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Teacher’s Preface

Why another textbook? The statistical community generally agrees that at the
upper undergraduate level, or the beginning master’s level, students of statistics
should begin to study the mathematical methods of the field. We assume that by
then they will have studied the usual two-year college sequence, including calculus
through multiple integrals and the basics of matrix algebra. Therefore, they are
ready to learn the foundations of their subject, in much more depth than is usual
in an applied, “cookbook,” introduction to statistical methodology.

There are a number of well-written, widely used textbooks for such a course.
These seem to reflect a consensus for what needs to be taught and how it should
be taught. So, why do we need yet another book for this spot in the curriculum?

I learned mathematical statistics with the help of the standard texts. Since then,
I have taught this course and similar ones many times, at several different universi-
ties, using well-thought-of textbooks. But from the beginning, I felt that something
was wrong. It took me several years to articulate the problem, and many more to
assemble my solution into the book you have in your hand.

You see, I spend the rest of my day in statistical consulting and statistical re-
search. I should have been preparing my mathematical statistics students to join
me in this exciting work. But from seeing what the better graduating seniors and
beginning graduate students usually knew, I concluded that the standard curricu-
lum was not teaching them to be sophisticated citizens of the statistical community.
These able students seemed to be well informed about a set of narrow, technical
issues and at the same time embarrassingly lacking in any understanding of more
fundamental matters. For example, many of them could discourse learnedly on
which sources of variation were testable in complicated linear models. But they
became tongue-tied when asked to explain, in English, what the presence of some
interaction meant for the real-world experiment under discussion!
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What went wrong? I have come to believe that the problem lies in our history.
The first modern textbooks were written in the 1950s. This was at the end of
the Heroic Age of statistics, roughly, the first half of the twentieth century. Two
bodies of magnificent achievements mark that era. The first, identified with Student,
Fisher, Neyman, Pearson, and many others, developed the philosophy and formal
methodology of what we now call classical inference. The analysis of scientific
experiments became so straightforward that these techniques swept the world of
applications. Many of our clients today seem to believe that these methods are
statistics.

The second, associated with Liapunov, Kolmogorov, and many others, was the
formal mathematicization of probability and statistics. These researchers proved
precise central limit theorems, strong laws of large numbers, and laws of the iterated
logarithm (let me call these advanced asymptotics). They axiomatized probability
theory and placed distribution theory on a rigorous foundation, using Lebesgue
integration and measure theory.

By the 1950s, statisticians were dazzled by these achievements, and to some
extent we still are. The standard textbooks of mathematical statistics show it.
Unfortunately, this causes problems for teachers. Measure theory and advanced
asymptotics are still well beyond the sophistication of most undergraduates, so we
cannot really teach them at this level. Furthermore, too much classical inference
leads us to neglect the preceding two centuries of powerful but less formal meth-
ods, not to mention the broad advances of the last 50 years: Bayesian inference,
conditional inference, likelihood-based inference, and so forth.

So the standard textbooks start with long, dry, introductions to abstract probabil-
ity and distribution theory, almost devoid of statistical motivations and examples
(poker problems?!). Then there is a frantic rush, again largely unmotivated, to intro-
duce exactly those distributions that will be needed for classical inference. Finally,
two-thirds of the way through, the first real statistical applications appear—means
tests, one-way ANOVA, etc.—but rigidly confined within the classical inferential
framework. (An early reader of the manuscript called this “the cult of the t-test.”)
Finally, in perhaps Chapter 14, the books get to linear regression. Now, regression
is 200 years old, easy, intuitive, and incredibly useful. Unfortunately, it has been
made very difficult: “conditioning of multivariate Gaussian distributions” as one
cultist put it. Fortunately, it appears so late in the term that it gets omitted anyway.

We distort the details of teaching, too, by our obsession with graduate-level
rigor. Large-sample theory is at the heart of statistical thinking, but we are afraid
to touch it. “Asymptotics consists of corollaries to the central limit theorem,” as
another cultist puts it. We seem to have forgotten that 200 years of what I shall
call elementary asymptotics preceded Liapunov’s work. Furthermore, the fear of
saying anything that will have to be modified later (in graduate classes that assume
measure theory) forces undergraduate mathematical statistics texts to include very
little real mathematics.

As a result, most of these standard texts are hardly different from the cookbooks,
with a few integrals tossed in for flavor, like jalapeño bits in cornbread. Others are
spiced with definitions and theorems hedged about with very technical conditions,
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which are never motivated, explained, or applied (remember “regularity condi-
tions”?). Mathematical proofs, surely a basic tool for understanding, are confined
to a scattering of places, chosen apparently because the arguments are easy and
“elegant.” Elsewhere, the demoralizing refrain becomes “the proof is beyond the
scope of this course.”

How is this book different? In short, this book is intended to teach students to
do mathematical statistics, not just to appreciate it. Therefore, I have redesigned the
course from first principles. If you are familiar with a standard textbook on the sub-
ject and you open this one at random, you are very likely to find either a surprising
topic or an unexpected treatment or placement of a standard topic. But everything
is here for a reason, and its order of appearance has been carefully chosen.

First, as the subtitle implies, the treatment in unified. You will find here no
artificial separation of probability from statistics, distribution theory from infer-
ence, or estimation from hypothesis testing. I treat probability as a mathematical
handmaiden of statistics. It is developed, carefully, as it is needed. A statistical
motivation for each aspect of probability theory is therefore provided.

Second, I have updated the range of subjects covered. You will encounter in-
troductions to such important modern topics as loglinear models for contingency
tables and logistic regression models (very early in the book!), finite population
sampling, branching processes, and small-sample asymptotics.

More important are the matters I emphasize systematically. Asymptotics is a
major theme of this book. Many large-sample results are not difficult and quite
appropriate to an undergraduate course. For example, I had always taught that with
“large n, small p” one may use the Poisson approximation to binomial probabil-
ities. Then I would be embarrassed when a student asked me exactly when this
worked. So we derive here a simple, useful error bound that answers this question.
Naturally, a full modern central limit theorem is mathematically above the level of
this course. But a great number of useful yet more elementary normal limit results
exist, and many are derived here.

I emphasize those methods and concepts that are most useful in statistics in
the broad sense. For example, distribution theory is motivated by detailed study
of the most widely useful families of random variables. Classical estimation and
hypothesis testing are still dealt with, but as applications of these general tools.
Simultaneously, Bayesian, conditional, and other styles of inference are introduced
as well.

The standard textbooks, unfortunately, tend to introduce very obscure and ab-
stract subjects “cold” (where did a horrible expression like 1√

2π
e−x2/2 come from?),

then only belatedly get around to motivating them and giving examples. Here we
insist on concreteness. The book precedes each new topic with a relevant statistical
problem. We introduce abstract concepts gradually, working from the special to
the general. At the same time, each new technique is applied as widely as possible.
Thus, every chapter is quite broad, touching on many connections with its main
topics.

The book’s attitude toward mathematics may surprise you: We take it seriously.
Our students may not know measure theory, but they do know an enormous amount
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of useful mathematics. This text uses what they do know and teaches them more.
We aim for reasonable completeness: Every formula is derived, every property
is proved (often, students are asked to complete the arguments themselves as
exercises). The level of mathematical precision and generality is appropriate to a
serious upper-level undergraduate course.

At the same time, students are not expected to memorize exotic technicalities,
relevant only in graduate school. For example, the book does not burden them with
the infamous “triple” definition of a random variable; a less obscure definition is
adequate for our work here. (Those students who go on to graduate mathematical
statistics courses will be just the ones who will have no trouble switching to
the more abstract point of view later.) Furthermore, we emphasize mathematical
directness: Those short, elegant proofs so prized by professors are often here
replaced by slightly longer but more constructive demonstrations. Our goal is to
stimulate understanding, not to dazzle with our brilliance.

What is in the book? These pedagogical principles impose an unconventional
order of topics. Let me take you on a brief tour of the book:

The “Getting Started” chapter motivates the study of statistics, then prepares
the student for hands-on involvement: completing proofs and derivations as well
as working problems.

Chapter 1 adopts an attitude right away: Statistics precedes probability. That
is, models for important phenomena are more important than models for mea-
surement and sampling error. The first two chapters do not mention probability.
We start with the linear data-summary models that make up so much of statisti-
cal practice: one-way layouts and factorial models. Fundamental concepts such as
additivity and interaction appear naturally. The simplest linear regression models
follow by interpolation. Then we construct simple contingency-table models for
counting experiments and thereby discover independence and association. Then
we take logarithms, to derive loglinear models for contingency tables (which are
strikingly parallel to our linear models). Again, logistic regression models arise
by interpolation. In this chapter, of course, we restrict ourselves to cases for which
reasonable parameter estimates are obvious.

Chapter 2 shows how to estimate ANOVA and regression models by the ancient,
intuitive method of least squares. We emphasize geometrical interpolation of the
method—shortest Euclidean distance. This motivates sample variance, covariance,
and correlation. Decomposition of the sum of squares in ANOVA and insight into
degrees of freedom follow naturally.

That is as far as we can go without models for errors, so Chapter 3 begins
with a conventional introduction to combinatorial probability. It is, however, very
concrete: We draw marbles from urns. Rather than treat conditional probability
as a later, artificially difficult topic, we start with the obvious: All probabilities
are conditional. It is just that a few of them are conditional on a whole sample
space. Then the first asymptotic result is obtained, to aid in the understanding of
the famous “birthday problem.” This leads to insight into the difference between
finite population and infinite population sampling.



Teacher’s Preface ix

Chapter 4 uses geometrical examples to introduce continuous probability mod-
els. Then we generalize to abstract probability. The axioms we use correspond to
how one actually calculates probability. We go on to general discrete probability,
and Bayes’s theorem. The chapter ends with an elementary introduction to Borel
algebra as a basis for continuous probabilities.

Chapter 5 introduces discrete random variables. We start with finite popula-
tion sampling, in particular, the negative hypergeometric family. You may not
be familiar with this family, but the reasons to be interested are numerous: (1)
Many common random variables (binomial, negative binomial, Poisson, uniform,
gamma, beta, and normal) are asymptotic limits of this family; (2) it possesses
in transparent ways the symmetries and dualities of those families; and (3) it be-
comes particularly easy for the student to carry out his own simulations, via urn
models. Then the Fisher exact test gives us the first example of an hypothesis test,
for independence in the 2 × 2 tables we studied in Chapter 1. We introduce the
expectation of discrete random variables as a generalization of the average of a
finite population. Finally, we give the first estimates for unknown parameters and
confidence bounds for them.

Chapter 6 introduces the geometric, negative binomial, binomial, and Poisson
families. We discover that the first three arise as asymptotic limits in the negative
hypergeometric family and also as sequences of Bernoulli experiments. Thus,
we have related finite and infinite population sampling. We investigate just when
the Poisson family may be used as an asymptotic approximation in the binomial
and negative binomial families. General discrete expectations and the population
variance are then introduced. Confidence intervals and two-sided hypothesis tests
provide natural applications.

Chapter 7 introduces random vectors and random samples. Here is where
marginal and conditional distributions appear, and from these, population covari-
ance and correlation. This tells us some things about the distribution of the sample
mean and variance, and leads to the first laws of large numbers. The study of con-
ditional distributions permits the first examples of parametric Bayesian inference.

Chapter 8 investigates parameter estimation and evaluation of fit in complicated
discrete models. We introduce the discrete likelihood and the log-likelihood ratio
statistic. This turns out often to be asymptotically equivalent to Pearson’s chi-
squared statistic, but it is much more generally useful. Then we introduce maximum
likelihood estimation and apply it to loglinear contingency table models; estimates
are computed by iterative proportional fitting. We estimate linear logistic models
by maximum likelihood, evaluated by Newton’s method.

Chapter 9 constructs the Poisson process, from which we obtain the gamma
family. Then a Dirichlet process is constructed, from which we get the beta family.
Connections between these two families are explored. The continuous version of
the likelihood ratio is introduced, and we use it to establish the Neyman–Pearson
lemma.

Chapter 10 defines the general quantile function of a random variable, by asking
how we might simulate it. Then we may define the expectation of any random
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variable as the integral of that quantile function, using only elementary calculus.
Next, we derive the standard normal distribution as an asymptotic limit of the
gamma family. Stirling’s formula is a wonderful bit of gravy from this argument.
By duality, the normal distribution is also an asymptotic limit in the Poisson family.

Chapter 11 develops multivariate absolutely continuous random variable theory.
The first family we study is the joint distribution of several uniform order statistics.
We then find the chi-squared distribution and show it to be a large-sample limit of
the chi-squared statistic from categorical data analysis. Duality and conditioning
arguments lead to bivariate normal distributions and to asymptotic normality of
several common families.

Chapter 12 derives the null distributions of the R-squared and F statistics from
least-squares theory, on the surprisingly weak assumption that errors are spheri-
cally distributed. We notice then that maximum likelihood estimates for normal
error models are least-squares. Parameter estimates for the general linear model
and their variances are obtained. We show that these are best linear unbiased via
the Gauss-Markov theorem. The information inequality is then derived as a first
step to understanding why maximum likelihood estimates are so often good.

Chapter 13 begins to view random variables from alternative mathematical rep-
resentations. First, we study the probability generating function, using the concrete
motivation of finding the compound distributions that appear in branching pro-
cesses. The moment generating function may now be motivated concretely, for
positive random variables, by comparison with negative exponential variables. We
then suggest (incompletely, of course) how it may be used to derive some limit
theorems. We then introduce exponential families, emphasizing how they capture
common features and calculations for many of our favorite families. We finish
with an introduction to a lively modern topic: probability approximation by small-
sample asymptotics. This applies beautifully all the tools developed earlier in the
chapter.

Fitting the book to your course. There are, of course, alternative paths through
the material if you have different goals for your students. A shorter course in
probability and distribution theory may be taught by skipping lightly over those
chapters that emphasize data modeling and estimation: Chapters 1, 2, and 8, and 12.
Later sections in other chapters, which investigate methods of statistical inference,
might also be deemphasized.

At the opposite extreme, a sophisticated sequence in applied statistics may start
with this material. Early parts of Chapter 1 could be supplemented by a lecture on
statistical graphics and exploratory data analysis. Chapter 8 might be followed by
the study of more complicated contingency table models. Then Chapter 12 leads
naturally into a fuller treatment of inference in the linear model. The course may
be supplemented throughout with tutorials on how to use computer packages to
draw better graphs and carry out computations with more elaborate models and
larger data sets.

Certain sections, marked with an asterisk (*), may be delayed until later if the
instructor wishes at relatively little cost to continuity. The Time to Review list at
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the beginning of each chapter should serve to warn you when to return to these
matters.
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Getting Started

Why Study Statistics?

We have all been exposed to the popular notion that statistics is about numbers that
are deadly-dull, and perhaps intentionally misleading. You will quickly discover
in this course that the opposite is the case: Statistics is the science of extracting
useful (and therefore interesting) numbers from the world; and the statistician is
committed to forcing these numbers to reveal the truth. Therefore, statistics has
become an essential tool of modern civilization. For example:

(1) In the early nineteenth century, astronomers observed their first asteroid,
Ceres. It then quickly disappeared into the sun’s glare, and there was some doubt
that it could be found again in the foreseeable future, since it would have moved
along in its (unknown) orbit. But the great mathematician Carl Friedrich Gauss
managed to compute the orbit of Ceres, using those observations that had been
made before it disappeared. He then told observers where to look for it some
months hence. The asteroid was found where he had predicted it would be, and
Gauss became one of the most respected scientists of his day.

Historians have emphasized Gauss’s mathematical achievement in using a few
accurately observed positions of Ceres to discover its overall orbit, using the com-
plicated equations of celestial mechanics. But that is not all that Gauss did. He
started with a somewhat larger number of not-very-accurate observations of the
positions of Ceres. Telescopes, observers, and especially clocks were not as reli-
able in those days as we would now expect them to be. So the observations he had
to work with, if plotted on a chart of the sky, do not show a realistically smooth
orbit, but instead bounce around a bit. Fortunately, Gauss was one of the inventors
of a marvelous new statistical technique, the method of least squares, that takes a
number of imperfect observations and reduces them to a few, more precise, num-
bers characterizing the orbit. So Gauss’s technical achievement was twofold; and
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one aspect of it was a statistical method that has been enormously valuable ever
since, throughout science.

(2) In his biography of Richard Feynman, James Gleick observed that we would
now be amazed, and perhaps appalled, that after Alexander Fleming’s discovery of
the first antibiotic, penicillin, it took most of a generation before the drug became a
standard treatment for deadly diseases. The process started with Fleming’s report
about bacteria in petri dishes, which led to an attempt to use penicillin on a sick
human being, and evolved into the reports by a number of physicians on how well
penicillin seemed to have worked for their patients. Finally, the reputation of the
drug in the medical community had become so overwhelmingly favorable that
pharmaceutical companies took the risk of gearing up for mass production.

This process was so slow because there was no agreement in the scientific com-
munity on what a sensible, orderly way to evaluate new drugs might be. After
all, worthless drugs are being invented all the time. Because some people recover
spontaneously, while others fail to respond to even the most promising drugs,
good and bad drugs are always difficult to tell apart. In the same years medical re-
searchers were studying penicillin, though, statisticians were inventing techniques
of experimental design, inspired by agricultural research. These were precisely the
disciplined, reliable methods that drug-testing needed. Today, new drugs are ex-
pected to submit to controlled, randomized experiments that will, in a reasonably
short time, lead to sensible decisions about their clinical value.

(3) Every ten years, the United States carries out a national census. Believe it
or not, this process at its heart has very little to do with modern statistics. Since
the idea is to collect and organize a basic set of facts about everybody, the main
skills involved are those of librarians and geographers. However, there are known
imperfections in the census: For example, despite its ambitions, it always misses a
certain modest percentage of the American population. People would like to have
some idea how large this undercount is; both so we can estimate the true totals,
and also discover how to make future censuses more accurate.

If you think about it, the census itself tells you nothing about its own accuracy
(how can it possibly include the information that so-and-so was missed?). But
statisticians have developed techniques for parallel, smaller experiments, called
sample surveys, that can provide such information. These are ways of collecting
information about relatively small numbers of people that allow reasonable state-
ments to be made about people in general. Such conclusions are not perfectly
accurate, of course, but our statistical methods include ways of estimating just
how accurate the conclusions probably are. If you know how good a number is,
you can use it with proper care.

One simple way to estimate the undercount would be to do a very thorough
recount in a set of small areas chosen somehow to be representative of the country
at large. By comparing the results to the original census, you could see what portion
of the people were missed the first time. Then you would conjecture that this might
be close to the national undercount rate. I am sure you can see problems with this
approach; but more sophisticated surveys of this sort have promise, and are in fact
used to estimate the undercount.
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So statistics today provides a set of valuable tools for dealing with some of the un-
certainties of life. You will not be surprised to hear that statistics is a mathematical
subject: Mathematics was used to invent these methods and is therefore necessary
for any deep understanding of them. Furthermore, new statistical techniques must
be developed all the time to deal with new problems. Again, mathematics is re-
quired. Statistics courses more elementary than this one often try to avoid such
matters, hoping that the student will never encounter a statistical problem that
requires novel insights or methods.

But this book is for students who will be the masters of statistical technology,
not its slaves. Its subject is “mathematical statistics,” or sometimes “theoretical
statistics.” The methods of mathematics will be in constant use. We assume that
you have had a standard calculus sequence, including an introduction to multi-
ple integrals, and the rudiments of matrix algebra. You may find that you do not
really know these subjects as well as you thought you did, through lack of inter-
esting applications. Taking this course will solve that problem, since there is no
substitute for incisive examples, and for practice. Each chapter begins with some
recommendations of topics to review.

How to Read This Book

Now that you have decided to study mathematical statistics, you are probably
wondering what you will have to do to master the course. If you have had other
applied mathematics courses, you have probably come to realize that the experience
is not much like studying history, and even less like studying a foreign language.
Let me illustrate:

Example. In 1900, the English mathematical biologist Karl Pearson proposed the
formula χ2 � ∑i

(Oi−Ei )2

Ei
. It is now called Pearson’s chi-squared, because, fol-

lowing an old convention, the Greek letter chi is to the left of the equal sign. It
is a measure of the difference between a set of counts Oi observed in a survey or
experiment and a corresponding set of counts Ei expected under some hypothesis
about how the survey or experiment should come out. Several years ago, Pear-
son’s formula was on a widely publicized list of the 100 most important scientific
discoveries of the twentieth century.

Everything here is useful knowledge, and I would hope that at the end of your
statistical education you would know most of the information in the preceding
paragraph. But so far this is the sort of thing you get from history classes (the
when, where, and who in the first sentence, and the comment about its significance
in the last sentence) and from foreign language classes (the formula to memorize,
and the definitions of the parts).

But since this is an applied mathematics course, I am sure you realize that there
are other things about Pearson’s chi-squared that you need to learn. To start with,
how do you apply this formula to the real world? For example, I want to know
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whether a coin that is to be used to choose goals in football games is fair. I toss
it 100 times; it lands “heads” 43 times and “tails” 57 times. But my idea of a fair
coin would land heads about 50 times and tails 50 times. Were my counts so far
from fair that I now have evidence against the coin being balanced? This, you
will learn, is a typical application of Pearson’s chi-squared; it is the procedure
described so abstractly in the sentence about observed and expected counts. The
Oi’s are 43 and 57, and the Ei’s are 50 and 50. You learned in earlier courses that
� (capital sigma) means “add up the cases,” so χ2 � (43−50)2

50 + (57−50)2

50 � 1.96.
In very elementary statistical courses you then learn to consult a table or computer
program and report on its authority that this is not a very big value; and so there is
little reason to doubt that your coin is fair.

Throughout this book, you will encounter worked numerical examples of what to
do with proposed procedures, under the heading Example. I have tried to illustrate
in this way almost every method discussed, some several times. You should realize
that these are not just motivational: They are intended to begin your process of
learning how to perform statistical analyses for yourself. Every time you encounter
an example you should first read it carefully to try to understand why the given
method may be appropriate to the real-world situation. Then you should try to
reproduce my mathematics, and my arithmetic, for yourself. (If you find a mistake,
please write to me.) In this way, you get the flavor of how the method is applied.

Then you will turn to the Exercises at the end of that chapter and try some
problems, with numerical data, that use the same method. This may be harder than
you expect, because you may not recognize immediately what the new application
has to do with the method you are learning. Instead of coin-tossing, it might involve,
for example, a consumer survey about lipstick preferences. The fact that this still
involves comparing observed to expected counts, and so Pearson’s chi-squared
applies, is a subtle one. Doing problems on your own is the best way to gain
experience at making such judgments.

The exercises, by the way, are in two sections in each chapter. The first set
consists of fairly straightforward applications and chances to fill in omitted details.
There are some hints and numerical answers to these in an appendix. It is important
not to look at these answers until you have an answer you are happy with and wish
to double-check; or until you are thoroughly stuck. Working backwards from a
known answer teaches you much, much less than doing it the right way. The next
section, called Supplementary Exercises, consists of additional problems of the
same kind, for valuable extra practice plus opportunities to develop for yourself
interesting and useful extensions of the ideas you have been studying.

If this were a more elementary course, and one that concentrated on applications,
this would be all there was to learning the material. But we have ducked some
important questions, such as, where in the world did Pearson get that formula?
The answer is, he derived it, from statistical methods he already knew, using
ingenuity and mathematics. You might think that such questions are of mainly
historical interest. Remember, though, that it is not obvious why anyone would
propose the chi-squared method. The question should perhaps be, why would a
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reasonable person use that formula? In this book you will find not one, but three
mathematical derivations of the formula (none of them exactly like Pearson’s).
That might seem very odd, a waste of time. I suppose it would be, if the purpose
of the derivation were just to reassure you that somebody, somewhere (the author,
perhaps), knows why we use Pearson’s formula. However, the real reason is to
learn the ways of thinking that inspire our use of the method. The three derivations
show three different aspects of that thinking. My hope is that after studying all
three, you will have a pretty good idea of when you might want to use Pearson’s
formula.

So, when you encounter one of the many derivations in the text, read it, slowly
and repeatedly, until you believe you understand in detail how it works. Then
close your book, and try to carry out that derivation yourself in your own manner.
After you have succeeded, turn again to the exercises. There you may be asked
to discover for yourself yet another way of obtaining that same method. Or you
may be asked to derive a related formula. After you have done all this (it will
often take quite a while), you will find that you understand far better than before
why statisticians do what they do. In fact, those applied problems involving data
and numbers will have become much easier to connect to mathematical methods.
Furthermore, you will find that complicated equations, because they are no longer
in a foreign language, are much easier to remember than they used to be.

The exercises that require you to derive new formulas give away an impor-
tant secret: Statisticians do not yet know the answer to every statistical question.
Therefore, competent working statisticians spend a good deal of their time invent-
ing new methods, inspired by methods they already know (just as Pearson did).
So you should tackle with gusto those exercises that lead you to develop methods
new to you, because they give you practice with the creative aspect of statistics.

For example, many Pearson-type problems have the property that the total of all
the observed counts in the problem is equal to the total of all the expected counts.
In the coin-tossing problem, they both summed to 100. This is usually no accident:
When we decided what it meant for a coin to be fair, we split the known total of
100 evenly between heads and tails. The general mathematical statement of this
fact says that

∑
i Oi � ∑i Ei � n, where n is just a convenient symbol for the

total count. We are going to show that Pearson’s chi-squared reduces to a simpler
formula in this case. First, we expand the square in the numerator:

χ2 �
∑

i

(Oi − Ei)2

Ei

�
∑

i

(O2
i − 2OiEi + E2

i )
Ei

.

Now, remembering that the summation sign just means “add up all the cases,”
let us sum each of the three terms in the numerator separately (since the order of
addition in a finite sum never matters):

χ2 �
∑

i

(O2
i − 2OiEi + E2

i )
Ei

�
∑

i

O2
i

Ei

− 2
∑

i

OiEi

Ei

+
∑

i

E2
i

Ei

.
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In the last two terms, E’s in the numerator and denominator cancel, so we get
χ2 �∑i

O2
i

Ei
− 2
∑

i Oi +∑i Ei . But we have decided to concentrate on the case
where the total of observed and expected counts are both n, so

χ2 �
∑

i

O2
i

Ei

− 2n + n �
∑

i

O2
i

Ei

− n.

This last is a new, simplified formula for Pearson’s chi-squared, which works in
an important special case. (It is a formula that every statistician used to know; but
for some reason it is rarely mentioned in modern applied statistics books.)

I hope you have checked my algebra carefully here. The earliest derivations in
the book are explained in about this much detail. Later on, as you become more
skilled, easy steps are skipped, so that there will be a bit more work for you to do.
It will continue to be important that you check all the math for yourself. In fact,
omitted steps are often left as exercises.

The last comment I made in working with the coin-tossing experiment was that
we would probably decide that 1.96 was not a very large value of chi-squared.
Why? This happens to be the hardest question we have yet dealt with. To inter-
pret that number, we will need to investigate deep mathematical properties of the
chi-squared statistic. A large percentage of our effort in this course, thoroughly
entangled with deriving statistical methods, will be to use mathematics to discover
important working characteristics of those methods. When we have found some
properties that will be used later in a chapter, we distinguish them as Propositions,
as is often done in mathematics texts. If the properties are so important that they
will be extensively used in later chapters, we call them Theorems. We will use
here a convention rigorously obeyed by working mathematicians (but not by math
books): Theorems are given a name, and are later referred to by that name. (A
famous example is Fermat’s last theorem.)

Just as we will derive all our methods, we will prove all our propositions and
theorems. Usually, the proof will be in the discussion leading up to the statement of
the result; but sometimes it will be immediately following, labeled Proof. Often,
students have painful memories of proving things from earlier math courses. You
might have come away with the idea that you are supposed to provide a tangle of
words like “therefore,” “without loss of generality,” and “by induction”; then at the
end you complete the ritual by invoking the magical formula “QED.” Actually, a
mathematical proof is nothing more than an explanation of why something is true,
which is supposed to be clear enough to convince an intelligent, skeptical listener.
We have proofs for the same reason we have derivations of formulas: so you will
understand where the theorem comes from and have some idea how to find for
yourself similar but novel facts that you may need later.

You should study the mathematical proofs just as you study the derivations.
When you encounter a proposition, you should read carefully through my argument
until you are convinced that the statement is true. Then close the book, and convince
someone else. At that point, turn to the exercises, and work on related problems
that say something like “show” or “demonstrate” or “prove” (which all mean the
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same thing). Your job will again be, first, to persuade yourself that the claim is
valid (if it is not, please write to me), and, second, to write down an explanation
clear enough to convince other people.

As you begin to tackle the exercises in this book, you will surely begin to won-
der how much electronic computing help you should use. The general principle
will be this: When you are first learning any subject, you should get your hands
very dirty. In the Exercises, I am imagining that you have an ordinary scientific
calculator or a fairly low-level mathematics program on your computer handy at
all times. A few of the Supplementary Exercises are better tackled by using more
sophisticated computing tools—Fortran, Basic, Pascal, C, a spreadsheet program,
or Mathematica, for example. At this point you should avoid using any tool that
incorporates the statistical procedures you are trying to understand—such as sta-
tistical functions in a calculator or spreadsheet, or statistical packages. There will
be plenty of time for learning these wonderful timesavers later, after you have
mastered mathematical statistics.

You may have noticed that this course has an important characteristic in common
with other math and science courses. In many other fields, your job seems to be
to believe everything the professor or textbook says; the best student is the most
gullible. In this course, the best students are the most skeptical—so long as they
are willing to check things for themselves.

So how are you to read this book? As you would read a book on baking bread:
If you do not spend much of the time with your hands covered with flour, you are
doing it wrong. In the same way, study this book with pencil, pen, paper, calculator,
and perhaps computer at your fingertips, and use them to try out every new idea
you encounter.



CHAPTER 1

Structural Models for Data

1.1 Introduction

You probably think that statistics has to do with managing lots of numbers. But
the basic goal of scientific research (which may well be the reason you collected
all those numbers) is to understand them. You will find that statisticians are called
in when a scientist, engineer, or planner decides that some survey or experiment
has produced too many numbers for a mere human being to comprehend. We
statisticians believe that it may still be possible to describe the most important
features of those numbers with comparatively simple mathematical models. This
chapter will give an overview of some of the most useful models that belong in
the tool kit of any aspiring statistician.

At least two sorts of models will be required, depending on the experiments
we have performed. First, we will study experiments whose results are measured
numbers, such as a temperature or pressure. We will try to summarize how those
numbers seem to have been affected by experimental conditions. Second, we will
consider experiments whose result is a count of how many subjects fell in certain
categories, such as male/female or alive/dead. Again, we will want to see how
those counts change according to conditions under which the count was taken.

Time to Review

Summation notation
Natural logarithms and exponential functions
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1.2 Summarizing Multiple Measurements That Show
Variability

1.2.1 Plotting Data
Very often, a scientist finds herself measuring carefully some natural quantity, like
a length or weight, in hopes that it will help her understand some phenomenon. But
then, showing the care that scientists must show, she takes a second measurement
of the same thing. Sometimes the answer will be identical, up to the accuracy
of her instruments. In many cases, though, it will be substantially different; and
there will be no reason to think a blunder has been made. So she does a series of
these comparable measurements, as many as she has time, patience, and resources
for. And she may well find that she has obtained an incomprehensible variety of
numerical answers to a simple question.

Example. In 1882 Albert Michelson made 23 measurements of the velocity of
light in air, in kilometers per second above 299,000:

883 711 578 696 851
816 611 796 573 809
778 599 774 748 723
796 1051 820 748
682 781 772 797

(That is, 711 means he measured a velocity of 299,711 kilometers per second on
his sixth try. Do you see what 1051 must mean?)

We need some notation for this situation. Call each of the n observations xi ,
where i � 1, . . . , n. Then, for example in the velocity data, n � 23 and x17 �
(299,)573. Probably the first thing you would want in this situation is some way
of organizing these numbers. Let us try a geometrical representation; for example,
draw a horizontal number line whose range encompasses our measurements. Then
place a thin vertical line at the value representing each of the observations. This is
called a hairline plot (Figure 1.1).

When two observations are the same, we simply double the thickness of the
line. (In other books you may see a similar display called a dot plot.)

Strictly speaking, the art of drawing such useful pictures belongs to a field called
statistical graphics; and that is not the subject of this textbook on mathematical
methods. But statisticians find some kinds of pictures so enormously useful that
we can hardly imagine doing without them. Besides, there is a mathematical prin-

600 700 800 900 1000

×

FIGURE 1.1. Measured speed of light in km/s above 299,000
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ciple hidden in this diagram: We have represented a numerical measurement by a
coordinate of a geometrical position on a line. The number did not start out as a
point on the line, but we have felt free to put it there. We will see later that this
simple step lets all the powerful tools of geometry fall into the statistician’s tool
kit.

1.2.2 Location Models
In our example, the numbers fell haphazardly in some region of the line. The
scientist will tell you that she was trying to measure a constant of nature; but the
measurements were so difficult to do well that they vary unpredictably by various
amounts above and below the correct value. We have represented the modern
accepted value of the speed of light in air, (299,)710.5 km/s, by an × on the plot.

This is called a (simple) location model for how the numbers came about. We
hope to simplify the collection down to a single important quantity (that we often
denote by the Greek letter µ) that we believe to be the center of our cluster of
points. But to be honest, we carefully record the errors that cropped up in each of
our observations. These are the n quantities xi −µ. For example, for observation 17
above, this error is 573−710.5 � −137.5. We have called them errors; but a better
word is model residuals. After all, with deeper understanding of the science, we
may realize why some of the measurements were different from µ. The residuals
are positive if the measurement is larger than the experimenter thinks it should
have been, and negative if it is smaller.

Of course, usually our scientist does not know the value of µ; she did the exper-
iment in order to find out. Perhaps she consulted a statistician, so we could provide
her with an intelligent guess that she could report to her fellow scientists. So a
statistician needs to be able to determine a number in the middle of the cluster,
called an estimate, often denoted by µ̂, to report as a plausible value of µ. With
luck, this summary of many measurements will be better than a single measure-
ment. Of course, you could just stare at the hairline plot and make an educated
guess of the center of the data; with practice, this could be a very good method. But
it has one fatal flaw as far as a scientist is concerned: It is not repeatable—no two
statisticians would report the same estimate. This immediately undermines much
of the trust her colleagues may have in her proposal. So we ask an important ques-
tion: What are good ways of making repeatable estimates of unknown quantities,
and how good can we expect them to be?

There is one standard method of estimation that is so popular that you should see
it right away. Imagine that the hairlines in our plot are equal, physical weights sitting
on a (weightless) bar that is our number line. A natural center of those weights
would be the point at which we would place a fulcrum so that the bar balances.
(Notice the little picture of a fulcrum on the hairline plot of light velocities.) You
may remember from high-school physics that the weights times distances must
sum to the same value on each side of the fulcrum (so that the torque is zero). This
says that the sum of the distances xi − µ (their residuals) for observations greater
than µ must equal the sum of the distances µ−xi (the negatives of their residuals)
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for observations less than µ, because the weights are the same. If, for example,
we number the observations so that the first i � 1, . . . , k were less than µ and the
remaining i � k + 1, . . . , n were µ or greater, then the balance condition looks
like

(µ− x1) + (µ− x2) +· · ·+ (µ− xk) � (xk+1 −µ) + (xk+2 −µ) +· · ·+ (xn −µ).

If we move the pieces on the left of the equal sign to the right side (changing signs
as we do so), then we see that the positive and negative residuals together must
sum to zero. We write that condition in summation notation (which you should
review):

∑n
i�1(xi − µ) � 0.

We will find our estimate µ̂ by solving this equation (called the normal equation)
for µ. First, we can always split the sum into two pieces around the minus sign:∑n

i�1 xi −∑n
i�1 µ � 0. But that second sum just means that you are adding the

constant µ to itself n times:
∑n

i�1 xi − nµ � 0. Moving it to the other side of the
equation and dividing by n, we obtain µ̂ � 1

n

∑n
i�1 xi . This is just the familiar

arithmetic average of the observations; the summation notation just says that we
add them all up, and divide by how many there are: (x1 + x2 + · · · + xn)/n.
Statisticians call this the sample mean, written µ̂ � x̄. (In the speed of light
example, x̄ � (299,)756.2 km/s, as you should check; this is not exactly at the
true value, but it is closer than most of the individual measurements.) There are,
of course, many other ways to estimate the center of the data µ; one of these is
illustrated in your exercises.

I am willing to guess that when you were checking my sample mean calculation,
you did not do it precisely the way the formula says to. When I was taking the mean
of the speeds of light, I did not calculate (299,883+299,816+· · ·+299,723)/23.
Rather, I saved time by calculating (883+816+· · ·+723)/23+299,000. To show
the mathematical principle, let ν stand for any convenient value on the scale of
measurement. Subtract and then add it to each term in the formula for the sample
mean: x̄ � 1

n

∑n
i�1 xi � 1

n

∑n
i�1(xi − ν + ν). Sum those last ν’s separately:

x̄ � 1
n

∑n
i�1(xi − ν) + 1

n

∑n
i�1 ν. When we add a constant to itself n times, that

just multiplies it by n, canceling the n in the denominator. We get a new formula,
x̄ � 1

n

∑n
i�1(xi − ν) + ν. I used ν � 299,000 in our new expression. Some such

choice will often be convenient.

1.3 The One-Way Layout Model

1.3.1 Data from Several Treatments
Often a scientist faces a set of measurements obtained in more than one
experimental situation.

Example. In 1974 Till reported several samples of the salt content in parts per
thousand of three separate water masses in the Bimini Lagoon:
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FIGURE 1.2. Salt in parts per thousand in sea water

Mass I: 37.54, 37.01, 36.71, 37.03, 37.32, 37.01, 37.03, 37.70, 37.36, 36.75,
37.45, 38.85

Mass II: 40.17, 40.80, 39.76, 39.70, 40.79, 40.44, 39.79, 39.38
Mass III: 39.04, 39.21, 39.05, 38.24, 38.53, 38.71, 38.89, 38.66, 38.51, 40.08

Figure 1.2 gives hairline plots of these numbers.

If we are lucky, the results in the various situations will be so different that we
are obviously measuring completely distinct constants µ. But very often, as in the
example, the groups will overlap considerably. Is it just a matter of opinion, or
judgment, that one group (the second) seems usually saltier? We would like to
say that there are three different typical levels of salt, µI, µII and µIII, and, for
example, that µII > µI. In practice, we have to estimate the salinity in the two
masses and check that µ̂II > µ̂I. Since these estimates are imperfect, we become
more confident of our conclusion as the estimated separation µ̂II − µ̂I becomes
larger.

The general setup for this model, called a one-way layout, is as follows: We
have k levels of the treatment numbered i � 1, . . . , k. In our example, the various
levels are the different water masses of the lagoon where we found the samples, so
k � 3. The ith level has ni separate observations xij , numbered j � 1, . . . , ni . In
our salinity data, ni � 12; and xII5 � 40.79, the fifth measurement in the second
water mass. We write for the total number of observations n �∑k

j�1 ni (n � 30
measurements in our data set). Our model then says that the true value for the ith
level is µi . We call these unknown but important constants the parameters of the
model. If our estimates are µ̂i , then the estimated residuals, representing the failure
of our estimated model to describe the observations completely, are xij − µ̂i .

We have standard estimates for our parameters: just take the sample mean of
the observations in each level of the treatment: µ̂i � x̄i � 1

ni

∑ni

j�1 xij .

Example (cont.). Though the measurements at the sites overlap considerably,
there seem to be characteristic salinities at each. The group means are µ̂I � 37.31,
µ̂II � 40.10, and µ̂III � 38.89; these are marked × on the plot.

We often think of a statistical model as making predictions of some future
observation taken under conditions similar to some of the old ones; in the one-way
layout, the prediction would just be the center for that level, x̂ij � µi . Of course,
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in the example we did not know what the true center is, so we replace it with its
standard estimate µ̂i . Then, for example, we predict what the 5th observation in
group II “should have been” by using its estimated group center x̂II5 � 40.10.
Then the estimated residuals are just the actual minus the predicted value for each
observation: xij − x̂ij . (In our case, xII5 − x̂II5 � 40.79 − 40.10 � 0.69.) This
formula will hold true no matter what model we are using for prediction.

1.3.2 Centered Models
Since comparisons between the treatment levels are usually our primary interest,
we have a different way to parametrize our model, called the centered model.
With two levels, we start with a common center µ for all our observations and
then compute how much the higher group is above center: b1 � µ2 −µ. Similarly,
we compute the (negative) amount by which the second group is below the center
by b2 � µ2 − µ. Now we can write the predictions for each of the two groups
as µ1 � µ + b1 and µ2 � µ + b2. This is the first of many examples of linear
models: We start our prediction with a common value, then add an adjustment
corresponding to the particular treatment level (see Figure 1.3).

Generally, the centered model for the one-way layout looks like x̂ij � µi �
µ + bi . You might have noticed a problem with this: It is ambiguous. You could
use any value of µ at all and then calculate the b’s by subtraction. For example,
if our level means are 30 and 40, we might use a common µ of 20, then add b’s
of 10 and 20. On the other hand, we could let µ be 35 and the b’s be –5 and 5. To
limit ourselves to one possibility, we need a restriction on the parameters.

We will borrow the restriction from a nice property of sample means, which are
the most common estimates. Let µ have the obvious estimate, the overall sample
mean of all the measurements µ̂ � x̄ � 1

n

∑k
i�1
∑ni

j�1 xij (a double summation
tells us to add the values for all possible combinations of the indices i and j ). Then
we would just estimate the b’s by b̂i � µ̂i − µ̂ � x̄i − x̄.

Example (cont.). For the three sections of Bimini Lagoon, we find µ̂ � x̄ �
38.58 for the typical salinity in our sample. Then b̂I � x̄I − x̄ � 37.31 − 38.58 �

I

II

III

×

×

×

µ

  bI

  bII

bIII

37 38 39 40

FIGURE 1.3. A centered model for salinity
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−1.27 parts per thousand measures how atypical the sample from section I is.
Similarly, b̂II � 1.52 and b̂III � 0.31.

Now I want to ask, what is the average value of these predicted adjustments
b? It will, of course, just be the difference of the average of all the x̄i and the
average of the x̄. Obviously, the average of all the x̄, because they are all the same,
is still x̄. To average the level means, we calculate 1

n

∑k
i�1
∑ni

j�1 x̄i . But this way
of writing the double summation means that we should do the second, inner, sum
first. This inner sum

∑ni

j�1 x̄i just tells us to add the same number ni times, to
get nix̄i . But nix̄i � ni

1
ni

∑ni

j�1 xij � ∑ni

j�1 xij . Then going to the outer sum,
the average of the level means is 1

n

∑k
i�1
∑ni

j�1 xij � x̄, the same as the overall
average. By subtraction, x̄−x̄: The average of the b’s is zero. Our adjustments from
the common mean are on average the same in the positive and negative directions.
(Remember the related fact, that the sum of residuals about a sample mean is zero.)
This is such a plausible property that we will require it of any centered model:

Definition. A location model for the one-way layout x̂ij � µi � µ + bi is
centered if the average of the b’s over all observations is zero.

Then our algebra gives us the following mathematical result:

Proposition. The sample mean estimates for the one-way layout parameters
create a centered model.

You should check that this is actually true for the salinity estimates.

1.3.3 Degrees of Freedom
Now we should stop and do a little bookkeeping. We prefer simple models, when we
can get away with them; so we need an index of how complicated our model is. An
obvious criterion is, the more parameters, the more complicated the model. In the
one-way layout, we measure n observations, then try to predict them as well as we
can with only k treatment means. We say that the model has k degrees of freedom.
For example, in the saltwater problem we try to represent 30 measurements by just
3 water-mass averages.

At first glance, it may seem that in the centered model we must estimate a single
µ and k different bi’s, for a total of k + 1 parameters. But remember that the b’s
average is 0, which means that the grand total of the b’s for all observations is
zero: 1

n

∑k
i�1 nibi � 0. This means that after computing the first k − 1 parameters

bi , we can compute the last one without doing any more estimating by just solving
this equation: bk � − 1

nk

∑k−1
i�1 nibi . So we really have only one µ and k − 1

algebraically independent b’s to estimate. For the salinity data, this comes to 1
overall average µ, plus the fact that 2 (out of 3) adjustments b are algebraically
independent. In a similar manner, as an exercise you should discover that the n

estimated residuals xij − x̂ij actually involve only n− k algebraically independent
quantities (27 independent residuals in the salinity data).
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The way statisticians say this is that the original experiment has n degrees of
freedom, and we have broken them down into 1 degree of freedom for the center
µ, k − 1 degrees of freedom for the adjustments bi , so that the model has a total
of k degrees of freedom. Then we are left with n − k degrees of freedom for the
estimated residuals. That is, n � 1 + (k − 1) + (n − k). We blame the loss of
those k degrees of freedom on the fact that we had to estimate k parameters using
our n pieces of data. This check-sum bookkeeping will turn out to be increasingly
important as our models and their analyses become more complicated.

1.4 Two-Way Layouts

1.4.1 Cross-Classified Observations
Very often our scientist will want to allow for the possibility that some further dis-
tinction among the measurements affects the comparisons he is primarily interested
in.

Example. Educational psychologists are excited about a new way of teaching
arithmetic to third graders. Obviously, we would test whether it is really an im-
provement by trying it out on a collection of children, while at the same time
having a similar sample of children use the old lessons (this second group is called
a control group). At the end, we give both groups a test to see how they do; this is
just the sort of one-way layout we talked about earlier.

But some teachers claim that the new curriculum seems to work better with girls
than with boys. From our own experience, we do not believe this claim, but if we
are to convince our fellow teachers, we must allow for this possibility somehow.
We clearly want to give each of the curricula to both boys and girls. The results
may be displayed in a table of test scores:

Arithmetic Test Scores

Boys Girls
New 15 18 26 13 17 21

28 30 25 29
Old 11 14 16 9 10 18

22 23 19 24

This is an example of a two-way layout. It will require an impressive triple-
index notation, but which fortunately will be easy to decode. Generally, we have
a collection of observations denoted by xijk where i � 1, . . . , l keeps track of
the levels of the first (row) factor, and j � 1, . . . , m keeps track of the levels
of the second (column) factor. Then the pair of indices ij determine a particular
cell, a box in a table like the one in the example, in which all subjects receive the
same levels of the treatments. That third index just keeps track of the observations
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in the ij th cell, so that k � 1, . . . , nij , where we had nij observations in that
cell. Then the total number of subjects receiving the ith level of the first factor
must be ni• � ∑m

j�1 nij (summing over columns); and the number receiving the
j th level from the second factor is n•j � ∑l

i�1 nij (summing over rows). The
dot keeps track of the missing index, so we can tell whether the letter is a row
or column index. Then the total number of subjects for the experiment must be∑l

i�1 ni• � ∑m
j�1 n•j � n•• � n. In the example above, x213 � 16, n21 � 5,

n•2 � 10, and n � 20.
As usual, we want to summarize these results so we can tell people simple

and useful things about the treatments we have carried out. The easiest model to
construct just ignores the table organization and lets every pair of factor levels,
every cell, be a single level of treatment. Then the location model prediction just
says x̂ijk � µij ; presumably, the estimate of the typical value for, say, girls learning
arithmetic the old way will be based only on the result for the five girls in that part
of the experiment. This is called the full model, because we are making the finest
distinctions possible among our subjects. The model has, of course, l ×m degrees
of freedom, one for each cell.

The standard estimate will be simply the sample mean of the observations in
that cell: µ̂ij � x̄ij � 1

nij

∑nij

k�1 xijk .

Example (cont.). In the arithmetic-teaching example, we estimate x̄11 � 23.4,
x̄12 � 21.0, x̄12 � 17.2, x̄22 � 16.0. That is complicated enough that a picture
should help (see Figure 1.4).

Hairlines are individual test scores, and they show that, as usually happens in
experiments with people as subjects, the peculiarities of children and tests seem to
matter much more than the groups we are distinguishing. We can still see possible
patterns: The solid lines show that for each gender, the new teaching method

10 15 20 25

Boys-Old

Girls-Old

Boys-New

Girls-New

×

×

×

×

FIGURE 1.4. Arithmetic test scores: full model
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averaged higher scores than the old. The dotted lines show that in each curriculum
group, the boys’ scores were on average slightly higher than the girls’.

1.4.2 Additive Models
What about the complaint that led to this analysis, that the curriculum is more
of an improvement for girls than for boys? Actually, in our little experiment, the
boys’ average improvement (6.2) was slightly more than the girls’ improvement
(5.0); so our results provide no evidence for the claim. The similarity of these two
improvements supports the idea that the two improvements were in fact the same.
We can write a simple model for this situation: We imagine that there is an overall
test-performance center, then add or subtract some amount for each curriculum;
next we add or subtract some other amount for each gender. The sample mean
estimates are easy to get: For the center, the overall mean is just 19.4. Since the
mean for the new curriculum is 22.2, then its improvement is 22.2 − 19.4 � 2.8
on average. The boys’ mean is 20.3; so their edge is 20.3 − 19.4 � 0.9. The
disadvantages of the old curriculum and of being a girl are expressed by adding the
negatives of these differences. Such numbers answer the most obvious questions
about test performance.

What does this model say, for example, about girls who take the new curriculum?
We predict a score of 19.4 + 2.8 − 0.9 � 21.3. This is clearly not the same as the
prediction of the full model using cell estimates, 21.0 (though in this particular
experiment they chanced to be very close).

Our new model is called the additive model for the two-way layout, and the
notation is as follows: x̂ijk � µ+bi +cj , where bi is the adjustment for the ith level
of the row factor, and cj is the adjustment for the j th level of the column factor.
These were estimated by adding or subtracting from the overall mean; so once
again we want a centered model. We impose the restriction that on average, the b’s
must be zero: 1

n

∑l
i�1
∑m

j�1
∑nij

k�1 bi � 0. As threatening as a triple summation
looks, it just tells us to add up over all possible combinations of the three indices.
Notice that the innermost (third) summation just adds the same thing each time, so
this is the same as writing 1

n

∑l
i�1
∑m

j�1 nij bi � 0. Then bi does not change over
the next inner sum, so we can factor it out of that sum: 1

n

∑l
i�1 bi

∑m
j�1 nij � 0.

We already have a notation for that inner sum, the total number of observations
in the ith row; so we finally get a simple way of expressing our restriction on the
b’s: 1

n

∑l
i�1 ni•bi � 0. In the same way, we will require that the average value of

the column adjustments be zero; we will let you show as an easy exercise that this
restriction reduces to 1

n

∑m
j�1 n•j cj � 0.

We still have our bookkeeping to do. There is, of course, 1 degree of freedom for
the µ parameter. Since there are l different b’s, and we have placed one restriction
on their average (so we can always compute the last one), we have l − 1 degrees
of freedom for the row factor. Similarly, there are m − 1 degrees of freedom for
the column factor. Adding these together, we have 1 + l − 1 + m − 1 � l + m − 1
degrees of freedom for the additive model for the two-way layout. The residuals
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in our predictions of how each child will do, xijk − x̂ijk , of which there are n,
must then have n − l − m + 1 degrees of freedom, because we had to estimate
our l + m − 1 parameters from the n observations. That is, we have a checksum
n � 1 + (l − 1) + (m − 1) + (n − l − m + 1).

Standard estimates of the parameters are obtained just as in our example.
The overall center may be estimated using the mean of everybody, µ̂ � x̄ �
1
n

∑l
i�1
∑m

j�1
∑nij

k�1 xijk . Then we estimate the column adjustment bi by find-
ing the column sample mean x̄i• � 1

ni•

∑m
j�1
∑nij

k�1 xijk and then subtracting the
overall mean: b̂i � x̄i• − x̄. In the same way, we estimate the column adjust-
ments by ĉj � x̄•j − x̄. The estimated prediction of the model then looks like
x̂ijk � µ̂ + b̂i + ĉj � x̄ + (x̄i• − x̄) + (x̄•j − x̄) � x̄i• + x̄•j − x̄.

1.4.3 Balanced Designs
Our standard estimate of the additive model seems quite reasonable; but that is
a little bit of an accident, because in our example we had the same number of
observations in each cell. The additive model would still be interesting in other
cases. But if the numbers of observations in the cells of different rows vary, our
estimates of the column adjustments ĉj using the sample average of each column
are no longer entirely convincing. For example, if the counts of observations are

3 6
5 2 , the sample average of the first column is based mostly on the second row

(5 observations versus 3); but in the second column the average is based mostly
on the first row (6 observations versus 2). Intuitively, this is not fair; so we will
single out a class of designs that do not have this problem:

Definition. A two-way layout has a balanced design whenever the numbers of
observations in the cells of each row are proportional; that is, (nij /ni•) � (n•j /n)
for each i � 1, . . . , m and each j � 1, . . . , l.

Any design (like our example) in which all the nij ’s are the same, is of course,
balanced. Another example of a balanced design is one where the counts of ob-

servations are 1 2
2 4 , since 1

3 � 2
6 � 3

9 . You should prove as an exercise that we

could equally as well have said that the cells of each column are proportional.
The only significance of balanced designs is that the standard estimates of pa-

rameters make sense. Lazy statisticians have made themselves very unpopular
with scientists by telling them that their experiments were bad if they were not
balanced. This is false; we can, with slightly more sophisticated estimates, extract
just as much information from an unbalanced experiment. We will see how in
Chapter 2.

We will let you show off your skill with summation signs by proving the
following as an exercise:

Proposition. The standard estimates for the additive model are centered.
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FIGURE 1.5. Arithmetic test scores: additive model
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FIGURE 1.6. Parallelogram of additive model

We draw a picture of the additive model for the math test in Figure 1.5. Because
in this instance the additive model is similar to the full model, you may have to
stare at Figures 1.4 and 1.5 a moment to see the difference. In the additive model,
opposite edges of the quadrilateral go over and down by the same amount (when
you add your row or column corrections); therefore, opposite edges are parallel and
of the same length. The figure is now a parallelogram, and not just any quadrilateral
(see Figure 1.6).

Generally, the graph for any two-by-two experiment with an additive model will
be a parallelogram. If there are more than two levels of a factor, the picture is more
complicated; but the solid lines connecting equivalent levels of the first factor are
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still parallel. In the same way, dotted lines connecting the equivalent levels of the
second factor are parallel.

1.4.4 Interaction
Just how different are the full and the additive models for the two-way layout?
Our geometrical analysis suggests that additive models are more restricted in what
they can predict—they must form parallelograms, while full models may (or may
not) form parallelograms. This suggests that the full models have the freedom to
follow the sample observations better, leading to generally smaller residuals. Let
us quantify the difference by subtracting the degrees of freedom for the additive
model from those for the full model: l × m − (l + m − 1). Factor that expression
to conclude that the latter requires us to estimate (l − 1)(m − 1) more parameters
than the former ((2 − 1) × (2 − 1) � 1 more parameter in the case of our 2 rows
by 2 columns experiment).

Now let us quantify the difference in the predictions made by the full model and
the additive model: Of course, the standard estimated prediction for the full model
was just x̂ijk � x̄ij . The difference between the two is then x̄ij − x̄i• − x̄•j + x̄.
In our example, for boys in the old curriculum, it is −0.3. You should notice that
for every cell in our example, it is either plus or minus that same quantity. This is
what we meant when we said that the full model had exactly one more degree of
freedom; only that one amount is available to improve the predictions. In general,
these quantities measure a very important feature of the full model, the interaction.
It is the amount by which you cannot say that the result of a two-way experiment
is just a common value plus a column adjustment plus a row adjustment. In our
example, it is the amount by which the girls in the class were helped more than
the boys by the new curriculum.

There is no reason for interactions to be small; In Figure 1.7 are plots of the cell
averages (full models) for three different two-by-two experiments

cell 1 1

cell 1 2

cell 2 1

cell 2 2

×

×

×

×

×

×

×

×

×

×

×

×

FIGURE 1.7. Three degrees of interaction
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The horizontal axis (whatever you measured in each experiment) and the raw
data have been left out so that you can see the qualitative features of the models.
In the leftmost example, the figure is just about a parallelogram; this means that
an additive model seems to explain the cell centers satisfactorily.

In the middle example, there are consistent and perhaps noteworthy row and
column adjustments; row 1 is higher than row 2, and column 2 is higher than
column 1. But these adjustments are enough different in the different cells that we
have nothing like a parallelogram. In this case, interaction will be substantial.

In the rightmost example, we see no common row or column adjustments; the
factors seem to lack any consistent effects. This time, there is a great deal of
interaction, and little else going on. We might see such a picture, for example,
when experimenting with one of those drugs that is a tranquilizer when given
to children and a stimulant when given to adults; therefore, its effect on level of
activity is opposite for the two groups.

1.4.5 Centering Full Models
We can now provide a centered parametrization of the full model. We just append
an interaction term to the additive model: x̂ij � µ � bi + cj + dij . The d’s are
just those corrections whose standard estimates were d̂ij � x̄ij − x̄i• − x̄•j + x̄,
calculated above. The restrictions that make this a centered model are as before:
1
n

∑l
i�1 ni•bi � 0 and 1

n

∑m
j�1 n•j cj � 0.

What restrictions do the interaction terms require? Of course, as corrections we
want them to be zero on average; but even more, we want the set of corrections
to each level of the row factor to average zero. This is because if the average
interaction in that row is not zero, we should have added that average adjustment
to the corresponding row adjustment bi in the first place. Then the additive part of
the model would be that much more accurate in its predictions. So our restriction for
row i looks like 1

ni•

∑m
j�1 nij dij � 0. There are l of these restrictions. In the same

way, the interactions for each column j should average zero: 1
n•j

∑l
i�1 nij dij � 0,

for a total of m restrictions.
There seem to be m of these restrictions, but not all of them are new. Notice that

the first set of restrictions already tells us that all the interactions taken together
average zero (exercise). Therefore, when we get to the last of the second set of
restrictions, we already know it must be so, because the grand average has to
be zero. Therefore, we really only have m – 1 algebraically independent new
restrictions, and the number of restrictions to impose centering is l + m − 1.
Therefore, the number of degrees of freedom for interaction is l×m−(l+m−1) �
(l − 1)(m − 1). This is the same as the extra degrees of freedom in the full model
over the additive model, and it is no coincidence: We built it that way. We now
have that the total degrees of freedom for the centered form of the full model is
1 + l + m + (l − 1)(m − 1) � l × m, which is, of course, exactly the degrees of
freedom in the uncentered form of the full model. After all, these are just two ways
of writing the same thing. You should now prove the following as an exercise:



1.5 Regression 23

Proposition. The standard estimates of µ, the b’s, and the c’s plus the standard
estimates of the interactions d̂ij � x̄ij − x̄i• − x̄•j + x̄ form a centered full model.

Of course, our standard estimates of the full centered model are satisfactory
only if the experiment is balanced. The cell averages still give the right predictions
for any full two-way layout, though, because they come from the one-way layout,
where there was never a problem with balance.

The style of statistical analysis we have been studying in this chapter was first
explored in depth in the 1920s by R. A. Fisher; and it has revolutionized scientific
research throughout biology, medicine, and the social sciences. You may explore its
many variations in advanced courses called something like “experimental design.”
For example, a number of new possibilities arise when there are three factors.

Of course, we have not yet addressed a fundamental issue: How do we tell how
well a model matches (statisticians say fits) the data? It is perfectly possible to
estimate the parameters of a truly stupid model, such as an additive model in cases
where a great deal of interaction seems to be present. In other cases, it may seem
to the eye that an additive model is adequate in a particular application, or even
that we can ignore one of the factors. But is there some more objective way to
decide whether we are doing the right thing? We will tackle such matters later in
this book.

1.5 Regression

1.5.1 Interpolating Between Levels
Sometimes, if the levels of our treatment have a numerical meaning, we can extract
still more information from the observations in even a one-way layout.

Example. Twelve subjects whose blood pressure is disturbingly high are given
an eight-week regimen of a new pressure-lowering drug. At the end of that time,
the change in their diastolic pressures is measured (a negative number is good).
The patients were arbitrarily divided into two groups: One got 100 milligrams a
day, the other, 200 milligrams. The results were

100 mg : −40, −30, −25, −10, 0, 15;
200 mg : −50, −35, −30, −20, −15, 10.

You might draw parallel hairline plots to see what is going on here. The sample
means of the two dosage groups are −15 and −23.33, with an overall mean −19.17.
Then the standard estimates of the centered model are µ̂ � −19.17, b̂100 � 4.17,
and b̂200 � −4.17. On average, the group who received the larger dose did better.

There is nothing new here, but what if the investigators notice something else:
The higher-dose group are just beginning to show signs of an unpleasant (but
not deadly) side effect? The lower-dose group has no problems. From experience
with similar drugs, it is suggested that a relatively modest drop in the dosage
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may alleviate the side effects. So a new series of experiments is proposed, with
doses like 175 mg per day included. Since these new experiments take time and
money, it would be nice to make intelligent guesses in advance of their effect on
blood pressure, using what we have already learned. Unfortunately, we did not give
anybody 175 mg per day. You will probably have thought of a reasonable thing to
do: interpolate. The halfway point between the doses, 150 mg, should correspond in
this case to the overall mean, −19.17 mm. A dose of 175 mg is (175−150)/(200−
150) of the way from the middle to the upper dose, which corresponded to an
increase blood pressure of −4.17 mm. So our predicted response to a dose of 175
mg is −19.17 − 4.17(175 − 150)/(200 − 150) � −21.25 mm. That was certainly
easier than doing the whole experiment again.

Notice that this interpolation procedure works for any new dose:

p̂ � −19.17 − 4.17
d − 150

200 − 150
� −19.17 − 0.0833(d − 150)

(where p is change in blood pressure and d is drug dose). You should check that
this is just a novel way of writing the usual one-way model—it makes the same
predictions at 100 and at 200 mg. It is called the linear regression model for this
experiment.

Let us draw a picture of our situation (Figure 1.8).
We have turned the picture on its side; this is the conventional way to draw a

regression model. The ×’s represent the sample means of the changes for our two
dosage groups. Notice that a linear regression model was the equation of a straight
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P
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×

FIGURE 1.8. Pressure change as a function of dose
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line, which we have drawn on the graph. This sloped line represents our various
possible interpolations. The dotted line shows how to make such a prediction: start
at 175 mg, go up until you hit the solid line, then go across to read off the prediction
on the vertical scale.

How seriously should we take such predictions at interpolation points like 175?
There are two limitations to this method:

(1) The predictions are unlikely to be much better than the means at the original
doses. Remember that the 6 people in the 100 mg dose group varied from −40
to 15, and the 6 people in the 200 mg dose group varied from −50 to 10; so the
predictions at 100 and 200 mg are not likely to be wonderfully accurate anyway. In
between, at, say, 150 mm, there may be a slight improvement because 12 people
rather than 6 contributed to the calculation. But notice that outside the actual
experimental range, at, say, 0 or 300 mg, the prediction would likely be quite a
bit worse: Errors in one sample mean or the other will swing the line wildly by a
sort of lever effect (see the graph in Figure 1.9). That is why we should rarely trust
such extrapolated rather than merely interpolated estimates.

(2) Are we at all sure that the actual pattern of response to the various doses is
a straight line? Laws of nature can take a great many mathematical forms. Since
pharmacology provides no helpful general theory about what sort of equation to
use, we guessed the simplest continuous function we knew of, a straight line. If the
line in our picture should really be curved, our predictions will be systematically
wrong (biased is the statistician’s word). Furthermore, they are likely to be, again,
even worse for extrapolated than for interpolated doses.

Example. If the true connection between dose and blood pressure follows the
dotted line in Figure 1.9, so that our estimates were only slightly off at the exper-
imental doses, notice how far off our extrapolations are near 0 and 300 mg. On
the other hand, if the true connection is the dashed, curved line, our experimental
estimates were just about right; but our extrapolated straight line still goes quickly
wildly wrong for extreme doses. In the exercises you will see an example of how
to make predictions with curved models (if you know you need one).

1.5.2 Simple Linear Regression
If we remember to be cautious, regression can be a widely useful tool. Generally,
a simple linear regression model works as follows: We measure the numerical
responses of our subjects, yi , for i � 1, . . . , n. The responses to the experiment are
values of the dependent variable (the blood pressure changes in our example). For
each subject we have a numerical value describing the conditions of the experiment,
xi , which are values of the independent variable (in our example, drug dosages of
100 or 200 mg). Then we make predictions ŷi � µ + b(xi − x̄) where x̄ is the
average independent variable value at all the observations (here, 150 mg). (This
is a centered model, as you will check in an exercise.) You should remember
from analytic geometry that b is the slope of the line we have drawn. The model
possesses two degrees of freedom, one each for µ and for b.
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FIGURE 1.9. Erroneous and nonlinear regression

Example. Our example had only two values of the dependent variable, the drug
dosage; but a simple linear regression model allows for any number. Figure 1.10
shows the weights of purebred beagles at four different ages, 6, 8, 10, and 12, with
four puppies of each age.

The diamonds mark the cell-mean estimates of a one-way layout; the crosses,
the weights of individual dogs. To interpolate for other ages, the obvious device
is to connect the crosses with straight segments, as in our dotted path. This is an
example of a nonparametric regression estimator, which you may see again in
advanced courses.

In our example, it is interesting how the crosses fall near a single straight line
(though not exactly); a possible line is the solid segment. Such a simple linear
regression prediction has the advantage of being much simpler than the broken
line. (2 degrees of freedom instead of the 4 for the one-way-layout estimates). The
predictions are obviously nearly the same. Of course, we do not expect the curve
to continue to follow closely a straight line, or we would have 50-pound beagles
at the end of a year. On the other hand, our prediction for a puppy age 7 weeks
(about 6.5 pounds) is quite plausible.

You have no doubt noticed a problem. Since I did not find the line by interpolation
of level means, how do I draw that straight line, that is, estimate µ and b? We are
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FIGURE 1.10. Weight as a function of four ages

stuck: There is no longer an obvious choice for the standard estimator. A powerful
general method for obtaining such estimates will be introduced in the next chapter.

Simple linear regression models may be useful for summarizing the results of
many other experiments. For example, instead of selecting puppies of a few specific
ages, we might have simply taken a variety of puppies, recorded each of their ages,
then weighed them. There might then be as many independent variable values
(ages) as there are dogs. The results are captured in the Figure 1.11.

We use ×’s to mark the points whose coordinates are the age and weight of a
particular dog. This kind of diagram, one of the most useful in all of statistical
graphics, is called a scatter plot. We use it to compare any two distinct measure-
ments we take on each of a number of different subjects. In this example, though
the ×’s for the puppies are widely scattered, we see a pattern that might be stated
as follows: The average weights of the puppies of approximately the same age
follow a linear upward trend. The solid line is a proposed simple linear regression
model, ŵi � µ + b(ai − ā) (w is a weight and a is an age). Once again, we shall
have to wait until Chapter 2 to find good estimates of µ and b.

1.6 Multiple Regression*

1.6.1 Double Interpolation
In factorial experiments, we split up our subjects among several levels of two
or more treatments. We successfully interpolated numerical levels in the one-
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FIGURE 1.11. Weight as a function of many ages

way layout; perhaps something similar might work when each of the factors has
numerical levels.

Example. We study the effect of cooking time and temperature on a standard
cake recipe. Three cakes are baked at each of 350 and 375 degrees, and for 20 and
25 minutes. At the end we measure the percentage of the original moisture that
remained in the cake:

Time
20 25

Temperature 350 40 36 41 28 27 32
375 32 37 30 19 24 25

When we compute the standard estimates of an additive model, we get µ̂ �
30.917 and that the adjustment for going to the higher temperature is −3.083
and the increment for going to the longer time is −5.083. (You should check my
calculations as an exercise.) A graph looks like that shown in Figure 1.12.

The two baking times correspond to the lines that go from lower left to upper
right, and the two temperatures to the lines at right angles to them. You can see
from the observations that the additive model works fairly well.

Now we can carry out a double interpolation to predict, for example, how much
moisture will remain in a cake left in a 360 degree oven for 23 minutes. The center
of the experiment is at 22.5 minutes and 362.5 degrees. We would, of course,
predict that the percentage of moisture in cakes cooked in that way would be the
overall average of all our cakes, 30.917%. Now adjust for the distance from that
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FIGURE 1.12. Cake moisture as a function of time and temperature

center by computing

m̂ � 30.917 − 5.083
23 − 22.5
25 − 22.5

− 3.083
360 − 362.5
375 − 362.5

� 30.517.

You can read this in a rough way off the plot: Interpolate between 20 and 25 to
get one dotted line, and between 350 and 375 to get the other; then find their
intersection. That position on the vertical scale gives an estimate of their moisture
level. (We felt free to use the standard estimates of the parameters in this model
because it was based on a balanced two-way layout.)

1.6.2 Multiple Linear Regression
Generally, a linear regression model for a dependent variable y using two
independent variables x1 and x2 looks like

ŷj � µ + (x1j − x̄1)b1 + (x2j − x̄2)b2

in centered form, where j keeps track of the settings for a single observation. The
model has 3 degrees of freedom, one each for µ, b1, and b2. We noticed from our
example that it corresponds to a two-by-two additive factorial model when there are
two levels of each independent variable. Therefore, the standard estimates could
be obtained in the obvious way from row and column means.

If there are more than two levels of either variable, the regression model is no
longer equivalent to a factorial design, as you may see by counting degrees of
freedom. The regression model is a simplification of the factorial model, and we
do not yet know a standard estimator for it, whether the design is balanced or not.
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Nevertheless, we can plot the model just as we did above, with a parallel coordinate
grid for each variable. We will let you graph one as an exercise. Furthermore, there
are obviously multiple linear regression models for any number of independent
variables, which look just like the two-variable model.

1.7 Independence Models for Contingency Tables

1.7.1 Counted Data
It may have occurred to you that there are other sorts of statistical experiments
than those that provide us with repeated, varied measurements. What about the
results of surveys?

Example. A political polls asks a (we hope) representative assortment of potential
voters for whom they expect to vote for President. Of the 100 people they ask, 43
say Smith, 35 say Chan, and 22 insist that they are undecided.

Results of experiments of this kind may be summarized as counts of the numbers
of subjects who fall into various categories. The most common model for these
counts is the proportions model, which is what we are doing when we summarize
our survey as 43% Smith, and so forth.

Formally, we have a set of counts of the numbers of subjects falling in distinct
categories xi for i � 1, . . . , k, where

∑k
i�1 xi � x• � n. In the example above,

k � 3, n � 100, and, for example, x2 � 35. We imagine that these subjects are
representative of a much larger class of potential subjects, called a population.
The multinomial proportions model asserts that a true proportion pi of potential
subjects from that population falls into the ith category, so that

∑k
i�1 pi � p• � 1

(as we expect proportions to behave). The predicted counts in the category for our
experiment are then, of course, x̂i � npi .

Example. Genetic theory predicts that in a third-generation crossbreeding exper-
iment there should be population proportion of 25% individuals of type AA, 50%
of type AB, and 25% of type BB. In the notation for the multinomial proportions
model, pAA � 0.25, pAB � 0.50, and pBB � 0.25. If we do the experiment with
40 individuals arising in the third generation, then our predicted counts (we some-
times say expected counts) are x̂AA � 0.25 × 40 � 10, x̂AB � 20, and x̂BB � 10.
But of course, when the experiment is carried out, the recombinations are not pre-
cisely predictable, and we get actual counts like xAA � 11, xAB � 22, and xBB � 7
(called the observed counts). Later in the book we will learn something about just
how large a difference between observed and expected counts might reasonably
be accepted as ordinary variation.

Of course, in the political polling example we do not know the true proportions
to expect. You will surely have guessed the standard estimates of the population
proportions: p̂i � xi/n, the sample proportions. In our example, we estimate that
candidate Chan has 0.35 of the vote, since n � 100. If we do use the sample
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proportion estimate for this model, notice that the actual and estimated counts
always coincide: x̂i � np̂i � xi . This time, we have nothing like residuals with
which to evaluate the quality of the model.

As with measurement experiments, counting experiments become much more
interesting when the subjects are classified by the levels of two or more factors:

Example. A Hollywood studio is test-marketing a new film; and viewers are
simply asked whether or not they liked the movie enough to recommend it to
friends. An executive voices concerns that its market may be limited if substantially
smaller proportions of either men or women like it; so responders are classified by
gender:

Observed Counts
Male Female

Like 51 83 134
Dislike 42 24 66

93 107 200

The survey counts appear in the middle of the table. The other numbers are row
and column totals, and the grand total of 200 subjects. This is called a contingency
table.

Generally, we will denote a two-way classification by an array of counts xij , for
i � 1, . . . , k and j � 1, . . . , l; then write

∑k
i�1 xij � x•j ,

∑l
j�1 xij � xi• and

k∑
i�1

l∑
j�1

xij �
l∑

j�1
xi• �

k∑
i�1

x•j � x•• � n.

In our movie example, x12 � xLF � 83, x2• � xD � 66, and n � 200.
The multinomial, or saturated, model consists of population proportions for the

individual cells pij , with column proportions
∑k

i�1 pij � p•j , row proportions∑l
j�1 pij � pi•, and, of course,

k∑
i�1

l∑
j�1

pij �
l∑

j�1
pi• �

k∑
i�1

p•j � p•• � 1.

It corresponds to the full model for a two-way layout.
The standard estimates of these parameters are again the sample proportions

p̂ij � xij /n, and, of course, p̂i• � xi•/n and p̂•j � x•j /n. In our example, the
proportion of moviegoers we wanted to survey who are female fans of the movie
we estimate to be p̂LF � 83/200 � 0.415. The proportion of females in the survey
population is about p̂F � 107/200 � 0.535.
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1.7.2 Independence Models
In our example, 51/93 � 0.548 of the men liked the movie, whereas 83/107 �
0.776 of the women did. This suggests that it is more of a women’s movie; but of
course, we have no idea whether this is an accident of our sample and perhaps not
a characteristic of people in general. To get a better idea, let us see how consistent
our survey is with another model, in which gender makes no difference at all.

If that were the case, then the important parameters would be a population
proportion of males pM and a proportion pL of people who would like the movie.
If gender and taste are unrelated, then of the npM males you would expect to find
in the survey, a proportion pL would like it, for a predicted count of favorable
male viewers npLpM . We may estimate this by np̂Lp̂M � 200 134

200
93

200 � 62.3 men
in the survey who might be expected to like the movie, if gender is irrelevant to
taste. Then we may ask ourselves whether this is different to an important degree
from the 51 men who actually liked it in our survey, and whether such a difference
might have been an accident of who we happened to pick for our sample. (Of
course, we do not know enough yet to come up with a sensible answer.) This sort
of model, in which row and column classification are assumed irrelevant to each
other (and so we calculate proportions of proportions by multiplication), is called
an independence model. The concept is one of the most useful in all of statistics.
The row and column proportions become the key parameters of the model, and we
predict counts by x̂ij � npi•p•j .

In Figure 1.13, we have represented the moviegoing population by a square of
area one. The vertical subdivisions represent the proportions of males and females
in that population; the horizontal subdivisions represent the proportions of the
population who like and dislike the movie. Therefore, our model predicts that the
shaded area, pLpM , will be the proportion of moviegoers who are male enthusiasts
for our movie.

 pM

 pL

 pF

 pD

FIGURE 1.13. The independence model
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You might notice (exercise) that if the independence model is exactly true, we
get a table of counts that, if it represented the numbers of observations in each cell
in a two-way layout, would be balanced. Therefore, when we design a two-factor
experiment to be balanced, we are arranging that the factors be independent of one
another.

To evaluate the model, we estimate the row and column proportions, then use
them to create a table of the counts we would have expected to see. For example,

Expected Counts
Male Female

Like 62.3 71.7 134
Dislike 30.7 35.3 66

93 107 200

We called the original table, with the raw data, the observed counts; comparing
the two tables should tell us how good the independence model is. Notice, by the
way, that the difference between observed and expected counts, a sort of residual,
is plus or minus 11.3 in each of our four cells. Notice also that the row and column
totals are exactly the same in the two tables. As an exercise, you should check that
this is always true for independence models.

1.7.3 Loglinear Models
You probably noticed that our two-way contingency tables and two-way layouts
may both be displayed in rectangular tables. The similarity goes deeper. The ad-
ditive model for the layout involved adding adjustments for the row and column
factors, whereas the independence model for a contingency table required us to
multiply row and column proportions. But we can make the parallel clearer by
turning multiplication into addition. You know how to do that: take logarithms,
and use the standard fact that log ab � log a+ log b. Starting with the multinomial
proportions model x̂i � npi , we get log x̂i � log n + log pi . (Time to start getting
used to a convention: In statistics, logarithm always means natural logarithm [base
e] unless you clearly state otherwise.) Read this as a linear predictive model for
the logarithms of cell counts.

So far nothing interesting has happened; but we found earlier that it helped to
create a centered version of the model, with a middle value plus a correction for
the particular category. This would look like log x̂i � µ+bi , much like a one-way
layout. Then we required that the level effects, averaged over the observations, be
zero. In this model the individual numerical observations are cell counts; so we
will require that the averages of the b’s over cells be zero: 1

k

∑k
i�1 bi � 0. Now let

us connect the two ways we have written our models. Sum both versions over all
categories to get

k∑
j�1

log x̂j � k log n +
k∑

j�1
log pj � kµ +

k∑
j�1

bj � kµ.
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The sum of the b’s disappeared because of the centering condition. Therefore,
µ � log n + 1

k

∑k
j�1 log pj . Now substitute this back into the centered version

and solve for bi � log x̂i − µ � log n + log pi − log n − 1
k

∑k
j�1 log pj �

log pi − 1
k

∑k
j�1 log pj .

Example. In the genetics example above with n � 40 individuals and k � 3
genotypes, we obtain µ � 2.534, bAA � bBB � −0.231, and bAB � 0.462 (so the
adjustments do sum to zero).

Sample estimates of the µ’s and b’s can be gotten by using sample proportions
in the same way. We count degrees of freedom by starting with k categories and
letting µ have 1 and the b’s have only k − 1, because we force them to average 0.

But what do the parameters in these new models mean? The parameter µ is
just an average log count, but we can say more about the b’s. In the case where
there are only two categories, as in Like/Dislike (or Yes/No, or Male/Female) the
formula reduces to bL � 1/2(log pL/pD) � 1/2(log pL/(1 − pL)), by familiar
facts about logarithms and the fact that pL +pD � 1. The quantity pL/(1 − pL) is
called the odds ratio for someone liking the movie; and log pL/(1 − pL) is called
the log-odds, or the logit. This is an alternative way of measuring the proportion
of a population. For example, 10% of Americans are left-handed; we might as
easily say that the odds ratio for being left-handed is 0.1/0.9 � 1

9 . In horse-racing
parlance, this is 9:1 against a typical person being left-handed. The statistician
turns it into the logit for left-handedness log( 1

9 ) � −2.197. Since a proportion of
1
2 is an odds-ratio of 1 and so a logit of log(1) � 0, we conclude that a positive
logit refers to better than even odds, and a negative one to worse than even.

Definition. Corresponding to a population proportion p where (0 < p < 1), we
have its odds o � p

1−p
and its logit l � log o � log p

1−p
.

In a case like this in which we have divided the population into two categories
such as Like/Dislike, notice that the odds ratio for disliking the movie pD/(1 −
pD) � (1−pL)/pL is one over the odds for liking it. But log(1/a) � − log(a). So
the logit for disliking the movie is the negative of the logit for liking it, and similarly,
for Male versus Female and any other division of a population into two parts. This
is just another way of remembering our centering condition bL + bD � 0.

For more than two categories, the b’s are called multiple logits; you may see
them again in advanced courses.

1.7.4 Loglinear Independence Models
Our problem becomes more interesting when we construct linear versions of our
independence models for two-way contingency tables. In the movie example

log x̂LM � log npLpM � log n + log pL + log pM.

The centered version is log x̂LM � µ + bL + cM . We will require the row and
column effects each to average 0 over cells; so that in this case bL + bD � 0 and
cM + cF � 0.
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We again need to connect the two models with the different parameters, for each
of the four cells:

log n + log pL + log pM � µ + bL + cM,

log n + log pL + log pF � µ + bL + cF ,

log n + log pD + log pM � µ + bD + cM,

log n + log pD + log pF � µ + bD + cF .

Add together the four cell predictions under each of the two forms of the model to
get

4 log n + 2 log pL + 2 log pD + 2 log pM + 2 log pF

� 4µ + 2bL + 2bD + 2cM + 2cF � 4µ,

since by the centering conditions, the b’s and c’s cancel out. This gives us

µ � log n + 1
2

(log pL + log pD + log pM + log pF ).

Now sum just the first row of predictions:

2 log n + 2 log pL + log pM + log pF � 2µ + 2bL.

Substitute what we got for µ in the previous expression and solve to get bL �
1
2 (log pL − log pD). By a similar argument (exercise), cM � 1

2 (log pM − log pF );
and of course, bD � −bL and cF � −cM .

Example (cont.). We will use the sample proportions to estimate the parameters
in our movie example:

µ̂ � 5.298 + (−0.400 − 1.109 − 0.766 − 0.625)
1
2

� 4.473,

b̂L � [−.400 − (−1.109)]
1
2

� 0.355, ĉM � [−0.766 − (−0.625)]
1
2

� −0.071

Wonderfully enough (though perhaps not surprisingly, given our motivation
for it), the row and column adjustments in this independence model are half the
separate logits for the row treatments and the column treatments. The µ parameter,
though, has a slightly different meaning.

Generally, the loglinear independence model for a two-way contingency looks
like log x̂ij � µ+bi+cj with centering constraints

∑k
i�1 bi � 0, and

∑l
j�1 cj � 0.

As an exercise, you should derive general formulas for the µ, b’s, and c’s in terms
of the row and column p’s. We can do a degrees-of-freedom calculation identical
to the one for the additive two-way model: The saturated model has kl degrees of
freedom, and the independence model has k + l − 1. Therefore, the residuals in
the cell counts have kl − (k + l − 1) � (k − 1)(l − 1) degrees of freedom. The
simple differences between raw counts and expected counts in our 2-by-2 table
had only one value, 11.3, because the saturated model had only one extra degree
of freedom.
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1.7.5 Loglinear Saturated Models*
Inspired by our success, we propose a loglinear form of the saturated model:
log x̂ij � µ + bi + cj + dij , with the additional constraints

∑k
i�1 dij � 0 for

each j and
∑l

j�1 dij � 0 for each i. The d’s are called measures of association,
or sometimes just interactions, as in the measurement models. We count the free
parameters just as we did for the corresponding argument for the full measurement
model, and the total kl is the same as for the saturated contingency table. Therefore,
we expect to be able to solve for the parameters using n and the cell proportions
pij .

For example, in our movie experiment, the two versions look like log x̂LM �
log npLM � log n + log pLM � µ + bL + cM + dLM . Now add these up over all
four cells to get 4µ � 4 log n + log pML + log pFL + log pMD + log pFD (the
centering conditions have canceled all the b’s, c’s, and d’s).

Then sum the first row and substitute for µ to get bL � 1
4 (log pLM + log pLF −

log pDM − log pDF ). Similarly, for the first column, cM � 1
4 (log pLM − log pLF +

log pDM − log pDF ).
Something should strike you here: Unlike our measurement models for balanced

two-way layouts, these estimates are not the same as the ones for the independence
model. In fact, you might notice (exercise) that they are equal only if the indepen-
dence model is exactly true. The interpretation of b and c, as adjustments in the
predicted log-count as we change row or column, is still the same; but the amount
of that adjustment depends on the model.

Now back-substitute to get

dLM � 1
4

(log pLM − log pLF − log pDM + log pDF )

� 1
4

log
(

pLMpDF

pLF pDM

)
.

The quantity pLMpDF /(pLF pDM ) is called the relative odds ratio, and it is perhaps
the most widely quoted measure of association in two-by-two tables. We may
rewrite it (pLM/pDM )/(pLF /pDF ). The numerator pLM/pDM is just an odds ratio
for liking the movie, when we restrict the population to men only; we call it a
conditional odds ratio. Similarly, the denominator pLF /pDF is the conditional
odds for liking the movie when we consider only women. The ratio compares the
two; the farther it is from 1, the more different are the tastes of men and women, and
the less appropriate the independence model must be. In our survey we estimate the
relative odds ratio to be (0.255/0.21)/(0.415/0.12) � (1.214)/(3.458) � 0.351.
Then d̂LM � log(0.351)/4 � −0.262. The fact that our relative odds ratio was
less than one (and so d was negative) says that in our sample, more women than
men liked the movie.

You should notice that as a reflection of the one degree of freedom available to
the d’s, their logarithms are all the same size with varying sign. Whenever the d’s
are all close to zero, we should probably conclude that we did not need them and
that the simpler independence model is appropriate.
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There are, of course, 3-way and higher contingency tables, with loglinear models
including various sorts of association with which to summarize them. We will study
some of these in exercises, and later in the book.

1.8 Logistic Regression*

1.8.1 Interpolating in Contingency Tables
You will recall that linear regression allowed us, whenever independent variables
corresponded to numerical settings, to predict what a measurement might be at
other settings. When our responses are counts, we can still, with ingenuity, do
something of the same thing.

Example. A studio wonders whether the popularity of its latest movie has more to
do with the age of the audience than anything else. They do a special screening for
a number of subjects, some of approximately age 20 and some of approximately
age 40; at the end they are each asked whether they like the movie.

Opinion
Like Dislike

Age 20 42 19
40 13 51

All the methods of the last section apply. As an exercise, you should estimate
the independence model. When I did so, I was led to the conclusion that it was
not very appropriate here; there is indeed probably some association. This means
that age does have something to do with opinion: Younger people liked the movie
better.

We can put this as a prediction: If you know the ages of a collection of people,
what proportion of them will like the movie? Express this in terms of the saturated
loglinear model (since the independence model assumes that age makes no differ-
ence to opinion). Now, we have already noted that the natural quantity to predict
in a loglinear model is the logit for liking the movie, in particular, the conditional
logits l20 � log(pL20/pD20) and l40 � log(pL40/pD40), each of which refers only
to the patrons of one age.

l20 � log
pL20

pD20
� log

npL20

npD20
� log npL20 − log npD20

� log x̂L20 − log x̂D20

� µ + bL + c20 + dL20 − (µ + bD + c20 + dD20)

� (bL − bD) + (dL20 − dD20).
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In the same way, l40 � log pL40/pD40 � (bL − bD) + (dL40 − dD40). But going
back to the last section,

dL20 − dD20 � 1
2

log
pL20pD40

pD20pL40

and

dL40 − dD40 � −1
2

log
pL20pD40

pD20pL40
.

We have managed to write our predictions of a conditional logit as a centered
model with a middle liking level

bL − bD � 1
2

log
pL20pL40

pD20pD40
,

to which we add or subtract a correction proportional to the log of the relative odds
ratio.

There are no new conclusions here; but what if you wanted to predict how popular
the movie would be in other age groups, besides those in the survey? We already
tried linear interpolation in the regression problem; that should work here, too. Let
the new age be x, and write its predicted logit as l̂ � log(pLx/pDx) � µ+(x−x̄)b,
where x̄ � (20+40)/2 � 30 is the average level of the independent variable. Match
this to one of the prediction equations in the last paragraph, to get µ � bL − bD

and b � (dL40 − dD40)/(40 − 30).
Using the standard estimates, the cell proportions, we have p̂L20 � 42

125 � 0.336,
p̂D20 � 0.152, p̂L40 � 0.104, and p̂D40 � 0.408. Then µ̂ � 1

2 log(0.336 ×
0.104)/(0.152 × 0.408) � −0.287 and b̂ � − 1

20 log(0.336 × 0.408)/(0.152 ×
0.104) � −0.108. Then we have a regression equation for predicting the logit,
l̂ � log pLx

pDx
� −0.287−0.108(x−30). If this model is reasonable, what proportion

of 25-year-olds would we expect to like our movie? The predicted logit, conditional
on age x � 25, is l̂25 � log(pL25/pD25) � 0.253.

The slashes in Figure 1.14 show the estimated logits at the two survey ages, 20
and 40. The dotted line shows how the regression equation estimates the logit at
age 25 by interpolation.

This does not answer our question about the proportion of favorable reactions;
but fortunately, that information can always be extracted from the logit. Notice that
(pLx)/(pLx + pDx) � (pLx/pDx)/(pLx/pDx + 1). The logit l is the logarithm of
these fractions; but we know that elog a � a; so pLx/pDx � el . Then the proportion
favorable is p � el/(el + 1).

Proposition. Given a proportion p and its odds o and logit l, p � o/(1 + o) and
p � el/(el + 1) � 1/(1 + e−l).

Our estimate of the proportion of favorable patrons of age 25 would be
e0.253/(e0.253 + 1) � 0.563. This is between the 69% of 20-year-olds and the
20% of 40-year-olds, as we intended.



1.8 Logistic Regression* 39

20 40

–1

0

1

Age

Logit for Liking

×

×

(25)

FIGURE 1.14. Logit for liking as a function of age

1.8.2 Linear Logistic Regression
The method illustrated above is an example of logistic regression, which may be
used to predict the proportion of “successes” in some experiment when there are
numerical settings to the independent variables that we can interpolate. It possesses
all the powers of linear regression and requires the same care—interpolate with
caution, extrapolate doubly so. We certainly need not restrict ourselves to the case
of only two settings for the independent variable.

Example. Three different concentrations of a new ant poison are applied to a
number of fire ant nests, and we record whether or not the nests are destroyed:

Concentration
100 mg/l 200 mg/l 300 mg/l

Destroyed Yes 15 20 25
No 17 11 8

We can estimate the conditional logits just from the ratios of the counts in each
column and plot them against the concentration (see Figure 1.15).

The ×’s show the estimated logit at each concentration. They are, of course, not
exactly on a straight line, but they are plausibly close to the one we have drawn.
So a logistic regression equation of the form log pYx/pNx � l̂ � µ + (x − x̄)b
is a plausible summary of our experiment, where x is the concentration of poison,
and so x̄ � 200 mg/l is the center of our three concentrations.

Let us estimate this equation by the line drawn (by eye) on the plot, which
happens to be l̂ � 0.538 + 0.00632(x − 200). We had a good bit of success with
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FIGURE 1.15. Logit for success as a function of poison concentration

300 mg/l; so we are tempted to try 400. Before we buy the poison, we may as
well use logistic regression to predict the result. Of course, this is extrapolation
(see Section 5.1), so we would be foolish to take the conclusion too seriously.
Anyway, l̂ � 1.802, and we translate that to a proportion of successful kills
p̂ � e1.802/(e1.802 + 1) � 0.858. You will have to decide whether that is a good
enough success rate to justify the experiment.

Of course, we have not told you how to find the line on the plot. Reliable methods
for estimating logistic regression equations will have to await a later chapter. There
are, of course, logistic regression models for far more complicated experiments.
Just as in ordinary regression of measured data, our experimental results may
consist of any number of values of one or several independent variables, so long
as the dependent variable records simply whether that experiment was a “success”
or a “failure” (like/dislike, male/female, or any other dichotomous outcome).

1.9 Summary

In this and subsequent chapter summary sections we will briefly review the key
technical terms and the most important mathematical expressions that should now
have meaning for you after studying the chapter. If any of these are at all fuzzy,
it is time for you to study those sections more carefully. When you see a notation
like (3.4) it will mean section 3, subsection 4 of the current chapter.

First we studied linear models for experiments where we try to measure some
important numbers (such as people’s blood pressure), but for some reason our
measurements are not all the same. We can estimate the “true” value µ using
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the sample mean µ̂ � 1
n

∑n
i�1 xi � x̄ (2.2). Often, different subjects of your

experiment will undergo different levels of a treatment (such as types of drug).
In that case, the model that describes the experiment is called a one-way layout
(3.1). We try to discover whether the different levels lead to consistent differences
in our measurements, and we express the result as x̂ij � µi � µ + bi so that
the b’s tell us how different the ith level is from the average level µ (3.2). If the
observations were subjected to more than one sort of treatment at the same time
(for example, bed rest or not, as well as drugs), we have a two-way (or more) layout
(4.1). Sometimes, these data may be described well enough by an additive model
x̂ijk � µ+bi + cj , where the c’s tell us the effect of levels of the second treatment
(4.2). Often, though, that will not be sufficient, and we will need to add interaction
terms dij that tell how differently the j levels affect the individual i levels (4.4).
When the experimental levels correspond to numerical settings (such as dosages
of a single drug), we may be able to predict the results of future measurements
using regression models (5.1). For a single predictor x of a measurement y, we
may start with a simple linear regression model that looks like ŷi � µ+ b(xi − x̄)
(5.2). The extension to several predictor variables gives us a multiple regression
model, such as ŷj � µ + (x1j − x̄1)b1 + (x2j − x̄2)b2 (6.2).

On the other hand, our data may consist of categorized counts (as from a political
poll); we summarize the results with population proportions pi , which predict the
count in the ith category by x̂i � npi . We usually estimate these by the sample
proportion p̂1 � xi/n. When we have two ways of categorizing counts (such as
gender and party preference), we construct contingency tables (7.1). When it may
be that certain classifications have nothing to do with each other, independence
models provide an important simplification. These look like x̂ij � npi•p•j (7.2).
A powerful way to express many models for counted data will be as loglinear
models (7.3), for example in a two-way contingency table log x̂ij � µ + bi +
cj +dij . The dij measure the failure of the independence model, which we call the
association between the two kinds of categories (7.5). When we want to predict
proportions from numerical experimental settings x, we often use (simple linear)
logistic regression, which looks like log(pYx/pNx) � l̂ � µ + (x − x̄)b for the
case of Yes or No categorization (8.2).

1.10 Exercises

1. Science magazine in 1978 announced that various American lunar probes had
obtained the following values for the ratio of the mass of the Earth to that
of the Moon: 81.3001, 81.3015, 81.3006, 81.3011, 81.2997, 81.3005, and
81.3021.

a. Draw a hairline plot or similar graphical display of these measurements.
b. Compute the sample mean µ̂ � x̄ for these numbers, and mark it clearly

on your plot.



42 1. Structural Models for Data

c. Compute the residuals from this location model. Now compute the sum
of these residuals. Did you get the answer you were supposed to?

2. In 1982, Sternberg et al. reported in Science on the level of an enzyme called
DBH in the bloodstream of a number of schizophrenia patients. The pa-
tients were separated into groups that were judged by clinicians to be either
psychotic or nonpsychotic:

psychotic: 0.0150, 0.0204, 0.0208, 0.0222, 0.0226, 0.0245, 0.0270, 0.0275,
0.0306, 0.0320

nonpsychotic: 0.0104, 0.0105, 0.0112, 0.0116, 0.0130, 0.0145, 0.0154,
0.0156, 0.0170, 0.0180, 0.0200, 0.0210, 0.0230, 0.0252

a. Draw parallel hairline plots of the DBH levels for the two clinical groups.
What does this suggest to you about the effect of clinical status on enzyme
level?

b. Find the standard (sample mean) estimates of a one-way layout model.
Mark the group centers on your plot.

c. Find the standard estimates of a centered model for this experiment.

3. Four different shrimp nets are under consideration for use on your shrimp
boat. On 16 days with acceptable weather conditions, you note the yield in
hundreds of pounds, using each net on 4 randomly chosen days:

InSein 75 82 91 93
Crusty 51 58 62 76
Hample 90 53 56 84

NetProfit 112 78 104 97

a. Draw parallel hairline plots of the performance of each net. Mark the
sample means on each.

b. Construct standard estimates of a centered one-way layout model for this
experiment.

4. We claimed that the centered model x̂ij � µi � µ + bi is determined unam-
biguously if we know the group centers µi , so long as we impose the centering
condition 1

2
∑k

i�1 nibi � 0. Show that we can always determine what µ and
bi are if we know the µi , and vice versa.

5. Show that the collection of all residuals in the standard estimate of the one-
way layout model, xij − µ̂i , has n − k degrees of freedom. That is, even
though there are n residuals, you can specify n − k of them that would allow
you to compute the remaining k residuals.

6. Nine 20-year-olds who are classified as moderately overweight are recruited
into a three-month weight-loss program. Some will go on a 2000-calorie diet,
some will enter a 30-minute-a-day vigorous aerobics program, and some
will be “controls.” At the end of the program, each weight loss in pounds is
recorded:
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none diet
none 2 2

7
exercise 4 6 10

8 13 14

a. Is this experiment balanced? Why or why not?
b. Use the standard estimates to find values for the parameters of an additive

model. Plot the resulting model, and interpret it.
c. Find standard estimates for the parameters of the full centered model. Plot

the resulting model. Explain why you do or do not believe this model
substantially superior to the additive model.

7. Show that the standard estimates for an additive model turn out to be centered
in a two-way layout.

8. Assume that a two-way layout has equal numbers of observations (call it r) in
each cell. Show that the standard estimates of the parameters in a full model
for this two-way layout meet the centering conditions.

9. You would like to know how much money a higher thermostat setting saves
you during a Houston summer. So for six years in a row you flip a coin to
decide whether to set the thermostat to 72◦F or 78◦F for all of August, with
the following bills:

72◦: $178, $195, $201

78◦: $180, $153, $164

a. Write down and estimate a simple linear regression model for predicting
monthly bills, given your thermostat setting.

b. If you set your thermostat to 76◦F next August, use your model to predict
what your electric bill will be. Do you find this prediction plausible? Why
or why not?

c. You decide that air conditioning is bad for you, so next August you set
your thermostat to 86◦F. Use your model to predict your electric bill. Do
you find your prediction plausible? What practical aspects of the problem
might lead you to doubt your prediction?

10. A sociologist suspects that crowding and heat contribute to violent crime
rates, so she locates medium-size cities near 32 and 40 degrees latitude and
with population densities approximately 2000 and 6000 people per square
mile. Her 8 representative cities had the following crime rates in 1990 (in
crimes per 1000 population):

32 degrees N 40 degrees N
2000/sq mile 80 48 60 35
6000/sq mile 97 79 63 83

a. Construct and estimate a multiple regression model for predicting crime
rate from density and latitude, using the standard estimates for an additive
two-way layout. Plot your model.
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b. I live in a town that is 37 degrees, 20 minutes north latitude, with a popu-
lation density of 2400 people per square mile. Use your model to predict
its crime rate.

11. Without telling them what you are doing, you issue some (arbitrarily selected)
soldiers a 25-pound backpack for a strenuous field exercise: 13 out of 49
complain afterwards of muscle or joint pain. The other soldiers on the same
exercise have a 30-pound pack: 23 out of 52 complain of muscle or joint pain.
If in fact there is no connection between pack size and complaints, how many
soldiers in each group would you expect to complain?

12. A political polling organization would like to know whether upper, middle,
or lower socioeconomic status (SES) has anything to do with whether a voter
considers himself or herself libertarian, conservative, or liberal in political
philosophy. Two hundred voters picked at random were classified on standard
scales into the possible combinations; the counts were as follows:

SES\Phil. Libertarian Conservative Liberal
Upper 17 20 17
Middle 12 45 17
Lower 5 18 49

Under the hypothesis that status and philosophy are independent of one
another, construct a table of the predicted counts for each table entry.

13. For the expected table in an independence model, you of course compute
x̂ij � np̂i•p̂•j , where you use the standard estimate for the p’s. Show that
the row and column sums in this table are always the same as the row and
column sums xi• and x•j in the observed table.

14. For the political poll data of Section 7.1, estimate the parameters of a centered
loglinear model.

15. a. For a general two-way contingency table, derive formulas for µ, the b’s,
and the c’s of a centered parametrization of the independence model, in
terms of n and the p’s.

b. Derive formulas for µ and the b’s, c’s, and d’s of the saturated model, in
terms of n and the p’s.

16. For the experiment of Exercise 12 (political philosophy),

a. Compute standard estimates for µ, the b’s, and the c’s of a centered
parametrization of the independence model.

b. Compute standard estimates for µ and the b’s, c’s, and d’s of the saturated
model. Interpret the values you get in words.

17. For the experiment of Exercise 11 (soldier’s backpacks),

a. Compute standard estimates for µ, the b’s, and the c’s of a centered
parametrization of the independence model.

b. Compute standard estimates for µ and the b’s, c’s, and d’s of the saturated
model. Interpret the values you get in words.
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18. In Exercise 11, use linear logistic regression to predict the proportion of
soldiers who would complain with a 28-pound pack.

1.11 Supplementary Exercises

19. A common alternative to the sample mean to estimate µ in a location model
is the sample median: Sort the observations in ascending order x(1) ≤ x(2) ≤
· · · ≤ x(n). The median is then in the middle of that list: (i) if n is an odd
number, then the median is the middle number µ̂ � x( n+1

2 ); and (ii) if n is an
even number, the median is conventionally the average of the two numbers
flanking the middle µ̂ � (x(n/2) + x(n/2+1))/2.
Find the sample median of the mass ratios from Exercise 1. How does it
compare to the sample mean?

20. Three long-distance telephone companies, BSS, CMI, and DWP, are compet-
ing for your business. To evaluate the impacts of their rates, you test them on
15 quite similar branch offices of your company, randomly assigning 5 offices
to each carrier. Here are their phone bills for the same month, in thousands
of dollars:

BSS 20 23 25 32 21
CMI 39 21 22 36 23
DWP 50 33 46 42 38

a. Draw parallel hairline plots of the observations for the three carriers. Mark
on them the sample means for each level.

b. Estimate the parameters of a centered one-way layout model.

21. a. Use the sample median of each group to estimate the one-way layout
model in the schizophrenia data from Exercise 2.

b. Use the results from (a) to estimate a centered model for this experiment.
Compare your estimates to what you got in Exercise 2 (b) and (c).

22. Demonstrate that we could just as well have defined a balanced design to be
one in which the numbers of observations in each cell in each column were
proportional to those in the other columns.

23. You want to compare, over the year 1995, how the three locations of your
identically sized pizza restaurant are doing. Somebody points out that because
of weather, school, and so forth, the time of year affects sales. So you record
the total dollar sales (in units of $10,000) at each location in each season to
get the following data: for Price’s Fork, Sp(ring) 34, Su(mmer) 30, Au(tumn)
34, Wi(nter) 34; for North Main, Sp 34, Su 14, Au 26, Wi 21; and South Main,
Sp 44, Su 27, Au 37, and Wi 30.

a. Estimate the parameters of an additive model in this two-way design.
b. Estimate the parameters of the full model in this design. Comment on the

differences between the two.
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24. Show that in any balanced two-way layout, the standard estimates for the
parameters of the full model are centered.

25. An example of a balanced incomplete block design for a two-way layout is

1 2 3
1 x11 x12
2 x21 x23
3 x32 x33

where we have taken only six observations, yet we can still estimate a centered
additive model x̂ij � µ + bi + cj . We might wish to do this if observations
are very expensive.
The standard estimates are µ̂ � x̄, b̂1 � 1

3 (x11 + x12) − 1
6 (x21 + x23 +

x32 + x33), and b̂2 � 1
3 (x21 + x23) − 1

6 (x11 + x12 + x32 + x33). Find the
corresponding estimate for b3. Assuming column corrections are estimated
just as row corrections are, find standard estimates for the c’s.

26. For a balanced incomplete block experiment (see Exercise 25) to estimate the
breaking strength of three beam cross-sections (A, B, C) made of three steel
alloys (I, II, III), we got, in thousands of pounds,

I II III
A 35.2 28.1
B 18.7 40.3
C 31.6 60.5

What does an additive model predict for the typical breaking strength of a
beam with cross-section B made from alloy I? Compare it to the actual result.
How many degrees of freedom for residuals does this model have? What does
your model predict for the untried case of cross-section A and alloy III?

27. There is a more complicated linear regression problem for which a standard
estimate is easy to guess. We will assume that there are three distinct values
of the independent variable, equally spaced (for example, 10, 20, 30). Fur-
thermore, the number of observations at the highest and lowest levels of the
independent variable must be the same. Then the average of all observations
should give you a predicted value for the middle level of the independent
variable. Furthermore, the slope of the regression line should be the slope of
the line connecting the averages of the observations at the highest and lowest
levels (because the slope does not affect your middle-level prediction, which
is at the fulcrum around which the line is free to rock).

a. Write down a precise notation for such an experiment and for a simple
linear regression model for predicting it.

b. Write down the standard estimate of your regression model.

28. The highest-volume item at your beach supply store is a certain brand of
sunscreen lotion. You would like to know how your price affects your weekly
sales volume. You try three different prices for various weeks during the
summer, with the following unit sales:
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$2.50: 82, 74, 83

$3.00: 55, 54, 61, 58

$3.50: 40, 46, 37

a. Construct a plot of these numbers, marking also the sample mean of each
group.

b. Calculate the standard estimate of a simple linear regression model for
predicting unit sales from price (see Exercise 27). Draw the prediction
line on your plot. Does the model seem plausible? Why or why not?

c. Predict unit sales for a week in which your price is $2.79. Now predict the
number of units you would get rid of if you gave sunscreen away for free.
Comment on the plausibility of your predictions.

29. You have surely noticed that in our two-by-two examples of regression we
insisted on using an additive model. What would have happened if we had
used the full model instead?

a. Write down a model that looks like

ŷi � µ + (xi1 − x̄1)bi + (xi2 − x̄2)b2 + (xi1 − x̄1)(xi2 − x̄2)b12

in Exercise 10, and estimate the new parameter b12 by setting the last term
equal to one of the interactions in the full model. Recalculate the prediction
in (b). (The new model, which makes sense for any number of levels of
each of the independent variables, is called a bilinear model because it is
linear in each independent variable if the other is held fixed. Here it has
four degrees of freedom.)

b. Write down what a multilinear model in some larger number of
independent variables would look like.

30. Young people on the lookout for prospective husbands or wives often claim
that certain cities have more women or more men. To study this issue, you
sample the voter rolls in three cities looking for people who are between 20
and 30 years of age and single. Here are the numbers of those you find, by
gender:

New York Chicago Houston
Males 230 211 297

Females 312 225 255

Your question might be addressed in the following way: An independence
model would mean that the proportions of men and women did not depend on
which city you looked in. So you should define and find standard estimates
for an independence model. Then build a table of expected values. Comment
on what the comparison between the two tables says about the question you
began with.

31. For the survey of Exercise 30,
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a. Compute standard estimates for µ, the b’s, and the c’s of a centered
parametrization of the independence model.

b. Compute standard estimates for µ and the b’s, c’s, and d’s of the saturated
model. Interpret the values you get in words.

32. Sometimes in a two-by-two contingency table experiment, the count in one
of the cells is unobservable. We believe that there is a count, but we do not
know what it is:

1 2
1 n11 n12
2 n21 ?

a. It is still possible in this experiment to estimate the parameters of an
independence model n̂ij � npi•p•j . Then we could, with a little ingenuity,
predict the unknown count n̂22. Find standard estimates, using all the
available information, of the parameters of the independence model in
this experiment. (Do not forget that n is also an unknown parameter in this
case.)

b. This method may be used to correct census undercounts. The people in
a census tract are counted by two methods we believe to be independent
(say, mail and visit). Then n11 � people counted by both methods, n12 �
people counted by mail but not by visit, n21 � people counted by visit
but not by mail, and n22 � people counted by neither method (obviously
unobservable). Use the model from (a) to estimate the total population of
a certain census tract if n11 � 12,384, n12 � 589, n21 � 1466.

33. Ultrapasteurization of cream requires it to be heated to a very high temperature
for a short time. We count how many pints have spoiled under refrigeration
for two weeks after ultrapasteurization at two temperatures:

170◦F 180◦F
Spoiled 9 3
Good 21 27

a. Write down and estimate a linear logistic regression model for the rate of
spoilage at various temperatures. Plot your equation.

b. Use your model to predict the proportion of pints of cream that would
spoil within two weeks if they were originally heated to 176◦F. Do the
same for a temperature of 160◦F. How confident are you about these two
predictions?

34. A three-way contingency table consists of counts resulting from an ex-
periment xijk , where there are i � 1, . . . , l levels of the first treatment,
j � 1, . . . , m levels of the second treatment, and k � 1, . . . , q levels of
the third treatment. The complete independence model of this experiment
looks like x̂ijk � npi••p•j•p••k .

a. What does this model say about your experiment? Write down standard
estimates of the parameters in the complete independence model.



1.11 Supplementary Exercises 49

b. Invent a notation for the centered, loglinear parametrization of this model.
Be sure to specify your centering conditions. Hint: You need four kinds
of parameters.

35. You want to find out how many people in various walks of life still smoke
cigarettes. You note during your poll whether the responder is male or female,
and whether he or she lives in a rural or urban area. Your results are as follows:

Rural Urban
Male 23 43

Female 27 52
Smokers

Rural Urban
Male 43 135

Female 32 118
Nonsmokers

a. Define and estimate a complete independence model for this experiment.
b. Write down a table of expected counts under this model. How well does

the model match the facts?

36. With three-way contingency tables we can propose a great variety of models
for the results of an experiment. For example, a conditional independence
model would be one that says something like this: the second and third
treatments are independent of each other, for each level of the first treat-
ment. That would require us to say, about our proportions, pijk/pi•• �(
pij•/pi••

)
(pi•k/pi••). After cancellation, we see that our predictions must

be x̂ijk � n(pij•pi•k)/pi••.

a. Write down standard estimates for the parameters in this model.
b. Write down a centered loglinear version of this model, including centering

conditions. Hint: There should be six kinds of parameters.

37. Estimate the p’s of a conditional independence model for the survey in
Exercise 36, where you assume that gender and location are conditionally
independent of one another for each of smokers and nonsmokers. Construct
a table of expected counts under this model. In words, what does this model
say about your experiment? How well does it match the facts?

38. Linear regression can be generalized to polynomial regression by making
terms that involve the square, the cube, etc. of the independent variable into
additional independent variables. To illustrate this, estimate a model for the
case of Exercise 27 (three equally spaced design points) with

ŷ � µ + b(x − x̄) + c(x − x̄)2,

by interpolating the sample means at each design point. Apply it to the data
of Exercise 28 and redo part (c) with your new model. Do you find the results
more or less convincing than before?



CHAPTER 2

Least Squares Methods

2.1 Introduction

In the last chapter we considered models that summarized the measurements that
we obtained in several kinds of experiments. We ran into two sorts of difficulties.
First, we had nothing but our practical intuition to tell us how good a job we had
done when we summarized our data. Sometimes our averages and our regression
lines nearly equaled each data point; the difference could be attributed to mea-
surement “noise.” At other times our numbers were all over the plot, and only our
faith in the simplicity of nature led us to take our elementary mathematical models
seriously. We need some sort of index to score how well we do when we reduce
the data to these expressions.

Second, we found for most of our regression models no good way to estimate
the parameters. We need reasonable, repeatable estimators for regression models.

Fortunately, in 1805 the French mathematician Adrien Marie Legendre pro-
posed a beautiful solution for both of our problems: the method of least squares.
This simple idea based on coordinate geometry will give us a powerful, unified
way to deal with all the measurement problems discussed in the last chapter (and
many more).

Time to Review

Vector algebra
Matrix algebra
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2.2 Euclidean Distance

2.2.1 Multiple Observations as Vectors
We pointed out at the beginning that our measured responses xi could be thought
of as points on a number line. In a similar way, our regression scatter plots were
graphs of pairs of coordinates (xi, yi) for points in the plane; we again translated
numbers into geometrical objects. We can take this idea one radical step further
and pretend that an entire sample of observations xi for i � 1, . . . , n are the
coordinates of a single vector in n-dimensional space, this despite the fact that
we cannot readily visualize figures or plot points in a space of more than three
dimensions. Nevertheless, it will turn out that we can use methods from analytic
geometry to work with these sample vectors.

We need to translate our measurements into vector and matrix notation. First of
all, we will follow the convention that a vector is written as a boldface, lowercase
letter, such as x. When we expand the vector into its component coordinates, we
will use matrix notation. A vector is conventionally an n × 1 matrix, a column, of
coordinates:

x �
⎛
⎝ xi

...
xn

⎞
⎠ .

This is a bit inconvenient when we are writing text in a line, so we will often use the
transpose operator (which interchanges rows and columns of a matrix) to change
a row vector to a column vector: x � (xi, . . . , xn)T .

Example. On Monday through the following Sunday, I note how long I have to
wait for my hamburger at my favorite local lunch counter. The answers, in minutes,
are x � (12, 15, 9, 10, 14, 16, 14)T .

The usual situation when we are analyzing multiple measurements of the same
sort is that we have some theory that says that the ith number ought to be µi ;
but when we actually did our error-prone experiment, we got xi . So we ask how
far apart the sample vector x and the theoretical vector µ � (µ1, . . . , µn)T are.
Analytic geometry suggests that we find the length of the vector x − µ from the
hypothesis to the experiment, called the Euclidean distance from x to µ. Notice
that the ith coordinate of this vector is xi −µi , the residual defined in 1.2.2 (when
we say this, we mean that you can look for the earlier discussion in Chapter 1,
Section 2.2).

Example (cont.). The manager of the lunch counter announces that typically
one should have to wait about 10 minutes on weekdays and 15 minutes on
weekends. His theory (we usually call it a model, or hypothesis) says that
µ � (10, 10, 10, 10, 10, 15, 15)T . Then the residual between our data and his
model is x − µ � (2, 5, −1, 0, 4, 1, −1)T .
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FIGURE 2.2. 3-D Pythagorean theorem

To remind you how to calculate this length. Let us look at the graphable case of
two measurements (Figure 2.1): The Pythagorean theorem tells us that the length of
the residual vector, the hypotenuse of the triangle, is

√
(x1 − µ1)2 + (x2 − µ2)2.

You will probably have seen the corresponding expression, with three squared
coordinate differences under the square root, for the length of a vector in three-
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dimensional analytic geometry (Figure 2.2): We proceed to define fearlessly, for
the case of any number n of measurements:

Definition. The Euclidean distance from an n-dimensional vector µ to an n-
dimensional vector x is

√
(x1 − µ1)2 + (x2 − µ2)2 + · · · + (xn − µn)2 �

[
n∑

i�1
(xi − µi)2

]1/2

.

2.2.2 Distances as Errors
How do statisticians use the length of the residual vector? The basic idea is that
if we have two competing theories or models µ(1) and µ(2), then the experimental
results tend to favor one or the other if the observed vector x is closer to the
theoretical vector, that is, if the residual vector for that model is shorter. Since
we are usually only checking which length is less, statisticians most often save
themselves calculation by not bothering to take the square root:

Definition. The sum-squared error in a sample x for a model µ is SSE �∑n
i�1(xi − µi)2, the square of the Euclidean distance from µ to x.

Example. In the speed-of-light data from Chapter 1 (see 1.2.1) we know that the
true speed is (299,)710.5. If we let each of the 23 coordinates in the model vector
µ be equal to this value, then you may compute that

SSE � (883 − 710.5)2 + · · · + (723 − 710.5)2 � 289,478.

In the lunch-counter data, SSE � 48.

Even though this is the single most useful measure of closeness in statistics, we
find certain variations handy at times. Since we tend to repeat our measurements
as many times as we can afford, hoping that we will get a bit more accuracy, the
sample size n usually has nothing to do with the scientific issues we are studying.
But the SSE obviously grows with sample size as we add more squared coordinate
differences. This has led us to define an averaged version of the squared error:

Definition. The mean-squared error in a sample x for a model µ (proposed
before the experiment is carried out) is MSE � 1

n

∑n
i�1(xi − µi)2.

Example (cont.). In the speed-of-light data, MSE � 12,586. In the lunch-
counter data, MSE � 6.86.

This gives us a rough idea of the quality of a typical observation from the point
of view of the model. It has, however, one obvious failing that is clearly our fault:
If the measurements are in some units such as, say, grams, then the MSE is in units
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of grams-squared. These are likely to have no meaning for us. So we sometimes
repair an earlier adjustment and take the square root of the mean-squared error:

Definition. The root-mean-squared error in a sample x for a model µ is

RMSE �
√

MSE �
[

1
n

n∑
i�1

(xi − µi)2

]1/2

.

Example (cont.). In the speed-of-light data, RMSE � 112.2 km/sec. In the
lunch-counter data, RMSE � 2.62 minutes.

The RMSE, and its many special cases depending on the sort of model we are
studying, is perhaps the single most intuitively useful summary of how well our
experimental setup seems to be matching the model. It is a sort of typical absolute
difference between an observed and a predicted value.

2.3 The Principle of Least Squares

2.3.1 Simple Proportion Models
Often we have only a partial idea about what sort of simple model does the best
job of matching our data approximately. We noted earlier that Euclidean distance
could be used to pick from among several alternative models, according to how
close they are to the observations.

Example. In the lunch-counter problem, my personal opinion was that it takes
about 15 minutes to be fed every day. Therefore, I proposed another model, µ(2) �
(15, 15, 15, 15, 15, 15, 15)T . Its SSE is 73. The manager’s claim looks slightly
better, because its SSE is smaller.

But can we apply this approach when there is an infinity of choices?

Example. In the early decades of the twentieth century, astronomers had found
that they could tell how fast objects in the sky were moving toward us or away
from us by using the Doppler shift in the color of their light (just like a traffic cop
catching speeders using radar). With much more difficulty, they had also found
ways to tell how far away some objects were. In 1927, Edwin Hubble juxtaposed
those two facts about 24 galaxies:
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velocity distance velocity distance
(km/sec) (1,000,000 (km/sec) (1,000,000

parsecs) parsecs)
170 0.032 650 0.9
290 0.034 150 0.9

−130 0.214 500 0.9
−70 0.263 920 1.0

−185 0.275 450 1.1
−220 0.275 500 1.1

200 0.45 500 1.4
290 0.5 960 1.7
270 0.5 500 2.0
200 0.63 850 2.0
300 0.8 800 2.0
−30 0.9 1090 2.0

He of course drew a scatter plot (Figure 2.3):
After staring at this a while, you will probably come to the same conclusion

Hubble did: The faster a galaxy is moving away from us, the farther off it is (with
quite a bit of variation in the peculiar motions of each galaxy). If this is a general
law, then we see a way to exploit it: Since it is easy to observe the outward velocity
of a distant galaxy, we can use some simple law like d � kv to estimate roughly
the distance d, where k is our hypothesized proportionality constant. (One possible
such relation is given by the sloped line on the plot.) To this day, this is the most
common way to estimate the distance of newly discovered galaxies.
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Astronomers soon suggested an implication of our model: Perhaps the universe
is expanding. The expansion rate is measured by the Hubble constant 1/k. This
eventually led to the famous big bang hypothesis for the evolution of our universe.

2.3.2 Estimating the Constant
But what is k? If we knew some physical mechanism for expansion of the universe,
maybe that would tell us; but at this time we do not. Instead, we shall try to estimate
our k by assuming a regression model d̂ � kv similar to those of the last chapter
(see 1.5.2), but with only the one parameter k. Unfortunately, Chapter 1 gave us
no clue as to how to estimate k, except by eye. Now to Legendre’s great step: We
may phrase the problem as one of Euclidean distance. We want to choose k such
that the vector of distances d is as close as possible to the vector predicted by the
Hubble model d̂ � kv. Equivalently, we want somehow to pick out a k that makes
SSE � ∑n

i�1(di − d̂i)2 as small as possible (since making the squared distance
small is just the same as making the distance small, if all we want is the right k).
We have a name for this:

Definition. If we choose the parameters of a model for predicting observed mea-
surements by making the Euclidean distance from the observed vector to the
predicted vector as small as possible, we are applying the method of least squares
(because we are minimizing the SSE).

How is it possible to find k, since there is an infinite number of possible values
to compare? We shall use some ingenuity: Let l stand for any other possible value
of the proportionality constant in the Hubble model, besides k. Then if k is the
least-squares estimate, we know that always

∑n
i�1(di − lvi)2 ≥∑n

i�1(di − kvi)2.
Here comes the first trick: Subtract and add k to l on the left-hand side to get

n∑
i�1

(di − lvi)2 �
n∑

i�1
(di − kvi + kvi − lvi)2.

Now expand the square in the second expression, using the first two and last two
terms:

n∑
i�1

(di − lvi)2 �
n∑

i�1
(di − kvi)2 + 2

n∑
i�1

(kvi − lvi)(di − kvi) +
n∑

i�1
(kvi − lvi)2

≥
n∑

i�1
(di − kvi)2.

We can cancel out the identical sums on the two sides of the inequality and factor
out some constants from sums to get

2(k − l)
n∑

i�1
vi(di − kvi) + (k − l)2

n∑
i�1

v2
i ≥ 0.

To review, this inequality must always be true, no matter what l is, if k is the
least-squares estimate. But the second term must always be at least zero, because
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it is a sum of squares. The first term is more of a problem: Since l is free to be
anything, the term can obviously be either positive or negative. One more bit of
ingenuity: We can make the first term zero, and therefore never negative, without
paying attention to l, by setting

∑n
i�1 vi(di − kvi) � 0. This is called the normal

equation for this least-squares problem. To solve it, split the sum and move the
minus sign to the other side of the equation to get

∑n
i�1 vidi � k

∑n
i�1 v2

i . We can
solve this for k whenever we do not have to divide by zero, that is, when all the
v’s are not zero. In that case we have an estimate k̂ �∑n

i�1 vidi/
∑n

i�1 v2
i .

This estimate gets rid of the middle term in the big equation above, leaving∑n
i�1(di − lvi)2 �∑n

i�1(di − kvi)2 + (k − l)2∑n
i�1 v2

i . Now we know we have
succeeded; since our k meets the normal equation, it always has the smallest SSE:
In any other case of l, we have to add that positive last term, which makes the SSE
larger.

This equation has a practical application; if we are curious about what happens if
we use another value of k than the least squares value, we may use it to calculate how
much further away the prediction vector is from the observation vector. Another
use of it comes about when l (which, remember, can be anything) is set equal to
zero. Then

∑n
i�1 d2

i �∑n
i�1(di − lvi)2 + k2∑n

i�1 v2
i . The Pythagorean theorem

has appeared once again: You can read this as a relationship between the squared
length of the observed vector d, the squared length of the vector of residuals, and
the squared length of the vector of predictions vk. We do this so often in statistics
that we have names for the terms:

∑n
i�1 d2

i is called the (total) sum of squares,
TSS; the next term we already know as the sum of squares for error, SSE; and∑n

i�1 v2
i is called the sum of squares for regression, SSR.

Example (cont.). For Hubble’s model, you should check that k̂ � 0.001922
where SSE � 5.469. This is the slope of the line we drew on the scatter plot.
Therefore, if we observe that a galaxy is moving away from us at 600 km/sec, we
would expect it to be about 600 × 0.001922 � 1.15 million parsecs distant.

Let us summarize all our mathematics as follows:

Proposition. To predict a vector of dependent variables y from a vector of
independent variables x using the regression model y = xb,

(i) the least squares estimate b̂ is a solution of the normal equation
∑n

i�1 xiyi �
b
∑n

i�1 x2
i , because then

(ii)
∑n

i�1(yi − cxi)2 �∑n
i�1(yi − bxi)2 + (b − c)2∑n

i�1 x2
i for any parameter

value c;
(iii) in particular, if we choose c � 0,

∑n
i�1 y2

i �∑n
i�1(yi − bxi)2 + b2∑n

i�1 x2
i ,

which we conventionally write TSS � SSE + SSR.

All that I have done here is to use generic letters for the special symbols from
the Hubble problem: y for d , x for v, and b for k.
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2.3.3 Solving the Problem Using Matrix Notation
The result above is so important that anything we can do to understand it better
will be useful. First we will translate it into matrix notation. Remember that xa

where x is a vector and a is a constant is the vector we get by multiplying each
coordinate of x in turn by a. Second, an inner product of any two vectors x and
y, expressed in terms of their coordinates, is x • y � ∑n

i�1 xiyi . This can also be
written in terms of matrix products, which you should review:

(x1 · · · xn)

⎛
⎝ y1

...
yn

⎞
⎠ � xT y �

n∑
i�1

xiyi .

In particular, this means that the squared length of a vector may be written xTx �∑n
i�1 x2

i .
Now we retackle our problem, to find the b that makes (y − xb)T(y − xb), the

sum of squares of residuals, as small as possible. Again, let c be any possible value
of the slope, and subtract and add xb to get

(y − xc)T(y − xc) � (y − xb + x[b − c])T(y − xb + x[b − c]).

Now we can expand this “square” just as before, because matrix multiplication
and addition distribute and associate just like the ordinary operations:

(y − xc)T(y − xc) � (y − xb)T(y − xb) + [b − c]xT(y − xb)
+ (y − xb)Tx[b − c] + [b − c]xTx[b − c].

This is not quite the same as before, because there are two middle terms. However,
these happen to be the same (they are just the inner product of two vectors, listing
the vectors in different orders). Our middle term is then just 2[b − c]xT(y − xb).
The new normal equation to get rid of this term is xT(y − xb) � 0, which can be
solved whenever x �� 0 to get b̂ � xTy/xTx. Our decomposition has become

(y − xc)T(y − xc) � (y − xb)T(y − xb) + [b − c]2xTx.

(You should decode these last three expressions to check that we got the same
thing before, when we were using summation signs.)

Why have we done the same derivation twice? Because much later the matrix
notation will be essential for similar but harder derivations; and we have given
you some practice with it while you kept in mind what it really meant in terms of
summation. But there is something deeper here: Remember from vector geometry
that if two vectors x and y are both not zero, then their inner product xTy � 0
exactly when they are at right angles to each other. In fact, in n-dimensional
analytic geometry, this is the definition of a right angle. Therefore, our normal
equation (leaving the b in but with c chosen to be zero) (xb)T(y − xb) � 0 may be
restated as follows: Choose the parameter b such that the vector of predictions (xb)
is at right angles to the vector of residuals (y − xb). (In fact, this is the meaning of
normal in geometry.) You can see from Figure 2.4 where the theorem of Pythagoras
comes in. Further, you can see that our whole argument is just a familiar theorem



60 2. Least Squares Methods

×

×

x

y

y – xb

x b

y – xc

xc

y 1

y 2

× y – xb

FIGURE 2.4. Geometry of least squares

from Euclidean geometry: To find the shortest distance from a point (y) to a line
(xc for any number c), drop a perpendicular. It hits the line at some point (xb),
and we call that value of the constant b our least-squares estimate b̂.

2.3.4 Geometric Degrees of Freedom
Now we will use our geometric pictures to reinterpret the idea of degrees of freedom
(see 1.3.3). Imagine that we have not carried out our regression experiment yet,
but we know which n values of the independent variable x we will use as settings
when we later observe our dependent y’s. Here is what we already know: The
vector y − xb, whatever it turns out to be, will be perpendicular to the predictions
xb. With two observations, it may turn out to be any point on a certain line through
the origin (imagine sliding the dotted line y − xb down to where the coordinate
axes intersect, as we have done in Figure 2.4).

With three observations, y−xb may be any point in a whole plane perpendicular
to the vector xb, that is, a two-dimensional subspace of our coordinate space (Figure
2.5).

Generally, our residual vector will be a point in the (n − 1)-dimensional hyper-
plane through the origin and perpendicular to the vector of possible predictions.
(We need n coordinates to determine a point in the space of sample vectors. Let one
coordinate axis be at an angle, in the direction x. The remaining n− 1 coordinates
are needed to determine any vector at right angles to this one.) This turns out to be
the geometrical way of looking at an issue we discussed in the previous chapter:
When we say that the predictions have 1 degree of freedom, we mean that they



2.3 The Principle of Least Squares 61

  x2

  x1

  x3    xb

y – xb

FIGURE 2.5. 3-D geometry of least squares

lie in a 1-dimensional subspace (varying according to possible values of b). When
we say that this leaves n − 1 degrees of freedom for the errors, we mean that the
residual vectors lie in an (n − 1)-dimensional subspace of the data space. We will
greatly exploit this interpretation later.

We would now say that SSE � ∑n
i�1(yi − bxi)2 is the squared length of the

vector of residuals y − xb, which lies in a known (n − 1)-dimensional subspace.
Somewhat conventionally, when we average the squared errors, we average over the
number of dimensions (degrees of freedom) rather than the number of observations
to get the mean squared error MSE� 1

n−1
∑n

i�1(yi − bxi)2. At the beginning of
this chapter (see 2.2) we divided by n because we assumed that the predictions µ

were given in advance of observation, and so the residual vector y − µ could lie
anywhere in n-dimensional space.

Example. In Hubble’s problem, MSE � 5.469/23 � 0.2378. Then the RMSE �√
0.2378 � 0.4876; in this data set, we typically misestimated the distance by not

quite half a million parsecs.

2.3.5 Schwarz’s Inequality
One more interesting fact comes out of the least-squares method: Remember that
when we let c � 0 in our proposition, we got

∑n
i�1 y2

i � ∑n
i�1(yi − bxi)2 +

b2∑n
i�1 x2

i . We can conclude from this that since the first term on the right
is at least zero, then

∑n
i�1 y2

i ≥ b2∑n
i�1 x2

i . Now substitute our least-squares
estimate b̂ � ∑n

i�1 xiyi/
∑n

i�1 x2
i , which makes the sum of squares of residu-

als (
∑n

i�1(yi − bxi)2, the term we threw away) as small as possible. Then the
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inequality is as close to an equality as it can be, and we get

n∑
i�1

y2
i ≥
(

n∑
i�1

xiyi

)2

/

n∑
i�1

x2
i .

Moving the denominator to the left side, we get a result important enough to name:

Theorem (Schwarz’s inequality).
(∑n

i�1 xiyi

)2 ≤ ∑n
i�1 x2

i

∑n
i�1 y2

i ; and we
have equality just when y and x are proportional (that is, when there is a b such
that each yi � bxi , and so all residuals are 0).

Mathematicians love this fact, because it applies to any vectors at all, is amaz-
ingly simple, and is not at all obvious. It is the first result we have called a theorem,
and not just a proposition. You will see an application of it later in the chapter,
others later in the book, and yet others throughout your study of mathematics. We
have followed the mathematician’s habit of giving it a name; that is how we will
remind you of it from now on.

2.4 Sample Mean and Variance

2.4.1 Least-Squares Location Estimation
Our first summary model for measurements in the last chapter was the location
model: We imagined that our n repeated measurements were unimportant errors in
measuring a common constant µ. We can estimate µ by least squares: Let x be the
vector of measurements; then our vector of predictions is (µ · · · µ)T, since every
prediction is the same. To write this as a regression problem, we use the notation
(1 · · · 1)T � 1 for a vector of all ones. Then (µ · · · µ)T � 1µ just multiplies each
1 by the constant µ. Now we have a regression equation like Hubble’s: x̂ � 1µ,
where y has been replaced by x, b has been replaced by µ, and x has been replaced
by 1. Our least-squares estimate is then µ̂ �∑n

i�1 1xi/
∑n

i�1 12 � 1
n

∑n
i�1 xi � x̄.

Interestingly enough, the least-squares estimate for the location model is just the
sample mean, our standard estimate from the last chapter. So we see another reason
that the sample mean is important. Let us, as promised, list some of its properties:

Proposition (properties of the sample mean).

(i) x̄ is the least-squares location estimate for the sample vector x.
(ii) Add a constant to every observation: xi + a. Then x + a � x + a.

(iii) Multiply every observation by a constant: bxi . Then bx � bx̄.
(iv) The sum of the residuals

∑n
i�1(xi − x̄) � 0.

We will let you show why (ii) and (iii) are true, as an easy exercise. We discovered
(iv) in Chapter 1 (see 1.2.2).
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2.4.2 Sample Variance
To measure how well the mean describes our observations we have SSE �∑n

i�1(xi − x̄)2; and adjusted for the number of degrees of freedom, MSE �
1

n−1
∑n

i�1(xi − x̄)2. This last quantity tells us how spread out the results typically
are from their center. Statisticians have found it to be so enormously useful that
they have given it a special name and notation:

Definition. The sample variance of a sample vector x is the mean-squared error
about the sample mean s2

x � 1
n−1
∑n

i�1(xi − x̄)2. The standard deviation is its
square root sx � √s2

x , the root-mean-squared error about x̄.

Our Pythagorean law for location becomes
∑n

i�1(xi − ν)2 �∑n
i�1(xi − x̄)2 +

n(x̄−ν)2 for any number ν. Dividing by n−1 and solving for the sample variance,
we have s2

x � 1
n−1

[∑n
i�1(xi − ν)2 − n(x̄ − ν)2]. Letting ν � 0, we get a famous

formula for simplified computation of the variance: s2
x � 1

n−1

(∑n
i�1 x2

i − nx̄2).
Judicious use of other values of ν will often do much better; letting it be a round
number that is fairly close to µ will lead to a calculation of the variance that is easier
for pencil-and-paper computing, and less subject to round-off error in electronic
computing.

Example. You want to know how far it is from your apartment to your college.
You count your paces on five successive days, getting 1007, 998, 1023, 1025, and
1002 paces. You will use the sample mean as a summary measurement. To make
the calculation easy (see 1.2.2), subtract ν � 1000 from each number, and average:
(7 − 2 + 23 + 25 + 2)/5 � 11. Then it is about x̄ � 1000 + 11 � 1011 paces to
school. To get the sample variance, use this same value of ν in the equation above:

s2
x � [72 + (−2) + 232 + 252 + 22 − 5 × 112] 1

4
� 166.5.

Then the sample standard deviation is sx � √
166.5 � 12.9. It appears that you

varied about ±13 paces from day to day as you walked to school.

We can use the mean and standard deviation to provide another kind of simple
summary of a set of measurements. Add and subtract twice the standard deviation
from the sample mean to get an interval in which a large majority of the numbers
should fall. In the walking example, the interval is 985 ≤ xi ≤ 1037. We call this
a 2-s interval. Our definition looks somewhat arbitrary, but we will see some sort
of justification later.

Let us summarize our results:

Proposition (properties of the sample variance).

(i) For any number ν, s2
x � 1

n−1

[∑n
i�1(xi − ν)2 − n(x̄ − ν)2].

(ii) s2
x+a � s2

x and sx+a � sx for any constant a (location invariance).
(iii) s2

bx � b2s2
x and sbx � |b|sx for any constant b (scale equivariance).

You should discover the last two as an exercise. Together they say that the
standard deviation has nothing to do with where your measurements were centered
but is directly proportional to how spread out they are.
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2.4.3 Standard Scores
These measures of location and scale of our variable samples give us a way to com-
pare “atypicality” of observations that were originally evaluated in quite different
ways:

Example. On the first midterm exam in a statistics class, you make an 82; but on
the second you make only 65. However, the professor grades on the “curve,” by
which she seems to mean that your score will be compared to how your classmates
scored on the same test. You learn that on the first test, the class average was 75
with a standard deviation of 15. On the second test, the average was 51 with a
standard deviation of 12. On which one is your professor likely to conclude that
you did better?

We will, as in the 2-s interval, describe each observation as some number of
standard deviations above or below the mean. Letting ti denote that number, we
write xi � x̄ + tisx ; solving for ti , we get the following:

Definition. For a sample of n observations xi , the standardized measurements
(or standard scores) are ti � xi−x̄

sx
.

For example, 1007 paces becomes (1007 − 1011)/12.9 � −0.31. In words, 1007
is 0.31 standard deviations below the mean. Notice that the 2-s limits are always at
t � ±2. A standardized measurement has lost the scale on which it was originally
measured:

Proposition (properties of standard scores).

(i) Under the changes of variable x + a and bx (for b > 0), t does not change.
(ii) t̄ � 0 and st � 1.

You should show these as exercises.

Example (cont.). On that first exam, your standard score was (82 − 75)/15 �
0.47. On the second test, your standard score was (65 − 51)/12 � 1.17. It turns
out that you did relatively better on the second test, in the sense of being farther
above the class average if the test scores were similarly variable. Your professor
should be quite a bit more impressed with you the second time.

2.5 One-Way Layouts

2.5.1 Analysis of Variance
Remember that a one-way layout experiment splits up a number of observations
xij among the levels i of a treatment (see 1.3.1). It may have occurred to you
that we have now established that the standard estimates for the one-way layout
x̂ij � µ̂ � x̄i are actually the least-squares estimates for the parameters µi of
that model. This is because the SSE is just the sum of squared deviations of each
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measurement about the center of its cell; and we have discovered that these are
made smallest for each cell in turn by using the cell means as centers.

What about the centered model x̂ij � µ + bi? The least-squares estimates only
make the residuals small, and these are determined by the cell estimates x̂ij . The
centered model has exactly these same standard cell predictions (we just wrote them
in terms of different parameters), so the residuals xij − x̂ij are still the same, and
as small as possible. Therefore, the standard estimates µ̂ � x̄ � 1

n

∑k
i�1
∑ni

j�1 xij

and b̂i � x̄i − x̄ are also least-squares estimates.
The fact that the standard estimates are least-squares will teach us some-

thing important. The sum-squared error is SSE � ∑k
i�1
∑ni

j�1(xij − x̂ij )2 �∑k
i�1
∑ni

j�1(xij − x̄i)2. But the inner sum
∑ni

j�1(xij − x̄ij )2 is just the SSE
of the location model for the ni observations in the ith level by themselves.
Then the Pythagorean law in (4.2) letting v � x̄, the overall mean, gives us∑ni

j�1(xij − x̄i)2 �∑ni

j�1(xij − x̄)2 − ni(x̄i − x̄)2. Putting this back in the double
sum for the SSE, we get

k∑
i�1

ni∑
j�1

(xij − x̄i)2 �
k∑

i�1

ni∑
j�1

(xij − x̄)2 −
k∑

i�1
ni(x̄i − x̄)2.

Moving the negative part over to the other side yields
∑k

i�1
∑ni

j�1(xij − x̄)2 �∑k
i�1
∑ni

j�1(xij − x̄i)2 +∑k
i�1 ni(x̄i − x̄)2. Now remembering what these had to

do with the parameters of the centered model, µ̂ � x̄ and µ̂ + b̂i � x̄i , we can
rewrite this last expression:

k∑
i�1

ni∑
j�1

(xij − µ̂)2 �
k∑

i�1

ni∑
j�1

(xij − µ̂ − b̂i)2 +
k∑

i�1
nib̂

2
i .

Proposition. In the centered model for a one-way layout, with least-squares
estimates µ̂ � x̄ and b̂i � x̄i − x̄, we have

k∑
i�1

ni∑
j�1

(xij − x̄)2 �
k∑

i�1
ni(x̄i − x̄)2 +

k∑
i�1

ni∑
j�1

(xij − x̄i)2,

or
k∑

i�1

ni∑
j�1

(xij − µ̂)2 �
k∑

i�1
nib̂

2
i +

k∑
i�1

ni∑
j�1

(xij − µ̂ − b̂i)2.

This is so important that we have a shorthand notation to help us remember it.
The rightmost term was SSE. The term on the left is called the corrected sum of
squares and is denoted by SS. We call

∑k
i�1 nib̂

2
i the sum of squares for treatment

(SST) (or sometimes the between-groups sum of squares). It is the total of the
squares of all the adjustments we have made for the level of treatment in the
individual observations. Therefore, our result may be written SS � SST + SSE.

The expansion can go one step further: Since SS �∑k
i�1
∑ni

j�1(xij − x̄)2 is just
the error sum of squares for a simple location model with only one location µ for
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all the observations, apply the result from (4.2) with ν = 0 to get
k∑

i�1

ni∑
j�1

(xij − x̄)2 �
k∑

i�1

ni∑
j�1

x2
ij − nx̄2.

Plugging this into the proposition yields an impressive result:

Theorem (analysis of variance for the one-way layout). In the centered model
for a one-way layout, with least-squares estimates µ̂ � x̄ and b̂i � x̄i − x̄, we
have

k∑
i�1

ni∑
j�1

x2
ij � nx̄2 +

k∑
i�1

ni(x̄i − x̄)2 +
k∑

i�1

ni∑
j�1

(xij − x̄i)2,

or
k∑

i�1

ni∑
j�1

x2
ij � nµ̂2 +

k∑
i�1

nib̂
2
i +

k∑
i�1

ni∑
j�1

(xij − µ̂ − b̂i)2.

We have now decomposed the total sum of squares of the measurements TSS �∑k
i�1
∑ni

j�1 x2
ij into three pieces: The new one, nx̄2, is called the sum of squares for

the mean SSM. We then remember the analysis of variance theorem symbolically
as TSS � SSM + SST + SSE.

2.5.2 Geometric Interpretation
Looking at this model geometrically, let µ̂ � 1µ̂,

b̂ �
(

b̂i · · ·b̂i︸ ︷︷ ︸ · · · b̂k· · ·b̂k︸ ︷︷ ︸
)T

,

nientries nkentries

and the residual vector ê � x − µ̂ − b̂, where the observation vector is

x � (x11 · · · x1n1x21 · · · x2n2 · · · xk1 · · · xknk

)T
.

Each vector is n-dimensional. You should check as an exercise that our theorem
may be written xTx � µ̂Tµ̂ + b̂Tb̂ + êTê. But then we note some important facts:

Proposition.

(i) µ̂Tb̂ � 0.
(ii) µ̂Tê � 0.

(iii) b̂Tê � 0.

These also should be verified, as an exercise. We say the vectors are orthogonal
to one another.

Perhaps now you can imagine the geometry of the theorem, which is a
three-dimensional version of the ubiquitous theorem of Pythagoras. Imagine a
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FIGURE 2.6. Geometry of ANOVA

rectangular box whose length, width, and height are our three estimated vectors,
which you have checked are at right angles to each other (Figure 2.6). Then the
observation vector x is the diagonal of that box. The various sums of squares are
the squared lengths of the edges, which sum to the squared length of the diagonal.

Once again we can use our picture (Figure 2.6) to interpret the degrees of freedom
in the one-way layout model. The vector µ̂ lies in a one-dimensional subspace,
those vectors proportional to 1, which corresponds to the single degree of freedom
for the mean. The vector b̂ is determined by the k different level adjustments, which
may each have any value at all (at least until you make your observations), except
of course for the centering constraint, which requires them to average zero. This
last statement, by the way, is just what our result µ̂Tb̂ � 0 tells us: Our adjustments
must be at right angles to the constant vector. Therefore, b̂ is determined by k − 1
independent constants and necessarily lies in a (k−1)-dimensional subspace of our
data space. This matches the degrees of freedom for the b’s. The residuals vector
may take on any n values at all, except that our results µ̂Tê � 0 and b̂Tê � 0
say that it must be perpendicular to any mean vector and any adjustments vector.
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Therefore, it lies in an (n − k)-dimensional subspace, because that is how many
independent constants are needed to describe it. Again, these are the degrees of
freedom for error. Just as before, when we calculate mean squares corresponding
to these sums of squares, we divide by the degrees of freedom to average over the
available dimensions.

2.5.3 ANOVA Tables
By now you are finding this all to be bewilderingly complicated. So has everyone
else, so the analysis of variance (ANOVA) table was invented to organize all these
statistics:

Source Sum of Squares Degrees of Freedom Mean Square
Mean nx̄2 1 nx̄2

Treatment SST k − 1 MST = SST/(k − 1)
Error SSE n − k MSE = SSE/(n − k)
Total TSS n

Elaborations of this table are used for more complicated least-squares models. The
“total” cells give us a way to check our work—the analysis of variance theorem
says that TSS is indeed the column sum. Furthermore, we have just finished arguing
that the degrees of freedom add up to their column total.

Example. From the salinity data for the Bimini Lagoon (see 1.3.1), you should
check that the following values are correct:

Source Sum of Squares Degrees of Freedom Mean Square
Mean 44654 1 44654

Water Mass 38.80 2 19.40
Error 7.934 27 0.2938
Total 44700.7 30

How shall we interpret the quantities in this table? In this problem (and often
in other ANOVA problems) we find ourselves uninterested in the overall mean
and its table entry. It is so large because the ocean is salty, and that is where the
water comes from. We are interested rather in the differences among samples. We
retreat to the proposition SS � SST + SSE, and the table simplifies to this more
commonly seen form:

Source Sum of Squares Degrees of Freedom Mean Square
Treatment SST k − 1 MST = SST/(k − 1)

Error SSE n − k SSE/(n − k)
Total SS n − 1

To quantify the relative importance of the treatment level, we may compute the
following statistic:

Definition. The coefficient of determination is given by R2 � SST
SST+SSE � SST

SS .
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In our salinity example, the corrected sum of squares is 46.734, so R2 � 0.83.
We might interpret R2 as the proportion of the sample variance that is “explained”
by systematic differences among the levels. As its name is a mouthful, most statis-
ticians just call it “R-squared.” You might remember from trigonometry that R2 is
the square of the cosine of the angle between the vectors b̂ and x − µ̂.

2.5.4 The F-Statistic
We might ask instead a somewhat harder question: Are the apparent differences
among treatment means just an accident? That is, did we just by bad luck pick
saltier samples in area II and fresher samples in area I? Given the variability of our
measurements, that certainly seems possible; but we can never tell with reasonable
certainty without doing a much more extensive set of measurements.

Since we are using the principle of least squares, we must think that the most
important fact about our random errors is the length of the error vector. Therefore,
if we rotate that error vector in any direction whatsoever, keeping it the same
length, we should get the same least-squares estimates of our model parameters.
This suggests that if least squares is indeed the right way to look at errors in
our experiment, the following assumption about what those errors look like is
plausible:

Assumption of Spherical Distribution. If we repeat the whole experiment many
times, the scatter of sample vectors in n-dimensional space is much the same in
any direction from the vector of “true” values.

This says that the error, or residual, vectors tend to be of similar lengths in any
direction. In one dimension, this means that the scatter of numbers above the true
value looks much the same as the scatter of numbers below the true value, reversed
as if in a mirror. In two dimensions, this pattern is called circular symmetry; an
example is shown in Figure 2.7, where each triangle marks the error vector for one
repetition of the experiment. If you rotate this scatter plot through any number of
degrees, it still looks much the same. In three-dimensional space, the scatter plot
would look like what astronomers call a globular star cluster. The mathematical
word for such a pattern is spherical symmetry, hence the name of our assumption.

One implication of this assumption is that the order of the observations, the
indices j � 1, 2, . . . that we gave them, is not scientifically important. This is
because changing the order just involves switching coordinate axes around; that
obviously has no effect on the general appearance of our spherical cloud of sample
vectors. This is often a desirable property of fair sampling practices. Much later in
the book you will discover that certain very common statistical models will imply
that our assumption is true.

Now assume in our centered model that if we actually knew the deep scientific
truth about what is going on, b � 0, so that the treatments should not matter, then
the vector whose squared length is SST, b̂, would consist of irrelevant peculiarities
about our data. Much later in the book we will discover the mathematical reasons
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FIGURE 2.7. Observations with circular symmetry

for an amazing and wonderful fact: If in the one-way layout model b � 0, and the
assumption of spherical distribution is true for this sort of experiment, then MST
and MSE will often be similar in size.

You have no obligation to believe me about this yet, or even understand what it
means. But it tells us why we like to calculate the following:

Definition. The F-statistic is given by Fk−1,n−k � MST
MSE .

Our justification suggests that when the true adjustments due to the experimental
levels should be zero, the F-statistic is somewhere near 1. On the other hand, if
the adjustments for level are substantially different from zero, MST increases, as
you may see by looking at its formula, and so does the F-statistic. In our salinity
example F2,27 � 66.03; this is so much greater than 1 that we are fairly confident
that the salinity does vary from site to site. If our statistic had been, say 0.7, we
would have to say that the evidence for the treatment mattering was weak, since
some number like this might have arisen by routine accident in an experiment with
no real treatment effect.
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We will see other F-statistics with which to evaluate the evidence for experi-
mental treatment effects in other least-squares models. Of course, we have nothing
but experience to guide us in how much bigger than 1.0 an F must be before we
jump to any conclusions about nontrivial effects; this will come later.

2.5.5 The Kruskal–Wallis Statistic
Another simple way to see whether several levels of a treatment show different
measurement values is to rank all the measurements from smallest to largest. For
example, in the salinity data, the value 36.71 gets a rank of 1, 36.75 gets a rank of
2, and the two 37.01s are tied for third, so we conventionally give each a rank of
3.5. We continue until 40.80 gets a rank of 30. The complete rankings are

Mass I: 10 3.5 1 5.5 7 3.5 5.5 11 8 2 9 17
Mass II: 27 30 24 23 29 28 25 22
Mass III: 19 21 20 12 14 16 18 15 13 26

as you should check.
It seems reasonable to perform an analysis of variance on these ranks. The

notation we shall use is Rij for the rank in the whole sample of the j th observation
in the ith level; for example, RII3 � 24. In our example, the level means are
R̄I � 6.917, R̄II � 26.0, and R̄III � 17.40. This tells us much the same thing
as the level means of the original salinities: Mass II is a bit saltier than III and
much saltier than I. (Traditionally, if we are interested in only the question of
whether the ith level is peculiar, we compute its Wilcoxon rank-sum statistic
Wi � ∑ni

j�1 Rij � niR̄i . For example, WIII � 174. Of course, this is harder to
interpret than the level means.)

The new way of comparing the levels has two important disadvantages: first, it
no longer says anything at all about just how salty the water actually is. Second, it
loses some distinctions that were present in the original observations; for example,
the distinction between 19 and 20 was only 0.01%, but the difference between 11
and 12 is fully 0.54%.

On the other hand, the new statistic has an important advantage: If we attach
very little importance to the actual values on the scale of measurement, but only
trust it usually to tell us which sample has a larger value, then these comparisons
based on ranks seem plausibly to capture what we want to know. For example,
our salinity gauge might be poorly calibrated, so that the only thing we are sure of
is that it reads higher with saltier water. Or our scale may have been an arbitrary
one, designed just for this one experiment. The arithmetic test from (1.4.1) was a
collection of problems the teacher invented on the spur of the moment. A grade of
26 means nothing in itself; but the student who scored 26 is likely doing better in
the class than the one who scored 17. Therefore, analyzing this problem by ranks
might well tell us almost as much as using the grades.

The obvious statistic to summarize differences between water masses is the
sum of squares for treatment, which, remember (Section 5.2), compares these
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level means to the overall mean R̄ � 15.5. Then SST � ∑k
i�1(R̄i − R̄)2; in

our water example, SST � 1802.18. Notice that some simplification will turn
out to be possible, because R̄ is just the average of the ranks 1, . . . , n; this is
exactly the same, no matter how the experiment came out. In fact, the average of
the first and last ranks is (1 + n)/2; the average of the second and next to last is
(2 + (n− 1))/2 � (1 +n)/2; in fact, all such low and matching high pairs average
the same, (1 + n)/2. Therefore, it is always the case that R̄ � (1 + n)/2.

It gets better; our corrected sum of squares SS depends only on all the ranks,
so it will be the same however the experiment comes out (if we ignore ties). You
will figure out a formula for SS in the next chapter as an exercise. But this fact has
an important implication: Earlier in this section we had to invent R-squared and F
to compare SST and SSE, because they were independent pieces of information.
Now SS = SST + SSE, with SS known in advance, says that they are no longer
independent; we need calculate only SST, and interpret it.

Definition. The Kruskal–Wallis statistic is K � 12/(n(n + 1))SST, where SST
is the sum of squares for treatment when the ranks of the observations are used as
the data.

In the water example, K � 23.25. The larger this is, the more different are
the water masses. In an exercise in a later chapter, you will discover that if there
are in fact no systematic differences among the levels, so there is no pattern to
which ranks are where, a typical value of K is somewhere in the neighborhood of
k − 1, the degrees of freedom for treatment. (This is why it is usual to multiply
by 12/(n(n + 1)); the interpretation will no longer depend on our sample size.) In
our example, 3 − 1 � 2 is so much smaller than 23.25 that we suspect we have
spotted a real salinity difference.

The Kruskal–Wallis statistic is an important example of a rank statistic, which
are of considerable historical interest in applied statistics. You will see another
example in a later chapter.

2.6 Least-Squares Estimation for Regression Models

2.6.1 Estimates for Simple Linear Regression
Finally, we come to an important estimation problem from the last chapter that the
method of least squares can solve for us. Remember the simple linear regression
model ŷi � µ+ (xi − x̄)b? (See 1.5.2.) We were able to suggest standard estimates
of the parameters µ and b in only the simplest case, where exactly two distinct
values of the independent variable x appeared in the data, so we could interpolate
between them. The method of least squares would suggest that we choose our
parameters to make

∑n
i�1[yi − µ − (xi − x̄)b]2 as small as possible. This looks

harder than the problem we solved in Section 3; but fortunately, we have already
done most of the work.
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First, pretend we already knew the correct value of b. Then the least-squares
problem just asks what constant value µ makes

∑n
i�1{[yi − (xi − x̄)b] − µ}2

smallest. That is, what single µ is closest to the known numbers [yi − (xi − x̄)b]?
We already solved this problem in Section 4: The least-squares estimate is just
their average

µ̂ � 1
n

n∑
i�1

[yi − (xi − x̄)b] � 1
n

n∑
i�1

yi − b

n

n∑
i�1

(xi − x̄).

The last term is zero, from a property of the sample mean, so µ̂ � ȳ. This works
out so nicely because we used a centered model.

We get the same result for any b; to get the best b, we are left with the problem
of minimizing

∑n
i�1 [yi − ȳ − (xi − x̄)b]2. That is, we want a least-squares pre-

diction of the values yi − ȳ from the model (xi − x̄)b. This is the simple proportion
model from Section 3; so b̂ � ∑n

i�1(yi − ȳ)(xi − x̄)/
∑n

i�1(xi − x̄)2. This is
important enough to make into a theorem.

Theorem (linear regression by least squares). Given a vector of independent
variable settings x and a vector of dependent measurements y, then the least-
squares estimates of the prediction model ŷi � µ + (xi − x̄)b are given by µ̂ � ȳ

and

b̂ �
n∑

i�1
(yi − ȳ)(xi − x̄)/

n∑
i�1

(xi − x̄)2

whenever not all values of x are the same.

(Why did I have to put in that last quibble?) You should check as an exercise that
the estimates in the theorem are the same as our standard estimates from the last
chapter, in case there are only two different values of the independent variable.

Example. Mapes and Dajda in 1976 collected data on the percentage of the time
that ill British children of various ages were taken to the doctor:

age 0 1 2 3 4 5 6 7
percentage 70 76 51 62 67 48 50 51

age 8 9 10 11 12 13 14
percentage 65 70 60 40 55 45 38

It is plausible that a very crude prediction of a child’s likelihood of being taken
to the doctor might be made by a linear regression model: If p stands for the
percentage of time an age group has gone to the doctor, and a for their age, then
we predict p̂ � µ + (a − ā)b. Actually, since the raw data were individual cases
of a child either going or not going, I should be using logistic regression here (see
1.8.2); but I have no access to the raw data. We shall do the best we can with a
least-squares estimate of a linear regression model. We calculate ā � 7 years,
µ̂ � p̄ � 56.53%,

∑n
i�1(ai − ā)2 � 280, and

∑n
i�1(ai − ā)(pi − p̄) � −440.

Then b̂ � −440/280 � −1.5714. (You should check my arithmetic.) We arrive
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FIGURE 2.8. Doctor visits as a function of age

at a prediction equation

p̂ � 56.53 − 1.5714(a − 7).

This line is displayed on the scatter plot in Figure 2.8. For example, we predict
that a child of 9.5 years of age will be taken to the doctor about 52.6% of the time.
From looking at the graph, this is a very crude estimate; on the other hand, I think
I would trust it better than just the data values for 9 and 10 years.

2.6.2 ANOVA for Regression
We partition the sum of squares as in Section 3 to get

n∑
i−1

(yi − ȳ)2 �
n∑

i−1

[
yi − ȳ − b̂(xi − x̄)

]2
+ b̂2

n∑
i−1

(xi − x̄)2,

and then decompose the left-hand side as in Section 4:

Theorem (analysis of variance for simple linear regression). For the least-
squares estimates for simple linear regression,

n∑
i�1

y2
i � nµ̂2 + b̂2

n∑
i−1

(xi − x̄)2 +
n∑

i−1

[
yi − ȳ − b̂(xi − x̄)

]2
.

As an exercise, you should interpret this as a statement about vectors at right
angles to each other. The new term we call the sum of squares for regression:
SSR� b̂2∑n

i−1(xi − x̄)2; it has one degree of freedom. So now we can write down
an analysis of variance table:
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Source Sum of Squares Degrees of Freedom Mean Square
Mean nȳ2 1 nȳ2

Regression SSR 1 MSR = SSR
Error SSE n − 2 MSE = SSE/(n − 2)
Total TSS n

Example (cont.). In the problem of rates of going to the doctor, we have the
following:

Source Sum of Squares Degrees of Freedom Mean Square
Mean 47940.0 1 47940.0
Age 691.429 1 691.429
Error 1202.305 13 92.485
Total 49834 15

That gives us R2 � 691.43/(691.43 + 1202.3) � 0.3651. Only about 37% of
the variability in our rates of going to the doctor is explained by the linear trend
we have proposed. On the other hand, F1,13 � 691.43

92.485 � 7.4761 is much bigger
than one, so that even though our predictions do not accomplish a great deal, the
downward trend may be real.

2.7 Correlation

2.7.1 Standardizing the Regression Line
To see some qualitative features of the least-squares regression equation, divide
both the numerator and denominator of the slope estimate by n − 1,

b̂ �
1

n−1
∑n

i�1(yi − ȳ)(xi − x̄)
1

n−1
∑n

i�1(xi − x̄)2
,

so that the denominator is just the sample variance of x. Let us give the numerator
a name:

Definition. The sample covariance of sample measurement vectors x and y is

sxy � 1
n − 1

n∑
i�1

(yi − ȳ)(xi − x̄).

Then we can write compactly b̂ � sxy/s
2
x . Now our regression equation, with µ̂ � ȳ

moved back to the other side of the equation, looks like ŷ − ȳ � (x − x̄)sxy/s
2
x .

These subtractions may remind you of standard scores; we can force them to
appear by dividing both sides by sy and rearranging to get

(ŷ − ȳ)/sy � ((x − x̄)/sx)(sxy/(sxsy)).

Let us play a standard mathematician’s game by giving the messy part a name:
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Definition. The sample correlation between x and y is

rxy � sxy

sxsy

�
∑n

i�1(yi − ȳ)(xi − x̄)√∑n
i�1(yi − ȳ)2

∑n
i�1(xi − x̄)2

.

We have canceled out the (n − 1)’s. For example, in the age/doctor–visit problem,
r � −0.604.

Giving obvious names to the parts that are standard scores, we have a remarkably
compact formulation of simple least-squares regression:

Proposition. tŷ � rxytx .

2.7.2 Properties of the Sample Correlation
This last equation is not terribly useful for doing predictions, and it will help our
understanding only if we develop some insight into what the correlation means.
It will turn out to be a dimensionless measure of the degree to which the two
variables change together. First, let us apply the Schwarz inequality (see Section
3.5) to xi − x̄ and yi − ȳ to get that[

n∑
i�1

(yi − ȳ)(xi − x̄)

]2

≤
n∑

i�1
(yi − ȳ)2

n∑
i�1

(xi − x̄)2

always holds, where all the quantities are familiar from earlier in this section.
Dividing by the right-hand side, we find[∑n

i�1(yi − ȳ)(xi − x̄)
]2∑n

i�1(yi − ȳ)2
∑n

i�1(xi − x̄)2 ≤ 1.

This is just the square of the correlation, so always r2
xy ≤ 1, which gives us the

first part of the following:

Proposition (properties of the correlation).

(i) −1 ≤ rxy ≤ 1.
(ii) rxy � ryx .

(iii) rx+a,y � rxy for any constant a.
(iv) rcx,y � rxy for any constant c > 0.
(v) rcx,y � −rxy for c < 0.

Notice that (ii) is true because x and y may be switched in the defining formula.
You should prove (iii)–(v) as exercises.

Parts (iv) and (v) are what we mean by calling a quantity dimensionless: Think
of c as the conversion factor that you need to change one of the variables from feet
into meters, for example. In the process r does not change.

Now go back to the statement of the Schwarz inequality: It becomes an equality
just when the vector of quantities yi − ȳ is exactly proportional to the vector of
quantities xi − x̄. That is, there is some constant b such that yi − ȳ � b(xi − x̄).
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But then yi � ȳ + b(xi − x̄), and the regression prediction is exactly true. The
points in the scatter plot are lined up perfectly along this straight line, and SSE =
0. In this case, because the inequality has become an equality, necessarily r2

xy � 1;
so rxy � 1 (if b > 0) or rxy � −1(if b < 0).

Now summarize what we can conclude from knowing the correlation:

1. If rxy � 1, then all pairs (x, y) fall on an upward-sloping line.
2. If rxy > 1, there is an upward-sloping regression line; the larger it is, the

more tightly the pairs cluster about the line (we call this a positive association
between x and y).

3. If rxy � 0, a regression line is flat, and it does not help you predict one variable
from the other (we say x and y are uncorrelated).

4. If rxy < 0, there is a downward-sloping regression line; the more negative it
is, the more tightly the pairs cluster about the line (x and y have a negative
association).

5. If rxy � −1, then all pairs (x, y) fall on a downward-sloping line.

You might notice that because of our properties of the correlation, it simply does
not matter in Figure 2.9 where the origin is, or what units our axes are in, or which
axis is x and which is y.

For the example where r � −0.604, there is a moderate degree of negative
association. You might notice that in this example r2 � R2. You should show as
an exercise that this is always true for simple linear regression. Of course, r may
be either positive or negative, and so tell us also the direction of the association.
On the other hand R2 makes sense for any model estimated by least squares.

rx y = .5   rx y = –.8

FIGURE 2.9. Examples of correlation
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2.7.3 Regression to the Mean
The regression equation tŷ � rxytx tells us something interesting right away. Since
r is always no bigger in size than one, it follows that |tŷ | ≤ |tx |: The standard score
of the prediction is no bigger in size than the independent-variable standard score.
We always predict that our experimental result will be closer to average than our
experimental setting. This is called regression to the mean; it was so named by the
pioneering mathematical biologist Francis Galton in the late nineteenth century,
and is the origin of the statistical use of the word regression. His example was that
the sons of tall fathers tend to be taller than average, but less so than their fathers;
the reverse is true for sons of short fathers. This correlation is about 0.5; so on
average, children regress halfway to the mean height of their generation, by our
equation.

2.8 More Complicated Models*

2.8.1 ANOVA for Two-Way Layouts
The method of least squares should tell us how to estimate the parameters of models
for more elaborate experiments. For example, what about two-way layouts? In the
full model x̂ijk � µij , we know what to do; as before, we get a least-squares
estimate for each cell separately: µ̂ij � x̄ij . This is the standard estimate. But
now consider the centered parametrization x̂ijk � µ + bi + cj + dij . What are the
least-squares estimates for the parameters, and do we have an analysis of variance
to rate their importance? In Chapter 1, we claimed that the standard estimates were
appropriate only for balanced designs, when the numbers of observations of the
cells of each row were proportional to each other (see 1.4.3). Now we shall see
why we need that condition.

The standard estimates were µ̂ � x̄, b̂i � x̄i• − x̄, ĉj � x̄•j , and d̂ij �
x̄ij − x̄i• − x̄•j + x̄. We will proceed, as we did earlier, to decompose the sum of
squares in stages. First, we work as if the entire collection of observations were
a one-way layout split by levels of the column treatment j . Then we have the
analysis of variance

l∑
i�1

m∑
j�1

nij∑
k�1

x2
ijk � nx̄2 +

m∑
j�1

n•j (x̄•j − x̄)2 +
l∑

i�1

m∑
j�1

nij∑
k�1

(xijk − x̄•j )2.

For the next stage, we will predict all the residuals xijk − x̄•j with another one-
way layout model, using the levels of the row treatment i. Notice that the grand
mean of these quantities is zero, because they are residuals in a centered model.
Now we need to figure out their mean for the ith row: 1

ni•

∑m
j�1
∑nij

k�1(xijk − x̄•j ) �
x̄i• −∑m

j�1(nij /ni•)x̄•j . This would lead to a complicated decomposition of the
sum of squares, and worse, one that would turn out different if we had looked at
rows first. But that ratio of numbers of observations in the last term, nij /ni• does
not depend on i, because we are talking about balanced designs. Substituting its
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constant value n•j /n, we get

1
ni•

m∑
j�1

nij∑
k�1

(xijk − x̄•j ) � x̄i• −
m∑

j�1

n•j

n
x̄•j � x̄i• − x̄

(as an easy exercise, check my claim that
∑m

j�1(n•j /n)x̄•j � x̄). This, then, is
the predicted value of these residuals xijk − x̄•j by row. The sum of squares of
residuals can then be expanded, again by the analysis of variance theorem:

l∑
i�1

m∑
j�1

nij∑
k�1

(xijk − x̄•j )2 �
l∑

i�1
ni•(x̄i• − x̄)2 +

l∑
i�1

m∑
j�1

nij∑
k�1

(xijk − x̄•j − x̄i• + x̄)2.

The last stage in the decomposition will see us predicting the current residuals
xijk − x̄•j − x̄i•+ x̄ with a full model. The average residual over all the observations
in the ij th cell is obviously x̄ij − x̄•j − x̄i• + x̄, because only the first term changes
inside that cell. This is, of course, the standard estimate of interaction. We get a
third decomposition of sum of squares

l∑
i�1

m∑
j�1

nij∑
k�1

(xijk − x̄•j − x̄i• + x̄)2 �
l∑

i�1

m∑
j�1

nij (x̄ij − x̄•j − x̄i• + x̄)2

+
l∑

i�1

m∑
j�1

nij∑
k�1

(xijk − x̄ij )2.

Combining the three stages, we get a result that is impressive-looking, but easy
to interpret:

Theorem (analysis of variance for a balanced two-way layout). If the design is
balanced, then

l∑
i�1

m∑
j�1

nij∑
k�1

x2
ijk � nx̄2 +

m∑
j�1

n•j (x̄•j − x̄)2 +
l∑

i�1
ni•(x̄i• − x̄)2

+
l∑

i�1

m∑
j�1

nij (x̄ij − x̄•j − x̄i• + x̄)2 +
l∑

i�1

m∑
j�1

nij∑
k�1

(xijk − x̄ij )2.

We see the familiar TSS term, the SSM term, and the final SSE term. Since
we now have two treatment sums of squares, we will name them sum of squares
for columns, SSC =

∑m
j�1 n•j (x̄•j − x̄)2; and sum of squares for rows, SSR =∑l

i�1 ni•(x̄i• − x̄)2. (We will not be confused by the latter, because it is not a
regression problem.) Finally, we need the sum of squares for interaction,

l∑
i�1

m∑
j�1

nij (x̄ij − x̄•j − x̄i• + x̄)2.

Our complicated theorem just says TSS = SSM + SSC + SSR + SSI + SSE. Notice
that nothing in our result depends on the fact that we decomposed by columns, and
then rows. We are ready to put the terms into an ANOVA table:
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Source Sum of Squares Degrees of Freedom Mean Square
Mean SSM 1 MSM
Rows SSR l − 1 MSR

Columns SSC m − 1 MSC
Interaction SSI (l − 1)(m − 1) MSI

Error SSE n − lm MSE
Total TSS n

Once again, because most applications are not concerned with the overall mean,
we commonly reduce it to a decomposition of the corrected sum of squares SS �
SSC + SSR + SSI + SSE:

Source Sum of Squares Degrees of Freedom Mean Square
Rows SSR l − 1 MSR

Columns SSC m − 1 MSC
Interaction SSI (l − 1)(m − 1) MSI

Error SSE n − lm MSE
Total SS n − 1

Example. Returning to the third-grade arithmetic test (see 1.4.1), we compute the
ANOVA table for the full model:

Source Sum of Squares Degrees of Freedom Mean Square
Curriculum 156.8 1 156.8

Gender 16.2 1 16.2
Interaction 1.8 1 1.8

Error 774.8 16 48.425
Total 949.6 19

We find ourselves interested in several different F-statistics here. Comparing the
mean square for interaction to that for error, we get a ratio of 0.037. This is much
less than 1 (in fact, surprisingly so; you will rarely encounter such a small value
in practice). This suggests that there is no evidence that the change of curriculum
treats boys and girls differently.

Now we know that it is at least plausible to imagine that we had two separate
experiments: one that looked at differences in the scores for different curricula
and the other that looked at the scores of girls versus boys. Comparing the gender
mean square to error, we get an F-statistic of 0.335; still less than 1. We have no
evidence that boys really tended to do better. Comparing the curriculum to error,
we get a ratio of 3.24. Experience will teach you that this is not amazingly larger
than 1; still, it is some evidence that the students using the new curriculum are
really doing better.

2.8.2 Additive Models
What about additive models like x̂ijk � µ+bi + cj (that is, which neglect interac-
tions) for balanced two-way layouts? Going back to the ANOVA for full models,
simply combine the first two stages, skipping the decomposition involving the
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interaction:

l∑
i�1

m∑
j�1

nij∑
k�1

x2
ijk � nx̄2 +

m∑
j�1

n•j (x̄•j − x̄)2 +
l∑

i�1
ni•(x̄i• − x̄)2

+
l∑

i�1

m∑
j�1

nij∑
k�1

(xijk − x̄•j − x̄i• + x̄)2.

This tells us that the decomposition of the observations

xijk � x̄ + (x̄•j − x̄) + (x̄i• − x̄) + (xijk − x̄•j − x̄i• + x̄)

is, by the Pythagorean theorem, orthogonal. That is, the four n-dimensional vectors
consisting of each of the four terms on the right-hand side are at right angles to
one another. Remember that the additive model has standard estimates µ̂ � x̄,
b̂i � x̄i• − x̄, ĉj � x̄•j − x̄. Therefore, our prediction is the sum of the first
three vectors, and it is at right angles to the fourth, residual, vector. Apparently,
the standard estimate consists of a perpendicular projection into the subspace of
additive predictions; therefore, the residual vector is as short as it could be. This
means that our estimate is least squares.

Proposition. The standard estimates of the centered, additive model for a
balanced two-way layout are least squares.

The ANOVA table looks just like the one for the full model, except that the
interaction and error rows have been summed into a single, error, row.

Example. We concluded earlier that the additive model worked quite adequately
in the arithmetic curriculum problem. Its ANOVA table for its corrected sum of
squares is as follows:

Source Sum of Squares Degrees of Freedom Mean Square
Curriculum 156.8 1 156.8

Gender 16.2 1 16.2
Error 776.6 17 45.68
Total 949.6 19

The method of least squares will still find the parameters for a centered, additive
model from an unbalanced experiment, but the answer is more complicated and
raises some questions better left for advanced courses. Furthermore, least-squares
estimation may be applied to estimating multiple-regression models. You will do
some important cases as exercises.

Unfortunately, the method of least-squares is not really appropriate for estimat-
ing loglinear contingency table models and logistic regression models, which must
wait for a later chapter.
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2.9 Summary

We first suggested that the ordinary idea of geometrical distance, applied to sample
vectors and their model predictions, gives us a way to tell a good model from
less good ones (2.1). Therefore, the failure of a model µ to fit the data may be
measured by SSE �∑n

i�1(xi −µi)2 (2.2). When we choose our model by making
this quantity as small as possible, we are applying the principle of least squares.
We then used this principle to find the best estimate in a simple proportionality
regression model y � xb and concluded that we must solve a normal equation∑n

i�1 xiyi � b
∑n

i�1 x2
i for b̂ (3.2). This had an intriguing consequence: The

standard estimates, based on sample means, for the measurement models from
Chapter 1 are really least-squares estimates (4.1). The natural measure of how well
these means described a sample was the sample variance s2

x � 1
n−1
∑n

i�1(xi − x̄)2

(4.2). This led to a method for evaluating how well more general models are doing,
called the Analysis of Variance (ANOVA), based on generalizations of the theorem
of Pythagoras. For example, in a one-way layout we get

k∑
i�1

ni∑
j�1

x2
ij � nµ̂2 +

k∑
i�1

nib̂
2
i +

k∑
i�1

ni∑
j�1

(xij − µ̂ − b̂i)2,

so that the second term on the right measures how important the levels of the
treatment were, and the last term is the SSE again (5.2). This allowed us to interpret
degrees of freedom geometrically, as the dimension of a subspace. We then applied
least squares to simple linear regression models ŷi � µ + b(xi − x̄); the estimates
are µ̂ � ȳ and

b̂ �
∑n

i�1(yi − ȳ)(xi − x̄)∑n
i�1(xi − x̄)2 . (6.1).

To interpret these, we introduced the idea of the correlation between two
measurements,

rxy �
∑n

i�1(yi − ȳ)(xi − x̄)√∑n
i�1(yi − ȳ)2

∑n
i�1(xi − x̄)2

. (7.1).

Finally, we showed that several more sophisticated measurement models, involving
cross-classification, may also be estimated by least squares (8.2).

2.10 Exercises

1. The Fahrenheit boiling point of water is 212 degrees at sea level. You measure
the boiling point of water from six cheap thermometers, all from the same
manufacturer, getting 214.4, 211.8, 210.6, 212.4, 212.0, and 210.8. What are
the SSE and Euclidean distance of this sample from the correct value? What
are the MSE and RMSE?



2.10 Exercises 83

2. Draper and Smith in 1981 reported a study of the relationship between con-
centration of aflatoxin (parts per billion) and percentage of contaminated nuts
in batches of peanuts:

toxin % bad toxin % bad toxin % bad
3.0 0.029 18.8 0.058 46.8 0.189
4.7 0.021 18.9 0.068 58.1 0.123
8.3 0.018 21.7 0.092 62.3 0.202
9.3 0.029 21.9 0.030 70.6 0.145
9.9 0.043 22.8 0.015 71.1 0.212
11.0 0.039 24.2 0.067 71.3 0.179
12.3 0.044 25.8 0.142 83.2 0.170
12.5 0.028 30.6 0.013 83.6 0.282
12.6 0.111 36.2 0.042 99.5 0.358
15.9 0.039 39.8 0.091 111.2 0.342
16.7 0.018 44.3 0.141
18.8 0.025 46.8 0.137

a. Draw a scatter plot relating percentage of contaminated peanuts to
concentration of aflatoxin.

b. Since measuring the concentration of aflatoxin is much easier than
counting contaminated peanuts, we would like to predict the percent-
age contaminated, using the aflatoxin concentration, perhaps by simply
multiplying the concentration by some constant. Specify and estimate the
parameter of such a model, by the method of least squares, and graph the
line on your scatter plot.

c. You measure a 50.0 parts per billion aflatoxin in a new batch of peanuts.
What prediction does your model provide for the percentage of contam-
inated peanuts in that batch? To get some idea of the accuracy of your
prediction, estimate the root-mean-squared error for predictions in general.

3. Compute both sides of the Schwarz inequality for the toxin and percentage
of bad peanut vectors in Exercise 2 and note how close it is to an equality.

4. Prove properties (ii) and (iii) of the sample mean x̄.
5. For the 7 measured ratios of the mass of the earth and moon from Exercise 1

of Chapter 1:

a. Calculate the sample variance and sample standard deviation using the
defining formula s2

x � 1
n−1
∑n

i�1(xi − x̄)2.
b. Now redo your calculation of the sample variance using the computational

formula s2
x � 1

n−1
∑n

i�1(xi − ν)2 − n
n−1 (x̄ − ν)2, first using the traditional

value ν � 0, then using an intelligent choice ν � 81.3. Be sure to
use exactly six significant figures for every step in your calculations.
Compare your answers to each other and to (a).

6. In recent years, many alternative methods of estimating the center of a sample
of measurements have been proposed. For a newly discovered subatomic par-
ticle, 15 measurements of its mass have been carried out. Being old fashioned,
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you find the sample mean, 124 Mev, and its sum-squared error, SSE � 1570.
Three new methods have been proposed: From the same data, Larry comes
up with a center estimate for which he claims SSE � 1625; Moe suggests
one for which he claims SSE � 1528; and Curly proposes one for which he
claims SSE � 1591.

a. At least one of the three has made an arithmetic error. Which one, and
why?

b. Assuming that the other two made no mistakes, what are the possible
values of the estimates they might have made of the particle’s mass?

7. Prove properties (ii) and (iii) of the sample variance s2
x and the sample standard

deviation sx .
8. Prove the properties of standardized measurements.
9. Show that for the one-way layout model, the vector form of the analysis of

variance for the one-way layout indeed says exactly the same thing as the
theorem. Then prove the proposition about the mutual orthogonality of the
three vectors µ̂, b̂, and ê.

10. Construct the analysis of variance table for the one-way-layout model for the
DBH level data from Exercise 2 from Chapter 1. Calculate the F-statistic for
treatment. Does it suggest that clinical state made a real difference in patient
DBH level?

11. Construct the analysis of variance table for the one-way-layout model for the
shrimp-net data from Exercise 3 of Chapter 1. Calculate the F-statistic for
brand of net. What do you conclude about the importance of which net you
use?

12. Calculate the Kruskal–Wallis statistic K for the shrimp-net data from Exercise
3 of Chapter 1. What do you conclude about the importance of which brand
of net to use?

13. Prove that our least-squares estimates for a simple linear regression model
are exactly the same as the standard estimates, in case (as in 1.5.1) there are
exactly two different values of the independent variable.

14. In the data of Exercise 2 estimate a two-parameter simple linear regression
model p̂ � µ+ (t − t̄)b, where p is the percentage of bad peanuts and t is the
parts per billion of aflatoxin. Predict once again the percentage of bad peanuts
you would expect to find in a batch with 50.0 parts per billion aflatoxin.

a. Construct the ANOVA table for this regression problem. Compute the
RMSE for predictions under this model. Compare it to the RMSE for the
simpler model of Exercise 2. What do you conclude?

b. Calculate the correlation r between percentage of contaminated nuts and
concentration of aflatoxin.

15. Prove parts (iii)–(v) of the properties of sample correlations.
16. Show that for least-squares estimates of simple linear regression we always

have r2 � R2

17. a. For the experimental data of Exercise 6 in Chapter 1, construct the ANOVA
table for the additive model. Now do the same for the full model.



2.11 Supplementary Exercises 85

b. Compute F-statistics for the presence of interaction, a diet effect, and an
exercise effect. What do you conclude?

2.11 Supplementary Exercises

18. You extract a sample of 25 resistors from a batch that are supposed to be 100
ohms. Here are their actual resistances:

83 85 109 100 89
82 97 83 107 87
105 107 94 96 85
96 97 100 83 96
92 91 89 97 84

a. Find the sample mean and sample standard deviation for these numbers.
b. Construct a 2-s interval for this sample. Find the standard score for a

resistance of 83 ohms.

19. One alternative to using the principle of least squares to estimate linear models
is the principle of least total error, which just says to choose parameter
values that make the sum of the absolute values of the residuals as small as
possible. We will do this for the simple location model, which finds a center
µ for a collection of n measurements xi by minimizing TE �∑n

i�1 |xi −µ|.
We will proceed in stages, for the special case that n is odd. First, sort your
observations in ascending order, and write the results x(1) ≤ x(2) ≤ · · · ≤ x(n).
Now write the total error as the sum of the first and last term, then the second
and next-to-last, and so forth, until only the middle term is unpaired:

TE �
(n−1)/2∑

i�1
(|x(i) − µ| + |x(n+1−i) − µ|) + |x[(n+1)/2] − µ|.

a. Prove the triangle inequality |a − b| + |c − b| ≥ |c − a| for any three
numbers a, b, c, noting that it is an equality exactly when b is between a

and c.
b. Use (a) to conclude that TE ≥∑(n−1)/2

i�1 (x(n+1−i) − x(i)) + |x[(n+1)/2] − µ|.
For what value of µ is this an equality, which also makes TE as small as
possible? This is our least total error location estimator µ̂; have you seen
it before?

c. Compute µ̂ and TE for the mass ratios of Exercise 5. (Notice that you
found a formula for TE in (b) that does not directly mention the value µ̂).

20. As yet another way of measuring the error in a collection of n measurements
xi , perhaps we should just average the squared differences between them,
(xi −xj )2. Using the algebraic fact that there are n(n−1)/2 pairs of different
observations, this would be d2 � 2

n(n−1)
∑

i<j (xi − xj )2.

a. Compute d2 using this formula for the water temperatures of Exercise 1.
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b. Show that always d2 � 2
n−1
∑n

i�1(xi −x̄)2 � 2s2; so we have nothing very
new here. (However, this provides our first insight into why we usually
divide by n − 1 in computing variances. It comes from the formula for
counting pairs, to which we will return.)

21. In Exercise 20 from Chapter 1, the telephone bill problem, construct an
ANOVA table. Now compute the F-statistic for the effect of choice of carrier.
What do you conclude?

22. In Exercise 23 from Chapter 1, the pizza problem:

a. Construct an ANOVA table for the additive model. Calculate an F-statistic
for the importance of location. What do you conclude?

b. Is it possible to carry out (a) for the full model? Why or why not?

23. Show that for the situation of Exercise 27, Chapter 1 (three equally spaced
values of the independent variable, equal numbers of observations at the
smallest and largest value), the standard estimate you proposed for the simple
linear regression model was in fact the least-squares estimate.

24. The pressure and volume of a fixed mass of an ideal gas follow the law
PV γ � C under adiabatic (insulated) compression, where C and γ are
constants. We get the following results for a quantity of real gas:

P (lb/sq. in) V (cu. in.)
212 10
111 15

64 20
46 25
36 30
25 35

a. Estimate the constants C and γ by simple linear regression by predicting
pressure from the volume to which you have compressed your gas. Hint:
our law is not linear, so you will have to take logarithms of both sides first
to make it so.

b. Though we do not like to extrapolate, our apparatus will not let us compress
the gas to 5 cubic inches. Use the results in (a) to estimate the pressure in
that case.

25. Using the theorem of the analysis of variance for simple linear regression,
define the three mutually orthogonal vectors that sum to y, and prove that
they are indeed orthogonal.

26. Find the parameter estimate for the simple proportions regression model ŷi �
bxi using the principle of least total error (Exercise 19).

27. Use the method of Exercise 26 to estimate the Hubble parameter k.
28. Given an observation vector x and a model vector µ:

a. Find an inequality connecting the SSE and the total error TE defined in
Exercise 19. Hint: Apply the Schwarz inequality to the vector 1 (all ones)
and the vector whose coordinates are |xi − µi |.
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b. Translate it into a more useful relationship between the RMSE and the
mean absolute error MAE � TE/n.

29. To estimate a multiple regression model ŷ � µ + (x1 − x̄1)b1 + (x2 − x̄2)b2,
we might naively hope that the estimates would be µ̂ � ȳ, b̂1 � sx1y/s

2
x1

,
b̂2 � sx2y/s

2
x2

. This is usually false, but for one important sort of experiment it
works. We say that the design is orthogonal if sx1x2 � 0. Show, by reasoning
in stages, that in this case the naive estimates are the least-squares estimates.

30. We measure the efficiency of a polymerization reaction for various vessel
temperatures and pressures:

efficiency (%) temperature (F) pressure (lb/sq in.)
74 250 100
81 300 100
85 350 100
76 250 120
85 300 120
88 350 120
76 250 140
82 300 140
91 350 140

a. Using the method of Exercise 29, show that this design is orthogonal, and
find a linear prediction equation for efficiency in terms of temperature and
pressure.

b. Plot your model, using the method of Chapter 1, Section 6. How well does
the linear equation seem to describe your data?

c. At 320 degrees and 115 pounds per square inch, what would you expect
the percent efficiency of this reaction to be? Find the RMSE , to get some
idea how good your prediction is likely to be.

31. a. Since we already know that the least-squares estimate for centered simple
linear regression is µ̂ � ȳ, estimate b instead by calculus: That is, mini-
mize

∑n
i�1[yi − ȳ − b(xi − x̄)]2 as a function of b by differentiating to

find an extremum and differentiating again to see whether you have found
a minimum.

b. Do the same thing to estimate the slopes (b’s) in the multiple regression
model ŷ � µ + (x1 − x̄1)b1 + (x2 − x̄2)b2, where still µ̂ � ȳ. Do not
assume that the design is orthogonal. Take partial derivatives of the sums
of squares for each b in turn to get a system of normal equations, two linear
equations in two unknowns. (You need not take second derivatives here.)

32. Use calculus as in Exercise 31 to find the normal equations for estimating
the model ŷ � µ + b(x − x̄) + c(x − x̄)2 in a regression problem with one
independent variable. (This is called polynomial regression. You can imagine
how to generalize it to polynomials of higher degree.) Solve them for the
aflatoxin data of Exercise 2. Repeat the prediction and error estimate of part
(c), and compare.



CHAPTER 3

Combinatorial Probability

3.1 Introduction

We have seen useful ways of summarizing complicated data sets in the last two
chapters. We have taken that process about as far as we can without developing
ways of deciding whether our models are reasonable and how accurate our param-
eter estimates are, a process called statistical inference. The great breakthrough on
this problem came about when people realized that we needed mathematical mod-
els for the origin of our variability, as well as for the important natural processes
they were studying. The statistician’s favorite mathematical tool for doing this is
probability. An example will introduce one application of probability to statistical
inference:

Example. The great statistician R. A. Fisher described a party he attended in
which the hostess was serving tea with milk (this was England). She claimed that
she could tell whether her maid had poured tea or milk into the cup first, just by
tasting. Fisher was skeptical. He proposed an experiment to test her claim: He
would put the tea first in some cups, and the milk first in the others, stir up the
contents, scramble the cups, then let her taste them all and announce which ones
had tea poured first. The more she got right, the more impressed he would be with
her claim. This is a statistical experiment because we use replication; we pour a
number of cups. After all, few of us would be impressed if she guessed correctly
what had happened with a single cup.

How do we interpret the results? Fisher’s approach, called classical or frequen-
tist inference, starts before the experiment. We specify all possible outcomes. For
example, with six cups we might write the numbers 1, 2, 3 on the bottom of those
cups that are to get tea first and 4, 5, 6 on those that will get milk first. Then we
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pour the beverages: Let the lady taste and tell us which three she believes got tea
first. Here are her possible choices of the cups that perhaps got tea first:

123 three correct 145
124 146
125 156
126 245 one correct
134 two correct 246
135 256
136 345
234 346
235 356
236 456 none correct

Fisher suspected that she was just guessing; so just by accident any of these
possibilities might have arisen. If she gets all three cups right, that would happen
only one time in twenty; because we have listed twenty different things she could
have said. The statistician would conclude that either she had been fairly lucky, or
there is some substance to her claim. On the other hand, if she gets two cups out
of three, she might say that this supported her claim. But Fisher would point out
that fully ten of our twenty cases, or half the time, she would get at least some two
of the three cups right by luck. No doubt he would remain a skeptic.

In the next several chapters, this kind of reasoning will help us evaluate some
of our models for counted data. Eventually, it will do the same for measurement
models.

Time to Review

Set notation
Integration

3.2 Probability with Equally Likely Outcomes

3.2.1 What Is Probability?
In the example above, we invented a measure of how rare or surprising various
possible results of our experiment are, in light of an opinion about what is really
going on. Intuitively, the probability will be the proportion of times we expect the
results to come out in some particular way, when the experiment has yet to be done.
The calculation in this case was particularly simple but widely useful. When we
believe that a number of possible outcomes are equally likely, then the probability
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of some event is

probability of event � number of outcomes leading to event
number of outcomes possible

Therefore, the lady’s probability of two of three cups or better was 10/20, or 0.5.
Let us turn this into some formal notation:

Definition. An event is a set whose elements are distinct outcomes.

Intuitively, an event is a collection of interest to us of the individual things that
we believe might happen in some experiment not yet performed.

At this point, you should review the basic concepts and the notation of mathe-
matical set theory. Events are often represented by capital letters (A, B, . . . ). The
number of outcomes in a finite event will be denoted by |A|. We will talk about
the probability that an event A will happen when the set of outcomes we believe
possible is B, calling it the probability of A relative to B (or given B, or condi-
tioned on B); we denote it by P(A | B). Remembering that A ∩ B, the intersection
of A and B, is the set of outcomes in B that are also in the event A, our ratio above
suggests the following:

Definition. A probability space with equally likely outcomes, has

P(A | B) � |A ∩ B|
|B| ,

where A and B are events, and B is not empty and has a finite number of outcomes.

If it is obvious what the set of possibilities B should be in a particular problem, we
will often use the shorthand P(A) for P(A | B), called an unconditional probability.
Notice that in a way, equally likely is being defined here; it is any circumstance in
which the probability of an event may be determined by the simple proportion of
outcomes from that event.

3.2.2 Probabilities by Counting
Probabilists (mathematicians who study probability) traditionally use urns, which
are just opaque jars containing a number of marbles of the same size, weight,
and surface texture, to construct probability models. Our favorite urn, which will
appear through much of the rest of the course, will contain some number W of
white marbles and some number B of black marbles (Figure 3.1).

Our experiment is performed by stirring up the marbles so well that we have no
idea which marbles are where. Then someone reaches in without looking and
removes a marble. Is it black or white? This procedure matches our intuitive notion
that all the marbles are equally likely to be chosen. The probability that the marble
will be white is then

P(white marble | from jar) � |white marble and from jar|
|from jar| � W

W + B
.
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FIGURE 3.1. An urn

Even though we will use urns mainly as simple models for probabilistic experi-
ments, they have practical applications. For example, what if we had decided to
test a new medical procedure on a certain number of patients? It is considered
good policy also to use the standard medical regimen on a similar set of patients,
called controls. A simple way to help ensure that the controls are a group of pa-
tients similar to the ones who get treated, randomization, might work as follows:
If we decide to test the procedure on W patients and have B controls, simply put
those numbers of white and black marbles in the urn and stir it up. Now as each
qualified patient appears at the hospital, we draw out a marble. If it is white, the
patient gets the new treatment, if black, the old treatment. By the time the urn
is empty, we have our full complement of subjects. The very unpredictability of
patient assignments is the great virtue of this method: It makes it very difficult for
experimenters, consciously or unconsciously, to bias the choice of patients either
for or against the new procedure.

One nice feature of the basic urn experiment is that it can be arranged so that
the probability of a white marble is any fraction (rational number) between 0
and 1. However, as we shall see, there is a famous geometrical experiment (the
Buffon needle problem) in which the probability of an event is 2/π . (This number
is known to be irrational; so it is not a fraction, and the decimal representation
begins 0.63661977. . . .) We cannot construct an urn to give this exact probability.
However, we can construct a sequence of urn models that gives probabilities as
close as we please to 2/π : 6 white marbles and 4 black marbles gives probability
0.6 for drawing a white marble; 64 and 36 gives probability 0.64; 637 and 363
gives probability 0.637; 6366 and 3634 gives probability 0.6366; and so forth. For
reasons we shall discover, it would take several million sets of draws from the
urn before we were likely to notice that even the third of our sequence of models
had the wrong probability. This process, constructing a sequence of models whose
probabilities approach that of another experiment, will be one of our most important
mathematical tools. (It will be called convergence in distribution.)

So calculating probabilities is trivial so far, because all we have to do is count.
But that is not as easy as it sounds. In Fisher’s actual tea-tasting experiments, there
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were four cups with tea first and four with milk first. To proceed with our analysis
we would have to list all sets of four out of eight cups his hostess might guess:
1234, 1235, 1236, . . . . This would take much longer than before—you should do it
as an exercise. Fortunately, there is a branch of mathematics, called combinatorics,
that studies counting. Some of its results will make life much easier for us.

3.3 Combinatorics

3.3.1 Basic Rules for Counting
The counting methods we need will be based on only two simple principles. The
first notes that if you want a complete count of the outcomes in two events that do
not overlap, you may count them separately and add the two counts. In our formal
notation, A ∩ B � φ, where φ is the event with no outcomes, means that the two
events have no outcome in common. The union of A and B, A ∪ B, is, of course,
the event that the outcome is either in A or in B.

Addition Rule. In the case A ∩ B � φ, |A ∪ B| � |A| + |B|.
This rule is obvious enough, though we will use it very often. For example, in a

poll of candidates for a political office, candidate DiBiasi might drop out of the race
between the time of the poll and the time of the statistical analysis. Then it would
make sense to combine the formerly distinct categories DiBiasi and Undecided
into a single category and sum the numbers of subjects in the two old categories.

The second of our two principles is less obvious. We will illustrate with an
example:

Example. The menu for a Chinese restaurant has on it three appetizers: hot and
sour soup, egg rolls, and steamed dumplings. There are four main courses: pepper
beef, lemon chicken, sweet and sour pork, and shrimp stir-fry. A meal consists of
one appetizer and one main course; how many meals are possible? It would be
easy to list them, but there is a shortcut: Construct a table.

Main Course
beef chicken pork shrimp

soup
Appetizer egg rolls ×

dumplings

Each cell (rectangle) corresponds to a distinct meal; for example, the marked
cell corresponds to a lunch of egg rolls followed by sweet and sour pork. The
number of cells is just rows×columns, 3 × 4 � 12 meals.

This should remind you of the number of distinct treatment levels in a two-way
layout with l rows and m columns, which was of course lm (see 1.4.1). To formalize
this idea, recall from mathematics that A × B, the Cartesian product of the sets
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A and B, is the set of all ordered pairs (a, b) in which a ∈ A and b ∈ B. In the
restaurant example, we would write our meal (egg rolls, sweet and sour pork).

Multiplication Rule. |A × B| � |A| · |B|
Example. Your daughter’s best friend was assigned to the most popular teacher
in their elementary school grade level, supposedly by random assignment, in each
of the first four grades. This makes you suspicious that the assignments were not
done honestly. There are five teachers in each grade. You reason, by using the
multiplication rule three times, that there are 5×5×5×5 � 625 different teacher
assignments possible, one factor per grade. Therefore, the probability that the girl
would be this lucky is 1/625 � 0.0016, which sounds very lucky indeed.

3.3.2 Counting Lists
We will now use these principles to derive three special formulas that will, with
ingenuity, solve most of the counting problems faced by statisticians. Imagine that
we have an urn with n marbles in it; but now all the marbles have labels, so we
can tell them apart once they are out of the jar.

Example. Let the 26 marbles correspond to the letters of the Roman alphabet.
We could create all six-letter “words” by removing letters from the jar, such as
GXNGEK. Notice that we allowed G to appear twice, as often happens with real
words, by replacing its marble after it was used the first time.

We could potentially make all such words by the following procedure:

Urn Problem 1. Remove a marble, write down its label, and put it back. Now
remove a second marble, write down its label below the first one, and put it back.
Continue until the list has k entries in it. How many lists are possible? We call this
counting ordered lists with replacement.

The teacher assignment problem was an instance of this; the same solution
technique works. We have n choices for each of the k stages, so the multiplication
rule tells us that we have

n · n · n · · · n︸ ︷︷ ︸ � nk.

k copies

We have established the following result:

Proposition. The number of ordered lists of k objects taken with replacement from
a set of n objects is nk .

Example (cont.). In the six-letter word problem, n � 26 and k � 6; therefore,
we could get 266 � 308,915,776 different words.

Example. Eight swimmers are about to race in the Olympic games. The first to
finish will get a gold medal, the second a silver medal, and the third a bronze. How
many distributions of medals are possible? The gold medal can go to one of eight
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competitors. But then the silver medal can go to only one of seven swimmers,
because no one may receive two. Finally, the bronze can go to one of the six
remaining swimmers. By the multiplication rule, there are 8 · 7 · 6 � 336 placing
orders.

Our most recent formula does not apply; this is an instance of

Urn Problem 2. Choose a marble, write it down, leave it out, and repeat until you
have a list of k marbles. How many lists are possible? This is counting ordered
lists without replacement; we call them permutations of n taken k at a time. The
mathematical symbol for the number of lists is (n)k .

The Olympic example, which is counted by (8)3, shows us how to do this:

Proposition. (n)k � n · (n − 1) · (n − 2) · · · (n − k + 1).

The last factor appears because before the selection of the last marble, we have
removed k − 1 of the n marbles, leaving n − (k − 1) to choose among.

Example. Of the 50 United States, 15 have an Atlantic coastline. A researcher
picks 6 states at random for a detailed study of their emergency preparedness for
severe wind storms. Obviously, it would be a poor sample group that did not include
any Atlantic coastal states, which are subject to hurricanes and nor’easters. What
is the probability that her sample, by accident, will include no Atlantic coastal
states?

First notice that if she picks her states in some sequence, then she essentially has
Urn Problem 2, and there are (50)6 � 50 · 49 · 48 · 47 · 46 · 45 � 11,441,304,000
possible sequences of choices. That will be the denominator, if we assume that
they are all equally likely. If we consider the event that they are all chosen from
among the 50−15 � 35 non-Atlantic states, these peculiar sample sequences may
be chosen in

(35)6 � 35 · 34 · 33 · 32 · 31 · 30 � 1,168,675,200

ways. Therefore, the probability of getting a bad sample is

P (6 non-Atlantic|6 states) � 1,168,675,200
11,441,304,000

� 0.102.

Unfortunately, this is rather likely; about one time in 10.

Example. A product testing lab wants to evaluate 5 new automobiles. Each driver
will try all the cars. There may be an order effect; for example, there may be an
unconscious bias in favor of the first car driven. Therefore, different drivers are
to test the 5 cars in different orders. How many such orders are possible? This is
like drawing the names of the cars from a jar without replacement; so we have
(5)5 � 5 · 4 · 3 · 2 · 1 � 120 sequences.

This last should be familiar: (n)n � n! (n factorial), which we call simply
the permutations of n things. This leads to a useful alternative formula for per-
mutations: To find the total number of complete lists (n!), we arrange the first k
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marbles in (n)k ways, then the remaining n− k in (n− k)! ways. Therefore, by the
multiplication rule, n! � (n)k(n − k)!. We may then solve for the unknown term:

Proposition. (n)k � n!/(n − k)!

For example, in the medal problem, we could have calculated (8)3 � 8!/5! �
40320/120 � 336. Notice that our new formula is rarely convenient for compu-
tation: The numbers stay much smaller if we use the original formula. It will be
useful, however, for algebraic manipulation.

3.3.3 Combinations
You may have complained that the Atlantic states problem was not explained
realistically. We talked about selecting our sample in order; but you may know
that for purposes of the study of emergency planning, the order of choice simply
did not matter. It was just a set of 6 states. Therefore, we have counted far too
many samples, because we have counted (Maine, Oregon, Nebraska, Rhode Island,
Texas, West Virginia) separately from (Oregon, Texas, Nebraska, West Virginia,
Rhode Island, Maine). We need another counting formula:

Urn Problem 3. Remove a handful (set) of k marbles from a jar containing n. How
many sets are possible? This is counting unordered sets, without replacement; we
call them combinations of n things taken k at a time. The mathematical symbol
for the number of sets is

(
n

k

)
, sometimes read “n choose k.”

Some ingenuity will be required to find the number of combinations. I propose
that we do it by counting the number of permutations in Urn Problem 2 by a slightly
different procedure: (1) Remove a handful of k marbles from the jar of n; then (2)
place the unordered handful in an ordered row on the table. We can construct every
permutation in this way. The multiplication rule says that we multiply the number
of ways each of the two steps was performed to get the total number of possible
lists. Therefore, (n)k � (n

k

) · (k)k . The first and third counts are known, so once
again we may solve for the unknown term:

Theorem (combinations). (
n

k

)
� n!

k!(n − k)!
.

Staring at this formula, we see some equivalent ways of writing it:

Proposition.

(i)
(

n

k

)
�
(

n

n − k

)
.

(ii)
(

n

k

)
� (n)k

k!
� (n)n−k

(n − k)!
.

The first fact just notices that removing k marbles from a jar is the same as
leaving n − k marbles behind in the jar.
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Example. There are
(50

6

) � 50!/(6!44!) samples of 6 states. No one would calcu-
late 50! by choice; but we consider also the two equivalent formulas in (ii) of the
proposition, and computing (50)6/6! � (50 ·49 ·48 ·47 ·46 ·45)/(6 ·5 ·4 ·3 ·2 ·1) �
15,890,700 requires by far the least arithmetic.

We now solve a counting problem that will be of repeated interest from here on.
From an urn with W white marbles and B black marbles, remove all the marbles,
one at a time without replacement, and make an ordered list of their colors. For
example, if there are 3 white and 4 black marbles, one such list is •

1
◦
2

•
3

◦
4

•
5

◦
6

•
7 .

How many lists are possible?
The trick here will be to translate the problem into a second urn problem, as

follows: Obtain W + B additional marbles, number them, and place them in a
second urn. Now number the positions in your ordered list, also from 1 to W + B.
Reach into the second urn and select an unordered handful of W of the numbered
marbles. Put white marbles into the numbered list positions you have chosen, and
black marbles in all the others. In our example, we must have picked marbles
numbered 2, 4, and 6. This process uniquely determines all possible lists, so the
number of lists is

(
W+B

W

)
.

When all these lists of black and white marbles are picked from a well-stirred
urn, we might assume each to be equally likely. Then choosing a list is called a
hypergeometric process. It is the first important example of a stochastic process.
We will see several other important examples in this course; but we will construct
them all as ways to approximate hypergeometric processes.

3.3.4 Multinomial Counting
Example. A professor has a peculiar grading curve, so that she expects to assign
grades to the 12 students in her new graduate seminar as follows: 5 A’s, 4 B’s,
2C’s, and 1 D. She has graded no work, so she knows nothing as of yet about her
student’s performance. In how many ways will she be able to assign grades at the
end of the term?

We can assign grades one at a time; she may choose the students to receive
A’s in

(12
5

)
ways. Then she has 7 students left; she may give 4 of them B’s in(7

4

)
ways. The remaining 3 students may get the 2 C’s in

(3
2

)
ways, and the last

student automatically gets the D. The multiplication rule says that the grades have(12
5

) · (74) · (32) � 83,160 distributions.

Notice that when we write out the calculation from the theorem, we get
several very convenient cancellations: (12!/(5!7!)) · (7!/(4!3!)) · (3!/(2!1!)) �
12!/(5!4!2!1!).

Definition. The number of ways of assigning n1 objects to category 1, n2 other
objects to category 2, . . . , and finally the last nk objects to category k, where∑k

i�1 n1 � n, is the multinomial symbol. It is denoted by
(

n

n1n2···nk

)
.

Proposition.
(

n

n1n2···nk

) � n!/(n1!n2! · · · nk!).
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You should prove this as an exercise (perhaps by cancellation as in the example
above; or you might imitate the proof of the theorem about combinations). Since
choosing a set of l from n is the same as grouping objects into a selected set of l and
another set of n − l that was not selected, then

(
n

l

) � ( n

l n−l

)
. Notice generally that

any rearrangement (permutation) of our k categories leads to the same multinomial
symbol, because we just multiply our denominator factorials in a different order.

3.4 Some Probability Calculations

3.4.1 Complicated Counts
Our small tool kit of counting methods will already allow us to calculate a great
many interesting probabilities.

Example. We can test a new drug for lowering blood pressure in the following
plausible way: Of the next 40 patients that might benefit from the drug, match them
so that each pair of patients is as similar as possible in blood pressure, sex, age,
health, and other relevant matters. We now have 20 pairs; for each, flip a coin, and
give the standard treatment to one patient and the new drug to the other. We will
evaluate them after six weeks and, for each pair, decide which patient has lower
blood pressure. Thus, we will end up with a count of how many times out of 20
the new drug was the winner. We might decide to advocate use of the new drug if
it wins, for example, 14 or more comparisons. If, in fact, the new drug is no better
than the old, what is the probability we will (unfortunately) advocate it anyway?
(This is another example of the frequentist style of inference.)

There would be 220 sequences of wins by either the new or old treatment; we
are presuming these equally likely. In

(20
14

)
of these sequences, the new drug was

superior exactly 14 times similarly for 15, 16, . . ., 20. Therefore,

P(14 or more|20 pairs) �
(20

14

)+ (20
15

)+ · · · + (20
20

)
220 � 60,460

1,048,576
� 0.05766.

If this chance of making a foolish claim is too large for us, we might require 15 or
more wins; we easily check that P(15 or more|20 pairs) � 0.0207, which is safer.

Example. Remember that Fisher’s tea-tasting experiment was actually bigger than
our example suggested; to make it more informative, he had his hostess taste 8
cups of tea, in which 4 had tea poured first. She then tried to determine which 4.
Our first step previously was to list all her possible sets of guesses; we noticed that
the list is too long to be fun to write down. But now we are more sophisticated:
There are

(8
4

) � 70 lists. The probability that she will get all four guesses right
is 1/70 � 0.0143. Most of us would be very impressed, and perhaps modify our
opinion that she was just guessing. Should we be surprised if she gets 3 out of 4
correct? Enumerate these lists by noting that she must choose 3 of the 4 cups that
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had tea first; and then 1 of the 4 that had milk first. We get

P(3 of 4|4 of 8 tea first)
(4

3

)(4
1

)(8
4

) � 16
70

� 0.229.

Our total probability for a result this good, 3 or 4 out of 4 correct, is (16+1)/70 �
0.243, or about 1 in 4. We are not likely to be impressed with her skill.

Example. Scientists suspect that initial handling of patients with a certain form of
acute mental illness may have something to do with chances of recovery. Therefore,
when a long-term drug therapy is proposed, they are careful to create a patient
pool for a study that has exactly 5 patients who were first seen by each of the 16
participating clinics (for a total of 80 patients).

For a small substudy, 7 patients from this pool are selected at random. What is
the probability that it will be found that 2 patients in this substudy came from the
same clinic (while the other 5 came from 5 additional clinics)?

Of course, there are a total of
(80

7

)
equally likely samples for the substudy. We

need to count the samples that duplicate a clinic, in stages. First, which clinic ap-
pears twice and which clinics appear once? We may decide this in

( 16
1 5 10

)
different

ways; the 1 refers to the duplicated clinic, the 5 to the clinics represented by one
patient each, and the 10 to clinics not represented. We can pick the patients from
that duplicated clinic in

(5
2

)
ways, and from each of the other 5 clinics we may pick

the patient in
(5

1

)
ways. Therefore,

P(one clinic duplicated|7 patients) �
( 16

1 5 10

)(5
2

)(5
1

)5(80
7

) � 0.473.

This coincidence will happen almost half the time.

3.4.2 The Birthday Problem
Example. In a class with 35 students, what is the probability that no two of them
will have a birthday on the same day of the year? We will assume, not quite
correctly, that all birthdays are equally likely, and that there are 365 of them.

Most people will find the answer surprising; to understand why, let us first ask
what one might expect the answer to be like:

Naive Intuition. if the number of people is small compared to the number of
birthdays, then the probability of having any two the same is small, since then the
average time between birthdays is certainly large.

Since 35 is fairly small compared to 365, people’s birthdays have plenty of room
to be scattered over the year; we expect that the probability of a coincidence is
fairly small.

This is an example of an occupancy problem: Let there be n slots in a board
(possible birth dates). Throw k marbles at the board (people) so that they fall
in slots at random; each slot can potentially hold all the marbles. What is the
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probability that no two marbles fall in the same slot (no two people have the same
birthday)?

The denominator is easy: By the first urn problem, throwing a marble at a slot
is like picking a slot number out of a jar. Since more than one marble can fall
in a slot, we are choosing slots with replacement. There are nk ways this can be
done; presumably they are equally likely. On the other hand, for the numerator we
want to count the number of ways slots can be chosen no more than once; that is,
without replacement. By the second urn problem, we can do that in (n)k ways. We
state our conclusion as a proposition:

Proposition. The probability that no two objects occupy the same category, from
among k assigned at random to n categories, is (n)k/nk .

Example (cont.). In the birthday problem, n � 365 and k � 35, so that the
probability of no coincidences is just about 0.186. It would actually be a bit sur-
prising if no two people in the class had the same birthday. A laborious calculation
shows that in any class with at least 23 students, there is a less than even chance
(0.5 probability) that no two will share a birthday.

3.4.3 General Principles About Probability
Now that we find ourselves capable of a calculating a number of complicated
probabilities, it might be worth our time to stop and notice some general facts
about equally likely probability.

Since our definition says that P(A|B) � |A ∩ B|/|B|, we notice that the numer-
ator was defined so it would be a subset of the denominator: A ∩ B ⊂ B. But then
the numerator set is always no bigger than the denominator, so when we count
them, 0 ≤ |A ∩ B| ≤ |B|. (Counts are, of course, never negative.) We insisted
that B was not an empty set, so we can divide by its count |B| in this inequality to
get 0 ≤ |A ∩ B|/|B| ≤ 1, But this tells us that for any equally likely probability,
0 ≤ P(A|B) ≤ 1. Certainly, all our example calculations fell between 0 and 1; and
our intuitive idea that probabilities are the proportion of the time something will
happen says this ought to be true.

A couple of special cases are worth noting. If A cannot happen at the same
time as B, then A ∩ B � φ, and so |A ∩ B| � 0. Then we have P(A|B) � 0.
In English, the probability of an event impossible under the circumstances is 0.
On the other hand, P(B|B) � |B|/|B| � 1, and we say that the probability that
anything possible will happen is 1.

Let us see what our addition and multiplication rules for counting tell us gener-
ally about probability. Assume we know that C will happen, and we have any two
events, A and B (for example, two ways that an experiment might be considered
successful). Then the probability that one or the other will happen is

P(A ∪ B|C) � |(A ∪ B) ∩ C)|
|C| .
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Informally, we might count the outcomes in A and then count the remaining out-
comes in B. In set notation, this idea of remaining cases is written as the set
difference:

B − A � {outcomes in B and not in A}.
Then clearly,

P(A ∪ B|C) � |A ∩ C| + |(B − A) ∩ C|
|C| � |A ∩ C|

|C| + |(B − A) ∩ C|
|C|

because the counts in A and B − A do not overlap. We conclude that there is an
addition rule for our equally likely probabilities: P(A ∪ B|C) � P(A|C) + P(B −
A|C).

This general principle has two important special cases. First, what if, as above,
A and B cannot happen at the same time, so that A ∩ B � φ? Then B − A � B,
and our formula simplifies to P(A ∪ B|C) � P(A|C) + P(B|C). In the example of
testing a blood-pressure drug, we could have combined the cases of 14 through 20
wins by summing probabilities of each, instead of adding counts in the numerator:

P(14 or more|20 pairs) �
(20

14

)
220 +

(20
15

)
220 + · · · +

(20
20

)
220 � 0.03696 + 0.01479 + · · ·

� 0.05766.

For the second case, let B � C. Then P(A ∪ C|C) � 1, because the same
cases are in the numerator and the denominator. But then 1 � P(A ∪ C|C) �
P(A|C) + P(C − A|C). Rearrange to get P(C − A|C) � 1 − P(A|C). This says that
the probability something will not happen under experimental conditions C is just
1 minus the probability that it will happen.

For such a simple result, this equation is amazingly useful. For example, in the
birthday problem, people most usually ask, What is the probability that there are
any birthday coincidences in a group? To tackle that question directly, I would
need to figure out the probability that exactly two have the same birthday, then the
probability that three do, then that two have one birthday and two another, and so
forth. Each calculation is hard, and there are very many of them. But now I know
what to do (with 35 students):

P(any coincidences|35 students) � 1 − P(no coincidences|35 students)
� 1 − 0.186 � 0.814.

Very often, this complementary question is much easier to answer.
Does the multiplication rule for counting tell us something similarly useful

about probability computations? Indirectly, it does. If you will, recall the study of
disaster-preparedness in the states; let me ask what is the probability that of two
states chosen, they are both Atlantic states? This is just like the original problem:
(15)2/(50)2 � (15 · 14)/(50 · 49) � 3/35. Notice, though, that the calculation can
be factored as a product and the factors each interpreted as probabilities:

15
50

· 14
49

� P(Atlantic|15 of 50) · P(Atlantic|14 of 49).
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This says that when we chose the first state, we had 15 chances in 50 of succeeding,
but to choose the second state we had to get one of the remaining 14 Atlantic states
from among the remaining 49 states.

We have hit upon a general feature of probabilities that is obvious so long as we
think of them as proportions of the possibilities: The probability that two things
will both happen is the proportion of the time the first will happen multiplied by
the proportion of those times in which the second also happens.

We can look at this generally for intersections of two events, because we are
concerned with whether both will happen. Multiply both numerator and denomi-
nator by |A ∩ C| (the number of cases when the first thing has happened, which
must not be zero):

P(A ∩ B|C) � |A ∩ B ∩ C|
|C| · |A ∩ C|

|A ∩ C| � |A ∩ C|
|C| · |A ∩ B ∩ C|

|A ∩ C| .

We can interpret each of the factors as a probability to get

P(A ∩ B|C) � P(A|C) · P(B|A ∩ C).

This just says, as before, that proportions of proportions are gotten by
multiplication.

Now assemble the results of this section:

Proposition (properties of equally-likely probability).

(i) 0 ≤ P(A|B) ≤ 1.
(ii) If A ∩ B, then P(A|B) � 0.

(iii) P(B|B) � 1.
(iv) P(A ∪ B|C) � P(A|C) + P(B − A|C); and if A ∩ B � φ, then P(A ∪ B|C) �

P(A|C) + P(B|C).
(v) P(C − A|C) � 1 − P(A|C).

(vi) If A ∩ C �� φ, then P(A ∩ B|C) � P(A|C) · P(B|A ∩ C).

Not only are these useful now; when later we study other forms of probability,
they will continue to be true.

3.5 Approximations to Coincidence Probabilities

3.5.1 An Upper Bound
Let us return to some issues raised by the surprising results of the birthday prob-
lem (see Section 3.4.2). It is a bit disturbing that our naive intuition about birthday
coincidences was so wrong. The formula is sufficiently obscure that it contributes
little to our intuitive understanding, and if you compute it multiplication by multi-
plication, it is time-consuming. We will look at some approximations to the answer
that may teach us more.

It would be nice to have an easy-to-calculate maximum value for our birthday
probability. If we do a good job, perhaps it will be close to the exact value of our
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probability for a wide range of cases. First, expand our formula for the probability
of no birthday coincidences:

(n)k
nk

� n(n − 1)(n − 2) · · · (n − k + 1)
n · n · · · · · n

�
(

n − 1
n

)(
n − 2

n

)
· · ·
(

n − k + 1
n

)

�
(

1 − 1
n

)(
1 − 2

n

)
· · ·
(

1 − k − 1
n

)
.

This product may be interpreted as the probability that the second birthday was
different from the first, multiplied by the probability that the third was different
from the first two, and so forth. Long products are difficult to work with, so we
use the fact about the logarithm function that log(ab) � log(a) + log(b) to turn it
into a sum:

log
(n)k
nk

� log
(

1 − 1
n

)(
1 − 2

n

)
· · ·
(

1 − k − 1
n

)
�

k−1∑
i�1

log
(

1 − i

n

)
.

Reviewing our calculus, there is a maximum that comes from a simple property
of the (natural) logarithm function (in fact, it is sometimes defined this way):
log(1+x) � ∫ 1+x

1
dt
t

. Whenever x ≥ 0, since under the integral sign 1 ≤ t ≤ 1+x,
we have 1

t
≤ 1. But then

log(1 + x) �
∫ 1+x

1

dt

t
≤
∫ 1+x

1
dt � x.

On the other hand, if x < 0, then 1 + x ≤ t ≤ 1, and we have 1
t

≥ 1. Then

log(1 + x) �
∫ 1+x

1

dt

t
� −

∫ 1

1+x

dt

t
≤ −

∫ 1

1+x

dt � −(−x) � x.

The inequality is the same for both positive and negative x (see Figure 3.2).
We summarize:

Proposition. log(1 + x) ≤ x for all x > −1.

Apply this result to our expansion of the log-probability:

log
(n)k
nk

�
k−1∑
i�1

log(1 − i

n
) ≤ −

k−1∑
i�1

i

n
.

Now you should show as an exercise that the sum of the first m integers
is
∑m

i�1 i � (m(m + 1))/2 � (
m+1

2

)
. Replacing our rightmost term, we get

log (n)k/nk ≤ −(k2)/n. Now, to get our probabilities back we need to undo the
logarithm. The exponential function is the inverse function to the natural loga-
rithm; that is, elog(x) � x and log(ex) � x. Furthermore, the exponential function,
like the logarithm, is a nondecreasing function (a function f is nondecreasing
if whenever a ≤ b, we also have f (a) ≤ f (b)). Therefore, they both preserve
inequalities. Apply the exponential function to both sides of our inequality:

Proposition. P(no coincidence) � (n)k/nk ≤ e−(k

2)/n.
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 –1 0 1 2

FIGURE 3.2. x versus log(1 + x)

(We have used the shorthand probability notation here (see 2.1). What condition
(|B) are we assuming that you know?)

We have the upper limit we wanted. In the case of the class in which k � 35,
this says that 0.186 ≤ 0.196, which is fairly close, with much less arithmetic.
Remember that

(
k

2

)
is the number of pairs of people (choose 2 from the class of

k). Furthermore, as an exponent becomes a large negative number, the exponen-
tial function approaches zero. Then the inequality says that the probability of no
coincidences is even smaller. This gives us an improved intuition.

Improved Intuition 1. Coincidences become highly probable when the number
of pairs of people is large compared to the number of birthdays.

This will not be hard to remember, since of course individuals do not have
birthday coincidences, two people at a time do.

3.5.2 A Lower Bound
We have a useful answer to the question, When are coincidental joint occupations
likely? But an inequality tells less than half the story. We would also like to know
when coincidences are unlikely. Therefore, we need a convenient minimum value
for the probability; when the minimum is close to one, then so must be the exact
probability.

A strategy remarkably parallel to the last one will work here, too. First note that
since log(1) � 0, then for any positive number a, 0 � log(1) � log (a · 1/a) �
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log(a)+ log (1/a). Then log (1/a) � − log(a). Apply this to each term in our sum
for the log-probability log (n − i/n) � − log (n/(n − i)) � − log (1 + i/(n − i)).
Then our simple inequality for the logarithm yields log ((n − i)/n) ≥ −i/(n − i),
where our inequality has reversed, as we wanted it to, because of the minus sign.
So our log-probability is

log
(n)k
nk

�
k−1∑
i�1

log
(

n − i

n

)
≥ −

k−1∑
i�1

i

n − i
.

We do not have a convenient sum formula, because the denominators (n − i) are
not constant; therefore, we will replace them by their smallest value, n − k + 1.
This makes the right side even smaller, so our inequality is still true:

log
(n)k
nk

≥ −
k−1∑
i�1

i

n − i
≥ −

k−1∑
i�1

i

n − k + 1
� −

(
k

2

)
n − k + 1

.

Again, taking the exponential of both sides, we get a reversed inequality:

Proposition. P(no coincidence) � (n)k/nk ≥ e−(k

2)/(n−k+1).

In our example with k � 35, we compute 0.166 < 0.186.
We conclude that when the exponent is small, that is,

(
k

2

)
is small compared to

n − k + 1, then the probability of no coincidence is close to one. In that case, of
course, k itself is small compared to n − k + 1, which is therefore little different
from n. Thus

(
k

2

)
is small compared to n. Then we have another improvement for

our intuition:

Improved Intuition 2. When the number of pairs of people is small compared to
the number of birthdays, coincidences are rare.

For example, among 6 students sharing a house, there are 15 pairs of birthdays,
out of 365 possible birthdays. We conjecture that coincidences are unlikely. Our
inequality says that the probability of no coincidences is at least 0.9592. In fact, it
is 0.9595.

When we say that a number a is small compared to a number b, we mean more
precisely that the fraction a/b is close to zero, and in particular is much less than
one. In our example, 15/365 � 0.04.

3.5.3 A Useful Approximation
It will be convenient to combine our inequalities into a single fact:

Theorem (the birthday inequality).

e−(k

2)/(n−k+1) ≤ (n)k
nk

≤ e−(k

2)/n.

In the case k � 6, we now bracket our answer rather tightly: 0.9597 ≥ 0.9595 ≥
0.9592. Either bound could be used as a nice quick approximate probability. When
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can we get away with this? When the upper and lower bound are close together,
then we may be sure that either approximation is good. To see how close together
the two exponents are, we first compare denominators: 1

n−k+1 − 1
n

� k−1
n(n−k+1) .

After rearrangement, the exponents are related by
(
k

2

)
/(n − k + 1) � (k2)/n +

((k − 1)
(
k

2

)
)/(n(n − k + 1)). Now using the fundamental fact about exponents that

ea+b � eaeb, we are able to rewrite the birthday inequality as

e−(k

2)/ne−((k−1)(k

2))/(n(n−k+1)) ≤ (n)k
nk

≤ e−(k

2)/n.

If the second exponent on the left is close to zero, then its exponential is close
to one, because e0 � 1 and the exponential function is continuous. Therefore,
the upper and lower bounds are within a factor hardly different from one of each
other. We have established a practically useful approximation that works when
((k−1)

(
k

2

)
)/(n(n−k+1)) is close to 0. But it is easy to translate this into a condition

easier to remember by looking at the highest powers when this is multiplied out:

Proposition. (n)k/nk ≈ e−(k

2)/n when k3 is small compared to 2n2.

In the k � 6 example, we are saying that 0.9595 ≈ 0.9597 because our relative
error estimate 0.00048 is small. We will see a number of other important uses for
this approximation later in the book.

Trying to find simple bounds and approximations when probability calculations
become complicated will be fundamental to our progress through mathematical
statistics. We call these asymptotic methods.

3.6 Sampling

One way of looking at statistical experimentation is that we are trying to find out
something about a great many potential subjects of a survey or repetitions of a
measurement. We call the collection of these potential subjects or measurements
the population of interest. Of course, because of our limited resources, we can
usually only study relatively few subjects, or carry out only a few replications, from
among the population. We call the subjects actually studied, or the measurements
actually carried out, a sample.

A survey, such as a political poll, can be thought of as removing a random
collection of n subjects (sample) from among the pool of m potential subjects
(population) without replacement (it would be stupid to survey anybody twice)
so that they may be asked certain questions. Statisticians call this a simple ran-
dom sample from a finite population. There are, of course, (m)n possible ordered
samples: Our probability calculations will use this as the denominator.

If we had drawn the subjects with replacement, risking repeated interviews,
there would be mn ordered samples; notice that this is now the denominator in
probability calculations and is a much simpler number to work with. The solution
to the birthday problem says that the probability that nobody gets interviewed twice
is the ratio (m)n/mn. The inequality (m)n/mn ≥ e−(n

2)/(m−n+1) then tells us that
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this probability is close to 1 so long as the number of pairs of subjects in a sample(
n

2

)
is small compared to the remaining population size m − n + 1. When this is

so, though we sample without replacement, we sometimes do the easier arithmetic
for the case of sampling with replacement because it is unlikely we would have
interviewed anybody twice. We will see later that in such cases the errors we have
introduced are usually small.

For example, in a small city with 100,000 voters, a sample with replacement of
100 would have better than probability e−(100

2 )/(100,000−100+1) ≈ 0.95 of having no
duplications. As the population size goes up for a given size sample, the probability
of no duplication approaches 1. Therefore, if we are willing to pretend that there is
no chance of duplication, we say that we are sampling from an infinite population.

3.7 Summary

Whenever we reason about uncertain things, such as experiments not yet per-
formed, by trying to measure the proportion of times various things would happen,
we are applying probability theory. In simple situations we may count equally likely
outcomes, so that a probability is P(A|B) � |A ∩ B|/|B| (2.1). This counting is
easy until the number of outcomes becomes numerous; then we invoke the sci-
ence of counting, called combinatorics, to help us. Most counting problems of
interest to statisticians may be solved with the aid of permutations, the number of
ordered lists of k things from n, which is (n)k � n!/(n − k!) (3.2), or with com-
binations, the number of sets of k from n, given by

(
n

k

) � n!/(k!(n − k)!) (3.3).
An amazing number of complicated probabilities may be calculated using these.
For example, the occupancy problem, which asks how probable it is that there
will be no duplicate assignments to n categories by k observations, has solution
P(no duplicates|k assigned to n) � (n)k

nk (4.2). Then we discover an approximate or
asymptotic method for calculating this probability when the number of pairings of
k objects is small compared to n, (n)k

nk ≈ e−(k

2)/n (5.3). Finally, we use this approx-
imation to investigate when the distinction between finite and infinite population
sampling becomes important (6).

3.8 Exercises

1. You awaken in the middle of the night because a truck has backfired. You
glance at your lighted bedside clock, and as always, to the nearest minute
the minute hand points to some number between 00 and 59. What is the
probability that the minute hand points nearest to a number divisible by 7?

2. A student has 5 clean shirts (white, brown, blue, green, and maroon) and 5
clean pants of the same colors in his closet. He has to dress before dawn
without waking his roommate, so he grabs a pair of pants and a shirt without
being able to see them and puts them on. What is the probability that the two
are not the same color?
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3. List all the ways Fisher’s hostess could choose the 4 out of 8 cups that she
believed had tea poured first. How long is your list?

4. How many nonnegative integers with at most 3 decimal digits are there?
Solve the problem first by ordinary arithmetic, then using the solution to Urn
Problem 1.

5. You intend to go to two of the Grand Canyon, the Smithsonian, Disney World,
and Niagara Falls, one this summer and the other next summer. List all possible
vacation plans. Now check that your count is right by applying the formula
for permutations.

6. You are going to spend a month each studying the penal systems of 12 of the
country’s 50 states. Count how many different ways (in sequences of states)
you can spend your year.

7. A deck of playing cards consists of 52 cards � {4 suits} × {13 ranks}. A
poker hand consists of five different cards, chosen so that any five are equally
likely. A spade is one of the suits, so there are 13 of them in the deck. What
is the probability that a poker hand will consist of five spades?

8. To keep control of my time, I decide this semester to be active in only 3 of
bowling, volleyball, softball, basketball, and rugby. How many choices are
possible? List all the possibilities and then count again using the combinations
formula.

9. Show that
(
n

k

) � (n−1
k−1

)+(n−1
k

)
by algebra. Now show it again, in a completely

different way, by interpreting the symbols as counts in Urn Problem 3.
10. Use Exercise 9 and the fact that

(
n

0

) � (n
n

) � 1 (since there is only one set
with no marbles and one set with all the marbles) to construct the table of
combination symbols

(
n

k

)
,

n\k 0 1 2 3 4 5 6 7
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

etc. (Pascal’s triangle) by repeated addition.
11. I walk to work through a section of town where all streets are either north–

south or east–west, and I must go 6 blocks west and 4 blocks south. Of course,
I never take a path that would take me farther away from work. How many
possible complete routes from home to work do I have to choose from?

12. Prove that
(

n

n1n2···nk

) � n!/(n1!n2! · · · nk!).
13. A police department has 10 detectives in the homicide division. In how many

ways can the supervisor assign 4 detectives to the Coors case and 3 other
detectives to the Hard case?
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14. In the 5000 meter women’s Olympic finals there are 4 Americans, 2 Cana-
dians, and 2 Jamaicans, plus one runner each from Great Britain, Korea,
Ukraine, and Japan.

a. How many finishing orders, by nationality and not the name of the
individual, are possible in this race?

b. If as far as you know any finishing order is as likely as any other, what is the
probability that the first two finishers will come from the same country?

15. Of the last 10 students who came from a certain small town, 7 finished above
the middle of their classes at the University of Minnesota. If you believe
that students from that small town are really typical of all UM students, how
probable is this result? Assume that by “typical” we mean that all possible
sequences like ABAAABBAAA of the arriving students finishing above (A)
and below (B) the middle are equally likely.

16. Of 40 engineering majors in an engineering statistics class, 12 are mechanical
engineers and 15 are industrial engineers. The instructor chooses 10 students
to represent the class in a statistics contest.
If major should have no effect on who is chosen, what is the probability
that 3 mechanical engineers and 5 industrial engineers will be chosen for the
contest?

17. You are playing a version of poker in which all cards are dealt from a 52-card
deck. The four cards in your hand include one ace. Some of your opponents’
cards are face up: You see among them one ace and 3 other cards. You are
about to be dealt two more cards. What is the probability that at least one of
them will be an ace?

18. Male and female chicks are very difficult to distinguish without expert exam-
ination. Eight of 12 chicks in a batch are female. You casually select 5 chicks
from the batch.

a. What is the probability that they are all female?
b. What is the probability that there are 3 males and 2 females?

19. The 9 sororities on a certain campus form a sorority senate consisting of 7
representatives from each sorority. The president is then supposed to choose
an executive committee of 8 senators. Unfortunately, 4 of the executive com-
mittee turn out to be from one sorority and 4 from another, and the president
is accused of favoring these sororities. She claims it was an accident, that
they were chosen without regard to the sorority they came from. Find the
probability that this would have happened by chance.

20. There are sixteen well-hidden cameras, each of which is triggered by a moose
wandering into its range; as far as we know, all are equally well placed for
observing moose. If we wait until 9 pictures have been taken, what is the
probability that 9 different cameras will have been involved? Assume that
separate triggering events are independent.

21. In Exercise 20, what is the probability that exactly 7 cameras will have been
involved?
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22. The 150 voters in a small town are to be chosen for a panel of 12 jurors by lot,
that is, chance. Of course, their names should be removed from the voter list
as they are chosen, so there will be no duplications; unfortunately, the county
clerk is not that smart. What is the probability that some people will be chosen
twice for the panel? Also, calculate simpler upper and lower bounds for your
answer, using the results of this chapter.

23. Prove that
∑m

i�1 i � (m(m + 1)/2) � (m+1
2

)
.

24. Prove that ex ≥ 1 + x for all numbers x.
25. A bag of candy is supposed to contain 20 chocolates and 20 caramels. After

you have eaten your way through 5 pieces, you realize suddenly that they
were all caramels.

a. If the bag was well mixed, what is the probability that this would have
happened?

b. An easier, approximate, version of this calculation follows from the ap-
proximation for the probability of birthday coincidences. Find it, and
compare.

26. Show that if k3 is small compared to 2n2, then (k − 1)
(
k

2

)
/(n(n − k + 1)) is

close to zero.

3.9 Supplementary Exercises

27. The Virginia Lottery Pick 4 game draws 4 digits (from 0 though 9) each from
an urn containing all ten digits.

a. A player wins by having selected the same 4 digits in the same order, in
advance of the drawing. What is the probability of winning?

b. A lesser prize is offered for getting any three of the digits correct including
order, but not a fourth. What is the probability of winning this prize?

28. a. More generally than in Exercise 23, show that
∑n

i�m

(
n

i

) � (n+1
m+1

)
for any

integers n ≥ m ≥ 1.
b. Use (a) to show that

∑n
i�1 i2 � (n(n + 1)(2n + 1))/6.

29. In the game of poker, the hand called a pair consists of 2 cards of the same
rank, plus 3 cards of ranks different from the first and different from each
other. If the deal is from a well-shuffled deck, what is the probability that a
hand will be a pair?

30. The Virginia Association of Triplets has 9 sets of triplets as members (for
a total of 27 individuals). Four individual members are picked at random to
go to a national convention. What is the probability that some two of the
delegates will be from the same set of triplets (but the other two delegates are
from two other sets)?

31. You are a federal narcotics agent, and you have gotten a reliable tip that 6
one-kilogram packets of cocaine have been placed, one to a locker, among
the 100 rental lockers at the local airport. You have gotten a search warrant
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to search the lockers, but time is very tight. Your partner has searched nine
lockers and found two packets. You have searched eight lockers and found
one packet. What is the probability that among the next three lockers you
open, there will be at least one package of cocaine?

32. You are thinking of installing a robot inspector to spot defective products at
the end of an assembly line. To test it you run 6 good and 6 bad items through
the inspector, in random order, and ask it to select the 6 that it judges are bad.
If it finds 5 or 6 of the 6 bad ones in its list of 6, you will pass it. If the robot
labels defective products purely by chance, what is the probability that you
will pass it anyway?

33. A publisher sends one copy each of 25 new books to every large newspa-
per. The editors of the 6 large newspapers in the state each pick completely
randomly one book from that list to have reviewed in next Sunday’s papers.
What is the probability that there will be more than one review of at least one
book next Sunday?

34. It is 1944, and soldiers are building two runways, at the north end and at the
south end of a Pacific atoll. There are 25 foxholes near the south runway and
20 foxholes near the north runway. One evening, 8 soldiers are working on
the south runway and 6 soldiers are working on the north runway, so late at
night that they can no longer see each other. The air-raid siren sounds, and
each soldier independently chooses a foxhole and leaps into it.

a. What is the probability that in some foxholes, a soldier lands on top of
another soldier at the south runway? at the north runway?

b. What is the probability that somewhere on the atoll, a soldier lands on top
of another soldier?

35. Four different digits from among the digits 1, 2, . . . , 9 are picked at random,
one at a time.

a. What is the probability that they are selected in increasing numerical
order? (That is 2, 3, 7, 9 is a success, but 4, 8, 1, 3 is a failure.)

b. If 3 is the first digit selected, what is now the probability that the four
digits selected will be in increasing numerical order?

36. An absent-minded grandfather hands out 7 pieces of candy among his 12
grandchildren. He gives each piece to a randomly chosen child, without regard
to whether that child has already received candy.

a. What is the probability that 7 different children will get candy?
b. What is the probability that exactly 6 different children will get candy?

37. There is an obvious Urn Problem Four: How many unordered sets of k marbles
can be chosen with replacement from among n distinct marbles?
Hint: Each such set is determined by knowing how many 1’s, how many
2’s, and so forth, up to how many n’s you got in your set of k marbles. You
might keep track of these as follows: Put a movable marker on your table to
separate the 1’s from the 2’s, one to separate the 2’s from the 3’s, . . . , and one
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to separate the (n − 1)’s from the n’s. There will always be n − 1 markers on
the table. Now write down the marbles in the appropriate place as they come
in. For example, 11||3|4444|5 might keep track of the set of 2 ones, no twos,
1 three, 4 fours, and 1 five, in the case n � 5 and k � 8. The vertical bars
are your markers. Now count the possible strings of numerals and separating
markers.

38. A millionaire intends to give seven identical, perfect ten-carat blue diamonds
to his four children. They only care how many, not which ones, they get. In
how many ways can he distribute the diamonds?
Hint: Use the results of Exercise 37.

39. In Urn Problem 4 (Exercise 37) you established that the number of ways
of drawing k unordered objects, with replacement, from among n objects is(
n+k−1
n−1

)
. Prove (that is, convince me you know why it is true) that this count(

n+k−1
n−1

)
is always less than or equal to (nke(k

2)/n)/k!.
40. In fact, the second expression in Exercise 39 may be shown to be an asymptotic

approximation to the first when k/n is close to zero: That is, the ratio between
the count and the approximate count is close to one. We will illustrate this by
example:
A computer arithmetic program for children picks 4 integers between 1 and 20,
arranges them in ascending order, and presents them as an addition problem;
for example, 7 + 9 + 9 + 13. How many different problems can it generate?
Now calculate the approximate answer from Exercise 39 and compare.

41. Dice are cubes (6 sides) in which the sides are numbered 1, 2, 3, 4, 5, 6. When
one of these cubes is rolled across a table, it is believed to be equally likely
that each of the sides will end face up; the number facing up is the result of
that roll. In the game of Yahtzee, a player rolls 5 dice at once; the 5 numbers
that result are a hand.
A full house is a hand in which one number comes up three times and a second,
different, number comes up twice. What is the probability that a Yahtzee hand
will be a full house?

42. A consumer group claims that heavy-metal music causes cancer. As a fan of
the music, I doubt this, but I will do an experiment with rats anyway, to check.
I expose 8 rats to no music, 8 rats to a low dose of music, and 8 rats to a high
dose of music. Eventually, 3 of the rats with no music exposure get cancer,
2 of the rats with low doses get cancer, and 5 of the rats with high doses get
cancer.
In my opinion, those rats who got cancer were destined to do so, and all
possible assignments of cancerous and cancer-free rats to the three treat-
ment groups could just as easily have happened. In that case, what was the
probability of the results we actually observed?

43. A runs test is a way to tell whether or not there may be “serial dependence” in
a sequence of experiments, that is, whether each experiment is affecting later
results. Imagine that in our study of headache remedies, pill A did better in a

cases and pill B did better in the remaining b cases. We count the runs, that
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is, the number of sets of adjacent cases with the same results. (For example
ABBAAABA has 5 runs: A, BB, AAA, B, and A.) If there are too few (or
too many) runs, each result may be influencing later results.

a. Find the probability that there are exactly k runs, where k is an even
number, if all sequences are equally likely.
(Hint: If there are k runs, then you already know where k/2 A’s and k/2
B’s are. You just have to count the ways of placing the rest.)

b. Find the probability of 4 runs if aspirin was better 5 times and Tylenol was
better 6 times.

44. Now find the answer to Exercise 43 in the case where k is an odd number.
Apply your formula to find the probability of 5 runs in the aspirin/Tylenol
problem.

45. When we were defining the Kruskal–Wallis statistic K (see 2.5.5), we applied
analysis of variance to the ranks 1, . . . , n of a collection of measurements.
Assuming that there were no ties, use Exercise 28 to show that the corrected
sum of squares SS (see 2.5.3) is always (n(n + 1)(n − 1))/12, and therefore
R2 � SSE/SS � K

n−1 .



CHAPTER 4

Other Probability Models

4.1 Introduction

We think of probability as measuring our degree of uncertainty in the results of
experiments not performed yet. But in general, there is no reason to believe that
each of our possible outcomes would be equally likely, as we assumed in the last
chapter. Can we still come up with a science of probabilities in other cases? Some
examples will suggest directions in which the concept might be extended.

Example. The weather forecast asserts that the probability of rain for tomorrow is
20%. What can be meant by that? We could imagine consulting extensive weather
records, until we find 100 days in the past that were as much like today as possible.
Then we assume that tomorrow is equally likely to be most similar to each of the
100 days that followed. Now, simply count how many of those days reported rain;
if the answer is 20, we have our forecast. The procedure is laborious and fraught
with difficult decisions; but presumably a computer could be programmed to do
it. However, meteorologists of my acquaintance assure me that it is not done this
way.

Example (Buffon needle problem). Consider a striped flag with all stripes of
equal width, such as the stripe field of the U.S. flag. Throw a needle of the same
length as the width of a stripe at random onto the field (see Figure 4.1). What is
the probability that it will cross the boundary of a stripe?

It sounds as if all positions and orientations are “equally likely”; but since there
are an uncountable infinity of these, we cannot answer the question directly from
combinatorics. It was claimed in the last chapter that the probability is 2/π . Since
this number is irrational, we cannot hope to transform it to any combinatorial
problem; another approach will be necessary.
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FIGURE 4.1. Buffon needle problem

The strategy of this chapter will be to describe a general probability theory, of
which combinatorial probability is only one special case. We will try as we go to
preserve as much as possible of the essential character of our work so far, without
mentioning equal likelihood. Then we will develop some general tools for working
with probabilities, however these arise.

Time to Review

Algebra of sets
Calculus of trigonometric functions
Geometric series

4.2 Geometric Probability

4.2.1 Uniform Geometric Probability
We gave an example in the introduction, the Buffon needle problem, of the prob-
ability of a sort of geometric outcome; unfortunately, none of the techniques for
deriving probabilities discussed so far will help with it: It is in no sense a com-
binatorial probability. This particular problem is a bit hard to start with, so let us
first tackle an easier one.

Example. I throw darts at a simple dart board, which consists of a 10-inch circular
disk with a 3-inch circular disk called the bull’s eye at its center (Figure 4.2). If a
dart does chance to hit the board, what is the probability that it will hit the bull’s
eye?

To study this problem realistically, you would have to know a great deal about
my skill at darts. Fortunately, there is very little to know. I would be lucky to hit the
board at all; therefore, I am presumably just as likely to hit anywhere on the board,



4.2 Geometric Probability 117

FIGURE 4.2. Dart board

if I do hit it. Intuitively, therefore, the chances of hitting a spot are proportional
to the size of the spot; the relative area of the bull’s eye to the area of the whole
board is the issue. So, using the familiar formula for the area of a circular disk, we
get P(bull’s eye|board)� 2.25π/25π � 0.09.

In general, we see that events of interest on two-dimensional surfaces are usually
regions that we think of as possessing area. Similarly, events in three-dimensional
space are usually regions that possess volume. (What is the probability that a
surface-to-air missile will explode in a certain volume of space?) And even if you
do not usually think of one-dimensional problems, on lines, as being geometrical,
it seems reasonable to measure the size of a segment by its length:

Example. My pocket calculator has a command on it called Ran#, or something
like it, that produces an unpredictable nine-digit number somewhere between zero
and one (most computer languages, spreadsheets, and mathematical and statistical
packages have something similar). If we think of this as the coordinate of a random
point on the number line between zero and one, then its probabilities are intended
to be uniform on the event (0,1). The probability the random number will fall in
the interval from 0.15 to 0.40 is then just the length of that interval, 0.25 (since the
denominator is 1, the length of the whole interval).

These are related ideas: lengths in one dimension, areas in two dimensions, vol-
umes in three dimensions, and in fact, hypervolumes in more than three dimensions.
We call all of these concepts volume with respect to the appropriate dimensional
space, and write the volume of A as V(A) for an event A. Our dart board example
suggests one simple kind of probability assignment that is sometimes useful.

Definition. A geometric probability space is uniform if given events A and B
such that 0 < V(B) < ∞, probabilities are given by P(A|B) � V(A ∩ B)/V(B)
whenever the numerator exists.

As in the darts example, this model applies to cases in which any point in B
seems as likely as any other.
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4.2.2 General Properties
Going back to our list of general properties of combinatorial probability in the
last chapter (see 3.4.3), we quickly check that to our delight, they all are equally
true for uniform geometric probabilities. The only modification we might make is
that where we had some set empty or not empty before, we now ask only that its
volume be zero or not zero.

Proposition (properties of uniform geometric probability).

(i) 0 ≤ P(A|B) ≤ 1.
(ii) If V(A ∩ B) � 0, then P(A|B) � 0.

(iii) P(B|B) � 1.
(iv) P(A∪B|C) � P(A|C)+P(B−A|C), and if V(A∩B) � 0, then P(A∪B|C) �

P(A|C) + P(B|C).
(v) P(C − A|C) � 1 − P(A|C).

(vi) If V(A ∩ C) �� 0, P(A ∩ B|C) � P(A|C) · P(B|A ∩ C).

You should use familiar properties of length, area, and volume that you learned
in geometry and in calculus to prove these facts. You can use the analogous proofs
from Chapter 3 as models.

As similar as these are to properties of combinatorial probability, the one small
difference has interesting implications. An event on an interval does not now have
to be empty to have probability equal to zero: For example, a single point has
length zero, so its probability conditioned on the whole interval is zero. Thus
P({1/π � 0.318309886 . . .}|(0, 1)) � 0; the chances that I will get one exact
number when I hit Ran# is vanishingly small. If I think I have hit it, there is a very
good bet that if I measure my answer to another few decimal places of accuracy,
I will find I just barely missed. Nevertheless, I could conceivably hit that number.
So in this version of probability, “impossible” and “zero probability” have subtly
different meanings.

In fact, sets do not have to be small to have zero volume and therefore zero
probability. Consider a square dart board C and an interval B that cuts across it
Figure 4.3. Since this is a problem in two dimensions, probability is in terms of
area; and the area of that segment B is zero. Therefore, even though B is much

C

B

FIGURE 4.3. A line interval inside a square
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more than a single point, it must still be that P(B|C) � 0. If you think that your
dart has hit B, it is almost certain that if you looked a little closer, you would see
that you have hit just to one side or another of the line segment.

4.3 Algebra of Events

4.3.1 What Is an event?
Now we know that probability may be usefully applied both to counting problems
and to geometrical problems, and have remarkably similar properties in these very
different situations. We are inspired to talk about a general concept of probability,
in which our two types so far would be only two special cases among many.

As before, we will be interested in probabilities of events, which will still be
sets of individual outcomes. In combinatorial probability, any finite set at all was
a plausible candidate to be an event, even if it is hard to imagine why we would
be interested in a particular set for a practical application. In uniform geometric
probability problems, it is obvious that only events that have volume (whether that
means length, area, ordinary volume, or whatever) are candidates to be events. In
advanced real analysis courses, you will discover that certain sets (though not any
you would be likely to guess) can never be assigned a volume, no matter how good
you are at computing volumes. These can never be events in geometric probability
problems. So each application of probability may require a different definition of
what constitutes an event.

We need to know when we have done a satisfactory job of defining the events
in a probability problem. Our strategy will be to write down some simple rules
for which other sets of outcomes ought to be events, if we know which ones we
certainly want.

For example, there might be two sorts of results of an experiment that we would
call successes; we could write them down as two collections A and B of successful
outcomes. If these are each to be events, we would also be interested in the event of
simply succeeding. This event would be given in set theory by A∪B, the outcomes
in either A or B or both. We will generalize this and insist that if you wish to study
any two events, their union must also be an event.

If B is the possible outcomes of a certain experiment and A is the event of
succeeding at that experiment, then surely failing at the same experiment is also
an event of interest. In set notation, B − A � {x ∈ B and x ∈ A}, the set of failing
outcomes. We shall insist generally that if A and B are any events, then B − A is
an event as well.

4.3.2 Rules for Combining Events
To summarize our requirements:

Definition. An algebra of events is a nonempty collection of events such that
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(i) if A and B are events, then A ∪ B is also an event (unions); and
(ii) if A and B are events, B − A is also an event (complements).

From now on, we will expect the collections of events to which we assign
probabilities to be algebras. You might be surprised that we have not required the
presence of certain other events, such as intersections, that we talked about when
computing equally likely probabilities. It turns out that the two requirements given
are enough.

Proposition. (i) φ (the empty set) is an event; and
(ii) if A and B are events, then A ∩ B is also an event.

Proof. (i) B − B � φ is an event; (ii) exercise. �

Notice that already we have one easy example of an algebra. When we did
combinatorial probability, we had a finite list of all possible outcomes. The events
included any subset of that list. But the rules for an algebra just insist on a minimum
collection of events, and since we are using all possible subsets of that list as events,
it must be an algebra.

When we do uniform geometric probability, we start with the biggest event
in which we may be interested U, which must have finite volume in whatever
dimension we are working, 0 < V(U) < ∞. (Think of a dart board.) Now, I
will propose an algebra whose events are all the subsets of U that have a volume
(possibly 0). Then it is plausible that for two events A and B that each have a
volume, A ∪ B and B − A will also have a volume (for one thing, we know
immediately that they can be no bigger than V(U)). We will come back to this
issue later in the chapter, when we will describe more carefully the algebra needed
for geometrical probability.

4.4 Probability

4.4.1 In General
Now we will try to say what all sorts of probability should be like, guided by our
experience with combinatorial and uniform geometric probability. These share
a common intuition that the probability of a future event is something like the
proportion of times we might reasonably expect it to happen if we did the same
experiment many times. Certainly, then, we should have an addition rule of some
sort—for example, the proportions of the time one event or another would happen,
if they cannot both happen, must surely just add. Surely, too, there must always be
a multiplication rule:

Example. What is the probability that an entire weekend will be rained out in
September, precluding a picnic? The weather service is unlikely to have this ques-
tion already answered, but they might be able to tell us that the probability of a
rainy day is 20% this time of year. With further research, they might tell us that on
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a typical rainy day, the probability that rain will recur the next day is 50% (because
many storms last longer than a day). Our answer is the probability that it will rain
Saturday, and then also the next day; which will come about 50% of 20% of the
time, or 10% of the time.

This just uses the familiar principle that proportions of proportions simply
multiply. So general probability theory will be founded on those two requirements.

4.4.2 Axioms of Probability
The two requirements from the last section will be the most important statements
in an axiom system for probability; their purpose is to summarize the general
features we will look for in any possible application of probability theory. This
approach was first popularized by the Russian mathematician Kolmogorov in the
1930s (though our choice of axioms is somewhat different from his). The axioms
are contained in the following:

Definition. A (finitely additive) probability space is an algebra of events, to-
gether with a real-number-valued function P(A|B) defined on pairs of events with
B �� φ such that

(i) P(A|B) ≥ 0 (nonnegativity);
(ii) P(B|B) �� 0 (nontriviality); under a condition C,

(iii) P(A ∪ B|C) � P(A|C) + P(B − A|C) (additivity); and
(iv) P(A ∩ B|C) � P(A|C) · P(B|A ∩ C) whenever A ∩ C �� φ (multiplicativity).

Comments: Our motivating examples of probabilities are proportions, which are
certainly never negative; therefore, I cannot imagine what a negative probability
would mean, and I put in rule (i). Rule (ii), certainly true in our examples, is a
simple device to make sure that there are some positive probabilities; a probability
system that is always zero, and so completely useless, meets all the other rules.
The last two are just our addition and multiplication computing rules.

You may have seen in other books what are called unconditional probabilities,
written something like P(A). As mentioned in the last chapter (see 3.2.1), this
is simply a shorthand notation for our usual P(A|B), whenever you feel free to
assume that your audience knows which condition B is meant. When discussing
dart throwing, we felt free to assume that a common general condition would be
that you have hit somewhere on the dart board. Now let us see what the shorthand
does to the appearance of our axiom (iv) when we assume that everybody is aware
of the general condition C : P(A ∩ B) � P(A) · P(B|A). You have to remember
that a subtle convention is hidden here. Not only have we written P(A) for P(A|C)
and P(A ∩ B) for P(A ∩ B|C); we have also written P(B|A) for P(B|A ∩ C). The
only way you can tell about that last substitution is to see that it appears in the
same formula as the unconditional probabilities. Nevertheless, many people find
this simplified form easier to remember.

The shorthand form of the axiom of additivity is P(A ∪ B) � P(A) + P(B − A).
You may find that it helps you remember the two axioms to notice the remarkably
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parallel form they take. Interchange ∪ and ∩, addition and multiplication, and −
and |, and you find that one axiom has been transformed into the other.

While we are at it, let us solve for the second factor in the axiom of
multiplicativity to get a famous formula.

Proposition (conditioning). If P(A) �� 0, then P(B|A) � P(A∩B)
P(A) , where all

probabilities are with respect to a common condition.

In older texts, this is sometimes used as the definition of a conditional probability.
We will use it whenever we want to introduce a new condition, because we have
learned something relevant to the question.

Example. Your ornithology group is capturing and attaching location finders to
predatory birds in a large wildlife preserve. Only 25% of the birds you catch
are eagles, and only 6% of the birds are golden eagles, which you are studying.
Your colleague Susan, who is surveying eagles in general, comes running in and
announces “We caught an eagle today!” What is the probability that it is a golden
eagle?

We calculate P(golden|eagle) � P(golden eagle)
P(eagle)

� 0.06
0.25 � 0.24.

4.4.3 Consequences of the Axioms
You may be wondering where all those common properties of combinatorial and
uniform geometrical probabilities went to. Axioms are supposed to be short lists of
the most critical properties; so now let us check that our list is long enough. With
a little ingenuity, we can extract from our axioms all the other usual properties of
probability.

Let A ⊃ B so that every outcome from B is also in A. Then we know that
A ∩ B � B. Calculate

P(B|B) � P(A ∩ B|B) � P(A|B) · P(B|A ∩ B) � P(A|B) · P(B|B),

where the second equality just uses axiom (iv). Axiom (ii) says that P(B|B) �� 0,
so we can divide the first and last terms of the equality by it:

Proposition. (i) P(A|B) � 1 whenever A ⊃ B.
(ii) P(B|B) � 1 (because B ⊃ B)

The second fact is often given as an alternative to our axiom (ii).
If we know the probability that something will happen, what is the probability

that it will not happen, that is, P(B − A|B)? We know what the answer should be
from combinatorial probability; in fact, when we solved this problem in (3.4.3),
we used only additivity and the proposition above. Therefore, it is true for all kinds
of probability. We summarize our results as follows:

Proposition. (i) P(B − A|B) � 1 − P(A|B).
(ii) Always P(A|B) ≤ 1.
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The first result says, for example, that the probability of success with an ex-
periment is one minus the probability of failure. You should check (ii) as an
exercise.

4.5 Discrete Probability

4.5.1 Definition
So far, we have nothing new, and our purpose in writing down the axioms was to
allow for new applications of probability theory. The weather forecasting example
in the introduction suggests another sort of model: Tomorrow’s weather consists of
two outcomes, rain and dry (T � {r, d}). We assign somehow (in this case, by expert
opinion), P[{r}|T] � 0.2. The previous proposition shows that P[{d}|T] � 0.8;
this is all we need to say about the probabilities in this situation. To summarize,
we want a type of probability space that consists of a complete list of possible
outcomes and such that we have some way of assigning a positive probability to
each. We will want all of these probabilities to sum to one, by our addition rule for
probabilities and the fact that P(All|All) � 1.

Sometimes we will need to say even more. Imagine an outcome to be the num-
ber of Atlantic hurricanes during the next season. The possible outcomes are
{0, 1, 2, 3, . . .}, the nonnegative integers. I know of no natural law that places
an upper limit on this number (certainly not 26, the available first letters for the
annual names list), so even though I do not take seriously the possibility of a mil-
lion hurricanes, I include all these integers among my outcomes. Now, the case of
exactly three hurricanes is an event of interest, written {3}. Might I also be curious
(do not ask why) about the probability of an odd number of hurricanes? If so,
that event could be written {1, 3, 5, . . . , 2k − 1, . . .}. (We are now certainly not
in the world of equally likely probability. We do not know how to do arithmetic
with infinite counts.) We need some restriction on the sizes of such collections of
outcomes:

Definition. A countable collection is one whose elements can be numbered, that
is, can have a different positive integer assigned to each.

Example. Any finite collection is countable, since you can just write down the
assigned numbers: {A1, A2, A3, A4}.
Example. For an infinite collection like the odd positive integers, we will need
a rule for numbering the elements, since we would fail to finish numbering them
by hand before our species becomes extinct. Notice that 1 is the first odd number,
3 is the second, 5 is the third, and by a leap of ingenuity, k is the (k + 1)/2 odd
number. For example, 1793 is the 897th odd number. We can number them all, so
our collection is countable.

Let us formalize this sort of probability space:
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Definition. A discrete probability space consists of a countable event U � {xi},
the algebra consisting of all subsets of U, numbers pi > 0 associated with each
outcome xi such that

∑
i pi � 1, and probabilities P(A|B) �∑i∈A∩B pi/

∑
i∈B pi .

The idea is that P({xi}|U) � pi ; the general probability formula was inspired
by the proposition on conditioning. To see that this special, but important, concept
is consistent with what has gone before, we need to see that it is consistent with
our axioms.

4.5.2 Examples
Proposition. Any discrete probability space is also a probability space.

Proof. Check the axioms:

(i) P(A|B) ≥ 0 because neither numerator nor denominator is ever negative;
(ii) P(B|B) � ∑i∈B∩B pi/

∑
i∈B pi � 1 �� 0 because B is not allowed to be

empty;
(iii) The secret of verifying this axiom is to be unafraid of our complicated

notation:

P(A ∪ B|C) �
∑

xj ∈(A∪B)∩C pj∑
xj ∈C pj

�
∑

xj ∈(A∩C) pj +∑xj ∈[(B−A)∩C] pj∑
xj ∈C pj

� P(A|C) + P(B − A|C),

where the first equality just uses the definition, and the second works because A
and B−A do not have any outcomes in common. Finally, split the fraction in two,
and we are done.

(iv) Exercise. When you have done it, our proof will be complete. �

You should check, as an easy exercise, that equally likely (combinatorial)
probability (where the events are any subsets of some finite set of outcomes,
and probabilities are gotten by counting outcomes) is an example of a discrete
probability space.

The shorthand notation is particularly useful with discrete probabilities, if your
audience agrees in advance on the complete list of outcomes U (for Universe).
Then, almost always, P(A) � P(A|U). But notice that

P(A|U) �
∑

i∈A∩U pi∑
i∈U pi

�
∑

i∈A pi

1
�
∑
i∈A

pi ;

we have learned the following fact:

Proposition. P(A) �∑i∈A pi .

Of course, we intended this to be true when we first defined discrete probability.
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Example. In the example of the number of hurricanes in a season, we had U �
{0, 1, 2, . . .}. I do not know enough meteorology to assign realistic probabilities
to the various numbers of hurricanes; but let me propose the following simple
rule: P({0}) � p1 � 1

2 , P({1}) � p2 � 1
4 , P({2}) � p3 � 1

8 , and generally
P({i}) � pi+1 � 2−i−1. Since we have assigned all outcomes a positive probability,
then we will have a discrete probability space if only the grand total is right:∑

i pi � 1
2 + 1

4 + 1
8 + · · ·. This infinite series is one of a very important class,

called geometric series; it will be useful, now and later, to recall from calculus
how to sum it:

Proposition.
∑∞

i�0 a · ri � a + a · r + a · r2 +· · · � a/(1 − r) whenever |r| < 1.

You can see why this ought to be the right sum by multiplying both sides by
1 − r . Our series is of this form if a � 1

2 and r � 1
2 , so that the sum of all our

probabilities is 1
2/(1 − 1

2 ) � 1, as it should be.
Now we may do various calculations with hurricane probabilities. For example,

P(odd number) � P(1) + P(3) + · · · � 1
4

+ 1
16

+ 1
64

+ · · ·

This is another geometric series, with a � 1
4 and r � 1

4 ; so the probability of an
odd number of hurricanes is, peculiarly enough, 1

3 .
Now you can see why we restricted our attention to countable collections of

outcomes (yes, there are bigger sets, which you may study in classes in real anal-
ysis). We learned in calculus how to sum certain infinite series, which just involve
adding up a countable sequence of terms. This is just what we needed to do in this
example.

4.6 Partitions and Bayes’s Theorem

4.6.1 Partitions
Now that we have a richer variety of examples of probability spaces, we can show
off some more powerful computing tools. One important idea is that when we want
the probability of an event under complex conditions, it may be useful to split the
conditions into simpler special cases.

Example. What proportion of undergraduates at a certain college might be ex-
pected to drop out in a given year? Well, the situation is presumably different for
freshmen, sophomores, juniors, and seniors; the youngest students presumably are
less committed, and more likely to quit. Furthermore, they have different advisors,
who have completely separate data bases of information about the different years.
You find that 30% of freshmen, 15% of sophomores, 10% of juniors, and 8% of
seniors drop out each year; presumably the answer is some sort of average of these.
But it cannot be a simple average, because presumably there are more freshmen
than there are students in any of the other classes, so the 30% who dropout rep-
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resent proportionally more students. You go to the registrar and find that of all
undergraduates, 35% are freshmen, 25% are sophomores, 20% are juniors, and
20% are seniors. Now you can reason as follows: 30% of 35% of students, or
10.5%, are freshman dropouts (using the intuition behind our multiplication law).
Now sum the proportion of dropouts over all classes:

0.3 × 0.35 + 0.15 × 0.25 + 0.1 × 0.2 + 0.08 × 0.2 � 0.1785

We state this as a result in probability: If you pick an arbitrary student in September,
the probability that he or she will drop out by the end of the year is 0.1785.

We need to formalize this idea of dividing the condition into special cases.

Definition. A (finite) partition of an event B is a finite collection of events {Ci}
such that

(i) Ci ∩ Cj � φ for i �� j (mutually exclusive).
(ii) ∪

i
Ci � B (exhaustive).

The notation in (ii) just says to take the union over all values of j ; it is a
relative of summation notation. A Venn diagram should make this definition easy
to remember (Figure 4.4):

Example. (1) Freshman, sophomore, junior, senior is a partition of undergradu-
ates.

(2) Male, female is a partition of people.
(3) Given A ⊂ B, then {A, B − A} is a partition of B (exercise).

4.6.2 Division into Cases
Partitions are useful because we can sum probabilities over them.

Proposition (finite additivity). Given a finite collection of events {Ai} that are
mutually exclusive, Ai ∩ Aj � φ for i �� j , P(∪

j
Aj ) � ∑j P(Aj ), where the

probabilities are taken with respect to a common condition.

Proof. We showed in (3.4.3) that for any two mutually exclusive events (in
shorthand), P(A ∪ B) � P(A) + P(B), as a direct consequence of the additivity

B

C1 C2 C3 C4

FIGURE 4.4. A partition
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B

A

  A ∩ C2 A ∩ C1   A ∩ C3   A ∩ C4

C1 C2 C3 C4

FIGURE 4.5. Division into cases

axiom. Repeat this, taking the union with one additional event at a time, until you
have the union of the entire collection (as mathematicians say, by induction). �

Now let us see what a partition can tell us about a probability:

P(A|B) � P(A ∩ B|B)
(which you should verify, as an exercise)

� P[A ∩ (∪
i

Ci)|B] � P[∪
i
(A ∩ Ci)|B]

using a famous identity from set theory, which you should check for yourself.
Therefore, P(A|B) �∑i P(A∩Ci |B) by the proposition of finite additivity (see

Figure 4.5). So a partition does indeed allow us to break up a probability as a sum.
But

P(A ∩ Ci |B) � P(Ci |B) · P(A|Ci ∩ B) � P(Ci |B) · P(A|Ci)

from the multiplicative axiom. Let us summarize:

Theorem (division into cases). Let {Ci} be a finite partition of B. Then

P(A|B) �
∑

i

P(Ci |B) · P(A|Ci).

Note that our calculation of the dropout probability took this form.

Example. A city is thought to have about 1% of its population carrying the HIV
virus, which is believed to cause the deadly AIDS syndrome. There exists a good
inexpensive blood test for the HIV virus whose performance may be summarized
as follows:

(i) If a patient does have HIV, 90% of the time the test will say so; and
(ii) If a patient does not have HIV, 96% of the time the test will say so.

The number in (i) is called the sensitivity of a test; the number in (ii) is called
the specificity of the test. In practice, they will not both be 100%. Usually, there is
a trade-off; the more sensitive a test is, the less specific, and vice versa.

What is the probability that a randomly chosen person from this city will test
positive for HIV? Our partition formula will work here: Let C be residents of the
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city, H be those who have HIV, and D be those who do not. Then {H, D} is a
partition of C. Let T be the event of testing positive for HIV. Then we want

P(T|C) � P(H|C) · P(T|H) + P(D|C) · P(T|D) � 0.01 · 0.9 + 0.99 · 0.04
� 0.0486.

Not quite 5% of our patients will test positive.

4.6.3 Bayes’s Theorem
You may find the result above rather disturbing, if you imagine that a program
to test everybody in the city for HIV would be a good idea. You would get far
more positives than you had HIV patients and run the risk of scaring many healthy
patients to death. To further quantify this difficulty, we might ask; What is the
probability that someone who tests positive actually has the virus? In symbols, we
want P(H|T). Notice that this is the reverse conditional probability of the P(T|H)
that we were given; is there a way to exchange the roles of event of interest and
condition?

Let E, F, G be events, and compute P(F|E ∩ G) � P(E ∩ F|G)/P(E|G) using
our formula for introducing a condition. The event that E and F happen is just the
event that F and E happen, so long as we treat events as sets, since E ∩ F � F ∩ E.
Then

P(E ∩ F|G)
P(E|G)

� P(F ∩ E|G)
P(E|G)

� P(F|G)P(E|F ∩ G)
P(E|G)

by another use of the multiplication axiom. But notice that G was a common
condition in every probability in this formula; so it is natural to use shorthand and
leave it out. We have proved a famous fact:

Theorem (Bayes’s theorem). P(F|E) � P(F)P(E|F)/P(E) whenever P(E) �� 0,
where all probabilities are with respect to a common condition.

This is attributed to Thomas Bayes, an eighteenth-century Presbyterian minister.
(His example was a problem in the game of billiards.)

In our AIDS example, we notice that we have already computed the quantities
we need. P(H|T) � (0.01 · 0.9)/0.0486 � 0.185. Fewer than 20% of the people
positive on our test really have HIV.

This seems to suggest that the blood test described, which we thought was a
good one, is really terrible. But that is not entirely fair; notice that at one time we
thought that the chances a patient would have HIV was 1%. After the same patient
is positive on the test, the chances leap to 18.5%, or almost 20 times greater. As an
exercise, calculate the probability that the patient has HIV after testing negative
on the blood test. You will find that it is many times smaller than before. If our
goal was to screen out a high-risk group from among, for example, blood donors,
it seems that the test could be very useful indeed.
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This illustrates an important style of statistical reasoning, called Bayesian infer-
ence. We start with some state of knowledge about some important question (new
patient has probability 0.01 of having HIV). We perform an experiment (give the
blood test) that is relevant to the question, in the sense that the probabilities of var-
ious events are different for different answers to the question. We then use Bayes’s
theorem to compute new probabilities for the possible answers to the question (a
patient positive on the blood test has probability 0.185 of having HIV). Good ex-
periments can make us ever more confident, though never quite certain, of the truth.
The probabilities we knew before the experiment are called prior probabilities;
those we compute after the experiment are called posterior probabilities.

4.6.4 Bayes’s Theorem Applied to Partitions
When we calculated the probability in our example using Bayes’s theorem, we
found that both numerator and denominator were quantities that had appeared in
our division into cases theorem for probabilities. This suggests that we might use
Bayes’s theorem to find the probability of one of the partition events Ci once the
event of interest has happened:

P(Ci |A ∩ B) � P(Ci |B)P(A|Ci ∩ B)
P(A|B)

� P(Ci |B)P(A|Ci)∑
j P(Cj |B) · P(A|Cj )

,

where the first equality is Bayes’s theorem, and the second just uses the partition
theorem. As before, people often prefer the shorthand notation. The common
condition B does not appear in every term, but it is, in effect, there because the
{Cj } are subsets of B. This is a nice enough formula that we mark it:

Theorem (Bayes’s theorem for partitions). Let {Cj } be a (finite) partition of an
event B, and A an event. Then if P(A) �� 0, we have

P(Ci |A) � P(Ci)P(A|Ci)∑
j P(Cj ) · P(A|Cj )

,

where all probabilities share the common condition B � ∪
j

Cj .

I think of this case of Bayes’s theorem as a sort of detective’s equation. Imagine
that the {Cj } are the cases of various suspects being guilty of a crime, and A the
crime actually taking place. Then P(Ci |B) is the probability that suspect i would
commit such a crime (motive), and P(A|Ci) the probability that were he to commit
such a crime, it would be the particular one being investigated (opportunity). So
now we see that when detectives evaluate their suspects for motive and opportunity,
they should really multiply the two and compare the product to the corresponding
products for all the other suspects.
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4.7 Independence

4.7.1 Irrelevant Conditions
We exemplified the multiplicativity axiom in Chapter 3 (see 3.4.3) by choosing
two states without replacement for a survey and asking whether they were both
Atlantic states. How much did it matter that we drew without replacement? We
might instead draw one name from a jar, write down which state we got, put it back
in the jar, stir up the names, and draw a second state (draws with replacement). How
has the probability of two Atlantic states changed? This is back to what we called
Urn Problem 1; the answer is 152/502 � 15/50 · 15/50 � 0.09, which is slightly
larger than before. We once again interpret the product to mean something like
P(Atlantic|15 of 50)P(2nd Atlantic|1st Atlantic and 15 of 50). But by putting the
first state back in the jar, we have made the jar equivalent to what it was before, and
the probability that the second state is Atlantic is the same as the probability that
the first was. When, as in Chapter 1, we do an experiment repeatedly in hopes of
making our overall conclusion more accurate, we often work very hard to make sure
that each repetition of the experiment is unaffected by what happened in previous
runs. Here, we have done this by putting the removed state back in the jar. This is
an example of an important phenomenon in probability: Some conditions that you
may consider (previous experiments) may have no effect on the probability of a
certain event.

Definition. An event B is independent of an event A relative to a condition C if
P(B|A ∩ C) � P(B|C).

Example. Let B be the event that it rains tomorrow in Blacksburg, Virginia, and A
be the event that it rains later today in Athens, Greece. I cannot imagine much of a
connection over so short a period between two places so far apart; so I assume that
B is independent of A. Under current conditions, using shorthand, I say P(B|A) �
P(B). If the weather report gives a 20% chance of rain tomorrow in Blacksburg,
I will not expect that to change if a few minutes later I hear on television that a
shower is falling on the Parthenon.

Our motivating problem was reduced to a rather simple multiplication by re-
placing a state, and thereby making our two choices independent. The general idea
is

P(A ∩ B|C) � P(A|C) · P(B|A ∩ C) � P(A|C) · P(B|C)

by the multiplication axiom, if B is independent of A. We summarize, using
shorthand:

Proposition. If B is independent of A relative to C, then P(A ∩ B) � P(A) · P(B),
where all probabilities are relative to C.

Example. In the darts problem in Section 2, what is the probability that I will
hit the bull’s eye 3 times in a row? I presume that a little practice will do me
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little good, so that each throw is independent of previous throws. Therefore,
P(3 bull’s eyes|3 hits) � 0.093 � 0.000729. It will not happen very often.

Example. I hope to have a successful picnic on Labor Day or Memorial Day next
year. What is the probability that at least one of these days will be rainless? The
weather service says the probability of rain on Memorial Day is 20%, and on Labor
Day is 15%. They are so far apart in time that I presume that Labor Day rain is
independent of Memorial Day rain; so the probability of being rained out on both
days is 0.2×0.15 � 0.03. My probability of success is therefore 1−0.03 � 0.97.

4.7.2 Symmetry of Independence
Notice that our product formula for independent events does not care whether B
is independent of A, or vice versa. In fact, when B is independent of A, we may
apply Bayes’s theorem to check that

P(A|B) � P(A)P(B|A)
P(B)

� P(A)P(B)
P(B)

� P(A),

where C is the common condition.

Proposition. If B is independent of A, then A is independent of B, relative to the
same condition.

Because of this symmetry, we usually just say that A and B are independent
relative to C. If your audience knows the condition C, it is a common shorthand
not to mention it; we just say that A and B are independent of one another.

Example. A certain scholarship is given to a Tech junior each year, without re-
gard to gender. Yet for the past five years, it has gone to women. We learn that
42% of Tech juniors are women. If we imagine that the scholarship was given by
picking a student completely at random, what is the probability that the next five
recipients will also be women? Presumably, the annual choices are independent,
so we simply use our multiplication result repeatedly: P(5 women|5 students) �
0.425 � 0.013069. I did not need to know how many juniors there were, even
though the number of people involved is known and finite.

4.7.3 Near-Independence
Example. Another scholarship is given to five Tech juniors each year, without
regard to gender. What is the probability all five will go to women this year? This
is a draw without replacement (nobody gets two scholarships), so independence
does not apply; we need to find out from the registrar that there are 4850 juniors,of
whom 2037 are women (exactly 42%). This is another finite population sampling
calculation, so

P(5 women|5 students) � (2037)5

(4850)5
� 2037 · 2036 · 2035 · 2034 · 2033

4850 · 4849 · 4848 · 4847 · 4846
� 0.013032.
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It is noteworthy that this answer and the answer to the last problem differ only in
the fourth decimal place. The reason is easy to see; even after four people have been
removed from the pool, the proportion of women that remain is 2033

4846 � 0.4195,
which hardly differs from 42%. Thus, the calculations of the two answers are
practically the same. This is an example of the phenomenon we noticed in Chapter
3.6, where sampling from a finite population was almost the same as sampling
from an infinite one. Apparently, sometimes we can get away with assuming that
we are doing draws with replacement (which lets us do the easy, independence,
calculations) when we are in fact not replacing our draws. This presumably works
when the number of draws is small compared to the number of marbles in our urn,
so we are not changing the proportion of available choices much.

We can say something about when the number of draws is small enough. If we
draw k marbles from an urn with W whites and B blacks, then the probability of
getting all white marbles with and without replacement is approximately the same
when (W )k/(W + B)k ≈ Wk/(W + B)k . This is true when (W )k/Wk ≈ 1 and
(W + B)k/(W + B)k ≈ 1. But we already know from the last chapter (see (3.5.3),
the birthday problem) when we can count on this to be true. Using the inequalities
established there, e−(k

2)/W−k+1 ≤ (W )k/Wk ≤ e−(k

2)/W . This says that the ratio is
practically 1 when

(
k

2

)
is very small compared to W − k + 1, and therefore also to

W + B − k + 1 (which is obviously bigger). In our problem, we had W � 2037
women and k � 5 scholarships, so

(
k

2

) � 10; so we are not surprised that the
approximation to the draw without replacement by the easier calculation of the
draw with replacement (assuming independence) was rather good.

4.8 More General Geometric Probabilities

4.8.1 Probability Density
Uniform geometric probabilities can sometimes help us solve more complicated
geometric probability problems.

Example. On our circular dart board (2.1), what is the probability for a dart falling
in a certain vertical strip? (See Figure 4.6.)

To make the math easier, center the board on the origin of a coordinate system,
and let the board be of radius 1. Then our strip of interest is those points with
x-coordinates between a and b. The total area of the board is now π . The parts of
the strip above and below the x-axis have the same area, and the upper half of the
entire dart board is the area under the curve y � √

1 − x2, the equation for the unit
circle. Areas under a curve may be obtained by integration. Dividing by the total
area of the board π , we get P{x between a and b} � ∫ b

a
2
π

√
1 − x2dx. This often

happens: A geometric probability can be expressed as the integral of a relatively
simple function, in this case 2

π

√
1 − x2, which we will call the probability density

of the x-coordinate. Here the density has a simple geometrical interpretation as
being proportional to the height of the strip above a given x. Now we can reason
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x

y

a b

FIGURE 4.6. A strip inside a circle

backwards, solving the integral (exercise) to get

P{x between a and b} � 1
π

[
sin−1(b) + b

√
1 − b2 − sin−1(a) − a

√
1 − a2

]
.

For example, the probability of hitting between 60% to the left of center and 20%
to the left of center is P{x between − 0.6 and − 0.2} � 0.231.

Example (Great Wall of China problem). The Great Wall of China is a stone
wall 1500 miles long, but not very high. Imagine a guard standing before a long
straight and level stretch of the wall. He is very inebriated, so he shoots his rifle
completely at random. Occasionally, by chance, a bullet hits the wall. What are
the probabilities that it lands in various places along the wall?

Since the wall is very long but low, I will pay no attention to how high on the
wall the bullet lands; just to where horizontally. The first thing we notice is that
there are so many points along the wall the bullet could hit that the probability of
hitting any one point is negligible. The best we can do is figure the probability of
hitting in a stretch of wall, for instance, between x and y (see Figure 4.7).

θ
xm

d

y

FIGURE 4.7. The Great Wall of China
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If the guard is shooting in random directions, it seems reasonable that the angle
θ within which he has to shoot to hit between x and y is important. Let the point
on the wall opposite him have coordinate m; let his distance to the wall be d, and
measure x and y in the same coordinate system as m. Then some trigonometry
tells us that θ � tan−1(y − m)/d − tan−1(x − m)/d. (Look at the triangles in
the diagram, and review the definition of the tangent.) Those angles that hit the
wall, starting from 0, range from −π/2 to π/2. (In this book, angles are always
in radians.) If all angles seem equally likely, we should be looking at what portion
of the available angles we have included, or θ/π . That is,

P(between x and y|hits wall) � tan−1(y − m)/d − tan−1(x − m)/d
π

.

For example, if the guard stands 10 feet from the wall, the probability that his next
bullet hole will be between x � 10 and y � 20 feet to his right along the wall is
0.1024. This is an example of an important probability model, called the Cauchy
law.

Since our answer is expressed as the difference between two values of a function,
we can use the fundamental theorem of calculus, g(b) − g(a)�∫ b

a
g′(x)dx, to re-

write the Cauchy law. Remember from calculus that (d tan−1(z))/dz�1/(1 + z2).
Therefore,

P(between x and y|hits wall) �
∫ y

x

dz

π [(1 + {(z − m)/d}2)]
.

This may seem a peculiar thing to do, but notice that the expression under the
integral sign, the density again, does not involve the transcendental arc tangent
function. It is in a sense simpler when written this way. In the case m � 0 and
d � 1, the Cauchy density function looks like f (z) � 1/(π (1+ z2)), and its graph
looks like the graph in Figure 4.8.
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FIGURE 4.8. The Cauchy density
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The shaded area is the probability that a bullet will hit between the points x and
y along the wall if it hits the wall at all. We will discover later many other uses for
densities.

4.8.2 Sigma Algebras and Borel Algebras∗

It is time to tackle the problem of what sort of algebra of events we need for
geometric-based probability problems. This has become a more important ques-
tion, because now we know how to tackle geometric problems whose probabilities
are not necessarily uniform. We will do it by analogy with how areas are found.

Remember that when studying probabilities of an outcome falling along a line,
we are usually interested in the probabilities of it falling in intervals. These are,
after all, the sets whose lengths are easy to measure (an interval (a, b) has length
b − a). So we need an algebra that incorporates our idea that we need events on
the line based on intervals. By custom, statisticians start building their events in
one dimension by insisting that all half-open intervals (a, b] (which include the
point b but exclude a) are events.

But that may not be enough intervals to satisfy us. Is the entire line (−∞, ∞)
an event? It would seem relevant in Cauchy probability spaces, for example. We
could build the line out of our half-open intervals in the following way: (−∞, ∞) �
(−1, 1] ∪ (−2, 2] ∪ · · · ∪ (−k, k] ∪ · · · . That is, we combine bigger and bigger
intervals until, somewhere, every real number is included. Unfortunately, in our
definition of algebras of sets, we did not say that you necessarily included such an
infinite, but countable, union of events.

Furthermore, are single numbers, like {b}, events in geometric probability prob-
lems? It seems silly not to include them; they have a known area (zero). Imagine
that the following (countably infinite) intersection is an event:

(b − 1, b] ∩ (b − 1
2 , b] ∩ (b − 1

3 , b] ∩ · · · (b − 1
2 , b] ∩ · · · .

Obviously, b is in this event. Also obviously, any number c > b is not in this event.
Now think about any number c < b. Then b − c is a positive number, and I can
always find an integer n big enough that 1/n ≤ b − c. So c ≤ b − 1/n, and c

is not in the interval (b − 1/n, b]. So c is not in the infinite intersection event.
We conclude that b must be the only point in that event. So we could argue that a
point is indeed an event, if only countable intersections of events were necessarily
events.

The same approach may be used to assign probabilities on the plane. We start
with events that are certain rectangles, because the definition of area starts with
that of a rectangle. Again, we conventionally start by declaring that all rectangles
(a, b] × (c, d] for any numbers a < b and c < d are events (see Figure 4.9).

In p-dimensional space we include all hyper-rectangles ×p

i�1(ai, bi]. (Can you
figure out this fancy notation?)

Then if we want to find the probability of an irregular area, we might partition
the conditioning event with a grid of rectangles. The dark line bounds an event of
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FIGURE 4.9. A rectangle in the plane

FIGURE 4.10. Approximating an irregular region

interest (Figure 4.10). The probability of the event of interest could then be cal-
culated rectangle by rectangle from the division-into-cases formula. Much more
easily, we can get a lower limit on the probability by simply summing the proba-
bilities of those (darkly shaded) rectangles that are entirely within the event. Then
we can get an upper limit on the probability by summing the probabilities of those
rectangles (shaded at all) that intersect the event in any way. With ever smaller
rectangles, we could then pin down the probability as accurately as we wish. But
the lower limit corresponds to a countable union of an ever-growing combination
of rectangles, and the upper limit to an ever-shrinking countable intersection.
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We will decide that we always want to be able to do things like this, so we
strengthen our definition of an algebra from Section 3.2:

Definition. A σ-algebra (sigma algebra) is an algebra of events such that if {Ai}
is a countable collection of events, then ∪

i
Ai is also an event (countable unions).

Proposition. If {Ai} is a countable collection of events in a σ -algebra, then
⋂

i Ai

is also an event.

You should check this as an exercise. This makes no difference to equally likely
probability spaces and to discrete probability spaces, of course. In those examples,
all subsets of a large set were events, so we certainly had a σ -algebra.

Now we are ready to apply this to real numbers.

Definition. The Borel algebra on the real line is the smallest σ -algebra that
contains all the intervals of the form (a, b].

By “smallest” we mean that there are no extra events; we have, of course, the
events that can be gotten by applying the σ -algebra rules (complements and unions)
to the half-open intervals. Furthermore, if we remove any events, either some of
them will be those we can build out of half-open intervals (which is bad) or we
will discover that we no longer have a sigma algebra.

Proposition.

(i) Any single point {b} is an event.
(ii) (a, b), [a, b], and [a, b) are events.

(iii) The entire line as well as all possible half-lines ([a, ∞), etc.) are events.

The point and the line we already took care of. The rest are exercises.
The last several paragraphs claim that to assign probabilities on the real line, all

we need to be able to do is assign probabilities to intervals. Thus, the formula we
derived for the hit probability for any stretch of the Great Wall of China potentially
tells us anything we want to know about hit probabilities.

Definition. The Borel algebra on the plane is the smallest σ -algebra that includes
the rectangles (a, b] × (c, d] for any numbers a < b and c < d, and the Borel
algebra in p-dimensional space is the smallest σ -algebra that includes the hyper-
rectangles ×p

i�1(ai, bi].

So now our probability spaces whose outcomes are in several dimensions can
potentially tell us how probable all sorts of irregular areas are.

4.8.3 Kolmogorov’s Axiom∗

When we restrict the idea of probability space to σ -algebras, does that have any
consequences for computing probabilities? Presumably, we must be able to cal-
culate the probabilities for those new events imposed on us by the requirement of
countable unions and intersections. In each of our examples of a union in the last
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FIGURE 4.11. Polygons approximating a circle

section, we defined a growing sequence of events A1 ⊂ A2 ⊂ · · · ⊂ Ak ⊂ · · ·
whose union was the event of interest, ∪

k
Ak � B (see Figure 4.11). A common

notation for this union of a list of growing sets is limk→∞ Ak � B.
Obviously, the probability of B should be the limit of the probabilities of the

events Ak .

Definition. Kolmogorov’s axiom states that for a countable sequence of events

A1 ⊂ A2 ⊂ · · · Ak ⊂ Ak ⊂ · · ·, P
(

∪
k

Ak|C
)

� P (limk→∞ Ak|C) �
limk→∞ P(Ak|C).

Example. Let me check this for the probability of an odd number of hurricanes.
Let A1 � {1}, A2 � {1, 3}, A3 � {1, 3, 5}, and so forth; this is clearly an increasing
sequence of sets. The limit of the Ak’s is the event of an odd number of hurricanes.
From calculus, you might remind yourself about the sum of a finite geometric
series; this says that P(Ak) � 1

4 (1 − ( 1
4 )k)/(1 − ( 1

4 )). Then limk→∞ P(Ak) � 1
3 ,

which matches our earlier result.

The new axiom is then obviously true for equally likely probability spaces,
because any union of events is only a union of a finite number of events. It is also
clearly true for discrete probability spaces: We find ourselves adding an always-
convergent countable sum of those probabilities pj in order to take any such limit.
It is certainly true for uniform geometric probability problems: The axiom imitates
a valid way of computing areas of events by filling the region up from inside.
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We are now ready to amend the definition of a probability space to include
countable unions and a sensible rule for computing their probabilities:

Definition. A probability space meets conditions i–iv for a finitely additive prob-
ability space, and further the set of events form a σ -algebra and (v) Kolmogorov’s
axiom holds.

All our theorems about probability in general are still true, because we have
only placed new restrictions on possible probability spaces.

The calculation in the example suggests that we may now be able to generalize
the proposition about finite additivity (see 6.2). Consider a countable collection of
events {Ai} that are mutually exclusive, Ai ∩Aj � φ. Let B1 � A1, B2 � A1 ∪A2,

and generally Bk � k∪
i�1

Ai . Then B1 ⊂ B2 ⊂ B3 ⊂ · · ·, and limk→∞ Bk � ∪
i

Ai .

Finite additivity says that P(Bk) �∑k
i�1 P(Ai), and so using Kolmogorov’s axiom,

P(∪
i

Ai) � P( lim
k→∞

Bk) � lim
k→∞

P(Bk) � lim
k→∞

k∑
i�1

P(Ai) �
∞∑
i�1

P(Ai).

Proposition (countable additivity). Consider a countable collection of events
{Ai} that are mutually exclusive, Ai ∩ Aj � φ. Then P(∪

i
Ai |C) �∑∞

i�1 P(Ai |C).

Now we can state more general versions of other things in Section 6. A countable
partition is just one with a countable list of events in it, and the theorem on division
into cases and Bayes’s theorem for partitions are true as well for these countable
partitions.

You may well be wondering why we bothered to go back and require probability
spaces to be σ -algebras and to obey Kolmogorov’s axiom. After all, each of the
types of probability we discussed—equally likely, discrete, geometric—already
meet these restrictions. The problem is that we can invent some finitely additive
probability spaces that do not. Imagine a probability space whose outcomes are all
the nonnegative integers, but where the events include only finite sets of integers.
Define probability as in the equally likely case, by counting: P(A|B) � |A ∩ B|/|B|
when B is not empty. This space meets all axioms (i)–(iv), so we might imagine
that it is a perfectly reasonable probability space. However, the set of events is
obviously not a σ -algebra: We can piece together by countable union events with
an infinite number of members and so cannot calculate probabilities involving them
from our definition.

Should this strange space be allowed to be a probability space? Probabilists
are not in general agreement. Some would say yes, because mathematical uses
have been found for it. Others point out that it is quite impossible to imagine any
experiment that would lead to these probabilities, even approximately—there are
just too many integers to have them all be equally likely. You may see both points
of view in advanced courses. We will choose to keep Kolmogorov’s axiom for the
rest of this book, since we emphasize here experiments that one can actually carry
out.
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4.9 Summary

In this chapter we analyzed certain geometrical experiments, using uniform ge-
ometric probability, which says that if the outcome is any point in a region, all
equally likely, then P(A|B) � V (A ∩ B)/V (B) (2.1). Then we gave general rules
for what sorts of sets events in any probability problem must be: if A and B are
events, then so are A ∪ B and A − B. They will then belong to an algebra of
events (3.2). Next we stated a short list of axioms that all probability models must
follow; the ones that tell us how to calculate are P(A ∪ B) � P(A) + P(B − A)
and P(A ∩ B) � P(A) · P(B|A) (4.2). Then we demonstrated new sorts of prob-
ability that meet our axioms, such as discrete probability spaces. In this case,
P(A) �∑i∈A pi , where the p’s are probabilities of individual outcomes (5.2).

From these rules we extracted several useful formulas, such as the di-
vision into cases formula P(A|B) � ∑

i P(Ci |B) · P(A|Ci), where {Ci}
partition B (6.2). Then we derived the famous Bayes’s theorem P(Ci |A) �
P(Ci)P(A|Ci)/

∑
j P(Cj ) · P(A|Cj ) (6.4). When certain conditions turned out to

be unimportant to the probability of an event, we concluded that the events must
be independent of each other, which simplified such calculations as P(A ∩ B) �
P(A) ·P(B) (7.1). Then we explored more general geometric probability problems,
which suggested the important idea of a probability density, a function f such that

P(outcome between a and b) �
∫ b

a

f (x)dx (8.1).

It turned out that geometrical probability problems required us to invent the Borel
algebra of events, which essentially says that geometric events have length, area,
or volume. These algebras are sigma algebras, which include countable unions of
events (8.2), and we need an additional axiom, Kolmogorov’s axiom, P(∪

k
Ak|C) �

limk→∞ P(Ak|C) whenever A1 ⊂ A2 ⊂ · · · ⊂ Ak ⊂ · · ·, to compute necessary
probabilities (8.3).

4.10 Exercises

1. Prove the six properties of uniform geometrical probability.
2. List all the events that could conceivably be built out of the collection of

outcomes {1, 2, 3, 4, 5}.
3. Prove that if A and B are events, then A ∩ B is also an event.
4. If {2, 3}, {3, 4}, and {4, 5} are events in an algebra, prove (that is, convince

me, using only the definition) that {3, 4, 5} must also be an event in that same
algebra.

5. You are playing a game in which you toss two coins, and if they both land
heads, you win. A friend who is watching has a side bet with someone else
that she will win if at least one of your coins lands heads. You toss the coins,
but they roll behind a chair. Your friend races ahead of you, looks behind the
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chair, sees both coins, and announces “I won!” What is now the probability
that you will win?

6. Prove that P(A ∩ B ∩ C|D) � P(A|D) · P(B|A ∩ D) · P(C|A ∩ B ∩ D).
7. Prove that the multiplication axiom P(A ∩ B|C) � P(A|C) · P(B|A ∩ C)

whenever A ∩ C �� φ is always true for a discrete probability space.
8. Prove that if you have an equally likely rule for probabilities on some set of

possible results C (that is, all probabilities are gotten by counting), then that
probability rule is also an example of a discrete probability space.

9. Prove that if A ⊂ B, then {A, B − A} is a partition of B.
10. Prove that always P(A|B) � P(A ∩ B|B).
11. In the AIDS example (see Section 6.3), find the probability that a patient has

HIV, given that the patient has tested negative on the blood test.
12. As a safety officer in a chemical plant, you test the air once a day for very

small amounts of H2S (hydrogen sulfide). You can tell how many of your
three vats are out of adjustment and so producing the gas, but not which ones.
The old vat is out of adjustment 5% of the time, the year-old vat is out 10%
of the time, and the new vat is out 20% of the time. There is no connection
among the three vats.

a. What is the probability that exactly one vat is out of adjustment on a given
day?

b. This morning you detected the gas, enough to conclude that exactly one
of the vats is out of adjustment. What is the probability that the new vat is
at fault?

13. Five of the 23 people in your mechanics class are left-handed. A woman from
the dean’s office wants to interview one of the left-handed students about how
well the left-handed desks in the room work.

a. She talks to people as they leave the class, until one of them is left-handed.
What is the probability she will have talked to more than six people?

b. Furthermore, seven of the 28 people in your electronics class are left-
handed. All you know is that the woman interviewed people in one of
the two classes, but she tells you that it took her 4 interviews to find her
left-hander. What is the probability it was the electronics class she was
talking to?

14. You ship off your motorcycle to be sold at a used motorcycle fair. Unfortu-
nately, you ship it at the last minute, on a standby basis. The shipper estimates
a 35% chance that it will get there in time for the Saturday show, a 41% chance
that it will arrive only in time for the Sunday show, and a 24% chance that
it will arrive too late for the fair. Your experience with this fair is that there
is a 28% chance that your motorcycle will sell on Saturday, if it has arrived.
There is only a 15% chance that it will sell on Sunday, if it is there to be sold
on Sunday.

a. What is the probability that you will sell your motorcycle?
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FIGURE 4.12. Exercise 15: Under a parabola

b. You get word that your motorcycle was not sold. What is the probability
that it arrived too late for the fair?

15. Let a random point be chosen uniformly on the unit square (0, 1) × (0, 1).
What is the probability the point will land under the parabola y � x2 ? (See
Figure 4.12.)

16. Show that
∞∪
i�1

(1/(i + 1), 1/i] � (0, 1].
17. Prove that if {Ai} is a countable collection of events in a σ -algebra, then ∩

i
Ai

is also an event.
18. Prove that in the Borel algebra on the real line, [a, b] and [a, b) are events.
19. Prove that in the Borel algebra on the real line, (a, ∞), [a, ∞), (−∞, b], and

(−∞, b) are events.
20. Prove that the entire plane is a Borel event. Prove that [a, ∞) × (−∞, b] is

a Borel event.
21. Let random outcomes be uniformly distributed (just as likely to hit anywhere)

over the rectangle (0, 3] × (0, 2], with coordinates of the hit point (x, y) (see
Figure 4.13). Consider any vertical strip A with 0 < a < x ≤ b < 3 and
any horizontal strip B with 0 < c < y ≤ d < 2. Prove that the event of an
outcome in A is independent of the event of an outcome in B.

4.11 Supplementary Exercises

22. List all the events in the smallest algebra of sets that contains the events
{1, 2, 3} and {2, 3, 4}.
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A

B

FIGURE 4.13. Exercise 21: Independent strips

23. Prove that for any events A and B (with a common condition),

P(A) + P(B − A) � P(B) + P(A − B).

24. You have a box with 8 nine-pin patch cords and 5 twelve-pin patch cords
mixed up in it. You remove two patch cords at random from the box.

a. What is the probability that the two cords will have the same number of
pins?

b. If, fortunately, your two cords do have the same number of pins, what is
the probability that they are nine-pin cords?

25. A company makes three nut mixes in very similar cans: One is all peanuts,
one is 1

3 cashews and 2
3 peanuts, and one is 2

3 cashews and 1
3 peanuts. A friend

(who never looks at prices in the store) is equally likely to buy all three mixes.
One evening you go to her house, sit down on the sofa, and take a nut from
the can on the coffee table. It is a peanut.
What is the probability that the can is all peanuts?

26. Of middle-aged men who come to a clinic complaining of chest pain, 75%
have heartburn, 20% have angina, and 5% have had a mild heart attack (the
doctor records only the most important source of the pain. Other problems
are too rare to be significant). It is then usual to take an EKG, which records
heart activity. In 90% of heartburn cases, the EKG is normal. In 70% of
angina cases, it is also normal. However, in mild heart-attack cases, only 20%
of EKGs are within normal limits.

a. What is the probability that the next middle-aged male complaining of
chest pain will have a normal EKG?

b. A 50-year-old man arrives at the clinic, reporting chest pain. His EKG is
notably abnormal. What is the probability that he has had a mild heart
attack?
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Horseshoe Bend

FIGURE 4.14. Exercise 30: Horseshoe Bend subdivision

27. The odds ratio is sometimes a useful way to write probabilities: If A and A
are a partition of a general condition C, then define OC(A|B) � P(A|B∩C)

P(A|B∩C) . (As
shorthand, we write OC(A|C) � OC(A).)

a. Write P(A|B ∩ C) in terms of P(A|B ∩ C).
b. The odds form of Bayes’s theorem may be written OC(A|B) � OC(A)K ,

where K , a ratio of probabilities, is called the Bayes factor for the
observation B. Derive a simple expression for K , using Bayes’s theorem.

28. a. In Exercise 26, compute the odds ratio that a 50-year-old man complaining
of chest pain has actually had a heart attack.

b. Find the Bayes factor (Exercise 27) provided by the knowledge that this
man has an abnormal EKG. Use it to compute the probability that he has
had a heart attack. Verify that your answer is consistent with the answer
to Exercise 26(b).

29. Let {Bi} be a partition of C. Assume that for an event A that is a subset of C,
you know all probabilities P(A|Bi) and P(Bi |A). Derive a formula for P(A|C)
that uses only these known probabilities.

30. You are shopping for a house. You read in the newspaper that a house is
available in Horseshoe Bend, a subdivision of a great many houses spread
uniformly along a semicircular street off a very noisy freeway (Figure 4.14).
Obviously, the sites become more valuable as you move away from the noisy
freeway. The semicircle has radius one kilometer.

a. Find a formula for the probability that the house in the newspaper (which
may be anywhere in the subdivision) is between a and b kilometers from
the freeway (0 ≤ a < b ≤ 1) as the crow flies (in a straight line).

b. Find the probability density for the distance of that house from the freeway.



CHAPTER 5

Discrete Random Variables I:
The Hypergeometric Process

5.1 Introduction

You will have gathered from the first two chapters that the usual grist for the
statistician’s mill is data, in particular, numerical data (and often lots of it). Yet
Chapters 3 and 4 wandered into the subject of probability, and even though many
of the examples were from the practice of statistics, the connection may have
been unclear. In this chapter we will study random experiments in which the
outcomes are numbers. In other words, we will develop probability models to try
to explain the variability in many sets of numerical scientific data. Quantitative
outcomes to probabilistic experiments will be called random variables, a concept
that pervades statistics. We will introduce some important families of interrelated
random variables that have been found to be good descriptions of the outcomes
of experiments. In this chapter we concentrate on families that arise in sampling
from finite populations of subjects.

Of course, the interest in having numerical data is that we may construct useful
arithmetic summaries. We will introduce the idea of the average value of a discrete
random variable, called an expectation. Very often, too, the goal of an experiment
will be to learn more about just which random variable best describes an exper-
iment. We will begin to develop methods of testing and estimation designed to
answer such questions.

Time to Review

Chapter 1, Section 7
Summing infinite series
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5.2 Random Variables

5.2.1 Some Simple Examples
Definition. A random variable is a probability space whose outcomes are real
numbers. Its sample space S is the collection of all possible outcomes of that
random variable.

Example. (1) If you poll 100 randomly chosen voters to discover their presidential
preference, one random variable of interest is the number who will say they support
your candidate. The sample space is the set of integers between 0 and 100 inclusive.

(2) In studying a dangerous epidemic disease, doctors in an emergency room take
the oral temperature of each patient who arrives. The temperature in degrees Celsius
of the next patient is a random variable, and its sample space might conceivably
be any real number higher than −273 (absolute zero).

(3) There are 7 bird’s nests of the same species in a large tree. A biologist finds
a hatchling on the ground at the base of the tree. How many nests will she have to
check to find where the hatchling came from?

In other textbooks you may encounter a more sophisticated definition of random
variable, in which the “sample space” is instead the set of all outcomes of an
experiment, and the random variable is then a real-number-valued function defined
on that set. These texts do this to be consistent with advanced graduate texts in
mathematical probability. Since the distinction makes no difference in how we use
the concept in this book (and very little difference in any case), we will use the
simpler definition. We will use capital italic letters like X for random variables; we
will think of the random variable as taking on a value as a result of the experiment,
which justifies notation like P(X � x|A), where x is one particular possible value
that we are curious about.

In the first two experiments, we would have to know a lot more to be able to
assign probabilities, but the third example is easy. Place W white marbles and a
single black marble in a jar and shake well. Remove one marble at a time, without
replacement, until you find the black marble. The number of white marbles you
have removed is a random variable, and its sample space is {0, 1, 2, . . . , W }. All
the possible hypergeometric processes (see 3.3.3) are given by the case where the
black marble comes first, the case where it comes second, and so on to the case
where it comes last. It is reasonable to assume that these cases are equally likely,
and there are W + 1 of them, so P(X � x|x ∈ {0, . . . , W }) � 1

W+1 . This is an
example of a uniform random variable:

Definition. A (discrete) uniform random variable is a random variable with finite
sample space, each of whose outcomes is equally likely.

Example ((3) cont.). The hatchling problem is equivalent to a hypergeometric
process with one black marble and 6 white marbles. The number of nests checked
without locating the right one is a discrete uniform random variable as in the
example above; the sample space is 0 to 6, and the probability of each value is 1

7 .
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5.2.2 Discrete Random Variables
Of course, the various possible outcomes of an experiment need not be equally
likely.

Example. A chain of 10 dry-cleaning stores has been robbed repeatedly, so the
owner hires three security guards and hides them in three randomly chosen stores.
If a robber tries to hold up a series of these stores, how many successes will he
have before a security guard interrupts his career? Assuming that he has no idea
where the guards are hidden, we calculate (let U mean Unguarded and G mean
Guarded)

P(X � 0) � P(first store guarded) � P(G) � 3
10

.

P(X � 1) � P(first store unguarded, second guarded � P(UG)

� P (U ) · P (G|U ) � 7
10

· 3
9
.

P(X � 2) � P(UUG) � P(U) · P(U|U) · P(G|UU) � 7
10

· 6
9

· 3
8
,

and so forth, until

P(X � 7) � 7 · 6 · 5 · 4 · 3 · 2 · 1 · 3
10 · 9 · 8 · 7 · 6 · 5 · 4 · 3

.

Again, there is an urn model for problems like this. In an urn with W white
marbles and B black marbles, let X be the number of white marbles drawn without
replacement before the first black marble is encountered. In our example, W � 7
and B � 3. Generally X is a random variable with sample space {0, . . . , W }. The
calculations above become

P(X � x) � W · (W − 1) · · · · · (W − x + 1) · B

(W + B) · · · (W + B − x + 1) · (W + B − x)

� (W )x
(W + B)x+1

B,

taking advantage of permutation notation.

With this random variable the probabilities of different numerical outcomes are
not all the same, so it is an example of a discrete random variable

Definition. A discrete random variable is a discrete probability space (see 4.5.1)
whose universe U is a set of real numbers (so that the sample space of the random
variable S is equal to U).

Any discrete uniform random variable is also a discrete random variable.
And in the example above of the number of white marbles found before the
first black marble is encountered, we found that U � {0, . . . , W } and that
pi � (W )i/(W + B)i+1B. We think of pi as a function of the corresponding value
xi � i of the random variable.
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Definition. The probability mass function (or probability distribution func-
tion) of a discrete random variable is p(x) � P(X � x).

Therefore, p(xi) � pi .
It is sometimes convenient to organize the facts about a discrete random variable

into a table:
x 0 1 2 3 4 5 6 7

p(x) 0.3 0.2333 0.175 0.125 0.0833 0.05 0.025 0.0083

This is the Table for the laundry-guarding problem. These tables are traditionally
presented with the values of x in ascending order.

Proposition. (i) For all x ∈ S, p(x) ≥ 0: and
(ii)
∑

x∈S p(x) � 1.

These assertions just restate the corresponding properties of discrete probability
spaces.

5.2.3 The Negative Hypergeometric Family
Our next, more general, type of discrete random variable will turn out to be one of
the most revealing, primarily because of its many ties to other variables.

Example. You have to get permission from your neighbors to build a fence around
the back yard of your new house. There are 12 households, and 5 of them have
a family member on the neighborhood council. You need to talk to a majority of
those on the council, 3, in order to get permission. You have no idea where they
live. What is the probability that you will have to visit only 4 houses to talk to that
majority?

To model this problem, place W white marbles and B black marbles in an urn.
Mix them up thoroughly and, then remove them one at a time without replacement
until you have removed b black marbles (rather than just one, as in the preceding
example). Then our random variable X will be the number of white marbles you
have happened to remove along the way. In the example, call the houses with
a council member black marbles and those without, white marbles. Therefore,
W � 7, B � 5, and you must find b � 3 of them.

Definition. A negative hypergeometric (or beta-binomial) random variable
N(W, B, b) arises when all possible sequences of W + B objects, W of the first
kind and B of the second kind, are equally likely. The random variable X is the
number of objects of the first kind that precede the bth object of the second kind
in a given sequence.

Notice that we have described each of these variables with a notation N(W, B, b)
that gives each of the key quantities that determines how it arises. We call the
negative hypergeometric variables a family, and the crucial numbers that tell you
which specific one, W , B, and b, are called parameters. We already have two
examples of this family: In the discrete uniform case when we were searching
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. . . . . .
b – 1 blacks

x whites

bth black

 

W – x whites

B – b blacks

FIGURE 5.1. A negative hypergeometric urn experiment

for a single black marble, the number of white marbles found along the way was
N(W, 1, 1). When we were searching for the first black marble from W white
ones and B black ones, the number of white marbles found was N(W, B, 1). Any
collection of related random variables whose members we single out by numerical
indices will be a family.

The sample space of a negative hypergeometric random variable is obvious; no
white marbles need precede our bth black marble, or all of them may. Therefore,
S is the collection of integers in the range 0 ≤ X ≤ W . Their probabilities
may be computed by noticing that there are

(
W+B

W

)
equally likely hypergeometric

sequences (see 3.3.3). The ones that have X whites before the bth black may be
counted by noting that among the first X+b−1 marbles we must distribute X white
marbles; the (b + X)th marble must be black, and among the last W + B − b − x

marbles we must distribute W − X white marbles. (See Figure 5.1.)
Therefore, we have established the following:

Proposition. A negative hypergeometric N(W, B, b) random variable has sample
space S consisting of all integers in the range 0 ≤ X ≤ W and probability mass
function

P(X � x|W, B, b) � p(x) �
(
x+b−1

x

)(
W+B−b−x

W−x

)
(
W+B

W

) .

You should verify that when we were looking for one black marble, the probability
of each number of whites was 1/(W + 1), by using this formula. Also verify that
when we are looking for the first of B black marbles (b � 1), this big formula
reduces to the simpler formula we derived for that case.

Example (cont.). In the quorum-search problem the question is, if the number
of unsuccessful visits is negative hypergeometric, what is the probability of only
X � 1 misses?

p(1) �
(3

1

)(8
6

)(12
7

) � 7/66 � 0.106.

If the question is, how surprised should we be at so few unsuccessful visits, then we
really want to know the probability of 1 or 0 misses: p(0)+p(1) � 1/22+7/66 �
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0.152. This really was not all that surprising; if we get done that quickly, we were
only a little lucky.

5.2.4 Symmetry
Notice that we stop at the bth black marble of a complete row of black and white
marbles, which we have called the realization of a hypergeometric process (see
3.3.3). If we had laid out the same sequence in reverse order, that same marble
would have been the (B − b + 1)st black marble from the end (the extra 1 appears
because the stopping marble gets counted from either direction). In getting to it,
we would have passed the other W −X white marbles. But the probability of such
a sequence is obviously exactly the same as the corresponding one in the original
order (all sequences are equally likely). This lets us conclude a nice general fact:

Proposition (reversal symmetry).

P(x|N(W, B, b)] � P[W − x|N(W, B, B − b + 1)].

In the quorum problem, this is nothing more amazing than noticing that the
probability of visiting one unnecessary house is exactly the same as of not visit-
ing 6 unnecessary houses. This is an example of a symmetry in the family: Two
probabilities from two family members can be demonstrated to be the same. This
particular symmetry we will call reversal symmetry. If we are alert for these, they
can help us avoid duplicate calculations. In fact, if there is an odd number of black
marbles B, then b � B+1

2 is the middle black marble; then b � B − b + 1. We
have

P
[
x|N
(

W, B,
B + 1

2

)]
� P
[
W − x|N

(
W, B,

B + 1
2

)]
.

This is an example of a symmetry in a single random variable: The probabilities
are the same as you look through the table from either end.

5.3 Hypergeometric Variables

5.3.1 The Hypergeometric Family
Looking at the hypergeometric process in a different way suggests another sort of
random variable:

Example. Eight bottles of wine are submitted to two judges, who taste indepen-
dently. Judge C picks the best three bottles, and Judge D picks the best four bottles.
Since your bottle never does very well, you form the opinion that their choices are
entirely capricious. If that is really so, what is the probability that their choices
would have two bottles in common?
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Imagine that Judge C surreptitiously puts a small white mark on the bottom
of his winners that Judge D will not notice. If their judgments are indeed entirely
capricious, then Judge D is picking his 4 at random and chanced to get two “white”
bottles.

We can construct an urn model for this that will turn out to have many appli-
cations. Place W white marbles and B black marbles in an urn. Shake well and
then reach in without looking and remove n marbles, without replacement. Then
the unpredictable number X of white marbles you have removed is also a random
variable. In our example, W � 3 (C’s winners), B � 5 (C’s losers), and n � 4
(D’s winners); since two bottles with a white mark are the outcome we have asked
about, X � 2.

Definition. A hypergeometric random variable with parameters W + B, W , and
n is, given a set consisting of W elements of a first kind and B elements of a
second kind, the number of elements of the first kind appearing in a randomly
chosen subset of n elements, where every such subset is equally likely. We write
H(W + B, W, n).

How does this differ from the negative hypergeometric problem? In both cases,
we remove the marbles from a jar in unpredictable order, stopping at some point
to count white marbles. In the former case, we stop when we have found b black
marbles. In the new, hypergeometric, case, we stop when we have removed a total
of n marbles. We will see shortly a connection between their probabilities as well.

We need to determine the sample space of our new random variable. Obviously,
X ≥ 0. But notice also that if n is bigger than B, we may run out of black marbles,
which places a higher minimum on the number of white marbles in our handful:
X ≥ n − B. In the same way, obviously X ≤ n. But also there is a built-in limit
to the number of white marbles in the handful, X ≤ W . The sample space is the
collection of integers that meets all four requirements.

The probability of a given outcome is easy to calculate, because we have done it
before (see 3.4.1), the tea-tasting example). There are

(
W+B

n

)
equally likely subsets.

There are
(
W

x

)
ways to get x white marbles and

(
B

n−x

)
ways to choose the black

marbles that make up the rest of your handful. We summarize these facts:

Proposition. For a hypergeometric H(W + B, W, n) random variable X:
(i) the sample space S is the set of integers that meet max{0, n − B} ≤ X ≤

min{n, W }: and
(ii) the probability mass function is P(X � x|H(W + B, W, n)) � p(x) �(

W

x

)(
B

n−x

)
/
(
W+B

n

)
.

The max function chooses the larger of the listed values (since X has to be
bigger than both numbers); in the same way, min chooses the smaller.

Example (cont.). We can use this formula to solve the wine-judging problem
with W � 3, B � 5, n � 4, and x � 2:

P(X � 2|H(8, 3, 4)) �
(3

2

)(5
2

)(8
4

) � 3
7
.
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If the two judges do choose two (or more) bottles in common, that is little evidence
against your opinion that their choices are capricious. It would happen very often
just by accident.

5.3.2 More Symmetries
Notice that of the W + B − n marbles that get left behind in the jar, W − X

are white. But leaving marbles behind is just as good a way of selecting them as
removing them is, as we noticed in some of our sampling problems. We express
this as a formula:

Proposition. P[x|H(W + B, W, n)] � P[W − x|H(W + B, W, W + B − n)],

which is a fundamental symmetry of the hypergeometric family; this is another
instance of reversal symmetry. If the n marbles we remove are exactly half the
marbles, then both sides describe the same random variable, which is therefore
symmetric.

The hypergeometric family has a completely different sort of symmetry, as well.
Our sampling process may be thought of as a cross-classification of the marbles:
We are looking at all the possible ways of dividing the marbles into two groups,
white and black. We are also at the same time classifying all the marbles into the
two groups, sampled and unsampled:

White Black total
Sampled X n − x n

Unsampled W − X B − n + X W + B − n

total W B W + B

Notice that in this way of looking at it, we might just as well have picked out
the ones to sample first, and which were to be painted white second. It is still the
probability of the same table, in which we happen to have interchanged rows and
columns, like taking the transpose of a matrix. We call this transpose symmetry
and state it precisely:

Proposition (transpose symmetry).
P[x|H(W + B, W, n)] � P[x|H(W + B, n, W )].

This corresponds to the obvious fact that in the wine-judging problem we could
just as well have had judge D go first and mark his winners with white paint; the
probability of what happened would still be the same, because the judges do not
consult one another.

5.3.3 Fisher’s Test for Independence.
We illustrated transpose symmetry with a two-by-two contingency table to display
our results. You may remember from Chapter 1 that we were interested in models
for the counts in such tables, and you are no doubt curious about any connection
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with hypergeometric experiments. Notice that the probability that any given mar-
ble appears in the sample, n/(W + B), is the same whether the marble is black
or white. Therefore, the hypergeometric experiment assumes independence of the
two ways of classifying marbles: black–white and sampled–unsampled. If X were
improbably large (or small), this would cast doubt on the appropriateness of the hy-
pergeometric random variable, and therefore on the assumption of independence.
This is essentially how we reasoned in the wine-tasting example.

Example. Mann in 1981 reported a survey in which incidents of a person threat-
ening suicide by jumping from a tall building were recorded; it was noted whether
or not the threat occurred during the summer months, and whether or not there
was jeering or baiting of the subject by a crowd. A natural question was whether
or not summer weather was associated with baiting behavior.

Baiting None total
Summer 8 4 12

Other 2 7 9
total 10 11 21

We might reason as follows: If independence of the season and crowd behavior
hold, then the results might have arisen by marking the 21 incidents as either
summer or other, then choosing 10 of those incidents completely at random to
have crowd baiting occur. Then X is the number of summer incidents at which
baiting happened, and it is an H(21, 12, 10) variable. To check how improbable
our observation is, we compute the probability that there would have been 8 or
more summer incidents with baiting. (We would have been even more surprised at
the seasonal association if there had been 9 or 10 summer incidents):

P(X ≥ 8) � p(8) + p(9) + p(10) � 0.0505 + 0.0056 + 0.0002 � .0563.

Our results were moderately improbable but could conceivably have arisen by
accident. We take this as some evidence that independence does not hold and
summer is associated with more baiting, but we would like a bigger survey in
order to be sure.

This style of analysis of independence models for two-by-two contingency tables
is called Fisher’s exact test. Transpose symmetry promises us that it does not
matter which we called the row classification and which we called the column.
You may have noticed that we used a peculiar line of reasoning. Those statisticians
whom we have called frequentists calculate the probabilities of various outcomes
before they do an experiment; afterward, they compare those probabilities to what
actually happened and come to conclusions. But in this example we calculated
our probabilities using as parameters the marginal totals 21, 12, and 10, which
of course we do not know until we do the experiment. It is as if we proceeded
instead to do the experiment, then had an assistant tell us only the marginal totals.
We calculate the probabilities of various complete outcomes, then look up the
complete results and compare. Such a procedure is called conditional inference,
because we calculate probabilities conditioned on partial information about the
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results. This is a bit controversial but is nevertheless plausible enough to be widely
accepted. There was no difficulty with the wine-tasting experiment, because the
marginal totals, the number of good bottles to be chosen by each judge, could be
specified in advance.

5.3.4 Hypothesis Testing
Each of our examples of frequentist reasoning has followed a pattern. We start with
a claim that might reasonably be made about how an experiment will work. This
is conventionally called the null hypothesis about that experiment, independence
of two ways of classifying is an important example. Then we look at the actual
result and calculate the probability that the observed value, or some value casting
even more doubt on the null hypothesis, would have happened. This probability is
traditionally called the p-value for that hypothesis (in our suicide-baiting example
it was 0.0563). If it is disturbingly small, so that we are uncomfortable calling our
result an accident, we say that we reject the null hypothesis, and we report our
experiment as evidence against it. In effect, the experimenter is saying that what
happened was too much of a coincidence to be believed.

Scientists do not like to leave it up to the judgment of the individual experi-
menter whether to call a p-value disturbingly small. Conventions about when a
probability is small have been adopted by the scientific community; the single most
common one says that less than 0.05 will be generally accepted as fairly small.
As a practical consequence, this means that about one in every twenty published
sensible statistical experiments to test perfectly sound hypotheses will wrongly re-
ject those hypotheses. But scientists know that they will sometimes be wrong and
have decided to tolerate such error rates. The number 0.05 is called a significance
level; if the p-value is less than that, we say that we reject the hypothesis at the
0.05 level of significance. If, as in our example, p is larger than 0.05, we simply
say that we fail to reject the null hypothesis.

The value 0.05 is, of course, quite arbitrary. More stringent communities of
scientists often demand significance levels of 0.01, or even 0.001. As we will see,
this means that we need ever bigger experiments to have any hope of detecting
deviations from hypotheses.

5.3.5 The Sign Test
Now we can do a probability-based test of a simple contingency-table model from
Chapter 1. Can we test some of the models for measurements from the same place?
Really satisfactory tests will have to wait quite a while, but it is possible to turn
certain questions into questions about contingency tables. For example, if we have
two levels of treatment and wish to decide whether they are really different, we
may reason as follows: Split the sample into those above the sample median (see
Exercise 1.17) of all measurements and those below the sample median. The result
is a two-by-two contingency table.
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Example. Exercise 2 from Chapter 1 quoted 24 DBH levels of psychotic and
nonpsychotic patients collected by Sternberg. The sample median of the DBH
levels is between 0.0200 and 0.0204, so we get counts as in the following table:

below median above median total
psychotic 1 9 10

nonpsychotic 11 3 14
/bf total 12 12

(If there is an odd number of observations, use any rule of thumb to split them
unevenly.) Now, if there is no relationship between the two groups and the quan-
tity being measured, we may imagine that the observations have been arbitrarily
assigned to the above and below groups. Therefore, the random variable X is the
number in level 1 who chanced to be assigned to the below-median group, and it is
hypergeometric: H(n, n1, n/2). I am sure that you see where this is going: We do a
Fisher’s exact test for independence in our artificial 2-by-2 table. If independence
fails, the measurements may be concluded to be different between the two levels.

Example (cont.). Let our significance level be 0.05, and ask whether the number
of psychotics with below-median DBH is surprisingly small: P (X ≤ 1) � p(0) +
p(1) � 0.00138. This is so improbable that we conclude that psychotics tend to
have higher DBH than nonpsychotics.

This procedure is called a sign test for the difference of two groups of mea-
surements (because traditionally it is carried out by writing a (+) next to each
above-median observation and a (−) next to each below-median observation, as
an aid to counting them). It is usually classified as a rank test, like those based on
the Kruskal–Wallis statistic (see 2.5.5). This is because we could have done it by
ranking the observations, then counting those above and below the middle rank.

The sign test has the advantage of other methods based on ranks that it is unaf-
fected by peculiarities of the scale of measurement, such as miscalibration. It has,
even more than the Kruskal–Wallis statistic, the disadvantage that it may waste a
great deal of information. A student would not be very well informed who knew
only that she scored above the middle of her class on an important exam.

5.4 The Cumulative Distribution Function

5.4.1 Some Properties
We often find ourselves computing not just the probability that we get a certain
value, but that as in the quorum search example we get at most a certain value.
Therefore, we have given this quantity a name.

Definition. The cumulative distribution function F (x) of a random variable X

is the probability that the variable will achieve at most the specified value x, that
is, F (x) � P(X ≤ x).
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Example. For a discrete random variable, the cumulative distribution function
may be displayed as a third row in the table. Then it is a running (cumulative) total
of the probabilities in the second row. In the example of searching for a quorum,
we have the following table:

x 0 1 2 3 4 5 6 7
p(x) 0.0455 0.106 0.1591 0.1894 0.1894 0.1591 0.106 0.0455
F (x) 0.0455 0.1515 0.3106 0.5 0.6894 0.8485 0.9545 1.0

For example, the number F (2) � 0.3106 in the third column is just 0.0455 +
0.106 + 0.1591, the sum of the probabilities of getting 0, 1, and 2.

Computer statistical programs often provide commands that calculate the cu-
mulative distribution functions of important families of random variables. Notice
that the same table or function will answer questions about the probability of at
least some value:

P(at least 8 incidents) � P(X ≥ 8) � 1 − P(X ≤ 7) � 1 − F (7).

Thus it is particularly handy for computing p-values, since there we want the sum
of the probabilities of our result and also more extreme results.

Example. In the hurricane problem, (see 4.5.2) p(0) � 1
2 , p(1) � 1

4 , p(2) � 1
8 ,

and so forth; so F (0) � 1
2 , F (1) � 3

4 , and F (2) � 7
8 . As an exercise, show that for

any x in the sample space, F (x) � 1 − 1/2x+1.

Example. In the N(W, B, 1) cases, where we were looking for the first black
marble, F (x) is the probability that we get at most x white marbles. But that is the
same as the probability that we do not get at first x + 1 or more white marbles in a
row. The probability of x+1 or more white marbles before the first black is just the
probability that the first x +1 marbles are all white, which is (W )x+1/(W +B)x+1,
as you might remember from one of our first permutation problems. We conclude
that for this class of random variables,

F (X) � 1 − (W )x+1

(W + B)x+1

As an exercise, compare this calculation to the running total in our table for the
laundry problem.

5.4.2 Continuous Variables
In the last chapter we discussed probabilities of points on the real line; if such
points have coordinate numbers, then we have a random variable. In this case,
the cumulative distribution function F (x) � P(X ≤ x) is the probability of an
outcome falling in the left half-line, which we required to be an event in the
Borel algebra. In the calculator-generated random number example (see 4.2.1),
F (x) � P(X ≤ x) � P(0 < X ≤ x) � x − 0 � x when 0 < x < 1. This random
variable, whose outcomes are any numbers in an interval and not just a discrete
set, is our first example of a continuous random variable. Another is the following:
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FIGURE 5.2. Cauchy cumulative distribution function (m � 0, d � 1)

Example. Let a random variable X be the coordinate of a bullet hole in the Great
Wall of China problem in the last chapter (see 4.8.1). We found a formula for the
probability that a hole would fall in any interval, so we can do the same for the
half-infinite interval in the definition of the cumulative distribution function:

F (x) � P(X ≤ x) � 1
2 + 1

π
tan−1 x−m

d
, since as the point on the wall goes off to

the left, to negative infinity, its arc tangent approaches −π/2. This function defines
the Cauchy family of random variables, with parameters m and d (see Figure 5.2).

From the definition, we know that the height of this curve tells us the probability
that X falls to the left of the point.

We pointed out that many problems of this type have densities, in this case,

F ′(x) � f (x) � 1
πd(1 + {(x − m)/d}2)

is the density function for the Cauchy family.
From the last chapter (see 4.8.1), remember that P(a < X ≤ b) � ∫ b

a
f (X)dX,

so the area under a piece of this curve gives us the probability that the variable
will fall in that interval along the x-axis. In the preceding example, we had the
relationship between the density and the cumulative distribution function F (x) �∫ x

−∞ f (X)dX. This is just the fundamental theorem of calculus, and so it holds
quite generally for continuous random variables with densities.

We can make some general claims about cumulative distribution functions,
which will hold both for discrete and for continuous random variables.

Proposition (properties of cumulative distribution functions).

(i) limx→∞ F (x) � 1.
(ii) limx→−∞ F (x) � 0.

(iii) P (x < X ≤ y) � F (y) − F (x).
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(iv) F is a nondecreasing function of x.
(v) For discrete random variables with integer sample space, p(x) � F (x) −

F (x − 1).

The proofs are exercises. We have established here that F carries with it all
the information we need for our most common types of random variables: Part
(iii) shows that we can assign probabilities to any element of the Borel algebra on
the real line (see 4.8.2), since we have taken care of all intervals (x, y]. Part (v)
shows that we can use the cumulative distribution function to assign probabilities
to any outcome for an integer-valued random variable. In the quorum-search table,
0.1591 � p(5) � F (5)−F (4) � 0.8485−0.6894. As an exercise, you will show
how you could use F to find the probability mass function for a random variable
whose sample space was half-integers.

As you study more random variables, you may find yourself disappointed to
learn just how few families of useful random variables have nice mathematical
expressions for their cumulative distribution functions, as several of our examples
did. However, computer programs are widely available to compute a great many
of these families of functions when we need them.

5.4.3 Symmetry and Duality
The cumulative distribution function will now allow us to find a useful connection
between our deceptively similar families, hypergeometric and negative hypergeo-
metric random variables. Such a connection between the probabilities in different
families will be called a duality. Remember that the two families correspond to
two criteria for stopping a search through a realization of a hypergeometric process
(laying out a row of marbles on the table). Consider the statement that “at most
x white marbles were found by the time the bth black marble was found”; this is
exactly the same condition as “at most b + x marbles were found by the time the
bth black marble was found.” But this is the same as “at least b black marbles were
found in the first b + x marbles,” which is the same as “at most x white marbles
were found in the first b + x marbles.” You may have to think about this for a
while. The equations are as follows:

Theorem (positive–negative duality).

(i) F [x|N (W, B, b)] � F [x|H (W + B, W, b + x)].
(ii) F [x|H (W + B, W, n)] � F [x|N (W, B, n − x)].

Figure 5.3 shows how the theorem works: Any sequence of black and white
marbles (bold path—‘up’ is a black marble, ‘rightward’ is a white marble) must
cross the b(blacks) line and the b + x(total marbles) line on the same side of the
x(whites) line. The second equation in the theorem just turns our sequence of
equivalent statements around.

We need only have one set of tables or one computer program for the
hypergeometric cumulative distribution function or only one for the negative hy-
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FIGURE 5.3. Positive–negative duality

pergeometric, not both. This is true even though the urn experiments, sample space,
and probability mass functions are quite different.

Example. F [2|N (4, 3, 2)] � p(0)+p(1)+p(2) � 5/35+8/35+9/35 � 22/35.
But F [2|H (7, 4, 4)] � p(1) + p(2) � 4/35 + 18/35 � 22/35.

There is one more important change of perspective we can apply to hypergeo-
metric processes, which leads to useful symmetries in some of our families. What
happens if we paint the black marbles white and the white marbles black? It is easy
to see the effect of this black–white transformation on the hypergeometric family:
We interchange W and B, and find ourselves counting the black marbles, the ones
we did not count before, from our sample of n. Therefore,

P[x|H(W + B, W, n)] � P[n − x|H(W + B, B, n)].

However, you should convince yourself as an exercise that we could have figured
this out by multiple applications of the reversal and transpose symmetries, so that
we have learned nothing very new.

The black–white transformation has more interesting consequences for the neg-
ative hypergeometric family. Now the change of color interferes with our stopping
rule, because we were using the number of black marbles to decide when to quit
sampling. Instead, consider the cumulative distribution function. The event “at
most x whites by the bth black” is identical to “the (x + 1)st white appears af-
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ter the bth black.” But this is the same as “more than b − 1 blacks appear by
the(x + 1)st white.” Now we exchange black and white marbles, and notice that
this last statement refers to the complementary event to the one in a cumulative
distribution function:

Theorem (black–white symmetry).

F [x|N(W, B, b)] � 1 − F [b − 1|N(B, W, x + 1)].

This gives a nonobvious relationship between the probabilities of events in very
different negative hypergeometric random variables; it will be increasingly useful
as we learn more.

Example. F [2|N (4, 3, 2)] � p(0)+p(1)+p(2) � 5/35+8/35+9/35 � 22/35.
But 1 − F [1|N (3, 4, 3)] � 1 − p(0) − p(1) � 1 − 4/35 − 9/35 � 22/35.

5.5 Expectations

5.5.1 Average Values
There must be some reason that we are interested in numerical outcomes for
probabilistic experiments. Presumably, we want to be able to do various kinds of
arithmetic in order to learn more about the data.

Example. I might randomly choose one of four treatments (with replacement)
for each patient who enters a study. But these treatments have differing costs per
week: $15, $28, $30, and $75. Therefore, the cost of continuing my experiment
is affected by chance; it could be very expensive or relatively cheap. Intuitively,
though, I believe that for a large number of patients, there is some sort of typical
cost that I might reasonably expect. The weekly cost of a patient is an example of
a discrete uniform random variable, with sample space {15, 28, 30, 75}. So we are
seeking some sort of typical value for that random variable.

If I assigned treatments many times (with replacement), I would presumably get
each one about equally often. My average costs per patient would then be just about
the sample average of the possible prices for each treatment: (15+28+30+75)/4 �
$37. Therefore, it might be part of a sensible attitude in the long run to budget about
$37 per patient per week.

Later in the course we will learn something about when such a policy is indeed
sensible. But since it is at least plausible, we give it a name:

Definition. The expectation (or expected value) of a discrete uniform random
variable is the average of the outcomes. If the variable is X, we write the expectation
E(X).
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Since each outcome is equally likely, a simple average reflects the cost of an
assignment. In the special case of a negative hypergeometric random variable in
which we were chasing the only black ball in the urn, all outcomes {0, . . . , W }
were equally likely. Therefore,

E(X) � 0 + 1 + 2 + · · · + W

W + 1
�
(
W+1

2

)
W + 1

� W

2
.

If we are searching for the one bad apple in a barrel of 10 apples, we will have
to check an average of 4.5 good apples to find it. Notice that the expected value,
which is a fraction, need not be a possible value, which must be an integer.

5.5.2 Discrete Random Variables
This idea of expectation of a random quantity promises to be useful enough that we
would like to apply it to more cases than just the equally likely one. In the general
negative hypergeometric case, we still have a discrete random variable, but all the
different outcomes {0, . . . , W } are no longer equally likely, so our definition fails
to apply directly. But we remember that the variable was just a number of white
marbles up to a certain point in each of the

(
W+B

W

)
equally likely sequences that

realize the process. So we can use the definition to compute

E(X) �
∑

all sequences(number of whites by bth black)(
W+B

W

) .

Now group together in the numerator the sequences in which we drew a given
number x of white marbles:

E(X) �
∑W

x�0
∑

sequences with x whites by bth black x(
W+B

W

)
�
∑W

x�0 x · (number of sequences with x whites)(
W+B

W

) .

We have already computed the number of these sequences, so

E(X) �
∑W

x�0 x · (x+b−1
x

)(
W+B−x−b

W−x

)
(
W+B

W

)
�

W∑
x�0

x

(
x+b−1

x

)(
W+B−x−b

W−x

)
(
W+B

W

) �
W∑

x�0
x · p(x)

using our formula for the probability mass function. This last expression for the
expectation is easy to interpret: To find the expected value of a discrete random
variable, take a weighted average of its possible outcomes with the weights propor-
tional to how probable that outcome is. The more likely a result, the more influence



162 5. Discrete Random Variables I: The Hypergeometric Process

it will have on the expectation. We would like to apply the formula generally, let-
ting E(X) �∑i xip(xi) for any discrete random variable; we will do essentially
that.

If the probability mass function is given by a table, we can compute the expec-
tation by attaching a product row and summing it. In the quorum search problem,
we have the following table

x 0 1 2 3 4 5 6 7
p(x) 0.0455 0.106 0.1591 0.1894 0.1894 0.1591 0.106 0.0455 total

x p(x) 0 0.106 0.3182 0.5682 0.7576 0.7955 0.636 0.3185 3.5

We come to the plausible conclusion that you must visit an average of 3.5
unnecessary houses to find the 3 people you need.

We must quibble a bit: If our discrete random variable has an infinite (but
countable) sample space (remember the hurricane count (see 4.5.1)?), then to get
the expectation we have to sum an infinite series. We can often do that; but if
the outcomes include both positive and negative values, you may remember from
calculus that sometimes the sum depends on the order in which you sum the terms.
But if we think of the expectation as the average of a great many repetitions of
the random variable, we see that we are in effect summing our series in random,
unpredictable, order. You will see an example of this phenomenon in your exercises.
This is unsatisfactory, so we will require that it never happen.

Definition. A sum
∑

i ai is said to be absolutely convergent if the positive and
negative terms may be summed separately; in that case

∑
i ai � ∑

ai<0 ai +∑
ai≥0 ai .

It should be obvious from the definition that if a series is absolutely convergent,
then it does not matter in what order you add the terms; you always get the same
answer. In that case, we can forget our quibbles and use our nice formula.

Definition. For a discrete random variable, E(X) � ∑i xip(xi) whenever the
series is absolutely convergent.

5.5.3 The Method of Indicators
Such calculations can get somewhat laborious as the number of discrete outcomes
grows; we would like simpler expectation formulas, like the one we got in the
search for a single black marble. One other case is almost as easy: when there is a
single white marble, and we draw until we find the bth of B black marbles. Then
our negative hypergeometric random variable, the number of white marbles found,
can take on only two values: 1 if we find the marble, 0 if we do not. There are
exactly B+1 equally likely realizations, according to where the white marble is. In
b of those cases (just before the first black, just before the second, . . . , just before
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the bth) we will find the white marble; in the other cases, we will not. Therefore,

E(X) � 1 · b + 0 · (B + 1 − b)
B + 1

� 0 · (1 − b

B + 1
) + 1 · b

B + 1
� b

B + 1
.

Proposition. For X an N (1, B, b) random variable, E(X) � b/(B + 1).

Such a random variable with sample space only 0 and 1 is called a Bernoulli(p)
variable, where the parameter p is the probability of getting a 1, p � b/(B + 1).
Its expectation gives us the clue we need to find the expectation of a negative
hypergeometric random variable for any number of white marbles W . Remember
that deciding when to stop is entirely determined by the black marbles; we ignore
the white marbles until we have to count them at the end. Imagine that the white
marbles are numbered, i � 1, . . . , W ; you ask W friends to help you by each
keeping track of a different one of the white marbles. After you have removed b

black marbles, you ask each friend to tell you “how many” of his white marbles
have been removed along the way; he will tell you either 0 or 1. If he was looking
for the marble numbered i, then his answer (0 or 1) we might call Xi . You add the
numbers from each of your friends to get X � X1 + X2 + · · · + XW , the total of
white marbles removed. For example, the result 1 + 0 + 0 + 1 + 1 + 0 + 0 � 3
says that the white marbles labeled 1, 4, and 5 appeared, and 2, 3, 6, and 7 did not,
during the draw.

Each friend need pay no attention to any white marble except the one with his
number on it. Therefore, each of them is observing an N (1, B, b) random variable
Xi ; the last proposition says that E(Xi) � b/(B + 1). Each sequence a friend
observes corresponds to an equal number of equally likely sequences from the
original game (imagine the ways the other white balls may be scattered through
his sequence). Therefore, the expectation is just the sum of the expectations for
each friend. There are W friends, so we come to this conclusion:

Proposition. For X a negative hypergeometric N (W, B, b) random variable,
E(X) � Wb/(B + 1).

For example, in the quorum search problem with W � 7, B � 5, and b � 3,
we verify that indeed E(X) � 7 × 3/6 � 3.5. You should check that this general
formula matches each of the other examples and special cases we have studied. This
method, in which we split a random variable up into simple, and usually equivalent,
random variables X � ∑i Xi (often, but not always, each Xi is Bernoulli) and
then reason that E(X) � ∑i E(Xi), is called the method of indicators. We shall
give a general justification in a later chapter. As an exercise, you might use this
approach to find a simple formula for the expectation of a hypergeometric random
variable.
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5.6 Estimation and Confidence Bounds

5.6.1 Estimation
In our applications so far, we have assumed that we had a random variable that
was a sensible model for some real experiment. This allowed us to compute the
probabilities of various outcomes. Then, if we were using the frequentist style of
reasoning, we could check whether the actual numerical outcomes were surpris-
ingly unlikely; if they were, we had reason to doubt that the model (or at least the
claimed value of some parameter) really was appropriate.

As useful as this is, it has a disturbingly negative flavor; the only thing we seem
to be able to do is doubt some claim. In this section we will look at a common class
of problems, called estimation problems, in which we want to actually learn the
unknown value of a parameter in some family of random variables. But estimating
a parameter value will raise a harder question: How accurate is our estimate? With
a bit of ingenuity, we will come up with a way to address this question using
frequentist hypothesis testing to get a partial solution, called a confidence bound.

Example. An ichthyologist (who studies fish) tags 12 adult trout and returns them
to their lake. After a brief period to let the tagged fish recover and spread through
the lake, a fisherman sets out to fish the lake, and after catching 40 trout, hooks the
first tagged one. Does the fisherman’s experience tell the ichthyologist anything
useful about the total trout population?

We start by imagining that the fisherman’s experience is something like an
N(W, 12, 1) random variable, where he has observed X � 40, and W , the untagged
trout population, is unknown. What would be a plausible estimate of W? A naive
rule of thumb would be to guess that X is something close to its average value;
and we know E(X) � W

B+1 . Then just solve the equation X ≈ E(X) � W
B+1 for W

to get Ŵ � 40 × 13 � 520 untagged trout.
Notice that we have carried over the hat notation from when we were estimating

parameters of a structural model for data, such as a regression line. This rule-
of-thumb estimate, which matches a random variable to its expected value, will
play the role that standard estimates played in Chapter 1. Much later in the book
you will see sounder general principles for estimating parameters of families of
random variables. In the meantime, the matching technique, called the method of
moments, will be seen to work satisfactorily for a number of our favorite families.
At the moment, of course, we have no idea how good an estimate of W it is.

5.6.2 Compatibility with the Data
Can we say something more useful about the true value of W? First of all, we
know that it is at least 40, for obvious reasons. But we of course cannot place any
corresponding upper bound. There could have been a million trout out there, and
the fisherman was just lucky to catch a tagged one so soon.
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Backing off a little from demanding such hard-edged knowledge (as statisticians
must always do), is it not true that some values of W make us seem rather absurdly
lucky? Let us try to see which values of W are implausibly large. We will proceed,
using the frequentist style of reasoning, to ask when our observed value of X is
improbably small, for a given large value of W . Of course, we would then find
smaller values than the observed X even more unlikely, and so must include them
in the probability to be calculated. Fortunately, this probability model has a simple
expression for its cumulative distribution function:

P(X � 0, 1, · · · , 40|W ) � F (40) � 1 − (W )41

(W + 12)41
.

For example, if W � 7000, our p-value is 0.068. From the section on hypothesis
testing, even though this probability is a bit small, we fail to reject this population
size at the popular 0.05 significance level. Now, W � 14,000 has p-value 0.035;
so we may reject this larger value. Using the 0.05 level, we tend to disbelieve a
trout population of 14,000 but will tolerate the suggestion of 7000.

Still, our conclusions seem more than a bit weak. Our doubts range over thou-
sands of different values of W . Worse, if we changed our significance level to, for
example, 0.01, our examples of values of W that we would barely reject or barely
accept would be in a very different range (exercise).

Now try for information about the compatibility of the fisherman’s experiment
with small trout populations W . We need to know for which values of W an X of
40 fish (or more) is improbably large:

P(X � 40, 41, · · · |W ) � 1 − F (39) � (W )40

(W + 12)40
.

Trying out W � 200, we get a p-value of .0754—a little unlikely to find 40 or so
untagged fish, but not to the traditional significance level. Now try W � 150: The
p-value is 0.0289, and we are ready to reject the hypothesis that there are so few
trout. Our information is much sharper; a substantial change in plausibility for a
moderate change in parameter value. After some more calculation, we narrow it
down to exactly when we start rejecting the proposed population size: For W � 175
we compute p � 0.0503, and for W � 174 we get p � 0.0494.

Finally, we are prepared to say something really useful to the ichthyologist: If
we use the 0.05 significance level, then we find our experimental result consistent
with any W ≥ 175 untagged trout and inconsistent with any smaller values. (Ac-
tually, We have ducked one issue: We have not checked our statement for every
possible value of W . In an exercise you will remedy that oversight.) This limit
changes with significance level, but not nearly so radically as before. This could
be of real scientific usefulness in monitoring the trout population. Certainly it is a
clear improvement over our crude estimate, of unknown, and apparently very low,
accuracy that there are 520 untagged trout.
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5.6.3 Lower Confidence Bounds
The method we have devised is so widely useful that we give it a name.

Definition. Let a random variable X be from a known family, one of whose pa-
rameters θ is unknown. Assume that for all values θ < θL we find that the observed
value of X leads us to reject θ at the significance level α and that for all θ ≥ θL
we fail to reject θ . Then we say that θL is a (1 −α)% lower confidence bound for
θ (or that θ ≥ θL is true with 100(1 − α)% confidence).

For our example, we discovered that 175 was a 95% lower confidence bound
for the true number of untagged trout. As an easy exercise, you will write down
the definition for an upper confidence bound θU.

I hope you are convinced from our example of the potential usefulness of confi-
dence bounds. Unfortunately, our justification for them, based on which hypotheses
we would reject or fail to reject, is subtle and rather hard to explain to scientists.
People keep trying to say simpler things, like “the probability is 0.95 that θ ≥ θL.”
Is something like that true? Remember that the probabilities in frequentist hypoth-
esis testing are computed before the experiment is done. Afterward, of course, we
know the exact value of X. So before the experiment, we imagine that there is a
true value for θ (W in our example). The probability that the observed value of X

will lead us to reject the (true) hypothesis that the parameter is θ is then (at most)
the significance level α. But those are exactly the cases when we will, after the
experiment, choose a θL for which θ < θL. Therefore, the lower confidence bound
will later happen to be false, when it says θ ≥ θL, with probability at most α. The
fact that we do not know θ is irrelevant. We state this formally:

Proposition. The probability that a 100(1 − α)% lower (or upper) confidence
bound θ ≥ θL (or θ ≤ θU) computed in a future experiment will be true is at least
1 − α.

The practical implication of this result for me is that as a consulting statistician
who will compute many 95% confidence bounds during the rest of my career, at
least 95% of my claims should turn out to be correct.

5.7 Summary

Many different probability models will be needed to describe the enormous variety
of kinds of data generated by the many profoundly different experiments one could
perform. We began right away to group random variables, probability spaces with
numerical outcomes, into families, the members of which may be distinguished
by numerical “addresses,” called parameters. In particular, we began to explore an
especially rich family of random variables called the negative hypergeometric fam-
ily, which comes about when we realize a hypergeometric process. Its probability
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mass function is

P(X � x|W, B, b) � p(x) �
(
x+b−1

x

)(
W+B−b−x

W−x

)
(
W+B

W

)
for the member of the family N(W, B, b) (2.3). This family will turn out later in
the book to be related to an amazing number of the most useful random variables
in statistics. Like many families, it possesses symmetries, or relationships between
the probabilities of different members of the family (2.4). We then derived a related
family, the hypergeometric family, with mass function

P[X � x|H(W + B, W, n)] � p(x) �
(
W

x

)(
B

n−x

)
(
W+B

n

) (3.1).

An important practical applications is to Fisher’s exact test of independence in
contingency tables (3.3). This test illustrates a more formal way of interpreting
statistical experiments, called hypothesis testing (3.4). The cumulative distribution
function of a random variable, F (x) � P(X ≤ x), can be used to calculate the
probability that a random variable will fall in any interval, P(x < X ≤ y) �
F (y) − F (x) (4.2). Furthermore, it lets us express a mathematical relationship
between the negative hypergeometric and hypergeometric families, called a duality
(4.3).

We defined the expectation (average value) of a discrete random variable by
E(X) � ∑i xip(xi) (5.2). Then the first example of an important technique for
finding expectations, the method of indicators, was applied to some of our families
(5.3). This suggested a simple method of estimation of unknown parameters, by
matching the observed result to its expectation (6.1). To get stronger information
about an unknown parameter, we turned around the logic of hypothesis tests to
construct confidence bounds (6.3).

5.8 Exercises

1. An ESP researcher makes up a deck of cards on each of which is printed one
of four geometrical figures, one of which is a square. There are two cards
with each figure, for a total of 8 cards. He places them face down on a table
in random order and asks a subject to turn over cards until the first square is
uncovered. He will be impressed if the subject finds one quickly.

a. You believe that the subject has no idea where the squares are. What is
the probability the subject will find one for the first time when the second
card is turned over?

b. Let a random variable X be the number of cards without squares that
are turned over in the course of the experiment. Construct the table of its
probability mass function.
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2. Write down all the realizations of a hypergeometric process with 5 white
marbles and 3 black marbles. Put a check mark next to all those in which the
first black marble appears before the third white. Does the probability of this
happening match our formula?

3. On the first day of class, my roll tells me that I have 6 sophomores among
my 20 students. I need to find out how much calculus the sophomores know,
so I want to interview 2 of them in depth. I do not know which person is
which yet, so I simply go through the class at random, asking them if they
are sophomores, until I find my two. What is the probability that I will ask
5 nonsophomores along the way? What sort of random variable am I asking
about, and what are my parameter values?

4. According to a contractor’s records, three very similar varieties of tree, 8 live
oaks, 6 Brazos oaks, and 5 shady oaks, were ordered for planting 20 years
ago along a street of a new subdivision. Sure enough, all 19 trees are still
thriving. However, a tree surgeon must treat the live oaks to prevent a new
blight. Unfortunately, the varieties cannot be distinguished except by careful
examination of several leaves. The surgeon plans to check the trees one at a
time and treat the live oaks she finds. Her day’s work will be complete when
she has treated 5 trees. What is the probability that she will identify 4 Brazos
oaks and 2 shady oaks along the way?

5. Only 85 out of the 100 integrated circuits in a shipment meet design specifi-
cations (but the customer doesn’t know that). She picks 8 at random and tests
them carefully. What is the probability that three or more of the circuits she
tests will fail to meet specifications?

6. Verify the proposition about reversal symmetry of the negative hypergeo-
metric family by writing down the formulas for the two probability mass
functions and showing that they are equal.

7. In the same manner as in Exercise 6, verify reversal symmetry in the
hypergeometric family.

8. Verify transpose symmetry in the hypergeometric family, using the formula
for the mass function.

9. It is folk wisdom that beer consumption is countercyclical; that is, more is
purchased in bad economic times than in good. To study one aspect of this
conjecture, you interview 30 working-age adults and ask whether or not they
are currently gainfully employed and whether or not they have drunk at least
one bottle of beer in the last 24 hours. Your results:

employed no
beer 6 8
no 13 3

Carry out Fisher’s exact test of the independence of beer consumption and
employment. What do you conclude? Use the 0.05 significance level.

10. Thomas and Simmons in 1969 reported on the sputum histamine levels of a
number of allergic and nonallergic people; here are some of their results, in
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parts per thousand:

nonallergic: 4.7 5.2 6.6 18.9 27.3 29.1 32.4 34.3 35.4 41.7 45.5 48.0 48.1
allergic: 31.0 39.6 64.7 65.9 67.9 100.0 102.4 1112.0 1651.0

Test whether allergic people tend to have higher histamine levels, using the
sign test. Interpret it with a 0.01 significance level.

11. Write down the table for the cumulative distribution function for the random
variable X of Exercise 1. What is the probability that the subject will turn
over no more than 4 wrong cards?

12. Use the formula for the cumulative distribution function of an N(W, B, 1)
random variable to verify the numerical results we got in

a. the laundry-guarding example (see Section 2.2); and
b. Exercise 11.

13. In the last chapter (see 4.8.1) we considered the probabilities for outcome
falling in a vertical strip of a circular dart board. Let a continuous random
variable X be the x-coordinate of the point at which a dart hits. Find the
cumulative distribution function of X.

14. Prove properties (iii)–(v) of cumulative distribution functions (see Section
4.2).

15. A certain random variable arising from a geometrical outcome on the interval
(0, 2) has density function f (x) � 3

4x(2 − x).

a. Find its cumulative distribution function.
b. Compute P(1.5 < X ≤ 2).

16. In a candy jar with 7 chocolates and 5 caramels, remove candy at random
until you encounter the second caramel. Calculate the probability that you
will have found no more than 3 chocolates. In the original jar, remove 5
pieces of candy. Calculate the probability you will have found no more than
3 chocolates.

17. Here is a partial table of the cumulative distribution function of a negative
hypergeometric N(25, 14, 8) random variable:

x 10 11 12 13 14
F (x) 0.24344 0.32521 0.41584 0.51124 0.60665

In a graduate class of 39 students, 14 were undergraduate students at Tech. I
work down my alphabetic roll of the class until I find 8 who were undergrad-
uates at Tech. What is the probability that I will have passed exactly 14 other
students along the way?

18. Show that we could have verified the black–white symmetry in the hyperge-
ometric family p[x|H(B, W, n)] � p[n − x|H(W + B, B, n)] by checking
that the mass functions are the same.

19. There are 12 women and 15 men in the introductory statistics class. The grader
brings me their first test, sorted in descending order of score.
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a. I glance quickly down the pile until I find the fourth man’s paper. If the
sexes did about equally well on the test, compute the probability that I
would have seen no more than 4 women’s papers.

b. On the other hand, I might glance down the pile until I see the 5th woman’s
paper. Compute the probability that I would have seen more than three
men’s papers by that point.

20. A very new and complex computer chip is known to have a high rate of small
defects. The manufacturer admits this but will sell you a box of 40 chips
cheap, with the guarantee that no more than 8 are defective. You need 10
perfect chips for your process control computer, so you carefully test through
the batch until you have found them. Unfortunately, you find 5 bad ones along
the way, which is disturbing.
Giving the manufacturer the benefit of the doubt, assume that exactly 8 are
bad. What is the probability that you would have found 5 or more of the bad
ones while retrieving 10 good ones?

21. Here is a table of the cumulative distribution function (F (x) � P(X ≤ x))
for a certain discrete random variable:

x 0 1 2 3 4
F (X) 0.0182 0.2153 0.4871 0.8865 1.0

Calculate E(X).
22. Find E(X) for the random variable in Exercise 1, (a) from your table of the

mass function, and (b) using the formula for the expectation of a negative
hypergeometric random variable.

23. Find E(X):

a. for the negative hypergeometric random variable in Exercise 17; and
b. for the number of nonsophomores questioned in Exercise 3.

24. There are n delicious strawberries in a basket, but there are in addition 2
contaminated strawberries, which look and smell exactly the same as the
others. However, anyone who bites into a contaminated strawberry will find
that it tastes so awful that he or she will have no further appetite. A person
comes along and begins eating strawberries, and will stop only on biting
into a contaminated one. Let a random variable X be the number of good
strawberries eaten.

a. Give the range of possible values of X and find its probability mass func-
tion p(x) � P(X � x). If n � 12, what is the probability that 7 good
strawberries will be eaten?

b. For any n good strawberries, compute E(X).

25. If we have a random variable with finite sample space, why is our formula for
E(X) always absolutely convergent?
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26. A rancher has scattered 8 black sheep among his large flock. As a new shep-
herd, you count the sheep returning to their pen from a day of grazing, and
the first black sheep is the 20th sheep you see.

a. Use the method of moments to estimate the total number of sheep in the
flock.

b. Find a lower 95% confidence bound on the number of sheep in the flock.

27. State a precise definition of the upper 100(1 − α)% confidence bound for a
parameter of a random variable. Find an upper 99% confidence bound for the
flock size in Exercise 26.

28. In experiments whose outcome X is an N(W, B, b) random variable, compute
a method-of-moments estimate:

a. for W , if B and b are known;
b. for B, if W and b are known; and
c. for b, if W and B are known.

5.9 Supplementary Exercises

29. Show that for the hurricane example, with p(x) � 1/2x+1 for x � 0, 1, 2, . . . ,

the cumulative distribution function is F (x) � 1 − 1/2x+1.
30. In Exercise 30 of Chapter 4, let a continuous random variable X be the distance

of a randomly chosen house from the freeway. Find its cumulative distribution
function.

31. Using the definition of a limit from advanced calculus, prove properties (i)
and (ii) of cumulative distribution functions.

32. From a list of 39 potential earthquake sites around the world, a psychic claims
she can identify those that will have a 6.0 Richter or greater earthquake in the
next 5 years. She writes down those 14 sites she believes are in the greatest
danger and seals them in an envelope. In fact, 20 of the sites have earthquakes.
What is the probability that the psychic will have identified at least 8 of them
correctly, purely by chance?
Hint: Use the table in Exercise 17, and do very little arithmetic.

33. Show that we could have verified the black–white symmetry in the hypergeo-
metric family P[x|H(W +B, W, n)] � p[n−x|H(W +B, B, n)] by multiple
applications of reversal and transpose symmetries.

34. Computing cumulative distribution functions for negative hypergeometric
random variables can be time-consuming, but there is a useful shortcut:

a. write down the formula for p(0); then
b. write down a simple formula for r(x) � p(x)/p(x−1), canceling as many

factors as you can.
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This lets you recursively compute the cases x � 1, 2, 3, . . . by the formula
p(x) � r(x)p(x − 1).

35. Use the formula from Exercise 34 to reconstruct the table in Exercise 17.
36. Invent a recursive computational procedure for the probabilities of any hy-

pergeometric random variable, similar to the one in Exercise 34. Redo the
calculations in Exercise 9 using your simplified arithmetic.

37. Some calculus books say that a sum
∑

i ai is absolutely convergent if
∑

i |ai |
exists (so that for an expectation,

∑
i |xi |p(xi) has a finite sum). Prove that

this definition is equivalent to ours.
38. Find a simple expression for the expectation of any hypergeometric random

variable, using the method of indicators.
39. Use the result of Exercise 38

a. to find the expected number of bad circuits located in Exercise 5; and
b. to find the expected number of predicted earthquake sites in Exercise 32.

40. Of 40 engineering majors in an engineering stat class, 12 are mechanical en-
gineers and 15 are industrial engineers. The instructor chooses 10 to represent
the class in a stat contest.

a. If major should have no effect on who is chosen, what is the probability
that 3 mechanical engineers and 5 industrial engineers will be chosen for
the contest?

b. On average, how many mechanical engineers would you expect to be
chosen for the contest?

41. Consider the first n positive integers {1, 2, 3, . . . , n}. Choose m of these num-
bers at random without replacement and call their sum X. (For example, if
from the first 5 integers you chose the three numbers 4, 1, and 3, then X � 8).

a. What is E(X)?
Hint: Use the method of indicators and the fact that

∑r
i�1 i � r(r + 1)/2

(see Exercise 3.23).
b. Therefore, in the discussion of rank statistics (see 2.5.5), assume that ranks

are unrelated to level of the treatment, and compute E(Wi) and E(Ri).

42. A jeweler has a set of 100 identically cut diamonds in a drawer. By accident,
someone mixes up in the drawer an unknown number of excellent fake di-
amonds of the same size and cut. You set out to find the fake diamonds by
careful inspection. After finding 13 real diamonds, you locate the first fake
one. You want to decide what this tells you about how many fake diamonds
there are.
Hint: A reasonable probability model for the number of real diamonds found
so far is N(W, B, 1). But which parameter is unknown?

a. Find a method-of-moments estimator to estimate the number of fake
diamonds.

b. Construct a lower 95% confidence bound on the number of fake diamonds.
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c. Construct an upper 95% confidence bound on the number of fake
diamonds. Which bound gives you more useful information?

43. a. Using the result of Exercise 38 and given the result X of an experiment
which is H(W + B, W, n), find method-of-moment estimates, in turn, for
B, W , and n, if the other two parameters are known.

b. For the census data from Chapter 1, Exercise 32, use (a) to estimate the
total population of that census tract.



CHAPTER 6

Discrete Random Variables II:
The Bernoulli Process

6.1 Introduction

In the last chapter we looked at several families of random variables that arise from
the hypergeometric process. As the size of the urn (out of which we are imagin-
ing we draw marbles) grows, the calculations we have to do to find probabilities
become complicated. In this chapter we will explore some simpler approximate
calculations, which will work when the number of marbles removed, or the number
of marbles being counted, is relatively small. The approximations will be inter-
esting random variables in themselves, and we will discover thereby several new
families and a new stochastic process, the Bernoulli process, out of which they arise
naturally. We think of this as sampling from infinite populations. As the outcomes
being counted grow rarer, a further simplification is possible, leading to the Pois-
son family. On the way, we learn a new method for evaluating certain expectations
and use it to measure population variability. Then we find ways of constructing
simultaneous upper and lower confidence bounds for unknown parameters in our
families.

Time to Review

Chapter 2, Sections 2–4
Limits of sequences
Power series for the exponential function.
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6.2 The Geometric and Negative Binomial Families

6.2.1 The Geometric Approximation
We noted in an earlier chapter that in our urn problems, if the number of marbles is
very large, then an experiment that involves removing relatively few marbles will
not deplete the total very much.

Example. Kim is looking for a job. A helpful hostess holds a party in which 30
prospective employers and 50 other employment seekers are invited. She hopes
that while having fun, some people will also find jobs. Kim arrives, and knows no
one; the guests are milling around in a large ballroom. What is the probability that
the fourth person Kim talks to will be the first employer?

In this case approximation by a draw with replacement (i.e., assuming indepen-
dence of the draws) may work satisfactorily. The urn model might be W � 50 and
B � 30, and a negative hypergeometric random variable in which we are looking
for the first black marble [N(W, B, 1)]. Then x � 3, and our calculation is

p(x) � (W )x
(W + B)x+1

B � 50 · 49 · 48 · 30
80 · 79 · 78 · 77

� 0.092945.

The practical consequence of the fact that we are not depleting the total supply of
marbles (prospective employees) very much is that we would expect 50 · 49 · 48
to be pretty close to 50 · 50 · 50 � 503, and 80 · 79 · 78 · 77 to be pretty close to
80 · 80 · 80 · 80 � 804. Trying this approximate calculation, we obtain p(x) ≈
503

804 30 � 0.09155, which is indeed fairly close to the same answer. Notice that
the calculation is exactly the one we would do if we were doing our draws with
replacement, and so not depleting the jar at all.

When does this approximation work well? In the birthday inequality (see 3.5.3),
we discovered that (n)k/nk is close to 1 when

(
k

2

)
is small compared to n; that is, we

permute so few of the available objects that drawing with and without replacement
is almost the same. To make our approximation work, we would need to have that(
x

2

)
is small compared to W and

(
x+1

2

)
is small compared to W + B. But

(
x

2

)
is

smaller than
(
x+1

2

)
.

Proposition. For an N(W, B, 1) random variable X, if
(
x+1

2

)
is small compared

to W then p(x) ≈ Wx/(W + B)x+1B.

In the party example, our approximation could be expected to work because(4
2

) � 6 is small compared to 50.
It will be interesting to rewrite this as p(x) ≈ ( W

W+B

)x B
W+B

. The quantity W
W+B

is just the probability that the first marble one draws is white; let us give it a name,
p. Then B

W+B
� 1 − p is the probability that the first is black. Then we can

rewrite p(x) ≈ px(1 − p). This formula has the nice property that we need to
work with only one parameter, p, rather than two, W and B, to use it. Remember
that the calculation was exact for draws with replacement, that is, for a sequence
of independent experiments.
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6.2.2 The Geometric Family
The calculation from the last section suggests that we have a family of random
variables of interest in itself:

Definition. Consider a sequence of independent trials for which two outcomes are
possible at each trial. The probability of one outcome, usually called a success, is
p (and the probability of the other, a failure, is 1 − p), where 0 < p < 1. (These
are, of course, Bernoulli trials, see 5.5.3) Then the number of successes X before
the first failure is a geometric random variable. Since the sequence can continue
indefinitely, its sample space is {0, 1, 2, . . .}.

We compute the probability of X successes in a row followed by a failure, when
each trial is independent:

Proposition. For X geometric, p(x) � px(1 − p).

Example. In the hurricane example (see 4.5.2), let the number of hurricanes be
geometric with p � 0.5. Then the formula gives us p(x) � 2−x−1, as claimed.
The same random variable is a model for tossing a fair coin until you get the first
tail.

6.2.3 Negative Binomial Approximations
The approximation method from Section 6.2.1 can be used on a more general
problem:

Example. I learn from an anonymous survey that of a sample of 100 people, 40
admit to having cheated on their income tax. I want to do an in-depth, follow-up
confidential interview of five cheaters. What is the probability I will have to talk
to exactly nine people among the sample to find them?

This is negative hypergeometric, with B � 40, b � 5, W � 60, and x � 4, so
p(4) � (

(8
4

)(91
56

)
)/
(100

60

)
from our big formula. The way of organizing the calculation

that allows the most cancellation, and so leaves us with the fewest multiplications,
is

p(4) �
(

8
4

) 91!
56!35!
100!

60!40!

�
(

8
4

) 60!
56!

40!
35!

100!
91!

�
(

8
4

)
(60)4(40)5

(100)9
� 0.0937.

It occurs to us, as with the last such calculation, that, for example, (60)4 � 60 ·59 ·
58 · 57 should be fairly close to 604 � 60 · 60 · 60 · 60. Here there are two other
permutations where such an approximation is plausible. Using the condition from
the birthday problem, we check that

(
x

2

) � 6 is small compared to 60 and
(
b

2

) � 10
is fairly small compared to 40; so we compute

p(4) ≈
(

8
4

)
604405

1009 � 0.0929.
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Since the calculation was notably easier, this is attractively close.
Generally, what we did was to rewrite the probability mass function to cancel

as many large factorials as possible:(
x+b−1

x

)(
W+B−b−x

W−x

)
(
W+B

W

) �
(

x + b − 1
x

)
(W )x(B)b

(W + B)x+b

.

We can say when replacing the permutations by powers will work satisfactorily:

Proposition. For an N(W, B, b) random variable, when
(
x

2

)
is small compared to

W , and
(
b

2

)
is small compared to B, then p(x) is close to

(
x+b−1

x

)
WxBb/(W+B)x+b.

We have not needed to put in a condition for the denominator approximation,(
x+b

2

)
small compared to W +B; you will check in an exercise that this follows from

the conditions we did give. Once again, let the quantity W/(W +B), the probability
that the first marble drawn is white, be called p. Since B/(W + B) � 1 − p, our
approximation formula can be rewritten:

p(x) ≈
(

x + b − 1
x

)
Wx

(W + B)x
Bb

(W + B)b
�
(

x + b − 1
x

)
px(1 − p)b.

6.2.4 Negative Binomial Variables
We derived the above approximation by assuming that we were drawing so few
marbles out of so many that the difference between drawing with and without
replacement was relatively unimportant. What would happen if we really had
drawn with replacement, and so had true independence between draws? Then the
probability of a given sequence with x whites and b blacks is px(1 − p)b, because
we simply multiply the probabilities p of each of the x white marbles and the
probabilities 1 − p of each of the b black marbles. If this sequence has arisen in a
search for the bth black marbles then the number of such sequences is the number
of ways we can distribute x white marbles among the previous b + x − 1 draws,
or
(
x+b−1

x

)
. This is a whole new family of random variables:

Definition. A negative binomial random variable (with parameters k where k �
1, 2, 3, . . . , and p where 0 < p < 1), NB(k, p), is the number of successes X

before the kth failure in a sequence of independent trials with probability p of
success at each trial.

Proposition. A negative binomial NB(u, p) random variable X has sample space
all nonnegative integers (X � 0, 1, 2, . . .) and p(x) � (x+k−1

x

)
px(1 − p)b.

The sample space is unbounded because when we draw with replacement there
is no limit to the number of white marbles we may encounter.

Notice that the geometric random variable was just the special case of looking
for only one failure, NB(1, p). But now there are others of possible usefulness:

Example. Every time I turn on the reading lamp on my desk, there is a probability
of 0.05 that the bulb will blow out. I have two spare bulbs, in addition to the
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one in the lamp. What is the probability that I will have to shop for bulbs after
turning on my lamp for the 60th time? This might be negative binomial with
k � 3, p � 0.95, and x � 57 (because the other three times a bulb blew). Then
p(57) � (59

57

)
(0.95)57(0.05)3 � 0.01149.

6.2.5 Convergence in Distribution
There is another way of looking at our result that if the number of marbles of each
kind is large compared to the number we are looking for, then a negative hyper-
geometric random variable is well approximated by a certain negative binomial
random variable. Instead, imagine that we have a sequence of urn problems in
which we are always searching for the same number b of black marbles, but the
number of white and black marbles is getting larger and larger. Then the negative
binomial approximation to the probability mass function p(x) is getting better and
better. But for any given value of x, the cumulative distribution function may be
written F (x) �∑x

y�0 p(y), so that it is the sum of a fixed, finite number of terms
p(y). We conclude that our approximation to F is also getting better and better.
This is an example of an important phenomenon.

Definition. Consider a sequence of random variables {Xi} and an additional vari-
able X, each with sample space the integers, and with cumulative distribution
functions Fi and F , so that for each x in the sample space of X, limi→∞ Fi(x) �
F (x). Then we say that the sequence {Xi} converges in distribution to X. We
write Xi → X.

Another way of putting it is that the sequence of random variables {Xi} is
asymptotic to X. The importance of convergence in distribution is usually for
applications just like the one we have seen: If we have reason to believe that a
complicated random variable is far along in such a sequence, and X has some
simple properties, then we hope to find that our random variable approximately
shares those simple properties.

Proposition. Let the sequence of negative hypergeometric random variables
N(Wi, Bi, b) be such that Bi → ∞ and Wi

Wi+Bi
→ p as i goes to infinity, where

0 < p < 1. Then the sequence converges in distribution to a negative binomial
NB(b, p) random variable.

Proof. We must simply check that the approximation to p(x) gets as good as
we please for each x, because then the approximation to F (x) gets as good as we
please for each x, as we noticed earlier. But our condition for a good approximation
requires that Bi be arbitrarily large compared to

(
b

2

)
; since b is fixed and the B’s

are going to infinity, that is certainly happening. Also, the W ’s must become large
compared to

(
x

2

)
for each fixed x; show as an exercise that this must happen because

the W ’s approach a fixed proportion p of all the marbles, and the B’s are getting
numerous. �
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The relationship between the negative hypergeometric and negative binomial
ought to give us more information. Perhaps we can see what happens to our formula
for the expectation as the number of marbles grows:

lim
i→∞

E(Xi) � lim
i→∞

Wib

Bi + 1
� b lim

i→∞
Wi

B1 + 1
� b lim

i→∞
Wi

Bi

� b lim
i→∞

Wi/(Wi + Bi)
Bi/(Wi + Bi)

� bp

1 − p

using standard facts about limits. We would like to say that if Xi → X, then
E(Xi) → E(X); therefore, for a negative binomial NB(k, p) random variable,
E(X) ?� kp/(1 − p). This last formula will turn out to be correct; but it is not
always true that the expectation of the limit is the limit of the expectations (as
you will check in an exercise). We will verify the formula in other ways, shortly.
Meanwhile, notice that it predicts in the dice example that to get 3 sixes you will
on average make 3 · 5/6

1−5/6 � 15 unsuccessful rolls, which is reasonable (5 nonsixes
for each six). Of course, in practice you might make no bad rolls, or a million.

6.3 The Binomial Family and the Bernoulli Process

6.3.1 Binomial Approximations
Our urn problems can become painfully large in other, quite different, ways.

Example. A wealthy grandmother dies and leaves her estate to her 5 grandchil-
dren, all of whom live in a small town (with 255 households). Unfortunately, none
of them share her last name, and she did not give last names in her will. As ex-
ecutor, you will have to simply visit every house in town, until you find them. You
decide to visit until you have crossed 100 homes without an heir off your list the
first day (that is all the frustration you can stand). What is the probability you will
find 2 heirs that day?

If you visit houses at random, this has an urn model with W � 5 successful
marbles and B � 250 failures. We are doing a negative hypergeometric search
with b � 100: Therefore,

p(2) �
(100+2−1

2

)(250+5−100−2
3

)
(250+5

5

) �
101·100

2 · 153·152·151
6

255·254·253·252·251
120

� 0.3422.

As unpleasant as this calculation was, we got a good deal of cancellation; the
general situation is that when the number of black marbles B and the number of
black marbles to be found b are large compared to the number of white marbles,
then the most cancellation is gotten by organizing the negative hypergeometric
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calculation as

p(x) �
(x+b−1)x

x!
(W+B−b−x)W−x

(W−x)!
(W+B)W

W !

�
(

W

x

)
(x + b − 1)x(W + B − b − x)W−x

(W + B)W
.

Since W is small compared to B and b, it is reasonable to presume that, for example,
255 ·254 ·253 ·252 ·251 is close to 2515. This is not quite the same approximation
as the birthday-problem formula used at the beginning of this chapter: Notice that
the approximation is on the low side of the exact value. Nevertheless, there is a
similar bound to the error.

Proposition. e1/(n+k−1)(k

2) ≤ (n + k − 1)k/nk ≤ e(1/n)(k

2).

Proof. Exercise. It precisely parallels the proof of the corresponding proposition
in Chapter 3.5.3. In fact, if we had been imaginative enough to invent “negative”
permutations (in which the products go up instead of down, as in some of the Urn
Problem 4 (see Exercise 3.37) calculations, the two results could have been a single
proposition. �

Applying this proposition to our rearrangement of the hypergeometric calcula-
tion, we get

p(x) �
(

W

x

)
(x + b − 1)x(W + B − b − x)W−x

(W + B)W

≈
(

W

x

)
bx(B − b + 1)W−x

(B + 1)W
.

Proposition. Whenever
(
W

2

)
is small compared to b and B + 1 − b, then

p(x) ≈
(

W

x

)
bx(B + 1 − b)W−x

(B + 1)W
.

The approximation uses the last proposition and the fact that x and W − x are
no greater than W .

Example. In the problem with the heirs, p(2) ≈ (52) 1002(151)3

2515 � 0.3456, which is
within about 1% of the correct answer.

6.3.2 Binomial Random Variables
Inspired by our earlier work, we simplify the expression by letting b/(B + 1)�p,
the probability that a single white marble will be selected:p(x)≈(W

x

)
px(1−p)W−x .

As before, we would like to interpret this approximation as a probability of inter-
est in itself. White marbles are rare in these urns, and so they are usually widely
scattered through the sequence of marbles we draw. If we imagine creating our
sequence by sowing white marbles at random into the long sequence of black mar-
bles, it seems plausible that these drops are almost independent of one another,
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because earlier white marbles are so few as to have little effect on the next drop.
This suggests the following definition.

Definition. In a sequence of n (� 1, 2, 3, . . .) independent trials with probability
p (0 < p < 1) of success at each trial, then X, the number of successes, is a
binomial [B(n, p)] random variable.

We imagine a success to be a white marble that was dropped before the bth
black marble, out of a total of W white marbles introduced. Each sequence of the
desired number of successes and failures has probability px(1 − p)n−x , because
each trial is independent of the others, and so we just multiply. The number of
sequences of n trials with x successes among them is, of course, just

(
n

x

)
.

Proposition. The sample space of a binomial B(n, p) random variable is
{0, 1, . . . , n}, and p(x) � (n

x

)
px(1 − p)n−x .

Compare this to our result about approximating negative hypergeometric random
variables:

Proposition. Let Xi be a sequence of N(W, Bi, bi) random variables such that
Bi → ∞ and bi/(Bi + 1) → p where 0 < p < 1. Then the sequence converges
in distribution to a B(W, p) random variable.

Of course, this new family is not just an approximating device.

Example. A certain lung disease in newborns is fatal in 70% of cases. A new
treatment has been proposed, but you doubt that it will improve the survival rate.
Ten randomly chosen patients are to be given the new treatment. What is the
probability that exactly 2 will die?

If you are right, then the number of survivors will be a binomial B(10, 0.7)
random variable, since presumably the newborn’s chances are independent of one
another. Then p(2) � (10

2

)
(0.7)2(0.3)8 � 0.00145, which is about one time in 700.

Even if we add in the even rarer possibilities of 1 or 0 deaths, getting a p-value
well under 0.01, this is so unusual that if it happens that way, you should rethink
your skepticism about the new treatment.

We can calculate the limit of the expectations in the sequence above:

lim
i→∞

E(Xi) � lim
i→∞

Wbi

Bi + 1
� W lim

i→∞
bi

Bi + 1
� Wp,

which leads us to the conjecture that for a binomial B(n, p) random variable,
E(X) � np. Intuitively, the expected number of successes is the number of trials
times the proportion of successes. This conjecture will turn out to be correct, later
in the chapter. In our example, we would expect 7 patients to die, on average.

The binomial random variable has a symmetry to it that follows from the re-
versal symmetry in a hypergeometric variable: counting the white marbles that
are drawn after the bth black marble. The probability that a single white mar-
ble will fall in that range is, of course, B+1−b

(B+1) � 1 − p, which we now think of
as the probability of a failure. But after n independent trials, we conclude that
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P[x|B(n, p)] � P[n − x|B(n, 1 − p)]; this just says that if we observe that a cer-
tain number of experiments are successes, the rest must be failures. Interestingly, a
negative binomial family has no reversal symmetry, because the sequence of trials
has no necessary end point.

6.3.3 Bernoulli Processes
It is natural to wonder whether there is a connection between negative binomial
and binomial probabilities. The mass functions are obviously not the same. The
relationship can be explained as follows:

Definition. A Bernoulli(p) process is a sequence of independent Bernoulli trials,
with probability of success p(0 < p < 1) at each trial, thought of as continuing
indefinitely. A realization of such a process is a particular sequence of successes
and failures.

For example, FSFFSFSSSFSFFSSFSFS is a segment of the realization of such
a trial. Notice that the probability that a segment of this length will look like this
is just p10(1 − p)9. We see that a negative binomial random variable is just the
number of successes before the kth failure in a Bernoulli process. Furthermore,
a binomial random variable is the number of successes in the first n trials of a
Bernoulli process. Thus, the two are related just as negative hypergeometric and
hypergeometric variables are related—two corresponding stopping rules in the
same sort of stochastic process (see 5.4.3).

This tells us that we can use precisely the same reasoning as before to connect
the cumulative distribution functions of the two random variables: “At most x

successes precede the kth failure” is equivalent to “at most x successes are in the
first x + k trials.” Therefore, we have a corresponding equality:

Proposition (positive–negative duality).

(i) F [x|NB(k, p)] � F [x|B(x + k, p)].
(ii) F [x|B(n, p)] � F [x|NB(n − x, p)].

Bernoulli processes, of course, have their own black–white transformation: We
interchange those outcomes we call successes and those we call failures. The
probability of success then becomes 1 − p. In a binomial experiment, we are
counting what used to be failures after n trials, which is, of course, all those that
were not successes—we have simply rediscovered reversal symmetry. In a negative
binomial experiment something more complicated happens, since we have changed
the stopping rule. As in the negative hypergeometric case, we reason that “at most
x successes by the kth failure” is equivalent to “more than k − 1 failures appear
by the (x + 1)st success.” Now interchange success and failure to get an important
symmetry:

Proposition (black–white symmetry).
F [x|NB(k, p)] � 1 − F [k − 1|NB(x + 1, 1 − p)].
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6.4 The Poisson Family

6.4.1 Poisson Approximation to Binomial Probabilities
We invented negative binomial and binomial random variables to approximate
certain urn problems that, though involving many marbles, in practice required us
to count relatively few marbles. This does not mean that these new families are
useful only in problems involving small counts.

Example. A manufacturer of integrated circuit chips says that the probability that
one of his chips will be bad is no more than 2%. You will periodically test 100
chips, chosen at random, and you will complain to the manufacturer if you discover
6 or more bad chips. What is the probability that from a given experiment you will
complain in error? The number of bad chips in a test batch might be a B(100, 0.02)
random variable.

P(X ≥ 6) � P(X > 5) � 1 − P (X ≤ 5) � 1 − p(5) − p(4) − · · · − p(0),

where p(5) � 100·99·98·97·96
5·4·3·2·1 .025.9895 � .035347, and so forth. This is a longish,

but not impractical, hand calculation. We conclude that the total probability of
rejecting a batch is 0.01548; so we will not be sounding the alarm in error very
often.

This calculation reminds me of cases where we could do simple approximations
in earlier sections. When n is large compared to x, we would presumably organize
the binomial calculation as p(x) � (n)x

x! px(1 − p)n−x . But we now know that if(
x

2

)
is small compared to n, then (n)x is well approximated by nx . In this case,

p(x) ≈ (np)x
x! (1 − p)n−x .

Since n is large and x is small, we are presumably interested in cases where
p is small; therefore, the quantity np is not too large compared to n. This leaves
the exponent, n − x, the only irritatingly large part of this expression. Let us see
whether we can simplify that as well: First factor it into a large and a smaller piece
(1 − p)n/(1 − p)x. Remembering that 1 − p ≤ e−p (see Exercise 3.24), we have
that (1 − p)n ≤ e−np using the basic multiplicative property of exponents. In the
quality control problem, this means that 0.98100 � 0.1326 ≤ e−100·0.02 � 0.1353.
It seems that the exponential upper bound is fairly close; perhaps we may use it as
the desired approximation? To do so we need to find out how close it is in general,
which means that we need a lower bound. This will require a bit of ingenuity:

1
1−p

� 1 + p

1−p
≤ ep/(1−p). But then

(1 − p)n �
(

1
1 − p

)−n

�
(

1 + p

1 − p

)−n

≥ e−np/(1−p).

How close is this to the upper bound? A little algebra establishes that since 1
1−p

�
1 + p

1−p
, we have e−np/(1−p) � e−np−np2/(1−p).

Proposition. (i) e−npe−np2/1−p ≤ (1 − p)n ≤ e−np.

(ii) If np2/(1 − p) is close to zero, then (1 − p)n/e−np is close to one.



6.4 The Poisson Family 185

The second fact follows because in that case the second exponential in (i) is close
to 1. Furthermore, since

(
x

2

)
is small compared to n, we have for our remaining

piece (1 − p)x ≈ e−xp ≈ 1. We have now assembled the facts necessary to state a
very useful approximation to a binomial random variable:

Theorem (Poisson approximation to the binomial). For a binomial B(n, p) ran-
dom variable such that np2/(1 − p) is small, then if

(
x

2

)
is small compared to n,

we have p(x) ≈ (np)x
x! e−np.

Example. In the quality control problem with n � 100 and p � 0.02, we note
that 100·(0.02)2

1−0.02 � 0.0408 is much smaller than 1, and
(5

2

)
is small compared to 100.

Then we feel free to try p(5) ≈ (2)5

5! e−2, and so forth for 4, 3, . . . . The probability
of rejecting a batch turns out to be approximately 0.0166, which is reasonably
close to the exact answer, 0.01548.

Our approximation to the probability mass function is attractively simple, par-
ticularly so since the parameters of the binomial always just appear as the product
np; this is the quantity we have claimed will turn out to be the expectation of a
binomial. It is common to write this λ � np (Greek letter lambda), so that our
approximation looks like p(x) ≈ λx

x! e
−λ.

6.4.2 Approximation to the Negative Binomial
Such a simple result deserves to be used in other problems, and justice triumphs.
The same formula is useful in approximating certain negative binomial proba-
bilities. The idea will be that if x is small enough and k is large enough, then
in

p(x) �
(

x + k − 1
x

)
px(1 − p)k � (x + k − 1)x

x!
px(1 − p)k

we may sometimes be able to replace (x + k − 1)x with kx . In a similar way to the
binomial case, for p small we may sometimes be able to say that (1 − p)k is close
to e−kp/(1−p). Notice that we contrived the exponent to match what we conjecture
to be the expectation.

Theorem (Poisson approximation to the negative binomial). For a negative bi-
nomial NB(k, p) random variable such that kp2/(1 − p) is small, then if

(
x

2

)
is

small compared to k, let λ � kp/(1 − p). Then p(x) ≈ λx

x! e
−λ.

Proof. Exercise. The argument parallels the previous one, with slightly more
work required to arrange that the parameter equal the expectation. �

Example. The rare XXY configuration of the sex chromosomes occurs in about
1.5% of all human males. You require a sample of 400 men who do not possess
this arrangement, so you test a random sequence of men until you have enough
without this configuration. What is the probability of 3 or fewer XXY subjects that
you must discard from your sample?
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The negative binomial model is reasonable here, with k � 400 and p � 0.015.
Then we calculate p(3) � (402

3

)
0.01530.985400 � 0.08591; and so forth for 2, 1,

0 to get 0.1452. We suspect that the Poisson approximation might be appropriate,
since kp2/(1 − p) � 0.09137 and

(
x

2

)
/k � 0.0075 are fairly small. We have

λ � kp

1−p
� 6.0914, and so

p(3) ≈ 6.09143

3!
e−6.0914 � 0.08522.

The total approximate probability is 0.1432, which is quite close to the exact
calculation.

6.4.3 Poisson Random Variables
When we found useful approximations to probability mass functions earlier in the
chapter, the new formulas turned out to be exact for certain new families of random
variables. Our luck will hold, but unfortunately, our new family cannot be realized
by some simple probability process that can be modeled exactly by draws from an
urn, or rolling dice, or some such experiment. We shall have to wait to develop the
tools to define this Poisson process; in the meantime, we have a probability mass
function p(x) � λx/x!e−λ, which may give us the probabilities we need. We note
that for x ≥ 0, the probabilities are positive. Furthermore,

∞∑
x�0

λx

x!
e−λ � e−λ

∞∑
x�0

λx

x!
� e−λeλ � e0 � 1

by a standard infinite series you learned in calculus. Therefore, our probabilities
sum to 1, and we have the information required to define a discrete random variable.

Definition. A Poisson random variable X with parameter λ ≥ 0 has sample space
X � 0, 1, 2, . . . and probability mass function p(x) � (λx/x!)e−λ.

We gather clues from its applications so far as to how this family might be useful.
In both the negative binomial and binomial cases, it approximately described a
situation in which we counted successes in independent Bernoulli trials when the
probability of success was very small, but the number of failures, or trials, was
rather large. Generally, we will think of using Poisson random variables as models
when we are counting rare, independent events. We may interpret λ, since it is np

in the binomial case, as a measure of the average rate at which the rare events are
happening.

Example. The lightning rod on the top of a certain skyscraper is hit by bolts of
lightning at an average rate of about 3 times per year, based on many years of
experience. What is the probability that it will be hit 6 or more times next year?
Since these strikes are rare occurrences, and presumably independent when looked
at over long time intervals, we presume that the number of hits is a Poisson variable
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with λ � 3. Then

P(X ≥ 6|λ � 3) � 1 − P(X ≤ 5) � 1 − p(5) − p(4) − · · · − p(0);

we calculate p(5) � 35

5! e
−3 � 0.10082. After calculating all 6 probabilities, our

answer is then 0.0839.

We could have pretended that there were 1000 chances for lightning to strike in
a year, with a probability of 0.003 that each would happen; then we would use the
Poisson approximation to a binomial variable, with the same λ as before, and get
the same answer. But we have no idea how many times lightning almost struck; so
we use the Poisson model directly.

Our approximation results may be interpreted as limits.

Theorem (Poisson limits in a Bernoulli process). (i) Given a sequence of neg-
ative binomial random variables {Xi} distributed NB(ki, pi), where pi → 0 and
kipi/(1−pi) → λ > 0, then the sequence converges in distribution to a Poisson(λ)
random variable.

(ii) Given a sequence of binomial random variables {Xi} distributed B(ni, pi),
where pi → 0 and nipi → λ > 0, then the sequence converges in distribution to
a Poisson(λ) random variable.

We can get some idea of the expected value of a Poisson random variable by
looking at the behavior of similar binomials: limi→∞ E(Xi)

?� limi→∞ nipi � λ.
After two speculative uses of limits, we conjecture that the expectation of a Poisson
random variable simply equals λ; we will shortly verify that this is correct. Notice
that we were taking advantage of this guess in the lightning problem: We would
estimate the rate of strikes per year by finding the sample average number over
many years.

Poisson random variables are so simple that they have no symmetries at all.
Nevertheless, or perhaps because of this, we will find them enormously useful
from now on.

6.5 More About Expectation

We have speculated about the expectations of some of our limiting families, using
somewhat dubious limit arguments to get plausible-sounding results. Let us tackle
these problems more directly from the probability mass functions.

Let X be Poisson(λ); then if the expectation exists, we would have

E(X) �
∑
X

Xp(X) �
∞∑

X�0
X

λX

X!
e−λ.
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The first term in this sum is zero, and in all others the X cancels the first factor of
X!:

E(X) �
∞∑

X�1

λX

(X − 1)!
e−λ.

Except that X starts at one instead of zero, this reminds us of a sum of Poisson
probabilities; so substitute Y � X − 1:

E(X) �
∞∑

Y�0

λ1+Y

Y !
e−λ � λ

∞∑
Y�0

λY

Y !
e−λ.

But the sum is just the total of all the probabilities of possible values for a Poisson(λ)
random variable, which is, of course, 1. So E(X) � λ, as conjectured.

This technique, rearranging the expectation formula so that the hard part is a
sum of all probabilities and so equal to 1, appears everywhere in statistics. We will
call it the inductive method.

You may have noticed that when we used summation notation in our expectation
formulas, we let the index of summation be written capital X or Y , as if the index
were a random variable. It turns that the index of summation behaves just like a
random variable in such formulas; we do not know its value yet, but it must be one
from the list. This convention will be particularly helpful later, when our random
variables are no longer discrete.

The same approach gives us the expectation of a binomial B(n, p) random
variable:

E(X) �
n∑

X�0
X

n!
X!(n − X)!

pX(1−p)n−X �
n∑

X�1

n!
(X − 1)!(n − X)!

pX(1−p)n−X.

Once again it seems reasonable to substitute Y � X − 1:

E(X) �
n−1∑
Y�0

n!
Y !(n − 1 − P )!

p1+Y (1 − p)n−1−Y

� np

n−1∑
Y�0

(n − 1)!
Y !(n − 1 − Y )!

pY (1 − p)n−1−Y .

Now the part under the summation is the collection of all probabilities for a B(n−
1, p) random variable, which sum to one; so as we hoped, E(X) � np. The sort
of change from n to n − 1 often happens in this method and is why we chose to
call it the inductive method, since it may remind you of proofs by induction in
mathematics.

Proposition. For X following the law

(i) If X is Poisson(λ), then E(X) � λ.
(ii) If X is B(n, p), then E(X) � np.

(iii) If X is NB(k, p), then E(X) � kp/(1 − p).
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The proof of (iii) is an exercise, using the same inductive principle of rearranging
the sum so that the hard part equals 1. You might also try some harder calculations,
using this technique to verify our expressions for the hypergeometric and negative
hypergeometric expectations (see 5.5.3).

Example. Approximately 10% of Americans are left-handed. You need 20 left-
handers for a study of the relationship between left-handedness and left-footedness.
How many people will you have to interview, on average, to get your 20?

Strictly, interviews are not independent: Since we do not interview anybody
twice, we are really selecting without replacement. In practice, the number of
Americans is so huge compared to the number we are interviewing that it might
as well be with replacement. We pretend that interviews are independent, and then
the number of righties interviewed is negative binomial. In this way, we do not
even have to figure out how many Americans are eligible for the study; just the
probability 0.1 of a success. The expectation is then 20 · 0.9

1−0.9 � 180 right-handers
to be interviewed, for a total of 200 interviews.

Example. Generate a discrete random variable by the following procedure: (1)
Use a calculator or a computer to generate a real-valued random number X uni-
formly on the interval from 0 to 1; (2) calculate Y � 1/X; and (3) write down Z,
the largest whole number no bigger than Y . Then Z has sample space 1, 2, 3, . . ..
For example, my calculator gets X � 0.2289823; then Y � 4.36715, and Z � 4.
Now

F (z) � P(Z ≤ z) � 1 − P(Z ≥ z + 1) � 1 − P(Y ≥ z + 1)

� 1 − P(X ≤ 1/(z + 1)) � 1 − 1/(z + 1).

We use our rule for extracting the probability mass function p(x) � F (x)−F (x−1)
to conclude that p(z) � 1 − 1/(z + 1) − (1 − 1/z) � 1/(z(z + 1)). For example,
p(4) � 1/20.

Now let us find the expectation of Z:

E(Z) �
∞∑

Z�1
Z

1
Z(Z + 1)

�
∞∑

Z�1

1
Z + 1

� 1
2

+ 1
3

+ 1
4

+ · · · .

In case you do not remember how to sum this famous series (called the harmonic
series) from calculus, let us see whether we can approximate the answer. Our
approach will be to partition the sample space into a convenient collection of events:
C1 � {1}, C2 � {2, 3}, C3{4, 5, 6, 7}, and generally Ci � {2i−1 ≤ X < 2i}. This
is a useful partition because P(Ci) � F (2i − 1) − F (2i−1 − 1) � 2−i . Instead of
multiplying each outcome by its probability and summing, we will find a lower
limit for the expectation, by multiplying the probability of each element of the
partition by the smallest value of its constituent outcomes:

E(X) �
∑
X

Xp(X) �
∑

i

[∑
X∈Ci

Xp(X)

]
≥
∑

i

[
min
X∈Ci

X
∑
X∈Ci

p(X)

]
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�
∑

i

min
X∈Ci

XP(Ci).

In our problem, minX∈Ci
X � 2i−1, so our lower limit is

∑
i

min
X∈Ci

XP(Ci) �
∞∑
i�1

2i−12−i �
∞∑
i�1

1
2

� 1
2

+ 1
2

+ · · · ,

which is, of course, infinite. Since a lower bound on our expectation is infinite, we
can only conclude that the expectation of our random variable is infinite. Some
simple random variables do not possess a finite expectation.

What practical meaning does the lack of a finite expectation for the results of
an experiment have? If you repeated, for example, a binomial experiment a great
many times and averaged your results, you would find that with high probability,
the answer would be close to our expected value np (as we will check later). But if
you repeated the calculator experiment many times and took an average, the result
would be highly variable, no matter how many times you repeated it. I generated
1000 independent copies of this random variable; my average was 7.80. I generated
a second set of 1000 values; this time the average was 18.01. It showed no sign of
settling down to some single value.

6.6 Mean Squared Error and Variance

6.6.1 Expectations of Functions
Random variables often represent efforts to measure some important number when
there is random “noise” that keeps us from doing so accurately. For example, if
80% of the voters in a country favor some policy (though we do not know this), we
might try to find this out by interviewing 100 people picked at random about their
opinion. The result is unpredictable, but a reasonable model is that the number
interviewed will be a binomial B(100, 0.8) random variable. In our hearts, we
believe that the “true” result of our experiment ought to be 80 in favor, so that the
percentage is representative of the country as a whole.

In (5.6.1), we used the observed value of a random variable to get a method-of-
moments estimate of a parameter in a family. We were seeing a parameter µ as
an unknown, ideal value for which X is an erratic reflection. How good is X as
a measure of µ? Statisticians use any of a number of standards of closeness of a
random variable to some fixed value, but the single most useful one was popularized
by the French mathematical astronomer Legendre about 1805. He proposed that
the average value of the squared difference, (X−µ)2, was particularly easy to work
with as a measure of how far X was, on the whole, from the ideal value. Clearly,
this was inspired by the sample mean squared error from least-squares theory (see
2.2.2). For random variables, expectation embodies our idea of the average, but
we apparently have to move beyond our basic idea of the expectation of X to the
concept of the expectation of some function, call it g(X). If our random variable
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were discrete uniform, then the expectation should still be a simple average, but
now of the values of g, that is, E[g(X)] � 1

n

∑n
i�1 g(xi) if there are n equally likely

values. We should apply our weighted-average technique for the case of general
discrete variables:

Definition. Let X be a discrete random variable and g a real-valued function
defined on the sample space of X. Then E[g(X)] �∑X g(X)p(X) whenever this
sum is absolutely convergent.

Definition. The mean squared error of a random variable X with respect to a
constant µ is E[(X − µ)2].

Example. Consider a B(3, 0.8) random variable. If we choose as its ideal value
µ � 2, then the mean squared error calculation would go as follows:

X p(X) (X − 2)2 (X − 2)2p(X)
0 0.008 4 0.032
1 0.096 1 0.096
2 0.384 0 0
3 0.512 1 0.512

total 0.64

We need to learn a bit more about the expectation of a function.

Theorem (expectation is a linear operator). For X a discrete random variable:

(i) If a is constant, then E(a) � a.
(ii) E[ag(X)] � aE[g(X)] whenever the second expectation exists.

(iii) E[g(X)+h(X)] � E[g(X)]+E[h(X)] whenever the right-hand expectations
exist.

Proof. (i) E[a] �∑x ap(X) � a
∑

x p(X) � a · 1 � a.
(ii) E[ag(X)] �∑x ag(X)p(X) � a

∑
x g(X)p(X) � aE[g(X)].

(iii) E[g(X) + h(X)] � ∑
x[g(X) + h(X)]p(X) � ∑

x g(X)p(X) +∑
x h(X)p(X) � E[g(X)] + E[h(X)]. �

One important case of linearity is that E(X + a) � E(X) + a, applying (iii)
and then (i) above. If there is a fixed cost every time we perform an experiment,
the average cost is just that fixed cost, plus the average of the part of the cost that
varies by chance.

We squared the distance from the reference point when defining a mean squared
error in order that the result be a positive, or at least not a negative, number, to
match our idea of a distance. Clearly, the average of positive numbers should be
positive; and by staring at the definition we see that this is true for expectations:

Proposition (expectation is a positive operator). (iv) For g(x) ≥ 0, E[g(X)] ≥
0.

This must be, because all the terms in the sum are at least zero. An operator
that is a linear operator and also meets this proposition is called a positive linear
operator.
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6.6.2 Variance
We will use these facts about expectations to extract some information about mean
squared errors. An obvious limitation of mean squared errors as measures of the
variability of a random variable is that they depend on your choice of ideal reference
point, µ. As we did with samples (see 2.4.2), we look for a minimum possible value
of the mean squared error. This would be a plausible measure of the uncertainty,
or variability, inherent in that experiment. In this case, we make the following
definition:

Definition. The variance of a random variable X is the minimum value among
all possible mean squared errors with different centers µ. It is written Var(X).

Obviously, this was inspired by the sample variance. Let us assume that X has
a variance, and that there is a number µ such that Var(X) � E[(X − µ)2]. Let us
try to learn something about µ. First consider any other reference point ν. Then by
definition, Var(X) � E[(X − µ)2] ≤ E[(X − ν)2]. Now add and subtract µ inside
the square on the right-hand side of the inequality:

E[(X−ν)2] � E[(X−µ+µ−ν)2] � E[(X−µ)2 +2(µ−nu)(X−µ)+(µ−ν)2].

Now we use the linearity properties of the expectation established earlier to get

E[(X − V )2 � E[(X − µ)2] + 2(µ − ν)E(X − µ) + (µ − ν)2.

Comparing this to the equality above, we discover that for any value of ν, we must
have

2(µ − ν)E(X − µ) + (µ − ν)2 ≥ 0.

What about µ would make this so? The second term is no problem, but it looks as
if the first term could be of either sign and any size. However, if E(X − µ) � 0,
then the inequality is certainly always true, and this happens when µ � E(X). We
have concluded that the minimum value of the mean squared error, which we now
call the variance, measures deviations from the expected value. To summarize:

Proposition. Let µ � E(X). Then

(i) for any number ν, E[(X − ν)2] � E[(X −µ)2] + (µ− ν)2 so long as the first
expectation exists for some ν. As a consequence,

(ii) Var(X) � E[(X −µ)2] (since the previous equation shows that it must be the
minimum value of the mean squared error), and

(iii) Var(X) � E[X2] − E(X)2 (by letting ν � 0).

We will call (iii) the short formula, since it often shortens our calculations.

Example. In the B(3, 0.8) case above, µ � E(X) � 2.4. We compute E(X2) �
6.24; therefore, Var(X) � 6.24 − (2.4)2 � 0.48 (see Figure 6.1).

It is worth noticing that Var(a) � E(a2) − (a)2 � a2 − a2 � 0. That is, a
quantity that does not vary has no variance. Also,

Var(X + a) � E{[(X + a) − E(X + a)]2} � E{[X − E(X)]2} � Var(X),
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FIGURE 6.1. Mean squared error and variance

since the a’s cancel. That is, adding or subtracting a constant amount to a random
variable has no effect on its variability, as we would have hoped. Furthermore,

Var(aX) � E(a2X2) − E(aX)2 � a2E(X2) − [aE(X)]2 � a2[E(X2) − E(X)2]
� a2Var(X),

a somewhat less intuitive fact, to which we will return. These are important enough
to summarize:

Proposition (properties of the variance).

(i) Var(a) � 0.
(ii) Var(X + a) � Var(X).

(iii) Var(aX) � a2Var(X).

6.6.3 Variances of Some Families
We hope to find general formulas for the variance of whole families, for example,
the binomial. Let X be B(n, p). Try the inductive method. We might use the short
formula, for which we need to calculate

E(X2) �
n∑

X�0
X2 n!

X!(n − X)!
pX(1 − p)n−X.

Unfortunately, only one of the X’s cancels, and we are left with a bit of a mess.
After a small flash of ingenuity, we calculate instead

E[X(X − 1)] �
n∑

X�0
X(X − 1)

n!
X!(n − X)!

pX(1 − p)n−X

�
n∑

X�2

n!
(X − 2)!(n − X)!

pX(1 − p)n−X.
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As we did for the expectation, we substitute Y � X − 2:

E[X(X − 1)] �
n−2∑
Y�0

n!
Y !(n − 2 − Y )!

p2+Y (1 − p)n−2−Y

� n(n − 1)p2
n−2∑
Y�0

(n − 2)!
Y !(n − 2 − Y )!

pY (1 − p)n−2−Y � n(n − 1)p2,

since the second sum covers all probabilities for a B(n − 2, p) variable. But then,

E[X(X − 1)] � E(X2) − E(X),

so

E(X2) � n(n − 1)p2 + np � (np)2 + np − np2,

and we conclude that

Var(X) � E[X2] − E(X)2 � np − np2 � np(1 − p).

Proposition.

(i) If X is B(n, p), then Var(X) � np(1 − p).
(ii) If X is Poisson(λ), then Var(X) � λ,

(iii) If X is NB(k, p), then Var(X) � kp/(1 − p)2.

Parts (ii) and (iii) are exercises, which should be done by the same method. It
is possible to find the variance of hypergeometric and negative hypergeometric
random variables by the same technique, though we will develop another, perhaps
simpler, method shortly.

Though mean squared error and variance are very important concepts, they have
little intuitive meaning to most of us as measures of the uncertainty in a random
variable. For one thing, they are in units of the square of the original measurement.
If the random variable is in dollars, its variance is in dollars-squared, whatever that
means. We therefore find it useful to have the following definition:

Definition. The square root of a mean squared error is called a root-mean-square
(rms) error. The square root of the variance is called the standard deviation, often
denoted by σX.

This definition explains the common convention of denoting a variance by σ 2.
Note that this is like calling the sample variance s2 and the sample standard de-
viation s. From the corresponding fact about the variance, we discover by taking
square roots that σaX � |a|σX. This means that the standard deviation is a measure
of variability in the same units as X.

Example. If I toss a fair coin 100 times, I presume that the number of heads
observed is B(100, 0.5). The expected number of heads is, of course, np � 50,
and the variance is np(1−p) � 25. This has little flavor, but the standard deviation
is 5 heads. We might think of that as a typical deviation about the expectation, so
that 45 heads would not be unusually small, and 55 would not be unusually large.
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6.7 Bernoulli Parameter Estimation

6.7.1 Estimating Binomial p
The families of random variables in this chapter of course become more interesting
when we want to learn the values of unknown parameters.

Example. You are a pollster and are hired by a candidate for governor to find
what proportion of the likely voters in a large state would currently favor her for
governor. You sample 200 voters, randomly selected from the pool of likely voters,
and 107 favor her. What can you say about her actual statewide support?

First, we will assume that we have drawn few enough voters that we may safely
pretend that we are sampling with replacement (see the exercises for the sorts of
conditions we must meet). So a plausible model for our experiment is that 107
turned out to be a value from a B(200, p) random variable, where the unknown p

is the probability that a random voter favors our candidate. The value of p is the
most important question we are likely to be asked. As in the last chapter, we might
as well let a standard estimate be the one suggested by matching expectation to
observed value: X ≈ E(X) � np, so p̂ � X/n. We will see sounder reasons why
this is a good idea in later chapters. Meanwhile, we note without astonishment
that it matches the standard estimate, the sample proportion, from Chapter 1 (see
1.7.1).

In our example, we estimate that a voter will favor your candidate with prob-
ability p̂ � 0.535. The next important question is, How close to the truth is this
likely to be? It is, of course, itself a random variable, so

Var(p̂) � Var
(

X

n

)
� 1

n2 Var(X) � np(1 − p)
n2 � p(1 − p)

n
,

from what we have learned about variances. Then the standard deviation is σp̂ �√
p(1−p)

n
. Incidentally, the standard deviation of an estimate of a model parameter

is often called its standard error. In (2.4.2), we mentioned that a rule of thumb for
capturing much of the range of variation of a data set was a 2-s interval, which
deviated up and down by two sample standard deviations from the sample mean.
For random variables, particularly those that estimate quantities of interest, we
define a corresponding 2-σ interval; in this case that would be

p − 2
√

p(1 − p)
n

≤ p̂ ≤ p + 2
√

p(1 − p)
n

.

In later chapters we will learn something about how probable it is that the estimate
falls in this range.

Of course, what we have written down is of little use, because once we do the
poll, p̂ is known, but p is still quite unknown. It would be more interesting to move
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things across the inequalities to get the mathematically identical statement

p̂ − 2
√

p(1 − p)
n

≤ p ≤ p̂ + 2
√

p(1 − p)
n

.

Now the quantity we want to know is between limits, we hope with high probability.
You are laughing at me, naturally, because you think that I have forgotten that the
unknown p is still in those square-root terms. That is a problem, but since what we
are doing is rough anyway, we do something crude but plausible: Replace these p’s
with their estimated value p̂, to get the practically useful estimated 2-σ interval

p̂ − 2
√

p̂(1 − p̂)
n

≤ p ≤ p̂ + 2
√

p̂(1 − p̂)
n

.

Example (cont.). The probability of a vote for your candidate has the 2-σ
interval 0.4645 ≤ p ≤ 0.6055.

That somewhat arbitrary trick of replacing the standard error by its rule-of-
thumb estimate has one reassuring property: Although p and p̂ are unlikely to be
equal, it happens that the function

√
p(1 − p) changes rather slowly so long as we

stay away from 0 and 1 (see Figure 6.2).
Therefore, it usually does not hurt much to replace the standard deviation by its

estimate. This helps to explain why the experience of statisticians with this interval
has been generally pleasant, despite its several arbitrary features.

6.7.2 Confidence Bounds for Binomial p

We learned in the last chapter how we could go beyond rules of thumb, and make
definite probabilistic statements about the value of an unknown parameter, by
constructing confidence bounds (see 5.6.2). Of course, we can do exactly the same

  p

s

.2 .4 .6 .8

p (1 – p)

.1
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.3

.4

FIGURE 6.2. Binomial standard deviation as a function of p
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thing for the p parameter in a binomial distribution. The one problem here is
that earlier we used the formula for the cumulative distribution function that we
fortunately had in that case. The binomial cumulative is a messy sum with no
closed form. In the exercises, you will develop a simplified way to compute it;
but even so, the author wrote a little computer program to aid him in doing the
calculations in this section.

To get a lower, say, 95% confidence bound for p in our polling example, we want
to find at what value the result of X � 107 favorable voters becomes improbable
(at the 5% significance level). For us to decide that p is implausibly small, we will
have to decide that X was improbably large; that is,

P(X ≥ 107|B(200, p)) � 1 − F (106) �
200∑

X�107

(
200
X

)
pX(1 − p)200−X

gets a small p-value. After a number of time-consuming calculations, I home in
on a value that is barely compatible with the data:

p P(X ≥ 107)
0.5 0.179002
0.45 0.009668
0.48 0.068677
0.47 0.038404
0.475 0.051810
0.474 0.0488675
0.4744 0.050028

If I kept going, I could get as close to 0.05 as I pleased, but this will do. As a
result of my poll, I believe that the proportion of voters favoring my candidate is
p ≥ 0.4744, with 95% confidence. I remember that what this really means is that
before I took the poll, the probability was 95% that whatever lower confidence
bound I set would be a correct inequality.

In this problem, an upper confidence bound turns out to be similarly useful. I
look for the value of p at which counts of X ≤ 107 become implausibly small,
to conclude after many calculations that a 95% upper confidence bound would be
p ≤ 0.5948.

6.7.3 Confidence Intervals
I am sure that you are tempted to combine our two inequalities, to say 0.4744 ≤
p ≤ 0.5948; this should tell us to what accuracy we have learned our degree of
political support, with high probability. (It also looks a bit similar to the 2-σ interval
from the last section.) But we need to be careful: Just what is the probability that
this double inequality is correct? Turn the problem around, and ask the probability
that such an interval would be wrong. Then for the (unknown) true value of p,
either X ≥ 107 has a low probability, or X ≤ 107 has a low probability. These
cannot both be the case, so long as α < 0.5 defines a low probability, because
the total of the two probabilities is at least 1. Therefore, either the first or the
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second inequality is false, but not both; the two events are mutually exclusive. We
conclude from our addition rule that the probability that our interval above is false
is 0.05 + 0.05 � 0.10; it is therefore true with probability 0.90. We are ready to
make a new definition:

Definition. Let a random variable X be observed from a family with unknown
parameter θ . Let X lead us to reject θ as too small at a significance level αL for
exactly the values θ < θL; and for exactly the values θ > θU, let X lead us to reject
θ as too large at the significance level αU; and αU + αL � α. Then we say that
θL ≤ θ ≤ θU is a (1 − α) × 100% confidence interval for θ .

It seems that the interval above is only a 90% confidence interval for p.
Notice that to get a conventional 95% confidence interval for p, we must find

lower and upper confidence bounds whose p-values sum to 0.05. There are obvi-
ously an infinite number of ways to do this. If we wish to be evenhanded about
high and low misses, there are still several possibilities. Perhaps the best way is to
reason that since we want to pin down the true value as precisely as possible, we
should choose the shortest confidence interval such that for the two significance
levels we have αU +αL � α. This was not often done in practice, before computers
were universal, because the computations may be a bit laborious.

The most popular way of constructing confidence intervals is simply to let αU �
αL � α/2. In the example, I proceed just as I did in the last section to find 97.5%
upper and lower confidence bounds, and I conclude that 0.4633 ≤ p ≤ 0.6056
is a 95% confidence interval. Notice that it is amazingly close to the 2-σ interval
of the last section. It will turn out in a later chapter that this is not a coincidence;
the 2-σ rule-of-thumb was invented to be an approximation to a 95% confidence
interval in many important cases.

6.7.4 Two-Sided Hypothesis Tests
We have now seen a case in which we were simultaneously interested in the
probability that a random variable might be surprisingly high and that it might be
surprisingly low. This also happens sometimes in hypothesis testing.

Example. According to standard genetic theory, since brown eyes are dominant
over blue, exactly 25% of the offspring of couples, both brown-eyed and heterozy-
gotic for blue eyes, should turn out to be blue-eyed. You have a simple genetic test
for heterozygoticity in this case. You will find brown-eyed couples who pass your
test and continue the experiment until you have found 30 blue-eyed offspring of
such couples. Naturally, you expect to find about 90 brown-eyed offspring along
the way; if you get many more or many fewer than this, something has most likely
gone wrong with either your experimental procedure or your genetic theory. It
would be very interesting to discover when things indeed have gone wrong.

A reasonable model here is that the count of brown-eyed offspring should be
NB(30, 0.75). We will set up a hypothesis test, with this as the null hypothesis. But
we will reject it, at significance level, say, α � 0.01, if the count of brown-eyed



6.8 The Poisson Limit of the Negative Hypergeometric Family* 199

children is either surprisingly large (so 0.75 is an unrealistically low probability),
or if the count is surprisingly low (so we will suspect that 0.75 is too high). To
make sure that we will at most 1% of the time make a claim that Mendel was
wrong (if he is indeed right), we follow the simple approach of the last section,
allowing a probability of α/2 � 0.005 that we will get too high a count, and the
same probability that the count will be too low. We call this a two-sided hypothesis
test.

After some laborious calculations with the aid of my computer, I find that P(X ≥
146) � 0.00494 and P(X ≤ 47) � 0.00477 are the least extreme values I may
use. Therefore, I decide that if I observe at least 146 brown-eyed offspring in the
course of my experiment, or if I observe at most 47, I will decide to reject the null
hypothesis at the 0.01 level of significance. People who do this frequentist style of
reasoning call those conditions for rejection the critical region of the experiment.

If I am the research assistant who actually carries out the experiment and I
observe 130 brown-eyed children, I use the negative binomial probabilities under
the null hypothesis to discover that since this count seems a bit large, P(X ≥
130) � 0.02726. But if I know that my boss will be wanting to use a two-sided
critical region, I must admit that he would have been willing to reject the null
hypothesis for small values that had similarly low probabilities, too. So I double
the probability I calculated, to include these hypothetical low values; my p-value
is 0.0545. With far less work than in the previous paragraph, I know that he will fail
to reject his null hypothesis at the 0.01 level and in fact will (barely) do the same if
his preferred level was 0.05. This convenience is why computer statistics packages
usually report a p-value; you can then compare it to whatever significance level
you had in mind.

6.8 The Poisson Limit of the Negative Hypergeometric
Family*

We diagram some things we have learned about limiting distributions in Figure
6.3.

negative hypergeometric

negative binomial binomial

Poisson

?

FIGURE 6.3. Poisson limit of negative hypergeometric variables
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We have approximated negative hypergeometric probabilities in two very dif-
ferent ways; but under certain similar-sounding conditions we can approximate
each of these cases by Poisson probabilities. The dotted arrow asks, can we then
sometimes approximate negative hypergeometric probabilities directly by Poisson
probabilities?

We proceed as before to look for simplification, when x is small compared to
W and b, and these are small compared to B:

p(x) � (x + b − 1)x(W )x(B)b
x!(B + W )x+b

� (x + b − 1)x(W )x(B)b
x!(B + W − b)x(B + W )b

,

where at the second equality the permutation in the denominator was factored into
two pieces in order to isolate all the terms that involve x. But our two permutation
inequalities tell us that if

(
x

2

)
is small compared to b and W , then

p(x) ≈ [bW/(B + W − b)]x(B)b
x!(B + W )b

.

The last two permutations could be approximated using results we already know,
but only at the cost of unnecessarily strong conditions (

(
b

2

)
small compared to B).

Instead, we work a little harder:

Proposition.

elm/(k+l) ≤ (k + l)m
(k)m

≤ elm/(k−m+1).

Proof.

(k + l)m
(k)m

�
m−1∏
i�0

k + l − i

k − i
�

m−1∏
i�0

(
1 + l

k − i

)

≤
(

1 + l

k − m + 1

)m

≤ elm/(k−m+1),

where the second inequality works because we replaced each term by the largest
term in the product. Similarly,

(k + l)m
(k)m

�
m−1∏
i�0

(
k − i

k + l − i

)−1

�
m−1∏
i�0

(
1 − l

k + l − i

)−1

≥
(

1 − l

k + l

)−m

≥ elm/(k+l). �

In our problem this becomes e−bW/(B−b+1) ≤ (B)b/(B + W )b ≤ e−bW/(B+W ).
We can relate the exponents to the expected value, as we did in the binomial and
negative binomial case: λ � bW/(B + 1). After some algebra, we can rewrite our
inequalities as

e−λe−b2W/((B−b+1)(B+1)) ≤ (B)b
(B + W )b

≤ e−λebW (W−1)/((B+W )(B+1)).
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To guarantee that the complicated exponents are small, we need only know that
λ2/b and λ2/W are small, since B + W and B − b + 1 are not far from B + 1.

All we need now is to check that the expression to the xth power may be replaced
by λ � bW/(B + 1). But to compare denominators,

(B + W − b)x

(B + 1)x
�
(

1 + W − b − 1
B + 1

)x

≈ 1,

so long as xλ is small compared to b and W . We summarize our conclusions:

Proposition (Poisson approximation to the negative hypergeometric).

(i) Let a random variable be N(W, B, b); then letting λ � bW/(B +1), we have
p(x) ≈ λx/x!e−λ whenever

(
x

2

)
and λ2 are small compared to b and W .

(ii) A sequence of random variables N(Wi, Bi, bi) such that Wi → ∞, bi → ∞,
and 0 < λ � limi→∞ biWi/(Bi + 1) will converge in distribution to a
Poisson(λ) random variable.

Example. A manufacturer sells batches of 1000 capacitors and promises that no
more than 30 are defective. Give him the benefit of the doubt, and assume that
exactly 30 are bad. You need 50 good capacitors, so you test through a batch until
you have found 50 good ones. What is the probability that you will find 3 or more
bad ones along the way?

A reasonable model for the number of bad ones is N(30, 970, 50). You, of course,
calculate P(X ≥ 3) � 1−p(0)−p(1)−p(2) � 0.2025. after many multiplications
and divisions. But this seems a reasonable candidate for a Poisson approximation,
since λ2 � 2.386 is much smaller than either 30 or 50. Using λ � 1.5448, we find
a Poisson P(X ≥ 3) � 0.2013 with much less work.

As an exercise, you should find conditions under which a Poisson random
variable is a satisfactory approximation to a hypergeometric random variable.

6.9 Summary

We found some simple approximate calculations for negative hypergeometric
probabilities, which corresponded to experiments in a Bernoulli process, inde-
pendent experiments that either succeed (with probability p) or fail (3.3). The first
Bernoulli-based family we studied was the geometric family, the count of successes
before the first failure, p(x) � px(1 − p) (2.2). This generalizes to the negative
binomial family, which was the number of successes before a certain number k of
failures have happened, with mass function p(x) � (x+k−1

x

)
px(1 − p)k (2.4). The

binomial family, on the other hand, counted successes in a fixed number n of trials.
Its mass function is p(x) � (n

x

)
px(1−p)n−x (3.2). In either case, if successes have

very low probability, their number may be approximated by the Poisson family,
where for average number of successes λ, we had p(x) � λx

x! e
−λ (4.3).

We learned to evaluate expectations in families like these by the inductive method
(5). Then we studied expectations of functions of random variables, including the
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variance σ 2 � Var(X) � E[(X − µ)2], where µ � E(X) (6.2). We were led to
a simple estimate for an unknown binomial parameter p̂ � X/n, and to a 2-σ
interval,

p̂ − 2
√

p̂(1 − p̂)
n

≤ p ≤ p̂ + 2
√

p̂(1 − p̂)
n

,

as a rough way of describing how accurately we knowp (7.1). More careful analysis
led to a confidence interval for our binomial parameter (7.3). We then developed
two-sided hypothesis tests for cases in which we are interested in surprisingly large
as well as surprisingly small values of our statistics at the same time (7.4). Finally,
to show off how much we have learned about approximation to probabilities,
we found conditions under which there are direct Poisson approximations to the
negative hypergeometric family (8).

6.10 Exercises

1. In Exercise 19 of Chapter 5, there were 12 women and 15 men in a statistics
class who took a test.

a. What is the probability that the highest-scoring woman scored fourth
highest overall?

b. Recompute your answer using the geometric approximation. Was the
geometric approximation appropriate here? Is the answer close?

2. I am going to roll a balanced die until I get three sixes. What is the probability
I will have rolled the die exactly 12 times?

3. a. Derive a closed formula (no summation symbols or . . .s) for the cumu-
lative distribution function F (x) � P(X ≤ x) of a geometric(p) random
variable.

b. The probability of snake eyes on rolling a pair of dice is 1/36. I can keep
rolling until I roll snake eyes. What is the probability that I will roll no
more than 25 times?

4. You have invested in an oil exploration company that drills six oil wells a
year. You estimate that the probability of striking oil is about 0.2 at each well.
Of course, you want to be there when the first well strikes oil. Unfortunately,
you will leave the country on sabbatical for one year, starting one year from
now (and returning two years from now). What is the probability that you
will be in the country for the first strike?

5. I am told at the beginning of a mushroom-hunter’s guide that 28 of the 96
species described are good to eat, but the guide is not organized that way. I
want to learn about edible mushrooms, so I decide that on my first day of
study, I will read about species at random until I have read articles about 3
edible species.
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a. What is the probability that I will have read about at most 4 inedible
species?

b. Now redo the calculation, using the negative binomial approximation. Is
that approximation plausible here? How close is your result to the exact
answer?

6. The owner of a stable of racing cars knows that there is a 14% chance that the
car she enters will be wrecked in a race. She will have to stop entering races
for a while to rebuild her cars after she has wrecked three of them.

a. What is the probability that she will have entered cars in 10 races at the
time she has to stop?

b. After 11 races, she finds that she has had two cars wrecked. What is the
probability that she will still be entering cars in races after a total of 16
races?

7. I need to hire 5 new programmers for my software development group. In
my experience, approximately 30% of applicants will be satisfactory, and any
satisfactory applicants whom I interview I will hire immediately. What is the
probability that I will hire my fifth programmer after 12 or fewer interviews?

8. Assume that Bi → ∞ and Wi

Wi+Bi
→ p as i goes to infinity, where 0 < p < 1.

Show that Wi → ∞.
9. Prove that e

1
n+k−1 (k

2) ≤ (n+k−1)k
nk ≤ e

1
n (k

2).
10. Your Halloween bag holds 30 chocolates and 3 caramels, thoroughly mixed.

You eat them one at a time (over several days, of course) until you have eaten
20 chocolates.

a. What is the probability that you have eaten 2 or more caramels?
b. Redo this problem using an appropriate approximate technique.

11. Approximately 20% of job candidates turn out to be skilled in the use of a
certain spreadsheet program, but you do not know in advance which ones will
be. You interview 5 candidates picked at random for the job. Let X be the
number interviewed who are skilled in using the spreadsheet.

a. What is the probability that all your candidates will be skilled with the
spreadsheet (that X � 5)?

b. What is the probability that at least one candidate will be skilled with the
spreadsheet (that X ≥ 1)?

12. You and a friend flip a fair coin every week; heads he buys you a lottery ticket,
tails you buy him one. The lottery has a chance of 20% of paying off. What
is the chance you will win exactly one lottery payoff in the next six weeks?

13. There are 160 people on the voting rolls of a small town. A jury is selected
by picking 12 different voters at random. In the next year, 10 juries will be
selected; all voters are eligible to be on every jury, whether or not they have
served previously. You are a voter in this town. What is the probability that
you will serve on exactly two juries in the next year?
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14. Show reversal symmetry for the binomial family by comparing the probability
mass functions.

15. What is the probability that when you roll a die 12 times, you will get more
than 2 aces (one pip)? Now roll a die until you fail to get an ace 10 times.
What is the probability that you will get more than two aces along the way?

16. The probability that a baby will be a boy is 0.54. A family will keep having
children until they have 2 boys. What is the probability that they will have
no more than 3 girls? Another family will keep having babies until they have
four girls. What is the probability that they will have more than one boy?

17. To study a rare, large species of starfish, you will make a series of dives during
one day’s work, during each of which you will try to bring up a starfish. Your
chance of success on a given dive is about 15%. You imagine the success of
each dive to be independent of the others.

a. If each day you dive until you get a starfish, what is the probability, on a
given day, that you require 4 or more dives?

b. In the next week of work (6 days), what is the probability that on exactly
3 days you will require 4 or more dives to get your starfish?

18. 96% of students usually pass the introductory statistics final exam. Assume
that they all have the same chance and perform independently of one another.

a. What is the probability that 78 or more in a class of 80 will pass?
b. Using a good approximate technique to simplify the calculation, redo (a).

Compare your two answers.

19. Approximately 0.8% of oysters unexpectedly contain a jewelry-quality natu-
ral pearl. You have to provide 1000 oysters from an oyster bed to a restaurant,
but if you find a pearl, you will keep the pearl and throw away the oyster. What
is the probability that you will find 5 or fewer pearls? Calculate the answer
by an exact calculation of an appropriate model and by a good approximate
calculation.

20. 98% of clover plants have three leaves; the rest have four leaves. You search
a field until you find 3 four-leaf clover plants.

a. What is the probability that you will find at least 150 three-leaf clover
plants along the way?

b. Redo the calculation in (a) using a good approximate method. Why do
you expect it to work well?

21. A certain fire station gets an average of five alarms per day. Assume that each
of the very many different possible causes of alarms are independent of one
another. The chief considers it a busy day if the station gets three or more
alarms.

a. What is the probability that a given day will be busy?
b. In a seven-day week, what is the probability that no more than five days

will be busy?
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22. Use the inductive method to derive E(X) for the NB(k, p) random variable.
23. For the random variable of Exercise 21 in Chapter 5,

a. compute the mean squared error of X with respect to µ � 3;
b. compute Var(X) and σX.

24. Use the inductive method to find Var(X) when X is

a. Poisson(λ).
b. NB(k, p).

25. Find E(1/(X + 1)):

a. for X a negative binomial NB(k, p) random variable.
b. for X a Poisson(λ) random variable.

Your expressions should have no summation signs or (. . .) in them.
26. Let X be a geometric(p) random variable.

a. Find E(2x).
b. In a certain gambling game, you roll a die (six sides) repeatedly until you

fail to get a five. You start with $1, and you double the amount of money
you have each time you get a five. On the average, how much money will
you have when the game is over?

c. A bacterium divides into two exactly one minute after an experiment starts,
the two bacteria each divide exactly one minute later, and so forth, with all
bacteria dividing at each minute. You will use a random number generator
immediately after each minute has passed to decide whether or not to look
in the microscope. The probability that you will look each time is 0.4,
and each decision is independent of the others. On the average, how many
bacteria will you see the first time you look?

27. a. Find a method-of-moments estimate for the probability of success p for
an NB(k, p) random variable.

b. You are constructing a mailing list for the Citizens Party in your precinct.
You visit voters at random until you have found 100 Citizens Party vot-
ers. On the way, you encounter 141 voters for other parties. Estimate the
proportion of Citizens Party voters, and construct a 2-σ interval for your
estimate.

28. A manufacturer of brake drums claims that only a very small percentage of
their products are delivered with cracks. You maintain a large truck fleet and
discover that the 75th drum you buy from them is cracked (though no previous
one was).

a. Find a 99% upper confidence bound for the probability that a given brake
drum is cracked.

b. Construct a 95% confidence interval for the probability that a given brake
drum is cracked.
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29. You are evaluating the balance of a die for use in gambling by counting the
number of times a one comes up. You will use a two-sided test, at the α � 0.05
significance level. Out of 300 rolls, one comes up 39 times. Do you reject the
hypothesis that it is a balanced die?

6.11 Supplementary Exercises

30. To study the life spans of two species of mosquito, you introduce 400 newly
hatched members of species A and 150 of species B into a terrarium. A
colleague believes that species B lives longer, but you suspect that they are
about the same. If you waited until even the few Methuselahs among them
died, the experiment might take a long time, so you decide to stop when 390
of species A have died.

a. If the two species are equivalent, what is the probability that at most 145
of species B will be dead?

b. Do a good approximate recalculation of this probability, using only the
proportions of the species in the terrarium, and not their total numbers.

Hint: Counting living specimens is just as good as counting dead specimens.
31. If

(
x

2

)
is small compared to W , and

(
b

2

)
is small compared to B, then what can

you say about the size of
(
x+b

2

)
compared to W + B?

32. The expectation of the limit may not be the limit of the expectation.
Define a random variable Xn with the probability mass function p(0) �
(n − 1)/(n + 1) and p(i) � 2/(n(n + 1)) for i � 1, . . . , n. Compute E(Xn).
Now find the random variable X that is the limit in distribution of the Xn as
n goes to infinity. Compute E(X). What do you conclude?

33. There are known to be 200 adult black bears living in a certain section of forest.
You capture 10 of them at random and implant a miniature data recorder under
the skin of the neck. A month later, you set out to find some of your recorders.
If you stumble across one of your bears, it is easy to retrieve the recorder but
a bear without a recorder will be very difficult to catch and check. Therefore,
you assign yourself the task this week of checking bears at random until you
have found 80 who do not have recorders.

a. What is the probability that you will find exactly 3 bears who do have
recorders.

b. Recompute (a) using a plausible approximation. Is your approximation
justified here?

34. Consider a hypergeometric H(W + B, W, n) random variable in which W

and B are very large compared to n. Find a simple approximation to p(x) that
uses the proportion of white marbles p � W/(W + B) instead of W and B.
Does this approximation look familiar?

35. I am interested in a hypergeometric random variable H(W + B, W, n), in
which the total number W + B of marbles is large, the total number n that I
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remove from the jar is large, and the number that remain in the jar after the
draw W + B − n is large, but the number of white marbles W , and therefore
also X, is much smaller. Derive an approximate formula for the probability
mass function p(x) in which you do not mention B or n, just the proportion
of marbles (which of course equals n/(W + B)) to be removed from the jar.
Under what conditions would you expect your formula to work?

36. The registrar tells you that there are 8 National Merit Scholars among the 200
students in a freshman chemistry class. On the Friday before the UVa game,
only 140 students show up for class.

a. If the scholarship students behave pretty much like everybody else, what
is the probability that 5 of them are in class on that Friday?

b. Now use Exercise 35 to solve the problem approximately, and compare
this to your exact answer.

37. In a small town with 114 registered voters, 39 are registered as Democrats. A
polltaker interviews 10 voters chosen at random. (a) What is the probability
that more than three will be Democrats? (b) Is the approximation in Exercise
34 plausible here? Calculate it and compare.

38. Derive a formula for the probability that if X is B(n, p), then X is an even
number. Hint: Expand [p − (1 −p)]n and [p + (1 −p)]n, using the binomial
theorem from high-school algebra.

39. You need 100 perfect ball bearings for a particularly delicate application. In
your experience, your vendor provides ball bearings that are perfect 97% of
the time, so you purchase 105 bearings.

a. What is the probability that you will get enough perfect bearings?
b. Redo (a) using an appropriate approximate method. How close is your

approximation?

40. Prove the theorem of the Poisson approximation to the negative binomial.
41. 10% of people in America are left-handed. In order to evaluate a new trackball

designed for right-handers, I interview Americans at random until I have found
100 right-handed people for my study.
You want to study how the trackball should be modified for left-handers; so
you will work with the left-handed people that I encounter while finding my
sample of 100 right-handed people.

a. What is the probability that I will find fewer than 5 left-handers?
b. Since there are relatively few left-handers, a simplified approximate cal-

culation may be appropriate here. Use it to calculate an approximate
probability that I will find fewer than five left-handers.

Your answer will be quite a bit less accurate than most of our approximate
calculations have been. Explain this fact.

42. a. For a B(n, p) random variable, find a simple expression for p(x)/p(x−1),
and use it to invent a recursive method for computing p(x), starting with
p(0) � (1 − p)n.
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b. Derive a similar procedure for computing NB(k, p) and Poisson(λ)
probability mass functions.

43. Use the inductive method to check our expression for E(X) for the H(W +
B, W, n) and for the N(W, B, b) random variables.

44. Modify the computer generated random variable Z in Section 5 as follows:
let W � Z when Z is odd, and let W � −Z when Z is even.

a. Compute the usual expression for E(W ),
∑

all W Wp(W ). (You may need
the help of your calculus book.) In particular, it has a finite sum.

b. Show that
∑

all W Wp(W ) is not absolutely convergent (see 5.5.2). There-
fore, W has no expectation. (You might then find it entertaining to generate
a large number of values of W , and notice that indeed its average never
seems to settle down anywhere.)

45. The logarithmic random variable X with parameter p has probability mass
function p(x) � px/(x log[1/(1 − p)]) for X � 1, 2, 3, . . ..

a. Show that this really is a random variable (Hint: You may have to look
up a fact in a good calculus book.)

b. Find closed formulas (no summations or omitted terms) for the expectation
and variance of X.

46. The third central moment of a random variable X is given by E[(X − µ)3],
where E(X) � µ. Let X be a binomial B(n, p) random variable. Compute
the third central moment of X.

47. In the last year, 57 cases of a very rare cancer were reported at a major cancer
center. Assuming that these cases appear annually following a Poisson(λ)
law, construct a 98% confidence interval for λ. Compare it to a 2-σ interval.

48. Find conditions under which a Poisson random variable is a satisfactory
approximation to a hypergeometric random variable.

49. Of 1000 entering freshmen at a small university, 28 have used heroin at least
once.

a. In a confidential survey of a random sample of 50 freshmen, what is the
probability that at least 3 will have used heroin?

b. Redo (a) approximately using the method of Exercise 48. Was that method
appropriate here?



CHAPTER 7

Random Vectors and
Random Samples

7.1 Introduction

Statistical experiments usually involve more than one measurement. We have al-
ready discussed replications under the same conditions, which we carry out so
that we can allow for random error. More than that, though, we need to look at
the several different aspects of each experimental subject that we may consider
important. For instance, in a diet experiment we should record the heights as well
as the weights of the participants, in order to put each weight in perspective. A
poll would record the numbers of supporters of several different candidates. An
ornithological survey might record all three coordinates for the location of a certain
kind of bird’s nest (east–west, north–south, height above the ground).

The several distinct numbers acquired during an experiment are called a ran-
dom vector, because we think of the various values as coordinates in an abstract
multidimensional space, whether or not they actually represent positions. We will
develop tools for studying the interdependence of the different coordinates of a
random vector. One important special case, where the various numbers represent
attempts to measure the same thing in repeated, independent experiments, is called
a random sample. This idea will allow us to treat sample means as random vari-
ables in themselves. We will then explore how sample means get ever closer to
the true expectation as a sample grows. Finally, we will look at how an uncertain
parameter and a random variable that depends on it give information about each
other.
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Time to Review

Chapter 2, Sections 3, 4, 7
Chapter 4, Section 8
Chapter 5, Section 4
Multiple integrals

7.2 Discrete Random Vectors

7.2.1 Multinomial Random Vectors
Experiments often measure several numbers at a time; for instance, the weather
report from a certain time and place might include the temperature, humidity, baro-
metric pressure, and wind velocity. These are, unfortunately, not very predictable
in advance, so we might treat them as random quantities. Furthermore, it is waste-
ful just to report the separate measurements as if they were different experiments.
For instance, the humidity has very different meaning in different seasons, since
the capacity of air to hold water vapor rises with temperature. Therefore, we keep
our random numbers together and interpret the different quantities in light of each
other.

Definition. A random vector X is a probability space whose outcomes are
vectors: ordered k-tuples of real numbers.

Example. A pollster wants to know whether the voters of a state favor candidates
Smith or Jones (or neither) in the race for governor. Unbeknownst to the pollster,
40% favor Smith, 50% favor Jones, and 10% favor neither. If she collected a simple
random sample of voters to interview, small enough that she could pretend it was
with replacement and each interview was independent, how accurate would her
sample proportions be?

The answer lies in a family of random vectors that generalizes the binomial
family:

Definition. Consider a sequence of identical, mutually independent random ex-
periments in which two or more outcomes are possible. Let the probabilities of
the outcomes, numbered 1, 2, 3, . . . , k, be p1, p2, . . . , pk , where pi > 0 and∑k

i�1 pi � 1. If we perform n such experiments, let Xi be the number of experi-
ments in which the ith outcome was observed. The random vector X � (Xi)T is
called a multinomial vector, M(n, p).

In our example, if the pollster samples 100 voters, the result might be something
like 43 for Smith, 53 for Jones, and 4 for neither. Thus X � (43, 53, 4)T is a value
of a multinomial M(100, 0.4, 0.5, 0.1) random vector.

The first important fact we notice about such vectors is that the counts in the
categories must sum to the total number of trials (each subject gets counted exactly
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once). That is,
∑k

i�1 Xi � n. This means that we can always solve for the count in
some category, such as Xk � n−∑k−1

i�1 Xi . In our example, that “Other” category
is presumably of less immediate interest, so if X is the count of Smith voters, and
Y the count of Jones voters, then we can quickly find the count of Other voters
100 − X − Y . Therefore, three-category multinomial vectors (called trinomial, of
course) may be thought of as vectors (X, Y )T in two-dimensional space. Generally,
then, multinomial vectors live in a (k − 1)-dimensional vector space.

Binomial random variables, you might notice, are really a special case of
multinomial vectors, with k � 2. Furthermore, X, the count of Successes, is a
one-dimensional vector (2 − 1), and the count in its Other category, Failures, we
well know to be n − X. Then p � p1 and 1 − p � p2.

7.2.2 Marginal and Conditional Distributions
Imagine that the pollster was hired by the Smith organization, so that X, the
number of Smith voters, is itself a random variable of interest. If we ignore the
distinction between Jones and Other voters, then our subjects have been split into
the Smith voters and people who will not vote for Smith. We conclude that X by
itself is a binomial B(100, 0.4) random variable. More generally, any multinomial
coordinate Xi , thought of in isolation, is a B(n, pi) random variable. We have a
name for this thinking:

Definition. The probability space determined by the values of a single coordinate
Xi of a random vector X is called a marginal random variable.

Proposition. If X is M(n, p), then Xi is marginally B(n, pi).

Now we want to understand the connections among different random coordi-
nates. First, what is the probability that the whole vector takes on a fixed value?
For example, how probable was it that X � 43 and Y � 53? Using the mul-
tiplicative rule for the probability that two things both happen, P(X � 43 and
Y � 53) � P(X � 43)P(Y � 53 | X � 43) (where the common condition that we
omitted was that our vector was M(100, 0.4, 0.5, 0.1)). We get the first probability
from knowing that X is binomial. As for Y , once we know that X � 43, we can
simply discard all the Smith voters and think of ourselves as interviewing the 57
voters who do not favor Smith. We are asking the probability that 53 of the 57 are,
independently, Jones voters. But the probability that any one of these is a Jones
voter is P(Jones | not Smith) � 0.5

(1−0.4) � 5
6 . So the conditional random variable

is again binomial, but now with n � 57 and p � 5
6 . We are able to compute the

probability of the complete poll results by multiplying two binomial probabilities
together:

P(X � 43, Y � 53) �
[(

100
43

)
0.4430.657

][(
57
53

)(
5
6

)53 (1
6

)4
]

� 0.066729 · 0.019382 � 0.0012933.
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Let us look for the general formula for such trinomial probabilities. First, we
need some notation:

Definition. A random vector X is discrete if its sample space is countable. Its
probability mass function is the real-valued function p(x) � P(X � x) defined on
its sample space.

Obviously,p(x) ≥ 0 and
∑

X p(X) � 1. This sum is really a multiple summation
over several coordinates, which I have written more compactly as a sum over all
values of a vector. In our example p(43, 53) � 0.0012933. The sample space
of a multinomial random variable is obviously a finite set of possible vectors
of nonnegative integers (each coordinate is an integer between 0 and n), so it is
countable. We write the marginal probability mass function pXi

(xi) � P(Xi � xi).
For the trinomial case, we can write one of the probability mass functions for a
conditional random variable pY |X(y|x) � P(Y � y | X � x). For more than
two coordinates, you can see that there are a great many possible marginal and
conditional distributions, depending on which coordinates you know and which
ones you do not care about.

For a trinomial M(n, p, q, 1 − p − q) vector (X, Y )T , we reasoned that X

is binomial B(n, p) and that the conditional random variable Y | x must be
B(n − x, q/(1 − p)). Therefore,

p(x, y)
� pX(x)pX|Y (y|x)

� n!
x!(n − x)!

px(1 − p)n−x (n − x)!
y!(n − x − y)!

(
q

1 − p

)y (1 − p − q

1 − p

)n−x−y

.

There are a two nice cancellations, after which we regroup to get

p(x, y) � n!
x!y!(n − x − y)!

pxqy(1 − p − q)n−x−y.

This form is quite suggestive: The first part is a (surprise) multinomial symbol (see
3.3.4); the second contains the probability of each outcome to the power of the
number of times it happens. We generalize to get the following:

Proposition. A multinomial M(n, p) vector has probability mass function

p(x) �
(

n

x

) k∏
i�1

p
xi

i .

Proof. Imagine a generalization of a Bernoulli process in which each indepen-
dent trial can fall in any one of k categories. Consider a string of n trials. If there
are x1, x2, . . . , xk outcomes of each of the types, then the probability of that par-
ticular string is

∏k
i�1 p

xi

i . But from (3.3.4) we have already counted the number
of sequences that would lead to a given vector of counts; it was the multinomial
symbol

n!
x1!x2! · · · xk!

�
(

n

x1x2 · · · xk

)
�
(

n

x

)
.
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We are done. �

When the sample space is finite, we can put the mass function for a
two-coordinate random variable (called bivariate) in a table.

Example.

x\y 0 1 2 3 pX(x)
0 0.008 0.060 0.150 0.125 0.343
1 0.036 0.180 0.225 0 0.441
2 0.054 0.135 0 0 0.189
3 0.027 0 0 0 0.027

pY (y) 0.125 0.375 0.375 0.125 1.000

Notice that marginal probabilities for X are obtained by taking row sums; also,
marginal probabilities for Y are column sums. (We see why the probabilities of
individual coordinates are called marginal; they appear in the margins of the ta-
ble.) This is because, for example, to get the probability that x � 1, we add the
probabilities for the cases where y � 0, 1, and 2. We can summarize this as
pX(x) �∑Y p(x, Y ). Generally, to find any marginal probability mass function,
we sum over the probabilities for all possible values of the other coordinates. Also.
the grand total in the lower right corner verifies that our mass function sums to 1.

To find conditional probability mass functions, we just use the formula for
introducing a condition (see 4.4.3), which becomes, for example, pX|Y (x|y) �
p(x,y)
pY (y) . This is just finding what proportion a table entry is of its column total, as
pX|Y (1|1) � p(1,1)

pY (1) � 0.180
0.375 � 0.48.

Combining these last two expressions, we can write pX(x) �∑
Y pY (Y )pX|Y (x|Y ). That is, the marginal probabilities for one variable may be

computed as an appropriate weighted average of its probabilities conditional on
the other variable. We have seen this before in another guise—it is the division into
cases formula (see 4.6.2) for discrete random variables. We shall have important
applications for this shortly.

Writing tables for discrete random vectors raises a technical question: If the
sample space of your random vector is all pairs of nonnegative integers, such as
(10,17), (of which there are an infinite number), is the event countable (so that
we really have a discrete random vector)? We use the integers to do the counting,
and surely there are many more pairs of integers than there are integers. However,
it turns out the pairs are indeed countable, as you can see, for example, from the
counting scheme

(0,0) → (0,1) (0,2) → (0,3)
↓ ↑ ↓

(1,0) ← (1,1) (1,2) (1,3)
↓ ↑ ↓

(2,0) → (2,1) → (2,2) (2,3)
↓

(3,0) ← (3,1) ← (3,2) ← (3,3)
↓
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where (0, 0) is the first outcome, (0, 1) is the second, (1, 1) is the third, (1, 0) is
the fourth, and so on. Every pair gets counted eventually. This is essentially the
reasoning Georg Cantor used to establish that the collection of all rational numbers
p/q is countable.

For random vectors with more coordinates, there are similar counting schemes,
and it is generally true that a finite-dimensional random vector whose sample space
for each coordinate is countable, is itself countable.

7.3 Geometry of Random Vectors

7.3.1 Random Coordinates
Several of our examples of geometrical probability had outcomes on multidimen-
sional objects (such as dart boards); so the coordinates of these outcomes are
examples of random vectors, but no longer discrete. The probability of an out-
come landing in an event A, P(A), we now write P(X ∈ A). If we are lucky, we
have a multivariate density function f (X), which we may integrate to compute
these probabilities: P(X ∈ A) � ∫∫∫

A
f (X) dX (if we happen to have three ran-

dom coordinates). You can see that it is time to review multiple integrals from your
calculus course, if this notation is unfamiliar.

Example. In Chapter 4 (see 4.2.1) we proposed a circular dart board D of radius
1 and darts thrown from far enough away that if they hit the board, they seemed
equally likely to hit anywhere. Put the origin of a coordinate system at the center
of the board; a dart hit then gives us a random vector (X, Y )T . We concluded that
if we had a region A ⊂ D whose volume can be computed, then P(X ∈ A) �
V(A)
V(D) � 1

π
V(A). Expressing this as an integral, P

[
(X, Y )T ∈ A

] � ∫∫
A

1
π
dX dY .

So in this case the density is f (X, Y ) � 1
π

for (X, Y )T ∈ D.

Generally, the Cartesian coordinates of a uniform geometric probability space
over some region have a constant density.

When we investigated the probability of landing in a vertical strip, we reduced
the problem to the random behavior of the x-coordinate. This, then, had what we
now realize was a marginal density fX(x) on (−1, 1). What might the conditional
behavior of the y-coordinate be if we know the value of X � x? That information
pins the location of the dart down to a vertical line segment (the dotted line in
Figure 7.1):

Since originally the dart was believed to be equally likely to fall anywhere
on the disk, now that its horizontal location is known, presumably it is equally
likely to be anywhere on that segment. Therefore, its conditional density will be
constant over the segment, which goes from (x, −√

1 − x2)T to (x,
√

1 − x2)T .
Then the segment is 2

√
1 − x2 in length. The conditional density has to be the

constant value that will integrate to 1 over its length, so fY |X(y|x)2
√

1 − x2 �
1. Therefore, fY |X(y|x) � 1

2
√

1−x2 . Remember that despite its appearance, this
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x X

Y

Y |x

FIGURE 7.1. Vertical segment of a disk

function is constant over its sample space (−√
1 − x2,

√
1 − x2); x is a known

value that does not change, while Y is still random.
In the discrete case, the connection between the bivariate probability mass func-

tion, the marginal mass function, and the conditional mass function was just the
multiplicative law for probabilities, pY (y)pX|Y (x|y) � p(x, y). Notice that in this
continuous example fX(x)fY |X(y|x) � 2

π

√
1 − x2 1

2
√

1−x2 � 1
π

� f (x, y). To see
that such a formula works all the time, it will be necessary to consider how to get
from the multivariate density to the marginal and conditional densities.

First, ask yourself why you would want to know the marginal density of a contin-
uous random variable? Presumably, to solve problems like “will the temperature be
above freezing tomorrow morning (so that it will not kill my tomatoes)?” Humidity
is an important weather fact, but the simple temperature number is most urgently
needed at the moment. Generally, we want to compute things like P(a < X ≤ b),
ignoring Y (our vertical strip, again). Then we would use the marginal den-
sity to solve for the probability by

∫ b

a
fX(X)dX. If unfortunately we only have

the bivariate density handy, we have to compute instead the double integral∫∞
−∞
∫ b

a
f (X, Y )dXdY . I hope you have finished your review of how to do this. You

will have found that a famous fact, Fubini’s theorem, says that if this integral makes
sense, we may compute it by carrying out the two integrations, one at a time, in
either order. So let us reverse the X and Y integrals to get

∫ b

a
[
∫∞
−∞ f (X, Y )dY ]dX.

There is a subtlety here: The infinities in the limits stand for the limits in Y for
each possible value of X, which is thought of as constant during the integration dY

(they were (−√
1 − x2,

√
1 − x2) in the example). Now compare this integral to

the one of the marginal density above. We conclude that fX(x) � ∫∞
−∞ f (x, Y )dY .

Generally, you can find a marginal density by integrating the multivariate density
over all the possible values of all the other coordinates. You should check that
this works in the dart board example. Now we can use this to define a conditional
density fY |X(y|x) � f (x, y)/fX(x) � f (x, y)/

(∫∞
−∞ f (x, Y )dY

)
for any x for

which the marginal density is not zero, by analogy with the discrete case. You
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X

Y

(x, y )

FIGURE 7.2. Cumulative distribution in a plane

should check as an exercise that this process really yields functions that can be
densities.

7.3.2 Multivariate Cumulative Distribution Functions
The cumulative distribution function (see Chapter 5.4) was a useful tool for dealing
with random variables; there is indeed a generalization for vectors.

Definition. The cumulative distribution function of a random vector is

F (x) � P(X1 ≤ x1, X2 ≤ x2, . . . , Xk ≤ xk).

This awkward-looking quantity measures the probability that each random co-
ordinate is at most the specified value. In the two-variable case, this amounts to the
probability of the lower left-hand quadrant in a geometrical picture, Figure 7.2.

As you may remember from Chapter 4 (see 4.8.2), geometrical probabilities
require us to be able to assign probabilities to all the events in a Borel algebra,
which is built out of hyper-rectangles. The vector cumulative distribution function
makes this possible; for example, in two variables,

P{(a, b] × (c, d]|(X, Y )} � F (b, d) − F (b, c) − F (a, d) + F (a, c).

(See Figure 7.3) We took the probability of the large quadrant and subtracted off
the lower right and upper left quadrants, which we did not need. But then we had
subtracted the lower left quadrant twice, so we added it back in. As an exercise, you
should find the corresponding formula for the probability of a three-dimensional
box.
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X

Y

(b, d )

(b, c)

(a, d )

(a, c )

FIGURE 7.3. Probability of a rectangle

Example. Imagine a square dart board, with a coordinate system assigned so that
the dart board is the set of coordinates (0, 1)× (0, 1). Then, if the player is so inept
that the dart might land equally anywhere on the board, we see that for 0 < x < 1
and 0 < y < 1,

F (x, y) � P(0 < X ≤ x, 0 < Y ≤ y) � V{0 < X ≤ x, 0 < Y ≤ y} � xy,

since the total area is 1. As a somewhat more difficult exercise, you might find the
cumulative distribution function for hits on our circular dart board.

It is easy to see what a marginal cumulative distribution function would be; for
example, when we have two coordinates,

P(X ≤ x) � FX(x) � lim
y→∞ P(X ≤ x, Y ≤ y) � lim

y→∞ F (x, y) � F (x, ∞),

where the last expression is a convenient but informal notation (infinity is not a
number). With more than two coordinates, we can find the marginal cumulative
distribution function for any one variable by simply placing an infinity symbol in
the slot for each remaining variable.

Example. On our square dart board, infinity stands for the largest allowable value
of a coordinate, 1. Therefore, FX(x) � x · 1 � x, as we might have expected.

For a bivariate discrete random vector, it is easy to see how to write the cumula-
tive distribution function in terms of the probability mass function: F (x, y) �
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∑
X≤x

∑
Y≤y p(X, Y ). There is a parallel formula for vectors with a density:

F (x, y) � ∫ y

−∞
∫ x

−∞ f (X, Y )dXdY . You should be able to see how to do this
for more than two coordinates.

It should probably bother you that we have provided so far no interesting prac-
tical examples of multivariate cumulative distribution functions. This is not an
accident; these functions have very few direct applications to real-world prob-
lems. They play the role, rather, of a unifying mathematical device: If we know
that we can define a multivariate cumulative distribution for a proposed random
vector, then we know enough to study any possible behavior of that vector. We
could see this from the fact that we could use the function to find the probability
of any hyper-rectangle, and therefore of any Borel set. In the next section, we will
use these same functions to define independence of random variables, in a way
that does not depend on whether the vectors are discrete, or whether they have a
density.

7.4 Independent Random Coordinates

7.4.1 Independence and Random Samples
Notice that in the square dart board problem, it turned out not to matter for our
questions about the x coordinate, whether or not we knew something about the y

coordinate. This sounds familiar.

Definition. X and Y are independent of one another whenever F (x, y) �
FX(x)FY (y) for each (x, y)T in the sample space of our random vector.

This is because we may simply multiply the probabilities. Intuitively, two ran-
dom variables are independent of one another when knowledge of one has no effect
on our opinion about the other. The coordinates of hits on a square dart board are
examples. As an exercise, notice that this is not true for circular dart boards. The
concept is important, because it will result, when it applies, in great simplifications
in our calculations.

Proposition. For X, Y discrete and independent and for any pair of values in the
sample space x and y, the events X � x and Y � y are independent; that is,

p(x, y) � P(X � x, Y � y) � P(X � x)P(Y � y) � pX(x)pY (y).

We will leave this for an exercise.
Statisticians often pursue independence when they design experiments. When

a measurement is subject to much random error, we try to repeat it a number of
times in hope that the truth will shine through the noise. For this technique to work
well, each repetition of the experiment needs to be as similar as possible to the
others, but not influenced by previous tries.
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Definition. A random sample (or independent identically distributed (i.i.d.)
sample) is a random vector such that the components each have the same marginal
distribution F and they are mutually independent, so that F (x) �∏i F (xi).

Example. A particularly ambitious high-school senior takes the SAT test five
times in quick succession, after taking an SAT practice short course. His total
scores were 980, 1040, 990, 1080, and 1000. Test designers believe that there is
little improvement due to practice; so we might imagine that these scores are a
random sample attempting to measure the student’s “true” SAT score. We will see
much more of this concept later.

7.4.2 Sums of Random Vectors
Let X and Y be the discrete results of two independent experiments, for example,
the costs of each. It is often natural to combine them to create a new variable
Z � X + Y (the total cost). What sort of random variable is Z?

In some particular cases, this is easy. Let X be binomial B(n, p), and Y be
B(m, p). Then we can imagine that the first is the successes in n Bernoulli trials
and that the second is the successes in the next m trials, all with probability p of
success. This works because Bernoulli trials are always independent of each other.
Then the total Z is the number of successes in n+m trials and so is a B(n+m, p)
random variable. You should apply similar reasoning to find the behavior of the
sum of a negative binomial NB(k, p) and an independent NB(l, p) variable.

In general, we would have to reason that P(Z � z|Z � X + Y ) is the sum over
the probabilities of each pair of values of X and Y that sum to z. For example, if
z � 3, we would have to add probabilities for the cases where X � 0 and Y � 3,
where X � 1 and Y � 2, where X � 2 and Y � 1, and where X � 3 and
Y � 0. We might write it p(z) � ∑X p(X, z − X), summing over the possible
values of X, and the corresponding Y gotten by solving X + Y � z. If X and Y

are independent, then we know that the probabilities factor:

p(x, y) � P(X � x and Y � y) � P(X � x)P(Y � y) � pX(x)pY (y),

and so p(x, z − x) � pX(x)pY (z − x).
For example, let X be Poisson(λ) and Y be independently Poisson(µ). Then

p(X, z − X) � λX

X!
e−λ µz−X

(z − X)!
e−µ.

Notice that X cannot exceed z, because Y cannot be negative. The two factorials
remind us of the denominator of a combination, so we multiply and divide by z!
to get

p(X, z − X) � e−(λ+µ)

z!
z!

X!(z − X)!
λXµz−X.

The second part reminds us of a binomial probability, if only λ and µ summed
to 1. But we can force them to, by dividing by their sum: λ

λ+µ
+ µ

λ+µ
� 1. To
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do this in the probability formula we need to multiply and divide by (λ + µ)z �
(λ + µ)x(λ + µ)z−x :

p(X, z − X) � (λ + µ)ze−(λ+µ

z!

(
z

X

)(
λ

λ + µ

)X (
µ

λ + µ

)z−X

.

We have managed to write the joint probability p(z, x) � p(z)p(x|z), where the
marginal distribution of Z is a Poisson(λ+µ) random variable, and the conditional
distribution of X given Z � z is B

(
z, λ

λ+µ

)
. We summarize

Proposition. LetX be Poisson (λ) andY be independently Poisson (µ). ThenX+Y

is Poisson (λ + µ), and X conditioned on observing X + Y � z is B
(
z, λ

λ+µ

)
.

It is frustrating that this result is so similar to those for binomial and negative
binomial probabilities yet requires a much more complicated argument. This will
be remedied when we develop a probabilistic experiment out of which Poisson
random variables arise naturally, a Poisson process, in a later chapter.

7.4.3 Convolutions
While studying the sums of independent Poisson vectors we found ourselves using
a general argument about discrete vectors: When we are interested in the sum
Z � X + Y , we may compute its probability mass function by summing over
cases that can achieve the given value of the sum pz(z) � ∑X p(X, z − X). In
cases like ours in which X and Y are independent, we may factor to get pz(z) �∑

X pX(X)pY (z−X). Mathematicians have found this calculation so widely useful
that they have immortalized it in the following definition.

Definition. Let f and g be functions defined on a countable set of real numbers.
Then the convolution of f and g, written f ∗g, is a function defined by the formula
f ∗ g(z) �∑x f (x)g(z − x) for any real z for which the formula makes sense.

We of course are interested in the case where f and g are probability mass
functions, and we may state what we have learned as follows:

Proposition. Let X and Y be independent discrete random variables. Then the
probability mass function of Z � X + Y is pZ � pX ∗ pY .

This is handy to know, because mathematicians have learned a great deal about
convolutions; and now we can borrow from their results whenever we need to
know about sums of random variables.
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7.5 Expectations of Vectors

7.5.1 General Properties
Expectations of functions of discrete vectors work just as one would expect; the
possibilities for functions have simply become richer.

Definition. Let g(x) be a real-valued function defined on the sample space of a
discrete random vector. Then the expectation of g is E[g(X)] � ∑X g(X)p(X)
whenever the sum is absolutely convergent.

Proposition. E is a positive linear operator.

The proof is identical to the one in the single-variable case (see 6.6.1). The
interesting novelty is that we may not be concerned with all the coordinates. For
example, in a poll, we might want to know the expected count for the one candidate
who has hired us to do the poll. This means that the function g depends only on
one coordinate. We compute

E[g(Xi)] �
∑

X
g(Xi)p(X) �

∑
xi

g(xi)
∑

all X with
Xi�xi

p(X) �
∑
xi

g(xi)pXi
(xi),

which tells us that we may compute expectations having to do with single coordi-
nates by ignoring the other coordinates and just using the marginal probabilities
for that one.

Example. In the bivariate example given by a table in Section 2,

E(X) � 0 · 0.343 + 1 · 0.441 + 2 · 0.189 + 3 · 0.027 � 0.9.

In a multinomial experiment, the ith count is marginally binomial, so we know
that its expectation is just npi .

7.5.2 Conditional Expectations
Looking a little more closely at what we actually do to calculate an expectation in
the case of two variables, we have to perform the double sum in some order. If we
choose to sum over Y first with X held constant on each pass, then E[g(X, Y )] �∑

X[
∑

Y g(X, Y )p(X, Y )]. But since X is constant during the inner sum, we can
exploit our product rule p(X, Y ) � pX(X)pY |X(Y | X) to factor out the marginal
probability of X:

E[g(X, Y )] �
∑
X

[∑
Y

g(X, Y )pY |X(Y | X)
]
pX(X).

If you stare at the inner sum for a while, you will see that it looks like some sort
of expectation by itself. For any fixed, known value of X, it is an expectation of g

with respect to the conditional random behavior of Y :
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Definition. For a discrete random vector with coordinates X, Y and a value x in
the sample space of X, the conditional expectation of Y given x is

EY |X [g(X, Y ) | x] �
∑
Y

g(x, Y )pY |X(Y | x).

This has all the properties of a simple expectation, of course, because the
conditional probability mass function is really just an ordinary mass function.

Example. IfX,Y are trinomial M(n, p, q, 1−p−q), thenY conditioned onX � x

turned out to be binomial B(n−x, q/(1−p)). But then the conditional expectation
of Y is just the expectation of that binomial, EY |X[Y | x] � (n − x)(q/(1 − p)).

Now we can write the general expectation as

E[g(X, Y )] �
∑
X

EY |X
[
g(X, Y ) | X

]
pX(X).

But now the sum over X looks like a (marginal) expectation.

Proposition. For X, Y discrete,

E [g(X, Y )] � EX

{
EY |X [g(X, Y ) | X]

} � EY

{
EX|Y [g(X, Y ) | Y ]

}
whenever the first expectation exists.

We know that we can always do this because if the first expectation exists, then
the double sum is absolutely convergent. But then we will get the same answer
whatever the order of summation; and that leads to the other two expressions.

Example. For X, Y trinomial, E(Y ) � EX[EY |X(Y |X)] � EX

[
(n−X)(q/(1−p))

]
.

But X is marginally B(n, p), so E(Y ) � (n − np)
(
q/(1 − p)

) � nq after some
cancellation (which we already knew by looking at the marginal distribution of
Y ).

7.5.3 Regression
If we manage to observe one coordinate X of a random vector, but not Y , we might
be interested in predicting what Y will be. A plausible prediction would be its
conditional average given X � x, EY |X[Y | x]. This may remind you of regression
from Chapter 1. Even more, it is analogous to least-squares regression from Chap-
ter 2. To see this, we might reasonably ask what the best possible prediction of Y

would be in the form of a function Ŷ � g(x) if we know X � x. Let our criterion
for the best be that we minimize its mean squared error EY |X[(Y − g(X))2 | x]
over all possible functions g(x). But the conditional expectation says that we may
do this one value of x at a time. In Chapter 6 (see 6.6.2) we showed that the
mean squared error of a random variable is smallest about its expected value. We
conclude that the least-squares prediction of Y as a function of X is given by its
conditional expectation, Ŷ � g(x) � EY |X[Y | X]. Therefore, this function is
sometimes called the regression of Y on X.
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The corresponding analysis of variance expression says that for any function
h(x),

EY |X
{
[Y − h(x)]2 | x

} � EY |X
{
[Y − EY |X(Y | x)]2 | x

}+[EY |X(Y | x)−h(x)]2.

The first term on the right is just the variance of Y , once you know x. In obvious
notation,

EY |X
{
[Y − h(x)]2 | x

} � VarY |X(Y |x) + [EY |X(Y | x) − h(x)]2.

This last expression has an interesting consequence. A naive prediction of Y

(that is, ignoring X) would of course be just its average value E(Y ). Substitute this
for h(x) in the expression above to get

EY |X
{
[Y − E(Y )]2 | x

} � VarY |X(Y |x) + [EY |X(Y | x) − E(Y )]2.

This has all been done for particular known values of X. Looking at the overall
process of prediction, we should take expectations of this for all possible values of
X. The proposition in the previous section tells us that EX[EY |X(Y | X)] � E(Y ).
Therefore, the third term is squared deviation about an average. When we average
it over X, we get

EX

{
[EY |X(Y | X) − E(Y )]2} � VarX[EY |X(Y | X)].

Applying the same proposition to the first term, we obtain

EX

(
[EY |X

{
[Y − E(Y )]2 | X

}) � E
{
[Y − E(Y )]2} � Var(Y ).

We combine these into a wonderful fact:

Theorem (conditional decomposition of variance).

Var(Y ) � EX[VarY |X(Y | X)] + VarX[EY |X(Y |X)].

Remember this as “compute a variance by taking the average variance over cases
and adding the variance of the average by cases.” In the trinomial case (see Section
2.2) M(n, p, q, 1−p−q), the variance of Y is, of course, nq(1−q). The conditional
expectation of Y for X � x is (n − x)(q/(1 − p)); the variance of this conditional
expectation over all X’s is then np(1 − p)(q2/(1 − p)2) � np(q2/(1 − p)). For
the first term, the conditional variance is (n − x)(q(1 − p − q)/(1 − p)2). Its
expectation is (n − np)(q(1 − p − q)/(1 − p)2) � n(q(1 − p − q)/(1 − p)).
Adding our two terms, we obtain n(q(1 − p − q)/(1 − p)) + np(q2/(1 − p)) �
(nq/(1 − p))(1 − p − q + pq) � nq(1 − q), as the theorem promised.

7.5.4 Linear Regression
Our regression function g(x) may take a great variety of functional shapes (just
as in Chapters 1 and 2 we touched on the possibility of polynomial regression
models). Notice, though, that in the trinomial example the conditional expectation
of Y turned out to be a linear function of X, so this suggests that linear regression
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between random variables may be particularly interesting here, too. Let us proceed
as in Chapter 2 (see 2.6.1) to find the generally best predictor of Y of the form Ŷ �
µ+[X−E(X)]b. Notice that we make it a centered model by subtracting E(X) from
X, as opposed to the sample mean x̄ in Chapter 1. Now we want to choose µ and b

to minimize the mean squared error E[(Y − Ŷ )2] � E({Y − µ − [X − E(X)]b}2).
You may want to review how we found the corresponding answer in Chapter 2
(see 2.6.1) and note the parallels.

First, assume we know b, and treat Y −[X−E(X)]b as a single random variable.
Then we want to find the value of µ that makes E({Y − [X − E(X)]b − µ}2) as
small as possible. But from Chapter 6 (see 6.6.2) we know that the expected value
does it:

µ � E (Y − [X − E(X)]b) � E(Y ) − E[X − E(X)]b � E(Y ).

Centering the model at E(X) allowed it to be simplified.
Now, to find the best b, we must minimize E({[Y − E(Y )] − [X − E(X)]b}2).

This is similar to the simple proportionality between vectors that we worked on in
Chapter 2 (see 2.3.2), and we will solve it in a similar way. Because it will turn out to
be very useful elsewhere, we will look at the more general problem of when any two
functions g and h of a random vector X are roughly proportional to each other. This
means that for some unknown b, g(X) ≈ bh(X). To find a reasonable b, we solve
minb E{[g(X)−bh(X)]2}. A solution would be the number b such that for any other
possible constant of proportionality c, E{[g(X)−bh(X)]2} ≤ E{[g(X)−ch(X)]2}.
Replacing c by b + c − b, expanding and rearranging terms in much the same way
as when we were finding the variance, we get

2(b − c)E{h(X)[g(X) − bh(X)]} + (b − c)2E[h(X)2] ≥ 0.

This will always be true if the first expectation is zero which happens when

E{h(X)[g(X) − bh(X)]} � E[h(X)g(X)] − bE[h(X)2] � 0.

This says that the best constant of proportionality is b � E[h(X)g(X)]/E[h(X)2]
whenever the denominator is not zero.

By letting Y −E(Y ) � g(X) and X−E(X) � h(X), we have solved the problem
of finding the linear least-squares regression of Y on X, with coefficients µ � E(Y )
and

b � E{[X − E(X)][Y − E(Y )]}
E{[X − E(X)]2} .

The denominator is simply the variance of X, but the numerator we have never
seen before. Since we are reviewing Chapter 2 as we go, we know what the
corresponding quantity was called: the sample covariance (see 2.7.1).

Definition. The covariance of X and Y is given by

Cov(X, Y ) � E{[X − E(X)][Y − E(Y )]}.
Now we can make the following assertion:

Proposition. The least-squares linear regression of Y on X, Ŷ � µ+[X−E(X)]b,
is given by µ � E(Y ) and b � Cov(X, Y )/Var(X) whenever Var(X) > 0.
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7.5.5 Covariance
Notice that

E{[X − E(X)][Y − E(Y )]} � E(XY ) − E[E(X)Y ] − E[YE(X)] + E(X)E(Y )
� E(XY ) − E(X)E(Y ),

which is much like the short formula we got for the variance.

Example. In the bivariate example given by a table of p in Section 2, E(XY )
should be a sum of 25 terms; but in all but three cases, either X or Y or p is zero.
Thus,

E(XY ) � 1 · 1 · 0.18 + 1 · 2 · 0.255 + 2 · 1 · 0.135 � 0.9

From the marginal probabilities we found that E(X) � 0.9; similarly, E(Y ) � 1.5.
We conclude that Cov(X, Y ) � 0.9 − (0.9)(1.5) � −0.45. We compute further
that Var(X) � 0.63, and we have a regression equation Ŷ � 1.5 − 0.71(X − 0.9).

Covariance measures the degree to which X and Y change linearly together.

Proposition (properties of the covariance).

(i) Cov(X, Y ) � E(XY ) − E(X)E(Y ).
(ii) Cov(X, Y ) � Cov(Y, X).

(iii) Cov(X, X) � Var(X).
(iv) Cov(a, X) � 0.
(v) Cov(aX + bY, Z) � aCov(X, Z) + bCov(Y, Z).

The proofs of (ii)–(v) are easy but worthwhile exercises. You can get
other interesting results by combining them. Parts (iv) and (v) together say
that Cov(X + a, Y ) � Cov(X, y). Combining (ii) with either (iv) or (v) gives
“right-hand” versions of those propositions.

Another important property can be seen by going back to the analysis of the
regression of one function of X on another. By positivity of the expectation, we
know that even at its minimum point, E{[g(X)−bh(X)]2} ≥ 0. Using our best value
for b, expanding and simplifying we get E{[g(X)]2}−{E[g(X)h(X)]}2/E{[h(X)]2}.
Clearing the denominator, we get a very important fact:

Theorem (Cauchy–Schwarz inequality). {E[g(X)h(X)]}2 ≤ E[g(X)2]E[h(X)2],
and the two sides are equal when g and h are proportional.

If you stare at this result, and especially at the way we derived it, you will notice
how closely it parallels the Schwarz inequality from Chapter 2 (see 2.3.5). The
inequality is useful in many kinds of mathematics. Remembering that

Cov(X, Y ) � E {[X − E(X)][Y − E(Y )]} ,

our inequality says that

Cov(X, Y )2 ≤ E
{
[X − E(X)]2}E

{
[Y − E(Y )2]2} � Var(X)Var(Y )

in all cases.
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We earlier found the regression of one trinomial on another,

EY |X[Y | x] � (n − x)
(

q

1 − p

)
.

Comparing this to our general linear regression formula with slope b �
Cov(X, Y )/Var(X) � −q/(1 − p) and remembering that Var(X) in this case
is np(1 − p), we find that Cov(X, Y ) � −npq. That this is negative reflects the
unsurprising fact that the more observations get counted in one category, the fewer
there tend to be in others. If we are looking at the covariance of two counts of a
general multinomial, we can treat them as a trinomial, our two categories and an
Other category combining all the remaining cases.

Proposition. For a multinomial M(n, p1, . . . , pk) vector X, Cov(Xi, Xj ) �
−npipj .

7.5.6 The Correlation Coefficient
By analogy with the sample correlation coefficient (see 2.7.1), there is a way to
measure how strongly two variables are correlated, apart from the issue of how
variable they are:

Definition. The correlation coefficient between random variables X and Y is
ρXY � Cov(X, Y )/σXσY .

Proposition. −1 ≤ ρXY ≤ 1

We check this by squaring the definition, applying the Cauchy–Schwarz
inequality, and remembering that covariances may be either positive or negative.

Example. In a multinomial vector, ρXiXj
� −√(pipj )/((1 − pi)(1 − pj )). No-

tice that the number of trials n turns out to be quite irrelevant. This is a general
phenomenon.

Proposition (properties of the correlation).

(i) ρXY � ρYX.
(ii) If a > 0, then ρaX,Y � ρXY . If a < 0, then ρaX,Y � −ρXY .

(iii) ρX+a,Y � ρXY .

Prove these for yourself from the corresponding properties of the variance and
covariance. They tell us that the correlation coefficient reflects the tendency of two
random variables to vary upward or downward together, without regard to their
scale, or units, of measurement. We call such a quantity dimensionless. This sug-
gests one reason why n did not appear in the multinomial correlation—it measures
mainly the size of the experiment.

In Chapter 2 (see 2.7.1), we used correlation coefficients to write linear
regression equations compactly. The same technique works here:

Definition. Let X be a random variable with E(X) � µ and Var(X) � σ 2. Then
Z � X−µ

σ
is called X standardized.
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Proposition.

(i) E(Z) � 0.
(ii) Var(Z) � 1.

(iii) ρXY � Cov(ZX, ZY ),

where of course ZX, ZY are X and Y standardized. You should prove this
proposition as an easy exercise. Now apply our linear regression equation:

Proposition. The linear regression of Y on X may be written ZŶ � ρXY ZX.

7.6 Linear Combinations of Random Variables

7.6.1 Expectations and Variances
We often find ourselves interested in linear combinations of the coordinates of a
random vector, for example aX + bY , where a and b are constant.

Example. A salesman gets $500 commission on each Corvette he sells, and $400
on each Cadillac. The sales are unpredictable; call the daily number of Corvettes
sold V , and of Cadillacs D. His daily earnings are then the random quantity
500V + 400D.

Immediately from the fact that E is linear, we get that E(aX + bY ) � aE(X) +
bE(Y ). In our example, the salesman’s expected daily earnings would be 500E(V )+
400E(D).

We might also be interested in the variance of a linear combination:

Var(aX + bY ) � E
{
[aX + bY − E(aX + bY )]2}

� E
({a[X − E(X)] + b[Y − E(Y )]}2) .

Expanding the square and applying the linearity of E, we get that this is equal to

a2E
{
[X − E(X)]2}+ 2abE {[X − E(X)][Y − E(Y )]} + b2E

{
Y − E(Y )]2} .

Notice that we have here expressions for the variance of X and Y , and for their
covariance.

We have discovered an important result:

Proposition.

(i) E(aX + bY ) � aE(X) + bE(Y ).
(ii) Var(aX + bY ) � a2Var(X) + 2abCov(X, Y ) + b2Var(Y ).

In the special case where X and Y are trinomial,

Var(X + Y ) � Var(X) + 2Cov(X, Y ) + Var(Y ).

But we know that Var(X) � np(1 − p), Var(Y ) � nq(1 − q), and Cov(X, Y ) �
−npq; so

Var(X + Y ) � np(1 − p) + nq(1 − q) − 2npq � n(p + q) − n(p + q)2

� n(p + q)(1 − p − q).
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Notice that X + Y is just the total count not falling in the Other category, so it
is B(n, p + q). As it turns out, we should already have known the result of our
variance calculation.

You should verify as an exercise that these results may be extended:

Proposition. For a k-dimensional random vector X,

(i) E(
∑k

i�1 aiXi) �∑k
i�1 aiE(Xi).

(ii) Var(
∑k

i�1 aiXi) �∑k
i�1 a2

i Var(Xi) + 2
∑

i≤i<j≤k aiaj Cov(Xi, Xj ).

7.6.2 The Covariance Matrix
Our formula for the variance of a linear combination is fairly ugly. Matrix algebra
will at least let us make the notation prettier. First of all, we can write

∑k
i�1 aiXi �

aTX.

Definition. Let µ � E(X) be the vector of expected values of the coordinates of
X. Then the covariance matrix of X, � � Var(X) � E

[
(X − µ)(X − µ)T].

Notice that the outer square of an n-dimensional vector, vvT, is an n×n square
matrix.

Proposition.

(i) The diagonal elements �ii � Var(Xi).
(ii) For i �� j , �ij � Cov(Xi, Xj ).

(iii) Var(aTX) � aT�a.

You should check (i) and (ii) by expanding the matrix product in the definition.
Then check that (iii) is just a restatement of our formula for the variance of a linear
combination.

Proposition.

(i) � is a symmetric matrix; that is, �ij � �ji (by one of the properties of the
covariance).

(ii) � is a nonnegative definite matrix; that is, for any v, vT�v ≥ 0.

(This is because (ii) is just the variance of the linear combination vTX, and variances
are always at least zero).

We shall have many uses for the matrix formulation later. Notice, though, that
if the coordinates have zero covariance (they are said to be uncorrelated), the
simplification is drastic even in the old notation:

Proposition. If the coordinates of a vector X are pairwise uncorrelated, then

Var

(
k∑

i�1
aiXi

)
�

k∑
i�1

a2
i Var(Xi).

This is a promising formula, if only we had better than a qualitative idea of when
variables might be uncorrelated.
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7.6.3 Sums of Independent Variables
A lack of tendency to change together reminds me of probabilistic independence.
Assume that X and Y are independent; we might ask ourselves to what extent
we can compute E[g(X, Y )] one coordinate at a time. If we can factor g(X, Y ) �
g(X)h(Y ), then

E[g(X)h(Y )] �
∑
X

∑
Y

g(X)h(Y )p(X, Y ) �
∑
X

∑
Y

g(X)h(Y )pX(X)pY (Y )

because of independence; and so factoring constants out of the inner sum, we
obtain ∑

X

g(X)pX(X)
∑
Y

h(Y )pY (Y ) � E[g(X)]E[h(Y )].

We summarize this as follows:

Proposition. For X and Y independent, E[g(X)h(Y )] � E[g(X)]E[h(Y )].

But then Cov(X, Y ) � E(XY ) − E(X)E(Y ) � E(X)E(Y ) − E(X) − E(Y ) � 0.

Proposition. For X and Y independent, Cov(X, Y ) � 0.

This gets us the following weaker, but very useful, result:

Theorem (variance of independent sums). If the coordinates of a vector X are
pairwise independent, then

Var

(
k∑

i�1
aiXi

)
�

k∑
i�1

a2
i Var(Xi).

This beautiful and unexpected fact was one of the things that first convinced me
that mathematical statistics was worth learning. I remember it by thinking of the
case where all the a’s are 1 and saying to myself, “With independence, the variance
of a sum is the sum of the variances.” Its uses are many, as we shall see.

Example. Your restaurant has a weekly profit that varies unpredictably, but the
standard deviation is about $500. Over a year (52 weeks), how variable would
your total profit be? It seems plausible that weeks should be independent of one
another. The weekly variance is 5002 � 250,000; so over a year the variance
would be 13,000,000 by our theorem. The standard deviation of your annual profit
is

√
13,000,000 � $3605.55.

7.6.4 Statistical Properties of Sample Means and Variances
We have mentioned a particularly important sort of random vector, a random
sample, in which we try to repeat an experimental measurement identically and
independently a number of times, in order to try to see through the confusing
effects of random noise. We then try to compute a summary measurement that we
hope will be more accurate than any one measurement, for example, the ordinary
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average, or sample mean, written X̄ � 1
n

∑n
i�1 Xi when, in contrast to Chapters 1

and 2, we think of it as a random variable until we carry out the experiment. For
example, our diligent college applicant who took the SAT five times has a sample
mean score of 1018.

This points out a particularly easy case of the results of the last section, when
we are interested in the simple sum of n random coordinates. Then our formulas
reduce to E

(∑n
i�1 Xj

) � ∑n
i�1 E(Xi) (the expectation of the sum is the sum of

the expectations) and the more complicated

Var

(
k∑

i�1
Xi

)
�

k∑
i�1

Var(Xi) + 2
∑

i≤i<j≤k

Cov(Xi, Xj ).

When we have pairwise independence, as in a random sample, we have seen that
this reduces to Var

(∑k
i�1 Xi

) � ∑k
i�1 Var(Xi). When the marginal distributions

of the coordinates are all the same, say that of a random variable X, then these
simplify radically to E

(∑n
i�1 Xi

) � nE(X). When the joint distribution of each
pair of coordinates is the same, then we get

Var

(
k∑

i�1
Xi

)
� nVar(X) + 2

(
n

2

)
Cov(X, Y ) � nVar(X) + n(n − 1)Cov(X, Y ),

since all the covariances are equal. We will see some lovely applications of this
shortly. Of course, in the case of a random sample, where we have independence
of the coordinates, this collapses again to Var

(∑k
i�1 Xi

) � nVar(X).
Now the sample mean divides the sum by n, so we get an important result.

Theorem (statistics of the sample mean).

(i) E(X̄) � E(X).
(ii) Var(X̄) � Var(X)

n
.

(iii) σX̄ � σX√
n

.

You should finish proving these for yourself. This small result is among the
most useful in all of statistics, for it tells us how much good replication—repeated
experiments—can do us in the problem of measurement in the presence of noise.
Our index of uncertainty, the standard deviation, gets steadily smaller as we in-
crease the number of experiments. Unfortunately, the rate of improvement is only
by the square root of n; so that for example, we must quadruple the amount of
work we do in order to double the accuracy. You may hear σX̄ called the standard
error of the mean.

Example. The standard deviation of one person’s total score on the SAT is about
50 points. Our student who averages his results on five tries is therefore measuring
his performance with a standard deviation of 50/

√
5 � 22.36 points.

It is natural also to wonder what the statistical properties of the sample variance
might be. For simplicity in notation, let E(X) � µX. If we knew the expectation,
then the obvious estimator of the true variance of X is σ̂ 2

X � 1
n

∑n
i�1(Xi − µX)2.
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Taking its expected value, we get E(σ̂ 2
X) � 1

n

∑n
i�1 E[(Xi −µX)2] � 1

n

∑n
i�1 σ 2

X �
σ 2

X from the linearity of expectation. Whenever the average value of a statistic is
equal to a parameter of interest, we call the statistic unbiased for that parameter.

Of course, this estimator is of little use in practice, because if we are trying
to understand an unknown distribution by studying data, we are very unlikely to
know µX. That is why we would presumably want to use the sample variance
from Chapter 2 (see 2.4.2) to estimate the variance of X. We remember it as
s2 � 1

n−1
∑n

i�1(Xi − X̄)2 but could compute it more generally by

s2 � 1
n − 1

[
n∑

i�1
(Xi − ν)2 − n(X̄ − ν)2

]

for any constant ν. To find its expectation, you will not be surprised to hear that a
convenient choice is ν � µX:

E(s2) � 1
n − 1

{
n∑

i�1
E
[
(Xi − µX)2]− nE

[
(X̄ − µX)2]}

� 1
n − 1

(
nσ 2

X − n
σ 2

X

n

)
� σ 2

X.

Thus s2 is also an unbiased estimate of the true variance of X. Now we see the
most important reason to divide by n − 1 instead of n, so that on average we will
be correct.

Proposition. For any random variable X whose mean and variance µX and σ 2
X

exist, and random samples of size n > 1, σ̂ 2
X and s2 are unbiased estimates of σ 2

X.

7.6.5 The Method of Indicators
Notice that the fact that the expectation of the sum is the sum of the expectations is a
general justification for our use of the method of indicators in Chapter 5 (see 5.5.3).
We broke a negative hypergeometric random variable into W equivalent pieces Xi ,
each telling us whether or not the ith white marble appeared before the bth black
marble. We were able to calculate the expectation of that indicator, b/(B +1). The
sum of all W of the pieces then had expectation Wb/(B + 1). This method applies
to a number of other problems. For example, in a binomial experiment let Xi be
zero if the ith experiment is a failure, and one if it is a success. Then X �∑n

i�1 Xi

is a Binomial(n, p) random variable. Now, E(Xi) � 0 · (1 − p) + 1 · p � p, so
E(X) � np, as we learned before by a more complicated procedure.

We can use the same approach to calculate the variance of a binomial. Notice
that the Xi are independent of one another, because they refer to different Bernoulli
experiments:

Var(Xi) � E(X2
i ) − E(Xi)2 � p − p2.

(notice that X2
i � Xi , since the only values are 0 and 1), and so Var(X) � np(1−p),

since in this case the variance of a sum is the sum of the variances. As a slightly
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harder exercise, you should use the same technique to find the expectation and
variance of a negative binomial random variable.

Calculating the variance of a negative hypergeometric variable is somewhat
more difficult by the inductive method. Using indicators,

Var(Xi) � E(X2
i ) − E(Xi)2 � b

B + 1
− b2

(B + 1)2 � b(B + 1 − b)
(B + 1)2 .

Unfortunately, the Xi are by no means mutually independent. Intuitively, if one
white marble falls before the bth black, it creates an additional slot into which
the next white one might fall; therefore, we would expect them to be positively
correlated. To calculate the covariance, pretend that only the ith and j th white
marbles are present, so we have an N(2, B, b) variable:

E(XiXj ) � P(both before bth black) � p(2) �
(
b+1

2

)(
B−b

0

)(
B+2

2

)
� b(b + 1)

(B + 1)(B + 2)
,

Cov(Xi, Xj ) � b(b + 1)
(B + 1)(B + 2)

− b2

(B + 1)2 � b(B − b + 1)
(B + 1)2(B + 2)

.

Now we are ready to use our formula for variances of sums of identical variables
from the beginning of this section:

Var(X) � Wb(B − b + 1)
(B + 1)2 + W (W − 1)b(B − b + 1)

(B + 1)2(B + 2)
.

Now simplify this:

Proposition. If X is N(W, B, b), then

Var(X) � (Wb(B − b + 1)(W + B + 1))/((B + 1)2(B + 2)).

Example. 100 caribou are released into a wildlife preserve in which they had
been extinct. Twenty-five of them have tiny data recorders implanted under the
skin of the neck. After 6 months, scientists need to read 10 recorders, so they
begin recapturing caribou. How many animals will need to be captured to get
them?

This problem is negative hypergeometric, with W � 75, B � 25, b � 10, and X

is the number of caribou captured without recorders. We know E(X) � 750/26 �
28.85, so they have to capture 39, on average. Var(X) � 75·10·16·101

(26)227 � 66.40, so
that the standard deviation of the number captured is a little more than 8. A typical
variation might be from 31 to 47 caribou captured.

This formula is impressively complicated, so let us try to interpret it. In the case
where we used binomial approximation (see 6.3.1), we let n � W , and p � b

B+1 .
Then we can write Var(X) � np(1 − p)

(
1 + W−1

B+2

)
. The final factor is called a

finite population correction; it says that the binomial approximation compresses
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the variance by that factor. When the approximation is appropriate, of course W is
small compared to B, and the correction is practically 1. As an exercise, you should
show that the finite population correction to the variance when you try to apply the
negative binomial approximation to negative hypergeometric random variables is
roughly 1 − b+1

B+2 . Therefore, using this approximation inflates the variance (but
only slightly in cases where the approximation is any good).

It should now be a straightforward exercise for you to find the variance of a
hypergeometric random variable.

7.7 Convergence in Probability

7.7.1 Probabilistic Accuracy
In the last section we noticed that sample means had standard deviations (standard
errors) that got smaller as the sample size grew; it seems reasonable to interpret
this as saying that the sample mean became more accurate as an estimate of the
expectation the more data we take. But does it really say that? We are going to come
up with a more precise statement, in terms of probabilities, of what we really mean
when we say that an estimator is “accurate.” Of course, if an estimator were simply
correct, this would not be a statistics course. So we say something weaker, like,
“most of the time, the estimator is pretty accurate.” To turn that into mathematics,
let Xn be a sequence of random variables (statistics, presumably based on growing
samples), and let µ be the “true” value that we wish the Xn’s were equal to. Now let
d > 0 be an error that for some purpose we are willing to tolerate. It is a reasonable
question to ask how often the statistic is inside the error bound. That is, what is
P
(|Xn − µ| < d

)
? And especially, does the probability of being this accurate get

large as we go to bigger sample sizes? We use this idea to make a definition:

Definition. A sequence of random variables Xn is said to converge in probability
to a constant µ if for any standard of accuracy d >0, limn→∞ P

(|Xn − µ| < d
)�1.

So we could imagine a big enough experiment that would make us as sure as
we could hope to be of meeting our standard of accuracy.

7.7.2 Markov’s Inequality
Unfortunately, it is not at all clear how we would go about checking that some
statistic converges in probability to the value we want. Our experience would
suggest that those probabilities usually get more and more complicated to compute
as the sample grows. So we must look for some indirect way, based on some
qualitative summary of behavior (like the standard error), to check that we have
convergence in probability.

There is a remarkably simple device for doing this. First turn the probability
around, into the complementary one for exceeding the error bound; then express
it as a sum: P

(|X − µ| ≥ d
) � ∑

|xi−µ|≥d p(xi). Now notice that whenever
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|X − µ| ≥ d, obviously |X−µ|
d

≥ 1. Multiplying each of our probabilities by this
number that is at least 1, we get the inequality

P
(|X − µ| ≥ d

) ≤
∑

|X−µ|≥d

|X − µ|
d

p(xi).

Extending this sum over the whole sample space can only increase the right-
hand side: P

(
X − µ| ≥ d

) ≤ ∑all xi

|X−µ|
d

p(xi). Now the right-hand side is an
expectation:

Proposition (Markov’s inequality). For X a discrete random variable,

P (|X − µ| ≥ d) ≤ 1
d

E|X − µ|.
As an exercise, you will compute some easy examples. Do not be misled into
imagining that this is a useful inequality, helpful in calculating approximate prob-
abilities. In almost every practical case it gets awful answers. Its main reason for
being is that it immediately gives us a general truth:

Proposition. Let Xn be a sequence of random variables with the property that for
some constant µ, limn→∞ E|Xn − µ| � 0. Then the Xn converge in probability to
µ.

This proposition holds because the right-hand side of Markov’s inequality goes to
zero, forcing the left side to zero as well. Therefore, its complement goes to 1.

This is a big improvement, because it connects an overall measure of accuracy,
the expected absolute error, to convergence in probability. But it is no surprise that
we have seen little of this measure; historically, it turned out to be hard to work
with.

7.7.3 Convergence in Mean Squared Error
We would prefer to do everything in terms of our old friend, the mean squared
error (MSE). But that is now easy:

(E|X − µ|)2 � [E(1 · |X − µ|)]2 ≤ E(12)E(|X − µ|2) � E[(X − µ)2]

by probably the easiest possible application of the Cauchy–Schwarz inequality
(see Section 5.3). So if the MSE gets small, then we are sure that the expected
absolute error gets small as well. We have finally figured out a widely applicable
fact.

Theorem (convergence in MSE implies convergence in probability). Let Xn

be a sequence of random variables with the property that for some constant µ,
limn→∞ E[(Xn − µ)2] � 0. Then the Xn converge in probability to µ.

This result will be easier to use than the one before it (we know much more about
MSE), but you might remember that it says less. There are sequences of random
variables that do not converge in MSE, but do converge in expected absolute error,
as you will check in an exercise.
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We are ready for our promised application. We found out in the last section that
the variance of the sample mean, if there was one, decreased in proportion to the
sample size.

Theorem (a law of large numbers). If X has expectation µ and finite variance,
then the sample means of random samples of size n, X̄n, converge in probability
to µ.

This goes a bit of the way toward justifying what scientists have always done:
To get more accurate results in a noisy experiment, repeat the experiment as often
as possible, then average.

Later in the book we will prove a variation of this theorem without having to
assume that X has a finite variance. We might have guessed that something like
this was so, because we started by studying the convergence of variables that had
a finite absolute error (which means they need only have an expected value E(X)).
Only then did we back off to weaker results about variables with finite variance,
in order to make our math easier.

7.8 Bayesian Estimation and Inference

7.8.1 Parameters in Models as Random Variables
The frequentist style from Chapters 5 and 6 is not the only way of looking at
problems of hypothesis testing and parameter estimation.

Example. A genetic crossbreeding experiment is believed to produce 25% seeds
that are homozygotic for a lethal gene; it is believed that those seeds can never
sprout. Further, it is impractical to count the seeds directly; the scientist can only
count the sprouts that come up, and he believes that all seeds other than the ho-
mozygotic ones will sprout. He observes 81 sprouts. How many seeds were there
originally?

It seems plausible to imagine that before the experiment, the number of sprouts
would be expected to be a B(n, 0.75) random variable, which was then observed
to take on the value X � 81. The sample size n is unknown. As exercises, you
should see what a method-of-moments estimate and a confidence interval tell you
about n.

Instead, we will go back to the state of the experiment before the seeds sprouted.
We do not know X, because we believe that it is a random variable; furthermore,
we do not know n. Would it help us with our thinking to imagine that n is also a
random variable, so that (N, X)T is a random vector?

Generally, imagine that before the experiment, we knew that there would be
a discrete quantity X that we would measure and a discrete quantity θ that we
cannot measure but would like to know. We believe that these quantities have
some bivariate probability mass function p(x, θ). Once we have measured X � x,
what do we know about θ? By the conditioning formula, we have that p�|X(θ |x) �
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p(x, θ)/pX(x) � p(x, θ)/(
∑

� p(x, �)). We still do not know exactly the value
of θ , but perhaps its conditional distribution will say something more about it than
we knew before.

This leaves us with the problem of finding the bivariate mass function. Usu-
ally, we reason as follows: Thinking of the θ as the unknown parameter of a
distribution for the random result X, its probability mass function is the other
conditional pX|�(x|θ ). In our example, we believed that X followed a binomial
law with unknown parameter n. But then we imagine that before this random
process determined X, another random process determined θ . Let this marginal
random variable have mass function p�(θ ); this is called the prior distribution
of θ . Now the multiplicative rule gives us the bivariate mass function we needed,
p�(θ )pX|�(x|θ ) � p(x, θ). After the experiment is done, we calculate

p�|X(θ |x) � p�(θ )pX|�(x|θ )∑
� p�(�)pX|�(x|�)

.

This conditional mass function for θ is called its posterior distribution. Notice
that it is a version of Bayes’s theorem, so that this style of reasoning, which uses
experimental data as a bridge from the prior to the posterior distribution of an
unknown parameter, is called Bayesian inference.

7.8.2 An Example of Bayesian Inference
We need to come up with a prior distribution for our number of seeds n in our ge-
netics experiment. This is usually the hard part in a Bayesian analysis. Sometimes
there will be a sound scientific basis for assuming a prior variability for the pa-
rameter, but very often, statisticians must just do the best they can to describe their
uncertainty about its value in the form of a probability law. In our problem, let us
say that before the experiment, the geneticist thought, on the basis of experience,
that on average something like 100 seeds would have been formed. Let us declare
that the prior number of seeds was a Poisson random variable with λ � 100, be-
cause this is a simple law we know quite a bit about. Then we multiply our Poisson
and binomial mass functions to get a bivariate mass function:

p(n, x) � pN (n)pX|N (x|n) � λn

n!
e−λ n!

x!(n − x)!
px(1 − p)n−x.

Bayes’s theorem now requires us to divide this expression by its sum over all
possible values of n, to arrive at a posterior mass function. As will often be the case,
we can here avoid doing all that work. The variable part of the posterior is those
terms in the bivariate mass function involving n : λn(1−p)n−x/(n−x)!. Simplify
it even further by factoring out the constant λx , to get [λ(1 −p)]n−x/(n− x)!. The
mass function will be a constant multiple of this, which causes it to sum to 1 over
all possible values of n. Now let the random variable instead be Z � n − x, the
number of seeds that did not sprout. Then its posterior mass function is a multiple
of [λ(1 − p)]z/z!. We conclude that Z is Poisson[λ(1 − p)] (because we have the
variable part of its mass function, without the multiplicative constant e−λ(1−p)).
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This is intuitively plausible, since the parameter is just the average number of
seeds times the proportion that do not sprout.

It is easy to find uses for the posterior random behavior of the unknown parame-
ter. For example, a sensible estimate might minimize its mean squared error, and in
an earlier section we learned that the expected value has this property. The estimate
is then the posterior mean. In this problem, n̂ � E(N |x) � E[x+Z] � x+λ(1−p).
In the genetics example, if our scientist believed in advance that there would be an
average of λ � 100 seeds, then after 81 sprouts came up he would estimate that
n̂ � 81 + 100 × 0.25 � 106 seeds had formed.

We also now know the posterior mean squared error, which is just the variance
of the posterior distribution. Before the experiment, when the scientist thought
there would be about 100 seeds, his standard deviation would be

√
100 � 10,

from what we know about Poisson variables. With the experiment behind him,
he believes there were about 106 seeds. But now the standard deviation of that
estimate is

√
Var(x + Z) � √

Var(Z) � 5. The experiment has narrowed down
its value quite a bit.

Bayesian thinking provides the analogue of a confidence interval, but it is some-
what easier to compute and to understand. The unknown parameter is now a random
variable; so just find two values within which it falls with high probability:

Definition. A 100(1−α)% Bayes interval for a parameter θ is a pair of numbers
θL and θU and a posterior distribution for θ � � conditional on experimental data
x such that P(θL ≤ � ≤ θU|X � x) ≥ 1 − α.

In the genetics experiment, since Z is Poisson(25), we discover that P(Z ≤
15) � 0.02229 and P(Z ≥ 36) � 0.02245; therefore, adding the known 81
sprouted seeds, 97 ≤ N ≤ 116 is a 95% Bayes interval for n.

7.9 Summary

In this chapter we defined random vectors and the concepts of marginal and
conditional distribution, whose mass functions in the discrete case are given
by pX(x) � ∑Y p(x, Y ), and pX|Y (x|y) � p(x, y)/(pY (y)) (2.2); we also de-
fined independence of random variables (4.1). We then considered expectations
of functions of random vectors (in the discrete case E[g(X)] � ∑X g(X)p(X)
(5.1)) and conditional expectations EY |X[g(X, Y )|x]

∑
Y g(x, Y )pY |X(Y |x). These

combine to give the useful formula E[g(X, Y )] � E
{
EY |X[g(X, Y )|X]

} �
EY

{
EX|Y [g(X, Y )|Y ]

}
(5.3). This concept suggested the regression of one ran-

dom coordinate on another. When such regression predictions are linear, this led
to the ideas of covariance Cov(X, Y ) � E

{
[X − E(X)][Y − E(Y )]

}
(5.4) and cor-

relation ρXY � Cov(X, Y )/(σXσY ) of random variables (5.5). These tools allowed
us to deal with linear combinations of random coordinates, in particular to their
variance,

Var(aX + bY ) � a2Var(X) + 2abCov(X, Y ) + b2Var(Y ). (6.1).
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This drastically simplifies in the case of independent observations to
Var
(∑k

i�1 aiXi

) � ∑k
i�1 a2

i Var(Xi) (6.3). For example, we were able to study
the uncertainty in a sample mean, including its standard error σX̄ � σX/

√
n (6.4).

At last, we have justified the method of indicators (6.5).
Our new information about the rate at which sample means converge to the

expectation inspired the idea of convergence in probability (7.1) and a first example
of a law of large numbers (7.3). Finally, we used the ideas of conditional and
marginal distribution to demonstrate Bayesian inference, where we formalized
our knowledge about an unknown parameter as its posterior distribution (in the
discrete parameter case

p�|X(θ |x) � p�(θ )pX|�(x|θ )∑
� p�(�)(x|�)

after we have observed a sample of measurements whose probabilities depend on
it (8.1).

7.10 Exercises

1. In a Mendelian crossing experiment, 25% of the third generation of white
mice have genotype AA, 50% have genotype AB, and 25% have genotype
BB. There are 40 mice born into the third generation.

a. What is the probability that you will find 24 AB mice in your third
generation?

b. If you quickly discover that 9 are type BB, what is now the probability
that 8 are of type AA?

c. What is the probability that there will be 11 AA, 22 AB, and 7 BB in the
third generation?

2. Here is the probability mass function p(x, y) of a certain bivariate distribution:

y

0 1 2 3 4
0 0.06667 0.06667 0.04286 0.01905 0.00476

x 1 0.05000 0.08571 0.08571 0.05714 0.02143
2 0.02143 0.05714 0.08571 0.08571 0.05000
3 0.00476 0.01905 0.04286 0.06667 0.06667

a. Compute pX(1) � P(X � 1).
b. Compute pY |X(2|1) � P(Y � 2|X � 1).
c. Compute E(X + 2Y ).

3. Here is the probability mass function of a certain random vector (X, Y ):
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y

0 1 2 3
0 0.027 0.108 0.144 0.064

x 1 0.081 0.216 0.144 0
2 0.081 0.108 0 0
3 0.027 0 0 0

a. If you know that X � 1, find the conditional probability mass function
for Y .

b. Find the probability mass function for Z � Y − X.
c. What is P(Y ≥ X)?

4. Let (X, Y ) be trinomial M(n, p, q, 1 − p − q). Start with the bivariate mass
function p(x, y) and work backwards to show that

a. X has marginally the mass function of B(n, p); and
b. X has conditionally on Y � y the mass function of B(n − y, p/(1 − q)).

5. A negative multinomial NM(k, p) random vector, where p � (p0, p1,

p2, . . . , pl) are positive and sum to 1, is the vector of counts X �
(X1, X2, . . . , Xl) falling in categories 1 to l as a result of a sequence of
independent experiments in which the p’s give the probabilities of falling in
the various categories. The novelty is that we stop when k experiments have
fallen in the zeroth category.

a. Write down the probability mass function for a negative multinomial
vector.

b. What is the marginal distribution of Xi? What is the conditional
distribution of Xi given Xj ?

6. We have 5 pea seeds homozygotic for smooth pod, 8 pea seeds homozygotic
for wrinkled pod, and 12 heterozygotic pea seeds (these are nonoverlapping
genetic categories). We pick 7 of these seeds at random for a cultivation
experiment. Let the random vector (X, Y ) be X � number of seeds homozy-
gotic for smooth pod chosen and Y � number homozygotic for wrinkled pod
chosen.

a. Compute p(2, 3).
b. Compute the marginal probability pX(2).
c. Compute the probability that Y � 3 given that X � 2, pY |X(3|2)

7. Consider a random vector (X, Y ) with the following probability mass
function:

y

0 1 2
0 0.08 0.15 0.09

x 1 0.11 0.21 0.18
2 0.07 0.06 0.05

Compute E(X|X + Y � z) for the special case z � 2.
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8. Construct a table of the cumulative distribution function for the random vector
of Exercise 7.

9. Let a random vector be the two rectangular coordinates of uniform (equally
likely to be anywhere) hits on a circular dart board. Find the cumulative
distribution function and show that the two coordinates are not independent.

10. For a random variable whose sample space consists of pairs of integers, find
a formula that expresses the probability mass function p(x, y) in terms of
values of the cumulative distribution function.

11. Let X be NB(k, p) and Y be independently NB(l, p). Find the probability
law for the variable Z � X + Y .

12. Let X be B(n, p) and Y be independently B(m, p). Derive the probability
mass function for Z � X + Y in a manner analogous to the method used in
the Poisson case, using summations.

13. Prove properties (ii)–(v) of the covariance (see Section 5.5).
14. For the random vector of Exercise 2, compute Var(X), Var(Y ), and Cov(X, Y ).
15. For the random vector of Exercise 7, compute Var(X), Var(Y ), and Cov(X, Y ).
16. If � is the covariance matrix for X, prove that (a) �ii � Var(Xi); (b) for

i �� j , �ij � Cov(XiXj ); and (c) Var(aTX) � aT�a.
17. In a certain population, people’s weights have mean 60 kg and standard de-

viation 12 kg; their heights have mean 160 cm and standard deviation 10 cm.
The covariance of the two is 60. The Terrell Fat Index is (height − weight).
(It tends to be large for thin people and small for fat people.) Write down the
mean and standard deviation of the TFI.

18. Here is the probability mass function for the number of Corvettes (V ) and
Cadillacs (D) sold in one work day by a sales worker:

d

0 1 2
0 0.03 0.11 0.16

v 1 0.08 0.19 0.13
2 0.14 0.09 0.07

The commission for selling a Corvette is $500 and for selling a Cadillac is
$360. Find the expected value and standard deviation of the worker’s daily
commission.

19. Prove the three properties of the correlation (see Section 5.6).
20. For the random vector of Exercises 7 and 15, compute ρXY .
21. Derive the statistics of the sample mean.
22. I know that there are an average of 20 bullets that will not fire in each crate

of cheap ammunition I sell, with a standard deviation of 6. A customer who
buys in large quantities occasionally thoroughly tests a crate, to see whether
I am maintaining my standards. If the customer counts the bad bullets in 12
crates a year and computes the sample mean of those 12 counts, what are the
expected value, variance, and standard deviation of the sample mean he will
compute next year?
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23. Use the method of indicators to compute the expectation and variance of a
negative binomial NB(k, p) random variable.

24. You run the computer maintenance facility at your company. Of the mis-
behaving computers you see, approximately 24% have primarily hard-drive
problems, 38% have primarily display problems, 22% have primarily mother-
board problems, and the rest have some other primary problem. One morning
you arrive at work to find that 12 computers have arrived for repair.

a. What is the probability that 5 have primarily a hard-drive problem, 2 have
primarily display problems, 4 have primarily motherboard problems, and
the other has something else?

b. What is the probability that at least three have motherboard problems?

25. In the situation of Exercise 24, your average repair costs are as follows: $150
for hard drives, $275 for displays, $80 for motherboards, and $50 for other
problems.

a. On average, how much will it cost to fix the primary problem in those 12
computers?

b. What is the standard deviation of the cost?

26. For the discrete uniform {0, . . . , M} random variable with M even, let the
center µ � M/2. For integer values of the error d, compute both sides of
Markov’s inequality. Check it for several values of d and M; note that it is
usually very crude.

27. Define a sequence of random variables Xn for positive integers n, with mass
functions

p(x) �
{

1 − 1/n2 x � 0,
1/n2 x � n.

a. Show that the Xn converge in probability to µ � 0.
b. Show that the Xn converge in expected absolute error to µ � 0.
c. Show that the Xn do not converge in MSE to µ � 0.

28. In the genetics problem of Section 8:

a. Find a method-of-moments estimate of n.
b. Find a 95% confidence interval for n.

29. In a survey of a wildlife refuge, you believe that in a systematic overflight in
a small plane, you will have a 30% probability of seeing any particular adult
brown bear, and the sightings are independent of one another. Your prior best
guess of the total adult brown bear population is Poisson with a mean of 150.
When you actually do the overflight, you see 48 bears.

a. Using a Bayesian analysis, compute the mean and standard deviation of
the posterior distribution of the total bear population.

b. Find a 99% Bayes interval for the total adult brown bear population.
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7.11 Supplementary Exercises

30. In a survey of galaxies, a sphere one million parsecs in radius is arbitrarily
placed, and a right-angled coordinate system is defined with the origin at the
center of the sphere and axes X, Y , and Z measured in units of a million
parsecs. Since the sphere was arbitrarily located, the center of any galaxy
that happens to fall inside this sphere may be thought of as a random vector
uniformly distributed over the interior of the sphere.

a. Find the marginal density for the X-coordinate of the center of an
arbitrarily chosen galaxy inside the sphere.

b. Find the marginal bivariate density of the coordinates (X, Z) of the galactic
center (that is, ignoring Y ).

c. Find the conditional density of Y , given that X � x (but ignoring Z).

31. Let X be a trivariate random vector. Find the formula, using cumulative dis-
tribution functions, for P{X ∈ (a1, b1] × (a2, b2] × (a3, b3]}; that is, X is in a
rectangular box parallel to the axes.

32. Using the results of Exercise 10, prove that for a random vector with sample
space pairs of integers, if F (x, y) � FX(x)FY (y) for all (x, y), then p(x, y) �
pX(x)pY (y) for all (x, y).

33. a. In the negative multinomial random variable of Exercise 5, find
Cov(Xi, Xj ).

b. If (X, Y ) is negative multinomial NM(k, 1−p−q, p, q), find an equation
for the least-squares regression of Y on X.

34. Show that the finite population correction to the variance when using a nega-
tive binomial approximation for a negative hypergeometric random variable
is roughly 1 − b+1

B+2 . Hint: Since in this case W and B should be large, let
p � W

W+B+1 (instead of W
W+B

as we found convenient in (6.2.3)).
35. Find the variance of a hypergeometric H(W + B, W, n) random variable,

using the method of indicators.
36. Find finite population corrections to the variance when binomial approxima-

tions to hypergeometric variables are used as in Exercises 6.34 and 6.35.
37. Sitting Bull’s warriors have trapped General Custer’s last 40 soldiers in a

narrow valley. They are crowded so tightly together that any arrow aimed at
them is sure to hit some soldier. However, the bowmen are standing at a safe
distance, so that for all practical purposes any soldier is equally likely to be
hit by any arrow.
One hundred arrows are released at the soldiers. What are the expectation and
standard deviation of the number of soldiers who are still not hit by any arrow?
Hint: Since the number of uninjured soldiers has a very complicated
probability law, you might try the method of indicators.

38. Consider the collection of numbers {1, 2, . . . , n}. Choose m of those numbers
at random. Let X be the sum of the numbers you have chosen. We showed
earlier (see Exercise 5.41) that E(X) � mn+1

2 . Find Var(X).



7.11 Supplementary Exercises 243

Hint: Let X be the sum of m variables Xi each of which is the value of the ith
number chosen. At some point you may need to compute Cov(Xi, Xj ); one
way to do this is to pretend temporarily that m � n, so that you are drawing
all the numbers. In this special case, what is the variance of the total? Also,
at some point you may need the results of Exercise 3.28.

39. Notice that Exercise 38 established the variance of a Wilcoxon rank sum Wi

(see 2.5.5) under the hypothesis that ranks are unrelated to level of a treatment.

a. Show that under this hypothesis, the expectation of the Kruskal–Wallis
statistic is given by

E(K) � 12
n(n + 1)

k∑
i�1

Var(Wi)
ni

.

b. Therefore, E(K) � k − 1.

40. A couple has rather erratic income because of their jobs. He is a musician,
who earns $200 for each gig. Unfortunately, gigs arise quite unpredictably,
though over the long run he averages 3 gigs per month. She is a mud wrestler,
whose contract guarantees her exactly 8 matches per month. She has a 40%
probability of winning any given match. When she wins, she earns $300.
What are the average and standard deviation of this couple’s total income for
one year (12 months)?

41. The skewness of a random variable is k1 � E[(X − µ)3]/σ 3
X; the kurtosis is

k2 � E[(X − µ)4]/σ 4
X. Prove that k2

1 ≤ k2. Hint: Try the Cauchy–Schwarz
inequality.

42. Some statisticians would be unhappy with our use of a Poisson prior dis-
tribution to estimate a binomial sample size, because a Poisson distribution
implies that we have too precise an opinion about what n should be. But we
notice in Chapter 6 (see 6.6.3) that though the Poisson mean and variance are
the same, the negative binomial has a larger variance than its mean; therefore,
it is less precise.

a. Derive the posterior distribution of binomial n, assuming that we know p,
given that its prior distribution is NB(k, q).

b. In Exercise 29, the brown bear counting problem, let your prior for the
brown bear population size be NB(150, 0.5) (so it has the same mean as
before). Now after seeing 48 bears, what is the posterior mean population
size?

c. Construct a 99% Bayes interval for the population size.



CHAPTER 8

Maximum Likelihood
Estimates for Discrete Models

8.1 Introduction

You will remember that in Chapter 1 we introduced a variety of models for sum-
marizing experimental data, both for measurement data and for counted data. Then
in Chapter 2 we discovered a powerful general principle for choosing the param-
eters in our models for measurement data, the principle of least squares. This had
the added advantage that it told us immediately how closely reality matched our
theory, because we could compute mean squared errors. You may have noticed
that we have no comparable way of dealing with counted experimental data; we
proposed only standard estimates, based on the sample proportions, to estimate
some of our models for contingency tables. But for other models, such as the linear
logistic regression model with more than two values of the independent variable,
we had no idea how to choose the parameters. Furthermore, in all cases of counted
data, we had no way to quantify the distance of our model from the results of the
experiment.

Now we know a great deal more about counted data, because in Chapters 5 and
6 we developed a number of possible probability models under which our results
might have arisen by chance. This chapter will propose a general method for es-
tablishing distance from models to data, the likelihood (essentially the probability
that you would observe what you did, given the model). This gives us plausible
estimates for the parameters: those that give the largest possible value of this like-
lihood. We call this the method of maximum likelihood. (Later, we will learn that it
is even more general than the principle of least squares, because in a certain sense
least squares is a special case of maximum likelihood).
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Time to Review

Finding the maximum of a function
Partial and total derivatives
Chapter 1, Sections 7 and 8
Chapter 6

8.2 Poisson and Binomial Models

8.2.1 Posterior Probability of a Parameter Value
We might well believe that the Poisson(λ) model is a reasonable description of some
observation: for example, the number of car crashes in a year at a certain dangerous
intersection. But what is λ? We need some way of estimating this parameter. If we
in fact observed x crashes last year, then consider two possibilities, λ and µ, for
the mean parameter. If we cannot in advance make a preference, we might say that
from our ignorant point of view the two are equally probable: P(λ) � P(µ) � 0.5.
This is just a (discrete) prior distribution on the Poisson parameter, of the sort we
studied in Chapter 7 (see 7.8.1). In that case, we might ask how probable the two
are after we carry out the survey and get x crashes: What are P(λ|x) and P(µ|x),
the posterior probabilities of the parameter? Bayes’s theorem, for example, tells
us that

P(λ|x) � P(x|λ)P(λ)
P(x|λ)P(λ) + P(x|µ)P(µ)

� P(x|λ)
P(x|λ) + P(x|µ)

after we cancel the 0.5’s. Then we might decide that one of the two parameter
values is the better estimate if its posterior probability is the larger. Obviously, that
depends on the relative size of P(x|λ) � (λx/x!)e−λ and P(x|µ) � (µx/x!)e−µ.
If, say, P(x|µ) > P(x|λ), then P(µ|x) > P(λ|x), and we would argue that we had
evidence favoring the model with mean µ.

Example. Two traffic experts propose average annual rates of severe accidents at
our corner. One says that there are 10 accidents on average; the other says that
there are 20. When we look up the records for 1997, we discover that there were
actually x � 15. It sounds like a tossup, so we apply our probability criterion:
P(15|10) � 0.03472 and P(15|20) � 0.05165. Both are a tad implausible, but
surprisingly, the evidence gives a bit of an edge to 20.

We have now turned our thinking around and are calculating what probabilities
would have been if the parameters were known and the random experiment had not
been done yet (when in fact, x is known and we are trying to guess the parameter).
We need some new language:

Definition. The discrete likelihood of a parameter (or vector of parameters) θ ,
given the discrete data (vector) x, is L(θ|x) � P(X � x|θ).
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FIGURE 8.1. Poisson likelihood

The calculation in the example works for any finite number of possible parameter
values: If we believe them equally likely to start with, then Bayes’s theorem says
that the likelihood measures which of them is most probable after the experiment.
It would be interesting to graph the likelihood in our example as a function of
possible values of λ; and we do this in Figure 8.1. This will be a very characteristic
shape of likelihood curves.

In practice, the likelihood for even a good model may be rather small (there
may be a great many reasonable possibilities for x), so we usually compare two
likelihoods not by taking their difference, but by taking their ratio:

Definition. The likelihood ratio for comparing θ1 to θ2 is R � L(θ1|x)/L(θ2|x).

In our traffic problem, the likelihood ratio for an average of 20 versus 10 acci-
dents, when we have seen 15, is 0.05165/0.03472 � 1.4876. Our results would
happen about three times under the first model for each two times they would
happen under the second.

8.2.2 Maximum Likelihood
We perhaps should try to find an estimate of λ by finding a value for which the
likelihood of λ is largest over all possibilities. At what λ is our curve highest?
Because the probability involves exponents, it will turn out that it is easier to find the
maximum value of the log-likelihood log L(λ|x) � − log(x!)+x log λ−λ. Since x

is fixed and the best value of λ is unknown, we differentiate with respect to λ (using
partial derivative notation) and set the result equal to zero: [∂ log L(λ|x)]/(∂λ) �
(x/λ) − 1 � 0. Solving, we find that λ � x. We check that the second derivative
is [∂2 log L(λ|x)]/(∂λ2) � −(x/λ2), which is always negative. We recall from
calculus that this value is indeed the λ of maximum probability (if there were any
events to count). Therefore, our best guess for the Poisson mean parameter λ is
just the observed count x of Poisson events. It is reassuring that it is so plausible
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a value, but it is not very exciting. It will turn out later that in more complicated
models there will be no obvious estimate of the parameters and therefore this
general procedure, finding the value for which the data would have been most
probable, will be very valuable. Therefore, we make the following definition:

Definition. A maximum likelihood estimate for a parameter θ , given a data vector
x, is a value θ̂ for which the likelihood L(θ |x) is as large as possible.

Proposition. For a Poisson (λ) model with observed count x, the maximum
likelihood estimate is λ̂ � x.

For a binomial B(n, p) experiment, we shall let p be the unknown parameter
(usually you know how many trials took place). Then the likelihood for p (the
probability for x) is of course L(p|x) � (n

x

)
px(1 − p)n−x . You should graph this

as a function of p for your favorite values of x and n; it will look much like the
curve in the Poisson case. It will be convenient for some purposes to rearrange our
likelihood as

L(p|x) �
(

n

x

)(
p

1 − p

)x

(1 − p)n.

Once again, there are exponents, so we will want to take logarithms to make the
maximum easier to find. We do this so often that we may as well have some
notation: the log-likelihood is l(x|θ ) � log L(x|θ ). In the binomial case, this is

l(p|x) � log
(

n

x

)
+ x log

p

1 − p
+ n log(1 − p).

Our rearrangement has broken it into three terms: one involving only the data,
one involving both the data and the parameter, and the third involving only the
parameter. You will notice that the log-likelihood for the Poisson problem broke
up in the same way. Also, the middle term involves the logit, which was important
in Chapter 1 (see 1.7.3).

To find a maximum likelihood estimate for p, we will differentiate l with p

as the variable and set this derivative equal to zero. Remembering that log p

1−p
�

log p−log(1−p), we obtain [∂l(p|x)]/(∂p) � (x/p)+x/(1−p)−n/(1−p) � 0.
You should take the second derivative to check that it is in fact the maximum.
Adding the first two terms, we obtain x/(p(1 − p)) � n/(1 − p); multiply both
sides by p(1 − p)/n, and we have the maximum likelihood estimate p̂ � x/n.
Reassuringly, this is the sample proportion that was our standard estimate for the
multinomial proportions models (see 1.7.1).

Proposition.

(i) For B(n, p) data x, the maximum likelihood estimate is p̂ � x/n;
(ii) For NB(k, p) data x, the maximum likelihood estimate is p̂ � x/(x + k).

You should derive (ii) as an exercise. Notice that the negative binomial estimate
is still the sample proportion of successes, even though our stopping rule was
different.
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We justified the method of maximum likelihood by imagining that at the begin-
ning all possible estimates were equally likely. If we believe the parameter to have
more complicated prior probabilities (instead of just discrete uniform ones), then
we would still use the likelihood in Bayes’s theorem but might come to different
conclusions about which values were most probable after the experiment. This is
a sort of Bayesian estimation that uses the posterior mode (most probable value)
instead of the posterior mean that we used in (7.8.2).

8.3 The Likelihood Ratio and the G-Squared Statistic

8.3.1 Ratio of the Maximum Likelihood to a Hypothetical
Likelihood

Now that we have an estimate of the parameter from the data, we have a natural
measure for how close a proposed value of the parameter is to that closest value.
We simply take the likelihood ratio of the probability at the maximum to the
probability at the proposed value: R(θ ) � L(θ̂ )

L(θ ) . Notice that always R(θ) ≥ 1,
because the numerator is the largest possible value of L.

Example. A referee flips a purportedly fair coin 100 times and it lands heads
55 times. Should we be surprised by the apparent preference for heads? Using
a binomial B(100, p) model, the claim that the coin is fair says that p � 0.5,
while the maximum likelihood estimate is p̂ � 0.55, we find a likelihood ratio
R(0.5) � [(100

55

)
0.55550.4545]/[(100

55

)
0.5550.545] � 1.65. So the observed value is

only 5
3 as likely at maximum as at the fair value. We seem to have little reason to

believe the coin to be unfair.
If we plot R(p), we get a curve of much the same shape as we did above

for the Poisson likelihood as a function of λ (except, of course, upside down).
We have noticed that the calculus is easier for log-likelihoods, which inspires
us to try to understand the curve better by plotting its logarithm, log R(p) �
x log p̂

p
+ (n − x) log 1−p̂

1−p
(solid curve in Figure 8.2). This sort of shape should

now look familiar: It is very like a parabola (dotted curve). This is appealing,
because we would like to use this as a distance measure, and SSE was parabolic
as a function of parameters when we were doing least-squares fitting.

To compute the matching exact parabola, notice that the minimum value, zero, is
at p̂, and of course, the first derivative is zero there (because it is a minimum). The
second derivative, with our computed value for p̂ substituted in, is n/(p̂(1 − p̂)).
The parabola that almost matches our curve is then (n(p− p̂)2)/(2p̂(1− p̂)) (the 2
appears when you differentiate the square). Now we can take exponentials to get rid
of the logarithm, en(p−p̂)2/(2p̂(1−p̂)) ≈ L(p̂|x)/L(p|x); and solve for the approximate
shape of the binomial likelihood curve L(p|x) ≈ L(p̂|x)e−n(p−p̂)2/(2p̂(1−p̂)). This is
an equation for the famous normal curve, which appears everywhere in statistics.
As an exercise, you should derive the approximate normal curve for the Poisson
likelihood.
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FIGURE 8.2. Log-likelihood ratio

8.3.2 G-Squared
We are ready to define the analog of the SSE for the distance from a model to the
data as measured by likelihood:

Definition. The likelihood ratio chi-squared statistic is

G2(θ ) � 2 log
L(θ̂|x)
L(θ|x)

� 2l(θ̂|x) − 2l(θ|x).

The factor of 2 has the effect of canceling the 2 that appeared in the denominator
in our parabolic approximation above. We will shortly see historical reasons for
calling it G-squared. For now, it is reassuring that since the likelihood ratio is at
least 1, our new statistic is always at least zero, as we would expect for a square.

In the binomial case,

G2(p) � 2x log
p̂

p
+ 2(n − x) log

1 − p̂

1 − p
� 2x log

x

np
+ 2(n − x) log

n − x

n(1 − p)
.

In the coin flipping example, we find that G2(0.5) � 1.002.
When we started, we assumed that we knew the parameter in the model; in this

case G-squared is a measure of how far away the data varied by chance from its ideal
value. If it is too large, of course, we begin to think that something went wrong,
either in our experiment or in our assumption about the value of the parameter.
In our parabolic approximation to a binomial likelihood ratio, let us assume that
the sample proportion p̂ is a reasonably accurate estimate of the true value p, at
least good enough to estimate the denominator p(1−p). Then our approximate G-
squared is given by (n(p− p̂)2)/(p̂(1− p̂)) ≈ (n(p̂−p)2)/(p(1−p)) by adjusting
the denominator. But since p̂ � X/n, we get that E(p̂) � E(X)/n � np/n � p

from the expectation of a binomial. Similarly, Var(p̂) � p(1 − p)/n. Combining
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these two, we find that E[(n(p̂ − p)2)/(p(1 − p))] � 1. So a typical value of the
binomial G-squared is something like 1. In our coin-tossing example, 55 heads
turns out to be a thoroughly typical deviation from middle of fair-coin behavior.

If you try to calculate the expected value of G-squared exactly, it may bother you
that our discrete models each have a finite, but usually tiny, probability that some
category (e.g., either successes or failures) has exactly zero counts. But log(0) is
negatively infinite. However, what you should really be calculating in those cases
is 0 log(0); to see what that should be, find limx→0 x log(x) by L’Hospital’s rule
(exercise). Your answer will be zero; and this causes no problem with the existence
of the expectation.

8.4 G-Squared and Chi-Squared

8.4.1 Chi-Squared
Let us stare more carefully at the approximation to the binomial G-squared. Notice
first that 1

p(1−p) � 1
p

+ 1
1−p

, so

n(p̂ − p)2

p(1 − p)
� n(p̂ − p)2

p
+ n(p̂ − p)2

1 − p
� n(p̂ − p)2

p
+ n[(1 − p̂) − (1 − p)]2

1 − p
,

where in the second term we rearranged the numerator to have (1 − p)’s to match
the denominator. Now multiply numerator and denominator by n, and pull the n

inside the square:

� (np̂ − np)2

np
+ [n(1 − p̂) − n(1 − p)]2

n(1 − p)
.

Let p̂ � X/n so that

� (X − np)2

np
+ [n − X − n(1 − p)]2

n(1 − p)
.

We can interpret this as two terms, one each for the success and failure categories.
In each category, from the observed count we subtract its expectation and then
square. Finally, we divide by its expectation. This is a sort of weighted, squared
Euclidean distance between theory and observation in vectors of cell counts. It
is promising that our new measure of distance is roughly parallel to the sum of
squares from least-squares theory. Generally, we have the following situation:

Definition. Given an experiment with k cells, Ei the expected count in the ith
cell under some model, and observed count Oi in that cell, then the (Pearson’s)
chi-squared statistic for measuring the goodness of fit of that model is χ2 �∑k

i�1(Oi − Ei)2/Ei .

(Do you recall this from the Introduction?) This measure of distance dates from
the turn of the century and is perhaps the first important example of a test statistic.
The approximation to G-squared discussed above is the chi-squared statistic for
fit to a B(n, p) model.
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8.4.2 Comparing the Two Statistics
We will now worry about just when chi-squared is a good approximation to G-
squared.

The likelihood ratio statistic for a Poisson(λ) experiment with observed count
x is G2 � 2 log[xxe−x)/(λxe−λ] � 2

[
x log x

λ
− (x − λ)

]
. By judicious addition

and subtraction, express G2 in terms of x − λ:

G2 � 2
{

[λ + (x − λ)] log
(

1 + x − λ

λ

)
− (x − λ)

}
.

Now, by factoring out λ we can express everything in terms of the relative error
r � x−λ

λ
: G2 � 2λ

[(
1 + x−λ

λ

)
log
(
1 + x−λ

λ

)− x−λ
λ

]
.

We want to establish how nearly the part in brackets, (1 + r) log(1 + r) − r , is
a parabola with minimum value 0 at 0. To do this, we will come up with a lemma
much like the basic inequality for the logarithm in Chapter 3 (see 3.5.1). First
notice that our expression is simpler than it looks. Take its derivative to get

[(1 + r) log(1 + r) − r]′ � log(1 + r).

Therefore, we can express it as an integral:

(1 + r) log(1 + r) − r �
∫ r

0
log(1 + s)ds �

∫ r

0

∫ s

0

dt

1 + t
ds,

since the logarithm itself can be expressed as the inner integral. As we have done
earlier, break up 1/(1 + t) � 1 − t/(1 + t), so that

∫ r

0
∫ s

0 (dt)/(1 + t) ds �∫ r

0
∫ s

0 1dtds − ∫ r

0
∫ s

0 (tdt)/(1 + t) ds. The first double integral immediately can
be solved as r2/2; we have our parabola.

The second double integral is the error in our approximation, so our remaining
work will be to get some idea of how big it is. First, consider the case r > 0; then
1/(1 + t) ≤ 1, and

∫ r

0
∫ s

0 (tdt)/(1 + t)ds ≤ ∫ r

0
∫ s

0 tdtds � r3/6. Furthermore, it is
also true that 1/(1 + t) ≥ 1/(1 + r). Then∫ r

0

∫ s

0
(tdt)/(1 + t)ds ≥

∫ r

0

∫ s

0
t/(1 + r)dtds � r3/(6(1 + r)).

Therefore,

− r3

6(1 + r)
≥ [(1 + r) log(1 + r) − r] − r2

2
≥ − r3

6
.

On the other hand, if r < 0, we have to reverse the limits of both integrals, leaving
the sign unaffected. We get exactly the same interval. We summarize our result:

Theorem (quadratic approximation to the log-likelihood). For any r > −1,
the difference between (1 + r) log(1 + r) − r and r2/2 is between −r3/6 and
−r3/(6(1 + r)).

This says that the relative error in the approximation of (1+ r) log(1+ r)− r by
r2/2 is small if r/3 and r/(3(1+ r)) are both small in size. Recalling the definition
of r , this says that (x − λ)/(3λ) and (x − λ)/(3x) are close to zero; informally,
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the approximation works if x and λ are both fairly good relative approximations
to each other.

8.4.3 Multicell Poisson Models
If we have a contingency table with cells i � 1, . . . , k, cell counts xi , and a
model in which the cells are independent Poisson variables with means λi , then
the likelihood ratio is given by

R(λ) �
∏k

i�1 L(λ̂i |xi)∏k
i�1 L(λi |xi)

�
k∏

i�1

L(λ̂i |xi)
L(λi |xi)

�
k∏

i�1
R(λi).

But then G2 � 2 log R(λ) �∑k
i�1 2 log R(λi).

On the other hand, the chi-squared statistic happens to have a simple interpreta-
tion. We imagine that we standardize the count in each cell: zi � (xi−E(xi))/σxi

�
(xi − λi)/

√
λi , each of which has expectation 0 and variance 1. Now notice that

the sum of squares of the zi is chi-squared: χ2 �∑k
i�1 z2

i �∑k
i�1(xi − λi)2/λi .

Both G-squared and chi-squared are sums of cellwise distance measures. Use the
theorem above to compare them cell by cell:

Theorem (equivalence of G-squared and chi-squared). In an independent Pois-
son model for a contingency table, G2 ≈ χ2 when all (Oi − Ei)/(3Ei) and
(Oi − Ei)/(3Oi) are close to zero.

Example. Historical records indicate that Louisiana, Mississippi, and Alabama
have an average of 25, 42, and 27 documented tornadoes per year. Last year, there
were 31, 45, and 35. Was this a surprising result? We assume independence of
the states (questionable, but we do not know what else to do) and compute G2 �
1.3369+0.2094+2.1658 � 3.7120. Also,χ2 � 1.44+0.2143+2.3704 � 4.0247.
The two statistics differ by less than 10%. This is consistent with our theorem, as
the largest of the error bounds, for Alabama, is 0.0988. Since the expected value
of chi-squared under the Poisson model was 3 (adding one for each state), we had
an unlucky, but not really surprising, year.

8.4.4 Multinomial Models
If you remember Chapter 1, you are probably thinking that the previous theorem
is uninteresting, because most of our models for contingency tables were based on
multinomial proportions. This presumably means that we had some sort of multi-
nomial sampling design, not independent Poisson. Fortunately, this difference will
not matter. For the multinomial case, all the factorials cancel out in the likelihood
ratio, and we get

G2 � 2 log
∏k

i�1 p̂
xi

i∏k
i�1 p

xi

i

� 2
k∑

i�1
xi log

p̂i

pi

� 2
k∑

i�1
xi log

xi

npi

,
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where we used the standard multinomial proportions estimate for p̂i . (You will
check as an exercise that these are the maximum likelihood estimates.) Since
E(Xi) � npi , this looks remarkably like the G-squared for the Poisson case, except
for a missing x −λ term. But we will sneakily introduce that term: Remember that
in a multinomial distribution

∑k
i�1 pi � 1. Then

∑k
i�1 npi � n �∑k

i�1 xi . So

G2 � 2

(
k∑

i�1
xi log

xi

npi

−
k∑

i�1
xi +

k∑
i�1

npi

)
� 2

k∑
i�1

[
xi log

xi

npi

− (xi − npi)
]

by subtracting and adding n. Now it exactly matches the Poisson case, and the
theorem of the equivalence of G-squared and chi-squared applies here, too.

Example. In 1982, Wolf reported rolling a die 20,000 times, with the results

Face 1 2 3 4 5 6
Frequency 3407 3631 3176 2916 3448 3422

The obvious question to ask is, was the die fair? That is, is the result consistent
with a multinomial probability of 1

6 for each cell and therefore a cell expectation
of 3333.33? We compute G2 � 95.80 and χ2 � 99.63 (our relative error bound
was 0.048, so this is about as close as expected.) In any case, these are amazingly
large. I think that I would like to use this die in a game with a sucker.

Of course, we ducked the issue of just what a typical value was in the exam-
ple. In an independent Poisson model, the expectation of chi-squared was just
E(
∑k

i�1 z2
i ) � ∑k

i�1 1 � k. Notice that this is the number of degrees of freedom
in this model. Wonderfully enough, this is often true. In the multinomial case,

E(χ2) � E

[
k∑

i�1

(Xi − npi)2

npi

]
�

k∑
i�1

npi(1 − pi)
npi

�
k∑

i�1
1 −

k∑
i�1

pi � k − 1,

since the marginal distribution of each coordinate is binomial, and each numerator
is a variance.

Proposition. In the multinomial proportions model, the chi-squared statistic for
the deviation of the sample proportion from the true probability has expectation
k − 1.

This is, of course, its degrees of freedom, because we have imposed the single
constraint on our estimates that the sample proportions must sum to 1, as the true
values do. Since it is almost the same, we will consider this to be a typical value
for G-squared as well.

8.5 Maximum Likelihood Fitting for Loglinear Models

8.5.1 Conditions for a Maximum
Does the method of maximum likelihood help us estimate the parameters of more
complicated models for contingency table experiments? Yes, and we shall illustrate
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this for the first interesting model, an independence model for a rectangular table
with predictions x̂ij � npi•p•j . We could estimate the p’s in this model directly,
without much difficulty and with unsurprising results. But it will be much more
revealing about fitting other models if instead we fit it in centered loglinear form,
log x̂ij � µ + bi + cj , where the sum of all the b’s and the sum of all the c’s are
zero (see 1.7.4).

Now for multinomial sampling in any two-way rectangular contingency table,
the log-likelihood that we must maximize is log C +∑k

i�1
∑l

j�1 xij log pij �
log C +∑k

i�1
∑l

j�1 xij log
(
x̂ij /n

)
, where C is the big multinomial symbol. But C

does not depend on the unknown parameters and so is irrelevant to the maximiza-
tion. Furthermore, since log

(
x̂ij /n

) � log x̂ij − log n, we can break off a double
sum involving n that also involves only data, and so does not need to be calculated.
To summarize, solving the maximum likelihood problem involves making only
the simple expression

∑k
i�1
∑l

j�1 xij log x̂ij as large as possible.
But we must be careful. We can make this expression grow forever by letting all

the predictions x̂ij get bigger and bigger. The problem is that we know in advance
that
∑k

i�1
∑l

j�1 pij � 1, so necessarily n �∑k
i�1
∑l

j�1 npij �∑k
i�1
∑l

j�1 x̂ij .
We say that we have to do the maximization with the constraint that all the predicted
counts must add up to n.

You may not yet have studied in your math classes how to maximize functions
that have constraints, so we will use a trick similar to one used in the last section
to make a multinomial G-squared look more like one for a Poisson problem. We
just subtract the constant

∑k
i�1
∑l

j�1 x̂ij (� n) from the quantity to be made large
(which will not affect the parameter estimates that make it largest), to get finally
that we want to maximize

k∑
i�1

l∑
j�1

xij log x̂ij −
k∑

i�1

l∑
j�1

x̂ij �
k∑

i�1

l∑
j�1

(xij log x̂ij − x̂ij ).

You should check that this is exactly the quantity we would want to maximize if
it were a Poisson experiment; in any contingency table problem we will call this
the core of the likelihood. We will have to maximize it and then check that indeed
the solution meets our constraint.

Now we are ready to try to estimate our centered independence model. Replacing
the predictions, we get

∑k
i�1
∑l

j�1 xij (µ+bicj )−∑k
i�1
∑l

j�1 eµ+bi+cj . The first
term becomes µ

∑k
i�1
∑l

j�1 xij +∑k
i�1 bi

∑l
j�1 xij +∑l

j�1 cj

∑k
i�1 xij . Using

our notation for marginal totals, the core becomes µn+∑k
i�1 bixi•+

∑l
j�1 cjx•j −∑k

i�1
∑l

j�1 eµ+bi+cj . Notice an intriguing fact: The only data we will use in this
estimation problem are the marginal totals that correspond to the parameters we
have in the model. We have row adjustments bi , so we need the row totals xi•,
and so forth. The xij themselves are not needed, except when we sum them up to
get marginal totals. These totals xi• and x•j are called sufficient statistics, which
is generally what we call those functions of the data that we turn out to need in
maximum likelihood estimation problems.
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We are ready to maximize. Differentiate the core with respect to the b’s to get 0 �
∂l
∂bi

� xi• −∑l
j�1 eµ+bi+cj � xi• −∑l

j�1 x̂ij � xi• − x̂i• in an obvious notation.
We get a set of conditions for a solution xi• � x̂i•. Similarly, by differentiating
with respect to the c’s, we require x•j � x̂•j . First notice that we have indeed
forced our constraint to hold, because necessarily the sum of the predicted counts
equals the sum of the actual counts, which is n. Furthermore, we have presumably
solved our estimation problem, because we have k + l − 1 distinct parameters to
estimate (see 1.7.4), and by a similar counting procedure you should check that we
have k + l − 1 independent marginal conditions to meet. Presumably, with a little
arithmetic we are finished. Notice that this way of deriving a set of conditions, one
for each parameter we need, would work for any loglinear model for a contingency
table based on multinomial or Poisson sampling:

Theorem (maximum likelihood estimates for loglinear models). The maximum
likelihood estimates for a loglinear model for any multiway rectangular contin-
gency table obtained by multinomial, product-multinomial, or Poisson sampling
may be obtained by requiring that the predicted marginal totals equal the actual
marginal totals corresponding to each parameter in the model.

You will check the claim about product-multinomial models in an exercise.

8.5.2 Proportional Fitting
We learned how to get standard estimates of the independence model in Chapter 1,
and it would now be easy to check using our theorem that this is also the maximum
likelihood estimate. Instead, we will find the maximum likelihood fit of the model
directly, by a simple method that will work for many more problems. The idea is
that we will construct the table of expectations by starting with a very simple table
and forcing its marginal totals to be correct (as required by the theorem) one at a
time. To demonstrate the process, recall the movie opinion survey from Chapter 1
(see 1.7.1):

Male Female total
Like 51 83 134

Dislike 42 24 66
total 93 107 200

We start with a proposed table where all the coefficients are zero (since log 1 � 0):

Male Female total
Like 1 1 2

Dislike 1 1 2
total 2 2 4

The independence model says that we must adjust it to match the row totals, 134
and 66. The obvious way is to split these totals up for each row in proportion to
what we have in the proposed table; so 134 is divided evenly between the males
and the females, and similarly for allocating the 66 in the second row:
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Male Female total
Like 67 67 134

Dislike 33 33 66
total 100 100 200

Now we force the column totals to be 93 and 107 in the same way: Split the 93
up 67/100 to the likes (� 62.3) and 33/100 to the dislikes; similarly for the 107
females. We obtain

Male Female total
Like 62.3 71.7 134

Dislike 30.7 35.3 66
total 93 107 200

which is identical to the “Expected” table we got another way in Chapter 1. Our
measures of fit come straight from the original and final tables:

G2 � 2
(

51 log
51

62.3
+ 83 log

83
71.7

+ 42 log
42

30.7
+ 24 log

24
35.3

)
� 11.69.

Since there are 4 degrees of freedom in the saturated model and 3 in the inde-
pendence model we have fitted, if follows that this G-squared has one degree of
freedom. Earlier results suggest that if the independence model is valid, we should
expect this statistic to be about 1. As it is much larger, we seem to have evidence
against the independence of gender and taste.

To extract coefficient estimates, we can now look at how the predictions change
from cell to cell: For example, to find the male adjustment, we just find half the
change to female bM � (log 62.3 − log 71.7)/2 � −0.07.

To show how generally useful this method is, we write out formally what it says
to do. At any given step, call the proposed expectations x̂

(0)
ij . Now adjust these to

give the right row totals xi•, in proportion to how large the entries were before,
to give a modified expectation x̂

(1)
ij � (x̂(0)

ij /x̂
(0)
i•
)
xi•. You should check as an easy

exercise that we were successful, that
∑l

j�1 x̂
(1)
ij � xi•. Then we do it again for

columns, x̂
(2)
ij � (x̂(1)

ij /x̂
(1)
•j

)
x•j , and in fact for all the indices corresponding to

marginal totals we are required to match, in a multiway contingency table. This
is called the method of proportional fitting. You will apply it to other models as
exercises.

8.5.3 Iterative Proportional Fitting*
Unfortunately, the procedure of the last section does not work as expected for all
models. A much harder problem would be a three-way contingency table like that
in Exercise 1.35:
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Rural Urban
Male 23 43

Female 27 52
Smokers

Rural Urban
Male 43 135

Female 32 118
Nonsmokers

You will show in exercises that proportional fitting will estimate the expectations
for various possible models for this experiment. The most complicated model that
is not saturated, though, is one with all possible associations of two factors, except
that we assume no three-way association. This says that gender and location are
indeed associated, as are gender and smoking, and location and smoking. But these
associations are the same from level to level, so that for example, the relative odds
for men and women smoking is the same whether they live in an urban or a rural
setting. The loglinear model is

log x̂MRS � µ + bM + cR + dS + eMR + fMS + gRS,

missing only the hMRS to be completely saturated. From the theorem, we see that
we need to match marginal totals that sum over each of the three variables in turn:

Rural Urban
(sum over Male 66 178

smoking habit) Female 59 170

Smoker Nonsmoker
(sum over Male 66 178
residence) Female 79 150

Smoker Nonsmoker
(sum over Rural 50 75
gender) Urban 95 253

corresponding to the three kinds of two-way association (for example, gRS is the
term that says we have to match x•RS � 50). Notice we do not need the sum
corresponding to, for example, cR, which is x•R• � 125; because it is the sum of
66 and 59, which we already know we have to match.

We start with a table of ones and match each set of four totals in turn by pro-
portional fitting to get an expected table (which you should do). But before we
get excited, double check to see that we have indeed matched our marginal totals.
Of course, the third table, the last one matched, is correct if we did our arithmetic
correctly. But the other two are
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Rural Urban
Male 64.968 179.032

Female 60.032 168.968

Smoker Nonsmoker
Male 66.194 179.032

Female 78.806 150.194

They are wrong. Proportional fitting does not solve this estimation problem.
Before we give up in despair, notice something slightly reassuring. The numbers

in the second table are off by only 0.2; for that matter, those in the first table are
off by only a little more than 1. We have approximately fitted the model. With a
flash of ingenuity, we do the cycle of three proportional fittings of our tables of
marginals again, but this time we start with the approximate expectations we just
finished calculating. After much more arithmetic, we get a new table of expected
counts, from which we can calculate our three tables of marginals. We again have
the correct third table, but this time the first two are

Rural Urban
Male 65.954 178.046

Female 59.046 169.954

Smoker Nonsmoker
Male 66.003 177.997

Female 78.997 150.003

Now the second table is very close to what it is supposed to be, and even the first
table is within 0.1 person. Knowing that we are “on a roll,” we apply proportional
fitting over and over again until the marginals tables match the truth to as high an
accuracy as we want. This process usually works very fast (especially if you are
using a computer). This technique for maximum likelihood estimation is called
iterative proportional fitting. We will convince you that it always works, shortly.

After two more cycles, I am happy with the accuracy, and my table of expected
counts looks like

Rural Urban
Male 23.679 42.321

Female 26.321 52.679
Smokers

Rural Urban
Male 42.321 135.679

Female 32.679 117.321
Nonsmokers

As exercises, you will estimate some of the coefficients in the loglinear model.
The observed and expected counts are so close together that you will not be sur-
prised that G2 � 0.088. This is small compared to the one extra degree of freedom
for the saturated model, so we conclude that our survey provided no evidence for
three-way association.
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8.5.4 Why Does It Work?*
The essential reason that iterative proportional fitting always leads to maximum
likelihood estimates is that every time we force the expected table to match a
marginal total, the likelihood increases. To see why this is so, remember that
we modified the estimated expectations by the formula x̂

(1)
ij � (x̂(0)

ij /x̂
(0)
i•
)
xi• to

force the totals x̂
(1)
i• � xi•. This stands for a completely general step, in which j

indexes the cells that get summed to create the total indexed by i. The core of the
likelihood for the modified estimates x̂

(1)
ij is then

∑k
i�1
∑l

j�1(xij log x̂
(1)
ij − x̂

(1)
ij ) �∑k

i�1
∑l

j�1
(
xij log

(
x̂

(0)
ij /x̂

(0)
i•
)
xi• − (x̂(0)

ij /x̂
(0)
i•
)
xi•
)
. Now split the logarithm into

two pieces to get
k∑

i�1

l∑
j�1

(
xij log x̂

(0)
ij − x̂

(0)
ij

)
+

k∑
i�1

l∑
j�1

[
xij log

xi•
x̂

(0)
i•

−
(

x̂
(0)
ij

x̂
(0)
i•

xi• − x̂
(0)
ij

)]
.

Notice that we have subtracted and added x̂
(0)
ij in order to make the first sum the

core of the likelihood under that previous set of estimates. Now sum the second
part over j to get

k∑
i�1

[
xi• log

xi•
x̂

(0)
i•

−
(

x̂
(0)
i•

x̂
(0)
i•

xi• − x̂
(0)
i•

)]
�

k∑
i�1

[
xi• log

xi•
x̂

(0)
i•

−
(
xi• − x̂

(0)
i•
)]

.

This should look familiar: It is one-half of the G-squared for how well a multicell
Poisson model using our previous estimates would fit the collection of marginal
totals indexed by i. Now, this is not to say we have a Poisson model (we may
or may not); it is only to note that it is a G-squared, which is guaranteed to be
greater than zero unless we had already matched the marginal totals at the previous
step. So we have added a positive amount to the core of our likelihood under the
estimates x̂

(0)
ij . Therefore, iterative proportional fitting always increases the value

of the log-likelihood function, so long as there are marginals not yet perfectly
matched. That function is bounded above by the maximum likelihood, so a basic
fact about limits from calculus says that it will converge. Since it must always
improve by a positive amount governed by the imperfection of the matching, it
cannot stop short; therefore, it converges to the maximum likelihood estimate.

Actually, we went too quickly over an important issue. If we had instead fitted a
model with even higher association terms, we would still get expectations with the
right marginal totals. To see this, imagine a model with a cj term whose maximum
likelihood estimates therefore match x•j•. Now imagine the more complicated
model that also has, for example, the gjk association term. Its maximum likeli-
hood estimates match the marginal x•jk , but by summing over all the levels of k,
they match the x•j• marginal totals as well. So, how do we know that iterative pro-
portional fitting has not accidentally estimated the wrong, more elaborate, model?
Well, we started with expectations that were all ones; so log x̂

(0)
ijk � 0. You will

show in an exercise that iterative proportional fitting never changes the zero values
of those missing higher-order association terms. Therefore, iterative proportional
fitting always gives us the maximum likelihood estimates for our loglinear model.
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8.6 Decomposing G-Squared*

8.6.1 Relative G-Squared
Our emphasis on the G-squared statistic, instead of its close relative, chi-squared,
for evaluating how well a model fits may surprise you. After all, chi-squared is
easier to compute, and its expectation equals its degrees of freedom in important
cases. Incidentally, it also behaves more reasonably in cases of poor fit.

Remember, though, that the measure of model fit we used in ANOVA and re-
gression models in Chapter 2, the sum of squares, had a wonderful property: It
could be decomposed, using generalizations of the Pythagorean theorem, into ad-
ditive pieces that measured the influence of the various factors. Oddly enough,
even though the chi-squared statistic looks like a sum of squares, it has no such de-
composition. But G-squared does break up naturally into similar easy-to-interpret
pieces. When you see why, you may be disappointed: The reason it decomposes
is even more elementary than the Pythagorean theorem.

To illustrate, consider a three-way contingency table experiment. A complete
independence model would include the simple terms for each of the three factors,
which we shall call A, B, and C; that is, its loglinear model is log x̂ijk � µ+bi+cj+
dk . Let us write its G-squared as G2(A, B, C). If we suspect that some association
might be present, for example between A and B (we will call it AB), we estimate
a new model with the additional term eij . Call the new fit statistic G2(AB, C).
(Notice that bi and cj are still in the model. Our compact notation presumes that
they are present, because their association is.) Since we have allowed for a more
complicated model, we might expect that this would be a smaller number—the fit
is tighter.

We may in turn introduce the two other two-way associations, fik and gjk ,
to get successively smaller statistics G2(AB, AC) and G2(AB, AC, BC). (As an
exercise, write out the complete loglinear models that these refer to.) If we then
add a final term hijk corresponding to the three-way association ABC, the model
is now saturated; the cell expectations equal the cell counts, and G-squared is zero.

Recall that G2(A, B, C) is twice the logarithm of the likelihood ratio comparing
that model to the saturated model, L(ABC)/L(A, B, C). By a series of multiplica-
tions and divisions by the same amount, we can introduce all the other likelihoods
that came up in our analysis:

L(ABC)
L(A, B, C)

� L(AB, C)
L(A, B, C)

L(AB, AC)
L(AB, C)

L(AB, AC, BC)
L(AB, AC)

L(ABC)
L(AB, AC, BC)

.

The last of the four ratios is the likelihood ratio for the model discussed in the last
section.

But notice that each of the four ratios is at least 1: The model in the numerator
has one additional term over the model in the denominator, and all the terms are
estimated by maximizing this likelihood. It is as if the denominator were estimated
by arbitrarily restricting the extra term to be zero. Any time we restrict a search
for the best value to a smaller neighborhood, our maximum will not be as good



262 8. Maximum Likelihood Estimates for Discrete Models

(the best pizza in town cannot be better than the best pizza in the state). Therefore,
each numerator is at least as large as its denominator, and each ratio is at least one.

Now take twice the logarithm of both sides, and the additivity of logs separates
the ratios:

2 log
L(ABC)

L(A, B, C)
� 2 log

L(AB, C)
L(A, B, C)

+ 2 log
L(AB, AC)
L(AB, C)

+ 2 log
L(AB, AC, BC)

L(AB, AC)
+ 2 log

L(ABC)
L(AB, AC, BC)

.

We have decomposed our G-squared into four terms, the last of which is another
G-squared. We will define the other terms as relative G-squared; they clearly
measure the improvement in the fit from adding terms to the model. For example,
write 2 log L(AB,AC)

L(AB,C) � G2(AB, C|AB, AC). We interpret it as a measure of how
well the model with only AB association fits compared to the improvement we
would get if we included AC association. Its degrees of freedom are simply the
extra degrees of freedom associated with the AC term, (l − 1)(p − 1). Now we
write our decomposition:

G2(A, B, C) � G2(A, B, C|AB, C) + G2(AB, C|AB, AC)
+ G2(AB, AC|AB, AC, BC) + G2(AB, AC, BC).

This is the promised expression that corresponds to our decomposition of the
sum of squares from least-squares theory. The connection with each of our earlier
G-squared terms is obvious. For example,

G2(AB, C) � G2(AB, C|AB, AC) + G2(AB, AC|AB, AC, BC)
+ G2(AB, AC, BC).

Or we could work backwards and write things like

G2(AB, C) − G2(AB, AC) � G2(AB, C|AB, AC).

This is exactly what we meant when we said that relative G-squared measures
improvement in fit.

8.6.2 An ANOVA-like Table
Notice that the decomposition depends on the order in which we add terms. In
practice, we add terms in descending order of how interesting they are to us or
because we see from the data that they are important. Of course, you can also try
several different orders of decomposition, in hope that they will tell you something
interesting about the results of the survey.

Example. In the smoking survey, we might start with extremely simple loglinear
models; if there is only a µ term, we are guessing that every cell is equally likely.
If we introduce a term for smoking, the comparison is then asking whether or not
there are equal numbers of smokers and nonsmokers. In this particular survey, we
are not interested in such questions; we will start with the independence model,
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since we mainly care about associations between our classifications. Calling the
three factors Smoking, Gender, and Location, we compute G2(S, G, L) � 10.25.
There are 4 degrees of freedom in the independence model, so there are 8 cells−4
cells � 4 degrees of freedom for this statistic. We have suggested that a typical
value of G-squared is the number of degrees of freedom; the actual value is enough
larger to suggest strongly that the three factors are not, in fact, independent.

Staring at the data, we suspect that some of this association is between smoking
and location—many of our nonsmokers live in cities. You estimated a model with
an SL association introduced, and got (I hope) G2(G, SL) � 3.49. There is an
additional degree of freedom in this model, so we compute the relative term

G2(S, G, L|SL) � G2(S, G, L) − G2(G, SL) � 10.25 − 3.49 � 6.76.

This is a strikingly large improvement for one degree of freedom; very likely, there
is some association between where our subjects live and whether they smoke. On
the other hand, the measure of fit for the new model, 3.49, is not impressive in
light of the remaining three degrees of freedom. That single association may be
all we have evidence for.

For completeness, let us add in one other apparent association, between gender
and smoking. You have estimated this model, getting G2(SG, SL) � 0.36, on 2
degrees of freedom. Our survey has found no evidence for any further association
than this. On the other hand, G2(G, SL|SG) � G2(G, SL)−G2(SG, SL) � 3.49−
0.36 � 3.13 with one degree of freedom, suggests that we have found modest
evidence that there is also a slight tendency for women to smoke more than men.

We already estimated a no-three-way-association model in an earlier section,
and so the effect of the GL interaction is

G2(SG, SL|GL) � G2(SG, SL) − G2(SG, SL, GL) � 0.36 − 0.09 � 0.27,

also negligible. Let us assemble these in an ANOVA-like table:

degrees of
source freedom G-squared
S, G, L

SL 1 6.76
SG 1 3.13
GL 1 0.27

SGL 1 0.09
total 4 10.25

You may wonder why we do not divide G-squared by its degrees of freedom, as
with mean squares, so that it may be compared to 1. There is no good reason; it is
simply not the reigning convention.
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8.7 Estimating Logistic Regression Models

8.7.1 Likelihoods for General Bernoulli Experiments
In Chapter 1, Section 8, we did not find a convincing way to estimate the parameters
in logistic regression models, except in simple cases where we could interpolate
the cell logits. By now you will not be surprised to hear that the most widely
used method for doing this is maximum likelihood. Very generally, in logistic
regression we have an experiment in which we perform an independent sequence
of Bernoulli trials; the result of each is either a “success” or a “failure”. The
probability of success is pi for the ith trial; we try to estimate this so we can
predict our chances of success in future trials. The likelihood of our results is then∏

successes i pi

∏
failures i(1 − pi), by independence. In Chapter 1 we were able to

estimate some simple models by interpolating cells in a contingency table; then if
the categories are j � 1, . . . , k, the likelihood becomes

∏k
j�1 p

xj

j (1 − pj )nj −xj ,
where pj is the probability of success in that category, and xj is the number of
successes out of nj trials. If we are interpolating and so can estimate each p

separately, we see that we are just maximizing the cores of k binomial likelihoods,
and the estimates are the sample proportions, as expected. Generally, any logistic
regression model that came out of a contingency table has maximum likelihood at
the standard estimates we got in Chapter 1 (see 1.8.1).

In the simplest case, with one numerical covariate with two values, the linear
logistic regression model l � log

(
pj

1−pj

)
� µ + b(xj − x̄) corresponded to

a saturated model fit to a two-by-two table. We noticed that an independence
model was uninteresting, because then the conditional probability of success at
each level of the independent variable was the same, and gave us no predictive
value. But then the independence model corresponds to fitting a logistic model
l � log

(
pj

1−pj

)
� µ. The slope b is assumed to be zero. Then the G-squared on 1

degree of freedom for testing independence is exactly the test that the slope is zero,
as opposed to the saturated and interpolating alternative that it is not. Generally,
our tests are exactly the same as the corresponding tests in contingency tables.

8.7.2 General Logistic Regression
Of course, maximum likelihood becomes particularly interesting when we apply
it to problems that we do not know how to do otherwise.

Example. In 1991, Manly reported the mandible lengths in millimeters and by
gender of 20 golden jackals:

length 105 106 107 107 107 108 110 110 110 111
gender F F M F F F F M F F
length 111 111 111 112 113 114 114 116 117 120
gender M F F M M M M M M M
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There is a tendency for male mandibles to be longer. If we found a jackal mandible,
could we predict whether it will turn out to be female?

We can no longer interpolate categories; we have almost as many lengths as
subjects. But a linear logistic model for the probability of being female is plausible:
l � log

(
p

1−p

) � µ + b(x − x̄), where p is the probability and x is the mandible
length. We solve to find p � eµ+b(x−x̄)/(1 + eµ+b(x−x̄)); then the likelihood for all
our successes and failures is

L �
∏

successes i

eµ+b(xi x̄)/(1 + eµ+b(xi−x̄))
∏

failures i

1/(1 + eµ+b(xi−x̄)).

The log-likelihood is

l(µ, b) �
∑

successes i

[µ + b(xi − x̄)] −
∑
all i

log
[
1 + eµ+b(xi−x̄)] .

To find a criterion for a maximum value, we use calculus: Differentiate with respect
to the unknown parameters µ and b, using partial differentation, and set each equal
to zero.

0 � ∂l(µ, b)
∂µ

�
∑

successes i

1 −
∑
all i

eµ+b(xi−x̄)

1 + eµ+b(xi−x̄) ,

0 � ∂l(µ, b)
∂b

�
∑

successes i

(xi − x̄) −
∑
all i

(xi − x̄)
eµ+b(xi−x̄)

1 + eµ+b(xi−x̄) .

Recalling our expression for p, these may be rewritten as

0 �
∑

successes i

1 −
∑
all i

pi

and

0 �
∑

successes i

(xi − x̄) −
∑
all i

(xi − x̄)pi.

Our equations are simple, but it is hard to see what is going on. With a little
ingenuity, think of the dependent variable, success or failure, as having the numer-
ical value 1 or 0. It is then sort of an empirical probability corresponding to a cell
with only one observation in it; we therefore call it p̂i . After a little rearrangement,
our equations become∑

all i

(p̂i − pi) � 0 and
∑
all i

(xi − x̄)(p̂i − pi) � 0.

If you think of p̂i − pi as a residual, suddenly we have the normal equations
from least-squares theory. (The first equation just says that the average estimate is
just the average of the 1’s and 0’s). Are we finished? No; as lovely as these are,
you must remember that the quantities we want are µ and b, and p is a nonlinear
function of them. They cannot usually be solved for algebraically.

In small problems like our example, we may simply compute a number of values
of the log-likelihood and graph the result (a computer math program helps here).
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FIGURE 8.3. Log likelihood for a logistic regression model

Then we search for the maximum value over the range of our graph. (See Fig-
ure 8.3.) This is a contour plot, where all parameter pairs with the same likelihood
are on a curve. This is therefore the picture of a likelihood “hill,” with the top of the
hill, the maximum of the likelihood, somewhere in the middle of the inner loop.

By focusing the search near the maximum, we find the maximum likelihood
estimates µ̂ � −0.1508 and b̂ � −0.6085, with a log likelihood −8.6294 there.
Since x̄ � 111, we get a prediction equation l̂ � −0.1058 − 0.6085(x − 111). If
you should find an adult golden jackal mandible that is 109 millimeters long, we
would predict a logit for it being female of 1.066; that gives a probability that it is
female of 0.744.

We may ask, how sure are we that mandible length helps you identify gender at
all? If we assume thatb � 0, we are simply assuming a constant probability for each
sex, estimated by the sample proportion p � 10/20 � 0.5. The log likelihood for
that prediction is 10 log 0.5+10 log 0.5 � −13.863. Taking the log-likelihood ratio
for comparing the two classes of models, we get G2 � 2(−8.629 − −13.863) �
10.468, on one degree of freedom. This is good evidence for the reality of a slope:
longer mandibles suggest a male jaw.

8.8 Newton’s Method for Maximizing Likelihoods

8.8.1 Linear Approximation to a Root
When you studied calculus, you may have learned a method attributed to Isaac
Newton, of solving a nonlinear equation of the form g(x) � 0 for the variable x.
The idea was that if you had a reasonably good first guess x(0), then the function
may be almost a straight line between x(0) and the true value x. So we need to know
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FIGURE 8.4. Newton’s method

what straight line looks like. Calculus suggests that we find the tangent line to the
curve at the point x(0) and then guess that the secant that takes us directly from
there to the true solution is approximately the same as the tangent (Figure 8.4). That
is,
(
g(x)−g(x(0))

)
/
(
x−x(0)) ≈ g′(x(0)). But since g(x) � 0, we find that x−x(0) ∼�

−g′(x(0))−1g(x(0)). We use this equation to calculate an improved guess to the
solution x(1) � x(0) −g′(x(0))−1g(x(0)); if the first guess was good enough and g is
not too curved, this will be much better. We then use the new guess to calculate a
third approximation x(2) and repeat until we have the solution to sufficient accuracy.

8.8.2 Dose–Response with Historical Controls
We will apply Newton’s method to a maximum likelihood estimate of a logistic
regression model with one parameter. Most interesting models have more than one
parameter; we will return to that problem later. However, one reasonable model, a
linear dose–response model with historical controls, has only a single parameter
to estimate. This comes about when there is no standard drug available to treat
some serious disease. So when a new drug comes out of the lab, with promising
results on rats and on a handful of patients, doctors are eager to try it out on all
their patients. They cite medical ethics when they refuse to include a control group
of patients who get a dose of zero in the study, even though almost any statistician
would agree that it would make for a much better experiment.

Our second choice would be to introduce recent experience with the disease into
our study. We would assume that these historical controls (victims of the disease
who did not get the drug because it had yet to be invented) had a certain probability
of recovery, which we know accurately because there were a large number of them.
Let that historical probability of getting well be p0; then its logit is log p0

1−p0
� l0.

Our model will assume that the logit for recovery changes proportionally with the
dose of the new drug, so l̂ � l0 + bx, where x is the dose and b is the unknown
slope parameter.
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The log likelihood for this model is

l(b) �
∑

successes i

[l0 + bxi] −
∑
all i

log[1 + el0+bxi ].

To find its maximum, differentiate with respect to b and set it equal to zero:
0 � ∂l(b)

∂b
�∑successes i xi −

∑
all i xi

[
el0+bxi /(1+elo+bxi )

]
. This is the equation that

we shall solve for b̂, using Newton’s method. Find a starting valueb(0); now improve
it by b(1) � b(0)−[∂2l(b(0))/∂b2]−1(∂l(b(0))/(∂b). Then we iterate the process with
each new b until it has converged to satisfactory precision. In our one-parameter
logistic model, we then need (∂2l(b))/(∂b2) � −∑all i x

2
i e

l(0)+bxi /[1 + el(0)+bxi ]2

(which you should check as an exercise).

Example. A disease has a well-established history of a 40% recovery rate. A
promising new drug is tried on 30 patients. Of those who got 10 mg per day, 6 of
10 recovered; of those who got 20 mg, 8 of 10 recovered; and of those who got 30
mg, 9 of 10 recovered. We will try the dose-response model l̂ � l0 + bx, where
x is the daily dose, and the zero-dose historical-control logit is l0 � log

( 0.4
1−0.4

) �
−0.4055. We will estimate the slope b by maximum likelihood. Let the starting
value be b(0) � 0. You should check my computation that b(1) � 0.0744; then
b(2) � 0.0859, and b(3) � 0.0870. The changes after that are negligible. Predicted
rates of cure are 61.4% at 10 mg , 79.2% at 20 mg, and 90.1% at 30 mg—very
close to the observed rates. The G-squared statistic, comparing the fit of a constant
recovery rate of 0.4 to the one fitted by our model, has one degree of freedom
and equals 19.32. It seems very likely that there is indeed a positive slope to this
model. Within this range, the more of the drug, the better the chance of recovery.

8.8.3 Several Parameters*
In the more common models with several parameters, we can use a more so-
phisticated version of Newton’s method. The condition for a maximum becomes
0 � (∂l(b))/(∂b), a vector equation that has one coordinate equation for each of
the k parameters being estimated. Then the second derivatives form a k-by-k ma-
trix (∂2l(b))/(∂bi∂bj ). The approximation of the log-likelihood by a tangent plane
at b(0) is then −(∂2l(b(0)))/(∂b

(0)
i ∂b

(0)
j )(b(1) − b(0)) � ∂l(b(0))/∂b (you should re-

view partial and total derivatives at this time). To solve for the improved vector of
guesses b(1) just requires you to solve a system of k equations in k unknowns. Then
you iteratively compute new b’s from old ones until they stop changing within the
accuracy you are seeking. You will get a chance to try this in an exercise.

8.9 Summary

The likelihood of a parameter value θ once we have made a (discrete) obser-
vation is L(θ |x) � P(X � x|θ ). We were able to compare the closeness to
the data of two discrete models by taking the likelihood ratio R � L(θ1|x)

L(θ2|x)
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(2.1). We then called the parameter value that made the likelihood greatest for
a given observation its maximum likelihood estimate θ̂ (2.2). Comparing this
likelihood to that for a hypothesized value θ gives us the G-squared statistic
G2(θ) � 2 log L(θ̂|x)

L(θ|x) � 2l(θ̂|x) − 2l(θ|x) (3.2). We found that for many discrete
models this is almost a weighted squared distance measure, the chi-squared statis-
tic χ2 � ∑k

i�1
(Oi−Ei )2

Ei
, where Ei are counts expected under the hypothesis and

Oi are the counts actually observed (4.1). We found the maximum likelihood esti-
mates for certain contingency table models (which use sufficient statistics, certain
marginal total counts) (5.1). A general procedure for computing these estimates,
iterative proportional fitting, was then derived (5.3). We evaluated our models us-
ing our distance measures; in particular, G-squared may be decomposed much like
the sum of squares, to provide an ANOVA-like summary table (6.2). Finally we
discovered that maximum likelihood may also be used to estimate logistic regres-
sion models (7.2). Newton’s method for finding the roots of equations allowed us
to compute the parameter estimates (8.2).

8.10 Exercises

1. A natural gas pipeline had 30 significant leaks last year. The operating com-
pany claims that the annual average is only 20. What is the relative likelihood
of a true mean of 20 compared to a true mean of 30? Graph the likelihood of
this observation.

2. A manufacturer admits to a 10% rate of defective compact digital discs. Of
120 disks you have bought in the last two years, 17 have been defective. What
is the maximum likelihood estimate of the true rate of defectives? What is the
likelihood ratio comparing that rate to the manufacturer’s claim?

3. a. Derive the formula for the maximum likelihood estimate of p in an
NB(k, p) model.

b. You survey students until you find 10 who are left-handed. On the way,
you notice that you have surveyed 87 right-handed students. What do you
estimate is the population probability that a student is right-handed?

4. You perform a negative hypergeometric experiment with result x distributed
N(W, B, b).

a. If W is unknown, what is its maximum likelihood estimate?
b. If instead B is unknown, what is its maximum likelihood estimate?

5. You perform a hypergeometric experiment with result X distributed H(W +
B, W, n).

a. If W is unknown, what is its maximum likelihood estimate?
b. If instead B is unknown, what is its maximum likelihood estimate?

6. Derive the maximum likelihood estimates for the vector of probabilities p in
the multinomial random vector with k categories.
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7. Use L’Hospital’s rule to calculate limx→0 x log(x).
8. Compute the G-squared and chi-squared statistics for the claims in Exercises

1 and 2.
9. Use maximum likelihood to estimate the p’s in the multinomial independence

model for a rectangular table x̂ij � npi•p•j .
10. In Exercise 12 of Chapter 1 (status versus philosophy):

a. Evaluate G-squared for the independence model. Compare it to the degrees
of freedom. Conclusions?

b. Compute chi-squared for the independence model. Check the criteria for a
good match to G-squared. Are they consistent with the actual comparison?

11. In Exercise 30 of Chapter 1 (sex distribution in various cities)

a. Evaluate G-squared for the independence model. Compare it to the degrees
of freedom. Conclusions?

b. Compute chi-squared for the independence model. Check the criteria for a
good match to G-squared. Are they consistent with the actual comparison?

12. Show that a single-stage calculation in proportional fitting x̂
(1)
ij � (x̂(0)

ij /x̂
(0)
i•
)
xi•

indeed enforces the correct row totals
∑l

j�1 x̂
(1)
ij � xi•.

13. Estimate the independence model in Exercise 11 by proportional fitting.
14. Estimate the complete independence model in the smoking–gender–location

survey (see Section 5.3) by proportional fitting. Compute G-squared,
comparing it to the saturated model.

15. For the prediction of gender using mandible length, I proposed the linear
logistic equation l̂ � −0.1508−0.6085(x−111). Show that these predictions
meet the normal equations for maximum likelihood estimation.

16. The picture illustrating a step of Newton’s method in Section 8 refers to the
following problem: What Poisson mean λ would I need to have so that half
the time the count was 0 or 1? That is, solve the equation F (1) � 0.5. This
becomes (1 + λ)e−λ � 0.5, or g(λ) � 0.5 − (1 + λ)e−λ � 0. Let a starting
guess be λ(0) � 2.5, as in Figure 8.4. Compute several improved guesses
using Newton’s method until it stops changing to three significant figures.
Compare your answer to Figure 8.4.

17. For the historical controls model in Section 8.2, verify that

∂2l(b)
∂b2 � −

∑
all i

x2
i

el(0)+bxi[
1 + el(0)+bxi

]2 .

18. I purchased a balanced die, which I therefore assume has probability 1
6 of

coming up “six.” But I want to try to “load” it so it will come up six more
often. I inject 10 mg of lead into the opposite face, then roll it 60 times. I get
12 sixes. With 20 mg of lead, I get six in 21 of 60 rolls; and with 30 mg of
lead, I get 23 sixes out of 60 rolls.
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Let us guess that a linear logistic model l(x) � l0 + xb should work, with l

the logit for coming up six, x � mg of lead injected, and l0 the logit of the
balanced-die probability of 1

6 .

a. Estimate b by the method of maximum likelihood, using Newton’s method.
b. Compute the G-squared for how well this fits the data, and compare it to

the G-squared for a constant probability of 1
6 . What do you conclude?

c. Use your model to estimate the probability that a six will come up if you
injected 25 mg of lead into the opposite face.

8.11 Supplementary Exercises

19. The method of maximum likelihood suggests yet another way to get an inter-
val that reflects the uncertainty in a parameter estimate. The interval includes
all values of the parameter that are at least 1/k times as likely as is the
maximum likelihood estimate. This is called a likelihood interval.

a. For the data of Exercise 2, find a k � 7 likelihood interval for possible
values of the binomial probability of a defective disk.

b. Find a 95% confidence interval for the binomial probability. (You will see
the reason for the similarity of the two intervals in a later chapter.)

20. Let an observation x be Poisson (λ) with λ unknown. Derive the normal curve
approximation to the likelihood L(λ|x). Graph the true versus the approximate
log-likelihood curves for the data of Exercise 1.

21. A very common way to survey a population is stratified sampling. For ex-
ample, you may know the population proportion of some relevant groupings:
gender, race, age. Then a simple random sample might, by accident, misrep-
resent one of those groups; if so, any conclusions on other issues could be
distorted. Instead, sample within your groups, determining in advance how
many of each you will take. Number your stratification variable i � 1, . . . , k,
and interview ni in the ith stratum. Observe that each subject falls into cate-
gories j � 1, . . . , l; then say that xij subjects from the ith stratum fell in the
j th category.

a. The usual model for this design would be the product-multinomial model:
xij for j � 1, . . . , l are Multinomial(ni , pij j � 1, . . . , l), where∑l

j�1 pij � 1 for each i. What is the core of the likelihood for this model?
What are the maximum likelihood estimates of the pij ?

b. The row homogeneity model says that the stratification is irrelevant and
the probabilities are the same in each row: pij � pj . Find the maximum
likelihood estimates for the pj . How many degrees of freedom does it
have?
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22. In a precinct that is about 60% Democratic and 40% Republican, you locate
120 Democrats and 80 Republicans, and ask them whether they favor a new
state lottery. You find

For Against No Opinion
Democrats 73 27 20

Republicans 27 25 8

a. Find the parameter estimates and cell expectations for a row homogeneity
model.

b. Find the G-squared statistic that compares this model to the (saturated)
product-multinomial model. Compare it to the degrees of freedom, and
comment.

23. In the smoking, gender, location survey (see Section 5.3):

a. Estimate the model with only SL interaction, by proportional fitting.
Compute G-squared, comparing it to the saturated model.

b. Estimate the model with SL and SG interaction, by proportional fitting.
Compute G-squared comparing, it to the saturated model.

24. In section 5.3 we estimated the x̂’s from equations of the form log x̂MRS �
µ + bM + cR + dS + eMR + fMS + gRS. Use the calculation method from
(1.7.5) to find a numerical value for each of the seven parameters.

25. We want to show that proportional fitting never adds higher-order terms to
your model. We will do it for the simplest case, association in a two-by-two
table. Say that your current table has association ρ � (x(0)

11 x
(0)
22
)
/
(
x

(0)
12 x

(0)
21
)
.

Now, show that in the course of fitting an independence model, if you
force either set of marginals to hold, after an iteration you still obtain
ρ � (x(1)

11 x
(1)
22
)
/
(
x

(1)
12 x

(1)
21
)
. Therefore, if your starting table has no higher-order

terms (ρ � 1), then neither will your final table.
26. In 1987 Freeman reported a survey linking survival of infants to age one year

to prematurity, mother’s age, and whether she smoked:

Premature Full Term
Dead Alive Dead Alive

No 50 315 24 4012
Younger

Smokes 9 40 6 459
No 41 147 14 1594

Older
Smokes 4 11 1 124

a. Other studies have suggested the plausibility of each of the six two-way
associations here. Write down the loglinear model that has all those two-
way associations (but no three-way associations). Interpret each of those
associations in words.

b. Write down the marginal totals that are the sufficient statistics for this
model.



8.11 Supplementary Exercises 273

c. Compute the predicted counts in the model, to within 0.1 person, by
iterative proportional fitting.

d. Compute the G-squared, comparing this model to the saturated model.
How many degrees of freedom does it have? What do you conclude about
the model?

27. Use Newton’s method to maximize the likelihood in the linear mandible-
length model (Section 7.2), by simultaneously solving 0 � (∂l(µ, b))/(∂µ)
and 0 � (∂l(µ, b))/(∂b). You will need the matrix⎛

⎜⎝
∂2l(µ, b)

∂µ2
∂2l(µ, b)

∂µ∂b

∂2l(µ, b)
∂µ∂b

∂2l(µ, b)
∂b2

⎞
⎟⎠

to construct your linear system of two equations in two unknowns. Let µ(0) �
0 (for an average mandible we guess equal likelihood that it is male or female),
and b(0) � 0 (maybe mandible length does not matter). Do several iterations,
until your estimates stabilize; compare them to my graphical estimates.



CHAPTER 9

Continuous Random
Variables I: The Gamma
and Beta Families

9.1 Introduction

Many statistical applications seem not to be about discrete random variables, taking
on values only from a manageable list. Rather, we see random quantities that might
include any number in whole intervals, perhaps because they are measurements
of time, weight, length, and so forth. These are instances of continuous random
variables. We shall find ourselves using new mathematical techniques, often from
calculus, to study them.

We shall start by inventing a class of experiments ruled by chance, called a
Poisson process, out of which Poisson variables arise naturally. In addition, an
important family of random variables with continuous values, described by its
probability density, appears in a Poisson process. We will go on to investigate
another chance process, the Dirichlet process, which is related to binomial random
variables. Here, too, important continuous variables arise. Finally, we will study
relationships between these processes; and inferences in them.

Time to Review

Chapter 4, Section 8
Chapter 5, Section 4.3
Chapter 6, Sections 3–4
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9.2 The Uniform Case

9.2.1 Spatial Probabilities
We have already considered a class of continuous random variables: the coordinates
of random points in geometrical probability problems. For example, where does a
dart hit along the horizontal axis of some rectangular target? We suggested when
first introducing the idea of a random variable that the cumulative distribution
function F (x) � P(X ≤ x) should carry all the information we need to describe
its random behavior (see 5.4.2). This is so because the sigma algebra (see 4.8.2)
for geometrical probabilities in one dimension was built out of intervals like (a, b],
which just says that we need to know the probability of the variable falling in such
intervals. But P{Xε(a, b]} � F (b) − F (a) (you should remind yourself why this
is so).

For example, mark off the horizontal axis of that rectangular target as (0, 1]
and imagine, if you can, that I am so inept at darts that every point is as likely a
hit as every other point. Then, if 0 ≤ a < b ≤ 1, we get P(Xε(a, b]) � b − a,
since the longer an interval is, the more likely I am to hit it. This suggests what
the cumulative distribution function should be: F (x) � x on (0, 1]. This particular
random variable is called a Uniform (0, 1) random variable, because, like discrete
uniform variables, it does not prefer any outcome to any other. Interestingly enough,
it is the random variable you will usually get (approximately) when you hit a button
called “random” or something like it on a calculator or invoke a random number
generating function in a computing system (see also 4.2.1). We will see later why
this simple example is so useful.

9.2.2 Continuous Variables
If you graph the cumulative distribution function F (x) � x (a straight 45◦ seg-
ment), you should notice an important difference between it and the one for all
our discrete random variables: It is a continuous function. If we try to graph the
discrete case, F has to “jump” up by an amount pi at each of our list of values
xi , creating a graph with many breaks. But since no single value from the infinity
of possible coordinates of a geometrical outcome has substantial probability, we
cannot have jumps anywhere; and in fact, the curve is continuous. We will let this
be the characterizing feature of continuous random variables:

Definition. A continuous random variable is one whose cumulative distribution
function is a continuous function on its sample space.

So the way to see whether it is continuous is to check: Can you graph the
cumulative distribution without lifting your pencil from the paper? This has a
peculiar consequence. What is the probability of a given point, say a? It should be
quite small, since there are uncountably many possible points in the sample space.
We do not have a probability mass function yet, only probabilities of intervals, so
let us sneak up on it with smaller and smaller intervals that in limit contain only
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the one point:

P(X � a) � lim
δ→0

P{Xε(a−δ, a]} � lim
δ→0

[F (a)−F (a−δ)] � F (a)− lim
δ→0

F (a−δ).

Now, the formal definition of a continuous function in calculus (which you should
review) says that the limit of its values as we approach a point is just the function
evaluated at that point; this is just being precise about not lifting the pencil as we
draw the graph. So limδ→0 F (a − δ) � F (a) because we have assumed that F is
continuous. Thus P(X � a) � F (a)−F (a) � 0. We conclude that the probability
of any given outcome is not merely tiny, it is exactly zero.

Proposition. If X is a continuous random variable, then for any number a in its
sample space, P(X � a) � 0.

In other textbooks, this property is used to define continuous random variables.
Notice its peculiar effect on our intuition: certainly, very many of these values
are possible outcomes—the dart really might hit there. Therefore a “probability
of zero” does not mean the same thing as “impossible” (see 4.2.2). Looking at
the complementary event, a “probability of one” does not mean the same thing as
“certain.” We shall have to think further to find a reasonable interpretation of prob-
ability zero. Imagine that somebody offered you a really wonderful wager, that she
will pay you a million dollars if some perfectly possible event happens, for exam-
ple, if a uniform random number comes out equal to π/4 � 0.785398163 . . .. This
once-in-a-lifetime deal will only cost you a penny. Should you take it? Calculating
the positive part of the expectation: $1,000,000p(π/4) � $1,000,000 × 0 � $0,
which means that on average you have nothing to gain from the deal. Therefore,
zero probability means something like “never bet on it”; and probability one means
“always worth betting on.”

We can see another difficulty with continuous random variables: The probability
mass function is always zero, and so is of no interest. But this function was usually
the simplest way to describe discrete probabilities, and was needed to calculate
expectations. We shall have to find other methods to accomplish these things,
shortly.

9.3 The Poisson Process

9.3.1 How Would It Look?
We proposed applying Poisson random variables to counting rare, independent
events (see 6.4.3). For example, we might wish to talk about the number of ba-
bies born in a given month in a town of several thousand people (counting twins
once, to preserve independence.). This might well have something like a Poisson
pattern of probabilities, with mean equal to some long-term average of monthly
births. But there is a slightly different way we could look at that same problem:
the sequence of times and dates, continuing indefinitely, at which a baby is born.
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These random quantities can be any real number, and so in some sense are contin-
uous random variables, even though the number of babies in a period is discrete.
The mathematical description of the whole scheme is contained in the following
definition.

Definition. A (standard) Poisson process is a random sequence of real numbers
0 < t1 < t2 < t3 < · · · such that (1) in any interval 0 ≤ a < b, the number of t’s
that fall in the interval |{ti | a < ti ≤ b}| is a Poisson(b − a) variable; and (2) the
number of t’s in any two nonoverlapping intervals is independent.

Any stochastic process consisting of a countable sequence of increasing real
numbers like this is called a point process.

The t’s in our example are just the times that babies are born. There are two
peculiarities in how we measure time: It is always measured from a starting time
we call 0 that represents the moment we start counting our events. Even more
oddly, we have let our unit of time be the length of an interval in which an average
of one event happens. This is why we call it a standard process. In our example,
if an average of 5 babies are born each month, then we are using the peculiar unit
of time of about 30/5 � 6 days. Then a period of 72 days is 12 of our perverse
units, because an average of 12 babies are born in such a period. This convention
will simplify our algebra; and as you will see, it is very easy to translate back and
forth in practical problems.

9.3.2 How to Construct a Poisson Process
Of course, we have no reason to believe that any such Poisson processes exist; we
have reasoned from a qualitative example. As with Poisson variables themselves,
though, we can construct the process as a limit of things we do know to exist.
A Bernoulli process, a sequence of independent trials that either succeed or fail
independently of one another (see 6.3.3), might be given a very low probability of
success at each trial. Then successes are rare. To connect it to a Poisson process,
imagine that the many failures are ticks of a rapid clock, so that failed trials count off
the passage of time. If we asked how many successes had taken place in a certain
amount of “time,” we are really counting successes before a certain number of
failures, so that successes are negative binomial. In a standard Poisson process, a
unit of time has an average of one event; in a negative binomial NB(k, p) variable,
there are an average of kp/(1 − p) successes. To approximate a Poisson process
by a Bernoulli process, we need to synchronize their clocks; we will choose k

such that kp/(1 − p) � 1. (I, of course, use small values of p that let k be a large
integer.) Then the length of time measured by a tick is p/(1 − p) � 1/k standard
units.

Now we describe our Bernoulli process as if it were a point process: Let si be
the number of failures that precede the ith success. Then the numbers 0 ≤ s1 ≤
s2 ≤ s3 ≤ · · · tell us exactly what happened. For example, 2, 5, 7, . . . says that the
Bernoulli sequence started out FFSFFFSFFS. . . . We translate these “ticks” into
our time units by computing ti � si/k; this step is an example of a very important
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FIGURE 9.1. Part of a Bernoulli process

sort of transformation called standardization or renormalization. Now we want to
know that for p small, our new description of the process 0 ≤ t1 ≤ t2 ≤ t3 ≤ · · ·
behaves approximately like a Poisson process.

Example. In a sequence of trials with p � 1/101, so that k � 100, I observed
successes after 73, 208, 292, 428, 499, . . . failures. We standardize these to get
events at times 0.73, 2.08, 2.92, 4.28, 4.99, . . . .

Our second requirement is clearly met: The successes in two nonoverlapping
time intervals are the successes in two separate stretches of a Bernoulli sequence,
which are always independent of one another. It remains to check the probabilities
for the number of t’s in an interval, say (a, b]. This, of course, is the same as the
number of s’s in the interval (ka, kb]. They are in the sequence that begins with the
next trial after failure number �ka� (this is the floor function, the largest integer no
bigger than that value; for example �3.14159� � 3) and ends with failure number
�kb + 1�.

(In Figure 9.1, a black marble corresponds to a failure and a white marble to
a success.) Then our number of successes is negative binomial, NB(�kb + 1� −
�ka�, p), because we are counting until that many more failures have happened.
But in a series of such processes in which p gets small (and so k gets large), we
know that this variable converges in distribution to a Poisson random variable with
mean

(�kb + 1� − �ka�)p
1 − p

� �kb + 1� − �ka�
k

≈ b − a.

The last approximation holds because the two floor functions are within 1 of kb

and ka, and k becomes large. We have shown the following fact:

Theorem (Poisson limit of Bernoulli processes). Consider a series of Bernoulli
processes in which p → 0; standardize each sequence of successes by ti �
sip/(1 − p). Then the processes realized by the sequences of t’s converge in
distribution to a standard Poisson process.

Now we know that there is such a thing as a Poisson process, because we can
construct simple experiments that behave as much like one as we please.

Example. If there are an average of 2 fatal commercial airline accidents per year,
we might well model their times as a Poisson process (with standard time unit 6
months). We might almost as well note that there are about 100,000 safe flights per
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6 month period and model it as a Bernoulli process with p � 0.00001 of a crash;
the probabilities would be almost the same. In either case, during the two-year
period 1999–2000 we would expect 4 crashes, on the average.

Now a formerly hard result comes easily: If X is Poisson(λ) and Y is Poisson(µ),
then what is the random variable Z � X + Y ? X has the same behavior as the
number of events in (0, λ] of a standard Poisson process; Y is like the count of
events in the time interval (λ, λ + µ], and the two are independent. Therefore, Z

is the count in (0, λ + µ] and is Poisson(λ + µ).

9.3.3 Spacings Between Events
Poisson counts are, of course, discrete; but now T � t1, the first time something
happens, is presumably a continuous random variable. If our first baby of 1998 was
born on January 15 at 1:25 a.m., then t1 � 2.3432 in standard time units (6 days
each). In an approximating Bernoulli sequence, as k gets large, the possible values
get closer and closer together. The number of successes before the first failure is
s1, with a probability 1 − p of success; therefore it is Geometric(1 − p). At this
point, we could calculate the cumulative distribution function of T � s1p/(1 −p)
by an easy limit argument; we will leave that to you as an exercise. Instead, we
will use a slicker argument that will be useful later. Notice that we have invoked
a black–white transformation on our Bernoulli process: What were successes are
now failures. We found a black–white duality between certain negative binomial
random variables; now we will use precisely that duality in a Poisson process to
find the properties of T .

F (t) � P(T ≤ t) � P(first Poisson occurrence happens by time t)
� P(at least one happens by time t) � 1 − P(no occurrences by time t)
� 1 − P[X � 0 | X is Poisson(t)] � 1 − p(0) � 1 − e−t .

This is important enough to be given a name:

Definition. A (standard) negative exponential random variable is the value of
the first event in a (standard) Poisson process. Its sample space is all positive real
numbers.

Proposition. (i) A negative exponential random variable is continuous, with
cumulative distribution function F (t) � 1 − e−t for all positive t .

(ii) Let Ui be a sequence of Geometric(1 − pi) random variables in which
pi → 0. Then Ti � Uipi

1−pi
converge in distribution to a negative exponential

variable.

Example. Cosmic rays enter a cloud chamber and are recorded in an experiment
on average once every five seconds. Separate events are independent of one another.
What is the probability that the first cosmic ray will arrive within 12 seconds of
the beginning of the experiment? This is presumably a Poisson process, with unit
of time 5 seconds. We are asking about a length of time 12/5 � 2.4 units. The
problem is then asking P(t ≤ 2.4) � 1 − e−2.4 � 0.9093.
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Notice that it is still true that random variables converge in distribution (see
6.2.5) to a continuous distribution when their cumulative distribution functions
have the right limit.

The starting time for a Poisson process seems pretty much arbitrary in each of
our applications. This is no accident: Consider any positive time a; now Consider
all the events that happen after that time, a < ti < tt+1 < · · ·. Let t ′j � ti+j−1 − a,
the amount of time after a until each later event; then 0 < t ′1 < t ′2 < · · ·. It is easy
to see that these form a new Poisson process: Intervals correspond to intervals of
the same length in the original process, and if new intervals do not overlap, neither
did the ones they derived from. Furthermore, anything that happened until time a

is independent of the new things that happen after a. Thus resetting our clock to
zero at any time leaves us with a clean slate; this is called the memoryless property
of a Poisson process. It follows from the fact that any given stretch of Bernoulli
trials is independent of the successes and failures that came before. This has an
interesting consequence:

Proposition. The intervals between successive events of a Poisson process ti−ti−1
are each negative exponential and are independent of each other and of t1.

This is because we can just imagine that we are starting the timer again as each
event happens. If we had a source of independent negative exponential random
variables Vi , we could have constructed a Poisson process by letting t1 � V1, t2 �
t1 + V2, t3 � t2 + V3, and so forth.

9.3.4 Gamma Variables
Example. Negative exponential random variables are often used as models for
time to failure of mechanical systems. Imagine that a space probe bound for Mars
has on board a critical navigation computer and four identical backup computers
that come on line as earlier ones fail. Let failures be a Poisson process that exper-
iments suggest has a rate of failure of one per six months. It takes two years to
reach Mars. What is the probability we will reach our destination before all five
computers have failed?

We seem to have asked here about the fifth Poisson event rather than the first.
Obviously, T � ti is also a continuous random variable for any positive integer i.

Definition. The time T to the αth event tα in a standard Poisson process is a
Gamma(α) random variable.

Thus a negative exponential variable is also Gamma(1). Our comment above
tells us the following:

Proposition. (i) If Vi are independent negative exponential variables, then T �∑α
i�1 Vi is a Gamma(α) variable (since it is just the total of the waiting times until

the αth event);
(ii) if T is Gamma(α) and U is independently Gamma(β), then V � T + U is

Gamma(α + β).
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As interesting as these facts are, they do not tell us very much at this point about
the probabilities of gamma random variables. Instead, use the black–white duality
argument:

F (t) � P(T ≤ t) � P(αth Poisson occurrence happens by time t)
� P(at least α occurrences happen by time t) � P[X ≥ α|X is Poisson(t)].

Theorem (gamma–Poisson duality).

F [t |Gamma(α)] � 1 − F [α − 1|Poisson(t)] �
∞∑

i�α

t i

i!
e−t .

Example (cont.). In the space probe problem, 2 years is 4.0 six-month periods,
and we are concerned whether the fifth failure will happen after that time, so

P[t > 4.0|Gamma(5)] � 1 − F (4.0) �
5−1∑
X�0

4X

X!
e−4 � 0.6288.

This is not much of a safety margin.

We derived a Poisson process from a Bernoulli process with rare successes;
but the failure count sα before the αth success may be thought of as a Negative
Binomial (1 − p, α) random variable, where p is now the small probability of
success, by black–white duality. This just generalizes our observation about the
first failure being a geometric random variable.

Theorem (gamma approximation to the negative binomial). (i) If
(
α

2

)
is small

compared to x, and xp2/(1 − p) is small, then if t � xp/(1 − p), we have

F [x|NB(α, 1 − p)] ≈ F [t |Gamma(α)].

(ii) If Xi is NB(α, 1 − pi)] and pi → 0, then Ti � Xip/(1 − p) converge in
distribution to Gamma(α).

You may check this by applying black–white duality to the negative binomial,
then the Poisson approximation to the negative binomial, then the gamma–Poisson
duality.

Example. We have noted that 10% of the population is left-handed. There are three
left-handed desks in a classroom, and the Equal Opportunity office requires that we
start a new section as soon as a fourth left-hander enrolls in a course. What is the
probability that we will have no more than thirty students in a given section? This
is negative binomial with p � 0.9 and k � 4; we compute F (27) � 0.3762. Since
lefties are relatively rare, try a Gamma(4) approximation with t � 27×0.1

0.9 � 3.
Then F (3) � 0.3528, which is not bad, given that p is not all that close to 1.

9.3.5 Poisson Process as the Limit of a Hypergeometric Process∗

While we are here, we might as well use what we already know to construct a
Poisson process from a hypergeometric process. The idea is that in an urn with
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a great many black marbles and relatively few but still numerous white marbles,
we may treat the black marbles as the ticks of a clock (or perhaps better, as grains
of sand falling through the neck of an hourglass). Then the white marbles are
noteworthy events, and we can treat the “times” at which they occur as the t’s
in a roughly Poisson process. We already know that under certain conditions the
random number of white marbles by the time we get a fixed count of black marbles
is approximately a Poisson variable (see Chapter 6.8). We can specify exactly how
the realization of the process has gone by simply letting si be the number of black
marbles that have been removed by the time the ith white marble appears. (The
sequence is now finite, only W numbers, but that is still a great many.) To stan-
dardize these counts we remember that the average of a negative hypergeometric
variable is bW/(B + 1) white marbles by the bth black; therefore, the number of
ticks of the clock, or grains of sand, that corresponds to one standard unit of time
should be b � (B +1)/W . Now let ti � si/b convert our count into times at which
our nearly Poisson events happen.

Theorem (Poisson limit of a hypergeometric process). In a series of hypergeo-
metric processes in which b � (B + 1)/W → ∞ and W → ∞, the sequences of
numbers ti � si/b converge in distribution to a Poisson process.

Proof. To check that the counts in a given time interval are Poisson, use the
same procedure we used in the Bernoulli case and our result about the Poisson
approximation to a hypergeometric variable. This time, though, independence of
nonoverlapping intervals is not obvious, because the counts in different parts of
a hypergeometric process are obviously not independent. Let X be the count in
(c, d] and Y be the count in nonoverlapping (e, f ]. Then p(x) is approximately
Poisson(d−c). Now, p(x | y) is just a hypergeometric probability in which y white
marbles and approximately b(f − e) black marbles have been removed from the
jar (because we know they appear at another time). These numbers are each small
parts of the totals, as the urn grows. Thus, p(x | y) is approximately Poisson with
mean

b(d − c)(W − y)
B + 1 − b(f − e)

� (d − c)
1 − (y/W )

1 − (f − e)/W
≈ (d − c),

since W gets large. Since the conditional probabilities converge to the same values
as the unconditional, we have asymptotic independence of the intervals as the urns
grow.

Since sα is the count of black marbles before the αth white, by switching black
and white marbles in the process, we see that it is an N(B, W, α) variable. �

Theorem (gamma approximation to the negative hypergeometric).
(i) F [x | N(B, W, α)] ≈ F [t | Gamma(α)], where we have standardized by
t � xW/(B + 1), when

(
α

2

)
and t2 are small compared to x and W .

(ii) If X is N(B, W, α) and we let T � XW/(B + 1), then in a sequence of
urns in which W → ∞ and (B + 1)/W → ∞, T converges in distribution to
Gamma(α).
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You should check this by imitating the proof that told us when we could make
a gamma approximation to a negative binomial (see 3.4).

Example. Of the 100 people in a precinct who voted in the last election, only
10 voted for your candidate. You want to interview some people who voted for
her, to find out what, if anything, your candidate did right. What is the probability
that you will find one such person by your tenth interview of a voter? We compute
F [9 | N(90, 10, 1)] � 0.6695. Your voters are fairly rare, and you are asking about
only one of them, so we try F [90/91 | Gamma(1)] � 0.6281. Not too bad, and
much easier arithmetic.

9.4 Probability Densities

9.4.1 Transforming Variables
As you will remember, we arbitrarily scaled time in a standard Poisson process so
that the time interval in which an average of one event happens is of length one.
This is hardly ever true, so we had to express time in these units before we could
do any practical calculation. Instead, let a more general Poisson process have an
average of one event in each time interval of length β. In the space-probe problem,
for example, if β is 0.5 years, then all our calculations could use time in years.
Now a Gamma(α, β) random variable will be the time to the αth event, when an
average of one event happens in a period of length β. We have stretched our time
measurements in proportion to β, so we may make the following definition.

Definition. If T is Gamma(α), then if S � βT (β > 0), we call S a Gamma(α,β)
random variable.

The probabilities are easy to calculate:

F [x|Gamma(α, β)] � P(S ≤ s) � P(βT ≤ s) � P(T ≤ s/β)
� F [s/β|Gamma(α)].

Substituting, we get a formula:

Proposition. F [s|Gamma(α, β)] �∑∞
i�α (si/βii!)es/β .

As impressive as this looks, it teaches us little; it simply points out the change
of scale we knew we had to do anyway.

This was an example, though, of a very important operation on random variables,
a change of variables. We have a variable X, and we want to use it to study a related
variable Y . Let the connection be X � g(Y ) where g is a nondecreasing function
on the sample space of Y . (That is, for any numbers a ≤ b, it is always true that
g(a) ≤ g(b).) In the case of the gamma family, this relationship is just T � S/β.
Then it is easy to get the cumulative distribution function for Y :

FY (y) � P(Y ≤ y) � P[g(Y ) ≤ g(y)] � P[X ≤ g(y)] � FX[g(y)],

where the second equality uses the fact that g is nondecreasing.
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Proposition. (i) If Y � g(X) is a nondecreasing change of variables, then
FY (y) � FX[g(y)].

(ii) If Y � g(X) is a nonincreasing change of variables, then FY (y) � 1 −
FX[g(y)].

Proof of the second part is an exercise.

Example. General negative exponential random variables (Gamma(1, β)) are
sometimes studied on a log scale; that is, we work with X � log(T ). Then T � eX.
Since FT (t) � 1−e−t/β on T > 0, then FX(x) � 1−e−ex/β, where X may be any
real number. The variable X is an example of a Fisher-Tippet random variable.

This device of rescaling the time variable allows us to define a general (as
opposed to a standard) Poisson process. We started by assuming that we measured
time in units so convenient that an average of 1 event happened in each time period
of length 1.0. But later we rescaled by S � βT . Now, for each time period of
length β, in S-units, we still have an average of one Poisson event. Then for each
time period of length 1.0 (in S-units), we must have a Poisson count with mean
1/β. Let λ � 1/β, and make the following definition.

Definition. A Poisson(λ) process is a random sequence of real numbers 0 < t1 <

t2 < t3 < · · · such that (1) in any interval 0 ≤ a < b, the number of t’s that fall
in this interval, |{ti | a < ti ≤ b}|, is a Poisson[λ(b − a)] variable; and (2) the
number of t’s in any two nonoverlapping intervals is independent.

For example, it is much more natural to let births in our small town be a
Poisson(5) process, where the time unit is simply months.

9.4.2 Gamma Densities
You may be disturbed by the complexity of the cumulative distribution function
for the gamma family; we have expressed it as an infinite sum. Of course, by
taking complements we can reduce it to a finite sum, which still may require a
lot of calculation if α is large. We remember that our major discrete families also
lacked a simple expression for their cumulative distribution function; we tended
to work instead with their relatively simple probability mass functions. Unfortu-
nately, continuous random variables have no useful probability mass functions.
As it happens, another function we have encountered in geometric problems, the
probability density (see 5.4.2), plays somewhat the same role as did the probability
mass function.

The trick was to differentiate the cumulative distribution function. In the
Gamma(α) case,

F ′(t) � d
dt

( ∞∑
i�α

t i

i!
e−t

)
�

∞∑
i�α

t i−1

(i − 1)!
e−t −

∞∑
j�α

tj

j !
e−t
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FIGURE 9.2. F ′[t |gamma(5)]

by using the product rule for derivatives. Let i � j + 1 in the second sum, to get

F ′(t) �
∞∑

i�α

t i−1

(i − 1)!
e−t −

∞∑
i�α+1

t i−1

(i − 1)!
e−t .

All terms but the first term in the first sum cancel, so F ′(t) � [tα−1/(α − 1)!]e−t ,
a remarkable simplification (Figure 9.2).

But can we use this expression to extract probability information about the
random variable? Of course we can. Recall the fundamental theorem of calculus,
which essentially says that integration undoes differentiation. We use it to express

P(a < X ≤ b) � F (b) − F (a) �
∫ b

a

F ′(X) dX.

For example, the probability that the fifth computer on our Mars craft will fail
between 2 and 3 years out may be written

∫ 6.0
4.0

T 4

4! e−T dT (Time is in units of 6
months). This corresponds to the area under a curve (see Figure 9.3).

This is a pleasingly compact expression, even though at the moment we would
still have to calculate it with the sum formula. We will see by other exam-
ples that important cumulative distribution functions are very often simplified
by differentiation.

9.4.3 General Properties
The above discussion motivates the following definition.
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FIGURE 9.3. Area under a density curve

Definition. The density f (x) of a random variable X is a nonnegative function
defined on its sample space such that for a < b, P(a < X ≤ b) � ∫ b

a
f (X)dX. A

random variable that has a density is said to be absolutely continuous.

Proposition. (i) On any interval on which the cumulative distribution function F

is differentiable, f (x) � F ′(x).
(ii) F (x) � ∫ x

−∞ f (X) dX.
(iii)
∫∞
−∞ f (X) dX � 1.

Check these as a very easy exercise. Notice that we use capital letters like X

for the variable of integration when densities are involved, as we did with indices
of summation in the discrete case (see Chapter 6.5). It will turn out shortly that
variables of integration behave mathematically much like absolutely continuous
random variables.

Example. (1) A Gamma(α, β) random variable has density

f (t) � tα−1

βα(α − 1)!
e−t/β

on t > 0.
(2) A Uniform(0, 1) random variable has density f (x) � 1 on (0, 1).
(3) The Fisher–Tippet variate described above has density

f (x) � 1
β

ex/βe−ex/β

on the entire real line.
These are easy calculus exercises.
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FIGURE 9.4. Uniform(0,1)
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FIGURE 9.5. Cauchy(1,1)

9.4.4 Interpretation
Our densities have been reasonably simple, but we promised more for them; they
should do some of the things for us that mass functions did. For one thing, mass
functions told us immediately how relatively likely particular outcomes were. Look
at some graphs of densities (Figures 9.4–9.7).

We have not shown numerical values on the axes, because we here wanted to
show some of the qualitative variety of shapes that densities may have. Now, a
Cauchy random variable is just one that follows the Cauchy law (see 4.8.1). What
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FIGURE 9.6. Fisher–Tippet
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FIGURE 9.7. Negative exponential

does it mean, for example, that the Cauchy density is five times higher at 0 than at
2.0? Recall its appearance in the Great Wall of China problem, the probability of
a bullet hitting at exactly certain points along the wall is, of course, zero. Instead,
ask yourself about the probability of hitting near a point x; that is,

P(x − δ/2 < X ≤ x + δ/2) �
∫ x+δ/2

x−δ/2
f (X) dX � F (x + δ/2) − F (x − δ/2)
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x

FIGURE 9.8. Probability near a point

measures the probability of landing in an interval of width δ centered at x. If F is
differentiable at x, then for δ small enough,

P(x − δ/2 < X ≤ x + δ/2) ≈ δF ′(x) � δf (x).

Pictorially, this says that the area under a short piece of a density curve is roughly
the same as that of a rectangle centered above the midpoint of the piece (Figure
9.8).

We now have an intuitive meaning for the density: The probability that an
observation will fall near a point is approximately proportional to the value of the
density at that point. You are five times as likely to be hit by a bullet if you stand
at the wall directly opposite our guard than you are if you move twice the distance
from him to the wall to your left or right (since f (0) � 5f (2)).

Looking at a density curve tells you more about the behavior of a random variable
than does looking at a cumulative distribution function. Imagine that in the Great
Wall of China problem we have several drunken guards at various positions along
the wall, firing at different rates. Then the density of a random bullet hole on the
wall might be like that depicted in Figure 9.9.

We can conclude without knowing anything else that there seem to be three
guards firing and that they are equally spaced along the wall. The middle guard
seems to be firing more often than the other two (greater area). The one on the
left is closer to the wall than the others—his bullet holes seem more narrowly
concentrated. If we graph a large random sample of bullet holes on the same axis,
we can see the relationship of the sample to the density (Figure 9.10).

The density is a measure of how concentrated observations are likely to be near
a point, hence the name “density.”
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FIGURE 9.9. Complicated density

FIGURE 9.10. Sample from that density

9.5 The Beta Family

9.5.1 Order Statistics
Another important point process comes about from the order statistics of a random
sample. Imagine that we have done a trial repeatedly and independently to get a
random sample X1, . . . , Xn. One way to get a clear picture of the results is to
sort the numbers; statisticians traditionally write them in ascending order, X(1) ≤
X(2) ≤ · · · ≤ X(n).

Definition. The ith value in ascending order from a random sample of n, X(i), is
called the ith order statistic of that sample.

To illustrate, our guard who stands 5 meters from his wall might hit at −5.57,
2.59, −3.79, −8.99, and 0.90 meters from the point opposite him. We sort these
to get −8.99 < −5.57 < −3.79 < 0.90 < 2.59; then, for example, the 4th order
statistic is 0.90 meters. If his sergeant came along the next day and tried to guess
from the bullet holes where his guard had been standing, a reasonable guess might
be opposite the middle bullet hole, at −3.79 meters. Generally, if we have an odd
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sample size n � 2m − 1, the middle value X(m) is called the median of the sample
(see Exercise 1.19). It is often used as a typical value in summary statements about
the sample.

9.5.2 Dirichlet Processes
Consider the simplest case, when the sample of n is from a Uniform(0, 1) random
variable. Then, since the probability that any given observation will fall in (a, b]
is b − a, we see that the number of our sample that fall in that interval is a
binomial B(n, b − a) random variable. We use this observation to characterize a
new stochastic process:

Definition. A Dirichlet(n) process is a sequence of n random real numbers 0 <

p1 < p2 < · · · < pn < 1 such that the number of p’s in any subinterval (a, b] is
binomial B(n, b − a).

Then a pi is the uniform order statistic X(i). Each pi is a continuous random
variable—check as an exercise that the probability of one landing in a given tiny
interval is arbitrarily small. These might also be used as models of random pro-
portions; for example, how much of various compounds are found in a randomly
chosen rock sample of fixed size.

First we have to check that such a process exists; our procedure will be famil-
iar: We will approximate the process with ever larger urn games. The binomial
family gave us useful approximations to negative hypergeometric variables in case
the white marbles were rare, and we counted how many of them appeared as we
checked a large proportion p of the numerous black marbles (see 6.3.1). We will
be interested in the random locations of the white marbles in a sequence drawn
from the jar. Let the urn have n white marbles (which will remain fixed) and B

black marbles (which will be allowed to grow later). Remove them all at random,
and let bi be the number of black marbles that appear before the ith white. Then
0 ≤ b1 ≤ b2 ≤ · · · ≤ bn ≤ B completely describes a realization of a hyperge-
ometric process. Since we are interested in the proportion of the entire process
these represent, standardize by pi � bi/B. Then 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ 1.
We need to check that as B gets large this behaves more and more like a Dirichlet
process.

To count the p’s in an interval (a, b], notice that it represents the stretch of draws
from the one after the �aB�th black marble and ending with the �bB + 1�th black
(the floor function, again). The number of events, white marbles, in this stretch is
therefore negative hypergeometric N(n, B, �bB +1�−�aB�). The possibility that
some white marbles may have appeared earlier is irrelevant, because we of course
do not know whether they did or not. This may be approximated by a binomial
distribution with parameters n and (�bB + 1� − �aB�)/(B + 1) for n, b, and a

fixed and B large enough (see 6.3.2).

Theorem (Dirichlet limit of hypergeometric processes). Consider a sequence
of hypergeometric processes with a fixed number n of white marbles and increasing
numbers B of black marbles; describe a realization by 0 ≤ b1 ≤ b2 ≤ · · · ≤ bn ≤
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B where bi is the number of black marbles that appear before the ith white. Let
pi � bi/B. Then the 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ 1 converge in distribution to a
Dirichlet(n) process.

Example. Five students from a small high school in far western Virginia are in
the 1993 graduating class of 3871 students at Virginia Tech. Their class ranks are
73, 1298, 2525, 2682, and 3517. If these students are, in fact, a random selection
from all the graduates, we might think of this as the realization of a hypergeometric
process with five white marbles and 3866 black marbles. Since recruiters do not
care about the total number of Tech graduates, we might more usefully express
these as proportions of the way through the class: 0.0186, 0.3352, 0.6524, 0.6927,
0.9084. We conclude that one student was in the top 5% of his class and two
were in the top half. Before we saw these results, we would have expected, for
example, that the number of these five that would have made the top quarter would
be Binomial(5, 0.25).

We can handle these random counts; the novelty here is that the pi are continuous
random variables, which have sample space (0, 1). To discover their behavior, start
with the simplest case, n � 1. The approximating hypergeometric process has a
single white marble among many blacks; a partial search of this urn is binomial
with probability of a success b/(B + 1). Now apply the black–white transform
to get an urn with only a single black marble in it among B whites. In our new
notation, its random location is after X � bi white marbles; this is, of course, a
discrete uniform random variable on {0, . . . , B}. Standardizing, we get a random
variable P � p1 � X/B. The cumulative distribution function of the discrete
uniform variable is F (x) � x/B; therefore, the cumulative distribution function
of P is F (p) � p. As the number of marbles in the urn grows, of course, P may be
arbitrarily close to any number between zero and one. We conclude that the single
event in a Dirichlet(1) process has the same cumulative distribution function as
a Uniform(0, 1) random variable; thus, it is a Uniform(0, 1) random variable. A
random point on an interval is much like randomly placing a black marble in a
long row of white marbles.

9.5.3 Beta Variables
Now we need to know the behavior of the real number pi in a Dirichlet(n) process.
Give it a name:

Definition. A Beta(α, β) random variable is the αth event in increasing order in
a Dirichlet(α + β − 1) process.

That is, our pi is a Beta(i, n + 1 − i) random variable. We just noticed that
a Beta(1, 1) variable is also Uniform(0, 1). You will not be surprised when we
use black–white duality to find the cumulative distribution function of other beta
variables. Let P � pi be the ith of n Dirichlet events, and thus a Beta(i, n+ 1 − i)
variable:

FP (p) � P(pi ≤ p) � P(at least i events before p) � P[X a B(n, p) is at least i].
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But we know how to compute this:

Theorem (binomial–beta duality).

F [p|Beta(α, β)] � 1 − F [α − 1|Binomial(α + β − 1, p)]

�
α+β−1∑

i�α

(
α + β − 1

i

)
pi(1 − p)α+β−i−1.

The peculiar choice of parameters may be easier to remember if you notice that
the event of interest is the αth from the beginning and the βth from the end of the
interval. So that we will not count it twice, we subtract 1 to get the total number
of events.

Example. Five children were arbitrarily assigned to a kindergarten reading group.
What is the probability that the second-brightest child in the group is above-average
among children in general? That second child’s ability ranking, as far as we know,
must be the 4th uniform order statistic of a sample of 5, a Beta(4, 2) variable,
counting from the bottom. Our theorem says we can calculate the probability that
he or she is above average by finding the probability that no more than 3 are below
average (or that it is false that 4 or 5 are below average) when the probability of
being below average is 0.5: 1 − 0.15625 − 0.03125 � 0.8125.

Since a Dirichlet process is a limiting case of a hypergeometric process, it seems
likely that under certain circumstances (black marbles rare?) beta probabilities
would be useful approximations to negative hypergeometric probabilities.

Theorem (beta approximation to the negative hypergeometric). (i) If
(
B

2

)
is small

compared to x and W − x, then

F [x|N(W, B, b)] ≈ F [x/W |Beta(b, B + 1 − b)].

(ii) Let Xi be N(Wi, B, b) and Pi � Xi/Wi . Then as Wi → ∞, Pi converges
in distribution to Beta(b, B + 1 − b).

By now you should find proving this familiar: apply black–white duality twice
and the binomial approximation to the negative hypergeometric in between.

Example. I am in charge of maintenance for a large office building. A salesman
wants to sell me a new, longer-lasting (but more expensive) brand of light bulb. I am
skeptical of her claims about the new bulb, so I design an inexpensive experiment: I
mix 7 of the new bulbs among 100 old-style bulbs that I install around the building
this week. Then I make a note to check how many of the old ones have failed by
the time the 4th new one burns out. If I am right to be skeptical, and the new are
only about as reliable as the old, what is the probability that more than 50 old ones
will have failed by that time?

There is a negative hypergeometric model for this: P[X > 50|N(100, 7, 4)] ≈
0.4895. But since

(7
2

) � 21 is fairly small compared to 50, we feel free to try the
approximation P[P > 50/100|Beta(4, 4)] ≈ 0.5, which is close.

Why did the beta probability come out so simple? Notice that beta variables
possess a reversal symmetry: If P is Beta(α, β), then Q � 1 − P is Beta(β, α).
This is because if we have a Dirichlet(n) process with events {pi}, then the process
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with events p′
i � 1 − pi (with order reversed) also meets the definition of a

Dirichlet(n). But we see that if α � β, Q and P must have the same distribution;
then P(P > 0.5) � P(P < 0.5) � 0.5.

9.5.4 Beta Densities
The cumulative distribution function for the beta is complicated, but our experience
with gamma variables gives us hope that its density is simpler:

f (p) � F ′(p) �
[

α+β−1∑
i�α

(
α + β − 1

i

)
pi(1 − p)α+β−i−1

]′

� (α + β − 1)!
(α − 1)!(β − 1)!

pα−1(1 − p)β−1

after many cancellations (which you should check).

Proposition. The density of a Beta(α, β) variable is (α+β−1)!
(α−1)!(β−1)!p

α−1(1 − p)β−1.

(See Figures 9.11 and 12.)

Example. From a Uniform(0, 1) sample of 11, the median is the 6th counting
from either end, X(6); it is therefore a Beta(6, 6) random variable. Its density is
shown in Figure 9.13.

We often use the median as a clue to the location of the middle of a random
variable; but we can see that even with as many as 11 samples it is quite variable.
The probability is substantial that it will be as low as 0.3 or as high as 0.7.

Notice that α and β play equivalent roles in the density; we can express this as
follows:

Proposition (reversal symmetry of the betas). If P is a Beta(α, β) random
variable, then Q � 1 − P is a Beta(β, α) random variable.

FIGURE 9.11. Beta(1,3)
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FIGURE 9.12. Beta(4,2)

.2 .4 .6 .8

FIGURE 9.13. Beta(6,6)

Though you can see this by interchanging P and Q in the density, you should
also notice that it follows from reversal symmetry in the negative hypergeometric
family (see 5.2.3).

9.5.5 Connections
Even though beta and gamma variables have rather different densities, we might
expect there to be some connection between them, because they arise in such
similar ways. Indeed, there is, but we shall wander a bit into a side trail to help
us see it. Imagine that we draw from one of our urns until we have found b black
marbles; call the number of white marbles found X. Now continue to draw until
we find c more black marbles, and call the number of white marbles appearing



9.5 The Beta Family 297

along the way Y . Then X is N(W, B, b), Y is N(W − X, B − b, c), and the white
total X + Y is N(W, B, b + c).

Imagine that you missed the drawing in the above experiment, and your friend
could only remember that the grand total found was X + Y � z. Do you then
know anything more about X, the number initially drawn? Surely you must; for
one thing, its maximum possible value is now z instead of the maximum of W

it could have been originally. In fact, it is easy to say precisely what you know,
that is, what the conditional distribution of X given X + Y � z is. You know that
exactly b + c black marbles and z white marbles were removed from the jar, and
they could have been removed in any order at all, with each order equally likely.
The total numbers of marbles in the original jar has become completely irrelevant.
As far as you are concerned, they could have been drawing from a jar with only
the z + b + c marbles they actually chose in it until they found b black ones, at
which point they wrote down the unpredictable number X of white ones found.
This variable sounds familiar:

Proposition. If X is N(W, B, b) and Y is N(W −X, B −b, c), then X conditioned
on knowing that X + Y � z is N(z, b + c, b).

This has an interesting extension to the case that the original urn is arbitrarily
large but b and c are comparatively small. Let p � W/(W + B), and let

(
b

2

)
and(

c

2

)
be small compared to B. We learned long ago that X is then approximately

negative binomial NB(b, p) (see 6.2.3). But since we have not significantly reduced
either the number of black or white marbles for moderate values of z, it is also
true that Y converges in distribution to NB(c, p), independent of X. The growth in
the original urn does not affect our small, conditional urn. Thus, it is just negative
hypergeometric.

Proposition. If X is NB(k, p) and Y is independently NB(l, p), then X

conditioned on knowing that X + Y � z is N(z, k + l, k).

Actually, we could have reasoned this out directly by imagining that the original
experiment was Bernoulli; we could then have simulated our ignorance about X by
writing the observed totals of successes and failures on slips of paper and tossing
them into an urn. Our draws from that urn are without replacement, because we are
drawing against these fixed totals. Notice that for the first time, we have constructed
a hypergeometric experiment from a Bernoulli experiment, rather than the other
way around.

This simple, fairly intuitive, proposition will lead to two important results. First,
consider what happens if p gets small while k and l are relatively large. At some
point, X and Y are approximately Poisson (see 6.4.2) with (fixed) means λ �
kp/(1 − p) and µ � lp/(1 − p). Then we consider a fixed value of z as k and
l get large. Our X conditioned on z is approximately binomial with z trials and
probability k

k+l
� λ

λ+µ
of success at each trial (see 6.3.2).
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Theorem (conditioning on a Poisson total). If X and Y are independently Pois-
son with means λ and µ, then X conditioned on knowing X + Y � z is binomial,
B(z, λ/(λ + µ)).

Notice that we already derived this from the probability mass function (see
7.4.2). This proposition and its generalization to more than two variables are im-
portant in applications. Consider two varieties of a rare disease, cases of which
appear in a certain hospital as something like two Poisson processes with different
time rates. If we collect all the z cases for a year, then the number of those cases
that will turn out to be of one variety is binomial with z trials and probability the
average proportion of that variety. Generally, we find the proposition useful when
we are interested in studying relative numbers of observations of various types,
and we consider the total number of observations (which is usually just the size of
our study) scientifically irrelevant.

Returning to our result about negative binomials, we observe that the other
extreme is when k and l stay fixed but p approaches 1. Then X and Y tend to
be large; standardize them to approximate times in a Poisson process by letting
T � X(1−p)

p
and S � Y (1−p)

p
. Then in the limit, T is Gamma(k) and S is Gamma(l).

Now assume that we know z � X + Y ; then U � X/z � T/(T + S) is the
unknown proportion of the successes represented by the first count. It converges
in distribution to a Beta(k, l). Something fascinating has happened: We found the
distribution assuming that we knew the total count; but this total has canceled out.
This is no longer a conditional result. We have discovered an important fact:

Theorem (beta is a gamma proportion). If T is Gamma(α) and S is inde-
pendently Gamma(β), then U � T/(T + S) is Beta(α, β), independent of
(T + S).

This elegant result will find application somewhat later.

9.6 Inference About Gamma Variables

9.6.1 Hypothesis Tests and Parameter Estimates
The fact that sums of independent gamma variables with the same scale parameter
β are also gamma will allow us to do a very good job of testing hypotheses about
and making estimates of this scale parameter.

Example. A brand of electrical fuses burn out in what we believe to be a Poisson
process, and the manufacturer asserts that it has time scale β � 300 days. Your
experiences suggest to you that the fuses last, in fact, a shorter typical time. You
decide that you will let the manufacturer’s claim be the null hypothesis, and test
whether it might be shorter, with a significance level of 0.05. To improve your
experiment, you test 10 fuses until they burn out. Their life spans are 7, 226, 17,
88, 50, 24, 244, 214, 435, and 321 days.
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Under the null hypothesis, the sum of these would be a gamma random variable
with α � 10 and β � 300; in fact, it is 1726. The p-value for the fuses being
worse than we assume is then P[T ≤ 1726|Gamma(10, 300)], the probability that
we would get a performance that poor or even poorer. Our sum formula for the
cumulative distribution function in Section 3.4 gives us a probability of 0.06799
(which you should check). This is low, but not less than 0.05. We cannot publish
a challenge to the claimed lifetime by our own standards. However, it looks poor
enough to me that I might be tempted to test, say, 30 more fuses.

Since β is a sort of typical time between Poisson events (remember that it is 1
over λ, the expected Poisson count in unit time), then it seems reasonable to try
to estimate its value from the data. The obvious statistic to try is the sample mean
of the times to failure, t̄ � 1

n

∑n
i�1 ti . In our problem, n � 10, and t̄ � 172.6.

But if we look at what we knew before the experiment and consider what happens
by chance, this particular statistic T̄ is just the Gamma(n, β) random variable we
found above, but rescaled by a factor 1/n. Therefore, we believed that T̄ would
be a Gamma(n, β/n) random variable.

What is T̄ like as an estimate of β? In exercises, you will learn that the point at
which a density is largest, and therefore the random variable occurs relatively most
often, is called the mode. It is one way of seeing where our statistic is centered.
You will find that the mode of our sample mean is n−1

n
β. This says that as we take

ever bigger samples, the mode gets ever closer to the correct value; in some sense,
T̄ is a plausible estimate of β. Of course, the estimate must be rather variable.
We have already noted that if, as claimed, β � 300, then there is a probability of
0.068 that our estimate β̂ � T̄ would be 172.6, or even less. A similar calculation
concludes that the probability that β̂ will be at least 500 is 0.031; it sounds like
even this rather wrong answer still comes up occasionally. We will find later that
the answer does get better as n gets larger, and also that, surprisingly, if β is really
unknown, it is hard to do better than β̂ � T̄ .

9.6.2 Confidence Intervals
Of course, we know another way to pin down an unknown parameter: a confidence
interval. Still pursuing our brand of electric fuses, we once again look at what
values of β would fail to be rejected, using the 10 observed lifetimes. To get a 95%
confidence interval, we will once again use the convention that we will tolerate a
0.025 probability that the data values are too large, and a 0.025 probability that they
are too small. The improbability that the data are so large will of course establish
a lower bound on β and vice versa (see 6.7.3). After many calculations searching
for the right p’s (with the aid of a little computer program to sum the series), I
conclude that 101 ≤ β ≤ 360 days is a 95% confidence interval for the average
life of the fuses. It looks as though we might need to test many more fuses to get
reasonably high accuracy.
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Notice that since any independent gamma random variables with the same scale
parameter sum to yet another gamma variable, we may do inferences on cases
other than α � 1.

Example. The lifetimes of mammals who live to adulthood and then die of natural
causes are believed by some of my colleagues to follow roughly gamma laws with
α � 5, as if they had systems redundant enough to absorb 4 major breakdowns
without dying. (I suppose that if they were cats, then α would be 9.) We observe
in a species of desert mouse the following 20 lifetimes in days past maturity:

392 300 604 235 182
293 575 310 502 437
294 460 377 221 350
380 224 563 519 568

I would like to test the hypothesis, quoted in the standard reference book on
desert mice, that their natural spans past maturity are no more than 300 days.
I will use a significance level of 0.01 in my test. First I note that under the
gamma assumption, life span would correspond to a time between system fail-
ures of β � 60 days, because there should be α � 5 such failures in 300 days.
Those 20 independent observations sum to 7742, which under our hypothesis is a
Gamma(20×5 � 100, 60) random variable. Now a computer program is essential
to discover that P[T ≥ 7742|Gamma(100, 60)] � 0.00353. (In the next chapter
we will discover a useful approximation to this calculation.) This is less than 0.01,
so we reject the null hypothesis that the typical life is as short as 300 days (even
though 6 of our mice did not live that long).

We also note that the sample mean life length was 387 days and that this is a
Gamma(100, β/100) random variable. To get an idea how this narrows down the
plausible values, we will construct a confidence interval as before, this time a 99%
interval. We split the probability of extreme values into 0.005 for each of high and
low directions, and after many calculations conclude that 60.6 ≤ β ≤ 101.8 is a
99% confidence interval. Translating this back into lifetimes, we are 99% confident
that these mice live typically between 303 and 509 days past maturity, when we
allow for 5 system failures.

As before, it is plausible in such problems to estimate the typical life span from
the sample mean, αβ̂ � T̄ . Then β̂ � T̄ /α. In the mammalian life example, it
was believed that α � 5, so that β̂ � 76.35 is our estimate of the number of days
between successive system failures. Indeed, as in the previous section, this will
turn out to be quite a sound method of estimation.

9.6.3 Inferences About the Shape Parameter
Of course, the problem could have been presented to us in quite a different form. If
zoologists were confident that they knew, that β � 60 days was close to the correct
gamma parameter for organisms of this type, then the question might be whether or
not the hypothesis of α � 5 tolerable major system failures was sound. We might
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proceed as above to estimate α̂β � T̄ , so that α̂ � T̄ /β. In the zoology example,
α̂ � 6.45. Since at the moment we do not know how to interpret anything but an
integer value of α, we might say that the most plausible values of α were 6 or 7.
We will see in a later chapter that this is not a very sound method of estimation;
however, people often do it anyway, because better methods are so much more
complicated.

It is, however, still reasonable to do hypothesis tests. In fact, the earlier example
amounted to testing the hypothesis α � 5 and β � 60, which we rejected because
we got a one-sided p-value of 0.00353. Then, because we considered β � 60 to
be the more dubious assumption, we concluded that in fact β > 60. Now, though,
we consider α � 5 to be the more scientifically controversial; from the test we
reject it, and decide that likely α > 5.

If hypothesis tests work, then presumably we can use the same thinking to
construct confidence intervals for α. After trying many values of α with my
computer program, I obtain P(T ≥ 7742|Gamma(108, 60)) � 0.0248 and
P[T ≤ 7742|Gamma(153, 60)] � 0.0230. From this we conclude that the 95%
confidence interval on the shape parameter for a sum of 20 observations is from
109 to 152 inclusive. Dividing by 20, we interpret this as a confidence interval for
the shape parameter for each lifetime of 5.45 ≤ α ≤ 7.6. Since we believe only in
integer values, only 6 or 7 seems plausible from the data. You will be delighted to
learn in the next chapter that fractional values of α may sometimes make sense, too.

If we have no firm belief in the value of either α or β, we need to estimate and
test two parameters at once. We will leave that challenging problem for later.

9.7 Likelihood Ratio Tests

9.7.1 Alternative Hypotheses
When we construct a frequentist-type test of some hypothesis, which we will
reject at some significance level α, it is natural to ask just how good our test is. For
example, would it make more sense to ask whether the median of some sample is
improbably large, instead of asking about the mean? To tackle this issue, we will
have to ask ourselves just why the hypothesis might be rejected. That is, if the null
hypothesis is not true, just what is true? This other possible truth about the world
will be called an alternative hypothesis.

For example, instead of the typical lifetime of our desert mice (see Section 6.2)
being 300 days, we might be trying to show that it is more like 400 days. To
keep straight this distinction, we let the null hypothesis be denoted by H0, and the
alternative on which we are concentrating will be H1. In a test of two alternative
values of this population parameter, we will write

H0 : µ � µo,

H1 : µ � µ1,
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where the Greek letter µ is often used to stand for a typical value of a random
variable. In our example, then, µ0 � 300 and µ1 � 400. Our hypothesis test is
then supposed to decide between the two.

Now that we have two competing theories, we need to stop and ask why one is
called null and the other alternative, instead of the other way around? As we will
see, it does not matter mathematically, but it will be important to our thinking. We
usually let the null hypothesis be a conservative position on the issue being studied.
In science, it is based on the accepted laws (or at least the prevailing wisdom) in
its field. In commerce, it might be the manufacturer’s claim about the properties
of his product. Then the alternative hypothesis is a challenge to that position. In
science, the alternative hypothesis is the claim that something surprising is going
on; perhaps this motivated the research in the first place. One does not receive a
Nobel prize for finding that what everybody believed is in fact true. In business,
the alternative might be to doubt that some product really meets its specification;
if we decide that this is so, we might decide to change suppliers.

Since we are designing a frequentist experiment, we will reject the null hypoth-
esis if the results are so extreme that they will only happen with a small probability
called (confusingly enough) α if the null hypothesis is indeed true. In the mouse
problem, we shall let this significance level be 0.01. But what do we mean by
the data being extreme? Here, since we are investigating the possibility of longer
lifetimes than is usually believed, an extreme result is a large average life in our
sample. After many of the same sort of calculations we did before, we find that
P[T̄ > 374|Gamma(100, 3)] � 0.01. So we plan to reject the hypothesis of a
typical life of 300 days if in fact that inequality holds (in our experiment, it did).
We will call the region of the sample space in which we reject the null hypothesis,
in this case T̄ > 374, the rejection region. Let us denote it by a capital letter, like
R, since it is an event in our sample space. Then the key fact that determined R is
that P(R | θ0) � α, where θ0 is the value of the parameter corresponding to the null
hypothesis. We say in this case that the size of the test is the significance level α.

If the alternative hypothesis should be true, then we are interested in
P(R | θ1) � ρ, the probability that we will (correctly) reject H0 when it is in
fact false. We call this probability the power of the test; the larger it is, the better.
In the mouse lifetime example, we obtain P[T̄ > 374|Gamma(100, 4)] � 0.736,
using our alternative average of 400 days. Therefore, if our conjecture is right,
almost 3 times out of 4 our experiment will reject the conventional wisdom. Note
that if we construct a similar test with smaller significance level α, our ρ will
decrease; the more demanding of reliability we are, the less powerful the test.

9.7.2 Most Powerful Tests
To see how good a test is, we will compare it to others, in particular to other tests
of the same size. For example, we might simply count how many of our lifetimes
are greater than 300 days. Under the null hypothesis, the probability of a single
mouse outliving 300 days is 0.44. Therefore, the number of mice X exceeding 300
days should be binomial, B(20, 0.44). Then P(X ≥ 15|300 days) � 0.005 is as
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FIGURE 9.14. Two rejection regions

close as we can get to the same size (because the test is discrete). But its power
when the typical life is really 400 days may be checked to be (exercise) 0.334.
This competing test made perfect sense (and the computations were much easier),
but it was a much less powerful way to explore our hypotheses in this experiment.

Let Q stand for the rejection region of any other test of the same size α as the
test with rejection region R, so that P(Q | θ0) � α also. We can break each of
these events up into two pieces that do not overlap, R � (R − Q) ∪ (R ∩ Q) and
Q � (Q − R) ∪ (R ∩ Q). (See Figure 9.14.)

The fact that these tests are the same size says that P(R−Q | θ0) � P(Q−R | θ0),
because the rest of each rejection region is the same. Then if R is at least as powerful
as Q, we know that P(R − Q | θ1) ≥ P(Q − R | θ1). If these two tests are not
essentially the same, so their differences have positive probability, we may divide
to get P(R − Q | θ1)/P(R − Q | θ0) ≥ P(Q − R | θ1)/P(Q − R | θ0).

This relationship gives us the crucial hint as to how we might construct a test
that is at least as powerful as any other. We concentrate on the case where the
observations are absolutely continuous. If we guarantee that for any observation
x ∈ R and any observation y �∈ R we have for their densities f (x | θ1)/f (x | θ0) ≥
f (y | θ1)/f (y | θ0), then when we integrate the densities over the events R − Q
and Q − R, we certainly get the probability inequality above, for any test Q of
size α whatsoever. Therefore, we define our test by this inequality. In parallel with
the discrete case (see 8.2.1), let the (absolutely continuous) likelihood of θ be
L(θ | x) � f (x | θ ).

Definition. The likelihood ratio test of size α for the null hypothesis θ � θ0 and
the alternative hypothesis θ � θ1 has the rejection region R � {x | L(θ1|x)

L(θ0|x) ≥ C},
where the constant C is chosen so that P(R | θ0) � α.

We have shown that this test is the best we can do, because the density inequality
above certainly has to be true for our R; the x’s are on one side of C, and the y’s
are on the other.

Theorem (Neyman–Pearson lemma). A likelihood ratio test comparing two
hypotheses is the most powerful test of its size for those hypotheses.

The discrete case can be proved in the same way, using mass functions instead
of densities (exercise).
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Let us see what happens in the gamma problem: The likelihood ratio is
T α−1

βα
1 �(α)e

−T/β1

T α−1

βα
0 �(α)e

−T/β0
�
(

β0

β1

)α

eT (1/β0−1/β1).

Then a likelihood ratio test involves values of T for which this quantity exceeds
some critical value. But it should be obvious when this will happen, because T

appears in only one place. If β1 > β0 (so that 1/β0 − 1/β1 > 0), then our test
looks like R � {T ≥ C}; if β0 > β1, then it looks like R � {T ≤ C}. Then C is
determined by requiring that P(R | β0) � α. Something wonderful has happened
in this case: The form of the test does not depend on our null hypothesis, and the test
itself depends on the alternative hypothesis only as far as β1 is above or below β0.
This makes tests easy to construct, because we do not have to construct new ones
for each value of β1; families that work this way are called monotone likelihood
ratio families. You will see in exercises that a number of our favorite families have
this property. Then we have simple most powerful tests for hypotheses like

H0 : θ � θ0,

H1 : θ > θ0,

or the reverse.
In our mouse life span example, you should check that the sample mean of the

life spans is the only function of the data in our likelihood ratio, and it has a gamma
distribution; so the test we constructed was indeed the most powerful test of size
0.01.

9.8 Summary

We defined a Poisson process, a model for independent events happening over time;
then we constructed such a process as the limit of a Bernoulli process in which
successes were very rare (3.2). The times at which the αth events happen in this
process are continuous random variables of the gamma family, with cumulative
distribution function F (t) � ∑∞

i�α t i/(βii!)e−t/β , where β is the average time
between events (4.1). This was a case in which density functions turned out to be
much the simpler way to study a random variable: In the gamma family, f (t) �
F ′(t) � tα−1/(βα(α − 1)!)e−t/β (4.3).

Out of a hypergeometric process with black marbles very rare we constructed in
the limit a Dirichlet process (5.2). The continuous locations of its events were a new
sort of continuous random variable, from the beta family. It has density f (p) �
(α + β − 1)!/((α − 1)!(β − 1)!)pα−1(1 − p)β−1 (5.4). We then discovered a very
useful relationship between the gamma and beta families: A beta variable is the
proportion that one variable makes up of the sum of two independent gamma
variables (5.5). From there we looked at the problem of estimation, testing, and
confidence intervals in the gamma family (6). It turns out that for problems of this
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sort, a likelihood ratio test with rejection region R � {x | L(θ1 | x)/L(θ0 | x) ≥ C}
is most powerful (7.2).

9.9 Exercises

1. A random variable X has the cumulative distribution function [P(X ≤ x)]

F (x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 x < −1,

3
8

+ x

4
+ x2

8
−1 ≤ x ≤ 0,

5
8

+ x

8
+ x2

8
0 ≤ x < 1,

1 x ≥ 1.

a. Compute P(− 1
2 ≤ X ≤ 1

2 ).
b. Compute P(0 ≤ X ≤ 1

3 ).
c. Is this a continuous random variable? Explain.

2. I flip a coin many times, and I get HHTHTTTHTHTTTHHTHHT. . . . This
is a realization of a Bernoulli process. Rewrite it as an increasing sequence
of si’s, where these are the numbers of tails preceding the ith head.

3. Every day as you drive to work, you hit a pothole that has a 5% chance of
blowing a tire. You have one spare tire.

a. What is the probability that you will have to get a tire fixed within 50 work
days?

b. Do the calculation again using the gamma approximation. Compare.

4. You are on a long walk through a dense forest. There are a great many deer in
this forest, but you see very few of them because of the density of the forest.
Treating the sighting of each family of deer as an independent event, you
predict from experience that you will see one family of deer on average for
each 2000 meters you walk.
What is the probability that at the point you see your fourth family of deer,
you will have walked no more than 5000 meters?

5. In the theorem about hypergeometric processes converging to a Poisson pro-
cess, check that the number of t’s in a fixed interval indeed converges to the
correct Poisson random variable.

6. Let X be a continuous random variable, and let X � g(Y ) be a nonincreasing
function wherever X is defined (for any a ≤ b, always g(a) ≥ g(b)). Derive
an expression for FY the cumulative distribution function of Y , in terms of
FX the cumulative distribution function of X, and the function g.

7. Prove the 3 basic properties of densities.
8. Compute the densities of the Uniform[0, 1] and Fisher–Tippet random

variables.
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9. The mode of an absolutely continuous random variable is the value of the
variable at which its density is greatest. Since outcomes are most concentrated
there, we sometimes use the mode as a typical value.
The Weibull(a, b) family of random variables, often used in the study of
the reliability of a system, has cumulative distribution function F (x) � 1 −
e−(x/b)a for a, b > 0, x ≥ 0.

a. Find the density of a Weibull(a, b) variable.
b. Find the mode of a Weibull(a, b) random variable.
c. For a Weibull(2, 3) variable X, find P(3 < X ≤ 5).

10. Find the mode of a Gamma(α, β) random variable.
11. Let X be a Weibull(a, b) random variable (Exercise 9). Find the sample space

and cumulative distribution function of Y � log(X).
12. A random variable X has density f (x) � 3

(1+x)4 on X > 0. Find its cumulative
distribution function.

13. Show that the probability of a Dirichlet(n) event falling in an interval goes to
zero as the length of the interval goes to zero.

14. A scheme for getting lower bids for contracts works as follows: All bids
are sealed. Low bidder gets the contract, but they are paid the amount the
second-lowest bidder had asked.
Seven of the many hundreds of eligible bidders make bids. What is the prob-
ability that the amount paid will exceed the amounts 20% of the eligible
bidders would have asked for?

15. Compute the density of a Beta(α, β) random variable.
16. By past experience, about 6 men and 2 women per month come into your

clinic complaining of chest pain. You enroll the next 10 people to appear with
chest pain into a study of a new drug. What is the probability that you find at
least 3 women?

17. The year’s 15th accident at a certain dangerous intersection occurs on the
305th day of that year. Assuming that accidents are a Poisson process, estimate
the typical time between accidents β, and construct a 95% confidence interval
on it.

18. In general, 40% of the management trainees at a large automotive firm are
women. To check whether women are proportionally represented among those
who then get low-level management assignments within two years, I am going
to sample 40 assignees.

a. Construct a likelihood ratio test (of size as close as possible to 5%) of
the hypothesis that women are proportionally represented, against the
alternative that only about 20% of those who get the assignments are
female.

b. What will be the power of your test?

19. In Exercise 18 you found a test of the binomial proportion p. In general,
show whether or not the test depends on the exact value of the alternative p
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or only on its direction from the null p. (If not, you have shown that this is a
monotone likelihood ratio family.)

9.10 Supplementary Exercises

20. Write down the cumulative distribution function of a Geometric(1 − p) ran-
dom variable X. Now renormalize it (to expectation one) by substituting
T � Xp/(1 − p). Find the cumulative distribution function of T . Now find
its limit as p → 0; the result is the cumulative distribution function of the
time to first failure of a Poisson process.
Hint: We had to find a similar limit in Chapter 6, when we were deriving the
Poisson approximation to the binomial distribution.

21. Prove the theorem of the gamma approximation to the negative binomial.
22. You buy water glasses in packages of 6. Occasionally, you will accidentally

drop and break one, but they never wear out. You drop, on the average, 2 of
them per year. What is the probability that a new package will last until you
finish graduate school, in 2.5 years?

23. You have a huge mass of rubber bands in the back of your drawer, of which
a small proportion are green. If you rapidly remove the rubber bands from
your drawer, one at a time, you will find an average of 2 green rubber bands
a minute.

a. What is the probability that you will find 5 or more green rubber bands in
a 2 minute period?

b. Write down the probability density function for the time (in minutes) until
you find the first green rubber band.

24. The network server to which you are connected goes down inexplicably on
average every 40 hours. You decide that you will change servers in disgust
after the sixteenth crash.
What is the probability that you will still be with the server after 30 days?

25. Prove the theorem of the gamma approximation to the negative hypergeomet-
ric.

26. Prove the proposition about reversal symmetry in the beta family.
27. Prove the theorem about the beta approximation to the negative hypergeo-

metric.
28. A random, anonymous survey of 1000 men in a large city discloses that 7

of them are HIV positive. You have the names of those surveyed, but not, of
course, of those who were HIV positive. You decide that you must locate some
of them for possible inclusion in an experimental drug treatment program; you
will reinterview people one at a time until you find 5 who are HIV positive.

a. What is the probability that you will have to interview no more than a total
of 800 people to find them?
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Hint: If you do this in the obvious way, you find yourself with a horrible
sum to calculate. You might try using one of our symmetry results (black–
white symmetry) to turn it into a very short sum.

b. Approximate the probability in (a) by instead looking at a continuous
random variable that behaves like the proportion P � X/993 of your way
through the healthy men in the survey. How close is your approximation?

29. You believe that two brands of electric fuses burn out from unpredictable
power surges at about the rate of one every six months. You install them, one
at a time, in a circuit. After burning out 2 fuses of the first brand, you switch
to the second brand and burn out 3 more fuses. What is the probability that
you will have had the first brand in place for more than half the time?

30. Our technique for constructing confidence bounds will also apply to
Beta(α, β) random variables. A certain middle-school student is informed
that she scored in the 94th percentile for her grade nationally on the SAT
math test. Then she receives a prize for having had the second-highest score
at her middle school. Assuming that the students who took the SAT at her
middle school are typical of those who took it nationally in her grade, place
a 95% confidence bound on the number of students at her middle school who
took the test.

31. Prove the Neyman–Pearson lemma for discrete families of random variables.
32. a. Show that the negative hypergeometric N(W, B, b) family, where you want

to test hypotheses about possible values of W , is a monotone likelihood
ratio family.

b. Show that the hypergeometric H(W + B, W, n) family, where you want
to test hypotheses about possible values of W , is a monotone likelihood
ratio family.



CHAPTER 10

Continuous Random
Variables II: Expectations
and the Normal Family

10.1 Introduction

Expectation of a random variable is such a useful idea that in this chapter we apply
it to all sorts of random variables, not just to discrete ones. Our goal will be to
define the expectation in a general form. We will then apply it to our examples of
absolutely continuous variables (those with densities) from the last chapter.

Continuing our program of discovering how random variables can have simple
approximations even as their exact expressions get more complicated, we will
find an important approximation for gamma variables when α is large, called the
normal approximation. It will turn out to apply to Poisson probabilities as well.
The method will turn out to be important enough that we will pause to derive a
number of its properties. We will then exploit these two classes of approximations
to get approximate confidence intervals for the Poisson parameter λ and the gamma
parameter β.

Time to Review

Chapter 8, Sections 3–4
Intermediate value theorem
Integration by parts
Polar coordinates
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10.2 Quantile Functions

10.2.1 Generating Discrete Variables
We noticed earlier that E(X) made no sense for continuous random variables;
we lacked a mass function p(x) for the summation formula. Yet, our intuition
demands that there should usually be some such quantity, corresponding to the
idea of an average over many experimental measurements. We will indeed find a
not-too-difficult way to achieve this goal.

Let me motivate our procedure with a practical problem: How do computer
programs generate random numbers for simulation experiments? At the time this
is being written, the method works something like this: The program has a way to
generate, very rapidly, streams of floating point numbers that behave very much
like independent Uniform(0, 1) variables. (Later, we will say a little about how
this is done.) Then, the program transforms these numbers into the kind of random
variables it needs. How does it find such a transformation? In practice, there are
a great many ingenious tricks used to accomplish this. We will discuss only one
method, which may not always be the best but is completely general: Any random
variable at all can be generated this way.

Start by thinking about how, given a Uniform(0, 1) random variable U , you
would obtain a Bernoulli variateX that is 1 with probabilityp and 0 with probability
1 − p. One obvious way is to let X be 0 if 0 < U ≤ 1 − p, and let X be 1 if
1 − p < U < 1. You should check that X has the right probabilities. It may occur
to you that I could have selected the two values in reverse order, 1 first; but then
X would not be an increasing function of U , which will be convenient later.

This simple device extends easily to any discrete random variable with a finite
number of values: x1, . . . , xk with probabilities p1, . . . , pk . If 0 < U ≤ p1, we
let X � x1. If p1 < U ≤ p1 + p2, then X � x2. If p1 + p2 < U ≤ p1 + p2 + p3
we set X � x3. Continuing up the list of values, we finish with p1 + · · · + pk−1 <

U < p1 + · · · + pk � 1, giving X � xk . Every value of X has been generated
with the correct probability, and something has been done for every possible U .

This transformation can be thought of as a function, which we shall call Q(u),
the quantile function, whose graph is depicted in Figure 10.1.

10.2.2 Quantile Functions in General
We need to think of a way to define Q formally that will apply in as many cases as
possible. Our procedure has, for each value of u, assigned it the smallest x whose
cumulative probability is at least u (think about it).

Definition. The quantile function of a random variable X is

Q(u) � min
x

{x : P(X ≤ x) ≥ u} � min
x

{x : F (x) ≥ u}

for 0 < u < 1, where F is the cumulative distribution function of X.
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FIGURE 10.1. A discrete quantile function

You should translate this definition into words, to check that it does what we
suggested it ought to do. We proposed this definition because in a very special
circumstance, it turned a uniform variable into a random variable we wanted.
Actually, it always does this.

First, notice that for any random variable X and for any 0 < u < 1, Q has a
value. To see this, we need to notice two things: that there is indeed a lower limit to
the possible values of x in the set {x : F (x) ≥ u}, and that there are always some
members of this set, so we can find their minimum. Since F approaches zero as x

gets small (review the properties of cumulative distribution functions, in (5.4.2)),
there are always values of x that make F smaller than our u > 0; so we have a
lower limit. Since F approaches 1 as x gets large and u < 1, there is also sure to
be at least one x in our set {x : F (x) ≥ u}. Therefore, we can always hope to find
a minimum value of the set; and so Q always has a value.

Next we need to check that Q always transforms a uniform variable into one
with the cumulative distribution function we want. That is, if U is a Uniform(0, 1)
random variable, then let X � Q(U ); now, can we be sure that P(X ≤ x) � F (x),
as it should be?

P(X ≤ x) � P[Q(U ) ≤ x] � P[min
y

{y : F (y) ≥ U} ≤ x].

But to say that the smallest y that satisfies an inequality (which is always true
for larger y’s, since F is nondecreasing) is no bigger than x is just to say that x

satisfies that same inequality. Therefore,

P(X ≤ x) � P[F (x) ≥ U ] � F (x).

The second equality is just the cumulative distribution function of Uniform(0, 1)
random variables. This is just what we wanted to know.

Theorem (the quantile transform). If X is any random variable, then:
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(i) Q exists for any random variable X.
(ii) if U is Uniform(0, 1), then X � Q(U ).

(iii) For any nondecreasing function F (x) whose lower limit is zero and upper
limit is one, F is the cumulative distribution function of a random variable.

The third conclusion is a wonderful piece of serendipity. As soon as we have an
F , we can construct a Q and then use our Uniform(0, 1) random number generator
to provide us with random numbers that follow that law. Now, whenever we want
to invent a new kind of random variable, we just have to tell you its cumulative
distribution function; no complicated urn game will be required.

10.2.3 Continuous Quantile Functions
We know what Q means for a discrete random variable, but how about for a
continuous one? If x < y are in the sample space of X, so that

F (y) − F (x) � P(x < X ≤ y) > 0,

then F (x) < F (y). Thus, F is strictly increasing on its sample space. To see what
this says about Q, observe that Q[F (x)] � miny[y : F (y) ≥ F (x)]. But if x is
in the sample space, where F is increasing, then the smallest y where F passes
F (x) is just x, so Q[F (x)] � x. I hope that this looks familiar: It is half of the
requirement for Q to be the function inverse to F . We need further to investigate
F [Q(u)] � F {minx[x : F (x) ≥ u]}; since F is continuous, there is an x that solves
the equation F (x) � u (this is called the intermediate value theorem from calculus,
which you should review). For the smallest such x, we still have F [Q(u)] � u.
These two facts may be combined:

Proposition. For a continuous random variable X, Q is the inverse function for
F : Q � F−1.

Example. If T is negative exponential, then F (t) � 1 − e−t . We find its inverse
function by solving the equation u � 1 − e−t for t , to obtain

t � Q(u) � − log(1 − u).

Thus, to generate a negative exponential random variable on a computer, we ask
for a U that is Uniform(0, 1) and compute T � Q(U ) � − log(1 − U ).

If we have the happy situation that our random variable is absolutely continuous,
then all we need to know about it is its density. We integrate the density f to get
the cumulative F , as in the last chapter. Then we construct Q, and the random
variable may be generated using Uniform(0, 1) variates.

Theorem (specifying a variable by its density).
Let f (x) ≥ 0 have

∫∞
−∞ f (X)dX � 1. Then f is the density of an absolutely

continuous random variable.
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FIGURE 10.2. Negative exponential quantile function

10.2.4 Particular Quantiles
The quantile function also gives us a way to point out certain important fea-
tures of a random variable. For example, Q(0.5) is the smallest number such that
the probability of not exceeding it is at least 0.5; that is, it is halfway through
the possible outcomes. This is a bit like the value halfway through a sorted
random sample, its median. Therefore, we call Q(0.5) the median of the ran-
dom variable (or the population median). For a negative exponential variable,
Q(0.5) � − log(0.5) � 0.69315 . . . . When we use negative exponential variables
to predict the decay of radioactive particles, this number is called the half-life (in
standard time units) of the particles, because half of them would be expected to
decay by that time.

More generally, the quantile function points out values a certain part of the way
through the values of a variable. Recall the percentiles from standardized tests that
you took in grade school. The 90th percentile is Q(0.9), just good enough to beat
90% of all test scores. The word quantile was coined by analogy with percentile.

10.3 Expectations in General

10.3.1 Expectation as the Integral of a Quantile Function
By now you are wondering what all this has to do with expectations. In the case of
a discrete distribution with finite sample space, we know that E(X) �∑k

i�1 xipi .
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Look at the graph of the step function Q, Figure 10.1, in the last section: From
calculus, the area under a curve, its integral, is the sum of the areas of a set of
rectangles, each xi high and pi wide. Each rectangle has area xipi . Therefore, in
this case, the area under the curve for Q,

∫ 1
0 Q(U )dU �∑k

i�1 xipi , matches our
formula for E(X).

You can see where we are going; we would like to say that always E(X) �∫ 1
0 Q(U )dU . This formula could be written down for any random variable at all.

In fact, you may have learned in calculus that any monotone (nonincreasing or
nondecreasing) function can be integrated over any interval in which it does not
get infinitely large (you should check that Q is nondecreasing); so such a definition
would always make sense.

But does this idea of expectation make intuitive sense? We derived the quantile
function as a way of transforming Uniform(0, 1) variables into random variables
of our choice. I promised to say more about how a computer might get uniform
variables in the first place. At the time of this writing, the procedure is often to gen-
erate all the integers from 1 to some very large integer, like M � 2,147,583,647, in
a sequence. Since the sequence is always the same, these are not random numbers.
Fortunately, the arithmetic for generating the sequence, though easy, makes the
ordering of the numbers in the sequence very peculiar and unexpected. Since we
usually start the sequence at some arbitrary position, the numbers generated seem
for quite a while random and independent, because they are unpredictable if you
do not check the rather grubby arithmetic. Finally, the computer divides its integer
by M , to get a number between 0 and 1. This is the pseudo-random number we
pass on to the transformation formula.

Our random number generating procedure for X thus may give us M different
values of Q(U ), where the U ’s are distributed at equal, tiny intervals over (0, 1).
Furthermore, it gives all M values equally often because it is going through a com-
plete sequence. Therefore, the average value of X generated is just the average of
the M values of Q. From calculus, we suspect that an extremely good approxi-
mation of that average is just the average height of the Q curve,

∫ 1
0 Q(U )dU . Our

proposed formula seems plausible.
What shall we do about the more general expectation E[g(X)]? Since this is just

the average value of the quantity g(X), it is just the result of averaging g[Q(U )]
for all values of U . Finally we are ready:

Definition. Let X be a random variable with quantile function Q. Then:

(i) E(X) � ∫ 1
0 Q(U ) dU whenever the integral exists.

(ii) E[g(X)] � ∫ 1
0 g[Q(U )] du whenever that integral exists.

Proposition. If X is discrete, it is still true that E(X) �∑i xipi and E[g(X)] �∑
i g(xi)pi .

Example. (1) If T is negative exponential, then E[T ] � ∫ 1
0 − log(1−U )dU must

be evaluated. You may need to review your basic integration techniques. The one we
will use is very handy in statistics: integration by parts:

∫
u dv � uv −∫ v du. Let
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u � − log(1 −U ) and dv � dU . Then we compute du � dU
1−U

and v � −(1 −U )
(where we have chosen the additive constant in our antiderivative to cancel the
other factor):∫ 1

0
− log(1 − U )dU � log(1 − U )(1 − U )|10 −

∫ 1

0
−dU � 0 − 0 + 1.

We will leave it as an exercise to check that the first term was indeed zero: try
L’Hospital’s rule from calculus. Therefore, E(T ) � 1. Notice that the average
time to the first Poisson event is very different from the median time (which was
about 0.69).

(2) If X is Cauchy(0, 1), then we found F (x) � 1
2 + 1

π
arctan(x). You should

check that the quantile function is Q(u) � tan[π (u − 1
2 )]. Then

E(X) �
∫ 1

0
tan
[
π

(
U − 1

2

)]
dU.

You should remind yourself how to integrate tangents; you will get

E(X) � − 1
π

log cos
[
π

(
U − 1

2

)] ∣∣1
0 � −∞ − (−∞).

Apparently, this Cauchy random variable has no expectation, since we cannot
always cancel infinities. The practical implication is that the averages even of a
great many repetitions settle down to no particular value.

It is time for some general facts about our new version of the expectation.

Theorem (expectation is a linear operator).

(i) if a is constant, then E(a) � a.
(ii) E[ag(X)] � aE[g(X)] whenever the second expectation exists.

(iii) E[g(X)+h(X)] � E[g(X)]+E[h(X)] whenever the right-hand expectations
exist.

Proposition (expectation is a positive operator). (iv) For g(x)≥0, E[g(X)]≥0.

As an easy but very important exercise, you should check both of these; use
basic facts about integrals. These are exactly the same as some propositions we
established several chapters back about our old definition of expectation (see 6.6.1);
we say that expectation is always a positive linear operator. This is very important
to us, because the definition and basic properties of the variance that we then
worked out required us to know only these facts. You should review that section,
because we are now going to assume that we know all about variances in general,
and not just for discrete random variables.

Example. Let X be Uniform(0, 1); so F (x) � x, and Q(u) � u. Then
E(X) � ∫ 1

0 UdU � 1
2 , to no one’s surprise. But we established, using only

the fact that expectations were linear, that Var(X) � E(X2) − E(X)2. Now
E(X2) � ∫ 1

0 U 2dU � 1
3 ; and Var(X) � 1

3 − ( 1
2

)2 � 1
12 , which was not obvious.
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10.3.2 Markov’s Inequality Revisited
Before we pursue the practical issues that come up when we want to compute
expectations, let us notice that we can connect expectations with probabilities
exactly as we did in Chapter 7.7. This follows because Markov’s inequality still
holds:

P(|X − µ| ≥ d) �
∫

|Q(u)−µ|≥d

1 du

because for U Uniform(0, 1) we know that Q(U ) has the same distribution as
(any) X. Now we do the same trick as before; since |Q(u)−µ|

d
≥ 1 over the range of

integration,

P(|X − µ| ≥ d) ≤
∫

|Q(u)−µ|≥d

|Q(u) − µ|
d

du ≤ 1
d

∫ 1

0
|Q(u) − µ| du

when we extend the range.

Proposition (Markov’s inequality). For any random variable X for which the
expectation exists, any constant d > 0, and any constant µ,

P(|X − µ| ≥ d) ≤ 1
d

E(|X − µ|).
Then our easy consequences also work for all random variables: Convergence in
expected error implies convergence in probability. Convergence in mean squared
error implies convergence in expected error. (After all, the Cauchy–Schwarz in-
equality is still true, because it depends only on the fact that expectation is a
positive linear operator.) For any variable with a variance, sample means converge
in probability to their expectation as the sample size grows.

As you will soon see, we try to compute expectations directly from the definition
only rarely. In most cases, writing down Q in a convenient form is hard to do. If F

is already messy, you can imagine that finding its inverse is usually messier still.
For example, you might try to write down Q for a gamma variable with α > 1. In
the next section we shall develop a much more practical technique for calculating
expectations, which applies when the random variable has a density.

You may have had the following idea already: Since expectation seems still to
work much as it did in the discrete case, why not use the method of indicators?
We know that if {Vi} are independently negative exponential, then T � ∑α

i�1 Vi

is Gamma(α). It is plausible that

E(T ) �
α∑

i�1
E(Vi) � α.

The answer is correct; and in fact, our reasoning is correct. Unfortunately, we really
do not yet know what a multivariate expectation means in the continuous case. We
shall see in the next chapter that it will have all the nice properties that we have
hoped for.
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10.4 Absolutely Continuous Expectation

10.4.1 Changing Variables in a Density
To compute expectations with the aid of densities, we shall need first to learn
what effect change of variables has on a density. At this point, you should remind
yourself what change of variables does to a cumulative distribution function (see
9.4.1).

Example. Remember that if T is Gamma(α), then S � βT is Gamma(α, β). We
discovered that F (s) �∑∞

i�α si/(βii!)e−s/β . By the usual laborious differentiation
and cancellation, we discovered that its density is f (s) � sα−1/(βα(α −1)!)e−s/β .
That looks reasonable; but if you stare at it long enough, you may notice something
peculiar: it is no longer quite a Gamma(α) density with s/β in place of t . There is
one extra power of β in the denominator.

Actually, this should not surprise us. If, for example, β is greater than 1, it
spreads out the values of the random variable by that factor. But every density
must integrate to 1: The area under its graph does not change. Therefore, the
wider, transformed density must shrink in height by the factor β to compensate
(Figure 10.3).

We can easily work out the effects of a transformation more generally. Let X have
density fX and consider the transformation X � g(Y ), where g is nondecreasing.
Then

fY (y) � d

dy
FY (y) � d

dy
FX[g(y)] � fX[g(y)]

d

dy
[g(y)],

where we have used the chain rule from calculus. You should do a similar
calculation for a nonincreasing change of variables and combine them:

Theorem (change of variables in a density). For a monotone (either nonde-
creasing or nonincreasing) change of variables X � g(Y ) that is differentiable

FIGURE 10.3. Gamma(3,2) and Gamma(3,5) Densities
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at y,

fY (y) � fX[g(y)]
∣∣∣∣ d

dy
[g(y)]

∣∣∣∣ .
If you stare at it long enough, this complicated expression may look familiar,

from calculus. When you try to integrate a function (say fX) by the method of
change of variables (X � g(Y )), the right hand side in the theorem is your new
integrand. This is the long-promised reason why we prefer to write such variables
of integration as if they were random variables, with capital letters. Absolutely
continuous random variables transform exactly like variables of integration.

Example. If P is a Beta(α, β) random variable, define an F(α, β) (named after R.
A. Fisher) random variable on (0, ∞) by Y � (P/α)/((1 − P)/β). This peculiar
formula comes about because P is α events into the interval, and 1 −P is β events
from the other end. Numerator and denominator are both average spacing between
Dirichlet events. Therefore, Y is in some sense centered at 1, and deviations from
its typical behavior are easy to see. We invert the change of variables to get p �
(αY )/(β + αY ). The derivative of this is (αβ)/(β + αY )2. Since a beta density is
(α + β − 1)!/((α − 1)!(β − 1)!)pα−1(1 − p)β−1, we can substitute our value for
P and multiply by the derivative to get

f (y) � (α + β − 1)!/((α − 1)!(β − 1)!)ααββyα−1/(β + αy)α+β

on y > 0. You should discover as an exercise that 1/Y is an F(β, α) random
variable.

Proposition (location and scale changes in a density).
(i) If Y � X + m, then fY (y) � fX(y − m).

(ii) If Y � dX, then fY (y) � 1
|d|fX

(
y

d

)
.

The proofs are easy exercises. The second one shows us that what happened in
the gamma example above always happens.

10.4.2 Expectation in Terms of a Density
Change of variables will be the powerful tool we need to compute expectations.
Notice that since the quantile function of a Uniform(0, 1) random variable is just u,
then we can write E(X) � ∫ 1

0 Q(U )dU � E[Q(U )]. In words, the expectation of
X is just the expectation of a certain function Q of a uniform random variable. We
have made a change of variables defined by X � Q(U ). You may remember from
calculus that one way of solving integrals used a change of variables: the method
of substitution. First, if X is continuous, we can solve for U � Q−1(X) � F (X).
Then, if X is absolutely continuous, we can find dU � dF (X) � f (X)dX.
Therefore,

E(X) �
∫ 1

0
Q(U )dU �

∫ Q(1)

Q(0)
Xf (X)dX.
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Q(0) is the lower bound of the sample space of X, and Q(1) is its upper bound. We
usually write these limits in explicitly, or if we leave them out, we mean “integrate
over the entire sample space of X.” We have found a fundamental fact:

Theorem (expectations of a density). If X is absolutely continuous, then
(i) E(X) � ∫ Xf (X)dX whenever the integral exists.

(ii) E[g(X)] � ∫ g(X)f (X)dX whenever that integral exists.

You should check that the second result is true for the same reason. Even though
these expressions seem to be just one of a number of possible ways of evaluating
our defining integral, they have turned out to be so extraordinarily useful that we
usually try them first. In fact, many books more elementary than this one use them
as the definition of expectation for absolutely continuous random variables.

Let T be a Gamma(α) variable. Our theorem says that

E(T ) �
∫ ∞

0
T

T α−1

(α − 1)!
e−T dT �

∫ ∞

0

T α

(α − 1)!
e−T dT .

The function we are integrating looks familiar: It is a Gamma(α + 1) density,
except that the constant in the denominator is wrong. We can patch it using the
fact that α! � α(α − 1)!; multiply and divide by α to get

E(T ) � α

∫ ∞

0

T α

α!
e−T dT � α · 1 � α,

since the integral of a density over the whole sample space is always 1. Our
speculative calculation using indicators is borne out. This method of calculation
should remind you of the inductive method, which we used repeatedly to calculate
discrete expectations in some of our families; there we used the fact that mass
functions sum to 1 (see Chapter 6, Section 5).

Proposition.
(i) If T is Gamma(α), E(T ) � α.

(ii) If S is Gamma(α, b), E(S) � αβ.
(iii) If P is Beta(α, β), α/(α + β).

The proofs of (ii) and (iii) are exercises; in (ii), do not work very hard—use the
definition of S and general properties of expectations.

To calculate the variance of T , we need

E(T 2) �
∫ ∞

0
T 2 T α−1

(α − 1)!
e−T dT �

∫ ∞

0

T α+1

(α − 1)!
e−T dT

� α(α + 1)
∫ ∞

0

T α+1

(α + 1)!
e−T dT .

Since the last integral is 1, we have E(T 2) � α(α + 1). We are ready to compute

Var(T ) � E(T 2) − E(T )2 � α(α + 1) − α2 � α.
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Proposition.
(i) For T a Gamma(α) variable, Var(T ) � α.

(ii) For S a Gamma(α, β) variable, Var(S) � αβ2.
(iii) For P a Beta(α, β) variable, Var(P) � (αβ)/((α + β)2(α + β + 1)).

Part (ii) is an easy exercise, and (iii) is a little more fun.

Example. The fuse protecting an expensive circuit board blows out because of
unpredictable power fluctuations and must be replaced. Past experience suggests
that an average of one fuse will blow in five days. I bought a box of two dozen
fuses; what can I say about how long the box will last?

Blown fuses might plausibly be modeled by a Poisson process, and so the life
of the box in days is a Gamma(24, 5) variable. We can compute its cumulative dis-
tribution and its density precisely, but you should note that these are complicated.
We will use expectations to summarize its properties. The average life of the box
is 120 days; its variance is 600. As usual, this is hard to interpret, but the standard
deviation is about 24.5 days. We would not be surprised if the box lasted only 95
days, nor if it lasted 145.

Example. An F(1, 1) variable has density 1/(1 + y)2. Therefore,

E(Y ) �
∫ ∞

0

Y

(1 + Y )2 dY �
∫ ∞

0

[
1

(1 + Y )
− 1

(1 + Y )2

]
dY,

where we have applied a partial fraction decomposition, which yields that

E(Y ) � [log(1 + Y ) + 1/1 + Y ]
∣∣∞
0 � ∞.

No matter how often we do experiments that give this variable, averages will not
settle down to some consistent value.

10.5 Normal Approximation to a Gamma Variable

10.5.1 Shape of a Gamma Density
Most of our families of random variables have arisen when we tried to approximate
some other random variable in the case that certain parameters got large enough
to make calculations unwieldy. You may have noticed that we have not finished.
For example, in a negative hypergeometric random variable, what happens if W ,
b, and B − b all get painfully large? Or in a binomial variable, what if n gets large
but neither p nor 1 − p are small? Or with a gamma random variable, what if α

gets large? It will turn out that we can do useful approximations in these cases. The
miracle will be that the same technique, called normal approximation will solve
each of these problems, and many more.

Some pictures of densities will suggest what happens to gamma random
variables as α grows (see Figures 10.4–10.7).

These are far from being on the same scale (they would not have fit very well
on one graph), but the increasing similarity of shape is striking. It should remind
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FIGURE 10.4. Gamma(4)

FIGURE 10.5. Gamma(8)

you of the shapes of certain likelihood functions in Chapter 8 (see 8.2.1). We
will discover the mathematical reason for this pattern and use it to find useful
approximations. Let me show you what happens when we transform each of these
graphs so they fit on a single set of axes (see Figure 10.8).

We have matched center, curvature, and height of the four densities; you will see
shortly how this was done. The common form is becoming clear—it is traditionally
called “bell-shaped,” for obvious reasons. What is the mathematical nature of this
curve? Put these same graphs on a semilog scale, that is, let the vertical axis be
logarithmic (Figure 10.9).

10.5.2 Quadratic Approximation to the Log-Density
Now we can guess what our approximate shape is: The curves look more and more
like a parabola—the graph of a quadratic function. The same phenomenon arose
when we looked at likelihoods in Chapter 8 (see 8.3.1). We will try to pin down a
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FIGURE 10.6. Gamma(16)

FIGURE 10.7. Gamma(32)

a = 4 —  8 ---  16 ...  32 —

FIGURE 10.8. Rescaled gamma densities
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FIGURE 10.9. Rescaled gamma log-densities

conjecture: The logarithm of the density of a gamma random variable with α large
is approximately quadratic (at least near its maximum value). First, so we will not
always be subtracting 1, write a � α − 1. Then put all t’s in the exponent of the
gamma density, to facilitate study of its logarithm:

f (t) � ta

a!
e−t � 1

a!
ea log t−t .

We need to find the point at which the exponent of the density is maximal:
d
dt

(a log t − t) � (a/t) − 1 � 0, so by elementary calculus the only possible
maximum is at t � a. We use the second derivative to find the curvature there:
(d2/dt2)(a log t − t) � −(a/t2), which is negative. At the maximum, this curva-
ture is −1/a. In order to compare many different densities, we will use a linear
change of variables to standardize, so that the maximum is at zero and the second
derivative of the logarithm there is −1. You should show as an exercise that the
change of variables z � (t − a)/(

√
a) accomplishes this. Then

f (z) �
√

a

a!
ea log(a+z

√
a)−a−z

√
a.

We want to approximate the exponent by a second-degree polynomial in z. A
polynomial approximation to a logarithm is easiest to find for log(1+y); with a little
ingenuity we rearrange log(a+z

√
a) � log[a(1+z/

√
a)] � log a+log(1+z/

√
a).

Now collect constants and variable terms separately to get

f (z) � aa+1/2e−a

a!
ea log(1+z/

√
a)−z

√
a.

We need an approximation to the logarithm that is more accurate than the one in
the birthday problem (see 3.5.1), but we will proceed similarly.

log(1 + y) �
∫ y

0

dt

1 + t
�
∫ y

0

(
1 − t + t2

1 + t

)
dt � y − y2

2
+
∫ y

0

t2dt

1 + t
,
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where the second equality is an easy exercise in algebra. We will establish limits
on how large this integral can be. If y ≥ 0, then by putting an upper and lower
limit on the denominator,

1
1 + y

∫ y

0
t2dt ≤

∫ y

0

t2dt

1 + t
≤
∫ y

0
t2dt.

Futhermore, the same inequalities hold if y < 0, because the direction of integra-
tion reverses at the same time as the relative sizes of the integrand. We integrate
to get a bound:

Proposition. y − y2

2 + y3

3(1+y) ≤ log(1 + y) ≤ y − y2

2 + y3

3 .

It is time to tackle the exponent of our gamma density:

a log(1 + z/
√

a) − z
√

a ≈ a(z/
√

a − z2/(2a)) − z
√

a � −z2/2,

where the proposition tells us that the approximation works whenever z3/(3
√

a)
and z3/(3(

√
a + z)) are small in size. When |z| is small compared to

√
a, the

two conditions say the same thing because the denominators are about the same
size. (Using the definition of z, these two error estimates are (x − a)3/(3a2) and
(x−a)3/(3ax).) When we put back the definition of a � α−1, we get the complete
approximation:

Proposition. If T is Gamma(α), let Z � (T − (α −1))/
√

α − 1. Then the density
of Z is f (z) ≈ ((α − 1)α−1/2e−(α−1))/(α − 1)!e−z2/2 whenever

√
α − 1 is large,

and in particular, large compared to |z3|/3.

This approximation answers our question about why the gamma densities have
a family resemblance, but it is hard to imagine its practical use. The constant in
front is as complicated to calculate as the original density. Notice, though, that the
variable part involving z, e−z2/2, does not depend at all on the (large) parameter; this
is as we would have hoped from past experience with asymptotic approximation.
It would also be nice if that messy constant did not depend on α.

10.5.3 Standard Normal Density.
But wait, the constant should not depend on α. In the past, our approximations
actually corresponded to random variables. If we insist that our approximation
be a true density, its integral should be 1. But then since the variable part, the
exponential, does not depend on α, integration determines the constant, and it in
turn would not depend on α. Emboldened by these thoughts, we make a definition:

Definition. A (standard) normal (or Gaussian) random variable Z has sample
space (−∞, ∞) and density f (z) � ke−z2/2, where k is a positive constant such
that the integral of the density is 1.

The normal random variable will turn out to be perhaps the most useful
continuous variable of all.
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Notice that since the sample space of T is (0, ∞), the sample space of Z above
was (−√

α − 1, ∞). For α large, the lower bound is a large negative number and
is well outside the range in which we trust our approximation. Therefore, we have
replaced it with negative infinity.

You might think that we could figure out k by elementary calculus, but you
should verify that none of the standard methods apply. We shall have to use a trick
that is not at all obvious. But first let us see what we can learn about Z without
knowing k:

E(Z) � k

∫ ∞

−∞
Ze−Z2/2 dZ � −ke−Z2/2∣∣∞

−∞ � −0 − −0,

Var(Z) � E(Z2) � k

∫ ∞

−∞
Z2e−Z2/2 dZ.

The previous integral suggests integration by parts: dv � Ze−Z2/2 dZ and u � Z;
then v � −e−Z2/2 and du � dZ.

Var(Z) � −kZe−Z2/2∣∣∞
−∞ +

∫ ∞

−∞
ke−Z2/2 dZ � 0 + 1.

You should check that the first term is zero using L’Hospital’s rule. The second is
just the integral of the normal density.

Proposition. If Z is standard normal then:

(i) (reversal symmetry) f (z) � f (−z).
(ii) E(Z) � 0.

(iii) Var(Z) � 1.

We will not know the vertical scale until we compute k; but it is reassuring to
see that we have indeed captured the qualitative shape of our gamma densities.

It is time to evaluate k by 1
k

� ∫∞
−∞ e−Z2/2dZ. The trick will be to calculate

instead its square,

1
k2 �

∫ ∞

−∞
e−Z2/2dZ

∫ ∞

−∞
e−W 2/2dW.

We are going to pretend that the product of integrals is really a single bivariate
integral over the (Z, W ) plane, evaluated by Fubini’s theorem from multivariable
calculus (which you should review). Therefore

1
h2 �

∫ ∫
e−(Z2+W 2)/2 dZ dW.

When a function of two variables depends only on Z2 + W 2, a bell should ring.
Perhaps it is more natural to express it in polar coordinates: r � Z2 + W 2 on
(0, ∞), and θ � arctan(W/Z) on [0, 2π ). You should check that the Jacobian of
this change of variables (time to review another fact from multivariable calculus)
is 1

2 ; in terms of elements of integration, we write this fact as dZdW � 1
2 drdθ .
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– 2 2

FIGURE 10.10. Standard normal density

Therefore our double integral above becomes∫ 2π

0
dθ

∫ ∞

0

1
2
e−r/2dr � 2π.

(The Jacobian method of changing variables will be reviewed in much more detail
in a later chapter.) We conclude that 1/k2 � 2π .

Proposition. A standard normal density is f (z) � 1√
2π

e−z2/2.

10.5.4 Stirling’s Formula
We needed the constant for calculation, but we can learn something else from it.
This theorem and the previous theorem about the shape of a gamma distribution
tell us that for large α, the transformed gamma density is approximately propor-
tional to the normal density. But since all densities integrate to 1, the constant of
proportionality must be approximately 1; that is, the constants in front are nearly
the same: 1/

√
2π ≈ ((α − 1)α−1/2e−(α−1))/(α − 1)!. Solving for the factorial, we

learn a marvelous fact.

Theorem (Stirling’s formula). For n large, n! ≈ √
2πnn+1/2e−n.

So an integer function, factorial, may be approximated by the sorts of functions
one sees in calculus. In fact, for n very large, computers sometimes use exten-
sions of Stirling’s formula to save time. For example, 10! � 3, 628, 800; and the
approximation is 3, 598, 696. It is already within 1% for n only 10.

10.5.5 Approximate Gamma Probabilities
We return to the problem of finding a useful normal approximation to the gamma
family for α large. In the past, we have divided by a constant (standardized) in
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order to use gamma or beta approximations (see, for example, 9.3.4); one of the
properties of this constant has been that the approximate variable had the same
expected value as the original variable. Now we are using a two-part standardization
in which we centered the variable at zero and then divided by a constant to make
scales similar. Does this give the gamma variable the same expectation and scale
(say, standard deviation) as the normal? Since the gamma expectation is α and the
standard deviation is

√
α, then Z � T −α√

α
has expectation 0 and standard deviation 1

(see 7.5.6), which matches the normal case. But this is not the same standardization
as we used to prove the theorem (we had α − 1 in place of α). However, for α

large, the difference between the two is too small to matter (exercise).

Theorem (normal approximation to a gamma variable). Let T be Gamma(α);
and let Z � T −α√

α
. Then:

(i) For
√

α large and |z3|/3 small compared to
√

α, f (z) is approximately
standard normal.

(ii) For a sequence of gamma variables for which α → ∞, Z converges in
distribution to a standard normal variable.

To see (ii), we must show that the cumulative distributions get close. These are
obtained by integrating the density, whose approximation is known to be close for
|z| not too large. But the probability that |z| is too large for the approximation to
work becomes arbitrarily small as α grows, so the functions we are integrating are
close over part of their range, and the integrals over the rest are too small to matter.

10.5.6 Computing Normal Probabilities
There is one last, unexpected, difficulty to overcome before we can use our ap-
proximation. Probabilities come from the cumulative distribution function, and we
do not have a formula for the normal cumulative. The density is simple, so we will
integrate it. But we have already noticed that this is hard to do. In fact, it cannot
be expressed in terms of the usual functions from calculus. We shall have to find
numerical methods to approximate it to the accuracy we need. One way would be
to expand the density in a power series and then integrate the series term by term.
From calculus, you should remind yourself,

ex � 1 + x + x2

2
+ x3

6
+ · · · �

∞∑
i�0

xi

i!
.

Therefore,

e−z2/2 � 1 − z2

2
+ z4

8
− · · · �

∞∑
i�0

(−1)i
z2i

2i i!
.

Now,

FZ(z) − FZ(0) �
∫ z

0

1√
2π

e−Z2/2 dZ,



328 10. Continuous Random Variables II: Expectations and the Normal Family

where FZ(0) is just the probability that the variable is negative; but the density
is symmetric about zero, so it is equally likely to be positive or negative. Thus,
FZ(0) � 1

2 . Now use the series to integrate the density term by term:

Proposition. The standard normal cumulative distribution is

FZ(z) � 1
2

+ 1√
2π

(
z − z3

6
+ z5

40
− · · ·

)
� 1

2
+ 1√

2π

∞∑
i�0

(−1)i
z2i+1

(2i + 1)2i i!
.

You should check that the series is absolutely convergent for any value of z.

Example. The probability that Z is at most 1 is given by FZ(1) ≈ 0.841344, the
accuracy to which the series has settled after 6 terms (check the arithmetic for
yourself). Since our series has alternating signs for z > 0, you should remember
from calculus that as soon as the terms begin to shrink, we know that the sums of odd
and even numbers of terms are upper and lower bounds of the correct answer. This
is convenient in cases where it would take many terms for the series to converge;
instead, take a few terms and see whether it is close enough for your purposes. For
example, using 5 and 6 terms, we find that 0.9729 ≤ FZ(2) ≤ 0.9922.

10.5.7 Normal Tail Probabilities
As z becomes large—say, 3 or so—using this series becomes less satisfactory, for
two reasons. We have already seen that it takes more and more terms to achieve
a given number of significant figures. Furthermore, since the answer is close to
1, we are likely to be more interested in the small probability of exceeding z,
1−FZ(z), the tail probability. Now the interval in the example becomes 0.0078 ≤
1 − FZ(2) ≤ 0.0271; we have hardly narrowed the answer down at all, after a
good bit of calculation. Fortunately there is a simple way to get close: We write
P(Z > z) � 1√

2π

∫∞
z

e−Z2/2dZ. Limit ourselves to the case z > 0, and proceed
to integrate this by (unexpected) parts: dv � Ze−Z2/2dZ and u � 1/Z. Then
v � −e−Z2/2 and du � −dZ/Z2, and so

P(Z > z) � 1√
2π

(
1
z
e−z2/2 −

∫ ∞

z

1
Z2 e−Z2/2dZ

)
.

The integral is always positive (if we stay away from 0), so we learn something
useful: P(Z > z) < 1√

2πz
e−z2/2. Integrate by parts again, using the same dv:

P(Z > z) � 1
2π

(
1
z
e−z2/2 − 1

z3 e−z2/2 +
∫ ∞

z

3
Z4 e−Z2/2dZ

)
.

Again the integral is positive, so we get an inequality in the other direction:

Proposition. For Z standard normal and z > 0,
1√
2π

e−z2/2(1/z − 1/z3) < P(Z > z) <
1√
2πz

e−z2/2.
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For example, 0.02025 < P(Z > 2) < 0.02670, which is much more precise
than the previous bounds, after less work. The new proposition, in contrast to the
old, gives more and more precise results as z gets large. As an exercise, you should
continue our integrations by parts to get a series. We have not bothered to state it as
a proposition, because it never converges. The successive pairs of bounds require
larger and larger z’s before they give us improved precision (such an object is
called an asymptotic series).

You will find that you will not need to do calculations of the normal cumulative
very often. It is such a useful random variable that tables of the function are
widely available. Almost any package of statistics programs will have a function
to calculate it, and statistical calculators should have a button to do it. You should
find out which of these resources are available to you and learn to use them.

Example. Recall the fuse that burns out once in five days (see Section 4.2). We
might ask what the probability is that our box of 24 will last no more than 100
days. If our unit is 5 days, then we are asking about 20 time units. An exact, rather
painful calculation gets a probability of 0.2125. Since α is fairly large, we might
try the normal approximation, the probability that a standard normal variable is
at most (20 − 24)/

√
24 � −0.8165. After an easier calculation we get 0.2071,

which is quite close.

In this example, we worked the more general problem of normal approximation
to a Gamma(α, β), by first translating time into standard units by dividing by β

before computing Z. Combining the two, Z � (T − αβ)/(β
√

α). But this is just
subtracting the average and dividing by the standard deviation, as before. We could
have done it all in one step.

10.6 Normal Approximation to a Poisson Variable

10.6.1 Dual Probabilities
We went to considerable trouble to find an approximation to gamma variables for
large α; so you are probably hoping we will have other uses for the normal random
variable. One is obvious: by gamma–Poisson duality (see 9.3.4), we must be calcu-
lating some Poisson probabilities already when we use the normal approximation.
Let X be Poisson(λ), where we assume that λ is large. Then

F [x|Poisson(λ)] � 1 − F [λ|Gamma(x + 1)].

Standardizing z � (λ − x − 1)/
√

x + 1; we approximate our probability using
1 − FZ(z). But by the symmetry of the normal, this is FZ(−z) (exercise). We
can thus do a direct normal approximation to the Poisson by standardizing z �
(x − λ+ 1)/

√
x + 1 in the first place. We know that it works when |x3|/3 is small

compared to
√

x + 1.
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Although this is satisfactory (it is, of course, exactly as accurate as the corre-
sponding approximation to a gamma variable), it is not of the same form as the
earlier method, which matched mean and standard deviation by a linear trans-
formation. In other words, could we standardize by z � x−λ√

λ
instead? Using

corresponding conditions that
√

λ is large and |z3|/3 is comparatively small, we
will do a direct comparison of the two z’s:

x + 1 − λ√
x + 1

− x + 1 − λ√
λ

� (x + 1 − λ)
(

1√
x + 1

− 1√
λ

)
.

Now add and subtract λ in the first denominator:

� (x + 1 − λ)
[

1√
λ + (x + 1 − λ)

− 1√
λ

]

� (x + 1 − λ)√
λ

[
1√

1 + (x + 1 − λ)/λ
− 1
]

after factoring out
√

λ. Now we need a basic approximation to the square root,
similar to approximations to logarithms from earlier chapters: Let a be a constant
that is small compared to 1. Then 1− 1√

1+a
�

√
1+a−1√

1+a
. Now use a standard algebraic

trick for simplifying square roots that you may remember from high school:
√

1 + a − 1√
1 + a

√
1 + a + 1√
1 + a + 1

� a

1 + a + √
1 + a

� a

2 + a + (
√

1 + a − 1)
.

Repeat the trick in the denominator to get

1 − 1/
√

1 + a � a/(2 + a + a/(
√

1 + a + 1)).

We can summarize this:

Proposition. For |a| small compared to 1, 1 − 1√
1+a

≈ a
2 .

When this is applied to the comparison above, we obtain

(x + 1 − λ)/
√

x + 1 − (x + 1 − λ)/
√

λ ≈ −(x + 1 − λ)2/(2λ3/2),

since if |z3|/3 is small compared to λ large, so is (x + 1 − λ)/λ. Rearranging
slightly, we find that (x + 1 − λ)/

√
x + 1 − (x − λ)/

√
λ ≈ 1/

√
λ − z2/(2

√
λ).

The right-hand side is obviously small.

Theorem (normal approximation to the Poisson).

(i) Let X be Poisson(λ) where
√

λ is large, and let z � (x −λ)/
√

λ where |z3|/3
is small compared to

√
λ. Then

F [x|Poisson(λ)] ≈ F (z|Normal) � FZ(z).

(ii) Given a sequence of Poisson(λ) random variables Xi such that λi → ∞,
let Zi � (Xi − λi)/

√
λi . Then the Zi converge in distribution to a standard

normal variable.
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To complete the proof, you need to check as an exercise that our new conditions
on z and λ indeed imply those required by the normal approximation to the gamma.

10.6.2 Continuity Correction
Before we try out our new method, let me point out a peculiarity. We approximate
P(X ≤ x) by computing z � x−λ√

λ
and finding the normal FZ(z). We could also write

P(X ≤ x) � 1 − P(X > x) � 1 − P(X ≥ x + 1), since Poisson variables take on
only integer values. Then let z∗ � (x+1−λ)/

√
λ and compute 1−[1−FZ(z∗)] �

FZ(z∗). We have two, different, normal approximations to the same probability.
Which is better? There is no obvious way to decide.

To remove the ambiguity, let us improve the approximation in the previous
section. Taking expectations over all possible values of the difference 1/

√
λ −

z2/(2
√

λ), we get 1/
√

λ − 1/(2
√

λ) � 1/(2
√

λ) (since E(Z2) � 1). Then we
have a better approximation (x + 1 − λ)/

√
x + 1 ≈ (x − λ)/

√
λ + 1/(2

√
λ) �

(x + 1/2 − λ)/
√

λ. Notice that this standardization is halfway between the two
choices above: z � (x + 1/2 − λ)/

√
λ. This is called a continuity correction,

because it adjusts for the incompatibility between the discrete Poisson and the
continuous normal random variables.

Example. A certain large city park has an average of 64 mugging cases a month.
The police department will be overloaded if in a given month the number exceeds
70. What is the probability of overload next month? Model the number as Pois-
son(64); after a long calculation, we find that the probability is 0.20616. Without
the continuity correction we let z � 70−64

8 , and the normal approximation to our
probability is 0.22663. With the continuity correction, z � 70.5−64

8 ; the normal
approximation is 0.20825, which is much better. The continuity correction often
improves the result considerably with little extra trouble.

Notice that we have not found an approximation here for the mass function of a
Poisson variable. Since we were using a continuous random variable, it was more
natural to start with the cumulative. However, we can always calculate p(x) �
F (x) − F (x − 1) using the normal approximation. With the continuity correction,
this becomes

p(x) ≈ FZ

(
x + 1/2 − λ√

λ

)
− FZ

(
x − 1/2 − λ√

λ

)
.

This should be easy to remember; we took the probability of all real numbers
between x− 1

2 and x+ 1
2 that round off to the integer x. For example, in the mugging

problem, what is the probability of exactly 60 in a month? The exact answer is
p(60) � 0.04527; its normal approximation is 0.33087 − 0.28689 � 0.04398.
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FIGURE 10.11. Poisson(16) mass function and its Normal(16, 4) approximation

10.7 Approximations to Confidence Intervals

10.7.1 The Normal Family
Given a standard normal random variable Z, we can create a new variable X �
µ + σZ that still has sample space all real numbers, but has expectation µ and
variance σ 2. We have tailored the center and scale to our own tastes. This change
of variables makes the normal into a two-parameter family:

Definition. If Z is standard normal, then X � µ+σZ is called a Normal(µ, σ 2)
random variable.

Proposition. If X is Normal(µ, σ 2), then f (x) � 1√
2πσ

e−(x−µ)2/2(σ 2).

You should prove this by carrying out the change of variables.
We use this idea to avoid having to standardize a variable before we compare

it to the normal curve; we might say, for instance, that for large λ a Poisson ran-
dom variable is asymptotically Normal(λ, λ). This gives us another way to look
at the approximation to the mass function: p(x) ≈ FX(x + 1

2 ) − FX(x − 1
2 ) �∫ x−1/2

x−1/2 f (X)dX, where X is Normal(λ, λ). But for large
√

λ the normal density
changes fairly slowly over this interval of width 1. Pretend that it is approxi-
mately constant, and write p(x) ≈ ∫ x−1/2

x−1/2 f (X)dX ≈ f (x). In our example above,
p(60) ∼� f (60) � 1√

2π8
e−(60−64)2/2·64 � 0.04401, which is actually (barely) better

than the earlier approximation, for much less work. (Figure 10.11)
In case we have a random variable X believed to be in the normal family, with σ

known but with µ unknown, it is easy to construct a confidence interval for µ. For
example, for a 95% confidence interval we discover after much computing with
standard normal probabilities that P(Z > 1.96) � 0.025. Then by the symmetry
of Z about zero, P(|Z| > 1.96) � 0.05, and so P(−1.96 ≤ Z ≤ 1.96) � 0.95. But
we asserted above that Z � X−µ

σ
, and substituting, we obtain P(−1.96 ≤ X−µ

σ
≤
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1.96) � 0.95. You should check for yourself that this is algebraically equivalent
to P(X − 1.96σ ≤ µ ≤ X + 1.96σ ) � 0.95, which defines a 95% confidence
interval for the normal mean.

Notice, by the way, that this is very close to a 2–σ interval (see 6.7.1) with 2
replaced by 1.96. In fact, this will be our promised justification for this conventional
interval—if the observations are approximately normal, then a 2–σ interval is an
approximate 95% confidence bound. As we learn about many more cases in which
random variables are asymptotically normal, the popularity of this crude device
will seem better justified.

10.7.2 Approximate Poisson Intervals
At the moment, though, our only applications for this are to approximate gamma
and Poisson confidence intervals:

Example. There were 38 muggings in a certain public park last month. Let us
assume that these were all independent incidents, and so this might be an instance
of a Poisson(λ) random variable. The mean rateλ is unknown, but presumably fairly
large (of the order of magnitude of 38). Let us try to construct an approximate 95%
confidence interval for λ, using the normal approximation above.

We immediately get in trouble, because we are supposed to know σ � √
λ, and

of course, we do not. But the last time we ran into this problem, in the binomial case
(see 6.7.1 again), we simply estimated the standard deviation from the available
data. So now let λ̂ � x, and σ̂ �

√
λ̂ � √

38. The square root changes slowly as X

varies, so this involves less relative variation than does the variation in X that we
are studying. We have an approximate confidence interval for the Poisson mean:

P(X − 1.96
√

X ≤ λ ≤ X + 1.96
√

X) ≈ 0.95.

In our mugging example, the roughly 95% confidence limits on λ are 25.92 ≤ λ ≤
50.08 muggings per month, on average.

We can compare this to the exact 95% confidence interval for λ, corresponding
to the method used in the binomial case (see 6.7.3 and Exercise 6.42). After a
great deal of calculation using a handy computer program, I obtain P(X ≤ 38|λ �
52.16) � 0.025 and P(X ≥ 38|λ � 26.89) � 0.025. From this I conclude that an
exact 95% confidence interval would be 26.89 ≤ λ ≤ 52.16, which is fairly close
to our normal approximate interval.

Perhaps a better, and certainly easier, way to look at the value of our approximate
interval would be to see how often it would be violated. We get P(X ≥ 38|λ �
25.92) � 0.0153 and P(X ≤ 38|λ � 50.08) � 0.0463; combining the two
tail probabilities, we find that our normal interval is a 93.8% confidence interval,
instead of the 95% we advertised. This 0.938 is called a coverage probability.
Approximate intervals would, of course, tend to get closer to exact as the X’s that
we observe in our problems gets larger, because the error estimates in the normal
approximation to the Poisson get smaller.
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10.7.3 Approximate Gamma Intervals
Example. We can reason in much the same way about gamma variables. From the
last chapter, consider the observed lifetimes of 20 desert mice (see 9.6.2), which
were assumed to be each Gamma(α � 5, β) days. The interesting new wrinkle
here was that we had a sample of n � 20 observations rather than just a single
one. We were, with considerable calculation, able to construct a 99% confidence
interval for the average lifetime αβ of the mice. If a good normal approximation
to that interval could be found, it might save us quite a bit of trouble. The mean
of the grand total of lifetimes, observed to be 7742, is nαβ, where n � 20 is the
sample size. Its standard deviation is then

√
nαβ.

For a normal 99% confidence interval, we shall need a value of Z that is exceeded
half of 1% of the time. Quantities like that are used so often that we have a notation
for them: zα shall stand for the solution of P(Z > zα|Z standard normal) � α. Thus
z0.025 � 1.96. After much calculation (or more likely, getting a table or computer
statistical package to extract it for us), we obtain z0.005 � 2.576. Generally, if X is
Normal(µ, σ 2), then a 1 − α confidence interval is given by P(X − zα/2σ ≤ µ ≤
X + zα/2σ ) � 1 − α.

Example (cont.). We find for the lifetime data that

P

(
n∑

i�1
Xi − zα/2

√
nαβ ≤ nαβ ≤

n∑
i�1

Xi + zα/2
√

nαβ

)
≈ 1 − α

for
√

nα large. To put this in the form of a confidence interval for the mean lifetime
of an individual mouse, divide all three sides by n to get

P
(

X̄ − zα/2

√
αβ√
n

≤ αβ ≤ X̄ + zα/2

√
αβ√
n

)
≈ 1 − α.

We again use the obvious crude device for estimating the unknown standard de-
viation of each lifetime

√
αβ; we replace its β by the observed value that is

supposed to have β as an average, β̂ � 7742
20×5 � 77.42. We finally have an ap-

proximate 99% confidence interval 387.1 − 99.7 ≤ αβ ≤ 387.1 + 99.7, which is
287.4 ≤ mean life ≤ 486.8.

This may be compared to the exact confidence interval from 303 to 509 days; or
we may check that P(X ≥ 7742|αβ � 287.4) � 0.00077 and P(X ≤ 7742|αβ �
486.8) � 0.01488. Thus the coverage probability of our approximate 99% interval
is 98.43%, which is not too bad.

Notice that for a value of α fixed by the models we are studying, the approximate
normality depends on n, since we can estimate the quality of the approximation
from the size of

√
nα. That is, normal confidence intervals in this sort of problem

are more accurate if we take larger independent samples. Restate the interval as

P
(

X̄ − zα/2
σ√
n

≤ µ ≤ X̄ + zα/2
σ√
n

)
≈ 1 − α,
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where we actually have to go one step further and estimate σ from the data. This
should remind you of our result (statistics of the sample mean) that the expected
value of X̄ is just the expectation µ of a single observation. Furthermore, the
standard deviation of X̄, called the standard error of the mean, is σ√

n
, where σ is

the standard deviation of a single observation (see 7.6.4). It will turn out to be very
often true that sample means are approximately normal random variables for large
enough n; theorems that say things like this are called central limit theorems. In
such cases, approximate confidence intervals for the population mean may take
the form above. We will see several other applications in later chapters.

10.8 Summary

The quantile function Q(u) for any random variable is a way to generate one of its
values by transforming a Uniform(0, 1) variable; for continuous variables it reduces
to the inverse of the cumulative distribution function, Q � F−1 (2.3). A completely
general definition of an expectation for one random variable is then E[g(X)] �∫ 1

0 g[Q(U )]dU , whether the variable is discrete or continuous (3.1). We went on to
discover how densities may be used to find expectations for absolutely continuous
random variables, E[g(X)] � ∫ g(X)f (X)dX (4.2).

Continuing our program of finding good approximate calculation methods for
when our favorite families become hard to work with, we discovered the stan-
dard normal density f (z) � 1√

2π
e−z2/2 (5.3). For gamma random variables with

large α, we found that Z � (T − αβ)/(β
√

α) has approximately standard normal
probabilities (5.5). By duality, a normal approximation may be constructed for the
Poisson family with large λ, Z � X+1/2−λ√

λ
(6.2). As usual, our asymptotic method

amounts to a family of random variables of great interest in itself, the normal fam-
ily, with densities f (x) � 1√

2πσ
e−(x−µ)2/(2σ 2) with mean µ and standard deviation

σ (7.1). We studied some of its basic properties and investigated how to calculate
its probabilities. Normal confidence intervals were particularly easy to construct,
P(X − zα/2σ ≤ µ ≤ X + zα/2σ ) � 1 − α, and so let us build simple approximate
confidence intervals for gamma and Poisson parameters, and for the mean of any
approximately normal random variable X from which we have a sample of n,

P
(

X̄ − zα/2
σ√
n

≤ µ ≤ X̄ + zα/2
σ√
n

)
≈ 1 − α (7.3).

10.9 Exercises

1. Write down the quantile function for a binomial B(5, 0.4) random variable.
2. Write down the quantile function for a Beta(7, 1) random variable. Find its

population median and its 25th percentile.
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3. Using the quantile function, find a formula for the expectation and variance
of Beta(α, 1) random variables.

4. Prove that expectation is a linear operator and is nonnegative for nonnegative
g.

5. Derive a formula for how the density transforms when g is nonincreasing.
Use it to verify the monotone change of variables formula.

6. Show that if Y is an F(α, β) random variable, then 1/Y is an F(β, α) random
variable.

7. A logistic random variable X has cumulative distribution function

F (x) � 1/(1 + e−x).

a. Find the density of this logistic random variable.
b. Compute the probability that this logistic random variable will fall between

−1 and +2.
c. Find the density of the random variable Y � eX. Be sure to state its range.

8. Remember that a Gamma(α) random variable T has density T α−1

(α−1)!e
−T for

α > 0 on the sample space T > 0. Then the random variable X � log(T ) is
a (generalized) Gumbel density with parameter α. Find the density, sample
space, and mode (point at which the density is greatest) of X.

9. Prove the proposition about location and scale changes in a density (see 4.1).
10. Find the expectations of (a) Gamma(α, β), and (b) Beta(α, β) random

variables.
11. Find the variances of (a) Gamma(α, β) , and (b) Beta(α, β) random variables.
12. Find the expectation, variance, and standard deviation of the random variable

X in Exercise 12 of Chapter 9.
13. Let T be a Gamma(α, β) random variable. Then S � 1/T is called an Inverse

Gamma(α, β) random variable (appropriately enough).

a. Find the sample space and density of S.
b. Find the expectation and variance of S.

14. Remember that a Gamma(α, β) random variable may be thought of as the time
until the αth unpredictable event when the average time between events is β.
Let T be a Gamma(4, 3) random variable and S be a Gamma(6, 5) random
variable. They are independent of one another. Now consider the random
variables X � 2T + S and Y � 5T − 7S. What are the expected values and
variances of X and of Y , and what is the covariance of X and Y ? (Assume
that the results of Chapter 7 apply to continuous random variables. We will
make sure of that in the next chapter.)

15. The exponent of a Gamma(a + 1) density turned out to be a log(t) − t . Make
the change of variables Z � T −a√

a
, and calculate the logarithm of the resulting

density. Show that its maximum value is at z � 0, and that its second derivative
there is −1.

16. Check that 1
1+t

� 1 − t + t2

1+t
.
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17. Using the inequality for the natural logarithm in Section 5.2, find upper and
lower bounds for log(1.5) and log(0.9). Compare them to the exact value.

18. Find using L’Hospital’s rule limz→∞ ze−z2/2 and limz→∞ ze−z2/2.
19. If Z is standard normal, show that F (−z) � 1 − F (z).
20. Calculate 25! exactly. Now calculate it approximately by Stirling’s formula

and compare.
21. a. Compute a formula for the probability that a fair coin tossed 2n times will

get exactly half heads (n heads).
b. Using Stirling’s formula, find an approximation to (a) for large n that has

no factorials in it. (You should simplify it where possible.)
c. The lottery draws numbers from 1 to 40. Compute (exactly) the probability

that half of the next 20 lottery numbers drawn (with replacement) are even.
Now use (b) to recompute this probability approximately and compare.

22. For the standard normal random variable, calculate F (−1.5) to within 0.0001.
Write down an upper and lower bound that proves it is this accurate.

23. Carry out the standard normal approximation method for computing the
answer to Exercise 24 of Chapter 9.

24. At a large allergy center, people with severe allergy to bee sting appear for
treatment unpredictably, at an average rate of 5 per month. You need to find
20 patients for a research project.

a. What is the exact probability that you will get your 20th patient within 5
months?

b. Recalculate this probability using the normal approximation. Compare.

25. Use the proposition that 1 − 1√
1+a

≈ a
2 to find approximate values for

√
2

and
√

0.85; compare them to the exact values.
26. As a seller of extremely expensive Swiss watches, you find that you average

28 sales in a normal month.

a. How probable is it that you will sell fewer than 24 in the next normal
month?

b. Is a normal approximation appropriate here? Why or why not? Use one
of the methods you have learned for calculating normal probabilities to
prove that the normal approximation to the answer to (a) is less than 0.25

27. An amateur astronomer sees an average of 36 meteors in an hour of
observation on an August night.

a. What is the probability that in a given hour on an August night she will
see at least 32?

b. What is the probability she will see exactly 39?
c. Recalculate (a) and (b) using normal approximations and compare.

28. In Exercise 17 from Chapter 9, construct the normal approximation to a 95%
confidence interval on the average time between accidents β. What is the
actual coverage probability of this interval?
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10.10 Supplementary Exercises

29. Show that any quantile function is nondecreasing (if a < b, then Q(a) ≤
Q(b)).

30. A congruential pseudo-random number generator might work as follows: p is
a positive integer called the modulus, m a positive integer called the multiplier,
and x0 a positive integer called the seed. Then we repeatedly calculate xi �
mxi−1modp, where mod means divide the first term by the second and take the
remainder (13 mod 5 � 3). Now turn it into a Uniform(0, 1) pseudo-random
number by letting Ui � xi/p. With an intelligent choice of the modulus and
the multiplier, the x’s will run in an unpredictable order through the numbers
from 1 to p − 1, and the U ’s will appear quite random.
For example, let the modulus be 257 and the multiplier be 49. The seed is
less important; let us use 180. Then x1 is the remainder when we divide 257
into 180 × 49, or 82. Then U1 � 0.319. Calculate U2 through U11.

31. Use the uniform pseudo-random numbers from Exercise 28 to generate

a. 10 B(5, 0.4) pseudo-random numbers, using the quantile function from
Exercise 1.

b. 10 Beta(7, 1) pseudo-random variables, using the quantile function from
Exercise 2.

32. Let T be a Gamma(α) random variable; let Y � T 1/3.

a. Find the density of Y . (This is called a symmetrizing transform.)
b. Graph the density of T and the density of Y for α � 10 to see that the

latter is more nearly symmetric about its maximum.

33. Let Z have the standard normal density

f (z) � 1√
2π

e−z2/2.

Find the density of Y � Z3.
34. Prove that z � (t − α)/

√
α is close to z∗ � (t − (α − 1))/

√
α − 1 when z is

small compared to α.
35. Prove that our power series for the standard normal cumulative distribution is

absolutely convergent for any value of z (you may have to review how such
things are done from advanced calculus).

36. Apply our method of quadratic approximation to the log-density to establish
conditions under which a Beta(α, α) is approximately normal.

37. Here is an accurate and fairly fast way to generate approximately standard
normal random variables, using the results of Exercise 36: (1) generate 23
independent Uniform(0, 1) variates; (2) find their median P; and (3) compute
Z � 10 × (P − 0.5).
Find the exact value of P(Z > 2). Now compare it to the standard normal
probability for the same inequality.
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38. Highly prized morel mushrooms grow unpredictably and one at a time in
Midwestern woods in May (though there are a great many of them to be
found). Even an expert hunter averages five minutes between finds.

a. What is the probability that our expert will find her fourth mushroom
within 16 minutes? What model are you using, and why is it plausible?

b. She has promised a French restaurant that she will deliver twelve dozen
(144) mushrooms. She begins hunting at 7:00 a.m. What is the probability
that she will complete her promised shipment by the time it is dark, at
8:00 p.m? If you find the calculation time-consuming, you may use a good
approximate method; if so, explain why your approximation is appropriate.

39. Remember that the density of a Normal(µ, σ 2) random variable X is
1/(

√
2πσ )e−(X−µ)2/(2σ 2). Then the random variable Y � eX is called a

lognormal random variable.

a. What is the density of Y ?
b. What is E(Y )? (Hint: E(Y ) � E(eX).)
c. What is Var(Y )?

40. Derive the general series (the Laplace series) for the tail probability of the
standard normal distribution. Notice that it does not converge for z � 4.

41. a. Using the algebraic trick from (6.1), derive the continued fraction
√

1 + α � 1 + a

2 + a
2+ a

2+ a
2+···

.

b. Show that stopping after odd and even numbers of fractions gets under-
and overestimates of the limiting value, for a > 0.

c. Use the continued fraction to calculate
√

1.2 to six significant figures.
42. In the lifetimes of mice data from (9.6.2), we also assumed that β � 60 was

known, and we estimated α.

a. Find a normal approximation to the 95% confidence interval for α.
b. (Using a computer) find the coverage probability for the interval you

constructed in (a).



CHAPTER 11

Continuous Random Vectors

11.1 Introduction

Here we develop some tools for dealing with several continuous random variables,
simultaneously measured. First, we decide what we generally mean by an expec-
tation in such a situation. Then, as an important special case, we explore how
several uniform order statistics from the same sample might behave jointly. We
go on to look at general properties of any multivariate density function. You will
not be surprised to hear that a particularly important case will be the multivariate
normal family. Sums of squares of independent standard normal vectors will lead
us to consider gamma and beta random variables with fractional shape parameters.
Then, our newfound expertise with more than one continuous variable will make
for new Bayesian inference arguments, since now we can imagine absolutely con-
tinuous prior distributions on parameters that have a continuous range of possible
values.

The normal approximation from Chapter 10 will turn out here to apply to an
amazing variety of our favorite families of random variables, when certain pa-
rameters become painfully large. We will thereby establish why normal random
variables are considered among the most important in all of statistics.

Time to Review

Determinants
Solving multiple integrals by change of variables
Chapter 7
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11.2 Multivariate Expectations

11.2.1 Discrete Conditional Expectations
One tool we will surely need if we are to investigate continuous random vectors
is a general notion of what it means to take a multivariate expectation, such as
E[g(X, Y )]. For example, we will presumably be interested at some point in the
covariance of two such random measurements, Cov(X, Y ) � E(XY )−E(X)E(Y ).
There is a slick way to define such things, using the quantile function method of
the last chapter (see 10.3.1) (you might see whether you can think of it); but it is
not very helpful when we actually have to compute expectations. Instead, let us
start with a nice property of the discrete case:

E[g(X, Y )] � EX{EY |X[g(X, Y )|X]}
(see 7.5.1). You should be careful to decode the complicated-looking notation here,
because this says something quite intuitively reasonable: To average a function over
a rectangular table (plane), first average it over each row (line) in which the first
coordinate is constant. Then average these averages over all such rows.

11.2.2 The General Case
Since it is so plausible and useful to do everything one coordinate at a time, we
will make it the definition in the general case, which includes continuous random
variables. From (10.2.1) we know what an expectation means for any random
variable, which tells us what a marginal expectation always is: EX[g(X)] is the
expectation of a function g of the variable X when we have no information about
any other variables. A conditional expectation EX|Y [g(X, y)|y] is no more than
the expectation of g as a function of the variable X when Y is known to be the
constant value y. In each case, there is only one random variable, so we may use
what we know about expectations to work with them.

One quibble may have occurred to you: In general, can we be sure that computing
using X first will get the same answer as using Y first? Surely, it should be so (it
is so in the discrete case), and we shall require it.

Definition. For any random vector (X, Y ),

E[g(X, Y )] � EX{EY |X[g(X, Y )|X]} � EY {EX|Y [g(X, Y )|Y ]}
whenever the two latter expressions exist and are equal.

The generalization to more than two coordinates is obvious (exercise). You
should do some simple examples as exercises, as well. You should check, as well,
that these expectations have the usual linearity and positivity properties.

One special case is particularly nice. Assume that X and Y are independent, and
we want to know E[g(X)h(Y )]. Notice that for each value of Y � y,

EX|Y [g(X)h(y)|y] � h(y)EX|Y [g(X)|y] � h(y)EX[g(X)].
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The first equality holds just because expectation is linear, and the second be-
cause independence just means that information about Y tells us nothing about
X. Now apply the definition above: E[g(X)h(Y )] � EY {h(Y )EX[g(X)]} �
EX[g(X)]EY [h(y)]. You may recall (see 7.6.3) that we showed in the special case
of X and Y discrete that when X and Y are independent, they are also uncorrelated.
Now we know that this is always true.

11.3 The Dirichlet Family

11.3.1 Two Order Statistics at Once
We shall now explore an important family of random vectors, making use of the
above expressions. The coordinates of a random point, on a plane or in space,
was our first example of a random vector (or, as we sometimes say, a multivariate
random variable). Other, and often more interesting, examples arise when we
measure several distinct numbers from a single experiment. Without realizing it,
we have studied an important example already.

Example. Five friends finish the Boston Marathon. Since there are thousands of
finishers, they rate themselves by the proportion of people they beat; so 0.74 means
that 74% of the other finishers were slower. If the friends are typical contestants, we
already know that the second-best result among them is approximately a Beta(4, 2)
random variable (see 9.5.2), and the fourth-best is a Beta(2, 4) variate. But these
two numbers are not independent. Say the fourth finished 0.56; then we know with
certainty that the second finisher did better, so her finish must be greater than 0.56.
Her conditional distribution can no longer be Beta(4, 2), which could be anything
between 0 and 1.

Generally, let U(1) ≤ U(2) ≤ · · · ≤ U(n) be the order statistics from a
Uniform(0, 1) random sample. Pick out P � U(i) and Q � U(j ), where i < j , as
the coordinates of the random vector of interest. We should be able to answer any
questions we have using the cumulative distribution function F (p, q) � P(P ≤
p, Q ≤ q). (see 7.3.2) We have

F (q, p) � P(ith is at most p, j th is at most q)
� P(at least i before p and at least j before q)

�
n∑

Y�j

Y∑
X�i

P(X before p and Y before q)

�
n∑

Y�j

Y∑
X�i

P{X in (0, p], Y − X in (p, q], n − Y in (q, 1)}.

This is a multinomial probability with the probability of a point falling in each
interval proportional to its length:
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Proposition. The ith and the j th Uniform(0, 1) order statistics P and Q from a
random sample of n, 1 ≤ i < j ≤ n, have the joint cumulative distribution

F (p, q) �
n∑

Y�j

Y∑
X�i

n!
X!(Y − X)!(n − Y )!

pX(q − p)Y−X(1 − q)n−X,

where 0 < p < q < 1.

This intimidating expression is necessary when you want actual probabilities.
As an exercise (easier than it looks) derive the even more intimidating cumulative
you get when you are interested in the joint distribution of more than two order
statistics.

11.3.2 Joint Density of Two Order Statistics
Such quantities were at least easier to write when in the last chapter we used
densities. We will get to that form using expectations, as in the last section. The
connection is through something that should look a bit familiar.

Definition. The indicator function of a set A is χA(x) �
{

1, X ∈ A,

0, X �∈ A.

Then obviously E(χA) � P(A). (What is the connection with the method of
indicators?) Now we can turn our cumulative function into an expectation: Denote
the indicator function of {P ≤ p, Q ≤ q} by χpq . Then F (p, q) � E(χpq) �
Ep[EQ|P (χpq |P )].

To compute the inner expectation, let P � p be fixed, and look at the random
behavior of Q. If it has a density, then we will have EQ|P (χpq |p) � P(Q ≤ q|p) �∫ q

p
f (Q|p)dQ. We must have n − i points scattered independently and uniformly

over the interval (p, 1), since the ith smallest is known to be at P . Therefore,
Q, the j th order statistic, is the (j − i)th order statistic from these n − i values.
Let us transform Q into a random variable on (0, 1) by R � Q−p

1−p
. Now, R is a

Uniform(0, 1) order statistic, so it is a Beta(j − i, n + 1 − j ) random variable,
with density (n−i)!

(j−i−1)!(n−j )!R
j−i−1(1 − R)n−j . Change the variable back to Q (not

forgetting the derivative of the transformation 1/(1 − p)), to get the density of Q

conditioned on knowing P :

f (Q|P � p) � (n − 1)!
(j − i − 1)!(n − j )!

(Q − p)j−i−1(1 − Q)n−j

(1 − p)n−i
on (p, 1).

We already know the (marginal) distribution of P: Since it is an ith uniform
order statistic, it is Beta(i − 1, n − i). Then our double expectation expression
gives us

F (p, q) � EP [EQ|P (χpq |P )] �
∫ p

0
EQ|P (χpq |P )f (P )dP

�
∫ p

0

[∫ q

p

f (Q|P )dQ

]
f (P )dP.
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Now, Fubini’s theorem from calculus (time to review) says that this integral of an
integral is the same as an integral over a two-dimensional region:

F (p, q) �
∫ p

0
f (P )

∫ q

p

f (Q|P )dQdP �
∫ p

0

∫ q

p

f (P )f (Q|P )dQdP.

Now we have a plausible candidate for the density of a random vector in two
dimensions:

f (x, y) � f (x)f (y|x) � f (y)f (x|y).

In the beta example, we get

f (p, q)

� n!
(i − 1)!(n − i)!

pi−1(1 − p)n−i (n − i)!
(j − i − 1)!(n − j )!

(q − p)j−i−1(1 − q)n−j

(1 − p)n−i

� n!
(i − 1)!(j − i − 1)!(n − j )!

pi−1(q − p)j−i−1(1 − q)n−j on 0 < p < q < 1.

11.3.3 Joint Densities in General
Now, using the techniques of the last section, we can draw several conclusions.
We begin with a definition.

Definition. The density of a random vector X is a function f (X) ≥ 0 such that
for any event A, P(A) � ∫

A
f (X)dX. Any random vector with a density is said to

be absolutely continuous.

.2

.4

.6

.8

.2

.4

.6

.8

FIGURE 11.1. Joint density of 2nd and 4th of uniform sample of 5
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Proposition. For an absolutely continuous random vector (X, Y ), f (x, y) �
f (x)f (y|x) � f (y)f (x|y), and analogously for more dimensions.

Proposition.
For an absolutely continuous random vector X, E[g(X)] � ∫ g(X)f (X)dX.

Fubini’s Theorem tells us that for absolutely continuous random vectors, we do
not have to worry about the order of evaluation of that expectation. (In fact, we
never do, but this fact we will leave for more mathematically advanced courses.)

While we are here, we can figure out the relationship between the cumulative
distribution function and the density, corresponding to the ones we found before
(see 9.4.3). One way comes straight from the definition:

F (x, y) � P(X ≤ x and Y ≤ y) �
∫ x

−∞

∫ y

−∞
f (X, Y )dYdX,

where we could have integrated, of course, in either order. As we did it, the first −∞
stands for the lower limit of the x-coordinate of the sample space. But, be careful—
the second −∞ infinity is the lower bound of the y-coordinate, conditional on the
current value of the x-coordinate. (Notice our example.)

Now go the other way, starting with the cumulative distribution function and
trying to calculate the density, but this time using partial differentiation, first with
respect to y: This letter does not appear in the x-limits, so calculus says we can dif-
ferentiate under the integral sign: (∂F (x, y))/(∂y) � ∫ x

−∞
∂
∂y

∫ y

−∞ f (X, Y )dYdX.
Then apply the fundamental theorem of calculus to the inner integral, to get
(∂F (x, y))/(∂y) � ∫ x

−∞ f (X, y)dX. We now differentiate with respect to x to
get a simple formula:

Proposition. (∂2F (x, y))/(∂x∂y) � f (x, y) for an absolutely continuous vector.

You should verify that this works for the joint distribution of two order statistics.
The generalization to more than two variables just involves partially differentiating
with respect to one variable at a time.

11.3.4 The Family of Divisions of an Interval
Our result about the joint density of several uniform order statistics inspires us
to define a new family of random vectors, not quite the one found above, but a
simpler one out of which we may build order statistics. In the density we derived, the
essential quantities were p, q−p, and 1−p; these will be our random coordinates.
We will carry out the (multivariate) change of variables X � P , Y � Q − P ,
Z � 1 − Q; our constraints on Q and P (0 ≤ P ≤ Q ≤ 1) require X, Y, Z ≥ 0
and X + Y + Z � 1. Geometrically, since P and Q are randomly chosen points
on the interval (0, 1), then X, Y , and Z are the lengths of the divisions of the unit
interval you get if you cut it at P and Q (see Figure 11.2).
We would like just to plug our changed variables into our density expression:
f (x, y, z) ?� n!

(i−1)!(j−i−1)!(n−j )!x
i−1yj−i−1zn−j . But you should remember that

previously a change of variables in the density required a factor, the derivative of
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P

0 1

Q

X Y Z

FIGURE 11.2. Random divisions of an interval

the transformation, that corresponded to a change of scale (see 10.4.1). We shall
have to see what that means in this case.

11.4 Changing Variables in Random Vectors

11.4.1 Affine Multivariate Transformations
When we transformed a single variable, you will remember that we applied an
increasing (or monotone) change of variables, looked at the simple way the cu-
mulative distribution function changed, and differentiated to get the new density.
You can try this in the vector case, as an exercise. But this approach has a serious
limitation: You need a transformation that is monotone increasing or decreasing
in each coordinate. By no means all, even very simple, transformations preserve
the order of each coordinate. In the order statistic case, for example, knowing
only that P and Q have increased, we just cannot say whether Y � Q − P will
have increased or not. Let us look for more general sorts of variable changes;
we need ones that will, for example, take the original P and Q and change them
to X, Y , and Z by a series of functions X � P , Y � Q − P , Z � 1 − Q.
We will write it X � g(Y). Notice that each term in this expression is a vector:
Y � (Y1, Y2, . . . , Yk)T , X � (X1, X2, . . . , Xk)T , and the equality relates the X’s
to a vector of functions Xi � gi(Y1, Y2, . . . , Yk).

This should remind you of a multivariate change of variables from advanced
calculus (which you should review). As in the one-variable case, we need to adjust
by a factor that reflects the fact that volume is measured differently in terms of X
and of Y. When you were first doing integrals, dX was thought of as the limit of
the volumes of tiny little cubes

(x1, x1 + dx1] × (x2, x2 + dx2] × · · · × (xk, xk + dxk].

You then multiplied that volume by a height f (x) and summed over all the cubes
that “tile” the region of integration, to approximate the integral. What volume in
terms of Y does that correspond to?

We will concentrate for a while on the easy case that we need here, when the
change of variables is affine. This says that it may be written x � g(y) � a + Gy;
where G is a square matrix. (We are assuming that the vectors X and Y are of the
same dimension.) In the order-statistic problem we are working on, a � 0 and
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 y1

y2

FIGURE 11.3. Cube I

  x 2

x1

FIGURE 11.4. Parallelogram G(I)

G �
(

1 0
1 1

)
. (You should verify that indeed G

(
X

Y

)
�
(

X

X + Y

)
�
(

P

Q

)
;

we do not need Z, which is determined by the other variables.)
What effect does this change of variables have on the volumes of those little

cubes? Notice that an affine function changes a cube into a multidimensional
version of a parallelogram (called a parallelepiped). (See Figures 11.3–4.)
That is, if the unit cube is I � (0, 1] × (0, 1] × · · ·× (0, 1], then the corresponding
parallelepiped is G(I) � {vectors Gy when y ∈ I}. You may check from the defi-
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nition of matrix multiplication that the edges of the parallelepiped are the columns
of G. You should recall the following fact from matrix algebra:

Proposition. The volume V[G(I)] � | det(G)|, the absolute value of the
determinant of G.

We call that volume Jg � V(GI) �| det(G)| the Jacobian of the affine transfor-
mation g. The one fact most people can remember about determinants is how to

compute the 2-by-2 case: det
(

a b

c d

)
� ad − bc. If det(G) � 0, we say that G

is singular; this means that our cube was flattened by g into a lower-dimensional
subspace. We will exclude that possibility. Again from multivariable calculus, we
learn the following:

Proposition. Let a transformation X � g(Y) � a + GY be nonsingular. Then∫
g(A)

f (X)dX �
∫

A

f [g(Y)]JgdY,

where g(A) � {vectors g(y) when y ∈ A}. [We see that the Jacobian corrects for
the “stretching” of the region over which we are integrating by the transformation].

If fX is the multivariate density of X, the proposition immediately tells us what
the density fY of Y must be. Since P(Y ∈ A) � P(X � g(Y) ∈ g(A)), then∫

g(A) fX(X)dX � ∫A fY(Y)dY. But the proposition tells us what the connection is:

Theorem (affine change of variables in a density). Let X � g(Y) � a + GY be
nonsingular. Then fY(Y) � fX[g(Y)]Jg.

As an exercise, you should show that this does what we expect (see 10.4.1) for
the one-variable transformation X � a + bY .

11.4.2 Dirichlet Densities
In our order-statistic example, det G � 1×1−1×0 � 1; the area scale Jg � 1 does
not change. Our guess about the density in Section 3.4 happened to be correct. We
say that this particular change of variables is volume-preserving. Now let us write
down the density of P � (P1, P2, · · · , Pk)T where Pi is the ni th order statistic of
a uniform sample of n on (0, 1), and 1 ≤ n1 < · · · < ni < · · · < nk ≤ n. You
should discover as an exercise, by doing repeatedly what we did in Section 3.2,
the following:

Proposition. The joint distribution of the {ni}th order statistics from a
Uniform(0, 1) sample of n is

f (p) � n!
(n1 − 1)!

∏k
i�2(ni − ni−1 − 1)!(n − nk)!

p
n1−1
1

×
k∏

i�2
(pi − pi−1)ni−ni−1−1(1 − pk)n−nk ,
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where 0 < p1 < p2 < · · · < pk < 1.

Once again, we can clean up this expression by a transformation that singles
out the divisions of the unit interval: X1 � P1, X2 � P2 − P1, . . . , Xi � Pi −
Pi−1, . . . , Xk+1 � 1 − Pk . Notice that Xi ≥ 0. Now add all the expressions
together, and watch each of the P ’s cancel out in turn to get

∑k+1
i�1 Xi � 1. In

order to find the density of X, we will need to compute the Jacobian, and in order
to compute the Jacobian, we need to solve for the P ’s. Solving for the P ’s one at a
time, we get P1 � X1, P2 � X1 + X2, and generally Pi �∑i

j�1 Xj . Notice that
we do not need Xk+1; the transformation is really k variables to k variables. Then
the transformation is P � GX, where

G �

⎛
⎜⎜⎝

1 0 · · · 0
1 1 0 · · ·
... · · ·
1 1 · · · 1

⎞
⎟⎟⎠ .

It has 1’s on the diagonal and below the diagonal, and zeros above the diagonal.
Now, you probably still have nightmares about how complicated it was to calculate
determinants for a matrix bigger than 2 by 2. But (time to dig into the matrix algebra
book again) there was an important exception: Triangular matrices, with all zeros
below the diagonal, or all zeros above the diagonal, have a very simple determinant.
It is just the product of the diagonal elements. In our problem, we just multiply
the 1’s together to get det G � 1. Our transformation is volume-preserving once
again. The density has the simple form

f (x) � n!
(n1 − 1)!

∏k
i�2(ni − ni−1 − 1)!(n − nk)!

x
n1−1
1

k∏
i�2

x
ni−ni−1−1
i x

n−nk

k+1 .

Finally, we are ready to define the Dirichlet family of random vectors:

Definition. A random (k + 1) vector X is Dirichlet(α) for αi > 0 if its sample
space is Xi > 0 and

∑k+1
i�1 Xi � 1, and its density is

f (x) �
[(∑k+1

i�1 αi

)
− 1
]
!(∏k+1

i�1 (αi − 1)!
) k+1∏

i�1
x

αi−1
i .

11.4.3 Some Properties of Dirichlet Variables
The vector X is really only a k-dimensional random vector because of the sum
condition. (If you want to integrate it or graph it, get the dimension right by some
such replacement as Xk+1 � 1 −∑k

i�1 Xi .) Notice that this big family includes
the beta family as a special case: X1 � P , X2 � 1 − P , α1 � α, and α2 � β. The
beta family, of course, has reversal symmetry, which amounts to interchanging X1
and X2 and at the same time interchanging α1 and α2. The simple form of the
Dirichlet density tells us that we have a complete permutation symmetry: We
may interchange any Xi and Xj , so long as we interchange αi and αj at the same
time, and the density is the same (just stare at the density formula).
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To compute expectations, notice that X1 is the αth order statistic from a uniform
sample on (0, 1) of size (

∑k+1
i�1 αi) − 1; therefore, it has a Beta(α1,

∑k+1
i�2 αi) dis-

tribution. We therefore know its expectation and variance from (10.4.2). But we
can interchange X1 and any other Xi to get a general result:

Proposition. Let X be Dirichlet(α). Then

(i) E(Xi) � (αi)/(
∑k+1

i�1 αj ).
(ii) Var(Xi) � (αi

∑
j�1 αj )/((

∑k+1
i�1 αj )2[(

∑k+1
i�1 αj ) + 1]).

We may as well try out our theory of multivariate expectation to find the covari-
ance of two Dirichlet coordinates (you will do it another way as an exercise). We
will use the formula Cov(Xi, Xj ) � E(XiXj ) − E(Xi)E(Xj ), which is still valid
for our multivariate expectation, which we require only to be linear.

E(XiXj ) �
∫

XiXj

[(
∑k+1

l�1 αl) − 1]!∏k+1
l�1 (αi − 1)!

k+1∏
l�1

X
αl−1
l dX

�
∫ [(

∑k+1
i�1 αi) − 1]!∏k+1

i�1 (αi − 1)!
Xαi

i X
αj

j

∏
i ��i,j

X
αl−1
l dX

� αiαj

[(
∑k+1

l�1 αi) + 1](
∑k+1

i�1 αi)

×
∫ [(

∑k+1
l�1 αi) + 1]!

αi!αj !
∏

l ��i,j (αl − 1)!
X

αi

i X
αj

j

∏
l ��i,j

X
αl−1
l dX.

The integrals are over the Dirichlet sample space, and the last integral is equal to
1, because it is of a Dirichlet density with two of the parameters increased by 1.
Our expectation is just the constant in front, and after a little algebra (which you
should do), we simplify the expression:

Proposition. Let X be Dirichlet(α). Then

Cov(Xi, Xj ) � − αiαj

(
∑k+1

l�1 αi)2[(
∑k+1

l�1 αi) + 1]
.

The negative covariance says that the bigger one random piece of the interval
is, the smaller any others tend to be.

We may apply this to the distribution of order statistics. If we are interested in
the ith and j th uniform order statistics, i < j , the corresponding random intervals
are Dirichlet(i, j − i, n + 1 − j ), with Pi � X1 and Pj � X1 + X2. Then

Cov(Pi, Pj ) � Cov(X1, X1 + X2) � Var(X1) + Cov(X1, X2)

using a result from Chapter 7 (see 7.5.4). You should check the following as an
exercise:

Proposition. Cov(Pi, Pj ) � i(n + 1 − j )/((n + 1)2(n + 2)) for i < j .

We learn that uniform order statistics are always positively correlated, with the
covariance larger the closer together they are in the ordered sample.
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11.4.4 General Change of Variables
So far, our multivariate changes of variable have been rather simple affine transfor-
mations. We need sometimes to do changes of variable that are not so simple. For a
possibly nonaffine transformation X � g(Y), we need to learn about the density of
Y from knowing the density of X. That is, for all events A, we need P(Y ∈ A). But in
general, the only thing we can be sure of is that P(Y ∈ A) ≤ P[X � g(Y) ∈ g(A)],
because every vector Y on the left certainly corresponds to exactly one X � g(Y)
on the right. But it may not be an equality, because there may be Y’s outside
of A for which g(Y) ∈ g(A). For example, if g(y) � y2 and A � (1, 2), then
g(A) � (1, 4). But g(−1.5) � 2.25 ∈ g(A). This one-variable transformation is
not monotone (see 10.4.1). We have to exclude these transformations:

Definition. A transformation X � g(Y) is (essentially) one-to-one if you cannot
find two vectors Y1 �� Y2 for which g(Y1) � g(Y2) � X, except possibly for a set
of X’s whose total probability is zero.

We have disallowed all those cases Y �∈ A that worried us, because now we are
sure that g(Y) �∈ g(A), unless they contribute nothing to probability calculations.
Notice that an affine transformation is obviously one-to-one for G nonsingular;
you learned in matrix algebra that such a G has an inverse. Then for any X there
is only one Y � G−1(X − a) that is transformed to it.

Proposition. If a transformation X � g(Y) is essentially one-to-one, then

P(Y ∈ A) � P[X � g(Y) ∈ g(A)].

Multivariate calculus also tells us how to do the change of variables as in Sec-
tion 4.1 for many nonlinear cases. If the transformation is differentiable, then
it is approximately an affine transformation near any given point y0 : g(y) ≈
g(y0) + Gg(y0)(y − y0). G is the matrix G(y) � (∂gi(y)/∂yj )ij of derivatives. The
approximation means that if the Euclidean length of y − y0 is small enough, then
the Euclidean length of g(y) − g(y0) is much smaller still. Thus, the adjustment in
the volume scale right at the point y0 is given by Jg(y0) � | det G(y0)|. Then the
general multivariate calculus change-of-variables rule is this:

Proposition. For a one-to-one differentiable transform g,
∫

g(A) f (X)dX �∫
A

f [g(Y)]Jg(Y)dY.

As in the last section, this tells us exactly how to change variables in a density:

Theorem (multivariate change of variables in a density). Let X � g(Y) be
essentially one-to-one and differentiable. Then fY (Y) � fX[g(Y)]Jg(Y).

We have already seen one important example: In (10.5.3) we transformed an
integral to polar coordinates. As an exercise, you should check that we could have
accomplished the same thing with this theorem.
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11.5 The Chi-Squared Distribution

11.5.1 Gammas Conditioned on Their Sum
We now want to use the technique of the last section to prove for a second time
a proposition from Chapter 9 (see 9.5.5). Why? Each novel demonstration of an
important result gives us more insight. Furthermore, as we shall see shortly, the
new proof will make our result apply to many more cases.

Let X be Gamma(α) and Y be independently Gamma(β). We will discover once
again the distribution of Z � X + Y , this time using transformation techniques.
Since we have a two-dimensional vector, to use the Jacobian method we will need
something in addition to Z (the vectors need to have the same dimension). We have
many choices, but sneaking a look at Chapter 9 again, we choose W � X/(X+Y ),
which is no longer linear. Notice that Z > 0 and 0 < W < 1. Solve these for X

and Y to get the transformation X � ZW and Y � Z(1−W ). How will this affect
our density?

Then

G �
( ∂ZW

∂Z
∂ZW
∂W

∂Z(1−W )
∂Z

∂Z(1−W )
∂W

)
�
(

W Z

1 − W −Z

)
,

J � | det G| � | − ZW − Z(1 − W )| � | − Z| � Z,

since Z is positive. It is not area-preserving.
Now we need the joint density of X and Y . For any two independent random

variables, F (x, y) � FX(x)FY (y). Therefore,

f (x, y) � ∂2F (x, y)
∂x∂y

� ∂FX(x)
∂x

∂FY (y)
∂y

� fX(x)fY (y).

To say the same thing, fY |X(y|x) � fY (y) for each value x. It works backwards as
well: If the joint density is the product of the marginal densities, you can integrate
twice to discover that the joint cumulative is the product of marginal cumulatives,
and therefore the coordinates are independent.

For our problem, this becomesf (x, y) � (xα−1)/(α−1)!e−x(yβ−1)/(β−1)!e−y .
Substituting and including the Jacobian factor, we obtain

f (z, w) � z
(zw)α−1

(α − 1)!
e−zw [z(1 − w)]β−1

(β − 1)!
e−z(1−w) � zα+β−1e−z wα−1(1 − w)β−1

(α − 1)!(β − 1)!

after collecting terms. The z-terms are a gamma density except for a constant,
(α + β − 1)!, so we divide and multiply by that constant to get

f (z, w) � zα+β−1

(α + β − 1)!
e−z (α + β − 1)!

(α − 1)!(β − 1)!
wα−1(1 − w)β−1.

It is a product of familiar densities. We conclude (no surprises here) that Z � X+Y

is Gamma(α + β), W � X/(X + Y ) is Beta(α, β), and the two are independent.
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11.5.2 Squared Normal Variables
But this new turn on an old result will solve a fundamental problem for us. The
simplest case of the chi-squared statistic from Chapter 8 (see 8.4.3) evaluated
the closeness of fit of a contingency table to an independent Poisson model with
means λi , i � 1, . . . , k : χ2 � ∑k

i�1(Xi − λi)2/λi where Xi is the random
count in the ith cell. If the

√
λi are all large, then we might reasonably expect

that the standard normal approximations Zi � (Xi − λi)/
√

λi could be used (the
continuity correction is controversial in this application; we shall leave it out).
Then χ2 � ∑k

i�1 Z2
i and it is approximately a sum of squares of independent

standard normal random variables. So what is its distribution?
First, let Z be standard normal and let Y � Z2. We cannot quite use our trans-

formation theory (see 10.4.1), because the square is neither nondecreasing nor
nonincreasing. As an intermediate step, let W � |Z|. Its cumulative distribution
function is

FW (w) � P(W ≤ w) � P(−w ≤ Z ≤ w) � FZ(w) − FZ(−w).

Differentiating, we get f (w) � fZ(w) + fZ(−w) � 2√
2π

e−w2/2 on W > 0 (this
is called a half-normal density). Now we are ready to apply the nondecreasing
change of variables Y � W 2. The inverse transformation is W � √

Y , whose
derivative is 1/(2

√
Y ). Then its density is f (y) � 1√

2π
√

y
e−y/2 for y > 0.

This density may not look familiar, but if you ignore the constant, you will see
that it is y to a power (− 1

2 ) times a negative exponential of y. It looks like a gamma
density, but with a fractional shape parameter. If such a thing were possible, that
parameter would be α − 1 � − 1

2 , or α � 1
2 . Then we also need a scale parameter

β � 2.

11.5.3 Gamma Densities in General
Let us see what would happen in general if we allowed fractional gamma shape
parameters. For one thing, we can no longer interpret a gamma random variable as
the time to the αth Poisson event. But we can just define it in terms of the density:

Definition. A Gamma(α) random variable, with α > 0 a real number, has density
f (x) � xα−1

�(α) e
−x on x > 0, where �(α) is the constant that makes the density

integrate to 1.

As usual, our big problem will be to evaluate the constant. First give it an
(obvious) name and solve for it in the integration condition:

Definition. The gamma function is defined on α > 0 by �(α) � ∫∞
0 xα−1e−xdx.

This integral cannot always be evaluated by elementary calculus, but we al-
ready know many values. By comparison with the old gamma density we get
that �(α) � (α − 1)! whenever α is a positive integer. Also, since Y � βX is
a Gamma(α, β) random variable, we get by change of variables that just as be-
fore, f (y) � yα−1

βα�(α)e
−y/β . Now we see that, sure enough, the square of a standard
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normal variable is Gamma( 1
2 , 2). And as gravy, we get the wonderful fact (first

noticed by an English mathematician named Wallis in the seventeenth century)
that �( 1

2 ) � √
π .

You should now stare at the last chapter, where we figured out that the gamma
density was approximately normal for large α. You will see that nowhere did we
require that α be an integer. Therefore, the theorem of the normal approximation
to a gamma variable (10.5.5) is still true for (large) fractional α. But then Stirling’s
approximation also still works:

�(α) ≈
√

2π (α − 1)α− 1
2 e−α+1

It is not traditional to write it this way; instead, we factor

(α − 1)α−1/2 � αα−1/2(1 − 1
α

)α−1/2.

But you should check that using the technique by which we derived the Poisson
approximation to the binomial (see 6.4.1), we know that (1 − 1

α
)α−1/2 ≈ e−1 for

large α. This cancels the 1 in the other exponent:

Proposition (Stirling’s formula). �(α) ≈ √
2παα−1/2e−α for large α.

When you try it, you will discover that the adjustment makes very little
difference. So now we can calculate any large value of the gamma function,
approximately.

One more step will allow us to calculate any value at all. Try to integrate
the definition at α + 1, by parts: �(α + 1) � ∫∞

0 xαe−xdx � −xαe−x |∞0 +
α
∫∞

0 xα−1e−xdx, where the parts are u � xa and dv � e−xdx. You should check
that the upper limit of the difference is zero, by L’Hospital’s rule. We know the
value of the integral on the right:

Theorem (gamma recursion). �(α + 1) � α�(α).

As an exercise, you will show how to use this to get the gamma function for
α an integer (again). But the novelty is for half-integers: �( 3

2 ) � �
( 1

2 + 1
) �

1
2�
( 1

2

) � √
π/2, �( 5

2 ) � �
( 3

2 + 1
) � 3

2�
( 3

2

) � 3
√

π/4, and in general,

�

(
2k + 1

2

)
� (2k − 1)(2k − 3) · · · 3 · 1

2k

√
π.

So now we have covered half-integers as well as integers.
None of this seems to help with small, fractionalα, such as �(0.2). But notice that

even for α small, if n is large enough Stirling’s approximation will calculate �(α+
n) reasonably accurately. Then from the recursion,�(α+n) �∏n

i�1(α+i−1)�(α).
Nothing stops us from using this backwards: �(α) � �(α + n)/

∏n
i�1(α + i − 1).

Then we approximate
∏

(α + n), with ever better accuracy for as large an n as we
have time to compute; and we have a good approximation to �(α).

Example. �(0.2) � �(10.2)
0.2·1.2·2.2·3.2·4.2·5.2·6.2·7.2·8.2·9.2 ≈ 4.55, with more accuracy if

we are willing to divide more times. Since Stirling’s approximation to �(10) is
within 1% of the correct value, it is a reasonable guess that so is our answer.
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Theorem (recursive calculation of the gamma function). For any α that is not a
nonpositive integer,�(α) � limn→∞(

√
2π (n+α)n+α−1/2e−n−α)/(

∏n
i�1(α+i−1)).

We needed the gamma function so we would know the constant in the gamma
density. What we really need, though, is a cumulative distribution function from
which to get probabilities. In general, we cannot evaluate the integral of the density.
But there is really no problem; our old formula for the Gamma(α) cumulative still
works, as you will check as an exercise: F (x) �∑∞

y�α
xy

�(y+1)e
−x , where a gamma

function has replaced the factorial. But we do not really have to compute a gamma
function for each of enough terms for this computation to become reasonably
accurate. Use the gamma recursion and factor out the constant terms:

Proposition. For X a Gamma(α) variable,

F (x) � xα−1

�(α)
e−x

∞∑
y�1

xy∏y−1
x�0(α + z)

� f (x)
∞∑

y�1

xy∏y−1
x�0(α + z)

.

11.5.4 Chi-Squared Variables
By now you have probably forgotten why we cared about gamma variables with
fractional shape parameter in the first place. It was because a chi-squared statistic
for a k-independent Poisson cells contingency table model was approximately a
sum of k squares of independent standard normal variables. Now we know that each
square is a Gamma( 1

2 , 2). But a sum of independent gammas with the same scale
parameter is still a gamma; the new proof in this section works for the fractional
case. We have discovered an enormously useful result:

Theorem (chi-squared distribution). The sum of squares of k independent
standard normal random variables is a Gamma(k/2, 2) random variable.

This is so widely used that it has been given a name:

Definition. A Gamma(k/2, 2) random variable is called a chi-squared variable
on k degrees of freedom.

We have its first application:

Proposition. Let X be a vector of k counts with independently Poisson(λ) distri-
butions, with each

√
λi large. Then χ2 � ∑k

i�1(Xi − λi)2/λi has approximately
a chi-squared distribution on k degrees of freedom.

Example. In Chapter 8 (see 8.4.3) we compared one year’s tornadoes with the
historical rates in three states, getting a chi-squared of 4.0247 on 3 degrees of
freedom. This is larger than the 3.0 we would expect. Is it surprisingly large? We
compute the probability that a chi-squared random variable on 3 degrees of freedom
would be 4.0247, or perhaps even larger. P(χ2 ≥ 4.0247) � 1 − F (4.0247). We
transform to a scale parameter of 1 : 4.0247/2 � 2.0124. Our probability is 0.2588
after 10 terms in our series (you should check my calculation). It seems that this
year was no worse for tornadoes than we might often have found by accident.
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We will find later that this approximate distribution works as well for other
models for contingency tables. Furthermore, it works only slightly less well for
G-squared.

11.5.5 Beta Variables in General
Now that we know what fractional factorials mean, we can generalize other families
as well.

Definition. A Beta(α, β) random variable with real parameters α, β > 0 and
sample space 0 < X < 1 has density f (x) � �(α+β)

�(α)�(β)x
α−1(1 − x)β−1.

Example. In Chapter 4 we figured out that the density of the horizontal position of
a dart hit on a unit-radius circular dart board was f (x) � 2

π

√
1 − x2 on −1 < X <

1 (see 4.8.1). Transform it to 0 < Y < 1 by the change of variables Y � (1+X)/2;
you should check that we get

f (y) � 8
π

√
y(1 − y) � �(3)

�(3/2)�(3/2)
y3/2−1(1 − y)3/2−1.

It turns out to be a Beta( 3
2 , 3

2 ) random variable.

How do we know that all these new beta random variables actually exist? Our
theorem that says that a beta is a certain ratio of gammas, which now does not need
to have integer parameters, allows us to construct them and says that we have the
right density. See the next chapter for applications.

11.6 Bayesian Inference in Continuous Families

11.6.1 Bayes’s Theorem Revisited.
Multivariate discrete random variables (see Chapter 7.8) turned out to be a useful
tool for inference about an unknown parameter. We treated such a parameter as a
random variable with a particular prior distribution, to reflect our uncertainty about
it. We then imagined our experiment as involving the conditional distribution of
the observed data, given possible values of the parameter. Finally, after doing the
experiment and making those observations, we used Bayes’s theorem to construct
the conditional, posterior, distribution of the unknown parameter, given the values
of the data we found. Reasonable conclusions then followed easily. We called this
style of statistical reasoning Bayesian inference.

The example (see 7.8.2) involved n, an unknown binomial sample size. Since
n takes on discrete values, we gave it a discrete prior (in fact, Poisson) random
variable. Lately, though, most of our parameters have been continuous (we just
figured out how to make α, the gamma shape parameter, continuous). This suggests
that we would prefer to give them continuous prior distributions. It seems that we
need a form of Bayes’s theorem for densities.
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Let random vectors X, Y have joint density f (x, y). We know that f (x, y) �
fX(x)fY|X(y|x) � fY(y)fX|Y(x|y). Clearing the denominator, we get an old friend:

Proposition (Bayes’s theorem). fX|Y(x|y) � (fX(x)fY|X(y|x))/(fY(y)) when-
ever fY(y) �� 0.

Now we write the density of a vector of observations x that depend on a value
of the vector of parameters θ as fX|θ(x|θ). Since we do not know what θ is,
we describe our uncertainty by letting it be a random variable with prior density
fθ (θ ). Bayes’s theorem gives us a formula for the posterior density fθ |X(θ |x) �
(fθ (θ )fX|θ (x|θ ))/fX(x).

Of course, we shall have to compute that marginal distribution of X; but we
can do this by integrating the basic relationship fX(x)fY|X(y|x) � f (x, y) �
fY(y)fX|Y(x|y) with respect to Y:

fX(x)
∫

fY|X(Y|x)dY �
∫

f (x, Y)dY �
∫

fY(y)fX|YdY.

That first integral simply integrates a conditional density over all values of the
random vector Y; therefore, its value is 1; the second is the marginal density of X.

Proposition. For a random vector X, Y with density f (x, y),

fX(x) �
∫

f (x, Y)dY �
∫

fY(Y)fX|Y(x|Y)dY.

Now apply the proposition to our expression for the posterior density of param-
eters, to get fθ|X(θ|x) � (fθ(θ)fX|θ(x|θ))/(

∫
fθ(θ)fX|θ(x|θ)dθ). You see that the

denominator is simply the constant necessary to turn the numerator into a density
for the random vector θ ; sometimes we will be able to guess that constant without
further effort. You should look at the parallel structure between this formula and
the discrete one in (7.8.1).

11.6.2 Application to Gamma Observations
We have already considered the problem of inference about unknown parameters
when the data are believed to come from a gamma random variable (see Chapter 9.6
and 10.7.3). Let us see whether Bayesian inference answers some interesting ques-
tions in this case. A Gamma(α, β) observation will have the density, conditioned
on the parameters, f (x|α, β) � xα−1/(βα�(α))e−x/β . To keep the difficulties
manageable, assume that α is known and a constant in all that follows. We need
to assume a prior density for β that reflects our ignorance; the theory of the last
section will apply to any prior density whose sample space makes sense for β.
In practice, you may discover, most forms of prior density force you to do very
difficult calculus. Therefore, we will look for forms that make life easy. To do this,
stare at the gamma density, and try to imagine that β is the random variable and x

is known. It seems as if β would itself be something like a gamma variate, except
that it is consistently in the denominator instead of the numerator. This suggests
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that we might give β an inverse gamma prior (see Exercise 10.13). That is, 1/β

would be thought of as a gamma variable.
Specifically, let the prior distribution for β be Inverse Gamma(γ, δ), so that its

prior density is 1
βγ+1δγ �(γ )e

−1/δβ for β > 0. (The hard part to remember will be that
β is the variable here.) Then the numerator part of the posterior density is

1
βγ+1δγ �(γ )

e−1/δβ xα−1

βα�(α)
e−x/β � xα−1

βγ+α+1δγ �(γ )�(α)
e−(x+1/δ)/β .

Again, the denominator would just be that constant that makes this function in-
tegrate to 1; so let us ignore all the constant pieces and look only at the part that
varies with β : 1/βγ+α+1e−(x+1/δ)/β . We conclude that the posterior density for β

must be inverse gamma with shape parameter α + γ and scale parameter 1
x+1/δ

.
We chose the prior so intelligently that the posterior distribution of β was in the

same family of random variables as the prior was. Only the parameters changed,
in simple ways. When we can do this, we say that the prior f (θ ) is the natural
conjugate prior of the family of distributions assumed to describe the observations
f (x|θ ). It is by no means always reasonable to do this; but if it is, it makes life so
much easier that we leap at the chance.

One way we noticed in (7.8.2) that we could extract useful conclusions from
that posterior was to exploit the fact that the expected value of a variable was the
value that had the smallest mean squared error. Again checking Exercise 10.13,
β̂ � E(β) � (x + 1/δ)/(α + γ − 1). If we let γ � 1 (so β has an inverse negative
exponential prior) and let δ be very large, the estimate approaches the method-
of-moments estimate x/α. The variance of β provides us with the mean-squared
error of this estimate: Var(β) � (x + 1/δ)2/[(α + γ − 1)2(α + γ − 2)].

Example. Return to the mouse lifetime data yet again (see 9.6.2) where we as-
sumed that α � 5 but wished to estimate β. Give β an inverse gamma prior
distribution, with the shape parameter γ � 1 suggested above. The standard
textbook suggested a β of 60 days. Unfortunately, our prior cannot match that
on average because, you should notice, its expectation is infinite. Let us instead
give it a median prior of 60 days. Since the median of a negative exponential(δ)
random variable is δ log(2), we can set the median of our prior to 60 � 1

δ log(2) .
Thus let 1/δ � 41.59. Now, we assume the grand total lifetime of 7742 to have
shape parameter nα � 20 × 5 � 100. The expected posterior estimate is then
β̂ � E(β) � 7742+41.59

100 � 77.84 days. This estimate has a variance of 61.2, and so
a standard error (square root of its variance) of 7.82 days.

A 99% Bayes interval is easy to build; it is just a range of β values that
have a probability of 99% under the posterior distribution (in this continuous
case we can do it exactly). That posterior distribution was inverse gamma; but
that is no problem. We construct a 99% interval in a gamma random variable
with the same parameters, then invert the end points. The (computer-assisted)
computation gives P[T ≤ 0.009779|Gamma(100, 0.0001285)] � 0.005 and
P[T ≥ 0.016397|Gamma(100, 0.0001285)] � 0.005. The 99% Bayes interval
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is then 60.99 ≤ β ≤ 102.25. Notice that this is very close (within half a day) of
the exact 99% confidence interval.

Expressing this analysis for the posterior expectation in terms of the sample
of n measurements, we get β̂ � E(β) � (

∑n
i�1 xi + 1/δ)/(nα + γ − 1) �

(x̄ + 1/nδ)/(α + (γ − 1)/n). Then for any choice of prior parameters, the Bayes
estimate gets ever closer to the standard estimate β̂ � x̄/α as the sample size
n gets larger. This is a common observation with Bayesian analysis; it is called
the swamping of the prior. Many statisticians worry that Bayesian methods are
influenced by the statistician’s opinion, as reflected in the prior distribution. But
Bayesians can answer that if you have enough data, the prior will not matter much.

11.7 Two Normal Random Variables

11.7.1 Approximating Conditional Variables
Start again with the fact that for T and S independently Gamma(α) and Gamma(β),
we haveU � T +S is Gamma(α+β). Notice that we have yet another consequence.
For α and β both large, T is approximately Normal(α, α), and S is approximately
Normal(β, β). But also U is approximately Normal(α + β, α + β); furthermore,
if we take parameters big enough, the approximations are as good as we wish.
It looks as if normal random variables, with possibly very different centers and
scales, have some sort of nice addition property, as gamma and Poisson variables
do. If X and Y are any independent normal random variables, for what constants
a and b will it turn out that Z � aX + bY is normal?

We also found that V � T/(T + S) is independently Beta(α, β). But that says
that knowing the particular value T + S � u has no effect on the distribution
of V � T/u. Therefore, the conditional distribution of T , given T + S � u,
is a constant multiple u of a Beta(α, β) random variable. This says that a large-
parameter approximation to a beta distribution is a normal variable conditioned
on another normal. Is it possible that beta variables are sometimes approximately
normal? We will decide both these questions at once.

11.7.2 Linear Combinations of Normal Variables
We know from the definition that we can always change the means and variances
of our variables to anything we want later; so let X, Y be independently standard
normal. Their joint density is

f (x, y) � 1√
2π

e− 1
2 x2 1√

2π
e− 1

2 y2 � 1
2π

e− 1
2 (x2+y2).

We want the density of Z � aX + bY ; the Jacobian method says that we need a
second transformed variable to make it one-to-one. There are many choices, but you
will see that in this case the algebra is easiest if the new variable is uncorrelated
with the old one. A simple choice with this property is W � bX − aY . As an
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exercise, check that indeed Z and W have a covariance of 0. Now carry out the
algebra of solving our equations for X and Y :

X � a

a2 + b2 Z + b

a2 + b2 W,

Y � b

a2 + b2 Z − a

a2 + b2 W.

The coefficients give us the G matrix; you should check that J � | det G| � 1
a2+b2 .

Substituting in the exponent of the density, − 1
2(a2+b2)2 [(az+bw)2 + (bz−aw)2] �

(z2+w2)
2(a2+b2) . The cross-terms in zw canceled out, because of our bright choice to make
z and w uncorrelated. We get a density

f (z, w) � 1
2π (a2 + b2)

e−(z2+w2)/[2(a2+b2)]

� 1√
2π (a2 + b2)

e−z2/[2(a2+b2)] 1√
2π (a2 + b2)

e−w2/[2(a2+b2)],

which factors because of the missing cross-term. We recall that when the density
factors, Z and W must be independent. Furthermore, we can read off that they are
each independently Normal(0, a2 + b2).

A general case is now easy. Let X be Normal(µ, σ 2) and Y be independently
Normal(ν, τ 2). Now let us ask what the distribution of Z � aX + bY + c is,
for a, b, c constant. We know by definition that X � µ + Sσ and Y � ν +
T τ for S and T independent standard normal. Then we need the distribution
of Z � aσS + bτT + aµ + bν + c. We know from the last paragraph that
aσS + bτT has a Normal(0, a2σ 2 + b2τ 2) distribution; finally we get that Z is
Normal(aµ+bν+c, a2σ 2 +b2τ 2). Indeed, any linear combination of independent
normal variables also has a normal distribution.

Theorem (linear combinations of normal variables). Let X be Normal(µ, σ 2)
and Y be independently Normal(ν, τ 2).

(i) Z � aX + bY + c is Normal(aµ + bν + c, a2σ 2 + b2τ 2).
(ii) Any two linear combinations of normal variables that are uncorrelated are

also independent.

This has a very useful consequence: Let X1, . . . , Xn be an independent ran-
dom sample of Normal(µ, σ 2) variables. Now consider its sample mean X̄ �
1
n

∑n
i�1 Xi ; after applying the theorem n − 1 times, introducing each of the

observations in turn, we get the following:

Proposition.

(i) For an i.i.d. random sample of n Normal(µ, σ 2) random variables, X̄ is
Normal(µ, σ 2/n).

(ii) P(X̄ − zα/2
σ√
n

≤ µ ≤ X̄ + zα/2
σ√
n

) � 1 − α.
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This reassures us about what we conjectured earlier (see 10.7.3): What was
approximately true for sample means with largen from gamma and Poisson random
variables is exactly true if the observations are normal in the first place.

11.7.3 Conditional Normal Variables
We have also asked what might happen to one of our normal random variables when
we learn about some linear function that gives us partial information about it. It will
be general enough to ask, if Z and W are independently standard normal, and we
learn that aZ +bW � c, then what will the conditional distribution of Z become?
Following the procedure of the last section, let S � aZ + bW and T � bZ − aW .
Then S and T turned out to be independently normal with means 0 and variances
a2 + b2. Now invert the transformation: Z � a/(a2 + b2)S + b/(a2 + b2)T . But
our information says that S � c, and that has no effect on our knowledge of T ,
which is independent of it. Therefore, conditionally on aZ + bW � S � c, we
learn that Z � ac/(a2 + b2) + b/(a2 + b2)T is normal with mean ac/(a2 + b2)
and variance (after squaring the coefficient on T ) b2/(a2 + b2).

As an exercise, we will let you translate this result into one about general normal
variables, using X � µ + σZ and Y � ν + τW .

Proposition. Let X be Normal(µ, σ 2) and Y be independently Normal(ν, τ 2).
Then the distribution of X given that dX + eY � f is

Normal
[
µ + dσ 2(f − dµ − eν)

d2σ 2 + e2τ 2 ,
e2τ 2

d2σ 2 + e2τ 2 σ 2
]

.

11.7.4 Approximating a Beta Variable.
This last result was addressed to our question about the normal approximation to
a gamma variable T , conditioned on T + S � u, when the parameters α and β

of the T and S are large. Using the normal approximations to each variable (see
10.5.5) and our calculation above, we find that T is conditionally approximately
normal with mean α + [α(u − α − β)]/(α + β) � (αu)/(α + β) and variance
(αβ)/(α+β). Now V � T/u we know to be Beta(α, β); and further, we know that
V is approximately normal with mean α/(α + β) and variance (αβ)/[u2(α + β)].
This last is silly: The distribution of V does not depend on u at all; so no reasonable
approximation should. With high probability u would be relatively near its mean
α + β; so we may use that value, variance (αβ)/(α + β)3. This is so close to the
actual beta variance (αβ)/[(α + β)2(α + β + 1)] for α and β large that we will
now be happy to use that in our final result:

Theorem (normal approximation to the beta). Let V be Beta(α, β). Then V is
approximately Normal

[
α/(α + β), αβ/[(α + β)2(α + β + 1)]

]
for

√
α and

√
β

large.

Example. Someone has proposed a new Uniform(0, 1) random number generator.
As a quick test of whether it has a bias toward values too large or too small, you
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generate 101 random numbers, sort them, and pick out the median. If it is a good
random number generator, then that median m, the middle order statistic, will have
a Beta(51, 51) distribution. This is a good candidate for a normal approximation,
Normal(0.5, 0.002427).

We shall do a two-sided hypothesis test with null hypothesis that the mean is
in fact 0.5, with significance level 0.05. We noted earlier (see 10.7.1) that for Z

standard normal, P(−1.96 ≤ Z ≤ 1.96) � 0.95. Using our normal approximation
to m, we find that we should announce that the generator has peculiar behavior if
m > 0.59656 or m < 0.40344. We will be blowing the whistle on a sound method
with approximate probability only 0.05. (Using beta–binomial duality (see 9.5.3)
it may be checked that the actual coverage probability of this normal interval is
0.9505—very close, and even a little conservative.)

It might be noticed that the errors in the approximation that came from the
Gamma(α) and Gamma(β) part are of opposite signs; so in practice errors partially
cancel out. In such a case, the normal approximation turns out to be even better
than we expect. The effect is strongest, and the errors smallest, in cases like this
where the two parameters are equal.

11.8 Normal Approximations to the Binomial and
Negative Binomial Families

11.8.1 Binomial Variables with Large Variance
We can use the same conditioning technique to discover when a binomial random
variable is close to a normal distribution. We just use the dual fact to the one about
gammas and betas: If X is Poisson(λ) and Y is independently Poisson(µ), then
conditional on the information that X +Y � n, X is B(n, p), where p � λ

λ+µ
(see

7.4.2). But for large λ and µ, the Poisson variables are approximately normal. Our
conditioning result for normal random variables then gives us (since λ � np and
µ � n(1 − p)) the following:

Theorem (normal approximation to the binomial). For X a B(n, p) random
variable with

√
n(1 − p) and √

np both large, FX(x) ≈ FZ

(
x+.5−np√
np(1−p)

)
where Z is

standard normal.

We have used a continuity correction here, for the same reason we did in the Pois-
son case (see 10.6.2). Our two conditions can be replaced by requiring

√
np(1 − p),

the standard deviation of X, to be large, since it is only slightly smaller than the
smaller of our two check values.

Historically, this is the first normal approximation result, because deMoivre
discovered the normal distribution while trying to compute binomial probabilities
approximately.

Example. I toss what I believe to be a fair coin 100 times; so that I believe the
number of heads X is B(100, 0.5). Should I be surprised when I get only 43
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heads? One way to measure the surprise is by computing F (43); but that is an
unpleasant calculation. Instead I will compute the standard normal cumulative of
(43.5 − 50)/5 � −1.3, which is 0.0968. It looks as if this is not really all that
surprisingly low a total. (The exact answer is 0.0967; very close indeed.)

11.8.2 Negative Binomial Variables with Small Coefficient of
Variation

By positive–negative duality (see 6.3.3), we of course have a normal approximation
to the negative binomial family as well. Let X be NB(k, p). Then

F (x) � P[X ≤ x|NB(k, p)] � P[X ≤ x|B(k + x, p)].

But then we can use the normal approximation

FX(x) ≈ FZ

[
[x − (k + x)p]/[

√
(k + x)p(1 − p)]

]
(ignoring the continuity correction for a moment) whenever

√
(k + x)(1 − p) and√

(k + x)p are large. To adjust this to the familiar standardized form, we want to
know when we can replace x by its average value kp/(1 − p). The relative error
in this replacement is small with probability near 1 (by our law of large numbers)
whenever this average is large compared to the standard deviation

√
kp/(1 − p).

That happens when
√

kp is large. (The (small) ratio of the standard deviation to
the mean of a positive random variable is called the coefficient of variation.) Then

x − (k + x)p√
(k + x)p(1 − p)

≈ x(1 − p) − kp√
kp

� x − kp/(1 − p)√
kp/(1 − p)

.

The conditions become that
√

k and
√

kp/(1 − p) must be large. But we already
have had to require that

√
kp be large, and that would force both of these to be

large. Now put back the continuity correction to get our approximation:

Theorem (normal approximation to the negative binomial). If X is NB(k, p)
with

√
kp large, and Z is standard normal, then

FX(x) ≈ FZ

[
[x + 0.5 − kp/(1 − p)]/[

√
kp/(1 − p)]

]
.

Example. As in (6.2.5), we are seeking k � 20 left-handed people, given that
they are a proportion 1 − p � 0.1 of the population. What is the probability that
we will interview at least 240 right-handed people along the way? It seems that√

kp � 4.24 is a bit larger than 1, so a normal approximation is worth trying.

P(X ≥ 240) ≈ P
[
Z ≥ 239 + 0.5 − kp/(1 − p)√

kp/(1 − p)

]
� P(Z ≥ 1.4024) � 0.0804

(A computer-assisted exact calculation gives 0.0884.)
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FIGURE 11.5. Negative binomial(k, p) parameter space

11.9 The Bivariate Normal Family

11.9.1 Approximating Two Order Statistics
At the beginning of the chapter, we began with the fact that uniform order statistics
have beta distributions; then we found the joint distributions of two uniform order
statistics. Later on, we used conditioning to discover that as the parameters get
large, a beta random variable is approximately normal. This raises immediately
the suggestion that two uniform order statistics may sometimes behave like such
correlated linear combinations of normal variables. When might that happen?

If we are looking again at the ith order statistic P and j th order statistic Q(j > i)
from a uniform sample of n, then we know that for

√
i and

√
n + 1 − i large, P

has approximately a normal distribution. But we noted in Section 3 that Q is,
conditionally on P � p, a uniform (j − i)th order statistic from a sample of
n − i on the interval (p, 1). Therefore, it was a rescaled Beta(j − i, n + 1 −
j ) variable. This conditional distribution is approximately normal if

√
j − i and
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√
n + 1 − j are large. Obviously,

√
n + 1 − i >

√
n + 1 − j , so for any pair

of order statistics for which
√

i,
√

j − i, and
√

n + 1 − j are large, each one
is approximately marginally normal, and conditionally normal if you know the
other.

Since this pair of random variables has a correlation of ρPQ �
√

i(n+1−j )
j (n+1−i) (ex-

ercise), presumably their normal approximations will have a similar correlation.
Trying various large values of these parameters, you should discover that the cor-
relations can range all over the interval 0 < ρ < 1. (You might notice that
correlations between jointly Dirichlet variates can range over all sorts of negative
values.) Just how flexible can we be in constructing correlations between pairs of
normal variables?

11.9.2 Correlated Normal Variables
We will construct a pair of normal random variables with any correlation we please.
Start with two independent standard normal variables Z and W . We will create a
linear combination of these with arbitrary correlation ρ with Z. This is easy: Let
V � ρZ + aW ; then you may quickly check that Z and V have covariance, ρ. To
turn that into a correlation, we divide by their standard deviations, 1 and

√
a2 + ρ2.

To preserve our intended correlation, we choose a to make the second term 1, or
a � ±

√
1 − ρ2. This works, of course, only if −1 < ρ < 1. The sign will not

matter because W is symmetric about zero; so finally, V � ρZ +
√

1 − ρ2W .
Now to find the joint density of Z and V . We could just use the general change-

of-variables method (exercise), but instead we will use the conditioning method
f (z, v) � f (z)f (v|z). The first term is just the standard normal density. The
conditional distribution of V given Z � z is obviously Normal(ρz, 1 − ρ2). Then
we can write the density

f (z, v) � 1√
2π

e−z2/2 1√
2π
√

1 − ρ2
e−(v−ρz)2/(2(1−ρ2)).

Combining the exponents,

z2 + (v − ρz)2

(1 − ρ2)
� z2(1 − ρ2) + (ν2 − 2vρz + ρ2z2)

(1 − ρ2)
� z2 − 2vρz + ν2

(1 − ρ2)
.

We conclude that the joint density is as follows:

Proposition. The joint normal density of two variables with means 0, variances
1, and correlation ρ is f (z, v) � 1

2π
√

1−ρ2
e−(z2−2vρz+ν2)/(2(1−ρ2)).

(see Figure 11.6) It is symmetric in z and v, as we might have hoped.
Now, to modify our variables to have any mean and variance we want, let

X � µ + Zσ and Y � ν + V τ . You should remind yourself from properties of
the correlation in Chapter 7 (see 7.5.5) that these transformations have no effect
on ρ. We will let you transform the density to one in X and Y , to get a density
so complicated that no one should ever have to memorize it. Nevertheless, this
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FIGURE 11.6. Bivariate normal density with ρ � 0.7

is called the bivariate normal family, with five parameters µ, ν, σ , τ , and ρ. We
already know an application:

Proposition. The ith and j th order statistics (i < j ) from a uniform sample of
n with

√
i,

√
j − i, and

√
n + 1 − j large has approximately a bivariate normal

distribution with the same means, variances, and correlation.

As an exercise, we will let you show that a (discrete) trinomial random vec-
tor, under conditions you will discover, has approximately a bivariate normal
distribution.

11.10 The Negative Hypergeometric Family Revisited*

11.10.1 Family Relationships
We will close this chapter by bringing to a nice, logical conclusion one of the
recurring themes of much of the book. In Chapter 5, we introduced the negative
hypergeometric family of random variables. We found that Bernoulli variables
and discrete uniform variables are simple special cases of this family and that the
hypergeometric family was closely related to it. In Chapter 6 we found that as
our parameters got large, negative hypergeometric variables became geometric,
negative binomial, binomial, or Poisson random variables. These, of course, are
all discrete random variables. But then in Chapter 9 we found that by rescaling
our random variable (so that the discrete steps got close together), we could get



368 11. Continuous Random Vectors

continuous asymptotic limits as well. Continuous uniform variables appeared, then
negative exponential, gamma, and beta families; all are ultimately large-parameter
cases of negative hypergeometric variables. Then in Chapter 10 the normal family
appeared as a limit of gamma and Poisson variates. Earlier in this chapter we
found that the beta, binomial, and negative binomial families also have normal
limits. The obvious next question is, can we find simple general conditions under
which negative hypergeometric variables are approximately normal, without going
through any of those intermediate families? We will have thereby gathered all the
far-flung relatives together at grandmother’s house for a reunion.

11.10.2 Asymptotic Normality
Because there are so many relationships available, you can probably think of
several approaches we might take to this problem. I will choose the fact from
Chapter 9 (see 9.5.5) that if X is NB(k, p) and Y is independently NB(l, p), then
if we happen to learn that X+Y � z, it follows that the conditional distribution of
X is N(z, k + l, k). But we learned earlier in this chapter that a negative binomial
random variable is approximately normal for

√
kp large. We will reason that if

both of X and Y have a nearly normal distribution then as when we were looking
at beta variables, their conditional distributions must as well.

In terms of our usual parameter names, we are interested in an N(W, B, b)
variable. By the result mentioned above, we can realize it by conditioning on a sum
of independent NB(b, p) and NB(B −b, p) variables. Notice that the conditioning
argument works no matter what value of p we use; but the fact that negative
binomials converge in distribution to normality depends on the fact that they are,
with high probability, relatively near their expectations. To ensure this, let us choose
p to be the value that puts the total on which we condition, W � X +Y , precisely
at its expectation: W � E(X + Y ) � B

p

1−p
. (Recall that X + Y is NB(k + l, p).)

Then p � W
W+B

. Thus our conditions for normality of each component are that√
Wb

W+B
and
√

W (B−b)
W+B

are large.

Theorem (normal approximation to negative hypergeometric probabilities). Let
X be an N(W, B, b) random variable for which

√
Wb

W+B
and
√

W (B−b)
W+B

are large.
Then if FZ is the standard normal cumulative distribution,

FX(x) ≈ FZ

⎛
⎝ x + 0.5 − Wb/(B + 1)√

Wb(B−b+1)(W+B+1)
B+2 /(B + 1)

⎞
⎠ .

Example. According to school medical records, 98 of the 240 students in a dor-
mitory have type O positive blood. One night, after the records office has closed,
there is a nearby medical emergency that puts enormous strain on the blood bank
and requires large amounts of O positive blood. A medical technician decides that
she must go from room to room in the dormitory until she has found 45 O positive
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students. What is the probability that she will have to ask no more than 110 people
to donate blood?

Clearly, the number of people asked who are not O positive will be an
N(142, 98, 45) random variable, and we want to evaluate F (65). This would in-
volve quite a bit of computation. The conditions for a reasonably accurate normal
approximation are that 5.16 and 5.6 be large compared to 1; and by our modest
standards, they are. We compute FX(65) ≈ FZ(0.1036) � 0.541.

11.11 Summary

The first family of continuous random vectors we studied was the joint distribution
of several uniform order statistics; for example, the ith and j th of a sample of n

have joint density f (p, q) � n!
(i−1)!(j−i−1)!(n−j )!p

i−1(q − p)j−i−1(1 − q)n−j (3.2).
The gaps between these order statistics made up the Dirichlet family, with density
f (x) � [(

∑k+1
i�1 αi)−1]!/[

∏k+1
i�1 (αi −1)!]

∏k+1
i�1 x

ai−1
i (4.3). In order to move from

family to family, we needed the multivariate transformation formula for densities
fY(Y) � fX[g(Y)]Jg(Y) for g a one-to-one function.

Sums of squares of standard normal variates then formed the chi-squared family
of random variables, though these turned out to be gamma variables with frac-
tional shape parameters and density f (y) � yα−1

βα�(α)e
−y/β (5.6). To handle such

problems in general, we needed the factorial of a real number, the gamma function
�(α) � ∫∞

0 xα−1e−xdx (5.3), which further allowed us to define beta densities
with fractional parameters:

f (x) � �(α + β)
�(α)�(β)

xα−1(1 − x)β−1 (5.7).

A continuous version of conditional distributions led us to a continuous exten-
sion of Bayes’s theorem fθ |X(θ |x) � [fθ (θ )fX|θ (x|θ )]/[

∫
fθ (θ )fx|θ (x|θ )dθ ] (6.1).

This made Bayesian inference on parameters with a continuous range of values,
such as a gamma scale parameter, possible (6.2).

The marginal normal approximation to large-parameter gamma variables led us,
by conditioning both sides, to a normal approximation for large-parameter beta
variables (7.4). The discrete dual to this argument led to a classical fact that high-
variance binomial random variables (8.1) (and low coefficient of variation negative
binomials (8.2)) are approximately normal. We then developed a bivariate normal
density function

f (z, v) � 1
2π
√

1 − ρ2
e−(z2−2vρz+ν2)/(2(1−ρ2)),

where ρ is the correlation between Z and V . Now our earlier results about joint
distributions of uniform order statistics led us to conditions for their asymptotic
joint normality (9.2). Finally, we used a conditioning argument to establish when
negative hypergeometric variables are asymptotically normal (10.2).
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11.12 Exercises

1. Solve Exercise 18 from Chapter 7 (about commissions on luxury cars) by the
expectations-of-conditional-expectations method from Section 2 and check
that your result is the same as you got before.

2. Write down the expectations-of-conditional-expectations expression for
E[g(X, Y, Z)] for a general trivariate random vector.

3. Show that our general definition of E[g(X, Y )] makes it a positive linear
operator.

4. Of the 5 friends in the Boston Marathon, what is the probability that the
second-best was ahead of no more than 67% of the field and the fourth-best
was ahead of no more than 28% of the field? (Be careful: Our definition
of order statistics numbers people from the bottom, but race-finishers are
counted from the winner down.)

5. For an absolutely continuous random vector X, Y with density f (X, Y ),
show using Fubini’s theorem that E[g(X, Y )] � EX{EY |X[g(X, Y )|X]} �
EY {EX|Y [g(X, Y )|Y ]} when the two expectations exist.

6. For the joint distribution of two order statistics i < j from a uniform (0, 1)
distribution, show that you can get the density from the cumulative distribution
function by partial differentiation.

7. Let X and Y have the joint density 3360x2(y −x)(1−y)3 on 0 < x < y < 1.

a. Check that this is an order-statistic density.
b. Find the joint density of Z � log X and W � log Y by two one-variable

changes of variable as in Chapter 10 (see 10.4.1). Be sure to write down
the sample space of your new vector.

8. a. Find the Jacobian for the transformation in Exercise 7(b).
b. Find the Jacobian for the polar coordinate transformation of Chapter 10

(see 10.5.3).
9. Let X and Y be the market shares of two competing natural gas companies.

On theoretical grounds, you propose a joint density

f (x, y) � 24x(1 − x − y) on x, y > 0 and x + y < 1.

a. Compute P(X + Y < 0.4).
b. Find E(Y ).

10. Compute the correlation between uniform order statistics Pi and Pj .
11. Let X and Y have the joint density [cos(x + y) + cos(x − y)]/8 with sample

space the square (−π/2, π/2) × (−π/2, π/2). Are X and Y independent?
12. Verify, using a result from Chapter 6 (see 6.4.1), that (1 − 1

α
)α−1/2 ≈ e−1 for

large α.
13. In Exercise 17 from Chapter 9, estimate the average time between accidents

β by a Bayesian analysis, by giving β a prior distribution that is Inverse
Gamma(1, 20).

a. Compute β̂, the posterior expectation of β. What is its standard error?
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b. Construct a 95% Bayes interval for β.

14. If X and Y are uncorrelated, prove that Z � aX + bY and W � bX − aY

are also uncorrelated for any constants a and b.
15. In Exercise 1 from Chapter 1, assume that the measurements of the mass ratios

are from a normal distribution, with unknown mean, but from your experience
with the measuring device they have a standard deviation of 0.0005. Construct
a 95% confidence interval for the unknown mean.

16. The third quartile of a sample of n � 4m + 1 is the i � (3m + 1)st-order
statistic. (It is an estimate of the 75th percentile, because three times as many
observations are smaller than are larger.) Let m � 10 in a Uniform(0, 1)
sample.

a. What are the mean and standard deviation of the sample third quartile?
b. What is the probability that the sample third quartile will exceed 0.8?
c. Redo (b) using the normal approximation, and compare.

17. A census reports that 40% of children in your neighborhood school have blue
eyes. A randomly assigned kindergarten class has 22 children in it.

a. Compute the probability that 6 or fewer will have blue eyes.
b. Redo (a) using the normal approximation, and compare.

18. You like to play a simple Scratcho lottery game that pays off 20% of the time.
You decide that you will keep playing once a day until you have lost 100
times.

a. What is the probability that you will have played at least 130 times?
b. Redo (a) using the normal approximation, and compare.

19. Find the general formula for the correlation between two Dirichlet coordi-
nates.

20. For Z and W independently standard normal, find the joint density of Z and
V � ρZ +

√
1 − ρ2W by the Jacobian change of variables method.

21. Let X and Y be bivariate normal, where X is marginally Normal(µ, σ 2), Y

is marginally Normal(v, τ 2), and the correlation between the two is ρ. Find
their joint density.

22. Let X and Y have the joint density 1
16π

e− 1
128 (25x2−12xy+4y2−174x+52y+313) on the

entire plane. What are the means, standard deviations, and correlation of X

and Y ?
23. In the O positive blood drive example (see Section 10.2), compute the exact

probability of at most 100 students being asked; compare it to the normal
approximation.
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11.13 Supplementary Exercises

24. Write down the trivariate cumulative distribution of the order statistics i <

j < k from a Uniform(0, 1) sample of n.
25. Show that a transformation that is increasing is one-to-one. Then show that

a two-variable transformation that is increasing in each variable (when you
hold the other constant) is one-to-one.

26. Derive the joint density of k uniform (0, 1) order statistics from a sample of
n, by the method of Section 3.

27. Derive the formula for the covariance of two Dirichlet coordinates in another
way, the one that we used to find the multinomial covariance:

a. Point out the simple reason that Xi + Xj is itself a Dirichlet coordinate
with parameter αi, αj .

b. Find Var(Xi +Xj ); then use the variance-of-a-linear-combination formula
to solve for Cov(Xi, Xj ).

28. Let X and Y have independently the Fisher–Tippet density e−xe−e−x . Find
the density of Z � X − Y .

29. Let Z and W be independent standard normal random variables. Find the
density of T � Z2 + W 2 by a polar coordinates change of variables (see
Exercise 8). Did you get what you should have gotten from the results of
Section 5.2?

30. Compute �(14.5). Now compute it approximately using Stirling’s formula,
and compare.

31. Compute �(0.75) approximately, using at least 20 recursive steps. Roughly
how accurate do you believe your computation to be?

32. Derive the formula for a gamma cumulative

F (x) � xα−1

�(α)
e−x

∞∑
y�1

xy∏y−1
z�0 (α + z)

by starting with F (x) � 1
�(α)

∫ x

0 tα−1e−t dt and integrating by parts repeatedly,
in such a way that the power of x always increases. Now show that the infinite
series always converges.

33. Verify that P(χ2 ≥ 4.0247) � 0.2588 using the series in Exercise 32, where
we have 3 degrees of freedom.

34. Use the same formula to approximate P(G2 ≥ 6.76) and P(G2 ≥ 3.13),
where each has one degree of freedom, in the analysis of the smoking survey
in Chapter 8 (see 8.5.3). Interpret your results in words.

35. A Rayleigh random variable with parameters a > 0 and b ≥ 0 has cumulative
distribution function F (t) � P(T ≤ t) � 1 − e−at−bt2 for T > 0.

a. Find the hazard rate function (failure rate function) z(t) � f (t)
1−F (t) for the

Rayleigh family. Does it show increasing hazard or decreasing hazard over
time?
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b. A brand of incandescent light bulb has lifetime a Rayleigh random variable
in months, with a � 0.2 and b � 0.02. What is the probability that of 58
bulbs in a building, at least will 36 will still be burning after 3 months?
(You may use an appropriate approximate method.)

36. Find conditions under which a trinomial random vector has a bivariate normal
approximation.

37. Prove again the normal approximation to the binomial family, this time using
normal approximation to the beta family, and beta-binomial duality.

38. Find conditions under which a hypergeometric random variable H(W +
B, W, n) is approximately normally distributed. (This fact, discovered by
the French mathematician Laplace in the late 18th century, was one of the
first hints of just how widely useful normal random variables were.)

39. Assume that we have a collection of n independent observations X1, . . . , Xn

from a Normal(µ, σ 2), where σ is known but µ is unknown. Let the prior
distribution for µ be Normal(ν, τ 2).

a. Find the posterior distribution of µ, once the X’s have been observed.
Have we chosen a natural conjugate prior here?

b. Write down the posterior expectation and variance of µ.
c. In Exercise 15, compute the posterior expectation of the mass ratio and its

standard error, if ν � 80 and τ � 2. Construct its 95% Bayes interval.

40. Solve the Buffon needle problem (see Chapter 4.1) to find the probability that
a needle intersects a stripe boundary. Hint: Make the center of the needle a
uniform random variable on the interval that is the width of a single stripe.
Then make the angle the needle makes to the stripe a uniform random variable
over possible angles, independent of the position of the center.



CHAPTER 12

Sampling Statistics
for the Linear Model

12.1 Introduction

In Chapter 8 we learned about probability models for contingency tables: that
we could estimate the parameters by the principle of maximum likelihood, and
that we could evaluate the fit of the models using the G-squared and chi-squared
statistics. But this leaves a big hole in our understanding. The very first models
we studied—linear models for rectangular layouts and regression models for mea-
surement experiments, which are among the practically most important statistical
tools—we could estimate by the principle of least squares. But we have no way to
evaluate how well these models fit the data, no probability models to tell us how
much of what we think we see could really be due to chance. In this chapter we
will remedy this deficiency.

We will explore some probability models for errors in linear models and use
these to find the probability distributions of test statistics and statistics of fit for
our models. We will explore the absolutely continuous version of the method of
maximum likelihood as a general method of estimating unknown model parame-
ters. Finally, we will discover that in many circumstances, least-squares estimates
and maximum likelihood estimates are in a certain sense the best, or nearly the
best, estimates we can make.

Time to Review

Chapter 2
Chapter 8, Section 2
Matrix inversion
Taking derivatives under an integral sign
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12.2 Spherical Errors

12.2.1 A Probability Model for Errors
We want to discover some useful probability models for the noise, or lack of fit, in
linear models for measurements (such as ANOVA and regression models) that we
studied in Chapters 1 and 2. We called the noise the residual, or error, associated
with each measurement. For example, in a simple linear regression model our
predictions were ŷi � µ + (xi − x̄)b. Then in all such models the residuals are
ei � yi − ŷi , where yi are the measured experimental responses. To make this a
probability model, the vector of residuals e � (e1, e2, . . . , en)T must be thought
of (before we do the experiment) as an n-dimensional random vector (usually
continuous).

What random vector law should we use to describe our errors? This problem
was not too difficult in the case of contingency tables, because we could very often
see from the design of the experiment that, for example, a multinomial model with
independent rows and columns was appropriate. But with measurement models, a
description of an experiment in which the numbers we get are variable, usually for
reasons that are not known, does not help us much when we want to conclude that
the errors follow some specific random vector law. We will start by putting some
strong restrictions on what sorts of random vectors we will consider, and see what
we learn from that.

If we are going to use the method of least squares, which considers only Eu-
clidean distance from the model predictions to the observations, to estimate our
parameters, we are assuming that what is important is the length of the residual
vector, and not its direction. This led us in Chapter 2 (see 2.5.4) to propose an
assumption of spherical errors, which we can now restate in probability language:

Definition. A random vector is said to be spherically distributed about the
origin if the probability of an event is entirely determined by the lengths of its
vectors (and not by their directions).

In one dimension, this just says that the probabilities of intervals greater than
zero are always the same as the probabilities of the reversed interval less than zero.
That is, for any constant a, P(X > a) � P(X < −a). If X has a density, this is
the same as saying f (x) � f (−x); when we encountered this before, we called it
symmetric about zero.

In two dimensions we have circular symmetry—if you rotate the plane with
axis at the origin, the appearance of the density does not change (see Figure 12.1).

If our spherically symmetric random vector has a density, it must depend only
on the length of the vector x (or, for simplicity, the squared length); therefore, we
can always find a function g such that f (x) � g(xTx). If the density can be written
this way, and its sample space is also spherically symmetric, we know that it is
symmetric about the origin. We will see an example shortly.

Now let us assume that in some linear model, the residuals have a spherical
distribution about the origin. This is at least a plausible way to require that all
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FIGURE 12.1. A circularly symmetric density

repetitions be subject to similar amounts of error. In an exercise, you will notice
that it also requires that different observations be uncorrelated. However, it still
does not say exactly what the random vector is; and a number of different laws are
still possible.

12.2.2 Statistics of Fit for the Error Model
Let us see what consequences the assumption has for our statistics R2 (see 2.5.3)
and F. Remember that we informally justified our definition of F from spherical
errors; so there is hope that we may learn something about it. You may have noticed
long ago that even though we interpreted them in a very different way, R2 and F
may be calculated from each other. So we will proceed to see what we can learn
about R2, and work backwards from there to F. Remember that R2 � SSR

SSR+SSE

for a simple regression problem, but let us come up with what it would mean
in general. Imagine that we have, by least squares, decomposed the observation
vector into y � w+x+z, where w, x, and z are orthogonal to each other. Let w be
the prediction vector for parameters that we are willing to say may not be zero. Let
x be the prediction vector for factors and effects that are controversial—our null
hypothesis is that they might be equal to zero. Then let z be the residual vector from
the entire model. Comparing this to the ANOVA for a one-way layout (see 2.5.2),



378 12. Sampling Statistics for the Linear Model

µ̂ is w, b̂ is x, and ê is z, where the controversy is over whether the b’s for the levels
of the factor are really zero. Our test statistic is then R2 � (xTx)/(xTx + zTz). If
the coefficients corresponding to x are not really zero, then this statistic tends to
be comparatively large.

If we believe the conservative position that the coefficients that give us x are
actually zero, then x + z are the residuals in a simpler model, in which w are the
predictions. This is what we call the null hypothesis in frequentist-style testing. If
there are k degrees of freedom for the coefficients corresponding to x, then x lies
in a k-dimensional subspace of the vector space of observations. Similarly, if there
are l degrees of freedom for residuals z, then z lies in an l-dimensional subspace,
perpendicular to all the x’s. Now we are ready to make our assumption:

H0: The random vectors x + z are spherically symmetric about the origin in
(k + l)-dimensional space.

There is an immediate and somewhat amazing consequence: What if we trans-
form this distribution to any other spherically symmetric distribution, by changing
the lengths of all the vectors? Then x and z both get longer by the same factor
(directions do not matter), and that factor is the same in both the numerator and
denominator of R-squared. It cancels out, and R-squared must be unaffected by
the change of variables.

Proposition. For any random vector x+z spherically symmetric about the origin,
the distribution of R2 depends only on the dimensions k and l of the components.

This means that we can figure out the distribution of R-squared for any sym-
metric error law, and that will always be its distribution. Let us see whether we can
do this. Therefore we will look for an easy-to-work-with density that looks like
g(xTx).

12.3 Normal Error Models

12.3.1 Independence Models for Errors
The assumption of spherical symmetry is certainly consistent with the method of
least squares, but unlike some of our discrete models, we as yet have not connected
it with what actually happens in experiments.

When we take measurements repeatedly in order to make them more accurate, it
is usual to carefully reconstruct each repeated trial so that it is the same as the others,
and so that it is not influenced at all by previous trials. Therefore, for example, we
very carefully clean our test tubes so that no contamination remains and then do the
next experiment. Mathematically, we pursue the ideal of mutual independence of
observations; as in a Bernoulli process. Now, the spherical distribution assumption
does capture our ideal that the errors be comparable from trial to trial—each try
corresponds to a different direction, and all directions are equivalent. Furthermore,
we figured out that spherical observations are uncorrelated. But we know that this
does not make them independent. For example, if they all lie on the surface of
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a hypersphere of radius 1, and if you know all but the last coordinate, then you
know a great deal about it, too: |xn| �

√
1 − x2

1 − x2
2 − · · · − x2

n−1. There is no
independence in such a case.

But it turns out that there is a possible distribution of measurement errors that
both meets the assumption of independence of observations and the assumption of
spherical errors. (In fact, though we will not prove it, there is only one.) Let each
residual ei be independently Normal(0, σ 2). Then, since the densities multiply, we
obtain

f (e)�
n∏

i�1

1√
2πσ

e−e2
i /(2σ 2) � 1

(2π )n/2σ 2 e−∑n
i�1 e2

i /(2σ 2) � 1
((2π )n/2)σn

e−eTe/(2σ 2).

Thus, because of the fact that a normal density is the exponential of a squared
coordinate, a vector of independent normals with mean zero has a density of the
form g(eTe). The density depends only on the squared length eTe of the error
vector.

Proposition. A vector of independent Normal(0, σ 2) observations is spherically
distributed about the origin.

12.3.2 Distribution of R-squared
If we can find the distribution of a normal R2, then this will solve our entire
problem. Earlier, we had imagined an orthogonal decomposition of our residual
vector e � x + z. Then eTe � xTx + zTz. That lets us rewrite the density

f (e) � 1
(2π )k+l/2σ k+l

e−eTe/(2σ 2) � 1
(2π )(k+l)/2σ k+l

e−(xTx+zTz)/(2σ 2)

� 1
(2π )k/2σ k

e−xTx/(2σ 2) 1
(2π )l/2σ l

e−zTz/(2σ 2).

We have discovered that x and z are independent of each other as random vectors.
Furthermore, xTx and zTz are independent chi-squared random variables on k and
l degrees of freedom, multiplied by σ 2 because they each have the joint densities
of independent normal sums of squares (see 2.5.4 and 11.5.4). Therefore, they are
gamma variables. But then we know that R2 � (xTx)/(xTx + zTz) we know must
follow a Beta(k/2, l/2) law (see 9.5.5). Of course, now we know that this must be
true for any spherically symmetric law:

Theorem. Let x be a k-dimensional random vector and z an l-dimensional random
vector orthogonal to it. Assume that x+z is spherically distributed about the origin.
Then R2 � (xTx)/(xTx + zTz) has a Beta(k/2, l/2) distribution.

Example. In Chapters 1 and 2 we looked at a third-grade arithmetic test and
at the effects of curriculum and gender on scores. It was plausible to conclude
that curriculum mattered; but was there any improvement in our understanding
if we went from there to a model that included gender and gender–curriculum
interaction? The sum of squares for those two effects was 18.0 on 2 degrees of
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freedom, and the residual sum of squares was 774.8 on 16 degrees of freedom (see
2.8.1). The R-squared is then 0.0227; if these effects do not matter, and errors obey
spherical symmetry, then this is a Beta(1, 8) random variable. We can calculate the
probability that it would be at least that large by chance, using the beta–binomial
duality: P(R2 ≥ 0.0227) � P[X < 1|B(8, 0.0227)] � 0.832. The statistic is
certainly not surprisingly large, so we have no evidence that gender contributes
anything to the observed scores.

This example was chosen to have even numbers of degrees of freedom, so that
the beta parameters were whole numbers and we could use duality to compute
them. In an exercise, you will see ways to compute beta probabilities in some
other cases.

We defined the F-statistic to be centered at 1 if the parameters are really zero.
But we can turn the traditional F into a beta, and vice versa: In ourcurrent notation,
Fk,l � (xTx/k)/(zTz/l). After some easy algebra (which you should check), R2 �
1/(1 + l/(kFk,l)). We actually carried out this change of variables in Chapter 10
(using whole-number parameters; see 10.4.1):

Proposition. Let Y be an Fk,l statistic from errors spherically distributed about
the origin. Then its density is

f (y) � �(k/2 + l/2)/[�(k/2)�(l/2)]kk/2ll/2[yl/2−1/(l + ky)k/2+l/2]

on y > 0.

We do not need any new computing methods, because we can always change
these into betas.

12.3.3 Elementary Errors
Independent normal error models have been the usual way to analyze linear mea-
surement models ever since they were first proposed by Gauss in 1816. The
traditional justification has been somewhat different from ours, and it is called
the theory of elementary errors. We try to imagine in detail where measurement
inaccuracies come from. For example, let there be many small independent sources
of error for each trial, and let each of them either increase the measurement by a
tiny amount δ or decrease it by that same amount, with probability 0.5 each. If there
are m such sources, then the total error is ei � δX − m/2, where X is B(m, 0.5).
We also know that for

√
m/2 large, X is approximately Normal(m/2, m/4). But

then ei is approximately Normal(0, δ2m/4). If all other trials work similarly, then
our test statistics will have approximately the distribution we have derived in this
chapter.

Over the last 250 years, ever more sophisticated versions of the theory of elemen-
tary errors have been derived, called central limit theorems. The individual sources
do not have to be Bernoulli, nor discrete, nor have exactly the same distributions
(so long as they each have variance small enough to make negligible contribution
to the total), nor completely independent; the total errors still are approximately
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normal for enough sources. You will study a result in that direction in the next chap-
ter. Such facts, along with 150 years of practical experience with normal linear
models, leave us with considerable confidence in their reasonableness.

12.4 Maximum Likelihood Estimation in Continuous
Models

12.4.1 Continuous Likelihoods
Now that we have a plausible probabilistic model for ANOVA and regression, we
might see what good estimates of the parameters would consist of. We would like
something like the criterion of maximum likelihood from discrete model theory
(see 8.2.2). The likelihood was the probability of the observations given a parameter
value, but of course we no longer have probability mass functions. The (continuous)
likelihood ratio test (see 9.7.2) suggested, at least for one variable, that the density
should perhaps play the same role as the mass function in defining a likelihood.

We will once again use a Bayes’s theorem argument to motivate a likelihood,
which, recall, was a sort of probability that a parameter value was correct. For
absolutely continuous random variables, we of course need the new form of the
theorem from the last chapter (see 11.6.1). One possible prior distribution (which
says that we are very ignorant) is to let θ be uniform on some large set A that
includes all plausible values, whose volume is V(A) < ∞. Then on A the density
is f (θ ) � 1

V(A) . (For example, if the parameter were something like a binomial
probability p, then an obvious A is 0 < p < 1.) Now our version of Bayes’s
theorem says that the posterior density of θ after we have obtained our observations
x is

f (θ|x) � f (x|θ)/V(A)∫
A

f (x|θ)dθ/V(A)
� f (x|θ)∫

A
f (x|θ)dθ

over the entire large set A. But this just says that the posterior density for θ (what we
know about how relatively probable various values are after we do our experiment)
is proportional to f (x|θ ). We shall therefore define the likelihood of that vector as
follows:

Definition.

(i) The likelihood of a parameter vector θ given an absolutely continuous
observation vector x is L(θ |x) � f (x|θ ).

(ii) Its maximum likelihood estimate θ̂ is a value of the parameter vector that
makes the likelihood as large as possible.

Finding maximum likelihood estimates for parameters in absolutely continuous
families will be much like the same process in discrete families (see 8.2.2). For
example, let each of n observations xi be from a Gamma(α, β) random variable,
with α known. As in (11.6.2), we wish to estimate the unknown β. The joint density
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of these independent observations is obtained by multiplication (see 11.5.1):

f (x|β) �
n∏

i�1
f (xi |β) �

n∏
i�1

xα−1
i

βα�(α)
e−xi/β � L(β|x).

As in Chapter 8, taking the log-likelihood simplifies things considerably:

log L(β|x) � l(β|x) � −n log �(α) + (α − 1)
n∑

i�1
log xi − nα log β − 1

β

n∑
i�1

xi.

To find the β that makes it largest, differentiate with respect to β and set the result
equal to zero: 0 � ∂l(β|x)/(∂β) � −(nα)/β + 1/β2∑n

i�1 xi . Solving, we get a
maximum likelihood estimate β̂ � x̄

α
. In this case, we get the standard, method-

of-moments estimate, which in (11.6.2) was seen to be the large-sample limit of a
certain Bayes’s estimate.

You will discover that life is not so simple when you try in an exercise to estimate
an unknown gamma shape parameter α.

12.4.2 Maximum Likelihood with Normal Errors
A model with independent normal errors is a set of predictions ŷi of experimental
measurements yi , where the residuals yi−ŷi are independently Normal(0, σ 2). The
likelihood is L(θ |y) � 1/[(2π )n/2σn]e−1/(2σ 2)

∑n
i�1(yi−ŷi )2 , where the parameters θ

are whatever information you need to determine the predictions. As before, we
instead maximize the log likelihood

l(θ|y) � log L(θ|y) � −n

2
log(2π ) − n log σ − 1

2σ 2

n∑
i�1

(yi − ŷi)2.

But θ comes into this expression only through the predictions ŷi , so maximizing the
likelihood is equivalent to minimizing

∑n
i�1(yi − ŷi)2. We have seen this before; it

is the criterion of least squares. So far, maximum likelihood tells us nothing new.

Proposition. A prediction model ŷ for a dependent vector y with errors y − ŷ

distributed independently Normal(0, σ 2) has maximum likelihood estimates for its
parameters equal to the least-squares estimates.

Now let us estimate the other parameter, σ , by maximum likelihood. Dif-
ferentiate with respect to the unknown parameter to get 0 � (∂l)/(∂σ ) �
−(n/σ ) + (1/σ 3)

∑n
i�1(yi − ŷi)2. Solving, we obtain σ̂ 2 � 1

n

∑n
i�1(yi − ŷi)2.

Interestingly, this is just the MSE, except that we divide by n instead of by the
degrees of freedom for error.

If you are going to use this as an estimate of the unknown quantity σ 2, you will
want some idea of how good it is. If we knew all the parameters in our least-squares
prediction model, then the predictions ŷi would be known in advance. Then the
random variables (yi − ŷi)/σ are independently standard normal, and then their
sum of squares is

∑n
i�1(yi − ŷi)2/σ 2. This last is, of course, a chi-squared random
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variable on n degrees of freedom, which is also a Gamma(n/2, 2). Our maximum-
likelihood estimator σ̂ 2 � 1

n

∑n
i�1(yi − ŷi)2 is just a multiple of this (multiply by

σ 2 and divide by n), and so a Gamma(n/2, 2σ/n) random variable. Recall what we
know about gamma variables, we compute E(σ̂ 2) � (n/2) · ((2σ 2)/n) � σ 2. That
is, the estimate is correct on average; it is unbiased. (Actually, by the argument
used in (7.6.4), this is always true for independent and constant-variance errors,
whether they are normal or not.) To get some idea of how uncertain it is, we
compute Var(σ̂ 2) � (n/2) · [(2σ 2)/n]2 � 2σ 4/n. As when we estimated µ using
the sample mean, we find the variance decreasing in proportion to the sample size.
The standard deviation of σ̂ 2, which we call the standard error of the estimate, is
then (

√
2σ 2)/

√
n.

There is a chicken-or-egg problem with our accuracy estimates from the last
paragraph: We have to know the value of σ 2 in order to calculate the standard
error of its estimate. But we would want to estimate it only if it were unknown. In
practice, we usually commit the obvious cheat here: Just insert the estimate σ̂ 2 in
the formula for the standard error,

√
2σ̂ 2/

√
n, and hope it is accurate enough to

be useful.

Example. In the collection of measurements of the speed of light by Michelson
in Chapter 1 (see 1.2.1), we might imagine (for want of knowing any better) that
his errors were independently Normal(0, σ 2). Oddly enough, we do know what
the predictions should have been, ŷi � 299,710.5, which is (as this book is being
written) believed to be, to high accuracy, the true speed of light in air. Therefore,
the mean squared error we computed in Chapter 2, σ̂ 2 � 12,586, is a maximum
likelihood estimate of σ 2. Its standard error is approximately 3,711.

12.4.3 Unbiased Variance Estimates
Of course, as the example suggests, there is an even more fundamental diffi-
culty with estimating σ 2. In the real world of regression and ANOVA problems,
we hardly ever know the parameters in advance; we have to estimate them, and
therefore the predictions ŷi , by least squares. That should obviously mess up the
distribution of the residuals e � y − ŷ, because now ŷ is estimated from the data
and is full of random errors. We need some notation for the “correct” predictions
that would have been made if you had known the correct values of the parameters
in one-, two-, three-way ANOVA or your single or multiple linear regression prob-
lem, or whatever; call the vector ŷC. The assumption of normal errors says that
eC � y − ŷC consists of n independent Normal(0, σ 2) coordinates. Now, when
we made our predictions by least squares, we found in each case that the vector
ŷ of predictions was at right angles to e � y − ŷ (because by ordinary geometry
that made the length of the residual vector as short as possible, review Chapter 2).
But ŷ may lie anywhere in a k-dimensional subspace of the data space, determined
by a linear model with k free parameters (for example, a one-way layout with k

levels of the treatment). But ŷC, because it is calculated from a model of the same
form, lies in that same k-dimensional subspace. Therefore, so does x � ŷ − ŷC,
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the vector of errors in the predictions. Then x is perpendicular to e. This gives us
a Pythagorean theorem (eC)TeC � xTx + eTe.

One interesting consequence is that the estimated residuals e are always shorter
than the residuals from the correct model eC (the hypotenuse is always the longest
side of a right triangle). This means that if we use our maximum likelihood estima-
tor σ̂ 2 on the estimated residuals, we will tend to underestimate the true value of
σ̂ . Let us quantify that underestimate. Remember that in Section 2 we discovered
that we could factor the likelihood

f (eC) � 1
(2π )n/2σ 2 e−eCT eC/(2σ 2) � 1

(2π )n/2σn
e−(xTx+eTe)/(2σ 2)

� 1
(2π )k/2σ k

e−xTx/(2σ 2) 1
(2π )(n−k)/2σn−k

e−eTe/(2σ 2).

Because e is perpendicular to the vectors x in k dimensions, it may be anywhere
in an (n−k)-dimensional subspace. Just as we reasoned before, eTe�∑n

i�1(yi−ŷi)2

is σ 2 times a chi-squared random variable, but now on n − k degrees of freedom.
But then E[

∑n
i�1(yi − ŷi)2] � σ 2(n − k), and we conclude that E(MSE) �

E[ 1
n−k

∑n
i�1(yi − ŷi)2] � σ 2. Therefore, an adjusted version of the maximum

likelihood estimator, σ̂ 2 � 1
n−k

∑n
i�1(yi − ŷi)2, is unbiased for σ 2. (As an exercise,

and inspired by the argument in (7.6.4), you should check that this is always true,
whether those independent errors with common variance are normal or not.) It is
more common to use this estimate in practice than it is to use the simple maximum
likelihood estimate. We will let you discover its variance and standard error.

Notice that if we have values we believe in (or wish to hypothesize) for the
parameters of the model, then we have an alternative unbiased estimator σ̂ 2 �
1
k
xTx � 1

k

∑n
i�1(ŷi − ŷC

i )2. Its distribution is independent of the previous one.
A ratio of the two unbiased estimates of σ 2 has the F-distribution from the last
section; it is, of course, a test of whether or not you really should believe your
hypothesis about the parameters. In exercises you will use this principle to carry
out tests of some such hypotheses.

12.5 The G-Squared Statistic

12.5.1 When the Variance Is Known
You will remember (see Chapter 8.6) that we could compare two models estimated
by maximum likelihood in which one was a special case of the other. We took the
ratio of the likelihoods of the bigger model to the smaller model and computed
twice its logarithm to get the G-squared statistic. This makes sense for comparing
normal linear models as well. For example, let the question be, as in the last
section, whether the treatments really have no effect, that is, whether all bj � 0.
Then the residuals from that simple model are, in the notation of the last section,
yi − ŷC

i � yi − ȳ � eC
i . If you are not willing to make that assumption, then you

compute your usual least-squares (and therefore maximum likelihood) estimates
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b̂j . The residuals from this more sophisticated model are yi −ŷi � yi −ȳ−b̂j � ei ,
and the x-vector consists of the estimates b̂j .

Let us make another of those absurdly unrealistic assumptions: that we have
independent normal errors, and that we know the error variance σ 2. It is hard to
imagine why that would ever be true, but it will help us see how the G-squared statis-
tic works. Under the more sophisticated model, which allows for treatment effects,
the likelihood of all the observations is L(µ, b|y) � 1/[(2π )n/2σn]e−eTe/(2σ 2). The
likelihood of the simpler, no effects, model is L(µ, |y) � 1

(2π )n/2σn e
−eCT eC/(2σ 2) �

1
(2π )n/2σn e

−(xTx+eTe)/(2σ 2). When we take the ratio of these two likelihoods, the con-
stants cancel out. Then we take the logarithm, which removes the exponential, and
multiply by two, to get our statistic

G2(b) � (xTx + eTe)/σ 2 − eTe/σ 2 � xTx/σ 2.

Notice that this has exactly a chi-squared distribution on k −1 degrees of freedom.
This is interesting, because in Chapter 8 and (11.5.4), working with our very
different discrete models for contingency tables, we got approximate chi-squared
distributions, also on degrees of freedom corresponding to the number of free
parameters. You will learn in advanced courses that G-squared statistics are at
least roughly chi-squared distributed for tests of a great variety sorts of models.

12.5.2 When the Variance Is Unknown
In the real world, of course, we usually have to estimate σ 2, a different estimate
in the numerator and the denominator. These are the maximum likelihood esti-
mates. In the numerator, treatment-effects, model σ̂ 2 � eTe/n. Then the likelihood
becomes

L(µ, b, σ |y) � 1
(2π )n/2(eTe/n)n/2 e−n/2;

the data have canceled out of the exponent. Similarly, for the denominator model,

L(µ, σ |y) � 1
(2π )n/2(eCT eC/n)n/2 e−n/2.

Twice the logarithm of the ratio gives us G2(b) � n log[(xTx + eTe)/eTe] �
n log(1 + xTx

eTe ). In earlier sections, our test for zero treatment effects was

F(k−1),(n−k) � xTx/(k − 1)
eTe/(n − k)

� n − k

k − 1
xTx
eTe

.

It seems that G-squared is an increasing function of F—we may use either measure
of fit we want, and we will come to the same conclusion.

Often, we can say more. Ideally, we have many data points for each parameter
we are estimating (for example, many measurements per treatment level). Then
n − k is large compared to k − 1. But then, the expected value of eTe is large
compared to that of xTx. Then, typically, G2(b) � n log(1 + xTx

eTe ) ≈ n xTx
eTe , by the
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basic results about approximation to logarithms in Chapter 3 (see 3.5.1). In this
case n−k

n
≈ 1:

Proposition. For a test of k − 1 free parameters in a normal model with n − k

error degrees of freedom, with n large compared to k −1 and SSE large compared
to SST, G2 ≈ (k − 1)F.

But notice also that as n gets large for fixed k, σ̂ 2 � eTe/(n − k) converges
in probability to σ 2. (Review (7.7.2), and notice its expected value and variance).
Then G2(b) ≈ (xTx)/σ 2; and we have discovered once again that G-squared is
approximately chi-squared on the appropriate numbers of degrees of freedom.

12.6 General Linear Models

12.6.1 Matrix Form
You have probably noticed that we have not yet tackled the issue of how accurate
the parameter estimates are that we obtained by least-squares. It will turn out to
be a reasonably easy problem to solve, once we get used to a drastic change in
notation. We will find ourselves doing what we did in Chapter 2, but instead of
using summation or vector notation, we will use matrix notation.

To illustrate, let us look at one of the more complicated models we studied in
Chapter 1, the multiple linear regression model with two independent variables
(see 1.6.2):

ŷi � µ + (xi1 − x̄1)b1 + (xi2 − x̄2)b2.

We can write the individual predictions as a vector (inner) product

ȳi � ( 1 xi1 − x̄1 xi2 − x̄2 )

(
µ

b1
b2

)
.

An advantage of this way of writing is that we have separated the things that we
knew before we made our experimental observations (the row vector with the x’s)
from the presumably unknown parameters µ and the b’s that we shall have to
estimate from the observations (the column vector). Of course, we want to predict
a number of y’s, so that we will have a (column) vector of ŷ’s. The obvious way
to do that is to stack the row vectors into a matrix:⎛

⎜⎜⎝
ŷ1
ŷ2
...

ŷn

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

1 x11 − x̄1 x12 − x̄2
1 x21 − x̄1 x22 − x̄2
...

...
...

1 xn1 − x̄1 xn2 − x̄2

⎞
⎟⎟⎠
(

µ

b1
b2

)
.

You should check that this is still a matrix product. We denote the matrix by
some letter like X, and call it the design matrix. The vector of parameters we call
something like b. Then we can write the whole prediction process ŷ � Xb.
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Of course, we can write any of our linear regression models this way: The simple
proportionality model has only one column for X and one entry in b. The simple
linear regression model has two each; and other multiple regression and multilinear
models have more than three columns and three parameters. The notation is so
useful that we will give it a name. First, it is usual to express it in terms of the
residuals y − ŷ � e.

Definition. A general linear model is y � Xb + e, where y is a vector of n

experimental observations, X is an n × p design matrix of (known) experimental
settings, b is a p-vector of (unknown) parameters, and e is an n-vector of residuals
(errors).

In our two-independent-variable example, p � 3.
This notation is so flexible that it may be applied to many problems other than

ordinary regression problems, in fact, to all the linear measurement models from the
first chapter. For example, consider a one-way layout with 3 levels of the treatment
and 2 observations at each level. We will start with the uncentered model, with
parameters the individual treatment means µ. The trick will be to write, for, say,
the second observation of the third treatment, ŷ23 � µ3 � 0 · µ1 + 0 · µ2 + 1 · µ3.
We have managed to construct another inner product involving all the parameters,
even though two of them were redundant. Turn this, as above, into a matrix product⎛

⎜⎜⎜⎜⎜⎝

ŷ11
ŷ21
ŷ12
ŷ22
ŷ13
ŷ23

⎞
⎟⎟⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎜⎜⎝

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎠
(

µ1
µ2
µ3

)
.

We have succeeded in putting it in general linear model form. Those 1’s and 0’s
in the X-matrix are called dummy variables—they are not numerical settings, they
just tell us into which treatment group the subject fell.

12.6.2 Centered Form
We, of course, preferred the centered form of our linear models, which must
have a different matrix representation because its parameters are different. As
in the regression case, the first column, the µ-column, just consists of a 1 for
each observation. But what does the other centering condition 1

n

∑
all i bj � 0

mean in the new notation? It is hard to tell, because of course we do not
know the bj . Looking back at the centering conditions in the regression case,
0 � 1

n

∑k
i�1(xij − x̄j )bj � bj

n

∑k
i�1(xij − x̄j ), we see that we can guarantee them

without knowing the regression coefficients, if only that last sum is zero (which
it is). The same reasoning will work in ANOVA models if we adjust our 1’s and
0’s so that they average zero. That can be done in exactly the same way: Subtract
the column average from each entry in the X matrix xij to get xij − x̄j . Then, just



388 12. Sampling Statistics for the Linear Model

as in Chapter 1, each column average will be zero. In our example, each column
average is 1

3 , so the new matrix expression is⎛
⎜⎜⎜⎜⎜⎝

ȳ11
ȳ21
ȳ12
ȳ22
ȳ13
ȳ23

⎞
⎟⎟⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎜⎜⎝

1 2/3 −1/3 −1/3
1 2/3 −1/3 −1/3
1 −1/3 2/3 −1/3
1 −1/3 2/3 −1/3
1 −1/3 −1/3 2/3
1 −1/3 −1/3 2/3

⎞
⎟⎟⎟⎟⎟⎠
⎛
⎜⎝

µ

b1
b2
b3

⎞
⎟⎠ .

Generally in the one-way layout the correction will be nj/n. As exercises, we will
let you write out the centered matrix models for other cases of ANOVA. For now,
we will make this a definition and see later what advantages it offers.

Definition. The design matrix Xis centered if the first column consists of 1’s and
the average of each later column is 0.

We know that we can compute the bk coefficient once we have estimated the
others; so we could still do the predictions in this model if we simply leave off the
last column, and the last row of the coefficient vector. Later we will ask when we
would wish to do that.

12.6.3 Least-Squares Estimates
Now for the fun part: we can estimate the general linear model by least squares,
in all its many cases, by an easy application of the method from Chapter 2. We
want that vector b that makes the squared length of the residual vector eTe �
(y − Xb)T(y − Xb) as small as possible. For any value c of the coefficient vector,

(y − Xc)T(y − Xc) � [y − Xb + X(b − c)]T[y − Xb + X(b − c)]
� (y − Xb)T(y − Xb) + (b − c)TXT(y − Xb)

+ (y − Xb)TX(b − c) + (b − c)TXTX(b − c).

We did this by applying the familiar rules of algebra, but recall two special fea-
tures of matrix multiplication: that AB does not necessarily equal BA, but always
(AB)T � BTAT. This is the same argument as the one used repeatedly in Chapter
2. Notice that by the rule for transposes, the two middle terms are transposes of
each other, but they are scalars (1 × 1 matrices), and so equal. We can get rid of
both of them if we choose b such that XT(y − Xb) � 0, that is, if b is a solution of
XTy � XTXb. If you will decode the matrix algebra, this is a linear system of p

equations in p unknowns; it will be the general version of our normal equations.
Finally, the last term in our expansion is the squared length of the vector X(b − c);
which is at least 0. We summarize these in a familiar form:

Theorem (least-squares estimates for the linear model). For the prediction
model ŷ � Xb, let b be a solution of the normal equation XTy � XTXb; then

(i) for any vector c, (y−Xc)T(y−Xc) � (y−Xb)T(y−Xb)+(b−c)TXTX(b−c);
therefore
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(ii) b is a least-squares estimate; and in particular, letting c � 0, we have the
decomposition of the sum of squares

(iii) yTy � bTXTXb + (y − Xb)T(y − Xb).

As exercises, we will let you check that the various estimates from Chapter
2 were all special cases of this theorem. For example, simple linear regression
(p � 2 columns) leads to the matrix equation (as you should check)

XTy �
( ∑n

i�1 yi∑n
i�1(xi − x̄)yi

)
� (XTX)b �

(
n 0
0
∑n

i�1(xi − x̄)2

)(
µ

b

)
.

As an exercise, you should multiply this out and solve to see that the estimates are
the same ones we got before. It will have been easy because of these zeros, which
are there because the model is centered.

Often we can use matrix notation to write down the solution of the normal
equations. If the p × p matrix XTX is nonsingular, then we can compute its
inverse matrix (XTX)−1 (time to review more matrix algebra). This is a matrix that
has the property (XTX)−1XTX � I, where I, the (p × p) identity matrix, has 1’s
on the diagonal and zeros elsewhere. Therefore, for any matrix A with p rows,
IA � A. Our method will be to multiply both sides of the normal equation by
the inverse matrix to get (XTX)−1XTy � (XTX)−1XTXb � Ib. This gives us the
explicit matrix equation b̂ � (XTX)−1XTy for the least-squares estimate.

This equation is less useful than you may think. For one thing, it is usually
easier just to solve the normal equations than to compute the inverse. For another,
very often XTX is singular, and therefore has no inverse (though you can still solve
the equations). For example, the uncentered version of the one-way layout gives
a singular XTX matrix. If we throw out the last column of X, then XTX it can be
inverted (exercise). Generally, you can pare down any design matrix until it has
the minimum number of parameters; then XTX may be inverted.

12.6.4 Homoscedastic Errors
To talk about the accuracy of our estimates, we will need to imagine that the
observation vector is a random vector. Earlier in the chapter we had made two
somewhat different assumptions about the nature of the residuals: (1) that they
have spherical symmetry and (2) that they are independent of one another and
have the same marginal distributions. We then noted that independent normal
errors with constant variance met both our criteria. To discuss accuracy, we will
make yet a third assumption. No doubt you noticed in Chapters 2 and 7 how similar
the theories of least squares and variances are (there had to be some reason for
calling s2 a sample variance). To exploit this, we will assume in this section that
our residuals each have expectation 0 and the same finite variance, and that they
are uncorrelated. There is an impressive word for this:

Definition. A residual vector e is homoscedastic if for all i, E(ei) � 0, Var(ei) �
σ 2, and for all i �� j , Cov(ei, ej ) � 0.
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This condition will let covariance terms drop out of variances of linear combina-
tions, which will keep things simple. We have already noted the connections with
the earlier assumptions: If either spherically symmetric or independent identically
distributed residuals with expectation 0 have finite variances, then they are ho-
moscedastic. (You will discover in exercises that it does not always work the other
way.) Then, obviously, independent normal residuals are also homoscedastic.

For an experiment believed to have homoscedastic residuals, take the average
value of our least-squares estimate

E(b̂) � E[(XTX)−1XTy] � E[(XTX)−1XT(Xb + e)].

Multiplying by a matrix of constants is just taking linear combinations; fur-
thermore, we assumed E(e) � 0. Therefore, E(b̂) � (XTX)−1XTXb � b; a
least-squares estimate of b is unbiased.

Now for the variances of the estimates. Actually, we are going to extract the
covariance matrix of the random vector b̂, which will include the covariances
between the estimates of different parameters. The covariance matrix of the residual
vector is, because it is homoscedastic, b̂; where I is the n × n identity matrix. But
since the predictions Xb are constants, Var(y) � Var(Xb+e) � Var(e) � σ 2I. We
want Var(b) � E[(b̂ − b)(b̂ − b)T]. We know b̂ � (XTX)−1XTy. Back in Chapter
7 we derived a theorem that said that for any random vector Z and any matrix A,
then the covariance matrix Var(AZ) � AVar(Z)AT (see 7.6.2).

We now calculate that covariance matrix:

Var[b̂] � (XTX)−1XTVar(y)X(XTX)−1

� σ 2(XTX)−1XTIX(XTX)−1 � σ 2(XTX)−1

after the identity matrices drop out. This is what we wanted.

Theorem (variance of least-squares estimates). For the least-squares estimate
of a homoscedastic linear model with nonsingular design matrix, Var(b̂) �
σ 2(XTX)−1.

For example, in the simple linear regression model,

(XTX)−1 �
(

1/n 0
0 1/

∑n
i�1(xi − x̄)2

)
.

Therefore, Var(µ̄) � σ 2/n (which we essentially discovered in Chapter 7) and
Var(b̂) � σ 2/

∑n
i�1(xi − x̄)2. In addition, we learn that the two estimates are

uncorrelated (another consequence of centering). In practice, of course, we do
not know σ 2, but a sensible estimate of it using the MSE will let us plausibly
approximate these quantities.

Example. In Chapter 2 we studied how the proportion of British children p taken
to the doctor might be predicted from their ages a by p̂ � µ+ (a− ā)b (see 2.6.1).
From the MSE we get σ̂ 2 � 92.485. We also found that

∑n
i�1(ai − ā)2 � 280.

Our theorem then tells us that Var(µ̄) � 92.485/15 � 6.1657 and Var(b̂) �
92.485/280 � 0.3303, approximately. Turning these into standard errors, we can
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express our conclusion as µ̄ � 56.33 with error ±2.48, and b̂ � −1.5714 with
error ±0.5747.

12.6.5 Linear Combinations of Parameters
Uncertainty in one parameter estimate may not be exactly what we want to know.
For example, we may have done our estimates for the parameters µ and bi for
the centered one-way layout. What if we wanted instead to know the level mean
µi � µ + bi? As we know, we do not have to recalculate the estimate; it will
still be least squares, because that depends only on making residuals small, and
the residuals are still the same. But do we have to recalculate the variances? The
new parameter is a linear combination of the old parameters, and we know from
Chapter 7 how to compute variances of linear combinations (see 7.6.1). Let a be
the vector of coefficients, and we want to know how good an estimate of aTb the
obvious estimate aTb̂ might be. First, E(aTb̂) � aTE(b̂) � aTb; the new estimate
is also unbiased (we should have known that, because we knew that it was least
squares). The variance is Var(aTb̂) � aTVar(b̂)a.

Proposition. Given the least-squares estimate of a nonsingular linear model with
homoscedastic errors and a linear combination aTb of its parameters,

Var(aTb̂) � σ 2aT(XTX)−1a.

This may seem like an awfully special result, but it has a very important applica-
tion. Our original reason for being interested in regression was to be able to predict
the results of experiments we have not done yet, at other numerical settings of the
independent variables. For example, in simple linear regression we might want to
try the value x, so we predict ŷ � µ̂+ (x − x̄)b̂. This is a linear combination of our
parameters, so it is unbiased: E(ŷ) � µ + (x − x̄)b. Since the model is centered,
our two parameters are uncorrelated, so

Var(ŷ) � Var(µ̂) + (x − x̄)2Var(b̂) � σ 2
(

1
n

+ (x − x̄)2∑n
i�1(xi − x̄)2

)
.

As usual, in practice we have to estimate this quantity by inserting an estimate of
the residual variance.

Example (cont.). In our British doctor visit problem, we predicted that children
9.5 years old would be taken to the doctor 52.6% of the times they fell sick. The
variance of that prediction is approximately 92.485(1/15+6.25/280) � 8.23; the
standard error is therefore something like plus or minus 2.87%.

Our formula quantifies our warning against using regression for extrapolation
(see 1.5.1): If x is fairly close to x̄, the variance does not increase very fast; but
for x far away from x̄, it increases by the square of the difference, and gets worse
fast.
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12.7 How Good Are Our Estimates?

12.7.1 Unbiased Linear Estimates
So we know all about least-squares estimates in the linear model, and we know that
for normal errors they are also maximum likelihood. On various intuitive grounds,
such estimates seem like a good idea. But assuming that our model is reasonable,
are they really the best estimates we can make? One sensible way to measure that
would be to ask whether the mean squared error of our b̂ is the smallest for any
estimation method.

Actually, it is not. Imagine there was a statistician who had extrasensory percep-
tion, so that he always guessed our unknown parameters b correctly. His “estimate,”
with zero mean squared error, would certainly be better than ours.

But you say that my example is unrealistic. Okay, try this variation: Another
statistician has a boyfriend at a lab that has done an experiment similar to yours,
and she has heard about their preliminary results. You have not, because they have
not been published yet. She computes an estimate from your data, then adjusts it
a little in the direction of the result she got from her friend. Generally, her mean
squared error is less than yours, because she in effect uses more data. What she
has done may well have been quite reasonable, but we want to do our comparison
without taking this alternative into account. After all, we can never be sure of
having useful outside information, and even if we do there is the open question of
how reliable it is.

We will try to disallow such possibilities by insisting that our estimate be unbi-
ased (correct on average)—hers is not, because it will be biased toward the number
she has overheard (at a time when the lab’s experiment is complete but ours is not).
Furthermore, we will assume that all our estimates are fixed linear combinations,
only of our own data vector y. The least-squares estimate we know meets both these
restrictions. So let us rephrase our question as, Among all unbiased estimates of a
nonsingular linear model that are linear combinations of the data, how good is the
method of least squares?

Are there any such linear unbiased estimates other than the least-squares case?
Yes. Imagine that you have an ANOVA model, with several replicates in each cell.
Now reanalyze the problem, but use only some, not all, of your observations from
each cell. You can still get all the parameter estimates by least squares, and the
estimates are a linear combination of the observations that you did use. But then
the estimates are a linear combination of all the data, with coefficients zero at
the observations you did not use. So there are indeed alternative, unbiased linear
estimates.

12.7.2 Gauss–Markov Theorem
Remember that the least-squares estimate is the linear combination b̂ �
(XTX)−1XT

y. Now let any other linear, unbiased estimate be b̃ � Ay for a p × n

matrix A. Because it is unbiased, we know that E(b̃ − b̂) � b − b � 0. But by
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factoring

0 � E(b̃ − b̂) � [A − (XTX)−1XT]E(y) � [A − (XTX)−1XT]Xb.

We will call the difference between the two estimating matrices D � A −
(XTX)−1XT. Then our condition for unbiasedness says that E(Dy) � DXb � 0,
for any vector b (since we do not know b). The only possible conclusion is that DX
is a p × p matrix of zeros, which fact we will write DX � 0. Again from Chapter
7, the covariance matrix of our new estimates is Var(b̃) � AVar(y)AT � σ 2AAT.
But

AAT � [(XTX)−1XT + D][(XTX)−1XT + D]T

� (XTX)−1 + DX(XTX)−1 + (XTX)−1XTDT + DDT
.

We just noticed that DX (and its transpose XTDT) are zero, which gets rid of the
two middle terms:

Proposition. If we have an unbiased linear estimate b̃ � Ay, then Var(b̃) �
Var(b̂) +σ 2DDT, where b̂ is the least-squares estimate and D � A − (XTX)−1XT.

Now, for any linear combination a of the coefficients, we use the theorem from
Chapter 7 to get Var(aTb̃) � Var(aTb̂) + σ 2aT(DDT)a. The matrix product in the
second term is just the squared length of the vector DTa, which tells us that the
second term is at least zero (this ought to remind you of the theorem of Pythagoras
yet again):

Theorem (Gauss–Markov). For a nonsingular linear model with homoscedastic
errors, the least-squares estimate of any linear combination of the parameters is
the linear unbiased estimate with the smallest variance (and so, mean squared
error).

So least squares not only leads to the best predictions of the observations, it leads
to the best unbiased linear estimates of the constants (possibly important laws of
nature) in our model. In our example of estimation by using only part of repli-
cated data, we conclude that the mean squared error would be larger. Apparently,
throwing away data always hurts us.

12.8 The Information Inequality

12.8.1 The Score Estimator
We know now how good least-squares estimates are—in a certain sense, the best
in their class. Can we say similarly general things about how good maximum like-
lihood estimates are? Unfortunately, because they are the solution of a maximum
problem, we usually cannot write them in some neat algebraic form. The most
general approach to computing them involves Newton’s method (see 8.8.1), which
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iteratively improves estimates of a parameter by computing

θ (1) � θ (0) −
[
∂2l(θ (0)|x)

∂θ2

]−1
∂l(θ (0)|x)

∂θ
.

Here l(θ |x) is the log-likelihood for the value θ of the parameter, provided by the
observations x. Since Newton’s method is just as useful for absolutely continuous
as for discrete models, in this section l will refer to either sort.

Our tactic will be to approximate iterative maximum likelihood estimates by
similar but simpler estimates. One such estimate, sometimes used on real problems,
is a single-step method: If we somehow get a pretty good estimate θ (0), then
θ (1) obtained by one Newton iteration is usually a very good approximation to a
maximum likelihood estimate.

Example. Let us fit the proportional regression model ŷ � bx (see 2.3.2),
where the errors are independently Normal(0, σ 2) and σ is known. Then the
log-likelihood for b from observations (xi, yi) is

l(b) � −n

2
log(2π ) − n log σ − 1

2σ 2

n∑
i�1

(yi − xib)2.

Then ∂l(b)
∂b

� 1
σ 2

∑n
i�1 xi(yi − xib) and ∂2l(b)

∂b2 � − 1
σ 2

∑n
i�1 x2

i . Our Newton step is

b(1) � b(0) +
1
σ 2

∑n
i�1 xi(yi − xib

(0))
1
σ 2

∑n
i�1 x2

i

� b(0) +
∑n

i�1 xiyi∑n
i�1 x2

i

− b(0).

The first guess canceled out (so in this case it did not matter what it was), and in a
single step we got the exact least-squares solution.

Of course, this is the best possible behavior for a single step method. We need
to further approximate our single-step method so we can learn about its behavior
for other models. The second derivative, because it is in the denominator, does the
most to make understanding our problem hard. In the example, it is constant (x’s
are the experimental settings), but we cannot count on that happening always. We
shall hope that the second derivative does not vary much by chance and replace
it by its average value. Furthermore, we will assume that the starting guess was
good enough that it does not hurt much to replace it by the true value θ :

Definition. The Fisher information for a parameter θ is

Iθ � E
(

−∂2l(θ |X)
∂θ2

)
.

(Yes, this is the R. A. Fisher of the tea-tasting experiment in Chapter 3.1.) In the
regression example, the information is Ib � 1

σ 2

∑n
i�1 x2

i ; in the single parameter
logistic regression model (see 8.8.2), the second derivative is again constant, so
Ib �∑n

i�1 x2
i pi(1 − pi).

The first-derivative piece of our Newton step always depends on the data, but
it is in the numerator and so is easier to work with. Again, assume that our first
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guess was good enough that we may approximately replace it by the true value of
the parameter θ . Then we make the following definition:

Definition. The score statistic is sθ (x) � [∂l(θ |x)]/(∂θ ).

It will be our approximation to the nonconstant part of a single Newton step
toward the maximum likelihood. So now we are ready to state that approximate
maximum likelihood estimator for θ . We need a good first guess θ (0); but what
could be better than the true value θ? So our estimate is as follows:

Definition. The score estimator of θ is θ̂ � θ + I−1
θ sθ (x).

12.8.2 How Good Is It?
I hope that this proposal bothers you, because it is of very little practical value. What
use is an estimator that assumes that you know in advance the value you are trying to
estimate? But as it turns out, we will learn some things about maximum likelihood
and other methods by discovering simple properties of this score estimate. First,
to find its expected value we need the expected value of the only variable part, the
score statistic. Our result will apply both to discrete and to absolutely continuous
variables; we will carry out our argument with densities and let you carry out
similar argument with probability mass functions as an exercise:

E[sθ (X)] � E[
∂l(θ |X)

∂θ
] �
∫

∂l(θ |x)
∂θ

f (x|θ )dx �
∫

∂ log f (x|θ )
∂θ

f (x|θ )dx

We are using the convention that the single integral sign with no explicit limits
means integrate over the entire sample space of the multidimensional sample x.
Then using what we know about the derivative of a logarithm,

E[sθ (X)] �
∫

[∂f (x|θ )]/(∂θ )
f (x|θ )

f (x|θ )dx �
∫

∂f (x|θ )
∂θ

dx.

You may remember from calculus that often we can differentiate under the integral
sign: ∂

∂y

∫
g(x, y)dx � ∫ [∂g(x, y)]/(∂y)dx is true whenever both integrals exist

and the limits of integration do not depend on y. (If this last condition is not true,
the left hand integral has a y at more than one place; and then the derivative is
more complicated.) So let us assume that the score statistic has an expectation,
and that the sample space of our family does not depend on θ (true, for example,
of normal families). Then

E[sθ (X)] �
∫

∂f (x|θ )
∂θ

dx � ∂

∂θ

∫
f (x|θ )dx � ∂1

∂θ
� 0

because any density integrates to 1. But then for the score estimator, E[θ̂ ] � θ ;
it is unbiased. Since it is only roughly equal to the score estimator, a maximum
likelihood estimator is not necessarily unbiased; but our argument suggests that it
is often nearly so.
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To get the variance of the score estimator, again the only hard part is the variance
of the score statistic:

Var[sθ (X)] � E

{[
∂l(θ |x)

∂θ

]2
}

�
∫ [

∂ log f (x|θ )
∂θ

]2

f (x|θ ) dx

�
∫

[[∂f (x|θ )]/(∂θ )]2

f (x|θ )
dx.

Although it is not yet obvious, this is connected with the Fisher information:

Iθ � E
(

−∂2l(θ |X)
∂θ2

)
� −

∫
∂2 log f (x|θ )

∂θ2 f (x|θ )dx

�
∫ {

− [∂2f (x|θ )]/(∂θ2)
f (x|θ )

+ [[∂f (x|θ )]/(∂θ )]2

f (x|θ )2

}
f (x|θ ) dx

� −
∫

∂2f (x|θ )
∂θ2 dx +

∫
[[∂f (x|θ )]/(∂θ )]2

f (x|θ )
dx.

By the same reasoning we used for the expectation, in the first integral∫
[∂2f (x|θ )]/(∂θ2)dx � ∂2

∂θ2

∫
f (x|θ )dx � 0. We are left with the attractively

simple Var[sθ (X)] � Iθ . Now compute Var[θ̂ ] � I−2
θ Iθ :

Proposition. In a family that has a Fisher information for θ and whose sample
space does not depend on θ , we have for the score estimator Var[θ̂ ] � I−1

θ .

Our goal was to approximate the behavior of a maximum likelihood estimator.
All we have presented is a plausibility argument that it might be similar to our
(impractical) score estimator. Proof that in fact, the inverse Fisher information is
often asymptotically equivalent to the variance of a maximum likelihood estimate
shall have to await a more advanced course. Nevertheless, we have learned enough
that you will not be surprised when I tell you that in many complicated estimation
problems in which the variance cannot be computed exactly, this formula is used
as an approximate variance of a maximum likelihood estimate.

For example, in the single-parameter logistic regression problem, we found that
Ib � ∑n

i�1 x2
i pi(1 − pi). Of course, this is still not computable, because the pi

depend on the true value of the parameter; but we have had to estimate them in the
course of our calculations. Therefore, it is common to use

(∑n
i�1 x2

i p̂i(1 − p̂i)
)−1

as an approximate variance for b̂. In the dose response example in (8.8.2), this
suggests that the standard error to the estimated slope of 0.087 is about 0.024.

12.8.3 The Information Inequality
Now that we have a crude idea of the quality of a maximum likelihood estimate,
we need to have something like a Gauss–Markov theorem to compare it to other
estimators. Once again, it will be much easier to compare the score estimator to
other estimators first. Let g(x) be any unbiased estimator for θ , so that E[g(X)] � θ .
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To compare it to the score estimator, let us find the correlation of the two, ρgθ̂ .
But since θ̂ is just a linear function of the score statistic, ρgθ̂ � ρgsθ

, since a
correlation is unaffected by scale and location changes. The numerator of this
second correlation is Cov[g(X), sθ (X)] � E[g(X)sθ (X)] − E[g(X)]E[sθ (X)]; but
we know that E[sθ (X)] � 0. Thus

Cov[g(X), sθ (X)] �
∫

g(x)
∂ log f (x|θ )

∂θ
f (x|θ )dx �

∫
g(x)

∂f (x|θ )
∂θ

dx.

If we are in one of those situations where we can differentiate under the integral
sign, then∫

g(x)
∂f (x|θ )

∂θ
dx � ∂

∂θ

∫
g(x)f (x|θ )dx � ∂

∂θ
E[g(X)] � ∂θ

∂θ
� 1.

This is a delightfully simple result: When can we get away with it? Again, we
need a random vector whose sample space does not depend on θ ; then we need
both integrals to exist. The second integral, which is just E[g(X)]; we already
know the value of because we assumed that g was unbiased. The first integral, the
covariance, exists if Var(g) and Var(sθ ) both do, by the Cauchy–Schwarz inequality.
We summarize:

Proposition. Let X be a discrete or absolutely continuous random vector whose
distribution depends on a parameter θ but whose sample space does not; and
assume that its Fisher information exists. Let g(x) be unbiased for θ and have a
variance. Then Cov[g(X), sθ (X)] � 1.

You might notice that the result works in reverse as well: If a statistic has
covariance 1 with the score statistic, it must be unbiased. This condition is another
way of looking at unbiasedness.

Recall our fundamental inequality about the correlation, ρ2
gsθ

≤ 1, we now
know that ρ2

gsθ
� 1/(Var[g(X)]Var(sθ (X))) � 1/(Var[g(X)]Iθ ) ≤ 1. Moving this

variance out of the denominator, we have discovered a fundamental fact about
unbiased statistics:

Theorem (the information inequality). Let X be a discrete or absolutely con-
tinuous random vector whose distribution depends on a parameter θ but whose
sample space does not. Let g(x) be unbiased for θ . Then if the two quantities exist,
Var[g(X)] ≥ I−1

θ � Var(θ̂ ), where θ̂ is the score estimator.

This important fact (in some older books known as the Cramér–Rao bound)
says that our impractical score estimator is the ideal unbiased estimator; any other
will be more variable. Our demonstration says that to be unbiased, g has to follow
θ̂ around; but it may also have some extra variability of its own. We see why
the maximum likelihood estimator is popular; it is a practical method that often
approximates the ideal method.
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12.8.4 MVUE Statistics
We noticed that in the one-parameter regression case with normal errors, the maxi-
mum likelihood (also least-squares) estimator was the same as the score estimator.
Therefore, with normal errors, least squares is not only the best linear unbiased
estimator, it is the best of all unbiased estimators, in the sense of mean squared
error.

Definition. Let g(x) be an unbiased estimator for a parameter θ that does not
depend on the true value of θ . Then if Var[g(X)] � I−1

θ , so that its variance
meets the lower bound given in the information inequality, we call g a minimum
variance unbiased estimator (MVUE) of θ .

Any time we discover that we have such an estimate, we tend to have a high
opinion of it. Fortunately, there are several other important examples besides least-
squares estimates in the normal error model.

Theorem (common MVUE statistics). Let x � x1, . . . , xn be a random sample

(i) If x is from a binomial B(m, p) random variable, p̂ � x̄/m is the MVUE;
(ii) If x is from a Poisson(λ) random variable, λ̂ � x̄ is the MVUE;

(iii) If x is from a Normal(µ, σ 2) random variable with µ known, σ̂ 2 �
1
n

∑n
i�1(xi − µ)2 is the MVUE;

(iv) If x is from a Gamma(α, β) random variable with α known, β̂ � x̄
α

is the
MVUE.

You will prove these results in exercises. More advanced courses will tackle the
issue of how good estimates are for other families and parameters.

12.9 Summary

For linear models, we showed that the assumption of spherically distributed er-
rors determines the probability distribution of our test statistics, R-squared (which
then has a beta distribution) and F (2.2). Then we saw that the simplest probability
model that leads to spherical errors is one in which residuals are independently
normal, f (e) � 1/[(2π )n/2σn]e−eTe/(2σ 2) (3.1). We then showed that the principle
of maximum likelihood (for models with densities, L(θ |x) � f (x|θ ) (4.1)) for this
class of models leads to least-squares estimates (4.2). The associated G-squared
statistics are equivalent to F-statistics (5.2). Then we defined the general linear
model, in matrix notation y � Xb + e (6.1) and derived its least-squares nor-
mal equations XTy � XTXb (6.3). On the assumption of homoscedastic errors
(constant variance σ and uncorrelated), we derived an expression for the vari-
ance of our parameter estimates, Var(b̂) � σ 2(XTX)−1 (6.4). We then discovered
the Gauss–Markov theorem, which says that among all linear unbiased estimates,
least-squares estimates have the smallest variance (7.2). Finally, the information
inequality told us that there is a limit to how good any unbiased estimate can be,
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Var[g(X)] ≥ I−1
θ , where the Fisher information for θ is Iθ � E

(
∂2l(θ |X)/(∂θ2)

)
(8.3). It was observed that often maximum likelihood estimates come close to that
limit. Estimates that actually achieve the lower limit are called minimum variance
unbiased estimates (MVUE) (8.4).

12.10 Exercises

1. Determine whether the following densities are spherically distributed about
the origin, and explain why or why not:

a.
1

π (1 + x2)
.

b. exe−ex .
c.

1√
2π

e−x2/2.

2. Demonstrate that the bivariate standard normal random vector with density
1

2π
e−x2/2−y2/2 is spherically symmetric about the origin, by showing that it is

unchanged when we perform any rotational change of variables.
3. In Exercise 6 of Chapter 1:

a. Compute the F-statistic that contrasts the combined treatment effects in
the additive model (2 degrees of freedom) to the error sum of squares for
the same model (6 degrees of freedom).

b. Under the hypothesis of no treatment effect (and spherically symmetric
errors), compute the probability that your F might by accident exceed the
calculated value. What do you conclude about the additive model?

4. Our new absolutely continuous version of the method of maximum likeli-
hood can help us with other than normal estimation problems. Let our random
sample of n observations be taken independently from a member of the neg-
ative exponential family with density 1

β
e−x/β on X > 0. Find the maximum

likelihood estimate for β.
5. In the linear model with independent normal errors, find the variance and

standard error of the unbiased estimator σ̂ 2 � 1
n−k

∑n
i�1(yi − ŷi)2.

6. Calculate the G-squared statistic for Exercise 3, and see how well the
approximation to the F-statistic works in this case.

7. Write out the design matrix X for the model of Exercise 21 in Chapter 2.
8. For Exercise 6 in Chapter 1:

a. Write out the design matrix X for the additive model. You will be able to
do this by simply writing out the columns for exercise and diet separately.

b. Write out the design matrix for the centered, full model.

9. a. Calculate the inverses of the XTX matrices in Exercise 8.
b. Solve the matrix forms of the normal equations for the observations of

Exercise 6, Chapter 1. Check that they coincide with the original answers.
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10. Write out the uncentered design matrix for a one-way layout with four levels
and two observations per level. Now delete the last column, form the XTX
matrix, and compute its inverse. Form the matrix normal equations and show
that they indeed give standard estimates for the parameters.

11. In the model for aflatoxin in peanuts estimated in Exercise 14 of Chapter 2,
estimate the standard errors of the parameters. Now estimate the standard error
of the prediction of percent of bad peanuts at 50 parts per billion aflatoxin.

12. In Exercise 10, invent a linear estimate of the parameters A that is a least-
squares estimate but uses only every second observation. Find its difference
matrix D from the usual estimation matrix, and show that DX � 0

¯
, so that

your estimate is unbiased. Now compute DDT and interpret it as increases in
the variances of the estimates.

13. Find the Fisher information for

a. β in a sample of n from a Negative Exponential(β) random variable.
b. the standard deviation σ in a sample of n from a Normal(0, σ 2) random

variable.
c. p in an NB(k, p) random variable.

14. Show that for a discrete family whose sample space does not depend on its
parameter θ , for the score statistic sθ (x), E[sθ (X)] � 0.

15. Derive our formula for the variance of the score estimator for a discrete family
whose sample space does not depend on θ .

16. Prove the information inequality for a discrete family whose sample space
does not depend on θ .

17. Show that the estimates of binomial p and Poisson λ are indeed MVUE:

a. by showing that they are unbiased and have the minimum variance
prescribed by the information inequality.

b. by showing that they are the same as the score estimator.

18. Show that the estimates of normal σ 2 and gamma β are indeed MVUE:

a. by showing they are unbiased and have the minimum variance prescribed
by the information inequality.

b. by showing that they are the same as the score estimator.

12.11 Supplementary Exercises

19. Show that any random vector spherically distributed about the origin
whose coordinates have a finite variance must have any pair of coordinates
uncorrelated.
Hint: Show that Z � (Xi + Xj )/

√
2 has the same distribution as Xi does.

Now compute its variance.
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20. You may have noticed that our method of computing beta (and therefore F)
probabilities exactly works only if both degrees of freedom are even. Let us
tackle some other cases:

a. Compute the cumulative distribution function for a Beta(n/2, 1) random
variable.

b. Compute the cumulative distribution function for a Beta(n/2, m) random
variable by repeated integration by parts to get a finite series solution.
Raise the half-integer power and lower the integer power until you reduce
the problem to (a).

21. In Chapter 2, Exercise 10, you computed an F-statistic for the difference
in DBH levels of 2 groups, on 1 and 22 degrees of freedom. Compute the
probability that you would exceed this value by chance if in fact, psychotic
state does not matter and the errors are spherically distributed. What do you
conclude about levels of DBH in this group of patients?

22. If you assume that a sample x1, . . . , xn is from the Normal(µ, σ 2) distribution,
notice that z � (x̄ − µ)/(σ/

√
n) is Normal(0, 1). It might then be the test

statistic for the null hypothesis that the expectation is really µ. But in the
real world, we rarely know σ . In 1900, W. S. Gosset proposed the t-statistic
t � (x̄ − µ)/(s/

√
n) to test this hypothesis. Find its density, by the following

method:

a. First show that its square, n(x̄ − µ)2/x2, has an F-distribution on 1 and
n − 1 degrees of freedom.

b. Then by change of variables find the density of |t |. Finally, extend to
negative values by symmetry to obtain the density of t . (This is called a
t-density on n − 1 degrees of freedom.)

23. In the mass-ratio data of Chapter 1, Exercise 1, assume that the observations
are normal, and take the null hypothesis that they have a true average of 81.3.
Use a t-statistic to test the one-sided alternative that the mass ratio is really
greater than 81.3, at the 0.05 level.

24. Assume that we have two samples x11, . . . , x1n1 and x21, . . . , x2n2 . Then the
two-sample t-statistic for testing whether their means are different is

t � x̄1 − x̄2√
(n1−1)s2

1 +(n2−1)s2
2

n1+n2−2

√
1
n1

+ 1
n2

,

where s2
1 and x2

2 are sample variances of the individual samples.
Show that if the observations are independently Normal(µ, σ 2), then t2 fol-
lows an F-distribution on 1 and n1 + n2 − 2 degrees of freedom. Therefore,
t is a t-statistic as in Exercise 22 on n1 + n2 − 2 degrees of freedom. Hint:
Notice that our problem is a one-way layout with k � 2 levels of treatment.

25. You want to try out a fertilizer called TomatoGro, so you apply it to seven
tomato plants, while not using it on five other plants, chosen at random.
Yields in pounds of tomatoes are, for the fertilized plants, 25, 16, 21, 28, 19,



402 12. Sampling Statistics for the Linear Model

19, and 22; for the others, 14, 20, 21, 12, 13. Use the t-test of Exercise 24 to
test the (one-sided) hypothesis that TomatoGro improved yields (as opposed
to the null hypothesis that the yields are the same).

26. In the data from Exercise 5.10, test whether allergic people tend to have higher
histamine levels, using a t-test and a 0.01 significance level.

27. A Laplace location-and-scale model is a density that looks like
1/(2σ )e−|x−µ|/σ . Assume that we have random sample of n observations
from such a density. Find the maximum likelihood estimates for µ and σ .
Hint: After you have worked on the problem for a while, look back at Exercise
19 from Chapter 2.

28. Consider a bivariate random vector (X, Y ) with p(1, 1) � p(−1, 1) �
p(1, −1) � p(−1, −1) � p(0, 0) � 0.2. Show that it is homoscedastic.
Now show that it is not spherically distributed about the origin, and that X

and Y are not independent.
29. In the Laplace model of Exercise 27, assume that σ is known:

a. Compute the Fisher information for µ. (Use the equivalent first derivative
formula. The likelihood has no second derivative.)

b. Approximate the variance of the maximum likelihood estimate of µ (which
turned out to be the sample median).

c. Show that the sample mean x̄ is an unbiased estimate of µ. Now compute
its variance, and notice how much larger it is than your answer to (b)
(illustrating the information inequality).



CHAPTER 13

Representing Distributions

13.1 Introduction

We have described some of the many useful families of random variables using
their mass functions, density functions, and, sometimes, cumulative distribution
functions. Often, though, these functions are not as helpful as we might hope in
solving certain problems that require us to work with random variables. For exam-
ple, in random sampling we are interested in the sums of independent observations.
If we are lucky, as with Poisson and gamma variables, these sums stay in the fam-
ily; if not, as with a uniform variable, properties of these sums may be difficult to
extract.

In this chapter we will discover and exploit several new ways of representing our
random variables, which will facilitate the solution of some important problems.
These will include finding limits of sequences of variables, efficient estimation of
parameters, and better probability approximations.

Time to Review

Power series and Taylor series
Chapter 8, Section 2.2.
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13.2 Probability Generating Functions

13.2.1 Compounding Distributions
In biological or geographic studies, we might be interested in the number of off-
spring an individual would be expected to have over a lifetime. One possible simple
model might be a Poisson(λ) random variable, with mean known from our knowl-
edge of many similar individuals. But what if I wanted to know something about
the distribution of how many grandchildren, or great-grandchildren, that individual
will have?

If we are willing to assume that the children all have, independently of each
other and of their parents, a Poisson(µ) number of children of their own, then we
could compute, by division into cases (see 4.6.2),

P(x grandchildren) �
∞∑

y�0
P(y children)P(x grandchildren|y children).

We are lucky that we know that the conditional number of grandchildren is
Poisson(yµ), because it is just a sum ofy independent Poisson variables. Therefore,

P(x grandchildren) �
∞∑

y�0

λy

y!
e−λ (yµ)x

x!
e−yµ,

with no obvious significant algebraic simplifications available. The situation gets
worse with more complicated distributions than the Poisson, and much worse
for great-grandchildren, and so forth. Incidentally, the number of grandchildren,
or later descendants, in the Poisson case is called a compound Poisson ran-
dom variable. Generating random variables in stages like this is generally called
compounding.

13.2.2 The P.G.F. Representation
We shall tackle compounding problems in general by first solving a much simpler
compounding problem. Let X be any discrete random variable whose sample
space is a subset of the nonnegative integers {0, 1, 2, . . .}. All variables that may
be interpreted as random counts are therefore included; we will call these counting
variables. Let us now compound X with independent Bernoulli(q) variables. That
is, after we have had X successes, we do X additional independent Bernoulli trials.
The answer to one particular question about this experiment will turn out to be
most important: How likely are we to observe all successes, or no failures, at the
second generation?

Example. The number of children born to each family in a certain community
is roughly negative binomial NB(2, 0.5). In this group, 40% of children graduate
from college. Assuming that a child’s progress depends neither on family size nor
on the success of any siblings, what is the probability that all a family’s children
will graduate from college?
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The answer, of course, will depend on the probability q for each success. We
will give it a name:

Definition. Let X be a random variable such that its sample space S is a subset of
the nonnegative integers. Then let there be X independent Bernoulli(q) trials. The
probability that all trials are successes we will call the probability generating
function (p.g.f.) for X:

πX(q) � P[all successes | X independent Bernoulli(q) trials].

This function, one of our new representations of the random variable X, will turn
out to carry information about X in a very convenient form.

First, let us check that we can compute πX in some important cases. The easiest
one of all would be if X were itself Bernoulli(p). Then we would have a trial
with probability 1 − p of failure, in which case there are no further trials, and so
certainly no failures. If X is a success with probability p, then there is a further
independent trial with probability q of success. Therefore, the total probability of
no failures at the second stage is πX(q) � 1 − p + pq.

The next simplest case would involve X a Geometric(p) random variable.
Imagine two simultaneous sequences of Bernoulli trials. The first is the one
with probability p of success that will determine X when the first failure ap-
pears. The second, with probability q of success, is the compound stage of the
parallel trial. All the second-stage trials will have been a success if at the first
trial where either trial fails, the failure is in the Bernoulli(p) trial. Therefore,
πX(q) � P(p trial fails | either p or q fails) � 1−p

1−pq
by a simple conditional

probability calculation.
To find the probability generating functions of more complicated random vari-

ables, we need only a simple principle. Let X and Y be independent counts, and
consider the random variable Z � X + Y . For all Z independent Bernoulli(q)
trials at the second stage to be successes, first X of them must be successes, then a
further independent Y of them must be. The probabilities that independent events
both happen just multiply. We have established the following important result:

Proposition (p.g.f. of a sum). For X and Y independent counting variables, and
Z � X + Y ,

πZ(q) � πX(q)πY (q).

But recall that a binomial B(n, p) variable is a sum ofn independent Bernoulli(p)
variables; and a negative binomial NB(k, p) variable is a sum of k independent
Geometric(p) variables.

Proposition.
(i) For X a B(n, p) variable, πX(q) � (1 − p + pq)n.

(ii) For X an NB(k, p) variable, πX(q) �
(

1−p

1−pq

)k

.
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Example (cont.). In the problem of children graduating from college,

P(all graduate) � πX(0.4) �
(

1 − 0.5
1 − 0.5 × 0.4

)2

� 0.391.

13.2.3 The P.G.F. As an Expectation
We suggested earlier that the probability generating function has more information
hidden in it than just the answer to problems of this simple form. For example, use
the division into cases theorem to write

πX(q) � P(all successes) �
∞∑

x�0
P(X � x)P[all of x Bernoulli(q) trials succeed].

This formula may be written compactly:

Proposition. πX(q) �∑∞
x�0 p(x)qx � E(qX).

We have discovered a connection among the probability generating function,
the mass function, and certain expectations.

If X is Poisson(λ), this tells us that πX(q) � ∑∞
x�0(λx/x!)e−λqx �∑∞

x�0((λq)x/x!)e−λ. We can now use the familiar device of converting the sum into
a sum of Poisson(λq) probabilities by multiplying and dividing by eλq : πX(q) �∑∞

x�0(λx/x!)e−λqx � e−λ+λq
∑λ

x�0((λq)x/x!)e−λq . Since the probabilities sum
to 1, we have a simple expression.

Proposition. For X Poisson(λ), πX(q) � e−λ(1−q).

We can do this reasoning in reverse. Recall how power series work from calculus,
notice that the series πX(q) � ∑∞

x�0 p(x)qx can always be made smaller than a
geometric series in q, since obviously p(x) ≤ 1. Therefore, the series converges
for −1 < q < 1 (even though so far, we do not know of any use for negative
values of q). We conclude that there is only one possible power series for πX(q).
This has the very important implication that if we know π and can expand it in a
power series, the coefficients must be the probability mass function p(x).

Example. You send out two meter readers; one will go to 3 houses before lunch
and read the meter for anyone who is home (60% of houses have someone at home).
The other will just keep reading meters until the yard has a large dog in it (25% of
houses have a large dog) and then will stop for lunch. What is the probability that
exactly 4 meters will be read before lunch?

The number of houses read by the first reader is distributed as a binomial
B(3, 0.6). The probability generating function is therefore (0.4+0.6q)3 � 0.064+
0.288q +0.432q2 +0.216q3 (so the probability that she will have read 2 houses is
0.432). For the second reader, houses are Geometric(0.75), so the probability gener-
ating function is 0.25

1−0.75q
� 0.25(1+0.75q+0.563q2+0.462q3+0.316q4+· · ·) by

the usual formula for the sum of a geometric series, or for geometric probabilities.
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By the proposition about sums of independent variables, we get the p.g.f. of the
total of meters read by algebraic multiplication:

(0.064 + 0.288q + 0.432q2 + 0.216q3)
× 0.25(1 + 0.75q + 0.563q2 + 0.462q3 + 0.316q4 + · · ·)

� 0.016 + 0.084q + 0.171q2 + 0.183q3 + 0.140q4 + · · · .
You should check my arithmetic. We conclude that the probability that exactly 4
meters will be read is 0.14.

Please do not imagine that this procedure is magical. Before you ever got to this
chapter, you would have solved such a problem as follows: Let X be the number
read by the first reader, and Y the number read by the second. Then

P(X + Y � 4) � P(X � 0, Y � 4) + P(X � 1, Y � 3)
+ P(X � 2, Y � 2) + P(X � 3, Y � 1).

You should verify that these are exactly the calculations you did to compute the
coefficient of q4 above. The algebra is so far mainly a memory aid for complicated
calculations.

You should now review from calculus the fact that if a function f has a power
series expansion near some point (in this case, 0), then it may be written as a
Taylor’s series:

f (x) � f (0) + xf ′(0) + x2

2
f ′′(0) + · · · �

∞∑
i�0

xi

i!
f (i)(0),

where f (i) means the ith derivative of f . Therefore, a probability generating func-
tion, since it has a unique power series, has coefficients that may be evaluated by
taking derivatives:

Theorem (generating probabilities). p(x) � (π (x)
X (0))/x!.

Example. In the meter reading problem, πX(q) � (0.4 + 0.6q)3 0.25
1−0.75q

.
Differentiate twice to get

π ′′
X(q) � 6 × 62(0.4 + 0.6q)

0.25
1 − 0.75q

+ 6 × 0.6 × 0.75(0.4 + 0.6q)2 0.25
(1 − 0.75q)2

+ 2 × 0.752(0.4 + 0.6q)3 0.25
(1 − 0.75q)3 .

Therefore, p(2) � π ′′
X(0)/2 � (0.216 + 0.108 + 0.018)/2 � 0.171.

13.2.4 Applications to Compound Variables
We motivated this whole section by the problem of compounding counting vari-
ables, and so far we have dealt only with the very special case of Bernoulli
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compounds. But now consider a counting variable X, and compound it with a
variable Y ; that is, after an experiment with X successes, perform X further in-
dependent experiments each with outcome Yi distributed like Y , and total the
successes Z � ∑X

i�1 Yi . The probability generating function for Z will turn out
to be easy to calculate.

Stating the following easy argument abstractly makes it sound obscure, so we
will state a very concrete version of it. A successful(q) grandparent we will define
as one all of whose grandchildren are successful, where each grandchild indepen-
dently has probability q of success. In a similar way, a successful(r) parent is one
all of whose children are successful, with probability r of success for each child.
Therefore, a successful grandparent is one all of whose children are themselves
successful parents. We conclude that a successful grandparent is a successful par-
ent, with the probability r of success of each child equal to the probability that all
its own children (who are the grandchildren) succeed.

We restate this as a general principle about compounding. Let X be the random
variable for the number of children at the first generation, and let Y be the number
of children in each second-generation family. Then r � πY (q) is the probability
that each first-generation child will be a successful parent. But then the probability
that the original parent will be a successful parent is πX(r), and the probability
that it will be a successful grandparent is the same thing, πX(r) � πX[πY (q)].

Theorem (fundamental theorem of branching processes). Let a counting vari-
able X be compounded by a counting variable Y . Let the total count at the second
generation be Z �∑X

i�1 Yi . Then πZ(q) � πX[πY (q)].

Experiments like these are called branching processes, of course, because we
are studying family trees.

Now let me prove this important theorem again, in a shorter but abstract way:
πZ(q) � E(qZ) � E(q

∑X
i�1 Yi ) � E(

∏X
i�1 qYi ). Now (see 11.2.1) write this

πZ(q) � EX

[
X∏

i�1
EYi |X(qYi |X)

]
� EX

[
X∏

i�1
EYi |X(qYi |X)

]
� EX

[
X∏

i�1
EYi

(qYi )

]
,

where the last step follows just because of the independence of generations. Finally,

πZ(q) � EX

[
X∏

i�1
πY (q)

]
� E
[
πY (q)X

] � πX [πY (q)] .

When we compound a Poisson(λ) variable with a Poisson(µ) variable, as at
the beginning of this section, the probability generating function is now trivial to
compute: πZ(q) � e−λ[1−e−µ(1−q)]. We may use Taylor’s theorem now to find any
probabilities we want.

Example. If each generation has Poisson(2) children, let us find the probability
that an individual will have 3 grandchildren. After a little calculus (which you
should check) we find that π ′′

X(q) � 4[2 + 4e−2(1−q)]e−2(1−q)−2[1−e−2(1−q)]. Then
p(2) � π ′′

X(0)
2 � 0.122.
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13.2.5 Factorial Moments
We now look more closely at what happens when we differentiate a p.g.f. Using the
expectation form, we have π ′

X(q) � E(qX)′ � E(XqX−1). We remind ourselves
that we are allowed to differentiate inside the expectation (a sum) inside the radius
of convergence −1 < q < 1. But now, instead of evaluating at 0, let q � 1:
π ′

X(1) � E(X). This will work whenever the corresponding series converges,
which is, of course, when we have an expectation at all (so long as we think of
it as a one-sided derivative, measuring the rate of change as q approaches 1 from
below). Sometimes this is a reasonable way of discovering the expectation of a
counting variable; you will compute some you already know as exercises.

For compound variables, since πZ(q) � πX[πY (q)], we have that π ′
Z(q) �

π ′
X[πY (q)]π ′

Y (q) by the chain rule. Then to substitute q � 1, recall first that
πY (1) � 1, from the definition of a p.g.f. We have π ′

Z(1) � π ′
X(1)π ′

Y (1).

Proposition. If Z is a compound of X and Y , then E(Z) � E(X)E(Y ).

You will discover a less sophisticated proof of this fact in the exercises.
Let us differentiate a p.g.f. once more, to get

π ′′
X(q) � E(qX)′′ � E[X(X − 1)qX−1].

Then whenever the expectation exists, π ′′
X(1) � E[X(X − 1)]. This should

look familiar: When we were using the inductive method to calculate variances,
this expression turned out to be easy to evaluate for many of our families of
discrete random variables (see 6.6.3). Now we see that it is somehow a fun-
damental expectation for any counting variable. Repeating this process yields
π

(k)
X (1) � E[X(X − 1) · · · (X − k + 1)]. We shall give such expressions a name,

using permutation notation:

Definition. The kth factorial moment of X, denoted by f k
x , is equal to E[(x)k].

This suggests that we are interested in a Taylor series approximation for π again,
but now the series is to be expanded near q � 1. We will assume that π has an
(m+1)-term Taylor series there; that is,πX(q) ≈ 1+∑m

k�1
f k

X

k! (q−1)k . For example,
when X is Poisson(λ), we know that πX(q) � e−λ(1−q) � 1+∑∞

k�1
λk

k! (q−1)k from
calculus. Therefore, f k

X � λk . (Of course, this is quite easy to evaluate directly.)
We may use factorial moments to get other expectations. For example, we noted

in Chapter 6.3 that we could calculate Var(X) � f 2
X + f 1

X(1 − f 1
X). Since we have

already calculated some derivatives of a compound Poisson p.g.f,

π ′′
X(q) � λµ

[
µ + λµe−µ(1−q)] e−µ(1−q)−λ[1−e−µ(1−q)],

we just substitute q � 1 to get f 2
X � λµ(µ+λµ). Therefore, Var(Z) � λµ(µ+1).

For the general case of a compound of X and Y , we compute

π ′′
Z(q) � {πX [πY (q)]}′′ � {π ′

X [πY (q)] π ′
Y (q)
}′

� π ′′
X [πY (q)]

[
π ′

Y (q)
]2 + π ′

X [πY (q)] π ′′
Y (q).
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Now substitute q � 1 to get f 2
Z � f 2

X[f 1
Y ]2 +f 1

Xf 2
Y . Each term here can be written

in terms of variances and expectations. You should do so. When you rearrange
these you will get the following general formula:

Proposition. If Z is a compound of X and Y , Then Var(Z) � Var(X)E(Y )2 +
Var(Y )E(X).

Unlike the earlier expectation formula, this is not intuitively obvious. You will
discover another proof in the exercises.

Example. In the case where children and grandchildren were each Poisson(2),
then an individual, of course, has an average of 4 grandchildren. But now we know
that the variance is 12.

13.2.6 Comparison with Geometric Variables
The probability generating function is directly related to the solution of another
very simple probability problem. Recall the definition of a Geometric(q) random
variable. It is the number of Bernoulli(q) successes in a row that precede the first
failure. But the p.g.f. of a counting variable X we described as being the probability
that we had X successes in a row, where each try is Bernoulli(q). Therefore,
the p.g.f. is the probability of the second-stage, parallel Bernoulli sequence, the
geometric variable, passing the first.

Proposition. Given an independent Geometric(q) variable Y , the probability
generating function of X is πX(q) � P [Y ≥ X | Y is Geometric(q)].

Example. You and a friend are each shooting at decoys in adjacent booths at the
county fair. You hit 90% of the time, and your friend hits 95% of the time. You
will each shoot until you miss. What is the probability that you will last as long as
your friend, or longer?

The number of hits for each of you is geometric, with probabilities 0.9 and
0.95. Your friend’s p.g.f is 0.05

1−0.95q
. By the proposition above, let q � 0.9 for your

probability of hitting, and we see that you will keep shooting at least as long as
your friend with probability 0.345.

13.3 Moment Generating Functions

13.3.1 Comparison with Exponential Variables
You may now be wondering whether there is a representation of continuous random
variables as useful as the p.g.f. is for discrete counting variables. We will first
discover a representative for variables continuous on X ≥ 0, using as a clue the
last problem, involving comparison with geometric variables. The random variable
that corresponds to a geometric random variable will be its asymptotic limit for p

large, a Negative Exponential(β) variable. This suggests a class of problems:
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Example. It is estimated that a dangerously large meteor strikes the earth unpre-
dictably once every 2000 years. The space agencies of the world get together to
build an automatic satellite to warn us of such an approaching meteor. They want
it to last as long as possible without maintenance, because wars, depressions, and
antitechnological fads on earth might prevent the satellite from being maintained.
Therefore, they create a very durable control computer that should have a lifetime
that is negative exponential with mean survival 700 years. They then place 2 iden-
tical backup computers to go on-line after the previous one has failed, so that the
warning system will fail only when all three computers have failed. What is the
probability that this system will detect the next large meteor to approach the earth?

We can formulate this as follows: The satellite’s life X is Gamma(α � 3, β �
700). The time Y to the next meteor is Negative Exponential(β � 2000). The
problem is then P(Y < X). It will turn out to be convenient to express the parameter
of the negative exponential variable in this problem in terms of the Poisson rate of
events λ, so that λ � 1/β (see 9.4.1).

Definition. Let X be any random variable with sample space contained in X ≥ 0 (a
positive random variable). Now let Y be independently Negative Exponential(λ �
t), where t may be any positive number. The moment generating function (m.g.f.)
of X is then mX(t) � P(Y ≥ X).

Notice the similarity to the proposition above that says that the p.g.f. is the
probability that a geometric variable is larger than a given counting variable.

In the example above, the answer will be 1 − mX(0.0005). We may as well first
solve for an easier moment generating function. Let X be negative exponential(β),
while Y is negative exponential(γ ). Then by a little ingenuity, X/β and Y/γ are
independently standard negative exponential; and clearly,

P(Y ≥ X) � P

[
Y/γ ≥ β

γ
(X/β)

]
� P
(

Y/γ

Y/γ + X/β
≥ β

γ

X/β

Y/γ + X/β

)

� P
[

Y/γ

Y/γ + X/β
≥ β

γ

(
1 − Y/γ

Y/γ + X/β

)]

� P
(

Y/γ

Y/γ + X/β
≥ β/γ

1 + β/γ
� β

γ + β

)
.

But I expressed it this way because we discovered a long time ago (see 9.5.5)
that U � (Y/γ )/((Y/γ ) + (X/β)) is a Beta(1, 1) variable, which, you should
notice, is Uniform(0, 1). Therefore, P(Y ≥ X) � 1 − β/(γ + β) � γ /(γ + β) �
1/(1 + (β/γ )). We recall also that the t in the definition is 1/γ , and we have
calculated the m.g.f.:

Proposition. If X is negative exponential(β), then its moment generating function
is mX(t) � 1/(1 + βt).

We will be able to extend this to the gamma variable we needed in the meteor-
defense example by noticing the following important fact: Let X and Z be
independent positive random variables, and let W � X + Z. As usual, Y will be



412 13. Representing Distributions

our competing negative exponential variable. Then P(Y ≥ W ) � P(Y ≥ X + Z),
and we will interpret the latter as saying that Y lasts past X, and then lasts a
further amount of time Z. But by the memoryless property of a Poisson process
(see 9.3.3), the chances of surviving a further Z are independent of having sur-
vived past X (we simply restart the clock after a time X has passed). Therefore,
P(Y ≥ W ) � P(Y ≥ X)P(Y ≥ W ).

Theorem (m.g.f. of a sum). For X and Z independent positive variables and
W � X + Z, mW (t) � we have mX(t)mZ(t).

Now recall that if T is Gamma(α, β) for α an integer, we may write T �∑∞
i�1 Ti

where the Ti are each independently Negative Exponential(β) (see 9.3.4). Then
using the product formula above repeatedly gets us the m.g.f. of T :

Proposition. If T is Gamma(α, β) with α an integer, then mT (t) � (1 + βt)−α .

Example (cont.). In the problem of the meteor-defense satellite, the satellite’s
life X has m.g.f. mX(t) � (1 + 700t)−3. We conclude that the probability that it
will be around when the next 2000-year meteor arrives is 1−(1+ 700

2000

)−3 � 0.594.

13.3.2 The M.G.F. as an Expectation
Let us look at the general form of the calculation one must do to find the moment
generating function of a variable. The technique we will use transforms a probabil-
ity into an expectation using indicator functions χA (see 11.3.1), which are 1 when
the outcome is in the event A and 0 everywhere else. Recall that E(χA) � P(A).
Then P(Y ≥ x) � E(χY≥X) � EX[EY |X(χY≥X | X)]. The inner expectation is a
probability: P(Y ≥ X) � E[P(Y ≥ X | X)]. Now, P(Y ≥ X | X � x) � e−xt ,
using the cumulative distribution for a Negative Exponential(λ � t) variable.
Therefore, P(Y ≥ X) � E(e−Xt ).

Proposition. For a positive random variable X, mX(t) � E(e−Xt ).

For reasons we shall see later, this is often used as the definition of a moment
generating function. (Another common convention that you may encounter says
that the moment generating function should be E(eXt ). You can easily switch to
this convention by changing an occasional sign in the formulas in the rest of this
chapter. Our version is, of course, easier to interpret in problems like the one about
satellite maintenance.)

These counting variables we studied in Section 2 are positive random variables,
of course, so they have moment generating functions as well. Since πX(q) �
E(qX), we may just substitute e−t for q in our earlier calculations:

Proposition.
(i) For X distributed B(n, p), mX(t) � (1 − p + pe−t )n.

(ii) For X distributed NB(k, p), mX(t) � ((1 − p)/(1 − pe−t )
)k .

(iii) For X distributed Poisson(λ), mX(t) � e−λ(1−e−t ).
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For counting variables, the m.g.f. representation is less useful than the p.g.f.,
but it will soon have some applications.

13.3.3 Moments
The p.g.f. was connected with factorial moments; something similar will happen
with the m.g.f. Taking its derivative with respect to t , we get m′

X(t) � E(−Xe−Xt )
whenever that expectation exists. Taking its value at 0, E(X) � −m′

X(0). As with
the p.g.f., this derivative, one-sided for t approaching 0 from above, will exist
whenever the corresponding expectation does (since the exponential only makes it
smaller). For example, in the gamma case, m′

T (t) � −αβ(1+βt)−α−1. Substituting
0, we reproduce the standard result E(X) � αβ.

Taking another derivative, we find that m′′
X(0) � E(X2), which would allow

us to compute the variance (though almost always there is some easier way to
do the same thing). We have a name for expectations of powers: E(Xk) � mk

X is
the kth moment of X. If the moments exist, we may compute them by repeated
differentiation:

Proposition.
(i) mk

X � (−1)km(k)
X (0).

(ii) If mX(t) has an (m + 1)-term Taylor series near 0, then

mX(t) ≈ 1 +
m∑

k�1
(−1)k

tk

k!
mk

X

for small t .

This last expression explains why mX is called the moment generating function.

13.4 Limits of Generating Functions

13.4.1 Poisson Limits
One of the most important applications of probability generating functions is to
asymptotic approximations of probabilities. For example, since a binomial family
of random variables converges in distribution to the Poisson as np2 → 0 (see
6.4.3), let us see what happens to its p.g.f.: πX(q) � (1 −p +pq)n. A proposition
we proved in (6.4.1) established that (1−p+pq)n � [1−p(1−q)]n ≈ e−np(1−q)

whenever (np2(1−q)2)/(1−p(1−q)) was close to zero. But when np2 → 0, this
last ratio clearly also approaches zero. We have shown that under these conditions
the binomial p.g.f.s converge to a Poisson p.g.f. Notice that our argument is a bit
simpler than the one we used in Chapter 6 to establish the Poisson approximation
to the binomial.

But have we really shown anything important? Just because we can approximate
a p.g.f., does that mean we have also approximated a distribution? Fortunately, it
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does, as a consequence of the nice property of probability generating functions that
the power series in q always converges for −1 < q < 1. You should review from
advanced calculus the following fact: If a sequence of functions with power series
about 0 with at least some constant positive radius of convergence (here, 1) con-
verges to another function with at least the same minimum radius of convergence,
then the powers series for those functions also converge to the series for the other
function. So the terms in our power series, proportional to the probability mass
function, also converge to Poisson probabilities. We have established a general
result:

Theorem (limits of p.g.f.s). If a series of counting random variables X1, X2,
X3, . . . have probability generating functions that converge to the p.g.f. of a random
variable Y on −1 < q < 1, then the X1, X2, X3, . . . converge in distribution to Y .

So we have an advanced, and often rather easy to use, method of discovering
asymptotic limits for counting variables. You will get a chance to apply it further
in the exercises.

13.4.2 Law of Large Numbers
We might hope that we could do limit arguments for other families of random
variables with similar ease, perhaps using the m.g.f. (since it applies to a larger class
of random variables). For example, you will remember that we showed earlier (see
7.7.3) that sample means from i.i.d. random variables that have a variance converge
in probability to the true expectation (we called it a law of large numbers). We
already know that if Y � X1 + X2 + X3 + · · · + Xn, then mγ (t) � mX(t)n. Now
we need to see what will happen when we divide Y by n to get X̄.

Proposition. If Y � aX, then mγ (t) � mX(at).

You should check this as an easy exercise. We conclude that mX̄(t) � mX(t/n)n.
To make this relationship easier to work with, we will take its logarithm.

Definition. For a random variable X, its cumulant generating function is
κX(t) � log mX(t).

You should check the following obvious properties:

Proposition.
(i) κX(0) � 0.

(ii) If X and Y are independent, and Z � X + Y , then κZ(t) � κX(t) + κY (t).
(iii) κ ′

X(0) � −E(X) when the expectation exists.

Therefore, κX̄(t) � nκX(t/n). But then

lim
n→∞ κX̄(t) � lim

n→∞ t
κX(t/n)

t/n
� tκ ′

X(0) � −tµ,

by the definition of a derivative. Therefore, limn→∞ mX̄(t) � e−µt .
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To see what this means, let us invent the peculiar concept of a random variable
that does not vary: If the numerical result X of an experiment is always the constant
a (so p(a) � 1), then we will call X a random variable degenerate at a. Then,
of course, mX(t) � e−at . Our calculation above established that the m.g.f. of
X̄ converges, as the sample size grows, to the m.g.f. of a variable degenerate at
the true mean µ. Since we will have several results of this form, let us give this
phenomenon a name:

Definition. If each of a sequence of random variables X1, X2, X3, . . . has a mo-
ment generating function defined at least in a fixed interval including 0, and Y is
another random variable with moment generating function defined at least in that
same interval, then if limi→∞ mXi

(t) � mY (t) for each t in that interval, we say
that X1, X2, X3, · · · converge in m.g.f. to Y .

Proposition (law of large numbers). If X has a moment generating function de-
fined in an interval including 0, and E(X) � µ exists, then the means X̄ computed
from i.i.d. samples of n converge in m.g.f. to a random variable degenerate at µ.

This sounds like an advance over the law of large numbers from (7.7.3), because
there we required the X’s to have finite variances. No such requirement appears
here. However, even though moment generating functions do solve some problems
for us, as we saw earlier, it will still probably seem to you that knowing that we
have convergence in m.g.f. is a fact of little obvious value. You will discover in
advanced courses that when it makes sense, convergence in m.g.f. means that we
also have convergence in distribution. Therefore, the existence of a variance really
will turn out to be unnecessary in laws of large numbers.

13.4.3 Normal Limits
We are inspired to hope that some such simple limit argument might tell us when
a family of random variables converges in m.g.f. to a normal variable, presumably
using moment generating functions. Unfortunately, we do not even know what the
m.g.f. of a normal random variable might mean, because so far we only have a
definition for positive random variables. Normal random variables, of course, are
defined for all real numbers.

Now our expectation formula for the m.g.f. comes into its own, as the definition
of a more general moment generating function:

Definition. Let X be a random variable. Then its moment generating function is
mX(t) � E(e−Xt ) whenever this function is defined in an interval including t � 0.

(Again, you may run into an alternative definition with no minus sign.) We know,
of course, that this new definition is exactly the same as the old, for any positive
random variable. The new approach will have one serious limitation: You should
verify as an exercise that there are some important random variables that do not
have moment generating functions.
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In the standard normal case E(e−Zt ) � 1√
2π

∫∞
−∞ e−Zt−Z2/2dZ. Use a method

you may remember from algebra, and complete the square in the exponent:

−Zt − Z2/2 � −1
2

(Z2 + 2Zt + t2 − t2) � t2

2
− 1

2
(Z + t)2,

so that E(e−Zt ) � et2/2 ∫∞
−∞

1√
2π

e−(Z+t)2/2dZ. The integral is of a Normal(−t, 1)
density over its sample space, which is, of course, equal to 1.

Proposition. For Z standard normal, mZ(t) � et2/2.

Since we know how to expand this in a Taylor series, we can use the general result
above to conclude that mZ(t) � 1 +∑∞

k�1(−1)k(t2/k!)mk
Z � 1 +∑∞

l�1(t2l/2l l!).
The coefficients of the same power have to be the same on both sides, so we learn
immediately that for k odd, mk

Z � 0. For the even powers of t , (m2l
Z /(2l)!) �

(1/2l l), so that (2l)!/2l l! � (2l − 1) × (2l − 3)x · · · × 3 × 1. For example, the 6th
moment of a standard normal variable is 3 × 5 � 15.

When we found a normal limit of the gamma family, we first had to standardize
our variable by subtracting its mean and dividing by its standard deviation. We
need to find out what effect that has on the m.g.f.; so please check the following
result as an exercise:

Proposition. If Y � X + b, then mY (t) � e−btmX(t).

Since a Gamma(α) variable has mT (t) � (1 + t)−α , let us standardize to mean
0 and variance 1 by Z � T −α√

α
. Then by our transformation rules,

mZ(t) � e
√

αt (1 + t/
√

α)−α.

Turn this into a cumulant generating function: κZ(t) ≈ √
αt − α log(1 + t/

√
α).

Now use the quadratic approximation to the logarithm (see 10.5.2) to get that

κZ(t) ≈ √
αt − α(t/

√
α − t2/2α) � t2/2

whenever t3/(3
√

α) and t3/[3(t + √
α)] are small. For a fixed value of t this says

that mZ(t) ≈ et2/2 for 3
√

α large. Thus, the standardized version of a gamma
random variable converges in m.g.f. to a standard normal variable as

√
α goes to

infinity.
In your exercises, you will apply the same approach to check when other families

(for which we have a convenient form of m.g.f.) converge to normality. In each
case, the conclusion will be that it happens just when we already knew that they
converged in distribution. Thus we have more informal evidence for my claim
that the two concepts of convergence are often the same. You may notice that the
argument for convergence to normality seems usually to be somewhat easier for
m.g.f.s.

13.4.4 A Central Limit Theorem
We will exploit the relative simplicity of m.g.f. limit arguments to discover a much
more general normal limit. Consider an i.i.d. random sample X1, X2, . . . , Xn,



13.4 Limits of Generating Functions 417

where each observation has mean µ, but also positive and finite variance σ 2. We
know that to look for a normal limit, we will need eventually to standardize, so let
us do it now, by Zi � (Xi − µ)/σ . If each observation has a moment generating
function, we know that so will each Z; call it mZ(t). Then the sample mean of
the Z’s has m.g.f. mZ(t) � mZ(t/n)n. But the sample mean, though still with
expectation zero, now has variance 1/n. We standardize again by Zn � √

nZ̄, so
that Z̄n has mean 0 and variance 1. Now we have mZn

(t) � mZ(t/
√

n)n. Our goal
will be to check when the limit of this for large n is the normal m.g.f.

We remember that if we take the second derivative of a moment generating
function, we get m′′

X(t) � E(X2e−tX). Since we are working with variables for
which this moment exists, it follows that this expectation exists, at least for t not
negative. Therefore, m′′

X(0) � E(X2), where the derivative is one-sided from the
positive direction. Since we know that powers are involved, we will again find it
handy to work with the cumulant generating function κX(t) � log mX(t). Taking
two derivatives, we have κ ′′

X(t) � (m′′
X(t))/(mX(t)) − (m′

X(t)2)/(mX(t)2). Recall
that mX(0) � 1 and m′

X(0) � −E(X), we discover a wonderful fact:

Proposition. κ ′′
X(0) � Var(X).

Now we know that κZn
(t) � nκZ(t/

√
n). Here is where we hope to take a

limit as n goes to infinity. The existence of a one-sided second derivative says
that lima→0+(f (a) − f (0) − af ′(0))/a2 � (f ′′(0))/2 (check this as an exer-
cise). Since Z has mean zero and variance 1, we have κZ(0) � 0, κ ′

Z(0) � 0,
and κ ′′

Z(0) � 1. The limit says that lima→0+(κZ(a)/a2) � 1/2. For a fixed pos-
itive t , let a � t/

√
n; this becomes limn→∞(κZ(t/

√
n))/(t2/n) � (1/2). Then

limn→∞ κzn
(t) � t2/2. Comparing this to our cumulant generating function for

Zn, we discover that limn→∞ κZn
(t) � t2/2. Going back to the moment generating

function, limn→∞ mZn
(t) � et2/2, which is, of course, the m.g.f. of a standard

normal variable.
We got to Zn by first standardizing our X’s, then taking the sample mean, then

standardizing again. We could just as well have taken the sample mean of the X’s,
then standardized all at once.

Theorem (central limit theorem). Let a random sample X1, X2, . . . , Xn consist
of i.i.d. variables with mean µ and variance σ 2. Assume further that they have an
m.g.f. in a common interval that includes 0. Then the standardized sample mean
Zn � (X̄ − µ)/(σ/

√
n) converges in m.g.f. to a standard normal distribution.

This is an example of a class of wonderful results that were some of the great-
est achievements of early twentieth-century mathematical statistics. Notice how
amazingly general it is: We get a normal distribution asymptotically for the means
of observations about which we have assumed almost nothing. In (12.3.3) we noted
that such facts lead people to have great confidence in statistical models that have
normal errors, because they are approximately correct in so many cases. But be-
cause normal approximations are so important, it will be worthwhile to stop and
comment on some limitations of the above central limit theorem.
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(1) We are talking only about convergence in m.g.f. The fact that this is almost
the same as convergence in distribution still has to wait for more advanced courses.

(2) The theorem applies only to distributions that have a moment generating
function. I hope that you will take some of those more advanced mathematical
statistics courses, because there you will learn that this restriction is completely
unnecessary. (One way to discover this will be by using a representation closely
related to the m.g.f., called a characteristic function).

(3) Unlike our normal limits in the special families obtained in earlier chapters,
we do not have even rough estimates of the sizes of errors we make by using the
normal approximation. This is because our theorem is so general that nothing is
always true about the size of the errors. However, our earlier estimates should give
you useful qualitative information about how quickly convergence to normality
happens in common cases.

13.5 Exponential Families

13.5.1 Natural Exponential Forms
You may have noticed that many of the approximation and asymptotic argument we
have seen have involved first taking the logarithm of a probability mass function,
or a density function, or more recently a p.g.f. or m.g.f. Let us look a little deeper
into what is going on when we do that. For example, consider the binomial B(n, p)
mass function p(x) � (n

x

)
px(1 − p)n−x . You should remember that in (8.2.2) we

took the logarithm of this to get the log-likelihood

l(p|x) � log p(x) � log
(

n

x

)
+ x log

p

(1 − p)
+ n log(1 − p).

Our purpose there was to find a good estimate for p, which is more often the
unknown parameter in binomial problems. At that time, we pointed out the different
roles the various quantities x, n, and p played in the three terms. Then in the several
likelihoods studied in Chapter 8 (see 8.5.1), we called the middle term the core,
because of the fundamental role it plays in estimation and inference.

This structure for log-likelihoods appears as well in superficially very
different random variables. Starting with a Gamma(α, β) density f (t) �
tα−1/(βα�(α))e−t/β , we take its logarithm log f (t) � [(α −1) log t − log �(α)]−
t/β − α log β. We have written this in the form of the log-likelihood l(β | t), for
the case where α was known and we were trying to estimate β (see 12.4.1). Now,
the first term involves data t and the known parameter, the second is linear in t and
involves the unknown parameter, and the third is a function of the unknown (and
the known) parameter. The pattern is the same as in the binomial case.

Our goal will be to see how much we can learn about random variables purely
from the fact that their likelihoods can be written in this pattern. First, let us simplify
things by ignoring the known parameters, since they will not change in the course
of carrying out and analyzing the experiment.
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Definition. A family of random variables X indexed by a parameter θ is called a
natural exponential family if the logarithm of its mass function or density (that
is, its log-likelihood) may be written l(θ | x) � A(x) + xB(θ ) − C(θ ) and if its
sample space does not depend on θ .

We call the family exponential because the density or mass function looks like
e to the power of this simple expression. You should check as easy exercises that
a number of our favorite families may be written in this form; note that we have
already established that a binomial family with a given n and parametrized by p

can; as well as a gamma with given α and parametrized by β.
Several of the things we commonly do when we want to estimate parameters

turn out to be easy in a natural exponential family. If we take an i.i.d. sample x
of n observations from such a family, the likelihoods multiply, so that the log-
likelihoods add: l(θ | x) � ∑n

i�1 A(xi) + B(θ )
∑n

i�1 xi − nC(θ ). If we want the
maximum likelihood estimate of θ , we take the derivative with respect to θ to get
∂l(θ | x)/(∂θ ) � B ′(θ )

∑n
i�1 xi −nC ′(θ ). Setting this expression equal to zero and

rearranging, we find that we must solve x̄ � C ′(θ )/(B ′(θ )). You may remember
that the information from the sample that is needed to estimate a parameter by
maximum likelihood is called its sufficient statistic (see 8.5.1). We conclude that
the sample mean is a sufficient statistic for the parameter in any natural exponential
family.

13.5.2 Expectations
Assume for the moment that X is absolutely continuous. Since f (x|θ ) � el(θ |x),
then ∂f (x|θ )/(∂θ ) � [xB ′(θ ) − C ′(θ )]f (x|θ ). Now integrate both sides over the
sample space of X to get

∫
∂f (X|θ )/(∂θ )dX � E[XB ′(θ )−C ′(θ )]. But the sample

space of X was assumed not to depend on θ , so we may differentiate under the
integral sign, and

∫
∂f (X|θ )/(∂θ ) dX � ∂

∫
f (X|θ )dx/(∂θ ) � ∂1/(∂θ ) � 0,

because densities always integrate to 1. We conclude that E(X) � C ′(θ )/(B ′(θ )).
As an exercise you should check that the same thing is true if X is discrete,
using mass functions and summations. In another exercise, you will use the same
approach to find a general formula for Var(X).

The second derivative of the log-likelihood, (∂2l(θ |x))/(∂θ2) � xB ′′(θ )−C ′′(θ ),
now gives us the Fisher information

Iθ � E
[
−∂2l(θ |x)

∂θ2

]
� C ′′(θ )B ′(θ ) − C ′(θ )B ′′(θ )

B ′(θ )
.

You should check that the Fisher information from a sample of n is just n times this
expression. You will remember from Chapter 12 (see 12.8.2) that the inverse of this
Fisher information is roughly the variance of the maximum likelihood estimate,
and it is the best variance you can hope to get from an unbiased estimate (see
12.8.3).

Proposition. For X in a natural exponential family

(i) E(X) � C ′(θ )
B ′(θ )

.
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(ii) Var(X) � C ′′(θ )B ′(θ ) − C ′(θ )B ′′(θ )
B ′(θ )3 .

(iii) Iθ � C ′′(θ )B ′(θ ) − C ′(θ )B ′′(θ )
B ′(θ )

.

13.5.3 Natural Parameters
Long ago, you may have noticed that the particular way we parametrized the
families we have studied was somewhat arbitrary. For example, we used β, the
mean time between Poisson events, rather than λ � 1/β, the rate of events, to
scale the gamma family. Staring at our exponential form for the binomial family,

l(p|x) � log
(

n

x

)
+ x log

p

(1 − p)
+ n log(1 − p),

we notice an important quantity, the logit l � log p

(1−p) (see 1.7.3), in the middle
term. Since every logit corresponds to a p, and every value of p to a logit, we feel
free to let l be the parameter in this exponential family: l(l|x) � log

(
n

x

) + xl −
n log(1 + el). We can make this simplification in any of our natural exponential
families:

Definition. If a natural exponential family has a log-likelihood written l(η|x) �
H (x) + xη − K(η), then η is called its natural parameter.

Proposition. For a natural exponential family in natural parameter form:

(i) E(X) � K ′(η).
(ii) Var(X) � K ′′(η).

(iii) Iη � K ′′(η).

These follow immediately from the previous proposition.
A connection between moments and derivatives should have reminded you of

moment generating functions. If X is absolutely continuous, let us compute

E(e−Xt ) �
∫

e−XteH (X)+Xη−K(η)dX � eK(η−t)−K(η)
∫

eH (X)+X(η−t)−K(η−t)dX,

where we have multiplied and divided by eK(η−t) in order to leave a density un-
der the integral sign (which therefore integrates to one). You should check as an
exercise that you get the same result for discrete families.

Proposition. For a natural exponential family in natural parameter form

(i) mX(t) � EK(η−t)−K(η).
(ii) κX(t) � K(η − t) − K(η) for any t for which η − t is a possible value of the

parameter.

Thus, there is a close connection between the m.g.f. representation and the
exponential family representation, for those random variables that have such things.
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13.5.4 MVUE Statistics
On the other hand, the main parameter of interest may be related to the mean
of the random variable. For example, in the gamma case, E(X) � αβ; since
α is known, the obvious estimate of β is just β̂ � X̄/α. In a similar way, in
the binomial case we have used p̂ � X/n. To see what will happen to natural
families when the form of the parameter we care about is just the expectation of
X, let E(X) � θ � C ′(θ )/(B ′(θ )). First of all, this will mean that θ̂ � X̄ is an
unbiased estimate of θ . We find that C ′(θ ) � θB ′(θ ); and, by differentiating, that
C ′′(θ ) � θB ′′(θ ) + B ′(θ ). Use these to get rid of C in the expression in Section
5.1 for the variance, to obtain C ′′(θ )B ′(θ ) − C ′(θ )B ′′(θ ) � B ′(θ )2. Therefore,
Var(X) � 1/B ′(θ ) and Iθ � B ′(θ ). We use the information inequality (see 12.8.2)
to conclude that X and therefore X̄ are MVUE for of θ . None of this reasoning is
affected by taking a linear function of θ .

Theorem. In a natural exponential family with a parameter θ, so that E(aX+b) �
θ for some constants a and b, θ̂ � aX̄ + b is an MVUE statistic for θ .

You should notice that several of the examples in (12.8.4) are summarized under
this theorem. Unfortunately, these examples represent most of those to which this
result applies.

13.5.5 Other Sufficient Statistics
We have so far treated these as one-parameter families, usually by assuming that
other parameters are known. For example, you can easily check that the MVUE
statistic for a normal mean is just µ̂ � X̄. In the analysis, we assumed that the
standard deviation σ was known, though clearly that is unnecessary here because
X̄ does not depend on σ . (On the other hand, knowledge of α is clearly necessary
to compute β̂ � X̄/α in the gamma case.)

If instead we assume the normal mean known, we may write the log-likelihood
for σ 2: l(σ 2 | x) � −(x − µ)2/(2σ 2) − 1

2 log(2πσ 2). With a little imagination,
you can see the parallel to the exponential form, if only we were willing to treat
(X − µ)2 as the random variable instead of X. Let us allow for this possibility.

Definition. A family of random variables X with parameter θ whose sample space
does not depend on θ is called an exponential family if its log-likelihood may be
written l(θ |x) � A(x) + T (x)B(θ ) − C(θ ).

Then a natural exponential family is just a special kind of exponential family,
in which T (x) � x. Taking an independent random sample of n observations, we
get

l(θ |x) �
n∑

i�1
A(xi) +

n∑
i�1

T (x)B(θ ) − nC(θ ).

If we let T̄ � 1
n

∑n
i�1 T (x), then the maximum likelihood estimate for θ is gotten

by solving the equation T̄ � C ′(θ )/(B ′(θ )). This must be the sufficient statistic
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for estimating θ . For example, the maximum likelihood estimate for the normal
variance is σ̂ 2 � T̄ � 1

n

∑n
i�1(xi − µ)2 (which we already know to be MVUE).

It turns out, though, that we have very little more work to do to learn as much
about these families as we knew about natural families. Just perform the change of
variables T � T (X). The Jacobian can involve only T and the known parameters,
and not θ , so it becomes part of the new A(t) term. The result is that we have
a natural parametric family in T , with the same B and C terms. Therefore, our
previous work gets us the expectation and variance of T , and exactly the same
Fisher information for θ . The new families may still be thought of as having a
natural parameter, η � B(θ ). For example, it seems that the natural scale parameter
in the normal family is −1/(2σ 2). (Notice, though, that this line of argument does
not get us the m.g.f., mX(t).) Finally, we can generalize the main theorem of the
last section:

Theorem. In an exponential family with a parameter θ and sufficient statistic
T (X), so that E(aT (X) + b) � θ for some constants a and b, θ̂ � aT̄ + b is an
MVUE statistic for θ .

In a later course, you should learn that much more is true: Any unbiased estimate
of θ that is a function only of T̄ (and not just a linear function) is an MVUE statistic.

Treating more than one parameter as unknown can still lead to a suggestive way
of writing the likelihood. In the Normal(µ, σ 2) case, we can expand the square
in the exponent and rearrange to get l(µ, σ 2|x) � x(µ/σ 2) − x2(1/(2σ 2)) −
1
2

[
(µ2/σ 2) + log(2πσ 2)

]
. This seems to have more than one middle term, but

otherwise looks similar to the exponential family form. A k-parameter exponential
family generally looks like l(θ|x) � A(x) +∑k

j�1 Tj (x)Bj (θ) − C(θ), where θ

is a k-vector of parameters. We see that from a sample of n there is now a k-
vector T of sufficient statistics T̄j � 1

n

∑n
i�1 Tj (xi) that are necessary to solve

the simultaneous equations required by maximum likelihood. In a later course
you should learn to what extent the results of this section can be extended to the
problem of estimating more than one parameter at once.

13.6 The Rao–Blackwell Method

13.6.1 Conditional Improvement
We started out in Chapter 8 (see 8.5.1) with the idea that sufficient statistics are
those data summaries (in that case, row and column sums) that turned out to be
what we needed to know in order to calculate maximum likelihood estimates of
the parameters. Then in the last chapter (see 12.8.3) we noted that in a certain
sense, maximum likelihood estimates are close to the best estimates we can get.
Now we know that for many of our favorite families, the sufficient statistic seems
to be the quantity T (X) that appears in the middle of the exponent. It is time to
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ask, when can we use this sufficient statistic to get good estimates of parameters,
if linear functions will not suffice?

Example. In many semitropical climates it is not certain to freeze every year. Years
without a freeze have unusually severe insect problems the following summer.
What is the probability that we will not observe a freeze next year? For the last 10
years, we have had 1, 1, 0, 2, 1, 3, 0, 1, 1, 1 freezes.

Let us model the as independent Poisson(λ) observations, with λ the average
number of freezes per year. The maximum likelihood estimate is, of course, λ̂ �
x̄ � 1.1 freezes per year. But the question is about P(X � 0) � p(0) � e−λ,
whose maximum likelihood estimate is just P(X � 0) � p(0) � e−λ̂ � e−x̄

(since changing the way we write the parameter does not change the likelihood of
the observations).

The maximum likelihood estimate, though, lacks one perhaps-desirable fea-
ture; let us take its expectation. The sum X of n Poisson(λ), observations is
Poisson(nλ); and we want E(e−x̄) � E(e−X/n). Never work too hard; this is its
m.g.f. with t � 1/n. Therefore, E(e−x̄) � e−nλ(1−e−1/n). Since this does not equal
e−λ, our maximum likelihood statistic (though it may be quite good) is biased.
You will check in an exercise that it is asymptotically unbiased as n gets large, but
is nevertheless a consistent overestimate on average.

Of course, we could have estimated p(0) in the obvious way, by calculating
the proportion of times we observed zero: p̂(0) � |{xi�0}|

n
. This is just an ob-

served proportion, so it is unbiased: its expectation is the true proportion of
zeros. Notice that its variance is e−λ(1 − e−λ)/n. We know of a way to see
how good this is: The information inequality gives the best possible variance.
To use it, we redefine our parameter as θ � e−λ. Then the log-likelihood be-
comes l � −∑n

i�1 log(xi!) + ∑n
i�1 xi log(− log θ ) + n log θ . As an exercise,

calculate its Fisher information Iθ � −n/(θ2 log θ ). Therefore, the lowest limit
on possible variances of unbiased estimators is −θ2 log θ/n � λe−2λ/n. This is
definitely smaller than e−λ(1 − e−λ)/n; for example, if λ � 1, the simple propor-
tion estimator has a relative efficiency of 58%. Real improvement may be possible
here.

To find better estimators, we will reason as follows: The ideal estimator (the score
estimator) was inspired by maximum likelihood, which uses only the sufficient
statistic T (x) in its calculations. Assume that we have an unbiased estimator S(x)
of the function g(θ ) that we care about. That is, E[S(X)] � g(θ ). If we knew
only that minimum amount of information T (x), what would we guess S to be?
A reasonable conjecture would, as usual, be the average over all possible values S

might be, for the given value of the sufficient statistic: S∗(t) � E[S(X)|T (X) � t].
Leaving aside for the moment whether we can actually calculate this expectation,
let us pretend that S∗ � S∗[T (x)] might actually be an estimator. To figure out
its properties, we will consider T and S to be themselves random variables. Then
E(S∗) � ET [ES|T (S|T )] � E(S) � g(θ ) (see 11.2.2); therefore, this statistic S∗ is
unbiased as an estimator of g(θ ). Now compute the variance of S by conditioning
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on possible values of T (see 7.5.3):

Var(S) � ET [VarS|T (S|T )] + VarT [ES|T (S|T )] � ET [VarS|T (S|T )] + Var[S∗].

We learn that S∗ is an unbiased estimator of g(θ ), whose variance is guaranteed to
be smaller than that of S (since that first term is positive if S is not just a function
of T ). Therefore, S∗ is a better estimator than S.

In a sample of n Poisson observations, we had an unbiased statistic p̂ that
was just the sample proportion of zero counts. The sufficient statistic is just x �∑n

i�1 xi , which of course has a Poisson(nλ) distribution. To find the conditional
expectation of p̂, conditioned on this sum, we will use the method of indicators:
let p̂ � 1

n

∑n
i�1 Yi, where

Yi �
{

1 xi � 0,

0 if not.

Then we want E(Yi |x) � P (xi � 0|x). But a single Poisson count conditioned on
a total Poisson count is binomial (see 7.4.2), with x trials and p � λ

nλ
� 1

n
. The

probability that the probability count is zero is then (1 − 1/n)x . Finally, S∗ is just
the average of n of these, or the same probability.

Example (cont.). In the annual freeze data, n � 10 and x � 11, so S∗ �
0.911 � 0.3138. Contrast this probability of not freezing with the simple unbiased
estimate 0.2 and the (biased) maximum likelihood estimate 0.3329. This latter is
larger, as predicted, and pretty close to our new estimate.

I will leave it to you as an exercise to check directly that the new statistic is
unbiased. Furthermore, you should verify that its variance is e−2λ(eλ/2 − 1). This
is indeed always larger than the information inequality lower limit, but it quickly
converges to it as n grows. If, for example, λ � 1 and n � 10, we find that the
new estimate is only 5% less efficient than the theoretical ideal.

13.6.2 Sufficient Statistics
I hope that something bothers you about the foregoing analysis: We could have
“improved” S by conditioning on any statistic T . The miraculous thing that hap-
pened in our example is that the result S∗ does not require you to know the true
parameter λ in order to calculate it (recall the score estimator from (12.8.1)). We
will generalize our concept of a sufficient statistic to that situation.

Definition. A sufficient statistic for a parameter θ in a family is a function T (x)
of the data such that the distribution of X conditioned on the value of T does not
depend on θ .

Then our procedure for improving an unbiased S for g(θ ) gives an unbiased
statistic S∗ called its Rao–Blackwell statistic, which has lower variance. It is
generally true that the sufficient statistics we have seen in our exponential families
meet this condition; in certain cases, we are prepared to prove it.
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Proposition. In a random sample from a natural exponential family, x̄ is a
sufficient statistic.

Proof. First, look at a discrete family, and consider any value of X̄ � x̄ that has
positive probability. Then

p(X|X̄ � x̄) � [e
∑n

i�1 a(Xi )+nx̄B(θ )−nC(θ )]/[
∑
Ŷ�x̄

e
∑n

i�1 a(Yi )+nx̄B(θ )−nC(θ )].

But because of the exponential form, all references to θ cancel out, and the
definition of a sufficient statistic is met.

For an absolutely continuous family, we will need to integrate over the event in
n-dimensional space that meets the condition X̄ � x̄. To facilitate this, define, for
example, the change of variables T1 � X1, T2 � X1 + X2, . . . , Tn � ∑n

i�1 Xi .
Then to invert this, we just use X1 � T1 and Xi � Ti − Ti−1. This affine change
of variables has a matrix that is triangular and has a determinant of one, so it is
volume preserving (see 11.4.1). Then we can calculate a conditional density

f (X|X̄ � x̄)� e
∑n

i�1 a(Xi )+nx̄B(θ )−nC(θ )∫
Ŷ�x̄

e
∑n

i�1 a(Yi )+nx̄B(θ )−nC(θ )
� e

∑n
i�1 a(Xi )+nx̄B(θ )−nC(θ )∫

Tn�nx̄
e
∑n

i�1 A(Ti−Ti−1)+nx̄B(θ )−nC(θ )
.

The second integral makes perfect sense: It is just the marginal density of Tn,
integrated over all the other T ’s and evaluated at the specified value. One again,
all references to θ cancel out of the exponents, and we have a sufficient statistic.

It may strike you that we have proved less than we could have. It seems likely that
the same thing is true for a general exponential family with the possibly nonlinear
sufficient statistic

∑n
i�1 T (xi). For discrete families, this is true by the same proof

we just showed. For the absolutely continuous case, we would have to first carry
out the nonlinear transformation to a natural exponential family in the random
variable T ; then everything works as before. In advanced courses, you will study
the generalization of this result to several parameters.

In more advanced courses you should discover that usually S∗ is not merely
better, but actually the MVUE for g(θ ). It will turn out there that its key feature is
that it is a function of the sufficient statistic T only.

13.7 Exponential Tilting

13.7.1 Tail Probability Approximation
For the last three sections, we have been looking at attractive and general ways to
tackle some problems that we had been doing earlier in a more case-by-case way.
However, we have not yet really solved many new problems using the represen-
tation techniques of this chapter. In this section we will show that indeed, m.g.f.s
and exponential families can be used to do a better job with some very practical
probability calculations.
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Our first application of the normal distribution was to approximate gamma
probability calculations in the case where α is large (see 10.5.5). At that time,
though, we noted that as the value of the random variable moved away from the
mean (so that the cube of the standard score grew), the approximation was less
trustworthy.

Example. Using the chi-squared statistic with 32 degrees of freedom to evalu-
ate the goodness-of-fit in an independence model for a contingency table (see
8.4.1), we get a value of 37.2. We believe that its probabilities should be well
approximated by a Gamma(α � 16, β � 2) random variable (see 11.5.4), so after
a lengthy series calculation, we get a p-value P(χ2 ≥ 37.2|32 d.f.) � 0.242.
A normal approximation, using the mean 32 and standard deviation 8, yields
P(χ2 ≥ 37.2|32 d.f.) ≈ P(Z ≥ 37.2−32

8 � 0.65) � 0.258, which is fairly good.

The important practical applications, though, are to large values of the test
statistic when the probabilities are so low that we are tempted to doubt a null
hypothesis. In a contingency table with the same shape, imagine that we in-
stead got a value of 53.4 for chi-squared. Now our laborious calculation gets
P(χ2 ≥ 53.4|32 d.f.) � 0.0102. The normal approximation becomes

P(χ2 ≥ 53.4|32 d.f.) ≈ P(Z ≥ 53.4 − 32
8

� 2.68) � 0.00374,

which is almost three times smaller. Such a large error could make a difference in
our decision about our independence hypothesis.

You should observe in exercises that many other of our favorite normal approx-
imations have the same problem: They are good near the mean, but deteriorate
badly in the tails. This is not just characteristic of normal approximation: Poisson
approximation shows the same phenomenon.

Example. A manufacturer of hay-fever medication advertises that an irritating
side effect (temporary lycanthropy) occurs in only 5% of users. You do a study of
200 representative users; 14 show the syndrome. Should you be surprised?

The number of victims should be binomial B(200, 0.05); we compute
P[X ≥ 14|B(200, 0.05)] � 0.130. Using the Poisson(np � 10) approximation,
P[X ≥ 14|B(200, 0.05)] � 0.136; this is satisfactory for many purposes.

On the other hand, what if 22 users have problems? Now
P[X ≥ 22|B(200, 0.05)] � 0.000481; the Poisson approximation now gets
P[X ≥ 22|B(200, 0.05)] � 0.00070. This is in error by almost 50%.

It would be nice if somehow the approximation could be made in the
neighborhood of the values of interest, rather than in the center of the distribution.

13.7.2 Tilting a Random Variable
We will come up with a transformation that moves our density or mass function
to the neighborhood in which it is needed. Consider a natural exponential log-
likelihood with natural parameter value η: H (x) + xη −K(η). If we want to move
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our parameter from η to a new point, which we will write η− t , the new likelihood
is H (x) + x(η − t) − K(η − t). Now notice how the density or mass function
has been changed: We have multiplied it by e−xt and divided by eK(η−t)−K(η). This
latter expression is, of course, mX(t). We call this transformation (exponential)
tilting of the distribution.

For example, in a normal distribution with µ the free parameter, η � µ/σ 2. Then
to tilt the distribution from mean µ to mean ν, the tilting factor is t � (µ− ν)/σ 2.
The variance does not change.

The natural parameter for the Poisson family is log λ; so to tilt to a new mean
κ , we just use a tilting factor t � log λ − log κ . This tilt has a new interpretation
as t � log λ

k
; if we call the ratio between the means κ/λ � q, then e−t � q. Then

we find ourselves multiplying the mass function by e−xt � qx and dividing by the
constant mx(− log q) � πX(q), the probability generating function. Thus, we have
two ways of looking at exponential tilting, according to whether X has a useful
p.g.f.

Actually, we can apply exponential tilting to move the mean of any density that
has a moment generating function. Just multiply by e−xt and divide by mX(t), as
before. For example, if we have started with a density f (x), then

ft (x) � e−xtf (x)
mX(t)

� e−xtf (x)
E(e−Xt )

� e−xtf (x)∫
e−Xtf (x)dX

will be the version tilted by t . That last equality should make it obvious that our
choice of denominator is exactly right to make the tilted density integrate to 1. As
you may verify, the same transformation can be applied to discrete mass functions.

But where have we moved the mean to? Remember that the mean of f was, in
terms of the log of the m.g.f., the cumulant generating function, E(X) � −κ ′

X(0),
and Var(X) � κ ′′

X(0). Now compute the m.g.f. of the tilted variable (call it Xt ):

mxt
(s) �

∫
e−Xse−Xtf (X)dX

mx(t)
�
∫

e−X(s+t)f (X)dX

mX(t)
� mX(s + t)

mX(t)
.

Its cumulant generating function is then κxt
(s) � κX(s + t) − κXt

(t). From this
we extract the mean and variance of the tilted distribution: E(Xt ) � −κ ′

X(t) and
Var(Xt ) � κ ′′

X(t). If we want to tilt to a particular new mean ν, we just solve the
equation ν � −κ ′

X(t) for the appropriate tilt t .

Example. Let X be Uniform(0, 1). Then you should check as an exercise that
mX(t) � (1−e−t )/t , and the density of Xt is (te−xt )/(1−e−t ). Taking derivatives
of the log m.g.f. gives us that E(Xt ) � (1/t) − e−t /(1 − e−t ) and Var(Xt ) �
1/t2 − e−t /(1 − e−t )2.

13.7.3 Normal Tail Approximation
Our strategy will be to find a normal approximation to a tail probability P(X ≥ y)
(where, for example, y is much larger than the mean µ of X) by first tilting to
an Xt whose mean is y. As noted, we choose t by solving y � −κ ′

X(t) for t .
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Then we approximate the tilted distribution by a normal distribution with mean
y and variance κ ′′

X(t). To illustrate this better, we will use a common convention
that the standard normal density is φ(z) and the standard normal tail probability is
P(Z ≥ z) � �(z). Then

ft (x) � (e−xtf (x))
(mX(t))

≈ 1√
κ ′′(t)

φ

(
(x − y)√

κ ′′(t)

)
.

But our goal was to approximate f , so we solve for it to find

f (x) ≈ (mX(t)ext )√
κ ′′(t)

φ

(
(x − y)√

κ ′′(t)

)
.

As complicated as this looks, we discover something nice: The exponential factor
will tilt the normal density back by a degree −t , which we know how to do from
the previous section. We solve for the tilted mean, ν � µ + σ 2t � y + κ ′′(t)t .
Then

f (x) ≈ (mX(t)eyt+κ ′′(t)t2/2)√
κ ′′(t)

φ

(
(x − y − κ ′′(t)t)√

κ ′′(t)

)
(the exponential factor is just mZ(−t) for Z the normal approximation at y, by
which we had to divide and then multiply). Now integrate to get a tail probability:

Theorem. For a random variable X with m.g.f. mX(t) � eκ(t) that is twice differ-
entiable, let y be a value of interest and t be the solution of y � −κ ′(t). Then the
(first-order) saddle point approximation is

P(X ≥ y) �
∫ ∞

y

f (X)dX ≈ mX(t)eyt+(t2/2)κ ′′(t)�
(
−
√

κ ′′(t)t
)

.

This is an example of a very old mathematical method called a saddle-point
approximation.

Let us see what this does for a Gamma(α) random variable. The m.g.f. of the
gamma is mT (t) � (1 − t)−α . We compute κT (t) � −α log(1 + t), κ ′

T (t) � −α
1+t

,
and κ ′′

T (t) � α
(1+t)2 . To find the tilt point, we must solve y � −κ ′

T (t) � α
1+t

; then
t � − y−α

y
, κ ′′

T (t) � y2/α, and mT (t) � (y/α)α . The general formula for our
saddle-point approximation for a Gamma(α) tail probability is then

P(X ≥ y) ≈ (y/α)αe−(y−α)+(y−α)2/2α�

(
y − α√

α

)
.

Example. Let us apply this formula to the chi-squared tail approximation in
Section 7.1. Removing the scale factor, our tail approximation problem is

P(T ≥ 26.7|Gamma(16)) ≈ (26.7/16)16e−(10.7)+(10.7)2/32�

(
10.7

4

)
� 0.0109.

This is now within about 7% of the correct answer 0.0102. This is approximately
as accurate as our earlier example of a y near the mean.
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We can see how accurate this technique is going to be by noticing that gamma
random variables are themselves natural exponential families in β, for fixed α.
Therefore, when we tilted our distribution, only β changed. A normal approxi-
mation, now at the mean, has relative error at most about 1

3
√

α
. The saddle point

approximation will stay approximately equally good no matter how far out in the
tail we go.

In exercises, you will see that saddle-point approximation works in a number
of other cases.

13.7.4 Poisson Tail Approximations
It should be equally straightforward to use exponential tilting to approximate any
distribution with an m.g.f. by any natural exponential family. For example, let us
see whether we can get improved Poisson approximations in the tails of counting
distributions.

Consider a counting random variable X with mass function p(x). We wish
to compute P(X ≥ y) for some value y much larger than the mean, in a case
where we would like to use Poisson approximation. Our examples suggest that
this approximation soon breaks down, even if it worked fairly well near the mean.
Therefore, we will tilt our distribution until its mean is y. Following a suggestion
in Section 7.2, we will use a tilting factor q � e−t , where q is the variable in a
probability generating function:

pq(x) � qxp(x)∑∞
Z�0 qZp(Z)

� qxp(x)
E(qZ)

� qxp(x)
πX(q)

.

Once again, you can see from this way of writing it that
∑∞

X�0 pq(X) � 1, so it
really is a probability mass function.

To work with this new random variable X, we will first extract its p.g.f.:

πXq
(r) �

∑∞
X�0 f XqXp(X)

πX(q)
�
∑∞

X�0(rq)Xp(X)
πX(q)

� πX(rq)
πX(q)

.

Just as with the m.g.f., the logarithm of the p.g.f. will be very useful here.

Definition. The discrete cumulant generating function of a counting variable
X is kX(q) � log πX(q).

Proposition.
(i) kX(1) � 0.

(ii) If X and Y are independent, and Z � X + Y , then kZ(q) � kX(q) + kY (q).
(iii) k′

X(1) � E(X).

You should check these as (very easy) exercises. Using the p.g.f. equation above
and taking logs, we get for our tilted variable kXq

(r) � kX(rq) − kX(q). Its mean
is then E(Xq) � k′

Xq
(1) � qk′

X(q).
To tilt the mean to the prespecified value y, we then solve for q in the equation

y � qk′
X(q). Now approximate the mass function of Xq by a Poisson(y) mass
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function. To make our formulas compact, we will invent a notation for a Poisson
mass function ρλ(x) � (λx/x!)e−λ and tail probability Rλ(x) � P(X ≥ x) �∑∞

X�x ρλ(X). We write pq(x) � qxp(x)/(πX(q)) ≈ pλ(x), then solve for the
original mass function p(x) ≈ πX(q)(1/q)xρy(x). Just as in the last section, we
notice that this amounts to tilting the Poisson mass function (back) by a factor 1/q.

The Poisson(y) p.g.f. is πX(1/q) � e−y(1−1/q); we know that we will have to
multiply by this to cancel the denominator. The mean we tilt back to is y/q. Thus
p(x) ≈ πX(q)e−y(1−1/q)ρy/q(x).

Theorem. If X is a counting variable and y is a value of interest, let q be the
solution of y � qk′

X(q). Then a tilted Poisson approximation is given by

P(X ≥ y) ≈ πX(q)e−y(1−1/q)Ry/q(x).

In the example at the beginning of this section, we were interested in approxi-
mations to binomial random variables in the case of small p. To apply the tilting
technique, we needπX(q) � (1−p+pq)n, its logarithm kX(q) � n log(1−p+pq),
and k′

X(q) � np

1−p+pq
. To find the tilting factor, we solve qk′

X(q) � npq

1−p+pq
� y

for q, getting q � (1−p)y
p(n−y) . Substituting this in the formula above, we obtain

P(X ≥ y) ≈
[

n(1−p)
n−y

]n
e−(y−np)/(1−p)Rp(n−y)/(1−p)(x).

Example. In the example in Section 7.1, the probability of at least 22 sufferers is
approximately P[X ≥ 22 | B(200, 0.05)] ≈ 0.000455, which is much closer to
the correct value than the simple Poisson method.

To get some idea of how good this approximation should be, remember that
a binomial random variable is also a natural exponential family in p. Therefore,
when we tilt to a mean of y, we create a B(n, y/n) random variable. The Poisson
approximation is good when y/n is small, which for the case of a large y is
larger than p; therefore, the approximation worsens as y gets larger (though not
so fast as the simple approximation would). This suggests, though, that if we find
ourselves interested in binomial left tail approximations, y smaller than np, then
the approximations may work even better than near the mean. You will try this in
exercises.

13.7.5 Small-Sample Asymptotics
Saddle-point approximations and tilted approximations are the fundamental meth-
ods of a growing modern class of probability calculations, called small-sample
asymptotic methods. In advanced courses, you will learn that by studying higher
derivatives of κ and k (higher cumulants), probability approximations based on
what are called Edgeworth or Charlier series corrections can achieve very high
accuracy near the mean. Then we can tilt the point of approximation out to a value
in the tails and achieve similarly high accuracy. This is a lively area of statistical
research and a very promising area for future practical applications.



13.9 Exercises 431

13.8 Summary

If counting variables are thought of as enumerating descendants, then they may
be compounded by looking at descendants after several generations (2.1). A
valuable tool for studying compounds is the probability generating function
πX(q) � ∑∞

x�0 p(x)qx � E(qX) (2.3). Then If Z is a compound of X and Y ,
πZ(q) � [πX[πY (q)]] (2.4). This p.g.f. may be expanded in a power series in ei-
ther the mass function p(x) � π

(x)
X (0)
x! or the factorial moments E[(X)k] � f k

X of
X, since πX(q) ≈ 1 +∑m

k�1
f k

X

k! (q − 1)k (2.5).
For continuous random variables, we may define a similar representation, called

the moment generating function mX(t) � E(e−Xt ) (3.2). The p.g.f. and the m.g.f.
may be used to construct remarkably general asymptotic arguments, leading to
new laws of large numbers and to a central limit theorem, which says that in a
certain sense sample means with a variance are asymptotically normal (4.4).

Many of our favorite families of random variables have a particularly simple
form for their log-likelihood l(θ |x) � A(x)+xB(θ )−C(θ ). We call these natural
exponential families; there is a simple connection between their log-likelihood,
their m.g.f., and their Fisher information (5.1). In important cases, we saw that the
parameters of these families have MVUE statistics (5.4). In some cases we can use
sufficient statistics and the Rao–Blackwell process to improve parameter estimates
(6.2).

Normal and Poisson approximation far from the mean of a distribution (in the
tails) may be significantly improved by exploiting the natural exponential form and
the m.g.f. and p.g.f. The basic idea is to move the natural parameter by exponential
tilting so that the approximation is once again performed near the mean (7.2). In
the normal case, a simple version says

P(X ≥ y) �
∫ ∞

y

f (X)dx ≈ mX(t)eyt+(t2/2)κ ′′(t)�
(−√κ ′′(t)t

)
,

where κ is the cumulant generating function and � is the standard normal
tail probability (7.3). In the Poisson case, our simple version is P(X ≥ y) ≈
πX(q)e−y(1−1/q)Ry/q(x), where R is a Poisson tail probability (7.4). These methods
are called saddle-point or small-sample asymptotic methods.

13.9 Exercises

1. Find the probability generating function for a discrete uniform (0, . . . , W )
random variable.

2. There are known to be 20 nesting pairs of doves in a certain small preserve.
One of these pairs is of the extremely rare barred dove species. Once egg-
laying season is finished, you proceed to search out dove nests until you find
and mark for protection the barred dove nest. Along the way, at the behest of
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a colleague, you will test one egg from each regular dove nest for viability.
Historically, 90% of eggs were viable.
What is the probability that all the eggs tested will be viable?

3. Typically, 60% of premed students from your university will be asked for
an interview at a medical school. Of those interviewed, 75% will be offered
admission. If there are 22 premeds in the senior class, what is the probability
that all of those who get an interview will also be offered admission?

4. In Exercise 45 of Chapter 6, we defined a logarithmic(p) random variable.
Find its probability generating function.

5. A Gambler’s Ruin random variable, G(n, p) is the number of Bernoulli trials
X until there have been n more successes than failures. The sample space is
X � {n, n + 2, n + 4, n + 6, . . .}. It has probability generating function

πX(q) �
[

1 −
√

1 − 4p(1 − p)q2

2(1 − p)q

]n

.

You show up in Atlantic City one evening with $500 in your pocket. Each
night, you play a double-or-nothing game that either earns you an additional
$100, or takes $100 that you already had. The probability of winning is 0.45.
After each night of gambling, you spend the morning on the beach. When you
go broke, you will leave for home in the afternoon. Five percent of mornings
this time of year are rainy. What is the probability that none of your mornings
on the beach are ruined by rain?

6. Explain why a G(n, p) variable is defined only for every second value of
X(n, n + 2, . . .).

7. Fifty percent of physics majors and 35% of math majors go on to graduate
school. 3 of your friends are physics majors and 4 are math majors. What is
the probability that 3 of these friends will go on to graduate school? Solve
this problem twice, by direct algebra and by differentiation, to see that you
get the same thing.

8. If each generation of a family has NB(2,0.5) children, what is the probability
that an individual will have 5 grandchildren?

9. Find the mean and variance of a G(n, p) random variable.
10. Find the mean and variance of the number of grandchildren in Exercise 8.
11. For discrete uniform (0, . . . , W ) random variables, find the kurtosis

E{[X − E(X)]4} using probability generating functions.
12. Derive the moment generating function of a (continuous) Uniform(0, µ)

random variable.
13. A professor has promised that a pop quiz will be given in class with no warning

sometime anytime in the next 90 days (for simplicity treat its occurrence as
a continuous random variable). You believe that the event of getting the flu
this year is a negative exponential random variable with mean β � 200 days.
What is the probability that you will get the flu before the pop quiz (so you
are sure to be behind when it happens)?
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14. Very complex systems that are not maintained until failure, so that they grad-
ually drift out of adjustment, then fail when they are finally working too
poorly to function, have times to failure that may be modeled by an inverse
Gaussian(a, b) random variable X. The quantity a > 0 measures how fast
the system tends to get out of adjustment, and b > 0 measures how tolerant
the system is of bad adjustment. The moment generating function of X is then
mX(t) � eb(a−√

a2+2t).
Find E(X) for any a, b. Now, if X is life in months, how long would you
expect a pump on the Alaska pipeline to work on average if a � 0.2 and
b � 3?

15. Show that a Cauchy random variable (with density f (x) � 1
π (1+x2) and sample

space −∞ < X < ∞) has no moment generating function.
16. Use moment generating functions to compute the skewness E{[X − E(X)]3}

of a Gamma(α, β) random variable.
17. Use a limit of p.g.f.s argument to establish when a family of negative binomial

random variables converges in distribution to a Poisson random variable.
18. Prove that

a. if Y � aX then mY (t) � mX(at).
b. if Y � X + b, then mY (t) � e−btmX(t).

19. The battery in your smoke alarm is known to have a life of an average of 60
days with a standard deviation of 50 days (but a very long shelf life when
not in use). You know nothing more about the shape of its distribution. You
buy a box of twelve such batteries, intending to replace each battery in turn
as it gives out. Local fire statistics suggest that your next fire serious enough
to trigger an alarm might occur as a negative exponential event with mean
β � 800 days. Use our version of the central limit theorem to estimate the
probability that you will have a fire before your box of batteries is used up.

20. Write the NB(k, p) family as a natural exponential family in p. What is its
Fisher information for p? What is its natural parameter? What is its Fisher
information for its natural parameter?

21. Show that any natural exponential family is a monotone likelihood ratio family
in terms of its natural parameter (see 9.7.2).

22. Write the Beta(α, β) family as an exponential family in α (with β assumed
known). What is its natural parameter? What is the sufficient statistic, if we
had an i.i.d. sample of n?

23. You are given a sample of n observations from a Poisson(λ) family and the
maximum likelihood estimate of P(X � 0) � p(0) � e−λ.

a. Show that its expectation is always larger than the correct value; but
b. it is asymptotically unbiased; that is, the limit of the expectation as n gets

large is correct.

24. In a sample of n from a Poisson family with parameter θ � e−λ, compute its
Fisher information (see 12.8.1).
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25. In (10.5.7) we studied a box of 24 fuses, each with a negative exponential life
of β � 5 days. We would now like to know the probability that the box lasts
at least 183 days. The exact answer is 0.011, but you should try it by normal
approximation.

a. Calculate the ordinary normal approximation (fairly poor, because you are
in the far tail).

b. Calculate the saddle-point approximation.

26. In Exercise 25, calculate the probability that the box will last at most 60 days
(exact answer 0.00147)

a. by ordinary normal approximation.
b. by saddle-point approximation.

27. If 10% of Americans are left-handed, find the probability that a sample of 75
will have at least 18 lefties (exact answer 0.000348)

a. by the usual Poisson approximation.
b. by Poisson tilting.

28. In Exercise 27, find the probability of 2 or fewer lefties (exact answer 0.0161)

a. by the usual Poisson approximation.
b. by Poisson tilting.

13.10 Supplementary Exercises

29. Find the probability mass function of a Gambler’s Ruin G(n, p) random vari-
able. (You may have to review the general binomial theorem from calculus.)
In Exercise 5, what is the probability that you will stay 13 days at Atlantic
City?

30. For Z a compound of X and Y , prove that E(Z) � E(X)E(Y ) without using
p.g.f.s. (Hint: Apply the proposition in (7.5.2) that says that E[g(X, Y )] �
EX{EY |X[g(X, Y )|X]}.)

31. Prove again the proposition in Section 2.5 about the variance of a compound,
using the proposition about conditional decomposition of variance (see 7.5.3).
Hint: try conditioning on X.

32. A maintenance engineer drops in on the pump station in Exercise 14 on
average once a year (12 months), but his schedule is so complicated by weather
and problems at other stations that his arrival follows a negative exponential
law. If the pump is in adjustment when he leaves, what is the probability that
it will be working when he returns?

33. Compute the moment generating function of a Beta(2, 2) random variable.
34. Redo Exercise 6.26 using the method of moment generating functions.
35. A logistic random variable has density f (x) � ex/(1 + ex)2 on the entire real

line. Find its m.g.f.
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36. Show that t-statistics on n degrees of freedom (see Exercise 12.22)

a. converge in distribution to a standard normal distribution as n goes to
infinity (you might approximate the log-density by a quadratic).

b. never have a moment generating function.

37. When the cumulant generating function has a power series approximation at
0, κX(t) ≈∑k

i�1
κi

X

i! (−t)i , the cumulants of a random variable X are defined
as the constants κi

X � (−1)iκ (i)
X (0).

Write the 3rd and 4th cumulants, κ3
X and κ4

X, as functions of the moments of
X.

38. Find general expressions for the cumulants of

a. a Normal(µ, σ 2) variable.
b. a Poisson(λ) variable.
c. a Gamma(α) variable.

39. Show that if Xi is NB(α, 1 − pi) and pi → 0 then Ti � Xipi/(1 − pi)
converge in m.g.f. to Gamma(α).

40. Discover under what conditions on its parameters an inverse Gaussian (see
Exercise 14) family of random variables will converge in m.g.f. to a normal
distribution.

41. Let η be the natural parameter of a family, and let θ � g(η) be a monotone, dif-
ferentiable transformed parameter for the family. Find the Fisher information
for θ in terms of the Fisher information for η.

42. Show by a direct calculation that for a sample of n from a Poisson(λ) family,
our new estimator of θ � e−λ, which is (1 − 1/n)x , is unbiased. Also, show
that its variance is e−2λ(eλ/n − 1).

43. Let xx, . . . , xn be an i.i.d. sample from a Negative Exponential(β) random
variable, with β unknown. We are going to look for unbiased estimates of the
cumulative distribution function F (x) � 1 − e−x/β for a fixed value of x.

a. Show that the empirical cumulative distribution function
Fn(x) � |{xi ≤ x}|/n is unbiased for F (x) (in fact, for any random
variable at all).

b. Apply the Rao–Blackwell method to find a better unbiased estimate of
F (x). Hint: x̄ is the sufficient statistic for β. Now show that each xi/(nx̄)
has a Beta distribution.

44. Derive the saddle-point approximation for B(n, p) tail probabilities in case
np(1 − p) is large. (You should use continuity correction.)

45. If 35% of Americans have the gene to be a super taster, we would like to
know the probability that of a random sample of 125, we get at least 60 super
tasters

a. by normal approximation; or
b. by saddle-point approximation (the exact answer is 0.00187).
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46. In the early days of computers, standard normal random variables were some-
times approximately obtained by summing 12 independent Uniform(0, 1)
variables, and subtracting 6. Approximate the probability that this would get
at least 3.5

a. by ordinary normal probabilities.
b. by the saddle-point method.

47. The factor that multiplies the normal tail probability in the saddle-point for-
mula is mX(t)eyt+(t2/2)κ ′′(t). Show that this is equal to the (easier to remember)
expression e

∫ t

0 (t2/2)κ ′′′(s)ds if the third derivative of κ exists. Hint: Integrate
twice by parts.

48. Derive the Poisson tilting approximation for NB(k, p) random variables with
kp2 small.

49. Eight percent of Americans are allergic to penicillin. A medical study needs
50 people who are not. In the course of collecting our nonallergic sample,
approximate the probability of finding at least 12 who are allergic (exact
answer 0.00338)

a. by the usual Poisson approximation.
b. by Poisson tilting.



Hints and Solutions
to Certain Exercises

Warning: This section may be bad for your academic health. In order to get
any benefit from doing the exercises, do not look at the hints until you have given
the problem an honest try and are stuck. More importantly, never look at the
partial solutions below until you have finished that exercise yourself. Then use the
answer only to check that you have not made a mistake. “Working backwards”
from a solution will never teach you crucial problem-solving skills.

Chapter 1

1. b. x̄ � 81.3008.
2. b. µ̂n � x̄n � 0.01617.

c. b̂p � 0.00472.
4. Hint: Average both sides of the equation µi � µ + bi over all observations.

Using the hint, you obtain µ � 1
n

∑k
i�1 nibi .

5. Hint: Solve for the last observation at each level; then xini
� niµ̂i−

∑ni−1
j�1 xij ,

so the last observation is determined.
6. b. µ̂ � 7.33, b̂d � 1.33, ĉex � 1.83.

c. d̂ex,d � 0.25.
7. 1

n

∑l
i�1
∑m

j�1 nij b̂i � 1
n

∑l
i�1 ni•(x̄i• − x̄) � x̄ − x̄ � 0.

8. 1
ni•

∑m
j�1 nij d̂ij � 1

mr

∑m
j�1 r(xij − x̄i• − x̄•j + x̄) � x̄i• − x̄i• − x̄ + x̄ � 0.

9. b. $173.22.
10. b. 60.85 crimes per 1000 people.
11. expect 15.89 complaints in the first group.
13. Hint: When you sum expected counts over columns j , you should find that

xi• factors out.
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14. The model is log(xi) � µ + bi ; then, e.g. 3µ � log(43) + log(35) + log(22)
because the b’s sum to zero.

15. a. Imitate the argument in (7.3) using summation notation.
16. Do Exercise 15 first.
18. Do Exercise 17b, then interpolate.

Chapter 2

1. MSE � 1.56.
2. c. 0.14% bad peanuts.
3. The smaller side is 92% of the larger.
5. a. Sample variance � 0.00000069.
6. Hint: What does the principle of least squares say about a sample variance?
7. Hint: Write out the defining formula, then look at Exercise 4.
9. Hint: Express the orthogonality condition in summation notation, and try to

simplify.
10. F � 15.76.
11. F � 5.37.
12. K � 8.27.
14. b. RMSE � 0.0394%.
17. b. F(inter) � 0.19; F(exer) � 3.94.

Chapter 3

2. Hint: P(different) � 1 − P(same).
3. Your list should have 70 items on it.
6. Hint: 50 × 49 × · · · × 39.
7. P(5 spades) � 0.000495.
9. Hint: Let one marble in the urn be special. Now count separately the sets of

k that include it and those that do not.
11. Hint: At each intersection on the way, I must choose either west or south,

until I have taken each direction a certain number of times.
12. Hint: Section 3.4 has two suggestions.
14. b. Hint: Consider the three possible countries separately.
15. P(7|10) � 0.117.
16. P � 0.06.
19. P � 0.000558.
20. P(9 cameras) � 0.06.
21. P(7 cameras) � 0.317.
22. Hint: Noticing that

(
i

1

) � i, use the result of Exercise 9 repeatedly, as in
Pascal’s triangle.

23. Hint: Use Exercise 9 repeatedly.
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24. Hint: Use our inequality for the logarithm. But do not ignore the cases in
which x ≤ −1.

Chapter 4

3. Hint: What event is A − (A − B)?
5. Hint: A naive answer might be that one coin is certainly heads up, so the

chance that the other is heads is 1
2 ; this is wrong.

7. Hint: Look at the derivation of the multiplication rule for combinatorial
probabilities (see 3.4.3) and translate it into our new notation.

8. Hint: ifnoutcomes are equally likely, what is the probability of each particular
outcome?

11. P(H|N) � 0.00105.
12. b. P(New|Out) � 0.571.
13. a. Hint: If she has talked to more than six people, then the first six were all

right-handed.
14. Hint: There are two reasons why it might be for sale on Sunday. It might have

just arrived, or it might have been there Saturday but did not sell.
16. Hint: if x is any number in (0, 1], then y � 1/x is ≥ 1. What determines the

value of the integer part of y?
17. Hint: Figure out what event is described by the expression

∪jAj − ∪i(∪jAj − Ai).
20. Hint: Piece events together out of finite rectangles.

Chapter 5

1. b. A typical entry is p(1) � 0.214.
3. P(5 older|2 Sophs) � 0.1107.
4. Hint: Generalize the idea of a negative hypergeometric variable to more than

two categories (three kinds of trees).
5. P(3 or more) � 0.097.
9. p-value � 0.0354.

10. p-value � 0.0403.
13. Hint: You want the probability of a vertical strip whose left edge is at x � −1.
15. a. Hint: F (x) � ∫ x

0 f (X) dX.
16. Hint: The two calculations should be quite different but have exactly the same

answer, illustrating positive–negative duality.
19. Hint: The calculations will be different, but the answers should be the same,

illustrating black–white symmetry.
20. Hint: The fact that F(8|N(32, 8, 5)) � 0.0574 should reduce (but not

eliminate) your arithmetic.
21. E(X) � 2.3929.
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26. a. 179 sheep.
b. Hint: Start with P(so many if the total is 80) � 0.1016 and P(if the total

is 50) � 0.0147.

Chapter 6

1. b. P ≈ 0.076.
2. P � 0.0493.
3. a. Hint: You need not use any formula you may happen to remember for the

sum of a finite or infinite geometric series; use only the definition of F

and the reasoning in (5.4.1).
5. b. P ≈ 0.334.
6. b. Hint: What is past is past. Consider only future races and wrecks.
9. Hint: Reread the derivation of the birthday inequality in (3.5.3).

10. b. P ≈ 0.712.
13. P � 0.136.
15. Hint: The equality between your answers illustrates positive–negative duality.
16. Hint: The equality illustrates black–white symmetry for the negative binomial

family.
17. b. Hint: Treat each day’s work as an independent experiment.
18. b. Hint: Notice that failing is a rare event.
20. Hint: There is a simple duality principle that drastically reduces your work.
22. Hint: You will need the expectation of a Geometric(p) variable.
23. a. E([x − 3]2) � 1.3375.
25. Hint: Use the inductive method.
27. b. p̂ � 0.585.
28. Hint: In Exercise 3 you derived a helpful formula.
29. Hint: For a balanced die, p(39) � 0.0145 and p(38) � 0.0108.

Chapter 7

1. c. P � 0.0125.
2. b. P � 0.286.
5. b. Hint: It may be easier to reason it out than to compute with mass functions.
8. One entry is F(5, 5) � 0.55.

10. Hint: Our formula for the probability of a rectangle should inspire you.
14. Cov(X, Y ) � 0.6.
17. σ � 11.14.
18. σ � $377.20.
20. ρXY � −0.041.
22. Var(x̄) � 3.
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23. Hint: After a particular failure, how many successes will there be before the
next failure?

25. b. σ � $316.66.
28. b. P(X ≥ 81|B(96, 0.75)) � 0.0189; P(X ≥ 81|B(97, 0.75)) � 0.0306.
29. a. Hint: The posterior distribution of the number of bears is 48 + Z, where

Z is a Poisson random variable with mean 105.

Chapter 8

1. R � 8.7.
2. R � 2.826.
3. p̂ � 0.897.
4. Hint: Do not use calculus. Find the ratio between probabilities for succes-

sive larger integers W (or B), and note when it stops increasing and starts
decreasing.

6. Hint: In order to force your estimates to sum to 1, substitutepk � 1−∑k−1
i�1 pi .

7. Hint: Move x to the denominator.
9. Hint: It helps to replace pr• � 1−p1• −· · ·−p(r−1)• where there are r rows;

and similarly for columns.
10. a. G-squared � 41.4.

b. Chi-squared � 42.3.
14. For example, the expected count of male, urban nonsmokers is 124.49.
16. λ � 1.678.
18. c. P(six|25 mg) � 0.353.

Chapter 9

1. b. Hint: Be careful about what happens at X � 0.
2. The answer starts out 0, 0, 1, 4, 5, . . . .

3. b. P � 0.713.
5. Hint: Use the results in Chapter 6.8.
9. b. mode � b

(
a−1
a

)1/a .
10. Hint: As often happens, it is easier to find the maximum of the log of f .
14. P � 0.577.
16. P � 0.474.
17. Hint: A statistics program that calculates cumulative Poisson probabilities

will help here.
18. a. Hint: The best size you can get turns out to be about 0.035.
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Chapter 10

1. Hint: Your answer should be in the form of a table.
2. The 25th percentile is 0.82.
5. Hint: See Exercise 9.6
7. b. P � 0.612.

12. Hint: E(1 + X) and [(1 + X)2] are easy to find.
14. Cov(X, Y ) � −690.
17. 0.4028 ≤ log(1.5) ≤ 0.4167.
18. Hint: Move the exponent to the denominator.
19. Hint: Write them as integrals.
20. Your answer will be within one part in 300 of the exact value.
21. Exact probability is 0.1254 and approximate probability is 0.1262.
22. The seventh and eighth terms of the series in Section 5.6 should give your

bounds.
24. Hint: This involves summing many terms, but if you sum them in a sensible

order, you will find that the terms quickly become negligible and you have
an answer accurate to 2 significant figures.

27. c. P(39) ≈ 0.0518.
28. Coverage probability � 0.918.

Chapter 11

4. P � 0.278.
9. a. P � 0.1792.

11. Hint: Review addition formulas from trigonometry.
13. b. The lower bound is 12.34
15. The upper limit of the interval is 81.30117.
16. b. Hint: Remember Beta–Binomial duality (see 9.5.3). P � 0.182.
17. b. P ≈ 0.158.
18. a. Hint: A computer would help here. P � 0.219.
22. Hint: Try to rearrange it so it looks like a bivariate normal density.

Chapter 12

2. Hint: These look like z � x cos θ + y sin θ and w � −x sin θ + y cos θ for
a rotation through any angle θ .

3. b. Hint: This involves evaluating a very easy integral.
8. Hint: The column for the one degree of freedom for interaction should be

proportional to the product of the two centered columns for the factors.
9. a. Hint: You may have to discard some redundant columns so that XTX

becomes nonsingular.
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11. standard error of prediction � 0.00744.
13. a. Iβ � n

β2 .
18. Hint: treat σ 2 as a parameter itself, not the square of σ .

Chapter 13

1. π (q) � q(1 − qW )
(W + 1)(1 − q)

.

2. Hint: Does Exercise 1 help?
3. P � 0.028.
7. P � 0.297.
8. P � 0.0593.

10. Var � 24.
13. Hint: Does Exercise 12 help?
14. E(X) � 15 months.
19. P ≈ 0.584.
25. b. P ≈ 0.0117.
27. b. P ≈ 0.000305.
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F-distribution, 384, 401
F-statistic, 70, 86, 380, 399

factor, 16
factorial, 95
factorial design, 29
factorial moment, 409
fail to reject, 154
failure rate, 372
family, 148
Fermat’s last theorem, 6
finite additivity, 126, 139
finite population, 106
finite population correction, 232, 242
Fisher, 318, 394
Fisher information, 394, 400, 402, 419,

423, 433, 435
Fisher’s exact test, 153, 155, 168
Fisher, R. A., 23, 89, 98, 108
Fisher–Tippet random variable, 285,

305, 372
floor function, 279
Fortran, 7
fractional shape parameter, 354
frequentist, 89, 98, 153, 235, 301, 378
Fubini’s theorem, 325, 345
full model, 17, 20–22, 84

centered, 43

G-squared, 250, 260, 261, 270, 357,
385, 399

Galton, Francis, 78
Gambler’s Ruin random variable, 432,

434
gamma, 281, 284, 296, 300, 319, 334,

336, 338, 353, 356, 368, 383,
398, 411, 418, 426, 428, 435

Shape Parameter, 300
gamma function, 354
gamma recursion, 355
gamma–Poisson duality, 282, 329
Gauss, Carl Friedrich, 1
Gauss, 380
Gauss–Markov, 393
Gaussian, 324
general linear model, 387
geometric, 177, 205, 276, 282, 307,

367, 405, 410
geometric approximation, 176, 202
geometric series, 125, 406
goodness of fit, 251
Gosset, 401
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Great Wall of China problem, 157, 289
Gumbel, 336

Hairline plot, 10, 41
half-life, 313
half-normal density, 354
harmonic series, 189
hazard rate, 372
historical controls, 267, 270
homoscedastic, 389, 402
Hubble, Edwin, 55
hyper-rectangles, 135, 216
hypergeometric, 146, 151, 158, 168,

171, 206, 242, 292, 305, 373,
367

binomial approximations, 242
maximum likelihood estimate, 269
sequences, 149

hypergeometric process, 97, 146, 150,
282, 292, 305

Dirichlet limit, 292
Poisson limit, 283

hyperplane, 60
hypothesis test, 198, 235, 298, 301

two-sided, 199

Identically distributed, 390
increasing, 372
independence, 32, 33, 44, 48, 130, 153,

155, 218, 220, 255, 270, 342,
361, 378, 390, 405, 412, 429

near-independence, 131
independent identically distributed, 219
independent variable, 25
independent variables

sums, 229
indicator function, 344, 412
inductive method, 188, 193, 205, 319
inequality, 103
infinite population, 107
infinite series, 125
information inequality, 397, 400, 402,

423
inner product, 59
interaction, 21, 22, 36, 79, 80, 85
intermediate value theorem, 312
interpolation, 24, 25

double, 28
intersections, 135

intervals, 135
inverse, 312
inverse gamma, 336, 359, 370
inverse Gaussian, 432, 435
inverse matrix, 389
irrational, 115
iterative proportional fitting, 259, 273

Jacobian, 325, 349, 360, 370, 422
joint cumulative distribution, 344
joint density, 344, 353

Kolmogorov, 121
Kolmogorov’s axiom, 138
Kruskal–Wallis statistic, 72, 113, 155,

243
kurtosis, 243, 432

L’Hospital’s rule, 315, 337, 355
Laplace, 373

location-and-scale, 402
Laplace series, 339
law of large numbers, 235, 414
laws of the iterated logarithm, vi
least squares, 1, 57, 190, 382
least-squares estimates, 64, 388

simple linear regression, 74
regression, 222

Lebesgue integration, vi
left tail approximations, 430
Legendre, Adrien Marie, 51, 190
length, 117
levels, 13, 16, 78
likelihood, 269, 381

absolutely continuous, 303, 381
discrete, 246
interval, 271

likelihood ratio, 247, 249, 261
chi-squared, 250
test, 303, 306

limiting distributions, 199
linear combination

expections, 227
variances, 227

linear combinations, 227, 360, 392
Linear Combinations of Parameters,

391
linear model, 388, 399

least-squares estimates, 388
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linear operator, 191, 315, 336
linear regression, 73, 223, 227
linearity, 342
location and scale, 336
location and scale changes, 318
location model, 11, 15, 42
log-likelihood, 248, 265, 382, 418
log-odds, 34
logarithm, 33

natural, 33, 103
logarithmic random variable, 208, 432
logistic random variable, 336, 434
logistic regression, 39, 45, 81, 264, 270,

396
maximum likelihood estimation, 270
regression model, 14, 48

logits, 34, 248, 264, 420
multiple, 34

loglinear, 44, 255, 256, 261
contingency table, 81
independence, 35

lognormal, 339
lower confidence bound, 166, 197

M.g.f.s, 425
marginal density, 214, 242, 353
marginal distribution, 211, 239, 344
marginal expectation, 342
marginal totals, 258, 272
Markov’s inequality, 234, 241, 316
mass function, 406
Mathematica, 7
matrix, 52, 59, 228, 386
max, 151
maximum likelihood estimate, 248,

259, 269, 381, 393, 399, 402,
419, 422, 433

logistic regression model, 267
mean-squared error, 54, 74, 191, 237,

316, 392
measure theory, vi
measures of association, 36
median, 45, 292, 295, 301, 313

population, 313
sample, 45

memoryless, 281
method of indicators, 163, 172, 231,

242, 316

method of moments, 164, 171, 205,
235, 241, 382

min, 151
minimum variance unbiased estimator,

398
mode, 249, 299, 306
model, 9

additive, 45
full, 45
one-way layout, 45

modulus, 338
moment, 413, 416, 435
moment generating function, 411, 415,

420, 433, 434
monotone, 314, 336
monotone likelihood ratio, 304, 307,

308, 433
most powerful test, 303
multilinear model, 47
multinomial, 271

maximum likelihood estimates, 269
multinomial probability, 343
multinomial proportions, 30, 33, 253
multinomial sampling, 255
multinomial symbol, 97
multinomial vector, 210, 226
multiple integrals, 214
multiple regression, 43, 387
multiplication axiom, 121, 128, 215
multiplication rule, 94
multiplier, 338
multivariate change of variables, 347,

352
multivariate cumulative distribution

functions, 216
multivariate density function, 214
multivariate expectation, 316, 342
mutually exclusive, 126, 139
MVUE, 400, 421, 425

Natural conjugate prior, 359
natural exponential family, 419, 428,

433
natural parameter, 420, 427, 433
negative association, 77
negative binomial, 178, 179, 183, 185,

205, 243, 278, 282, 297, 367,
405

expectation, 241
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negative binomial (continued)
gamma approximation, 282, 305, 307
maximum likelihood estimate, 248
normal approximation, 364
Poisson approximation, 185, 207, 282
variance, 241

negative binomial
approximation, 203
converges in distribution, 433

negative exponential, 281, 285, 312,
314, 368, 399, 410, 433, 435

standard, 280
negative hypergeometric, 148, 158, 168,

171, 176, 179, 200, 231, 283,
292, 367

beta approximation, 294, 307
binomial approximation, 232, 294
gamma approximation, 283, 307
maximum likelihood estimate, 269
negative binomial approximation,

233, 242
normal approximation, 368
Poisson approximation, 201

negative multinomial random vector,
239, 242

Newton, 266
Newton’s method, 266, 271, 273, 393
Neyman–Pearson lemma, 303, 308
nondecreasing, 158, 284, 311, 314, 317
nonincreasing, 305, 314, 317, 336
nonnegative definite matrix, 228
nonnegativity, 121
non-singular, 349, 389
nontriviality, 121
normal, 324, 332, 360, 379, 380, 398,

400, 415, 426, 435
family, 368
Limits, 415
standard, 324
Tail Approximation, 427

normal approximation, 320, 327, 337,
362, 371, 433, 435

normal equation, 12, 87, 58, 388
null hypothesis, 154, 300, 301, 363

Observed counts, 30, 33
occupancy problem, 99
odds ratio, 34
one-sided derivative, 409

one-sided second derivative, 417
one-to-one, 352
one-way layout, 13, 23, 42, 66, 84
order statistics, 291, 343, 351, 367, 370
ordered lists with replacement, 94
ordered lists without replacement, 95
orthogonal, 66, 81, 84, 86, 377
outcomes, 90, 119
outer square, 228

P.g.f., 413
p-value, 154, 165
pairs, 104
parabola, 142, 321
parallelogram, 20
parameter estimation, 235, 298
parameter exponential family, 422
parameters, 13, 148, 418
partial derivatives, 87
partial differentiation, 265, 346
partition, 126, 129, 144
Pascal, 7
Pascal’s triangle, 108
Pearson’s, 251
Pearson, Karl, 3
percentiles, 313
permutation symmetry, 350
permutations, 95, 200
perpendicular, 60
perpendicular projection, 81
point process, 278
Poisson, 186, 187, 205, 220, 236, 243,

246, 253, 260, 271, 277, 297,
299, 329, 354, 367, 398, 404,
406, 408, 423, 433, 435

maximum likelihood estimate, 248
normal approximation, 330
probabilities, 200
process, 186, 220, 284, 305, 320
standard Poisson process, 278
tail approximations, 429, 436
tilting, 434

Poisson approximation, 187, 426, 434,
436

binomial, 185
hypergeometric, 208
negative binomial, 185, 207
negative hypergeometric, 201

Poisson Limits, 413
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poker, 110
polar coordinates, 325, 352
polynomial regression, 49, 87
population, 30, 106
positive association, 77
positive linear operator, 191, 221, 316,

370
positive operator, 191, 315
positive random variable, 411
positive–negative duality, 158, 183
positivity, 342
posterior, 129

density, 358, 381
distribution, 236, 243, 246, 357, 373
expectation, 373
mean, 237, 243

power, 302
power series, 327, 338, 406
predicted counts, 30
predictions, 13, 24, 81
principle of least total error, 85
prior, 129

density, 358
distribution, 236, 357, 381

probability, 90
conditioned on, 91
equally likely, 100
geometric, 118
relative, 91
unconditional, 91, 121
uniform, 117

probability density, 285, 307
probability distribution function, 148
probability generating function, 405,

427, 429, 432
probability mass function, 148, 167
probability space, 91, 139

finitely additive, 121
product multinomial model, 256, 271

maximum likelihood estimates, 271
proportional fitting, 257, 270, 272
proportional regression, 394
proportions, 30, 102
pseudo-random, 314
Pythagorean theorem, 53, 58, 81, 393

Quantile, 313
function, 310
transform, 311

R-squared, 69, 378
radius of convergence, 414
random numbers, 310
random sample, 229
random variable, 146, 281, 292, 293,

356, 360, 428
discrete, 147

random vector, 210, 343
cumulative distribution function, 216
sums, 219

randomization, 92
randomized experiments, 2
rank, 71, 155
rank statistic, 72
Rao–Blackwell statistic, 424, 435
rational number, 92
Rayleigh random variable, 372
regression, 25, 57, 222, 381

linear, 24, 29
multiple, 27, 87
multiple linear, 30
nonparametric, 26
simple linear, 25, 46, 72, 84, 387
simple proportions, 86

regression to the mean, 78
reject the null hypothesis, 154
rejection region, 302
relative G-squared terms, 262
relative odds ratio, 36
renormalization, 279
repeatable, 11
replicates, 392
residuals, 11, 42, 61

estimated, 13
reversal

symmetry, 150, 159, 168, 183, 204,
295, 307, 325, 350

root-mean-squared error, 55, 83, 194
row homogeneity, 271
runs test, 112

Saddle-point approximation, 428, 430,
434, 435

sample, 106
sample correlation, 76
sample covariance, 75
sample mean, 12, 15, 62, 230, 235, 240,

417
sample mean squared error, 190
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sample median, 154, 402
sample proportion, 30, 195
sample space, 146, 395
sample surveys, 2
sample variance, 63, 84, 230, 389
sample vector, 52, 62
saturated model, 31, 36, 44, 48, 258,

273
scatter plot, 27
Schwarz inequality, 62, 76, 83, 86, 225
score estimator, 395, 400
score statistic, 395
semilog scale, 321
sensitivity, 127
set difference, 101
shape parameter, 382
sigma algebra, 137, 276
sign test, 155
significance level, 154, 165, 300, 363
simple random sample, 106
single-step method, 394
singular, 349
skewness, 243, 433
slope, 25
small-sample asymptotics, 430
specificity, 127
spherical distribution, 69
spherically symmetric, 69, 376, 378,

390, 399
standard deviation, 63, 194, 195, 240,

371
sample, 84

standard error, 195, 383
standard error of the mean, 335
standard normal, 354, 417, 434

cumulative distribution, 328
density, 326, 338, 428
tail probability, 428

standard scores, 64
standardize, 64, 226, 253, 279, 329,

332, 416
statistical graphics, 10, 27
Stirling’s formula, 326, 337, 355, 372
stochastic process, 97
stratified sampling, 271
subset, 100
subspace, 60, 81
substitution, 318

sufficient statistic, 255, 272, 419, 421,
422, 424, 433

sum of squares, 74
for regression, 58
for the mean, 66
for treatment, 65

sum-squared error, 54, 84
survey, 31
swamping of the prior, 360
symmetric about zero, 376
symmetric matrix, 228
symmetrizing transform, 338
symmetry, 131, 150, 159, 168, 183, 204,

295, 307, 325, 350
reversal, 150
transpose, 152, 168

t-statistic, 401, 434
2-σ interval, 195, 198, 333
2-s interval, 63
tail probability, 328, 428, 435
tangent line, 267
Taylor’s series, 407, 416
theory of elementary errors, 380
third quartile, 371
three-way association, 259, 272
total sum of squares, 58
transcendental, 134
transpose, 52, 159
treatment, 13, 16, 78
triangle inequality, 85
triangular matrices, 350
trinomial, 212, 222, 239
two-sample, 401
two-sided hypothesis test, 363
two-way associations, 272
two-way layout, 16, 18, 19, 43, 46, 78

Unbiased, 231, 383, 391, 397, 423
uncorrelated, 77, 228, 343, 360, 377
uncountable infinity, 115
undercounts, 48
uniform, 292, 371, 381, 427
uniformly, 142
union, 93, 120
unobservable, 48
unordered sets, 111
unordered sets, without replacement, 96
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Variance, 192, 319
vector cumulative distribution function,

216
volume, 117
volume-preserving, 349

Wallis, 355
Weibull, 306
weighted average, 161
Wilcoxon rank sum, 71, 243
with replacement, 111
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