This corresponds 
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to a rescaling without changing the original order, keeping similar scores equal. There are 
many possibilities for ordinal transformations, in fact all monotone ascending transformations 
will do. 

Also for nominal variables a transformation is possible without losing information. Such a 
transformation should keep similar scores equal. A nominal transformation preserves the 
classification of the products that is induced by a variable. Nominal transformations are less 
restricted than ordinal transformations. Therefore, there are more possibilities for nominal 
transformations than for ordinal transformations. 

Variables measured on a nominal (or ordinal) level can be treated in two different ways. We 
can use one transformation for one Pdimensional solution or we can use a different 
transformation for each dimension. The former is called single quantification and the latter 
multiple quantification. The multiple nominal transformation is similar to the scaling in 
(multiple) correspondence analysis (Nishisato, 1980, chap. 2; Greenacre, 1984, chap. 5) .  In the 
applications of GCA shown in this chapter, we only use single nominal transformations. 
Therefore, we do not discuss multiple nomiqal transformations here any further. Multiple 
ordinal transformations are theoretically possible but they are not implemented in any computer 
program, so they will not be considered either. 

We refer to single quantifications (nominal, ordinal or numerical) optimal scaling. In fact 
optimal scaling implies that the transformations are obtained in a special way, namely in 
combination with the optimising criterion (Young, 1981). 

We need some more notation to include the optimal scaling in our formulation of GCA. Let 
us denote the sets of transformed (i.e. quantified) variables by Qk (of order NxMk). For these 
matrices constraints are valid per column (is. per variable). If, for instance, the first variable of 
set k is considered to be measured on an ordinal measurement level, the first column of Qk 
must be a monotone transformation of the first column of Yk. We call the restrictions to be 
imposed on the transformations of the variables, including standardisation, measurement 
restrictions. Using this notation, GCA with optimal scaling can be written as 

over Qk and Ah with the columns of X uncorrelated and standardised and the columns of 
Qk satisfymg measurement restrictions. This formulation of GCA is introduced by Van der 
Burg, De Leeuw and Verdegaal(l988) and is also used by Gifi (1990, chapter 5) .  The essence 
of expression (6) is that optimal scores will be assigned such that the GCA-criterion is 
maximised and that in addition the measurement restrictions are satisfied. Both Van der Bug, 
De Leeuw and Verdegaal (1988) and Gifi (1990, chapter 5 )  describe how to obtain the 
solutions. Without giving details here, we can say that all the parameters are solved for in an 
alternating least squares manner. 

We distinguish various effects in sensory profiling data originating from different assessors. 
We mention the level effect, the scale eflect and the interpretation effect (see also chapter 
7.2). Let us consider these effects in GCA as formulated in expression (6). Because, for 
types of scaling the measurement restrictions imply standardisation, the level effect is excluded 
from the assessors’ scores by subtracting means. The standardisation also removes the 
individual scale effect per variable through division by the standard deviation. The 
interpretation effect is modelled in GCA by using weighted sums variables or linear 
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Note that in GPA the interpretation effect was modelled by using rotations (see 
chapter 7.2). 

We can study the interpretation effect by treating the same attributes from different 
assessors, e.g. all ‘sweet’ attributes, as different variables. It does not matter which 
measurement level is used. However, if various assessors have a different definition of one 
attribute in mind, the impact of ordinal or nominal transformations may be bigger than the 
impact of numerical -linear- transformations. In case of different definitions of one attribute, 
the question arises what we are comparing. Of course, we cannot really answer this question. 
But we can find out that judge A and judge B have different interpretations of an attribute. 

Finding an interpretation effect means that averaging scores over judges is not permitted 
(see also section 2.3). At the other hand, if attributes, assessed by various judges, are 
interpreted similarly, a justification for averaging over assessors is provided. 

Using numerical measurement levels is a very common method in linear multivariate 
analysis. Note that the term ‘linear’ can refer either to linear of (standardised) 
variables or to the linear of the variables. Here both meanings apply. 

Using ordinal and nominal measurement levels (in combination with numerical measurement 
levels) is rather new. For PCA a nonlinear version for mixed measurement levels exists, both in 
the form of a model as in the form of a computer program (see the references in section 4.4). 
Here ‘nonlinear’ refers to the transformations. Van der Burg and De Leeuw (1983) describe a 
nonlinear version of two-sets canonical correlation analysis, which was implemented in the 
CANALS program. A computer program for k-sets was only made available recently although 
several GCA models were described in the literature many years ago (Horst, 1961; Carroll, 
1968; Kettenring, 1971; Van de Geer, 1984). Van der Burg, De Leeuw and Verdegaal(l988) 
introduced a model for GCA which was implemented in the computer program 
and which, in addition, was provided with possibilities for nonlinear transformations for ordinal 
and nominal variables, and linear transformations for numerical variables. The OVERALS 
program is available in SPSS Categories (SPSS, 1990, chap. 9). 

If data are measured on an ordinal or nominal scale we prefer to treat the data 
correspondingly. However, often it is interesting to compare a linear analysis (only numerical 
measurement levels) with a nonlinear analysis and to see the similarity or the difference. If the 
resemblance is vely high, we know that the linear analysis makes sense. If there is a difference, 
we have to accept that different judges define the same line scale in a different way. We may, in 
addition, interpret the optimal quantifications to find out what causes the differences. 

Loss and fit measures 

The results of a nonlinear GCA analysis can be evaluated by the loss and fit measures. The loss 
shows the lack of fit of a solution. In case of a P-dimensional solution, the minimum loss is 0 
and the maximum (see Van der Burg, De Leeuw and Verdegaal, 1988, p. 184). The loss can 

be divided over dimensions, and one minus the loss per dimension corresponds to the 
eigenvalue (maximally one and minimally zero). The eigenvalue corresponds to a goodness-of- 
fit measure and the sun1 of eigenvalues is called the total fit. The loss or is equal to 
minus the total fit. In formula we write 

(total) loss loss@) -c SSQ Qpb) 
p = l  p=l  k = l  

(7) 
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with and a$ thep-th column of X or Ak. Note that the loss in (7) is equal to the loss 
(6). For the fit we get 

total fit eigenvalueb) 1- loss@) P loss. (8) 

The eigenvalue represents the mean variance of the sets (i.e. the weighted sums of 
variables), accounted for by the object scores. For more details on the properties of these 
eigenvalues we refer to Van der Burg, De Leeuw and Verdegaal(l988) or Van der Burg, De 
Leeuw and Dijksterhuis (1994). The eigenvalues do not necessarily correspond to the average 
of explained variances of the optimally scaled variables per set. If two optimally scaled 
variables have a perfect correlation, but are located in different sets, these two sets can be 
predicted perfectly from each other, irrespective of how much variance of the other variables in 
the corresponding sets is explained. It means that, in GCA, we always have to check the 
meaning of a high fit. If a high fit corresponds to only a little explained variance of the 
optimally scaled variables, we may decide to investigate the higher dimensions of the solution 
or to drop one of the variables that causes the high fit. It is a result of the fact that the GCA 
method focuses on correlations between variables in different sets, irrespective of associated 
variance per set. 

Especially because of the optimal scaling we have to beware of unique patterns. Unique 
patterns are correspondences between sets shared by very few objects. For instance, if there 
only one product packed in glass and this product is the only one that is judged as breakable, 
we have a unique pattern, The OVER4LS program may fit this pattern by scaling 
categories of ‘package’ into zero, except the glass score, which may get a high quantification. 
If the program does this for the scores on ‘fragility’ too, the two optimally scaled versions of 
‘package’ and ‘fragility’ (in different sets), are highly predictable from each other, resulting a 
high fit. Thus in case of a high fit, the optimal scores have to be checked for such degeneracies. 

As was described in section 2.3 on ‘scale types’, the transformations of the variables, or the 
‘scaling of the categories’, always satisfy the measurement restrictions. For ordinal variables it 
means that the order of the original scores is maintained, for nominal variables it means that 
similar original scores get the same transformed scores. So different original scores may get 
similar transformed values. In the above example with the two nominal variables ‘package’ and 
‘fragility’, the nominal restrictions are satisfied, although it provides a unique pattern. 

3.3 Canonical Correlation Analysis 

The term Canonical Correlation Analysis (CCA) usually refers to a two-sets multivariate 
technique that maximises the correlations between linear combinations of two sets of variables 
(Hotelling, 1936). CCA and two-sets GCA are similar although CCA exists much longer. In 
fact, CCA is a special case of GCA, namely the case of K=2 and only numerical measurement 
levels. The usual representation of CCA (e.g. Tatsuoka, 1988, chap. 7; Gittins 1985, chap. 2) 
is formulated in terms of the correlations between the linear combinations per set (canonical 
axes or canonical variates) and the variables. For each set, the scores on the canonical axes are 
uncorrelated, just like the object scores. The projections of the standardised variables onto the 
canonical axes are equal to the correlations between variables and canonical axes or ‘structure 
correlations’ (c.f. Ter Braak, 1990), or ‘intraset’ and ‘interset’ correlations (Gittins, 1985, p. 
38), and a plot of correlations in CCA is comparable to a plot of component loadings in GCA. 
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However, in CCA there are two sets of correlations, of all variables with the canonical axes of 
each set, and in GCA there is only one set of component loadings, of all variables with the 
object scores. This is because the object scores in 2-set GCA correspond to the average scores 
on the canonical axes in CCA (Van der Burg and De Leeuw, 1983). In K-set GCA, the object 
scores correspond to the mean over K canonical axes. 

3.4 Representing the original variables 

The variables are represented by the weights and the component loadings. As was mentioned 
already, the weights can, in case of multicollinearity within a set, include the effect of the other 
variables of the set. Therefore, the component loadings give a better view on the solution. 
They provide a measure for the relation between a transformed variable and the object scores 
for each dimension. The squared loadings represent the explained variance of the variables 
the object scores. If we denote a column of Qk by qlk (with the component 
loadings, collected in the matrices ck (of order are defined by 

c(lk,p) component loading (lk,p) correlation q lk ] .  (9) 
P 

In the output of the O V E W S  computer program, variables are individually represented by 
the centroids, which are the mean object scores averaged over the products in the same 
category of a variable. These centroids correspond to the so-called multiple nominal 
transformations. As we do not use these type of transformations in the applications, we will 
not expand on them further. In addition, for each variable there are the so-called projected 

centroids, which are optimally scaled scores (called category quantifications, with as many 
k 

different values as there are different categories of variable /k)  multiplied by the corresponding 
component loadings ( c ' ~ ~ =  'owlk of Ckwith lk=l , . . f i k ) :  

projected centroids qlk cgk 

These are found on a line in the object scores space. These scores are called projected 
centroids because they can be seen as centroids projected on a line (with measurement 
restrictions). The direction cosines of this line are the component loadings. Thus centroids and 
projected centroids refer to the space of object scores, so that, for interpretation of 
quantifications one needs these scores. (see e.g. the plot of projected centroids in Figure 
However, often an interpretation of quantifications is not necessary. In that case we use the 
category quantifications only to check for degeneracies. Figure 3 and Figure 8 show a plot of 
category quantifications, furthermore Van der Burg, De Leeuw and Verdegaal(l988) discuss 
an example with interpretation of the centroids. 

3.5 Statistical matters 

The GCA technique as implemented in the O V E W S  program, is not equipped with 
statistical tests. As there are no assumptions about a distribution, we have to use permutation 
or randomisation methods to test the stability of a solution. For such tests we only have to 
assume a multinomial distribution of the profiles (possible score patterns for an 
object/product), which is true in case of random sampling. One can use the Bootstrap or the 
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Jackknife (Efron, 1982; Miller, 1974) to study the stability of a solution by computing 
confidence intervals. addition, permutation tests can be used (Edgington, 1987; Good, 1994; 
Van der Burg and De Leeuw, 1988) to find the significance of results. 

The bootstrap is a method that resamples from the data (a sample from a larger population) 
such that inferences can be made the population. The sampling takes place with 
replacement, keeping the number of observations equal to the number in the original sample. 
Thus, the randomly produced sample (called the bootstrap sample) may contain the same 
product several times and other products not. Then the GCA technique is applied to the 
bootstrap sample. The procedure of taking a bootstrap sample and performing a GCA is 
repeated many times. Then, for each statistic under study (for instance the fit), we have 
many instances of this statistic as there are bootstrap samples. From these values the variance 
of the statistic can be estimated. In addition, an estimation of the population mean can be 
made, so that a confidence interval can be computed (van der Burg and De Leeuw, 1988). 

The Jackknife is similar to the Bootstrap except that the Jackknife samples are drawn in a 
different way. With the Jackknife the new samples are the same as the old ones save one 
product or save s products (s a small number). Every product is dropped once. The Jackknife 
sample contains (N-1) or (N-s) products. If one product is dropped, there are exactly N 
Jackknife samples. with the Bootstrap, the Jackknife sample values of the statistic under 
study provide an estimation of the variance and the population mean, so that a confidence 
interval can be computed. 

Permutation tests are made by permuting the data, that is, randomly reordering the products 
separately within each set (see De Leeuw and Van der Burg, 1986). In the case of two sets 
with one variable per set, if we organise the two variables in a cross table, permuting 
the data comes down to changing all the cells of the cross table while keeping the marginals at 
a constant level. Each table represents a permutation sample to which the technique can be 
applied. Thus every table provides a value of the statistic under study and together they form a 
distribution from which the original sample is one. Using order statistics then provides a 
significance level for the statistic. For two variables we have Fisher’s exact test. For 
more complicated cases a permutation test can also be made. However, if the number of 
variables grows, the number of possible randomisations grows too, so that it becomes rapidly 
impossible to compute the exact permutation distribution. 

4. COMPUTER PROGRAM FOR GCA 

In this section characteristics of the computer program OVERALS are introduced. It is 
shown how the implemented GCA method relates to other multivariate methods and programs. 

4.1 Categorising data 

The input for the computer program is restricted to data containing a small number 
of positive integers. This implies that continuous data have to be recoded into data with a 
relatively small number of categories. The restriction that data for OVERALS have to be 
discrete, has to do with the way the computer program is made. The computer program works 
with scores for categories. If every variable has as many categories as there are objects, the 
program may become rather slow. Therefore, the number of categories per variable, for each 
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set (assessor) should be reasonably smaller than the number of objects, which, in our 
experience, is not a severe restriction. 

When one analyses the rank-order scores of the objects, there are as many categories 
there are objects in the data. ordinal analysis of these rankings can be a good way to reduce 
the number of categories. 

The assumption that the input of the program contains discrete data, implies that, if the data 
do not satisfy this assumption, the researcher has to recode the data until the assumption is 
satisfied. For instance, if line scales scoring from zero to are used, the information has to 
be compressed into a small number of categories. If we do not want to loose too much 
information we can take for example 10 to 15 equidistant categories. If we are not too 
concerned about details, often 3 to 6 categories are sufficient to retain the information that 
determines the relations between the sets. 

Two analyses, one with 10 to 15 categories (and numerical measurement restrictions for 
variables) appeared hardly different from the results from the analysis of 3 to 5 categories (and 
ordinal measurement restrictions for all variables) (see Van der Burg and Dijksterhuis, 1993b). 

4.2 Missing data 

The OVERALS computer program can handle missing data. The theoly of the GCA-model 
including missing data is described by Van der Burg (1988, p.107). If a product is not scored 
for one variable, the computer program treats the scores for all the variables in the same set as 
missing. This means that the product does not contribute to the fit for the set at hand. Many 
missing scores will make it easier for unique patterns to arise, thus with a lot of missing data 
the outcome has to be checked for degeneracies. In normal cases missing data do not give rise 
to problems. As missing scores do not contribute to the fit, there is no optimal scaling either 
for missing scores. Thus no estimation of the missing score is provided by the OVERALS 
program. 

4.3 Dimensions 

The number of dimensions for the OVERALS analysis has to be specified by the researcher. 
He or she has to decide for him- or herself how many dimensions are needed. In practice this 
often means that solutions of different dimensionality are computed and that the best one is 
chosen to report. One of the most important considerations in choosing for P dimensions, is 
that all P dimensions are interpretable. An argument for taking one or two dimensions is that it 
is easy to plot. An argument to prefer dimensions above P+1, is that there is hardly any 
difference between the P- or the (P+l)-dimensional solution. If is larger than two it can be 
hard to interpret the solution. In that case a rotation may help to decide how many dimensions 
must be taken (Kiers and Van der Burg, 1994). 

4.4 Relations of OVERALS to other MVA techniques 

In this section we illustrate the relations between GCA as realised in OVERALS der 
Burg, De Leeuw and Verdegaal, 1988) and other multivariate techniques. Sometimes we use 
the name of an author to indicate a model, sometimes we use the name of the technique, but 
addition we also use the name of a computer program to indicate a model. We hope this 
not lead to confusion. 
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OVERALS is a very general technique that comprises many techniques as a special case. If 
the measurement level of all variables is numerical and there is only one variable per set, then 
we are dealing with ordinary PCA. In this case the fit of a solution (the eigenvalue) 
corresponds to the mean explained variance of the variables because in this case variables and 
sets are identical. This is the definition of the eigenvalue in PCA. If we keep the number 
of variables per set equal to one, but allow for different measurement levels, we obtain a 
nonlinear version of PCA. In the literature we encounter this model under the name 
PRINCALS (Gifi, 1990, chap. 4; SPSS, 1990, chap. 8). Other nonlinear PCA models can be 
found in PRINCIPALS (Young, Takane and De Leeuw, 1978) and PRINQUAL (Kuhfeld, 
Sarle and Young, 1985; SAS/STAT, 1990, p. 1265). 

If all variables are considered as multiple nominal and we still have one variable per set, we 
amve at a technique called dual scaling (Nishisato, 1980, chap. 2) or multiple correspondence 
analysis (Greenacre, 1984, chap. 5 ;  Gifi, 1990, chap 3). This technique can be viewed as PCA 
for nominal data. For instance the computer program HOMALS (SPSS, 1990, chap. 7) 
performs this type of analysis, also the program CORRESP (SASSTAT, 1990, p.615). In case 
there are only two multiple nominal variables, we get correspondence analysis, for instance 
implemented in the ANACOR program (SPSS, 1990, chap. 6). 

If we restrict OVERALS to two sets of variables and only single measurement levels we get 
canonical correlation analysis with optimal scaling. This technique is very similar to CANALS 
(Van der Burg and De Leeuw, 1983). If, in addition, one of the sets contains only one variable, 
we get nonlinear multiple regression or MORALS (Young, De Leeuw and Takane, 1976). 
Two-sets OVERALS with only numerical measurement levels gives ordinary canonical 
correlation analysis. 

If OVERALS is restricted to numerical measurement levels only, we get the technique 
described by Carroll (1968) (see also section 3). 

If we relate OVERALS to three way techniques that generalise PCA we can compare it, for 
instance, to the class of models discussed by Kroonenberg (1983). In particular the TUCKER2 
model (see Chapter 10) is obtained from the OVERALS model by constraining the weights. In 
addition, the TUCKER2 model restricts the variables in all sets to be similar, as it supposes a 
three way table, which is not the case in OVERALS. Thus we see that TUCKER2 is a special 
case of OVERALS. 

As discussed already in section 3.1, other techniques have been proposed for K sets analyses. 
(Kettenring, 1971; Horst, 1961). In particular Van der Geer (1984) compares several 
techniques. 

4.5 Post Hoc Rotations 

Rotations are not provided in the OVERALS computer program. Of course, if the user 
interested in naming the axes or interpreting a high dimensional solution, a rotation may help. 
In case of ‘single’ variables only a simple varimax rotation can be applied to the object scores 
space. Oblique rotations are not allowed as they will severe the orthogonality constraint on the 
object scores. In case of mixed multiple and single measurement levels a simple varimax does 
not satisfy because the ‘multiple’ variables do not have component loadings. Kiers and Van der 
Burg (1994) propose a rotation algorithm in which the so-called discrimination measures for 
‘multiple’ variables are used and the component loadings for ‘single’ variables. They also give 
an illustration of their algorithm. 
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5. ANALYSING SENSORY-INSTRUMENTAL RELATIONS USING GCA 

The example to illustrate sensory-instrumental relations concerns research on apples1. Van der 
Burg and Dijksterhuis (1993b) use these data for the prediction of assessments from 
instrumental measures, illustrating nonlinear Redundancy Analysis. We will illustrate nonlinear 
GCA with the help of the apple data. 

Table 1 

Variables Measured on Cox Apples 
Background variables categories 
Ca origin low, high Calcium 
Per picking-date early, middle, late 
Si size small, large 
Temp storage-temperature 3, 13,23 degrees Celsius 
Instrumental variables min cat 
Pread penetrometer: red side 2.50 5.80 5 
Pgreen penetrometer: green side 3.50 5.50 5 
h e a n  penetrometer: mean 3.70 5.90 5 
Moist expelled moisture 5.51 43.06 6 
Drymat dry matter 12.25 17.08 5 
Acid total titratable acid 3.55 8.07 5 
Ithick Instron: thickness at failure 1.33 3.05 6 
Ifiac Instron: force at failure 26.21 71.67 4 
Isurf Instron: area 11.51 56.64 5 
Islope Instron: slope 7.48 97.95 6 
h o d  Instron: modulus 1.27 3.66 6 
Catac Catalase activity 6.90 19.40 6 
Sensory variables min cat 
Mealy1 mealiness judge1 0 (not mealy) 100 (very mealy) 4 
Mealy2 mealiness judge2 0 (not mealy) 100 (very mealy) 4 
Mealy3 mealiness judge2 0 (not mealy) 100 (very mealy) 4 
Firm1 firmness judge 1 0 (firm) 100 (soft) 4 

100 (soft) 4 
100 (soft) 4 

Firm2 firmness judge 1 0 (firm) 
Firm3 firmness judge 1 0 (firm) 
min= lowest score; max=highest score; camumber of categories after recoding. 

5.1 Data on apples 

The data consist of measurements on Cox apples (Koppenaal, 1991). The measurements can 
be divided into three sets of variables: background variables, instrumental measures and 
sensory variables (Table 1). The first set has been created to acquire a variety of Cox apples. 
The background variables are: origin, picking date, size and storage temperature. The 
instrumental variables consist of several types of physical or chemical measures like the amount 
of expelled moisture, the catalase activity and several Instron measures. Table 1 shows all the 
instrumental variables. The sensory variables consist of the assessments of three trained judges 
on the characteristics ‘mealiness’ and ‘firmness’. These two characteristics represent aspects of 
the quality of the apple. originally the researchers were mainly interested in a prediction of 

The ATO-DLO Institute for Agrotechnology (Wageningen, “he Netherlands) is far making the data 
set on apples available. 
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‘mealiness’ and ‘firmness’ from the instrumental variables (Koppenaal, 1991). They performed 
two linear multiple regressions on the accumulated scores for mealiness and firmness. The 
question addressed next is: ‘How do the instrumental variables and the sensory variables 
intermingle with the background variables, taking into account the various measurement 
levels?’ In fact we want an answer to the question: ‘Under which condition is an apple judged 
as ‘nice’ and which instrumental measures are good in indicating the quality of the apple?’ 
Note that the background variables were manipulated as factors in an experimental design, so 
that these variables are independent. 

For our secondary analysis the sensory and instrumental measures have been recoded to 
reduce the number of categories. Our experience is that this hardly influences analysis results 
(see Van der Burg and Dijksterhuis, 1993b). In Table 1 the minimum and maximum original 
score is given plus the number of categories used for the recoding. The recoding always refers 
to equidistant divisions of the original scores, except for the lowest and the highest category. 
The latter was done to avoid unique patterns. 

OVERALS was applied to the recoded data. The measurement levels of background 
variables were considered single nominal and the measurement levels of the instrumental 
variables and the sensory assessments (single) ordinal. 

5.2 Fit and measures 

A four dimensional OVERALS solution, with all variables treated as single, gives eigenvalues 
per dimension of 0.865, 0.771, 0.682 and 0.666 respectively. The first dimension appeared to 
be completely dominated by storage temperature (TEMP), the second dimension by origin 
(CA), the third by SIZE and the fourth by picking date (PER). This shows the independence of 
the background variables. The sensory assessments and various instrumental measures load 
mainly the first two dimensions. So apparently TEMP and CA are related to the sensory and 
instrumental variables. 

We repeated the analysis in two dimensions. This gives eigenvalues per dimension of 0.864 
and 0.779 respectively (see Table 2). 

Table 2 

The loss per set, eigenvalues and fit of the apple data for a two-dimensional OVERALS 

solution 

LOSS PER SET dimension 
1 2 

Background variables 0.183 0.255 0.438 
Instrumental variables 0.073 0.093 0.166 
Sensory variables 0.150 0.3 14 0.465 
MEAN 0.136 0.221 0.356 
FIT 1.644 
EIGENVALUE 0.864 0.779 

We also performed the two-dimensional analysis with the background variables considered 
as multiple nominal. This gives eigenvalues of 0.863 and 0.797 which is hardly better than 
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the single nominal case. We decided to report the two-dimensional solution with all variables 
treated as single. The loss, fit and eigenvalues are given in Table 2. This table shows that al l  
sets have a very low loss in the first dimension which means that the assessments are well 
predicted by background variables and instrumental measures at the same time. The 
instrumental variables also have a low loss in the second dimension telling us that they do well 
in (are much related to) this dimension. We will see which variables are related, and to what 
extent, in the plot of component loadings. 

5.3 Component loadings and object scores 

The component loadings are plotted in Figure 1. Such a plot is comparable to the loading plot 
or correlation plot of PCA, although this plot is obtained in a different way. We see from the 
plot of component loadings that the first dimension is dominated by TEMP from the set of 
background variables, by MOIST, CATAC and ACID from the instrumental set and by all the 
assessments of the sensory set. The second dimension is dominated by CA and ITHICK. The 
sensory variables hardly play a role in this dimension. Thus storage temperature is dominating 
the taste, in the sense that a high temperature corresponds to mealy and soft apples, and a low 
temperature to a good taste, not mealy and apples. The vectors point to the direction of 
high scores, in case of the sensory variables to a bad taste, i.e. mealy and soft (see Table 1). A 
good taste and not mealy- also corresponds to a lot of expelled moisture, a high catalase 
activity and a high amount of titratable acidity. Specially MOIST is a very clear indicator for a 
good taste. 

CA 

0.5 

dimension 

Figure 1. Component loadings of 0VERAL.S applied to the data set on Cox apples. 
Firmness, M Mealiness). 
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If we take a look at the object scores (Figure 2) labelled by temperature, we find that 
apples stored at low temperature (3 "C are located on the right side. These are the apples of 
good quality. The apples stored at 13 and at 23 degrees C are found at the left side. These 
apples are judged to be of lower quality. In general the apples at the left have low moisture, 
low titratable acidity and low catalase activity. 

3 degrees C 

13 degrees C 

0 23 degrees C 

I I I I 

Figure 2. Object scores applied to the data set Cox apples. The objects, i.e. 
individual apples, are marked by storage temperature. 

The apples found in the lower half of Figure 2 are characterised by a high Ca condition and 
also by a large thickness at failure (ITHICK). In the higher part we find the apples with a low 
Ca condition and a low ITHICK. The position in the lower or higher part of Figure 2 is hardly 
related to quality judgements. 

From figures 1 and 2 we see that mainly the first dimension is of interest for the quality of 
the apples. We also saw this in Table 2. The contribution of the sensory variables to the loss is 
small for the first dimension and much higher for the second one. 

5.4 Variables and categories 

Plots of the category quantifications of three important variables (TEMP, Catalase Activity, 
MOIST) are given in Figure 3. The tern 'original' score, refers to the input scores of 

i.e. the scores after the recoding of the numerical data. For TEMP this means: 

1x3 "C, 2=13 "C and 3=23 "C. For CA the recoding implies l=low and 2=high 
calcium, and for MOIST, 1=5.51 10.0, 2=10.1 15.0, 3=15.1 20.0, 4=20.1 25.0, 
5=25.1 30.0and6=30.1 43.06. 
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Figure 3. Category quantifications of some important variables in the OVERALS result of the 
analysis of the Cox data set. The variables are TEMP, CA and MOIST. 

The quantifications of temperature are respectively -1.38, 0.47 and 0.94. Thus the main 

difference is between the low temperature and the other two higher temperatures, meaning that 
mainly the low temperature of 3 degrees Celsius can be taken responsible for a good taste. This 
corresponds to what we saw in the plot of object scores (Figure 2). The transformation of 
CATAC contains three ties, original scores (=10.1.. .12), 4 .14) and 5 (=14.1 16) 
(not shown in figure), thus no difference is made in the solution between these scores. 
Originally there also was a -receded- category 1 for FIRM3. However, as this category was 
scored with a very low frequency, we recoded it into a 2, to avoid a unique pattern. 

It can sometimes be difficult to interpret the transformation plots. It may be easier to 
imagine what happens if the quantified categories are plotted on the lines through the 
component loadings. Such a plot is made for the most important variables (Figure 4). We 
clearly see the spread of the (recoded) categories over the object scores space. 
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Figure 4. Projected centroids of the most important variables in the analysis of the Cox data 
set. 

5.5 Conclusion 

The nonlinear GCA analysis of the Cox apples shows that in relating background variables, 
sensory assessments and instrumental measures, we obtain a mainly one-dimensional solution 
as the sensory variables play a role nearly only in the first dimension. In fact Van der Burg and 
Dijksterhuis (1993a) had a similar conclusion though they applied a different technique and did 
not use the background variables. The second dimension combines CA with ITHICK, but the 
sensory variables are not important in the second dimension. 

The first dimension differentiates the apples with respect to taste. This goes together mainly 
with the amount of moisture, but also with the amount of titratable acidity and catalase 
activity, which makes these variables good indicators for the quality of an apple. To reach a 
high quality -low mealiness and high firmness-, apples should be stored at a low temperature. 
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6. PERCEPTIONS OF LUNCHEON MEAT 

The used in the following analysis were originally collected in a study of the perceptions 
of 27 of luncheon meat.2 For the analysis presented here, a selection of the original 33 
questions was made to illustrate the use of GCA. Seven questions related to health and image 
matters were selected for the analysis. We want to find out how these matters are related and 
which meat-products have a healthy or an unhealthy image. The seven questions selected are 
shown in Table 3. 

Table 3 

Seven questions about image-related matters, from the luncheon meat study. 

This luncheon meat.. 

1 is a healthy product. 

2 is a meagrehight product. 

3 is a natural product. 

4 is a luxury product. 

is a craftsman's product. 

6 

7 

is bad for your figure. 

contains a lot of nutrients. 

The questions were answered using Likert scales. The categories from these scales were 
converted into category-numbers from 1 to 5 (meaning respectively: 1 :disagree completely, 
2:disagree, 3:neither disagree nor agree, 4:agree, 5:agree completely). In this study 13 
assessors participated, but some of them failed to answer the questions for the products they 
did not know. Because of this, 7 products were deleted from the analysis because there were 
too many missing scores for these products. The 20 remaining of luncheon meat in the 
study are shown in Table 4. 

The data were kindly made available by Oliemans Punter Partners, Utrecht, The 
Netherlands. 
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Table 4 

Meat types in the study of luncheon meat. 

grilled 

cured port belly 

corned beef 

course raw dried fermented sausage 

raw dried fermented sausage 

coarse liver sausage (Farmer’s quality) 

raw cured 

cooked shoulder 

smoked raw cured beef 

cooked (cured) 

rare cooked lean beef 

cooked liver 

spreadable liver sausage 

minced lean beef 

liver sausage 

cooked 

minced meat (‘meat loaf) 

cooked chicken filet 

liver sausage (Butcher’s quality) 

finely comminuted liver paste 

6.1 Results of the analysis: fit and object scores 

The GCA analysis, performed with the OVERALS program, was carried out treating the 5 
categories of all variables as ordinal. This seemed the most natural choice for the categories of 
the scale used. 

Firstly the dimensionality of the solution had to be chosen. It is advisable to first try an 
analysis with a high number of dimensions, and then identify the dimensions with a substantial 
fit. We did two analyses, one in two and one in three dimensions. Table 5 shows the 
corresponding fit-values. In GCA the fit-values are equal to the eigenvalues per dimension (see 
section 3.2), so both terms may occur in a GCA context. 

Table 5 

Eigenvalues per dimension and total fit for a two- and a three-dimensional OVERALS solution 

for the luncheon meat data. 

number of Eigenvalues for dimension Total fit 

dimensions 1 2 3 

2 0.923 0.839 1.763 

3 0.9 17 0.860 0.826 2.604 

Keeping in mind that a P-dimensional solution has a fit of the column ‘Total 
fit’ may help in deciding the dimensionality. The choice of dimensionality is entirely for the 
data-analyst. There is no clear method for determining the dimensionality, one has to balance 
between ‘parsimony and interpretability’ (see e.g. Hofinann and Franke, 1986). 
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After inspecting the fit one wants to take a look at the space of object scores. This space 
contains the configuration of the objects from the data, in this case the 20 luncheon meat types. 
As an illustration the three-dimensional object space is presented first, but in the remainder the 
two-dimensional result will be used. Two dimensions are easier to display than three, though in 
practice the third dimension, or even higher dimensions, may have a good interpretation. In 
such cases these dimensions should of course be taken into consideration too. 

Figure 5. Three-dimensional OVERALS representation of the space of object scores of 
luncheon meat 

Figure 5 shows the three-dimensional O V E W S  result. This figure shows that, apart from 
the ‘loners’ raw dried fermented sausage, corned beef, finely comminuted liver paste and 
minced lean beef, there are two main clusters of objects, they are indicated A and B in the 
figure. A contains cured pork belly, coarse liver sausage, spreadable liver sausage, liver 
sausage, fried minced meat, liver sausage (Eiutcher’s quality), and cooked shoulder; B contains 
raw cured ham, smoked raw cured beef, cooked chicken fillet, cooked ham, grilled ham and 
rare cooked lean beef. 

To be able to see why these clusters appear we need to study the positions of the questions, 
i.e., to study the component loadings. Because the object of this analysis is to illustrate 



the GCA technique we continue with the two-dimensional result because two-dimensional 
plots are easier to present and to look at than three-dimensional plots. One could of course 
plot dimensions 1 against 2 and 1 against 3, but this would mean twice as much plots, which 
we believed not helpful for understanding the ideas behind GCA analysis and the interpretation 
of its results, for the illustratory purpose of this analysis. Furthermore the two-dimensional 
solution captures the most salient aspects of the analysis. 

In Figure 6 the two-dimensional space of object scores is presented, this space is the basis 
for the remainder of this example. Apart from the finely comminuted liver paste and the minced 
lean beef, two main clusters of objects appear, they are much like the clusters in Figure 5.  

-3 -2 -1 0 1 2 
dimension 1 

Figure 6. Two-dimensional object scores space from OVERALS applied to the luncheon 
meat data. The exact position of the objects cannot be seen in this figure, however, the plot 
clear enough to illustrate the features of this object scores plot. 

6.2 Looking at the questions 

Because in GCA each assessor is treated separately from the others, one has the opportunity to 
study differences in the interpretation of the questions between the assessors. In this study 12 
assessors answered 7 questions, one question for an assessor was deleted from the analysis 
because this assessor gave the same answer for each product on this particular question. This 
results in one variable which does not vary over products. It has zero variance, so it cold not 
be used in the analysis. For each question a configuration showing the position of this question 
for each assessor can be made (plot of component loadings), so that the assessors’ use of the 
questions can be compared (see Figure 7). Note that each plot belongs to the same space of 
object scores. Also note that we did not connect the points with the origin, to keep the plots 
clear. 
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Figure 7. Component loadings of the 7 questions for the 13 assessors. The numbers refer to the 
assessors. 



Figure 7 can be used to assess the homogeneity of the assessors with regard to their 
interpretation of the questions. Each of the seven panels in Figure 7 contains points 
representing the 13 assessors. The thighter the cluster of these 13 points, the more 
homogeneous the assessors were in answering the question. It can immediately be seen from 
Figure 7 that the assessors agree very well regarding the question about the meats being a 
luxurious product. They seem to agree the least on the question about the craftsmanship of the 
make of meat. The question about meagrdlight seems to result in one outlier 1) and two 
groups, agreeing, but to different extents. The same assessor (no. 11) can be identified as a 
kind of outlier for the question ‘bad for your figure’. The question on the healthiness shows a 
loose kind of cluster, which is hard to separate into sub-clusters. However it is clear that the 
agreement on the health issue of the meat-products is not clear-cut. Regarding the 
nutritiousness there are two assessors (no. 4 and no, 6) with a view opposite to most 
assessors’ view. Assessor no. 11 is in the centre of the plot, shehe does not use this question 
to distinguish between the meats. The question on the naturalness of the meat seems to result 
in two groups of assessors, one group containing 1, 2, 3, 4, 5 ,  6, 7, 10 and 12, the other group 
8, 9, 11, 13. It could be interesting to study this question more closely, which is done in the 
next section. 

Another way of presenting the questions is to group the questions per assessor instead of 
grouping the assessors within one question, as is done in Figure 7. In that case for each 
assessor a plot is made which shows the positions of the question for that particular assessor. 
This way of presenting the questions can be seen in Van der Burg and Dijksterhuis (1989). 

Of course Figure 7 can be used to interpret the directions in the space of object scores. With 
the help of the component loadings in Figure 7, the properties that distinguish the two clusters 
of meat types in Figure 6 can be found. In Figure 6, two main clusters of meat types were 
found, one in the left part, and one in the right part of the plot. From Figure 7 can be inferred 
that the left part of the space is mainly characterised by ‘Bad for your figure’, and not by the 
other questions. The right part of the space in Figure 6 is characterised by the questions about 
the health, lean-ness, naturalness, luxuriousness and nutritiousness of the meats. With the help 
of the component loadings in Figure 7 it can be concluded that the two main clusters of 
luncheon meats obtained have a different image. The meat types cured pork belly, coarse liver 
sausage, spreadable liver sausage, liver sausage, fried minced meat, liver sausage (Butcher’s 
quality), corned beef, coarse raw dried fermented sausage and cooked shoulder (left in the 
object scores space, see Figure 6) have a rather negative image. The meat types raw cured 
ham, smoked raw cured beef, cooked chicken fillet, cooked ham, cooked (cured) ham, grilled 
ham, cooked liver and rare cooked lean beef, appear to have a positive image. 

6.3 Quantifications of categories 

To study the questions and the categories in more detail, the quantification of the categories 
can be studied. Remember that the original questions were presented in five categories, and 
that these categories received quantifications by the optimal scaling algorithm used in the 
OVERALS program. These quantifications provide a means to study the questions more 
closely which is illustrated here using the question about the naturalness of the meat. Figure 8 
shows the quantifications of the five categories in the analysis of the luncheon meat data set, 
for all 13 assessors. 
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Figure 8. Category quantifications of the question on natural product, for each assessor. 
The numbers in the figure refer to the assessor numbers (sets). 

Figure 8 shows clearly that only two assessors (2 and 6) used category 1 (‘disagree 
completely’). They received about the same quantification. Assessors 9 and 11 have 
quantifications for category 2 (‘disagree’) different from the quantification of this category for 
the other assessors. Assessor 9 has another different quantification. For this assessor the 
categories 2 (‘disagree’) and 3 (‘neither disagree nor agree’) have much lower quantifications 
compared to these categories for the other assessors. The fourth categoy (‘agree’) is the most 
homogeneously quantified for this question. The fifth category (‘agree completely’) has three 
assessors whose categories have somewhat larger quantifications than the other assessors, no. 
2, 6 and 10. The numbers 2 and 6 were the only assessors using category 1, number 10 used 
only the categories 4 and 5.  Clearly, assessors 2 and 6 can be identified as the ‘extrovert’ users 
of the categories, they use all categories, and the quantifications of category 5 even amplify the 
‘extremeness’ of their use of the categories. Concluding, the assessors 9 and 11 are most 
different in ‘using some’ categories of ‘natural product’. The categories of most other 
assessors have received more or less equal quantifications. 

The quantifications of the categories for one, or more, questions enables one to study the 
analysis result in considerable detail. However, a quantification plot like in Figure 8, can be 
made for each of the 7 questions in this example. Studying them all is a tedious task, which is 



248 

useful when one is particularly interested in comparing categories of different questions, or, 
like in Figure 8, in the use of categories by different assessors. 

Another way of looking at the differences between the categories is inspecting the so-called 
projected centroids (see section 3.4). Figure 9 shows these projected centroids. The distances 
of the category points along the lines represent the quantifications of the categories. Two 
categories with the same quantification have the same position. The category points are 
uroiected onto the lines connecting the component loadings of each variable with the origin 
- I  

A3 

A4 

A5 

Al: 

Al: 

natural product 

P 
2 

3d 

Figure 9. Projected centroids of categories (1 to 5) of the question on natural product. 
The assessors are coded with the symbols A1 to A13 in the legend. 

We saw in Figure 7 for question 3 (‘Natural product’) that there were differences 
answering. The assessors 9 and 1 1  are different from the other assessors. In Figure 9 the 
categories are shown as positions on a line with the same direction as the line representing the 
assessor in the corresponding panel of Figure 7. The individual positions of the categories of 
question 3 can be seen in Figure 9. There is a line with the 5 categories for each assessor in this 
plot. The category-numbers 5 (‘agree completely’) lie mostly in the right part of the plot 
together with some categories 4 (‘agree’). The lowest category (1, ‘disagree completely’) is 
not seen much in the plot. This category is not often used by the assessors. Assessor 6 did use 
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it but the use is comparable with the use of category 2 (‘disagree’) used by most other 
assessors. Assessor 1 and 9 used category 3 (‘neither disagree, nor agree’) not different from 
category 2. In the plot the positions of these categories coincide. 

The positions of the categories for the deviant assessors 9 and 11 show that they differ 
mainly in the use of the lower categories, compared to the other assessors. The low categories 
of these assessors lie in the lower-left part of the plot. These assessors apparently have a more 
negative interpretation of the products. 

6.4 Loss and fit of assessors 

Each assessor is represented by a set of variables in the analysis. Some assessors’ scores are 
typical for the group of assessors, and other may be different. Assessors with deviating scores 
do not very well with the other assessors. The fit values tell how well assessors fit in the 
solution. The loss value measures the lack offit. 

Figure 10. Loss per assessor for the two-dimensional OVERALS solution of the luncheon 
meat data. 

Fit and loss values can be computed for each dimension of the solution. In this case there 
a loss value for the first and for the second dimension. The sum of these two loss values 
indicate the lack of fit in the two-dimensional solution obtained in this example. For each 
assessor this loss value is presented, for both dimensions, in Figure 10. The figure shows that 
assessor 11 has the largest loss value in the first dimension. This assessor was already identified 
as an outlier in Figure 7 and Figure 8. Figure 10 shows that assessor 11 did not fit very well 
with most other assessors. Another observation from Figure 10 is that assessors 3 and 9 have 
relative large loss values in the second dimension. Looking at the sum of the loss values it 
shows that assessor 3,9,  and 11 fit relatively poor in the analysis. The best fitting assessors are 
5 and 10, they have the lowest loss value. Assessor 13 has a low loss value the first 
dimension, this assessor ‘agrees with’ the most important features of the solution. The IOSS 
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Attribute judge no. 

bitter 1,2,3,5,6,8,9,  1 1  
neutral 1,2 ,4 ,6 ,8 ,9  
taste 1 

metal 1,3,7,9, 10, 11 
fluid 1 

salty 2,4 ,7 ,8  
earth 2,4, 7, 11 
hard 2 

acid 3,4,11 
Paper 3, 10 
flat 495 

4 
pungent 4 
rubber 4 

value for this assessor in the second dimension is among the largest loss values, so shehe does 
not ‘agree’ with the second dimension of the solution. 

Attribute judge no. 
balanced 4 

persistent 4,6  
mineral 5 

stagnant 5 
river 5 
cool 5 
sugar 6 
old 6 
mushroom 7 

mill., 7 
energetic 9 
hazelnut 10 
soft 1 1  

6.5 Conclusion 

The analysis of the data on the questions on the image of the different types of luncheon meat 
illustrates the use of an ordinal analysis. GCA helped to study some items in considerable 
detail, while at the same time, providing an interpretable configuration of all the meat types 
based on two underlying dimensions. The obtained configuration was shown to contain mainly 
two groups, one with a positive and one with a negative image. The negative image was ‘bad 
for your figure’, the positive image contained the items health, meagrellight, natural, luxury 
and nutritious. 

7. FREE CHOICE PROFILING OF MINERAL WATERS 

A of twenty different mineral waters is judged by K=ll The same data 
were analysed in Chapter 7.2 by means of GPA. In the experiment some mineral waters were 
presented twice, some three times, to the assessors, totalling to 49 presentations. Each judge 
used hisher own attributes, thus we are dealing with FCP data. The number of attributes per 
assessor ranges from 3 to 10. Table 6 shows all attributes. Note that the same attribute used 
different assessors does not indicate similar ideas of the assessors about this attribute. 

The data were made available by Dr. Pascal Schlich, INRA, Dijon, France. 
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The perceived intensities of the attributes were scored on a line scale, labelled ‘weak’ and 
‘strong’ at respectively the left and right end. The original scores ranged from 0 to 100. To use 
the OVERALS program these scores had to be recoded into a small number of Categories. This 
recoding was such that the chances of the occurrence of a unique marginal frequency was low. 
When as a result of this recoding a particular category occurs only a few times, a different 
recoding should be chosen. The OVERALS algorithm is sensitive for categories with low 
marginal frequencies (see section 3.2). Such categories will receive an extremely high, or low, 
quantification in the optimal scaling step of the algorithm. The recoding shown in Table 7, 
produced marginal frequencies in acceptable balance, i.e. each category appeared sufficiently 
often. 

Table 7 

Recoding of the original scores of the mineral water FCP data set. 

original score recoded category approximate meaning 

0 1 not perceivedlnot applicable 

1-25 2 weak* 

26-75 3 intermediate 

76-100 4 strong* 

The line-scales were anchored at the left and right ends by ‘weak’ and ‘strong’ respectively. 

The recoded data were analysed with a two- and a three-dimensional OVERALS analysis. 
There are 11 sets, one for each assessor. The data consist of 49 products, since the replicates 
were taken into the analysis as separate objects. This enables a check of the similarity of the 
replications in the final configuration of the 49 mineral waters. 

7.1 Objects and attributes 

First the three-dimensional solution was computed, the eigenvalues were 0.682, 
0.492 and 0.41 1, respectively. Because the eigenvalues were rather low, we proceeded with a 
two-dimensional analysis. The results from this analysis are presented next. The fit of the 
solution is 1.192, the maximal fit of a two-dimensional solution is 2. The two eigenvalues are 
0.691 and 0.502, which sums to the fit. Though the fit is not particularly high it may be 
worthwhile to inspect the results to find out the reason for this relatively low fit. The first step 
is to inspect the loss of the individual sets. Figure 11 presents the loss per assessor for the two 
dimensions of the OVERALS analysis. It is clear from Figure that assessor 4 fits best in the 
solution. There appear no assessors with an extremely high loss, so no assessors need be 
deleted from subsequent analyses. 

Figure 12 shows the space of object scores containing the 49 mineral waters and Figure 13 
gives the component loadings of the attributes in the same space. Like in the results of the 
analysis of the luncheon meat data, we did not connect the points with the origin. Clearly there 
are some outlying objects in Figure 12. The mineral waters 15, 16, 17 and the pairs 1, 2 
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Figure 1 1. Loss per assessor for the two dimensions of the OVERALS analysis of the mineral 
water 

and 12, 22 have rather extreme object scores. They are connected by lines because they are 
replicates. The component loadings in Figure 13 enable to see the attributes that apply to these 
outlying objects. It appears that the mineral waters 15, 16 and 17 are characterised by the 
attributes old6, rubber4, and the cluster of attributes paper3, flat4, dry4, metal3, mushroom7, 
bitter9, bitter8, and neutral4. The mineral waters 1 and 2 are mineral waters with extreme 
scores on the attributes salty4, acid11 and paperlo, mineral water 22 is characterised 
balancd, bitternessl, metallo, bitter5, river5, metalll, earth4 and mineral water 21 by the 
cluster of attributes metal9, bitter1 1 earth2, neutral2, metal7, earth7, bitter3, pungent4, metal7, 
tastel, neutral9, hard2, and neutrall. We do not give an interpretation of this. 

dimension 1 
Figure 12. The 49 mineral waters in the space of object scores, the replicated mineral waters 
that are outliers, are connected by a line. 
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Figure 13. The component loadings of the attributes from all assessors. The number attached 
to the name of the attribute refers to the number of the assessor who used the attribute. 

To reveal structure in the remaining cluster of objects, the analysis is repeated without the 
outlying mineral waters, leaving 42 objects in the analysis. The fit of this analysis is 1.059, the 
first two eigenvalues are 0.566 and 0.493. Note that these values are somewhat lower than 
previous results. Figure 14 shows the losses per assessor of this analysis. The losses are 
somewhat more evenly spread over the assessors than in the previous analysis. 

Figure 14. Loss per assessor for a two-dimensional OVERALS analysis after removal of some 
outliers. 
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Figure 15 shows the position of the remaining 42 mineral waters in the space of object 
scores. Replicate mineral waters are connected by a line in Figure 15. The connected points are 
close together in the direction of the first dimension, they are further apart in the direction of 
the second dimension. This may reflect the fact that the second dimension contains a certain 
amount of noise. Also the low second eigenvalue suggests this in Figure 15. Clearly the mineral 
waters 43 and 44 and the pair 25 and 26 are distinct from the other objects. The mineral waters 
no. 45,46 and the trio 47,48,49 are close together and distinct from the other mineral waters. 
Higher in the figure is the pair of mineral waters 38 and 39. In addition to these and 
disregarding the distances between corresponding mineral waters in the second dimension 
mentally replacing each pair or trio of mineral waters by its centroid-, the following two main 

clusters of mineral waters can be distinguished. in Figure 15 we find the numbers 10, 11; 
35,36,37; 12, 13, 14; 40,41,42; 8,9 and the pair 6,7. In the right part of Figure 15 there are 
number 18, 19,20; 3,4,5; 32,33,34 and the trio 27,28 29. 

3 

2 

8 

-1  0 1 2 3 
dimension 1 

Figure 15. Object scores of a two-dimensional OVERALS after removal of some outliers. 

Figure 16 presents the positions of the individual attributes in the two-dimensional 
OVER4LS solution. This plot can be used in conjunction with Figure 15 to find out the 
properties of the different clusters of mineral waters. When we try to identifj, trends of 
attributes it appears that most attributes ‘metal’ and ‘bitter’ lie in the right part of Figure 16. 
The attributes cool, river, pungent and hard are found here too. The left part of Figure 16 
contains salt, hazelnut, soft, milky and stagnant. This may indicate a distinction (in Figure 15) 
between two kinds of mineral waters: the first could be coined strong and fierce, the latter soft 
and easy. 
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acid4 
bitter8 
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Figure 16. Component loadings of a two-dimensional OVERALS analysis after removal of 
some outliers. 

8. CONCLUSION 

In this chapter the GCA method is illustrated in three applications from sensory science. In 
analysing sensory-instrumental relations the ability of GCA to analyse more than two data sets, 
and different measurement levels together, proved useful. In the analysis of conventional 
profiling data, in the example on luncheon meat, of an ordinal level, GCA helped to study some 
items in considerable detail, while at the same time providing an interpretable configuration of 
all the meat types based on two underlying dimensions. The FCP data set was, after recoding, 
analysed using ordinal transformations. Some outliers were removed and the final, two- 
dimensional configuration of mineral waters, and of attributes, revealed some interesting ideas 
about the judgement of mineral waters. 

Generalised Canonical Analysis, implemented in the OVERALS program, is a useful 
method to analyse sensory profiling data. Especially the ability of the method to analyse 
nominal, ordinal and numerical, and mixed, measurement levels proves useful. The combination 
of nonlinear transformations of the variables and the K-sets character of the method, makes it a 
powerful tool for the analysis of individual sensory profiling data, which is often of an ordinal, 
rather that a numerical, measurement level. For the same reasons GCA has also proved useful 
in the analysis of the relations between sensory and instrumental data. 
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DEFINING AND VALIDATING ASSESSOR COMPROMISES ABOUT 
PRODUCT DISTANCES AND ATTRIBUTE CORRELATIONS 

Pascal Schlich 

Laboratoire de Recherches sur les Ar6mes, 
17 rue sully, BV 1540,21034 Dijon cedex, France 

1. INTRODUCTION 

Sensory profiling of food is the process by which assessors give scores to a number of 
products for several attributes. The statistical analysis of profiling data requires multivariate 
techniques in which the attributes are the different variables. Principal Component Analysis 
(PCA; Jolliffe, 1986), the most basic multivariate technique, is widely used by sensory 
scientists to describe the data set composed of the product mean scores as the observations 
and the attributes as the variables. This is a reduced view of the data as it does not take into 
account the variance of the product mean scores due to individual differences. In the univariate 
framework, it is fairly accepted that no mean should be computed without its standard 
deviation. We argue that the same should be required on the multivariate side. Moreover, many 
people are used to performing this PCA on the basis of the correlation matrix, that is to 
perform the so-called normalized PCA. With this practice, an attribute having product means 
not significantly different, which is stated by means of an analysis of variance (ANOVA; 
Scheffe, 1959), has the same weight as a discriminant attribute among the products. To 
overcome this problem, one can include in PCA only the attributes being significant for the 
product effect. Although this practice protects to some extent against the previous problem, it 
suggests that the required method would be the Canonical Discriminant Analysis (CDA; 
Mardia et 1979) of the product effect. CDA is indeed the natural multivariate extension of 
the one-way ANOVA. The input of this CDA is the full data set, where the assessors stand 
replicates. But due to psychological andlor physiological reasons, the assessors may use the 
scale different ways, and should therefore be considered as a block effect. Consequently, we 
would recommend centering each attribute to a zero mean by assessor as a pre-treatment of 
CDA. Although less important than centering, one could also consider standardization of each 
attribute to a unit variance by assessor. Unfortunately, CDA and these pre-treatments seem to 
have been overlooked by sensory scientists. 

But the above mentioned flaws are even less important than the basic problem of sensory 
profiling, which can be summarized in a single statement the attributes are not statistical 
variables. A statistical variable is a vector of measurements of a random variate obtained on 
experimental units characterized by their values for different controlled factors. Our point is to 
say that the meaning of the random variate is the same over the experimental units. 
agronomy for instance, the yield or the plant size has the same meaning for every experimental 
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unit, whatever the levels of treatment and block factors are. In sensory profiling on the 
contrary, it is likely that the measurements of a given attribute from two different assessors 
measure two different sensory concepts. In such a case, computing for a given attribute a mean 
over the assessors can make no sense. Although good, but expensive, training of the assessors 
can substantially reduce this kind of problem, it is almost impossible to completely prevent it. 
Free-choice profiling (FCP; Williams Langron, 1984), in which each assessor scores his own 
list of attributes, was a definite contribution to solving this basic problem. The variables being 
different among the assessors, neither PCA nor CDA can be applied to FCP, unless a separate 
analysis is performed by assessor. Although some individual analyses can be useful to elucidate 
particular points during an analysis of data, they are not practical enough to manage to be 
recommended as a basic analysis. Therefore, Williams and Langron (1984) proposed 
Generalised Procrustes Analysis (GPA; Gower, 1975; Arnold &Williams, 1986) to analyse 
FCP. The FCP-GPA coupling became popular in the sensory field and people realized that 
GPA could also be applied to conventional profiling data. Less well known is the fact that 
GPA makes possible a posteriori individual attribute selection leading to what can be called a 
"simulated free-choice profiling" (Schlich, 1993). Recent improvements in GPA were proposed 
thanks to applications in sensory analysis @ijksterhuis Punter, 1990; Dijksterhuis Gower, 
1991/2). Although a chapter in this book(4.2) fully describes GPA, one can say that GPA 
defines a consensus among assessors the product differences by means of an iterative 
algorithm. Wakeling et al. (1  992) define a test of the significance of the consensus based 
permutations of the product labels by assessors. Although GPA is a significant improvement 
over PCA of the mean scores, a number of questions are open concerning the analysis of 
sensory profiles: 

0 How can the dimensionality of individual sample space be estimated? 
How can the similarity between two individual sample spaces be measured? 

0 How can the agreement between two individual sample spaces be statistically tested? 
0 How can a consensus sample space be derived by an analytical solution? 

How can the significance of this compromise be tested without computing numerous 
permutations? 

0 How can several panels profiling the same products be compared? 
0 How can exchangeability of assessors among panels be tested? 

0 How can assessors be compared on the basis of attribute correlations instead of sample 
distances? 

The present chapter to introduce in the sensory field a French statistical framework 
allowing firstly to deal with FCP and secondly to answer these questions. The basis of this 
framework is the RV coefficient (Escoufier, 1973; Robert &Escoufier, 1976), which is a 
generalised correlation coefficient between two sets of variables recorded from the same 
samples. It gives a way to quantify the agreement between two assessors about the sample 
differences. The RV coefficient is also useful in sensory science for relating sensory to 
instrumental measurements (Schlich et al., 1987) and for analysing gas-chromatography data 
(Schlich &Guichard, 1989). The French acronym STATIS stands for "Structuration des 
Tableaux A Trois Indices de la Statistique", which could be translated into "structure of 3-way 
data sets in statistics". The technique was originated by L'Hermier des Plantes (1976) and was 
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l l l y  described in Lavit (1988) and Lavit et (1994). It is a non-iterative 3-way multivariate 
analysis, based on the RV coefficient, which defines a compromise among assessors about the 
sample differences. Kazi-Aoual (1993) and Kazi-Aoual et (1995) defines an exact 
permutation test for RV coefficient which does not require numerous permutations to be 
actually performed. Another exact permutation test makes it possible to state whether the 
assessors from several panels profiling the same products can be considered as exchangeable 
among panels (Kazi-Aoual, 1993; 1992). 

In the present chapter, these techniques are applied to an interlaboratory sensory analysis of 
16 coffees evaluated by 11 different trained panels located in 8 different European countries. 
This experiment was organized and conducted by the European Sensory Network (ESN). ESN 
is currently completing a book presenting the results on that experiment, which also included 
consumer trials in 8 countries with half of the same coffees, Only a part of the profiling data is 
used in this chapter. The ESN book will make the whole set of coffee data available to the 
reader. More information about ESN can be obtained from the author. 

2. METHODS 

2.1 Raw data, sample weights and metrics 

Let k be the total number of assessors and assume that assessor i scored pi attributes 
1, k) for samples. Let X, be the matrix containing the scores of assessor The n rows 

of X, are the samples, whereas the pi columns of are the attributes. Throughout this chapter, 
it is assumed that the attributes are centered within each X,, that is per assessor. With the 
exception of Dual STATIS, every technique described in this chapter allows the attributes to 
be different among assessors, making it possible to handle FCP or any kind of individual 
selection of attributes. 

Although in most applications every sample has the same weight ( lh) ,  the techniques 
described in this chapter work with unequal weights. In this case, these weights are arranged 
into a diagonal matrix of size n. 

The question of choosing the attribute weight system, also called metrics, is more 
important. Metrics is a way of computing distances between samples. Generally speaking, it is 
a positive symmetric matrix Q of sizep (the number of attributes) 

As Q can be different among the assessors, sometimes it will be called The squared 
distance between two samples x (x,) andy (y ] ) ,  ...,p), is given by 

For instance, in the framework of PCA two different metrics are commonly used. For the 
first one, Q is the identity matrix containing 1 as diagonal elements and 0 elsewhere, which 
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corresponds to the PCA of the covariance matrix and to the usual Euclidean distance 

For the second one, is a diagonal matrix composed of the inverse of the attribute variances 

I= 1, . . . ,p ) ,  which corresponds to the PCA of the correlation matrix, also called 

standardized PCA, and to the weighted distance 

/= I  

As in the introduction section, where non standardized PCA was recommended for 
analysing the mean score products, we again recommend the non standardized PCA for 
analysing individual data sets. Many reasons can this choice, a few others can be found 
against it. It is out of the scope of this chapter to open such a discussion, because the 
techniques proposed in this chapter can accommodate any individual metrics. Furthermore, 
other metrics can be used with profiling data. For instance, we advocated (Schlich, 1993) the 
use of the individual Mahalanobis distance 

when dealing with free-choice profiling, or even with conventional profiling as soon 
different attribute correlation structures are expected among the subjects. 

Finally, as is positive, it is possible to find a square matrix Tof size such as 

(6) 

Analysing Xwith metrics is thus equivalent to analyse 

Y =  

with the classical identity metrics. Therefore, without loss of generality, it is assumed right now 
that the metrics is the identity and that the sample weights are all equal to lln. 

To summarize this section, the reader should remember that 

Individual attributes are centered 

0 RV coefficient and STATIS work with any set of product weights (the same for each 
assessor) and with any individual metrics (which can be different by assessor) 

0 The selection of attributes and the choice of the metrics are two essential steps in the 
analysis of sensory profiles which are not addressed in this chapter. 
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2.2 Association matrix of individual sample space 

For each assessor, the samples can be seen as a centered cloud of n points a 
multidimensional space spanned by the attributes. The dimensionality of this individual sample 
space is equal at most to P, 

min(n l ,p i )  (8) 

The distance between two samples in this space measures the magnitude of the sensory 
differences between them. Because of correlations between attributes, it is likely that the main 
sample differences can be summarized by fewer dimensions than P,. These new variables, 

called the principal components, are given by the successive eigenvectors of the association 
matrix of size (n,n) 

which contains the usual scalar products among the samples. The distance d,,, between samples 
u and v is linked to their scalar product through the formula: 

Inversely, because the columns of are centered the formula (10) can be reversed into 

where 

di, (1 I n ) x  d:" and d: (1 n ) x d i v  
Y 

Finally, it should be remembered that the association matrix contains the full information 
about the multidimensional differences among samples found by subject i. The association 
matrices are the basis of the subject comparisons in STATIS, which can therefore be done even 
if the assessors did not score the same attributes. 

2.3 Estimating the dimensionality of an individual sample space 

What PCA does is to decompose the total multidimensional variance of the sample space into 
successive non-correlated components which account for the of this information. 
Precisely, the amount of variance given by the l-th principal component is the eigenvalue of 
(lln)W, ( I  1, A classical, but still difficult, question is to decide how many 
components should be analysed. We think that it is best to use resampling techniques such 
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cross-validation or bootstrap (Efron Tibshirani, 1993). However these techniques are not 
widely available within the statistical softwares yet and can be time-consuming. The 
coefficient can actually be understood as an estimation of the dimensionality of the individual 
sample space from subject i: 

where the trace of a matrix is the sum of its diagonal elements. It is possible to write as a 
function of the eigenvalues A, 

pi c 
i 

The following properties can be derived from equation (15): 

1 if and only if a single eigenvalue is not null 

pi F: if and only if the eigenvalues are all equal (18) 

Property (17) says that the lowest dimensionality (a single axis) is obtained when all the 
attributes are fully correlated, whereas property (18) says that the highest dimensionality is 
obtained when no correlation at all exists among the attributes. These properties make it clear 
as to why can be seen as a dimensionality coefficient. Although we do not trust this 
coefficient as being the exact truth about the number of dimensions involved sensory 
evaluation of a set of products, we strongly rely on it for comparing dimensionality of several 
individual sample spaces. This concept of dimensionality is really important for the panel leader 
for choosing the number of attributes to be included in the profile. The p coefficient suggests 
to the panel leader a number of ideal attributes which should be sufficient to span the 
sample differences. However it is almost impossible to define such ideal attributes, therefore it 

is recommended to include a number of attributes being at least about the double of p. 
To summarize this section, it should be remembered that the p coefficient makes it possible 

to compare dimensionalities of individual sample spaces, which can be understood as individual 
complexities of assessment. 

2.4. Comparing two individual sample spaces by means of the RV coefficient 

The quantity 
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is the natural scalar product between two matrices, where W; is the (I,m)-th element of matrix 

It is a generalised covariance coefficient between and matrices. The greater 
is, the more similar assessors i andj are in terms of their raw product distances. The quantity 

is consequently the norm of or a generalised variance for subject i .  The greater this 
quantity, the more different the products are for this subject. this context, the RV coefficient 
is defined 

and appears as a generalised correlation coefficient between and matrices; it is worth 
pointing out that the RV coefficient is the classical Pearson correlation coefficient between the 
association matrices arranged into vectors of size One can prove that RV(T.,T.) is between 
0 and 1. The closer the RV is to 1, the more similar assessors and j are in terms of their 
standardized product distances. 

Therefore, the comparison between two assessors can be based either on generalised 
covariance given by formula (19) or on generalised correlation given by formula (21). The 
author recommends the latter, because the former depends on the use of the scale. For 
instance, an assessor who tends to use a small portion of the scale for every attribute will get 
smaller covariance with the other assessors but not automatically a smaller RV. But the reader 
must understand that this matrix standardization is different from the classical attribute 
standardization, which is done by a PCA of correlation matrix. Contrarily to this normalized 
PCA, RV takes into account the differences between attribute variances for a given assessor. 

To summarize this section, one should remember that the RV coefficient is a measure of the 
similarity between two individual sample spaces. RV is the classical correlation coefficient 
between the two square matrices of sample scalar products of size having been previously 
arranged within two vectors of size n2. 

2.5. Testing significance of a RV coefficient by an exact permutation test of the products 

Testing the significance of a given RV value would require complicated parametric 
assumptions. Therefore, a non parametric alternative (Schlich, 1993) consists in permuting the 
product labels within without permuting correspondingly the product labels within and to 
recompute the RV coefficient. Providing that the two assessors agree to some extent about the 
sample differences, one can expect this "permutated RV" to be lower than the actual RV. This 
process is repeated a large number of times (say 100) in order to derive the 95 quantile from 
the distribution of RV under permutation. If the actual RV is greater than this empirical 
quantile, it can be concluded that the agreement between the two assessors is better than what 
can be obtained by chance. The computations required by this permutation test can be too 
time-consuming to be easily implemented on a micro-computer. Kazi-Aoual(l993) proposed 
an efficient way to avoid computing a number of permutations. This author established 
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formulas (22) and (23) giving respectively the mean and the variance of all the possible 
permutated RV coefficients: 

(22) 
f i  

Ep[RV( y,  ?.)I 
n - 1  

where 

with 

trace( 

Therefore, a normalized deviation between the actual RV and its distribution under 
permutation can be computed as follows: 

this normalized RV coefficient is a measure of the agreement between assessors and j. 
Assuming a normal distribution of the permutated RV coefficients, formula (26) defines a test 
statistic for the null hypothesis of no better agreement between assessor i and j than what can 

be obtained after permutation of the label products. One can expect this value to be roughly 
greater than 2 if the agreement between the assessors i and is better than what can be 
obtained by chance. Although the normal assumption has not been proved till now, it has been 
observed in practice when performing 100 permutations (Schlich, 1993). Anyway, the exact 
probability level of this test is not necessary, because the experimenter is most interested in 
detecting when two assessors do not agree more than what can be obtained by chance. 

To summarize this section, one should keep in mind that because the magnitude of a RV 
coefficient depends on both the number of observations and the of variables in the two 
data sets, there is a need for a statistical test of RV significance. An exact non parametric 
permutation test is available, it makes it possible to declare whether two assessors agree more 
than what can be just obtained by chance. 
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2.6 Defining and interpreting a compromise sample space among the assessors by 

A natural way to define a compromise among subjects on the sample differences would be to 
compute: 

means of the STATIS method 

(l/k) cw, (27) 
i 

and to analyse this matrix by means of a principal co-ordinate analysis (PCO; Gower, 1966) in 
order to map the samples in accordance with the distances induced by In most cases, the 
author would recommend this analysis instead of PCA of the mean scores, because it does not 
require "attribute alignment" among subjects and consequently is able to cope with FCP. 
Unfortunately, this simple method for analysing sensory profiles seems to be unknown to 
sensory scientists. 

The STATIS compromise differs from this natural compromise because the latter is a 
classical mean, whereas the STATIS compromise is a weighted mean of the 

Caiv 
i 

where (a),=, is the first eigenvector of the matrix of size (k,k) containing the RV coefficients 
between assessors. The components of this vector are positive and normalized to get a sum 
equal to one. This vector represents the "principal agreement among assessors". Thus, the 
greater the a,, the more assessor agrees with the panel on the sample differences. The strategy 
of STATIS is therefore to put weights on subjects proportionally to their agreement with the 
panel. Therefore, the weight of an outlier should be close to 0. 

Replacing by in formula makes it possible to estimate a dimensionality of the 
compromise, which can be an indication about the number of dimensions to be interpreted. 

The product coordinates on the axes of the compromise are obtained by a PCO of W. The q 

compromise components are the q first eigenvectors of being standardized to have a 
variance equal to the corresponding eigenvalues. These components are arranged as the 
columns of a matrix C of size (n,q).  The interpretation in terms of sensory attributes can be 
conducted thanks to the covariances or correlations between the individual attributes and these 
compromise components. It seems to us that the use of covariances is more logical when no 
attribute standardization was initially applied to the data as in a PCA of the covariance matrix. 
Being computed on an individual basis these covariance or correlation coefficients are 
numerous and it is sometimes necessary to summarize them by averaging scores over assessors 
having the same attributes before computing these coefficients. As no biplot property holds in 
this context, we are used to producing a covariance or a correlation plot not superimposed on 
the compromise plot. Conversely, it is possible to superimpose individual sample spaces on the 
compromise plot by a classical technique of projection of supplementary elements in 
multivariate data analysis. The sample coordinates from assessor i on the q compromise 
components are given by the columns of the following matrix Cr of size (n ,q)  
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where E is a diagonal matrix of size (q,q) containing on the diagonal the inverses of the square 
roots of the eigenvalues of the compromise. 

The compromise location of a given product is the barycenter, for the STATIS weight 
system, of the individual locations of this product. The smaller the dispersion of the 
individual locations of a product around its compromise, the better the agreement among 
assessors on this product is. In order to better visualize this dispersion, one can draw the 
convex hulls gathering individual locations of the same products. #en two convex hulls do 
not overlap too much, a logical rule of thumb is to consider the two associated products 
different. Alternatively, one can draw for a given product a 95 confidence convex hull, 
which is the smallest convex set gathering at least 95 of the individual locations of this 
product. Drawing and looking at a convex hull can also be simplified by drawing and looking 
at a confidence ellipsoide, which requires a bi-normal assumption to be fulfilled. Although the 
number of assessors usually included in a trained sensory panel does not make it possible to 
check this assumption, we do think that drawing confidence ellipsoides or convex hulls on a 
compromise and individual plot is a powerful descriptive tool. Here, as most often in data 
analysis, it is not a strict and true p-value which is required but some evidence that a pattern 
makes or does not make sense. 

For comparing assessors two ways exist to derive an assessor map. The first one is obtained 
with the two first eigenvectors of the RV matrix of size (k,k). Each of these eigenvectors is 
normalized so that its sum of component squares is equal to the corresponding eigenvalue. The 
first axis of this map represents the direction of an assessor being equal to the compromise and 
the corresponding eigenvalue can be understood as the proportion of inter-individual variance 
explained by this compromise. The assessor coordinates on this first dimension are 
proportional to the STATIS weights a, and are therefore positive. assessor is represented 
on this plot as an arrow joining the assessor point to the origin. The angle between this arrow 
and the first axis is proportional to the disagreement of this assessor with the compromise. The 
length of this arrow is proportional to the quality of the representation of the assessor on this 
plot. In some applications, it can be necessary to produce the subsequent plots (1,3), (1,4) 
and, in such a case, the visual interpretation becomes difficult. 

The second way to derive an assessor map is based on the first two eigenvectors of the RV 
matrix being previously and simultaneously centered in lines and in columns (that is subtract 
from each RV coefficient the means of the line and of the from those it belongs to and 
add the grand mean of the RV matrix). Therefore, this assessor map is centered and is usefid 
for showing whether different groups of assessors could exist on the basis of the sample 
differences. In some applications, more than two axes can be necessary for correctly describing 
the assessor structure. Obviously the RV matrix or the double centered RV matrix can also be 
taken as the input of any clustering algorithm 

To summarize this important section, it is worth recalling that 

0 STATIS derives a compromise association matrix W which is a weighted mean of the 
individual association matrices 

0 These weights are given by the first eigenvector of the RV matrix among assessors, 
which means that the weight of an assessor is proportional to its agreement with the 
panel 

0 The compromise sample plot is obtained thanks to a of W 
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Sensory interpretation is conducted through covariances or correlations between 

compromise components and individual attributes 
Assessor maps are derived from PCO of the RV matrix and from PCO of the doubly- 

centred RV matrix. 

2.7 Testing panel homogeneity and significance of compromise 

For testing panel homogeneity, Schlich (1993) compared the observed mean of the k(k-1)/2 
RV coefficients to the 95 quantile of the distribution of the mean RV coefficient when a 
permutation of the product labels is randomly and independently chosen for each assessor. In 
order to estimate this quantile, 100 sets of permutations were sampled independently. A faster 
solution for testing significance of STATIS compromise consists of computing the mean of the 
k(k-1)/2 normalized RV coefficients (obtained by formulas (22) to (26)) and checking whether 
it is roughly greater than 2. This faster solution relies on normality of the RV distribution under 
permutation. As soon as the number of products is larger or equal to 6, the number of possible 
permutations becomes very large and therefore the normality assumption, observed in 
practice, should hold. 

This test of panel homogeneity is an average of homogeneity computed over pairs of 
assessors. This approach can be too demanding, because at the end the data is summarized by a 
compromise. Therefore, it seems sensible to test a weaker hypothesis, that is the individual 
agreement with the panel compromise. A normalized RV coefficient is computed between each 
assessor and the panel compromise and this paper proposes to average these k values 
to get a test for compromise significance. 

As a summary, one should remember that the exact permutation test defined in section 2.5 
makes it possible to test whether the assessors agree among themselves and whether they agree 
with the STATIS compromise defined in section 2.6. The strength of these tests is that they are 
exact and that they do not require any permutation to be actually performed. 

2.8 Comparing two panel compromises about the same products 

The similarity between two panel compromises can be evaluated by their normalized RV 
coefficient. If this coefficient is about 1 or less, then the panels disagree dramatically; if it is 
between 1 and 2, then the panels agree rather poorly; if it is greater than 2, then the panels 
agree and the interpretation should lead to the same conclusions about the sample differences. 
But the reader must be aware that the interpretation of these differences, in terms of the 
attributes, may not be equivalent from panel to panel, firstly because the attributes may not be 
the same among panels and among assessors within panels (FCP or individual selection of 
attributes), and, secondly because the scalar products in W are sums over attribute 
contributions making it possible to obtain equal sums composed of different attribute 
contributions. 

This test can be based either on the whole compromise spaces or on the compromise 
subspaces spanned by the interpreted dimensions. The former is done directly by using the two 
compromise matrices in formulas (22) to (26), whereas the latter requires first to recompute 
new W matrices on the basis of the selected components. The advantage of the latter is to 
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provide insurance that no noise can destroy a significant agreement in the interpreted space, 
which is at the end the only information retained. 

The idea to be retained from this section is that the exact permutation test makes it possible 
to test agreement between compromises drawn from two different panels having profiled the 
same samples. Finally, the technique could also be applied to check whether two competitive 

analysis techniques lead to the same sample space or to the same sample plot. 

2.9 Testing exchangeablity of assessors among panels 

When several panels have profiled the same samples and when the test described in the 
previous section is significant, one could wish to go fkhe r  by testing whether the permutation 
of assessors among panels would provide us with the same amount of panel differences, as a 
null hypothesis. If this test is significant, it means that discrimination holds and therefore, it 
informs the panel leaders that they Cannot exchange their assessors. 

Assume that g panels were available and that the 1-th panel includes kc assessors k). 

Having gathered the k assessors into a single data set, the RV matrix of size (k,k) among these 
assessors is computed, A K O  of the doubly centred RV matrix is performed in order to keep 
part or all of the assessor components. From this system of assessor coordinates it is now 
possible to apply a CDA of the panel factor. The panel discrimination can be measured thanks 
to a classical statistic in CDA 

1 =I 

trace( 

trace( 
H =  

in which is the between-panel covariance matrix and is the total covariance matrix. The 
closer to 1 H, the more different the panels are. The test proposed in Kazi-Aoual (1992) 
consists of permuting the assessor labels in the assessor coordinate table obtained from the 
PCO, without permuting the corresponding assessor coordinates and then computing a CDA 
of the new permutated partition of the k assessors into g panel of k, assessors. If the null 
hypothesis of assessor exchangeability holds, one can expect the real H statistic to be not 
greater than the same statistic under permutation. Instead of performing numerous 
permutations in order to estimate the distribution of H under permutation, the following 
formulas from Kazi-Aoual(l992; 1993) give respectively the mathematical expectation and the 
variance of under permutation 

2((k 1) p l)(g- l)(k -g)(l (k 3).c.f/2k(k 1)) 
VPWl (k  I)(k 1)2(k 2) (32) 

where and are defined as pi and in equations and (24) replacing Ki by the 
association matrix among the assessors computed from the assessor scores obtained by CDA. 
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The constant is given by 

making it possible to derive a normalized statistic 

when this HN is greater than 2, one can decide that the assessors are not exchangeable across 
panels. 

To conclude this section, it is worth pointing out that, contrary to the previous permutation 
tests, this one is based on permutations of the assessors instead of the products. It appears as a 
competitor of the multivariate analysis of variance tests such as the Hotteling-Lawley trace or 
the Wilks ratio (Mardia al., 1979), but contrary to these parametric tests it does not require 
the assumptions of multinormality and homogeneity of within-panel covariance matrices. 

2.10 Defining a compromise about attribute correlations by means of the Dual STATIS 

Dual STATIS, proposed in Lavit (1988), is the STATIS method applied to the covariance 
matrix (or to the correlation matrix) instead of the association matrix The of 
Dual STATIS is to compare the assessors on the basis of their individual structure of attribute 
covariances or correlations, which can be understood as their own way to understand attributes 
and to link them together. The STATIS compromise becomes a weighted mean of the 
individual covariance matrices. Such an analysis can be very interesting for the panel leader 
when training his panel to conventional profiling. Furthermore, this analysis can be even 
when the assessors scored different samples but for the same attributes, making it possible to 
investigate simultaneously correlation structures on the basis of different kinds of products. 

Unfortunately, the analyhcal permutation tests described in Kazi-Aoual(1993), do not seem 
to work with Dual STATIS, because of the non centering of the columns of X'. Therefore, 
in GPA, one should run numerous permutations to derive a test. Note that in this context, the 
permutations are applied on the attributes instead of the products. 

To conclude this section, it can be underlined that with a conventional profiling data set 
both STATIS and Dual STATIS can be performed, making it possible to compare the 
assessors on the basis of both the sample differences (client need) and the attribute 
relationships (panel leader need). If on both aspects the agreement among the assessors is good 
enough, the panel leader can trust that the sample differences perceived by the assessors 
(significant STATIS) were also described in the same way by these assessors in terms of the 
sensory attributes (significant Dual STATIS). 

method 



3. COMPARISON WITH OTHER METHODS 

3.1 Principal Component Analysis (PCA), Simple and Multiple Correspondence Analysis 

The limitations of the classical PCA of the mean score products have already been mentioned 
in the introduction section of this chapter. There are two other ways of performing PCA on a 
profiling data set, called TUCKER1 in chapter 10 of this book. The first TUCKER1 method 
consists of a PCA of a data set composed of times observations andp attributes; this data 
set gathers the individual data sets vertically. It cannot be applied to free-choice profiling and 
the author thinks that it can be quite non robust to outlier observations. The second 

TUCKER1 method consists of a PCA of a data set composed of observations and z p ,  

attributes; this data set gathers the individual data sets horizontally. This technique is more 
interesting than the previous one, because it is a solution for analysing free-choice profiling 
when only a PCA program is available. Nevertheless, the weight of an assessor in this analysis 
can be strongly inflated or deflated according to his number of attributes. One can avoid this 
problem by dividing the centered scores of a given assessor by the square root of the 
sum of squares of these scores and by doing a PCA of the covariance matrix. 

The TUCKER2 and TUCKER3 methods, also described in this book (chapter lo), are more 
interesting but cannot be applied to free-choice profiling either. 

The use of CA and MCA with profiling data, proposed by McEwan and Schlich 
considers sensory measurements at ordinal level instead of interval level, which is definitely not 
possible with STATIS or with any technique based on covariance or correlation computations. 
Whether this point improves significantly the interpretation of the sensory data is still not 
obvious. Another advantage of CA and MCA, linked to the previous one, is their ability to 
discover non linear relationship between attributes. Most of the linear techniques could 
accommodate non linear transformations of the data such as spline fonctions. But till now there 
has been a lack of published examples of these techniques in the sensory field. Finally and once 
again, the analysis of free-choice profiling with CA or MCA is not straightforward. 

The introduction section of this chapter has suggested why CDA together with some pre- 
treatment of the data could be useful for analysing sensory profiles. Nevertheless and like the 
other methods evoked in this section, with the exception of the second TUCKER1 method, 
CDA cannot deal with free-choice profiling or with the problem of non attribute alignement in 
conventional profiling. 

(CA and MCA) and Canonical Discriminant Analysis (CDA) 

k 

/=I  

3.2 Generalised Procrustes Analysis (GPA) 

The introduction section of this chapter has recalled that GPA is the historical leader technique 
for the analysis of sensory profiles because it was presented as the dedicated technique for 
free-choice profiling. The present book includes a chapter which fully describes this 
technique. In the past, the author of the present chapter advocated the use of GPA through 

SAS/IML@ software for GPA (Schlich, 1989). But now, in the light of the validation concern 
of sensory profiles, the author prefers the STATIS framework for several reasons 

It is a non iterative technique 
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Its weighting system of assessors deals smoothly with outliers 

0 The coefficient gives simple dimensionality estimation 
0 The analytical permutation tests of RV coefficient provide a straightforward panel 

homogeneity estimation, a compromise validation and a panel comparison 
0 Dual STATIS is a unique tool for investigating individual correlation structures 

3.3 INDSCAL 

INDSCAL (Carroll Chang, 1970), described in this book in chapter 6, is the MDS 
(Schiffmann et al., 1981) technique dedicated to three-way data analysis. It analyses a set of 
individual product dissimilarity matrices, in that respect it is a little more general than STATIS, 
which analyses a set of scalar product matrices. INDSCAL. iteratively defines an a priori fixed 
number of optimal dimensions mapping the products. The strength of INDSCAL, not available 
in STATIS, is that each assessor can weight differently each of these dimensions. These 
individual vectors of weights are defined in order to minimize the STRESS which is a least 
square criterion between the observed individual dissimilarities and the compromise product 
distances in the fitted space. 

Being a more general model than STATIS, INDSCAL can cope with free-choice profiling 
as soon as a dissimilarity function is chosen to be derived from the attributes scores. 
Unfortunately, this technique does not seem to be widely used in our field. Furthermore, to the 
knowledge of the author no analytical validation technique exists in the INDSCAL framework, 
certainly because of its iterative algorithm. 

4. APPLICATIONS 

4.1 The ESN coffee experiment 

The European Sensory Network (ESN) was launched in 1989 as a basis for close collaboration 
between major food research centers in Europe. Nowadays, ESN gathers about 20 academic 
sensory scientists coming from about 10 different countries in Europe. The aim of ESN is to 
exchange ideas and to transfer results from basic research to the food industry. In order to 
check consistency of sensory profiling, ESN organized an interlaboratory study of 16 coffees 
evaluated by 1 1 different panels managed by ESN members in their own institutes. 

The samples, the beverage preparation and service and the experimental design were 
absolutely identical across panels. For practical reasons, the same samples had to be assessed 
during a session by every assessor and no more than 4 products could be presented during a 
given session. Therefore, 4 sessions were conducted to complete a replicate. Three replicates 
were done. The allocation of the samples to the sessions was identical across panels and 
determined thanks to previous knowledge about the expected coffee differences. The strategy 
was to span the coffee space as much as possible within each of the 4 sessions of the first 
replicate. Second and third replicates were then defined according to the same rule and in order 
to respect a pair balance condition, which was to ask that any pair of samples must not be 
present in more than one session. Concerning the selection and the training of the assessors, 
for the vocabulary development, no instruction was given to the panel leaders. Depending on 
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the panels, the number of assessors was between 8 and 12, whereas the number of attributes 
was between 14 and 56. As said in the introduction, a book will be published soon by ESN 
presenting the complete analysis of the coffee data and making it available to the reader. For 
the present chapter, only a small part the profiling data is used to illustrate the application of 
the above proposed techniques. 

The 16 coffee samples were provided by the International Coffee Organization (KO) 
London, who was an ESN member. The sensory panel from ICO was composed of 12 subjects 
highly trained to profile coffee for many years. ICO panel can be considered as expert panel. 
On the contrary, one of the French panel, called F2, was poorly trained to profile coffee. 
Because of this opposition, we decided to present a STATIS analysis of the ICO data (section 
4.2) and another one of the F2 data (section 4.3). For the sake of simplicity, we also decided to 
analyse only a subset of attributes (12 for ICO and 9 for F2), chosen from attributes being 
scored by most of the panels. Presenting the analysis of the "best" and of the "worst" panels, 
we aim to convince the reader that our statistical framework is actually able to detect such a 
diagnostic. 

In order to illustrate the techniques of panel comparisons together with the Dual STATIS 
method, we defined a panel called S49 including 49 assessors from 5 differents panels, called 
1F for France (different panel than F2), IC for ICO (UK), No for Norway, Po for Poland and 
Sw for Sweden. These panels share the property of including 4 basic attributes for describing 
coffee bitterness, acidity, astringency and body/mouthfeel. Therefore, we applied STATIS 
(section 4.4) and Dual STATIS (section 4.5) on the S49 panel data restricted to the above 4 
attributes. 

Each of the three data sets analysed were first averaged over the 3 replicates by product 
times assessor, making the number of observations being equal to the number of products (16) 
times the number of assessors (12,9 or 49). 

4.2 STATIS of the ICO panel 

Table 1 
ICO panel. RV coefficients between subjects 

A B C D E F G H I  J K L  
A 1.00 
B 0.81 1.00 
C 0.76 0.83 1.00 
D 0.82 0.87 0.77 1.00 
E 0.91 0.83 0.84 0.81 1.00 
F 0.86 0.91 0.84 0.87 0.86 1.00 
G 0.86 0.76 0.72 0.77 0.79 0.81 1.00 
H 0.91 0.77 0.77 0.84 0.87 0.87 0.87 1.00 
I 0.88 0.82 0.88 0.81 0.91 0.87 0.80 0.88 1.00 
J 0.78 0.69 0.70 0.76 0.73 0.78 0.82 0.88 0.78 1.00 
K 0.76 0.81 0.86 0.75 0.84 0.83 0.70 0.77 0.84 0.70 
L 0.86 0.76 0.70 0.75 0.74 0.80 0.87 0.87 0.80 0.78 0.73 



Table 2 
ICO panel. Normalized RV coefficients between subjects 

A B C D E F G H I J  K L  

B 8.56 
C 
D 
E 
F 
G 
H 
I 
J 
K 

7.84 8.76 
8.60 9.38 7.93 
9.69 8.73 8.85 8.60 
9.10 9.75 8.73 9.24 9.10 
9.23 8.04 7.34 7.93 8.41 8.48 
9.77 8.09 8.02 8.87 9.35 9.27 9.29 
9.40 8.54 9.29 8.55 9.71 9.18 8.55 9.49 
8.18 7.15 7.15 7.88 7.63 8.11 8.66 9.41 8.24 
7.90 8.55 9.05 7.60 8.93 8.65 7.06 7.99 8.94 7.09 

L 9.26 8.08 7.30 7.86 7.87 8.50 9.18 9.28 8.63 8.20 7.63 

Mean 8.87 8.51 8.21 8.40 8.81 8.92 8.38 8.98 8.96 7.97 8.13 8.34 

As we recommend most often, no attribute standardization was performed, but the 
assessors were compared on the basis of their RV coefficients (Table 1). These RV coefficients 
range from 0.69 to 0.91 denoting a very good agreement between panelists on the sample 
differences. The permutation test statistics of these coefficients, which are the normalized RV 
coefficients given in Table 2, range from 7.15 to 9.77. According to the normal distribution, 
we can therefore conclude that each pair of assessors strongly agrees about the sample 
structure. Such a high homogeneity in a trained sensory panel is rather unusual in practice. 

Table 3 
ICO panel. PCO of the non centered RV matrix 

Axis Eigenvalue Variance var. 

DIM 1 9.9181 82.65 82.65 
DIM 2 0.6041 5.03 87.69 
DIM 3 0.3237 2.70 90.38 
DIM 4 0.2682 2.23 92.62 
DIM 5 0.2418 2.02 94.63 
DIM 6 0.1560 1.30 95.93 
DIM 7 0.1294 1.08 97.01 
DIM 8 0.1 163 0.97 97.98 
DIM 9 0.0879 0.73 98.71 
DIM10 0.0685 0.57 99.28 
DIM1 1 0.05 17 0.43 99.72 
DIM12 0.0337 0.28 100.00 
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The first eigenvector of the RV matrix accounts for 82.65 of the panel variation (Table 3). 
This can be understood as follows the compromise association matrix defined by STATIS 
will account for 82.65 of the variation between the 12 individual association matrices Wi. 
Figure 1 is the first assessor plot drawn from this PCO. One can see that the assessors who 
might agree the least with the compromise (first axis) are assessors J, G and L at the top of the 
plot and assessors K and C at the bottom of the plot. One can check this point by reading the 
last line of Table 2, in which these assessors actually get the smallest, but still excellent, 
average normalized RV coefficients. 

Table 4 
ICO panel. PCO of the centered RV matrix 

Eigenvalue Variance Cum. Var. 

DIM 1 0.6042 28.89 28.89 
DIM 2 
DIM 3 
DIM 4 
DIM 5 
DIM 6 
DIM 7 
DIM 8 
DIM 9 
DIM10 

0.3237 
0.2715 
0.2445 
0.1560 
0.1296 
0.1 172 
0.0894 
0.0688 
0.0517 

15.48 
12.98 
11.69 
7.46 
6.20 
5.61 
4.28 
3.29 
2.47 

44.38 
57.36 
69.05 
76.5 1 
82.71 
88.31 
92.59 
95.88 
98.35 

DIM1 1 0.0345 1.65 100.00 

Thanks to the PCO of the centered RV matrix, one can draw a centered assessor map 
(Figure 2), in which the compromise would be located at the origin. On this map, one can 
observe three groups of assessors D, B and F at the top of the plot, C, K, E and I at the 
bottom of the plot and the remaining assessors on the lef? of the plot. This grouping of 
assessors might correspond to very slight differences in sample perception, as permutation tests 
demonstrated strong homogeneity in each pair of assessors. Moreover, as this map accounts 
for only 44.38 of the total variation (Table 4), this visual grouping might also be artificial. 
Comparing Tables 3 and 4, one can note that the total number of dimensions in the first 
analysis was equal to the number of assessors, that is 12, whereas in the second analysis 
centering the RV matrix removed one dimension. 

Because of the high homogeneity of the ICO panel, the assessor maps given by Figures 1 
and 2 were not really necessary. The point is that without looking at the magnitude of the RV 
coefficients and without testing them thanks to the normalized RV coefficients, it would have 
been difficult to assess on the basis of any assessor map whether homogeneity held or not. 

Table 5 is the most interesting table printed by our STATIS program. The lines of this table 
are the assessors. The column called 'p' gives the number of attributes. In this case, standard 
deviation of one or two attributes were nil for subjects A, D, G and L. The 'Scaling' column 
gives the coefficient by which each individual data set should be multiplied to achieve a 
common and equal global dispersion over both samples and attributes. This column 
demonstrates that subjects B and I had a clear tendency to concentrate their scores on a small 
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part of the scale (scaling coefficients equal to 2.131 and 2.190), whereas subjects D and G 
clearly behaved in the opposite way (scaling coefficients equal to 0.325 and 0.293). The next 
'NRV column is the 'Mean' line of Table 2, that is the mean of the normalized RV coefficients 
between the current subject and the others. Looking at this column, one can immediately 
detect panelists who would disagree with the rest of the panel. The 'Weight' column in Table 5 
contains the STATIS weights of the assessors being normalized in such a way that their sum is 
equal to the number of panelists. Therefore, an individual weight greater than one corresponds 
to a subject who is in better agreement with the panel than the others. Because of the high level 
of homogeneity, the weight range is very narrow around one, denoting that there is no reason 
to trust some panelists more than others. The next 'BETA' column gives the dimensionality 
coefficient defined in section 2.3 of this chapter. This coefficient ranges from 1.467 to 2.786 
with a mean value of 1.979. On this basis, one can postulate that two dimensions would be 
enough to span the coffee space as it is perceived by this panel. Therefore, only the two first 
dimensions of the compromise sample space will be interpreted below. The last column of 
Table 5, called 'NRVC', gives the normalized RV coefficient between each assessor and the 
STATIS compromise. We suggested in section 2.7 that the mean of this column can be 
accepted as a normal test of the null hypothesis of chance against the alternative hypothesis of 
compromise significance. In that respect, the ICO STATIS compromise is found highly 
significant 9.752. This last provides a check of individual agreement with 
compromise. In the ICO panel, NRVC is always much greater than 2, denoting that every 
assessor agrees with the compromise. 

Table 5 
ICO panel. of individual STATIS statistics 

P NRVC Subject Scaling NRV Weight BETA 
10.100 A 10 0.674 8.865 1.030 1.734 

B 12 2.131 8.512 0.995 1.539 9.698 
C 12 1.229 8.206 0.975 2.321 9.393 
D 11 0.325 8.404 0.992 2.786 9.618 
E 12 1.434 8.808 1.024 1.627 10.020 
F 12 0.799 8.918 1.037 2.407 10.140 
G 11 0.293 8.378 0.985 2.424 9.607 
H 12 0.528 8.984 1.038 1.732 10.230 
I 12 2.190 8.956 1.037 1.600 10.150 
J 12 0.996 7.973 0.947 1.708 9.171 
K 12 0.907 8.127 0.967 2.399 9.325 
L 10 0.493 8.344 0.973 1.467 9.575 

Mean 11.5 1 8.540 1 1.979 9.752 

The product map in Figure 3 is obtained from a PCO of the compromise association matrix, 
whose eigenvalue decomposition is given in Table 6. This plot is dominated by the first 
dimension which accounts for 63.99 of the information. This first axis splits samples 4, 6 
and 13 from the others and the second axis seems to distinguish sample 14 at the top of the 
plot from samples 11 and 12 at the bottom of the plot. The interpretation of this sample 
structure is conducted by means of an average covariance plot (Figure 4) as explained in 
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section 2.6. It is clear from this plot that the first axis is a gradient of coffee strength 
positively correlated to the bitter taste and to the tobacco, smoky, burnt and rubber flavours 
and negatively correlated with the acid taste and the fruity flavour. Therefore, samples 4, 6 and 
13 were judged as the "strongest" coffees, whereas sample 1 1 and 12 were perceived as more 
acid and fruity and finally coffee 14 would be the weakest sample for both bitterness and 
acidity. The ESN book will explain why these findings make sense considering the origin of the 
samples. 

Table 6 
ICO panel. PCO of the sample compromise among subjects 

Axis Eigenvalue Variance cum. var. 
DIM 1 0.9833 63.99 63.99 
DIM 2 0.1 197 7.79 71.78 
DIM 3 0.0690 4.49 76.27 
DIM 4 0.0620 4.04 80.3 1 
DIM 5 0.0509 3.32 83.62 
DIM 6 0.0473 3.08 86.70 
DIM 7 0.0390 2.54 89.24 
DIM 8 0.0338 2.20 91.43 
DIM 9 0.0287 1.87 93.30 
DIM10 0.0233 1.51 94.82 
DIM1 1 0.0216 1.41 96.23 
DIM12 0.0189 1.23 97.45 
DIM13 0.0 170 1.10 98.56 
DIM14 0.0 129 0.84 99.40 
DIM15 0.0093 0.60 100.00 

As suggested in section 2.6, Figure 5 locates on the previous compromise sample map (C 
followed by the sample numbers) the individual assessments of each coffee (sample numbers) 
and for one half of them (from left to right samples 12, 1 ,  14, 8, 16, 5, 13 and 4) draws the 
corresponding convex hulls. Drawing all the 16 convex hulls would have made the plot 
unreadable. This picture suggests that the following seven groups of coffees (1 1, 12), (7, 2, 
10, 3, l), (14), (8, 9), (15, 16), (9, (13, 6, 4) may be different between groups and similar 
within groups. 

4.3 STATIS of the panel 

The RV coefficients (Table 7) range from 0.13 to 0.63, showing that the best RV coefficient in 
F2 panel is lower than the worst in ICO panel. The normalized RV coefficients in Table 8 are 
often not significant (lower than 2) and quite often strongly not significant (lower than 1). 
From the 'Mean' line of this table, it can be concluded that only assessors B, D, E and H seem 
to agree with the panel. 
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Table 7 
panel. RV coefficients between subjects 

A B C D E F G H I 

A 1 .oo 
B 0.29 1.00 
C 0.28 0.33 1.00 
D 0.29 0.47 0.40 1.00 
E 0.38 0.63 0.26 0.63 1.00 
F 0.30 0.25 0.29 0.32 0.37 1.00 
G 0.41 0.45 0.31 0.33 0.31 0.13 1.00 
H 0.29 0.48 0.32 0.52 0.58 0.20 0.33 1.00 
I 0.37 0.29 0.29 0.49 0.44 0.25 0.20 0.38 1.00 

Table 8 
F2 panel. Normalized RV coefficients between subjects 

A B C D E F G H I 

B 1.48 
C 0.88 2.16 
D 1.17 4.29 2.94 
E 2.71 6.11 1.38 6.43 
F 1.18 1.24 1.28 1.86 2.85 

H 0.98 4.19 1.68 4.46 5.51 0.16 1.72 

Mean 1.58 3.09 1.58 3.36 3.82 1.01 1.49 2.61 1.69 

G 2.58 3.84 1.46 1.81 1.99 -0.91 

I 1.66 1.38 0.88 3.91 3.62 0.43 -0.54 2.17 

Table 9 
F2 panel. PCO of the non centered RV,matrix 

Axis Eigenvalue Variance cum. var. 

DIM 1 3.9313 43.68 43.68 
DIM 2 0.9528 10.59 54.27 
DIM 3 0.9413 10.46 64.73 
DIM 4 0.771 1 8.57 73.30 
DIM 5 0.7525 8.36 81.66 
DIM 6 0.5 152 5.72 87.38 
DIM 7 0.4617 5.13 92.5 1 
DIM 8 0.4 167 4.63 97.14 
DIM 9 0.2574 2.86 100.00 

As a consequence of this poor homogeneity, the first axis of the PCO of the RV matrix 
accounts for only 43.68 (Table 9) of the variation among the assessors, whereas we 
obtained 82.65 for the ICO panel. Because the third axis accounts for about the same 
amount of variation as the second one, Figure 6 presents both plots (1,2) and (1,3) of 
PCO. But as these three axes account for only 64.73 of the information (smaller arrow 
lengths in Figure 6 compared to Figure 1) one must interpret Figure 6 cautiously. Nevertheless, 
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this figure underlines assessor F as being the worst because of the large angles its arrow makes 
with the first axis in the two plots. This is confirmed by the lowest mean normalized RV 
coefficient of 1.01 (Table 8) obtained by subject F. The best assessors B, D, E and H are 
almost the closest to the first axis in the plot and are gathered in the plot (1,3), suggesting 
that they may have directed the compromise. 

Table 10 
F2 panel. PCO of the centered RV matrix 

A X i S  Eigenvalue Variance cum. var. 
DIM 1 1.0003 19.46 19.46 
DIM 2 0.9527 18.53 37.99 
DIM 3 0.7718 15.01 53.00 
DIM 4 0.7525 14.64 67.63 
DIM 5 0.5 152 10.02 77.66 
DIM 6 0.4658 9.06 86.7 1 
DIM 7 0.4256 8.28 94.99 
DIM 8 0.2574 5.01 100.00 

This last point is clarified by the PCO of the centered RV matrix, whose distribution of 
eigenvalues (Table 10) suggested that four axes should be interpreted to take into account 
67.63 of the total information. These panelists B, D, E and H are clustered on the left part 
of plot (1,2) in Figure 7, whereas the others do not gather, and they are close to the origin 
plot (3,4), whereas the others are farther to the origin. In fact, this panel is composed of four 
assessors (B, D, E and who fairly agree among themselves and of five other assessors who 
disagree with the group of four and among themselves. Therefore, the compromise cannot be 
anything else than a rough mean of assessors B, D, E and H. Interestingly this point could have 
been detected in Table 8, where the 6 normalized RV coefficients among these four subjects 
are the only ones to be above 4. 

The 'Scaling' column in table 1 1  points out assessor G as having spanned his scores much 
more than the others. The column of Table 1 1  has already been interpreted above, but 
note that the mean of all the normalized RV coefficients is equal to 2.248, which can be 
considered just significant, although it is only one fourth of the corresponding statistic in the 
ICO panel (8.540). The STATIS weights range from 0.760 to 1.235, but the mean weight of 
assessors B, D, E and H is 1.160, whereas the mean weight of the others is 0.872, meaning 
that in average STATIS gave to an assessor from the group (B,D,E,H) a weight being 33 
greater than the weight given to the other assessors. Interestingly, the 'BETA of Table 
1 1  has a mean value of 2.876, whereas it was only equal to 1.979 for the ICO panel. 
Therefore, the French assessors seem to be more complex than the British assesso rs.... The 
French would perceive 3 dimensions whereas the British would perceive only 2. The reader, 
who may be British, should first noticed that the author is French and secondly should not 
take these two last findings the absolute truth, but rather a useful indication of a pattern 
present in this data. Again more interesting is the fact that the mean b coefficient is equal to 
2.306 within group (B,D,E,H), whereas it is equal to 3.331 within the other subjects, meaning 
that the more homogeneous assessors are at the same time the least complex subjects. The 
author found this kind of relation in many datasets; it is quite logical the more dimensional, 
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the more chance to disagree. In our application, it is not difficult to agree about the coffee 
strength (first dimension common to everyone), it is much more difficult to agree about the 
coffee flavour (second and third dimensions not identically perceived by everyone). Finally, the 
TVRVC' Table 11 shows that assessors from group (B,D,E,H) strongly agree with 
the STATIS compromise (mean normalized RV with compromise equals to and the 
remaining assessors fairly agree with this compromise (mean normalized RV with compromise 
equals to This is the "STATIS miracle" although in this data set some neat 
disagreements held between some assessors, at the end everybody significantly agreed with the 
compromise. The F2 panel was definitely less homogeneous than the ICO panel, but STATIS 
was still able to define a valid compromise. At this point of the discussion, the reader may think 
that the hypothesis in these permutation tests is too weak, making these tests artificially 
powerful. The author agrees that a null hypothesis which is actually true would be a disaster 
for the panel leader. In such a case, the only thing to do is to bin the data. In some situations, 
which have to remain anonymous, the author actually observed mean normalized RV 
coefficients between assessors around 0 and between assessors and compromise around 

Table 11 
F2 panel. Summary of individual STATIS statistics 

SUBJEC p Scaling NRV Weight BETA NRVC 
T 

A 
B 
C 
D 
E 
F 
G 
H 1 
I 
Mean 

From the distribution of the eigenvalues of the compromise (Table it was decided to 
analyse the first four dimensions of the compromise sample space (Figures and The 
overall structure of plot (Figure is roughly the same as ICO. Nevertheless, some 
differences are noticeable. This structure is more complex as exemplified by the fact that the 
first dimension accounts for about half of the total information than for ICO. Sample is now 
slightly split from samples and which are now gathered with sample Looking at the 
convex hulls (Figure lo), it appeared that two assessors had sent this sample 4 very far from 
the others. The larger surfaces of these hulls, compared to ICO, lead to a less confidence about 
the following visual grouping of samples 

The covariance plot (Figure confirms the interpretation made with the ICO data, 
namely the opposition of bitterness and acidity along the first axis and the weakness of both 
aspects at the top of the second axis opposed to the bottom correlated to the astringency of the 
coffee. 
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Figure 10 F2 panel. Convex hulls of samples on the compromise plot (1,2) 
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Figure 11 F2 panel. Convex hulls of samples on the compromise plot 
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Sample and covariance plot (3,4) (Figures 9 and 13) suggest that sample 1 would have a more 
burnt flavour, as sample 16 which would also be more astringent and that samples 11 and 12 
would have a more chemical flavour. But looking at the corresponding convex hulls in Figure 
1 it is clear that the last finding about samples 11 and 12 may not be shared by most of the 
panel and that the previous conclusion about samples 1 and 16 is not universal. 

Table 12 
F2 panel. K O  of the sample compromise among subjects 

Axis Eigenvalue Variance cum. var. 

DIM 1 0.8402 33.80 33.80 
DIM 2 0.3038 12.22 46.02 
DIM 3 0.242 1 9.74 55.76 
DIM 4 0.2306 9.28 65.04 
DIM 5 0.1817 7.3 1 72.35 
DIM 6 0.1239 4.98 77.33 
DIM 7 0.0972 3.91 81.24 
DIM 8 0.0934 3.76 85.00 
DIM 9 0.0858 3.45 88.45 
DIM10 0.0767 3.09 91.54 
DIM1 1 0.0672 2.70 94.24 
DIM12 0.0495 1.99 96.23 
DIM13 0.0407 1.64 97.87 
DIM14 0.0340 1.37 99.24 
DIM15 0.0 190 0.76 100.00 

Figure 14 is a biplot from a covariance PCA of the mean score products. It is clear that this 
classical analysis leads to almost the same structure and to almost the same sample plot 
interpretation as in STATIS. Therefore, why should STATIS be used Firstly because of the 
permutation tests provided by STATIS, secondly because of the information about assessor 
similarity provided by STATIS and thirdly because with less homogeneous panel than F2 the 
output of STATIS can be different from that obtained by means of a PCA of the mean score 
products. The biplot of assessor E data (Figure 15) is again very similar to the STATIS 
compromise illustrating why this subject had the largest normalized RV coefficient with the 
compromise. On the contrary, biplots from assessors G and F (Figures 16 and 17), who were 
the subjects who disagreed the most with the compromise, clearly show numerous 
discrepancies with the compromise plot. 

4.4 STATIS of the S49 panel 

This analysis gathers 49 assessors coming from 5 different panels having scored the same four 
attributes bitterness, acidity, astringency and body/mouthfeel. The discussion will focus on 
panel comparisons (see sections 2.8 and 2.9 of this chapter). The mean RV coefficients within 
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Figure 18 S49 panel. PCO of the centered RV matrix 
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Figure 19 S49 panel. CDA of panels IC, No, Po and Sw 
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Table 13 
S49 panel. Mean RV coefficients within and between panels 

1F IC No Po sw 
IF 0.48 
IC 0.50 0.57 
No 0.49 0.57 0.56 
Po 0.49 0.56 0.57 0.56 
sw 0.51 0.5 1 0.50 0.47 

Table 14 
S49 panel. Mean normalized RV coefficients within and between panels 

IF IC No Po sw 
1F 4.43 
IC 4.64 5.50 
No 4.65 5.58 5.54 
Po 4.63 5.46 5.69 5.55 
sw 3.96 4.87 4.86 4.74 4.36 

and between panels (Table 13) are rather similar and a little bit smaller when involving Swedish 
assessors (Sw panel). The corresponding normalized RV coefficients (Table 14) are 
significant, meaning that the 5 panels are homogeneous and also agree among themselves 
about the sample structure, which does not automatically mean that the assessors are 
exchangeable among panels. 

The first eigenvector of the RV matrix, which is the compromise, accounts for 54.74 of 
the assessor variation (Table 15), which is a fairly good result considering that 48 axes exist in 
this PCO. The first plot of the PCO of the centered RV matrix does not show panel 
discrimination as exemplified by the panel convex hulls on Figure 18. But this plot accounts for 
only 25.35 of the total information (Table 16). A good technique for mapping panel 
discrimination is the CDA suggested in section 2.9. For the S49 panel, the first two axes of this 
CDA accounts for 82.84 of the panel discrimination (Table 17) and splits panel IF and Sw 
between themselves and from the three other panels (Figure 19). The Norwegian panel (No) 
and the Polish panel (Po) do not seem different, meaning that the assessors might be 
exchangeable. Finally, the ICO panel appeared as the central panel on this map. In order to test 
significance of panel discrimination visually observed on this map, the permutation technique of 
section 2.9 was performed on the basis of the 16 first axes from the centered PCO and its 
output was 2.521, which is fairly significant. Therefore, one cannot exchange the assessors 
among the five panels, even if, on the average, they fairly agree about the sample structure. 
This conclusion was met by the author with several other data sets; it raises a controversial 
point associated to the permutation techniques described in this chapter and already mentioned 
above are these tests too powerful because of a too unrealistic null hypothesis 



Table 15 
S49 panel. PCO of the non centered RV matrix 

Axis Eigenvalue Variance cum.var. 
DIM 1 26.8248 54.74 54.74 
DIM 2 3.1572 6.44 61.19 
DIM 3 1.8522 3.78 64.97 
DIM 4 1.7188 3.5 68.48 
DIM 5 1.4765 3.01 7 1.49 
DIM 6 1.3574 2.77 74.26 
DIM 7 1.2311 2.5 1 76.77 
DIM 8 1.0794 2.20 78.97 
DIM 9 1.0355 2.1 1 81.09 
DIMlO 0.963 1 1.97 83.05 

Table 16 
S49 panel. PCO of the centered RV matrix 

Eigenvalue Variance cum.var. 
DIM 1 3.3992 14.64 14.64 
DIM 2 2.4869 10.71 25.35 
DIM 3 1.7418 7.50 32.85 
DIM 4 1.4779 6.36 39.21 
DIM 5 1.3591 5.85 45.07 
DIM 6 1.2317 50.37 
DIM 7 1.0883 4.69 55.06 
DIM 8 1.0385 4.47 59.53 
DIM 9 0.9846 4.24 63.77 
DIMlO 0.8503 3.66 67.43 

Table 17 
S49 panel. Panel canonical discriminant analysis 

Axis Eigenvalue Variance cum.var. 
DIM 2.4898 56.39 56.39 
DIM 2 1.1684 26.46 82.84 
DIM 3 0.5238 11.86 94.7 
DIM 4 0.2337 5.29 100.00 
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Table 18 
S49 panel. K O  of the sample compromise among subjects 

Eigenvalue Variance cum.var. 
DIM 1 0.7322 56.64 56.64 
DIM 2 0.1416 10.95 67.59 
DIM 3 0.05 18 4.0 1 71.60 
DIM 4 0.0470 3.64 75.24 
DIM 5 0.0425 3.29 78.53 
DIM 6 0.0412 3.19 8 1.72 
DIM 7 0.0392 3.03 84.75 
DIM 8 0.033 1 2.56 87.3 1 
DIM 9 0.0326 2.52 89.83 
DIM10 0.028 1 2.18 92.01 
DIM1 1 0.0250 1.94 93.94 
DIM12 0.0242 1.87 95.82 
DIM13 0.0212 1.64 97.46 
DIM14 0.0172 1.33 98.78 
DIM15 0.0157 1.22 100.00 

From the distribution of the eigenvalues of the compromise (Table 18) and from the mean b 
coefficient over the 49 assessors which was equal to 1.75 ('Mean' line and 'BETA column in 
Table 19), it was decided to interpret the two first axes of the sample space given in Figure 20. 
This structure is once again similar to those already met with ICO and F2 panels, namely an 
opposition along the first axis of acidity and bitterness (Figure 21). Note that the astringency 
and the body/mouthfeel attributes are found correlated to bitterness. 

The magnitude of the 'Scaling' column in Table 19, or in Table 20 which is Table 19 
averaged by panel, is highly dependent the panels simply because of the different scales used 
by these panels. In such a case, STATIS must be done with the global matrix standardization 
recommended in section 2.4. The and 'NRVC' columns in Table 19 point out the 
assessors NolO (assessor 10 from Norway) and assessor 1F6 (assessor 6 from France) 
presenting a strong disagreement with the panel and with the compromise. The individual 
biplots of these two assessors (Figures 22 and 23) are indeed extremely different from the 
sample structures we have met up to now. For instance, assessor NolO found sample 8 very 
astringent and assessor 1F6 seems to correlate positively bitterness and acidity, therefore he 
did not make many differences between the acid samples 11 and 12 and the bitter samples 4,13 
and 16. One assessor for each of the three other panels (Swl, IC9 and Pol) is also analysed 
means of a biplot (Figures 24, 25 and 26). These assessors were chosen because they had the 
lowest agreement with the whole panel, but being still significant they do not present a very big 
difference with the compromise sample structure. Interestingly, all of them seem to present a 

correlation between bitterness and acidity instead of a negative one. But comparison of 
attribute correlation structures is a matter of Dual STATIS which will be performed in the 
following section. 



296 

Table 19 
S49 panel. Summary of individual statistics 

Subject scaling NRV Weight BETA NRVC 
1F 1 0.009 4.086 0.869 1.696 4.216 
lFlO 
1F 2 
1F 3 
1F 4 
1F 5 
1F 6 
1F 7 
1F 8 
1F 9 
IC 1 
ICll  
IC12 
IC14 
IC15 
IC16 
IC 3 
IC 4 
IC 5 
IC 6 
IC 7 
IC 9 
No 1 
No10 
No1 1 
No12 
No 2 
No 3 
No 4 
No 7 
No 8 
Po 1 
Po 2 
Po 3 
Po 4 
Po 5 
Po 6 
Po 7 
Po 8 
s w  1 
SWlO 
s w  2 
s w  3 
s w  4 
s w  5 
Sw 6 
sw 7 
Sw 8 

0.012 
0.015 
0.005 
0.017 
0.009 
0.01 1 
0.016 
0.012 
0.012 
0.017 
0.011 
0.057 
0.016 
0.037 
0.023 
0.026 
0.061 
0.009 
0.037 
0.038 
0.005 
0.010 
0.009 
0.037 
0.0 18 
0.0 16 
0.049 
0.032 
0.0 15 
0.0 15 
0.65 1 
3.173 
0.977 
2.510 
3.605 
0.730 
2.914 
3.631 
2.583 
2.051 
7.994 
1.462 
3.983 
1.306 
1.392 
4.0 15 
2.270 

5.241 
6.129 
3.217 
6.361 
1.992 
1.227 
5.109 
5.306 
5.917 
6.264 
5.993 
5.835 
4.304 
4.808 
5.672 
4.971 
5.658 
3.796 
6.03 1 
5.480 
3.543 
5.006 
0.863 
6.3 12 
6.259 
6.378 
5.649 
5.825 
5.676 
5.257 
3.787 
5.460 
5.436 
4.921 
5.605 
4.350 
5.1 14 
6.867 
2.252 
5.438 
5.672 
4.862 
6.143 
3.484 
3.239 
5.524 
5.400 

1.035 
1.197 
0.749 
1.232 
0.549 
0.442 
1 .oo 1 
1.048 
1.140 
1.211 
1.178 
1.153 
0.907 
0.997 
1.111 
0.995 
1.119 
0.821 
1.179 
1.084 
0.817 
1.005 
0.323 
1.219 
1.196 
1.226 
1.110 
1.130 
1.1 17 
1.066 
0.845 
1.066 
1.086 
1.012 
1.110 
0.909 
1.014 
1.303 
0.587 
1.048 
1.116 
0.996 
1.190 
0.803 
0.771 
1.091 
1.069 

1.423 
1.729 
2.556 
1.932 
2.295 
2.609 
1.264 
1.644 
1.383 
1.95 1 
2.163 
1.579 
1.464 
1.825 
1.843 
1.606 
1.531 
2.224 
1.309 
2.294 
3.121 
1.616 
1.544 
1.462 
1.212 
1.3 56 
1.097 
1.085 
1.500 
1.930 
2.458 
1.246 
1.985 
1.744 
1.575 
1.963 
1.237 
1.219 
2.177 
1.089 
1.237 
2.1 19 
1.65 1 
2.582 
2.749 
1.617 
1.341 

5.521 
6.475 
3.074 
6.695 
1.682 
0.769 
5.334 
5.497 
6.239 
6.568 
6.249 
6.209 
4.543 
5.024 
5.939 
5.140 
5.994 
3.708 
6.477 
5.663 
3.327 
5.214 
0.466 
6.717 
6.674 
6.824 
6.084 
6.301 
5.998 
5.494 
3.785 
5.739 
5.653 
5.188 
5.955 
4.393 
5.462 
7.376 
2.005 
5.769 
6.045 
5.029 
6.462 
3.392 
3.123 
5.767 
5.764 

sw 9 3.096 3.583 0.759 1.503 3.493 
1 .ooo 4.925 1 .ooo 1.750 5.1 13 
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0 

-0.1 0.1 0.3 0.4 0.5 

DIM1 56.64 

Figure 20 S49 panel. PCO of the sample compromise among subjects 

-3 -2 -1 0 1 2 3 4 5 

DIM1 

Figure 21 S49 panel. Covariance plot of attributes 
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SUBJECT NolO 

DIM1 79.25 

Figure 22 ,349 panel. Covariance PCA of scores from subject NolO 

SUBJECT 1 F6 

Figure 23 S49 panel. Covariance PCA of scores from subject 1F6 
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SUBJECT IC9 

DIM1 46.88 96 

Figure 24 S49 panel. Covariance PCA 
of scores from subject Swl 

Figure 25 S49 panel. Covariance 
PCA of scores from subject IC9 

10 

DIM1 54.79 

Figure 26 S49 panel. Covariance PCA 

of scores from subject Pol 
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Table 20 
S49 panel. Summary of individual statistics averaged by panel 

Subject Scaling NRV Weight BETA NRVC 

IF 0.012 4.459 0.926 1.853 4.55 
IC 0.028 5.196 1.048 1.909 5.403 
No 0.022 5.247 1.044 1.422 5.53 
Po 2.274 5.192 1.043 1.678 5.444 
sw 3.015 4.56 0.943 1.807 4.685 

4.5 Dual STATIS of the panel 

Table 2 1 
S49 dual panel. Mean RV coefficients within and between panels 

IC No Po sw 
1F 0.77 0.72 0.56 0.73 0.70 
IC 0.72 0.78 0.74 0.79 0.78 
No 0.56 0.74 0.75 0.73 0.75 
Po 0.73 0.79 0.73 0.82 0.80 
sw 0.70 0.78 0.75 0.80 0.77 

Table 22 
S49 dual panel. PCO of the non centered RV matrix 

Axis Eigenvalue Variance cum.var. 
DIM 1 36.9344 75.38 75.38 
DIM 2 5.7214 1 1.68 87.05 
DIM 3 2.5591 5.22 92.28 
DIM 4 1.8882 3.85 96.13 

The mean RV coefficients within and between panels on the basis of the individual 
correlation matrices (Table 21) are greater than those obtained on the basis of the sample 
spaces (Table 13), suggesting that the assessors agree more on attribute correlations than on 
sample differences. As explained in section 2.10, no analytical permutation test exists in the 
framework of Dual STATIS. The first eigenvector of the RV matrix accounts for 75.38 of 
the PCO (Table 22), which again denotes a better compromise than that obtained by STATIS 
(54.74 Table 15). The first three axes of the PCO of the centered RV matrix (Table 23) 
explain almost all the variation, which once again was definitely not the case in classical 
STATIS (Table 16). But the reader should remember that this Dual STATIS compares 
matrices of size (4,4), whereas the classical STATIS compared matrices of size (1 6,16); 
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Subject Weight 
1F 1 1.119 
lFlO 0.795 
1F 2 1.109 
1F 3 0.950 
IF 4 0.874 
1F 5 0.991 
1F 6 0.819 
1F 7 0.926 
1F 8 0.987 
1F 9 0.797 

Table 23 
S49 dual panel. PCO of the centered RV matrix 

Subject Weight 
IC 1 1.112 
ICll 1.083 
IC12 1.060 
IC14 1.096 
IC15 1.090 
IC16 1.072 
IC 3 0.984 
IC 4 1.068 
IC 5 0.708 
IC 6 1.000 
IC 7 1.084 

Eigenvalue Variance cum.var. 
DIM 1 5.8397 46.54 46.54 
DIM 2 2.5852 20.60 67.15 
DIM 3 1.9749 15.74 82.89 
DIM 4 0.8342 6.65 89.54 

Table 24 
S49 dual panel. of individual statistics 

IIC 9 0.994 
Mean 0.937 IMean 1.029 

Subject Weight 
No 1 0.798 
No10 0.611 
No11 1.078 
No12 1.024 
No 2 0.978 
No 3 0.994 
No 4 0.990 
No 7 1.063 
No 8 1.119 

Mean 0.962 

Subject Weight 
Po 1 1.050 
Po2 1.024 
Po 3 1.064 
Po 4 0.853 
Po 5 1.067 
Po6 1.130 
Po 7 1.022 
Po 8 1.138 

Mean 1.044 

Subject Weight 
Sw 1 0.968 

1.075 
Sw 2 1.041 
Sw 3 1.041 
Sw 4 1.090 
Sw 5 1.107 
Sw 6 1.017 
sw 7 1.122 
Sw 8 1.021 
Sw 9 0.795 

Mean 1.028 

Table 24 gives the Dual STATIS weights of the 49 assessors. One can observe that they are 
quite similar among assessors and also among panels. These weights allow the compromise 
correlation matrix (Table 25) to be derived as a weighted mean of the 49 individual correlation 
matrices. 

Table 25 
S49 dual panel. Compromise correlation matrix 

ACIDT ASTRGNMF BITTERT BODYMF 

ACIDT 1 .oo 
ASTRGNMF -0.05 1 .oo 
BITTERT -0.30 0.55 1 .oo 
BODYMF -0.24 0.42 0.63 1 .oo 

therefore the better agreement raised in Dual STATIS may be due, or partly due, to this 
difference. Figure 27 scatters assessors according to Dual STATIS weights and classical 
STATIS weights. Therefore, assessors located at the bottom of this plot disagree the most 
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Figure S49 panel. STATIS and DUAL STATIS weights of subjects 
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DIM1 

Figure panel. Covariance PCA 
of scores from subject IC5 

Figure panel. Covariance 
PCA of scores from subject Sw9 

DIM1 83.12% 

Figure 30 panel. Covariance PCA 
of scores from subject lFlO 

Figure 31 panel. Covariance 
PCA of scores from subject 1F9 
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with the panel on sample differences, whereas assessors located on the left of this plot disagree 
the most with the panel on attribute correlations. The worst assessors are obviously those 
located in the bottom left quadrant of this plot. The worst assessor is definitely NolO, whose 
biplot has already been given in Figure 22. the contrary, the best assessor seems to be P08. 
The biplot of four assessors, who poorly agree with the Dual STATIS compromise, are given 
in Figures 28, 29, 30 and 3 1. IC5 and Sw9 have in common to correlate positively bitterness 
and acidity. The two French subjects IF10 and IF9 have very similar biplots, unless for acidity 
which is highly correlated with astringency for 1F9, whereas it is with body/mouthfeel for 
1F10. 

5. SOFTWARE 

Every computation and graph presented in this chapter was done on a SUN workstation under 
the UNIX system and within the SASB software, thanks to several macros developped by the 
author. These macros should be announced elsewhere. 

6. 

Advantages and limitations of the techniques proposed have been discussed throughout the 
chapter. 

The most important advantages were 

0 Ability to take free-choice profiling into account 
0 RV coefficient for measuring similarity between two sample spaces 

0 Permutation tests for validation of the panel homogeneity with almost no computation 
0 p coefficient of individual dimensionality (complexity) 
0 STATIS compromise on sample distances or attribute correlations 

0 Compromise obtained a mean of assessors weighted by their individual agreement with 

0 Cross-panel comparisons 
0 Analytical, instead of iterative, techniques 

the panel 

The principal limitations were 

Possible over-powerful tests 
No analytical permutation tests with Dual STATIS 

0 Individual weights only depend on agreement with the panel. 

The comparison of these two lists makes it clear why the author does think that the RV 
related techniques have a great potential in the sensory field. Nevertheless, this cannot be 
recognized by the sensory community before they have been sucessfully applied by many 
sensory scientists in a wide range of situations. This could not happen without papers such 
this chapter and without availability of dedicated softwares. 
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1. INTRODUCTION 

1.1 Advantages of threeway methods in sensory analysis 

Three-way fixtor analysis (TWFA) techniques first appeared in the psychometric literature, see for 
instance Tucker (1966), Kroonenberg and De Leeuw (1980) and Moot and Kroonenberg (1 989, 
and have been in several applications (Henrion et al. (1992), Lmrgans and Ross (1992)). So 
far, however, there are few applications within the field of sensory analysis. The of this chapter 
is to discuss these methods within a sensory context and show that they can be useful for analysis of 
individual sensory profile data. 

TWFA techniques are generalizations of principal components analysis (PCA) but while PCA 
works on two-dimensional matrices, TWFA techniques can be used to analyse three-dimensional 
matrices with three ‘directions’or ‘ways’ of information. Therefore, they can be used to investigate 
similarities and differences between objects, assessors and attnites at the time. The kind of 
questions that can be answered by these techniques are for instance: 

Do the assessors use the attniutes or the measurement scales Werently? 

Are some of the assessors more sensitive than others to some of the attriiutes? 

Are of the assessors better at tasting differences among certain groups of objects? 

Do assessors distinguish equally well between the objects? 

Do the assessors use the attributes to distinguish between the objects and to 
the underlying variable space? 
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AU these questions are of interest to the panel leader who is responsible for the of the 
panel and may wish to retrain or remove some of the assessors, to the data analyst who has to make 
decisions about which analysis technique is most appropriate, and to the manufacturer since they 
can highlight variability among consumers’ perceptions of the objects. The results of a TWFA 

be presented in simple two- or three-dimensional scatter-plots, which may be relatively to 
interpret. In the following sections several techniques will be discussed, emphasizing applications 
and the relationship between TWFA methods and other techniques in this book. 

1.2 The structure of prome data 

Assume there are m assessors in the sensory panel measuringp attriiutes for n objects. The data can 
then be collected in a three-way tabley,,k, j 1 and k 1 Replicates here 
be denoted by I ,  ...,q. The handling of replicates is discussed in Section 7. They can either be 
averaged over or treated separately, in which case each of the n p cells of the three-way 
matrix of data consists of q elements. This type of data can always be descriid by an analysis of 
variancemodel, see Searle (1 97 I), 

X ~ J ~ I  ~ ~ + a ~ + + , , + 6 ~ ~ + & ~ k l  (1) 

The main effects a , k  for assessor (and attribute k) represent the differences between this 
assessor’s average score for that particular attribute and the overall average for the same attriiute. 

The effect pk describes how the average score for objectj and attriiute deviates the 
overall average for the same attriiute. The interactions 6 y k  represent the differences between 
assessors in measuring differences between objects. Note that individual differences among 
assessors are present both in the main effects ark and in the interactions 6,. The error t e r n  
represent variation due to replicates under the experimental conditions. 

The TWFA methods in this paper will model both these types of individual differences if no 
pretreatment of the data is used. There exist preprocessing techniques, however (see below), which 
eliminate the main effects alk from the analysis and only concentrate on the interactions. 

2. DIFFERENT TWFA MODELS 

2.1 TWFA as a generalisation of PCA 

Standard PCA of an n x p  matrixxis based on the following ‘model’ 

where T a)  is the matrix of object scores (defined to have orthogonal columns), (a x p )  

the variable loadings (orthogonal rows) and E p )  the matrix of residuals, corresponding to 
those direction in principal component space that have tittle variabhty and which are fiequently 
interpreted noise. The loadings are defined so to describe much of the variation in X 

possible given the dimension a, normally with P and Tis found the projection ofXon P. 
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Alternatively, this can be stated as the problem of finding the and matrices that minimize the 
residuals E, i.e. the Tand that minimize the least squares criterion 

TP’(I2 (3) 

The and matrices are usually plotted in low-dimensional scatter-plots to reveal structures 
among the objects and among the attributes. 

Three-way factor analysis techniques are generalizations of PCA developed for matrices with an 
extra way (or order), see Figure 1. Each slice in the stack of matrices corresponds to one particular 
assessor and contains objects-by-attniutes information for that particular assessor. Of course it is 
equally possible to slice the matrix in two other ways, with the slices then corresponding to either 
individual objects or attniutes. It would be possible to do a separate PCA on each slice of the 
matrix, which would be to ignore any similarities between the assessors (or objects or attriiutes 
depending on how the matrix was sliced) or to take a mean over the slices and do a PCA on the 
resulting matrix, which would ignore any differences between them TWFA is a form of PCA for 
the slices of the matrix which takes account of these similarities and differences. 

2.2 Tucker-1 modelling 

If we call the n p slice of the three way matrix corresponding to assessor i’s individual 
objects-by-attniutes matrix xi where i then one possible way to analyse the data is to 
model X. as 

where has dimensionp x a (a <p) .  The number a is chosen to give a low dimensional approx- 
imation to the data in PCA, and c and P are found for any a by minimization of the least squares 
criterion 

There are no constraints on the 4 here, but P is  usually constrained to have orthogonal rows, i.e. 
P This can be seen as a PCA of each xi where each PCA is forced to have the same variable 

loadings matrix though the scores T, are allowed to vary. An interpretation of this model is that 
the assessors perceive the underlymg variables but rate the objects differently to obtain 
individual scores matrices. It is generally known the common loadings Tucker- model. 

It is useful to note here that ifwe let the x p  slice corresponding to the assessors-by-variables 
matrix for objectj be q, then we can write 

Yj’ Uj E j .  (6) 

Then minimizing will give exactly the same common loadings matrix P (and 

the fit). 
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Objects 

Attributes 

Figure 1 Three-way matrix 

Alternatively, TWFA models can be based the model 

P.’+Ei,i 

where now the loadings Pi differ from to dimension b where b is the 
reduced dimensiodty of the model is generally constrained to have orthogonal i.e. 
T’T but the Pi are The assessors have a scores matrix T, which 
descnis relationshtps among the samples, but differ in the way they perceive the variables. This is 
known the scores Tucker-1 model It is equivalent to writing 
where the shce of objects-by-assessors for variable 

There is a third Tucker- 1 model formed by writing or 

QRj 4. Here Q is the ’assessor scores’ matrix with dimension c, c being the 
reduced dimension. In general the three different models give different fits to the 

Which of the three models one uses depends the aim of the analysis. For if one is 
interested pnmanly in the relationshtps among the objects, i.e. which of the objects are similar and 
whether or not they can be represented in a low dimensional ‘object space’, then the common 
scores model is appropriate. A possible interpretation of model is that the b ‘object 
dimensions’ represent ‘ideal object and that real object is made up of a 
combination of these types. For example in the example discussed later it might be possible to 
represent the objects in only one dimension going fiom ‘ideal cheddar’ to ‘ideal Norwegian’. 
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Mature cheddar would have a high score in this dimension, Nonvegian a low score and Norwegian 
Cheddar would lie somewhere in between. 

Note that this model says nothing about the relationships among the attniutes or among the 
assessors. In the assessors could use their own individual sets of attniutes without the 
analysis being changed. 

If interest is primarily in the relationshqs among the variables, e.g. whether there are 
‘underlymg factors’ perceived of the assessors, then the common loadings model is 
appropriate. The interpretation is exactly analogous to that for the common scores model, i.e. that 
the attniutes be represented in a lower dimensional space, with the dimensions being 
interpreted as ‘ideal‘ or ‘underlymg’ attniutes, perceived by of the assessors. Taking the cheese 
example again, perhaps one of the underlymg variables could relate to texture, going fiom and 
rubbery to crumbly and grainy. Again nothing is said about relationshqs among the assessors or 
objects. 

If interest is in the relationshqs among the assessors, then the third Tucker-1 model is the best. 
The ‘common assessor scores’ Q be plotted to look for relationshp among the assessors. The 
implication is that the can be represented in a lower dimensional space, i.e. there are a few 
underlymg ’assessor types‘, with each assessor being a linear combination of some or of them 

If there is interest in more than one mode, e.g. in both assessors and attniutes often the 
case), then there are two possible approaches. The first is to take the individual scores matrices fiom 
a common loadings Tucker-1 model, and to look for sirrnlarities among them. This can be done by 
‘stringing out’the rows of each matrix into long rows of length joining these rows into one new 
matrix of dimension m and doing a PCA on this matrix. The scores on the few PCs of this 
matrix can be plotted to look for relationshqs among the assessors, and the eigenvalues examined 
to decide on the dimensional@ of the assessor space. This is equivalent to a Tucker-1 on 
the individual scores matrices. 

This is a two stage process, first the attriite dimension is reduced to approximate the raw 
and the resulting ‘underlymg attriites’ are examined. Then the assessor dimension is reduced to 
find an approximation to this approximation, and the resulting assessor dimensions examined. This 
means that the relationships between the attnites are modelled well possible (in the chosen 
reduced dimensionality), and the assessors are modelled less well. This is a sensible approach if the 
variables are considered of primary interest. If the two modes are of equal interest, then a Tucker-2 
model is more appropriate. 

2.3 Tucker-2 modelling 

Tucker-2 modelling is a generalization of Tucker-1 modelling to reduce the dimensionahty of 
two modes simultaneously. There are three versions, one for each pair of modes. The most is 
probably the one having common scores T, common loadings P and individual assessor matrices 

1, These relate T and P through a different linear transformation for each assessor. This 
model is written 

WP‘ (9) 

where the have dimension b a. b) and P a) are found to minimize the least squares 
criterion 

i=l 



Note that this model can be written both as an individual loadings model and an individual scores 
model. In the former case, the individual loadings are and in the latter case, the individual 
scores are Twi. For the individual scores model, the individual scores TI% can be 
interpreted products of a common score matrix multiplied by the individual transformation 
matrices K., but this method wiU not in general give the fit the Tucker-1 model. 

The interpretation of this model is that the objects be represented in a b n) dimensional 
space, and the variables be represented in an a ( c p )  dimensional space. In other words there are 
a ‘underlymg attributes’ which describe b ‘ideal object types’. Each assessor uses the underlying 
attributes in a different way to describe the ideal objects. The individual difference matrices Wi 
descni how each assessor does this. The matrix T gives the scores of the objects in the object 
space, and the two dunensions (for example) be plotted to exambe their structure. P gives 
the loadings of the underlymg attributes on the attributes, and is interpreted in the usual way. Of 
course it is not possible to the object to the attribute loadings in any meaningfid way, 
the link is different for each assessor. As with the Tucker-1 models, this Tucker-2 model is not well 
suited to provide information about the assessors. It is possible to do a Tucker-1 analysis of the Ki 
matrices in order to look for associations among the assessors, in the way it is possible to 
analyse the individual scores matrices from a Tucker-1 model. However, it is more sensible to 
choose a Tucker-2 model to investigate the modes of interest directly. Hence if the attniutes and 

are of interest, it is possible to write a Tucker-2 model 

Q is now an m c matrix of scores’ and P anp matrix of attribute loadings. The Q 
matrix then gives information on the relationshrps between the assessors (common for each object), 
and the OF are the object difference matrices that link together the ‘object-common’ loadings and 
scores. Alternatively, if there is interest in all three modes, the Tucker-3 model is appropriate, is 
the PARAFAC model described later. 

2.4 Tucker-3 modelling 

The Tucker-3 model is the natural generalization of Tucker-2. There is one Tucker-3 model, 
and it can be represented the Tucker-2 model in equation (9), where the are expressed 

combinations of a limited number, c, of matrices C, (a different combination for 
each assessor). model well be written equation (1 1) where the 0, are 
combinations of fixed matrices. This model lmks together three modes in an interpretable way. It 

be written 

where is the kronecker or direct product. Z is the data unfolded to form an n mp of 
objects-by-(assessors attributes), with each assessor‘s attributes kept together in a block. is the 
n b matrix of object scores, P the p x a matrix of variable loadings, is the c matrix of 

assessor scores, and C is the b x made up of the core matrices placed side by side. The 
interpretation follows: The objects lie in a b-dimensional space the axes of which represent 
ideal object dimensions’. Each object be d e s c n i  a combination of these ideal objects. 

The attributes lie in a-dimensional space, the axes of which represent ‘underlymg attributes’. 
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Each attniute can be descnid as a linear combination of the underlymg attniutes though it is more 
usual to consider the underlymg attniutes as linear combinations of the original attnites. The 
assessors lie in a c-bnsional  space, the axes of which represent ‘ideal assessor types’ or 
underlying ways of perceiving the samples. Each assessor is a linear combination of these types. 

2.5 Interpreting the core matrices in a Tucker-3 model 

The three modes are linked through the core matrix, and it is sometimes possible to interpret this 
matrix in a helpfkl way. Suppose we have reduced each mode to two dimensions, and so there are 
two ‘assessor types’, two ‘object types’ and two ‘underlying attniutes’. The core matrix is a three 
way matrix so consider the slice corresponding to assessor type 1. This is a 2 x 2 matrix which 
relates the object types to the underlying attniutes. Suppose the underlying attributes have been 
interpreted swedsalt and rubberykreamy, and the first object type is Nonvegidcheddar. The 
fist slice of the core matrix may be 

The first row corresponds to the weight assessor type 1 gives to the two underlying attniutes in 
descnig  object type in other words he/she descnis ideal Norwegian cheese mady sweet, 
but also with an element of rubberyness. Ideal cheddar would then be descnid as very salty with a 
hint of creamyness. 

Interpreting the core matrix can be very difficult, especially ifthe dimensions in the three modes 
cannot be interpreted. One technique that can be helpful is drawing a separate biplot for each 
assessor type, i.e. in each plot the scores would be given by T and the variables by This gives a 
picture of how the assessor types relate the actual objects to the measured attriiutes. Similarly 
biplots could be drawn for each object or each underlying attniute. The former would give a 
picture of which attniutes different assessors considered important in descniing the object types, 
the latter a picture of which objects each assessor considered to have the ideal attniutes. 

2.6 The PARAFAC model 

The other three mode method is the PARAFAC model which is defined by equation (9) where the 
are forced to be diagonal with only positive elements on the diagonal. This is also known the 

CANDECOMP model, see for instance Carrol and Chang (1970), and Harshman and Lundy 
(1984). This model is no longer symmetrical in the three modes, and has a slightly different 
interpretation. This is that the assessors perceive the same underlying attniutes, but weight them 
differently when scoring the objects. This model be useful if the assessors disagree on which 
attniutes are most important for descniing differences among objects. There are of course three 
different versions of the PARAFAC model, corresponding to the three different Tucker-2 models. 
Note that in order for the to be diagonal, two of the modes are forced to have the same 
dimension. For example for the Tucker-2 model (9) the object and attriiute dimensions would have 
to be equal. This is not the case with the Tucker-3 mdeL 

2.7 mode analysis using single mode methods 

As mentioned above, it is possible to move from a single mode to a two mode model by successive 
application of a Tucker-1 model It is then clearly possible to obtain a three mode model by another 



application of the Tucker-1 model. This computational advantages since a standard principal 
components analysis program can be used below), rather than specialized software. The 
procedure First a Tucker-1 model is applied to the raw for example the common loadings 
model in equation (4). results in an a p loadings matrix P, and individual n a 
scores matrices T,, These T, can now be analysed using Tucker-1, using either the 

object or model As an example the former of these 

result in an n b matrix T, and m individual b a matrices Q,. These Q, now 

be adysed by the scores Tucker-1 model to give an m x c matrix Q, and a c x b 
matrices K, the core matrices. 

This procedure can be followed in 6 different ways depending on the order in which T, P and Q 
are found, and in general they give Waent results. Also, each give a poorer fit to the 
original than the Tucker-3 model, since directly minimim the of squared residuals, 
equation (10). For these this is not to be recormnended if Tucker-3 programs are 
available. 

3. TWFA MODELS 

3.1 Tucker-1 

The Tucker- 1 model is on unrestricted I1.linitllization over and of the quantity 

for the loadings model, and minirr6zation of an analogous expression for the other two 

models. If the way matrix is unfolded to give an p matrix, in Figure 2, then it is 
to that the minirr6zation is achieved a standard PCA or of the unfolded matrix. Notice 
that the eigenvectors of the unfolded matrix are identical to the eigenvectors of the sum of the S, i 
l , . .pt, where is the covariance matrix for 
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Objec 

Attributes 

Figure 2: Unfolding of three-way data matrix 

3.2 Tucker-2 

For this case the mhimization is over wi, and P of the equation 

(or one of the other two f o m )  where Tis a set of c o m n  scores, the c o m n  loadings and Wi 
are the individual difference matrices to be estimated. 

The solution to this is more complicated than for Tucker-1 and must be done by numerical 
optimization. A solution based on alternating least squares (ALS) was proposed in Kroonenberg 
and De Leeuw (1980). The optimization works by finding the solution for given P, then the 
best is found given the value of T. This procedure continues until convergence. Then the Wi 
that minimize (14) are found. Using ALS ensures that an improved is obtained for each cycle and 
so convergence is guaranteed. There is, however, no guarantee that the global value of 
the criterion is obtained. 

In more detail, the solution for P, and Wi can be found from the following algorithm. 

1. Construct starting values of (e.g. !?om a Tucker-1 solution). 
m 

2. Compute D 

3. Put the eigenvectors associated with the b largest eigenvalues of into the c o h  of a 

4. Compute Q ~ X T T X .  

matrixT. 
m 

i =I 
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5. Put the eigenvectors associated with the a largest eigenvalues of Q into the rows of 

6. Repeat 2-5 until convergence. 

7. Put 

This algorithm gives a solution in which and T have orthogonal columns or rows, since they are 
formed ftom eigenvectors. This is not, however, a constrained mhimkation, the solution is the 
minimum over all T and (though it may be a local rather than global Any solution to 
the minirrrization of (14) is in fact unidentified, since any of the matrices W ,  and T can be 
multiplied by transformation matrices without consequence for the lit, if the other two 
matrices are corrected accordingly. For instance can be multiplied by by without 
changing the fit. It should be mentioned that even when constraining the columns of and T to be 
orthogonal the solution is unidentified. 

3.3 PARAFAC-CANDECOMP 

In this case the optimization criterion is the above, namely 

where and Tare unrestricted, but now the Rs are diagonal matrices. The solution must be found 
by numerical methods such the ALS method mentioned above. An exact eigenvector-based 
estimation procedure for the parameters has been proposed for certain chemical applications of the 
model, Sanchez and Kowalski (1990), but this exact solution does not optimize the criterion. 

The ALS solution, see for example Carrol and Przuzanski (1984), is found in a similar way to 
that for the Tucker-2 model above. One starts with initial values of T and and estimates W;., then T 

is reestimated before is reestimated. One continues until convergence. The exact eigenvector 
solution 
follows: 

1. 

2. 

3. 

4. 

5 .  

6. 

7. 

mentioned above can be used to find starting values. more detail the algorithm is as 

Construct starting values of P and 

Find diagonal matrices with the diagonal 
m 

Compute D c xi 
i=l 

Put the eigenvectors associated with the b largest eigenvalues of D into the columns of 
amatrix 

Compute Q =EX; (TK) 

Put the eigenvectors associated with the a largest eigenvalues of Q into the columns of 
i =I 

Repeat 2-6 until convergence. 



It should be mentioned that in case the solution is only unidentified with respect to scalar 

multiplication of the matrices. means for instance that no rotation of the matrices allowed. 
This proved by and is an interesting feature of the model. 

3.4 Tucker-3 

For the Tucker-3 model, each is assumed to be a combination (dependent on of matrices 
which are independent of In other words, 

c, 
j = l  

where C, are matrices independent of and cii are constants. Alternatively this can be written Z 
P'), descnid in Section 2.4. Q, P and C are found by an ALS procedure similar to 

that for the previous models. The algorithm is as follows: 

1. Unfold the three way data Xin three ways to form three matrices: 

is the x mp matrix formed fiom the m objects-by-attnites slices. 

is thep x formed fiom the attributes-by-objects slices. 

is the m x np formed fiom the n assessors-by-attniutes slices. 

2. starting values for T and P: 

T is formed ltom the first b eigenvectors of ZIZl 
P is formed ltom the first a eigenvectors of Z3Z3 

3. Q is formed fiom the fist c eigenvectors of PP') 

4. P is formed fiom the first a eigenvectors of Z3 (QQ' 5 

5 .  Tis formed 6om the first b eigenvectors of ZI (QQ' PP') 21'. 

6. Repeat steps 3 to 5 until convergence 

7. PutC=T'Z(Q@P) 

As before the solutions are unidentified, and the orthogodty of T, Q and P is just for 
convenience. Note that there is not complete fieedom in choosing the dimensions a, b and c: The 
scores for any mode cannot be estimated if its dimensionality is greater than the product of 

the dimensionalities in the other two modes. can be seen in step 3 for example where T P 

dimension np x ab, and so c cannot be greater than ab. 
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4. RELATIONSHIPS TO OTHER WORK 

4.1 Generalised Procrustes Analysis 

The Procrustes rotation method discussed in Chapter 7 of this book also models individual 
differences among and is designed to obtain information about attributes and 
samples sitnultanmmly. In fact it be regarded a special case of the Tucker-1 scores 
model. 
Recall that in Section 2.2 we wrote the scores model xi Pi’ El, where is the 

of common scores and Pi the individual loadings, found to Illinirnize 

In this Pi is a general matrix, but ifit is forced to be orthogonal, then we write 

i.e. the scores are found by rotating the original ‘conligurations’ X;. to mhimize 

i=l 

This is the GPA criterion apart flom two points: in GPA the dimension of Pi is not usually 
restricted, and the configurations are translated well being rotated. This second point can 
however be regarded a standardization, and included in the TWFA model, see later. It is worth 
recalling at this point that in fitting this TWFA model the fact that the measure the 

variables is not used, in GPA which is often used for gee choice profiling. It can therefore 
be seen that GPA is simply the scores Tucker-1 model with the individual loadings 
constrained to be orthogonal. It should also be mentioned that the isotropic scaling of each assessor 
used in GPA is already a part of the TWFA model, since K. always can be multiplied by a constant 
without changing the model. 

The TWFA model is clearly more general than GPA, and in general give a better In 
fact, if the dimensionahty is not reduced at it will give a perfect fit which is not the case with 
GPA. We leave a hll discussion of GPA to the GPA-chapter, but it is worth considering the 
following point: In choosing whether to use GPA or TWFA it is obviously necessary to decide 
whether or not the orthogonal transformation in GPA is sensible. Although it may look in 
many cases, certain types of confusion problems can be modelled very well by this transfomtion, 

described in Arnold and Williams (1987). For instance, switching of two attributes by one of the 
assessors can be accounted for by orthogonal transformation. aspect may indicate that GPA 
is best suited for detecting confusion and scaling problems related to names, definitions etc. (Arnold 
and Williams (1 987)) and TWFA for modelling more general individual differences. Very briefly we 
can state the following: Procrustes rotation is suited for detecting errors in the data while 
TWFA is best suited for modelling individual differences. This may indicate that Procrustes rotation 
is better suited for situations with untrained assessors and TWFA is suited for error-gee reliable 
data. 
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4.2 Individual differences MDS versus TWFA 

Consider the common scores and common loadings Tucker-2 model (9). The ‘profile’ of objectj 
for assessor i, xv, is thejth row of matrix the objects-by-attnbutes matrix for assessor This is 
approximated by f where 

where is thejth row of The squared Euclidean distance between the approximate profiles 

of samplesjl andh for assessor is 

Dj.iji (tjl t j2)KP’PF‘(tj l  t j2 ) ‘  

(tjl t j2)Iy F,y:Ttjl t j2 ) ’  

(tjl  t j2)y ,  ( t j ,  t j2)’  

where Vl is a general symmetric matrix. Hence we can write the Tucker-:! model 

This is identical to the generaked subjective metrics model for individual differences MDS. 

orthogonal matrices we 
If we consider the PARAFAC model the same way and in addition assume that P and T are 

Dj.,j,=(tj,-tj) WiP’PWi’(tj,-tj)= ( t j , - t j )  Vi(tj l- t j)‘  (22) 

where now is diagonal with nonnegative diagonal elements. Therefore we have 

h 

k = I  

which is exactly the INDSCAL model used for individual differences MDS. 

considered further here. 
The individual differences MDS models are treated in Chapter 6 of this book and will not be 

Whether there exists a similar analogy between Tucker-3 and an MDS model is not known to us. 

4.3 Relations to models for spectroscopy 

Above it was mentioned brieily that the PARAFAC model is also used in some chemical 
spectroscopy examples. The reason for this is that the PARAFAC model is exactly Beer‘s law for 
mixtures extended to two dimensions. This kind of model is relevant to, for instance some 
applications of multivariate chromatography and two dimensional In such cases, P and Tare 
interpreted pure spectra for the two dimensions the W-values are interpreted the chemical 
concentrations. In for instance chromatography, can be interpretated as the time profiles for the 
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different constituents and the P can be considered the chemical spectrum matrix of the 
wavelengths observed. 

This type of model has usually approached by a so-called rank annihilation technique, see 
Ho et al. (1978). There exist iterative versions of it and direct eigenvector based methods, the 
so-called GRAM methods (Sanchez and Kowalski (1990)). These methods represent solutions to 
the general PARAFAC model structure, but they are not least squares solutions is the classical 
PARAFAC solution. 

The methods are often applied to calibration problems of two-dimensional instruments. 
They are particularly usell in cases where the unknown prediction samples unknown 
interferences that were not present in the set of calibration samples. of the uniqueness of 
the different directions, information about the concentrations of the interesting constituents in one 
particular sample is enough to estimate the concentration for the constituents in any unknown 
sample, even if this sample has interferences. The drawback with the technique however is 
that, at least in its present form, it puts quite strong assumptions on the data, which sometimes can 
be inadequate. 

4.4 Common principal components models 

The common loadings Tucker-1 model is closely related to the common principal components 
model, Fhuy (1988) and h o w s k i  (1988). model was developed for the situation where 
the variables are measured on different groups of objects, and it is believed that although the 
group covariance matrices are not equal, they do share common principal axes. This is essentially 
the model the common loadings Tucker-] model, where although the objects are actually 
the for each assessor, this information is not used in the estimation procedure. Flury (1988) 
gives a maximum likelihood method for estimating the common loadings, and Krzanowski (1 988) 
shows that sensible alternative estimates can be obtained from the eigenvectors of a weighted sum 
of the individual covariance matrices. If the attributes are standardized within assessors, by 
subtracting assessor means, this is exactly equivalent to the Tucker-I solution. 

5. DATA PRETREATMENT TWFA MODELS 

As for multivariate analyses, centering and scaling of the raw data affect the results of a 
TWFA. Therefore it is important that the problems are properly understood the user of the 
techniques. Indeed in TWFA, pretreatment can be done in many different ways and the problem 
is much more diflicult than for standard PCA. In the following we consider the most 
pretreatments and discuss the relationships them. 

5.1 Centering 

If there is no centering of the raw data then a large proportion of the variation will be due to 
differences in assessor means and attriiute means. These are often considered to be of little interest, 
and so are removed from the analysis. Two types of centering are usualhj considered, centering of 
attniutes over all objects and and centering of attniutes for each assessor separately. The 

option only standardizes the attniutes with respect to mean, and the analysis will include 
variation due to differences in assessor mean scores. This is sensible if kind of difference 
between is of interest, but more often it is regarded noise, and removed fiom the 
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analysis by means of the second centering. This has the effect as the centering in Procrustes 
rotation, i.e. the elimination of translation effects. It is also equivalent to estimating and removing 

effects in the ANOVA model (1 

5.2 Weighting 

In addition to standardizing the data by removing variation due to differences in attniute and 
assessor means, it is often sensible to standardize variation. This can be done by dividing each 
attriiute its standard deviation, and as with centering there are two options: the standard 
deviation can be computed over the whole sample or for each assessor separately. As above, the 
two options have quite different effects on the results. The option considers each assessor to be 

the same scale, so that if hdshe uses a smaller part of the scale than the others, he 
aRer weighting have less influence on the TWFA solution than the rest. In other words, this type of 
weighting only have an effect on the relative importance of the different attniutes, with no 
reference to the difference in scale among the different assessors. The second option on the other 
hand also has an effect on the relative importance of the different assessors by weighting them 
equally. In this way, we can say that each assessor is transformed to the same scale. The choice 
between the two weightings depends on what is believed about the assessors' performance: if it is 
thought that an assessor will a large part of the scale if hdshe is confident about there being a 
large difference between the samples, and that a small difference means he/she perceived very little 
difference, then the weighting should be across all assessors. If on the other hand it is believed that 
each assessor perceives differences in the same way, and simply chooses to use the scale differently, 
then the standardization should be done within assessors. 

This gives rise to another possible scaling, in which each assessor is given weight proportional 
to his ability to detect differences among the objects. One way to do this, if there is replication 
w i t h  assessors, is to give each assessor a weight proportional to his average F-value for the 
different attriiutes. could for instance be combined with centering the different attniutes within 
each assessor. Another possibility is to give each assessor and attniute combination a weight 
proportional to its particular F-value. 

6. RELATING THREEWAY MODELS TO OTHER DATA 

Sometimes it is of interest to predict sensory profile data from external measurements. This may be 
to improve understanding of the sensory data and the individual Merences, or to replace the 
sensory measurements by some fast and reliable instrumental measurement. In the situation one 
would typic@ use chemical or physical measurements, while in the second instrumental 
measurements such infra-red spectral data are often more suitable. In both cases there is a 
situation as indicated in Figure 3. There is a matrix Y of external information to be related to the 
individual profiles If the aim is improved understanding of 2 it may be of interest to see the 
relationshrp between the external measurements and each individual assessor. If the is 
replacement of sensory data by instrumental measurement, prediction of the average score is often 
more relevant. This be done by standard multivariate regression techniques such principal 
component regression and partial least squares regression, although there are some indications that 
even in case improved prediction may be obtained by treating the assessors individuals, NES 
and Kowalski (1989). 



322 

The simplest way to TWFA models to link sensory data with external data is to compute the 
score matrix T and relate it to the external data by some regression technique, i.e. 

The matrix T is estimated then related to to get a relationship between Z and This 
approach be used for both prediction and understanding. An alternative which is more 
goal-oriented and also sometimes easier to compute is to apply the restriction T =  directly in the 
hctor model. In other words, the restricted matrix T =  is substituted into the general model xi 
TKP’ and the parameters W, and are optimized by for instance the least squares criterion 

r=l 

Writing E) with being the error term in the regression equation T =  

we that the error in the restricted model is the of the error in the unrestricted model and 
The restricted approach certainly represents a more direct and goal-oriented solution to the 

problem, but because of the more complicated model error structure, it is likely that the unrestricted 
model better satisfies the usual least squares(LS) requirements of equal variance etc. In practice the 
Y variables may often be highly In order to obtain stable solutions they can be replaced by 
the principal components corresponding to the interesting information. 

Variables 

Objects  

External 
Objecis  

External 

Attributes 

Figure 3: Data setup with external information. 

CANDELINC, Carrol et al. (1 980) is a method that is designed for optimization of equations 
like (25). As shown in Carrol et al. (19SO), if the K!s satisfy a PARAFAC or Tucker-2 model, 
optimization can easily be reduced to a minimkition of the type the unrestricted 
optimization. In the Tucker-2 model the solution can be found a simple eigenvector solution 
(Kloot and Kroonenberg (1985)). Therefore, the restricted approach is solved much more 
than the unrestricted approach. 

It should be mentioned that instead of doing any modelling of the scores before 
relating to K one could simply relate to each of the As separately. Using the simultaneous model 
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is however, a way of obtaining better prediction abhty and better interpretation possibilities. 
always, ifthe model is correct, the results are better. If not, they are poorer. 

HANDLING 

If there are q replicates for each assessor in the experimental design there are several options. The 
simplest are averaging over replicates before analysis, using the replicates extra and 
using the replicates extra attnites. The first of these is easiest, but represents a loss of 
information. It is for example impossible to tell whether an assessor fits badly because he is 
generating a lot of noise, or because he a different opinion to the other assessors. 

The second approach can used to distinguish between differences in opinion and noise. After 
fitting of the mq ‘assessors’ one compare the q replicates for each assessor on an assessor 
plot. Those of the assessors creating little noise, on the set of variables a whole, should be close 
together. If an assessor a different opinion to the others but is consistent in his view, he should 
have q replicates close to each other but some distance away fiom the other assessors. It would be 
possible to examine a separate assessor plot for several subsets of the variables. 

The third option is used to examine which of the attriiutes are recorded with little noise and 
which are very noisy, ‘averaged’ over assessors. The variable plot should be examined in the 

way the assessor plot above. 
The information on an individual attribute basis can be obtained by ANOVA techniques. 

For instance one can compute residual errors and F-values for the different attniutes and assessors 
and plot them advocated in e.g. Naes and SoIheim (1991). In this way, assessors‘ performance for 
the different attniutes can be compared and used to get information about the reliability of each 
particular assessor. 

From the point of litting the model, taking over replicates would usually be the most 
sensible choice. The only point in doing otherwise (apart fiom the diagnostic reasons given above) 
would be if there was some useful information in the replicates, e.g. if they represented different 
orders of tasting and so there was a systematic reason why the replicates should be different. If the 

reason for differences between the replicates is noise, then it makes little sense to model this 
noise and replicates should be averaged over. 

OUTLIERS 

It is important to realize that the aim of the TWFA models is to look for and descrii sidarities in 
structure among the representatives of each mode. For example in the common scores Tucker-1 
model it is assumed that each assessor perceives the relationships among the objects in the 
way, i.e. that they all regard the same objects as similar and the same ones different, though they 
may use different variables to descni these relationships. It is quite possible that for one or more 
assessors this is not a valid assumption, and the best way to investigate this is to e d e  the 
residuals. Any structure in the residuals implies that the model is not adequate, and that the 
dimensionality is too low in one or more of the modes, or possibly that the data pretreatment was 
inappropriate. Isolated large residuals however can reveal interesting unusual cases. It is also 
possible to residuals over assessors or attriites or objects to see which fit the model badly. 
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Note that an say, who is outlier on the assessor plot need not have a large residual. This 
kind of outlier fits in with the model, i.e. perceives the underlymg variables and the relationships 
between the objects, but relates the two in way. An assessor with a large total residual 
either does not fit in with the model, or possible generates an unusual amount of noise. 

9. MISSINGVALUES 

In practice when working large data-sets, there is always a chance that some data be 
missing. They could be individual data-points or whole vectors, for instance one whole sample for 
one particular assessor. There is little advice about what to do about this in the literature, but a few 
simple solutions are obvious. It should, however, be remembered when using one of these 
techniques that the solution is always ‘wrong’, i.e. different from that obtained from a data 
matrix If there are replicates available, and for instance only one of the replicates is missing, a 
solution to the problem is simply to replace the empty cell by the average of the other replicates. If 
there are no replicates available, a possible solution is to replace each empty cell by the LS-mean of 
a main effect ANOVA model. In terms of the model (1) in the introduction, this means that 
interactions are left out, ai;s and p+’s estimated and the missing value is replaced by the 
corresponding estimate of aik p,. a model is equal to 

This is identical to taking the sum of the mean over the and the mean over the samples 
and subtracting the grand mean. 

10. VALIDATION OF MODEL 

TWFA methods can be seen purely descriptive ways of examining the data at hand, but 
sometimes it is usehl to b o w  something about whether they have any relevance to other data sets, 
for example whether the groupings of samples (or variables or assessors) will appear if other 
variables (or samples or are used. Also it is usefid to b o w  how much the final model 
depends on one or two odd observations. One method used for this kind of investigation is 
cross-validation (Stone, (1974)). Each observation in is omitted from the data set, and the 
model fitted to the remaining data. The residual for the omitted data point is then found. This gives 
an estimate of how representative of the data set each omitted observation is. 

If there is no replication, there three different ways of doing the cross-validation, corre- 
sponding to the three possible definitions of an ‘observation’, i.e. object, attniute or assessor. These 
three methods give information on the ‘unusualness’ of samples, attriiutes and assessors 
respectively. Also, if of these groups can be regarded a random sample from 
population, then the appropriate method be used to estimate the proportion of the variance of 
that population that the model would explain. Depending on the model litted, it is possible to treat 
one or two (but not all three) of these groups the observations to be omitted. 

The principle is follows: suppose a Tucker-1 loadings model has been fitted, i.e. the 
individual samples-by-attriiutes matrices have been modelled T , ’  Ei, where P is the 
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common loadings Since has orthogonal columns, i.e. for any assessor matrix X ,  

we can calculate the individual scores matrix Hence the approximation ofX, is kl 
and the residuals El fiom this model are X, If we now omit assessor z fiom the data, 

we still fit the model, but we will get a different common loadings matrix We then calculate 
the residuals for this assessor Usually the squared elements of this matrix are 
summed, to give the total squared cross validated residual for assessor z. This procedure is repeated 
for all of the assessors. 

If it is desired to omit objects rather than assessors in the cross validation, the procedure is to fit 
the model Up’ E/  where is the assessor-by-attniute matrix for objectj (recall that 
gives the previously). The residuals for an omitted object ware then found in the obvious 
way, Y, YZ,,?’,’. It is not possible to omit attniutes in this model, they be 
cross-validated if one of the other two models is fitted, i.e. common object scores or common 

scores. 

In general it is only possible to cross-validate a group that has not been reduced in dimensional@ 
in the model. Therefore in the common scores-common loadings Tucker-2 model, it is possible 
to cross-validate the assessors. The procedure is follows: model assessor objects-by-amiutes 

matrix X, El, where T x a) are the common scores, are the common 
loadings and (a b) is the individual difference matrix for assessor Since and 
the residuals for assessor i are E, X, Hence any assessor can be omitted fiom the 
model, the new and calculated and the cross-validated residuals found as before. Clearly for the 
other two possible Tucker-2 models there is only one possible way of cross-validation. Without 
replication it is not possible to cross-validate a Tucker-3 model. 

If there is replication there is a wider choice ofvalidation methods. All of the above methods are 
available, as is the option of omitting the replicates one at a This can be done even for the 
Tucker-3 model. An alternative is to regard one set of replicates a test set, fit the model on the 
other set and find the residuals for the test set. 

11. DISCRIMINATION AMONG MODELS 

Choosing and validating a model are closely connected, as a poor validation result could lead to the 
choice of another model. Choice of model refers here to choice of underlymg dimensionality. This is 
a problem that even in standard PCA has no clearcut solution. It can be argued that a PCA or 
TWFA merely is a low dimensional projection of the data picturing much variation possible. 
Since we can only wdy look at two- or threedimensional plots, we s iqly choose two or three 
dimensional models and note how much variation is explained by them. This is how standard PCA is 
often used. It would however be convenient to have some criteria for the choice of dimensionalsty. 
A method commonly used in PCA is a plot of residual variation against number of components, the 
so-called scree diagram. The ‘elbow’ or point on this plot where this variation stops decreasing 
rapidly is chosen a reasonable dimensionahty. Generalizing this to Tucker-I is straightforward. 
For Tucker-2 however, there is a different modeVdimension for each combination of a and b leading 
to a 3-dimensional scree diagram, and for Tucker-3 the general scree diagram would become 
Cdimensional. It is unfortunately not possible to use separate scree diagram for each mode the 
choice of dimension for one mode effects all of the other modes. In other words two dimensions for 
the assessor mode may be appropriate if other two modes are also two dimensional but if the object 
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mode is then iucreased to three dimensions it may be necessary to increase the assessor dimension 
also. 

One approach is to restrict the dimensionality according to some other criterion. One possiWity 
is to set a b. This the consequence that the assessors ‘configurations’ or fitted values are 
linear combinations of each other. This makes TWFA more similar to Generalized Procrustes 
analysis and may in some cases be helpll. It reduces the scree diagram by one dimension and makes 
it a practical proposition, although the concept of an ‘elbow’ in three dimensions is a little 

Any scree diagram can be based on cross-validated residual variance, and there is a tendency for 
these plots to level out more quickiy, and lower dimensionahties tend to be chosen. This is 
usually a good thing there is no benefit in modelling dimensions that are merely noise. 

Table 1: The 12 cheeses with the name used in plots. 

No 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Description 

Jarlsberg 

Marks Spencer Mature 

Jarlsberg Lite 

Tesco Canadian extra-mature 

Norvegia 

Safeway home produced mild 

Vel-Lagret Norvegia 

Anchor mature 

Nor& Cheddar skorpefn‘ 

Tesco reduced fit 

Skorpefii F.45 (Norvegia F45) 

Tesco mild reduced fit 

Name 

JarLFHS 

Marks 

JarLH30 

Tesc-mat 

Norv-WO 

Safeway 

Now-Vel 

Anchor 

Cheddar 

Test-fit 

Norv-F45 

Tesc-mil 

12. ILLUSTRATION BY AN OF A CHEESE TASTING EXPERIMENT 

Twelve cheeses were selected for study, six Norwegian and six Cheddars. A list of the brand 
names is given in Table 1. They were a Norwegian and a Scottish panel, but for 
example only the fiom the Norwegian panel are considered. details of the experiment are 
given in Hirst et al(1994). The panel consisted of 10 trained The attributes are @en 
Table 2. They were scored on a continuous line scale anchored at 1 and 9. The experiment was 
balanced for order of tasting and session effects. There were two replicates, which have 
averaged throughout the example. 
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12.1 PCA of the cheese data 

In order to compare TWFA with more conventional methods a principal components analysis was 
performd on the objects-by-attributes matrix averaged over assessors and replicates. The 
averaged attributes were centered and scaled to zero mean and a standard deviation of unity. In 
Figures qa), and (c) some results fkom the analysis are presented. The first two principal 
components explain respectively 71% and 10% of the variation. From the score plot for the first 
two components it is clear that the panel roughly discriminates the Norwegian from the Cheddar 
cheeses along the first component, with the exceptions that the Safeway mild cheese seems more 
‘Norwegian’ than Cheddar, and the Norwegian Cheddar is closer to the other Cheddars. The 
Norwegian Jarkberg is separated out by the second component, which appears fkom the 
loading plot to be a texture component spanning fkom firmness/grainyness to pastynesshoath 
coating texture. The Jxlsberg is apparently more than the other cheeses. The 
principal component includes together with texture properties creamy odour/flavour in one 
direction, characterizing the Norwegian cheeses, and the remaining flavoudodour properties in the 
other direction characterizing the Cheddars. The real distinction between the cheeses appears 
therefore to be that compared to the Cheddars the Norwegian cheeses have a pronounced creamy 
flavour/odour together with a more rubbery texture. 

$1 ,  past-t; 

0.0 

coat-tex 

C. 

Tesc-fat 

Tesc-mild 

- 4 - 2 0  2 4 
Factor 

Figure Results fkom PCA on assessor mean scores. (a) Residual variance, loadings and (c) 
scores for the fist two hctors. 

12.2 Tucker-1 analysis of the cheese data 

As descn’bed above three possible approaches can be taken corresponding to the three possible 
ways of ‘unfolding’ the three-way data matrix. We here show some results from the common 
scores model and the common loadings model: The common scores model assumes that the 
assessors all perceive the relationships between the cheeses in the same way. This is probably 
sensible here, though if the Scottish assessors had been included in the analysis this may not have 
been valid as it is possible that they would perceive different ‘underlymg cheese types’. The 
common loadings model the existence of common underlying sensory attributes for cheese 
which again may be valid for the Norwegian panel but possibly not if the Scottish panel were 
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included. In both cases the data were pretreated by centering and standardizing variables within 
assessors. 

Table 2: The 14 common attributes with the names used in plots. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

11 

12 

13 

14 

Overall odour 

Creamy/milk odour 

Overall flavour 

Creamy/milk flavour 

sour flavour 

flavour 

Bitter flavour 

salt flavour 

Firmness texture 

Rubbery texture 

Pasty texture 

Grainy texture 

Mouth coating text. 

over-odo 

creaodo 

m - o d o  

over-fla 

crea-fla 

sour-fla 

bitt-fla 

finr-tex 

rubb-tex 

past-tex 

grai-tex 

coat-tex 

Scores and loadings for the two hctors are plotted in Figures 5(a) and (common scores 
model) and Figures qa)  and loadings model). First note that the proportion of 
variation explained by two factors are 5 1% in the scores model and 53% in the common 
loadings modeL This demonstrates firstly that the two not the and more importantly 
that more variability remains unexplained compared to the mean score PCA of the previous section. 
This is to be expected a lot of the variabhty in the PCA was lost when the assessors 
were averaged over. 

Neither the common scores nor the common loadings plot show great differences fiom the PCA 
plots. This indicates that averaging over does not c o n d  major relationships for this 
particular data set. However changes do appear: the Safeway cheddar moved outside the 
group of Norwegian cheeses the second component, and the flavour/odour moved 
upwards along the second component. 

The interpretation of a changed position of a sample is that the assessors do not entirely agree 
the of certain attriites. the mean PCA the assessors are ‘forced’ to agree on the 
attn’bues average value is used, but the common scores model allows the assessors to use the 
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I I.- 1 I" 

attributes individually. A similar consideration holds for the change of position of an attribute in the 
common loadings model. We will return to this in further detail in the section on Tucker-2 
modelling. 

-0.05 0.0 0.05 

Figure 5: Scores (a) and loadings for the first two factors in the 'common scores' version of 
the Tucker-I model. The in the loadings plot refer to the attriites, cf. Table 2. 

It is now usefid to relate the common scores to the attniutes (or common loadings to the 
objects). One way to do this is to plot 140 assessor loadings on the common scores plot (Figure 
50)) (or all 120 assessor scores on the common loadings plot, Figure 6(b)). These plots contain so 
m y  points they are almost impossible to interpret, though there are clearly similarities between the 
assessors. An alternative is to produce a separate plot for each assessor, for whichever model is 
chosen. Again there is too much detail to be interpreted, though it is highly likely that all assessor 
plots would be similar. Therefore a Tucker-2 model to investigate both objects and attnhtes is 
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sensible. Note that the superposition of the common scores and common loadings plots is not 
possible they the results of different models. 

1 

-0.2 0.0 0.2 

-4 0 4 

Figure 6: Loadings (a) and scores fbr the two factors in the ‘common loadings’ version 
of the Tucker-1 model The in the loading plot refer to the cheeses, cf. Table 1. 

12.3 Tucker-2 modelling of the cheese data 

As above the is centred and standardized for each and attribute. A Tucker-2 model 
with a b 2, cf. Section 1 1, was performing the algorithm of Section 3.2. The amount of 
variation explained by fitting a model with two factors in both assessor and object modes is 5 

approximately the for the Tucker-1 models. Note that what we have done is to reduce the 
object dimension to two compared with the common loadings Tucker-I model, which involved 
no reduction of dimension for the objects (or equivalently the variable dimension reduced 
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Tesc-fat Anchor 

Tesc mild v 
NOWH30 

Marks 
NS???Y Tesc-mat 

-0.4 0.4 

Factor 1 

past-tex coat-tex 

-0.4 0.4 

Factor 1 

Figure 7: Common scores (a) and common loadings for the two factors in the Tucker-2 
model with a b 2. 

compared with the common scores model). The fact that the variance explained hardly changes 
mans that the assumption of two underlying object types is probably valid. 

In Figure 7(a) and the c o m n  scores and loadings, and T, are plotted. Again they look 
very much like those for the Tucker-1 model. The two plots cannot be superimposed, unlike in 
PCA, the connection between cheeses and attniutes can only be made through the individual 
2 x 2 matrices K. These matrices descni how the assessors use the underlying attributes to 
descni the object types. In order to investigate this fiuther we consider the individual 12 x 2 
scores matrices TK, though it would be equally relevant to consider The Figures 8 (a)-@ 
show these individual scores plots, which can be directly interpreted together with the common 
loadings plot, Figure The individual scores can be interpreted the way each assessor places 
the 12 cheeses in the common attniute space defined by the common loadings. Along the first axis, 
the component separating Norwegian ftom Cheddar cheese, the assessors agree to a large extent, 
and the interpretation of the scores plot fiom the mean score PCA, Figure 4(b) seems to be valid. 
There are however differences between the assessors on the second axis. Assessors 3,4, 7, 8, and 
10 the cheeses differently to the other 5 assessors on this axis. Recall that the second axis was 
man@ a texture variable with hess/graininess at the positive end, and pastinesdmoath coating 
texture at the other. There seem to be two different ways of using these four attriiutes, maybe due 
to confusion. In the section on the effect of different pretreatments of the below we interpret 
this fiuther. We now proceed to investigate these differences between assessors Tucker-3 
modelling. 



332 

Q) 

.f3 

c 2 I 0 I- 2- 

mpej 

m 

P 

N L  

b 

Q 

9 

Q 

P 

9 

0 

9 

w 

m 

N r  z 
0 ;  

9 

Q 
E Z L O L - 2 - 9 -  

cd 



333 

12.4 Tucker-3 of the cheese data 

on the centering and standardization above we used a Tucker-3 model with a b c 
2, i.e. two components in each of the three modes. This gives a 2 14 common loadings 

P, a 12 x 2 common scores matrix Tand a 10 2 assessor scores Q, together with the two 2 
x 2 core matrices Cl and These scores are plotted in Figures 9(a), and (c). 

In the assessor plot Figure 9(c) we can see that the assessors all have similar scores on the first 
dimension, indicating agreement about the source of variation in the cheeses, but there is a 
range of values on the second dimension, indicating considerable disagreement about the less 
important sources of variation. This difference be interpreted examining the core matrices. 
They 

sample 2 sample 2 

These two matrices represent two assessor types, with each assessor being partly one and partly 
the other. The first is simple. Sample I is descn'bed by attriiute type 1, and 
sample type 2 by attriiute type 2. Referring to the sample and attriiute plots (Figures 9(a) and 
it is clear that sample type 1 represents a Cheddar-Norwegian difference, and sample type 2 seem 
to separate out the high fat Jarlsberg. Attniute 1 is a contrast between strong flavours such 
bitter, and overall flavour, and creamy flavour, and attriite type 2 seem to be a texture 
variable contrasting sticky and doughy with hard, rubbery and grainy. Assessor type 1 therefore 
would descni cheddar cheese being strongly flavoured, compared to Nonvegian cheese which 
is creamy. Hdshe would distinguish Jarlsberg by its hard and rubbery texture. 

Assessor type 2 is more complex. Hdshe would say that although the strength of flavour is 
important in distinguishing Cheddar and Norwegian cheese, the texture seem m r e  important and 
the other way around for the separation of Jarlsberg. 

The range of individual core matrices be investigated by noting that all have a 
weight of about 0.3 on W,, but weights fkom 0.4 (assessors 1 and 3) to -0.6 (assessor 7) on W2. 

This pattern, seen in Figure 9(a), do not express any large explanational power of assessor type 2 
compared to type 1, but merely expresses that the assessors have Merent amounts of the less 
important type 2 in them. These weights correspond to core matrices ranging fiom 

6.8 -1.5 1.4 

4.1) (-2.41.0) 

First note that the core matrices Cl and C2 listed in the beginnins of this section were 
representing 'ideal' types the two matrices here represent assessors. The two 
matrices both have large values on the upper diagonal, indicating agreement that variation in sample 
type 1 is largely due to attriiute type 1. 
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b. C. 

I 

UO 

n! 
9 

-0.4 0.4 0 
1 

10 

grai-tex 

san-fla 

coa-tex 

I 014 
1 

-0.6 -0.4 -0.2 0.4 0.6 
1 

Figure 9: Results fiom the two-fktor Tucker-3 model. (a) Assessor loadings and (c) 
cheese scores. 

The 1 and 3 have a large value in the lower diagonal indicating that variation in 
sample type 2 is largely due to attriiute 2, but this is not the case for assessor 7. 

there is disagreement in how important the other attniute should be in each case. The 
change of sign indicates a sigtuficant difference between the assessors assessors 1 and 3 
cheddars should have negative scores on the texture variable, i.e. that they are sticky and doughy, 
represented by the attriiutes past-tex and coat-tex in Figure 9, whereas 7 would descnie 
them grainy and hard, corresponding to the positions of rubb-tex, firm-tex and grai-tex in Figure 
9. There is a similar difference in the sign of the strength of flavour attniute in descniing the 
Jarlsberg. 

The two matrices Cl and have the additional usell property, that they give information about 
the amount of variation explained by each type of mode. This means that the sum of the 
squares of the four elements of C1, 

24.8’+(-1.1)’+ 1.1’+9.5’=708 

the amount of variation explained by the Tucker-3 model with a b 2 and c 1 F o o t  and 
Kroonenberg(l985)). In an analogous way the sum of the squares of the eight elements of CI and 

708 (-1.5)’ (-2.9)’ 4.5’ 3.0’ 748 

is the amount of variation explained by the Tucker-3 model with a b c 2. These amounts must 
be seen relative to the total amount of variation in the which due to the pretreatment of the 

is a fixed number, determined by the number of objects and attriites alone. With 
the standardization use, the of 140 ‘variables’ of 12 

observations divided by the standard deviation of these 12 observations. Letting x9 denote the 
original before pretreatment and SDk the standard deviation of the 12 samples for 
and attriiute the total can be found as 
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The total percentage of explained variation for the Tucker-3 model with a b c 2 is thus 
748/1540 49%. This is the same for the Tucker-2 model, indicating that two assessor 
dimensions is probably reasonable. 

12.5 Validation and choice of underlying dimensionality 

In example the dimensions of the attributes and samples have been kept the There is no 
particular reason why this should be done, but it does mean that only one dimension needs to be 
chosen for the Tucker-2 model, and two for the Tucker-3 model. Hence scree diagrams can be 
constructed. 

Consider the Tucker-2 model first. In Figure 10 the accumulated percentage residual variance is 
plotted together with the for two different cross-validation principles: assessor-wise, 
replicatewise. The replicate-wise cross-validation variance starts to increase from dimension 2. The 
residual variance and assessor-wise cross-validated residual variance also seem to have leveled off 
at factor 2, maybe even at factor 1. 

0 

0 4 6 8 

Number factors 

Figure 10: Regular and cross-validated scree plots for Tucker-2 models with a b. 

Fixing a b 2 we now to choice of dimension in the Tucker-3 model In Figure 11 the 
accumulated percentage residual variance is plotted together with the same for the replicate-wise 
cross-validation, this being the only cross-validation possible in the Tucker-3 model This again 
suggests that a choice of 2 for each dimensionality seems sensible, maybe even only 1 factor is 
needed, but two is definitely reasonable. 

Atter choosing the dimensiomky there are still some validatory tools of interest, mentioned in 
section 8. The Figures 12(a), show how well the Tucker-2 model with a b 2 explains the 
variation in each attriiute and for each assessor. We see that among attriiutes creamy odour, 
overall flavour and rubbery texture are best and amonia flavour and salt flavour most poorly 
explained by the model The attn’butes the highest amount of explained variation are the ones 
with the most structure related to the cheeses. The actual structure could, however, differ fiom 
assessor to assessor. Among the assessors number 1 seem to be poorly descriid by the model 
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m u  

compared to the others. Looking at assessor number 1's individual score plot, Figure 8(a) we see 
that number 1 is the assessor with the least spread of the cheeses in the two-dimensional attniute 
space given by the common loadings. Number 1 is thus the assessor that along the estimated 
common attribute components is worst at distinguishing between the cheeses. 

Replhlion-CV 

Residuals 

1 2 3 4 

N u m b e r  fac tors  

Figure 11: Regular and cross-validated scree plots for Tucker-3 models with a b 2. 

Similar plots could be made cheese-wise, and in the Tucker-1 and 2 cases the assessor-wise and 
cheese-wise plots might be substituted with plots of corresponding cross-validated 

Figure 12: Assessor-wise and attriite-wise relative explained variance the Tucker-2 model with 
a = b = 2 .  
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12.6 The effect of pretreatment of the data 

the interpretations made above we must bear in mind that each attriiute for each assessor was 
standardized to have unit variance. discussed in section 5.2 this helps to remove differences in 
the assessors use of the scale and assumes implicitly that such differences do not express real 
differences between the cheeses. If however we want to put some emphasis on differences in use of 
scale two possibilities arise: Firstly the data can be pretreated as above, and then the scale 
differences investigated by other means. This could be done by estimating a scale parameter for each 
attniute, eg. the ‘stretching and shrinking’ values in NES Solheim (1991) or the ‘maximum 
likelihood’ values in Brockhoff Skovgaard (1994) together with some kind of plots summarizing 
the information for all attniutes done in the former of the two mentioned papers. This is, 
however, a univariate approach to the investigation of scale differences. A multivariate approach 
could be to choose the second weighting option mentioned in section 5.2, namely to weight each 
attniute with the inverse standard deviation computed over all assessors, i.e. based on 120 
observations. This way the individual scaling differences will be included in the TWFA modelling. 
We still centre the data for each assessor before weighting, we do not want to include the 
differences in assessor levels. With this pretreatment we Mted a Tucker-2 model with a b 2. 
Figures 13(a) and show the scores and loadings. 

Comparing with the Tucker-2 model for the former pretreatment, Figures 7(a) and and mean 
score PCA, Figures 4(b) and (c), we that the difference between the current Tucker-2 common 
loadingdscores and the standard PCA loadingdscores are more distinct. This goes together with the 

that by introducing more individual variability, by allowing the assessors to use different 
portions of the scale, the standard PCA becomes less representative for a ‘typical’ assessor. 

The individual score plots, Figures lS(a)-(j), show the patterns as do Figures S(a)-@, but 
the differences between the assessors are more clear. Especially the spread of the cheeses are 
varying quite a bit now. The spread is directly related to the actual variation in the data for a 
particular assessor. Note that in the former pretreatment of the data, the variation in the data for the 
assessors were equal. Figure 1qa) shows how much each of the 10 assessors contn’butes to the 
total variation in the data, and we observe that the heights of the bars in Figure 1qa) are directly 
related to the spread of the cheeses in the individual score plots, Figures 15(a)-(j). The ‘directions’ 
in the individual score plots are for the individual assessor determined by the attriiutes for which 
hehhe has a particular sensitivity. We have documented this by examining the F-statistics ftom 
ANOVA’S for each assessor and attniute. For example for assessor number 6 the attn’butes with the 
four largest F-values are crea-odo, over-odo, crea-tla and rubb-tex. Taking the positions of these 
four attniutes in the common attniute plot Figure 13(a), they span the direction of the individual 
scores of assessor 6.  This tendency is observed for all the individuals. 
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Figure 13: Common (a) and common loadings for the two factors the Tucker-2 
model a b 2 with the alternative pretreatment of the data. 

Figure 14: Variability the alternative pretreated data. (a) Total variability for each assessor, 
relative explained variance for each assessor by the Tucker-2 model with a b 2. 



339 

13. CONCLUSION 

We have presented the concept of TWFA modebg in the setup of sensory profile data. The fitting 
procedures and interpretations are thoroughly treated in a way that should make it possible for the 
reader to adopt and apply the methods without further literature search. 

From Tucker-1 to Tucker-3 models we have outlined how these models embrace most known 
multivariate methods of investigating sensory profile data: PCA, GPA, INDSCAL,, PARAFAC and 
‘common principal components’. This generality be stressed to both the strength and the 
weakness of the ‘Tucker-approach’ we have taken in this chapter. The strength lies the general 
principle of not making any model selection errors, when the modelling is started at a sufficiently 
general level and subsequently letting the data decide which simplifications can be assumed. The 
weakness comes up due to the substantial number of possible models to fit and investigate, which 
together with the various data pretreatment approaches requires a considerable task of the analyst. 
Also formal statistical testing of model simplifications are not performed. Resampling methods, 
such as permutation tests and bootstrapping, definitely has a role to play in that context. We leave 
this open here. 

In spite of these weaknesses we believe, and have illustrated by the cheese data example, that the 
TWFA methods applied here offers additional information and insight in a typical sensory profile 
data 
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