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PREFACE

Data analysis in sensory science has traditionally been performed with univariate statistical
tools such as Analysis of Variance. During the last decade, the emerging capacity of computers
has made multivariate techniques more appropriate for increased understanding of these
complex data. The intriguing data generated by sensory panels and consumers demand models
with capabilities to handle non-linear aspects as well as to simplify the large amounts of data, in
order to facilitate interpretation and prediction. The development in this sector has been very
rapid. From the simple Principal Component models available in mainframe computers in the
late seventies/early eighties, 1995 offers a large spectrum of models with very different
applications. Common to many of the techniques is the principle of extracting central or
common information in large data matrices presented in understandable and simplified formats.
Therefore this book starts with a discussion of principles in understanding of results from the
Principal Component models, as they can be seen as a conceptual representative for all the
families of models represented later in the book.

The present textbook is prepared in collaboration between a group of scientists involved in
sensory science at an advanced applied and academic level. Chapters are included to cover
basic understanding of the principles behind the methods, experimental design as well as a
variety of techniques described in detail. The book has been written to give a reasonable
updated selection of new methods applied to the sensory field. The editors have intended to
generate a book well suited for educational purposes, with sufficient references for
complementing the presented text. The authors have all followed the same set of instructions,
where theoretical background and practical examples have been given equal importance. The
book is made for use by sensory scientists in a practical situation and also in a training
situation, to give good and sufficient knowledge about advanced methods applied in sensory
science. The examples discussed in the text provide sufficient support for users in a beginner’s
phase of exploration of the techniques. Statisticians may find the text incomplete, but the
references given should provide sufficient additional information for their needs as well.
Sensory scientists on the other hand may find the theoretical information on the difficult side -
thus, providing room for developing skills’knowledge.

The present text has no ambition to cover all existing techniques available for analysing
sensory data. The field is in very rapid development and new and modified methods appear
“every day”. The chapters illustrate a cross section of what is available on a theoretical and
practical level. Not all the presented methods are readily available in practical statistical
software, while others exist in many versions implemented in a variety of software. This is a
situation in very rapid change, which makes the need for material to help in a process of
increased knowledge more urgent than new software. The editors hope this book is a
contribution in that direction.

As described above the book starts with a discussion about the conceptual basis for the
multivariate methods treated later in the book. One of the main themes in this discussion is the
concept of latent variables or latent phenomena. In mathematical terms latent variables can be



referred to as projections or linear combinations of the data, but they can also be given a much
broader, deeper and more philosophical interpretation. This is the topic of Chapter 1.

For all scientific investigations, the design of the experiments involved is an extremely
important aspect of the whole analytical process. Sensory analysis is no exception and this
important topic is covered in Chapter 2. Main emphasis is given to the design of sensory
tasting experiments, but treatment designs are discussed as well. The main principles for
experimental design are covered and illustrated by examples. The importance of the principles
for mulfivariate analyses is emphasised.

After having presented an account on the philosophical basis for the methods and the main
principles for obtaining good data, the next two sections (Part II and III) are devoted to the
multivariate methods themselves. Part II focuses on methods mainly developed for analysing
aggregated sensory data, i.e. data obtained by averaging data over assessors. Part III on the
other hand is devoted to methods which use the individual sensory data for all the assessors in
the analyses. The majority of the presented methods in the latter chapter are relatively new and
represent an area of research where the goal is to examine both the individual differences and
similarities among the assessors and the samples.

Part II has a strong focus on methods for relating sensory data to external information, but
techniques for analysing the sensory data themselves are also presented. Chapter 3 gives a
treatment of the main principles for so-called preference mapping. This is a family of methods
for relating sensory and consumer data based on graphical illustrations of latent variables.
Chapter 4 is a study of the potential usefulness of applying neural networks in sensory science.
The neural networks are non-linear and flexible methods for relating data matrices to each
other. So far they seem to be little used in this area of research. In the same chapter a brief
discussion of the well established linear methods PCR and PLS is also given. Chapter 5 treats
the important field of extracting information from images which can be correlated to sensory
properties of the products. This is a quite new area of research and the present contribution
discusses some of the basic principles for it.

Chapter 6 is about MDS. Both methods for aggregated and individual profile data will be
presented. The data needed for this type of analysis are distance- or similarity data about
samples and can be obtained directly from a specially designed sensory experiment or from
computations on data from standard sensory profiling. The important method of GPA is the
topic of Chapter 7. This is a method which translates, rotates and shrinks the individual sensory
profile matrices in such a way that the match among them is optimal in a LS sense. The
STATIS method is another method for individual profile data which looks for similarities and
differences. This method is treated in Chapter 9. The method is based on maximising
correlations among the profiles and provides plots/maps of a similar type as most other
methods treated in the book. GCA is a non-linear generalisation of CCA and is presented in
Chapter 8. The method can handle several sets of variables and is based on latent variable plots
of the main directions of common information in the data matrices. The different matrices will
typically represent different assessors, but can also represent for instance sensory, chemical and
physical data from the same set of samples. The last chapter of the book is about 3-way factor
analysis methods. These methods are generalisations of the standard PCA and look for
common latent structures among the assessors and/or the samples.

Comparisons among the methods are treated in the different chapters of the book. Some of
the methods are developed for quite different situations, but in many cases they can certainly



be considered as complimentary to each other. This will also be discussed in the different
chapters.

The book ends with an index of all the chapters.

We would like to thank all contributors to this book for their valuable contributions. It has
been a pleasure to work with you! We will also thank MATFORSK for allowing us to work
with this project. FLAIR-SENS is thanked for financial support to some of the contributions at
an early stage of the planning process.

Tormod Nas and Einar Risvik, June 1995.
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UNDERSTANDING LATENT PHENOMENA
E. Risvik

MATFORSK, Norwegian Food Research Institute, Osloveien 1, N-1430 As, Norway

1. INTRODUCTION

The first chapter has the ambition to introduce the multivariate thinking this book is based on,
in order to provide a frame of reference for the reader. To be able to understand later chapters
the «philosophy» of multivariate analysis is discussed. This is done with two different
perspectives. First of all the conceptual understanding is focused, that is the understanding per
se. The intention with this has been to exemplify the multi-disciplinary understanding needed in
order to utilise the true potential inherent in data from sensory science. To illustrate this,
sensory profiling is chosen as an example. This is not the only approach to generate complex
data in sensory science. Other approaches can be scaling methods, projective methods,
magnitude estimation, questionnaires, observations, consumer responses of different kinds,
comparisons, rankings and methods close to profiling like free choice profiling. Conventional
profiling is chosen as this is very commonly used, very convenient for this discussion and
because the author has the most experience with this method. The second perspective into this
material is through a few sensory examples, simple in their interpretation. Non-statisticians’
examples are chosen, and these are focused on the understanding of results from conventional
profiling, rather than the statistical terminology. This is not a discussion in depth, rather a
framework which can be useful when reading later chapters.

Necessary statistical terminology to understand the following chapters will not be
introduced here, as the different authors are expected to do this.

For the practical statistical example the frequently used Principal Components Analysis

(PCA) is utilised as an example. PCA fits well for sensory profiling data and at the same time
illustrates some of the more fundamental concepts involved in analysis. The other methods
represented in this book cover a wide variety of approaches, (non-linear artificial neural
networks, multidimensional scaling, generalised canonical correlation analysis and three-way
factor analysis) and will be introduced by each author.
This chapter does not pretend to give complete answers to any of the very fundamental and
complex questions related to understanding of sensory data, but rather to open up for
exploratory, creative and critical thinking around the potentials for utilisation of multivariate
statistics. Some of the expressed views can be interpreted to be contrasting to each other. This
is intentional, as many of the fundamental discussions touched upon provide no answer to
these questions. To some extent the «choice of the right model» lies more in a choice of belief
rather than fact. The author has therefore made a point of presenting the discussion between
philosophies of science, and left the answers to be found by the reader.



The aim of this chapter is to show the multi-disciplinary thinking needed in research where
sensory data are analysed by multivariate statistics. This perspective is chosen in order to build
the links between cognitive science, psychology, physiology, experimental design and basic
philosophy. Several of the very basic problems in sensory science are related to this interface.

2. TASTE, EXPERIENCE AND CHEMISTRY

Drinking a glass of wine can be described in many ways. The wine can have a great potential,
be a bit masculine, with a strong body and a good balance between fruity aromas and acids,
and it can have a long aftertaste. Said in a different language the wine can be astringent, have
strong aromas from black currant, plum, asparagus, and a hint of burnt match, kerosene,
vanilla and hazeinut. The same wine can also be characterised with it's absorption spectrum or
a gas chromatography profile. Other chemical analyses can also contribute strongly to the
chemical characterisation of the wine.

In total there are more than 800 aroma components (Rapp, A. 1988) in wine. Together
these compose a complex aroma structure, experienced when wine is consumed. The
experience consists of chemical components in interaction with our senses, and the
interpretation of the perceived entity by the individual.

The traditional approach by chemists has been to identify and quantify components one by
one for at a later stage to ask about their importance. This has been a tedious task, as very
often the analytical tool has needed development at the same time. Analytical chemistry today
is capable of identifying and quantifying very low concentrations of advanced molecular
structure (Rapp, A. 1988). When identification and quantification is no longer a problem, it is
relevant to ask questions concerning the importance of the identified components.

After most of the influential variables have been characterised the problem of how the wine
tastes is still not solved. The human perception translates and expresses this in a far less
explicit vocabulary than chemical analyses, and as such is very difficult to model. It is not at all
obvious that the most abundant components have the biggest influence. Very often, in the
work with off-flavours, one finds taints associated with components present in very small
concentrations, but at the same time giving rise to strong affective reactions.

Aromas are today described with several hundred words, and they show no apparent logic.
Several psychologists have tried to classify aromas according to a standard nomenclature. The
Zwaardemaker classification of smells into nine classes (1895), refined by Henning (1916) into
six classes are examples of this (see also Wada, Y. 1953). The relationship between these
proposed structures and an inner and perceived structure is not obvious, and certainly not
verified in a satisfactory way. The terminology for wine description in itself shows strong
inconsistencies. This is best characterised with examples of two types of descriptors: The
descriptive aroma terminology (Noble, A.C. et al. 1987) with descriptors like black-currant,
nutmeg, peach and black-pepper, and the more complex terminology with attributes described
by words like body, potential and harmony in its simple form, and in the most abstract form
words like feminine, cosmopolitan and stylish. More than 1700 words (Peynaud, E. 1987,
Rabourdin, J.R. 1991) are being used for this purpose from the last groups of complex and
integrated attributes.

If the words used to describe a wine were all unique descriptors, each related to one aroma
component, our vocabulary would still be sadly insufficient to express the experience of
drinking a wine. Like with colours, where the eye can distinguish 6 million different shades of



colours, it is likely that there must be another, underlying and simpler structure which can be
used to relate descriptors and aroma components. For colours this is often referred to as the
colour space: a three dimensional structure where all colours can be described by a set of three
orthogonal variables, the dimensions of the space. This will be discussed in some detail later.

For flavour/aroma, one must conclude, there is no such simple structure known. For texture
perception, simplified structures are indicated (Risvik, E. 1994; Harris, J.M. et al. 1972),
although they cannot be understood to be finalised models and texture must be understood to
be of similar complexity as for flavour/aroma.

This chapter will deal with aspects related to the understanding and interpretation of
sensory data with two different perspectives:

PART I: Understanding concepts related to multivariate data analysis

This will simplify the process involved in understanding of how statistical tools extract latent
structures and how they can be utilised for understanding of products. The second section will
thus be:

PART II: How data structures can be extracted and interpreted from a set of data utilising
multivariate statistical techniques.

This second section will visualise the mathematical principles involved in analysis, with
graphical representations and simple examples to illustrate this.

PART 1

3. UNDERSTANDING CONCEPTS RELATED TO MULTIVARIATE ANALYSIS

3.1 The role of perception

The perception of a product can be interpreted with at least 2 different perspectives. The
sweetness of a carrot tells the individual that the carrot is sweet, which is obvious, but it also
informs, in a general sense, that the senses have the capability to perceive sweetness, which
does not have to be the same. One example from sensory science, where this is not true is in
the case of bitter blindness (PTC) (Brantzaeg, M.B. 1958; Amerine, M.A. et al. 1965), where
two humans will perceive different qualities (bitter and no bitterness) in the same sample. The
stimulus can be argued to be the same, but the perceived entity is different for the two
individuals. As all individuals only experience their own perceived intensities there will be no
proof that this is the exact same perceived quality or intensity in all humans, still most of the
time we take this for granted. Another example is androstenone, the hormone found in pig
meat. This chemical signal component gives strong negative reactions in some humans (mostly
females) and is not perceived at all by others (mostly males) (Dorries, K.M. et al. 1989,
Wysocki, C.J. and Beauchamp, G.K. 1984; Wysocki, C.J. et al. 1989).

In sensory experiments these two perspectives, both the chemical signal (the given signal)
and the human response (the meaning of the information), have potential interest for the



experimenter, and these are difficult to distinguish depending on the given design of the
experiment and also in the interpretation of results. To a large extent this is a similar difficulty
as distinguishing between latent and manifest structures. Latent meaning; ..a structure
expressed in terms of varieties or variables which are latent in the sense of not being directly
observable (Kendall, M.G. and Buckland, W.R. 1957), and manifest meaning: to make evident
to the eye or the understanding; to reveal the presence of or to expound, enfold (The Oxford
English Dictionary 2. ed. 1989). This needs some explanation. Consider the following example
as an illustration.

To purchase an apple can be difficult for someone with no previous concept of what an
apple is. Even when having been told in advance, (that is when the concept of an apple has
been communicated, but with no previous experience), it will be a very time consuming and
difficult task to choose among apples on display in a supermarket shelf. In order to say «it
looks juicy» (latent structure), it is necessary with previous experience of juiciness in apples.
To be able to explain why an apple «looks juicy» is even more difficult. It demands an
understanding of how previous experience relates to visual keys (manifest variables), for there
has at this point not been an experience of the juiciness of this actual apple. The only part of
experience available for interpretation has come through the eyes.

Most persons do not analyse the situation in this way, they just know which apple to
choose. To buy an apple is normally a very fast decision with no conscious evaluation of
specific attributes, nor detailed consultation with previous experience. If this was the case,
shopping at the green-grocers would be turned into a major undertaking.

Implicit in this example lies the assumption that humans organise experience into simplified
structures (latent structures) used for consultation when some decisions are to be made. The
more experience collected (manifest variables), the more conceptual structures are being
formed. The process is getting very complex when previous experience interacts with
perception. When we know the brains ability to reconsider, discuss experience and to change
opinions based on exchange of information with other humans, this model becomes not only
difficult to understand, but also susceptible to changes over time.

In order to be able to buy «the right» apple it is necessary to know what an apple is. The
data available in the experience, the «apple» data, aggregate in «apple related phenomena» or
latent «apple» structures in order to simplify the search for the «right» apple. Rather than
scanning through all previous times an apple was seen, eaten or talked about, the latent
structures or concepts are consulted in an upcoming «apple» situation. This makes the search
simpler and faster.

This situation, where «apple» concepts are being formed is very similar to analysis of data
from a sensory profiling exercise, where first the experience data base is generated as profiles
(apple data are provided by a panel). Then the data base is used as «apple» data in order to
describe «apple variation». Finally the data are used (a statistical model) in order to calculate
central tendencies in data structures, which can later be used for predictions.

What an apple is will after this, for an individual, default into a conclusion which might be
as simple as «dark green apples are always juicy», as no previous experience contradicts this
assumption. This conclusion or central tendency does not necessarily represent a conscious or
permanent or fixed structure, but stands until the experience data base indicates that this is no
longer valid. In a similar manner, central tendencies are extracted from data from sensory
analysis. The experience is in this case given by the experimental design and the central
tendencies in the data are represented by the latent structures.



Both the perceived and the calculated structures are representations of data collected from
the objects. Both structures are simplified and are being used as a reference for conclusions.
Both sets of initial data contain sensory information. It is therefore of great interest in sensory
science to see how these two paths create similar/different conclusions and to what extent one
can be utilised as a tool to understand the other in a better way.

To summarise; Manifest (directly observed information) or «given data» (Idhe, 1. 1986), as
they are interpreted in the perception of apples, show great similarities to data from a sensory
profiling exercise of apples. In both situations latent structures («meant» structures, Idhe,
1986) are extracted. In the one case by human interpretation/translation and in the other by a
statistical model.

In a more condensed and maybe complex way this can be expressed as in the following:

In sensory analysis the latent phenomena can be observed through a reflection or a
projected structure, performed by a statistical model. Similar analyses are performed by the
senses, where the latent structure is a reflection of underlying phenomena in the human being,
based on experience in this sample space. The manifest structures are represented by the
objective differences between the samples described by basic attributes. Since these two views
are difficult to separate it is not obvious how each can be characterised in experiments
without influence on the other.

3.2 Data from sensory analysis

In a sensory profile the attributes are rarely made up from simple stimuli, each related to one
observable variable. Most attributes utilised in a profile are already complex responses to
mixtures of several visual, chemical or structural components (examples are fruity, rancid, juicy
and sweet). This turns most sensory attributes themselves into latent structures, as they only
can be understood indirectly through obscrvations. In statistical analysis, where attributes
contribute to yet another level of latent structures, these are of course also latent.

In our minds eye the product is never perceived as a sum of attributes. Whether we focus on
key attributes, aggregate attributes into concepts, perceive holistic forms or make up an
iterative process with a mixture of the above is not certain. Most likely our consciousness
contains at any time a totality of fewer attributes/concepts than a complete sensory profile,
when a product is being perceived. This implies that some form of aggregation of information
will take place in our information processing. Whether this takes place in our senses or in the
processing in the brain is not implied.

The previous mentioned descriptors utilised as a part of wine terminology exemplify also
the degree of complexity involved. Words like nutmeg, vanilla and asparagus can be
understood as a descriptor related to chemical components, while «potential» hardly can be
characterised as related in a simple way to chemistry. Still it is possible to understand the
potential of a wine as either high in the intensities of colour tone and fruity, floral notes, or it
can be understood as a wine high in colour intensity and astringency. These two different ways
of interpreting the descriptor potential, could both be possible interpretations of the research
performed by Sivertsen, HK. and Risvik, E. (1994). It also shows that more complex
descriptors can be related to well defined «simpler» descriptors, which again imply that even
more complex descriptors like feminine and cosmopolitan could be defined as latent structures
inherent in other latent structures. It is also possible to understand how these complex
relationships are susceptible to large individua! variations as word rarely are well defined in
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their relationship from one level of complexity to another. Another way of expressing this is to
say that these are words built on several incomplete layers of latency. In many ways this
resembles very much the world described by fractal geometry (Gleick, J. 1987) and as such
build a very interesting link between several areas of research including cognitive science,
linguistics, chaos research and statistical modelling. This also resembles the philosophy of
neural networks or fuzzy logics. The interaction in all these fields are of great interest to
sensory analysts. There are two reasons for this. First of all because these tools can be of great
importance in simulation of human processing, but also because the interaction between human
processing and simulated processing can reveal new knowledge of several of the still open
questions in both sensory science and cognitive research.

3.3 Latency, complexity and holism

Trying to understand language development is not the aim of this chapter. Still words are of
great importance in sensory profiling. It is impossible and not very practical to avoid attributes
chosen from different levels of complexity, simply because levels of complexity do not exist
and were never defined. It is therefore of utmost importance to perform analysis of data with
capabilities to handle this aspect, and to utilise this information for interpretation in the
analysis.

One different and important aspect of sensory profiling language, not yet discussed, lics
inherent in the nature of the words. To generate a vocabulary for descriptive analysis, the
words are chosen to profile, or to describe a projection of an aspect of the product. The idea is
that when a comprehensive vocabulary is developed this will together describe all aspects of
the product and thus make up the whole of the product. The assumption that the sum of the
parts make up the whole is in this case not necessarily true, as several aspects of product
perception also are related to complex words describing so called holistic aspects and these
can, because of the nature of these words, rather be understood as semiotic signs, and
therefore not always be suitable for profiling. The word Quality is one such word, and one of
the few words to describe a holistic experience, others are Form, Essence, Beauty and
Preference. In contemporary natural science these play a minor but increasingly important role,
maybe because of the influential reductionist tradition most of these sciences have followed
since Descartes (1596 - 1650).

The first serious attempt to describe a classification of sciences was written by Francis
Bacon (16035, In: Bacon selections). This classification incorporates both natural sciences,
humaniora and metaphysics. With the reductionist tradition since Descartes these have become
contrasts and sometimes in conflict to each other rather than aspects of a holistic scientific
view, as intended by Bacon. Bacon’s view may in many aspects seem old-fashion in a modern
world, but this basic thought, that all sciences join together as parts of a whole can also be
interpreted as refreshing (not new, but forgotten). The return back to basic logical deductions,
describing Mathematics as a branch of Metaphysics, is to consider Mathematics as apriori
representation of attributes while Metaphysics «...handeleth the Formal and Final Causes».
This makes the representation in Mathematics a part of the understanding behind the real cause
of the experiment. In sensory science, the semiotic representation of the object as a sign has to
be interpreted with both these perspectives. First of all, the representation of the attributes, the
true description is understood through a mathematical description in sensory descriptive
profiles (apriori information). At the same time, this has no interpretation unless the meaning is
sought at a metaphysical level (posteriori information).
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The relationship to Poetry (on the level with Natural Science by Bacon, that is above
Metaphysics) is an even more challenging thought. As Metaphysics seek the formal and final
causes for observations, Poetry denote communication (delivery) and interpretation (thinking).
For Bacon it is of equal importance to seek language representation of complex ideas, as to be
able to communicate the results.

The paradox in sensory science is that already sensory profiles are represented in language.
Interpretation of latent structures is already sometimes a metaphysical problem, as it looks for
causes behind observed structures and relationships back to formal interpretation. When this is
to be communicated it is raised to yet another level of complexity, and a component of
individual artistry cannot be avoided.

This brings us back into a circle when sensory profiling perspectives can be defined as a
Suzzy latent structure, given the nature of the words and how these are utilised in the
language. This is again an interesting observation. Since words of holistic nature can be
interpreted as a latent structure built on several hierarchical levels of other latent
phenomena, and since they at the same time can be seen as primary attributes with holistic
characteristics, this can be interpreted as a network of interrelated atributes with large
overlaps and feedbacks, all the characteristics of a typical neural network.

3.4 Latent structures in sensory data

There might be several reasons for the development of sciences in a reductionist direction, and
one of these can be related to the complexity of the problems to be explored. The investigation
of holistic aspects will always have to deal with a large number of variables with strong
influence on the problem. This has been a problem until recently, where computers have made
development of statistical tools possible, where large amounts of data can be analysed
simultaneously. The statistical methods have been available for quite a long time, as principles
(Cattell, R.B. 1952; Horst, P. 1965; Harman, H.H. 1967, Wold, H. 1966), but practical
applications have been delayed until computers were manufactured and made the analysis
feasible.

Roland Harper (Thomson, D.M.H. 1988) were one of the first to apply a factor analysis on
sensory data, as early as in the late forties. In a presentation at the Food Acceptability
symposium in Reading in 1987, he told the audience that an analysis of 15 attribute profiles
took a month to complete, when this was performed by a group of students, without the aid of
electronic devices. In the early eighties a similar analysis would take as much as half an hour on
a main frame computer, and in the early nineties, less than one second on a personal computer.

This is also reflected in the amount of literature available. In an overview by Martens, M.
and Harries, J. (1983), they report 225 papers with applications of multivariate statistical
analysis in food science from 1949 to Sept 1982, one third of which have been published after
1980. Few of these papers are related to sensory analysis. A search in the most commercial
bases in 1994 give more than 400 articles related to sensory analysis alone, published after
1980.

Most applications in sensory analysis generate vast amounts of data. To get a good
understanding of the information buried in this, a reduction of the information, to a reasonable
size, is necessary. In addition, sensory variables, like in a descriptive profile, are always
strongly intercorrelated. In a descriptive profile it is not unusual to find 15-20 attributes. This
is not because there is necessarily 15-20 unique attributes describing these products. Most of
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them will be interacting and overlapping and maybe some will be unique. The majority of the
attributes will only show slightly different perspectives into the understanding of the product.

With this perspective on the analysis of profiling data, it is rare to find papers which
describe more than 10 unique latent dimensions. Most often 1-3 dimensions contain the
essential information in the data (each dimension being a combination of attributes) (Martens
1986). This is of course very dependent of the product and panel in question, but the range
between | and 10 covers quite well. To some extent this is a reflection of our processing
capabilities more than our senses. Trincker, D. claimed in 1966 that our consciousness only
perceive one part in a million from what our senses collect of information. Ten years earlier
Miller (1956) published an article in Psychological Review where he claims that humans only
can handle 5-9 independent phenomena in our consciousness simuitaneously. Together they
both contribute to the assumption that the complex human sensory perception is reduced to a
maximum of 5-9 independent structures in the human consciousness. This opens up for a very
interesting discussion on effects of training of assessors for sensory analysis.

In sensory profiling we atternpt to train assessors to score intensities of attributes on a scale.
In expert evaluations of for instance coffee and wine, the training very often starts with
knowledge of coffee or grape varieties. From this the experts are trained to recognise
characteristics, typical of grape and bean variety, processing, storage and blending. Later, in a
profiling situation it is possible these experts do not only profile the given samples. They may
also, by unconscious information processing, recognise the coffec bean and the grape variety,
and immediately score the attributes they know by previous leamning should be present and not
only the way they appear in the samples (Cabernet Sauvignon as having blackberry aroma and
dark roasted coffee as not fruity). In this case the consciousness is overruled by preconceived
information, established in strong latent structures already available and triggered by the
perception of the product. This shows how concept formation can be an important aspect of
panel training, as it is in everyday life. And from a sensory point of view it is very important to
understand this in detail, in order to reveal conflicting approaches in methodology, such as
asking for information related to strongly established concepts such as preference, at the same
time as the individual is asked to rate intensities of attributes in a profile. It is obvious that
preferences, in this case, can influence strongly the profiling exercise. The nature of this effect
is difficult to establish, since this is not necessarily a conscious process, and also with a strong
individual component.

As statistical analysis sometimes is supposed to reflect perception of a product, either as a
whole or to describe aspects of a product, it should not be far fetched to suggest that the
statistical analysis is some sort of analogy or reflection similar to the human perception of food
products. Each perceived dimension, latent in the product is then composed of a contribution
from the product attributes. It is interesting to note that different products may have very
different dimensionality (wine is reported to have up to seven dimensions (Sivertsen, HK. and
Risvik, E. 1994) while whole meat texture have two or three (Risvik, E. 1994). In addition,
different persons will be able to perceive different number of dimensions at different times.
Some interesting questions for us in analysis of these data will then be:

¢ Does information from different individuals contain commonalties?

o Is it possible to simulate the human processing in a statistical model?

e Is it possible to describe dimensions in a product which will be understood in very similar

ways by humans and in the presentation from a statistical software?

o Are there similarities in the models based on large groups of people?
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¢ Are there common denominators between these groups?

¢ Or are some dimensions common to all humans?

These questions are not for the author to answer, although it would have been nice to be
able to do so. The last will be touched upon as a part of the Colour section, and to some extent
under experimental design.

The statistical models cafculate latent phenomena from sensory profiles. Most of the time
the results are presented without any further comments, as if this in itself contain information.
In other cases these are interpreted by individuals seeking resonance in themselves for
structures that remind them of a previously familiar concept. When this is recognised it is said
to confirm a hypothesis. By tradition experiments have been conducted to confirmvdisconfirm
pre-set hypotheses incorporated into the experimental design. This implies that the
experimenter already before the experiment has made up histher mind as to what can be
deduced from the performed test. In the exploratory nature of multivariate statistics it also
opens up for an approach where muitivariate statistics can be understood as an interactive tool
between experimenter and data. Very often, analysis of sensory profiles generate more
hypotheses than they solve. Latent structures appear to be of similar nature to previous
experiments, as in the case with wine (Sivertsen, HK and Risvik, E. 1994; Pagés, J. et al.
1987; Heymann, H. and Noble A.C. 1987) and whole meat (Harries, J.M. et al. 1972; Risvik,
E. 1994). These structures show resonance between papers and also resemble sensible models
in a phenomenologist tradition. Still no causal proof in a determinist tradition exist. Meta
analysis (Mann, C. 1990; Longnecker, M.P. er al. 1988) would have been an attractive tool for
further analysis, but this would again add, yet another latent layer in the interaction between
the deductive and inductive thinking implied in this approach. In the mid 90°s meta analysis is
still only available at this conceptual level, as no practical tool for analysis is made commercial
available. Interpretation of results from sensory analysis rely therefore very much on
verification through previous experience.

3.5 Processing the information

Different perceived aspects of a product can best be separated for independent discussion, as
the information is perceived through independent channels. It can be discussed whether
statistical analysis also better could be performed separately. These areas will be the basic
aspects for definition of the variables utilised for description of a product. These variables may
in their own sense build latent/independent structures reflecting the way the senses have
organised their information collection. For some senses like vision this is well described, but
for others like odour/flavour perception this is not at all established yet.

3.6 Colour

The first suggested structures for colours are very old. The principle in these systems is
illustrated by the colour space from the Natural Color System (NCS) (Figure 1). The best
known one is probably suggested by Goethe (1749-1832) in his colour system. The description
of the perceived structure is later refined and described in the Munsell Color System (1929),
but the initial and general structure is still maintained. This consist of a three dimensional space
with directions described by the grey scale from white to black, colour intensity and the hue
described by the colour circle. This three dimensional structure corresponds well with the
structure of how the sensations are collected from the eye, with one channel for lightness and
two for colour separation (red/green and blue/yellow) and as such could be understood as a
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manifest structure. The perceptual space can be described as a double cone which is expanded
in the areas where the eye is most sensitive (yellow-green area). This space is described in
Figure 1. To generate the perceived space from spectral information has demanded a lot of
labour as it has shown difficult to find a good transfer function between the standard observer
to the perceived space.

An illustrative example on how this structure can reveal itself from not too obvious data is
given by Kobayashi (1981). He collected information on colours using coloured samples and
had them profiled with a series of attributes which describe strongly emotional aspects of
colours, such as: polite, reliable, wild, modern, stylish, safe, forgetful, conservative, happy,
vulgar and cultivated. The aim of the study was to look for commonalties in colours with
reference to fashion and design.

Figure 1 a) Colour space from NCS (Natural Colour System) where all colours at maximum
intensity are defined to be 100 % and b) adapted from the Munsell Color System (based on
perceived differences). Note the expansion of the space in the green and yellow areas, where
the eye is the most sensitive

The first three dimensional solution of a factor analysis revealed an underlying space very
similar to the perceptual colour space (Figure 2) and it is remarkable to see this emerge from
data based on evaluations of colours with these highly emotional descriptors.

These latent structures extracted from perceptive data resemble very much structures which
also can be interpreted as derived from manifest response curves for the eye receptors. This is
a very interesting resemblance and further research should be conducted to establish how this
has occurred. Multivariate techniques have the potential of revealing this type of information,
as the principle of the techniques are based on the calculation of latent phenomena. This fact is
surprisingly little used in experimental design and analysis, but the potential for
cognitive/sensory research in this field is great with these methods.
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WARM T3 = COOL

Figure 2 Adapted from Figure 8 plate 3 Kobayashi, S. 1981 The aim and method of the color
image scale. Color, 6, 2, 93-107. Adjectives corresponding to color

3.7 Taste

Taste is still maybe the most simple area to describe the structure of. Most people agree to a
description of the 4 basic tastes: Sweet, sour, salt and bitter. There is also a discussion whether
there are at least two more, and umami and metallic are among the candidates.

Four or six unique tastes make up 4 to 6 dimensions. In practice these dimensions seldom
will be orthogonal in a product space, since these attributes always will have certain degree of
covariance in a product. For evaluation of a natural product range, such as in the ripening of
fruits, it is also possible to observe a high degree of correlation (negative) between attributes
such as bitterness and fruitiness.

3.8 Smell/flavour

A generalised structure for odours/aromas have been sought for centuries, as mentioned
earlier. So far, to the author’s knowledge, no obvious model based on the understanding of the
structure for collection of aroma information through the senses, is available. Enormous
amounts of information on flavour materials exist, and a model for structure, for food flavours
is suggested by Ashirst, P.R. (1991) and Yoshida, M. (1964). These models would become
very complex once expanded to all aromas/flavours, but would provide excellent starting
points for such research.

If the earlier assumptions hold, a similar approach to the understanding of the colour space
can be applied by the sensory scientist, to reveal valuable information into the difficult area of
how aromas are organised in simplified mental structures. Generalising the previous
assumption that the human consciousness can handle no more than 5-9 independent pieces of
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information simultaneously, the final structure should contain somewhere in this range as a
maximum of independent latent structures after processing. The amount of information needed
might be quite substantial, and the initial structure will be quite complex, but this will have to
be rationalised down to few dimensions where the diversity of smell still is maintained.

Recent developments of an electronic nose (Winquist, F. er al. 1993) can also contribute
strongly towards a more fundamental understanding of how smell/flavour data are organised
by human perception.

3.9 Texture

According to Kramer (1973) and Sherman (1969), the term ‘texture’ has been defined as ‘a
major division of sensory quality covering all kinaesthetic responses of foods in whatever state
they are in’. This is further divided into primary, secondary and tertiary characteristics of the
food, and initial perception, mastication and residuals for the human experience. Alternative
definitions for texture is given in Texture (Bourne, M.C. 1982).

The number of words utilised to describe sensory characteristics of food texture is
enormous, and contains words for everything from particle size to attributes describing the
food matrix, like elasticity, gummy, greasy and viscosity, and to mechanical properties like
hard, brittle, creamy and powdery. The majority of these descriptors are difficult to attribute to
a stringent definition, although lots of work has been put into the effort, especially related to
instrumental measurements of these variables. Even when the instrumental definition is exact,
the sensory perception of the attribute is not always clearly described. This arrives from the
fact that instrumental measures are not always developed in order to reflect perception, but
rather to describe a systematic variation in a range of food products. The correlation to
perceived entities has sometimes been difficult to establish, like in the case with Instron
measurements. For some practical purposes the instrumental measurement have been sufficient,
but for a fundamental understanding of perceived texture it has not been adequate. Again
underlying limitations in the physiology of the senses do not compare in complexity to the
vocabulary utilised to describe sensory perception. Even if this can be explained, it is not
obvious how the descriptors fit together in an overall structure. A similar structure to the one
of colours is maybe not possible to expect, mainly because the time domain is of utmost
importance in texture perception. Still, the relationship between attributes, how they overlap
and interact will be easier to understand when this is investigated using multivariate statistics.
One good example is given by Yoshikawa ez al. (1970). A few attempts on meta analysis have
been made (Harris, J.M. et al. 1972; Risvik, E. 1994) but this must be seen only as initial
attempts along this road.

4. PLANNING AN EXPERIMENT

The information collected through the senses reflect two types of information as suggested in
the beginning of this chapter. First of all the physiological structure of the senses, that is the
channels for information collection. When understood, this normatly will be treated as manifest
structures like in the case with colours. At the same time the information also reflects the
samples in the test, that is the selected space described by the samples, or in other words the
latent structures inherent in the experimental design. These two representations cannot be
separated in sensory experiments, like in other experiments, and will thus have to be carefully
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planned before data are collected. This is one reason why experimental design and
interpretation of resuits are so closely connected in sensory science.

In a sensory profiling experiment the selected attributes limit the amount of information
available for analysis. When important attributes are omitted, essential information for the
perception of the product will be lost. An important attribute in this context does not
necessarily imply an attribute with significant variation. Even attributes with less or small
variations between the samples may represent significant information for the perception of the
product. The importance of juiciness of apples will not be made available for interpretation if
all apples in the experiment have the same juiciness. This is not the same as to say that juiciness
is not important.

To design good experiments is not always simple. When manifest variables for observation
are all given it is possible to utilise these for experimental design. The most obvious is when
physical measures such as length, weight and size can be varied and used in factorial or similar
designs. In sensory science, the relationship between the observed variables: the attributes, and
the design variables are not always known. In some cases these are also a part of the
experimental purpose to be investigated, like in the case of varietal testing of agricultural
crops. Here, a part of the test, is to investigate which growth conditions will affect sensory
quality; for example of carrots (Martens, M. 1986). The attributes selected are expected to
describe variation in carrots, and the experimental design to reflect the variation in crops
caused by factors of importance for perceived carrot quality.

This brings the complex decisions to be made, once again, back to the discussions
concerning the given and the meant (the relationship between the manifest and the latent).

5. PHILOSOPHY FOR SENSORY SCIENCE

In retrospect, the discussion so far into this chapter can be traced back directly to most of the
classical and modern philosophers. This implies a much greater framework for exploration of
ideas. To give reference for a few central philosophers a very brief discussion of latent
structures in light of philosophy is inciuded.

5.1 Form

Latent phenomena, described in the form of language must be understood as rather fuzzy
structures. Words rarely have very specific definitions, and if they do have, they certainly are
not used this way in everyday communication. More so, these structures do not have
independent definitions without overlap. It is therefore not possible to handle words as if they
were orthogonal phenomena. If human communication had to rely on exactness, a simple
conversation would hardly be possible.

The Form, Essence or Beauty of an object, as described by Plato (in: The Republic,
Symposium and Phaedrus) and Aristotle (in: DeAnima and Metaphysics), can be understood as
the physical form of the object, the functionality or better as an abstract form synonymous to
the latent structure inherent in the object. It is my allegation that this structure is, through the
use of multivariate statistics possible to understand as a form of learned or experienced latent
structure, unconsciously triggered as a primary signal or holism when new and more complex
experiences are to be characterised. Since our consciousness have limited capacity for
simultaneous experiencing, data have to be presented as a compressed structure with reduced
dimensionality. This demands efficient processing with strong resemblance to multivariate
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analysis of sensory profiles when these are transformed from large complexity down to the
simpler latent structures. This is why principal components often trigger resonance structures,
when analysed data are being interpreted.

Kvalheim, O.M. (1992) explained the latent variable to be «the «missing link» between
Aristotle and Plato in the sense that the latent variable approximates the ideal world by
constructs from the real world».

5.2 Phenomenology

Already Kant and Heidegger have strong contributions to a first discussion of a
phenomenology of perception. This has been continued by Husserl towards a multidimensional
paradigm for perception, as suggested by Idhe (1986). The introduction of the «given»
(manifest) and the «meant» (latent) links the object and the observer in phenomenological
analysis of perception. This has also been one of the central concerns of Merleau-Ponty (1962),
which also brings in ambiguity of perception. In total this can be seen as a development where
increasing degrees of complexity have been added to the simplistic models of Plato and
Aristotle. Similar or parallel development can be seen from application of Cartesian
mathematics towards multivariate statistics, fuzzy algorithms and neural network models, as
applied in sensory science.

The philosophers provide paradigms for understanding, the statisticians transform this
into practical tools, while sensory science has the unique opportunity to live the interaction of
the two realms in experimental settings.

5.3 Poetry

Bacon has suggested a classification of sciences and the intellectual sphere where Poetry was
evaluated as a separate branch of science on the same level as Natural Science. Allegorical
poetry has always been an advanced form of communication through verbal pictures. The art
of creating good poetry, implies the ability to create structures within a strict framework and to
communicate, very often a complex idea without being specific. The resemblance between this
and the interactive process between statistical presentation and the seeking of resonance from
data structures in personal experience is striking. It is not difficult to understand Bacons
respect for poetry, which made him suggest this to be on the level with Natural Sciences in his
structuring of the intellectual sphere.
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PART I

6. HOW DATA STRUCTURES CAN BE EXTRACTED AND INTERPRETED FROM
A SET OF DATA UTILISING MULTIVARIATE STATISTICAL TECHNIQUES

6.1 What is a latent structure?

A very simple example first will help to visualise the concept. Imagine a banana (Martens, H. 1985).
To understand the spatial information in this banana we need to define a reference system, the space
the banana can be found in. Ifit lies on a table it is possible to use the tabletop as a two dimensional
space, with one third dimension going up. Distances along the sides of the table give coordinates for
the location of the banana in a two dimensional projection. Depending on how it lies, it will describe
different shapes in these two dimensional coordinate system. It can be a straight line (the banana lies
with the curvature up), it can be a C-shape (it lies flat on the table), or it can be a sort. of circle ( the
banana hangs in a string from the ceiling. These projections can separately give some information
about the banana, but is not complete until all three projections are combined. Since this only is a
projection of physical object from 3 to 2 dimensions, it is obvious that information will be lost in the
process. This is because the original variables already are orthogonal. When the original space (the
reference system) contains variables with a high degree of correlation, a projection from a higher
dimensional space down to fewer will not necessarily loose a lot of information. This is what is
exemplified in the following discussion.

A constructed example, easy to follow, is chosen to help understanding and to explain theory
and concepts in modelling.

Consider car accidents. Most people have a personal view on the most important causes for car
accidents. Depending on who you ask, you might get answers like:

- the low standard on vehicles in this country

- because of drinking and driving,

- women drivers,

- young men driving too fast,

- old men driving,

- icy roads,

- because drivers do not respect speed limits and more.

Each of these reflect attitudes and values of the person saying it, and it may also be a potential
cause, but not necessarily.
To investigate this further, instead of fighting over who has the right answer, it is possible to
perform an analysis on collected data from real accidents. This will generate a data table (matrix)
like this:
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Table 1
Data from car accidents

Standard of vehicle  Age of driver  Ageofcar  Sex  Speed

Accident 1 al bl cl . nl
Accident 2 a2 b2

Accident 3 a3

Accident N an nn

When all accidents (samples) are recorded with information on all causes (variables), this makes
up a large table or a matrix of information. In a multivariate analysis of this matrix, methods are
employed to seck a projection where maximum variation in variables are expressed. This is useful in
order to understand how variables are important for a description of causes behind car accidents.

This new and projected space is developed with the aid of an algorithm, where the principles can
be exemplified in the following:

First of all a multidimensional space is built from the data matrix. Each variable, that is each
registered information (standard of vehicle, age of driver, and so on) is considered to be one
dimension. In a three dimensional space this is easy to understand like in Figure 3.

The first accident can be described as a point in this coordinate system with the values al, b1, c1
on each of the coordinates. When all accidents are introduced into the same space they will make up
a cloud of accidents like in the next figure, where all points are described with coordinates in the
three dimensions.

Age of driver
y

by-————————— A

7
/
/
/
/

|
|
|
, !
’ Accident[ 1 (a4, by,c4)
|
|
!
1
|
|

Standard
a, of vehicle
X

2 Age of car

Figure 3. Accident 1 is represented as a point in a 3-dimensional space.
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y | Age of
driver

Standard of
vehicle X

Age of
Z car

Figure 4. All accidents from Table 1 represented each as a point in a 3-dimensional space (the
three first variables oniy)

This space, for the sake of simplicity, only contains 3 dimensions. In practice there is no reason
why this dimensionality cannot be expanded to any number of dimensions. In this case this is the
number of variables recorded for each of the car accidents, denominated with "n" in Table 1. For
each object (accident) in this n-dimensional space a string of coordinates (al, bl, cl......n1) will be
sufficient information to describe the place of this object in the n-dimensional space.

If the variables describing the objects show no systematic variation in this space, the swarm of
dots will cover the whole space with an even distribution. In this case the original variables describe
unique information in the objects, and there is no relationship between them. Further analysis would,
in this case, not be meaningful.

In most cases there will be a relationship, or a covariance between variables. This will be seen as
a concentration of points in a specific direction. In a simple and well established relationship
between all variables this can be illustrated as in Figure 5, where all points are close to a line going
through the space.
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y | Age of
driver

Standard of
vehicle X

Age of
z car

Figure 5. Data for all samples showing a high degree of covariance for all variables

If accidents organise in this plot, they are correlated with an interpretable structure. The way
accidents organise along this direction in space will give an indication as to this Systematic
relationship being an indicator of importance for interpretation, for severity of car accidents.

With few variables in a matrix these plots would very often be sufficient analysis, with the plots,
the regression and the correlation coefficients to explain the relationships. With large number of
variables two by two plots and correlation coefficients will soon exceed the amount of information
possible to hold for interpretation at the same time.

To simplify even further it is possible to utilise the covariance between variables to reduce
dimensionality in the original space, or in other words to come up with a projection where
important aspects of the original information still is maintained.

STEP 1

A pew line is introduced in the original space. The direction of this line is given by the longest
distance described in the swarm of data points, that is the best fit to the data. This is illustrated in
Figure 6.
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y | Age of
driver

Standard of
vehicle x

Age of
Z car

Figure 6. First principal component is introduced, in order to describe the most important
direction in space, for interpretation of variance

This new line is characterised by three important aspects illustrated in the next figure.

Age of
driver

(an-bnvcnfnn)

- X
o " Standard
of vehicle
Age of
driver

Figure 7. Features of importance for interpretation of a principal component
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1) The direction in space relative to the original axes (p) indicates how much is explained of each

variable. In this case more of x (standard of vehicle) is explained, while less of y (age of driver).
This indicates that in the collected data for «standard of vehicle» show greater importance to
explain the variation in this direction than «age of driver». For real data this would maybe not be
true unless variables are stretched to a standard length (example: multiplication with xavg/std for
all variables (the analysis defaults to analysis of correlations)). In this case variables are
comparable, and the relative variation reflect importance of the variable for the found direction in
space (there are several concems connected to this approach, which will be dealt with in later
chapters).
To summarise: this new line in space often called principal component one (pcl), can be
characterised by its direction in space relative to the original variables. This tells how much of
this original variation is explained by the line. In Principal Component Analysis (PCA) this is
called the loadings, and the loadings informs how well variables are explained by the principal
component.

2) Each object in the new space is characterised by how far they are from the centre of the space
(distance from xavg, the grand mean). These values, or scores as they are called in PCA, explain
the relationship between the objects. When objects, in this case car accidents, organise and show
systematic variation along a direction in space, this is an indication that the direction is being
important for explanation of the way objects organise.

This statement is also possible to visualise as a move from an external perspective (seeing data
from the outside) over to a perspective where the observer is standing in the centre; seeing data
from xavg,.

In the case of car accidents, one could assume that the line in Figure 7 describe standard of
vehicle as of relative greater importance than age of driver for the described main variation. If
scores are organised along this line, so that accidents of less severity can be observed at the
lower end and severe accidents at the higher end, it implies that standard of vehicle is of relative
greater importance for interpretation of severe accidents than age of driver (since the line is tilted
in this direction). If the accidents are organised in a different way along the principal component
this will indicate a different relationship.

3) If all objects showed 100% correlation in this 2-dimensional space they would all be exactly on a
line between the variables. In the case of a perfect linear relationship, this could be described by
the principal component to 100% (non linear relationships will not be discussed in this chapter).
For realistic experimental data this will normally not be the case. Each object will also, to be fully
characterised, be described by E, the distance away from the principal component (the error in
the model). Another way of explaining this is by calling it lack of fit, noise or remaining variance,
not accounted for by the model.

This, left-over inforration, can be collected for all objects and variables in a new matrix, the
error matrix, from the left over information in the calculation of the first principal component.

STEP 2

The error matrix, or unexplained variance from the calculation of the first principal component
describes information not accounted for. Since the first pc is calculated to be in the distance of most
variation this can be illustrated as in Figure 8.
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pc2

Figure 8. Principal component 1, 2 and 3

The remaining information will often be distributed around pcl in something like an oval shape.
The procedure from the calculation of pcl can be repeated again and a new dimension will emerge.
In most models the criterion for calculating the new dimension is that it will describe as much as
possible of the remaining information and at the same time be orthogonal to the previous principal
component.

This second pc will be of less importance to the explanation of the variation in the material
(importance in this case is different from being important for interpretation of results).

Since it is orthogonal to the first principal component they can be plotted against one another.
This information can be presented in two different ways.

1. First of all a loading plot (direction in space with relationship back to the original variables)
will give a map of all variables and their relationships.

A score plot will be an illustration of how accidents are distributed in this space, and systematic
variation in this space might give an indication of underlying structure or meaning (that is one
reason why they are called latent phenomena).
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Figure 9. Illustration of possible loading plot for mock car accident data
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Figure 10.Illustration of possible score plot for mock car accident data
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In a biplot these two spaces are superimposed into the same space (not shown here).

The plots are made up to illustrate several difficulties normally met when loading and score plots
are to be interpreted. There is no attempt from the author to make the plots resemble what would
be the reality in a case study, but rather a more humorist view playing on known prejudices.

7. INTERPRETATION

Interpretation of principal component plots is not always simple. Very often, in literature, only a
description is found of how loadings are placed along the principal components. This leaves the
interpretation to the reader.

7.1 Principal components

In this case, the first two dimensions are constructed to give an example of a group of two
correlated attributes and one other attribute uncorrelated. Correlated means that changes in one
variable is parallel to a change in another variable. When these are plotted against each other the
objects will fall on a straight line between the two. «Price of cars» and «alcohol concentration in the
blood» seem to be correlated in the first two dimensions, while the attribute «age of cars» is not
correlated to these. In the score plots each of these factors give rise to a group of severe accidents
as indicated in the figure.

Two attributes with no correlation indicate a relationship between the two variables where
variation in one, will not show an effect on the other. In this case the price of the car show no
relationship to the age of the car, when it comes to accidents. This implies that both old and new
cars describe accidents in the same way whether they are cheap or expensive (independent
variables).

The two correlated attributes, price and alcohol concentration indicate that expensive cars tend
to appear in accidents were alcohol also is important, while cheap cars tend do not. In the plot there
is an indication of a separation of these in the third dimension, which also might make the
interpretation more difficult.

Two attributes in the plot lie along the diagonals, in-between the principal components. These
are «age of men» and «age of women». They both show a high degree of correlation with the
attribute «age of cars»; that is: a relationship between the age of the car and the age of the driver in
accidents can be seen. At the same time old women (high on age of women) tend to drive more
expensive cars, while old men drive inexpensive cars (opposite to high on price of cars). Old women
also tend to have a higher alcohot content in the blood, while old men tend to lic on the opposite
end of the scale (that implies that young men show the opposite behaviour).

Two attributes are located near to the centre of the plot. They have low loadings and do
therefore not play an important role for the interpretation of the relationship between the attributes.

The two first pes of the analysis always give most of the information available in the data, but
there might be several dimensions possible to utilise for interpretation. To establish the optimal
number of pes for interpretation is always difficult. A whole series of techniques called validation
techniques are developed for this purpose. Some of these techniques will be introduced in
relationship to analysis methods in other chapters of this book.

Let us assume that in this case three pcs were found to be optimal using crossvalidation (Stone,
M. 1974). The third dimension, orthogonal on the two first would then create a cube of the loading
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plot, where speed and icy roads were to be found on either end of dimension three (indicated in the
plot). All the other loadings would also have to move up or down along this axis if they had any
correlation with the two attributes. Let us assume that also the old men show some relationships
with high alcohol content in the blood, but to a lesser degree than old women. If both (age of men
and alcohol content in the blood) were projected down in the structure, it would suggest that there
is a grouping of old men, on icy roads with high alcohol content in their blood, important for car
accidents. On the other end fast driving older women with expensive cars show another grouping.

So far this has only been a description of the distribution of the loadings along the pcs. To
understand whether this gives any meaning it is necessary to compare the loading plot with the
score plot.

To recapitulate: The scores describe the relationship between the principal components and the
accidents (samples). In this case the distribution of accidents show systernatic variation in two areas
where severe accidents seem to concentrate, can be identified. These can be related to the
loadingplot and explained by attributes pointing in this direction.

Already from the visual inspection of the plots it is possible to see emerging hypotheses in the
data. To investigate this further it is necessary to employ other statistical models. One approach
could go through the use of Clustes analysis (CA) and or Discriminant Analysis (DA) to look for
groupings in objects or variables. For many instances the initial PCA will suggest groups for
investigation in complementary and subsequent analyses such as CA or DA. In order to quantify
differences and to test for significance, other models like STATIS and Canonical Discriminant
Analysis (Schlich, P. 1993) can be of help. Several of these and similar models will be included in
later chapters.

8. EXPERIMENTAL DESIGN

Traditional statistical analysis has been developed for descriptive purposes and to support
conclusions based on data from experiments. This has very often been factorial designed
experiments where few variables have been involved. In standard Analysis of Variance (ANOVA)
variables are treated one at a time, and the influence from other variables giving the same effect
(inter-correlations) are, in the simplest ANOVA models, ignored.

From Cartesian mathematics to the interpretation of latent structures there is a conceptual jump.
Still Cartesian coordinates are the whole basis of multivariate statistics, while interpretations and use
of latent structures very often belong to a very different school of thought.

A latent structure is a combination of variables which together make up the main structures in
the data in a simpler way. An example can be found in wine profiling (Sivertsen, H K. and Risvik, E.
1994; Pagés, 1. er al. 1987; Noble, A.C e al. 1987, Heymann, H. and Noble A.C. 1987) where
similar structures are found. The attributes of a wine very often aggregate on both sides of the first
principal component. In one group the fruity and flowery aromas and on the other side, animal,
vegetative and astringent flavours. This, also being the main difference between young and aged
wines. It implies that the first pc very often is related, among others, to wine ageing. It is simple to
understand how this would be different if all the wines in the experimental design included only
young wings, only the one side of the pc being represented in the data.

In the wine example, the structure to be described will focus information from one group of
attributes and the distribution of both attributes and samples will appear very different in the loading
and the score plot. The relationship between experimental design and the latent structures described
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in the analysis is thus obvious. In this case the latent structure observed indirectly in wine can be
named ageing. It would be dangerous to suggest a causal relationship, since also many other
variables can be confounded or highly correlated with this information. To suggest that principal
components describe causal relationships or manifest structures is difficult to say unless relationships
is considered together with the information on its experimental design. A few examples will be
needed for a sufficient illustration:

* If the intention was to describe underlying structure in car accidents, analysis of all existing
car accidents contain all the necessary information to draw causal conclusions. For practical
situations this will be a fairly decent sized matrix, even when limiting oneself to one country. Most
computers will have problems with this. So to limit the amount of work it is reasonable to draw a
sub-set of samples where the main tendencies still are maintained. If this was done with for
example all women missing, the results would not hold for this segment of accidents. Similar would
be the case for only new cars.

* In experiments where "the world" is not so easy to describe it is getting increasingly difficult
10 design sensible experiments. In some cases, like with the difference between organically and
traditionally grown vegetables, experimental design can be very complicated (Lieblein, G. 1993) It
is not always possible in advance to tell which factor will have the greatest influence in the
material, as no response variable in the sensory profile is expected to show a profound "organic"
effect. 1t is very well possible that similar differences in the material also can be caused by other
Sactors such as soil type, weather, latitude, cultivar or pests. In a traditional design this experiment
will have to contain variation in all possible factors so that theycan be separated in the analysis.
With only 5 factors and 3 levels for each factor this give 243 samples. Only this small experiment,
Jor sensory analysis, is not difficult to perform in an experiment with 12 assessors and 3 sensory
replicates.

* When the purpose of the test describe a limited problem. such as offen is the case in product
maintenance, the traditional statistical designs may very well be sufficient. To optimise a recipe
where one ingredient can be substituted by two or three other ingredients, but the final product is
to be as close as possible to the present product on the market, is a typical situation. A systematic
variation of the ingredients can be performed according to a factorial design and the results can
be analysed in an ANOVA. A discussion of such results is limited to the original design, and it is
difficult to interpret causal relationships into the model, as only a very limited number of factors
have been chosen for the experiment.

* In the analysis of a sensory profile it is imperative to notice that the data on each variable
have been collected through conceptually very different channels. The colour differences between
wines can be simple to score consistently, while bitter taste can be much more difficult (order
effects, bitter blindness, fatique, masking effect), and not present in the colour evaluation. In a
situation where several attributes are selected to describe highly correlated colour variations in a
material, while only one attribute describe bitterness, this will most likely affect the analysis. In a
PCA, the first dimension, pcl, will be dominated by the highly correlated colour information,
while the bitterness is expressed in later principal components. This is not because bitterness is of
less importance in the wine, as already discussed. It is also not because the bitterness is of less
importance in describing the variation in the material, but it can be because it is so much easier to
evaluate colour, and because the attributes have all been given equal weight, like in a correlation
PCA (all variables streched to variance = I before the analysis). In this case the structures would
better be evaluated in separate analyses, that is colour atiributes separate from taste and flavour
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attributes, separate from texture attributes. In its extreme form this opens up for a discussion of
whether information collected through separate senses (visual, chemical, auditory kinaesthetic)
should be analysed separately more as a rule, rather than the exeption.

* In the analysis of carrot quality. it is easy to understand that the occurrence of a foreign
object like tomatoes will cause problems in the analysis. A multivariate statistical model like PCA
will in this case concentrate on how the tomato is different from the other samples. Variation
within the carrot material will be ignored as most carrots are much more similar to each other
than they are similar to a tomato.

In the example of carrots and tomatoes it is easy to understand why the value of the experiment
is reduced unless the odd sample is recognised and removed from the analysis. In reality the odd
sample can be difficult to distinguish. In investigations of crop variety among different cultivars, a
pest on one sample might cause a similar situation, although not recognised by the experimenter. In
this case the analysis will describe the effect of pest and not how cultivars are different.

When all these ifs and buts are taken into consideration: Why is it that even when obviously
limited sample sets are chosen, similar structures emerge?

The answer can be one out of many. The structures described by latent phenomena can be very
stable, not yet established as manifest structures. It is possible that several confounded effects work
together to stabilise certain structures. In a similar way there might be strong indirect correlations
(of unknown cause) to causal relationships. And of course the observed similarities might be
artifacts. For these reasons the validation of results through specialised techniques or in
complementary analyses are of great importance.

Several of the techniques introduced in this book will give complementary views into a set of
data, and should be considered as, not in competition, but rather as supplements to each other in
data analysis.

One other appropriate question to be asked at this point concerns the interpretability of latent
structures, From a deterministic tradition of science we have been trained to seek causal factors or
to test pre-set hypotheses. The commonalties or lack of such in similar sensory experiments call for
meta-analysis of data, in order to investigate possible manifest relationships between design factors
and reoccurring data structures. This is a way of thinking with traditions from humaniora and as
such, very often seen as in contrast to the previous. In sensory science the meeting point of
humaniora and technology, the opportunity is present for both approaches at the same time. This
implies a very exiting research environment with a great potential of new and exiting contributions
to contemporary science.

9. GEOMETRICAL REPRESENTATION OF LATENT STRUCTURES

When all considerations concerning experimental design is taken into account, and its effect on the
results are handled with care, the actual interpretation still remain. To help in this, real data are used

in an example.

9.1 Imposing causal interpretations on latent structures

For the sake of simplicity this example illustrates simple features in multivariate analysis and
compares this to analysis of variance. This interpretation goes one step further than before. That is
because interpretation on a causal or fundamental level is indicated. In most experiments this level
of interpretation is not included, being considered a bit premature based on only one experiment.
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Latent structures can be understood as a geometrical representation of data measured indirectly,
or a projection of higher dimensional space made up by manifest variables, down into a space with
fewer dimensions. A well known example of this is a regular map of an area. The information in the
map can contain both the shape (two dimensions), the altitude in the form of contour lines
(dimension three) and geological information in the form of colour (dimension four) presented in
two dimensional latent structure on a piece of paper. Similar can higher other dimensions be
projected down into a representation in fewer dimensions. For sensory data, very often, 2-4
dimensions contain most of the systematic information in a 10-30 dimensional profile.

From sensory science, sensory profiling of raspberries is chosen. The example contains sensory
profiles (Risvik, E. 1986; Martens, M. et al. 1994) from 12 raspberries harvested at 3 different times
for 4 different cultivars. The profiles contain 12 attributes profiled by a panel of 12 in 3 sensory
replicates.

Panel data were first averaged over assessors and replicates. In an analysis of variance all
attributes came out with significant differences on a 5% level for cultivar, while the harvesting time
only showed significant differences for half the attributes. It was also observed interactions between
cultivar and harvesting time for two attributes (sweet and viscous). In the PCA, four dimensions
were described as possible to interpret after validation with leverage corrections (Figure 11).
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Figure 11. Loadings and scores for principal components 1 - 4 for 4 cultivars of raspberry,
harvested on three occasions, and profiled on 12 attributes. Figure 1la&c = pcl&2. Figure
11b&d = pc3&4
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In the interpretation of the dimensions, the loading and score plots give simple explanations. In
the following the principal components will be discussed one by one and interpretations imposed on
to the data structures.

Dimension one, pcl, distinguishes between a group of attributes on the right side: redness,
intensity of colour, juicy, shiny, sour, intensity of smell and flavour, on the other side are off-flavour,
bitterness and chewy aspects. Cultivars 2 and 4 show large differences between first and second
harvest, with a decrease in off-flavour, bitter and chewy and then an increase for the third harvest,
while cultivar 1 and 3 show more of a mirrored pattern. Cultivar 1 have more off-flavour, bitterness
and chewiness than the other cultivars. It is possible to suspect that the changes along pcl for
cultivar 1 and 4 are examples of how berries within the same field can be at very different
development stages when picked at three different times and that the fields also can be different.
Maybe even more important for sensory attributes than variety are growth conditions (temperature
and water). For berries, ripened with intervals of three weeks, as in this case, the development of
juiciness, sourness and also off-flavour can be at very different levels each time, an expression of
how the weather has been different in the fields in the mean time.

The second pc describe colour variation and viscosity, that is colour and texture changes with
high degree of correlation between them. Sourness correlates well with this direction. When colour
intensity increases viscosity decreases. Knowing that more mature raspberries have less viscous
texture and more intense and red colour this is explainable, provided the samples organise from less
mature to more mature in the same direction as the attribute changes. In the score plot this can be
seen to be true. But in addition it is possible to see that the changes are not at all comparable for the
4 cultivars. The order of the cultivars in direction of increasing maturity is the same, but the level
and the magnitude (if these can be interpreted) are different. All cultivars increase in redness and
colour intensity during ripening, while cultivar 3 already at the beginning at harvest one has more
redness and colour intensity and less viscous texture than the other three cultivars. Cultivar 2 and 4
show little change at all. There are at least two interpretations of the results: 1) That the cultivars
have different ripening curves, that is a difference in how they ripen. 2) The four cultivars
represented here ripen at different times, so that cultivar 3 already at the first harvesting is more ripe
than the three others at the third harvesting time. To distinguish between the two interpretations is
not possible from the existing design, although an interpretation of pcl and 2 together would favour
the last interpretation. The three harvesting times for each cultivar are linked with a line to show
this.

An interpretation of pc3 shows that while 3 cultivars increase in sweetness and redness during
maturation, cultivar no 2 show slightly different behaviour. After the second harvest the cultivar
decrease in sweetness, which would be expected to cause an interaction term in the ANOVA. This
is also seen for the term sweetness.

A very similar explanation can be given for pc4 on sweetness, where sample 2 and 3 have very
different orders of sweetness for the 3 harvesting times. For the terms viscous there may not be a
difference in the orders of the samples on pcl, but in pc4 where viscous also plays a role the
patterns for sample 1 and 2 are different. This may be the cause for the interaction term in the
ANOVA.

The interpretation of pc3 and 4 is not so obvious, as for pcl and 2 with the growth conditions
and maturation curves. It seems more linked to differences in patterns for the actual cultivars.
Cultivar 1 is more on the sweet and juicy side, while 4 is less sweet, more viscous, but still juicy.
This can then be interpreted as the cultivar differences.
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As can be seen by the interpretation of pcl to 4 the information in the loading and score plots
can be related to underlying information in very simple ways. It is not the intent with this discussion
to indicate causal or fundamental relationships, as this is not yet proven. Still the data in this
projection of the data, opens up for such hypotheses to be made. In these data there are indications
that it could be possible to recognise effects from growth conditions (pcl), from ripening (pc2) and
from cultivars (pc3 and 4). Far fetched interpretation from such a small material, but very interesting
if it maintains validity in reproduced experiments.

In order to strengthen the interpretation, the data should be transferred into other models in
order to get other perspectives into the interpretation. This is not performed here.

10. CONCLUSIONS

This chapter has discussed sensory profiling with a wide perspective. The intention has been to give
a platform for understanding of multivariate statistics in sensory science. In order to do so it is
necessary to incorporate a discussion of the more fundamental issues related to the use of
nultivariate statistics and to the interpretation of results.

Eating a food or drinking a glass of wine is the meeting point between the subject and the object,
and as such it touches upon some of the most fundamental discussions of human philosophy, that of
life and death, identity, and that of the good versus the bad. Analysis of sensory data will eventually
touch upon these or related aspects and the sensory analyst is therefore best prepared when these
discussions always are kept alive, as a part of a continuous education in the field.
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1. INTRODUCTION

Good experimental design is extremely important in all areas of science; especially where
treatment effects are small relative to uncontrolled variation, as in sensory studies. It is
generally accepted that a well designed study that is analysed using simple methods will yield
more information than a hastily designed study analysed using sophisticated methods. Careful
design of sensory experiments is essential in order to derive the maximum amount of useful
information from the work of the sensory assessors and the technicians who run the
experiments.

Organising a program of sensory research, defining the objectives of each individual
experiment and running the experiments efficiently requires an appreciation of many disciplines
in addition to the statistical design and analysis of experiments. The book by Stone and Sidal
(1993) will be found to offer much useful advice.

1.1 Historical Perspective

Experiments are carried out to test hypotheses and also to estimate parameters in statistical or
mathernatical models. The sole purpose of experimental work is to provide information.
Statistical design of experiments identifies sources of variation, (both random and systematic)
and then takes them into account in designing the experiment and in the subsequent analysis.
Thus the resources expended in carrying out a well designed experiment result in the maximum
amount of information. Statistical design of experiments is widely used in applied biology,
medical and clinical science.

The foundation of modern experimental design and analysis is due to the work of R A
Fisher at Rothamsted Experimental Station, Harpenden, England in the 1920's. Fisher devised
efficient methods of designing and analysing agricultural experiments which have been
successfully applied throughout the world. For an account of this work see primarily Cochran
and Cox (1957) but also John and Quenouille (1977) and Mead (1988).

Fisher's methods have been adapted for use in the chemical and other continuous process
industries and in the engineering industries by G E P Box and colleagues at Madison,
Wisconsin, USA. These methods have been used throughout the English speaking world, and
many are directly applicable to the food processing industry.

From a very different starting point and with knowledge of Fisher's original work, the
Japanese engineer Taguchi has developed a philosophy of quality improvement in
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manufacturing industry which incorporates a substantial component of experimenta! design and
analysis, albeit in an industrial context.

Bradford Hill introduced statistical ideas of designing and analysing experiments to clinical
studies of new pharmaceutical products and other therapies. The randomised, double-blind trial
is the accepted way of testing new treatments.

The use of statistical experiments in perceptual psychology has a long history, Robson
(1973). The issues that arise in this area of application also arise in sensory evaluation.

In each area of application, the same statistical principles are applied, but are adapted to
meet the special needs of the experimental work and data. It is important that sensory scientists
realise that their experiments can be seen as being part of a much wider scenario with a large
literature, some of which is relevant to their requirements.

Finally, other authors have considered the problems of experimental design in sensory
studies. MacFie (1986) provides check-lists and covers many practical points in his Chapter in
a book edited by Piggott. O'Mahony (1985) gives a gentle introduction to the use of
experimental design in sensory evaluation and covers some of the points made in this Chapter
in more detail. Many practical matters concerned with setting up a sensory laboratory and
running sensory experiments are covered in Stone and Sidal (1993).

1.2 Blind Testing

When people are used as experimental subjects, it is important that they are unaware what
treatment combination (=sample) they are assessing. In clinical trials neither the experimental
subject nor their physician know which treatment is received; this is known as double-blinding.

For example, suppose a supplier of chocolate to a supermarket chain (who then sells it
under the supermarket's own label) is required to demonstrate that the product is similar to
branded products. This can be achieved, by setting up an experiment to compare the sensory
properties of the supplier's chocolate with other brands. In such an experiment all packaging
and even the brand names are removed from the surface of the chocolate. Care must be taken
to present sub-samples of the same dimensions from each sample. This ensures that assessors
are influenced only by the sensory properties of a brand, not by its image or other extraneous
factors.

The order of presentation of the sensory tasks within a session is known to systematically
affect the results. It is desirable that the sensory technician works from a previously prepared
plan giving the order of tasks for each assessor.

It is desirable that sensory assessors are screened from each other during testing so that they
are not aware of the reactions of their colleagues to the samples being assessed. Opinions differ
about how much feedback of sensory performance should be given to assessors or whether
assessors should receive information on the results of experiments. At one extreme, some
laboratories routinely provide diagrams for each assessor which show performance relative to
other assessors. These are often the laboratories which hold training sessions round a table in
which samples are examined and scores for attributes agreed. Other laboratories are more
sceptical about the value of trying to align assessors. There is, however, no dispute about the
value of external standards and the need to ensure that assessors produce consistent ratings for
repeated samples. It is important that assessors are valued for the contribution that their special
skills make to the work of the sensory laboratory.
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1.3 Randomisation

After systematic sources of variation have been identified and designs devised which take them
into account (see later), randomisation is the next step in the process of producing the order of
samples for each assessor. This process ensures that the true differences between samples are
estimated free of biases and also allows variability to be estimated. If there is laxity about
randomisation then it is likely that undesirable systematic effects will bias the sample effects
and invalidate the estimates of variation.

One additional hazard of sensory analysis is the ability of assessors to remember previous
experiments, to perceive pattern in the samples that they were allocated and then to anticipate
this pattern in future experiments. An example will help to clarify the hazards.

Suppose that the sensory laboratory (unwisely) uses the same allocation of samples to
assessors ecach time it compares, say, 4 samples. Suppose also the laboratory performs many
experiments on the effect of sweeteners on the sensory properties of products. If the samples
are allocated to numbers in increasing order of inclusion of sweetener then, unless there is
randomisation of samples to sample symbols or assessors to assessor symbols, assessors will
receive the same pattern of sweetness of samples in each experiment. Assessors will quickly
learn to anticipate the sweetness of the sample they are assessing and this will prejudice the
integrity of their ratings of sweetness and all other sensory attributes.

The only fully satisfactory method of randomisation is to independently randomise the
assessors to assessor symbols and the samples to sample symbols for each experiment. This
can be conveniently done by a computer program with a different seed for each randomisation.
Using this process will ensure that a different order of testing of samples for each assessor is
produced every time a design is generated.

1.4 Factors which Influence Success
The factors which influence the success of sensory work are:

the clear statement of objectives,

the careful design of the treatment structure to satisfy these objectives,

the allocation of treatment combinations (=samples) to assessors,

the careful execution of the experiment so that no systematic or unnecessary
error variation is introduced,

careful analysis of data,

perceptive interpretation.

el
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By far the most important factor is the clear definition of objectives. The next most
important factor is the design of the allocation of treatments to assessors and the design of the
treatment structure (dealt with in this Chapter). Good design allows informative univariate
analysis of the data, see this Chapter. Advanced multivariate methods, which can do much to
summarise voluminous data, also require the experiment to be properly designed despite the
misconceptions of some sensory scientists.
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1.5 Power of the Experiment

In planning experiments, it is always wise to consider whether the proposed experiment is
capable of detecting the differences of interest. A surprising number of experiments fail this
test and so are a misuse of resources. In clinical trials, the codes of practice require power
calculations to be done. These are illustrated later in section 7.

2. TYPES OF SENSORY EXPERIMENTS

Sensory experiments can be divided into two kinds: difference experiments and profile
experiments. In difference experiments, in which the "odd" sample or samples are identified by
the assessor, overall differences between samples are assessed. In experiments where the
quantitative difference between two samples is assessed, it is possible to ask assessors to rate
the difference in aroma, flavour or texture etc. This can be taken one step further and
assessors can be asked to rate differences in a particular attribute, such as lemon flavour etc.
Where the questions are general, it can be difficult to determine the precise nature of the
differences. Reliance must then be placed on assessors notes and possibly a panel discussion. In
contrast, in profile experiments the samples are rated for a number of sensory characteristics so
that those which define differences between samples are identified.

Difference experiments are extremely useful when a new product is being evaluated for the
first time. For example, a laboratory which usually evaluates cheese and other dairy products
might well start with difference tests when it begins evaluating a new product, such as fruit
cordials. After experience has been accumulated, more detailed information can be gained from
profile experiments.

Difference tests can be subdivided into two classes:

1. triangular and other similar tests,
2. quantitative difference tests.

Triangular tests, one of the more common and simpler paired comparison tests, make only
light demands on the sensory assessors but have limitations and must be carried out with
attention to detail. Quantitative difference tests make greater demands on the assessors but less
than profile experiments. When many samples are being compared, they require large quantities
of sample and extensive preparation of the sub-samples for the assessors.

In sensory profile experiments, the assessors rate samples for many attributes. This
vocabulary can be fixed for all assessors as with almost all profile experiments, or can be
personal to each assessor as in free choice profile experiments. In both cases the vocabulary
should encompass the differences between the samples. For products which are frequently
profiled, a vocabulary will exist and be continuously modified to reflect changes in the
products over time and increasing knowledge of the sensory properties.
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3. TRIANGULAR AND OTHER SIMILAR TESTS

The duo, duo-trio, triangular, polygonal and polyhedral tests are all variants of tests for
comparing two samples.

The best known of these tests is the triangular test in which three sub-samples (two from
one sample and one from another) are presented to each assessor who is asked to pick out the
odd sub-sample. The nature of the differences between the samples are not defined, only
whether or not assessors can perceive a difference.

When viewed from a psychophysical standpoint the triangular test is (surprisingly) subtle
and experimenters should refer to the psychological literature for guidance on asking the
question in an appropriate way (see for example O'Mahony, 1985).

It is important that the assessors do not receive clues to the odd sub-sample from the sub-
sample numbers or mode of presentation. For example, if the sub-samples from one sample
are put on plates of a distinctive size or colour, or if the sample is cut into sub-samples of a
distinctive size or shape, then the assessors could receive clues from the presentation of the
sub-samples.

With a Triangular test there are six possible ways in which the sub-samples can be
presented. Suppose the samples are A and B. Then the possible orders of presentation are
AAB, ABA, BAA, BBA, BAB and ABB.

Two scenarios will be considered:

1. each assessor performs one test,
2. each assessor repeats the test several times.

The data from each test consist of either a 0 - the assessor identifies the wrong sub-sample
as being "odd" or 1 - the assessor correctly identifies the correct sub-sample as being "odd".
The data are thus binary data. In the usual form of the test the probability of identifying the
"odd" sub-sample entirely due to chance is p=1/3. This is called the null hypothesis.

The results from these trials are analysed by using the binomial distribution to calculate the
probability of getting such a result or a more extreme result due to chance ie on the assumption
that the null hypothesis is true (Type 1 error). In (too) many triangular test experiments a
statistically non-significant result is accepted as confirmation that there is no sensory effect of
sample. However, small experiments are insensitive to large differences in the value of p. It is
instructive to calculate Type 2 errors (Schlich,1993a) by calculating the probability of getting
the experimental result or a less extreme result with p set to 0.5 or 0.6.

Simple triangular tests in which each assessor carries out the test only once are only
sensitive when large numbers of assessors are available; when (for example) institute staff,
students or shoppers in supermarkets are used.

Consider this example. An experimenter wishes to test whether there are sensory
differences in the milk produced by two methods of heat treatment of raw milk. Milk is taken
from the institute bulk tank (which is continuously stirred) and divided into two parts. At
random, one part receives each heat treatment (A and B).
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3.1 One Observation per Assessor

Seventy two people working at the institute are asked to carry out a triangular test. All are
familiar with triangular testing having previously participated in this form of sensory test. The
way in which the sub-samples are presented is randomised independently for each of the
assessors. Thirty participants correctly identified the "odd" sample ie p=0.417, compared to 24
that would have been expected to identify it under the null hypothesis of p=1/3. The probability
of getting this result or one more extreme ie 30-72 correct results under the null hypothesis can
be got from the binomial distribution. This distribution is tabulated in Stone and Sidal (1993)
and also in Gacula and Singh (1984). It is also available in many computer programs. The
probability is 0.086 which is appreciably more than the usual 0.05 criterion for statistical
significance. It is concluded that the sensory differences between treatments A and B are not
large enough to be detected by the experiment ie there is no statistical evidence that p is
greater than 1/3.

It is instructive to consider the power of the experiment. Suppose the true value of p=0.5 -
what is the probability of getting 30 correct or less? Using the binomial calculations this is
found to be = 0.097 whereas for 0.6 it is 0.001. From these calculations, it can be seen that the
experiment was of sufficient size to detect modest differences in the level of p from 1/3. This
test can reasonably be assumed to have tested the consumers ability to differentiate between
the treatments. Using the generalized linear model with binomial variation (Collett, 1991), it is
possibie to explore the effects of the different presentations of sub-samples.

3.2 Several Observations per Assessor

If a trained panel is being used, which seldom numbers more than 15 assessors, the experiment
will intrinsically have a poor ability to distinguish small differences between samples. In order
to increase the power of the experiment, there is merit in repeating the test several times for
each assessor. Six replicates of the test or multiples of six are particularly convenient. This may
now cause problems since there are two levels of variation within the system: between
assessors and within assessors. If there are no real differences between assessors in their ability
to differentiate between treatments, then the assessor component of variance is zero.
Satisfactory methods of handling this kind of data are being developed but have yet to be made
known to the sensory community.

In fact these results were derived from the sensory panel at the institute. The 12 assessors
performed 6 tests each using a design based on Latin Squares. First a Latin Square of order n
is defined:

A Latin Square of order n is an arrangement of n symbols in n rows and n columns such
that each symbol appears once in each row and once in each column.
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Table 1.
A Latin Square of order 6 is given below:

Column
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It can be seen that the symbols "a", "b", "c¢", "d", "e" and "f" appear once in each row and in
each column. The properties of Latin Squares have been extensively studied by mathematicians
and special kinds of Latin Squares are frequently used to produce experimental designs with
desirable statistical properties.

Two order 6 Latin Squares were used to determine the particular randomisation for each
assessor. Rows were regarded as assessors and columns as the order of testing. Symbol "a"
corresponded to the set of test sub-samples AAB, "b" to ABA, "c" to BAA, "d" to BBA, "¢"
to BAB and "f" to ABB. Generalised linear modelling of the binomial response data did not
reveal any statistically significant order of presentation or form of test effects. The results for
each assessor are:

Table 2.
Assessor Correct
1 1
2 4
3 3
4 3
5 1
6 2
7 5
8 2
9 3
10 3
11 0
12 3

No assessors detected the "odd" sub-samples correctly 6 times and only one assessor
detected them correctly S times.
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A statistical test is required to evaluate whether there are differences in assessors ability to
correctly identify the "odd" sub-sample. Multilevel models with binomial variation are not yet
fully developed so a simpler, and arguably less statistically efficient, technique based on
randomisation is used.

As a test statistic the variance of the variate of number correct for each assessor is
computed. The formula is:

12 5
S (i - f)
Variance = &4—ouw——

11
where f; is the number of correct answers for assessor i.

For the data the value of the variance is 1.909. By randomising the data 100 times and
recalculating the variance, a reference distribution is obtained.

Table 3.

Variance Frequency = Cumulative Frequency
<1.0 16 16

1.0-1.2 16 32

12-14 11 43

14-16 17 60

1.6-18 8 68

1.8-2.0 12 80
>2.0 20 100

The test statistic fits into this distribution at the 80 percentile. It is concluded that there is
little difference between assessors in their ability to distinguish between the two treatments.

Finally, it should be remembered that the triangular test is not necessarily the most
appropriate test, for example the duo-trio test may be more appropriate.

4. QUANTITATIVE DIFFERENCE TESTING

In Quantitative Difference Tests two or usually more samples are compared in the same
experiment. Difference between each pair of samples is assessed directly. This can be done
using an ordered scale with for instance 5, 7 or 9 points or by using an undifferentiated line
scale and asking assessors to mark a line at the appropriate point (see also section 5.5 of this
Chapter). Schiffman, Reynolds and Young (1981) provide more details. The analysis aims to
estimate the magnitude of differences between samples in the underlying sensory dimensions.
The advantage of the quantitative difference experiment over a set of experiments using the
triangular test for each pair of differences is that the sizes of the differences between samples
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are quantified. The advantage over sensory profiling is that a vocabulary does not need to be
developed. The technique is specially useful in the early stages of working with a product when
expertise in its sensory properties is still being rapidly accumulated.

A disadvantage of quantitative difference testing, compared to sensory profiling, is that
larger quantities of sample are required and that sample preparation is a longer and more
exacting task. Each assessor is required to assess each pair of samples, so for 6 samples there
are 15 pairs whereas for 8 samples there are 28 pairs and for 10 samples 45 pairs. Thus, for
each assessor, 5 sub-samples of each sample are required when there arc 6 samples, 7 sub-
samples with 8 samples and 9 sub-samples with 10 samples. The underlying concept of the test
does not easily permit these levels of sub-sampling to be broken. This technique is therefore
constrained to experiments in which modest numbers of samples are being compared. There is
merit in replicating the test but most sensory scientists argue that replication requires too many
resources. Another disadvantage of the test is that it is not easy to interpret the sensory
dimensions.

The number of pairs of samples often exceeds the number that can be readily tested in one
session by an assessor. The pairs of samples then have to be broken into subsets that can be
tested in a number of sessions. Furthermore, the order of testing within a session requires to be
determined. Within a pair the order of presentation also requires to be determined.

In a well organised laboratory full information will be recorded ie assessor, day of testing,
session within day, order within session, sub-samples being compared and presentation order
within the pair as well as the magnitude of the difference. For a sensory laboratory with a large
throughput, computerised data collection is cost effective but pencil and paper methods are
perfectly adequate even though they take a great deal of time and effort to manage effectively.

The usual method of analysing this kind of data is by Multidimensional Scaling Methods
(MDS) which are dealt with in Chapter 4.1.

4.1 Example

Suppose that the aromas of 9 samples of cheese (A-I) are being compared by a panel of 12
assessors. There are 36 different pairs of samples. This is too many assessments to make in one
session, so the experiment is run over 4 sessions in which each assessor evaluates 9 pairs of
sub-samples. One of the first questions to be asked is how the pairs of sub-samples for each
assessor in each session are to be chosen. The most convenient solution (at least for the
sensory technician) is for all assessors in each session to evaluate the same pairs of sub-
samples. However, there are many potential hazards to this approach, even when the 36 pairs
are allocated to sessions at random. It is possible, perhaps even inevitable, that assessors will
experience a learning curve and that pairs of samples assessed in later sessions will be assessed
more stringently than those assessed carlier. A more cautious approach is for the 36 samples to
be divided into 4 sessions of 9 pairs using a different random process for each assessor. It is
known that there are order effects within sessions, the largest difference being between the first
evaluation and later evaluations. For each assessor and for each session the order within
session should be randomised. Finally the order of testing within a pair should be randomised
independently for each assessor by pair combination.
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Table 4.
The randomisation process is illustrated below:

n assessor sessions order pairs  reverse finally

1 1 1 1 DE no DE
2 1 1 2 CG yes GC
3 1 1 3 BI no BI
4 1 1 4 EF no EF
19 1 3 1 BD yes DB
20 1 3 2 CD no CD
21 1 3 3 AE no AE
25 1 3 7 AB yes BA
26 1 3 8 EG yes GE
27 1 3 9 BC yes CB
3;t 1 4 7 DI no DI
35 1 4 8 EI no El
36 1 4 9 EH no EH

The above randomisation was produced using a computer program written in the
GENSTAT statistical computing language. The assessor, session and order within session
structure was set up in systematic order. The 36 sample-pairs were generated for each assessor
using the labels AB, AC............. HI. These treatment labels are given in alphabetic order. The
sample-pairs were then randomised within assessor. If the sub-samples are given in alphabetic
order, this creates a bias which is determined by the initial listing of the treatments. It can be
remedied by creating for each assessor a factor "reverse” with 18 "no" and 18 "yes" labels.
This is then randomised and determines whether or not the alphabetic order is reversed. The
"pairs” and the "reverse" variables then give the final order of the sub-samples. In this
particular example the bias from effects of session and order within session have been
minimised by randomising over these effects. Given more work and knowledge of the variation
in this kind of experiment, it would be possible to produce elegant designs in which each pair
of sub-samples is compared three times in each session and which are better balanced for order
effects. Nevertheless, the randomisation process illustrated above leads to a valid experiment.

4.2 Analysis

In any experiment, it is important to do a little preliminary work learning about the data before
proceeding to the definitive analysis. Here, the data can be regarded as one factor (treatment)
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with 36 levels by 12 assessors. One way of looking at the data is to regard the assessors as a
block factor and to do a randomised block analysis of variance of the following form:

Table 5.

ANALYSIS OF VARIANCE
Source of variation df
assessor 11
llpairsll 3 5
Residual 385
Total 431

This analysis of variance allows a preliminary evaluation of the differences between "pairs"”.
Because of the structure of the 36 "pairs”, the means should be displayed in a lower triangular
format. Re-ordering of the rows and columns may improve the clarity of the results.

The particular structure of the treatments can be further exploited by taking the lower
triangular matrix of mean differences and applying the multi-dimensional scaling (MDS)
technique to produce the coordinates in the principal sensory dimensions. This analysis and
also the analysis of variance are based on the assumption that assessors perceive the differences
in the same way and that differences between the results are solely the result of positional
factors or random (uncontrolled) variation. However, it is possible to perform more
complicated analysis which allows differences between assessors to be taken account of. The
best known of these methods is INDSCAL which is available in the SPSS computer program
and elsewhere. This method not only provides information about the samples but also about
the assessors. In certain circumstances, it may be reasonable to group the assessors and to
perform a separate analysis for each group or alternatively to exclude an aberrant assessor. A
fuller account of MDS techniques are given in Chapter 6.

The greatest difficulty in using the MDS technique on directly assessed differences is in
attributing meaning to the sensory dimensions. Strictly, all that one can know from a difference
experiment is whether or not there are sensory differences in the characteristics on which the
assessors are comparing samples.

The value of this technique could be greatly improved for work in food research, if it could
be shown that each assessor was required to assess only a part of the possible treatment
combinations.

Finally, it may not be necessary to directly estimate differences between samples. Given
certain assumptions it is possible to compute them from sensory profile data.

There are two advantages in using this route:

1. itis easier to attribute meaning to the underlying sensory dimensions,
2. many more samples can be tested in one experiment.
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However, there is undoubtedly a loss of sensitivity in moving to a less direct form of
comparison.

5. SENSORY PROFILE EXPERIMENTS

Sensory profile experiments are the most common form of sensory experiment. In the usual
form samples are presented sequentially to the assessors, who rate them for attributes given by
a vocabulary. The vocabulary is usually fixed for each experiment (fixed profile) but can be a
vocabulary personal to each assessor in the case of free choice profiling. In this special case
there is less need for a panel to agree on sensory terms and to use external reference standards
to clarify the meaning of terms. Other forms of profiling are based on ranking samples for a
number of attributes. This form of profiling is not widely used and will not be discussed
further.

5.1 Vocabulary Development

For many sensory experiments, in which familiar products are being profiled, a vocabulary will
already be in existence. For new products either an existing vocabulary has to be taken over
from another laboratory and adapted or an entirely new vocabulary has to be created. In both
cases substantial efforts are required before profiling can commence.

A very common way of developing a vocabulary is for the sensory assessors to have a
round table discussion with many samples of the product available for rating. At this meeting
assessors suggest appropriate terms and by discussion a vocabulary is agreed.

An altemative procedure is to start with a list of possible sensory terms and to present
assessors with a wide spectrum of samples and ask them to identify which terms are relevant to
each sample. If the assessors carry out this work under normal sensory conditions of isolation
then there is value in analysing the data. An illustration of this approach is given in Hunter and
Muir (1993).

5.2 Design of Experiment

Sensory profile experiments can be considered to be special kinds of crossover trials (see
Jones and Kenward, 1989), which are widely used in medical and biological science. The
special feature of sensory profile experiments is that the experimental subjects (the assessors)
are not regarded as replicating the measurements. If replication is required then the whole
experiment is repeated. Methods of analysis given in the rest of this Chapter assume that there
are only simple differences between assessors in the way in which they rate samples. In the
following Chapters more complicated ways of modelling the differences between assessors are
described.

A well designed experiment takes account of known sources of variation by building them
into the design. It also randomizes over unknown and uncontrolled sources of variation. In
order to maximise the amount of information from the work of the sensory assessors, a sensory
scientist must understand how to design an experiment. In addition the experiment must be run
in such a way that the design is respected and variation attributable to experimental procedures
does not bias the estimates of differences between treatments.
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Let us consider an experiment to compare a Cheddar cheese from the institute's
experimental dairy A with brands B and C, on sale in the local supermarket. Consider the
variable flavour intensity.

The process starts by posing the question, "What is known about variability?" From a
great deal of previous work it has been established that:

1. assessors use different parts of the scale,
2. assessors use different amounts of the scale.

This can be illustrated by:

Assessor 1
A B C

! !
Assessor 2

A B C
! !
Assessor 3

A B C

It can be seen that Assessor 1 rates the three cheeses higher for Cheddar intensity than does
Assessor 2 but nevertheless the differences between the samples are similar. Assessor 3 rates
the samples in the same order as Assessors 1 and 2 but uses a larger part of the scale. The
question then arises about the design required to minimise these effects. If each assessor rates
every sample then the effect of the part of the scale used will have no effect on the differences
between samples. By taking means over assessors, the use of different proportions of the scale
by different assessors is minimised. It is possible to apply a scaling factor to each assessor's
data or to standardise it by calculating normal deviates. Both of these techniques require
substantial quantities of data to be effective. Training of assessors and experience in using a
vocabulary can help to reduce these kinds of differences between assessors.

Two further features of sensory data are well established:

3. Trends with order of tasting,
4. Carryover effects.
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It is well established that there are effects of order of presentation (see for example Muir
and Hunter 1991/2). For example in a session in which assessors test 4 products, for positive
factors the first tested is often rated higher than justified and the fourth tasted lower. For
negative factors the first tested is rated too low and the fourth tested too high. The largest
differences are between the sample tested first and those tested later. This effect can be
counteracted by asking assessors to make use of a control (unrecorded) sample before the start
of a session to familiarise themselves with the product. Altematively, by ensuring that each
sample is tested an equal number of times in each order in a session, it is possible to nullify this
effect.

A sample with a strong or otherwise distinctive quality may influence the assessment of
subsequent samples (Williams and Arnold, 1991/2). This effect is less well established than the
three effects previously discussed. Nevertheless, it is good practice to design sensory
experiments with this effect in mind. Special data analysis will then allow this effect to be
tested statistically. Schlich (1993b), in a particularly well designed experiment, detected
carryover effects in the analysis of the data from an experiment in which four kinds of
restructured steaks were compared in a sensory profile experiment. Because the design was
balanced for carryover effects, he was able to estimate both the "direct” and "residual” effects
of treatment and to calculate the "permanent” effect. Although statistical analysis can adjust for
the residual effects of previous treatments, it is preferable that they are minimised by sensory
procedures. These procedures include washing out the mouth with water and/or eating a plain
(cracker) biscuit between samples, to cleanse the palate. If sensory effects are consistently
found then it suggests that the sensory procedures should be modified.

5.2.1 Design possibilities

It is instructive to consider the following possibilities for a design in which 4 samples, with no
factorial structure, are compared by 8 or 12 assessors, Below, modules of the designs are given
for 4 assessors. The module is repeated twice for 8 assessors and three times for 12 assessors.

Table 6.
Option 1 - Different sample for each assessor

Assessor
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In this design each assessor receives only one treatment. This has two undesirable

consequences.

1.

Differences between treatments are confounded (confused) with differences between
assessors. If assessor A rates sample "a" four times and no other assessor rates this sample
and similarly for samples "b", "c" and "d" then any systematic differences between
asscssors will contaminate the assessment of treatment differences. Since it is known that
different assessors use different parts of the scale (even after extensive training) this design
will provide very poor estimates of the differences between samples.

If a design such as this is commonly used in a sensory laboratory then assessors will soon
learn that the same sample is repeated many times. The consequence will be that the
second and subsequent ratings will not be independent because assessors will strive to be
consistent with the first rating. Consequently they will add very little information to the
first rating. Sensory assessors can be very quick to identify pattern in the sequence of
samples being presented and can be expected to react to these perceptions.

Table 7.
Option 2 - Same order for each assessor

Order

1 1I I v

Assessor

UOw>
L - ]
oo oo
(e BN e BN ¢ B ¢
aoaa

In this design each assessor receives each sample, so differences between samples are not

confounded with differences between assessors. However samples are given to each assessor in
the same order. This has two consequences:

1.

Differences between treatments are now confounded with order differences. Although
this is less serious than confounding sample differences with assessor differences (Option
1), it is not desirable. For some sensory trials of hot foods it may not be possible to use
different orders of presentation for each assessor. In these circumstances, it is very
important for sensory assessors to receive a priming sample prior to rating the
experimental samples.

In experiments in which the sample order is the same for every assessor, it is difficult to
ensure that assessors are unaware of the samples they are assessing, particularly if the
assessments are not done simultaneously. Assessors who have completed the task may
pass information to other assessors who will not then make independent ratings of the
products.
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Table 8.
Option 3 - Latin Square
Order
I 11 I v
Assessor A a b c d
B b c d a
C c d a b
D d a b c

This design is based on a Latin Square which is produced by cyclic development of an initial
row which is in the same order as the first column.

This is a special kind of Latin Square which can always be generated. It allows for assessor
and order effects and is thus better than Options 1 and 2. Nevertheless, inspection reveals that
in this particular form of cyclic Latin Square, sample "a", for example, always follows sample
"d". The other defect of this design is that the sequence of treatments is the same for each
assessor, though not the order, and so susceptible to anticipation by assessors.

Table 9.
Option 4 - Williams Latin Square
Order
I I 11 v
Assessor A a d b c
B b a c d
C c b d a
D d c a b

This design, too, is a Latin Square also generated by a cyclic method of construction from
an initial row and has the property that each treatment follows every other treatment once.
The first row is generated by a method due to Williams (1949). For an even number of rows,
columns and treatments balance can be achieved by one square whilst for an odd number two
squares are required. This method of design has been promoted in the context of consumer
trials by MacFie, Greenhoff, Bratchell and Vallis (1989). In Order II "a" follows "b", in Order
IIT "a" follows "c" and in Order IV "a" follows "d" thus overcoming the defect of Option 3.

Only Option 4 is whoily satisfactory for sensory experiments.

5.2.2 Designs based on mutually orthogonal Latin Squares

If a design for 4 treatments and 12 assessors is required then it is possible to generate a design
with a higher level of balance for previous treatments than by simply repeating three times the
module for 4 assessors given by Option 4. Two Latin Squares (of side n) are said to be
mutuaily orthogonal, if, when they are superimposed, for each of the symbols of the first
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square the n symbols of the second square are different. At most there can be n-1 mutually
orthogonal Latin Squares, however for many integers a full set does not exist. Fisher and
Yates tables (1963) give 2 squares for side 3, 3 for 4, 4 for 5, 1 for 6, 6 for 7, 7 for 8, 8 for 9.
Mutually orthogonal Latin Squares are available for higher orders in specialised books.

Table 10
Option 5 - Orthogonal Latin Squares
Order
I I 11 v
Assessor A a b c d
B b a d c
C c d a b
D d c b a
E a c d b
F b d c a
G c a b d
H d b a c
I a d b c
J b c a d
K c b d a
L d a c b

Inspection of the above design reveals that each assessor rates each sample once and that
each sample is tested 3 times in each Order. This design is also balanced for previous treatment
in every Order. For example in Order II, treatment "a" follows "b", "c” and "d". However, it
should be noted that if the design module for the first four assessors is inspected, treatment "a"
follows "b" in Order II, "d" in Order TII and "b" again in Order IV. Consequently, although a
design based on two or more orthogonal squares may have better properties than a design
based on the Williams Latin Square, a design based on one square is not superior.

5.2.3 Replication of assessor by sample allocations

In the sensory literature the meaning of replication is not always as clear as in biological
experimentation. If sensory experiments are viewed from this standpoint, then assessors may
be regarded as replicate blocks. This leads to experiments in which each assessor rates each
sample once and to a randomised block form of analysis of variance for each variable with
replicates=blocks=assessors. However, most statisticians working with sensory data would not
regard this as being a replicated experiment. If the assessor by sample measurements are
replicated by repeating the design, with a different randomisation, then it is possible to quantify
the ability of each assessor to reliably measure each attribute, Nzes and Solheim (1991). Also, it
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is possible to explore the assessor by sample space and so monitor each assessors use of
vocabulary and training needs. Three replicates are usually sufficient to allow this to be done.

In a replicated experiment, the sub-samples for all replicates are usually drawn from the
same samples. Differences between replicates or interactions between sample and replicate, in
addition to sampling and testing variation, may be attributed to the effects of storage of the
samples and to the small differences in the environment for each replicate of the experiment.

Sensory experiments which test differences between husbandry or carcass processing
treatments on meat yielding animals are particularly difficult to organise. Overall differences
between treatments are likely to be small and there is a great deal of variation between animals.
This is often increased by the lack of control of important variables at slaughter, during
processing of the carcasses and during cooking. Freezing samples of meat and later thawing
them may be convenient for the sensory laboratory but it will reduce differences between
treatments. A more subtle disadvantage is that the experiment then makes inferences about
samples of meat that have been frozen and not about fresh meat. Finally, there are technical
problems in carrying out the sensory work where it is known that small differences in
temperature at serving can have a major effect on the sensory characteristics. It is
recommended that in replicated experiments on meat, samples from different carcasses are
used for each replicate, see for example Vipond, Marie and Hunter (1995).

5.3 More Than One Session Per Replicate

Assessors can usually only assess a small number of samples in a session before suffering
sensory fatigue and a lowering of the level of performance. Depending on the product, the
assessor’s experience and the workload of the test, as few as three sub-samples may be rated in
a session or as many as eight. In normal circumstances it is not usual to exceed this limit. It is
not sensible to restrict experiments to the number of sub-samples that can readily be rated in
one session.

Supposing a food manufacturer has commissioned the sensory laboratory to profile all
blackcurrant cordials on sale in the local supermarket shelves. Twelve different products are
found, coincidently 12 assessors are available. A number of different ways of organising the
sensory testing are discussed below.

5.3.1 Three separate experiments

Samples a-d are evaluated in experiment 1 (Orders I-IV), samples e-h in experiment 2 (Orders
V-VIII) and il in experiment 3 (Orders IX-XII). Three copies of Option 4 or preferably
Option 5 are used to give the order of sub-samples for each assessor. The advantage of the
design is that only four samples are used in each experiment and work can be completed on the
first four samples before proceeding to the second four samples etc. The disadvantage of this
design is that whilst samples within an experiment are compared with the highest level of
precision, differences between samples evaluated in different experiments are confounded by
the overall effects of experiment. These effects are unlikely to be negligible relative to the
within experiment variation.
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5.3.2 Split plot designs

If the design is replicated, say 3 times, then the alternatives are to do all replicates of
"experiment” 1, then all replicates of "experiment” 2 and finally all replicates of "experiment” 3
(Design A below). The design thus takes 9 sessions in each of which 4 samples are rated. An
alternative arrangement of sessions is to perform all the first replicates, followed by all the
second replicates followed by all the third replicates. Possible arrangements of sessions are:

Table 11.
Session Design A Design B
1 a-d a-d
2 a-d e-h
3 a~d i-l
4 e-h e-h
5 e-h a-d
6 e-h i
7 i i
8 i e-h
9 i-l a-d

Design A completes work on samples a-d before starting on samples e-h and i-l. Assessors
will become increasingly familiar with the product with each session and so it is possible that
the later samples (i-) will be more precisely rated than the earlier samples (a-d). Design B
allows for trends over time and makes particularly good sense if three sessions are done per
day. The sessions form a Latin Square with columns equal to days and rows equal to order in
the day. In all but exceptional circumstances Design B should be preferred to Design A.

If ideas about split plots from biology are applied to this sensory experiment, in each session
some assessors would test samples a-d, others e-h whilst others tested i-l. This is of little
advantage to the sensory technician and there is consequently no reason for using this type of
design. Only in exceptional circumstances, related to the nature of the samples, will a
traditional split plot design have advantages.

5.3.3 Williams Latin Square designs

Consider a Latin Square of size 12 for 12 assessors, 12 periods and 12 samples. By using the
first four columns (Orders I-IV) for the first session, the second four columns (Orders V-VIII)
for the second session and the last four columns (Orders IX-XII) for the third session a design
is produced which preserves balance for assessor, session and Order within session. Although
there is no longer complete balance for previous effects, each treatment appears first in a
session three times and follows 9 of the 11 other treatments in the second, third and fourth
order within each session.
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Table 12.
Assessor Order
I I 1l IV V VI VII VI IX X XI VIl
A a 1 b k c j d i e h f g
B b a ¢ 1 d k e j f i g h
C c b d a e | f k g j h i
D d ¢c e b f a g 1 h k i |j
E e d f ¢ g b h a i 1 j k
F f e g d h ¢ i b j a k 1
G g f h e i d j ¢ k b 1 a
H h g i f j e k d 1 ¢ a b
I i h j g k f 1 e a d b c
J j i k h 1 g a f b e ¢ d
K kK j 1 i a h b g c f d e
L 1 k a | b i ¢ h d g e f
Session 1 Session 2 Session 3

This is a very general method of construction for even numbers of treatments. The
advantage is that all differences between pairs of treatments are estimated with almost equal
precision. The disadvantage is that the number of assessors must equal the number of
treatments. Also, another disadvantage of such a design is that the sensory technician has to
manage all 12 samples in each session. In a well organised sensory laboratory with trained and
experienced sensory technicians, this will usually be possible for products tested when cold but
may be difficult or even impossible for products tested when hot. The only sound reason for
not testing all samples in each session is that practical considerations do not allow it. An
example of this design of experiment is given by Muir and Hunter (1991/2).

5.3.4 Incomplete block designs

From a combinatorial standpoint incomplete block designs have excited the curiosity of
statisticians for 60 years. Much work has concentrated on the identification of balanced and
partially balanced designs. Apart from their intrinsic interest these designs can be analysed
using a calculator. However, partially balanced designs are not necessarily statistically efficient
designs nor are they available for all combinations of numbers of samples, assessors and
samples per session. Except in exceptional circumstances, data from the sensory laboratory will
be analysed using a statistical package, so ease of analysis by hand calculator is not a necessary
property. For crop variety trials Patterson, Williams and Hunter (1978) and for consumer trials
MacFie, Greenhoff, Bratchell and Vallis (1989) give catalogues of efficient designs. There is a
need for the publication of catalogues of designs especially for sensory work. Both balanced
incomplete block designs and partially balanced incomplete block designs have been advocated
for sensory work by several authors. In general the utility of these designs is compromised by
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the lack of balance for order and carryover effects and by constraints on the number of
a55€5S0IS.

In sensory experiments, it is very important that each assessor evaluates every sample even
if testing extends over many sessions. However, experiments involving consumers are
different; they can only reasonably be asked to rate a small number of samples, probably no
more than four, and replication is not possible. The experimental design given above for twelve
assessors could be adapted for thirty six consumers (each rating four samples) by defining cach
consumer as an assessor by session. This design would confound some information between
samples with differences between consumers. Nevertheless, it allows twelve samples to be
compared simultaneously. Similar designs can be generated for other numbers of samples.

5.4 Tailoring Standard Designs

The designs given in this Chapter are for fixed numbers of assessors. The methods of
construction lead to designs in which the number of assessors is determined by the number of
samples. This does not correspond to the situation that the sensory scientist experiences in the
laboratory. When working with an (trained) external panel, the number of assessors is fixed by
those available on the day. It is not feasible to increase (or reduce) this number to utilise a
particular design for the number of samples being tested. Also, it is not uncommon for one or
more assessors to be absent from a session or to fail to complete it. Both the design and
analysis systems must be sufficiently robust to deal with the realities of running a sensory
laboratory.

For example, suppose there is a trained panel of fourteen subjects but that the number
available for sensory work is thirteen. If the first experiment of the day is to profile 12 cheeses,
the design given above for 12 assessors may be adapted by using each row of the design once
for an assessor and then choosing an extra row from the design (at random) for the thirteenth
assessor. Conversely, suppose that the second experiment requires 16 fruit cordials to be rated.
A design can be produced for 16 assessors using the Williams Latin Square method of
construction for 16 treatments and 16 assessors. At random 3 rows can be dropped from the
design. The design will not be as balanced as the full design but nevertheless will still have
good statistical properties. The cost of tailoring the design to fit the circumstances of the
sensory laboratory is to make the analysis dependent on using more complicated general
statistical methods rather than relatively simple methods.

If it is envisaged that the design, given in the previous section, is to be replicated three times
then at present the best advice is to randomise the assessors to rows independently for each
replicate. An added precaution is to randomise the samples to the sample labels separately for
each replicate. This leads to a three replicate design with good but not optimal properties.

There is a need to improve the designs in use in sensory laboratories. Schlich (1993b) gives
a design, based on mutually orthogonal Latin Squares, in which there is an exceptional degree
of balance over replicates for each assessor and also within replicates. However, design work
must pay attention to the fact that sensory experiments are changeover designs with assessor,
assessor by replicate, assessor by replicate by session, order and carryover effects.
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5.5 Data

As with the direct assessment of differences (see section 4) assessors often rate samples on
a 0-5, 1-7 or 0-9 scale. There is often an attempt to improve the performance of short scales
by allowing half points. Very often these half points are infrequently used and the data become
potentially more difficult to analyse. These difficulties are seldom recognised and almost
always ignored. If a scale is to be used then it is more sensible to use a longer scale ie 0-9
rather than a shorter scale with half points. The most satisfactory method of recording
responses is to use an undifferentiated line scale which consists of a line with anchor points at
both ends. Assessors record their ratings for a sub-sample by making a mark on the line
corresponding to the intensity of the sensory stimulus. The data can be collected using pencil
and paper but is more efficiently organised by a computerised data collection system which
captures data directly from the assessor by allowing the use of a mouse to move a cursor along
a line on a screen. It also simplifies data management and is justified for all but the smallest
sensory laboratories.

5.6 Analysis

Data are collected on many variates in each profile experiment. These data deserve to be
analysed one variate at a time ie on a univariate basis. Chapter 4 deals with the summary of this
data on a multivariate basis.

Both univariate and multivariate analysis have a part to play in understanding the results.
Experimenters with little knowledge of available statistical methods for the analysis of data
often use only univariate methods. Frequently, even these methods are poorly implemented. In
this Chapter, it is assumed that the sensory scientist has access to a computer and that it is
loaded with a relatively simple, easy to use statistics package such as STATGRAPHICS,
MINITAB, SYSTAT or SPSS. Descriptions of how to calculate simple statistics using a
calculator are given in O'Mahony (1985).

All the methods described in this section assume that data are from a continuous
distribution and are on an interval scale. Although this is unlikely to be fully true, the methods
of analysis advocated are robust to these assumptions.

5.6.1 Methods of analysis

Assuming that data are from a properly designed experiment, six models (Model 1 - Model 6)
can be fitted. The simplest method of analysis is to find an (arithmetic) mean and a standard
error of mean for each sample (Model 1). However, the error is contaminated by between
assessor, order and other effects which inflate the error and reduce the power of tests of
significance. Also, if a separate error is determined for each sample, it will be based on few
degrees of freedom. Since there is no reason to expect that errors will be different for each
sample, pooled errors should be used. Means and pooled errors are conveniently obtained from
a one way analysis of variance with sample as the treatment factor. A more precise analysis is
obtained by allowing for assessors (Model 2). This can be done using the analysis of variance.
More generally, it can be done using a general(ised) least squares method, sometimes called
regression with factors. It is also possible to allow for order of presentation (Model 3). Since
assessor effects are large, it is reasonable to allow for replicate-by-assessor effects (Model 4).
All sensory scientists should endeavour to get to this stage of univariate analysis. They should
find the results informative and well worth the extra effort involved. A further stage is to allow
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for assessor by replicate by session effects and estimate sample effects solely within sessions
for each assessor (Model 5). Information on samples that is partially confounded with sessions
is lost. There is thus a trade off between lower mean squares and loss of statistical efficiency.

For those with access to more sophisticated statistical programs (SAS, GENSTAT) there is
some merit in fitting a (general) mixed model to the data. It is reasonable to regard the
assessor, the replicate within assessor and the session within replicate within assessor as
random effects (Model 6). This type of model allows the information on samples confounded
with sessions to be properly weighted and thus the standard errors from this analysis are
invariably and correctly lower than those from Model 5. The main advantage is that the
sources of variation can be carefully modelled and the information can be used to plan more
precise experiments in the future.

For replicated experiments, it is useful to obtain estimates of sample by replicate effects for
further analysis. Given these effects, it is possible to do a standard two way analysis of variance
free of the effects of sensory measurement. When the samples have structure (section 6) the
degrees of freedom and sums of squares for sample can be partitioned in an informative way.

Few laboratories routinely estimate carryover effects. However, it is important to check that
these effects are relatively small by carrying out a special analysis of the data from time to time.
Schlich (1993b) shows how this can be done for a special design using analysis of variance.
Using the mixed model approach, an analysis to estimate residual effects can be carried out
using either GENSTAT or SAS.

5.6.2 Example

A sensory panel of 13 assessors tested 8 blackcurrant cordials in two replicates each of two
sessions. Four cordials were rated on a continuous scale 0-100 in each session. A design based
on Williams Latin Square was used to determine the treatment sequences for each assessor.
One assessor was not able to attend one of the sessions of the second replicate so the assessor
by replicate by treatment table was not complete.

The purpose of analysis is the estimation of sample effects with an appropriate estimate of
their variability ie standard error of mean (sem). The results of fitting all six models to the
flavour intensity variable are given below.
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Table 13.
Model 1 Model 2 Model3 Model 4 Model 5 Model 6

Sample Mean sem Mean Mean Mean Mean Mean
1 53.6 394 535 53.7 533 55.4 54.5
2 58.6 4.00 58.7 58.6 58.1 574 584
3 60.6 3.67 60.7 60.8 60.2 58.3 60.4
4 598 3.72 59.8 59.8 59.4 57.8 60.0
5 59.8 433 59.7 59.7 593 60.6 60.7
6 658 3.55 65.9 65.7 65.1 62.9 64.9
7 65.0 4.06 65.2 65.2 64.6 63.4 64.9
8 68.0 3.89 68.0 68.0 67.6 67.2 68.3

av sem 3.90 3.29 3.31 3.19 3.28 3.17

EMS 372 264 267 248 222 230

The Error Mean Square (EMS) provides overall evidence of how well the model fitted the
data. Allowing for the assessor effect (Model 2) reduces the EMS from 372 to 264. Allowing
for order of presentation (Model 3) does not reduce the EMS further whereas allowing for a
separate assessor effect for each replicate (Model 4) reduces the EMS to 2438. By allowing for
session (Model 5) the EMS is reduced to 222 but because some information on treatments is
lost between sessions the sem rises to 3.28 from 3.19. However, regarding assessor, replicate
within assessor and session within replicate within assessor as random effects causes the
estimate of the EMS to fall to 230 and the sem to 3.17. Model 6 is arguably the most
appropriate analysis.

Because the experiment was carefully designed there are only minimal differences in the
estimates of sample effects between the models.

6. TREATMENT DESIGN

In sections 4 and 5 of this Chapter, the assignment of order of testing of samples for each
assessor has been considered. In this section, the structure of the sample space is considered.
In studies of the sensory properties of products on sale in supermarkets the samples do not
have a simple structure but in research or development studies the opportunity exists to impose
a factorial treatment structure on samples. In planning the treatment structure, it is very
important to define the objectives carefully and not to artificially restrict the problem to one
that is assumed to be susceptible to experimentation. It is also very important to review
existing knowledge and to separate hard information from conjecture.

It should be remembered that sensory experiments have much in common with other
scientific experiments and accordingly, methods in use in other areas of science and technology
are relevant. Many sensory analysts instinctively feel that in a multifactor situation, an
experiment should be performed with each factor in turn holding the levels of all other factors
constant. It has been shown that this is a very bad strategy which uses experimental resources
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wastefully and in addition often fails to determine the optimum, Chapter 5 of Cochran and Cox
(1957). A better strategy is to evaluate all relevant factors simuitaneously in a sequence of
experiments. It is recommended that only about 25% of available resources should be allocated
to each experiment. In the light of the results obtained later experiments in the series can be
planned. This strategy puts a high premium on being able to quickly analyse experimental data,
formulate the conclusions and design the next experiment.

6.1 Dose Response Experiments

The simplest treatment structure arises when the experimenter wishes to investigate only one
factor. Suppose that the effect of level of sweetener in a fruit cordial is to be investigated and
there are resources to run a sensory experiment with 4 samples. It is a relatively simple matter
to devise four factor levels. If the experimenter expects a linear response to the factor then the
best way to arrange the treatments is at equal intervals. Using existing knowledge a base level
is determined and a suitable increment.

Table 14.
Sample Treatment
Level
1 base
2 base + incr*(2-1)
3 base + incr*(3-1)
4 base + incr*(4-1)

If the base is 50g of sugar per litre and the increment is 10g then the levels are 50,60,70 and
80g of sugar per litre.

For many sensory stimuli, the response may be related to the log of the treatment. For

example, sensory sweetness may be proportional to the log of the added sweetener. In these
cases the treatments levels should have a ratio relationship to each other.

Table 15.

Sample Treatment
Level

base + incr

base + incr*r
base + incr*r?
base + incr*r’

F VSIS
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Suitable values of r can be as large as 10.0 or as small as 1.5. If the base is 0 and the
increment 10g of sugar per litre and r=2 then the levels are 10, 20, 40 and 80g of sugar per
litre.

The choice of treatment levels depends on hard information and on prior knowledge or
conjectures about the shape of the response.

In different replicates of the sensory experiment, it is an advantage to have different
realisations of the treatment specification. In this experiment it would mean making up a fresh
set of samples for each replicate. This provides a more severe test of the treatments.

6.2 Full Factorial

In a full factorial design the samples consist of all possible combinations of two or more
treatment factors each with at least two levels. The number of samples required is given below.

Table 16.
Levels per factor
No of factors 2 3 4 5
2 4 9 16 25
3 8 27 64 125
4 16 81 256 625
5 32 243 1012 3125

Few sensory scientists are prepared to contemplate testing more than 30 samples in an
experiment. From a sensory viewpoint, it is therefore only feasible to do a full factorial with
two, three, four or five factors each at two levels; two or three factors each at three levels and
only two factors at four or five levels.

An example will help to illustrate this class of design. Suppose that work is being done on
very low fat yogurts. Three factors which are under control of the experimenter are the Type
(A or B) of homogeniser, the homogenisation Pressure (low or high) and the Temperature at
homogenisation (low or high). All these factors may effect the sensory properties of the final
product.

Setting the levels for quantitative factors such as Pressure and Temperature requires some
knowledge of the possible operating range. These will usually be defined by existing
knowledge but can be defined by a phase of experimentation prior to sensory profiling when
physical or chemical measurements are made on the samples.

The process illustrated above can be generalised to factors with more than two levels. 1t is
possible to have several treatment factors with different numbers of levels in one experiment.
For design purposes a mixture of factors with 2 and 4 levels are preferable to mixtures of 2 and
3 levels.
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Sample Type Pressure Temperature
1 A low low
2 A low high
3 A high low
4 A high high
5 B low low
6 B low high
7 B high low
8 B high high

The interaction between two factors with two levels is defined as the difference in the effect
of the second factor between the levels of the first factor or conversely the difference in the
effect of the first factor between the levels of the second factor. Three factor interactions are
defined similarly. The advantage of a full factorial experiment is that all the degrees of freedom

between samples can be uniquely attributed to a main effect of a factor or an interaction.

It is recommended that the analysis of sensory data proceeds as follows. In the first part of
the analysis, tables of sample by replicate effects are obtained adjusted for the effect of
assessor. These tables are then further analysed by analysis of variance or by regression in the

case of response surface data (section 6.5).

If there are three replicates of the 8 samples in the experiment outlined above, the form of

the analysis of variance will be:

Table 18.
ANALYSIS OF VARIANCE

Source

Replicates

Samples

Partitioned

Type

Pressure
Temperature
Type.Pressure
Type.Temperature
Pressure. Temperature
Type.Pressure. Temperature
Error or Residual

s

= = = e e S e

—

Total

N
w
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An example of the use of this type of design is given by Muir, Banks and Hunter (1992).

6.3 Fractional Factorial

In most research and development projects there are many potential factors which could affect
the sensory variables. There is a natural tendency for sensory scientists to simplify the problem
or to partition the problem into a number of experiments in order to allow full factorial designs
to be used. As shown by the table at the start of the previous section, too many samples are
required for a full factorial experiment with five or more factors. However, it is possible to
carry out informative experiments requiring a small number of samples by making some
assumptions. In all areas of experimentation it is usual to find that main effects are much larger
than two factor interactions, which are larger than three factor interactions etc. Only seldom
are interactions important when main effects are small. Fractional factorial designs confound
information on high order interactions with main effects or low order interactions. Thus if an
effect is significant, it is assumed that the main effect or lower order interaction is responsible.

Fractional factorial designs were first discussed by Finney (1945). Box, Hunter and Hunter
(1978) give a relatively gentle treatment of this topic. A more comprehensive account is given
in Cochran and Cox (1957).

It is instructive to review the design that was considered in the previous section and add the
maximum number of factors using the fractional factorial method of construction. From the
catalogue of designs given in Cochran and Cox (1957), a fractional factorial design for 5
factors, each at two levels, requiring 8 samples is found. Thus two additional factors, Extra 1
and Extra 2 can be added.

Table 19.
Sample Type Pressure Temperature Extral Extra2
1 A low low low low
2 A low high high low
3 A high low high high
4 A high high low high
5 B low low high high
6 B low high low high
7 B high low low low
8 B high high high low




The consequences for the analysis of variance are:

Table 20.
ANALYSIS OF VARIANCE

Source
Replicates
Samples
Partitioned
Type
Pressure
Temperature
Extra 1
Extra 2

Type.Temperature (=Pressure.Extra 1)
Pressure. Temperature (=Type.Extra 1)

Error or Residual
Total

&

W B e e e e e e e
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Of the 10 potential two factor interactions only two effects can be estimated orthogonal to
the main effects. By simple algebra it is possible to show that each of these effects corresponds
to two two factor interactions which are said to be aliased ie inseparable. Of the remaining two
factor interactions, four are uniquely aliased to main effects and two are aliased to the same
main effect. There is thus only minimal information available on interactions. However, the five
main effects are estimable. Provided that the experimenter is willing to assume that interactions
are likely to be unimportant then this type of design can be justified.

For 4 and 8 samples it is possible to take the fractional factorial method of construction a
stage further and to construct designs in which all the degrees of freedom between samples are
uniquely identified with a main effect. Such designs are referred to as saturated designs and are
of great utility in the exploratory stage of development studies. A design for 7 factors at two

levels for 8 samples is given below:

Table 21.
Factors
Sample 1 2 3 4 5 6 7
1 low low low low low low low
2 high high high high low low low
3 high high low low high high low
4 high low high low low high high
5 high low low high high low high
6 low high high low high low high
7 low high high high low high high
8 low low low high high high low
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Plackett and Burman (1946) give a more general method of construction for saturated
designs which gives designs for factors all with the same prime number of levels .

Taguchi, the Japanese engineering management guru, has popularised the use of designs
with many factors and few samples in an engineering context. These designs have come to be
known as Taguchi designs or arrays and are given in a number of books (see, for example,
Logothetis and Wynn, 1989).

6.4 Response Surface Designs

If the purpose of an experiment is to optimise the settings of a number of quantitative
factors, then it is of advantage to use response surface designs. Simple response surface
designs are fractional factorial designs with centre points. The so called "star" points can be
added in a second replicate. A response surface design allows the data to be analysed by fitting
a regression type model to the sample by replicate means. Contour plots can be drawn in the
parameter space and an optimum located. An account of these designs is given in Box, Hunter
and Hunter (1978) and in Box and Draper (1987). An example of the use of a response surface
design in a sensory experiment is given by Muir, Hunter, Guillaume, Rychembusch and West
(1993).

6.5 Replication of Fractional Replicate And Response Surface Designs

For these designs, there are advantages in selecting a complimentary set of samples for the
second and subsequent replicates. In many cases it will be wise to analyse each replicate as it is
completed and to judge whether the treatment levels should be modified for the next replicate.

7. POWER OF EXPERIMENTS

‘When planning experiments sensory scientists should be aware of the precision and should try
to avoid planning experiments which are doomed to failure. Because the differences between
two treatments are not significant, it does not mean that differences do not exist but only that
they are smaller than the detection threshold. On occasion statistically significant differences
will be found which are too small to be of any economic, technological or scientific
importance.

Using an estimate of the EMS it is possible to calculate a minimum detectable difference
between two samples for an experiment with n, replicates and n, assessors from the formula

Detectable Difference = 3 x -Z—@E
\} N X N,

The factor 3 is an ad hoc value derived from the "t" value augmented to allow for the fact
that the error is estimated from the data. If measurements are on the scale 0-100, then
estimates of the EMS vary from 100-500 with 300 representing an acceptable level of
variability for a variable with differences between samples. In general the bigger the differences
between samples the bigger the EMS. For laboratories which use a different scale, a factor can
be derived by dividing the range by 100 and dividing the EMS in the table betow by the factor
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squared and the table entries by the factor. The table illustrates the consequences of this
formula for the detectable difference:

Table 22.
EMS
n, n, 100 300 500
1 8 15.0 26.0 335
1 12 12.2 21.2 274
1 16 10.6 18.4 23.7
2 8 10.6 18.4 23.7
2 12 8.7 15.0 19.4
2 16 7.5 13.0 16.8
3 8 8.7 15.0 19.4
3 12 7.1 12.2 15.8
3 16 6.1 10.6 13.7

Small differences are unlikely to be detected with a modest sized experiment.

8. RELATIONSHIP OF UNIVARIATE METHODS TO MULTIVARIATE
METHODS

In addition to assuming that data are from a continuous distribution and are on a linear scale,
the univariate methods assume that each assessor measures the samples in the same way.
Assessors are known to use different proportions of the scale, and use sensory terms in
different ways. Selection, training and reference standard have a part to play in reducing these
differences but can seldom eliminate them. Another weakness of presenting many univariate
analyses is that there is the implication that there is more information than truly exists. Principal
Component Analysis of tables of sample means or replicate by sample means nearly always
reveals a very highly related set of variables with few significant components.

The multivariate methods described in the rest of this book model the differences between
assessors more realistically than univariate analysis and present the results in the principal
sensory dimensions.

The validity of the results from multivariate analysis depends on proper experimental design
and particularly on randomisation and blinding. Caution must be exercised in interpreting the
multivariate analysis of sets of sub-experiments (section 5.3.1) and split-plot experiments
(section 5.3.2) because differences between samples are measured with different degrees of
precision.
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9. CONCLUSIONS

The key to successful experimentation is clear analysis of the problem followed by careful
design of the sensory experiment and skilful analysis of the data which is followed by
perceptive interpretation of the results.

Much work remains to be done to develop designs for sensory experiments and in particular
sensory profile experiments which are free of artificial constraints on numbers of assessors and
numbers of samples per session. Knowledge of good designs should be disseminated by
catalogues or preferably by computer programs which produce properly randomised designs
with minimal inputs from the sensory scientist.
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1. INTRODUCTION

1.1 Background

Product optimization is the aim of every food manufacturer. A company's ability to produce a
product which satisfies the consumers' sensory requirements has a distinct lead to success and
profitability. Clearly other factors do come into play, such as packaging and brand image, but
these are not the subject of this chapter.

In writing about product optimization from the sensory point of view, it is important to
realise the complexity of achieving the ideal product, either for an individual consumer, or a
group of consumers making up a market segment. It is critical to understand the requirements
of the consumers within the market segments of interest to the company, and thus to design
and target products to meet these requirements.

Sensory analysis is frequently carried out by companies in the initial steps of product
development or as a quality control tool, and provides valuable information in these instances.
Consumer information, on the other hand, is routinely used by companies when researching
new and existing market products, and this information forms the basis of many important
company decisions regarding the launch of new products or the reformulation of existing lines.
However, using sensory analysis and consumer information independently does not always
enable the company to derive most benefit from available resources. By using these sensory
and consumer techniques in conjunction, a more complete picture can be obtained. Preference
mapping offers a group of techniques which can be used to relate these two groups of
information.

Sensory assessors are sometimes required to give preference or acceptability information,
but this is a dangerous practice as sensory assessors are unlikely to be representative of the
target population, and by their training are more perceptive, in an analytical sense, than the
average consumer. Likewise consumers are frequently asked to give reasons for their
judgements or descriptors, but while these can provide some useful information, they need to
be interpreted with care. Consumer descriptors are rarely detailed enough or reproducible, and
can therefore lead to misleading results due to the difficulties encountered in the interpretation
process. Preference mapping techniques offer the opportunity to use information generated
from the best source in each instant. It is only the consumer who can realistically provide
hedonic data, while a trained sensory panel is able to provide reliable descriptive information.
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By relating these two data sets, one compliments the other, thus maximising the information
available.

The size, number of samples required, and the apparent complexity of experiments designed
for preference mapping are often given by companies as reasons for dismissing it without
further consideration. However, these companies will often conduct numerous individual
sensory and consurner tests comparing say a new formulation against the original, and perhaps
a benchmark such as a competitors product. This approach, when compared with the
preference mapping approach appears to be rather hit and miss.

When opting for the preference mapping approach, the experiment is carefully designed,
often to consider several parameters at once. Accepting the fact that many product
characteristics are interrelated, this approach will enable the product developer, not only to
identify the need to adjust one component, but will indicate the effect other characteristics
were having on liking. The approach also provides information on consumer segmentation,
allowing the product developer to ‘target' his product appropriately. While at the outset, the
approach may appear to require excessive resource, it may in fact reduce the overall input by
scientifically designing the ideal product.

A product resulting from a study using techniques such as preference mapping will be
'designed’, and while the structured approach and combination of sensory analysis and
consumer research cannot replace the creativity of the product developer, they can assist in
identifying and summarizing market place opinions, thus helping the product developer to pin
point the ‘'ideal' product. Therefore this product, given appropriate marketing, should achieve
the competitive edge in the market place.

1.2 Use of the Technique

Preference mapping is used to answer a number of questions relating to improving the
acceptability of the sensory aspects of a product. In one instance a company may simply wish
to identify the attributes of a range of competitive products, which are important to
acceptability, with the aim of moving their product into a more desirable position. Preference
mapping projects involving market place products, may also enable the company to identify
potential market opportunities through product gaps. In another scenario, the company may be
working on a range of new product formulations, suggested by market research information,
and wish to identify which formulation is most acceptable, and then if and how can the product
be improved.

There are many ways in which a company will approach product optimization, and the
preference mapping method is only one. The decision to choose this approach will depend on
the importance of the project in terms of financial commitment and time, the status of sensory
analysis in the company and of course the number and range of samples available for
evaluation.

There should be no doubt, the preference mapping approach is expensive, involving both
sensory and consumer panels. Equally the cost of product failure on market launch is
expensive. Preference mapping as part of a well thought out product development exercise is
well worth the expense. However, a decision on the relative feasibility of different options must
be taken. While client projects and discussions remain confidential, the author has witnessed
numerous examples where the preference mapping approach of utilizing both sensory and
consumer information has led to improved formulations and more acceptable products.



73

2. PREFERENCE MAPPING AS A METHOD

2.1 Internal Preference Mapping

Before considering the method in some detail, it is first necessary to understand the terms
metric and non-metric, as these terms are used a lot in relation to the method. A metric method
is one where the data are assumed to be linear, or have interval properties. Such data are
continuous (e.g., measurement of height). Non-metric methods are used to deal with non-linear
data, and for the purposes of this chapter can be considered ordinal. In other words the data
are whole numbers, but do have the property of representing an increase or decrease in
intensity of a particular attribute.

The method of internal preference mapping (MDPREF) is similar to a principal component
analysis (PCA) on a matrix of data, consisting of samples (objects) and consumers (variables).
This analysis normally uses the covariance matrix (non-normalized matrix) rather than the
correlation matrix. This means that a consumer with small or zero preferences, and
consequently a low standard deviation, will not adversely affect the structure of the preference
map. However, the comrelation matrix is used by some packages, or the user has the option. In
order that the geometry of the preference map is correct, it is necessary to normalize the
principal components.

The result of internal preference mapping is a sample map, based on the product
acceptability information provided by each consumer. A segmentation analysis of consumers is
then possible by visually examining the plot of consumer preference directions, or by using a
classification algorithm using the PCA parameters.

The more complex the structure of the population preferences, the greater the number of
principal components that are required to be interpreted. However, the synthesis power of
multidimensional analysis decreases with the number of axes to be interpreted. In fact, the non
metric version of PCA allows the user to limit the number of axes to be determined. Non
metric PCA involves calculating, for each consumer, the best monotonic transformation
(Kruskal, 1964) of the preference data, in order to maximise the variance explained by the first
k principal components of the transformed PCA data. It is common practice to choose only
two or three preference axes, as after this the solutions become difficult to interpret.

It is an assumption of non metric PCA that the preference data are ordinal, not interval or
ratio. When this is the case, it is important to exercise caution, as in effect only product ranks
for each consumer are considered. However, the benefit of this is that the variance explained
by the first k non metric PCA axes can then be taken as representing only the differences
between product preference scores without the distortion to the ranks.

Whether metric or non metric, this form of principal component analysis is commonly
referred to as Internal Preference Mapping or MDPREF, as first described by Carroll (1972).

Unlike external preference mapping, this method only uses the consumer data, and thus no
information about why the samples are liked or disliked is given. It is possible to link sensory
information to the internal preference mapping space, by correlating the mean sample ratings
for each attribute with the derived preference dimensions.
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2.2 External Preference Mapping

The basic idea behind external preference mapping (Schiffman et al, 1981) is to map
acceptability data for each consumer onto an existing perceptual map of the products, usually
obtained from profiling. In effect, the profile space is external to the acceptability data.

Preference mapping can simply be thought of as performing regression analysis on the data,
where the dimensions of the profile space are the explanatory (or predictor) variables, while
acceptability is the response (or dependent) variable (Schlich and McEwan, 1992; Schlich,
1995). It should be noted that the predictor space is, in fact, a decomposed space. This is
because it is derived from a multivariate procedure such as principal component analysis or
generalized Procrustes analysis, which decomposes the data into a smaller number of
dimensions to adequately summarise the data.

In practice, there are two types of preference behaviour; that which fits a linear regression
(vector model) and that which fits a quadratic regression (ideal point model). These are
described below.

2.2.1 The Vector Model
The vector model pertains to ‘the more, the better' type acceptance behaviour. Basically, this
means that there is no sample which is perceived as having too much or too little of the
characteristics which determine acceptability.

In practice, a multiple linear regression equation is derived for each consumer, and from this
a vector depicting the direction of increasing preference can be drawn onto the sample space.
The fitting of this model is often referred to as the Phase 4 (or Phase IV) model. This is
represented in Figure 1.
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Figure 1. Graphical representation of the Phase 4 vector model.
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2.2.2 The Ideal Point Model

The ideal point mode! pertains to the 'some amount is ideal' type acceptance behaviour.
Basically, this means that there are samples in the space which are perceived as having
excessive or insufficient amounts of one or more of the sensory attributes. Underlying the ideal
point model is the assumption that there is some combination of attributes which make the
ideal product. Whether it is realistic to assume that each consumer has only one ideal product
is another matter.

There are three types of ideal point model which are often referred to; the circular ideal
point model (Phase 3/Phase III), the elliptical ideal point model (Phase 2/Phase II) and the
elliptical ideal point model with rotation (Phase 1/Phase I). The lower the phase number, the
more complex (and less general) the model. Figures 2 (a) to (c) graphically display the format
of these three ideal point models. All ideal points can be either positive or negative. A positive
ideal point represents a point of maximum preference, whilst a negative ideal point is a point of
anti-preference.

Dimension 2

A

—» Positive ideal point

----9 Negative ideal point

>

Dimension 1

Figure 2a. Graphical representation of the Phase 3 ideal point model.
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Dimension 2
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—— Positive ideal point
""" P Negative ideal point

>

Dimension 1

Figure 2b. Graphical representation of the Phase 2 ideal point model.

Dimension 2

4

—3» Positive ideal point
=== Negative ideal point

>

Dimension 1

Figure 2c. Graphical representation of the Phase 1 ideal point model.
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In practice Phase 1 (quadratic ideal point) tends to be ignored, as it assumes that the sample
space is not 'optimal' and so rotates it to try to achieve a better fit with the acceptability data.
As this is somewhat complex for interpretation it is seldom used, seldom recommended and
therefore will not be discussed in terms of the worked example, presented in Section 6 of this
chapter. Phase 2 (elliptical ideal point) is also quite complex as the ideal points can be both
positive and negative at the same time, in other words a saddle point. In other words, one
dimension optimises preference, while the other dimension optimises anti-preference. For this
reason Phase 2 is little used in sensory evaluation, though it is useful if interpreted carefully.
Phase 3 (circular ideal point) is the simplest of the ideal point models, and in effect fits a simple
quadratic model to the data. In other words, there is an optimum (maximum or minirmum)
point on the space which is equally influenced by all the sensory dimensions being used to
determine it. Thus, the contours round this optimum point are circular.

2.2.3 A Mathematical Explanation

The external preference mapping methods consist of calculating a polynomial regression for
each consumer, by utilizing the sensory dimensions X;, Xy, ..., Xk to explain the response (Y)
of preference for each consumer. The X variables are called the independent or explanatory
variables, while the Y is the dependent or response variable. Theoretically, the model can be
written as shown in Equations 1 to 4. In each equation, a is the intercept term.

Y =a + ZpiXi i=1,...,k Eqn (1)
Y = o + LBiXi + ST.Xi? i=1,..,k Eqn (2)
Y = a + ZipiXi + T8 X’ i=1,.,k Eqn (3)
Y = o+ ZifiXi + Z&Xi + ZyyijXiXj i=1,.,k Eqn (4)

Equation 1 shows the vector model, which takes the format of a simple linear regression for
each consumer. The fi are the slopes of the regression line (vector) for each consumer.

In Equation 2, a quadratic term, IXi’, is added, where Pi and & are parameters to be
estimated. The & are all the same, as equal weight is attached to all dimensions in the circular
model.

Equation 3 is the same as Equation 2, except that 6i are different, according to the
weighting attached to the dimensions. In other words, in the elliptical model, changes in
preference along one dimension may be more important than changes along another dimension.

Equation 4 is Equation 3 with the addition of an interaction term. It is this term that
provides the rotation in space of the preference map.

The designation of which phase to use is based on the way the models fit into one another.
In fact, it can readily be seen that one model is actually a submodel of the other. Phase 1
(rotated model ideal point) is the most general model, and under this the models fit into each
other, by becoming more specific. Therefore, Phase 4 (vector) is the most specific with the
most constraints being placed on it. The type of data coliected will determine the most
appropriate model for a particular application. Fisher's test is normally used to establish which
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model is best (Schiffman et al., 1981). The principle behind this is very similar to testing for,
say, a sample effect in analysis of variance. In this case the analysis of variance is undertaken
on the regression equation to determine how well the fitted model represents the data. By
looking up the Fisher (F) tables (Neave, 1978), at the degrees of freedom for the regression
equation against the degrees of freedom for the error term, it is possible to identify what
significance level can be attached to the fitted model. It is then up to the user to decide the
level of significance he is willing to accept.

For the vector model (Phase 4), the least squares estimators for o are used to help define
the arrow representing the direction of the consumer's preference on the sensory map. The
length of this arrow is proportional to the square of the multiple correlation coefficient R-
squared, which indicates the goodness of fit of the model. Small arrows indicate that the
consumer preferences cannot be explained by the sensory characteristics of the products, at
least through the linear (vector) model. On the other hand, following a long arrow to infinity, it
is possible to find the 'ideal' product of the consumer under investigation. The graphical
interpretation of the consumers' preference arrows is similar to that of internal preference
mapping. The interpretation of the actual sensory correlations is based on the previous
multivariate analysis used to obtain the sensory map. In practice the user may choose that the
preference vectors of consumers who fit Phase 4 (vector), are scaled to the unit circle round
the sensory space. This is usually to make interpretation of consumer segmentation easier.

The other models, circular, elliptical and rotated elliptical, have response areas which are
quadratic in shape. A quadratic can have either a maximum or minimum or a saddle point. A
maximum represents the consumer’s ideal point, whereas a minimum represents a negative
ideal point. The interpretation of a saddle point is somewhat more difficult, as the preference
signs are reversed, in other words one dimension is positive ideal while the other is negative
ideal. In practice, only the maxima and minima are represented on the sensory map with a '+ or

On the preference plot of ideal points, the situation of the '+ and '-' signs and their density,
provides an impression of the distribution of consumers' ideal points. In cases where the ideal
point lies outside the sample space, the vector model may well be more appropriate.

The circular model (Phase 3) cannot result in a saddle point, and as its name suggests, the
consumers' preference data are represented as circles surrounding the ideal point. With a
positive ideal point, the circles direct towards the centre to a common point. However, with a
negative ideal point consumer preference increase in any direction away from the centre of the
circle.

The elliptical model (Phase 2) will result in a saddle point if the 57 estimators have different
signs. In this case there is usually no sensible interpretation in terms of identifying the
consumer's ideal product. The interpretation of the elliptical model is similar to the circular
model, but in this case the preference level lines elliptically surround the ideal point. The
sensory attributes on the longest axis of the ellipse are of less importance than the sensory
attributes of the shortest axis of the ellipse. Using a large number of consumers in the
preference mapping exercise results in great difficulty in building the elliptical model to identify
the common ideal point. This is because, consumers may be attaching different levels of
importance to each preference dimension, and have different orders in terms of which
preference dimension is most important to them. This makes the task of segmenting consumers
more difficult, and for the lay user is a very complex and, perhaps, impossible task.
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The quadratic (Phase 1), or complete model, takes into account the interactions between the
sensory map's components: terms yijXiXj in Equation 4. This results in a rotated PCA,
removing the original interpretation of the sensory map. For this reason, this model is not used
for sensory analysis external preference mapping,

Although all four models are normally presented together in the literature, in practice only
the vector (Phase 4) and circular (Phase 3) models are routinely used by sensory analysts.

2.3 Advantages and Disadvantages of External Preference Mapping

Preference mapping offers a very useful tool in the product optimization process, but perhaps
its biggest drawback is that it is often misused due to lack of understanding. It is hoped that
this chapter will go some way towards overcoming this problem. The purpose of this particular
section is to consider some specific advantages of external preference mapping.

Advantages

e Offers a 'relatively' straight forward procedure for relating sensory and consumer
information, for product optimization. Specifically where a preference mapping program has
been purchased.

» Helps identify new markets.

e Provides direction for future product development.

e Provides information on market segmentation, with respect to sensory
preferences. Can identify the need to make alternative types of product
for different market segments.

¢ Using market samples, the technique can be a first
step in looking at products currently available to the consumer, before
developing specific formulations for a more detailed study.

Disadvantages

¢ A fairly large number of samples (e.g., 12-20) are often required to ensure
that the preference mapping can be undertaken successfully.

o At present, every consumer must evaluate all the samples put forward to
the consumer trial. This can be expensive.

e Can be complex to program the procedure, if the user has not bought a ready written
preference mapping program.

¢ Preference data is not always directly related to the sensory profile map, as the way
trained panels perceive products is different from consumers. However, note that lower
dimensions of the profile map often relate better to preference than the commonly used first
two dimensions.

¢ Tends to be used for understanding and direction, not prediction.

o Not all consumers well represented by the models.

2.4 Advantages and Disadvantages of Internal Preference Mapping

Internal preference mapping is useful to provide a sample map, based only on preference data.
Therefore, it cannot be used to understand reasons for preference on its own. It has been
known to use internal preference mapping to produce preference dimensions, and to use
external preference mapping to map the sensory attributes onto the preference space. The
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advantage of this is that the attributes are directly related to preference dimensions. However,
in practice users may feel that this approach detracts from the benefits of linking a profile map
directly back to the product processing and formulation parameters. A summary of the
advantages and disadvantages on internal preference mapping are listed below.

o Easier to use and understand than external preference mapping, as
similar to principal component analysis.

o Allows actual preference dimensions to be determined, as only
acceptability data is used.

¢ Can be used as a screening procedure without sensory profiling,
to develop samples worthy of further sensory and consumer work.

Disadvantages

¢ The program tends to break down after two dimensions in terms of
interpretation.

¢ Percentage variance explained by the dimensions is often very low.

2.5 Software Availability

A number of software packages can be used to undertake preference mapping, though few
readily allow the analysis without some work from the user. PC-MDS has a program for both
internal and external preference mapping. In addition, the two sensory based statistical
packages, SENPAK and SENSTAT also allow preference mapping to be undertaken. In each
case running the analyses is fairly straightforward.

The major packages, such as SAS, Genstat, SPSS, S-Plus, SYSTAT and Minitab will allow
all or most of the analyses options to be programmed. However, this requires the aid of an
experienced statistician. In the event of this option being available, much more flexibility tends
to be achieved over the output and graphical displays.

A comprehensive list of packages is provided in Appendix 1, together with the supplier.

3. PRACTICAL CONSIDERATIONS FOR SAMPLES

3.1 Sources of Samples

The sources of samples for a preference mapping study depends very much on the project brief
and the objectives within this. If the objective is to characterise the product on the market of
interest, e.g., all dairy milk block chocolate bars, then samples will normally be obtained from
retail outlets. As with any sensory trial, it is usually advisable that samples within the same
batch are purchased for use throughout both the sensory and consumer trials. This is because
batch to batch variation may occur within samples. For example, in a crisp trial, the crisps may
differ slightly in terms of bake level from batch to batch. Thus, if the consumer trial is
undertaken on a different batch of samples from the sensory trial, then a 'true’ relationship may
not be found. If batch-to-batch variation is a problem, for example seasonal differences in
potatoes, it may be important to build this into the design, by undertaking trials at different
times of year.
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Samples produced by the company themselves are used where the objective is to investigate
different formulation and/or processing alternatives, to establish which combination of
variables maximise the acceptability of the product. This may be as a follow on to an initial
market evaluation as described above, or based on market research information. It can, of
course, result from a change of supplier, a legal requirement to reduce an ingredient, or change
to a different process. This of course assumes that a difference is wanted. In practice these
situations usually require no product change, and therefore difference tests are used.

3.2 Design Considerations

Good experimental design is central to successful experiments, as discussed more fully in
Chapter 2 of this book. However, it is important to take a look at what options tend to be
available to industry, recognising that these may be improved through technology transfer and
by illustrating the benefits that can be obtained.

The first and most important consideration, is establishing if a preference mapping study is
to take place. This in turn determines the minimum number of samples that can be used. For
example, a descriptive profile can take place on 4 samples, but not a preference mapping study.
Recommending the minimum number of samples for preference mapping is fraught with
difficulties, as the statistician or sensory scientist must often compromise between what is
statistically ideal and what is practically possible within the time and financial constraints of the
company undertaking or commissioning the work.

Taking the practical perspective as the starting point, and assuming the samples are well
spread on the sample map, the user can sometimes get by with an absolute mininum of six
samples for the vector model and seven to eight for the ideal point model (Phase 3). This, from
a statistical point of view, allows a few spare degrees of freedom in the regression analysis.
However, the point about a good spread of samples is important, as a sample space with one
very different sample, and the rest close together, will not allow a good model to be fitted to
the data.

Taking the problem, as viewed by the statistician, a larger number of samples than
mentioned above is desirable. However, the larger the number the better, is not always true
after a point, as no extra information will be gained. For example, if there are thrirty-two
possible treatment combinations in a factorially designed experiment, as much information is
likely to be obtained on a half replicate of sixteen samples. The number of samples necessary
will often depend on whether the samples are produced according to an experimental design
and its format, or selected from those in the market. Both cases will now be considered.

Studies with market place samples are often the most difficult, as it is impossible to know in
advance whether they will have a good spread on the sample map. Where a wide range of
samples is available, it may be necessary to look at twenty to thirty samples on the sensory
profile, and then select a representative range of twelve to sixteen samples for the consumer
trial. In this case, when undertaking the preference mapping, the sample coordinates to be used
will simply be chosen from the results of the multivariate analysis on all the samples used in the
profile. It is important not to re-run the multivariate analysis on sensory profile data, using the
reduced number of samples before preference mapping, as this will change the sensory map
definition. However, the number of samples selected should still be sufficient to allow the
preference mapping to be undertaken, as discussed earlier. If the market is small, and only a
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few samples exist, then perhaps preliminary acceptability and sensory work can be used as an
exploratory tool to setting up a designed experiment, as discussed below.

Preference mapping studies can be carried out on samples which are formulated to a
carefully thought out design. For example, while under-used, factorially design experiments are
a very efficient way of product development, providing preliminary work has been undertaken
to establish the key factors important to preference, and pilot work has been undertaken to
establish realistic levels of each of the factors. A simple factorial experiment may produce eight
samples, by using three ingredients (A, B, C), each with two levels (1, 2): A1BIC1, AIBIC2,
A1B2C1, A1B2C2, A2BIC1, A2B1C2, A2B2C1, A2B2C2. Four or five ingredients may be
used, or three levels, thus making more samples. In such cases the concept of fractional
factorial experimental designs can be used to reduce the number of samples to a manageable
number. With well designed experiments eight samples may well prove to be adequate for
preference mapping studies. This approach also has the added advantage that other statistical
tools (e.g., factorial analysis of variance and response surface methodology) can be used to
extract detailed information as to the best combination of ingredients to use.

A final point to note is that each consumer must taste all the samples put forward to the
consumer trial. As mentioned previously, this could be a subset from the sensory trial, or all the
samples used in the sensory trial. Work is ongoing to determine whether incomplete designs
can be used, as mentioned in Section 2.4. From a sensory point of view, the logistics of tasting
a large number of samples in a consumer trial must be considered. Often consumers must be
recalled to attend several tasting sessions, or be pre-recruited to attend a half day or whole day
tasting, with suitable breaks to prevent sensory fatigue.

3.3 Sensory Methodology

There are a two main sensory techniques which are used to provide a perceptual map of
samples: dissimilarity scaling (Schiffman et al., 1981) and descriptive profiling (Stone and
Sidel, 1985).

Dissimilarity scaling provides a perceptual map of the samples using the statistical tool of
multidimensional scaling. However, it provides no descriptive information about why the
samples are different. For this reason, and other practical reasons, descriptive profiling is more
widely used both as a tool in its own right as well as for preference mapping studies.

Profiling data is normally analysed by principal component analysis, generalized Procrustes
analysis, factor analysis or correspondence analysis. In each case, sample coordinates are
produced to position the samples on the map. These coordinates are the input to external
preference mapping to define the sample space onto which consumer preference is mapped.

3.4 Consumer Methodology

The key point about collecting the consumer data is that each consumer should evaluate
every sample selected for the trial, as discussed in Section 3.1. Acceptability data is normally
collected on a 5, 7 or 9 point hedonic category scale (Peryam and Pilgrim, 1957), or on a
suitable anchored continuous line scale. In many instance, separate measurement may be made
for appearance, flavour, texture (mouthfeel) and overall acceptability, in order that each aspect
of the product can be considered in detail. The format of the data for input to external or
internal preference mapping is matrix, where the consumers are the rows and the samples the
columns.
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4, INTERPRETATION AND PRESENTATION OF RESULTS: PREFMAP

The purpose of this section is to illustrate how results from external preference mapping can
be interpreted and presented. It utilizes the output format from the PC-MDS package, but can
be easily applicable to most other programs. In addition, it was decided to concentrate only on
the Phase 3 (circular ideal point) and Phase 4 (vector) models, as Phases 1 (quadratic ideal
point) and 2 (elliptical ideal point) are seldom applicable to sensory applications.

4.1 Information from the Analysis

Tables 1 and 2 list the type of information provided by an external preference mapping
analysis, and what each refers to, and how useful it is in practice. This is based on specifying
Phase 4 (vector) and Phases 3 (ideal), respectively.

Table 1

Comments on phase 4 (vector) output.

Output Description Comments

Original configuration These are the scores of the sample space. They should remain

(X-matrix) the same throughout the analysis.

Vector of scale values These are the normalized preference data, with sum zero and

(preferences) sum of squares equal to 1, as the preference scores are centered
by subtracting the preference data from the mean and dividing
by the standard deviation.

Dimension cosines of These are the coordinates representing the point at which to

fitted subjects draw the vector from the origin. They are coordinates to enable

preference directions to be drawn.

Table 2 Comments on Phase 3 (ideal point) output.

Output Description Comment

Original configuration These are the scores of the sample space. They should remain
(X-matrix) the same throughout the analysis

Vector of scale values These are the normalized preference data, with values
(preferences) (preferences) sum zero and sum of squares equal to 1.

Coordinates of ideal points- These are the values (coordinates) for plotting the ideal point
with repect to old axes position on each of the dimensions specified in the analysis.
(coordinates of ideal points)

These are the weightings for each individual on the axes
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Importance of new axes (preference dimensions). The weighting on each axis is the

(weights of axes) same within an individual. The higher the weighting, the
greater the profile map structure is in accounting for that
individual's preference. A negative set of weights implies a
negative ideal point (anti-preference), while a positive set of
weights implies a positive ideal point.

At the end of the output the user will find the correlation and F-ratio for the model for each
individual and for each Phase. For interpreting the correlation (R) for the regression model, the
same principles are used as when using regression methods for other applications. The R can
take a value from 0 to 1, with the closer to 1 the correlation is, the better the fit of the model.
Correlation tables can be used to establish the significance of the relationship between the
preference data and sensory dimensions. In practice many users choose a correlation of, say,
0.6 based on past experience with the method, as representing at least a 5% significant level for
sample sizes of greater than 10, or a 10% significance level for sample sizes of greater than 8.
This is fine when the method is being used as an exploratory tool to suggest future directions
with some confidence, rather than a predictive tool in the mathematical sense. However, it is
suggested that individual models with correlations of less than 0.5 are unacceptable to use in
the interpretation process. This is because the confidence in such data, even for exploratory
interpretation would be low. Consumers not satisfying the required goodness of fit level are
removed from the analysis, and not considered further. A lot of information is lost if many
consumers fall into this category.

The statistical significance of the regression model can be tested using the F-ratio provided
by the analysis, and comparing it to the Fisher tables (e.g., Neave, 1978). This is just another
way of measuring how well each consumer's data fits the model used by the preference
mapping program. The degrees of freedom to use are given on the output, and therefore can be
used to find the critical value for comparison. If the critical value is less than the F-ratio in the
output, then the model is well fitted at the level of significance tested. It is usual to use a 5%
significance level, but this is often too severe for the purpose of the work being undertaken,
many consumers being ignored at this cut-off level.

In addition, the analysis provides a between phase F-ratio, which allows the user to decide if
moving to a more complex model offers a better fitting model for a particular individual. In
other words the between phase F-ratio helps establish whether a quadratic term should be
present in the model. This information is seldom used in practice, as the interpretation process
tends to eliminate individuals who could have been represented by the more complex model, as
determined by the F-ratio mentioned in the above paragraph. It is important, for segmentation
and interpretation purposes, that as many 'good’ subjects as possible are represented in each
phase, to allow meaningful conclusions to be drawn.

4.2 Presentation of Results

In practice, presentation of the results tends to centre round the plots, both vector and ideal
point, as appropriate. In the case of the vector model, the sample plot is produced, with
individual directions of preference represented as vectors on the sample map. An example,
illustrating this, is provided in Section 6.4.1. If all individuals have preference vectors in the
same, or similar, direction, then there is a clear preference for samples with attributes in that
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area of the sample map. However, it is more usual to have individuals with different
preferences, though often a clear direction for product development will be apparent.

It is also usual, for completeness, to indicate the number of consumers who were actually
used for interpretation. This allows the reader (or client) to appreciate better the significance of
his results. For example, if only 25% of the consumers fitted the vector model, then clearly a
lot of information has been lost, unless these individuals are represented in the ideal point
(Phase 3) model.

For the ideal point model, the sample plot is produced with points on the space representing
either positive or negative ideal points. In most cases, the negative ideal points are not taken
into account, other than to illustrate areas of the space representing samples whose
combination of attributes is disliked. As mentioned earlier, a positive ideal point represents a
point of maximum preference (or local maxima) on the profile map, whilst a negative ideal
point is an anti-preference point (or local minima). Again clear explanation can be found by
following the example in Section 6.

4.3 Pitfalls and Misinterpretations

There are many potential pitfalls to the unwary user of external preference mapping. It is
tempting to include all consumers in the final presentation of the results, thus providing
conclusions which may be misleading. In many instances the Phase 3 or 4 models may just not
be appropriate, either because there are too few samples for the analysis, or because the data
do not fit the models used, as indicated by the poor goodness of fit measures discussed in
Section 4.1. It is important to identify this.

Another pitfall for external preference mapping is the number of dimensions to put into the
analysis. All the comments to date have considered the case of a two dimensional sensory map.
Clearly three or four dimensions are possible, sometimes more. It is important to remember
that increasing the number of dimensions in PREFMAP leads to a requirement to increase the
number of samples in the analysis. If the user has only six samples and is running a vector
model, only two dimensions can be used.

Experience of using three and four dimensions in PREFMAP has suggested that the
interpretation becomes confusing and somewhat unreliable. However, where there is clearly a
three or four dimensional sensory map, it would be very wrong to only examine the first two
dimensions. This is because the attributes contributing to preference may be best explained in
the lower dimensions (e.g., Dimension 4). In the author's experience, it is wise to look at
different sets of two dimensions in the PREFMAP analysis. In this way the best solution can be
obtained. However, this does involve a lot more work on the part of the user.

There are less pitfalls to using internal preference mapping, but nonetheless certain points
should be noted. Firstly, it is often the case that very little of the total variation is explained in
the first two dimensions (e.g., 30-40%). However, the MDPREF solution often becomes
unstable when more dimensions are used. In addition, not every consumer contributes the same
amount of information to the sample map. If the common option of scaling the consumer
vectors to unit variance is used, then the apparent segmentation represented on the preference
map may be misleading, as could the position of the samples. This is because not all consumers
will contribute to the preference map, as will be illustrated in Section 6.
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4.4 The Extent of the Conclusions

The extent to which conclusions can be drawn from external preference mapping will depend
very much on the number of samples, goodness of fit of the models used, etc. In fact,
consideration needs to be given to all the factors previously discussed. Generally speaking, it
should be recognised that the preference mapping approach, in a well thought out experiment,
will provide excellent direction for future product development. However, it would be
unrealistic to expect it to pinpoint the precise level of each product ingredient or process
combination to achieve the perfect product from a sensory point of view. Nonetheless from
previous work with industry, major product improvements have been achieved. It is also worth
noting, that in factorially designed experiments, further value can be added to preference
mapping by undertaking response surface analysis.

Preference mapping can, and is used, to identify the major segments of the target market,
and can be used to make products for different segments. In saying this, it is important to
recognise that a manufacturer cannot go to extremes and make a product for every consumer.
Therefore, for a particular segment, the best compromise product can be identified on the basis
of preference mapping.

5. INTERPRETATION AND PRESENTATION OF RESULTS: MDPREF

As previously mentioned, internal preference mapping is a form of principal component
analysis, but with the option to pre-treat the data in a number of ways, and/or to scale the
resultant scores and loadings. In running a MDPREF, there are generally four possible options.
There are two possible data pre-treatments, and the choice of whether or not to normalize each
consumer's preference vector to fit a unit circle.

Pre-treatment of the data will be considered first. Both methods are forms of centering each
consumers preference data. The standard option is to pre-treat the preference data of each
individual, by subtracting the mean preference rating from the original sample preference
rating. This in effect acts as a translation of the scale used and relocates the data round the
centre point, the mean (average) value. The second method uses the relocated data as
described, and then divides the sample preference ratings by the standard deviation of the
original sample scores. In this way all samples have a standard deviation of 1, which in practice
may distort the acceptability data if there are samples with greatly different standard deviations.

Normalization is the second option, and usually the normalization option is chosen to enable
the geometry of the preference map to be correct. However, some MDPREF programs allow
the user to choose not to normalize. This is not recommended, as the map produced may be
misleading.

One option which has not been considered here is whether to scale the preference vectors to
unit variance. Some programs do this automatically, while others give the option of allowing
the vector lengths to represent the variance contributed by the consumer to the preference
map.

In terms of use of internal preference mapping with sensory attributes, a common procedure
is to correlate the mean sensory attribute scores with the each preference dimension. The
results are simply plotted as vectors on the internal preference map, and this will be illustrated
in Section 6.
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6. CASE STUDY: ORANGE DRINKS

6.1 Introduction

The example, used to illustrate Phase 3 and Phase 4 of external preference mapping and
internal preference mapping, is based on work undertaken on a selection of orange drinks to
investigate effect of citric acid and sweetener on product acceptability.

The background to the project was to investigate labelling of diet and regular drinks, and
whether this affected the acceptability of the product. The work presented here, to illustrate
preference mapping, will concentrate only on blind assessment of the products, which was the
first step in the exercise.

6.2 Selection of Samples for Profiling

The samples were selected with the objective of the experiment in mind. Orange drinks of this
type are sweetened with sucrose and/or aspartame. Thus, sweetener type was a factor in the
experiment with three combinations being chosen. These were sucrose only, aspartame only
and a 25% sucrose/75% aspartame mix. The levels of sweetener chosen were based on existing
work undertaken at the School of Psychology, University of Birmingham (Booth and Freeman,
1992), using this type of orange drink. However, a preliminary experiment was undertaken to
ensure equi-sweetness of the solutions.

A second factor, acidity at three levels, was included in the experiment to investigate the
interaction between sweetener and acidulent. In addition, Carboxymethyl-cellulose (CMC) was
used with the aspartame samples, to mask differences in viscosity.

The final design of fifteen samples (Tables 3 and 4) was chosen to provide a good range of
samples for profiling, as well as to minimize the inter-correlations between the samples from a
psychological point of view (Booth and Freemanl992). The rationale is that, for any
experiment that seeks to distinguish main effects of two (or more) independent variables, the
aim is to minimise the inter-correlations between the levels of the factors in the samples. In this
way, for example, problems of multicollinearity in regression are avoided or reduced. In this
particular example, if the rank correlation between the sweetener levels and acid levels are
calculated from Table 3/4, a value of near zero is obtained This is because the filled cells in
Table 3 are 'square’, that is high and low levels of one factor are equally represented at high
and at low levels of the other.

As this design is somewhat different from the traditional approach of undertaking a
factorial design or mixture model design, a few comments on the background will be made.
The primary purpose of the orange drink experiment was to compare a psychological approach
to product optimization to the traditional sensory approach. In addition, it was important to
produce realistic mixtures for assessment, and again this was based on previous unpublished
work at Birmingham University. The actual design is based on the recognition that the
psychological approach to the analysis is based on an unfolding procedure as described by
Conner (1994). Clearly, from a purely sensory point of view, this type of deign runs the risk of
not obtaining sufficient good information on the sensory interactions. Ideally, for the traditional
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sensory approach a proper factorial or mixture model would have been used. However, this
particular example does illustrate well the preference mapping methods.

Table 3

Design used for sample selection. Bold letters - aspartame only, underlined letters - sucrose
only.

Levels Citric Acid
Low Medium High
High 7 - - I
6 E D -
Levels of 5 B G M
sweetener 4 L A H
3 N 0 K
2 F C -
Low 1 - = J
Table 4

Samples used for profiling exercise, where all ingredient quantities were measured per litre of
water.

Sample |Orange |Citric Acid |Sucrose(g) |Aspartame (g) CMC (ml)
Powder |(g)
A 4.69 6.11 74.92 0.00 115
B 4.69 3.05 104.89 0.00 95
C 4.69 6.11 38.30 0.00 140
D 4.69 6.11 36.76 0.94 140
E 4.69 3.05 0.00 1.52 165
F 4.69 3.05 0.00 0.21 165
G 4.69 6.11 0.00 1.02 165
H 4.69 12.22 0.00 0.55 165
I 4.69 12.22 206.00 0.00 30
J 4.69 12.22 6.83 0.10 160
K 4.69 12.22 0.00 0.33 165
L 4.69 3.05 18.73 0.37 150
M 4.69 12.22 26.22 0.56 145
N 4.69 3.05 53.62 0.00 130
0] 4.69 6.11 13.40 0.26 155

Profiling was carried out in the normal way (Lyon et al., 1990), by generating and agreeing
on a list of thirteen flavour and mouthfeel terms, all of which were used significantly (p <
0.001) to discriminate between the samples. Figures 3 and 4 show the sample and attribute
plots derived from generalized Procrustes analysis (GPA). The triangles in Figure 3 represent
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the three replicate positions for each sample. GPA was used in order to produce a consensus
map, which took into account differences in scale use by the sensory assessors (Amold and
Williams, 1986). The GPA sample map was used as input to the preference mapping in this
particular example, but remembering that the attribute plot tells the user why the samples are
placed in a particular way on the sample map.

6.3 Selection of Samples

It is often impractical to evaluate a large numbers of samples in a consumer trial, due to time
and cost considerations. As mentioned previously, preference mapping works when each
consumer has evaluated all samples under investigation.

In this example, it was decided to select eight of the original fifteen samples for the
preference mapping study. This was considered the absolute minimum to illustrate the Phase 3
model. Ideally, however, all fifteen samples should have gone through.

Samples were selected to represent the range on the sample map (Figure 3), and these were
A,C,D,F, H L J, L. Acceptability data were collected using sixty-two staff at Campden, not
involved in sensory analysis. Samples were evaluated over two sessions, using a nine point
hedonic scale (Table 5) to measure overall acceptability.

Table §
Nine point hedonic scale used to measure product acceptability (Peryam and

Pilgram, 1957).

Descriptor

Like extremely

Like very much

Like moderately

Like slightly

Neither like nor dislike
Dislike slightly

Dislike moderately
Dislike very much
Dislike extremely

W AL\ 00O
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Figure 3. Sample map derived from generalized Procrustes analysis on a
conventional profile of fifteen orange drink samples.
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Figure 4. Attribute map derived from generalized Procrustes analysis on a
conventional profile of fifteen orange drink samples.
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6.4 External Preference Mapping

External preference mapping was run specifying Phases 3 and 4, the ideal point model and the
vector model. The sample scores, averaged across replicates, from GPA are shown in
Appendix 2, and the acceptability data in Appendix 3.

On running this analysis, the first part of the output examined was the root mean square
correlation values for both phases. These take values from 0 to 1, where 1 represents a perfect
fit, and O represents no fit at all. This measure is an overall measure which takes into account
the correlation fits of each assessor's model. For this analysis, root mean square values were
0.758 and 0.693 for Phases 3 and 4, respectively. Both values being over 0.500 are acceptable,
and in addition, there was no real improvement in using the ideal point model over the vector
model. As is often the case, both models were examined. The choice of 0.5 as the cut-off point
is somewhat arbitrary, and tends to be based on number of samples. As the root mean square
correlation is analogous to correlation coefficients, the rules for significance apply. At 20%
significance a value of 0.507 is required, while for 5% significance a value of 0.707 is needed.

Before considering both models, the correlations for each individual consumer are usually
examined, to obtain an idea as to the number of consumers likely to be included in the final plot
for interpretation. These values are provided in Table 6.

6.4.1 Vector Model

The first step was to determine which consumers fitted the model. This can be achieved by
looking at the correlations at the end of the output (Table 6). In this instance there were eight
samples, which required a correlation value of 0.707 for 5% significance or 0.621 for 10%
significance. On this occasion, a 10% significance level selection was used. In this way thirty-
three of the sixty-two consumer were included for plotting the graphical representation of the
results. If a correlation at 20% significance was used (0.507), then an additional twelve
consumers would have been included in the final analysis. In many cases this provides further
useful information, but at the expense of reducing confidence in a statistical sense.
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Table 6

Consumer (subject) correlations for Phases 3 and 4.

Consumer Phase 3 Phase 4 Consumer Phase 3 Phase 4
1 0917 0914 33 0.706 0.631
2 0.634 0.436 34 0.711 0.696
3 0.984 0.950 35 0.683 0.668
4 0.720 0.683 36 0.616 0.591
5 0.628 0477 37 0.692 0.462
6 0.708 0.601 38 0.607 0.593
7 0.885 0.870 39 0.533 0.389
8 0914 0.844 40 0.656 0.599
9 0.890 0.820 41 0.559 0.509
10 0.703 0.700 42 0.824 0.651
11 0.457 0.084 43 0.797 0.757
12 0.754 0.565 44 0.673 0.648
13 0918 0.904 45 0.780 0.777
14 0.709 0.491 46 0.530 0.281
15 0.904 0.873 47 0.893 0.884
16 0.824 0.823 48 0.817 0.680
17 0.649 0.488 49 0.406 0.402
18 0.841 0.829 50 0.804 0.556
19 0.810 0.809 51 0.849 0.849

20 0.545 0.539 52 0.849 0.836
21 0.530 0.523 53 0.874 0.839
22 0.780 0.780 54 0979 0.948
23 0.672 0.394 55 0.778 0.763
24 0.625 0.526 56 0.842 0.804
25 0.799 0.421 57 0.503 0.392
26 0.794 0.767 58 0814 0.801
27 0.726 0.418 59 0.698 0.694
28 0.779 0.772 60 0473 0473
29 0.866 0.836 61 0.923 0.784
30 0.730 0.327 62 0.549 0.463
31 0.610 0.595

32 0.723 0.567 Average 0.906 0.867

The next step is to create a plot of the samples using the coordinates of Appendix 2, and
then draw on the vectors using the coordinates shown in Table 7. These are normally identified
as 'dimension cosines of fitted subject vectors'.
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Table 7
Coordinates for the vector model, for each consumer.

Consumer Dim 1 Dim 2 Consumer Dim 1 Dim 2
1 -0.765 0.644 32 -0.795 -0.607
2 -0.955 0.297 33 -0.641 0.768
3 -0.958 -0.288 34 -0.723 0.691
4 -0.663 0.749 35 -0.148 0.989
5 -0.907 -0.421 36 -0.168 0.986
6 -0.468 0.884 37 -0.061 0.998
7 -0.162 0.987 38 -0.288 0.958
8 -0.559 0.829 39 0.508 0.862
9 -0.531 -0.847 40 -0.426 0.905
10 -0.485 0.874 4] -0.751 -0.660
11 0.709 -0.705 42 -0.950 0311
12 -0.849 -0.529 43 -0.301 0.934
13 -0.439 -0.899 44 -0.999 0.042
14 -0.264 -0.965 45 -0.952 -0.307
15 -0.966 -0.259 46 -0.950 0312
16 -0.489 -0.872 47 -0.961 0.278
17 -0.676 -0.737 43 -0.346 0.938
18 -0.638 0.770 49 -0.558 0.830
19 -0.965 0.262 50 0.847 -0.532
20 0.058 -0.998 51 -0.719 0.695
21 -0.636 0.772 52 -0.925 0.381
22 -0.998 -0.064 53 -0.617 0.787
23 -0.183 0.983 54 -0.991 -0.133
24 -0.595 0.804 55 -0.456 0.890
25 -0.552 0.834 56 -0.966 0.260
26 0.998 -0.064 57 0.587 -0.810
27 -0.676 0.737 58 -0.826 0.564
28 -0.467 0.885 59 -0.811 0.585
29 -0.787 -0.617 60 -0.998 0.070
30 0.132 0.991 61 -0.266 0.964
31 -0.852 0.524 62 -0.014 0.999

The vector model (Phase 4) plot is shown in Figure 5, where a clear direction of preference
towards the left of Dimension 1 can be observed. In fact, Samples D and L are most acceptable
overall. By examining Figure 4, the attribute plot, it can be observed that the most acceptable
samples are sweet, tangerine, thick and are high in strength of flavour. It is also interesting to
observe in this example, that the profile sample map and the internal preference map are very

similar. This is not always the case.
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Figure 5. The Phase 4 vector map derived from undertaking external
preference mappingusing the sensory profile map in Figure 3.

6.4.2 Ideal Point Model

Again, the first step was to determine which consumers fitted the model satisfactorily by
looking at the correlations (Table 6). Taking a 10% significance level, fifty of the sixty-two
consumers were included for plotting the graphical representation of the results. If a
correlation at 20% significance was used (0.507), then an additional eight consumers would
have been included in the final analysis. At this point, another two steps are required, firstly to
identify positive and negative ideal points, and then to establish which of these actually lie
within the sample space.

To determine whether an ideal point is positive or negative, the user should look at the
‘importance of new axes' part of the output (see Table 2 for explanation). This information is
provided in Table 8, together with whether the consumer had a positive or negative ideal point.
There were forty-two positive and twenty negative ideal points in total. An asterisk by the
consumer identity number in Table 8 highlights the fifty consumers who are included for
further analysis at the first step.

The coordinates for the ideal points (Table 9) now need to be examined to determine which
are to be plotted. A decision is normally taken to plot and interpret only those ideal points
within the sample space. This is because ideal points outside the space are really better
described by the vector model, as they are ideal points tending towards infinity. In Table 9 a
single asterisk represents consumers fitting the model, whilst a double asterisk represents those
whose ideal points also fall within the sample space. There were forty consumers to take
forward to the plotting stage, of which twenty-eight had positive ideal points and twelve had
negative ideal points.
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Table 8
Positive and negative ideal points and their coordinates.
Consumer Importance Sign Consumer Importance Sign
of New Axes of New Axes
1* (-4.6, -4.6) - 32% (26.9, 26.9) +
2% (27.6,27.6) + 33%* (-19.0,-19.0) -
3* (15.4,15.4) + 34* (-8.7,-8.7) -
4* (13.8,13.8) + 35* 8.5, 8.5) +
5* (244, 24.4) + 36* (10.5, 10.5) +
6* (224,22 .4) + 37* (30.8, 30.9) +
7* 9.7,9.7) + 38 (78, 7.8) +
8* 21.0,21.0) + 39 (21.821.8) +
9* (20.7, 20.7) + 40* (16.0, 16.0) +
10* (4.0,4.0) + 41 (13.9,13.9) +
1* (26.9, 26.9) + 42* (30.2,30.2) +
12* (29.9, 29.9) + 43* (14.8, 14.8) +
13* (9.6,9.6) - 44* (-10.9,-10.9) -
14* (30.6, 30.6) + 45% (4.1,4.1) +
15*% (-14.1,-14.1) - 46 (26.9, 26.9) +
16* (27,2.7) + 47* (-1.5,-1.5)
17* (-25.6,-25.6) - 48* (-27.1,-27.1) -
18+ (8.8, 8.8) + 49 (-3.5,-3.5) -
19* (3.0,3.0) + 50* (34.8,34.8) +
20 4.7,47) + 51* (0.8, 0.8) +
21 (-5.2,-5.2) - 52% (-8.7, -8.7)
22% (-0.8, -0.8) - 53* (14.7, 14.7)
23* (32.6, 32.6) + 54* (-14.5,-14.5) -
24* (-20.3,-20.3) 55% (-9.1,-9.1) -
25* (40.7, 40.7) 56* (15.0, 15.0) +
26* (-12.2,-12.2) - 57 (18.9, 18.9) +
27* (-35.6,-35.6) - 58* 8.7,8.7) +
28* 6.4,6.4) + 59* (-4.7,-4.7) -
29% (13.3,13.5) + 60 (-0.7,-0.7) -
30* (39.1,39.1) + 61* (29.2,29.2) +
31 (8.1,8.1) + 62 (78,7.8) +

Figure 6 shows the ideal point model plot, from which it is evident that the majority of positive
ideal points are to the left of Sample A on Dimension 1. This, therefore, suggests a similar
result to the vector model map. This picture suggest that the attributes on this side of the plot
are acceptable, but also that the shouldn't be quite as strong as perceived in Samples L and D.
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Table 9
Coordinates of the ideal points, for each consumer.

Consumer Dim 1 Dim2 | Consumer Dim 1 Dim 2
1* 0.390 -0.321 32%* + -0.018 -0.038
2%+ + -0.012 0.000 33%+ - 0.075 -0.076
Kl + -0.102 -0.047 34%+ - 0.163 -0.147
4x* + -0.065 0.086 35%= + -0.016 0232
S** + -0.018 -0.027 36%* + -0.010 0.164
6** + -0.016 0.058 37** + 0.017 0.037
T** + -0.025 0.266 38 -0.047 0.211
g** + -0.041 0.081 39 0.043 0.030
gx* + -0.034 -0.096 40** + -0.027 0.088

10* -0.219 0.420 41 -0.043 -0.065

11 0.025 -0.015 42%* + -0.024 0.005

12%* + -0.015 -0.032 43%* + -0.027 0.138

13** - 0.131 0.218 44** - 0.142 -0.015

14%* + 0.008 -0.055 45* -0.356 -0.131

15%* - 0.143 0.023 46 -0.001 -0.003

16* -0.369 -0.703 47* 0.260 -0.079

17%* - 0.050 0.024 48** - -0.005 -0.076

18** + -0.138 0.181 49 -0.144 -0.253

19* -0.539 0.142 50%* + 0.051 -0.029

20 0.041 -0.369 51* -1916 1.860

21 0.186 -0.212 52% 0.213 -0.089

22* 1.958 0.115 53%* + -0.073 0.109

23** + 0.013 0.027 54%* - 0.153 0.008

24** - 0.061 -0.066 55%* - 0.129 -0.224

25%* + 0.004 0.013 56** + -0.090 0.020

26** - -0.109 -0.002 57 0.053 -0.055

27%* - 0.040 -0.031 58** + -0.157 0.111

28%* + -0.141 0.295 59* 0.300 -0.211

20%* + -0.090 -0.096 60 1.480 -0.112

30** + 0.023 0.015 61** + -0.002 0.069

31 -0.125 0.079 62 0.019 0.072
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Figure 6. The Phase 3 ideal point map derived from undertaking external
preference mapping using the sensory profile map in Figure 3.

6.5 Internal Preference Mapping

6.5.1 MDPREEF: First Example

The data were input to the MDPREF program of PC-MDS, in the format shown in Appendix
3, where consumers are rows and samples are columns. In this run of the analysis, it was
decided to pre-treat each consumer's acceptability data by subtracting the row mean and
dividing by the standard deviation, and then to scale each consumer’s preference vector to unit
variance, that is so they fit on a unit circle. The correlation matrix was used, as the analysis was
run using PC-MDS. 1t should be remembered that in doing this pre-treatment, some consumers
may be given more weight than perhaps they should.

The resulting plot is shown in Figure 7, which shows the samples as letters, and the
consumers as directions of increasing preference. All vectors are scaled to fit a unit circle. This
example is particularly good, as most consumers prefer samples on the left hand side of
Dimension 1, with Sample L being the most acceptable overall.

6.5.2 MDPREF: Second Example
The data were input to a MDPREF program in Genstat, in the format shown in Appendix 3. In
this run of the analysis, the data were pre-treated as before by subtracting the row mean and
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dividing by the standard deviation. However, in this case the preference vectors were not
scaled.

The resulting plot is shown in Figure 8, which shows the samples as letters, and the
consumers as directions of increasing preference. The length of the vectors indicate how much
information an individual consumer is contributing to the. preference map. Consumers with
shorter vectors have preference data which are contributing less information to the sample map
than those with longer preference vectors. It is clear from Figure 8 that some consumers are
contributing less information than others. However, the same general conclusions to those in
Figure 7 can be drawn. The fact that the space has rotated 180° is unimportant, as its the
structure that is the key aspect for interpretation.

Dimension 2 20.6%

Dimension 1 35.5%

Figure 7. Internal preference mapping plot derived from specifying the option of centering the
data and scaling each consumer’s preference vector to unit variance.

1 -

Dimension 2 20.6%

Dimension 1 35.5%

Figure 8. Internal preference mapping plot derived from specifying the
option of not scaling each consumer's preference vector to unit variance.
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6.5.3 Relationship with Sensory

The correlation coefficients between the sensory attributes and the two preference dimensions
were calculated. These are represented in Figure 9, for the preference map of Figure 5. The
points are simply obtained by plotting an (x,y) coordinate for each attribute, as two correlation
values are obtained for each attribute, one with the first preference dimension (x) and one with
the second preference dimension (y). It can be seen that the attributes drying, harsh, tongue
tingling, acid, mouthwatering, bitter, rindy/pithy and lemon are all strongly associated with
Dimension 1, and the way the samples are separated along this dimension in terms of
preference. Examining the direction of the preference vectors on Figure 7 indicates that these
characteristics were negative for acceptability.

The attributes sweet and tangerine were associated with preference in both Dimensions 1
and 2, whilst strength of flavour, artificial sweet and thick were more associated with
preference Dimension 2. These attributes relate to the preferences of consumers in this upper
left quadrant of the plot in Figure 7.

1 ARTIFICIAL SWHET
Tancerg, SYEE
AN
NS LDRYING
N ! -
N . _HARSH
AN o772 TONGUE TINGLING

QS P

Dimension 2 20.6%

Dimension 1 35.5%

Figure 9. Correlations between preference dimensions in Figure 7 and
sensory attributes as rated by a trained sensory panel.

7. CONCLUSIONS

In conclusion, this chapter has highlighted some of the advantages of using both internal and
external preference mapping. Emphasis has been on some of the pitfalls awaiting the unwary
user. It is therefore worth re-iterating the importance of good experimental design, and of the
need to seek advice at the early stages in the learning process, particularly when using external
preference mapping. It is hoped that the examples and provision of the necessary data, will
allow potential users the chance to experience for themselves the process of running and
interpreting data from a preference mapping study.
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APPENDIX 1: SOFTWARE SUPPLIERS

GENSTAT

MINITAB

PC-MDS

RS/1

SAS

SENPAK

SENSTAT

STAT-GRAPHICS

S-Plus

SPSS

SYSTAT

NAG Ltd., Wilkinson House, Jordon Hill Road, Oxford, OX2
8DR, Great Britain. [Tel: 01865-53233]

CLECOM Ltd., The Research Park, Vincent Drive,
Edgbaston, Birmingham, B15 2SQ. [Tel: 0121-471-4199]
Minitab Inc., 3081 Enterprise Drive, State College, PA
16801, USA.

Scott M. Smith, Insitutute of Business Management, Brigham
Young University, Provo, Utah, 84602. This has a series of
MDS programs including PREFMAP. [Tel: 010-1-801-378-
4636/5569]

BBN UK Ltd., Software Products Division, One Heathrow
Boulevard, 286 Bath Road, West Drayton, Middlesex, UB7
0DQ, Great Britain. [Tel: 0181-745-2800]

BBN Software Products, Marketing Communications, 10
Fawcett Street, Cambridge, MA 02138, USA.

SAS Software Ltd., Wittington House, Henley Road,
Medmenham, Marlow, SL7 2EB. [Tel: 01628-486933]

SAS Institute Inc., Box 8000, SAS Circle, Cary, NC 27511-
8000, USA.

Reading Scientific Services Ltd., Lord Zuckerman Research
Centre, Whiteknights, P.O. Box 234, Reading RG6 2LA,
Great Britain. [Tel: 01734-868541]

Sensory Research Laboratories Ltd., 4 High Street, Nailsea,
Bristol, BS19 1BW. [Tel: 01275-810183]

Statistical Graphics Coroporation, 5 Indepence Way,
Princeton Corp. Ctr., Princeton, NJ 08540, USA.

Cocking and Drury Ltd.,, 180 Tottenham Court Road,
London, W1P 9LE, Great Britain. [Tel: 0171-4369481]
Statistical Sciences UK Ltd, 52 Sandfield Road, Oxford, OX3
7RJ. [Tel: 01865-61000]

SPSS UK Ltd, 9-11 Queens Road, Walton-on-Thames,
Surrey, KT12 5LU. [Tel: 01932-566262] SPSS Inc., 444
North Michigan Avenue, Chicago, IL, 60611, USA.

SYSTAT UK, 47 Hartfield Crescent, West Wickham, Kent,
BR4 9DW. [Tel: 0181-4620093]
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APPENDIX 2: SAMPLE COORDINATE SCORES FROM GPA

Sample Dimension 1 Dimension 2
A 0.3200 0.0162
C 0.0908 0.0455
D -0.103 -0.0395
F 0.0193 0.0866
H 0.0801 -0.0704
I -0.0328 -0.0848
J 0.1649 -0.0021
L -0.0875 0.0485

APPENDIX 3: ACCEPTABILITY DATA

Cons A C D F H I J L|Cons A CDVFH I J
1 10 0 14 14 3 4 0 22| 32 10 1t 0 6 1 0 O
2 2 9 11 11t 8 4 3 15 33 14 5141011 5 5
3 18 16 9 17 13 7 7 6| 34 7 3 3 4 8 10 3
4 20 5 26 10 8 21 1 17| 35 5 02414 4 2 0
5 6 5 24 8 10 7 5 22| 36 1213 9 12 10 11 8
6 3 6 6 6 6 3 3 17| 37 27 319 24 13 25 2
7 9 11 5 18 8 4 5 16| 38 8 02417 7 16 3
8 17 24 7 11 25 23 16 22| 39 19 23 16 18 8 15 7
9 3 14 6 24 11 3 1 16| 40 7 2 4 2 0 9 0
10 6 10 019 0 0 o0 10| 4 25 1 3 617 6 9
11 2 7 817 5 0 2 8| 42 6 23 21 14 12 17 6
12 23 25 321 17 7 12 23| 43 19 816 3 6 8 3
13 22 6 11 12 1 13 3 26| 44 16 10 13 17 3 4
14 13 0 5 4 0 1 0 13| 45 25 11 10 24 6 4
15 14 8 14 11 9 12 8 15| 46 19 22 11 7 11 8
16 24 2 3 7 0 1 0 20| 47 1 0 7 5 0 0
17 15 13 7 5 11 10 9 6 48 2 3 2 27 4 1
18 15 18 12 24 22 5 5 21| 49 13 7 3 10 9 3
19 3 0 611 3 3 0 9 50 8 1 6 13 2 0
20 23 24 11 8 27 16 16 16| 51 10 4 4 4 7 4
21 23 4 20 15 1 10 1 22| 52 g8 011 8 10 0
22 23 18 2 10 4 2 24 10| 53 16 6 19 11 21 7
23 27 5 24 23 3 S5 0 28| 54 25 7 7 15 10 1
24 21 5 6 7 15 10 1 24| 55 0 029 0 O 0
25 21 9 10 24 10 11 11 22| 56 26 9 19 5 13 3
26 8 8 11 23 19 6 2 27| 57 15 10 19 15 14 6
27 6 321 3 7 14 3 6| S8 9 519 9 10 6
28 18 4 19 5 21 19 5 10| 59 514 5 7 3 14
29 14 3 27 2 24 15 18 22| 60 19 14 5 12 12 19
30 3 5 23 7 19 14 4 20| 61 9 11 23 20 10 3
31 25 10 20 18 6 9 5 4 62 20 6 23 8 16 3
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1. INTRODUCTION

Prediction of one data set from another has been the goal of researchers in wide ranging
disciplines, including medicine, economic forecasting, market research, physics, chemistry,
weather forecasting, quality control, and so on. In the area of sensory science this is also an
important goal. The methods used in modelling sensory attributes to physical and chemical
measurements have mainly been traditional statistical. These methods are mostly based on a
linear approach. Sensory data is often non linear in nature. By introducing non linear methods
like neural network, it will be possible to model sensory data in a better way. Neural network
modelling is not so much in use in sensory analysis. During the last years there has been a
growing interest of using neural networking to describe food quality and preference. By
combining statistical methods like PCR and neural nets we will have a new powerful approach
of modelling sensory data.

If sensory science is taken in its broadest sense to encompass chemical and instrumental
measurements of food, as well as consumer response, then the scope of prediction in this
discipline is clear. Predicting the sensory acceptability of new products within a particular
product range from sensory information may be cheaper than conducting a full scale consumer
survey. It may be cheaper and easier to predict physical measurement from key sensory
parameters, or perhaps it may be easier to use instrumental and/or chemical measurements to
predict the key sensory parameters which are known to be important to consumer preference.

A variety of regression methods have been used for prediction purposes by those working in
sensory science, and related fields. Most commonly these include principal component
regression (PCR) and partial least squares regression (PLS Martens et al., 1989). Each of these
methods have been shown to work and provide meaningful results for certain types of data.
PCR and PLS tend to be used for more serious model building exercises, as programs
encompassing these tools allow the flexibility of exploring the best combination of X-variables
to provide a good prediction of the Y-data.

The problems associated with prediction in sensory science can be seen as two fold. The
first is that data are often non-linear. Simple transformations such as logarithms may help, but
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it may be that the non-linearities are more complex. A second problem is that while good
models may be obtained where the variation between samples is large, this is seldom the case
where variation between samples is very small. In such cases linear models may not provide
robust models. It is therefore very important to use data that spans the space we want to
investigate and that there is as little collinearity as possible between the variables. To achieve
this we will use statistical pre-processing of the data. By using the principal components as
inputs to a neural network, it is possible to reduce the collinearity. The principal components
are constructed in such way that their bases are orthogonal and that the main variation of the
data is to be described in the first components. The noise is being effectively taken away in the
higher components.

Working with neural networks is a challenge of trial and error, and it is also very important
to have a good knowledge of the history of the data being analysed. There is, however, a
growing market for more "intelligent" programs to guide the user in the modelling process.
Good programs for building neural networks seems to grow in strength and neural networking
will be a good add-on to model building in sensory science.

2. METHODOLOGY

2.1 Neural Networks

"Neural computing is the study of networks of adaptable nodes, which through a process of
learning from task examples, store experimental knowledge and make it available for use."”
(Aleksander and Morton, 1990).

Neural computing is not a topic immediately associated with sensory science, yet its
potential, at least from a theoretical point of view, may have far reaching consequences. First it
would be useful to have a look at what neural networks are all about. Inspired by biological
neuron activity and a mathematical analogy led a group of researchers to explore the possibility
of programming a computer to adopt the functionality of the brain (NeuralWare, 1991).

Considering human processing and response (behaviour), it can readily be seen that the
brain is constantly learning and updating information on all aspects of that person's
experiences, whether these be active or passive. If a person places his hand on a hot plate, then
he learns that the result is pain. This response is recorded and his future behaviour with hot
plates will be influenced by this learning. There are many such examples, and the reader
interested in human processing and cognition should refer to one of the may textbooks on this
subject (e.g., Stillings et al, 1987).

It is very important to mention that the neural network philosophy based on biological
modelling of the brain is more of an artefact. We will emphasise that the neural network is a
method of a mathematical and statistical visualisation based on some fundamental ideas. We
will also in this chapter restrict ourselves to a network topology based on function mapping or
pattern recogtioning. Discussion will be restricted to the so called feed forward layer nets. The
information flow between the different neurones in a feed forward layer network always flow
towards the output. In feed forward nets, each neurone has its own life getting input and
sending the local calculated output to other neurones in the next layer. The training process
will force the connection weights to be adjusted to minimise the prediction errors. With all
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these neurones processing simultaneously and independently, a computer is needed that has the
ability to do parallel task processing. On a sequential computer like the PC, neurone activity
needs to be simulated sequentially. Therefore, each neurone activity is calculated in the
direction from input to output.

In order to translate the functionality of the brain into a computer environment, it is first
necessary to break the processing of information into a number of levels and components. The
first level will be the input of which there may be several components. For example, an
individual is given some chocolate from which he perceives a number of sensory attributes. The
chocolate and the individual form the stimulus, and for the sake of argument it will be assumed
that the sensory attributes are the input variables, as these can be recorded in the physical
world.

At the output level, that is the observable response or behaviour, is one component called
acceptability, which can also be measured. The hidden layers will process the information
initiated at the input. The fundamental building block in a neural network is the neurone. The
neuron receives input from the neurones in a earlier layer and adds the inputs after having
weighted the inputs. The response of the neurone is a result of a non linear treatment in
different regions in the inputspace. The neurones in the hidden layer may be identified as
Jeature detectors. Several hidden layers may exist, but in practice only one is sufficient. This is
represented in Figure 1b. The next problem is how to join the levels of the network. In the
human brain there is a complex network of connections between the different levels, and the
complexity of their use will depend on the amount and type of information processing required.

So far the concepts of input, output and hidden layers have been explained. The next
concept is that of a neurone as the processing element. Each neurone has one or more input
paths called dendrites. The input paths to processing elements in the hidden layers are
combined in the form of a weighted summation (Figure la), sometimes referred to as the
internal activation. A transfer function is then used to get to the output level. This transfer
function is usually either linear, sigmoid or hyperbolic. The sigmoid transfer function is
illustrated in Figure lc. This transfer function behaves linear or non linear according to the
range of input. The function acts as a threshold when low level input values are presented. It
acts as a saturating function when high level input values are presented. In between it acts as a
linear function. In this way we achieve a very flexible function mapping.

The feed-forward neural network in Figure 1 is defined by an equation of the form

Y=HZi bif (%) wy x;+ ain) +a; ] +e M

where y is the output variable, the x’s are the input variables, ¢ is a random error term, f is the
transfer function and b;, w;;, a;, and a, are constants to be determined. The constants wy are the
weights that each input element must be muitiplied by before their contributions are added in
node i in the hidden layer. In this node, the sum over j of all elements w;x; is used as input to
the transfer function f. This is in turn multiplied by a weight constants b; before the summation
over i. The constants b; are the weights that each output from the hidden layer must be
multiplied by before their contributions are added in the output neurone. At last the sum over i
is used as input for the transfer function f. More than one hidden layer can be used resulting in
a similar, but more complicated, function. The constants a, and a, acts as bias signals to the
network. They play the same role as the intercept constants in linear regression.
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figa

fig b figc

Figure 1. (a) A diagram illustrating the structure of a simple neural network. The fundamental
building block in a neural network is the neurone. (b) The connections between different
connections in the neural network. The input paths to processing elements in the hidden layers
are combined in the form of a weighted summation. (c) A sigmoid transfer function is then
used to get to the output level.

2.1.1 Leaming and backpropagation

The word backpropagation originates from the special learning rule invented by several
workers (Hertz et al, 1991 page 115). The method is used to optimise a cost function (error
function) of the squared differences in predicted output and wanted output. In short,
information flows from the input towards output, and error propagates back from output to
input. The error in the output layer is calculated as the difference of the actual and the desired
output. This error is transferred to the neurones in a middle layer. The middle layer errors are
calculated as the weighted sum of the error contributions from the nearest layer. The derivative
of the transfer function with respect to the input is used to calculate the so called deltas. The
deltas are used to update the weights. The derivative of the transfer function will be zero for
very small summed inputs and for very large summed inputs. Thus the derivative of the transfer
function stabilizates the learning process.
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The backpropagation algorithm minimises the error along the steepest decent path. This
may introduce problems with local minima. Finding the global minimum of the error in a model
is equivalent of estimation of an optimal set of weights. Learning in a neural network is the
process of estimating the set of weights that minimise the error. A trained neural network has
the ability to predict responses from a new pattern. The training process may be performed by
using different learning rules. This chapter will focus on the backpropagation delta rule. Here
the errors for each layer will propagate as a backward information in the network. The weights
are updated based on these errors.

The weights are calculated in an iteration process. The weights are given initially random
values. By presenting a pattern to net network, the weights are updated by computing the layer
errors and the weight changes. The learning process will stop when the network has reached a
proper minimum error. The learning process is controlled by the learning constants /rate and
momentum. The learning constants are chosen between 0 and 1. Small values slow down the
learning. Typical values are 0.5. The Irate controls the update rate according to the new
weights change. The momentum acts as a stabilisator being aware of the previous weight
changes. In this way the momentum minimises oscillation of the weights. The learning by
estimating the weights is described for each layer by

Wiew) = Wiagy + Irate*dW ey + momentum*dWiq) 2)

where W, are the new and updated weights, W4 are the weights before updating, dW.. are
the new deltaweights calculated by the backpropagaton learning rule and dWoq are the oid
deltaweights. The error is calculated as the difference between the actual and calculated
outputs. The updates of the weights may be done after each pattern presentation or after all the
patterns have been presented to the network (epoch).

There are many modifications of this rule. One approach is to vary the leaming constants in
a manner to speed the learning process. The method of self adapting constants is considered to
be of great value to reduce the computing time during the leaming phase. Each weight may
also have its own learning rate and momentum term. This approach together with the self
adapting learning rates, speeds the learning and therefore it is not so important to choose
proper starting values (delta-bar-delta rule). For a more extensive discussion of the
mathematics of the backpropagation algorithm, the reader should see the Chapter 6 of Hertz
(1991).

2.1.2 Local and Global Minima of the Error

One of the major disadvantages of the backpropagation learning rule is its ability to get stuck
in local minima. The error is a function of all the weights in a multidimensional space. This may
be visualised as the error surface in a three dimensional space as a landscape with hills and
valleys. There is no proof that the global minimum of the error surface has been reached.
Starting with different randomised weights leads to different minima if the error surface is
rugged. It is important to consider this when analysing the final minimum. The learning is run
repeatedly at different starting locations to show that the minimum is reasonable.



108

2.2 Normalisation

Normalisation is a pre-processing of the data. Many techniques are being used. (Masters,
1995) Here we will present one approach that has shown great effect on the kind of data we
are working with.

The data being presented to the network program has to be normalised to a level that does
not drive the transfer functions into saturation. Saturation occurs when the change in output of
the transfer function is almost zero due to high input values. Another aspect is also to insure
that variables with large variations do not overrun variables with small variations. By using the
minimum and maximum values of each input and output variable, the network program will
normalise the inputs between 0 and 1. The output is normalised between 0.2 and 0.8. If the
output transfer function is linear, then there is no need to normalise the output in this way. If
several outputs are being used in the modelling, then it is imiportant to normalise according to
the variation of the output variables. When the variables are presented to the prediction they
are recalculated according to the min/max values. It is important to be aware of the
normalisation, but it is mostly handled automatically by the neural network program being
used. The limits used here are well designed to the sigmoid transfer function. If a hyperbolic
transfer function is used one could normalise between -1 and 1 for the inputs and between -0.8
and 0.8 for the outputs.

2.2.1 Validation of the Performance

Validation of the performance is very important when we want to monitor the generalisation
ability of the network. By adding more neurones in the hidden layer, the network becomes a
very flexible function mapper. This in turn rises the danger of overfitting. The network may be
able to map the learning data perfect, but the predictions on test data may be poor. The
validation is by this concept not only to find the iteration count in the learning process, but also
a very important process when evaluating the number of nodes in the hidden layers.

Validating the network performance by using a separate test set must be considered. The
data is split into two sets, the learning set and the test set. The learning set is used to train the
network and find the set of constants that minimises the prediction error. The testing is
performed on the test set. It is important to design the learning and test set in such manner that
they span most of the variable ranges. The test set is considered to be a set of unknown
objects. Ideally a complete independent validation set should be used to test the networks
modelling ability. The neural net is a very flexible modelling system. Therefore the test set used
in optimisation of network topology may not be satisfactory in validating the generalisation
ability of the network. In our presentation we do not use this extra validation set. This is due to
the lack of objects and our presentation serves as an illustration. Validation of the network
performance is done using the root mean square error of prediction (RMSEP) (Martens et al,
1989).

Another method to be considered is the cross-validation. Cross-validation may be used to
validate how single objects are modelled against all the other. By leaving one out to the test set
and using all the other objects as learning set, we may get a measure of the average
performance of the network. (Leave One Out). (Kvaal et al, 1995). It is also possible to divide
the objects into test segments and learn segments in such way that the objects are being tested
only once. This will construct network models based on learn and test sets in the way that all
the objects in turn will be test objects. One major problem in using cross-validation on neural
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nets is the danger of getting into local minima. There will be one new model at each segment
validation. This in tum gives different local minima.

This neural network cross validation is similar to PCA/PLS cross-validation but the number
of iterations instead of number of factors will be considered. The RMSEP will be a mean for all
the models constructed. By using cross-validation the network topology may be optimised.
One major problem with the cross-validation applied on neural nets is the huge amount of
computing time needed. It is also a problem to interpret the different models being constructed.
A main preference of using the cross-validation is the information of the average model
performance. It is also a preference to get information of objects that is difficult to model.

2.3 When and Why Neural Networks Should Be Used

With neural network modelling still in its early stages of development and understanding,
addressing the questions on when and why neural networks should be used poses some
problems. However, through reading and discussion, a number of general guidelines should be
considered.

The «when» question will be considered first. Neural computing can be used if the problem
is to predict either responses recorded on a continuous scale, or to do classifications. A neural
network may be considered as a function mapping device. It may also be considered to be a
kind of pattern recognition memory which can generalise on unknown samples. The design of
the transfer function is essential in the design of what kind of problems the user wants to solve.
Most often the sigmoid transfer function gives useful results. Most software packages have the
possibility to change to other transfer functions according to the data taken into account. This
process on choosing the right network design is a trial and error process. However some
guidelines might be considered.

Different software packages integrate statistical tools and graphic visualisations. Unlike the
PCR/PLS where there is a lot of information in the score- and loading plots, it is not easy to
interpret the weights of the neural network. There are methods, however, to optimise neurones
and find variables that are essential and have an effect on the model. We have already
mentioned the cross-validation. It is still an area of research to develop good diagnostic tool
used on feed forward networks particularly.

As neural networks may detect non linearities it is a natural choice to use this method. If the
data is purely linear methods like PCR and PLS is most likely to be used. The user is
recommended to start with PCR/PLS to get a good knowledge of the data set with the tools
that this methods have. This will indicate that there might exist non linear relations that a
neural network might be able to solve. The flexible nature of neural nets forces the user to be
aware of the overfitting problem. A neural net is supposed to model a X/Y relation. The
problem is the generalisation on unknown Y's. It is very important to understand this fact,
because we often see neural network models that is perfect in respect to the actual X/Y being
used in the learning.

The question on «why» use neural networks must be answered on what precision of
generalisations the user wants. Neural computing should be used as it provides a powerful
alternative to traditional statistical methods for the prediction of responses. If only
generalisations are wanted the ncural network computes this more easy in a well defined
function. If diagnostic tools are essential together with generalisations, a mixture of linear and
non linear methods should be taken into account.
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2.4 Relationship to Other Methods

The artificial neural network models have strong relations to other statistical methods that
have been frequently used in the past. An extensive discussion of the relations will be found in
Nas et al, 1993. When a network is trained, the weights are estimated in such way that
prediction error is as small as possible. The design of the feed forward network is closely
related to multiple linear regression (MLR) when the linear transfer function is used and the
hidden layer is removed. In this case the neural network may be solved directly and no training
is necessary. If the data has a purely linear relationship, the MLR method may give good
results. If, however, the data has non linear relationship, the MLR method will not give
satisfactory predictions. Non-linear methods like neural networks should be taken into account
to detect the non-linear relations in the data. The transfer function used in the neural net is
designed to detect both linear and non-linear relations in the data. Reports in combining MLR
and neural nets into one network topology claims success to guarantee optimal solutions on
data sets with unknown relationships (Borgaard et al, 1992).

2.4.1 Data Pre-processing and Compression

Near Infrared Spectroscopy (NIR) can be used to directly determine water, most organic
molecules and some inorganic molecules by using the absorbance spectra. The variables are
described by the wavelength and the absorbance at this wavelength. The variables are strongly
correlated and it is generally not possible to select single variables to describe properties. We
have to use a multivariate approach to solve this problem. (Hildrum et al, 1992). NIR data may
be composed of several hundred variables (wavelengths). This implies large networks and
probably very heavy computing when the network is trained. Using methods for compressing
the data to fewer number of variables gives networks with lesser number of nodes. Data
compression using principal components scores has been reported to be successful in
constructing NIR based networks (Borggard et al, 1992, Nes et all, 1993). Typically 250 NIR
variables will be compressed to, say, 5 variables. This gives a network with 5 inputs instead of
250. All the major information is described in the principal component scores. Training a
network based on scores is very fast. There is often a need to optimise the number of inputs
and the number of hidden nodes to give the best predictions. The number of inputs
corresponds very often to the optimal factor number in PCR/PLS. This is explained by the fact
that the most dominant information is contained in the variables up to the optimal factor
number. Higher order variables will contain noise with respect to the attribute we are
considering. (Nes et al, 1992). It is therefore a good practice to run PCR/PLS before the
network is constructed. Using pc-scores does not always guarantee a better performance. This
will be demonstrated by example later. By using a proper number of pc-scores as inputs, the
noise is removed more effectively from the data. This ensures that the noise is not a dominant
factor in the modelling an overfitting problems may be reduced.

2.5 Advantages, Disadvantages and Limitations
Neural nets are normally easy to implement using a standard program with a user friendly

interface. One problem is often that networks based on many input variables like NIR raw data
need a long computing time. If time is no problem, then neural networks will be okay.
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However, if time is a problem, then data compression is recommended. The main advantage is
that a possible solution to a non-linear data problem has good chance of being a success. One
solution to a time problem is to run the network on a fast pc and with a floating point
coprosessor. One disadvantage using neural nets is the limited set of interpretative tools. It is
difficult to interpret the hidden layer weights. Smaller networks, however, are easier to
interpret. When training a neural network the initial values of the weights may be randomised
differently when the same network is run twice. This gives different results but in the same
range. Running PCR/PLS with the same parameters set, will result in a reproduction of the
carlier runs. It is important to be aware of this.

2.6 How to Apply the Method

This section provides some guidance on the process in setting up an experiment for analysis by
neural computing. A list a key steps is given below and these steps will be further explained
later.

1. Prepare the data

2. Optimise the learning rates or use self adapting learning rates.

3. Train the network using raw data or PC scores.

4. Optimise the network model using different number of nodes in the hidden layer.

5. When PC scores are being used, optimise the number of inputs and number of nodes in
the hidden layer.

6. Validate the network by consider the RMSEP using a separate test set. (Do a cross-
validation of the network if the number of samples are small)

2.6.1 Data Preparation

Data preparation is often a problem when the planning has been bad. Data presented to the
neural network needs to be organised in a special way. The data set consists of rows and
columns. The rows are the different objects, and the columns are the different variables. The
variables are normalised by using a minimum/maximum table as described earlier. This will
ensure that variables with great variability do not overrun variables with small variability. The
variables describe the pattern that is presented to the network. Input- and output patterns are
presented simultaneously to the network. The data set is divided into a training set and a test
set. These sets are often separated in two different files, but they might be combined in one file.
The training set is the first block of rows and the test set is the last block of rows. This data
preparation is often a problem to users of scientific software and statistical packages. Many
programs have import facilities to read spreadsheet files to easy handle the problem.
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2.6.2 Setting Start values of the Network Parameters

The neural network design needs initial values of learning rates and weights. These initial
values are highly dependent on the kind of problem that is being solved. Algorithms exist to set
the initial values according to the data set (Demuth H, et al, 1994). If a network has learning
rates which are too strong, then the weights will give oscillating and unstable networks. Learn
rates which are too low will give extremely long learning time. It is a good practice to start
with a relatively strong learning and gradually reduce it as the learning goes on. Typically learn
rates and momentum of 0.8 are used. We have so far considered a global learning rate. It is,
however, possible to construct learning mechanisms so that each weight is assigned a leaming
rate. These learning rates are adapted to reasonable values during leaming and the network will
learn faster.

Initialisation of the weights is often done by randomisation. The weights will typically be
initialised to values in the range of +0.1. This depends on the number of nodes in use. Some
software packages used in neural computing have implemented algorithms to do an
initialisation of the weights optimally. This will give a good starting point for further training of
the network.

2.6.3 Training the Network

When the network parameters have been initialised the training is done by updating the weights
according to a learning rule. In this work the backpropagation learning rule has been used.
Commercial network programs often have different modifications of the standard
backpropagation. The user need to obtain experience in their own application. By running the
network models based on different learning rates, momentum and weights initialisations,
number of hidden neurones, etc, the user gets experience of what to by trial and error.

Randomisation gives a new starting point every time it is performed. If a network gets into
a local minimum there will be methods for getting out by giving the weights small random
variations. It is therefore a common practice to run the network several times to see if different
starting points gives different results. It is the randomisation algorithms that decides the
different starting points when the network is trained.

The training is stopped when the output error has reached a minimum error on a test set. It
is important to have a test set to avoid overfitting of the network. The prediction error will
reach a minimum after a set of iterations (calculations). Hopefully the network will generalise
well on a separate data set. This validation is important as the network proceeds to learn. This
will be discussed more closely later.

2.6.4 Inputs and Nodes

Input variables in the data set are fed to the input nodes. These input nodes are connected to
the hidden layer nodes which in turn are connected to the output nodes. How to decide which
inputs to use, how many hidden neurones and how many outputs to use simultaneously is not
an easy task. This is often done by trial and error. A golden rule is to keep the number of
hidden nodes at a low number and vary this number to find an optimum. Using one or several
outputs is also done by trial and error. This will be demonstrated by an example later in this
chapter.
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2.6.5 Validation of the Network

It is important to validate the network on a data set that consist of unknown input/output
patterns. The validation is a process that follows the learning of the network. It is also a
process that has to be done on the final result of the learning. Many newcomers to neural
computing forget about the fact that testing on the learning set will in most cases give very
small errors. The network’s ability to generalise is, however, not guaranteed because of the
possibility of overfitting. If learning is halted at selected points and tested against a separate
data set not used in learning one will assure proper learning, A measure often used is the Root
Mean Square Error of Prediction (RMSEP) (Nas et al,1989). Here the prediction errors of
the test set are compared with the wanted outputs of the network. A typical situation during
the learning process is shown in Figure 2. Here the error on the learning set gets smaller and
smaller as the learning goes on. The error on the test set, however, will reach a minimum at a
special number of epochs Eq, (number of times all the patterns have been presented to the
network). Beyond the E., we may have underfitting, and above E,x we may have overfitting.
The criteria of when to stop is usually set to E,y , but because the network often converges to
a stable solution this point might not be so critical. Then we would select an epoch count
where the network seems stable (no change in output error from one epoch to the next).

If only a small number of samples are available special techniques for validation of the
network should be used. A popular validation method is to select learning and test samples
from a population of samples in such way that every sample will be located in a test sample
only once ("Jack knifing” or cross-validation). Every time a new learn- and test set is made a
network is trained. This can be useful to optimise a network topology.

2.7 Software

Several software packages are available. The software most familiar to the authors, is
NeuralWorks Professional II/PLUS package (NeuralWare Inc, USA). This package has the
advantage of being a self-contained neural network constructing tool and it has a some
diagnostic tools available.

A lot of users, including the authors, do the implementation of special network applications
by programming. A lot of textbooks are available telling how to implement a neural network.
Some of the standard software tools have, however, the possibilities to be customised. A very
popular toolkit is the MathWorks inc Neural Nework Toolbox for Matlab.

Other popular packages on the market are listed in several sources, among them is Al-
Expert, February 1993 or updated in later issues. Lists of packages are also available on the
Internet. Here there are several neural network packages available for free.
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OVER- AND UNDERFITTING OF PEA FLAVOUR
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Figure 2. Over- and underfitting of Peaflavour. The learnset is being fitted better and better,
but the network has an optimal generalisation ability about 100 epochs.

3. DESIGN CONSIDERATIONS

3.1 Choice and Selection of Samples

Like all prediction modelling problems, it is desirable to have a large number of representative
samples. The question of how large is often difficult to answer, as this depends on the selection
of samples chosen. A well designed selection of samples can often be less in number and
produce a robust and reliable model, than a large number of samples which do not adequately
represent the range of available possibilities.

In general, large in the context of neural networks means in the region of 100 samples for
initial training, plus a suitable test set of at least 50 samples.

Often the samples are obtained from a factorially designed experiment. In this way more
information can be obtained to help understand the reasons underlying the final response. In
other applications, a representative range of samples is chosen, such as in the case of predicting
the authenticity status of fruit juices.
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3.2 Data Collection

The most obvious sensory methodology to use is the method of profiling (quantitative
descriptive analysis). This is because from the sensory scientist's point of view sensory
attributes are being used to predict some other less easy or more expensive measurement or set
of measurements. For example, consumer perception of quality, preference, etc. Within the
context of this area, the possibility of wishing to predict sensory characteristics from chemical
or other instrumental measures must also be considered. Thus, while profiling is the most
common sensory approach, methods for measuring single sensory attributes, sensory quality or
sensory difference may be used as the variable to be predicted. It is not intended to cover the
collection of the sensory or instrumental data, as this is covered in other textbooks (e.g.,
Piggott, 1984). The key point about these methods is that they should not only describe the
samples, but provide reliable information about the differences between samples.

Instrumental methods include the use of NIRS, GC, Instron, HPLC etc, and collection of
these data are covered in texts such as Kress-Rogers(1993).

4. ANALYSIS AND INTERPRETATION OF RESULTS: AN EXAMPLE

4.1 Background

The data used to illustrate the methodology of neural networks in relation to PCR and PLS
was provided by MATFORSK (Kjelstad et al., 1988; Nas and Kowalski, 1989). The interested
reader should refer to the former reference for a detailed explanation of the samples and data
collection procedures.

The reason for including analysis by PCR and PLS is to provide a basis for comparing the
performance of neural networks to approaches of known performance ability.

4.1.1 Samples

Samples were 60 independent batches of green peas, collected from 27 different varieties at
different degrees of maturity. All samples were freeze dried.

4.1.2 Instrumental Analysis

Near infra red spectroscopy (NIR) analysis was performed on the 60 samples of peas using an
Infra Analyser 500 instrument. The data were subjected to a multiplicative scatter correction
(MSC) prior to calibration to reduce the effect of different light scatter caused by NIR analysis.
This MSC was based on the average spectrum of all 60 samples. A reduction procedure was
used to obtain 116 variables from the original 700 wavelengths. The instrumental data forms
the X-matrix of 60 samples by 116 variables.

4.13 Sensory Analysis

Sensory analysis was carried out using profiling (quantitative descriptive analysis). A trained
panel of 12 assessors agreed on and defined 12 sensory attributes to describe a range of pea
samples. In previous work (N&s and Kowalski, 1989) six of these attributes were selected as
being related to the quality of peas; pea flavour, sweetness, fruity, off-flavour, mealiness and
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hardness. The data were averaged over assessors and replicates, thus providing a 60 samples
by 6 variable Y-matrix.

4.1.4 The Problem

The problem presented is to predict the sensory attributes of peas from the NIR wavelengths.
It is of great interest to see how the neural network may model sensory attributes and NIR
data. In this way we may use this method to predict and do classifications on later samples by
using NIR and the network and not the assessors. To test the predictability it was decided to
select 40 samples to build the calibration model, and use the other 20 as the test set for
prediction. Clearly this number is less than that which is ideal, however, this example will serve
its illustrative purpose. It is intended to focus on pea flavour as an example for visualisation in
this chapter.

4.2 Neural Network Modelling Procedures

42.1 Data Pre-treatment

The data were submitted to the neural network program in two forms. The first comprised the
raw data, whilst the second used the principal component scores from the NIR data. Using
principal component scores has been shown to provide better neural network models than the
raw data in some instances (Nes et al., 1993). Forty samples were used as the leamning set, and
20 as the test set. The NIR data are normalised between 0 and 1, and the sensory attributes are
normalised between 0.2 and 0.8. before being presented to the network. Each variable is
normalised between minimum and maximum values. Normalisation of variables may be critical
and we recommend the reader to do an extensive investigation of this topic (Masters T, 1993
page 262).

42.2 Approach to Data Analysis

The decision of when to use principal component scores as inputs to the network has to be
made by trial and error. In this approach, the raw data were used first, then the principal
components were used as input variables to the network. It should be possible to have a
network model with at least the same degree of RMS. as PCR. The optimal number of scores
from PCR were used as the number of score inputs to our network. It is also recommended to
optimise the number of score inputs and the number of neurones in the hidden layer to find an
optimal network model.

When the network model is constructed, some parameters have to be supplied; the leaming
constants, This will be the learning rate and the momentum term. The network will try to find
the optimal learning rates. In order to achieve optimal conditions prior to fitting the neural
network model, a design could be constructed to compare the performance of different levels
of learning rate and different momentum rates. As mentioned in Section 2, there is also the
possibility to use self adapting learning rates. It is also possible to construct learning based on
self adapting learning constants. In this approach it is easier to train a network model and to
minimise the prediction error because we do not need to pay a great attention to the starting
values of the learning constants and the strength of learning process.

When building the network model, the number of simultaneous outputs have to be taken
into account. In our approach, a network to predict all the sensory attributes at the same time
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will be sought. Generally it is more difficult to predict several attributes at the same time than
predicting only one attribute. This has to do with a more complex error surface, as some
attributes may not model well by NIR. When training the network, test at interval iteration
counts and stop when the RMSEP is at an optimum to prevent over-fitting.

4.2.3 Optimising Learning Rate and Momentum

The starting point is a network model based on the raw data and all six sensory attributes. The
network is run repeatedly by varying the leaming rate and momentum systematically from 0.2
to 0.8 in steps of 0.2, and the networks are all trained to a fixed iteration counts. The step
length were found by experience. By using a smaller step we did not get more information. The
number of hidden neurones is held at a fixed value of 1. Performance is always measured as
RMSEP (validation of test set). Previous experimentation has shown that optimisation of
learning rates is mostly independent of the number of neurones in hidden layer. (Masters, 1994,
page 7)

From Figure 3 it was concluded that learning rate of 0.8 and momentum of 0.8 would
converge fast until a point where the weights are unstable. By gradually reducing the learning
rates from this point (3000 iterations) it is possible to get stable weights during the rest of the
learning process. We see from equation (2) that when the weight change is large we may get
an oscillatory change in the weights by using relative large learning constants. We may prevent
this effect by gradually reducing the learning constants. We also observe that the momentum
term takes care of the old weight change. The momentum term is designed to prevent
oscillatory behaviour of the learning. By reducing the momentum it is a danger to reduce
original purpose of the momentum. Experience have shown that reducing both the learn rate
and the momentum by 50 percent has a good effect. Figure 4 shows the corresponding learning
rate and momentum when using four principal components. When the principal component
scores are used as input we deal with the main variant part of the data. It can be seen that the
convergence is more smooth due to the fact that the noise has been removed from the data.
Choosing a learning rate of 0.8 and momentum of 0.8 gives a fast convergence. This
corresponds to the values found for raw data.

4.2.4 Optimising the Number of Inputs and the Number of Hidden Neurones

When raw data are being used, the need to optimise the of number of inputs often results in
finding the inputs that do not contribute to the network response. It is possible to exclude
some inputs in most network programs. In this example the inputs in raw data are not varied.
Using PC scores this number has to be optimised. We will also mention the principle of
pruning the network. In this technique nodes are deactivated or simply destroyed. The
resulting network is more optimal and based on lesser neurones. Hopefully it performs as good
as the original network topology.
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LEARNING RATES OPTIMISATION (RAWDATA)
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Figure 3. Learning rates optimisation (raw data). The learning rate and momentum are varied
systematically from 0.2 to 0.8 in steps of 0.2, and the networks are all trained to a fixed
iteration counts. Oscillatory behaviour occurs when the learning is to sirong.

Varying the number of hidden nodes between 1 and 30, it can be seen from Figure 5 that

there is an optimum at about 10 hidden neurones when using NIR raw data. This indicates that
the hidden layer acts as a feature detector and that more than one hidden neurone is needed to
give optimal results. The least flexible model is obtained by using only one hidden neurone. By
adding more hidden neurones this will result in a network that is able to detect more features.
It is also experienced that overfitting is not so critical with one hidden as it is with more hidden
neurones. This is very important to have in mind when optimising the hidden layer. It therefore
important to start the optimisation from 1 and not in the opposite direction. Optimising the
number of inputs by varying the number of PC-scores as inputs and using one hidden neurone
in the hidden layer will give a similar result. It can be seen from Figure 6 that there is an
optimum at four inputs corresponding to the optimal number of factors from PCA.
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HIDDEN NODES OPTIMISATION (RAWDATA)
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Figure 4. Learning rates optimisation when using four principal components. When the
principal component scores are used as input we deal with the main variant part of the data. It
can be seen that the convergence is more smooth due to the fact that the noise has been
removed from the data. Choosing a learning rate of 0.8 and momentum of 0.8 gives a fast
convergence.

Undertaking a variation of the number of nodes in input layer and the hidden layer at the
same time gives an indication that four components are optimal. From Figure 7, it can be seen
that as many as 8 neurones in the hidden layer gives optimal models. By examining this
contourplot we may conclude that there exist an optimal area starting at 4 inputs and 5 hidden
neurones. By choosing this topology the 4 inputs corresponds to 4 optimal principal
components and the 5 hidden neurones acts as feature detectors for the attributes. We also
observe from the contour plot in Figure 7 that there is an area starting at 4 inputs and only one
hidden neurone that gives a relative small error. This network topology may be usable because
the number of iterations is not so critical when it comes to the danger of overfitting. Later we
will see that this is corresponding to the PCR model optimum.,
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LEARNING RATES OPTIMISATION (PC-SCORES)
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Figure 5. Hidden nodes optimisation (raw data). By varying the number of hidden nodes
between 1 and 30, the optimum at about 10 hidden neurones indicates that the hidden layer
acts as a "feature detector” and that more than one hidden neurone is needed to give optimal
results.

4.2.5 Training an Optimal Topology to Find the Global Error Minimum

By the process we have described we have achieved a network topology that should be optimal
for the data being used. It is now possible to run the network with this topology more
extensive and elaborate. Varying the starting point by different weights initialisations may be
effective. Proper initialisation may speed the learning process and may also enable better
performance. New and popular methods is to use methods like genetic algorithms and
simulated annealing (Masters, 1993). During learning it is also important to stop the learning
when one suspects a local minimum, do some small perturbation of the network weights
(jogging) and continue the learning hopefully outside the local minimum.

As stated earlier, it is often a good practice to gradually reduce the learning constants from
a point where the weights are unstable. The practice is to reduce the constants at iteration
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INPUT NODES OPTIMISATION (PC-SCORES)
1 .4 T T T T T T T ¥

RMSEP

2 3 4 5 6 7 8 9 10
Number of input nodes

05
1

Figure 6. Input nodes optimisation (PC-scores) using one hidden neurone. By varying the
number of inputs between 1 and 10, the optimum at about 4 neurones indicates verifies that 4
principal components are optimal.

intervals by a factor of 0.5-0.75. This ensures a more stable weights change.

The results from modelling with test set validation are listed in Table 1. It can be seen that
the raw data model gives predictions at the same level or some better than the PC-score model.
This shows that it is not always the case that better models are obtained with PC-scores.
However, it is a positive point that only four inputs are needed using PC-scores. This will use a
lot less computing power to calculate predictions. It is also important to observe that using
PC-scores improves interpretation of the results. By doing an analysis by PCR and then
building a neural network based on the scores, it is possible to have a better understanding of
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RMSEP WITH VARYING INPUT/HIDDEN NODES (PC-SCORES)
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Figure 7. Input/hidden nodes optimisation. (PC-scores). Variation of the number of nodes in
input layer and the hidden layer gives the resulting contour plot when the RMSEP is used as
response variable. The optimal area is indicated as a shaded region.

the neural network model. The first principal components may contain information about
selective sensory attributes. It is therefore possible to relate this information to the role of the
input nodes.

Predicting all sensory attributes in the same network model will give an overall optimal
minimum of the error function. The overall RMSEP by modelling all attributes at the same time
is at the level of PLS shown in a later section. If for some reason some attributes are difficult
to model, then models should be made with single predictions of attributes.
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The results in Table 1 are obtained by test set validation. It should be noted that a test set
validation is more overoptimistic than doing cross-validation. It is also a fact that the neural
network model is more flexible than the PCR model. In many cases it seems that the test set
validation thus may be more serious to the network when interpreting the results. It should be
a good practice to use an independent second test set to do the validation.

Table 1

Root Mean Square Error of Prediction (RMSEP) for each attribute, where each attribute is
predicted using the same model based on raw data and PC-scores and for PCR/PLS. The
number of factors used in PCR and PLS modelling is given.

ATTRIBUTE Raw data PC-SCORES Raw data PCR PLS

Simultan Simultan Separately (factors) (factors)
Pea Flavour 0.24 0.31 0.25 042 (4) 0.40(3)
Sweetness 0.35 0.32 0.33 0.38(4) 0.373)
Fruityness 0.24 0.26 0.25 0.28(4) 0.29 ()
Off-flavour 0.30 0.37 0.27 0.62 (7) 0.43 (7)
Mealiness 0.37 0.44 0.39 044 9 0.42 (2)
Hardness 0.24 0.28 0.22 0.39(4) 037 (3)
Model 0.30 0.34 0.29 0.43 0.38
RMSEP

4.2.6 Cross validation

Standard cross-validation method used in PLS/PCR may be used to validate how well the
models describe the data. The main goal of our cross-validation using neural nets is to monitor
the modelability of single objects. The data are divided into several test segments. The training
set and test set are constructed in such way that the objects will be tested only once. Models
are constructed and run until convergence. By using the scores of the combined calibration set
and the validation set this would lead to a very overoptimistic model. When PC scores are
being used, it is necessary to compute scores for the training set and test set for each segment
model. In this way we project the validation set on the principal axes estimated for the
calibration set. The network is trained to a fixed number of iterations. We choose the number
of iterations where the network seems stable. The Absolute Error (RMSEP of one single
object) is then calculated as a mean for all the segments at a fixed number of iterations. Cross-
validation in neural network gives the ability to compare modelling performance to the
PLS/PCA cross validation method. In addition, this method can be used to monitor single
objects and possibly detect outliers. Neural network cross-validation may also be used to
optimise the network topology.

In neural network cross-validation single output models are used. This gives simpler
interpretations. Some attributes are more difficult to model simultaneously in multi output
models.
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CROSSVALIDATION of Pea Flavour. 20 segments rawdata
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Figure 8. Residuals of each object predicted in cross-validation of 20 segments. The barplot of
the Absolute Error as a function of the objects indicates the single attribute's ability to be
modelled.

In the first instance, the pea flavour attribute was used as the response variable, and a 20
segment cross-validation run. This gave 3 objects in each test set and 57 objects for leaming.
The objects were selected randomly. The barplotin Figure 8 of the Absolute Error indicated
the single attribute's ability to be modelled. If we choose objects with Absolute Error better
than 0.5 we will see objects 3 and 36 to be difficult to model. If these objects fall into the
outlier category is somewhat difficult to decide.

4.2.7 Results of Prediction

The results of the predictions from the raw data and the PC scores gives an indication that the
raw data may be used directly. The reason for the conclusion can be seen in examining Figure 3
and Figure 4, which shows the RMSEP as a function of the number of iterations in the learning
process, for both input types. Table 1 clearly shows this in the model RMSEP for the two input
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types. It must be pointed out that the results shown are for single runs and not an average of
several runs. The random starting point of the weights gives trained models about in the same
order of magnitude.

The network has the ability to predict all the sensory attributes simultaneously. Models that
predict only one sensory attribute at a time will, however, give better RMSEP in some
instances and worse in other. This is demonstrated in Table 1, which shows the model RMSEP
for the prediction of all attributes simultaneously compared to the prediction of each attribute
separately. The overall RMSEP is, however, the same for separate and simultan prediction
using raw data. Using all attributes simultaneously will give a more complex error surface and
a more difficult path to find the global minimum. One will find, however, that correlated
attributes might stabilise a model giving better performance for some attributes than using a
single attribute model. The predictions of peaflavour using neural net gives a correlation
coefficient of 0.97. This indicates a good prediction ability using NIR raw data and a neural
network.

5. PCR AND PLS MODELS

5.1 Approach

Principal component regression is a tool which is used to predict one set of variables (Y-
matrix) from another set of variables (X-matrix). The procedure is based on undertaking
principal component analysis on the X-matrix, and then using the principal components as the
predictor variables.

Partial least squares regression (PLS) (Wold, 1982) is an extension of the PCR approach,
and was developed by Wold as a method for econometric modelling. It was later applied in
chemometrics (Kowalski et al., 1982; Wold et al., 1983; 1984) where it has gained acceptance.
Users of PLS argue that this approach is more robust than MLR or PCR, and, hence,
calibration and prediction models are more stable. For a more elaborate and tutorial discussion
of the PCR and PLS modelling methods we refer to Esbensen et al (1995).

As mentioned above, in a typical «relating data» problem there are two blocks of data, the
Y matrix and the X matrix. In PCR a model is formulated to measure the «inner» relation
between Y and X, with the aim of explaining/predicting Y. PLS also measures the «innen»
relationship, but also uses «outer» relations (Geladi and Kowalski, 1986) of X and Y
separately. By using the additional information on the «outer» relations, it is possible to rotate
components to lie closer to the regression line, hence providing a better explanation of Y.

In this example, as previously mentioned, there were 116 variables (NIR wavelengths) in the
Y-matrix, and 6 sensory variables in the X-matrix. The idea is to determine if the NIR data can
be used to predict the 6 sensory variables, one at a time, and together.

In order to do this, and test the model, the same plan as for the neural network problem was
used. Out of the 60 samples, 40 were submitted to the calibration matrix, whilst the remaining
20 formed the test set.
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5.1.1 Performance of Models

The model was run where the NIR spectra were scaled to unit variance by subtracting the
sample mean and dividing by the standard deviation for each sample. The sensory data were
not standardised, as it is usual to retain the original variance structure of these data.

On running the PCR analysis where all six sensory attributes were predicted at the same
time, four factors were found to provide an optimal solution to calibration model. Table 2
shows the percentage variance explained in the validation X and Y data, after calibration. The
PLS model indicated that 3 factors were optimal, and the percentage variance explained in the
X and Y data are provided in Table 2. It is clear that the PLS model is performing slightly
better than PCR in terms of percentage variance explained.

Table 2. Percentage variance explained in the X (NIR) and Y (sensory) validation data using
the PCR and PLS calibration models.

PCR PLS

FACTOR XDATA YDATA XDATA YDATA
NUMBER

1 42.2 50.7 36.6 63.7
2 64.8 66.1 63.9 86.6
3 77.2 74.2 82.9 89.6
4 939 89.6 933 89.7
5 96.5 89.3 95.4 89.5
6 97.8 90.0 97.1 90.0

PCR was undertaken, using the NIR data to predict each sensory attribute, one by one.
Figure 9 shows the residual variances of some important sensory attributes. Here we see that 4
factors are needed to explain the variables. We have used the Pea Flavour as an example in our
neural net part. The Pea Flavour modelled using PCR and PLS is shown in Figure 10. Here it is
verified what is shown in Table 2. The PLS performs slightly better than the PCR. The number
of factors needed to model the Pea Flavour is 3 using PLS and 4 using PCR. The RMSEP,
however, is shown to be nearly equal for both modelling systems as shown in Table 1. The
PLS is slightly better. Off-flavour is more difficult to model using PCR, but 7 factors are
needed to explain this attribute using PCR and PLS. The idea behind PLS is to take the
information in Y into account when the modelling is done. This approach leads to the result of
lesser factors in the model than using PCR.

This verifies the results from optimisation of number of inputs to a neural network based on
pe-scores. (Figure 6) In the optimal model there was a need of the 4 first pc-scores. Just as
many as the optimal number of factors needed in the PCR model.

We have used a test set as validation of the modelling ability. Using full cross-validation to
validate the model gives a good indication how the validation method performs. Figure 10
shows the full cross-validation compared to the test set validation in the case of Pea Flavour.

Each object is tested against all the other objects in full cross validation. The resulting
RMSEP is calculated as a mean PLS modelling ability of Pea Flavour. We see that the cross-
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Figure 9. The residual variances of some important sensory attributes using PCR. We observe
that 4 factors are needed to explain most variables. Off flavour needs 7 factors.

validation is more conservative when compared to the test set validation. The test set
validation in general gives more optimistic results and it is a good practice to compare this to a
full cross-validation. If there are very many objects available it is possible to use segmented
cross-validation as we have explained earlier in this chapter.

5.1.2 Diagnostic tools. The biplot

The principal components estimated in PCR may be plotted in several ways. A good
interpretation tool is the biplot. In this plot the relations between the original variables and the
different objects may be resembled. The loading plot shows the relations between the variables.
Figure 11 shows that the group consisting of hardness, off-flavour and mealiness are strongly
correlated. The other group consisting of pea flavour, sweetness and fruitiness are correlated.
The two groups are negatively correlated. The score plot shows objects that are positioned
relative to these two groups. These objects are described by the relative positioning to the two
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Figure 10. The Pea Flavour modelied using PCR and PLS test set validation and PLS full
cross-validaton. The PLS performs slightly better than the PCR. The number of factors needed
to model the Pea Flavour is 3 using PLS and 4 using PCR. The cross-validation is more
conservative when compared to the test set validation.

groups. This indicates that for instance object 12 has a lot of hardness, off-flavour and
mealiness while object 52 has very little of these attributes. Object 52 has very much of pea
flavour, sweetness and fruitiness.

There is no correspondence to the biplot when it comes to the feed forward neural net. It is,
however, other network topologies that is capable of mapping variables. Just like the principal
component variable reduction, the self organising map will reduce muiti dimensionality to for
example two. The self organising map is designed to act as a feature map like the biplot.
(Kohonen, 1988).
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Figure 11. The PCR loading plot shows the relations between the variables (NIR variables are
shown as numbers, sensory attributes are shown by name). The group consisting of hardness,
off-flavour and mealiness are strongly correlated. The other group consisting of pea flavour,
sweetness and fruitiness are correlated. The two groups are negatively correlated. The PCR
score plot shows objects that are positioned relative to these two groups.
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PREDICTED PEA FLAVOUR VS RESIDUAL (Neural Net)
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Figure 12. Neural net and PCR predictions plotted against the residual values of pea flavour.
This illustrates how well the neural net models a non-linear relationship when compared to the
linear PCR model.
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PREDICTIONS OF PEA FLAVOUR (RAWDATA)
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Figure 13. Original pea flavour plotted against the predicted values using PCR and neural net
modelling. The correlation coefficient for the PCR model is 0.90 and 0.97 for the neural net

model.
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5.2 Comparison of Performance

Predictions from PCR compared with the neural network shows a non linear relationship in the
data. We select the prediction of pea flavour as an example. Figure 12 shows the residual
plotted against the predicted pea flavour for PCR. Here we see a non-linear curvature. Figure
12 also shows the same for neural net raw data model. The network tends to fit the model in
such way that the residuals are nearly the same in the whole range of pea flavour. This shows
the neural network is good in predicting non linear data relations.

Figure 13 shows the PCR and neural net predictions versus wanted values of pea flavour
from raw data. The correlation coefficient estimated using the PCR is 0.90. Compared with the
correlation coefficient of 0.97 for neural network predictions this shows that the neural
networks is able to detect non-linearities in the data. Comparing the results in Table 1 we see
that the neural network also performs better in prediction of all attributes. The non linearity in
the data and the fact that neural networks performs much better than PCR/PLS indicates that
neural network is a reasonable choice when it comes to predictions of sensory attributes.

6. CONCLUSIONS

Analysing complex sensory data is not a straight forward process. We have shown that using
different tools gives corresponding results but with different degrees of accuracy. It is very
important for the user of neural nets and PCR/PLS to understand the limitations and pitfalls. In
any case it is a very good practice to have a good knowledge of the origin of the data. Neural
network should be used when we need a good prediction ability. This is due to the fact that
neural network is able to detect non linear relations in the data. When the network is trained it
is a simple calculation task to use it as a good predictor. The good diagnostic tools of
PCR/PLS are, however, very important when we want to monitor the relations between the
different attributes and variables. The feed forward network is specially designed to do a
pattern recognition and has its strength in classification. I lacks, however, the diagnostic tools
like score plots and loading plots of PCR/PLS. A combination of neural network modelling
and PCR/PLS diagnoses gives a more deep understanding of the complexity of sensory data.
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1. INTRODUCTION

Analysing complex sensory data is normally done by using traditional statistical tools like
Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The approach of
using imaging techniques and relating images of the products to sensory attributes is, however,
not so common. Traditional image analysis of measuring distances, counting objects and
looking for hidden phenomena in the images are used on a single variable basis. The
multivariate approach by processing several images of the product simultaneously is more
claborate but has some great advantages. This work is a preliminary study of the possibility of
relating sensory quality parameters of white bread baguettes to features extracted from image
analysis. The success of this work will make it possible to use image analysis to optimise
baking processes and select components important to achieve the optimal and best quality
products. It is also an important aspect to point at the use of Singular Value Decomposition
(SVD) and image analysis in on-line process control.

Sensory analysis and texture analysis of bread are traditionally performed by sensory
analysis using trained assessors. The analysis is done by statistical methods like ANOVA
and/or multivariate techniques. (Maximo & Singh, 1984, O’Mahony, 1986). The main problem
of using the sensory techniques in process optimisation and on-line techniques is the time it
takes to get the information. New technology for video cameras connected to computers have
given alternative solutions to this problem. This requires fast and precise methods for
extracting relevant information from the video images. Traditional image analysis of counting
objects, measuring area, performing statistical analysis and combining information in several
ways makes it possible to extract information to be handled in further statistical processing
(Haralick, 1979). These traditional image processing techniques are, however, rigorous and
needs a lot of statistical computations and human interaction (Pratt, 1991). There is an
increased interest of using data transformations in pre-processing the images before they are
handled by a modelling system. Special focus is put on the Fast Fourier Transform (FFT), the
Wavelet transform and the Gabor transform (Masters, 1994). These transforms result in
complex numbers, and the modelling needs to take this into account. The SVD is a real number
transform and is therefore simpler to handle. Statistical pattern recognition and parameter
estimation is handled very extensively by van der Heijden (1994). Success in using SVD in
extracting features of different textures have been reported (Ashjari, 1982). Here the singular
values of the image are used to identify different textures and the identification is done by



136

calculating the Bhattacharyya distance of the different SVD texture sets. Looking at image
feature extraction in a multivariate way, however, gives new possibilities to extract relevant
information in a straightforward way. The singular values estimated from the SVD algorithm
identifies a singular value spectrum (SV-spectrum) for a particular texture sample. Different
images of samples give rise to different SV-spectra. These SV-spectra are used as the X matrix
in a multivariate modelling. The SV-spectra may then be modelled together with relevant Y-
information like sensory attributes, process variables and image features like object area.
Multivariate modelling like PCR and PLS are good diagnostic tools to monitor the hidden
relations between X and Y.

We will in the first part of the paper focus on the theoretical aspects of feature extraction of
images using the SVD. We will also focus on the multivariate techniques to be used in
classification and prediction of sensory attributes, especially the porosity of white bread
baguettes and the area of the final bread slices. The paper will also focus on the prediction of a
physical measurement of the area of the bread slices. It is of special interest to see how well the
area may be modelled at the same time as sensory attributes. If area is of interest as a quality
parameter, this reduces the need of doing a physical measurement in addition to sensory
measurements.

2. FEATURE EXTRACTION

2.1 Singular Value Decomposition
For a technical description of the SVD algorithm we refer to Press (1992). In our approach the
image is considered as a matrix of pixels ordered in rows and columns. We normally consider
grey scale images. Colour images can be considered as separate greyscale images in red, green
and blue components.

Consider the image A of size (m x n). The SVD theorem states that there exists unitary
orthogonal matrices U and V of size (m x r) and (n x r), respectively, and a diagonal matrix S
of size (r x r) (where r is the rank of 4) such that

A=U*S*V’ 0))

The matrix $={s;} is considered to be a generalised spectrum of the image (Hansen &
Nilsen, 1983). The matrix .§ can be written as

su 0 0 0 0
0 .. 00 O
$=0 0 .. 0 O (2)
0o 00 .. 0O
0 00 O s

where the diagonal elements are the singular values of 4. The singular values are sorted in
descending order. By applying the SVD on the image A this is the equivalent of estimating the
principal components of A using the rows as objects and the columns as variables. The
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estimation of singular values may also be done on the 4’ or 4*4' matrix as well. We will only
consider the first approach (Martens and Nes, 1989).

The SV-spectrum A of an image sample is composed of the diagonal elements of §
estimated from an image:

A = diag(S) ©))

A reconstruction, A,,o0f an image with p factors is given by
=0 *S,* V)’ @
and we have
A=A, +E, (p<=n) 5)

where E,, is a residual image at p factors.

The image A is fully reconstructed by applying the matrix multiplication of (1). By using
less principal component factors p<n we have a situation of image compression. This is a lossy
compression, but the main structure is described by the first p factors of the image represented
by A,. The number of factors to use is a matter of choice and depends on the property of the
images.

Figure 1 illustrates the use of SVD as an image compression technique of the image using
different factors. The illustration clearly shows that with p=1 the main information is given by
the rectangle convolving the object. With p=5 the shape is being described and with p=50 the
poring structure is contained in the restored image. The residuals show remaining structure
where p=1 and 5 but only noise when p=50. In this work we will show that the use of less
factors than n will enhance the model predictions and classification abilities. Thus the SV-
spectrum of an image sample taken into account is described by

Ap = diag($,) (p<=n) ©

The SV-spectra estimated using p factors from a set of k images are described by the matrix
A, consisting of the A, " as the rows of the A,.

Ap:[}'pl y A'pi” A'p.h )"pk] ! (7)

The singular values of the image are assumed to contain information of the image texture.
The matrix A, is used in classification and prediction using multivariate statistics and neural
networks. In supervised classification and predictions the A, is used as the X matrix and
sensory and/or process variables correspond to the ¥ matrix. In unsupervised classifications the
A, is used as the data to be classified.
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Original Image

Restored images

50 factors

1 factor

Residual images

1 factor 5 factors 50 factors

Figure 1. Example of the image compression and restoration using the SVD routine.
The corresponding residual images are also shown.

2.2 Modelling techniques

Multivariate methods have been used in spectroscopy and sensory analysis with great success.
Principal Component Regression (PCR) and Partial Least Squares (PLS) are evaluated as good
tools in classification and predictions of chemical, physical and sensory attributes. (Kjelstad et
al, 1990). The variables of the SV-spectra are like the variables of NIR spectra strongly
correlated with respect to several variables. It may be possible to use univariate regression to
make proper modelling of the data, but the diagnostic strength of PCR and PLS makes these
modelling systems very interesting. The use of multivariate techniques enables both linear and
non-linear modelling using all, or a range, of variables. The choice of using PCR/PLS is done
because of their good diagnostic tools. The modelling is linear. If there is a non linear
relationship in the data we could have chosen neural networks. There is a good
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correspondence between these methods (Nas et al, 1993). For a good description of
PCA/PCR we refer to Martens and Nas (1989). Analysing complex sensory data by artificial
neural networks is described by chapter 3 of this book.

Supervised methods like PCR and PLS both have similar estimation procedures. The
principal components used in PCA are solely based on maximising the variance of the X
matrix. PLSR, however, uses the variation in Y also in the estimation of the components. In
this way the modelling ability of PLS highly depends on the Y (Martens and Nas, 1989).
Predicting unknown samples by calibration of known samples is done in a similar way by the
two methods. A regression equation is obtained by regressing Y on the components. It is of
interest to verify if it is an advantage to guide the modelling by taking the information in Y into
account in the calibration process.

We will use a standard cross-validation technique to verify the modelling ability of the
images in relation to each other. Cross-validation is performed by using all but one object as
calibration set and the rest one single object as test set in a calibration. This process is done
until all single elements have been used once as a test set. The cross-validation technique used
validates single objects against all the other objects and the result is an average prediction
ability of the model. We will also use test set validation. By using this technique we will test
the modelling ability on a data set that has not been used in the calibration (Esbensen et al,
1995).

3. EXPERIMENTAL

3.1 Design

We will use texture images of baguette slices baked by different process parameters and
ingredients as an example. A fractional factorial design was constructed for each flour type.
The parameters varied at two levels. This resulted in a 2** design for each of the 4 flour types
giving 32 samples. The parameters taken into account were Flour type, Carlic Concentration,
Mixing Time, Vitamin C Concentration and Baking Process. Special attention was given to the
Baking Process and the Flour Type variables. The experiment was also performed to see the
effect of garlic on the baking. The design is shown in Table 1.
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Table 1. The design of the White Bread baguettes. The -1 and 1 symbolise low and high level.

SampleNo FlourType GarlicCons Mixing Vitamin C  Baking Process
time
1 1 -1 -1 -1 -1
2 1 -1 -1 1 1
3 1 -1 1 -1 1
4 1 -1 1 1 -1
5 1 1 -1 -1 1
6 1 1 -1 1 -1
7 1 1 1 -1 -1
8 1 1 1 1 1
9 2 -1 -1 -1 -1
10 2 -1 -1 1 1
11 2 -1 1 -1 1
12 2 -1 1 1 -1
13 2 1 -1 -1 1
14 2 1 -1 1 -1
15 2 1 1 -1 -1
16 2 1 1 1 1
17 3 -1 -1 -1 -1
18 3 -1 -1 1 1
19 3 -1 1 -1 1
20 3 -1 1 1 -1
21 3 1 -1 -1 1
22 3 1 -1 1 -1
23 3 1 1 -1 -1
24 3 1 1 1 1
25 4 -1 -1 -1 -1
26 4 -1 -1 1 1
27 4 -1 1 -1 1
28 4 -1 1 1 -1
29 4 1 -1 -1 1
30 4 1 -1 1 -1
31 4 1 1 -1 -1
32 4 1 1 i 1

3.2 Methods

We will consider the images being recorded from wheat bread baguettes based on process data
from 4 different types of flour and 2 different baking processes. The different types of flour had
different protein content (percent) and water absorbtion abilities. The resulting bread slices
were analysed by sensory analysis. The main attribute considered here were porosity, firmness,
glossiness, fresh smell, fresh taste, saltiness, crust breakage, juiciness and sponginess. The
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area of the baguette slices were calculated from images of size 512 by 512 pixels by counting
the number of pixels that the bread sample covered. These areas were used as reference values
in the later modelling. The modelling was performed on images resized to 128 by 128 pixels.
By resizing the images, we loose some precision of the area estimate.

The images were produced using a modified standard video camera (SilvaCam). This
camera has shown to be very well suited in texture recordings. The video signal was captured
using a Microway 9000 frame grabber. The SilvaCam is a standard RGB camera (the output is
given as red, green and blue signals) with the B channel modified to detect light in the near
infrared region. The camera is constructed in such a way that the standard red/green/blue
(R/G/B) channels are modified to NIR, red and green (Cn /R/G). These absorb light in the
(760-900 nm), (580-680 nm) and (490-580 nm) regions respectively. The Cnm /R/G
components may be used separately or combined in a grey scale image with the channels
averaged as (Cy +R+G)/3. It has been shown in parallel work, however, that Y/C (the ouptut
is given as luminance and chrominance signals) video cameras and high quality RGB cameras
give equally good results.

Different experimentation with illumination conditions lead us to use 45 degree illumination
from both sides. The objects were illuminated using four tungsten lamps, two from each side.
This light covers the visible and near infrared spectral region. The production of the baguettes
was done on two separate days. The illumination conditions were kept as constant as possible
during the recording. Calculations of the images showed, however, a little drift in light
conditions giving a small luminance difference. There is also detected a slight gradient in the
area distribution of light. This has not shown to be critical, but the results may possibly be
better if the lighting conditions were controlled better. In an on-line situation this lighting
problem may, however, be existent and robust feature extraction systems are important.

The bread samples were produced by cutting the bread in two parts. One half was analysed
by the sensory panel and the other half was recorded by the camera. Thus the surfaces to be
analysed were complementary and approximately the same. Twelve trained assessors were
used in the sensory analysis. Special attention was given to the sensory attribute of porosity.
Other attributes like firmness, glossiness, fresh smell, fresh taste, saltiness, crust breakage,
Juiciness and sponginess were also measured. Bread samples from three selected assessors
were used to produce 3 * 32 = 96 images of bread slices. They were given samples from
different productions based on the same design. We used bread samples presented to assessor
2, 11 and 12 in the image recording. These were chosen by random. We did not use the actual
values for each acessor, but the mean values of the sensory attributes were used to produce the
reference data (Y-data). The reference data for the area of baguette slices was obtained by
counting pixels. This was performed using standard image analysis.

The sequence of samples corresponds to the SampleNo in Table 1. The calibration set is
composed of the 64 images of baguettes presented to assessor 2 and 11 and the test set is
composed of the 32 images of baguettes presented to assessor 12 as shown in Figure 2. In the
full cross-validation the calibration set is construcet by selecting 95 images from the total of 96
images of baguettes. The test set is the single left image. The process of cross-validation is
performed by calibrating iteratively untill all objects have been tested once.
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Figure 2. The images presented to assessor 12 and with the design given in Table 1. Variations
in size, form and porosity are shown. The rowwise sequence of images corresponds to
SampleNo in Table 1. These images are used in predictions.

The images were analysed as two main classes of images. The first class was composed of
images of the whole bread object with the background filtered out (OBJ). The second class
was composed of cut outs of center parts of breads (CUT). The idea was that the CUT
contained texture information about porosity and the OBJ images in addition contained
information on the size and shape of the baguettes. The CUT images were 128 by 128 cut outs
of 512 by 512 images. The OBJ images were rescaled from 512 by 512 to 128 by 128. In this
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way the computing time was reduced significantly. The main poring structure was still
remaining in the OBJ images. The reason for dividing the images in these two groups was that
we wanted to find out whether the information of process, flour type and porosity was given
by the poring structure alone or whether additional size and shape information was needed.

3.3 Computations

Standard image analysis was performed using the ImagePro software package
(MediaCybemetics, 1995). The area of the baguettes were estimated by masking the objects
from the background and counting the number of pixels contained in the mask. Calculations of
the singular value spectra (SV-spectra) were done using the MATLAB software package (The
MathWorks, 1995). The PCR and PLS were performed using the Unscrambler software
package (Camo AS, 1995).

We mainly considered the prediction of baking process, the different flour types, the area of
the baguettes and sensory porosity. The area of the slices of the baguettes are easily computed
by counting pixels. This process is time consuming. We wanted to show that this procedure
could be included in the modelling and predicted at a reasonable level at the same time as other
important sensory attributes. The area of the slice is an important quality parameter. We also
considered other sensory attributes like texture, smell and taste to see how these correlated to
the main variables mentioned. The modelling was done using PCR and PLS. The validation
was performed using full cross-validation and test set validation (see part 2.2, Modelling
Techniques). Using test set validation we used the above described 32 samples as prediction
set and 64 samples as calibration set. Both the OBJ, CUT and a combination of OBJ and CUT
images were considered.

Data pre-processing like sharpening was used to enhance the modelling ability of the SV-
spectra. We wanted as small modifications as possible of the original images. A calculation of
the greyscale representation was performed before the SV-spectra were calculated. In the CUT
representation the NIR component was used. The images were mean centered to equal
lighthness due to some drift in the lightning conditions. All channels (Cxw/G/B) were used to
produce greyscale images of the OBJ representations. The pixels were not mean centred in this
representation. The process of doing the data pre-processing was performed by a rather
pragmatic optimisation. By trying out different pre-processing techniques and then doing the
modelling we found the method which seemed to be satisfactory. It is therefore possible to
enhance the modelling ability by looking at this topic in later work.

The porosity scale ranged from 1 to 8 with 1 as the densest value. Porosity was predicted
using PCR and PLS. The area of the baguettes could range from 0 to 26*10* pixels but in
practice they waried between 5*10* and 12*10* pixels. Other sensory attributes ranged from 1
to 9 on a nominal scale. The sensory attributes were all calculated using the mean value taken
over all 11 assessors. The -/+ 1 values of the baking process variable were coded in a binary
way (0 and 1). The flour types were coded by 4 binary variables.

The calculations were first performed in two steps to estimate the number of variables
(factors) to use from the SV-specta. The SV-spectra were estimated using equation (6). The
number of factors used to restore an image depends on what degree of loss is accepted. How
well the attributes are modelled depends on the number of factors to be used in constructing
the SV-spectra. Equation (5) gives an estimate of the residual image with p factors. This is
visualised in Figure 1 where the residual images based on some selected factors are shown.
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Figure 3. Samples of some estimated SV-specra (1/singular value) from the images presented
in Figure 2 are shown in Figure 3. Only the first 50 factors are shown.

Samples of some estimated SV-spectra (1/singular value) from the images presented in
Figure 2 are shown in Figure 3. Only the first 50 factors are shown. This indicates that the
SVD produces distinct SV-spectra to be modelled.

By looking at the image structures visually in Figure 1, we observe that the porosity
structure is gradually becoming visible as more factors are being used. The residuals, however,
gradually become more noisy as more factors are being used. Other structures may still be
visible in the residual image. We suggest the following method to estimate a reasonable
number of factors, p, (variables) to be used from the SV-spectra.

Sensory porosity was used as the Y-variable. Cross-validation was performed by varying
the number of SV-spectra variables. We used 10 segment cross-validation and random object
selection because this is faster than a full cross-validation and the resuits will be at the same
level. The RMSEP of the cross-validated models were compared to find the optimal model
which in tum gives the optimal number of variables to use from the SV-spectra. Figure 4
shows the RMSEP of cross-validation for different number of variables. We observe that there
is an optimum at about 90 variables. This optimum is reached after 2 components. Using more
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Figure 4. RMSEP for porosity (cross-validated) for different OBJ PCR models. The number of
singular values (SV-variables) used in the different models are shown.

than 95 variables introduced only noise. This situation is the same for all other Y variables to
be modelled and we conclude that it is reasonable to select the SV-variables 1 through 90.

This illustrates two different noise levels: The Image Level Noise (ILN) is the residual
found by the feature extractor (SVD). The ILN should not be input to the PCR/PLS modelling
of the sensory attributes and process variables. The Multivariate model Level Noise (MLN) is
the residual of the modelling of attributes and process variables using PCR/PLS. By reducing
the ILN in front of the modelling, it is possible to enhance the model performance.

4. RESULTS AND DISCUSSION

4.1 Feature extraction and multivariate modelling

The results from PCR and PLS are of the same order and we will focus the discussion on the
PCR case only. We will focus on the determination of sensory porosity, the area of bread
slices, the baking process and the flour types. Garlic concentration, vitamin C concentration
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Figure 5. Explained variances of the CUT and OBJ PCR models (test set). The flour types are
symboled by F1-F4.
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and mixing time had no influence on the texture. These variables are not included in this work.
We will also discuss other relevant sensory attributes.

The suggested number of factors to be used is given by looking at the residual Y-variances.
The choice of using the test set residual Y-variances as measures for choosing the number of
factors, is justified by the fact that test set validation is in correspondence with the full cross-
validation. The explained variances of PCR performed on CUT and OBJ data sets are shown in
Figure 5. We see that the porosity was modelled equally well using either CUT or OBJ images
and the area was modelled best using the OBJ images. The explained variance of the porosity
was 60 percent at 3 factors using the OBJ images and 57 percent at 4 factors using the CUT
images. The explained variance of area was 25 percent at one factor using CUT images and 90
percent at 3 factors using OBJ images.

The prediction ability of area and porosity are given as root mean square error of
predictions (RMSEP) (Martens and Nas, 1989) and the correlation, R, (estimated by The
Unscrambler) in Table 2. The RMSEP gives a direct measure in the attributes units of the
model error while the cormelation factor measures the linear relationship between the
measurements and the predicted values. The results show that due to the correlation of area
and porosity it is possible to predict the area at a correlation of 0.5 from images that do not
contain the shape of the bread (CUT). The corresponding RMSEP is 1.42*10* pixels. The
area, however, is predicted with a correlation of 0.95 when the information of size and shape is
represented in the images (OBJ). The corresponding RMSEP is 0.52*10* pixels. The
prediction of porosity has correlations at the same level (0.76 and 0.78) by using the CUT and
OBJ image classes respectively. The corresponding RMSEPs are 0.80 and 0.77. This verifies
the results given by the explained variances.

Table 2. RMSEP and correlation coefficient for different models and image classes. CV means
full cross-validation.

IMAGE CLASS |VALIDATION AREA * 10¢ POROSITY
(pixels)
rmsep corr rmsep corr

CuT test set 1.42(1) 0.50 0.80(4) 0.76
cv 1.30(2) 0.84(4)

OBJ test set 0.52(3) 0.95 0.77(3) 0.78
cv 0.51(3) 0.84(2)

CUT/OBJ test set 0.52(5) 0.95 0.67(3) 0.84
cv 0.60(5) 0.72(4)

The modelling ability of the process variables (baking process (PR1 and PR2) and flour
types (F1, F2, F3 and F4)) are shown in Figure 5 for the PCR models of OBJ and CUT images.
The explained variances of the two baking processes are equal as a result of the binary design
of PR1 and PR2 and symboled by PROCESS in Figure 5. The explained variances of flour
types 2 and 3 are 60 and 37 percent at 4 factors using the OBJ images. The modelling of these
variables is more complicated using the CUT images. The explained variances of flour type 3 is
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35 percent at 4 factors. For flour type 2 it is 20 percent at 5 factors. The modelling ability of
flour type 2 and 3 is reversed for the two image classes.

The explained variances of flour types | and 4 are 20 and 18 percent at 4 factors using the
OBJ images. The modelling ability of these variables is not so clear using the CUT images. A
full cross-validation shows that very little of these variables is explained using the CUT images.
This indicates that the OBJ images are better in describing the flour types. It is probably the
size and shape that mainly contributes to this information.

The variables describing the baking processes 1 and 2 are best described using the OBJ
images. About 30 percent of the variance is explained at 2 factors with the CUT images. As
much as 55 percent of the baking process variance is explained at 4 factors with the OBJ
images. It seems that the modelling of the baking process needs information of the size and
shapes. This is also true for the modelling of flour types.

4.2 Classifications of process variables and sensory quality

The relations between the variables are shown using the PCR loading plot of both X and Y
loadings of OBJ class images in Figure 6. The relations between the different bread slice
samples are shown using the score plot. The first component PC1 accounts for 85% of the
variation. The second and third components account for 4 % of the variation. The
corresponding loadings and scores for the CUT class images show a similar structure and we
will restrict the discussion to the OBJ class images.

There is a tendency that the porosity correlates strongly to the area of the baguettes. This is
expected and this also shows that it is possible to predict the area of the baguettes using the
CUT class images that do not visually contain size and shape information. The baking process
2 is negatively correlated to the area and porosity along PC1. We see from the score plot that
the baking process 1 is correlated to area and porosity. The flour types are separated in the
loading plot. We see that the two flour types 2 and 3 are negatively correlated to each other
along PC1. Along the PC1 this shows that flour type 2 gives smaller and dense baguettes and
flour type 3 gives bigger and less dense baguettes. The flour types 1 and 4 do not seem to vary
along the PC1 but are separated from flour types 2 and 3 along PC2. This is also the case when
PC1 is plotted versus PC3.

The score plot in Figure 6 is used to classify the objects baked with different baking
processes. Objects baked with process 1 are mainly located in the right half plane separated by
the PC2 axis while objects baked with process 2 are mainly located in the left half plane. There
is a zone in between consisting of both types of objects. The loading plot in Figure 6 shows
that the right half plane describes locations of objects with high degree of porosity and big area
slices. This shows that bread baked with process 1 resulted in relative bread slices with
relatively large area and with a high degree of porosity. The bread baked with process 2,
however, resulted in a low degree of porosity and they were small. This plot gives a good
visual map of the resulting quality of the bread samples due to the two different baking
processes. Objects labelled with the different flour types are also shown in the same score plot.
We see a distinct separation and classification of flour types 2 and 3 in the PC1 direction.
Samples with flourtype 3 are mainly located in the area where big samples with high degree of
porosity are located. Samples with flour type 2 are mainly located in the area where small
samples with low degree of porosity are located. If large area slices and high degree of
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Figure 6. The loading and score plot of the OBJ PCR model. The loading plot shows the X and
Y variables. The datapoints are shown by a two character symbol: Flour type (1-4) and baking
process (1-2). The variables of the SV-spectra are labelled oxx. The SV-variables are shown as

oxx in the loading plot.
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porosity are preferred, we conclude that flour type 3 bread gives high quality products despite
of baking process while flour type 2 gives low quality products despite of baking process.

The flour types 1 and 4 are separated from flour types 2 and 3 in the PC2 direction. The
area and porosity of breads based on flour types 1 and 4 seem to be highly dependent on the
baking process. Again, if large area slices of bread with high degree of porosity is preferred
then we must use baking process | when dealing with flour types 1 and 4.

4.3 Combined image models

The above analysis has shown that the porosity is modelled better by using CUT class images.
The area is best modelled by the OBJ class images. This may be due to the fact that the OBJ
images have lost some of the information on porosity when they were reduced in size. This
was, however, necessary because of the huge amount of computing power needed on large
images. Ideally one should use images with good resolution for both porosity and shape. This
leads to arranging CUT and OBJ class SV-spectra in one matrix resulting in one model.

The plots of the explained variances shown in Figure 7 indicate the advantage of this
approach. The area and porosity are best described using 5 and 3 factors respectively. The
porosity is now explained better. The flour types 2 and 3 are described using 5 and 6 factors
respectively. The flour types 1 and 4 are best described using 5 factors. We observe that flour

Figure 7. The explained Y variances of the combined CUT/OBJ PCR models. The baking
processes PR1 and PR2 are symbolised by PROCESS and flour types (F1-F4).
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Figure 8. Predictions of area and sensory porosity of the baguettes using the combined
CUT/OBJ PCR model. The datapoints are shown by a two character symbol: Flour type (1-4)
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types 1 and 4 now are being explained better than models based on either CUT or OBJ class
images. The baking process variables are quite well described using 6 factors.

The porosity is predicted better than by the former CUT class model. The correlation is
0.84 and the RMSEP is 0.67. The area is predicted with the same degree of precision as
before. This is shown in Table 2. Figure 8 shows the predictions of area using the test set and a
5 factor model is also shown. The prediction ability of the porosity using test set and a 3 factor
model. The labelling of the objects show the flour types (1,2,3,4) as first digit and the baking
process (1,2) as the last digit. We observe a classification of bread samples corresponding to
the score plot shown in figure 6. This indicates that bread slices produced with baking process
1 are big area bread samples and have a high degree of porosity. Flour type 2 samples are
grouped at the lower left and flour type 3 samples at the upper right (Figure 8).

The computing power needed for this suggested combined modelling is considered not to
be critical. By splitting the image information in a texture part (CUT) and a size and shape part
(OB)), it is possible to model more features simultaneously. Most of the computing power is
for the SVD. Modifications of the SVD routine to compute only the p first factors may be
needed. It is then possible to implement larger images that contain more information.

4.4 Sensory analysis based on images

Strong correlations between several sensory attributes make it possible to model several
interesting sensory attributes simultaneously.

The loading (X and Y variables) and score plots of the combined PCR model show
interesting features of the OBJ/CUT model (Figure 9). The first principal component (PC1)
accounts for 62% ov the variation while the second and third principal component (PC2 and
PC3) account for 22% and 5 % respectively. The score plot in Figure 9 shows that the OBJ
images have information describing the area and porosity. It also shows the correlations
between area, porosity, flour type 3 and baking process 1. The CUT images, however, are
mainly located in the negative PC1 direction. The first CUT variables (c01-c10) are located
along the positive PC1 direction and correlates positively to the baking process 1 and flour
type 3. They also vary together with the flour type 2 and baking process 2 in the negative PC1
direction. None of the OBJ variables are located along the negative PC1 direction. This shows
that the combination of CUT and OBJ images may enhance the modelling ability.

The process and area variables vary along the PC1 direction. It is not possible to separate
the flour types 1 and 4 in the process-area direction. They are slightly separated in the PC2
direction. Flour types 2 and 3 are separated in the PC1 direction and also separated by the PC2
direction. This leads to a suggestion that the first principal component is a baking
process/area/porosity dimension. This direction is spanned by the two different image classes.
By adding other sensory variables to the Y matrix we obtain a very informative map of the
relations between process variables and the sensory attributes. By the strong correlations of
these attributes, it is possible to model taste and smell using SVD and image analysis. In
addition to the area and porosity we see that the sensory attributes of juiciness and sponginess
are described along the PC1 direction. This is reasonable when compared to the large area
samples with high degree of porosity. Firmness is described along the PC2 direction. We
observe that firmness is mainly described by the CUT class images. Attributes like fresh taste
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Figure 9. Loading and score plot of the combined CUT/OBJ PCR model. The datapoints in the
score plot are shown by a two character symbol: Flour Type (1-4) and process (1-2). In the
loading plot the characters oxx and cxx symbolise OBJ and CUT SV-spectra variables
respectively.
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glossiness and fresh smell is not described in the PC1/PC2 plane. They are described better in
the PC1/PC3 plane.

It is interesting to see how the sensory attributes like firmness, glossiness, fresh smell, fresh
taste, saltiness, juiciness and sponginess are all being modelled by the SV-spectra (Figure 10).
We observe that even though it is quite impossible to detect taste and smell by imaging, the
strong correlation of smell and taste variables to the texture makes this possible. It is also
possible that other textural properties are related and described by the SV-spectra of the
images. The explained variances of some selected attributes are shown in Figure 10. It may be
possible that other feature detectors may be better to detect these attributes.

The loading plot also indicates that the flour type 2 gives products much firmness. The flour
type 3 may result in products that are crisp and have high degree of crust breakage. (Crust
breakage describes the breakage of the outer crust due to the cooling).

This shows an interesting feature in this modelling. By combining sensory analysis and video
images, it is possible to build models to be used in on line control of the baking process. In a
product optimisation this should be a valuable tool and give a good indication of how to vary
the process to obtain an optimum. The proposed method also has a potential of suggesting
what ingredients and baking process one should choose to achieve an optimal product. The
PCR combined loading and score plot, the biplot, is a very useful tool in this process.

807

707

601

507

407

301

207

Figure 10. Plot of the explained Y variances of some sensory attributes by applying additional
sensory attributes using the combined CUT/OBJ PCR model.
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Figure 11. Plot of predicted area versus predicted sensory porosity using the combined
CUT/OBJ PCR model. The datapoints are shown by a two character symbol: Flour type (1-4)
and process (1-2).

4.5 Alternative predictions of porosity

The prediction ability of porosity and the area of the baguette samples show a strong relation.
Figure 11 shows predictions of porosity versus the predicted area using the combined
CUT/OBJ model. This shows that it is possible to estimate the porosity from the predictions of
the area and vice versa with a correlation of 0.90. Univariate modelling may be used in
situations where precision is not so important and we want quick estimates of the relationship.
It is also interesting to observe the close relation of the first factor of the SV-spectra to the
area and the porosity as well. It is possible to get a quick estimate of the relationship by using
univariate regression and the first component of the SV-spectras. The main preference is that
multivariate modelling of the images using the SVD also simultaneously models process
variables and results in classifications that are very informative.
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5. CONCLUSIONS

The SVD algorithm has proved to be a possible feature extractor and a fundamental building
block in correlating raw images of bread to sensory attributes, especially the porosity. Strong
correlation between the sensory attributes give possibilities to model other sensory attributes
like smell and taste. It suggests a way to estimate the area of the final products based on the
process variables. The models show a strong correlation between porosity and the size of
bread samples. It is also possible to observe the effect the baking process has to the different
ingredients of flour types. This leads to the conclusion that this method is possible to use in on-
line processes control.

Large images limit the practical use of the SVD. By combining images based on porosity
and texture information with images based on both texture and shapes, it may possible to
enhance the modelling ability. It is also possible to classify baking process. This information
can possibly be used to optimise the products.

The SVD algorithm shows its strength in using raw images with no filtering applied.
Standard image analysis often needs a pragmatic way of finding the optimal filter to extract the
wanted features of the images. The SVD technique uses SV-spectra and models these with
multivariate PCR or PLS. Used in on-line processes this is important because of the speed of
computations. It may be possible to optimise the modelling by further investigation of the
Image Level Noise and multivariate modelling techniques. We will also point at the possiblity
of combining several feature extractors to be used in the modelling.
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1. INTRODUCTION

Multidimensional scaling (MDS) is a technique employed to display certain kinds of data spatially
using a map. The basic concept of MDS is demonstrated in an example of Kruskal and Wish
(1991). Consider the intercity flying distances among ten U.S. cities shown in Table 1. This table is
easily constructed from a map of the United States by using a ruler and measuring the distances
between the cities. Suppose, however, that one is presented with the intercity distances and asked
to construct a map based on these distances. This is a more difficult problem, one that MDS is
designed to solve. By applying MDS to the intercity distances, one obtains the map shown in Figure
1, which1 almost perfectly recreates the spatial arrangement of cities from which the distances were
derived.

Of course, in real applications of MDS the situation is more complicated. Unlike the intercity
distances, real data contain measurement error, so the researcher must make a number of decisions
concerning how best to model the data. Although the analysis of the intercity distances is an
artificial example, it demonstrates the core idea underlying MDS: based on the distances among a
set of objects, MDS constructs a picture in which these objects appear as points on a map.

MDS is applicable to a variety of data, not just actual distances. In fact, MDS can be used to
analyze any data that represent how similar (or dissimilarobjects or events are to one another. For
this reason, MDS has found application in a broad range of disciplines, including physics,
psychology, physiology, linguistics, political science, and market research (Romney, Shepard, and
Nerlove, 1972; Green and Wind, 1973; Schiffman, Reynolds and Young, 1981; Golledge and
Rayner, 1982; Rosenberg, 1982; Young and Hamer, 1987). In each case, MDS is used to construct
a spatial representation of the similarity among objects, with the purpose of discovering
relationships or patterns. Usually two or three spatial dimensions are sufficient to reveal the most
important relationships among the objects.

! Section 11 contains a list of the widely used computer programs for MDS. This analysis was conducted using
the ALSCAL procedure in SPSS.
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Table 1

Intercity flying distances
City 1 2 3 4 5 6 7 8 9 10
1. Atlanta 587 1212 701 1936 604 748 2139 2182 543
2. Chicago 587 920 940 1745 1188 713 1858 1737 597
3. Denver 1212 920 879 831 1726 1631 949 1021 1494
4. Houston 701 940 879 1374 966 1420 1654 1891 1220
5. Los Angeles 1936 1745 831 1374 2339 2451 347 959 2300
6. Miami 604 1188 1726 966 2339 1092 2594 2734 923
7. New York 748 713 1631 1420 2451 1092 2571 2408 205
8. San Francisco 2139 1858 949 1654 347 2594 2571 678 2442
9. Seattle 2182 1737 1021 1891 959 2734 2408 678 2329
10. WashEgton, DC 543 597 1494 1220 2300 923 205 2442 2329

® Seattle
® New York

San Francisco
L]

Los Angeles

Denver

°
Chicago

.
Washington, D.C.
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Houston

Miami

T

T

Figure 1. Location of ten U.S. cities as determined by an MDS analysis of intercity flying distances.

The development of MDS was largely motivated by a desire for a psychophysical scaling method
that did not presuppose a knowledge of the attributes on which stimuli differ (Torgerson, 1958;
Young and Hamer, 1987). MDS is often applied in situations where the researcher may not fully
understand what specific attributes distinguish objects from one another. The advantage of MDS is
that it requires as input only a measure of overall dissimilarity (or similarity) among objects.
Difference measures on specific attributes are not required.

For example, a researcher may be interested in how consumers categorize beverages such as soft
drinks, juices, alcoholic beverages, teas, and coffees. By asking consumers to rate the perceived
similarity among beverages and by analyzing the ratings using MDS, the researcher can begin to
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learn, based on the location of the products in the MDS map, which dimensions are important to
consumers in differentiating among beverages. An example of the application of MDS to the study
of the beverage market can be found in Hoffiman and Young (1983).

2. MDS AND SENSORY ANALYSIS

MacFie and Thomson (1984) list several reasons for applying MDS in sensory analysis. The specific
attributes that constitute a complex sensation, such as meat flavor, may not be known. When the
attributes are unknown, MDS can be used to differentiate among the products because panelists
need only rate dissimilarity. Even when the attributes are known, extensive training might be
required for a sensory panel to measure the attributes reliably. Training is not only time consuming,
but may be undesirable if a naive response is desired, as from a consumer panel. MDS, which
requires the respondent to judge only overall (dis)similarity, provides a potential alternative in these
situations.

Another reason for using MDS in sensory analysis is that often only two or three dimensions are
needed to depict the important differences among samples. Simply by inspecting the position of the
samples in the space and by noting which samples cluster together, the investigator is sometimes
able to reach conclusions about the most salient differences and the possible basis for these
differences. Other data analysis methods, such as principal component analysis, require the
experimenter to collect data on multiple attributes, many of which are redundant or irrelevant to the
panelists for distinguishing among the samples.

Finally, certain MDS procedures (Caroll and Chang, 1970) allow for the modeling of individual
differences. Individual differences are of great interest, both in descriptive analysis and consumer
research. In descriptive analysis, there is often a concern with differences (or inconsistencies) in
sensory perception among individual panelists. The existence of such differences may suggest the
need for better panel training. In consumer research, the question frequently asked is whether there
are segments of consumers that differ in their preference for certain foods. For example, some
consumers may prefer a mild tomato sauce, others a spicy one. Later in this chapter, examples will
be presented of how MDS can be used to study individual differences among sensory panelists. The
multidimensional scaling of preference data is the subject of Chapter 3. of this book.

An example from sensory analysis will help clarify some of the concepts discussed so far.
Heymann (1994a) evaluated the aroma differences among four types of vanilla (Pure Bourbon,
Bourbon Processed Bali, Indonesian, and Indonesian Nonsmeoky), each processed to 3-fold,
10-fold, and 20-fold strength. Vanillin was also included among the samples (at 3-fold strength).
Untrained panelists sorted the samples into groups based on their odor similarity, and the results
were used to compute similarity scores among the samples (see Section 3 for details on the sorting
procedure). A two-dimensional MDS analysis of the similarity scores (using SAS PROC MDS) fit
the data well and yielded the map in Figure 2. The results shows that along the horizontal dimension
panelists clearly differentiated the Indonesian samples from the Bourbon and Bourbon Processed
Bali samples (and vanillin). No differentiation is apparent between the Indonesian and Indonesian
Nonsmoky samples, or between the Bourbon and Bourbon Processed Bali samples. Within the
Indonesian and Bourbon groups, samples of similar fold tend to group together. The vertical
dimension may be related to concentration, although the ordering of fold levels along that dimension
is not the same for the Indonesian and Bourbon type samples.
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Figure 2. MDS representation of the aroma of vanillin and twelve vanilla samples. B=Bourbon,
BPB=Bourbon Processed Bali, I=Indonesian, INS=Indonesian nonsmoky. Numbers represent
strength of concentration (3-, 10-, or 20-fold).

The example illustrates several points about MDS. First, using untrained panelists and a simiarity
judgment task, it was possible to uncover meaningful groupings among the samples. Secondly,
these groupings were readily apparent from a two-dimensional map and several conclusions were
possible based on the configuration of samiples in the plot. However, there is a limitation on one's
ability to further interpret these results. Without an a priori knowledge of some of the aroma
characteristics of these samples, it is not possible to conclude from this study what particular
attributes were the basis for the groupings. In the absence of such knowledge, additional
information, such as attribute ratings or physical measurements (for example, gas chromatographic
readings), is often needed for interpreting MDS results (see Section 8).

MDS has been widely used in the study of chemoreception and in the sensory evaluation of
foods and beverages. Schiffinan used MDS extensively to map odor and taste quality using simple
chemicals and tastants (Schiffiman, Reynolds, and Young, 1981; Schiffman, 1984). The perception
of alternative sweeteners was studied in model systems by Schiffiman, Reilly, and Clark (1979) and
Thomson, Tunaley, and van Trijp (1987), and in simple beverages by Schiffman, Crofton, and
Beeker (1985). The saltiness of gum solutions was studied using MDS by Rosett, et al. (1995) and
Rosett and Klein (1995).

Lawless applied MDS to study odor perception using aroma chemicals and fragrances (Lawless,
1989, Lawless and Glatter, 1990, and Lawless, 1993); to understand mouthfeel attributes (Bertino
and Lawless, 1993), and to investigate cheese perception (Lawless, Cheng, and Knoops, 1995).
Heymann used MDS in studies of vanilla flavor (Heymann, 1994a), apple essences (Gilbert and
Heymann, 1995), and creaminess perception (Skibba and Heymann, 1994a, 1994b; Gwartney and
Heymann, 1995).

MDS has also been used to study the different qualities of food sounds (Vickers and Wasserman,
1979, Vickers, 1983), the storage-related changes in orange juice aroma (Velez, et al. 1993), and
the sensory characteristics of spreads (Tuorila, et al. 1989, Matuszewska, et al. 1991/2), rye breads
(Hellemann, et al, 1987), yogurt (Poste and Patterson, 1988), meat (Francombe and MacFie,
1985), and soft drinks (Chauhan and Harper, 1986).
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3. DATA COLLECTION PROCEDURES

A number of methods exist for collecting data for an MDS study. Regardless of how the data are
collected, most MDS techniques require that the experimental results be organized in the form of a
matrix of dissimilarities (or similarities), as shown in Table 1 for the intercity flying distances.”
Among the applicable data collection methods, one can distinguish between those that involve an
explicit evaluation of sample dissimilarity by the panelist and those that derive a dissimilarity matrix
from other measurements (e.g., attribute ratings)’.

Explicit evaluation methods include pair-wise dissimilarity scaling, conditional rank ordering and
sorting. In all cases, the panelist's task is to evaluate dissimilarity among the samples based either on
an attribute defined by the experimenter or based on unspecified attributes. For example, an
experimenter might ask panelists to judge dissimilarity based on a specific attribute, such as color or
odor. On the other hand, the experimenter may choose not to specify an attribute, in which case
panelists are free to use their own criteria for judging dissimilarity.

Panel inconsistencies can arise if panelists have difficulty evaluating all samples on the same
criteria and change their basis for judging dissimilarity depending on the samples. Such a change in
judgment can result in an MDS space which underrepresents the number of dimensions actually
relevant to the judgment task. Cohen and Jones (1974) simulated the effects of random error and
sub-sampling of dimensions and found that dimensions which panelists consistently observed were
well recovered in the final MDS configuration, but those dimensions which were not used
consistently were not.

Several preparatory steps need to be completed prior to sensory data collection. These steps,
also common to other sensory techniques, are those involved in recruiting and screening of panelists
(Stone and Sidel, 1994; Meilgaard, Civille and Carr, 1991; Schiffiman and Knecht, 1993). It is
important that panelists be able to ascertain differences among samples and that they are capable of
making judgments of dissimilarity. Additionally, the researcher has to decide which of the possible
techniques, discussed in this section, should be used to collect the data (see also Green and Wind,
1973). During the data collection phase the researcher should use standard sensory methods to
ensure the validity of the data (see Stone and Sidel, 1994; Meilgaard, Civille and Carr, 1991, for
more information).

Traditionally, panelists evaluate dissimilarity between all possible pairs of products and indicate
the perceived dissimilarity of each pair using category or line scales. Schiffiman, Robinson and
Erickson (1977) used a five inch line scale anchored with ‘exactly same' on the left and ‘completely
different' on the right. In this case larger numbers indicated greater dissimilarity. These pair-wise
comparisons provide a set of dissimilarity measurements that are then used in the calculation of the
multidimensional spatial distances among samples.

The pair-wise method of sample presentation can quickly lead to an excessive number of
evaluations for the panelists, as can be seen by the following calculation. The number of pairs used

N

Not ali MDS techniques are based on dissimilarity matrices. In particular, multidimensional unfolding
methods (Schiffman, Reynolds and Young, 1981) have been developed that can accept as input sensory or
hedonic attribute ratings and do not require the data to be transformed into dissimilarity scores. The
unfolding models are not considered here.

In most of what follows, there is no need to distinguish between similarity and dissimilarity scaling. The
difference amounts to whether larger numbers reflect increasing similarity or dissimilarity MDS programs
often accept data in either form. When only one form is acceptable, similarity judgments are easily
transformed to dissimilarities (or vice versa) prior to analysis.

w
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to pair-wise compare all samples in a set of size n is n(n-1)/2. With seven samples there are 21 pairs,
with ten samples there are 45, and with 25 samples there are 300 pairs. This would lead to excessive
sensory fatigue and would be very time consuming for the panelists, especially if the study is to be
replicated. However, the technique has been used successfully (see, for example, Schiffman,
Robinson and Erickson, 1977; Thomson and MacFie, 1983; Williams and Arnold, 1985; Gilbert and
Heymann, 1995).

Due to the problem of sensory fatigue, especially with studies involving odor and flavor,
researchers often attempt to find other methods of data collection. Incomplete data designs can be
used to reduce the number of comparisons that each panelists must make (Schiffinan and Knecht,
1993; Malhotra, Jain and Pinson,1988). These incomplete designs can be as simple as having twice
as many panelists with each panelist evaluating half of the sample pairs. The panelists can be
assigned sample pairs at random or through the use of a selection scheme (Spence and Domoney,
1974). A simulation by Whelehan, MacFie and Baust (1987) indicated that up to 40% of the
dissimilarities in a complete pair-wise design can be omitted, if replications indicated that the error
levels are not large. Moskowitz and Gerbers (1974) studied dimensional significance of odors
through the use of an incomplete similarity scaling technique. More complex incomplete designs,
such as cyclic designs, may also be used (Spence, 1982). For example, Rosett and Klein (1995b) in
a study of saltiness perception in sixteen gum solutions, calculated that panelists would have to
evaluate 120 pairs of solutions. They used incomplete cyclic designs in which half of the panelists
evaluated 80 pairs of a potential 120 samples and the other half evaluated 75 sample pairs. The
cyclic designs were chosen to overlap so that 35 of the pairs were the same for both groups.

Conditional rank order can also be used to decrease the number of samples that each panelist
evaluates. In this procedure, each sample is used as a standard and the panelist ranks the remaining
samples according to their similarity to the standard (Rao and Katz, 1971). For example, consider a
study in which panelists are asked to evaluate the similarity of five products: sour cream, cream
cheese, ice cream, milk and cream. A panelist first ranks the similarity of the samples using milk as a
reference. Next, the panelist ranks the samples using cream as a reference, and subsequently, using
sour cream, cream cheese and ice cream as references. Each panelist completes five rank orders,
with the order of the standards balanced across panelists. This method works very well with visual
stimuli but not with more fatiguing odor or flavor samples. It is possible to make the task less
fatiguing by eliminating a sample from the comparison set once it has been used as a standard. In the
above example, milk would be eliminated after round one, cream after round two and so on.
However, collection of the full data set allows the researcher to check for panelist consistency and
reliability (Deutscher, 1982). Special MDS models are required for analyzing conditional rank order
data (Schiffman, Reynolds and Young, 1981).

Sorting has also been used to decrease the number of samples that the panelist evaluates. In this
case, the panelist receives the entire set of samples at once and then sorts them into mutually
exclusive groups based on similarity (Rao and Katz, 1971; Wish, 1976; Rosenberg and Kim, 1975;
Rosenberg, 1982). Panelists are often told that they must sort the sammples into no fewer than two
groups and into no more groups than one less than the total number of samples in the set. This
ensures that each panelist creates at least two groups yet cannot place each sample into its own
group. The panel leader then counts how often any two samples were placed into the same group,
thus deriving a similarity matrix in which larger numbers indicate increased similarity. The
assumption underlying this method is that samples occurring in the same group are more similar
than samples occurring in different groups. Panelists intuitively seem to understand the task, find it
easy and perform it rapidly. This technique has been used extensively by Lawless (Lawless, 1989;
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Lawless and Glatter, 1990; Lawless, 1993; Lawless, Cheng and Knoops, 1995) and Heymann
(Heymann, 1994a; Gilbert and Heymann, 1995; Skibba and Heymann, 1994a,b) as well as others
(MacRae et al.,, 1990; 1992).

With all of the above methods, the researcher needs to consider how he or she will interpret the
dimensions of the spatial configuration that MDS derives (Lawless, 1993). A number of options
exist (Hair, Anderson and Tatham, 1984). Researchers can simply use their own judgment, based on
prior knowledge of the sample set, to arrive at a dimensional interpretation. In contrast, the
researcher can present the final spatial arrangement to the panelists and ask them for suggestions as
to its interpretation. The researcher can also ask the panelists, immediately after the data collection,
to list the criteria which they used to judge or sort the products. However, panelists are frequently
not able to articulate the criteria they used. A separate study, with the same or different subjects,
using either consumer test methods or analytic descriptive techniques, can be conducted to generate
information helpful to the interpretation of MDS dimensions. Examples of studies using the same
panelists for that purpose are contained in Moskowitz and Gerbers (1974), Rosett and Klein
(1995b) and Gilbert and Heymann (1995). Heymann (1994a) and Skibba and Heymann (1994a,b)
used different panelists.

Instead of measuring dissimilarity directly, it is possible to derive dissimilarity scores from other
kinds of data, such as from ratings collected as part of a descriptive study or in consumer research.
Data collection procedures appropriate for such studies are described elsewhere (Einstein, 1991;
Meilgaard, Civille and Carr, 1991; Heymann, Holt, and Cliff, 1993; Stone and Sidel, 1994). A
number of transformations are possible for converting rating data to dissimilarities, including
correlations and Euclidean distance computations (see Section 7 for an example).

4. STATISTICAL ASPECTS OF CLASSICAL MDS

An introduction to the statistical aspects of MDS can be found in Kruskal and Wish (1991). The
mathematical foundations of MDS are discussed by Davison (1983) and Young and Hamer (1987).
Schiffiman, Reynolds, and Young (1981), MacFie and Thomson (1984), Schiffman and Beeker
(1986), and Schiffman and Knecht (1993) explain in detail the statistical aspects of MDS using
sensory applications as examples. In this chapter, only a few of the key statistical concepts will be
reviewed.

The simplest type of multidimensional scaling model is called Classical MDS (CMDS) (Young
and Hamer, 1987). The majority of applications of MDS involve this model. CMDS analyses a
square data matrix, similar to the kind shown in Table 1 for intercity distances. As another example
of a data matrix appropriate for analysis by CMDS, consider an experiment in which the
investigator has collected pair-wise dissimilarity ratings from several panelists on four samples,
using an unstructured line scale of the kind discussed in Section 3.* The hypothetical results of this
experiment are shown in Table 2, in which the numerical entries represent average dissimilarity
ratings for the pairs of samples. According to the results, samples C and B were the most dissimilar,
samples D and A the most simular.

* The number of samples in an actual MDS study would need to be greater than fout, see Section 10.
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Table 2 is an example of a square symmetric matrix. The matrix is square, because there are as
many rows as colurnns. The matrix is symmetric, because the dissimilarity of sample A to B equals
that of sample B to A. The cells in the diagonal are blank, because panelists were not asked to rate
the dissimilarity of a sample to itself*

Table 2
Hypothetical dissimilarity data for four samples

Sample A Sample B Sample C Sample D
Sample A 2.5 7.6 12
Sample B 25 13.0 4.5
Sample C 7.6 13.0 10.6
Sample D 1.2 4.5 10.6

While CMDS analyses only square matrices, other MDS models exist for analyzing rectangular
data matrices, such as multiple attribute ratings or preference data, where the colurmns of the matrix
represent samples, and the rows attributes or people. Such models will not be discussed here, but
are reviewed by Schiffiman, Reynolds and Young (1981).

A CMDS analysis can be either metric or nonmetric. In nonmetric CMDS, the dissimilarity data
are treated as ordinal. This means that only the rank order of the dissimilaritiesin the input data
matrix is used in determining the spatial configuration. In metric CMDS, on the other hand, the
dissimilarities are assumed to have been measured on an interval or ratio level scale. Interval and
ratio scales are more quantitative than ordinal scales. Ratio scales, for example, include those
commonly used for measuring length and weight. Interval scales are similar to ratio scales, except
that they lack a true zero point. Examples of interval scales are the Celsius and Fahrenheit scales of
temperature. In CMDS, the researcher can choose whether to treat the data as metric or nonmetric.

It might seem that a nonmetric MDS analysis, which uses only the rank order of dissimilarities,
would result in a less precise solution than a metric analysis of the same data. However, Shepard
(1962) demonstrated that the rank order of dissimilarities is sufficient to derive a spatial
configuration that closely matches that based on a metric analysis. For example, in Section 1, the
intercity distances shown in Table 1 were analyzed using nonmetric CMDS, even though the
distances represent ratio-level measurements. A metric analysis (not shown) of the same data results
in a spatial configuration almost identical to that obtained using nonmetric CMDS.

Shepard's demonstration was important in the history of MDS, because many MDS applications
involve scales whose measurement level is probably only ordinal. The level of measurement of
sensory scales varies depending on the scale used. Rating scales, including category and
unstructured line scales, are often assumed to be interval scales. However, the interval scale
properties of these scales have not been demonstrated. MacFie and Thomson (1984) provide an
example of why dissimilarity ratings common in sensory analysis may not satisfy the assumptions of
a metric MDS analysis. Therefore, in sensory applications, the data are almost always treated as
nonmetric. For example, the analysis of the vanilla data discussed in Section 2 was nonmetric.

* In most sensory studies, symmetry is assumed and the experimenter enters the same numbers in the lower
and upper half of the data matrix. However, CMDS programs can accept nonsymmetric data matrices, as
well as data matrices with nonzero entries in the diagonal.
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A variety of computer algorithms exist for performing CMDS (see Section 11). They have a
common objective, namely that of finding the spatial configuration of the samples that best agrees
with the dissimilarities in the data matrix. The search for this configuration is an iterative process,
one that terminates when further adjustments in the spatial configuration yield only minimal
improvements in fitting the data. The degree of fit between the final configuration and the original
data is expressed in a number of different ways. Perhaps the most common measure is called
"stress"”, which is a "badness-of-it" measure (lower stress means a better fit). In MDS, stress is
defined by the following formula:

302 1/2
Stress = { % X (dy - 4dy) :l

Zi Zj db'fz

where dj represents the distance between objects i and j in the MDS space and 3,.] the distance that

best fits the dissimilarity between i and j. The formula shown above is often termed "stress formula
1" or "Kruskal's stress formula" (Kruskal, 1964). All MDS algorithms arrive at their final
configuration by minimizing Kruskal's stress or a similar quantity.

It is possible to gain an intuitive understanding of stress by considering how MDS evaluates the
fit between a spatial configuration and a set of dissimilarities. The distance between any pair of
objects in the spatial configuration is compared with the size of the corresponding dissimilarity (a
number given by the raw data.) If the spatial configuration fits the data well, a large distance will
correspond to a large dissimilarity, a small distance to a small dissimilarity. In metric MDS, the
degree of fit is quantified by using least squares regression to fit a straight line to the relationship
between distance and dissimilarity. Stress measures the amount of deviation around this straight
line. The larger the amount of deviation around that straight line, the poorer the fit and the larger the
stress.

In nonmetric MDS, the same stress formula is used, except that instead of using linear regression
to fit the distances to the dissimilarities, a least squares monotone regression is used, which fits a
curve to the data that preserves the rank order of the dissimilarities, but is otherwise unconstrained.

In addition to stress, another measure of the degree of fit is the squared correlation coefficient
between the interpoint distances in the spatial configuration and the dissimilarities (the original
data). This correlation, sometimes designated RSQ, can be interpreted as the proportion of variance
in the data that is accounted for by the distances in the MDS model. As is the case for any
correlation-based measure, RSQ ranges between 0 and 1, where 0 indicates no fit and 1 a perfect fit.

For the intercity flying distances, which were analyzed using nonmetric CMDS, the stress for the
two-dimensional solution was 0.008 and RSQ was 1.0 (after rounding). This excellent fit is
expected, since the data were error free. For the vanilla data described in Section 2, the
two-dimensional space was fit with a stress of 0.12 and an RSQ of 0.93. Kruskal (1964) has stated
that a stress below 0.05 indicates a good fit, whereas stress values above 0.20 represent poor fits.

More detailed guidelines exist (Kruskal and Wish, 1991) for determining what level of stress
represents a "good" fit. These guidelines take into consideration that several factors, in addition to
the amount of error in the data, influence the magnitude of stress. These include the number of
samples in the data set and the number of dimensions used to fit the data. In light of the influence of
these and other factors, Krzanowski (1988) concluded that Kruskal's (1964) guidelines were overly
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these and other factors, Krzanowski (1988) concluded that Kruskal's (1964) guidelines were overly
simplistic. Often it is the researcher’s past experience with MDS and his or her judgment that
ultimately determine whether the fit of a particular MDS solution is acceptable or not.

Another related judgment the experimenter must make is how many dimensions to use to fit the
data. Several considerations enter into this decision, including ease of interpretation, the number of
samples in the data set (see Section 10 for guidelines) and the level of stress. Stress decreases as the
number of dimensions increases. However, there is often a certain number of dimensions beyond
which stress does not greatly improve. This point is most easily identified by plotting stress versus
the number of dimensions. The point of diminishing improvement in stress appears as an "elbow" in
the curve (Kruskal and Wish, 1991). This elbow defines the number of dimensions to be selected for
fitting the data.

5. A CASE STUDY: PERCEPTION OF CREAMINESS

The perception of creaminess in foods is very complex. Textural creaminess is not a primary sensory
attribute and may encompass thickness/viscosity, smoothness and fatty mouthfeel characteristics
(Civille and Lawless, 1987). This case study was part of a larger study whose objective was to gain
a more comprehensive understanding of creaminess perception. The case study was exploratory and
compared the actual “in mouth” creaminess with expected creaminess based on product concepts as
communicated by package labels. Both creamy and non-creamy products were evaluated (Skibba
and Heymann, 1994a; 1994b; Gwartney and Heymann, 1995).

Unlike other MDS studies, in this study panelists were asked to evaluate samples based on one
very specific, though complex, attribute (creaminess). Twenty food products (Table 3) were chosen
to represent a wide range of textural perceptions. For “in mouth” evaluations, the samples were
served as 30 ml servings in plastic cups with lids. Panelists received all samples simmltaneously and
were asked to sort them based on their similarity in textural creaminess. Panelists also received
water for use in cleansing the palate. All samples and rinse water were expectorated. The “in
mouth” sorting was replicated in two different sessions. For the concept evaluations, the panelists
received the actual product labels pasted onto individual cards and were asked to sort them based
on the creaminess similarity of the products described on the label. Panelists did not replicate the
label sorting. In all cases the panelists were restricted to sorting the products or the labels into no
more than 19 and no less than 2 mutually exclusive groups.

The twenty four panelists, all staff and students at the University of Missouri, were familiar with
sensory testing but were otherwise untrained. Twelve of the twenty four panelists first sorted the
products based on “in mouth” creaminess and subsequently sorted the food labels. The other twelve
did the tasks in reverse order. Similarity scores were calculated by counting the number of times a
pair of food products or labels was sorted into the same group. The similarity estimates were
summarized in similarity matrices and submitted to the SYSTAT (Macintosh Version 3.2) MDS
program for non-metric multidimensional scaling using Kruskal's stress formula. The results did not
differ depending on the order in which the conditions were run, so only the composite of the data
will be discussed.
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Table 3

Case study: Food products and labels used in creaminess evaluation
Apple Sauce (Schnucks)

Chocolate Pudding (Del Monte)

Chocolate Syrup (Hershey)
Chocolate/hazelnut spread (Nutella, Ferrero)
Chocolate Milk (Schnucks)

Cream Soda (A & W)

Creamy Peanut Butter (Schnucks)
Evaporated Light Skimmed Milk (PET)
Half and Half (Schnucks)

Marshmallow Creme (Schnucks)

Non-dairy Creamer (CoffeeMate, Carnation)
Non-fat Sour Cream (Land-O-Lakes)
Part-skim Ricotta Cheese (Schnucks)

Ranch Creamy Dressing (Hidden Valley Ranch)
Skim Milk (Schnucks)

Soft Philadelphia Cream Cheese (Kraft)
Sour Cream (Schnucks)

Sweetened Condensed Milk (Meadow Gold)
Water (Culligan)

Whole Milk (Schnucks)

The subjects sorted both the products and the labels into a mean of seven groups (range four to
eleven). Figure 3 is a two-dimensional MDS map of the “in mouth” sorting results. The analysis had
a stress value of 0.10 and explained 94.5% of the data set variance. Figure 4 is a two-dimensional
MDS map of the label sorting results, with a stress value of 0.06 and explaining 98% of the data set
variance. According to Kruskal (1964), the stress values indicate a "fair" fit for the product
condition and a "good" fit for the label condition.

Based on inspection, the dimensions of the product map (Figure 3) should be rotated by about

45° in a clockwise direction (see vectors). Rotation of MDS configurations, with the exception of
individual difference MDS (see Section 6), is permissible if it improves the interpretability of the
space (Kruskal and Wish, 1991). After rotation, one dimension can be interpreted as a perceived
thickness or viscosity dimension, whereas the other dimension tends to correspond to variations in
grittiness or lack of smoothness.
The dimensions of the label map (Figure 4) are less clear-cut, but by inspection it seems that rotating
the horizontal dimension by 45° in a counterclockwise direction would lead to it being a contrast of
“"thin" and “thick". There are also two neighborhoods, one defined by liquids (on the
right) and the other by semi-solids (on the left). It is interesting to note that the panelists thought
that conceptually (based on the labels) marshmallow creme, chocolate/nut spread and peanut butter
would be similar in creaminess to soft cream cheese and chocolate pudding. However, when the
panelists evaluated these products “in mouth”, the marshmallow creme, peanut butter and
chocolate/nut spread were less creamy and less smooth (more gritty) than the cream cheese and
chocolate pudding. Based on these exploratory data, panelists appear to respond differently to the
perceived creaminess "in mouth” than to the creaminess as communicated by the package labels.
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6. STATISTICAL ASPECTS OF INDIVIDUAL DIFFERENCES SCALING

So far only applications of CMDS have been discussed. Another important type of MDS model is
called weighted MDS (WMDS) (Schiffiman, Reynolds and Young, 1981; Young and Hamer, 1987).
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The first model for individual differences scaling, called INDSCAL, was proposed by Carroll and
Chang (1970), and their work has served as the foundation for the development of most subsequent
individual differences scaling approaches (see Young and Hamer, 1987; Krzanowski, 1983).
Whereas CMDS analyses only one data matrix of the kind shown in Table 2, WMDSanalyses
several such data matrices at the same time. In WMDS, each matrix represents the results of a
separate experimental condition, a separate individual, or group of individuals. In MDS terms, the
data for CMDS are called "two-way data", because a single data matrix always has two ways: the
rows and the columns. When the data consist of a series of such matrices, the data are "three way",
the third way corresponding to the factor that distinguishes the matrices from one another. Perhaps
the most common application of WMDS is in the scaling of individual differences, where a series of
data matrices are submitted to WMDS, one matrix for each individual tested. In that case, the "third
way" corresponds to individuals.

In WMDS, differences among individuals are reflected as differences in weights for a set of
common underlying dimensions. In addition to a group stimulus space (or consensus spatial
configuration), WMDS derives dimension weights for each individual that can range from 0 to 1
and reflect the relative importance of each dimension to the individual.

As an example, consider an experiment in which three individuals are asked to rate the
dissimilarity of six colors that vary only in hue. Suppose that the first subject has normal color
vision, but the second and third subjects do not. Table 4 presents three dissimilarity matrices, one
for each individual, where the numbers are hypothetical dissimilarity ratings. For the results of an
actual WMDS analysis of color data, see Helm (1964) and Wish and Carroll (1973).

A two-dimensional analysis of WMDS analysis of these data using the ALSCAL procedure in
SPSS results in the group or consensus space shown in the upper left of Figure 5, which reflects the
information from all three individuals. In the group space, the colors are arranged in the shape of the
familiar color circle, where opposing colors are located roughly opposite one another. WMDS also
computes individual subject weights, shown in Table 5 that reflect the salience of each dimension
for that individual. Table 5 shows that the three individuals weight the dimensions differently. In
particular, subject 1 weights both dimensions about equally, whereas subject 2 and 3 weight one
dimension much less than the other. The individual subject spaces, also shown in Figure 5,
demonstrate the differences among the three individuals graphically. These individual subject spaces
are derived from the group space by multiplying the stimultus coordinates on each dimension in the
group space by the square root of the individual subject weight for that dimension (Schiffman,
Reynolds and Young, 1981), according to the formula:

Xia = Wka% Xia s

where Xy, is the coordinate of object i on dimension a for subject k, Wi is the weight for subject k
on dimension a, and X;, is the coordinate of object i on dimension a of the group space. The
differences in weights for the three subjects have resulted in differential stretching (and shrinking) of
the two dimensions. Figure 5 shows that for subject 2, distances along the horizontal dimension are
reduced, indicative of the low dimensional weight attached to that dimension. For subject 3,
distances along the vertical dimension are reduced. Subject 2 suffers from a red-green color
deficiency, subject 3 from a blue-yellow deficiency.
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Table 4

Three hypothetical matrices of dissimilarity ratings of color*

red purple blue green yellow/green yellow
red -
purple 55 --
blue 95 65 --
green 105 85 30 -
yellow/green 90 100 65 46 -
yellow 60 95 95 90 50 -
red -
purple 45 -
blue 45 40 -
green 25 55 33 -
yellow/green 43 90 75 45 -
yellow 50 95 90 55 15 -
red -
purple 34 -
blue 89 60 -
green 105 75 15 -
yellow/green 80 55 22 25 -
_yellow 35 35 65 75 50 -

*Note: The upper half of each matrix is identical to the lower half and has been omitted.

Figure 5. Individual differences scaling of hypothetical color ratings. G=green, Y/G=yellow/green,

YIG o

G s

Subject 1

*R

Y=yellow, R=red, P=purple, B=blue.
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In applications of WMDS, individual differences might result from individual differences in
sensation, perception or cognition. In each case, WMDS reflects these differences in the weights
attached to a set of common underlying dimensions.

Table 5
Subject weights
Dimension
Subject Number 1 2
1 0.78 0.61
0.10 0.96
3 0.99 0.08

WMDS shares many features in common with CMDS. WMDS can be metric or nonmetric (the
analysis of the color ratings was nonmetric). The degree of fit is evaluated in the same fashion as in
the case of CMDS, except that there are measures of fit for the group space as well as for the
individual spaces.

There is one technical difference between CMDS and WMDS. In CMDS, the dimensions can
be rotated as in the creaminess example. [n WMDS, the dimensions cannot be rotated. This means
that the dimensions in WMDS should be interpreted as is. Schiffiman, Reynolds, and Young (1981),
however, point out that this non-rotatability is true strictly only when the data contain no error. In
the presence of error, some amount of rotation is permissible.

Finally, it should be noted that WMDS is based on a particular view of individual differences,
namely that individuals differ in the relative importance they assign to a set of common dimensions.
This is the only point of difference among individuals, according to the WMDS model.
Mathematical extensions of WMDS models (see Young and Hamer, 1987) include differences
among individuals in rotation of the group space and in the number of dimensions of the personal
spaces. These extensions of the basic WMDS model, however, have found relatively few
applications to date.

7. APPLICATIONS OF INDIVIDUAL DIFFERENCES SCALING

Gilbert and Heymann (1995) reported the results of an experiment in which panelists rated the
dissimilarity in aroma among seven apple essences and a reconstituted apple base without essence
added. Untrained panelists (N=18) rated the dissimilarity among all twenty-cight possible pairs of
samples in three replications, using an unstructured 15 cm line scale. The average dissimilarity
ratings were analyzed using CMDS.

In this section, the data are reanalyzed using nonmetric WMDS, Eighteen dissimilarity matrices,
representing data from the individual panelists averaged across replications, were analyzed using the
ALSCAL procedure in SPSS.

Solutions in two and three dimensions were explored. For the two-dimensional solution, the
average stress (across the eighteen matrices) was high (0.30), and RSQ low (0.45). By comparison,
a CMDS analysis of the group-averaged data yielded a very good fit (stress = 0.05, RSQ = 0.99).
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This indicates that there was significant variation among the panelists that was not apparent in the

CMDS analysis. Bertino and Lawless (1993) came to a similar conclusion regarding WMDS vs.
CMDS results.
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Figure 6. WMDS representation of the aroma of seven apple essences and an apple juice base
without essence. See text for explanation of symbols.
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Figure 7. Dimensional weights for 18 panelists evaluating the aroma of apple essences.

Even though the stress was high, the two-dimensional individual difference solution obtained by
WMDS was explored further. (The fit for the three dimensional solution was not much better.)
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Figure 6 shows the sample space in which dimension 1 separates the apple juice base with no
essence (BA) from the samples containing essence. Dimension 2 differentiates among apple essence
varicties. Two clusters are apparent along this dimension. One is comprised of the Gala (GA), Cox's
Orange Pippin (CO), and Granny Smith (GS) varietics, the other of the Royal Gala (RG), Red
Delicious (RD), and Braeburn (BR) varieties. The Fuji (FU) sample may belong to neither cluster.

In Figure 7, individual panelists' weights for each dimension are plotted. Figure 7 shows a fairly
wide distribution of weights for dimension 1 (from about 0.2 to 0.8), whereas the weights are more
tightly clustered along dimension 2 (note the difference in scales on the vertical and horizontal axes).
Panelists 4 and 5 were unusual in that they assigned very low weight to dimension 2. For these two
panelists, only dimensions 1 was important, indicating that they attended only to the distinction
between sample BA and the other samples. For the remaining panelists, the differences among the
essence types were more salient, as indicated by their numerically larger weights on dimension 2.
One implication of this analysis is that in the absence of training, the perception of these apple
essences is quite variable, and the average solution may not be very representative of any one
panelist.

The example above represents an application of WMDS to the scaling of individual dissimilarity
matrices. WMDS can also be applied to traditional descriptive data or other attribute ratings. In
order to do so, the data must first be transformed to dissimilarity form. The method for deriving
dissimilarity data from attribute ratings involves the calculation of the distance between samples,
based on the Euclidean distance formula:

d = [ Zia (Xu - Xi ) ]"

where d; is the dissimilarity between objects i and j, X, - Xj. is the difference between the two
objects on attribute a, and the summation extends over all r attributes.

This method for deriving dissimilarity scores was applied to data from a study by Heymann
(1994b). The study consisted of a descriptive analysis of the thirteen vanilla samples described in
Section 2, using a panel different from the one which performed the similarity sorting task. This
panel (N=10) rated the vanilla samples on fourteen attributes using standard descriptive methods.
The data were reanalyzed by first computing, for each judge, dissimilarity scores among the
samples, using the Euclidean distance measure. The ten dissimilarity matrices, one per judge, were
then submitted to WMDS.

The average stress for a two-dimensional solution over the thirteen matrices was (.28, with an
RSQ of 0.70, indicating that a substantial amount of the individual variation could be explained by
the model. The two-dimensional map, shown in Figure 8 is somewhat different from that shown in
Figure 2, as might be expected given the differences in panelists, data collection method, and MDS
model. Figure 9 shows the weight space for the ten panelists. There are several notable differences
among the panelists. Panelist 2 weights dimension 2 almost exclusively over dimension 1. Panelists
3, 5 and 10, on the other hand, weight dimension 1 over dimension 2. If this situation were
encountered early in a project, the panel leader would need to decide whether these panelist
differences are ones that should be addressed by further training. An investigation of which
descriptive attributes correlated most strongly with dimensions 1 and 2 would help to identify those
sample attributes that may need to be clarified. If this kind of a result were encountered at the end of
a project, the researcher would need to decide whether to omit certain panelists that are outliers
(such as panelist 2) from the analysis.
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Figure 9. Dimensional weights for ten panelists evaluating the aroma of vanillin and twelve vanilla

samples.

The examples above have illustrated the application of WMDS to the analysis of dissimilarity and
attribute ratings. Unfortunately, while the similarity sorting procedure described in Section 3 is
simple and easy to use, sorting data do not readily lend themselves to an individual differences
analysis. This is due to the fact that the sorting data for any one individual consist of a matrix of
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zeros and ones, indicating whether the individual grouped two products together or not. Even with
replications, the number of times a product was sorted into the same group by one individual may
not be a sufficiently graded measure to allow for the derivation of individual subject spaces.
Lawless, Sherry and Knoops (1995) discuss a potential variation of the sorting procedure that may
yield data that are scalable by WMDS. However, Lawless et al. indicate that to date they have
conducted only limited testing using this procedure.

8. ISSUES IN INTERPRETATION OF MDS SPACES

The case studies discussed above illustrate how MDS can be used to derive spatial representations
of the similarities and differences among samples. The interpretation of MDS spaces involves a
degree of judgment on the part of the researcher. Often the grouping of the samples, together with
prior knowledge of sample characteristics, suggests on what basis samples are being differentiated.
This can lead to a "naming" of the underlying dimensions of the MDS space, as in the creaminess
study (see Figures 3 and 4). In other instances, naming of the dimensions is difficult, but the
clustering of samples still can be informative. Without knowing the characteristics on which vanilla
samples differ, it is clear from Figure 2 that judges are able to distinguish the Indonesian from the
Bourbon types of vanilla samples. This itself can be useful information, for example in deciding
whether Indonesian samples can be used as substitutes for the more expensive Bourbon type
samples. The results in Figure 2 suggest that there are systematic differences between the two types
of vanilla samples, although the salience of that difference might depend on actual product
application.

In some cases, the researcher may want additional information regarding why the samples group
as they do. This is especially the case when the researcher lacks prior knowledge of the sample
characteristics or when visual inspection of the map is insufficient to generate hypotheses about the
nature of the underlying differences. In such instances, ancillary data are often used to aid in the
interpretation of MDS spaces. These data most commonly consist of ratings of the samples on
specific attributes, collected either from the panel that judged the similarity of the samples, or froma
separate panel. Instead of attribute ratings, analytical measurements, such as pH, amount of an
ingredient present in the sarmple, etc. also can be used to interpret MDS results. If the same panel is
used to collect both similarity and attribute data, the attribute ratings should be collected after the
similarity judgments to avoid potentially biasing judges by focusing their attention on a limited set of
attributes, ,

A list of attributes for use in a rating task can be generated in several ways. The panelists who
judged the samples for similarity can be asked to identify which attributes they thought most
distinguished the samples. Alternatively, the researcher, independent of any panelist feedback, can
postulate what attributes are likely to be relevant to judging sample similarity and can collect data
from the similarity panel (or another panel) on these attributes. Finally, an independent panel can
generate attribute ratings of the individual samples using standard descriptive methods (see Section
3).

There are several methods for relating attribute ratings or instrumental measurements to the
MDS space. The simplest (and most frequently used) method is to determine how each attribute is
correlated with the dimensions of the MDS space. The mathematical procedure is described by
Schiffman, Reynolds and Young (1981) and involves a multiple regression in which each attribute,
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taken one at a time, is regressed against the coordinates of the MDS dimensions. Alternatively,
multivariate techniques exist for simultaneously fitting several attributes to the dimensions of the
MDS space. These techniques include canonical correlation (Schiffman, Reynolds, and Young,
1981; Schiffman and Beeker, 1986) and partial least squaresregression (Schiffiman and Beeker,
1986; Popper, et al. 1987).

To illustrate the multiple regression approach, the MDS space of the vanilla samples shown in
Figure 2 is interpreted using ratings provided by an independent descriptive panel (Heymann,
1994b). In this analysis, each of the fourteen descriptive attributes served, one at a time, as the
dependent variable, while the coordinates of the vanilla samples played the role of the independent
variables. There are two independent variables, since the MDS solution was two-dimensional. The
analysis can be accomplished using either standard multiple regression software or specialized
computer programs, such as PROFIT (which stands for PROperty FITting) or PREFMAP (which
stands for PREFerence MAPping). Both these programs were developed by Carroll and Chang at
Bell Laboratories and are included, in revised form, in the PC-MDS computer package for
multidimensional statistics (see Section 11)°.

In order to interpret the MDS space, Figure 10 shows the attributes projected as vectors in the
space. The attribute vectors point in the direction of increasing magnitude, and their angle indicates
the correlation with the vertical and horizontal dimensions. The length of the vectors is drawn in
proportion to the magnitude of the correlation between the attribute and the MDS dimensions.
Thus, it appears from Figure 10 that the horizontal dimension contrasts the woody, smoky, and
nutty aroma of the Indonesian samples (I and INS) on the left with the butterscotch and sweet milk
aroma of the Bourbon samples (B and BPB) and vanillin, located on the right. Also, from the
lengths of the various vectors it appears that the almond, raisin and rum characteristics are much
less relevant to distinguishing among the vanilla samples than the other attributes.

9. RELATIONSHIP OF MDS TO OTHER METHODS

The resemblances of graphical depictions of data spaces derived from multidimensional scaling,
descriptive and free-choice profiling data have been studied by Chauhan, Harper and Krzanowski
(1983), Williams and Arnold (1985), Lawless (1993), Heymann (1994a), Skibba and Heymann
(1994b) and Gilbert and Heymann (1995). These authors all concluded that the data spaces derived
by MDS are ‘similar' to those derived by the other techniques. In most cases, the similarity was
determined based either on visual inspection or correlation.

Chauhan, Harper and Krzanowski (1983) compared the results of similarity scaling of pairs of
soft drinks with profiling data derived by the same panelists. They used multidimensional unfolding
to compare the results of the two methods and found that the results were essentially identical for
five of the seven drinks used in the study.

Gilbert and Heymann (1995) compared the data spaces obtained from multidimensional sorting,
multidimensional similarity scaling, free-choice profiling and descriptive analysis of apple essences.
They found that the sorting and group-averaged scaling results differed markedly. However, the
MDS space derived from the sorting data was very similar to the principal component space derived

¢ PREFMAP, which can be used to fit both attribute and preference data to MDS spaces, includes several
different types of models, of which the vector model is applicable here. See Schiffman, Reynolds and Young
(1981), MacFie and Thomson (1984) and Chapter 3 of this book for a discussion of preference mapping.
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from the descriptive data of the essences and the Procrustes space derived from the apple essence
free-choice profile data. These authors compared the data spaces visually and through the use of
correlation and Procrustes analysis.

How do different types of MDS analyses compare to one another and how reliable are the results
of any one analysis? As noted above, Gilbert and Heymann found that the MDS maps for sorting
and group-averaged similarity scaling differed. Rao and Katz (1971) concluded that
multidimensional sorting methods usually performed worse than other mmltidimensional data
collection methods. However, Bertino and Lawless (1993) compared the results of similarity scaling
to those of sorting and found that the MDS configurations for the sorting and group-averaged
similarity scaling tasks were similar. They also found that an individual differences scaling analysis of
the rating data had very large stress, indicating that the group-averaged data did not capture
nuances found by individual panelists. Only a few studies have concerned themselves with the
reliability of any one MDS method, using either real data or Monte Carlo simulations, and the
results have not been conclusive (Golledge and Rayner, 1982; Krzanowski, 1988).

Multidimensional scaling, principal component analysis, cluster analysis, partial least squares
(PLS) analysis and Procrustes analysis are multivariate statistical techniques that can all be used to
analyze the same dissimilarity scores or attribute ratings. All of these methods can aid in ascertaining
latent phenomena in the data. For example, Bieber and Smith (1986) compared multidimensional
scaling, factor analysis and cluster analysis and noted both similarities and differences. Krzanowki
(1988) explained the connection between principal component analysis and metric multidimensional
scaling. He also noted the similarity in results between metric multidimensional scaling and
canonical variate analysis using data obtained from a study of British water voles. However, no
studies have compared MDS to other methods regarding results on individual differences.
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It should be emphasized that the MDS models considered in this chapter are exploratory in
nature. These models do not allow for inferential tests of hypotheses concerning the size of sample
differences. As stated by Rosett and Klein (1995), MDS and inferential techniques, such as analysis
of variance, should be viewed as complimentary techniques in sensory applications.

In more recent MDS models, Ramsey (1982) employed the principle of maximum likelihood in
developing tests of statistical significance for the appropriate number of dimensions and the type of
MDS model. These models also include confidence regions for samples or subjects (in the case of
WMDS). However, the assumptions underlying these models remain controversial (Young and
Hamer, 1987), and applications of these models in sensory analysis have not been reported.

10. FURTHER GUIDELINES FOR DESIGNING MDS EXPERIMENTS

Schiffman and Knecht (1993) suggest that the ‘it is preferable to use 12 stinuli for two dimensional
solutions and 18 stimuli for three-dimensional solutions'. Kruskal and Wish (1991) indicate that the
number of samples less one should be at least four times larger than the number of dimensions to the
solution. With fewer samples, subtle differences among the samples may not be captured in the
solution. Thus, it is better to use more rather than fewer samples.

Schiffman and Knecht also suggest that the number of samples may be decreased if data from
more than one subject are used. However, they do not support this statement with data.
Unfortunately, the minimum number of panelists needed is not clearly stated by any author.

Green and Wind (1973) point out that depending on the purpose of the study the samples in the
stimulus set can be physical objects (like the “in mouth” creamy and non-creamy samples), pictoral
or graphical representations of objects (like the labels of the creamy and non-creamy samples), or
verbal descriptions of the objects or sensations (Martens, et al., 1988; Bertino and Lawless, 1993).

11. COMPUTER SOFTWARE FOR MDS

The first computer programs for MDS were available only from universities or research centers and
were designed to operate on mainframe computers (see Schiffiman, Reynolds and Young, 1981 for
details on how to obtain and use some of these programs). With the acceptance of MDS as a data
analysis tool and with the growth in the power of personal computers, access to MDS software has
greatly increased. Several of the original MDS programs have been made available in versions for
the PC in a package called PC-MDS (S.M. Smith, Brigham Young University, Provo, UT 84602).
A limited version of these programs is available on disks supplied with the book by Green, Carmone
and Smith (1989).

Several PC-based statistical packages include MDS procedures. SYSTAT (Systat Inc., 1800
Sherman Avenue, Evanston, IL 60201) performs CMDS, but not WMDS. The PC-versions of SAS
(SAS Institute Inc., SAS Campus Drive, Cary, NC 27513) and SPSS (SPSS Inc., 444 N. Michigan
Avenue, Chicago, IL 60611) include versions of ALSCAL, a very comprehensive program
developed by Forrest Young. ALSCAL offers the full range of options for performing both CMDS
and WMDS, as well as other variations of MDS. An excellent introduction to MDS is contained in
the documentation accompanying the SPSS-PC program.
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1. INTRODUCTION

Since its adoption in the seventies (e.g. Banfield and Harries 1975, Harries and MacFie 1976),
Procrustes analysis has become a popular tool for sensory scientists (Williams and Langron
1984, Arnold and Williams 1985), and still the method is used frequently and is studied and
extended by several authors (Oreskovich et al. 1991, Dijksterhuis and Gower 1991/2,
Wakeling et al. 1992). Procrustes analysis was originally developed as a technique to match the
solutions of two Factor Analyses (Hurley & Cattell 1962). The method was generalised to
match more than two data sets by Kristof and Wingersky (1971) and Gower (1975). Recently
the method has received increasing attention, partly through the availability of software
programs for generalised Procrustes analysis (GPA), partly through some critisisms on the
method.

In this chapter the kinds of sensory data to which GPA can be applied are introduced, along
with the rationale for using the method. Next some background and theory of GPA is provided
with special attention for the Procrustes analysis of variance. Finally, two applications of GPA
to sensory profiling data, one conventional and one free-choice, are shown.

1.1 Sensory profiling

A very large number of applications of generalised Procrustes analysis is found in the analysis
of sensory profiling data. There are two different kinds of profiling data, that can both be
analysed by means of generalised Procrustes analysis. Conventional profiling data can also be
analysed by averaging and applying factor analysis or PCA to it. Free choice profiling FCP,
(Williams & Langron 1984, Williams and Arnold 1985) results in data that can not be averaged
over assessors, generalised Procrustes analysis or other, so-called, K-sets methods are suited
for the analysis of free choice profiling data.

The scores from either profiling technique are derived from the position of marks along a
line-scale. The assessor marks his/her perceived intensity of some attribute along a line scale
(Figure 1). Often the scores range from 0 to 100, but the range is unimportant, in the following
a range from 0 to 100 is assumed.
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Figure 1. Example of a line-scale often used in sensory profiling experiments.

1.1.1 Conventional profiling

In conventional profiling a fixed vocabulary of descriptive terms is used by the sensory panel to
judge the products. A sensory panel is often trained in the use of these terms. In the case of
QDA (Quantitative Descriptive Analysis, see Stone & Sidel 1985) the panel starts with the
generation of a lot of terms that are thought useful to describe the products under
consideration. The whole procedure of attribute generation and training can take considerable
time. Because of this training it is assumed that all assessors are able to use the attributes in the
same way, so individual differences in use of the attributes are minimized. Because of this the
individual judgements are sometimes averaged and factor analysis or PCA is applied to the
average scores. However, methods as generalised Procrustes analysis can of course also be
applied to conventional profiling data. Such analyses show that the assumption of all assessors
using the attributes in the same way is not always justified (see e.g. Dijksterhuis & Punter
1990).

The data from conventional profiling experiments can be seen as a 3-mode data structure
built from N products, M attributes and K assessors (see Figure 2).

(N>xM) datamatrix
" — for one assessor %

N objects

(~)
$
&
(2
&
&

&

M attributes

Figure 2. 3-Mode data structure representing conventional profiling data: N products are
judged by K judges using M attributes.
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The (NxMxK) data block in Figure 2 consists of K layers, each with the (NxM) datamatrix
of one assessor. Other slices of this block may be analysed but generalised Procrustes analysis
focusses on the agreement of the K matrices from the individual assessors.

1.1.2  Free choice profiling

In free choice profiling the assessors are free to come up with their own attributes, which they
use for judging the products. So between the assessors there is no agreement about attributes.
As a result it is impossible to average the individual data, because it makes no sense to
combine different attributes. The data from free choice profiling experiments must be analysed
by individual difference methods, or rather ‘K-sets’ methods, of wich generalised Procrustes
analysis is one. Unlike conventional profiling data, free choice profiling data cannot be
rearranged in some kind of 3-mode data structure. Because each assessor k=1,...,K may have a
different number of attributes (Mp), furthermore the jth attributes of the assessors are not the
same. Figure 3 shows the structure of a FCP data set.

K assessors

X, X, X Xk

N objects

Mlatt;ributes Mzattributes M attributes MKattributes
3

Figure 3. Data structure representing free choice profiling data: N products are judged by X
judges using M}, attributes.

Figure 3 shows that the individual datamatrices X; cannot be arranged such that the
attributes match because each assessor’s individual datamatrix has different attributes.

1.2 Sensory-instrumental Relations

One of the fields in which Procrustes analysis can be applied is the study of sensory-
instrumental relations. Though Procrustes analysis appears not to be often used in this field it
can be a useful method to analyse sensory-instrumental relations (see e.g. Dijksterhuis 1994).
The idea behind the study of sensory-instrumental relations is that sensory perceptions have
chemical/physical counterparts in the substance under investigation. A simple example is e.g.
the amount of caffeine in a certain drink, which of course determines the bitterness perceived
by someone drinking it. In real life the sensory-instrumental research is much more
complicated, and involves multivariate, not univariate, data, and consequently needs
multivariate data-analysis.
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The original, not generalised, Procrustes analysis can be applied to sensory-instrumental
data, because two-data sets are involved. One data set contains the sensory judgements on a
number of, say N, products. The second data set contains a number of instrumental measures
on the same N products. These can be results of chemical analyses, physical properties or of
other measurements.

1.3 Designed experiments and incomplete data

In some cases it is conceivable that at a profiling experiment, be it conventional or free choice,
the data may be gathered according to some experimental design. When the design has been an
incomplete one, the datamatrices of the assessors may not all have scores on the same set of N
products. In this case it is impossible to analyse these data by means of ordinary generalised
Procrustes analysis. Special generalised Procrustes analysis methods that can handle missing
data must be used. They are outside the scope of this chapter but can be found in Commandeur
(1991) and Ten Berge, Kiers & Commandeur (1993).

2. THEORY AND BACKGROUND OF PROCRUSTES ANALYSIS

In this section generalised Procrustes analysis is introduced in two different ways, first in a
geometrical way and next in a somewhat more formal mathematical way.

2.1 A geometrical look

Each assessor’s datamatrix, X, consists of N rows with scores on M attributes. This
datamatrix contains elements Xjjk, where i is the index over the N products, j=1,....Mp, the
number of attributes of the kth assessor and &=1,...,K the number of assessors. In this section
no distinction between conventional profiling and Free choice profiling will be made.

The scores in an assessor’s datamatrix describe N objects using M attributes. Geometrically
the N points can be seen as to lie in an M-dimensional space. With M=2 attributes we can draw
a plane with the N points in it, but in general M will be (much) larger. Figure 4 shows a
configuration of N points from the data of an assessor judging on only 2 attributes.
Mathematically high dimensional spaces are no problem, though we may have trouble
imagining them, but this we don’t need to. When the analysis is done we don’t look at the high
dimensional space but at a projection onto an imaginable lower dimensional space, often two
dimensions, so it can be plotted on paper. This projection is often accomplished by means of
performing a principal component analysis and plotting the first two dimensions.
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10 D

Figure 4. Two configurations with points representing scores on four products from assessor
1 (A1, By, Cq, Dy) and from assessor 2 (Ap, By, Cy, Dy) with their centroids M; and M.

We have M-dimensional configurations of N points for all K assessors. Suppose that we
deal with two assessors, to keep this example simple. We can draw the two different
configurations of the N=4 points (Figure 4). The objective of generalised Procrustes analysis is
to try to get the same objects as close to each other as is possible by shifting entire
configurations, rotating them and reflecting them if necessary. The important underlying
assumption is that the distances between the N objects for one assessor may not be changed
during these transformations. When the configurations are also allowed to stretch or shrink the
relative distances between the objects remain the same.

The distances between the objects reflect the relations between the objects. Objects close
together are similar, objects far apart are different. The reason to keep the distances invariant
is that in the process of matching, the relazions between the N objects of one assessor should
not change. Similar objects must remain similar, different objects must remain different.

2.2 Transformations

The transformations mentioned above, i.e. shifting, rotating, reflecting and stretching or
shrinking, that make up a generalised Procrustes analysis, turn out to correct for a number of
assessor effects (see Amold & Williams 1985).
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2.2.1 The Level-Effect: Translation

The so-called level-effect manifests itself by the different average scoring position on a line
scale of different assessors. One assessor may give all N products scores that lie between, say,
5 and 25 and another assessor may use scores from 60 to 100 (assuming a 1 to 100 line-scale
score). These two extreme assessors could very well perceive the objects identically, and
would perhaps agree with one another completely, had not they possessed such different
scaling behaviour. This level-effect can easily be corrected for by expressing the scores as
deviations from the average score of an assessor on an attribute. Geometrically this results in
translating the entire configuration of an assessor such that the centre of the N object-points
coincides with the origin of the space (see Figure 5). The centres M| and M, in Figure 4 are
shifted onto each other and this point is labled C in Figure 5. Mathematically this translation
operation is known as column-centring, in ‘Analysis of Variance’ terms the assessor main-
effect is removed.

-

Figure 5. Centred configuration of two assessors.

2.2.2 The interpretation-effect: Rotation/Reflection

The transformations which allow for the fact that the attributes do not have to be the same (the
interpretation-effect) for all assessors are rotation and reflection. The entire configuration of an
assessor can be rotated to bring the N object-points in agreement with the N points of the other
configurations. If necessary the configuration can be reflected in a particular dimension too. As
can be seen from Figure 5, the object-points are not very close yet, the lines between the pairs
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of points (A1, Ap), (By, By) etc. indicate the distance that is to be minimised. Mathemafically
the rotation and (reflection) are represented in a rotation matrix Hy, for the configuration of
assessor k.

Figure 6 shows the two example configurations after rotation. Note that the N points
actually are closer (A] to Ay, By to By, C; to Cy, Dy to Dy) than in Figure 5.

Figure 6. Configurations after centring and rotation.

2.2.3 The range-effect: Isotropic Scaling

Another individual scaling effect is the so-called range-effect. This is shown by the different
ranges of scoring that the assessors use. One assessor may give scores ranging between 10 and
95 and another assessor uses scores from 60 to 80. This difference in range is another
unwanted effect caused by individual differences in scoring behaviour., The underlying
perception is believed not to depend on these differences in scaling range, so the effect is
controlled for. The correction that is used is called isotropic scaling, which means that a
configuration is shrunk or stretched in its entirity, i.e. alike in all directions of the space.

A different scaling range shows as a different extensiveness of the configurations. Figure 6
showed the two example configurations after centring and after rotation. It can be seen that the
second configuration is contained whithin the first. The second assessor must have used a
smaller range of the line-scale. The thick lines can now be shortend by stretching the inner
configuration a little bit. The result of this operation is shown in Figure 7.
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Figure 7. The two example configurations after centring, rotating and isotropic scaling.

The scaling factors are represented by a number p;. A configuration k is shrunk when
0<pz<1 and stretched when 1<pg.

2.3 Generalised Procrustes analysis more formally
Mathematically the matching process is expressed by minimizing the distances between the
same objects for different assessors, under the conditions that the distances between the
objects of one assessor may not change. Gower (1975) gives a mathematical derivation of
generalised Procrustes analysis.

The above mentioned distances can be expressed as the differences between the individual
matrices:

g"T(Xk ) - T(XI Xl 1)

AX}) stands for a certain transformation 7'of the matrices Xy, and

M| = tr(MM’)= Zmﬁ
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for the sum of the squared elements of M. The transformation 7 has to maintain relative
distances between the product-points. Such transformations were introduced in §2.1, now they
are presented more formally. Firstly minimising (1) can be shown to be equivalent to
minimising;

2r(x)-] @

when
K
Y=K"> 7(X,)
k=1

the mean of the individudal transformed datamatrices A(X). The transformations applied in
Procrustes analysis are translations, rotations and isotropic scaling and they can be expressed
as follows:

7(X,)=pXH, +T, 3

where py is the isotropic scaling factor, Hy, the rotationmatrix and T the translation. The
translation can be taken care of by column centring the matrices Xy, as was shown by Gower
(1975). To keep the formulae in this section from growing long, the translation is not
mentioned anymore. It is assumed that the columns in X are expressed in deviations from
their means. Removing the means in this way is effectively removing the assessor main effect.

The criterion minimised by generalised Procrustes analysis is the sum of all the squared
distances between the individual transformed matrices which by (2) can be written as:

X X
lekaka _pIXIHIHZKZHY—kaka" )
<t =

Some constraints are necessary, to assure non-trivial solutions. One constraint is in the Hy
being rotation matrices, which are orthonormal matrices, hence:

H,H, =HH, =I Q)

A constraint on the isotropic scaling factors py is needed to prevent them from becoming
zero to minimise (4) in a trivial way. The constraint scales the total variance to K, the number
of sets:

Lo | =X ©®)
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It has been assumed hitherto that all the matrices X, are of the same order (N x M), which
is the case with conventional profiling data. When Free choice profiling data are analysed this
assumption does not hold. In this case the X, are made of the same order by padding columns
of zero’s until all X; are of the same order (N x max{M}). See Dijksterhuis and Gower
(1991/2) for some discussion about this custom. Another possibility is using Projecting
Procrustes analysis (Peay 1988) which differs from the classical (Gower 1975) Procrustes
analysis. The criterion maximised by Projecting Procrustes analysis is

e[ Soen || o

where the superscript [p] stands for the first p dimensions of the configuration Y. Note that
the variance contained in the resulting, p-dimensional group average space is maximised, while
in the classical Procrustes analysis the residual variance beteween the corresponding objects in
the entire M-dimensional individual configurations is minimised. The important difference with
GPA is that the rotationmatrices are no longer proper rotationmatrices but they include a
projection onto p dimensions as well. This means that it is not necessary to pad all X to the
same order. This also means that it is not needed to perform a PCA on the group average
space afterwards, because this space already exists in p dimensions.

Another difference proposed by Peay (1988) is the constraint on the isotropic scaling
factors py, as follows:

D IosX,H, | = (max{p4,})" > ¢, ®)
k=1 k=1

which is equal to (6) in case all sets are of the same order (N x M). The scaling of the
variance, formula (6) or (8), does not influence the GPA solution. Dijksterhuis and Punter
(1990) suggest to scale the total variance to 100. This means that all subsequent variances can
be read as percentages explained, or residual, variance.

More about GPA and some variants can be found in Ten Berge (1977) and Ten Berge and
Knol (1984, see also Dijksterhuis and Gower 1991/2).

2.4 Variables and dimensions

When analysing the raw data from the assessors in a sensory panel the columns of the
datamatrices are the variables or attributes the assessors used in judging. When analysing
sensory-instrumental data, often only two datamatrices are involved of which one may contain
the results of some previous analysis like PCA or even another GPA. Such a datamatrix with
the PCA or GPA result does not have variables as columns but dimensions. This is a different
situation from the analysis of raw, sensory, datamatrices from different assessors. Different
ways of scaling and standardizing are needed when analysing sensory-instrumental data
compared to the data from a sensory panel.

The result of prior analyses (e.g. factor analysis, or MDS) will often be normalised
configurations, which do not need pre-scaling for the Procrustes analysis. Different
instrumental measures (c.g. pH, Instron-measures etc.) will have very different ranges and
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levels of scores. In these cases standardisation of each variable may be useful. The sensory
scores of a panel are much more homogeneous than different instrumental measures, so they
may not need to be standardised individually.

For an application of generalised Procrustes analysis to sensory-instrumental data see
Dijksterhuis (1994). Dijksterhuis & Gower (1991/2) also discuss some matters related to the
pre-scaling of the datamatrices.

3. RESULTS OF A PROCRUSTES ANALYSIS

This section presents matters related to the results of a GPA. The analysis of variance is an
important tool in interpreting the results, as is the PCA which enables inspection of a low-
dimensional projection of the group average.

3.1 Analysis of variance

After the analysis, the distances between the corresponding points can be interpreted in the
translated, scaled and rotated configurations. These distances are precisely those which are
minimized by the generalised Procrustes analysis process. It is not possible to get the objects
closer under the assumptions of generalised Procrustes analysis. There are different ways of
looking at these distances.

3.1.1 Total fit/loss

Squaring the distances, resulting in ‘variances’, and adding them, gives a overall measure of
loss which can be compared with the squared distances before the generalised Procrustes
analysis. It is convenient to express these variances relative to the total variance before the
generalised Procrustes analysis (see also Dijksterhuis & Punter, 1990). The thick lines
remaining in Figure 7 cannot be made shorter, and these lines represent the loss, i.e. that what
cannot be modelled by the GPA process. The complement of the percentage loss to 100%
gives the fit of the obtained solution. Remember that the group average is subjected to a PCA
to find a projection onto a low-dimensional space. The aforementioned fi¢ can be broken down
per dimension, to infer an optimal dimensionality to best represent the results in. Dijksterhuis &
Punter (1990) use a scree-graph to infer an optimal dimensionality.

When the variances -squared distances between the objects- are added over the N objects,
per assessor, a measure results which shows the agreement of a particular assessor with the
group average. When these variances are added over the K assessors, a measure for each
product can be obtained, which shows how much agreement there is among the assessors
about a particular product. Both outlying assessors and products can be thus identified.

These variance measures for assessors and for objects can be split over dimenions too, this
enables identification of assessors or objects which need an extra dimension, or cases in which
one assessor or one object accounts for an extra dimension by itself.

3.1.2 Geometry of the variance measures

The different variances in a Procrustes analysis have a clear geometrical meaning. In Figure 8
the different variance measures (‘group average’, ‘Residual’ and ‘Total’) for the different
products are illustrated. In this figure the position of product A is shown for three assessors
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(A1, Ay, A3), their ‘group average’ point is labelled A. The variances are, as variances usually
are, measured relative to the origin, labelled C (Centre).

e Group Average variance for product A
— — —Residual variance for product A
Total variance for product A

Figure 8. Geometrical interpretation of the group average, residual and total variances for the
objects in a Procrustes analysis.

In Figure 8 the lines between the points represent the variances. The squared lenghts of
these lines is the variance.

When the residuals or total variances are regarded per subject instead of per product,
variance measures for assessors result (see Figure 9). In this figure only three assessors (1, 2
and 3) and two products (A and B) are used to keep the plot from cluttering.

3 Total — Assessor 1
' - = — Residual wmme—— Assessor 2
A \A meem Assessor 3

Figure 9. Geometrical interpretation of the group average, residual and total variance for two
assessors in a Procrustes analysis.
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In Figure 9 the dashed lines represent the residual variances, the plain lines the total
variances. The three assessors are represented by different thicknesses of the lines. For assessor
1 the residual is computed by adding all its residual parts from all products, the same holds for
the total parts. Note that the residuals and the totals are not part of the same ‘average assessor-
point’, as was the case with the product-points. This is the reason that a group average
variance is not available for assessors but only for products.

3.2 Principal component analysis

It is time to expand a little on the matter of the dimensionality of the solution. The classical
generalised Procrustes analysis according to Gower (1975) applies all the transformations
(translation, rotation/reflection, scaling) in the highest possible dimensionality, i.e. 100% of the
data is involved throughout the entire analysis. When the optimal solution is obtained, it is in
this high, say M, dimensional space. In order to obtain a convenient representation in a low
number of dimenions, say two, a PCA is applied to the M dimensional GPA group average.
This final PCA gives a number of dimensions of which the first two can be plotted for
inspection. The percentages explained variances of these dimensions can be used to infer a
dimensionality of the solution. Perhaps a third or fourth dimension is decided to be needed in
order to interpret the results. A scree graph of the explained variance of this PCA can help in
deciding on the dimensionality of the representation.

The final PCA on the group average space results in a low-dimensional representation of
this space. The PCA gives this space a certain orientation. Because one wants to compare the
group average space to all individual spaces, the latter are given the same orientation as the
low-dimensional group average space.

3.2.1 Representing the original variables

The original variables, the attributes of a sensory panel or instrumental variables in sensory-
instrumental data, can be represented in the GPA group average. Basically there are two ways
of doing this. One is to use the coordinates of the rotationmatrices, these are called the
loadings of the variables. These matrices, Hy, rotate the individual datamatrices X to X Hy
The matrices Hy, are of order (M x M) and their rows represent the M columns of X; on the
new -rotated- M dimensions X;H;. These dimensions are represented in the Hy as their M
columns. Plotting the column-points from Hj, thus result in points that represent the original
variables in the rotated spaces X;H.

Another way of representing the original variables is to calculate their correlation with the
dimensions of the group average space. Plotting the correlations results in a representation of
the original variables often much alike the one using the loadings.

Theoretically the loadings may be interpreted as biplot axes (see e.g. Gower and
Dijksterhuis 1994), which can be a reason to prefer the loadings. Others may prefer the
correlations because sometimes they may give more explicit results. Which one prefers seems
to amount to a matter of taste.

3.3 Statistical matters

There is no formal test of significance available for the results of a generalised Procrustes
analysis. In Langron and Collins (1985) such a test is derived, but the assumptions may be
unrealistic (cf. Dijksterhuis and Gower 1991/2). GPA is most often used as an exploratory
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tool, especially in sensory analysis. Recently some papers are publised which address the
matter of significance in a generalised Procrustes analysis context. King and Arents (1991)
devise a test based on the analysis of random data-matrices. Their approach is the same as the
one used by Langeheine (1982). In this approach random datamatrices, the size of the original
data, are analysed, and this is repeated a number, say 100, of times with different random data.
The position of the original result in the distribution of the results from the random data
analyses, is an indication of the statistical significance of the GPA result. The permutation test
approach (see e.g. Wakeling et al. 1992) uses the same distribution as the original data, in fact
it uses the very same data, to obtain a measure of the statistical significance. In a permutation
test the null hypothesis of no structure in the data, or no relation between the data sets, is
simulated by means of permuting the rows of the datamatrices. For the permuted data set a
relevant statistic, here e.g. the Procrustes-loss, is calculated. This process is repeated a large
number of times, say 100. The empirical result, i.e. the Procrustes loss of the unpermuted,
original, data set, is compared to the distribution of the loss-values obtained after permutation
of the data sets. Analogously to the random data approach, the position of this empirical loss-
value in the distribution of loss-values gives the statistical significance. In Dijksterhuis and
Heiser (1995) a brief evaluation of the random data- and the permutation methods is given.

Analytical approaches (Sibson 1978, Langron and Collins 1985) to find a theoretical
distribution for the Procrustes loss values, suffer from the fact that the data must follow a
multivariate normal distribution, which may not occur in practice. As a result the results of
these studies may not work satisfactory in practice.

3.4 Methods for missing data

Generalised Procrustes analysis as an exploratory research tool in sensory analysis presupposes
a complete data set for each assessor. Until recently there were no Procrustes models which
would hanlde missing values properly. Commandeur (1991) developed a generalised
Procrustes analysis in which it is allowed to have arbritrary rows of individual data sets
missing. The model is able to fit data sets which are of unequal row-order. This situation could
arise in a sensory context when not all assessors tasted or smelled all objects because e.g.
some assessors failed to appear at a certain experimental session. Ten Berge et al. (1993)
expanded the method of Commandeur to include missing cells. This means that each of the
individual data sets can have missing values for some products on some attributes.

3.5 Comparison with other MVA techniques

3.5.1 Procrustes variants

The original generalised Procrustes analysis is developed by Gower (1975). Earlier Procrustes
analysis methods were developed to match two data sets. Table 1 presents a concise overview
of the most cited contributions to the development of Procrustes analysis.
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Table 1

Some papers in the history of Procrustes analysis.
Author Year
Green 1952
Hurley & Cattell 1962
Chff 1966
Schonemann 1968
Schénemann & Carroll 1970
Kristof & Wingersky 1971
Gower 1975
Ten Berge 1977
Ten Berge & Knol 1984
Peay 1988
Gower 1995

Another approach to generalised Procrustes analysis is described by Peay (1988). The
‘classic’ generalised Procrustes analysis of Gower (1975, see also Ten Berge 1977) performs
all transformations in the highest possible dimensional space. The results are subjected to PCA
afterwards to create a low-dimensional representation. The method according to (Peay 1988)
has a different approach to make a low dimensional representation. The rotation/reflection step
of the process includes a projection onto a low dimensional space. Hence this method will be
called projection Procrustes analysis in contrast with orthogonal Procrustes analysis (see
Gower 1995). A PCA is not needed afterwards. A result of the projecting approach of
projecting Procrustes analysis is that the dimensions of the result of this method are not nested.
This means that a P-dimensional solution is not the same as the first P dimensions of a P+p
(p>0) solution as is the case with classical GPA.

What method is to be preferred is perhaps more a matter of philosophy than of supremacy
of one of the methods. Dijksterhuis & Gower (1991/2) compare the ‘classical” Gower (1975)
method with the Peay (1988) method.

3.5.2 Other MVA techniques

Before talking about the relationship of GPA with other MVA methods there are two
distinctions to make:

* between 2-way methods and individual difference methods

* between 3-way and K-sets techniques.

Section II (‘Analysing aggregated sensory data’) treats a number of different 2-way MVA
methods. These methods work on matrices that are aggregated. The aggregation is often done
by means of averaging over assessors, so there are no individuals present in the data. It is
argued by some (see e.g. Dijksterhuis and Punter 1991, Dijksterhuis 1995a, 1995b) that it is
seldom justified to average over assessors in sensory data analysis because the attributes
actually are different for each assessor, despite training of the panel.

The methods that respect the individuals in the data are called ‘individual difference
methods’ and they are treated in Section III (‘Analysing individual sensory profiles’). Two
kinds of individual difference methods must be distinguished: 3-way methods and K-sets
methods. There is a fundamental difference between these two methods and between the
corresponding two kinds of data: 3-way data and K-sets data. Figure 2 shows the structure of
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a 3-way data matrix, in sensory applications this means that all attributes are the same for all
assessors. In Figure 3 it is illustrated that the attributes are different for the assessors. 3-Way
MVA methods assume that all sets -the assessors- have the same variables, hence it is useless
to use these methods for K-sets data. K-sets methods do not make this assumption, so they are
fit for the analysis of K-sets data as well as for the analysis of 3-way data. Analysing 3-way
data by a K-sets method provides a manner to find out if the variables are really commensurate
in all sets.

The 3-way factor analytic methods in Chapter 10 (‘Analysing individual profiles by three-
way factor analysis’) are, as their name suggests, 3-way methods. GPA and GCA, Chapter 7
(‘Procrustes analysis in sensory research’) and Chapter 8 (‘Generalised canonical analysis of
individual sensory profiles and instrumental data’) respectively, are K-sets methods. Chapter 6
(‘Analysing differences and similarities among products and among assessors by
Multidimensional Scaling‘) treats Multidimensional Scaling methods, which come in a 2-way
and an individual-difference variety. The individual-difference MDS methods work differently
from GPA and GCA, but they effectively analyse K-sets data. This is because individual
difference MDS methods study the relationships (distances) between the objects of each
individual data set, so that the variables dissapear in the process. When the variables dissapear
it does not matter anymore whether the data were K-sets, or 3-way.

4. CONVENTIONAL PROFILING

In this section a data set is analysed using the program Procrustes-PC v2.2 (OP&P, 1992,
Dijksterhuis et al. 1991).

4.1 Data

The cheese data set analysed in this paragraph is made available by Matforsk and is part of a
study by Hirst et al. (1994). This data set is also analysed in Dijksterhuis (1995a) in the context
of a study of ‘panel consonance’, i.e. the agreement of the individuals in a sensory panel on
each attribute separately.

The data consist of the scores of 10 judges scoring 12 kinds of hard cheese using 19
attributes. The QDA procedure (Stone and Sidel 1985) is used so the data are ‘conventional
profiling’ data. GPA is applied to this data set to study individual differences between judges
and to construct a ‘group average’ configuration of the 12 cheeses. It is the same data set that
is studied in the chapter on 3-way factor analysis (chapter 4.4, ‘Analysing individual profiles by
three-way factor analysis‘). The analysis in this chapter is to illustrate the method of
generalised Procrustes analysis, it is not meant as a study of the cheese data.

Each of the 12 cheeses is presented twice to each subject. Each replication is analysed as a
separate ‘product’ in the GPA, so 24 ‘products’ are used in the analysis.

4.2 Dimensionality of the GPA group average

Most often the results of GPA are displayed in a two dimensional plot. At this point it is useful
to consider the differences between the projection Procrustes analysis according to Peay
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(1988) and the original Procrustes analysis according to Gower (1975). The differences
between the two methods will be illustrated using the cheese data.

4.2.1 Projection Procrustes analysis

This variant of GPA combines the Procrustes transformations with a projection onto a low
dimensional space. This means that when the researcher chooses to calulate a two-dimensional
GPA solution, the data are projected onto a 2-dimensional space and that higher dimensions
are not used for the calculation of the optimal sotution. This does not mean that the solution is
sub-optimal, it is the best solution in two-dimensions, but at the cost of loosing sight of any
interesting information that could have been captured in the third, forth or higher dimensions.
To be sure, in addition a three-, four-, five-, etc. dimensional analysis should be carried out.

422 Classical Procrustes analysis

The original GPA applies all Procrustes transformations in the full dimensional configuration,
and the result of the analysis is a group average in the maximum number of dimensions
possible. Any potentially interesting information is available. The resulting high-dimensional
configuration is subjected to a principal component analysis in order to be able to give a low
dimensional representation of it. The researcher can a posteriori decide to use only two or

three dimensions of the total result.
4.2.3 Cheese group average

To find-out the optimum dimensionality to represent the group average in, all dimensions are
considered. Note that a projection Procrustes analysis with the maximum number of
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Figure 10. Percentages group average- and total variance explained in the dimensions of the
group average space.
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dimensions is identical to the classic Procrustes analysis because there are no dimenions left to
project onto. In this case the projections are onto the full dimensional space, which is of course
the same thing as not projecting at all.Figure 10 presents a scree-graph in which the
percentages explained variance of all dimensions are shown.

Figure 10 shows that approximately 40% of the group average variance and 46% of the
total variance is explained in the first dimension. Remember that the total variance is the
variance explained by the configurations of all the assessors. When these configurations are
averaged, becoming the ‘group average’ configuration, the group average variance remains.
The averaging of individual configurations results in the loss of variance. It is exactly this loss,
the residual variance, which is minimized by the classical orthogonal procrustes analysis. The
projection procrustes analysis maximises the group average variance, in a particular number of
dimensions. In this full-dimensional analysis, the two are identical.

Table 2
Cumulative explained variance for the dimensions of the group average and of the individual
configurations (‘Total’) of the GPA result of the (10 x 12 x 19) Cheese data set.

Dimensions group average Total
1 40.37 46.62
2 48.59 58.09
3 53.78 66.08
4 57.08 71.19
5 59.92 75.61
6 62.33 79.62
7 64.32 82.98
8 65.97 85.73
9 67.48 88.28

10 68.68 90.25
11 69.81 92.38
12 70.73 93.87
13 71.55 95.33
14 72.20 96.51
15 72.76 97.51
16 73.22 98.40
17 73.59 99.12
18 73.86 99.62

74.04 100.00

p—
=]
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In Table 2 it can be seen that a two dimensional solution explains 48.59% variance of the
group average configuration. The total variance in two dimensions is 58.09%, i.e. the variance
explained by the inidividual configurations of all the assessors. Both from Table 2 and Figure
10 two- or three-dimensions seem enough to represent the results in. When we decide that two
(or three) dimensions will suffice we can use the first two (three) dimensions of the results of
the full-dimensional analysis above. Alternativeley we can perform a new analysis using the
projecting Procrustes technique in two (or three) dimensions, which will result in a slightly
increased fit in the first two (three) dimensions. The disadvantage is that there are no higher
dimensions available, all higher dimensions are explicitely regarded as noise by this decision.
Tabie 3 ?hows the percentage variance explained by these additional Projecting Procrustes
Analyses’.

Table 3

Cumulative explained group average variance for the separate 2 and 3 dimensional Projection
Procrustes Analyses of the Cheese data (corresponding classic GPA percentage from Table 2
between brackets).

Dimension 2D analysis 3D analysis
1 49.764 40.628
2 49.540 (48.59) 49.238
3 - 54.940 (53.78)

Table 3 shows a slight increase in explained variance for the dimensions of the group
average compared with the results in Table 2. For the presentation of the cheese data analysis
we will choose the result of the two dimensional projection Procrustes analysis.

4.3 Group average configuration
One of the most interesting results from a Procrustes analysis is the ‘group average-’, or
‘Consensus-’configuration. This configuration contains the products, here the 24 cheeses.
Figure 11 shows this configuration.

1 Note that the PROCRUSTES-PC v2.2 program, that was used for the analyses in this
chapter, allows for both ‘classical’' orthogonal procrustes analysis and projection procrustes
analysis. Most other Procrustes software is based on the ‘classical' orthogonal procrustes
analysis
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Figure 11. Group average configuration of the Procrustes analysis of the cheese data. Replicate
cheeses are connected by a line.

The configuration in Figure 11 shows the 24 cheeses. The replicates are connected by a line.
Including replicates in a profiling study is very important, especially when the data are analysed
by Procrustes analysis or another multivariate analysis. In Figure 11 the lines connecting the
replicates are relatively short, which is an indication that the judges assessed the replicates
almost identically, hence an indication of the validity of the obtained result. In this case
interpretations of this configuration can be made safely.

Taking a closer look at Figure 11 reveals some groups of cheeses. Two releatively clear
groups are indicated in the figure. At the lower left part are the cheeses (9, 10, 11, 12, 13, 14,
21, 22), at the lower right part of the plot are (3, 4, 7, 8). At the upper right part there is a
group, though looser than the previous two groups, that seems to consist of the cheeses (15,
16, 19, 20, 23, 24). At the upper left part of the figure clearly the pair (5,6) is different from
the other cheeses. Cheese number 1 and 2 lie in that part of the plot too. The numbers 17 and
18 lie almost at the centre of the plot, this usually means that there is no clear agreement
between the judges on these cheeses. The numbers 17 and 18 will probably show a relatively
high residual variance. The Procrustes ‘analysis of variance’ can be used to further interpret the
results.

4.4 Analysis of variance

In this section the Procrustes analysis of variance tables are shown and interpreted. To
illustrate the tables they are plotted as bar-charts (cf. Dijksterhuis and Punter, 1990).

4.4.1 Analysis of variance for objects (cheeses)

Figure 12 shows the group average (explained) variance and the residual (not explained)
variance for the 24 cheeses. The ‘Total’ variance can directly be read from the plot as the total
hight of the bars because:
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total variance = residual variance + group average variance

The order of the cheeses along the horizontal axis in Figure 12 is in increasing size of their
residual variance.
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Figure 12. Percentage variance explained (group average) and unexplained (Residual) for the
cheeses. The order of the cheeses is in increasing size of Residual variance.

The cheeses at the left hand side of Figure 12 have the smallest residuals. This means that
there was not much difference between the scores of the assessors on these cheeses. The panel
agreed well on these cheeses.

The cheeses with a larger part of residual variance (right hand side of the picture) did not fit
well in the group average, there were differences between the scores of the assessors. In Figure
12 the cheeses 3, 18, 22 and 23 have relatively large residual variances. There must have been
less agreement on these cheeses.

442 Analysis of variance for assessors

In this section the residual variances for assessors are studied. Table 4 shows the residual
variance per assessor.
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Table 4.
Percentage unexplained (‘residual’) variance for the assessors.
judge no Residual
9 0.772
7 0.818
5 0.970
2 1.015
10 1.075
4 1.344
6 1.418
1 1.489
3 1.624
8 1.882

From Table 4 it can be seen that assessors 1, 3 and 8 have the highest residual variances.
These assessors’ individual configurations of the 24 cheeses differ most from the group
average configuration. Assessors 7 and 9 are among the lowest-residual assessors.

When selecting an analytical sensory panel, an homogeneous group of judges is desired.
Suppose that a selection of judges is to be made from Table 4, judges with high residual
variances will be deleted from the panel, or subjected to extra training.

4.4.3 Individual configurations

To illustrate differences between individual configurations Figure 13 and Figure 14 show the
group average position of the 24 cheeses, connected with the position of the same cheeses in
the individual result of respectively assessor 7 -a low-residual assessor- and assessor 8 -a high-
residual assessor.
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Figure 13. Group average position of the 24 cheeses, connected to the position of the same
cheeses according to the configuration of assessor 7.
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Though the differences are not large, over-all the lines in Figure 14 are longer than the lines
in Figure 13. The sum of the squared lengths of the lines is the residual variance for the
assessors 7 and 8, and is shown in Table 4.
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Figure 14. Group average position of the 24 cheeses, connected to the position of the same
cheeses according to the configuration of assessor 8.
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Figure 15. Isotropic scaling factors (sorted) for the 10 individual assessors’ configurations.
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4.5 Scaling factors

The isotropic scaling factors (see §2.2.3) reflect the amount of stretching or shrinking the
individual configurations of the 10 assessors underwent in the Procrustes analysis. Figure 15
presents the 10 scaling weights.

The horizontal line in Figure 15 is at p = 1. Bars extending above this line show stretched
configurations (p >1), bars below this line represent shrunk configurations (0<p<1). Assessor
9, 5 and 3 have their configurations shrunk, they used a larger range of scores than the other
assessors. It’s the other way around for assessors 1, 4 ,7 and 8, their configurations are
stretched. They used a limited range of scores. The assessors 6, 2 and 10 had their
configurations hardly changed by the scaling.

4.6 Representing the original variables

Until now the objects, i.e. the 24 cheeses, and the assessors are studied. The 19 attributes the
assessors used remain to be studied now. The attributes can be subdivided into odour-, flavour
and texture attribtutes and are presented in Table 5.

Table 5.
Attributes used in the cheese study (Hirst et al. 1994).
odour flavour texture

1 odour intensity 7 flavour intensity 15 hardness
2 creamy/milky 8 creamy/milky 16 rubbery
3 ammonia/sulphur 9 sour 17 doughy
4 nutty 10 ammonia 18 grainy
5 sour 11 nutty/fruity/sweet 19 sticky
6 other 12 bitter

13 salty
14 other (cheddar)

Note that the arrangement in the table does not indicate any relation between
attributes in the same row.

The loadings or correlations from the Procrustes analysis output give representations of the
original attributes. Both the coordinates of the loadings and of the correlations can be used to
draw the original attributes in the group average configuration. In this example the correlations
will be used.

Each assessor used these 19 attributes, this means that each individual configuration
contains 19 attributes. The total configuration with all judges together will consequently
cortain 10-19=190 attributes. These are far too many attributes to draw in a picture. With
conventional profiling data, like this cheese data set, it is possible to average the attributes over
the assessors, to make group average attributes. This is analogous to the averaging of the
individual product-positions to make group average product points. Figure 16 presents the
resulting group average attribute points based on the correlations of the original attributes with
the group average dimensions. Of course averaging is only justified with a reasonable fit. When
the fit is very low, the group average configuration is to be doubted.
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Figure 16. Averaged (‘group average’) attributes in the group average space of the cheese
data.

In Figure 16 the relations between the attributes can be inferred. It shows that some odour and
flavour attributes match: nutty odour with nutty flavour, creamy/milky odour with
creamy/milky flavour, sour odour with sour flavour, ammonia odour with ammonia flavour,
and odour intensity with flavour intensity. The texture attributes seem to divide the cheeses
into sticky, doughy, grainy and rubbery/hardness. When dimensions have to be reified the first
dimension may be approximately interpreted as a bitter/sour odour/taste and rubbery versus
sticky dimension, and the second dimension as a nutty/sweet odour/taste and doughy versus
grainy dimension.

Figure 16 can be compared to Figure 11 to infer properties of the cheeses. The lower left
group of cheeses (9, 10, 11, 12, 13, 14, 21, 22) appear to be characterised by creamy/milky
flavour and taste, their texture is mainly doughy. The cheeses 9, 10, 21, 22 seem to tend to a
rubbery texture. The group at the lower right part of the plot (3, 4, 7, 8) has a sticky texture
and a somewhat more salty and sour flavour. The cheeses 19, 20, 15 and 16 have a high
flavour and taste intensity, a bitier/sour/ammonia flavour/taste. Because these cheeses lay
opposite to the texture attributes rubbery and hardness, they do not have these properties, they
are mainly soft cheeses. The cheeses number 5 and 6 (1 and 2 to a lesser extent) are the
nutty/fruity/sweet cheeses. These cheeses are among the harder, more rubbery and grainy
cheeses.

The above interpretation of the GPA group average space and the positions of the
correlations of the original attributes is a kind of biplot-interpretation. For more about biplots
in a GPA context see Gower and Dijksterhuis (1992), for biplots in general see (Gabriel 1971,
Gower 1992).
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5. FREE CHOICE PROFILING

In this section a free choice profiling data set is analysed by means of GPA. For this analysis
the Procrustes-PC v2.2 program (OP&P 1992) was used. This same data is analysed by GCA
in Chapter 8 too.

S.1 Data

The data consist of the judgements of 20 different mineral waters by eleven assessorsZ. Each
assessor used her/his own attributes to judge the waters, so the data are FCP data. FCP data
can only be analysed by an individual difference method of the K-sets type, or an individual-
difference MDS method (e.g. Indscal; Carrol and Chang 1970). In this section GPA is used to
analyse this data set. What is presented here is a standard GPA analysis of an FCP data set.
The GPA method used is the classic GPA (Gower 1975) so the smaller data sets are padded
with zero’s to make all sets of the same order.

Some of the 20 mineral waters were presented, blindly, two or three times. These
replications are very useful, they will be represented as connected points in the Group Averge
plot (compare Figure 11).
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Figure 17. Percentages group average and total variance explained by the dimensions of the
GPA group average space.

2 The data were made available by Dr. Pascal Schlich, INRA, Dijon, France.
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5.2 Analysis of variance

First the dimensionality to represent the results in must be chosen. To this end the explained
variance, distributed over the dimensions are needed. Figure 17 presents this scree for the
dimensions of the water data.

The scree for the total variance shows that the first dimension explains 63% of the variance,
the second dimension adds about 18%, the third adds another 7%. The line for the group
average variance has the same shape, but the variances are lower. They should be, the
differences are the residual variances per dimension. It seems that a 2-dimensional solution
would do as a reasonable approximation of the data. In Table 6 the cumulative percentages
explained variance are given, a two-dimensional solution explains 81% in all individual
configurations together and 45% in the group average.

Table 6
Cumulative explained variance for the dimensions of the group average and of the individual
configurations (Total) of the GPA result of the water data.

dimension group average Total
t 38.837 62.908
2 44729 80.963
3 46.607 88.084
4 47918 93.231
5 48.722 97.078
6 49.091 99.05
7 49.155 99.46
8 49.202 99.765
9 49.231 99.945
10 49.240 100

Note that in Table 6 the total explained variance in 10 dimensions is 100%, as it should be
because in the maximum dimensionality all data are included and of course nothing is lost.

5.3 Configurations

5.3.1 Group average configuration

Figure 18 shows the GPA group average configuration of the 49 mineral waters. Replications
are connected by lines. It can be seen from Figure 18 that e.g. water no. 15, 16 and 17, are
judged more different than the waters 21 and 22, because the lines connecting the former are
much longer than the lines connecting the latter.

Figure 18 enables identification of four approximate groups. At the left are two waters: 15,
16, 17 and 21, 22. Somewhat more to the right are two other waters: 1, 2 and 43, 44. The big
cluster of the remaining waters may be subdivided into the waters 25, 26; 47, 48, 49; 10,11,
which appear at the rightmost bottom part. This group also includes 45, which is connected by
a rather long line to 46, these two waters were not very consistently assessed, they are rather
far apart. In the set remaining waters it is hard to distinghuish separate groups. Note that the
lines connecting replicates cross through this cluster, so there apear no clearly separated
groups of waters.
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Figure 18. GPA group average configuration of the 49 mineral waters. Replicate waters are
connected by lines.

Figure 19 shows the residual and total variances of the ten judges in the mineral water data
set. Note that all the residual variances are about equal, and the total variances differ.
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Figure 19. Total and residual variances of the assessors in the water study.

The judges 6 and 4 differ the most in the amount of total variance. It may be interesting here
to study the total variances per judge, for dimensions separately. Table 7 presents these
variances.
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Table 7
Total variance in the first four dimensions, per judge.
judge no. 1 2 3 4
1 8.920 0.509 0.134 0.486
2 5.895 1.831 0.598 0.224
3 5.293 1.819 1.444 0.572
4 9.361 0.725 0.285 0.498
5 4.891 3.540 0.451 0.320
6 1.134 1.933 0.288 0.527
7 7.352 1.401 1.011 0.572
8 2.439 2.210 0.969 0.051
9 7.605 0514 0.816 0.553
10 6.993 1.811 0.633 0.545
11 3.027 1.761 0.490 0.799

Table 7 shows that some judges (1, 4, 9) have a large proportion of variance in the first
dimension, and relative low proportions in the second. In contrast judge 5, 6, 8 have relatively

much more variance in the second dimensions, compared to what they have in the first.

5.4 Scaling factors

Table 8 gives the isotropic scaling factors for the individual sets. Two sets (7 and 10) needed
to be stretched by a factor 2.6 and 2 respectively. Apparantly the judges 7 and 10 used a rather
small range of scores. Judge 11 used a large range of scores, the corresponding configuration
is shrunk by a factor 0.6.

Table 8

Scaling weights of the judges in the GPA of the water data.

judge weight

11 0.627
0.769
0.785
0.855
0.920
0.959
1.007
1.065
1.389
2.001
2571
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5.5 Representing the original variables

Table 9 shows the attributes and their use by the assessors. Note that 8 of the 11 judges used
the term bitterness, the terms neutral and metal were used by six assessors. There are a lot of
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unique attributes, i.e. which were only used by one assessor. Notably assessor 4 and 5
generated most unique attributes.

Table 9

Attributes used in the FCP of the mineral waters and the no. of the judge that used it.
Attribute judge no. Attribute judge no.
bitter 1,2,3,5,6,8,9,11 balanced 4
neutral 1, 2, 4, 6 8,9 persistent 4,6
taste 1 mineral 5
metal 1,3,7,9,10,11 stagnant 5
fluid 1 river 5
salty 2,4,7,8 cool 5
earth 2,4,7,11 sugar 6
hard 2 old 6
acid 3,4, 11 mushroom 7
paper 3,10 milky 7
flat 4,5 energic 9
dry 4 hazelnut 10
pungent 4 soft 11
rubber 4

Note that the arrangement in the table does not indicate any relation between attributes in the
same row.

For the interpretation of the clusters of waters that appeared in Figure 18 it is needed to
represent the original attributes in the group average configuration. In Figure 20 the
correlations of the original attributes with the dimensions of the group average space are
presented.
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Figure 20. Configurations of the individual attributes based on the correlations of the attributes
with the dimensions of the group average. The number following the term indicates the
assessor number.
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In Figure 20 there appear two main groups of attributes. In the lower right quadrant: fluid,
milky, hazelnut, salt (2, 7, 8), soft, stagnant, neutral (8), acid (3), earth (11) (assessor numbers
between parentheses) and in the upper left quadrant most other attributes.

Inspecting the configuration in Figure 20 enables one to draw some interesting conclusions
with respect to the use of the attributes. The term ‘metal’ was used by six assessors (1, 3, 7, 9,
10, 11), and there seems to be reasonable agreement between them. This agreement is larger
than the agreement found between the use of the term ‘neutral’, also used by six assessors (1,
2,4,6,8,9). The agreement on ‘bitter’ appears less than that on ‘neutral’, assessors 5, 6 and 8
have scored bitter somewhat differently than assessors 1,2, 3,9, 11.

Figure 20 and Figure 18 show the same plane, so they can be superimposed. This results in
a kind of biplot, containing both the mineral water object points and the positions of the
attributes. This plot is not presented here -it would be too cluttered-, but through comparison
of the figures Figure 20 and Figure 18 a biplot-like interpretation can also be given. The set of
waters {15, 16, 17, 21, 22} lies in a region in the plane that is characterised by a lot of
attributes, including most ‘metal’ and ‘bitter’ attributes. The set {25, 26, 47, 48, 49, 10, 11,
45} lies in a region characterised by the attributes salt (for 3 assessors), soft, stagnant, acid,
earth, hazelnut, milky, fluid. The remaining waters are mainly characterised as not having a
certain property. Most lay opposite the remaining attributes.

It is conceivable that mineral waters have rather low amounts of clear tastes. So, after the
attributes are generated, a lot of the waters will turn out not to possess this attribute, or just
have it in a very low intensity. In addition, when the tastes are not clear, the differences
between the assessors may become rather outspoken. A clear bitter taste may not cause much
confusion in a sensory panel, but when the taste is only just above the detection threshold, as it
may be in mineral waters, individual differences may arise. This could result in the use of other
terms.

6. ALGORITM AND SOFTWARE FOR PROCRUSTES ANALYSIS

6.1 Generalised Procrustes analysis algorithm

The original generalised Procrustes analysis algorithm is presented in Gower (1975). Ten
Berge (1977) presents a slightly modified algorithm. These algorithms concem the heart of the
Procrustes analysis: the rotation and isotropic scaling. In a somewhat broader view, and in
most applied situations a Procrustes analysis consists of three different parts:

* Pre-steps (translation, ‘pre-scaling’)
* Analysis (rotation/reflection, isotropic scaling)
¢ Post-steps (PCA, analysis of variance)

6.1.1 Pre

The pre-steps consist of the translation operation which amounts to centering the individual
datamatrices X. It is also possible to give differential weights to sets or to variables. This is all
pre-scaling, it is not part of the actual Procrustes analysis. Depending on the wishes of the
analist the data may be pre-scaled to have a certain total variance.
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6.1.2 Procrustes analysis

The heart of the analysis consists of the two Procrustes transformations, rotation/reflection and
isotropic scaling. The rotation/reflection is computed for all individual matrices X to fit the
group average matrix. This computation results in a rotationmatrix Hy. The reflection is a part
of this rotationmatrix and will not be mentioned any further for this reason. After each
individual rotationmatrix is computed, the new rotated individual matrix is X;H; and the
group average matrix is recomputed (see Ten Berge 1977). This is repeated for all sets
k=1,....K. After one run over the X sets the isotropic scaling is performed.

The isotropic scaling factors p; are computed for each X;. At this point one iteration of the
generalised Procrustes process is completed and a new average matrix, now with inclusion of
the scaling factors, is computed. One iteration is seldom enough. The decrease of the sum of
squared distances between the individual sets p;X;H; over two subsequent iterations is taken
as the criterion to judge whether a satisfactory result is obtained. This criterion is usually set to
a very small value, e.g. 0.001. After a number of iterations the criterion approaches this value
and will finally become smaller than 0.001. Then the process is said to have converged and the
iterative process is terminated.

6.1.3 Post

As said before, the result is in the highest possible dimensionality and PCA is applied to the
resulting average configuration. Suppose we take two dimensions from this PCA to inspect the
group average space. In order to be able to compare this two-dimensional representation with
the individual sets, the individual matrices pyX;Hy, are given the same orientation as the PCA
result of the group average. We must assure that we compare the individual sets and the group
average in the same plane.

Further post-steps include the computation of several ways of partitioning of the residual,
explained and total variance, and the computation of the comelations of the original attributes
with the dimensions. Finally the tabling and plotting of the results is the obvious final step of
the Procrustes program.

6.2 Software for Procrustes analysis

There are several computer programs available that can perform a GPA. A macro in the
GENSTAT language was written by Arnold (1986). Schlich (1989) wrote a GPA macro in the
SAS IML language. These programs work fine, but have the disadvantage that they run as
macro’s whithin a large statistical program. The user needs to be able to ‘speak’ either SAS or
GENSTAT. In 1988 a special Procrustes program for the personal computer was developed,
which is called Procrustes-PC (OP&P 1988, Dijksterhuis and van Buuren 1988). At the
moment version 2.2 is the latest one (OP&P 1992, Dijksterhuis et al. 1992). Recently a new
GPA program -Procrustes for Windows- has been developed (OP&P 1995).
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1. INTRODUCTION

Generalised Canonical Analysis or GCA is a multivariate data analysis technique that studies
the relationship between sets of variables. In sensory research, data often consist of sets of
variables, consequently it is worthwhile taking a closer look at GCA. In the GCA model the
sets may contain the same variables but also different variables. In the case of a 3-way table,
e.g. products x attributes x assessors, the sets contain the same variables (here attributes).
Different variables in each set are obtained in free choice profiling, where every assessor
chooses individual attributes. Different variables aiso occur if various sources of variation are
studied. For instance external aspects (e.g. package, image and availability) of one type of food
products, price and sales figures of the same products, and in addition, taste aspects and
quality judgements.

GCA is a technique that gives an answer to the question: ‘What is common between the
sets’. Put in another way, GCA is a technique that searches for common underlying dimensions
in the sets. In Van der Burg and Dijksterhuis (1989) an application of GCA to a three-way
data-table is presented. Several brands of smoked sausages were judged by ten assessors on
five aspects (e.g. appearance, taste, odour). In that application the data from one judge form a
set, and the next question is addressed: ‘On which aspects of smoked sausages do the
assessors agree?’

The computer program that performs GCA is called OVERALS (Van der Burg, De Leeuw
and Verdegaal, 1988; Gifi, 1990, chap. 5; SPSS, 1990, chap. 9). A less technical overview of
OVERALS is given by Van der Burg, De Leeuw and Dijksterhuis, 1994. The program
OVERALS can handle data measured on different measurement levels (numerical, ordinal and
nominal, and a mixture of these levels). Especially ordinal data may occur in sensory research
as assessments measured on a category or line scale are used frequently. Nominal data also
occur in sensory research, for instance characteristics like the packaging of products (e.g. milk
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in glass bottles, plastic bottles or cartons). In general, data are often interpreted as measured
on interval level (numericai) although they may be rather measured on an ordinal scale.

The data of the applications in this chapter stem from the assessments of products by
different judges, thus individual sensory data. In addition to this type of data, in one case
instrumental data are provided. In the following section the different data types and scales
occurring in sensory research are discussed. Subsequent sections discuss the data types and
data scales and introduce the GCA technique and the corresponding computer program. The
relation between GCA and canonical correlation analysis is discussed (section 3.3) and also an
overview is given of the relations between the OVERALS program and other multivariate
techniques (section 4.4). Following sections describe examples of applying Generalised
Canonical Analyses to sensory data.

2. DATA TYPES AND DATA SCALES IN SENSORY RESEARCH

Two types of data occurring in sensory research are sensory profiling data and instrumental
data. Both individual sensory profiles and combined sensory-instrumental data can be analysed
by means of GCA. In the following paragraphs these two types of data are discussed.

Apart from different types of data, also different scales of data exist. This means that data
can be measured on different levels. Usually three measurement levels are distinguished:
nominal (e.g. package type), ordinal (e.g. ranking) and numerical or interval (e.g. temperature
in degrees). In the literature also the ratio (e.g. weights) and the absolute measurement level
(e.g. percentages) are known. However, data measured on the latter two levels are usually
treated in a numerical way. Therefore only the first three measurement levels are discussed
here.

GCA, as realised in the OVERALS program, is a technique that can handle data measured
on nominal, ordinal and numerical measurement levels, both mixed as well as not mixed. Most
data analysis techniques presume one type of scale, either nominal (e.g. correspondence
analysis) or numerical (e.g. most classic multivariate analysis techniques). Some techniques can
handie mixed measurement levels, for instance (M)ANOVA where the dependent set is treated
in a numerical way and the independent set in a nominal way.

2.1 Sensory profiling

There are two kinds of profiling data, that can both be analysed by means of GCA:
conventional profiling data and free choice profiling data. Conventional profiling data are
sometimes analysed by averaging and applying for instance Factor Analysis or Principal
Component Analysis to the averaged data. Free choice profiling (Williams and Langron, 1984;
Arnold and Williams, 1986) is a kind of profiling resulting in data that can not be averaged
over assessors (see also chapter 7.2). GCA or other ‘k-sets’ methods are suited for the analysis
of free choice profiling data. The scores from either profiling technique are derived from the
position of marks along a line scale. The marks correspond to the assessor’s perceived intensity
of some attribute.
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2.1.1 Conventional profiling

In conventional profiling a fixed vocabulary of descriptive terms is used by the sensory panel to
Jjudge the products. A sensory panel is often trained in the use of these terms. Because of this
training it is assumed that all assessors are able to use the attributes in the same way, so that
individual differences in use of the attributes are minimised. The individual judgements are
sometimes averaged and Factor Analysis or PCA is applied to the average scores. However,
individual difference models as GCA can also be applied to conventional profiling data.
Analysis results from individual difference techniques show that the assumption of all assessors
using the attributes in the same way is not always justified (see e.g. Dijksterhuis and Punter
1990, Van der Burg and Dijksterhuis, 1989, 1993b; Dijksterhuis 1995b, part 1). In the case of
untrained assessors, averaging over judges is hardly ever justified and we have to use a
technique that can handle individual differences.

The data from conventional profiling experiments can be seen as a 3-mode data structure
built from K assessors, N products and M attributes. This KxNxM data block consists of K
layers, each with the NxM data matrix of one assessor. Other slices of this block may be
analysed, but in sensory research the focus is mostly on the agreement between the matrices of
the individual assessors (see Dijksterhuis 1995b, chap. 1).

The 3-mode data matrix can be analysed in its entirety too, e.g. using 3-mode Principal
Component Analysis (Kroonenberg, 1983). See also Chapter 10 for this method.

2.1.2. Free choice profiling

In free choice profiling (Amnold and Williams, 1986) the assessors are free to come up with
their own attributes, which they use for judging the products. So there is no a priori agreement
on attributes between the assessors. As a result it is impossible to average the individual data,
because it makes no sense to combine different attributes. The data from FCP experiments
must be analysed by individual difference methods, of which GCA is one. Unlike Conventional
Profiling data, FCP data cannot be rearranged in some kind of 3-mode data structure, because
each assessor may use different attributes as well as in number as in meaning,

2.2 Sensory-instrumental relations

One of the fields in which GCA can be applied is the study of Sensory-Instrumental (S-I)
relations. Though GCA appears not to be often applied in this field it can be a useful method to
analyse sensory-instrumental relations (e.g. Van der Burg and Dijksterhuis, 1993a). The idea
behind the study of S-I relations is that sensory perceptions have chemical/physical
counterparts in the substance under investigation. A simple example is the amount of caffeine
in a certain drink, which of course determines the bitterness perceived by someone drinking it.
In real life S-I research is much more complicated, and involves multivariate data, and
consequently needs multivariate data analysis.

Usually two data sets are involved in studying sensory instrumental-relations One data set
contains the sensory judgements on the products. The second data set contains a number of
instrumental measures on the same products. These can be results of chemical analyses,
physical properties or results of other measurements. In case of two sets of variables, two-sets-
canonical correlation analysis can be applied to study what is common between the sensory
assessments and the instrumental measurements.
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When the instrumental measurements are divided into several sets, for instance chemical and
physical measurements, a three-sets-GCA can analyse the sensory-instrumental relations. It is
also possible that even more sets are involved. For instance, suppose that also sales figures and
prices of the products are known. Then a four-set-problem has to be analysed.

2.3 Scale types

The most common scale types in research are the nominal, the ordinal and the numerical scale.
The nominal scale reflects a classification of the objects. If the objects are food products, we
may think for instance of package type (bottle, carton, tin), colour (red, brown, green) or
product type (frozen, fluid, dried).

The ordinal scale reflects an ordered classification or a ranking of the objects (products). In
our opinion sensory profiling data is probably best considered as rankings. We discuss this later
in this section. Other examples of ordinal scales are measurements as size-class (small,
medium, large) or storage temperature (very low, low, normal). In the apple study (see section
5) we find these variables.

The numerical measurement level assumes a ranking of the objects and a constant ratio of
difference scores. Numerical measurement levels may occur rather seldom in sensory data,
although many statistical techniques assume the numerical measurement level. In general only
physical or chemical measures are supposed to be on a numerical measurement level. In
addition, frequencies and percentages (which are data measured on an absolute level) are
usually treated as numerical measurements, for instance the percentage of rotten apples in a
sample.

We mentioned already that we will consider sensory profiles as rankings. Although it is
common practise to treat sensory profiling data as measured on a numerical level, we do not
always support this habit. The task of measuring products on a line scale cannot be done in an
exact way by assessors. For instance, if judges assess the sweetness of cups of tea, we cannot
always expect the judges to score the exact amount of sweetness. We can expect the judges to
say which cup of tea is more sweet than other cups, or to rank the cups of tea according to
sweetness. Although the judges will try to guess the amount of sweetness by scoring a very
sweet cup very high and a medium sweet cup in the middle, we do not expect that the assessor
means a cup of tea is two times sweeter than another cup of tea, if he or she gives a score two
times higher. For this reason it may be more appropriate to treat sensory profile data in an
ordinal way (i.e. as rankings) than in a numerical way.

Another common practise in sensory research is using averaged data for sensory profiles.
Averaging supposes that the various judges use the line scale in a similar way. In addition,
averaging supposes the numerical measurement level. If we treat similar attributes for each
judge as separate variables, we get rid of the idea that all assessors score in a similar way. If we
assume an ordinal measurement level for each line scale, we get rid of the numerical
assumptions too. In case of trained assessors, it may be that the judges use the line scales in a
similar way, although we will most often not know this for certain. In case of untrained
assessors, however, there is no reason to expect the judges to use the line scales similarly.
Therefore a separate treatment of the line scales, for each attribute and judge is recommended.
In that case the results can show whether judges differ or not.

We can also check if the assumption of a numerical measurement level was correct. For
instance, we can compare analysis results obtained under ordinal constraints with results
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obtained under numerical constraints. Sometimes this does not give different results, so that we
know that the numerical measurement level was not too restrictive. If the solutions differ, it
means that relations between the nonlinearly transformed attributes play a role. This pertains to
GCA as well as to other multivariate techniques. Van der Burg and Dijksterhuis (1993b) study
vegetable soups assessed by 19 judges. They find that the solutions under ordinal and
(approximate) numerical assumptions are very similar, showing that a numerical treatment does
not restrict the data too much. At the other hand these authors also find that some judges differ
from the other judges in using the attributes. Consequently, averaging these data over judges
would be a bad idea.

3. THEORY AND BACKGROUND OF GENERALISED CANONICAL ANALYSIS

The original form of generalised canonical analysis is a technique that studies what is common
between sets of (numerical) variables. The technique must provide answers on questions like:
‘Can we predict the quality of a product from instrumental measures of the same product?” or
‘Do several assessors agree in their judgements of a product and on what attributes do they
agree?’” When considering to use GCA, several (two or more) sets of variables must be
involved in the research question.

Sets of variables can be related in many ways. In GCA they are related in a rather
straightforward way, namely as weighted sums of attributes per set. Assuming that a weighted
sum represents a set, the weights can be made such that the sets (in fact the weighted sums per
set) are as similar as possible to each other. Suppose the sets of variables are denoted by
matrices Yy, (of order NxMj) and the weights by vectors aj, (of order My) with M} the number
of variables in set & (k=1,...,K) and N the number of products. Each set is represented by the
weighted sums Yzaz. The aim of GCA is to find the weights az such that we get

Yay as similar as possible to each other for each k=1,....K. €))

By using a weighted sum we let one attribute be more important than other attributes. The
magnitude of the weight reflects the importance of the attributes, but this is not
straightforward, as we will explain later in this section.

Another way to make K weighted sums as similar as possible to each other is to make them
as similar as possible to an unknown vector (see Carroll, 1968 or Van der Burg and
Dijksterhuis, 1993b). Let us denote this unknown vector as x (of order N). The elements of
vector x are scores for each object (product), and we refer to x as object scores. Let us also
suppose that the object scores are standardised (mean zero and variance one). In GCA the
object scores and weights are such that we get

x and Yay, as similar as possible for each =1,....K, )

with object scores x and variables, columns of Y, standardised. Note that expression (1) deals
with K(K-1)/2 similarities, whereas there are only K similarities in expression (2). Until now we
did not specify what ‘similar’ means, therefore expression (2) can be interpreted in many ways.
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For instance, we can take for similarity the squared correlations which leads to Carroll’s
(1968) formulation of GCA:

X
> { correlations [x,Yja ] }2 maximal. 3)
k=1

Another way of defining similarities is by minimising the sum of squared differences or the
loss between object scores and weighted variables. This gives a formulation of GCA which is
equivalent with expression (3) (see for a proof Van der Burg and Dijksterhuis, 1993b).
Denoting the sum of squares of a matrix by SSQ (i.e. SSQ(Z)=trace(Z’Z) if matrix Z is in
deviation from its column means), we get

X

loss = Lz SSQ [x - Yjaj ] minimal €))
KN i

over x and ag, with x and (the columns of) Yy (k=1,...,K) standardised. The GCA formulation
in terms of loss is used by Van der Burg, De Leeuw and Verdegaal (1988) and by Gifi (1990,
chap. 5).

Of course one might wonder if a one-dimensional solution of object scores suffices to
represent what is common between the sets. If one decides that a one-dimensional solution is
not enough, a two-dimensional solution can be taken. As it is not interesting to have correlated
dimensions, a second dimension of object scores is constructed such that it is uncorrelated to
the first one. This means that the axes representing the object scores are perpendicular, and we
have a rectangular coordinate system in which we can plot a configuration of products. This
configuration is standardised, that is, it has zero mean and unit variance in the directions of the
axes.

If one is interested in a solution of more than two dimensions, the same procedure can be
followed. The third dimension of the object scores is taken uncorrelated to the first and the
second one. The fourth one is taken uncorrelated to all the preceding dimensions, and so forth.
If we deal with a P-dimensional solution we find a standardised configuration of products on P
perpendicular axes, which is represented by a matrix X of order (NxP). This matrix consists of
uncorrelated and standardised columns that is, X’X/N=I, with I the identity matrix. The
weights are represented by matrices Ay (of order MyxP). The weighted sums for each set k are
denoted by Y;Ay. Then the GCA problem for P dimensions is written as

K

loss = LZ SSQ [X - YA ] minimal )
KN &

over X and Ay, with the columns of X uncorrelated and standardised and the columns of Yy
(#=1,...,K) standardised. The object scores X can be plotted, just like in PCA. An interpretation
of this plot corresponds to an interpretation of the solution. Interpreting the solution can be
done via the variables within the analysis, but also by using external variables. To interpret the
configuration we have to find out what the various directions in the plot of object scores
represent. We do this by checking the component loadings, which correspond to the
correlations between the object scores (for each dimension) and the variables. The term
‘component loadings’ is used in analogy with the component loadings from PCA. We can
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make a plot of the variables in the object scores space with coordinates equal to the component
loadings, which are available for the variables from each set. Usually, in this plot, the variables
are represented by vectors from the origin. Interpreting this plot is done in the same way as
interpreting the component loadings in PCA. This means that variables far from the origin are
more important than those close to the origin. In addition, two variables that are very similar
and important will have vectors close to each other with comparable lengths. Variables with
short vectors are badly represented in the solution. However, this does not mean that these
variables have a low explained variance in a PCA sense. It means that such variables represent
variance in the data that cannot be found in the other sets.

If a correlation between one attribute and, say, the first (dimension of a) solution of object
scores is high, then this attribute has a high contribution to the first dimension. Sometimes it is
interesting to reify the object score axes from the contributions of the variables (compare
interpreting the principal axes in Factor Analysis). In that case it may be interesting to use a
rotation of the solution to facilitate the interpretation of the axes (see Kiers and Van der Burg,
1994). Often, however, only the configuration of products and of variables is interesting in
itself, so that axes need not be labelled.

Another way to interpret the configuration of object scores is with the help of an external
variable. In some cases there is information provided about the data which is not used in the
analysis. For instance, in Van der Burg and Dijksterhuis (1989) sausages are studied. There the
GCA solution of the profiles can be (among other things) interpreted by means of the variable
‘make’ (factory-made versus butcher-made). Another example is found in Van der Burg and
Dijksterhuis (1993b), where vegetable soups are analysed. The researchers use the external
variables ‘package’ and ‘type’ to help interpreting the GCA solution.

Earlier in this section it was mentioned that the weights for the linear combinations indicate
the importance of each variable. However, if an assessor behaves similarly on two attributes,
the weight is not a good measure for comparing the importance of the various attributes, as the
influence of one attribute can be expressed via the other attribute. For instance, it may happen
that, although two attributes belonging to the same set measure nearly the same thing (are
scored the same), one weight is high and the other one is small. In that case the weight of the
first attribute contains the effect of the second attribute. The reason is that the two attributes
explain the same variation and that this variation can be explained only once. When there is a
lot of multicollinearity between attributes within a set, an attribute can be dropped from the set
even without changing the quality of the relation with the other set(s). That is, the weight of
this attribute can be zero. As the weights do not always give a good insight in the structure of
the sets (unless we keep the correlation matrix in mind), it is much easier to interpret a solution
via the correlations between the variables and the object scores: the component loadings.
These correlations indicate the importance of every variable to the solution, independent from
the contribution of the other variables in the set.

3.1 Optimal scaling

In the preceding discussion on GCA, nothing is said about the measurement level and the
corresponding transformation of the variables. If variables are considered to be numerical, this
implies that the original scores can be transformed in a linear way without destroying the
information in the original data. If a variable is seen as measured on an ordinal level, the scores
of this variable can be rescaled in an ordinal way without loss of information. This corresponds
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to a rescaling without changing the original order, keeping similar scores equal. There are
many possibilities for ordinal transformations, in fact all monotone ascending transformations
will do.

Also for nominal variables a transformation is possible without losing information. Such a
transformation should keep similar scores equal. A nominal transformation preserves the
classification of the products that is induced by a variable. Nominal transformations are less
restricted than ordinal transformations. Therefore, there are more possibilities for nominal
transformations than for ordinal transformations.

Variables measured on a nominal (or ordinal) level can be treated in two different ways. We
can use one transformation for one P-dimensional solution or we can use a different
transformation for each dimension. The former is called single quantification and the latter
multiple quantification. The multiple nominal transformation is similar to the scaling in
(multiple) correspondence analysis (Nishisato, 1980, chap. 2; Greenacre, 1984, chap. 5). In the
applications of GCA shown in this chapter, we only use single nominal transformations.
Therefore, we do not discuss multiple nominal transformations here any further. Multiple
ordinal transformations are theoretically possible but they are not implemented in any computer
program, so they will not be considered either.

We refer to single quantifications (nominal, ordinal or numerical) as optimal scaling. In fact
optimal scaling implies that the transformations are obtained in a special way, namely in
combination with the optimising criterion (Young, 1981).

We need some more notation to include the optimal scaling in our formulation of GCA. Let
us denote the sets of transformed (i.e. quantified) variables by Qf (of order NxMp). For these
matrices constraints are valid per column (i.e. per variable). If, for instance, the first variable of
set k is considered to be measured on an ordinal measurement level, the first column of Qk
must be a monotone transformation of the first column of Y. We call the restrictions to be
imposed on the transformations of the variables, including standardisation, measurement
restrictions. Using this notation, GCA with optimal scaling can be written as

X
loss = LZ SSQ [X - QiAj ] minimal, (6)
KN o

over X, Q; and Ay, with the columns of X uncorrelated and standardised and the columns of
Qy satisfying measurement restrictions. This formulation of GCA is introduced by Van der
Burg, De Leeuw and Verdegaal (1988) and is also used by Gifi (1990, chapter 5). The essence
of expression (6) is that optimal scores will be assigned such that the GCA-criterion is
maximised and that in addition the measurement restrictions are satisfied. Both Van der Burg,
De Leeuw and Verdegaal (1988) and Gifi (1990, chapter 5) describe how to obtain the
sotutions. Without giving details here, we can say that all the parameters are solved for in an
alternating least squares (ALS) manner.

We distinguish various effects in sensory profiling data originating from different assessors.
We mention the level effect, the scale effect and the interpretation effect (see also chapter
7.2). Let us consider these effects in GCA as formulated in expression (6). Because, for all
types of scaling the measurement restrictions imply standardisation, the level effect is excluded
from the assessors’ scores by subtracting means. The standardisation also removes the
individual scale effect per variable through division by the standard deviation. The
interpretation effect is modelled in GCA by using weighted sums of variables or linear
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combinations. Note that in GPA the interpretation effect was modelled by using rotations (see
chapter 7.2).

We can study the interpretation effect by treating the same attributes from different
assessors, e.g. all ‘sweet’ attributes, as different variables. It does not matter which
measurement level is used. However, if various assessors have a different definition of one
attribute in mind, the impact of ordinal or nominal transformations may be bigger than the
impact of numerical -linear- transformations. In case of different definitions of one attribute,
the question arises what we are comparing. Of course, we cannot really answer this question.
But we can find out that judge A and judge B have different interpretations of an attribute.

Finding an interpretation effect means that averaging scores over judges is not permitted
(see also section 2.3). At the other hand, if attributes, assessed by various judges, are
interpreted similarly, a justification for averaging over assessors is provided.

Using numerical measurement levels is a very common method in linear multivariate
analysis. Note that the term ‘linear’ can refer either to linear combinations of (standardised)
variables or to the linear transformations of the variables. Here both meanings apply.

Using ordinal and nominal measurement levels (in combination with numerical measurement
levels) is rather new. For PCA a nonlinear version for mixed measurement levels exists, both in
the form of a model as in the form of a computer program (see the references in section 4.4).
Here ‘nonlinear’ refers to the transformations. Van der Burg and De Leeuw (1983) describe a
nonlinear version of two-sets canonical correlation analysis, which was implemented in the
CANALS program. A computer program for k-sets was only made available recently although
several GCA models were described in the literature many years ago (Horst, 1961; Carroll,
1968; Kettenring, 1971; Van de Geer, 1984). Van der Burg, De Leeuw and Verdegaal (1988)
introduced a model for GCA which was implemented in the computer program OVERALS
and which, in addition, was provided with possibilities for nonlinear transformations for ordinal
and nominal variables, and linear transformations for numerical variables. The OVERALS
program is available in SPSS Categories (SPSS, 1990, chap. 9).

If data are measured on an ordinal or nominal scale we prefer to treat the data
correspondingly. However, often it is interesting to compare a linear analysis (only numerical
measurement levels) with a nonlinear analysis and to see the similarity or the difference. If the
resemblance is very high, we know that the linear analysis makes sense. If there is a difference,
we have to accept that different judges define the same line scale in a different way. We may, in
addition, interpret the optimal quantifications to find out what causes the differences.

3.2 Loss and fit measures

The results of a nonlinear GCA analysis can be evaluated by the loss and fit measures. The loss
shows the lack of fit of a solution. In case of a P-dimensional solution, the minimum loss is 0
and the maximum P (see Van der Burg, De Leeuw and Verdegaal, 1988, p. 184). The loss can
be divided over dimensions, and one minus the loss per dimension corresponds to the
eigenvalue (maximally one and minimally zero). The eigenvalue corresponds to a goodness-of-
fit measure and the sum of eigenvalues is called the total fit. The loss or total loss is equal to P
minus the total fit. In formula we write

(total) loss = i loss(p) = év—ii SSQ (xp - Qkalq,) @)

p=1 p=l k=
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with x,, and ag;, the p-th column of X or Aj. Note that the loss in (7) is equal to the loss in
(6). For the fit we get

P P
total fit= ") eigenvalue(p) =Y { I-loss(p) } =P - loss. ®)
p=1

p=l

The eigenvalue represents the mean variance of the sets (i.e. the weighted sums of
variables), accounted for by the object scores. For more details on the properties of these
eigenvalues we refer to Van der Burg, De Leeuw and Verdegaal (1988) or Van der Burg, De
Leeuw and Dijksterhuis (1994). The eigenvalues do not necessarily correspond to the average
of explained variances of the optimally scaled variables per set. If two optimally scaled
variables have a perfect correlation, but are located in different sets, these two sets can be
predicted perfectly from each other, irrespective of how much variance of the other variables in
the corresponding sets is explained. It means that, in GCA, we always have to check the
meaning of a high fit. If a high fit corresponds to only a little explained variance of the
optimally scaled variables, we may decide to investigate the higher dimensions of the solution
or to drop one of the variables that causes the high fit. It is a result of the fact that the GCA
method focuses on correlations between variables in different sets, irrespective of associated
variance per set.

Especially because of the optimal scaling we have to beware of unique patterns. Unique
patterns are correspondences between sets shared by very few objects. For instance, if there is
only one product packed in glass and this product is the only one that is judged as breakable,
we have a unique pattern. The OVERALS program may fit this pattern by scaling all
categories of ‘package’ into zero, except the glass score, which may get a high quantification.
If the program does this for the scores on ‘fragility’ too, the two optimally scaled versions of
‘package’ and ‘fragility’ (in different sets), are highly predictable from each other, resulting in a
high fit. Thus in case of a high fit, the optimal scores have to be checked for such degeneracies.

As was described in section 2.3 on “scale types’, the transformations of the variables, or the
‘scaling of the categories’, always satisfy the measurement restrictions. For ordinal variables it
means that the order of the original scores is maintained, for nominal variables it means that
similar original scores get the same transformed scores. So different original scores may get
similar transformed values. In the above example with the two nominal variables ‘package’ and
“fragility’, the nominal restrictions are satisfied, although it provides a unique pattern.

3.3 Canonical Correlation Analysis

The term Canonical Correlation Analysis (CCA) usually refers to a two-sets multivariate
technique that maximises the correlations between linear combinations of two sets of variables
(Hotelling, 1936). CCA and two-sets GCA are similar although CCA exists much longer. In
fact, CCA is a special case of GCA, namely the case of K=2 and only numerical measurement
levels. The usual representation of CCA (e.g. Tatsuoka, 1988, chap. 7; Gittins 1985, chap. 2)
is formulated in terms of the correlations between the linear combinations per set (canonical
axes or canonical variates) and the variables. For each set, the scores on the canonical axes are
uncorrelated, just like the object scores. The projections of the standardised variables onto the
canonical axes are equal to the correlations between variables and canonical axes or ‘structure
correlations’ (c.f. Ter Braak, 1990), or ‘intraset” and ‘interset’ correlations (Gittins, 1985, p.
38), and a plot of correlations in CCA is comparable to a plot of component loadings in GCA.
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However, in CCA there are two sets of correlations, of all variables with the canonical axes of
each set, and in GCA there is only one set of component loadings, of all variables with the
object scores. This is because the object scores in 2-set GCA correspond to the average scores
on the canonical axes in CCA (Van der Burg and De Leeuw, 1983). In K-set GCA, the object
scores correspond to the mean over K canonical axes.

3.4 Representing the original variables

The variables are represented by the weights and the component loadings. As was mentioned
already, the weights can, in case of multicollinearity within a set, include the effect of the other
variables of the set. Therefore, the component loadings give a better view on the solution.
They provide a measure for the relation between a transformed variable and the object scores
for each dimension. The squared loadings represent the explained variance of the variables by
the object scores. If we denote a column of Q by q;, (with [g=1,.,.M} ), the component
loadings, collected in the matrices Cg (of order MyxP), are defined by

c(lk,p) = component loading (/¢,p) = correlation [xp Ay 1 )

In the output of the OVERALS computer program, variables are individuaily represented by
the centroids, which are the mean object scores averaged over the products in the same
category of a variable. These centroids correspond to the so-called multiple nominal
transformations. As we do not use these type of transformations in the applications, we will
not expand on them further. In addition, for each variable there are the so-called projected
centroids, which are optimally scaled scores q;, (called category quantifications, with as many
different values as there are different categories of variable /;) multiplied by the corresponding
component loadings (¢” I rowl & of matrix Cg with lk:1 oMy )

projected centroids (k) = ¢, ¢, (10)

These are found on a line in the object scores space. These scores are called projected
centroids because they can be seen as centroids projected on a line (with measurement
restrictions). The direction cosines of this line are the component loadings. Thus centroids and
projected centroids refer to the space of object scores, so that, for interpretation of
quantifications one needs these scores. (see e.g. the plot of projected centroids in Figure 4).
However, often an interpretation of quantifications is not necessary. In that case we use the
category quantifications only to check for degeneracies. Figure 3 and Figure 8 show a plot of
category quantifications, furthermore Van der Burg, De Leeuw and Verdegaal (1988) discuss
an example with interpretation of the centroids.

3.5 Statistical matters

The GCA technique as implemented in the OVERALS program, is not equipped with
statistical tests. As there are no assumptions about a distribution, we have to use permutation
or randomisation methods to test the stability of a solution. For such tests we only have to
assume a multinomial distribution of the profiles (possible score patterns for an
object/product), which is true in case of random sampling. One can use the Bootstrap or the
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Jackknife (Efron, 1982; Miller, 1974) to study the stability of a solution by computing
confidence intervals. In addition, permutation tests can be used (Edgington, 1987; Good, 1994;
Van der Burg and De Leeuw, 1988) to find the significance of results.

The bootstrap is a method that resamples from the data (a sample from a larger population)
such that inferences can be made on the population. The sampling takes place with
replacement, keeping the number of observations equal to the number in the original sample.
Thus, the randomly produced sample (called the bootstrap sample) may contain the same
product several times and other products not. Then the GCA technique is applied to the
bootstrap sample. The procedure of taking a bootstrap sample and performing a GCA is
repeated many times. Then, for each statistic under study (for instance the fit), we have as
many instances of this statistic as there are bootstrap samples. From these values the variance
of the statistic can be estimated. In addition, an estimation of the population mean can be
made, so that a confidence interval can be computed (Van der Burg and De Leeuw, 1988).

The Jackknife is similar to the Bootstrap except that the Jackknife samples are drawn in a
different way. With the Jackknife the new samples are the same as the old ones save one
product or save s products (s a small number). Every product is dropped once. The Jackknife
sample contains (N-1) or (N-s) products. If one product is dropped, there are exactly N
Jackknife samples. As with the Bootstrap, the Jackknife sample values of the statistic under
study provide an estimation of the variance and the population mean, so that a confidence
interval can be computed.

Permutation tests are made by permuting the data, that is, randomly reordering the products
separately within each set (see De Leeuw and Van der Burg, 1986). In the case of two sets
with one nominal variable per set, if we organise the two variables in a cross table, permuting
the data comes down to changing all the cells of the cross table while keeping the marginals at
a constant level. Each table represents a permutation sample to which the technique can be
applied. Thus every table provides a value of the statistic under study and together they form a
distribution from which the original sample is one. Using order statistics then provides a
significance level for the statistic. For two nominal variables we have Fisher’s exact test. For
more complicated cases a permutation test can also be made. However, if the number of
variables grows, the number of possible randomisations grows too, so that it becomes rapidly
impossible to compute the exact permutation distribution.

4. COMPUTER PROGRAM FOR GCA

In this section characteristics of the computer program OVERALS are introduced. It is also
shown how the implemented GCA method relates to other multivariate methods and programs.

4.1 Categorising data

The input for the computer program OVERALS is restricted to data containing a small number
of positive integers. This implies that continuous data have to be recoded into data with a
relatively small number of categories. The restriction that data for OVERALS have to be
discrete, has to do with the way the computer program is made. The computer program works
with scores for categories. If every variable has as many categories as there are objects, the
program may become rather slow. Therefore, the number of categories per variable, for each
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set (assessor) should be reasonably smaller than the number of objects, which, in our
experience, is not a severe restriction.

When one analyses the rank-order scores of the objects, there are as many categories as
there are objects in the data. An ordinal analysis of these rankings can be a good way to reduce
the number of categories.

The assumption that the input of the program contains discrete data, implies that, if the data
do not satisfy this assumption, the researcher has to recode the data until the assumption is
satisfied. For instance, if line scales scoring from zero to 100 are used, the information has to
be compressed into a small number of categories. If we do not want to loose too much
information we can take for example 10 to 15 equidistant categories. If we are not too
concerned about details, often 3 to 6 categories are sufficient to retain the information that
determines the relations between the sets.

Two analyses, one with 10 to 15 categories (and numerical measurement restrictions for all
variables) appeared hardly different from the results from the analysis of 3 to 5 categories (and
ordinal measurement restrictions for all variables) (see Van der Burg and Dijksterhuis, 1993b).

4.2 Missing data

The OVERALS computer program can handle missing data. The theory of the GCA-model
including missing data is described by Van der Burg (1988, p.107). If a product is not scored
for one variable, the computer program treats the scores for all the variables in the same set as
missing. This means that the product does not contribute to the fit for the set at hand. Many
missing scores will make it easier for unique patterns to arise, thus with a lot of missing data
the outcome has to be checked for degeneracies. In normal cases missing data do not give rise
to problems. As missing scores do not contribute to the fit, there is no optimal scaling either
for missing scores. Thus no estimation of the missing score is provided by the OVERALS
program,

4.3 Dimensions

The number of dimensions for the OVERALS analysis has to be specified by the researcher.
He or she has to decide for him- or herself how many dimensions are needed. In practice this
often means that solutions of different dimensionality are computed and that the best one is
chosen to report. One of the most important considerations in choosing for P dimensions, is
that all P dimensions are interpretable. An argument for taking one or two dimensions is that it
is easy to plot. An argument to prefer P dimensions above P+1, is that there is hardly any
difference between the P- or the (P+1)-dimensional solution. If P is larger than two it can be
hard to interpret the solution. In that case a rotation may help to decide how many dimensions
must be taken (Kiers and Van der Burg, 1994).

4.4 Relations of OVERALS to other MVA techniques

In this section we illustrate the relations between GCA as realised in OVERALS (Van der
Burg, De Leeuw and Verdegaal, 1988) and other multivariate techniques. Sometimes we use
the name of an author to indicate a model, sometimes we use the name of the technique, but in
addition we also use the name of a computer program to indicate a model. We hope this will
not lead to confusion.
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OVERALS is a very general technique that comprises many techniques as a special case. If
the measurement level of all variables is numerical and there is only one variable per set, then
we are dealing with ordinary PCA. In this case the fit of a solution (the eigenvalue)
corresponds to the mean explained variance of the variables because in this case variables and
sets are identical. This is the usual definition of the eigenvalue in PCA. If we keep the number
of variables per set equal to one, but allow for different measurement levels, we obtain a
nonlinear version of PCA. In the literature we encounter this model under the name
PRINCALS (Gifi, 1990, chap. 4; SPSS, 1990, chap. 8). Other nonlinear PCA models can be
found in PRINCIPALS (Young, Takane and De Leeuw, 1978) and PRINQUAL (Kuhfeld,
Sarle and Young, 1985; SAS/STAT, 1990, p. 1265).

If all variables are considered as multiple nominal and we still have one variable per set, we
artive at a technique called dual scaling (Nishisato, 1980, chap. 2) or multiple correspondence
analysis (Greenacre, 1984, chap. 5; Gifi, 1990, chap 3). This technique can be viewed as PCA
for nominal data. For instance the computer program HOMALS (SPSS, 1990, chap. 7)
performs this type of analysis, also the program CORRESP (SAS/STAT, 1990, p.615). In case
there are only two multiple nominal variables, we get correspondence analysis, for instance
implemented in the ANACOR program (SPSS, 1990, chap. 6).

If we restrict OVERALS to two sets of variables and only single measurement levels we get
canonical correlation analysis with optimal scaling. This technique is very similar to CANALS
(Van der Burg and De Leeuw, 1983). If, in addition, one of the sets contains only one variable,
we get nonlinear multiple regression or MORALS (Young, De Leeuw and Takane, 1976).
Two-sets OVERALS with only numerical measurement levels gives ordinary canonical
correlation analysis.

If OVERALS is restricted to numerical measurement levels only, we get the technique
described by Carroll (1968) (see also section 3).

If we relate OVERALS to three way techniques that generalise PCA we can compare it, for
instance, to the class of models discussed by Kroonenberg (1983). In particular the TUCKER2
model (see Chapter 10) is obtained from the OVERALS model by constraining the weights. In
addition, the TUCKER2 model restricts the variables in all sets to be similar, as it supposes a
three way table, which is not the case in OVERALS. Thus we see that TUCKER2 is a special
case of OVERALS.

As discussed already in section 3.1, other techniques have been proposed for X sets analyses.
(Kettenring, 1971; Horst, 1961). In particular Van der Geer (1984) compares several
techniques.

4.5 Post Hoc Rotations

Rotations are not provided in the OVERALS computer program. Of course, if the user is
interested in naming the axes or interpreting a high dimensional solution, a rotation may help.
In case of ‘single’ variables only a simple varimax rotation can be applied to the object scores
space. Oblique rotations are not allowed as they will severe the orthogonality constraint on the
object scores. In case of mixed multiple and single measurement levels a simple varimax does
not satisfy because the ‘multiple’ variables do not have component loadings. Kiers and Van der
Burg (1994) propose a rotation algorithm in which the so-called discrimination measures for
‘multiple’ variables are used and the component loadings for ‘single’ variables. They also give
an illustration of their algorithm.
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5. ANALYSING SENSORY-INSTRUMENTAL RELATIONS USING GCA

The example to illustrate sensory-instrumental relations concerns research on applesl. Van der
Burg and Dijksterhuis (1993b) use these data for the prediction of assessments from
instrumental measures, illustrating nonlinear Redundancy Analysis. We will illustrate nonlinear
GCA with the help of the apple data.

Table 1

Variables Measured on Cox Apples

Background variables categories

Ca origin low, high Calcium

Per picking-date early, middle, late

Si size small, large

Temp storage-temperature 3, 13, 23 degrees Celsius

Instrumental variables min max # cat
Pread penetrometer: red side 2.50 5.80 5
Pgreen penetrometer: green side 3.50 5.50 5
Pmean penetrometer: mean 3.70 5.90 5
Moist  expelled moisture 5.51 43.06 6
Drymat dry matter 12.25 17.08 5
Acid  total titratable acid 3.55 8.07 5
Ithick Instron: thickness at failure 1.33 3.05 6
Ifrac  Instron: force at failure 26.21 71.67 4
Isurf  Instron: area 11.51 56.64 5
Islope Instron: slope 7.48 97.95 6
Imod Instron: modulus 1.27 3.66 6
Catac _ Catalase activity 6.90 19.40 6
Sensory variables min max # cat
Mealyl mealiness judgel 0 (not mealy) 100 (very mealy) 4
Mealy2 mealiness judge2 0 (not mealy) 100 (very mealy) 4
Mealy3 mealiness judge2 0 (not mealy) 100 (very mealy) 4
Firml  firmness judge 1 0 (firm) 100 (soft) 4
Firm2  firmness judge 1 0 (firm) 100 (soft) 4
Fim3  firmness judge 1 0 (firm) 100 (soft) 4

min=lowest score; max=highest score; # car=number of categories after recoding.

5.1 Data on apples

The data consist of measurements on Cox apples (Koppenaal, 1991). The measurements can
be divided into three sets of variables: background variables, instrumental measures and
sensory variables (Table 1). The first set has been created to acquire a variety of Cox apples.
The background variables are: origin, picking date, size and storage temperature. The
instrumental variables consist of several types of physical or chemical measures like the amount
of expelled moisture, the catalase activity and several Instron measures. Table 1 shows all the
instrumental variables. The sensory variables consist of the assessments of three trained judges
on the characteristics ‘mealiness’ and ‘firmness’. These two characteristics represent aspects of
the quality of the apple. Originally the researchers were mainly interested in a prediction of

1 The ATO-DLO Institute for Agrotechnology (Wageningen, The Netherlands) is thanked for making the data
set on apples available.
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‘mealiness’ and ‘firmness’ from the instrumental variables (Koppenaal, 1991). They performed
two linear multiple regressions on the accumulated scores for mealiness and firmness. The
question addressed next is: ‘How do the instrumental variables and the sensory variables
intermingle with the background variables, taking into account the various measurement
levels?” In fact we want an answer to the question: ‘Under which condition is an apple judged
as ‘nice’ and which instrumental measures are good in indicating the quality of the apple?’
Note that the background variables were manipulated as factors in an experimental design, so
that these variables are independent.

For our secondary analysis the sensory and instrumental measures have been recoded to
reduce the number of categories. Our experience is that this hardly influences analysis results
(see Van der Burg and Dijksterhuis, 1993b). In Table 1 the minimum and maximum original
score is given plus the number of categories used for the recoding. The recoding always refers
to equidistant divisions of the original scores, except for the lowest and the highest category.
The latter was done to avoid unique patterns.

OVERALS was applied to the recoded data. The measurement levels of background
variables were considered single nominal and the measurement levels of the instrumental
variables and the sensory assessments (single) ordinal.

5.2 Fit and Loss measures

A four dimensional OVERALS solution, with all variables treated as single, gives eigenvalues
per dimension of 0.865, 0.771, 0.682 and 0.666 respectively. The first dimension appeared to
be completely dominated by storage temperature (TEMP), the second dimension by origin
(CA), the third by SIZE and the fourth by picking date (PER). This shows the independence of
the background variables. The sensory assessments and various instrumental measures load
mainly on the first two dimensions. So apparently TEMP and CA are related to the sensory and
instrumental variables.

We repeated the analysis in two dimensions. This gives eigenvalues per dimension of 0.864
and 0.779 respectively (see Table 2).

Table 2
The loss per set, eigenvalues and fit of the apple data for a two-dimensional OVERALS
solution
LOSS PER SET dimension

1 2 SUM
Background variables 0.183 0.255 0.438
Instrumental variables 0.073 0.093 0.166
Sensory variables 0.150 0314 0.465
MEAN 0.136 0.221 0.356
FIT 1.644
EIGENVALUE 0.864 0.779

We also performed the two-dimensional analysis with the background variables considered
as multiple nominal. This gives eigenvalues of 0.863 and 0.797 which is hardly better than in
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the single nominal case. We decided to report the two-dimensional solution with all variables
treated as single. The loss, fit and eigenvalues are given in Table 2. This table shows that all
sets ‘have a very low loss in the first dimension which means that the assessments are well
predicted by background variables and instrumental measures at the same time. The
instrumental variables also have a low loss in the second dimension telling us that they do well
in (are much related to) this dimension. We will see which variables are related, and to what
extent, in the plot of component loadings.

5.3 Component loadings and object scores

The component loadings are plotted in Figure 1. Such a plot is comparable to the loading plot
or correlation plot of PCA, although this plot is obtained in a different way. We see from the
plot of component loadings that the first dimension is dominated by TEMP from the set of
background variables, by MOIST, CATAC and ACID from the instrumental set and by all the
assessments of the sensory set. The second dimension is dominated by CA and ITHICK. The
sensory variables hardly play a role in this dimension. Thus storage temperature is dominating
the taste, in the sense that a high temperature corresponds to mealy and soft apples, and a low
temperature to a good taste, not mealy and firm apples. The vectors point to the direction of
high scores, in case of the sensory variables to a bad taste, i.e. mealy and soft (see Table 1). A
good taste -firm and not mealy- also corresponds to a lot of expelled moisture, a high catalase
activity and a high amount of titratable acidity. Specially MOIST is a very clear indicator for a
good taste.

pred pmean moist
pgr
0.0
o
c temp F3
@ catac ~ acid
£
- M3
-0.54 M2
ithick
CA
-1.0 T T T
-1.0 -0.5 0.0 0.5 1.0
dimension 1

Figure 1. Component loadings of OVERALS applied to the data set on Cox apples.
(F = Firmness, M = Mealiness).
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If we take a look at the object scores (Figure 2) labelled by temperature, we find that all
apples stored at low temperature (3 °C ) are located on the right side. These are the apples of
good quality. The apples stored at 13 and at 23 degrees C are found at the left side. These

apples are judged to be of lower quality. In general the apples at the left have low moisture,
low titratable acidity and low catalase activity.
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Figure 2. Object scores of OVERALS applied to the data set on Cox apples. The objects, i.e.
individual apples, are marked by storage temperature.

The apples found in the lower half of Figure 2 are characterised by a high Ca condition and
also by a large thickness at failure (ITHICK). In the higher part we find the apples with a low
Ca condition and a low ITHICK. The position in the lower or higher part of Figure 2 is hardly
related to quality judgements.

From figures 1 and 2 we see that mainly the first dimension is of interest for the quality of
the apples. We also saw this in Table 2. The contribution of the sensory variables to the loss is
small for the first dimension and much higher for the second one.

5.4 Variables and categories

Plots of the category quantifications of three important variables (TEMP, Catalase Activity,
MOIST) are given in Figure 3. The term ‘original’ score, refers to the input scores of
OVERALS, i.c. the scores after the recoding of the numerical data. For TEMP this means:
1=3 °C, 2=13 °C and 3=23 °C. For CA the recoding implies 1=low calcium and 2=high
calcium, and for MOIST, 1=551...10.0, 2=10.1...15.0, 3=15.1...20.0, 4=20.1...25.0,
5=25.1...30.0 and 6=30.1...43.06.
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Figure 3. Category quantifications of some important variables in the OVERALS result of the
analysis of the Cox data set. The variables are TEMP, CA and MOIST.

The quantifications of temperature are respectively -1.38, 0.47 and 0.94. Thus the main
difference is between the low temperature and the other two higher temperatures, meaning that
mainly the low temperature of 3 degrees Celsius can be taken responsible for a good taste. This
corresponds to what we saw in the plot of object scores (Figure 2). The transformation of
CATAC contains three ties, original scores 3 (=10.1...12), 4 (=12.1...14) and 5 (=14.1...16)
(not shown in figure), thus no difference is made in the solution between these scores.
Originally there also was a -recoded- category 1 for FIRM3. However, as this category was
scored with a very low frequency, we recoded it into a 2, to avoid a unique pattern.

It can sometimes be difficult to interpret the transformation plots. It may be easier to
imagine what happens if the quantified categories are plotted on the lines through the
component loadings. Such a plot is made for the most important variables (Figure 4). We
clearly see the spread of the (recoded) categories over the object scores space.
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Figure 4. Projected centroids of the most important variables in the analysis of the Cox data
set.

5.5 Conclusion

The nonlinear GCA analysis of the Cox apples shows that in relating background variables,
sensory assessments and instrumental measures, we obtain a mainly one-dimensional solution
as the sensory variables play a role nearly only in the first dimension. In fact Van der Burg and
Dijksterhuis (1993a) had a similar conclusion though they applied a different technique and did
not use the background variables. The second dimension combines CA with ITHICK, but the
sensory variables are not important in the second dimension.

The first dimension differentiates the apples with respect to taste. This goes together mainly
with the amount of moisture, but also with the amount of titratable acidity and catalase
activity, which makes these variables good indicators for the quality of an apple. To reach a
high quality -low mealiness and high firmness-, apples should be stored at a low temperature.
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6. PERCEPTIONS OF LUNCHEON MEAT

The data used in the following analysis were originally collected in a study of the perceptions
of 27 kinds of luncheon meat.2 For the analysis presented here, a selection of the original 33
questions was made to illustrate the use of GCA. Seven questions related to health and image
matters were selected for the analysis. We want to find out how these matters are related and
which meat-products have a healthy or an unhealthy image. The seven questions selected are
shown in Table 3.

Table 3

Seven questions about image-related matters, from the luncheon meat study.
This luncheon meat. ..

is a healthy product.
is a meagre/light product.
is a natural product.

is a craftsman’s product.

1
2
3
4 is a luxury product.
5
6 is bad for your figure.
7

contains a lot of nutrients.

The questions were answered using Likert scales. The categories from these scales were
converted into category-numbers from 1 to 5 (meaning respectively: 1:disagree completely,
2:disagree, 3:neither disagree nor agree, 4:agree, 5:agree completely). In this study 13
assessors participated, but some of them failed to answer the questions for the products they
did not know. Because of this, 7 products were deleted from the analysis because there were
too many missing scores for these products. The 20 remaining kinds of luncheon meat in the
study are shown in Table 4.

2 The data were kindly made available by Oliemans Punter & Partners, Utrecht, The
Netherlands.
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Table 4

Meat types in the study of luncheon meat.

grilled ham rare cooked lean beef

cured port belly cooked liver

corned beef spreadable liver sausage

course raw dried fermented sausage minced lean beef

raw dried fermented sausage liver sausage

coarse liver sausage (Farmer’s quality) cooked ham

raw cured ham fried minced meat (‘meat loaf™)
cooked shoulder cooked chicken filet

smoked raw cured beef liver sausage (Butcher’s quality)
cooked (cured) ham finely comminuted liver paste

6.1 Results of the analysis: fit and object scores

The GCA analysis, performed with the OVERALS program, was carried out treating the 5
categories of all variables as ordinal. This seemed the most natural choice for the categories of
the scale used.

Firstly the dimensionality of the solution had to be chosen. It is advisable to first try an
analysis with a high number of dimensions, and then identify the dimensions with a substantial
fitt We did two analyses, one in two and one in three dimensions. Table 5 shows the
corresponding fit-values. In GCA the fit-values are equal to the eigenvalues per dimension (see
section 3.2), so both terms may occur in a GCA context.

Table 5
Eigenvalues per dimension and total fit for a two- and a three-dimensional OVERALS solution
for the luncheon meat data.

number of Eigenvalues for dimension Total fit
dimensions 1 2 3

2 0.923 0.839 - 1.763

3 0.917 0.860 0.826 2.604

Keeping in mind that a P-dimensional solution has a maximum fit of P, the column ‘Total
fit’ may help in deciding the dimensionality. The choice of dimensionality is entirely for the
data-analyst. There is no clear method for determining the dimensionality, one has to balance
between ‘parsimony and interpretability’ (see e.g. Hofmann and Franke, 1986).
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After inspecting the fit one wants to take a look at the space of object scores. This space
contains the configuration of the objects from the data, in this case the 20 luncheon meat types.
As an illustration the three-dimensional object space is presented first, but in the remainder the
two-dimensional result will be used. Two dimensions are easier to display than three, though in
practice the third dimension, or even higher dimensions, may have a good interpretation. In
such cases these dimensions should of course be taken into consideration too.
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Figure 5. Three-dimensional OVERALS representation of the space of object scores of
luncheon meat data.

Figure 5 shows the three-dimensional OVERALS result. This figure shows that, apart from
the ‘loners’ raw dried fermented sausage, corned beef, finely comminuted liver paste and
minced lean beef, there are two main clusters of objects, they are indicated 4 and B in the
figure. A4 contains cured pork belly, coarse liver sausage, spreadable liver sausage, liver
sausage, fried minced meat, liver sausage (Butcher’s quality), and cooked shoulder; B contains
raw cured ham, smoked raw cured beef, cooked chicken fillet, cooked ham, grilled ham and
rare cooked lean beef.

To be able to see why these clusters appear we need to study the positions of the questions,
i.e., to study the component loadings. Because the main object of this analysis is to illustrate
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the GCA technique we continue with the two-dimensional result because two-dimensional
plots are easier to present and to look at than three-dimensional plots. One could of course
plot dimensions 1 against 2 and 1 against 3, but this would mean twice as much plots, which
we believed not helpful for understanding the ideas behind GCA analysis and the interpretation
of its results, for the illustratory purpose of this analysis. Furthermore the two-dimensional
solution captures the most salient aspects of the analysis.

In Figure 6 the two-dimensional space of object scores is presented, this space is the basis
for the remainder of this example. Apart from the finely comminuted liver paste and the minced
lean beef, two main clusters of objects appear, they are much like the clusters in Figure 5.
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Figure 6. Two-dimensional object scores space from OVERALS applied to the luncheon
meat data. The exact position of the objects cannot be seen in this figure, however, the plot is
clear enough to illustrate the features of this object scores plot.

6.2 Looking at the questions

Because in GCA each assessor is treated separately from the others, one has the opportunity to
study differences in the interpretation of the questions between the assessors. In this study 12
assessors answered 7 questions, one question for an assessor was deleted from the analysis
because this assessor gave the same answer for each product on this particular question. This
results in one variable which does not vary over products. It has zero variance, so it cold not
be used in the analysis. For each question a configuration showing the position of this question
for each assessor can be made (plot of component loadings), so that the assessors’ use of the
questions can be compared (see Figure 7). Note that each plot belongs to the same space of
object scores. Also note that we did not connect the points with the origin, to keep the plots
clear.
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Figure 7. Component loadings of the 7 questions for the 13 assessors. The numbers refer to the

a8Sessors.
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Figure 7 can be used to assess the homogeneity of the assessors with regard to their
interpretation of the questions. Each of the seven panels in Figure 7 contains points
representing the 13 assessors. The thighter the cluster of these 13 points, the more
homogeneous the assessors were in answering the question. It can immediately be seen from
Figure 7 that the assessors agree very well regarding the question about the meats being a
luxurious product. They seem o agree the least on the question about the craftsmanship of the
make of meat. The question about meagre/light seems to result in one outlier (11) and two
groups, agreeing, but to different extents. The same assessor (no. 11) can be identified as a
kind of outlier for the question ‘bad for your figure’. The question on the healthiness shows a
loose kind of cluster, which is hard to separate into sub-clusters. However it is clear that the
agreement on the health issue of the meat-products is not clear-cut. Regarding the
nutritiousness there are two assessors (no. 4 and no. 6) with a view opposite to most
assessors’” view. Assessor no. 11 is in the centre of the plot, she/he does not use this question
to distinguish between the meats. The question on the naturalness of the meat seems to result
in two groups of assessors, one group containing 1, 2, 3, 4, 5, 6, 7, 10 and 12, the other group
8,9, 11, 13. It could be interesting to study this question more closely, which is done in the
next section.

Another way of presenting the questions is to group the questions per assessor instead of
grouping the assessors within one question, as is done in Figure 7. In that case for each
assessor a plot is made which shows the positions of the question for that particular assessor.
This way of presenting the questions can be seen in Van der Burg and Dijksterhuis (1989).

Of course Figure 7 can be used to interpret the directions in the space of object scores. With
the help of the component loadings in Figure 7, the properties that distinguish the two clusters
of meat types in Figure 6 can be found. In Figure 6, two main clusters of meat types were
found, one in the left part, and one in the right part of the plot. From Figure 7 can be inferred
that the left part of the space is mainly characterised by ‘Bad for your figure’, and not by the
other questions. The right part of the space in Figure 6 is characterised by the questions about
the health, lean-ness, naturalness, luxuriousness and nutritiousness of the meats. With the help
of the component loadings in Figure 7 it can be concluded that the two main clusters of
luncheon meats obtained have a different image. The meat types cured pork belly, coarse liver
sausage, spreadable liver sausage, liver sausage, fried minced meat, liver sausage (Butcher’s
quality), corned beef, coarse raw dried fermented sausage and cooked shoulder (left in the
object scores space, sce Figure 6) have a rather negative image. The meat types raw cured
ham, smoked raw cured beef, cooked chicken fillet, cooked ham, cooked (cured) ham, grilled
ham, cooked liver and rare cooked lean beef, appear to have a positive image.

6.3 Quantifications of categories

To study the questions and the categories in more detail, the quantification of the categories
can be studied. Remember that the original questions were presented in five categories, and
that these categories received quantifications by the optimal scaling algorithm used in the
OVERALS program. These quantifications provide a means to study the questions more
closely which is illustrated here using the question about the naturalness of the meat. Figure 8
shows the quantifications of the five categories in the analysis of the luncheon meat data set,
for all 13 assessors.
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Figure 8. Category quantifications of the question on natural product, for each assessor.
The numbers in the figure refer to the assessor numbers (sets).

Figure 8 shows clearly that only two assessors (2 and 6) used category 1 (‘disagree
completely’). They received about the same quantification. Assessors 9 and 11 have
quantifications for category 2 (‘disagree’) different from the quantification of this category for
the other assessors. Assessor 9 has another different quantification. For this assessor the
categories 2 (‘disagree’) and 3 (‘neither disagree nor agree’) have much lower quantifications
compared to these categories for the other assessors. The fourth category (‘agree’) is the most
homogeneously quantified for this question. The fifth category (‘agree completely’) has three
assessors whose categories have somewhat larger quantifications than the other assessors, no.
2, 6 and 10. The numbers 2 and 6 were the only assessors using category 1, number 10 used
only the categories 4 and 5. Clearly, assessors 2 and 6 can be identified as the ‘extrovert’ users
of the categories, they use all categories, and the quantifications of category 5 even amplify the
‘extremeness’ of their use of the categories. Concluding, the assessors 9 and 11 are most
different in ‘using some’ categories of ‘natural product’. The categories of most other
assessors have received more or less equal quantifications.

The quantifications of the categories for one, or more, questions enables one to study the
analysis result in considerable detail. However, a quantification plot like in Figure 8, can be
made for each of the 7 questions in this example. Studying them all is a tedious task, which is
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useful when one is particularly interested in comparing categories of different questions, or,
like in Figure 8, in the use of categories by different assessors.

Another way of looking at the differences between the categories is inspecting the so-called
projected centroids (see section 3.4). Figure 9 shows these projected centroids. The distances
of the category points along the lines represent the quantifications of the categories. Two
categories with the same quantification have the same position. The category points are
projected onto the lines connecting the component loadings of each variable with the origin
(see also se%tion 3.4).
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Figure 9. Projected centroids of categories (1 to 5) of the question on natural product.
The assessors are coded with the symbols Al to A13 in the legend.

We saw in Figure 7 for question 3 (‘Natural product’) that there were differences in
answering, The assessors 9 and 11 are different from the other assessors. In Figure 9 the
categories are shown as positions on a line with the same direction as the line representing the
assessor in the corresponding panel of Figure 7. The individual positions of the categories of
question 3 can be seen in Figure 9. There is a line with the 5 categories for each assessor in this
plot. The category-numbers S (‘agree completely’) lie mostly in the right part of the plot
together with some categories 4 (‘agree’). The lowest category (1, ‘disagree completely’) is
not seen much in the plot. This category is not often used by the assessors. Assessor 6 did use
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it but the use is comparable with the use of category 2 (‘disagree’) used by most other
assessors. Assessor 1 and 9 used category 3 (‘neither disagree, nor agree’) not different from
category 2. In the plot the positions of these categories coincide.

The positions of the categories for the deviant assessors 9 and 11 show that they differ
mainly in the use of the lower categories, compared to the other assessors. The low categories
of these assessors lie in the lower-left part of the plot. These assessors apparently have a more
negative interpretation of the products.

6.4 Loss and fit of assessors

Each assessor is represented by a set of variables in the analysis. Some assessors’ scores are
typical for the group of assessors, and other may be different. Assessors with deviating scores
do not fit very well with the other assessors. The fit values tell how well assessors fit in the
solution. The Jloss value measures the lack of fit.
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Figure 10. Loss per assessor for the two-dimensional OVERALS solution of the luncheon
meat data.

Fit and loss values can be computed for each dimension of the solution. In this case there is
a loss value for the first and for the second dimension. The sum of these two loss values
indicate the lack of fit in the two-dimensional solution obtained in this example. For each
assessor this loss value is presented, for both dimensions, in Figure 10. The figure shows that
assessor 11 has the largest loss value in the first dimension. This assessor was already identified
as an outlier in Figure 7 and Figure 8. Figure 10 shows that assessor 11 did not fit very well
with most other assessors. Another observation from Figure 10 is that assessors 3 and 9 have
relative large loss values in the second dimension. Looking at the sum of the loss values it
shows that assessor 3, 9, and 11 fit relatively poor in the analysis. The best fitting assessors are
5 and 10, they have the lowest loss value. Assessor 13 has a low loss value in the first
dimension, this assessor ‘agrees with’ the most important features of the solution. The loss
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value for this assessor in the second dimension is among the largest loss values, so she/he does
not ‘agree’ with the second dimension of the solution.

6.5 Conclusion

The analysis of the data on the questions on the image of the different types of luncheon meat
illustrates the use of an ordinal analysis. GCA helped to study some items in considerable
detail, while at the same time, providing an interpretable configuration of all the meat types
based on two underlying dimensions. The obtained configuration was shown to contain mainly
two groups, one with a positive and one with a negative image. The negative image was ‘bad
for your figure’, the positive image contained the items health, meagre/light, natural, luxury
and nutritious.

7. FREE CHOICE PROFILING OF MINERAL WATERS

A number of twenty different mineral waters is judged by K=11 assessors.3 The same data
were analysed in Chapter 7.2 by means of GPA. In the experiment some mineral waters were
presented twice, some three times, to the assessors, totalling to 49 presentations. Each judge
used his/her own attributes, thus we are dealing with FCP data. The number of attributes per
assessor ranges from 3 to 10. Table 6 shows all attributes. Note that the same attribute used by
different assessors does not indicate similar ideas of the assessors about this attribute.

Table 6

Attributes used in the FCP of the mineral waters and the no. of the judge that used it (see also
Table 9 of Chapter 7.2).

Attribute judge no. Attribute judge no.
bitter 1,2,3,5,6,8,9,11 balanced 4

neutral 1,2,4,6,8,9 persistent 4,6
taste 1 mineral 5

metal 1,3,7,9,10,11 stagnant 5

fluid 1 river 5

salty 2,4,7,8 cool 5

earth 2,4,7,11 sugar 6

hard 2 old 6

acid 3,411 mushroom 7

paper 3,10 milky 7

flat 4,5 energetic 9

dry 4 hazelnut 10
pungent 4 soft 11
rubber 4

Note that the arrangement in the table does not indicate any relation between attributes in the

same row.

3 The data were made available by Dr. Pascal Schlich, INRA, Dijon, France.



251

The perceived intensities of the attributes were scored on a line scale, labelled ‘weak’ and
‘strong’ at respectively the left and right end. The original scores ranged from 0 to 100. To use
the OVERALS program these scores had to be recoded into a small number of categories. This
recoding was such that the chances of the occurrence of a unique marginal frequency was low.
When as a result of this recoding a particular category occurs only a few times, a different
recoding should be chosen. The OVERALS algorithm is sensitive for categories with low
marginal frequencies (see section 3.2). Such categories will receive an extremely high, or low,
quantification in the optimal scaling step of the algorithm. The recoding shown in Table 7,
produced marginal frequencies in acceptable balance, i.e. each category appeared sufficiently
often.

Table 7

Recoding of the original scores of the mineral water FCP data set.

original score recoded category approximate meaning

0 1 not perceived/not applicable
1-25 2 weak*

26-75 3 intermediate

76-100 4 strong*

* The line-scales were anchored at the left and right ends by ‘weak’ and ‘strong’ respectively.

The recoded data were analysed with a two- and a three-dimensional OVERALS analysis.
There are 11 sets, one for each assessor. The data consist of 49 products, since the replicates
were taken into the analysis as separate objects. This enables a check of the similarity of the
replications in the final configuration of the 49 mineral waters.

7.1 Objects and attributes

First the three-dimensional OVERALS solution was computed, the eigenvalues were 0.682,
0.492 and 0.411, respectively. Because the eigenvalues were rather low, we proceeded with a
two-dimensional analysis. The results from this analysis are presented next. The fit of the
solution is 1.192, the maximal fit of a two-dimensional solution is 2. The two eigenvalues are
0.691 and 0.502, which sums to the fit. Though the fit is not particularly high it may be
worthwhile to inspect the results to find out the reason for this relatively low fit. The first step
is to inspect the loss of the individual sets. Figure 11 presents the loss per assessor for the two
dimensions of the OVERALS analysis. It is clear from Figure 11 that assessor 4 fits best in the
solution. There appear no assessors with an extremely high loss, so no assessors need be
deleted from subsequent analyses.

Figure 12 shows the space of object scores containing the 49 mineral waters and Figure 13
gives the component loadings of the attributes in the same space. Like in the results of the
analysis of the luncheon meat data, we did not connect the points with the origin. Clearly there
are some outlying objects in Figure 12. The mineral waters 15, 16, 17 and the two pairs 1, 2
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Figure 11. Loss per assessor for the two dimensions of the OVERALS analysis of the mineral
water data.

and 12, 22 have rather extreme object scores. They are connected by lines because they are
replicates. The component loadings in Figure 13 enable to see the attributes that apply to these
outlying objects. It appears that the mineral waters 15, 16 and 17 are characterised by the
attributes old6, rubber4, and the cluster of attributes paper3, flat4, dry4, metal3, mushroom?7,
bitter9, bitter8, and neutral4. The mineral waters 1 and 2 are mineral waters with extreme
scores on the attributes salty4, acidll and paperl0, mineral water 22 is characterised by
balance4, bitternessl, metal10, bitter5, riverS, metalll, earth4 and mineral water 21 by the
cluster of attributes metal9, bitter11 earth2, neutral2, metal7, earth7, bitter3, pungent4, metal7,
tastel, neutral9, hard2, and neutrall. We do not give an interpretation of this.
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Figure 12. The 49 mineral waters in the space of object scores, the replicated mineral waters

that are outliers, are connected by a line.
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Figure 13. The component loadings of the attributes from all assessors. The number attached
to the name of the attribute refers to the number of the assessor who used the attribute.

To reveal structure in the remaining cluster of objects, the analysis is repeated without the
outlying mineral waters, leaving 42 objects in the analysis. The fit of this analysis is 1.059, the
first two eigenvalues are 0.566 and 0.493. Note that these values are somewhat lower than
previous results. Figure 14 shows the losses per assessor of this analysis. The losses are
somewhat more evenly spread over the assessors than in the previous analysis.
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Figure 14. Loss per assessor for a two-dimensional OVERALS analysis after removal of some
outliers.
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Figure 15 shows the position of the remaining 42 mineral waters in the space of object
scores. Replicate mineral waters are connected by a line in Figure 15. The connected points are
close together in the direction of the first dimension, they are further apart in the direction of
the second dimension. This may reflect the fact that the second dimension contains a certain
amount of noise. Also the low second eigenvalue suggests this in Figure 15. Clearly the mineral
waters 43 and 44 and the pair 25 and 26 are distinct from the other objects. The mineral waters
no. 45, 46 and the trio 47, 48, 49 are close together and distinct from the other mineral waters.
Higher in the figure is the pair of mineral waters 38 and 39. In addition to these and
disregarding the distances between corresponding mineral waters in the second dimension -
mentally replacing each pair or trio of mineral waters by its centroid-, the following two main
clusters of mineral waters can be distinguished. Left in Figure 15 we find the numbers 10, 11;
35,36, 37; 12, 13, 14; 40, 41, 42, 8, 9 and the pair 6, 7. In the right part of Figure 15 there are
number 18, 19, 20; 3, 4, 5; 32, 33, 34 and the trio 27, 28 29.
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Figure 15. Object scores of a two-dimensional OVERALS after removal of some outliers.

Figure 16 presents the positions of the individual attributes in the two-dimensional
OVERALS solution. This plot can be used in conjunction with Figure 15 to find out the
properties of the different clusters of mineral waters. When we try to identify trends of
attributes it appears that most attributes ‘metal’ and ‘bitter’ lie in the right part of Figure 16.
The attributes cool, river, pungent and hard are found here too. The left part of Figure 16
contains salt, hazelnut, soft, milky and stagnant. This may indicate a distinction (in Figure 15)
between two kinds of mineral waters: the first could be coined strong and fierce, the latter soft
and easy.
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Figure 16. Component loadings of a two-dimensional OVERALS analysis after removal of
some outliers.

8. CONCLUSION

In this chapter the GCA method is illustrated in three applications from sensory science. In
analysing sensory-instrumental relations the ability of GCA to analyse more than two data sets,
and different measurement levels together, proved useful. In the analysis of conventional
profiling data, in the example on luncheon meat, of an ordinal level, GCA helped to study some
items in considerable detail, while at the same time providing an interpretable configuration of
all the meat types based on two underlying dimensions. The FCP data set was, after recoding,
analysed using ordinal transformations. Some outliers were removed and the final, two-
dimensional configuration of mineral waters, and of attributes, revealed some interesting ideas
about the judgement of mineral waters.

Generalised Canonical Analysis, implemented in the OVERALS program, is a useful
method to analyse sensory profiling data. Especially the ability of the method to analyse
nominal, ordinal and numerical, and mixed, measurement levels proves useful. The combination
of nonlinear transformations of the variables and the K-sets character of the method, makes it a
powerful tool for the analysis of individual sensory profiling data, which is often of an ordinal,
rather that a numerical, measurement level. For the same reasons GCA has also proved useful
in the analysis of the relations between sensory and instrumental data.
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1. INTRODUCTION

Sensory profiling of food is the process by which assessors give scores to a number of
products for several attributes. The statistical analysis of profiling data requires multivariate
techniques in which the attributes are the different variables. Principal Component Analysis
(PCA; Jolliffe, 1986), the most basic multivariate technique, is widely used by sensory
scientists to describe the data set composed of the product mean scores as the observations
and the attributes as the variables. This is a reduced view of the data as it does not take into
account the variance of the product mean scores due to individual differences. In the univariate
framework, it is fairly accepted that no mean should be computed without its standard
deviation. We argue that the same should be required on the multivariate side. Moreover, many
people are used to performing this PCA on the basis of the correlation matrix, that is to
perform the so-called normalized PCA. With this practice, an attribute having product means
not significantly different, which is stated by means of an analysis of variance (ANOVA;
Scheffe, 1959), has the same weight as a discriminant attribute among the products. To
overcome this problem, one can include in PCA only the attributes being significant for the
product effect. Although this practice protects to some extent against the previous problem, it
suggests that the required method would be the Canonical Discriminant Analysis (CDA;
Mardia et al., 1979) of the product effect. CDA is indeed the natural multivariate extension of
the one-way ANOVA. The input of this CDA is the full data set, where the assessors stand as
replicates. But due to psychological and/or physiological reasons, the assessors may use the
scale in different ways, and should therefore be considered as a block effect. Consequently, we
would recommend centering each attribute to a zero mean by assessor as a pre-treatment of
CDA. Although less important than centering, one could also consider standardization of each
attribute to a unit variance by assessor. Unfortunately, CDA and these pre-treatments seem to
have been overlooked by sensory scientists.

But the above mentioned flaws are even less important than the basic problem of sensory
profiling, which can be summarized in a single statement the attributes are not statistical
variables. A statistical variable is a vector of n measurements of a random variate obtained on »
experimental units characterized by their values for different controlled factors. Our point is to
say that the meaning of the random variate is the same over the experimental units. In
agronomy for instance, the yield or the plant size has the same meamng for every experimental
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unit, whatever the levels of treatment and block factors are. In sensory profiling on the
contrary, it is likely that the measurements of a given attribute from two different assessors
measure two different sensory concepts. In such a case, computing for a given attribute a mean
over the assessors can make no sense. Although good, but expensive, training of the assessors
can substantially reduce this kind of problem, it is almost impossible to completely prevent it.
Free-choice profiling (FCP; Williams & Langron, 1984), in which each assessor scores his own
list of attributes, was a definite contribution to solving this basic problem. The variables being
different among the assessors, neither PCA nor CDA can be applied to FCP, unless a separate
analysis is performed by assessor. Although some individual analyses can be useful to elucidate
particular points during an analysis of data, they are not practical enough to manage to be
recommended as a basic analysis. Therefore, Williams and Langron (1984) proposed
Generalised Procrustes Analysis (GPA; Gower, 1975; Amold & Williams, 1986) to analyse
FCP. The FCP-GPA coupling became popular in the sensory field and people realized that
GPA could also be applied to conventional profiling data. Less well known is the fact that
GPA makes possible a posteriori individual attribute selection leading to what can be called a
"simulated free-choice profiling” (Schlich, 1993). Recent improvements in GPA were proposed
thanks to applications in sensory analysis (Dijksterhuis & Punter, 1990; Dijksterhuis & Gower,
1991/2). Although a chapter in this book (4.2) fully describes GPA, one can say that GPA
defines a consensus among assessors on the product differences by means of an iterative
algorithm. Wakeling et al. (1992) define a test of the significance of the consensus based on
permutations of the product labels by assessors. Although GPA is a significant improvement
over PCA of the mean scores, a number of questions are still open concerning the analysis of
sensory profiles:

How can the dimensionality of individual sample space be estimated?

How can the similarity between two individual sample spaces be measured?

How can the agreement between two individual sample spaces be statistically tested?
How can a consensus sample space be derived by an analytical solution?

How can the significance of this compromise be tested without computing numerous
permutations?

How can several panels profiling the same products be compared?

¢ How can exchangeability of assessors among panels be tested?

o How can assessors be compared on the basis of attribute correlations instead of sample
distances?

The present chapter aims to introduce in the sensory field a French statistical framework
allowing firstly to deal with FCP and secondly to answer these questions. The basis of this
framework is the RV coefficient (Escoufier, 1973; Robert & Escoufier, 1976), which is a
generalised correlation coefficient between two sets of variables recorded from the same
samples. It gives a way to quantify the agreement between two assessors about the sample
differences. The RV coefficient is also useful in sensory science for relating sensory to
instrumental measurements (Schlich et al., 1987) and for analysing gas-chromatography data
(Schlich & Guichard, 1989). The French acronym STATIS stands for "Structuration des
Tableaux A Trois Indices de la Statistique”, which could be translated into "structure of 3-way
data sets in statistics". The technique was originated by L'Hermier des Plantes (1976) and was
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fully described in Lavit (1988) and Lavit et al. (1994). It is a non-iterative 3-way multivariate
analysis, based on the RV coefficient, which defines a compromise among assessors about the
sample differences. Kazi-Aoual (1993) and Kazi-Aoual er al. (1995) defines an exact
permutation test for RV coefficient which does not require numerous permutations to be
actually performed. Another exact permutation test makes it possible to state whether the
assessors from several panels profiling the same products can be considered as exchangeable
among panels (Kazi-Aoual, 1993; 1992).

In the present chapter, these techniques are applied to an interlaboratory sensory analysis of
16 coffees evaluated by 11 different trained panels located in 8 different European countries.
This experiment was organized and conducted by the European Sensory Network (ESN). ESN
is currently completing a book presenting the results on that experiment, which also included
consumer trials in 8 countries with half of the same coffees. Only a part of the profiling data is
used in this chapter. The ESN book will make the whole set of coffec data available to the
reader. More information about ESN can be obtained from the author.

2. METHODS

2.1 Raw data, sample weights and metrics

Let 4 be the total number of assessors and assume that assessor i scored p; attributes
(i =1, ..., k) for n samples. Let X, be the matrix containing the scores of assessor i. The n rows
of X; are the samples, whereas the p; columns of X; are the attributes. Throughout this chapter,
it is assumed that the attributes are centered within each X;, that is per assessor. With the
exception of Dual STATIS, every technique described in this chapter allows the attributes to
be different among assessors, making it possible to handie FCP or any kind of individual
selection of attributes.

Although in most applications every sample has the same weight (1/n), the techniques
described in this chapter work with unequal weights. In this case, these weights are arranged
into a diagonal matrix D of size n.

The question of choosing the attribute weight system, also called metrics, is more
important. Metrics is a way of computing distances between samples. Generally speaking, it is
a positive symmetric matrix Q of size p (the number of attributes) :

Q =Gty 0))
As Q can be different among the assessors, sometimes it will be called ;. The squared

distance between two samples x = (x)and y = (y), (I =1, ..., p), is given by :

Py =33 @700~ 7) @)

1=1 m=1

For instance, in the framework of PCA two different metrics are commonly used . For the
first one, Q is the identity matrix containing 1 as diagonal elements and 0 elsewhere, which
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corresponds to the PCA of the covariance matrix and to the usual Euclidean distance :
2 a 2
()= (% ~») 3
=1

For the second one,  is a diagonal matrix composed of the inverse of the attribute variances
(2, I= 1,..,p), which corresponds to the PCA of the correlation matrix, also called
standardized PCA, and to the weighted distance :

Py =3 04 -p) 1o} @

As in the introduction section, where non standardized PCA was recommended for
analysing the mean score products, we again recommend the non standardized PCA for
analysing individual data sets. Many reasons can justify this choice, a few others can be found
against it. It is out of the scope of this chapter to open such a discussion, because the
techniques proposed in this chapter can accommodate any individual metrics. Furthermore,
other metrics can be used with profiling data. For instance, we advocated (Schlich, 1993) the
use of the individual Mahalanobis distance :

0 = (XDX)" ®)

when dealing with free-choice profiling, or even with conventional profiling as soon as
different attribute correlation structures are expected among the subjects.
Finally, as Q is positive, it is possible to find a square matrix 7 of size (n,n) such as :

Q=TT (6
Analysing X with metrics Q is thus equivalent to analyse :
Y=TX )

with the classical identity metrics. Therefore, without loss of generality, it is assumed right now
that the metrics Q is the identity and that the sample weights are all equal to 1/a.

To summarize this section, the reader should remember that :

¢ Individual attributes are centered

e RV coefficient and STATIS work with any set of product weights (the same for each
assessor) and with any individual metrics (which can be different by assessor)

o The selection of attributes and the choice of the metrics are two essential steps in the
analysis of sensory profiles which are not addressed in this chapter.
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2.2 Association matrix of individual sample space

For each assessor, the samples can be seen as a centered cloud of » points in a
multidimensional space spanned by the attributes. The dimensionality of this individual sample
space is equal at most to P, :

P, =min(n-1,p,) ®)

The distance between two samples in this space measures the magnitude of the sensory
differences between them. Because of correlations between attributes, it is likely that the main
sample differences can be summarized by fewer dimensions than P.. These new variables,

called the principal components, are given by the successive eigenvectors of the association
matrix of size (n,n) :

W=XX, ©

which contains the usual scalar products among the samples. The distance d,, between samples
u and v is linked to their scalar product W,, through the formula:

dllzv = wllll + wW - 2wuv (10)
Inversely, because the columns of X; are centered the formula (10) can be reversed into :

. _da-di-d+d)

- 11
Wiy > )
where :
d2=01/nY d, ad d =(1/n)) d, 12)
d’=(1/n")) d;, 13)

Finally, it should be remembered that the association matrix W, contains the full information
about the multidimensional differences among samples found by subject i. The association
matrices are the basis of the subject comparisons in STATIS, which can therefore be done even
if the assessors did not score the same attributes.

2.3 Estimating the dimensionality of an individual sample space

What PCA does is to decompose the total multidimensional variance of the sample space into
successive non-correlated components which account for the maximum of this information.
Precisely, the amount of variance given by the /-th principal component is the eigenvalue A, of
(Umw, (I=1,..,P). A classical, but still difficult, question is to decide how many
components should be analysed. We think that it is best to use resampling techniques such as
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cross-validation or bootstrap (Efron & Tibshirani, 1993). However these techniques are not
widely available within the statistical softwares yet and can be time-consuming. The f;
coefficient can actually be understood as an estimation of the dimensionality of the individual
sample space from subject i:

_ (trace(W, »?

trace( W) 19

B

where the trace of a matrix is the sum of its diagonal elements. It is possible to write f; as a
function of the eigenvalues A :

QY AN,
B, =1+__l<i7v21 (15)
The following properties can be derived from eiluation (15):
1<bh<P (16)
B, =1 if and only if a single eigenvalue is not null an
B, = P, if and only if the P, eigenvalues are all equal (18)

Property (17) says that the lowest dimensionality (a single axis) is obtained when all the
attributes are fully correlated, whereas property (18) says that the highest dimensionality is
obtained when no correlation at all exists among the attributes. These properties make it clear
as to why B, can be seen as a dimensionality coefficient. Although we do not trust this
coefficient as being the exact truth about the number of dimensions involved in sensory
evaluation of a set of products, we strongly rely on it for comparing dimensionality of several
individual sample spaces. This concept of dimensionality is really important for the panel leader
for choosing the number of attributes to be included in the profile. The B coefficient suggests
to the panel leader a minimal number of ideal attributes which should be sufficient to span the
sample differences. However it is almost impossible to define such ideal attributes, therefore it
is recommended to include a number of attributes being at least about the double of B.

To summarize this section, it should be remembered that the B coefficient makes it possible
to compare dimensionalities of individual sample spaces, which can be understood as individual
complexities of assessment.

2.4, Comparing two individual sample spaces by means of the RV coefficient
The quantity :

<W,W>=trace(WW) = > wiwi, (19
Im
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is the natural scalar product between two matrices, where w, is the (/,m)-th element of matrix
W. It is a generalised covariance coefficient between ¥, and Wj matrices. The greater <W, W>
is, 'the more similar assessors i and j j are in terms of their raw product distances. The quantlty

<W,W> = trace(W?) = Zw,imz =3\ (20)
Im {

is consequently the norm of W, or a generalised variance for subject i. The greater this
quantity, the more different the products are for this subject. In this context, the RV coefficient
is defined as :

RV(W. W) = - 21
('f),/W., s @

and appears as a generalised correlation coefficient between W, and W; matrices; it is worth
pointing out that the RV coefficient is the classical Pearson correlation coefficient between the
association matrices arranged into vectors of size n’. One can prove that RV(W, Wj) is between
0 and 1. The closer the RV is to 1, the more similar assessors i and j are in terms of their
standardized product distances.

Therefore, the comparison between two assessors can be based either on generalised
covariance given by formula (19) or on generalised correlation given by formula (21). The
author recommends the latter, because the former depends on the use of the scale. For
instance, an assessor who tends to use a small portion of the scale for every attribute will get
smaller covariance with the other assessors but not automatically a smaller RV. But the reader
must understand that this matrix standardization is different from the classical attribute
standardization, which is done by a PCA of cormelation matrix. Contrarily to this normalized
PCA, RV takes into account the differences between attribute variances for a given assessor.

To summarize this section, one should remember that the RV coefficient is a measure of the
similarity between two individual sample spaces. RV is the classical correlation coefficient
between the two square matrices of sample scalar products of size (n,n) having been previously
arranged within two vectors of size n’.

2.5. Testing significance of a RV coefficient by an exact permutation test of the products

Testing the significance of a given RV value would require complicated parametric
assumptions. Therefore, a non parametric alternative (Schlich, 1993) consists in permuting the
product labels within X; without permuting correspondingly the product labels within X; and to
recompute the RV coefficient. Providing that the two assessors agree to some extent about the
sample differences, one can expect this "permutated RV" to be lower than the actual RV. This
process is repeated a large number of times (say 100) in order to derive the 95 % quantile from
the distribution of RV under permutation. If the actual RV is greater than this empirical
quantile, it can be concluded that the agreement between the two assessors is better than what
can be obtained by chance. The computations required by this permutation test can be too
time-consuming to be easily implemented on a micro-computer. Kazi-Aoual (1993) proposed
an efficient way to avoid computing a number of permutations. This author established
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formulas (22) and (23) giving respectively the mean and the variance of all the n/ possible
permutated RV coefficients:

E [RV(W,W)] VPP, (22)
P r n-1
V [RV(W.7)] = (n.1-B,-)(n-1-[31-)(2n(r3¢-1)+(n-3)c,.cj) 23)
P o (n+n(n-1)"(n-2)
where :
= (n-)(n(n+1)8,-(n-1)(B,+2)) 24)
d (n-3)(n-1-B,)
with :
Zwlilz
= _ 1 (25)

" trace(W;?)

Therefore, a normalized deviation between the actual RV and its distribution under
permutation can be computed as follows:

RV(W,,W,) - E,[RV(W,, W)

Y[RV, 7)) 0

NRV[W, W) =

this normalized RV coefficient is a measure of the agreement between assessors i and j.
Assuming a normal distribution of the permutated RV coefficients, formula (26) defines a test
statistic for the null hypothesis of no better agreement between assessor i and j than what can
be obtained after permutation of the label products. One can expect this value to be roughly
greater than 2 if the agreement between the assessors i and j is better than what can be
obtained by chance. Although the normal assumption has not been proved till now, it has been
observed in practice when performing 100 permutations (Schlich, 1993). Anyway, the exact
probability level of this test is not necessary, because the experimenter is most interested in
detecting when two assessors do not agree more than what can be obtained by chance.

To summarize this section, one should keep in mind that because the magnitude of a RV
coefficient depends on both the number of observations and the number of variables in the two
data sets, there is a need for a statistical test of RV significance. An exact non parametric
permutation test is available, it makes it possible to declare whether two assessors agree more
than what can be just obtained by chance.
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2.6 Defining and interpreting a compromise sample space among the assessors by
means of the STATIS method

A natural way to define a compromise among subjects on the sample differences would be to
compute:

W= (k) LW, 27

and to analyse this matrix by means of a principal co-ordinate analysis (PCO; Gower, 1966) in
order to map the samples in accordance with the distances induced by W. In most cases, the
author would recommend this analysis instead of PCA of the mean scores, because it does not
require "attribute alignment" among subjects and consequently is able to cope with FCP.
Unfortunately, this simple method for analysing sensory profiles seems to be unknown to
sensory scientists.

The STATIS compromise W differs from this natural compromise W, because the latter is a
classical mean, whereas the STATIS compromise is a weighted mean of the W, :

W= aW, (28)

where (a),_, , is the first eigenvector of the matrix of size (k,k) containing the RV coefficients
between assessors. The components of this vector are positive and normalized to get a sum
equal to one. This vector represents the "principal agreement among assessors”. Thus, the
greater the a,, the more assessor 7 agrees with the panel on the sample differences. The strategy
of STATIS is therefore to put weights on subjects proportionally to their agreement with the
panel. Therefore, the weight of an outlier should be close to 0.

Replacing #, by W in formula (14) makes it possible to estimate a dimensionality of the
compromise, which can be an indication about the number of dimensions to be interpreted.

The product coordinates on the axes of the compromise are obtained by a PCO of W. The ¢
compromise components are the g first eigenvectors of W being standardized to have a
variance equal to the corresponding eigenvalues. These components are arranged as the
columns of a matrix C of size (n,q). The interpretation in terms of sensory attributes can be
conducted thanks to the covariances or correlations between the individual attributes and these
compromise components. It seems to us that the use of covariances is more logical when no
attribute standardization was initially applied to the data as in a PCA of the covariance matrix.
Being computed on an individual basis these covariance or correlation coefficients are
numerous and it is sometimes necessary to summarize them by averaging scores over assessors
having the same attributes before computing these coefficients. As no biplot property holds in
this context, we are used to producing a covariance or a correlation plot not superimposed on
the compromise plot. Conversely, it is possible to superimpose individual sample spaces on the
compromise plot by a classical technique of projection of supplementary elements in
multivariate data analysis. The sample coordinates from assessor i on the ¢ compromise
components are given by the columns of the following matrix C: of size (n,g) :

Ci=W.CE (29)
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where E is a diagonal matrix of size (g,q) containing on the diagonal the inverses of the square
roots of the eigenvalues of the compromise.

The compromise location of a given product is the barycenter, for the STATIS weight
system, of the k individual locations of this product. The smaller the dispersion of the
individual locations of a product around its compromise, the better the agreement among
assessors on this product is. In order to better visualize this dispersion, one can draw the
convex hulls gathering individual locations of the same products. When two convex hulls do
not overlap too much, a logical rule of thumb is to consider the two associated products as
different. Alternatively, one can draw for a given product a 95 % confidence convex hull,
which is the smallest convex set gathering at least 95 % of the individual locations of this
product. Drawing and looking at a convex hull can also be simplified by drawing and looking
at a confidence ellipsoide, which requires a bi-normal assumption to be fulfilled. Although the
number of assessors usually included in a trained sensory panel does not make it possible to
check this assumption, we do think that drawing confidence ellipsoides or convex hulls on a
compromise and individual plot is a powerful descriptive tool. Here, as most often in data
analysis, it is not a strict and true p-value which is required but some evidence that a pattern
makes or does not make sense.

For comparing assessors two ways exist to derive an assessor map. The first one is obtained
with the two first eigenvectors of the RV matrix of size (k,k). Each of these eigenvectors is
normalized so that its sum of component squares is equal to the corresponding eigenvalue. The
first axis of this map represents the direction of an assessor being equal to the compromise and
the corresponding eigenvalue can be understood as the proportion of inter-individual variance
explained by this compromise. The assessor coordinates on this first dimension are
proportional to the STATIS weights a; and are therefore positive. An assessor is represented
on this plot as an arrow joining the assessor point to the origin. The angle between this arrow
and the first axis is proportional to the disagreement of this assessor with the compromise. The
length of this arrow is proportional to the quality of the representation of the assessor on this
plot. In some applications, it can be necessary to produce the subsequent plots (1,3), (1,4) ...
and, in such a case, the visual interpretation becomes difficult.

The second way to derive an assessor map is based on the first two eigenvectors of the RV
matrix being previously and simultaneously centered in lines and in columns (that is subtract
from each RV coefficient the means of the line and of the column from those it belongs to and
add the grand mean of the RV matrix). Therefore, this assessor map is centered and is useful
for showing whether different groups of assessors could exist on the basis of the sample
differences. In some applications, more than two axes can be necessary for correctly describing
the assessor structure. Obviously the RV matrix or the double centered RV matrix can also be
taken as the input of any clustering algorithm.

To summarize this important section, it is worth recalling that :

e STATIS derives a compromise association matrix # which is a weighted mean of the
individual association matrices W;

o These weights are given by the first eigenvector of the RV matrix among assessors,
which means that the weight of an assessor is proportional to its agreement with the
panel

¢ The compromise sample plot is obtained thanks to a PCO of W/
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e Sensory interpretation is conducted through covariances or correlations between
compromise components and individual attributes

o Assessor maps are derived from PCO of the RV matrix and from PCO of the doubly-
centred RV matrix.

2.7 Testing panel homogeneity and significance of compromise

For testing panel homogeneity, Schlich (1993) compared the observed mean of the A(k-1)/2
RV coefficients to the 95 % quantile of the distribution of the mean RV coefficient when a
permutation of the product labels is randomly and independently chosen for each assessor. In
order to estimate this quantile, 100 sets of permutations were sampled independently. A faster
solution for testing significance of STATIS compromise consists of computing the mean of the
k(k-1)/2 normalized RV coefficients (obtained by formulas (22) to (26)) and checking whether
it is roughly greater than 2. This faster solution relies on normality of the RV distribution under
permutation. As soon as the number of products is larger or equal to 6, the number of possible
permutations (n !) becomes very large and therefore the normality assumption, observed in
practice, should hold.

This test of panel homogeneity is an average of homogeneity computed over pairs of
assessors. This approach can be too demanding, because at the end the data is summarized by a
compromise. Therefore, it seems sensible to test a weaker hypothesis, that is the individual
agreement with the panel compromise. A normalized RV coefficient is computed between each
assessor (/;) and the panel compromise (#) and this paper proposes to average these £ values
to get a test for compromise significance.

As a summary, one should remember that the exact permutation test defined in section 2.5
makes it possible to test whether the assessors agree among themselves and whether they agree
with the STATIS compromise defined in section 2.6. The strength of these tests is that they are
exact and that they do not require any permutation to be actually performed.

2.8 Comparing two panel compromises about the same products

The similarity between two panel compromises can be evaluated by their normalized RV
coefficient. If this coefficient is about 1 or less, then the panels disagree dramatically; if it is
between 1 and 2, then the panels agree rather poorly; if it is greater than 2, then the panels
agree and the interpretation should lead to the same conclusions about the sample differences.
But the reader must be aware that the interpretation of these differences, in terms of the
attributes, may not be equivalent from panel to panel, firstly because the attributes may not be
the same among panels and among assessors within panels (FCP or individual selection of
attributes), and, secondly because the scalar products in ¥ are sums over attribute
contributions making it possible to obtain equal sums composed of different attribute
contributions.

This test can be based either on the whole compromise spaces or on the compromise
subspaces spanned by the interpreted dimensions. The former is done directly by using the two
compromise matrices in formulas (22) to (26), whereas the latter requires first to recompute
new W matrices on the basis of the selected components. The advantage of the latter is to
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provide insurance that no noise can destroy a significant agreement in the interpreted space,
which is at the end the only information retained.

The idea to be retained from this section is that the exact permutation test makes it possible
to test agreement between compromises drawn from two different panels having profiled the
same samples. Finally, the technique could also be applied to check whether two competitive
data analysis techniques lead to the same sample space or to the same sample plot.

2.9 Testing exchangeablity of assessors among panels

When several panels have profiled the same samples and when the test described in the
previous section is significant, one could wish to go further by testing whether the permutation
of assessors among panels would provide us with the same amount of panel differences, as a
null hypothesis. If this test is significant, it means that discrimination holds and therefore, it
informs the panel leaders that they cannot exchange their assessors.

Assume that g panels were available and that the /-th panel includes 4; assessors ( é K, =k).

Having gathered the k assessors into a single data set, the RV matrix of size (k.k) among these
assessors is computed. A PCO of the doubly centred RV matrix is performed in order to keep
part or all of the assessor components. From this system of assessor coordinates it is now
possible to apply a CDA of the panel factor. The panel discrimination can be measured thanks
to a classical statistic in CDA :

H= trace(B) (30)
trace(7)

in which B is the between-panel covariance matrix and T is the total covariance matrix. The
closer to 1 H, the more different the panels are. The test proposed in Kazi-Aoual (1992)
consists of permuting the assessor labels in the assessor coordinate table obtained from the
PCO, without permuting the corresponding assessor coordinates and then computing a CDA
of the new permutated partition of the k assessors into g panel of k assessors. If the null
hypothesis of assessor exchangeability holds, one can expect the real H statistic to be not
greater than the same statistic under permutation. Instead of performing numerous
permutations in order to estimate the distribution of H under permutation, the following
formulas from Kazi-Aoual (1992; 1993) give respectively the mathematical expectation and the
variance of H under permutation :

—

By[H]={— 31)

2((k-1)/B —1Ng -k —g)1+(k-3)-c f/2k(k~1))
(k+ (k- 1)’ (k-2)

VulH] = (32)

where B and ¢ are defined as f; and ¢; in equations (14) and (24) replacing W; by the
association matrix among the assessors computed from the assessor scores obtained by CDA.
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The constant f'is given by :

(k= D(k(k + DD (k) ~ (k— 1) g~ D(g+1)

f= 33)
(k-3)Xg-1Xk-g)
making it possible to derive a normalized H statistic :
_ H-E,[H] G4

N AT

when this Hy is greater than 2, one can decide that the assessors are not exchangeable across
panels.

To conclude this section, it is worth pointing out that, contrary to the previous permutation
tests, this one is based on permutations of the assessors instead of the products. It appears as a
competitor of the multivariate analysis of variance tests such as the Hotteling-Lawley trace or
the Wilks ratio (Mardia et al., 1979), but contrary to these parametric tests it does not require
the assumptions of multinormality and homogeneity of within-panel covariance matrices.

2.10 Defining a compromise about attribute correlations by means of the Dual STATIS
method

Dual STATIS, proposed in Lavit (1988), is the STATIS method applied to the covariance
matrix X'X/n (or to the correlation matrix) instead of the association matrix XX". The aim of
Dual STATIS is to compare the assessors on the basis of their individual structure of attribute
covariances or correlations, which can be understood as their own way to understand attributes
and to link them together. The STATIS compromise becomes a weighted mean of the
individual covariance matrices. Such an analysis can be very interesting for the panel leader
when training his panel to conventional profiling. Furthermore, this analysis can be run even
when the assessors scored different samples but for the same attributes, making it possible to
investigate simultaneously correlation structures on the basis of different kinds of products.

Unfortunately, the analytical permutation tests described in Kazi-Aoual (1993), do not seem
to work with Dual STATIS, because of the non centering of the columns of X". Therefore, as
in GPA, one should run numerous permutations to derive a test. Note that in this context, the
permutations are applied on the attributes instead of the products.

To conclude this section, it can be underlined that with a conventional profiling data set
both STATIS and Dual STATIS can be performed, making it possible to compare the
assessors on the basis of both the sample differences (client need) and the attribute
relationships (panel leader need). If on both aspects the agreement among the assessors is good
enough, the panel leader can trust that the sample differences perceived by the assessors
(significant STATIS) were also described in the same way by these assessors in terms of the
sensory attributes (significant Dual STATIS).
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3. COMPARISON WITH OTHER METHODS

3.1 Principal Component Analysis (PCA), Simple and Multiple Correspondence Analysis
(CA and MCA) and Canonical Discriminant Analysis (CDA)

The limitations of the classical PCA of the mean score products have already been mentioned
in the introduction section of this chapter. There are two other ways of performing PCA on a
profiting data set, called TUCKER1 in chapter 10 of this book. The first TUCKER] method
consists of a PCA of a data set composed of n times & observations and p attributes; this data
set gathers the individual data sets vertically. It cannot be applied to free-choice profiling and
the author thinks that it can be quite non robust to outlier observations. The second

k
TUCKERI1 method consists of a PCA of a data set composed of n observations and Z n

1=1
attributes; this data set gathers the individual data sets horizontally. This technique is more
interesting than the previous one, because it is a solution for analysing free-choice profiling
when only a PCA program is available. Nevertheless, the weight of an assessor in this analysis
can be strongly inflated or deflated according to his number of attributes. One can avoid this
problem by dividing the column centered scores of a given assessor by the square root of the
sum of squares of these scores and by doing a PCA of the covariance matrix.

The TUCKER2 and TUCKER3 methods, also described in this book (chapter 10), are more
interesting but cannot be applied to free-choice profiling either.

The use of CA and MCA with profiling data, proposed by McEwan and Schlich (1991/2),
considers sensory measurements at ordinal level instead of interval level, which is definitely not
possible with STATIS or with any technique based on covariance or correlation computations.
Whether this point improves significantly the interpretation of the sensory data is still not
obvious. Another advantage of CA and MCA, linked to the previous one, is their ability to
discover non linear relationship between attributes. Most of the linear techniques could
accommodate non linear transformations of the data such as spline fonctions. But till now there
has been a lack of published examples of these techniques in the sensory field. Finally and once
again, the analysis of free-choice profiling with CA or MCA is not straightforward.

The introduction section of this chapter has suggested why CDA together with some pre-
treatment of the data could be useful for analysing sensory profiles. Nevertheless and like the
other methods evoked in this section, with the exception of the second TUCKERI method,
CDA cannot deal with free-choice profiling or with the problem of non attribute alignement in
conventional profiling.

3.2 Generalised Procrustes Analysis (GPA)

The introduction section of this chapter has recalled that GPA is the historical leader technique
for the analysis of sensory profiles because it was presented as the dedicated technique for
free-choice profiling. The present book includes a chapter (7), which fully describes this
technique. In the past, the author of the present chapter advocated the use of GPA through his
SAS/IML® software for GPA (Schlich, 1989). But now, in the light of the validation concern
of sensory profiles, the author prefers the STATIS framework for several reasons :

e It is a non iterative technique
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Its weighting system of assessors deals smoothly with outliers

o The B coefficient gives simple dimensionality estimation

o The analytical permutation tests of RV coefficient provide a straightforward panel
homogeneity estimation, a compromise validation and a panel comparison

Dual STATIS is a unique tool for investigating individual correlation structures

3.3 INDSCAL

INDSCAL (Carroll & Chang, 1970), described in this book in chapter 6, is the MDS
(Schiffmann et al., 1981) technique dedicated to three-way data analysis. It analyses a set of
individual product dissimilarity matrices, in that respect it is a little more general than STATIS,
which analyses a set of scalar product matrices. INDSCAL iteratively defines an a priori fixed
number of optimal dimensions mapping the products. The strength of INDSCAL, not available
in STATIS, is that each assessor can weight differently each of these dimensions. These
individual vectors of weights are defined in order to minimize the STRESS which is a least
square criterion between the observed individual dissimilarities and the compromise product
distances in the fitted space.

Being a more general model than STATIS, INDSCAL can cope with free-choice profiling
as soon as a dissimilarity function is chosen to be derived from the attributes scores.
Unfortunately, this technique does not seem to be widely used in our field. Furthermore, to the
knowledge of the author no analytical validation technique exists in the INDSCAL framework,
certainly because of its iterative algorithm.

4. APPLICATIONS

4.1 The ESN coffee experiment

The European Sensory Network (ESN) was launched in 1989 as a basis for close collaboration
between major food research centers in Europe. Nowadays, ESN gathers about 20 academic
sensory scientists coming from about 10 different countries in Europe. The aim of ESN is to
exchange ideas and to transfer results from basic research to the food industry. In order to
check consistency of sensory profiling, ESN organized an interlaboratory study of 16 coffees
evaluated by 11 different panels managed by ESN members in their own institutes.

The samples, the beverage preparation and service and the experimental design were
absolutely identical across panels. For practical reasons, the same samples had to be assessed
during a session by every assessor and no more than 4 products could be presented during a
given session. Therefore, 4 sessions were conducted to complete a replicate. Three replicates
were done. The allocation of the samples to the sessions was identical across panels and
determined thanks to previous knowledge about the expected coffee differences. The strategy
was to span the coffee space as much as possible within each of the 4 sessions of the first
replicate. Second and third replicates were then defined according to the same rule and in order
to respect a pair balance condition, which was to ask that any pair of samples must not be
present in more than one session. Concering the selection and the training of the assessors, as
for the vocabulary development, no instruction was given to the panel leaders. Depending on
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the panels, the number of assessors was between 8 and 12, whereas the number of attributes
was between 14 and 56. As said in the introduction, a book will be published soon by ESN
presenting the complete analysis of the coffee data and making it available to the reader. For
the present chapter, only a small part of the profiling data is used to illustrate the application of
the above proposed techniques.

The 16 coffee samples were provided by the International Coffee Organization (ICO) in
London, who was an ESN member. The sensory panel from ICO was composed of 12 subjects
highly trained to profile coffee for many years. ICO panel can be considered as an expert panel.
On the contrary, one of the French panel, called F2, was poorly trained to profile coffee.
Because of this opposition, we decided to present a STATIS analysis of the ICO data (section
4.2) and another one of the F2 data (section 4.3). For the sake of simplicity, we also decided to
analyse only a subset of attributes (12 for ICO and 9 for F2), chosen from attributes being
scored by most of the panels. Presenting the analysis of the "best” and of the "worst" panels,
we aim to convince the reader that our statistical framework is actually able to detect such a
diagnostic.

In order to illustrate the techniques of panel comparisons together with the Dual STATIS
method, we defined a panel called S49 including 49 assessors from 5 differents panels, called
IF for France (different panel than F2), IC for ICO (UK), No for Norway, Po for Poland and
Sw for Sweden. These panels share the property of including 4 basic attributes for describing
coffee : bitterness, acidity, astringency and body/mouthfeel. Therefore, we applied STATIS
(section 4.4) and Dual STATIS (section 4.5) on the S49 panel data restricted to the above 4
attributes.

Each of the three data sets analysed were first averaged over the 3 replicates by product
times assessor, making the number of observations being equal to the number of products (16)
times the number of assessors (12, 9 or 49).

4.2 STATIS of the ICO panel

Table 1
ICO panel. RV coefficients between subjects

A B C D E F G H I J K L
1.00

0.81 1.00

0.76 083 1.00

082 0.87 077 1.00

091 083 084 081 1.00

08 091 084 087 086 1.00

08 076 072 077 0.79 0.81 1.00

091 0.77 077 084 0.87 087 087 1.00

0.88 082 088 081 091 087 080 088 1.00

078 069 070 0.76 073 0.78 0.82 088 078 1.00

076 081 086 075 084 083 070 077 084 0.70 1.00
0.86 076 070 0.75 074 080 0.87 087 080 0.78 073 1.00
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Table 2
ICO panel. Normalized RV coefficients between subjects

275

A B C D E F G H | J

8.56

7.84 R.76

8.60 9.38 793

9.69 873 885 8.60

9.10 9.75 873 9.24 09.10

923 804 734 793 841 848

9.77 8.09 8.02 887 935 927 9.29

940 854 929 855 9.71 9.18 855 9.49

8.18 7.15 7.15 788 7.63 8.11 866 941 824
7.90 855 9.05 7.60 893 865 7.06 799 894 7.09
926 8.08 730 7.86 7.87 850 09.18 928 8.63 8.20

7.63

zler~—~zoTmoaw

€an 887 851 821 840 8.81 892 838 898 896 797

8.13 8.34

As we recommend most often, no attribute standardization was performed, but the
assessors were compared on the basis of their RV coefficients (Table 1). These RV coefficients
range from 0.69 to 0.91 denoting a very good agreement between panelists on the sample
differences. The permutation test statistics of these coefficients, which are the normalized RV
coefficients given in Table 2, range from 7.15 to 9.77. According to the normal distribution,
we can therefore conclude that each pair of assessors strongly agrees about the sample
structure. Such a high homogeneity in a trained sensory panel is rather unusual in practice.

Table 3

ICO panel. PCO of the non centered RV matrix
Axis Eigenvalue Variance (%) Cum. Var. (%)
DIM 1 99181 82.65 82.65
DIM 2 0.6041 5.03 87.69
DIM 3 0.3237 2.70 90.38
DIM 4 0.2682 223 92.62
DIM 5 0.2418 2.02 94.63
DIM 6 0.1560 1.30 95.93
DIM 7 0.1294 1.08 97.01
DIM 8§ 0.1163 0.97 97.98
DIM 9 0.0879 0.73 98.71
DIM10 0.0685 0.57 99.28
DIM11 0.0517 0.43 99.72

DIM12 0.0337 0.28 100.00
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The first eigenvector of the RV matrix accounts for 82.65 % of the panel variation (Table 3).
This can be understood as follows : the compromise association matrix W defined by STATIS
will account for 82.65 % of the variation between the 12 individual association matrices W..
Figure 1 is the first assessor plot drawn from this PCO. One can see that the assessors who
might agree the least with the compromise (first axis) are assessors J, G and L at the top of the
plot and assessors K and C at the bottom of the plot. One can check this point by reading the
last line of Table 2, in which these assessors actually get the smallest, but still excellent,
average normalized RV coefficients.

Table 4

ICO panel. PCO of the centered RV matrix
Axis Eigenvalue Variance (%) Cum. Var. (%)
DIM 1 0.6042 28.89 28.89
DIM 2 0.3237 15.48 4438
DIM 3 0.2715 12.98 57.36
DIM 4 0.2445 11.69 69.05
DIM 5 0.1560 7.46 76.51
DIM 6 0.1296 6.20 82.71
DIM 7 0.1172 5.61 88.31
DIM 8 0.0894 428 92.59
DIM 9 0.0688 3.29 95.88
DIM10 0.0517 247 98.35
DIMI11 0.0345 1.65 100.00

Thanks to the PCO of the centered RV matrix, one can draw a centered assessor map
(Figure 2), in which the compromise would be located at the origin. On this map, one can
observe three groups of assessors : D, B and F at the top of the plot, C, K, E and I at the
bottom of the plot and the remaining assessors on the left of the plot. This grouping of
assessors might correspond to very slight differences in sample perception, as permutation tests
demonstrated strong homogeneity in each pair of assessors. Moreover, as this map accounts
for only 44.38 % of the total variation (Table 4), this visual grouping might also be artificial.
Comparing Tables 3 and 4, one can note that the total number of dimensions in the first
analysis was equal to the number of assessors, that is 12, whereas in the second analysis
centering the RV matrix removed one dimension.

Because of the high homogeneity of the ICO panel, the assessor maps given by Figures 1
and 2 were not really necessary. The point is that without looking at the magnitude of the RV
coefficients and without testing them thanks to the normalized RV coefficients, it would have
been difficult to assess on the basis of any assessor map whether homogeneity held or not.

Table 5 is the most interesting table printed by our STATIS program. The lines of this table
are the assessors. The column called 'p' gives the number of attributes. In this case, standard
deviation of one or two attributes were nil for subjects A, D, G and L. The 'Scaling' column
gives the coefficient by which each individual data set should be multiplied to achieve a
common and equal global dispersion over both samples and attributes. This column
demonstrates that subjects B and I had a clear tendency to concentrate their scores on a small
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part of the scale (scaling coefficients equal to 2.131 and 2.190), whereas subjects D and G
clearly behaved in the opposite way (scaling coefficients equal to 0.325 and 0.293). The next
'NRV' column is the 'Mean' line of Table 2, that is the mean of the normalized RV coefficients
between the current subject and the others. Looking at this column, one can immediately
detect panelists who would disagree with the rest of the panel. The 'Weight' column in Table 5
contains the STATIS weights of the assessors being normalized in such a way that their sum is
equal to the number of panelists. Therefore, an individual weight greater than one corresponds
to a subject who is in better agreement with the panel than the others. Because of the high level
of homogeneity, the weight range is very narrow around one, denoting that there is no reason
to trust some panelists more than others. The next BETA' column gives the dimensionality
coefficient defined in section 2.3 of this chapter. This coefficient ranges from 1.467 to 2.786
with a mean value of 1.979. On this basis, one can postulate that two dimensions would be
enough to span the coffee space as it is perceived by this panel. Therefore, only the two first
dimensions of the compromise sample space will be interpreted below. The last column of
Tabie 5, called NRVC, gives the normalized RV coefficient between each assessor and the
STATIS compromise. We suggested in section 2.7 that the mean of this column can be
accepted as a normal test of the null hypothesis of chance against the alternative hypothesis of
compromise significance. In that respect, the ICO STATIS compromise is found highly
significant : 9.752. This last column provides a check of individual agreement with
compromise. In the ICO panel, NRVC is always much greater than 2, denoting that every
assessor agrees with the compromise.

Table 5

ICO panel. Summary of individual STATIS statistics
Subject p Scaling NRV Weight BETA NRVC
A 10 0.674 8.865 1.030 1.734 10.100
B 12 2.131 8.512 0.995 1.539 9.698
C 12 1.229 8.206 0.975 2.321 9.393
D 11 0.325 8.404 0.992 2.786 9.618
E 12 1.434 8.808 1.024 1.627 10.020
F 12 0.799 8.918 1.037 2.407 10.140
G 11 0.293 8.378 0.985 2424 9.607
H 12 0.528 8.984 1.038 1.732 10.230
1 12 2.190 8.956 1.037 1.600 10.150
J 12 0.996 7.973 0.947 1.708 9.171
K 12 0.907 8.127 0.967 2.399 9.325
L 10 0.493 8.344 0.973 1.467 9.575
Mean 11.5 1.000 8.540 1.000 1.979 9.752

The product map in Figure 3 is obtained from a PCO of the compromise association matrix,
whose eigenvalue decomposition is given in Table 6. This plot is dominated by the first
dimension which accounts for 63.99 % of the information. This first axis splits samples 4, 6
and 13 from the others and the second axis seems to distinguish sample 14 at the top of the
plot from samples 11 and 12 at the bottom of the plot. The interpretation of this sample
structure is conducted by means of an average covariance plot (Figure 4) as explained in
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section 2.6. It is clear from this plot that the first axis is a gradient of coffee strength
positively correlated to the bitter taste and to the tobacco, smoky, burnt and rubber flavours
and negatively correlated with the acid taste and the fruity flavour. Therefore, samples 4, 6 and
13 were judged as the "strongest" coffees, whereas sample 11 and 12 were perceived as more
acid and fruity and finally coffec 14 would be the weakest sample for both bitterness and
acidity. The ESN book will explain why these findings make sense considering the origin of the
samples.

Table 6

1CO panel. PCO of the sample compromise among subjects
Axis Eigenvalue Variance (%) Cum. Var. (%)
DIM 1 0.9833 63.99 63.99
DIM 2 0.1197 7.79 71.78
DIM 3 0.0690 4.49 76.27
DIM 4 0.0620 4,04 80.31
DIM 5 0.0509 332 83.62
DIM 6 0.0473 3.08 86.70
DIM 7 0.0390 254 89.24
DIM 8 0.0338 2.20 91.43
DIM 9 0.0287 1.87 93.30
DIM10 0.0233 1.51 94.82
DIM11 0.0216 1.41 96.23
DIM12 0.0189 1.23 97.45
DIM13 0.0170 1.10 98.56
DIM14 0.0129 0.84 99.40
DIM15 0.0093 0.60 100.00

As suggested in section 2.6, Figure 5 locates on the previous compromise sample map (C
followed by the sample numbers) the individual assessments of each coffee (sample numbers)
and for one half of them (from left to right samples 12, 1, 14, 8, 16, 5, 13 and 4) draws the
corresponding convex hulls. Drawing all the 16 convex hulls would have made the plot
unreadable. This picture suggests that the following seven groups of coffees : (11, 12), (7, 2,
10, 3, 1), (14), (8, 9), (15, 16), (5), (13, 6, 4) may be different between groups and similar
within groups.

4.3 STATIS of the F2 panel

The RV coefficients (Table 7) range from 0.13 to 0.63, showing that the best RV coefficient in
F2 panel is lower than the worst in ICO panel. The normalized RV coefficients in Table 8 are
often not significant (lower than 2) and quite often strongly not significant (lower than 1).
From the 'Mean' line of this table, it can be concluded that only assessors B, D, E and H seem
to agree with the panel.
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Table 7
_F2 panel. RV coefficients between subjects
A B C D E F G H I
A 1.00
B 0.29 1.00
C 0.28 0.33 1.00
D 0.29 0.47 0.40 1.00
E 0.38 0.63 0.26 0.63 1.00
F 0.30 0.25 0.29 0.32 0.37 1.00
G 0.41 0.45 0.31 0.33 0.31 0.13 1.00
H 0.29 0.48 0.32 0.52 0.58 0.20 0.33 1.00
I 0.37 0.29 0.29 0.49 0.44 0.25 0.20 0.38 1.00
Table 8
F2 panel. Normalized RV coefficients between subjects
A B C D E F G H I
B 1.48
C 0.88 2.16
D 1.17 429 2.94
E 2.7 6.11 1.38 6.43
F 1.18 1.24 1.28 1.86 2.85
G 2.58 3.84 1.46 1.81 1.99  -091
H 0.98 4.19 1.68 4.46 5.51 0.16 1.72
I 1.66 1.38 0.88 3.91 3.62 043 -054 217
Mean  1.58 3.09 1.58 3.36 3.82 1.01 1.49 2.61 1.69
Table 9
F2 panel. PCO of the non centered RV matrix
Axis Eigenvalue Variance (%) Cum. Var. (%)
DIM 1 3.9313 43.68 43.68
DIM 2 0.9528 10.59 54.27
DIM 3 0.9413 10.46 64.73
DIM 4 0.7711 8.57 73.30
DIM 5 0.7525 8.36 81.66
DIM 6 0.5152 5.72 87.38
DIM 7 04617 5.13 92.51
DIM 8 04167 4.63 97.14
DIM 9 0.2574 2.86 100.00

As a consequence of this poor homogeneity, the first axis of the PCO of the RV matrix
accounts for only 43.68 % (Table 9) of the variation among the assessors, whereas we
obtained 82.65 % for the ICO panel. Because the third axis accounts for about the same
amount of variation as the second one, Figure 6 presents both plots (1,2) and (1,3) of this
PCO. But as these three axes account for only 64.73 % of the information (smaller arrow
lengths in Figure 6 compared to Figure 1) one must interpret Figure 6 cautiously. Nevertheless,
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this figure underlines assessor F as being the worst because of the large angles its arrow makes
with the first axis in the two plots. This is confirmed by the lowest mean normalized RV
coefficient of 1.01 (Table 8) obtained by subject F. The best assessors B, D, E and H are
almost the closest to the first axis in the plot (1,2) and are gathered in the plot (1,3), suggesting
that they may have directed the compromise.

Table 10

F2 panel. PCO of the centered RV matrix
Axis Eigenvalue Variance (%) Cum. Var. (%)
DIM1 1.0003 19.46 19.46
DIM 2 0.9527 18.53 37.99
DIM 3 0.7718 15.01 53.00
DIM 4 0.7525 14.64 67.63
DIM 5 0.5152 10.02 77.66
DIM 6 0.4658 9.06 86.71
DIM 7 0.4256 8.28 94.99
DIM 8 0.2574 5.01 100.00

This last point is clarified by the PCO of the centered RV matrix, whose distribution of
eigenvalues (Table 10) suggested that four axes should be interpreted to take into account
67.63 % of the total information. These panelists B, D, E and H are clustered on the left part
of plot (1,2) in Figure 7, whereas the others do not gather, and they are close to the origin on
plot (3,4), whereas the others are farther to the origin. In fact, this panel is composed of four
assessors (B, D, E and H) who fairly agree among themselves and of five other assessors who
disagree with the group of four and among themselves. Therefore, the compromise cannot be
anything else than a rough mean of assessors B, D, E and H. Interestingly this point could have
been detected in Table 8, where the 6 normalized RV coefficients among these four subjects
are the only ones to be above 4.

The 'Scaling’ column in table 11 points out assessor G as having spanned his scores much
more than the others. The NRV' column of Table 11 has already been interpreted above, but
note that the mean of all the normalized RV coefficients is equal to 2.248, which can be
considered as just significant, although it is only one fourth of the corresponding statistic in the
ICO panel (8.540). The STATIS weights range from 0.760 to 1.235, but the mean weight of
assessors B, D, E and H is 1.160, whereas the mean weight of the others is 0.872, meaning
that in average STATIS gave to an assessor from the group (B,D,E,H) a weight being 33 %
greater than the weight given to the other assessors. Interestingly, the ‘BETA' column of Table
11 has a mean value of 2.876, whereas it was only equal to 1.979 for the ICO panel.
Therefore, the French assessors seem to be more complex than the British assessors.... The
French would perceive 3 dimensions whereas the British would perceive only 2. The reader,
who may be British, should first noticed that the author is French... and secondly should not
take these two last findings as the absolute truth, but rather as a useful indication of a pattern
present in this data. Again more interesting is the fact that the mean b coefficient is equal to
2.306 within group (B,D,E,H), whereas it is equal to 3.331 within the other subjects, meaning
that the more homogeneous assessors are at the same time the least complex subjects. The
author found this kind of relation in many datasets; it is quite logical : the more dimensional,
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the more chance to disagree. In our application, it is not difficult to agree about the coffee
strength (first dimension common to everyone), it is much more difficult to agree about the
coffee flavour (second and third dimensions not identically perceived by everyone). Finally, the
NRVC' column in Table 11 shows that assessors from group (B,D,E,H) strongly agree with
the STATIS compromise (mean normalized RV with compromise equals to 7.815) and the
remaining assessors fairly agree with this compromise (mean normalized RV with compromise
equals to 4.329). This is the "STATIS miracle" : although in this data set some neat
disagreements held between some assessors, at the end everybody significantly agreed with the
compromise. The F2 panel was definitely less homogeneous than the ICO panel, but STATIS
was still able to define a valid compromise. At this point of the discussion, the reader may think
that the null hypothesis in these permutation tests is too weak, making these tests artificially
powerful. The author agrees that a null hypothesis which is actually true would be a disaster
for the panel leader. In such a case, the only thing to do is to bin the data. In some situations,
which have to remain anonymous, the author actually observed mean normalized RV
coefficients between assessors around 0 and between assessors and compromise around 1.

Table 11

F2 panel. Summary of individual STATIS statistics
SUBJEC p Scaling NRV Weight BETA NRVC

T
A 7 0.700 1.580 0.902 3.758 4383
B 8 0.910 3.086 1.117 1.963 7.527
C 8 1.330 1.581 0.865 2.943 4.446
D 8 1.361 3.359 1.191 2.580 8.061
E 7 1.545 3.824 1.235 1.752 8.825
F 8 0.709 1.010 0.760 2.860 3421
G 8 0.305 1.495 0.872 3.137 4.441
H 8 1.231 2.608 1.096 2.930 6.846
I 8 0.909 1.687 0.962 3.958 4.955
Mean 7.77 1.000 2.248 1.000 2.876 5.878

From the distribution of the eigenvalues of the compromise (Table 12), it was decided to
analyse the first four dimensions of the compromise sample space (Figures 8 and 9). The
overall structure of plot (1,2) (Figure 8) is roughly the same as ICO. Nevertheless, some
differences are noticeable. This structure is more complex as exemplified by the fact that the
first dimension accounts for about half of the total information than for ICO. Sample 4 is now
slightly split from samples 6 and 13, which are now gathered with sample 16. Looking at the
convex hulis (Figure 10), it appeared that two assessors had sent this sample 4 very far from
the others. The larger surfaces of these hulls, compared to ICO, lead to a less confidence about
the following visual grouping of samples : (2,11), (1,3,7,9,10,12), (5,8,15), (14), (6,13,16),
(4). The covariance plot (Figure 12) confirms the interpretation made with the ICO data,
namely the opposition of bitterness and acidity along the first axis and the weakness of both
aspects at the top of the second axis opposed to the bottom correlated to the astringency of the
coffee.
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Figure 8 : F2 panel. PCO of the sample compromise among subjects. Plot (1, 2)

Figure 9 : F2 panel. PCO of the sample compromise among subjects. Plot (3, 4)
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Sample and covariance plot (3,4) (Figures 9 and 13) suggest that sample 1 would have a more
burnt flavour, as sample 16 which would also be more astringent and that samples 11 and 12
would have a more chemical flavour. But looking at the corresponding convex hulls in Figure
11, it is clear that the last finding about samples 11 and 12 may not be shared by most of the
panel and that the previous conclusion about samples 1 and 16 is not universal.

Table 12

F2 panel. PCO of the sample compromise among subjects
Axis Eigenvalue Variance (%) Cum. Var. (%)
DIM 1 0.8402 33.80 33.80
DIM 2 0.3038 12.22 46.02
DIM 3 0.2421 9.74 55.76
DIM 4 0.2306 9.28 65.04
DIM 5 0.1817 7.31 72.35
DIM 6 0.1239 498 77.33
DIM 7 0.0972 391 81.24
DIM 8 0.0934 3.76 85.00
DIM 9 0.0858 345 88.45
DIM1i0 0.0767 3.09 91.54
DiIM11 0.0672 2.70 94.24
DIM12 0.0495 1.99 96.23
DIM13 0.0407 1.64 97.87
DIM14 0.0340 1.37 99.24
DIM15 0.0190 0.76 100.00

Figure 14 is a biplot from a covariance PCA of the mean score products. It is clear that this
classical analysis leads to almost the same structure and to almost the same sample plot
interpretation as in STATIS. Therefore, why should STATIS be used ? Firstly because of the
permutation tests provided by STATIS, secondly because of the information about assessor
similarity provided by STATIS and thirdly because with less homogeneous panel than F2 the
output of STATIS can be different from that obtained by means of a PCA of the mean score
products. The biplot of assessor E data (Figure 15) is again very similar to the STATIS
compromise illustrating why this subject had the largest normalized RV coefficient with the
compromise. On the contrary, biplots from assessors G and F (Figures 16 and 17), who were
the subjects who disagreed the most with the compromise, clearly show numerous
discrepancies with the compromise plot.

4.4 STATIS of the S49 panel

This analysis gathers 49 assessors coming from 5 different panels having scored the same four
attributes : bitterness, acidity, astringency and body/mouthfeel. The discussion will focus on
panel comparisons (see sections 2.8 and 2.9 of this chapter). The mean RV coefficients within
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Figure 18 : S49 panel. PCO of the centered RV matrix
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Table 13
S49 panel. Mean RV coefficients within and between panels
1F IC No Po Sw
IF 0.48
IC 0.50 0.57
No 0.49 0.57 0.56
Po 0.49 0.56 0.57 0.56
Sw 0.44 0.51 0.51 0.50 0.47

Table 14
S49 panel. Mean normalized RV coefficients within and between panels
IF IC No Po Sw
1F 4.43
IC 4.64 5.50
No 4.65 5.58 5.54
Po 4.63 5.46 5.69 5.55
Sw 3.96 4.87 4.86 4.74 4.36

and between panels (Table 13) are rather similar and a little bit smaller when involving Swedish
assessors (Sw panel). The corresponding normalized RV coefficients (Table 14) are all
significant, meaning that the 5 panels are homogeneous and also agree among themselves
about the sample structure, which does not automatically mean that the assessors are
exchangeable among panels.

The first eigenvector of the RV matrix, which is the compromise, accounts for 54.74 % of
the assessor variation (Table 15), which is a fairly good result considering that 48 axes exist in
this PCO. The first plot of the PCO of the centered RV matrix does not show panel
discrimination as exemplified by the panel convex hulls on Figure 18. But this plot accounts for
only 25.35 % of the total information (Table 16). A good technique for mapping panel
discrimination is the CDA suggested in section 2.9. For the S49 panel, the first two axes of this
CDA accounts for 82.84 % of the panel discrimination (Table 17) and splits panel 1F and Sw
between themselves and from the three other panels (Figure 19). The Norwegian panel (No)
and the Polish panel (Po) do not seem different, meaning that the assessors might be
exchangeable. Finally, the ICO panel appeared as the central panel on this map. In order to test
significance of panel discrimination visually observed on this map, the permutation technique of
section 2.9 was performed on the basis of the 16 first axes from the centered PCO and its
output was 2.521, which is fairly significant. Therefore, one cannot exchange the assessors
among the five panels, even if, on the average, they fairly agree about the sample structure.
This conclusion was met by the author with several other data sets; it raises a controversial
point associated to the permutation techniques described in this chapter and already mentioned
above : are these tests too powerful because of a too unrealistic null hypothesis ?
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Table 15

549 panel. PCO of the non centered RV matrix
Axis _Eigenvalue Variance (%) Cum.Var. (%)
DIM 1 26.8248 54.74. 54.74
DIM 2 3.1572 6.44 61.19
DIM 3 1.8522 3.78 64.97
DIM 4 1.7188 3.51 68.48
DIM 5 1.4765 3.01 71.49
DIM 6 1.3574 277 74.26
DIM 7 1.2311 251 76.77
DIM 8 1.0794 2.20 78.97
DIM 9 1.0355 2.11 81.09
DIM10 0.9631 1.97 83.05

Table 16

S49 panel. PCO of the centered RV matrix
Axis _Eigenvalue Variance (%) Cum.Var. (%)
DIM 1 3.3992 14.64 14.64
DIM 2 2.4869 10.71 25.35
DIM 3 1.7418 7.50 32.85
DIM 4 1.4779 6.36 39.21
DIM 5 1.3591 5.85 45.07
DIM 6 1.2317 5.30 50.37
DIM 7 1.0883 4.69 55.06
DIM 8 1.0385 447 59.53
DIM 9 0.9846 424 63.77
DIM10 0.8503 3.66 67.43

Table 17

349 panel. Panel canonical discriminant analysis
Axis Eigenvalue Variance (%) Cum.Var. (%)
DIM 1 2.4898 56.39 56.39
DIM 2 1.1684 26.46 82.84
DIM 3 0.5238 11.86 94.71

DIM 4 0.2337 5.29 100.00
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Table 18

549 panel. PCO of the sample compromise among subjects
Axis Eigenvalue Variance (%) Cum.Var. (%)
DIM 1 0.7322 56.64 56.64
DIM 2 0.1416 10.95 67.59
DIM 3 0.0518 401 71.60
DIM 4 0.0470 3.64 75.24
DIM 5 0.0425 3.29 78.53
DIM 6 0.0412 3.19 81.72
DIM 7 0.0392 3.03 84.75
DIM 8 0.0331 256 87.31
DIM 9 0.0326 252 89.83
DIM10 0.0281 2.18 92.01
DIM11 0.0250 1.94 93.94
DIM12 0.0242 1.87 95.82
DIM13 0.0212 1.64 97.46
DIM14 0.0172 1.33 98.78
DIM15 0.0157 1.22 100.00

From the distribution of the eigenvalues of the compromise (Table 18) and from the mean b
coefficient over the 49 assessors which was equal to 1.75 (‘Mean' line and 'BETA' column in
Table 19), it was decided to interpret the two first axes of the sample space given in Figure 20.
This structure is once again similar to those already met with ICO and F2 panels, namely an
opposition along the first axis of acidity and bitterness (Figure 21). Note that the astringency
and the body/mouthfeel attributes are found correlated to bitterness.

The magnitude of the 'Scaling' column in Table 19, or in Table 20 which is Table 19
averaged by panel, is highly dependent on the panels simply because of the different scales used
by these panels. In such a case, STATIS must be done with the global matrix standardization
recommended in section 2.4. The NRV' and 'NRVC' columns in Table 19 point out the
assessors No10 (assessor 10 from Norway) and assessor 1F6 (assessor 6 from France) as
presenting a strong disagreement with the panel and with the compromise. The individual
biplots of these two assessors (Figures 22 and 23) are indeed extremely different from the
sample structures we have met up to now. For instance, assessor No10 found sample 8 very
astringent and assessor 1F6 seems to correlate positively bitterness and acidity, therefore he
did not make many differences between the acid samples 11 and 12 and the bitter samples 4, 13
and 16. One assessor for each of the three other panels (Swi, IC9 and Pol) is also analysed by
means of a biplot (Figures 24, 25 and 26). These assessors were chosen because they had the
lowest agreement with the whole panel, but being still significant they do not present a very big
difference with the compromise sample structure. Interestingly, all of them seem to present a
null correlation between bitterness and acidity instead of a negative one. But comparison of
attribute correlation structures is a matter of Dual STATIS which will be performed in the
following section.
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Table 19
S49 panel. Summary of individual statistics
Subject Scaling NRV Weight BETA NRVC
1F 1 0.009 4.086 0.869 1.696 4216
1F10 0.012 5.241 1.035 1.423 5.521
1F 2 0.015 6.129 1.197 1.729 6.475
IF 3 0.005 3.217 0.749 2.556 3.074
1IF 4 0.017 6.361 1.232 1.932 6.695
IF § 0.009 1.992 0.549 2.295 1.682
1F 6 0.011 1.227 0.442 2.609 0.769
1F 7 0.016 5.109 1.001 1.264 5.334
IF 8 0.012 5.306 1.048 1.644 5.497
1F 9 0.012 5.917 1.140 1.383 6.239
IC 1 0.017 6.264 121 1.951 6.568
IC11 0.011 5.993 1.178 2.163 6.249
IC12 0.057 5.835 1.153 1.579 6.209
IC14 0.016 4.304 0.907 1.464 4.543
IC15 0.037 4.808 0.997 1.825 5.024
IC16 0.023 5.672 1.111 1.843 5.939
IC 3 0.026 4971 0.995 1.606 5.140
IC 4 0.061 5.658 1.119 1.531 5.994
ICS 0.009 3.796 0.821 2224 3.708
IC 6 0.037 6.031 1.179 1.309 6.477
IC 7 0.038 5.480 1.084 2.294 5.663
IC9 0.005 3.543 0.817 3.121 3.327
No 1 0.010 5.006 1.005 1.616 5214
Nol0 0.009 0.863 0.323 1.544 0.466
Noll 0.037 6.312 1.219 1.462 6.717
Nol2 0.018 6.259 1.196 1.212 6.674
No 2 0.016 6.378 1.226 1.356 6.824
No 3 0.049 5.649 1.110 1.097 6.084
No 4 0.032 5.825 1.130 1.085 6.301
No 7 0.015 5.676 1.117 1.500 5.998
No 8 0.015 5.257 1.066 1.930 5.494
Po 1 0.651 3.787 0.845 2.458 3.785
Po 2 3.173 5.460 1.066 1.246 5.739
Po 3 0.977 5.436 1.086 1.985 5.653
Po 4 2.510 4921 1.012 1.744 5.188
Po 5 3.605 5.605 1.110 1.575 5.955
Po 6 0.730 4350 0.909 1.963 4,393
Po 7 2914 5.114 1.014 1.237 5.462
Po 8 3.631 6.867 1.303 1.219 7.376
Sw 1 2.583 2.252 0.587 2.177 2.005
Swl0 2.051 5.438 1.048 1.089 5.769
Sw 2 7.994 5.672 1.116 1.237 6.045
Sw 3 1.462 4.862 0.996 2.119 5.029
Sw 4 3.983 6.143 1.190 1.651 6.462
Sw 5 1.306 3.484 0.803 2.582 3.392
Sw 6 1.392 3.239 0.771 2.749 3.123
Sw 7 4015 5.524 1.091 1.617 5.767
Sw 8 2.270 5.400 1.069 1.341 5.764
Sw 9 3.096 3.583 0.759 1.503 3.493
Mean 1.000 4.925 1.000 1.750 5.113
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Table 20

549 panel. Summary of individual statistics averaged by panel
Subject Scaling NRV Weight BETA NRVC
1F 0.012 4.459 0.926 1.853 455
IC 0.028 5.196 1.048 1.909 5.403
No 0.022 5.247 1.044 1.422 5.53
Po 2274 5.192 1.043 1.678 5.444
Sw 3.015 4.56 0.943 1.807 4.685

4.5 Dual STATIS of the S49 panel
Table 21
549 dual panel. Mean RV coefficients within and between panels

1F IC No Po Sw
IF 0.77 0.72 0.56 0.73 0.70
IC 0.72 0.78 0.74 0.79 0.78
No 0.56 0.74 0.75 0.73 0.75
Po 0.73 0.79 0.73 0.82 0.80
Sw 0.70 0.78 0.75 0.80 0.77
Table 22
S49 dual panel. PCO of the non centered RV matrix
Axis Eigenvalue Variance (%) Cum.Var. (%)
DIM 1 36.9344 75.38 75.38
DIM 2 5.7214 11.68 87.05
DIM 3 2.5591 522 92.28
DIM 4 1.8882 3.85 96.13

The mean RV coefficients within and between panels on the basis of the individual
correlation matrices (Table 21) are greater than those obtained on the basis of the sample
spaces (Table 13), suggesting that the assessors agree more on attribute correlations than on
sample differences. As explained in section 2.10, no analytical permutation test exists in the
framework of Dual STATIS. The first eigenvector of the RV matrix accounts for 75.38 % of
the PCO (Table 22), which again denotes a better compromise than that obtained by STATIS
(54.74 %, Table 15). The first three axes of the PCO of the centered RV matrix (Table 23)
explain almost all the variation, which once again was definitely not the case in classical
STATIS (Table 16). But the reader should remember that this Dual STATIS compares
matrices of size (4,4), whereas the classical STATIS compared matrices of size (16,16);
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Table 23
S49 dual panel. PCO of the centered RV matrix
Axis Eigenvalue Variance (%) Cum.Var. (%)
DM 1 5.8397 46.54 46.54
DIM 2 2.5852 20.60 67.15
DIM 3 1.9749 15.74 82.89
DIM 4 0.8342 6.65 89.54
Table 24

S49 dual panel. Summary of individual statistics

Subject Weight |Subject Weight [Subject Weight | Subject Weight |Subject Weight

IF 1 1.119 {IC 1 1.112 |[No 1 0.798 |(Pol 1.050 [Sw 1 0.968
IF10  0.795 |IC11 1.083 |Nol0 0.611 |Po2 1.024 |Swl0 1.075
1IF 2 1109 |IC12 1060 |Noll 1078 |[Po3 1.064 (Sw 2 1.041
IF 3 0950 [IC14 1.096 ([Nol2 1.024 |Po4 0.853 |Sw 1.041
IF 4 0874 |IC15 1.090 |[No 2 0978 |Po5S 1.067 |Sw 1.090

3
4
IF 5 0991 |IC16 1072 |No 3 0994 |Po6 1.130 [Sw 5 1.107
1IF 6 0819 [IC 3 0984 |No 4 0990 [Po7 1022 [Sw 6 1.017
1F 7 0926 |IC 4 1.068 |No 7 1.063 |Po8 1.138 |Sw 7 1.122
1F 8 0987 |IC 5 0708 |No 8 1.119 Sw 8 1.021
IF9 0797 |IC 6 1.000 Sw 9 0795
IC 7 1.084
IC 9 0.994

Mean 0937 [Mean 1029 |Mean 0962 |Mean 1.044 |Mean 1.028

Table 24 gives the Dual STATIS weights of the 49 assessors. One can observe that they are
quite similar among assessors and also among panels. These weights allow the compromise
correlation matrix (Table 25) to be derived as a weighted mean of the 49 individual correlation
matrices.

Table 25
549 dual panel. Compromise correlation matrix
ACIDT ASTRGNMF BITTERT BODYMF
ACIDT 1.00
ASTRGNMF -0.05 1.00
BITTERT -0.30 0.55 1.00
BODYMF -0.24 0.42 0.63 1.00

therefore the better agreement raised in Dual STATIS may be due, or partly due, to this
difference. Figure 27 scatters assessors according to Dual STATIS weights and classical
STATIS weights. Therefore, assessors located at the bottom of this plot disagree the most
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with the panel on sample differences, whereas assessors located on the left of this plot disagree
the most with the panel on attribute correlations. The worst assessors are obviously those
located in the bottom left quadrant of this plot. The worst assessor is definitely No10, whose
biplot has already been given in Figure 22. On the contrary, the best assessor seems to be Po8.
The biplot of four assessors, who poorly agree with the Dual STATIS compromise, are given
in Figures 28, 29, 30 and 31. IC5 and Sw9 have in common to correlate positively bitterness
and acidity. The two French subjects 1F10 and 1F9 have very similar biplots, unless for acidity
which is highly correlated with astringency for 1F9, whereas it is with body/mouthfeel for
1F10.

5. SOFTWARE

Every computation and graph presented in this chapter was done on a SUN workstation under
the UNIX system and within the SAS® software, thanks to several macros developped by the
author. These macros should be announced elsewhere.

6. CONCLUSION

Advantages and limitations of the techniques proposed have been discussed throughout the
chapter.

The most important advantages were :

o Ability to take free-choice profiling into account

* RV coefficient for measuring similarity between two sample spaces

 Permutation tests for validation of the panel homogeneity with almost no computation

o f3 coefficient of individual dimensionality (complexity)

¢ STATIS compromise on sample distances or attribute correlations

e Compromise obtained as a mean of assessors weighted by their individual agreement with
the panel

 Cross-panel comparisons

¢ Analytical, instead of iterative, techniques

The principal limitations were :
o Possible over-powerful tests
o No analytical permutation tests with Dual STATIS
o Individual weights only depend on agreement with the panel.

The comparison of these two lists makes it clear why the author does think that the RV
related techniques have a great potential in the sensory field. Nevertheless, this cannot be
recognized by the sensory community before they have been sucessfully applied by many
sensory scientists in a wide range of situations. This could not happen without papers such as
this chapter and without availability of dedicated softwares.
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1. INTRODUCTION

1.1 Advantages of three-way methods in sensory analysis

307

Three-way factor analysis (TWFA) techniques first appeared in the psychometric literature, see for
instance Tucker (1966), Kroonenberg and De Leeuw (1980) and Kloot and Kroonenberg (1985),
and have been used in several applications (Henrion et al. (1992), Leurgans and Ross (1992)). So
far, however, there are few applications within the field of sensory analysis. The aim of this chapter
is to discuss these methods within a sensory context and show that they can be useful for analysis of

individual sensory profile data.

TWFA techniques are generalizations of principal components analysis (PCA) but while PCA
works on two-dimensional matrices, TWFA techniques can be used to analyse three-dimensional
matrices with three ‘directions’or ‘ways’ of information. Therefore, they can be used to investigate
similarities and differences between objects, assessors and attributes at the same time. The kind of

questions that can be answered by these techniques are for instance:
- Do the assessors use the attributes or the measurement scales differently?

- Are some of the assessors more sensitive than others to some of the attributes?

- Are some of the assessors better at tasting differences among certain groups of objects?

- Do all assessors distinguish equally well between the objects?

- Do the assessors use the same attributes to distinguish between the objects and to span

the underlying variable space?
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All these questions are of interest to the panel leader who is responsible for the quality of the
panel and may wish to retrain or remove some of the assessors, to the data analyst who has to make
decisions about which analysis technique is most appropriate, and to the manufacturer since they
can highlight variability among consumers' perceptions of the objects. The results of a TWFA can
be presented in simple two- or three-dimensional scatter-plots, which may be relatively easy to
interpret. In the following sections several techniques will be discussed, emphasizing applications
and the relationship between TWFA methods and other techniques in this book.

1.2 The structure of profile data

Assume there are m assessors in the sensory panel measuring p attributes for n objects. The data can
then be collected in a three-way table yy, i = 1,...,m, j = 1,...,n, and k = 1,...,p. Replicates will here
be denoted by / = 1,....q. The handling of replicates is discussed in Section 7. They can either be
averaged over or treated separately, in which case each of the m x n x p cells of the three-way
matrix of data consists of g elements. This type of data can always be described by an analysis of
variancemodel, see Searle (1971),

Xt = Wy +aik+Bﬂ+5g‘I¢+S:jH )

The main effects oy for assessor i (and attribute k) represent the differences between this
assessor's average score for that particular attribute and the overall average for the same attribute.
The main effect P describes how the average score for object j and attribute k deviates from the
overall average for the same attribute. The interactions 8y represent the differences between
assessors in measuring differences between objects. Note that individual differences among
assessors are present both in the main effects a; and in the interactions 8 The error terms g
represent variation due to replicates under the same experimental conditions.

The TWFA methods in this paper will model both these types of individual differences if no
pretreatment of the data is used. There exist preprocessing techniques, however (see below), which
eliminate the main effects o from the analysis and only concentrate on the interactions.

2. DIFFERENT TWFA MODELS

2.1 TWFA as a generalisation of PCA
Standard PCA of an n x p matrix X is based on the following ‘model’

X=TP' +E 2)

where T (n x a) is the matrix of object scores (defined to have orthogonal columns), P’ (a x p)
the variable loadings (orthogonal rows) and E (n x p) the matrix of residuals, corresponding to
those direction in principal component space that have little variability and which are frequently
interpreted as noise. The loadings P are defined so as to describe as much of the variation in X as
possible given the dimension a, normally with P 'P=/, and T is found as the projection of X on P.
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Alternatively, this can be stated as the problem of finding the T and P matrices that minimize the
residuals E, i.e. the T and P that minimize the least squares criterion

1x - 7P 3)

The T and P matrices are usually plotted in low-dimensional scatter-plots to reveal structures
among the objects and among the attributes.

Three-way factor analysis techniques are generalizations of PCA developed for matrices with an
extra way (or order), see Figure 1. Each slice in the stack of matrices corresponds to one particular
assessor and contains objects-by-attributes information for that particular assessor. Of course it is
equally possible to slice the matrix in two other ways, with the slices then corresponding to either
individual objects or attributes. It would be possible to do a separate PCA on each slice of the
matrix, which would be to ignore any similarities between the assessors (or objects or attributes
depending on how the matrix was sliced) or to take a mean over the slices and do a PCA on the
resulting matrix, which would ignore any differences between them. TWFA is a form of PCA for
the slices of the matrix which takes account of these similarities and differences.

2.2 Tucker-1 modelling

If we call the n x p slice of the three way matrix corresponding to assessor i's individual
objects-by-attributes matrix X; where / = 1,..., m, then one possible way to analyse the data is to
model X; as

X; = LP'+E, 4

where P has dimension p x a (@ < p). The number a is chosen to give a low dimensional approx-
imation to the data as in PCA, and T; and P are found for any a by minimization of the least squares
criterion

> -1 ©)

There are no constraints on the 7; here, but P is usually constrained to have orthogonal rows, i.e.
P’ P=1,. This can be seen as a PCA of each X; where each PCA is forced to have the same variable
loadings matrix P, though the scores T; are allowed to vary. An interpretation of this model is that
the assessors perceive the same underlying variables but rate the objects differently to obtain
individual scores matrices. It is generally known as the common loadings Tucker-1 model.

It is useful to note here that if we let the m x p slice corresponding to the assessors-by-variables
matrix for object j be Y}, then we can write

Y,=U,P'+E,. (6)

Then minimizing X_, | X; — 1}-P']|2 will give exactly the same common loadings matrix P (and
the same fit).
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= Attributes —™

Figure 1: Three-way data matrix

Alternatively, TWFA models can be based on the model
X =TP'+E, =1,....m @)

where now the loadings P; differ from assessor to assessor. T has dimension n x b where b is the
reduced dimensionality of the model. T is generally constrained to have orthogonal columns, i.e.
T'T = I,, but the P; are unconstrained. The assessors have a common scores matrix 7, which
describes relationships among the samples, but differ in the way they perceive the variables. This is
known as the common scores Tucker-1 model. It is equivalent to writing Z; = TV, + Ep, k= 1,...p,
where Z, is the n x m slice of objects-by-assessors for variable k.

There is also a third Tucker-1 model formed by writing or

Z,'=QW, +E, ®

Y, = OR; + E;. Here Q is the "assessor scores' matrix with dimension m x ¢, ¢ ( < m) being the
reduced dimension. In general the three different models will give different fits to the data.

Which of the three models one uses depends on the aim of the analysis. For instance if one is
interested primarily in the relationships among the objects, i.e. which of the objects are similar and
whether or not they can be represented in a low dimensional ‘object space’, then the common
scores model is appropriate. A possible interpretation of this model is that the b new ‘object
dimensions’ represent ‘ideal object types’, and that each real object is made up of a linear
combination of these types. For example in the example discussed later it might be possible to
represent the objects in only one dimension going from ‘ideal cheddar’ to ‘ideal Norwegian’.



311

Mature cheddar would have a high score in this dimension, Norwegian a low score and Norwegian
Cheddar would lie somewhere in between.

Note that this model says nothing about the relationships among the attributes or among the
assessors. In fact the assessors could all use their own individual sets of attributes without the
analysis being changed.

If interest is primarily in the relationships among the variables, e.g. whether there are some
‘underlying factors’ perceived by all of the assessors, then the common loadings model is
appropriate. The interpretation is exactly analogous to that for the common scores model, i.e. that
the attributes can be represented in a lower dimensional space, with the new dimensions being
interpreted as ‘ideal’ or ‘underlying’ attributes, perceived by all of the assessors. Taking the cheese
example again, perhaps one of the underlying variables could relate to texture, going from firm and
rubbery to crumbly and grainy. Again nothing is said about relationships among the assessors or
objects.

If interest is in the relationships among the assessors, then the third Tucker-1 model is the best.
The ‘common assessor scores’ Q can be plotted to look for relationships among the assessors. The
implication is that the assessors can be represented in a lower dimensional space, i.e. there are a few
underlying "assessor types', with each assessor being a linear combination of some or all of them.

If there is interest in more than one mode, e.g. in both assessors and attributes (as is often the
case), then there are two possible approaches. The first is to take the individual scores matrices from
a common loadings Tucker-1 model, and to look for similarities among them. This can be done by
‘stringing out’the rows of each matrix into long rows of length na, joining these rows into one new
matrix of dimension m x na and doing a PCA on this matrix. The scores on the first few PCs of this
matrix can be plotted to look for relationships among the assessors, and the eigenvalues examined
to decide on the dimensionality of the assessor space. This is equivalent to a Tucker-1 analysis on
the individual scores matrices.

This is a two stage process, first the attribute dimension is reduced to approximate the raw data,
and the resulting ‘underlying attributes’ are examined. Then the assessor dimension is reduced to
find an approximation to this approximation, and the resulting assessor dimensions examined. This
means that the relationships between the attributes are modelled as well as possible (in the chosen
reduced dimensionality), and the assessors are modelied less well. This is a sensible approach if the
variables are considered of primary interest. If the two modes are of equal interest, then a Tucker-2
model is more appropriate.

2.3 Tucker-2 modelling
Tucker-2 modelling is a generalization of Tucker-1 modelling to reduce the dimensionality of
two modes simultaneously. There are three versions, one for each pair of modes. The most usual is
probably the one having common scores 7, common loadings P and individual assessor matrices W,
i=1,...,m. These W; relate T and P through a different linear transformation for each assessor. This
model is written as
X;=TWPF &)

where the W, have dimension b x a. T (n x b) and P (p x a) are found to minimize the least squares
criterion

Sl - 10)
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Note that this model can be written both as an individual loadings model and an individual scores
model. In the former case, the individual loadings are P; = PW; and in the latter case, the individual
scores are T; = TW, For the individual scores model, the individual scores 7; = TW; can be
interpreted as products of a common score matrix multiplied by the individual transformation
matrices W;, but this method will not in general give the same fit as the Tucker-1 model.

The interpretation of this model is that the objects can be represented in a b (< n) dimensional
space, and the variables can be represented in an g (< p) dimensional space. In other words there are
a ‘underlying attributes’ which describe b ‘ideal object types’. Each assessor uses the underlying
attributes in a different way to describe the ideal objects. The individual difference matrices #;
describe how each assessor does this. The matrix T gives the scores of the objects in the object
space, and the first two dimensions (for example) can be plotted to examine their structure. P gives
the loadings of the underlying attributes on the attributes, and is interpreted in the usual way. Of
course it is not possible to link the object scores 10 the attribute loadings in any meaningful way, as
the link is different for each assessor. As with the Tucker-1 models, this Tucker-2 model is not well
suited to provide information about the assessors. It is possible to do a Tucker-1 analysis of the W;
matrices in order to look for associations among the assessors, in the same way as it is possible to
analyse the individual scores matrices from a Tucker-1 model. However, it is more sensible to
choose a Tucker-2 model to investigate the modes of interest directly. Hence if the attributes and
assessors are of interest, it is possible to write a Tucker-2 model as

Y,= Q0P (1)

Q is now an m x ¢ matrix of ‘assessor scores’ and P an p x a matrix of attribute loadings. The O
matrix then gives information on the relationships between the assessors (common for each object),
and the O are the object difference matrices that link together the ‘object-common’ loadings and
scores. Alternatively, if there is interest in all three modes, the Tucker-3 model is appropriate, as is
the PARAFAC model described later.

2.4 Tucker-3 modelling

The Tucker-3 model is the natural generalization of Tucker-2. There is only one Tucker-3 model,
and it can be represented as the Tucker-2 model in equation (9), where the ; are expressed as
linear combinations of a limited number, ¢, of fixed matrices C; (a different linear combination for
each assessor). This model can equally well be written as equation (11) where the O, are linear
combinations of fixed matrices. This model links together all three modes in an interpretable way. It
can also be written as

Z=TC(Q'®P'), (12)

where ® is the kronecker or direct product. Z is the data unfolded to form an n x mp matrix of
objects-by-(assessors x attributes), with each assessor’s attributes kept together in a block. 7 is the
n x b matrix of object scores, P the p x a matrix of variable loadings, Q is the m x ¢ matrix of
assessor scores, and C is the b x ac matrix made up of the core matrices placed side by side. The
interpretation is as follows: The objects lic in a b-dimensional space the axes of which represent
ideal object dimensions'. Each object can be described as a linear combination of these ideal objects.
The attributes lie in an g-dimensional space, the axes of which represent ‘underlying attributes’.
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Each attribute can be described as a linear combination of the underlying attributes though it is more
usual to consider the underlying attributes as linear combinations of the original attributes. The
assessors lic in a c-dimensional space, the axes of which represent ‘ideal assessor types’ or
underlying ways of perceiving the samples. Each assessor is a linear combination of these types.

2.5 Interpreting the core matrices in a Tucker-3 model

The three modes are linked through the core matrix, and it is sometimes possible to interpret this
matrix in a helpful way. Suppose we have reduced each mode to two dimensions, and so there are
two ‘assessor types’, two ‘object types’ and two ‘underlying attributes’. The core matrix is a three
way matrix so consider the slice corresponding to assessor type 1. This is a 2 x 2 matrix which
relates the object types to the underlying attributes. Suppose the underlying attributes have been
interpreted as sweet/salt and rubbery/creamy, and the first object type is Norwegian/cheddar. The
first slice of the core matrix may be

10 2

4 8

The first row corresponds to the weight assessor type 1 gives to the two underlying attributes in
describing object type 1, in other words he/she describes ideal Norwegian cheese mainly as sweet,
but also with an element of rubberyness. Ideal cheddar would then be described as very salty with a
hint of creanyness.

Interpreting the core matrix can be very difficult, especially if the dimensions in the three modes
cannot be interpreted. One technique that can be helpful is drawing a separate biplot for each
assessor type, i.e. in each plot the scores would be given by T and the variables by C;P". This gives a
picture of how the assessor types relate the actual objects to the measured attributes. Similarly
biplots could be drawn for each object type or each underlying attribute. The former would give a
picture of which attributes different assessors considered important in describing the object types,
the latter a picture of which objects each assessor considered to have the ideal attributes.

2.6 The PARAFAC model

The other three mode method is the PARAFAC model which is defined by equation (9) where the
W; are forced to be diagonal with only positive elements on the diagonal. This is also known as the
CANDECOMP model, see for instance Carrol and Chang (1970), and Harshman and Lundy
(1984). This model is no longer symmetrical in the three modes, and has a slightly different
interpretation. This is that the assessors perceive the same underlying attributes, but weight them
differently when scoring the objects. This model can be useful if the assessors disagree on which
attributes are most important for describing differences among objects. There are of course three
different versions of the PARAFAC model, corresponding to the three different Tucker-2 models.
Note that in order for the W; to be diagonal, two of the modes are forced to have the same
dimension. For example for the Tucker-2 model (9) the object and attribute dimensions would have
to be equal. This is not the case with the Tucker-3 model.

2.7 Three mode analysis using single made methods

As mentioned above, it is possible to move from a single mode to a two mode model by successive
application of a Tucker-1 model. It is then clearly possible to obtain a three mode model by another
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application of the Tucker-1 model. This has computational advantages since a standard principal
components analysis program can be used (see below), rather than specialized software. The
procedure is: First a Tucker-1 model is applied to the raw data, for example the common loadings
model in equation (4). This results in an a x p common loadings matrix P, and m individual n x a
scores matrices T;, i = 1,...,m. These 7; can now be analysed using Tucker-1, using either the
common object scores or common assessor scores model. As an example the former of these will
result in an n x b common scores matrix T, and m individual b x a matrices O;. These Q; can now
be analysed by the common assessor scores Tucker-1 model to give an m x cmatrix O, andac x b
matrices W, the core matrices.

This procedure can be followed in 6 different ways depending on the order in which 7, P and Q
are found, and in general they will all give different results. Also, each will give a poorer fit to the
original data than the Tucker-3 model, since this directly minimizes the sum of squared residuals,
equation (10). For these reasons this method is not to be recommended if Tucker-3 programs are
available.

3. FITTING THE TWFA MODELS

3.1 Tucker-1
The Tucker-1 model is based on unrestricted minimization over 7; and P of the quantity

ZHX -TPf.PP=1 (13)

for the common loadings model, and minimization of an analogous expression for the other two
models. If the three way matrix is unfolded to give an mn x p matrix, as in Figure 2, then it is easy
to see that the minimization is achieved by a standard PCA or SVD of the unfolded matrix. Notice
that the eigenvectors of the unfolded matrix are identical to the eigenvectors of the sum of the S, i =
1,...,m, where ; is the covariance matrix for assessor i.
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Figure 2: Unfolding of three-way data matrix
3.2 Tucker-2
For this case the minimization is over W, T and P of the equation
Sk -l a9
i=1

(or one of the other two forms) where T'is a set of common scores, P the common loadings and W;
are the individual difference matrices to be estimated.

The solution to this is more complicated than for Tucker-1 and mmst be done by numerical
optimization. A solution based on alternating least squares (ALS) was proposed in Kroonenberg
and De Leeuw (1980). The optimization works by finding the best solution for T given P, then the
best P is found given the value of 7. This procedure continues until convergence. Then finally the #;
that minimize (14) are found. Using ALS ensures that an improved fit is obtained for each cycle and
so convergence is guaranteed. There is, however, no guarantee that the global minimum value of
the criterion is obtained.

In more detail, the solution for P, T and W; can be found from the following algorithm.

1. Construct starting values of P (e.g. from a Tucker-1 solution).
2. Compute D= X.PPX;
i=1
3. Put the eigenvectors associated with the b largest eigenvatues of D into the columns of a
matrix T

4. Compute Q=3 XTTX,

i=1
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5. Put the eigenvectors associated with the a largest eigenvalues of Q into the rows of P.
6. Repeat 2-5 until convergence.
7. Put W;=T'X/P.

This algorithm gives a solution in which P and T have orthogonal columns or rows, since they are
formed from eigenvectors. This is not, however, a constrained minimization, the solution is the
minimum over all T and P (though it may be a local rather than global mininmum). Any solution to
the minimization of (14) is in fact unidentified, since any of the matrices P, W; and T can be
muitiplied by linear transformation matrices without consequence for the fit, if the other two
matrices are corrected accordingly. For instance P can be multiplied by F, and W; by F without
changing the fit. It should be mentioned that even when constraining the columns of P and T to be
orthogonal the solution is unidentified.

3.3 PARAFAC-CANDECOMP

In this case the optimization criterion is the same as above, namely
2 - Py 15)
i=1

where P and T are unrestricted, but now the W/'s are diagonal matrices. The solution must be found
by numerical methods such as the ALS method mentioned above. An exact eigenvector-based
estimation procedure for the parameters has been proposed for certain chemical applications of the
model, Sanchez and Kowalski (1990), but this exact solution does not optimize the LS criterion.

The ALS solution, see for example Carrol and Przuzanski (1984), is found in a similar way to
that for the Tucker-2 model above. One starts with initial values of T and P and estimates W, then T
is reestimated before P is reestimated. One continues until convergence. The exact eigenvector
solution mentioned above can be used to find starting values. In more detail the algorithm is as
follows:

1. Construct starting values of P and 7.

2. Find W, as diagonal matrices with the same diagonal as TX.P.
3. Compute D =) X; (PW)) (PW) X..
i=1

4. Put the eigenvectors associated with the b largest eigenvalues of D into the columns of
a matrix 7.

5. Compute Q=Y X; (TW)) (TW)'X.
i=1
6. Put the eigenvectors associated with the g largest eigenvalues of Q into the columns of P.

7. Repeat 2-6 until convergence.
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It should be mentioned that in this case the solution is only unidentified with respect to scalar
multiplication of the matrices. This means for instance that no rotation of the matrices is allowed.
This was proved by Kruskal (1977) and is an interesting feature of the model.

34 Tucker-3

For the Tucker-3 model, each # is assumed to be a linear combination (dependent on 7) of matrices
which are independent of &. In other words,

W=%C 16)

where C; are matrices independent of i, and ¢; are constants. Alternatively this can be written as Z =
TC(Q' ® P"), as described in Section 2.4. T, O, P and C are found by an ALS procedure similar to
that for the previous models. The algorithm is as follows:

1. Unfold the three way data X in three ways to form three matrices:

- Zy is the n x mp matrix formed from the m objects-by-attributes slices.
- Z, is the m x np matrix formed from the n assessors-by-attributes slices.
- Zs is the p x nm matrix formed from the m attributes-by-objects slices.

2. QObtain starting values for 7 and P:

- Tis formed from the first b eigenvectors of Z,Z;".
- P is formed from the first a eigenvectors of Z3Z;".

3. Qis formed from the first ¢ eigenvectors of Z, (IT' ® PP) Z,'.

4. Pis formed from the first a eigenvectors of Z; (QQ' ® TT") Z;'.

5. Tis formed from the first b eigenvectors of Z, (QQ" ® PP) Z;'.

6. Repeat steps 3 to 5 until convergence

7. PutC=T'Z(Q® P)

As before the solutions are unidentified, and the orthogonality of 7, Q and P is just for

convenience. Note that there is not complete freedom in choosing the dimensions a, b and c: The
scores matrix for any mode cannot be estimated if its dimensionality is greater than the product of

the dimensionalities in the other two modes. This can be seen in step 3 for example where 7 ® P
has dimension np x ab, and so ¢ cannot be greater than ab.
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4. RELATIONSHIPS TO OTHER WORK

4.1 Generalised Procrustes Analysis

The Procrustes rotation method discussed in Chapter 7 of this book also models individual
differences among assessors and is designed to obtain information about assessors, attributes and
samples simuitaneously. In fact it can be regarded as a special case of the Tucker-1 common scores
model.

Recall that in Section 2.2 we wrote the common scores model as X; = TP," + E;, where T is the
matrix of common scores and P; the individual loadings, found to minimize

Lid 2
Zlx -1ef.
In this case P; is a general matrix, but if it is forced to be orthogonal, then we can write
X.P;=T+EP, 17

i.e. the common scores are found by rotating the original ‘configurations’ JX; to minimize

S -zPf as)

This is the GPA criterion apart from two points: in GPA the dimension of P; is not usually
restricted, and the configurations are translated as well as being rotated. This second point can
however be regarded as a standardization, and included in the TWFA model, see later. It is worth
recalling at this point that in fitting this TWFA model the fact that the assessors all measure the
same variables is not used, as in GPA which is often used for free choice profiling. It can therefore
be seen that GPA is simply the common scores Tucker-1 model with the individual loadings
constrained to be orthogonal. It should also be mentioned that the isotropic scaling of each assessor
used in GPA is already a part of the TWFA model, since ; always can be multiplied by a constant
without changing the model.

The TWFA model is clearly more general than GPA, and so will in general give a better fit. In
fact, if the dimensionality is not reduced at all, it will give a perfect fit which is not the case with
GPA. We leave a full discussion of GPA to the GPA-chapter, but it is worth considering the
following point: In choosing whether to use GPA or TWFA it is obviously necessary to decide
whether or not the orthogonal transformation in GPA is sensible. Although it may look unnatural in
many cases, certain types of confusion problems can be modelled very well by this transformation,
as described in Arnold and Williams (1987). For instance, switching of two attributes by one of the
assessors can be accounted for by an orthogonal transformation. This aspect may indicate that GPA
is best suited for detecting confusion and scaling problems related to names, definitions etc. (Arnold
and Williams (1987)) and TWFA for modelling more general individual differences. Very briefly we
can state the following: Procrustes rotation is best suited for detecting errors in the data while
TWFA is best suited for modelling individual differences. This may indicate that Procrustes rotation
is better suited for situations with untrained assessors and TWFA is best suited for error-free reliable
data.
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4.2 Individual differences MDS versus TWFA

Consider the common scores and common loadings Tucker-2 model (9). The ‘profile” of object j
for assessor i, x;;, is the jth row of matrix JX;, the objects-by-attributes matrix for assessor . This is
approximated by f; where

Ji =t (19)

where  is the jth row of T. The squared Euclidean distance Dj;;, between the approximate profiles
of samples j; and j, for assessor i is

= (tjl —tjz)WfWi(tjl - j2)' (20)

= (tjl _th Vi(tjl _tjz),
where V; is a general symmetric matrix. Hence we can write the Tucker-2 model as

(xl]'l—'xifz)(xﬁj_xl/z)'=(t/1-l/z)llj(tfl_tf)l @

This is identical to the generalized subjective metrics model for individual differences MDS.
If we consider the PARAFAC model the same way and in addition assume that P and T are
orthogonal matrices we obtain

Dg'ljz =(t,',-tj,) WiP'PWi’(tj,-tj) = (tj,-tj) Vi(tjl'tj,)’ (22)

where now ¥ is diagonal with nonnegative diagonal elements. Therefore we have
b
D;]'Lj‘,:Z(l‘jlk“tjzk)zvu (23)
k=1

which is exactly the INDSCAL model used for individual differences MDS.

The individual differences MDS models are treated in Chapter 6 of this book and will not be
considered further here.

Whether there exists a similar analogy between Tucker-3 and an MDS model is not known to us.

4.3 Relations to models for spectroscopy

Above it was mentioned briefly that the PARAFAC model is also used in some chemical
spectroscopy examples. The reason for this is that the PARAFAC model is exactly Beer's law for
mixtures extended to two dimensions. This kind of model is relevant to, for instance some
applications of multivariate chromatography and two dimensional NMR. In such cases, P and T are
interpreted as pure spectra for the two dimensions and the W-values are interpreted as the chemical
concentrations. In for instance chromatography, T can be interpretated as the time profiles for the
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different constituents and the P can be considered as the chemical spectrum matrix of the
wavelengths observed.

This type of model has usually been approached by a so-called rank annihilation technique, see
Ho et al. (1978). There exist iterative versions of it and direct eigenvector based methods, the
so-called GRAM methods (Sanchez and Kowalski (1990)). These methods represent solutions to
the general PARAFAC model structure, but they are not least squares solutions as is the classical
PARAFAC solution.

The GRAM methods are often applied to calibration problems of two-dimensional instruments.
They are particularly useful in cases where the unknown prediction samples contain unknown
interferences that were not present in the set of calibration samples. Because of the uniqueness of
the different directions, information about the concentrations of the interesting constituents in one
particular sample is enough to estimate the concentration for the same constituents in any unknown
sample, even if this sample has unknown interferences. The drawback with the technique however is
that, at least in its present form, it puts quite strong assumptions on the data, which sometimes can
be inadequate.

4.4 Common principal components models

The common loadings Tucker-1 model is closely related to the common principal components
model, see Flury (1988) and Krzanowski (1988). This model was developed for the situation where
the same variables are measured on different groups of objects, and it is believed that although the
group covariance matrices are not equal, they do share common principal axes. This is essentially
the same model as the common loadings Tucker-1 model, where although the objects are actually
the same for each assessor, this information is not used in the estimation procedure. Flury (1988)
gives a maximum likelihood method for estimating the common loadings, and Krzanowski (1988)
shows that sensible alternative estimates can be obtained from the eigenvectors of a weighted sum
of the individual covariance matrices. If the attributes are standardized within assessors, by
subtracting assessor means, this is exactly equivalent to the Tucker-1 solution.

5. DATA PRETREATMENT IN TWFA MODELS

As for most multivariate analyses, centering and scaling of the raw data will affect the results of a
TWFA. Therefore it is important that the problems are properly understood by the user of the
techniques. Indeed in TWFA, pretreatment can be done in many different ways and so the problem
is much more difficult than for standard PCA. In the following we consider the most common
pretreatments and discuss the relationships between them.

5.1 Centering

If there is no centering of the raw data then a large proportion of the variation will be due to
differences in assessor means and attribute means. These are often considered to be of little interest,
and so are removed from the analysis. Two types of centering are usually considered; centering of
attributes over all objects and assessors, and centering of attributes for each assessor separately. The
first option only standardizes the attributes with respect to mean, and so the analysis will include
variation due to differences in assessor mean scores. This is sensible if this kind of difference
between assessors is of interest, but more often it is regarded as noise, and so removed from the
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analysis by means of the second centering. This has the same effect as the centering in Procrustes
rotation, i.e. the elimination of translation effects. It is also equivalent to estimating and removing
main effects in the ANOVA model (1).

5.2 Weighting

In addition to standardizing the data by removing variation due to differences in attribute and
assessor means, it is often sensible to standardize variation. This can be done by dividing each
attribute by its standard deviation, and as with centering there are two options: the standard
deviation can be computed over the whole sample or for each assessor separately. As above, the
two options have quite different effects on the results. The first option considers each assessor to be
using the same scale, so that if he/she uses a smaller part of the scale than the others, he will still
after weighting have less influence on the TWFA solution than the rest. In other words, this type of
weighting will only have an effect on the relative importance of the different attributes, with no
reference to the difference in scale among the different assessors. The second option on the other
hand also has an effect on the relative importance of the different assessors by weighting them all
equally. In this way, we can say that each assessor is transformed to the same scale. The choice
between the two weightings depends on what is believed about the assessors' performance: if it is
thought that an assessor will use a large part of the scale if he/she is confident about there being a
large difference between the samples, and that a small difference means he/she perceived very little
difference, then the weighting should be across all assessors. If on the other hand it is believed that
each assessor perceives differences in the same way, and simply chooses to use the scale differently,
then the standardization should be done within assessors.

This gives rise to another possible scaling, in which each assessor is given weight proportional
to his ability to detect differences among the objects. One way to do this, if there is replication
within assessors, is to give each assessor a weight proportional to his average F-value for the
different attributes. This could for instance be combined with centering the different attributes within
cach assessor. Another possibility is to give each assessor and attribute combination a weight
proportional to its particular F-value.

6. RELATING THREE-WAY MODELS TO OTHER DATA

Sometimes it is of interest to predict sensory profile data from external measurements. This may be
to improve understanding of the sensory data and the individual differences, or to replace the
sensory measurements by some fast and reliable instrumental measurement. In the first situation one
would typically use chemical or physical measurements, while in the second instrumental
measurements such as near infra-red spectral data are often more suitable. In both cases there is a
situation as indicated in Figure 3. There is a matrix ¥ of external information to be related to the
individual profiles Z. If the aim is improved understanding of Z it may be of interest to see the
relationship between the external measurements and each individual assessor. If the aim is
replacement of sensory data by instrumental measurement, prediction of the average score is often
more relevant. This can be done by standard multivariate regression techniques such as principal
component regression and partial least squares regression, although there are some indications that
even in this case improved prediction may be obtained by treating the assessors as individuals, Nes
and Kowalski (1989).
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The simplest way to use TWFA models to link sensory data with external data is to compute the
score matrix 7 and relate it to the external data ¥ by some regression technique, i.e.

T=BY+E. 24)

The matrix T is estimated first, then related to Y to get a relationship between Z and Y. This
approach can be used for both prediction and understanding. An alternative which is more
goal-oriented and also sometimes easier to compute is to apply the restriction 7= BY directly in the
factor model. In other words, the restricted matrix 7= BY is substituted into the general model X; =
TW.P’ and the parameters W, B and P are optimized by for instance the least squares criterion

Zj}"Xf -mwP| 25)

Writing TW,P as (BY + E)W,P with E being the error term in the regression equation 7'=BY+E,
we see that the error in the restricted model is the sum of the error in the unrestricted model and
EW.P. The restricted approach certainly represents a more direct and goal-oriented solution to the
problem, but because of the more complicated model error structure, it is likely that the unrestricted
model better satisfies the usual least squares(LS) requirements of equal variance etc. In practice the
Y variables may often be highly collinear. In order to obtain stable solutions they can be replaced by
the principal components corresponding to the most interesting information.

- Variables [ .

Objects Y — I L
External orieet Z /

1 / Assessors

* Astributes »

Figure 3: Data setup with external information.

CANDELINC, Carrol et al. (1980) is a method that is designed for optimization of equations
like (25). As shown in Carrol et al. (1980), if the W;'s satisfy a PARAFAC or Tucker-2 model, LS
optimization can easily be reduced to a minimization of the same type as the unrestricted
optimization. In the Tucker-2 model the solution can be found as a simple eigenvector solution
(Kloot and Kroonenberg (1985)). Therefore, the restricted approach is solved nmch more easily
than the unrestricted approach.

It should be mentioned that instead of doing any simultaneous modelling of the scores before
relating to ¥, one could simply relate Y to each of the X;s separately. Using the simultaneous model
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is however, a way of obtaining better prediction ability and better interpretation possibilities. As
always, if the model is correct, the results are better. If not, they are poorer.

7. HANDLING OF REPLICATES

If there are g replicates for each assessor in the experimental design there are several options. The
simplest are averaging over replicates before analysis, using the replicates as extra assessors and
using the replicates as extra attributes. The first of these is easiest, but represents a loss of
information. It is for example impossible to tell whether an assessor fits badly because he is
generating a lot of noise, or because he has a different opinion to the other assessors.

The second approach can be used to distinguish between differences in opinion and noise. After
fitting of all the mq ‘assessors’ one can compare the ¢ replicates for each assessor on an assessor
plot. Those of the assessors creating little noise, on the set of variables as a whole, should be close
together. If an assessor has a different opinion to the others but is consistent in his view, he should
have g replicates close to each other but some distance away from the other assessors. It would be
possible to examine a separate assessor plot for several subsets of the variables.

The third option is used to examine which of the attributes are recorded with little noise and
which are very noisy, ‘averaged’ over all assessors. The variable plot should be examined in the
same way as the assessor plot above.

The same information on an individual attribute basis can be obtained by ANOVA techniques.
For instance one can compute residual errors and F-values for the different attributes and assessors
and plot them as advocated in e.g. Nees and Solheim (1991). In this way, assessors' performance for
the different attributes can be compared and used to get information about the reliability of each
particular assessor.

From the point of fitting the model, taking means over replicates would usually be the most
sensible choice. The only point in doing otherwise (apart from the diagnostic reasons given above)
would be if there was some useful information in the replicates, e.g. if they represented different
orders of tasting and so there was a systematic reason why the replicates should be different. If the
only reason for differences between the replicates is noise, then it makes little sense to model this
noise and replicates should be averaged over.

8. DETECTION OF OUTLIERS

It is important to realize that the aim of the TWFA models is to look for and describe similarities in
structure among the representatives of each mode. For example in the common scores Tucker-1
model it is assumed that each assessor perceives the relationships among the objects in the same
way, i.¢. that they ali regard the same objects as similar and the same ones as different, though they
may use different variables to describe these relationships. It is quite possible that for one or more
assessors this is not a valid assumption, and the best way to investigate this is to examine the
residuals. Any structure in the residuals implies that the model is not adequate, and that the
dimensionality is too low in one or more of the modes, or possibly that the data pretreatment was
inappropriate. Isolated large residuals however can reveal interesting unusual cases. It is also
possible to sum residuals over assessors or attributes or objects to see which fit the model badly.
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Note that an assessor, say, who is an outlier on the assessor plot need not have a large residual. This
kind of outlier fits in with the model, i.e. perceives the underlying variables and the relationships
between the objects, but relates the two in an unusual way. An assessor with a large total residual
either does not fit in with the model, or possible generates an unusual amount of noise.

9. MISSING VALUES

In practice when working with large data-sets, there is always a chance that some data will be
missing. They could be individual data-points or whole vectors, for instance one whole sample for
one particular assessor. There is little advice about what to do about this in the literature, but a few
simple solutions are obvious. It should, however, be remembered when using one of these
techniques that the solution is always ‘wrong’, i.e. different from that obtained from a full data
matrix. If there are replicates available, and for instance only one of the replicates is missing, a
solution to the problem is simply to replace the empty cell by the average of the other replicates. If
there are no replicates available, a possible solution is to replace each empty cell by the LS-mean of
a main effect ANOVA model. In terms of the model (1) in the introduction, this means that
interactions are left out, au's and Py's estimated and the missing value is replaced by the
corresponding estimate of i + o + By. In a balanced model this is equal to

X +(f.-.k N ) + (f,/‘ —X4 ) (26)

This is identical to taking the sum of the mean over the assessors and the mean over the samples
and subtracting the grand mean.

10. VALIDATION OF THE MODEL

TWFA methods can be seen as purely descriptive ways of examining the data at hand, but
sometimes it is useful to know something about whether they have any relevance to other data sets,
for example whether the same groupings of samples (or variables or assessors) will appear if other
variables (or samples or assessors) are used. Also it is useful to know how much the final model
depends on one or two odd observations. One method used for this kind of investigation is
cross-validation (Stone, (1974)). Each observation in turn is omitted from the data set, and the
model fitted to the remaining data. The residual for the omitted data point is then found. This gives
an estimate of how representative of the data set each omitted observation is.

If there is no replication, there are three different ways of doing the cross-validation, corre-
sponding to the three possible definitions of an ‘observation’, i.e. object, attribute or assessor. These
three methods give information on the ‘unusualness’ of samples, attributes and assessors
respectively. Also, if any of these groups can be regarded as a random sample from some
population, then the appropriate method can be used to estimate the proportion of the variance of
that population that the model would explain. Depending on the model fitted, it is possible to treat
one or two (but not all three) of these groups as the observations to be omitted.

The principle is as follows: suppose a Tucker-1 common loadings model has been fitted, i.e. the
individual samples-by-attributes matrices X; have been modelled as X; = T;P" + E,, where P is the
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common loadings matrix. Since P has orthogonal columns, i.e. P'P = I, for any assessor matrix X;,

we can calculate the individual scores matrix 7; as 7; = X;P. Hence the approximation of X; is Xi=
X:PP’ and the residuals E; from this model are X; - X;PP". If we now omit assessor z from the data,
we can still fit the model, but we will get a different common loadings matrix P,. We then calculate
the residuals E, for this assessor as X; - X,P,P,". Usually the squared elements of this matrix are
summed, to give the total squared cross validated residual for assessor z. This procedure is repeated
for all of the assessors.

Ifit is desired to omit objects rather than assessors in the cross validation, the procedure is to fit
the model as ¥, = UP" + E; where Y} is the assessor-by-attribute matrix for object j (recall that this
gives the same P as previously). The residuals for an omitted object w are then found in the obvious
way, as Y, - LP.P,. It is not possible to omit attributes in this model, they can only be
cross-validated if one of the other two models is fitted, i.e, common object scores or common
asSessor Scores.

In general it is only possible to cross-validate a group that has not been reduced in dimensionality
in the model. Therefore in the common scores-common loadings Tucker-2 model, it is only possible
to cross-validate the assessors. The procedure is as follows: model assessor i's objects-by-attributes
matrix X; as X; = TW,P" + E;, where T (n x a) are the common scores, P (p x b) are the common
loadings and W, (a x.b) is the individual difference matrix for assessor i. Since "7 =1, and PP = I,
the residuals for assessor / are E; = X; - TT'X;PP". Hence any assessor can be omitted from the
model, the new T and P calculated and the cross-validated residuals found as before. Clearly for the
other two possible Tucker-2 models there is only one possible way of cross-validation. Without
replication it is not possible to cross-validate a Tucker-3 model.

If there is replication there is a wider choice of validation methods. All of the above methods are
available, as is the option of omitting the replicates one at a time. This can be done even for the
Tucker-3 model. An alternative is to regard one set of replicates as a test set, fit the model on the
other set and find the residuals for the test set.

11. DISCRIMINATION AMONG MODELS

Choosing and validating a model are closely connected, as a poor validation result could lead to the
choice of another mode!. Choice of model refers here to choice of underlying dimensionality. This is
a problem that even in standard PCA has no clearcut solution. It can be argued that a PCA or
TWFA merely is a low dimensional projection of the data picturing as much variation as possible.
Since we can only easily look at two- or three-dimensional plots, we simply choose two or three
dimensional models and note how much variation is explained by them. This is how standard PCA is
often used. It would however be convenient to have some criteria for the choice of dimensionality.
A method commonly used in PCA is a plot of residual variation against number of components, the
so-called scree diagram. The ‘elbow’ or point on this plot where this variation stops decreasing
rapidly is chosen as a reasonable dimensionality. Generalizing this to Tucker-1 is straightforward.
For Tucker-2 however, there is a different model/dimension for each combination of a and b leading
to a 3-dimensional scree diagram, and for Tucker-3 the general scree diagram would become
4-dimensional. It is unfortunately not possible to use separate scree diagrams for each mode as the
choice of dimension for one mode effects all of the other modes. In other words two dimensions for
the assessor mode may be appropriate if other two modes are also two dimensional, but if the object
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mode is then increased to three dimensions it may be necessary to increase the assessor dimension
also.

One approach is to restrict the dimensionality according to some other criterion. One possibility
is to set @ = b. This has the consequence that the assessors ‘configurations’ or fitted values are all
linear combinations of each other. This makes TWFA more similar to Generalized Procrustes
analysis and may in some cases be helpful. It reduces the scree diagram by one dimension and makes
it a practical proposition, although the concept of an ‘elbow’ in three dimensions is a little difficult.

Any scree diagram can be based on cross-validated residual variance, and there is a tendency for
these plots to level out more quickly, and so lower dimensionalities tend to be chosen. This is
usually a good thing as there is no benefit in modelling dimensions that are merely noise.

Table 1: The 12 cheeses with the name used in plots.

No Description Name
i Jarlsberg FHS Jarl_FHS
2 Marks & Spencer Mature Marks
3 Jarlsberg Lite H30 Jarl_H30
4 Tesco canadian extra-mature Tesc_mat
5 Norvegia H30 Norv_H30
6 Safeway home produced mild Safeway
7 Vel-Lagret Norvegia Norv_Vel
8 Anchor mature Anchor
9 Norsk Cheddar skorpefri Cheddar
10 Tesco reduced fat Tesc_fat
11 Skorpefii F.45 (Norvegia F45) Norv_F45
12 Tesco mild reduced fat Tesc_mil

12. ILLUSTRATION BY AN EXAMPLE OF A CHEESE TASTING EXPERIMENT

Twelve cheeses were selected for this study, six Norwegian and six Cheddars. A list of the brand
names is given in Table 1. They were assessed by a Norwegian and a Scottish panel, but for this
example only the data from the Norwegian panel are considered. Full details of the experiment are
given in Hirst et al (1994). The panel consisted of 10 trained assessors. The attributes are given in
Table 2. They were scored on a continuous line scale anchored at 1 and 9. The experiment was
balanced for order of tasting and session effects. There were two replicates, which have been
averaged throughout the example.
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12.1 PCA of the cheese data

In order to compare TWFA with more conventional methods a principal components analysis was
performed on the objects-by-attributes matrix averaged over all assessors and replicates. The
averaged attributes were centered and scaled to zero mean and a standard deviation of unity. In
Figures 4(a), (b) and (c) some results from the analysis are presented. The first two principal
components explain respectively 71% and 10% of the variation. From the score plot for the first
two components it is clear that the panel roughly discriminates the Norwegian from the Cheddar
cheeses along the first component, with the exceptions that the Safeway mild cheese seems more
‘Norwegian® than Cheddar, and the Norwegian Cheddar is closer to the other Cheddars. The
Norwegian Jarlsberg H30 is separated out by the second component, which appears from the
loading plot to be a texture component spanning from firmness/grainyness to pastyness/moath
coating texture. The Jarisberg H30 is apparently more firm than the other cheeses. The first
principal component includes together with texture properties creamy odour/flavour in one
direction, characterizing the Norwegian cheeses, and the remaining flavour/odour properties in the
other direction characterizing the Cheddars. The real distinction between the cheeses appears
therefore to be that compared to the Cheddars the Norwegian cheeses have a pronounced creanty
flavour/odour together with a more rubbery texture.
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Figure 4: Results from PCA on assessor mean scores. (a) Residual variance, (b) loadings and (c)

scores for the first two factors.

12.2 Tucker-1 analysis of the cheese data

As described above three possible approaches can be taken corresponding to the three possible
ways of ‘unfolding’ the three-way data matrix. We will here show some results from the common
scores model and the common loadings model: The common scores model assumes that the
assessors all perceive the relationships between the cheeses in the same way. This is probably
sensible here, though if the Scottish assessors had been included in the analysis this may not have
been valid as it is possible that they would perceive different ‘underlying cheese types’. The
common loadings model assumes the existence of common underlying sensory attributes for cheese
which again may be valid for the Norwegian panel but possibly not if the Scottish panel were
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included. In both cases the data were pretreated by centering and standardizing all variables within
assessors.

Table 2: The 14 common attributes with the names used in plots.

Description Name
1 Overall odour over_odo
2 Creamy/milk odour crea_odo
3 Ammonia odour ammo_odo
4 Overall flavour over_fla
5 Creamy/milk flavour crea_fla
6 Sour flavour sour_fla
7 Ammonia flavour ammo_fla
8 Bitter flavour bitt_fla
9 Salt flavour salt_fla
10 Firmness texture firm_tex
11 Rubbery texture rubb_tex
12 Pasty texture past_tex
13 Grainy texture grai_tex
14 Mouth coating text. coat_tex

Scores and loadings for the first two factors are plotted in Figures 5(a) and (b) (common scores
model) and Figures 6(a) and (b) (common loadings model). First note that the proportion of
variation explained by two factors are 51% in the common scores model and 53% in the common
loadings model. This demonstrates firstly that the two fits are not the same and more importantly
that more variability remains unexplained compared to the mean score PCA of the previous section.
This is to be expected as a lot of the variability in the PCA analysis was lost when the assessors
were averaged over.

Neither the common scores nor the common loadings plot show great differences from the PCA
plots. This indicates that averaging over assessors does not conceal major relationships for this
particular data set. However some changes do appear: the Safeway cheddar has moved outside the
group of Norwegian cheeses on the second component, and the ammonia flavour/odour has moved
upwards along the second component.

The interpretation of a changed position of a sample is that the assessors do not entirely agree on
the use of certain attributes. In the mean score PCA the assessors are ‘forced’ to agree on the
attributes as an average value is used, but the common scores model allows the assessors to use the
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attributes individually. A similar consideration holds for the change of position of an attribute in the
common loadings model. We will return to this in further detail in the section on Tucker-2

modelling.
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Figure 5: Scores (a) and loadings (b) for the first two factors in the ‘common scores’ version of
the Tucker-1 model. The numbers in the loadings plot (b) refer to the attributes, cf. Table 2.

It is now useful to relate the common scores to the attributes (or common loadings to the
objects). One way to do this is to plot all 140 assessor loadings on the common scores plot (Figure
5(b)) (or all 120 assessor scores on the common loadings plot, Figure 6(b)). These plots contain so
many points they are almost impossible to interpret, though there are clearly similarities between the
assessors. An alternative is to produce a separate plot for each assessor, for whichever model is
chosen. Again there is too much detail to be interpreted, though it is highly likely that all assessor
plots would be similar. Therefore a Tucker-2 model to investigate both objects and attributes is
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sensible. Note that the superposition of the common scores and common loadings plots is not
possible as they are the results of different models.
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Figure 6: Loadings (a) and scores (b) for the first two factors in the ‘common loadings’ version
of the Tucker-1 model. The numbers in the loading plot (b) refer to the cheeses, cf. Table 1.

12.3 Tucker-2 modelling of the cheese data

As above the data is centred and standardized for each assessor and attribute. A Tucker-2 model
with a =b =2, cf. Section 11, was fitted by performing the algorithm of Section 3.2. The amount of
variation explained by fitting a model with two factors in both assessor and object modes is 51.1%,
approximately the same as for the Tucker-1 models. Note that what we have done is to reduce the
object dimension to two as compared with the common loadings Tucker-1 model, which involved
no reduction of dimension for the objects (or equivalently the variable dimension has been reduced
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compared with the common scores model). The fact that the variance explained hardly changes
means that the assumption of two underlying object types is probably valid.

In Figure 7(a) and (b) the common scores and loadings, P and 7, are plotted. Again they look
very much like those for the Tucker-1 model. The two plots cannot be superimposed, unlike in
PCA, as the connection between cheeses and attributes can only be made through the individual
2 x 2 matrices W;. These matrices describe how the assessors use the underlying attributes to
describe the object types. In order to investigate this further we consider the individual 12 x 2
scores matrices TW;, though it would be equally relevant to consider W;P". The Figures 8 (a)-(j)
show these individual scores plots, which can be directly interpreted together with the common
loadings plot, Figure 7(b). The individual scores can be interpreted as the way each assessor places
the 12 cheeses in the common attribute space defined by the common loadings. Along the first axis,
the component separating Norwegian from Cheddar cheese, the assessors agree to a large extent,
and the interpretation of the scores plot from the mean score PCA, Figure 4(b) seems to be valid.
There are however differences between the assessors on the second axis. Assessors 3, 4, 7, 8, and
10 rank the cheeses differently to the other 5 assessors on this axis. Recall that the second axis was
mainly a texture variable with firmness/graininess at the positive end, and pastiness/moath coating
texture at the other. There seem to be two different ways of using these four attributes, maybe due
to confusion. In the section on the effect of different pretreatments of the data below we interpret
this further. We now proceed to investigate these differences between assessors by Tucker-3
modelling.
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12.4 Tucker-3 modelling of the cheese data

Based on the same centering and standardization as above we used a Tucker-3 model witha =5 =¢
=2, i.e. two components in each of the three modes. This gives a 2 x 14 common loadings matrix
P, a 12 x 2 common scores matrix 7 and a 10 x 2 assessor scores matrix 0, together with the two 2
x 2 core matrices C; and C,. These scores are plotted in Figures 9(a), (b) and (c).

In the assessor plot Figure 9(c) we can see that the assessors all have similar scores on the first
dimension, indicating agreement about the main source of variation in the cheeses, but there is a
range of values on the second dimension, indicating considerable disagreement about the less
important sources of variation. This difference can be interpreted by examining the core matrices.
They are:

G | att 1 att 2 C; | att 1 att 2
sample 1 248 -1.1 sample 1 -1.5 -29
sample 2 1.1 9.5 sample 2 45 3.0

These two matrices represent two assessor types, with each assessor being partly one and partly
the other. The first type, Ci, is fairly simple. Sample type / is described by attribute type 1, and
sample type 2 by attribute type 2. Referring to the sample and attribute plots (Figures 9(a) and (b))
it is clear that sample type 1 represents a Cheddar-Norwegian difference, and sample type 2 seems
to separate out the high fat Jarlsberg. Attribute type 1 is a contrast between strong flavours such as
bitter, salt and overall flavour, and creamy flavour, and attribute type 2 seems to be a texture
variable contrasting sticky and doughy with hard, rubbery and grainy. Assessor type 1 therefore
would describe cheddar cheese as being strongly flavoured, compared to Norwegian cheese which
is creamy. He/she would distinguish Jarlsberg by its hard and rubbery texture.

Assessor type 2 is more complex. He/she would say that although the strength of flavour is
important in distinguishing Cheddar and Norwegian cheese, the texture seems more important and
the other way around for the separation of Jarlsberg.

The range of individual core matrices can be investigated by noting that all assessors have a
weight of about 0.3 on W,, but weights from 0.4 (assessors 1 and 3) to -0.6 (assessor 7) on W.
This pattern, seen in Figure 9(a), do not express any large explanational power of assessor type 2 as
compared to type 1, but merely expresses that the assessors have different amounts of the less
important assessor type 2 in them. These weights correspond to core matrices ranging from

6.8-15 ; 83 14

21 41) {2410
First note that as the core matrices C; and G, listed in the beginning of this section were
representing ‘ideal’ assessor types the two matrices here represent actual assessors. The two

matrices both have large values on the upper diagonal, indicating agreement that variation in sample
type 1 is largely due to attribute type 1.
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Figure 9: Results from the two-factor Tucker-3 model. (a) Assessor scores, (b) loadings and (c)
cheese scores.

The assessors 1 and 3 also have a large value in the lower diagonal indicating that variation in
sample type 2 is largely due to attribute type 2, but this is not the case for assessor 7.

Also there is disagreement in how important the other attribute should be in each case. The
change of sign indicates a significant difference between the assessors - assessors 1 and 3 think
cheddars should have negative scores on the texture variable, i.c. that they are sticky and doughy,
represented by the attributes past_tex and coat_tex in Figure 9, whereas assessor 7 would describe
them as grainy and hard, corresponding to the positions of rubb_tex, firm_tex and grai_tex in Figure
9. There is a similar difference in the sign of the strength of flavour attribute in describing the
Jarlsberg.

The two matrices C; and C; have the additional usefill property, that they give information about
the amount of variation explained by each type of assessor mode. This means that the sum of the
squares of the four elements of C,

24.82+ (1.1 + 1.1 + 9.5 =708

is the amount of variation explained by the Tucker-3 model with g = b =2 and ¢ = 1 (Kloot and
Kroonenberg(1985)). In an analogous way the sum of the squares of the eight elements of C; and
CZ;

708 + (-1.5)” + (-2.9)* + 4.5% + 3.0° = 748

is the amount of variation explained by the Tucker-3 model with a = b = ¢ = 2. These amounts must
be seen relative to the total amount of variation in the data, which due to the pretreatment of the
data is a fixed number, determined by the number of assessors, objects and attributes alone. With
the standardization in use, the data consists of 140 ‘variables’ (assessors-by-attributes) of 12
observations divided by the standard deviation of these 12 observations. Letting x;x denote the
original data before pretreatment and SDjy the standard deviation of the 12 samples for assessor i
and attribute £, the total variance can be found as
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14 10
ziﬁl‘ﬁsil ZZ“SD* 140011=1540.
k=1 i=l j=1 k=1 i=1

The total percentage of explained variation for the Tucker-3 model with a = b = ¢ = 2 is thus
748/1540 = 49%. This is almost the same as for the Tucker-2 model, indicating that two assessor
dimensions is probably reasonable.

12.5 Validation and choice of underlying dimensionality

In this example the dimensions of the attributes and samples have been kept the same. There is no
particular reason why this should be done, but it does mean that only one dimension needs to be
chosen for the Tucker-2 model, and two for the Tucker-3 model. Hence scree diagrams can be
constructed.

Consider the Tucker-2 model first. In Figure 10 the accumulated percentage residual variance is
plotted together with the same for two different cross-validation principles: assessor-wise,
replicate-wise. The replicate-wise cross-validation variance starts to increase from dimension 2. The
residual variance and assessor-wise cross-validated residual variance also seems to have leveled off
at factor 2, maybe even at factor 1.

100

- ===~ Replication-CV

80

60

40

e, AssessorCV

% Residual variance

20

Residuals

0 2 4 6 8
Number of factors

Figure 10: Regular and cross-validated scree plots for Tucker-2 models with a = b.

Fixing a = b = 2 we now turn to choice of dimension in the Tucker-3 model. In Figure 11 the
accurmulated percentage residual variance is plotted together with the same for the replicate-wise
cross-validation, this being the only cross-validation possible in the Tucker-3 model. This again
suggests that a choice of 2 for each dimensionality seems sensible, maybe even only 1 factor is
needed, but two is definitely reasonable.

After choosing the dimensionality there are still some validatory tools of interest, as mentioned in
section 8. The Figures 12(a), (b) show how well the Tucker-2 model with @ = b = 2 explains the
variation in each attribute and for each assessor. We see that among attributes creamy odour,
overall flavour and rubbery texture are best and amonia flavour and salt flavour most poorly
explained by the model. The attributes with the highest amount of explained variation are the ones
with the most structure related to the cheeses. The actual structure could, however, differ from
assessor to assessor. Among the assessors number 1 seems to be poorly described by the model
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compared to the others. Looking at assessor number 1's individual score plot, Figure 8(a) we see
that number 1 is the assessor with the least spread of the cheeses in the two-dimensional attribute
space given by the common loadings. Number 1 is thus the assessor that along the estimated
common attribute components is worst at distinguishing between the cheeses.
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Figure 11: Regular and cross-validated scree plots for Tucker-3 models witha =b =2.

Similar plots could be made cheese-wise, and in the Tucker-1 and 2 cases the assessor-wise and
cheese-wise plots might be substituted with plots of corresponding cross-validated variance.
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Figure 12: Assessor-wise and attribute-wise relative explained variance by the Tucker-2 model with
a=b=2.
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12.6 The effect of pretreatment of the data

In the interpretations made above we must bear in mind that each attribute for each assessor was
standardized to have unit variance. As discussed in section 5.2 this helps to remove differences in
the assessors use of the scale and assumes implicitly that such differences do not express real
differences between the cheeses. If however we want to put some emphasis on differences in use of
scale two possibilities arise: Firstly the data can be pretreated as above, and then the scale
differences investigated by other means. This could be done by estimating a scale parameter for each
attribute, eg. the ‘stretching and shrinking’ values in Nas & Solheim (1991) or the ‘maximum
likelihood’ values in Brockhoff & Skovgaard (1994) together with some kind of plots summarizing
the information for all attributes as done in the former of the two mentioned papers. This is,
however, a univariate approach to the investigation of scale differences. A multivariate approach
could be to choose the second weighting option mentioned in section 5.2, namely to weight each
attribute with the inverse standard deviation computed over all assessors, ie. based on 120
observations. This way the individual scaling differences will be included in the TWFA modelling.
We still centre the data for each assessor before weighting, as we do not want to include the
differences in assessor levels. With this pretreatment we fitted a Tucker-2 model with a = b = 2.
Figures 13(a) and (b) show the common scores and loadings.

Comparing with the Tucker-2 model for the former pretreatment, Figures 7(a) and (b), and mean
score PCA, Figures 4(b) and (c), we see that the difference between the current Tucker-2 common
loadings/scores and the standard PCA loadings/scores are more distinct. This goes together with the
fact, that by introducing more individual variability, by allowing the assessors to use different
portions of the scale, the standard PCA becomes less representative for a ‘typical’ assessor.

The individual score plots, Figures 15(a)-(j), show the same patterns as do Figures 8(a)-(j), but
the differences between the assessors are more clear. Especially the spread of the cheeses are
varying quite a bit now. The spread is directly related to the actual variation in the data for a
particular assessor. Note that in the former pretreatment of the data, the variation in the data for the
assessors were equal. Figure 14(a) shows how much each of the 10 assessors contributes to the
total variation in the data, and we observe that the heights of the bars in Figure 14(a) are directly
related to the spread of the cheeses in the individual score plots, Figures 15(a)-(j). The ‘directions’
in the individual score plots are for the individual assessor determined by the attributes for which
he/she has a particular sensitivity. We have documented this by examining the F-statistics from
ANOVA's for each assessor and attribute. For example for assessor number 6 the attributes with the
four largest F-values are crea_odo, over_odo, crea_fla and rubb_tex. Taking the positions of these
four attributes in the common attribute plot Figure 13(a), they span the direction of the individual
scores of assessor 6. This tendency is observed for all the individuals.
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13. CONCLUSION

We have presented the concept of TWFA modelling in the setup of sensory profile data. The fitting
procedures and interpretations are thoroughly treated in a way that should make it possible for the
reader to adopt and apply the methods without further literature search.

From Tucker-1 to Tucker-3 models we have outlined how these models embrace most known
multivariate methods of investigating sensory profile data: PCA, GPA, INDSCAL, PARAFAC and
‘common principal components’. This generality could be stressed to be both the strength and the
weakness of the ‘Tucker-approach’ we have taken in this chapter. The strength lies in the general
principle of not making any model selection errors, when the modelling is started at a sufficiently
general level and subsequently letting the data decide which simplifications can be assumed. The
weakness comes up due to the substantial number of possible models to fit and investigate, which
together with the various data pretreatment approaches requires a considerable task of the analyst.
Also formal statistical testing of model simplifications are not performed. Re-sampling methods,
such as permutation tests and bootstrapping, definitely has a role to play in that context. We leave
this area open here.

In spite of these weaknesses we believe, and have illustrated by the cheese data example, that the
TWFA methods as applied here offers additional information and insight in a typical sensory profile
data set.
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