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Preface

Our initial motivation for writing this book was the observation from various students that
the subject of design and analysis of experiments can seem like “a bunch of miscellaneous
topics.” We believe that the identification of the objectives of the experiment and the practical
considerations governing the design form the heart of the subject matter and serve as the
link between the various analytical techniques. We also believe that learning about design
and analysis of experiments is best achieved by the planning, running, and analyzing of a
simple experiment.

With these considerations in mind, we have included throughout the book the details
of the planning stage of several experiments that were run in the course of teaching our
classes. The experiments were run by students in statistics and the applied sciences and are
sufficiently simple that it is possible to discuss the planning of the entire experiment in a
few pages, and the procedures can be reproduced by readers of the book. In each of these
experiments, we had access to the investigators’ actual report, including the difficulties
they came across and how they decided on the treatment factors, the needed number of
observations, and the layout of the design. In the later chapters, we have included details
of a number of published experiments. The outlines of many other student and published
experiments appear as exercises at the ends of the chapters.

Complementing the practical aspects of the design are the statistical aspects of the anal-
ysis. We have developed the theory of estimable functions and analysis of variance with
some care, but at a low mathematical level. Formulae are provided for almost all analyses so
that the statistical methods can be well understood, related design issues can be discussed,
and computations can be done by hand in order to check computer output.

We recommend the use of a sophisticated statistical package in conjunction with the
book. Use of software helps to focus attention on the statistical issues rather than on the
calculation. Our particular preference is for the SAS software, and we have included the
elementary use of this package at the end of most chapters. Many of the SAS program files
and data sets used in the book can be found at www.springer-ny.com. However, the book can
equally well be used with any other statistical package. Availability of statistical software
has also helped shape the book in that we can discuss more complicated analyses—the
analysis of unbalanced designs, for example.

The level of presentation of material is intended to make the book accessible to a wide
audience. Standard linear models under normality are used for all analyses. We have avoided
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using calculus, except in a few optional sections where least squares estimators are obtained.
We have also avoided using linear algebra, except in an optional section on the canonical
analysis of second-order response surface designs. Contrast coefficients are listed in the
form of a vector, but these are interpreted merely as a list of coefficients.

This book reflects a number of personal preferences. First and foremost, we have not put
side conditions on the parameters in our models. The reason for this is threefold. Firstly,
when side conditions are added to the model, all the parameters appear to be estimable.
Consequently, one loses the perspective that in factorial experiments, main effects can be
interpreted only as averages over any interactions that happen to be present. Secondly, the
side conditions that are the most useful for hand calculation do not coincide with those
used by the SAS software. Thirdly, if one feeds a nonestimable parametric function into a
computer program such asPROC GLM in SAS, the program will declare the function to be
“nonestimable,” and the user needs to be able to interpret this statement. A consequence
is that the traditional solutions to the normal equations do not arise naturally. Since the
traditional solutions are for nonestimable parameters, we have tried to avoid giving these,
and instead have focused on the estimation of functions ofE[Y ], all of which are estimable.

We have concentrated on the use of prespecified models and preplanned analyses rather
than exploratory data analysis. We have emphasized the experimentwise control of error
rates and confidence levels rather than individual error rates and confidence levels.

We rely upon residual plots rather than formal tests to assess model assumptions. This is
because of the additional information provided by residual plots. For example, plots to check
homogeneity of variance also indicate when a variance-stabilizing transformation should
be effective. Likewise, nonlinear patterns in a normal probability plot may indicate whether
inferences under normality are likely to be liberal or conservative. Except for some tests
for lack of fit, we have, in fact, omitted all details of formal testing for model assumptions,
even though they are readily available in many computer packages.

The book starts with basic principles and techniques of experimental design and analysis
of experiments. It provides a checklist for the planning of experiments, and covers analysis
of variance, inferences for treatment contrasts, regression, and analysis of covariance. These
basics are then applied in a wide variety of settings. Designs covered include completely
randomized designs, complete and incomplete block designs, row-column designs, single
replicate designs with confounding, fractional factorial designs, response surface designs,
and designs involving nested factors and factors with random effects, including split-plot
designs.

In the last few years, “Taguchi methods” have become very popular for industrial exper-
imentation, and we have incorporated some of these ideas. Rather than separating Taguchi
methods as special topics, we have interspersed them throughout the chapters via the notion
of including “noise factors” in an experiment and analyzing the variability of the response
as the noise factors vary.

We have introduced factorial experiments as early as Chapter 3, but analyzed them as one-
way layouts (i.e., using a cell means model). The purpose is to avoid introducing factorial
experiments halfway through the book as a totally new topic, and to emphasize that many
factorial experiments are run as completely randomized designs. We have analyzed contrasts
in a two-factor experiment both via the usual two-way analysis of variance model (where
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the contrasts are in terms of the main effect and interaction parameters) and also via a cell-
means model (where the contrasts are in terms of the treatment combination parameters).
The purpose of this is to lay the groundwork for Chapters 13–15, where these contrasts are
used in confounding and fractions. It is also the traditional notation used in conjunction with
Taguchi methods.

The book is not all-inclusive. For example, we do not cover recovery of interblock
information for incomplete block designs with random block effects. We do not provide
extensive tables of incomplete block designs. Also, careful coverage of unbalanced models
involving random effects is beyond our scope. Finally, inclusion of SAS graphics is limited
to low-resolution plots.

The book has been classroom tested successfully over the past five years at The Ohio
State University, Wright State University, and Kenyon College, for junior and senior under-
graduate students majoring in a variety of fields, first-year graduate students in statistics,
and senior graduate students in the applied sciences. These three institutions are somewhat
different. The Ohio State University is a large land-grant university offering degrees through
the Ph.D., Wright State University is a mid-sized university with few Ph.D. programs, and
Kenyon College is a liberal arts undergraduate college. Below we describe typical syllabi
that have been used.

At OSU, classes meet for five hours per week for ten weeks. A typical class is com-
posed of 35 students, about a third of whom are graduate students in the applied statistics
master’s program. The remaining students are undergraduates in the mathematical sciences
or graduate students in industrial engineering, biomedical engineering, and various applied
sciences. The somewhat ambitious syllabus covers Chapters 1–7 and 10, Sections 11.1–11.4,
and Chapters 13, 15, and 17. Students taking these classes plan, run, and analyze their own
experiments, usually in a team of four or five students from several different departments.
This project serves the function of giving statisticians the opportunity of working with sci-
entists and seeing the experimental procedure firsthand, and gives the scientists access to
colleagues with a broader statistical training. The experience is usually highly rated by the
student participants.

Classes at WSU meet four hours per week for ten weeks. A typical class involves about
10 students who are either in the applied statistics master’s degree program or who are
undergraduates majoring in mathematics with a statistics concentration. Originally, two
quarters (20 weeks) of probability and statistics formed the prerequisite, and the course
covered much of Chapters 1–4, 6, 7, 10, 11, and 13, with Chapters 3 and 4 being primarily
review material. Currently, students enter with two additional quarters in applied linear
models, including regression, analysis of variance, and methods of multiple comparisons,
and the course covers Chapters 1 and 2, Sections 3.2, 6.7, and 7.5, Chapters 10, 11, and
13, Sections 15.1–15.2, and perhaps Chapter 16. As at OSU, both of these syllabi are
ambitious. During the second half of the course, the students plan, run, and analyze their
own experiments, working in groups of one to three. The students provide written and oral
reports on the projects, and the discussions during the oral reports are of mutual enjoyment
and benefit. A leisurely topics course has also been offered as a sequel, covering the rest of
Chapters 14–17.
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At Kenyon College, classes meet for three hours a week for 15 weeks. A typical class
is composed of about 10 junior and senior undergraduates majoring in various fields. The
syllabus covers Chapters 1–7, 10, and 17.

For some areas of application, random effects, nested models, and split-plot designs,
which are covered in Chapters 17–19, are important topics. It is possible to design a syllabus
that reaches these chapters fairly rapidly by covering Chapters 1–4, 6, 7, 17, 18, 10, 19.

We owe a debt of gratitude to many. For reading of, and comments on, prior drafts, we
thank Bradley Hartlaub, Jeffrey Nunemacher, Mark Irwin, an anonymous reviewer, and the
many students who suffered through the early drafts. We thank Baoshe An, James Clark,
Amy Ferketich, and Dionne Pratt for checking a large number of exercises, and Lisa Abrams,
Paul Burte, Kathryn Collins, Yuming Deng, Joseph Mesaros, Dionne Pratt, Kari Rabe,
Joseph Whitmore, and many others for catching numerous typing errors. We are grateful
to Peg Steigerwald, Terry England, Dolores Wills, Jill McClane, and Brian J. Williams for
supplying hours of typing skills. We extend our thanks to all the many students in classes
at The Ohio State University, Wright State University, and the University of Wisconsin at
Madison whose imagination and diligence produced so many wonderful experiments; also
to Brian H. Williams and Bob Wardrop for supplying data sets; to Nathan Buurma, Colleen
Brensinger, and James Colton for library searches; and to the publishers and journal editors
who gave us permission to use data and descriptions of experiments. We are especially
grateful to the SAS Institute for permission to reproduce portions of SAS programs and
corresponding output, and to John Kimmel for his patience and encouragement throughout
this endeavor.

This book has been ten years in the making. In the view of the authors, it is “a work in
progress temporarily cast in stone”—or in print, as it were. We are wholly responsible for
any errors and omissions, and we would be most grateful for comments, corrections, and
suggestions from readers so that we can improve any future editions.

Finally, we extend our love and gratitude to Jeff, Nancy, Tommy, and Jimmy, often
neglected during this endeavor, for their enduring patience, love, and support.

Angela Dean
Columbus, Ohio

Daniel Voss
Dayton, Ohio
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1 Principles and Techniques

1.1 Design: Basic Principles and Techniques
1.2 Analysis: Basic Principles and Techniques

1.1 Design: Basic Principles and Techniques

1.1.1 The Art of Experimentation

One of the first questions facing an experimenter is, “How many observations do I need
to take?” or alternatively, “Given my limited budget, how can I gain as much information
as possible?” These are not questions that can be answered in a couple of sentences. They
are, however, questions that are central to the material in this book. As a first step towards
obtaining an answer, the experimenter must ask further questions, such as, “What is the
main purpose of running this experiment?” and “What do I hope to be able to show?”

Typically, an experiment may be run for one or more of the following reasons:

(i) to determine the principal causes of variation in a measured response,

(ii) to find the conditions that give rise to a maximum or minimum response,

(iii) to compare the responses achieved at different settings of controllable variables,

(iv) to obtain a mathematical model in order to predict future responses.

Observations can be collected fromobservational studies as well as fromexperiments,
but only an experiment allows conclusions to be drawn about cause and effect. For example,
consider the following situation:

The output from each machine on a factory floor is constantly monitored by any successful
manufacturing company. Suppose that in a particular factory, the output from a particular
machine is consistently of low quality. What should the managers do? They could conclude
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that the machine needs replacing and pay out a large sum of money for a new one. They could
decide that the machine operator is at fault and dismiss him or her. They could conclude
that the humidity in that part of the factory is too high and install a new air conditioning
system. In other words, the machine output has been observed under the current operating
conditions (an observational study), and although it has been very effective in showing the
management that a problem exists, it has given them very little idea about thecause of the
poor quality.

It would actually be a simple matter to determine or rule out some of the potential causes.
For example, the question about the operator could be answered by moving all the operators
from machine to machine over several days. If the poor output follows the operator, then it
is safe to conclude that the operator is the cause. If the poor output remains with the original
machine, then the operator is blameless, and the machine itself or the factory humidity is
the most likely cause of the poor quality. This is an “experiment.” The experimenter has
control over a possible cause in the difference in output quality between machines. If this
particular cause is ruled out, then the experimenter can begin to vary other factors such as
humidity or machine settings.

It is more efficient to examine all possible causes of variation simultaneously rather than
one at a time. Fewer observations are usually needed, and one gains more information about
the system being investigated. This simultaneous study is known as a “factorial experiment.”
In the early stages of a project, a list of all factors that conceivably could have an important
effect on the response of interest is drawn up. This may yield a large number of factors
to be studied, in which case special techniques are needed to gain as much information as
possible from examining only a subset of possible factor settings.

The art of designing an experiment and the art of analyzing an experiment are closely
intertwined and need to be studied side by side. In designing an experiment, one must take
into account the analysis that will be performed. In turn, the efficiency of the analysis will
depend upon the particular experimental design that is used to collect the data. Without
these considerations, it is possible to invest much time, effort, and expense in the collection
of data which seem relevant to the purpose at hand but which, in fact, contribute little to the
research questions being asked. A guiding principle of experimental design is to “keep it
simple.” Interpretation and presentation of the results of experiments are generally clearer
for simpler experiments.

Three basic techniques fundamental to experimental design are replication, blocking, and
randomization. The first two help to increase precision in the experiment; the last is used to
decrease bias. These techniques are discussed briefly below and in more detail throughout
the book.

1.1.2 Replication

There is a difference between “replication” and “repeated measurements.” For example,
suppose four subjects are each assigned to a drug and a measurement is taken on each
subject. The result is four independent observations on the drug. This is “replication.” On
the other hand, if one subject is assigned to a drug and then measured four times, the
measurements are not independent. We call them “repeated measurements.” The variation
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recorded in repeated measurements taken at the same time reflects the variation in the
measurement process, while the variation recorded in repeated measurements taken over
a time interval reflects the variation in the single subject’s response to the drug over time.
Neither reflects the variation in independent subjects’ responses to the drug. We need to
know about the latter variation in order to generalize any conclusion about the drug so that
it is relevant to all similar subjects.

1.1.3 Blocking

The experimental conditions under which an experiment is run should be representative
of those to which the conclusions of the experiment are to be applied. For inferences to be
broad in scope, the experimental conditions should be rather varied. However, an unfortunate
consequence of increasing the scope of the experiment is an increase in the variability of
the response. Blocking is a technique that can often be used to help deal with this problem.

To block an experiment is to divide, or partition, the observations into groups called
blocks in such a way that the observations in each block are collected under relatively
similar experimental conditions. If blocking is done well, then comparisons of two or more
treatments are made more precisely than similar comparisons from an unblocked design.

1.1.4 Randomization

The purpose of randomization is to prevent systematic and personal biases from being in-
troduced into the experiment by the experimenter. A random assignment of subjects or
experimental material to treatments prior to the start of the experiment ensures that observa-
tions that are favored or adversely affected by unknown sources of variation are observations
“selected in the luck of the draw” and not systematically selected.

Lack of a random assignment of experimental material or subjects leaves the experimental
procedure open toexperimenter bias. For example, a horticulturist may assign his or her
favorite variety of experimental crop to the parts of the field that look the most fertile, or
a medical practitioner may assign his or her preferred drug to the patients most likely to
respond well. The preferred variety or drug may then appear to give better results no matter
how good or bad it actually is.

Lack of random assignment can also leave the procedure open tosystematic bias. Con-
sider, for example, an experiment involving drying time of three paints applied to sections of
a wooden board, where each paint is to be observed four times. If no random assignment of
order of observation is made, many experimenters would take the four observations on paint
1, followed by those on paint 2, followed by those on paint 3. This order might be perfectly
satisfactory, but it could equally well prove to be disastrous. Observations taken over time
could be affected by differences in atmospheric conditions, fatigue of the experimenter,
systematic differences in the wooden board sections, etc. These could all conspire to ensure
that any measurements taken during the last part of the experiment are, say, underrecorded,
with the result that paint 3 appears to dry faster than the other paints when, in fact, it may
be less good. The order 1,2,3,1,2,3,1,2,3,1,2,3 helps to solve the problem, but it does
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not remove it completely (especially if the experimenter takes a break after every three
observations).

There are also analytical reasons to support the use of a random assignment. It will be
seen in Chapters 3 and 4 that common forms of analysis of the data depend on theF andt
distributions. It can be shown that a random assignment ensures that these distributions are
the correct ones to use. The interested reader is referred to Kempthorne (1977).

To understand the meaning of randomization, consider an experiment to compare the
effects on blood pressure of three exercise programs, where each program is observed four
times, giving a total of 12 observations. Now, given 12 subjects, imagine making a list of
all possible assignments of the 12 subjects to the three exercise programs so that 4 subjects
are assigned to each program. (There are 12!/(4!4!4!), or 34,650 ways to do this.) If the
assignment of subjects to programs is done in such a way that every possible assignment
has the same chance of occurring, then the assignment is said to be acompletely random
assignment. Completely randomized designs, discussed in Chapters 3–7 of this book, are
randomized in this way. It is, of course, possible that a random assignment itself could lead
to the order 1,1,1,1,2,2,2,2,3,3,3,3. If the experimenter expressly wishes to avoid
certain assignments, then a different type of design should be used. An experimenter should
not look at the resulting assignment, decide that it does not look very random, and change
it.

Without the aid of an objective randomizing device, it is not possible for an experimenter
to make a random assignment. In fact, it is not even possible to select a single number at
random. This is borne out by a study run at the University of Delaware and reported by
Professor Hoerl in theRoyal Statistical Society News and Notes (January 1988). The study,
which was run over several years, asked students to pick a number at random between 0 and
9. The numbers 3 and 7 were selected by about 40% of the students. This is twice as many
as would be expected if the numbers were truly selected at random.

The most frequently used objective mechanism for achieving a random assignment in
experimental design is a random number generator. A random number generator is a com-
puter program that gives as output a very long string of digits that are integers between 0
and 9 inclusive and that have the following properties. All integers between 0 and 9 oc-
cur approximately the same number of times, as do all pairs of integers, all triples, and so
on. Furthermore, there is no discernible pattern in the string of digits, and hence the name
“random” numbers.

The random numbers in Appendix Table A.1 are part of a string of digits produced by
a random number generator (in SAS® version 6.09 on a DEC Model 4000 MODEL 610
computer at Wright State University). Many experimenters and statistical consultants will
have direct access to their own random number generator on a computer or calculator and
will not need to use the table. The table is divided into six sections (pages), each section
containing six groups of six rows and six groups of six columns. The grouping is merely a
device to aid in reading the table. To use the table, a random starting place must be found.
An experimenter who always starts reading the table at the same place always has the same
set of digits, and these could not be regarded as random. The grouping of the digits by six
rows and columns allows a random starting place to be obtained using five rolls of a fair
die. For example, the five rolls giving 3, 1, 3, 5, 2 tells the experimenter to find the digit that
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is in section 3 of the table, row group 1, column group 3, row 5, column 2. Then the digits
can be read singly, or in pairs, or triples, etc. from the starting point across the rows.

The most common random number generators on computers or calculators generaten-
digit real numbers between zero and one. Single digit random numbers can be obtained
from ann-digit real number by reading the first digit after the decimal point. Pairs of digits
can be obtained by reading the first two digits after the decimal point, and so on. The use of
random numbers for randomization is shown in Sections 3.2 and 3.8.

1.2 Analysis: Basic Principles and Techniques

In the analysis of data, it is desirable to provide both graphical and statistical analyses. Plots
that illustrate the relative responses of the factor settings under study allow the experimenter
to gain a feel for the practical implications of the statistical results and to communicate
effectively the results of the experiment to others. In addition, data plots allow the proposed
model to be checked and aid in the identification of unusual observations, as discussed in
Chapter 5. Statistical analysis quantifies the relative responses of the factors, thus clarifying
conclusions that might be misleading or not at all apparent in plots of the data.

The purpose of an experiment can range from exploratory (discovering new important
sources of variability) to confirmatory (confirming that previously discovered sources of
variability are sufficiently major to warrant further study), and the philosophy of the analysis
depends on the purpose of the experiment. In the early stages of experimentation the analysis
may be exploratory, and one would plot and analyze the data in any way that assists in the
identification of important sources of variation. In later stages of experimentation, analysis
is usually confirmatory in nature. A mathematical model of the response is postulated and
hypotheses are tested and confidence intervals are calculated.

In this book, we uselinear models to model our response and themethod of least squares
for obtaining estimates of the parameters in the model. These are described in Chapter 3.
Our models include random “error variables” that encompass all the sources of variability
not explicity present in the model. We operate under the assumption that the error terms
are normally distributed. However, most of the procedures in this book are generally fairly
robust to nonnormality, provided that there are no extreme observations among the data.

It is rare nowadays for experimental data to be analyzed by hand. Most experimenters
and statisticians have access to a computer package that is capable of producing, at the very
least, a basic analysis of data for the simplest experiments. To the extent possible, for each
design discussed, we shall present useful plots and methods of analysis that can be obtained
from most statistical software packages. We will also develop many of the mathematical
formulas that lie behind the computer analysis. This will enable the reader more easily
to appreciate and interpret statistical computer package output and the associated manuals.
Computer packages vary in sophistication, flexibility, and the statistical knowledge required
of the user. The SAS software is one of the better packages for analyzing experimental data.
It can handle every model discussed in this book, and although it requires some knowledge
of experimental design on the part of the user, it is easy to learn. We provide some basic
SAS statements and output at the end of most chapters to illustrate data analysis. A reader
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who wishes to use a different computer package can run the equivalent analyses on his or
her own package and compare the output with those shown. It is important that every user
know exactly the capabilities of his or her own package and also the likely size of rounding
errors. It is not our intent to teach the best use of the SAS software, and those readers who
have access to the SAS package may find better ways of achieving the same analyses.
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2.1 Introduction
2.2 A Checklist for Planning Experiments
2.3 A Real Experiment—Cotton-Spinning Experiment
2.4 Some Standard Experimental Designs
2.5 More Real Experiments
Exercises

2.1 Introduction

Although planning an experiment is an exciting process, it is extremely time-consuming.
This creates a temptation to begin collecting data without giving the experimental design
sufficient thought. Rarely will this approach yield data that have been collected in exactly
the right way and in sufficient quantity to allow a good analysis with the required precision.
This chapter gives a step by step guide to the experimental planning process. The steps are
discussed in Section 2.2 and illustrated via real experiments in Sections 2.3 and 2.5. Some
standard experimental designs are described briefly in Section 2.4.

2.2 A Checklist for Planning Experiments

The steps in the following checklist summarize a very large number of decisions that need to
be made at each stage of the experimental planning process. The steps are not independent,
and at any stage, it may be necessary to go back and revise some of the decisions made at
an earlier stage.

7
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CHECKLIST

(a) Define the objectives of the experiment.

(b) Identify all sources of variation, including:

(i) treatment factors and their levels,

(ii) experimental units,

(iii) blocking factors, noise factors, and covariates.

(c) Choose a rule for assigning the experimental units to the treatments.

(d) Specify the measurements to be made, the experimental procedure, and the anticipated
difficulties.

(e) Run a pilot experiment.

(f) Specify the model.

(g) Outline the analysis.

(h) Calculate the number of observations that need to be taken.

(i) Review the above decisions. Revise, if necessary.

A short description of the decisions that need to be made at each stage of the checklist is
given below. Only after all of these decisions have been made should the data be collected.

(a) Define the objectives of the experiment.
A list should be made of the precise questions that are to be addressed by the experiment.
It is this list that helps to determine the decisions required at the subsequent stages of
the checklist. It is advisable to list only the essential questions, since side issues will
unnecessarily complicate the experiment, increasing both the cost and the likelihood of
mistakes. On the other hand, questions that are inadvertently omitted may be unanswer-
able from the data. In compiling the list of objectives, it can often be helpful to outline
the conclusions expected from the analysis of the data. The objectives may need to be
refined as the remaining steps of the checklist are completed.

(b) Identify all sources of variation. A source of variation isanything that could cause an
observation to have a different numerical value from another observation. Some sources
of variation are minor, producing only small differences in the data. Others are major
and need to be planned for in the experiment. It is good practice to make a list of every
conceivable source of variation and then label each as either major or minor. Major
sources of variation can be divided into two types: those that are of particular interest
to the experimenter, called “treatment factors,” and those that are not of interest, called
“nuisance factors.”
(i) Treatment factors and their levels.
Although the termtreatment factor might suggest a drug in a medical experiment, it
is used to mean any substance or item whose effect on the data is to be studied. At
this stage in the checklist, the treatment factors and theirlevels should be selected. The
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levels are the specific types or amounts of the treatment factor that will actually be
used in the experiment. For example, a treatment factor might be a drug or a chemical
additive or temperature or teaching method, etc. The levels of such treatment factors
might be the different amounts of the drug to be studied, different types of chemical
additives to be considered, selected temperature settings in the range of interest, different
teaching methods to be compared, etc. Few experiments involve more than four levels
per treatment factor.
If the levels of a treatment factor are quantitative (i.e., can be measured), then they are
usually chosen to be equally spaced. For convenience, treatment factor levels can be
coded. For example, temperature levels 60◦, 70◦, 80◦, . . . might be coded as 1, 2, 3,. . .
in the plan of the experiment, or as 0, 1, 2,. . . . With the latter coding, level 0 does not
necessarily signify the absence of the treatment factor. It is merely a label. Provided that
the experimenter keeps a clear record of the original choice of levels, no information is
lost by working with the codes.
When an experiment involves more than one treatment factor, every observation is
a measurement on some combination of levels of the various treatment factors. For
example, if there are two treatment factors, temperature and pressure, whenever an ob-
servation is taken at a certain pressure, it must necessarily be taken at some temperature,
and vice versa. Suppose there are four levels of temperature coded 1, 2, 3, 4 and three
levels of pressure coded 1, 2, 3. Then there are twelve combinations of levels coded 11,
12, . . ., 43, where the first digit of each pair refers to the level of temperature and the
second digit to the level of pressure. Treatment factors are often labeledF1, F2, F3, . . .

orA,B,C, . . . . The combinations of their levels are calledtreatment combinations and
an experiment involving two or more treatment factors is called afactorial experiment.
We will use the termtreatment to mean a level of a treatment factor in a single factor
experiment, or to mean a treatment combination in a factorial experiment.
(ii) Experimental units.
Experimental units are the “material” to which the levels of the treatment factor(s)
are applied. For example, in agriculture these would be individual plots of land, in
medicine they would be human or animal subjects, in industry they might be batches
of raw material, factory workers, etc. If an experiment has to be run over a period of
time, with the observations being collected sequentially, then the times of day can also
be regarded as experimental units.
Experimental units should be representative of the material and conditions to which
the conclusions of the experiment will be applied. For example, the conclusions of
an experiment that uses university students as experimental units may not apply to all
adults in the country. The results of a chemical experiment run in an 80◦ laboratory may
not apply in a 60◦ factory. Thus it is important to consider carefully the scope of the
experiment in listing the objectives in step (a).
(iii) Blocking factors, noise factors, and covariates.
An important part of designing an experiment is to enable the effects of the nuisance
factors to be distinguished from those of the treatment factors. There are several ways
of dealing with nuisance factors, depending on their nature.
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It may be desirable to limit the scope of the experiment and to fix the level of the nuisance
factor. This action may necessitate a revision of the objectives listed in step (a) since the
conclusions of the experiment will not be so widely applicable. Alternatively, it may be
possible to hold the level of a nuisance factor constant for one group of experimental
units, change it to a different fixed value for a second group, change it again for a
third, and so on. Such a nuisance factor is called ablocking factor, and experimental
units measured under the same level of the blocking factor are said to be in the same
block (see Chapter 10). For example, suppose that temperature was expected to have an
effect on the observations in an experiment, but it was not itself a factor of interest. The
entire experiment could be run at a single temperature, thus limiting the conclusions to
that particular temperature. Alternatively, the experimental units could be divided into
blocks with each block of units being measured at a different fixed temperature.
Even when the nuisance variation is not measured, it is still often possible to divide the
experimental units into blocks of like units. For example, plots of land or times of day
that are close together are more likely to be similar than those far apart. Subjects with
similar characteristics are more likely to respond in similar ways to a drug than subjects
with different characteristics. Observations made in the same factory are more likely to
be similar than observations made in different factories.
Sometimes nuisance variation is a property of the experimental units and can be mea-
sured before the experiment takes place, (e.g., the blood pressure of a patient in a medical
experiment, the I.Q. of a pupil in an educational experiment, the acidity of a plot of land
in an agricultural experiment). Such a measurement is called acovariate and can play a
major role in the analysis (see Chapter 9). Alternatively, the experimental units can be
grouped into blocks, each block having a similar value of the covariate. The covariate
would then be regarded as a blocking factor.
If the experimenter is interested in the variability of the response as the experimental
conditions are varied, then nuisance factors are deliberately included in the experiment
and not removed via blocking. Such nuisance factors are callednoise factors, and
experiments involving noise factors form the subject ofrobust design, discussed in
Chapters 7 and 15.

(c) Choose a rule by which to assign the experimental units to the levels of the treatment
factors.
The assignment rule, or theexperimental design, specifies which experimental units are
to be observed under which treatments. The choice of design, which may or may not
involve blocking factors, depends upon all the decisions made so far in the checklist.
There are several standard designs that are used often in practice, and these are intro-
duced in Section 2.4. Further details and more complicated designs are discussed later
in the book.
The actual assignment of experimental units to treatments should be done at random,
subject to restrictions imposed by the chosen design. The importance of a random
assignment was discussed in Section 1.1.4. Methods of randomization are given in
Section 3.1.
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There are some studies in which it appears to be impossible to assign the experimental
units to the treatments either at random or indeed by any method. For example, if the
study is to investigate the effects of smoking on cancer with human subjects as the
experimental units, it is neither ethical nor possible to assign a person to smoke a given
number of cigarettes per day. Such a study would therefore need to be done by observing
people who have themselves chosen to be light, heavy, or nonsmokers throughout their
lives. This type of study is anobservational study and not an experiment. Although
many of the analysis techniques discussed in this book could be used for observational
studies, cause and effect conclusions are not valid, and such studies will not be discussed
further.

(d) Specify the measurements to be made, the experimental procedure, and the
anticipated difficulties.
The data (or observations) collected from an experiment are measurements of a response
variable (e.g., the yield of a crop, the time taken for the occurrence of a chemical reaction,
the output of a machine). The units in which the measurements are to be made should be
specified, and these should reflect the objectives of the experiment. For example, if the
experimenter is interested in detecting a difference of 0.5 gram in the response variable
arising from two different treatments, it would not be sensible to take measurements
to the nearest gram. On the other hand, it would be unnecessary to take measurements
to the nearest 0.01 gram. Measurements to the nearest 0.1 gram would be sufficiently
sensitive to detect the required difference, if it exists.
There are usually unforeseen difficulties in collecting data, but these can often be iden-
tified by taking a few practice measurements or by running a pilot experiment (see
step (e)). Listing the anticipated difficulties helps to identify sources of variation re-
quired by step (b) of the checklist, and also gives the opportunity of simplifying the
experimental procedure before the experiment begins.
Precise directions should be listed as to how the measurements are to be made. This
might include details of the measuring instruments to be used, the time at which the
measurements are to be made, the way in which the measurements are to be recorded.
It is important that everyone involved in running the experiment follow these directions
exactly. It is advisable to draw up a data collection sheet that shows the order in which
the observations are to be made and also the units of measurement.

(e) Run a pilot experiment.
A pilot experiment is a mini experiment involving only a few observations. No conclu-
sions are necessarily expected from such an experiment. It is run to aid in the completion
of the checklist. It provides an opportunity to practice the experimental technique and
to identify unsuspected problems in the data collection. If the pilot experiment is large
enough, it can also help in the selection of a suitable model for the main experiment.
The observed experimental error in the pilot experiment can help in the calculation of
the number of observations required by the main experiment (step (h)).
At this stage, steps (a)–(d) of the checklist should be reevaluated and changes made as
necessary.
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(f) Specify the model.
The model must indicate explicitly the relationship that is believed to exist between
the response variable and the major sources of variation that were identified at step (b).
The techniques used in the analysis of the experimental data will depend upon the form
of the model. It is important, therefore, that the model represent the true relationship
reasonably accurately.
The most common type of model is the linear model, which shows the response variable
set equal to a linear combination of terms representing the major sources of variation
plus an error term representing all the minor sources of variation taken together. A pilot
experiment (step (e)) can help to show whether or not the data are reasonably well
described by the model.
There are two different types of treatment or block factors that need to be distinguished,
since they lead to somewhat different analyses. The effect of a factor is said to be afixed
effect if the factor levels have been specifically selected by the experimenter and if the
experimenter is interested in comparing the effects on the response variable of these
specific levels. This is the most common type of factor and is the type considered in the
early chapters. A model containing only fixed-effect factors (apart from the response
and error random variables) is called afixed-effects model.
Occasionally, however, a factor has an extremely large number of possible levels, and
the levels included in the experiment are a random sample from the population of all
possible levels. The effect of such a factor is said to be arandom effect. Since the levels
are not specifically chosen, the experimenter has little interest in comparing the effects
on the response variable of the particular levels used in the experiment. Instead, it is the
variability of the response due to the entire population of levels that is of interest. Models
for which all factors are random effects are calledrandom-effects models. Models for
which some factors are random effects and others are fixed effects are calledmixed
models. Experiments involving random effects will be considered in Chapters 17–18.

(g) Outline the analysis.
The type of analysis that will be performed on the experimental data depends on the
objectives determined at step (a), the design selected at step (c), and its associated model
specified in step (f). The entire analysis should be outlined (including hypotheses to be
tested and confidence intervals to be calculated). The analysis not only determines the
calculations at step (h), but also verifies that the design is suitable for achieving the
objectives of the experiment.

(h) Calculate the number of observations needed.
At this stage in the checklist, a calculation should be done for the number of observa-
tions that are needed in order to achieve the objectives of the experiment. If too few
observations are taken, then the experiment may be inconclusive. If too many are taken,
then time, energy, and money are needlessly expended.
Formulae for calculating the number of observations are discussed in Sections 3.6
and 4.5 for the completely randomized design, and in later chapters for more complex
designs. The formulae require a knowledge of the size of the experimental variability.
This is the amount of variability in the data caused by the sources of variation designated
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as minor in step (b) (plus those sources that were forgotten!). Estimating the size of
the experimental error prior to the experiment is not easy, and it is advisable to err
on the large side. Methods of estimation include the calculation of the experimental
error in a pilot experiment (step (e)) and previous experience of working with similar
experiments.

(i) Review the above decisions. Revise if necessary.
Revision is necessary when the number of observations calculated at step (h) exceeds
the number that can reasonably be taken within the time or budget available. Revision
must begin at step (a), since the scope of the experiment usually has to be narrowed. If
revisions are not necessary, then the data collection may commence.

It should now be obvious that a considerable amount of thought needs to precede the
running of an experiment. The data collection is usually the most costly and the most time-
consuming part of the experimental procedure. Spending a little extra time in planning helps
to ensure that the data can be used to maximum advantage. No method of analysis can save
a badly designed experiment.

Although an experimental scientist welltrained in the principles of design and analysis of
experiments may not need to consult a statistician, it usually helps to talk over the checklist
with someone not connected with the experiment. Step (a) in the checklist is often the most
difficult to complete. A consulting statistician’s first question to a client is usually, “Tell me
exactly why you are running the experiment.Exactly what do you want to show?” If these
questions cannot be answered, it is not sensible for the experimenter to go away, collect
some data, and worry about it later. Similarly, it is essential that a consulting statistician
understand reasonably well not only the purpose of the experiment but also the experimental
technique. It is not helpful to tell an experimenter to run a pilot experiment that eats up most
of the budget.

The experimenter needs to give clear directions concerning the experimental procedure to
all persons involved in running the experiment and in collecting the data. It is also necessary
to check that these directions are being followed exactly as prescribed. An amusing anecdote
told by M. Salvadori (1980) in his bookWhy Buildings Stand Up illustrates this point.
The story concerns a quality control study of concrete. Concrete consists of cement, sand,
pebbles, and water and is mixed in strictly controlled proportions in a concrete plant. It is
then carried to a building site in a revolving drum on a large truck. A sample of concrete
is taken from each truckload and, after seven days, is tested for compressive strength. Its
strength depends partly upon the ratio of water to cement, and decreases as the proportion
of water increases. The story continues:

During the construction of a terminal at J. F. Kennedy Airport in New York, the
supervising engineer noticed that all the concrete reaching the site before noon showed
good seven-day strength, but some of the concrete batches arriving shortly after noon
did not measure up. Puzzled by this phenomenon, he investigated all its most plausible
causes until he decided, in desperation, not only to be at the plant during the mixing,
but also to follow the trucks as they went from the plant to the site. By doing so
unobtrusively, he was able to catch a truck driver regularly stopping for beer and



14 Chapter 2 Planning Experiments

a sandwich at noon, and before entering the restaurant, hosing extra water into the
drums so that the concrete would not harden before reaching the site. The prudent
engineer must not only be cautious about material properties, but be aware, most of
all, of human behavior.

This applies to prudent experimenters, too! In the chapters that follow, most of the
emphasis falls on the statistical analysis of well-designed experiments. It is crucial to keep
in mind the ideas in these first sections while reading the rest of the book. Unfortunately,
there are no nice formulae to summarize everything. Both the experimenter and the statistical
consultant should use the checklist and lots of common sense!

2.3 A Real Experiment—Cotton-Spinning Experiment

The experiment to be described was reported in the November 1953 issue of theJournal
of Applied Statistics by Robert Peake, of the British Cotton Industry Research Association.
Although the experiment was run many years ago, the types of decisions involved in planning
experiments have changed very little. The original report was not written in checklist form,
but all of the relevant details were provided by the author in the article.

CHECKLIST

(a) Define the objectives of the experiment.
At an intermediate stage of the cotton-spinning process, a strand of cotton (known as
“roving”) thicker than the final thread is produced. Roving is twisted just before it is
wound onto a bobbin. As the degree of twist increases, so does the strength of the
cotton, but unfortunately, so does the production time and hence, the cost. The twist is
introduced by means of a rotary guide called a “flyer.” The purpose of the experiment
was twofold; first, to investigate the way in which different degrees of twist (measured
in turns per inch) affected the breakage rate of the roving, and secondly, to compare the
ordinary flyer with the newly devised special flyer.

(b) Identify all sources of variation.
(i) Treatment factors and their levels.
There are two treatment factors, namely “type of flyer” and “degree of twist.” The first
treatment factor, flyer, has two levels, “ordinary” and “special.” We code these as 1 and
2, respectively. The levels of the second treatment factor, twist, had to be chosen within a
feasible range. A pilot experiment was run to determine this range, and four nonequally
spaced levels were selected, 1.63, 1.69, 1.78, and 1.90 turns per inch. Coding these
levels as 1, 2, 3, and 4, there are eight possible treatment combinations, as shown in
Table 2.1.
The two treatment combinations 11 and 24 were omitted from the experiment, since the
pilot experiment showed that these did not produce satisfactory roving. The experiment
was run with the six treatment combinations 12, 13, 14, 21, 22, 23.
(ii) Experimental units.
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Table 2.1 Treatment combinations for the
cotton-spinning experiment

Twist
Flyer 1.63 1.69 1.78 1.90
Ordinary (11) 12 13 14
Special 21 22 23 (24)

An experimental unit consisted of the thread on the set of full bobbins in a machine on
a given day. It was not possible to assign different bobbins in a machine to different
treatment combinations. The bobbins needed to be fully wound, since the tension, and
therefore the breakage rate, changed as the bobbin filled. It took nearly one day to wind
each set of bobbins completely.
(iii) Blocking factors, noise factors, and covariates.
Apart from the treatment factors, the following sources of variation were identified: the
different machines, the different operators, the experimental material (cotton), and the
atmospheric conditions.
There was some discussion among the experimenters over the designation of the block-
ing factors. Although similar material was fed to the machines and the humidity in the
factory was controlled as far as possible, it was still thought that the experimental condi-
tions might change over time. A blocking factor representing the day of the experiment
was contemplated. However, the experimenters finally decided to ignore the day-to-day
variability and to include just one blocking factor, each of whose levels represented a
machine with a single operator. The number of experimental units per block was limited
to six to keep the experimental conditions fairly similar within a block.

(c) Choose a rule by which to assign the experimental units to the treatments.
A randomized complete block design, which is discussed in detail in Chapter 10, was
selected. The six experimental units in each block were randomly assigned to the six
treatment combinations. The design of the final experiment was similar to that shown
in Table 2.2.

(d) Specify the measurements to be made, the experimental procedure, and the
anticipated difficulties.

Table 2.2 Part of the design for the cotton-spinning
experiment

Time Order
Block 1 2 3 4 5 6
I 22 12 14 21 13 23
II 21 14 12 13 22 23
III 23 21 14 12 13 22
IV 23 21 12 · · · · · · · · ·
...

...
...

...
...

...
...
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It was decided that a suitable measurement for comparing the effects of the treatment
combinations was the number of breaks per hundred pounds of material. Since the job
of machine operator included mending every break in the roving, it was easy for the
operator to keep a record of every break that occurred.
The experiment was to take place in the factory during the normal routine. The major
difficulties were the length of time involved for each observation, the loss of production
time caused by changing the flyers, and the fact that it was not known in advance how
many machines would be available for the experiment.

(e) Run a pilot experiment.
The experimental procedure was already well known. However, a pilot experiment was
run in order to identify suitable levels of the treatment factor “degree of twist” for each
of the flyers; see step (b).

(f) Specify the model.
The model was of the form

Breakage rate� constant+ effect of treatment combination

+ effect of block + error .

Models of this form and the associated analyses are discussed in Chapter 10.

(g) Outline the analysis.
The analysis was planned to compare differences in the breakage rates caused by the
six flyer/twist combinations. Further, the trend in breakage rates as the degree of twist
was increased was of interest for each flyer separately.

(h) Calculate the number of observations that need to be taken.
The experimental variability was estimated from a previous experiment of a somewhat
different nature. This allowed a calculation of the required number of blocks to be
done (see Section 10.5.2). The calculation was based on the fact that the experimenters
wished to detect a true difference in breakage rates of at least 2 breaks per 100 pounds
with high probability. The calculation suggested that 56 blocks should be observed (a
total of 336 observations!).

(i) Review the above decisions. Revise, if necessary.
Since each block would take about a week to observe, it was decided that 56 blocks
would not be possible. The experimenters decided to analyze the data after the first
13 blocks had been run. The effect of decreasing the number of observations from the
number calculated is that the requirements stated in step (h) would not be met. The
probability of detecting differences of 2 breaks per 100 lbs was substantially reduced.

The results from the 13 blocks are shown in Table 2.3, and the data from five of these
are plotted in Figure 2.1. The data show that there are certainly differences in blocks. For
example, results in block 5 are consistently above those for block 1. The breakage rate
appears to be somewhat higher for treatment combinations 12 and 13 than for 23. However,
the observed differences may not be any larger than the inherent variability in the data.
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Table 2.3 Data from the cotton-spinning experiment

Treatment Block Number
Combination 1 2 3 4 5 6

12 6.0 9.7 7.4 11.5 17.9 11.9
13 6.4 8.3 7.9 8.8 10.1 11.5
14 2.3 3.3 7.3 10.6 7.9 5.5
21 3.3 6.4 4.1 6.9 6.0 7.4
22 3.7 6.4 8.3 3.3 7.8 5.9
23 4.2 4.6 5.0 4.1 5.5 3.2

Treatment Block Number
Combination 7 8 9 10 11 12 13

12 10.2 7.8 10.6 17.5 10.6 10.6 8.7
13 8.7 9.7 8.3 9.2 9.2 10.1 12.4
14 7.8 5.0 7.8 6.4 8.3 9.2 12.0
21 6.0 7.3 7.8 7.4 7.3 10.1 7.8
22 8.3 5.1 6.0 3.7 11.5 13.8 8.3
23 10.1 4.2 5.1 4.6 11.5 5.0 6.4

Source: Peake, R.E. (1953). Copyright © 1953 Royal Statistical Society. Reprinted
with permission.

Figure 2.1
A subset of the data
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Therefore, it is important to subject these data to a careful statistical analysis. This will be
done in Section 10.5.

2.4 Some Standard Experimental Designs

An experimental design is a rule that determines the assignment of the experimental units
to the treatments. Although experiments differ from each other greatly in most respects,



18 Chapter 2 Planning Experiments

there are some standard designs that are used frequently. These are described briefly in this
section.

2.4.1 Completely Randomized Designs

A completely randomized design is the name given to a design in which the experimenter
assigns the experimental units to the treatments completely at random, subject only to the
number of observations to be taken on each treatment. Completely randomized designs
are used for experiments that involve no blocking factors. They are discussed in depth in
Chapters 3–9 and again in some of the later chapters. The mechanics of the randomization
procedure are illustrated in Section 3.1. The statistical properties of the design are completely
determined by specification ofr1, r2, . . . , rv, whereri denotes the number of observations
on theith treatment,i � 1, . . . , v.

The model is of the form

Response� constant+ effect of treatment+ error.

Factorial experiments often have a large number of treatments. This number can even
exceed the number of available experimental units, so that only a subset of the treatment
combinations can be observed. Special methods of design and analysis are needed for such
experiments, and these are discussed in Chapter 15.

2.4.2 Block Designs

A block design is a design in which the experimenter partitions the experimental units into
blocks, determines the allocation of treatments to blocks, and assigns the experimental units
within each block to the treatments completely at random. Block designs are discussed in
depth in Chapters 10–14.

In the analysis of a block design, the blocks are treated as the levels of a single blocking
factor even though they may be defined by a combination of levels of more than one nuisance
factor. For example, the cotton-spinning experiment of Section 2.3 is a block design with
each block corresponding to a combination of a machine and an operator. The model is of
the form

Response� constant+ effect of block

+ effect of treatment+ error .

The simplest block design is thecomplete block design, in which each treatment is ob-
served the same number of times in each block. Complete block designs are easy to analyze.
A complete block design whose blocks contain a single observation on each treatment is
called arandomized complete block design or, simply, arandomized block design.

When the block size is smaller than the number of treatments, so that it is not possible to
observe every treatment in every block, a block design is called anincomplete block design.
The precision with which treatment effects can be compared and the methods of analysis
that are applicable depend on the choice of the design. Some standard design choices, and
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Table 2.4 Schematic plans of experiments with two blocking
factors

(i) Crossed Blocking (ii) Nested Blocking
Factors Factors

Block Block
Factor 1 Factor 1
1 2 3 1 2 3

Block 1 * * * 1 *
Factor 2 * * * 2 *
2 3 * * * 3 *

Block 4 *
Factor 5 *
2 6 *

7 *
8 *
9 *

appropriate methods of randomization, are covered in Chapter 11. Incomplete block designs
for factorial experiments are discussed in Chapter 13.

2.4.3 Designs with Two or More Blocking Factors

When an experiment involves two major sources of variation that have each been designated
as blocking factors, these blocking factors are said to be eithercrossed or nested. The
difference between these is illustrated in Table 2.4. Each experimental unit occurs at some
combination of levels of the two blocking factors, and an asterisk denotes experimental units
that are to be assigned to treatment factors. It can be seen that when the block factors are
crossed, experimental units are used from all possible combinations of levels of the blocking
factors. When the block factors are nested, a particular level of one of the blocking factors
occurs at only one level of the other blocking factor.

Crossed blocking factors A design involving two crossed blocking factors is sometimes
called a “row–column” design. This is due to the pictorial representation of the design, in
which the levels of one blocking factor are represented by rows and the levels of the second
are represented by columns (see Table 2.4(i)). An intersection of a row and a column is
called a “cell.” Experimental units in the same cell should be similar. The model is of the
form

Response� constant+ effect of row block+ effect of column block

+ effect of treatment+ error.

Some standard choices of row–column designs with one experimental unit per cell are
discussed in Chapter 12, and an example is given in Section 2.5.3 (page 29) of a row–column
design with six experimental units per cell.
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Table 2.5 A Latin square for the cotton-spinning
experiment

Machine
with Days

Operator 1 2 3 4 5 6
1 12 13 14 21 22 23
2 13 14 21 22 23 12
3 14 21 22 23 12 13
4 22 23 12 13 14 21
5 23 12 13 14 21 22
6 21 22 23 12 13 14

The example shown in Table 2.5 is a basic design (prior to randomization) that was
considered for the cotton-spinning experiment. The two blocking factors were “machine
with operator” and “day.” Notice that if the column headings are ignored, the design looks
like a randomized complete block design. Similarly, if the row headings are ignored, the
design with columns as blocks looks like a randomized complete block design. Such designs
are called Latin squares and are discussed in Chapter 12. For the cotton-spinning experiment,
which was run in the factory itself, the experimenters could not guarantee that the same six
machines would be available for the same six days, and this led them to select a randomized
complete block design. Had the experiment been run in a laboratory, so that every machine
was available on every day, the Latin square design would have been used, and the day-to-day
variability could have been removed from the analysis of treatments.

Nested (or hierarchical) blocking factors. Two blocking factors are said to be nested
when observations taken at two different levels of one blocking factor are automatically at
two different levels of the second blocking factor (see Table 2.4(ii)). As an example, consider
an experiment to compare the effects of a number of diets (the treatments) on the weight
(the response variable) of piglets (the experimental units). Piglets vary in their metabolism,
as do human beings. Therefore, the experimental units are extremely variable. However,
some of this variability can be controlled by noting that piglets from the same litter are more
likely to be similar than piglets from different litters. Also, litters from the same sow are
more likely to be similar than litters from different sows. The different sows can be regarded
as blocks, the litters regarded as subblocks, and the piglets as the experimental units within
the subblocks. A piglet belongs only to one litter (piglets are nested within litters), and a
litter belongs only to one sow (litters are nested within sows). The random assignment of
piglets to diets would be done separately litter by litter in exactly the same way as for any
block design.

In the industrial setting, the experimental units may be samples of some experimental
material (e.g., cotton) taken from several different batches that have been obtained from sev-
eral different suppliers. The samples, which are to be assigned to the treatments, are “nested
within batches,” and the batches are “nested within suppliers.” The random assignment of
samples to treatment factor levels is done separately batch by batch.
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In an ordinary block design, the experimental units can be thought of as being nested
within blocks. In the above two examples, an extra “layer” of nesting is apparent. Experi-
mental units are nested within subblocks, subblocks are nested within blocks. The subblocks
can be assigned at random to the levels of a further treatment factor. When this is done, the
design is often known as asplit-plot design (see Section 2.4.4).

2.4.4 Split-Plot Designs

A split-plot design is a design with at least one blocking factor where the experimental units
within each block are assigned to the treatment factor levels as usual, andin addition, the
blocks are assigned at random to the levels of a further treatment factor. This type of design
is used when the levels of one (or more) treatment factors are easy to change, while the
alteration of levels of other treatment factors are costly, or time-consuming. For example,
this type of situation occurred in the cotton-spinning experiment of Section 2.3. Setting the
degree of twist involved little more than a turn of a dial, but changing the flyers involved
stripping down the machines. The experiment was, in fact, run as a randomized complete
block design, as shown in Table 2.2. However, it could have been run as a split-plot design,
as shown in Table 2.6. The time slots have been grouped into blocks, which have been
assigned at random to the two flyers. The three experimental units within each cell have
been assigned at random to degrees of twist.

Split-plot designs also occur in medical and psychological experiments. For example,
suppose that several subjects are assigned at random to the levels of a drug. In each time-slot
each subject is asked to perform one of a number of tasks, and some response variable is
measured. The subjects can be regarded as blocks, and the time-slots for each subject can be
regarded as experimental units within the blocks. The blocks and the experimental units are
each assigned to the levels of the treatment factors—the subject to drugs and the time-slots
to tasks. Split-plot designs are discussed in detail in Chapter 19.

Table 2.6 A split-plot design for the cotton-spinning experiment

Time Order
1 2 3 4 5 6

Block I Block II

Flyer 2 Flyer 1
Machine I Twist 2 Twist 1 Twist 3 Twist 2 Twist 4 Twist 3

Flyer 2 Flyer 1
Machine II Twist 1 Twist 2 Twist 3 Twist 4 Twist 2 Twist 3

Flyer 1 Flyer 2
Machine III Twist 4 Twist 2 Twist 3 Twist 3 Twist 1 Twist 2

...
...

...
...

...
...

...
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In a split-plot design, the effect of a treatment factor whose levels are assigned to the
experimental units is generally estimated more precisely than a treatment factor whose
levels are assigned to the blocks. It was this reason that led the experimenters of the cotton-
spinning experiment to select the randomized complete block design in Table 2.2 rather
than the split-plot design of Table 2.6. They preferred to take the extra time in running the
experiment rather than risk losing precision in the comparison of the flyers.

2.5 More Real Experiments

Three experiments are described in this section. The first, called the “soap experiment,” was
run as a class project by Suyapa Silvia in 1985. The second, called the “battery experiment,”
was run by one of the authors. Both of these experiments are designed as completely ran-
domized designs. The first has one treatment factor at three levels while the second has two
treatment factors, each at two levels. The soap and battery experiments are included here to
illustrate the large number of decisions that need to be made in running even the simplest in-
vestigations. Their data are used in Chapters 3–5 to illustrate methods of analysis. The third
experiment, called the “cake-baking experiment,” includes some of the more complicated
features of the designs discussed in Section 2.4.

2.5.1 Soap Experiment

The checklist for this experiment has been obtained from the experimenter’s report. Our
comments are in parentheses. The reader is invited to critically appraise the decisions made
by this experimenter and to devise alternative ways of running her experiment.

CHECKLIST (Suyapa Silvia, 1985)

(a) Define the objectives of the experiment.
The purpose of this experiment is to compare the extent to which three particular types
of soap dissolve in water. It is expected that the experiment will answer the following
questions: Are there any differences in weight loss due to dissolution among the three
soaps when allowed to soak in water for the same length of time? What are these
differences?
Generalizations to other soaps advertised to be of the same type as the three used for
this experiment cannot be made, as each soap differs in terms of composition, i.e., has
different mixtures of ingredients. Also, because of limited laboratory equipment, the
experimental conditions imposed upon these soaps cannot be expected to mimic the
usual treatment of soaps, i.e., use of friction, running water, etc. Conclusions drawn can
only be discussed in terms of the conditions posed in this experiment, although they
could give indications of what the results might be under more normal conditions.
(We have deleted the details of the actual soaps used).
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(b) Identify all sources of variation.
(i) Treatment factors and their levels
The treatment factor, soap, has been chosen to have three levels: regular, deodorant, and
moisturizing brands, all from the same manufacturer. The particular brands used in the
experiment are of special interest to this experimenter.
The soap will be purchased at local stores and cut into cubes of similar weight and
size—about 1′′ cubes. The cubes will be cut out of each bar of soap using a sharp
hacksaw so that all sides of the cube will be smooth. They will then be weighed on a
digital laboratory scale showing a precision of 10 mg. The weight of each cube will be
made approximately equal to the weight of the smallest cube by carefully shaving thin
slices from it. A record of the preexperimental weight of each cube will be made.
(Note that the experimenter has no control over the age of the soap used in the experi-
ment. She is assuming that the bars of soap purchased will be typical of the population
of soap bars available in the stores. If this assumption is not true, then the results of the
experiment will not be applicable in general. Each cube should be cut from a different
bar of soap purchased from a random sample of stores in order for the experiment to be
as representative as possible of the populations of soap bars.)
(ii) Experimental units
The experiment will be carried out using identical metal muffin pans. Water will be
heated to 100◦F (approximate hot bath temperature), and each section will be quickly
filled with 1/4 cup of water. A pilot study indicated that this amount of water is enough
to cover the tops of the soaps. The water-filled sections of the muffin pans are the
experimental units, and these will be assigned to the different soaps as described in
step (c).
(iii) Blocking factors, noise factors, and covariates
(Apart from the differences in the composition of the soaps themselves, the initial
sizes of the cubes were not identical, and the sections of the muffin pan were not
necessarily all exposed to the same amount of heat. The initial sizes of the cubes were
measured by weight. These could have been used as covariates, but the experimenter
chose instead to measure the weight changes, that is, “final weight minus initial weight.”
The sections of the muffin pan could have been grouped into blocks with levels such as
“outside sections,” “inside sections,” or such as “center of heating vent” and “off-center
of heating vent.” However, the experimenter did not feel that the experimental units
would be sufficiently variable to warrant blocking. Other sources of variation include
inaccuracies of measuring initial weights, final weights, amounts and temperature of
water. All of these were designated as minor. No noise factors were incorporated into
the experiment.)

(c) Choose a rule by which to assign the experimental units to the levels of the treatment
factors.
An equal number of observations will be made on each of the three treatment factor
levels. Therefore,r cubes of each type of soap will be prepared. These cubes will be
randomly matched to the experimental units (muffin pan sections) using a random-
number table.
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Table 2.7 Weight loss for soaps in the soap experiment

Soap Cube Pre-weight Post-weight Weightloss
(Level) (grams) (grams) (grams)

1 13.14 13.44 −0.30
Regular 2 13.17 13.27 −0.10
(1) 3 13.17 13.31 −0.14

4 13.17 12.77 0.40

5 13.03 10.40 2.63
Deodorant 6 13.18 10.57 2.61

(2) 7 13.12 10.71 2.41
8 13.19 10.04 3.15

9 13.14 11.28 1.86
Moisturizing 10 13.19 11.16 2.03

(3) 11 13.06 10.80 2.26
12 13.00 11.18 1.82

(This assignment rule defines a completely randomized design withr observations on
each treatment factor level, see Chapter 3).

(d) Specify the measurements to be made, the experimental procedure, and the
anticipated difficulties.
The cubes will be carefully placed in the water according to the assignment rule de-
scribed in paragraph (c). The pans will be immediately sealed with aluminum foil in
order to prevent excessive moisture loss. The pans will be positioned over a heating vent
to keep the water at room temperature. Since the sections will be assigned randomly to
the cubes, it is hoped that if water temperature differences do exist, these will be ran-
domly distributed among the three treatment factor levels. After 24 hours, the contents
of the pans will be inverted onto a screen and left to drain and dry for a period of 4
days in order to ensure that the water that was absorbed by each cube has been removed
thoroughly. The screen will be labeled with the appropriate soap numbers to keep track
of the individual soap cubes.
After the cubes have dried, each will be carefully weighed. These weights will be
recorded next to the corresponding preexperimental weights to study the changes, if
any, that may have occurred. The analysis will be carried out on the differences between
the post- and preexperimental weights.

Expected Difficulties (i) The length of time required for a cube of soap to dissolve
noticeably may be longer than is practical or assumed. Therefore, the data may not show
any differences in weights.
(ii) Measuring the partially dissolved cubes may be difficult with the softer soaps (e.g.,
moisturizing soap), since they are likely to lose their shape.
(iii) The drying time required may be longer than assumed and may vary with the soaps,
making it difficult to know when they are completely dry.
(iv) The heating vent may cause the pan sections to dry out prematurely.
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(After the experiment was run, Suyapa made a list of the actual difficulties encountered.
They are reproduced below. Although she had run a pilot experiment, it failed to alert
her to these difficulties ahead of time, since not all levels of the treatment factor had
been observed.)

Difficulties Encountered (i) When the cubes were placed in the warm water, it
became apparent that some soaps absorbed water very quickly compared to others,
causing the tops of these cubes to become exposed eventually. Since this had not been
anticipated, no additional water was added to these chambers in order to keep the
experiment as designed. This created a problem, since the cubes of soap were not all
completely covered with water for the 24-hour period.
(ii) The drying time required was also different for the regular soap compared with the
other two. The regular soap was still moist, and even looked bigger, when the other
two were beginning to crack and separate. This posed a real dilemma, since the loss of
weight due to dissolution could not be judged unless all the water was removed from
the cubes. The soaps were observed for two more days after the data was collected and
the regular soap did lose part of the water it had retained.
(iii) When the contents of the pans were deposited on the screen, it became apparent
that the dissolved portion of the soap had become a semisolid gel, and a decision had to
be made to regard this as “nonusable” and not allow it to solidify along with the cubes
(which did not lose their shape).

(The remainder of the checklist together with the analysis is given in Sections 3.6.2 and
3.7. The calculations at step (h) showed that four observations should be taken on each soap
type. The data were collected and are shown in Table 2.7. A plot of the data is shown in
Figure 2.2.)

The weightloss for each cube of soap measured in grams to the nearest 0.01 gm is the
difference between the initial weight of the cube (pre-weight) and the weight of the same

Figure 2.2
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cube at the end of the experiment (post-weight). Negative values indicate a weight gain,
while positive values indicate a weight loss (a large value being a greater loss). As can
be seen, the regular soap cubes experienced the smallest changes in weight, and in fact,
appear to have retained some of the water. Possible reasons for this will be examined in the
discussion section (see Section 3.6.2). The data show a clear difference in the weight loss of
the different soap types. This will be verified by a statistical hypothesis test (Section 3.6.2).

2.5.2 Battery Experiment

CHECKLIST

(a) Define the objectives of the experiment.
Due to the frequency with which his family needed to purchase flashlight batteries, one
of the authors (Dan Voss) was interested in finding out which type of nonrechargeable
battery was the most economical. In particular, Dan was interested in comparing the
lifetime per unit cost of the particular name brand that he most often purchased with
the store brand where he usually shopped. He also wanted to know whether it was
worthwhile paying the extra money for alkaline batteries over heavy duty batteries.
A further objective was to compare the lifetimes of the different types of battery re-
gardless of cost. This was due to the fact that whenever there was a power cut, all the
available flashlights appeared to have dead batteries! (Only the first objective will be
discussed in Chapters 3 and 4. The second objective will be addressed in Chapter 5.)

(b) Identify all sources of variation.
There are several sources of variation that are easy to identify in this experiment. Clearly,
different duty batteries such as alkaline and heavy duty could well be an important factor
in the lifetime per unit cost, as could the brand of the battery. These two sources of
variation are the ones of most interest in the experiment and form the levels of the two
treatment factors “duty” and “brand.” Dan decided not to include regular duty batteries
in the experiment.
Other possible sources of variation include the date of manufacture of the purchased
battery, and whether the lifetime was monitored under continuous running conditions or
under the more usual setting with the flashlight being turned on and off, the temperature
of the environment, the age and variability of the flashlight bulbs.
The first of these could not be controlled in the experiment. The batteries used in the
experiment were purchased at different times and in different locations in order to give a
wide representation of dates of manufacture. The variability caused by this factor would
be measured as part of the natural variability (error variability) in the experiment along
with measurement error. Had the dates been marked on the packets, they could have
been included in the analysis of the experiment as covariates. However, the dates were
not available.
The second of these possible sources of variation (running conditions) was fixed. All
the measurements were to be made under constant running conditions. Although this
did not mimic the usual operating conditions of flashlight batteries, Dan thought that the
relative ordering of the different battery types in terms of life per unit cost would be the
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same. The continuous running setting was much easier to handle in an experiment since
each observation was expected to take several hours and no sophisticated equipment
was available.
The third source of variation (temperature) was also fixed. Since the family living
quarters are kept at a temperature of about 68 degrees in the winter, Dan decided to run
his experiment at this usual temperature. Small fluctuations in temperature were not
expected to be important.
The variability due to the age of the flashlight bulb was more difficult to handle. A
decision had to be made whether to use a new bulb for each observation and risk
muddling the effect of the battery with that of the bulb, or whether to use the same
bulb throughout the experiment and risk an effect of the bulb age from biasing the data.
A third possibility was to divide the observations into blocks and to use a single bulb
throughout a block, but to change bulbs between blocks. Since the lifetime of a bulb is
considerably longer than that of a battery, Dan decided to use the same bulb throughout
the experiment.
(i) Treatment factors and their levels
There are two treatment factors each having two levels. These are battery “duty” (level
1 = alkaline, level 2 = heavy duty) and “brand” (level 1 = name brand, level 2 = store
brand). This gives four treatment combinations coded 11, 12, 21, 22. In Chapters 3–5,
we will recode these treatment combinations as 1, 2, 3, 4, and we will often refer to
them as the four different treatments or the four different levels of the factor “battery
type.” Thus, the levels of battery type are:

Level Treatment Combination
1 alkaline, name brand (11)
2 alkaline, store brand (12)
3 heavy duty, name brand (21)
4 heavy duty, store brand (22)

(ii) Experimental units
The experimental units in this experiment are the time slots. These were assigned at
random to the battery types so as to determine the order in which the batteries were to
be observed. Any fluctuations in temperature during the experiment form part of the
variability between the time slots and are included in the error variability.
(iii) Blocking factors, noise factors, and covariates
As mentioned above, it was decided not to include a blocking factor representing differ-
ent flashlight bulbs. Also, the date of manufacture of each battery was not available, and
small fluctuations in room temperature were not thought to be important. Consequently,
there were no covariates in the experiment, and no noise factors were incorporated.

(c) Choose a rule by which to assign the experimental units to the levels of the treatment
factor.
Since there were to be no blocking factors, a completely randomized design was selected,
and the time slots were assigned at random to the four different battery types.
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Table 2.8 Data for the battery experiment

Battery Life Unit Life per Time
Type (min) Cost ($) Unit Cost Order
1 602 0.985 611 1
2 863 0.935 923 2
1 529 0.985 537 3
4 235 0.495 476 4
1 534 0.985 542 5
1 585 0.985 593 6
2 743 0.935 794 7
3 232 0.520 445 8
4 282 0.495 569 9
2 773 0.935 827 10
2 840 0.935 898 11
3 255 0.520 490 12
4 238 0.495 480 13
3 200 0.520 384 14
4 228 0.495 460 15
3 215 0.520 413 16

(d) Specify the measurements to be made, the experimental procedure, and the
anticipated difficulties.
The first difficulty was in deciding exactly how to measure lifetime of a flashlight battery.
First, a flashlight requires two batteries. In order to keep the cost of the experiment low,
Dan decided to wire a circuit linking just one battery to a flashlight bulb. Although this
does not mimic the actual use of a flashlight, Dan thought that as with the constant
running conditions, the relative lifetimes per unit cost of the four battery types would
be preserved. Secondly, there was the difficulty in determining when the battery had
run down. Each observation took several hours, and it was not possible to monitor the
experiment constantly. Also, a bulb dims slowly as the battery runs down, and it is a
judgment call as to when the battery is flat. Dan decided to deal with both of these
problems by including a small clock in the circuit. The clock stopped before the bulb
had completely dimmed, and the elapsed time on the clock was taken as a measurement
of the battery life. The cost of a battery was computed as half of the cost of a two-pack,
and the lifetime per unit cost was measured in minutes per dollar (min/$).

(e) Run a pilot experiment.
A few observations were run as a pilot experiment. This ensured that the circuit did
indeed work properly. It was discovered that the clock and the bulb had to be wired
in parallel and not in series, as Dan had first thought! The pilot experiment also gave
a rough idea of the length of time each observation would take (at least four hours),
and provided a very rough estimate of the error variability that was used at step (h) to
calculate that four observations were needed on each treatment combination.

Difficulties encountered The only difficulty encountered in running the main experi-
ment was that during the fourth observation, it was discovered that the clock was running
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Figure 2.3
Battery life per unit
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but the bulb was out. This was due to a loose connection. The connection was repaired, a
new battery inserted into the circuit, and the clock reset.

Data The data collected in the main experiment are shown in Table 2.8 and plotted in
Figure 2.3. The experiment was run in 1993.

2.5.3 Cake-Baking Experiment

The following factorial experiment was run in 1979 by the baking company Spillers Ltd.
(in the U.K.) and was reported in theBulletin in Applied Statistics in 1980 by S. M. Lewis
and A. M. Dean.

CHECKLIST

(a) Define the objectives of the experiment.
The experimenters at Spillers, Ltd. wanted to know how “cake quality” was affected by
adding different amounts of glycerine and tartaric acid to the cake mix.

(b) Identify all sources of variation.
(i) Treatment factors and their levels
The two treatment factors of interest were glycerine and tartaric acid. Glycerine was
called the “first treatment factor” and labeledF1, while tartaric acid was called the
“second treatment factor” and labeledF2. The experimenters were very familiar with
the problems of cake baking and determinations of cake quality. They knew exactly
which amounts of the two treatment factors they wanted to compare. They selected four
equally spaced amounts of glycerine and three equally spaced amounts of tartaric acid.
These were coded as 1, 2, 3, 4 for glycerine and 1, 2, 3 for tartaric acid. Therefore, the
twelve coded treatment combinations were 11, 12, 13, 21, 22, 23, 31, 32, 33, 41, 42,
43.
(ii) Identify the experimental units
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Table 2.9 Basic design for the baking experiment

Oven Time of Day Codes
Codes 1 2
1 11 13 22 24 32 34 12 14 21 23 31 33
2 12 14 21 23 32 34 11 13 22 24 31 33
3 12 14 22 24 31 33 11 13 21 23 32 34

Before the experimental units can be identified, it is necessary to think about the ex-
perimental procedure. One batch of cake-mix was divided into portions. One of the
twelve treatment combinations (i.e., a certain amount of glycerine and a certain amount
of tartaric acid) was added to each portion. Each portion was then thoroughly mixed
and put into a container for baking. The containers were placed on a tray in an oven at a
given temperature for the required length of time. The experimenters required an entire
tray of cakes to make one measurement of cake quality. Only one tray would fit on any
one shelf of an oven. An experimental unit was, therefore, “an oven shelf with a tray
of containers of cake-mix,” and these were assigned at random to the twelve treatment
combinations.
(iii) Blocking factors, noise factors, and covariates
There were two crossed blocking factors. The first was time of day with two levels
(morning and afternoon). The second was oven, which had three levels, one level for
each of the three ovens that were available on the day of the experiment. Each cell
(defined by oven and time of day) contained six experimental units, since an oven
contained six shelves (see Table 2.9). Each set of six experimental units was assigned
at random to six of the twelve treatment combinations, and it was decided in advance
which six treatment combinations should be observed together in a cell (see step (c) of
the checklist).
Although the experimenters expected differences in the ovens and in different runs of
the same oven, their experience showed that differences between the shelves of their
industrial ovens were very minor. Otherwise, a third blocking factor representing oven
shelf would have been needed.
It was possible to control carefully the amount of cake mix put into each container, and
the experimenters did not think it was necessary to monitor the precooked weight of
each cake. Small differences in these weights would not affect the measurement of the
quality. Therefore, no covariates were used in the analysis.

(c) Choose a rule by which to assign the experimental units to the levels of the treatment
factors.
Since there were two crossed blocking factors, a row–column design with six exper-
imental units per cell was required. It was not possible to observe every treatment
combination in every cell. However, it was thought advisable to observe all twelve
treatment combinations in each oven, either in the morning or the afternoon. This pre-
caution was taken so that if one of the ovens failed on the day of the experiment, the
treatment combinations could still all be observed twice each. The basic design (before
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Table 2.10 Some simple experiments

1. Compare the growth rate of bean seeds under different
watering and lighting schedules.

2. Does the boiling point of water differ with different
concentrations of salt?

3. Compare the strengths of different brands of paper
towel.

4. Do different makes of popcorn give different proportions
of unpopped kernels? What about cooking methods?

5. Compare the effects of different locations of an observer
on the speed at which subjects locate the occurrences
of the letter “e” in a written passage.

6. Do different colored candles burn at different speeds?

7. Compare the proportions of words remembered from
lists of related or unrelated words, and under various
conditions such as silence and distraction.

8. Compare the effects of different colors of exam paper
on students’ performance in an examination.

randomization) that was used by Spillers is shown in Table 2.9. The experimental units
(the trays of containers on the six oven shelves) need to be assigned at random to the 6
treatment combinations cell by cell. The oven codes need to be assigned to the actual
ovens at random, and the time of day codes 1 and 2 to morning and afternoon.

Exercises

Exercises 1–7 refer to the list of experiments in Table 2.10.

1. Table 2.10 gives a list of experiments that can be run as class projects. Select a simple
experiment of interest to you, but preferably not on the list. Complete steps (a)–(c) of
the checklist with the intention of actually running the experiment when the checklist
is complete.

2. For experiments 1 and 7 in Table 2.10, complete steps (a) and (b) of the checklist. There
may be more than one treatment factor. Give precise definitions of their levels.

3. For experiment 2, complete steps (a)–(c) of the checklist.

4. For experiment 3, complete steps (a)–(c) of the checklist.

5. For experiment 4, list sources of variation. Decide which sources can be controlled by
limiting the scope of the experiment or by specifying the exact experimental procedure
to be followed. Of the remaining sources of variation, decide which are minor and
which are major. Are there any blocking factors in this experiment?
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6. For experiment 6, specify what measurements should be made, how they should be
made, and list any difficulties that might be expected.

7. For experiment 8, write down all the possible sources of variation. In your opinion,
should this experiment be run as a completely randomized design, a block design, or a
design with more than one blocking factor? Justify your answer.

8. Read critically through the checklists in Section 2.5. Would you suggest any changes?
Would you have done anything differently? If you had to criticize these experiments,
which points would you address?

9. The following description was given by Clifford Pugh in the 1953 volume of Applied
Statistics.
“The widespread use of detergents for domestic dish washing makes it desirable for
manufacturers to carry out tests to evaluate the performance of their products.. . . Since
foaming is regarded as the main criterion of performance, the measure adopted is the
number of plates washed before the foam is reduced to a thin surface layer. The five
main factors which may affect the number of plates washed by a given product are
(i) the concentration of detergent, (ii) the temperature of the water, (iii) the hardness
of the water, (iv) the type of “soil” on the plates, and (v) the method of washing used
by the operator.. . . The difficulty of standardizing the soil is overcome by using the
plates from a works canteen (cafeteria) for the test and adopting a randomized complete
block technique in which plates from any one course form a block. . . . One practical
limitation is the number of plates available in any one block. This permits only four. . .

tests to be completed (in a block).”
Draw up steps (a)–(d) of a checklist for an experiment of the above type and give an
example of a design that fits the requirements of your checklist.
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3.1 Introduction

In working through the checklist in Chapter 2, the experimenter must choose an experimental
design at step (c). A design is the rule that determines the assignment of the experimental
units to treatments. The simplest possible design is thecompletely randomized design, where
the experimental units are assigned to the treatments completely at random, subject to the
number of observations to be taken on each treatment. Completely randomized designs
involve no blocking factors.

Two ways of calculating the required number of observations (sample sizes) on each
treatment are presented in Sections 3.6 and 4.5. The first method chooses sample sizes to
obtain desired powers of hypothesis tests, and the second chooses sample sizes to achieve
desired lengths of confidence intervals. We sometimes refer to the list of treatments and the
corresponding sample sizes as the design, with the understanding that the assignment of
experimental units to treatments is to be done completely at random.

In this chapter, we discuss the random assignment procedure for the completely random-
ized design, we introduce the method of least squares for estimating model parameters, and

33
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we develop a procedure for testing equality of the treatment parameters. The SAS computer
analysis is described at the end of the chapter.

3.2 Randomization

In this section we provide a procedure for randomization that is very easily applied using a
computer, but can equally well be done by hand. On a computer, the procedure requires the
availability of software that stores data in rows and columns (like spreadsheet software, a
SAS data set, or a Minitab worksheet), that includes a function that randomly generates real
numbers between zero and one, and that includes the capacity to sort rows by the values in
one column.

We useri to denote the number of observations to be taken on theith treatment, and
n � �ri to denote the total number of observations (and hence the required number of
experimental units). We code the treatments from 1 tov and label the experimental units 1
to n.

Step 1: Enter into one columnr1 1’s, thenr2 2’s, . . . , and finallyrv v’s, giving a total of
n � �ri entries. These represent the treatment labels.

Step 2: Enter into another columnn � �ri random numbers, including enough digits to
avoid ties. (The random numbers can be generated by a computer program or read from
Table A.1).

Step 3: Reorder both columns so that the random numbers are put in ascending order. This
arranges the treatment labels into a random order.

Step 4: Assign experimental unitt to the treatment whose label is in rowt .

If the numbern of experimental units is ak-digit integer, then the list in step 2 should
be a list ofk-digit random numbers. To obtaink-digit random numbers from Table A.1, a
random starting place is found as described in Section 1.1.4, page 3. The digits are then read
across the rows in groups ofk (ignoring spaces).

Table 3.1 Randomization

Unsorted Unsorted Sorted Sorted Experimental
Treatments Random Treatments Random Unit

Numbers Numbers
1 0.533 3 0.139 1
1 0.683 2 0.379 2
2 0.702 3 0.411 3
2 0.379 1 0.533 4
3 0.411 1 0.683 5
3 0.962 2 0.702 6
3 0.139 3 0.962 7
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We illustrate the randomization procedure using the SAS computer package in Sec-
tion 3.8.1, page 57. The procedure can equally well be done using the random digits in
Table A.1 and sorting by hand.

Example 3.2.1

Consider a completely randomized design for three treatments and sample sizesr1 � r2 �
2, r3 � 3. The unrandomized design (step 1 of the randomization procedure) is 1 1 2 2 3 3
3, and is listed in column 1 of Table 3.1. Suppose step 2 generates the random numbers in
column 2 of Table 3.1. In step 3, columns 1 and 2 are sorted so that the entries in column
2 are in ascending order. This gives columns 3 and 4. In step 4, the entries in column 3 are
matched with experimental units 1–7 in order, so that column 3 contains the design after
randomization. Treatment 1 is in rows 4 and 5, so experimental units 4 and 5 are assigned
to treatment 1. Likewise, units 2 and 6 are assigned to treatment 2, and units 1, 3 and 7 are
assigned to treatment 3. The randomly ordered treatments are then 3 2 3 1 1 2 3, and the
experimental units 1–7 are assigned to the treatments in this order. ✷

3.3 Model for a Completely Randomized Design

A model is an equation that shows the dependence of the response variable upon the levels
of the treatment factors. (Models involving block effects or covariates are considered in later
chapters.)

LetYit be a random variable that represents the response obtained on thet th observation
of the ith treatment. Let the parameterµi denote the “true response” of theith treatment,
that is, the response that would always be obtained from theith treatment if it could be
observed underidentical experimental conditions and measured without error. Of course,
this ideal situation can never happen—there is always some variability in the experimental
procedure even if only caused by inaccuracies in reading measuring instruments. Sources
of variation that are deemed to be minor and ignored during the planning of the experiment
also contribute to variation in the response variable. These sources of nuisance variation
are usually represented by a single variableεit , called anerror variable, which is a random
variable with zero mean. The model is then

Yit � µi + εit , t � 1, . . . , ri , i � 1, . . . , v,

wherev is the number of treatments andri is the number of observations to be taken on the
ith treatment. An alternative way of writing this model is to replace the parameterµi by
µ+ τi , so that the model becomes

Yit � µ+ τi + εit , t � 1, . . . , ri , i � 1, . . . , v.

In this model,µ+ τi denotes the true mean response for theith treatment, and examination
of differences between the parametersµi in the first model is equivalent to examination of
differences between the parametersτi in the second model.

It will be seen in Section 3.4 that unique estimates of the parameters in the second
formulation of the model cannot be obtained. Nevertheless, many experimenters prefer
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this model. The parameterµ is a constant, and the parameterτi represents the positive or
negative deviation of the response from this constant when theith treatment is observed.
This deviation is called the “effect” on the response of theith treatment.

The above models arelinear models, that is, the response variable is written as a linear
function of the parameters. Any model that is not, or cannot, be transformed into a linear
model cannot be treated by the methods in this book. Linear models often provide reasonably
good approximations to more complicated models, and they are used extensively in practice.

The specific forms of the distributions of the random variables in a model need to be
identified before any statistical analyses can be done. The error variables represent all the
minor sources of variation taken together, including all the measurement errors. In many
experiments, it is reasonable to assume that the error variables are independent and that
they have a normal distribution with zero mean and unknown varianceσ 2, which must be
estimated. We call these assumptions theerror assumptions. It will be shown in Chapter 5 that
plots of the experimental data give good indications of whether or not the error assumptions
are likely to be true. Proceeding with the analysis when the constant variance, normality, or
independence assumptions are violated can result in a totally incorrect analysis.

A complete statement of the model for any experiment should include the list of error as-
sumptions. Thus, for a completely randomized design withv specifically selected treatments
(fixed effects), the model is

Yit � µ+ τi + εit , (3.3.1)

εit ∼ N (0, σ 2) ,

εit
′s are mutually independent,

t � 1, . . . , ri , i � 1, . . . , v,

where “∼ N (0, σ 2)” denotes “has a normal distribution with mean 0 and varianceσ 2.”
This is sometimes called aone-way analysis of variance model, since the model includes
only one major source of variation, namely the treatment effect, and because the standard
analysis of data using this model involves a comparison of measures of variation.

Notice that it is unnecessary to specify the distribution ofYit in the model, as it is possible
to deduce this from the stated information. SinceYit is modeled as the sum of a treatment
meanµ+ τi and a normally distributed random variableεit , it follows that

Yit ∼ N (µ+ τi, σ
2).

Also, since theεit ’s are mutually independent, theYit ’s must also be mutually independent.
Therefore, if the model is a true representation of the behavior of the response variable,
then the data valuesyit for the ith treatment form a random sample from aN (µ + τi, σ

2)
distribution.
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3.4 Estimation of Parameters

3.4.1 Estimable Functions of Parameters

A function of the parameters of any model is said to beestimable if and only if it can
be written as the expected value of a linear combination of the response variables. Only
estimable functions of the parameters have unique linear unbiased estimates. Since it makes
no sense to work with functions that have an infinite possible number of values, it is important
that the analysis of the experiment involve only the estimable functions. For the one-way
analysis of variance model (3.3.1), every estimable function is of the form
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where bi � �tait and theait ’s are real numbers. Any function not of this form is
nonestimable.

Clearly,µ + τ1 is estimable, since it can be obtained by settingb1 � 1 andb2 � b3 �
· · · � bv � 0. Similarly, eachµ + τi is estimable. If we choosebi � ci where

∑
ci � 0,

we see that
∑

ciτi is estimable. Any such function
∑

ciτi for which
∑

i ci � 0 is called
a contrast, so all contrasts are estimable in the one-way analysis of variance model. For
example, settingb1 � 1, b2 � −1, b3 � · · · � bv � 0 shows thatτ1 − τ2 is estimable.
Similarly, eachτi − τs , i 	� s, is estimable. Notice that there are no values ofbi that give
µ, τ1, τ2, . . ., or τv separately as the expected value. Therefore, these parameters are not
individually estimable.

3.4.2 Notation

We write theith treatment sample mean as

Y i. � 1

ri

(
ri∑
t�1

Yit

)
and the corresponding observed sample mean asyi.. The “dot” notation means “add over
all values of the subscript replaced with a dot,” and the “bar” means “divide by the number
of terms that have been added up.” This notation will be extremely useful throughout this
book. For example, in the next subsection we write

1

n
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ri∑
t�1

yit � 1

n

v∑
i�1

yi. � 1

n
y.. � y.., wheren �

v∑
i�1

ri � r. ,

so thaty.. is the average of all of the observations. Note that if the summation applies to a
subscript on two variables, the dot notation cannot be used. For example,

∑
ri τ̂i cannot be

written asr.τ̂., sincer.τ̂. denotes (
∑

ri)(
∑

τ̂i).
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3.4.3 Obtaining Least Squares Estimates

Themethod of least squares is used to obtain estimates and estimators for estimable functions
of parameters in linear models. We shall show that theith treatment sample meanY i.

and its observed valueyi. are the “least squares estimator” and “least squares estimate,”
respectively, ofµ+ τi . Least squares solutions for the parametersµ, τ1, . . . , τv are any set
of corresponding valueŝµ, τ̂1, . . . , τ̂v that minimize the sum of squared errors

v∑
i�1

ri∑
t�1

e2
it �

v∑
i�1

ri∑
t�1

(yit − µ− τi)
2. (3.4.2)

The estimated model̂yit � µ̂ + τ̂i is the model that best fits the data in the sense of
minimizing (3.4.2).

Finding least squares solutions is a standard problem in calculus.∗ The sum of squared
errors (3.4.2) is differentiated with respect to each of the parametersµ, τ1, . . . , τv in turn.
Then each of thev + 1 resulting derivatives is set equal to zero, yielding a set ofv + 1
equations. Thesev + 1 equations are called thenormal equations. Any solution to the
normal equations gives a minimum value of the sum of squared errors (3.4.2) and provides
a set of least squares solutions for the parameters.

The reader is asked to verify in Exercise 6 that the normal equations for the one-way
analysis of variance model (3.3.1) are those shown in (3.4.3). The first equation in (3.4.3) is
obtained by setting the derivative of the sum of squared errors of (3.4.2) with respect toµ

equal to zero, and the otherv equations are obtained by setting the derivatives with respect
to eachτi in turn equal to zero. We put “hats” on the parameters at this stage to denote
solutions. Thev + 1 normal equations are

y.. − nµ̂−
∑
i

ri τ̂i � 0, (3.4.3)

yi. − riµ̂− ri τ̂i � 0, i � 1, . . . , v,

and includev + 1 unknown parameters. From the lastv equations, we obtain

µ̂+ τ̂i � yi., i � 1, . . . , v,

so the least squares solution for theith treatment meanµ+ τi is the corresponding sample
meanyi..

There is a problem in solving the normal equations to obtain least squares solutions
for each parameterµ, τ1, . . . , τv individually. If the lastv normal equations (3.4.3) are
added together, the first equation results. This means that thev + 1 equations are not
distinct (not linearly independent). The lastv normal equationsare distinct, since they each
contain a differentτi . Thus, there are exactlyv distinct normal equations inv+ 1 unknown
parameters, and there is no unique solution for the parameters. This is not surprising, in
view of the fact that we have already seen in Section 3.4.1 that these parameters are not
individually estimable. For practical purposes, any one of the infinite number of solutions

∗Readers without a background in calculus may note that the least squares solutions for the parameters, individually,
are not unique and then may skip forward to Section 3.4.4.
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will be satisfactory, since they lead to identical solutions for the estimable parameters. To
obtain any one of these solutions, it is necessary to add a further equation to the set of normal
equations.Any extra equation can be added, provided that it is not a linear combination of
the equations already present. The trick is to add whichever equation will aid most in solving
the entire set of equations.

One obvious possibility is to add the equationµ̂ � 0, in which case the normal equations
become

µ̂ � 0 ,

y.. −
∑
i

ri τ̂i � 0 ,

yi. − ri τ̂i � 0, i � 1, . . . , v.

It is then a simple matter to solve the lastv equations for thêτi ’s, yielding τ̂i � yi./ri � yi..
Thus, one solution to the normal equations is

µ̂ � 0 ,

τ̂i � yi., i � 1, . . . , v.

A more common solution is obtained by adding the extra equation
∑

i ri τ̂i � 0 to (3.4.3).
In this case, the normal equations become∑

i

ri τ̂i � 0 ,

y.. − nµ̂ � 0 ,

yi. − riµ̂− ri τ̂i � 0, i � 1, . . . , v,

from which we obtain the least squares solutions

µ̂ � y.. ,

τ̂i � yi. − y.., i � 1, . . . , v.

Still another solution, used, for example, by SAS computer software, is obtained by adding
the equation̂τv � 0. Then the solutions to the normal equations are

µ̂ � yv. ,

τ̂i � yi. − yv., i � 1, . . . , v.

In each of the three sets of solutions just obtained, it is always true that

µ̂+ τ̂i � yi..

No matter which extra equation is added to the normal equations,yi. will always be the
least squares solution forµ + τi . Thus, although it is not possible to obtain unique least
squares solutions forµ andτi separately, the least squares solution for the estimable true
treatment meanµ + τi is unique. We callyi. the least squares estimate andY i. the least
squares estimator of µ + τi . The notationµ̂ + τ̂i is used somewhat ambiguously to mean
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both the least squares estimator and estimate. It should be clear from the context which of
these is meant.

3.4.4 Properties of Least Squares Estimators

An important property of a least squares estimator is that

the least squares estimator of any estimable function of the parameters is the unique
best linear unbiased estimator.

This statement, called theGauss–Markov Theorem, is true for all linear models whose
error variables are independent and have common varianceσ 2. The theorem tells us that
for the one-way analysis of variance model (3.3.1), the least squares estimator

∑
biY i. of

the estimable function
∑

bi(µ + τi) is unique, is unbiased and has smallest variance. The
theorem also tells us thatτi cannot be estimable, since we have three different solutions for
τi and none of the corresponding estimators has expected value equal toτi .

For the one-way analysis of variance model,Yit has a normal distribution with meanµ+τi
and varianceσ 2 (see Section 3.3), soE[Y i.] � µ+ τi and Var(Y i.) � σ 2/ri . Therefore, the
distribution of the least squares estimatorY i. of µ+ τi is

Y i. ∼ N (µ+ τi , σ
2/ri) .

TheY i.’s are independent, since they are based on differentYit ’s. Consequently, the dis-
tribution of the least squares estimator

∑
ciY i. of the contrast

∑
ciτi , with

∑
ci � 0,

is

∑
ciY i. ∼ N (�ciτi, �

c2
i

ri
σ 2).

Example 3.4.1 Heart–lung pump experiment

The following experiment was run by Richard Davis at The Ohio State University in 1987
to determine the effect of the number of revolutions per minute (rpm) of the rotary pump
head of an Olson heart–lung pump on the fluid flow rate. The rpm was set directly on the
tachometer of the pump console and PVC tubing of size 3/8” by 3/32” was used. The flow
rate was measured in liters per minute. Five equally spaced levels of the treatment factor
“rpm” were selected, namely, 50, 75, 100, 125, and 150 rpm, and these were coded as 1,
2, 3, 4, 5, respectively. The experimental design was a completely randomized design with
r1 � r3 � r5 � 5, r2 � 3, andr4 � 2. The data, in the order collected, are given in Table
3.2, and the summary information is
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Table 3.2 Fluid flow obtained from the rotary pump
head of an Olson heart–lung pump

Observation rpm Level Liters/minute
1 150 5 3.540
2 50 1 1.158
3 50 1 1.128
4 75 2 1.686
5 150 5 3.480
6 150 5 3.510
7 100 3 2.328
8 100 3 2.340
9 100 3 2.298
10 125 4 2.982
11 100 3 2.328
12 50 1 1.140
13 125 4 2.868
14 150 5 3.504
15 100 3 2.340
16 75 2 1.740
17 50 1 1.122
18 50 1 1.128
19 150 5 3.612
20 75 2 1.740

y1. � 5.676, r1 � 5, y1. � 1.1352,

y2. � 5.166, r2 � 3, y2. � 1.7220,

y3. � 11.634, r3 � 5, y3. � 2.3268,

y4. � 5.850, r4 � 2, y4. � 2.9250,

y5. � 17.646, r5 � 5, y5. � 3.5292.

The least squares estimate of the mean fluid flow rate when the pump is operating at 150
rpm is

(µ̂+ τ̂5) � y5. � 3.5292

liters per minute. The other mean fluid flow rates are estimated in a similar way. The
experimenter expected the flow rate to increase as the rpm of the pump head was increased.
Figure 3.1 supports this expectation.

Since the variance of the least squares estimatorY i. of µ + τi is σ 2/ri , the first, third,
and fifth treatment means are more precisely measured than the second and fourth.

The least squares estimate of the difference in fluid flow rate between 50 rpm and 150
rpm is

(τ̂5 − τ̂1) � (µ̂+ τ̂5) − (µ̂+ τ̂1) � y5. − y1. � 2.394
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Figure 3.1
Plot of data for the
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liters per minute. The associated variance is

5∑
i�1

c2
i

ri
σ 2 �

(
1

5
+ 1

5

)
σ 2 � 0.4 σ 2.

3.4.5 Estimation of σ 2

The least squares estimatesµ̂ + τ̂i = yi. of µ + τi (i � 1, . . . , v) minimize the sum of
squared errors. Therefore, for the one-way analysis of variance model (3.3.1), the minimum
possible value of the sum of squared errors (3.4.2), which we write asssE, is equal to

ssE �
∑
i

∑
t

ê2
it �
∑
i

∑
t

(yit − µ̂− τ̂i)
2.

Here,êit � (yit − µ̂− τ̂i) is the deviation of thet th observation on theith treatment from
the estimatedith treatment mean. This is called the (it)th residual. Substituting the least
squares estimateŝµ+ τ̂i � yi. into the formula forssE, we have

ssE �
∑
i

∑
t

(yit − yi.)
2. (3.4.4)

The minimum sum of squared errors,ssE, is called thesum of squares for error or theerror
sum of squares, and is used below to find an unbiased estimate of the error varianceσ 2.

Useful computational formulae forssE, obtained by multiplying out the quantity in
parentheses in (3.4.4), are

ssE �
∑
i

∑
t

y2
it −
∑
i

riy
2
i. (3.4.5)

�
∑
i

∑
t

y2
it −
∑
i

(y2
i./ri). (3.4.6)
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Now, the random variableSSE corresponding to the minimum sum of squared errorsssE
in (3.4.4) is

SSE �
∑
i

∑
t

(Yit − Y i.)
2 �
∑
i

(ri − 1)S2
i , (3.4.7)

whereS2
i � ∑ri

t�1(Yit − Y i.)2/(ri − 1)) is the sample variance for theith treatment. In
Exercise 11, the reader is asked to verify thatS2

i is an unbiased estimator of the error
varianceσ 2. Then, the expected value ofSSE is

E(SSE) �
∑
i

(ri − 1)E(S2
i ) � (n− v)σ 2 ,

giving an unbiased estimator ofσ 2 as

σ̂ 2 � SSE/(n− v) � MSE. (3.4.8)

The corresponding unbiased estimate ofσ 2 is the observed value ofMSE, namelymsE �
ssE/(n−v). BothMSE andmsE are called themean square for error or error mean square.
The estimatemsE is sometimes called the “within groups (or within treatments) variation.”

3.4.6 Confidence Bound for σ 2

If an experiment were to be repeated in the future, the estimated value ofσ 2 obtained from
the current experiment could be used at step (h) of the checklist to help calculate the number
of observations that should be taken in the new experiment (see Sections 3.6.2 and 4.5).
However, the error variance in the new experiment is unlikely to be exactly the same as that in
the current experiment, and in order not to underestimate the number of observations needed,
it is advisable to use a larger value ofσ 2 in the sample size calculation. One possibility is
to use the upper limit of a one-sided confidence interval forσ 2.

It can be shown that the distribution ofSSE/σ 2 is chi-squared withn − v degrees of
freedom, denoted byχ2

n−v. Consequently,

P

(
SSE

σ 2
≥ χ2

n−v,1−α

)
� 1 − α , (3.4.9)

whereχ2
n−v,1−α is the percentile of the chi-squared distribution withn−v degrees of freedom

and with probability of 1− α in the right-hand tail.
Manipulating the inequalities in (3.4.9), and replacingSSE by its observed valuessE,

gives a one-sided 100(1− α)% confidence bound forσ 2 as

σ 2 ≤ ssE

χ2
n−v,1−α

. (3.4.10)

This upper bound is called a 100(1− α)% upper confidence limit for σ 2. ✷
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Table 3.3 Data for the battery experiment

Battery Life per unit cost
Type (minutes per dollar) y i.
1 611 537 542 593 570.75
2 923 794 827 898 860.50
3 445 490 384 413 433.00
4 476 569 480 460 496.25

Example 3.4.2 Battery experiment, continued

The data of the battery experiment (Section 2.5.2, page 26) are summarized in Table 3.3. The
sum of squares for error is obtained from (3.4.5); that is,

ssE �
∑
i

∑
t

y2
it −
∑
i

riy
2
i.

� 6,028,288− 4(570.752 + 860.502 + 433.002 + 496.252)

� 28,412.5.

An unbiased estimate of the error variance is then obtained as

msE � ssE/(n− v) � 28,412.5/(16− 4) � 2367.71.

A 95% upper confidence limit forσ 2 is given by

σ 2 ≤ ssE

χ2
12,0.95

� 28,412.5

5.23
� 5432.60,

and taking the square root of the confidence limit, a 95% upper confidence limit forσ is
73.71 minutes per dollar. If the experiment were to be repeated in the future, the calculation
for the number of observations at step (h) of the checklist might take the largest likely value
for σ to be around 70–75 minutes per dollar. ✷

3.5 One-Way Analysis of Variance

3.5.1 Testing Equality of Treatment Effects

In an experiment involvingv treatments, an obvious question is whether or not the treatments
differ at all in terms of their effects on the response variable. Thus one may wish to test the
null hypothesis

H0 : {τ1 � τ2 � · · · � τv}
that the treatment effects are all equal against the alternative hypothesis

HA : {at least two of theτi ’s differ}.
At first glance, the null hypothesis appears to involve nonestimable parameters. However,
we can easily rewrite it in terms ofv − 1 estimable contrasts, as follows:

H0 : {τ1 − τ2 � 0 and τ1 − τ3 � 0 and · · · and τ1 − τv � 0}.
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This is not the only way to rewriteH0 in terms of estimable contrasts. For example, we could
use the contrastsτi − τ . (whereτ . �∑ τi/v) and write the null hypothesis as follows:

H0 : {τ1 − τ . � 0 andτ2 − τ . � 0 and · · · and τv − τ . � 0} .
Now τ . is the average of theτi ’s, so theτi − τ .’s add to zero. Consequently, ifτi − τ . � 0
for i � 1, . . . , v − 1, thenτv − τ . must also be zero. Thus, this form of the null hypothesis
could be written in terms of just the firstv − 1 estimable functionsτ1 − τ ., . . . , τv−1 − τ ..

Any way that we rewriteH0 in terms of estimable functions of the parameters, it will
always depend onv−1 distinct contrasts. The numberv−1 is called thetreatment degrees
of freedom.

The basic idea behind an analysis of variance test is that the sum of squares for error
measures how well the model fits the data. Consequently, a way of testingH0 is to compare
the sum of squares for error under the original one-way analysis of variance model (3.3.1),
known as thefull model, with that obtained from the modified model, which assumes that
the null hypothesis is true. This modified model is called thereduced model.

UnderH0, theτi ’s are equal, and we can write the common value ofτ1, . . . , τv asτ . If we
incorporate this into the one-way analysis of variance model, we obtain the reduced model

Yit � µ+ τ + ε0
it ,

ε0
it ∼ N (0, σ 2) ,

ε0
it

′s are mutually independent,

t � 1, . . . , ri , i � 1, . . . , v,

where we writeε0
it for the (it)th error variable in the reduced model. To calculate the sum

of squares for error,ssE0, we need to determine the value ofµ+ τ that minimizes the sum
of squared errors∑

i

∑
t

(yit − µ− τ )2 .

Using calculus, the reader is asked to show in Exercise 7 that the unique least squares
estimate ofµ+ τ is the sample mean of all the observations; that is,µ̂+ τ̂ � y... Therefore,
the error sum of squares for the reduced model is

ssE0 �
∑
i

∑
t

(yit − y..)
2

�
∑
i

∑
t

y2
it − ny2

.. . (3.5.11)

If the null hypothesisH0 : {τ1 � τi � . . . � τv} is false, and the treatment effects differ,
the sum of squares for errorssE under the full model (3.3.1) is considerably smaller than
the sum of squares for errorssE0 for the reduced model. This is depicted in Figure 3.2. On
the other hand, if the null hypothesis is true, thenssE0 andssE will be very similar. The
analysis of variance test is based on the differencessE0 − ssE, relative to the size ofssE;
that is, the test is based on (ssE0 − ssE)/ssE. We would want to rejectH0 if this quantity
is large.
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Figure 3.2
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We call ssT = ssE0 − ssE the sum of squares for treatments or the treatment sum of
squares,

since its value depends on the differences between the treatment effects. Using formulas
(3.5.11) and (3.4.5) forssE0 andssE, the treatment sum of squares is

ssT � ssE0 − ssE (3.5.12)

�
(∑

i

∑
t

y2
it − ny 2

..

)
−
(∑

i

∑
t

y2
it −
∑
i

riy
2
i.

)
�
∑
i

riy
2
i. − ny 2

.. . (3.5.13)

Sinceyi. � yi./ri andy.. � y../n, we can also writessT as

ssT �
∑

i y
2
i.

ri
− y2

..

n
(3.5.14)

A third, equivalent, formulation is

ssT �
∑
i

ri(yi. − y..)
2 . (3.5.15)

The reader is invited to multiply out the parentheses in (3.5.15) and verify that (3.5.13)
is obtained. There is a shortcut method of expanding (3.5.15) to obtain (3.5.13). First
write down each term iny and square it. Then associate with each squared term the signs
in (3.5.15). Finally, precede each term with the summations and constant outside the paren-
theses in (3.5.15). This quick expansion will work for all terms like (3.5.15) in this book.
Formula (3.5.15) is probably the easiest form ofssT to remember. The best form for com-
putations is (3.5.14), since it is the least sensitive to rounding error, while (3.5.13) is the
easiest to manipulate for theoretical work.

Since we will rejectH0 if ssT/ssE is large, we need to know what “large” means. This
in turn means that we need to know the distribution of the corresponding random variable
SST/SSE whenH0 is true, where

SST �
∑
i

ri(Y i. − Y ..)
2 and SSE �

∑
i

∑
t

(Yit − Y i.)
2 . (3.5.16)
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Now, as mentioned in Section 3.4.6, it can be shown thatSSE/σ 2 has a chi-squared dis-
tribution with n − v degrees of freedom, denoted byχ2

n−v. Similarly, it can be shown that
whenH0 is true,SST/σ 2 has aχ2

v−1 distribution, and thatSST andSSE are independent.
The ratio of two independent chi-squared random variables, each divided by their degrees
of freedom, has anF distribution. Therefore, ifH0 is true, we have

SST/σ 2(v − 1)

SSE/σ 2(n− v)
∼ Fv−1,n−v .

We now know the distribution ofSST/SSE multiplied by the constant (n − v)/(v − 1),
and we want to reject the null hypothesisH0 : {τ1 � · · · � τv} in favor of the alternative
hypothesisHA : {at least two of the treatment effects differ} if this ratio is large. Thus, if we
write msT � ssT/(v − 1), msE � ssE/(n− v), wheressT andssE are the observed values of
the treatment sum of squares and error sum of squares, respectively, our decision rule is to

rejectH0 if
msT

msE
> Fv−1,n−v,α , (3.5.17)

whereFv−1,n−v,α is the critical value from theF distribution withv − 1 andn− v degrees
of freedom withα in the right-hand tail. The probabilityα is often called thesignificance
level of the test and is the probability of rejectingH0 when in fact it is true (a Type I error).
Thus,α should be selected to be small if it is important not to make a Type I error (α � 0.01
and 0.001 are typical choices); otherwise,α can be chosen to be a little larger (α � 0.10
and 0.05 are typical choices). Critical valuesFv−1,n−v,α for theF distribution are given in
Table A.6. Due to lack of space, only a few typical values ofα have been tabulated.

The calculations involved in the test of the hypothesisH0 againstHA are usually written
as ananalysis of variance table as shown in Table 3.4. The last line shows thetotal sum of
squares andtotal degrees of freedom. The total sum of squares,sstot, is (n − 1) times the
sample variance of all of the data values. Thus,

sstot �
∑
i

∑
t

(yit − y..)
2 �
∑
i

∑
t

y2
it − ny 2

.. . (3.5.18)

From (3.5.11), we see thatsstot happens to be equal tossE0 for the one-way analysis of
variance model, and from (3.5.12) we see that

sstot � ssT + ssE.

Table 3.4 One-way analysis of variance table

Source of Degrees of Sum of Mean Ratio Expected
Variation Freedom Squares Square Mean Square
Treatments v − 1 ssT ssT

v−1
msT
msE σ2 +Q (τi )

Error n − v ssE ssE
n−v σ2

Total n − 1 sstot

Computational Formulae
ssT �∑i ri y

2
i. − ny 2.. ssE �∑i

∑
t y

2
it −∑i ri y

2
i.

sstot �∑i

∑
t y

2
it − ny 2..

Q (τi ) �∑i ri (τi −∑h rhτh/n)
2/(v − 1)
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Thus, the total sum of squares consists of a partssT that is explained by differences between
the treatment effects and a partssE that is not explained by any of the parameters in the
model.

Example 3.5.1 Battery experiment, continued

Consider the battery experiment introduced in Section 2.5.2, page 26. The sum of squares
for error was calculated in Example 3.4.4, page 44, to bessE � 28,412.5. From the life per
unit cost data given in Table 3.3, page 44, we have

y1. � 2283, y2. � 3442, y3. � 1732, y4. � 1985, y.. � 9442,

Also, ��y2
it � 6,028,288 andri � 4. Hence, the sums of squaresssT (3.5.14) and

sstot (3.5.18) are

ssT �
∑

(y2
i./ri) − y2

../n

� (22832/4 + 34422/4 + 17322/4 + 19852/4) − 94422/16

� 427,915.25,

sstot � ssE0 �
∑∑

y2
it − (y..)

2/n

� 6,028,288− 94422/16 � 456,327.75,

and we can verify thatsstot � ssT + ssE.
The decision rule for testing the null hypothesisH0 : {τ1 � τ2 � τ3 � τ4} that the four

battery types have the same average life per unit cost against the alternative hypothesis that
at least two of the battery types differ, at significance levelα, is

rejectH0 if msT/msE � 60.24> F3,12,α.

From Table A.6, it can be seen that 60.24> F3,12,α for any of the tabulated values ofα. For
example, ifα is chosen to be 0.01, thenF3,12,0.01 � 5.95. Thus, for any tabulated choice of
α, the null hypothesis is rejected, and it is concluded that at least two of the battery types
differ in mean life per unit cost. In order to investigate which particular pairs of battery types
differ, we would need to calculate confidence intervals. This will be done in Chapter 4.✷

3.5.2 Use of p-Values

Thep-value of a test is the smallest choice ofα that would allow the null hypothesis to be
rejected. For convenience, computer packages usually print thep-value as well as the ratio
msT/msE. Having information about thep-value saves looking upFv−1,n−v,α in Table A.6.

Table 3.5 One-way analysis of variance table for the battery experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Type 3 427,915.25 142,638.42 60.24 0.0001
Error 12 28,412.50 2,367.71
Total 15 456,327.75
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All we need to do is to compare thep-value with our selected value ofα. Therefore, the
decision rule for testingH0 : {τ1 � · · · τv} againstHA : {not all of τi ’s are equal} can be
written as

rejectH0 if p < α.

Example 3.5.2 Battery experiment, continued

In the battery experiment of Example 3.5.1, the null hypothesisH0 : {τ1 � τ2 � τ3 � τ4}
that the four battery types have the same average life per unit cost was tested against the
alternative hypothesis that they do not. Thep-value for the test is shown in Table 3.5 as
p � 0.0001. A value of 0.0001 in the SAS computer output indicates that thep-value is
less than or equal to 0.0001. Smaller values are not printed explicitly. Ifα were chosen to
be 0.01, then the null hypothesis would be rejected, sincep < α. ✷

3.6 Sample Sizes

Before an experiment can be run, it is necessary to determine the number of observations
that should be taken on each treatment. This forms step (h) of the checklist in Section 2.2.
In order to make this determination, the experimenter must first ascertain the approximate
cost, in both time and money, of taking each observation and whether the cost differs for
different levels of the treatment factor(s). There will probably be a fixed budget for the
entire experiment. Therefore, remembering to set aside sufficient resources for the analysis
of the experimental data, a rough calculation can be made of the maximum number,N ,
of observations that can be afforded. After having worked through steps (a)–(g) of the
checklist, the experimenter will have identified the objectives of the experiment and the
type of analysis required. It must now be ascertained whether or not the objectives of the
experiment can be achieved within the budget. The calculations at step (h) may show that
it is unnecessary to take as many asN observations, in which case valuable resources can
be saved. Alternatively, and unfortunately the more likely, it may be found that more than
N observations are needed in order to fulfill all the experimenter’s requirements of the
experiment. In this case, the experimenter needs to go back and review the decisions made
so far in order to try to relax some of the requirements. Otherwise, an increase in budget
needs to be obtained. There is little point in running the experiment with smaller sample
sizes than those required without finding out what effect this will have on the analysis. The
following quotation from J. N. R. Jeffers in his article “Acid rain and tree roots: an analysis”
in The Statistical Consultant in Action (1987) is worth careful consideration:

There is a quite strongly held view among experimenters that statisticians always
ask for more replication than can be provided, and hence jeopardize the research by
suggesting that it is not worth doing unless sufficient replication can be provided.
There is, of course, some truth in this allegation, and equally, some truth in the view
that, unless an experiment can be done with adequate replication, and with due regard
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to the size of the difference which it is important to be able to detect, the research
may indeed not be worth doing.

We will consider two methods of determining the number of observations on each
treatment (the sample sizes). One method, which involves specifying the desired length
of confidence intervals, will be presented in Section 4.5. The other method, which involves
specifying the power required of the analysis of variance, is the topic of this section. Since
the method uses the expected value of the mean square for treatments, we calculate this first.

3.6.1 Expected Mean Squares for Treatments

The formula forSST, the treatment sum of squares, was given in (3.5.16) on page 46. Its
expected value is

E[SST ] � E[
∑

ri(Y i. − Y ..)
2]

� E[�riY
2
i. − nY

2
.. ]

�
∑

riE[Y
2
i. ] − nE[Y

2
.. ] .

From the definition of the variance of a random variable, we know that Var(X) � E[X2] −
(E[X])2, so we can writeE[SST ] as

E[SST ] � �ri [Var(Y i.) + (E[Y i.])
2] − n[Var(Y ..) + (E[Y ..])

2] .

For the one-way analysis of variance model (3.3.1), the response variablesYit are in-
dependent, and each has a normal distribution with meanµ + τi and varianceσ 2.
So,

E[SST ] �
∑

ri
(
σ 2/ri + (µ+ τi)

2
)

− n

(
σ 2/n+

(
µ+
∑

riτi/n
)2
)

� vσ 2 + nµ2 + 2µ
∑

riτi +
∑

riτ
2
i

− σ 2 − nµ2 − 2µ
∑

riτi − (
∑

riτi)
2/n

� (v − 1)[σ 2 +Q(τi)] ,

where

Q(τi) � �iri (τi −�hrhτh/n)2 /(v − 1) , (3.6.19)

and the expected value of the mean square for treatmentsMST � SST/(v − 1) is

E[MST ] � σ 2 +Q(τi) ,

which is the quantity we listed in the analysis of variance table, Table 3.4. We note that
when the treatment effects are all equal,Q(τi) � 0, andE[MST ] � σ 2.
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3.6.2 Sample Sizes Using Power of a Test

Suppose that one of the major objectives of an experiment is to examine whether or not the
treatments all have a similar effect on the response. The null hypothesis is actually somewhat
unrealistic. The effects of the treatments are almost certainly notexactly equal, and even
if they were, the nuisance variability in the experimental data would mask this fact. In any
case, if the different levels produce only a very small difference in the response variable,
the experimenter may not be interested in discovering this fact. For example, a difference
of 5 minutes in life per dollar in two different batteries would probably not be noticed by
most users. However, a larger difference such as 60 minutes may well be noticed. Thus the
experimenter might requireH0 to be rejected with high probability ifτi − τs > 60 minutes
per dollar for somei 	� s but may not be concerned about rejecting the null hypothesis
if τi − τs ≤ 5 minutes per dollar for alli 	� s. In most experiments, there is some value
) such that if the difference in the effects of any two of the treatments exceeds), the
experimenter would like to reject the null hypothesis in favor of the alternative hypothesis
with high probability.

Thepower of the test at), denoted byπ ()), is the probability of rejectingH0 when the
effects of at least two of the treatments differ by). The power of the testπ ()) is a function
of) and also of the sample sizes, the number of treatments, the significance levelα, and the
error varianceσ 2. Consequently, the sample sizes can be determined ifπ ()), v, α, andσ 2

are known. The values of), π ()), v, andα are chosen by the experimenter, but the error
variance has to be guessed using data from a pilot study or another similar experiment. In
general, the largest likely value ofσ 2 should be used. If the guess forσ 2 is too small, then
the power of the test will be lower than the specifiedπ ()). If the guess forσ 2 is too high,
then the power will be higher than needed, and differences in theτi ’s smaller than) will
causeH0 to be rejected with high probability.

The rule for testing the null hypothesisH0 : {τ1 � · · · � τv} againstHA: {at least two of
theτi ’s differ}, given in (3.5.17), on page 47, is

reject H0 if
msT

msE
> Fv−1,n−v,α .

As stated in Section 3.5.1, the test statisticMST/MSE has anF distribution if the null hypoth-
esis is correct. But if the null hypothesis is false, thenMST/MSE has a related distribution
called a noncentralF distribution. The noncentralF distribution is denoted byFv−1,n−v,δ2,
whereδ2 is called thenoncentrality parameter and is defined to be

δ2 � (v − 1)Q(τi)/σ
2 , (3.6.20)

whereQ(τi) was calculated in (3.6.19). WhenQ(τi) � 0, thenδ2 � 0, and the distribution
of MST/MSE becomes the usualF -distribution. Otherwise,δ2 is greater than zero, and
the mean and spread of the distribution ofMST/MSE are larger than those of the usual
F -distribution. For equal sample sizesr1 � r2 � · · · � rv � r, we see thatδ2 reduces to

δ2 � r
∑
i

(τi − τ .)
2/σ 2.
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The calculation of the sample sizer required to achieve a powerπ ()) at) for givenv,
α, andσ 2 rests on the fact that the hardest situation to detect is that in which the effects of
two of the factor levels (say, the first and last) differ by), and the others are all equal and
midway between; that is,

µ+ τ2 � µ+ τ3 � · · · � µ+ τv−1 � c ,

µ+ τ1 � c +)/2 , and µ+ τv � c −)/2 ,

for some constantc. In this case,

δ2 � r
∑
i

(τi − τ .)2

σ 2
� r)2

2σ 2
. (3.6.21)

The power of the test depends on the sample sizer through the distribution ofMST/MSE,
which depends onδ2. Since the power of the test is the probability of rejectingH0, we have

π ()) � P

(
MST

MSE
> Fv−1,n−v,α

)
.

The noncentralF distribution is tabulated in Table A.7, with powerπ given as a function
of φ � δ/

√
v for various values ofν1 � v − 1, ν2 � n− v, andα. Using (3.6.21),

φ2 � δ2

v
� r)2

2vσ 2
,

so

r � 2vσ 2φ2

)2
. (3.6.22)

Hence, givenα,), v, andσ 2, the value ofr can be determined from Table A.7 to achieve
a specified powerπ ()). The determination has to be done iteratively, since the denominator
degrees of freedom,ν2 � n− v � v(r − 1), depend on the unknownr. The procedure is as
follows:

(a) Find the section of Table A.7 for the numerator degrees of freedomν1 � v − 1 and the
specifiedα (only α � 0.01 andα � 0.05 are shown).

(b) Calculate the denominator degrees of freedom usingν2 � 1000 in the first iteration and
ν2 � n− v � v(r − 1) in the following iterations, and locate the appropriate row of the
table.

(c) For the required powerπ ()), we use Table A.7 to determineφ and take the larger listed
value if necessary.

(d) Calculater � 2vσ 2φ2/)2, rounding up to the nearest integer.

(e) Repeat steps (b)–(d) until the value ofr is unchanged or alternates between two values.
Select the larger of alternating values.
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Example 3.6.1 Soap experiment, continued

The first part of the checklist for the soap experiment is given in Section 2.5.1, page 22, and
is continued in Section 3.7, below. At step (h), the experimenter calculated the number of
observations needed on each type of soap as follows.

The error variance was estimated to be about 0.007 square grams from the pilot experi-
ment. In testing the hypothesisH0 : {τ1 � τ2 � τ3}, the experimenter deemed it important
to be able to detect a difference in weight loss of at least) � 0.25 grams between any two
soap types, with a probability 0.90 of correctly doing so, and a probability 0.05 of a Type
I error. This difference was considered to be the smallest discrepancy in the weight loss of
soaps that would be noticeable.

Using a one-way analysis of variance model, forv � 3 treatments, with) � 0.25,
r � 2vσ 2φ2/)2 � 0.672φ2, andν2 � v(r − 1) � 3(r − 1), r was calculated as follows.
Using Table A.7 forν1 � v − 1 � 2,α � 0.05, andπ ()) � 0.90:

r ν2 � 3(r − 1) φ r � 0.672φ2 Action
1000 2.33 3.65 Round up to r � 4

4 9 2.67 4.79 Round up to r � 5
5 12 2.33 3.65 Stop, and use r � 4 or 5.

The experimenter decided to taker � 4 observations on each soap type. ✷

3.7 A Real Experiment—Soap Experiment, Continued

The objective of the soap experiment described in Section 2.5.1, page 22, was to compare
the extent to which three different types of soap dissolve in water. The three soaps selected
for the experiment were a regular soap, a deodorant soap, and a moisturizing soap from
a single manufacturer, and the weight-loss after 24 hours of soaking and 4 days drying is
reproduced in Table 3.6. Steps (a)–(d) of the checklist were given in Section 2.5.1. The
remaining steps and part of the analysis of the experimental data are described below. The
first part of the description is based on the written report of the experimenter, Suyapa Silvia.

3.7.1 Checklist, Continued

(e) Run a pilot experiment.
A pilot experiment was run and used for two purposes. First, it helped to identify the
difficulties listed at step (d) of the checklist. Secondly, it provided an estimate ofσ 2 for
step (h). The error variance was estimated to be about 0.007 grams2. The value 0.007

Table 3.6 Data for the soap experiment

Soap Weight-loss (grams) y i.
1 −0.30 −0.10 −0.14 0.40 −0.0350
2 2.63 2.61 2.41 3.15 2.7000
3 1.86 2.03 2.26 1.82 1.9925
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gm2 was the value ofmsE in the pilot experiment. In fact, this is an underestimate, and
it would have been better to have used the one-sided confidence bound (3.4.10) forσ 2.

(f) Specify the model.
Since care will be taken to control all extraneous sources of variation, it is assumed that
the following model will be a reasonable approximation to the true model.

Yit � µ+ τi + εit ,

εit ∼ N (0, σ 2) ,

εit
′s are mutually independent

i � 1,2,3; t � 1, . . . ri ;

whereτi is the (fixed) effect on the response of theith soap,µ is a constant,Yit is the
weight loss of thet th cube of theith soap, andεit is a random error.
Before analyzing the experimental data, the assumptions concerning the distribution
of the error variables will be checked using graphical methods. (Assumption checking
will be discussed in Chapter 5).

(g) Outline the analysis.
In order to address the question of differences in weights, a one-way analysis of variance
will be computed atα � 0.05 to test

versus
H0 : {τ1 � τ2 � τ3}
HA : { the effects of at least two pairs of soap types differ}.

To find out more about the differences among pairs of treatments, 95% confidence
intervals for the pairwise differences of theτi will be calculated using Tukey’s method
(Tukey’s method will be discussed in Section 4.4.4).

(h) Calculate the number of observations that need to be taken.
Four observations will be taken on each soap type. (See Example 3.6.2, page 53, for the
calculation.)

(i) Review the above decisions. Revise if necessary.
It is not difficult to obtain 4 observations on each of 3 soaps, and therefore the checklist
does not need revising. Small adjustments to the experimental procedure that were
found necessary during the pilot experiment have already been incorporated into the
checklist.

3.7.2 Data Collection and Analysis

The data collected by the experimenter are plotted in Figure 2.2, page 25, and reproduced
in Table 3.6. The assumptions that the error variables are independent and have a normal
distribution with constant variance were checked (using methods to be described in Chap-
ter 5) and appear to be satisfied. The least squares estimates,µ̂ + τ̂i � yi., of the average
weight loss values (in grams) are

y1. � −0.0350, y2. � 2.7000, y3. � 1.9925.
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Table 3.7 One-way analysis of variance table for the soap experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Soap 2 16.1220 8.0610 104.45 0.0001
Error 9 0.6945 0.0772
Total 11 16.8166

The hypothesis of no differences in weight loss due to the different soap types is tested
below using an analysis of variance test.

Using the valuesyi. given above, together with
∑∑

y2
it � 45.7397 andr1 � r2 � r3 �

4, the sums of squares for Soap and Total are calculated using (3.5.14) and (3.5.18), as

ssT �
∑
i

riy
2
i. − y2

../n

� [4(−0.0350)2 + 4(2.7000)2 + 4(1.9925)2
]− [(18.63)2/12

] � 16.1221,

sstot � ssE0 �
∑∑

y2
it − (y..)

2/n

� 45.7397− (18.63)2/12 � 16.8166.

The sum of squares for error can be calculated by subtraction, givingssE � sstot − ssT �
0.6946, or directly from (3.4.5), as

ssE �
∑
i

∑
t

y2
it −
∑
i

riy
2
i.

� 45.7397− [4(−0.0350)2 + 4(2.7000)2 + 4(1.9925)2
] � 0.6946.

The estimate of error variability is then

σ̂ 2 � msE � ssE/(n− v) � 0.6945/(12− 3) � 0.0772.

The sums of squares and mean squares are shown in the analysis of variance table, Table 3.7.
Notice that the estimate ofσ 2 is ten times larger than the estimate of 0.007 grams2 provided
by the pilot experiment. This suggests that the pilot experiment was not sufficiently repre-
sentative of the main experiment. As a consequence, the power of detecting a difference of
) � 0.25 grams between the weight losses of the soaps is, in fact, somewhat below the
desired probability 0.90 (see Exercise 17).

The decision rule for testingH0 : {τ1 � τ2 � τ3} against the alternative hypothesis, that
at least two of the soap types differ in weight loss, using a significance level ofα � 0.05,
is to rejectH0 if msT/msE � 104.45 > F2,9,0.05. From Table A.6,F2,9,0.05 � 4.26.
Consequently, the null hypothesis is rejected, and it is concluded that at least two of the
soap types do differ in their weight loss after 24 hours in water (and 4 days drying time).
This null hypothesis would have been rejected for most practical choices ofα. If α had been
chosen to be as small as 0.005,F2,9,α is still only 10.1. Alternatively, if the analysis is done
by computer, thep-value would be printed in the computer output. Here thep-value is less
than 0.0001, andH0 would be rejected for any choice ofα above this value.
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The experimenter was interested in estimating the contrastsτi − τu for all i 	� u, that is,
she was interested in comparing the effects on weight loss of the different types of soaps.
For the one-way analysis of variance model (3.3.1) and a completely randomized design,
all contrasts are estimable, and the least squares estimate ofτi − τu is

τ̂i − τ̂u � (µ̂+ τ̂i) − (µ̂+ τ̂u) � yi. − yu. .

Hence, the least square estimates of the differences in the treatment effects are

τ̂2 − τ̂3 � 0.7075, τ̂2 − τ̂1 � 2.7350, τ̂3 − τ̂1 � 2.0275.

Confidence intervals for the differences will be evaluated in Example 4.4.5.

3.7.3 Discussion by the Experimenter

The results of this experiment were unexpected in that the soaps reacted with the
water in very different ways, each according to its ingredients. An examination of
the soap packages showed that for the deodorant soap and the moisturizing soap,
water is listed as the third ingredient, whereas the regular soap claims to be 99.44%
pure soap. Information on the chemical composition of soaps revealed that soaps are
sodium and/or potassium salts of oleic, palmitic, and coconut oils and therefore in
their pure form (without water) should float as the regular soap bars do. The other
two soaps under discussion contain water and therefore are more dense and do not
float.
One possible reason for the regular soap’s actual increase in weight is that this “dry”
soap absorbed and retained the water and dissolved to a lesser extent during the soak-
ing period. The deodorant soap and the moisturizing soap, on the other hand, already
contained water and did not absorb as much as the regular soap. They dissolved more
easily during the soaking phase as a consequence. This is somewhat supported by the
observation that the dissolved soap gel that formed extensively around the deodorant
soap and the moisturizing soap did not form as much around the regular soap. Fur-
thermore, the regular soap appeared to increase in size and remain larger, even at the
end of the drying period.

3.7.4 Further Observations by the Experimenter

The soaps were weighed every day for one week after the experimental data had
been collected in order to see what changes continued to occur. The regular soap
eventually lost most of the water it retained, and the average loss of weight (due to
dissolution) was less than that for the other two soaps.
If this study were repeated, with a drying period of at least one week, I believe that
the results would indicate that regular soap loses less weight due to dissolution than
either of the deodorant soap or the moisturizing soap
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3.8 Using SAS Software

3.8.1 Randomization

A simple procedure for randomizing a completely randomized design was given in Sec-
tion 3.2, on page 34. This procedure is easily implemented using the SAS software, as we
now illustrate. Consider a completely randomized design for two treatments andr � 3
observations on each, giving a total ofn � 6 observations. The following SAS statements
create and print a data set namedDESIGN, which includes the lists of values of the two
variablesTREATMNT andRANNO as required by steps 1 and 2 of the randomization procedure
in Section 3.2. The statementsINPUT andLINES are instructions to SAS that the values of
TREATMNT are being input on the lines that follow rather than from an external data file.
Inclusion of “@@” in theINPUT statement allows the levels ofTREATMNT to be entered on one
line as opposed to one per line. For each treatment label entered for the variableTREATMNT,
a corresponding value ofRANNO is generated using the SAS random number generating
functionRANUNI.

DATA DESIGN;
INPUT TREATMNT @@;
RANNO=RANUNI(0);
LINES;
1 1 1 2 2 2
PROC PRINT;

The statementPROC PRINT then prints the following output. The column labeledOBS
(observation) is given by SAS as reference numbers.

The SAS System
OBS TREATMNT RANNO
1 1 0.37590
2 1 0.12212
3 1 0.74290
4 2 0.53347
5 2 0.95505
6 2 0.74718

The following statements, which followPROC PRINT, sort the data set by the values of
RANNO, as required by step 3 of the randomization procedure, and print the randomized
design along with the ordered experimental unit labels 1–6 under the headingOBS.

PROC SORT;
BY RANNO;
PROC PRINT;

The resulting output is as follows.
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The SAS System
OBS TREATMNT RANNO
1 1 0.12212
2 1 0.37590
3 2 0.53347
4 1 0.74290
5 2 0.74718
6 2 0.95505

Experimental units 1, 2, and 4 are assigned to treatment 1, and experimental units 3, 5, and
6 are assigned to treatment 2.

3.8.2 Analysis of Variance

In this section we illustrate how SAS software can be used to conduct a one-way analysis of
variance test for equality of the treatment effects, assuming that model (3.3.1) is appropriate.
We use the data in Table 2.7, page 24, from the soap experiment.

A sample SAS program to analyze the data is given in Table 3.8. Line numbers have
been included for reference, but the line numbers are not part of the SAS program and if
included would cause SAS software to generate error messages.

The optionLINESIZE=72 in theOPTIONS statement in line 1 of the program causes all
output generated by the program to be restricted to 72 characters per line. This is convenient

Table 3.8 Sample SAS program for the soap
experiment

Line SAS Program
1 OPTIONS LINESIZE=72;
2 DATA;
3 INPUT WTLOSS SOAP;
4 LINES;
5 -0.30 1
6 -0.10 1
7 -0.14 1
8 : :
9 1.82 3
10 ;
11 PROC PRINT;
12 ;
13 PROC PLOT;
14 PLOT WTLOSS*SOAP
15 / VPOS=11 HPOS=40;
16 ;
17 PROC GLM;
18 CLASS SOAP;
19 MODEL WTLOSS=SOAP;
20 MEANS SOAP;
21 LSMEANS SOAP;
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Figure 3.3
SAS data plot for the

soap experiment

The SAS System

Plot of WTLOSS*SOAP. Legend: A = 1 obs, B = 2 obs, etc.
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-+------------------+------------------+-
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SOAP

for viewing output on a terminal or printing output on 8.5 by 11 inch paper in the portrait
orientation. We have included this option when running all of our programs, though it will
not be shown henceforth in any programs.

Lines 2–10 of the program create a data set that includes as variables the response variable
WTLOSS and the corresponding level of the treatment factorSOAP. Line 8 must be replaced
by the additional data not shown here. ThePRINT procedure (line 11) is used to print the
data. ThePLOT procedure (lines 13–15) generates the data plot shown in Figure 3.3, with
WTLOSS on the vertical axis andSOAP on the horizontal axis, whereA indicates a single data
point,B indicates two data values very close together,C indicates three similar data values,
and so on. OptionsVPOS andHPOS in thePLOT statement control the size of the plot (vertical
and horizontal). If no size options were specified, then line 15 would be unnecessary, but
line 14 would need to end with a semicolon. Lines 12 and 16 have no purpose except to
separate the SAS procedures.

The General Linear Models procedurePROC GLM (lines 17–21) generates an analysis
of variance table and calculates sample means. TheCLASS statement identifiesSOAP as a
major source of variation whose levels are coded. TheMODEL statement defines the response
variable asWTLOSS, and the only source of variation included in the model isSOAP. The
parameterµ and the error variables are automatically included in the model. TheMODEL
statement causes the analysis of variance table shown in Table 3.9 to be calculated. The
F Value is the value of the ratiomsT/msE for testing the null hypothesis that the three
treatment effects are all equal. The valuePr > F is thep-value of the test to be compared
with the chosen significance level. When thep-value is listed as 0.0001, it is actually less
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Table 3.9 Sample SAS output from PROC GLM for the soap experiment.

The SAS System
General Linear Models Procedure

Dependent Variable: WTLOSS
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 2 16.122050 8.061025 104.45 0.0001
Error 9 0.694575 0.077175
Corrected Total 11 16.816625

Table 3.10 Output from MEANS and LSMEANS for the soap experiment

The SAS System
General Linear Models Procedure

Level of ------------WTLOSS-----------
SOAP N Mean SD
1 4 -0.03500000 0.30259985
2 4 2.70000000 0.31601688
3 4 1.99250000 0.20022904

Least Squares Means

SOAP WTLOSS
LSMEAN

1 -0.03500000
2 2.70000000
3 1.99250000

than or equal to 0.0001. The null hypothesis is rejected for any chosen significance level
larger than this.

TheMEANS statement (line 20 of Table 3.8) causes the sample meansyi. to be printed,
and theLSMEANS statement (line 21) requests printing of the least squares means,µ̂ + τ̂i .
In the one-way analysis of variance model these are identical. The output from these two
statements is shown in Table 3.10.

A calculation of the number of observations required for a future experiment cannot be
done usingPROC GLM. The value ofmsE from a pilot experiment can be calculated via an
analysis of variance table, and then the sample size calculation needs to be done by hand as
in Section 3.6.
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Exercises

1. Suppose that you are planning to run an experiment with one treatment factor having
four levels and no blocking factors. Suppose that the calculation of the required number
of observations has givenr1 � r2 � r3 � r4 � 5. Assign at random 20 experimental
units to thev � 4 levels of the treatments, so that each treatment is assigned 5 units.

2. Suppose that you are planning to run an experiment with one treatment factor having
three levels and no blocking factors. It has been determined thatr1 � 3, r2 � r3 � 5.
Assign at random 13 experimental units to thev � 3 treatments, so that the first
treatment is assigned 3 units and the other two treatments are each assigned 5 units.

3. Suppose that you are planning to run an experiment with three treatment factors, where
the first factor has two levels and the other two factors have three levels each. Write
out the coded form of the 18 treatment combinations. Assign 36 experimental units at
random to the treatment combinations so that each treatment combination is assigned
two units.

4. For the one-way analysis of variance model (3.3.1), page 36, the solution to the normal
equations used by the SAS software isτ̂i � yi. − yv. (i � 1, . . . , v) andµ̂ � yv..

(a) Isτi estimable? Explain.

(b) Calculate the expected value of the least squares estimator forτ1−τ2 corresponding
to the above solution. Isτ1 − τ2 estimable? Explain.

5. Consider a completely randomized design with observations on three treatments (coded
1,2,3). For the one-way analysis of variance model (3.3.1), page 36, determine which
of the following are estimable. For those that are estimable, state the least squares
estimator.

(a) τ1 + τ2 − 2τ3.

(b) µ+ τ3.

(c) τ1 − τ2 − τ3.

(d) µ+ (τ1 + τ2 + τ3)/3.

6. (requires calculus) Show that the normal equations for estimatingµ, τ1, . . ., τv are those
given in equation (3.4.3) on page 38.

7. (requires calculus) Show that the least squares estimator ofµ + τ is Y .. for the linear
modelYit � µ+τ+ε0

it (t � 1, . . . , ri ; i � 1,2, . . . , v), where theε0
it ’s are independent

random variables with mean zero and varianceσ 2. (This is the reduced model for the
one-way analysis of variance test, Section 3.5.1, page 44.)

8. For the model in the previous exercise, find an unbiased estimator forσ 2. (Hint: first
calculateE[ssE0] in (3.5.11), page 45.)

9. (requires calculus) Find the least squares estimates ofµ1, µ2, . . . , µv for the linear
modelYit � µi + εit (t � 1, . . . , ri ; i � 1,2, . . . , v), where theεit ’s are independent
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random variables with mean zero and varianceσ 2. Compare these estimates with the
least squares estimates ofµ+ τi (i � 1,2, . . . , v) in model (3.3.1), page 36.

10. For the model in the previous exercise, find an unbiased estimator forσ 2. Compare the
estimator with that in (3.4.8), page 43.

11. Verify, for the one-way analysis of variance model (3.3.1), page 36, that each treatment
sample varianceS2

i is an unbiased estimator of the error varianceσ 2, so that

E(SSE) �
∑
i

(ri − 1)E(S2
i ) � (n− v)σ 2.

12. Balloon experiment (Meily Lin, 1985)
Prior to 1985, the experimenter had observed that some colors of birthday balloons seem
to be harder to inflate than others. She ran this experiment to determine whether balloons
of different colors are similar in terms of the time taken for inflation to a diameter of
7 inches. Four colors were selected from a single manufacturer. An assistant blew up
the balloons and the experimenter recorded the times (to the nearest 1/10 second) with
a stop watch. The data, in the order collected, are given in Table 3.11, where the codes
1, 2, 3, 4 denote the colors pink, yellow, orange, blue, respectively.
(a) Plot inflation time versus color and comment on the results.

(b) Estimate the mean inflation time for each balloon color, and add these estimates to
the plot from part (a).

(c) Construct an analysis of variance table and test the hypothesis that color has no
effect on inflation time.

(d) Plot the data for each color in the order that it was collected. Are you concerned
that the assumptions on the model are not satisfied? If so, why? If not, why not?

(e) Is the analysis conducted in part (c) satisfactory?

13. Heart–lung pump experiment, continued
The heart–lung pump experiment was described in Example 3.4.4, page 40, and the
data were shown in Table 3.2, page 41.

Table 3.11 Times (in seconds) for the balloon experiment

Time Order 1 2 3 4 5 6 7 8
Coded color 1 3 1 4 3 2 2 2
Inflation Time 22.4 24.6 20.3 19.8 24.3 22.2 28.5 25.7
Time Order 9 10 11 12 13 14 15 16
Coded color 3 1 2 4 4 4 3 1
Inflation Time 20.2 19.6 28.8 24.0 17.1 19.3 24.2 15.8
Time Order 17 18 19 20 21 22 23 24
Coded color 2 1 4 3 1 4 4 2
Inflation Time 18.3 17.5 18.7 22.9 16.3 14.0 16.6 18.1
Time Order 25 26 27 28 29 30 31 32
Coded color 2 4 2 3 3 1 1 3
Inflation Time 18.9 16.0 20.1 22.5 16.0 19.3 15.9 20.3
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Table 3.12 Times (in seconds) for the
“walk” sign to appear in the
pedestrian light experiment

Number of pushes
0 1 2 3

38.14 38.28 38.17 38.14
38.20 38.17 38.13 38.30
38.31 38.08 38.16 38.21
38.14 38.25 38.30 38.04
38.29 38.18 38.34 38.37
38.17 38.03 38.34
38.20 37.95 38.17

38.26 38.18
38.30 38.09
38.21 38.06

(a) Calculate an analysis of variance table and test the null hypothesis that the number
of revolutions per minute has no effect on the fluid flow rate.

(b) Are you happy with your conclusion? Why or why not?

(c) Calculate a 90% upper confidence limit for the error varianceσ 2.

14. Pedestrian light experiment (Larry Lesher, 1985)
Larry Lesher ran this experiment in order to determine whether pushing a certain pedes-
trian light button had an effect on how long he had to wait before the pedestrian light
showed “walk.” The treatment factor of interest was the number of pushes of the but-
ton, and 13 observations were taken for each of 0, 1, 2, and 3 pushes of the button. The
waiting times for the “walk” sign for the first 32 observations in the order collected
are shown in Table 3.12, givingr0 � 7, r1 � r2 � 10, r3 � 5 (where the levels of the
treatment factor are coded as 0, 1, 2, 3 for simplicity). The observations were taken as
close together as possible on a Saturday in February 1985.
(a) Plot the waiting times against the number of pushes of the button. What does the

plot show?

(b) Construct an analysis of variance table and test the null hypothesis that the number
of pushes of the pedestrian button has no effect on the waiting time for the “walk”
sign.

(c) Estimate the mean waiting time for each number of pushes and the corresponding
variance.

(d) Estimate the contrastτ0 − (τ1 +τ2 +τ3)/3, which compares the effect of no pushes
of the button with the average effect of pushing the button once, twice, or three
times.

15. Trout experiment (Gutsell, 1951, Biometrics)
The data in Table 3.13 show the measurements of hemoglobin (grams per 100 ml) in
the blood of brown trout. The trout were placed at random in four different troughs.
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Table 3.13 Data for the Trout Experiment

Code Hemoglobin (grams per 100 ml)
1 6.7 7.8 5.5 8.4 7.0 7.8 8.6 7.4 5.8 7.0
2 9.9 8.4 10.4 9.3 10.7 11.9 7.1 6.4 8.6 10.6
3 10.4 8.1 10.6 8.7 10.7 9.1 8.8 8.1 7.8 8.0
4 9.3 9.3 7.2 7.8 9.3 10.2 8.7 8.6 9.3 7.2

Source: Gutsell, J. S. (1951). Copyright © 1951 International Biometric
Society. Reprinted with permission.

The fish food added to the troughs contained, respectively, 0, 5, 10, and 15 grams of
sulfamerazine per 100 pounds of fish (coded 1,2,3,4). The measurements were made
on ten randomly selected fish from each trough after 35 days.
(a) Plot the data and comment on the results.

(b) Write down a suitable model for this experiment.

(c) Calculate the least squares estimate of the mean response for each treatment. Show
these estimates on the plot obtained in (a). Can you draw any conclusions from
these estimates?

(d) Test the hypothesis that sulfamerazine has no effect on the hemoglobin content of
trout blood.

(e) Calculate a 95% upper confidence limit forσ 2.

16. Trout experiment, continued
Suppose the trout experiment of Exercise 15 is to be repeated with the samev � 4
treatments, and suppose that the same hypothesis, that the treatments have no effect on
hemoglobin content, is to be tested.

(a) For calculating the number of observations needed on each treatment, what would
you use as a guess forσ 2?

(b) Calculate the sample sizes needed for an analysis of variance test withα � 0.05
to have power 0.95 if (i)) � 1.5. (ii) ) � 1.0. (iii) ) � 2.0.

17. Soap experiment, continued
In Example 3.6.2, page 53, a sample size calculation was made for the number of
observations needed to detect, with probabilityπ (0.25) � 0.90, a difference in weight
loss of at least) � 0.25 grams inv � 3 difference types of soap, using an analysis
of variance with a probability ofα � 0.05 of a Type I error. The calculation used an
estimate of 0.007 grams2 for σ 2 and showed thatr � 4 observations were needed on
each type of soap. The experiment was run withr � 4, and the least squares estimate
for σ 2 was 0.0772. If the true value forσ 2 was, in fact, 0.08, what power did the test
actually have for detecting a difference of) � 0.25 grams in the weight loss of the
three soaps?

18. The diameter of a ball bearing is to be measured using three different calipers. How
many observations should be taken on each caliper type if the null hypothesisH0:{effects
of the calipers are the same} is to be tested against the alternative hypothesis that the
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three calipers give different average measurements. It is required to detect a difference
of 0.01 mm in the effects of the caliper types with probability 0.98 and a Type I error
probability ofα � 0.05. It is thought thatσ is about 0.03 mm.

19. An experiment is to be run to determine whether or not time differences in performing
a simple manual task are caused by different types of lighting. Five levels of lighting
are selected ranging from dim colored light to bright white light. The one-way analysis
of variance model (3.3.1), page 36 is thought to be a suitable model, andH0 : {τ1 �
τ2 � τ3 � τ4 � τ5} is to be tested against the alternative hypothesisHA:{theτi ’s are not
all equal} at significance level 0.05. How many observations should be taken at each
light level given that the experimenter wishes to rejectH0 with probability 0.90 if the
difference in the effects of any two light levels produces a 4.5-second time difference
in the task? It is thought thatσ is at most 3.0 seconds.
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4 Inferences for Contrasts and
Treatment Means

4.1 Introduction
4.2 Contrasts
4.3 Individual Contrasts and Treatment Means
4.4 Methods of Multiple Comparisons
4.5 Sample Sizes
4.6 Using SAS Software
Exercises

4.1 Introduction

The objective of an experiment is often much more specific than merely determining whether
or not all of the treatments give rise to similar responses. For example, a chemical experi-
ment might be run primarily to determine whether or not the yield of the chemical process
increases as the amount of the catalyst is increased. A medical experiment might be con-
cerned with the efficacy of each of several new drugs as compared with a standard drug. A
nutrition experiment may be run to compare high fiber diets with low fiber diets. Such treat-
ment comparisons are formalized in Section 4.2. The purpose of this chapter is to provide
confidence intervals and hypothesis tests about treatment comparisons and treatment means.
We start, in Section 4.3, by considering a single treatment comparison or mean, and then, in
Section 4.4, we develop the techniques needed when more than one treatment comparison
or mean is of interest. The number of observations required to achieve confidence intervals
of given lengths is calculated in Section 4.5. SAS commands for confidence intervals and
hypothesis tests are provided in Section 4.6.

67
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4.2 Contrasts

In Chapter 3, we defined a contrast to be a linear combination of the parametersτ1, τ2, . . . , τv
of the form∑

ciτi , with
∑

ci � 0 .

For example,τu − τs is the contrast that compares the effects (as measured by the response
variable) of treatmentsu ands. If τu − τs � 0, then treatmentsu ands affect the response
in exactly the same way, and we say that these treatments do not differ. Otherwise, the
treatments do differ in the way they affect the response. We showed in Section 3.4 that for
a completely randomized design and the one-way analysis of variance model (3.3.1), every
contrast

∑
ciτi is estimable with least squares estimate∑

ci τ̂i �
∑

ci(µ̂+ τ̂i) �
∑

ciyi. (4.2.1)

and corresponding least squares estimator
∑

ciY i.. The variance of the least squares
estimator is

Var(
∑

ciY i.) �
∑

c2
i Var(Y i.) �

∑
c2
i (σ

2/ri) � σ 2
∑

(c2
i /ri) . (4.2.2)

The first equality uses the fact that the treatment sample meansY i. involve different response
variables, which in model (3.3.1) are independent. The error varianceσ 2 is generally un-
known and is estimated by the unbiased estimatemsE, giving the estimated variance of the
contrast estimator as

V̂ar(
∑

ciY i.) � msE
∑

(c2
i /ri).

Theestimated standard error of the estimator is the square root of this quantity, namely,√
V̂ar(
∑

ciY i.) �
√

msE
∑

(c2
i /ri) . (4.2.3)

Normalized contrasts When several contrasts are to be compared, it is sometimes help-
ful to be able to measure them all on the same scale. A contrast is said to benormalized if it
is scaled so that its least squares estimator has varianceσ 2. From (4.2.2), it can be seen that

a contrast�ciτi is normalized by dividing it by
√
�c2

i /ri . If we write hi � ci/

√
�c2

i /ri ,

then the least squares estimator�hiY i. of the normalized contrast�hiτi has the following
distribution:∑

hiY i. ∼ N
(∑

hiτi, σ
2
)
, wherehi � ci√∑

c2
i /ri

.

Normalized contrasts will be used for hypothesis testing (Section 4.3.3).

Contrast coefficients It is convenient to represent a contrast by listing only the coeffi-
cients of the parametersτ1, τ2, . . . , τv. Thus,

∑
ciτi � c1τ1 + c2τ2 + · · · + cvτv would be

represented by the list ofcontrast coefficients

[c1, c2, . . . , cv] .
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Some types of contrasts are used frequently in practice, and these are identified in
Sections 4.2.1–4.2.4.

4.2.1 Pairwise Comparisons

As the name suggests,pairwise comparisons are simple differencesτu − τs of pairs of
parametersτu and τs (u 	� s). These are of interest when the experimenter wishes to
compare each treatment with every other treatment. The list of contrast coefficients for the
pairwise differenceτu − τs is

[0,0,1,0, . . . ,0,−1,0, . . . ,0] ,

where the 1 and−1 are in positionsu ands, respectively. The least squares estimate of
τu − τs is obtained from (4.2.1) by settingcu � 1, cs � −1, and all otherci equal to zero,
giving

τ̂u − τ̂s � yu. − ys. ,

and the corresponding least squares estimator isYu. − Y s.. Its estimated standard error is
obtained from (4.2.3) and is equal to√

V̂ar(Yu. − Y s.) �
√

msE ((1/ru) + (1/rs)) .

Example 4.2.1 Battery experiment, continued

Details for the battery experiment were given in Section 2.5.2 (page 26). The experimenter
was interested in comparing the life per unit cost of each battery type with that of each of the
other battery types. The average lives per unit cost (in minutes/dollar) for the four batteries,
calculated from the data in Table 2.8, page 28, are

y1. � 570.75, y2. � 860.50, y3. � 433.00, y4. � 496.25.

The least squares estimates of the pairwise differences are, therefore,

τ̂1 − τ̂2 � −289.75, τ̂1 − τ̂3 � 137.75, τ̂1 − τ̂4 � 74.50,

τ̂2 − τ̂3 � 427.50, τ̂2 − τ̂4 � 364.25, τ̂3 − τ̂4 � −63.25.

The estimated pairwise differences suggest that battery type 2 (alkaline, store brand) is vastly
superior to the other three battery types in terms of the mean life per unit cost. Battery type
1 (alkaline, name brand) appears better than types 3 and 4, and battery type 4 (heavy duty,
store brand) better than type 3 (heavy duty, name brand). We do, however, need to investigate
whether or not these perceived differences might be due only to random fluctuations in the
data.

In Example 3.4.4 (page 44), the error variance was estimated to bemsE = 2367.71. The
sample sizes werer1 � r2 � r3 � r4 � 4, and consequently, the estimated standard error
for each pairwise comparison is equal to√

2367.71 (1
4 + 1

4) � 34.41 min/$ .
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It can be seen that all of the estimated pairwise differences involving battery type 2 are bigger
than four times their estimated standard errors. This suggests that the perceived differences
in battery type 2 and the other batteries are of sizeable magnitudes and are unlikely to be
due to random error. We shall formalize these comparisons in terms of confidence intervals
in Example 4.4.4 later in this chapter. ✷

4.2.2 Treatment Versus Control

If the experimenter is interested in comparing the effects of one special treatment with
the effects of each of the other treatments, then the special treatment is called thecontrol.
For example, a pharmaceutical experiment might involve one or more experimental drugs
together with a standard drug that has been on the market for some years. Frequently, the
objective of such an experiment is to compare the effect of each experimental drug with that
of the standard drug but not necessarily with the effects of any of the other experimental
drugs. The standard drug is then the control. If we code the control as level 1, and the
experimental drugs as levels 2,3, . . . , v, respectively, then the contrasts of interest are
τ2−τ1, τ3−τ1, , . . . , τv−τ1. These contrasts are known astreatment versus control contrasts.
They form a subset of the pairwise differences, so we can use the same formulae for the least
squares estimate and the estimated standard error. The contrast coefficients for the contrast
τi − τ1 are [−1,0, . . . ,0,1,0, . . . ,0], where the 1 is in positioni.

4.2.3 Difference of Averages

Sometimes the levels of the treatment factors divide naturally into two or more groups,
and the experimenter is interested in thedifference of averages contrast that compares the
average effect of one group with the average effect of the other group(s). For example,
consider an experiment that is concerned with the effect of different colors of exam paper
(the treatments) on students’ exam performance (the response). Suppose that treatments 1
and 2 represent the pale colors, white and yellow, whereas treatments 3, 4, and 5 represent
the darker colors, blue, green and pink. The experimenter may wish to compare the effects
of light and dark colors on exam performance. One way of measuring this is to estimate the
contrast12(τ1 + τ2) − 1

3(τ3 + τ4 + τ5), which is the difference of the average effects of the
light and dark colors. The corresponding contrast coefficients are[

1
2,

1
2, − 1

3, − 1
3, − 1

3

]
.

From (4.2.1) and (4.2.3), the least squares estimate would be

1
2y1. + 1

2y2. − 1
3y3. − 1

3y4. − 1
3y5.

with estimated standard error√
msE

(
1

4r1
+ 1

4r2
+ 1

9r3
+ 1

9r4
+ 1

9r5

)
.
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Example 4.2.2 Battery experiment, continued

In the battery experiment of Section 2.5.2, page 26, battery types 1 and 2 were alkaline
batteries, while types 3 and 4 were heavy duty. In order to compare the running time per
unit cost of these two types of batteries, we examine the contrast1

2(τ1 + τ2) − 1
2(τ3 + τ4).

The least squares estimate is

1
2(570.75+ 860.50)− 1

2(433.00+ 496.25) � 251.00 min/$ ,

suggesting that the alkaline batteries are more economical (on average by over two hours
per dollar spent). The associated standard error is

√
msE(4/16) � 24.32 min/$, so the

estimated difference in running time per unit cost is over ten times larger than the standard
error, suggesting that the observed difference is not just due to random fluctuations in the
data. ✷

4.2.4 Trends

Trend contrasts may be of interest when the levels of the treatment factor are quantitative and
have a natural ordering. For example, suppose that the treatment factor is temperature and
its selected levels are 50◦C, 75◦C, 100◦C, coded as 1,2,3, respectively. The experimenter
may wish to know whether the value of the response variable increases or decreases as
the temperature increases and, if so, whether the rate of change remains constant. These
questions can be answered by estimating linear and quadratic trends in the response.

The trend contrast coefficients forv equally spaced levels of a treatment factor andequal
sample sizes are listed in Table A.2 for values ofv between 3 and 7. Forv treatments, trends
up to (v − 1)th order can be measured. Experimenters rarely use more than four levels for
a quantitative treatment factor, since it is unusual for strong quartic and higher-order trends
to occur in practice, especially within the narrow range of levels considered in a typical
experiment.

Table A.2 does not tabulate contrast coefficients for unequally spaced levels or for unequal
sample sizes. The general method of obtaining the coefficients of the trend contrasts involves
fitting a regression model to the noncoded levels of the treatment factor. It can be shown
that the linear trend contrast coefficients can easily be calculated as

ci � ri(nxi −�rixi) , (4.2.4)

whereri is the number of observations taken on theith uncoded levelxi of the treatment
factor, andn � �ri is the total number of observations. We are usually interested only in
whether or not the linear trend is likely to be negligible, and to make this assessment, the
contrast estimate is compared with its standard error. Consequently, we may multiply or
divide the calculated coefficients by any integer without losing any information. When the
ri are all equal, the coefficients listed in Appendix A.2 are obtained, possibly multiplied
or divided by an integer. Expressions for quadratic and higher-order trend coefficients are
more complicated (see Draper and Smith, 1981, Sections 5.6 and 5.7).
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Example 4.2.3 Heart–lung pump experiment, continued

The experimenter who ran the heart–lung pump experiment of Example 3.4.4, page 40,
expected to see a linear trend in the data, since he expected the flow rate to increase as the
number of revolutions per minute (rpm) of the pump head was increased. The plot of the
data in Figure 3.1 (page 42) shows the observed flow rates at the five different levels of rpm.
From the figure, it might be anticipated that the linear trend is large but higher-order trends
are very small.

The five levels of rpm observed were 50, 75, 100, 125, 150, which are equally spaced.
Had there been equal numbers of observations at each level, then we could have used the
contrast coefficients [−2,−1, 0, 1, 2 ] for the linear trend contrast and [ 2,−1,−2,−1, 2 ]
for the quadratic trend contrast as listed in Table A.2 forv � 5 levels of the treatment factor.
However, here the sample sizes werer1 � r3 � r5 � 5, r2 � 3 andr4 � 2. The coefficients
for the linear trend are calculated via (4.2.4). Nown � �ri � 20, and

�rixi � 5(50)+ 3(75)+ 5(100)+ 2(125)+ 5(150) � 1975.

So, we have

xi ri (20xi −�rixi )
50 5(1000− 1975) = −4875
75 3(1500− 1975) = −1425

100 5(2000− 1975) = 125
125 2(2500− 1975) = 1050
150 5(3000− 1975) = 5125

The coefficients are each divisible by 25, so rather than using the calculated coefficients
[ −4875,−1425, 125, 1050, 5125 ], we can divide them by 25 and use the linear trend
coefficients [−195, −57, 5, 42, 205 ]. The average flow rates (liters/minute) were
calculated as

y1. � 1.1352, y2. � 1.7220, y3. � 2.3268, y4. � 2.9250, y5. � 3.5292.

The least squares estimate�ciyi. of the linear contrast is then

−195y1. − 57y2. + 5y3. + 42y4. + 205y5. � 538.45

liters per minute. The linear trend certainly appears to be large. However, before draw-
ing conclusions, we need to compare this trend estimate with its corresponding estimated
standard error. The data give

∑∑
y2
it � 121.8176, and we calculate the error sum of

squares (3.4.5), page 42, asssE � 0.0208, giving an unbiased estimate ofσ 2 as

msE � ssE/(n− v) � 0.0208/(20− 5) � 0.001387.

The estimated standard error of the linear trend estimator is then√
msE

(
(−195)2

5
+ (−57)2

3
+ (5)2

5
+ (42)2

2
+ (205)2

5

)
� 4.988.

Clearly, the estimate of the linear trend is extremely large compared with its standard error.
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Had we normalized the contrast, the linear contrast coefficients would each have been
divided by√∑

c2
i /ri �

√
(−195)2

5
+ (−57)2

3
+ (5)2

5
+ (42)2

2
+ (205)2

5
� 134.09,

and the normalized linear contrast estimate would have been 4.0156. The estimated standard
error of all normalized contrasts is

√
msE � 0.03724 for this experiment, so the normalized

linear contrast estimate remains large compared with the standard error. ✷

4.3 Individual Contrasts and Treatment Means

4.3.1 Confidence Interval for a Single Contrast

In this section, we obtain a formula for a confidence interval for an individual contrast. If
confidence intervals for more than one contrast are required, then the multiple comparison
methods of Section 4.4 should be used instead. We give the formula first, and the derivation
afterwards. A 100(1− α)% confidence interval for the contrast�ciτi is∑

ciyi. − tn−v,α/2
√

msE
∑

c2
i /ri ≤

∑
ciτi (4.3.5)

≤
∑

ciyi. + tn−v,α/2
√

msE
∑

c2
i /ri .

We can write this more succinctly as∑
ciτi ∈

(∑
ciyi. ± tn−v,α/2

√
msE
∑

c2
i /ri

)
, (4.3.6)

where the symbol±, which is read as “plus or minus,” denotes that the upper limit of the
interval is calculated using+ and the lower limit using−. The symbols “�ciτi ∈” mean
that the interval includes the true value of the contrast�ciτi with 100(1− α)% confidence.
For future reference, we note that the general form of the above confidence interval is∑

ciτi ∈
(∑

ci τ̂i ± tdf,α/2

√
V̂ar(�ciτ̂i)

)
, (4.3.7)

wheredf is the number of degrees of freedom for error.
To derive the confidence interval (4.3.5), we will need to use some results about normally

distributed random variables. As we saw in the previous section, for the completely random-
ized design and one-way analysis of variance model (3.3.1), the least squares estimator of
the contrast

∑
ciτi is

∑
ciY i., which has variance Var(�ciY i.) � σ 2∑ c2

i /ri . This estima-
tor is a linear combination of normally distributed random variables and therefore also has
a normal distribution. Subtracting the mean and dividing by the standard deviation gives us
a random variable

D

σ
�
∑

ciY i. −
∑

ciτi

σ

√∑
c2
i /ri

, (4.3.8)
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which has aN (0,1) distribution. We estimate the error variance,σ 2, by msE, and from
Section 3.4.6, page 43, we know that

MSE/σ 2 � SSE/(n− v)σ 2 ∼ χ2
n−v/(n− v) .

It can be shown that the random variablesD andMSE are independent (see Graybill, 1976),
and the ratio of a normally distributed random variable and a chi-squared random variable
that are independent has at-distribution with the same number of degrees of freedom as the
chi-squared distribution. Hence, the ratioD/

√
MSE has at distribution withn− v degrees

of freedom. Using the expression (4.3.8), we can now write down the following probability
statement aboutD/

√
MSE:

P

−tn−v,α/2 ≤
∑

ciY i. −
∑

ciτi√
MSE

∑
c2
i /ri

≤ tn−v,α/2

 � 1 − α ,

wheretn−v,α/2 is the percentile of thetn−v distribution corresponding to a probability ofα/2
in the right-hand-tail, the value of which can be obtained from Table A.4. Manipulating the
two inequalities, the probability statement becomes

P

(∑
ciY i. − tn−v,α/2

√
MSE

∑
c2
i /ri ≤

∑
ciτi (4.3.9)

≤
∑

ciY i. + tn−v,α/2
√

MSE
∑

c2
i /ri

)
� 1 − α .

Then replacing the estimators by their observed values in this expression gives a 100(1−α)%
confidence interval for

∑
ciτi as in (4.3.5).

Example 4.3.1 Heart–lung pump experiment, continued

Consider the heart–lung pump experiment of Examples 3.4.4 and 4.2.4, pages 40 and 72.
The least squares estimate of the difference in fluid flow at 75 rpm and 50 rpm (levels 2 and
1 of the treatment factor, respectively) is

�ciyi. � y2. − y1. � 0.5868

liters per minute. Since there werer2 � 5 observations at 75 rpm andr1 � 3 observations
at 50 rpm, andmsE = 0.001387, the estimated standard error of this contrast is√

msE �c2
i /ri �

√
0.001387

(
1
3 + 1

5

) � 0.0272 liters/minute.

Using this information, together witht15,0.025 � 2.131, we obtain from (4.3.6) a 95%
confidence interval (in units of liters per minute) forτ2 − τ1 as

(0.5868± (2.131)(0.0272)) � (0.5288,0.6448).

This tells us that with 95% confidence, the fluid flow at 75 rpm of the pump is between 0.53
and 0.64 liters per minute greater than at 50 rpm. ✷

Confidence bounds, or one-sided confidence intervals, can be derived in the same man-
ner as two-sided confidence intervals. For the completely randomized design and one-way
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analysis of variance model (3.3.1), a 100(1− α)% upper confidence bound for
∑

ciτi is∑
ciτi <

∑
ciyi. + tdf,α

√
msE
∑

c2
i /ri , (4.3.10)

and a 100(1− α)% lower confidence bound for
∑

ciτi is∑
ciτi >

∑
ciyi. − tdf,α

√
msE
∑

c2
i /ri , (4.3.11)

wheretdf,α is the percentile of thet distribution withdf degrees of freedom and probability
α in the right-hand tail.

4.3.2 Confidence Interval for a Single Treatment Mean

For the one-way analysis of variance model (3.3.1), the true mean responseµ + τs of the
sth level of a treatment factor was shown in Section 3.4 to be estimable with least squares
estimatorY s.. Although one is unlikely to be interested in only one of the treatment means,
we can obtain a confidence interval as follows.

SinceY s. ∼ N (µ+ τs, σ
2/rs) for model (3.3.1), we can follow the same steps as those

leading to (4.3.6) and obtain a 100(1− α)% confidence interval forµ+ τs as

µ+ τs ∈ (ys. ± tdf,α/2
√

msE/rs) . (4.3.12)

Example 4.3.2 Heart–lung pump experiment, continued

Suppose that the experimenter had required a 99% confidence interval for the true average
fluid flow (µ + τ3) for the heart–lung pump experiment of Example 3.4.4, page 40, when
the revolutions per minute of the pump are set to 100 rpm. Using (4.3.12) andr3 � 5,
y3. � 2.3268,msE � 0.001387,n− v � 20− 5, andt15,0.005 � 2.947, the 99% confidence
interval forµ+ τ3 is

µ+ τ3 ∈ (2.3268± (2.947)(0.01666)) � (2.2777,2.3759).

So, with 99% confidence, the true average flow rate at 100 rpm of the pump is believed to
be between 2.28 liters per minute and 2.38 liters per minute. ✷

4.3.3 Hypothesis Test for a Single Contrast or Treatment Mean

The outcome of a hypothesis test can be deduced from the corresponding confidence interval
in the following way. The null hypothesisH0 : �ciτi � h will be rejected at significance
levelα in favor of the two-sided alternative hypothesisHA : �ciτi 	� h if the corresponding
confidence interval for�ciτi fails to containh. For example, the 95% confidence interval
for τ2 − τ1 in Example 4.3.1 does not contain zero, so the hypothesisH0 : τ2 − τ1 � 0 (that
the flow rates are the same at 50 rpm and 75 rpm) would be rejected at significance level
α � 0.05 in favor of the alternative hypothesis (that the flow rates are not equal).

We can make this more explicit, as follows. Suppose we wish to test the hypothesis
H0 : �ciτi � 0 against the alternative hypothesisHA:�ciτi 	� 0. The interval (4.3.6) fails
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to contain 0 if the absolute value of�ciyi. is bigger thantn−v,α/2
√
msE �c2

i /ri . Therefore,
the rule for testing the null hypothesis against the alternative hypothesis is

rejectH0 if

∣∣∣∣∣∣
∑

ciyi.√
msE

∑
c2
i /ri

∣∣∣∣∣∣ > tn−v,α/2 , (4.3.13)

where| | denotes absolute value. We call such rulesdecision rules. If H0 is rejected, then
HA is automatically accepted. The test statistic can be squared, so that the decision rule
becomes

rejectH0 if
(
∑

ciyi.)
2

msE
∑

c2
i /ri

> t2n−v,α/2 � F1,n−v,α ,

and theF distribution can be used instead of thet distribution. Notice that the test statistic
is the square of the normalized contrast estimate divided bymsE. We call the quantity

ssc � (
∑

ciyi.)
2∑

c2
i /ri

(4.3.14)

thesum of squares for the contrast, or contrast sum of squares (even though it is the “sum”
of only one squared term). The decision rule can be more simply expressed as

rejectH0 if
ssc

msE
> F1,n−v,α . (4.3.15)

For future reference, we can see that the general form ofssc/msE is

ssc

msE
� (

∑
ci τ̂i)2

V̂ ar(
∑

ci τ̂i)
. (4.3.16)

The above test is a two-tailed test, since the null hypothesis will be rejected for both large
and small values of the contrast. One-tailed tests can be derived also, as follows.

The decision rule for the test ofH0 : �ciτi � 0 against the one-sided alternative
hypothesisHA :

∑
ciτi > 0 is

rejectH0 if

∑
ciyi.√

msE
∑

c2
i /ri

> tn−v,α . (4.3.17)

Similarly, for the one-sided alternative hypothesisHA :
∑

ciτi < 0, the decision rule is

rejectH0 if

∑
ciyi.√

msE
∑

c2
i /ri

< −tn−v,α . (4.3.18)

If the hypothesis test concerns a single treatment mean, for example,H0 : µ + τs � 0,
then the decision rules (4.3.13)–(4.3.18) are modified by settingcs equal to one and all the
otherci equal to zero.

Example 4.3.3 Filter experiment

Lorenz, Hsu, and Tuovinen (1982) describe an experiment that was carried out to determine
the relative performance of seven membrane filters in supporting the growth of bacterial
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colonies. The seven filter types are regarded as the seven levels of the treatment factor and
are coded 1,2, . . . ,7. Filter types 1, 4, and 7 were received presterilized. Several different
types of data were collected, but the only data considered here are the colony counts of fecal
coliforms from a sample of Olentangy River water (August 1980) that grew on each filter.
Three filters of each type were observed and the average colony counts∗ were

y1. � 36.0, y2. � 18.0, y3. � 27.7, y4. � 28.0, y5. � 28.3, y6. � 37.7, y7. � 30.3 .

The mean squared error wasmsE � 21.6. Suppose we wish to test the hypothesis that the
presterilized filters do not differ from the nonpresterilized filters in terms of the average
colony counts, against a two-sided alternative hypothesis that they do differ. The hypothesis
of interest involves a difference of averages contrast, that is,

H0 : 1
3(τ1 + τ4 + τ7) − 1

4(τ2 + τ3 + τ5 + τ6) � 0 .

From (4.3.15), the decision rule is to rejectH0 if

ssc

msE
�

[
1
3(y1. + y4. + y7.) − 1

4(y2. + y3. + y5. + y6.)
]2

msE
[

( 1
3 )2

3 + ( 1
3 )2

3 + ( 1
3 )2

3 + (− 1
4 )2

3 + (− 1
4 )2

3 + (− 1
4 )2

3 + (− 1
4 )2

3

] > F1,14,α .

Selecting a probability of a Type I error equal toα � 0.05, this becomes

rejectH0 if
(3.508)2

(21.6)(0.1944)
� 2.931 > F1,14,0.05 .

SinceF1,14,0.05 � 4.6, there is not sufficient evidence to reject the null hypothesis, and we
conclude that the presterilized filters do not differ significantly from the nonpresterilized
filters whenα is set at 0.05.

Notice that the null hypothesis would be rejected if the probability of a Type I error
is set a little higher thanα � 0.10, sinceF1,14,0.10 � 3.10. Thus, if these experimenters
are willing to accept a high risk of incorrectly rejecting the null hypothesis, they would be
able to conclude that there is a difference between the presterilized and the nonpresterilized
filters.

A 95% confidence interval for this difference can be obtained from (4.3.6) as follows:

1
3(τ1 + τ4 + τ7) − 1

4(τ2 + τ3 + τ5 + τ6) ∈
(
3.508± t14,0.025

√
(21.6)(0.1944)

)
,

and sincet14,0.025 � 2.145, the interval becomes

(3.508± (2.145)(2.0492))� (−0.888,7.904),

where the measurements are average colony counts. The interval contains zero, which agrees
with the hypothesis test atα � 0.05. ✷

∗Reprinted from Journal AWWA, Vol. 74, No. 8 (August 1982), by permission. Copyright © 1982, American
Water Works Association.
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4.4 Methods of Multiple Comparisons

4.4.1 Multiple Confidence Intervals

Often, the most useful analysis of experimental data involves the calculation of a number
of different confidence intervals, one for each of several contrasts or treatment means. The
confidence level for a single confidence interval is based on the probability, like (4.3.9), that
the random interval will be “correct” (meaning that the random interval will contain the true
value of the contrast or function).

It is shown below that when several confidence intervals are calculated, the probability
that they are all simultaneously correct can be alarmingly small. Similarly, when several
hypotheses are to be tested, the probability that at least one hypothesis is incorrectly rejected
can be uncomfortably high. Much research has been done over the years to find ways around
these problems. The resulting techniques are known asmethods of multiple comparison, the
intervals are calledsimultaneous confidence intervals, and the tests are calledsimultaneous
hypothesis tests.

Suppose an experimenter wishes to calculatem confidence intervals, each having a
100(1− α∗)% confidence level. Then each interval will be individually correct with proba-
bility 1 − α∗. LetSj be the event that thej th confidence interval will be correct andSj the
event that it will be incorrect (j � 1, . . . , m). Then, using the standard rules for probabilities
of unions and intersections of events, it follows that

P (S1 ∩ S2 ∩ · · · ∩ Sm) � 1 − P (S1 ∪ S2 ∪ · · · ∪ Sm) .

This says that the probability that all of the intervals will be correct is equal to one minus
the probability that at least one will be incorrect. Ifm � 2,

P (S1 ∪ S2) � P (S1) + P (S2) − P (S1 ∩ S2)

≤ P (S1) + P (S2) .

A similar result, which can be proved by mathematical induction, holds for any numberm

of events, that is,

P (S1 ∪ S2 ∪ · · · ∪ Sm) ≤
∑
j

P (Sj ) ,

with equality if the eventsS1, S2, . . . , Sm are mutually exclusive. Consequently,

P (S1 ∩ S2 ∩ · · · ∩ Sm) ≥ 1 −
∑
j

P (Sj ) � 1 −mα∗ ; (4.4.19)

that is, the probability that them intervals will simultaneously be correct is at least 1−mα∗.
The probabilitymα∗is called theoverall significance level or experimentwise error rate.
A typical value forα∗ for a single confidence interval is 0.05, so the probability that six
confidence intervals each calculated at a 95% individual confidence level will simultaneously
be correct is at least 0.7. Although “at least” means “bigger than or equal to,” it is not known
in practice how much bigger than 0.7 the probability might actually be. This is because the
degree of overlap between the eventsS1, S2, . . . , Sm is generally unknown. The probability
“at least 0.7” translates into anoverall confidence level of “at least 70%” when the responses
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are observed. Similarly, if an experimenter calculates ten confidence intervals each having
individual confidence level 95%, then the simultaneous confidence level for the ten intervals
is at least 50%, which is not very informative. Asm becomes larger the problem becomes
worse, and whenm ≥ 20, the overall confidence level is at least 0%, clearly a useless
assertion!

Similar comments apply to the hypothesis testing situation. Ifm hypotheses are to be
tested, each at significance levelα∗, then the probability that at least one hypothesis is
incorrectly rejected is at mostmα∗.

Various methods have been developed to ensure that the overall confidence level is not
too small and the overall significance level is not too high. Some methods are completely
general, that is, they can be used for any set of estimable functions, while others have
been developed for very specialized purposes such as comparing each treatment with a
control. Which method is best depends on which contrasts are of interest and the number of
contrasts to be investigated. In this section, five methods are discussed that control the overall
confidence level and overall significance level. The termspreplanned contrasts anddata
snooping occur in the summary of methods and the subsequent subsections. These have the
following meanings. Before the experiment commences, the experimenter will have written
out a checklist, highlighted the contrasts and/or treatment means that are of special interest,
and designed the experiment in such a way as to ensure that these are estimable with as small
variances as possible. These are the preplanned contrasts and means. After the data have
been collected, the experimenter usually looks carefully at the data to see whether anything
unexpected has occurred. One or more unplanned contrasts may turn out to be the most
interesting, and the conclusions of the experiment may not be as anticipated. Allowing the
data to suggest additional interesting contrasts is called data snooping.

The following summary is written in terms of confidence intervals, but it also applies to
hypothesis tests. A shorter confidence interval corresponds to a more powerful hypothesis
test. The block designs mentioned in the summary will be discussed in Chapters 10 and 11.

Summary of Multiple Comparison Methods

1. Bonferroni method for preplanned comparisons
Applies to anym preplanned estimable contrasts or functions of the parameters. Gives
shorter confidence intervals than the other methods listed ifm is small. Can be used for
any design. Cannot be used for data snooping.

2. Scheffé method for all comparisons
Applies to anym estimable contrasts or functions of the parameters. Gives shorter inter-
vals than Bonferroni’s method ifm is large. Allows data snooping. Can be used for any
design.

3. Tukey method for all pairwise comparisons
Best for all pairwise comparisons. Can be used for completely randomized designs,
randomized block designs, and balanced incomplete block designs. Is believed to be ap-
plicable (conservative) for other designs as well. Can be extended to include all contrasts,
but Scheff́e’s method is generally better for these.



80 Chapter 4 Inferences for Contrasts and Treatment Means

4. Dunnett method for treatment-versus-control comparisons
Best for all treatment-versus-control contrasts. Can be used for completely randomized
designs, randomized block designs, and balanced incomplete block designs.

5. Hsu method for multiple comparisons with the best treatment
Selects the best treatment and identifies those treatments that are significantly worse than
the best. Can be used for completely randomized designs, randomized block designs,
and balanced incomplete block designs.

Details of confidence intervals obtained by each of the above methods are given in
Sections 4.4.2–4.4.7. The terminology “a set of simultaneous 100(1− α)% confidence
intervals” will always refer to the fact that theoverall confidence level for a set of contrasts
or treatment means is (at least) 100(1− α)%. Each of the five methods discussed gives
confidence intervals of the form∑

i

ciτi ∈
(∑

i

ci τ̂i ± w

√
V̂ar(�ciτ̂i)

)
, (4.4.20)

wherew, which we call thecritical coefficient, depends on the method, onv, on the number
of confidence intervals calculated, and on the number of error degrees of freedom. The term

msd � w

√
V̂ar(�ciτ̂i) ,

which is added and subtracted from the least squares estimate in (4.4.20), is called the
minimum significant difference, because if the estimate is larger thanmsd, the confidence
interval excludes zero, and the contrast is significantly different from zero.

4.4.2 Bonferroni Method for Preplanned Comparisons

The inequality (4.4.19) shows that ifm simultaneous confidence intervals are calculated for
preplanned contrasts, and if each confidence interval has confidence level 100(1− α∗)%,
then the overall confidence level is greater than or equal to 100(1− mα∗)%. Thus, an
experimenter can ensure that the overall confidence level is at least 100(1− α)% by setting
α∗ � α/m. This is known as the Bonferroni method for simultaneous confidence intervals.
Replacingα by α/m in the formula (4.3.6), page 73, for an individual confidence interval,
we obtain a formula for a set of simultaneous 100(1− α)% confidence intervals form
preplanned contrasts�ciτi in a completely randomized design with the one-way analysis
of variance model (3.3.1), as∑

i

ciτi ∈
(∑

i

ciyi. ± tn−v,α/(2m)

√
msE

∑
i

c2
i /ri

)
, (4.4.21)

where the critical coefficient,wB , is

wB � tn−v,α/(2m) .

Sinceα/(2m) is likely to be an atypical value, the percentilestn−v,α/(2m) may need to be
obtained by use of a computer package, or by approximate interpolation between values in
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Table A.4, or by using the following approximate formula due to Peiser (1943):

tdf,α/(2m) ≈ zα/(2m) + (z3
α/(2m) + zα/(2m))/(4(df )) , (4.4.22)

wheredf is the error degrees of freedom (equal ton− v in the present context), and where
zα/(2m) is the percentile of the standard normal distribution corresponding to a probability
of α/(2m) in the right hand tail. The standard normal distribution is tabulated in Table A.3
and covers the entire range of values forα/(2m). Whenm is very large,α/(2m) is very
small, possibly resulting in extremely wide simultaneous confidence intervals. In this case,
the Scheff́e or Tukey methods described in the following subsections would be preferred.

If some of them simultaneous intervals are for true mean responsesµ + τs , then the
required intervals are of the form (4.3.12), page 75, withα replaced byα/m, that is,

µ+ τs ∈
(
ys. ± tn−v,α/(2m)

√
msE/rs

)
. (4.4.23)

Similarly, replacingα by α/m in (4.3.15), a set ofm null hypotheses, each of the form

H0 :
v∑
i�1

ciτi � 0 ,

can be tested against their respective two-sided alternative hypotheses at overall significance
levelα using the set of decision rules each of the form

rejectH0 if
ssc

msE
> F1,df,α/m . (4.4.24)

Note that Bonferroni’s method can be use only forpreplanned contrasts and means. An
experimenter who looks at the data and then proceeds to calculate simultaneous confidence
intervals for the few contrasts that look interesting has effectively calculated a very large
number of intervals. This is because the interesting contrasts are usually those that seem
to be significantly different from zero, and a rough mental calculation of the estimates of
a large number of contrasts has to be done to identify these interesting contrasts. Scheffé’s
method should be used for contrasts that were selected after the data were examined.

Example 4.4.1 Filter experiment, continued

The filter experiment was described in Example 4.3.3, page 76. Suppose that before the data
had been collected, the experimenters had planned to calculate a set of simultaneous 90%
confidence intervals for the followingm � 3 contrasts. These contrasts have been selected
based on the details of the original study described by Lorenz, Hsu, and Tuovinen (1982).

(i) 1
3(τ1 + τ4 + τ7) − 1

4(τ2 + τ3 + τ5 + τ6). This contrast measures the difference in the
average effect of the presterilized and the nonpresterilized filter types. This was used
in Example 4.3.3 to illustrate a hypothesis test for a single contrast.

(ii) 1
2(τ1 + τ7) − 1

5(τ2 + τ3 + τ4 + τ5 + τ6). This contrast measures the difference in the
average effects of two filter types with gradated pore size and five filter types with
uniform pore size.
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(iii) 1
6(τ1 + τ2 + τ4 + τ5 + τ6 + τ7) − τ3. This contrast is the difference in the average
effect of the filter types that are recommended by their manufacturers for bacteriologic
analysis of water and the single filter type that is recommended for sterility testing of
pharmaceutical or cosmetic products.

From Example 4.3.3, we know that

y1. � 36.0, y2. � 18.0, y3. � 27.7, y4. � 28.0, y5. � 28.3,

y6. � 37.7, y7. � 30.3, ri � 3, msE � 21.6.

The formula for each of the three preplanned simultaneous 90% confidence intervals is
given by (4.4.21) and involves the critical coefficientwB � t14,(0.1)/6 � t14,0.0167, which is
not available in Table A.4. Either the value can be calculated from a computer program, or
an approximate value can be obtained from formula (4.4.22) as

t14,0.0167 ≈ 2.128+ (2.1283 + 2.128)/(4 × 14) � 2.338.

The minimum significant difference for each of the three simultaneous 90% confidence
intervals is

msd � 2.338
√

(21.6)
∑

c2
i /3 � 6.2735

√∑
c2
i .

Thus, for the first interval, we have

msd � 6.2735
√

3
(

1
9

)+ 4
(

1
16

) � 4.791,

giving the interval as

1
3(τ1 + τ4 + τ7) − 1

4(τ2 + τ3 + τ5 + τ6) ∈ (3.508± 4.791) � (−1.283, 8.299).

Calculating the minimum significant differences separately for the other two confidence
intervals leads to

1
2(τ1 + τ7) − 1

5(τ2 + τ3 + τ4 + τ5 + τ6) ∈ (−0.039, 10.459) ;

1
6(τ1 + τ2 + τ4 + τ5 + τ6 + τ7) − τ3 ∈ (−4.759, 8.793).

Notice that all three intervals include zero, although the second is close to excluding it. Thus,
at overall significance levelα � 0.10, we would fail to reject the hypothesis that there is no
difference in average colony counts between the presterilized and nonpresterilized filters,
nor between filter 3 and the others, nor between filters with gradated and uniform pore sizes.
At a slightly higher significance level, we would reject the hypothesis that the filters with
gradated pore size have the same average colony counts as those with uniform pore size. The
same conclusion would be obtained if (4.4.24) were used to test simultaneously, at overall
level α � 0.10, the hypotheses that each of the three contrasts is zero. The confidence
interval has the added benefit that we can say with overall 90% confidence that on average,
the filters with gradated pore size give rise to colony counts up to 10.4 greater than the filters
with uniform pore sizes. ✷
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4.4.3 Scheffé Method of Multiple Comparisons

The main drawbacks of the Bonferroni method of multiple comparisons are that them

contrasts to be examined must be preplanned and the confidence intervals can become very
wide if m is large. Scheff́e’s method, on the other hand, provides a set of simultaneous
100(1− α)% confidence intervals whose widths are determined only by the number of
treatments and the number of observations in the experiment, no matter how many contrasts
are of interest. The two methods are compared directly later in this section.

Scheff́e’s method is based on the fact that every possible contrast�ciτi can be written as
a linear combination of the set of (v−1) treatment versus control contrasts,τ2 − τ1, τ3 − τ1,
. . ., τv − τ1. (We leave it to the reader to check that this is true.) Once the experimental data
have been collected, it is possible to find a 100(1− α)% confidence region for thesev − 1
treatment-versus-control contrasts. The confidence region not only determines confidence
bounds for each treatment-versus-control contrast, it determines bounds forevery possible
contrast�ciτi and, in fact, forany number of contrasts, while the overall confidence level
remains fixed. The mathematical details are given by Scheffé (1959).

Forv treatments in a completely randomized design and the one-way analysis of variance
model (3.3.1), a set of simultaneous 100(1−α)% confidence intervals for all contrasts�ciτi
is given by

∑
i

ciτi ∈
(∑

i

ciyi. ±
√

(v − 1)Fv−1,n−v,α
√

msE
∑
i

c2
i /ri

)
. (4.4.25)

Notice that this is the same form as the general formula (4.4.20), page 80, where the critical
coefficientw is

wS � √(v − 1)Fv−1,n−v,α .

If confidence intervals for the treatment meansµ + τi are also of interest, the critical
coefficientwS needs to be replaced by

w∗
S � √vFv,n−v,α .

The reason for the increase in the numerator degrees of freedom is that any of the functions
µ+τi can be written as a linear combination of thev−1 treatment versus control contrasts and
one additional functionµ+ τ1. For the completely randomized design and model (3.3.1), a
set of simultaneous 100(1−α)% confidence intervals for any number of true mean responses
and contrasts is therefore given by

∑
i

ciτi ∈
(∑

i

ciyi. ±
√
vFv,n−v,α

√
msE
∑
i

c2
i /ri

)

together with

µ+ τs ∈
(
yi. ±

√
vFv,n−v,α

√
msE/rs

)
. (4.4.26)
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Example 4.4.2 Filter experiment, continued

If we look at the observed average colony counts,

y1. � 36.0, y2. � 18.0, y3. � 27.7, y4. � 28.0,

y5. � 28.3, y6. � 37.7, y7. � 30.3,

for the filter experiment of Examples 4.3.3 and 4.4.2 (pages 76 and 81), filter type 2 appears
to give a much lower count than the other types. One may wish to recalculate each of the
three intervals in Example 4.4.2 with filter type 2 excluded. It might also be of interest to
compare the filter types 1 and 6, which showed the highest average colony counts, with the
other filters. These arenot preplanned contrasts. They have become interesting only after
the data have been examined, and therefore we need to use Scheffé’s method of multiple
comparisons. In summary, we are interested in the following twelve contrasts:

1
3(τ1 + τ4 + τ7) − 1

3(τ3 + τ5 + τ6) , 1
2(τ1 + τ7) − 1

4(τ3 + τ4 + τ5 + τ6) ,
1
5(τ1 + τ4 + τ5 + τ6 + τ7) − τ3 ,

τ1 − τ3 , τ1 − τ4 , τ1 − τ5 , τ1 − τ6 , τ1 − τ7 ,

τ6 − τ3 , τ6 − τ4 , τ6 − τ5 , τ6 − τ7 .

The formula for a set of Scheffé 90% simultaneous confidence intervals is given by (4.4.25)
with α � 0.10. Sincev � 7, n � 21, andmsE � 21.6 for the filter experiment, the
minimum significant difference for each interval becomes

msd �
√

6F6,14,0.10

√
21.6�c2

i /3 � 9.837
√
�c2

i .

The twelve simultaneous 90% confidence intervals are then

1
3(τ1 + τ4 + τ7) − 1

3(τ3 + τ5 + τ6)

∈
(

(31.43− 31.23) ± 9.837
√

3
(

1
9

)+ 3
(

1
9

))
� (−7.83,8.23),

1
2(τ1 + τ7) − 1

4(τ3 + τ4 + τ5 + τ6) ∈ (−5.79,11.24),
1
5(τ1 + τ4 + τ5 + τ6 + τ7) − τ3 ∈ (−6.42,15.14),

τ1 − τ3 ∈ (−5.61,22.21), τ6 − τ3 ∈ (−3.91,23.91),

τ1 − τ4 ∈ (−5.91,21.91), τ6 − τ4 ∈ (−4.21,23.61),

τ1 − τ5 ∈ (−6.21,21.61), τ6 − τ5 ∈ (−4.51,23.31),

τ1 − τ6 ∈ (−15.61,12.21), τ6 − τ7 ∈ (−6.51,21.31),

τ1 − τ7 ∈ (−8.21,19.61).

These intervals are all fairly wide and all include zero. Consequently, at overall error rate
α � 0.1, we are unable to infer that any of the contrasts are significantly different from
zero. ✷
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Relationship between analysis of variance and the Scheffé method The analysis
of variance test and the Scheffé method of multiple comparisons are equivalent in the
following sense. The analysis of variance test will reject the null hypothesisH0 : τ1 �
τ2 � · · · � τv at significance levelα if there is at least one confidence interval among the
infinite number of Scheff́e simultaneous 100(1− α)% confidence intervals that excludes
zero. However, the intervals that exclude zero may not be among those for the interesting
contrasts being examined.

Other methods of multiple comparisons do not relate to the analysis of variance test in
this way. It is possible when using one of the other multiple comparison methods that one
or more intervals in a simultaneous 100(1− α)% set may exclude 0, while the analysis of
variance test ofH0 is not rejected at significance levelα. Hence, if specific contrasts of
interest have been identified in advance of running the experiment and a method of multiple
comparisons other than Scheffé’s method is to be used, then it is sensible to analyze the data
using only the multiple comparison procedure.

4.4.4 Tukey Method for All Pairwise Comparisons

In some experiments, confidence intervals may be required only for pairwise difference
contrasts. Tukey, in 1953, proposed a method that is specially tailored to handle this situation
and that gives shorter intervals for pairwise differences than do the Bonferroni and Scheffé
methods.

For the completely randomized design and the one-way analysis of variance model
(3.3.1), Tukey’s simultaneous confidence intervals for all pairwise comparisonsτi − τs, i 	�
s, with overall confidence level at least 100(1− α)% is given by

τi − τs ∈
(

(yi. − ys.) ± wT

√
msE

(
1

ri
+ 1

rs

))
, (4.4.27)

where the critical coefficientwT is

wT � qv,n−v,α/
√

2 ,

and whereqv,n−v,α is tabulated in Appendix A.8. When the sample sizes are equal (ri �
r; i � 1, . . . , v), the overall confidence level isexactly 100(1− α)%. When the sample
sizes are unequal, the confidence level isat least 100(1− α)%.

The derivation of (4.4.27) is as follows. For equal sample sizes, the formula for Tukey’s
simultaneous confidence intervals is based on the distribution of the statistic

Q � max{Ti} − min{Ti}√
MSE/r

,

whereTi � Y i. − (µ + τi) for the one-way analysis of variance model (3.3.1), and where
max{Ti} is the maximum value of the random variablesT1, T2, . . . , Tv and min{Ti} the
minimum value. Since theY i.’s are independent, the numerator ofQ is the range ofv
independentN (0, σ 2/r) random variables, and is standardized by the estimated standard
deviation. The distribution ofQ is called theStudentized range distribution. The percentile
corresponding to a probability ofα in the right-hand tail of this distribution is denoted by
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qv,n−v,α, wherev is the number of treatments being compared, andn− v is the number of
degrees of freedom for error. Therefore,

P

(
max{Ti} − min{Ti}√

MSE/r
≤ qv,n−v,α

)
� 1 − α .

Now, if max{Ti} − min{Ti} is less than or equal toqv,n−v,α
√

MSE/r, then it must be true
that |Ti − Ts | ≤ qv,n−v,α

√
MSE/r for every pair of random variablesTi, Ts , i 	� s. Using

this fact and the above definition ofTi , we have

1 − α � P
(
−qv,n−v,α

√
MSE/r≤ (Y i. − Y s.) − (τi − τs)

≤ qv,n−v,α
√

MSE/r , for all i 	� s
)
.

ReplacingY i. by its observed valueyi., and MSE by the observed valuemsE, a set of
simultaneous 100(1− α)% confidence intervals for all pairwise differencesτi − τs , i 	� s,
is given by

τi − τs ∈
(
(yi. − ys.) ± qv,n−v,α

√
msE/r

)
,

which can be written in terms of the critical coefficient as

τi − τs ∈
(

(yi. − ys.) ± wT

√
msE

(
1

r
+ 1

r

))
. (4.4.28)

More recently, Hayter (1984) showed that the same form of interval can be used for
unequal sample sizes as in (4.4.27), and that the overall confidence level is then at least
100(1− α)%.

Example 4.4.3 Battery experiment, continued

In the battery experiment of Example 4.2.1 (page 69), we considered the pairwise differences
in the life lengths per unit cost ofv � 4 different battery types, and we obtained the least
squares estimates

τ̂1 − τ̂2 � −289.75, τ̂1 − τ̂3 � 137.75, τ̂1 − τ̂4 � 74.50,

τ̂2 − τ̂3 � 427.50, τ̂2 − τ̂4 � 364.25, τ̂3 − τ̂4 � −63.25.

The standard error was
√

msE( 1
4 + 1

4) � 34.41, and the number of error degrees of freedom

wasn− v � (16− 4) � 12. From Table A.8,q4,12,0.05 � 4.20, sowT � 4.20/
√

2, and the
minimum significant difference is

msd � (4.20/
√

2) (34.41) � 102.19.

Therefore, the simultaneous 95% confidence intervals for the pairwise comparisons of
lifetimes per unit cost of the different battery types are

τ1 − τ2 ∈ (−289.75± 102.19) � (−391.94,−187.56),

τ1 − τ3 ∈ (137.75± 102.19) � (35.56,239.94),

τ1 − τ4 ∈ (−27.69,176.69), τ2 − τ3 ∈ (325.31,529.69),
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τ2 − τ4 ∈ (262.06,466.44), τ3 − τ4 ∈ (−165.44,38.94).

Four of these intervals exclude zero, and one can conclude (at an overall 95% confidence
level) that battery type 2 (alkaline, store brand) has the highest lifetime per unit cost, and
battery type 3 (heavy duty, name brand) has lower lifetime per unit cost than does battery
type 1 (alkaline, name brand). The intervals show us that with overall 95% confidence,
battery type 2 is between 188 and 391 minutes per dollar better than battery type 1 (the
name brand alkaline battery) and even more economical than the heavy-duty brands.✷

Example 4.4.4 Bonferroni, Scheffé and Tukey methods compared

Suppose thatv � 5, n � 35, andα � 0.05, and that only the 10 pairwise comparisons
τi −τs , i 	� s, are of interest to the experimenter and these were specifically selected prior to
the experiment (i.e., were preplanned). If we compare the critical coefficients for the three
methods, we obtain

Bonferroni : wB � t30,.025/10 � 3.02,

Scheff́e : wS � √
4 F4,30,.05 � 3.28,

Tukey : wT � 1√
2
q5,30,.05 � 2.91.

SincewT is less thanwB , which is less thanwS for this example, the Tukey intervals will be
shorter than the Bonferroni intervals, which will be shorter than the Scheffé intervals. ✷

4.4.5 Dunnett Method for Treatment-Versus-Control
Comparisons

In 1955, Dunnett developed a method of multiple comparisons that is specially designed to
provide a set of simultaneous confidence intervals for preplanned treatment-versus-control
contrastsτi − τ1 (i � 2, . . . , v), where level 1 corresponds to the control treatment. The
intervals are shorter than those given by the Scheffé, Tukey, and Bonferroni methods, but
the method should not be used for any other type of contrasts.

The formulae for the simultaneous confidence intervals are based on the joint distribution
of the estimatorsY i. − Y 1. of τi − τ1 (i � 2, . . . , v). This distribution is a special case
of the multivariatet distribution and depends on the correlation betweenY i. − Y 1. and
Y s. − Y 1.. For the completely randomized design, with equal numbers of observations
r2 � · · · � rv � r on the experimental treatments andr1 � c observations on the control
treatment, the correlation is

ρ � r/(c + r) .

In many experiments, the same number of observations will be taken on the control and
experimental treatments, in which caseρ � 0.5. However, the shortest confidence intervals
for comparingv−1 experimental treatments with a control treatment are generally obtained
when c/r is chosen to be close to

√
v − 1. Since we have tabulated the multivariatet-

distribution only with correlationρ � 0.5, we will discuss only the casec � r. Other
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tables can be found in the book of Hochberg and Tamhane (1987), and intervals can also be
obtained via some computer packages (see Section 4.6.2 for the SAS package).

If the purpose of the experiment is to determine which of the experimental treatments
give a significantly higher response than the control treatment, then one-sided confidence
bounds should be used. For a completely randomized design with equal sample sizes and the
one-way analysis of variance model (3.3.1), Dunnett’s simultaneous one-sided 100(1−α)%
confidence bounds for treatment-versus-control contrastsτi − τ1 (i � 2,3, . . . , v) are

τi − τ1 ≥ (yi. − y1.) − wD1

√
msE

(
2

r

)
, (4.4.29)

where the critical coefficient is

wD1 � t
(0.5)
v−1,n−v,α

and wheret (0.5)
v−1,n−v,α is the percentile of the maximum of a multivariatet-distribution with

common correlation 0.5 andn − v degrees of freedom, corresponding to a Type I error
probability ofα in the right-hand tail. The critical coefficient is tabulated in Table A.9. If
the right hand side of (4.4.29) is positive, we infer that theith experimental treatment gives
a larger response than the control.

If the purpose is to determine which of the experimental treatments give a significantly
lower response than the control, then the inequality is reversed, and the confidence bound
becomes

τi − τ1 ≤ (yi. − y1.) + wD1

√
msE

(
2

r

)
. (4.4.30)

If the right-hand side is negative, we infer that theith experimental treatment gives a smaller
response than the control.

To determine which experimental treatments are better than the controland which ones
are worse, two-sided intervals of the general form (4.4.20) are used as for the other multiple
comparison methods. For the completely randomized design, one-way analysis of variance
model (3.3.1), and equal sample sizes, the formula is

τi − τ1 ∈
(
yi. − y1. ± wD2

√
msE

(
2

r

))
, (4.4.31)

where the critical coefficient is

wD2 � |t |(0.5)
v−1,n−v,α

and is the upper critical value for the maximum of the absolute values of a multivariate
t-distribution with correlation 0.5 andn− v error degrees of freedom, corresponding to the
chosen value ofα in the right-hand tail. The critical coefficients for equal sample sizes are
provided in Table A.10.
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For future reference, the general formula for Dunnett’s two-sided simultaneous 100(1−
α)% confidence intervals for treatment versus control contrastsτi − τ1 (i � 2,3, . . . , v) is

τi − τ1 ∈
(

(τ̂i − τ̂1) ± wD2

√
V̂ar(τ̂i − τ̂1)

)
, (4.4.32)

and, for one-sided confidence bounds, we replacewD2 by wD1 and replace “∈” by “ ≤” or
“≥.” The critical coefficients are

wD2 � |t |(0.5)
v−1,df,α and wD1 � t

(0.5)
v−1,df,α

for two-sided and one-sided intervals, respectively, wheredf is the number of error degrees
of freedom.

Example 4.4.5 Soap experiment, continued

Suppose that as a preplanned objective of the soap experiment of Section 2.5.1, page 22,
the experimenter had wanted simultaneous 99% confidence intervals comparing the weight
losses of the deodorant and moisturizing soaps (levels 2 and 3) with that of the regular
soap (level 1). Then it is appropriate to use Dunnett’s method as given in (4.4.31). From
Section 3.7.2,r1 � r2 � r3 � 4, msE � 0.0772,τ̂2 − τ̂1 � 2.7350, andτ̂3 − τ̂1 � 2.0275.
From Table A.10,wD2 � |t |(0.5)

v−1,n−v,α � |t |(0.5)
2,9,0.01 � 3.63, so the minimum significant

difference is

msd � 3.63
√

msE(2/4) � 0.713.

Hence, the simultaneous 99% confidence intervals are

τ2 − τ1 ∈ (2.7350± 0.713)≈ (2.022,3.448)

and

τ3 − τ1 ∈ (2.0275± 0.713)≈ (1.314,2.741).

One can conclude from these intervals (with overall 99% confidence) that the deodorant
soap (soap 2) loses between 2 and 3.4 grams more weight on average than does the regular
soap, and the moisturizing soap loses between 1.3 and 2.7 grams more weight on average
than the regular soap. We leave it to the reader to verify that neither the Tukey nor the
Bonferroni method would have been preferred for these contrasts (see Exercise 7).✷

4.4.6 Hsu Method for Multiple Comparisons with the Best
Treatment

“Multiple comparisons with the best treatment” is similar to multiple comparisons with a
control, except that since it is unknown prior to the experiment which treatment is the best,
a control treatment has not been designated. Hsu (1984) developed a method in which each
treatment sample mean is compared with the best of the others, allowing some treatments
to be eliminated as worse than best, and allowing one treatment to be identified as best if all
others are eliminated. Hsu calls this method RSMCB, which stands forRanking, Selection,
and Multiple Comparisons with the Best treatment.
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Suppose, first, that the best treatment is the treatment that gives the largest response on
average. Letτi − max(τj ) denote the effect of theith treatment minus the effect of the best
of theother v − 1 treatments. When theith treatment is the best, max(τj ) (j 	� i) will be
the effect of the second-best treatment. So,τi − max(τj ) will be positive if treatmenti is
the best, zero if theith treatment is tied for being the best, or negative if the treatmenti is
worse than best.

Hsu’s procedure provides a set ofv simultaneous 100(1− α)% confidence intervals for
τi − max(τj ), j 	� i (i � 1,2, . . . , v). For an equireplicate completely randomized design
and model (3.3.1), Hsu’s formula for the simultaneous 100(1− α)% confidence intervals is

τi − max
j 	�i

(τj ) ∈
(

(yi. − max
j 	�i

yj.) ± wH

√
msE(2/r)

)
, (4.4.33)

where a negativeupper bound is set to zero and theith treatment is declarednot to be the
best, while a positivelower bound is set to zero and theith treatment is selected as the best.
The critical coefficient

wH � wD1 � t
(0.5)
v−1,n−v,α

is the same as that for Dunnett’s one-sided confidence bound and is tabulated in Table A.9.
If more than one of the intervals has a positive upper bound, then the corresponding set of
treatments contains the best treatment with 100(1− α)% confidence.

Hsu’s procedure can also be used in the case of unequal sample sizes. However, the
formulas for the intervals are complicated, and their calculation is best left to a computer
package (see Section 4.6.2).

If the best treatment factor level is the level that gives the smallest response rather than
the largest, then Hsu’s procedure has to be modified, and the simultaneous 100(1− α)%
confidence intervals forτi − min(τj ) are given by

τi − min
j 	�i

(τj ) ∈
(

(yi. − min
j 	�i

(yj.)) ± wH

√
msE(2/r)

)
, (4.4.34)

where a positive lower bound is set to zero and treatmenti is declared not to be the best,
and a negative upper bound is set to zero and treatmenti is selected as the best treatment.

Example 4.4.6 Filter experiment, continued

Example 4.3.3, page 76, described an experiment to determine the relative performance
of seven membrane filters in supporting the growth of bacterial colonies. The summary
information is

y1. � 36.0, y2. � 18.0, y3. � 27.7, y4. � 28.0, y5. � 28.3,

y6. � 37.7, y7. � 30.3, n � 21, v � 7, r � 3, msE � 21.6.

A completely randomized design and model (3.3.1) was used. For a set of simultaneous 95%
confidence intervals, the minimum significant difference using Hsu’s method is obtained
from (4.4.33) as

msd � wH

√
msE(2/r) � t

(0.5)
6,14,0.05

√
21.6(2/3) � 2.54

√
14.4 ≈ 9.7,
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Table 4.1 Multiple comparisons with the best for
the filter data

Confidence
i y i. −maxj 	�i y j. Interval
1 36.0− 37.7 � −1.7 (−11.4, 8.0)
2 18.0− 37.7 �−19.7 (−29.4, 0.0)
3 27.7− 37.7 �−10.0 (−19.7, 0.0)
4 28.0− 37.7 � −9.7 (−19.4, 0.0)
5 28.3− 37.7 � −9.4 (−19.1, 0.3)
6 37.7− 36.0 � 1.7 ( −8.0, 11.4)
7 30.3− 37.7 � −7.4 (−17.1, 2.3)

where the critical coefficientwH is the same aswD1 and is obtained by interpolation from
Table A.9, andmsd has been rounded to the same level of accuracy as the treatment sample
means. Further computations and the resulting simultaneous 95% confidence intervals are
shown in Table 4.1. Filters 2, 3, and 4 are declared not to be the best, since their corresponding
intervals have negative upper bounds, which are then set to zero. No interval has a positive
lower bound, so there is no selection of a single filter as being the best. The sixth filter
yielded the highest sample mean, but any one of filters 1, 5, 6, or 7 could be the best (with
95% overall confidence). ✷

4.4.7 Combination of Methods

The Bonferroni method is based on the fact that ifm individual confidence intervals are
obtained, each with confidence level 100(1− α∗)%, then the overall confidence level is at
least 100(1− mα∗)%. The same fact can be used to combine the overall confidence levels
arising from more than one multiple comparison procedure.

In Example 4.4.2 (page 81), the Bonferroni method was used to calculate simultaneous
90% confidence intervals form � 3 preplanned contrasts. In Example 4.4.3 (page 84),
the analysis was continued by calculating simultaneous 90% Scheffé intervals for twelve
other contrasts. The overall error rate for these two sets of intervals combined is therefore
at most 0.1+ 0.1 � 0.2, giving an overall, or “experimentwise,” confidence level of at least
100(1− 0.2)% � 80% for all fifteen intervals together.

Different possible strategies for multiple comparisons should be examined when outlining
the analysis at step (g) of the checklist (Section 2.2, page 7). Suppose that in the above
example the overall level for all intervals (both planned and otherwise) had been required
to be at least 90%. We examine two possible strategies that could have been used. First,
the confidence levels for the Bonferroni and Scheffé contrasts could have been adjusted,
dividing α � 0.10 into two pieces,α1 for the preplanned contrasts andα2 for the others,
whereα1 + α2 � 0.10. This strategy would have resulted in intervals that were somewhat
wider than the above for all of the contrasts. Alternatively, Scheffé’s method could have
been used withα � 0.10 for all of the contrasts including the three preplanned contrasts.
This strategy would have resulted in wider intervals for the three preplanned contrasts but
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not for the others. Both strategies would result in an overall, or experimentwise, confidence
level of 90% instead of 80%.

4.4.8 Methods Not Controlling Experimentwise Error Rate

We have introduced five methods of multiple comparisons, each of which allows the ex-
perimenter to control the overall confidence level, and the same methods can be used to
control the experimentwise error rate when multiple hypotheses are to be tested. There exist
other multiple comparison procedures that are more powerful (i.e., that more easily detect
a nonzero contrast) but do not control the overall confidence level nor the experimentwise
error rate. While some of these are used quite commonly, we do not advocate their use.
Such procedures include Duncan’s multiple range test, Fisher’s protected LSD procedure,
and the Newman–Keuls method. (For more details, see Hsu’s 1996 text.)

4.5 Sample Sizes

Before an experiment can be run, it is necessary to determine the number of observations
that should be taken on each level of each treatment factor (step (h) of the checklist in
Section 2.2, page 7). In Section 3.6.2, a method was presented to calculate the sample sizes
needed to achieve a specified power of the test of the hypothesisH0 : τ1 � · · · � τv. In
this section we show how to determine the sample sizes to achieve confidence intervals of
specified lengths.

The lengths of confidence intervals decrease as sample sizes increase. Consequently, if
the length of an interval is specified, it should be possible to calculate the required sample
sizes, especially when these are equal. However, there is a problem. Since the experimental
data have not yet been collected, the value of the mean squared error is not known. As in
Section 3.6.2, if the value of the mean squared error can be reasonably well be guessed at,
either from previous experience or from a pilot study, then a trial and error approach to the
problem can be followed, as illustrated in the next example.

Example 4.5.1 Bean-soaking experiment

Suppose we were to plan an experiment to compare the effects ofv � 5 different soaking
times on the growth rate of mung bean seeds. The response variable will be the length of
a shoot of a mung bean seed 48 hours after soaking. Suppose that a pilot experiment has
indicated that the mean square for error is likely to be not more than 10 mm2, and suppose
that we would like a set of 95% simultaneous confidence intervals for pairwise differences
of the soaking times, with each interval no wider than 6 mm (that is, the half width or
minimum significant difference should be no greater than 3 mm).

The formula for each of the simultaneous confidence intervals for pairwise comparisons
using Tukey’s method of multiple comparisons is given by (4.4.27) page 85. For equal
sample sizes, the interval half width, or minimum significant difference, is required to be at
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most 3 mm; that is, we require

msd � wT

√
10

(
1

r
+ 1

r

)
≤ 3 ,

wherewT � q5,5r−5,.05/
√

2 or, equivalently,

q2
5,5r−5,.05 ≤ 0.9r .

Adopting a trial-and-error approach, we guess a value forr, say r � 10. Then, from
Table A.8, we findq2

5,45,.05 ≈ 4.032 � 16.24, which does not satisfy the requirement that
q2 ≤ 0.9r � 9. A larger value forr is needed, and we might tryr � 20 next. The calculations
are most conveniently laid out in table form, as follows.
r 5r − 5 q25,5r−5,0.05 0.9r Action
10 45 4.032 � 16.24 9.00 Increase r
20 95 3.952 � 15.60 18.00 Decrease r
15 70 3.972 � 15.76 13.50 Increase r
18 85 3.962 � 15.68 16.20 Decrease r
17 80 3.962 � 15.68 15.30

If r � 17 observations are taken on each of the five soaking times, and if the mean square for
error is approximately 10 mm2 in the main experiment, then the 95% Tukey simultaneous
confidence intervals for pairwise comparisons will be a little over the required 6 mm in
length. If r � 18 observations are taken, the interval will be a little shorter than the 6 mm
required. If the cost of the experiment is high, thenr � 17 would be selected; otherwise,
r � 18 might be preferred. ✷

Trial and error procedures such as that illustrated in Example 4.5 for Tukey’s method
of multiple comparisons can be used for any of the other multiple comparison methods to
obtain the approximate sample sizes required to meet the objectives of the experiment. The
same type of calculation can be done for unequal sample sizes, provided that the relative
sizes are specified, for exampler1 � 2r2 � 2r3 � 2r4.

Unless more information is desired on some treatments than on others, or unless costs
or variances are unequal, it is generally advisable to select equal sample sizes whenever
possible. Choosing equal sample sizes produces two benefits: Confidence intervals for pair-
wise comparisons are all the same length, which makes them easier to compare, and the
multiple comparison and analysis of variance procedures are less sensitive to an incorrect
assumption of normality of the error variables.

Quite often, the sample size calculation will reveal that the required number of obser-
vations is too large to meet the budget or the time restrictions of the experiment. There are
several possible remedies:

(a) Refine the experimental procedure to reduce the likely size ofmsE,

(b) Omit one or more treatments,

(c) Allow longer confidence intervals,

(d) Allow a lower confidence level.
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Table 4.2 Sample SAS program for the battery experiment

Line SAS Program
1 DATA BATTERY;
2 INPUT TYPEBAT LIFEUC ORDER;
3 LINES;
4 1 611 1
5 2 923 2
6 1 537 3
7 : : :
8 3 413 16
9 ;
10 PROC PRINT;
11 ;
12 PROC PLOT;
13 PLOT LIFEUC*TYPEBAT
14 / VPOS=19 HPOS=50;
15 ;
16 PROC GLM;
17 CLASSES TYPEBAT;
18 MODEL LIFEUC = TYPEBAT;
19 CONTRAST ’BRAND’
20 TYPEBAT 1 -1 1 -1;
21 ESTIMATE ’DUTY’
22 TYPEBAT 1 1 -1 -1 /DIVISOR = 2;
23 ESTIMATE ’BRAND’
24 TYPEBAT 1 -1 1 -1 /DIVISOR = 2;
25 ESTIMATE ’INTERACTN’
26 TYPEBAT 1 -1 -1 1 /DIVISOR = 2;
27 MEANS TYPEBAT / TUKEY CLDIFF ALPHA=0.01;

4.6 Using SAS Software

In this section we illustrate how to use the SAS software to generate information for con-
fidence intervals and hypothesis tests for individual contrasts and means and also for the
multiple comparison procedures. We use the data from the battery experiment of Section
2.5.2 (page 26). The treatment factor is type of batteryTYPEBAT, the response variable is
the life per unit costLIFEUC, and the one-way analysis of variance model (3.3.1) was used
for the analysis.

A sample SAS program to analyze the data is given in Table 4.2. Line numbers have
been included for the sake of reference but are not part of the SAS program. A data set is
created by lines 1–9, line 10 causes the data to be printed, lines 12–14 generate a plot of the
data, and lines 16–18 generate the analysis of variance table shown in the top of Table 4.3.

4.6.1 Inferences on Individual Contrasts

The SAS statementsESTIMATE andCONTRAST, part of theGLM procedure, are used for
making inferences concerning specific contrasts. TheESTIMATE statements (lines 21–26
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Table 4.3 Analysis of variance table and output from the ESTIMATE and CONTRASTS statements

The SAS System
General Linear Models Procedure

Dependent Variable: LIFEUC
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 3 427915.25 142638.42 60.24 0.0001
Error 12 28412.50 2367.71
Corrected Total 15 456327.75

Contrast DF Contrast SS Mean Square F Value Pr > F
BRAND 1 124609.00 124609.00 52.63 0.0001

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
DUTY 251.000000 10.32 0.0001 24.3295516
BRAND -176.500000 -7.25 0.0001 24.3295516
INTERACTN -113.250000 -4.65 0.0006 24.3295516

of Table 4.2) generate information for constructing confidence intervals or conducting
hypothesis tests for individual contrasts.

Each of the threeESTIMATE statements includes a contrast name in single quotes, together
with the name of the factor for which the effects of levels are to be compared, and the
coefficients of the contrast to be estimated. If the contrast is to be divided by a constant, this
is indicated by means of theDIVISOR option. The information generated by these statements
is shown in the bottom half of Table 4.3. The columns show the contrast name, the contrast
estimate�ciyi., the value of the test-statistic for testing the null hypothesis that the contrast
is zero (see (4.3.13) page 76, the correspondingp-value for a two-tailed test, and the standard

error
√

msE(�c2
i /ri) of the estimate. For each of the contrasts shown in Table 4.3, thep-

value is less than 0.0006, indicating that all three contrasts are significantly different from
zero for any choice ofindividual significance levelα∗ greater than 0.0006. The overall and
individual significance levels should be selected prior to analysis. The parameter estimates
and standard errors can be used to construct confidence intervals by hand, using the critical
coefficient for the selected multiple comparison methods (see also Section 4.6.2).

TheCONTRAST statement in lines 19–20 of Table 4.2 generates the information shown in
Table 4.3 that is needed in (4.3.15), page 76, for testing the single null hypothesis that the
brand contrast is zero versus the alternative hypothesis that it is not zero. The “F Value” of
52.63 is the square of the “T for H0” value of−7.25 (up to rounding error) for the brand
contrast generated by theESTIMATE statement, the two tests (4.3.13) and (4.3.15) being
equivalent.
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Table 4.4 Tukey’s method for the battery experiment

The SAS System
General Linear Models Procedure

Tukey’s Studentized Range (HSD) Test for variable: LIFEUC
NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.01 Confidence= 0.99 df= 12 MSE= 2367.708
Critical Value of Studentized Range= 5.502
Minimum Significant Difference= 133.85

Comparisons significant at the 0.01 level are indicated by ’***’.

Simultaneous Simultaneous
Lower Difference Upper

TYPEBAT Confidence Between Confidence
Comparison Limit Means Limit

2 - 1 155.90 289.75 423.60 ***
2 - 4 230.40 364.25 498.10 ***
2 - 3 293.65 427.50 561.35 ***
1 - 4 -59.35 74.50 208.35
1 - 3 3.90 137.75 271.60 ***
4 - 3 -70.60 63.25 197.10

4.6.2 Multiple Comparisons

TheMEANS statement (line 27) in theGLM procedure in Table 4.2 can be used to generate the
observed meansyi. for each level of a factor. Inclusion of theTUKEY option causes the SAS
software to use the Tukey method to compare the effects of each pair of levels. The option
CLDIFF asks that the results of Tukey’s method be presented in the form of confidence
intervals. The optionALPHA=0.01 indicates that 99% simultaneous confidence intervals are
to be generated. The results generated by SAS software are given in Table 4.4. The three
asterisks highlight those intervals that do not contain zero.

In order to show the output for Tukey’s method when the sample sizes are unequal, we
deleted lines 4 and 5 from the SAS program in Table 4.2, leaving battery types 1 and 2 with
only 3 observations each and battery types 3 and 4 with the original 4 observations each. The
output is shown in Table 4.5. We see that no value for the minimum significant difference
is given. This is because the intervals are of different lengths depending upon the numbers
of observations on the treatments involved in the intervals. Otherwise, the output is similar
to the equal-observation case.

Other methods of multiple comparisons can also be requested as options in theMEANS
statement of theGLM procedure. For example, the optionsBON andSCHEFFE request all
pairwise comparisons using the methods of Bonferroni and Scheffé, respectively. The option
DUNNETT(’1’) requests Dunnett’s 2-sided method of comparing all treatments with a control,
specifying level 1 as the control treatment. Any other level can be specified as the control by
changing “(’1’)” to the specified level. The optionDUNNETTU(’1’) requests upper bounds for
the treatment-versus-control contrastsτi−τ1 by Dunnett’s method and is useful for showing
which treatments have a larger effect than the control treatment (coded 1). Similarly, the
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Table 4.5 Tukey’s method for the battery experiment, unequal sample sizes

The SAS System
General Linear Models Procedure

Tukey’s Studentized Range (HSD) Test for variable: LIFEUC
NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.01 Confidence= 0.99 df= 10 MSE= 2104.408
Critical Value of Studentized Range= 5.769

Comparisons significant at the 0.01 level are indicated by ’***’.

Simultaneous Simultaneous
Lower Difference Upper

TYPEBAT Confidence Between Confidence
Comparison Limit Means Limit

2 - 1 129.55 282.33 435.12 ***
2 - 4 200.50 343.42 486.33 ***
2 - 3 263.75 406.67 549.58 ***
1 - 4 -81.83 61.08 204.00
1 - 3 -18.58 124.33 267.25
4 - 3 -69.06 63.25 195.56

optionDUNNETTL(’1’) provides lower bounds useful for showing which treatments have a
smaller effect than the control treatment (coded 1).

Hsu’s method of multiple comparisons with the best can be executed using a SAS macro
that is available in the SAS/STAT® sample library starting with release 6.12. The method
is also implemented in the SAS JMP® software beginning in version 2 under the “Fit Y by
X” platform and in the Minitab software beginning in version 8 using theMCB subcommand
of theONEWAY command.

SAS does not give confidence bounds forσ 2, but the value ofmsE is, of course, available
from the analysis of variance table.

Exercises

1. Buoyancy experiment
Consider conducting an experiment to investigate the question, “Is the buoyancy of an
object in water affected by different concentrations of salt in the water?”

(a) Complete steps (a)–(d) of the checklist (page 7) in detail. Specify any preplanned
contrasts or functions that should be estimated. State, with reasons, which, if any,
methods of multiple comparisons will be used.

(b) Run a small pilot experiment to obtain a preliminary estimate ofσ 2.

(c) Finish the checklist.

2. Cotton-spinning experiment, continued
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For the cotton-spinning experiment of Section 2.3, page 14, identify any contrasts or
functions that you think might be interesting to estimate. For any contrasts that you
have selected, list the corresponding contrast coefficients.

3. Pedestrian light experiment, continued
The pedestrian light experiment was described in Exercise 14 of Chapter 3, and the data
were given in Table 3.12, page 63.
(a) Test the hypothesis that pushing the button does not lessen the waiting time for the

“walk” signal; that is, test the null hypothesis

H0 : τ0 − (τ1 + τ2 + τ3)/3 � 0

against the one-sided alternative hypothesis

HA : τ0 − (τ1 + τ2 + τ3)/3 < 0 .

(b) Using “no pushes of the button” as the control treatment, give a set of simultaneous
95% confidence intervals for the treatment-versus-control contrasts. State your
conclusions in a form that can be understood by all users of the pedestrian light.

4. Reaction time experiment
(L. Cai, T. Li, Nishant, and A. van der Kouwe, 1996)
The experiment was run to compare the effects of auditory and visual cues on speed of
response of a human subject. A personal computer was used to present a “stimulus” to
a subject, and the reaction time required for the subject to press a key was monitored.
The subject was warned that the stimulus was forthcoming by means of an auditory or
a visual cue. The experimenters were interested in the effects on the subjects’ reaction
time of the auditory and visual cues and also in different elapsed times between cue and
stimulus. Thus, there were two different treatment factors: “cue stimulus” at two levels
“auditory” or “visual,” and “elapsed time between cue and stimulus” at three levels
“five,” “ten,” or “fifteen” seconds. This gave a total of six treatment combinations,
which can be coded as

1 = auditory, 5 seconds 4 = visual, 5 seconds
2 = auditory, 10 seconds 5 = visual, 10 seconds
3 = auditory, 15 seconds 6 = visual, 15 seconds

The results of a pilot experiment, involving only one subject, are shown in Table 4.6.
The reaction times were measured by the computer and are shown in seconds. The order
of observation is shown in parentheses.
(a) Identify a set of contrasts that you would find particularly interesting in this ex-

periment. (Hint: A comparison between the auditory treatments and the visual
treatments might be of interest). These are your preplanned contrasts.

(b) Plot the data. What does the plot suggest about the treatments?

(c) Test the hypothesis that the treatments do not have different effects on the reaction
time against the alternative hypothesis that they do have different effects.
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Table 4.6 Reaction times, in seconds, for the reaction time
experiment—(order of collection in parentheses)

Treatments
1 2 3 4 5 6

0.204 (9) 0.167 (3) 0.202 (13) 0.257 (7) 0.283 (6) 0.256 (1)
0.170 (10) 0.182 (5) 0.198 (16) 0.279 (14) 0.235 (8) 0.281 (2)
0.181 (18) 0.187 (12) 0.236 (17) 0.269 (15) 0.260 (11) 0.258 (4)

(d) Calculate a set of simultaneous 90% confidence intervals for your preplanned
contrasts, using a method or methods of your choice. State your conclusions.

(e) Ignoring the previous parts of this exercise, use Hsu’s method of multiple com-
parisons with the best to determine the best/worst treatment or treatments. Define
“best” to be the treatment that produces the quickest response (that is, the smallest
value of the response variable).

5. Trout experiment, continued
Exercise 15 of Chapter 3 (page 63) concerns a study of the effects of four levels of
sulfamerazine (0, 5, 10, 15 grams per 100 lb of fish) on the hemoglobin content of
trout blood. An analysis of variance test rejected the hypothesis that the four treatment
effects are the same at significance levelα � 0.01.
(a) Compare the four treatments using Tukey’s method of pairwise comparisons and

a 99% overall confidence level.

(b) Compare the effect of no sulfamerazine on the hemoglobin content of trout blood
with the average effect of the other three levels. The overall confidence level of all
intervals in parts (a) and (b) should be at least 98%.

6. Battery experiment, continued
In Example 4.4.4 (page 87), Tukey’s method is used to obtain a set of 95% simultaneous
confidence intervals for the pairwise differencesτi − τs . Verify that this method gives
shorter confidence intervals than would either of the Bonferroni or Scheffé methods
(for v � 4 andr � 4).

7. Soap experiment, continued
The soap experiment was described in Section 2.5.1, page 22, and an analysis was given
in Section 3.7.2, page 54.
(a) Suppose that the experimenter had been interested only in the contrastτ1 − 1

2(τ2 +
τ3), which compares the weight loss for the regular soap with the average weight
loss for the other two soaps. Calculate a confidence interval for this single contrast.

(b) Test the hypothesis that the regular soap has the same average weight loss as the
average of the other two soaps. Do this via your confidence interval in part (a) and
also via (4.3.13) and (4.3.15).

(c) In Example 4.4.5 (page 89), Dunnett’s method was used for simultaneous 99%
confidence intervals for two preplanned treatment-versus-control contrasts. Would
either or both of the Bonferroni and Tukey methods have given shorter intervals?
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(d) Which method would be the best if all pairwise differences are required? Calculate
a set of simultaneous 99% confidence intervals for all of the pairwise differences.
Why are the intervals longer than those in part (c)?

8. Trout experiment, continued
(a) For the trout experiment in Exercise 15 of Chapter 3 (see page 63), test the hy-

potheses that the linear and quadratic trends in hemoglobin content of trout blood
due to the amount of sulfamerazine added to the diet is negligible. State the overall
significance level of your tests.

(b) Regarding the absence of sulfamerazine in the diet as the control treatment, calcu-
late simultaneous 99% confidence intervals for the three treatment-versus-control
comparisons. Which method did you use and why?

(c) What is the overall confidence level of the intervals in part (b) together with those
in Exercise 5? Is there a better strategy than using three different procedures for
the three sets of intervals? Explain.

9. Battery experiment, continued
Suppose the battery experiment of Section 2.5.2 (page 26) is to be repeated. The ex-
periment involved four treatments, and the error standard deviation is estimated from
that experiment to be about 48.66 minutes per dollar (minutes/dollar).
(a) Calculate a 90% upper confidence limit for the error varianceσ 2.

(b) How large should the sample sizes be in the new experiment if Tukey’s method
of pairwise comparisons is to be used and it is desired to obtain a set of 95%
simultaneous confidence intervals of length at most 100 minutes per dollar?

(c) How large should the sample sizes be in the new experiment if Scheffé’s method
is to be used to obtain a set of 95% simultaneous confidence intervals for various
contrasts and if the confidence interval for the duty contrast is to be of length at
most 100 minutes per dollar?

10. Trout experiment, continued
Consider again the trout experiment in Exercise 15 of Chapter 3.

(a) Suppose the experiment were to be repeated. Suggest the largest likely value for
the error mean squaremsE.

(b) How many observations should be taken on each treatment so that the length of each
interval in a set of simultaneous 95% confidence intervals for pairwise comparisons
should be at most 2 grams per 100 ml?

11. Pedestrian light experiment, continued
(a) Suppose that you are planning to conduct an experiment similar to the pedestrian

light experiment (Exercise 14 of Chapter 3) at a pedestrian crossing of your choos-
ing. Selectv � 4 levels for the treatment factor “number of pushes,” including the
level “no pushes.” Give reasons for your selection.

(b) Using “no pushes” as the control treatment, write down the formula for a set of
95% simultaneous confidence intervals for treatment-versus-control contrasts.



Exercises 101

(c) How many observations would you need to ensure that your treatment-versus-
control confidence intervals are of length less than 0.1 seconds? What value are
you going to use formsE and why?

(d) If you had selectedv � 6 levels of the treatment factor instead ofv � 4 levels,
would you have required more observations per treatment or fewer or the same
number?
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5 Checking Model Assumptions

5.1 Introduction
5.2 Strategy for Checking Model Assumptions
5.3 Checking the Fit of the Model
5.4 Checking for Outliers
5.5 Checking Independence of the Error Terms
5.6 Checking the Equal Variance Assumption
5.7 Checking the Normality Assumption
5.8 Using SAS Software
Exercises

5.1 Introduction

Throughout the two previous chapters, we discussed experiments whose data could be
described by the one-way analysis of variance model (3.3.1), that is,

Yit � µ+ τi + εit ,

εit ∼ N (0, σ 2) ,

εit
′s are mutually independent,

t � 1, . . . , ri , i � 1, . . . , v .

This model implies that the response variablesYit are mutually independent and have a
normal distribution with meanµ + τi and varianceσ 2, that is,Yit ∼ N (µ + τi, σ

2). For
a given experiment, the model is selected in step (f) of the checklist using any available
knowledge about the experimental situation, including the anticipated major sources of
variation, the measurements to be made, the type of experimental design selected, and the
results of any pilot experiment. However, it is not until the data have been collected that
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the adequacy of the model can be checked. Even if a pilot experiment has been used to
help select the model, it is still important to check that the chosen model is a reasonable
description of the data arising from the main experiment.

Methods of checking the model assumptions form the subject of this chapter, together
with some indications of how to proceed if the assumptions are not valid. We begin by
presenting a general strategy, including the order in which model assumptions should be
checked. For checking model assumptions, we rely heavily on residual plots. We do so
because while examination of residual plots is more subjective than would be testing for
model lack-of-fit, the plots are often more informative about the nature of the problem, the
consequences, and the corrective action.

5.2 Strategy for Checking Model Assumptions

In this section we discuss strategy and introduce the notions of residuals and residual plots. A
good strategy for checking the assumptions about the model is to use the following sequence
of checks.

• Check the form of the model—are the mean responses for the treatments adequately
described byE(Yit ) � µ+ τi , i � 1, . . . , v?

• Check for outliers—are there any unusual observations (outliers)?

• Check for independence—do the error variablesεit appear to be independent?

• Check for constant variance—do the error variablesεit have similar variances for each
treatment?

• Check for normality—do the error variablesεit appear to be a random sample from a
normal distribution?

For all of the fixed-effects models considered in this book, these same assumptions should be
checked, except thatE(Yit ) differs from model to model. The assumptions of independence,
equal variance, and normality are the error assumptions mentioned in Chapter 3.

5.2.1 Residuals

The assumptions on the model involve the error variables,εit � Yit − E(Yit ), and can be
checked by examination of theresiduals. The it th residualêit is defined as the observed
value ofYit − Ŷit , whereŶit is the least squares estimator ofE[Yit ], that is,

êit � yit − ŷit .

For the one-way analysis of variance model (3.3.1),E[Yit ] � µ+τi , so the (it)th residual
is

êit � yit − (µ̂+ τ̂i) � yit − yi. .
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Table 5.1 Residuals and standardized residuals for the trout
experiment

Treatment Residuals
1 −0.50 0.60 −1.70 1.20 −0.20

0.60 1.40 0.20 −1.40 −0.20
2 0.57 −0.93 1.07 −0.03 1.37

2.57 −2.23 −2.93 −0.73 1.27
3 1.37 −0.93 1.57 −0.33 1.67

0.07 −0.23 −0.93 −1.23 −1.03
4 0.61 0.61 −1.49 −0.89 0.61

1.51 0.01 −0.09 0.61 −1.49
Treatment Standardized Residuals

1 −0.42 0.50 −1.41 1.00 −0.17
0.50 1.16 0.17 −1.16 −0.17

2 0.47 −0.77 0.89 −0.02 1.14
2.14 −1.85 −2.43 −0.61 1.06

3 1.14 −0.77 1.30 −0.27 1.39
0.06 −0.19 −0.77 −1.02 −0.86

4 0.51 0.51 −1.24 −0.74 0.51
1.25 0.01 −0.07 0.51 −1.24

We prefer to work with thestandardized residuals rather than the residuals them-
selves, since standardization facilitates the identification of outliers. The standardization
is achieved by dividing the residuals by their standard deviation, that is, by

√
ssE/(n− 1).

The standardized residuals,

zit � êit√
ssE/(n− 1)

,

then have sample variance equal to 1.0.
If the assumptions on the model are correct, the standardized error variablesεit /σ

are independently distributed with aN (0,1) distribution, so the observed valueseit /σ �
(yit − (µ+ τi))/σ would constitute independent observations from a standard normal dis-
tribution. Although the standardized residuals are dependent and involve estimates of both
eit andσ , their behavior should be similar. Consequently, methods for evaluating the model
assumptions using the standardized residuals look for deviations from patterns that would
be expected of independent observations from a standard normal distribution.

5.2.2 Residual Plots

A residual plot is a plot of the standardized residualszit against the levels of another
variable, the choice of which depends on the assumption being checked. In Figure 5.1, we
show a plot of the standardized residuals against the levels of the treatment factor for the
trout experiment. Plots like this are useful for evaluating the assumption of constant error
variance as well as the adequacy of the model.
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Table 5.2 Data for the trout experiment

Code Hemoglobin (grams per 100 ml) y i.
1 6.7 7.8 5.5 8.4 7.0 7.8 8.6 7.4 5.8 7.0 7.20
2 9.9 8.4 10.4 9.3 10.7 11.9 7.1 6.4 8.6 10.6 9.33
3 10.4 8.1 10.6 8.7 10.7 9.1 8.8 8.1 7.8 8.0 9.03
4 9.3 9.3 7.2 7.8 9.3 10.2 8.7 8.6 9.3 7.2 8.69

Source: Gutsell, J. S. (1951). Copyright © 1951 International Biometric Society.
Reprinted with permission.

Example 5.2.1 Constructing a residual plot: trout experiment

The trout experiment was described in Exercise 15 of Chapter 3. There was one treatment
factor (grams of sulfamerazine per 100 lb of fish) with four levels coded 1, 2, 3, 4, each
observedr � 10 times. The response variable was grams of hemoglobin per 100 ml of
trout blood. Then � 40 data values are reproduced in Table 5.2 together with the treatment
means.

Using the one-way analysis of variance model (3.3.1), it can be verified thatssE � 56.471.
The residualŝeit � yit − yi. and the standardized residualszit � êit /

√
ssE/(n− 1) are

shown in Table 5.1. For example, the observationy11 � 6.7 yields the residual

ê11 � 6.7 − 7.2 � −0.5

and the standardized residual

z11 � −0.5/
√

56.471/39 � −0.42

to two decimal places.
A plot of the standardized residuals against treatments is shown in Figure 5.1. The

residuals sum to zero for each treatment since�t (yit − yi.) � 0 for eachi � 1, . . . , v. The
standardized residuals seem fairly well scattered around zero, although the spread of the

Figure 5.1
Plot of standardized
residuals for the trout

experiment
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residuals for treatment 2 seems a little larger than the spread for the other three treatments.
This could be interpreted as a sign of unequal variances of the error variables or that the data
values having standardized residuals 2.14 and−2.43 are outliers, or it could be attributed
to chance variation. Methods for checking for outliers and equality of variances will be
discussed in Sections 5.4 and 5.6, respectively. ✷

5.3 Checking the Fit of the Model

The first assumption to be checked is the assumption that the modelE(Yit ) for the mean
response is correct. One purpose of running a pilot experiment is to choose a model that
is a reasonable description of the data. If this is done, the model assumption checks for
the main experiment should show no problems. If the model for mean response does not
adequately fit the data, then there is said to be modellack of fit. If this occurs and if the model
is changed accordingly, then any stated confidence levels and significance levels will only
be approximate. This should be taken into account when decisions are to be made based on
the results of the experiment.

In general, the fit of the model is checked by plotting the standardized residuals versus
the levels of each independent variable (treatment factor, block factor, or covariate) included
in the model. Lack of fit is indicated if the residuals exhibit a nonrandom pattern about zero
in any such plot, being too often positive for some levels of the independent variable and
too often negative for others.

For model (3.3.1), the only independent variable included in the model is the treatment
factor. Since the residuals sum to zero for each level of the treatment factor, lack of fit
would only be detected if there were a number of unusually large or small observations.
However, lack of fit can also be detected by plotting the standardized residuals against the
levels of factors that were omitted from the model. For example, for the trout experiment, if
the standardized residuals were plotted against the age of the corresponding fish and if the
plot were to show a pattern, then it would indicate that age should have been included in the
model as a covariate. A similar idea is discussed in Section 5.5 with respect to checking for
independence.

5.4 Checking for Outliers

An outlier is an observation that is much larger or much smaller than expected. This is
indicated by a residual that has an unusually large positive or negative value. Outliers
are fairly easy to detect from a plot of the standardized residuals versus the levels of the
treatment factors. Any outlier should be investigated. Sometimes such investigation will
reveal an error in recording the data, and this can be corrected. Otherwise, outliers may be
due to the error variables not being normally distributed, or having different variances, or
an incorrect specification of the model.

If all of the model assumptions hold, including normality, then approximately 68% of
the standardized residuals should be between−1 and+1, approximately 95% between−2
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Figure 5.2
Original residual plot
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and+2, and approximately 99.7% between−3 and+3. If there are more outliers than
expected under normality, then the true confidence levels are lower than stated and the true
significance levels are higher.

Example 5.4.1 Checking for outliers: battery experiment

In the battery experiment of Example 2.5.2 (page 26), four observations on battery life per
unit cost were collected for each of four battery types. Figure 5.2 shows the standardized
residuals plotted versus battery type for the data as originally entered into the computer for
analysis using model (3.3.1). This plot shows two related anomalies. There is one apparent
outlier for battery type 2, the residual value being−2.98. Also, all of the standardized
residuals for the other three battery types are less than one in magnitude. This is many more
than the 68% expected.

An investigation of the outlier revealed a data entry error for the corresponding
observation—a life length of 473 minutes was typed, but the recording sheet for the ex-
periment showed the correct value to be 773 minutes. The unit cost for battery type 2 was
$0.935 per battery, yielding the erroneous value of 506 minutes per dollar for the life per
unit cost, rather than the correct value of 827. After correcting the error, the model was fitted
again and the standardized residuals were replotted, as shown in Figure 5.3.

Observe how correcting the single data entry error corrects both problems observed in
Figure 5.2. Not only is there no outlier, but the distribution of the 16 standardized residuals
about zero is as one might anticipate for independent observations from a standard normal
distribution—about a third of the standardized residuals exceed one in magnitude, and all
are less than two in magnitude. The two anomalies are related, since correcting the data
entry error makesssE smaller and the standardized residuals correspondingly larger.✷

For an outlier like that shown in Figure 5.2, the most probable cause of the problem is
a measurement error, a recording error, or a transcribing error. When an outlier is detected,
the experimenter should look at the original recording sheet to see whether the original data
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Figure 5.3
Residual plot after

data correction for the
battery experiment
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value has been copied incorrectly at some stage. If the error can be found, then it can be
corrected. When no obvious cause can be found for an outlier, the data value should not
automatically be discarded, since it may be an indication of an occasional erratic behavior
of a treatment. For example, had it not been due to a typographical error, the outlier for
battery type 2 in the previous example might have been due to a larger variability in the
responses for battery type 2.

The experimenter has to decide whether to include the unusual value in the analysis or
whether to omit it. First, the data should be reanalyzed without the outlying value. If the
conclusions of the experiment remain the same, then the outlier can safely be left in the
analysis. If the conclusions change dramatically, then the outlier is said to beinfluential,
and the experimenter must make a judgment as to whether the outlying observation is likely
to be an experimental error or whether unusual observations do occur from time to time.
If the experimenter decides on the former, then the analysis should be reported without
the outlying observation. If the experimenter decides on the latter, then the model is not
adequate to describe the experimental situation, and a more complicated model would be
needed.

5.5 Checking Independence of the Error Terms

Since the checks for the constant variance and normality assumptions assume that the error
terms are independent, a check for independence should be made next. The most likely
cause of nonindependence in the error variables is the similarity of experimental units close
together in time or space. The independence assumption is checked by plotting the stan-
dardized residuals against the order in which the corresponding observations were collected
and against any spatial arrangement of the corresponding experimental units. If the inde-
pendence assumption is satisfied, the residuals should be randomly scattered around zero
with no discernible pattern. Such is the case for Figure 5.4 for the battery experiment. If
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Figure 5.4
Residual plot for the
battery experiment
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the plot were to exhibit a strong pattern, then this would indicate a serious violation of the
independence assumption, as illustrated in the following example.

Example 5.5.1 Checking independence: balloon experiment

The experimenter who ran the balloon experiment in Exercise 12 of Chapter 3 was concerned
about lack of independence of the observations. She had used a single subject to blow up all
the balloons in the experiment, and the subject had become an expert balloon blower before
the experiment was finished! Having fitted the one-way analysis of variance model (3.3.1) to
the data (Table 3.11), she plotted the standardized residuals against the time order in which
the balloons were inflated. The plot is shown in Figure 5.5. There appears to be a strong
downward drift in the residuals as time progresses. The observations are clearlydependent.

Figure 5.5
Residual plot for the
balloon experiment
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✷

If an analysis is conducted under the assumptions of model (3.3.1) when, in fact, the
error variables are dependent, the true significance levels of hypothesis tests can be much
higher than stated and the true confidence levels and powers of tests can be much lower than
stated. The problem of dependent errors can be difficult to correct. If there is a clear trend
in the residual plot, such as the linear trend in Figure 5.5, it may be possible to add terms
into the model to represent a time or space effect. For example, a more complex model that
might be adequate for the balloon experiment is

Yit � µ+ τi + γ xit + εit

εit ∼ N (0, σ 2)

εit
′s are mutually independent

t � 1,2, . . . , ri ; i � 1, . . . , v ,

where the variablexit denotes the time at which the observation was taken andγ is a linear
time trend parameter that must be estimated. Such a model is called ananalysis of covariance
model and will be studied in Chapter 9. The assumptions for analysis of covariance models
are checked using the same types of plots as discussed in this chapter. In addition, the
standardized residuals should also be plotted against the values ofxit .

Had the experimenter in the balloon experiment anticipated a run order effect, she could
have selected an analysis of covariance model prior to the experiment. Alternatively, she
could have grouped the observations into blocks of, say, eight observations. Notice that each
group of eight residuals in Figure 5.5 looks somewhat randomly scattered. As mentioned
earlier in this chapter, when the model is changed after the data have been examined, then
stated confidence levels and significance levels using that same data are inaccurate.

If a formal test of independence is desired, the most commonly used test is that of Durbin
and Watson (1951) for time-series data (see Neter, Kutner, Nachtsheim, and Wasserman,
1996, pages 504–510).

5.6 Checking the Equal Variance Assumption

If the independence assumption appears to be satisfied, then the equal-variance assumption
should be checked. Studies have shown that if the sample sizesr1, . . . , rv are chosen to
be equal, then unless one variance is considerably larger than the others, the significance
level of hypothesis tests and confidence levels of the associated confidence intervals remain
close to the stated values. However, if the sample sizes are unequal, and if the treatment
factor levels which are more highly variable in response happen to have been observed fewer
times (i.e. if smallerri coincide with larger Var(εit ) � σ 2

i ), then the statistical procedures
are generally quite liberal, and the experimenter has a greater chance of making a Type I
error in testing than anticipated, and also, the true confidence level of a confidence interval
is lower than intended. On the other hand, if the largeri coincide with largeσ 2

i , then the
procedures are conservative (significance levels are lower than stated and confidence levels
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Figure 5.6
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are higher). Thus, unless there is good knowledge of which treatment factor levels are the
more variable, an argument can be made thatthe sample sizes should be chosen to be equal.

5.6.1 Detection of Unequal Variances

The most common pattern of nonconstant variance is that in which the error variance in-
creases as the mean response increases. This situation is suggested when the plot of the
standardized residuals versus the fitted values resembles a megaphone in shape, as in Fig-
ure 5.6. In such a case, one can generally find a transformation of the data, known as a
variance-stabilizing transformation, which will correct the problem (see Section 5.6.2).

If the residual plot indicates unequal variances but not the pattern of Figure 5.6 (or its
mirror image), then a variance-stabilizing transformation is generally not available. Ap-
proximate and somewhat less powerful methods of data analysis such as those discussed in
Section 5.6.3 must then be applied.

An unbiased estimate of the error varianceσ 2
i for theith treatment is the sample variance

of the residuals for theith treatment, namely

s2
i � 1

ri − 1

ri∑
t�1

ê2
it � 1

ri − 1

ri∑
t�1

(yit − µ̂− τ̂i)
2 (5.6.1)

� 1

ri − 1

ri∑
t�1

(yit − yi.)
2 .

There do exist tests for the equality of variances, but they tend to have low power unless
there are large numbers of observations on each treatment factor level. Also, the tests tend
to be very sensitive to nonnormality. (The interested reader is referred to Neter, Kutner,
Nachtsheim, and Wasserman, 1996, page 763).

A rule of thumb that we shall apply is that the usual analysis of varianceF -test and the
methods of multiple comparisons discussed in Chapter 4 are appropriate, provided that the
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ratio of the largest of thev treatment variance estimates to the smallest,s2
max/s

2
min, does

not exceed three. The rule of thumb is suggested by simulation studies in which the true
variancesσ 2

i are specified. Since these are unknown in practice, we are basing our rule of
thumb on the estimatess2

i of the variances. Be aware, however, thatit is possible for the ratio
of extreme variance estimates s2

max/s
2
min to exceed three, even when the model assumptions

are correct.

Example 5.6.1 Comparing variances: trout experiment

Figure 5.1 (page 106) shows a plot of the standardized residuals against the levels of the
treatment factor for the trout experiment. The plot suggests that the variance of the error
variables for treatment 2 might be larger than the variances for the other treatments. Using
the data in Table 3.13, we obtain

i 1 2 3 4

yi. 7.20 9.33 9.03 8.69

s2
i 1.04 2.95 1.29 1.00

sos2
max/s

2
min � 2.95, which satisfies our rule of thumb, but only just. Both the standard anal-

ysis using model (3.3.1) and an approximate analysis that does not require equal variances
will be discussed in Example 5.6.3. ✷

5.6.2 Data Transformations to Equalize Variances

Finding a transformation of the data to equalize the variances of the error variables involves
finding some functionh(yit ) of the data so that the model

h(Yit ) � µ∗ + τ ∗
i + ε∗

it

holds andε∗
it ∼ N (0, σ 2) and theε∗

it ’s are mutually independent for allt � 1, . . . , ri
andi � 1, . . . , v. An appropriate transformation can generally be found if there is a clear
relationship between the error varianceσ 2

i � Var(εit ) and the mean responseE[Yit ] � µ+τi ,
for i � 1, . . . , v. If the variance and the mean increase together, as suggested by the
megaphone-shaped residual plot in Figure 5.6, or if one increases as the other decreases,
then the relationship betweenσ 2

i andµ+ τi is often of the form

σ 2
i � k(µ+ τi)

q , (5.6.2)

wherek andq are constants. In this case, the functionh(yit ) should be chosen to be

h(yit ) �


(yit )

1−(q/2) if q 	� 2,

ln(yit ) if q � 2 and allyit ’s are nonzero,

ln(yit + 1) if q � 2 and someyit ’s are zero.

(5.6.3)

Here “ln” denotes the natural logarithm, which is the logarithm to the basee. Usually, the
value ofq is not known, but a reasonable approximation can be obtained empirically as
follows. Substituting the least squares estimates for the parameters into equation (5.6.2) and
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taking logs of both sides gives

ln(s2
i ) � ln(k) + q(ln(yi.)) .

Therefore, the slope of the line obtained by plotting ln(s2
i ) against ln(yi.) gives an estimate

for q. This will be illustrated in Example 5.6.2.
The value ofq is sometimes suggested by theoretical considerations. For example, if

the normal distribution assumed in the model is actually an approximation to the Poisson
distribution, then the variance would be equal to the mean, andq � 1. The square-root trans-
formationh(yit ) � (yit )1/2 would then be appropriate. The binomial distribution provides
another commonly occurring case for which an appropriate transformation can be obtained
theoretically. If eachYit has a binomial distribution with meanmp and variancemp(1−p),
then a variance-stabilizing transformation is

h(yit ) � sin−1
√
yit /m � arcsin

(√
yit /m

)
.

When a transformation is found that equalizes the variances, then it is necessary to check
or recheck the other model assumptions, since a transformation that cures one problem could
cause others. If there are no problems with the other model assumptions, then analysis can
proceed using the techniques of the previous two chapters, but using the transformed data
h(yit ).

Example 5.6.2 Choosing a transformation: battery life experiment

In Section 2.5.2, the response variable considered for the battery experiment was “battery life
per unit cost,” and a plot of the residuals versus the fitted values looks similar to Figure 5.3
and shows fairly constant error variances.

Suppose, however, that the response variable of interest had been “battery life” regardless
of cost. The corresponding data are given in Table 5.3. The battery types are

1 = alkaline, name brand
2 = alkaline, store brand
3 = heavy duty, name brand
4 = heavy duty, store brand

Figure 5.7 shows a plot of the standardized residuals versus the fitted values. Variability
seems to be increasing modestly with mean response, suggesting that a transformation
can be found to stabilize the error variance. The ratio of extreme variance estimates is
s2

max/s
2
min � s2

2/s
2
3 � 3151.70/557.43 ≈ 5.65. Hence, based on the rule of thumb, a

variance stabilizing transformation should be used. Using the treatment sample means and

Table 5.3 Data for the battery lifetime experiment

Battery Lifetime (minutes) y i. s2i
1 602 529 534 585 562.50 1333.71
2 863 743 773 840 804.75 3151.70
3 232 255 200 215 225.50 557.43
4 235 282 238 228 245.75 601.72
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Figure 5.7
Residual plot for the
battery lifetime data
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variances from Table 5.3, we have

i yi. ln(yi.) s2
i ln(s2

i )

1 562.50 6.3324 1333.71 7.1957

2 804.75 6.6905 3151.70 8.0557

3 225.50 5.4183 557.43 6.3233

4 245.75 5.5043 601.72 6.3998

Figure 5.8 shows a plot of ln(s2
i ) against ln(yi.). This plot is nearly linear, so the slope

will provide an estimate ofq in (5.6.2). A line can be drawn by eye or by the regression
methods of Chapter 8. Both methods give a slope approximately equal toq � 1.25. From
equation (5.6.3) a variance-stabilizing transformation is

h(yit ) � (yit )
0.375 .

Since (yit )0.375 is close to (yit )0.5, and since the square root of the data values is perhaps more
meaningful than (yit )0.375, we will try taking the square root transformation. The square roots
of the data are shown in Table 5.4.

The transformation has stabilized the variances considerably, as evidenced bys2
max/s

2
min �

0.982/0.587≈ 1.67. Checks of the other model assumptions for the transformed data also
reveal no severe problems. The analysis can now proceed using the transformed data. The
stated significance level and confidence levels will now be approximate, since the model has

Table 5.4 Transformed data
√
yit for the battery lifetime experiment

Brand xit � h(yit ) � √
yit x i. s2i

1 24.536 23.000 23.108 24.187 23.708 0.592
2 29.377 27.258 27.803 28.983 28.355 0.982
3 15.232 15.969 14.142 14.663 15.001 0.614
4 15.330 16.793 15.427 15.100 15.662 0.587



116 Chapter 5 Checking Model Assumptions

been changed based on the data. For the transformed data,msE � 0.6936. Using Tukey’s
method of multiple comparisons to compare the lives of the four battery types (regardless
of cost) at an overall confidence level of 99%, the minimum significant difference obtained
from equation (4.4.28) is

msd � q4,12,0.01

√
msE/4 � 5.50

√
0.6936/4 � 2.29.

Comparingmsd with the differences in the sample meansxi. of the transformed data in
Table 5.4, we can conclude that at an overall 99% level of confidence, all pairwise differences
are significantly different from zero except for the comparison of battery types 3 and 4.
Furthermore, it is reasonable to conclude that type 2 (alkaline, store brand) is best, followed
by type 1 (alkaline, name brand). However, any more detailed interpretation of the results
is muddled by use of the transformation, since the comparisons use mean values of

√
life.

A more natural transformation, which also provided approximately equal error variances,
was used in Section 2.5.2. There, the response variable was taken to be “life per unit cost,”
and confidence intervals were able to be calculated in meaningful units. ✷

5.6.3 Analysis with Unequal Error Variances

An alternative to transforming the data to equalize the error variances is to use a method of
data analysis that is designed for nonconstant variances. Such a method will be presented for
constructing confidence intervals. The method is approximate and tends to be less powerful
than the methods of Chapter 4 with transformed data. However, the original data units are
maintained, and the analysis can be used whether or not a variance-stabilizing transformation
is available.

Without the assumption of equal variances for all treatments, the one-way analysis of
variance model (3.3.1) is

Yit � µ+ τi + εit ,

Figure 5.8
Plot of ln(s2i ) versus
ln(y i.) for the battery
lifetime experiment
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εit ∼ N (0, σ 2
i ) ,

εit
′s are mutually independent,

t � 1, . . . , ri , i � 1, . . . , v.

For this model, each contrast�ciτi in the treatment parameters remains estimable, but the
least squares estimator�ciτ̂i � �ciY i. now has variance Var(�ciY i.) � �c2

i σ
2
i /ri . If we

estimateσ 2
i by s2

i as given in (5.6.1), then

�ciτ̂i −�ciτi√
V̂ar(�ciτ̂i)

has approximately at-distribution withdf degrees of freedom, where

V̂ar(�ciτ̂i) �
∑ c2

i

ri
s2
i and df � (�c2

i s
2
i /ri)

2∑ (c2
i s

2
i /ri )

2

(ri−1)

. (5.6.4)

Then an approximate 100(1−α)% confidence interval for a single treatment contrast�ciτi
is ∑

ciτi ∈
(∑

ci τ̂i ± w

√
V̂ar(�ciτ̂i)

)
, (5.6.5)

wherew � tdf,α/2 and�ciτ̂i � �ciyi., all sums being fromi � 1 toi � v. The formulae for
V̂ar(�ciτ̂i) anddf in (5.6.4), often calledSatterthwaite’s approximation, are due to Smith
(1936), Welch (1938), and Satterthwaite (1946). The approximation is best known for use
in inferences on a pairwise comparisonτh − τi of the effects of two treatments, in which
case, for samples each of sizer, (5.6.4) reduces to

V̂ar(τ̂h − τ̂i) � s2
h

r
+ s2

i

r
and df � (r − 1)(s2

h + s2
i )2

s4
h + s4

i

. (5.6.6)

Satterthwaite’s approach can be extended to multiple comparison procedures by changing the
critical coefficientw appropriately and computing�ciτ̂i anddf separately for each contrast.
For Tukey’s method, for example, the critical coefficient in (5.6.5) iswT � qv,df,α/

√
2.

Simulation studies by Dunnett (1980) have shown this variation on Tukey’s method to be
conservative (trueα smaller than or equal to that stated).

Example 5.6.3 Satterthwaite’s approximation: trout experiment

In Example 5.6.1, it was shown that the ratio of the maximum to the minimum error variance
for the trout experiment satisfies the rule of thumb, but only just. The standardized residuals
are plotted against the fitted values in Figure 5.9. The data for treatment 2 are the most
variable and have the highest mean response, but there is no clear pattern of variability
increasing as the mean response increases. In fact, it can be verified that a plot of ln(s2

i ) against
ln(yi.) is not very close to linear, suggesting that a transformation will not be successful in
stabilizing the variances.

To obtain simultaneous approximate 95% confidence intervals for pairwise comparisons
in the treatment effects by Tukey’s method using Satterthwaite’s approximation, we use
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Figure 5.9
Residual plot for the

trout experiment
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equations (5.6.5) and (5.6.6) withr � 10. The minimum significant difference for pairwise
comparisonτh − τi is

msd � 1√
2
q4,df,0.05

√
s2
h

r
+ s2

i

r
,

the size of which depends upon which pair of treatments is being compared. From
Example 5.6.1, we have

s2
1 � 1.04, s2

2 � 2.95, s2
3 � 1.29, s2

4 � 1.00.

The values of
√

V̂ar(τ̂h − τ̂i) �
√
s2
h/r + s2

i /r are listed in Table 5.5. Comparing the values
of msd with the values ofyh. − yi. in Table 5.5, we can conclude with simultaneous approx-
imate 95% confidence that each of treatments 2, 3, and 4 yields statistically significantly
higher mean response than does treatment 1.

Since s2
max/s

2
min � 2.95, we could accept the rule of thumb and apply Tukey’s

method (4.4.28) for equal variances. The minimum significant difference for each pairwise

Table 5.5 Approximate values for Tukey’s multiple comparisons for
the trout experiment

(h, i )
√
s2h /r + s2i /r df q4,df,0.05 msd yh. − y i.

(2,3) 0.651 15.6 ≈ 16 4.05 1.86 0.30
(2,4) 0.629 14.5 ≈ 15 4.08 1.82 0.64
(2,1) 0.631 14.6 ≈ 15 4.08 1.82 2.13
(3,4) 0.478 17.7 ≈ 18 4.00 1.35 0.34
(3,1) 0.483 17.8 ≈ 18 4.00 1.37 1.83
(4,1) 0.452 18.0 ≈ 18 4.00 1.28 1.49
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comparison would then be

msd � q4,36,0.05

√
msE/10 � 3.82

√
1.5685/10 ≈ 1.51.

Comparing this with the values ofyh. − yi. in Table 5.5, the same conclusion is obtained as
in the analysis using Satterthwaite’s approximation, namely, treatment 1 has significantly
lower mean response than do treatments 2, 3, and 4. The three confidence intervals involving
treatment 2, having length 2(msd), would be slightly wider using Satterthwaite’s approxi-
mation, and the other three confidence intervals would be slightly narrower. Where there is
so little difference in the two methods of analysis, the standard analysis would usually be
preferred. ✷

5.7 Checking the Normality Assumption

The assumption that the error variables have a normal distribution is checked using anormal
probability plot, which is a plot of the standardized residuals against their normal scores.
Normal scores are percentiles of the standard normal distribution, and we will show how to
obtain them after providing motivation for the normal probability plot.

If a given linear model is a reasonable description of a set of data without any outliers,
and if the error assumptions are satisfied, then the standardized residuals would look sim-
ilar to n independent observations from the standard normal distribution. In particular, the
qth smallest standardized residual would be approximately equal to the 100[q/(n + 1)]th
percentile of the standard normal distribution. Consequently, when the model assumptions
hold, a plot of theqth smallest standardized residual against the 100[q/(n+1)]th percentile
of the standard normal distribution for eachq � 1,2, . . . , nwould show points roughly on a
straight line through the origin with slope equal to 1.0. However, if any of the model assump-
tions fail, and in particular if the normality assumption fails, then the normal probability
plot shows a nonlinear pattern.

Blom, in 1958, recommended that the standardized residuals be plotted against the
100[(q − 0.375)/(n + 0.25)]th percentiles of the standard normal distribution rather than
the 100[q/(n+1)]th percentiles, since this gives a slightly straighter line. These percentiles
are calledBlom’s normal scores.

Blom’s qth normal score is the valueξq for which

P (Z ≤ ξq) � (q − 0.375)/(n+ 0.25),

whereZ is a standard normal random variable. Hence, Blom’sqth normal score is

ξq � =−1[(q − 0.375)/(n+ 0.25)] , (5.7.7)

where= is the cumulative distribution function (cdf) of the standard normal distribution.
The normal scores possess a symmetry about zero, that is, thej th smallest and thej th
largest scores are always equal in magnitude but opposite in sign.

The normal scores are easily obtained using most statistical packages. Use of the SAS
software to obtain the normal scores and generate a normal probability plot will be illustrated
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Table 5.6 Normal scores: battery experiment

zit ξq
√
yit Battery

−1.47 −1.77 27.258 2
−1.15 −1.28 14.142 3
−0.95 −0.99 23.000 1
−0.80 −0.76 23.108 1
−0.76 −0.57 15.100 4
−0.74 −0.40 27.803 2
−0.45 −0.23 14.663 3
−0.45 −0.08 15.330 4
−0.32 0.08 15.427 4
0.31 0.23 15.232 3
0.64 0.40 24.187 1
0.84 0.57 28.983 2
1.11 0.76 24.536 1
1.30 0.99 15.969 3
1.37 1.28 29.377 2
1.52 1.77 16.793 4

in Section 5.8. Alternatively, the normal scores can be calculated as shown in Example 5.7
using Table A.3 for the standard normal distribution.

Example 5.7.1 Computing normal scores: battery life experiment

To illustrate the normal probability plot and the computation of normal scores, consider
the battery life data (regardless of cost) that were transformed in Example 5.6.2 to equalize
the variances. The transformed observations, standardized residuals, and normal scores are
listed in Table 5.6, in order of increasing size of the residuals. In the battery life experiment
there weren � 16 observations in total. The first normal score that corresponds to the
smallest residual (q � 1) is

ξ1 � =−1[(1 − 0.375)/(16+ 0.25)] � =−1(0.0385).

Thus, the area under the standard normal curve to the left ofξ1 is 0.0385. Using a table for
the standard normal distribution or a computer program, this value is

=−1(0.0385)� −1.77.

By symmetry, the largest normal score is 1.77. The other normal scores are calculated in a
similar fashion, and the corresponding normal probability plot is shown in Figure 5.10. We
discuss the interpretation of this plot below. ✷

For inferences concerning treatment means and contrasts, the assumption of normality
needs only to be approximately satisfied. Interpretation of a normal probability plot, such
as that in Figure 5.10, requires some basis of comparison. The plot is not completely linear.
Such plots always exhibit some sampling variation even if the normality assumption is
satisfied. Since it is difficult to judge a straight line for small samples, normal probability
plots are useful only if there are at least 15 standardized residuals being plotted. A plot
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Figure 5.10
Normal probability
plot for the square
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for 50 standardized residuals that are known to have a normal distribution is shown in plot
(a) of Figure 5.11 and can be used as a benchmark of what might be expected when the
assumption of normality is satisfied.

Small deviations from normality do not badly affect the stated significance levels, con-
fidence levels, or power. If the sample sizes are equal, the main case for concern is that in
which the distribution has heavier tails than the normal distribution, as in plot (b) of Fig-
ure 5.11. The apparent outliers are caused by the long tails of the nonnormal distribution,
and a model based on normality would not be adequate to represent such a set of data. If
this is the case, then use of nonparametric methods of analysis should be considered (as
described, for example, by Hollander and Wolfe, 1973). Sometimes, a problem of nonnor-
mality can be cured by taking a transformation of the data, such as ln(yit ). However, it
should be remembered that any transformation could cause a problem of unequal variances
where none existed before. If the equal-variance assumption does not hold for a given set of
data, then a separate normal probability plot should be generated for each treatment instead
of one plot using alln residuals (provided that there are sufficient data values).

The plot for the transformed battery lifetime experiment shown in Figure 5.10 is less linear
than the benchmark plot, but it does not exhibit the extreme behavior of plot (b) of Figure 5.11
for the heavy-tailed nonnormal distribution. Consequently, the normality assumption can be
taken to be approximately satisfied, and the stated confidence and significance levels will
be approximately correct.
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Figure 5.11
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(b) Distribution with heavy tails

5.8 Using SAS Software

5.8.1 Using SAS to Generate Residual Plots

We now illustrate use of the SAS software to generate the various plots used in this chapter.
In the following sections, we will check the assumptions on the one-way analysis of variance
model (3.3.1) for the data of the mung bean experiment described in Example 5.8.1 below.

Example 5.8.1 Mung bean experiment

An experiment was run in 1993 by K. H. Chen, Y. F. Kuo, R. Sengupta, J. Xu, and L. L.
Yu to compare watering schedules and growing mediums for mung bean seeds. There were
two treatment factors: “amount of water” with three levels (1, 2, and 3 teaspoons of water
per day) and “growing medium” having two levels (tissue and paper towel, coded 1 and 2).
We will recode the six treatment combinations as 1� 11, 2� 12, 3� 21, 4� 22, 5� 31,
6 � 32.

Table 5.7 Data for the mung bean experiment

Treat- Shoot length in mm
ment (Order of observation in parentheses)
1 1.5 (14) 1.1 (15) 1.3 (18) 0.9 (30)

8.5 (35) 10.6 (39) 3.5 (42) 7.4 (43)
2 0.0 (3) 0.6 (4) 9.5 (7) 11.3 (12)

12.6 (17) 8.1 (27) 7.8 (29) 7.3 (37)
3 5.2 (16) 0.4 (23) 3.6 (31) 2.8 (36)

12.3 (45) 14.1 (46) 0.3 (47) 1.8 (48)
4 13.2 (1) 14.8 (11) 10.7 (13) 13.8 (20)

9.6 (24) 0.0 (34) 0.6 (40) 8.2 (44)
5 5.1 (5) 3.3 (21) 0.2 (26) 3.9 (28)

7.0 (32) 9.5 (33) 11.1 (38) 6.2 (41)
6 11.6 (2) 2.3 (6) 6.7 (8) 2.5 (9)

10.6 (10) 10.8 (19) 15.9 (22) 9.0 (25)
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Table 5.8 SAS program to generate residual plots: mung bean experiment

DATA GROW;
INPUT ORDER WATER MEDIUM LENGTH;
TRTMT = 2*(WATER-1) + MEDIUM;
LINES;
1 2 1 13.2
2 3 2 11.6
3 1 2 0.0
: : : :

48 2 1 1.8
;
PROC GLM;
CLASS TRTMT;
MODEL LENGTH = TRTMT;
OUTPUT OUT=GROW2 PREDICTED=YPRED RESIDUAL=Z;

PROC STANDARD STD=1.0;
VAR Z;

PROC RANK NORMAL=BLOM ;
VAR Z;
RANKS NSCORE;

PROC PRINT;
;
PROC PLOT;
PLOT Z*TRTMT Z*ORDER Z*YPRED / VREF=0 VPOS=19 HPOS=50;
PLOT Z*NSCORE / VREF=0 HREF=0 VPOS=19 HPOS=50;

Forty-eight beans of approximately equal weights were randomly selected for the ex-
periment. These were all soaked in water in a single container for two hours. After this
time, the beans were placed in separate containers and randomly assigned to a treatment
(water/medium) combination in such a way that eight containers were assigned to each
treatment combination. The 48 containers were placed on a table in a random order. The
shoot lengths of the beans were measured (in mm) after one week. The data are shown in
Table 5.7 together with the order in which they were collected. ✷

A SAS program that generates the residual plots for the mung bean experiment is shown
in Table 5.8. The program uses the SAS proceduresGLM, PRINT, andPLOT, all of which
were introduced in Section 3.8.

The values of the factorsORDER (order of observation),WATER, MEDIUM, and the response
variableLENGTH are entered into the data setGROW using theINPUT statement. The treatment
combinations are then recoded, with the levels ofTRTMT representing the recoded levels 1–6.

TheOUTPUT statement in theGLM procedure calculates and saves the predicted values
ŷit and the residualŝeit as the variablesYPRED andZ, respectively, in a new data set named
GROW2. The data setGROW2 also contains all of the variables in the original data setGROW.
The residuals stored as the variableZ are then standardized using the procedureSTANDARD.
The residuals need to be standardized by dividing each residual by

√
ssE/(n − 1). This is
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Table 5.9 Output from PROC PRINT

The SAS System
OBS ORDER WATER MEDIUM LENGTH TRTMT YPRED Z NSCORE
1 1 2 2 13.2 4 8.8625 0.98205 0.92011
2 2 3 2 11.6 6 8.6750 0.66224 0.57578
3 3 1 2 0.0 2 7.1500 -1.61882 -1.60357
: : : : : : : : :

48 48 2 1 1.8 3 5.0625 -0.73866 -0.77149

Figure 5.12
Plot of zit versus

order: mung bean
experiment

The SAS System
Plot of Z*ORDER. Legend: A = 1 obs, B = 2 obs, etc.
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ORDER

done by requesting the procedureSTANDARD to achieve a standard deviation of 1.0. The
variableZ then represents the standardized residuals.

The procedureRANK is used to compute Blom’s normal scores. The procedure orders the
standardized residuals from smallest to largest and calculates their ranks. (Theqth smallest
residual has rankq.) The values of the variableNSCORE calculated by this procedure are the
normal scores for the values ofZ. ThePRINT procedure prints all the values of the variables
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Figure 5.13
Plot of zit versus

normal score: mung
bean experiment

The SAS System
Plot of Z*NSCORE. Legend: A = 1 obs, B = 2 obs, etc.
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-4 -2 0 2 4

RANK FOR VARIABLE Z

created so far. Some representative output is shown in Table 5.9. ThePRINT statement can
be omitted if this information is not wanted.

Plots of the standardized residualszit against treatments, run order, predicted values, and
normal scores are requested in thePLOT procedure. Vertical and horizontal reference lines at
zero are included as appropriate via theVREF andHREF statements. The number of vertical
and horizontal printing positions can be controlled through theVPOS andHPOS options.
These have been set at 19 and 50, respectively, to give the plots shown in Figures 5.12–5.13.
Plots with too few vertical printing positions will often produce points that are too close to
be distinguished, indicated byB for two points,C for three points, and so on.

For the mung bean experiment, a plot of the standardized residuals against the order in
which the observations are collected is shown in Figure 5.12, and a plot of standardized
residuals against normal scores is shown in Figure 5.13. Neither of these plots indicates any
serious problems with the assumptions on the model.

A plot of the standardized residuals against the predicted values (not shown) suggests
that treatment variances are not too unequal, but that there could be outliers associated with
one or two of the treatments. Lines 1–9 of the SAS program in Table 5.10 produced the first
four columns of output of Table 5.11. From this, the rule of thumb can be checked that the
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Table 5.10 SAS program to plot ln(s2i ) against ln(y i.): mung bean
experiment

Line SAS Program
1 DATA; SET GROW;
2 PROC SORT;
3 BY TRTMT;
4 PROC MEANS NOPRINT MEAN VAR;
5 VAR LENGTH;
6 BY TRTMT;
7 OUTPUT OUT=GROW3 MEAN=AVLNTH VAR=VARLNTH;
8 PROC PRINT;
9 VAR TRTMT AVLNTH VARLNTH;
10 DATA; SET GROW3;
11 LN AV=LOG(AVLNTH); LN VAR=LOG(VARLNTH);
12 PROC PRINT;
13 VAR TRTMT AVLNTH VARLNTH LN AV LN VAR;
14 PROC PLOT;
15 PLOT LN VAR*LN AV / VPOS=19 HPOS=50;

sample variances should not differ by more than a factor of 3. It can be verified that the ratio
of the maximum and minimum variances is under 2.7 for this experiment.

When the equal-variance assumption does not appear to be valid, and when the experi-
menter chooses to use an analysis based on Satterthwaite’s approximation, formulas need to
be calculated by hand using sample variances such as those in Table 5.11. A normal proba-
bility plot such as that of Figure 5.13 would not be relevant, but the normality assumption
needs to be checked for each treatment separately. This can be done by generating a separate
normal probability plot for each treatment (provided that the sample sizes are sufficiently
large). The plots can be obtained by including aBY TRTMT statement in theRANK andPLOT
procedures. Sample program lines are:

PROC SORT; BY TRTMT;
PROC RANK NORMAL=BLOM;
VAR Z; RANKS NSCORE;
BY TRTMT;
PROC PLOT; BY TRTMT;
PLOT Z*ORDER / VREF=0 VPOS=19 HPOS=50;
PLOT Z*NSCORE / VREF=0 HREF=0 VPOS=19 HPOS=50;

5.8.2 Transforming the Data

If a variance-stabilizing transformation is needed, a plot of ln(s2
i ) against ln(̄yi.) can be

achieved via lines 1–7 and 10–15 in Table 5.10 (shown for the mung bean experiment).
These statements can be added to the statements in Table 5.8 either before theGLM procedure
or at the end of the program.

TheSORT procedure and theBY statement sort the observations in the original data set
GROW using the values of the variableTRTMT. This is required by the subsequentMEANS
procedure with theNOPRINT option, which computes the mean and variance of the variable



Exercises 127

Table 5.11 Treatment averages and variances for the mung bean experiment

The SAS System
OBS TRTMT AVLNTH VARLNTH LN_AV LN_VAR
1 1 4.3500 15.1714 1.47018 2.71941
2 2 7.1500 21.1171 1.96711 3.05009
3 3 5.0625 28.0570 1.62186 3.33424
4 4 8.8625 32.8027 2.18183 3.49051
5 5 5.7875 12.1555 1.75570 2.49778
6 6 8.6750 21.6793 2.16045 3.07636

LENGTH separately for each treatment, without printing the results. TheOUTPUT statement
creates a data set namedGROW3, with one observation for each treatment, and with the two
variablesAVLNTH andVARLNTH containing the sample mean lengths and sample variances
for each treatment. Two new variablesLN AV andLN VAR are created.

These are the natural logarithm, or log basee, of the average length and the variance for
each treatment. ThePRINT procedure requests the values of the variablesTRTMT, AVLNTH,
VARLNTH, LN AV, LN VAR to be printed. The output is in Table 5.11.

Finally, thePLOT procedure generates the plot of ln(s2
i ) against ln(̄yi.), shown in Fig-

ure 5.14. The values do not fall along a straight line, so a variance-stabilizing transformation
of the type given in equation (5.6.3) does not exist for this data set. However, since the ratio
of the maximum to the minimum variance is less than 3.0, a transformation is not vital,
according to our rule of thumb.

If an appropriate transformation is identified, then the transformed variable can be created
from the untransformed variable in aDATA step of a SAS program, just as the variablesLN AV
andLN VAR were created in the data setGROW3 by transforming the variablesAVLNTH and
VARLNTH, respectively. Alternatively, the transformation can be achieved after theINPUT
statement in the same way as the factorTRTMT was created. SAS statements useful for the
variance-stabilizing transformations of equation (5.6.3) include:

Transformation SAS Statement
h � ln(y ) H = LOG(Y);
h � sin−1(y ) H = ARSIN(Y);
h � yp H = Y**P;

Exercises

1. Pedestrian light experiment, continued
Check the assumptions on the one-way analysis of variance model (3.3.1) used for
analyzing the data of the pedestrian light experiment in Exercise 14 of Chapter 3. The
data are reproduced, together with their order of observation, in Table 5.12. Are the
model assumptions approximately satisfied for these data?
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Figure 5.14
Plot of ln(s2i ) against
ln(y i.); mung bean

experiment

The SAS System

Plot of LN_VAR*LN_AV. Legend: A = 1 obs, B = 2 obs, etc.

3.5 + A
|
|
| A

LN_VAR |
|
|
|
| A A

3.0 +
|
|
|
|
| A
|
|
|

2.5 + A
-+-----------+-----------+-----------+-----------+-
1.4 1.6 1.8 2.0 2.2

LN_AV

Table 5.12 Times (in seconds) for the “walk” sign to appear in the pedestrian
light experiment

Time Order 1 2 3 4 5 6 7 8
Pushes 2 2 1 3 0 0 1 0
Waiting Time 38.17 38.13 38.28 38.14 38.14 38.20 38.17 38.31
Time Order 9 10 11 12 13 14 15 16
Pushes 1 2 0 1 2 2 1 2
Waiting Time 38.08 38.16 38.14 38.25 38.30 38.34 38.18 38.34
Time Order 17 18 19 20 21 22 23 24
Pushes 1 2 0 1 3 2 1 2
Waiting Time 38.03 38.17 38.29 37.95 38.30 38.18 38.26 38.09
Time Order 25 26 27 28 29 30 31 32
Pushes 2 3 3 0 1 0 3 1
Waiting Time 38.06 38.21 38.04 38.17 38.30 38.20 38.37 38.21
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Table 5.13 Weight loss for the soap experiment

Soap Weight Loss y i. s2i
1 −0.30 −0.10 −0.14 0.40 −0.0350 0.09157
2 2.63 2.61 2.41 3.15 2.7000 0.09986
3 1.72 2.07 2.17 2.01 1.9925 0.03736

Table 5.14 Melting times for margarine in seconds

Brand Times y i. si
1 167, 171, 178, 175, 184, 176, 185, 172, 178, 178 176.4 5.56
2 231, 233, 236, 252, 233, 225, 241, 248, 239, 248 238.6 8.66
3 176, 168, 171, 172, 178, 176, 169, 164, 169, 171 171.4 4.27
4 201, 199, 196, 211, 209, 223, 209, 219, 212, 210 208.9 8.45

2. Soap experiment, continued
Check the assumptions on the one-way analysis of variance model (3.3.1) for the
soap experiment, which was introduced in Section 2.5.1. The data are reproduced in
Table 5.13 (the order of collection of observations is not available).

3. Margarine experiment (Amy L. Phelps, 1987)
The data in Table 5.14 are the melting times in seconds for three different brands of
margarine (coded 1–3) and one brand of butter (coded 4). The butter was used for
comparison purposes. The sizes and shapes of the initial margarine/butter pats were
as similar as possible, and these were melted one by one in a clean frying pan over a
constant heat.
(a) Check the equal-variance assumption on model (3.3.1) for these data. If a transfor-

mation is required, choose the best transformation of the form (5.6.3), and recheck
the assumptions.

(b) Using the transformed data, compute a 95% confidence interval comparing the
average melting times for the margarines with the average melting time for the
butter.

(c) Repeat part (b) using the untransformed data and Satterthwaite’s approximation
for unequal variances. Compare the results with those of part (b).

(d) For this set of data, which analysis do you prefer? Why?

4. Reaction time experiment, continued
The reaction time pilot experiment was described in Exercise 4 of Chapter 4. The
experimenters were interested in the different effects on the reaction time of the aural
and visual cues and also in the different effects of the elapsed time between the cue and
the stimulus. There were six treatment combinations:

1 = aural, 5 seconds 4 = visual, 5 seconds
2 = aural, 10 seconds 5 = visual, 10 seconds
3 = aural, 15 seconds 6 = visual, 15 seconds



130 Exercises

Table 5.15 Reaction times (in seconds) for the reaction time
experiment

Time Order 1 2 3 4 5 6
Coded treatment 6 6 2 6 2 5
Reaction Time 0.256 0.281 0.167 0.258 0.182 0.283
Time Order 7 8 9 10 11 12
Coded treatment 4 5 1 1 5 2
Reaction Time 0.257 0.235 0.20 0.170 0.260 0.187
Time Order 13 14 15 16 17 18
Coded treatment 3 4 4 3 3 1
Reaction Time 0.202 0.279 0.269 0.198 0.236 0.181

The data are reproduced, together with their order of observation, in Table 5.15.
The pilot experiment employed a single subject. Of concern to the experimenters was
the possibility that the subject may show signs of fatigue. Consequently, fixed rest
periods were enforced between every pair of observations.

(a) Check whether or not the assumptions on the one-way analysis of variance
model (3.3.1) are approximately satisfied for these data. Pay particular attention to
the experimenter’s concerns about fatigue.

(b) Suggest a way to design the experiment using more than one subject. (Hint: consider
using subjects as blocks in the experiment).

5. Catalyst experiment
H. Smith, in the 1969 volume ofJournal of Quality Control, described an experiment
that investigated the effect of four reagents and three catalysts on the production rate in a
catalyst plant. He coded the reagents asA,B,C, andD, and the catalysts asX,Y , andZ,
giving twelve treatment combinations, coded asAX, AY, . . . ,DZ. Two observations
were taken on each treatment combination, and these are shown in Table 5.16, together
with the order in which the observations were collected.

Table 5.16 Production rates for the catalyst experiment

Time Order 1 2 3 4 5 6 7 8
Treatment CY AZ DX AY CX DZ AX CZ

Yield 9 5 12 7 13 7 4 13
Time Order 9 10 11 12 13 14 15 16
Treatment BY CZ BZ DX BX CX DY BZ

Yield 13 13 7 12 4 15 12 9
Time Order 17 18 19 20 21 22 23 24
Treatment BX DY AY DZ BY AX CY AZ

Yield 6 14 11 9 15 6 15 9

Source: Smith, H. Jr. (1969). Copyright © 1997 American
Society for Quality. Reprinted with Permission.
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Table 5.17 Data for the bicycle experiment

Code Treatment Crank Rates
1 5 mph 15 19 22
2 10 mph 32 34 27
3 15 mph 44 47 44
4 20 mph 59 61 61
5 25 mph 75 73 75

Are the assumptions on the one-way analysis of variance model (3.3.1) approximately
satisfied for these data? If not, can you suggest what needs to be done in order to be
able to analyze the experiment?

6. Bicycle experiment (Debra Schomer, 1987)
The bicycle experiment was run to compare the crank rates required to keep a bicycle at
certain speeds, when the bicycle was in twelfth gear on flat ground. The speeds chosen
were 5, 10, 15, 20, and 25 mph, (coded 1–5). The data are given in Table 5.17.
The experimenter fitted the one-way analysis of variance model (3.3.1) and plotted the
standardized residuals. She commented in her report:

Note the larger spread of the data at lower speeds. This is due to the fact that in
such a high gear, to maintain such a low speed consistently for a long period of
time is not only bad for the bike, it is rather difficult to do.

Thus the experimenter was not surprised to find a difference in the variances of the
error variables at different levels of the treatment factor.
(a) Plot the standardized residuals againstŷit , compare the sample variances, and

evaluate equality of the error variances for the treatments.

(b) Choose the best transformation of the data of the form (5.6.3), and test the hypothe-
ses that the linear and quadratic trends in crank rates due to the different speeds
are negligible, using an overall significance level of 0.01.

(c) Repeat part (b), using the untransformed data and Satterthwaite’s approximation
for unequal variances,

(d) Discuss the relative merits of the methods applied in parts (b) and (c).

7. Dessert experiment
(P. Clingan, Y. Deng, M. Geil, J. Mesaros, and J. Whitmore, 1996)
The experimenters were interested in whether the melting rate of a frozen orange dessert
would be affected (and, in particular, slowed down) by the addition of salt and/or sugar.
At this point, they were not interested in taste testing. Six treatments were selected, as
follows:

1 = 1/8 tsp salt, 1/4 cup sugar 4 = 1/4 tsp salt, 1/4 cup sugar
2 = 1/8 tsp salt, 1/2 cup sugar 5 = 1/4 tsp salt, 1/2 cup sugar
3 = 1/8 tsp salt, 3/4 cup sugar 6 = 1/4 tsp salt, 3/4 cup sugar

For each observation of each treatment, the required amount of sugar and salt was
added to the contents of a 12-ounce can of frozen orange juice together with 3 cups of
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Table 5.18 Percentage melting of frozen orange cubes for
the dessert experiment

Position 1 2 3 4 5 6
Treatment 2 5 5 1 4 3
% melt 12.06 9.66 7.96 9.04 10.17 7.86
Position 7 8 9 10 11 12
Treatment 4 1 3 1 2 4
% melt 8.14 9.52 4.28 8.32 10.74 5.98
Position 13 14 15 16 17 18
Treatment 2 6 6 3 6 5
% melt 9.84 7.58 6.65 9.26 8.46 12.83

water. The orange juice mixes were frozen in ice cube trays and allocated to random
positions in a freezer. After 48 hours, the cubes were removed from the freezer, placed
on half-inch mesh wire grid and allowed to melt into a container in the laboratory (which
was held at 24.4◦C) for 30 mins. The percentage melting (by weight) of the cubes are
recorded in Table 5.18. The coded position on the table during melting is also recorded.

(a) Plot the data. Does it appear that the treatments have different effects on the melting
of the frozen orange dessert?

(b) Check whether the assumptions on the one-way analysis of variance model (3.3.1)
are satisfied for these data. Pay particular attention to the equal-variance
assumption.

(c) Use Satterthwaite’s method to compare the pairs of treatments.

(d) What conclusions can you draw about the effects of the treatments on the melting
of the frozen orange dessert? If your concern was to produce frozen dessert with
a long melting time, which treatment would you recommend? What other factors
should be taken into account before production of such a dessert?

8. Wildflower experiment (Barbra Foderaro, 1986)
An experiment was run to determine whether or not the germination rate of the endan-
gered species of Ohio plantFroelichia floridana is affected by storage temperature or
storage method. The two levels of the factor “temperature” were “spring temperature,
14◦C–24◦C” and “summer temperature, 18◦C–27◦C.” The two levels of the factor “stor-
age” were “stratified” and “unstratified.” Thus, there were four treatment combinations
in total. Seeds were divided randomly into sets of 20 and the sets assigned at random
to the treatments. Each stratified set of seeds was placed in a mesh bag, spread out to
avoid overlapping, buried in two inches of moist sand, and placed in a refrigeration unit
for two weeks at 50◦F. The unstratified sets of seeds were kept in a paper envelope at
room temperature. After the stratification period, each set of seeds was placed on a dish
with 5 ml of distilled deionized water, and the dishes were put into one of two growth
chambers for two weeks according to their assigned level of temperature. At the end
of this period, each dish was scored for the number of germinated seeds. The resulting
data are given in Table 5.19.
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Table 5.19 Data for the wildflower experiment

Treatment Combination Number Germinating y i. si
1: Spring/Stratified 12 13 2 7 19 8.4 6.995

0 0 3 17 11
2: Spring/Unstratified 6 2 0 2 4 2.5 3.308

1 0 10 0 0
3: Summer/Stratified 6 4 5 7 6 5.0 1.633

5 7 5 2 3
4: Summer/Unstratified 0 6 2 5 1 3.6 2.271

5 2 3 6 6

(a) For the original data, evaluate the constant-variance assumption on the one-way
analysis of variance model (3.3.1) both graphically and by comparing sample
variances.

(b) It was noted by the experimenter that since the data were the numbers of germi-
nated seeds out of a total of 20 seeds, the observationsYit should have a binomial
distribution. Does the corresponding transformation help to stabilize the variances?

(c) Plot ln(s2
i ) against ln(yi.) and discuss whether or not a power transformation of the

form given in equation (5.6.3) might equalize the variances.

(d) Use Scheff́e’s method of multiple comparisons, in conjunction with Satterthwaite’s
approximation, to construct 95% confidence intervals for all pairwise comparisons
and for the two contrasts

1
2[1,1,−1,−1] and 1

2[1,−1,1,−1] ,

which compare the effects of temperature and storage methods, respectively.

9. Spaghetti sauce experiment
(K. Brewster, E. Cesmeli, J, Kosa, M. Smith, and M. Soliman, 1996)
The spaghetti sauce experiment was run to compare the thicknesses of three particular
brands of spaghetti sauce, both when stirred and unstirred. The six treatments were:

1 = store brand, unstirred 2 = store brand, stirred
3 = national brand, unstirred 4 = national brand, stirred
5 = gourmet brand, unstirred 6 = gourmet brand, stirred

Part of the data collected is shown in Table 5.20. There are three observations per
treatment, and the response variable is the weight (in grams) of sauce that flowed
through a colander in a given period of time. A thicker sauce would give rise to smaller
weights.
(a) Check the assumptions on the one-way analysis of variance model (3.3.1).

(b) Use Satterthwaite’s method to obtain simultaneous confidence intervals for the six
preplanned contrasts

τ1 − τ2 , τ3 − τ4 , τ5 − τ6 , τ1 − τ5 , τ1 − τ3 , τ3 − τ5 ,

Select an overall confidence level of at least 94%.
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Table 5.20 Weights (in grams) for the spaghetti sauce
experiment

Time order 1 2 3 4 5 6 7 8 9
Treatment 3 2 4 3 4 5 1 6 6
Weight 14 69 26 15 20 12 55 14 16
Time order 10 11 12 13 14 15 16 17 18
Treatment 5 1 2 4 6 3 5 2 1
Weight 16 66 64 23 17 22 18 64 53
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6.1 Introduction

In this chapter, we discuss the use of completely randomized designs for experiments that
involve two treatment factors. We label the treatment factors asA andB, where factorA has
a levels coded 1,2, . . . , a, and factorB hasb levels coded 1,2, . . . , b. Every level ofA is
observed with every level ofB, so the factors arecrossed. In total, there arev � ab treatments
(treatment combinations), and these are coded as 11,12, . . . ,1b,21,22, . . . ,2b, . . . , ab.

In the previous three chapters, we recoded the treatment combinations as 1,2, . . . , v
and used the one-way analysis of variance for comparing their effects. In this chapter, we
investigate the contributions that each of the factors make individually to the response, and
it is more convenient to retain the 2-digit codeij for a treatment combination in which factor
A is at leveli and factorB is at levelj . In Section 6.2.1, we define the “interaction” of two
treatment factors. Allowing for the possibility of interaction leads one to select a “two-way
complete model” to model the data (Section 6.4). However, if it is known in advance that the
factors do not interact, a “two-way main-effects model” would be selected (Section 6.5). Es-
timation of contrasts, confidence intervals, and analysis of variance techniques are described

135
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for these basic models. The calculation of sample sizes is also discussed (Section 6.6). The
corresponding SAS commands are described in Section 6.8.

If each of the two factors has a large number of levels, the total number of treatment
combinations could be quite large. When observations are costly, it may be necessary to
limit the number of observations to one per treatment combination. Analysis for this situation
is discussed in Section 6.7.

6.2 Models and Factorial Effects

6.2.1 The Meaning of Interaction

In order to understand the meaning of the interaction between two treatment factors, it is
helpful to look at possible data sets from a hypothetical experiment. In 1994, the Statistics
Department at The Ohio State University introduced a self-paced version of a data analysis
course that is usually taught by lecture. Although no experiment was run in this particular
instance, suppose that a hypothetical department wishes to know to what extent student
performance in an introductory course is affected by the teaching method used (lecture-
based or self-paced) and also by the particular instructor teaching the course. Suppose that
the instructors to be used in the experiment are the three professors who will be teaching the
course for the foreseeable future. The self-paced system uses the same text, same instructors,
additional notes, and extended instructor office hours, but no lectures.

There are two treatment factors of interest, namely “instructor,” which has three levels,
coded 1, 2, and 3, and “teaching method,” which has two levels, coded 1 and 2. Both of
the treatment factors are fixed effects, since their levels have been specifically chosen (see
Section 2.2, page 12, step (f)). The students who enroll in the introductory course are the
experimental units and are allocated at random to one of the six treatment combinations
in such a way that approximately equal numbers of students are enrolled in each section.
Student performance is to be measured by means of a computer-graded multiple-choice
examination, and an average exam scoreyij. for each treatment combination will be obtained.

There are eight different types of situations that could occur, and these are depicted in
Figure 6.1, where the plotted character indicates the teaching method used. The plots are
called interaction plots and give an indication of how the different instructor–teaching
method combinations affect the average exam score.

In plots (a)–(d) of Figure 6.1, the dotted lines joining the average exam scores for the two
teaching methods are parallel (and sometimes coincide). In plot (b), all the instructors have
obtained higher exam scores with teaching method 1 than with method 2, but the instructors
themselves look very similar in terms of the average exam scores obtained. Thus there is
an effect on the average exam score of teaching method (M) but no effect of instructor (I).
Below the plot this is highlighted by the notation “I = no, M = yes.” The notation “IM = no”
refers to the fact that the lines are parallel, indicating that there is no interaction (see below).
In plot (c), no difference can be seen in the average scores obtained from the two teaching
methods for any instructor, although the instructors themselves appear to have achieved
different average scores. Thus, the instructors have an effect on the average exam score, but
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the teaching methods do not (I = yes, M = no). Plot (d) shows the type of plot that might be
obtained if there is both an instructor effect and a teaching-method effect. The plot shows
that all three instructors have obtained higher average exam scores using method 1 than
using method 2. But also, instructor 1 has obtained higher average scores than the other two
instructors. The individual teaching method effects and instructor effects are known asmain
effects.

In plots (e)–(h) of Figure 6.1, the dotted lines are not parallel. This means that more is
needed to explain the differences in exam scores than just teaching method and instructor
effects. For example, in plot (e), all instructors have obtained higher exam scores using
method 1 than using method 2, but the difference is very small for instructor 3 and very
large for instructor 1. In plot (h), instructor 1 has obtained higher exam scores with method
2, while the other two instructors have done better with method 1. In all of plots (e)–(h) the
instructors have performed differently with the different methods. This is called an effect of
interaction between instructor and teaching method.

In plot (g), the instructors clearly differ. Two do better with method 1 and one with method
2. However, if we ignore teaching methods, the instructors appear to have achieved very
similar average exam scores overall. So, averaged over the methods, there is little difference
between them. In such a case, a standard computer analysis will declare that there is no
difference between instructors, which is somewhat misleading. We use the notation “IM =
yes” to denote an interaction between Instructor and Method, and “I = no?” to highlight the
fact that a conclusion of no difference between instructors should be interpreted with caution
in the presence of interaction. In general,if there is an interaction between two treatment
factors, then it may not be sensible to examine either of the main effects separately. Instead,
it will often be preferable to compare the effects of the treatment combinations themselves.

While interaction plots are extremely helpful in interpreting the analysis of an experi-
ment, they give no indication of the size of the experimental error. Sometimes a perceived
interaction in the plot will not be distinguishable from error variability in the analysis of
variance. On the other hand, if the error variability is very small, then an interaction effect
may be statistically significant in the analysis, even if it appears negligible in the plot.

6.2.2 Models for Two Treatment Factors

If we use the two-digit codesij for the treatment combinations in the one-way analysis of
variance model (3.3.1), we obtain the model

Yijt � µ+ τij + εij t , (6.2.1)

εij t ∼ N (0, σ 2) ,

εij t
′s independent,

t � 1, . . . , rij ; i � 1, . . . , a; j � 1, . . . , b,

wherei andj are the levels ofA andB, respectively. This model is known as thecell-means
model. The “cell” refers to the cell of a table whose rows represent the levels ofA and
whose columns represent the levels ofB.
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Since the interaction plot arising from a two-factor experiment could be similar to any of
plots (a)–(h) of Figure 6.1, it is often useful to model the effect on the response of treatment
combinationij to be the sum of the individual effects of the two factors, together with their
interaction; that is,

τij � αi + βj + (αβ)ij .

Here,αi is the effect (positive or negative) on the response due to the fact that theith level
of factorA is observed, andβj is the effect (positive or negative) on the response due to
the fact that thej th level of factorB is observed, and (αβ)ij is the extra effect (positive
or negative) on the response of observing levelsi andj of factorsA andB together. The
corresponding model, which we call thetwo-way complete model, or thetwo-way analysis
of variance model, is as follows:

Yijt � µ+ αi + βj + (αβ)ij + εij t , (6.2.2)

εij t ∼ N (0, σ 2) ,

εij t
′s are mutually independent,

t � 1, . . . , rij ; i � 1, . . . , a; j � 1, . . . , b.

The phrase “two-way” refers to the fact that there are two primary sources of variation,
namely, the two treatment factors. Model (6.2.2) is equivalent to model (6.2.1), since all we
have done is to express the effect of the treatment combination in terms of its constituent
parts.

Occasionally, an experimenter has sufficient knowledge about the two treatment factors
being studied to state with reasonable certainty that the factors do not interact and that an
interaction plot similar to one of plots (a)–(d) of Figure 6.1 will occur. This knowledge may
be gleaned from previous similar experiments or from scientific facts about the treatment
factors. If this is so, then the interaction term can be dropped from model (6.2.2), which
then becomes

Yijt � µ+ αi + βj + εij t , (6.2.3)

εij t ∼ N (0, σ 2) ,

εij t
′s are mutually independent,

t � 1, . . . , rij ; i � 1, . . . , a; j � 1, . . . , b .

Model (6.2.3) is a “submodel” of the two-way complete model and is called atwo-way
main-effects model, or two-way additive model, since the effect on the response of treatment
combinationij is modeled as the sum of the individual effects of the two factors. If an additive
model is used when the factors really do interact, then inferences on main effects can be
very misleading. Consequently, if the experimenter does not have reasonable knowledge
about the interaction, then the two-way complete model (6.2.2) or the equivalent cell-means
model (6.2.1) should be used.
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6.2.3 Checking the Assumptions on the Model

The assumptions implicit in both the two-way complete model (6.2.2) and the two-way
main-effects model (6.2.3) are that the error random variables have equal variances, are
mutually independent, and are normally distributed. The strategy and methods for checking
the error assumptions are the same as those in Chapter 5. The standardized residuals are
calculated as

zij t � (yijt − ŷij t )/
√

ssE/(n− 1)

with

ŷij t � τ̂ij � α̂i + β̂j + (α̂β)ij

or

ŷij t � τ̂ij � α̂i + β̂j ,

depending upon which model is selected, where the “hat” denotes a least squares estimate.
The residuals are plotted against

(i) the order of observation to check independence,

(ii) the levels of each factor and̂yijt to check for outliers and for equality of variances,

(iii) the normal scores to check the normality assumption.

When the main-effects model is selected, interaction plots of the data, such as those in
Figure 6.1, can be used to check the assumption of no interaction. An alternative way to
check for interaction is to plot the standardized residuals against the levels of one of the
factors with the plotted labels being the levels of the second factor. An example of such a plot
is shown in Figure 6.2. (For details of the original experiment, see Exercise 17.9, page 630.)
If the main-effects model had represented the data well, then the residuals would have been
randomly scattered around zero. However, a pattern can be seen that is reminiscent of the
interaction plot (f) of Figure 6.1 suggesting that a two-way complete model would have been
a much better description of the data. If the model is changed based on the data, subsequent
stated confidence levels and significance levels will be inaccurate, and analyses must be
interpreted with caution.

If there is some doubt about the equality of the variances, the rule of thumbs2
max/s

2
min < 3

can be employed, wheres2
max is the maximum of the variances of the data values within the

cells, ands2
min is the minimum (see Section 5.6.1). In a two-way layout, however, there may

not be sufficient observations per cell to allow this calculation to be made. Nevertheless, we
can at least check that the error variances are the same for each level of any given factor by
employing the rule of thumb for the variances of the nonstandardized residuals calculated
at each level of the factor.
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6.3 Contrasts

6.3.1 Contrasts for Main Effects and Interactions

Since the cell-means model (6.2.1) is equivalent to the one-way analysis of variance model,
we know that all contrasts in the treatment effectsτij are estimable (cf. Section 3.4.1,
page 37). Contrasts of interest for a cell-means model are typically of three main types:
treatment contrasts, interaction contrasts, and main-effect contrasts.

Treatment contrasts�i�jdij τij are no different from the types of contrasts described in
Chapter 4. For example,τij − τsh is a pairwise difference between treatment combinations
ij andsh. All the confidence interval methods of Chapter 4 are directly applicable.

Interaction contrasts are the contrasts that we use in order to measure whether or not
the lines on the interaction plots (cf. Figure 6.1) are parallel. An example of an interaction
contrast is

(τsh − τ(s+1)h) − (τsq − τ(s+1)q) . (6.3.4)

We can verify that this is, indeed, an interaction contrast by using the equivalent two-way
complete model notation withτij � αi + βj + (αβ)ij . Substituting this into (6.3.4) gives
the contrast(

(αβ)sh − (αβ)(s+1)h
)− ((αβ)sq − (αβ)(s+1)q

)
, (6.3.5)

which is a function of interaction parameters only. Interaction contrasts are always of the
form∑

i

∑
j

dij τij �
∑
i

∑
j

dij (αβ)ij , (6.3.6)
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where∑
i

dij � 0 for eachj and
∑
j

dij � 0 for eachi .

Some, but not all, interaction contrasts have coefficientsdij � cikj . For example, if we take
cs � kh � 1 andcs+1 � kq � −1 and all otherci andkj zero, then, settingdij � cikj
in (6.3.6), we obtain the coefficients in contrast (6.3.5).

If the interaction effect is very small, then the lines on an interaction plot are almost
parallel (as in plots (a)–(d) of Figure 6.1). We can then compare the average effects of the
different levels ofA (averaging over the levels ofB). Thus, contrasts of the form�ciτ i.,
with �ci � 0, would be of interest. However, if there is an interaction (as in plot (g) of
Figure 6.1), such an average may make little sense. This becomes obvious when we use the
two-way complete model formulation, since a main effect contrast inA is∑

i

ciτ i. �
∑
i

ci(αi + (αβ)i.) (6.3.7)

where (αβ)i. � 1
b

∑
j (αβ)ij , and we can see clearly that we have averaged over any

interaction effect that might be present. We will often write

α∗
i � αi + (αβ)i. and β∗

j � βj + (αβ).j

for convenience. A contrast in the main effect ofA for the two-way complete model is then
written as�ciα∗

i (�ci � 0), and a contrast in the main effect ofB is∑
j

kj τ .j �
∑
j

kj (βj + (αβ).j ) �
∑
j

kjβ
∗
j , (6.3.8)

where�kj � 0 and (αβ).j � 1
a

∑
i(αβ)ij .

Sometimes, it is of interest to compare the effects of the levels of one factor separately at
each level of the other factor. For example, in the hypothetical experiment in Section 6.2.1,
a natural objective might be to choose a best teaching method for each instructor separately.
If comparison of the effects of levels of factorB for each level of factorA is required, then
contrasts of the form∑

j

cj τij , with
∑
j

cj � 0 for eachi � 1,2, . . . , a ,

are of interest. We call such contrastssimple contrasts in the levels ofB. As a special case,
we have thesimple pairwise differences of factorB:

τih − τij , for each i � 1, . . . , a .

These are a subset of the pairwise comparison contrasts. Simple contrasts and simple
pairwise differences of factorA are defined in an analogous way.

When it is known in advance of the experiment that factorsA andB do not interact,
the two-way main-effects model (6.2.3) would normally be used. In this model, there is no
interaction term, soτij � αi + βj . The main-effects contrasts forA andB are respectively
of the form∑

ciτ i. �
∑

ciαi and
∑

kj τ .j �
∑

kjβj ,
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with
∑

ci � 0 and
∑

kj � 0.

6.3.2 Writing Contrasts as Coefficient Lists

Instead of writing out a contrast explicitly, it is sometimes sufficient, and more convenient,
to list the contrast coefficients only. For the two-way complete model, we have a choice.
We can refer to contrasts as either a list of coefficients of the parametersα∗

i , β
∗
j , and (αβ)ij

or as a list of coefficients of theτij ’s. This is illustrated in the following example.

Example 6.3.1 Battery experiment, continued

The four treatment combinations in the battery experiment of Section 2.5.2, page 26, involved
two treatment factors, “duty” and “brand,” each having two levels (1 for alkaline and 2 for
heavy duty; 1 for name brand and 2 for store brand), giving treatment combinations 11, 12,
21, and 22. (These were coded in previous examples as 1, 2, 3, and 4, respectively.) There
werer � 4 observations on each treatment combination.

The interaction plot in Figure 6.3 shows a possible interaction between the two factors,
since the dotted lines on the plot are not close to parallel. However, we should remember that
we cannot be certain whether the nonparallel lines are due to an interaction or to inherent
variability in the data, and we will need to investigate the cause in more detail later.

The interaction is measured by the contrast

τ11 − τ12 − τ21 + τ22 � (αβ)11 − (αβ)12 − (αβ)21 + (αβ)22 ,

which can be written in terms of the coefficient list [ 1,−1,−1, 1 ].
The contrast that compares the average lifetimes of heavy duty and alkaline batteries

(averaged across brands) is

τ 2. − τ 1. � 1
2 (τ21 + τ22) − 1

2 (τ11 + τ12) � α∗
2 − α∗

1 .

This has coefficient list [−1, 1 ] in terms of the effectsα∗
1, α∗

2 of the levels of duty, but
coefficient list 1

2[−1,−1, 1, 1 ] in terms of the effectsτ11, τ12, τ21, τ22 of the treatment
combinations. Similarly, the contrast that compares the average life of store brand with that
of name brand (averaged over duty) has coefficient list [−1, 1 ] in terms of the effectsβ∗

j

of brand, but coefficient list12[−1, 1,−1, 1 ] in terms of theτij ’s.

Figure 6.3
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Since the main-effect contrasts each have divisor 2, the interaction contrast is often di-
vided by 2 also. This has the effect that the least squares estimators of all three contrasts have
the same variances (see Example 6.4.1), and their magnitudes are more directly comparable.
An alternative way to achieve equal variances is to normalize the contrasts (see Section 4.2),

in which case all three contrasts would all be divided by
√
�c2

i /r. ✷

Contrast coefficients are often listed as columns in a table. For example, the contrast
coefficients of theτij ’s for the main effect and interaction contrasts of Example 6.3.2 are
written as below, with±1’s in the body of the table, and the constants listed as divisors in
the last row.

ij A B AB

11 −1 −1 1
12 −1 1 −1
21 1 −1 −1
22 1 1 1

Divisor 2 2 2

The benefit of this representation is that we can see easily that eachAB interaction coefficient
can be obtained by multiplying the correspondingA andB main-effect coefficients. Most
of the interaction contrasts that we shall use have this product form. We will mention the
exceptions when they arise.

Example 6.3.2 Trend contrasts

Suppose that the two factors,A andB, havea � 3 andb � 6 equally spaced quantitative
levels, respectively, and that the sample sizes are equal. From Table A.2, we see thatAL ,
the linear trend contrast forA, has contrast coefficient list [−1, 0, 1] in terms of theα∗

i ’s,
andAQ, the quadratic trend contrast forA, has contrast coefficient list [ 1,−2, 1 ]; that is

AL � −α∗
1 + α∗

3 ,

AQ � α∗
1 − 2α∗

2 + α∗
3 .

Similarly, in terms of theβ∗
j ’s, the coefficient lists for the linear and quadratic trends in the

effects of the six levels ofB are also obtained from Table A.2 as [−5,−3,−1, 1, 3, 5 ]
and [ 5,−1,−4,−4,−1, 5 ], respectively; that is,

BL � −5β∗
1 − 3β∗

2 − β∗
3 + β∗

4 + 3β∗
5 + 5β∗

6 ,

BQ � 5β∗
1 − β∗

2 − 4β∗
3 − 4β∗

4 − β∗
5 + 5β∗

6 .

Now,

α∗
i � τ i., giving �iciα

∗
i � �ici

(
1
6�jτij

) � 1
6�i�jciτij ,

and

β∗
j � τ .j , giving �jkjβ

∗
j � �jkj

(
1
3�iτij

) � 1
3�i�jkj τij ,
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Table 6.1 Trend contrasts when A and B have 3 and 6 equally spaced levels,
respectively

ij AL AQ BL BQ BC Bqr Bqn ALBL ALBqn
11 −1 1 −5 5 −5 1 −1 5 1
12 −1 1 −3 −1 7 −3 5 3 −5
13 −1 1 −1 −4 4 2 −10 1 10
14 −1 1 1 −4 −4 2 10 −1 −10
15 −1 1 3 −1 −7 −3 −5 −3 5
16 −1 1 5 5 5 1 1 −5 −1
21 0 −2 −5 5 −5 1 −1 0 0
22 0 −2 −3 −1 7 −3 5 0 0
23 0 −2 −1 −4 4 2 −10 0 0
24 0 −2 1 −4 −4 2 10 0 0
25 0 −2 3 −1 −7 −3 −5 0 0
26 0 −2 5 5 5 1 1 0 0
31 1 1 −5 5 −5 1 −1 −5 −1
32 1 1 −3 −1 7 −3 5 −3 5
33 1 1 −1 −4 4 2 −10 −1 −10
34 1 1 1 −4 −4 2 10 1 10
35 1 1 3 −1 −7 −3 −5 3 −5
36 1 1 5 5 5 1 1 5 1

Divisor 6 6 3 3 3 3 3 1 1

and we can write all of the above trends in terms of contrasts inτij , as shown in the columns
of Table 6.1. Contrast coefficients are also listed for cubic, quartic, and quintic trends forB.
If we wish to compare theA andB trends on the same scale, we can normalize the contrasts
(see Section 4.2).

In order to model a three-dimensional surface, we need to know not only how the response
is affected by the levels of each factor averaged over the levels of the other factor, but also
how the response changes as the levels ofA andB change together. The linearA×linearB
trend (ALBL) measures whether or not the linear trend inA changes in a linear fashion as the
levels ofB are increased, and vice versa. This is an interaction contrast whose coefficients
are of the formdij � cikj , whereci are the contrast coefficients forA, andkj are the
contrast coefficients forB. TheALBL contrast coefficients are shown in Table 6.1, and it
can be verified that they are obtained by multiplying together corresponding main-effect
linear trend coefficients in the same row. Coefficients for the linearA×quinticB (ALBqn)
contrast is also shown for use later in this chapter. ✷

6.4 Analysis of the Two-Way Complete Model

In the analysis of an experiment with two treatment factors that possibly interact, we may
proceed with the analysis in two equivalent ways. We may use the cell-means model (6.2.1)
together with all the analysis techniques of Chapters 3 and 4, or we may use the two-way
complete model (6.2.2) and isolate the contributions to the response made by each of the
two factors and their interaction separately.
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A sensible strategy is to start with the two-way complete model and test a hypothesis
of no interaction. If the hypothesis is not rejected, we may then continue with the analysis
by examining the main effects under the same two-way complete model. We would not
change to the two-way main-effects model, since this is not an equivalent model. However,
if the hypothesis of no interaction is rejected, then we would normally prefer to change
to the equivalent cell-means model and examine differences in the effects of the treatment
combinations. We would also use the cell-means model when the objective of the experiment
is to find the best treatment combination.

6.4.1 Least Squares Estimators for the Two-Way Complete
Model

As in Section 3.4.3, page 38, the least squares estimator ofµ+τij isY ij., so the least squares
estimators of the parameters in the cell-means model (6.2.1) and the equivalent two-way
complete model (6.2.2) are

µ̂+ τ̂ij � µ̂+ α̂i + β̂j + (α̂β)ij � Y ij. ,

and the corresponding variance isσ 2/rij . Any interaction contrast of the form��dij τij
(with �idij � 0 and�jdij � 0) has least squares estimator and associated variance equal
to ∑

i

∑
j

dijY ij. and σ 2
∑
i

∑
j

(
d2
ij

rij

)
.

In particular, the least squares estimator of the interaction contrast

(τsh − τuh) − (τsq − τuq)

is

Y sh. − Yuh. − Y sq. + Yuq. (6.4.9)

with variance

σ 2

(
1

rsh
+ 1

ruh
+ 1

rsq
+ 1

ruq

)
. (6.4.10)

The least squares estimators of main-effect contrasts�ciα
∗
i and�kjβ∗

j are

∑
i

ci α̂
∗
i �

∑
i

ci

(
1

b

∑
j

Y ij.

)
and
∑
j

kj β̂
∗
j �

∑
j

kj

(
1

a

∑
i

Y ij.

)
(6.4.11)

with variances

Var(�ciα̂
∗
i ) � σ 2

(∑
i

∑
j

c2
i

b2rij

)
and Var(�kj β̂

∗
j ) � σ 2

(∑
i

∑
j

k2
j

a2rij

)
, (6.4.12)



6.4 Analysis of the Two-Way Complete Model 147

respectively. If the sample sizes are equal, the least squares estimators of
∑

ciα
∗
i and

∑
kjβ

∗
j

reduce to∑
i

ci α̂
∗
i �

∑
i

ciY i.. and
∑
j

kj β̂
∗
j �

∑
j

kjY .j., (6.4.13)

whereY i.. �∑j

∑
t Yij t /br andY .j. �∑i

∑
t Yij t /ar. Thus, for equal sample sizes,

α̂∗
i − α̂∗

s � Y i.. − Y s.. and β̂∗
j − β̂∗

q � Y .j. − Y .q. (6.4.14)

with associated variances 2σ 2/(br) and 2σ 2/(ar), respectively.

Example 6.4.1 Battery experiment

The four treatment combinations in the battery experiment of Section 2.5.2, page 26, involved
two treatment factors, “duty” and “brand,” each having two levels (1 for alkaline and 2 for
heavy duty; 1 for name brand and 2 for store brand), giving treatment combinations 11, 12,
21, and 22. There werer � 4 observations on each treatment combination. The observed
average lifetimes per unit cost for the treatment combinations were

y11. � 570.75, y12. � 860.50, y21. � 433.00, y22. � 496.25.

The interaction contrast

1
2(τ11 − τ12 − τ21 + τ22) � 1

2 ((αβ)11 − (αβ)12 − (αβ)21 + (αβ)22)

has least squares estimate

1
2(y11. − y12. − y21. + y22.) � −113.25,

with associated variance

σ 2
(∑∑

d2
ij /r
)

� σ 2
(
( 1

2)2 + (− 1
2)2 + (− 1

2)2 + ( 1
2)2
)
/4 � σ 2/4 .

The duty contrast,

α∗
1 − α∗

2 � (α1 + (αβ)1.) − (α2 + (αβ)2.) � 1
2 (τ11 + τ12 − τ21 − τ22) ,

has least squares estimatey1.. − y2.. � 251.00 and associated varianceσ 2/4. The brand
contrast,

β∗
1 − β∗

2 � (β1 + (αβ).1) − (β2 + (αβ).2) � 1
2 (τ11 − τ12 + τ21 − τ22) ,

has least squares estimatey.1. − y.2. � −176.50 and associated varianceσ 2/4. ✷

6.4.2 Estimation of σ 2 for the Two-Way Complete Model

Since the two-way complete model (6.2.2) is equivalent to the cell-means model (6.2.1), an
unbiased estimate ofσ 2 is the same as that for the one-way analysis of variance model, apart
from an extra subscriptj . Thus, the error sum of squaresssE can be obtained from (3.4.4)–
(3.4.6), page 42, that is,

ssE �
∑
i

∑
j

∑
t

(yijt − yij.)
2 (6.4.15)
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�
∑
i

∑
j

∑
t

y2
ij t −
∑
i

∑
j

rij y
2
ij. (6.4.16)

�
∑
i

∑
j

∑
t

y2
ij t −
∑
i

∑
j

y2
ij./rij . (6.4.17)

An unbiased estimate forσ 2 is obtained asmsE � ssE/(n − v), with v � ab. An upper
100(1− α)% confidence bound forσ 2 is given by (3.4.10), page 43, that is,

σ 2 ≤ ssE

χ2
n−ab,1−α

. (6.4.18)

Example 6.4.2 Reaction time experiment, continued

The reaction time pilot experiment, run in 1996 by Liming Cai, Tong Li, Nishant, and
Andre van der Kouwe, was described in Exercise 4 of Chapter 4. The experiment was run to
compare the speed of response of a human subject to audio and visual stimuli. A personal
computer was used to present a “stimulus” to a subject, and the time that the subject took
to press a key in response was monitored. The subject was warned that the stimulus was
forthcoming by means of an auditory or a visual cue. The two treatment factors were “Cue
Stimulus” at two levels, “auditory” and “visual” (FactorA, coded 1, 2), and “Cue Time” at
three levels, 5, 10, and 15 seconds between cue and stimulus (FactorB, coded 1, 2, 3), giving
a total ofv � 6 treatment combinations (coded 11, 12, 13, 21, 22, 23). Three observations
were taken on each treatment combination for a single subject. The reaction times are shown
in Table 6.2. It can be verified that

∑∑∑
y2
ij t � 0.96519. Using (6.4.17) and the sums in

Table 6.2, the sum of squares for error is

ssE �
∑
i

∑
j

∑
t

y2
ij t − 3

∑
i

∑
j

y2
ij.

� 0.96519− 3(0.32057)� 0.00347,

and an unbiased estimate ofσ 2 is msE � ssE/(18 − 6) � 0.000289 seconds2. An upper
95% confidence bound forσ 2 is

ssE

χ2
12,.95

� 0.00347

5.226
� 0.000664 seconds2 ,

Table 6.2 Data (in seconds) for the reaction time experiment

Cue Cue Treatment Reaction Time Sums
Stimulus Time Combination yijt yij.

1 1 11 0.204 0.170 0.181 0.555
1 2 12 0.167 0.182 0.187 0.536
1 3 13 0.202 0.198 0.236 0.636
2 1 21 0.257 0.279 0.269 0.805
2 2 22 0.283 0.235 0.260 0.778
2 3 23 0.256 0.281 0.258 0.795
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and taking square roots, an upper 95% confidence bound forσ is 0.0257 seconds. ✷

6.4.3 Multiple Comparisons for the Complete Model

In outlining the analysis at step (g) of the checklist of Chapter 2, the experimenter should
specify which treatment contrasts are of interest, together with overall error rates for hypoth-
esis tests and overall confidence levels for confidence intervals. If the two-way complete
model has been selected, comparison of treatment combinations, comparison of main effects
of A, and comparison of main effects ofB may all be of interest. A possibility in outlining
the analysis is to select error rates ofα1, α2, andα3 for the three sets of inferences. Then, by
the Bonferroni method, theexperimentwise simultaneous error rate is at mostα1 +α2 +α3,
and the experimentwise confidence level is at least 100(1− α1 − α2 − α3)%. If interaction
contrasts are also of interest, then the overallα-level can be divided into four parts instead
of three.

Comparing treatment combinations When comparison of treatment combinations is
of most interest, the cell-means model (6.2.1) is used. The formulae for the Bonferroni,
Scheff́e, Tukey, Dunnett, and Hsu methods can all be used in the same way as was done in
Chapter 4, but withssE given by (6.4.17) and withv � ab.

The best treatment combination can be found using either Tukey’s or Hsu’s method of
multiple comparisons. The best treatment combination may not coincide with the apparent
best levels ofA andB separately. For example, in Figure 6.1(h), page 137, the apparent best
treatment combination occurs with instructor 2 and method 1, whereas the best instructor,
on average, appears to be number 3.

Comparing main effects Main-effect contrasts compare the effects of the levels of one
factoraveraging over the levels of the other factor and may not be of interest if the two factors
interact. If main-effect contrasts are to be examined, then the Bonferroni, Scheffé, Tukey,
Dunnett, and Hsu methods can be used for each factor separately. The general formula is
equivalent to (4.4.20), page 80. For factorA andequal sample sizes the formula is∑

i

ciτ i. �
∑
i

ciα
∗
i ∈
(∑

i

ciyi.. ± w

√
msE

∑
i

c2
i /br

)
, (6.4.19)

where the critical coefficientw for each of the five methods is, respectively,

wB � tn−ab,α/2m ; wS � √(a − 1)Fa−1,n−ab,α ; wT � qa,n−ab,α/
√

2 ;

wD1 � wH � t
(0.5)
a−1,n−ab,α ; wD2 � |t |(0.5)

a−1,n−ab,α .

The general formula for a confidence interval for a contrast in factorB is

∑
j

kj τ .j �
∑
j

kjβ
∗
j ∈
∑

j

kj y.j. ± w

√
msE

∑
j

k2
j /(ar)

 (6.4.20)

with critical coefficients as above but interchanginga andb. The error variance estimate is
msE � ssE/(n− ab), wheressE is obtained from (6.4.17).
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Forunequal sample sizes, the Bonferroni and Scheffé methods can be used, but the least
squares estimates and variances must be replaced by (6.4.11) and (6.4.12), respectively. It
has not yet been proved that the other three methods retain an overall confidence level of at
least 100(1− α)% for unequal sample sizes, although this is widely believed to be the case
for Tukey’s method.

Example 6.4.3 Reaction time experiment, continued

Suppose the preplanned analysis for the reaction time experiment of Example 6.4.2
(page 148) had been to use the two-way complete model and to test the null hypothesis
of no interaction. If the hypothesis were to be rejected, then the plan was to use Tukey’s
method at level 99% for the pairwise comparisons of the treatment combinations. Otherwise,
Tukey’s method would be used at level 99% for the pairwise comparison of the levels ofB

(cue time), and a single 99% confidence interval would be obtained for comparing the two
levels ofA (cue stimulus). Then the experimentwise confidence level for the three sets of
intervals would have been at least 97%.

After looking at the data plotted in Figure 6.4, the experimenters might decide that
comparison of the levels of cue stimulus (averaged over cue time) is actually the only
comparison of interest. However, the experimentwise confidence level remains at least 97%,
because two other sets of intervals were planned ahead of time and only became uninteresting
after the data were examined.

The sample mean weights for the two cue stimuli (averaged over cue times) are

y1.. � 0.1919, y2.. � 0.2642.

The mean square for error was calculated in Example 6.4.2 to bemsE= 0.000289 sec2. The
formula for a 99% confidence interval for the comparison ofa � 2 treatments andbr � 9
observations on each treatment is obtained from (6.4.19) withw � wB � t18−6,0.005 �
3.055, giving

α∗
2 − α∗

1 ∈
(
y2.. − y1.. ± wB

√
msE (1/br + 1/br)

)
� 0.0723± (3.055)

√
0.000289(2/9) � (0.0478,0.0968).

Figure 6.4
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Thus, at an experimentwise confidence level of at least 97%, we can conclude that the
average reaction time with an auditory cue is between 0.0478 and 0.0968 seconds faster
than with a visual cue. ✷

Multiple comparisons when variances are unequal When the variances of the
error variables are unequal, and no transformation can be found to remedy the problem,
Satterthwaite’s approximation, introduced in Section 5.6.3 (page 116), can be used. This is
illustrated in Example 6.4.3.

Example 6.4.4 Bleach experiment

The bleach experiment was run by Annie Autret in 1986 to study the effect of different
bleach concentrations (factor A) and the effect of the type of stain (factor B) on the speed
of stain removal from a piece of cloth. The bleach concentration was to be observed at
levels 3, 5, and 7 teaspoonfuls of bleach per cup of water (coded 1, 2, 3), and three types of
stain (blue ink, jam, tomato sauce; coded 1, 2, 3) were of interest, givingv � 9 treatment
combinations in total. The experimenter calculated that she neededr � 5 observations per
treatment combination in order to be able to detect, with probability 0.9, a difference of 5
minutes in the time of stain removal between the treatment combinations .

The data are shown in Table 6.3 together with the sample mean and standard deviation for
each treatment combination. The maximum sample standard deviation is about 8.9 times the
size of the minimum sample standard deviation, so the ratio of the maximum to the minimum
variance is about 80, and a transformation of the data should be contemplated. The reader
can verify, using the technique described in Section 5.6.2, that a plot of ln(s2

ij ) against ln(yij.)

is not linear, so no transformation of the formh(yijt ) � y
1−(q/2)
ij t will adequately equalize

the error variances.
An alternative is to apply Satterthwaite’s approximation. The plan of the analysis was

to use Tukey’s method with an error rate of 0.01 for each of the main-effect comparisons
and for the pairwise differences of the treatment combinations, giving an experimentwise
confidence level of at least 97%.

Table 6.3 Data for the bleach experiment, with treatment factors
“concentration” (A) and “stain type” (B)

ij Time for stain removal (in seconds) y ij. sij
11 3600 3920 3340 3173 2452 3297.0 550.27
12 495 236 515 573 555 474.8 137.04
13 733 525 793 1026 510 717.4 212.85
21 2029 2271 2156 2493 2805 2350.8 305.94
22 428 432 335 288 376 371.8 61.60
23 880 759 1138 780 1625 1036.4 361.91
31 3660 4105 4545 3569 3342 3844.2 479.85
32 410 225 437 350 140 312.4 126.32
33 539 1354 347 584 781 721.0 386.02
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A pairwise comparison of levelsu andh of factorB is of the form

β∗
u − β∗

h � τ .u − τ .h � 1
3 (τ1u + τ2u + τ3u − τ1h − τ2h − τ3h) ,

which has least squares estimate

β̂∗
u − β̂∗

h � y.u. − y.h. � 1
3

(
y1u. + y2u. + y3u. − y1h. − y2h. − y3h.

)
.

If s2
ij denotes the sample variance of the data for treatment combinationij , the estimated

variance of this estimator, as in (5.6.4), page 117, is

V̂ar
(
β̂∗
u − β̂∗

h

) �∑
i

∑
j

d2
ij

s2
ij

rij
� 1

9 × 5
(s2

1u + s2
2u + s2

3u + s2
1h + s2

2h + s2
3h),

and sincer � 5, the approximate number of degrees of freedom for error is

df � (s2
1u + s2

2u + s2
3u + s2

1h + s2
2h + s2

3h)
2

(s4
1u/4) + (s4

2u/4) + (s4
3u/4) + (s4

1h/4) + (s4
2h/4) + (s4

3h/4)

after canceling the factorr2 � 25 in the numerator and denominator.
For Tukey’s method of pairwise comparisons for factorB with b � 3 levels, the minimum

significant difference is

msd � wT

√
V̂ar
(
β̂∗
u − β̂∗

h

)
,

with wT � q3,df,.01/
√

2. For measurements in seconds, we have the following values:

(u, h) df q3,df,0.01 V̂ar
(
β̂∗
u − β̂∗

h

)
msd y.u. − y.h.

(1,2) 11.5 5.09 14,780.6 437.57 2,777.67

(1,3) 18.6 4.68 21,153.5 481.31 2,339.07

(3,2) 12.6 4.99 8,084.7 317.26 438.60

The set of 99% simultaneous Tukey confidence intervals for pairwise differences is then

β∗
1 − β∗

2 ∈ (2777.67± 437.57) � (2340.10,3215.24),

β∗
1 − β∗

3 ∈ (1857.76,2820.38), β∗
1 − β∗

3 ∈ (121.34,755.86).

Since none of the intervals contains zero, we can state that all pairs of levels ofB (stain types)
have different effects on the speed of stain removal, averaged over the three concentrations
of bleach. With experimentwise confidence level at least 97%, the mean time to remove blue
ink (level 1) is between 1857 and 2820 seconds longer than that for tomato sauce (level 3),
and the mean time to remove tomato sauce is between 121 and 755 seconds longer than that
for jam (level 2). ✷

6.4.4 Analysis of Variance for the Complete Model

There are three standard hypotheses that are usually examined when the two-way complete
model is used. The first hypothesis is that the interaction between treatment factorsA and
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B is negligible; that is,

HAB
0 : {(αβ)ij − (αβ)iq − (αβ)sj + (αβ)sq � 0 for all i 	� s, j 	� q} ,

which occurs when the interaction plots show parallel lines. Notice that if all of the contrasts
(αβ)ij − (αβ)iq − (αβ)sj + (αβ)sq are zero, then their averages overs andq are also zero.
This leads to an equivalent way to writeHAB

0 as

HAB
0 : {(αβ)ij − (αβ)i. − (αβ).j + (αβ).. � 0 for all ij} .

In this form, it appears thatHAB
0 is based onab estimable contrasts, but in fact, some of them

are redundant, since theab contrasts add to zero over the subscripti � 1,2, . . . , a and also
over the subscriptj � 1,2, . . . , b. Consequently,HAB

0 is actually based on (a − 1)(b − 1)
estimable contrasts, and the test is based on (a − 1)(b − 1) degrees of freedom.

The other two standard hypotheses are the main-effect hypotheses

HA
0 : {α∗

1 � α∗
2 � . . . � α∗

a} and HB
0 : {β∗

1 � β∗
2 � . . . � β∗

b } ,
whereα∗

i � αi + (αβ)i. andβ∗
j � βj + (αβ).j . However, these main-effect hypotheses may

not be of interest if there is a sizable interaction. Each of the main-effect hypotheses can
be rephrased in terms of estimable contrasts in the parameters, and so can be tested. As in
Chapter 3, the tests will be based on (a − 1) and (b − 1) degrees of freedom, respectively.

When the sample sizes are unequal, there are no neat algebraic formulae for the decision
rules of the hypothesis tests. Therefore, we will obtain the tests for equal sample sizes and
postpone discussion of the unequal sample size case to Section 6.8, where analysis will be
done by computer.

Testing interactions—equal sample sizes Since tests for main effects may not be
relevant if the two factors interact, the hypothesis of negligible interaction should be tested
first. As in Section 3.5.1, page 44, in order to test

HAB
0 : {(αβ)ij − (αβ)i. − (αβ).j + (αβ).. � 0 for all ij}

against the alternative hypothesisHAB
A :{ the interaction is not negligible}, we compare the

sum of squares for errorssE under the two-way complete model (6.2.2) with the sum of
squares for errorssEAB

0 under the reduced model obtained whenHAB
0 is true. The difference

ssAB � ssEAB
0 − ssE

is called thesum of squares for the interactionAB, and the test rejectsHAB
0 in favor ofHAB

A

if ssAB is large relative tossE.
We can rewrite the two-way complete model as

yijt � µ+ αi + βj + (αβ)ij + εij t

� µ∗ + α∗
i + β∗

j + [(αβ)ij − (αβ)i. − (αβ).j + (αβ)..] + εij t ,

whereµ∗ is the constantµ− (αβ).. . So, whenHAB
0 is true, the reduced model is

yijt � µ∗ + α∗
i + β∗

j + εij t ,

which has the same form as the two-way main-effects model.
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We will show in Section 6.5.1 that the least squares estimate ofµ + αi + βj for the
two-way main-effects model isyi.. + y.j. − y..., for equal sample sizes. Similarly, the least
squares estimate ofµ∗ +α∗

i +β∗
j in the above reduced model is alsoyi..+y.j.−y... . Hence,

the sum of squares for error for the reduced model is

ssEAB
0 �

∑
i

∑
j

∑
t

(
yijt − µ̂∗ − α̂∗

i − β̂∗
j

)2

�
∑
i

∑
j

∑
t

(yijt − yi.. − y.j. + y...)
2 .

Adding and subtracting a termyij. to this expression, we have

ssEAB
0 �

∑
i

∑
j

∑
t

(
(yijt − yij.) + (yij. − yi.. − y.j. + y...)

)2
�
∑
i

∑
j

∑
t

(yijt − yij.)
2 +
∑
i

∑
j

∑
t

(yij. − yi. − y.j. + y...)
2 .

But the first term is justssE given in (6.4.17). So, for equal sample sizes,

ssAB � ssEAB
0 − ssE

� r
∑
i

∑
j

(yij. − yi. − y.j. + y...)
2 (6.4.21)

�
∑
i

∑
j

y2
ij./r −

∑
i

y2
i../(br) −

∑
j

y2
.j./(ar) + y2

.../(abr) .

It can be shown that whenHAB
0 is true, the corresponding random variableSS(AB)/σ 2

has a chi-squared distribution with (a−1)(b−1) degrees of freedom. Also,SSE/σ 2 ∼ χ2
n−ab

andSSE can be shown to be independent ofSS(AB). So, whenHAB
0 is true,

SS(AB)/(a − 1)(b − 1)σ 2

SSE/(n − ab)σ 2
� MS(AB)

MSE
∼ F(a−1)(b−1),n−ab .

We rejectHAB
0 for large values of the ratiomsAB/msE. Thus, the rule for testing the

hypothesisHAB
0 against the alternative hypothesis that the interaction is not negligible is

rejectHAB
0 if

msAB

msE
> F(a−1)(b−1),n−ab,α , (6.4.22)

where msAB � ssAB/(a− 1)(b− 1), msE � ssE/(n− ab), ssAB is given in (6.4.21), and
ssE is

ssE �
∑
i

∑
j

∑
t

yij t −
∑
i

∑
j

y2
ij./r .

If HAB
0 is rejected, it is often preferable to use the equivalent cell-means model and look at

contrasts in the treatment combinations. IfHAB
0 is not rejected, then tests and contrasts for

main effects are usually of interest, and the two-way complete model is retained. (We do
not change to the inequivalent main-effects model.)
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Testing main effects of A—equal sample sizes In testing the hypothesis that factor
A has no effect on the response, one can either test the hypothesis that the levels ofA

(averaged over the levels ofB) have the same average effect on the response, that is,

HA
0 : {α∗

1 � α∗
2 � · · · � α∗

a} ,
or one can test the hypothesis that the response depends only on the level ofB, that is

HA+AB
0 : {HA

0 andHAB
0 are both true} .

The traditional test, which is produced automatically by many computer packages, is a
test of the former, and the sum of squares for errorssE under the two-way complete model
is compared with the sum of squares for errorssEA

0 under the reduced model

Yijt � µ∗∗ + β∗
j + ((αβ)ij − (αβ)i. − (αβ).j + (αβ)..

)+ εij t .

It is, perhaps, more intuitively appealing to testHA+AB
0 rather thanHA

0 , since the
corresponding reduced model is

Yijt � µ∗ + β∗
j + εij t ,

suggesting thatA has no effect on the response whatsoever.
In this book, we take the view that the main effect ofA would not be tested unless the

hypothesis of no interaction were first accepted. If it is true that there is no interaction, then
the two hypotheses and corresponding reduced models are the same, and the results of the
two tests should be similar. Consequently, we will derive the test of the standard hypothesis
HA

0 .
It can be shown that if the sample sizes are equal, the least squares estimate ofE[Yijt ]

for the reduced model underHA
0 is

yij. − yi.. + y... ,

and so the sum of squares for error for the reduced model is

ssEA
0 �
∑
i

∑
j

∑
t

(yijt − yij. + yi.. − y...)
2 .

Taking the terms in pairs and expanding the terms in parentheses, we obtain

ssEA
0 �

a∑
i�1

b∑
j�1

r∑
t�1

(yijt − yij.)
2 − br

a∑
i�1

(yi.. − y...)
2 .

Since the first term is the formula (6.4.17) forssE, thesum of squares for treatment factor
A is

ssA � ssEA
0 − ssE � br

a∑
i�1

(yi.. − y...)
2 �

a∑
i�1

y2
i../(br) − y2

.../(abr) . (6.4.23)

Notice that this formula forssA is similar to the formula (3.5.12), page 46, forssT used to
test the hypothesisH0:{τ1 � τ2 � · · · � τa} in the one-way analysis of variance.
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We writeSSA for the random variable corresponding tossA. It can be shown that ifHA
0

is true,SSA/σ 2 has a chi-squared distribution witha − 1 degrees of freedom, and thatSSA
andSSE are independent. So, writingMSA = SSA/(a − 1), we have thatMSA/MSE has an
F -distribution whenHA

0 is true, and the rule for testingHA
0 : {α∗

1 � · · · � α∗
a} against

HA
A : { not all of theα∗

i ’s are equal} is

rejectHA
0 if

msA

msE
> Fa−1,n−ab,α , (6.4.24)

wheremsA � ssA/(a − 1) andmsE � ssE/(n− ab).

Testing main effects of B—equal sample sizes Analogous to the test for main effects
of A, we can show that the rule for testingHB

0 : {β∗
1 � β∗

2 � · · · � β∗
b } againstHB

A : { not
all of theβ∗

j ’s are equal} is

rejectHB
0 if

msB

msE
> Fb−1,n−ab,α , (6.4.25)

wheremsB � ssB/(b − 1), msE � ssE/(n− ab), and

ssB � ar
∑
j

(y.j. − y...)
2 �
∑
j

y2
.j./(ar) − y2

.../(abr) . (6.4.26)

Analysis of variance table The tests of the three hypotheses are summarized in a two-
way analysis of variance table, shown in Table 6.4. The computational formulae are given
for equal sample sizes. The last line of the table issstot � ∑i

∑
j

∑
t (yijt − y...)

2, which
is the total sum of squares similar to (3.5.18). It can be verified that

ssA + ssB + ssAB + ssE � sstot .

When the sample sizes are not equal, the formulae forssA, ssB, and ssAB are more
complicated, the corresponding random variablesSSA,SSB, andSS(AB) are not independent,

Table 6.4 Two-way ANOVA, crossed fixed effects with interaction

Source of Degrees of Sum of Mean Ratio
Variation Freedom Squares Square
Factor A a − 1 ssA ssA

a−1
msA
msE

Factor B b − 1 ssB ssB
b−1

msB
msE

AB (a − 1)(b − 1) ssAB ssAB
(a−1)(b−1)

msAB
msE

Error n − ab ssE ssE
n−ab

Total n − 1 sstot

Computational Formulae for Equal Sample Sizes
ssE �∑i

∑
j

∑
t y

2
ijt ssA �∑i y

2
i../(br )− y 2.../n

−∑i

∑
j y

2
ij./r ssB �∑j y

2
.j./(ar )− y 2.../n

sstot �∑i

∑
j

∑
t y

2
ijt − y 2.../n ssAB �∑i

∑
j y

2
ij./r −∑i y

2
i../(br )

n � abr −∑j y
2
.j./(ar )+ y 2.../n
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and

ssA + ssB + ssAB + ssE 	� sstot .

The analysis of experiments with unequal sample sizes will be discussed in Section 6.8,
page 175, using the SAS computer package.

Example 6.4.5 Reaction time experiment, continued

The reaction time experiment was described in Example 6.4.2, page 148. There werea � 2
levels of cue stimulus andb � 3 levels of cue time, andr � 3 observations per treatment
combination. Using the data in Table 6.2, we have

sstot �
∑
i

∑
j

∑
t

y2
ij t − y2

.../(abr)

� 0.96519− 0.93617� 0.02902,

ssA �
∑
i

y2
i../(br) − y2

.../(abr)

� (1.7272 + 2.3782)/9 − 0.93617� 0.02354,

ssB �
∑
j

y2
.j./(ar) − y2

.../(abr)

� (1.3602 + 1.3142 + 1.4312)/6 − 0.93617� 0.00116

ssAB �
∑
i

∑
j

y2
ij./r −

∑
i

y2
i../(br) −

∑
j

y2
.j./(ar) + y2

.../(abr)

� 0.96172− 0.95971− 0.93733+ 0.93617� 0.00085,

and in Example 6.4.2,ssE was calculated to be 0.00347. It can be seen thatsstot � ssA +
ssB + ssAB + ssE. The analysis of variance table is shown in Table 6.5. The mean squares
are the sums of squares divided by their degrees of freedom.

There are three hypotheses to be tested. If the Type I error probabilityα is selected to be
0.01 for each test, then the probability of incorrectly rejecting at least one hypothesis when
it is true is at most 0.03. The interaction plots in Figure 6.4, page 150, suggest that there is
no interaction between cue stimulus (A) and cue time (B). To test this hypothesis, we obtain
from the analysis of variance table

msAB/msE � 0.00043/0.00029� 1.5 ,

which is less thanF2,12,.01 � 6.93. Therefore, at individual significance level,α � 0.01,
there is not sufficient evidence to reject the null hypothesisHAB

0 that the interaction is
negligible. This agrees with the interaction plot.

Now consider the main effects. Looking at Figure 6.4, if we average over cue stimulus,
there does not appear to be much difference in the effect of cue time. If we average over
cue time, then auditory cue stimulus (level 1) appears to produce a shorter reaction time
than a visual cue stimulus (level 2). From the analysis of variance table,msA/msE �
0.02354/0.00029� 81.4. This is larger thanF1,12,.01 � 9.33, so we rejectHA

0 :{α∗
1 � α∗

2},
and we would conclude that there is a difference in cue stimulus averaged over the cue times.
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Table 6.5 Two-way ANOVA for the reaction time experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Cue stimulus 1 0.02354 0.02354 81.38 0.0001
Cue time 2 0.00116 0.00058 2.00 0.1778
Interaction 2 0.00085 0.00043 1.46 0.2701
Error 12 0.00347 0.00029
Total 17 0.02902

On the other hand,msB/msE � 0.00058/0.00029� 2.0, which is less thanF2,12,.01 � 6.93.
Consequently, we do not rejectHB

0 : {β∗
1 � β∗

2 � β∗
3} and conclude that there is no evidence

for a difference in the effects of the cue times averaged over the two cue stimuli.
If the analysis were done by a computer program, thep-values in Table 6.5 would

be printed. We would reject any hypothesis whose correspondingp-value is less than the
selected individualα∗ level. In this example, we selectedα∗ � 0.01, and we would fail to
rejectHAB

0 andHB
0 , but we would rejectHA

0 , as in the hand calculations.
This was a pilot experiment, and since the experimenters already believed that cue stim-

ulus and cue time really do not interact, they selected the two-way main-effects model in
planning the main experiment. ✷

6.5 Analysis of the Two-Way Main-Effects Model

6.5.1 Least Squares Estimators for the Main-Effects Model

The two-way main-effects model (6.2.3) is

Yijt � µ+ αi + βj + εij t ,

εij t ∼ N (0, σ 2) ,

εij t
′s are mutually independent,

t � 1, . . . , rij ; i � 1, . . . , a; j � 1, . . . , b.

This model is a submodel of the two-way complete model (6.2.2) in the sense that it can
only describe situations similar to those depicted in plots (a)–(d) of Figure 6.1 and cannot
describe plots (e)–(h). When the sample sizes are unequal, the least squares estimators of
the parameters in the main-effects model are not easy to obtain, and calculations are best
left to a computer (see Section 6.8). In the optional subsection below, we show that when
the sample sizes are all equal tor, the least squares estimator ofE[Yijt ] � (µ+αi +βj ) is

µ̂+ α̂i + β̂j � Y i.. + Y .j. − Y ... . (6.5.27)

The least squares estimator for the estimable main-effect contrast
∑

i ciαi with
∑

i ci � 0
is then∑

i

ci α̂i �
∑
i

ci(µ̂+ α̂i + β̂j ) �
∑
i

ci
(
Y i.. + Y .j. − Y ...

)
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�
∑
i

ciY i.. ,

which has variance

Var

(∑
i

ci α̂i

)
� Var

(∑
i

ciY i..

)
� σ 2

br

∑
i

c2
i . (6.5.28)

For example,αp − αs , the pairwise comparison of levelsp ands of A, has least squares
estimator and associated variance

α̂p − α̂s � Yp.. − Y s.. with Var(Yp.. − Y s..) � 2σ 2

br
.

These are exactly the same formulas as for the two-way complete model and similar to those
for the one-way model. Likewise forB, a main-effect contrast

∑
kjβj with

∑
j kj � 0 has

least squares estimator and associated variance

∑
j

kj β̂j �
∑
j

kjY .j. and Var

(∑
j

kjY .j.

)
� σ 2

ar

∑
j

k2
j , (6.5.29)

and the least squares estimator and associated variance for the pairwise differenceβh − βq
is

β̂h − β̂q � Y .h. − Y .q. with Var(Y .h. − Y .q.) � 2σ 2

ar
.

Example 6.5.1 Nail varnish experiment

An experiment on the efficacy of nail varnish solvent in removing nail varnish from cloth
was run by Pascale Quester in 1986. Two different brands of solvent (factorA) and three
different brands of nail varnish (factorB) were investigated. One drop of nail varnish was
applied to a piece of cloth (dropped from the applicator 20 cm above the cloth). The cloth
was immersed in a bowl of solvent and the time measured (in minutes) until the varnish
completely dissolved. There were six treatment combinations 11, 12, 13, 21, 22, 23, where
the first digit represents the brand of solvent and the second digit represents the brand of nail
varnish used in the experiment. The design was a completely randomized design withr � 5
observations on each of the six treatment combinations. The data are listed in Table 6.6 in
the order in which they were collected.

The experimenter had run a pilot experiment to estimate the error varianceσ 2 and to
check that the experimental procedure was satisfactory. The pilot experiment indicated
that the interaction between nail varnish and solvent was negligible. The similarity of the
chemical composition of the varnishes and solvents, and the verification from the pilot
experiment, suggest that the main-effects model (6.2.3) will be a satisfactory model for the
main experiment. The data from the main experiment give the interaction plots in Figure 6.5.
Although the lines are not quite parallel, the selected main-effects model would not be a
severely incorrect representation of the data.
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Table 6.6 Data (minutes) for the nail varnish experiment

Solvent 2 1 1 2 2 2 1 2
Varnish 3 3 3 3 2 2 2 2
Time 32.50 30.20 27.25 24.25 34.42 26.00 22.50 31.08
Solvent 1 2 1 1 2 1 2 2
Varnish 2 1 1 1 1 3 3 2
Time 25.17 29.17 27.58 28.75 31.75 29.75 30.75 29.17
Solvent 1 1 2 1 2 2 1 2
Varnish 2 1 2 2 1 3 3 1
Time 27.75 25.83 24.75 21.50 32.08 29.50 24.50 28.50
Solvent 2 1 1 2 1 1
Varnish 3 3 1 1 1 2
Time 28.75 22.75 29.25 31.25 22.08 25.00

Figure 6.5
Average dissolving
times for the nail

varnish experiment
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Using the data in Table 6.6, the average dissolving time (in minutes) for the two brands
of solvent are

y1.. � 25.9907 and y2.. � 29.5947.

So the least squares estimate of the difference in the dissolving times for the two solvents is

α̂1 − α̂2 � y1.. − y2.. � −3.6040,

and the variance of the estimator is 2σ 2/(rb) � 2σ 2/15. A difference of 3.6 minutes seems
quite substantial, but this needs to be compared with the experimental error via a confidence
interval to see whether such a difference could have occurred by chance (see Examples 6.5.2
and 6.5.3).

The average dissolving times for the three brands of nail varnish are

y.1. � 28.624, y.2. � 26.734, and y.3. � 28.020,

and the least squares estimates of the pairwise comparisons are

β̂1 − β̂2 � 1.890, β̂1 − β̂3 � 0.604, and β̂2 − β̂3 � −1.286,

each with associated variance 2σ 2/10. Since levels 1 and 2 of the nail varnish represented
French brands, while level 3 represented an American brand, the difference of averages
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contrast

1
2(β1 + β2) − β3

would also be of interest. The least squares estimate of this contrast is

1
2(β̂1 + β̂2) − β̂3 � 1

2(y.1. + y.2.) − y.3. � −0.341,

with associated variance 6σ 2/40. ✷

Deriving least squares estimators for equal sample sizes (optional) We now
sketch the derivation (using calculus) of the least squares estimators for the parameters of
the two-way main-effects model (6.2.3), when the sample sizes are all equal tor. A reader
without knowledge of calculus may jump to Section 6.5.2, page 162.

As in Section 3.4.3, the least squares estimates of the parameters in a model are those
estimates that give the minimum value of the sum of squares of the estimated errors. For
the two-way main-effects model (6.2.3), the sum of squared errors is

a∑
i�1

b∑
j�1

r∑
t�1

e2
ij t �

a∑
i�1

b∑
j�1

r∑
t�1

(
yijt − (µ+ αi + βj )

)2
.

The least squares estimates are obtained by differentiating the sum of squared errors with
respect to each of the parametersµ, αi (i � 1, . . . , a), andβj (j � 1, . . . , b) in turn and
setting the derivatives equal to zero. The resulting set of normal equations is as follows.

y... − abrµ̂− br
∑
i

α̂i − ar
∑
j

β̂j � 0, (6.5.30)

yi.. − brµ̂− brα̂i − r
∑
j

β̂j � 0 , i � 1, . . . , a, (6.5.31)

y.j. − arµ̂− r
∑
i

α̂i − arβ̂j � 0, j � 1, . . . , b. (6.5.32)

There are 1+a+b normal equations in 1+a+b unknowns. However, the equations are not
all distinct (linearly independent), since the sum of thea equations (6.5.31) is equal to the
sum of theb equations (6.5.32), which is equal to the equation (6.5.30). Consequently, there
are at most, and, in fact, exactly, 1+a+b−2 distinct equations, and two extra equations are
needed in order to obtain a solution. Many computer packages, including the SAS software,
use the extra equationŝαa � 0 andβ̂b � 0. However, when working by hand, it is easier
to use the equations

∑
i α̂i � 0 and

∑
j β̂j � 0, in which case (6.5.30)–(6.5.32) give the

following least squares solutions:

µ̂ � y... , (6.5.33)

α̂i � yi.. − y... , i � 1, . . . , a ,

β̂j � y.j. − y... , j � 1, . . . , b .

Then the least squares estimate ofµ+ αi + βj is

µ̂+ α̂i + β̂j � yi.. + y.j. − y... , i � 1, . . . , a, j � 1, . . . , b.
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Deriving least squares estimators for unequal sample sizes (optional) If the
sample sizes are not equal, then the normal equations for the two-way main-effects model
become

y... − nµ̂−
a∑

p�1

rp.α̂p −
b∑

q�1

r.q β̂q � 0, (6.5.34)

yi.. − ri.µ̂− ri.α̂i −
b∑

q�1

riq β̂q � 0 , i � 1, . . . , a, (6.5.35)

y.j. − r.j µ̂−
a∑

p�1

rpj α̂p − r.j β̂j � 0, j � 1, . . . , b, (6.5.36)

wheren � ∑i

∑
j rij , rp. � ∑j rpj , andr.q � ∑i riq . As in the equal sample size case,

the normal equations representa+b−1 distinct equations in 1+a+b unknowns, and two
extra equations are needed to obtain a particular solution. Looking at (6.5.34), a sensible
choice might be

∑
p rp.α̂p � 0 and

∑
q r.q β̂q � 0. Thenµ̂ � y... as in the equal sample size

case. However, obtaining solutions for theα̂i ’s andβ̂j ’s is not so easy. One can solve forβ̂j
in (6.5.36) and substitute this into (6.5.35), which gives the following equations in theα̂i ’s:

α̂i −
b∑

q�1

riq

r.qri.

a∑
p�1

rpqα̂p � yi.. −
b∑

q�1

riq

r.qri.
y.q , for i � 1, . . . , a. (6.5.37)

Equations in theβ̂j ’s can be obtained similarly. Algebraic expressions for the individual
parameter estimates are generally complicated, and we will leave the unequal sample size
case to a computer analysis (Section 6.8).

6.5.2 Estimation of σ 2 in the Main-Effects Model

The minimum value of the sum of squares of the estimated errors for the two-way main-
effects model is

ssE �
a∑
i�1

b∑
j�1

r∑
t�1

(yijt − µ̂− α̂i − β̂j )
2 (6.5.38)

�
a∑
i�1

b∑
j�1

r∑
t�1

(yijt − yi.. − y.j. + y...)
2 .

Expanding the terms in parentheses in (6.5.38) yields the following formulae useful for
direct hand calculation ofssE:

ssE �
∑
i

∑
j

∑
t

y2
ij t − br

∑
i

y2
i.. − ar

∑
j

y2
.j. + abry2

... (6.5.39)

�
∑
i

∑
j

∑
t

y2
ij t − 1

br

∑
i

y2
i.. −

1

ar

∑
j

y2
.j. +

1

abr
y2
... .
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Now, ssE is the observed value of

SSE �
∑
i

∑
j

∑
t

(Yijt − Y i.. − Y .j. + Y ...)
2 .

In Exercise 19, the reader will be asked to prove, for the equal sample size case, that

E[SSE] � (n− a − b + 1)σ 2 ,

wheren � abr, so an unbiased estimator ofσ 2 is

MSE � SSE/(n− a − b + 1) .

It can be shown thatSSE/σ 2 has a chi-squared distribution with (n− a− b+ 1) degrees of
freedom. An upper 100(1− α)% confidence bound forσ 2 is therefore given by

σ 2 ≤ ssE

χ2
n−a−b+1,1−α

.

Example 6.5.2 Nail varnish experiment

The data for the nail varnish experiment are given in Table 6.6 of Example 6.5.1, page 159,
anda � 2, b � 3, r � 5, n � 30. It can be verified that∑

i

∑
j

∑
t

y2
ij t � 23,505.7976, y... � 27.7927,

and

y1.. � 25.9907, y2.. � 29.5947,

y.1. � 28.624, y.2. � 26.734, y.3. � 28.020.

Thus, from (6.5.39),

ssE � 23,505.7976− 23,270.3857− 23,191.6053+ 23,172.9696

� 216.7762,

and an unbiased estimate ofσ 2 is

msE � 216.7762/(30− 2 − 3 + 1) � 8.3375 minutes2 .

A 95% upper confidence bound forσ 2 is

ssE

χ2
26,.95

� 216.7762

15.3791
� 14.096 minutes2 ,

and taking square roots, a 95% upper confidence limit forσ is 3.7544 minutes. ✷

6.5.3 Multiple Comparisons for the Main-Effects Model

When the sample sizes are equal, the Bonferroni, Scheffé, Tukey, Dunnett, and Hsu methods
described in Section 4.4 can all be used for obtaining simultaneous confidence intervals for
sets of contrasts comparing the levels ofA or of B. A set of 100(1− α)% simultaneous
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confidence intervals for contrasts comparing the levels of factorA is of the form (4.4.20),
which for the two-way model becomes∑

ciαi ∈
(∑

ciyi.. ± w

√
msE
∑

c2
i /br

)
, (6.5.40)

where the critical coefficients for the various methods are, respectively,

wB � tn−a−b+1,α/2m ; wS � √(a − 1)Fa−1,n−a−b+1,α ;

wT � qa,n−a−b+1,α/
√

2 ;

wH � wD1 � t
(0.5)
a−1,n−a−b+1,α ; wD2 � |t |(0.5)

a−1,n−a−b+1,α .

Similarly, a set of 100(1− α)% confidence intervals for contrasts comparing the levels of
factorB is of the form∑

kjβj ∈
(∑

kjy.j. ± w

√
msE

∑
k2
j /ar

)
, (6.5.41)

and the critical coefficients are as above after interchanginga andb.
We can also obtain confidence intervals for the treatment meansµ+αi+βj using the least

squares estimatorsY i.. + Y .j. − Y ..., each of which has a normal distribution and variance
σ 2(a+ b−1)/(abr). We obtain a set of 100(1−α)% simultaneous confidence intervals for
theab treatment means as

µ+ αi + βj ∈
{

(yi.. + y.j. − y...) ± w

√
msE

(
a + b − 1

abr

)}
, (6.5.42)

with critical coefficient

wBM � tα/(2ab),(n−a−b+1) or wSM � √(a + b − 1)Fa+b−1,n−a−b+1,α

for the Bonferroni and Scheffé methods, respectively.
When confidence intervals are calculated for treatment means and for contrasts in the main

effects of factorsA andB, an experimentwise confidence level should be calculated. For
example, if intervals for contrasts for factorA have overall confidence level 100(1− α1)%,
and intervals forB have overall confidence level 100(1− α2)%, and intervals for means
have overall confidence level 100(1−α3)%, the experimentwise confidence level for all the
intervals combined is at least 100(1− (α1 + α2 + α3))%. Alternatively,wSM could be used
in (6.5.40) and (6.5.42), and the overall level for all three sets of intervals together would
be 100(1− α)%.

Example 6.5.3 Nail varnish experiment

The least squares estimates for the differences in the effects of the two nail varnish solvents
and for the pairwise differences in the effects of the three nail varnishes were calculated in
Example 6.5.1, page 159. From Table 6.8,msE � 8.3375 with error degrees of freedom
n−a−b+1 � 26. There is onlym � 1 contrast for factorA, and a simple 99% confidence
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interval of the form (6.5.40) can be used to give

α2 − α1 ∈
(
y2.. − y1.. ± tn−a−b+1,α/2

√
msE(2/br)

)
�
(
3.6040± t26,0.005

√
(8.3375/15)

)
.

From Table A.4,t26,0.005 � 2.779, so a 99% confidence interval forα2 − α1 is

1.5321≤ α2 − α1 ≤ 5.6759.

The confidence interval indicates that solvent 2 takes between 1.5 and 5.7 minutes longer,
on average, in dissolving the three nail varnishes than does solvent 1.

To compare the nail varnishes in terms of their speed of dissolving, confidence intervals
are required for the three pairwise comparisonsβ1 − β2, β1 − β3, andβ2 − β3. If an overall
confidence level of 99% is required, Tukey’s method gives confidence intervals of the form

βj − βp ∈
(
y.j. − y.p. ± (qb,df,0.01/

√
2)
√

msE(2/(ar))
)
.

From Table A.8,q3,26,0.01 � 4.54. Using the least squares estimates computed in Ex-
ample 6.5.1, page 159, andmsE � 8.3375 with n − a − b + 1 � 26 as above, the
minimum significant difference ismsd � (4.54/

√
2)

√
8.3375(2/10) � 4.145. A set of

99% confidence intervals for the pairwise comparisons for factorB is

β1 − β2 ∈ (1.890± 4.145)� (−2.255,6.035),

β1 − β3 ∈ (−3.541,4.749), β2 − β3 ∈ (−5.431,2.859).

Each of these intervals includes zero, indicating insufficient evidence to conclude a differ-
ence in the speed at which the nail varnishes dissolve. The overall confidence level for the
four intervals for factorsA andB together is at least 98%. Bonferroni’s method could have
been used instead for all four intervals. To have obtained an overall level of at least 98%,
we could have setα∗ � α/m � 0.02/4 � 0.005 for each of the four intervals. The critical
coefficient in (6.5.40) would then have beenwB � t0.0025,26 � 3.067. So the Bonferroni
method would have given a longer interval forα1−α2 but shorter intervals forβj −βp. ✷

6.5.4 Unequal Variances

When the variances of the error variables are unequal and no equalizing transformation
can be found, Satterthwaite’s approximation can be used. Since the approximation uses the
sample variances of the observations for each treatment combination individually, and since
the least squares estimates of the main-effect contrasts are the same whether or not interaction
terms are included in the model, the procedure is exactly the same as that illustrated for the
bleach experiment in Example 6.4.3, page 151.

6.5.5 Analysis of Variance for Equal Sample Sizes

Testing main effects of B—equal sample sizes The hypothesis that the levels ofB
all have the same effect on the response isHB

0 : {β1 � β2 � · · · � βb}, which can be written
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in terms of estimable contrasts asHB
0 :{βj − β. � 0, for all j � 1, . . . , b}. To obtain a test

of HB
0 against the alternative hypothesisHB

A : { at least two of theβj ’s differ}, the sum of
squares for error for the two-way main-effects model is compared with the sum of squares
for error for the reduced model

Yijt � µ+ αi + εij t . (6.5.43)

This is identical to the one-way analysis of variance model (3.3.1) withµ replaced by
µ∗ � µ + β. and withbr observations on theith level of treatment factorA. ThusssEB

0

is the same as the sum of squares for error in a one-way analysis of variance, and can be
obtained from equation (3.4.4), page 42, by replacing the subscriptj by the pair of subscripts
j t , yielding

ssEB
0 �
∑
i

∑
j

∑
t

(yijt − yi..)
2 . (6.5.44)

The sum of squares for testingHB
0 is ssEB

0 − ssE, wheressE was derived in (6.5.38),
page 162. So,

ssB �
a∑
i�1

b∑
j�1

r∑
t�1

(yijt − yi..)
2 −

a∑
i�1

b∑
j�1

r∑
t�1

(
(yijt − yi..) − (y.j. − y...)

)2
� ar

∑
j

(y.j. − y...)
2

�
∑
j

y2
.j./(ar) − y2

.../(abr) . (6.5.45)

Notice that the formula forssB is identical to the formula (6.4.26) for testing the equivalent
main-effect hypothesis in the two-way complete model. It can be shown that whenHB

0 is
true, the corresponding random variableSSB/σ 2 has a chi-squared distribution with (b− 1)
degrees of freedom, andSSB andSSE are independent. Therefore, whenHB

0 is true,

SSB/(b − 1)σ 2

SSE/(n− a − b + 1)σ 2
� MSB

MSE
∼ Fb−1,n−a−b+1 ,

and the decision rule for testingHB
0 againstHB

A is

rejectHB
0 if

msB

msE
> Fb−1,n−a−b+1,α . (6.5.46)

Testing main effects of A—equal sample sizes A similar rule is obtained for testing
HA

0 : {α1 � α2 � · · · � αa} against the alternative hypothesisHA
A : {at least two of theαi ’s

differ}. The decision rule is

rejectHA
0 if

msA

msE
> Fa−1,n−a−b+1,α , (6.5.47)

wheremsA � ssA/(a − 1), and

ssA � rb
∑
i

(yi.. − y...)
2 �

a∑
i�1

y2
i../(rb) − y2

.../(abr) . (6.5.48)
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Table 6.7 Two-Way ANOVA, negligible interaction, equal sample sizes

Source of Degrees of Sum of Mean Ratio
Variation Freedom Squares Square
Factor A a − 1 ssA ssA

a−1
msA
msE

Factor B b − 1 ssB ssB
b−1

msB
msE

Error n − a − b + 1 ssE ssE
n−a−b+1

Total n − 1 sstot

Computational Formulae for Equal Sample Sizes
ssA �∑i y

2
i../(br )− y 2.../n ssB �∑j y

2
.j./(ar )− y 2.../n

sstot �∑i

∑
j

∑
t y

2
ijt − y 2.../n ssE � sstot − ssA − ssB

n � abr

similar to the formula (6.4.23) for testing the equivalent hypothesis in the two-way complete
model.

Analysis of variance table The information for testingHA
0 andHB

0 is summarized in
the analysis of variance table shown in Table 6.7. When sample sizes are equal,ssE �
sstot − ssA− ssB. When the sample sizes are not equal, the formulae for the sums of squares
are complicated, and the analysis should be done by computer (Section 6.8).

Example 6.5.4 Nail varnish experiment

The analysis of variance table for the nail varnish experiment of Example 6.5.1, page 159, is
given in Table 6.8. The experimenter selected the Type I error probability as 0.05 for testing
each ofHA

0 andHB
0 , giving an overall error rate of at most 0.1. The ratiomsA/msE � 11.68

is larger thanF1,26,0.05 ≈ 4.0, and therefore, the null hypothesis can be rejected. It can be
concluded at individual significance level 0.05 that there is a difference in dissolving times
for the two solvents.

The ratiomsB/msE � 1.12 is smaller thanF2,26,0.05 ≈ 3.15. Therefore, the null hypoth-
esisHB

0 cannot be rejected at individual significance level 0.05, and it is not possible to
conclude that there is a difference in dissolving time among the three varnishes. ✷

Table 6.8 Analysis of variance for the nail varnish experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Solvent 1 97.4161 97.4161 11.68 0.0021
Varnish 2 18.6357 9.3178 1.12 0.3423
Error 26 216.7761 8.3375
Total 29 332.8279
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6.5.6 Model Building

In some experiments, the primary objective is to find a model that gives an adequate rep-
resentation of the experimental data. Such experiments are called experiments formodel
building. If there are two crossed, fixed treatment factors, it is legitimate to use the two-way
complete model (6.2.2) as a preliminary model. Then, ifHAB

0 fails to be rejected, the two-
way main effects model (6.2.3) can be accepted as a reasonable model to represent the same
type of experimental data infuture experiments.

Note that it isnot legitimate to adopt the two-way main effects model and to use the
corresponding analysis of variance table, Table 6.7, to test further hypotheses or calcu-
late confidence intervals using thesame set of data. If this is done, the model is changed
based on the data, and the quoted significance levels and confidence levels associated with
further inferences will not be correct. Model building should be regarded as a completely
different exercise from confidence interval calculation.They should be done using different
experimental data.

6.6 Calculating Sample Sizes

In Chapters 3 and 4, we showed two methods of calculating sample sizes. The method
of Section 3.6 aims to achieve a specified power of a hypothesis test, and the method
of Section 4.5 aims to achieve a specified length of a confidence interval. Both of these
techniques rely on knowledge of the largest likely value ofσ 2 or msE and can also be used
for the two-way complete model.

Alternatively, sample sizes can be calculated to ensure that confidence intervals for main-
effect contrasts are no longer than a stated size, using the formulae (6.4.19) and (6.4.20) or,
for the two-way main-effects model, the formulae (6.5.40) and (6.5.41).

Similarly, the method of Section 3.6 for choosing the sample size to achieve the required
power of a hypothesis test can be used for each factor separately, with the modification that
the sample size calculation is based on

r � 2aσ 2φ2/(b)2
A) (6.6.49)

for factorA and

r � 2bσ 2φ2/(a)2
B)

for factorB, where)A is the smallest difference in theαi ’s (orα∗
i ’s) and)B is the smallest

difference in theβj ’s (or β∗
j ’s) that are of interest. The calculation procedure is identical to

that in Section 3.6, except that the error degrees of freedom areν2 � n− v for the complete
model andν2 � n−a−b+1 for the main-effects model (withn � abr), and the numerator
degrees of freedom areν1 � a − 1 for factorA andν1 � b − 1 for factorB.

If several different calculations are done and the calculated values ofr differ, then the
largest value should be selected.
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6.7 Small Experiments

6.7.1 One Observation per Cell

When observations are extremely time-consuming or expensive to collect, an experiment
may be designed to haver � 1 observation on each treatment combination. Such experi-
ments are calledexperiments with one observation per cell or single replicate experiments.
Since the ability to choose the sample sizes is lost, it should be recognized that confidence
intervals may be wide and hypothesis tests not very powerful.

If it is known in advance that the interaction between the two treatment factors is negli-
gible, then the experiment can be analyzed using the two-way main-effects model (6.2.3). If
this information is not available, then the two-way complete model (6.2.2) needs to be used.
However, there is a problem. Under the two-way complete model, the number of degrees
of freedom for error isab(r − 1). If r � 1, then this number is zero, andσ 2 cannot be
estimated.

Thus, a single replicate experiment with a possible interaction between the two factors
can be analyzed only if one of the following is true:

(i) σ 2 is known in advance.

(ii) The interaction is expected to be of a certain form that can be modeled with fewer
than (a − 1)(b − 1) degrees of freedom.

(iii) The number of treatment combinations is large, and only a few contrasts are likely to
be nonnegligible (effect sparsity).

If σ 2 is known in advance, formulae for confidence intervals would be based on the normal
distribution, and hypothesis tests would be based on the chi-squared distribution. However,
this situation is unlikely to occur, and we will not pursue it. The third case tends to occur
when the experiment involves a large number of treatment factors and will be discussed
in detail in Chapter 7. Here, we look at the second situation and consider two methods of
analysis, the first based on orthogonal contrasts, and the second known as Tukey’s test for
additivity.

6.7.2 Analysis Based on Orthogonal Contrasts

Two estimable contrasts are calledorthogonal contrasts if and only if their least squares
estimators are uncorrelated. For the moment, we recode the treatment combinations to obtain
a single-digit code, as we did in Chapter 3. Two contrasts�ciτi and�ksτs are orthogonal
if and only if

0 � Cov

(
v∑
i�1

ciY i.,

v∑
s�1

ksY s.

)
�

v∑
i�1

v∑
s�1

ciksCov(Y i., Y s.)

�
∑
i

cikiCov(Y i., Y i.) +
∑
i

∑
s 	�i

ciksCov(Y i., Y s.)
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�
∑
i

cikiVar(Y i.) + 0

� σ 2
∑
i

ciki/ri .

In the above calculation Cov(Y i., Y s.) is zero whens 	� i, because all theYit ’s are inde-
pendent of each other in the cell-means model. Thus, two contrasts�ciτi and�kiτi are
orthogonal if and only if∑

i

ciki/ri � 0 . (6.7.50)

If the sample sizes are equal, then this reduces to∑
i

ciki � 0 .

Changing back to two subscripts, we have that two contrasts��dij τij and��hij τij are
orthogonal if and only if

a∑
i�1

b∑
j�1

dijhij /rij � 0 , (6.7.51)

or, for equal sample sizes, the contrasts are orthogonal if and only if

a∑
i�1

b∑
j�1

dijhij � 0 . (6.7.52)

For equal sample sizes, the trend contrasts provide an illustration of orthogonal con-
trasts. For example, it can be verified that any pair of trend contrasts in Table 6.1, page 145,
satisfy (6.7.52). For the models considered in this book, the contrast estimators are nor-
mally distributed, so orthogonality of contrasts implies that their least squares estimators
are independent.

Forv treatments, or treatment combinations, a set ofv− 1 orthogonal contrasts is called
a complete set of orthogonal contrasts. It is not possible to find more thanv − 1 contrasts
that are mutually orthogonal. We write the sum of squares for theqth orthogonal contrast
in a complete set assscq , where

sscq � (��cijyij.)
2/(��c2

ij /rij )

is the square of the normalized contrast estimator (see page 76). The sum of squares for
treatments,ssT, can be partitioned into the sums of squares for thev−1 orthogonal contrasts
in a complete set; that is,

ssT � ssc1 + ssc2 + . . .+ sscv−1 . (6.7.53)

Example 6.7.1 Battery experiment, continued

Main effect and interaction contrasts for the battery experiment were examined in Exam-
ple 6.3.2, page 143 and, following that example, were written as columns in a table. Since
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Table 6.9 Three orthogonal contrasts for the battery experiment

Contrast Coefficients
∑
ciy i.

∑
c2i /ri ssc

Duty 1
2 [ 1, 1,−1,−1 ] 251.00 1

4 252,004.00

Brand 1
2 [ 1,−1, 1,−1 ] −176.50 1

4 124,609.00

Interaction 1
2 [ 1,−1,−1, 1 ] −113.25 1

4 51,302.25

the sample sizes are all equal, we need only check that (6.7.52) holds by multiplying corre-
sponding coefficients for any two contrasts and adding their products. The duty, brand, and
interaction contrasts form a complete set ofv − 1 � 3 orthogonal contrasts.

The sums of squares for the three contrasts are shown in Table 6.9. It can be verified
that they add to the treatment sum of squaresssT � 427,915.25 that was calculated in
Example 3.5.1, page 48. ✷

We can use the same idea to split the interaction sum of squaresssAB into indepen-
dent pieces. For the two-way complete model (6.2.2) withr � 1 observation per cell, the
sum of squares for testing the null hypothesis that a particular interaction contrast, say∑

i

∑
j dij (αβ)ij (with

∑
i dij � 0 and

∑
j dij � 0), is negligible, against the alternative

hypothesis that the contrast is not negligible, is

ssc � (
∑

i

∑
j dij yij )

2∑
i

∑
j d

2
ij

. (6.7.54)

The interaction has (a−1)(b−1) degrees of freedom. Consequently, there are (a−1)(b−1)
orthogonal interaction contrasts in a complete set, and their corresponding sums of squares
add tossAB, that is,

ssAB �
(a−1)(b−1)∑

h�1

ssch ,

wheressch is the sum of squares for thehth such contrast.
Suppose it is knownin advance thate specific orthogonal interaction contrasts are likely

to be negligible. Then the sums of squares for thesee negligible contrasts can be pooled
together to obtain an estimate of error variance, based one degrees of freedom,

ssE �
e∑

h�1

ssch and msE � ssE/e .

The sums of squares for the remaining interaction contrasts can be used to test the contrasts
individually or added together to obtain an interaction sum of squares

ssABm �
(a−1)(b−1)∑
h�e+1

ssch .

Then the decision rule for testing the hypothesisHAB
0 :{ the interactionAB is negligible}

against the alternative hypothesis that the interaction is not negligible is

rejectHAB
0 if

ssABm/m

ssE/e
> Fm,e,α ,
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Table 6.10 Two-way ANOVA, one observation per cell,
e negligible interaction contrasts, and
m � (a − 1)(b − 1)− e interaction degrees of
freedom

Source of Degrees of Sum of Mean
Variation Freedom Squares Square
Factor A a − 1 ssA msA
Factor B b − 1 ssB msB
Interaction m ssABm msAB
Error e ssE msE
Total ab − 1 sstot

wherem � (a − 1)(b − 1) − e. Likewise, the main effect test statistics have denominator
ssE/e and error degrees of freedomdf � e. The tests are summarized in Table 6.10, which
shows a modified form of the analysis of variance table for the two-way complete model.
A worked example is given in Section 6.7.4.

To save calculating the sums of squares for all of the contrasts, the error sum of squares
is usually obtained by subtraction, that is,

ssE � sstot − ssA − ssB − ssABm .

The above technique is most often used when the factors are quantitative, since higher-
order interaction trends are often likely to be negligible. The information about the
interaction effects must be known prior to running the experiment. If this information is
not available, then one of the techniques discussed in Section 7.5 must be used instead.

6.7.3 Tukey’s Test for Additivity

Tukey’s test for additivity uses only one degree of freedom to measure the interaction. It tests
the null hypothesisHγ

0 :{(αβ)ij � γαiβj for all i, j} against the alternative hypothesis that
the interaction is not of this form. The test is appropriate only if the size of the interaction
effect is expected to increase proportionally to each of the main effects, and it is not designed
to measure any other form of interaction. The test requires that the normality assumption
be well satisfied. The decision rule is

rejectHγ

0 if
ssAB∗

ssE/e
> F1,e,α , (6.7.55)

where

ssAB∗ �
ab
[∑

i

∑
j yij yi.y.j − (ssA + ssB + aby2

..)y..
]2

(ssA)(ssB)

and

ssE � sstot − ssA − ssB − ssAB∗ .

The analysis of variance table is as in Table 6.10 withm � 1 and withe � (a−1)(b−1)−1.



6.7 Small Experiments 173

Table 6.11 Data for the air velocity experiment, with factors Rib Height (A) and
Reynolds Number (B)

Reynolds Number, j
i 1 2 3 4 5 6 y i.

Rib 1 −24 −23 1 8 29 23 2.333
Height 2 33 28 45 57 74 80 52.833

3 37 79 79 95 101 111 83.667
y .j 15.333 28.00 41.667 53.333 68.000 71.333 46.278 � y ..

Source: Willke, D. (1962). Copyright © 1962 Blackwell Publishers. Reprinted with permission.

Figure 6.6
Data for the air

velocity experiment
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6.7.4 A Real Experiment—Air Velocity Experiment

The data given in Table 6.11, and plotted in Figure 6.6, form part of an experiment described
by D. Wilkie in the 1962 issue ofApplied Statistics (volume 11, pages 184–195). The
experiment was designed to examine the position of maximum velocity of air blown down
the space between a roughened rod and a smooth pipe surrounding it. The treatment factors
were the height of ribs on the roughened rod (factorA) at equally spaced heights 0.010,
0.015, and 0.020 inches (coded 1, 2, 3) and Reynolds number (factorB) at six levels (coded
1–6) equally spaced logarithmically over the range 4.8 to 5.3. The responses were measured
asy � (d − 1.4) × 103, whered is the distance in inches from the center of the rod.

Figure 6.6 shows very little interaction between the factors. However, prior to the ex-
periment, the investigators had thought that the factors would interact to some extent. They
wanted to use the set of orthogonal polynomial trend contrasts for theAB interaction and
were reasonably sure that the contrastsAQBqr, ALBqn, AQBqn would be negligible. Thus
the sum of squares for these three contrasts could be used to estimateσ 2 with 3 degrees
of freedom. We are using “L, Q, C, qr, qn” as shorthand notation for linear, quadratic, cu-
bic, quartic, and quintic contrasts, respectively. The coefficients for these three orthogonal
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polynomial trend contrasts can be obtained by multiplying the corresponding main-effect
coefficients shown in Table 6.1, page 145. The coefficients forALBqn are shown in the table
as an example. Also shown are the contrast coefficients for the linearA×linearB contrast,
ALBL . These are

[ 5, 3, 1,−1,−3,−5, 0, 0, 0, 0, 0, 0,−5,−3,−1, 1, 3, 5] .

The estimate ofALBL is then

��dijyij � 5(−24)+ 3(−23)+ · · · + 3(101)+ 5(111)� 54.

Now,

��d2
ij � (52 + 32 + · · · + 32 + 52) � 140,

so the corresponding sum of squares is

ss(ALBL) � 542

140
� 20.829.

The sums of squares for the other contrasts are computed similarly, and the error sum of
squares is calculated as the sum of the sums of squares of the three negligible contrasts. The
analysis of variance table is given in Table 6.12.

The hypotheses that the individual contrasts are zero can be tested using Scheffé’s proce-
dure or Bonferroni’s procedure. If Bonferroni’s procedure is used, each of the 14 hypotheses
should be tested at a very smallα-level. Takingα � 0.005, so that the overall level is at
most 0.07, we haveF1,3,0.005 � 55.6, and only the linearA and linearB contrasts appear to

Table 6.12 Analysis of variance for the air velocity experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Rib height (A) 2 20232.111
AL 1 19845.333 19845.333 338.77 0.0003
AQ 1 386.778 386.778 6.60 0.0825
Reynolds number (B) 5 7386.944
BL 1 7262.976 7262.976 123.98 0.0016
BQ 1 65.016 65.016 1.11 0.3695
BC 1 36.296 36.296 0.62 0.4887
Bqr 1 13.762 13.762 0.23 0.6611
Bqn 1 8.894 8.894 0.15 0.7228
Interaction (AB) 7 616.817
ALBL 1 20.829 20.829 0.36 0.5930
ALBQ 1 47.149 47.149 0.80 0.4358
ALBC 1 265.225 265.225 4.53 0.1233
ALBqr 1 33.018 33.018 0.56 0.5073
AQBL 1 15.238 15.238 0.26 0.6452
AQBQ 1 170.335 170.335 2.91 0.1867
AQBC 1 65.023 65.023 1.11 0.3694
Error 3 175.739 58.580
Total 17 28411.611
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be significantly different from zero. The plot of the data shown in Figure 6.6 supports this
conclusion.

6.8 Using SAS Software

Table 6.13 contains a sample SAS program for analysis of the two-way complete
model (6.2.2). For illustration, we use the data of the reaction time experiment shown in
Table 4.6, page 99, but with the last four observations missing, so thatr11 � r21 � 2, r12 �
r22 � r23 � 3, r13 � 1. In the data input lines, the levels of each of the two treatment factors
A andB are shown together with the response and the order in which the observations were
collected. A two-digit code for each treatment combinationTC can very easily be generated
by the statementTC = 10*A + B following theINPUT statement. This way of coding the
treatment combinations works well for all applications except for drawing plots withTC on
one axis. Such a plot would not show codes 11, 12, and 21 as equally spaced. An alternative
way of coding the treatment combinations for generating plots will be given in Section 6.8.2.

TheGLM procedure is used to generate the analysis of variance table and to estimate and to
test contrasts. As in the one-way analysis of variance, the treatment factors must be declared
as class variables using aCLASSES statement. The two-way complete model is represented
as

MODEL Y = A B A*B;

with the main effects listed in either order, but before the interaction. The two-way main-
effects model (6.2.3) would be represented as

MODEL Y = A B;

The program also shows the cell-means model (6.2.1) in a secondGLM procedure, using

MODEL Y = TC;

The output from the firstGLM procedure is shown in Table 6.14. The analysis of variance
table is organized differently from that in Table 6.4, page 156. The five “model” degrees
of freedom are the treatment degrees of freedom corresponding to the six treatment com-
binations. Information concerning main effects and interactions is provided underneath the
table under the heading “Type I” and “Type III” sums of squares.

TheType III sums of squares are the valuesssA, ssB, andssAB and are used for hypothesis
testing whether or not the sample sizes are equal. They are calculated by comparing the sum
of squares for error in the full and reduced models as in Section 6.4.4. The sums of squares
listed in the output are always in the same order as the effects in theMODEL statement, but
the hypothesis of no interaction should be tested first.

TheType I sum of squares for an effect is the additional variation in the data that is ex-
plained by adding that effect to a model containing the previously listed sources of variation.
For example, in the program output, the Type I sum of squares forA is the reduction in the
error sum of squares that is achieved by adding the effect of factorA to a model containing
only an intercept term. The reduction in the error sum of squares is equivalent to the extra
variation in the data that is explained by addingA to the model. Here, the “full model”
containsA and the intercept, while the “reduced model” contains only the intercept. The
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Table 6.13 SAS program to illustrate aspects of analysis of a two-way complete model (reaction
time experiment)

DATA DATA1;
INPUT ORDER A B Y;
*** code the treatment combinations 11, 12, ..., 23;
TC = 10*A + (B/5);
LINES;
1 2 15 0.256
2 2 15 0.281
3 1 10 0.167
: : : :

13 1 15 0.202
14 2 5 0.279

;
PROC PRINT;
PROC GLM;
CLASSES A B;
MODEL Y = A B A*B;

* Use MEANS only if sample sizes are equal;
MEANS A B / TUKEY CLDIFF ALPHA=0.01;

* If sample sizes are unequal, use LSMEANS;
LSMEANS A B/PDIFF=ALL CL ADJUST=TUKEY ALPHA=0.01;
CONTRAST ’11-13-21+23’ A*B 1 0 -1 -1 0 1;
CONTRAST ’B1-B2’ B 1 -1 0;
ESTIMATE ’B1-B2’ B 1 -1 0;
ESTIMATE ’B1-B3’ B 1 0 -1;
ESTIMATE ’B2-B3’ B 0 1 -1;

PROC GLM;
CLASSES TC;
MODEL Y = TC;
MEANS TC / TUKEY CLDIFF ALPHA=0.01;
LSMEANS TC/PDIFF=CONTROL CL ADJUST=DUNNETT ALPHA=0.01;
LSMEANS TC/PDIFF=CONTROLL CL ADJUST=DUNNETT ALPHA=0.01;
LSMEANS TC/PDIFF=CONTROLU CL ADJUST=DUNNETT ALPHA=0.01;
CONTRAST ’11-13-21+23’ TC 1 0 -1 -1 0 1;
CONTRAST ’B1-B2’ TC 1 -1 0 1 -1 0;

Type I sum of squares forB is the additional variation in the data that is explained by adding
the effect of factorB to a model that already contains the intercept and the effect ofA (so
that the “full model” containsA,B and the intercept, while the “reduced model” contains
only theA and the intercept). The Type I sums of squares (also known assequential sums of
squares) depend upon the order in which the effects are listed in theMODEL statement. Type
I sums of squares are used for model building, not for hypothesis testing under an assumed
model. Consequently, we will use only the Type III sums of squares.

The Type I and Type III sums of squares are identical when the sample sizes are equal,
since the factorial effects are then estimated independently of one another. But when the



6.8 Using SAS Software 177

Table 6.14 Some output for the SAS program for a two-way complete model with unequal
sample sizes (reaction time experiment)

The SAS System
General Linear Models Procedure

Dependent Variable: Y
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 5 0.02153160 0.00430632 13.38 0.0010
Error 8 0.00257533 0.00032192
Corrected Total 13 0.02410693

Source DF Type I SS Mean Square F Value Pr > F
A 1 0.02101572 0.02101572 65.28 0.0001
B 2 0.00033302 0.00016651 0.52 0.6148
A*B 2 0.00018286 0.00009143 0.28 0.7600

Source DF Type III SS Mean Square F Value Pr > F
A 1 0.01682504 0.01682504 52.27 0.0001
B 2 0.00045773 0.00022887 0.71 0.5198
A*B 2 0.00018286 0.00009143 0.28 0.7600

Contrast DF Contrast SS Mean Square F Value Pr > F
11-13-21+23 1 0.00013886 0.00013886 0.43 0.5298
B1-B2 1 0.00017340 0.00017340 0.54 0.4839

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
B1-B2 0.00850000 0.73 0.4839 0.01158153
B1-B3 -0.00600000 -0.44 0.6731 0.01370346
B2-B3 -0.01450000 -1.14 0.2861 0.01268694

sample sizes are unequal, as in the illustrated data set, the Type I and Type III sums of
squares differ. In the absence of a sophisticated computer package, each Type I and Type
III sum of squares can be calculated as the difference of the error sums of squares obtained
from two analysis of variance tables, one for the full model and one for the reduced model.

6.8.1 Contrasts and Multiple Comparisons

In the firstGLM procedure in Table 6.13, the two-way complete model is used, and the coeffi-
cient lists are entered for each factor separately, rather than for the treatment combinations.
The firstCONTRAST statement is used to test the hypothesis that the interaction contrast
(αβ)11 − (αβ)13 − (αβ)21 + (αβ)23 is negligible, and the secondCONTRAST statement is
used to test the hypothesis thatβ∗

1 − β∗
2 is negligible. These same contrasts are entered as

coefficient lists for the treatment combinations in the secondGLM procedure. In either case,
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the contrast sum of squares is as shown underContrast SS in Table 6.14, and thep-value
for the test is as shown underPr > F.

Options such asTUKEY, SCHEFFE, BON, andDUNNETT in theMEANS statement of the first
GLM procedure can be used for the generation of all pairwise comparisons, provided that the
sample sizes are equal. The statement

MEANS A B / TUKEY CLDIFF ALPHA=0.01;

causes generation of simultaneous 99% confidence intervals for the main effects ofA aver-
aged over the levels ofB, and separate simultaneous 99% confidence intervals for the main
effects ofB averaged over the levels ofA, using the method of Tukey for each. The multiple
comparisons obtained via aMEANS statement use differences in sample means rather than
least squares estimates to calculate the pairwise difference estimates. These coincide only
if the sample sizes are equal.

For unequal sample sizes, theLSMEANS option is used instead. The statement requesting
simultaneous confidence intervals for pairwise comparisons is a little different from the
MEANS option, as follows:

LSMEANS B /PDIFF=ALL CL ADJUST=TUKEY ALPHA=0.01;

This statement requests Tukey’s simultaneous confidence intervals for pairwise comparisons
in the levels ofB via theADJUST=TUKEY option. The optionPDIFF=ALL requests intervals
for all of the pairwise comparisons, andCL asks for the comparisons to be displayed as
confidence intervals. The output for the reaction time experiment with unequal sample sizes,
shown in Table 6.15, includes not only the confidence intervals for pairwise comparisons,
but alsop-values for simultaneous hypothesis tests using the Tukey method. Also given are
confidence intervals for theB meansµ+ α. + βj + (αβ).j . If CL is omitted, then only the
simultaneous tests and intervals for means are printed. The requestTUKEY can be replaced
by BON or SCHEFFE as appropriate. Notice that for the pairwise comparisons, SAS recodes
the levels 5, 10, 15 ofB as 1, 2, 3.

For treatment-versus-control comparisons, the optionPDIFF=ALL is replaced by
the option PDIFF=CONTROL for two-sided confidence intervals, and by the option
PDIFF=CONTROLL or PDIFF=CONTROLU for upper or lower confidence bounds on the
treatment−control differences, as follows:

LSMEANS TC/PDIFF=CONTROL CL ADJUST=DUNNETT ALPHA=0.01;
LSMEANS TC/PDIFF=CONTROLL CL ADJUST=DUNNETT ALPHA=0.01;
LSMEANS TC/PDIFF=CONTROLU CL ADJUST=DUNNETT ALPHA=0.01;

The treatments are again renumbered by SAS in numerical order. In our program, in Ta-
ble 6.13, we have requested the treatment-versus-control contrasts be done for the treatment
combinations 11, 12, 13, 21, 22, 23. SAS recodes these as 1–6, and treatment 1 (our treatment
combination 11) is taken as the control. The output for the simultaneous confidence intervals
is shown in Table 6.16. The first set of intervals is for the two-sided treatment-versus-control
comparisons. The second set arises from theCONTROLL option, which gives upper bounds
for the “treatment−control” comparisons. The third set arises from theCONTROLU option,
which gives lower bounds for the “treatment−control” comparisons. We have shown only
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Table 6.15 LSMEANS output for a two-way complete model with unequal sample sizes
(reaction time experiment)

The SAS System
General Linear Models Procedure

Least Squares Means

B Y Pr > |T| H0: LSMEAN(i)=LSMEAN(j)
LSMEAN i/j 1 2 3

5 0.22750000 1 . 0.7512 0.9010
10 0.21900000 2 0.7512 . 0.5166
15 0.23350000 3 0.9010 0.5166 .

99% 99%
Lower Upper

Confidence Confidence
B Limit Y LSMEAN Limit
5 0.197399 0.227500 0.257601
10 0.194422 0.219000 0.243578
15 0.198742 0.233500 0.268258

Adjustment for multiple comparisons: Tukey-Kramer
Least Squares Means for effect B

99% Confidence Limits for LSMEAN(i)-LSMEAN(j)

Simultaneous Simultaneous
Lower Difference Upper

Confidence Between Confidence
i j Limit Means Limit
1 2 -0.037650 0.008500 0.054650
1 3 -0.060605 -0.006000 0.048605
2 3 -0.065054 -0.014500 0.036054

the simultaneous confidence intervals, but simultaneous tests are also given by SAS in each
case.

We remind the reader that for unequal sample sizes, it has not yet been proved that the
overall confidence levels achieved by the Tukey and Dunnett methods are at least as great
as those stated, except in some special cases such as the one-way layout.

An alternative method of obtaining simultaneous confidence intervals for pairwise com-
parisons can be obtained from the output of theESTIMATE statement for each contrast. The
corresponding confidence intervals are of the form

Estimate ± w (Std Error of Estimate) ,

wherew is the critical coefficient given in (6.4.19) for the complete model and in (6.5.40)
for the main-effects model.
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Table 6.16 LSMEANS output for a two-way complete model with unequal sample sizes
(reaction time experiment)

The SAS System
General Linear Models Procedure

Least Squares Means
Adjustment for multiple comparisons: Dunnett

Least Squares Means for effect TC
99% Confidence Limits for LSMEAN(i)-LSMEAN(j)

Simultaneous Simultaneous
Lower Difference Upper

Confidence Between Confidence
i j Limit Means Limit
2 1 -0.078427 -0.008333 0.061760
3 1 -0.079040 0.015000 0.109040
4 1 0.004217 0.081000 0.157783
5 1 0.002240 0.072333 0.142427
6 1 0.007907 0.078000 0.148093

Adjustment for multiple comparisons: Dunnett
Least Squares Means for effect TC

99% Confidence Limits for LSMEAN(i)-LSMEAN(j)

Simultaneous Simultaneous
Lower Difference Upper

Confidence Between Confidence
i j Limit Means Limit
2 1 . -0.008333 0.053393
3 1 . 0.015000 0.097814
4 1 . 0.081000 0.148617
5 1 . 0.072333 0.134059
6 1 . 0.078000 0.139726

Adjustment for multiple comparisons: Dunnett
Least Squares Means for effect TC

99% Confidence Limits for LSMEAN(i)-LSMEAN(j)

Simultaneous Simultaneous
Lower Difference Upper

Confidence Between Confidence
i j Limit Means Limit
2 1 -0.070059 -0.008333 .
3 1 -0.067814 0.015000 .
4 1 0.013383 0.081000 .
5 1 0.010607 0.072333 .
6 1 0.016274 0.078000 .
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Table 6.17 Input statements to obtain treatment combination codes as names, not numbers

DATA DATA1;
INPUT ORDER A$ B$ Y;
TC=trim(A)||trim(B); *name the trt comb as 11, 12, . . . , 23;
LINES;
1 2 3 0.256
: : : :

14 2 1 0.279
;
PROC GLM;
CLASSES TC;
MODEL Y = TC;
OUTPUT OUT=RESIDS PREDICTED=PDY RESIDUAL=Z;

;
PROC PLOT;
PLOT Y*TC Z*TC / VPOS=19 HPOS=50;

6.8.2 Plots

Residual plots for checking the error assumptions on the model are generated in the same
way as shown in Chapter 5. If the two-way main-effects model (6.2.3) is used, the assumption
of additivity should also be checked. For this purpose it is useful to plot the standardized
residuals against the level of one factor, using the levels of the other factor for plotting
labels (see, for example, Figure 6.2, page 141, for the temperature experiment). Once the
standardized residualsz have been obtained, a plot of these against the levels of factorA

using the labels of factorB can be generated using the following SAS program lines:

PROC PLOT;
PLOT Z*A=B / VPOS=19 HPOS=50;

An interaction plot can be obtained by adding the following statements to the end of the
program in Table 6.13:

PROC SORT DATA=DATA1;
BY A B;

PROC MEANS DATA=DATA1 NOPRINT MEAN VAR;
VAR Y;
BY A B;
OUTPUT OUT=DATA2 MEAN=AV Y VAR=VAR Y;

PROC PRINT;
VAR A B AV Y VAR Y;

PROC PLOT;
PLOT AV Y*A=B / VPOS=19 HPOS=50;

ThePROC PRINT statement followingPROC MEANS also gives the information about the
variances that would be needed to check the rule of thumb thats2

max/s
2
min ≤ 3.

In order to check for equal error variances, the observations or the residuals may be plotted
against the treatment combinations. If the treatment combination codes are formed asTC =
10*A + B as in Table 6.13, they will not be equally spaced along the axis. This is because
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the codes 11, 12, 21, etc. are regarded by SAS as numerical values, and as 2-digit numbers,
12 is closer to 11 than to 21. One way around this problem is as shown in Table 6.17. Notice
thatA andB have each been followed by a $ sign in theINPUT statement. This tells SAS to
regard the codes as names rather than numbers. The statementTC = trim(A)||trim(B)
forms two-digit name codes for the corresponding treatment combinations, and a plot of the
residuals againstTC will show the codes evenly spaced along the axis.

When there are not sufficient observations to be able to check equality of error variances
for all the cells, the standardized residuals should be plotted against the levels of each factor.
The rule of thumb may be checked for the levels of each factor by comparing the maximum
and minimum variances of the (nonstandardized) residuals. This is done for factorA by
augmenting the statements in Table 6.17 with the following lines.

PROC SORT DATA=RESIDS;
BY A;

PROC MEANS DATA=RESIDS NOPRINT VAR;
VAR Z;
BY A;
OUTPUT OUT=DATA2 VAR=VAR Z;

PROC PRINT;
VAR A VAR Z;

6.8.3 One Observation per Cell

In order to split the interaction sum of squares into parts corresponding to negligible and
nonnegligible orthogonal contrasts, we can enter the data in the usual manner and obtain
the sums of squares for all of the contrasts viaCONTRAST statements in the procedurePROC
GLM. The analysis of variance table can then be constructed with the error sum of squares
being the sum of the contrast sums of squares for the negligible contrasts. It is possible,
however, to achieve this in a more direct way, as follows.

First, enter the contrast coefficients as part of the input data as shown in Table 6.18 for the
air velocity experiment. In the air velocity experiment, factorA hada � 3 levels and factor
B hadb � 6 levels. The main-effect trend contrast coefficients are entered via theINPUT
statement line by line directly from Table 6.1, page 145, and the interaction trend contrast
coefficients are obtained by multiplication following theINPUT statement. In thePROC GLM
statement, theCLASSES designation is omitted. If it were included, thenAln, for example,
would be interpreted as one factor with three coded levels−1, 0, 1, andAqd as a second
factor with two coded levels 1,−2, and so on. The model is fitted using those contrasts that
have not been declared to be negligible. The error sum of squares will be based on the three
omitted contrastsAlnBqn, AqdBqr, andAqdBqn, and the resulting analysis of variance table
will be equivalent to that in Table 6.12, page 174.

It is not necessary to input the levels ofA andB separately as we have done in columns
2 and 3 of the data, but these would be needed if plots of the data were required.
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Table 6.18 Fitting a model in terms of contrasts (air velocity experiment)

DATA AIR;
INPUT Y A B Aln Aqd Bln Bqd Bcb Bqr Bqn;

AlnBln = Aln*Bln;
AlnBqd = Aln*Bqd;
AlnBcb = Aln*Bcb;
AlnBqr = Aln*Bqr;
AqdBln = Aqd*Bln;
AqdBqd = Aqd*Bqd;
AqdBcb = Aqd*Bcb;

LINES;
-24 1 1 -1 1 -5 5 -5 1 -1
-23 1 2 -1 1 -3 -1 7 -3 5
1 1 3 -1 1 -1 -4 4 2 -10
8 1 4 -1 1 1 -4 -4 2 10

29 1 5 -1 1 3 -1 -7 -3 -5
23 1 6 -1 1 5 5 5 1 1
33 2 1 0 -2 -5 5 -5 1 -1
28 2 2 0 -2 -3 -1 7 -3 5
45 2 3 0 -2 -1 -4 4 2 -10
57 2 4 0 -2 1 -4 -4 2 10
74 2 5 0 -2 3 -1 -7 -3 -5
80 2 6 0 -2 5 5 5 1 1
37 3 1 1 1 -5 5 -5 1 -1
79 3 2 1 1 -3 -1 7 -3 5
79 3 3 1 1 -1 -4 4 2 -10
95 3 4 1 1 1 -4 -4 2 10

101 3 5 1 1 3 -1 -7 -3 -5
111 3 6 1 1 5 5 5 1 1

;
PROC PRINT;
PROC GLM; * omit the class statement;
MODEL Y = Aln Aqd Bln Bqd Bcb Bqr Bqn AlnBln AlnBqd

AlnBcb AlnBqr AqdBln AqdBqd AqdBcb;

Exercises

1. Under what circumstances should the two-way main effects model (6.2.3) be used rather
than the two-way complete model (6.2.2)? Discuss the interpretation of main effects in
each model.

2. Verify that (τij − τ i. − τ .j + τ ..) is an interaction contrast for the two-way complete
model. Write down the list of contrast coefficients in terms of theτij ’s when factorA
hasa � 3 levels and factorB hasb � 4 levels.

3. Consider the functions{α∗
1 − α∗

2} and{(αβ)11 − (αβ)21 − (αβ)12 + (αβ)22} under the
two-way complete model (6.2.2).
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(a) Verify that the functions are estimable contrasts.

(b) Discuss the meaning of each of these contrasts for plots (d) and (g) of Figure 6.1
(page 137).

(c) If a � b � 3, give the list of contrast coefficients for each contrast, first for the
parameters involved in the contrast, and then in terms of the parametersτij of the
equivalent cell-means model.

4. Show that when the parentheses is expanded in formula (6.4.15) forssE on page 147,
the computational formula (6.4.17) is obtained.

5. Weight Lifting Experiment (Gary Mirka, 1986)
The experimenter was interested in the effect on pulse rate (heart rate) of lifting different
weights with legs either straight or bent (factorA, coded 1, 2). The selected weights
were 50 lb, 75 lb, 100 lb (factorB, coded 1, 2, 3). He expected to see a higher pulse rate
when heavier weights were lifted. He also expected that lifting with legs bent would
result in a higher pulse rate than lifting with legs straight.
(a) Write out a detailed checklist for running an experiment similar to this. In the calcu-

lation of the number of observations needed, either run your own pilot experiment
or use the information that for a single subject in the above study, the error sum of
squares wasssE = 130.909 bpfs2 based ondf=60 error degrees of freedom (where
bpfs is beats per 15 seconds).

(b) The data collected for a single subject by the above experimenter are shown in
Table 6.19 in the order collected. The experimenter wanted to use a two-way
complete model. Check the assumptions on this model, paying particular attention
to the facts that (i) these are count data and may not be approximately normally

Table 6.19 Data (beats per 15 seconds) for the weightlifting experiment

A 2 1 1 1 2 2 1 2 1 2 1
B 2 1 3 1 2 3 3 2 2 2 1
Rate 31 27 37 28 32 32 35 30 32 31 27
A 2 1 1 1 2 1 1 2 2 2 2
B 2 3 3 2 1 1 3 1 3 3 3
Rate 34 33 34 31 26 25 35 24 33 31 36
A 1 1 1 1 1 1 1 1 2 1 2
B 3 1 1 2 1 2 2 3 3 2 1
Rate 36 27 30 33 29 32 34 37 32 34 27
A 2 1 1 2 2 1 1 2 2 1 2
B 2 1 3 1 2 1 2 1 2 1 3
Rate 31 27 38 27 30 29 34 25 34 28 34
A 2 1 2 1 1 2 1 1 2 2 2
B 2 1 3 2 2 1 3 2 1 1 1
Rate 31 30 34 35 34 24 35 31 27 26 25
A 2 2 2 1 2 2 2 2 2 1 1
B 2 3 1 2 1 2 3 3 3 3 3
Rate 32 35 24 33 23 30 34 32 33 37 38
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distributed, and (ii) the measurements were made in groups of ten at a time in order
to reduce the fatigue of the subject.

(c) Taking account of your answer to part (a), analyze the experiment, especially noting
any trends in the response.

6. Battery experiment, continued
Consider the battery experiment introduced in Section 2.5.2, for whicha � b � 2 and
r � 4. Suppose it is of interest to calculate confidence intervals for the four simple
effectsτ11− τ12, τ21− τ22, τ11− τ21, τ12− τ22, with an overall confidence level of 95%.

(a) Determine whether the Tukey or Bonferroni method of multiple comparisons would
provide shorter confidence intervals.

(b) Apply the better of the methods from part (a) and comment on the results. (The
data givey11. � 570.75,y12. � 860.50,y21. � 433.00, andy22. � 496.25 minutes
per unit cost andmsE � 2,367.71.)

(c) Discuss the practical meaning of the contrasts estimated in (b) and explain what
you have learned from the confidence intervals.

7. Weld strength experiment
The data shown in Table 6.20 are a subset of the data given by Anderson and McLean
(1974) and show the strength of a weld in a steel bar. Two factors of interest were gage
bar setting (the distance the weld die travels during the automatic weld cycle) and time
of welding (total time of the automatic weld cycle). Assume that the levels of both
factors were selected to be equally spaced.

(a) Using the cell-means model (6.2.1) for these data, test the hypothesis that there is
no difference in the effects of the treatment combinations on weld strength against
the alternative hypothesis that at least two treatment combinations have different
effects.

(b) Suppose the experimenters had planned to calculate confidence intervals for all
pairwise comparisons between the treatment combinations, and also to look at the
confidence interval for the difference between gage bar setting 3 and the average
of the other two. Show what these contrasts look like in terms of the parameters
τij of the cell-means model, and suggest a strategy for calculating all intervals at
overall level “at least 98%.”

Table 6.20 Strength of weld

Time of welding (j )
i 1 2 3 4 5

Gage 1 10, 12 13, 17 21, 30 18, 16 17, 21
bar 2 15, 19 14, 12 30, 38 15, 11 14, 12

setting 3 10, 8 12, 9 10, 5 14, 15 19, 11

Source: Reprinted from Anderson, V. L. and McLean, R. A. (1974), pp. 62–63, by
courtesy of Marcel Dekker, Inc.
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(c) Give formulae for the intervals in part (b). As an example, calculate the actual
interval forτ13 − τ15 (the difference in the true mean strengths at the 3rd and 5th
times of welding for the first gage bar setting). Explain what this interval tells you.

(d) Calculate an upper 90% confidence limit forσ 2.

(e) If the experimenters were to repeat this experiment and needed the pairwise com-
parison intervals in (b) to be of width at most 8, how many observations should
they take on each treatment combination? How many observations is this in total?

8. Weld strength experiment, continued
For the experiment described in Exercise 7, use the two-way complete model instead
of the equivalent cell means model.

(a) Test the hypothesis of no interaction between gage bar setting and time of weld
and state your conclusion.

(b) Draw an interaction plot for the two factors Gage bar setting and Time of welding.
Does your interaction plot support the conclusion of your hypothesis test? Explain.

(c) In view of your answer to part (b), is it sensible to investigate the differences
between the effects of gage bar setting? Why or why not? Indicate on your plot
what would be compared.

(d) Regardless of your answer to (c), suppose the experimenters had decided to look
at the linear trend in the effect of gage bar settings. Test the hypothesis that the
linear trend in gage setting is negligible (against the alternative hypothesis that it
is not negligible).

9. Sample size calculation
An experiment is to be run to examine three levels of factorA and four levels of factor
B, using the two-way complete model (6.2.2). Determine the required sample size if
the error varianceσ 2 is expected to be less than 15 and simultaneous 99% confidence
intervals for pairwise comparisons between treatment combinations should have length
at most 10 to be useful.

10. Bleach experiment, continued
Use the data of the bleach experiment of Example 6.4.3, on page 151.

(a) Evaluate the effectiveness of a variance-equalizing transformation.

(b) Apply Satterthwaite’s approximation to obtain 99% confidence intervals for the
pairwise comparisons of the main effects of factorA using Tukey’s method of
multiple comparisons.

11. Bleach experiment, continued
The experimenter calculated that she neededr � 5 observations per treatment com-
bination in order to be able to detect a difference in the treatment combinations of 5
minutes (300 seconds) with probability 0.9. Verify that her calculations were correct.
She obtained a mean squared error of 43220.8 seconds2 in her pilot experiment.
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12. Memory experiment (James Bost, 1987)
The memory experiment was planned in order to examine the effects of external dis-
tractions on short-term memory and also to examine whether some types of words were
easier to memorize than others. Consequently, the experiment involved two treatment
factors, “word type” and “type of distraction.” The experimenter selected three levels
for each factor. The levels of “word type” were

Level 1 (fruit): words representing fruits and vegetables commonly consumed;

Level 2 (nouns): words selected at random from Webster’s pocket dictionary,
representing tangible (i.e., visualizable) items;

Level 3 (mixed): words of any description selected at random from Webster’s pocket
dictionary.

A list of 30 words was prepared for each level of the treatment factor, and the list was
not altered throughout the experiment.
The levels of “type of distraction” were

Level 1: No distraction other than usual background noise;

Level 2: Constant distraction, supplied by a regular banging of a metal spoon on a
metal pan;

Level 3: Changing distraction, which included vocal, music, banging and motor noise,
and varying lighting.

The response variable was the number of words remembered (by a randomly selected
subject) for a given treatment combination. The response variable is likely to have ap-
proximately a binomial distribution, with variance 30p(1−p) wherep is the probability
that a subject remembers a given word and 30 is the number of words on the list. It is
unlikely thatp is constant for all treatment combinations or for all subjects. However,
sincenp(1− p) is less than 30(0.5)(0.5) � 7.5, a reasonable guess for the varianceσ 2

is that it is less than 7.5.
The experimenter wanted to reject each of the main-effect hypothesesHA

0 :{the memo-
rization rate for the three word lists is the same} andHB

0 :{the three types of distraction
have the same effect on memorization} with probability 0.9 if there was a difference of
four words in memorization rates between any two word lists or any two distractions
(that is)A � )B � 4), using a significance level ofα � 0.05. Calculate the num-
ber of subjects that are needed if each subject is to be assigned to just one treatment
combination and measured just once.

13. Memory experiment, continued

(a) Write out a checklist for the memory experiment of Exercise 12. Discuss how
you would obtain the subjects and how applicable the experiment would be to the
general population.

(b) Consider the possibility of using each subject more than once (i.e., consider the
use of a blocking factor). Discuss whether or not an assumption of independent
observations is likely to be valid.
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Table 6.21 Data and standardized residuals for the memory experiment

Distraction
Word list None (1) Constant (2) Changing (3)
Fruit (1) 20 14 24 15 22 17 17 13 12

0.27 −2.16 1.89 −1.21 1.62 −0.40 1.21 −0.40 −0.81
Nouns (2) 19 14 19 12 11 14 12 15 8

0.67 −1.35 0.67 −0.13 −0.54 0.67 0.13 1.35 −1.48
Mixed (3) 11 12 15 8 8 9 12 7 10

−0.67 −0.27 0.94 −0.13 −0.13 0.27 0.94 −1.08 0.13

14. Memory experiment, continued
The data for the memory experiment of Exercise 12 are shown in Table 6.21, with three
observations per treatment combination.
(a) The experimenter intended to use the two-way complete model. Check the

assumptions on the model for the given data, especially the equal-variance
assumption.

(b) Analyze the experiment. A transformation of the data or use of the Satterthwaite
approximation may be necessary.

15. Ink experiment
(M. Chambers, Y.-W. Chen, E. Kurali, R. Vengurlekar, 1996)
Teaching associates who give classes in computer labs at the Ohio State University are
required to write on white boards with “dry markers” rather than on chalk boards with
chalk. The ink from these dry markers can stain rather badly, and four graduate students
planned an experiment to determine which type of cloth (factorA, 1= cotton/polyester,
2=rayon, 3=polyester) was most difficult to clean, and whether a detergent plus stain
remover was better than a detergent without stain remover (factorB, levels 1, 2) for
washing out such a stain.
Pieces of cloth were to be stained with 0.1 ml of dry marker ink and allowed to air
dry for 24 hours. The cloth pieces were then to be washed in a random order in the
detergent to which they were allocated. The stain remaining on a piece of cloth after
washing and drying was to be compared with a 19 point scale and scored accordingly,
where 1=black and 19=white.
(a) Make a list of the difficulties that might be encountered in running and analyzing

an experiment of this type. Give suggestions on how these difficulties might be
overcome or their effects reduced.

(b) Why should each piece of cloth be washed separately? (Hint: think about the error
variability.)

Table 6.22 Data for the ink experiment in the order of
collection

Cloth Type 3 1 3 1 2 1 2 2 2 3 3 1
Stain Remover 2 2 2 2 1 1 1 2 2 1 1 1
Stain Score 1 6 1 5 11 9 9 8 6 3 4 8
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Table 6.23 Data for the survival experiment
(units of 10 hours)

Treatment
Poison 1 2 3 4

I 0.31 0.82 0.43 0.45
0.45 1.10 0.45 0.71
0.46 0.88 0.63 0.66
0.43 0.72 0.76 0.62

II 0.36 0.92 0.44 0.56
0.29 0.61 0.35 1.02
0.40 0.49 0.31 0.71
0.23 1.24 0.40 0.38

III 0.22 0.30 0.23 0.30
0.21 0.37 0.25 0.36
0.18 0.38 0.24 0.31
0.23 0.29 0.22 0.33

Source: Box, G. E. P. and Cox, D. R. (1964).
Copyright 1964 Blackwell Publishers. Reprinted
with permission.

(c) The results of a small pilot study run by the four graduate students are shown
in Table 6.22. Plot the data against the levels of the two treatment factors. Can
you learn anything from this plot? Which model would you select for the main
experiment? Why?

(d) Calculate the number of observations that you would need to take on each treatment
combination in order to try to ensure that the lengths of confidence intervals for
pairwise differences in the effects of the levels of each of the factors were no more
than 2 points (on the 19-point scale).

16. Survival experiment (G.E.P. Box and D.R. Cox)
The data in Table 6.23 show survival times of animals to whom a poison and a treatment
have been administered. The data were presented by G. E. P. Box and D. R. Cox in an
article in theJournal of the Royal Statistical Society in 1964. There were three poisons
(factorA ata � 3 levels), four treatments (factorB atb � 4 levels), andr � 4 animals
(experimental units) assigned at random to each treatment combination.
(a) Check the assumptions on a two-way complete model for these data. If the

assumptions are satisfied, then analyze the data and discuss your conclusions.

(b) Take a reciprocal transformation (y−1) of the data. The transformed data values
then represent “rates of dying.” Check the assumptions on the model again. If the
assumptions are satisfied, then analyze the data and discuss your conclusions.

(c) Draw an interaction plot for both the original and the transformed data. Discuss
the interaction between the two factors in each of the measurement scales.

17. Use the two-way main-effects model (6.2.3) witha � b � 3.

(a) Which of the following are estimable?
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(i) µ+ α1 + β2 .

(ii) µ+ α1 + 1
2(β1 + β2) .

(iii) β1 − 1
3(β2 + β3) .

(b) Show thatY i.. + Y .j. − Y ... is an unbiased estimator ofµ+ αi + βj with variance,
σ 2(a + b − 1)/(abr).

(c) Show that
∑

i ciY i.. is an unbiased estimator of the contrast
∑

i ciαi .

18. Nail varnish experiment, continued
The nail varnish experiment, introduced in Example 6.5.1, page 159, concerned the
dissolving time of three brands of nail varnish in two brands of solvent. There were
r � 5 observations on each treatment combination, and the two-way main-effects
model (6.2.3) was used. The least squares estimate of the contrast comparing brand 3
with the average of the other two brands was1

2(β̂1+β̂2)−β̂3 � −0.341, with associated
variance 3σ 2/20. From Example 6.5.2,msE � 8.3375.

(a) Verify that the assumptions on the two-way main effects model hold for this
experiment.

(b) Verify that1
2(Y .1.+Y .2.)−Y .3. is an unbiased estimator of the difference of averages

contrast12(β1 + β2) − β3.

(c) Obtain a 95% confidence interval for1
2(β1+β2)−β3, as though this were preplanned

and the only contrast of interest.

19. For the two-way main-effects model (6.2.3) with equal sample sizes,
(a) verify the computational formulae forssE given in (6.5.39),

(b) and, ifSSE is the corresponding random variable, show thatE[SSE] is (n − a −
b + 1)σ 2. [Hint: E[X2] � Var(X) + E[X]2.]

20. An experiment is to be run to compare the two levels of factorA and to examine the
pairwise differences between the four levels of factorB, with a simultaneous confidence
level of 90%. The experimenter is confident that the two factors will not interact. Find
the required sample size if the error variance will be at most 25 and the confidence
intervals should have length at most 10 to be useful.

21. Water boiling experiment (Kate Ellis, 1986)
The experiment was run in order to examine the amount of time taken to boil a given
amount of water on the four different burners of her stove, and with 0, 2, 4, or 6 teaspoons
of salt added to the water. Thus the experiment had two treatment factors with four
levels each. The experimenter ran the experiment as a completely randomized design
by takingr � 3 observations on each of the 16 treatment combinations in a random
order. The data are shown in Table 6.24. The experimenter believed that there would
be no interaction between the two factors.
(a) Check the assumptions on the two-way main-effects model.

(b) Calculate a 99% set of Tukey confidence intervals for pairwise differences between
the levels of salt, and calculate separately a 99% set of intervals for pairwise
differences between the levels of burner.
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Table 6.24 Data for the water boiling experiment, in
minutes. (Order of observation is in
parentheses.)

Salt (teaspoons)
Burner 0 2 4 6

Right back 7(7) 4(13) 7(24) 5(15)
8(21) 7(25) 7(34) 7(33)
7(30) 7(26) 7(41) 7(37)

Right front 4(6) 4(36) 4(1) 4(28)
4(20) 5(44) 4(14) 4(31)
4(27) 4(45) 5(18) 4(38)

Left back 6(9) 6(46) 7(8) 5(35)
7(16) 6(47) 6(12) 6(39)
6(22) 5(48) 7(43) 6(40)

Left front 9(29) 8(5) 8(3) 8(2)
9(32) 8(10) 9(19) 8(4)
9(42) 8(11) 10(23) 7(17)

(c) Test a hypothesis that there is no linear trend in the time to boil water due to the
level of salt. Do a similar test for a quadratic trend.

(d) The experimenter believed that observation number 13 was an outlier, since it has a
large standardized residual and it was an observation taken late on a Friday evening.
Repeat the analysis in (b) and (c) removing this observation, but do the test in part
(c) for the linear contrast only. (The formula for the linear contrast coefficients is
given in (4.2.4) on page 71.) Which analysis do you prefer? Why?

22. Forv � 5 andr � 4, show that the first three “orthogonal polynomial contrasts” listed
in Table A.2 are mutually orthogonal. (In fact all four are.) Find a pair of orthogonal
contrasts that are not orthogonal polynomial contrasts. Can you find a third contrast that
is orthogonal to each of these? How about a fourth? (This gets progressively harder!)

23. Air velocity experiment, continued
(a) For the air velocity experiment introduced in Section 6.7.4 (page 173), calculate the

sum of squares for each of the three interaction contrasts assumed to be negligible,
and verify that these add to the valuessE � 175.739, as in Table 6.12.

(b) Check the assumptions on the model by plotting the standardized residuals against
the predicted responses, the treatment factor levels, and the normal scores. State
your conclusions.
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7.4 A Real Experiment—Popcorn–Microwave Experiment
7.5 One Observation per Cell
7.6 Design for the Control of Noise Variability
7.7 Using SAS Software
Exercises

7.1 Introduction

Experiments that involve more than two treatment factors are designed and analyzed using
many of the same principles that were discussed in Chapter 6 for two-factor experiments.
We continue to label the factors with uppercase Latin letters and their numbers of levels
with the corresponding lowercase letters. An experiment that involves four factors,A,B,C,
andD, havinga, b, c, andd levels, respectively, for example, is known as an “a×b× c×d

factorial experiment” (read “a by b by c by d”) and has a total ofv � abcd treatment
combinations.

There are several different models that may be appropriate for analyzing a factorial
experiment with several treatment factors, depending on which interactions are believed
to be negligible. These models, together with definitions of interaction between three or
more factors, and estimation of contrasts, form the topic of Section 7.2. General rules are
given in Section 7.3 for writing down confidence intervals and hypothesis tests when there
are equal numbers of observations on all treatment combinations. In Section 7.5, methods
are investigated for analyzing small experiments where there is only one observation per
treatment combination.
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The difference between a “design factor” and a “noise factor” is highlighted in Section 7.6,
and the concept of selecting design factor levels that are least affected by the settings of
noise factors is introduced. Finally, SAS commands for analyzing experiments with several
treatment factors are given in Section 7.7 and can be used for unequal sample sizes. Problems
caused by empty cells are also investigated.

7.2 Models and Factorial Effects

7.2.1 Models

One of a number of different models may be appropriate for describing the data from an
experiment with several treatment factors. The selection of a suitable model prior to the
experiment depends upon available knowledge about which factors do and do not interact.
We take as an example an experiment with three factors. Our first option is to use thecell-
means model , which is similar to the one-way analysis of variance model (3.3.1), page 36.
For example, the cell-means model for three treatment factors is

Yijkt � µ+ τijk + εijkt , (7.2.1)

εijkt ∼ N (0, σ 2) ,

εijkt ’s mutually independent,

t � 1, . . . , rijk; i � 1, . . . , a; j � 1, . . . , b; k � 1, . . . , c .

If there are more than three factors, the cell-means model has correspondingly more sub-
scripts. As in Chapter 6, use of this model allows all of the formulae presented in Chapters 3
and 4 for one treatment factor to be used to compare the effects of the treatment combinations.

Alternatively, we can model the effect on the response of treatment combinationijk to
be

τijk � αi + βj + γk + (αβ)ij + (αγ )ik + (βγ )jk + (αβγ )ijk ,

whereαi , βj , γk are the effects (positive or negative) on the response of factorsA, B, C at
levelsi, j , k, respectively, (αβ)ij , (αγ )ik, and (βγ )jk are the additional effects of the pairs
of factors together at the specified levels, and (αβγ )ijk is the additional effect of all three
factors together at levelsi, j, k. The three sets of factorial effects are called the main-effect
parameters, the two-factor interaction parameters, and the three-factor interaction parameter,
respectively. The interpretation of a three-factor interaction is discussed in the next section.
If we replaceτijk in model (7.2.1) by the main-effect and interaction parameters, we obtain
the equivalentthree-way complete model; that is,

Yijkt � µ+ αi + βj + γk + (αβ)ij + (αγ )ik + (βγ )jk + (αβγ )ijk + εijkt ,

εijkt ∼ N (0, σ 2) , (7.2.2)

εijkt ’s mutually independent,

t � 1, . . . , rijk; i � 1, . . . , a; j � 1, . . . , b; k � 1, . . . , c.
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This form of the model extends in an obvious way to more than three factors by includ-
ing a main-effect parameter for every factor and an interaction effect parameter for every
combination of two factors, three factors, etc.

If prior to the experiment certain interaction effects are known to be negligible, the
corresponding parameters can be removed from the complete model to give a submodel.
For example, if the factorsA andB are known not to interact in a three-factor experiment,
then theAB andABC interaction effects are negligible, so the terms (αβ)ij and (αβγ )ijk
are excluded from model (7.2.2). In the extreme case, if no factors are expected to interact,
then amain-effects model (which includes no interaction terms) can be used.

When a model includes an interaction between a specific set ofm factors, then all in-
teraction terms involving subsets of thosem factors should be included in the model. For
example, a model that includes the effect of the three-factor interactionABC would also
include the effects of theAB, AC, andBC interactions as well as the main effectsA, B,
andC.

Use of a submodel, when appropriate, is advantageous, because simpler models gener-
ally yield tighter confidence intervals and more powerful tests of hypotheses. However, if
interaction terms are removed from the model when the factors do, in fact, interact, then the
resulting analysis and conclusions may be totally incorrect.

7.2.2 The Meaning of Interaction

The same type of interaction plot as that used in Section 6.2.1, page 136, can be used
to evaluate interactions between pairs of factors in an experiment involving three or more
factors. The graphical evaluation of three-factor interactions can be done by comparing
separate interaction plots at the different levels of a third factor. Such plots will be illustrated
for experiments that involve only three factors, but the methods are similar for experiments
with four or more factors, except that the sample means being plotted would be averages
over the levels of all the other factors.

The following sample means are for a hypothetical 3× 2 × 2 experiment involving the
factorsA, B, andC at 3, 2, and 2 levels, respectively.

ijk : 111 112 121 122 211 212 221 222 311 312 321 322
y ijk. : 3.0 4.0 1.5 2.5 2.5 3.5 3.0 4.0 3.0 4.0 1.5 2.5

AnAB-interaction plot for these hypothetical data is shown in Figure 7.1. As in the previous
chapter, we must remember that interaction plots give no indication of the size of the exper-
imental error and must be interpreted with a little caution. The lines of the plot in Figure 7.1
are not parallel, indicating that the factors possibly interact. For factorA, level 2 appears
to be the best on average, but not consistently the best at each level ofB. Likewise, level 1
of factorB appears to be better on average, but not consistently better at each level ofA.
The perceivedAB interaction is averaged over the levels ofC and may have no practical
meaning if there is anABC interaction. Consequently, the three-factor interaction should
be investigated first.

A three-factor interaction would be indicated if the interaction effect between any pair
of factors were to change as the level of the third factor changes. In Figure 7.2, a separate
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AB-interaction plot is shown for each level of factorC. Each of the two plots suggests the
presence of anAB-interaction effect, but the patterns in the two plots are the same. In other
words, the factorsA andB apparently interact in the same way at each level of factorC.
This indicates a negligibleABC-interaction effect. The shift in the interaction plot as the
level ofC changes from one plot to the other indicates a possible main effect of factorC.
TheAB interaction plot in Figure 7.1 is the average of the two plots in Figure 7.2, showing
theAB interaction averaged over the two levels ofC.

Other three-factor interaction plots can be obtained by interchanging the roles of the
factors. For example, Figure 7.3 contains plots ofyijk. against the levelsi of A for each
level j of factorB, using the levelsk of C as labels and the same hypothetical data. Lines
are parallel in each plot, indicating noAC-interaction at either level ofB. Although the
patterns differ from plot to plot, if there is noAC-interaction at either of the levels ofB,
there is no change in theAC-interaction from one level ofB to the other. So, again the
ABC-interaction effect appears to be negligible. AnAC interaction plot would show the
average of the two plots in Figure 7.3, and although the plot would again look different, the
lines would still be parallel.

To see what the plots might look like when there is anABC-interaction present, we look
at the following second set of hypothetical data.

ijk : 111 112 121 122 211 212 221 222 311 312 321 322
y ijk. : 3.0 2.0 1.5 4.0 2.5 3.5 3.0 4.0 3.0 5.0 3.5 6.0
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Figure 7.3
ABC -interaction plots
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Figure 7.4
ABC -interaction plots
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Figure 7.4 shows plots ofyijk. against the leveli of factorA for each levelk of factorC,
using the levelj of factorB as the plotting label. In each plot, corresponding lines are not
all parallel,and the pattern changes from one plot to the next. In other words, the interaction
effect between factorsA andB apparently changes with the level ofC, so there appears to
be anABC-interaction effect.

Four-factor interactions can be evaluated graphically by comparing the pairs of plots
representing a three-factor interaction for the different levels of a fourth factor. Clearly,
higher-order interactions are harder to envisage than those of lower order, and we would usu-
ally rely solely on the analysis of variance table for evaluating the higher-order interactions.
In general, one should examine the higher-order interactions first, and work downwards. In
many experiments, high-order interactions do tend to be small, and lower-order interactions
can then be interpreted more easily.

7.2.3 Separability of Factorial Effects

In an experiment involving three factors,A,B, andC, for which it is known in advance that
factorC will not interact with factorA orB, theAC,BC, andABC interaction effects can
be excluded from the model. Interpretation of the results of the experiment is simplified,
because a specific change in the level of factorC has the same effect on the mean response
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Figure 7.5
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for every combinationij of levels ofAandB. Likewise, a specific change in the combination
of levels ofA andB has the same effect on the mean response regardless of the level ofC.
If the objective is to find the best treatment combinationijk, then the task is reduced to two
smaller problems involving fewer comparisons, namely choice of the best combinationij

of levels ofA andB and, separately, choice of the best levelk of C.
When there is such separability of effects, the experimenter should generally avoid the

temptation to run separate experiments, one to determine the best combinationij of levels of
factorsA andB and another to determine the best levelk ofC. A single factorial experiment
involving n observations provides the same amount of information on theA,B,C, andAB
effects as would two separate experiments—a factorial experiment for factorsA andB and
another experiment for factorC—each involving n observations!

One way to determine an appropriate model for an experiment is as follows. Suppose
that the experiment involvesp factors. Drawp points, labeling one point for each factor
(see, for example, Figure 7.5 for four factorsA–D). Connect each pair of factors that might
conceivably interact with a line to give aline graph. For every pair of factors that are joined
by a line in the line graph, a two-factor interaction should be included in the model. If three
factors are joined by a triangle, then it may be appropriate to include the corresponding
three-factor interaction in the model as well as the three two-factor interactions. Similarly,
if four factors are joined by all six possible lines, it may be appropriate to include the
corresponding four-factor interaction as well as the three-factor and two-factor interactions.

The line graphs in Figure 7.5 fall into two pieces. Line graph (a) represents the situation
whereA andB are thought to interact, as areC andD. The model would include theAB
andCD interaction effects, in addition to all main effects. Line graph (b) represents an
experiment in which it is believed thatA andB interact and alsoA andC and alsoB andC.
An appropriate model would include all main effects and theAC,AB, andBC interactions.
The three-factorABC interaction effect might also be included in the model depending
upon the type of interaction plots expected by the experimenter. Thus, a possible model
would be

Yijklt � µ+ αi + βj + γk + δl + (αβ)ij

+ (αγ )ik + (βγ )jk + (αβγ )ijk + εijklt .
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7.2.4 Estimation of Factorial Contrasts

For ana × b × c factorial experiment and the three-way complete model, all treatment
contrasts are of the form∑

i

∑
j

∑
k

hijkτijk with
∑
i

∑
j

∑
k

hijk � 0 ,

and are estimable when there is at least one observation per treatment combination.
A contrast in the main effect ofA is any treatment contrast for which the coefficientshijk

depend only on the leveli of A. For example, if we sethijk equal topi/(bc), with�pi � 0,
then the contrast���hijkτijk becomes∑

i

piτ i.. �
∑
i

pi [αi + (αβ)i. + (αγ )i. + (αβγ )i..] �
∑
i

piα
∗
i .

We notice that a main-effect contrast for factorA can be interpreted only as an average
over all of the interaction effects involvingA in the model and, consequently, may not be
of interest if any of these interactions are nonnegligible. TheB andC main-effect contrasts
are defined in similar ways.

An AB interaction contrast is any treatment contrast for which the coefficientshijk
depend only on the combinationij of levels ofA andB, sayhijk � dij /c, and for which∑

i dij � 0 for all j and
∑

j dij � 0 for all i. An AB interaction contrast can be expressed
as∑

i

∑
j

dij τ ij. �
∑
i

∑
j

dij [(αβ)ij + (αβγ )ij.] �
∑
i

∑
j

dij (αβ)∗ij .

Thus, theAB interaction contrast can be interpreted only as an average over theABC

interaction and may not be of interest if theABC interaction is nonnegligible. TheAC and
BC interaction contrasts are defined in similar ways.

An ABC interaction contrast is any contrast of the form∑
i

∑
j

∑
k

hijkτijk �
∑
i

∑
j

∑
k

hijk(αβγ )ijk

for which
∑

i hijk � 0 for all jk,
∑

j hijk � 0 for all ik, and
∑

k hijk � 0 for all ij . When
we investigated the interaction plot forABC using Figures 7.2–7.4, we compared theAB

interaction at two different levels of factorC. In other words, we looked at contrasts of the
type

(τ112 − τ122 − τ212 + τ222) − (τ111 − τ121 − τ211 + τ221) .

If the levels 1 and 2 ofA andB interact in the same way at each level ofC, then thisABC
interaction contrast is zero. If all interaction contrasts of this type (for all levels ofA, B,
andC) are zero, then theABC interaction is negligible.

When a sub-model, rather than a complete model, is used, parameters for the negligible
interactions are removed from the above expressions. If the experiment involves more than
three factors, then the above definitions can be generalized by including the additional
subscripts onhijkτijk and averaging over the appropriate higher-order interactions.
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As in Chapter 6, all contrasts can be represented by coefficient lists in terms of the main-
effect and interaction parameters or in terms of the treatment combination parameters. This
is illustrated in the next example.

Example 7.2.1 Coefficient lists for contrasts

Suppose that we have an experiment that involves four factors,A, B, C, andD, each to
be examined at two levels (so thata � b � c � d � 2 andv � 16). Suppose that a
model that includesAB, BC, BD, CD, andBCD interactions is expected to provide a
good description of the data; that is,

Yijklt � µ+ αi + βj + γk + δl + (αβ)ij

+ (βγ )jk + (βδ)j l + (γ δ)kl + (βγ δ)jkl + εijklt ,

εijklt ∼ N (0, σ 2) ,

εijklt
′s are mutually independent,

t � 1, . . . , rijkl, i � 1,2, j � 1,2, k � 1,2, l � 1,2 .

The contrast that compares the two levels ofC is

τ ..2. − τ ..1. � γ ∗
2 − γ ∗

1 ,

whereγ ∗
k � γk+ (βγ ).k+ (γ δ)k. +(βγ δ).k.. This contrast can be represented as a coefficient

list [−1, 1 ] in terms of the parametersγ ∗
1 andγ ∗

2 or as

1
8[−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1 ]

in terms of theτijkl . These are listed under the headingC in Table 7.1. Coefficient lists
for the other main-effect contrasts in terms of theτijkl are also shown in Table 7.1. The
treatment combinations in the table are listed in ascending order when regarded as 4-digit
numbers. The main-effect contrast coefficients are−1 when the corresponding factor is at
level 1, and the coefficients are+1 when the corresponding factor is at level 2, although
these can be interchanged if contrasts such asγ ∗

1 −γ ∗
2 are required rather thanγ ∗

2 −γ ∗
1 . The

divisor shown in the table is the number of observations taken on each level of the factor.
The two-factor interaction contrast forCD is

(γ δ)∗11 − (γ δ)∗12 − (γ δ)∗21 + (γ δ)∗22 ,

where (γ δ)∗kl � (γ δ)kl + (βγ δ).kl . This has coefficient list [ 1,−1,−1, 1 ] in terms of the
interaction parameters (γ δ)∗kl but has coefficient list
1
4[ 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1 ]

in terms of the treatment combination parametersτijkl . The coefficients are+1 whenC
andD are at the same level and−1 when they are at different levels. Notice that these
coefficients can easily be obtained by multiplying together theC andD coefficients in the
same rows of Table 7.1. The coefficient lists for some of the other interaction contrasts are
also shown in the table, and it can be verified that their coefficients are also products of
the corresponding main-effect coefficients. The divisors are the numbers of observations on
each pair of levels ofC andD. To obtain the same precision (estimator variance) as a main
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Table 7.1 Contrast coefficient lists in terms of treatment combination parameters

Treatment A B C D AB BC BD CD BCD

combination
1111 −1 −1 −1 −1 1 1 1 1 −1
1112 −1 −1 −1 1 1 1 −1 −1 1
1121 −1 −1 1 −1 1 −1 1 −1 1
1122 −1 −1 1 1 1 −1 −1 1 −1
1211 −1 1 −1 −1 −1 −1 −1 1 1
1212 −1 1 −1 1 −1 −1 1 −1 −1
1221 −1 1 1 −1 −1 1 −1 −1 −1
1222 −1 1 1 1 −1 1 1 1 1
2111 1 −1 −1 −1 −1 1 1 1 −1
2112 1 −1 −1 1 −1 1 −1 −1 1
2121 1 −1 1 −1 −1 −1 1 −1 1
2122 1 −1 1 1 −1 −1 −1 1 −1
2211 1 1 −1 −1 1 −1 −1 1 1
2212 1 1 −1 1 1 −1 1 −1 −1
2221 1 1 1 −1 1 1 −1 −1 −1
2222 1 1 1 1 1 1 1 1 1
Divisor 8 8 8 8 4 4 4 4 2

effect contrast, the divisor would need to be changed to 8 (or all contrasts would need to be
normalized).

Contrast coefficients are also shown for theBCD interaction. These are the products of
the main-effect coefficients forB, C, andD. This contrast compares theCD interaction at
the two levels ofB (or, equivalently, theBC interaction at the two levels ofD, or theBD
interaction at the two levels ofC). ✷

7.3 Analysis—Equal Sample Sizes

For an experiment involvingp factors, we can select a cell-means model or the equivalent
p-way complete model, or any of the possible submodels. When the sample sizes are equal,
the formulae for the degrees of freedom, least squares estimates, and sums of squares for
testing hypotheses follow well-defined patterns. We saw in Chapter 6 that for an experiment
with two factors, we obtain similar formulae for the least squares estimates of the contrasts∑

ciαi in the two-way main-effects model and
∑

ciα
∗
i in the two-way complete model.

Similarly, the sum of squares forA was of the same form in both cases. This is also true for
experiments with more than two factors.

We now give a series of rules that can be applied to any complete model with equal
sample sizes. The rules are illustrated for theABD interaction in an experiment involving
four treatment factorsA, B, C, andD, with corresponding symbolsα, β, γ , andδ and
subscriptsi,j ,k, andl to represent their effects on the response in a four-way complete model
with r observations per treatment combination. The corresponding rules for submodels are
obtained by dropping the relevant interaction terms from the complete model. When the



202 Chapter 7 Several Crossed Treatment Factors

sample sizes are not equal, the formulae are more complicated, and we will analyze such
experiments only via a computer package (see Section 7.7).

Rules for estimation and hypothesis testing—equal sample sizes

1. Write down the name of the main effect or interaction of interest and the corresponding
numbers of levels and subscripts.
Example:ABD; numbers of levelsa, b, andd; subscriptsi, j , andl.

2. The number of degrees of freedomν for a factorial effect is the product of the “number
of levels minus one” for each of the factors included in the effect.
Example: ForABD, ν � (a − 1)(b − 1)(d − 1).

3. Multiply out the number of degrees of freedom and replace each letter with the
corresponding subscript.
Example: ForABD, df � abd − ab − ad − bd + a + b + d − 1, which gives
ij l − ij − il − j l + i + j + l − 1.

4. The sum of squares for testing the hypothesis that a main effect or an interaction is
negligible is obtained as follows. Use each group of subscripts in rule 3 as the subscripts
of a termy, averaging over all subscripts not present and keeping the same signs. Put
the resulting estimate in brackets, square it, and sum over all possible subscripts. To
expand the parentheses, square each term in the parentheses, keep the same signs, and
sum over all possible subscripts.
Example:

ss(ABD) � rc
∑
i

∑
j

∑
l

(yij.l. − yij... − yi..l. − y.j.l.

+ yi.... + y.j... + y...l. − y.....)
2

� rc
∑
i

∑
j

∑
l

y2
ij.l. − rcd

∑
i

∑
j

y2
ij... − rbc

∑
i

∑
l

y2
i..l.

− rac
∑
j

∑
l

y2
.j.l. + rbcd

∑
i

y2
i.... + racd

∑
j

y2
.j...

+ rabc
∑
l

y2
...l. − rabcdy2

..... .

5. The total sum of squaressstot is the sum of all the squared deviations of the data values
from their overall mean. The total degrees of freedom isn − 1, wheren is the total
number of observations.

Example: sstot �
∑
i

∑
j

∑
k

∑
l

∑
t

(yijklt − y.....)
2

�
∑
i

∑
j

∑
k

∑
l

∑
t

y2
ijklt − ny2

..... ,

n− 1 � abcdr − 1 .
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6. The error sum of squaresssE is sstot minus the sums of squares for all other effects in
the model. The error degrees of freedomdf is n− 1 minus the degrees of freedom for
all of the effects in the model. For a complete model,df � n− v, wherev is the total
number of treatment combinations.
Example:

ssE � sstot − ssA − ssB − ssC − ssD

− ss(AB) − ss(AC) − · · · − ss(BCD) − ss(ABCD) ,

df � (n− 1) − (a − 1) − (b − 1) − · · · − (a − 1)(b − 1)(c − 1)(d − 1) .

7. The mean square for an effect is the corresponding sum of squares divided by the
degrees of freedom.

Example: ms(ABD) � ss(ABD)/((a − 1)(b − 1)(d − 1)) ,

msE � ssE/df

8. The decision rule for testing the null hypothesis that an effect is zero against the
alternative hypothesis that the effect is nonzero is

rejectH0 if
ss/ν

ssE/df
� ms

msE
> Fν,df,α ,

wheress is the sum of squares calculated in rule 4,ν is the degrees of freedom in rule 2,
andms � ss/ν.

Example: To testH ABD
0 : {the interactionABD is negligible}

againstH ABD
A : {the interactionABD is not negligible} ,

the decision rule is

reject HABD
0 if ms(ABD)

msE > F(a−1)(b−1)(d−1),df,α.

9. An estimable contrast for an interaction or main effect is a linear combination of the
corresponding parameters (averaged over all higher-order interactions in the model),
where the coefficients add to zero over each of the subscripts in turn.
Example: All estimable contrasts for theABD interaction are of the form∑

i

∑
j

∑
l

hij l(αβδ)
∗
ij l

where∑
i

hij l � 0 for all j, l;
∑
j

hij l � 0 for all i, l;
∑
l

hij l � 0 for all i, j ,

and where (αβδ)∗ is the parameter representing theABD interaction averaged over all
the higher-order interactions in the model.

10. If the sample sizes are equal, the least squares estimate of an estimable contrast in
rule 9 is obtained by replacing each parameter withy having the same subscripts and
averaging over all subscripts not present.
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Example: The least squares estimate of theABD contrast in rule 9 is∑
i

∑
j

∑
l

hij l(α̂βδ)
∗
ij l �

∑
i

∑
j

∑
l

hij l yij.l. .

11. The variance of an estimable contrast for a factorial effect is obtained by adding the
squared contrast coefficients, dividing by the product ofr and the numbers of levels of
all factors not present in the effect, and multiplying byσ 2.

Example: Var
(∑

i

∑
j

∑
l hij l(α̂βδ)

∗
ij l

)
�
(∑

i

∑
j

∑
l h

2
ij l/(cr)

)
σ 2 .

12. The “sum of squares” for testing the null hypothesisHc
0 that a contrast is zero is the

square of the normalized contrast estimate.
Example: The sum of squares for testing the null hypothesis that the contrast∑∑∑

hijl(αβδ)∗ij l is zero against the alternative hypothesis that the contrast is
nonzero is the square of the least squares estimate of the normalized contrast∑∑∑

hijl(αβδ)∗ij l/
√∑∑∑

h2
ij l/(cr) ; that is,

ssc �
(∑

i

∑
j

∑
l hij lyij.l.

)2

∑
i

∑
j

∑
l h

2
ij l/(cr)

.

13. The decision rule for testing the null hypothesisHc
0 that an estimable contrast is zero,

against the alternative hypothesis that the contrast is nonzero, is

rejectHc
0 if

ssc

msE
> F1,df,α/m ,

wheressc is the square of the normalized contrast estimate, as in rule 12;msE is the
error mean square;df is the number of error degrees of freedom;α is the overall Type
I error probability; andm is the number of preplanned hypotheses being tested.

14. Simultaneous confidence intervals for contrasts in the treatment combinations can
be obtained from the general formula (4.4.20), page 80, with the appropriate critical
coefficients for the Bonferroni, Scheffé, Tukey, Dunnett, and Hsu methods.
Example: For the four-way complete model, the general formula for
simultaneous 100(1− α)% confidence intervals for a set of contrasts of the form
����cijklτijkl is

����cijklτijkl ∈
(
����cijklyijkl. ± w

√
msE (����c2

ijkl/r)
)
,

where the critical coefficient,w, is

wB � tdf,α/2m ; ws � √(v − 1)Fv−1,df,α ; wT � qv,df,α/
√

2 ;

wD1 � wH � t
(0.5)
v−1,df,α ; wD2 � |t |(0.5)

v−1,df,α ;

for the five methods, respectively, andv is the number of treatment combinations, and
df is the number of error degrees of freedom.
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15. Simultaneous confidence intervals for the true mean effects of the treatment combina-
tions in the complete model can be obtained from the general formula (4.3.12), page 75,
with the appropriate critical coefficients for the Bonferroni or Scheffé methods.
Example: For the four-way complete model, the general formula for simultaneous
100(1− α)% confidence intervals for true mean effects of the treatment combinations
µ+ τijkl is

µ+ τijkl ∈
(
yijkl. ± w

√
msE/r

)
,

where the critical coefficient,w, is

wB � tdf,α/(2v) or ws � √v Fv,df,α
for the Bonferroni and Scheffé methods, respectively.

16. Simultaneous 100(1− α)% confidence intervals for contrasts in the levels of a single
factor can be obtained by modifying the formulae in rule 14. Replacev by the number
of levels of the factor of interest, andr by the number of observations on each level of
the factor of interest.
Example: For the four-way complete model, the general formula for simultaneous
confidence intervals for contrasts

∑
i ciτ i... �∑i α

∗
i in A is

∑
i

ciα
∗
i ∈
∑

i

ciyi.... ± w

√√√√msE

(∑
i

c2
i /(bcdr)

) , (7.3.3)

where the critical coefficients for the five methods are, respectively,

wB � tdf,α/(2m) ; ws � √(a − 1)Fa−1,df,α ; wT � qa,df,α/
√

2 ;

wD1 � wH � t
(0.5)
a−1,df,α ; wD2 � |t |(0.5)

a−1,df,α ;

wheredf is the number of error degrees of freedom.

7.4 A Real Experiment—Popcorn–Microwave Experiment

The experiment described in this section was run by Jianjian Gong, Chongqing Yan, and
Lihua Yang in 1992 to compare brands of microwave popcorn. The details in the following
checklist have been extracted from the experimenters’ report.

The design checklist

(a) Define the objectives of the experiment.
The objective of the experiment was to find out which brand gives rise to the best
popcorn in terms of the proportion of popped kernels. The experiment was restricted to
popcorn produced in a microwave oven.
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(b) Identify all sources of variation.
(i) Treatment factors and their levels.
The first treatment factor was “brand.” Three levels were selected, including two national
brands (levels 1 and 2) and one local brand (level 3). These brands were the brands most
commonly used by the experimenters and their colleagues. All three brands are packaged
for household consumers in boxes of 3.5 ounce packages, and a random selection of
packages was used in this experiment.
Power of the microwave oven was identified as a possible major source of variation
and was included as a second treatment factor. Three available microwave ovens had
power ratings of 500, 600, and 625 watts. The experimenters used only one oven for
each power level. This means that their conclusions could be drawn only about the three
ovens in the study and not about power levels in general.
Popping time was taken as a third treatment factor. The usual instructions provided
with microwave popcorn are to microwave it until rapid popping slows to 2 to 3 seconds
between pops. Five preliminary trials using brand 3, a 600 watt microwave oven, and
times equally spaced from 3 to 5 minutes suggested that the best time was between 4 and
5 minutes. Hence, time levels of 4, 4.5, and 5 minutes were selected for the experiment
and coded 1–3, respectively.
(ii) Experimental units
The experiment was to be run sequentially over time. The treatment combinations were
to be examined in a completely random order. Consequently, the experimental units
were the time slots that were to be assigned at random to the treatment combinations.
(iii) Blocking factors, noise factors, and covariates.
Instead of randomly ordering the observations on all of the treatment combinations,
it might have been more convenient to have taken the observations oven by oven. In
this case, the experiment would have been a “split-plot design” (see Section 2.4.4) with
ovens representing the blocks. In this experiment, no blocking factors or covariates were
identified by the experimenters. The effects of noise factors, such as room temperature,
were thought to be negligible and were ignored.

(c) Choose a rule by which to assign the experimental units to the treatments.
A completely randomized design was indicated. The time-slots were randomly assigned
to the brand–power–time combinations. Popcorn packages were selected at random
from a large batch purchased by the experimenters to represent each brand. Changes
in quality, if any, of the packaged popcorn over time could not be detected by this
experiment.

(d) Specify measurements to be made, the experimental procedure, and the anticipated
difficulties.
A main difficulty for the experimenters was to choose the response variable. They
considered weight, volume, number, and percentage of successfully popped kernels
as possible response variables. In each case, they anticipated difficulty in consistently
being able to classify kernels as popped or not. To help control such variation or incon-
sistency in the measurement process, a single experimenter made all measurements. For
measuring weight, the experimenters needed a more accurate scale than was available,
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since popcorn is very light. They decided against measuring volume, since brands with
smaller kernels would appear to give less volume, as the popcorn would pack more
easily into a measuring cylinder. The percentage, rather than number, of successfully
popped kernels for each package was selected as the response variable.

(e) Run a pilot experiment.
The experimenters ran a very small pilot experiment to check their procedure and to
obtain a rough estimate of the error variance. they collected observations on only 9
treatment combinations. Using a three-way main-effects model, they found that the
overall average popping rate was about 70% and the error standard deviation was a
little less than 10.7%. The highest popping rate occurred when the popping time was
at its middle level (4.5 minutes), suggesting that the range of popping times under
consideration was reasonable. Results for 600 and 625 watt microwave ovens were
similar, with lower response rates for the 500 watt microwave oven. However, since all
possible interactions had been ignored for this preliminary analysis, the experimenters
were cautious about drawing any conclusions from the pilot experiment.

(f) Specify the model.
For their main experiment, the experimenters selected the three-way complete model,
which includes all main effects and interactions between the three treatment factors.
They assumed that the packages selected to represent each brand would be very similar,
and package variability for each brand could be ignored.

(a) — revisited. Define the objectives of the experiment.
Having identified the treatment factors, response variables, etc., the experimenters were
able to go back to step (a) and reformalize the objectives of the experiment. They decided
that the three questions of most interest were:
• Which combination of brand, power, and time will produce the highest popping rate?

(Thus, pairwise comparisons of all treatment combinations were required.)

• Which brand of popcorn performs best overall? (Pairwise comparison of the levels
of brand, averaging over the levels of power and time, was required.)

• How do time and power affect response? (Pairwise comparison of time–power com-
binations, averaging over brands, was required. Also, main-effect comparisons of
power and time were required.)

(g) Outline the analysis.
Tukey’s method of simultaneous confidence intervals for pairwise comparisons was to
be used separately at level 99% for each of the above five sets of contrasts, giving an
experimentwise confidence level of at least 95%.

(h) Calculate the number of observations that need to be taken.
The data from the pilot study suggested that 10.7% would be a reasonable guess for the
error standard deviation. This was calculated using a main-effects model rather than the
three-way complete model, but we would expect a model with more terms to reduce
the estimated error variance, not to enlarge it. Consequently, the valuemsE = 10.72 was
used in the sample-size calculations. The experimenters decided that their confidence
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intervals for any pairwise main-effect comparison should be no wider than 15% (that
is, the half-width, or minimum significant difference, should be less than 7.5%). Us-
ing rule 16, page 205, for Tukey’s pairwise comparisons, a set of 99% simultaneous
confidence intervals for the pairwise differences between the brands (factorA) is

yi... − ys... ± wT

√
msE (2/(bcr)) ,

where the critical coefficient iswT � q3,27r−27,0.01/
√

2. The error degrees of freedom
are calculated for a complete model asdf � n − v � 27r − 27. Consequently, using
10.72 as the rough estimate ofmsE, we need to solve

msd �
(
q3,27(r−1),.01/

√
2
)√

(10.7)2(2/(9r)) ≤ 7.5 .

Trial and error shows thatr � 4 is adequate. Thus a total ofn � rv � 108 observations
would be needed.

(i) Review the above decisions. Revise, if necessary.
The experimenters realized that it would not be possible to collect 108 observations
in the time they had available. Since the effects of power levels of 600 and 625 watts
were comparable in the pilot study, they decided to drop consideration of the 600 watt
microwave and to include only power levels of 500 watts (level 1) and 625 watts (level
2) in the main experiment. Also, they decided to take onlyr � 2 observations (instead
of the calculatedr � 4) on each of thev � 18 remaining treatment combinations.
The effect of this change is to widen the proposed confidence intervals. A set of 99%
simultaneous confidence intervals for pairwise comparisons in the brands using Tukey’s
method andmsE=10.72 would have half-width

msd � (q3,18,.01/
√

2)
√

(10.7)2(2/(6 × 2)) � 14.5 ,

about twice as wide as in the original plan. It was important, therefore, to take extra
care in running the experiment to try to reduce the error variability.

The experiment was run, and the resulting data are shown in Table 7.2. Unfortunately,
the error variance does not seem to be much smaller than in the pilot experiment, since the
mean squared error was reduced only to (9.36)2. A plot of the standardized residuals against
fitted values did not show any pattern of unequal variances or outliers. Likewise, a plot of
the standardized residuals against the normal scores was nearly linear, giving no reason to
question the model assumption of normality. Unfortunately, the experimenters did not keep
information concerning the order of observations, so the independence assumption cannot
be checked.

Data analysis Table 7.3 contains the analysis of variance for investigating the three-way
complete model. If an overall significance level ofα ≤ 0.07 is selected, allowing each
hypothesis to be tested at levelα∗ � 0.01, the only null hypothesis that would be rejected
would beHT

0 :{popping time has no effect on the proportion of popped kernels}. However,
at a slightly higher significance level, the brand–time interaction also appears to have an
effect on the proportion of popped kernels.
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Table 7.2 Percentage yijkl of kernels popped—popcorn–microwave experiment

Time (k )
Brand (i ) Power (j ) 1 2 3

1 1 73.8, 65.5 70.3, 91.0 72.7, 81.9
1 2 70.8, 75.3 78.7, 88.7 74.1, 72.1
2 1 73.7, 65.8 93.4, 76.3 45.3, 47.6
2 2 79.3, 86.5 92.2, 84.7 66.3, 45.7
3 1 62.5, 65.0 50.1, 81.5 51.4, 67.7
3 2 82.1, 74.5 71.5, 80.0 64.0, 77.0

y ..1. � 72.9000 y ..2. � 79.8667 y ..3. � 63.8167

Table 7.3 Three-way ANOVA for the popcorn–microwave experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
B 2 331.1006 165.5503 1.89 0.1801
P 1 455.1111 455.1111 5.19 0.0351
T 2 1554.5756 777.2878 8.87 0.0021
B*P 2 196.0406 98.0203 1.12 0.3485
B*T 4 1433.8578 358.4644 4.09 0.0157
P*T 2 47.7089 23.8544 0.27 0.7648
B*P*T 4 47.3344 11.8336 0.13 0.9673
Treatments 17 4065.7289 239.1605 2.73 0.0206
Error 18 1577.8700 87.6594
Total 35 5643.5989

If the equivalent cell-means model is used, the null hypothesis of no difference between
the treatment combinations would be rejected at significance levelα � 0.07. This is shown
in the row of Table 7.3 labeled “Treatments.” Since the design is equireplicate, the main
effects and interactions are estimated independently, and their sums of squares add to the
treatment sum of squares. The corresponding numbers of degrees of freedom likewise add
up.

Figure 7.6 shows an interaction plot for the factors “Brand” and “Time.” The plot suggests
that use of time level 2, namely 4.5 minutes, generally gives a higher popping rate for all
three brands. Using level 2 of time, brands 1 and 2 appear to be better than brand 3. The
two national brands thus appear to be better than the local brand. Brand 1 appears to be less
sensitive than brand 2 to the popping time. (We say that brand 1 appears to bemore robust to
changes in popping time.) Unless this perceived difference is due to error variability, which
does not show on the plot, brand 1 is the brand to be recommended.

Having examined the analysis of variance table and Figure 7.6, the most interesting issue
seems to be that the differences in the brands might not be the same at the different popping
times. This is not one of the comparisons that had been preplanned at step (g) of the checklist.
It is usually advisable to include in the plan of the analysis the use of Scheffé’s multiple
comparisons for all contrasts that look interesting after examining the data. If we had done
this at overall 99% confidence level, then the experimentwise error rate would have been
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Figure 7.6
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at least 94%. Interaction contrasts and their least squares estimates are defined in rules 9
and 10, page 203. The interaction contrast of most interest is, perhaps,

τ 1.2 − τ 1.3 − τ 2.2 + τ 2.3 ,

which compares the differences in brands 1 and 2 at popping times 2 and 3. This has least
squares estimate

y1.2. − y1.3. − y2.2. + y2.3. � 82.175− 75.20− 86.65+ 51.225� −28.45.

The importance of preplanning will now become apparent. Using Scheffé’s method (rule 14)
at overall level 99%, a confidence interval for this contrast is given by

∑
i

∑
k

cikyi.k. ± wS

√√√√msE

(∑
i

∑
k

c2
ik/(br)

)
� −28.45±√17F17,18,.01

√
87.6594 (4/4)

� −28.45± 69.69 � (−96.41, 39.52) .

Our popping rates are percentages, so our minimum significant difference is 69%. This is
far too large to give any useful information. The resulting interval gives the value of the
interaction contrast as being between−96.4% and 39.5%! Had this contrast been preplanned
for at individual confidence level 99%, we would have used the critical valuewB � t18,0.005 �
2.878 instead ofwS � 7.444, and we would have obtained a minimum significant difference
of about 30%, leading to the interval (−55.40,−1.50). Although still wide, this interval
would have given more information, and in particular, it would have indicated that the
interaction contrast was significantly different from zero.

The other important effect that showed up in the analysis of variance table was the
effect of the different popping times. Comparisons of popping times did feature as one of
the preplanned sets of multiple comparisons, and consequently, we use Tukey’s method
(rule 16) for pairwise differencesγk − γu at overall level 99%. The minimum significant
difference is

msd � wT

√
msE �c2

k/(abr) � (q3,18,.01/
√

2)
√

(87.6594)(2/12) � 12.703.
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The average percentages of popped kernels for the three popping times are shown in Table 7.2
as

y..1. � 72.9000, y..2. � 79.8667, y..3. � 63.8167,

so the three confidence intervals are

γ1 − γ2 ∈ (−6.9667± 12.7030) � (−5.736,19.670),

γ1 − γ3 ∈ ( 9.0833± 12.7030) � (−3.620,21.786),

γ2 − γ3 ∈ ( 16.0500± 12.7030) � ( 3.347,28.753).

We see that at an experimentwise confidence level of at least 94%, use of popping time 2 (4.5
min) produces on average between 3.35% and 28.75% more popcorn than use of popping
time 3 (5 min).

The other questions asked by the experimenters appear to be of less interest, and we will
omit these. The experimentwise confidence level is still at least 94%, even though we have
chosen not to calculate all of the preplanned intervals.

7.5 One Observation per Cell

If the complete model is used for a factorial experiment with one observation per cell, then
there are no degrees of freedom available to estimate the error variance. This problem was
discussed in Section 6.7, where one possible method of analysis was described. The method
relies on being able to identify a number of negligible contrasts, which are then excluded
from the model. The corresponding sums of squares and degrees of freedom are used to
estimate the error variance. With this approach, confidence intervals can be constructed and
hypothesis tests conducted. An example with four treatment factors that are believed not to
interact with each other is presented in the next section.

Two alternative approaches for the identification of nonnegligible contrasts are provided
in the subsequent sections. In Section 7.5.2 we show an approach based on the evaluation
of a normal probability plot of a set of contrast estimates, and in Section 7.5.3 we discuss a
more formalized approach. These two approaches work well under effect sparsity, that is,
when most of the treatment contrasts under examination are negligible.

7.5.1 Analysis Assuming That Certain Interaction Effects Are
Negligible

For a single replicate factorial experiment, if the experimenter knows ahead of time that
certain interactions are negligible, then by excluding those interactions from the model, the
corresponding degrees of freedom can be used to estimate the error variance. It must be
recognized, however, that if interactions are incorrectly assumed to be negligible, thenmsE
will be inflated, in which case the results of the experiment may be misleading.



212 Chapter 7 Several Crossed Treatment Factors

Example 7.5.1 Drill advance experiment

Daniel (1976) described a single replicate 2× 2 × 2 × 2 experiment to study the effects of
four treatment factors on the rate of advance of a small stone drill. The treatment factors
were “load on the drill” (A), “flow rate through the drill” (B), “speed of rotation” (C), and
“type of mud used in drilling” (D). Each factor was observed at two levels, coded 1 and 2.
The author examined several different transformations of the response and concluded that
the log transform was one of the more satisfactory ones. In the rest of our discussion,yijkl
represents the log (to the base 10) of the units of drill advance, as was illustrated in the
original paper.

In many experiments with a number of treatment factors, experimenters are willing to
believe that some or all of the interactions are very small. Had that been the case here, the ex-
perimenter would have used the four-way main-effects model. (Analysis of this experiment
without assuming negligible interactions is discussed in Example 7.5.2, page 214.)

Degrees of freedom and sums of squares are given by rules 2 and 4 in Section 7.3. For
example, the main effect ofB hasb − 1 degrees of freedom and

ssB � acd
∑
i

(
y.j.. − y....

)2 � acd
∑
i

y2
.j.. − acbdy....2 .

The sums of squares for the other effects are calculated similarly and are listed in the analysis
of variance table, Table 7.5. The error sum of squares shown in Table 7.5 is the total of all
the eleven (negligible) interaction sums of squares and can be obtained by subtraction, as
in rule 6, page 203:

ssE � sstot − ssA − ssB − ssC − ssD � 0.01998.

Similarly, the number of error degrees of freedom is the total of the 15− 4 � 11 interac-
tion degrees of freedom. An estimate ofσ 2 is thereforemsE � ssE/11 � 0.0018. Since
F1,11,.01 � 9.65, the null hypotheses of no main effects ofB,C, andD would all have been
rejected at overall significance levelα ≤ 0.04. Alternatively, from a computer analysis we
would see that thep-values forB, C, andD are each less than or equal to an individual
significance level ofα∗ � 0.01.

Table 7.4 Data for the drill advance experiment

ABCD advance y � log(advance) ABCD advance y � log(advance)
1111 1.68 .2253 2111 1.98 .2967
1112 2.07 .3160 2112 2.44 .3874
1121 4.98 .6972 2121 5.70 .7559
1122 7.77 .8904 2122 9.43 .9745
1211 3.28 .5159 2211 3.44 .5366
1212 4.09 .6117 2212 4.53 .6561
1221 9.97 .9987 2221 9.07 .9576
1222 11.75 1.0700 2222 16.30 1.2122

Source:Applications of Statistics to Industrial Experimentation, by C. Daniel, Copyright © 1976, John
Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.
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Table 7.5 Analysis of variance for the drill advance experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square

A 1 0.01275 0.01275 7.02 0.0226
B 1 0.25387 0.25387 139.74 0.0001
C 1 1.00550 1.00550 553.46 0.0001
D 1 0.08045 0.08045 44.28 0.0001

Error 11 0.01998 0.00182
Total 15 1.37254

Confidence intervals for them � 4 main-effect contrasts using Bonferroni’s method at
an overall level of at least 95% can be calculated from rule 16. From rules 10 and 11 on
page 203, the least squares estimate for the contrast that compares the effects of the high
and low levels ofB is y.2.. − y.1.., with varianceσ 2(2/8), giving the confidence interval(

y.2.. − y.1.. ± wB

√
msE (2/8)

)
,

where the critical coefficient is

wB � t11,.025/4 � t11,.00625≈ z+ (z3 + z)/((4)(11))≈ 2.911,

from (4.4.22), page 81, and

msd � wB

√
msE (2/8) � 2.911

√
(0.00182)/4 � 0.062.

Now, y.2.. � 0.820,y.1.. � 0.568, so the confidence interval for theB contrast is

(0.252± 0.062)≈ (0.190,0.314),

where the units are units of log drill advance. Confidence intervals for the other three main
effects comparing high with low levels can be calculated similarly as

A : 0.056± 0.062 � (−0.006,0.118),

C : 0.501± 0.062 � ( 0.439,0.563),

D : 0.142± 0.062 � ( 0.080,0.204).

We see that the high levels ofB,C,D give a somewhat higher response in terms of log drill
advance (with overall confidence level at least 95%), whereas the interval forA includes
zero. ✷

7.5.2 Analysis Using Normal Probability Plot of Effect Estimates

For a single replicate factorial experiment, withv treatment combinations, one can find a
set ofv − 1 orthogonal contrasts. When these are normalized, the contrast estimators all
have varianceσ 2. If the assumptions of normality, equal variances, and independence of the
response variables are approximately satisfied, the estimates of negligible contrasts are like
independent observations from a normal distribution with mean zero and varianceσ 2. If we
plot the normalized contrast estimates against their normal scores (in the same way that we
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checked for normality of the error variables in Chapter 5), the estimates of negligible effects
tend to fall nearly on a straight line. Any contrast for which the corresponding estimate
appears to be far from the line is considered to be nonnegligible. Provided that there is effect
sparsity (all but a few contrast estimates are expected to be negligible), it is not difficult to
pick out the nonnegligible contrasts.

Example 7.5.2 Drill advance experiment, continued

The data for the drill advance experiment were given in Table 7.4 in Example 7.5.1. The
experiment involved treatment factors “load” (A), “flow” (B), “speed” (C), and “mud”
(D) and response “log(drill advance)” (Y ). If we have no information about which factors
are likely to be negligible, we would use the four-way complete model or the equivalent
cell-means model:

Yijkl � µ+ τijkl + εijkl ,

εijkl ∼ N (0, σ 2) ,

εijkl ’s mutually independent,

i � 1,2; j � 1,2; k � 1,2; l � 1,2 .

The contrast coefficients for the four main effects and some of the interactions in such a cell-
means model were listed in Table 7.1, page 201. The contrast coefficients for the interactions
can be obtained by multiplying together the corresponding main-effect coefficients. Each

contrast is normalized by dividing the coefficients by
√
�c2

ijkl/r � √
16 rather than by the

divisors of Table 7.1. For example, the normalizedBCD interaction contrast has coefficient
list

1
4[−1, 1, 1,−1, 1,−1,−1, 1,−1, 1, 1,−1, 1,−1,−1, 1 ] .

The least squares estimate of the normalizedBCD interaction contrast is then

1
4[−(0.2253)+ (0.3160)+ · · · − (0.9576)+ (1.2122)] � −0.0300.

The 15 normalized factorial contrast estimates are given in Table 7.6, and the normal prob-
ability plot of these estimates is shown in Figure 7.7, with the main effect estimates labeled.
Observe that all the estimates fall roughly on a straight line, except for the estimates for
the main-effects of factorsD, B, andC. Hence, these three main effects appear to be
nonnegligible. ✷

Table 7.6 Normalized contrast estimates for the drill advance experiment

Effect: A B C D

Estimate: 0.1129 0.5039 1.0027 0.2836
Effect: AB AC AD BC BD CD

Estimate: −0.0298 0.0090 0.0581 −0.0436 −0.0130 0.0852
Effect: ABC ABD ACD BCD ABCD

Estimate: 0.0090 0.0454 0.0462 −0.0300 0.0335



7.5 One Observation per Cell 215

Figure 7.7
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In the construction of the normal probability plot, the contrasts must be scaled to have
the same variance, and normalization is one way to achieve this. Whenall factors have two
levels, and when the contrasts are written in terms of the treatment combination parameters
as in Table 7.1, their least squares estimators will all have the same variance, as long as the
same divisor is used for every contrast. A popular selection for divisor isv/2, which is
the natural divisor for main-effect contrasts comparing the average treatment combination
effects at the two levels of a factor. Thus, rather than using divisor

√
16 in Example 7.5.2, we

could have used divisorv/2 � 8. If the divisorv/2 is used, the estimators all have variance
4σ 2/v. If no divisor is used, the estimators all have variancevσ 2. As long as the variances
are all equal, the normal probability plot can be used to identify the important contrasts. In
all other sizes of experiment, the contrast coefficients are not all±1, and we recommend
that all contrasts be normalized so that their estimators all have varianceσ 2.

7.5.3 Analysis Using Confidence Intervals

In this section, an alternative to the normal probability plot is presented for the analysis of
a single replicate factorial experiment. As with the normal probability plot, we require a
set ofm orthogonal contrasts and effect sparsity, and we make no assumptions as towhich
effects are negligible. The procedure provides confidence intervals for them contrasts with
a simultaneous confidence level of at least 100(1− α)%. For the moment, we recode the
treatment combinations as 1,2, . . . , v, their effects asτ1, τ2, . . . τv, and we generically
denote each of them contrasts by

∑
ciτi .

First, letd equal the integer part of (m+1)/2, which ism/2 if m is even and is (m+1)/2
if m is odd. The method requires that there be at leastd negligible effects (effect sparsity).
In general, this will be true if at least one of the factors has no effect on the response (and
so does not interact with any of the other factors) or if most of the higher-order interactions
are negligible.
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We take each of them contrasts in turn. For thekth contrast
∑

ciτi , we calculate its least
squares estimate

∑
ciyi and its sum of squaresssck, using rules 10 and 12, page 204. We

then calculate thequasi mean squared error msQk for thekth contrast by taking the average
of thed smallest ofssc1, . . . , ssck−1, ssck+1, . . . , sscm (that is, the smallestd contrast sums
of squares ignoring thekth).

TheVoss–Wang method gives simultaneous 100(1− α)% confidence intervals for them
contrasts, the confidence interval for thekth contrast being

∑
ciτi ∈

(∑
ciyi ± wV

√
msQk

∑
i

c2
i

)
. (7.5.4)

The critical coefficientswV � vm,d,α are provided in Appendix A.11. The critical val-
uesvm,d,α were obtained by Voss and Wang (1997) as the square root of the percentile
corresponding toα in the right-hand tail of the distribution of

V 2 � max
{
SSCk/MSQk

}
,

where the maximum is overk � 1,2, . . . , m.

Example 7.5.3 Drill advance experiment, continued

Consider again the single replicate drill advance experiment of Examples 7.5.1 and 7.5.2
with four factors having two levels each. We can findm � 15 orthogonal factorial contrasts,
nine of which are shown in Table 7.1, page 201. The Voss–Wang method of simultaneous
confidence intervals, described above, is reasonably effective as long as there are at least
d � 8 negligible contrasts in this set.

For an overall 95% confidence level, the critical coefficient is obtained from Ap-
pendix A.11 aswV � v15,8,0.05 � 9.04. Selecting divisorsv/2 � 8 for each contrast,
we obtain the least squares estimates in Table 7.7.

The sums of squares for the 15 contrasts are also listed in Table 7.7 in descending order.
For the contrasts corresponding to each of the seven largest sums of squares, the quasi mean
squared error is composed of the eight smallest contrast sums of squares; that is,

msQk � (0.0000808+ · · · + 0.0020571)/8 � 0.0009004,

and the minimum significant difference for each of these seven contrasts is

msdk � v15,8,0.05

√
msQk (16/(8 × 8)) � (9.04)

√
0.0009004× 0.25 ≈ 0.1356.

The quasi mean squared errors for the contrasts corresponding to the eight smallest sums of
squares are modestly larger, leading to slightly larger minimum significant differences and
correspondingly wider intervals. All contrast estimates and minimum significant differences
are summarized in Table 7.7.



7.6 Design for the Control of Noise Variability 217

Table 7.7 Confidence interval information for the drill advance
experiment

Effect ssck msQk Estimate msd k
C 1.0054957 0.0009004 0.5014 0.1356
B 0.2538674 0.0009004 0.2519 0.1356
D 0.0804469 0.0009004 0.1418 0.1356
A 0.0127483 0.0009004 0.0565 0.1356
CD 0.0072666 0.0009004 0.0426 0.1356
AD 0.0033767 0.0009004 0.0291 0.1356
ACD 0.0021374 0.0009004 0.0231 0.1356

ABD 0.0020571 0.0009105 0.0227 0.1364
BC 0.0019016 0.0009299 -0.0218 0.1378
ABCD 0.0011250 0.0010270 0.0168 0.1449
BCD 0.0008986 0.0010553 -0.0150 0.1468
AB 0.0008909 0.0010563 -0.0149 0.1469
BD 0.0001684 0.0011466 -0.0065 0.1531
ABC 0.0000812 0.0011575 0.0045 0.1538
AC 0.0000808 0.0011575 0.0045 0.1537

The four largest contrast estimates in absolute value are 0.5014 forC, 0.2519 forB,
0.1418 forD, and 0.0565 forA, giving the intervals

ForC : 0.5014± 0.1356 � ( 0.3658,0.6370),

ForB : 0.2519± 0.1356 � ( 0.1163,0.3875),

ForD : 0.1418± 0.1356 � ( 0.0062,0.2774),

ForA : 0.0565± 0.1356 � (−0.0791,0.1921).

Thus, in the 95% simultaneous set, the intervals for the main-effect contrasts ofC, B, and
D exclude zero and are declared to be the important effects. The intervals forA and for
all of the interaction contrasts include zero, so we conclude that these contrasts are not
significantly different from zero. Notice that our conclusion agrees with that drawn from
the normal probability plot. The benefit of the Voss–Wang method is that we no longer need
to guess which contrast estimates lie on the straight line, and also that we have explicit
confidence intervals for the magnitudes of the nonnegligible contrasts. ✷

7.6 Design for the Control of Noise Variability

Design for the control of noise variability is sometimes known asrobust design orparameter
design and refers to the procedure of developing or designing a product in such a way that
it performs consistently as intended under the variety of conditions of its use throughout its
life. The ideas apply equally well to the design of manufacturing and other organizational
processes. Factors included in experimentation are categorized as either design factors or
noise factors.Design factors are factors that are easy and inexpensive to control in the design
of the product—these are also known ascontrol factors or design parameters. Factors that
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may affect the performance of a product but that are difficult or impossible to control when
the product is in use are callednoise factors. Noise factors can be internal or external sources
of noise. For example, the climate in which a product is used is an external source of noise.
Internal sources of noise include variation in the materials used to make a product as well
as the wear of the components and materials over the life of the product.

Each combination of levels of the design factors is a potential product design and is
said to berobust if the product functions consistently well despite uncontrolled variation
in the levels of the noise factors. A general philosophy of robust design has been espoused
by Dr. Genichi Taguchi. Dr. Taguchi is a Japanese quality consultant who has advocated
the use of quality improvement techniques, including the design of experiments, to the
Japanese engineering and industrial communities since the 1950s. One of his fundamental
contributions is the principle that reduction of variation is generally the most difficult task
from an engineering perspective and so should be the focus of attention during product
design. In contrast, adjustment of the mean level of some response variable to a target level
is a relatively easy engineering task. In 1980, Dr. Taguchi traveled to the U.S.A. for the first
time. He gave a series of talks and visited a number of companies. Acceptance of his ideas
began slowly, but is gaining momentum, especially in the major electronic and automobile
industries in the United States and Europe.

In the previous sections and chapters, we have focused on how the mean response changes
as the factor levels change. In robust design, we pay considerable attention to how the
variability of the response changes as the factor levels change. Two approaches to designing
for the control of noise variability will be discussed in the following two subsections. The
fundamental ideas are those proposed by Dr. Taguchi, but the methods of analysis discussed
are those preferred by many statisticians.

7.6.1 Analysis of Design-by-Noise Interactions

In this subsection, the application of traditional statistical methods of analysis of a factorial
experiment is illustrated for a robust product design experiment. Treatment combinations
are combinations of levels of both design and noise factors. This is sometimes referred to
as amixed array. The interactions between design factors and noise factors are exploited
to obtain the robust settings of the design factors. We illustrate the ideas via the following
experiment.

Example 7.6.1 Torque optimization experiment

Rich Bigham (1987) reported on several experiments conducted at the Elsie Division of
ITT Automotive to maximize the operating efficiency of car seat tracks produced by the
division. One of the purposes of one of those experiments was to stabilize frame torque of
a car seat track, with a target value of 14± 4 inch-pounds.

The experiment involved two design factors: “anvil type” (factorA) with levels “coined,”
“flat,” and “crowned,” coded 1–3, respectively, and “rivet diameter” (factorB) with levels
7.0, 7.5, and 8.0 mm, also coded 1–3, respectively. These are design factors because the
best combination of their levels is desired for future production. Measurements were taken
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Table 7.8 Torque optimization experiment data: Torque (inch-pounds)

Machine k � 1 Machine k � 2
AB yij11 yij12 y ijk. s2

ijk
yij21 yij21 y ijk. s2

ijk

11 16 21 18.5 12.5 24 18 21.0 18.0
12 38 40 39.0 2.0 36 38 37.0 2.0
13 48 60 54.0 72.0 42 40 41.0 2.0
21 8 10 9.0 2.0 16 12 14.0 8.0
22 22 28 25.0 18.0 16 18 17.0 2.0
23 28 34 31.0 18.0 16 16 16.0 0.0
31 8 14 11.0 18.0 8 6 7.0 2.0
32 18 24 21.0 18.0 8 14 11.0 18.0
33 20 14 17.0 18.0 16 14 15.0 2.0

Source: Bigham, R. (1987). © Copyright, American Supplier Institute, Inc., Livonia,
Michigan (U.S.A.). Reproduced by permission under License No. 980701.

on two different machines. “Machine” (factorM) is regarded as a noise factor because it is
desirable to use both machines at the same settings of the design factors in the production
process. In such a case, settings of the design factors are needed that give a nonvarying
response across machines.

Two observations were collected for each of the 18 treatment combinations, as shown in
Table 7.8. We use the three-way complete model to analyze the data; that is,

Yijkt � µ+ τijk + εijkt

� µ+ αi + βj + γk + (αβ)ij + (αγ )ik + (βγ )jk + (αβγ )ijk + εijkt .

Plots of the standardized residuals against predicted values and normal scores do not reveal
any concerns about the model, except that the two most extreme standardized residuals are
±2.33, corresponding to treatment combination 131, and the two residuals for treatment
combination 232 are zero. It is impossible, with such a small amount of data, to determine
whether or not the error variances are unequal for different treatment combinations. Since
this is an experiment for robust product design, confidence intervals and hypothesis tests
(which rely heavily on the model assumptions) are not of great interest. As long as the model
is a reasonable description of the data, the model assumptions do not need to be satisfied
exactly.

The analysis of variance table is shown in Table 7.9. Of particular interest are the interac-
tions between design factors and the noise factor. Although the model assumptions may not
be valid, we can still gain an impression of the important effects from the list ofp-values.
For example, theAM interaction appears to be negligible. However, theBM interaction
effect does appear to be important, and theABM interaction should probably be considered
also.

By appropriate choice of the levels ofA andB, it may be possible to exploit these inter-
actions to dampen the effects of the two machines (noise factorM) on response variability.
To investigate the possibilities, anABM interaction plot with the treatment means plotted
against the levels ofM is given in Figure 7.8, withAB combinations as labels. The objective
is to choose a combination of levels of the design factorsA andB for which two conditions
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Table 7.9 Analysis of variance for the torque optimization experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
A 2 3012.7222 1506.3611 116.62 0.0001
B 2 1572.0555 786.0277 60.85 0.0001
AB 4 470.4444 117.6111 9.11 0.0003
M 1 240.2500 240.2500 18.60 0.0004
AM 2 5.1666 2.5833 0.20 0.8205
BM 2 197.1666 98.5833 7.63 0.0040
ABM 4 170.6666 42.6666 3.30 0.0339
Error 18 232.5000 12.9166
Total 35 5900.9722

Figure 7.8
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are satisfied: First, the line connecting the two corresponding points should be relatively flat,
so that there is little variation from machine to machine. Secondly, the mean response should
be within 4 inch-pounds of the target value of 14 inch-pounds. Observe from Figure 7.8
that the treatment combination 33 satisfies both conditions rather well. If we had ignored
variability, we might have been tempted to say that sincey32. � 16.0, the average response
for treatment combination 32 is approximately on target. However, the difference in mean
response from one machine to the other results in much variation in the resulting torques,
making treatment combination 32 an unsuitable choice.

Notice that the response is very consistent from machine to machine for treatment com-
bination 12, while the mean response is way too high. In some experiments, this would not
necessarily be bad. If there were another design factor, called anadjustment factor, that
affected the mean response but not the variability, then that factor could be used to adjust
the mean response on target while maintaining small response variability.
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The writer of the original article selected treatment combination 33, since not only was it
one of the most suitable treatment combinations in the study we have described, but it also
appeared to be the best in a study that examined the effects on a different response variable.
A followup study was done, examining the levels ofB in more detail. The experimenters
finally settled on a level ofB that was halfway between levels 2 and 3, that is, 7.75 mm.✷

7.6.2 Analyzing the Effects of Design Factors on Variability

The approach of the previous subsection, which relied on the subjective examination of an
interaction plot to identify a robust design factor combination, can become complicated if
an experiment involves many factors. Instead, we can calculate the sample variance of all
the observations (for all the noise factor combinations) for each design factor combination.
We then do two analyses, one examining the effects of the design factors on the observed
sample variances and the other examining the effects on the sample means.

We design the experiment so that the same noise factor combinations are observed for
each design factor combination. The list of design factor combinations in the experiment
is called thedesign array. The list of noise factor combinations is called thenoise array.
Since the same noise array is used for each design factor combination, such an experimental
design is called aproduct array.

There are two ways in which the design can be randomized. First, the experimental units
can be assigned completely at random to the design–noise combinations, giving the usual
completely randomized design. Alternatively, the randomization can be done as for a split-
plot design (Section 2.4.4, page 21), where randomization is done for the design array first
(the whole-plots) and then for the noise array (split-plots) separately for each design factor
combination.

Suppose there arev design factor combinations andu noise factor combinations in the
design. Denote a particular design factor combination byw and a noise factor combination by
x, and the corresponding observation byywx . For each design factor combinationw, there
areu observations corresponding to theu noise factor combinations. Denote the sample
mean and sample variance of theseu observations by

yw. �
∑
x

ywx/u and s2
w �
∑
x

(ywx − yw.)
2/(u− 1) .

Under the cell-means model,

Ywx � µ+ τwx + εwx , (7.6.5)

εwx ∼ N (0, σ 2) ,

εwx ’s are mutually independent,

w � 1, . . . , v; x � 1, . . . , u ;

the sample meansYw. are independently and normally distributed with common variance
σ 2/u. Therefore,Yw. can be used as the dependent variable in a cell-means model

Yw. � µ+ αw + εw ,

εw ∼ N (0, σ 2/u) ,
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εw ’s are mutually independent,

w � 1, . . . , v ;

and we can analyze the effects of the design factors averaged over the noise factors via the
usual analysis of variance, but withyw., w � 1, . . . , v, as thev observations.

The more difficult problem concerns how best to analyze the sample variances. The noise
factor levels are systematically, rather than randomly, varied in the experiment. Nevertheless,
s2
w can be used as a measure of the variability of the design factor combinationw calculated

over the levels of the noise factors.
The usual analysis of variance usings2

w as the response variable would not be appropriate,
because Var(S2

w) is not constant. It can be shown that

E[S2
w] � σ 2 +Q(τwx) and Var[S2

w] � 2σ 4

u− 1
+ 4σ 2Q(τwx)

u− 1
,

where

Q(τwx) �
∑
x

(τwx − τw.)
2/(u− 1) andτw. �

∑
x

τwx/u .

It follows that

E[S2
w](2σ 2/(u− 1)) ≤ Var[S2

w] ≤ E[S2
w]2(2/(u− 1)) .

This is true even ifσ 2 depends onw. So, Var[S2
w] increases withE[S2

w]. If Var[S2
w] achieves

it’s upper bound, then a log transformation is appropriate to stabilize Var[S2
w] (see Sec-

tion 5.6.2, page 113). If it achieves its lower bound, then a square-root transformation is
appropriate. Hence, provided that the distribution of ln(S2

w) is approximately normal, we
can use it as a response variable in an analysis of variance to analyze the effect of the design
factors on the variability of the response as the levels of the noise factors change.

Since there is only one value ofyw. and one value of ln(s2
w) for each design factor

combinationw, the effects of the design factors onyw. and ln(s2
w) must be analyzed like a

single replicate design.

Example 7.6.2 Torque optimization experiment, continued

For illustration of the above methodology, we use the torque optimization experiment in-
troduced in Example 7.6.1. The design array consisted ofv � 9 combinationsw � ij of
levels of two design factors,A andB, each having three levels. The noise array consisted
of theu � 4 combinationsx � kt , for two levels (k � 1,2) of the noise factor,M, and for
two observations (t � 1,2) on each treatment combination. The corresponding values of
yij., s

2
ij , and ln(s2

ij ), computed from the data in Table 7.8, are shown in Table 7.10.
Consider first the effects of the design factors on response variability. Figure 7.9(a) is

anAB interaction plot for these data, with ln(s2
ij ) plotted against the level of factorA, and

the level of factorB as the label. There appears to be a strongAB-interaction effect for the
response variable ln(s2

ij ). This is the equivalent conclusion to that of observing anABM

interaction in Example 7.6.1, page 218.
The interaction plot for the effects ofAandB on mean response is shown in Figure 7.9(b),

and suggests that there is an interaction between the two factors when averaged over the
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Table 7.10 Torque optimization experiment
sample means and variances

AB y ij.. s2ij ln(s2ij )
11 19.75 12.2500 2.5055
12 38.00 2.6667 0.9808
13 47.50 81.0000 4.3945
21 11.50 11.6667 2.4567
22 21.00 28.0000 3.3322
23 23.50 81.0000 4.3945
31 9.00 12.0000 2.4849
32 16.00 45.3333 3.8140
33 16.00 8.0000 2.0794

noise factors. This is the equivalent conclusion to observing anAB interaction averaged
overM in Example 7.6.1.

Since both design factors apparently affect both the mean response and the response
variability, the experimenter needs to choose a design factor combination that is satisfactory
with respect to both. Since the target response is 14±4 inch-pounds, we see from Table 7.10
that acceptable levels of mean response are obtained only for treatment combinations 21,
32, and 33, with treatment combination 33 having yielded a much lower sample variance.
This conclusion is in accordance with the conclusion from Example 7.6.1. Some additional
observations should be taken to confirm that the design factor combination 33 is indeed
a good choice, since the analysis leading to it was subjective—no inferential statistical
methods were used. ✷

7.7 Using SAS Software

The analysis of experiments with three or more factors and at least one observation per
cell uses the same types of SAS commands as illustrated for two factors in Section 6.8. In
Section 7.7.1, we illustrate the additional commands needed to obtain a normal probability
plot of the normalized contrast estimates in the drill advance experiment. In Section 7.7.3,
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we show how to calculate and plot the sample means and variances for robust design, and in
Section 7.7.4, we show the complications that can arise when one or more cells are empty.

7.7.1 Normal Probability Plots of Contrast Estimates

In Table 7.11, we show a SAS program for producing a normal probability plot similar
to that of Figure 7.7, page 215, for the contrast estimates of the drill advance experiment.
The levels ofA, B, C, andD together with the responsesADV are entered via theINPUT
statement as usual. A log transformation is then taken so that the responseY used in the
analysis is the log of the units of drill advance. Note thatY = LOG10(ADV) calculates log
to the base 10, whereasY = LOG(ADV) would calculate log to the basee, which is the more
usual transformation. In the subsequentDATA statement, which creates data setDRILL2, the
contrast coefficients are calculated for the main effects (for example,A = 2*A - 3), so
that level 1 of a factor becomes contrast coefficient−1 (e.g.,2*1 - 3 = -1), and level
2 of a factor becomes coefficient+1. These coefficients could have been entered directly
via theINPUT statement, as shown in Table 6.18, page 183. The interaction coefficients are
obtained by multiplying together the main-effect coefficients (e.g.,AB = A*B). The contrast
coefficients are printed as columns similar to those in Table 7.1, page 201.

The contrast coefficients need to be divided by the selected divisor, multiplied by the
corresponding responses, and then summed. In the data setDRILL3, we have calculated
2ciyi (for example,A = 2*A*Y). The subsequentPROC MEANS procedure calculates the
averages of these; that is,�i(2ciyi)/v � �(ciyi)/(v/2). Thus each contrast effectively has
divisorv/2. If a different divisor is required, then the 2 in the expressions2*A*Y etc. would
be adjusted accordingly.

In order to be able to plot the estimates, we need to gather them into the different values
of a single variable. This is achieved byPROC TRANSPOSE, which turns the rows of the
data set into columns. After deleting the first two values via the statementIF N >2 (these
values are merely information for SAS), the resulting least squares estimates are listed as
values of the variableEST1. The normal scores corresponding to the values ofEST1 are
calculated as in Chapter 5 usingPROC RANK NORMAL=BLOM, and then printed. Finally, the
last statement in Table 7.11 draws a plot of the least squares estimates versus the normal
scores. Assuming effect sparsity, the nonnegligible contrasts are those whose estimates do
not lie on the straight line.

7.7.2 Voss–Wang Confidence Interval Method

For analysis of a single-replicate experiment by the Voss–Wang method of simultaneous
confidence intervals (Section 7.5.3), we first fit a full model. In the SAS output, all of the
contrast sums of squares are calculated, and these can be rank ordered by hand. Notice the
shortcut for fitting the full model in the first call ofPROC GLM in Table 7.12. The four factors
are listed in theMODEL statement, separated by vertical lines. SAS automatically adds all
possible interactions to the model.

The quasi mean squared errormsQk is most easily calculated as the error mean square
obtained from the submodel that omits the terms corresponding to thed smallest contrast
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Table 7.11 SAS program for a normal probability plot for the drill advance 24 experiment

DATA DRILL;
INPUT A B C D ADV;
Y=LOG10(ADV); * log to base 10;
LINES;
1 1 1 1 1.68
: : : : :
2 2 2 2 16.30

;
* Calculate contrast coefficients for m contrasts and print them;
DATA DRILL2; SET DRILL;

A=2*A-3; B=2*B-3; C=2*C-3; D=2*D-3;
AB=A*B; AC=A*C; AD=A*D; BC=B*C; BD=B*D; CD=C*D;

ABC=AB*C; ABD=AB*D; ACD=AC*D; BCD=BC*D; ABCD=ABC*D;
PROC PRINT;
VAR Y A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD;

;
* calculate 2*sum(c_iy_i)/v which gives the contrast least
* squares estimates with divisor v/2. Then print these;
* change the 2 to square root of v for normalized contrasts;
DATA DRILL3; SET DRILL2;

A=2*A*Y; B=2*B*Y; C=2*C*Y; D=2*D*Y;
AB=2*AB*Y; AC=2*AC*Y; AD=2*AD*Y;
BC=2*BC*Y; BD=2*BD*Y; CD=2*CD*Y;

ABC=2*ABC*Y; ABD=2*ABD*Y; ACD=2*ACD*Y; BCD=2*BCD*Y;
ABCD=2*ABCD*Y;

PROC MEANS NOPRINT;
VAR A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD;
OUTPUT OUT=ESTIMATS

MEAN=A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD;
PROC PRINT;
* At this point the data set has m least squares estimates
* Turn the data set so that these form 2+m observations on a
* single variable. The first 2 are merely headings. Remove them;
PROC TRANSPOSE PREFIX=EST OUT=ESTS;
DATA ESTS; SET ESTS; IF _N_>2;
;
* Calculate the normal scores corresponding to the contrast estimates;
PROC RANK NORMAL=BLOM OUT=PLT;
VAR EST1;
RANKS NSCORE;

PROC PRINT;
* Plot the contrast estimates against the normal scores;
PROC PLOT;
PLOT EST1*NSCORE / VPOS=19 HPOS=50;
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Table 7.12 SAS program for the Voss–Wang method for the drill advance experiment

* Data set DRILL contains the original data;
DATA DRILL4; SET DRILL;
* Fit complete model including all main effects and interactions;
PROC GLM;
CLASSES A B C D;
MODEL Y = A | B | C | D;

;
* Data set DRILL2 contains the contrast coefficients and observations;
DATA DRILL5; SET DRILL2;
* Calculate quasi mean squares for the Voss-Wang method as follows;
* Omit the d=8 smallest contrasts. The resulting mean squared error
* is the msQ for confidence intervals for the m-d=7 largest contrasts;
PROC GLM;
CLASSES A B C D;
MODEL Y = C B D A CD AD ACD;

;
* Omit the d=8 smallest contrasts apart from ABD. The resulting mean
* squared error is the msQ for confidence intervals for ABD;
PROC GLM;
CLASSES A B C D;
MODEL Y = C B D A CD AD ABD;

;
* Omit the d=8 smallest contrasts apart from BC. The resulting mean
* squared error is the msQ for confidence intervals for BC;
PROC GLM;
CLASSES A B C D;
MODEL Y = C B D A CD AD BC;

;
* etc for each contrast in turn;

sums of squares (not countingssck). A second run of the program is required in order to
fit the submodels for each contrast in turn. Some of these submodels are shown in the SAS
program in Table 7.12. The models must be fitted using the contrast coefficients. This is
because a model of the formMODEL Y = C B D A C*D A*D A*C*D used inPROC GLM
would result in 2 degrees of freedom being assigned toACD, since the “subinteraction”
AC of ACD is not in the model, and its information is assigned toACD. We can calculate
the contrast coefficients as described in the previous subsection and shown in the data set
DRILL2 of Table 7.11, or we can enter them directly as in Table 6.18, page 183.

The critical valuesvm,d,α for the Voss–Wang method are not obtainable through SAS, so
the intervals must be completed by hand.

7.7.3 Identification of Robust Factor Settings

A SAS program for analyzing the torque optimization experiment of Examples 7.6.1
and 7.6.2 both as a mixed array and as a product array is shown in Table 7.13. A data
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setTORQUE2 containing the mean and variances of the responses at each combination of the
A, B, andM levels is created via thePROC MEANS statement and printed as in Table 7.8,
page 219. An interaction plot forABM, such as that in Figure 7.8, page 220, is provided
via thePROC PLOT statement. Notice that we have coded the treatment combinations as
1,2, . . . ,9, rather than 11,12, . . . ,33, since the labels on the SAS plot are single digits.
The first call ofPROC GLM analyzes the experiment as a mixed array with the noise factor
M included in the model as a third treatment factor. The output gives the information in
Table 7.9, page 220.

Some SAS commands for analysis of the experiment as a product array utilizing the
mean and variance of the response is shown next in Table 7.13. The mean and variance of
the responses at each combination of theA andB levels are created via thePROC MEANS
statement, stored in data setTORQUE3 and printed as in Table 7.10, page 223. The second
call of PROC GLM analyzes the mean responseAV Y, giving an analysis of variance table
with no degrees of freedom for interaction, andPROC PLOT gives an interaction plot similar
to that of Figure 7.9(a), page 223. The third calls ofPROC GLM andPROC PLOT give the
equivalent output for the log varianceLVY of the response. The interpretation of all of these
analyses was given in the examples of Section 7.6.

7.7.4 Experiments with Empty Cells

We now illustrate the use of SAS software for the analysis of an experiment with empty
cells. No new SAS procedures or commands are introduced, but the empty cells can cause
complications. For illustration, we use the following experiment.

Example 7.7.1 Rail weld experiment

S. M. Wu (1964) illustrated the usefulness of two-level factorial designs using the data listed
in the SAS program of Table 7.14. Under investigation were the effects of three factors—
ambient temperature (T ), wind velocity (V ), and rail steel bar size (S)—on the ultimate
tensile strength of welds. The factor levels were 0◦ and 70◦ Fahrenheit for temperature, 0
and 20 miles per hour for wind velocity, and 4/11 and 11/11 inches for bar size, each coded
as levels 1 and 2, respectively. Only six of the possible eight treatment combinations were
observed, butr � 2 observations were taken on each of these six.

Some SAS commands for analyzing the rail weld experiment are presented in Table 7.14.
Notice that rather than listing the observations for each treatment combination on separate
lines, we have listed them asY1 andY2 on the same line. We have then combined the
observations into the response variableY. The new variableREP, which will be ignored in
the model, is merely a device to keep the observations distinct. This method of input is often
useful if the data have been stored in a table, with the observations for the same treatment
combinations listed side by side, as in Table 7.2, page 209.

The three-way complete model is requested in the first call ofPROC GLM in Table 7.14.
The output is shown in Table 7.15. With two cells empty, there are data on only six treatment
combinations, so there are only five degrees of freedom available for comparing treatments.
This is not enough to measure the three main effects, the three two-factor interactions,
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Table 7.13 SAS program for analysis of a mixed array and a product array

DATA TORQUE;
INPUT A B M Y;
TC = (3*(A-1)) + B;
LINES;
: : : (input data lines here)

;
* calculate the average data values for each ABM combination;
PROC SORT; BY A B M;
PROC MEANS NOPRINT MEAN VAR;
VAR Y; BY A B M ;
OUTPUT OUT=TORQUE2 MEAN=AV_Y VAR=VAR_Y;

DATA TORQUE2; SET TORQUE2;
TC = (3*(A-1)) + B;

PROC PRINT;
VAR A B TC M AV_Y VAR_Y;

PROC PLOT;
PLOT AV_Y*M=TC AV_Y*M=B/VPOS=19 HPOS=50;

;
* fit model for mixed array analysis with three factors;
DATA TORQUE; SET TORQUE;
PROC GLM;
CLASSES A B M;
MODEL Y = A B A*B M A*M B*M A*B*M;

;
* calculate average and log var of data for each AB combination;
PROC SORT; BY A B ;
PROC MEANS NOPRINT MEAN VAR;
VAR Y; BY A B ;
OUTPUT OUT=TORQUE3 MEAN=AV_Y VAR=VAR_Y;

DATA TORQUE3; SET TORQUE3;
TC = (3*(A-1)) + B;
LVY = LOG(VAR_Y);

PROC PRINT;
VAR A B TC AV_Y VAR_Y LVY;

;
* analysis as a product array with response AV_Y;
PROC GLM;
CLASSES A B ;
MODEL AV_Y = A B A*B ;

PROC PLOT;
PLOT AV_Y*A=B/VPOS=19 HPOS=50;

* analysis as a product array with response log VAR_Y;
PROC GLM;
CLASSES A B ;
MODEL LVY = A B A*B;

PROC PLOT;
PLOT LVY*A=B/VPOS=19 HPOS=50;
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Table 7.14 SAS program for the rail weld experiment with two empty cells

DATA;
INPUT T V S Y1 Y2;
REP=1; Y=Y1; OUTPUT; * create SAS observation for y=y1;
REP=2; Y=Y2; OUTPUT; * create SAS observation for y=y2;
LINES;
1 1 1 84.0 91.0
1 1 2 77.7 80.5
2 1 1 95.5 84.0
2 1 2 99.7 95.4
2 2 1 76.0 98.0
2 2 2 93.7 81.7

PROC PRINT;
VAR T V S REP Y;

* try to fit a 3-way complete model;
PROC GLM;
CLASS T V S;
MODEL Y = T | V | S;
ESTIMATE ’TEMPERATURE’ T -1 1;

* fit a sub-model using 5 degrees of freedom;
PROC GLM;
CLASS T V S;
MODEL Y = T V S T*S V*S;
ESTIMATE ’TEMPERATURE’ T -1 1;
ESTIMATE ’VELOCITY’ V -1 1;
ESTIMATE ’SIZE’ S -1 1;
ESTIMATE ’TEMPERATURE*SIZE’ T*S 1 -1 -1 1/DIVISOR=2;
ESTIMATE ’VELOCITY*SIZE’ V*S 1 -1 -1 1/DIVISOR=2;

Source: Data is from Wu, S. M. (1964). Copyright © 1964 American Welding
Society. Reprinted with permission. (Reprinted University of Wisconsin
Engineering Experiment Station, Reprint 684.)

and the three-factor interaction. This is indicated in the output, since two effects have zero
degrees of freedom. TheESTIMATE statement for the contrast under the first call ofPROC
GLM generates no output. Instead, it generates a note in the SAS log indicating that the
contrast is not estimable.

The only model that can be used is one that uses at most five degrees of freedom. Of
course, this should be anticipated ahead of time during step (g) of the checklist (Chapter 2).
Figure 7.10 illustrates with a solid ball at the corresponding corners of the cube the treatment
combinations for which data are collected. One might guess that theT V interaction effect
is not estimable, since data are only collected at three of the four combinations of levels of
these two factors.

One possibility is to exclude from the complete model those interactions for which the
Type I degrees of freedom are zero, namely theT V and T V S interaction effects. The
contrast coefficient lists for the seven factorial effects are shown in Table 7.16. It is clear
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Table 7.15 Output from the first call of PROC GLM for the rail weld experiment

The SAS System
General Linear Models Procedure

Dependent Variable: Y
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 5 349.510000 69.902000 1.00 0.4877
Error 6 417.790000 69.631667
C.Total 11 767.300000

Source DF Type I SS Mean Square F Value Pr > F
T 1 138.240000 138.240000 1.99 0.2085
V 1 79.380000 79.380000 1.14 0.3267
T*V 0 0.000000 . . .
S 1 0.003333 0.003333 0.00 0.9947
T*S 1 106.681667 106.681667 1.53 0.2620
V*S 1 25.205000 25.205000 0.36 0.5694
T*V*S 0 0.000000 . . .

Table 7.16 Contrast coefficients for the observed
treatment combinations (T.C.) in the rail weld
experiment

T.C. T V TV S TS VS TVS
111 −1 −1 1 −1 1 1 −1
112 −1 −1 1 1 −1 −1 1
211 1 −1 −1 −1 −1 1 1
212 1 −1 −1 1 1 −1 −1
221 1 1 1 −1 −1 −1 −1
222 1 1 1 1 1 1 1

that theT andV contrasts are not orthogonal to theT V interaction contrast, and that the
S, T S, andV S contrasts are not orthogonal to theT V S interaction contrast. Consequently,
the incorrect omission ofT V andT V S from the model will bias the estimates of all the
other contrasts. If we do decide to exclude both theT V andT V S interaction effects, then
the model is of the form

Yijkl � µ+ αi + βj + γk + (αγ )ik + (βγ )ji + εijkl .

We illustrate analysis of this model using the second call ofPROC GLM in Table 7.14. Some of
the output is shown in Table 7.17. The contrasts forT andV are not orthogonal to each other,
but they can be estimated (although with a small positive correlation). Similar comments
apply to theS, T S, andV S contrasts. None of the factorial effects appears particularly
strong in Table 7.17.
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Figure 7.10 Treatment combinations included in the design of the rail weld experiment

Table 7.17 Output from the second call of PROC GLM

The SAS System

Source DF Type III SS Mean Square F Value Pr > F
T 1 214.245000 214.245000 3.08 0.1300
V 1 79.380000 79.380000 1.14 0.3267
S 1 29.645000 29.645000 0.43 0.5383
T*S 1 131.220000 131.220000 1.88 0.2189
V*S 1 25.205000 25.205000 0.36 0.5694

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
Temperature 10.3500000 1.75 0.1300 5.90049433
Velocity -6.3000000 -1.07 0.3267 5.90049433
Size -3.8500000 -0.65 0.5383 5.90049433
Temperature*Size 8.1000000 1.37 0.2189 5.90049433
Velocity*Size -3.5500000 -0.60 0.5694 5.90049433

TheESTIMATE statements under the second call ofPROC GLM generate the information
shown in Table 7.17 for testing or constructing confidence intervals for the usual main effects
and two-factor interaction effects under the given model. ✷

Exercises

1. For the following hypothetical data sets of Section 7.2.2 reproduced below, draw in-
teraction plots to evaluate theBC andABC interaction effects, with levels ofB on
the horizontal axis and levels ofC for labels. In each case, comment on the apparent
presence or absence ofBC andABC interaction effects.
(a) ijk : 111 112 121 122 211 212 221 222 311 312 321 322

y ijk. : 3.0 4.0 1.5 2.5 2.5 3.5 3.0 4.0 3.0 4.0 1.5 2.5

(b) ijk : 111 112 121 122 211 212 221 222 311 312 321 322
y ijk. : 3.0 2.0 1.5 4.0 2.5 3.5 3.0 4.0 3.0 5.0 3.5 6.0
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2. In planning a five-factor experiment, it is determined that the factorsA, B, andC
might interact and the factorsD andE might interact but that no other interaction
effects should be present. Draw a line graph for this experiment and give an appropriate
model.

3. Consider an experiment with four treatment factors,A, B, C, andD, at a, b, c, and
d levels, respectively, withr observations per treatment combination. Assume that
the four-way complete model is a valid representation of the data. Use the rules of
Section 7.3 to answer the following.
(a) Find the number of degrees of freedom associated with theAC interaction effect.

(b) Obtain an expression for the sum of squares forAC.

(c) Give a rule for testing the hypothesis that theAC interaction is negligible against
the alternative hypothesis that it is not negligible. How should the results of the
test be interpreted, given the other terms in the model?

(d) Write down a contrast for measuring theAC interaction. Give an expression for
its least squares estimate and associated variance.

(e) Give a rule for testing the hypothesis that your contrast in part (d) is negligible.

4. Popcorn–microwave experiment, continued
In the popcorn–microwave experiment of Section 7.4 (page 205), the experimenters
studied the effects of popcorn brand, microwave oven power, and cooking time on
the percentage of popped kernels in packages of microwave popcorn. Suppose that,
rather than using a completely randomized design, the experimenters first collected all
the observations for one microwave oven, followed by all observations for the other
microwave oven. Would you expect the assumptions on the three-way complete model
to be satisfied? Why or why not?

5. Weathering experiment
An experiment is described in the paper “Accelerated weathering of marine fabrics”
(Moore, M. A. and Epps, H. H.,Journal of Testing and Evaluation 20, 1992, 139–
143). The purpose of the experiment was to compare the effects of different types of
weathering on the breaking strength of marine fabrics used for sails. The factors of
interest were
F : Fabric at 3 levels (1 = polyester, 2 = acrylic, 3 = nylon).

E: Exposure conditions (1 = continuous light at 62.7◦C, 2 = alternating 30 minutes
light and 15 minutes condensation).

A: Exposure levels (1 = 1200 AFU, 2 = 2400 AFU, 3 = 3600 AFU).

D: Direction of cut of the fabric (1 = warp direction, 2 = filling direction).
In total there werev � 3×2×3×2 = 36 treatment combinations, andr = 2 observations
were taken on each. The response variable was “percent change in breaking strength of
fabric after exposure to weathering conditions.” The average response for each of the 36
treatment combinations is shown in Table 7.18. The error mean square was calculated
to be 6.598 with 36 degrees of freedom.
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Table 7.18 Percent change in breaking strength of fabrics after exposure

Exposure AFU Direction Fabric (F)
(E) (A) (D) 1 2 3
1 1 1 −43.0 −1.7 −74.7

2 −46.1 +11.7 −86.7
2 1 −45.3 −4.2 −87.9

2 −51.3 +10.0 −97.9
3 1 −53.3 −5.1 −98.2

2 −54.5 +7.5 −100.0
2 1 1 −48.1 −6.8 −85.0

2 −43.6 −3.3 −91.7
2 1 −52.3 −4.2 −100.0

2 −53.8 −3.3 −100.0
3 1 −56.5 −5.9 −100.0

2 −56.4 −6.7 −100.0
Source: Moore, M. A. and Epps H. H., (1992). Copyright © ASTM. Reprinted
with permission.

(a) How would you decide whether or not the error variables have approximately the
same variance for each fabric?

(b) Using the cell-means model, test the hypothesisH0 : [τ1 � · · · � τ36] against the
alternative hypothesisHA : [at least twoτi ’s differ]. What can you conclude?

(c) Write down a contrast in the treatment combinations that compares the polyester
fabric with the nylon fabric. Is your contrast estimable?

(d) If your contrast in (c) is estimable, give a formula for the least squares estimator
and its variance. Otherwise, go to part (e).

(e) Assuming that you are likely to be interested in a very large number of contrasts and
you want your overall confidence level to be 95%, calculate a confidence interval
for any pairwise comparison of your choosing. What does the interval tell you?

(f) Calculate a 90% confidence bound forσ 2.

(g) If you were to repeat this experiment and you wanted your confidence interval
in (d) to be of length at most 20%, how many observations would you take on each
treatment combination?

6. Weathering experiment, continued
Suppose you were to analyze the weathering experiment described in Exercise 5 using
a four-way complete model.
(a) What conclusions can you draw from the analysis of variance table?

(b) Give an explicit formula for testing that theFA-interaction is negligible.

(c) Would confidence intervals for differences in fabrics be of interest? If not, why not?
If so, how would they be interpreted? Give a formula for such confidence intervals
assuming that these intervals are preplanned and are the only intervals envisaged,
and the overall level is to be at least 99%.
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Table 7.19 Data (ml) for the evaporation experiment in the order
observed

A 2 1 2 1 2 1 1 2
B 1 2 1 2 1 1 2 2
C 1 2 2 1 2 1 1 1
yijkt 17.5 9.0 19.5 7.0 19.0 8.0 8.0 17.0
A 1 1 1 1 2 2 2 2
B 1 1 2 1 2 2 2 1
C 2 1 2 2 2 1 2 1
yijkt 7.5 7.5 7.5 8.0 16.0 16.0 16.0 18.0

(d) In the original paper, the authors write “Fabric direction (D) had essentially no
effect on percent change in breaking strength for any of the fabrics.” Do you agree
with this statement? Explain.

7. Evaporation experiment
(L. Jen, S.-M. Hsieh, P.-C. Kao, and M. Prenger, 1990)
The experimenters were interested in the evaporation rate of water under different
conditions. Either 1 or 3 teaspoons of salt (levels 1 or 2 of factorB) were added to
100 ml of water and thoroughly stirred. The water was placed in a cup or on a plate
(levels 1 or 2 of factorA), which was then placed on a windowsill or on the floor
of a particular closet (levels 1 or 2 of factorC). After 48 hours, the amount of water
remaining in the container was measured, and the response was the amount of water
evaporated (100 ml less the amount remaining). Two observations were taken on each
of the treatment combinations in a random order, as indicated in Table 7.19.
(a) Choose a model and outline the analysis that you would wish to perform for such

an experiment (step (g) of the checklist; see Chapter 2).

(b) Using your choice of model, carry out your analysis as outlined in part (a). Check
the assumptions on your model, allowing for the fact that there are only two
observations for each treatment combination.

8. Paper towel strength experiment
(Burt Beiter, Doug Fairchild, Leo Russo, and Jim Wirtley, 1990)
The experimenters compared the relative strengths of two similarly priced brands of
paper towel under varying levels of moisture saturation and liquid type. The treatment
factors were “amount of liquid” (factorA, with levels 5 and 10 drops coded 1 and 2),
“brand of towel” (factorB, with levels coded 1 and 2), and “type of liquid” (factorC,
with levels “beer” and “water” coded 1 and 2). A 2× 2 × 2 factorial experiment with
r � 3 was run in a completely randomized design. The resulting data, including run
order, are given in Table 7.20.
(a) The experimenters assumed only factorsA andB would interact. Specify the

corresponding model.

(b) List all treatment contrasts that are likely to be of primary interest to the
experimenters.
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Table 7.20 Data for paper towel strength experiment: A �“amount of
liquid,” B �“brand of towel,” and C �“liquid type”
ABC Strength (Order) Strength (Order) Strength (Order)
111 3279.0 (3) 4330.7 (15) 3843.7 (16)
112 3260.8 (11) 3134.2 (20) 3206.7 (22)
121 2889.6 (5) 3019.5 (6) 2451.5 (21)
122 2323.0 (1) 2603.6 (2) 2893.8 (14)
211 2964.5 (4) 4067.8 (10) 3327.0 (18)
212 3114.2 (12) 3009.3 (13) 3242.0 (19)
221 2883.4 (9) 2581.4 (23) 2385.9 (24)
222 2142.3 (7) 2364.9 (8) 2189.9 (17)

(c) Using the data in Table 7.20, draw an interaction plot for each interaction, and use
the plots to assess the separability of effects assumed by the experimenters.

(d) Use residual plots to evaluate the adequacy of the model specified in part (a).

(e) Provide an analysis of variance table for this experiment, test the various effects,
and draw conclusions.

(f) Construct confidence intervals for each of the treatment contrasts that you listed in
part (b), using an appropriate method of multiple comparisons. Discuss the results.

9. Rocket experiment
S. R. Wood and D. E. Hartvigsen describe an experiment in the 1964 issue ofIndustrial
Quality Control on the testing of an auxiliary rocket engine. According to the authors, the
rocket engine must be capable of satisfactory operation after exposure to environmental
conditions encountered during storage, transportation, and the in-flight environment.
Four environmental factors were deemed important. These were vibration (FactorA;
absent, present, coded 0, 1), temperature cycling (FactorB; absent, present, coded 0, 1),
altitude cycling (FactorC; absent, present, coded 0, 1) and firing temperature/altitude
(FactorD, 4 levels, coded 0, 1, 2, 3). The response variable was “thrust duration,” and
the observations are shown in Table 7.21, whereCk andDl denote thekth level ofC
and thelth level ofD, respectively.
The experimenters were willing to assume that the 3-factor and 4-factor interactions
were negligible.

Table 7.21 Thrust duration (in seconds) for the rocket experiment

C0 C1

A B D0 D1 D2 D3 D0 D1 D2 D3

0 0 21.60 11.54 19.09 13.11 21.60 11.50 21.08 11.72
0 1 21.09 11.14 21.31 11.26 22.17 11.32 20.44 12.82
1 0 21.60 11.75 19.50 13.72 21.86 9.82 21.66 13.03
1 1 19.57 11.69 20.11 12.09 21.86 11.18 20.24 12.29
Total 83.86 46.12 80.01 50.18 87.49 43.82 83.42 49.86

Source: Wood, S. R. and Hartvigsen, D. E. (1964). Copyright 1964 American
Society for Quality. Reprinted with permission.
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(a) State a reasonable model for this experiment, including any assumptions on the
error term.

(b) How would you check the assumptions on your model?

(c) Calculate an analysis of variance table and test any relevant hypotheses, stating
your choice of the overall level of significance and your conclusions.

(d) Levels 0 and 1 of factorD represent temperatures−75◦F and 170◦F, respectively at
sea level. Level 2 ofD represents−75◦F at 35,000 feet. Suppose the experimenters
had been interested in two preplanned contrasts. The first compares the effects of
levels 0 and 1 ofD, and the second compares the effects the levels 0 and 2 of
D. Using an overall level of at least 98%, give a set of simultaneous confidence
intervals for these two contrasts.

(e) Test the hypotheses that each contrast identified in part (d) is negligible. Be ex-
plicit about which method you are using and your choice of the overall level of
significance.

(f) If the contrasts in part (d) had not been preplanned, would your answer to (d) have
been different? If so, give the new calculations.

(g) Although it may not be of great interest in this particular experiment, draw an
interaction plot for theCD interaction and explain what it shows.

(h) If the experimenters had included the 3-factor and 4-factor interactions in the model,
how could they have decided upon the important main effects and interactions?

10. Spectrometer experiment
A study to determine the causes of instability of measurements made by a Baird
spectrometer during production at North Star Steel Iowa was reported by J. Inman,
J. Ledolter, R. V. Lenth, and L. Niemi in theJournal of Quality Technology in 1992. A
brainstorming session with members of the Quality Assurance and Technology Depart-
ment of the company produced a list of five factors that could be controlled and could
be the cause of the observed measurement variability. The factors and their selected
experimental levels were:

A: Temperature of the lab. (67◦, 72◦, 77◦).

B: Cleanliness of entrance window seal (clean, one week’s use).

C: Placement of sample (sample edge tangential to edge of disk, sample completely
covering disk, sample partially covering disk).

D: Wear of boron nitride disk (new, one month old).

E: Sharpness of counterelectrode tip (newly sharpened, one week’s wear).

Spectrometer measurements were made on several different elements. The manganese
measurements are shown in Table 7.22, whereAi andBj denote theith level ofA
and thej th level ofB, respectively. The experimenters were willing to assume that the
4-factor and 5-factor interactions were negligible.
(a) Test any relevant hypotheses, at a 0.05 overall level of significance, and state your

conclusions.
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Table 7.22 Manganese data for the spectrometer experiment

A1 A2 A3

C D E B1 B2 B1 B2 B1 B2
1 1 1 0.9331 0.9214 0.8664 0.8729 0.8711 0.8627
1 1 2 0.9253 0.9399 0.8508 0.8711 0.8618 0.8785
1 2 1 0.8472 0.8417 0.7948 0.8305 0.7810 0.8009
1 2 2 0.8554 0.8517 0.7810 0.7784 0.7887 0.7853
2 1 1 0.9253 0.9340 0.8879 0.8729 0.8618 0.8692
2 1 2 0.9301 0.9272 0.8545 0.8536 0.8720 0.8674
2 2 1 0.8435 0.8674 0.7879 0.8009 0.7904 0.7793
2 2 2 0.8463 0.8526 0.7784 0.7863 0.7939 0.7844
3 1 1 0.9146 0.9272 0.8769 0.8683 0.8591 0.8683
3 1 2 0.9399 0.9488 0.8739 0.8729 0.8729 0.8481
3 2 1 0.8499 0.8417 0.7893 0.8009 0.7893 0.7904
3 2 2 0.8472 0.8300 0.7913 0.7904 0.7956 0.7827
Total 10.6578 10.6836 9.9331 9.9991 9.9376 9.9172

Source: Inman, J., Ledolter, J., Lenth, R. V. and Niemi, L. (1992). Copyright © 1997
American Society for Quality. Reprinted with Permission.

(b) Draw an interaction plot for theAE interaction. Does the plot show what you
expected it to show? Why or why not? (MentionAE, A, andE.)

(c) The spectrometer manual recommends that the placement of the sample be at level
2. Using level 2 as a control level, give confidence intervals comparing the other
placements with the control placement. You may assume that these comparisons
were preplanned. State which method you are using and give reasons for your
choice. Use an overall confidence level of at least 98% for these two intervals.

(d) Test the hypotheses of no linear and quadratic trends in the manganese mea-
surements due to temperature. Use a significance level of 0.01 for each
test.

11. Galling experiment
A. Ertas, H. J. Carper, and W. R. Blackstone (1992,Experimental Mechanics) described
an experiment to study the effects of speed (factorA at 1.5 and 5.0 rpm), surface
roughness (factorB at 1.9 and 3.8 microns), and axial load (factorC at 413.4 and
689 MPa) on the “galling” of a metal collar. Galling is the name given to the failure
phenomenon of severe adhesive wear, and the amount of galling in the experimental
observations was scored with 0 for no galling and 10 for severe galling. The data are
shown in Table 7.23.

(a) Would you expect the assumptions on the three-way complete model to hold for
these data? Why or why not?

(b) Calculate the least squares estimates for a set of seven orthogonal contrasts,
measuring the main effects and interactions.
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Table 7.23 Scores for the galling experiment

A 1 1 1 1 2 2 2 2
B 1 1 2 2 1 1 2 2
C 1 2 1 2 1 2 1 2
yijk 2 5 0 2 6 10 4 8

Source: Ertas, A., Carper, H. J., and Blackstone, W. R.
(1992). Published by the Society for Experimental
Mechanics. Reprinted with permission.

(c) Draw a normal probability plot of the seven contrast estimates. Althoughm � 7
contrasts is too few to be able to draw good conclusions about the plot, which
contrasts should be investigated in more detail later?

(d) Use the Voss–Wang procedure to examine the seven contrasts used in part (c). What
conclusions can you draw about this experiment?

12. Washing power experiment
E. G. Schilling (1973,Journal of Quality Technology) illustrates the estimation of
orthogonal trend contrasts using a set of data originally collected by Feuell and Wagg
in 1949. The Feuell and Wagg experiment investigated the washing power of a solution
as measured by the reflectance of pieces of cotton cloth after washing. Pieces of cloth
were soiled with colloidal graphite and liquid paraffin and then washed for 20 minutes
at 60◦C followed by two rinses at 40◦C and 30◦C, respectively. The three factors in the
washing solution of interest were

“sodium carbonate” (FactorA, levels 0%, 0.05%, and 0.1%);
“detergent” (FactorB, levels 0.05%, 0.1%, and 0.2%);
“sodium carboxymethyl cellulose” (FactorC, levels 0%, 0.025%, 0.05%).

We code the levels of each factor as 1, 2, and 3. One observation was taken per treatment
combination, and the responses are shown in Table 7.24.

Table 7.24 Data for the washing power experiment

A 1 1 1 1 1 1 1 1 1
B 1 1 1 2 2 2 3 3 3
C 1 2 3 1 2 3 1 2 3
yijk 10.6 14.9 18.2 19.8 24.3 23.2 27.0 31.5 34.0
A 2 2 2 2 2 2 2 2 2
B 1 1 1 2 2 2 3 3 3
C 1 2 3 1 2 3 1 2 3
yijk 19.7 25.5 25.9 32.9 36.4 38.9 36.1 39.0 40.6
A 3 3 3 3 3 3 3 3 3
B 1 1 1 2 2 2 3 3 3
C 1 2 3 1 2 3 1 2 3
yijk 22.3 29.4 29.7 32.0 41.0 41.6 32.1 41.5 38.7

Source: Schilling, E. G. (1973). Copyright © 1997 American Society for Quality.
Reprinted with Permission.
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(a) Make a table similar to that of Table 7.1, page 201, with the first column containing
the 27 treatment combinations for the washing power experiment in ascending
order. List the contrast coefficients for the main effect trend contrasts: LinearA,
QuadraticA, LinearC, and QuadraticC. Also list the contrast coefficients for the
interaction trend contrasts LinearA× LinearC, LinearA× QuadraticC, Quadratic
A× LinearC, QuadraticA× QuadraticC.

(b) What divisors are needed to normalize each of the contrasts? Calculate, by hand,
the least squares estimates for the normalized contrasts LinearA and QuadraticA.

(c) The levels ofB are not equally spaced. Select two orthogonal contrasts that compare
the levels ofB and add these to your table in part (a).

(d) Use a computer program (similar to that of Table 7.11) to calculate the least squares
estimates of a complete set of 26 orthogonal normalized contrasts that measure the
main effects ofA, B, andC and their interactions. Prepare a normal probability
plot of the 26 contrast estimates. Explain what you can conclude from the plot.

(e) Use the method of Voss and Wang (Sections 7.5.3 and 7.7.2) to examine a complete
set of 26 orthogonal normalized contrasts that measure the main effects ofA, B,
andC and their interactions. Compare your conclusions with those obtained from
part (d).

13. Paper towel experiment, continued
Consider the paper towel strength experiment of Exercise 8. Suppose thatonly the first
ten observations had been collected. These are labeled (1)–(10) in Table 7.20, page 235
.

(a) Is it possible to perform an analysis of variance of these data, using a model that
includes main effects and theAB interaction as required by the experimenters? If
so, analyze the experiment.

(b) Use a computer program to fit a three-way complete model. Can all of the main
effects and interactions be measured? If not, investigate which models could have
been used in the analysis of such a design with two empty cells and unequal numbers
of observations in the other cells.

14. Popcorn–robust experiment
(M. Busam, M. Cooper, H. Livatyali, T. Miller and V. Vazquez, 1996)
The experimenters were interested in examining three brands of popcorn (factorA) and
two types of oil (factorB) in terms of the percentage of edible kernels obtained after
popping 200 kernels of corn for a certain length of time. The popping time (factorT )
was regarded as a noise factor. The experimenters wanted to discover whether some
combinations of popcorn brand and oil not only give a higher percentage of popped
kernels than others, but also whether some combinations are more robust than others
to variations in popping times. The selected levels of the noise factorT were 1.5 min,
1.75 min, and 2 min (coded 1, 2, and 3). The three brands of popcorn consisted of one
store brand (level 1) and two different name brands (levels 2 and 3). The two types of
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Table 7.25 Percentage of popped kernels for the robust popcorn
experiment

Time k � 1 Time k � 2 Time k � 3
AB yij11 yij12 yij21 yij21 yij31 yij31
11 45.5 57.0 73.5 83.5 62.5 80.0
12 59.0 52.0 76.0 84.5 83.0 86.0
21 76.0 53.0 58.5 64.5 57.5 51.0
22 86.0 74.0 77.0 69.5 61.0 62.5
31 83.5 67.5 85.5 84.0 81.5 78.5
32 51.0 69.0 66.5 76.0 85.5 78.0

oil were a store brand corn oil (level 1) and a specialized name brand popping oil (level
2).
Two observations were taken on each brand–oil combination for each of the pop-
ping times. The observations were collected in a random order and are summarized in
Table 7.25.
(a) Analyze the experiment as a mixed array, using a three-way complete model. Draw

anABT interaction plot, similar to that of Figure 7.8, page 220. If the goal of the
experiment is to find brand–oil combinations that give a high percentage of edible
kernels and that are not too sensitive to the popping time, what recommendations
would you make?

(b) Does the store brand of popcorn differ substantially in terms of percentage of edible
kernels from the average of the name brands? Do the different types of oil differ?
State your overall confidence levels or significance levels.

(c) Analyze the experiment as a product array, and calculate the sample average and
the log sample variance percentage of popped kernels for each brand–oil combi-
nation. DrawAB interaction plots similar to those of Figure 7.9, page 223. If the
goal of the experiment is still to find brand–oil combinations that give a high per-
centage of edible kernels and that are not too sensitive to the popping time, what
recommendations would you make? How do your recommendations compare with
those that you made in part (a)?

15. Steel bar experiment
W. D. Baten (1956,Industrial Quality Control) described an experiment that investi-
gated the cause of variability of the length of steel bars in a manufacturing process.
Each bar was processed with one of two different heat treatments (factorA, levels 1, 2)
and was cut on one of four different screw machines (factorB, levels 1, 2, 3, 4) at one
of three different times of day (factorC, levels 8 am, 11 am, 3 pm, coded 1, 2, 3). There
were considerable differences in the lengths of the bars after cutting, and a purpose for
this experiment was to try to determine whether there were assignable causes for this
variation.
(a) Discuss possible ways to design and analyze this experiment, but assume that it

needs to be run in a working factory. In your discussion, consider using

(i) a completely randomized design,
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Table 7.26 Data for the steel bar experiment

ABC y1jk1 y1jk2 y1jk3 y1jk4 ABC y2jk1 y2jk2 y2jk3 y2jk4
111 6 9 1 3 211 4 6 0 1
112 6 3 1 −1 212 3 1 1 −2
113 5 4 9 6 213 6 0 3 7
121 7 9 5 5 221 6 5 3 4
122 8 7 4 8 222 6 4 1 3
123 10 11 6 4 223 8 7 10 0
131 1 2 0 4 231 −1 0 0 1
132 3 2 1 0 232 2 0 −1 1
133 −1 2 6 1 233 0 −2 4 −4
141 6 6 7 3 241 4 5 5 4
142 7 9 11 6 242 9 4 6 3
143 10 5 4 8 243 4 3 7 0

Source: Baten, W. D. (1956). Copyright 1956 American Society for Quality.
Reprinted with permission.

(ii) a randomized block design,

(iii) a design with times of day (factorC) regarded as a block factor,

(iv) a design with times of day (factorC) regarded as a noise factor.

(b) The randomization employed by the experimenter is not specified in the published
article, and we proceed as though it were run as a completely randomized design
with the three factorsA, B, andC described above. List some of the sources of
variation that must have been deemed as minor and ignored.

(c) The data that were collected by the experimenter are shown in Table 7.26. There
arer � 4 observations on each of thev � 24 treatment combinations. The data
values are “yijkt � (length− 4.38)× 1000 inches.” Check the assumptions on the
three-way complete model for these data. (You may wish to remove an outlier).
If the assumptions are satisfied, calculate an analysis of variance table. What are
your conclusions?

(d) Draw a machine× time interaction plot. Which machine is most robust to the
time of day at which the bars are cut? What possible causes could there be for this
difference in machines?

(e) The desired length for each bar was 4.385± 0.005 inches, which means that the
desired value for the responseyijkt is 5 units. Calculate confidence intervals for the
true mean lengths of the bars cut on the four machines. Which machines appear to
give bars closest to specification?

(f) Calculate the log sample variance of the twelve observations at each heat/machine
combination. Is one of the heat treatments more robust than the other to the time
of day at which the bars are cut? How do the machines compare in terms of the
variability of the steel bar lengths? Does your conclusion agree with the one you
made in part (d)?
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(g) Given all the information that you have gained about this steel cutting process,
what recommendations would you make to the management of this manufacturing
company?

16. Paper towel strength experiment, continued
Consider the paper towel strength experiment of Exercise 8, page 234. The 24
observations are shown in Table 7.20.
(a) Explain why we could have regarded this as an experiment for the control of noise

variability, with brand of paper towel as the design factor and the amount and type
of liquid as noise factors.

(b) Use the complete model and construct an analysis of variance table. For each signif-
icant interaction effect involving brand (if any), draw the corresponding interaction
plot. Discuss the overall performance and relative robustness of the two brands of
paper towel.

(c) For each levelj of brand of paper towel, there are twelve combinationsikt (i � 1,2,
k � 1,2, t � 1,2,3) of levels of the noise factors “amount,” “type of liquid,”
and observation number. For eachj , calculate the sample variances2

j and log
sample variance ln(s2

j ) of these twelve observations. Also calculate the sample
mean strengthy.j...

(d) The best brand is that which has the greatest average strength and the smallest
variance in the strength (calculated over the noise factors). Which brand would you
recommend? Does your recommendation agree with your discussion in part (b)?
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8.1 Introduction

In each of the previous chapters we were concerned with experiments that were run as
completely randomized designs for the purpose of investigating the effects of one or more
treatment factors on a response variable. Analysis of variance and methods of multiple
comparisons were used to analyze the data. These methods are applicable whether factor
levels are qualitative or quantitative.

In this chapter, we consider an alternative approach for quantitative factors, when the
set of possible levels of each factor is real-valued rather than discrete. We restrict attention
to a single factor and denote its levels byx. The mean responseE[Yxt ] is modeled as a
polynomial function of the levelx of the factor, and the points (x,E[Yxt ]) are called the
response curve. For example, ifE[Yxt ] � β0 + β1x for unknown parametersβ0 andβ1,
then the mean response is a linear function ofx and the response curve is a line, called the
regression line. Using data collected at various levelsx, we can obtain estimateŝβ0 andβ̂1

of the intercept and slope of the line. Thenŷx � β̂0 + β̂1x provides an estimate ofE[Yxt ]

243
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as a function ofx, and it can be used to estimate the mean response or to predict the values
of new observations for any factor levelx, including values for which no data have been
collected. We call̂yx thefitted model or theestimated mean response at the levelx.

In Section 8.2, we look at polynomial regression and the fit of polynomial response curves
to data. Estimation of the parameters in the model, using the method of least squares, is
discussed in the optional Section 8.3. In Section 8.4, we investigate how well a regression
model fits a given set of data via a “lack-of-fit” test. In Section 8.5, we look at the analysis of a
simple linear regression model and test hypotheses about the values of the model parameters.
Confidence intervals are also discussed. The general analysis of a higher-order polynomial
regression model using a computer package is discussed in Section 8.6. Investigation of
linear and quadratic trends in the data via orthogonal polynomials is the topic of optional
Section 8.7. An experiment is examined in detail in Section 8.8, and analysis using the SAS
computer package is done in Section 8.9.

Polynomial regression methods can be extended to experiments involving two or more
quantitative factors. The mean responseE[Yxt ] is then a function of several variables and
defines aresponse surface in three or more dimensions. Specialized designs are usually
required for fitting response surfaces, and consequently, we postpone their discussion to
Chapter 16.

8.2 Models

The standard model for polynomial regression is

Yxt � β0 + β1x + β2x
2 + · · · + βpx

p + εxt , (8.2.1)

εxt ∼ N (0, σ 2) ,

εxt ’s are mutually independent

t � 1, . . . , rx ; x � x1, . . . , xv.

Figure 8.1
Simple linear

regression model X

2.0 4.0 6.0 8.0

E
[Y

]
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The treatment factor is observed atv different levelsx1, . . . , xv. There arerx observations
taken when the treatment factor is at levelx, andYxt is the response for thet th of these. The
responsesYxt are modeled as independent random variables with mean

E[Yxt ] � β0 + β1x + β2x
2 + · · · + βpx

p ,

which is apth-degree polynomial function of the levelx of the treatment factor. Since
εxt ∼ N (0, σ 2), it follows that

Yxt ∼ N (β0 + β1x + β2x
2 + · · · + βpx

p, σ 2) .

Typically, in a given experiment, the exact functional form of the true response curve
is unknown. In polynomial regression, the true response curve is assumed to be well ap-
proximated by a polynomial function. If the true response curve is relatively smooth, then a
low-order polynomial function will often provide a good model, at least for a limited range
of levels of the treatment factor.

If p � 1 in the polynomial regression function, we have the case known assimple linear
regression, for which the mean response is

E[Yxt ] � β0 + β1x ,

which is a linear function ofx. This model assumes that an increase of one unit in the level
of x produces a mean increase ofβ1 in the response, and is illustrated in Figure 8.1. At
each value ofx, there is a normal distribution of possible values of the response, the mean
of which is the corresponding point,E[Yxt ] � β0 + β1x, on the regression line and the
variance of which isσ 2.

Consider now the data plotted in Figure 8.2, for which polynomial regression might be
appropriate. Envisage a normal distribution of possible values ofYxt for each levelx, and a
smooth response curve connecting the distribution of their means,E[Yxt ]. It would appear
that a quadratic response curve may provide a good fit to these data. This case, for which

E[Yxt ] � β0 + β1x + β2x
2,

is calledquadratic regression. If this model is adequate, the fitted quadratic model can be
used to estimate the value ofx for which the mean response is maximized, even though it
may not occur at one of thex values for which data have been collected.

✻

yxt

✲
10 20 30 40 50 x

❜❜❜ ❜❜❜ ❜❜❜ ❜❜❜
❜❜❜

Figure 8.2 Three hypothetical observations yxt at each of five treatment factor levels
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Although regression models can be used to estimate the mean response at values ofx

that have not been observed, estimation outside the range of observedx values must be done
with caution. There is no guarantee that the model provides a good fit outside the observed
range.

If observations are collected forv distinct levelsx of the treatment factor, then any
polynomial regression model of degreep ≤ v − 1 (that is, withv or fewer parameters)
can be fitted to the data. However, it is generally preferable to use the simplest model that
provides an adequate fit. So for polynomial regression, lower-order models are preferred.
Higher-order models are susceptible tooverfit, a circumstance in which the model fits the
data too well at the expense of having the fitted response curve vary or fluctuate excessively
between data points. Over-fit is illustrated in Figure 8.3, which contains plots for a simple
linear regression model and a sixth-degree polynomial regression model, each fitted to the
same set of data. The sixth-degree polynomial model provides the better fit in the sense of
providing a smaller value for the sum of squared errors. However, since we may be looking
at natural fluctuation of data around a true linear model, it is arguable that the simple linear
regression model is actually a better model—better for predicting responses at new values of
x, for example. Information concerning the nature of the treatment factor and the response
variable may shed light on which model is more likely to be appropriate.

Least squares estimates Once data are available, we can use the method of least squares
to find estimateŝβj of the parametersβj of the chosen regression model. The fitted model
is then

ŷx � β̂0 + β̂1x + β̂2x
2 + · · · + β̂px

p ,

and the error sum of squares is

ssE �
∑
x

∑
t

(yxt − ŷx)
2 .

The number of error degrees of freedom is the number of observations minus the number
of parameters in the model; that is,n− (p + 1). The mean squared error,

msE �
∑
x

∑
t

(yxt − ŷx)
2/(n− p − 1) ,

provides an unbiased estimate ofσ 2.

Figure 8.3
Data and fitted linear
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(b) Degree 6 polynomial model
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In the following optional section, we obtain the least squares estimates of the parameters
β0 andβ1 in a simple linear regression model. However, in general we leave the determination
of least squares estimates to a computer, since the formulae are not easily expressed without
the use of matrices, and the hand computations are generally tedious. An exception to this
occurs with the use of orthogonal polynomial models, discussed in Section 8.7.

Checking model assumptions Having made an initial selection for the degree of poly-
nomial model required in a given scenario, the model assumptions should be checked. The
first assumption to check is that the proposed polynomial model forE[Yxt ] is indeed ade-
quate. This can done either by examination of a plot of the residuals versusx or by formally
testing for model lack of fit. The standard test for lack of fit is discussed in Section 8.4.

If no pattern is apparent in a plot of the residuals versusx, this indicates that the model
is adequate. Lack of fit is indicated if there is a clear function-like pattern. For example,
suppose a quadratic model is fitted but a cubic model is needed. Any linear or quadratic
pattern in the data would then be explained by the model and would not be evident in the
residual plot, but the residual plot would show the pattern of a cubic polynomial function
unexplained by the fitted model (see Figure 8.4).

Residual plots can also be used to assess the assumptions on the random error terms in
the model in the same way as discussed in Chapter 5. The residuals are plotted versus run
order to evaluate independence of the error variables, plotted versus fitted valuesŷx to check
the constant variance assumption and to check for outliers, and plotted versus the normal
scores to check the normality assumption.

If the error assumptions are not valid, the fitted line still provides a model for mean re-
sponse. However, the results of confidence intervals and hypothesis tests can be misleading.
Departures from normality are generally serious problems only when the true error distri-
bution has long tails or when prediction of a single observation is required. Nonconstant
variance can sometimes be corrected via transformations, as in Chapter 5, but this may also
change the order of the model that needs to be fitted.

If no model assumptions are invalidated, then analysis of variance can be used to de-
termine whether or not a simpler model would suffice than the one postulated by the
experimenter (see Section 8.6).

Figure 8.4
Plots for a quadratic

polynomial regression
model fitted to data
from a cubic model
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8.3 Least Squares Estimation (Optional)

In this section, we derive the normal equations for a general polynomial regression model.
These equations can be solved to obtain the set of least squares estimatesβ̂j of the parameters
βj . We illustrate this for the case of simple linear regression.

8.3.1 Normal Equations

For thepth-order polynomial regression model (8.2.1), the normal equations are obtained
by differentiating the sum of squared errors∑

x

∑
t

e2
xt �
∑
x

∑
t

(yxt − β0 − β1x − · · · − βpx
p)2

with respect to each parameter and setting each derivative equal to zero. For example, if we
differentiate with respect toβj , set the derivative equal to zero, and replace eachβi with β̂i ,
we obtain thej th normal equation as∑

x

∑
t

xj yxt �
∑
x

∑
t

xj
(
β̂0 + xβ̂1 + · · · + xpβ̂p

)
. (8.3.2)

We have one normal equation of this form for each value ofj , j � 0,1, . . . , p. Thus, in
total, we havep+ 1 equations inp+ 1 unknownsβ̂j . Provided that the number of levels of
the treatment factor exceeds the number of parameters in the model (that is,v ≥ p+1), there
is a unique solution to the normal equations giving a unique set of least squares estimates,
with the result that all parameters are estimable.

8.3.2 Least Squares Estimates for Simple Linear Regression

For the simple linear regression model, we havep � 1, and there are two normal equations
obtained from (8.3.2) withj � 0,1. These are∑

x

∑
t

yxt � nβ̂0 +
∑
x

∑
t

xβ̂1 ,∑
x

∑
t

xyxt �
∑
x

∑
t

xβ̂0 +
∑
x

∑
t

x2β̂1 ,

wheren � �xrx denotes the total number of observations in the experiment. Dividing the
first equation byn, we obtain

β̂0 � y.. − β̂1x.. , (8.3.3)

wherex.. �∑x rxx/n. Substituting this into the second equation gives

β̂1 �
∑

x

∑
t xyxt − nx..y..

ssxx
, (8.3.4)

wheressxx �∑x rx(x − x..)2.
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8.4 Test for Lack of Fit

We illustrate the lack-of-fit test via the quadratic regression model

E[Yxt ] � β0 + β1x + β2x
2 .

If data have been collected for only three levelsx � x1, x2, x3 of the treatment factor, then
the fitted model̂yx � β̂0 + β̂1x + β̂2x

2 will pass through the sample meansyx. computed
at each value ofx. This means that the predicted responseŷx at the observed values ofx is
ŷx � yx. (for x � x1, x2, x3). This is the same fit as would be obtained using the one-way
analysis of variance model, so we know that it is the best possible fit of a model to the data
in the sense that no other model can give a smaller sum of squares for error,ssE.

If observations have been collected at more than three values ofx, however, then the
model is unlikely to fit the data perfectly, and in general,ŷx 	� yx.. If the valuesŷx andyx.
are too far apart relative to the amount of variability inherent in the data, then the model
does not fit the data well, and there is said to be modellack of fit. In other words, in our
example, the quadratic function is not sufficient to model the mean responseE[Yxt ].

If there is replication at one or more of thex-values, and if data are collected at more than
threex-values, then it is possible to conduct a test for lack-of-fit of the quadratic model. The
null hypothesis is that the quadratic model is adequate for modeling mean response; that is,

H
Q
0 : E[Yxt ] � β0 + β1x + β2x

2 .

The alternative hypothesis is that a more general model (the one-way analysis of variance
model) is needed; that is,

H
Q
A : E[Yxt ] � µ+ τx ,

whereτx is the effect on the response of the treatment factor at levelx. We fit the quadratic
regression model and obtainssE andmsE � ssE/(n−3). Now,MSE is an unbiased estimator
of the error variance if the quadratic model is correct, but otherwise it has expected value
larger thanσ 2.

At each levelx where more than one observation has been taken, we can calculate the
sample variances2

x of the responses. Each sample variances2
x is an unbiased estimator of

the error variance,σ 2, and these can be pooled to obtain thepooled sample variance,

s2
p �
[∑

x

(rx − 1)s2
x

]
/(n− v) . (8.4.5)

Provided that the assumption of equal error variances is valid, the pooled sample variance is
an unbiased estimator ofσ 2 even if the model does not fit the data well. This pooled sample
variance is called themean square for pure error and denoted bymsPE. An alternative way
to computemsPE is as the mean square for error obtained by fitting the one-way analysis
of variance model.

The test of lack of fit, which is the test ofHQ
0 versusHQ

A , is based on a comparison of
the two fitted models (the quadratic model and the one-way analysis of variance model),
using the difference in the corresponding error sums of squares. We writessE for the error
sum of squares obtained from the quadratic regression model andssPE for the error sum of
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squares from the one-way analysis of variance model. Then thesum of squares for lack of
fit is

ssLOF � ssE − ssPE .

The sum of squares for pure error hasn− v degrees of freedom associated with it, whereas
the sum of squares for error hasn− (p+ 1) � n− 3 (since there arep+ 1 � 3 parameters
in the quadratic regression model). The number of degrees of freedom for lack of fit is
therefore (n− 3) − (n− v) � v − 3. The correspondingmean square for lack of fit,

msLOF � ssLOF/(v − 3),

measures model lack of fit because it is an unbiased estimator ofσ 2 if the null hypothesis
is true but has expected value larger thanσ 2 otherwise.

Under the polynomial regression model (8.2.1) forp � 2, the decision rule for testing
H

Q
0 versusHQ

A at significance levelα is

rejectHQ
0 if msLOF/msPE > Fv−3,n−v,α .

In general, a polynomial regression model of degreep can be tested for lack of fit as long
asv > p + 1 and there is replication for at least one of thex-levels. A test for lack of fit of
thepth-degree polynomial regression model is a test of the null hypothesis

H
p

0 : { E[Yxt ] � β0 + β1x + · · · + βpx
p; x � x1, . . . , xv }

versus the alternative hypothesis

H
p

A : { E[Yxt ] � µ+ τx ; x � x1, . . . , xv } .
The decision rule at significance levelα is

rejectHp

0 if msLOF/msPE > Fv−p−1,n−v,α ,

where

msLOF � ssLOF/(v − p − 1) and ssLOF � ssE − ssPE .

Here,ssE is the error sum of squares obtained by fitting the polynomial regression model
of degreep, andssPE is the error sum of squares obtained by fitting the one-way analysis
of variance model.

Table 8.1 Hypothetical data for one continuous treatment factor

x yxt y x. s2x
10 69.42 66.07 71.70 69.0633 8.0196
20 79..91 81.45 85.52 82.2933 8.4014
30 88.33 82.01 84.43 84.9233 10.1681
40 62.59 70.98 64.12 65.8967 19.9654
50 25.86 32.73 24.39 27.6600 19.8189



8.5 Analysis of the Simple Linear Regression Model 251

Table 8.2 Test for lack of fit of quadratic regression model for hypothetical
data

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Lack of Fit 2 30.0542 15.0271 1.13 0.3604
Pure Error 10 132.7471 13.2747
Error 12 162.8013

Example 8.4.1 Lack-of-fit test for quadratic regression

In this example we conduct a test for lack of fit of a quadratic polynomial regression model,
using the hypothetical data that were plotted in Figure 8.2 (page 245). Table 8.1 lists the
r � 3 observations for each ofv � 5 levelsx of the treatment factor, together with the
sample mean and sample variance. The pooled sample variance (8.4.5) is

s2
p � msPE �

∑
x

2s2
x/(15− 5) � 13.2747,

and the sum of squares for pure error is therefore

ssPE � (15− 5)msPE � 132.7471.

Alternatively, this can be obtained as the sum of squares for error from fitting the one-way
analysis of variance model.

The error sum of squaresssE is obtained by fitting the quadratic polynomial regression
model using a computer program (see Section 8.9 for achieving this via SAS). We obtain
ssE � 162.8013. Thus

ssLOF � ssE − ssPE � 162.8013− 132.7471� 30.0542

with

v − p − 1 � 5 − 2 − 1 � 2

degrees of freedom. The test for lack of fit is summarized in Table 8.2. Since thep-value is
large, there is no significant lack of fit. The quadratic model seems to be adequate for these
data. ✷

8.5 Analysis of the Simple Linear Regression Model

Suppose a linear regression model has been postulated for a given scenario, and a check
of the model assumptions finds no significant violations including lack of fit. Then it is
appropriate to proceed with analysis of the data.

It was shown in the optional Section 8.3 that the least squares estimates of the intercept
and slope parameters in the simple linear regression model are

β̂0 � y.. − β̂1x.. and β̂1 �
∑

x

∑
t xyxt − nx..y..

ssxx
, (8.5.6)
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wherex.. �∑x rxx/n andssxx �∑x rx(x − x..)2. The corresponding estimators (random
variables), which we also denote byβ̂0 andβ̂1, are normally distributed, since they are linear
combinations of the normally distributed random variablesYxt . In Exercise 1, the reader is
asked to show that the variances ofβ̂0 andβ̂1 are equal to

Var(β̂0) � σ 2

(
1

n
+ x2

..

ssxx

)
and Var(β̂1) � σ 2

(
1

ssxx

)
. (8.5.7)

If we estimateσ 2 by

msE �
∑

x

∑
t (yxt − (β̂0 + β̂1x))2

n− 2
, (8.5.8)

it follows that

β̂0 − β0√
msE

(
1
n

+ x2
..

ssxx

) ∼ tn−2 and
β̂1 − β1√

msE
(

1
ssxx

) ∼ tn−2 .

Thus, the decision rule at significance levelα for testing whether or not the intercept is equal
to a specific valuea (H int

0 : {β0 � a} versusH int
A : {β0 	� a}) is

rejectH int
0 if

β̂0 − a√
msE

(
1
n

+ x2
..

ssxx

) > tn−2,α/2 or < tn−2,1−α/2 . (8.5.9)

The decision rule at significance levelα for testing whether or not the slope of the regression
model is equal to a specific valueb (H slp

0 :{β1 � b} versusH slp
A :{β1 	� b}) is

rejectH slp
0 if

β̂1 − b√
msE

(
1

ssxx

) > tn−2,α/2 or < tn−2,1−α/2 . (8.5.10)

Corresponding one-tailed tests can be constructed by choosing the appropriate tail of thet

distribution and replacingα/2 byα.
Confidence intervals at individual confidence levels of 100(1− α)% for β0 andβ1 are,

respectively,

β̂0 ± tn−2,α/2

√√√√msE

(
1

n
+ x2

..

ssxx

)
(8.5.11)

and

β̂1 ± tn−2,α/2

√
msE

(
1

ssxx

)
. (8.5.12)

We can use the regression line to estimate the expected mean responseE[Yxt ] at any
particular value ofx, sayxa; that is,

Ê[Yxat ] � ŷxa � β̂0 + β̂1xa .
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The variance associated with this estimator is

Var(Ŷxa ) � σ 2

(
1

n
+ (xa − x..)2

ssxx

)
.

SinceŶxa is a linear combination of the normally distributed random variablesβ̂0 andβ̂1, it,
too, has a normal distribution. Thus, if we estimateσ 2 by msE given in (8.5.8), we obtain a
100(1− α)% confidence interval for the expected mean response atxa as

β̂0 + β̂1xa ± tn−2,α/2

√
msE

(
1

n
+ (xa − x..)2

ssxx

)
. (8.5.13)

A confidence “band” for the entire regression line can be obtained by calculating confidence
intervals for the mean response at all values ofx. Since this is an extremely large number
of intervals, we need to use Scheffé’s method of multiple comparisons. So, a 100(1− α)%
confidence band for the regression line is given by

β̂0 + β̂1xa ± √
2F2,n−2,α

√
msE

(
1

n
+ (xa − x..)2

ssxx

)
. (8.5.14)

The critical coefficient here isw � √2 F2,n−2,α rather than the valuew � √(v − 1) Fv−1,n−v,α
that we had in the one-way analysis of variance model, since there are only two parameters
of interest in our model (instead of linear combinations ofv− 1 pairwise comparisons) and
the number of error degrees of freedom isn− 2 rather thann− v.

Finally, we note that it is also possible to use the regression line to predict a future
observation at a particular valuexa of x. The predicted valuêyxa is the same as the estimated
mean response atxa obtained from the regression line; that is,

ŷxa � β̂0 + β̂1xa .

The variance associated with this prediction is larger by an amountσ 2 than that associated
with the estimated mean response, since the model acknowledges that the data values are
distributed around their mean according to a normal distribution with varianceσ 2. Conse-
quently, we may adapt (8.5.13) to obtain a 100(1− α)% prediction interval for a future
observation atxa, as follows:

β̂0 + β̂1xa ± tn−2,1−α/2

√
msE

(
1 + 1

n
+ (xa − x..)2

ssxx

)
. (8.5.15)

Alternatively, the prediction interval follows, because

Ŷxa − Yxa√
msE

(
1 + 1

n
+ (xa−x..)2

ssxx

) ∼ t(n− 2)

under our model.
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Table 8.3 Fluid flow in liters/minute for the heart–lung
pump experiment

rpm Liters per minute
50 1.158 1.128 1.140 1.122 1.128
75 1.740 1.686 1.740

100 2.340 2.328 2.328 2.340 2.298
125 2.868 2.982
150 3.540 3.480 3.510 3.504 3.612

Example 8.5.1 Heart–lung pump experiment, continued

In Example 4.2.4, page 72, a strong linear trend was discovered in the fluid flow rate as the
number of revolutions per minute increases in a rotary pump head of an Olson heart–lung
pump. Consequently, a simple linear regression model may provide a good model for the
data. The data are reproduced in Table 8.3. It can be verified that

x.. �
∑
x

rxx/n � [5(50)+ 3(75)+ 5(100)+ 2(125)+ 5(150)]/20 � 98.75,

and

y.. � 2.2986 and
∑
x

∑
t

xyxt � 5212.8 .

So,

ssxx � [5(−48.75)2 + 3(−23.75)2 + 5(1.25)2 + 2(26.25)2 + 5(51.25)2]

� 28,093.75,

giving

β̂1 � [5212.8 − 20(98.75)(2.2986)]/[28,093.75]

� 673.065/28,093.75 � 0.02396.

The mean square for error (8.5.8) for the regression model is best calculated by a computer
package. It is equal tomsE � 0.001177, so the estimated variance ofβ̂1 is

Var(β̂1) � msE/ssxx � (0.001177)/28,093.75 � 0.000000042.

A 95% confidence interval forβ1 is then given by (8.5.12), as

0.02396 ± t18,.025

√
0.000000042,

0.02396 ± (2.101)(0.00020466),

( 0.02353, 0.02439 ).

To test the null hypothesisH slp
0 : {β1 � 0}, against the one-sided alternative hypothesis

H
slp
A : {β1 > 0} that the slope is greater than zero at significance levelα � 0.01, we use a
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one-sided version of the decision rule (8.5.10) and calculate

β̂1 − 0√
msE
(

1
ssxx

) � 0.02396

0.00020466
� 117.07,

and since this is considerably greater thant18,0.01 � 2.552, we rejectH slp
0 . We therefore

conclude that the slope of the regression line is greater than zero, and the fluid flow increases
as the revolutions per minute increase. ✷

8.6 Analysis of Polynomial Regression Models

8.6.1 Analysis of Variance

Suppose a polynomial regression model has been postulated for a given experiment, and
the model assumptions appear to be satisfied, including no significant lack of fit. Then it
is appropriate to proceed with analysis of the data. A common objective of the analysis of
variance is to determine whether or not a lower-order model might suffice. One reasonable
approach to the analysis, which we demonstrate for the quadratic model (p � 2), is as
follows.

First, test the null hypothesisHL
0 : β2 � 0 that the highest-order termβ2x

2 is not needed
in the model so that the simple linear regression model is adequate. If this hypothesis is
rejected, then the full quadratic model is needed. Otherwise, testing continues and attempts
to assess whether an even simpler model is suitable. Thus, the next step is to test the
hypothesisH0 : β1 � β2 � 0. If this is rejected, the simple linear regression model is
needed and adequate. If it is not rejected, thenx is apparently not useful in modeling the
mean response.

Each test is constructed in the usual way, by comparing the error sum of squares of the
full (quadratic) model with the error sum of squares of the reduced model corresponding to
the null hypothesis being true. For example, to test the null hypothesisHL

0 : β2 � 0 that
the simple linear regression model is adequate versus the alternative hypothesisHL

A that the
linear model is not adequate, the decision rule at significance levelα is

rejectHL
0 if ms(β2)/msE > F1,n−v,α ,

where the mean squarems(β2) � ss(β2)/1 is based on one degree of freedom, and

ss(β2) � ssE1 − ssE2 ,

wheressE1 andssE2 are the error sums of squares obtained by fitting the models of degree
one and two, respectively.

Similarly, the decision rule at significance levelα for testingH0 : β1 � β2 � 0 versus
the alternative hypothesis thatH0 is false is

rejectH0 if ms(β1, β2)/msE > F2,n−v,α ,
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Table 8.4 Analysis of variance table for polynomial regression model of degree p.
Here ssEb denotes the error sum of squares obtained by fitting the
polynomial regression model of degree b.

Source of Degrees of Sum of Mean Ratio
Variation Freedom Squares Square
βp 1 ssEp−1 − ssE ms(βp ) ms(βp )/msE

βp−1, βp 2 ssEp−2 − ssE ms(βp−1, βp ) ms(βp−1, βp )/msE

...
...

...
...

...

β2, . . . , βp p − 1 ssE1 − ssE ms(β2, . . . , βp ) ms(β2, . . . , βp )/msE

Model p ssE0 − ssE ms(β1, . . . , βp ) ms(β1, . . . , βp )/msE

Error n − p − 1 ssE msE

Total n − 1 sstot

where the mean squarems(β1, β2) � ss(β1, β2)/2 is based on 2 degrees of freedom, and

ss(β1, β2) � (ssE0 − ssE2)/2 ,

andssE0 andssE2 are the error sums of squares obtained by fitting the models of degree
zero and two, respectively.

The tests are generally summarized in an analysis of variance table, as indicated in
Table 8.4 for the polynomial regression model of degreep. In the table, under sources of
variability, “Model” is listed rather than “β1, . . . , βp” for the test ofH0 : β1 � · · · � βp � 0,
since this is generally included as standard output in a computer package. Also, to save space,
we have written the error sum of squares asssE for the full model, rather than indicating the
order of the model with a subscriptp. Analysis of variance for quadratic regression (p � 2)
is illustrated in the following example.

Example 8.6.1 Analysis of variance for quadratic regression

Consider the hypothetical data in Table 8.1, page 250, with three observations for each of
the levelsx � 10, 20, 30, 40, 50. For five levels, the quartic model is the highest-order
polynomial model that can be fitted to the data. However, a quadratic model was postulated
for these data, and a test for lack of fit of the quadratic model, conducted in Example 8.4,
suggested that this model is adequate.

The analysis of variance for the quadratic model is given in Table 8.5. The null hypothesis
HL

0 : {β2 � 0} is rejected, since thep-value is less than 0.0001. So, the linear model is not
adequate, and the quadratic model is needed. This is no surprise, based on the plot of the
data shown in Figure 8.5.

Now, suppose the objective of the experiment was to determine how to maximize mean
response. From the data plot, it appears that the maximum response occurs within the range
of the levelsx that were observed. The fitted quadratic regression model can be obtained
from a computer program, as illustrated in Section 8.9 for the program SAS. The fitted
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Table 8.5 Analysis of variance for the quadratic model

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
β2 1 3326.2860 3326.2860 245.18 0.0001
Model 2 6278.6764 3139.3382 231.40 0.0001
Error 12 162.8013 13.5668
Total 14 6441.4777

Figure 8.5
Quadratic polynomial

regression model
fitted to hypothetical

data

✻

yxt

✲
10 20 30 40 50 x

❜❜❜ ❜❜❜ ❜❜❜ ❜❜❜
❜❜❜

.
. . . . . . . . . . . . . . . . .

.
.
.
.
.
.

model is

ŷx � 33.43333+ 4.34754x − 0.08899x2 ,

and is plotted in Figure 8.5 along with the raw data. The fitted curve achieves its maximum
value whenx is around 24.4, which should provide a good estimate of the levelx that
maximizes mean response. Further experimentation involving levels around this value could
now be done. ✷

The adequacy of a regression model is sometimes assessed in terms of the proportion of
variability in the response variable that is explained by the model. This proportion, which
is the ratio of the model sum of squares to the sum of squares total, is called thecoefficient
of multiple determination, or theR2-value. In the notation of Table 8.4,

R2 � (ssE0 − ssE)/sstot � ss(β1, . . . , βp)/sstot .

For simple linear regression,

R2 � ss(β1)/sstot

is called thecoefficient of determination, and in this caseR2 � r2, where

r � ssxy/
√

ssxxssyy

is the usualsample correlation, or Pearson product-moment correlation.

8.6.2 Confidence Intervals

When the model is fitted via a computer program, the least squares estimates ofβ̂j and
their corresponding standard errors (estimated standard deviations) usually form part of the
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standard computer output. If the model assumptions are satisfied, then

β̂j − βj√
V̂ar(β̂j )

∼ tn−p−1 .

Individual confidence intervals can be obtained for the model parameters, as we illustrated
in Section 8.5 for the simple linear regression model. The general form is

β̂j ± tn−2,α/2

√
V̂ar(β̂j ) .

Most programs will also allow calculation of the estimated mean response at any value
of x � xa together with its standard error, and also calculation of the predicted response at
x � xa plus its standard error. Confidence and prediction intervals for these can again be
calculated using thetn−p−1 distribution. The confidence interval formula for mean response
atx � xa is

β̂0 + β̂1xa + · · · + β̂px
p
a ± tn−p−1,α/2

√
V̂ar(Ŷxa )

and the prediction interval formula for a new observation atx � xa is

β̂0 + β̂1xa + · · · + β̂px
p
a ± tn−p−1,α/2

√
σ̂ 2 + V̂ar(Ŷxa ) .

The overall confidence level for all the intervals combined should be computed via the Bon-
ferroni method as usual. A confidence band for the regression line is obtained by calculating
confidence intervals for the estimated mean response at all values ofx, using the critical
coefficient for Scheff́e’s method; that is,

β̂0 + β̂1x + · · · + β̂px
p ± √

(p + 1) Fp+1,n−p−1,α

√
V̂ar(Ŷx) .

8.7 Orthogonal Polynomials and Trend Contrasts
(Optional)

The normal equations for polynomial regression were presented in equation (8.3.2). It was
noted that solving the equations can be tedious. However, the factor levels can be transformed
in such a way that the least squares estimates have a simple algebraic form and are easily
computed. Furthermore, the parameter estimators become uncorrelated and are multiples of
the corresponding trend contrast estimators. This transformation is illustrated in this section
for simple linear regression and for quadratic regression, when the factor levelsx are equally
spaced with equal numbersr of observations per level.

8.7.1 Simple Linear Regression

Consider the simple linear regression model, for which

Yxt � β0 + β1x + εxt ; x � x1, . . . , xv; t � 1, . . . , r . (8.7.16)
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When there arer observations on each of thev quantitative levelsx of the treatment factor,
the average value ofx is x.. � r

∑
x x/n � ∑x x/v. The transformationzx � x − x..

centers the levelsx at zero, so that
∑

x zx � 0. This makes the estimates of the slope and
intercept parameters uncorrelated (or orthogonal). We can replacex in model (8.7.16) by
zx , so that the “centered” form of the model is

Yxt � β∗
0 + β∗

1zx + εxt ; x � x1, . . . , xv; t � 1, . . . , r . (8.7.17)

A transformation of the independent variable changes the interpretation of some of the
parameters. For example, in the simple linear regression model (8.7.16),β0 denotes mean
response whenx � 0, whereas in the transformed model (8.7.17),β∗

0 denotes mean response
whenzx � 0, which occurs whenx � x.. .

The normal equations corresponding toj � 0 andj � 1 for the centered model are
obtained from (8.3.2) withzx in place ofx. Thus, we have∑

x

∑
t

yxt �
∑
x

∑
t

(
β̂∗

0 + zxβ̂
∗
1

)
, � vrβ̂∗

0∑
x

∑
t

zxyxt �
∑
x

∑
t

zx

(
β̂∗

0 + zxβ̂
∗
1

)
�
∑
x

rz2
xβ̂

∗
1 .

Solving these equations gives the least squares estimates as

β̂∗
0 � y.. and β̂∗

1 � 1

r
∑

x z
2
x

∑
x

∑
t

zxyxt .

Now,

Cov

(
Y..,
∑
x

∑
t

zxYxt

)
�
∑
x

∑
t

zxCov(Yxt , Yxt ) � rσ 2
∑
x

zx � 0 ,

so the estimatorŝβ∗
0 andβ̂∗

1 are uncorrelated.
We now consider a special case to illustrate the relationship of the slope estimator with the

linear trend contrast that we used in Section 4.2.4. Suppose equal numbers of observations
are collected at the three equally spaced levels

x1 � 5, x2 � 7, and x3 � 9 .

Thenx.. � 7, so

z5 � −2, z7 � 0, and z9 � 2 .

These values are twice the corresponding linear trend contrast coefficients (−1,0,1) listed
in Appendix A.2. Now,r � 2, sor

∑
x z

2
x � 8r, and

β̂∗
1 � 1

r
∑

x z
2
x

∑
x

∑
t

zxyzx t � 1

8r
(2y9. − 2y5.)

� 1

4
(y9. − y5.) ,

which is a quarter of the value of the linear trend contrast estimate. It follows thatβ∗
1 and

the linear trend contrast have the same normalized estimate and hence also the same sum
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of squares. Thus, testingH0 : β∗
1 � 0 under model (8.7.17) is analogous to testing the

hypothesisH0 : τ3 − τ1 � 0 of no linear trend effect under the one-way analysis of variance
model

Yit � µ+ τi + εit ; i � 1,2,3 ; t � 1,2 ,

whereτi is the effect on the response of theith coded level of the treatment factor. The one
difference is that in the first case, the model is the linear regression model (p � 1), while in
the second case, the model is the one-way analysis of variance model, which is equivalent
to a model of orderp � v − 1 � 2. Thus the two models will not yield the same mean
squared error, so theF -statistics will not be identical.

8.7.2 Quadratic Regression

Consider the quadratic regression model, for which

Yxt � β0 + β1x + β2x
2 + εxt . (8.7.18)

Assume that the treatment levelsx � x1, . . . , xv are equally spaced, withr observations
per level. To achieve orthogonality of estimates, it is necessary to transform both the linear
and the quadratic independent variables.

Let zx � x − x.. as in the case of simple linear regression, so that again
∑

x zx � 0.
Similarly, define

z(2)
x � z2

x −
∑
x

z2
x/v .

Then
∑

x z
(2)
x � 0. Also, writingzi for the ith value ofzx in rank order, we note that since

the levelsx are equally spaced,

zi � −zv+1−i and z
(2)
i � z

(2)
v+1−i ,

so
∑

x zxz
(2)
x � 0. These conditions give uncorrelated parameter estimators. To see this,

consider the transformed model

Yxt � β∗
0 + β∗

1zx + β∗
2z

(2)
x + εxt . (8.7.19)

The normal equations (8.3.2) become∑
x

∑
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The least squares estimates, obtained by solving the normal equations, are

β̂∗
0 � y.. , β̂∗
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r
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x z
2
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∑
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r
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x(z
(2)
x )2

.
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The estimatorŝβ∗
0 andβ̂∗

1 are unchanged from the simple linear regression model (8.7.17),
so they remain uncorrelated. Similarly,β̂∗

0 andβ̂∗
2 are uncorrelated, because

Cov

(
Y..,
∑
x

∑
t

z(2)
x Yxt

)
� rσ 2

∑
x

z(2)
x � 0.

Observe that Cov(̂β∗
1, β̂

∗
2) is also zero, since it is proportional to

Cov

(∑
x

∑
t

zxYxt ,
∑
x

∑
t

z(2)
x Yxt

)
� rσ 2

∑
x

zxz
(2)
x � 0.

The transformed variableszx andz(2)
x are calledorthogonal polynomials, because they

are polynomial functions of the levelsx and give rise to uncorrelated parameter estimators
β̂∗

0, β̂∗
1, and β̂∗

2. It was illustrated in the previous subsection on simple linear regression
that the valueszx are multiples of the coefficients of the linear trend contrast. Likewise,
the valuesz(2)

x are multiples of the coefficients of the quadratic trend contrast. For example,
suppose we haver � 17 observations on the equally spaced levels

x1 � 12, x2 � 18, x3 � 24, x4 � 30.

Thenzx � x − x.., so

z12 � −9, z18 � −3, z24 � 3, z30 � 9 .

These are 3 times the linear trend contrast coefficients listed in Appendix A.2. Also,∑
x z

2
x/v � 45, so

z
(2)
12 � 36, z

(2)
18 � −36, z

(2)
24 � −36, z

(2)
30 � 36,

which are 36 times the quadratic trend contrasts.
As in the simple linear regression case, one can likewise show that the least squares

estimatesβ̂∗
1 andβ̂∗

2 are constant multiples of the corresponding linear and quadratic trend
contrast estimateŝτ3 − τ̂1 and τ̂1 − 2τ̂2 + τ̂3 that would be used in the one-way analysis
of variance model. Consequently, the sums of squares for testing no quadratic trend and no
linear trend are the same, although again, the error mean square will differ.

8.7.3 Comments

We have illustrated via two examples the equivalence between the orthogonal trend con-
trasts in analysis of variance and orthogonal polynomials in regression analysis for the case
of equispaced, equireplicated treatment levels. While both are convenient tools for data
analysis, identification of orthogonal trend contrasts and orthogonal polynomials can be
rather complicated for higher-order trends, unequally spaced levels, or unequal numbers of
observations per level. Fortunately, analogous testing information can also be generated by
fitting appropriate full and reduced models, as was discussed in Section 8.6.1. This is easily
accomplished using computer regression software. Use of the SAS software for such tests
will be illustrated in Section 8.9.
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8.8 A Real Experiment—Bean-Soaking Experiment

The bean-soaking experiment was run by Gordon Keeler in 1984 to study how long mung
bean seeds ought to be soaked prior to planting in order to promote early growth of the bean
sprouts. The experiment was run using a completely randomized design, and the experi-
menter used a one-way analysis of variance model and methods of multiple comparisons to
analyze the data. In Section 8.8.2, we present the one-way analysis of variance, and then in
Section 8.8.3, we reanalyze the data using polynomial regression methods.

8.8.1 Checklist

The following checklist has been drawn from the experimenter’s report.

(a) Define the objectives of the experiment.
The objective of the experiment is to determine whether the length of the soaking period
affects the rate of growth of mung bean seed sprouts. The directions for planting merely
advise soaking overnight, and no further details are given.
As indicated in Figure 8.6, I expect to see no sprouting whatsoever for short soaking
times, as the water does not have sufficient time to penetrate the bean coat and initiate
sprouting. Then, as the soaking time is increased, I would expect to see a transition
period of sprouting with higher rates of growth as water begins to penetrate the bean
coat. Eventually, the maximum growth rate would be reached due to complete saturation
of the bean. A possible decrease in growth rates could ensue from even longer soaking
times due to bacterial infection and “drowning” the bean.

(b) Identify all sources of variation.
(i) Treatment factors and their levels.
There is just one treatment factor in this experiment, namely soaking time. A pilot
experiment was run to obtain an indication of suitable times to be examined in the
main experiment. The pilot experiment examined soaking times from 0.5 hour to 16
hours. Many beans that had been soaked for less than 6 hours failed to germinate, and at
16 hours the saturation point had not yet been reached. Consequently, the five equally
spaced soaking times of 6, 12, 18, 24 and 30 hours will be selected as treatment factor
levels for the experiment.
(ii) Experimental units.

Figure 8.6
Anticipated results

from the bean-soaking
experiment
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The experimental units are the mung bean seeds selected at random from a large sack
of approximately 10,000 beans.
(iii) Blocking factors, noise factors, and covariates.
Sources of variation that could affect growth rates include: individual bean differences;
protozoan, bacterial, fungal, and viral parasitism; light; temperature; humidity; water
quality.
Differences between beans will hopefully balance out in the random assignment to
soaking times. Light, temperature, humidity, and water quality will be kept constant for
all beans in the experiment. Thus, no blocking factors or covariates will be needed in
the model.
Bacterial infection could differ from one treatment factor level to another due to soaking
the beans in different baths. However, if the beans assigned to different treatment factor
levels are soaked in the same bath, this introduces the possibility of a chemical signal
from beans ready to germinate to the still dormant beans that sprouting conditions are
prime. Consequently, separate baths will be used.

(c) Choose a rule by which to assign experimental units to treatments.
A completely randomized design will be used with an equal number of beans assigned
to each soaking time.

(d) Specify the measurements to be made, the experimental procedure, and the
anticipated difficulties.
The soaking periods will be started at 6-hour intervals, so that the beans are removed
from the water at the same time. They will then be allowed to grow in the same environ-
mental conditions for 48 hours, when the lengths of the bean sprouts will be measured
(in millimeters).
The main difficulty in running the experiment is in controlling all the factors that affect
growth. The beans themselves will be randomly selected and randomly assigned to
soaking times. Different soaking dishes for the different soaking times will be filled at
the same time from the same source.
On removal from the soaking dishes, the beans will be put in a growth chamber with
no light but high humidity. During the pilot experiment, the beans were rinsed after 24
hours to keep them from dehydrating. However, the procedure cannot be well controlled
from treatment to treatment, and will not be done in the main experiment.
A further difficulty is that of accurately measuring the shoot length.

(e) Run a pilot experiment.
A pilot study was run and the rest of the checklist was completed. As indicated in
step (b), the results were used to determine the soaking times to be included in the
experiment.

(f) Specify the model.
The one-way analysis of variance model (3.3.1) will be used, and the assumptions will
be checked after the data are collected.
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(g) Outline the analysis.
Confidence intervals for the pairwise differences in the effects of soaking time on the
48-hour shoot lengths will be calculated. Also, in view of the expected results, linear,
quadratic and cubic trends in the shoot length will be examined. Tukey’s method will
be used for the pairwise comparisons withα1 � 0.01, and Bonferroni’s method will
be used for the three trend contrasts with overall levelα2 ≤ 0.01. The experimentwise
error rate will then be at most 0.02.

(h) Calculate the number of observations that need to be taken.
Using the results of the pilot experiment, a calculation showed that 17 observations
should be taken on each treatment (see Example 4.5, page 92).

(i) Review the above decisions. Revise, if necessary.
Since 17 observations could easily be taken for the soaking time, there was no need to
revise the previous steps of the checklist.

The experiment was run, and the resulting data are shown in Table 8.6. The data for
soaking time 6 hours have been omitted from the table, since none of these beans germinated.

The data are plotted in Figure 8.7 and show that the trend expected by the experimenter
is approximately correct. For the soaking times included in the study, sprout length appears
to increase with soaking time, with soaking times of 18, 24, and 30 hours yielding similar
results, but a soaking of time of only 12 hours yielding consistently shorter sprouts.

8.8.2 One-Way Analysis of Variance and Multiple Comparisons

The experimenter used Tukey’s method with a 99% simultaneous confidence level to com-
pare the effects of soaking the beans for 12, 18, 24, or 30 hours. The formula for Tukey’s

Table 8.6 Length of shoots of beans after 48 hours for the bean-soaking
experiment

Soaking Time Length Average Sample
(hours) r (mm) length variance
12 17 5 11 8 11 4 4 5.9412 7.0596

8 3 6 4 7 3
5 4 6 9 3

18 17 11 16 18 24 18 18 18.4118 12.6309
21 14 21 19 17 24
14 20 16 20 22

24 17 17 16 26 18 14 24 19.5294 15.6420
18 14 24 26 21 21
22 19 14 19 19

30 17 20 18 22 20 21 17 21.2941 8.5966
16 23 25 19 21 20
27 25 22 23 23
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Figure 8.7
Plot of sprout length
yxt against soaking

time x for the
bean-soaking
experiment

✻

0
5

10
15
20
25

yxt

✲
12 18 24 30 x

❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜ ❜❜❜❜❜❜❜❜❜❜
❜❜❜❜❜❜❜ ❜❜❜❜❜❜❜❜❜❜❜❜❜

❜❜❜❜ ❜❜❜❜❜❜❜❜❜❜❜❜❜❜
❜❜❜

method for the one-way analysis of variance model was given in (4.4.28) as

τi − τs ∈
(
yi. − ys. ± wT

√(
2

r

)
msE

)
,

wherewT � qv,n−v,α/
√

2.
The treatment sample means are shown in Table 8.6. There arer � 17 observations on

each of thev � 4 levels of the treatment factor. The formula for the sum of squares for error
in the one-way analysis of variance model was given in (3.4.5), page 42. Using the data in
Table 8.6 we have

msE � ssE/(n− v) � 10.9816.

From Table A.8,q4,64,0.01 � 4.60. Thus, in terms of the coded factor levels, the 99%
simultaneous confidence intervals for pairwise comparisons are

τ4 − τ3 ∈ (−1.93, 5.46), τ3 − τ2 ∈ (−2.58, 4.81),

τ4 − τ2 ∈ (−0.81, 6.58), τ3 − τ1 ∈ (9.89,17.29),

τ4 − τ1 ∈ (11.66,19.05), τ2 − τ1 ∈ (8.77, 16.17).

From these, we can deduce that soaking times of 18, 24, and 30 hours yield significantly
longer sprouts on average after 48 hours than does a soaking time of only 12 hours. The three
highest soaking times are not significantly different in their effects on the sprout lengths,
although the plot (Figure 8.7) suggests that the optimum soaking time might approach or
even exceed 30 hours.

The one-way analysis of variance for the data is given in Table 8.7 and includes the
information for testing for linear, quadratic, and cubic trends. The coefficients for the trend
contrasts, when there arev � 4 equally spaced levels and equal sample sizes, are listed in
Table A.2. The linear contrast is [−3,−1, 1, 3], and the hypothesis of no linear trend is
HL

0 : {−3τ1 − τ2 + τ3 + 3τ4 � 0}. Obtaining the treatment sample means from Table 8.6,
the estimate of the linear trend is∑

i

ciyi � −3y1. − y2. + y3. + 3y4. � 47.1765,

with associated variance

�i(c
2
i /r)σ

2 � (1/17)(9+ 1 + 1 + 9)σ 2 � (20/17)σ 2 .
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The sum of squares is calculated from (4.3.14), page 76; that is,

ssc �
(∑

i

ciyi.

)2

/

(∑
i

c2
i /17

)
.

So, the sum of squares for the linear trend is

ssc � (47.1765)2/(20/17) � 1891.78.

The quadratic and cubic trends correspond to the contrasts [ 1,−1,−1, 1 ] and
[−1, 3,−3, 1 ], respectively, and their corresponding sums of squares are calculated
in a similar way and are listed in Table 8.7. If we test the hypotheses that each of these
three trends is zero with an overall significance level ofα � 0.01 using the Bonferroni
method, then, using (4.4.24) on page 81 for each trend, the null hypothesis that the trend
is zero is rejected ifssc/msE > F1,64,0.01/3. This critical value is not tabulated, but since
F1,64,0.0033 � t21,64,0.00166, it can be approximated using (4.4.22) as follows:

t1,64,0.00166≈ 2.935+ (2.9353 + 2.935)/(4 × 64) � 3.0454,

so the critical value isF1,64,0.0033 ≈ 9.2747. (Alternatively, the critical value could be
obtained from a computer packge using the “inverse cumulative distribution function” of
theF -distribution.)

To test the null hypothesisHL
0 that the linear trend is zero against the alternative hypoth-

esisHL
A : −3τ1 − τ2 + τ3 + 3τ4 	� 0 that the linear trend is nonzero, the decision rule is

to

rejectH0 if ssc/msE � 172.27> F1,64,.0033 ≈ 9.2747.

Thus, using a simultaneous significance levelα � 0.01 for the three trends, the linear trend
is determined to be nonzero.

The corresponding test ratios for the quadratic and cubic trends are given in Table 8.7.
There is sufficient evidence to conclude that the linear, quadratic, and cubic trends are all
significantly different from zero. The probability that one or more of these hypotheses would
be incorrectly rejected by this procedure is at mostα � 0.01.

Table 8.7 One-way ANOVA for the bean-soaking experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Soaking Time 3 2501.29 833.76 75.92 0.0001
Linear Trend 1 1891.78 1891.78 172.27 0.0001
Quadratic Trend 1 487.12 487.12 44.36 0.0001
Cubic Trend 1 122.40 122.40 11.15 0.0014
Error 64 702.82 10.98
Total 67 3204.12
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8.8.3 Regression Analysis

In the previous subsection, the bean-soaking experiment was analyzed using the one-way
analysis of variance and multiple comparison methods. In this subsection, we reanalyze
the experiment using regression analysis. Since there are four levels of the treatment factor
“soaking time,” the highest-order polynomial regression model that can be (uniquely) fitted
to the data is the cubic regression model, namely,

Yxt � β0 + β1x + β2x
2 + β3x

3 + εxt ,

εxt ∼ N (0, σ 2) ,

εxt ’s are mutually independent,

x � 12,18,24,30; t � 1, . . . ,17.

Using the data given in Table 8.6, the fitted model can be obtained from a computer program
(see Section 8.9) as

ŷx � −101.058824+ 15.475490x − 0.657680x2 + 0.009259x3 .

Table 8.8 contains the analysis of variance for the bean experiment data based on the
cubic regression model. The cubic model provides the same fit as does the one-way analysis
of variance model, sincep + 1 � v � 4. Thus,ŷx � yx. for x � 12, 18, 24, 30, and
the number of degrees of freedom, the sum of squares, and the mean square for the major
sources of variation—the treatment factor (“Model”), error, and total—are the same in the
regression analysis of variance as in the one-way analysis of variance. It is not possible to
test for model lack of fit, since the postulated model is of orderp � 3 � v − 1. We can,
however, test to see whether a lower-order model would suffice.

We first test the null hypothesisHQ
0 : β3 � 0, or equivalently, that the quadratic regression

modelE[Yxt ] � β0 + β1x + β2x
2 would provide an adequate fit to the data. The result of

the test is summarized in Table 8.8. The test ratio is 11.15 with ap-value of 0.0014. So, we
rejectHQ

0 and conclude that the cubic model is needed. Since the cubic regression model
provides the same fit as the analysis of variance model, this test is identical to the test that
the cubic trend contrast is zero in the one-way analysis of variance, shown in Table 8.7.

If HQ
0 : β3 � 0 had not been rejected, then the next step would have been to have tested

the null hypothesisHL
0 : β2 � β3 � 0, or equivalently, that the simple linear regression

model is adequate. If neitherHQ
0 : β3 � 0 norHL

0 : β2 � β3 � 0 had been rejected, the
next step would have been to have testedH0 : β1 � β2 � β3 � 0.

Table 8.8 Cubic regression ANOVA for the bean-soaking experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
β3 1 122.40 122.40 11.15 0.0014
β2, β3 2 609.52 304.76 27.76 0.0001
Model 3 2501.29 833.76 75.92 0.0001
Error 64 702.82 10.98
Total 67 3204.12
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Figure 8.8
Plot of data and fitted
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Based on the previous analysis, the cubic model is needed to provide an adequate fit
to the data. Figure 8.8 illustrates the cubic model fitted to the data. We may now see the
dangers of using a model to predict the value of the response beyond the range of observed
x values. The cubic model predicts that mean sprout length will increase rapidly as soaking
time is increased beyond 30 hours! Clearly, this model is extremely unlikely to be reliable
for extrapolation beyond 30 hours.

Recall that Tukey’s method of multiple comparisons did not yield any significant differ-
ences in mean response between the soaking times of 18, 24, and 30 hours. Yet the plot of
the data in Figure 8.8 suggests that a trend over these levels might well exist. There is a lot
of variability inherent in the data that prevents significant differences between the soaking
times from being detected. Nevertheless, a followup experiment examining soaking times
from 18 to, say, 48 hours might provide the information needed to determine the best range
of soaking times.

8.9 Using SAS Software

Polynomial regression models can be fitted using the SAS regression procedurePROC REG.
The procedure provides least squares estimates of the regression parameters. Predicted
(fitted) values and residuals can be saved to an output data set, as can 95% confidence limits
for mean response, 95% prediction limits for new observations for given treatment levelsx,
and corresponding standard errors.

A sample SAS program to analyze the data from the bean-soaking experiment of Sec-
tion 8.8 is shown in Table 8.9. In the firstDATA statement, the variablesx2 andx3 are created
for the cubic regression model.PROC REG is used to fit the cubic regression model, and the
output is shown in Table 8.10.

An analysis of variance table is automatically generated and includes information needed
for testing the hypothesis that the treatment factor “soaking time” has no predictive value
for mean growth length, namely,H0 : {β1 � β2 � β3 � 0}. The information for this test is
listed with source of variation “Model.” We see that thep-value is less than 0.0001, soH0

would be rejected.
Below the analysis of variance table, parameter estimates for the fitted model are given.

Using these, we have the fitted cubic regression model

ŷx � −101.058824+ 15.475490x − 0.657680x2 + 0.009259x3 .
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Table 8.9 SAS program for analysis of the bean-soaking experiment

OPTIONS LS=72 NOOVP;
DATA BEAN;
INPUT X LENGTH;
X2=X**2; X3=X**3;
LINES;
12 5
12 11
12 8
12 11
: :

30 23
30 23

;
PROC PRINT;
;
* create extra x-values for plotting the fitted curve;
DATA TOPLOT;
DO X=8 TO 34; X2=X**2; X3=X**3;
LENGTH=.; * "." denotes a missing value;
OUTPUT;
END; * X loop;

;
* concatenate data sets BEAN and TOPLOT;
DATA; SET BEAN TOPLOT;
;
* do the analysis;
PROC REG; MODEL LENGTH = X X2 X3 / SS1;
QUAD: TEST X3=0; * test adequacy of quadratic model;
LINEAR: TEST X2=0, X3=0; * test adequacy of linear model;
OUTPUT PREDICTED=LHAT RESIDUAL=E

L95M=L95M U95M=U95M STDP=STDM L95=L95I U95=U95I STDI=STDI;
;
* plot the data and fitted model, overlayed on one plot;
PROC PLOT; PLOT LENGTH*X LHAT*X=’*’ / OVERLAY VPOS=20 HPOS=58;
;
* 95% confidence intervals and standard errors for mean response;
PROC PRINT; VAR X L95M LHAT U95M STDM;
* 95% prediction intervals and standard errors for new observations;
PROC PRINT; VAR X L95I LHAT U95I STDI;
;
* generate residual plots;
PROC RANK NORMAL=BLOM; VAR E; RANKS NSCORE;
PROC PLOT; PLOT E*X E*LHAT / VREF=0 VPOS=19 HPOS=50;

PLOT E*NSCORE / VREF=0 HREF=0 VPOS=19 HPOS=50;
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Table 8.10 Output generated by PROC REG

The SAS System
Model: MODEL1
Dependent Variable: LENGTH

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 3 2501.29412 833.76471 75.924 0.0001
Error 64 702.82353 10.98162
C Total 67 3204.11765

Root MSE 3.31385 R-square 0.7806
Dep Mean 16.29412 Adj R-sq 0.7704
C.V. 20.33772

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -101.058824 21.87851306 -4.619 0.0001
X 1 15.475490 3.49667261 4.426 0.0001
X2 1 -0.657680 0.17508291 -3.756 0.0004
X3 1 0.009259 0.00277344 3.339 0.0014

Variable DF Type I SS
INTERCEP 1 18054
X 1 1891.776471
X2 1 487.117647
X3 1 122.400000

Dependent Variable: LENGTH
Test: QUAD Numerator: 122.4000 DF: 1 F value: 11.1459

Denominator: 10.98162 DF: 64 Prob>F: 0.0014

Dependent Variable: LENGTH
Test: LINEAR Numerator: 304.7588 DF: 2 F value: 27.7517

Denominator: 10.98162 DF: 64 Prob>F: 0.0001

The standard error of each estimate is also provided, together with the information for
conducting at-test of each individual hypothesisH0 : {βi � 0}, i � 1,2,3.

Inclusion of the optionSS1 in theMODEL statement ofPROC REG causes printing of the
Type I (sequential) sums of squares in the output. Each Type I sum of squares is the variation
explained by entering the corresponding variable into the model, given that the previously
listed variables are already in the model. For example, the Type I sum of squares forX is
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ssE0 − ssE1, wheressE0 is the error sum of squares for the model withE[Yxt ] � β0, and
ssE1 is the error sum of squares for the simple linear regression model E[Yxt ] � β0 + β1x;
that is,

ss(β1|β0) � ssE0 − ssE1 � 1891.776471.

Likewise, the Type I sum of squares forX2 is the difference in error sums of squares for the
linear and quadratic regression models; that is,

ss(β2|β0, β1) � ssE1 − ssE2 � 487.117647,

and forX3, the Type I sum of squares is the difference in error sums of squares for the
quadratic and cubic regression models; that is,

ss(β3|β0, β1, β2) � ssE2 − ssE � 122.400000,

where we have writtenssE for the error sum of squares for the full cubic model (rather than
ssE3). Thus, the ratio used to test the null hypothesisH

Q
0 : {β3 � 0} versusHQ

A : {β3 	� 0}
is

ss(β3)/msE � ss(β3|β0, β1, β2)/msE � 122.4/10.98162� 11.1459.

The output of theTEST statement labeledQUAD provides the same information, as well as
the p-value 0.0014. The null hypothesisHQ

0 is thus rejected, so the quadratic model is
not adequate—the cubic model is needed. Hence, there is no reason to test further reduced
models, but the information for such tests will be discussed for illustrative purposes.

To testHL
0 : β2 � β3 � 0, the full model is the cubic model and the reduced model is

the linear model, so the numerator sum of squares of the test statistic is

ss(β2, β3) � ssE1 − ssE � ss(β2|β0, β1) + ss(β3|β0, β1, β2)

� 487.117647+ 122.400000 � 609.517647,

and the decision rule for testingHL
0 against the alternative hypothesisHL

A that the cubic
model is needed is

rejectHL
0 if ms(β2, β3)/msE > F2,64,α ,

where

ms(β2, β3) � ss(β2, β3)/2 .

The information for this test of adequacy of the linear model is also generated by theTEST
statement labeledLINEAR.

TheOUTPUT statement inPROC REG saves into an output data set the upper and lower
95% confidence limits for mean response and the corresponding standard error under the
variable namesL95M, U95M andSTDM. This is done for eachx-value in the input data set
for which all regressors are available. Similarly, the upper and lower 95% prediction limits
for a new individual observation and the corresponding standard error are saved under the
variable namesL95I, U95I andSTDI. These could be printed or plotted, though we do not
do so here.
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Figure 8.9
Plot of data and fitted

response curve

The SAS System

Plot of LENGTH*X. Legend: A = 1 obs, B = 2 obs, etc.
Plot of LHAT*X. Symbol used is ’*’.
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NOTE: 27 obs had missing values. 72 obs hidden.

The output ofPROC PLOT is shown in Figure 8.9. Overlaid on the same axes are plots of
the raw data and the fitted cubic polynomial regression curve. A trick was used to generate
data to plot the fitted curve. Actualx values range from 12 to 30. In theDATA TOPLOT
step in Table 8.9, additional observations were created in the data set corresponding to the
integerx values ranging from 8 to 34 but with missing values for the dependent variable
length. While observations with missing length values cannot be used to fit the model, the
regression procedure does compute the corresponding predicted valuesLHAT. TheOUTPUT
statement includes these fitted values in the newly created output data set, so they can be
plotted to show the fitted model. The optionNOOVP was included in line 1 of the program
so there is “no overprinting” of characters when the plots are overlaid.

In this example, it is not possible to test for lack of fit of the cubic model, since data were
collected at only fourx-levels. If we had been fitting a quadratic model, then a lack-of-fit
test would have been possible. An easy way to generate the relevant output using the SAS
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software is as follows. In line 4 of the program, add a classification variableA, using the
statement “A=X;”. Then insert aPROC GLM procedure beforePROC REG as follows.

PROC GLM;
CLASS A;
MODEL LENGTH = X X2 A;

Then the Type I sum of squares forA is the appropriate numeratorssLOF for the test ratio.
Statements for generation of residual plots for checking the error assumptions are

included in the sample SAS program in Table 8.9, but the output is not shown here.

Exercises

1. For the simple linear regression model

E[Yxt ] � β0 + β1x ,

the least squares estimatorsβ̂0 andβ̂1 for the parametersβ0 andβ1 are given in (8.5.6),
page 251. Show that their variances are

Var(β̂0) � σ 2

(
1

n
+ x2

..

ssxx

)
and Var(β̂1) � σ 2

(
1

ssxx

)
,

wheressxx �∑x rx(x − x..)2, as given in (8.5.7).

2. Bicycle experiment, continued
The bicycle experiment was run to compare the crank rates required to keep a bicycle
at certain speeds, when the bicycle (a Cannondale SR400) was in twelfth gear on flat
ground. The speeds chosen werex � 5, 10, 15, 20, and 25 mph. The data are given in
Table 8.11. (See also Exercise 6 of Chapter 5.)
(a) Fit the simple linear regression model to the data, and use residual plots to check

the assumptions of the simple linear regression model.

(b) If a transformation of the data is needed, choose a transformation, refit the simple
linear regression model, and check for lack of fit.

(c) Using your results from parts (a) and (b), select a model for the data. Use this
model to obtain an estimate for the mean crank rate needed to maintain a speed of
18 mph in twelfth gear on level ground.

Table 8.11 Data for the bicycle
experiment

Treatment Crank Rates
x yxt

5 mph 15 19 22
10 mph 32 34 27
15 mph 44 47 44
20 mph 59 61 61
25 mph 75 73 75
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(d) Calculate a 95% confidence interval for the mean crank rate needed to maintain a
speed of 18 mph in twelfth gear on level ground.

(e) Find the 95% confidence band for the regression line. Draw a scatter plot of the
data and superimpose the regression line and the confidence band on the plot.

(f) Would you be happy to use your model to estimate the mean crank rate needed to
maintain a speed of 35 mph in twelfth gear on level ground. Why or why not?

3. Systolic blood pressure experiment
A pilot experiment was run by John Spitak in 1987 to investigate the effect of jogging
on systolic blood pressure. Only one subject was used in the pilot experiment, and a
main experiment involving a random sample of subjects from a population of interest
would need to be run in order to draw more general conclusions. The subject jogged
in place for a specified number of seconds and then his systolic blood pressure was
measured. The subject rested for at least 5 minutes, and then the next observation was
taken.
The data and their order of observation are given in Table 8.12.
(a) Fit a simple linear regression model to the data and test for model lack of fit.

(b) Use residual plots to check the assumptions of the simple linear regression model.

(c) Give a 95% confidence interval for the slope of the regression line.

(d) Using the confidence interval in part (c), test at significance levelα � 0.05 whether
the linear term is needed in the model.

(e) Repeat the test in part (d) but using the formula for the orthogonal polynomial linear
trend coefficients for unequally spaced levels and unequal sample sizes given in
Section 4.2.4. Do these two tests give the same information?

(f) Estimate the mean systolic blood pressure of the subject after jogging in place for
35 seconds and calculate a 99% confidence interval.

(g) The current experiment was only a pilot experiment. Write out a checklist for the
main experiment.

4. Trout experiment, continued
The data in Table 8.13 show the measurements of hemoglobin (grams per 100 ml) in
the blood of brown trout. (The same data were used in Exercise 15 of Chapter 3.) The
trout were placed at random in four different troughs. The fish food added to the troughs
contained, respectively,x � 0, 5, 10, and 15 grams of sulfamerazine per 100 pounds

Table 8.12 Systolic blood pressure measurements—(order
of collection in parentheses)

Jogging time in seconds (order of collection)
10 20 25 30 40 50

120 (1) 125 (2) 127 (10) 128 (3) 137 (5) 143 (6)
118 (9) 126 (4) 131 (7)

123 (8)
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Table 8.13 Data for the trout experiment

x Hemoglobin (grams per 100 ml)
0 6.7 7.8 5.5 8.4 7.0 7.8 8.6 7.4 5.8 7.0
5 9.9 8.4 10.4 9.3 10.7 11.9 7.1 6.4 8.6 10.6
10 10.4 8.1 10.6 8.7 10.7 9.1 8.8 8.1 7.8 8.0
15 9.3 9.3 7.2 7.8 9.3 10.2 8.7 8.6 9.3 7.2

Source: Gutsell, J. S. (1951). Copyright © 1951 International Biometric
Society. Reprinted with permission.

of fish. The measurements were made on ten randomly selected fish from each trough
after 35 days.

(a) Fit a quadratic regression model to the data.

(b) Test the quadratic model for lack of fit.

(c) Use residual plots to check the assumptions of the quadratic model.

(d) Test whether the quadratic term is needed in the model.

(e) Use the fitted quadratic model to estimate the number of grams of sulfamerazine
per 100 pounds of fish to maximize the mean amount of hemoglobin in the blood
of the brown trout.

5. Bean-soaking experiment, continued
Use residual plots to check the assumptions of the cubic regression model for the data
of the bean-soaking experiment. (The data are in Table 8.6, page 264).

6. Bean-soaking experiment, continued
Suppose the experimenter in the bean-soaking experiment of Section 8.8 had presumed
that the quadratic regression model would be adequate for soaking times ranging from
12 to 30 hours.

(a) Figure 8.8, page 268, shows the fitted response curve and the standardized residuals
each plotted against soaking time. Based on these plots, discuss model adequacy.

(b) Test the quadratic model for lack of fit.

7. Orthogonal polynomials
Consider an experiment in which an equal number of observations are collected for
each of the treatment factor levelsx � 10, 20, 30, 40, 50.

(a) Compute the corresponding valueszx for the linear orthogonal polynomial, and
determine the rescaling factor by which thezx differ from the coefficients of the
linear trend contrast.

(b) Compute the valuesz(2)
x for the quadratic orthogonal polynomial, and determine

the rescaling factor by which thez(2)
x differ from the coefficients of the quadratic

trend contrast.

(c) Use the data of Table 8.1 and the orthogonal polynomial coefficients to test that
the quadratic and linear trends are zero.
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(d) Using the data of Table 8.1 and a statistical computing package, fit a quadratic
model to the original values. Test the hypotheses

HL
0 : {β2 � 0} and H0 : {β1 � β2 � 0}

against their respective two-sided alternative hypotheses. Compare the results of
these tests with those in (c).

8. Orthogonal polynomials
Consider use of the quadratic orthogonal polynomial regression model (8.7.19),
page 260, for the data at levels 18, 24, and 30 of the bean-soaking experiment—the
data are in Table 8.6, page 264.
(a) Compute the least squares estimates of the parameters.

(b) Why is it not possible to test for lack of fit of the quadratic model?

(c) Give an analysis of variance table and test the hypothesis that a linear model would
provide an adequate representation of the data.

9. Heart–lung pump experiment, continued
In Example 8.5, page 254, we fitted a linear regression model to the data of the heart–
lung pump experiment. We rejected the null hypothesis that the slope of the line is
zero.

(a) Show that the numerator sum of squares for testingH0 : {β1 � 0} against the
alternative hypothesisHA : {β1 	� 0} is the same as the sum of squaresssc that
would be obtained for testing that the linear trend is zero in the analysis of variance
model (the relevant calculations were done in Example 4.2.4, page 72).

(b) Obtain a 95% confidence band for the regression line.

(c) Calculate a 99% prediction interval for the fluid flow rate at 100 revolutions per
minute.

(d) Estimate the interceptβ0. This is not zero, which suggests that the fluid flow rate
is not zero at 0 rpm. Since this should not be the case, explain what is happening.
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9.1 Introduction

In Chapters 3–7, we used completely randomized designs and analysis of variance to com-
pare the effects of one or more treatment factors on a response variable. If nuisance factors
are expected to be a major source of variation, they should be taken into account in the
design and analysis of the experiment. If the values of the nuisance factors can be measured
in advance of the experiment or controlled during the experiment, then they can be taken
into account at the design stage using blocking factors, as discussed in Chapter 10. Analysis
of covariance, which is the topic of this chapter, is a means of adjusting the analysis for
nuisance factors that cannot be controlled and that sometimes cannot be measured until the
experiment is conducted. The method is applicable if the nuisance factors are related to the
response variable but are themselves unaffected by the treatment factors.

For example, suppose an investigator wants to compare the effects of several diets on
the weights of month-old piglets. The response (weight at the end of the experimental
period) is likely to be related to the weight at the beginning of the experimental period,
and these weights will typically be somewhat variable. To control or adjust for this prior
weight variability, one possibility is to use a block design, dividing the piglets into groups (or
blocks) of comparable weight, then comparing the effects of diets within blocks. A second

277
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possibility is to use a completely randomized design with response being the weight gain
over the experimental period. This loses information, however, since heavier piglets may
experience higher weight gain than lighter piglets, or vice versa. It is preferable to include
the prior weight in the model as a variable, called acovariate, that helps to explain the final
weight.

The model for a completely randomized design includes the effects of the treatment
factors of interest, together with the effects of any nuisance factors (covariates).Analysis
of covariance is the comparison of treatment effects, adjusting for one or more covariates.
Standard analysis of covariance models and assumptions are discussed in Section 9.2. Least
squares estimates are derived in Section 9.3. Sections 9.4 and 9.5 cover analysis of covariance
tests and confidence interval methods for the comparison of treatment effects. Analysis using
the SAS software is illustrated in Section 9.6.

9.2 Models

Consider an experiment conducted as a completely randomized design to compare the
effects of the levels ofv treatments on a response variableY . Suppose that the response
is also affected by a nuisance factor (covariate) whose valuex can be measured during or
prior to the experiment. Furthermore, suppose that there is a linear relationship between
E[Y ] and x, with the same slope for each treatment. Then, if we plotE[Y ] versusx for
each treatment separately, we would see parallel lines, as illustrated for two treatments in
Figure 9.1(a). A comparison of the effects of the two treatments can be done by comparison
of mean response at any value ofx. The model that allows this type of analysis is the analysis
of covariance model:

Yit � µ+ τi + βxit + εit , (9.2.1)

εit ∼ N (0, σ 2) ,

εit
′s are mutually independent,

t � 1,2, . . . , ri ; i � 1, . . . , v .

In this model, the effect of theith treatment is modeled asτi , as usual. If there is more
than one treatment factor, thenτi represents the effect of theith treatment combination and
could be replaced by main-effect and interaction parameters. The value of the covariate
on thet th time that treatmenti is observed is written asxit , and the linear relationship
between the response and the covariate is modeled asβxit as in a regression model. It is
important for the analysis that follows that the valuexit of the covariate not be affected by
the treatment—otherwise, comparison of treatment effects at a commonx-value would not
be meaningful.

A common alternative form of the analysis of covariance model is

Yit � µ∗ + τi + β(xit − x..) + εit , (9.2.2)

in which the covariate values have been “centered.” The two models are equivalent for
comparison of treatment effects. The slope parameterβ has the same interpretation in both
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Figure 9.1
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(b) Quadratic response curves

models. In model (9.2.2),µ + τi denotes the mean response whenxit � x.., whereas
in model (9.2.1),µ∗ + τi denotes the mean response whenxit � 0, with the parameter
relationshipµ∗ � µ− βx̄... Model (9.2.2) is often used to reduce computational problems
and is a little easier to work with in obtaining least squares estimates.

9.2.1 Checking Model Assumptions and Equality of Slopes

In addition to the usual assumptions on the error variables, the analysis of covariance model
(9.2.2) assumes a linear relationship between the covariate and the mean response, with the
same slope for each treatment, as illustrated in Figure 9.1(a). It is appropriate to start by
checking for model lack of fit.

Lack of fit can be investigated by plotting the residuals versus the covariate for each
treatment on the same scale. If the plot looks nonlinear for any treatment, then a linear
relationship between the response and covariate may not be adequate. If each plot does look
linear, one can assess whether the slopes are comparable. A formal test of equality of slopes
can be conducted by comparing the fit of the analysis of covariance model (9.2.2) with the
fit of the corresponding model that does not require equal slopes, for which

Yit � µ+ τi + βi(xit − x..) + εit . (9.2.3)

If there is no significant lack of fit of the model, then plots of the residuals versus run order,
predicted values, and normal scores can be used as in Chapter 5 to assess the assumptions
of independence, equal variances, and normality of the random error terms.

9.2.2 Model Extensions

The analysis of covariance model (9.2.1) can be generalized in various ways that we will
mention here but not consider further.

If the effect of the covariate is not linear, thenβx can be replaced with a higher-order
polynomial functionβ1x + β2x

2 + · · · + βpx
p to adequately model the common shape of

the response curves for each treatment, analogous to the polynomial response curve models
of Chapter 8. For example, parallel quadratic response curves for two treatments are shown
in Figure 9.1(b).
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If there is more than one covariate, the single covariate term can be replaced by an
appropriate polynomial function of all the covariates. For example, for two covariatesx1

andx2, the second-order function

β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2

might be used, analogous to the polynomial response surface models of Chapter 16. Centered
forms of these functions can also be obtained (see Section 8.7).

9.3 Least Squares Estimates

We now obtain the least squares estimates for the parameters in the analysis of covariance
model, and then illustrate the need to use adjusted means to compare treatment effects.

9.3.1 Normal Equations (Optional)

To obtain the least squares estimates of the parameters in model (9.2.2), we need to minimize
the sum of squared errors,

v∑
i�1

ri∑
t�1

e2
it �

v∑
i�1

ri∑
t�1

(yit − µ− τi − β(xit − x..))
2 .

Differentiating this with respect to each parameter in turn and setting the corresponding
derivative equal to zero gives the normal equations as

y.. � nµ̂+
v∑
i�1

ri τ̂i , (9.3.4)

yi. � ri(µ̂+ τ̂i) + β̂

ri∑
t�1

(xit − x..), i � 1, . . . , v , (9.3.5)

v∑
i�1

ri∑
t�1

yit (xit − x..) �
v∑
i�1

ri∑
t�1

(µ̂+ τ̂i)(xit − x..) (9.3.6)

+
v∑
i�1

ri∑
t�1

β̂(xit − x..)
2 .

There arev + 2 normal equations andv + 2 unknown parameters. However, equa-
tion (9.3.4) is the sum of thev equations given in (9.3.5), since�ri � n and��(xit −x..) �
0. Thus, the normal equations are not linearly independent, and the equations do not have a
unique solution. However, thev+1 equations in (9.3.5) and (9.3.6) are linearly independent
and can be solved to obtain the unique least squares estimates forβ, µ + τ1, . . ., µ + τv
given in the next subsection.
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9.3.2 Least Squares Estimates and Adjusted Treatment Means

Under model (9.2.2) the expected value

E[Y i.] � µ+ τi + β(xi. − x..)

is an estimate of the mean response of theith treatment when the value of the covariatexit
is xi.. So, unless the covariate meansxi. all happen to be equal, the difference of response
meansyi.−ys. does not estimateτi−τs and cannot be used to compare treatment effects. The
least squares estimates of the parameters in the model are obtained by solving the normal
equations in optional Section 9.3.1 and are

µ̂+ τ̂i � yi. − β̂(xi. − x..) , i � 1, . . . , v , (9.3.7)

β̂ � sp∗
xy/ss∗

xx, (9.3.8)

where

sp∗
xy �

v∑
i�1

ri∑
t�1

(xit − xi.)(yit − yi.) and ss∗
xx �

v∑
i�1

ri∑
t�1

(xit − xi.)
2 .

In this notation,ss can be read as “sum of squares” andsp as “sum of products.” In Exercise 2,
the reader is asked to verify thatE[β̂] � β. Consequently,

E[µ̂+ τ̂i ] � µ+ τi .

The least squares estimatorsµ̂+τ̂i therefore estimate the mean response for theith treatment
at the value of the covariate equal tox... We call the estimateŝµ + τ̂i theadjusted means,
since they adjust the response meanyi. by the amountβ̂(xi. − x..), which is equivalent to
measuring the responses at the same point on the covariate scale. The need for this adjustment
is illustrated in the following example.

Example 9.3.1 Adjusted versus unadjusted means

Table 9.1 contains hypothetical data arising from two treatments at various values of the
covariate. Using equations (9.3.7) and (9.3.8), one can show that the corresponding fitted
model is

ŷit � µ̂+ τ̂i + 0.5372(xij − 60),

where

µ̂+ τ̂1 � 62.5416 andµ̂+ τ̂2 � 48.2516.

The data and fitted model are plotted in Figure 9.2. Observe that treatment one has the larger
effect, and correspondingly the higher fitted line. However if the treatment effects were
estimated asy1. andy2., it would appear that treatment two has the larger effect, since it has
the larger unadjusted mean:

y2. � 61.68> y1. � 49.11.

This bias in the treatment effect estimates is due to the relative values ofx1. andx2..
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Table 9.1 Hypothetical analysis of covariance data

i xit yit x i. y i.
1 20 44.29 39.51 42.87 35 49.11

30 44.48 48.39 49.14
40 50.24 51.63 46.55
50 57.75 59.23 55.23

2 70 48.67 56.79 52.03 85 61.68
80 57.68 67.25 52.88
90 62.04 66.12 64.39
100 63.54 72.49 76.33

✻
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Figure 9.2 Illustration of bias if unadjusted means y i. are compared

These data provide an exaggerated illustration of the need for adjustment of treatment
sample means in analysis of covariance. ✷

9.4 Analysis of Covariance

For a completely randomized design and analysis of covariance model (9.2.2), aone-way
analysis of covariance is used to test the null hypothesisH0 : {τ1 � τ2 � · · · � τv}
against the alternative hypothesisHA that at least two of theτi ’s differ. The test is based
on the comparison of error sums of squares under the full and reduced models. If the null
hypothesis is true with common treatment effectτi � τ , then the reduced model is

Yit � µ+ τ + β(xit − x..) + εit .

This is similar to a simple linear regression model, with constantβ0 � µ+ τ , slopeβ1 � β,
and with regressorxit centered. Thus, if we replacex by xit − x.. in the formula (8.5.6),
page 251, and the averagex.. in (8.5.6) by the averaged centered value 0, the least squares
estimates under the reduced model are

µ̂+ τ̂ � y.. and β̂ � spxy/ssxx ,

where

spxy �
v∑
i�1

ri∑
t�1

(xit − x..)yit �
v∑
i�1

ri∑
t�1

(xit − x..)(yit − y..)
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and

ssxx �
v∑
i�1

ri∑
t�1

(xit − x..)
2 .

So,

ssE0 �
∑
i

∑
t

(
yit − µ̂− τ̂ − β̂(xit − x..)

)2
(9.4.9)

�
∑
i

∑
t

(
yit − y.. − spxy(xit − x..)/ssxx

)2
� ssyy − (spxy)

2/ssxx ,

wheressyy �∑i

∑
t (yit − y..)

2. The number of degrees of freedom for error is equal to the
number of observations minus a degree of freedom for the constantµ + τ and one for the
slopeβ; that is,n− 2.

Under the full analysis of covariance model (9.2.2), using the least squares estimates
given in equations (9.3.7) and (9.3.8), the error sum of squares is

ssE �
∑
i

∑
t

(
yit − µ̂− τ̂i − β̂(xit − x..)

)2

�
∑
i

∑
t

(
yit − yi. + β̂(xi. − x..) − β̂(xit − x..)

)2

�
∑
i

∑
t

(
(yit − yi.) − β̂(xit − xi.)

)2

� ss∗
yy − β̂(sp∗

xy) � ss∗
yy − (sp∗

xy)
2/ss∗

xx , (9.4.10)

where

ss∗
xx �

∑
i

∑
t

(xit − xi.)
2 ,

ss∗
yy �
∑
i

∑
t

(yit − yi.)
2 ,

sp∗
xy �
∑
i

∑
t

(xit − xi.)(yit − yi.) .

The valuesss∗
xx andss∗

yy can be obtained from a computer program as the values ofssE
fitting the one-way analysis of variance models withxit andyit as the response variables,
respectively. The number of error degrees of freedom isn − v − 1 (one less than the error
degrees of freedom under the analysis of variance model due to the additional parameterβ).

The sum of squares for treatmentsss(T |β) is the difference in the error sums of squares
under the reduced and full models,

ss(T |β) � ssE0 − ssE (9.4.11)

� (ssyy − (spxy)
2/ssxx

)− (ss∗
yy − (sp∗

xy)
2/ss∗

xx

)
.

The difference in the error degrees of freedom for the reduced and full models is

(n− 2) − (n− v − 1) � v − 1 .
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Table 9.2 Analysis of covariance for one linear covariate

Source of Degrees of Sum of Mean Ratio
Variation Freedom Squares Square

T |β v − 1 ss(T |β) ss(T |β)
v−1

ms(T |β)
msE

β|T 1 ss(β|T ) ss(β|T ) ms(β|T )
msE

Error n − v − 1 ssE msE
Total n − 1 ssyy

Formulae

ss(T |β) �
(
ssyy − (spxy )

2/ssxx
)

−
(
ss∗yy − (sp∗

xy )
2/ss∗xx

)
ss(β|T ) � (sp∗

xy )
2/ss∗xx ssE � ss∗yy − (sp∗

xy )
2/ss∗xx

ssxx �∑i

∑
t (xit − x..)2 ssyy �∑i

∑
t (yit − y ..)

2

spxy �∑i

∑
t (xit − x..)(yit − y ..) ss∗xx �∑i

∑
t (xit − xi.)2

sp∗
xy �∑i

∑
t (xit − xi.)(yit − y i.) ss∗yy �∑i

∑
t (yit − y i.)

2

We denote the corresponding mean square by

ms(T |β) � ss(T |β)/(v − 1) .

If the null hypothesis is true, then

MS(T |β)/MSE ∼ Fv−1,n−v−1 ,

so we can obtain a decision rule for testingH0 : {τ1 � τ2 � · · · � τv} againstHA :
{τi not all equal} as

rejectH0 if ms(T |β)/msE > Fv−1,n−v−1,α

at chosen significance levelα. The information for testing equality of the treatment effects
is typically summarized in an analysis of covariance table such as that shown in Table 9.2.

The table also includes information for testing the null hypothesisH0 : {β � 0} against
the alternative hypothesisHA : {β 	� 0}. The reduced model for this test is the one-way
analysis of variance model (3.3.1), for whichYit � µ + τi + εit . From Chapter 3, the
corresponding error sum of squares is

ssE0 �
∑
i

∑
t

(yit − yi.)
2 � ss∗

yy ,

and the number of error degrees of freedom isn− v. The error sum of squares for the full
model is given in (9.4.10). Denoting the difference in error sums of squares byss(β|T ), we
have

ss(β|T ) � ssE0 − ssE � (sp∗
xy)

2/ss∗
xx � β̂2ss∗

xx .

The difference in the error degrees of freedom is (n − v) − (n − v − 1) � 1, so the
corresponding mean square,ms(β|T ), has the same valuess(β|T ). Under the assumptions
of the analysis of covariance model (9.2.2), ifH0 : {β � 0} is true, then

MS(β|T )/MSE ∼ F1,n−v−1 .
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Figure 9.3
Residual plot for the
balloon experiment
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Thus, the decision rule for testingH0 : {β � 0} againstHA : {β 	� 0}, at significance level
α, is

rejectH0 if ms(β|T )/msE > F1,n−v−1,α .

Example 9.4.1 Balloon experiment, continued

Consider the balloon experiment of Meily Lin, in which she compared the effects of four
colors on balloon inflation time. In Example 5.5, page 110, the standardized residuals were
plotted against the run order of the observations. The plot, reproduced in Figure 9.3, shows
a clear linear decreasing trend in the residuals. This trend indicates a definite lack of inde-
pendence in the error terms under the one-way analysis of variance model, but the trend can
be eliminated by including the run order as a covariate in the model.

The analysis of covariance table for this experiment is shown in Table 9.3. Residual
plots for checking the model assumptions will be discussed in Section 9.6 and reveal no
anomalies.

The decision rule for testing equality of the treatment effects is to

rejectH0 : {τ1 � · · · � τv} if ms(T |β)/msE � 6.32 > F3,27,α .

SinceF3,27,.01 � 4.60, the null hypothesis is rejected at significance levelα � 0.01, and we
can conclude that there is a difference in inflation times for the different colors of balloon.

Table 9.3 Analysis of covariance for the balloon experiment

Source of Degrees of Sum of Mean Ratio
Variation Freedom Squares Square
T |β 3 127.679 42.560 6.32
β|T 1 120.835 120.835 17.95
Error 27 181.742 6.731
Total 31 430.239
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Of secondary interest is the test ofH0 : {β � 0}againstHA : {β 	� 0}. The decision rule is
to reject the null hypothesis ifms(β|T )/msE � 17.95> F1,27,α. Again, the null hypothesis
is rejected at significance levelα � 0.01, sinceF1,27,.01 � 7.68. We may conclude that the
apparent linear trend in the inflation times due to order is a real trend and not due to random
error. ✷

9.5 Treatment Contrasts and Confidence Intervals

9.5.1 Individual Confidence Intervals

Sinceµ+ τi is estimable under model (9.2.2), any treatment contrast
∑

i ciτi (
∑

i ci � 0)
is also estimable. From (9.3.7),

∑
i ciτi has least squares estimator∑

i

ci τ̂i �
∑
i

ci(µ̂+ τ̂i) �
∑
i

ci

(
Y i. − β̂(x̄i. − x̄..)

)
�
∑
i

ci

(
Y i. − β̂x̄i.

)
. (9.5.12)

(The term�ciβ̂x̄.. is zero, since�ci � 0.) Now, Var
(
Y i.

) � σ 2/ri , and it can be shown

that Var(β̂) � σ 2/ss∗
xx and Cov(Y i., β̂) � 0. Using these results and (9.5.12), the variance

of
∑

i ci τ̂i is

Var

(∑
i

ci τ̂i

)
� Var

(∑
i

ciY i.

)
+ Var

(
β̂
∑
i

cixi.

)

� σ 2

(∑
i

c2
i

ri

)
+
(
σ 2

ss∗
xx

)(∑
i

cixi.

)2

.

So, the estimated variance is

V̂ar(�ciτ̂i) � msE

(∑
i

c2
i

ri
+
(∑

i cixi.
)2

ss∗
xx

)
. (9.5.13)

From (9.5.12), the least squares estimator
∑

i ci τ̂i is a function ofY i. andβ̂. SinceYij
has a normal distribution, bothY i. andβ̂ are normally distributed. Consequently,

∑
i ci τ̂i

also has a normal distribution. Also,MSE/σ 2 has a chi-squared distribution withn− v− 1
degrees of freedom. Then, for any treatment contrast

∑
i ciτi , it follows that∑

ci τ̂i −∑ ciτi√
V̂ar(
∑

ci τ̂i)
∼ tn−v−1 .

So, a 100(1− α)% confidence interval for
∑

i ciτi is

∑
i

ciτi ∈
∑

i

ci τ̂i ± tn−v−1,α/2

√√√√V̂ar

(∑
i

ci τ̂i

)  . (9.5.14)
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9.5.2 Multiple Comparisons

The multiple comparison methods of Bonferroni and Scheffé are applicable in the analysis
of covariance setting. However, since the adjusted treatment meansµ̂+τ̂i � Y i.−β̂(xi.−x..)
are not independent unless thexi. are all equal, the methods of Tukey, Dunnett, and Hsu are
not known to apply. It is believed that Tukey’s method does still control the experimentwise
confidence level in this case, but there is no known proof of this conjecture.

Confidence intervals are obtained as

∑
i

ciτi ∈
∑

i

ci τ̂i ± w

√√√√V̂ar

(∑
i

ci τ̂i

)  , (9.5.15)

where w is the appropriate critical coefficient. For the Bonferroni method andm

predetermined treatment contrasts,w � tn−v−1,α/2m. For the Scheff́e method for all treat-
ment contrasts,w � √(v − 1)Fv−1,n−v−1,α. Formulae for the estimate�ciτ̂i and the
corresponding estimated variance are given in equations (9.5.12) and (9.5.13).

Example 9.5.1 Balloon experiment, continued

We now illustrate the Scheffé method of multiple comparisons to obtain simultaneous 95%
confidence intervals for all pairwise treatment comparisons for the balloon experiment of
Example 9.4. (The data are in Table 3.11, page 62.) For pairwise comparisons, the confidence
intervals are obtained from (9.5.14),

τi − τs ∈
(
τ̂i − τ̂s ± √3F3,27,.05

√
V̂ar(τ̂i − τ̂s)

)
,

whereτ̂i − τ̂s � (yi. − ys.) − β̂(xi. − xs.). The treatment and covariate means are

y 1. � 18.337, y 2. � 22.575, y 3. � 21.875, y 4. � 18.187,
x1. � 16.250, x2. � 15.625, x3. � 17.500, x4. � 16.625,

and from (9.3.8), we obtain

β̂ � sp∗
xy/ss∗

xx � −572.59/2713.3 � −0.21103.

Now, msE � 6.731 from Table 9.3, so

V̂ar(τ̂i − τ̂s) � msE

(
1

8
+ 1

8
+ (xi. − xs.)

2

ss∗
xx

)

� (6.731)

(
0.25+ (xi. − xs.)

2

2713.3

)
� 1.68275+ (0.00248)(xi. − xs.)

2 .

Using the critical coefficientw � √3F3,27,.05 � √
3 × 2.96, one can obtain the confidence

interval information given in Table 9.4. The estimated difference exceeds the minimum
significant difference

msd � w

√
V̂ar(τ̂i − τ̂s) with w � √3F3,27,.05
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Table 9.4 Scheffé pairwise comparisons for the
balloon experiment; overall confidence
level is 95%

i s τ̂i − τ̂s
√
V̂ar(τ̂i − τ̂s ) msd

1 2 −4.106 1.298 3.868
1 3 −3.801 1.299 3.871
1 4 0.071 1.297 3.865
2 3 0.304 1.301 3.877
2 4 4.176 1.298 3.868
3 4 3.872 1.298 3.868

for the first two and last two comparisons. One can conclude from the corresponding confi-
dence intervals that the mean time to inflate balloons is longer for color 2 (yellow) than for
colors 1 and 4 (pink and blue), and the mean inflation time for color 3 (orange) is longer than
for color 4 (blue). At a slightly lower confidence level, we would also detect a difference in
mean inflation times for colors 3 and 1 (orange and pink). The corresponding four intervals
with overall confidence level 95% are

τ2 − τ1 ∈ (0.238,7.974), τ3 − τ1 ∈ (−0.070,7.672),
τ2 − τ4 ∈ (0.308,8.044), τ3 − τ4 ∈ ( 0.004,7.740).

✷

Whenever the data are used to determine or modify the model, the confidence levels and
error rates associated with any subsequent analyses of the same data will not be exactly
as stated. Such is the case for the analyses presented in Example 9.5.2 for the balloon
experiment, since the covariate “run order” was included in the model as a result of a
trend observed in the residuals from the original analysis of variance model. Thus, although
Scheff́e’s method was used, we cannot be certain that the overall level of the confidence
intervals in Example 9.5.2 is exactly 95%.

9.6 Using SAS Software

Table 9.5 contains a sample SAS program for performing a one-way analysis of covariance
involving a single covariate with a linear effect. The program uses the data from the balloon
experiment discussed in Examples 9.4 and 9.5.2. The data are given in Table 3.11, page 62.
The experimenter was interested in comparing the effects of four colors (pink, yellow,
orange, and blue) on the inflation time of balloons, and she collected eight observations per
color. The balloons were inflated one after another by the same person. Residual analysis
for the one-way analysis of variance model showed a linear trend in the residuals plotted
against run order (Figure 9.3, page 285). Hence, run order is included in the model here as a
linear covariate. To obtain the “centered” form of the model, as in model (9.2.2), a centered
variable has been created immediately after theINPUT statement, using theSAS statement

X = RUNORDER - 16.5;

where 16.5 is the average value ofRUNORDER.
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Table 9.5 SAS program for analysis of covariance—Balloon experiment

DATA;
INPUT RUNORDER COLOR INFTIME;
X = RUNORDER - 16.5;
LINES;

1 1 22.0
2 3 24.6
3 1 20.3
4 4 19.8
: : :

30 1 19.3
31 1 15.9
32 3 20.3

;
PROC GLM;
CLASS COLOR;
MODEL INFTIME = COLOR X;
ESTIMATE ’1-2’ COLOR 1 -1 0 0;
ESTIMATE ’1-3’ COLOR 1 0 -1 0;
ESTIMATE ’1-4’ COLOR 1 0 0 -1;
ESTIMATE ’2-3’ COLOR 0 1 -1 0;
ESTIMATE ’2-4’ COLOR 0 1 0 -1;
ESTIMATE ’3-4’ COLOR 0 0 1 -1;
ESTIMATE ’BETA’ X 1;
OUTPUT OUT=B P=PRED R=Z;

PROC STANDARD STD=1;
VAR Z;

PROC RANK NORMAL=BLOM OUT=C;
VAR Z;
RANKS NSCORE;

PROC PLOT;
PLOT Z*RUNORDER Z*PRED Z*COLOR / VREF=0 VPOS=11 HPOS=50;
PLOT Z*NSCORE / VREF=0 HREF=0 VPOS=11 HPOS=50;

In Table 9.5,PROC GLM is used to generate the analysis of covariance. The output is
shown in Table 9.6. The treatment factorCOLOR has been included in theCLASS statement
to generate a parameterτi for each level of the treatment factor “color,” while the covariateX
has been excluded from the class statement so that it is included in the model as a regressor,
or covariate, as in model (9.2.2). To obtain the “uncentered” form of the model, as in
model (9.2.1), the variableRUNORDER would replaceX throughout the program. The output
in Table 9.6 would not change, since only the definition of the constant in the model has
been altered.

The information for testing the null hypothesesHT
0 : {τ1 � · · · � τ4} against

HT
A : {HT

0 not true} andH0 : {β � 0} againstHA : {β 	� 0} is in Table 9.6 under the
headingType III SS. Specifically,ss(T |β) � 127.678829 andss(β|T ) � 120.835325.
The corresponding ratio statistics andp-values are listed underF Value andPr > F, re-
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Table 9.6 Output from SAS PROC GLM

The SAS System
General Linear Models Procedure

Class Level Information
Class Levels Values
COLOR 4 1 2 3 4

Number of observations in data set = 32

Dependent Variable: INFTIME
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 4 248.49657 62.12414 9.23 0.0001
Error 27 181.74218 6.73119
Corrected Total 31 430.23875

R-Square C.V. Root MSE INFTIME Mean
0.577578 12.81607 2.5945 20.244

Source DF Type I SS Mean Square F Value Pr > F
COLOR 3 127.66125 42.55375 6.32 0.0022
X 1 120.83532 120.83532 17.95 0.0002

Source DF Type III SS Mean Square F Value Pr > F
COLOR 3 127.67883 42.55961 6.32 0.0022
X 1 120.83532 120.83532 17.95 0.0002

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
1-2 -4.10560387 -3.16 0.0038 1.29760048
1-3 -3.80129227 -2.93 0.0069 1.29872024
1-4 0.07086232 0.05 0.9568 1.29736147
2-3 0.30431160 0.23 0.8168 1.30058436
2-4 4.17646618 3.22 0.0034 1.29818288
3-4 3.87215459 2.98 0.0060 1.29795891
BETA -0.21103382 -4.24 0.0002 0.04980823

spectively. Since thep-values are very small, both null hypotheses would be rejected for any
reasonable overall significance level. Thus, there are significant differences in the effects of
the four colors on inflation time after adjusting for linear effects of run order. Also, there is
a significant linear trend in mean inflation as a function of run order after adjusting for the
treatment effects. The least squares estimate forβ is negative (̂β � −0.211), so the trend is
decreasing, as we saw in Figure 9.3.

The Type I and Type III sums of squares for color are similar but not quite equal, indicating
that the treatment effects and the covariate effect are not independent. This is because the
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Figure 9.4
SAS plot of zit against

run order
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comparison of treatment effects is a comparison of the adjusted means, which do depend
onβ, since the covariate meansxi. are not all equal for these data.

ESTIMATE statements underPROC GLM are used to generate the least squares estimate
and estimated standard error for each pairwise comparison of treatment effects and for the
coefficientβ of the covariate. The standard errors of eachτ̂i−τ̂j are not quite equal but are all
approximately 1.30. To compare all treatment effects pairwise using Scheffé’s method and
a simultaneous 95% confidence level, the calculations proceed as shown in Example 9.5.2.

The OUTPUT statement underPROC GLM and the proceduresPROC STANDARD, PROC
RANK, andPROC PLOT are used as they were in Chapter 5 to generate four residual plots.
The resulting plots (not shown) show no problems with the model assumptions. Of special
note, the plot of the residuals against run order in Figure 9.4 no longer shows any trend, so
the linear run order covariate has apparently adequately modeled any run order dependence
in the observations.

A test for equality of slopes as discussed in Section 9.2.1 can be generated using the SAS
statements

PROC GLM; CLASS COLOR;
MODEL INFTIME = COLOR X COLOR*X;

The interaction termCOLOR*Xwill be significantly different from zero if the linear run order
trends are not the same for each color.
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Exercises

1. Consider the hypothetical data of Example 9.3.2, in which two treatments are to be
compared.

(a) Fit the analysis of covariance model (9.2.1) or (9.2.2) to the data of Table 9.1, page
282.

(b) Plot the residuals against the covariate, the predicted values, and normal scores.
Use the plots to evaluate the model assumptions.

(c) Test for inequality of slopes, using a level of significanceα � 0.05.

(d) Test for equality of the treatment effects, using a significance level ofα � 0.05.
Discuss the results.

(e) Construct a 95% confidence interval for the difference in treatment effects. Discuss
the results.

2. (optional) Assume that the analysis of covariance model (9.2.2) holds, so thatYit �
µ+ τi + β(xit − x..) + εit .

(a) ComputeE[Yit ].

(b) Verify thatsp∗
xY �∑i

∑
t (xit − xi.)Yit , given thatsp∗

xY �∑i

∑
t (xit − xi.)(Yit −

Y i.).

(c) Show thatE[β̂] � β, whereβ̂ � sp∗
xY /ss∗

xx andss∗
xx �∑i

∑
t (xit − xi.)2.

(d) Verify that Var(β̂) � σ 2/ss∗
xx and Cov(Y i., β̂) � 0.

(e) Verify thatE[µ̂+ τ̂i ] � µ+ τi , whereµ̂+ τ̂i � Y i. − β̂(xi. − x..).

(f) Using the results of (c) and (e), argue thatµ+ τi andβ and all linear combinations
of these are estimable.

3. Zinc plating experiment
The following experiment was used by C. R. Hicks (1965),Industrial Quality Control, to
illustrate the possible bias caused by ignoring an important covariate. The experimental
units consisted of 12 steel brackets. Four steel brackets were sent to each of three
vendors to be zinc plated. The response variable was the thickness of the zinc plating,
in hundred-thousandths of an inch. The thickness of each bracket before plating was
measured as a covariate. The data are reproduced in Table 9.7.
(a) Plotyit versusxit , using the vendor indexi as the plotting symbol. Discuss the

relationship between plating thickness and bracket thickness before plating. Based
on the plot, discuss appropriateness of the analysis of covariance model. Based on
the plot, discuss whether there appears to be a vendor effect.

(b) Fit the analysis of covariance model (9.2.1) or (9.2.2) to the data.

(c) Plot the residuals against the covariate, predicted values, and normal scores. Use
the plots to evaluate model assumptions.

(d) Test for equality of slopes, using a level of significanceα � 0.05.

(e) Test for equality of the vendor effects, using a significance levelα � 0.05.
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Table 9.7 Bracket thickness xit and plating thickness
yit in 10−5 inches for three vendors
(Hicks, 1965)

Vendor
1 2 3

t x1t y1t x2t y2t x3t y3t
1 110 40 60 25 62 27
2 75 38 75 32 90 24
3 93 30 38 13 45 20
4 97 47 140 35 59 13

Source: Hicks, C. R. (1965). Copyright © 1965
American Society for Quality. Reprinted with
permission.

(f) Fit the analysis of variance model to the data, ignoring the covariate.

(g) Using analysis of variance, ignoring the covariate, test for equality of the vendor
effects using a significance levelα � 0.05.

(h) Compare and discuss the results of parts (e) and (g). For which model ismsE
smaller? Which model gives the greater evidence that vendor effects are not equal?
What explanation can you offer for this?

4. Paper towel absorbancy experiment
(S. Bortnick, M. Hoffman, K.K. Lewis, and C. Williams, 1996)
Four students conducted a pilot experiment to compare the effects of two treatment
factors, brand and printing, on the absorbancy of paper towels. Three brands of paper
towels were compared (factorA at 3 levels). For each brand, both white and printed
towels were evaluated (factorB, 1=white, 2=printed). For each observation, water was
dripped from above a towel, which was horizontally suspended between two pairs of
books on a flat surface, until the water began leaking through to the surface below. The
time to collect each observation was measured in seconds. Absorbancy was measured
as the number of water drops absorbed per square inch of towel. The rate at which the
water droplets fell to the towel was measured (in drops per second) as a covariate. The
data are reproduced in Table 9.8.
(a) Plot absorbancy versus rate, using the treatment level as the plotting symbol. Based

on the plot, discuss appropriateness of the analysis of covariance model, and discuss
whether there appear to be treatment effects.

(b) Fit the one-way analysis of covariance model to the data.

(c) Plot the residuals against the covariate, run order, predicted values, and normal
scores. Use the plots to evaluate model assumptions.

(d) Test for equality of slopes, using a level of significanceα � 0.05.

(e) Test for equality of treatment effects, using a significance levelα � 0.05.

(f) Conduct a two-way analysis of covariance. Test the main effects and interactions
for significance.
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Table 9.8 Data for the paper tower absorbancy experiment

Run Treatment AB Drops Time Area Rate Absorbancy
1 2 12 89 50 121.00 1.780 0.7355
2 4 22 28 15 99.00 1.867 0.2828
3 2 12 47 22 121.00 2.136 0.3884
4 1 11 82 42 121.00 1.952 0.6777
5 5 31 54 30 123.75 1.800 0.4364
6 1 11 74 37 121.00 2.000 0.6116
7 4 22 29 14 99.00 2.071 0.2929
8 6 32 80 41 123.75 1.951 0.6465
9 3 21 25 11 99.00 2.272 0.2525
10 3 21 27 12 99.00 2.250 0.2727
11 6 32 83 40 123.75 2.075 0.6707
12 5 31 41 19 123.75 2.158 0.3313

5. Catalyst experiment, continued
The catalyst experiment was described in Exercise 5 of Chapter 5. The data were given
in Table 5.16, page 130. There were twelve treatment combinations consisting of four
levels of reagent, which we may recode asA � 1, B � 2, C � 3, D � 4, and three
levels of catalyst, which we may recode asX � 1, Y � 2, Z � 3, giving the treatment
combinations 11, 12, 13, 21, . . . ,43.
The order of observation of the treatment combinations is also given in Table 5.16.
(a) Fit a two-way complete model to the data and plot the residuals against the time

order. If you are happy about the independence of the error variables, then check
the other assumptions on the model and analyze the data. Otherwise, go to part (b).

(b) Recode the treatment combinations as 1, 2, . . . ,12. Fit an analysis of covariance
model (9.2.1) or (9.2.2) to the data, where the covariatexit denotes the time in the
run order at which thet th observation on theith treatment combination was made.
Check all of the assumptions on your model, and if they appear to be satisfied,
analyze the data.

(c) Plot the adjusted means of the twelve treatment combinations in such a way that
you can investigate the interaction between the reagents and catalysts. Test the
hypothesis that the interaction is negligible.

(d) Check the model for lack of fit; that is, investigate the treatment× time interaction.
State your conclusions.



10 Complete Block Designs

10.1 Introduction
10.2 Blocks, Noise Factors or Covariates?
10.3 Design Issues
10.4 Analysis of Randomized Complete Block Designs
10.5 A Real Experiment—Cotton-Spinning Experiment
10.6 Analysis of General Complete Block Designs
10.7 Checking Model Assumptions
10.8 Factorial Experiments
10.9 Using SAS Software
Exercises

10.1 Introduction

In step (b)(iii) of the checklist in Chapter 2, we raised the possibility that an experiment may
involve one or more nuisance factors that although not of interest to the experimenter could
have a major effect on the response. We classified these nuisance factors into three types:
blocking factors, noise factors, and covariates. Different types of nuisance factors lead to
different types of analyses, and the choice between these is revisited in Section 10.2.

The cotton-spinning experiment of Section 2.3, page 14, illustrates some of the consid-
erations that might lead an experimenter to include a blocking factor in the model and to
adopt a block design. The most commonly used block designs are the randomized complete
block designs and the general complete block designs. These are defined in Section 10.3.2,
and their randomization is illustrated in Section 10.3.3. Models, multiple comparisons, and
analysis of variance for randomized complete block designs are given in Section 10.4 and
those for general complete block designs in Section 10.6. Model assumption checks are out-
lined briefly in Section 10.7. An analysis of the cotton-spinning experiment is described in

295
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Section 10.5, and in Section 10.8, we illustrate the analysis of a complete block design with
factorial treatment combinations. Analysis of complete block designs by the SAS computer
package is discussed in Section 10.9.

10.2 Blocks, Noise Factors or Covariates?

It is not always obvious whether to classify a nuisance factor as a blocking factor, a covariate,
or a noise factor. The decision will often be governed by the goal of the experiment.

Nuisance factors are classified asnoise factors if the objective of the experiment is to find
settings of the treatment factors whose response is least affected by varying the levels of the
nuisance factors. Settings of noise factors can usually be controlled during an experiment
but are uncontrollable outside the laboratory. We gave an illustration of a noise factor in
Section 7.6, page 217, and we will give some more examples in Chapter 15.

Covariates are nuisance factors that cannot be controlled but can be measured prior to, or
during, the experiment. Sometimes covariates are of interest in their own right, but when they
are included in the model as nuisance variables, their effects are used to adjust the responses
so that treatments can be compared as though all experimental units were identical (see
Chapter 9).

A block design is appropriate when the goal of the experiment is to compare the effects
of different treatments averaged over a range of different conditions. The experimental units
are grouped into sets in such a way that two experimental units in the same set are similar
and can be measured under similar experimental conditions, but two experimental units in
different sets are likely to give rise to quite different measurements even when assigned to the
same treatment. The sets of similar experimental units are calledblocks, and the conditions
that vary from block to block form the levels of theblocking factor. The analysis of a block
design involves the comparison of treatments applied to experimental units within the same
block. Thus, the intent of blocking is to prevent large differences in the experimental units
from masking differences between treatment factor levels, while at the same time allowing
the treatments to be examined under different experimental conditions.

The levels of a blocking factor may be the values of a covariate that has been measured
prior to the experiment and whose value is used to group the experimental units. More
often, however, the levels of a blocking factor are groupings of characteristics that cannot
be conveniently measured. For example, grouping the time slots in the same day into the
same block, as was done for the cotton-spinning experiment in Section 2.3, ensures that
environmental conditions within a block are fairly similar without the necessity of measuring
them.

Since the levels of the blocking factor do not necessarily need to be measured, the block
design is very popular. Agricultural experimenters may know that plots close together in
a field are alike, while those far apart are not alike. Industrial experimenters may know
that two items produced by one machine have similar characteristics, while those produced
by two different machines are somewhat different. Medical experimenters may know that
measurements taken on the same subject will be alike, while those taken on different sub-
jects will not be alike. Consequently, blocks may be formed without actually knowing the
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precise levels of the blocking factor. Some more examples are given in the next section and
throughout the chapter.

10.3 Design Issues

10.3.1 Block Sizes

Although it is perfectly possible for the numbers of experimental units in each block to be
unequal, this is outside the scope of this book, and we will examine only block designs in
which the block sizes are the same. We will useb to represent the number of blocks andk
to represent the common block sizes.

Sometimes the block sizes are naturally defined, and sometimes they need to be
specifically selected by the experimenter. In a bread-baking experiment, for example, the
experimental units are the baking tins in different positions in the oven. If the temperature
cannot be carefully controlled, there is likely to be a temperature gradient from the top shelf
to the bottom shelf of the oven, although the temperature at all positions within a shelf
may be more or less constant. If the measured response is affected by temperature, then
experimental units on the same shelf are alike, but those on different shelves are different.
There is a natural grouping of experimental units into blocks defined by the shelf of the
oven. Thus, the shelves are the blocks of experimental units and represent the levels of the
blocking factor “temperature.” The numberb of blocks is the number of shelves in the oven.
The block sizek is the number of baking tins that can be accommodated on each shelf.

It is not always the case that the block size is naturally defined by the experimental
equipment. It will often need to be determined by the judgment of the experimenter. For
example, the data in Figure 10.1 were gathered in a pilot experiment by Bob Belloto in the
Department of Pharmacy at Ohio State University. The data show the readings given by a
breathalyzer for a given concentration of alcohol. Notice how the readings decrease over
time. Likely causes for this decrease include changes in atmospheric conditions, evaporation
of alcohol, and deterioration of the breathalyzer filters. In other experiments, such trends
in the data can be caused by equipment heating over time, by variability of batches of raw
material, by experimenter fatigue, etc.

The block sizes for the breathalyzer experiment were chosen to be five, that is, the first
five observations would be in one block, the next five in the next block, and so on. The reason
for the choice was twofold. First, it can be seen from Figure 10.1 that the observations in
the pilot experiment seem to be fairly stable in groups of five. Secondly, the experiment was
to be run by two different technicians, who alternated shifts, and five observations could be
taken per shift. Thus the blocking factor was factorial in nature, and its levels represented
combinations of time and technicians.

It is not uncommon in industry for an experiment to be automatically divided into blocks
according to time of day as a precaution against changing experimental conditions. A pilot
experiment such as that in the breathalyzer experiment is the ideal way of determining the
necessity for blocking. If blocks were to be created when they are not needed, hypothesis
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Figure 10.1
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tests would be less powerful and confidence intervals would be wider than those obtained
via a completely randomized design.

10.3.2 Complete Block Design Definitions

Having decided on the block size and having grouped the experimental units into blocks
of similar units, the next step is to assign the units to the levels of the treatment factors.
The worst possible assignment of experimental units to treatments is to assign all the units
within a block to one treatment, all units within another block to a different treatment, and
so on. This assignment is bad because it does not allow the analysis to distinguish between
differences in blocks and differences in treatments. The effects of the treatment factors and
the effects of the blocking factor are said to beconfounded.

The best possible assignment is one that allocates to every treatment the same number of
experimental units per block. This can be achieved only when the block sizek is a multiple
of v, the number of treatments. Such designs are calledcomplete block designs, and in the
special case ofk � v, they have historically been calledrandomized complete block designs
or, simply,randomized block designs. The historical name is unfortunate, since all block
designs need to be randomized. Nevertheless, we will retain the name randomized complete
block design for block sizek � v and use the namegeneral complete block design for block
size a larger multiple ofv.

If the block size is not a multiple ofv, then the block design is known as anincomplete
block design. This term is sometimes reserved for the smaller designs wherek < v, but we
will find it convenient to classify all designs as either complete or incomplete. Incomplete
block designs are more complicated to design and analyze than complete block designs, and
we postpone their discussion to Chapter 11.

We will continue to useri to mean the number of times that treatmenti is observed in the
experiment, and we introduce a new symbolnhi to denote the number of times that treatment
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Table 10.1 Randomization for block 1 of the bread-baking experiment

Unsorted Unsorted Sorted Sorted Experimental
Treatments Random Treatments Random Unit

Numbers Numbers
1 74 2 11 FL
2 11 3 39 FR
3 39 4 68 BL
4 68 1 74 BR

i is observed in blockh. For complete block designs, all thenhi are equal to the constant
s � k/v and all theri are equal to the constantr � bs.

10.3.3 The Randomized Complete Block Design

A randomized complete block design is a design withv treatments (which may be factorial
treatment combinations) and withn � bv experimental units grouped intob blocks of
k � v units in such a way that units within a block are alike and units in different blocks
are substantially different. Thek � v experimental units within each block are randomly
assigned to thev treatments so that each treatment is assigned one unit per block. Thus,
each treatment appears once in every block (s � 1) andr � b times in the design.

Example 10.3.1 Bread-baking experiment

An experimenter wishes to compare the shelf life of loaves made fromv � 4 different
bread doughs, coded 1, 2, 3, 4. An oven with three shelves will be used, and each shelf is
large enough to take four baking tins. A temperature difference is anticipated between the
different shelves but not in different positions within a shelf. The oven will be used twice,
giving a total of six blocks defined by shelf/run of the oven, and the block size isk � 4
defined by the four positions on each shelf: FL, FR, BL, BR (front left, front right, back left,
back right).

Since the block size is the same as the number of treatments, a randomized complete
block design can be used. The experimental units (positions) in each block (shelf/run) are
assigned at random to the four levels of the treatment factor (doughs) using the procedure
described in Section 3.2, page 34, for each block separately. For example, suppose we
obtain the four 2-digit random numbers 74, 11, 39, 68 from a computer random number
generator, or from Table A.1, and associate them in this order with the four treatments to be
observed once each in block 1. If we now sort the random numbers into ascending order, the
treatment codes are randomly sorted into the order 2, 3, 4, 1 (see Table 10.1). If we allocate
the experimental units in the order FL, FR, BL, BR to the randomly sorted treatments, we
obtain the randomized block shown in the first row of Table 10.2. The other randomized
blocks in Table 10.2 are obtained in a similar fashion.

Notice that the randomization that we have obtained in Table 10.2 has allowed bread
dough 1 to be observed four times in the back right position, and that dough 2 is never
observed in this position. If a temperature difference in positions is present, then this could
cause problems in estimating treatment differences. If a temperature difference in positions is
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Table 10.2 Example of a randomized complete block
design

Block Run Shelf FL FR BL BR
1 1 1 2 3 4 1
2 2 1 2 3 4
3 3 4 3 2 1
4 2 1 2 4 3 1
5 2 2 4 1 3
6 3 3 2 4 1

likely, the randomized complete block design is not the correct design to use. A row–column
design (Chapter 12) should be used instead. ✷

10.3.4 The General Complete Block Design

A general complete block design is a design withv treatments (which may be factorial
treatment combinations) and withn � bvs experimental units grouped intob blocks of
k � vs units in such a way that units within a block are alike and units in different blocks
are substantially different. Thek � vs experimental units within each block are randomly
assigned to thev treatments so that each treatment is assigneds units per block. Thus, each
treatment appearss times in every block andr � bs times in the design. In the special
case ofs � 1, the complete block design is called a randomized complete block design
(Section 10.3.3).

Example 10.3.2 Light bulb experiment

An experiment was run by P. Bist, G. Deshpande, T.-W. Kung, R. Laifa, and C.-H. Wang
in 1995 in order to compare the light intensities of different brands of light bulbs. Three
brands were selected, and coded as 1, 2, and 3. Brand 3 was cheaper than brands 1 and 2. A
further factor that was examined in the experiment was the effect of the percentage capacity
of the bulb, which was controlled by the amount of current being passed through the bulb.
Two levels of capacity were selected, 100% and 50%. Thus, there werev � 6 treatment
combinations in total. which we will code as follows:
(100%, Brand 1) � 1, (100%, Brand 2) � 2, (100%, Brand 3) � 3,
(50%, Brand 1) � 4, (50%, Brand 2) � 5, (50%, Brand 3) � 6.

The experimenters wanted to compare the six treatment combinations for both 60 watt
bulbs and 100 watt bulbs. Comparison of illumination between two different wattages was
not of particular interest, since 100 watt bulbs should be brighter than 60 watt bulbs. The
experiment needed to be run at two separate times, so it was convenient to examine the 60
watt bulbs on one day and the 100 watt bulbs on another. Therefore, two blocks were used,
with the blocks being defined by the combinations of day and wattage. Four observations
were taken on each of thev � 6 treatment combinations in each block.

The experiment was run in a dark room. Each light bulb was wired to a dimmer switch,
and a digital multimeter was used to measure the amount of current flowing through the
bulb. A photo resister was positioned one foot from the bulb, and the illumination was also
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measured with a multimeter. The response variable was the observed resistance of the photo
resister, where high illumination corresponds to low resistance. The data (resistances) are
shown in Table 10.9, page 311, where the analysis is discussed. ✷

10.3.5 How Many Observations?

If the block size is pre-determined, we can calculate the number of blocks that are required
to achieve a confidence interval of given length, or a hypothesis test of desired power, in
much the same way as we calculated sample sizes in Chapter 6. If the number of blocks is
limited, but the block sizes can be very large, the same techniques can be used to calculate
the required block size for a general complete block design. A calculation of the required
number of blocks using confidence intervals will be illustrated for a randomized complete
block design in Section 10.5.2, and a calculation of the required block size using the power
of a test will be done in Section 10.6.3 for a general complete block design.

10.4 Analysis of Randomized Complete Block Designs

10.4.1 Model and Analysis of Variance

The standard model for a randomized complete block design is

Yhi � µ+ θh + τi + εhi , (10.4.1)

εhi ∼ N (0, σ 2) ,

εhi
′s are mutually independent,

h � 1, . . . , b; i � 1, . . . , v ,

whereµ is a constant,θh is the effect of thehth block,τi is the effect of theith treatment,
Yhi is the random variable representing the measurement on treatmenti observed in blockh,
andεhi is the associated random error. We will call this standard model theblock–treatment
model.

Notice that the block–treatment model does not include a term for the interaction be-
tween blocks and treatments. If interaction effects were to be included in the model, there
would be no degrees of freedom for error with which to estimate the error variance (cf.
Section 6.7). In many blocked experiments, absence of block×treatment interaction is a
reasonable assumption. However, if interaction is suspected in a given experiment, then the
block size must be increased to allow its estimation.

The block–treatment model (10.4.1) looks similar to the two-way main-effects
model (6.2.3) for two treatment factors in a completely randomized design with one ob-
servation per cell. Not surprisingly, then, the analysis of variance table in Table 10.3 for
the randomized complete block design looks similar to the two-way analysis of variance
table in Table 6.7, page 167, for two treatment factors and one observation per treatment
combination. There is, however, an important difference. In a completely randomized de-
sign, the treatment combinations, and so the levels ofboth factors, are randomly assigned
experimental units. On the other hand, in a block design, although observations are taken
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on all combinations of treatments and blocks, only the levels of the treatment factor are
randomly assigned experimental units. The levels of the block factor represent intentional
groupings of the experimental units. This leads to some controversy as to whether or not a
test of equality of block effects is valid. In the present situation, where the blocks represent
nuisance sources of variation, we do not need to know whether or not the block effects are
truly equal. It is very unlikely that we can use the identical blocks again. So, rather than
testing for equality of block effects, we will merely compare the block mean squaremsθ
with the error mean squaremsE to determine whether or not blocking was beneficial in the
experiment at hand.

If msθ is considerably larger thanmsE, this suggests that the creation of blocks was
worthwhile in the sense of having reduced the size of the error mean square. Ifmsθ is less
thanmsE, then the creation of blocks has lowered the power of hypothesis tests and increased
the lengths of confidence intervals for treatment contrasts. The comparison ofmsθ andmsE
is not a significance test. There is no statistical conclusion about the equality of block effects.
The comparison is merely an assessment of the usefulness of having created blocks in this
particular experiment and does provide some information for the planning of future, similar
experiments. Of course, ifmsθ is less thanmsE, it is not valid to pretend that the experiment
was designed as a completely randomized design and to remove the block effects from the
model—the randomization is not correct for a completely randomized design.

For testing hypotheses about treatment effects, we can use the analogy with the two-way
main-effects model. The decision rule for testing the null hypothesisH0 : {τ1 � τ2 �
· · · � τv}, that the treatments have the same effect on the response, against the alternative
hypothesisHA : {at least two of theτi differ} is

rejectH0 if msT/msE > Fv−1,bv−b−v+1,α (10.4.2)

for some chosen significance levelα, wheremsT andmsE are defined in Table 10.3.

Example 10.4.1 Resting metabolic rate experiment

In the 1993 issue ofAnnals of Nutrition and Metabolism, R. C. Bullough and C. L. Melby
describe an experiment that was run to compare the effects of inpatient and outpatient pro-

Table 10.3 Analysis of variance: randomized complete block design

Source of Degrees of Sum of Mean Ratio
Variation Freedom Squares Square

Block b − 1 ssθ msθ � ssθ
b−1 –

Treatment v − 1 ssT msT = ssT
v−1

msT
msE

Error bv − b − v + 1 ssE msE = ssE
bv−b−v+1

Total bv − 1 sstot

Formulae

ssθ �∑h y
2
h./v − y 2.. /(bv ) sstot �∑h

∑
i y

2
hi − y 2.. /(bv )

ssT �∑i y
2
.i /b − y 2.. /(bv ) ssE � sstot − ssθ − ssT
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Figure 10.2
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tocols on the in-laboratory measurement of resting metabolic rate (RMR) in humans. A
previous study had indicated measurements of resting metabolic rate on elderly individuals
to be 8% higher using an outpatient protocol than with an inpatient protocol. If the mea-
surements depend on the protocol, then comparison of the results of studies conducted by
different laboratories using different protocols would be difficult. The experimenters hoped
to show that the effects of protocol were negligible.

The experimental treatments consisted of three protocols: (1) an inpatient protocol in
which meals were controlled—the patient was fed the evening meal and spent the night in
the laboratory, then RMR was measured in the morning; (2) an outpatient protocol in which
meals were controlled—the patient was fed the same evening meal at the laboratory but
spent the night at home, then RMR was measured in the morning; and (3) an outpatient
protocol in which meals were not strictly controlled—the patient was instructed to fast for
12 hours prior to measurement of RMR in the morning. The three protocols formed the
v � 3 treatments in the experiment.

Since subjects tend to differ substantially from each other, error variability can be reduced
by using the subjects as blocks and measuring the effects of all treatments for every subject.
In this experiment, there were nine subjects (healthy, adult males of similar age), and they
formed theb � 9 levels of a blocking factor “subject.” Every subject was measured under
all three treatments, so the blocks were of sizek � 3 � v. RMR readings were taken over a
one-hour period shortly after the subject arrived in the laboratory. The data collected during
the second 30 minutes of testing are given in Table 10.4 and are plotted in Figure 10.2. The
figure clearly suggests large subject differences, but no consistent treatment differences.

The analysis of variance is shown in Table 10.5. The value ofmsθ is 37 times larger than
msE, indicating that blocking by subject has greatly reduced the error variance estimate. So
a block design was a good choice for this experiment.

The null hypothesis of no difference in the protocols cannot be rejected at any reasonable
selection ofα, sincemsT/msE � 0.23. The ratio tells us that the average variability of the
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Table 10.4 Data for the resting metabolic
rate experiment

Protocol
Subject 1 2 3

1 7131 6846 7095
2 8062 8573 8685
3 6921 7287 7132
4 7249 7554 7471
5 9551 8866 8840
6 7046 7681 6939
7 7715 7535 7831
8 9862 10087 9711
9 7812 7708 8179

Source: Bullough, R. C. and Melby, C. L.
(1993). Copyright © 1993 Karger, Basel.
Reprinted with permission.

measurements from one protocol to another was four times smaller than the measurement
error variability. This is unusual, since measurements from one protocol to another must
include measurement error. Thep-value is 0.7950, indicating that there is only a 20% chance
that we would see a value this small or smaller when there is no difference whatsoever in
the effects of the protocols. Thus, we should ask how well the model fits the data—perhaps
treatment–block interaction is missing from the model and has been included incorrectly
in the error variability. Even if this were the case, however, there is still no indication that
protocol 3 provides higher RMR readings than protocol 1—in fact, protocol 3 gave the
lowest readings for four of the nine subjects.

It is not possible to check the model assumptions of equal error variances for each cell
because of the small amount of data. But we can check the equal-variance assumptions for
the different levels of the treatment factor. We find that the variances of the unstandardized
residuals are very similar for the three protocols. The normality assumption seems to be
reasonable. The only possible outlier is the observation for protocol 1, subject 5, but its
removal does not change the above conclusions.

In their article, the experimenters discuss possible reasons for the fact that their con-
clusions differ from those of previous studies. Reasons included the different age of the
subjects (27–29 years rather than 64–67 years) and the fact that they provided transport to
the laboratory for the outpatients, whereas previous studies had not. ✷

Table 10.5 Analysis of variance for the resting metabolic rate experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Subject 8 23,117,462.30 2,889,682.79 – –
Protocol 2 35,948.74 17,974.37 0.23 0.7950
Error 16 1,235,483.26 77217.70
Total 26 24,388,894.30
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10.4.2 Multiple Comparisons

The block–treatment model (10.4.1) for the randomized complete block design is similar to
the two-way main-effects model (6.2.3) for an experiment with two treatment factors and
one observation per cell. Consequently, the least squares estimator for eachµ + θh + τi
(h � 1, . . . , b; i � 1, . . . , v) is similar to the estimator for eachµ + αi + βj (i �
1, . . . , a; j � 1, . . . , b) in (6.5.27), page 158, without the third subscript; that is,

µ̂+ θ̂h + τ̂i � Yh. + Y .i − Y .. . (10.4.3)

It follows that any contrast�ciτi (with �ci � 0) in the treatment effects is estimable in the
randomized complete block design and has least squares estimator

�ciτ̂i � �ciY .i .

The corresponding least squares estimate is�ciy.i , and the corresponding variance is
σ 2(�c2

i /b). As for the two-way main-effects model, all of the multiple comparison pro-
cedures of Chapter 4 are valid for treatment contrasts in the randomized complete block
design. The formulae, adapted from (6.5.40), page 164, are∑

ciτi ∈
(∑

ciy.i ± w

√
msE
∑

c2
i /b

)
, (10.4.4)

where the critical coefficients for the Bonferroni, Scheffé, Tukey, Hsu, and Dunnett methods
are, respectively,

wB � tbv−b−v+1,α/2m ; wS � √(v − 1)Fv−1,bv−b−v+1,α ;

wT � qv,bv−b−v+1,α/
√

2 ;

wH � wD1 � t
(0.5)
v−1,bv−b−v+1,α ; wD2 � |t |(0.5)

v−1,bv−b−v+1,α .

Example 10.4.2 Resting metabolic rate experiment, continued

In the resting metabolic rate experiment, described in Example 10.4.1, page 302, all three
pairwise comparisons in thev � 3 protocol effects were of interest prior to the experiment,
together with the contrast that compares the inpatient protocol with the two outpatient pro-
tocols. This latter contrast has coefficient list [1,− 1

2,− 1
2]. Suppose that the experimenters

had wished to calculate simultaneous 95% confidence intervals for these four contrasts.
From (10.4.4), the method of Scheffé uses critical coefficient

wS � √2F2,16,.05 �
√

2(3.63) � 2.694,

whereas the critical coefficient for them � 4 confidence intervals using the Bonferroni
method is

wB � t16,.05/(2m) � t16,.00625≈ 2.5 + (2.53 + 2.5)/(4(16))≈ 2.783,

for z.00625 � 2.5 (see equation (4.4.22), page 81). Hence, the Scheffé method gives tighter
intervals.
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For each pairwise comparisonτi − τp, we have
∑

c2
i � 2, so using the Scheffé method

of multiple comparisons andmsE= 77217.7 from Table 10.5, the interval becomes

τi − τp ∈
(
y.i − y.p ± 2.694

√
(77217.7)(2)/9

)
� (y.i − y.p ± 352.89

)
.

The treatment sample means are obtained from the data in Table 10.4 as

y.1 � 7927.7, y.2 � 8015.2, y.3 � 7987.0 ,

the biggest difference beingy.2 − y.1 � 87.5. Since all three intervals contain zero, we can
assert with 95% confidence that no two protocols differ.

Similarly, the Scheff́e confidence interval forτ1 − 1
2(τ2 + τ3) is

τ1 − 1

2
(τ2 + τ3) ∈

(
y.1 − 1

2
(y.2 + y.3)

)
± 2.694

√
(77217.7)(1.5)/9

� (−73.44± 305.62) ,

and again the interval contains zero. These results are expected in light of the failure in
Example 10.4.1 to reject equality of treatment effects in the analysis of variance. ✷

10.5 A Real Experiment—Cotton-Spinning Experiment

10.5.1 Design Details

The checklist for the cotton-spinning experiment was given in Section 2.3, page 14. After
considering several different possible designs, the experimenters settled on a randomized
complete block design. Each experimental unit was the production of one full set of bobbins
on a single machine with a single operator. A block consisted of a group of experimental
units with the same machine, the same operator, and observed in the same week. Thus,
the different levels of the blocking factor represented differences due to combinations of
machines, operators, environmental conditions, and raw material. The block size was chosen
to be six, as this was equal to the number of treatment combinations and also to the number
of observations that could be taken on one machine in one week.

The treatment combinations were combinations of levels of two treatment factors, “flyer”
and “degree of twist.” Flyer had two levels, “ordinary” and “special.” Twist had four levels,
1.63, 1.69, 1.78, and 1.90. For practical reasons, the combinations of flyer and twist equal
to (ordinary, 1.63) and (special, 1.90) were not observed. We will recode the six treatment
combinations that were observed as follows:

(ordinary, 1.69) � 1, (ordinary, 1.78) � 2, (ordinary, 1.90) � 3,
(special, 1.63) � 4, (special, 1.69) � 5, (special, 1.78) � 6.

The goal of the experiment was to investigate the effects of the flyers and degrees of twist
on the breakage rate of cotton.
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10.5.2 Sample-Size Calculation

Since the experimenters were interested in all pairwise comparisons of the effects of the
treatment combinations, as well as some other special treatment contrasts, we will apply
the Scheff́e method of multiple comparisons at overall confidence level 95%. The experi-
menters initially wanted a confidence interval to indicate a difference in a pair of treatment
combinations if the true difference in their effects was at least 2 breaks per 100 pounds
of material. We will calculate the number of blocks that are needed to obtain a minimum
significant difference of at most 2 for the Scheffé simultaneous confidence intervals for
pairwise comparisons. Using (10.4.4) withv � 6,α � 0.05, and�c2

i � 2, we need to find
b such that√

5F5,5b−5,0.05

√
msE (2/b) ≤ 2 .

The error variabilityσ 2 was expected to be about 7 breaks2, so we need to find the smallest
value ofb satisfying

F5,5b−5,0.05 ≤ 4 × b

5 × 7 × 2
� 2b

35
.

Trial and error shows thatb � 40 will suffice.
Each block took a week to complete, and it was not clear how many machines would be

available at any one time, so the experimenters decided that they would analyze the data
after the first 13 blocks had been observed. Withb � 13, v � 6, and a value ofσ 2 expected
to be about 7 breaks2, the Scheff́e 95% confidence intervals for pairwise comparisons have
minimum significant difference equal to

msd � √5F5,5(13−1),0.05

√
7 × (2/13) � 3.57.

A difference in treatment combinationsi andp will be indicated if their observed average
difference is more than 3.57 breaks per 100 pounds (with a probability of 0.95 of no false
indications) rather than 2 breaks per 100 pounds.

10.5.3 Analysis of the Cotton-Spinning Experiment

The data for the firstb � 13 blocks observed in the experiment were shown in Table 2.3
(page 17) and some of the data were plotted in Figure 2.1. There is an indication of block
differences over time. The low number of breaks tend to be in block 1, and the high number
of breaks in blocks 11, 12, and 13. This suggests that blocking was worthwhile. This is also
corroborated by the fact thatmsθ is nearly three times as large asmsE.

The error assumptions for the block–treatment model (10.4.1) are satisfied apart from
two outlying observations for treatment 1 (from blocks 5 and 10). The two outliers cause
the variances of the unstandardized residuals to be unequal. Also, the normality assumption
appears to be not quite satisfied. Since the experiment was run a long time ago, we are not
able to investigate possible causes of the outliers. The best we can do is to run the analysis
both with and without them. Here, we will continue the analysis including the outliers, and
in Exercise 3, we ask the reader to verify that the model assumptions are approximately
satisfied when the outliers are removed and that similar conclusions can be drawn.
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Table 10.6 Analysis of variance for the cotton-spinning experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Block 12 177.155 14.763 –
Treatment 5 231.034 46.207 9.05 0.0001
Error 60 306.446 5.107
Total 77 714.635

The analysis of variance table is shown in Table 10.6. Luckily, the error variance is
smaller than that expected, and consequently, the confidence intervals will not be as wide
as feared. The null hypothesis of equality of the treatment effects is rejected at significance
levelα � 0.01, since thep-value is less than 0.01 and, equivalently,

msT/msE � 9.05> F5,60,.01 � 3.34.

The treatment sample means are

i : 1 2 3 4 5 6
y .i : 10.8000 9.2769 7.1846 6.7538 7.0846 5.6538

With b � 13 blocks andmsE = 5.107, the minimum significant difference for a set of
Scheff́e’s simultaneous 95% confidence intervals is

msd �
√

5F5,60,0.05

√
msE �c2

i /13 �
√

5(2.37)
√

5.107�c2
i /13

� 2.158
√
�c2

i .

For pairwise comparisons we have�ic
2
i � 2, somsd � 3.052. Comparing this value with

differences in treatment sample means, we see that treatment 1 (ordinary flyer, 1.69 twist)
yields significantly more breaks on average than all other treatment combinations except 2
(ordinary flyer, 1.78 twist), and 2 is significantly worse on average than 6 (special flyer, 1.78
twist). This might lead one to suspect that the special flyer might be better than the ordinary
flyer.

In Figure 10.3, the treatment sample meansy.i are plotted against the uncoded twist levels,
with the type of flyer as the label. This plot reveals informative patterns in the treatment
means. In particular, it appears as if the mean number of breaks per 100 pounds decreases
almost linearly as the amount of twist increases, with the special flyer (coded 2) yielding
consistently smaller means for each amount of twist. Notice that the levels of twist are not
equally spaced, so we cannot use the contrast coefficients in Appendix A.2 to measure trends
in the breakage rate due to increasing twist. The linear trend is investigated in Section 10.9
using the SAS software.

The contrast12(τ1+τ2)− 1
2(τ5+τ6) compares the two flyers, averaging over the common

levels (1.69 and 1.78) of twist. The corresponding confidence interval (still using Scheffé’s
method at an overall 95% confidence level) is(

1

2
(y.1 + y.2) − 1

2
(y.5 + y.6) ± 2.158

√
�c2

i

)
≈ (3.670± 2.158)

� (1.512,5.828).
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Figure 10.3
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This confidence interval suggests that averaged over the middle two levels of twist, the
ordinary flyer 1 is worse than the special flyer, producing on average between about 1.5 and
5.8 more breaks per 100 pounds.

10.6 Analysis of General Complete Block Designs

10.6.1 Model and Analysis of Variance

In this section we discuss general complete block designs withs > 1 observations on each
treatment in each block. Having every level of the treatment factor observed more than
once per block gives sufficient degrees of freedom to be able to measure a block×treatment
interaction if one is anticipated. Therefore, there are two standard models for the general
complete block design, theblock–treatment model (without interaction)

Yhit � µ+ θh + τi + εhit (10.6.5)

and theblock–treatment interaction model, which includes the effect of block–treatment
interaction:

Yhit � µ+ θh + τi + (θτ )hi + εhit . (10.6.6)

In each case, the model includes the error assumptions

εhit ∼ N (0, σ 2) ,

εhit ’s are mutually independent,

t � 1, . . . , s ; h � 1, . . . , b ; i � 1, . . . , v.

The assumptions on these two models should be checked for any given experiment (see
Section 10.7).
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Table 10.7 Analysis of variance for the general complete block design with
negligible block×treatment interaction and block size k � vs

Source of Degrees of Sum of Mean
Variation Freedom Squares Square Ratio
Block b − 1 ssθ – –

Treatment v − 1 ssT msT � ssT
v−1

msT
msE

Error bvs − b − v + 1 ssE msE � ssE
bvs−b−v+1

Total bvs − 1 sstot

Formulae
ssθ �∑h y

2
h../vs − y 2.../(bvs) sstot �∑h

∑
i

∑
t y

2
hit − y 2.../(bvs)

ssT �∑i y
2
.i./bs − y 2.../(bvs) ssE � sstot − ssθ − ssT

Table 10.8 Analysis of variance for the general complete block design with
block×treatment interaction and block size k � vs

Source of Degrees of Sum of Mean
Variation Freedom Squares Square Ratio
Block b − 1 ssθ – –

Treatment v − 1 ssT msT � ssT
(v−1)

msT
msE

Interaction (b − 1)(v − 1) ssθT msθT � ssθT
(b−1)(v−1)

msθT
msE

Error bv (s − 1) ssE msE � ssE
bv (s−1)

Total bvs − 1 sstot

Formulae

ssθ �∑h y
2
h../(vs)− y 2.../(bvs) ssθT �∑h

∑
i y

2
hi./s −∑i y

2
.i./(bs)

ssT �∑i y
2
.i./(bs)− y 2.../(bvs) −∑h y

2
h../(vs)+ y 2.../(bvs)

ssE � sstot − ssθ − ssT − ssθT sstot �∑h

∑
i

∑
t y

2
hit − y 2.../(bvs)

The block–treatment model (10.6.5) for a general complete block design is similar to the
two-way main-effects model (6.2.3), and the block–treatment interaction model (10.6.6) is
like the two-way complete model (6.2.2) for two treatment factors in a completely random-
ized design, each withs observations per cell. Analogously, the analysis of variance tables
(Tables 10.7 and 10.8) for the block–treatment models, with and without interaction, look
similar to those for the two-way main-effects and two-way complete models (see Tables 6.7
and 6.4, pages 167 and 156).

The decision rule for testing the null hypothesisHT
0 : {τ1 � τ2 � · · · � τv} that the

treatment effects are equal against the alternative hypothesisHT
A that at least two of the

treatment effects differ is given by the decision rule

rejectH0 if msT/msE > Fv−1,df,α , (10.6.7)

whereα is the chosen significance level, and wheremsT, msE, and the error degrees of
freedom,df , are obtained from Table 10.7 or 10.8 as appropriate.
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Table 10.9 Resistances for the light bulb experiment. Low resistance implies high
illumination. (Order of observations is shown in parentheses.)

Treatments
Block 1 2 3 4 5 6
I 314 (12) 285 (3) 350 (6) 523 (2) 460 (1) 482 (7)

(60 watt) 300 (13) 296 (9) 339 (8) 497 (4) 470 (5) 498 (11)
310 (15) 301 (10) 360 (14) 520 (18) 488 (17) 505 (19)
290 (22) 292 (24) 333 (16) 510 (20) 468 (21) 490 (23)

II 214 (28) 196 (27) 235 (42) 303 (26) 341 (32) 342 (25)
(100 watt) 205 (31) 201 (29) 247 (44) 319 (30) 350 (38) 347 (33)

197 (35) 197 (39) 233 (46) 305 (34) 323 (41) 352 (37)
204 (47) 215 (40) 244 (48) 316 (36) 343 (45) 323 (43)

If the block×treatment interaction term has been included in the model, a test of the
hypothesisHθT

0 : {(θτ )hi − (θτ )h. − (θτ ).i + (θτ ).. � 0 for all h, i} against the alternative
hypothesisHθT

A that at least one interaction contrast is nonzero is given by

rejectH0 if msθT /msE > F(b−1)(v−1),bv(s−1),α (10.6.8)

for some chosen significance levelα, wheremsθT andmsE are obtained from Table 10.8. As
usual, if the interaction is significantly different from zero, a test of equality of the treatment
effects may not be of interest. An evaluation of the usefulness of blocking in the experiment
at hand can be made by comparingmsθ with msE as in Section 10.4.1.

Example 10.6.1 Light bulb experiment, continued

The light bulb experiment, which was run in order to compare the light intensities of different
brands of light bulbs, was described in Example 10.3.4, page 300. Three brands were selected
and each was examined at 50% and 100% capacity. Thev � 6 treatments were coded as
(100%, Brand 1) � 1, (100%, Brand 2) � 2, (100%, Brand 3) � 3,
(50%, Brand 1) � 4, (50%, Brand 2) � 5, (50%, Brand 3) � 6.

The experiment was run as a general complete block design withb � 2 blocks defined by
combinations of days and wattages (60 watts and 100 watts). There weres � 4 observations
per treatment per block. The data are given in Table 10.9 and are plotted in Figure 10.4.
The figure suggests that there might be a small interaction between block (wattage) and
treatment combination.

The analysis of variance table is shown in Table 10.10, and we see thatmsθT � 3500.69
andmsE � 100.69. Using (10.6.8),HθT

0 , the hypothesis of negligible interaction, is rejected
if msθT /msE � 34.77 is larger thanF5,36,α for some chosen significance levelα. For
α � 0.01, F5,36,.01 � 3.59, so we rejectHθT

0 and conclude that the block×treatment
interaction that appears in Figure 10.4 is significantly greater than zero. Notice that the
p-value is at most 0.0001, so any choice ofα greater than this would also lead to rejection
of HθT

0 .
The purpose of the experiment was to determine the best brand (in terms of illumination).

Consequently, even if there had not been a block×treatment interaction, a global test of
equality of treatment effects is unlikely to be of interest. The experimenters were more
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Figure 10.4
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Table 10.10 Analysis of variance for the light bulb experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Block (watts) 1 203971.688 203971.688 – –
Treatment 5 267645.438 53529.088 531.64 0.0001
Block× Treatment 5 17503.438 3500.688 34.77 0.0001
Error 36 3624.750 100.688
Total 47 492745.313

interested in comparing brands averaged over capacities and comparing brands for each
capacity separately. Since there is a block×treatment interaction, the experimenters decided
to make these comparisons within each block separately. The response variable is resistance,
and low resistance coincides with high illumination. Consequently, Figure 10.4 suggests that
treatments 1 and 2 are better than treatment 3 at 100% capacity. These treatments correspond
to brands 1 and 2, which are the more expensive brands. The position is less clear for 50%
capacity. These contrasts will be examined in detail in Example 10.6.2.

We note that there is, as expected, a large difference in blocks. Not only is there a
block×treatment interaction, but also the mean square for blocks (averaged over treatments)
is 2000 times the size of the mean square for error. ✷

10.6.2 Multiple Comparisons for the General Complete Block
Design

No interaction term in the model The Bonferroni, Scheffé, Tukey, Hsu, and Dunnett
methods described in Section 4.4 can all be used for obtaining simultaneous confidence
intervals for sets of treatment contrasts in a general complete block design. Since the
block–treatment model (10.6.5), without interaction, is similar to the two-way main-effects
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model (6.2.3) withs observations per cell, formulae for multiple comparisons are similar to
those given in (6.5.40), page 164, witha replaced byv andr replaced bys. Thus, a set of
100(1− α)% simultaneous confidence intervals for treatment contrast�ciτi is of the form∑

ciτi ∈
(∑

ciy.i. ± w

√
msE
∑

c2
i /bs

)
, (10.6.9)

where the critical coefficients for the five methods are, respectively,

wB � tn−b−v+1,α/2m ; wS � √(v − 1)Fv−1,n−b−v+1,α ;

wT � qv,n−v−b+1,α/
√

2

wH � wD1 � t
(0.5)
v−1,n−b−v+1,α ; wD2 � |t |(0.5)

v−1,n−b−v+1,α ,

wheren � bvs.

Interaction term included in the model The block–treatment interaction model
(10.6.6) for the general complete block design is similar to the two-way complete
model (6.2.2), page 139, for two treatment factors withs observations per cell. Conse-
quently, formulae for confidence intervals for treatment comparisons, averaging over the
block×treatment interaction, are similar to those given in (6.4.19), page 149, witha replaced
by v andr replaced bys.

The Bonferroni, Scheffé, Tukey, Hsu, and Dunnett methods can be used for comparing
the treatments averaged over the block×treatment interaction. The general formula for a set
of 100(1−α)% simultaneous confidence intervals for treatment contrasts is given by (10.6.9)
above, where the error degrees of freedom in each of the critical coefficients isn−bv instead
of n− b − v + 1.

Treatment comparisons may not be of interest if treatments do interact with blocks.
Instead, within-block comparisons are likely to be preferred. These are similar to the simple
contrasts of Section 6.3.1 and are most easily calculated via a cell-means representation of
the model. If we write

ηhi � θh + τi + (θτ )hi ,

then the comparison of treatmentsi andp in blockh is the contrast

ηhi − ηhp � (θh + τi + (θτ )hi) − (θh + τp + (θτ )hp) .

The following example illustrates the estimation of contrasts of this form.

Example 10.6.2 Light bulb experiment, continued

The data and analysis of variance for the light bulb experiment were given in Example 10.6.1,
page 311. Due to the block×treatment interaction, the experimenters decided that they
wanted to examine the following treatment comparisons, each of which involved within-
block comparisons:

(i) pairwise differences between brands averaged over capacities for each block (wattage)
separately, and
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(ii) differences between brands for each capacity and each block separately.

In terms of the parameters in the block–treatment interaction model (10.6.6), the contrast
that compares brand 1 with brand 2 averaged over capacities in block 1 is a comparison of
treatments 1 and 4 with 2 and 5; that is,

1
2[(τ1 + (θτ )11) + (τ4 + (θτ )14)] − 1

2[(τ2 + (θτ )12) + (τ5 + (θτ )15)] .

If we rewrite the model as a cell-means model, we have

Yhit � ηhi + εhit ,

whereηhi � θh + τi + (θτ )hi represents the effect on the response of treatmenti in block
h. The above contrast can then be expressed as

1
2(η11 + η14) − 1

2(η12 + η15) .

The least squares estimate for a parameterηhi of a cell-means model is the cell averageyhi.,
so the least squares estimate of the contrast that compares brand 1 with brand 2 in block 1 is

1

2
(y11. + y14.) − 1

2
(y12. + y15.) � 1

2
(303.5 + 512.5) − 1

2
(293.5 + 471.5) � 25.5 .

The corresponding estimated variance is (4/16)msE � 25.172. The least squares estimates
for the other contrasts, comparing brandsi andj in either block, can be calculated in a
similar way.

The second type of contrast of interest is a comparison of brands for each capacity
separately in each block. For example,

η25 − η26

compares brands 2 and 3 at 50% capacity in block 2. The least squares estimate is

y25. − y26. � 339.25− 341.00 � −1.75,

with corresponding estimated variance of (2/4) msE � 50.344. Suppose we use Scheffé’s
multiple comparison procedure to calculate a set of 95% simultaneous confidence intervals
for the 6 contrasts of the first type and for the 12 contrasts of the second type. The minimum
significant difference for the first six contrasts is

msd � √11F11,36,.05

√
(4/16) msE � 23.92,

and the minimum significant difference for the other twelve contrasts is

msd � √11F11,36,.05

√
(2/4) msE � 33.86.

We find that averaged over capacities, in block 1 (60 watt bulbs, day 1), brands 1 and 2
were significantly different from each other, as were brands 2 and 3. Brand 2 had the lower
resistance (higher illumination). In block 2 (100 watt bulbs, day 2), however, only brands 1
and 3 were significantly different, with brand 1 being better. This suggests that on average
the cheaper brand (brand 3) was not as good as the more expensive brands.

Now, if we assume that most bulbs are used at 100% capacity and not on a dimmer
switch, we find that brands 1 and 2 were each better than brand 3 in both blocks, but not
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significantly different from each other. At 50% capacity, the only difference that we find is a
difference between brands 1 and 2 in block 1, with brand 2 being superior. Putting together
all this information might lead one to select brand 2 for most illumination purposes, unless
cost was an important factor. ✷

10.6.3 Sample-Size Calculations

A complete block design hasn � bvs experimental units divided intob blocks of size
k � vs. The block sizek and the number of blocksb must be chosen to accommodate
the experimental conditions, the budget constraints, and the requirements on the lengths
of confidence intervals or powers of hypothesis tests in the usual way. An example of the
calculation ofb to achieve confidence intervals of given length was given for the randomized
complete block design in Section 10.5.2. In Example 10.6.3, we calculate, for a general
complete block design, the block size required to achieve a given power of a hypothesis test.

Computing the number of observationss per treatment per block needed to achieve a
prescribed power of a test of no treatment differences is analogous to the sample-size calcu-
lation for testing main effects of a factor in a two-way layout; that is, from equation (6.6.49),
page 168,s must satisfy

s ≥ 2vσ 2φ2

b)2
, (10.6.10)

where) is the minimum difference between the treatment effects that is to be detected. The
tables for powerπ ()) as a function ofφ are in Appendix Table A.7. In (10.6.10), we can
solve for eithers or b, depending upon whether the block size or the number of blocks can
be large.

Example 10.6.3 Colorfastness experiment

The colorfastness experiment was planned by D-Y Duan, H. Rhee, and C. Song in 1990
to investigate the linear and quadratic effects of the number of washes on the color change
of a denim fabric. The experiment was to be carried out according to the guidelines of the
American Association of Textile Chemists and Colorists Test 61-1980.

The experimenters anticipated that there would be systematic differences in the way they
made their color determinations, and consequently, they grouped the denim fabric swatches
into blocks according to which experimenter was to make the determination. Thus the levels
of the blocking factor denoted the experimenter, and there wereb � 3 blocks. They decided
to use a general complete block design and allowed the block size to bek � vs � 5s, where
s could be chosen. Rightly or wrongly, they did not believe that experimenter fatigue would
have a large effect on the results, and they were happy for the block sizes to be large.

They planned to use a block–treatment interaction model (10.6.6), and they wanted to test
the null hypothesis of no treatment differences whether or not there was block×treatment
interaction. The test was to be carried out at significance level 0.01, and they wanted to
reject the null hypothesis with probability 0.95 if there was a true difference of) � 0.5 or
more in the effect of the number of washes on color rating. They expectedσ to be no larger
than about 0.4.
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We need to find the minimum value ofs that satisfies equation (10.6.10); that is,

s ≥ 2vσ 2φ2

b)2
� (2)(5)(0.4)2φ2

(3)(0.5)2
� 2.13φ2 .

The denominator (error) degrees of freedom for the block–treatment interaction model is
ν2 � bv(s−1) � 15(s−1). First we locate that portion of Appendix Table A.7 corresponding
to numerator degrees of freedomν1 � v − 1 � 4 andα � 0.01. Then to achieve power
π � 0.95, trial and error starting withs � 100 gives

s 15(s − 1) φ s � 2.13φ2 Action
100 1485 2.33 11.56 Round up to s � 12
12 165 2.37 11.96 Round up to s � 12

So abouts � 12 observations per treatment per block should be taken. ✷

10.7 Checking Model Assumptions

The assumptions on the block–treatment models (10.4.1) and (10.6.5) and on the block–
treatment interaction model (10.6.6) for complete block designs need to be checked as usual.
The assumptions on the error variables are that they have equal variances, are independent,
and have a normal distribution. The form of the model must also be checked.

A visual check of an assumption of no block×treatment interaction can be made by
plottingyhit against the treatment factor levelsi for each blockh in turn. If the lines plotted
for each block are parallel (as in plots (a)–(d) of Figure 6.1, page 137), then block×treatment
interaction is likely to be absent, and error variability is small. If the lines are not parallel,
then either block×treatment interaction is present or error variability is large.

For the block–treatment model (10.4.1) for the randomized complete block design, the
(hi)th residual is

êhi � yhi − ŷhi � yhi − yh. − y.i + y.. .

For the block–treatment model (10.6.5) for the general complete block design, the (hit)th
residual is similar; that is,

êhit � yhit − ŷhit � yhit − yh.. − y.i. + y... .

Table 10.11 Checking error assumptions for a complete block design

To check for: Plot residuals against:
Independence Order of observations (in space or time)

Equal variance and outliers Predicted values ŷhit , levels of treatment
factor, levels of block factor

Normality Normal scores (also plot separately for each
treatment if r is large and for each block if k
is large)
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For the block–treatment interaction model (10.6.6), the (hit)th residual is

êhit � yhit − ŷhit � yhit − yhi. .

The error assumptions are checked by residual plots, as summarized in Table 10.11 and
described in Chapter 5.

10.8 Factorial Experiments

When the treatments are factorial in nature, the treatment parameterτi in the complete block
design models (10.4.1), (10.6.5), and (10.6.6) can be replaced by main-effect and interaction
parameters. Suppose, for example, we have an experiment with two treatment factors that is
designed as a randomized complete block design—a situation similar to that of the cotton-
spinning experiment of Section 10.5. In order not to confuse the numberb of blocks with
the number of levels of a treatment factor, we will label the two treatment factors asC and
D with c andd levels respectively. If instead of recoding the treatment combinations as
1,2, . . . , v we retain the two digit codes, then the block–treatment model is

Yhijt � µ+ θh + τij + εhij t

with the usual assumptions on the error variables. We can then expressτij , the effect of
treatment combinationij , in terms ofγi (the effect ofC at leveli), δj (the effect ofD at
level j ), and, unless negligible, (γ δ)ij (the effect of their interaction whenC is at leveli
andD at levelj ); that is,

Yhijt � µ+ θh + γi + δj + (γ δ)ij + εhij t , (10.8.11)

εhij t ∼ N (0, σ 2) ,

εhij t ’s are mutually independent,

t � 1, . . . , s ; h � 1, . . . , b ; i � 1, . . . , c ; j � 1, . . . , d.

In a general complete block design withs > 1 observations per treatment combination per
block, we may include in the model some or all of the block×treatment interactions. For
example, with two treatment factors, the block–treatment interaction model can be expressed
as

Yhijt � µ+ θh + γi + δj + (γ δ)ij + (θγ )hi

+ (θδ)hj + (θγ δ)hij + εhij t ,
(10.8.12)

εhij t ∼ N (0, σ 2) ,

εhij t ’s are mutually independent,

t � 1, . . . , s ; h � 1, . . . , b ; i � 1, . . . , c ; j � 1, . . . , d.

If there are more than two factors, the additional main effects and interactions can be added
to the model in the obvious way.
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Example 10.8.1 Banana experiment

The objectives section of the report of an experiment run in 1995 by K. Collins, D. Marriott,
P. Kobrin, G. Kennedy, and S. Kini reads as follows:

Recently a banana hanging device has been introduced in stores with the purpose
of providing a place where bananas can be stored in order to slow the ripening
process, thereby allowing a longer time over which the consumer has to ingest them.
Commercially, bananas are picked from trees while they are fully developed but quite
green and are artificially ripened under controlled conditions (hanging up) prior to
transport (usually in boxes) to grocery stores. Once they are purchased and brought
into the consumer’s home, they are typically placed on a counter top and left there
until they are either eaten or turn black, after which they can be thrown away or
made into banana bread. Considering that the devices currently being marketed to
hang bananas cost some money and take up counter space, it is of interest to us to
determine whether or not they retard the ripening process.
While there exist many ways to measure the degree of banana ripening, perhaps
the simplest method is via visual inspection. The banana undergoes a predictable
transition from the unripened green color to yellow then to yellow speckled with
black and finally to fully black. The percentage of black color can be quantified
through computer analysis of photographs of the skins of the bananas. Other methods
to detect differences in the degree of banana ripening would require specialized
instrumentation and techniques that are not available to us.
The major objective of our experiment, then, is to determine whether or not any
differences in the percent of black skin exist between bananas that are treated con-
ventionally, i.e., placed on a counter, and bananas that are hung up. As a minor
objective, we would like to determine whether or not any difference exists in the
percentage of black skin between bananas allowed to ripen in a normal day/night
cycle versus those ripening in the dark such as might occur if placed in a pantry.

The unripened bananas were bought as a single batch from a single store. They were
assigned at random to four treatment combinations, consisting of combinations of levels of
two factors at two levels each. FactorC was Lighting conditions (1= day/night cycle, 2 =
dark closet). FactorD was Storage method (1 = hanging, 2 = counter-top). There were 12
bananas assigned to each treatment combination. After five days, the bananas were peeled
and photographed. The images from the photographic slides were traced by hand, and the
percentage of blackened skin was calculated using an image analyzer on a computer. Three of
the experimenters prepared the images for the image analyzer and, since they were unskilled,
they decided to regard themselves as blocks in order to remove experimenter differences
from the comparisons of the treatment combinations. They selected a general complete
block design and assigned the treated bananas in such a way thats � 4 observations on each
treatment combination were obtained by each experimenter. The treatment combinations
were observed in a random order, and the resulting data are shown in Table 10.12.

Since the experimenters did not anticipate a block×treatment interaction, they selected
block–treatment model (10.8.11) to represent the data. The decision rule for testing the
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Table 10.12 Percentage blackened banana skin

Experimenter Light Storage Percentage of
(Block) C D blackened skin (yhijt )

I 1 1 30 30 17 43
1 2 43 35 36 64
2 1 37 38 23 53
2 2 22 35 30 38

II 1 1 49 60 41 61
1 2 57 46 31 34
2 1 20 63 64 34
2 2 40 47 62 42

III 1 1 21 45 38 39
1 2 42 13 21 26
2 1 41 74 24 51
2 2 38 22 31 55

Table 10.13 Analysis of variance for the banana experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Block (Experimenter) 2 1255.79 627.89 –
C (Light) 1 80.08 80.08 0.42 0.5218
D (Storage) 1 154.08 154.08 0.80 0.3754
CD 1 24.08 24.08 0.13 0.7250
Error 42 8061.88 191.95
Total 47 9575.92

hypothesisHCD
0 of no interaction between the treatment factors Light and Storage, using a

Type I error probability ofα � 0.01, is

rejectHCD
0 if

ms(CD)

msE
> F(c−1)(d−1),df,0.01 ,

wherems(CD) � ss(CD)/(c− 1)(d − 1) anddf is the number of error degrees of freedom
calculated below. Since there are equal numbers of observations per cell, we use rule 4 of
Chapter 7, page 202; so

ss(CD) � bs
∑
i

∑
j

y2
.ij. − bds

∑
i

y2
.i.. − bcs

∑
j

y2
..j. + bcds y2

.... � 24.0833.

Similarly,

ssC � bds
∑
j

y2
..j. − bcds y2

.... � 80.08,

ssD � bcs
∑
i

y2
.i.. − bcds y2

.... � 154.08,

ssθ � cds
∑
h

y2
h... − bcds y2

.... � 1255.79,
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sstot � 9575.92.

So,

ssE � sstot − ssθ − ssC − ssD − ss(CD) � 8061.88,

and

df � (bcds − 1) − (b − 1) − (c − 1) − (d − 1) − (c − 1)(d − 1)

� 47− 2 − 1 − 1 − 1 � 42.

These values are shown in the analysis of variance table, Table 10.13. We can see that the
mean square for blocks is much larger than the error mean square, so it was worthwhile
designing this experiment as a block design. We also see that the mean square for the
Light×Storage interaction is a lot smaller than the error mean square. As mentioned in
the context of the resting metabolic rate experiment (Example 10.4.1, page 302), this is
unusual when the model fits well, since the Light and Storage measurements include the
error measurement. It suggests that the error mean square may have been inflated by some
other source of variability, such as block×treatment interaction, that has been omitted from
the model.

An interaction plot of the two factors Light and Storage (averaged over blocks and the
Light×Storage interaction) is shown in Figure 10.5. There is no indication that hanging
bananas (Storage level 1) might retard the ripening process. In fact, Storage level 1 seems to
have given a higher percentage of blackened skin on average than Storage level 2. However,
this apparent difference may be due to chance, as the treatment effects are not significantly
different from each other. The experimenters commented that it was difficult to select the
correct threshold levels for the image analysis and also that the bananas themselves seemed
extremely variable. The experimenters felt that rather than draw firm conclusions at this
stage, it might be worthwhile working to improve the experimental procedure to reduce
variability and then to repeat the experiment. ✷

10.9 Using SAS Software

The analysis of variance table for a complete block design can be obtained from any computer
package that has an analysis of variance routine or a regression routine. It is good practice

Figure 10.5
Interaction plot for the

banana experiment
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Table 10.14 A SAS program for analysis of the cotton-spinning experiment

DATA COTTON;
INPUT BLOCK TRTMT FLYER TWIST BREAK;
LINES;
1 12 1 1.69 6.0
2 12 1 1.69 9.7
: : : : :

13 23 2 1.78 6.4
;
PROC PRINT;
;
* block--treatment model for a complete block design;
PROC GLM;
CLASS BLOCK TRTMT;
MODEL BREAK = BLOCK TRTMT;

;
* Factorial main effects model plus blocks;
DATA; SET COTTON;
PROC GLM;
CLASS BLOCK FLYER TWIST;
MODEL BREAK = BLOCK FLYER TWIST ;

;
* Model with twist as a linear regressor variable;
DATA; SET COTTON;
PROC GLM;
CLASS BLOCK FLYER;
MODEL BREAK = BLOCK FLYER TWIST / SOLUTION;
ESTIMATE ’FLYER 1-2’ FLYER 1 -1;

to enter the block term in the model before the terms for the treatment factors. Although the
order does not matter for complete block designs, it does matter for the incomplete block
designs in the next chapter.

Computer programs do not distinguish between block and treatment factors, so a test
for the hypothesis of no block effects will generally be listed. We suggest that the latter be
ignored, and that blocking be considered to have been effective ifmsθ exceedsmsE (see
Section 10.4.1).

The input statements of a computer program for analyzing a complete block design are
similar to those described in Section 6.8 for a two-way model. The statements are illustrated
in Table 10.14. The first call ofPROC GLM shows a standard block–treatment model for
the cotton-spinning experiment, (Section 2.3, page 14). If the block×treatment interaction
term had been included in the model, this would have been entered in the usual way as
BLOCK*TRTMT. Part of the corresponding output is shown in Table 10.15. TheTYPE I and
TYPE III sums of squares are equal, since there is one observation per block–treatment
combination.
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Table 10.15 SAS output for the block–treatment model; cotton-spinning experiment

The SAS System
General Linear Models Procedure

Dependent Variable: BREAK
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 17 408.18923 24.01113 4.70 0.0001
Error 60 306.44615 5.10744
Corrected Total 77 714.63538

Source DF Type III SS Mean Square F Value Pr > F
BLOCK 12 177.15538 14.76295 2.89 0.0033
TRTMT 5 231.03385 46.20677 9.05 0.0001

The second call ofPROC GLM in Table 10.14 replaces the treatment parameterTRTMT
with main-effect parameters forFLYER andTWIST. TheTYPE III sums of squares are used
for hypothesis testing, andESTIMATE statements must now be used for confidence intervals,
since not every combination ofFLYER andTWIST was observed. (See Table 10.16.)

The plot of mean response against twist, with flyer type for labels, in Figure 10.3,
page 309, suggested the possibility that the number of breaks per 100 pounds could be
well modeled by a flyer effect and a linear twist effect. This can be evaluated by comparing
the fit of the block–treatment model,

Yhi � µ+ θh + τi + εhi

(i � 12,13,14,21,22,23; h � 1, . . . ,13), with the fit of the reduced model,

Yhjx � µ+ θh + αj + γ x + εhjx ,

whereαj is the effect of flyerj (j � 1,2) andx is theuncoded amount of twist. This
can be done easily in the SAS software using two calls of theGLM procedure, one for each
model. The first call ofPROC GLM in Table 10.14 fitted the full block–treatment model, and
the third call ofPROC GLM fits the reduced model that includes the flyer effect and a linear
regression in the levels of twist. Notice the similarity of the third call with the factorial
main-effects model in the second call. The difference is that whenTWIST is to be regarded
as a linear regressor, it is omitted from theCLASS statement. The reduced model fits parallel
linear regression lines, with intercepts adjusted for Block and Flyer effects. Again theTYPE
I andTYPE III sums of squares are unequal, indicating thatFLYER andTWIST cannot be
estimated independently. (See Table 10.17.)

In the third call ofPROC GLM, theSOLUTION option requests printing of the solution to
the normal equations. TheNOTE at the bottom of the SAS output regarding biased estimates
means that the individual flyer effect parameters are not estimable, and the numbers given
are nonunique solutions to the normal equations. The contrast representing the difference
in the effects of the two flyersis estimable, and we can obtain its unique least squares
estimate by taking the difference in the two values given for the individual flyers. This gives
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Table 10.16 SAS output for the factorial main-effects model; cotton-spinning experiment

The SAS System
General Linear Models Procedure

Source DF Type I SS Mean Square F Value Pr > F
BLOCK 12 177.15538 14.76295 2.94 0.0028
FLYER 1 130.78205 130.78205 26.03 0.0001
TWIST 3 100.22410 33.40803 6.65 0.0006

Source DF Type III SS Mean Square F Value Pr > F
BLOCK 12 177.15538 14.76295 2.94 0.0028
FLYER 1 175.02231 175.02231 34.84 0.0001
TWIST 3 100.22410 33.40803 6.65 0.0006

3.8587, which matches the value obtained from theESTIMATE statement. The difference
in the effects of the two flyers is declared to be significantly different from zero, since
the correspondingp-value is at most 0.0001. The slope coefficient ofTWIST is estimated
to be−14.1003, which, being negative, suggests that the breakages decrease as the twist
increases. This slope is declared to be significantly different from zero, since the test of
H0 : γ � 0 versusHA : γ 	� 0 hasp-value at most 0.0001.

The difference in the error sum of squares for the full and reduced models divided by
the difference in the error degrees of freedom is the mean square for lack of fit,msLF (cf.
Chapter 8). It provides the numerator of the test statistic for testing the null hypothesis
HR

0 : {the reduced model is adequate} against the alternative hypothesis that the reduced
model is not adequate. The decision rule is

rejectHR
0 if msLF/msE > F3,60,α,

where

msLF � [ssE(reduced)− ssE(full)] / [df (reduced)− df (full)] .

For the cotton-spinning experiment,

msLF � (319.854− 306.446)/(63− 60) � 4.469.

SincemsLF/msE � 4.469/5.10744� 0.88< 1, we cannot rejectHR
0 for any reasonable

significance levelα. Hence, the reduced model provides an adequate fit to the data, making
interpretation of the parameters in the reduced model meaningful.

We note that this has been an exercise in model-building, and we can use the model to
predict the breakage rates with either flyer over a range of values of twist. However, the
model may not fit well for flyer 2 below a twist of 1.69 (see Figure 10.3).
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Table 10.17 SAS program output for the reduced model for the cotton-spinning experiment

The SAS System
General Linear Models Procedure

Dependent Variable: Y
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 14 394.78103 28.19864 5.55 0.0001
Error 63 319.85436 5.07705
Corrected Total 77 714.63538

Source DF Type I SS Mean Square F Value Pr > F
BLOCK 12 177.15538 14.76295 2.91 0.0029
FLYER 1 130.78205 130.78205 25.76 0.0001
TWIST 1 86.84359 86.84359 17.11 0.0001

Source DF Type III SS Mean Square F Value Pr > F
BLOCK 12 177.15538 14.76295 2.91 0.0029
FLYER 1 213.24566 213.24566 42.00 0.0001
TWIST 1 86.84359 86.84359 17.11 0.0001

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
FLYER 1-2 3.85876832 6.48 0.0001 0.59540773

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
FLYER 1 3.85876832 B 6.48 0.0001 0.59540773

2 0.00000000 B . . .
TWIST -14.10027473 -4.14 0.0001 3.40929472

(Information has been deleted for intercept and blocks)

NOTE: The X’X matrix has been found to be singular and a generalized
inverse was used to solve the normal equations. Estimates
followed by the letter ‘B’ are biased, and are not unique
estimators of the parameters.

Exercises

1. Randomization
Conduct the randomization for a randomized complete block design with 3 treatments
observed once in each of 5 blocks.

2. Randomization
Conduct the randomization for a general complete block design for 3 treatments each
observed twice in each of 4 blocks.
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Table 10.18 Respiratory exchange ratio data

Protocol
Subject 1 2 3

1 0.79 0.80 0.83
2 0.84 0.84 0.81
3 0.84 0.93 0.88
4 0.83 0.85 0.79
5 0.84 0.78 0.88
6 0.83 0.75 0.86
7 0.77 0.76 0.71
8 0.83 0.85 0.78
9 0.81 0.77 0.72

Source: Bullough, R. C. and Melby, C. L.
(1993). Copyright © 1993 Karger, Basel.
Reprinted with permission.

3. Cotton-spinning experiment
In the cotton-spinning experiment of Section 10.5, page 306, the two observations on
treatment 1 (ordinary flier, 1.63 twist) arising from blocks 5 and 10 appear to be outliers.

(a) Repeat the analysis of Sections 10.5 and 10.9 without these two observations.

(b) Are the assumptions on the block–treatment model (10.4.1) approximately
satisfied?

(c) Draw conclusions about the fliers and degrees of twist from your analysis. Do any
of your conclusions contradict those drawn when the outliers were included?

(d) Which analysis do you prefer and why?

4. Respiratory exchange ratio experiment
In the resting metabolic rate experiment introduced in Example 10.4.1, the experi-
menters also measured respiratory exchange ratio, which is another measure of energy
expenditure. The data for the second 30 minutes of testing are given in Table 10.18.

(a) Evaluate the assumptions of the block–treatment model (10.4.1) for these data.

(b) Construct an analysis of variance table and test for equality of the effects of the
protocols on respiratory exchange ratio.

(c) Evaluate the usefulness of blocking.

(d) Use the Scheffé method of multiple comparisons to construct simultaneous 99%
confidence intervals for all pairwise comparisons of the protocols as well as the
inpatient versus outpatient protocols corresponding to the contrast coefficient list
[ 1,− 1

2,− 1
2 ].

5. Gasoline pilot experiment (J. Stout and T. Houle, 1995)
The experimenters were interested in determining whether the use of a higher-octane
gasoline would increase the miles per gallon (mpg) achieved by an automobile. Due to
the complexity of running such an experiment, they decided to run a pilot experiment



326 Exercises

Table 10.19 Data (mpg) for the gasoline pilot experiment (order
of observation within block is shown in
parentheses)

Car/Driver Octane
(Block) 87 89 93

1 33.48 (2) 34.20 (3) 35.30 (1)
2 33.23 (2) 33.79 (3) 36.10 (1)
3 32.95 (3) 31.25 (1) 32.70 (2)

in order to determine the difficulties, decide on a model, and calculate the number of
observations that they should take in the main experiment.

(a) Write out a checklist for such an experiment. Be careful to think about all sources
of variation and how to control for them. In particular, be concerned about how to
measure miles per gallon and whether it is possible to avoid mixing octane levels
in the tank of a car.

(b) The experimenters selected a randomized complete block design for the pilot ex-
periment, where each block was defined by a particular car with a particular driver.
Three levels of octane (87, 89, 93) were selected from the same brand of gas.
The driving was done mostly while commuting to and from work on the highway.
The pilot experiment data are shown in Table 10.19. Using the block–treatment
model (10.4.1), page 301, for a randomized complete block design, analyze the
data.

(c) Investigate the error assumptions on the block–treatment model (10.4.1) for these
data. Would you recommend that this model be used for the main experiment?

(d) Assuming that you could run a similar experiment, how many observations would
you take on each octane level for each car/driver in order that simultaneous confi-
dence intervals for pairwise differences in the mpg achieved by the different octane
levels would be of width at most 2 mpg?

6. Candle experiment
An experiment to determine whether different colored candles (red, white, blue, yellow)
burn at different speeds was conducted by Hsing-Chuan Tsai, Mei-Chiao Yang, Derek
Wheeler, and Tom Schultz in 1989. Each experimenter collected four observations on
each color in a random order, and “experimenter” was used as a blocking factor. Thus,
the design was a general complete block design withv � 4, k � 16,b � 4, ands � 4.
The resulting burning times (in seconds) are shown in Table 10.20. A pilot experiment
indicated that treatments and blocks do interact. The candles used in the experiment
were cake candles made by a single manufacturer.

(a) Explain what block×treatment interaction means in the context of this experiment.
Can you think of any causes that might have led to the presence of interaction in
the pilot experiment?

(b) Plot the data (Table 10.20) from the main experiment and interpret your plot(s).
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Table 10.20 Data for the candle experiment (in seconds)

Color
Block Red White Blue Yellow
Tom 989 1032 1044 979 1011 951 974 998

1077 1019 987 1031 928 1022 1033 1041
Derek 899 912 847 880 899 800 886 859

911 943 879 830 820 812 901 907
Tsai 898 840 840 952 909 790 950 992

955 1005 961 915 871 905 920 890
Yang 993 957 987 960 864 925 949 973

1005 982 920 1001 824 790 978 938

(c) Complete an analysis of variance table for the data using the block–treatment
interaction model (10.6.6) for a general complete block design.

(d) Test the null hypotheses of negligible block×treatment interaction and, if
appropriate, test the null hypothesis of equality of treatment effects.

(e) Use an appropriate multiple comparisons procedure to evaluate which color of
candle is best. Interpret the results.

(f) Discuss whether blocking was important in this experiment.

7. Saltwater experiment
An experiment to study the effect of salt on the boiling point of water was conducted by
Alan Safer, Brian Jones, Carlos Blanco, and Yu-Hui Tao in 1989. The treatment factor
was the amount of salt added to 500 ml of water. There were five levels—0, 8, 16, 24,
and 32 grams of salt. The design used was a general complete block design. Three of
the experimenters collecteds � 3 observations each on each level of the treatment
factor. “Experimenter” was used as a blocking factor. Thus,v � 5, k � 15, andb � 3.
The resulting boiling point temperatures (in degrees C) are given in Table 10.21. The
experimenters assumed that treatments and blocks do not interact.

(a) Plot the data and interpret the results.

Table 10.21 Data for the saltwater experiment

Grams of Salt
Block 0 8 16 24 32
1 97.9 97.0 97.8 98.6 98.8

97.3 96.3 97.6 98.0 98.8
97.1 97.3 97.9 98.4 98.9

2 97.5 97.1 97.5 98.7 98.8
97.2 97.1 97.2 97.9 98.3
97.7 97.4 97.6 98.4 98.8

3 97.4 97.8 98.0 98.6 98.9
97.4 96.9 97.7 98.0 98.8
97.5 97.6 97.6 98.1 98.9
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(b) Complete an analysis of variance table for the data and test for equality of treatment
effects.

(c) Evaluate whether blocking was worthwhile and whether the assumption of no
treatment–block interaction looks reasonable.

(d) Compute sums of squares for orthogonal trend contrasts, and test the trends for
significance, using a simultaneous error rate of 5%. Explain your results in terms
of the effect of salt on the boiling point of water.

(e) Calculate the number of observations needed per treatment if a test of equality of
treatment effects usingα � 0.05 is to have power 0.95 in detecting a difference of
1◦C whenσ � 0.5◦C.

8. Hypothetical chemical experiment
An experiment to examine the yield of a certain chemical was conducted inb � 4
different laboratories. The treatment factors of interest were
A: acid strength (80% and 90%, coded 1, 2)
B: time allowed for reaction (15 min and 30 min, coded 1, 2)
C : temperature (50◦C and 75◦C, coded 1, 2)

The experiment was run as a randomized complete block design with the laboratories as
the levels of the blocking factor. The resulting data (in grams) are shown in Table 10.22.
The goal of the experiment was to find the treatment combination(s) that give(s) the
highest average yield.
(a) Draw a graph of the data and comment on it.

(b) State a possible model for this experiment. List any assumptions you have made
and discuss the circumstances in which you would expect the assumptions to be
valid.

(c) Check the assumptions on your model.

(d) Analyze the data and state your conclusions.

9. Reaction time experiment, continued
The reaction time pilot experiment was described in Example 4, page 98, and analyzed
in Examples 6.4.3 and 6.4.4, pages 150 and 157. The experiment was run to compare the
speed of response of a human subject to audio and visual stimuli. A personal computer
was used to present a “stimulus” to a subject and the time that the subject took to
press a key in response was monitored. The subject was warned that the stimulus was
forthcoming by means of an auditory or a visual cue. The two treatment factors were

Table 10.22 Data for the hypothetical chemical experiment

Lab Treatment Combinations
(Block) 111 112 121 122 211 212 221 222

1 7.3 9.5 13.8 15.4 16.0 18.7 11.3 14.5
2 8.8 11.3 15.3 17.7 17.9 20.8 12.0 15.4
3 11.7 14.1 17.2 22.3 22.6 24.8 16.9 18.5
4 6.2 8.3 11.2 15.4 16.8 17.4 8.2 12.5
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“Cue Stimulus” at two levels “auditory” and “visual” (FactorA, coded 1, 2), and “Cue
Time” at three levels 5, 10, and 15 seconds between cue and stimulus (FactorB, coded
1, 2, 3), giving a total ofv � 6 treatment combinations (coded 11, 12, 13, 21, 22, 23).
The pilot experiment used only one subject, for whommsE � 0.00029 seconds2 based
on 12 degrees of freedom. An upper 95% confidence bound for the error variance was
calculated in Example 6.4.2, page 148, asσ 2 ≤ 0.000664 seconds2. To be able to
draw conclusions about these six treatment combinations, it is important for the main
experiment to use a random sample of subjects from the population. Consider using
a randomized complete block design withb subjects representing blocks for the main
experiment. Let the block sizes bek � 6, so that each treatment combination can be
observed once for each subject.
How many subjects are needed if the simultaneous 95% confidence intervals for the
pairwise comparisons of the treatment combinations need to be less than 0.1 seconds
to be useful (that is, we requiremsd < 0.05 seconds)?

10. Length perception experiment
An experiment was run in 1996 by B. Millen, R. Shankar, K. Christoffersen, and P.
Nevathia to explore subjects’ ability to reproduce accurately a straight line of given
length. A 5 cm line (1.9685 inches ) was drawn horizontally in a 1-point width on an
11×8.5 in sheet of plain white paper. The sheet was affixed horizontally at eye level to
a white projection screen located four feet in front of a table at which the subject was
asked to sit. The subject was asked to reproduce the line on a sheet of white paper on
which a border had been drawn. Subjects were selected from a population of university
students, both male and female, between 20 and 30 years of age. The subjects were all
right-handed and had technical backgrounds.
There were six different borders representing the combinations of three shapes—square,
circle, equilateral triangle (levels of factorC, coded 1, 2, 3) and two areas—16 in2 and

Table 10.23 Data for the length perception experiment

Subject Treatment Combinations (shape, area)
11 12 21 22 31 32

1 0.20 −0.25 0.85 −0.50 0.40 0.05
2 1.70 0.30 1.80 0.40 1.40 1.80
3 −0.60 −0.90 −0.90 −0.50 −0.70 −0.50
4 0.60 0.10 0.70 0.20 0.70 0.60
5 0.50 0.40 0.30 0.70 0.50 0.60
6 0.20 −0.60 0.00 −1.40 −0.60 −1.20
7 1.30 −0.10 −0.40 0.50 −0.15 0.30
8 −0.85 −1.30 −0.40 −1.55 −0.85 −1.30
9 0.80 0.05 0.55 1.25 1.30 0.20
10 0.10 −0.10 −0.30 0.95 0.30 −0.95
11 −0.20 −0.40 −0.50 −0.30 −0.40 −0.40
12 0.05 −0.20 0.55 0.60 0.10 0.10
13 0.80 −0.60 0.20 −0.60 −0.60 −0.30
14 −0.25 −0.70 0.00 −0.70 −0.10 −0.95
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9 in2 (levels of factorD, coded 1, 2). The purpose of the experiment was not to see how
close to the 5 cm that subjects could draw, but rather to compare the effects of the shape
and area of the border on the length of the lines drawn. The subjects were all able to
draw reasonably straight lines by hand, and the one of the experimenters measured, to
the nearest half millimeter, the distance between the two endpoints of each line. Data
from 14 of the subjects are shown as deviations from the target 5 cm in Table 10.23.

(a) Fit a block–treatment model to the data using subjects as blocks and with six
treatments representing the shape–area combinations. Check the error assumptions
on your model.

(b) Draw at least one graph and examine the data.

(c) Write down contrasts in the six treatment combinations representing the following
comparisons:

(i) differences in the effects of area for each shape separately,

(ii) average difference in the effects of area,

(iii) average difference in the effects of shape.

(d) Give a set of 99% simultaneous confidence intervals for the contrasts in (c)(i). State
your conclusions.

(e) Under what conditions would the contrasts in (c)(ii) and (c)(iii) be of interest? Do
these conditions hold for this experiment?

11. Load-carrying experiment
In 1993, an experiment was run by Mark Flannery, Chi-Chang Lee, Eric Nelson, and
Pat Sparto to investigate the load-carrying capability of the human arm. Subjects were
selected from a population of healthy males. The maximum torque generated at the
elbow joint was measured (in newtons) using a dynamometer for each subject in a 5
minute exertion for nine different arm positions (in a random order). The nine arm
positions were represented byv � 9 treatment combinations in a 3× 3 factorial
experiment. The first factor was “flex” with levels 0◦,45◦,90◦ of elbow flexion, coded
1, 2, 3. The second factor was “rotation” with levels 0◦,45◦,90◦ of shoulder rotation,
coded 1, 2, 3.

Table 10.24 Data and order of collection for the load-carrying experiment

Order 1 2 3 4 5 6 7 8 9
Treat. Comb. 20 10 12 00 11 02 01 21 22

Subj 1 250 230 170 160 240 160 150 200 180
Treat. Comb. 00 11 20 21 12 10 01 22 02

Subj 2 230 260 260 220 250 270 230 190 210
Treat. Comb. 10 02 20 21 00 11 01 22 12

Subj 3 230 180 210 190 150 190 140 160 180
Treat. Comb. 20 00 22 11 02 21 10 01 12

Subj 4 360 200 380 290 240 310 280 350 210
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The experiment was run as a randomized complete block design with four blocks,
each block being defined by a different subject. The subjects were selected from the
populations of male students in the 20–30 year range in a statistics class.

(a) Identify contrasts that you think might be of interest in this experiment.

(b) Write down your model and identify your proposed analysis, including your overall
significance level and confidence level.

(c) The experimenters decided that they required Scheffé’s 95% confidence intervals
for normalized contrasts in the main effects of each factor to be no wider than 10
newtons. How many subjects are needed to satisfy this requirement if the error
variance is similar to the valuemsE � 670 newtons2 that was obtained in the pilot
experiment?

(d) The data are shown in the order collected in Table 10.24. Plot the data and identify
which of your preplanned contrasts ought to be examined. Are there any other
contrasts that you would like to examine?

(e) Are the assumptions on block–treatment model (10.4.1) approximately satisfied
for this data? Pay particular attention to outliers. If the assumptions are satisfied,
analyze the experiment. If they are not satisfied, what information can you gather
from the data?

(f) Do your conclusions apply to the whole human population?

12. Biscuit experiment
An experiment to study how to make fluffy biscuits was conducted by Nathan Buurma,
Kermit Davis, Mark Gross, Mary Krejsa, and Khaled Zitoun in 1994. The two treatment
factors of interest were “height of uncooked biscuit” (0.25, 0.50, or 0.75 inches, coded
1, 2, and 3) and “kneading time” (7, 14, or 21 times, coded 1, 2, and 3). The design
used was a general complete block design. Theb � 4 blocks consisted of the four
runs of the oven, and the experimental units consisted ofk � 18 positions on a baking
pan. Thev � 9 treatment combinations were each observeds � 2 times per block
andr � bs � 8 times in total. The resulting observations are “percentage of original
height” and are shown in Table 10.25.

Table 10.25 Data for the biscuit experiment (percentage of original height)

Treatment Combination
Block 11 12 13 21 22 23 31 32 33
1 350.0 375.0 362.5 237.5 237.5 256.3 191.7 216.7 208.3

300.0 362.5 312.5 231.3 231.3 243.8 200.0 212.5 225.0
2 362.8 350.0 367.5 250.0 262.5 250.0 245.8 212.5 241.7

412.5 350.0 387.5 268.8 231.3 237.5 225.0 250.0 225.0
3 350.0 387.5 425.0 300.0 275.0 231.3 204.4 187.5 187.5

337.5 362.5 400.0 262.5 206.3 262.5 204.2 204.2 208.3
4 375.0 362.5 400.0 318.8 250.0 243.8 200.0 216.7 212.5

350.0 337.5 350.0 256.3 243.8 250.0 150.0 183.3 187.5
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(a) State a suitable model for this experiment and check that the assumptions on your
model hold for these data.

(b) Use an appropriate multiple comparisons procedure to evaluate which treatment
combination is best.

(c) Evaluate whether blocking was worthwhile in this experiment.

13. Algorithm experiment
J. Pinheiro, R. Yao, and H. Ying, of the University of Wisconsin, ran an experiment
in 1992 to compare the speeds of three computer algorithms for selecting a simple
random sample of sizem without replacement from a population of sizeN . If the
population members are labeled from 1 toN , the naive algorithm of selecting a random
number and checking to see whether or not it has been previously selected is rather
slow. Consequently, the experimenters looked at two other possible algorithms.
Algorithm 1 selects sample members in turn, each one being selected from the part of
the population that has not yet been included in the sample. This algorithm uses a lot
of computer memory. Algorithm 2, which requires less memory, selects from the entire
population, discarding repeats, and uses a list of indices to show whether an element has
already been selected. These two algorithms (FactorA, levels 1 and 2) were compared
for three equally spaced population sizesN ( FactorC, levels 2000, 6000, 10000,
coded 1, 2, 3), and for three equally spaced sampling fractionsm/N (FactorB, levels
0.10, 0.15, 0.20, coded 1, 2, 3). The algorithms were written in Turbo Pascal 5.5. The
execution times are variable, since each algorithm uses a random number generator.
The algorithms were each run on a PC according to a randomized complete block
design, with blocks representing different days. The execution times (in 1/100 sec)
from two of the blocks are shown in Table 10.26. The treatment combinations are listed
in the order Algorithm, Sample fraction, Population size.

(a) Make a sketch of the interaction plot for Sampling fraction and Population size
separately for each Algorithm. In your opinion, given the interaction effects, are
the main effects of Algorithm and Sampling fraction worth investigating? Explain.

(b) Regardless of your answer in (a), test the hypothesis that the linear trend in Sampling
fraction (averaged over Algorithm and Population size) is negligible against the
alternative hypothesis that it is not negligible. Are you happy with your conclusion?
Why or why not?

Table 10.26 Execution times (1/100 sec.) of simple random sample algorithms

Trt. Comb. 111 112 113 121 122 123 131 132 133
day 1 11 22 38 11 27 39 16 28 44
day 2 5 22 33 17 21 44 11 33 44

Trt. Comb. 211 212 213 221 222 223 231 232 233
day 1 17 49 77 22 66 116 33 88 148
day 2 17 44 82 22 72 116 28 88 148
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(c) Calculate a confidence interval to compare the execution times of the two al-
gorithms for the largest population size and largest sampling fraction. (Assume
that you will want to calculate a large number of confidence intervals for various
contrasts in the treatment combinations and that you want the overall level to be
95%.)

(d) If you were to repeat this experiment, would you run it as a block design or a
completely randomized design? Justify your answer.

14. Colorfastness experiment
An experiment was run in 1990 by D-Y Duan, H. Rhee, and C. Song on the colorfastness
of a blue cotton denim fabric. Swatches of the fabric were to be laundered several times,
and a determination of fading of the material due to washing was to be made by the
three experimenters. The experimenters anticipated that there would be systematic
differences in the way they made their color determinations, and consequently, they
grouped the fabric swatches into blocks according to which experimenter was to make
the determination. Thus the levels of the blocking factor denoted the experimenter.
The levels of the treatment factor were the number of times of laundering, and these were
selected to be 1, 2, 3, 4, and 5. Each experimenter was to make color determinations on
a total ofk � vs � 60 swatches of material. The swatches were the experimental units
and were assigned at random to the five levels of the treatment factor in such a way that
each treatment was assigneds � 12 swatches per experimenter. The randomization
was done block by block as illustrated in Section 10.3.3 for the randomized complete
block design.
The experiment was carried out according to the guidelines of the American Association
of Textile Chemists and Colorists Test 61-1980. The measurements that are given in
Table 10.27 were made using the Gray Scale for Color Change. This scale is measured
using the integers 1–5, where 5 represents no change from the original color. Using
their own continuous version of the Gray Scale, each of theb � 3 experimenters made
color determinations ons � 12 swatches of fabric for each of thev � 5 treatments
(numbers of washes). For each experimenter in turn, the 60 swatches were presented by
the other two experimenters in a random order for assessment. The experimenter who
was making the color assessment was not told which treatment she was observing—a
“blind study.” This was done to remove experimenter bias from the measurements.
(a) Plot the treatment averages for each block. Comment on a possible interaction

between experimenter and number of washes, and also on any surprising features
of the data.

(b) Fit a block–treatment interaction model (10.6.6) to these data forb � 3 blocks
(experimenter) andv � 5 treatments (number of washes). Check the assumptions
of normality, equal variance, and independence of the error variables.

(c) Using only the data from experimenters 1 and 2, repeat part (b). Under what
circumstances could you justify ignoring the results of experimenter 3?

(d) Investigate the linear and quadratic trends in the effect on color of the number of
washes. If necessary, use Satterthwaite’s approximation for unequal variances.



334 Exercises

Table 10.27 Data for the colorfastness experiment

Block Number of
(Experimenter) Washes yhit (Measurement on the Gray Scale)

1 1 3.8, 4.0, 4.0, 3.9, 3.8, 3.7, 3.9, 4.0, 4.0, 4.0, 3.9, 4.0
2 3.0, 3.7, 3.8, 3.0, 3.7, 4.0, 2.9, 3.5, 3.2, 3.5, 4.0, 3.5
3 3.7, 3.3, 3.5, 3.6, 3.1, 3.0, 3.2, 3.7, 3.8, 3.7, 3.6, 3.6
4 3.0, 3.6, 3.9, 3.8, 3.8, 3.1, 3.6, 3.4, 4.0, 3.2, 3.0, 3.8
5 3.6, 3.1, 3.8, 3.4, 3.9, 3.4, 3.5, 4.0, 3.4, 3.9, 3.0, 3.3

2 1 4.5, 3.8, 3.5, 3.5, 3.6, 3.8, 4.6, 3.9, 4.0, 3.9, 3.8, 4.2
2 3.7, 3.6, 3.8, 3.5, 3.8, 4.0, 3.6, 3.6, 3.4, 3.7, 3.4, 3.3
3 3.0, 3.7, 2.8, 3.0, 3.6, 3.4, 3.8, 3.6, 3.4, 3.7, 3.9, 3.8
4 4.2, 3.8, 3.1, 2.8, 3.2, 3.0, 3.7, 3.0, 3.7, 3.5, 3.2, 3.9
5 3.2, 3.5, 3.1, 3.3, 2.8, 3.5, 3.5, 3.2, 3.6, 3.7, 3.2, 3.2

3 1 4.0, 4.2, 3.8, 3.8, 4.2, 4.2, 3.8, 4.2, 4.2, 3.8, 4.2, 3.9
2 3.2, 2.8, 2.8, 4.0, 3.0, 3.2, 3.8, 3.5, 4.0, 3.2, 3.5, 3.4
3 3.8, 4.0, 3.8, 3.4, 4.2, 3.4, 4.0, 3.8, 4.2, 3.9, 3.9, 3.1
4 4.2, 3.8, 3.5, 3.4, 4.2, 2.9, 3.5, 3.2, 3.5, 4.0, 3.2, 3.9
5 3.5, 3.8, 2.8, 4.2, 4.0, 3.8, 3.9, 2.9, 3.9, 3.2, 3.5, 3.5

15. Insole cushion experiment
The insole experiment was run in the Gait Laboratory at The Ohio State University
in 1995 by V. Agresti, S. Decker, T. Karakostas, E. Patterson, and S. Schwartz. The
objective of the experiment was to compare the effect on the force with which the foot
hits the ground of a regular shoe insole cushion and a heel cushion (factorC, coded 1,
2, respectively) available both as brand name and a store name (factorD, coded 1, 2,
respectively).
Only one subject (and one pair of shoes) was used. A pilot experiment indicated that
fatigue would not be a factor. The natural walking pace of the subject was measured
before the experiment. This same pace was maintained throughout the experiment by
use of a metronome.
The experiment was divided into two days (blocks). On one day the dominant leg (kick-
ing leg) was examined, and on the second day the nondominant leg was examined. Each
of thev � 4 treatment combinations were measureds � 5 times per block in a random-
ized order. For each treatment combination, the subject was instructed to walk naturally
along the walkway of the laboratory without looking down. As the foot hit the “force
plate,” an analog signal was sent to a computer, which then converted the signal to a
digital form. The response variable, shown in Table 10.28, is the maximum deceleration
of the vertical component of the ground reaction force measured in newtons.

(a) Fit a model that includes a block×treatment interaction. Prepare an analysis of
variance table. What can you conclude?

(b) Draw interaction plots for theCD interaction,C×block interaction,D×block
interaction, and Treatment Combination×block interaction. Which contrasts would
be of interest to examine?
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Table 10.28 Data for the insole experiment

Block I (Right Leg)
C D Response in Newtons (order)
1 1 899.99 (3) 910.81 (5) 927.79 (10) 888.77 (11) 911.93 (16)
1 2 924.92 (2) 900.10 (6) 923.55 (12) 891.56 (17) 885.73 (20)
2 1 888.09 (4) 954.11 (7) 937.41 (9) 911.85 (14) 908.41 (18)
2 2 884.01 (1) 918.36 (8) 880.23 (13) 891.16 (15) 917.16 (19)

Block II (Left Leg)
C D Response in Newtons (order)
1 1 852.94 (22) 866.28 (27) 886.65 (28) 851.14 (33) 869.80 (34)
1 2 882.95 (21) 865.58 (24) 868.15 (25) 893.82 (37) 875.98 (38)
2 1 920.93 (26) 880.26 (31) 897.10 (35) 893.78 (39) 885.80 (40)
2 2 872.50 (23) 892.76 (29) 895.93 (30) 899.44 (32) 912.00 36)

(c) Calculate confidence intervals for any means or contrasts that you identified in
part (b). Remember that these were selected after having looked at the data.

(d) Check the assumptions on the model. There are two possible outliers. Reexamine
the data without either or both of these observations. Do any of your conclusions
change? Which analysis would you report?

16. Exam paper experiment
At The Ohio State University, there are many large undergraduate courses with multiple
sections. The midterm and final examinations for such courses are frequently given in
one large room. Several versions of the exams are made up, and these are printed on
different colored paper. In 1986, an experiment was run by Marbu Brown to see whether
student average exam scores differed appreciably according to which version and color
paper they were assigned.
The experiment was run with the cooperation of a professor in the mathematics depart-
ment (who, of course, believed that the effects of the different treatment combinations
would be similar). The scores for the midterm examination are shown in Table 10.29.
This was a multiple-choice exam, and the two versions of exam paper differed in terms
of the numbers used in each problem and the order of presentation of the multiple-choice
selections. Thus, the two treatment factors were:
A — Color; yellow or green, coded 1, 2.
B — Version; two levels, coded 1, 2.

Since the students were each assigned to one of three teaching assistants for the entire
term, the experiment was divided into three blocks, and a random assignment of the
four treatment combinations was made separately to the students in each block.
(a) Plot the data for each treatment combination in each block. Can you conclude

anything from looking at the data plots?

(b) Fit a block–treatment model without block×treatment interaction. Using a
computer package, calculate the analysis of variance table and state your
conclusions.

(c) Check the assumptions on your model by plotting the standardized residuals.
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Table 10.29 Data for the exam paper experiment

Block I (Teaching Assistant 1)
A B Response
1 1 92 84 84 81 72 85 31
1 2 89 79 47 78 87 47 30 88 60 81 50
2 1 86 88 81 68 70 54 77 59 66 47 48 35
2 2 83 62 56 70 85 54 61 56 84

Block II (Teaching Assistant 2)
A B Response
1 1 93 93 70 59 85 84 71 50 71 72 60 59 71 74 67
1 2 94 58 30 94 72 66 72 61 38
2 1 96 60 100 94 88 96 94 62 94 57 38
2 2 68 70 70 94 93 59 63 74 64 78 24 53 48 59

Block III (Teaching Assistant 3)
A B Response
1 1 60 91 64 89 96 83 60 67 83 87 80
1 2 62 89 85 60 57 90 65 10 87 66
2 1 41 56 62 57 54 74 90 78 88 71 63 86
2 2 48 91 97 60 25 85 84 92 88

(d) If the same teaching assistant had been assigned to all three classes, should the
experiment still have been designed as a block design? Discuss.

17. Exercise experiment
An experiment was run in 1995 by J. Cashy, D. Cui, T. Papa, M. Wishard, and C. Wong
to examine how pulse rate changes due to different exercise intensities and programs
on an athletic facility stationary bicycle. The subjects used in the experiment were a
selection of graduate students at The Ohio State University. The experiment had two
treatment factors. FactorC was the program setting on the bicycle (level 1 = “manual,”
level 2 = “hill”). FactorD was the intensity setting of each program (level 1 = “setting
3,” level 2 = “setting 5”). A total ofn � 36 subjects were recruited for the experiment.
These were divided into blocks according to their normal exercise routine. Thus,k � 12
subjects who exercised 0–1 days per week constituted Block 1, those who exercised 2–4
days per week constituted Block 2 and 5–7 days per week constituted Block 3. Each
subject was asked not to perform any strenuous exercise right before the experiment.
Pulse rate was measured by means of a heart monitor strapped close to the subject’s
heart. An initial pulse rate reading was taken. Then the subject was asked to pedal at
a constant rate of 80 rpm (monitored by the experimenter). Ten seconds after the end
of the exercise program, the subject’s pulse rate was measured a second time, and the
response was the difference in the two readings. The data are shown in Table 10.30
together with the sex and the age of the subject.
(a) Using a block–treatment with no block×treatment interaction, check the assump-

tions on the error variables.

(b) Plot the standardized residuals against sex and age. Do you think that these variables
should have been included in the model?
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Table 10.30 Data for the exercise experiment (in heartbeats per minute) listed with
order of observation (Ord)

Block I—Infrequent exercise
A B yijkl Age Sex Ord yijkl Age Sex Ord yijkl Age Sex Ord
1 1 55 25 0 6 36 34 0 8 41 25 0 10
1 2 74 26 0 17 64 25 0 20 68 25 0 18
2 1 36 26 1 11 26 31 1 14 52 25 0 23
2 2 72 24 1 4 51 24 1 13 44 24 0 16

Block II—Medium exercise
A B yijkl Age Sex Ord yijkl Age Sex Ord yijkl Age Sex Ord
1 1 17 26 0 2 51 29 0 21 45 31 0 29
1 2 72 24 1 7 88 26 1 27 53 24 0 30
2 1 45 26 1 1 34 30 1 28 26 24 1 35
2 2 50 23 0 12 47 23 0 15 53 29 1 22

Block III—Frequent exercise
A B yijkl Age Sex Ord yijkl Age Sex Ord yijkl Age Sex Ord
1 1 49 25 0 31 35 23 0 32 29 25 0 36
1 2 46 26 0 3 57 29 1 26 59 23 0 33
2 1 10 26 0 5 25 25 1 9 12 27 0 34
2 2 28 24 0 19 25 25 0 24 21 25 0 25

(c) Using whichever model you think is most appropriate, test any hypotheses that are
of interest.

(d) What can you conclude from this experiment?
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11 Incomplete Block Designs

11.1 Introduction
11.2 Design Issues
11.3 Analysis of General Incomplete Block Designs
11.4 Analysis of Balanced Incomplete Block Designs
11.5 Analysis of Group Divisible Designs
11.6 Analysis of Cyclic Designs
11.7 A Real Experiment—Plasma Experiment
11.8 Sample Sizes
11.9 Factorial Experiments
11.10 Using SAS Software
Exercises

11.1 Introduction

When an experiment involves a blocking factor, but practical considerations prevent the
block size from being chosen to be a multiple of the number of treatments, then a complete
block design (Chapter 10) cannot be used—anincomplete block design needs to be used
instead. The most common incomplete block designs have block size smaller than the
number of treatments, although larger block sizes can be used.

In this chapter we will discuss three of the more useful and efficient types of incomplete
block designs, namely balanced incomplete block designs (Section 11.2.4), group divisible
designs (Section 11.2.5), and cyclic designs (Section 11.2.6). We will develop the analysis
of incomplete block designs, in general, in Section 11.3, and the particular analysis for
balanced incomplete block designs in Section 11.4. Some formulas are given for confidence
intervals for treatment contrasts in the group divisible design in Section 11.5, but these
designs are more easily analyzed by computer. In Section 11.7, we describe and analyze an
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experiment that was designed as a cyclic group divisible design. Sample-size calculations
are discussed in Section 11.8, and factorial experiments in incomplete block designs are
considered in Section 11.9. Analysis by SAS of an incomplete block design is illustrated in
Section 11.10.

11.2 Design Issues

11.2.1 Block Sizes

Block sizes are dictated by the availability of groups of similar experimental units. For
example, in the Breathalyzer experiment examined in Section 10.3.1, page 297, the block
size was chosen to bek � 5. This choice was made because the pilot experiment indicated
that experimental conditions were fairly stable over a time span of five observations taken
close together, and also because five observations could be taken by a single technician in a
shift. In other experiments, the block size may be limited by the capacity of the experimental
equipment, the availability of similar raw material, the length of time that a subject will agree
to remain in the study, the number of observations that can be taken by an experimenter
before fatigue becomes a problem, and so on.

Limiting the block size often means that the number of treatments is too large to allow
every treatment to be observed in every block, and an incomplete block design must be used.
The Breathalyzer experiment, for example, required the comparison of twelve different
alcohol concentrations and three air-intake ports (two on one Breathalyzer machine and one
on a second machine). Thus, in total there werev � 36 treatment combinations of which
only five could be observed per block. Skill was then needed in selecting the best design
that would still allow all treatment contrasts to be estimable.

11.2.2 Design Plans and Randomization

All the designs that we discuss in this chapter are equireplicate; that is, every treatment (or
treatment combination) is observedr times in the experiment. Nonequireplicate designs are
occasionally used in practice, and these can be analyzed by computer.

We use the symbolnhi to denote the number of times that treatmenti is observed in block
h. In general, it is better to observe as many different treatments as possible in a block, since
this tends to decrease the average variance of the contrast estimators. Therefore, when the
block size is smaller than the number of treatments, each treatment should be observed
either once or not at all in a block. Such block designs are calledbinary, andnhi is either
0 or 1. For most purposes, the best binary designs are those in which pairs of treatments
occur together in the same number, or nearly the same number, of blocks. These designs
give rise to equal (or nearly equal) lengths of confidence intervals for pairwise comparisons
of treatment effects.

There are two stages in designing an experiment with incomplete blocks. The first stage is
to obtain as even a distribution as possible of treatment labels within the blocks. This results
in anexperimental plan. The plan in Table 11.1, for example, shows a design withb � 8
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Table 11.1 An incomplete block design with b � 8,
k � 3, v � 8, r � 3

Block Block
I 1 3 8 V 5 7 4
II 2 4 1 VI 6 8 5
III 3 5 2 VII 7 1 6
IV 4 6 3 VIII 8 2 7

blocks, labeled I, II,. . ., VIII, each of sizek � 3, which can be used for an experiment with
v � 8 treatments each observedr � 3 times. The treatment labels are evenly distributed in
the sense that no label appears more than once per block and pairs of labels appear together
in a block either once or not at all (which is “as equal as possible”).

The experimental plan is often called the “design,” even though it is not ready for use
until after the second stage, where the random assignments are made. There are two steps
to the randomization procedure, as follows.

(i) Randomly assign the block labels in the plan to the levels of the blocking factor.

(ii) Randomly assign the experimental units in a block to those treatment labels allocated
to that block.

The randomization procedure is illustrated in the following example.

Example 11.2.1 Metal alloy experiment

Suppose an experiment is to be run to comparev � 7 compositions of a metal alloy in
terms of tensile strength. Further, suppose that only three observations can be taken per day,
and that the experiment must be completed within seven days. It may be thought advisable
to divide the experiment into blocks, with each day representing a block, since different
technicians may work on the experiment on different days and the laboratory temperature
may vary from day to day. Thus, an incomplete block design withb � 7 blocks of size
k � 3 and withv � 7 treatment labels is needed. The plan shown in the first column of
Table 11.2 is of the correct size. It is binary, with every treatment appearing 0 or 1 times
per block andr � 3 times in total. Also, all pairs of treatments occur together in a block
exactly once, so the treatment labels are evenly distributed over the blocks. Randomization
now proceeds in two steps.

Step (i): The block labels need to be randomly assigned to days. Suppose we obtain
the following pairs of random digits from a random number generator or from Table A.1
(starting at location 4, 2, 2, 4, 3) and associate them with the blocks as follows:
Random digits: 71 36 65 93 92 02 97
Block labels: I II III IV V VI VII

Then, sorting the random numbers into ascending order, the blocks are reordered and
assigned to the seven days as follows:
Block labels: VI II III I V IV VII
Days: 1 2 3 4 5 6 7
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The randomly ordered blocks are shown in the fourth column of Table 11.2.
Step (ii): Now we randomly assign time slots within each day to the treatment labels.

Again, using pairs of random digits either from a random number generator or from where
we left off in Table A.1, we associate the random digits with the treatment labels as follows:

Day: Day 1 Day 2 Day 3
Block: (Block VI) (Block II) (Block III)
Random digits: 50 29 03 65 34 30 74 56 88
Treatment labels: 6 7 2 2 3 5 3 4 6

Day: Day 4 Day 5 Day 6
Block: (Block I) (Block V) (Block IV)
Random digits: 33 05 75 83 98 13 27 55 67
Treatment labels: 1 2 4 5 6 1 4 5 7

Day: Day 7
Block: (Block VII)
Random digits: 71 94 88
Treatment labels: 7 1 3

Sorting the random numbers into ascending order for each day separately gives the treatment
label order 2, 7, 6 for day 1, and 5, 3, 2 for day 2, and 4, 3, 6 for day 3, and so on. The design
after step (ii) is shown in the last column in Table 11.2. ✷

11.2.3 Estimation of Contrasts (Optional)

The importance of selecting an experimental plan with an even distribution of treatment
labels within the blocks is to try to ensure that all treatment contrasts are estimable and that
pairwise comparison estimators have similar variances. The design in Table 11.3 does not
have an even distribution of treatment labels. Some blocks contain all the even-numbered
treatment labels, and the other blocks contain all the odd-numbered labels. The result is that
every pairwise comparison between an even-numbered and an odd-numbered treatment is
not estimable. The design is said to bedisconnected.

Disconnectedness can be illustrated through aconnectivity graph as follows. Draw a point
for each treatment and then draw a line between every two treatments that occur together in
any block of the design. The connectivity graph for the disconnected design in Table 11.3 is

Table 11.2 Randomization of an incomplete block
design

Unran- Design Design
Block domized Day After After
Label design Step (i) Step (ii)
I 1 2 4 1 6 7 2 2 7 6
II 2 3 5 2 2 3 5 5 3 2
III 3 4 6 3 3 4 6 4 3 6
IV 4 5 7 4 1 2 4 2 1 4
V 5 6 1 5 5 6 1 1 5 6
VI 6 7 2 6 4 5 7 4 5 7
VII 7 1 3 7 7 1 3 7 3 1
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Table 11.3 A disconnected incomplete block design
with b � 8, k � 3, v � 8, r � 3

Block Block
I 1 3 5 V 5 7 1
II 2 4 6 VI 6 8 2
III 3 5 7 VII 7 1 3
IV 4 6 8 VIII 8 2 4

Figure 11.1
Connectivity graphs to
check connectedness
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(b) Connected design

shown in Figure 11.1(a). Notice that the graph falls into two pieces. There is no line between
any of the odd-labeled treatments and the even-labeled treatments.

A design isconnected if every treatment can be reached from every other treatment via
lines in the connectivity graph. The connectivity graph for the connected design in Table 11.1
is shown in Figure 11.1(b) and it can be verified that there is a path between every pair of
treatments. For example, although treatments 1 and 5 never occur together in a block and
so are not connected by a line, there is nevertheless a path from 1 to 4 to 5. All contrasts in
the treatment effects are estimable in a design if and only if the design is connected. The
connectivity graph therefore provides a simple means of checking estimability.

Although disconnected designs will be useful in Chapter 13 for single-replicate (r � 1)
factorial experiments arranged in blocks, they need never be used for experiments with at
least two observations per treatment. The three simplest, and often most efficient, types
of design are the balanced incomplete block designs, group divisible designs, and cyclic
designs. All balanced incomplete block designs are connected, as are almost all of the other
two types of design.

11.2.4 Balanced Incomplete Block Designs

A balanced incomplete block design is a design withv treatment labels, each occurringr
times, and withbk experimental units grouped intob blocks of sizek < v in such a way
that the units within a block are alike and units in different blocks are substantially different.
The plan of the design satisfies the following conditions:

(i) The design is binary (that is, each treatment label appears either once or not at all in
a block).
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(ii) Each pair of labels appears together inλ blocks, whereλ is a fixed integer.

Block design randomization is carried out as illustrated in Example 11.2.2, and a third step
is usually added to the randomization procedure, namely,

Randomly assign the treatment labels in the plan to the actual levels of the treatment
factor.

All balanced incomplete block designs have a number of desirable properties. For example,
all treatment contrasts are estimable and all pairwise comparisons of treatment effects are
estimated with the same variance so that their confidence intervals are all the same length.
Balanced incomplete block designs also tend to give the shortest confidence intervals on the
average for any large number of contrasts. For these reasons, the balanced incomplete block
design is a popular choice among experimenters. The main drawback is that the design does
not exist for many choices ofv, k, b, andr.

An example of a balanced incomplete block design forv � 7 treatments andb � 7 blocks
of sizek � 3 is shown in Table 11.2. It can be seen that conditions (i) and (ii) are satisfied,
with every pair of labels appearing together in exactlyλ � 1 block. A second example of a
balanced incomplete block design, prior to randomization, is shown in Table 11.4 forv � 8
treatments inb � 14 blocks of sizek � 4. Again, conditions (i) and (ii) are satisfied, this
time withλ � 3.

We can verify that the design in Table 11.1 (page 341) withv � b � 8, r � k � 3 is not
a balanced incomplete block design. Label 2, for example, appears in one block with each of
labels 1, 3, 4, 5, 7, and 8 but never with label 6. The following simple argument shows that no
balanced incomplete block design can possibly exist for this size of experiment. In a balanced
incomplete block design withv � b � 8, r � k � 3, label 2, for example, must appear in
r � 3 blocks in the design, and in each block there arek − 1 � 2 other labels. So label 2
must appear in a block with a total ofr(k − 1) � 6 other treatment labels. Consequently,
if label 2 were to appearλ times with each of the otherv − 1 � 7 labels, then 7λ would
have to be equal tor(k − 1) � 6. This would require thatλ � 6/7 � r(k − 1)/(v − 1).
Sinceλ is not an integer, a balanced incomplete block design cannot exist. For the balanced
incomplete block design in Table 11.4,λ � r(k − 1)/(v − 1) � 7(3)/(7) � 3.

Table 11.4 A balanced incomplete block design with v � 8,
r � 7, b � 14, k � 4, λ � 3

Block Treatments Block Treatments
I 1 2 3 4 VIII 2 3 5 8
II 1 2 5 6 IX 2 3 6 7
III 1 2 7 8 X 2 4 5 7
IV 1 3 5 7 XI 2 4 6 8
V 1 3 6 8 XII 3 4 5 6
VI 1 4 5 8 XIII 3 4 7 8
VII 1 4 6 7 XIV 5 6 7 8
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There are three necessary conditions for the existence of a balanced incomplete block
design, all of which are easy to check. These are

vr � bk ,

r(k − 1) � λ(v − 1) ,

b ≥ v .

The first condition is that satisfied by all block designs with equal replication and equal block
sizes. The second condition is obtained by the argument above, and the third condition is
called Fisher’s inequality (see P. W. M. John, 1980, page 16). The three necessary conditions
can be used to verify that a balanced incomplete block design of a given size possibly exists.
They do not absolutely guarantee its existence. Lists of balanced incomplete block designs
can be found in Cochran and Cox (1957, Chapter 11) and Fisher and Yates (1973).

11.2.5 Group Divisible Designs

A group divisible design is a design withv � gl treatment labels (for some integersg > 1
andl > 1), each occurringr times, andbk experimental units grouped intob blocks of size
k < v in such a way that the units within a block are alike and units in different blocks are
substantially different. The plan of the design satisfies the following conditions:

(i) The v � gl treatment labels are divided intog groups ofl labels—any two labels
within a group are calledfirst associates and any two labels in different groups are
calledsecond associates.

(ii) The design is binary (that is, each treatment label appears either once or not at all in
a block).

(iii) Each pair of first associates appears together inλ1 blocks.

(iv) Each pair of second associates appears together inλ2 blocks.

Block design randomization is carried out as in Section 11.2.2.

Group divisible designs are often classified as one of several types ofpartially balanced
incomplete block designs with 2 associate classes. It will be seen in Section 11.5 that the
values ofλ1 and λ2 govern the lengths of confidence intervals for treatment contrasts.
Generally, it is preferable to haveλ1 andλ2 as close as possible, which ensures that the
confidence intervals of pairwise comparisons are of similar lengths. Group divisible designs
with λ1 andλ2 differing by one are usually regarded as the best choice of incomplete block
design when no balanced incomplete block design exists.

An example of a group divisible design (prior to randomization) is the experimental plan
shown in Table 11.1 (page 341). It has the followingg � 4 groups ofl � 2 labels:

(1,5), (2,6), (3,7), (4,8).

Labels in the same group (first associates) never appear together in a block, soλ1 � 0.
Labels in different groups (second associates) appear together in one block, soλ2 � 1.
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Table 11.5 A group divisible design with
v � 12, r � 3, b � 6, k � 6,
λ1 � 3, λ2 � 1

Block Treatments
I 1 2 3 4 5 6
II 1 2 3 7 8 9
III 1 2 3 10 11 12
IV 4 5 6 7 8 9
V 4 5 6 10 11 12
VI 7 8 9 10 11 12

A second example is given in Table 11.5, and it hasg � 4 groups ofl � 3 labels:

(1,2,3), (4,5,6), (7,8,9), (10,11,12),

andλ1 � 3, λ2 � 1.
There are four necessary conditions for the existence of a group divisible design with

chosen values ofv, b, k, r, λ1, λ2, namely,

vr � bk ,

r(k − 1) � λ1(l − 1) + λ2l(g − 1) ,

r ≥ λ1 ,

rk ≥ λ2v .

The first condition is satisfied by all block designs with the same parameters. The second
condition can be argued as follows. Label 6 of the design in Table 11.5, for example, appears
in r � 3 blocks, each time withk−1 � 5 other labels. Also, sinceλ1 � 3 andλ2 � 1, label 6
must appear inλ1 � 3 blocks with each of its (l−1) � 2 first associates and inλ2 � 1 block
with each of its (g− 1)l � 9 second associates. Soλ1(l− 1)+λ2(g− 1)l � 15 � r(k− 1).
The third condition is true for any binary design, since a label must occur in at least as
many blocks as it occurs with a first associate. The last condition is obtained from a matrix
formulation of the analysis (see P. W. M. John, 1980, page 31).

All group divisible designs withλ2 � 0 should be avoided, since not all of the treatment
contrasts are estimable. (Optional note: It can be verified that the disconnected design of
Table 11.3 is a group divisible design with groups (1, 3, 5, 7) and (2, 4, 6, 8) and withλ1 � 2
andλ2 � 0.) Lists of group divisible designs are given by Clatworthy (1973) and John and
Turner (1977).

11.2.6 Cyclic Designs

A cyclic design is a design withv treatment labels, each occurringr times, and withbk
experimental units grouped intob � v blocks of sizek < v in such a way that the units within
a block are alike and units in different blocks are substantially different. The experimental
plan, using treatment labels 1,2, . . . , v, can be obtained as follows:
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(i) The first block, called theinitial block, consists of a selection ofk distinct treatment
labels.

(ii) The second block is obtained from the initial block bycycling the treatment labels—
that is, by replacing treatment label 1 with 2, 2 with 3,. . . , v − 1 with v, andv with
1. The third block is obtained from the second block by cycling the treatment labels
once more, and so on until thevth block is reached.

Block design randomization is carried out as in Section 11.2.2.
The group divisible design in Table 11.1 is also a cyclic design and has initial block (1,

2, 4). The two cyclic designs in Table 11.6 both have block sizek � 4 with initial block
(1, 2, 3, 6), but one hasv � 7 treatment labels and the other hasv � 6. The first design is
also a balanced incomplete block design withλ � 2. Although the second design does have
pairs of treatments occurring together in eitherλ1 � 2 or λ2 � 3 blocks, which results in
only two possible lengths of confidence intervals for pairwise comparisons, it is not a group
divisible design (since the treatment labels cannot be divided into groups of first associates).

A cyclic design can have as many asv/2 different variances for the pairwise comparison
estimators, yielding as many asv/2 different lengths of confidence intervals for pairwise
comparisons of treatment effects. Again the best designs are usually regarded as those whose
confidence intervals are close to the same lengths.

Some cyclic designs have duplicate blocks. These designs are useful when fewer thanv

blocks are required, since duplicate blocks can be ignored. Otherwise, designs with distinct
blocks are usually better. Lists of cyclic designs are given by John, Wolock, and David
(1972) and John (1987, Chapter 4).

Table 11.6 Cyclic designs with k � 4 generated by (1,
2, 3, 6) for v � 7 and v � 6

Design 1 Design 2
v � 7 v � 6

Block Treatments Block Treatments
1 1 2 3 6 1 1 2 3 6
2 2 3 4 7 2 2 3 4 1
3 3 4 5 1 3 3 4 5 2
4 4 5 6 2 4 4 5 6 3
5 5 6 7 3 5 5 6 1 4
6 6 7 1 4 6 6 1 2 5
7 7 1 2 5
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11.3 Analysis of General Incomplete Block Designs

11.3.1 Contrast Estimators and Multiple Comparisons

The standard block–treatment model for the observation on treatmenti in blockh in a binary
incomplete block design is

Yhi � µ+ θh + τi + εhi , (11.3.1)

εhi ∼ N (0, σ 2) ,

εhi ’s are mutually independent,

h � 1, . . . , b ; i � 1, . . . , v ; (h, i) in the design.

The model, which assumes no block–treatment interaction, is almost identical to block–
treatment model (10.4.1) for the randomized block design. The only difference is the phrase
“(h, i) in the design,” which means that the model is applicable only to those combinations
of blockh and treatmenti that are actually observed. The phrase serves as a reminder that
not all treatments are observed in each block.

For every experiment, the assumptions on the model should be checked. However, when
all the treatments fail to appear in every block, it is difficult to check the assumption of no
block–treatment interaction by plotting the data block by block, as was recommended for
complete block designs in Section 10.7. Thus, it is preferable that a binary incomplete block
design be used only when there are good reasons for believing that treatment differences
are roughly the same in every block.

The least squares estimators for the treatment parameters in the model for an incomplete
block design must include an adjustment for blocks, since some treatments may be observed
in “better” blocks than others. This means that the least squares estimator for the pairwise
comparisonτp−τi is not theunadjusted estimator Y .p−Y .i as it would be for a randomized
complete block design. For example, if metal alloys 2 and 7 were to be compared via the
randomized balanced incomplete block design in Table 11.2, we see that alloy 2 is observed
on days 1, 2, and 4, and alloy 7 is observed on days 1, 6, and 7. If we were to useY .2 − Y .7

to estimateτ2 − τ7, it would be biased, since

E[Y .2 − Y .7] � E[ 1
3(Y12 + Y22 + Y42) − 1

3(Y17 + Y67 + Y77)]

� 1
3(3µ+ θ1 + θ2 + θ4 + 3τ2) − 1

3(3µ+ θ1 + θ6 + θ7 + 3τ7)

� (τ2 − τ7) + 1

3
(θ2 + θ4 − θ6 − θ7)

	� (τ2 − τ7).

Now, if the experimental conditions were to change over the course of the experiment in
such a way that observations on the first few days tended to be higher than observations on
the last few days, thenθ2 andθ4 would be larger thanθ6 andθ7. If the two metals do not
differ in their tensile strengths, thenτ2 � τ7, but the above calculation shows thatY .2 − Y .7

would nevertheless be expected to be large. This could cause the experimenter to conclude
erroneously that alloy 2 was stronger than alloy 7. Thus, any estimator forτ2 − τ7 must
contain an adjustment for the days on which the alloys were observed.
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The least squares estimators for the parametersτi in the block–treatment model (11.3.1)
adjusted for blocks are complicated except in special cases. The general formula will be
obtained in the optional Section 11.3.2 below and will be shown to be

r(k − 1)τ̂i −
∑
p 	�i

λpi τ̂p � kQi , for i � 1, . . . , v, (11.3.2)

whereλpi is the number of blocks containing both treatmentsp and i andQi is the ith
adjusted treatment total; that is,

Qi � Ti − 1

k

∑
h

nhiBh , (11.3.3)

whereTi is the sum of all observations on treatmenti; Bh is the sum of all observations in
block h; nhi is 1 if treatmenti is observed in blockh and zero otherwise. Then�hnhiBh

represents the sum of all the observations in all blocks containing treatmentp. Individual
solutions to this equation are given in Sections 11.4 and 11.5 for balanced incomplete block
designs and group divisible designs, respectively. For other incomplete block designs, the
least squares estimates should be obtained from a computer package.

We could write the two quantitiesTi andBh asy.i andyh. in the usual way. The reason
for changing notation is as a reminder that some of theyhi are not actually observed. So,
sincenhi is zero if treatmenti is not observed in blockh, andnhi is one if it is observed, the
quantitiesTi andBh are more accurately written as

Ti �
∑
h

nhiyhi and Bh �
∑
i

nhiyhi .

We will also useG � �h�inhiyhi to represent the “grand total” of all the observations.
The Bonferroni and Scheffé methods of multiple comparisons can be used for simul-

taneous confidence intervals of estimable contrasts in all incomplete block designs. The
method of Tukey is applicable for balanced incomplete block designs, and it is believed
to be conservative (trueα level lower than stated) for other incomplete block designs, but
this has not yet been proven. The methods of Dunnett and Hsu can be used in balanced
incomplete block designs but not in other incomplete block designs without modification to
our tables. For each method, the formula for a set of 100(1− α)% simultaneous intervals is∑

ciτi ∈
(∑

ci τ̂i ± w

√
V̂ar(
∑

ci τ̂i)

)
exactly as in Section 4.4. The correct least squares estimate�ciτ̂i and estimated variance
V̂ar(�ciτ̂i) need to be calculated for the design being used.

Analysis of variance for incomplete block designs For an incomplete block design
with block–treatment model (11.3.1), the sum of squares for error,ssE, is derived in the
optional Section 11.3.2, and is shown to be equal to

ssE �
(

b∑
h�1

v∑
i�1

nhiy
2
hi − 1

bk
G2

)
−
(

1

k

b∑
h�1

B2
h − 1

bk
G2

)
−

v∑
i�1

Qiτ̂i . (11.3.4)
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The first term in parentheses in (11.3.4) is like a total sum of squares, so we can call itsstot
as usual. The second term looks like a sum of squares for blocks, so we can label itssθ . The
third term will turn out to be the quantity needed for testing equality of treatments. Since it
is based on the adjusted treatment total, we call itssTadj. Thus we can writessE as

ssE � sstot − ssθ − ssTadj .

When the null hypothesisHT
0 : {τi all equal toτ } is true, the reduced model obtained

from the block–treatment model (11.3.1) looks like the one-way analysis of variance model
in the block effects, that is,

Yhi � µ∗ + θh + εhi

with µ∗ � µ + τ and withk observations on each of theb blocks. Therefore, the sum
of squares for errorssE0 in the reduced model will look similar to the sum of squares for
error in a completely randomized design, but withri replaced byk. Consequently, adapting
(3.5.11), page 45, we have

ssE0 �
b∑

h�1

v∑
i�1

nhiy
2
hi −

b∑
h�1

B2
h/k

�
(

b∑
h�1

v∑
i�1

nhiy
2
hi − 1

bk
G2

)
−
(

1

k

b∑
h�1

B2
h − 1

bk
G2

)
� sstot − ssθ .

So, thesum of squares for treatments adjusted for blocks is

ssTadj � ssE0 − ssE �
v∑
i�1

Qiτ̂i , (11.3.5)

whereτ̂i is the solution to (11.3.2) andQi is defined in (11.3.3). The number of degrees of
freedom for treatments isv − 1, and the number of error degrees of freedom is

df � (bk − 1) − (b − 1) − (v − 1) � bk − b − v + 1 , (11.3.6)

wherebk � n is the total number of observations.
A test ofHT

0 :{all τi are equal} againstHT
A :{at least two of theτi ’s differ} is given by

the decision rule

rejectHT
0 if

msTadj

msE
> Fv−1,bk−b−v+1,α

for some chosen significance levelα, wheremsTadj � ssTadj/(v−1), andmsE � ssE/(bk−
b − v + 1), and wheressE andssTadj are given by (11.3.4) and (11.3.5). This test is most
conveniently set out in an analysis of variance table, as in Table 11.7.

If evaluation of blocking for the purpose of planning future experiments is required, the
quantityssθ in (11.3.4)is not the correct value to use. It has not been adjusted for the fact
that every block does not contain an observation on every treatment. In order to evaluate
blocks, we need theadjusted block sum of squares. Some computer packages will give this
value under the heading “adjusted” or “Type III” sum of squares. If the program does not
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Table 11.7 Analysis of variance table for a binary incomplete block design with b
blocks of size k , and v treatment labels appearing r times

Source of Degrees of Sum of Mean Ratio
Variation Freedom Squares Square
Blocks (adj) b − 1 ssθadj msθadj −
Blocks (unadj) b − 1 ssθ − −
Treatments (adj) v − 1 ssTadj msTadj

msT adj
msE

Error bk − b − v + 1 ssE msE
Total bk − 1 sstot

Formulae
ssθ �∑b

h�1 B
2
h /k −G2/(bk ) ssE � sstot − ssθ − ssT adj

ssT adj �∑v
i�1Qi τ̂i sstot �∑b

h�1
∑v

i�1 nhiy
2
hi −G2/(bk )

Qi � Ti −∑b
h�1 nhiBh/k . ssθadj � sstot − ssE − (∑v

i�1 T
2
i /r −G2/(bk )

)
automatically generate the adjusted value, it can be obtained from a “sequential sum of
squares” by entering treatments in the model before blocks. The formula is similar to that
for ssTadj switching roles of blocks and treatments:

ssθadj � sstot − ssE − ssTunadj

� sstot − ssE − (
1

r

v∑
i�1

T 2
i − 1

vr
G2) . (11.3.7)

11.3.2 Least Squares Estimation (Optional)

A set of least squares estimates of the parameters in the block–treatment model (11.3.1) is
obtained by minimizing the sum of squares of the errors (cf. Section 3.4.3). Sincenhi is
equal to 1 if treatmenti is observed in blockh, and zero if it is not, then the sum of squares
of the errors can be written for a binary design as

b∑
h�1

v∑
i�1

nhie
2
hi �

b∑
h�1

v∑
i�1

nhi (yhi − µ− θh − τi)
2 .

To obtain a set of least squares estimates, we differentiate this expression with respect to
each parameter (µ, θ1, θ2, . . . , θb, τ1, τ2, . . . , τv) in turn. If we set the derivatives equal to
zero and note that

∑
h nhi � r and

∑
i nhi � k, we obtain the following set of 1+ b + v

normal equations:

G− rvµ̂− k

b∑
h�1

θ̂h − r

v∑
i�1

τ̂i � 0 , (11.3.8)

Bu − kµ̂− kθ̂u −
v∑
i�1

nui τ̂i � 0 , for u � 1, . . . , b , (11.3.9)
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Tp − rµ̂−
b∑

h�1

nhpθ̂h − rτ̂p � 0 , for p � 1, . . . , v , (11.3.10)

where

Tp �
p∑

h�1

nhpyhp, Bu �
v∑
i�1

nuiyui, and G �
b∑

h�1

v∑
i�1

nhiyhi .

The sum of theb equations (11.3.9) gives equation (11.3.8), as does the sum of thev

equations (11.3.10). Therefore, there are at most (and, in fact, exactly) 1+v+b−2 distinct
equations inv+ b+ 1 unknowns. We can choose any two extra distinct equations to obtain
a set of least squares estimates of the parameters. If the two equations

∑
i τ̂i � 0 and∑

h θ̂h � 0 are chosen, then (11.3.8) and (11.3.9) give the solutions

µ̂ � 1

bk
G and θ̂u � 1

k
Bu − 1

bk
G− 1

k

v∑
i�1

nui τ̂i . (11.3.11)

Substituting these solutions into (11.3.10) gives

Tp − r

bk
G−

b∑
h�1

nhp

(
1

k
Bh − 1

k

v∑
i�1

nhi τ̂i − 1

bk
G

)
− rτ̂p � 0.

Then, if we collect the terms involving thêτi ’s onto the left-hand side of the equation and
interchange the order of summations, we have(

r − 1

k

b∑
h�1

n2
hp

)
τ̂p − 1

k

∑
i 	�p

b∑
h�1

nhpnhi τ̂i � Qp, (11.3.12)

where

Qp � Tp −
b∑

h�1

nhpBh/k .

Now,
∑

h n
2
hp �∑h nhp � r, and the quantity

∑b
h�1 nhpnhi counts the number of blocks

in which treatmentsi andp appear together. Writing this count asλpi and multiplying both
sides of equation (11.3.12) byk, we obtain

r(k − 1)τ̂p −
∑
i 	�p

λpi τ̂i � kQp , for p � 1, . . . , v. (11.3.13)

A least squares solution for eachτ̂i requires a solution to (11.3.13), and this is not easy
to obtain without a matrix formulation. However, we can obtain solutions in some special
cases. We give an illustration below for the balanced incomplete block design and leave the
group divisible design as an exercise (Exercise 13).

Solution for balanced incomplete block design For the balanced incomplete block
design, all pairs of treatment labels appear together inλ blocks. Consequently,λpi in
(11.3.13) is equal to a constantλ for all p andi, giving

r(k − 1)τ̂p − λ
∑
i 	�p

τ̂i � kQp , for p � 1, . . . , v.
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In solving the normal equations, we used the extra equation
∑

i τ̂i � 0, so we can write∑
i 	�p τ̂i � −τ̂p, and obtain

(r(k − 1) + λ)τ̂p � kQp , for p � 1, . . . , v.

One of the necessary conditions given in Section 11.2.4 for the existence of a balanced
incomplete block design is thatr(k − 1) � λ(v − 1) or, equivalently,r(k − 1) + λ � λv.
Thus, a set of least squares estimators for the treatment parameters in a balanced incomplete
block design is given by

τ̂p � k

λv
Qp , for p � 1, . . . , v.

Formula for ssE for any incomplete block design For any incomplete block design
with r observations per treatment and with blocks of sizek, the minimum sum of squares
for error with the block–treatment model (11.3.1) is

ssE �
b∑

h�1

v∑
i�1

nhi ê
2
hi �

b∑
h�1

v∑
i�1

nhi(yhi − µ̂− θ̂h − τ̂i)
2 ,

whereµ̂, θ̂h, andτ̂i are given in (11.3.11) and the solution to (11.3.13). On multiplying out
one copy of the squared factor, the previous equation becomes

ssE �
∑
h

∑
i

nhiyhi(yhi − µ̂− θ̂h − τ̂i) − µ̂
∑
h

∑
i

nhi(yhi − µ̂− θ̂h − τ̂i)

−
∑
h

θ̂h
∑
i

nhi(yhi − µ̂− θ̂h − τ̂i)

−
∑
i

τ̂i
∑
h

nhi(yhi − µ̂− θ̂h − τ̂i) ,

which is equal to

ssE �
∑
h

∑
i

nhiyhi(yhi − µ̂− θ̂h − τ̂i) − µ̂(G− bkµ̂− k
∑
h

θ̂h − r
∑
i

τ̂i)

−
∑
h

θ̂h(Bh − kµ̂− kθ̂h −
∑
i

nhi τ̂i)

−
∑
i

τ̂i(Ti − rµ̂−
∑
h

nhi θ̂h − rτ̂i) .

The last three terms are all zero by virtue of the normal equations, and sossE becomes

ssE �
∑
i

∑
h

nhiy
2
hi −Gµ̂−

∑
h

Bhθ̂h −
∑
i

Ti τ̂i .

If we substitute the formulae for̂µ andθ̂h from equation (11.3.11) intossE above and collect
the terms inτ̂i together, we obtain

ssE �
∑
h

∑
i

nhiy
2
hi − 1

k

∑
h

B2
h −
∑
i

Qi τ̂i ,
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with Qi � Ti − (1/k)
∑

h nhiBh. Finally, if we add and subtract a termG2/(bk), the sum
of squares for error for an incomplete block design can be written as

ssE �
(

b∑
h�1

v∑
i�1

nhiy
2
hi − 1

bk
G2

)
−
(

1

k

b∑
h�1

B2
h − 1

bk
G2

)
−

v∑
i�1

Qiτ̂i

� sstot − ssθ − ssTadj ,

whereτ̂i is a least squares solution forτi obtained as a solution to (11.3.13).

11.4 Analysis of Balanced Incomplete Block Designs

11.4.1 Multiple Comparisons and Analysis of Variance

In optional Section 11.3.2, a set of least squares solutions for the treatment parameters in
the block–treatment model (11.3.1) for the balanced incomplete block design were derived
as

τ̂i � k

λv
Qi , for i � 1, . . . , v , (11.4.14)

whereQi is the adjusted treatment total, calculated as

Qi � Ti − 1

k

b∑
h�1

nhiBh ,

and whereλ is the number of times that every pair of treatments occurs together in a block,
andnhi � 1 if treatmenti is observed in blockh, andnhi � 0 otherwise. Thus, the least
squares estimator of contrast�ciτi is∑

ci τ̂i � k

λv

∑
ciQi , (11.4.15)

and it can be shown that

Var

(∑
i

ci τ̂i

)
�
∑
i

c2
i

(
k

λv

)
σ 2 . (11.4.16)

The Bonferroni, Scheffé, Tukey, Dunnett, and Hsu methods of multiple comparisons can
all be used for balanced incomplete block designs with error degrees of freedomdf �
bk − b − v + 1. The general formula for simultaneous 100(1− α)% confidence intervals
for a set of contrasts�ciτi is∑

i

ciτi ∈
(
k

λv

∑
i

ciQi ± w

√
�c2

i

(
k

λv

)
msE

)
, (11.4.17)

where the critical coefficients for the five methods are, respectively,

wB � tbk−b−v+1,α/2m ; wS � √(v − 1)Fv−1,bk−b−v+1,α ;

wT � qv,bk−b−v+1,α/
√

2 ;

wH � wD1 � t
(0.5)
v−1,bk−b−v+1,α ; wD2 � |t |(0.5)

v−1,bk−b−v+1,α .
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The analysis of variance table is given in Table 11.7, page 351. For testingm hypotheses
of the general formH0 :

∑
ciτi � 0 against the corresponding alternative hypotheses

Ha :
∑

ciτi 	� 0, at overall significance levelα, the decision rule using Bonferroni’s
method for preplanned contrasts is

rejectH0 if
sscadj

msE
> F1,bk−b−v+1,α/m , (11.4.18)

and the decision rule using Scheffé’s method is

rejectH0 if
sscadj

msE
> (v − 1)F1,bk−b−v+1,α , (11.4.19)

where

sscadj

msE
� k(

∑
ciQi)2

λv(
∑

c2
i )msE

� (
∑

ci τ̂i)2(
k
λv

)
(
∑

c2
i ) msE

. (11.4.20)

As for equireplicate completely randomized designs, two contrasts�ciτi and�diτi are
orthogonal in a balanced incomplete block design if�cidi � 0. The adjusted treatment sum
of squares can then be written as a sum of adjusted contrast sums of squares for a complete
set of (v − 1) orthogonal contrasts. An example is given in the following section.

11.4.2 A Real Experiment—Detergent Experiment

An experiment to compare dishwashing detergent formulations was described by P. W. M.
John in the journalTechnometrics in 1961. The experiment involved three base detergents
and an additive. Detergent I was observed with 3, 2, 1, and 0 parts of the additive, giving
four treatment combinations, which we will code 1, 2, 3, and 4. Likewise, Detergent II was
observed with 3, 2, 1, and 0 parts of the additive, giving four treatment combinations, which

Table 11.8 Design and number of plates washed
for the detergent experiment

Block Design Plates Washed
1 3 8 4 13 20 7
2 4 9 2 6 29 17
3 3 6 9 15 23 31
4 9 5 1 31 26 20
5 2 7 6 16 21 23
6 6 5 4 23 26 6
7 9 8 7 28 19 21
8 7 1 4 20 20 7
9 6 8 1 24 19 20
10 5 8 2 26 19 17
11 5 3 7 24 14 21
12 3 2 1 11 17 19

Source: John, P. W. M. (1961). Copyright © 1961
American Statistical Association. Reprinted with
permission.
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we will code 5, 6, 7, and 8. The standard detergent (Detergent III) with no additive served
as a control treatment, which we will code as 9.

The experiment took place in a location where three sinks were available. Three people
took part in the experiment and were instructed to wash plates at a common rate. An obser-
vation was the number of plates washed in a sink before the detergent foam disappeared. A
block consisted of three observations, one per sink. The three people washing dishes rotated
amongst the sinks after every five plates in order to reduce the person effect on the observa-
tion. The refilling of the three sinks with water and detergent constituted the beginning of a
new block. The amount of soil on the plates was held constant. Differences between blocks
were due to differences in the common washing rates, in water temperature, in experimenter
fatigue, etc.

A design was required with blocks of sizek � 3 andv � 9 treatment labels. A balanced
incomplete block design was selected withb � 12 blocks givingr � bk/v � 4 observations
per treatment and every pair of treatment labels occurring inλ � r(k−1)/(v−1) � 1 block.
The design was randomized as in Section 11.2.2, but the randomization was not shown in
the original article. We have shown a possible randomization in Table 11.8 together with the
corresponding data. The positions within a block show the allocations of the three basins
to treatments. The observations are plotted against treatment in Figure 11.2, ignoring the
block from which the observation was collected.

Since each pair of treatments occurs together in only one block (λ � 1), a graphical ap-
proach for the evaluation of block–treatment interaction cannot be used. However, it appears
from Figure 11.2 that block differences, block–treatment interaction effects, and random
error variability must all be rather small compared with the large detergent differences.

Block–treatment model (11.3.1) for an incomplete block design was fitted to the data.
The residual plots might lead us to question some of the error assumptions, but there are only
4 observations per treatment and these are all from different blocks, so it is difficult to make
a proper assessment. We will proceed with the standard analysis for a balanced incomplete

Figure 11.2
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block design, recognizing that the stated significance levels and confidence levels are only
approximate.

Plotting the data adjusted for block effects In this detergent experiment, the treatment
differences are fairly clear from the plot of the raw data in Figure 11.2. However, if the block
effects had been substantial, such a plot of the raw data could have painted a muddled picture.
In such cases, the picture can be substantially improved by adjusting each observation for
the block effects before plotting. The observationyhi is adjusted for the block effects as
follows,

y∗
hi � yhi − (θ̂h − θ̂ .) ,

where (̂θh − θ̂ .) is the least squares estimator of (θh − θ .). A SAS program that adjusts the
observations for block effects and plots the adjusted observations is given in Table 11.20
in Section 11.10. It should be noted that since the variability due to block effects has been
extracted, a plot of the adjusted observations will appear to exhibit less variability than really
exists.

For this particular data set, the block differences are very small, so a plot of the adjusted
data would provide information similar to that provided by the plot of the raw data in
Figure 11.2. In Figure 11.3, the observations adjusted for blocks are plotted against “parts
of additive” for each base detergent. It appears that the washing power decreases almost
linearly as the amount of additive is decreased and also that the original detergent is superior
to the two test detergents.

Analysis The analysis of variance table, given in Table 11.9, shows the treatment sum
of squares and its decomposition into sums of squares for orthogonal contrasts. The eight
orthogonal contrasts are the linear, quadratic, and cubic trends for each of detergents I and
II (as the amount of additive increases), together with the “I vs. II” contrast that compares

Figure 11.3
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Table 11.9 Analysis of variance table for the detergent experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Blocks (adj) 11 10.06 0.91 − −
Blocks (unadj) 11 412.75 − − −
Treatments(adj) 8 1086.81 135.85 164.85 0.0001
I linear 1 286.02 286.02 347.08 0.0001
I quadratic 1 12.68 12.68 15.38 0.0012
I cubic 1 0.22 0.22 0.27 0.6092
II linear 1 61.34 61.34 74.44 0.0001
II quadratic 1 0.15 0.15 0.18 0.6772
II cubic 1 0.03 0.03 0.04 0.8520
I vs II 1 381.34 381.34 462.75 0.0001
Control vs others 1 345.04 345.04 418.70 0.0001
Error 16 13.19 0.82
Total 35 1512.75

the effects of detergents I and II averaged over the levels of the additive, and the “control
vs. others” contrast comparing the effect of the control detergent and the average effect of
the other eight treatments. For example, the linear trend contrast for detergent I is−3τ1 −
τ2 + τ3 + 3τ4, where the contrast coefficients are obtained from Table A.2. The contrast
comparing detergents I and II is the difference of averages contrast

1

4
(τ1 + τ2 + τ3 + τ4) − 1

4
(τ5 + τ6 + τ7 + τ8) ,

and the contrast comparing the control detergent with the others is the difference of averages
contrast

τ9 − 1

8
(τ1 + τ2 + τ3 + τ4 + τ5 + τ6 + τ7 + τ8) .

A set of simultaneous 99% confidence intervals for all treatment contrasts using Scheffé’s
method of multiple comparisons is given by (11.4.17); that is,∑

i

ciτi ∈
(
k

λv

∑
i

ciQi ± √8F8,16,.01

√∑
i

c2
i

(
k

λv

)
msE

)
,

whereF8,16,.01 � 3.89.
Using the data shown in Table 11.8, we have treatment totals

T1 T2 T3 T4 T5 T6 T7 T8 T9
79 67 53 26 102 93 83 77 119

and block totals

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12
40 52 69 77 60 55 68 47 63 62 59 47

Then, the first adjusted treatment total is

Q1 � T1 − 1

k
[B4 + B8 + B9 + B12] � 79− 1

3
[234] � 1.0 .
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The other adjusted treatment totals are calculated similarly, giving

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

1.00 −6.67 −18.67 −38.67 17.67 10.67 5.00 −0.67 30.33

and sincek/(λv) � 3/9, the least squares estimate of the contrast�ciτi is�ciτ̂i � �ciQi/3
(i � 1,2, . . . ,9). The least squares estimate for the control versus others contrast is then

8∑
i�1

ci τ̂i � τ̂9 − 1

8

8∑
i�1

τ̂i � 1

3

(
Q9 − 1

8

8∑
i�1

Qi

)
� 11.375,

with associated estimated variance

V̂ar

(
8∑
i�1

ci τ̂i

)
�

8∑
i�1

c2
i

(
k

λv

)
msE �

(
1 + 8

64

)(
3

9

)
(0.824)� 0.3075,

wheremsE � 0.824 is obtained from Table 11.9. Using Scheffé’s method of multiple
comparisons at overall level 99%, a confidence interval for the control versus others contrast
is then

11.375±√8F8,16,0.01

√
0.3075� 11.375± 3.093� (8.282,14.468),

showing that the control detergent washed between 8.3 and 14.5 more plates than the other
detergents on average.

For each pairwise comparisonτi − τp, we have
∑

c2
i � 2, so

V̂ar
(∑

ci τ̂i

)
�
∑

c2
i

(
k

λv

)
msE � 2

(
3

9

)
msE � 0.547.

Hence, the minimum significant difference for treatment versus control contrasts, using the
Scheff́e method with overall significance levelα � 0.01, is

msd � √8F8,16,.01

√
0.547�

√
(31.12)(0.547)≈ 4.125.

The treatment versus control least squares estimates are

τ̂9 − τ̂i � (Q9 −Qi)/3, for i � 1, . . . ,8 .

Using the values ofQi calculated above, we obtain

τ̂9 − τ̂1 � 9.78 ; τ̂9 − τ̂2 � 12.33 ; τ̂9 − τ̂3 � 16.33 ;

τ̂9 − τ̂4 � 23.00 ; τ̂9 − τ̂5 � 4.22 ; τ̂9 − τ̂6 � 6.55 ;

τ̂9 − τ̂7 � 8.44 ; τ̂9 − τ̂8 � 10.33.

Each contrast estimate exceedsmsd = 4.125 in magnitude, so we conclude that the control
detergent on average washes more dishes than each of the 8 experimental detergents (al-
though the interval that compares detergent 9 with that of detergent 5 only just excludes
zero).

The sum of squares for treatments adjusted for blocks is

ssTadj �
∑

τ̂iQi � k

λv

∑
Q2

i � 1086.81.
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Since
msTadj

msE
� 1086.81/8

0.824
� 164.85> F8,16,0.01 � 3.89,

we reject the hypothesis of no treatment differences.
The eight orthogonal contrasts can be tested simultaneously using the method of Scheffé.

For example, the confidence interval for the “control versus others” contrast calculated above
as part of a 99% simultaneous set of intervals does not contain zero, so the hypothesis that the
control treatment does not differ from the others would be rejected. The overall significance
level for all such tests would beα � 0.01. Equivalently, the contrasts can be tested by the
Scheff́e method using the decision rule (11.4.19), page 355; that is,

rejectH0 :
∑

ciτi � 0 if
sscadj

msE
> 8F8,df,.01 � 31.12,

where

sscadj

msE
�
(∑

ci τ̂i
)2

V̂ar
(∑

ci τ̂i
) � k

(∑
ciQi

)2
λv
(
�c2

i

)
msE

.

The ratiossscadj/msE are provided in Table 11.9. Comparing their values with 31.12, we
see that the linear trends are significantly different from zero for each of the base detergents
I and II, as are the comparison of detergents I and II on average and the comparison of the
control detergent with the average effects of the other 8 treatments. From significance of
the linear trend contrasts, coupled with the direction of the trends, one can conclude that
detergents I and II get better as the level of additive is increased.

We cannot use the unadjusted block sum of squares to evaluate the usefulness of blocking.
We would need to calculate the adjusted block sum of squares as (11.3.7), page 351; that is,

ssθadj � sstot − ssE −
(

1

r

v∑
i�1

T 2
i − 1

vr
G2

)

� 1512.75− 13.19−
(

1

4
(792 + 672 + · · · + 1192) − 1

36
6992

)
� 1512.75− 13.19− 1489.50 � 10.06.

The adjusted block mean square ismsθadj � 10.06/11 � 0.91, which is not much larger than
the error mean square,msE � 0.82, so the blocking did not help with increasing the power
of the hypothesis tests. Nevertheless, it was natural to design this experiment as a block
design, and the creation of blocks was a wise precaution against changing experimental
conditions.

11.5 Analysis of Group Divisible Designs

11.5.1 Multiple Comparisons and Analysis of Variance

Group divisible designs were described in Section 11.2.5, page 345, and illustrations were
shown in Tables 11.1 and 11.5. Thev treatment labels are divided intog groups ofl labels
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each. Treatment labels in the same group are calledfirst associates, and those in different
groups are calledsecond associates. Pairs of treatment labels that are first associates occur
together inλ1 blocks and those that are second associates inλ2 blocks.

The least squares estimators for the treatment parametersτi adjusted for blocks are
obtained from the general formula (11.3.2), page 349, withλpi � λ1 if treatmentsp andi
are first associates, and withλpi � λ2 if they are second associates. The reader is asked in
Exercise 13 to show that for a group divisible design,τ̂i is equal to

τ̂i �
[

k

(r(k − 1) + λ1)vλ2

]
×
[

(vλ2 + (λ1 − λ2))Qi + (λ1 − λ2)
∑
(1)

Qp

]
,

(11.5.21)

whereQi � Ti − (1/k)
∑

h nhiBh is the adjusted treatment total as in (11.3.3), page 349,
and where

∑
(1)Qp denotes the sum of theQp corresponding to the treatment labels that

are the first associates of treatment labeli.
In general, the variance of the least squares estimator�ciτ̂i of an estimable contrast

�ciτi is

Var

(
v∑
i�1

ci τ̂i

)
�

v∑
i�1

c2
i Var(τ̂i) + 2

v−1∑
i�1

v∑
p�i+1

cicp Cov(τ̂i , τ̂p) ,

where

Var(τ̂i) � k[vλ2 + (λ1 − λ2)]

vλ2[vλ2 + l(λ1 − λ2)]
σ 2

and

Cov(τ̂i , τ̂p) �


k(λ1 − λ2)σ 2

vλ2[vλ2 + l(λ1 − λ2)]
, if i andp are first associates,

0 , if i andp are second associates.

The variance of the least squares estimator of the pairwise comparisonτi − τp is then

Var(τ̂i − τ̂p) �


2kσ 2

[vλ2 + l(λ1 − λ2)]
, if i andp are first associates,

2k[vλ2 + (λ1 − λ2)]σ 2

vλ2[vλ2 + l(λ1 − λ2)]
, if i andp are second associates.

In order to obtain the variances for the pairwise comparisons as close together as possible,
it is clear thatλ1 andλ2 need to be as close as possible.

The Bonferroni and Scheffé methods of multiple comparisons can be used for group
divisible designs. The Tukey method is believed to be conservative (α-level lower than
stated). The Dunnett and Hsu methods are not available using our tables, since the critical
values can be used only for designs in which Cov(τ̂i , τ̂p) are equal for alli andp. The analysis
of variance table for the group divisible design is that given in Table 11.7, page 351, withτ̂i
as in (11.5.21) above. An example of an experiment designed as a group divisible design is
discussed in Section 11.7. SAS programs are illustrated in Section 11.10 that can be used
to analyze any group divisible design.
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11.6 Analysis of Cyclic Designs

Cyclic designs were described in Section 11.2.6, page 346, and illustrated in Tables 11.1
and 11.6. They are incomplete block designs that may or may not possess the properties of
balanced incomplete block designs or group divisible designs. When they do possess these
properties, they can be analyzed as indicated in Sections 11.4 and 11.5. We recommend
analysis by computer, since in general, the least squares estimatorsτ̂i have no simple form.
The Bonferroni and Scheffé methods of multiple comparisons can be used for cyclic designs.

In Section 11.7 we reproduce the checklist and analysis of an experiment that was de-
signed as a cyclic group divisible design, and in Section 11.10 we illustrate SAS computer
programs that can be used to analyze any cyclic incomplete block design.

11.7 A Real Experiment—Plasma Experiment

The plasma experiment was run by Ernesto Barrios, Jin Feng, and Richard Kibombo in
1992 in the Engineering Research Center at the University of Wisconsin. The following
checklist has been extracted verbatim from the experimenters’ report, and our comments
are in parentheses. The design used was a cyclic group divisible design. Notice that the
experimenters moved step (e) of the checklist forward. They had made a list of all potential
sources of variation, but they needed a pilot experiment to help determine which sources
they could control and which they could not.

CHECKLIST

(a) Define the objectives of the experiment.
In physics, plasma is an ionized gas with essentially equal densities of positive and
negative charges. It has long been known that plasma can effect desirable changes in
the surface properties of materials.
The purpose of this experiment is to study the effects of different plasma treatments of
certain plastic pipet tips on the capillary action of the pipets. Capillary action concerns
the movement of a liquid up the pipet—a small tube. Before a plasma treatment, the
capillarity conduct of the tips is too narrow to permit water to move up. Changes in
capillary action effected by plasma treatment can be measured by suspending the tip of
a vertical pipet into a bed of water and measuring the height of the column of water in
the tube.

(e) Run a pilot experiment.
At this stage we decided to make a test run to become familiar with the process of setting
up and running the experiment, to determine the appropriate treatment factor levels, and
to help identify the major sources of variation that could be controlled, and to identify
other variables that might affect the response but which could not be controlled.

(b) Identify all sources of variation.
From the test run, we determined that pressure and voltage could not both be effectively
controlled. More generally, it would be difficult to vary all of the variables initially listed
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(gas flow rate, type of gas, pressure, voltage, presence or absence of a ground shield,
and exposure time of the pipet tips to the ionized gas).
Also, the following factors were potential sources of variation.

• Experimenters. Despite the fact that all of the experimenters were to play certain roles
during each run of the experiment, it was noted that most of the variation due to the
personnel could be attributed to the person who actually connects the pipet tips to the
gas tube in the ionization chamber and takes the readings of the final response using
vernier calipers.

• Room conditions. It was thought that variations in both room temperature and
atmospheric pressure could have an effect on response.

• Water purity. If the water used to measure the capillarity has a substantial amount
of impurities, especially mineral salts, then the response may be greatly affected,
either because of variability in cohesion and adhesion forces of different types of
substances, or because of a reaction between the impurities (salts) and the pipet tips.

• Materials. Variability in the quality of both the pipet tips and the gases used is likely
to introduce some variation in the response. Within an enclosed room such as a
laboratory, the composition of air may vary significantly over time.

Taking into account the results of the pilot run, and given the fact that we are all amateurs
in the field, the following decisions were made.
(i) Treatment factors and their levels.
Scale down the variables of interest to three by keeping both the pressure and voltage
constant at 100 mm Torres and 5 volts, respectively, and by keeping the ground shield
on. Distilled water will be used to control for impurities in the water. Pipet tips from
a single package will be used, so the pipets are more likely to be from the same batch
and hence more likely to be homogeneous.
No attempt will be made to control for variation in the composition or purity of the gases
used. Thus, the only factors that made up the various treatment combinations were gas
flow rate, type of gas, and exposure time.
Set the lower and upper levels of each factor far apart in order to make any (linear)
effect more noticeable. Also, we decided to include only 6 of the 8 possible treatment
combinations. These were:

Factors and Levels
Treatment Type of Gas Exposure Time Gas Flow Rate

(sec) (cc/sec)
1 Argon 180 10
2 Air 180 10
3 Argon 180 30
4 Argon 60 30
5 Air 60 30
6 Air 60 10

(ii) Experimental units.
The experimental units are the (combinations of) pipets and time order of observations.
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(iii) Blocking factors, noise factors, and covariates.
The two blocking factors are “experimenter”—namely, who connects the pipet and
measures the resulting water column height—and “day.”
(No covariates or noise factors were included.)

(c) Specify a rule by which to assign the experimental units to the treatments.
(There were 3 experimenters collecting observations each day, and a total of only 9
observations could be taken per day within the time available.)
The design will be an incomplete block design with blocks of size three, and three
blocks of data will be collected on each of two days. We will use the cyclic design for
v � 6 � b andk � 3 � r generated by the treatment labels 1, 4, 5. The labels in the
design will be randomly assigned to the six treatment combinations, and the treatments
within each block will be randomly ordered.
(The selected cyclic design is shown in Table 11.10 in nonrandomized order so that the
cyclic nature of the design can be seen more easily. The design also happens to be a
group divisible design (see Exercise 14). The smallest balanced incomplete block design
with v � 6 andk � 3 hasr � 5 andb � 10 and would require more observations.)

(d) Specify the measurements to be made, the experimental procedure, and the
anticipated difficulties.
The height of the water column will be measured for each pipet. In order to make the
measurements as uniform as possible, a device has been constructed, consisting of a
rectangular sheet of plexiglass with a small hole in which to place the pipet tip. Placing
this pipet holder on a water vessel suspends about 2 mm of the tip of the pipet into the
water. After 60 seconds, a mark will be made on the pipet indicating the water level
reached. The distance of the mark from the tip of the pipet will be measured using a
vernier caliper with tenth of a millimeter precision.
The experimental procedure for each observation is as follows: Place a pipet on the
tube through which the plasma will flow, screw a glass tube, turn on the pump and wait
40 seconds, open the Baratron, open the gas, turn a controller to auto, set the flow to
a specified level, turn the pressure controller to auto and set the level, set the voltage,
time the treatment, turn off flow and shut off the gas, set the pressure to open, wait until
the pressure is less than 20, turn off the Baratron, turn off the pump, unscrew the glass
tube and pull out a cone, (wearing a glove) take out the pipet, place the pipet in water
(using the device for this purpose), and mark the height of the water column, then go
on to the next observation.

Table 11.10 Design and data for the plasma experiment

Block Day Experimenter Response (Treatment)
1 1 Feng 0.459 (4) 0.458 (5) 0.482 (1)
2 1 Barrios 0.465 (5) 0.467 (6) 0.464 (2)
3 1 Kibombo 0.472 (6) 0.495 (1) 0.473 (3)
4 2 Feng 0.325 (1) 0.296 (2) 0.283 (4)
5 2 Barrios 0.390 (2) 0.248 (3) 0.410 (5)
6 2 Kibombo 0.239 (3) 0.350 (4) 0.384 (6)
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Anticipated difficulties: Differences in the way people would mark or measure the
water column heights would cause variation. Running the experiment as consistently
as possible.

(f) Specify the model.
(The standard block–treatment model (11.3.1) for an incomplete block design was
specified.)

(g) Outline the analysis.
An analysis of variance test for equality of the treatment effects will be performed. Then
confidence intervals for all pairwise comparisons will be obtained, with a simultaneous
95% confidence level using the method of Scheffé. (Since Tukey’s method gives tighter
confidence intervals, the calculations below have been modified from the experimenters’
article.) Model assumptions will be evaluated.

(h) Calculate the number of observations to be taken.
(This was not discussed.)

(i) Review the above decisions. Revise if necessary.
(No revisions were made at this stage.)

Results of the experiment During the experiment, an unexpected event occurred. A
little tube through which the gas passes was broken, allowing for some leaking of gas.
We realized this after our first day’s runs and tried to fix this problem the next day, using
tape, as a new tube was unavailable. As can be seen from the results, given in Table 11.10,
the responses from the last nine runs, corresponding to the second day, were consistently
smaller than those from the first nine runs. This underscores the advantage of using time as
a blocking factor.

Data Analysis The analysis of variance is given in Table 11.11. It was obtained via a
SAS computer program similar to the one in Table 11.16 in Section 11.10. The adjusted
block mean square,msθadj � 0.0161, is twelve times larger than the error mean square, so
blocking was certainly worthwhile.

The ratiomsTadj/msE � 2.99 does not exceed the critical valueF5,7,.05 � 3.97 for testing
equality of the treatment effects at the 5% significance level (equivalently, thep-value is
greater than 0.05). Based on this result, examination of any individual treatment contrasts
may seem unwarranted, as the results will not be statistically significant.

Table 11.11 Analysis of variance table for the plasma experiment

Source of Degrees Sum of Mean Ratio p-value
Variation of Freedom Squares Square
Blocks (adj) 5 0.0805 0.0161 − −
Blocks 5 0.0992 − − −
Treatments (adj) 5 0.0196 0.0039 2.99 0.0932
Error 7 0.0092 0.0013
Total 17 0.1279
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Figure 11.4
Plasma data adjusted
for block effects—day

one only
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However, the broken tube discovered after the first day of runs is an important consid-
eration in this experiment. It is quite possible that the treatments are not the same on day
one as on day two. For example, the broken tube may change the gas flow rate or the type
of gas to which the pipet is exposed. So, one must ask the question, “Is there anything to be
salvaged from this experiment?”

First of all, as has already been noted, the results of the first day were all higher than the
results of the second day. Since the objective is to increase capillarity, the results of the first
day are thus consistently better. If an explanation can be found for this difference, and if
the effect of this difference between days can be repeated, then perhaps quite a lot can be
learned “by accident” from this experiment!

If the broken tube has in fact changed the treatments, and if the breakage occurred after
the first day’s runs, then it might be most useful to analyze the data for one or both days
separately. The design for each day is no longer a cyclic design or a group divisible design.
Nevertheless, the designs for each day are still connected incomplete block designs and can
still be analyzed by computer (see Section 11.10).

Table 11.12 Analysis of variance for the plasma experiment—day one only

Degrees of Sum of Mean Ratio p-value
Source Freedom Squares Square
Blocks (adj) 2 0.0001213 0.0000607 364.00 −
Block 2 0.0004029 − − −
Treatments (adj) 5 0.0007112 0.0001422 853.40 0.026
Error 1 0.0000002 0.0000002
Total 8 0.0011142
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Table 11.13 Pairwise comparisons for the plasma experiment using
the Tukey method and confidence level 95%—day one
only

i, p τ̂i − τ̂p

√
V̂ar(τ̂i − τ̂p ) msd Significant

1, 2 0.025500 0.000646 0.0184 yes
1, 3 0.021833 0.000553 0.0158 yes
1, 4 0.023167 0.000553 0.0158 yes
1, 5 0.024333 0.000471 0.0135 yes
1, 6 0.022667 0.000471 0.0135 yes
2, 3 −0.003667 0.000746 0.0213
2, 4 −0.002333 0.000746 0.0213
2, 5 −0.001167 0.000553 0.0158
2, 6 −0.002833 0.000553 0.0158
3, 4 0.001333 0.000746 0.0213
3, 5 0.002500 0.000646 0.0184
3, 6 0.000833 0.000553 0.0158
4, 5 0.001167 0.000553 0.0158
4, 6 −0.000500 0.000646 0.0184
5, 6 −0.001667 0.000471 0.0135

If a test of the null hypothesisHT
0 of equal treatment effects is conducted separately for

each day’s data, it can be verified thatHT
0 would not be rejected at the 5% significance level

for the data collected on day two but would be rejected for the data of day one.
The analysis of variance for day one is shown in Table 11.12. The test ratio is 853.40—

which is larger thanF5,1,.05 � 230. The mean square for blocks adjusted for treatments is
0.0000607, which is 364 times larger thanmsE, so blocking was helpful for the observations
collected on day one. With only one degree of freedom for error, use of residuals to check
model assumptions is of little value. Figure 11.4 shows the day-one observations adjusted

for block effects,yhi − (θ̂h− θ̂ .) plotted against treatment. It appears that treatment 1 (Argon
at 10 cc per second for 180 seconds) is very different from the other treatments. Clearly,
the effect of such a break in the tube should be investigated rather carefully via further
experimentation.

Table 11.13 contains information for applying Tukey’s method of multiple comparisons
to the day-one data, using a simultaneous 95% confidence level. The least squares estimates
were obtained using a SAS computer program (see Table 11.19 in Section 11.10). The
minimum significant difference is smaller thanτ̂i − τ̂p for all pairwise comparisons with
i � 1, but for none of the others. Consequently, the only confidence intervals that do not
contain zero are those involving treatment 1. We conclude that based on the first day’s data,
treatment 1 is significantly better than each of the other 5 treatments. However, without
further experimentation, this difference cannot be explained.
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11.8 Sample Sizes

Given the number of treatmentsv and the block sizek, how many blocksb are required to
achieve confidence intervals of a specified length or a hypothesis test of specified power?
Since for most purposes the balanced incomplete block design is the best incomplete block
design when it is available, we start by calculatingb and the treatment replicationr � bk/v

for this design. Then if a balanced incomplete block design cannot be found withb andr
close to the calculated values, a group divisible, cyclic, or other incomplete block design
can be considered. Since balanced incomplete block designs are the most efficient, other
incomplete block designs would generally requireb andr to be a little larger.

Example 11.8.1 Sample size to achieve confidence interval length

Suppose Tukey’s method for all pairwise comparisons will be used to analyze an experiment
with v � 5 treatments and block sizek � 3. It is thought unlikely thatmsE will be larger than
2.0 units2. Suppose that the experimenters want the length of simultaneous 95% confidence
intervals for pairwise comparisons to be at most 3.0 units (that is, a minimum significant
difference of at most 1.5). A balanced incomplete block design will ensure that the interval
lengths will all be the same.

Using the facts thatλ � r(k − 1)/(v − 1) for a balanced incomplete block design and
b � vr/k for a block design, the error degrees of freedom can be written as

df � bk − b − v + 1 � vr − vr/k − v + 1 (11.8.22)

� [vr(k − 1) − k(v − 1)]/k � [10r − 12]/3 .

The minimum significant difference for a confidence interval for any pairwise treatment com-
parison, using Tukey’s method with an overall 95% confidence level, is given by (11.4.17),
page 354; that is,

msd � (qv,df,.05/
√

2)

√
2

[
k(v − 1)

rv(k − 1)

]
msE � q5,df,.05

√
12

5r
,

wheredf � [10r/3] − 4. For the minimum significant difference to be at most 1.5 units, it
is necessary that

r ≥ 1.0667q2
5,df,.05 .

Trial and error shows that around 17–18 observations per treatment would be needed to
satisfy the inequality; that is, 85–90 observations in total, which would require 28–30 blocks
of size 3. A balanced incomplete block design exists withv � 5, k � 3, b � 10, r � 6
(all possible combinations of five treatments taken three at a time as blocks). Repeating
this entire design three times would give a balanced incomplete block design withr � 18,
which will give confidence intervals of length about

2q5,56,.05

√
12/(5 × 18) ≈ 2.92 < 3.0 . ✷
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Example 11.8.2 Sample size to achieve specified power

Suppose a test of the null hypothesisH0 : {τi all equal} is required to detect a difference in
the treatment effects of) � 1 unit with probability 0.95, using significance levelα � 0.05
for a balanced incomplete block design withv � 5, k � 3

The least squares estimatorτ̂i−τ̂p of a pairwise comparison contrastτi−τp for a balanced
incomplete block design has variance given by (11.4.16), page 354, with�c2

i � 2; that is,

Var(�ciτ̂i) � 2
k

λv
σ 2 � 2

[
k(v − 1)

rv(k − 1)

]
σ 2 . (11.8.23)

The numberr of observations needed per treatment is calculated via a formula similar
to (6.6.49), page 168, witha � v and with 2σ 2/b replaced by the variance (11.8.23); that
is,

r � 2vσ 2φ2

)2

[
k(v − 1)

v(k − 1)

]
.

Suppose thatσ 2 is believed to be at most 1.0 unit2; thenr � 12φ2. The power tables in
Appendix A.7 can be used to findφ2. The numerator degrees of freedom areν1 � v − 1
and the denominator degrees of freedomν2 are the error degrees of freedom (11.8.22). So
for our example,ν1 � 4 andν2 � (10r − 12)/3. Trial and error shows that aboutr � 48
observations per treatment are needed to satisfy the equality. A balanced incomplete block
design exists withv � 5, k � 3, b � 10, r � 6 (all possible selections of three treatments
taken as blocks). Repeating the entire design eight times would give a balanced incomplete
block design withr � 48, as required. ✷

11.9 Factorial Experiments

11.9.1 Factorial Structure

Any of the incomplete block designs that we have discussed can be used for a factorial
experiment by taking the treatment labels to represent treatment combinations. The incom-
plete block designs that are the most suitable for factorial experiments allow the adjusted
treatment sum of squaresssTadj to be written as a sum of the adjusted sums of squares
for main effects and interactions. Thus, for an experiment with two factorsA andB, for
example, we would like to have

ssTadj � ssAadj + ssBadj + ssABadj .

Such block designs are said to havefactorial structure.
One benefit of this property is that the computations for, and interpretation of, the analysis

of variance are simplified. A design with factorial structure requires only that main-effect
and interaction contrast estimates be adjusted for block effects. In designs without factorial
structure, the contrast estimates have to be adjusted not only for blocks but also for contrasts
in all the other main effects and interactions. Although a computer program, such as the
SAS system, can handle this adjustment, uncorrelated estimates are much easier to interpret
and are, therefore, preferred.
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Table 11.14 Design and data for the step experiment

Treatment Combination
Block 11 12 13 21 22 23
1 75 87 84 93 99
2 93 84 96 90 108
3 99 93 96 123 129
4 99 108 99 99 120
5 99 111 90 129 141
6 129 135 120 147 153

All balanced incomplete block designs have factorial structure, and the features are
illustrated in the following example.

Example 11.9.1 Step experiment

An experiment was run by S. Guerlain, B. Busam, D. Huland, P. Taige, and M. Pavol in 1993
to investigate the effects on heart rate due to the use of a step machine. The experimenters
were interested in checking the theoretical model that says that heart rate should be a function
of body mass, step height, and step frequency. The experiment involved the two treatment
factors “step height” (factorC) and “step frequency” (factorD). Levels of “step height”
were 5.75 and 11.5 inches, coded 1 and 2. “Step frequency” had three equally spaced levels,
14, 21, and 28 steps per minute, coded 1, 2, 3. The response variable was pulse rate in beats
per minute.

The experiment usedb � 6 subjects as blocks, and each subject was measured under
k � 5 of thev � 6 combinations of step height and step frequency. The design was a
balanced incomplete block design with blocks corresponding to different combinations of
subject, run timer, and pulse measurer. All pairs of treatment combinations appeared together
in λ � 4 blocks. The data are shown in Table 11.14.

Writing the treatment combinations as two-digit codes, the block–treatment model
(11.3.1), page 348, becomes

Yhij � µ+ θh + τij + εhij ,

and the least squares estimates of the treatment parameters adjusted for subject are given
by (11.4.14), page 354, with two-digit codes; that is,

τ̂ij � k

λv
Qij � k

λv

[
Tij − 1

k

b∑
h�1

nhijBh

]
,

whereTij is the total of ther � 5 observations on step heighti, step frequencyj , Bh is the
total of thek � 5 observations on thehth subject; andnhij is 1 if treatment combinationij
is observed for subjecth and is zero otherwise. We obtain

τ̂11 τ̂12 τ̂13 τ̂21 τ̂22 τ̂23

−8.125 −7.625 −4.125 −11.375 12.375 18.875

Using thep-values in Table 11.15, the experimenters rejected the hypothesis of negligible
interaction. A plot of the data (not shown) suggests that heart rate increases linearly as the
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step frequency is increased, but that the linear trend is not the same for the two step heights.
The experimenters wanted to examine the average behavior of the two factors, so despite
this interaction, they decided to examine the main effects. In Exercise 10, the reader is asked
to examine the linear trends at each step height separately.

The adjusted sums of squares for the main effects ofC (step height) andD (step fre-
quency) and for their interaction are shown in Table 11.15. For a balanced incomplete block
design, these sums of squares can be obtained by hand by using the values ofτ̂ij in place of
yij. , andk/(λv) in place ofr in the formulae (6.4.21)–(6.4.26), page 154, or, equivalently,
in Rule 4, page 202, which leads to

ssCadj � λv

k

[
1

d

v∑
i�1

τ̂ 2
i. − 1

cd
τ̂ 2
..

]
�
(
λv

k

)
1

d

v∑
i�1

τ̂ 2
i.

�
(

24

5

)
1

3
(−19.8752 + 19.8752) � 1264.05.

For simplicity of notation, we now drop the subscript “adj.” However, all estimates
and sums of squares are adjusted for block effects. The experimenters were interested in
examining the linear and quadratic trend contrasts for step frequency, that is,

DL � −τ .1 + τ .3 � −1

2
(τ11 + τ21) + 1

2
(τ13 + τ23) ,

DQ � −τ .1 + 2τ .2 − τ .3 � −1

2
(τ11 + τ21) + 2

2
(τ12 + τ22) − 1

2
(τ13 + τ23) .

The least squares estimate for a contrast
∑

cij τij and the associated variance are given by
(11.4.15) and (11.4.16), page 354; that is,∑∑

cij τ̂ij � k

λv

∑∑
cijQij

and

Var
(∑∑

cij τ̂ij

)
�
∑∑

c2
ij

(
k

λv

)
σ 2.

Table 11.15 Analysis of variance for the step experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Subject (Block) (adj) 5 6685.05 1337.01 − −
Subject (Block) (unadj) 5 7400.40 − − −
Height (C ) (adj) 1 1264.05 1264.05 28.63 0.0001
Frequency (D) (adj) 2 1488.90 744.45 16.86 0.0001
Ht×Freq (CD) (adj) 2 990.90 495.45 11.22 0.0006
Error 19 838.95 44.16
Total 29 11983.20
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Using these formulae, we find that the least squares estimates of the linear and quadratic
trend contrasts for step frequency (adjusted for subjects) are

D̂L � 17.125 and D̂Q � −7.125.

The linear trend is positive, suggesting that the average pulse rate increases as the step
frequency increases, and the quadratic trend is negative, suggesting that the increase in
pulse rate is greater from 14 to 21 steps per minute than it is from 21 to 28 steps per minute.
The null hypothesesHL

0 : {DL � 0} andHQ
0 : {DQ � 0} should be tested to check whether

the perceived trends are significantly different from zero. The variances of the contrast
estimators are

Var(D̂L) �
∑∑

c2
ij

(
k

λv

)
σ 2 �

(
4

4

)(
5

24

)
σ 2 � 0.2083σ 2,

Var(D̂Q) �
(

12

4

)(
5

24

)
σ 2 � 0.625σ 2.

The contrast sum of squares for testing the null hypothesisHL
0 : {DL � 0} is obtained

from (11.4.20), page 355, as

ss(DL) � (D̂L)2∑∑
c2
ij

(
k
λv

) � 17.1252

0.2083
� 1407.675,

and the contrast sum of squares for testingH
Q
0 : {DQ � 0} is

ss(DQ) � (D̂Q)2∑∑
c2
ij

(
k
λv

) � (−7.125)2

0.625
� 81.225.

The linear and quadratic contrasts are orthogonal in a balanced incomplete block design
even after adjusting for blocks, and we can now verify that indeed,ssD � ss(DL)+ ss(DQ),

To test the null hypothesesHL
0 andHQ

0 against their respective alternative hypotheses that
the null hypothesis is false, we compare each ofss(DL)/msE � 31.88 andss(DQ)/msE �
1.84 with 2F2,19,.01 � 7.04 for Scheff́e’s method and an overall level ofα � 0.01. We
conclude that the quadratic trend is negligible, but there is a nonnegligible linear trend in
the heart rate as the stepping frequency increases (averaged over step height). ✷

11.10 Using SAS Software

11.10.1 Analysis of Variance and Estimation of Contrasts

In this section, sample programs are given to illustrate the analysis of incomplete block
designs using the SAS software. The programs shown are for the detergent experiment of
Section 11.4.2 and the plasma experiment of Section 11.7, but similar programs can be used
to analyze the data collected in any incomplete block design.

Table 11.16 contains the first sample program. The data are entered into a data set called
ONE, using the variablesBLOCK, TRTMT, andY for the block, treatment, and response value,
respectively.PROC PLOT is used to plot the observations against treatments, analogous to



11.10 Using SAS Software 373

Table 11.16 SAS program for analysis of a balanced incomplete block design—detergent
experiment

DATA ONE;
INPUT BLOCK TRTMT Y;
LINES;
1 3 13
1 8 20
: : :

12 1 19
;
PROC PLOT;
PLOT Y*TRTMT=BLOCK / VPOS=19 HPOS=50;

;
PROC GLM;
CLASS BLOCK TRTMT;
MODEL Y = BLOCK TRTMT;
OUTPUT OUT=RESIDS PREDICTED=PREDY RESIDUALS=Z;
;
* contrast sums of squares for 8 orthogonal contrasts;
CONTRAST ’I linear’ TRTMT -3 -1 1 3 0 0 0 0 0;
CONTRAST ’I QUADRATIC’ TRTMT 1 -1 -1 1 0 0 0 0 0;
CONTRAST ’I cubic’ TRTMT -1 3 -3 1 0 0 0 0 0;
CONTRAST ’II linear’ TRTMT 0 0 0 0 -3 -1 1 3 0;
CONTRAST ’II quadratic’ TRTMT 0 0 0 0 1 -1 -1 1 0;
CONTRAST ’II cubic’ TRTMT 0 0 0 0 -1 3 -3 1 0;
CONTRAST ’I vs II’ TRTMT 1 1 1 1 -1 -1 -1 -1 0;
CONTRAST ’others vs control’ TRTMT 1 1 1 1 1 1 1 1 -8;
;
* estimation of treatment versus control contrasts via LSMEANS;
LSMEANS TRTMT / PDIFF=CONTROL(’9’) CL ADJUST=DUNNETT;
;
* estimation of treatment versus control contrasts via ESTIMATE;
ESTIMATE ’Det 9-1’ TRTMT -1 0 0 0 0 0 0 0 1;
ESTIMATE ’Det 9-2’ TRTMT 0 -1 0 0 0 0 0 0 1;

Figure 11.2, page 356, but using block labels as the plotting legend (the plot is not shown
here).PROC GLM is used to fit the block–treatment model (11.3.1), generate the analysis of
variance table, and save the predicted values and residuals in the output data setRESIDS.
Residuals can be standardized and plotted as in Chapter 6.

The output fromPROC GLM is reproduced in Table 11.17. SinceBLOCK has been entered
beforeTRTMT in the model statement, the sum of squares for treatments adjusted for blocks
is listed underType I (or sequential) sums of squares as well as under theType III
sums of squares. The adjusted block sum of squares is listed under theType III sums of
squares. In order to use the sequential orType I sums of squares, one would need to rerun
the program withTRTMT entered beforeBLOCK in the model statement. In Table 11.16, the
sums of squares corresponding to 8 orthogonal treatment contrasts are requested via the
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Table 11.17 Partial output from PROC GLM for analysis of an incomplete block design—detergent
experiment

The SAS System
General Linear Models Procedure

Dependent Variable: Y
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 19 1499.5648 78.9245 95.77 0.0001
Error 16 13.1852 0.8241
Corrected Total 35 1512.7500

Source DF Type I SS Mean Square F Value Pr > F
BLOCK 11 412.7500 37.5227 45.53 0.0001
TRTMT 8 1086.8148 135.8519 164.85 0.0001

Source DF Type III SS Mean Square F Value Pr > F
BLOCK 11 10.0648 0.9150 1.11 0.4127
TRTMT 8 1086.8148 135.8519 164.85 0.0001

Contrast DF Contrast SS Mean Square F Value Pr > F
I linear 1 286.01667 286.01667 347.08 0.0001
I quadratic 1 12.67593 12.67593 15.38 0.0012
I cubic 1 0.22407 0.22407 0.27 0.6092
II linear 1 61.34074 61.34074 74.44 0.0001
II quadratic 1 0.14815 0.14815 0.18 0.6772
II cubic 1 0.02963 0.02963 0.04 0.8520
I vs II 1 381.33796 381.33796 462.75 0.0001
others vs control 1 345.04167 345.04167 418.70 0.0001

CONTRAST statements, and it can be verified from Table 11.17 that the contrast sums of
squares add to the treatment sum of squares.

Simultaneous confidence intervals for pairwise comparisons can be obtained via the
ESTIMATE statements or viaLSMEANS with options as discussed in Section 6.8.1, page 177.
One such set of options is

LSMEANS TRTMT / PDIFF=CONTROL(’9’) CL ADJUST=DUNNETT;

ThePDIFF=CONTROL(’9’) option specifies that level 9 is the control, as was the case in
the detergent experiment. If the designation “(’9’)” had been omitted, then the lowest
level would have been taken to be the control treatment by default. Partial output is shown
in Table 11.18. The first section of the table shows the usual output from theESTIMATE
statement. The middle section provides least squares estimates of the parametersτ̂i+µ̂+β. ,
which for the balanced incomplete block design are (k/(λv))Qi +G/(bk). Results are also
given in the middle section for simultaneous tests for whether or not each of the treatment-
versus-control comparisonsτi −τ9 is zero, or equivalently whetherτi � τ9, using Dunnett’s
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Table 11.18 Partial output from ESTIMATE and LSMEANS for an incomplete block
design—detergent experiment with detergent 9 as the control treatment

The SAS System
General Linear Models Procedure

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
Det 9-1 9.7777778 13.19 0.0001 0.74120356
Det 9-2 12.3333333 16.64 0.0001 0.74120356

Least Squares Means
Adjustment for multiple comparisons: Dunnett-Hsu

TRTMT Y Pr > |T| H0:
LSMEAN LSMEAN=CONTROL

1 19.7500000 0.0001
2 17.1944444 0.0001
3 13.1944444 0.0001
4 6.5277778 0.0001
5 25.3055556 0.0002
6 22.9722222 0.0001
7 21.0833333 0.0001
8 19.1944444 0.0001
9 29.5277778

Adjustment for multiple comparisons: Dunnett-Hsu
Least Squares Means for effect TRTMT

95% Confidence Limits for LSMEAN(i)-LSMEAN(j)

Simultaneous Simultaneous
Lower Difference Upper

Confidence Between Confidence
i j Limit Means Limit
1 9 -11.981915 -9.777778 -7.573641
2 9 -14.537470 -12.333333 -10.129196
3 9 -18.537470 -16.333333 -14.129196
4 9 -25.204137 -23.000000 -20.795863
5 9 -6.426359 -4.222222 -2.018085
6 9 -8.759692 -6.555556 -4.351419
7 9 -10.648581 -8.444444 -6.240308
8 9 -12.537470 -10.333333 -8.129196

method. The third section of the output gives simultaneous 95% confidence intervals for
the treatment-versus-control comparisons using Dunnett’s method. A word of warning is in
order here. If the treatments had been labeled anything other than 1,2, . . . ,9, at this point
SAS would have relabeled them lexicographically. For example, if the control treatment had



376 Chapter 11 Incomplete Block Designs

Table 11.19 Partial output from PROC GLM and LSMEANS in a SAS program for analyzing an
incomplete block design—plasma experiment

The SAS System
General Linear Models Procedure

Dependent Variable: Y
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 7 0.00111406 0.00015915 954.90 0.0249
Error 1 0.00000017 0.00000017
Corrected Total 8 0.00111422

Source DF Type I SS Mean Square F Value Pr > F
BLOCK 2 0.00040289 0.00020144 1208.67 0.0203
TRTMT 5 0.00071117 0.00014223 853.40 0.0260

Source DF Type III SS Mean Square F Value Pr > F
BLOCK 2 0.00012133 0.00006067 364.00 0.0370
TRTMT 5 0.00071117 0.00014223 853.40 0.0260

Least Squares Means
Adjustment for multiple comparisons: Tukey-Kramer

Least Squares Means for effect TRTMT
95% Confidence Limits for LSMEAN(i)-LSMEAN(j)

Simultaneous Simultaneous
Lower Difference Upper

Confidence Between Confidence
i j Limit Means Limit
1 2 0.007057 0.025500 0.043943
1 3 0.006039 0.021833 0.037627
1 4 0.007373 0.023167 0.038961
1 5 0.010864 0.024333 0.037802
1 6 0.009198 0.022667 0.036136
2 3 -0.024963 -0.003667 0.017630
: : : : :

been labeled as 0 and the test treatments as 1, . . . ,8, SAS would have relabeled the control
as treatment 1 and the test treatments as 2, . . . ,9.

Table 11.19 shows partial output for the first day’s data from the plasma experiment
(Section 11.7), which was a nonstandard incomplete block design. TheType I andType
III sums of squares are shown, together with partial output from theLSMEANS statement

LSMEANS TRTMT / PDIFF = ALL CL ADJUST=TUKEY;

which was used to compile Table 11.13 on page 367.
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Table 11.20 SAS program to plot data adjusted for block effects—plasma experiment, day one
only.

* This program requires 3 runs, adding more information in each run;
DATA ONE;
INPUT BLOCK TRTMT Y;
LINES;
1 4 0.459
1 5 0.467
: : :
3 3 0.473

;
* Get block effect estimates;
PROC GLM;
CLASS BLOCK TRTMT;
MODEL Y = BLOCK TRTMT / SOLUTION;

PROC SORT; BY BLOCK;
;
* Add the following code for the second run;
* values BHAT are solutions for block parameters from first run;
DATA TWO;
INPUT BLOCK BHAT;
LINES;

1 -.0126666667
2 -.0053333333
3 0.0000000000

PROC MEANS MEAN; * print average of BHAT values;
VAR BHAT;

;
* Add the following code for the third run;
* The number -0.006 below is average BHAT calculated in second run;
DATA THREE;
MERGE ONE TWO;
BY BLOCK;
Y_ADJ=Y - (BHAT-(-0.006));

PROC PLOT;
PLOT Y_ADJ*TRTMT / VPOS=19 HPOS=50;

11.10.2 Plots

Table 11.20 contains a sample SAS program illustrating how to plot the data adjusted
for blocks against the treatment labels, using the day one data of the plasma experiment,
(Table 11.10, page 364). The program, as written, must be run in three passes. In successive
passes, information generated by earlier passes must be added as input in later parts of
the program. First, the data are entered into a data set calledONE. Since the block effect
estimates are needed to adjust the observations, the optionSOLUTION is included in the
MODEL statement ofPROC GLM. This causes a (nonunique) solution to the normal equations
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for µ̂, τ̂i , andθ̂h to be printed. The solutions will all be labeled “B” for “biased,” meaning that
the corresponding parameters are not estimable (see Table 10.17, page 324, for example).

The least squares solutionsθ̂h are then entered into the data setTWO in the second run

of the program.PROC MEANS is used to compute and print the average valueθ̂ . . Finally, in
the third run of the program, the block-effect estimates and their average value are used to
adjust the data values. The adjusted values are then plotted against treatment. The SAS plot
is not shown here, but it is similar to the plot in Figure 11.4 (page 366).

Exercises

1. Connectedness and estimability
(a) For each of the three block designs in Table 11.21, draw the connectivity graph for

the design, and determine whether the design is connected.

(b) If the design is connected, determine whether or not it is a balanced incomplete
block design.

(c) For designs II and III, determine graphically whether or notτ1 − τ5 andτ1 − τ6 are
estimable.

(d) For design III, use expected values to show thatτ1 − τ8 is estimable.

2. Connectedness
(a) Determine whether or not the cyclic design with initial block (1,3,5) is a connected

design ifv � 8 orv � 9.

(b) Determine whether or not the cyclic design with initial block (1,4,7) is a connected
design ifv � 8 orv � 9.

3. Randomization
Conduct a block design randomization for design II in Table 11.21.

4. Cyclic designs
Determine whether or not the cyclic design obtained from each initial block below is a
balanced incomplete block design or a group divisible design or neither.

Table 11.21 Three incomplete block designs

Design I Design II Design III
Block Treatments Block Treatments Block Treatments
1 1 2 1 1 2 3 1 1 2 6
2 1 3 2 4 5 6 2 3 4 5
3 1 4 3 7 8 9 3 2 6 8
4 2 3 4 1 4 7 4 4 5 7
5 2 4 5 2 5 8 5 1 6 8
6 3 4 6 3 6 9 6 3 5 7

7 1 5 9 7 1 2 8
8 2 6 7 8 3 4 7
9 3 4 8
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(a) Initial block: 1,3,4; v � 7.

(b) Initial block: 1,2,4,8; v � 8.

(c) Initial block: 1,2,4; v � 5.

5. Balanced incomplete block design
Consider an experiment to compare 7 treatments in blocks of size 5. Taking all possible
combinations of five treatments from seven gives a balanced incomplete block design
with r � 15.

(a) How many blocks does the design have?

(b) Show thatr must be a multiple of five for a balanced incomplete block design with
v � 7 treatments and blocks of sizek � 5 to exist.

(c) Show that the smallest balanced incomplete block design hasr � 15 observations
per treatment.

6. Sample sizes
Consider an experiment to compare 7 treatments in blocks of size 5, with an anticipated
error variance of at most 30 square units.

(a) Assuming that a balanced incomplete block design will be used, how many ob-
servations would be needed for the minimum significant difference to be about 50
units for a pairwise comparison using Tukey’s method and a 95% simultaneous
confidence level?

(b) Repeat part (a) for a minimum significant difference of 25 units.

(c) Repeat part (a) using Dunnett’s method for treatment versus control comparisons.

7. Least squares estimator
For the balanced incomplete block design in Table 11.8,

(a) Show that the least squares estimatorτ̂4 − τ̂6 is an unbiased estimator ofτ4 − τ6

under the block–treatment model (11.3.1) (that is, show thatE[τ̂4 − τ̂6] � τ4 −τ6).

(b) Verify that the variance of̂τ4 − τ̂6 is 2kσ 2/(λv).

8. Isomer experiment
The following experiment was described by Kuehl (1994) and run by J. Berry and
A. Deutschman at the University of Arizona to obtain specific information about the
effect of pressure on percent conversion of methyl glucoside to monovinyl isomers. The
conversion is achieved by addition of acetylene to methyl glucoside in the presence of a
base under high pressure. Five pressures were examined in the experiment, but only three
could be examined at any one time under identical experimental conditions. A balanced
incomplete block design was used. The data and design are shown in Table 11.22.
(a) Was blocking worthwhile in this experiment?

(b) Write down a model for this experiment and test the hypothesis of no difference in
the effects of the pressures on the percent conversion of methyl glucoside, against
the alternative hypothesis that at least two pressures differ. Use a significance level
of 0.01.
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Table 11.22 Percent conversion of methyl glucoside to monovinyl isomers

Pressure Block
(psi) I II III IV V VI VII VIII IX X
250 16 19 20 13 21 24
325 18 26 19 13 10 24
400 39 21 33 34 30 31
475 32 46 35 47 31 37
550 45 61 55 48 52 50

Source: FromStatistical Principles of Research Design and Analysis by R. O. Kuehl.
Copyright © 1994 Brooks/Cole Publishing Company, Pacific Grove, CA 93950, a
division of International Thomson Publishing Inc. By Permission of the publisher.

(c) What does “ a significance level of 0.01” in part (b) mean?

(d) Give a formula for a 95% set of simultaneous confidence intervals for pairwise
comparisons among the pressures in this experiment. Calculate, by hand, the in-
terval comparing pressures 5 and 4 (that is,τ5 − τ4) for illustration. Compare your
answer with that obtained from your computer output.

9. Balanced incomplete block design
An experiment is to be run to compare the effects of four different formulations of a
drug to relieve an allergy. In a pilot experiment, four subjects are to be used, and each is
to be given a sequence of three of the four drugs. The measurements are the number of
minutes that the subject appears to be free of allergy symptoms. Suppose the following
design is selected for the experiment.

Block Levels of Treatment Factor
I 0 1 2
II 0 1 3
III 0 2 3
IV 1 2 3

(a) Check that this design is a balanced incomplete block design. (Show what you are
checking.)

(b) What would you randomize when using this design?

(c) The typical model for a balanced incomplete block design is the block–treatment
model (11.3.1), page 348. Do you think this is a reasonable model for the experiment
described? Why or why not?

The experiment was run as described, and the model indicated in (c) was used to analyze
it. Some information for the analysis is shown in Table 11.23. (Even if you criticized
the model, answer the rest of the questions.)
(d) Show thatQ2 = 81.667.

(e) Give a confidence interval forτ3 − τ2 assuming that it is part of a set of 95% Tukey
confidence intervals.

(f) Test the hypothesis that there is no difference between the drugs.
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Table 11.23 Partial information for analysis of the drug experiment

Block totals Treatment totals Qi LSMEANS
B1 � 417 T1 � 385 Q1 = −79.333 134.41
B2 � 507 T2 � 582 Q2 = 81.667 195.79
B3 � 469 T3 � 329 Q3 = −158.667 104.67
B4 � 577 T4 � 674 Q4 = 156.333 222.79

y .. � 164.1667 msE � 3.683 �Q 2
i � 62,578.335

10. Step experiment, continued
The step experiment was described in Example 11.9.1 and the data are shown in
Table 11.14, page 370.

(a) Prepare a plot of the treatment averages and examine the linear trends in the heart
rate due to step frequency at each level of step height.

(b) Fit a block–treatment model to the data withv � 6 treatments representing the six
treatment combinations.

(c) Estimate the linear trends in the heart rate due to step frequency at each level of
step height separately, and calculate confidence intervals for these.

(d) Write down a contrast that compares the linear trends in part (c) and test the
hypothesis that the linear trends are the same against the alternative hypothesis
that they are different.

11. Beef experiment
Cochran and Cox (1957) describe an experiment that was run to compare the effects of
cold storage on the tenderness of beef roasts. Six periods of storage (0, 1, 2, 4, 9, and
18 days) were tested and coded 1–6. It was believed that roasts from similar positions
on the two sides of the animal would be similar, and therefore the experiment was run
in b � 15 blocks of sizek � 2. The responseyhi from treatmenti in block h is the
tenderness score. The maximum score is 40, indicating very tender beef. The design
and responses are shown in Table 11.24.
(a) What is the value ofλ for this balanced incomplete block design?

(b) What benefit do you think the experimenters expected to gain by using a block
design instead of a completely randomized design?

(c) Calculate the least squares estimate ofτ6 − τ1 and its corresponding variance.

(d) Calculate a confidence interval forτ6 − τ1 as though it were part of a set of 95%
confidence intervals using Tukey’s method of multiple comparisons.

(e) Calculate a confidence interval for the difference of averages contrast

1

3
(τ4 + τ5 + τ6) − 1

3
(τ1 + τ2 + τ3) ,

assuming that you want the overall level of this interval together with the intervals
in part (d) to be at least 94%. What does your interval tell you about storage time
and tenderness of beef?
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Table 11.24 Design and data for the beef
experiment

Treatment
Block 1 2 3 4 5 6
I 7 17
II 26 25
III 33 29
IV 17 27
V 23 27
VI 29 30
VII 10 25
VIII 26 37
IX 24 26
X 25 40
XI 25 34
XII 34 32
XIII 11 27
XIV 24 21
XV 26 32

Source:Experimental Designs, Second Edition, by
W. G. Cochran and G. M. Cox, Copyright © 1957,
John Wiley & Sons, New York. Adapted by
permission of John Wiley & Sons, Inc.

12. Balanced incomplete block design
(a) Explain why you might choose to use a block design rather than a completely

randomized design.

(b) For a balanced incomplete block design, why is it incorrect to estimate the differ-
ence in the effects of treatmentsi andp asy.i − y.p? What is the correct least
squares estimate?

(c) Give a formula for a set of 95% confidence intervals for the pairwise differences
in the effects of the treatments.

(d) The information in Table 11.25 is taken from a computer analysis of a balanced
incomplete block design with treatment factor “temperature” havingv � 7 levels
of increasing dosage and with blocking factor “block” havingb � 7 levels. Blocks
are of sizek � 3. What can you deduce?

13. Group divisible design least squares estimates
Show that equation (11.3.2) on page 349 gives the solution (11.5.21), page 361, for the
group divisible design.

14. Plasma experiment, continued
In the plasma experiment of Section 11.7, the experimenters used the cyclic design for
six treatments generated by 1, 4, 5.
(a) Show that the cyclic design is also a group divisible design by determining the

groups and the values ofλ1 andλ2.
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Table 11.25 Partial analysis of a balanced incomplete block design

The SAS System

Sum of Mean
Source DF Squares Square Ratio p-value
Model 12 385.56000000 32.13000000 20.60 0.0001
BLOCK (unadjusted) 6 163.67809524 27.27968254 17.49 0.0003
TEMPR (adjusted) 6 221.88190476 36.98031746 23.71 0.0001
Error 8 12.47809524 1.55976190
Corrected Total 20 398.03809524

Contrast DF Contrast SS Mean Square F Value p-value
LIN TEMPR 1 176.88137755 176.88137755 113.40 0.0001

Parameter Estimate
LIN TEMPR 46.0714286

Least Squares Means
TEMPR LSMEAN

1 20.4904762
2 20.6476190
3 18.9476190
4 24.9190476
5 27.8047619
6 27.1904762
7 28.5333333

(b) The design for day one of the experiment consisted of the following three blocks
of size three: (1, 4, 5); (2, 5, 6); (3, 6, 1). Show that this design is connected by
drawing the connectivity graph of the design.

15. Vitamin D experiment
M. N. Das and G. A. Kulkarni (Biometrics, 1966) presented a set of data that they
modified from an original study by K. H. Coward and E. W. Kassner (Biochemical
Journal, 1941). The study concerned the potency of different doses and preparations of
vitamin D. The experimental units were rats, and the rats within each block were from
the same litter. We present the modified data of Das and Kulkarni in Table 11.26. There
are six treatments. Treatments 1, 2, and 3 are the standard preparation of three doses of
vitamin D equally spaced in ascending order on the logarithmic scale. Treatments 4, 5,
and 6 are the test preparation of three doses of vitamin D equally spaced in descending
order on the logarithmic scale.

(a) Show that the design consists of a group divisible design with three blocks repeated
six times. What are the groups in the group divisible design? What are the values
of λ1 andλ2 for the entire design withb � 18 blocks?
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Table 11.26 Responses for the vitamin D experiment

Treatment
Block 1 2 3 4 5 6
I 2 8 9 7
II 6 9 3 8
III 6 12 4 6
IV 9 11 14 13
V 10 17 8 10
VI 7 5 6 9
VII 4 10 11 13
VIII 11 9 3 15
IX 9 14 5 8
X 4 7 10 10
XI 12 9 15 15
XII 8 11 7 8
XIII 4 4 5 9
XIV 7 8 3 9
XV 15 10 6 8
XVI 2 4 6 6
XVII 4 13 5 12
XVIII 10 13 4 18

Source: Das, M. N. and Kulkarni, G. A. (1966).
Copyright © 1966 International Biometric Society.
The data were adapted from Coward, K. H. and
Kassner, E. W. (1941). Reprinted with permission of
The Biochemical Society and Portland Press.

(b) Calculate the variance for a pairwise comparison between two treatments that are
first associates, and also for two treatments that are second associates.

(c) Which treatments are first associates and which treatments are second asso-
ciates? Why do you think the authors chose this particular design? [Hint: Use
the information in part (b).]

(d) Write down the contrast coefficient lists for the following contrasts:

(i) comparison of the standard preparation with the test preparation, averaged
over doses (that is, a difference-of-averages contrast comparing the average
effect of treatments 1, 2, and 3 with the average effects of treatments 4, 5,
and 6);

(ii) the comparison of the two preparations at each dose separately;

(iii) the linear effect of log(dose) on the response for each preparation;

(iv) the quadratic effect of log(dose) on the response for each preparation.

(e) Prepare an analysis of variance table and test the hypotheses that each contrast in
(d) is negligible. Use an overall significance level of not more than 0.1. State your
conclusions.



Exercises 385

16. Air rifle experiment
This is a dangerous experiment that should not be copied! It requires proper
facilities and expert safety supervision.
An experiment was run in 1995 by C.-Y. Li, D. Ranson, T. Schneider, T. Walsh, and P.-J.
Zhang to examine the accuracy of an air rifle shooting at a target. The two treatment
factors of interest were the projectile type (factorA at levels 1 and 2) and the number
of pumps of the rifle (factorB, 2, 6, and 10 pumps, coded 1, 2, 3). The paper covering
the target had to be changed after every four observations, and since there werev � 6
treatment combinations, an incomplete block design was selected.
Two copies of the following incomplete block design (called a generalized cyclic design)
were used:

Block Treatment Combination
I 11 21 13 22
II 12 22 11 23
III 13 23 12 21
IV 21 11 23 12
V 22 12 21 13
VI 23 13 22 11

The total of 12 blocks were randomly ordered, as were the treatment combinations
within each block. The data, shown in Table 11.27, are distances from the center of the
target measured in millimeters.
(a) Write down a suitable model for this experiment.

(b) Check that the assumptions on your model are satisfied.

(c) The experimenters expected to see a difference in accuracy of the two projectile
types. Using a computer package, analyze the data and determine whether or not
this was the case.

(d) For each projectile type separately, examine the linear and quadratic trends in the
effects of the number of pumps. State your conclusions.

Table 11.27 Data for the rifle experiment

Block Treatment Combination (Response)
I 22 (2.24) 23 (6.02) 12 (11.40) 11 (26.91)
II 13 (7.07) 22 (8.49) 21 (19.72) 11 (24.21)
III 12 (10.63) 23 (6.32) 21 (9.06) 13 (29.15)
IV 11 (11.05) 22 (6.32) 23 (7.21) 13 (23.02)
V 23 (6.71) 22 (15.65) 12 (11.40) 11 (23.02)
VI 21 (17.89) 12 (8.60) 22 (10.20) 13 (10.05)
VII 11 (18.38) 13 (11.18) 23 (11.31) 22 (11.70)
VIII 22 (1.00) 11 (30.87) 21 (20.10) 13 (17.03)
IX 11 (18.03) 21 (8.25) 23 (6.08) 12 (19.24)
X 21 (15.81) 13 (2.24) 12 (17.09) 22 (7.28)
XI 23 (8.60) 21 (15.13) 12 (14.42) 11 (25.32)
XII 13 (8.49) 12 (14.32) 23 (11.66) 21 (17.72)
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12 Designs with Two Blocking
Factors

12.1 Introduction
12.2 Design Issues
12.3 Model for a Row–Column Design
12.4 Analysis of Row–Column Designs (Optional)
12.5 Analysis of Latin Square Designs
12.6 Analysis of Youden Designs
12.7 Analysis of Cyclic and Other Row–Column Designs
12.8 Checking the Assumptions on the Model
12.9 Factorial Experiments in Row–Column Designs
12.10 Using SAS Software
Exercises

12.1 Introduction

In Chapters 10 and 11, we discussed designs for experiments involving a single system of
blocks. As we saw in the randomized complete block design of Table 10.2, page 300, a block
label can represent a combination of levels of several factors. The design in Table 10.2 was
presented as having six blocks—the six block labels being the six combinations of levels of
the factors “run of the oven” and “shelf.” When a block design is used in this way, theb− 1
degrees of freedom for the block effects include not only those degrees of freedom for the
effects of the two factors, but also for their interaction.

In this chapter, we look at designs for experiments that involve two blocking factors that
do not interact. When the blocking factor interactions can be omitted from the model, fewer
observations are needed, and the experiment can be designed with only one observation
per combination of levels of the blocking factors. The plan of the design is written as an
array (that is, a table) with the levels of one blocking factor providing the row headings

387
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and those of the other providing the column headings. These designs are often calledrow–
column designs, and the two sets of blocks are called row blocks and column blocks or,
more simply, rows and columns. Exactly one treatment label is allocated to each cell of the
table.

In Section 12.2.2, Latin square designs are described. These are the two-dimensional
counterparts of randomized complete block designs in that row blocks are complete blocks
and column blocks are also complete blocks. Latin square designs require that the numbers
of levels of both blocking factors be the same as (or a multiple of) the number of treatments.
Section 12.2.3 concerns Youden designs, in which the column blocks form a randomized
block design and the row blocks form a balanced incomplete block design (or vice versa).
Cyclic and other row–column designs are discussed in Section 12.2.4.

The randomization procedure needed for row–column designs is given in Section 12.2.1,
and the standard row–column–treatment model for row–column designs is given in Sec-
tion 12.3. Analysis of variance and confidence intervals for row–column designs are derived
in the optional section, Section 12.4. The analysis simplifies for both Latin square de-
signs and Youden designs, and their simplified versions are discussed in Sections 12.5
and 12.6, respectively. All row–column designs can be analyzed using statistical software
(see Section 12.10).

Some experiments are designed with more than two blocking factors. Block designs with
a single system of blocks can still be used where each block represents some combination
of the levels of the three or more blocking factors, but designs with more than two blocking
factors and one observation per combination of their levels are not discussed in this book.

12.2 Design Issues

12.2.1 Selection and Randomization of Row–Column Designs

In most row–column designs all treatment contrasts are estimable. This is not as easy to
verify as it was for incomplete block designs (see optional Section 11.2.3), since it can-
not be deduced from the row blocks and column blocks separately. However, it can be
shown that all Latin square designs and all Youden designs, which are introduced in Sec-
tions 12.2.2 and 12.2.3, allow estimability of all treatment contrasts. One way to check that
a miscellaneous row–column design is suitable for a planned experiment is to enter a set
of hypothetical data for the design into a computer package and see whether the required
contrasts are estimable.

Once the numbers of rows, columns, and treatments have been determined, there are two
stages to designing an experiment with two blocking factors and one observation at each
combination of their levels. The first stage is to choose an experimental plan, such as that
in Table 12.1. It has two sets of blocks corresponding to two blocking factors—one with 7
levels represented by theb � 7 rows, and the other with 4 levels represented by thec � 4
columns. There arev � 7 treatment labels, each appearingr � 4 times in the design.
The second stage is the random assignment of the labels in the design to the levels of the
treatment factors and the blocking factors in the experiment, as follows:
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Table 12.1 A row–column experimental plan
with b � 7, c � 4, v � 7, r � 4

Column Blocks
I II III IV

I 1 3 6 7
II 2 4 7 1

Row III 3 5 1 2
Blocks IV 4 6 2 3

V 5 7 3 4
VI 6 1 4 5
VII 7 2 5 6

(i) The row-block labels in the design are randomly assigned to the levels of the first
blocking factor.

(ii) The column-block labels in the design are randomly assigned to the levels of the
second blocking factor.

(iii) The treatment labels in the design are randomly assigned to the levels of the treatment
factor.

Since there is only one experimental unit in each cell, there is no need for random assignment
of experimental units to treatment labels within a cell.

12.2.2 Latin Square Designs

A v × v Latin square is an arrangement ofv Latin letters into av × v array (a table with
v rows andv columns) in such a way that each letter occurs once in each row and once in
each column. For example, the following 3× 3 array is a 3× 3 Latin square:

A B C
B C A
C A B

A Latin square design is a design withv treatment labels andv2 experimental units
arranged inv row blocks andv column blocks, where experimental units within each row
block are alike, units within each column block are alike, and units not in the same row
block nor column block are substantially different. The experimental plan of the design is
a v × v Latin square. Randomization of row block, column block, and treatment labels in
the plan is carried out as in Section 12.2.1.

If we look only at the row blocks of a Latin square design, ignoring the column blocks,
we have a randomized complete block design, and if we look at the column blocks alone,
ignoring the row blocks, we also have a randomized complete block design. Each level of
the treatment factor is observedr � v times—once in each row block and once in each
column block.

The 3×3 Latin square shown above is a “standard, cyclic Latin square.” A Latin square is
astandard Latin square if the letters in the first row and in the first column are in alphabetical
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Table 12.2 Latin squares with b � c � v � 4

Square 1 Square 2 Square 3 Square 4
A B C D A B C D A B C D A B C D
B C D A B A D C B A D C B D A C
C D A B C D A B C D B A C A D B
D A B C D C B A D C A B D C B A

order, and it iscyclic if the letters in each row can be obtained from those in the previous
row by cycling the letters in alphabetical order (cycling back to letterA after thevth letter).

There is only one standard 3× 3 Latin square, but there are four standard 4× 4 Latin
squares, and these are shown in Table 12.2. The first square is the cyclic standard Latin
square. A standard cyclic Latin square exists for any number of treatments.

An example of a 6× 6 Latin square design was shown in Table 2.5 (page 20). It was a
design that was considered for the cotton-spinning experiment. The row blocks represented
the different machines with their attendant operators, and the column blocks represented
the different days over which the experiment was to be run. The treatment labels were the
combinations of degrees of twist and flyer used on the cotton-spinning machines. After
careful consideration, the experimenters decided not to use this design, since it required the
same six machines to be available over the same six days, and this could not be guaranteed
in the factory setting.

Latin square designs are often used in experiments where subjects are allocated a sequence
of treatments over time and where the time effect is thought to have a major effect on the
response. For example, in an experiment to compare the effects ofv drugs, the rows of the
Latin square might correspond tov subjects to whom the drugs are given, and the columns
might correspond tov time periods, with each subject receiving one drug during each time
period. An experiment of this type, in which each subject receives a sequence of treatments,
is called acrossover experiment.

In a crossover experiment, it is possible that a treatment will continue to have some
effect on the response when a subsequent treatment is administered to the same subject.
Such an effect is called acarryover effect or residual effect and must be accounted for in the
design and analysis of the experiment. This is outside the scope of this book, but for further
information, see Ratkowsky, Evans, and Alldredge (1993). We will consider experiments
in which either there is no carryover effect or in which the gap between the administration
of one treatment and the next is sufficient to allow the carryover effect to diminish (and,
hopefully, to disappear). The “gap” is called awashout period.

In order that every possible Latin square have the same chance of being selected as the
design for an experiment, a standard square should be selected from the list of all possible
standard squares and the randomization procedure of Section 12.2.1 performed. Thus for
an experiment withb � 4 levels of the row blocking factor,c � 4 levels of the column
blocking factor, andv � 4 levels of the treatment factor, one of the four standard squares of
Table 12.2 would be selected at random. For larger squares, we have not provided a complete
list of all standard squares, since there are so many. A complete list forv � 5 and 6, and
selected squares forv � 7–12 can be found in the statistical tables of Fisher and Yates. For
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the larger values ofv, it is permissible to select the standard cyclic Latin square and perform
the randomization procedure on this, rather than selecting from the set of standard squares.

Replication of Latin squares A design based on a single Latin square hasr � v

observations on each treatment, which may not be adequate. One way to use multiple Latin
squares is to piece together a number,s say, ofv × v Latin squares. We will call such a
design ans-replicate Latin square. Use of ans-replicate Latin square requires the column
(or row) blocks to be of sizevs. For example, stacking two 3× 3 Latin squares, one above
the other, we can obtain two possible 2-replicate Latin squares as follows.

Plan 1 Plan 2
A B C A B C
B C A B C A
C A B C A B
A B C A C B
B C A B A C
C A B C B A

For either plan, the number of observations per treatment is nowr � 6 � 2v rather than only
r � 3 � v. Plan 2 is probably preferable, because the row blocks consist of each possible
ordering of the three treatments (and this will remain true even after randomization).

Suppose we were to use Plan 2 for an experiment to compare the efficacy ofv � 3 drugs,
where there are two blocking factors, say “subjects”—the people to whom the drugs will
be administered, and “time period”—the time during which each subject receives a single
drug and a response is measured. If rows correspond to subjects, thenb � 6 subjects would
be required overc � 3 time periods, but if columns correspond to subjects and rows to time
periods, then each ofc � 3 subjects would stay in the study forb � 6 periods. In practice,
in drug studies, subjects are rarely used for more than 4 time periods, since the drop-out
rate tends to be high after this length of time.

An alternative way to obtainr � vs observations per treatment is to uses separate
Latin squares. For example, taking Square 1 and Square 2 from Table 12.2 and using them
separately givesr � 8 observations per treatment and usesb � 8 row blocks andc � 8
column blocks all of size 4. On the other hand, stacking them to obtain a 2-replicate Latin
square givesr � 8 observations per treatment withb � 8 row blocks of size 4 andc � 4
column blocks of size 8. The latter arrangement would allow column–treatment interactions
to be measured, but also requires that the column-block sizes be large.

12.2.3 Youden Designs

A v × c Youden square is an arrangement ofv Latin letters into av × c array (withc < v)
in such a way that each letter occurs once in each column and at most once in each row. In
addition, all pairs of treatments occur together in the same number of rows. Notice that a
Youden square is not, in fact, square! We have defined a Youden square to have more rows
than columns, but the array could be turned so that there are more columns than rows. The
following is a 4× 3 Youden square withv � 4 treatment labels.
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Plan 3
A B C
B C D
C D A
D A B

A Youden design is a design withv treatment labels and withvc experimental units
arranged inb � v row blocks andc < v column blocks where experimental units within each
row block are alike, experimental units within each column block are alike, and experimental
units not in the same row block or column block are substantially different. Also, the column
blocks form a randomized complete block design, and the row blocks form a balanced
incomplete block design. Each level of the treatment factor is observedr � c times—once
in each column and at most once in each row. The experimental plan is av×cYouden square,
and randomization of row, column, and treatment labels is carried out as in Section 12.2.1.

A Youden design would be selected for an experiment when the block size for one
of the blocking factors cannot be chosen to be as large as the number of treatments (cf.
incomplete block designs, Section 11.2.1). Plan 3 shown above is acyclic Youden design
prior to randomization. The row blocks form a cyclic balanced incomplete block design with
every pair of treatment labels occurring inλ � 2 rows. Any cyclic balanced incomplete
block design (with the full set ofv blocks) can be used as a cyclic Youden design. The
design in Table 12.1 is also a cyclic Youden design, havingb � v � 7 row blocks andc � 4
column blocks and every pair of treatments occurring inλ � 2 row blocks. Youden designs
with c � v − 1 column blocks can be obtained by deleting any column from av × v Latin
square.

Replication of Youden squares We can obtainr � cs observations per treatment
either by usings Youden squares separately (withb � vs row blocks andcs column
blocks) or by stackings Youden squares one above another (givingb � vs row blocks
andc column blocks). The latter requires large column-block sizes but allows the estima-
tion of column×treatment interactions. In either case, the row blocks still form a balanced
incomplete block design, and the column blocks still form a complete block design.

Supposev � 7 drugs are to be compared and that a number of subjects are each to be
given a sequence of 4 of the drugs overc � 4 time periods, with washout periods in between
to avoid carryover effects. The experimental plan in Table 12.1, which uses 7 subjects, would
be suitable for the experiment ifr � 4 observations per drug is deemed adequate. Otherwise,
several copies of this design could be stacked. If, for example,s � 3 copies of the design
are pieced together, the resulting 3-replicate Youden design would require 21 subjects, 4
time periods, and would haver � cs � 12 observations per treatment, withb � 21,
c � 4, v � 7, andλ � 6. The design would be randomized before use as described in
Section 12.2.1.

12.2.4 Cyclic and Other Row–Column Designs

Any arrangement ofv treatment labels intob rows andc columns can be used as a row–
column design for an experiment with two blocking factors. As with incomplete block



12.2 Design Issues 393

designs, some row–column designs are better than others. The better designs (in terms of
average length of confidence intervals for pairwise comparisons) have every pair of treatment
labels occurring the same, or nearly the same, number of times in the row blocks and also
in the column blocks. This is satisfied by Latin square designs, Youden designs, and also
some cyclic designs .

A cyclic row–column design with complete column blocks is a row–column design in
which the row blocks form a cyclic block design and the column blocks are complete blocks.
For example, the experimental plan in Table 12.1 is a cyclic row–column design. The class
of cyclic row–column designs is very large, and a design withb � vs rows can always
be found when a Youden design does not exist. For example, consider an experiment for
comparingv � 8 treatments when there are two blocking factors havingb � 8 andc � 3
levels, respectively. There does not exist a Youden design forb � v � 8 andc � 3, because
there does not exist a balanced incomplete block design for 8 treatments in 8 blocks of size
c � 3. (Notice thatλ � r(c− 1)/(v− 1) � 6/7 is not an integer.) A cyclic design that may
be suitable for the experiment is given as Plan 4 in Table 12.3. The design is obtained by
cycling the labels in the first row block. Each treatment occursr � c � 3 times. Treatment
pairs (1, 5), (2, 6), (3, 7), and (4, 8) never occur together in a row block, but all other pairs
of treatments occur in exactly one row block, so this should be a reasonably good design.
The design should be randomized via the procedure in Section 12.2.1 before it is used.

Plan 5 of Table 12.3, which is neither a Youden nor a cyclic design, could also be used,
but we might guess that it is not quite as good for pairwise comparisons. Treatment 1, for
example, appears in one block with each of treatments 3 and 4, in two blocks with 2 and 7, and
not at all with treatments 5, 6, or 8. Thus, the treatments are not quite so evenly distributed in
the row blocks. Nevertheless, this design was used for the exercise bike experiment described
below, and will be analyzed using the SAS software in Section 12.10.

Example 12.2.1 Exercise bicycle experiment

Yuedong Wang, Dong Xiang, and Yili Lu conducted an experiment in 1992 at the University
of Wisconsin to investigate the effects of exercise on pulse rate. The exercise was performed
on a stationary bicycle that included both foot pedals and hand bars. The experiment involved
three treatment factors each at two levels. These were “time duration of exercise” with levels

Table 12.3 Incomplete-row complete-column
designs with v � b � 8 and r � c � 3

Plan 4 Plan 5
I II III I II III

I 1 2 4 I 1 2 7
II 2 3 5 II 2 4 1
III 3 4 6 III 3 7 6
IV 4 5 7 IV 4 8 2
V 5 6 8 V 5 6 8
VI 6 7 1 VI 6 3 5
VII 7 8 2 VII 7 1 3
VIII 8 1 3 VIII 8 5 4
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1 and 3 minutes, coded as 1 and 2, “exercise speed” with levels 40 and 60 rpm, coded as 1
and 2, and “pedal type” with levels foot pedal and hand bars, coded as 1 and 2.

The three experimenters served as theb � 3 subjects in the experiment, since they
were interested in the effects of the different exercises on themselves rather than on a large
population. Had the latter been the case, then the subjects would have been selected at
random from the population of interest.

Each subject was assigned a different exercise on each of 8 different days. To minimize
any carryover effect, there was a training period prior to the experiment, and there was at
least one day of rest between observations. The subject’s pulse was taken immediately after
completion of the exercise, and the response variable was the time (in seconds) for 50 heart
beats.

Plan 5 of Table 12.3 was used. The design, after randomization, and the corresponding
data are shown in Table 12.4. The rows were randomly assigned to days in the order V,
III, VI, VIII, VII, IV, I, II. The columns were randomly assigned to subjects in the order
I � Lu, II=Wang, III=Xiang. The treatment labels were randomly assigned to treatment
combinations in the order

1 5 2 4 7 6 8 3
111 112 121 122 211 212 221 222

✷

12.3 Model for a Row–Column Design

For a row–column design withb rows andc columns, the row–column–treatment model for
an observation on treatmenti in row-blockh and column-blockq is

Yhqi � µ+ θh + φq + τi + εhqi , (12.3.1)

εhqi ∼ N (0, σ 2) ,

εhqi ’s are mutually independent,

h � 1, . . . , b; q � 1, . . . , c; i � 1, . . . , v; (h, q, i) in the design.

Table 12.4 Row–column design showing
treatments and data for the exercise
bicycle experiment

Subject
Day Lu Wang Xiang
1 112 45 212 25 221 18
2 222 27 211 20 212 32
3 212 40 222 23 112 28
4 221 17 112 32 122 24
5 211 30 111 36 222 20
6 122 29 221 13 121 20
7 111 34 121 18 211 25
8 121 21 122 22 111 34



12.4 Analysis of Row–Column Designs (Optional) 395

The term “(h, q, i) in the design” means that the model is valid for whichever treatmenti is
observed in the cell defined by thehth row block andqth column block. The model includes
the usual assumptions that the error termsεhqi are independent and normally distributed
with constant variance. It also includes the assumptions of no interaction between the row
and column blocking factors or between these and the treatment factors

If b > v orc > v, or both, there may be sufficient degrees of freedom to be able to estimate
one or both block-treatment interactions. For example, ifc � v � 3, andb � 6, there are
18 observations, giving 17 total number of degrees of freedom. Of these, 2+ 5+ 2 � 9 are
needed to measure treatments, row blocks, and column blocks. Of the remaining 8 degrees
of freedom, 4 could be used to measure column×treatment interaction, in which case the
model would be of the form

Yhqi � µ+ θh + φq + τi + (φτ )qi + εhqi . (12.3.2)

In the next section, we derive the least squares parameter estimators and the analysis
for row–column designs in general. This material is optional, since the specific analyses
are given for Latin square designs and Youden designs in Sections 12.5 and 12.6, respec-
tively, and analysis of more general designs is illustrated via the SAS computer package in
Section 12.10.

12.4 Analysis of Row–Column Designs (Optional)

12.4.1 Least Squares Estimation (Optional)

In this section, we derive least squares parameter estimates and the error sum of squares for
row–column designs withb row blocks,c column blocks, andr observations on each ofv
treatments.

The sum of squares of the errors for the row–column–treatment model (12.3.1) is

b∑
h�1

c∑
q�1

v∑
i�1

nhqie
2
hqi �

b∑
h�1

c∑
q�1

v∑
i�1

nhqi
(
yhqi − µ− θh − φq − τi

)2
,

wherenhqi � 1 if treatment labeli is allocated to the combination of row blockh and
column blockq and zero otherwise. Notice that

b∑
h�1

c∑
q�1

nhqi � r and
c∑

i�1

nhqi � 1 .

So,

b∑
h�1

v∑
i�1

nhqi � b ,

c∑
q�1

v∑
i�1

nhqi � c ,

b∑
h�1

c∑
q�1

v∑
i�1

nhqi � bc � rv .

Also,

c∑
q�1

nhqi � nh.i and
b∑

h�1

nhqi � n.qi ,
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wherenh.i andn.qi are respectively the number of times that treatment labeli appears in the
hth row block and theqth column block.

We defineTi , Bh, Cq , andG to be respectively the sum of the observations on theith
treatment, thehth row block, theqth column block, and the grand total of all the observations.
We use these symbols, rather thany..i , yh.., y.q., andy..., since onlybc of thebcv possible
yhqi are observed. Thus,

Ti �
b∑

h�1

c∑
q�1

nhqiyhqi , Bh �
c∑

q�1

v∑
i�1

nhqiyhqi ,

Cq �
b∑

h�1

v∑
i�1

nhqiyhqi , G �
b∑

h�1

c∑
q�1

v∑
i�1

nhqiyhqi .

To obtain least squares estimates for the treatment contrasts, we first differentiate the
sum of squares of the errors with respect to each of the parameters in the model in turn and
set the derivatives equal to zero. This gives the following 1+ b + c + v normal equations:

G− bcµ̂− c
∑
h

θ̂h − b
∑
q

φ̂q − r
∑
i

τ̂i � 0 , (12.4.3)

Bh − cµ̂− cθ̂h −
∑
q

φ̂q −
∑
i

nh.i τ̂i � 0 , for h � 1, . . . , b, (12.4.4)

Cq − bµ̂−
∑
h

θ̂h − bφ̂q −
∑
i

n.qi τ̂i � 0 , for q � 1, . . . , c, (12.4.5)

Tp − rµ̂−
∑
h

nh.pθ̂h −
∑
q

n.qpφ̂q − rτ̂p � 0 , for p � 1, . . . , v. (12.4.6)

The sum of thev equations (12.4.6) gives equation (12.4.3), as do the sum of theb equa-
tions (12.4.4) and the sum of thec equations (12.4.5). Therefore, there are at most (and, in
fact, exactly) 1+ b+ c+ v− 3 distinct equations, so an extra three equations (distinct from
the normal equations) need to be added to the set in order to obtain a solution. If we choose
�hθ̂h � 0, �qφ̂q � 0, and�iτ̂i � 0, then equation (12.4.3) becomes

µ̂ � 1

bc
G , (12.4.7)

and (12.4.4) and (12.4.5) become

θ̂h � 1

c
Bh − 1

bc
G− 1

c

∑
i

nh.i τ̂i , for h � 1, . . . , b, (12.4.8)

φ̂q � 1

b
Cq − 1

bc
G− 1

b

∑
i

n.qi τ̂i , for q � 1, . . . , c. (12.4.9)

If we now substitute these expressions forµ̂, θ̂h, andφ̂q into (12.4.6), we can obtain an
equation involving only thêτp ’s. After rearranging the terms in this equation and writing
λpi � �hnh.inh.p for the number of row blocks in which treatment labelsi andp appear
together,δpi � �qn.qin.qp for the number of column blocks in which treatment labelsi and
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p appear together, and�hnh.p � �qn.qp � r, we obtain

rτ̂p − 1

c

∑
i

λpi τ̂i − 1

b

∑
i

δpi τ̂i � Qp , for p � 1, . . . , v , (12.4.10)

where

Qp � Tp − 1

c

∑
h

nh.pBh − 1

b

∑
q

n.qpCq + r

bc
G .

12.4.2 Solution for Complete Column Blocks (Optional)

The three types of design that we looked at in Section 12.2 all have binary row blocks
(c < v) and complete column blocks (b � vs). For these designs, every treatment appears
s times in every column block, son.qp � s for all q andp, andδpi � cs2 for all p andi, so

1

b

∑
q

n.qpCq � s

b

∑
q

Cq � r

bc
G ,

since
∑

Cq � G andr � cs. Also,�iδpi τ̂i � cs2�iτ̂i , which is equal to zero because of
the extra equation�iτ̂i � 0 that was added to the normal equations. We can use these facts
to simplify (12.4.10), and we obtain

rτ̂p − 1

c

∑
i

λpi τ̂i � Qp , (12.4.11)

whereQp reduces to

Qp � Tp − 1

c

∑
h

nh.pBh . (12.4.12)

Sinceλpp � r, we can write

r(c − 1)τ̂p −
∑
i 	�s

λpi τ̂i � cQp, for p � 1, . . . , v , (12.4.13)

which is identical to equation (11.3.13) for incomplete block designs with block sizek � c.

Solution for Latin square designs (optional) For ans-replicate Latin square design
obtained by stackings Latin squares one above the other, not only are the column blocks
complete blocks, but so are the row blocks. Now,b � r � vs, c � v, λpi � vs for all i and
p, andnh.p � 1 for allp andh. If we feed these values into (12.4.11) and (12.4.12) and use
the extra equation�iτ̂i � 0, we obtain

τ̂p � 1

vs
Qp � 1

vs
Tp − 1

vs2
G, for all p � 1, . . . , v .

The least squares estimate of a treatment contrast�diτi (with �di � 0) is then∑
i

di τ̂i � 1

vs

∑
i

diTi , (12.4.14)
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whereTi is the sum of the observations on theith treatment, and the corresponding variance
is

Var
(∑

di τ̂i

)
� 1

vs

∑
d2
i σ

2 .

Solution for Youden designs (optional) For ans-replicate Youden design withb � vs

rows andc < v columns, the row blocks form a balanced incomplete block design with row-
block sizec. Thus,λpi � λ is constant for allp 	� i, and, as for any balanced incomplete
block design with blocks of sizek � c, we haver(c−1) � λ(v−1). If we use these values,
together with the extra equation�iτ̂i � 0, then (12.4.13) reduces to

τ̂p � c

λv
Qp, for all p � 1, . . . , v ,

whereQp is defined in (12.4.12). The least squares estimate of a treatment contrast�diτi
is then∑

i

di τ̂i � c

λv

∑
i

diQi , (12.4.15)

which is the same as equation (11.4.15) for a balanced incomplete block design with blocks
of sizek � c. The corresponding variance can be shown to be

Var
(∑

di τ̂i

)
�
( c
λv

)∑
d2
i σ

2 . (12.4.16)

12.4.3 Formula for ssE (Optional)

The minimum sum of squares for error, when a row–column–treatment model is used for a
row–column design, is of the form

ssE �
∑
h

∑
q

∑
i

nhqi ê
2
hqi �

∑
h

∑
q

∑
i

nhqi(yhqi − µ̂− θ̂h − φ̂q − τ̂i)
2 ,

whereµ̂, θ̂h, φ̂q, τ̂i are a set of least squares solutions to the normal equations. If we follow
the trick of Section 11.3.2 and multiply out one copy of the squared factor and use the
normal equations (12.4.3)–(12.4.6) to set some of the terms equal to zero, we then obtain

ssE �
∑
h

∑
q

∑
i

nhqiy
2
hqi −Gµ̂−

∑
h

Bhθ̂h −
∑
q

Cqφ̂q −
∑
i

Ti τ̂i .

Then using (12.4.7)–(12.4.9), the right-hand side becomes

∑
h

∑
q

∑
i

nhqiy
2
hqi − 1

bc
G2 −

[
1

c

∑
h

B2
h − 1

bc
G2 − 1

c

∑
h

∑
i

nh.iBhτ̂i

]

−
[

1

b

∑
q

C2
q − 1

bc
G2 − 1

b

∑
q

∑
i

n.qiCq τ̂i

]
−
∑
i

Ti τ̂i . (12.4.17)
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Gathering together the terms involvingτ̂i , and noting thatr
bc
G
∑

i τ̂i � 0 due to the extra
equation

∑
i τ̂i � 0 added to the normal equations, we have

ssE �
(∑

h

∑
q

∑
i

nhqiy
2
hqi − 1

bc
G2

)
−
(

1

c

∑
h

B2
h − 1

bc
G2

)

−
(

1

b

∑
q

C2
q − 1

bc
G2

)
−
∑
i

Qi τ̂i , (12.4.18)

where

Qi � Ti − 1

c

∑
h

nh.iBh − 1

b

∑
q

n.qiCq + r

bc
G

and wherêτi is obtained as a solution of (12.4.10).
For designs with complete column blocks, we know thatn.qi � s, r � cs, and

1
b

∑
q n.qiCq � r

bc
G. SoQi reduces to

Qi � Ti − 1

c

∑
h

nh.iBh ,

as in (12.4.12). We usually write (12.4.18) as

ssE � sstot − ssθ − ssφ − ssTadj ,

wheressθ andssφ are the unadjusted sums of squares for rows and columns.
It can be shown thatSSE/σ 2 has a chi-squared distribution with degrees of freedom

df � (bc − 1) − (b − 1) − (c − 1) − (v − 1) � bc − b − c − v + 2 ,

andE[MSE] � E[SSE/(bc − b − c − v + 2)] � σ 2.

12.4.4 Analysis of Variance for a Row–Column
Design (Optional)

Under the null hypothesis

HT
0 : {τi all equal toτ } ,

the row–column–treatment model (12.3.1) becomes a two-way main-effects model in the
effects of the two blocking factors; that is, the reduced model is

Yhqi � (µ+ τ ) + θh + φq + εhqi .

The sum of squaresssθ for row blocks, the sum of squaresssφ for column blocks, and the sum
of squaresssE0 for error will look similar (apart from the order of the subscripts) to the sums
of squares for treatment factorsA andB, and the sum of squares for error, respectively, for
a two-way main-effects model that was studied in Chapter 6. Consequently, for the reduced
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Table 12.5 Analysis of variance table for a connected row–column design with
complete column blocks and no interactions

Source of Degrees of Sum of Mean Ratio
Variation Freedom Squares Square
Rows (unadj) b − 1 ssθ − −
Columns (unadj) c − 1 ssφ − −
Treatments(adj) v − 1 ssTadj msTadj msTadj/msE
Error bc − b − c − v + 2 ssE msE
Total bc − 1 sstot

Formulae
ssTadj � �v

i�1Qi τ̂i Qi � Ti − 1
c
�b
h�1nh.iBh

sstot� �b
h�1�

c
q�1�

v
i�1nhqiy

2
hqi − 1

bc
G2 ssθ � 1

b
�b
h�1B

2
h − 1

bc
G2

ssE � sstot − ssθ − ssφ − ssT adj ssφ � 1
c
�c
q�1C

2
q − 1

bc
G2

Ti � �b
h�1�

c
q�1nhqiyhqi Bh � �c

q�1�
v
i�1nhqiyhqi

Cq � �b
h�1�

v
i�1nhqiyhqi G � �b

h�1�
c
q�1�

v
i�1nhqiyhqi

model, we have

ssθ � 1

c

b∑
h�1

B2
h − 1

bc
G2 ,

ssφ � 1

b

φ∑
q�1

C2
q − 1

bc
G2 ,

sstot �
∑
h

∑
q

∑
i

nhqiy
2
hqi − 1

bc
G2 ,

and

ssE0 � sstot − ssθ − ssφ ,

whereBh is the total of the observations in thehth row block,Cq is the total of the
observations in theqth column block, andG is the grand total of all the observations.

The sum of squares for error for the row–column–treatment model (12.3.1) was calculated
in optional Section 12.4.3 as

ssE � sstot − ssθ − ssφ − ssTadj ,

wheressTadj � �v
i�1Qiτ̂i with Qi �∑i Ti − 1

c

∑
h nh.iBh − 1

b

∑
q n.qiCq , which reduces

toQi �∑i Ti− 1
c

∑
h nh.iBh for designs with complete column blocks. The sum of squares

for treatments adjusted for row-block and column-block effects is obtained as the difference
in the error sum of squares between the reduced and the full models; that is,

ssE0 − ssE � ssTadj . (12.4.19)

It can be shown that ifHT
0 is true, thenSSTadj/σ

2 has aχ2 distribution withv − 1
degrees of freedom, and also,SSTadj is independent ofSSE. Therefore,MSTadj/MSE has an
F -distribution withv − 1 andbc − b − c − v + 2 degrees of freedom.
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A test of the null hypothesisHT
0 against the general alternative hypothesisHT

A :{at least
two of theτi ’s differ} is given by the decision rule

rejectHT
0 if msTadj/msE > Fv−1,bc−b−c−v+2,α (12.4.20)

for some chosen significance levelα.
The test (12.4.20) is most conveniently set out in an analysis of variance table. The table

for row–column designs with complete column blocks is shown in Table 12.5 for future
reference. If column blocks are not complete, thenQi needs to be modified accordingly.

When the number of row blocks is a multiple ofv, andc ≥ 3, there are sufficient degrees
of freedom to be able to measure a column-treatment interaction, if one is thought to exist.
The model would be modified as in (12.3.2), and the analysis of variance table would contain
an extra row measuring this source of variation. The interaction must also be adjusted for
row blocks, and the analysis is best done by computer.

12.4.5 Confidence Intervals and Multiple Comparisons

The multiple-comparison methods of Bonferroni and Scheffé can be applied for any row–
column design. Simultaneous 100(1− α)% confidence intervals for treatment contrasts
�idi τ̂i are of the form(∑

i

di τ̂i ± w

√
V̂ar(
∑
i

di τ̂i)

)
, (12.4.21)

where the critical coefficientw is

wB � tbc−b−c−v+2,α/2m or wS � √(v − 1)Fv−1,bc−b−c−v+2,α ,

for the Bonferroni or Scheffé methods, respectively.

12.5 Analysis of Latin Square Designs

12.5.1 Analysis of Variance for Latin Square Designs

Table 12.5, page 400, shows the analysis of variance table for the row–column–treatment
model (12.3.1) for any row–column design with complete column blocks. The notationTi ,
Bh, Cq , andG refers to the sum of the observations on theith level of the treatment factor,
thehth level of the row-blocking factor, theqth level of the column-blocking factor, and the
grand total of all the observations, respectively. The constantnhqi is equal to 1 if treatmenti
is observed in the combination of row blockh and column blockq, andnhqi is equal to zero
otherwise. The term�h�q�inhqiy

2
hqi represents the sum of squares of all the observations.

For ans-replicate Latin square design, we haveb � vs andc � v. The adjusted treatment
sum of squares is�Qiτ̂i , where we showed in optional Section 12.4.2 that

τ̂i � 1

vs
Qi
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and

Qi � Ti − 1

c

∑
h

nh.iBh � Ti − 1

v
G .

Thus, for a Latin square design, the treatment sum of squares can be rewritten as

ssTadj �
v∑
i�1

Qiτ̂i � 1

vs

∑
i

(
Ti − 1

v
G

)2

,

and we see that the “adjusted” treatment sum of squares for a Latin square design is actually
not adjusted for row-block effects nor for column-block effects. This is because every
treatment is observed the same number of times in every row block and in every column
block even though only a few of the row–column–treatment combinations are actually
observed. The computational formula is obtained by expanding the terms in parentheses,

ssT � 1

vs

∑
i

T 2
i − 1

v2s
G2 .

The error sum of squares and degrees of freedom are obtained by subtraction, as shown
in the analysis of variance table, Table 12.5. For ans-replicate Latin square design with
b � vs rows andc � v columns, we have error degrees of freedom equal to

df � bc − b − c − v + 2

� v2s − vs − 2v + 2

� (vs − 2)(v − 1) . (12.5.22)

The test for equality of treatment effects compares the ratio of the treatment and error
mean squares with the corresponding value from theF -distribution, in the usual way (see
Example 12.5.1). We will not utilize a test for the hypothesis of negligible row-block or
of negligible column-block effects. However, we conclude that the current experiment has
benefitted from the use of the row (or column) blocking factor if the row (or column) mean
square exceeds the mean square for error.

Example 12.5.1 Dairy cow experiment

Cochran and Cox (1957, page 135) described an experiment that studied the effects of three
diets on the milk production of dairy cows. Thev � 3 diets (levels of a treatment factor)
consisted of roughage (level 1), limited grain (level 2), and full grain (level 3). A crossover
experiment was used, with each of theb � 6 cows being fed each diet in turn, each for a six-
week period. The response variable was the milk yield for each cow during each of thec � 3
periods. Data were collected using a 2-replicate Latin square withv � 3 treatment labels,
b � vs � 6 rows,c � 3 columns, and withv � 3 treatments each observedr � vs � 6
times. The data are reproduced in Table 12.6.

Provided that each measurement on milk yield has been taken after a cow has been on a
new diet for a sufficiently long period of time to allow the effect of the previous diet to “wash
out” of the system, we need not be concerned with carryover effects. For this experiment, a
model without carryover effects describes the data fairly well.
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Table 12.6 Unrandomized design (and data in
parentheses) for the dairy cow
experiment

Period
Cow 1 2 3
1 1 (38) 2 (25) 3 (15)
2 2 (109) 3 (86) 1 (39)
3 3 (124) 1 (72) 2 (27)
4 1 (86) 3 (76) 2 (46)
5 2 (75) 1 (35) 3 (34)
6 3 (101) 2 (63) 1 (1)

Source:Experimental Designs, Second
Edition, by W. G. Cochran and G. M. Cox,
Copyright © 1957, John Wiley & Sons, New
York. Adapted by permission of John Wiley &
Sons, Inc.

Table 12.7 Analysis of variance table for the dairy cow experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Cow (row) 5 5781.11 1156.22 − −
Period (column) 2 11480.11 5740.06 − −
Diets (treatment) 2 2276.78 1138.39 11.05 0.0050
Error 8 824.44 103.06
Total 17 20362.44

Table 12.7 shows the analysis of variance table. To test the null hypothesisHT
0 that all

three diets have the same effect, the decision rule is

rejectHT
0 if msT/msE > F2,8,.01 � 8.65,

with a probability of α � 0.01 of making a Type I error. SincemsT/msE �
1138.39/103.06 � 11.05> 8.65, we reject the null hypothesis at theα � 0.01 significance
level and conclude that the diets do not all have the same effect.

To evaluate whether or not blocking was worthwhile, observe that the mean squares for
periods and cows are both considerably larger than the error mean square. Thus, inclusion
of both blocking factors in the experiment was beneficial in reducing the experimental
error. ✷

12.5.2 Confidence Intervals for Latin Square Designs

All treatment contrasts are estimable in Latin square designs. Using the row–column–
treatment model (12.3.1), the least squares estimate of a treatment contrast�diτi was shown
in the optional Section 12.4.2 to be∑

di τ̂i � 1

vs

∑
diTi , (12.5.23)
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whereTi is the total of all the observations on theith treatment, and the corresponding
variance is

Var
(∑

di τ̂i

)
�
∑

d2
i

(
σ 2

vs

)
. (12.5.24)

The multiple-comparison methods of Bonferroni, Scheffé, Tukey, Dunnett, and Hsu can
be used for Latin square designs. Formulae for confidence intervals for treatment contrasts
�diτi are of the form 1

vs
�idiTi ± w

√
msE

(
�d2

i

vs

)  , (12.5.25)

where the appropriate critical coefficientsw for the five methods are,

wB � t(vs−2)(v−1),α/2m ; wS � √(v − 1)Fv−1,(vs−2)(v−1),α ;

wT � qv,(vs−2)(v−1),α/
√

2 ;

wH � wD1 � t
(0.5)
v−1,(vs−2)(v−1),α ; wD2 � |t |(0.5)

v−1,(vs−2)(v−1),α .

Example 12.5.2 Dairy cow experiment, continued

The dairy cow experiment was described in Example 12.5.1, page 402. Tukey’s method of
all pairwise comparisons can be applied to determine which diets, if any, are significantly
different from any of the others. The treatment sample means, which can be computed from
the data in Table 12.6, are

1

vs
T1 � 45.167,

1

vs
T2 � 57.500,

1

vs
T3 � 72.667,

so that the least squares estimates of the pairwise differences are

τ̂2 − τ̂1 � 57.500− 45.167� 12.333,

τ̂3 − τ̂1 � 72.667− 45.167� 27.500,

τ̂3 − τ̂2 � 72.667− 57.500� 15.167.

The value of the error mean square ismsE � 103.06 from the analysis of variance table,
Table 12.7. The error degrees of freedom are given by (12.5.22) as

df � (vs − 2)(v − 1) � (2 × 3 − 1)(3− 1) � 8 .

Using a simultaneous confidence level of 95%, we obtain the critical coefficient for Tukey’s
method aswT � q3,8,.05/

√
2 � 4.04/

√
2. Hence, using (12.5.25), the minimum significant

difference for pairwise differences is

msd � (4.04/
√

2)
√

msE(2/6) � 16.743.

The simultaneous 95% confidence intervals are therefore

τ3 − τ1 ∈ (12.333 ± 16.743) � ( 10.58,44.24),

τ2 − τ1 ∈ (27.500 ± 16.743) � ( −4.41,29.08),
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τ2 − τ3 ∈ (15.167 ± 16.743) � (−31.91, 1.58).

From these intervals, we can deduce that at overall significance levelα � 0.05, the full
grain diet (level 3) results in a mean yield of 10.58–44.24 units higher than the roughage
diet (level 1), but the limited grain diet (level 2) is not significantly different from either of
the other two. ✷

12.5.3 How Many Observations?

The formula for determining the sample size needed to achieve a powerπ ()) of detecting
a difference) in the treatment effects for givenv, α, andσ 2, using a Latin square design,
is the same as that for a randomized complete block design but withb replaced byv (since
r � vs rather thanr � bs). Thus, we need to finds to satisfy

s ≥ 2σ 2φ2

)2
. (12.5.26)

Alternatively, the confidence interval formula (12.5.25) can be used to calculate the sample
sizes needed for achieving confidence intervals of a desired width (see Example 12.5.3).

Example 12.5.3 Sample-size calculation for a Latin square design

Consider an experiment to comparev � 3 computer keyboard designs with respect to the
time taken to type an article of given length. Typists and time periods are the two blocking
factors, with each ofb � 3s typists using each of the keyboards in a sequence ofc � 3
time periods. Ans-replicate Latin square design will be used, withr � 3s observations per
keyboard layout (treatment).

With 3 treatments, there are 3 pairwise comparisons. Using Tukey’s method of multiple
comparisons and a simultaneous confidence level of 95%, suppose that the experimenters
want confidence intervals with half-width (minimum significant difference) of 10 minutes
or less. The error standard deviation is expected to be at most 15 minutes (a variance of at
most 225 minutes2). The error degrees of freedom, as given in (12.5.22), are

df � (vs − 2)(v − 1) � 2(3s − 2) � 6s − 4 .

Then, using the confidence interval formula (12.5.25) for Tukey’s method of pairwise
comparisons, the minimum significant difference is

msd ≈ q3,6s−4,.05√
2

√
225× 2

vs
� q3,6s−4,.05

√
225

3s
.

To obtainmsd ≤ 10, we require 0.75q2
3,6s−4,.05 ≤ s. Sample size is then computed by trial

and error as follows:

s 6s − 4 q3,6s−4,.05 0.75q23,6s−4,.05 Required
∞ 3.31 8.22 s ≥ 9

9 50 3.42 8.77 s � 9
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So,s � 9, and a 9-replicate Latin square would be needed, givingmsd ≈ 3.42
√

225
27 � 9.87

minutes and requiringb � vs � 27 typists andr � vs � 27 observations per keyboard
layout. ✷

12.6 Analysis of Youden Designs

12.6.1 Analysis of Variance for Youden Designs

Thes-replicate Youden design withv treatments has complete column blocks of sizeb � vs

and row blocks forming a balanced incomplete block design with blocks of sizec. Each
treatment is observedr � cs times. For the row–column–treatment model (12.3.1) with no
interactions, a solution to the normal equations was derived in optional Section 12.4.2 as

τ̂i � c

λv
Qi , whereQi � Ti − 1

c

∑
h

nh.iBh , (12.6.27)

for i � 1, . . . , v, whereλ � r(c − 1)/(v − 1), analogous to the solution for a balanced
incomplete block design.

As in the analysis of a balanced incomplete block design, the estimators of the treatment
effects in a Youden design are not independent of the estimators of the row-block effects.
As a result, the treatment-effect estimators must be adjusted for row blocks. However, since
the column blocks form a randomized complete block design, no adjustment is needed for
these. Table 12.5, page 400, shows the analysis of variance table for a row–column design
with complete column blocks and no interactions. The adjusted treatment sum of squares is
given in the table as

ssTadj �
v∑
i�1

Qiτ̂i � c

λv

v∑
i�1

Q2
i , where Qi � Ti − 1

c

b∑
h�1

nh.iBh ,

exactly as for a balanced incomplete block design with blocks of sizek � c (see Table 11.7,
page 351).

From Table 12.5, the number of error degrees of freedom for ans-replicate Youden square
is

df � bc − b − c − v + 2

� vsc − vs − c − v + 2

� (vs − 1)(c − 1) − (v − 1) . (12.6.28)

To test the null hypothesisHT
0 of no treatment differences, the decision rule is

reject HT
0 if

msTadj

msE
> Fv−1,df,α .
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12.6.2 Confidence Intervals for Youden Designs

All treatment contrasts�diτi are estimable in all Youden designs. The least squares estimate
of the contrast�diτi is∑

di τ̂i � c

λv

∑
i

diQi �
(

v − 1

vs(c − 1)

)∑
i

diQi ,

sinceλ � r(c − 1)/(v − 1). The variance of the corresponding estimator is

Var(
∑

di τ̂i) �
( c
λv

)∑
d2
i σ

2 �
(

v − 1

vs(c − 1)

)∑
d2
i σ

2 . (12.6.29)

Confidence interval formulae for treatment contrasts�diτi are the same as those for a
balanced incomplete block design with block sizek � c; that is,(

v − 1

vs(c − 1)

)∑
i

diQi ± w

√
msE

(
v − 1

vs(c − 1)

)∑
d2
i , (12.6.30)

wherew, as usual, is the critical coefficient for the Bonferroni, Scheffé, Tukey, Dunnett, or
Hsu method, given by

wB � t(vs−1)(c−1)−(v−1),α/2m ; wS � √(v − 1)Fv−1,(vs−1)(c−1)−(v−1),α ;

wT � qv,(vs−1)(c−1)−(v−1),α/
√

2 ;

wH � wD1 � t
(0.5)
v−1,(vs−1)(c−1)−(v−1),α ; wD2 � |t |(0.5)

v−1,(vs−1)(c−1)−(v−1),α .

12.6.3 How Many Observations?

The methods of sample-size calculation for ans-replicate Youden square are analogous to
those for computing samples sizes for a balanced incomplete block design. To calculate the
number of observationsr � cs per treatment required to achieve a powerπ ()) of detecting
a difference) in treatment effects for givenv, α, andσ 2, the power tables in Appendix A.7
can be used in the same way as for a balanced incomplete block design (Section 11.8), with
b � c andr � cs. Thus, we need to finds satisfying

cs ≥ 2vσ 2φ2

)2

[
c(v − 1)

v(c − 1)

]
,

which reduces to

s ≥ 2σ 2φ2(v − 1)

)2(c − 1)
.

Alternatively, the confidence interval formula (12.6.30) can be used to calculate
the sample sizes needed for achieving confidence intervals of a desired width (see
Example 12.6.3).
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Example 12.6.1

Suppose an experiment is run to compare six paint additive formulations (levels 2–7 of the
treatment factor) with a standard “control” formulation (level 1) with respect to the drying
time (in minutes). The paint is sprayed throughc � 4 different nozzles so thatc � 4 paints
can be sprayed simultaneously. A total ofb � 7s panels will each be painted with strips
of 4 of the 7 paints. The error variability is expected to be at most 25 minutes2 (standard
deviation at most 5 minutes), and simultaneous 90% confidence intervals with half-width
of at most 3.5 minutes are required for the six treatment-versus-control contrasts.

A Youden square with 7 rows, 4 columns, and 7 treatments is shown in Table 12.1.
Suppose thats copies of this basic square are to be used, giving ans-replicate Youden
design with the same number of observations on the experimental and control treatments.
The number of error degrees of freedom, given in (12.6.28), is then

df � (vs − 1)(c − 1) − (v − 1) � (7s − 1)(4− 1) − (7 − 1) � 21s − 9 .

Using Dunnett’s method of multiple comparisons for treatment versus control, the minimum
significant difference is

msd � wD2

√
msE ×

(
(v − 1)

vs(c − 1)

)
× 2 ,

so we require

msd ≈ wD2

√
(25)(6)(2)

(7)s(3)
≤ 3.5 ,

that is,

w2
D2 ≤ 0.8575s ,

wherewD2 � |t |(.5)
6,21s−9,.1 . Using Table A.10 for the values ofwD2 � |t |(.5)

6,21s−9,.1 , we have

s 21s − 9 wD2 � |t |(.5)6,21s−9,.1 w 2
D2 0.8575s Action

20 411 2.30 5.29 17.15 Decrease s
6 117 2.32 5.38 5.15 Increase s
7 138 2.32 5.38 6.00 Decrease s

So we see thats � 7 Youden squares would be adequate, requiringb � vs � 49 panels and
giving r � sc � 28 observations on each of thev � 7 paint formulations, both experimental
and control. If 49 panels are not available for the experiment, then the experimenter would
have to be satisfied with wider confidence intervals. ✷

12.7 Analysis of Cyclic and Other Row–Column Designs

In general, it is not easy to obtain least squares solutions for the treatment parametersτ̂i
in row–column designs other than Latin square and Youden designs. We will illustrate
the analysis of a more complicated row–column design via the SAS computer package in
Section 12.10.
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12.8 Checking the Assumptions on the Model

The error assumptions on the row–column–treatment model (12.3.1) and on the model
(12.3.2), which includes interaction, can be checked by plotting the standardized residuals
against the run order, the predicted valuesŷijk, the levels of the row blocking factor, the
levels of the column blocking factor, the levels of the treatment factor, and the normal scores.

The data collected from a row–column design can be examined by plotting the adjusted
observations against the treatment labels. The observations are adjusted by subtracting the
treatment-adjusted row-block and column-block effect estimators:

y∗
hqi � yhqi − (θ̂h − θ̂ .) − (φ̂q − φ̂.) . (12.8.31)

For thes-replicate Latin square design withb � vs row blocks andc � v column blocks,
and the row–column–treatment model (12.3.1), the row-block and column-block effect
estimators are independent of treatment effects, and (12.8.31) becomes

y∗
hqi � yhqi −

(
1

vs
Bh − 1

v2s
G

)
−
(

1

v
Cq − 1

v2s
G

)
.

For other designs, the adjusted observations can be calculated by computer, as shown in
Section 12.10. Since the variability due to the blocking factors has been extracted from the
adjusted observations, the data plots will exhibit less variability than really exists.

Example 12.8.1 Dairy cow experiment

For the dairy cow experiment, which was run as a Latin square design, the adjusted
observations are plotted against treatment labels in Figure 12.1. The plot shows how milk
yield tends to increase as the quality of the diet improves from roughage (level 1) to limited
grain (level 2) to full grain (level 3). In Example 12.5.1, simultaneous confidence intervals
(with an overall 95% confidence level) showed a significant difference in diets 1 and 3, but
were unable to distinguish between diets 1 and 2 and between diets 2 and 3. ✷

Figure 12.1
Adjusted data for the
dairy cow experiment
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The row–column–treatment model (12.3.1) assumes that the two blocking factors do not
interact with each other or with the treatment factor. If interactions are present, the error
variance estimate will be inflated, decreasing the powers of hypothesis tests and widening
confidence intervals for treatment contrasts. When the column blocks are complete blocks,
the column–treatment interaction can be checked by plotting the row-adjusted observations
(see Chapter 10) against treatments, with plot labels being the column-block labels. Inter-
action is indicated by nonparallel lines. The row–column interaction can be investigated
in the same way using the treatment-adjusted observations and plotting against row labels.
The row–treatment interactions can only be investigated if the row blocks are also complete
blocks as in Latin square designs.

12.9 Factorial Experiments in Row–Column Designs

The exercise bike experiment of Example 12.2.4, page 393, was a factorial experiment with
three treatment factors having two levels each. These were “time duration of exercise” (1
and 3 minutes, coded as 1 and 2), “exercise speed” (40 and 60 rpm, coded as 1 and 2),
and “pedal type” (foot pedal and hand bars, coded as 1 and 2). The data were shown in
Table 12.4.

If we use the row–column–treatment model with three-digit labels for the treatment
combinations, then we can write the model as

Yhqijk � µ+ θh + φq + τijk + εhqijk ,

whereθh is effect of dayh, φq is the effect of subjectq, andτijk is the effect of treat-
ment combinationijk. If we now rewriteτijk in terms of its constituent main effects and
interactions, we obtain the following form of the row–column–treatment model:

Yhqijk � µ+ θh + φq + αi + βj + γk

+ (αβ)ij + +(αγ )jk + (βγ )jk + (αβγ )ijk + εhqijk ,

h � 1, . . . ,8 ; q � 1,2,3 ; i � 1,2 ; j � 1,2 ; k � 1,2 ;

whereαi is the effect of theith duration,βj is the effect of thej th speed, andγk is the
effect of thekth pedal type, and the other terms represent interactions between the treatment
factors. The analysis of this experiment in terms of both forms of the model by the computer
program SAS is shown in Section 12.10. If some of the treatment interactions are thought
to be negligible, they can be dropped from the latter model. We note that there are 7 degrees
of freedom for error, so it would be possible to measure, say, the day×duration interaction.

12.10 Using SAS Software

In this section, a sample program is given to illustrate the analysis of row–column designs
using the SAS software. The program uses the data of the exercise bicycle experiment, which
was described in Example 12.2.4, page 393. The design is a cyclic row–column design with
v � 8 treatment labels representing the eight treatment combinations shown in Table 12.4,
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Table 12.8 SAS program for analysis of a row–column design—Exercise bicycle experiment

DATA BIKE;
INPUT DAY SUBJECT PULSE DURAT$ SPEED$ PEDAL$;
TRTMT = trim(DURAT)||trim(SPEED)||trim(PEDAL);
LINES;
1 1 45 1 1 2
1 2 25 2 1 2
1 3 18 2 2 1
2 1 27 2 2 2
: : : : : :
8 3 34 1 1 1

;
PROC PRINT;
* row-column-treatment model;
PROC GLM;
CLASSES DAY SUBJECT TRTMT;
MODEL PULSE = DAY SUBJECT TRTMT / SOLUTION;
OUTPUT OUT=RESIDS PREDICTED=PRED RESIDUAL=Z;
ESTIMATE ’DURATION DIFF’ TRTMT -1 -1 -1 -1 1 1 1 1 / DIVISOR=4;
ESTIMATE ’SPEED DIFF’ TRTMT -1 -1 1 1 -1 -1 1 1 / DIVISOR=4;
ESTIMATE ’PEDAL DIFF’ TRTMT -1 1 -1 1 -1 1 -1 1 / DIVISOR=4;

* Standardize residuals and compute normal scores;
PROC STANDARD STD=1.0; VAR Z;
PROC RANK NORMAL=BLOM; VAR Z; RANKS NSCORE;
* Generate residual plots;
PROC PLOT;
PLOT Z*PRED Z*TRTMT Z*DAY Z*SUBJECT / VREF=0 VPOS=19 HPOS=50;
PLOT Z*NSCORE / VREF=0 HREF=0 VPOS=19 HPOS=50;

and withb � 8 row blocks representing days andc � 3 column blocks representing subject.
The treatment combinations were combinations of the levels of the three treatment factors
“time duration of exercise,” “exercise speed,” and “pedal type.”

A SAS program for analyzing this experiment is shown in Table 12.8. The data are entered
into a data set calledBIKE, usingDAY andSUBJECT as the two blocking factors, and using
DURAT,SPEED, andPEDAL as the three treatment factors, andPULSE for the response variable
“pulse rate.” The combinations of the levels of the three treatment factors are recoded as
levels of a factorTRTMT.

The MODEL statement in the firstGLM procedure causes generation of the analysis of
variance table shown in Table 12.9. The blocking factors are entered into the model before
the treatment factor, so the treatment sum of squares is adjusted for block effects whether one
looks at the Type I or Type III sums of squares. The row and column effects are independent
of each other, since there is one observation at each combination of levels of the row and
column blocking factors. Consequently, the Type I sums of squares reproduce the analysis
of variance table, Table 12.5, with unadjusted block effects and adjusted treatment effects.
In this particular experiment, the column blocks (subjects) are complete blocks, and so the
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Table 12.9 Analysis of variance for a row–column design—Exercise bicycle experiment

The SAS System
General Linear Models Procedure

Dependent Variable: PULSE
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 16 1257.6786 78.6049 3.28 0.0588
Error 7 167.9464 23.9923
Corrected Total 23 1425.6250

Source DF Type I SS Mean Square F Value Pr > F
DAY 7 202.29167 28.89881 1.20 0.4062
SUBJECT 2 201.00000 100.50000 4.19 0.0636
TRTMT 7 854.38690 122.05527 5.09 0.0238

Source DF Type III SS Mean Square F Value Pr > F
DAY 7 23.72024 3.38861 0.14 0.9903
SUBJECT 2 201.00000 100.50000 4.19 0.0636
TRTMT 7 854.38690 122.05527 5.09 0.0238

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
INTERCEPT 19.86607143 B 3.55 0.0093 5.59247154
DAY 1 3.99107143 B 0.73 0.4868 5.43709471

2 1.56250000 B 0.29 0.7821 5.43709471
3 2.57142857 B 0.46 0.6574 5.55403486
4 0.80357143 B 0.16 0.8754 4.94173873
5 2.51785714 B 0.51 0.6261 4.94173873
6 1.63392857 B 0.37 0.7208 4.39085009
7 0.20535714 B 0.05 0.9640 4.39085009
8 0.00000000 B . . .

SUBJECT 1 5.25000000 B 2.14 0.0693 2.44909917
2 -1.50000000 B -0.61 0.5596 2.44909917
3 0.00000000 B . . .

TRTMT 111 12.64285714 B 2.56 0.0376 4.94173873
: : : : : :

221 -7.25892857 B -1.34 0.2236 5.43709471
222 0.00000000 B . . .

NOTE: The X’X matrix has been found to be singular and a generalized
inverse was used to solve the normal equations. Estimates
followed by the letter ’B’ are biased, and are not unique
estimators of the parameters.
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Table 12.10 Output from the ESTIMATE statement—Exercise bicycle experiment

The SAS System
Dependent Variable: PULSE

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
DURATION DIFF -5.3437500 -1.97 0.0901 2.71854736
SPEED DIFF -10.3214286 -4.18 0.0042 2.47086937
PEDAL DIFF 4.3080357 1.58 0.1571 2.71854736

Table 12.11 Analysis of variance for a row–column design—Exercise bicycle experiment

The SAS System

Source DF Type III SS Mean Square F Value Pr > F
DAY 7 23.72024 3.38861 0.14 0.9903
SUBJECT 2 201.00000 100.50000 4.19 0.0636
DURAT 1 92.70245 92.70245 3.86 0.0901
SPEED 1 418.65163 418.65163 17.45 0.0042
PEDAL 1 60.25006 60.25006 2.51 0.1571
DURAT*SPEED 1 7.28581 7.28581 0.30 0.5987
DURAT*PEDAL 1 21.66949 21.66949 0.90 0.3736
SPEED*PEDAL 1 11.57667 11.57667 0.48 0.5097
DURAT*SPEED*PEDAL 1 7.71429 7.71429 0.32 0.5884

treatment sum of squares is actually only adjusted for row-block (day) effects. The Type III
sums of squares show the row-block (day) effects adjusted for the treatment effects.

TheESTIMATE statements request SAS to calculate the information needed to calculate
three confidence intervals. The three selected contrasts are the main-effect contrasts com-
paring the effect on pulse rate of the two levels of each treatment factor (averaging over any
interaction that might be present). The output, shown in Table 12.10, gives the least squares
estimates of the contrasts and their associated standard errors. From this information, con-
fidence intervals can be calculated in the usual way. The contrast estimates are adjusted for
the incomplete row blocks.

12.10.1 Factorial Model

To write the row–column–treatment model in terms of factorial treatment combinations, the
model statement in Table 12.8 is replaced by

MODEL PULSE = DAY SUBJECT DURAT SPEED PEDAL DURAT*SPEED
DURAT*PEDAL SPEED*PEDAL DURAT*SPEED*PEDAL;

The Type III sums of squares are shown in Table 12.11, and we can see that the sums of
squares for the main effects and interactions of the three treatment factors do not add to the
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Table 12.12 SAS code for calculating and plotting the adjusted observations—Exercise bicycle
experiment

* Add the following code for the second run of the program;
DATA BIKE3; * input subject effect estimates from first run;
INPUT SUBJECT SHAT @@;
LINES;
1 5.25 2 -1.50 3 0.00

PROC MEANS MEAN; * print average of the subject effect estimates;
VAR SHAT;

DATA BIKE4; * input day effect estimates from first run;
INPUT DAY DHAT @@;
LINES;
1 3.9911 2 1.5625 3 2.5714 4 0.8036
5 2.5179 6 1.6334 7 0.2054 8 0.0000

PROC MEANS MEAN; * print average of the day effect estimates;
VAR DHAT;

;
* Add the following code for the third run;
* Adjust data for subject and day effects, then plot adjusted data;
DATA BIKE5; SET BIKE;
IF SUBJECT=1 THEN YADJ=PULSE-(5.25-1.25);
ELSE IF SUBJECT=2 THEN YADJ=PULSE-(-1.50-1.25);
ELSE IF SUBJECT=3 THEN YADJ=PULSE-(0.00-1.25);

IF DAY=1 THEN YADJ=YADJ-(3.9911-1.660);
ELSE IF DAY=2 THEN YADJ=YADJ-(1.5625-1.6607);
ELSE IF DAY=3 THEN YADJ=YADJ-(2.5714-1.6607);
ELSE IF DAY=4 THEN YADJ=YADJ-(0.8036-1.6607);
ELSE IF DAY=5 THEN YADJ=YADJ-(2.5179-1.6607);
ELSE IF DAY=6 THEN YADJ=YADJ-(1.6334-1.6607);
ELSE IF DAY=7 THEN YADJ=YADJ-(0.2054-1.6607);
ELSE IF DAY=8 THEN YADJ=YADJ-(0.0000-1.6607);

PROC PLOT;
PLOT YADJ*TRTMT / VPOS=19 HPOS=50;

Type III treatment sum of squares in Table 12.9 due to the individual adjustments for block
effects and for the other treatment factor effects.

TheESTIMATE statements for the factorial model become

ESTIMATE ’DURATION DIFF’ DURAT -1 1;
ESTIMATE ’SPEED DIFF’ SPEED -1 1;
ESTIMATE ’FOOT/HAND DIFF’ PEDAL -1 1;

and give output identical to that of Table 12.10.
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12.10.2 Plots

The statements needed for calculating the standardized residuals and normal scores and
for generating the residual plots are also shown in Table 12.8. These are as discussed in
Section 5.8.PROC PLOT is used to generate the usual residual plots (not shown here).

TheSOLUTION option in theMODEL statement causes a set of least squares solutions to
the normal equations to be printed. These are subsequently used to calculate the adjusted
data values needed for examining the data.

For obtaining the adjusted observations, the statements in Table 12.12 would be added to
the program in Table 12.8 for a second and third run of the program. The data are adjusted
using (12.8.31); that is,

y∗
hqi � yhqi − (θ̂h − θ̂ .) − (φ̂q − φ̂.) ,

whereθ̂h andφ̂q are obtained from the output of theSOLUTION option shown in Table 12.9.
The second run of the program takes as input the values ofθ̂h andφ̂q from the first run of

the program and calculatesθ̂ . � �θ̂h/3 � 1.25 andφ̂. � �φ̂q/8 � 1.66, which are then
copied by hand into the statements for the third run of the program. The symbols@@ allow
the input to be entered with more than one record per line.

In the third run of the program, the data setBIKE5 is created as a copy of the data set
BIKE. This is done to create the new variableYADJ, which contains the values ofPULSE,
adjusted for the row and column effects. ThePLOT procedure is used to plot the adjusted
observations by treatment. The SAS plot is analogous to that in Figure 12.1 (page 409) and
is not shown here.

Exercises

1. Randomization

(a) Randomize the design in Table 12.1 (page 389) so that it can be used for an
experiment with seven subjects, each being assigned a sequence of four out of a
possible seven antihistamines over four time periods.

(b) Discuss whether or not one could avoid a carryover effect from becoming a problem
in this type of experiment.

2. Latin squares

(a) Show that there is only one standard 3×3 Latin square. (Hint: Given the letters in
the first row and the first column, show that there is only one way to complete the
Latin square.)

(b) Show that there are exactly four standard 4×4 Latin squares.

3. Sample sizes
Consider an experiment to compare 4 degrees of twist in a cotton-spinning experiment
with respect to the number of breaks per 100 pounds. A replicated Latin square design is
to be used, with time periods and machines being the row and column blocking factors.
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(a) Determine the numbers of Latin squares and the numberr of observations per
degree of twist to include in the experiment if each interval in a simultaneous set
of 95% confidence intervals for all pairwise comparisons is to have a minimum
significant difference (half-width) of 5 breaks per 100 pounds. The error standard
deviation is thought to be at most 6 breaks per 100 pounds. Investigate both the
Tukey and the Bonferroni methods.

(b) Discuss how the resulting design would be randomized.

4. Youden design randomization

(a) Find a Youden square (plan of treatment labels in rows and columns) for 5
treatments in 5 rows and 4 columns.

(b) Randomize the design found in part (a), assigning the rows to 5 different drying
temperatures, the columns to 4 different paint nozzles, and the treatment labels to
5 different paint formulations.

5. Row–column design randomization
Consider an experiment to compare 5 protocols with respect to a resting metabolism
rate measurement. A row–column design is to be used, blocking on subjects and time
periods. Since subjects prefer to stay in a study for a short length of time, only 3 time
periods will be used, with each subject assigned a different protocol in each of the 3 time
periods. For 10 subjects, the following experimental plan with 10 rows and 3 columns
could be used:

Column Column
Row I II III Row I II III
I 1 2 3 VI 1 2 4
II 2 3 4 VII 2 3 5
III 3 4 5 VIII 3 4 1
IV 4 5 1 IX 4 5 2
V 5 1 2 X 5 1 3

(a) Does this experimental plan have treatments evenly distributed across rows and
columns? Explain what you mean by “evenly distributed.”

(b) Determine the number of replicatess of this experimental plan, and the corre-
sponding number of observationsr per protocol to include in the experiment if
each interval in a set of simultaneous 95% confidence intervals for all pairwise
comparisons is to have a minimum significant difference (half-width) of 150 units.
The error standard deviation is thought to be at most 250 units. Investigate both
the Tukey and the Bonferroni methods.

(c) Discuss how the resulting design would be randomized.

6. Video game experiment
Professor Robert Wardrop, of the University of Wisconsin, conducted an experiment
in 1991 to evaluate in which of five sound modes he best played a certain video game.
The first three sound modes corresponded to three different types of background music,
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Table 12.13 Latin square design showing treatments and data for the
video game experiment

Day
1 2 3 4 5

1 1 94 3 100 4 98 2 101 5 112
Time 2 3 103 2 111 1 51 5 110 4 90
Order 3 4 114 1 75 5 94 3 85 2 107

4 5 100 4 74 2 70 1 93 3 106
5 2 106 5 95 3 81 4 90 1 73

as well as game sounds expected to enhance play. The fourth mode had game sounds
but no background music. The fifth mode had no music or game sounds. Denote these
sound modes by the treatment factor levels 1–5, respectively.
The experimenter observed that the game required no warmup, that boredom and fatigue
would be a factor after 4 to 6 games, and that his performance varied considerably on a
day-to-day basis. Hence, he used a Latin square design, with the two blocking factors
being “day” and “time order of the game.” The response measured was the game score,
with higher scores being better. The design and resulting data are given in Table 12.13.
(a) Write down a possible model for these data and check the model assumptions. If

the assumptions appear to be approximately satisfied, then answer parts (b)–(f).

(b) Plot the adjusted data and discuss the plot.

(c) Complete an analysis of variance table.

(d) Evaluate whether blocking was effective.

(e) Construct simultaneous 95% confidence intervals for all pairwise comparisons, as
well as the “music versus no music” contrast

1
3(τ1 + τ2 + τ3) − 1

2(τ4 + τ5)

and the “game sound versus no game sound” contrast

1
4(τ1 + τ2 + τ3 + τ4) − τ5 .

(f) What are your conclusions from this experiment? Which sound mode(s) should
Professor Wardrop use?

7. Video game experiment, continued
Suppose that in the video game experiment of Exercise 6, Professor Wardop had run out
of time and that only the first four days of data had been collected. The design would
then have been a Youden design. Repeat parts (c), (e), and (f) of Exercise 6. Do your
conclusions remain the same? Is this what you expected? Why or why not?

8. Air freshener experiment
A. Cunningham and N. O’Connor (1968,British Journal of Marketing 2, 147–151)
conducted a two-replicate Latin square design to compare the effects of four price-and-
display treatments on the sales of a brand of air fresheners. Treatments 1–3 corresponded
to high, middle, and low prices, respectively, and each had an extra display. Treatment
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Table 12.14 Latin square design and data for the air freshener sales experiment

Store
Week 1 2 3 4 5 6 7 8
1 2 31 1 23 3 12 4 3 1 10 3 30 2 23 4 14
2 1 19 4 16 2 14 3 4 2 21 4 25 3 17 1 14
3 4 15 3 30 1 12 2 6 3 12 1 47 4 5 2 3
4 3 16 2 27 4 5 1 11 4 12 2 38 1 13 3 6

Source: Cunningham, A. and O’Connor, N. (1968).

4 corresponded to the middle price and no extra display. The response variable was the
unit sales for a one-week period. The experiment involved two blocking factors defined
by stores (c � 8 levels) and one-week periods (b � 4 levels). The design and data are
given in Table 12.14.
(a) Factors such as product location and shelf stocking could affect sales. Discuss how

these factors might be controlled in such an experiment.

(b) Check the model assumptions.

(c) Plot the adjusted data and comment on the results.

(d) Complete an analysis of variance table.

(e) Evaluate whether blocking was effective.

(f) Test for equality of treatment effects using a 5% significance level.

(g) Construct simultaneous 95% confidence intervals for all pairwise comparisons of
the treatments. What would you recommend for the sales of air fresheners if the
results of this experiment are still valid today?

9. Air freshener experiment, continued
Suppose that the air freshener experiment of Exercise 8 had to be stopped after only 3
weeks. The resulting design would then be a replicated Youden design. Repeat parts (d)–
(g) of Exercise 8. Do your conclusions remain the same? Is this what you expected?
Why or why not?

10. Quantity perception experiment
An experiment was run in 1996 by M. Gbenado, A. Veress, L. Heimenz, J. Monroe,
and S. Yu to investigate the effect of color on the perception of quantity. Subjects were
selected at random from the student population. A number of small candies of a specific
color were tipped onto a flat try. A subject was allowed to view the tray for 3 seconds
and then asked to make a guess as to the number of candies on the tray.
The treatment factors of interest were “actual number of candies on the tray” and
“color.” The selected levels were 17, 29, and 41 for the treatment factor “number”
and yellow, orange, brown for the factor “color.” The experimenters decided that each
subject should view all nine treatment combinations, and they based their design on
9×9 Latin squares.
We consider only part of the original study, constituting a 2-replicate Latin square, to
save space. The data are shown in Table 12.15. Subjects represent the row blocks, and
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Table 12.15 2-replicate Latin square design and data in parentheses for the quantity perception
experiment—data are ‘true number’ minus ‘guessed number’

Time Order
Subj 1 2 3 4 5 6 7 8 9
1 23 (4) 22 (−3) 11 (0) 12 (−3) 32 (−1) 13 (−3) 31 (−6) 33 (−9) 21 (−1)
2 12 (2) 31 (16) 32 (21) 21 (9) 22 (4) 33 (16) 23 (9) 11 (2) 13 (2)
3 21 (4) 23 (−1) 12 (7) 13 (−5) 33 (−1) 11 (−13) 32 (−9) 31 (−19) 22(−16)
4 32 (21) 12 (4) 22 (3) 31 (11) 13 (0) 21 (4) 11 (0) 23 (4) 33 (11)
5 31 (7) 11 (−2) 21 (2) 33 (3) 12 (−3) 23 (3) 13 (−4) 22 (−5) 32 (−7)
6 11 (3) 33 (7) 31 (14) 23 (11) 21 (12) 32 (17) 22 (10) 13 (5) 12 (0)
7 22 (11) 21 (14) 13 (0) 11 (1) 31 (16) 12 (1) 33 (13) 32 (14) 23 (7)
8 13 (7) 32 (16) 33 (16) 22 (4) 23 (4) 31 (16) 21 (14) 12 (7) 11 (2)
9 33 (21) 13 (2) 23 (10) 32 (24) 11 (6) 22 (13) 12 (2) 21 (8) 31 (20)

10 33 (16) 31 (20) 22 (6) 21 (6) 11 (7) 23 (6) 12 (2) 13 (3) 32 (14)
11 12 (2) 22 (4) 32 (11) 13 (2) 21 (9) 33 (1) 23 (4) 31 (−4) 11 (7)
12 13 (−4) 23 (−11) 33 (−4) 11 (−3) 22 (4) 31 (11) 21 (−1) 32 (1) 12 (−3)
13 21 (4) 12 (−1) 11 (2) 32 (11) 31 (11) 13 (−3) 33 (1) 22 (−1) 23 (11)
14 22 (2) 13 (−7) 12 (−9) 33 (8) 32 (−2) 11 (−6) 31 (−9) 23 (4) 21 (2)
15 31 (21) 32 (21) 23 (14) 22 (14) 12 (4) 21 (16) 13 (0) 11 (5) 33 (11)
16 11 (2) 21 (9) 31 (21) 12 (6) 23 (9) 32 (18) 22 (9) 33 (16) 13 (2)
17 32 (6) 33 (6) 21 (−1) 23 (−1) 13 (2) 22 (4) 11 (−3) 12 (−1) 31 (6)
18 23 (4) 11 (2) 13 (2) 31 (11) 33 (6) 12 (2) 32 (6) 21 (−1) 22 (4)

time order represents the column blocks. The treatment combinations have been coded
as follows:

1 � (17, yellow) 2� (17, orange) 3� (17, brown)

4 � (29, yellow) 5� (29, orange) 6� (29, brown)

7 � (41, yellow) 8� (41, orange) 9� (41, brown)

(a) The experiment was conducted in a busy hallway in the Ohio Union at The Ohio
State University. Subjects were recruited from the population of noncolorblind
students walking past the table. Recruited subjects were not allowed to view the
experiment in progress with previous subjects, but they were paid for their partic-
ipation in candies. Discuss whether or not the subjects in this study are likely to
be representative of some larger population of subjects. Are the conclusions of the
study likely to be relevant to people in general?

(b) Fit a model that includes the effects of the two blocking factors “subject” and “time
order,” the treatment effect, and the treatment×time interaction. Check whether the
residuals are approximately normally distributed and whether they have approx-
imately the same variance for each treatment. Do you prefer to use the original
response variable “guessed number” or the transformed response “square root of
guessed number” or “(true number− guessed number)/(true number)” or some
other transformation?

(c) Present an analysis of variance table and test any hypotheses that you think are of
interest. State your conclusions.
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(d) Rewrite the treatment parameter in your model in terms of main effects and inter-
actions of the two treatment factors. Redo your analysis of variance table. What
can you conclude from the experiment?

(e) If you were to plan a followup experiment, what would you wish to study? Write
up a checklist for such an experiment.
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13.1 Introduction

In Chapters 6 and 7 we discussed factorial experiments arranged as completely randomized
designs, and in Chapters 10 and 11 we looked at factorial experiments arranged as block
designs. Factorial experiments that involve several treatment factors tend to be large. Even
a modest experiment with four factors having 2, 2, 3, and 3 levels has a total of 36 treatment
combinations. Since experimenters generally are working to a restricted budget and since ob-
servations cost time and money, many factorial experiments are single-replicate experiments
(one observation per treatment combination). In this chapter we consider single-replicate
experiments arranged in blocks where every treatment factor has two levels. This will be
extended in Chapter 14 to cover treatment factors with more than two levels.

In Section 13.2.1 we discuss alternative codings of treatment combinations and, in Sec-
tions 13.2.2 and 13.2.3, the general problem of confounding and its implications for analysis.

421
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Methods of designing single-replicate experiments so that information is lost on as few
lower-order treatment contrasts as possible are the main focus of Sections 13.3 and 13.4.
Section 13.5 contains an example.

In Sections 13.7–13.10 we return to the subject of multi-replicate factorial experiments
in blocks and compare the traditional incomplete block designs with the multiple use of
single-replicate confounded designs. Analysis of confounded factorial experiments by the
computer package SAS is considered briefly in Section 13.11.

13.2 Single replicate factorial experiments

13.2.1 Coding and notation

A factorial experiment that involves two treatment factors each having two levels is known
as a 2× 2, or 22, experiment. Similarly, an experiment with two factors each having 3
levels is known as a 3× 3, or 32, experiment. A 24 × 32 experiment has six treatment
factors, the first four having two levels each, and the last two having three levels each. Other
factorial experiments are described in a similar manner. A factorial experiment is called
symmetric if all factors have the same number of levels. Otherwise, it is calledasymmetric.
In this chapter we will deal only with symmetric 2p experiments. Other situations will be
discussed in Chapter 14.

The levels of a two-level treatment factor are often referred to as the “low” and “high”
levels, and in Chapters 6 and 7 we coded these as 1 and 2. The codings 0 and 1, or−1
and+1, are also commonly used. A 22 experiment then has four treatment combinations
coded as (11, 12, 21, 22) or as (00, 01, 10, 11) or as (−1−1, −1+1, +1−1, +1+1). A
fourth standard coding for the treatment combinations is ((1),b, a, ab), where the letter
a or b appears if the corresponding factorA or B is at its high level, and is absent if the
corresponding factor is at its low level. The symbol (1) means that both factors are at their
low level.

Coding is a matter of personal choice. Although we have coded the levels as 1 and 2
until now, the other three codings are more usual in talking about single-replicate factorial
experiments. We will code the levels as 0 and 1 throughout this and the next three chapters.

13.2.2 Confounding

A factorial experiment withv treatment combinations usesv − 1 degrees of freedom to
measure all of the main effects and interactions. In a single-replicate experiment, there are
only v observations andv − 1 total degrees of freedom. Thus, the experiment is not large
enough to allow measurement of all of the factorial effects and also estimation of the error
variance. Three ways around this problem for statistical inference in completely randomized
designs were discussed in Sections 6.7 and 7.5.

The problem is worse when the experiment is to be run as a block design. If there areb

blocks in the design,b − 1 of the total degrees of freedom are used to measure the block
differences, leaving only (v − 1) − (b − 1) � v − b degrees of freedom available for
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Table 13.1 Outline analysis of variance table for single-replicate
factorial experiments constructed by the methods of this
chapter

Source of Degrees of Sum of
Variation Freedom Squares

Blocks b − 1 ssθ � 1
k
�B2

h − 1
v
G2

...
...

�ciτi 1 ssc � (��ci yhi )
2

�c2
i

(at most v − b . .
of these) . .

...
...

Error df (by subtraction) ssE (by subtraction)

Total v − 1 sstot � ��y 2hi − 1
v
G2

measuring the treatment contrasts and the error variance. The result of this is thatb − 1 of
the treatment contrasts can no longer be measured. They cannot be distinguished from block
contrasts and are said to beconfounded with blocks. Such a design is useful only when at
mostv − b treatment contrasts are to be measured.

Care is required in designing this type of experiment. Ifv treatment combinations are
arbitrarily divided intob blocks of sizev/b, the important treatment contrasts will not neces-
sarily be estimable. The estimable contrasts are those that are orthogonal to the confounded
contrasts. This means that the experiment should be designed in such a way that the con-
founded contrasts belong only to interactions that are expected to be negligible. Fortunately,
in some cases this is not difficult to achieve, and we will examine these cases in this chap-
ter. For a 2p experiment, we will restrict attention to designs withb � 2s blocks of size
k � 2p−s .

13.2.3 Analysis

The standard block–treatment model for a single-replicate factorial experiment arranged as
an incomplete block design has the same form as model (11.3.1) used for incomplete block
designs in Chapter 11; that is,

Yhi � µ+ θh + τi + εhi , (13.2.1)

εhi ∼ N (0, σ 2) ,

εhi ’s are mutually independent,

h � 1, . . . , b; i � 1, . . . , v; (h, i) is in the design.

As usual,Yhi is the random variable representing the observation on treatment combination
i in blockh (if it appears in the design),εhi is the corresponding error random variable,µ

is a constant,τi is the effect of theith treatment combination, andθh is the effect of thehth
block. The block× treatment interaction is assumed to be negligible.



424 Chapter 13 Confounded Two-Level Factorial Experiments

Analysis of all single-replicate designs described in this chapter is straight-forward. Be-
cause of the way in which the designs will be constructed, contrasts in the important main
effects and interactions will be completely orthogonal to block contrasts. As a consequence,
these contrasts will have no adjustment for blocks, and their estimates and sums of squares
can be calculated in exactly the same way as for completely randomized designs (see Chap-
ters 6 and 7). An outline of an analysis of variance table is shown in Table 13.1. The maximum
number of degrees of freedom available for estimating main effects and interactions isv−b

if no estimate of the error variance is required; otherwise, it isv − b − 1. The unadjusted
sum of squares for blocksssθ can be calculated either as the total of all the confounded
contrast sums of squares or by the usual formula, which was given in Table 11.7 as

ssθ � 1

k
�hB

2
h − 1

v
G2 , (13.2.2)

whereBh � yh. is the total of the observations in thehth block andG � y.. is the grand
total of all the observations.

13.3 Confounding Using Contrasts

13.3.1 Contrasts

Treatment contrasts for factorial experiments were discussed in Sections 6.3, 7.2.4, and 7.3.
When there are two factors,A andB, each having two levels, there arev � 4 treatment
combinations in total, and it is possible to find a set of three orthogonal contrasts, one
for the main effects of each ofA andB and one for their interaction. The coefficient lists
[c00, c01, c10, c11] for these contrasts are

ForA: [ −1,−1, 1, 1 ] ,

ForB: [ −1, 1,−1, 1 ] ,

ForAB: [ 1,−1,−1, 1 ] .

Each coefficient for theAB interaction is the product of the corresponding coefficients for
the main effects ofA andB. Similarly, for three factors, the coefficient lists for three of the
seven contrasts are

ForA: [ −1,−1,−1,−1, 1, 1, 1, 1 ] ,

ForAB: [ 1, 1,−1,−1,−1,−1, 1, 1 ] ,

ForABC: [ −1, 1, 1,−1, 1,−1,−1, 1 ] ,

again with interaction coefficients obtained as the product of corresponding main-effect
coefficients.

Such contrasts in a 2p experiment all have the same variance, since�c2
i � v � 2p for

all contrasts and Var(�ciτ̂i) � �c2
i σ

2 � vσ 2. The main effect ofA is often measured by
theA contrast divided byv/2, so that it compares the average of all treatment combinations
at the high level ofA with the average of the treatment combinations at the low level. If
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Table 13.2 Contrasts for a 23 experiment

A B C AB AC BC ABC

000 −1 −1 −1 1 1 1 −1
001 −1 −1 1 1 −1 −1 1
010 −1 1 −1 −1 1 −1 1
011 −1 1 1 −1 −1 1 −1
100 1 −1 −1 −1 −1 1 1
101 1 −1 1 −1 1 −1 −1
110 1 1 −1 1 −1 −1 −1
111 1 1 1 1 1 1 1

the interaction contrasts are also divided byv/2, the contrast estimators all have variance∑
c2
i σ

2 � 4σ 2/v, and theAB interaction, for example, then compares the average response
when factorsA andB are at the same level with the average response when they are at
different levels. We shall use eitherv/2 or 1 for the divisor for all contrasts in 2p experiments
both here and in Chapter 15.

The full set of factorial treatment contrasts (without divisors) for a 23 experiment is
shown in Table 13.2 written as columns. The row headings are the treatment combinations
(in lexicographical order) whose observations are to be multiplied by the contrast coefficients
when estimating the contrast.

The contrasts in Table 13.2 are orthogonal. This can be verified by multiplying together
corresponding digits in any two columns and showing that the sum of the products is zero. A
table of orthogonal contrasts, such as Table 13.2, is sometimes called anorthogonal array.

13.3.2 Experiments in Two Blocks

We start with an example. Suppose that a single-replicate 23 experiment is to be run in
two blocks of size four. Suppose also that the experimenter knows that one of the factors,
say factorA, does not interact with either of the other two factors. This means that the
interactionsAB, AC, andABC may be assumed to be negligible and that the contrasts
labeledA, B, C, andBC in Table 13.2 are the only contrasts to be measured.

Since there will beb � 2 blocks, it follows thatb − 1 � 1 degree of freedom will
be used to measure block differences and one treatment contrast will be confounded with
blocks. Without too much difficulty, we can ensure that the confounded contrast is one of the
negligible contrasts. For example, we can confound the negligibleABC contrast by placing
in one block those treatment combinations corresponding to−1 in theABC contrast, and
placing in the second block those treatment combinations corresponding to+1 in the same
contrast. Referring to Table 13.2, we can see that the design in Table 13.3 results. The
ABC contrast is now identical to a block contrast that compares Block I with Block II, and

Table 13.3 23 experiment in 2 blocks of 4,
confounding ABC

Block I 000 011 101 110
Block II 001 010 100 111
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Table 13.4 Data for the field experiment (ABCD is
confounded)

Block I Block II
TC Response TC Response
0000 58 0001 55
0011 51 0010 45
0101 44 0100 42
0110 50 0111 36
1001 43 1000 53
1010 50 1011 55
1100 41 1101 41
1111 44 1110 48

Source:Experimental Designs, Second Edition, by W.
G. Cochran and G. M. Cox, Copyright © 1957, John
Wiley & Sons, New York. Adapted by permission of
John Wiley & Sons, Inc.

consequently, the contrast is confounded with blocks. The other two negligible contrasts,
AB andAC, provide two degrees of freedom to estimateσ 2. Since all the nonnegligible
factorial contrasts are orthogonal toAB, AC, andABC, they can be measured as though
there were no blocks present. Block design randomization (see Section 11.2.2) needs to be
carried out before the design in Table 13.3 can be used in practice.

A similar method of confounding can be used for any 2p experiment inb � 2 blocks
of sizek � 2p−1. All factorial contrasts except for the one confounded contrast can be
estimated.

Example 13.3.1 Field experiment

The data shown in Table 13.4 form part of the results of a field experiment on the yield
of beans using various types of fertilization. The experiment was conducted at Rothamsted
Experimental Station in 1936 and was reported by W. G. Cochran and G. M. Cox in their
book Experimental Designs. There were four treatment factors each at two levels. Factor
A was the amount of dung (0 or 10 tons) spread per acre, factorsB, C, andD were the
amounts of nitrochalk (0 and 45 lb), superphosphate (0 and 67 lb), and muriate of potash
(0 and 112 lb), respectively, per acre. The experimental area was divided into two possibly
dissimilar blocks of land, each of which was subdivided into eight plots (experimental units).
Since this was a single-replicate experiment with 24 � 16 treatment combinations (TC)
divided intob � 2 blocks of sizek � 8, one treatment contrast had to be confounded. The
experimenters chose to confound theABCD contrast, since the four-factor interaction was
of least interest. TheABCD contrast is shown below, and it can be verified that the treatment
combinations corresponding to contrast coefficient+1 appear in Block I of Table 13.4, while
those corresponding to coefficient−1 appear in Block II.

All the other factorial contrasts are orthogonal to theABCD contrast, so they can all
be estimated without adjusting for the block effects. We take as examples theB andBC
contrasts shown below.



13.3 Confounding Using Contrasts 427

TC 0000 0001 0010 0011 0100 0101 0110 0111
yhijkl 58 55 45 51 42 44 50 36
B −1 −1 −1 −1 1 1 1 1
BC 1 1 −1 −1 −1 −1 1 1
ABCD 1 −1 −1 1 −1 1 1 −1
TC 1000 1001 1010 1011 1100 1101 1110 1111
yhijkl 53 43 50 55 41 41 48 44
B −1 −1 −1 −1 1 1 1 1
BC 1 1 −1 −1 −1 −1 1 1
ABCD −1 1 1 −1 1 −1 −1 1

Using rule 10 of Section 7.3, the least squares estimate of theB contrast isy..1.. −
y..0.. � 1

8�cijklyhijkl , where the sum is to be taken over the four subscripts, and the contrast
coefficientscijkl are given in standard order above. Multiplying the contrast coefficients by
the data values, we obtain

For B: 1
8

∑
cijkl yhijkl � −8.00.

Similarly, if we divide theBC contrast shown above by the same divisorv/2, we obtain the
contrast estimate

For BC : 1
8

∑
cijkl yhijkl � 1

8 (y..00. − y..01. − y..10. + y..11.) � 2.25.

Using (6.7.54), the sum of squares for testing the hypothesis that the main effect ofB is
negligible is

ssB � ( 1
8

∑
cijklyhijkl)2∑
( 1

8cijkl)
2

� (−8.00)2

16
64

� 256.0.

Similarly, the sum of squares for testing the hypothesis that the interaction betweenB and
C is negligible is

ss(BC) � (2.25)2

16
64

� 20.25.

An alternative way to calculate the sums of squares is to use the method of Section 7.3.
Following the rules in that section, we obtain

ssB � acd
∑
j

y2
..j.. − abcdy2

.....

� 8
[
(51.25)2 + (43.25)2

]− 16(47.25)2 � 256.0

and

ss(BC) � ad
∑
j

∑
k

y2
..jk. − acd

∑
j

y2
..j.. − abd

∑
k

y2
...k. + abcdy2

.....

� 4
[
(52.25)2 + (50.25)2 + (42.00)2 + (44.50)2

]
− 8
[
(51.25)2 + (43.25)2

]− 8
[
(47.125)2 + (47.375)2

]
+ 16(47.25)2 � 20.25.

The complete analysis of variance table is shown in Table 13.5. The important contrasts
can be identified using one of the methods of Section 7.5. A normal probability plot of the 14
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Table 13.5 Analysis of variance for the field experiment

Contrast
Source of Degrees of Sum of Estimate
Variation Freedom Squares (divisor v/2)
Block (ABCD) 1 2.25
A 1 2.25 −0.75
B 1 256.00 −8.00
C 1 0.25 0.25
D 1 20.25 −2.25
AB 1 6.25 1.25
AC 1 81.00 4.50
AD 1 0.00 0.00
BC 1 20.25 2.25
BD 1 12.25 −1.75
CD 1 1.00 0.50
ABC 1 16.00 −2.00
ABD 1 16.00 2.00
ACD 1 20.25 2.25
BCD 1 121.00 −5.50
Total 15 575.00

Figure 13.1
Normal probability
plot for the contrasts

of the field experiment
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contrast estimates is shown in Figure 13.1. Note that we have not included the confounded
ABCD contrast in the normal probability plot. Although it is not the case here, the block
effect is usually expected to be large and may draw attention away from the important
treatment contrasts.

The important contrasts appear to be those ofB, BCD, andAC. We notice that the
contrast estimate forB is negative, suggesting that the addition of nitrochalk decreased the
yield of beans when averaged over the levels ofA,C, andD. The interaction plot forBCD
is shown in Figure 13.2 and that forAC in Figure 13.3. We see from Figure 13.2 that the
BCD interaction can be characterized by the fact that theCD interaction changes asB
changes from its low level to its high level. If the objective of the experiment is to increase
yield, then comparison of the two plots in Figure 13.2 suggests thatB should be set at its
low level, unless the high level ofC and the low level ofD are used. This tends to agree
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Figure 13.2 BCD interaction plot for the field experiment
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Figure 13.3 AC interaction plot for the field experiment

with the earlier observation that the contrast estimate forB is negative, suggesting that the
low level is better. IfB is set at its low level, the left-hand graph of Figure 13.2 suggests that
bothC andD should be at their low levels. TheAC interaction plot in Figure 13.3 shows
that either bothC andA should be at their low levels or bothC andA should be at their high
levels. The contrast estimators forA andD are both negative, suggesting that on average
the low level is better, although the difference in yield is minor. More importantly, the low
levels in this experiment are cheaper. Therefore, all the evidence points towards not adding
any fertilizer ingredients in the quantities studied in the experiment. A followup experiment
could be run with the same four factors but with an increased “high” level ofC and lower
“high” levels ofA, B, andD. Since it is possible that the response is quadratic for each of
the factors, a 34 experiment could be run.

Suppose the experimenters had known ahead of time that factorsA andD do not interact,
so that interactionsAD,ABD andACD could have been assumed negligible; then the
corresponding terms would have been omitted from the model. There would then have been
3 degrees of freedom for estimating the error variance. The error sum of squares would have
been the total of the sums of squares forAD, ABD, andACD listed in Table 13.5, so that

σ̂ 2 � msE � 1
3(ss(AD) + ss(ABD) + ss(ACD)) � 1

3(36.25) � 12.0833.

The analysis of variance table would then have been as shown in Table 13.6, and we see
that at an overall significance level of at mostα � 11(0.005)� 0.055, none of the contrasts
would have been judged as significantly different from zero, sinceF1,3,0.005 � 55.55.
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Table 13.6 Analysis of variance for the field experiment

Source of Degrees of Sum of Mean
Variation Freedom Squares Square Ratio p-value
Block 1 2.25 2.25 − −
A 1 2.25 2.25 0.186 0.6952
B 1 256.00 256.00 21.186 0.0193
C 1 0.25 0.25 0.021 0.8947
D 1 20.25 20.25 1.676 0.2861
AB 1 6.25 6.25 0.517 0.5240
AC 1 81.00 81.00 6.703 0.0811
BC 1 20.25 20.25 1.676 0.2861
BD 1 12.25 12.25 1.014 0.3882
CD 1 1.00 1.00 0.083 0.7923
ABC 1 16.00 16.00 1.324 0.3332
BCD 1 121.00 121.00 10.014 0.0507
Error 3 36.25 12.0833
Total 15 575.00

Confidence intervals could be calculated for each contrast at an overall confidence level
of at least 94.5%, using the Bonferroni method (formula (4.4.21)) with error degrees of
freedomdf � 3 and withri � 8 being the number of observations averaged over to obtain
the estimate. For example, a confidence interval for the difference in the high and low levels
of B is

β∗
1 − β∗

0 ∈
(

1
8�cijklyhijkl ± t3,0.0025

√
msE (16/64)

)
� (−8 ± 7.4532×1.7381) � (−20.954,4.954).

We remind the reader that if both of the above analyses are done, that is, if the interactions
AD, ABD, andACD are dropped from the model after examining the normal probability
plot, then it is no longer meaningful to talk about the significance levels of the tests or the
confidence levels of the intervals (see Section 6.5.6). ✷

13.3.3 Experiments in Four Blocks

We can extend the method of confounding that we used for two blocks to obtainb � 4 �
22 blocks. We then need to use two contrasts to divide up the treatment combinations.
For example, suppose that in a 24 experiment, all interactions except for the two-factor
interactions are thought to be negligible. We can select one of the negligible interactions to
produce two blocks of size 8 and then select a second interaction to subdivide each of these
two blocks into two smaller blocks, giving a total of 4 blocks of size 4. Now,b−1 � 3 degrees
of freedom are used to measure blocks, which means that a third treatment contrast must
also be confounded. Since we require this third contrast to be among the negligible contrasts,
care must be taken as to which pair of contrasts is initially selected for confounding. The
choice ofABCD andABC, for example, is a very poor choice even if these high-order
interactions may be thought to be negligible. We can see this by examining the design and
the third confounded contrast as follows.
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Table 13.7 24 experiment in 4 blocks of 4, confounding ABCD, ABC , D

TC 0000 0001 0010 0011 0100 0101 0110 0111
ABCD 1 −1 −1 1 −1 1 1 −1
ABC −1 −1 1 1 1 1 −1 −1
TC 1000 1001 1010 1011 1100 1101 1110 1111
ABCD −1 1 1 −1 1 −1 −1 1
ABC 1 1 −1 −1 −1 −1 1 1

Contrast Treatment
Block Coefficients Combinations

(ABCD,ABC )
I (−1,−1) 0001 0111 1011 1101
II (−1, 1) 0010 0100 1000 1110
III ( 1,−1) 0000 0110 1010 1100
IV ( 1, 1) 0011 0101 1001 1111

The two contrasts and the corresponding treatment combinations (TC) are shown in
Table 13.7. The treatment combinations are divided into 2 blocks of size 8 according to the
coefficients in theABCD contrast. Each of these blocks is then subdivided into 2 blocks of
size 4 according to the coefficients in theABC contrast. Theb � 4 blocks of sizek � 4 are
therefore determined by the pairs of coefficients (ABCD,ABC) � (−1, −1) or (−1, 1)
or (1, −1) or (1, 1) in the two contrasts. The resulting design is shown in Table 13.7 (prior
to randomization).

Examination of the blocks in the design shows that all of the treatment combinations in
Block I and Block IV have the fourth digit equal to 1, and all of those in Blocks II and III
have the fourth digit equal to 0. This means that the high and low levels of factorD cannot
be compared within the same block, and therefore the contrast for the main effect ofD must
be the third contrast confounded with blocks.

We could have predicted this outcome, since if corresponding coefficients of the two
contrastsABCD andABC shown in Table 13.7 are multiplied together, the coefficients of
theD contrast results. Notice that in symbols, we can write

(ABCD)(ABC) � A2B2C2D � D,

where any letter with exponent 2 is ignored. The squared coefficients of any 2p factorial
contrast are all+1, so multiplying theD contrast byC2, say, is the same as multiplying the
contrast coefficients by+1 andC2D � D. Multiplication of the contrast names in this way
gives a quick, easy method of checking which third contrast is confounded without writing
out the contrasts and without writing out the design.

The above design is not suitable for the stated experiment. Suppose that the contrasts
ABD andBCD were selected for confounding instead. The third confounded contrast
would then be (ABD)(BCD) � AB2CD2 � AC. This, too, is not suitable since all two-
factor interactions were to have been measured. Unfortunately, there is no choice that will
meet the specifications of this particular experiment. The number of blocks and the block
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sizes are too small to measure everything that is required. At least one two-factor interaction
would have to be sacrificed, or a larger experiment must be run.

Example 13.3.2 25 experiment in 4 blocks of 8

In Section 13.5 we will describe a 25 experiment that was run inb � 4 blocks of size
k � 8. In designing such an experiment, one needs to select two contrasts for confounding
and to check that the third confounded contrast is acceptable. As in the discussion above,
selecting the 5-factor interaction for confounding will generally be a poor choice, since no
matter which other interaction is selected for the second confounded interaction, a 2-factor
interaction or main effect will be among the confounded contrasts. For example,

(ABCD)(ABCDE) � E and (ABC)(ABCDE) � DE.

If an experimenter knew ahead of time that factorsD andE do not interact, then the second
choice might be acceptable. In general, though, most experimenters would prefer not to
confound low-order interactions. So, a selection of a 3-factor interaction and a 4-factor
interaction with as few letters in common as possible will generally be the best choice. For
example,

(ABCD)(CDE) � ABE.

There are many selections of this type, and the experimenter would wish to avoid con-
founding any 3-factor interaction that might be of some interest. The selection made in
Section 13.5 isABD, BCE, and their productACDE. If the treatment combinations are
written out in standard order together with the contrast coefficients forABD andBCE, it
can be verified that the pairs of contrast coefficients give the four blocks shown in Table 13.11
(page 438). ✷

13.3.4 Experiments in Eight Blocks

If an experiment is required inb � 23 blocks, then three contrasts must be selected for
confounding. A single-replicate design in eight blocks confoundsb − 1 � 7 treatment
contrasts in total, including the three contrasts initially selected and all products of these.
For example, suppose that a 26 experiment is required inb � 23 � 8 blocks of 8, and that
the two-factor interactions are of interest together with the four three-factor interactions
ACE, ACD, ADE, andCDE (these are the four 3-factor interactions that do not contain
B or F ). A suitable choice might be to confound the interactionsBCD, ABE, andADF.
The other four confounded contrasts would be

(BCD)(ABE) � ACDE,

(BCD)(ADF ) � ABCF,

(ABE)(ADF ) � BDEF,

(BCD)(ABE)(ADF ) � CEF.

The list of seven confounded contrasts is called theconfounding scheme for the design.
The reader is invited to write out the three selected contrasts and verify that the design in
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Table 13.10 (page 436) results. The fact thatACDE, ABCF , BDEF , andABE are also
confounded can be verified by showing that the coefficients of each of these four contrasts
are constant for all treatment combinations within each block.

Note that the same design will be obtained for any initial selection of three of the above
seven confounded contrasts,provided that no selected contrast is a product of the other
two. For example, suppose thatABCF ,ABE, andCEF are initially selected. The selected
contrastsABCF andABE divide the treatment combinations into four blocks, butCEF

does not subdivide these blocks further, since it is the third contrast automatically confounded
in the four blocks, i.e., (ABCF )(ABE) � CEF . A different third contrast needs to be
chosen, and any of the remaining four contrasts will do. Three selected contrasts satisfying
the requirement that no selected contrast be a product of the other two is called a set of three
independent contrasts.

13.3.5 Experiments in More Than Eight Blocks

The same ideas can be used for 2p experiments in 2s blocks of sizek � 2p−s by selectings
independent contrasts to subdivide the treatment combinations into blocks—s contrasts are
independent if none can be obtained as the product of two or more of the others−1 contrasts.
Although the multiplication of contrast names is a convenient method to determine the list
of confounded contrasts, it becomes harder to use the contrasts themselves for constructing
the design as the number of factors increases. In the next section, we present a method of
constructing block designs for single-replicate factorial experiments that avoids writing out
the contrasts.

13.4 Confounding Using Equations

13.4.1 Experiments in Two Blocks

The design in Table 13.8 (given previously in Table 13.3) was constructed by allocating the
treatment combinations to blocks in such a way that the contrast that compares Block I with
Block II is identical to theABC contrast. TheABC contrast is confounded with blocks and
cannot be estimated, but all of the other factorial contrasts are estimable because they are
orthogonal to the confounded contrast.

If the treatment combinations in the two blocks of the design are examined closely, an
interesting property becomes apparent. All the treatment combinations in the first block
have an even number of 1’s, and all those in the second block have an odd number of 1’s.
We could, in fact, have predicted this property. TheABC contrast is the product of theA,
B, andC contrasts (see Section 13.3.1), and so the only way to achieve a coefficient−1

Table 13.8 23 experiment in 2 blocks of 4,
confounding ABC

Block I 000 011 101 110
Block II 001 010 100 111
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in theABC contrast is for there to be an odd number of−1’s among the corresponding
coefficients in theA, B, andC contrasts. This means that there must be an odd number
of 0’s and an even number of 1’s in the corresponding treatment combination. Thus, if
we want to confoundABC without writing out the contrasts, we can simply allocate a
treatment combinationa1a2a3 to Block I if it has an even number of 1’s among its digits,
and to Block II if it has an odd number of 1’s. Equivalently, we allocatea1a2a3 to Block I
if a1 + a2 + a3 is an even number and to Block II ifa1 + a2 + a3 is an odd number. Instead
of writing “a1 + a2 + a3 is an even number,” we write “a1 + a2 + a3 � 0 (mod 2)” and
instead of writing “a1 + a2 + a3 is an odd number,” we write “a1 + a2 + a3 � 1 (mod 2)”.
Working mod 2, or modulo 2, means that we subtract 2 repeatedly from the number until
we reach either 0 or 1, or equivalently, we divide by 2 and take the remainder which is
either 0 or 1. For example, 5� 1 (mod 2), but 8� 0 (mod 2). We call the pair of equations
“a1 + a2 + a3 � 0 (mod 2)” and “a1 + a2 + a3 � 1 (mod 2)” theconfounding equations.
The design of Tables 13.3 and 13.8 is constructed using the following rule:

Block I: Treatment combinations with a1 + a2 + a3 � 0 (mod 2) ,
Block II: Treatment combinations with a1 + a2 + a3 � 1 (mod 2) .

If theAC contrast were to be confounded in the 23 experiment instead of theABC con-
trast, only the first and third digits of each treatment combination would be used to allocate
it to a block. This is because only the first and third digits of the treatment combination
govern the coefficients in theAC contrast. We would use the pair of confounding equations
a1 + a3 � 0 (mod 2) anda1 + a3 � 1 (mod 2), and the design would be constructed using
the rule

Block I: Treatment combinations with a1 + a3 � 0 (mod 2) ,
Block II: Treatment combinations with a1 + a3 � 1 (mod 2) ,

giving the design of Table 13.9. It can be verified thatAC is indeed confounded with blocks
in this design, since the coefficients of theAC contrast (shown in Table 13.2) are all equal
to +1 for the treatment combinations in Block I and−1 for those in Block II. All other
contrasts are estimable because they are orthogonal to the confoundedAC contrast.

We may now generalize to 2p experiments in 2 blocks of size 2p−1. If the interaction
Az1Bz2Cz3 · · ·P zp is to be confounded with blocks, wherezi � 1 if the factor is present in
the interaction andzi � 0 if it is not, the blocks of the design are

Block I: Treatment combinations with
z1a1 + z2a2 + z3a3 + · · · + zpap � 0 (mod 2) ,

Block II: Treatment combinations with
z1a1 + z2a2 + z3a3 + · · · + zpap � 1 (mod 2) .

Table 13.9 23 experiments in 2 blocks of 4,
confounding AC

Block I 000 010 101 111
Block II 001 011 100 110
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13.4.2 Experiments in More Than Two Blocks

We obtain designs with 4, 8, 16, . . . blocks by using more than one pair of confounding
equations. We label the pairs of confounding equations asL1, L2, etc. For example, the
(unsatisfactory) design

Block Treatment Combinations
I 0000 0110 1010 1100
II 0011 0101 1001 1111
III 0001 0111 1011 1101
IV 0010 0100 1000 1110

from Table 13.7 for a 24 experiment in 4 blocks of size 4 was produced by confounding the
ABCD andABC contrasts. Using theABCD contrast to produce two blocks is equivalent
to using the pair of confounding equationsL1 � a1 + a2 + a3 + a4 � 0 andL1 � 1
(mod 2), and using theABC contrast is equivalent to using the pair of confounding equations
L2 � a1 + a2 + a3 � 0 andL2 � 1 (mod 2). Thus there are four possible values for the
pair (L1, L2), and it can be verified that the blocks of the design satisfy

Block I: L1 � a1 + a2 + a3 + a4 � 0; L2 � a1 + a2 + a3 � 0 (mod 2) ;
Block II: L1 � a1 + a2 + a3 + a4 � 0; L2 � a1 + a2 + a3 � 1 (mod 2) ;
Block III: L1 � a1 + a2 + a3 + a4 � 1; L2 � a1 + a2 + a3 � 0 (mod 2) ;
Block IV: L1 � a1 + a2 + a3 + a4 � 1; L2 � a1 + a2 + a3 � 1 (mod 2) .

We already know from Section 13.3.3 that a third contrast, namely contrastD, is confounded
in this design. If we add the two confounding equations used to create each block, we have,
for Block I,

L1 � a1 + a2 + a3 + a4 � 0 (mod 2)

+ L2 � a1 + a2 + a3 � 0 (mod 2)

L1 + L2 � 2a1 + 2a2 + 2a3 + a4 � 0 (mod 2)

If all coefficients are reduced modulo 2, the sum givesa4 � 0 (mod 2), which indicates that
theD contrast is also confounded.

As has been demonstrated, there is a correspondence between the contrasts, the contrast
names, and the confounding equations. The contrast names are the most convenient for
checking the total list of confounded contrasts, and the equations are the most convenient
for constructing the design.

Design construction can be done in several ways. One way is to examine each of the
2p treatment combinations and allocate them to blocks according to their values obtained
in the left sides of the confounding equations. Another way is to identify the treatment
combinations that make the confounding equations equal to zero. These will form Block
I of the design. The other blocks of the design are obtained by adding (modulo 2) to the
treatment combinations in Block I any treatment combination that has not yet appeared in
a block. This is illustrated in the following example.
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Table 13.10 26 experiment in 8 blocks of 8, confounding ABE , ADF ,
BCD, CEF , ABCF , ACDE , BDEF

Block L1, L2, L3 Treatment Combinations
I 0,0,0 000000 001101 010111 011010

100011 101110 110100 111001
II 0,0,1 000001 001100 010110 011011

100010 101111 110101 111000
III 0,1,0 000010 001111 010101 011000

100001 101100 110110 111011
IV 0,1,1 000011 001110 010100 011001

100000 101101 110111 111010
V 1,0,0 000101 001000 010010 011111

100110 101011 110001 111100
VI 1,0,1 000100 001001 010011 011110

100111 101010 110000 111101
VII 1,1,0 000111 001010 010000 011101

100100 101001 110011 111110
VIII 1,1,1 000110 001011 010001 011100

100101 101000 110010 111111

Example 13.4.1 26 experiment in 8 blocks of 8

A confounding scheme was found in Section 13.3.4 for a 26 experiment in 8 blocks of 8
by selecting contrastsBCD,ABE, andADF for confounding. It was shown that contrasts
ACDE, ABCF , BDEF , andCEF were also confounded. Writing out the equations for
the three selected contrasts, we have

L1 � a2 + a3 + a4 � 0 or 1 (mod 2),

L2 � a1 + a2 + a5 � 0 or 1 (mod 2),

L3 � a1 + a2 + a3 + a6 � 0 or 1 (mod 2).

The equations corresponding to the other four confounded contrasts are obtained by setting
L1 + L2, L1 + L3, L2 + L3, andL1 + L2 + L3 equal to 0 or 1 (mod 2).

The design is shown in Table 13.10. It can be constructed systematically as follows. The
first treatment combination 000000 gives 0 for each ofL1,L2,L3 and is allocated to Block
I. The second treatment combination 000001 gives values 0,0,1 for the threeLi and is
allocated to Block II, and so on.

Alternatively, one can look for the eight treatment combinations that give zero for each
of L1,L2, andL3 and construct Block I first. SolvingL1 � 0,L2 � 0, andL3 � 0 each for
the lastai givesa4 � a2 + a3 (mod 2),a5 � a1 + a2 (mod 2) anda6 � a1 + a4 (mod 2),
respectively. For each of the eight combinationsa1, a2, a3 of factorsA, B, andC, the
corresponding values ofa4, a5, anda6 can thus be computed to obtain one of the eight
treatment combinations of Block I. For example, ifa1 � a2 � a3 � 1, thena4 � a2 + a3 �
1+1 � 0 (mod 2),a5 � a1+a2 � 1+1 � 0 (mod 2), anda6 � a1+a4 � 1+0 � 1 (mod 2),
so the treatment combination 111001 is in Block I.
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Each of the other blocks is obtained by adding a new treatment combination to those
in Block I—“new” meaning not yet in a block. For example, the treatment combination
000001 is not in Block I. If 000001 is added modulo 2 to the eight treatment combinations
in Block I, then Block II results. As an illustration, it is added to 111001 of Block I by
adding corresponding digits and reducing modulo 2; that is,

000001+ 111001� 111002� 111000 (mod 2),

so 111000 is also in Block II.
A third block can be obtained by taking any treatment combination not in the first two

blocks, and adding it to each treatment combination in Block I. Proceeding in this fash-
ion, blocks are constructed until each treatment combination has been allocated to some
block. ✷

13.5 A Real Experiment—Mangold Experiment

O. Kempthorne in his bookDesign and Analysis of Experiments describes an experiment run
at Rothamsted Agricultural Station to investigate the effects of five different fertilizers on
the growth of mangold roots. The five factors were Sulphate of ammonia (factorA at levels
0 or 0.6 cwt per acre), Superphosphate (factorB at levels 0 or 0.5 cwt per acre), Muriate
of potash (factorC at levels 0 or 1.0 cwt per acre), Agricultural salt (factorD at levels 0
or 5 cwt per acre), and Dung (factorE at levels 0 or 10 tons per acre). The experimental
area was divided intob � 4 blocks of sizek � 8. All 3-, 4-, and 5-factor interactions were
expected to be negligible. The two three-factor interactionsABD, BCE, and their product
ACDE were selected for confounding.

The division of the 32 treatment combinations into the four blocks was then determined
from the confounding equations corresponding toABD andBCE; that is,

L1 � a1 + a2 + a4 � 0 or 1 (mod 2),

L2 � a2 + a3 + a5 � 0 or 1 (mod 2).

The blocks can be formed by systematically working through all 32 treatment combinations
and assigning them to the blocks according to the values ofL1 andL2 and the rule

Block I: L1 � 0 (mod 2) and L2 � 0 (mod 2) ,
Block II: L1 � 0 (mod 2) and L2 � 1 (mod 2) ,
Block III: L1 � 1 (mod 2) and L2 � 0 (mod 2) ,
Block IV: L1 � 1 (mod 2) and L2 � 1 (mod 2) .

Alternatively, we can notice thatL1 � 0 givesa4 � a1 + a2 andL2 � 0 givesa5 �
a2 + a3 (mod 2). Computing these for each combination of levelsa1a2a3 of the first three
factors gives Block I as

Block I: 00000 10010 00101 10111
11100 01110 11001 01011

Any treatment combination that is not in Block I can be added to the treatment combinations
in Block I to obtain a second block. So, if we add 00001, for example, we obtain
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Table 13.11 Yields (in pounds) of mangold roots for the
mangold experiment

Block Treatment Combinations
(Yield)

I 01101 00011 10100 11111
(844) (1104) (1156) (1508)
11010 00110 10001 01000
(1312) (1000) (1176) (888)

II 00001 01111 00100 10011
(1248) (1100) (784) (1376)
11101 10110 11000 01010
(1356) (1376) (1008) (964)

III 00101 11001 01011 01110
(896) (1284) (996) (860)
10010 11100 00000 10111
(1184) (984) (740) (1468)

IV 10101 11110 00111 11011
(1328) (1292) (1008) (1324)
01001 01100 00010 10000
(1008) (692) (780) (1108)

Source:Design and Analysis of Experiments, by O.
Kempthorne, Copyright © 1976, John Wiley & Sons,
Inc. Reprinted by permission of John Wiley & Sons, Inc.

Block II: 00001 10011 00100 10110
11101 01111 11000 01010

Any treatment combination not in Blocks I and II can now be added to the treatment com-
binations in Block I to obtain a third block. Since 00010, for example, has not appeared in
Blocks I or II, we can add it to the treatment combinations in Block I to obtain Block III.
Block IV can then be obtained by adding a treatment combination, say 00011, that has not
appeared in the previous three blocks.

Block III: 00010 10000 00111 10101
11110 01100 11011 01001

Block IV: 00011 10001 00110 10100
11111 01101 11010 01000

The order of the treatment combinations was randomized within each block, and the
order of the blocks was randomized. The final design, together with the resulting yields (in
pounds) of mangold roots, is shown in Table 13.11.

The contrasts for the main effects and interactions are obtained as usual. The contrast for
comparing the high and low levels of superphosphate (B), for example, is

∑
i ciτi , where

τi is the effect of theith treatment combination, and the coefficientci is theith element of

1

16
[−1, −1, −1, −1, −1, −1, −1, −1, 1, 1, 1, 1, 1, 1, 1, 1,

−1, −1, −1, −1, −1, −1, −1, −1, 1, 1, 1, 1, 1, 1, 1, 1 ] .
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Table 13.12 Analysis of variance for the mangold experiment (ABD, BCE , ACDE are
confounded)

Source of Degrees of Sum of Mean Contrast
Variation Freedom Squares Square Ratio Estimate p-values
Block 3 52832 17610.67 – – –
A 1 887112 887112.00 130.63 333.0 0.0001
B 1 3042 3042.00 0.45 −19.5 0.5150
C 1 722 722.00 0.11 9.5 0.7496
D 1 144722 144722.00 21.31 134.5 0.0005
E 1 262088 262088.00 38.59 181.0 0.0001
AB 1 338 338.00 0.05 6.5 0.8269
AC 1 48050 48050.00 7.08 77.5 0.0196
AD 1 16562 16562.00 2.44 45.5 0.1424
AE 1 288 288.00 0.04 −5.0 0.8400
BC 1 6272 6272.00 0.92 −28.0 0.3541
BD 1 5832 5832.00 0.86 27.0 0.3710
BE 1 98 98.00 0.01 −3.5 0.9062
CD 1 30752 30752.00 4.53 62.0 0.0530
CE 1 882 882.00 0.13 −10.5 0.7244
DE 1 13778 13778.00 2.03 −41.5 0.1779
Error 13 88286 6791.23
Total 31 1561656

Equivalently,ci � −1/16 if the ith treatment combination hasB at the low level, and
ci � 1/16 otherwise. There is only one observation on each treatment combination, so a
least squares estimate ofτi is justyi (the observation on theith treatment combination). The
least squares estimate of the contrast for comparing the high and low levels ofB is∑

i

ci τ̂i � −312/16 � −19.5 .

The contrast estimates for each of the main effects and also the interactions are shown in
Table 13.12.

To test the hypothesis that adding superphosphate has no effect on the yield of mangold
roots, we test the null hypothesisHB

0 :
∑

i ciτi � 0 against the alternative hypothesis
HB
A :
∑

i ciτi 	� 0 using (4.4.24); that is,

rejectHB
0 if

ssB

msE
� (
∑

i ci τ̂i)
2(∑

i c
2
i

)
msE

� (
∑

i ciyi)
2

(32/162) msE
> F1,13,α/m .

If the 3-, 4-, and 5-factor interactions are assumed to be negligible, the total of their contrast
sums of squares, apart fromABD, BCE, andACDE, which are confounded with blocks,
forms the error sum of squares with 13 degrees of freedom, (10− 2 � 8 from the 3-factor
interactions, 5− 1 � 4 from the 4-factor interactions, and 1 from the 5-factor interaction).
There arem � 15 contrasts of interest, so if each individual contrast is tested at significance
levelα/m � 0.005, the overall significance level would be at mostα � 0.075. Since

(
∑

i ciyi)
2

(32/162) msE
� 8(−19.5)2

msE
� 3042.00

6791.23
< F1,13,0.005 � t213,0.0025 � 11.37,
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we fail to reject the null hypothesisHB
0 and conclude that there is no evidence to suggest a

difference in yield due to the high and low levels of superphosphate. The ratio for each of
the other hypothesis tests is given in Table 13.12, and we see that the only hypotheses that
would be rejected at overall significance level 0.075 are the hypotheses of no effect ofA or
D orE.

The block sum of squares is the sum of theABD, BCE, andACDE contrast sums of
squares, or alternatively, it can be calculated as

ssθ � 1

8

∑
h

B2
h − 1

32
G2 � 52832.0

as in (13.2.2), whereBh � yh..... andG � y....... The block mean square is over twice the
size of the error mean square, indicating that the creation of blocks in this experiment was
useful for reducing the error variability, assuming that the effects confounded with blocks
are negligible.

Since none of the interactions appear to be significantly different from zero, the main
effects can be investigated. The contrast estimates of the significant main effects are all
positive, suggesting that the high levels ofA, D, andE increase the yield of mangold
roots significantly. Confidence intervals for all the main-effect contrasts can be obtained via
Bonferroni’s method using formula (4.4.21), but with error degrees of freedomdf � 13. If
we select the confidence level to match theα level of the hypothesis tests, we obtain a set of
simultaneous confidence intervals with overall confidence level at least 92.5% as follows:

ForA :
(
y.1.... − y.0....± t13,0.0025

√
32σ̂ 2/162

)
� (333.0 ± 3.372

√
6791.23/8)

� (333.0 ± 98.25) � (234.75, 431.25) ;

ForB : (−19.5 ± 98.25)� (−117.75, 78.75) ;

ForC : (9.5 ± 98.25)� (−88.75, 107.75) ;

ForD : (134.5 ± 98.25)� (36.25, 232.75) ;

ForE : (181.0 ± 98.25)� (82.75, 279.25).

At a somewhat higher overall significance level, the hypothesis of no interaction between
A andC would have been rejected. TheAC interaction plot is shown in Figure 13.4. This
plot agrees with the earlier observation thatA should be set at its high level. Unless the cost
is high, the plot suggests thatC should also be set at its high level. FactorB does not seem
to affect the yield much and can be set at its low (zero) level. As stated earlier,D andE
should be at their high levels.

After an experiment of this type, it is good policy to run aconfirmatory experiment
verifying that the selected levels are, indeed, a good combination. Here the recommendation
is to use treatment combination 10111. Certainly, in the main experiment, this treatment
combination gave the highest yield in Block III, but it cannot easily be compared with the
other observations because of the large block differences. A few more observations on this
particular treatment combination would help to verify that it is consistently a good choice.
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Figure 13.4 AC interaction plot for the mangold experiment

13.6 Plans for Confounded 2p Experiments

Suggestions for confounding schemes useful for constructing designs for 2p experiments in
b � 2s blocks of sizek � 2p−s are given in Table 13.28 at the end of this chapter. These have
been chosen to allow all main effects to be estimable and as many two-factor interactions
as possible. The first block of each design can be obtained from the given relations on the
factor levels, and the other blocks can be obtained by adding (modulo 2) new treatment
combinations to those in Block I. This process was illustrated in Example 13.4.2, page 436.

If one or more of the listed confounded contrasts is an important contrast in the exper-
iment being designed, the factors should be relabeled. For example, suppose that a design
is required for a 26 experiment in 8 blocks of 8. The design listed in Table 13.28 confounds
BCD, ABE, ACDE, ADF , ABCF , BDEF , andCEF (this is also the design of Ta-
ble 13.10). Suppose that the experimenter wished to estimate the contrastsABC andBCD.
The design, as listed, confoundsBCD. However, if the experimenter were to switch the
labelsB andE of the actual treatment factors, then the important contrasts would be called
ACE andCDE, both of which can be estimated in the listed design. Equivalently, the
experimenter could switch the labelsB andE of the listed design, so as to confoundCDE,
ABE,ABCD,ADF ,ACEF ,BDEF , andBCF , leavingABC andBCD unconfounded.

13.7 Multireplicate Designs

When the experiment is large enough that each treatment combination can be observed
r > 1 times, we have a choice of several different ways to design the experiment. If the
block size can be chosen to be as large as the number of treatment combinations, then a
randomized block design (Chapter 10) can be used.

If an incomplete block design is required, we could choose to use one of the standard
incomplete block designs described in Chapter 11, such as a balanced incomplete block
design. Alternatively, we could take a single-replicate design, confounding one or more
interaction contrasts, and repeat the designr times. Alternatively, again, we could piece
togetherr different single-replicate designs, confounding different contrasts in each. The
confounding of a contrast in some but not all replicates is calledpartial confounding.
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The choice between these three types of incomplete block designs involves tradeoffs
concerning what is to be estimated and how accurately. The analysis of a standard incomplete
block design of Chapter 11 requires thatevery contrast estimate be adjusted for blocks. Thus,
while all contrasts are estimable, their least squares estimators have higher variances than
they would if they were unadjusted for blocks—there is someloss of information on each
contrast. If a balanced incomplete block design is used, then there is the same loss of
information on every treatment contrast.

A repeated single-replicate experiment, on the other hand, loses information completely
on the confounded contrasts—they are not estimable and are said to becompletely con-
founded—but all contrasts orthogonal to these are unconfounded and can be estimated with
no block adjustment and so with no loss of information. The estimator of any unconfounded
contrast is the same as it would be in a complete block design, and with the same variance
formula. The use of smaller blocks should, however, result in a smaller error varianceσ 2.

The designs with partial confounding fall between these two extremes, allowing all
contrasts to be estimable but with different levels of adjustment and loss of information.
Complete and partial confounding are illustrated in Sections 13.8–13.9 and are compared
via an example in Section 13.10.

13.8 Complete Confounding: Repeated Single-Replicate
Designs

If the number of treatment combinationsv is divisible by the block sizek, thev/k blocks
of a single-replicate design can be repeatedr times to give an incomplete block design
with b � rv/k blocks. The contrasts that are confounded in the single-replicate design
are also confounded in ther-replicate design—they cannot be estimated and are said to be
completely confounded. For all other contrasts, the estimators and corresponding variance
formulae are as in a complete block design—no block adjustments are needed.

13.8.1 A Real Experiment—Decontamination Experiment

An experiment was described by M. K. Barnett and F. C. Mead, Jr. in the journalApplied
Statistics in 1956 to explore the effect of four factors on the efficiency of a decontamination
process for the removal of radioactive isotopes from liquid waste. The four treatment factors
were:

A: The amount of aluminum sulphate added to the liquid waste (two levels, 0.4 g and
2.5 g per liter, coded 0, 1).

B: The amount of barium chloride added to the liquid waste (two levels, 0.4 g and 2.5 g
per liter, coded 0, 1).

C: The amount of carbon added to the liquid waste (two levels, 0.08 g and 0.4 g per liter,
coded 0, 1).
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Table 13.13 Repeated single-replicate design for a 24 experiment in 2× 2 blocks of
size 8, confounding ABCD. Data for the decontamination alpha-particle
experiment are shown in parentheses.

Block Treatment Combinations (Response)
I 1010 1111 0110 0000 1100 0101 0011 1001

(183) (350) (188) (881) (225) (298) (1039) (466)

II 0010 0001 0111 1000 1101 0100 1110 1011
(650) (1180) (238) (191) (420) (289) (135) (781)

III 0101 1001 1100 0000 1010 1111 0110 0011
(273) (890) (370) (834) (193) (389) (163) (1146)

IV 0001 1110 1000 0100 0111 1011 0010 1101
(1193) (156) (257) (178) (254) (775) (494) (429)

Source: Barnett, M. K. and Mead, F. C. Jr. (1956). Copyright © 1956 Blackwell Publishers.
Reprinted with permission.

D: Final pH of liquid waste (two levels, 6 and 10, coded 0, 1) achieved by adding sodium
hydroxide or hydrochloric acid.

The experimental units were portions of a typical laboratory waste of pH 8.3 and in which
the principal radioactivity was attributable to salts of radium, thorium, and actinium. The
measurements taken after the experimental decontamination process were the counts per
minute per milliliter of alpha and beta particles. Here, we will only reproduce the data for
the alpha particles (see Table 13.13).

Only 8 of the 16 treatment combinations could be examined per day. Four days were
available for the experiment, allowing each treatment combination to be measured twice
during the course of the experiment. The experimenters anticipated day-to-day variations
in the observations and decided to run a block design withb � 4 blocks of sizek � 8. In
fact, an unforeseen change of operators became necessary at the end of the first day. Since
a block design had been used, any shift in the observations due to the operator change was
absorbed into the block differences and did not affect the measurements on the treatment
combinations.

The experimenters first selected a single-replicate design inb∗ � 2 blocks of sizek � 8
that confounded the 4-factor interaction contrastABCD (which they thought unlikely to
exist in this experiment). By using this single-replicate design twice, they obtained a design
with r � 2 observations per treatment combination and withb � 2b∗ � 4 blocks in which
all contrasts except forABCD could be measured without adjustments for blocks. (The
single-replicate design selected is that listed in Table 13.28.) The treatment combinations
were randomly ordered within each block, and the final design is shown in Table 13.13.

The chosen model included all main effects and all 2-factor and 3-factor interactions.
The treatment–block interaction was assumed to be negligible. Thus, the model was
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Yhijkl � µ+ θh + αi + βj + γk + δl

+ (αβ)ij + (αγ )ik + (αδ)il + (βγ )jk + (βδ)j l + (γ δ)kl

+ (αβγ )ijk + (αβδ)ij l + (αγ δ)ikl + (βγ δ)jkl + εhijkl ,

εhijkl ∼ N (0, σ 2) and mutually independent,

h � 1,2,3,4 ; i � 0,1; j � 0,1; k � 0,1; l � 0,1;

(h, i, j, k, l) in the design.

The analysis of variance table is shown in Table 13.14. There areb � 4 blocks in the
design, butABCD is the only treatment contrast confounded. The sum of squares forABCD

is included in the block sum of squares. The sums of squares for the other interactions and
main effects can be obtained from rules 4 or 12 in Section 7.3. For example, the sum of
squares for testing the hypothesis of negligibleAC interaction is

ss(AC) �
∑
i

∑
k

y2
.i.k.

8
−
∑
i

y2
.i...

16
−
∑
k

y2
...k.

16
+ y2

.....

32

� 1

8
(51262 + 41722 + 32482 + 29622) − 1

16
(92982 + 62102)

− 1

16
(83742 + 71342) + 1

32
(155082)

� 7,875,551− 7,813,556.5 − 7,563,614.5 + 7,515,564.5

� 13,944.5.

Alternatively, we can calculate the sum of squares for theAC contrast as follows. The
contrast coefficients, which are 1 if the levels of factorsA andC are both high or both low,
and−1 otherwise, are

[1, 1, −1, −1, 1, 1, −1, −1, −1, −1, 1, 1, −1, −1, 1, 1 ] .

Then, as in Section 4.3.3, we have

ss(AC) �
(∑

i

∑
j

∑
k

∑
l cijkly.ijkl

)2

(∑
i

∑
j

∑
k

∑
l c

2
ijkl/r

) � (334)2

16/2
� 13,944.5.

The error sum of squares is obtained by subtracting the sums of squares for the main
effects and interactions from the total sum of squares, where the latter is

sstot �
∑
h

∑
i

∑
j

∑
k

∑
l

y2
hijkl −

G2

32
.

Similarly, the error degrees of freedom are obtained by subtraction.
There are fourteen hypothesis tests to be done. If each is done at a significance level 0.01,

the overall level is at mostα � 0.14. At this levelF1,14,.01 � 8.86, and the significant effects
are theAB andBD interactions (and the main effects ofA, B, andD averaged over the
levels of the other factors). The hypotheses of negligibleC main effect andABC interaction
would be rejected at a slightly higher significance level.
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Table 13.14 Analysis of variance for the decontamination experiment

Source of Degrees of Sum of Ratio p-value
Variation Freedom Squares
Blocks 3 28262.500 − −
A 1 297992.000 40.25 0.0001
B 1 1444150.125 195.07 0.0001
C 1 48050.000 6.49 0.0232
D 1 700336.125 94.60 0.0001
AB 1 570846.125 77.11 0.0001
AC 1 13944.500 1.88 0.1915
AD 1 22366.125 3.02 0.1041
BC 1 15.125 0.00 0.9646
BD 1 252050.000 34.05 0.0001
CD 1 24531.125 3.31 0.0902
ABC 1 38226.125 5.16 0.0394
ABD 1 144.500 0.02 0.8909
ACD 1 66.125 0.01 0.9260
BCD 1 5618.000 0.76 0.3984
Error 14 103645.000
Total 31 3550243.500

Figure 13.5
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Interaction plots of the two most important interactions (AB andBD) are shown in
Figures 13.5(a) and 13.5(b). Figure 13.5(a) suggests thatB should be set at its high level
to achieve a lower radioactivity. The interaction is caused by the fact that the benefit of
settingB at its high level is more marked whenA is at its low level than at its high level.
If B is at its high level, there is a slight preference forA to be at its low level to achieve
a lower radioactivity. On the other hand, the system is more stable whenA is at its high
level, meaning that the radioactivity is not so sensitive to the level ofB. So the choice for
the setting ofA is not completely obvious. Figure 13.5(b) shows a similar picture. Again
B should be at its high level with a preference forD at its low level (which also produces
the more stable system). The main effect ofC is not significant, but the data suggest that it
should be set at its high level unless this increases the cost substantially.
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Thus, the results of the analysis of variance table suggest that suitable treatment combi-
nations for the decontamination process are 0110 or 1110. These are the same two treatment
combinations that would be selected from a perusal of the data in Table 13.13. The benefit
of the investigation of main effects and interactions is that it suggests directions for future
experiments (raising the level ofB further while keepingD fairly low and perhaps raisingA
a little). It also allows the chemical analysts to better understand the nature of the chemical
system (see the original article of Barnett and Mead). Finally, it helps to ensure that the
treatment combination that appears to be the best is not just the result of error variability or
a spurious observation (outlier).

13.9 Partial Confounding

Partial confounding is the term applied to a design that is the combination of the blocks
from different single-replicate designs with different confounding schemes. A contrast that
is confounded in some replicates but not in others is said to bepartially confounded with
blocks. A partially confounded contrast can be estimated using only the data of those repli-
cates in which it is unconfounded. Thus, the variance of the contrast estimator is inversely
proportional to the number of replicates in which it is estimable.

For example, the design in Table 13.15 for a 23 experiment in 8 blocks of size 4 has four
observations on each treatment combination. It is made up of four single-replicate designs;
the first confounds the contrast from theABC interaction, while the second confounds the
AB contrast, the third confoundsAC, and the fourthBC. This means that theABC contrast
is estimable from the second, third, and fourth single-replicate designs, but not the first, and
theAB contrast is estimable from the first, third, and fourth single-replicate designs, but
not the second. Similarly, theAC andBC contrasts are estimable from three of the four
replicates. The main-effect contrastsA, B, andC are estimable from all four replicates.
Consequently, all factorial treatment contrasts can be estimated, but the variance associated
with each partially confounded contrast will be larger than that associated with each of
the unconfounded contrasts by a factor of four-thirds. The benefit of using a partially con-
founded design instead of a repeated single-replicate design is that each treatment contrast
is estimable, yet all totally unconfounded contrasts are still estimated with the maximum
possible precision.

Example 13.9.1 Coil experiment

C. Hicks, in his textbookFundamental Concepts in the Design of Experiments, describes
an experiment to examine the variability of outside diameters of coils of wire. There were
three treatment factors of interest, as follows:

A: Two winding machines, coded 0, 1.

B: Two wire stocks, coded 0, 1.

C: Two positions on the coil, coded 0, 1.
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Table 13.15 Design and data (in parentheses) for the coil experiment

Confounded Block Treatment Combination (Response)
ABC I 000 (2208) 110 (2133) 101 (2459) 011 (3096)

II 100 (2196) 010 (2086) 001 (3356) 111 (2776)

AB III 000 (2004) 110 (2112) 001 (3073) 111 (2631)
IV 100 (2179) 010 (2073) 101 (3474) 011 (3360)

AC V 001 (2839) 100 (2189) 011 (3522) 110 (2095)
VI 000 (1916) 101 (2979) 010 (2151) 111 (2500)

BC VII 100 (2056) 000 (2010) 011 (3209) 111 (3066)
VIII 010 (1878) 110 (2156) 001 (3423) 101 (2524)

Source: FromFundamental Concepts in the Design of Experiments, Fourth Edition, by Charles R.
Hicks. Copyright © 1964, 1973, 1982, 1993 by Oxford University Press, Inc. Used by permission
of Oxford University Press, Inc.

Only four of thev � 8 treatment combinations could be measured at any one time. Conse-
quently, the experiment was divided into blocks of sizek � 4. A total ofn � 32 observations
could be taken, and a block design ofb � 8 blocks of sizek � 4 was needed.

It is easily verified that no balanced incomplete block design exists of this size (since
r � 4 andλ � 12/7). A cyclic design could have been used, but cyclic designs do not
have orthogonal factorial structure in general. A partially confounded design was selected,
consisting of four single-replicate designs each confounding a different interaction (ABC,
AB, AC, andBC). The design and responses are shown in Table 13.15.

We use the standard model for 3 treatment factors and one block factor with no treatment
block interaction.

Yhijk � µ+ θh + τijk + εhijk

� µ+ θh + αi + βj + γk + (αβ)ij + (αγ )ik

+ (βγ )jk + (αβγ )ijk + εhijk ,

εhijk ∼ N (0, σ 2) and mutually independent,

h � 1, . . . ,8; i � 0,1; j � 0,1; k � 0,1;

(h, i, j, k) in the design.

The contrast for comparing the first two levels of factorB (averaged over the levels ofA
andC), for example, is estimated using all of the data. Since theB contrast is orthogonal to
blocks, no block adjustments are needed. Consequently, the contrast

β∗
1 − β∗

0 , whereβ∗
j � βj + (αβ).j + (βγ )j. + (αβγ ).j. ,

has least squares estimate

β̂∗
1 − β̂∗

0 � y..1.

16
− y..0.

16
� 2552.75− 2555.31 � −2.56.
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Equivalently, in terms of the treatment combinations the contrast is
∑

i

∑
j

∑
k cijkτijk,

where the coefficientscijk in standard order are given by
1
4[−1, −1, 1, 1, −1, −1, 1, 1 ] .

with least squares estimate
∑

i

∑
j

∑
k cijk(y.ijk/4) � −2.56.

The test of the hypothesisH0 : {β∗
1 − β∗

0 � 0} against the alternative hypothesisHA :
{β∗

1 − β∗
0 	� 0} is similar to (4.3.15) (page 76); that is,

rejectH0 if
ssc

msE
� (y..1. − y..0.)

2

(2/16)msE
> F1,df,α/m ,

wheredf is the error degrees of freedom obtained from the analysis of variance table, which
is shown in Table 13.16,m is the number of hypotheses to be tested, andssc � 8(−2.56)2 �
52.53. To test the equivalent hypothesisHB

0 : {β∗
0 � β∗

1} using the rules of Chapter 7, we
obtain

ssB � acr
∑
j

y2
..j. − abcry2

.... � 52.53.

The sum of squares for each of the other main effects can be calculated in a similar
fashion. The sum of squares for the interactions can be calculated similarly, except that
only three of the four replicates are used. For example, theBC interaction contrast can be
estimated only from the first three replicates (that is, from 24 observations, not 32). Thus,
the contrast12[(βγ )∗00 − (βγ )∗01 − (βγ )∗10 + (βγ )∗11] (where (βγ )∗jk � (βγ )jk + (αβγ ).jk)
has least squares estimate

1

2

[y..00

6
− y..01

6
− y..10

6
+ y..11

6

]
� 1

2
[2080.86− 3029.76− 2099.38+ 3006.11]

� −21.085,

and only six observationsyhijk are used in the calculation ofy..jk for each combination of
B andC. In terms of the treatment combinations, the contrast coefficientscijk are

1
4[1, −1, −1, 1, 1, −1, −1, 1 ] ,

and the contrast estimate is∑∑∑
cijk(y.ijk/3) � −21.085,

where again, only the three observations from the first three single-replicate designs are
used in the calculation of eachy.ijk .

To test the hypothesisHBC
0 : [(βγ )∗00 − (βγ )∗01 − (βγ )∗10 + (βγ )∗11 � 0], we rejectHBC

0
if

(−21.083)2

(4/24)msE
� 2667.04 > F1,17,α/m .

The complete analysis of variance table is shown in Table 13.16. The adjusted mean
square for blocks, which is 43,344.88, is smaller than the mean square for error. Thus,
blocking was not helpful in this experiment. ✷



13.10 Comparing the Multireplicate Designs 449

Table 13.16 Analysis of variance for the coil experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Blocks (adj) 7 303,414.14 43,344.88 −
Blocks (unadj) 7 439,777.72 − −
A 1 224,282.53 224,282.53 3.97 0.0627
B 1 52.53 52.53 0.00 0.9760
C 1 6,886,688.28 6,886,688.28 121.79 0.0001
AB (adj) 1 737.04 737.04 0.01 0.9104
AC (adj) 1 416,066.67 416,066.67 7.36 0.0148
BC (adj) 1 2,667.04 2,667.04 0.05 0.8307
ABC (adj) 1 70,742.04 70,742.04 1.25 0.2789
Error 17 961,283.11 56,546.07
Total 31 9,002,296.97

Table 13.17 A balanced incomplete block design with 8 treatment labels
and 14 blocks of size 4

Blocks
I II III IV V VI VII VIII IX X XI XII XIII XIV
1 5 1 3 1 2 1 2 1 3 1 2 1 2
2 6 2 4 3 4 4 3 2 4 3 4 4 3
3 7 7 5 6 5 6 5 5 7 5 6 5 6
4 8 8 6 8 7 7 8 6 8 7 8 8 7

13.10 Comparing the Multireplicate Designs

For some block sizes, we have a choice of possible designs for a multireplicate factorial
experiment. For example, suppose that a design is required with blocks of sizek � 4 for
a factorial experiment involving 3 factors, each having two levels (sov � 8). Practical
considerations dictate that at mostb � 14 blocks can be used. The contrasts of interest are
all of the main-effect and interaction contrasts with coefficients±1 (for simplicity) as listed
in Table 13.2 (page 425). Three possible ways of designing the experiment with 14 blocks
are as follows.

Design possibility 1 The first possibility is to use a balanced incomplete block design,
since one exists withλ � 3 andr � 7, b � 14, v � 8, k � 4. The design (before

randomization) is given in Table 13.17, where the blocks are shown as columns. The eight
treatment labels of the design are randomly assigned to thev � 8 treatment combinations
(000, 001,. . ., 111) to obtain a balanced incomplete block design suitable for a factorial
experiment.

If we let the effect of treatment combinationijk be denoted byτijk, the least squares
estimator of a contrast���cijkτijk is ���cijkτ̂ijk � k

λv
���cijkQijk, whereQijk �

Tijk − 1
k

∑
h nhijkBh, andTijk is the total of the observations on treatment combinationijk,

Bh is the total of the observations in thehth block, andnhijk is 1 if treatment combination
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ijk is in blockh, and otherwisenhijk is 0. The variance of the least squares estimator is

Var

(∑
i

∑
j

∑
k

cijkτ̂ijk

)
� k

λv

∑
i

∑
j

∑
k

c2
ijk σ

2 � 8σ 2

6
, (13.10.3)

and this is the same for all main-effect and interaction contrasts for a 23 experiment, (since
all of thecijk ’s are+1 or−1).

Design possibility 2 For the same experiment, suppose that the 3-factor interaction
ABC is expected to be negligible and is of no interest. Then the balanced incomplete block
design discussed above is not ideal, becauseABC contrast is measured with the same
precision as the main-effect and 2-factor interaction contrasts. Suppose, instead, we decide
to confound theABC contrast in each of seven replicates. Using the equations

a1 + a2 + a3 � 0 or 1 (mod 2),

the following single-replicate design in two blocks would be obtained:
Block I: 000 011 101 110
Block II: 001 010 100 111

The design inb � 14 blocks is obtained by repeating these two blocksr � 7 times. Since
ABC is confounded in every replicate, it is not estimable—it cannot be measured.ABC is
said to becompletely confounded. All other orthogonal contrasts (including the main-effect
and 2-factor interaction contrasts) are unconfounded, so can be estimated without adjusting
for blocks.

Let ���cijkτijk be a contrast measuring a 2-factor interaction or a main effect. Then
its least squares estimator is���cijkY .ijk, where the average is taken over the 7 replicates
or repeated pairs of blocks. The corresponding variance is

Var
(
���cijkτ̂ijk

) � Var
(
���cijkY .ijk

) � 8σ 2

7
. (13.10.4)

Comparing (13.10.4) with (13.10.3), we see that the effect of losing all of the information
on theABC contrast is to reduce the variance of all other factorial contrasts from 8σ 2/6 to
8σ 2/7.

Design possibility 3 Instead of repeating the same design seven times as was done
above, we could try to spread the loss of information due to confounding across several of
the interaction contrasts by using partial confounding. Suppose that we take four copies of
the two blocks that confoundABC, together with one pair of blocks that confoundsAB,
one pair that confoundsAC, and one pair that confoundsBC. This seven-replicate design
is shown in Table 13.18.

TheABC contrast is confounded in replicates I–IV, but can be estimated (without block
adjustments) from replicates V–VII (that is, from Blocks IX–XIV, or three pairs of blocks).
The variance of theABC contrast estimator is then 8σ 2/3, compared with 8σ 2/6 in the
balanced incomplete block design—it is completely confounded in the second design.

Each 2-factor interaction contrast can be estimated without block adjustments from the
six replicates, or pairs of blocks, in which it is not confounded. The variances of their least-
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Table 13.18 Partial confounding of ABC , AB, AC , BC contrasts in a design
with 14 blocks of size 4 for 3 factors at two levels each

Replicates Confounded Blocks Treatment Combinations
I–IV ABC I, III, V, VII 000 011 101 110

II, IV, VI, VIII 001 010 100 111

V AB IX 000 001 110 111
X 100 101 010 011

VI AC XI 000 010 101 111
XII 001 011 100 110

VII BC XIII 000 011 100 111
XIV 001 010 101 110

Table 13.19 Variances of contrast estimators for three design
possibilities for v � 8, r � 7, b � 14, k � 4

Design 1 Design 2 Design 3
Complete Partial

Contrast BIBD Confounding Confounding of
of ABC ABC , AB, AC , BC

ABC 8σ2

6 not estimable 8σ2

3

AB, AC , BC 8σ2

6
8σ2

7
8σ2

6

A,B,C 8σ2

6
8σ2

7
8σ2

7

squares estimators are then 8σ 2/6, the same as in the balanced incomplete block design,
but worse than the value 8σ 2/7 for the design withABC completely confounded.

The main effects can be estimated from all seven replicates. The variances of their contrast
estimators are all 8σ 2/7, the same as for the second design, but better than the value of 8σ 2/6
for the balanced incomplete block design.

Summary A summary of the variances of the least squares estimators of the factorial
contrasts is given in Table 13.19. No one design is the best for all seven factorial effects.
The choice of design would depend upon the importance of estimating theABC contrast
relative to the 2-factor and main-effect contrasts.

We have not exhausted all the possible designs that can be obtained by partial confound-
ing. For example, one could confound the two-factor interactions in two pairs of blocks
and the three-factor interaction in one pair of blocks, or alternatively, one could confound
each of the seven factorial contrasts in turn in one pair of blocks. (This latter option gives
design possibility 1.) In every case, the smaller contrast variances will coincide with the
contrasts that are confounded less often, the contrast variance being 8σ 2/r if the contrast is
unconfounded inr replicates.
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13.11 Using SAS Software

Analyzing factorial experiments with confounding using the SAS software is straightforward
for the types of designs discussed in this chapter. The SAS statements required for the
analysis are the same as those outlined in Chapters 6, 7, and 10. Using theGLM procedure,
the blocking factor is listed in theMODEL statement first, so that the Type I sums of squares
for factorial effects are appropriately adjusted for blocks.

Any effect that is completely confounded—including effects confounded in a single
replicate design—shouldnot be included in theMODEL statement. If included after the
blocking factor, a completely confounded effect would show zero degrees of freedom under
the Type I and Type III sums of squares. The corresponding degree of freedom would
already be accounted for under block effects. Partially confounded effects, however, should
be included in the model statement as illustrated in the following example.

Example 13.11.1 Partial confounding—Coil experiment, continued

Table 13.20 contains a SAS program for analysis of the coil experiment data. Corresponding
output is given in Table 13.21. The coil experiment was a four-replicate 23 experiment with
partial confounding—each of the four interaction effects was confounded in one of the four

Table 13.20 SAS program for analysis of an experiment with partial confounding—the coil
experiment

DATA COIL;
INPUT BLOCK A B C Y;
LINES;
1 0 0 0 2208
1 1 1 0 2133
1 1 0 1 2459
1 0 1 1 3096
2 1 0 0 2196
: : : : :
8 1 1 0 2156
8 0 0 1 3423
8 1 0 1 2524

;
PROC GLM;
CLASS BLOCK A B C;
MODEL Y = BLOCK A B C A*B A*C B*C A*B*C;
ESTIMATE ’A’ A -1 1;
ESTIMATE ’B’ B -1 1;
ESTIMATE ’C’ C -1 1;
ESTIMATE ’AB’ A*B 1 -1 -1 1 / DIVISOR=2;
ESTIMATE ’AC’ A*C 1 -1 -1 1 / DIVISOR=2;
ESTIMATE ’BC’ B*C 1 -1 -1 1 / DIVISOR=2;
ESTIMATE ’ABC’ A*B*C -1 1 1 -1 1 -1 -1 1 / DIVISOR=4;
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Table 13.21 SAS program partial output illustrating partial confounding—the coil experiment

The SAS System
General Linear Models Procedure

Dependent Variable: Y
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 14 8041013.9 574358.1 10.16 0.0001
Error 17 961283.1 56546.1
Corrected Total 31 9002297.0

Source DF Type I SS Mean Square F Value Pr > F
BLOCK 7 439777.7 62825.4 1.11 0.4003
A 1 224282.5 224282.5 3.97 0.0627
B 1 52.5 52.5 0.00 0.9760
C 1 6886688.3 6886688.3 121.79 0.0001
A*B 1 737.0 737.0 0.01 0.9104
A*C 1 416066.7 416066.7 7.36 0.0148
B*C 1 2667.0 2667.0 0.05 0.8307
A*B*C 1 70742.0 70742.0 1.25 0.2789

Source DF Type III SS Mean Square F Value Pr > F
BLOCK 7 303414.1 43344.9 0.77 0.6225

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
A -167.437500 -1.99 0.0627 84.0729338
B -2.562500 -0.03 0.9760 84.0729338
C 927.812500 11.04 0.0001 84.0729338
AB 11.083333 0.11 0.9104 97.0790619
AC -263.333333 -2.71 0.0148 97.0790619
BC -21.083333 -0.22 0.8307 97.0790619
ABC -108.583333 -1.12 0.2789 97.0790619

replicates. In theGLM procedure, the blocking factor is entered into theMODEL statement
first. As a result, the Type I sum of squares for blocks is unadjusted for treatment effects,
whereas the Type I sums of squares for each treatment interaction effect is adjusted for block
effects. The Type III sum of squares for blocks is adjusted for treatment effects, so can be
used to assess the usefulness of blocking in this experiment.

The divisors used in theESTIMATE statements of theGLM procedure cause use of divisor
v/2 � 4 for the contrast coefficientscijk for each contrast. Thus, all contrasts would have
been estimated with the same variance had there been no partial confounding. Because
each interaction contrast is confounded in one of the four replicates, the variance of each
interaction contrast estimator is larger than each main effect contrast estimator by a factor
of four-thirds. ✷
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Exercises

1. Construct a single-replicate 23 design confoundingAB with blocks. In other words,
list the treatment combinations block by block.

2. Construct a single replicate 25 design confoundingABC andCDE. Determine the
other effect that is confounded.

3. Projectile experiment
N. L. Johnson and F. C. Leone, in their 1977 bookStatistics and Experimental Design
in Engineering and the Physical Sciences, described a single-replicate 24 experiment
concerning the performance of a new rifle under test. Under study were the effects on
projectile velocity of the factors charge weight (A), projectile weight (B), propellant web
(C), and weapon (D), where two rifles were used. The design included two blocks each
of size eight, corresponding to the two days on which data were collected, confounding
ABCD. The coded velocity data are given in Table 13.22.

(a) Fit a model including block effects, treatment main effects, and 2-factor
interactions. Use residual plots to check the standard model assumptions.

(b) Conduct the analysis of variance, and discuss the results.

(c) Construct simultaneous confidence intervals for any interesting treatment contrasts
using an appropriate method of multiple comparisons.

(d) Reanalyze the data using the Voss–Wang method, including all estimable treatment
effects in the analysis.

4. Field experiment, continued

(a) For the field experiment of Example 13.3.2, verify that the sum of squares and the
contrast estimate forBD are as shown in Table 13.5, page 428.

(b) Draw theBD interaction plot. Does this plot also suggest thatB andD should be
at their low levels?

Table 13.22 Projectile experiment data, confounding
ABCD

Day 1 Day 2
Run TC y1ijkl Run TC y2ijkl
1 0000 97 13 0001 75
7 0011 26 11 0010 39
5 0101 53 9 0100 68
3 0110 15 15 0111 −16
6 1001 145 10 1000 151
4 1010 100 16 1011 97
2 1100 150 14 1101 141
8 1111 54 12 1110 66

Source: Johnson, N. L. and Leone, F. C. (1977). Copyright
© 1977 Johnson and Leone. Reprinted with permission.
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(c) Suppose that the experimenters had expected all of the 3-factor interactions to be
negligible and had omitted the corresponding terms from the model (instead of
those involvingAD). Reanalyze the experiment accordingly. What would have
been concluded?

(d) Apply the Voss–Wang method to analyze the data of the field experiment. Relevant
information is given in Table 13.5, page 428.

5. Suggest a confounding scheme for a 26 experiment in 8 blocks of 8, assuming that all
2-factor interactions are to be estimated, as are the 3-factor interactions involving both
A andF . List all effects confounded. List the treatment combinations in the design
block by block.

6. Suggest a confounding scheme for a 28 experiment in 16 blocks of 16, assuming that
all 2-factor and 3-factor interactions are to be estimated. List all effects confounded.
List the treatment combinations in Block I and in two other blocks.

7. Mangold experiment, continued

(a) For the mangold experiment of Section 13.5, verify that the sum of squares and
the contrast estimate forCD are as shown in Table 13.12, page 439.

(b) Draw theCD interaction plot. Does this plot agree with the factor levels suggested
in Section 13.5 for increasing the yield?

(c) Check that the assumption of normality of the error variables is satisfied. Also
check that the variances of the errors appear to be equal for each level of the four
factors.

(d) Draw a normal probability plot of all of the contrast estimates (including the
higher-order interactions). Does it appear that the experimenters made the correct
assumptions of negligible higher-order interactions?

8. Decontamination experiment—Beta particles
An experiment was described by M. K. Barnett and F. C. Mead, Jr. in the journal
Applied Statistics in 1956 to explore the effect of four factors on the efficiency of a
decontamination process for the removal of radioactive isotopes from liquid waste. The
measurements taken after the decontamination process were the counts per minute per
milliliter of alpha and beta particles. Data for the alpha particles and further description
of the experiment were given in Section 13.8.1. We consider here part of the data for
the beta particles, shown in Table 13.23. The four treatment factors were:
A: 0.4 g and 2.5 g per liter of aluminum sulphate (coded 0, 1);

B: 0.4 g and 2.5 g per liter of barium chloride (coded 0, 1);

C: 0.08 g and 0.4 g per liter of carbon (coded 0, 1);

D: Final pH of liquid waste (6 and 10, coded 0, 1).
The experimenters selected a design inb � 2 blocks ofk � 8 that confounded the
four-factor interaction contrastABCD. The fitted model included all main-effects and
all 2-factor and 3-factor interactions. The treatment–block interaction was assumed to
be negligible.
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Table 13.23 Randomized design for a 24 experiment in 2 blocks of size 8,
confounding ABCD. Data for the decontamination
beta-particle experiment are shown in parentheses.

Block Treatment Combinations (Response)
I 1010 1111 0110 0000 1100 0101 0011 1001

(716) (686) (498) (1437) (527) (579) (1433) (906)
II 0010 0001 0111 1000 1101 0100 1110 1011

(1024) (1364) (475) (574) (664) (579) (507) (1130)

Source: Barnett, M. K. and Mead, F. C. Jr. (1956). Copyright © 1956 Blackwell
Publishers. Reprinted with permission.

(a) Use a normal probability plot to identify the important contrasts.

(b) Use the method of Voss–Wang to check your selection in part (a).

(c) Draw an interaction plot of any interaction that appears to be nonnegligible by
either analysis.

(d) Looking at the results of your analysis, which settings of the factors would you
recommend for reducing the beta particle counts?

(e) Suppose that the experimenters had believed before the experiment that the three-
factor interactions were all negligible. What would the analysis of variance table
have looked like? Would your recommendations have been any different?

9. Penicillin experiment
An experiment is described in Example 9.2 of the bookDesign and Analysis of Industrial
Experiments edited by O. L. Davies that investigates the effects of various factors
on the yield of penicillin in surface culture experiments. The five factors of interest
were added to the nutrient medium, which was inoculated with a spore suspension
of P. Chrysogenum. The spores rise to the surface, causing the growth of mycelium
accompanied by the formation of penicillin. The factors and their levels were corn
steep liquor (factorA, 2% and 3% strength), lactose (factorB, 2% and 3% strength),
precursor (factorC, 0% and 0.05%), sodium nitrate (factorD, 0% and 0.3%), and
glucose (factorE, 0% and 0.5%). Only 16 of the 32 treatment combinations could
be carried out at one time, and the experimenters decided to observe 16 treatment
combinations in one week and the remaining 16 in the following week. Large week-
to-week variations were known to exist, and therefore the experiment was designed as
a block design with two blocks, confounding the 5-factor interactionABCDE. The
observed yields of penicillin are shown in Table 13.24. Prior to the experiment, it was
believed that all that all 3- and 4-factor interactions would be negligible, and also that
theCE interaction would be important.
(a) Analyze the data, assuming that all 3- and 4-factor interactions are negligible. Do

not forget to check the assumptions on the model.

(b) The experimenters decided to use logarithms of the data. Does your assumption
check in part (a) confirm that this should be done? If so, reanalyze the data and
state your conclusions.
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Table 13.24 Data for the penicillin experiment

Block I Block II
Treatment Treatment
Combination Yield Combination Yield
00000 142 00001 106
00011 101 00010 148
00101 113 00100 185
00110 200 00111 130
01001 88 01000 129
01010 146 01011 140
01100 200 01101 166
01111 145 01110 215
10001 106 10000 114
10010 108 10011 114
10100 162 10101 88
10111 83 10110 164
11000 109 11001 98
11011 72 11010 195
11101 79 11100 172
11110 118 11111 110

Source: Davies, O. L. (1963). Reprinted by permission of
Addison Wesley Longman Ltd.

(c) Using the logarithms of the data, draw a normal probability plot of the contrast
estimates without using any knowledge that the higher-order interactions are likely
to be negligible. Do your conclusions remain the same? Which analysis do you
prefer? Why?

10. Peas experiment
The following experiment was run at Biggelswade, in England, and reported by F. Yates
in his 1935 paperComplex Experiments. The three treatment factors were the standard
fertilizers, nitrogen, phosphate, and potassium (factorsN ,P , andK) each at two levels.
The experimental area was divided intob � 6 blocks of 1/70 of an acre. Each block was
large enough for four plots on which a certain variety of pea was sown, and the fertilizer
combinations shown in Table 13.25 were added. The design consists of three identical
single-replicate designs each of which confounds the 3-factor interactionNPK. Each
block has been separately randomized.

(a) Estimate the treatment contrasts for all main effects and interactions.

(b) Calculate the analysis of variance table for this experiment and test all relevant
hypotheses. State the overall significance level.

(c) Draw interaction plots for any important interactions. Give a set of 95% confidence
intervals for the main-effect contrasts, if appropriate.

(d) State your overall recommendations about the fertilizers in this experiment. Would
you recommend a followup experiment? If so, what would you investigate?
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Table 13.25 Data for the peas experiment

Block Treatment Combinations Block Treatment Combinations
(Yield) (Yield)

I 011 (49.5) 000 (46.8) II 100 (62.0) 001 (45.5)
110 (62.8) 101 (57.0) 111 (48.8) 010 (44.2)

III 100 (59.8) 001 (55.5) IV 110 (52.0) 101 (49.8)
111 (58.5) 010 (56.0) 000 (51.5) 011 (48.8)

V 010 (62.8) 100 (69.5) VI 101 (57.2) 011 (53.2)
111 (55.8) 001 (55.0) 110 (59.0) 000 (56.0)

Source: Yates, F. (1935). Copyright © 1935 Blackwell Publishers. Reprinted with
permission. (Reprinted inExperimental Design (1970), Charles Griffin and Company,
Ltd., London. Copyright © 1970 Edward Arnold/Hodder & Stoughton Educational.
Reprinted with permission.)

Table 13.26 Data for the field experiment, by block and treatment combination
(TC)

Block I Block II Block III Block IV
TC y1ijkl TC y2ijkl TC y3ijkl TC y4ijkl
0000 58 0001 55 0000 57 0001 50
0011 51 0010 45 0011 56 0010 39
0101 44 0100 42 0101 43 0100 47
0110 50 0111 36 0110 39 0111 43
1001 43 1000 53 1001 52 1000 42
1010 50 1011 55 1010 52 1011 44
1100 41 1101 41 1100 42 1101 34
1111 44 1110 48 1111 54 1110 52

Source:Experimental Designs, Second Edition, by W. G. Cochran and G. M. Cox, Copyright
© 1957, John Wiley & Sons, New York. Adapted by permission of John Wiley & Sons, Inc.

11. Field experiment, continued
The field experiment was described in Example 13.3.2. There were four treatment
factors (A, B, C, andD) at two levels each, and thev � 16 treatment combinations
were observed twice. Each of ther � 2 sets of treatment combinations were divided into
blocks of size 8. The first two blocks, which confounded theABCD interaction, were
shown in Table 13.4. The complete design, which is shown in Table 13.26, consisted
of two such single-replicate designs.

(a) Calculate the analysis of variance table for this experiment. Now thatr � 2, there
is an estimate for error variability. Test any hypotheses of interest. Are the results
similar to those obtained from the first two blocks only?

(b) Draw any interaction plots of interest. If the yield is to be increased, what
recommendations would you make about the levels of the factors?
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Table 13.27 Data for the catalytic reaction experiment

Run Block TC yhijk Run Block TC yhijk
1 1 011 89.5 9 3 010 86.2
2 1 101 84.2 10 3 100 81.8
3 1 110 85.2 11 3 001 90.4
4 1 000 89.9 12 3 111 83.6
5 2 010 85.1 13 4 110 75.3
6 2 111 83.5 14 4 000 84.6
7 2 001 90.8 15 4 011 86.7
8 2 100 81.8 16 4 101 82.2

Source: Reprinted with permission from Bainbridge, J. R. (1951). Copyright
1951American Chemical Society.

12. Construct a four-replicate 23 design in eight blocks of size four, partially confounding
each interaction effect. Compare the variance of each interaction contrast with that of
each main effect, using divisorv/2 � 4 for each contrast.

13. Catalytic reaction experiment
J. R. Bainbridge, in his 1951 article in the journalIndustrial and Engineering Chemistry,
described a factorial experiment conducted at a small plant carrying out a catalytic
gaseous synthesis reaction to remove the product as a liquid solution. A 2-replicate 23

experiment was conducted to study the effects of converter reaction temperature (factor
A), throughput rate through the converter (factorB), and the concentration of the active
ingredient in the makeup gas (factorC) on each of several response variables, including
the strength of the product solution (yhijk). The design was composed of four blocks of
size four, with theABC interaction completely confounded. The design and data are
provided in Table 13.27, including the run order. (The observations in Table 13.27 are
“uncoded,” each value being 80 plus one-tenth the coded value given by Bainbridge.)
(a) Based on the run order, discuss how the design was probably randomized.

(b) Fit an appropriate model, and use residual plots to check the standard model
assumptions.

(c) Conduct the analysis of variance, and discuss the results.

(d) Using a simultaneous confidence level of 95% for all six factorial effects, construct
confidence intervals for those effects found to be significant in the analysis of
variance.

14. Catalytic reaction experiment, continued
In the experiment described in Exercise 13, the covariate “makeup gas purity” was
measured. The covariate values were 17, 12, 10, 10, 13, 14, 10, 16, 12, 13, 13, 11, 16,
11, 12, and 11, corresponding to runs 1–16, respectively. Repeat Exercise 13, but for
an analysis of covariance.
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Table 13.28 Confounding schemes for 2p experiments in b � 2s blocks of size
k � 2p−s . For each design, s independent generators are underlined,
and s corresponding equations are given. To obtain Block I of a
design, list all k combinations of the first ai ’s shown, then use the
equations modulo 2 to complete each treatment combination.

2p b k Confounded Contrasts Block I
23 2 4 ABC a1, a2

a3 � a1 + a2
24 2 8 ABCD a1, a2, a3

a4 � a1 + a2 + a3

24 4 4 AC,ABD, BCD a1, a2
a3 � a1
a4 � a1 + a2

25 2 16 ABCDE a1, a2, a3, a4
a5 � a1 + a2 + a3 + a4

25 4 8 ABCD,ABE, CDE a1, a2, a3
a4 � a1 + a2 + a3
a5 � a1 + a2

25 8 4 AC, BD,ABCD, a1, a2
ABE, BCE, ADE, CDE a3 � a1

a4 � a2
a5 � a1 + a2

26 2 32 ABCDEF a1, a2, a3, a4, a5
a6 � a1 + a2 + a3 + a4 + a5

26 4 16 ABCD,CDEF, ABEF a1, a2, a3, a5
a4 � a1 + a2 + a3
a6 � a3 + a4 + a5

26 8 8 BCD,ABE, ACDE , a1, a2, a3
ABCF, ADF, CEF, BDEF a4 � a2 + a3

a5 � a1 + a2
a6 � a1 + a2 + a3

27 4 32 ABCDE,ABFG,CDEFG a1, a2, a3, a4, a6
a5 � a1 + a2 + a3 + a4
a7 � a1 + a2 + a6

27 8 16 ABCD,CDEF, ABEF , a1, a2, a3, a5
ACEG, BDEG,ADFG, BCFG a4 � a1 + a2 + a3

a6 � a3 + a4 + a5
a7 � a1 + a3 + a5

27 16 8 ABC,CDE, ABDE, a1, a2, a4
BDF, ACDF, BCEF, AEF, a3 � a1 + a2
ADG,BCDG,ACEG, BEG, a5 � a3 + a4
ABFG,CFG,ABCDEFG,DEFG a6 � a2 + a4

a7 � a1 + a4
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Exercises

14.1 Introduction

In Chapter 13, incomplete block designs for 2p factorial experiments were obtained by
confounding one or more interaction contrasts with block contrasts. In this chapter, we
extend the idea of confounding to encompass experiments in which not all factors have two
levels. We will code the levels of anm-level factor as 0,1, . . . , m− 1.

In Section 14.2 we consider single-replicate 3p experiments arranged inb � 3s blocks of
sizek � 3p−s . The techniques used in designing these types of experiment can be adapted
for mp experiments inms blocks of sizemp−s wherem is a prime number.

Pseudofactors are introduced in Section 14.3 to facilitate confounding in symmetrical
4p experiments and asymmetrical 2p4q experiments. Then, in Section 14.4 we consider
asymmetrical experiments involving factors or pseudofactors at both two and three levels,
allowing us to look at more complicated situations where the treatment factors have a mixture
of 2, 3, 4, and 6 levels.

Analysis of a two-replicate 33 experiment with partial confounding is illustrated using
the SAS software in Section 14.5.

461
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Table 14.1 Sets of orthogonal contrasts measuring the interaction in a 32

experiment

TC ALBL ALBQ AQBL AQBQ (AB;A2B2) (AB2;A2B)
00 1 −1 −1 1 −1 1 −1 1
01 0 2 0 −2 0 −2 1 1
02 −1 −1 1 1 1 1 0 −2
10 0 0 2 −2 0 −2 0 −2
11 0 0 0 4 1 1 −1 1
12 0 0 −2 −2 −1 1 1 1
20 −1 1 −1 1 1 1 1 1
21 0 −2 0 −2 −1 1 0 −2
22 1 1 1 1 0 −2 −1 1

14.2 Confounding with Factors at Three Levels

14.2.1 Contrasts

In a factorial experiment where all treatment factors have 3 levels, each main effect has 2
degrees of freedom associated with it, each two-factor interaction has 2× 2 � 4 degrees of
freedom, etc. (see Section 7.3). Therefore, we can find 2 orthogonal contrasts to measure
each main effect, 4 orthogonal contrasts to measure each two-factor interaction, and so on.

In a 32 experiment, for example, two orthogonal contrasts measuring the main effect
of each of factorsA andB are the linear and quadratic trend contrasts. Similarly, four
orthogonal trend contrastsALBL , ALBQ, AQBL , andAQBQ measuring the interaction are
reproduced in Table 14.1 (see Section 6.3). A different set of four orthogonal contrasts,
labeled in pairs as (AB; A2B2) and (AB2; A2B), is also shown in Table 14.1. Although this
second set of contrasts is less useful than the set of trend contrasts in measuring details of
the interaction, it will prove extremely useful for confounding purposes. The reader is asked
to verify thatany contrasts that measure the main effects ofA andB are orthogonal to all
the contrasts in Table 14.1 measuring the interaction.

Notice that the pair of contrasts labeled (AB; A2B2) are two orthogonal contrasts that
compare the three groups of treatment combinations (00, 12, 21) and (01, 10, 22) and
(02, 11, 20). Any linear combination of these two contrasts is also a contrast between
these three groups of treatment combinations. We have illustrated these groups of treatment
combinations in the left-hand side of Table 14.2, where treatment combinations with the
same superscript are in the same group. Notice that each group contains one treatment
combination from each row and each column, making sure that each level of each factor is
represented once in each group.

Similarly, the pair of contrasts labeled (AB2; A2B) comprise two orthogonal contrasts
that compare the three groups of treatment combinations (00, 11, 22) and (01, 12, 20) and
(02, 10, 21). Any linear combination of these two contrasts is also a contrast between these
three groups of treatment combinations. The groups are illustrated in the right-hand side of
Table 14.2 and also have the property that each group contains one treatment combination
from each row and each column.



14.2 Confounding with Factors at Three Levels 463

Table 14.2 Groups of treatment combinations
corresponding to orthogonal interaction
contrasts in a 32 experiment

(AB; A2B2) (AB2; A2B)
00∗ 01† 02+ 00∗ 01† 02+

10† 11+ 12∗ 10+ 11∗ 12†

20+ 21∗ 22† 20† 21+ 22∗

The reason for the labeling (AB; A2B2) and (AB2; A2B) is to match the contrasts with
the equation method of confounding in Section 14.2.3. The contrast names themselves have
little meaning, except to acknowledge that each contrast belongs to theAB interaction and,
as will be seen, each pair corresponds to a set of equations that partitions the treatment
combinations into three groups.

Many texts list only one of the two labels in each pair, since each is the square of the
other. For example, when the exponents are reduced modulo 3, thenA2B � (AB2)2. The
convention is then to listAB2 rather thanA2B, for example, since the leading exponent is
one. However, we will list both labels to aid in identifying a complete set of confounded
contrasts in designs with more than three blocks.

An alternative labeling for the contrasts that can be found in a number of texts and articles
is AB(J ) for the pair of contrasts (AB; A2B2), andAB(I ) for the pair of contrasts (AB2;
A2B).

14.2.2 Confounding Using Contrasts

In this section we consider the division of treatment combinations into blocks by delib-
erately confounding negligible contrasts, as in Section 13.3.2 for 2p experiments. For 3p

experiments, we look at designs with 3s blocks of size 3p−s , starting with 3 blocks of size
3p−1. For a design withb � 3 blocks, two degrees of freedom are used to measure the block
differences. Therefore, in a single-replicate design, we must confound a pair of treatment
contrasts.

As a simple example, we start with an experiment with two factorsA andB in which
the interaction is known to be negligible. We will attempt to use two of the interaction
contrasts shown in Table 14.1 to divide the treatment combinations into 3 blocks. A pair of
trend contrasts, such asALBQ andAQBQ cannot be used to give blocks of equal size, since
the values of the coefficients do not fall into 3 groups of 3. However, the pair of contrasts
labeled (AB; A2B2) have three pairs of coefficients (−1, 1), (0,−2), and (1, 1) each of
which appear three times. If we use these as a guide to dividing the treatment combinations
into blocks, we obtain the design in Table 14.3.

Any contrast that is orthogonal to the two confounded contrasts can be estimated without
requiring block adjustments. Estimable contrasts include all contrasts measuring the main
effects ofA andB and the remaining two interaction contrasts labeled (A2B; AB2) and
linear combinations of these. The trend contrasts in Table 14.1 are not orthogonal to any of
theAB, A2B2, AB2, A2B contrasts, so they do not fall into either the confounded or the
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Table 14.3 32 experiment in 3 blocks of 3,
confounding (AB; A2B2)

Contrast Treatment
Block Coefficients Combinations
I (−1, 1 ) 00 12 21
II ( 0,−2 ) 01 10 22
III ( 1, 1 ) 02 11 20

Table 14.4 32 experiment in 3 blocks of 3,
confounding (A2B; AB2)

Contrast Treatment
Block Coefficients Combinations
I (−1, 1 ) 00 11 22
II ( 1, 1 ) 01 12 20
III ( 0,−2 ) 02 10 21

estimable category. They arepartly confounded. In general, interaction trend contrasts can
be estimated completely only when no contrasts from the interaction are confounded.

In the present example, the interaction has four degrees of freedom. Two are used to
measure blocks. The other two correspond to two estimable contrasts, which are negligible
and provide two degrees of freedom to measureσ 2.

If the contrasts labeled (A2B; AB2) in Table 14.1 were used instead of the contrasts
labeled (AB;A2B2) to provide three blocks, the design of Table 14.4 would result. This has
the same properties as the design in Table 14.3 in that all main-effect contrasts are estimable
and there are two estimable contrasts (AB; A2B2) remaining in the interaction that provide
an estimate ofσ 2. Neither design is better than the other, and a choice can be made at
random. Block design randomization should be carried out before the design is used.

As we saw in 2p experiments, there is a correspondence between the contrasts used
for confounding, the contrast names, and the equation method of confounding. In the next
section we show how to obtain the design of Table 14.3 by the equation method. This is
then the only method that we shall use for more complicated designs.

14.2.3 Confounding Using Equations

3p experiments in three blocks The design in Table 14.3, which was obtained by
confounding the two interaction contrasts labeled (AB;A2B2) in Table 14.1, can be obtained
by an equation method similar to that of Section 13.4. Notice that in Block I the digits of the
three treatment combinations add to 0 or 3. In Block II they add to 1 or 4, and in Block III
they add to 2. Now that both factors have three levels, we work modulo 3, which means that
we subtract 3 from the sum of the digits until we obtain one of 0, 1, or 2, or equivalently, we
take the remainder on division by 3. Writing the treatment combinations asa1a2, the blocks
can be defined by the confounding equations
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Block I: Treatment combinations with L � a1 + a2 � 0 (mod 3) ,
Block II: Treatment combinations with L � a1 + a2 � 1 (mod 3) ,
Block III: Treatment combinations with L � a1 + a2 � 2 (mod 3) .

Equivalently, the same three blocks can be obtained if the equations are multiplied by 2;
that is,
Block I: Treatment combinations with 2L � 2a1 + 2a2 � 0 (mod 3) ,
Block II: Treatment combinations with 2L � 2a1 + 2a2 � 2 (mod 3) ,
Block III: Treatment combinations with 2L � 2a1 + 2a2 � 1 (mod 3) .

Thus, if the contrasts labeled (AB; A2B2) in Table 14.1 are confounded with blocks, the
treatment combinations in the three blocks satisfy

L � a1 + a2 � 0, 1, or 2 (mod 3),

and also

2L � 2a1 + 2a2 � 0, 2, or 1 (mod 3).

Similarly, if the contrasts labeled (AB2; A2B) are to be confounded, the equations

L � a1 + 2a2 � 0, 1, or 2 (mod 3)

or, multiplying by 2,

2L � 2a1 + a2 � 0, 2, or 1 (mod 3)

will produce the design in Table 14.4. Notice that the coefficients in the confounding equa-
tions correspond to the exponents in the contrast names. A set of equations defines the same
set of blocks when it is multiplied by 2. Therefore, the confounded contrast names always
come in pairs—one name being the square of the other—(AB2)2 � A2B4 � A2B, reducing
exponents (mod 3).

In general, in a 3p experiment, if the equations

L � z1a1 + z2a2 + · · · + zpap � 0, 1, or 2 (mod 3)

are used to produce three blocks, two contrasts will be confounded that can be labeled
(Az1Bz2 · · ·P zp ;A2z1B2z2 · · ·P 2zp ), wherezi is 1 or 2 if the factor is present in the interaction,
and 0 if it is not, and where the exponent is reduced modulo 3. For example, in a 35

experiment, the equations

L � a1 + 2a2 + a4 � 0, 1, or 2 (mod 3)

will give 3 blocks of size 34 confoundingAB2D andA2B4D2 � A2BD2, which represent
two contrasts from the three-factor interactionABD. It is rarely of importance to identify
exactly what the contrasts look like (they are any pair of orthogonal contrasts between the
groups of treatment combinations in the three blocks). What is important is the knowledge
that the confounded contrasts belong to a particular interaction, and therefore that all other
main-effect and interaction contrasts are estimable.

3p experiments in nine blocks The equation method of confounding can be used to
produceb � 9 � 32 blocks of size 3p−2 in a 3p experiment by selecting two pairs of contrasts
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to be confounded. If the pair (Az1Bz2 · · ·P zp ; A2z1B2z2 · · ·P 2zp ) is chosen for confounding
together with the pair (Ay1By2 · · ·P yp ; A2y1B2y2 · · ·P 2yp ), theb � 9 blocks are produced
from the the nine combinations of values of the two linear functions

L1 � z1a1 + z2a2 + · · · + zpap (mod 3),

L2 � y1a1 + y2a2 + · · · + ypap (mod 3),

that is, from the nine possible pairs of values of the two equations

L1 � z1a1 + z2a2 + · · · + zpap � 0, 1, or 2 (mod 3),

L2 � y1a1 + y2a2 + · · · + ypap � 0, 1, or 2 (mod 3).

Theb−1 � 8 confounded contrasts are the four originally chosen, together with all possible
products. This is most conveniently set out as a table. The selected pairs of contrasts are
written in the first row and first column. The table is then filled out by multiplication, and
the exponents are reduced modulo 3, as follows:

Ay1By2 · · ·Pyp A2y1B2y2 · · ·P 2yp

Az1Bz2 · · ·Pzp Az1+y1Bz2+y2 · · ·Pzp+yp Az1+2y1Bz2+2y2 · · ·Pzp+2yp

A2z1B2z2 · · ·P 2zp A2z1+y1B2z2+y2 · · ·P 2zp+yp A2z1+2y1B2z2+2y2 · · ·P 2zp+2yp

If b � 3s blocks of size 3p−s are required, thens independent pairs of contrast names need
to be chosen for confounding. All possible products determine the entire set ofb−1 � 3s−1
confounded contrasts.

Example 14.2.1 34 experiment in 9 blocks of size 9

Suppose that a 34 experiment, with factorsA, B, C, D, is to be run inb � 9 blocks of size
9. The only interactions thought to be important are the 2-factor interactions. The 2-factor
interactions should therefore not be confounded. Nowb � 32 blocks are required, so 2 pairs
of contrasts should be chosen for confounding. TheABCD interaction has 16 degrees of
freedom, so we can find 16 orthogonal contrasts and label them in pairs as

(ABCD; A2B2C 2D2), (AB2CD; A2BC 2D2),
(ABCD2; A2B2C 2D), (AB2CD2; A2BC 2D),
(ABC 2D; A2B2CD2), (AB2C 2D; A2BCD2),
(ABC 2D2; A2B2CD), (AB2C 2D2; A2BCD).

Selecting two pairs of contrasts from the 4-factor interaction for confounding contrasts is
not a good choice. For example, if (ABCD2; A2B2C2D) and (ABCD; A2B2C2D2) were
chosen, the set of eight confounded degrees of freedom would be

ABCD2 A2B2C 2D

ABCD A2B2C 2 D2

A2B2C 2D2 D ABC

and we can see that the two orthogonal contrasts in the main-effectD would also be con-
founded. All possible selections of two pairs of contrasts from theABCD interaction will
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confound either a main effect or a two-factor interaction. However, the three-factor inter-
actions are also thought to be negligible, so one possible choice is to confound (ABD;
A2B2D2) together with (BCD2; B2C2D). This gives the following set of eight confounded
degrees of freedom.

BCD2 B2C 2D

ABD AB2C AC 2D2

A2B2D2 A2CD A2BC 2

Thus, each 3-factor interaction (which has 8 degrees of freedom) has two orthogonal
contrasts confounded with blocks and six estimable contrasts, which are assumed to be
negligible. This means that there are 24 degrees of freedom from the 3-factor interactions
and a further 16 degrees of freedom from theABCD interaction available for estimating
σ 2. The design is obtained by using the linear functionsL1 andL2, corresponding to the se-
lected confounded contrastsABD andBCD2 as follows. For each treatment combination,
compute the values ofL1 andL2 modulo 3:

L1 � a1 + a2 + a4 � 0, 1, or 2 (mod 3).

L2 � a2 + a3 + 2a4 � 0, 1, or 2 (mod 3).

The design is given in Table 14.5, and it can be verified that the nine blocks are obtained
from the nine possible pairs of values ofL1 andL2. ✷

14.2.4 A Real Experiment—Dye Experiment

An experiment is described in the bookDesign and Analysis of Industrial Experiments,
edited by O. L. Davies, that investigates three reactants (the base material and two inorganic
materials, called hereM andN ) in the manufacture of a cotton dyestuff. The three factors
of interest in the experiment were the concentration ofM in the free water in the reaction
mixture (factorA at three equally spaced levels), the volume of free water in the reaction
mixture (factorB at three equally spaced levels), and the concentration ofN in the free
water in the reaction mixture (factorC at three equally spaced levels).

Although it was possible to control the conditions in the laboratory fairly accurately, the
experimenters divided the treatment combinations into blocks of size 9. This was done as a

Table 14.5 34 experiment in 32 blocks of 9; confounding (ABD; A2B2D2),
(BCD2; B2C 2D), (AB2C ; A2BC 2), and (AC 2D2; A2CD)

Block L1, L2 Treatment Combinations
I 0,0 0000 0112 0221 1022 1101 1210 2011 2120 2202
II 1,2 0001 0110 0222 1020 1102 1211 2012 2121 2200
III 2,1 0002 0111 0220 1021 1100 1212 2010 2122 2201
IV 0,1 0010 0122 0201 1002 1111 1220 2021 2100 2212
V 1,0 0011 0120 0212 1000 1112 1221 2022 2101 2210
VI 2,2 0012 0121 0210 1001 1110 1222 2020 2102 2211
VII 1,1 0100 0212 0021 1122 1201 1010 2111 2220 2002
VIII 2,0 0101 0210 0022 1120 1202 1011 2112 2221 2000
IX 0,2 0102 0211 0020 1121 1200 1012 2110 2222 2001
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Table 14.6 Data for dye experiment

Block I Block II Block III
TC Volume TC Volume TC Volume
000 74 020 69 010 13
021 130 011 46 001 112
012 56 002 71 022 125
110 110 100 211 120 199
101 166 121 220 111 218
122 227 112 216 102 201
220 195 210 147 200 74
211 146 201 47 221 198
202 90 222 164 212 102

Source: Davies, O. L. (1963). Reprinted by permission of Addison
Wesley Longman Ltd.

safeguard against time trends, because the time required to complete the investigation was
reasonably long. The experiment involvedr � 2 replications of each treatment combination,
but here we will analyze only the first replicate.

The observations were the volumes of dyestuff resulting from the chemical reactions and
are shown in Table 14.6. Looking at the treatment combinations (TC) listed in Block I, we can
see that they all satisfy the confounding equationa1+2a2+2a3 � 0 (mod 3). Consequently,
the experimenters have confounded two contrasts from the 3-factor interaction, which we can
label as (AB2C2;A2BC). Since there are only three blocks, these are the only two contrasts
confounded. If the 3-factor interaction can be assumed to be negligible, the remaining six
degrees of freedom can be used to measure the error variability. The analysis of variance
table is shown in Table 14.7. The sum of squares for testing that the main effect ofA

(averaged over the levels of the other factors) can be calculated either by using the formulae
of Chapter 7 or by adding together the sums of squares for two orthogonal contrasts. For
example, rule 4 of Section 7.3 gives

ssA � 9
3∑
i�1

y2
.i.. − 27y2

....

� 9(5980.44+ 38,590.42+ 16,698.38)− 27(18,045.44)

� 64,196.222.

Two orthogonal contrasts forA are the linear and quadratic contrasts. From Table A.2,
the coefficients for the (nonnormalized) linear contrast are (−1, 0, 1), and those for the
quadratic contrast are (1,−2, 1). The least squares estimates for these two contrasts are

ÂL � (−y.0.. + y.2..) � 51.889

and

ÂQ � (y.0.. − 2y.1.. + y.2..) � −186.333.
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To normalize the contrasts, one would divideÂL by
√
�c2

i /(rbc) � √
2/9 and divideÂQ

by
√
�c2

i /(rbc) � √
6/9.

The sum of squares for testing the hypothesis that the linear contrast forA is negligible
is the square of the normalized contrast estimate,

ss(AL) � (−y.0.. + y.2..)
2

2/9
� (51.889)2

2/9
� 12,116.06;

the sum of squares for testing the hypothesis that the quadratic contrast forA is negligible
is

ss(AQ) � (y.0.. − 2y.1.. + y.2..)
2

6/9
� (−186.333)2

6/9
� 52,080.17;

and we see that

ss(AL) + ss(AQ) � 12,116.06+ 52,080.17 � 64,196.23 � ssA.

The other sums of squares in Table 14.7 can be obtained in a similar way.
For testing the hypotheses that the three main effects and the three 2-factor interactions

are negligible at individual significance levelsα∗ � 0.01 (an overall level significance level
of α ≤ 0.06), we would compare the ratios in the analysis of variance table (Table 14.7)
with the critical values from theF -distribution (F2,6,0.01 � 10.9 for the main effects and
F4,6,0.01 � 9.15 for the 2-factor interactions), and we would reject only the hypothesis that
the main effect ofA is negligible. Plots for the average response due toA andB are shown
in Figure 14.1. We can see from the plot of theA average responses that as the levels of the
concentration of inorganic material M in the free water increase, the volumes of dyestuff
first increase and then begin to decrease. We might expect to see both a significant linear
trend and a significant quadratic trend. Testing the two hypotheses that the linear trend inA

is negligible and the quadratic trend inA is negligible, each at level 0.005 (to give an overall
significance level ofα∗ ≤ 0.01, we have

ss(AL)/msE � 10.04< F1,6,0.005 � 18.6

and

ss(AQ)/msE � 43.16> F1,6,0.005 � 18.6,

and we conclude that there is a quadratic trend in the levels ofA, and that the turning point
is towards the center of the range of levels investigated (otherwise, the linear trend would
also have been significantly different from zero). Since the objective of the experiment
was to boost the volume of dyestuff produced, the results of the experiment suggest that
further investigation around the second concentration of inorganic material M might be
wise. Although the hypothesis of no effect ofB was not rejected, Figure 14.1 suggests that
further experimentation with higher volumes of free water in the reaction mixture is worth
consideration.

The above method of testing these two hypotheses uses Bonferroni’s method of com-
bining significance levels. An alternative method is to use Scheffé’s method of multiple
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Table 14.7 Analysis of variance for the dye experiment

Source of Degrees of Sum of Mean
Variation Freedom Squares Square Ratio p-values
Block 2 182.00
A 2 64,196.22 32,098.11 26.60 0.0010
AL 1 12,116.06 12,116.06 10.04 0.0194
AQ 1 52,080.17 52,080.17 43.16 0.0006
B 2 16,857.56 8,428.78 6.98 0.0271
BL 1 12,853.39 12,853.39 10.65 0.0172
BQ 1 4,004.17 4,004.17 3.32 0.1184
C 2 2,334.89 1,167.44 0.97 0.4324
CL 1 1,422.22 1,422.22 1.18 0.3193
CQ 1 912.67 912.67 0.76 0.4179
AB 4 12,512.89 3,128.22 2.59 0.1428
AC 4 4,044.89 1,011.22 0.84 0.5481
BC 4 2,698.89 674.72 0.56 0.7015
Error 6 7,240.67 1,206.78
Total 26 110,068.00

comparisons and test the two hypotheses simultaneously at level 0.01. Since

ss(AL)/msE � 10.04< 2F2,6,0.01 � 21.8

and

ss(AQ)/msE � 43.16> 2F2,6,0.01 � 21.8,

we arrive at the same conclusion. The more powerful method here is the first since

F1,6,0.005 < 2F2,6,0.01 .

14.2.5 Plans for Confounded 3p Experiments

At the end of the chapter we give a table (Table 14.21) of suggested confounding schemes
for 3p experiments in blocks of size 3, 9, or 27. As illustrated in Section 13.6, if the design
in the table confounds important contrasts in the experiment, then a relabeling of treatment
factors should be attempted.
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Figure 14.1 A and B main-effect plots for the dye experiment
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14.3 Designing Using Pseudofactors

14.3.1 Confounding in 4p Experiments

A treatment factorF with four levels coded 0, 1, 2, 3 can be represented by two factorsF1

andF2 each having two levels coded 0, 1. The levels ofF1 andF2 taken together correspond
to the levels of the original factorF . One possible correspondence is given below:

F F1 F2
0 0 0
1 0 1
2 1 0
3 1 1

The factorsF1 andF2 are calledpseudofactors. All factors in a 4p experiment can
be represented by pseudofactors. Thus, a 4p experiment in 4s blocks of size 4p−s can be
represented as a 22p experiment in 22s blocks of size 22(p−s). The techniques of confounding
in a 22p experiment as discussed in Section 13.3 can therefore be used. The only difference
is that an interaction of pseudofactors of the formF1G1G2, say, does not represent 3-
factor interaction. It represents one of nine orthogonal contrasts measuring the two-factor
interaction,FG. Similarly,F1F2 does not represent a contrast in a two-factor interaction. It
represents one of three orthogonal contrasts measuring the main effect of factorF .

Example 14.3.1 42 experiment in 4 blocks of size 4

Consider a 42 experiment with two factorsF andG to be run in 4 blocks of size 4. The
main effects are to be estimated, but the interaction is thought to be negligible. IfF andG
are represented by pseudofactorsF1, F2, G1, G2 having two levels each, we can consult
Table 13.28 hoping to find a suitable 24 experiment in 4 blocks of size 4.

In Table 13.28, we find a design that confoundsAC, ABD, andBCD. If we make the
correspondenceF1 � A, F2 � B, G1 � C, G2 � D, then the design confoundsF1G1,
F1F2G2, F2G1G2, all three of which belong to the interaction ofF andG. All main-effect
contrasts ofF andGare orthogonal to all interaction contrasts and can therefore be estimated
without adjustment for blocks. The design is shown in Table 14.8, with blocks corresponding
to combinations of values ofL1 � a1 + a3 (mod 2) andL2 � a1 + a2 + a4 (mod 2).

If we make a different correspondence, sayF1 � A, F2 � D, G1 � B, G2 � C, then
a slightly different design is obtained, this time confoundingF1G2, F1F2G1, andF2G1G2,
which again belong to the interaction ofF andG. There is no particular reason to prefer
one design over the other. However, a third correspondence,F1 � A, F2 � C, G1 � B,
G2 � D, would not be good, since it confoundsF1F2,F1G1G2,F2G1G2, and this includes
one degree of freedomF1F2 from the main effect ofF . ✷

Since two-level pseudofactors are being used, block sizes need only be a power of two,
not necessarily a power of four.



472 Chapter 14 Confounding in General Factorial Experiments

Table 14.8 42 experiment in 4 blocks of 4, confounding three
degrees of freedom (F1G1, F1F2G2, F2G1G2) from FG

Block L1, L2 Pseudofactors F1, F2, G1, G2 Factors F , G
I 0,0 0000 0101 1011 1110 00 11 23 32
II 0,1 0001 0100 1010 1111 01 10 22 33
III 1,0 0010 0111 1001 1100 02 13 21 30
IV 1,1 0011 0110 1000 1101 03 12 20 31

14.3.2 Confounding in 2p × 4q Experiments

Since factors with 4 levels can be written in terms of pseudofactors having 2 levels each, a
2p × 4q experiment can be written in terms of pseudofactors as a 2(p+2q) experiment, and
no new techniques are needed.

Example 14.3.2 23 × 4 experiment in 4 blocks of size 8

Suppose that a 23 ×4 experiment with factorsF ,G,H , andJ is to be run in 4 blocks of size
8. This could be designed using pseudofactors by selecting a design for a 25 experiment in 4
blocks from Table 13.28. A design is shown that confoundsABE,CDE, andABCD. If we
let the combination of levels ofA andC represent the levels of the 4-level factorJ1J2 � J

with the representation 00� 0, 01� 1, 10� 2, 11� 3, and let the levels ofB, D, andE
respectively represent the levels ofF , G, andH , we obtain the design of Table 14.9, that
confounds one contrast from each of the 3-factor interactionsFHJ , GHJ , andFGJ . All
main effects and 2-factor interactions can be estimated. There are 10 degrees of freedom
available for estimatingσ 2. These come from the two unconfounded degrees of freedom
from each ofFHJ , GHJ , andFGJ and the one degree of freedom fromFGH and the
three fromFGHJ . ✷

14.4 Designing Confounded Asymmetrical Experiments

A factorial experiment is called an asymmetric experiment when the treatment factors do
not all have the same number of levels. For example, 22 × 42, 25 × 3, 22 × 32 × 42, and
3×6 experiments are all asymmetric experiments. We have already discussed the design of
asymmetric 2p × 4q experiments in Section 14.3.2. We used pseudofactors for the factors
with four levels, thus allowing the symmetric designs for 2p+2q experiments to be used.

Table 14.9 23 × 4 experiment in 4 blocks of 8, using pseudofactors and
confounding one degree of freedom from interactions FGJ , GHJ ,
and FHJ

Blocks Treatment Combinations (Factors F , G, H , J )
I 0000 1002 0101 1103 0013 1011 0112 1110
II 0010 1012 0111 1113 0003 1001 0102 1100
III 0100 1102 0001 1003 0113 1110 0012 1010
IV 0110 1112 0011 1013 0103 1101 0002 1000
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We can use this idea only when the numbers of levels of all factors are powers of the same
prime number. For all of the other examples mentioned above, the use of pseudofactors
would transform the experiment into a 2p × 3q experiment. Consequently, we concentrate
on this type of situation in this section.

Since 2 and 3 are relatively prime, the only type of design that can be constructed using the
equation method will confound contrasts within the two symmetric parts of the experiment.
Consequently, to obtain a design for a 2p×3q experiment in 2s×3t blocks of size 2p−s×3q−t ,
we combine a design for a 2p experiment in 2s blocks with a design for a 3q experiment
in 3t blocks, using the idea of acrossed array as illustrated in the following example. The
total number of blocks created in the combined design is always the product of the numbers
of blocks in the original two designs. Likewise, the block sizes in the combined design are
products of the block sizes in the original two designs. The confounded contrasts in the
combined design are those confounded in the separate designs together with those indicated
by all possible products of contrast names.

Example 14.4.1 22 × 32 experiment in 6 blocks of size 6

Suppose that a 22 ×32 experiment is to be run in 6 blocks of size 6. We label the two 2-level
factors asA andB and the two 3-level factors asC andD. Since the design must confound
within the two symmetric parts of the experiment, one contrast fromA, B, or AB must
be confounded to divide the 22 treatment combinations into two blocks, and one pair of
contrasts fromC, D, orCD must be confounded to divide the 32 treatment combinations
into three blocks. The confounded contrasts in the combined design are those confounded
in the separate designs together with their products.

For example, we could combine the two designs in Table 14.10. The design labeledd1 is
for a 22 experiment in two blocks of size 2 confoundingAB, with treatment combinations
(TC) grouped into blocks determined by the two values ofL1 � a1+a2 (mod 2). The design
labeledd2 is for a 32 experiment in three blocks of size 3 confounding the pair of contrasts
(CD2; C2D), with blocks determined by the three values ofL2 � a3 + 2a4 (mod 3). The
combined array in Table 14.11 divides the treatment combinations into blocks according to
the six combinations of values ofL1 andL2.

A quick way to obtain the crossed array is as follows. Each of the 2 blocks ofd1 is
combined with each of the 3 blocks ofd2 to obtain the 2×3 blocks of the combined design.
For example, to combine the first blocks ofd1 andd2, each of the combinations 00 and 11
in block I1 of d1 is combined with each of the combinations 00, 11, and 22 in block I2 of
d2 to give the treatment combinations 0000, 1100, 0011, 1111, 0022, 1122 in the first block

Table 14.10 Design d1 for a 22 experiment confounding AB and design d2 for
a 32 experiment confounding (CD2; C 2D)

Design L1 Block TC Design L2 Block TC
d1 0 I1 00 11 d2 0 I2 00 11 22

1 II1 01 10 1 II2 02 10 21
2 III2 01 12 20
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Table 14.11 22 × 32 experiment in 6 blocks of 6, confounding AB, (CD2;
C 2D), (ABCD2; ABC 2D)

L1, L2 Blocks Treatment Combinations
0,0 I1 I2 I 0000 0011 0022 1100 1111 1122
0,1 I1 II2 II 0002 0010 0021 1102 1110 1121
0,2 I1 III2 III 0001 0012 0020 1101 1112 1120
1,0 II1 I2 IV 0100 0111 0122 1000 1011 1022
1,1 II1 II2 V 0102 0110 0121 1002 1010 1021
1,2 II1 III2 VI 0101 0112 0120 1001 1012 1020

of the combined design. The other blocks of the combined design are obtained in a similar
way.

Theb−1 � 5 confounded contrasts are those corresponding to the original confounding
schemes, namely the contrastAB and the pair of contrasts represented by (CD2; C2D),
together with the pair of contrasts represented by the products of these labels—namely
(ABCD2; ABC2D). ✷

Example 14.4.2 4 × 6 × 3 experiment in 6 blocks of size 12

Suppose that a 4× 6 × 3 experiment with factorsF , G, H is to be run in 6 blocks of
size 12. If we use the pseudofactor labelsF1, F2, G1, G2, andH , then the factorsF1, F2,
andG1 are in the 23 pseudofactor experiment andG2 andH are in the 32 pseudofactor
experiment. In the 23 experiment, we confoundF1F2G1 to give the two blocks of the design
d1 of Table 14.12, and in the 32 experiment, we confound the pair of contrasts (G2H ;G2

2H
2)

to give the two blocks of the designd2. Combining each treatment combination in design
d1 with those ind2 gives the design in Table 14.13. Theb − 1 � 5 confounded degrees of
freedom correspond to the original three confounded contrasts together with their products,
that is,F1F2G1, (G2H ; G2

2H
2), and (F1F2G1G2H ; F1F2G1G

2
2H

2).
Translating back to the original factors, we can see that one degree of freedom from the

interactionFG is confounded, together with two degrees of freedom from each ofGH and
FGH . This means that all contrasts from the three main effects and also from the interaction
FH can be estimated.

If we take the mapping of pseudofactor levels to factor levels as follows, then the design
of Table 14.13 is as shown in Table 14.14.

F F1 F2 G G1 G2

0 0 0 0 0 0
1 0 1 1 0 1
2 1 0 2 0 2
3 1 1 3 1 0

4 1 1
5 1 2

✷
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Table 14.12 Design d1 for a 23 experiment confounding F1F2G1 and design d2 for a
32 experiment confounding G2H ;G2

2H
2

Treatment Treatment
Design Block Combinations Design Block Combinations
d1 I1 000 011 101 110 d2 I2 00 12 21

II1 001 010 100 111 II2 01 10 22
III2 02 11 20

Table 14.13 3× 4× 6 experiment in 6 blocks of size 12, confounding one
degree of freedom from FG and two degrees of freedom from each
of GH and FGH

Block Pseudofactor Combinations
I1 I2 I 00000 00012 00021 01100 01112 01121

10100 10112 10121 11000 11012 11021
I1 II2 II 00001 00010 00022 01101 01110 01122

10101 10110 10122 11001 11010 11022
I1 III2 III 00002 00011 00020 01102 01111 01123

10102 10111 10120 11002 11011 11020
II1 I2 IV 00100 00112 00121 01000 01012 01021

10000 10012 10021 11100 11112 11121
II1 II2 V 00101 00110 00122 01001 01010 01022

10001 10010 10022 11101 11110 11122
II1 III2 VI 00102 00111 00120 01002 01011 01023

10002 10011 10020 11102 11111 11120

Table 14.14 3× 4× 6 experiment in 6 blocks of size 12, confounding
one degree of freedom from FG and two degrees of
freedom from each of GH and FGH .

Block Treatment Combinations
I 000 012 021 130 142 151 230 242 251 300 312 321
II 001 010 022 131 140 152 231 240 252 301 310 322
III 002 011 020 132 141 153 232 241 250 302 311 320
IV 030 042 051 100 112 121 200 212 221 330 342 351
V 031 040 052 101 110 122 201 210 222 331 340 352
VI 032 041 050 102 111 123 202 211 220 332 341 350

14.5 Using SAS Software

In this section we illustrate the use of the SAS software in analyzing a two-replicate fac-
torial experiment with partial confounding. This we do via an example. The analysis is
straightforward, as was illustrated in the previous chapter. Along with the correct analysis,
we also fit an incorrect model—one without block effects—to illustrate the effect of partial
confounding on the analysis.
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Table 14.15 Data for the dye experiment

Block 1 Block 2 Block 3
TC Volume TC Volume TC Volume
000 74 020 69 010 13
021 130 011 46 001 112
012 56 002 71 022 125
110 110 100 211 120 199
101 166 121 220 111 218
122 227 112 216 102 201
220 195 210 147 200 74
211 146 201 47 221 198
202 90 222 164 212 102

Block 4 Block 5 Block 6
TC Volume TC Volume TC Volume
000 85 010 12 020 115
011 52 021 107 001 148
022 70 002 75 012 47
120 164 100 184 110 145
101 288 111 204 121 142
112 239 122 265 102 216
210 104 220 183 200 75
221 165 201 65 211 124
202 60 212 70 222 114

Source: Davies, O. L. (1963) Reprinted by permission of Addison
Wesley Longman Ltd.

Example 14.5.1 Dye experiment, continued

The dye experiment was described in Section 14.2.4, where part of the data was analyzed
as though it came from a single-replicate confounded experiment. In fact, in the original
experiment, the design was a partially confounded design made up of two single-replicate 33

designs with different confounding schemes. The three factors of interest in the experiment
were the concentration of inorganic materialM in the free water in the reaction mixture
(factorA at three equally spaced levels), the volume of free water in the reaction mixture
(factorB at three equally spaced levels), and the concentration of inorganic materialN

in the free water in the reaction mixture (factorC at three equally spaced levels). The
observations were the volumes of dyestuff resulting from the chemical reactions and are
shown in Table 14.15 together with the design (prior to randomization). The contrasts
(AB2C2; A2BC) are confounded in the first set of three blocks and estimable in the second
set, whereas the contrasts (ABC2;A2B2C) are confounded in the second set of three blocks
and estimable in the first set.

Since no contrast is completely confounded, no terms need be omitted from the model.
Table 14.16 shows the SAS input statements for analyzing this experiment with partial
confounding. The statements are exactly as they would be for a replicated experiment with
three factors and no confounding. A second run ofPROC GLM with no block parameter in
the model is included for illustration purposes to show the effect of the partial confounding.
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Table 14.16 SAS program for the dye experiment

******** to input the data;
DATA DYE;
INPUT BLK A B C Y;
LINES;
1 0 0 0 74
1 0 2 1 130
1 0 1 2 56
1 1 1 0 110
: : : : :
6 2 2 2 114

*** analysis of variance -- correct, with block effect;
PROC GLM;
CLASSES BLK A B C ;
MODEL Y = BLK A B C A*B A*C B*C A*B*C ;

*** analysis of variance -- without block effect, for comparison;
PROC GLM;
CLASSES A B C;
MODEL Y = A B C A*B A*C B*C A*B*C;

All contrasts from the main-effects and 2-factor interactions are orthogonal to the block
contrasts and can be estimated without adjustment for blocks. Consequently, the sums of
squares for these terms are the same whether or not the block parameter is in the model. This
can be verified by comparing the Type III sums of squares for the two runs ofPROC GLM
shown in Tables 14.17 and 14.18. Inclusion of the block parameter in the model changes the
sum of squares for the three-factor interaction, since the three-factor interaction is partially
confounded with blocks. The degrees of freedom for the three-factor interaction remain at
8, as all 8 orthogonal contrasts can be estimated from some portion of the data.

The analysis of variance table (Table 14.17) providesno evidence that certain contrasts are
partially confounded. However, partially confounded contrasts are estimated with larger vari-
ance due to the adjustment for blocks. As a result, for the corresponding effects, confidence
intervals are wider and tests are less powerful. ✷

Exercises

1. Suggest a confounding scheme for a 35 experiment in 9 blocks of size 27 if all 2-factor
interactions and the 3-factor interactionABE are to estimated.

2. Suggest a confounding scheme for a 35 experiment in 27 blocks of size 9 if all 2-factor
interactions and the 3-factor interactionABE are to estimated.
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Table 14.17 Correct analysis of variance for the dye experiment

The SAS System
General Linear Models Procedure
Dependent Variable: Y

Source DF Sum of Squares Mean Square F Value Pr > F
Model 31 221034.796296 7130.154719 8.25 0.0001
Error 22 19010.851852 864.129630
Corrected Total 53 240045.648148

Source DF Type III SS Mean Square F Value Pr > F
BLK 5 2027.648148 405.529630 0.47 0.7950
A 2 140999.703704 70499.851852 81.58 0.0001
B 2 19447.814815 9723.907408 11.25 0.0004
C 2 4934.481481 2467.240741 2.86 0.0790
A*B 4 27922.629630 6980.657407 8.08 0.0004
A*C 4 13043.629630 3260.907407 3.77 0.0175
B*C 4 2913.185185 728.296296 0.84 0.5130
A*B*C 8 10794.814815 1349.351852 1.56 0.1935

Table 14.18 Incorrect analysis of variance, omitting the blocking factor to show the effect of
partial confounding

The SAS System
General Linear Models Procedure
Dependent Variable: Y

Source DF Sum of Squares Mean Square F Value Pr > F
Model 26 219007.148148 8423.351852 10.81 0.0001
Error 27 21038.500000 779.203704
Corrected Total 53 240045.648148

Source DF Type III SS Mean Square F Value Pr > F
A 2 140999.703704 70499.851852 90.48 0.0001
B 2 19447.814815 9723.907407 12.48 0.0001
C 2 4934.481481 2467.240741 3.17 0.0582
A*B 4 27922.629630 6980.657407 8.96 0.0001
A*C 4 13043.629630 3260.907407 4.18 0.0092
B*C 4 2913.185185 728.296296 0.93 0.4588
A*B*C 8 9745.703704 1218.212963 1.56 0.1826

3. Dye experiment, continued
(a) For the dye experiment of Section 14.2.4, check that the variances of the errors

appear to be equal for the different levels of the three factors. Check also that the
assumption of normality of the error variables is reasonable.
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(b) Calculate the normalized contrast estimate for LinearA × LinearB, using the
method outlined in Section 14.2.4.

(c) Compute the sum of squares for testing the hypothesis that the LinearA × Linear
B contrast is negligible, using the method outlined in Section 14.2.4.

(d) Test the hypothesis that the LinearA × LinearB contrast is negligible, using an
individual significance level of 0.01.

(e) Draw an interaction plot forAC and verify that the interaction appears to be
negligible.

(f) Assuming that the contrasts were preplanned, calculate confidence intervals for the
pairwise differences in yields due to the three different levels of each ofA, B and
C. State your overall confidence level.

4. Dye experiment, continued
The experimenters who ran the dye experiment were interested in the linear and
quadratic components of the main effects and interactions. Analyze the experiment
accordingly. What information have you gathered about the levels of the factors if high
yield is of importance?

5. A set of hypothetical data is given in Table 14.19 for a partially confounded 32 experi-
ment in 6 blocks of 3. The design is made up of two single-replicate designs: The first
confounds the contrasts (AB; A2B2) from the interaction, while the second confounds
the contrasts (AB2; A2B).
(a) By hand, write out the estimates of the linear and quadratic contrasts for the main

effects and their associated variances.

(b) Using the contrast estimates in part (a), calculate the sums of squares forA andB.

(c) Calculate the least squares estimates of a pair of orthogonal contrasts for (AB2;
A2B) from the first replicate and the estimates of a pair of orthogonal contrasts for
(AB; A2B2) from the second replicate. Using these contrast estimates, calculate
the sum of squares for theAB interaction (adjusted for blocks).

(d) Prepare an analysis of variance table. Test any hypotheses that you think are of
interest and state your conclusions about the two factors and their interaction.

(e) Check your analysis in part (d) using a computer program.

Table 14.19 Partially confounded 32 experiment in b � 6 blocks of k � 3.
Hypothetical data are shown in parentheses with corresponding
treatment combinations.

Replicate Block Treatment Combinations (Response)
1 I 00 (53) 12 (59) 21 (80)

Confounds (AB; A2B2) II 01 (66) 10 (71) 22 (78)
III 02 (69) 11 (91) 20 (92)

2 IV 00 (46) 11 (62) 22 (58)
Confounds (AB2; A2B) V 01 (65) 12 (61) 20 (76)

VI 02 (34) 10 (50) 21 (66)
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Table 14.20 Data for the sugar beet experiment

Block I Block II Block III
Levels of Levels of Levels of
N, P, K Yield N, P, K Yield N, P, K Yield
211 2575 121 2599 202 2189
120 2472 220 2517 020 2093
200 2411 022 2411 210 2354
002 2403 110 2252 111 2268
010 2220 212 2381 001 1926
021 2252 201 2067 122 2152
101 2295 102 2021 221 2349
112 2362 011 1953 012 2025
222 2434 000 1989 100 2106

Source: Yates, F. (1935). Copyright © 1935 Blackwell Publishers. Reprinted
with permission. (Reprinted inExperimental Design (1970), Charles Griffin and
Company, Ltd., London. Copyright 1970 Edward Arnold/Hodder & Stoughton
Educational. Reprinted with permission.)

6. Sugar beet experiment
F. Yates, in a 1935 paper published in a supplement to theJournal of the Royal Statistical
Society, describes an agricultural experiment on the yield of sugar beet. The three factors
of interest were three standard fertilizers, nitrogen, phosphate, and potassium (factors
N , P , andK) each at three equally spaced levels. The experimental field was divided
into b � 3 blocks and each block subdivided intok � 9 0.1 acre plots. The experiment
was designed so that the contrasts (NP 2K; N2PK2) were confounded with blocks.
The randomized design and yields of sugar beet are shown in Table 14.20.

(a) Prepare an analysis of variance table for the data, assuming that the three-factor
interaction is negligible.

(b) Investigate the linear and quadratic trends of the main effects and the two factor
interactions. Yates assumed in his analysis that the only important contrast for each
two factor interaction was the linear×linear contrast. Is this assumption supported
by your analysis?

(c) Draw any plots that help to illustrate the important features of the analysis.

7. Example 14.3.2, continued
In Example 14.3.2, we showed one way of associating design factorsF , G, H , andJ
of a 23 × 4 factorial experiment to the 2-level pseudofactorsA–E of a specific design
from Table 13.28. There are 10 different ways to make this association (since there are
10 ways of selecting two ofA–E to representJ1 andJ2).

(a) Investigate the confounding schemes for each of the ten possible associations.
Specifically, for each association, determine the number of contrasts confounded
for each effect, and compare the results.

(b) State under which circumstances you would recommend each design.
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8. Consider a 22 × 32 design confoundingAB, (CD2; C2D), and (ABCD2; ABC2D).

(a) Give the design—namely, list the treatment combinations block by block.

(b) Describe how to randomize the design.

(c) Give a set of five orthogonal treatment contrasts that are confounded with blocks.

9. Suggest a confounding scheme for a 23 × 33 experiment in 12 blocks of size 18. Under
what circumstances would the design be useful? Write out two blocks of the design.

10. Suggest a confounding scheme for a 22 × 32 × 4 experiment in 12 blocks of size 12.
Under what circumstances would the design be useful? Write out two blocks of the
design.

11. Suggest a confounding scheme for a 22 × 32 × 6 experiment in 9 blocks of size 24.
Under what circumstances would the design be useful? Explain how to find the blocks
of the design.

12. Suggest a confounding scheme for a 22 × 32 × 6 experiment in 12 blocks of size 18.
Under what circumstances would the design be useful? Write out two blocks of the
design.

Table 14.21 Confounding schemes for 3p experiments in b � 3s blocks of
size k � 3p−s . For each design, s independent generators are
underlined, and s corresponding equations are given. To obtain
Block I of a design, list all k combinations of the first ai ’s
shown, then use the equations modulo 3 to complete each
treatment combination.

3p b k Confounded Contrasts Block I
32 3 3 (AB; A2B2) a1

a2 � 2a1

33 3 9 (ABC 2; A2B2C ) a1, a2
a3 � a1 + a2

33 9 3 (AB2; A2B), (AC ; A2C 2), a1
(BC ; B2C 2), (ABC 2; A2B2C ) a2 � a1

a3 � 2a1

34 3 27 (ABCD2; A2B2C 2D) a1, a2, a3
a4 � a1 + a2 + a3

34 9 9 (AB2C ; A2BC 2), (ABD; A2B2D2), a1, a2
(AC 2D2; A2CD), (BCD2; B2C 2D) a3 � 2a1 + a2

a4 � 2a1 + 2a2

35 9 27 (ABCD2; A2B2C 2D), (AB2E 2; A2BE ) a1, a2, a3
(AC 2DE ; A2CD2E 2), a4 � a1 + a2 + a3
(BC 2DE 2; B2CD2E ) a5 � a1 + 2a2
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15.1 Introduction

Fractional factorial experiments are used frequently in industry, especially in various stages
of product development and in process and quality improvement. In afractional factorial
experiment , only a fraction of the treatment combinations are observed. This has the advan-
tage of saving time and money in running the experiment, but has the disadvantage that each
main-effect and interaction contrast will be confounded with one or more other main-effect
and interaction contrasts and cannot be estimated separately. Two factorial contrasts that are
confounded are referred to as beingaliased. The term “confounded” is generally reserved
for the indistinguishability of a treatment contrast and a block contrast.

We look at two methods of obtaining fractional factorial designs that can be analyzed
in a straightforward manner. The first method, described in Sections 15.2–15.4, is to select
one block from one of the single-replicate designs in Chapter 13. Blocked fractions are
discussed in Section 15.5. The second method, described in Section 15.6, which is popular
in industry, uses the concept of anorthogonal array. Throughout this chapter, we revisit
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some of the ideas introduced in Section 7.6 to reduce the sensitivity to noise variables of a
product or manufacturing process.

The use of SAS in analyzing fractional factorial experiments is explored in Section 15.8.

15.2 Fractions from Block Designs; Factors with 2 Levels

15.2.1 Half-Fractions of 2p Experiments; 2p−1 Experiments

We start with a very small example to illustrate the ideas. Suppose that an experiment is to be
run with three treatment factorsA,B, andC, each having two levels. There are no blocking
factors, so the experiment will be run as a completely randomized design. However, only
four observations can be taken.

We can obtain a design with just 4 of the 8 total treatment combinations by selecting
at random one of the blocks of a single-replicate design with two blocks of size 4. For
illustration, consider the block design that confounds theABC contrast, given in Table 15.1.
Suppose we select the second block, which is (001, 010, 100, 111) and is defined by the
equation

a1 + a2 + a3 � 1 (mod 2).

The four treatment combinations constitute a1
2-fraction or 1

2-replicate of a 23 experiment,
called a 23−1 design, and theABC contrast is called thedefining contrast for the fraction.
We write

I � ABC,

which is called thedefining relation for the fraction.
With only n � 4 observations, there are onlyn − 1 � 3 total degrees of freedom. This

means that it is not possible to estimate each of the six remaining contrasts (A, B, C, AB,
AC,BC) even if no estimate ofσ 2 is required. If we look at the contrasts for a 23 experiment
(shown in Table 13.2, page 425) and cross out the rows corresponding to the unobserved
treatment combinations, we are left with the contrast coefficients in Table 15.2.

Table 15.1 23 experiment in 2 blocks of 4,
confounding ABC

Block I 000 011 101 110
Block II 001 010 100 111

Table 15.2 Contrasts for the 1
2–fraction (001, 010, 100, 111)

of a 23 experiment

A B C AB AC BC ABC

001 −1 −1 1 1 −1 −1 1
010 −1 1 −1 −1 1 −1 1
100 1 −1 −1 −1 −1 1 1
111 1 1 1 1 1 1 1
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Table 15.2 shows several interesting features. First, the column corresponding toABC

is not a contrast. The coefficients are the coefficients that one would use in obtaining the
sum of the four observations, which is a multiple of the mean. So,ABC is confounded
with the mean, and theABC contrast cannot be measured. The notationI � ABC of the
defining relation indicates the equivalence ofABC and the sum of the observations, since
I corresponds to a list of coefficients all equal to+1.

Secondly, we see from Table 15.2 that the contrast coefficients forAandBC are identical,
the contrasts forB andAC are identical, and the contrasts forC andAB are identical. The
main effect ofA and the interactionBC are said to bealiased, as areB andAC, andC and
AB. We write

A � BC, B � AC, C � AB.

Thus, there are three estimable contrasts in the fraction, but each measures more than one
factorial effect. For example, using the cell-means model

Yijk � µ+ τijk + εijk ,

the “A � BC” contrast with divisorv/2 (wherev is the number of treatment combinations
in the fraction) is obtained by multiplying theτijk ’s by the coefficients in Table 15.2, that is,

1
2[−τ001 − τ010 + τ100 + τ111].

This is an estimable contrast with least squares estimate

1
2[−y001 − y010 + y100 + y111].

This “A � BC” contrast is equal to

1

4
[−τ000 − τ001 − τ010 − τ011 + τ100 + τ101 + τ110 + τ111]

+ 1

4
[+τ000 − τ001 − τ010 + τ011 + τ100 − τ101 − τ110 + τ111]

� [−τ 0.. + τ 1..] + 1

2
[τ .00 − τ .01 − τ .10 + τ .11] .

Thus, what is being estimated is the sum of theA contrast and theBC contrast, and we
could refer to the “A � BC” contrast as theA + BC contrast. However, for simplicity,
we often refer to it as theA contrast, remembering the role ofBC from the list of aliased
contrasts.

If in a hypothesis test or normal probability plot the main effect of factorA is nonsignifi-
cant, then there are two possibilities. One is that neitherA nor its alias,BC, is significantly
different from zero. The alternative is that the two contrasts have equal and opposite effects
and cancel each other out. Since the former is much more likely, this is the assumption that
is usually made. If the main effect ofA appears to be significant, then it is not clear whether
the observed effect is due to the main effect ofA or to theBC interaction or the combination
of both effects. Because of the aliasing problem, fractional factorial experiments are most
often run asscreening experiments. The word “screening” means that the experimenter is
trying to determine which of a large number of factors affect the response.
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Table 15.3 Aliasing
scheme for the
1
2 -fraction (001,
010, 100, 111)
of a 23

experiment

I � ABC

A � BC

B � AC

C � AB

The list of aliased contrasts is called thealiasing scheme for the design. We generally
write this as in Table 15.3, with the first row showing the defining relation and the following
rows listing the aliased contrasts. The number of rows in the aliasing scheme is the same as
the number of observations in the design.

It can be verified that if Block I of the single replicate design in Table 15.1 were to be
used as the12-fraction instead of Block II, exactly the same aliasing scheme would result,
except that in each pair of aliased contrasts, the coefficients would differ from each other in
sign. The estimableA contrast in the three-way model is of the form

1

2
[−τ000 − τ011 + τ101 + τ110]

� 1

4
[−τ000 − τ001 − τ010 − τ011 + τ100 + τ101 + τ110 + τ111]

− 1

4
[+τ000 − τ001 − τ010 + τ011 + τ100 − τ101 − τ110 + τ111]

� [−τ 0.. + τ 1..] − 1

2
[τ .00 − τ .01 − τ .10 + τ .11] ,

which we can refer to as theA − BC contrast. This difference in signs can be highlighted
by including the information in the aliasing scheme, that is,I � −ABC, A � −BC,
B � −AC, andC � −AB. In order to disentangle the effects ofA andBC, both blocks of
the design would need to be run.

The observant reader will have noticed that the entire aliasing scheme in Table 15.3 can
be deduced from the defining relation without writing out the contrasts. Using the contrast
names, we can multiply the defining relation byA to obtain

A× I � A× ABC .

TreatingI as a multiplicative identity so thatA× I � A, and reducing superscripts modulo
2 so thatA2BC � BC, we obtainA � BC. The other two rows of the scheme can be
obtained in a similar fashion. From now on, we will avoid writing out the contrasts and use
the contrast names and the defining relation to obtain the aliasing scheme.

Half-fractions of 2p experiments are called 2p−1 experiments, since they have1
22p treat-

ment combinations. They are almost always obtained by selecting one block from a block
design that confounds the highest-order interaction. Thus forp � 4, for example, the
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fraction satisfies either

a1 + a2 + a3 + a4 � 0 (mod 2)

and has defining relationI � ABCD, or it satisfies

a1 + a2 + a3 + a4 � 1 (mod 2)

and has defining relationI � −ABCD. Forp � 5, the fraction satisfies either

a1 + a2 + a3 + a4 + a5 � 0 (mod 2)

and has defining relationI � −ABCDE, or it satisfies

a1 + a2 + a3 + a4 + a5 � 1 (mod 2)

and has defining relationI � ABCDE. Notice that the sign of the contrast in the defining
relation is positive if the equation contains an even number ofai ’s and also is set equal to
0 (mod 2). It is also positive if the equation contains an odd number ofai ’s and also is set
equal to 1 (mod 2). Otherwise, the sign is negative. This always holds, even for the more
complicated fractions of 2p experiments discussed in the following sections.

For most purposes, we do not need to know whether the contrasts listed in the defining
relation differ in sign. Consequently, unless they are needed, we shall usually ignore the
signs in the aliasing scheme.

15.2.2 Resolution and Notation

The defining relation is a list of contrasts such asAB, ABC, etc. that are aliased with the
mean. The contrasts in the defining relation are calledwords. Theresolution of a design is
the number of letters in the shortest word in the defining relation.

The design in Table 15.3 is a Resolution III design, since the only word in the defining
relation isABC, which has three letters. In all Resolution III designs, main-effect contrasts
are aliased with 2-factor interaction contrasts. In a Resolution IV design, the defining relation
contains words with 4 or more letters. Main effects then are aliased with 3-factor interactions
and 2-factor interactions aliased with other 2-factor interactions. In a Resolution V design,
such as that in Table 15.5, main effects are aliased with 4-factor interactions, and 2-factor
interactions are aliased with 3-factor interactions. This is summarized in Table 15.4.

Since the main-effects and low-order interactions are usually the most important factorial
effects to be measured, it is generally beneficial to select a design with as high resolution as
can be found. The designs in Table 15.55 (page 542) all satisfy this requirement.

A 1/2q fraction of a 2p experiment is often referred to as a 2p−q fractional factorial
experiment. The resolution number is sometimes added as a subscript. A resolution III
design, for example, can be written as a 2p−q

III design.

15.2.3 A Real Experiment—Soup Experiment

L. B. Hare, Manager of Statistical Services at Thomas J. Lipton, Inc., described an experi-
ment on a dry soup mix filling process in the 1988 issue of theJournal of Quality Technology.
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Table 15.4 Resolution numbers of fractional factorial experiments

Resolution Main effects aliased with: 2-factor interactions aliased with:
III 2-factor interactions or higher Main effects and interactions
IV 3-factor interactions or higher 2-factor interactions or higher
V 4-factor interactions or higher 3-factor interactions or higher

Table 15.5 Design, data (measure of weight variability), and
main-effect contrasts for the soup experiment.
Defining relation I � ABCDE .

Levels of Contrasts
A, B, C,D, E. yijklm A B C D E

01011 0.78 −1 1 −1 1 1
11111 1.10 1 1 1 1 1
10000 1.70 1 −1 −1 −1 −1
11100 1.28 1 1 1 −1 −1
00001 0.97 −1 −1 −1 −1 1
01101 1.47 −1 1 1 −1 1
00010 1.85 −1 −1 −1 1 −1
10110 2.10 1 −1 1 1 −1
00111 0.76 −1 −1 1 1 1
10011 0.62 1 −1 −1 1 1
01110 1.09 −1 1 1 1 −1
01000 1.13 −1 1 −1 −1 −1
11001 1.25 1 1 −1 −1 1
10101 0.98 1 −1 1 −1 1
11010 1.36 1 1 −1 1 −1
00100 1.18 −1 −1 1 −1 −1

Source: Hare, L. B. (1988). Copyright © 1997 American Society
for Quality. Reprinted with Permission.

The company was concerned about keeping the weight of the mix as uniform as possible.
They found that most of the variability was due to the uneven flow of the “intermix,” which
is a mixture of vegetable oil, salt, and other ingredients, during the mixing process. The
researchers prepared a list of five treatment factors that they thought might be influential in
controlling the mixing process. The factors were:

A: the number of mixer ports through which the vegetable oil was added (two levels, 1
and 3);

B: temperature of mixer jacket (two levels; ambient temperature, presence of cooling
water);

C: mixing time (two levels; 60 seconds and 80 seconds);

D: batch weight (two levels; 1500 lb and 2000 lb);

E: delay between mixing and packaging (two levels; 1 day and 7 days).
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This was a screening experiment, since the researchers had little idea of which factors
were going to turn out to be important in affecting the variability of the soup mix weight.
They decided to run a12–fraction to investigate the five factors, and follow up the experiment
with a more detailed study of the important factors later. They chose a Resolution V design
with defining relationI � ABCDE, which allowed them to include all main effects and
first-order interactions in the model. The corresponding block design, which confounds
ABCDE, is listed in Table 13.28 (page 460). The experimenters chose the second block,
as it contained the treatment combination that represented the normal operating conditions
prior to the experiment. These were 00010, that is, one port, presence of cooling water, 60
seconds mix, 2000 lb batch weight, and one day delay before packaging.

The experiment was designed so that it could be run with very little disruption to the daily
production routine. Sets of 5 samples were taken every 15 minutes during the production
run for each treatment combination and weighed. The response variable was a measure of
variation based on these weights (see the original article for the description).

The randomized design and the responses obtained are shown in Table 15.5. Also shown
in the table are the contrasts for the main effects. As in Chapter 13, the contrast has coefficient
−1 when the corresponding factor is at its low level and coefficient+1 when it is at its high
level. The contrasts for the interactions are the products of the main-effect contrasts.

The experimenters assumed that all 3-, 4-, and 5-factor interactions would be negligible
and included all the main effects and 2-factor interactions in the model. Since there were
16− 1 � 15 degrees of freedom in total and 15 contrasts to estimate (5 main effects and
10 two-factor interactions), there were no degrees of freedom available to estimate the error
variability. The experimenters calculated all the contrast estimates and prepared a normal
probability plot (Section 7.5) to find the important contrasts. For example, the contrast
estimate for the main effect ofE is

Ê � (0.78+ 1.10− 1.70− 1.28+ 0.97+ 1.47− 1.85− 2.10+ 0.76

+ 0.62− 1.09− 1.13+ 1.25+ 0.98− 1.36− 1.18)/8 � −0.47.

The factorial contrast estimates are shown in Table 15.6, and the normal probability plot
is shown in Figure 15.1. It can be seen that the most important contrasts appear to beBE,
DE, andE.

Interaction plots of the two interactionsBE andDE are shown in Figures 15.2(a)
and 15.2(b). The response is a measure of weight variability, and the experimenters wanted
to reduce this as much as possible. The estimate of theE contrast is negative, indicating
that the low level ofE (one-day delay before packaging) is more variable that the high
level (seven-day delay). The two interaction plots also indicate that a seven-day delay be-
fore packaging would be beneficial using the ambient temperature and the large batch size

Table 15.6 Contrast estimates (with divisor v/2 � 8) for the soup experiment

Contrasts A B C D E AB AC

Estimates 0.145 −0.088 0.038 −0.038 −0.470 −0.015 0.095

Contrasts AD AE BC BD BE CD CE DE

Estimates 0.030 −0.153 0.068 −0.163 0.405 0.073 0.135 −0.315
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Figure 15.1
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(2000 lb). The interaction plots also indicate that if a seven-day delay is not feasible, then
it is better to use cooling water and a small batch size. The production management of the
company agreed to a seven-day delay, and the researchers decided to investigate these three
factors (B,D, andE) in more detail in a followup experiment, together with factorC, whose
interaction withE was the next largest effect.

15.2.4 Quarter-Fractions of 2p Experiments; 2p−2 Experiments

We can obtain a1
4–fraction of a 2p experiment by selecting at random one of the blocks

from a single-replicate confounded design with 4 blocks of size 2p−2. The defining relation
is then the set of three contrasts that were confounded to obtain the block design.

For example, suppose a 25 experiment was to be run as a completely randomized design,
but only eight observations could be taken. Table 13.28 (page 460) lists a design in 4 blocks
of 8 that confounds the three interactionsABD,CDE, andABCE. Suppose that we select
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one block for the1
4–fraction, specifically the block that satisfies

a1 + a2 + a4 � 1 (mod 2) and a3 + a4 + a5 � 0 (mod 2).

The treatment combinations in this fraction are

00011 00110 01000 01101 10000 10101 11011 11110,

and the defining relation for the fraction is

I � ABD � CDE � ABCE .

(If we work out the contrast coefficients for this fraction, we find that the coefficients
for ABD are all +1, while those forCDE andABCE are all −1. Thus, if the signs
of the contrasts were taken into account, the defining relation would beI � ABD �
−CDE � −ABCE.) The other seven rows of the aliasing scheme are obtained by mul-
tiplying the defining relation by each of the contrast names in turn. The resulting aliasing
scheme (ignoring signs) is shown in Table 15.7.

Only one factorial effect from each row of the aliasing scheme (and none from the defining
relation) can be entered into the model for analyzing the experiment. So, for example, we
could include all main effects and the two 2-factor interactionsAC andAE in the model.

If theD effect, for example, is insignificant, the interactionsAB,CE, andABCDE are
also regarded as insignificant. But if the analysis shows thatD has a significant effect on
the response, it is unknown whether the effect is due to the main effect ofD, or toAB, or to
CE, or toABCDE (although this latter effect is the least likely), or to some combination
of all four. The design is useful for screening when it is believed that most main effects and
interactions will be negligible but one or two factors will possibly have an important effect
on the response.

This design is clearly ideal if all of the interactions are negligible, or if all interactions
except exactly one ofAC, BE, AE, andBC are thought to be negligible. In the first case,
two degrees of freedom are available to estimateσ 2. In the second case, all of the main
effects and the one interaction can be measured, and one degree of freedom remains to
estimateσ 2. If all main effects and, say, theCD interaction were required to be estimated,
then a different block design should be chosen. For example, a suitable design could be
obtained by interchangingA andD in the list of confounded contrasts. In other words, the

Table 15.7 Aliasing scheme (ignoring signs) for a
1
4–fraction of a 2

5 experiment with the
defining relation I � ABD � CDE � ABCE

I � ABD � CDE � ABCE

A � BD � ACDE � BCE

B � AD � BCDE � ACE

C � ABCD � DE � ABE

D � AB � CE � ABCDE

E � ABDE � CD � ABC

AC � BCD � ADE � BE

AE � BDE � ACD � BC
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design obtained by confoundingABD, ACE, andBCDE will give a 1
4–fraction in which

CD is not aliased with main effects.
A list of useful 1

4–fractions is given in Table 15.55 at the end of the chapter.

Example 15.2.1 Sludge experiment

S. R. Schmidt and R. G. Launsby, in their textbookUnderstanding Industrial Designed
Experiments, include an article by J. Brickell and K. Knox on the operation of a biologi-
cal treatment system (known as an activated sludge system) used in wastewater treatment
plants. The details of the system are given in the article. The response, Y, is the removal
of “biochemical oxygen demand,” which is related to the quality of water. The water qual-
ity increases as more biochemical oxygen demand is removed, so the response Y is to be
maximized. The experiment described in the article investigates the effect of five factors on
Y:

A: Reactor biomass concentration (3000 and 6000 mg/l),

B: Clarifier biomass concentration (8000 and 12000 mg/l),

C: Waste sludge flow rate (78.5 and 940 m3/d),

D: Biological growth rate constant (0.040 and 0.075 d−1)

E: Fraction of food to biomass (0.4 and 0.8 kg/kg).

Since this experiment was an illustration of what could be run in a water treatment plant,
it was necessary to keep the number of observations small, and a1

4–fraction was selected
with defining relationI � ABD � CDE � ABCE. This gives an aliasing scheme that is
similar to that shown in Table 15.7 but withD andE interchanged.

The experimenters selected the fraction whose treatment combinations, written as
a1a2a3a4a5, satisfied

a1 + a2 + a4 � 1 (mod 2)

a3 + a4 + a5 � 1 (mod 2)

The design, prior to randomization, is shown in Table 15.8 together with the responses
obtained.

The experimenters included all main effects and the 2–factor interactionsAC andBC
in their model. The contrast estimates (with divisorsv/2 � 4) are listed in Table 15.9, and
a normal probability plot of the seven contrast estimates is shown in Figure 15.3. There are
too few contrast estimates to be able to draw good conclusions from the normal probability
plot. Nevertheless, the most important effect appears to be the main effect ofC and, perhaps
to a lesser extent,E. Now,C is aliased withDE, andE is aliased withCD. A followup
experiment investigating the effects ofC, D, andE would certainly be advisable.

If we try to draw conclusions from the results of the present experiment, and if we
are willing to assume that the main effects are the dominant effects in any alias sets, it
would seem advisable to setC and possiblyB at their high levels in order to maximize the
response, and to setE and possiblyD at their low levels. On the other hand, if we assume
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Table 15.8 1
4–fraction of a 2

5 experiment and data from the sludge
experiment.

Levels of Contrasts
A, B, C,D, E yijklm A B C D E AC BC

00010 195 −1 −1 −1 1 −1 1 1
00111 496 −1 −1 1 1 1 −1 −1
01001 87 −1 1 −1 −1 1 1 −1
01100 1371 −1 1 1 −1 −1 −1 1
10001 102 1 −1 −1 −1 1 −1 1
10100 1001 1 −1 1 −1 −1 1 −1
11010 354 1 1 −1 1 −1 −1 −1
11111 775 1 1 1 1 1 1 1

Source: Brickell, J. and Knox, K. (1992). Copyright © 1992 Air Academy Press.
Reprinted with permission.

Table 15.9 Contrast estimates (with divisor v/2 � 4) for the sludge experiment

Contrast A B C D E AC BC

Estimate 20.75 198.25 726.25 −185.25 −365.25 −66.25 126.25

Figure 15.3
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that the interactions in the alias sets might be important, we would examine theDE and
CD interaction plots (see Figure 15.4). TheDE plot suggests thatD andE should both
be at their low levels, and theCD plot suggests thatC should be at its high level andD at
its low level. Since the recommendations from the interaction plots agree with those from
the main effect comparisons, we would feel comfortable in recommending that the process
be set at the cheaper of 01100 or 11100. Notice that the first of these was included among
the experimental runs (and happened to give rise to the largest observed yield), whereas the
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Figure 15.4
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second was not included. In either case, it would be advisable to rerun the experiment at the
chosen setting to confirm the results.

The authors of the article point out that other considerations, such as cost, come into
play before any system can be changed. In an actual water treatment plant, it would be
expensive to change the levels ofD (biological growth rate constant) andE (fraction of
food to biomass) from their current settings. Also, increasing the waste sludge flow rate (C)
increases cost. A followup experiment could not only verify that the above recommendations
were correct, but also could examine intermediate values ofC. ✷

15.2.5 Smaller Fractions of 2p Experiments

Smaller fractions of a 2p experiment can be obtained in exactly the same way as the1
2–

fractions and1
4–fractions of the preceding subsections. For a 1/2s fraction, the first step is to

find a design with 2s blocks of size 2p−s that confounds negligible interactions. One block
is selected at random. The aliasing scheme is then checked to ensure that as few important
contrasts as possible are aliased with each other. If the aliasing scheme is not suitable, then
an attempt is made to obtain a better design by interchanging letters in the confounding
scheme, or by investigating different confounding schemes.

A list of useful 1
8–fractions and1

16–fractions of 2p experiments is given in Table 15.55
at the end of the chapter.

Example 15.2.2 Welding experiment

An experiment was discussed by A. K. Shahani inThe Statistician in 1970 which involved a
(1/1024) fraction of a 221 experiment (that is, a 221−16 experiment). The experiment, which
required onlyv � 25 � 32 observations, was designed by Dr. Shahani for Bristol Aerojet
Ltd and concerned the “pull strength” of welds resulting from a certain welding process.
The company wished to discover which settings of the 21 factors would give welds with
pull strength exceeding a given size. Of the 21 factors, only a few were expected to have
important effects on the pull strength, and this allowed the use of such a highly fractionated
design.
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All 21 factors were easy to manipulate, and the engineers selected two reasonable settings
for each factor (coded 0 and 1). For some of the factors, the two levels chosen were at equal
distances on each side of the current operating conditions. For others, such as factorsA,D,
andW , the low levels were at the current operating conditions and could not be lowered
further. If we label the factorsA, B, . . ., W omitting I andO, the contrasts selected for
confounding were as follows:

ABV ACW ADT AES

BCU ABEN ACDQ ACEP

ADEM BCER BDEL CDEK

ABCEH ABDEJ ACDEG BCDEF

The defining relation consists of these 16 contrasts together with all their possible prod-
ucts. Since the shortest word in the defining relation is of length 3, the design is Resolution
III. Although each main effect is aliased with several two-factor interactions, the main effects
are not aliased with each other.

The 32 treatment combinations and their responses are shown in Table 15.10. (We have
corrected typing errors that occurred in the original paper in the two treatment combinations
in the second row of our table). The responses are in coded units, details of which were not
given in the original paper.

This experiment has too many factors to be able to analyze it easily by hand. The main-
effect contrast estimates (with divisorsv/2 � 16), obtained from the SAS computer package,
are shown in Table 15.11. Under the current operating conditions, it was known that the
error standard deviationσ was about 60 units. The experimenters were willing to assume
that this would not change appreciably under different operating conditions and therefore

Table 15.10 Treatment combinations and responses for the 221−16 welding experiment

Treatment Combination Response Treatment Combination Response
000001111000000011111 430 100001000001111000100 422
010000100010100111001 336 110000011011011100010 380
001000001100011111010 438 101000110101100100001 96
011001010110111011100 394 111001101111000000111 319
000100010111001010111 334 100100101110110001100 202
010101001101101110001 322 110101110100010101010 238
001101100011010110010 184 101101011010101101001 188
011100111001110010100 348 111100000000001001111 -234
000010000111110101111 384 100010111110001110100 338
010011011101010001001 404 110011100100101010010 370
001011110011101001010 542 101011001010010010001 114
011010101001001101100 316 111010010000110110111 432
000111101000111100111 256 100111010001000111100 206
010110110010011000001 82 110110001011100011010 106
001110011100100000010 528 101110100101011011001 110
011111000110000100100 35 111111111111111111111 370

Source: Shahani, A. K. (1970). Copyright © 1970 Blackwell Publishers. Reprinted with permission.
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calculated the standard error of a main effect contrast�iciτi to be√
Var(�ici τ̂i) � σ

√
�c2

i � 60
√

32/162 � 21.21.

Without assuming that the coded responses follow a normal distribution, the experimenters
then deemed any contrast whose estimated absolute value turned out to be several times
larger than 21.21 to be important.

The contrast estimates whose absolute values exceed 63.63 are those for the main effects
of A,D,H , J ,N , V , andW . The estimates for main effects ofM,K, andS are all around
2 standard errors, with those forC andF a little smaller.

Since there are 32 observations, a total of 31 orthogonal contrasts can be measured.
Thus there are 10 sets of confounded interaction contrasts that can be measured in addition
to the 21 main-effect contrasts. The identification of these contrast sets requires writing
out the entire aliasing scheme—a daunting task! A proper analysis of the main effects
also requires knowledge about which interactions are aliased with which main effects. A
followup experiment to separate out the most likely aliased effects would be needed.

Assuming, temporarily, that the process can be improved by considering the main effects
only, the contrast estimates (high level minus low level) suggest that factorsA, D, andW
(whose contrast estimates are negative) should be set at their low levels and factorsH , J ,K,
N ,V ,M, andS (whose contrast estimates are positive) should be set at their high levels. As
mentioned above,A,D, andW were already set at the lowest possible values in the original
process, and therefore further experimentation with these factors is unnecessary. The other
seven factors were discussed by the engineers and new (higher) settings selected for these,
resulting in an improved process that met the pull strength requirements. The author of the
article commented that the research and development department should give consideration
to a further experiment involving these seven factors in which main effects and two-factor
interactions could all be measured. He suggested the use of a 27−1 experiment, which would
require 64 observations. Fewer observations would require aliasing some of the 2-factor
interactions (see Table 15.55). ✷

15.3 Fractions from Block Designs; Factors with 3 Levels

15.3.1 One-Third Fractions of 3p Experiments; 3p−1 Experiments

To obtain a fraction of a 3p experiment, we use the same idea that we used for 2p experiments.
We select one block at random from a confounded single-replicate design with 3s blocks

Table 15.11 Contrast estimates for the welding experiment (with divisor 16)

Contrast A B C D E F G

Estimate −104.8 −34.6 −39.4 −152.5 12.3 37.4 5.3
Contrast H J K L M N P

Estimate 101.9 70.5 48.4 −23.4 43.5 100.1 32.9
Contrast Q R S T U V W

Estimate 16.6 3.0 42.1 −8.1 7.1 72.8 −69.0
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of size 3p−s with a suitable confounding scheme. For example, suppose a1
3–fraction of a

34 experiment is required (that is, a total of 34−1 � 27 observations). The highest-order
interaction in a 34 experiment that can be confounded is the 4-factor interaction. Therefore,
the maximum number of letters in a word in the defining relation of the fraction is also four.
For a Resolution IV design, when 3- and 4-factor interactions are negligible, the main-effect
contrasts can be estimated, but the 2-factor interactions will be aliased. This is the best
design available, and unless a larger budget can be obtained to allow more observations,
some aliasing among the low-order interactions will have to be tolerated.

Suppose the selected single-replicate confounded design is that which confounds the
pair of contrasts (ABCD; A2B2C2D2) from the 4-factor interaction. The block design is
constructed using the equations

a1 + a2 + a3 + a4 � 0, 1, or 2 (mod 3)

as in Section 14.2.3, and one block is selected at random for the1
3–fraction. Since there are

27 treatment combinations to be observed, the aliasing scheme has 27 rows. Seven rows
from the aliasing scheme are given in Table 15.12. The remaining rows contain main effects
or 2-factor interaction contrasts (such asAB2 orA2B) that are aliased only with higher-order
interactions. The 27 rows of the aliasing scheme include one for effects aliased with the
mean plus 13 pairs of rows, such as rows includingAB andA2B2, which represent the same
contrasts. The two rows containingAB andA2B2 indicate, for example, that the contrasts
(AB; A2B2), (CD; C2D2), and (ABC2D2; A2B2CD) are aliased. Use of this design is
illustrated in Example 15.3.1.

Example 15.3.1 Refinery experiment

P. W. M. John (1971) describes an experiment of Vance (1962) to find a set of operating
conditions to optimize the quality of lube oil treated at a refinery. There were four factors
of interest, called hereA, B, C, andD, and three equally spaced levels were selected for
each of these so that quadratic trends could be measured.

Since this was a preliminary experiment, a1
3–fraction of Resolution IV was thought

to be adequate. The experimenters used a design with defining relationI � ABCD �
A2B2C2D2. Part of the aliasing scheme is shown in Table 15.12. We see that two degrees of
freedom (AB; A2B2) fromAB are aliased with two degrees of freedom (CD; C2D2) from
CD and two degrees of freedom from the four-factor interaction. The other two degrees
of freedom from each of these interactions are aliased with higher-order interactions. (For
example, the pair (AB2; A2B) is aliased with the pairs (A2CD; AC2D2) and (BC2D2;
B2CD)). A similar confounding occurs withAC andBD and also withAD andBC.

Table 15.12 Seven rows from the aliasing scheme for a 1
3–fraction of a 34 experiment

with the defining relation I � ABCD � A2B2C 2D2

I � ABCD � A2B2C 2D2

AB � A2B2CD � C 2D2 A2B2 � CD � ABC 2D2

AC � A2BC 2D � B2D2 A2C 2 � BD � AB2CD2

AD � A2BCD2 � B2C 2 A2D2 � BC � AB2C 2D
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Table 15.13 1
3–fraction of a 3

4 experiment and data from the refinery experiment

Treatment
Combination yijkl AL AQ BL BQ CL CQ DL DQ

0000 4.2 −1 1 −1 1 −1 1 −1 1
0012 5.9 −1 1 −1 1 0 −2 1 1
0021 8.2 −1 1 −1 1 1 1 0 −2
0102 13.1 −1 1 0 −2 −1 1 1 1
0111 16.4 −1 1 0 −2 0 −2 0 −2
0120 30.7 −1 1 0 −2 1 1 −1 1
0201 9.5 −1 1 1 1 −1 1 0 −2
0210 22.2 −1 1 1 1 0 −2 −1 1
0222 31.0 −1 1 1 1 1 1 1 1
1002 7.7 0 −2 −1 1 −1 1 1 1
1011 16.5 0 −2 −1 1 0 −2 0 −2
1020 14.3 0 −2 −1 1 1 1 −1 1
1101 11.0 0 −2 0 −2 −1 1 0 −2
1110 29.0 0 −2 0 −2 0 −2 −1 1
1122 55.0 0 −2 0 −2 1 1 1 1
1200 8.5 0 −2 1 1 −1 1 −1 1
1212 37.4 0 −2 1 1 0 −2 1 1
1221 66.3 0 −2 1 1 1 1 0 −2
2001 11.4 1 1 −1 1 −1 1 0 −2
2010 21.1 1 1 −1 1 0 −2 −1 1
2022 57.9 1 1 −1 1 1 1 1 1
2100 13.5 1 1 0 −2 −1 1 −1 1
2112 51.6 1 1 0 −2 0 −2 1 1
2121 76.5 1 1 0 −2 1 1 0 −2
2202 31.0 1 1 1 1 −1 1 1 1
2211 74.5 1 1 1 1 0 −2 0 −2
2220 85.1 1 1 1 1 1 1 −1 1

Source: John, P. W. M. (1971). Copyright © 1971 P. W. M. John. Reprinted with permission.

The treatment combinations are obtained from the equation

a1 + a2 + a3 + a4 � 0 (mod 3)

and are shown in Table 15.13, prior to randomization, together with the data collected. Also
shown are the linear and quadratic contrast coefficients for the main effects. The objective
of the experiment was to select factor levels that would increase the response (a measure of
quality).

The analysis of variance is complicated by the aliasing of pairs of degrees of freedom for
two-factor interactions. We have not tried to separate these but have listed the contributions
of the pairs of interactions on the same line of the analysis of variance table shown in
Table 15.14. Without information concerning negligible interactions, we are unable to obtain
an estimate for the error variance. The most important interactions appear to be theAC,BD,
BC, andAD interactions, and the corresponding interaction plots are shown in Figure 15.5.
In each case, the plots indicate that in order to increase the response, factorsA, B, and
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Table 15.14 Analysis of variance for the refinery
experiment

Source of Degrees of Sum of Mean
Variation Freedom Squares Square
A 2 4496.29 2248.14
AL 1 4399.22 4399.22
AQ 1 97.07 97.07
B 2 2768.69 1384.35
BL 1 2647.49 2647.49
BQ 1 121.20 121.20
C 2 5519.79 2759.89
CL 1 5516.00 5516.00
CQ 1 3.79 3.79
D 2 283.37 141.68
DL 1 213.56 213.56
DQ 1 69.81 69.81
AB,CD 6 339.00 56.50
AC, BD 6 1384.24 230.71
AD,BC 6 753.38 125.56
Total 26 15,544.66

C should all be set at their high levels, cost permitting, and factorD should be set at its
middle level. They also indicate that since the lines are not too far from parallel, it would
be reasonable to examine the main-effect contrasts.

Normalized linear and quadratic main-effect contrast estimates are obtained as

1

d

∑
i

∑
j

∑
k

∑
l

cijkl τ̂ijkl � 1

d

∑
i

∑
j

∑
k

∑
l

cijklyijkl ,

where thecijkl ’s are the contrast coefficients in Table 15.13 and the divisord is the square
root of the sum of squares of the coefficients (that is,

√
18 for the linear contrasts and

√
54 for

the quadratic contrasts). These estimates are listed in Table 15.15, and a normal probability
plot of the estimates is shown in Figure 15.6. Eight estimates are too few to make a good
judgment, but the most important effects appear to be the linear trends inC,A, andB (in that
order). All of these contrast estimates are positive, suggesting that the high levels should
be selected in order to increase the response. This agrees with the conclusions from the
interaction plots. Note that we could have examined interactions more closely by including
individual interaction contrast estimates in the normal probability plot. We have not done
this because of the complicated confounding of the interactions.

Since we have no estimate for error, we are unable to test any hypotheses. However, had
the experimenters believed, prior to the experiment, that some or all of the interactions were

Table 15.15 Normalized contrast estimates for the refinery experiment

ÂL ÂQ B̂L B̂Q ĈL ĈQ D̂L D̂Q

Estimate 66.33 9.85 51.45 −11.01 74.27 −1.95 14.61 −8.36
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negligible, then tests would have been done for the remaining interactions and the main
effects. The sums of squares for testing the linear and quadratic main-effect contrasts are
merely the squares of the corresponding normalized contrast estimates in Table 15.15. For

Figure 15.5
Interaction plots for

the refinery
experiment
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example, the sums of squares for testing the hypothesis that the linear trend of factorA is
negligible, against the alternative hypothesis that it is not negligible, is

ss(AL) � 66.3272 � 4399.22.

The sums of squares for the main effects of factorsA,B,C, andD can be obtained either by
adding their respective linear and quadratic contrast sums of squares, or by using the rules
of Chapter 7 withr � 1/3 (since this is a one-third fraction). For example,

ssA � ss(AL) + ss(AQ) � 66.3272 + 9.8522 � 4399.22+ 97.07 � 4496.29,

or

ssA � 9�ȳ2
i... − 27ȳ2

.... � 28766.30− 24270.01 � 4496.29. ✷

15.3.2 One-Ninth Fractions of 3p Experiments; 3p−2 Experiments

As an example of a19–fraction, we take the sixth block of the 34 single-replicate confounded
design shown in Table 14.5. The list of confounded interactions in the block design provides
the defining relation for the 34−2 fractional factorial design, namely

I � AB2C � A2BC2

� ABD � A2CD � B2C2D

� A2B2D2 � BCD2 � AC2D2 .

The confounded contrasts are (AB2C; A2BC2), (ABD; A2B2D2), (AC2D2; A2CD), and
(BCD2; B2C2D).

This design has Resolution III (since the shortest word has 3 letters), and main-effect
contrasts will be aliased with 2-factor interaction contrasts. The nine observations provide
8 degrees of freedom, which is sufficient to estimate the four main effects (with two degrees
of freedom each). Therefore, the design would be useful if all two-factor interactions were
believed to be negligible. Since there are no degrees of freedom available for estimatingσ 2,
a normal probability plot of normalized contrast estimates would be drawn as in Figure 15.6.

15.4 Fractions from Block Designs; Other Experiments

15.4.1 2p × 4q Experiments

The simplest way to design a fractional factorial experiment when all factors have four levels,
or when some factors have two levels and the others have four levels, is to use pseudofactors.
For example, suppose we require a design for a 23×4 experiment with eight observations. A
design in four blocks of size 8 is shown in Table 14.9 (page 472). The confounded contrasts
areFGJ1J2,GHJ2, andFHJ1, whereJ1 andJ2 are the two 2-level pseudofactors making
up the 4-level factorJ . Suppose Block I is selected from the design to give a1

4–fraction of
a 23 × 4 experiment, then the defining relation is

I � FGJ1J2 � GHJ2 � FHJ1
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Table 15.16 Aliasing scheme for a 1
4–fraction of a 23 × 4

experiment

I � FGJ1J2 � GHJ2 � FHJ1
F � GJ1J2 � FGHJ2 � HJ1
G � FJ1J2 � HJ2 � FGHJ1
H � FGHJ1J2 � GJ2 � FJ1
J1 � FGJ2 � GHJ1J2 � FH

J2 � FGJ1 � GH � FHJ1J2
J1J2 � FG � GHJ1 � FHJ2
FJ2 � GJ1 � FGH � HJ1J2

and the design is Resolution III. The aliasing scheme, shown in Table 15.16, indicates that
theF contrast, for example, is aliased with one contrast from each of theGJ , FGHJ and
HJ interactions. There are 3 contrasts (J1, J2 andJ1J2) for the 4-level factorJ . The aliasing
scheme shows thatJ is aliased with theFGJ , GHJ , FH , GH , FHJ , FG contrasts.

An experiment involving pseudofactors will be illustrated in Example 15.5 in
Section 15.5.

15.4.2 2p × 3q Experiments

Suppose that a16–fraction is required from a 23 × 33 experiment giving a total of 36 obser-
vations. We select a12–fraction of a 23 experiment confounding, say,ABC, and a1

3–fraction
from a 33 experiment confounding, say, (DE2F ; D2EF 2). Combining the treatment com-
binations as in a combined array (see Example 14.4, page 473, for illustration) gives a
design inb � 6 blocks of 36 that confounds the five contrastsABC, (DE2F ;D2EF 2), and
(ABCDE2F ; ABCD2EF 2). If one block is selected, we have a Resolution III design with
defining relation

I � DE2F � D2EF 2

� ABC � ABCDE2F � ABCD2EF 2 ,

and the contrastsABC, (DE2F ; D2EF 2), and (ABCDE2F ; ABCD2EF 2) are aliased
with the mean.

The aliasing scheme (which has 36 rows) includes the following rows:

A � BC � ADE2F � AD2EF 2 � BCDE2F � BCD2EF 2 ,

B � AC � BDE2F � BD2EF 2 � ACDE2F � ACD2EF 2 ,

C � AB � CDE2F � CD2EF 2 � ABDE2F � ABD2EF 2 .

Thus, the 2-level factorsA, B, andC are aliased with 2-factor interactions between the
2-level factors plus some higher-order interactions. For example, theA contrast is aliased
with the contrastsBC, (ADE2F ; AD2EF 2), and (BCDE2F ; BCD2EF 2).

A similar aliasing happens for the 3-level factors. For example,

D � ABCD � D2E2F � EF 2 � ABCD2E2F � ABCEF 2 ,

D2 � ABCD2 � E2F � DEF 2 � ABCE2F � ABCDEF 2 ,
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so the pairs of contrasts (D; D2), (ABCD; ABCD2), (DEF 2;D2E2F ), (EF 2; E2F ), and
(ABCEF 2; ABCE2F ) are aliased with one another.

Finally, there is aliasing of interactions involving both 2- and 3-level factors, for example

AD � BCD � AD2E2F � AEF 2 � BCD2E2F � BCEF 2 ,

AD2 � BCD2 � AE2F � ADEF 2 � BCE2F � BCDEF 2 ,

so the pairs of contrasts (AD; AD2), (BCD; BCD2), (ADEF 2; AD2E2F ), (AEF 2;
AE2F ), and (BCEF 2; BCE2F ) are aliased with one another.

The design would be useful mainly when most of the interactions were expected to be
negligible.

15.5 Blocked Fractional Factorial Experiments

If experimental conditions are not constant over the entire experiment, it may be necessary
to arrange a fractional factorial experiment in blocks. For example, consider the soup exper-
iment in Section 15.2.3 (page 487), for which the experimenters used the resolution V 25−1

fraction with defining relationI � ABCDE. Suppose the experimenters had decided that
the experimental conditions could be kept fairly stable over the course of 8 observations but
not 16. The treatment combinations would then have been divided into two blocks of size
8. If the fraction is divided intob � 2 blocks, thenb − 1 � 1 contrastand its alias must
be confounded. IfCDE, for example, is selected for confounding, then the aliased pair of
contrastsCDE � AB is confounded with blocks, and neither of these contrasts can be
measured. Rather than confound a 2-factor interaction, an alternative might be to select the
Resolution IV design with defining relationI � ABDE and to confound the aliased pair of
contrastsBCE � ACD. Then, all two-factor interactions can be estimated, although six of
them will be in aliased pairs. The choice between these two designs is the choice of losing
information on one 2-factor interaction completely while aliasing the others with high-order
interactions, or aliasing three pairs of 2-factor interactions.

Table 15.55, page 542, gives a list of confounding schemes that are useful in conjunction
with the fractional factorial experiments also listed in the table.

Example 15.5.1 Flour experiment number 3

M. G. Tuck, S. M. Lewis, and J. I. L. Cottrell describe a series of four experiments in the
1993 issue ofApplied Statistics that were carried out at Spillers Milling Ltd. in order to
reduce the variability of their bread products. Here, we discuss the third experiment in the
series. In this experiment, four flour formulations were investigated (four levels of factor
A). Four noise factors each at two levels were also investigated. These were amount of yeast
(factorN , low or high), proof time (factorS, short or long), degree of mixing and moulding
(factorQ, “undermixing, little water, heavy pressure” or “overmixing, much water, little
pressure”), and dough time delay (factorT , short or long). Thus, this was a 4×24 experiment,
with 64 treatment combinations. The time allowed for only 32 treatment combinations to
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Table 15.17 A blocked 1
2–fraction of a 4× 24 experiment and experiment.

Block Treatment Av. Specific Contrasts
(Day) Combination Volume A1 A2 A1A2 N S Q T

I 000011 436 −1 −1 1 −1 −1 1 1
000110 507 −1 −1 1 −1 1 1 −1
001001 434 −1 −1 1 1 −1 −1 1
001100 508 −1 −1 1 1 1 −1 −1
010010 436 −1 1 −1 −1 −1 1 −1
010111 508 −1 1 −1 −1 1 1 1
011000 404 −1 1 −1 1 −1 −1 −1
011101 510 −1 1 −1 1 1 −1 1
100010 440 1 −1 −1 −1 −1 1 −1
100111 517 1 −1 −1 −1 1 1 1
101000 442 1 −1 −1 1 −1 −1 −1
101101 501 1 −1 −1 1 1 −1 1
110011 458 1 1 1 −1 −1 1 1
110110 536 1 1 1 −1 1 1 −1
111001 464 1 1 1 1 −1 −1 1
111100 532 1 1 1 1 1 −1 −1

II 000000 567 −1 −1 1 −1 −1 −1 −1
000101 549 −1 −1 1 −1 1 −1 1
001010 391 −1 −1 1 1 −1 1 −1
001111 418 −1 −1 1 1 1 1 1
010001 458 −1 1 −1 −1 −1 −1 1
010100 499 −1 1 −1 −1 1 −1 −1
011011 381 −1 1 −1 1 −1 1 1
011110 451 −1 1 −1 1 1 1 −1
100001 499 1 −1 −1 −1 −1 −1 1
100100 483 1 −1 −1 −1 1 −1 −1
101011 368 1 −1 −1 1 −1 1 1
101110 456 1 −1 −1 1 1 1 −1
110000 475 1 1 1 −1 −1 −1 −1
110101 597 1 1 1 −1 1 −1 1
111010 414 1 1 1 1 −1 1 −1
111111 452 1 1 1 1 1 1 1

Source: Tuck, M. G., Lewis, S. M., and Cottrell, J. I. L. (1993). Copyright © 1993
Blackwell Publishers. Reprinted with permission.

be observed in total, and these were divided into two blocks of size 16, representing the
number of observations that could be taken per day.

Since the purpose of the experiment was to find the flour that was least variable under the
different levels of the noise variables, the interactions ofA with the noise variables were of
primary interest. The 4-level factorAwas written in terms of two pseudofactorsA1 andA2,
with the level correspondence 0� 00, 1� 01, 2� 10, 3� 11. The researchers selected
the first block of the1

2–fraction with defining relationI � A1A2NSQT . The aliased pair
of contrasts selected for confounding wereNQ � A1A2ST . The treatment combinations
in each block are shown, prior to randomization, in Table 15.17, together with the main-
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Table 15.18 Contrast estimates (with divisor 16) for the flour experiment

Â1 Â2 Â1A2 N̂ Ŝ Q̂ T̂

11.06 3.69 24.06 −52.44 59.81 −47.06 0.56

Â1N Â2N ̂A1A2N Â1S Â2S ̂A1A2S

5.44 7.56 −11.56 4.44 14.56 −2.31

Â1Q Â2Q ̂A1A2Q Â1T Â2T ̂A1A2T

3.06 9.19 −17.19 9.19 9.56 −15.81

effect contrast coefficients. All of the contrasts, apart from the confounded contrastNQ and
its aliasA1A2ST , are orthogonal to the block contrast, and the estimates of their aliased
pairs can be calculated without block adjustments. The response variable for each treatment
combination was the average specific volume of three loaves, and the observed values are
listed in Table 15.17.

Multiplying the responses by theA1 contrast coefficients and dividing by 16, we obtain
the estimate of the difference in the effect of the high and low levels ofA1. Translating
back to the original levels of factorA, this contrast compares the average of the third
and fourth flours with the average of the first and second flours. The contrast estimate is
(7634− 7457)/16 � 11.0625.

The contrast for the interaction of the noise variableN with the pseudofactorA1 is
obtained by multiplying theA1 andN contrast coefficients in Table 15.17 and dividing by
v/2 � 16 to obtain the same standard error as the main-effect contrasts. Thus the contrast
has coefficients

[ 1, 1,−1,−1, 1, 1,−1,−1,−1,−1, 1, 1,−1,−1, 1, 1,

1, 1,−1,−1, 1, 1,−1,−1,−1,−1, 1, 1,−1,−1, 1, 1 ]

with divisor 16, and the contrast estimate is (7589− 7502)/16 � 5.4375. All of the main-
effect and 2-factor interaction contrast estimates are shown in Table 15.18, and the analysis
of variance table is shown in Table 15.19.

Selecting individual significance levels ofα∗ � 0.01 for each hypothesis test, (for an
overall Type I error probability of at mostα � 0.09), we compare theF -ratios in Table 15.19
with eitherF1,11,0.01 � 9.65 orF3,11,0.01 � 6.22 as appropriate. The interactions of the flour
formulations with the noise variables are not significantly different from zero, but the noise
variablesN , S, Q themselves do have a large effect on the specific volume. Although the
flours are not significantly different, the contrastA1A2 appears to be the most important of
the three flour contrasts investigated. This contrast compares the average of flours 1 and 4
with the average of flours 2 and 3. The first pair give the higher average specific volume.
Before the experiment took place, the experimenters had expected flour 3 (coded 11) to be
the best. The difference of averages contrast, which compares flour 3 with the average of
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Table 15.19 Analysis of variance for the flour experiment

Source of Degrees of Sum of Mean
Variation Freedom Squares Square Ratio p-value
Block 1 957.03 −
A 3 5719.84 1906.62 3.06 0.0737
A1 1 979.03 979.03 1.57 0.2363
A2 1 108.78 108.78 0.17 0.6843
A1A2 1 4632.03 4632.03 7.42 0.0198
N 1 21997.53 21997.53 35.26 0.0001
S 1 28620.28 28620.28 45.88 0.0001
Q 1 17719.03 17719.03 28.40 0.0002
T 1 2.53 2.53 0.00 0.9504
AN 3 1763.59 587.86 0.94 0.4533
AS 3 1896.84 632.28 1.01 0.4235
AQ 3 3113.59 1037.87 1.66 0.2318
AT 3 3407.09 1135.69 1.82 0.2017
Error 11 6862.34 623.85
Total 31 92059.72

the other three flours, has least squares estimate

y11... −
1

3
(y00... + y01... + y10...)

� 491.000− 1

3
(476.250+ 455.875+ 463.250)

� 25.875.

A preplanned 95% confidence interval for this contrast is given by

y11... − 1
3(y00... + y01... + y10...) ± t11,0.025

√
mse
(
8
(

1
8

)2 + 24
(

1
24

)2)
� 25.875± 2.201

√
(623.849)(0.1667)

� 25.875± 22.443

� (3.432,48.318).

At the 95% confidence level, it does appear that flour 3 (coded 11) has specific volume
between 3.4 and 48.3 larger than the average of the other three flours. (We can draw this
conclusion only because the contrast was preplanned. Otherwise, we would have needed to
use Scheff́e’s method of multiple comparisons witht11,0.025replaced by

√
3F3,11,0.05 � 3.24,

and the interval would have included zero). ✷

15.6 Fractions from Orthogonal Arrays

15.6.1 2p Orthogonal Arrays

The simplest type of orthogonal array is that shown in Table 15.20, consisting of a set of
2p − 1 orthogonal contrasts. The first column has the first half of its 8 entries equal to
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Table 15.20 Contrasts for a 23 experiment

A B C AB AC BC ABC

000 −1 −1 −1 1 1 1 −1
001 −1 −1 1 1 −1 −1 1
010 −1 1 −1 −1 1 −1 1
011 −1 1 1 −1 −1 1 −1
100 1 −1 −1 −1 −1 1 1
101 1 −1 1 −1 1 −1 −1
110 1 1 −1 1 −1 −1 −1
111 1 1 1 1 1 1 1

−1 and the second half equal to+1. The second column has the first quarter of its entries
equal to−1, the second quarter equal to+1, the third quarter equal to−1 again and the
fourth quarter equal to+1 again. The third column is divided into eighths with alternating
−1’s and+1’s. If the columns had been longer, the next column would have been divided
into sixteenths, and so on. These are the “independent” columns. The fourth, fifth and sixth
columns of Table 15.20 are the products of the first three columns in pairs, and the last
column is the triple product of the first three columns. The result is a table with 2p � 8 rows
and 2p − 1 � 7 columns in which any pair of columns are orthogonal.

The independent columns of an orthogonal array define the treatment combinations for
a 23 design. As usual, a contrast coefficient of−1 in a column corresponds to level 0 in the
corresponding factor, and a contrast coefficient of+1 in a column corresponds to level 1. If
all eight treatment combinations of Table 15.20 are used in the experiment, and if there are
only three factors of interest, then the orthogonal array defines a full factorial experiment,
and no aliasing of contrasts occurs.

Now suppose that only four observations can be taken in a 23 experiment. Instead of
proceeding as in Section 15.2.1 and choosing a defining relation, we could first construct
an orthogonal array withn � 4 rows andn− 1 � 3 columns. One is shown in Table 15.21,
where the first column has the first half of its entries−1, and the second half+1, the second
column is divided into quarters, and the third column is the product of the first two. Since
we have 3 factors, suppose we label the columns in order asA, B, C. The three columns
then show the parts of theA, B, andC contrasts corresponding to a1

2–fraction. However,
the third column is also the product of the first two columns, so it not only represents the
C contrast but also the interaction betweenA andB. Consequently,C is aliased withAB.
Similarly, the first column is the product of the last two columns, soA is aliased withBC.
Similarly, again,B is aliased withAC. The defining relation must beI � ABC in order to
produce this aliasing scheme.

The coefficients in the contrasts tell us which treatment combinations are represented,
and the design is “Designd1” shown in Table 15.22. Notice that this is the same design that
would have been produced from the equationa1 + a2 + a3 � 1 (mod 2). We could obtain
the 1

2–fraction corresponding toa1 + a2 + a3 � 0 (mod 2), by multiplying any one of the
columns by−1 (see Designd2 in Table 15.22, where the second column has been multiplied
by −1).
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Table 15.21 An orthogonal
array for four
observations

−1 −1 1
−1 1 −1
1 −1 −1
1 1 1

Table 15.22 1
2–fractions of a 2

3 experiment obtained from
orthogonal arrays

Design d1 Design d2
TC A B C TC A B C

001 −1 −1 1 011 −1 1 1
010 −1 1 −1 000 −1 −1 −1
100 1 −1 −1 110 1 1 −1
111 1 1 1 101 1 −1 1

Thus, we have arrived back at the same type of design that we studied in Section 15.2, and
this will often (but not always) be the case. The main difference in procedure is that when
we start with an orthogonal array, we are starting with an unlabeled list of contrasts which
can be labeled in any way we please. The labeling then determines the defining relation and
the design.

Any columns in an orthogonal array can be multiplied by−1 and we still obtain an
orthogonal array, although the treatment combinations may not be identical, or they may be
identical but in a different order (try multiplying theB andC columns for the designs in
Table 15.22 by−1 and see whether the same design results).

Now we return to the orthogonal array of Table 15.20, which is reproduced in Table 15.23
with column headings indicating which columns are products of which other columns. For
example, column 7 is the product of columns 1, 2, and 3. We consider using this array for a
25 experiment instead of a 23 experiment. Since there are only 8 rows, we will be looking
for a 1

4–replicate (that is, a 25−2 fractional factorial experiment).

Table 15.23 An orthogonal array for 8 observations

Columns
1 2 3 12 13 23 123

−1 −1 −1 1 1 1 −1
−1 −1 1 1 −1 −1 1
−1 1 −1 −1 1 −1 1
−1 1 1 −1 −1 1 −1
1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 −1
1 1 −1 1 −1 −1 −1
1 1 1 1 1 1 1
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Suppose that we label the first 5 columns asA,B,C,D,E. Since the product of the first
two columns gives column 4 and the product of the first and third columns gives column
5, aliasing would occur betweenD andAB, and betweenE andAC. Consequently,ABD
andACE must be in the defining relation, together with their product, so we have

I � ABD � ACE � BCDE .

The rest of the aliasing scheme can be written out also, and we would see thatA is aliased
with BD andCE, thatB is aliased withAD, and thatC is aliased withAE. The sixth
column, which is the product of columns 2 and 3, and also of columns 4 and 5, can be
labeledBC orDE, and these two interactions are aliased. The seventh column isABC �
CD � BE � ADE. The eight treatment combinations are deduced from the−1’s and
+1’s in the first five columns; that is,

00011, 00110, 01001, 01100, 10000, 10101, 11010, 11111.

Different sets of treatment combinations corresponding to the same defining relation (but
with different signs in the aliasing scheme) can be obtained by multiplying one or more
columns of Table 15.23 by−1.

There is nothing special about labeling the first five columns of Table 15.23 asA, B,
C, D, E. Any five columns could have been chosen. Different choices may lead to dif-
ferent aliasing schemes, and sometimes these aliasing schemes may not be equally good.
Table 15.57 (page 544) lists orthogonal arrays for various-sized experiments. Some useful
column labelings for various fractional factorial experiments are suggested in the table.

The standard notation, used by industrial statisticians and engineers, for an orthogonal
array is the letterL with subscript equal to the number of runs. Sometimes, the largest
Resolution III design that can be used with the array is added in brackets. The orthogonal
array in Table 15.21 provides a Resolution III design with 4 observations for 3 or fewer
two-level factors and would be written asL4(23). Similarly, the design of Table 15.23 would
be written asL8(27). Occasionally, an orthogonal array for 2p experiments will be written
using factor levels rather than contrast coefficients. The orthogonality could then be checked
by ensuring that in every pair of columns, all possible pairs of factor levels (00, 01, 10, and
11) appear the same number of times (see, for example, the factor levels shown together
with designs (a) and (b) of Table 15.22).

Example 15.6.1 Wafer experiment

R. Kackar and A. Shoemaker (AT&T Technical Journal, 1986) describe an experiment they
helped to run at AT&T to try to reduce the variability of the thickness of an “epitaxial layer”
deposited onto silicon wafers during the manufacture of integrated circuit devices.

The wafers were mounted on a seven-sided “susceptor” with two wafers (one above the
other) on each side. The susceptor rotated inside a heated bell jar as chemical vapors were
introduced via a nozzle near the top of the jar. The chemicals were deposited on the wafers,
and the bell jar was cooled when the thickness of the deposited layer was close to the target
of 14.5 micrometers.
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Table 15.24 Treatment factors and their levels for the wafer experiment

Factors Prior Level Experimental levels
Low (0) High (1)

A (rotation method) oscillating continuous oscillating
B (wafer batch) 668G4 678D4
C (deposition temperature) 1215◦C 1210◦C 1220◦C
D (deposition time) low high low
E (arsenic flow rate) 57% 55% 59%
F (acid etch temp.) 1200◦C 1180◦C 1215◦C
G (acid flow rate) 12% 10% 14%
H (nozzle position) 4 2 6

Table 15.25 An orthogonal array for 16 observations: An L16(215)

Columns
1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234

−1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
−1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
−1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
−1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
−1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
−1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A B C D E F G H

The engineers identified eight factors that might affect the variability of the thickness of
the epitaxial layer. These are shown in Table 15.24 together with the operating factor levels
prior to the experiment and the levels selected for the experiment.

The experimenters decided to take 16 observations. The 16 treatment combinations were
selected via the orthogonal arrayL16(215) shown in Table 15.25. The orthogonal array is
constructed as described earlier in this section. The labels in the row headings of the table
identify which columns are products of which other columns. The assignment of factors to
columns chosen by the experimenters is indicated in the foot of the table. The experiment is a
28−4 experiment, and the defining relation is generated by 4 confounded interactions. Notice,
from the heading and the foot of Table 15.25, thatD must be aliased withABC, F must be
aliased withABE, G with ACE, andH with BCE. Thus, the defining relation includes
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ABCD,ABEF ,ACEG,BCEH , and all their possible products (a total of 24 � 16 terms
in the defining relation):

I = ABCD = ABEF = CDEF

= ACEG = BDEG = BCFG = ADFG

= BCEH = ADEH = ACFH = BDFH

= ABGH = CDGH = EFGH = ABCDEFGH .

This is a Resolution IV design, and there is considerable aliasing between 2-factor inter-
actions. For example, the contrast listed in column 12 of Table 15.25 not only measures the
2-factor interactionAB, but also measures its aliased 2-factor interactionsCD, EF , GH
(and some higher-order interactions).

There were 70 measurements taken for each treatment combination (5 measurements
on each of the 2 wafers on the 7 sides of the receptor). From these, two different response
variables were calculated—the average of the 70 measurements (which we denote byx)
and the log sample variance of the 70 measurements (which we denote byv). The treatment
combinations, corresponding to the orthogonal array in Table 15.25, together with the two
response variables, are shown in Table 15.26.

The experimenters first analyzed the log variance response. The contrast estimates (high
level minus low level) for this response variable are shown in Table 15.27. The contrast
estimates for factorsA andH are considerably larger than those for the other factors.
Consequently,A andH should be investigated for reducing variability in the response.
Since the log variance response is to be reduced, and the contrast estimate forA is positive

Table 15.26 Treatment combinations and response variables
for the wafer experiment

Treatment Average Log Variance
Combination Response Response
ABCDEFGH xijklmnpq vijklmnpq
0 0 0 0 0 0 0 0 14.821 −0.4425
0 0 0 0 1 1 1 1 14.888 −1.1989
0 0 1 1 0 0 1 1 14.037 −1.4307
0 0 1 1 1 1 0 0 13.880 −0.6505
0 1 0 1 0 1 0 1 14.165 −1.4230
0 1 0 1 1 0 1 0 13.860 −0.4969
0 1 1 0 0 1 1 0 14.757 −0.3267
0 1 1 0 1 0 0 1 14.921 −0.6270
1 0 0 1 0 1 1 0 13.972 −0.3467
1 0 0 1 1 0 0 1 14.032 −0.8563
1 0 1 0 0 1 0 1 14.843 −0.4369
1 0 1 0 1 0 1 0 14.415 −0.3131
1 1 0 0 0 0 1 1 14.878 −0.6154
1 1 0 0 1 1 0 0 14.932 −0.2292
1 1 1 1 0 0 0 0 13.907 −0.1190
1 1 1 1 1 1 1 1 13.914 −0.8625

Source: Kackar, R. N. and Shoemaker, A. C. (1986). Copyright
© 1986 AT&T. All rights reserved. Reprinted from the AT&T
Technical Journal with permission.
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Table 15.27 Contrast estimates for log sample variance response variable

Contrast A B C D E F G H

Estimate 0.352 0.122 0.105 −0.249 −0.012 −0.072 −0.101 −0.566

Table 15.28 Contrast estimates for the mean response variable

Contrast A B C D E F G H

Estimate −0.055 0.056 −0.109 −0.836 −0.067 0.060 −0.098 0.142

while that forH is negative, we would want to setA at its low level (continuous rotation)
andH at its high level (position 6). All other factors can be set at their current operating
conditions.

The second requirement of the experimenters was to achieve an average thickness of
14.5 micrometers. Contrast estimates for the average response are shown in Table 15.28.
Not surprisingly, factorD, deposition time, has by far the largest effect on the mean response,
and the experimenters were able to adjust this factor in order to meet the target.

As with any good experiment, the experimenters wished to confirm their results. Their
confirmation experiment investigated two treatment combinations. The first treatment com-
bination consisted of the prior operating levels of factorsA andC–H , with factorB at level 1
as shown in Table 15.24, and the second treatment combination was the same except that the
levels ofA andH were changed as discussed above. The confirmation experiment showed
that the variance of the thickness had been reduced by a factor 2.5—quite a remarkable
result! ✷

15.6.2 Saturated Designs

In the context of fractional factorial experiments, a saturated design is one that uses only
n � p + 1 treatment combinations to estimate the main effects ofp factors independently
(assuming that all interactions are negligible). Saturated designs are used in the early stages
of experimentation to try to screen out unimportant factors from among a large number of
possible factors.

The two designs in Table 15.22 (page 508) are saturated designs for 3 factors, and the
design of Table 15.23 is a saturated design for 7 factors. In each case, if the interactions
are negligible, the main effects can be independently estimated because their contrasts are
orthogonal. The designs are calledsaturated because the main-effect contrasts take up all
the available degrees of freedom, leaving none to estimateσ 2. They are also known as
orthogonal main-effect plans, since the main-effect contrasts are orthogonal but there are
no degrees of freedom available for estimating interaction contrasts.

We obtained the orthogonal arrays of Tables 15.22 and 15.23 by selectingk independent
columns, forn � 2k, and then multiplying these columns together. The designs obtained
via this method are all equivalent to designs that would be obtained by randomly selecting a
block from a single-replicate confounded design. R. L. Plackett and J. P. Burman provided
an alternative set of saturated designs for values ofn that are divisible by 4 in a paper in
Biometrika in 1946. Except forn � 8, these designs are quite different from the designs con-
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sidered so far, and we cannot easily write down an aliasing scheme for them. Nevertheless,
the main-effect contrasts are all orthogonal.

Plackett and Burman’s method of construction of the designs is quick and easy. They
listed the first row of each orthogonal array, called thegenerator. The entire orthogonal
array is obtained from the generator by cycling it to the right, and then adding a row of−1’s.
For example, forn � 12, if we take the generator

1 1 1−1 1 1−1 1−1 −1 −1,

this gives us the first row of the orthogonal array. Cycling this to the right, and wrapping
the end round to the beginning, we get the second row of the array as

−1 1 1 1−1 1 1−1 1−1 −1 .

The cycling procedure gives 11 rows. The 12th row of−1’s is then added, giving the entire
array as shown in Table 15.29. Interestingly, no column is the product of any two or more
other columns, and this is the reason that the aliasing scheme is not straightforward. The de-
signs should be used only when all interactions are expected to be negligible. Generators for
other cyclically generated orthogonal main-effect plans are listed in Table 15.58 (page 544).
These were obtained by a computer program described by Dean and Draper (1998).

15.6.3 2p × 4q Orthogonal Arrays

The orthogonal arrays of Section 15.6.1 can be used when one or more factors have 4 levels.
Each 4-level factor requires 3 independent columns to represent 3 orthogonal contrasts. For
example, the orthogonal array in Table 15.23 could be used for a 23 × 4 experiment as
follows. The first three columns (which are independent) could be labeledA, B, andC. If
the 4th column is labeledD1, thenD1 is aliased withAB. If the 7th column is labeledD2,
thenD2 is aliased withABC. The product of the coefficients in the 4th and 7th columns
gives the coefficients in the 3rd column, soD1D2, the remaining contrast for the 4-level

Table 15.29 A saturated orthogonal main-effect plan for
11 factors and 12 observations

1 1 1 −1 1 1 −1 1 −1 −1 −1
−1 1 1 1 −1 1 1 −1 1 −1 −1
−1 −1 1 1 1 −1 1 1 −1 1 −1
−1 −1 −1 1 1 1 −1 1 1 −1 1
1 −1 −1 −1 1 1 1 −1 1 1 −1

−1 1 −1 −1 −1 1 1 1 −1 1 1
1 −1 1 −1 −1 −1 1 1 1 −1 1
1 1 −1 1 −1 −1 −1 1 1 1 −1

−1 1 1 −1 1 −1 −1 −1 1 1 1
1 −1 1 1 −1 1 −1 −1 −1 1 1
1 1 −1 1 1 −1 1 −1 −1 −1 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
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factor, is aliased withC, and the defining relation is

I � ABD1 � ABCD2 � CD1D2 .

This is a Resolution II design, which should be avoided if possible, since it confounds two
main effects (C andD). A better design is to assignD2 to the 5th column, where it is aliased
with AC. The product of the 4th and 5th columns gives the 6th column, so thatD1D2 is
aliased withBC. The defining relation is

I � ABD1 � ACD2 � BCD1D2 ,

which is Resolution III. The 7th column of Table 15.23 corresponds to theABC contrast,
which is aliased withAD1D2, CD1, andBD2 contrasts. The complete aliasing scheme is

I � ABD1 � ACD2 � BCD1D2

A � BD1 � CD2 � ABCD1D2

B � AD1 � ABCD2 � CD1D2

C � ABCD1 � AD2 � BD1D2

D1 � AB � ACD1D2 � BCD2

D2 � ABD1D2 � AC � BCD1

D1D2 � ABD2 � ACD1 � BC

ABC � CD1 � BD2 � AD1D2

The design would be useful for an experiment where all interactions were expected to
be negligible, in which case one degree of freedom would be available to estimateσ 2.

15.6.4 3p Orthogonal Arrays

The orthogonal arrays for 2p experiments introduced in Section 15.6.1 have the property
that any pair of columns in the array are orthogonal (that is, the sum of the products of
corresponding coefficients is zero). An examination of the arrays in Tables 15.21–15.29
reveals that this orthogonality arises because every pair of coefficients (−1,−1), (−1,1),
(1,−1) and (1,1) occurs equally often in every pair of columns. We could rewrite the array
to contain the factor labels 0, 1 instead of the contrast coefficients−1, 1, and every pair of
labels would occur the same number of times in every pair of columns. This is the way that
orthogonal arrays are defined for 3p experiments.

An orthogonal array with 9 treatment combinations is shown as columns 1–4 in Ta-
ble 15.30 for four factors, each having 3 levels. If any pair of columns is selected, it can be
verified that each of the nine pairs of levels (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0),
(2,1), (2,2) occurs once. The first column consists of three copies of each of 0, 1, and 2.
The second column consists of 0, 1, and 2, in order, repeated three times. The third column
is obtained from the sum of the coefficients in the first two columns reduced modulo 3
(thereby ensuring that any factor assigned to the 3rd column will be aliased with the in-
teraction between the first two factors). The fourth column is obtained from twice the sum
of columns 2 and 3 (ensuring that any factor assigned to the fourth column will be aliased
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Table 15.30 A 3p orthogonal array for 9 observations

Columns Contrasts
1 2 3 4
0 0 0 0 −1 1 −1 1 −1 1 −1 1
0 1 1 1 −1 1 0 −2 0 −2 0 −2
0 2 2 2 −1 1 1 1 1 1 1 1
1 0 1 2 0 −2 −1 1 0 −2 1 1
1 1 2 0 0 −2 0 −2 1 1 −1 1
1 2 0 1 0 −2 1 1 −1 1 0 −2
2 0 2 1 1 1 −1 1 1 1 0 −2
2 1 0 2 1 1 0 −2 −1 1 1 1
2 2 1 0 1 1 1 1 0 −2 −1 1
A B C D AL AQ BL BQ CL CQ DL DQ

with the interaction of factors assigned to columns 2 and 3 and with the interaction of the
first two factors). It is not possible to find more than four orthogonal columns with only 9
observations.

In Table 15.30, a pair of orthogonal contrasts is given corresponding to each of the four
columns in the orthogonal array. It can be verified that this set of 8 contrasts is orthogonal.
As for 2p experiments, a 3p orthogonal array withn rows can have at mostn−1 orthogonal
columns of contrast coefficients, and therefore can accommodate at most (n− 1)/2 3-level
factors. An experiment is discussed in Section 15.7.1 that uses part of the orthogonal array
for 3-level factors and 27 observations listed in Table 15.59.

15.7 Design for the Control of Noise Variability

Experiments that involve both design and noise factors are often known colloquially as
Taguchi experiments. There are two different types of designs for such an experiment—
“product arrays” and “mixed arrays.” Theproduct arrays are composed of two fractional
factorial experiments, one for the design factors and one for the noise factors, and every
combination of design factors is observed in conjunction with every combination of noise
factors. (Product arrays were introduced in Section 7.6.)Mixed arrays, on the other hand, are
ordinary fractional factorial designs in which the difference between the design and noise
factors is ignored at the design stage except to ensure that the design-by-noise interactions
are estimable.

Product arrays are usually observed in the following way. The order of the design com-
binations is randomized. For each design combination in turn, observations are taken across
all of the noise combinations in a random order. This produces what is called a “split-plot
design, with noise combinations on the split plots and design combinations on the whole
plots.” (Split-plot designs will be discussed in Chapter 19—familiarity with them is not
needed here.) Such designs are usually analyzed by calculating, for each design combi-
nation, the average and log sample variance of the responses obtained under the different
noise combinations. The average response and the log variance response are then taken as
two separate sets of data values for the design factor combinations. The objective of the
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experiment is to find out which factors most affect the log variance response, and which
factors most affect the average response. Design combinations are then sought that give a
low sample variance across the noise combinations and that give a response close to the
target value. Finally, confirmatory observations are taken.

Product arrays can also be randomized in the same way as mixed arrays, as follows. For
a mixed array, all of the combinations of both design and noise factors are observed in a
random order. This allows a different analysis where the experiment is analyzed without
averaging the data across the noise combinations. Instead, the design-by-noise interactions
are studied with the view of identifying those levels of the design factors that are least affected
by changing the levels of the noise factors, and identifying those design factors that most
affect the mean. The use of a (blocked) mixed array was illustrated in the flour experiment
of Example 15.5. The use of a product array was illustrated in the wafer experiment of
Example 15.6.1 for 2-level factors and will be illustrated for the inclinometer experiment
with 3-level factors in Section 15.7.1. The computer analysis of the latter experiment is
discussed in Section 15.8.2.

15.7.1 A Real Experiment—Inclinometer Experiment

A collaborative study involving statisticians and mechanical engineers was described by
S. Lewis, B. Hodgson, R. New, and C. Sexton in the 1989Proceedings of the Institute of
Mechanical Engineers International Conference on Engineering Design. The experiment
sought to improve the performance of an inclinometer, which is an instrument that records
the angle of tilt of an object such as a crane jib. The design of the inclinometer is described
in the article as follows.

The basic design of the product is composed in four parts: a bob-weight and flexure, a
flanged flywheel and a copper-plated disc (PCB). All are attached to a shaft supported
in low-friction bearings. When the object to which the flywheel is attached is tilted,
the bob-weight assembly moves to stay perpendicular to the earth, causing the PCB
to rotate relative to the casing.
The main performance difficulty of the inclinometer is that it does not immediately
register the true angle of tilt. Spurious swing of the disc is produced by movement of
the object.

The purpose of the experiment was to vary the relative sizes of the parts of the inclinometer
to find a combination of factors that would reduce the swing. The engineers identified 7
factors that could be altered and that might affect the swing. Three levels were selected for
each factor so that linear and quadratic trends could be investigated. The levels of the first
six factors were selected to be equally spaced. The factors were:

A: Flexure length (30.00, 31.25, 32.5)

B: Flexure thickness (0.05, 0.275, 0.5)

C: Flexure width (4.0, 5.0, 6.0)



15.7 Design for the Control of Noise Variability 517

D: Flange thickness (1.0, 3.5, 6.0)

E: Flange width (6.0, 10.5, 15.0)

F : Bob-weight length (12.0, 20.0, 28.0)

G: Copper plating thickness (0.0175, 0.035, 0.07)

All measurements are in millimeters, and the levels of all factors are coded 0, 1, and 2. A
1
9 fraction would have been possible except for the fact that there were other considerations
that needed to be taken into account. For the experiment, it was possible to produce the
factor levels exactly as specified, but in mass production variability naturally creeps in.
The experimenters decided to build the production variability into the experiment as noise
factors as follows (measured in mm, except where stated),

H : Flexure length (-0.25, +0.25)

P : Flexure thickness (-0.005, +0.005)

J : Flange thickness (-0.025, +0.025)

K: Flange width (-0.025, +0.025)

L: Copper plating thickness (-0.005, +0.005)

M: Tolerance on bob weight mass (-9.0, +9.0×(1/100)g)

N : Maximum horizontal amplitude of vibration (5, 25)

The two levels of each noise factor were coded as 0 and 1. Thus, the entire experiment
was a 37 ×27 factorial experiment, where the 3-level factors were the design factors and the
2-level factors were the noise factors (see Section 7.6). The treatment combination 0000000
of the design factors in conjunction with the combination 0000000 of the noise factors
would have flexure length (A) of (30.00 − 0.25) mm � 29.75 mm, flexure thickness of
(0.050− 0.005) mm� 0.045 mm, and so on.

The objective of the experiment was to select the combinations of the design factors that
gave the least amount of swing. In terms of producing a product of consistently high quality,
it was also important that the variability of the amount of swing also remain low across the
different noise combinations.

The experimenters selected a product array formed from a (1
3)4 fraction of the 37 design-

treatment combinations and a (1
2)4 fraction of the 27 noise combinations. This gave a total

of 27× 8 � 216 observations. For the (1
3)4 fraction of the 37 factorial experiment, seven

columns of the orthogonal arrayL27(313) were selected. These are indicated in Table 15.59
(page 545). For the (1

2)4 fraction of the 27 factorial experiment, the orthogonal arrayL8(27)
is shown in Table 15.23 (page 508), with the noise factors assigned to the columns in the
orderH , P , K, −J , −L, −M, N , where the minus signs indicate that the column was
multiplied by−1 (thus reversing the high and low levels).

The maximum absolute angle of swing was ascertained for each of the selected com-
binations of design- and noise-factor levels. The data are reproduced in Table 15.31. The
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Table 15.31 Maximum angle of swing for the inclinometer experiment. Combinations
of design factors A–G are in rows, and combinations of noise factors H–N
are in columns.

H 0 0 0 0 1 1 1 1
P 0 0 1 1 0 0 1 1

Noise J 0 0 1 1 1 1 0 0
Factors: K 0 1 0 1 0 1 0 1

L 0 1 0 1 1 0 1 0
M 0 1 1 0 0 1 1 0
N 0 1 1 0 1 0 0 1

Design Factors
ABCDEFG Mean ln(s2)
0 0 0 0 0 0 0 0.62 3.54 3.56 0.62 3.09 0.71 0.73 3.20 2.01 0.73
0 0 1 1 1 1 1 0.59 3.11 3.11 0.59 2.98 0.63 0.64 3.02 1.83 0.53
0 0 2 2 2 2 2 0.59 3.01 3.02 0.59 2.97 0.61 0.62 3.00 1.80 0.50
0 1 0 1 1 2 2 0.51 2.65 2.65 0.50 2.53 0.53 0.54 2.56 1.56 0.21
0 1 1 2 2 0 0 0.18 0.96 0.96 0.18 0.89 0.19 0.20 0.90 0.56 −1.85
0 1 2 0 0 1 1 1.88 9.58 9.55 1.85 9.30 1.92 1.94 9.48 5.69 2.80
0 2 0 2 2 1 1 0.19 1.03 1.03 0.19 0.97 0.21 0.21 0.93 0.60 −1.72
0 2 1 0 0 2 2 1.85 9.46 9.42 1.82 9.19 1.90 1.92 9.35 5.61 2.77
0 2 2 1 1 0 0 0.52 2.73 2.72 0.51 2.61 0.55 0.56 2.64 1.61 0.27
1 0 0 1 2 1 2 0.29 1.56 1.56 0.29 1.45 0.31 0.32 1.47 0.91 −0.87
1 0 1 2 0 2 0 0.95 4.98 4.93 0.94 4.79 0.99 1.00 4.82 2.93 1.48
1 0 2 0 1 0 1 1.16 6.09 6.09 1.13 5.70 1.21 1.26 5.93 3.57 1.87
1 1 0 2 0 0 1 0.26 1.45 1.45 0.25 1.30 0.29 0.30 1.30 0.83 −1.05
1 1 1 0 1 1 2 1.15 5.99 5.92 1.13 5.69 1.19 1.22 5.84 3.51 1.84
1 1 2 1 2 2 0 0.85 4.31 4.30 0.84 4.23 0.86 0.88 4.28 2.57 1.21
1 2 0 0 1 2 0 1.10 5.74 5.67 1.07 5.43 1.14 1.17 5.57 3.36 1.75
1 2 1 1 2 0 1 0.29 1.55 1.55 0.28 1.45 0.31 0.32 1.47 0.90 −0.88
1 2 2 2 0 1 2 0.91 4.64 4.66 0.90 4.56 0.94 0.95 4.57 2.77 1.35
2 0 0 2 1 2 1 0.39 2.05 2.06 0.39 1.96 0.41 0.42 1.97 1.21 −0.30
2 0 1 0 2 0 2 0.67 3.61 3.57 0.65 3.27 0.72 0.74 3.41 2.08 0.79
2 0 2 1 0 1 0 1.42 7.31 7.38 1.41 7.14 1.48 1.51 7.24 4.36 2.27
2 1 0 0 2 1 0 0.69 3.66 3.60 0.67 3.37 0.73 0.74 3.47 2.12 0.82
2 1 1 1 0 2 1 1.18 6.04 6.06 1.17 5.90 1.21 1.23 5.95 3.59 1.88
2 1 2 2 1 0 2 0.37 1.95 1.95 0.37 1.87 0.39 0.40 1.88 1.15 −0.40
2 2 0 1 0 0 2 0.39 2.15 2.16 0.38 1.94 0.44 0.44 1.96 1.23 −0.25
2 2 1 2 1 1 0 0.44 2.29 2.29 0.43 2.21 0.46 0.47 2.22 1.35 −0.07
2 2 2 0 2 2 1 1.84 9.35 9.19 1.79 9.06 1.85 1.89 9.28 5.53 2.74

Source: Lewis, S. M., Hodgson, B. A., New, R. E., and Sexton, C. J. (1989). Copyright © 1989
Mechanical Engineering Publications. Reprinted with permission.

noise-factor combinations label the columns, and the design-factor combinations label the
rows. The last two columns of the table show the average and log sample variance of the
observations for the design combinations calculated across the noise combinations.

Consider first using the log sample variance ln(s2) of the observations as the response
variable. The analysis of variance table is shown in Table 15.32. We have included the
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Table 15.32 Analysis of variance for ln(s2) response for the inclinometer
experiment

Source of Degrees of Sum of Mean
Variation Freedom Squares Square Ratio p-value
A 2 0.6316 0.3158
Linear A 1 0.5798 0.5798 22.73 0.0005
Quadratic A 1 0.0519 0.0519 2.03 0.1794
B 2 0.1358 0.0679
Linear B 1 0.0581 0.0581 2.28 0.1571
Quadratic B 1 0.0777 0.0777 3.05 0.1064
C 2 9.8448 4.9224
Linear C 1 9.8241 9.8241 385.18 0.0001
Quadratic C 1 0.0207 0.0207 0.81 0.3852
D 2 18.8987 9.4493
Linear D 1 18.3769 18.3769 720.53 0.0001
Quadratic D 1 0.5217 0.5217 20.46 0.0007
E 2 7.0366 3.5183
Linear E 1 7.0044 7.0044 274.63 0.0001
Quadratic E 1 0.0322 0.0322 1.26 0.2829
F 2 9.5150 4.7575
Linear F 1 9.4043 9.4043 368.73 0.0001
Quadratic F 1 0.1106 0.1106 4.34 0.0593
G 2 0.0354 0.0177 0.69 0.5184
Error 12 0.3061 0.0255
Total 26 46.4039

Table 15.33 Contrast estimates (log var response)

Lin A Lin C Lin D Quad D Lin E Lin F
0.359 1.478 −2.021 0.590 −1.248 1.446

information needed for testing the hypotheses of negligible linear and quadratic trends in
each of the factors except forG. The levels ofG are not equally spaced, and therefore the
correct trend contrast coefficients are not those shown in Table A.2.

If we test the hypotheses of negligible contrasts for each trend contrast shown in Ta-
ble 15.32 at individual significance levelsα∗ � 0.01 and test the hypothesis of no effect
of factorG at levelα∗ � 0.01 (for an overall level of at mostα � 0.13), we reject the
hypotheses of negligible linear trends in factorsA,C,D,E,F and of a negligible quadratic
trend in factorD. FactorsB andG show very little effect on log variance response, so these
factors (flexure thickness and copper plating thickness) cannot be employed to achieve less
variability in the swing in the inclinometer. The contrast estimates for the nonnegligible
contrasts are shown in Table 15.33. From the signs on the contrast estimates we see that in
order to reduce the variability of the swing, factorsA, C, andF should be set at their low
levels, while factorsD andE should be set at their high levels.

In order to reduce the size of the swing, we need to use as response variable the average
swing for each design combination (averaged over the noise combinations). These are listed
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Table 15.34 Analysis of variance for average response for the inclinometer
experiment

Source of Degrees of Sum of Mean
Variation Freedom Squares Square Ratio p-value
A 2 0.1288 0.0644
Linear A 1 0.1023 0.1023 0.53 0.4813
Quadratic A 1 0.0264 0.0264 0.14 0.7183
B 2 0.2899 0.1449
Linear B 1 0.2850 0.2850 1.47 0.2486
Quadratic B 1 0.0049 0.0049 0.03 0.8768
C 2 12.9528 6.4764
Linear C 1 12.8863 12.8863 66.48 0.0001
Quadratic C 1 0.0665 0.0665 0.34 0.5689
D 2 24.6042 12.3021
Linear D 1 22.9193 22.9193 118.23 0.0001
Quadratic D 1 1.6850 1.6850 8.69 0.0122
E 2 9.0561 4.5280
Linear E 1 7.9385 7.9385 40.95 0.0001
Quadratic E 1 1.1177 1.1177 5.77 0.0334
F 2 11.5710 5.7855
Linear F 1 11.2476 11.2476 58.02 0.0001
Quadratic F 1 0.3234 0.3234 1.67 0.2208
G 2 0.6725 0.3362 1.73 0.2179
Error 12 2.3262 0.1938
Total 26 61.6014

Table 15.35 Contrast estimates (average response)

Lin C Lin D Quad D Lin E Quad E Lin F
1.692 −2.257 1.060 −1.328 0.863 1.581

in Table 15.31. The analysis of variance (shown in Table 15.34) identifies the linear trends
of factorsC, D, E, andF as having large effects on the swing. The contrast estimates are
shown in Table 15.35. The signs of the estimates suggest that factorsD andE should be
set at their high levels and factorsC andF at their low levels. Since this agrees with the
conclusions of the analysis of variability, it is possibile to reduce the size and the variability
of the swing simultaneously.

Plots of the least squares estimates of the effect of the levels of factorD for both log sample
variance and average response are shown in Figure 15.7. The conclusions of the experiment
are that the dimensions of the flexure and bob-weight (A,C, F ) should be decreased, while
the dimensions of the flange (D, E) should be increased. The experimenters comment in
the article that the results match what would be expected by engineering principles.

The SAS commands for analyzing this experiment are discussed in Example 15.8.2,
Section 15.8. The analysis of the same experiment using a mixed array approach, rather
than a product array approach, are discussed in Example 15.8.2.
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Figure 15.7
Plots of the effect of
the levels of factor D
for the inclinometer
experiment, where

xijklmnp denotes
average response and
vijklmnp denotes the log
sample variance ln(s2)

for corresponding
design factor
combinations
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Table 15.36 SAS program for the sludge experiment—cell-means model

DATA SLG;
INPUT A B C D E Y;
TC=(((((((A*10)+B)*10)+C)*10)+D)*10)+E;
LINES;
0 0 0 1 0 195
0 0 1 1 1 496
0 1 0 0 1 87
0 1 1 0 0 1371
1 0 0 0 1 102
1 0 1 0 0 1001
1 1 0 1 0 354
1 1 1 1 1 775

;
PROC PRINT;
;
PROC GLM;
CLASSES TC;
MODEL Y= TC;
ESTIMATE ’A’ TC -1 -1 -1 -1 1 1 1 1 / DIVISOR=4;
ESTIMATE ’B’ TC -1 -1 1 1 -1 -1 1 1 / DIVISOR=4;
ESTIMATE ’C’ TC -1 1 -1 1 -1 1 -1 1 / DIVISOR=4;
ESTIMATE ’D’ TC 1 1 -1 -1 -1 -1 1 1 / DIVISOR=4;
ESTIMATE ’E’ TC -1 1 1 -1 1 -1 -1 1 / DIVISOR=4;
ESTIMATE ’AC’ TC 1 -1 1 -1 -1 1 -1 1 / DIVISOR=4;
ESTIMATE ’BC’ TC 1 -1 -1 1 1 -1 -1 1 / DIVISOR=4;

15.8 Using SAS Software

15.8.1 Fractional Factorials

The analysis of a fractional factorial experiment by computer is identical to that of a single-
replicate factorial experiment (Section 13.11) except that only one main effect or interaction
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Table 15.37 Output from SAS program for the sludge experiment—cell-means model

The SAS System
General Linear Models Procedure

Dependent Variable: Y
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 7 1510451.9 215778.8 . .
Error 0 . .
Corrected Total 7 1510451.9

Source DF Type III SS Mean Square F Value Pr > F
TC 7 1510451.9 215778.8 . .

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
A 20.750000 99999.99 0.0 0
B 198.250000 99999.99 0.0 0
C 726.250000 99999.99 0.0 0
D -185.250000 99999.99 0.0 0
E -365.250000 99999.99 0.0 0
AC -66.250000 99999.99 0.0 0
BC 126.250000 99999.99 0.0 0

Table 15.38 SAS program for the sludge experiment—five-way model

PROC GLM;
CLASSES A B C D E;
MODEL Y= A B C D E A*C B*C;
ESTIMATE ’A’ A -1 1;
ESTIMATE ’B’ B -1 1;
ESTIMATE ’C’ C -1 1;
ESTIMATE ’D’ D -1 1;
ESTIMATE ’E’ E -1 1;
ESTIMATE ’AC’ A*C 1 -1 -1 1 / DIVISOR=2;
ESTIMATE ’BC’ B*C 1 -1 -1 1 / DIVISOR=2;

can be entered into the model from each line of the aliasing scheme (and none from the
defining relation). If two aliased effects are entered into the model, the Type I sum of squares
and degrees of freedom will be recorded as zero for the second effect entered. The Type III
sum of squares and degrees of freedom will be recorded as zero for both.

In Table 15.36 we show a straightforward program for analyzing the sludge experiment
of Example 15.2.4. The cell-means model in terms of the treatment combinationsTC is
used. (VariablesA–E are created for later use.) The main effect contrasts are obtained using
the contrast coefficients listed in Table 15.8 (page 493). UsingPROC GLM, the analysis of
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Table 15.39 Output from the SAS program for the sludge experiment—five-way model

The SAS System
General Linear Models Procedure

Dependent Variable: Y
Source DF Type III SS Mean Square F Value Pr > F
A 1 861.1 861.1 . .
B 1 78606.1 78606.1 . .
C 1 1054878.1 1054878.1 . .
D 1 68635.1 68635.1 . .
E 1 266815.1 266815.1 . .
A*C 1 8778.1 8778.1 . .
B*C 1 31878.1 31878.1 . .

variance is generated in the usual way by theMODEL statement, while the contrast estimates
are obtained by theESTIMATE statements. The output is shown in Table 15.37. The main
effects are each aliased with 2-factor (and 3-factor) interactions (see page 493). The 2-factor
interactionsAC andBC are aliased withBE andAE, respectively. Since there is only one
observation on each of the observed treatment combinations, the cell-means model leaves
no degrees of freedom for error—this is why thep-values and values of test statistics and
standard errors are either missing or meaningless. The inclusion of theDIVISOR=4 options
in theESTIMATE statements ensures that all the contrasts listed in Table 15.8 will be divided
by v/2 � 4 and give the same estimates as those in Table 15.9 (page 493).

In Table 15.38, we show theSAS program for the equivalent model written in terms of
main-effect and interaction parameters. TheESTIMATE statements for the main effects need
no divisors, as they are automatically divided by 4 (the number of observations on the high
and low levels). However, theESTIMATE statements for the interaction contrasts include
the optionDIVISOR=2, to increase the actual divisor by a factor of 2. Without this option,
the interaction estimates would be calculated with divisor 2 (the number of observations
on each combination of levels of the two factors). The main-effect and interaction sums of
squares are shown in Table 15.39. The output from theESTIMATE statements is identical to
that obtained from the cell-means model.

Again, there are no degrees of freedom for error, since a term has been included in the
model from every row of the aliasing scheme. If all 2-factor interactions can be assumed
to be negligible, thenAC andBC would be omitted from the model, leaving 2 degrees of
freedom for error.

Table 15.40 shows what happens when two aliased terms are entered into the model. The
defining relation for the14–fraction was stated in Example 15.2.4 to beI � ABD � CDE �
ABCE. Consequently,A is aliased withBD. AddingBD into the model subsequent toA
gives Type I sum of squares and degrees of freedom forBD equal to zero. This is because
BD adds no more information ifA is already in the model. The Type III sums of squares
are zero for bothA andBD, since each is added into the model assuming that the other is
already in the model.
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Table 15.40 Output from SAS program for the sludge experiment—five-way model, with too
many terms

The SAS System
General Linear Models Procedure

Dependent Variable: Y

Source DF Type I SS Mean Square F Value Pr > F
A 1 861.1 861.1 . .
B 1 78606.1 78606.1 . .
C 1 1054878.1 1054878.1 . .
D 1 68635.1 68635.1 . .
E 1 266815.1 266815.1 . .
A*C 1 8778.1 8778.1 . .
B*C 1 31878.1 31878.1 . .
B*D 0 0.0 . . .

Source DF Type III SS Mean Square F Value Pr > F
A 0 0.0 . . .
B 1 78606.1 78606.1 . .
C 1 1054878.1 1054878.1 . .
D 1 68635.1 68635.1 . .
E 1 266815.1 266815.1 . .
A*C 1 8778.1 8778.1 . .
B*C 1 31878.1 31878.1 . .
B*D 0 0.0 . . .

In Exercise 14, information is given on how to use the SAS software for analysis of a
34−1

IV design, using the data of the refinery experiment of Example 15.3.1.

15.8.2 Design for the Control of Noise Variability

We now turn to the analysis of experiments involving design and noise factors, often known as
Taguchi experiments. These were reviewed in Section 15.7. There are two approaches to the
analysis. The first approach involves the analysis of the mean and variance of the response
observed for each design-treatment combination, calculated over the levels of the noise
factors. The second approach involves the study of design-by-noise interactions. The first
approach requires every noise combination to be observed with every design combination
(that is, a product array), and the second approach requires randomization of all observed
combinations of noise and design factors taken together.

Example 15.8.1 Inclinometer experiment—product-array approach

The inclinometer experiment was described in Section 15.7.1, and the data are shown in
Table 15.31 (page 518). TheSAS program in Table 15.41 reads in the data corresponding to
each combination of levels of the seven design factors (A–G) without identifying the levels
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Table 15.41 SAS program for the product array analysis of the inclinometer experiment.

DATA INCLP;
INPUT A B C D E F G Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8;
SUM = (Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8);
AVY = SUM/8;
VAR = ((Y1*Y1 + Y2*Y2 + Y3*Y3 + Y4*Y4 + Y5*Y5 + Y6*Y6

+ Y7*Y7 + Y8*Y8) - SUM*SUM/8)/7;
LNVAR = LOG(VAR);
LINES;
0 0 0 0 0 0 0 0.62 3.54 3.56 0.62 3.09 0.71 0.73 3.20
0 0 1 1 1 1 1 0.59 3.11 3.11 0.59 2.98 0.63 0.64 3.02
: : : : : : : : : : : : : : :
2 2 2 0 2 2 1 1.84 9.35 9.19 1.79 9.06 1.85 1.89 9.28

;
PROC PRINT;
;
* Analysis of the log sample variance;
PROC GLM;
CLASS A B C D E F G;
MODEL LNVAR = A B C D E F G;
ESTIMATE ’Lin A’ A -1 0 1;
ESTIMATE ’Quad A’ A 1 -2 1;

: : : : : : :
ESTIMATE ’Quad F’ F 1 -2 1;
CONTRAST ’Lin A’ A -1 0 1;
CONTRAST ’Quad A’ A 1 -2 1;

: : : : : : :
CONTRAST ’Quad F’ F 1 -2 1;

;
* Analysis of the sample mean;
PROC GLM;
CLASS A B C D E F G;
MODEL AVY = A B C D E F G;
ESTIMATE ’Lin A’ A -1 0 1;
ESTIMATE ’Quad A’ A 1 -2 1;

: : : : : : :
ESTIMATE ’Quad F’ F 1 -2 1;
CONTRAST ’Lin A’ A -1 0 1;
CONTRAST ’Quad A’ A 1 -2 1;

: : : : : : :
CONTRAST ’Quad F’ F 1 -2 1;

of the noise factors. The averageAVY and the log sample varianceLNVAR of the observations
for each design-treatment combination is computed and added to the data set. Since only
27 (i.e., 33) of the 37 design combinations are observed, we have a 37−4 fractional factorial
experiment with two possible response variables.
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Table 15.42 SAS program for the mixed-array analysis of the inclinometer experiment

DATA INCLM;
INPUT A B C D E F G H P J K L M N Y;
LINES;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.62
0 0 0 0 0 0 0 0 0 0 1 1 1 1 3.54
0 0 0 0 0 0 0 0 1 1 0 0 1 1 3.56
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0.62
0 0 0 0 0 0 0 1 0 1 0 1 0 1 3.09
0 0 0 0 0 0 0 1 0 1 1 0 1 0 0.71
0 0 0 0 0 0 0 1 1 0 0 1 1 0 0.73
0 0 0 0 0 0 0 1 1 0 1 0 0 1 3.20
0 0 1 1 1 1 1 0 0 0 0 0 0 0 0.59
0 0 1 1 1 1 1 0 0 0 1 1 1 1 3.11
: : : : : : : : : : : : : : :
2 2 2 0 2 2 1 1 1 0 0 1 1 0 1.89
2 2 2 0 2 2 1 1 1 0 1 0 0 1 9.28

;
PROC GLM;
CLASS A B C D E F G H P J K L M N;
MODEL Y = A B C D E F G H P J K L M N
A*H B*H C*H D*H E*H F*H G*H A*P B*P C*P D*P E*P F*P G*P
A*J B*J C*J D*J E*J F*J G*J A*K B*K C*K D*K E*K F*K G*K
A*L B*L C*L D*L E*L F*L G*L A*M B*M C*M D*M E*M F*M G*M
A*N B*N C*N D*N E*N F*N G*N;

CONTRAST ’Lin B’ B -1 0 1;
CONTRAST ’Quad B’ B 1 -2 1;
ESTIMATE ’G2-G0’ G -1 0 1;
ESTIMATE ’G2-G1’ G 0 -1 1;
ESTIMATE ’G1-G0’ G -1 1 0;
ESTIMATE ’Lin B’ B -1 0 1;
ESTIMATE ’Quad B’ B 1 -2 1;

Two analyses are requested in Table 15.41. The first uses the response variableLNVAR.
An analysis of variance table is requested via thePROC GLM statement for the model that
includes main effects but no interactions. The least squares means for the levels of the design
variables are requested via theLSMEANS statement, and these can be used to prepare plots
such as those shown in Figure 15.7 (page 521). Linear and quadratic trends in each design
factor can be tested viaESTIMATE or CONTRAST statements, only two of which are shown
in the program. The final section of the program in Table 15.41 uses the response variable
AVY. The output is similar to that shown in Tables 15.32–15.35, pages 519–520. ✷

Example 15.8.2 Inclinometer experiment—mixed-array approach

In the mixed-array approach, it is necessary to input the levels of the noise factors as well as
those of the design factors. There are 216 observations in total—a sufficient number to allow
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Table 15.43 Output from the SAS program for the inclinometer experiment—mixed-array
analysis

The SAS System
General Linear Models Procedure

Dependent Variable: Y
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 119 1245.7533 10.4685 37.32 0.0001
Error 96 26.9252 0.2805
Corrected Total 215 1272.6785

Source DF Type I SS Mean Square F Value Pr > F
A 2 1.03058 0.51529 1.84 0.1648
B 2 2.31901 1.15951 4.13 0.0190
C 2 103.62218 51.81109 184.73 0.0001
D 2 196.83383 98.41692 350.90 0.0001
E 2 72.44887 36.22444 129.16 0.0001
F 2 92.56799 46.28399 165.02 0.0001
G 2 5.37960 2.68980 9.59 0.0002
: : : : : :
M 1 0.48356 0.48356 1.72 0.1923
N 1 559.82920 559.82920 1996.03 0.0001
: : : : : :
B*N 2 1.02817 0.51409 1.83 0.1655
C*N 2 46.05211 23.02606 82.10 0.0001
D*N 2 87.46056 43.73028 155.92 0.0001
E*N 2 32.21601 16.10800 57.43 0.0001
F*N 2 41.17091 20.58545 73.40 0.0001
G*N 2 2.40028 1.20014 4.28 0.0166

Contrast DF Contrast SS Mean Square F Value Pr > F
Lin B 1 2.2801000 2.2801000 8.13 0.0053
Quad B 1 0.0389120 0.0389120 0.14 0.7104

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
G2-G0 -0.02583333 -0.29 0.7704 0.08826590
G2-G1 -0.34694444 -3.93 0.0002 0.08826590
G1-G0 0.32111111 3.64 0.0004 0.08826590
Lin B 0.25166667 2.85 0.0053 0.08826590
Quad B 0.05694444 0.37 0.7104 0.15288103

estimation of the main effects of the seven design 3-level factors (2 degrees of freedom each)
and the seven noise 2-level factors (1 degree of freedom each), all of the 49 design-by-noise
interactions (2 degrees of freedom each). A few nonaliased design-by-design interactions
(4 degrees of freedom each) are also estimable.
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Figure 15.8
Interaction plots for

the inclinometer
experiment
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(d) FN interaction

The model statement shown in Table 15.42 includes only the main effects of the design and
noise factors and the design-by-noise interactions. Most of the design-by-noise interactions
are negligible, withp-values over 0.9. Since there are 63 terms in the model, we show in
Table 15.43 only that part of theSAS analysis of variance for main effects and for interactions
whose associatedp-values are less than 0.2. For an overall significance level of at most
α � 0.126, we would test each individual hypothesis at levelα∗ � 0.002. Looking at the
p-values in Table 15.43, we note that the only design-by-noise interactions that appear to
be significantly different from zero are the interactions of noise factorN with design factors
C, D, E, andF . Interaction plots for these four interactions are shown in Figure 15.8. We
can see that in order to reduce the dependency of factorsC,D,E, andF on noise factorN ,
factorsC andF would be set at their low levels and factorsD andE at their high levels.
These are also the levels that reduce the total amount of swing.

We can also see from the analysis of variance table, Table 15.43, that factorG (copper
plating thickness) affects the amount of swing, although its interaction with noise factorN

(maximum horizontal amplitude of vibration) is smaller. From theESTIMATE statements in
theSAS program, the least squares estimates for the three contrasts inG (averaged over the
levels of the other factors) arêG2 −G0 � −0.026, ̂G2 −G1 � −0.347, ̂G1 −G0 � 0.321,

indicating that the smallest amount of swing is given by level 2, closely followed by level
0. Thus,G could be set at either the low or high level. Although we do not have enough
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evidence to conclude that factorB (flexure thickness) affects the swing significantly, it may
still be of interest to examine the direction of any trend that may be present (thep-value for
the test of no effect of factorB is 0.019). The least squares estimate for the linear contrast
in the levels ofB is 0.251, indicating that the low level possibly gives the smallest amount
of swing.

Thus the final recommendation is to setC andF low, and to setD andE high, withG at
either the high or low level. FactorA can be set at the cheapest level. FactorB could be set
at the low level or to the cheapest level. The product-array analysis in Section 15.7.1 gave
the same conclusions for the highly significant factorsC,D,E, andF , and any followup
experiment would want to concentrate on these four factors together with the noise factor
N . ✷

Exercises

1. Decontamination experiment, continued
Suppose that only the first block of the data (beta particles) had been obtained in the
decontamination experiment described in Exercise 8 of Chapter 13 (page 455). The
design would then have been a1

2–fraction of a 24 experiment with defining relation
I � ABCD. The half fraction is shown in Table 15.44. Analyze the data and compare
your conclusions with those of the full experiment in Exercise 8 of Chapter 13. Explain
the circumstances under which a half fraction would be preferred to a single-replicate
factorial experiment.

2. Mangold experiment, continued
The mangold experiment in Section 13.5, page 437, was a single replicate confounded
design for a 25 experiment inb � 4 blocks of size 8. The five factors were Sulphate
of Ammonia (factorA at levels 0 or 0.6 cwt per acre), Superphosphate (factorB at
levels 0 or 0.5 cwt per acre), Muriate of Potash (factorC at levels 0 or 1.0 cwt per
acre), Agricultural Salt (factorD at levels 0 or 5 cwt per acre), and Dung (factorE at
levels 0 or 10 tons per acre). All of the 3-, 4-, and 5-factor interactions were expected to
be negligible. The two three-factor interactionsABD,BCE and their productACDE
were selected for confounding.
Suppose that the data from only the third block had been available, so that we have a
1
4–fraction. The data are reproduced in Table 15.45.
(a) Write down the aliasing scheme for this fractional factorial experiment.

Table 15.44 Block I of the decontamination experiment

Treatment Combinations
(Response)

1010 1111 0110 0000 1100 0101 0011 1001
(716) (686) (498) (1437) (527) (579) (1433) (906)

Source: Barnett, M. K. and Mead, F. C. Jr. (1956). Copyright © 1956
Blackwell Publishers. Reprinted with permission.
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Table 15.45 Yields (in pounds) of mangold roots for Block III of the mangold
experiment

Treatment Combinations
(Yield)

00101 11001 01011 01110 10010 11100 00000 10111
(896) (1284) (996) (860) (1184) (984) (740) (1468)

Source:Design and Analysis of Experiments, by O. Kempthorne, Copyright © 1976, John
Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.

(b) Analyze the data. What conclusions can you draw?

(c) Comparing your conclusions with those of Section 13.5, what extra information
do you gain by running the single-replicate design instead of the fraction?

(d) When would you recommend that an experimeter consider using a fractional
factorial design rather than a single-replicate design?

3. Dye experiment, continued
The dye experiment was discussed in Section 14.2.4 (page 467). There were three
factors: the concentration of inorganic materialM in the free water in the reaction
mixture (factorA at three equally spaced levels), the volume of free water in the reaction
mixture (factorB at three equally spaced levels), and the concentration of inorganic
materialN in the free water in the reaction mixture (factorC at three equally spaced
levels). The data for the original experiment were given in Table 14.6 (page 468) and
the first replicate is reproduced in Table 15.46. The design for the first replicate was a
single-replicate design that confounded (AB2C2;A2BC). Analyze the data of Block II
as though it had come from a13–fraction. State your conclusions.

4. Sugar beet experiment, continued
The sugar beet experiment described in Exercise 6 of Chapter 14 concerned the effects
of three standard fertilizers, nitrogen, phosphate, and potassium (factorsN ,P , andK),
each at three equally spaced levels, on sugar beet yield. The experiment was run as a
single-replicate confounding the contrasts (NP 2K; N2PK2). Suppose the only data
available were those of Block III, reproduced in Table 15.47.
(a) If the only data available were those from Block III, write out the aliasing scheme

for the design.

(b) Analyze the data from Block III as though they came from a1
3–fraction. State your

conclusions.

Table 15.46 Volume of dyestuff for Block I of the dye experiment

Treatment Combinations
(Yield)

000 021 012 110 101 122 220 211 202
(74) (130) (56) (110) (166) (227) (195) (146) (90)

Source: Davies, O. L. (1963). Reprinted by permission of Addison Wesley Longman
Ltd.
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Table 15.47 Yields of sugar beet for Block III of the sugar-beet experiment

Treatment Combinations
(Yield)

202 020 210 111 001 122 221 012 100
(2198) (2093) (2354) (2268) (1926) (2152) (2349) (2025) (2106)

Source: Yates, F. (1935). Copyright © 1935 Blackwell Publishers. Reprinted with permission. (Reprinted
in Experimental Design (1970), Charles Griffin and Company, Ltd., London. Copyright 1970 Edward
Arnold/Hodder & Stoughton Educational. Reprinted with permission.)

5. Flour experiment number 3, continued
Suppose that the data from Block II of the 4× 24 experiment in Table 15.17 (page 504)
had been lost, so that only Block I remained. This would then constitute a1

4–fraction.

(a) Write out the aliasing scheme for the design. What is the resolution number. Is this
a good design?

(b) Bearing in mind the purpose of the experiment, can you find a better1
4–fraction?

If so, write out the design and its aliasing scheme.

(c) Analyze the data from Block I of Table 15.17. What can you conclude?

6. Handwheel experiment
E. N. Corlett and G. Gregory describe an experiment in the 1960 issue ofApplied
Statistics that was concerned with finding the design of a machine tool handwheel
that would maximize the accuracy on the part of the operator in the setting of the
machine tool handwheel. The apparatus consisted of an optical dividing head with
a dial mounted onto a mandrel to which was connected the handwheel spindle. The
spindle was provided with an adjustable friction brake. The operator first offset the dial
by 15 degrees and then moved the handwheel so that a line on the dial was brought
“into coincidence with a fixed line on the dividing head, making the final adjustment
by means of a series of taps by hand on the handwheel rim.”
Seven factors, each at two levels (coded 0 and 1) were investigated as follows.

A: Handwheel diameter (5.5 in., 10 in.)

B: Dial diameter (4 in., 8 in.)

C: Thickness of the dial line (0.008 in., 0.064 in.)

D: Friction of the spindle (7.5 lb.-in., 45 lb.-in.)

E: Level of operator’s elbow relative to height of handwheel
(Level with center of spindle, 6 in. above spindle center)

F : Previous experience of operator (Practiced, Nonpracticed)

G: Knowledge of accuracy of previous setting (Feedback, No feedback)

The response variable was ln(s2), wheres2 was the sample variance of 25 repeated
observations for a particular treatment combination. It was estimated that each set of 25
repeated observations would take about 15 minutes to complete, including setup time.
In a morning or afternoon session of four hours, therefore, sixteen observations could
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Table 15.48 Log variance of observations for the handwheel experiment

Block I Block II
ABCDEFG ln(s2) ABCDEFG ln(s2)
0 0 0 0 0 0 0 0.7044 1 1 0 0 0 0 0 0.0561
1 0 1 0 0 0 0 0.5907 0 1 1 0 0 0 0 0.3615
0 0 1 0 0 0 1 −0.0297 1 1 1 0 0 0 1 −0.1158
1 0 0 0 0 0 1 0.3914 0 1 0 0 0 0 1 −0.1952
0 1 0 1 0 0 0 0.0792 1 0 0 1 0 0 0 0.4585
1 1 1 1 0 0 0 0.3228 0 0 1 1 0 0 0 0.2531
0 1 1 1 0 0 1 −0.1599 1 0 1 1 0 0 1 0.2727
1 1 0 1 0 0 1 −0.0996 0 0 0 1 0 0 1 0.6861
0 0 0 1 1 0 0 0.5878 1 1 0 1 1 0 0 −0.0074
1 0 1 1 1 0 0 0.3577 0 1 1 1 1 0 0 −0.2328
0 0 1 1 1 0 1 0.1847 1 1 1 1 1 0 1 −0.1046
1 0 0 1 1 0 1 0.5706 0 1 0 1 1 0 1 −0.2069
0 1 0 0 1 0 0 −0.1805 1 0 0 0 1 0 0 0.8051
1 1 1 0 1 0 0 −0.3224 0 0 1 0 1 0 0 0.4634
0 1 1 0 1 0 1 −0.1433 1 0 1 0 1 0 1 0.2904
1 1 0 0 1 0 1 0.1354 0 0 0 0 1 0 1 0.4692

Block III Block IV
ABCDEFG ln(s2) ABCDEFG ln(s2)
0 1 0 0 0 1 0 −0.6760 1 0 0 0 0 1 0 0.5457
1 1 1 0 0 1 0 −0.3824 0 0 1 0 0 1 0 0.0846
0 1 1 0 0 1 1 −0.2996 1 0 1 0 0 1 1 0.4453
1 1 0 0 0 1 1 −0.4539 0 0 0 0 0 1 1 0.2361
0 0 0 1 0 1 0 0.2970 1 1 0 1 0 1 0 −0.5069
1 0 1 1 0 1 0 0.1646 0 1 1 1 0 1 0 −0.3299
0 0 1 1 0 1 1 0.3878 1 1 1 1 0 1 1 −0.3245
1 0 0 1 0 1 1 0.2168 0 1 0 1 0 1 1 −0.3233
0 1 0 1 1 1 0 0.0148 1 0 0 1 1 1 0 0.4199
1 1 1 1 1 1 0 −0.4898 0 0 1 1 1 1 0 0.2957
0 1 1 1 1 1 1 0.1308 1 0 1 1 1 1 1 0.2278
1 1 0 1 1 1 1 −0.1829 0 0 0 1 1 1 1 0.4269
0 0 0 0 1 1 0 0.0182 1 1 0 0 1 1 0 −0.4798
1 0 1 0 1 1 0 0.2070 0 1 1 0 1 1 0 −0.0669
0 0 1 0 1 1 1 0.1101 1 1 1 0 1 1 1 −0.0584
1 0 0 0 1 1 1 0.2642 0 1 0 0 1 1 1 −0.6856

Source: Corlett, E. N. and Gregory, G. (1960). Copyright © 1960 Blackwell
Publishers. Reprinted with permission.

be taken. The experiment was to last over two days, which meant that a 27−1 fractional
factorial experiment was required, divided into 4 blocks of 16.
The highest-order interaction was selected for the defining relation of the fraction, that
is, I � ABCDEFG. Only two operators were used for the experiment, one for each
level of practice. The difference between these operators was not of interest, only the
interaction of the level of practice with the other factors. Rather unusually, then, the
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main effect ofF was selected as one of the contrasts for confounding. All the 2-factor
interactions and most of the 3-factor interactions were thought to be of interest. Unlikely
3-factor interactions includedACGandBDE, which were also chosen for confounding
with blocks. The complete set of confounded contrasts wasF ,ACG,ACFG together
with its set of aliasesABCDEG, BDEF , BDE. All other main-effect, 2-factor, and
3-factor interaction contrasts could be estimated.
The data obtained from the experiment are shown in Table 15.48.
(a) Write out the aliasing scheme for the design.

(b) Using a computer package, estimate the (estimable) main-effect and interaction
contrasts.

(c) Prepare a normal probability plot of the contrast estimates and identify the most
important main effects and interactions.

(d) The authors of the article point out that if the responses are normally distributed and
n is large (wheren is the number of repeated observations, 25 in this experiment),
then the response variable ln(s2) has approximately constant variance equal to
2/(n−1). Calculate the standard error for each of the contrasts estimated in part (c).
Using Bonferroni’s method with an individual significance level of 0.001 for each
test (giving an overall level of at most 0.06), which main effects and interactions
are significantly different from zero? Do these results agree with the results from
part (c)? Discuss why or why not.

(e) Draw interaction plots of the important interactions and discuss recommended
settings for the six factorsA,B,C,D,E, andG for the practiced and nonpracticed
operators individually.

(f) Would you recommend further experimentation? If so, which factors and which
settings would you recommend? Can you suggest a suitable design?

7. Paint experiment
(a) Suppose that you need to design an experiment involving 6 factors (A,B,C,D,E,

F ) at 2 levels each (64 treatment combinations) and that only 8 observations can
be taken. You decide to sacrifice information on theABF , ACDF , andABCE
contrasts. Write out the defining relation and the two rows of the aliasing scheme
showing the aliasing ofA and the aliasing ofAC.

(b) Explain what aliasing means.

(c) An experiment was run in Germany by S. Eibl, U. Kess, and F. Pukelsheim (Journal
of Quality Technology, 1992) on the thickness of a paint coating. Prior to the
experiment, the thickness achieved was around 2 mm, much higher than the target
0.8 mm. They selected the following six factors, each at two levels:
A: Belt speed

B: Tube width

C: Pump pressure

D: Paint viscosity

E: Tube height
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Table 15.49 Paint thickness for the paint experiment

A B C D E F yi1 yi2 yi3 yi4 y i. ln(s2i )
1 0 1 0 0 0 1.09 1.12 0.83 0.88 0.9800 −3.8444
0 0 1 0 1 1 1.62 1.49 1.48 1.59 1.5450 −5.3050
1 1 0 0 0 1 0.88 1.29 1.04 1.31 1.1300 −3.1497
0 1 0 0 1 0 1.83 1.65 1.71 1.76 1.7375 −5.1456
0 0 0 1 0 1 1.46 1.51 1.59 1.40 1.4900 −5.0411
1 0 0 1 1 0 0.74 0.98 0.79 0.83 0.8350 −4.5375
0 1 1 1 0 0 2.05 2.17 2.36 2.12 2.1750 −4.0380
1 1 1 1 1 1 1.51 1.46 1.42 1.40 1.4475 −6.0498

Source: Eibl, S., Kess, U., and Pukelsheim, F. (1992). Copyright © 1997 American
Society for Quality. Reprinted with Permission.

F : Heating temperature
They used the18–fraction with the aliasing scheme in part (a), and they decided to
ignore all interactions for this first experiment. Since they wanted to monitor the
variation of the thickness, they took four observations on each of the 8 treatment
combinations in the fraction. The data are shown in Table 15.49.
Calculate the analysis of variance table and contrast estimates using response
variableLNVAR (the log variance). What do you conclude?

(d) Calculate the analysis of variance table and also contrast estimates of interest,
using the 32 observations separately (without combining them into an average).
Remembering that the goal is to reduce the thickness, what conclusions would you
draw from this particular experiment?

(e) The experimenters decided to run a followup experiment with at most 16 obser-
vations. You can use any of the original 6 factors and you can change the levels
from their original settings. The ultimate goal is to achieve a coating of 0.8 mm.
Suggest a followup experiment.

8. Laser printer experiment
The laser printer experiment was run by H.-P. Chu, M. Lagus, and P. Weiss at the
University of Wisconsin as a class project. They identified options that could be set for
drawing a picture on a laser printer using the MacDraw Pro package, and they wanted to
find out which of the options would speed up or slow down the printing of a reasonably
detailed picture. The 13 factors and their levels (low, high) are listed below.
A: Orientation (vertical, horizontal)

B: Scale (100%, 120%)

C: Complexity (simple, complex)

D: Print (color/grey-scale, black-white)

E: Font substitution (no, yes)

F : Text smoothing (no, yes)

G: Graphics smoothing (no, yes)

H : Faster bitmap printing (no, yes)



Exercises 535

Table 15.50 Times of printing (seconds) for the laser printer experiment

Block A B C D E F G H J K L M N Repl. I Repl. II
II 0 0 0 0 1 1 1 1 1 0 0 0 0 1511 1506
I 1 0 0 0 0 0 1 1 1 1 1 1 0 375 370
I 0 1 0 0 1 1 0 0 1 1 1 0 1 392 392
II 1 1 0 0 0 0 0 0 1 0 0 1 1 523 520
I 0 0 1 0 0 1 0 1 0 1 0 1 1 481 479
II 1 0 1 0 1 0 0 1 0 0 1 0 1 2238 2230
II 0 1 1 0 0 1 1 0 0 0 1 1 0 550 551
I 1 1 1 0 1 0 1 0 0 1 0 0 0 546 542
I 0 0 0 1 1 0 1 0 0 0 1 1 1 369 367
II 1 0 0 1 0 1 1 0 0 1 0 0 1 2242 2243
II 0 1 0 1 1 0 0 1 0 1 0 1 0 584 592
I 1 1 0 1 0 1 0 1 0 0 1 0 0 446 447
II 0 0 1 1 0 0 0 0 1 1 1 0 0 1776 1782
I 1 0 1 1 1 1 0 0 1 0 0 1 0 1053 1059
I 0 1 1 1 0 0 1 1 1 0 0 0 1 462 463
II 1 1 1 1 1 1 1 1 1 1 1 1 1 582 582

J : Flip vertical (no, yes)

K: Invert image (no, yes)

L: Precision bitmap (no, yes)

M: Font (Palatino, Times Italic)

N : Flip horizontal (no, yes)

The factor “complexity” referred to the image being printed. At the high level, more
detail was added to the picture. The other factors were set via the print option of
the drawing package. Two different laser printers and operators were used with the two
printer/operator combinations constituting two blocks. The response variable was speed
of printing, and this was measured by the operator, one of whom used a stop-watch and
the other a wrist-watch.
They used a 213−9 fractional factorial, obtained by confounding the following 9 in-
teractions:ACE, ADF , AGJ , AHK, ALN , BCG, BDH , BMN , andCDN . The
interactionAM (together with its aliases) was confounded with blocks. Thus, the final
design had 16 treatment combinations divided into 2 blocks of size 8, as shown in
Table 15.50. The defining relation for the design contains 29 terms, and so does each
row of the aliasing scheme. The parts of the aliasing scheme involving main effects and
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2-factor interactions are

A � CE � DF � GJ � HK � LN

B � CG � DH � EJ � FK � MN

C � AE � BG � DN � FL � HM

D � AF � BH � CN � EL � GM

E � AC � BJ � DL � FN � KM

F � AD � BK � CL � EN � JM

G � AJ � BC � DM � HN � KL

H � AK � BD � CM � GN � JL

J � AG � BE � FM � HL � KN

K � AH � BF � EM � GL � JN

L � AN � CF � DE � GK � HJ

M � BN � CH � DG � EK � FJ

N � AL � BM � CD � EF � GH � JK

AB � CJ � CK � EG � FH � LM

Block � AM � BL � CK � DJ � EH � FG

(a) The first replicate of data shown in Table 15.50 was analyzed by the experimenters.
Duplicate their analysis by estimating the 13 main-effect contrasts and theAB

interaction contrast using only the Replicate I data. Prepare a normal probability
plot of the contrast estimates. What can you conclude?

(b) The experimenters later decided to obtain an estimate of error, and they repeated
the entire 16 runs in two more blocks. The second set of data is listed as Replicate
II in Table 15.50. Analyze all four blocks of data. What can you now conclude?
Discuss whether statistical significance and practical significance always coincide.

(c) What does the analysis in part (b) tell you about the dangers of relying heavily on
normal probability plots to pick out important interactions?

(d) This is a highly fractionated experiment, which has resulted in a lot of confounding.
Suppose that you were going to run an experiment somewhat similar to this with
32 observations, how would you design it?

9. Flour experiment number 1
The flour experiment was introduced in Example 15.5. In Table 15.51, we show part of
the design for the first experiment in the series. Six ingredients,A,B,C,D,E,F , added
to the flour were to be investigated in the experiment. In addition, there were three noise
factors: FactorP (which was a combination of factorsN andS in Example 15.5) had
two levels (“high yeast with long proof time” or “low yeast with short proof time”),
FactorQ, (as in Example 15.5, two levels “undermixing, little water, heavy pressure”
or “overmixing, much water, little pressure”), and FactorR (two levels, underbake or
overbake).
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Table 15.51 Specific volume for part of experiment 1 of the
flour experiment

Noise Combinations
Design Day 1 Day 2 Day 3 Day 4

Combinations (111) (101) (000) (011)
000000 519 446 337 415
000011 503 468 343 418
001101 567 471 355 424
001110 552 489 361 425
010101 534 466 356 431
010110 549 461 354 427
011000 560 480 345 437
011011 535 477 363 418
100100 558 483 376 418
100111 551 472 349 426
101001 576 487 358 434
101010 569 494 357 444
110001 562 474 358 404
110010 569 494 348 400
111100 568 478 367 463
111111 551 500 373 462

Source: Tuck, M. G., Lewis, S. M., and Cottrell, J. I. L. (1993).
Copyright © 1993 Blackwell Publishers. Reprinted with
permission.

A crossed array was selected. The noise array was a1
2–fraction with defining relation

I � PQR. Each of the four noise combinations was run on a single day, so that the
experiment ran over four days. The design array was a1

4–fraction with defining relation
I � ABCD � BCEF � ADEF , and this was run on each day. Thus the noise
contrasts are confounded with days and cannot be analyzed. However, the object of
the experiment was to examine the average yield (specific volume, ml/100 g) and the
variance of the yield for the design factors across the noise factors.

(a) Calculate the average yield and the log variance of the yield for each design-
treatment combination.

(b) Analyze the two sets of data separately. What recommendations would you make
if the objective is to reduce the variability and increase the specific volume?

10. Injection molding experiment
S. R. Schmidt and R. G. Launsby in their bookUnderstanding Industrial Designed
Experiments describe an experiment on the effect of six factors on the shrinkage of a
part produced by injection molding. The six factors were injection velocity (factorA),
cooling time (factorB), barrel zone temperature (factorC), mold temperature (factor
D), hold pressure (factorE), and back pressure (factorF ). Each factor had two levels
coded 0 and 1.
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Table 15.52 Lengths and widths of parts after shrinkage in the injection molding
experiment

Treatment Length Width
Combinations (Deviation from 14.5)×104 (Deviation from 9.35)×104

A B C D E F

0 0 0 0 0 0 0 5 0 0 5 75 60 70 85 90
0 0 0 1 1 1 75 90 70 65 65 50 40 40 40 45
0 1 1 0 0 1 45 50 45 45 45 45 45 45 50 40
0 1 1 1 1 0 100 105 105 110 105 130 130 125 135 135
1 0 1 0 1 0 105 110 105 120 100 55 60 60 55 60
1 0 1 1 0 1 45 55 65 50 50 80 65 50 40 45
1 1 0 0 1 1 150 140 155 50 145 100 80 85 90 85
1 1 0 1 0 0 55 65 55 55 60 65 60 65 65 60

Source: Schmidt, S. R. and Launsby, R. G. (1992). Copyright © 1992 Air Academy Press.
Reprinted with permission.

There were two responses of interest, the length and width of the part after shrinkage.
The purpose of the experiment was to find settings of the six variables that would enable
the parts to be “on target,” that is, a post-shrinkage length of 14.5 and width of 9.38.
The orthogonal array in Table 15.23 was selected with columns 1–6 labeledD,C,B,A,
E, F . Columns 5 and 6 were multiplied by−1. One degree of freedom (corresponding
to column 7) is available to measureσ 2 or one of the two-factor interactions. Five parts
were measured at each treatment combination, and the lengths and widths are recorded
in Table 15.52.
(a) Write down the defining relation for the18–fraction and the aliasing scheme. The

investigators assumed that all the interactions were negligible. If they had not done
so, which interactions could be measured?

(b) For the length data, calculate the average response and the standard deviation of
the response for each treatment combination.

(c) Can you recommend which factors should be investigated more thoroughly in order
to find a setting that would give the required length and also factors that could be
set to reduce the variability?

(d) Repeat parts (a) and (b) for the width data.

(e) Can you make any overall recommendation?

(f) Write down the assumptions on the model that would need to be true in order to
interpret the analysis of variance. Are these assumptions likely to be valid for this
experiment?

11. Spectrometer experiment, continued
Read the details of the spectrometer experiment in Chapter 7, page 236. You will need
to have access to your solutions to that exercise to answer this question.
Suppose that you are consultant for a different company and that they wish to run a
similar experiment, with the same five factors, but with a total of 64 observations. To
keep things simple, you might recommend that factorsA andC be examined at 2 levels
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each rather than 3 levels in your first experiment (even though you may suspect that some
of the factors have quadratic trends). Thus, you have a 25 experiment. List 5 interactions
that you are particularly interested in studying. You should use information from your
answer to (a) and (b) in choosing the interactions. Design a factorial experiment in 4
blocks of size 8. State exactly how you chose your design. Write out at least three of
the treatment combinations in two of the blocks and explain how you obtained them.

12. Design of industrial experiment
Suppose that you are asked to design an experiment for 6 treatment factors each having
two levels. Only 64 observations can be taken in total, and these should be divided into
8 blocks of size 8. Suppose that you decide to confound the interaction contrastsABD,
DEF , andACDF .
(a) Can all the other interaction contrasts be estimated?

(b) What does the statement “ABD is confounded” mean?

(c) How would you obtain the 8 blocks? Write out two blocks as an example.

(d) Suppose that the budget is cut before the experiment can take place, and only 8
observations can be taken in total. How would you decide which 8 observations to
take? What can be estimated?

(e) Suppose that you were fairly sure that all interactions involving 4 factors or more
were negligible and thatD does not interact with any of the other factors. Suppose
that the analysis of variance table obtained from the results of the experiment is as
in Table 15.53. What would you investigate in a followup experiment? Give your
reasons.

13. Suppose that you wish to run an experiment with four treatment factors (A, B, C, D)
each having three levels. The only likely interactions areAB, AC, andABC. The
experiment needs to be run in blocks of size at mostk � 9.
(a) Design a 34 experiment inb � 32 blocks of sizek � 32 confoundingABD and

AB2CD. What else is confounded? Are you happy with this design? Why or why
not?

(b) Show how you would obtain the nine blocks and show one of the blocks as an
illustration.

Table 15.53 Analysis of variance for the industrial experiment

Source of Degrees of Sum of Mean
Variation Freedom Squares Square Ratio p-value
A 1 262.205 262.205 54.57 0.0857
B 1 11.045 11.045 2.30 0.3712
C 1 981.245 981.245 204.21 0.0445
D 1 5.120 5.120 1.07 0.4899
E 1 1568.000 1568.000 326.33 0.0352
F 1 8.820 8.820 1.84 0.4048
Error 1 4.805 4.805
Total 7 2841.240
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(c) Write out the degrees of freedom column for the analysis of variance table. (Read
the question again before you do this.)

(d) Suppose that the blocks are randomly ordered. After the first block is run, the budget
for the experiment is cut, so only nine observations are available. The design is now
a 34−2 fractional factorial design. Write down the defining relation for the design.
Is this design going to be useful in examining the main effects and the interactions
of interest? Why or why not?

14. Refinery experiment, continued
The refinery experiment was discussed in Example 15.3.1, with a corresponding analysis
of variance table given in Table 15.14 on page 499. A SAS program for generating
similar information is shown in Table 15.54.
(a) Run the SAS program shown in Table 15.54. (The rest of the data are shown in

Table 15.13, page 498.)

(b) Examine the output generated byPROC PRINT. Discuss how the variablesAB and
AB2 are related to the four degrees of freedom for theAB interaction.

(c) Using the output generated by the SAS program, verify that the information in
Table 15.14 (page 499) is correct.
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Table 15.54 SAS program for analysis of the refinery experiment

DATA REFINERY;
INPUT A B C D Y;
AB=MOD(A+B,3); AB2=MOD(A+2*B,3);
AC=MOD(A+C,3); AC2=MOD(A+2*C,3);
AD=MOD(A+D,3); AD2=MOD(A+2*D,3);
BC=MOD(B+C,3); BC2=MOD(B+2*C,3);
BD=MOD(B+D,3); BD2=MOD(B+2*D,3);
CD=MOD(C+D,3); CD2=MOD(C+2*D,3);
LINES;
0 0 0 0 4.2
0 0 1 2 5.9
: : : : :
2 2 2 0 85.1

;
PROC PRINT;
PROC GLM;
CLASS A B C D AB AB2 AC AC2 AD AD2 BC BC2 BD BD2 CD CD2;
MODEL Y = A B C D AB AB2 AC AC2 AD AD2 BC BC2 BD BD2 CD CD2;
CONTRAST ’A LIN’ A -1 0 1;
CONTRAST ’A QUAD’ A 1 -2 1;
CONTRAST ’B LIN’ B -1 0 1;
CONTRAST ’B QUAD’ B 1 -2 1;
CONTRAST ’C LIN’ C -1 0 1;
CONTRAST ’C QUAD’ C 1 -2 1;
CONTRAST ’D LIN’ D -1 0 1;
CONTRAST ’D QUAD’ D 1 -2 1;

PROC GLM; CLASS A B C D;
MODEL Y = A B C D A*B A*C A*D B*C B*D C*D;
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Table 15.55 2p−s fractions of 2p experiments. For each defining relation, s
independent generators are underlined, and s corresponding
equations are given. To obtain the v � 2p−s treatment combinations
in the fraction, list all v combinations of levels ai of the p − s factors
not determined by the equations, then use the equations modulo 2
to complete each treatment combination. For two blocks, confound
the effect in parentheses and its aliases.

2p−s v Defining Relation Equations
25−2
III 8 I = ABCD = ABE = CDE a4 � a1 + a2 + a3

(AC ) a5 � a1 + a2

26−2
IV 16 I = ABCD = CDEF = ABEF a4 � a1 + a2 + a3

(ACE ) a6 � a3 + a4 + a5

27−2
IV 32 I = ABCDE = ABFG = CDEFG a5 � a1 + a2 + a3 + a4

(AEF ) a7 � a1 + a2 + a6

28−2
V 64 I = ABCDE = DEFGH = ABCFGH a5 � a1 + a2 + a3 + a4

(CEF ) a8 � a4 + a5 + a6 + a7

26−3
III 8 I = BCD = ABE = ACDE a4 � a2 + a3

= ABCF = ADF = CEF a5 � a1 + a2
= BDEF (AC ) a6 � a1 + a2 + a3

27−3
IV 16 I = ABCD = CDEF = ABEF a4 � a1 + a2 + a3

= ACEG = BDEG = ADFG a6 � a3 + a4 + a5
= BCFG (ACF ) a7 � a1 + a3 + a5

28−3
IV 32 I = ABCD = CDEF = ABEF a4 � a1 + a2 + a3

= ACEGH = BDEGH = ADFGH a6 � a3 + a4 + a5
= BCFGH (ABG) a8 � a1 + a3 + a5 + a7

29−3
IV 64 I = CDEF = ACEGH = ADFGH a4 � a1 + a2 + a3

= ABCDJ = ABEFJ = BDEGHJ a8 � a1 + a3 + a5 + a7
= BCFGHJ (ACF ) a9 � a1 + a2 + a3 + a4

27−4
III 8 I = ABCD = BCE = ADE a4 � a1 + a2 + a3

= ACF = BDF = ABEF a5 � a2 + a3
= CDEF = ABG = CDG a6 � a1 + a3
= ACEG = BDEG = BCFG a7 � a1 + a2
= ADFG = EFG = ABCDEFG

28−4
IV 16 I = ABCD = CDEF = ABEF a4 � a1 + a2 + a3

= ADFG = BCFG = ACEG a6 � a3 + a4 + a5
= BDEG = ABGH = CDGH a7 � a1 + a4 + a6
= ABCDEFGH = EFGH = BDFH a8 � a1 + a2 + a7
= ACFH = BCEH = ADEH

(ADH )

29−4
IV 32 I = ABCD = CDEF = ABEF a4 � a1 + a2 + a3

= ADFGH = BCFGH = ACEGH a6 � a3 + a4 + a5
= BDEGH = ABGJ = CDGJ a7 � a1 + a4 + a5 + a6
= ABCDEFGH = EFGJ = BDFHJ a8 � a1 + a2 + a7
= ACFHJ = BCEHJ = ADEHJ

(ABH )
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Table 15.56 3p−s fractions of 3p experiments. For each defining relation, s
independent generators are underlined, and s corresponding equations
are given. To obtain the v � 3p−s treatment combinations in the fraction,
list all v combinations of levels ai of the p − s factors not determined by
the equations, then use the equations modulo 3 to complete each
treatment combination.

3p−s v Defining Relation Equations
34−2
III 9 I = AB2C = A2BC 2 a3 � 2a1 + a2

= ABD = A2CD = B2C 2D a4 � 2a2 + 2a3
= A2B2D2 = BCD2 = AC 2D2

35−2
III 27 I = ABC 2D2 = A2B2CD a4 � a1 + a2 + 2a3

= ADE 2 = A2BC 2E 2 = B2CD2E 2 a5 � a1 + a4
= A2D2E = BC 2DE = AB2CE

36−2
IV 81 I = ABC 2D2 = A2B2CD a4 � a1 + a2 + 2a3

= ACEF = A2BD2EF = B2C 2DEF a6 � 2a1 + 2a3 + 2a5
= A2C 2E 2F 2 = BCD2E 2F 2 = AB2DE 2F 2

36−3
III 27 I = ABC 2D2 = A2B2CD a4 � a1 + a2 + 2a3

= BDE 2 = AB2C 2E 2 = A2CD2E 2

= B2D2E = AC 2DE = A2BCE a5 � a2 + a4
= CDF 2 = ABF 2 = A2B2C 2D2F 2 a6 � a3 + a4
= BCD2E 2F 2 = AB2DE 2F 2 = A2C 2E 2F 2

= B2CEF 2 = AD2EF 2 = A2BC 2DEF 2

= C 2D2F = ABCDF = A2B2F

= BC 2E 2F = AB2CD2E 2F = A2DE 2F

= B2C 2DEF = ACEF = A2BD2EF

37−3
IV 81 I = ABC 2D2 = A2B2CD a4 � a1 + a2 + 2a3

= ACEF = A2BD2EF = B2C 2DEF a6 � 2a1 + 2a3 + 2a5
= A2C 2E 2F 2 = BCD2E 2F 2 = AB2DE 2F 2

= BC 2E 2FG = AB2CD2E 2FG = A2DE 2FG a7 � 2a2 + a3
= ABF 2G = A2B2C 2D2F 2G = CDF 2G + a5 + 2a6
= A2BCEG = B2D2EG = AC 2DEG

= B2CEF 2G2 = AD2EF 2G2 = A2BC 2DEF 2G2

= AB2C 2E 2G2 = A2CD2E 2G2 = BDE 2G2

= AB2FG2 = C 2D2FG2 = ABCDFG2
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Table 15.57 Orthogonal arrays with 2p observations and useful column labelings. Assign
factors in alphabetical order.

No. of 8 observations—Design of Table 15.23
factors

Columns
1 2 3 12 13 23 123

3–6 A B C E F G D

No. of 16 observations—Design of Table 15.25
factors

Columns
1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234

4–5 A B C D E

6–15 A B K C L M D E N P F Q G H J

No. of 32 observations
factors

Columns
1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234

4–22 A B C M D N P Q G

Columns
5 15 25 125 35 135 235 1235 45 145 245 1245 345 1345 2345 12345

4–22 E R S T H U V J W K L F

Table 15.58 Generators for cyclically generated orthogonal main-effect plans. These are
saturated designs for factors each at two levels, for n observations with n
divisible by 4 but not a power of 2. To generate a design, systematically
cycle the generator to the right to obtain n − 1 rows; then include a final
row of −1’s.
n Generator
12 1 1 1−1 1 1−1 1−1−1−1
20 1 1 1 1−1 1−1 1−1−1−1−1 1 1−1 1 1−1−1
24 1 1 1 1 1−1 1−1 1 1−1−1 1 1−1−1 1−1 1−1−1−1−1
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Table 15.59 A 3p orthogonal array for 27 observations: An L27(311)

Columns
1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 2 2 2 2 2 2 2 2 2
0 1 1 1 0 0 1 1 1 2 2 0 2
0 1 1 1 1 1 2 2 2 0 0 1 0
0 1 1 1 2 2 0 0 0 1 1 2 1
0 2 2 2 0 0 2 2 2 1 1 0 1
0 2 2 2 1 1 0 0 0 2 2 1 2
0 2 2 2 2 2 1 1 1 0 0 2 0
1 0 1 2 0 1 0 1 2 1 2 2 0
1 0 1 2 1 2 1 2 0 2 0 0 1
1 0 1 2 2 0 2 0 1 0 1 1 2
1 1 2 0 0 1 1 2 0 0 1 2 2
1 1 2 0 1 2 2 0 1 1 2 0 0
1 1 2 0 2 0 0 1 2 2 0 1 1
1 2 0 1 0 1 2 0 1 2 0 2 1
1 2 0 1 1 2 0 1 2 0 1 0 2
1 2 0 1 2 0 1 2 0 1 2 1 0
2 0 2 1 0 2 0 2 1 2 1 1 0
2 0 2 1 1 0 1 0 2 0 2 2 1
2 0 2 1 2 1 2 1 0 1 0 0 2
2 1 0 2 0 2 1 0 2 1 0 1 2
2 1 0 2 1 0 2 1 0 2 1 2 0
2 1 0 2 2 1 0 2 1 0 2 0 1
2 2 1 0 0 2 2 1 0 0 2 1 1
2 2 1 0 1 0 0 2 1 1 0 2 2
2 2 1 0 2 1 1 0 2 2 1 0 0
A B C D E F G
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16 Response Surface
Methodology

16.1 Introduction
16.2 First-Order Designs and Analysis
16.3 Second-Order Designs and Analysis
16.4 Properties of Second-Order Designs: CCDs
16.5 A Real Experiment: Flour Production Experiment, Continued
16.6 Box–Behnken Designs
16.7 Using SAS Software
Exercises

16.1 Introduction

Response surface methodology was developed by Box and Wilson in 1951 to aid the im-
provement of manufacturing processes in the chemical industry. The purpose was to optimize
chemical reactions to obtain, for example, high yield and purity at low cost. This was accom-
plished through the use of sequential experimentation involving factors such as temperature,
pressure, duration of reaction, and proportion of reactants. The same methodology can be
used to model or optimize any response that is affected by the levels of one or more quanti-
tative factors. The models are generalizations of the polynomial regression models studied
in Chapter 8.

The general scenario is as follows. The response is a quantitative continuous variable
(e.g., yield, purity, cost), and the mean response is a smooth but unknown function of the
levels ofp factors (e.g., temperature, pressure), and the levels are real-valued and accurately
controllable. The mean response, when plotted as a function of the treatment combinations,
is a surface inp + 1 dimensions, called theresponse surface. For example, Figure 16.1
shows a response surface for two factorsA andB.

547
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Figure 16.1
Hypothetical response
surface for two factors
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We will denote the levels ofA by values ofx1 orxA and the levels ofB by values ofx2 or
xB . We will denote a treatment combination byx � (x1 x2 . . . xp) or by x � (xA xB . . . xP )
and the mean response atx by ηx � E[Yx]. The general response surface model is of the
form

Yx � ηx + εx ,

whereεx is a random error variable.
The objective of obtaining a response surface is twofold:

(i) to locate a feasible treatment combinationx for which the mean response is maximized
(or minimized, or equal to a specific target value); and

(ii) to estimate the response surface in the vicinity of this good location or region, in order
to better understand the “local” effects of the factors on the mean response.

In general, throughout the chapter we will think about maximizing the response, but we show
via an example that exactly the same techniques can be used for minimizing a response.
The techniques can easily be adapted when the goal is to have the response close to a target
value.

One possible approach to achieving the objective involves collecting observations at
each location on a grid of treatment combinations spanning the entire experimental region
of interest (as suggested by Figure 16.1). However, the number of observations required by
such a comprehensive approach can be very large, and it grows very quickly as the number
of factors under study increases. Also, somewhat sophisticated modeling techniques would
generally be needed to obtain an adequate fit of a model over the entire region. Instead, it is
generally more efficient to conduct a sequence of small “local” experiments with which to
search out the location of the peak mean response and then to study its vicinity.
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Seeking out the peak is analogous to climbing an unfamiliar mountain under conditions
of limited visibility—the mountain is the response surface, and your location on the moun-
tainside is a treatment combination, sayxa. Standing at positionxa, you look around and
can see enough to determine in which direction to go to continue a steep ascent. Then you
climb in the determined direction as long as it continues to take you up, not looking about
lest you lose footing. Then you stop and look around again to determine whether you are at
the top of the mountain or in which direction you need to continue your ascent. Of course,
when you reach a peak, due to the limited visibility, you may not be sure that you have
actually reached the highest peak.

How does one do this experimentally? Looking around with limited visibility is equiv-
alent to analyzing the data of alocal experiment, consisting of observations on treatment
combinationsx close to your current position,xa. The local terrain is assessed by fitting a
local model. Collecting observations in sufficiently close proximity to one another generally
allows the local response surface to be well approximated by a rather simple polynomial
regression model. When still far from the peak, a first-order model is often adequate. The
fitted first-order model is a plane, from which the direction orpath of steepest ascent is
easily determined. Then observations are collected along this path as long as the response
continues to increase. When the response stops increasing, another local experiment can be
conducted to determine a new path of steepest ascent. This process can be iterated until the
first-order model no longer adequately describes the local true surface. For example, close
to the peak, the true surface generally exhibits greater curvature, and a first-order regression
model becomes inadequate, exhibiting lack of fit. A larger number of observations is needed
to fit a higher-order model with which to locate and study the vicinity of the peak. Typically,
a second-order model is suitable.

A flow chart describing the steps in this process is shown in Figure 16.2. While a surface
is difficult to envisage in more than three dimensions, the process can work well for any
number of factors. How well it works depends on several decisions requiring judgment on
the part of the experimenter. The first part of this chapter (Section 16.2) looks at the left-
hand portion of the flow chart and investigates first-order designs and first-order models,
including lack of fit and the path of steepest ascent. Section 16.3 addresses the right-hand
portion of the flow chart, which becomes relevant when the vicinity of the peak is reached.
Second-order designs and models are described. More details about second-order designs
are given in Section 16.4, and an experiment conducted in the flour milling industry is
described in Section 16.5. The collection of observations as a block design is discussed in
Section 16.6. Section 16.7 describes the use of the SAS software.

16.2 First-Order Designs and Analysis

16.2.1 Models

Before the peak of the response surface is reached, a small local experiment is conducted
to assess the local terrain. If the local experiment is not in the vicinity of the peak, then a
first-order regression model often provides an adequate approximation to the local response
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Figure 16.2
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surface. Forp factors, the standardfirst-order model is a first-order polynomial regression
model:

Yx,t � β0 + β1x1 + · · · + βpxp + εx,t , (16.2.1)

whereYx,t denotes thet th observation at treatment combinationx � (x1. . . xp), and the error
variablesεx,t are assumed to be independent withN (0, σ 2) distributions. The parameterβi
is a measure of the locallinear effect of theith factor (i � 1, . . . , p).

We often code the levels of each factor in each local experiment so that zero represents the
midrange of the levels of the factor (the average of the highest and lowest levels included
in the experiment) and+1 and−1 represent the highest and lowest levels of the factor,
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respectively. For theith factor, such coded levelszi are obtained as

zi � (xi −mi)/hi , (16.2.2)

wheremi denotes the midrange of the values ofxi of theith factor, andhi denotes thehalf-
range—half of the range. So, in terms of coded levels, the center of the design corresponds
to the pointz0 � (0 0. . .0).

The first-order model (16.2.1) can be rewritten in terms of the coded factor levels as
follows:

Yz,t � γ0 + γ1z1 + · · · + γpzp + εz,t . (16.2.3)

The parameters in models (16.2.1) and (16.2.3) are related, since

β0 � γ0 −
∑
i

miγi/hi and βi � γi/hi (i � 1,2, . . . , p) .

A design for estimating the parameters of a first-order model is called afirst-order design.
A first-order design should (i) allow for efficient estimation of each linear effectβi or γi ,
(ii) allow a test for lack of fit of the first-order model, and (iii) be expandable to a good
second-order design.

As long as there is no significant model lack of fit but there are significant linear effects,
the fitted first-order model can be used to estimate the path of steepest ascent. If there is
significant lack of fit of the first-order model, then additional observations may be collected
to augment the first-order design so that a second-order polynomial regression model can
be fitted to the data.

If there is no significant model lack of fit and also no significant linear effects, then more
data may be needed to increase precision of the parameter estimators. Alternatively, the
experimenters may need to change the factors under study or increase the range of levels.

16.2.2 Standard First-Order Designs

Throughout the rest of Section 16.2, we consider designs which we refer to asstandard
first-order designs. These designs consist ofnf “factorial points” andn0 “center points.”
Thefactorial points consist of the treatment combinations of a 2p factorial experiment run
as a completely randomized design as in Chapter 7, or a 2p−s fractional factorial design
of Resolution III or higher. Thecenter points are observations collected at the center of
the local region under study; that is, atz0 � (0 0. . .0). These are needed to provide error
degrees of freedom and to provide adequate power for a test for model lack of fit.

Standard first-order designs areorthogonal, which means that

(i) for each factor, the sum of the coded levels used in the design is zero, (
∑

zi � 0,
summing over observations), so half of thenf factorial points in the design have each
factor at its high level and the other half have each factor at its low level; and

(ii) for each pair of factors, the sum of cross products of the coded levels in the design is
zero (

∑
zizj � 0, summing over observations).
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The factorial portion of the design is chosen to be at least Resolution III so that the
linear effects can be estimated. Higher resolution allows model lack of fit due to two-factor
interaction effects to be tested. The 2p−s orthogonal fractional factorial designs and the
Plackett–Burman designs of Chapter 15 are the most efficient designs for estimation of the
linear effects.

16.2.3 Least Squares Estimation

The method of least squares (as shown in optional Section 8.3) is used to fit a first-order
model to the data. Denote the fitted model by

ŷx � β̂0 + β̂1x1 + · · · + β̂pxp (16.2.4)

or, in coded form,

ŷz � γ̂0 + γ̂1z1 + · · · + γ̂pzp . (16.2.5)

If a standard first-order design is used, with the extreme levels of each factor coded as+1
and−1, then the least squares estimatorγ̂i of the linear effectγi of theith factor is

γ̂i � (Y zi (+1) − Y zi (−1))/2 , (16.2.6)

whereY zi (+1) andY zi (−1) denote the averages of the observations at the high and the low level
of the ith factor, respectively. The parameter 2γi denotes the change in the mean response
between the high and low levels of theith factor. This is the same as the main-effect contrast
for the ith factor. The least squares estimator ofβi in the uncoded model iŝβi � γ̂i/hi ,
wherehi is the half-range of the uncoded levels of theith factor.

Example 16.2.1 Paint experiment

Several experiments were run in Germany by S. Eibl, U. Kess, and F. Pukelsheim (1992)
on the thickness of a paint coating. Prior to the experiments, the paint thickness achieved
was around 2 mm, much higher than the target 0.8 mm. In order to study how to decrease
the mean thickness, they selected the following six factors, each at two levels:

A: belt speed B: tube width C : pump pressure
D: paint viscosity E : tube height F : heating temperature

The first experiment that was conducted consisted of a 26−3
III fractional factorial design

with defining relation generated byBCD, ADE, andABF ; that is,

I � BCD � ADE � ABCE � ABF � ACDF � BDEF � CEF .

The experimenters decided to ignore all interactions for this first experiment. Since they
wanted to monitor the variation of the paint thickness, they took four observations on each
of the 8 treatment combinations in the fraction. The data are reproduced in Table 16.1, with
factor levels coded as−1 and 1.
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Table 16.1 Paint thickness for the paint experiment

zA zB zC zD zE zF yz1 yz2 yz3 yz4 y z. s2z
1 −1 1 −1 −1 −1 1.09 1.12 0.83 0.88 0.9800 0.021400

−1 −1 1 −1 1 1 1.62 1.49 1.48 1.59 1.5450 0.004967
1 1 −1 −1 −1 1 0.88 1.29 1.04 1.31 1.1300 0.042867

−1 1 −1 −1 1 −1 1.83 1.65 1.71 1.76 1.7375 0.005825
−1 −1 −1 1 −1 1 1.46 1.51 1.59 1.40 1.4900 0.006467
1 −1 −1 1 1 −1 0.74 0.98 0.79 0.83 0.8350 0.010700

−1 1 1 1 −1 −1 2.05 2.17 2.36 2.12 2.1750 0.017633
1 1 1 1 1 1 1.51 1.46 1.42 1.40 1.4475 0.002358

Source: Eibl, S., Kess, U., and Pukelsheim, F. (1992). Copyright © 1997 American Society for
Quality. Reprinted with Permission.

UsingzA, . . . , zF rather thanz1, . . . , z6 to denote the factor levels, the fitted first-order
model for the mean response is

ŷz � γ̂0 + γ̂AzA + · · · + γ̂F zF

� 1.42− 0.32zA + 0.21zB + 0.12zC + 0.07zD − 0.03zE − 0.01zF ,

where, for example, the parameter estimateγ̂D is calculated as

γ̂D � (yzD (+1) − yzD (−1))/2 � (1.493125− 1.348125)/2 � 0.0725≈ 0.07,

whereyzD (+1) is the average of the observations withD at its high level andyzD (−1) is the
average of the observations withD at its low level. ✷

16.2.4 Checking Model Assumptions

Before progressing with the analysis of the fitted model, the model assumptions should be
checked. We shall discuss tests for model lack of fit in Section 16.2.6.

If there is no model lack of fit, then the error assumptions may be checked using residual
plots. If the observations were collected sequentially in a known run order, then the residuals
are plotted against run order to check for independence of observations. Residuals are
plotted against predicted values to assess equality of error variances. Normality is checked
by plotting residuals versus normal scores.

16.2.5 Analysis of Variance

Suppose that a standard first-order design has been used, with the extreme levels of each
factor coded as−1 and+1. Under the first-order model, it follows from equation (16.2.6)
that

Var(γ̂i) �
(

σ 2

nf /2
+ σ 2

nf /2

)
/4 � σ 2/nf ,

for anyi � A,B,C, . . . . The sum of squares for testing that the main-effect contrastγA is
zero (that is,HA

0 : γA � 0 againstHA
A : γA 	� 0) is

ssA � γ̂ 2
A/(1/nf ) � nf γ̂

2
A ,
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Table 16.2 Analysis of variance for the first-order model

Source of Degrees of Sum of Mean Ratio Expected
Variation Freedom Squares Square Mean Square
A 1 ssA msA msA/msE σ2 + nf γ

2
A

B 1 ssB msB msB/msE σ2 + nf γ
2
B

...
...

...
...

...
...

Error n − p − 1 ssE msE σ2

Total n − 1 sstot

Computational Formulae
ssi � nf γ̂

2
i � nf (yzi (+1) − yzi (−1))

2/4, for i � A, B, C, . . .

ssE by subtraction sstot �∑z

∑
t y

2
zt − ny 2..

and since there is only one degree of freedom for theA contrast,msA � ssA. For the
first-order model and a standard first-order design, we have

E[MSA] � nfE[γ̂ 2
A] � nfVar(γ̂A) + nf (E[γ̂A])2 � σ 2 + nf γ

2
A .

It can also be shown thatmsE � ssE/(n− p− 1) is an unbiased estimate ofσ 2, wheressE
is obtained by subtraction in the analysis of variance table. Consequently, the decision rule
for testingHA

0 againstHA
A is

rejectHA
0 if msA/msE > F1,n−p−1,α .

Similar formulae hold for each main effect. The analysis of variance for the first-order model
and a standard first-order design forp factors are shown in outline in Table 16.2.

Example 16.2.2 Paint experiment, continued

The paint experiment was introduced in Example 16.2.3, and the data were given in Ta-
ble 16.1. The purpose of the experiment was to study the effects of six factors on paint
thickness. The experimental design consisted of four observations on each of the treat-
ment combinations of a 26−3

III design, which is an orthogonal factorial design withnf � 32
factorial points and no center points. The corresponding analysis of variance is shown in
Table 16.3. The linear effect of each of factorsA,B,C, andD is significantly different from
zero, but factorsE andF appear to have little effect on the response. ✷

16.2.6 Tests for Lack of Fit

A first-order design allows the experimenter to determine when the first-order model is no
longer adequate, provided that there are more design points than first-order model param-
eters, and the design includes replication at one or more points. There is said to be model
lack of fit when the model does not adequately represent the mean response as a function of
the factor levels. Lack of fit of the first-order model occurs when the local response surface
is no longer a plane.
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Table 16.3 Analysis of variance for the paint experiment

Source of Degrees of Sum of Mean Ratio p-value Expected
Variation Freedom Squares Square Mean Square

A 1 3.2640 3.2640 242.07 0.0001 σ2 + 32γ2A
B 1 1.3448 1.3448 99.73 0.0001 σ2 + 32γ2B
C 1 0.4560 0.4560 33.82 0.0001 σ2 + 32γ2C
D 1 0.1540 0.1540 11.42 0.0024 σ2 + 32γ2D
E 1 0.0221 0.0221 1.64 0.2127 σ2 + 32γ2E
F 1 0.0066 0.0066 0.49 0.4902 σ2 + 32γ2F
Error 25 0.3371 0.0135 σ2

Total 31 5.5846

Generic test Let nd denote the number ofdistinct coded treatment combinationsz. For
each treatment combination for which there is replication, the sample variances2

z of the
nz observations at that treatment combination provides an unbiased estimate of the error
varianceσ 2. These sample variances can be pooled together to obtain asum of squares for
pure error

ssPE �
∑

z

(nz − 1)s2
z (16.2.7)

with n− nd degrees of freedom, giving amean square for pure error

msPE � ssPE/(n− nd ) .

The error sum of squaresssE is obtained from fitting the first-order model (Table 16.2), and
the difference

ssLOF � ssE − ssPE (16.2.8)

is called thesum of squares for lack of fit. The corresponding mean square is

msLOF � ssLOF/(n− p − 1) .

Then the ratio

msLOF/msPE

is used to test the null hypothesis of no model lack of fit. The null hypothesis is rejected at
levelα if this ratio exceedsFnd−p−1,n−nd ,α. This lack-of-fit test is summarized in Table 16.4.

Example 16.2.3 Paint experiment, continued

The paint experiment was introduced in Example 16.2.3. The analysis of variance for the
first-order model is shown in Table 16.3, givingssE � 0.3371 with 25 degrees of freedom.
There werenz � 4 observations at each of eight factorial points, and the corresponding eight
sample variances, each with three degrees of freedom, were given in Table 16.1, page 553.
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Table 16.4 Generic lack-of-fit test for the first-order model

Source of Degrees of Sum of Mean Ratio Expected
Variation Freedom Squares Square Mean Square

Lack of fit nd − p − 1 ssLOF msLOF msLOF /msPE σ2 + θ2

Pure Error n − nd ssPE msPE σ2

Error n − p − 1 ssE

Computational Formulae

ssE from Table 16.2, ssPE �∑z(nz − 1)s2z , ssLOF by subtraction,
nd distinct design points, n observations total,
θ depends on the nature of model lack of fit

Table 16.5 Generic lack-of-fit test for the paint experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Lack of fit 1 0.0004 0.0004 0.03 0.8594
Pure error 24 0.3367 0.0140
Error 25 0.3371 0.0135

These eight sample variances can be pooled together to obtain

ssPE �
∑

z

(4 − 1)s2
z � 0.3367

based onn− nd � 32− 8 � 24 degrees of freedom. The sum of squares for lack of fit is

ssLOF � ssE − ssPE � 0.3371− 0.3367� 0.0004,

and the test is summarized in Table 16.5. Since thep-value is large, there is no evidence of
lack of fit of the first-order model. ✷

Test for second-order lack of fit If the generic test indicates lack of fit of the first-order
model, this provides no insight into why the model is not fitting well. To understand the
nature of the lack of fit, it can be helpful to consider what the mean square for lack of fit
measures in terms of higher-order models. If the first-order model is inadequate, the next
possibility is that a second-order model would provide an adequate approximation to the
local response surface. If so, then lack of fit of the first-order model is attributable to the
presence of either two-factor interactions or to quadratic effects or to both.

If the only lack of fit is due to two-factor interaction effects, this corresponds to a twisting
of the response surface. Such lack of fit can be tested if the first-order design allows estimation
of two-factor interactions in addition to providing error degrees of freedom. In the paint
experiment, for example, it is possible to estimate theAC interaction effect, in addition to
the six main effects, provided that all other interaction effects are known to be negligible.

If the center of the experimental design is near the peak of the response surface, then
one would expect quadratic effects, or curvature, to be present and a higher mean response
near the design center than at the factorial points. Multiple center pointsz0 � (0, . . . ,0)
are usually included in a first-order design, because comparison of the mean response at
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the center of the design region with the mean response at the factorial points provides an
effective test for lack of fit due to quadratic effects.

So, to assess second-order lack of fit we fit a second-order polynomial regression model
under the alternative hypothesis. With respect to the coded factor levels, the standardsecond-
order model for p factors is

Yz,t � γ0 +
∑
i

γizi +
∑
i

γiiz
2
i +
∑
i<j

γij zizj + εz,t ,

where the parameterγi represents the linear effect of theith factor, γii represents the
quadratic effect of theith factor, andγij represents the cross product effect between the
ith andj th factors.

If the factorial portion of the standard first-order design is either a complete factorial
design or a fraction of resolution V or higher, then all two-factor interaction parametersγij in
the second-order model are estimable (assuming higher-order interactions to be negligible).
For testing for second-order lack of fit, we add the sums of squares for these two-factor
interactions to obtain a pooled interaction sum of squares,ssI. If the factorial portion of
the design is a fraction of resolution less than V, then not all two-factor interactions are
estimable, and only the sums of squares of those two-factor interactions which are not
aliased with main effects may be pooled—one sum of squares from each alias set.

The quadratic-effect parameters are not individually estimable from a standard first-order
design. They are aliased with one another, and only their sum can be estimated. It can be
shown that

E[Y f − Y 0] �
p∑
i�1

γii ,

Table 16.6 Lack-of-fit test for the first-order model, given the data of a standard first-order
design, with p factors A, B, . . . and m alias sets for interaction effects clear of
main effects

Source of Degrees of Sum of Mean Ratio Expected
Variation Freedom Squares Square Mean Square

Interaction m ssI � ssAB + · · · msI msI
msPE σ2 + nf

m
θ1

Quadratic 1 ssQ msQ msQ
msPE σ2 + n0nf

n
θ22

Higher-order nd − p −m − 2 ssH

Pure Error n − nd ssPE msPE σ2

Error n − p − 1 ssE

Computational Formulae

ssAB � nf γ̂
2
AB � nf (yzAzB (+1) − yzAzB (−1))

2/4 ssE from Table 16.2

ssQ � (n0nf /n)2(y f − y 0)
2 θ1 � γ2AB + · · ·

ssPE �∑z(nz − 1)s2z θ2 � γAA + γBB + · · ·
ssH = (ssE−ssPE)−ssI−ssQ
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with

Var(Y f − Y 0) �
(

1

n0
+ 1

nf

)
σ 2 � n

nf n0
σ 2 ,

whereY f andY 0 denote the average of thenf factorial points and the average of then0 center
points, respectively. It follows that the corresponding sum of squares for testing whether or
not the sum of the quadratic parameters is zero is

ssQ � nf n0

n
(Y f − Y 0)2 ,

with one degree of freedom. The expected mean square is

E[MSQ] � σ 2 + nf n0

n
(
p∑
i�1

γii)
2 .

In the generic test for lack of fit of the first-order model,ssI andssQ are part ofssLOF.
Thus, we can write

ssLOF � ssI + ssQ + ssH ,

wheressH is the sum of squares for lack of fit due to a higher-order model. Then lack of fit
due specifically to interaction terms and quadratic terms can be investigated separately. The
tests are summarized in Table 16.6 for a standard first-order design.

For all tests for lack of fit, an adequate number of pure error degrees of freedom are
needed for the test power to be reasonably high. Since Var(Y f − Y 0) > σ 2/n0, the test
for lack of fit due to quadratic effects will have low power if there are few center points.
Typically, 3–6 center points would be used.

Example 16.2.4 Acid copper pattern plating experiment

G. K. K. Poon (1995) conducted a sequence of fractional factorial and response surface
experiments each involving as many as seven factors to minimize the coating thickness
variation of an acid copper-plating process. In the final experiments, conducted in the vicin-
ity of minimum thickness variation, response surface methods were utilized to study the
effects of anode-cathode separation (factorA) and cathodic current density (factorB) on
the standard deviation of coating thickness. One experiment used the factorial points of a
single replicate 22 design, augmented by two center points. The response was the standard
deviation (inµm) of copper-plating thickness. The coded and uncoded factor levels, together
with the resulting data, are given in Table 16.7.

The midrange of levels of factorA is (11.5 + 9.5)/2 � 10.5, and the half-range is
(11.5 − 9.5)/2.0 � 1.0. So the coded levels are given by

zA � xA − 10.5 .

The midrange and half-range of the factorB levels are (41+31)/2 � 36 and (41−31)/2 � 5,
respectively, so the coded levels of factorB are

zB � (xB − 36)/5 .
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Table 16.7 Data for the acid copper pattern plating experiment

Anode–cathode Current Density Standard
Separation (in.) (asf) Deviation

Coded Uncoded Coded Uncoded (µm)
−1 9.5 −1 31 5.60
−1 9.5 1 41 6.45
1 11.5 −1 31 4.84
1 11.5 1 41 5.19
0 10.5 0 36 4.32
0 10.5 0 36 4.25

Source: Poon, G. K. K. (1995). Reprinted with permission.

Table 16.8 Analysis of variance and lack-of-fit test for the acid copper pattern
plating experiment

Source of Degrees of Sum of Mean Ratio p-value Expected
Variation Freedom Squares Square Mean Square
A 1 1.0201 1.0201 1.46 0.3137 σ2 + nf γ

2
A

B 1 0.3600 0.3600 0.51 0.5250 σ2 + nf γ
2
B

Error 3 2.0986 0.6995

Total 5 3.4787

Interaction AB 1 0.0625 0.0625 25.51 0.1244 σ2 + nf γ
2
AB

Quadratic 1 2.0336 2.0336 830.05 0.0221 σ2 + n0nf
n
θ2

Pure Error 1 0.0025 0.0025

Error 3 2.0986 0.6995

where θ � γAA + γBB

Table 16.8 shows the analysis of variance, including tests for lack of fit, due to a second-
order model. The analyses are identical for coded and uncoded factor levels. There are
significant quadratic effects—an indication that quadratic terms for either or both of factors
AandB are needed to adequately model the response surface. The first-order design is inade-
quate, then, because not all parameters in the second-order model are estimable. The solution
is to collect some additional observations, as will be illustrated in Example 16.3.2.✷

16.2.7 Path of Steepest Ascent

If there are significant linear effects and there is no significant lack of fit of the first-order
model, then thepath of steepest ascent may be followed to climb towards the maximum of
the response surface.

Given the fitted first-order regression model (16.2.5), the path of steepest ascent from the
current positionza is determined as follows. If̂γi is positive, increasezi to increase predicted
mean responsêyz. If γ̂i is negative, decreasezi to increasêyz. To follow the path of steepest
ascent up the fitted response surface, change eachzi in proportion to the magnitude of̂γi .
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So, if the valuez1 of the first factor is changed byuγ̂1 units for some real numberu, then
the levelzi of theith factor should be changed byuγ̂i for each other factori.

Example 16.2.5 Paint experiment, continued

The paint experiment was introduced in Example 16.2.3, page 552. The experimenters
conducted an experiment to study how to decrease the thickness of a paint coating to the
target 0.8 mm. Four observations were taken at each treatment combination of a 26−3

III design.
The resulting data were shown in Table 16.1, page 553.

The target thickness is approximately achieved at the experimental design pointz �
( 1,−1,−1, 1, 1,−1), so perhaps no further analysis or experimentation is needed.
Nevertheless, we will use these data to illustrate how to find the minimum of a response
surface.

Since a minimum is required, we need to identify the path of steepestdescent. The fitted
first-order model is obtained from Example 16.2.3 as

ŷz � γ̂0 + γ̂AzA + · · · + γ̂F zF

� 1.42− 0.32zA + 0.21zB + 0.12zC + 0.07zD − 0.03zE − 0.01zF .

The analysis of variance conducted in Example 16.2.5 suggests that only factorsA, B,
C, andD significantly affect the response. So, these four factors should be adjusted in an
attempt to reduce paint thickness.

Based on the signs of the parameter estimates in the fitted model, we ought to be able
to effect a reduction in mean response if we increase the level of factorA and decrease the
level of any of factorsB, C, andD. To follow the path of steepest descent, we change the
levels of these factors each in proportion to the magnitude of its corresponding parameter
estimate,γ̂i . So, if we increasezA by 0.32u units for some real numberu, then we decrease
zB by 0.21u units, decreasezC by 0.12u units, and decreasezD by 0.07u units.

Observations along the path of steepest descent moving away from the center of the
current design,z0 � (0,0,0,0,0,0), consist of treatment combinations (0.32u,−0.21u,
−0.12u,−0.07u,0,0) corresponding to increasing values ofu, such asu � 3,6,9, . . . .
The suggested values ofu start atu � 3. This value is large enough to move the level of
factorA near to the edge of the region of the current local experiment, but other values ofu

could also have been chosen. Observations may then be collected along this path settingu

equal to, say, multiples of 3 until the target thickness is achieved, or until the response stops
decreasing before reaching the target level. In the latter case, at the point of lowest response
along the path another first-order design could be run to determine a new path of steepest
descent. ✷

In the previous example, the effects of factorsE andF were not found to be significantly
different from zero, so their levels were not changed in following the estimated path of
steepest descent. There are a variety of reasons why the effect of a factor may be negligible.
The obvious reason is that response is independent of the factor. However, it could also be
that the levels used for the factor may be near the optimal value, so the response surface
may be relatively flat with respect to small changes in the level of that factor. Alternatively,
the levels of the factor may simply be too close together to give rise to a detectable change
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in the mean response. In subsequent experiments, the levels of such factors can be chosen
farther apart to guard against the last scenario.

16.3 Second-Order Designs and Analysis

16.3.1 Models and Designs

Second-order designs and analysis are used when the test for lack of fit of the first-order
model indicates that the vicinity of the maximum (or minimum) of the response surface
has been reached and a second-order model should be fitted. Forp factors, the standard
second-order model is

Yx,t � β0 +
p∑
i�1

βixi +
p∑
i�1

βiix
2
i +
∑
i<j

βij xixj + εx,t , (16.3.9)

whereYx,t denotes thet th response observed for treatment combinationx � (x1 x2 . . . xp).
The random-error variablesεx,t are assumed to be independent withN (0, σ 2) distributions.
The parameterβi represents the linear effect of theith factor. The parameterβii represents
the quadratic effect of theith factor, andβij represents the cross product effect, or interaction
effect, between theith andj th factors.

With respect to the coded factor levelszi � (xi −mi)/hi , the second-order model is

Yz,t � γ0 +
p∑
i�1

γizi +
p∑
i�1

γiiz
2
i +
∑
i<j

γij zizj + εz,t . (16.3.10)

Experimental designs used to fit a second-order model are referred to assecond-order
designs. A second-order design should (i) allow for efficient estimation of the response
surface, in the sense of having Var(Ŷz) be small; (ii) allow a test for lack of fit of the second-
order model; and (iii) allow for efficient estimation of all model parameters. Second-order
designs must have at least (p + 1)(p + 2)/2 distinct design points; otherwise, not all of
the (p + 1)(p + 2)/2 parameters in the second-order model can be estimated. We will
consider only such designs in this chapter. Observations at even more points are needed,
plus some replication, in order to be able to conduct a generic test for model lack of fit.
Other properties of second-order designs that are sometimes desirable include rotatability,
orthogonal blocking, and orthogonality—these will be discussed in Sections 16.4.1–16.4.2.

The method of least squares is used to fit the second-order model to the data. This method
is exactly as discussed in optional Section 8.3, with each second-order termz2

i or zizj being
treated as a single regressor. In terms of the uncoded and coded factor levels, the fitted
models are, respectively,

ŷx � β̂0 +
∑
i

β̂ixi +
∑
i

β̂iix
2
i +
∑
i<j

β̂ij xixj (16.3.11)

and

ŷz � γ̂0 +
∑
i

γ̂izi +
∑
i

γ̂iiz
2
i +
∑
i<j

γ̂ij zizj , (16.3.12)
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where hats on the parameters denote the least squares estimates. Although it is possible to
obtain explicit formulae for the least squares estimates for any specific design, the formulae
for the quadratic parameter estimatesγ̂ii are complicated. Consequently, we rely on statistical
computer software to obtain the least squares estimates (see Section 16.7 for the use of the
SAS software).

As long as there is no significant lack of fit, the fitted second-order model can be used to
study the local response surface. Generally, there will be a unique treatment combination
xs � (xs1 xs2 . . . xsp), called thestationary point, at whichŷ is maximized, minimized, or is
at a saddle point. The surface close to asaddle point is reminiscent of a horse saddle—rising
up from front to back but sloping down from side to side. A saddle point yields neither a
maximum nor a minimum for the fitted model. Instead, these will be found at the edge of
the local design region.

If there is significant lack of fit of the second-order model, a higher-order model could
be used, or a more local experiment could be run.

16.3.2 Central Composite Designs

Central composite designs were first described by Box and Wilson in 1951, and they are
nowadays the most popular second-order designs. Each design consists of a standard first-
order design withnf orthogonal factorial points andn0 center points, augmented byna
“axial points.”

We follow the convention of coding the factor levels so the factorial points have coded
levels±1 for each factor. However, it should be noted that some software packages, including
SAS, will recode the levels in a central composite design before doing the analysis. Under
our convention,axial points are points located at a specified distanceα from the design
center in each direction on each axis defined by the coded factor levels. On thezi-axis, for
example, two axial points are obtained by settingzi � ±α, with zj � 0 for all j 	� i. Thus,
if there arep factors, there are 2p distinct axial points. Axial points are also commonly
referred to asstar points. Figure 16.3 shows central composite designs forp � 2 andp � 3
factors.

A central composite design is easily built up from a standard first-order design by the
addition of axial points, and possibly some extra factorial and center points. If the factorial
portion of the design is a complete factorial or a fractional factorial of resolution V or
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Figure 16.3 Central composite designs for p � 2 and p � 3 factors
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more, all model parameters are estimable. Otherwise, some aliasing will occur, and some
terms will need to be omitted from the second-order model. A design should include enough
replication, often at the center points, to allow for a test for model lack of fit. The axial points
are located at a distanceα from the center of the design, where the choice ofα depends on
the properties required of the design. A popular choice isα � (nf )1/4 (see Section 16.4.1).

Example 16.3.1 Acid copper pattern plating experiment, continued

In Example 16.2.6, page 558, a standard first-order design was used to study the effects of
anode–cathode separation (factorA) and cathodic current density (factorB) on the standard
deviation of a copper-plating thickness. The first-order design involved thenf � 4 factorial
points of a single-replicate 22 design, augmented byn0 � 2 center points. There was
significant lack of fit of the first-order model, so additional observations needed to be taken
in order to fit a second-order model. The experimenters augmented the first-order design
with four axial points, usingα � (nf )1/4 � √

2, giving the central composite design and
data shown in Table 16.9.

The second-order model is fitted by a computer regression package. In terms of the
uncoded factor levels, the fitted model is given by

ŷx � β̂0 + β̂AxA + β̂BxB + β̂AAx
2
A + β̂BBx

2
B + β̂ABxAxB

� 79.6898− 7.8187xA − 1.8126xB
+ 0.3926x2

A + 0.0294x2
B − 0.0250xAxB ,

and, in terms of the coded factor levels,zA � (xA − 10.5), zB � (xB − 36)/5, the fitted
model is

ŷz � γ̂0 + γ̂AzA + γ̂BzB + γ̂AAz
2
A + γ̂BBz

2
B + γ̂ABzAzB

� 4.2939− 0.4741zA + 0.2134zB
+ 0.3926z2

A + 0.7353z2
B − 0.1250zAzB .

Table 16.9 Data for the acid copper pattern plating
experiment—Central composite design

Anode–cathode Current Density Standard
Separation (in.) (asf) Deviation

Coded Uncoded Coded Uncoded (µm)
−1 9.5 −1 31 5.60
−1 9.5 1 41 6.45
1 11.5 −1 31 4.84
1 11.5 1 41 5.19
0 10.5 0 36 4.32
0 10.5 0 36 4.25

−√
2 9.0 0 36 5.76√
2 12.0 0 36 4.42
0 10.5 −√

2 29 5.46
0 10.5

√
2 43 5.81

Source: Poon, G. K. K. (1995). Reprinted with permission.
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Figure 16.4
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Figure 16.4 shows both a contour plot and a surface plot of the fitted model for uncoded
factor levels. The stationary point is in the center of the ellipses. Clearly, the stationary point
provides a minimum. The exact location of the stationary point will be determined in the
next section. ✷

16.3.3 Generic Test for Lack of Fit of the Second-Order Model

If the second-order design includesnd distinct treatment combinations, withnd larger than
(p+2)(p+1)/2, and replication at one or more of these, then a generic test for lack of fit of
the second-order model can be conducted, just as for the first-order model (Section 16.2.6).
The sum of squares for pure error,ssPE, and the sum of squares for lack of fit,ssLOF, are
calculated as in (16.2.7) and (16.2.8). The error sum of squaresssE and the error degrees
of freedom are obtained from the analysis of variance table of the second-order model.
The test proceeds exactly as in Table 16.4 except that the error degrees of freedom are
n−[(p+2)(p+1)/2] and the degrees of freedom for lack of fit are thennd−[(p+2)(p+1)/2].
The test will be illustrated for the acid copper-plating experiment in Example 16.3.4 in the
next subsection.

16.3.4 Analysis of Variance for a Second-Order Model

Table 16.10 shows an outline analysis of variance table for a second-order design and second-
order model, assuming that all parameters are estimable. The degrees of freedom associated

Table 16.10 Analysis of variance for a second-order design and model

Source of Degrees of Sum of Mean Ratio Expected
Variation Freedom Squares Square Mean Square

(Type I) (Type I)

L p ssL msL msL
msE σ2 +∑i aiβ

2
i

Q |L p ss(Q|L) ms(Q|L) ms(Q|L)
msE σ2 +∑i aiiβ

2
ii

I |L,Q 1
2p(p − 1) ss(I|L,Q) ms(I|L,Q) ms(I|L,Q)

msE σ2 +∑i<j aijβ
2
ij

Error df ssE msE σ2

Total n − 1 sstot

Formula: df � n − 1
2 (p + 2)(p + 1)



16.3 Second-Order Designs and Analysis 565

with the linear effects have been added (pooled) together, as have those of the quadratic
effects and those of the interaction (cross product) effects. Sequential, or Type I, sums of
squares are listed for each of these pooled sources of variation. These include the sum of
squares for all linear terms,ss(L); the sum of squares for adding all quadratic terms to the
model, given that all linear terms are already included,ss(Q|L); and the sum of squares
for adding all interaction terms to the model, given that all linear and quadratic terms are
already in the model,ss(I|L,Q). Using these sequential sums of squares, the analysis of
variance is the same whether factor levels are coded or not. The coefficientsai , aii , andaij
listed in the expected mean squares are positive and depend on the design and the model.
If coded factor levels are used, the expected mean squares would involve the parametersγ

instead of the parametersβ, but would have the same form.
If a central composite design is used and factor levels are coded in the usual way, the

linear, quadratic and interaction sums of squares are independent of one another, so the
corresponding sums of squares are the same, no matter in which order the terms are fitted.
Also, the individual linear and interaction (cross product) parameters are estimated indepen-
dently of one another and of the quadratic effects. The quadratic parameters are estimated
independently of each other only ifα and the number of center pointsn0 are chosen to
satisfy certain restrictions (see Section 16.4.2).

Example 16.3.2 Acid copper pattern plating experiment, continued

The data for the central composite design of the acid copper pattern plating experiment were
shown in Table 16.9, page 563. The analysis of variance for these data is given in Table 16.11.
The same analysis is obtained whether the model is fitted using coded or uncoded factor
levels. The table shows the decomposition of the linear sum of squares with respect to the
individual linear effects. Each of the two quadratic effects is shown adjusted for the other
quadratic effect. If we test each hypothesis at individual level 0.01, the linear effect of factor
A is significantly different from zero, as is the adjusted quadratic effect of each factor.
Consequently, the model should include these three terms. We would also include the linear
effect ofB, since the higher-order (quadratic) term is included. TheAB-interaction effect,
or cross product effect, is not significantly different from zero.

Table 16.11 Analysis of variance for the acid copper pattern plating
experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Linear 2 2.2713
AL 1 1.9107 1.9107 52.97 0.0019
BL 1 0.3606 0.3606 10.00 0.0341
Quadratic 2 2.4117
AQ|BQ 1 0.8509 0.8509 23.59 0.0083
BQ|AQ 1 2.3407 2.3407 64.89 0.0013
Interaction 1 0.0625 0.0625 1.73 0.2584
Error 4 0.1443 0.0361
Total 9 4.8898
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Before settling on a final model, we should check the lack of fit of the second-order
model. The only replication consisted of two center-point observations with values 4.32 and
4.25. The sample variance of these two observations iss2

0 � 0.00245, sossPE � 0.00245
with one degree of freedom. From the analysis of variance table, Table 16.11, we see that
ssE � 0.1443 with 4 degrees of freedom. So,

ssLOF � ssE − ssPE � 0.1443− 0.00245� 0.14185

with 4 − 1 � 3 degrees of freedom for lack of fit. There is significant lack of fit of the
second-order model if

msLOF/msPE > F3,1,α ,

for appropriate significance levelα. Here,

msLOF/msPE � (0.14185/3)/(0.00245/1) � 19.299,

which is less thanF3,1,0,10 � 53.6, so there is no significant lack of fit of the second-order
model, and the model fitted in Example 16.3.2, should be a reasonable approximation to the
true surface in the local region under study (9.5 ≤ xA ≤ 11.5; 31≤ xB ≤ 41). ✷

16.3.5 Canonical Analysis of a Second-Order Model

After fitting a second-order model, we need to determine the location of the station-
ary point. We think of each treatment combinationx as a point inp-dimensional space,
x � (x1, x2, . . . , xp), so the stationary point that we are trying to find is the point
xs � (xs1, xs2, . . . , xsp). We then change to a new coordinate system of points in two
steps. First we setv � x − xs , so thatvi � xi − xsi for i � 1,2, . . . , p. This moves the
coordinate system so that the stationary point is at the origin with respect to thevi-axes,
so the stationary point is nowvs � (0,0, . . . ,0). The other pointsv � x − xs measure
position relative to the stationary pointxs . This eliminates all linear terms from the model.
As the second step, thevi-axes are rotated to obtain thewi-axes, with the rotation chosen to
eliminate the cross product terms from the model. We show how to do this in the following
subsections.

In terms of each of these coordinate systems, the fitted model has the following equivalent
representations:

ŷx � β̂0 +
p∑
i�1

β̂ixi +
p∑
i�1

β̂iix
2
i +
∑
i<j

β̂ij xixj ,

ŷv � ŷvs +
p∑
i�1

β̂iiv
2
i +
∑
i<j

β̂ij vivj ,

ŷw � ŷws
+

p∑
i�1

λ̂iiw
2
i ,

whereŷvs andŷws
are equal and each denotes the predicted response at the stationary point.

The last equation is said to be incanonical form, and in this form, we can immediately
tell whether the stationary point is a maximum, a minimum, or a saddle point. If all of the
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λ̂ii ’s are negative, then the fitted model is concave down and has a maximum at the stationary
point. If all of theλ̂ii ’s are positive, then the fitted model is concave up and has a minimum
at the stationary point. If some of theλ̂ii ’s are positive and some are negative, the stationary
point is a saddle point. Thêλii are called thecanonical coefficients.

If a specificλ̂ii is relatively large in magnitude, then̂yw will change rapidly for changes
away from the stationary pointws � (0,0, . . . ,0) in thewi direction. Thus, if the stationary
point is a saddle point and if̂λLL is the largest positivêλii , movement in either direction
away from the stationary point along thewL-axis provides a path of steepest ascent. On the
other hand, if a specifiĉλii is relatively small in magnitude, then̂yw is relatively unaffected
by changes away from the stationary point along thewi-axis.

Canonical analysis for p � 2 factors We consider first the fitted second-order model

ŷx � β̂0 + β̂AxA + β̂BxB + β̂AAx
2
A + β̂BBx

2
B + β̂ABxAxB

for p � 2 factorsA andB. The results below are special cases of the general formulae in
the following optional subsection forp ≥ 2 factors.

The canonical coefficientŝλ11 andλ̂22 are

1

2

[
β̂AA + β̂BB ±

√
(β̂AA − β̂BB)2 + β̂2

AB

]
, (16.3.13)

and the stationary point isxs � (xsA, xsB), where

xsA � 1

4D
(β̂Bβ̂AB − 2β̂Aβ̂BB) , (16.3.14)

xsB � 1

4D
(β̂Aβ̂AB − 2β̂Bβ̂AA) ,

and

D � λ̂11λ̂22 � β̂AAβ̂BB − 1

4
β̂2
AB .

The stationary pointxs maximizesŷx if both canonical coefficients are negative, minimizes
it if both are positive, and yields a saddle point of the fitted surface if one is positive and the
other negative.

Thew1 canonical axis consists of all points (xA, xB) of the form

(xsA, xsB) + u

(
β̂AB

2
, λ̂11 − β̂AA

)
(16.3.15)

for real numbersu, and the canonical axisw2 consists of all points (xA, xB) of the form

(xsA, xsB) + q

(
β̂AB

2
, λ̂22 − β̂AA

)
(16.3.16)

for real numbersq.
The canonical analysis can also be done with respect to the coded factor levels. The SAS

software does this, for example.
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Example 16.3.3 Acid copper pattern plating experiment, continued

In Example 16.3.2, page 563, a second-order model was fitted to data collected from a central
composite design. The experiment was run in order to study the effects of anode-cathode
separation (factorA) and cathodic current density (factorB) on the standard deviation of
copper-plating thickness. In terms of the uncoded factor levels, the fitted model was

ŷx � β̂0 + β̂AxA + β̂BxB + β̂AAx
2
A + β̂BBx

2
B + β̂ABxAxB

� 79.6898− 7.8187xA − 1.8126xB

+ 0.3926x2
A + 0.0294x2

B − 0.0250xAxB .

Now,

β̂AA + β̂BB � 0.3926+ 0.0294� 0.4220,

and√
(β̂AA − β̂BB)2 + β̂2

AB �
√

(0.3926− 0.0294)2 + (−0.0250)2 � 0.3640.

Then, from equation (16.3.13), the canonical coefficients are

λ̂11 � 1
2(0.4220+ 0.3640)� 0.3930,

λ̂22 � 1
2(0.4220− 0.3640)� 0.0290.

Since both canonical coefficients are positive, the stationary point minimizes the estimated
standard deviation of coating thickness.

From equation (16.3.14), the stationary point isxs � (xsA, xsB), where

xsA � 1

4(0.0114)
[(−1.8126)(−0.0250)− 2(−7.8187)(0.0294)]� 11.0758,

xsB � 1

4(0.0114)
[(−7.8187)(−0.0250)− 2(−1.8126)(0.3926)]� 35.4983.

Using these values ofxA andxB in the fitted model, we obtain the predicted minimum
response aŝyxs � 4.144.

Now, λ̂11 is much larger than̂λ22, so the surface will rise more rapidly as we move
away fromxs in thew1 direction than in thew2 direction. From equation (16.3.15), thew1

canonical axis consists of all points (xA, xB) of the form

(xsA, xsB) + u

(
β̂AB

2
, λ̂11 − β̂AA

)
� (11.0758,35.4983)+ u(−0.0125,0.0004)

for real numbersu. If we divideu by
√

(−0.0125)2 + (0.0004)2 � 0.01251 and multiply
the point (−0.0125,0.0004) by the same constant, we are then looking at steps of size 1.0
along thew1-axis; that is,

(11.0758,35.4983)+ u(−0.9995,0.0320).

This is not very different from

(11.0758,35.4983)+ u(−1.0,0.0),
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so thew1-axis has not been rotated very far from theA-axis (orx1-axis). We can verify this
from Figure 16.4 on page 564, which shows the surface contours with axes almost parallel to
theA andB axes. This means that the level ofA must be controlled more precisely than the
level ofB in order to maintain a minimum response. The same conclusion can be reached
by examining the fitted equation, since the coefficients ofxA andx2

A are considerably larger
than those ofxB , x2

B , andxAxB . ✷

Canonical analysis for p ≥ 2 factors (optional) This subsection requires the
knowledge of matrices and vectors. Consider the fitted second-order model

ŷx � β̂0 +
∑
i

β̂ixi +
∑
i

β̂iix
2
i +
∑
i<j

β̂ij xixj

for p factors. Letb denote thep× 1 vector of linear parameter estimates, withith entryβ̂i .
Let B denote thep × p matrix with ith diagonal element̂βii and with off-diagonal (ij )th
entryβ̂ij /2. Then the least squares fitted model can be written in matrix terms as

ŷx � β̂0 + x′b + x′Bx .

Furthermore, the stationary point is

xs � −1

2
B−1b

with corresponding predicted mean response

ŷxs � β̂0 − x′
sBxs � β̂0 + 1

2
x′
sb .

The canonical coefficients are the eigenvalues of the matrixB. The eigenvectors ofB
determine the canonical axes. The use of SAS in obtaining these will be illustrated in
Example 16.7.2, and the interpretation of the resulting formulae will also be discussed.

16.4 Properties of Second-Order Designs: CCDs

In this section we discuss some desirable properties—rotatability, orthogonal blocking, and
orthogonality—of second-order designs. The discussion here focuses on central composite
designs (CCDs) because their properties can be controlled by judicious choice of the number
of center pointsn0 and the distanceα of the axial points from the design center. In addition to
rotatability, orthogonal blocking, and orthogonality, a design should include enough center
points (say 3–6) to provide a reasonably sensitive test for lack of fit.

16.4.1 Rotatability

A design isrotatable if the variance Var(̂Yz) of the predicted response is the same for all coded
pointsz � (z1, z2, . . . , zp) at any given distanced � (

∑
i z

2
i )

1/2 from the design center,z0 �
(0,0, . . . ,0). Thus, there is the same amount of information about the response surface at
the same distanced in any direction from the design center. This is a reasonable requirement
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of a design, since data are generally collected without knowing in which direction from the
design center the stationary point of the fitted surface will be located.

Rotatable Central Composite Designs Suppose we take a central composite design
for p factors, with one observation at each axial point located a distanceα from the design
center, and with one observation at each of thenf factorial points. It can be shown that such
a central composite design is rotatable if

α � (nf )1/4 , (16.4.17)

and if each axial point is observedra times, then the requirement for rotatability becomes

α � (nf /ra)
1/4 .

The details can be found in the articles by Box and Hunter (1957) and Draper (1982).

Example 16.4.1 Acid copper pattern plating experiment, continued

In Example 16.3.2, page 563, a central composite design was used forp � 2 factors.
The design involved one observation at eachnf � 4 factorial points andna � 4 axial
points, plus two center points. If the model, in terms of coded factor levels, is fitted using
α � (nf )1/4 � √

2, the design is rotatable with respect to the coded factor levels. For
example, it can be verified that the estimate of the variance is

V̂ar(Ŷz) � 0.0182

at each pointz � (z1, z2) at distance
√

2 from the design center. This includes each factorial
point and each axial point. For comparison,̂Var(Ŷ ) � 0.0145 at the center point and
V̂ar(Ŷ ) � 0.0100 at the points (−1,0), (1,0), (0,−1), and (0,1), which are each a distance
1.0 from the design center. ✷

16.4.2 Orthogonality

The second-order model (16.3.10) includes (p + 1)(p + 2)/2 parameters, including the
interceptγ0. A second-order design isorthogonal if the sums of squares,ss(γi |γ0) (i �
1,2, . . . , p), ss(γii |γ0) (i � 1,2, . . . , p), andss(γij |γ0) (1 ≤ i < j ≤ p), each adjusted for
the interceptγ0, are independent. In the analysis of variance of an orthogonal design, the
sums of squares associated with these (p+2)(p+1)/2−1 parameters are independent, and
do not depend on the order in which the parameters are entered into the model. Orthogonality
is advantageous if the experimenter is interested in evaluating which of the linear, quadratic,
and cross product effects are significantly different from zero.

Orthogonal central composite designs Suppose we take a central composite design
with one observation at each of thenf factorial points and 2p axial points, and withn0

observations at the center. As shown by Khuri and Cornell, 1987, page 119, the design is
orthogonal if

(nf + 2α2)2 � nf n ,
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wheren is the total number of observations; that is,n � nf + 2p + n0. So, a central
composite design withnf factorial points and 2p axial points can be made orthogonal by
appropriate choice ofα or n0. For example, if the number of center points is fixed atn0,
thenn is fixed, and a central composite design is orthogonal if

α �
(√

nf n− nf

2

)1/2

. (16.4.18)

If a central composite design is to be rotatable andn0 is not fixed, then we would choose
α � (nf )1/4, and the design would also be orthogonal if the number of center points was
chosen to be

n0 � 4
√
nf + 4 − 2p . (16.4.19)

This may not be achievable, sincen0 must be an integer. Rounding (16.4.19) to the nearest
integer gives a rotatable design that is nearly orthogonal.

Example 16.4.2 Flour production experiment

In Section 16.5, we will consider the last of four experiments described by M. G. Tuck,
S. M. Lewis, and J. I. L. Cottrell (1993) to develop robust bread flours. This experiment
was run using a central composite design for three factors, with one observation at each of
nf � 8 factorial points and 2p � 6 axial points. From equation (16.4.19), since

√
nf � √

8
is not an integer, the design withnf � 8 cannot be both orthogonal and rotatable. The
experimenters used onlyn0 � 2 center points, givingn � 16 observations in total. From
equation (16.4.18), the design is orthogonal if

α �
(√

(8)(16)− 8

2

)1/2

� 1.2872.

This value ofα was used by the experimenters. ✷

16.4.3 Orthogonal Blocking

If a second-order design is conducted as a block design, then the second-order model
(16.3.10) is modified to include additive block effects. Forp factors, the model is

Yh,z,t � γ0 + θh +
p∑
i�1

γizi +
p∑
i�1

γiiz
2
i +
∑
i<j

γij zizj + εh,z,t , (16.4.20)

whereYh,z,t denotes thet th observation at coded treatment combinationz � (z1 z2 . . . zp)
in block h, and the error variablesεh,z,t are independent withN (0, σ 2) distributions. The
parameterθh denotes the effect of thehth block, and the other parameters are defined as in
the second-order model (16.3.10).

A design is said to haveorthogonal blocking if the least squares estimates of the linear,
quadratic, and cross product effect parameters are the same under model (16.4.20), which
includes block effects as under the model (16.3.10) without block effects; that is, the linear,
quadratic, and cross product effects are estimated independently of the block effects. The
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primary advantage of orthogonal blocking as compared with nonorthogonal blocking is that
an orthogonally blocked design gives the smallest values of Var(Ŷ ), Var(γ̂i), Var(γ̂ii), and
Var(γ̂ij ). A second advantage is that a rotatable design conducted with orthogonal blocking
is still rotatable.

Given a design inb blocks with orthogonal blocking, the analysis under the block design
model (16.4.20) is almost the same as it would be under model (16.3.10) for the design with
no blocking. However, the sum of squares for blocks is extracted from the sum of squares
for error, and there areb − 1 degrees of freedom for blocks givingb − 1 fewer degrees of
freedom for error. The sum of squares for blocks is

ssθ �
b∑

h�1

kh(yh.. − y...)
2 �

b∑
h�1

y2
h../kh − y2

.../n ,

whereyh.. is the sum of the observations in thehth block,kh is the size of thehth block,
andy... is the sum of alln observations in the design.

In their 1957 article, Box and Hunter developed the following general conditions under
which a second-order design can be blocked orthogonally.

(1) Each block must be a first-order orthogonal design: that is, (i) for each block and each
factori, the sum of coded levels of the factor,

∑
zi , is zero; and (ii) for each block and

each pair of factorsi andj , the sum of cross products,
∑

zizj , is zero. (Each sum is
over all the observations in the block.)

(2) For each block and each factori, the sum of squares
∑

z2
i of the coded levels of theith

factor in the block must be proportional to the number of observations in the block.

Orthogonal blocking of central composite designs For a central composite design,
we first divide the observations into two blocks: anaxial-points block consisting of thena
axial points plusn0a center points, and afactorial-points block consisting of thenf factorial
points plusn0f center points. This division into blocks is natural if, for example, a first-order
design results in lack of fit, so that axial and additional center points are added at a later
date to build up to a second-order design. Each of the blocks is a first-order orthogonal
design, meeting condition (1) for orthogonal blocking. Concerning condition (2), the sum
of squares

∑
z2
i of the coded levels of each factor is 2α2 in the axial block andnf in the

factorial block. So, condition (2) requires that

2α2

nf
� na + n0a

nf + n0f
.

Solving forα, a central composite design has orthogonal blocking if

α �
(
nf (na + n0a)

2(nf + n0f )

)1/2

. (16.4.21)

The design is also rotatable ifα � (nf )1/4, in which case we require

n0f � (
√
nf /2)(na + n0a) − nf . (16.4.22)
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If the numbers of center points,n0a andn0f , in the blocks can be chosen to satisfy this
equation, then the design will be rotatable and can be orthogonally blocked. When this is
not possible, it is preferable to maintain orthogonal blocking but to relax rotatability. To
accomplish this, the numbersn0a andn0f can be chosen such that equation (16.4.22) is
approximately satisfied, and thenα can be computed from equation (16.4.21).

It is sometimes possible to block a central composite design orthogonally in more than two
blocks. The axial block cannot be further subdivided, but the factorial block can sometimes
be divided into 2m factorial blocks while maintaining orthogonal blocking if the number of
factorial center pointsn0f is divisible by 2m so the factorial center points can be equally
divided among the 2m factorial blocks. This is done by confounding interaction effects
between three or more factors. Box and Hunter (1957, page 233) provide a table of blocking
arrangements for rotatable and near-rotatable central composite designs. Notice that if center
points are spread acrossb blocks, then they provideb−1 fewer pure error degrees of freedom
than they would in a design that is not blocked.

Example 16.4.3 PAH recovery experiment

I. J. Barnabas, J. R. Dean, W. R. Tomlinson, and S. P. Owen (1995) used a central composite
design to study the effects of four factors—pressure, temperature, extraction time, and
methanol content—on the total recovery of polycyclic aromatic hydrocarbons (PAHs) when
extracted from soil. The design was composed ofnf � 24 � 16 factorial points and
na � 2p � 8 axial points. Takingα � 161/4 � 2 would give a rotatable design. From
equation (16.4.22),

n0f � (
√

16/2)(8+ n0a) − 16 � 2n0a ,

so use of twice as many factorial center points as axial center points would give a rotatable
design that could be orthogonally blocked.

The experimenters chose to usen0a � 2 axial center points andn0f � 4 factorial
center points. This gave an axial block of size 10 and a factorial block of size 20. They then
subdivided the factorial block into two blocks each of size 10 by confounding the four-factor
interaction and including two of the four factorial center points in each factorial block. The
resulting design was rotatable with orthogonal blocking. Analysis of the design is discussed
in Section 16.7 using the SAS computer program. The design itself is shown in Table 16.19,
page 581, where the first ten observations comprise the first factorial block, the second ten
the second factorial block, and the final ten the axial block. ✷

16.5 A Real Experiment: Flour Production Experiment,
Continued

M. G. Tuck, S. M. Lewis and J. I. L. Cottrell (1993) described a series of four related
experiments, involving quality improvement in the milling industry. The collective purpose
of the experiments was to develop a bread flour that would give high loaf volume despite
fluctuations in the bread-making process. We consider here their fourth experiment.
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Bread flour consists of wheat plus a small number of minor ingredients. Their fourth
experiment was concerned with the effects of three such ingredients (labeled design factors
B, C, andD) on loaf volume. An orthogonal central composite design, involving eight
factorial points, six axial points, and two center points, was used. For the axial points, the
valueα � 1.2872 was used to make the design orthogonal (see Example 16.4.2).

When a product consists of a mixture of ingredients, and the total volume of the mixture
is held constant, the fractions associated with the ingredients in the mixture necessarily sum
to one. This has implications for the model and data analysis. However, in this experiment,
the minor ingredients constituted such a small portion of the mixture that the total volume
did not need to remain fixed, and standard response surface methods could be used to study
the design factors.

There were a number of sources of variation in the production process that constituted
noise factors. The production factors were paired in order to keep the experiment small.
So, noise factorG represented oven bake and proof time, noise factorJ represented yeast
and water level, and noise factorK represented degree of mixing and moulding pressure.
Each of these composite factors had two levels, “high” and “low.” A 23−1

III fraction in the
composite noise factors was used, with defining relation

I � GJK .

The experimental design used was a product design. It included 16× 4 � 64
observations—each of the 16 design factor combinations of the central composite design
was observed with each of the four noise factor combinations of the noise array. Also, the
noise factors were difficult to change, so each noise factor combination constituted a dif-
ferent block, and in each block the design factor treatment combinations (zBzCzD) were
randomly ordered. Observations were collected over two days using half-days as blocks,
with the four blocks collected in the order (zGzJ zK ) � 111, 100, 010, 001. As a result, noise
factor effects are also confounded with changes in conditions from half-day to half-day. For
each observation, three loaves were baked from a single dough, then the average specific
volume of the three loaves recorded. The resulting datayhz are shown in Table 16.12.

For each of the 16 treatment combinationsz of the central composite design in turn, the
sample meany.z and the log sample variance (×100) were computed from the observations
yhz in the four blocks (h � 1,2,3,4). The effects of the design factors on these two response
variables were studied separately by fitting second-order response surface regression models
to each set of 16 responses.

The analysis of variance for fitting the second-order model to the responsey.z is shown
in Table 16.13. Because the design is orthogonal, the effects can be assessed for significance
independently of their order of entry into the model. The only effects that are significantly
different from zero at an individual significance level of 0.01 are the main effects of each
of the three factors. The overall significance level for the nine tests is at most 0.09. If the
corresponding first-order model is fitted toy.z, we obtain

ŷ.z � 475.50+ 4.42zB + 10.24zC + 6.87zD .

The coefficients ofzB , zC , andzD are all positive. Thus, increasing the level of design factors
B, C, andD has a positive effect on the mean loaf specific volume.
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Table 16.12 Flour production experiment: Average specific volume
yhz of loaves on half-day h; α � 1.2872

zB zC zD y1z y2z y3z y4z y .z 100 log10(sz)
−1 −1 −1 586 399 418 404 451.75 195.36
−1 −1 1 615 411 435 421 470.50 198.60
−1 1 −1 611 422 431 439 475.75 195.63
−1 1 1 639 436 444 454 493.25 198.88
1 −1 −1 603 422 400 430 463.75 197.17
1 −1 1 622 411 425 436 473.50 199.79
1 1 −1 634 471 436 425 491.50 198.68
1 1 1 673 433 423 462 497.75 207.19
α 0 0 618 414 419 477 482.00 197.80

−α 0 0 586 421 420 455 470.50 189.60
0 α 0 621 426 427 458 483.00 196.94
0 −α 0 629 412 412 426 469.75 202.68
0 0 α 631 411 433 453 482.00 200.35
0 0 −α 587 413 419 430 462.25 192.15
0 0 0 604 432 416 438 472.50 194.53
0 0 0 602 425 407 439 468.25 195.48

Source: Tuck, M. G., Lewis, S. M., and Cottrell, J. I. L. (1993). Copyright
© 1993 Blackwell Publishers. Reprinted with permission.

Table 16.13 Flour production experiment: Analysis of variance for y .z
Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
zB 1 221.4366 221.4366 9.77 0.0204
zC 1 1185.3603 1185.3603 52.30 0.0004
zD 1 533.2415 533.2415 23.53 0.0029
z2B 1 48.0081 48.0081 2.12 0.1958
z2C 1 50.4906 50.4906 2.23 0.1862
z2D 1 1.1997 1.1997 0.05 0.8257
zBzC 1 3.4453 3.4453 0.15 0.7101
zBzD 1 51.2578 51.2578 2.26 0.1833
zCzD 1 2.8203 2.8203 0.12 0.7363
Error 6 135.9897 22.6650
Total 15 2233.2500

The analysis of variance for the response 100 log10(sz) is shown in Table 16.14. No effects
can be regarded as significantly different from zero at an individual 0.01 significance level.
However, in this setting it would not be particularly bad to make a Type I error, and if we
raise the individual significance level we would select the linear effects of factorsB andD
and the quadratic effect ofC as being the important effects. If the corresponding model is
fitted and the linear effect ofC is also included, we obtain̂log10(sz) � 195.19+ 0.18zC + 3.35z2

C + 2.20zB + 2.49zD

≈ 195.19+ 3.35(zC + 0.027)2 + 2.20zB + 2.49zD .
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Table 16.14 Flour production experiment: Analysis of variance for
100 log10(sz)

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
zB 1 54.9174 54.9174 8.24 0.0284
zC 1 0.3730 0.3730 0.06 0.8208
zD 1 70.1514 70.1514 10.53 0.0176
z2B 1 0.6409 0.6409 0.10 0.7669
z2C 1 61.4625 61.4625 9.23 0.0229
z2D 1 7.8587 7.8587 1.18 0.3191
zBzC 1 8.7175 8.7175 1.31 0.2963
zBzD 1 2.6931 2.6931 0.40 0.5484
zCzD 1 4.3269 4.3269 0.65 0.4511
Error 6 39.9752 6.6625
Total 15 251.1164

Taking the two fitted models, we see that not only does the mean response increase as
the levels of factorsB, C, andD are increased, but so does the variability. The minimum
variability with respect to factorC is achieved atzC � −0.027. However, the amount of
factorC in the loaf cannot be negative, and so the minimum variability is achieved when
the amount of factorC, as well as factorsB andD, is zero.

The end result was that the experimenters setzC � 0 to achieve low variability and
adjusted the level of factorB (which has the slightly smaller effect on the variance, and may
have been less costly than factorD) to raise mean response to the desired level.

16.6 Box–Behnken Designs

A central composite design has five levels for each factor,±1,±α, 0. For a given experiment,
circumstances may dictate the use of fewer levels, but at least three levels per factor are
needed for quadratic terms to be estimable in the second-order model. Use of 3p factorial
designs or regular 3p−s fractional factorial designs might be considered. These tend to be
large, however, and the smaller ones tend to be of resolution III or IV so that two-factor
interactions are confounded with main effects or other two-factor interactions. For fitting
a second-order response model a different type of design, called aBox–Behnken design, is
often preferred, since interaction parameter estimates are not completely confounded, and
in many cases, these designs are considerably smaller than 3p−s fractional factorial designs.

A Box–Behnken design forp factors is constructed by a composition of an incomplete
block design forp treatments inb blocks of sizek and a 2k factorial design having factor
levels coded+1 and−1. The method of composition is illustrated in Example 16.6. In
addition to the points generated by the composition, center points must be added to the
design for all model parameters to be estimable.

A list of Box–Behnken designs can be found in the article of Box and Behnken (1960).
The designs havep factors with each factor observed at 3 levels, forp � 3–7, 9–12, and 16.
The designs forp � 4 and 7 are rotatable, and the others are nearly rotatable. The designs
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for p � 4–7, 9, 10, 12, or 16 allow orthogonal blocking. All of the designs possess a high
degree of orthogonality, the only correlation being between the estimators of the intercept
and the quadratic terms.

Example 16.6.1 Construction of a Box–Behnken Design: p � 4

Suppose we require a second-order design forp � 4 factors, each observed at three levels,
and with a total of 27 observations. As illustrated by Box and Behnken (1960), a Box–
Behnken design can be constructed from a composition of a balanced incomplete block
design inb � 6 blocks of sizek � 2 and a 22 factorial design as follows. The balanced
incomplete block design, shown below left, consists of all possible combinations of four
treatment labels taken two at a time. Shown to its right are thev � 4 treatment combinations
of a 22 design, with factor levels coded+1 and−1. These two designs are composed as
follows. In each of the six blocks of the incomplete block design, the treatment labels
are replaced by the symbol±1 and the blank “−” by 0 to give the Box–Behnken design
represented in condensed form (and without center points) below right.

1 2 − −
− − 3 4

1 − 3 −
− 2 − 4

1 − − 4

− 2 3 −


with


−1 −1
−1 1

1 −1
1 1

 gives



±1 ±1 0 0

0 0 ±1 ±1
±1 0 ±1 0

0 ±1 0 ±1
±1 0 0 ±1
0 ±1 ±1 0


The same design, but expanded out and augmented with three center points, is shown in
Table 16.15. The first±1 in each row of the condensed design is replaced by the first column
of levels of the 22 design, the second±1 is replaced by the second column of levels, and
each 0 is replaced by a column ofv � 4 zeros. With the addition of three center points,
this gives the design with 27 treatment combinations shown as the 27 rows of Table 16.15.
Although this design has the same number of treatment combinations as a 34−1

IV design, it
does not have complete confounding of the two-factor interactions in pairs. ✷

Table 16.15 Box–Behnken design: p � 4 factors, n � 27 treatment combinations

−1 −1 0 0

−1 1 0 0

1 −1 0 0

1 1 0 0

0 0 −1 −1
0 0 −1 1

0 0 1 −1
0 0 1 1

0 0 0 0





−1 0 −1 0

−1 0 1 0

1 0 −1 0

1 0 1 0

0 −1 0 −1
0 −1 0 1

0 1 0 −1
0 1 0 1

0 0 0 0





−1 0 0 −1
−1 0 0 1

1 0 0 −1
1 0 0 1

0 −1 −1 0

0 −1 1 0

0 1 −1 0

0 1 1 0

0 0 0 0
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In general, the composition of an incomplete block design forp treatments inb blocks
of sizek with a factorial design withv � 2k treatment combinations yields a Box–Behnken
design forp factors withbv treatment combinations. Theith of thek treatment labels in
each block is replaced by theith of thek columns of the factorial design, and each “−” is
replaced by a column ofv zeros.

In general, if the incomplete block design is a balanced incomplete block design with
r � 3λ, as in Example 16.6, then the resulting Box–Behnken design is rotatable—otherwise
not. If there does not exist a balanced incomplete block design withr � 3λ, then one can
either use a balanced incomplete block design withr 	� 3λ or use a partially balanced
incomplete block design. If a partially balanced incomplete block design is used, each pair
of treatment labels must occur together in at least one block for all second-order model
parameters to be estimable.

Orthogonal blocking Many Box–Behnken designs can be blocked orthogonally. The
requirements for orthogonal blocking of a second-order design were given in Section 16.4.3,
and these imply that a Box–Behnken design can be blocked orthogonally under either of
two circumstances.

First, if the blocks of the incomplete block design in the composition can be partitioned
into equireplicate sets, then the same partition of observations in the Box–Behnken design
provides orthogonal blocking as long as the same number of center points is included in
each block. Such is the case for the design of Example 16.6, since each pair of blocks
in the balanced incomplete block design includes every treatment label exactly once. For
the resulting Box–Behnken design in Table 16.15, each bracketed set of nine treatment
combinations is a corresponding block with one center point included.

The second situation that allows orthogonal blocking occurs when interactions involving
three or more factors can be confounded in the generating factorial design. An example
follows:

Example 16.6.2 Example of orthogonal blocking

For p � 4 factors, the balanced incomplete block design with blocks consisting of the
four combinations of three treatment labels can be combined with the 23 factorial design as
follows.


1 2 3 −
1 2 − 4

1 − 3 4

− 2 3 4

 with



−1 −1 −1
−1 −1 1

−1 1 −1
−1 1 1

1 −1 −1
1 −1 1

1 1 −1
1 1 1


gives


±1 ±1 ±1 0

±1 ±1 0 ±1
±1 0 ±1 ±1
0 ±1 ±1 ±1

 ,

where theith occurrence of±1 in any row of the combined design is replaced by theith
column of the factorial design, and each 0 in the combined design is replaced by a column
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of eight 0’s. The resulting 32-run Box–Behnken design can be partitioned into two blocks of
size 16 by confounding the three-factor interaction in the generating factorial design. Thus,
treatment combinations in the combined design are divided into two blocks, the division
depending on whether they include an even or odd number of factors at level “−1.” An equal
number of center points must be added to each block. ✷

16.7 Using SAS Software

In this section we illustrate the analysis of a standard first-order design and a central
composite design using the SAS proceduresGLM andRSREG, respectively.

16.7.1 Analysis of a Standard First-Order Design

The acid copper pattern plating experiment of Poon (1995) was introduced in Example 16.2.6
(page 558). This small experiment involved four factorial points and two center points. A
SAS program using theGLM procedure for the analysis of this standard first-order design
is shown in Table 16.16. After reading the data and coding the factor levels, there are two
calls ofPROC GLM. Neither of these calls includes aCLASS statement, since the goal is to
fit a model to the levels of the quantitative factors and not to compare the effects of their
levels.

Table 16.16 SAS program for first-order response surface regression.

* Enter data of the first-order design and code levels;
DATA COPPER;
INPUT XA XB S;
ZA = (XA - 10.5);
ZB = (XB - 36)/5;
LINES;
9.5 31 5.60
9.5 41 6.45

11.5 31 4.84
11.5 41 5.19
10.5 36 4.32
10.5 36 4.25

;
* Analysis of the first-order design;
PROC GLM;
MODEL S = ZA ZB;

;
* Add model terms to test for lack of fit;
PROC GLM;
MODEL S = ZA ZB ZA*ZB ZA*ZA;
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Table 16.17 SAS output from the first call of PROC GLM: Analysis of variance and parameter
estimates for a first-order design

The SAS System
General Linear Models Procedure

Dependent Variable: S
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 2 1.3801000 0.6900500 0.99 0.4686
Error 3 2.0985833 0.6995278
Corrected Total 5 3.4786833

Source DF Type III SS Mean Square F Value Pr > F
ZA 1 1.0201000 1.0201000 1.46 0.3137
ZB 1 0.3600000 0.3600000 0.51 0.5250

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
INTERCEPT 5.108333333 14.96 0.0006 0.34144980
ZA -0.505000000 -1.21 0.3137 0.41818889
ZB 0.300000000 0.72 0.5250 0.41818889

Table 16.18 SAS output from the second call of PROC GLM: Test for lack of fit of the first-order
model

The SAS System
General Linear Models Procedure

Dependent Variable: S
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 4 3.4762333 0.8690583 354.72 0.0398
Error 1 0.0024500 0.0024500
Corrected Total 5 3.4786833

Source DF Type III SS Mean Square F Value Pr > F
ZA 1 1.0201000 1.0201000 416.37 0.0312
ZB 1 0.3600000 0.3600000 146.94 0.0524
ZA*ZB 1 0.0625000 0.0625000 25.51 0.1244
ZA*ZA 1 2.0336333 2.0336333 830.05 0.0221

In the first call, the first-order model (16.2.3) is fitted, generating the output shown in
Table 16.17. Neither main effect is significantly different from zero, indicating either that the
experimental region is in the vicinity of the peak, or that neither factor affects the response.
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Table 16.19 SAS program for response surface regression (PAH recovery experiment)

DATA PAH;
INPUT RUN B1 B2 PRES TEMP ET MC Y;
LINES;

1 1 0 250 55 47.5 15 391.8
2 1 0 150 85 47.5 15 413.6
3 1 0 250 55 22.5 5 68.7
4 1 0 250 85 47.5 5 143.0
5 1 0 150 85 22.5 5 104.0
6 1 0 150 55 22.5 15 309.1
7 1 0 200 70 35.0 10 400.6
8 1 0 250 85 22.5 15 402.5
9 1 0 150 55 47.5 5 77.7

10 1 0 200 70 35.0 10 426.5
11 0 1 250 85 47.5 15 457.5
12 0 1 150 55 22.5 5 56.9
13 0 1 250 85 22.5 5 94.1
14 0 1 250 55 22.5 15 409.7
15 0 1 150 55 47.5 15 410.9
16 0 1 150 85 22.5 15 375.8
17 0 1 150 85 47.5 5 110.5
18 0 1 200 70 35.0 10 387.8
19 0 1 250 55 47.5 5 103.0
20 0 1 200 70 35.0 10 399.1
21 -1 -1 200 70 35.0 10 416.9
22 -1 -1 200 40 35.0 10 359.8
23 -1 -1 200 70 10.0 10 276.1
24 -1 -1 200 70 60.0 10 462.3
25 -1 -1 100 70 35.0 10 311.5
26 -1 -1 200 70 35.0 10 346.5
27 -1 -1 200 70 35.0 0 46.8
28 -1 -1 200 70 35.0 20 418.7
29 -1 -1 200 100 35.0 10 413.9
30 -1 -1 300 70 35.0 10 429.4

;
* Sort by independent variables for lack of fit test;
PROC SORT;
BY B1 B2 PRES TEMP ET MC;

;
* Response surface regression;
PROC RSREG;
MODEL Y = B1 B2 PRES TEMP ET MC / COVAR=2 LACKFIT;

Source: The data in the program are reprinted with permission from
Barnabas, I. J., Dean, J. R., Tomlinson, W. R., and Owen, S. P. (1995).
Copyright © 1995 American Chemical Society.
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Table 16.20 SAS output from PROC RSREG: Coding of factor levels

The SAS System
Coding Coefficients for the Independent Variables

Factor Subtracted off Divided by
PRES 200.000000 100.000000
TEMP 70.000000 30.000000
ET 35.000000 25.000000
MC 10.000000 10.000000

In the second call ofPROC GLM, the interaction term and one quadratic term are added to
the model to test for lack of fit of the first-order model—the model would contain too many
parameters if both quadratic terms were added. Some of the resulting output is shown in
Table 16.18. At an overall level of 0.1 for the four tests (each being done at individual level
α∗ � 0.025), the quadratic termZA*ZA is significantly different from zero, indicating the
presence of significant curvature. This fact caused the experimenters to add axial points to
the first-order design to obtain a central composite design (see Example 16.3.2).

16.7.2 Analysis of a Second-Order Design

The SAS procedureRSREG is used to fit a second-order response surface regression model.
This is illustrated in Table 16.19 in the context of the PAH recovery experiment that was
introduced in Example 16.4.3, page 573. A rotatable central composite design with orthog-
onal blocking was used to study the effects of four factors—pressure (PRES), temperature
(TEMP), extraction time (ET), and methanol content (MC)—on the total recovery of polycyclic
aromatic hydrocarbons (Y) when extracted from soil.

The SAS program shown in Table 16.19 reads the run number, the levels of the block
indicator variables, the uncoded levels of the four factors, and the data into data setONE.
Until now, we have always declared a block variable to be a classification variable via the
CLASSES statement and listed its levels as 1,2, . . . , b. However,PROC RSREG does not
recognize classification variables, and if a single block factor were included in the model, it
would be interpreted as a quantitative variable possessing one degree of freedom. We have
included in the model the pair of covariates (B1, B2), for which we have selected the three
coded pairs of levels (1, 0), (0, 1) and (−1,−1). The three pairs of levels distinguish the
three blocks and provide two block degrees of freedom.

Only the factornames need be listed in theMODEL statement inRSREG, as all quadratic
and cross product terms in the factors are automatically included in the model. To avoid
treatment–block interactions from being included,B1 andB2 are declared to be covariates.
This is done via the optionCOVAR=2, which indicates that the first two listed independent
variables are covariates and should not be included in any interactions.

A generic test for model lack of fit can optionally be requested if the SAS data set has
been sorted by the independent variables in the model to cluster replicated observations.
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Table 16.21 SAS output from PROC RSREG: Analysis of variance, lack-of-fit test, and parameter
estimates for uncoded factor levels

The SAS System
Response Surface for Variable Y

Response Mean 300.823333
Root MSE 58.911606
R-Square 0.9280
Coef. of Variation 19.5835

Degrees
of Type I Sum

Regression Freedom of Squares R-Square F-Ratio Prob > F
Covariates 2 33884 0.0540 4.882 0.0262
Linear 4 447761 0.7141 32.254 0.0000
Quadratic 4 99227 0.1583 7.148 0.0029
Crossproduct 6 1007.770000 0.0016 0.0484 0.9993
Total Regress 16 581880 0.9280 10.479 0.0001

Degrees
of Sum of

Residual Freedom Squares Mean Square F-Ratio Prob > F
Lack of Fit 10 42240 4224.017550 4.404 0.1246
Pure Error 3 2877.330000 959.110000
Total Error 13 45118 3470.577346

Degrees
of Parameter Standard T for H0:

Parameter Freedom Estimate Error Parameter=0
INTERCEPT 1 -1238.272778 552.190337 -2.242
PRES 1 3.998267 2.492765 1.604
TEMP 1 12.755444 8.744702 1.459
ET 1 12.320000 9.182487 1.342
MC 1 65.649667 21.967351 2.989
PRES*PRES 1 -0.008863 0.004499 -1.970
TEMP*PRES 1 -0.002117 0.019637 -0.108
TEMP*TEMP 1 -0.080250 0.049994 -1.605
ET*PRES 1 -0.004660 0.023565 -0.198
ET*TEMP 1 0.003067 0.078549 0.0390
ET*ET 1 -0.143800 0.071991 -1.997
MC*PRES 1 0.023100 0.058912 0.392
MC*TEMP 1 -0.014500 0.196372 -0.0738
MC*ET 1 0.066200 0.235646 0.281
MC*MC 1 -2.263250 0.449945 -5.030
B1 1 -27.073333 15.210911 -1.780
B2 1 -20.293333 15.210911 -1.334
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Table 16.22 SAS output from PROC RSREG: Parameter estimates for coded factor levels, and
further analysis of variance

The SAS System

Parameter
Estimate
from Coded

Parameter Prob > |T| Data
INTERCEPT 0.0430 396.233333
PRES 0.1327 37.300000
TEMP 0.1684 31.783333
ET 0.2027 54.966667
MC 0.0105 263.066667
PRES*PRES 0.0706 -88.625000
TEMP*PRES 0.9158 -6.350000
TEMP*TEMP 0.1325 -72.225000
ET*PRES 0.8463 -11.650000
ET*TEMP 0.9695 2.300000
ET*ET 0.0671 -89.875000
MC*PRES 0.7013 23.100000
MC*TEMP 0.9423 -4.350000
MC*ET 0.7832 16.550000
MC*MC 0.0002 -226.325000
B1 0.0985 -27.073333
B2 0.2051 -20.293333

Degrees
of Sum of

Factor Freedom Squares Mean Square F-Ratio Prob > F
PRES 5 22522 4504.412929 1.298 0.3235
TEMP 5 15068 3013.620690 0.868 0.5279
ET 5 32390 6478.018262 1.867 0.1690
MC 5 503862 100772 29.036 0.0000

PROC SORT is used to sort the data, and a test for lack of fit is requested via the option
LACKFIT in the model statement ofPROC RSREG.

PROC RSREG codes the levels of each factor so that+1 and−1 represent the extreme
levels of each factor. For example, the axial points of a central composite design would
typically be coded±1 by SAS rather than the conventional±α. Table 16.20 shows how
SAS codes the factor levels, and Table 16.21 shows the resulting analysis of variance table.
The analysis of variance table includes Type I sums of squares for covariates, linear terms,
quadratic terms, and cross product terms, adding the terms to the model in that order. These
Type I sums of squares are the same, whether coded or uncoded factor levels are specified
in the model statement. Information is included for the lack of fit test, the least squares
parameter estimates, and the correspondingt-tests. Observe that for this experiment, cross
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Table 16.23 SAS output from PROC RSREG: Canonical analysis

The SAS System
Canonical Analysis of Response Surface

(based on coded data)

Critical Value
Factor Coded Uncoded
PRES 0.259473 225.947276
TEMP 0.195926 75.877786
ET 0.347209 43.680235
MC 0.605224 16.052237

Predicted value at stationary point 493.335662

Eigenvectors
Eigenvalues PRES TEMP ET MC
-71.256548 -0.233360 0.964432 0.121729 -0.024413
-84.167652 0.712899 0.255316 -0.652941 0.016008
-93.760753 0.655835 0.067269 0.744877 0.102535

-227.865046 -0.084838 0.012632 -0.063313 0.994301

Stationary point is a maximum.

product terms are not significantly different from zero, and there is no significant lack of fit
of the model.

Type III sums of squares are also provided for each factor (see Table 16.22), pooling
together the sums of squares for all terms—linear, quadratic and interaction—involving the
factor. This information can be used for assessing whether any single factor can be removed
from the model. These Type III sums of squares are also the same using either the coded
or uncoded factor levels. The Type III sums of squares indicate that the factor methanol
content (MC) is needed in the model, but perhaps not the other factors.

In Table 16.23, the canonical analysis is shown, including the stationary point (Crit-
ical Value) in terms of both coded and uncoded factor levels; the predicted value at the
stationary point; the canonical coefficients (Eigenvalues); classification of the stationary
point as a maximum, minimum, or saddle point; and the direction of each canonical axis
(Eigenvectors). The canonical coefficients and axes are with respect to the coded factor
levels.

For this experiment, all eigenvalues (canonical coefficients) are negative, so the stationary
point is a maximum. The eigenvectors are each scaled to be of length one. The last eigenvalue,
with value−227.865046, is the largest in magnitude. For the corresponding eigenvector,
the primary component is that ofMC with value 0.994301. So, the fitted model has greatest
curvature at the stationary point when moving in either direction determined by this fourth
eigenvector, which is nearly parallel to theMC-axis.
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Exercises

1. Paint experiment, continued
The paint experiment of S. Eibl, U. Kess, and F. Pukelsheim (1992) was discussed in
Example 16.2.3 (page 552), where the first-order model was fitted to the data. For the
fitted first-order model, do the following.

(a) Plot the residuals versus run order, and use the plot to check the independence
assumption. (The order of the observations was not randomized in this experiment.
Rather, the observations were collected in the order they are shown row by row in
Table 16.1, page 553.)

(b) Plot the residuals versus the predicted values, and use the plot to check the
assumption of equal variance.

(c) Plot the residuals versus their normal scores, and use the plot to check the normality
assumption.

(d) Verify that the design is orthogonal.

2. Paint followup experiment
The data of the second paint experiment described by S. Eibl, U. Kess, and F. Pukelsheim
(1992) are given in Table 16.24. This experiment involves factorsA–D, as these had
significant effects in the first experiment (Example 16.2.3). The factors are

A: belt speed B: tube width
C : pump pressure D: paint viscosity

All four factors are at lower levels than in the first experiment. Lowering the levels of
factorsB–D was indicated by the analysis of the first experiment. Lowering the level
of factorA was based on a conjecture of the experimenters.
(a) The experiment consists of two replicates of a half-fraction. Find the defining

relation for the half-fraction.

Table 16.24 Paint thickness yzt for the paint
followup experiment

zA zB zC zD yz1 yz2
−1.5 0 −2 0 1.71 1.61
0.5 0 −2 0 0.91 1.30

−1.5 −2 0 0 1.71 1.60
0.5 −2 0 0 1.15 1.29

−1.5 0 0 −2 1.33 1.06
0.5 0 0 −2 1.74 1.98

−1.5 −2 −2 −2 0.64 0.78
0.5 −2 −2 −2 1.51 1.18

Source: Eibl, S., Kess, U., and Pukelsheim, F.
(1992). Copyright © 1997 American Society for
Quality. Reprinted with Permission.
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Table 16.25 Purified lecithin yield and phosphatidylcholine
enrichment (PCE), given extraction time (z1),
solvent volume (z2), ethanol concentration (z3),
and temperature (z4); fractionation experiment

Run z1 z2 z3 z4 Yield PCE
1 1 1 1 1 27.6 43.8
2 −1 −1 1 1 16.6 27.2
3 1 −1 −1 1 15.4 23.6
4 −1 1 −1 1 17.4 26.2
5 1 −1 1 −1 17.0 27.8
6 −1 1 1 −1 19.0 30.2
7 1 1 −1 −1 17.4 25.2
8 −1 −1 −1 −1 12.6 18.8
9 1 −1 1 1 18.6 28.8
10 −1 1 1 1 22.4 36.8
11 1 1 −1 1 21.4 33.4
12 −1 −1 −1 1 14.0 21.0
13 1 1 1 −1 24.0 38.0
14 −1 −1 1 −1 15.6 23.6
15 1 −1 −1 −1 13.0 20.2
16 −1 1 −1 −1 14.4 22.6
17 0 0 0 0 22.6
18

√
2 0 0 0 23.4

19 −√
2 0 0 0 20.6

20 0
√
2 0 0 22.6

21 0 −√
2 0 0 13.4

22 0 0
√
2 0 20.6

23 0 0 −√
2 0 15.6

24 0 0 0
√
2 21.0

25 0 0 0 −√
2 17.6

Source: Sosada, M. (1993). Copyright © 1993 American Oil
Chemists Society. Reprinted with permission.

(b) Fit the first-order model, recoding the factor levels as±1.

(c) Test for lack of fit of the first-order model.

(d) What would you recommend the experimenters do next?

3. Fractionation experiment
M. Sosada (1993) studied the effects of extraction time, solvent volume, ethanol con-
centration, and temperature on the yield and phosphatidylcholine enrichment (PCE) of
deoiled rapeseed lecithin when fractionated with ethanol.
Initially, a single-replicate 24 experiment was conducted, augmented by three center
points. The results for the 16 factorial points are shown as the first 16 runs in Table 16.25.

(a) Fit the first-order model for the response variable “PCE” and conduct the
corresponding analysis of variance.
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(b) The design also includedn0 � 3 center-point observations of PCE. The sample
variance of these three observations wass2

0 � 1.120. Test the first-order model for
lack of fit, using a 5% level of significance. (Hint: Since the factorial points include
no replication,msPE � s2

0, andssE based on all 19 runs is equal tossE from the
factorial portion of the design plus (n0 − 1)s2

0.)

(c) Based on the results of parts (a) and (b), what subsequent experimentation would
you recommend?

4. Fractionation experiment, continued
The fractionation experiment was described in Exercise 3. Consider here the analysis of
“Yield” based on the initial first-order design, shown as the first 16 runs in Table 16.25.
(a) Fit the first-order model for the response variable “Yield” and conduct the

corresponding analysis of variance.

(b) At the design center point, three additional observations were collected, for which
the sample variance wass2

0 � 0.090. Test the first-order model for lack of fit, using
a 5% level of significance. (Hint: Since the factorial points include no replication,
msPE � s2

0, andssE based on all 19 runs is equal tossE from the factorial portion
of the design plus (n0 − 1)s2

0.)

(c) Based on the results of parts (a) and (b), what subsequent experimentation would
you recommend?

5. Fractionation experiment, continued
The fractionation experiment was described in Exercise 3, and analysis of the first-order
model for “Yield” was considered in Exercise 4. Based on the analysis of the first-order
design, the experimenter chose to augment the 16 factorial points of the first-order
design into a 25-run central composite design, the yields from which are shown in
Table 16.25.
(a) Determine whether the central composite design used is rotatable or orthogonal.

(b) Fit the second-order response surface model and determine which effects are
significantly different from zero.

(c) Conduct a canonical analysis and discuss the results with respect to the following
items. What is the nature of the critical point? Noting that the objective is to increase
yield, in what direction should one move in subsequent experimentation?

6. Film viscosity experiment
B. Cuq, C. Aymard, J.-L. Cuq, and S. Guilbert (1995,Journal of Food Science) used a
central composite design to study the effects of protein concentration (g/100 g solution),
pH, and temperature (◦C), denoted byP , H , andT , respectively, on the apparent
viscosityY (mPa) of film-forming solution, in the development of edible packaging
films based on fish myofibrillar proteins. The data are shown in Table 16.26.
(a) Is this central composite design rotatable or orthogonal?

(b) Fit the second-order model to the data using the coded factor levels, and check the
model assumptions. Would you recommend that a transformation of the data be
taken?
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Table 16.26 Apparent viscosity yzt of film-forming solution, for
combinations of levels of protein concentration (g/100 g
solution), pH, and temperature (◦C)

Design P H T

point zP xP zH xH zT xT y

1 −1 1.25 −1 2.75 −1 20 50
2 1 2.75 −1 2.75 −1 20 48
3 −1 1.25 1 3.25 −1 20 16700
4 1 2.75 1 3.25 −1 20 560
5 −1 1.25 −1 2.75 1 40 320
6 1 2.75 −1 2.75 1 40 18
7 −1 1.25 1 3.25 1 40 19000
8 1 2.75 1 3.25 1 40 5000
9 −2 0.50 0 3.00 0 30 12700
10 2 3.50 0 3.00 0 30 182
11 0 2.00 −2 2.50 0 30 14
12 0 2.00 2 3.50 0 30 27800
13 0 2.00 0 3.00 −2 10 133
14 0 2.00 0 3.00 2 50 4300
15 0 2.00 0 3.00 0 30 57
16 0 2.00 0 3.00 0 30 70
17 0 2.00 0 3.00 0 30 58
18 0 2.00 0 3.00 0 30 56

Source: Cuq, B., Aymard, C., Cuq, J.-L., and Guilbert, S. (1995). Copyright ©
1995 Inst. of Food Technologists. Reprinted with permission.

(c) Fit the second-order model to the natural log of the data, ln(y), using the coded
factor levels.

(d) Conduct the test for lack of fit of the second-order model for ln(y).

(e) Check the model assumptions for ln(y).

(f) Conduct the canonical analysis for ln(y).

(g) Conduct the analysis of variance for ln(y).

(h) Compute the coefficient of multiple determinationR2 for the second-order model
for ln(y).

(i) Assess the results of the experiment, based on the model for ln(y).

7. Flour production experiment, continued
Consider again the bread-baking experiment of Section 16.5. The data were given in
Table 16.12 (page 575), along with the statisticsy.z and 100 log10(sz) computed for the
observations at each design-factor combinationz.

(a) Plot log10(sz) versus log10(y.z), and use the methods of Section 5.6.2 to determine
an appropriate variance-stabilizing transformation for these data. (Use of log10 is
equivalent to use of ln for choosing a transformation.)
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(b) Repeat the first analysis of variance of Section 16.5, for which the response variable
wasy.z, after applying the transformation determined in part (a) to the observations
yhz. Compare your conclusions with those reached in Section 16.5.

(c) Repeat the second analysis of variance of Section 16.5, for which the response
variable was 100 log10(sz), after applying the transformation determined in part (a)
to the observationsyhz. Compare your conclusions to those reached in Section 16.5.

8. Central composite design
Consider using a central composite design for three factors, to include eight factorial
points and six axial points.

(a) Determine the value ofα to make the design rotatable.

(b) Investigate howα and the number of center points should be chosen to make the
design both rotatable and orthogonal, if possible. If this is not possible, how can
the design be made rotatable and nearly orthogonal?

(c) Investigate whether the design can be rotatable with orthogonal blocking. If not,
then investigate whether orthogonal blocking is possible. If so, how many blocks
could be used? Investigate whether orthogonal blocking and near rotatability is
possible.

9. Central composite design
Repeat Exercise 8 for a central composite design for four factors, to include 16 factorial
points and eight axial points.

10. Resin impurity experiment
An experiment was conducted using a design close to a central composite design to
study the effects of drying time (hours) and temperature (◦C) on the contenty (ppm)
of undesirable compounds in a resin. The data are shown in Table 16.27.

Table 16.27 Resin impurity content yzt
(ppm)

Design
point Time Temp. yx,t
1 7.0 232.4 18.5
2 3.0 220.0 22.5
3 11.0 220.0 17.2
4 1.3 190.0 42.2
5 7.0 190.0 28.6
6 7.0 190.0 19.8
7 7.0 190.0 23.6
8 7.0 190.0 24.1
9 7.0 190.0 24.2
10 12.7 190.0 19.1
11 3.0 160.0 54.1
12 11.0 160.0 33.8
13 7.0 147.6 55.4
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(a) Determine the coded levels of time and temperature, as well as the values ofnf ,
na, n0. What values ofα for each factor were selected by the experimenters for the
axial points? Why is the design not quite a central composite design?

(b) Fit the second-order model, using coded factor levels.

(c) Test for model lack of fit.

(d) Check the equal variance and normality assumptions of the model using residual
plots.

(e) Conduct the canonical analysis.

(f) Conduct the analysis of variance.

(g) Summarize the results.

11. Resin moisture experiment
A Box–Behnken design was used to determine whether specific drying conditions for
a process could yield a resin that is sufficiently devoid of moisture and low-molecular-
weight components. The three factorsT ,H , andP under study were temperature (150,
185, 220◦C), relative humidity (0, 50, 100%), and air pressure (1, 5, 9 torr). The response
variabley was a measure of product degradation (ppm). The design and data are shown
in Table 16.28.
(a) Fit the second-order model, using coded factor levels.

(b) Test for model lack of fit.

(c) Check the equal-variance and normality model assumptions using residual plots.

(d) Conduct the canonical analysis.

Table 16.28 Resin degradation (ppm) for the resin moisture
experiment

Design T H P

point zT xT zH xH zP xP y

1 −1 150 −1 0 0 4 83
2 −1 150 0 50 −1 1 103
3 −1 150 0 50 1 9 94
4 −1 150 1 100 0 4 98
5 0 185 −1 0 −1 1 51
6 0 185 −1 0 1 9 48
7 0 185 1 100 −1 1 106
8 0 185 1 100 1 9 108
9 1 220 −1 0 0 4 36
10 1 220 0 50 −1 1 153
11 1 220 0 50 1 9 107
12 1 220 1 100 0 4 87
13 0 185 0 50 0 4 80
14 0 185 0 50 0 4 81
15 0 185 0 50 0 4 77
16 0 185 0 50 0 4 80
17 0 185 0 50 0 4 82
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(e) Conduct the analysis of variance.

(f) Summarize the results.

12. Box–Behnken design
(a) Construct a Box–Behnken design for three factors based on the balanced incom-

plete block design for three treatments in three blocks of size two and the 22 factorial
design.

(b) Determine whether the design constructed in part (a) is rotatable.

(c) For the design constructed in part (a), determine whether orthogonal blocking is
possible.

13. Box–Behnken design.
(a) Construct a Box–Behnken design for five factors based on the balanced incomplete

block design for five treatments in 10 blocks of size two.

(b) Determine whether the design constructed in part (a) is rotatable.

(c) For the design constructed in part (a), determine whether orthogonal blocking is
possible.
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17.10 Using SAS Software
Exercises

17.1 Introduction

Until now, we have looked only at treatment factors whose levels have been specifically cho-
sen. We have tested hypotheses about, and calculated confidence intervals for, comparisons
in the effects of these particular treatment factor levels. These treatment effects are known
asfixed effects, since we represent them in the model as unknown constants (parameters).
Models that contain only fixed effects are calledfixed-effects models.

As mentioned in step (f) of the checklist in Section 2.2, page 7, there are occasions
when we are interested in a large population of possible levels of a treatment factor, and the
levels that are actually used in the experiment are a random sample from this population.
The effects of the levels used in the experiment are then represented as random variables
whose distributions are the distributions of values in the population. Such treatment-factor
effects are calledrandom effects, and the corresponding models are calledrandom-effects
models. We are not interested in just the levels that happen to be in the experiment. Rather,

593
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we are concerned with the variability of the effects of all the levels in the population.
Consequently, random effects are handled somewhat differently from fixed effects. Some
examples of experiments involving random effects are given in Section 17.2.

In Section 17.3 we look at experiments with a single random effect. The selection of
sample sizes and model assumption checking are discussed in Sections 17.4 and 17.5.
These ideas are extended to experiments with two or more random effects in Section 17.6.

An experiment may involve both random and fixed effects, and the corresponding model is
then known as amixed model. Such experiments are discussed in Section 17.7. Block effects
may also be random effects, and these are discussed in Section 17.9. Rules for obtaining
confidence intervals and testing hypotheses for random effects are given in Section 17.8.
The use of SAS is considered in Section 17.10.

17.2 Some Examples

Before running an experiment, the checklist (Section 2.2, page 7) should be completed as
usual. In the case of a random effect, the treatment factor will have an extremely large
number of levels, only a very small proportion of which can be observed in the experiment.
Throughout this chapter, we will assume that the total possible number of levels of each
treatment factor will be at least 100 times larger than the numbers of levels that can be
observed. Typically, the population of possible levelswill meet this requirement, and for the
purposes of writing down a model, we may regard the population as infinite. Otherwise, one
needs to make a correction for a “finite population” in all of the formulae, and this is beyond
the scope of this book. Some examples of “infinite” populations are given in Example 17.2.

Example 17.2.1 Infinite populations

Suppose that a manufacturer of canned tomato soup wishes to reduce the variability in the
thickness of the soup. Suppose that the most likely causes of the variability are the quality
of the cornflour (cornstarch) received from the supplier and the actions of the machine
operators. Let us consider two different scenarios:

Scenario 1: The machine operators are highly skilled and have been with the company
for a long time. Thus, the most likely cause of variability is the quality of the cornflour
delivered to the company. The treatment factor is “cornflour,” and its possible levels are
all the possible batches of cornflour that the supplier could deliver. Theoretically, this is an
infinite population of batches. We are interested not only in the batches of cornflour that
have currently been delivered, but also in all those that might be delivered in the future. If
we assume that the batches delivered to the company are a random sample from all batches
that could be delivered, and if we take a random sample of delivered batches to be observed
in the experiment, then the effect of the cornflour on the thickness is a random effect and
can be modeled by a random variable.

Scenario 2: It is known that the quality of the cornflour is extremely consistent, so the
most likely cause of variability is due to the different actions of the machine operators. The
company is large and machine operators change quite frequently. Consequently, those that
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are available to take part in the experiment are only a small sample of all operators employed
by the company at present or that might be employed in the future. If we can assume that
the operators available for the experiment are representative of the population, then we can
assume that they are similar to a random sample from a very large population of possible
operators, present and future. Since we would like to know about the variability of the entire
population, we model the effect of the operators as random variables, and call them random
effects. ✷

In the absence of any blocking factors, a completely randomized design would be used.
The levels of the random treatment factor are first selected at random from the population of
all possible levels, and then the experimental units are randomly assigned to these selected
levels as usual. At step (h) of the checklist, we need to calculate the number of levelsv

of the treatment factor to be observed in the experiment in addition tor, the number of
observations on each level. Since this calculation uses the formulas for confidence intervals
and hypothesis tests, we will postpone the discussion to Section 17.4. As a general rule, if the
variability of the treatment effects is much greater than the error (measurement) variability,
thenv should be large andr small; and vice versa.

Example 17.2.2 Clean wool experiment

The clean wool experiment was reported by J. M. Cameron, of the National Bureau of
Standards, in the 1952 volume ofBiometrics. The following checklist has been compiled
from the information given in the article.

(a) Define the objectives of the experiment.
Raw wool contains varying amounts of grease, dirt, and foreign material which
must be removed before manufacturing begins. The purchase price and customs
levy of a shipment are based on the actual amount of wool present, i.e., on the
amount of wool present after thorough cleaning—the “clean content.” The clean
content is expressed as the percentage the weight of the clean wool is of the
original weight of the raw wool.

The experiment was run in order to estimate the variability in “clean content” of bales
of wool in a shipment.

(b) Identify all sources of variation.
(i) Treatment factors and their levels.
The treatment factor was “wool bale” and its levels were the entire population of bales
in a particular shipment. Seven bales were observed in the experiment, and these were
selected at random from the shipment. The shipment was large enough to allow the bales
used in the experiment to be regarded as a random sample from an infinite population
of bales. The treatment factor “wool bale” was therefore regarded as a random effect.
(ii) Experimental units.
The experimental units were time slots, so that allocation of these to the levels of the
treatment factor determined the order in which the wool bales were observed.
(iii) Blocking factors, noise factors, and covariates.
No nuisance factors were identified as major sources of variation.



596 Chapter 17 Random Effects and Variance Components

(c) Choose a rule by which to assign the experimental units to the levels of the treatment
factors.
A completely randomized design was selected.

(d) Specify the measurements to be made, the experimental procedure, and the
anticipated difficulties.
A machine was used to bore through a bale of wool and extract a core of wool. Several
cores were taken from each of the seven selected bales so that several observations on
clean content could be made on each bale. Each core of wool was weighed and then
cleaned by scouring, removing burrs, etc. After cleaning, the wool was reweighed and
the clean content calculated as the ratio of the clean wool to the initial weight, times
100%.
An anticipated difficulty was that the scouring process, which works well with large
amounts of wool, proves difficult with a small core of wool, so that the experimental
error observed in the experiment may be larger than would normally be observed in
routine production.

The observations on the clean content of the seven bales are shown in Table 17.1. Model
selection for this experiment and its analysis via SAS are discussed in Section 17.10.

17.3 One Random Effect

17.3.1 The Random-Effects One-Way Model

For a completely randomized design, withv randomly selected levels of a treatment factor
T , the random-effects one-way model is

Yit � µ+ Ti + εit , (17.3.1)

εit ∼ N (0, σ 2) , Ti ∼ N (0, σ 2
T ) ,

εit ’s andTi ’s are all mutually independent,

t � 1, . . . , ri , i � 1, . . . , v .

Compare this with the fixed-effects one-way analysis of variance model (3.3.1), page 36.
The form of the model and the error assumptions are exactly the same. The only difference is

Table 17.1 Data for the clean wool experiment

Bale
1 2 3 4 5 6 7

52.33 56.99 54.64 54.90 59.89 57.76 60.27
Clean 56.26 58.69 57.48 60.08 57.76 59.68 60.30
Content 62.86 58.20 59.29 58.72 60.26 59.58 61.09

50.46 57.35 57.51 55.61 57.53 58.08 61.45

Source: Cameron, J. M. (1951). Copyright © 1951 International Biometric Society.
Reprinted with permission.
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in the modeling of the treatment effect. Since theith level of the treatment factorT observed
in the experiment has been randomly selected from the “infinite” population, its observed
effect is an observation of a random variableTi . The distribution ofTi is the distribution of
treatment effects in the whole population. We have assumed in (17.3.1) that the population
of effects follows a normal distribution with varianceσ 2

T , and this assumption will need to
be checked along with the error assumptions. The mean of the treatment-effect population
has been absorbed into the constantµ, so the distribution ofTi is listed asN (0, σ 2

T ). The
varianceσ 2

T is the parameter of interest, since if the effects of all of the treatment-factor
levels are the same, thenσ 2

T is zero. If the effects of the levels are quite different, thenσ 2
T is

quite large.
Our final assumption is one of independence. If the treatment-factor levels are selected at

random, then the assumption of independence ofT1, T2, . . . , Tv is reasonable. However, if,
as in Example 17.2 Scenario 2, the levels are a “convenient sample,” then this assumption
should be investigated carefully. Independence of theTi andεit requires that the treatment
factor not affect any source of variation that has been absorbed into the error variable.

In a random-effects model, the expected value of the response isµ, since

E[Yit ] � E[µ] + E[Ti ] + E[εit ] � µ .

The variance ofYit is

Var(Yit ) � Var(µ+ Ti + εit ) � Var(Ti) + Var(εit ) + 2Cov(Ti, εit ) � σ 2
T + σ 2 ,

sinceTi and εit are mutually independent and so have zero covariance. Therefore, the
distribution ofYit is

Yit ∼ N (µ, σ 2
T + σ 2). (17.3.2)

The two componentsσ 2
T andσ 2 of the variance ofYit are known asvariance components.

Observations on the same treatment are correlated, with

Cov(Yit , Yis) � Cov(µ+ Ti + εit , µ+ Ti + εis) � Var(Ti) � σ 2
T .

17.3.2 Estimation of σ 2

In order to be able to test hypotheses aboutσ 2
T or to calculate confidence intervals, we need

an unbiased estimate ofσ 2. The random-effects one-way model (17.3.1) is very similar to
the fixed effects one-way analysis of variance model (3.3.1), page 36, so a natural question
is whether the fixed-effects mean square for errorMSE provides an unbiased estimator for
σ 2 in the random-effects model also. The answer, happily, is “yes,” and we can check it by
calculatingE[MSE] for the random-effects model, as shown below.

From (3.4.7), page 43, the fixed-effects sum of squares for error is

SSE �
v∑
i�1

ri∑
t�1

Y 2
it −

v∑
i�1

riY
2
i. .
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Remember that the variance of a random variableX is calculated as Var(X) � E[X2] −
(E[X])2. So, we have

E[Y 2
it ] � Var(Yit ) + (E[Yit ])

2 � (σ 2
T + σ 2) + µ2 .

Now,

Y i. � µ+ Ti + 1

ri

ri∑
t�1

εit ,

so

Var(Y i.) � σ 2
T + σ 2

ri
and E[Y i.] � µ . (17.3.3)

Consequently,

E[Y
2
i.] �
(
σ 2
T + σ 2

ri

)
+ µ2.

Thus,

E[SSE] �
v∑
i�1

ri∑
t�1

(σ 2
T + σ 2 + µ2) −

v∑
i�1

ri

(
σ 2
T + σ 2

ri
+ µ2

)

� nσ 2 − vσ 2

(
wheren �

v∑
i�1

ri

)
� (n− v)σ 2 ,

giving

E[MSE] � E[SSE/(n− v)] � σ 2.

So MSE is an unbiased estimator forσ 2, and the observed value of the mean square for
error,msE, is an unbiased estimate forσ 2 in the random-effects one-way model, as well as
in the fixed-effects one-way model.

Confidence bounds forσ 2 can be computed as under fixed-effects models (Section 3.4.6),
that is,

σ 2 ≤ ssE

χ2
n−v,1−α

, (17.3.4)

whereχ2
n−v,1−α is the percentile of the chi-squared distribution withn−v degrees of freedom

and with probability of 1− α in the right-hand tail.

17.3.3 Estimation of σ 2
T

Since the fixed-effects mean square for errormsE provides an unbiased estimate ofσ 2, the
next question that is natural to ask is whether the fixed-effects mean square for treatments
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msT provides an unbiased estimate forσ 2
T . The answer is “not quite,” but we can certainly

use it to find an estimate. NowmsT = ssT/(v − 1), andssT is given in (3.5.12), page 46, as

ssT �
v∑
i�1

riy
2
i. − ny2

..

with corresponding random variable

SST �
v∑
i�1

riY
2
i. − nY

2
.. .

Using the same type of calculation as in Section 17.3.2 above, we have

Y .. � µ + 1

n

∑
i

riTi + 1

n

v∑
i�1

ri∑
t�1

εit .

So

E[Y ..] � µ and Var(Y ..) �
∑

r2
i

n2
σ 2
T + n

n2
σ 2 .

Also, from (17.3.3),

E[Y i.] � µ and Var(Y i.) � σ 2
T + σ 2

ri
.

Therefore,

E[SST ] �
v∑
i�1

ri

(
σ 2
T + σ 2

ri
+ µ2

)
− n

(∑
r2
i

n2
σ 2
T + σ 2

n
+ µ2

)
�
(
n−
∑

r2
i

n

)
σ 2
T + (v − 1)σ 2 .

SinceMST = SST/(v − 1), we have

E[MST ] � cσ 2
T + σ 2, wherec � n2 −∑ r2

i

n(v − 1)
.

Notice that if allri are equal tor, thenn � vr andc � r.
We see thatMST is an unbiased estimator ofcσ 2

T + σ 2, not σ 2
T . Nevertheless, we can

easily find an unbiased estimator ofσ 2
T , since

E

[
MST − MSE

c

]
� σ 2

T . (17.3.5)

It is, unfortunately, possible for the observed value of this estimator to be negative even
thoughσ 2

T cannot be negative. This will occur whenmsE happens to be greater thanmsT,
and this is most likely whenσ 2

T is close to zero. IfmsE is considerably greater thanmsT,
then the model should be questioned, as it is unlikely to be a good description of the data.
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Table 17.2 Melting times for three randomly selected flavors of ice cream. Order of
observation in parentheses.

Flavor Time in seconds (order of observation)
1 924 ( 1) 876 ( 2) 1150 ( 5) 1053 ( 7) 1041 (10) 1037 (12)

1125 (15) 1075 (16) 1066 (20) 977 (22) 886 (25)

2 891 ( 3) 982 ( 4) 1041 ( 8) 1135 (13) 1019 (14) 1093 (18)
994 (27) 960 (30) 889 (31) 967 (32) 838 (33)

3 817 ( 6) 1032 ( 9) 844 (11) 841 (17) 785 (19) 823 (21)
846 (23) 840 (24) 848 (26) 848 (28) 832 (29)

Example 17.3.1 Ice cream experiment

The following experiment was run by Sue Hubbard in 1986 to determine whether or not
different flavors of ice cream melt at different speeds. A random sample of three flavors was
selected from a large population of flavors offered to the customer by a single manufacturer
in May 1986. It is not obvious that the selected flavors are representative of all possible ice
cream flavors, since some may include an ingredient that inhibits melting. The theoretical
population is therefore the population of all flavors that could be made with ingredients
similar to those flavors available.

The three flavors of ice cream were stored in the same freezer in similar-sized containers.
For each observation, one teaspoonful of ice cream was taken from the freezer, transferred
to a plate, and the melting time at room temperature was observed to the nearest second.
Eleven observations were taken on each flavor. These are shown, together with their order
of observation, in Table 17.2 and plotted in Figure 17.1.

Now,

ssE �
∑∑

y2
it − 11

∑
y2
i.

Figure 17.1
Plot of data for the ice

cream experiment
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� 30,206,485− 30,003,028.8181

� 203,456.1819.

So an unbiased estimate ofσ 2 is

msE � ssE/(33− 3) � 6781.8727 seconds2 .

Similarly,

ssT � 11
∑

y2
i. − 33y2

..

� 30,003,028.8181− 29,830,018.9393

� 173,009.8787.

SomsT � ssT/(3 − 1) � 86,504.9394 seconds2, and an unbiased estimate ofσ 2
T is given

by

msT − msE

c
� 86,504.9394− 6781.8727

11
� 7247.5515 seconds2. ✷

17.3.4 Testing Equality of Treatment Effects

When the treatment factor is random, we are interested in the variability of the treatment
effects in the entire population of levels, not just those in the experiment. Since the variance
of the effects in the population isσ 2

T , the null hypothesis of interest is of the form

HT
0 : σ 2

T � 0 ,

and the alternative hypothesis is

HT
A : σ 2

T > 0.

It would be very convenient if we could use the same hypothesis-testing rule as we used for
testing equality of treatment effects in the fixed-effects model. The fixed-effects decision
rule was to reject the hypothesis of no difference in the treatments ifmsT/msE> Fv−1,n−v,α,
(see (3.5.17), page 47). Let us examine the ratiomsT/msE in the random-effects one-way
model (17.3.1). In Section 17.3.2 we showed that

E[MSE] � σ 2 ,

and in Section 17.3.3 we showed that

E[MST ] � cσ 2
T + σ 2 ,

wherec � (n2 −∑ r2
i )/n(v − 1), and if allri are equal tor, thenc � r.

So, ifHT
0 : σ 2

T � 0 is true, then the expected value of the numerator of the ratioMST/MSE
is equal toσ 2, the same as the expected value of the denominator. Then, ifHT

0 is true, the
ratio should be in the region of 1.0. But ifσ 2

T is large, the expected value of the numerator
is larger than the denominator, and the ratio should be large and positive. This situation is
similar to that for the fixed-effects case. The only remaining question is whetherMST/MSE
has anF distribution withv − 1 andn− v degrees of freedom whenHT

0 is true.
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It can be shown that

SST/(cσ 2
T + σ 2) ∼ χ2

v−1 (17.3.6)

and

SSE/σ 2 ∼ χ2
n−v

and thatSST andSSE are independent. Consequently, we have

SST/((cσ 2
T + σ 2)(v − 1))

SSE/(σ 2(n− v))
� MST/(cσ 2

T + σ 2)

MSE/σ 2
∼ χ2

v−1/(v − 1)

χ2
n−v/(n− v)

∼ Fv−1,n−v , (17.3.7)

and whenσ 2
T � 0, then

MST

MSE
∼ Fv−1,n−v .

Thus, to testH0 : σ 2
T � 0 againstHA : σ 2

T > 0, our decision rule is to

rejectHT
0 if

msT

msE
> Fv−1,n−v,α (17.3.8)

for some chosen value of the significance levelα. The test can be set out in an analysis
of variance table in the usual way; see Table 17.3 . We have included the expected mean
squares in the table for easy reference.

Rather than testing whether or not the variance of the population of treatment effects is
zero, it may be of more interest to test whether the variance is less than or equal to some
proportion of the error variance, that is,

H
γT

0 : σ 2
T ≤ γ σ 2 andHγT

A : σ 2
T > γσ 2,

for some constantγ . From (17.3.7), we see that ifHγT

0 is true withσ 2
T � γ σ 2, then

MST/(σ 2(cσ 2
T /σ

2 + 1))

MSE/σ 2
� MST

MSE(cγ + 1)
∼ Fv−1,n−v.

So, our decision rule (17.3.8) needs only the minor modification of including the constant
(cγ + 1), that is,

rejectHγT

0 if
msT

msE
> (cγ + 1)Fv−1,n−v,α . (17.3.9)

Table 17.3 Analysis of variance table for the random-effects one-way model

Source of Degrees of Sum of Mean Ratio Expected
Variation Freedom Squares Square Mean Square
Treatments v − 1 ssT ssT

v−1
msT
msE cσ2T + σ2

Error n − v ssE ssE
n−v σ2

Total n − 1 sstot

Computational Formulae
ssT �∑i ri y

2
i. − ny 2.. ssE �∑i

∑
t y

2
it −∑i ri y

2
i.

sstot �∑i

∑
t y

2
it − ny 2.. c � n2−∑ r2

i

n(v−1)
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Table 17.4 Analysis of variance table for the ice cream experiment

Source of Degrees of Sum of Mean Ratio p-value
Variation Freedom Squares Square
Flavor 2 173009.8788 86504.9394 12.76 0.0001
Error 30 203456.1818 6781.8727
Total 32 376466.0606

If we chooseγ � 0, then the decision rule (17.3.9) reduces to rule (17.3.8) for testing the
null hypothesisHT

0 : σ 2
T � 0 against its alternative hypothesisHT

A : σ 2
T > 0.

Example 17.3.2 Ice cream experiment, continued

The analysis of variance table for the ice cream experiment of Example 17.3.3 is shown in
Table 17.4. If we test the null hypothesis that the variance of melting times in the population
of ice creams is negligible against the alternative hypothesis that it is not (that is,HT

0 : σ 2
T � 0

versusHT
A : σ 2

T > 0) with a Type I error probability ofα � 0.05, we would rejectHT
0 ,

since

msT/msE � 12.76 > F2,30,0.05 � 3.32,

or equivalently, thep-value is less than 0.05.
In such an experiment there will clearly be considerable error variability in the data

due to fluctuations of room temperature and the difficulty of determining the exact time
at which the ice cream has melted completely. Variability in the melting time of different
flavors is unlikely to be of interest to the experimenter unless it is larger than the error
variability. Suppose, therefore, instead of testing the hypothesisHT

0 againstHT
A , we test

the null hypothesisHγT

0 : {σ 2
T ≤ σ 2} againstHγT

A : {σ 2
T > σ 2}. Since there arer �

11 observations on each ice cream, the constant isc � 11, and the hypothesis-testing
rule (17.3.9) withγ � 1.0 becomes

rejectHγT

0 if
msT

msE
> (11+ 1)F2,30,α ,

that is,

rejectHγT

0 if 12.76> 12F2,30,α.

It can be seen from the table in Appendix A.6 that for any practical choice ofα, there is not
sufficient evidence to reject the null hypothesis. Thus, although the variation in the melting
times of the different flavors is significant, so apparentlyσ 2

T > 0, sufficient evidence has
not been gathered to be able to claim that the variation is significantly larger than the error
variation in the data. ✷

17.3.5 Confidence Intervals for Variance Components

We showed in Section 17.3.1, page 596, that the response variableYit in a random-effects
one-way model (17.3.1) has a normal distribution with varianceσ 2 + σ 2

T , whereσ 2 is
the variance of the error variables andσ 2

T is the variance of the treatment effects in the
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population. In order to assess the variability of the treatment-effect population, we may
wish to calculate a confidence interval forσ 2

T or, alternatively, forσ 2
T /σ

2 if we want to
assess the treatment variability relative to the error variability. Since the latter is the easier
calculation, we investigate this first.

Confidence intervals for σ 2
T /σ

2 From (17.3.7), page 602, we know that

MST

MSE(cσ 2
T /σ

2 + 1)
∼ Fv−1,n−v , (17.3.10)

wherec � (n2 −�r2
i )/(n(v − 1)), and if theri are all equal tor, thenc � r. From this, we

can write down an interval in whichMST/MSE lies with probability 1− α; that is,

P

(
Fv−1,n−v,1−α/2 ≤ MST

MSE(cσ 2
T /σ

2 + 1)
≤ Fv−1,n−v,α/2

)
� 1 − α.

If we rearrange the left-hand inequality, we find that

cσ 2
T /σ

2 ≤ MST

MSE Fv−1,n−v,1−α/2
− 1 ,

and similarly for the right-hand inequality,

cσ 2
T /σ

2 ≥ MST

MSE Fv−1,n−v,α/2
− 1 .

So, replacing the random variables by their observed values, we obtain a 100(1− α)%
confidence interval forσ 2

T /σ
2 as

1

c

[
msT

msE Fv−1,n−v,α/2
− 1

]
≤ σ 2

T

σ 2
≤ 1

c

[
msT

msE Fv−1,n−v,1−α/2
− 1

]
.

(17.3.11)

A drawback of this interval is that ifmsT is not much larger thanmsE (or perhaps smaller),
then it is possible for the left-hand end of the interval to be negative even thoughσ 2

T /σ
2

can never be negative. Although we could replace a negative lower bound by zero, we will
not do so, since it can result in a short interval, giving the misleading impression that the
experiment was more accurate than it actually was.

For calculation of the interval, remember thatFv−1,n−v,α/2 denotes the percentile of the
Fv−1,n−v distribution corresponding to a probability ofα/2 in the right-hand tail. Also,
Fv−1,n−v,1−α/2 denotes the percentile corresponding to a probability ofα/2 in the left-
hand tail, that is, 1− α/2 in the right-hand tail. SinceFv−1,n−v,1−α/2 is not tabulated in
Appendix A.6, it is important to note that

Fv−1,n−v,1−α/2 � (Fn−v,v−1,α/2)−1. (17.3.12)

Example 17.3.3 Ice cream experiment, continued

In the ice cream experiment of Examples 17.3.3 and 17.3.4, pages 600 and 603, the variance
σ 2
T in the melting times (in seconds) of the population of different flavors of ice cream is
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substantially greater than zero but not substantially greater than the error varianceσ 2. A con-
fidence interval forσ 2

T /σ
2 can be obtained using (17.3.11). The valuesmsT � 86504.9394,

msE � 6781.8727,v � 3, c � r � 11, andn � 33 are obtained from Example 17.3.4.
From the table in Appendix A.6, we have

F2,30,.05 � 3.32 and F2,30,.95 � (F30,2,.05)
−1 � (19.5)−1 � 0.0513.

Therefore, the confidence interval (17.3.11) becomes

1

11

(
86504.9394

(6781.8727)(3.32)
− 1

)
≤ σ 2

T

σ 2
≤ 1

11

(
86504.9394

(6781.8727)(0.0513)
− 1

)
,

that is,

σ 2
T /σ

2 ∈ (0.258,22.513).

This interval is too wide to be of much practical use, since it says that with 95% confidence,
σ 2
T could be 4 times smaller or as much as 22 times bigger thanσ 2. However, the result

does agree with the test of the null hypothesisH
γT

0 in Example 17.3.4, since the interval
includes the valueσ 2

T /σ
2 � 1.0. ✷

As can be seen from Example 17.3.5, a confidence interval forσ 2
T /σ

2 can be very wide.
Not only do we need sufficient numbers of observations on each treatment in the experiment
in order to keep a confidence interval narrow, but we also need a sufficiently large selection of
treatments to represent the population. In Example 17.3.5, there were onlyv � 3 treatments
to represent an entire population of ice cream flavors, and this has contributed to the lack of
precision in the experiment. Calculation of sample sizes will be discussed in Section 17.4.

Confidence intervals for σ 2
T There are various methods of obtaining approximate

100(1− α)% confidence intervals forσ 2
T . The only method that we shall give here is one

that is useful whenσ 2
T is not close to zero and that can be easily adapted when we have more

complicated models.
First, remember that an unbiased estimator forσ 2

T was obtained in equation (17.3.5),
page 599, as

U � c−1(MST − MSE) , (17.3.13)

wherec � (n2 − �r2
i )/(n(v − 1)), andc � r when the sample sizes are equal. If we can

determine the distribution ofU , then we can easily find a confidence interval forσ 2
T . We know

that for the random-effects one-way model,SST/(cσ 2
T + σ 2) ∼ χ2

v−1 andSSE/σ 2 ∼ χ2
n−v

and thatSST andSSE are independent. The exact distribution ofU is therefore based on the
difference of two chi-squared distributions each multiplied by a constant of unknown value,
and this is not a standard tabulated distribution. However, it can be shown that a reasonable
approximation to the true distribution ofU/σ 2

T is a chi-squared distribution divided by its
degrees of freedomx, wherex is estimated by

x � (msT − msE)2

msT2/(v − 1) + msE2/(n− v)
. (17.3.14)
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In other words, the distribution ofxU/E[U ] is approximatelyχ2
x . This result is related to

the Satterthwaite approximation that we used in Section 5.6.3, page 116 (Scheffé, 1959,
Section 7.5, gives the general result). Using this approximation, we can write down the
approximate probability statement

P

(
χ2
x,1−α/2 ≤ xU

σ 2
T

≤ χ2
x,α/2

)
≈ 1 − α .

If we rearrange the left-hand inequality, we obtain

σ 2
T ≤ xU

χ2
x,1−α/2

,

and if we rearrange the right-hand inequality, we obtain

xU

χ2
x,α/2

≤ σ 2
T .

Consequently, we obtain an approximate 100(1−α)% confidence interval forσ 2
T as

xu

χ2
x,α/2

≤ σ 2
T ≤ xu

χ2
x,1−α/2

, (17.3.15)

whereu is the observed value ofU ; that is,

u � c−1(msT − msE) . (17.3.16)

Example 17.3.4 Ice cream experiment, continued

Suppose we require a 90% confidence interval for the variance of the melting times of
the population of ice creams in the ice cream experiment of Examples 17.3.3 and 17.3.4,
pages 600 and 603. Using the information in those examples, we obtain the unbiased es-
timate (17.3.16) ofσ 2

T as u � 7247.5526 seconds2. The degrees of freedomx of the
approximate distribution ofU are calculated using (17.3.14), that is,

x � (86504.9394− 6781.8727)2

(86504.9394)2/2 − (6781.8727)2/30
≈ 1.7.

From Table A.5 we can guess at the approximate values ofχ2
x,.05 andχ2

x,.95 as

χ2
1.7,.05 ≈ 5.3 and χ2

1.7,.95 ≈ 0.07.

So a 90% confidence interval forσ 2
T is roughly

σ 2
T ∈
(

(1.7)(7247.5515)

5.3
,

(1.7)(7247.55)

0.07

)
� (2,324.69, 176,011.97)

Taking square roots and converting to minutes, we obtain the approximate 90% confidence
interval for the standard deviation of melting times as

σT ∈ (0.8, 7.0) minutes.
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Again, this interval is too wide for practical use, due to the small number of flavors examined
from the population. ✷

17.4 Sample Sizes for an Experiment with One Random
Effect

For the fixed-effects one-way analysis of variance model, we looked at two different ways of
determining sample sizes. The first method (Section 3.6) was based on the required power
of the hypothesis test for detecting whether two treatment effects differ by more than a
chosen quantity). The second method (Section 4.5) was based on the required length of
confidence intervals for one or more treatment contrasts.

For the random-effects one-way model, we need to determine both the numberv of levels
of the treatment factor to be observed in the experiment and the numberr of observations to
be taken on each of these levels. A glance at the formulae (17.3.11) and (17.3.15) shows that a
calculation ofv andr based on the lengths of confidence intervals will not be straightforward.
Both formulae depend on the values ofmsT and msE, which are unknown prior to the
experiment. However, consideration of the variances of the estimators used to develop the
confidence intervals helps us determine an appropriate balance between “more treatments”
and “more replication.”

Consider first the confidence interval forσ 2
T given in (17.3.15). The confidence interval

should be tight if the variance of the unbiased estimatorU is small. Assuming equal sample
sizes,U � r−1(MST − MSE) has variance

Var(U ) �
(

2n2

v2

)(
(nσ 2

T /v + σ 2)2

v − 1
+ σ 4

n− v

)
(17.4.17)

for n > v. (This follows becauseMST and MSE are independent,SST/(rσ 2
T + σ 2) ∼

χ2(v − 1), SSE/σ 2 ∼ χ2(n − v), and the variance of a chi-squared random variable is
twice its degrees of freedom.) We want this variance to be as small as possible. Suppose
that the total number of observationsn � rv is fixed by budget considerations. We can
see from (17.4.17) that ifσ 2

T is much larger thanσ 2, the first term in the right-hand set of
parentheses governs the size of Var(U ), and we requirev as large as possible. Even ifσ 2 is
much larger thanσ 2

T , the variance ofU is still made small by choosingv quite large. Taking
this to the extreme, if we taken � v andr � 1, then our estimator would beU � MST , for
which Var(U ) � 2σ 4

T /(v − 1) is as small as possible.
We find a somewhat different requirement resulting from a confidence interval forσ 2

T /σ
2.

The mean of anF -distribution withv−1 andn−v degrees of freedom is (n−v)/(n−v−2).
So, from (17.3.10), page 604, withc � r, an unbiased estimator ofσ 2

T /σ
2 is given by

U � 1

r

[
(n− v − 2)

(n− v)

MST

MSE
− 1

]
,
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and a narrow confidence interval should be obtained if we choosev andr to make Var(U )
small. The variance of anF -distribution withm andp degrees of freedom is

2p2(m+ p − 2)

m(p − 2)2(p − 4)
.

It follows from (17.3.10), the definition ofU , andm � v − 1 andp � n− v that when the
sample sizes are all equal tor,

Var(U ) �
(
r
σ 2
T

σ 2
+ 1

)2
1

r2

(
2(n− v)2(n− 3)(n− v − 2)2

(v − 1)(n− v − 2)2(n− v − 4)(n− v)2

)
�
(
σ 2
T

σ 2
+ 1

r

)2(
2(n− 3)

(v − 1)(n− v − 4)

)
,

So, if the number of observationsn is fixed and if we expect thatσ 2
T ≥ σ 2, then the squared

term (σ 2
T /σ

2)2 from the first set of parentheses will be more important for determining the
size of the variance, and we need to minimize its coefficient, which is 2(n−3)/((v−1)(n−
v − 4)). This requires thatv � (n − 3)/2, which suggests use ofv � n/2 andr � 2. On
the other hand, in the more unusual case whenσ 2

T is expected to be much smaller thanσ 2,
then the squared term (1/r)2 from the first set of parentheses will be more important for
determining the size of the variance, and we need the minimum value of

1

r2

(
2(n− 3)

(v − 1)(n− v − 4)

)
� 2v2(n− 3)

n2(v − 1)(n− v − 4)
,

and this occurs whenv is as small as possible.
We can get a feel for how many observationsn � rv are needed in total if we examine the

power of the hypothesis test for testingHγT

0 : σ 2
T ≤ γ σ 2 against the alternative hypothesis

H
γT

A : σ 2
T > γσ 2 (for a chosenγ ≥ 0). The decision rule was given in (17.3.9), page 602,

as

rejectHγT

0 if
msT

msE
> (cγ + 1)Fv−1,n−v,α � k, say. (17.4.18)

What is the probability of rejectingHγT

0 if the true value ofσ 2
T /σ

2 is )? In other words,
what is the probability thatMST/MSE > k, whenσ 2

T /σ
2 is equal to)? This is the power of

the test at the value). We can calculate the power from the knowledge that

MST

MSE(cσ 2
T /σ

2 + 1)
∼ Fv−1,n−v

(see 17.3.12, page 604). Ifσ 2
T /σ

2 is equal to), then

P

(
MST

MSE
> k

)
� P

(
MST

MSE(c)+ 1)
>

k

c)+ 1

)
.

Suppose we stipulate that the power must beπ whenσ 2
T /σ

2 � ). Then, we must have that

k

c)+ 1
� Fv−1,n−v,π .
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Remembering from (17.4.18) thatk � (cγ + 1)Fv−1,n−v,α, and that (n− v) � v(r − 1) and
c � r for equal sample sizes, we obtain the equality

Fv−1,v(r−1),α

Fv−1,v(r−1),π
� r)+ 1

rγ + 1
.

So, we need to selectγ andα for testingHγT

0 together with) andπ . Then we can try to
determinev andr by trial and error as illustrated in Example 17.4. SinceFv−1,v(r−1),π �
(Fv(r−1),v−1,1−π )−1, we try to find values ofv andr such that

(Fv−1,v(r−1),α)(Fv(r−1),v−1,1−π ) ≤ r)+ 1

rγ + 1
. (17.4.19)

Example 17.4.1 Ice cream experiment, continued

In Example 17.3.4, page 603, we were unable to reject the hypothesisH
γT

0 : σ 2
T ≤ σ 2

in favor of the hypothesisHγT

0 : σ 2
T > σ 2 at a significance level ofα � 0.05. Suppose

we wish to repeat this experiment, still withγ � 1.0 and a Type I error probability of
α � 0.05. Suppose further that we would like to reject the hypothesis with high probability
(sayπ � 0.95) if the true value ofσ 2

T /σ
2 is as high as) � 2.0. How many ice cream

flavors should we look at and how many observations should we take on each?
From (17.4.19), we need to findv andr such that

(Fv−1,v(r−1),.05)(Fv(r−1),v−1,.05) ≤ 23

12
� 1.92.

For the moment setr � 11, which is the value used by the experimenter in the ice cream
experiment. Then we have

v Fv−1,10v,.05 F10v,v−1,.05 Product Action
4 2.84 8.59 24.40 > 1.92 Increase v

100 1.26 1.32 1.66 < 1.92 Decrease v
80 1.30 1.34 1.74 < 1.92 Decrease v
60 1.43 1.38 1.97 ≈ 1.92 Stop

So,v around 60 should be reasonable, requiring 660 observations in total. Now, let us double
the value ofr to 22. Then we have

v Fv−1,21v,.05 F21v,v−1,.05 Product Action
50 1.38 1.46 2.01 Stop

So, the combinationv � 50, r � 22 provides adequate power, but this requiresn � 1100
observations. Let us now reducer to 3 then

v Fv−1,2v,.05 F2v,v−1,.05 Product Action
60 1.47 1.43 2.10 Increase v
80 1.38 1.40 1.93 Stop

Sov in the region of 80 would be fine, requiringn � 240 observations. In Exercise 2, the
reader is asked to determine whether the use ofr � 2 would require a smaller total number
of observations. To obtain a markedly smaller number of observations, we would need to
relax our requirement of such a high power to detectσ 2

T /σ
2 � 2. ✷
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17.5 Checking Assumptions on the Model

The simplest way to check the assumptions on the one-way random-effects model is to use
residual plots in much the same way as for a fixed-effects one-way model. We need to check
that the error assumptions are valid, that is,

εit ∼ N (0, σ 2), t � 1, . . . , ri ,

for each treatment factor leveli (i � 1, . . . , v), and also that the assumptions on the random
effectTi are valid, that is,

Ti ∼ N (0, σ 2
T ), i � 1, . . . , v ,

and that all random variables are mutually independent.
Checking the error assumptions is straightforward, since we proceed in exactly the same

way as for the fixed-effects one-way model. We replaceTi in the model, temporarily, by the
fixed effectτi . Then the residuals are defined as usual as

êit � yit − ŷit � yit − yi. .

These are then standardized to obtain the standardized residualszit with standard deviation
1.0. We plot the standardized residuals versus treatment-factor levels, versusŷit , versus order,
and versus normal scores, as in Chapter 5, to check for outliers, independence, constant
variance, and normality. Non-independence between theεit ’s and theTi ’s is not easy to
detect, but unequal variances of theεit ’s indicates one form of the problem.

The normality assumption on the random effectTi can be checked when the sample sizes
are equal, unlessv is too small. The treatment averagesY i. should have aN (µ, σ 2

T + σ 2/r)
distribution. So, if we plot the observed averagesyi. against their corresponding normal
scores, we should roughly obtain a straight line that cuts the vertical axis at aboutµ and that
has slope about (σ 2

T +σ 2/r)1/2. It is important to check the normality assumption, since the
analysis for random-effects models is not robust to nonnormality of the random effects.

We can also use this plot to check for outliers among the observed treatments. In an
experiment such as the ice cream experiment, where onlyv � 3 levels of the treatment
factor were observed, there is not enough data to be able to examine the distribution of the
Ti ’s in any detail. In Section 17.10 we will illustrate the assumption-checking procedures
using the SAS computer software and the data from the clean wool experiment that was
described in Section 17.2, page 595.

17.6 Two or More Random Effects

17.6.1 Models and Examples

In the ice cream experiment of Example 17.3.3, page 600, we modeled the ice cream effect
as a random effect, since we were interested in the variability of the melting rates of varieties
of a large population of all possible ice creams with similar ingredients. If the experimenter
had also been interested in whether or not the container affects the melting time, then she
might have randomly selected a numberb of containers from the population of all possible
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containers. If one ice cream melts faster than another ice cream in one container, then it
might be safe to assume that it melts faster, and by the same amount, in another container.
In other words, the assumption of no ice cream×container interaction might be reasonable.
In this case a random two-way main-effects model (with no interaction) would be a possible
model; that is,

Yijt � µ+ Ai + Bj + εij t , (17.6.20)

Ai ∼ N (0, σ 2
A), Bj ∼ N (0, σ 2

B), εij t ∼ N (0, σ 2) ,

Ai ’s, Bj ’s andεij t ’s are all mutually independent

t � 1, . . . , rij , i � 1, . . . , a, j � 1, . . . , b.

whereAi is the effect of theith ice cream randomly selected from the population of ice
creams whose effects on melting times follow a normal distribution with varianceσ 2

A for
each container, and whereBj is the effect of thej th container randomly selected from the
population of containers whose effects on the melting times follow a normal distribution
with varianceσ 2

B for each ice cream. The number of observationsrij to be taken on the
(ij )th ice cream–container combination needs to be determined. Normally, we would select
therij ’s to be equal if possible.

Alternatively, it may be expected that a slightly thicker container would show a greater
difference in melting times of ice creams than would a thinner container. In other words,
an interaction may be expected. In this case, we would add to model (17.6.20) a ran-
dom effect representing the interaction, as shown in the random-effects two-way complete
model (17.6.21):

Yijt � µ+ Ai + Bj + (AB)ij + εij t (17.6.21)

Ai ∼ N (0, σ 2
A), Bj ∼ N (0, σ 2

B)

(AB)ij ∼ N (0, σ 2
AB), εij t ∼ N (0, σ 2)

Ai ’s, Bj ’s, (AB)ij ’s andεij t ’s are mutually independent

t � 1, . . . , rij , i � 1, . . . , a, j � 1, . . . , b.

If σ 2
AB is positive, then there areAB effects present—namely, main effects and interactions

for the factorsA andB. If σ 2
A or σ 2

B is positive, then the corresponding main effects are
present.

Example 17.6.1 Ammunition experiment

W. A. Thompson, Jr. and J. R. Moore in the 1963 volume ofTechnometrics describe an
experiment concerning the muzzle velocity characteristics of ammunition for a field artillery
weapon. They describe the ammunition as follows:

Propelling charges and projectiles for this type of weapon are manufactured and
stored separately in a such a way that any charge might be employed by the user to
propel any projectile. . . . Both projectiles and charges are grouped into lots at the time
of manufacture, each lot consisting of a large number of individual units assembled
during a short period of time using essentially uniform components. Thus, it is hoped
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Table 17.5 Data for the ammunition experiment

Charge Lot
1 2 3 4

1 63 56 69 78
78 58 63 79

2 71 60 64 65
Projectile 70 65 68 77
Lot 3 72 58 69 63

55 55 71 72
4 70 60 66 73

64 71 68 79

Source: Thompson, W. A. Jr. and Moore, J. R. (1963).
Copyright © 1963 American Statistical Association.
Reprinted with permission.

that the round to round dispersion [variability] in velocity will be reduced by using
charges and projectiles from within lots.

The experiment involved the examination of a random sample of four charge lots (factor
A with levels 1, 2, 3, 4) selected at random from a large population of charge lots, and four
projectile lots (factorB with levels 1, 2, 3, 4) selected at random from a large population of
projectile lots. A weapon surveillance test was conducted using one weapon under uniform
ballistic conditions. The muzzle velocities were measured to the nearest foot per second.
These are shown in Table 17.5, except that a constant has been added to each recorded
velocity.

Since the lots involved in the experiment were randomly selected from large populations,
a random-effects two-way complete model (17.6.21) was used in the analysis. ✷

In an experiment with more than two random treatment factors, variables representing
all of the main effects of the factors and some or all of their interactions would be included
in the model in the obvious way. For example, an experiment with five random treatment
factorsA,B,C,D,G, in which interactionsAB,AC,BC,CD, andABC were thought to
be nonnegligible, would be modeled as follows:

Yijklmt � µ+ Ai + Bj + Ck +Dl +Gm

+ (AB)ij + (AC)ik + (BC)jk + (CD)kl + (ABC)ijk + εijklmt ,

Ai ∼ N (0, σ 2
A), Bj ∼ N (0, σ 2

B), Ck ∼ N (0, σ 2
C), Dl ∼ N (0, σ 2

D), Gm ∼ N (0, σ 2
G),

(AB)ij ∼ N (0, σ 2
AB), (AC)ik ∼ N (0, σ 2

AC), (BC)jk ∼ N (0, σ 2
BC), (CD)kl ∼ N (0, σ 2

CD),

(ABC)ijk ∼ N (0, σ 2
ABC), εijklmt ∼ N (0, σ 2),

all random variables on the right-hand side

of the model are mutually independent,

t � 1, . . . , rijklm, i � 1, . . . , a, j � 1, . . . , b,

k � 1, . . . , c, l � 1, . . . , d, m � 1, . . . , g.
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As for the fixed-effects models, if a high-order interaction is included in the model, then
so are all of its “subinteractions” and constituent main effects; that is, if (ABC)ijk is in the
model, so are (AB)ij , (AC)ik, (BC)jk, Ai , Bj , andCk.

17.6.2 Checking Model Assumptions

We may check the error assumptions by replacing temporarily all of the random effects by
fixed effects, calculating the standardized residuals, and examining the residual plots in the
usual way. Checking the assumptions of each random effect is not easy, since in a two-way
or higher-way model there are generally few levels of each treatment factor observed, and
the cell averages are not independent. Consequently, we will omit the model checks for the
random-effect assumptions, and hope that any severe problems will show up through the
analysis of the residuals.

17.6.3 Estimation of σ 2

In Section 17.3.2 we found that for the one-way random-effects model, an unbiased estimate
of σ 2 was given bymsE, wheremsE was calculated exactly as for the fixed-effects one-way
model. Perhaps this should not be surprising, sincemsE measures the variability in the data
that is not accounted for by those sources of variation that were ignored in the experiment. An
unbiased estimate forσ 2 in any random-effects model can be obtained from its fixed-effects
model counterpart.

Example 17.6.2 Unbiased estimate of σ 2

We will show that an unbiased estimate ofσ 2 in the random-effects two-way complete
model ismsE � ssE/(n− v), where

ssE �
[∑

i

∑
j

∑
t

y2
ij t −
∑
i

∑
j

rij y
2
ij.

]
,

as in (6.4.17) for the fixed-effects two-way complete model. First, note that

E[Yijt ] � µ and Var(Yijt ) � σ 2
A + σ 2

B + σ 2
AB + σ 2

for the random-effects two-way complete model. Also,

Y ij. � µ+ Ai + Bj + (AB)ij +
∑
t

εij t /rij .

So,

E[Y ij.] � µ and Var(Y ij.) � σ 2
A + σ 2

B + σ 2
AB + σ 2/rij .
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Thus, the expected value of the random variableSSE is

E [SSE] � E

[∑
i

∑
j

∑
t

Y 2
ij t −
∑
i

∑
j

rijY
2
ij.

]

�
a∑
i�1

b∑
j�1

rij∑
t�1

(Var(Yijt ) + E[Yijt ]
2)

−
a∑
i�1

b∑
j�1

rij (Var(Y ij.) + E[Y ij.]
2)

�
(

a∑
i�1

b∑
j�1

rij

)
σ 2 −

a∑
i�1

b∑
j�1

σ 2 � (n− v)σ 2 ,

wheren � ��rij andv � ab. Consequently,

E[MSE] � E[SSE/(n− v)] � σ 2. ✷

17.6.4 Estimation of Variance Components

In Section 17.3.3, page 598, we found that for the random-effects one-way model,

E[MST ] � cσ 2
T + σ 2 , wherec � n2 −∑ r2

i

n(v − 1)
,

whereMST is the mean square for treatments from the fixed-effects one-way model, and
wherec � r if all the sample sizes are equal. From this, we were able to find an unbiased
estimator forσ 2

T , namely (MST − MSE)/c.
For more complicated models, we will also be able to find unbiased estimators for the

variance components using the fixed-effects mean squares, but each estimator must be
calculated individually.

Example 17.6.3 Unbiased estimate of σ 2
B

Suppose an experiment involves three random treatment factorsA, B, andD havinga, b,
andd levels, respectively, and supposer observations are taken on each of thev � abd

combinations. If the only interactions that are expected to be nonnegligible areAB andBD,
then, the model is

Yijk � µ+ Ai + Bj +Dk + (AB)ij + (BD)jk + εijkt ,

t � 1, . . . , r, i � 1, . . . , a, j � 1, . . . , b, k � 1, . . . , d

with the usual assumptions about the distributions of the random treatment effects and error
variables.
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Suppose we want an unbiased estimator forσ 2
B . We start by investigatingE[MSB], where

MSB � SSB/(b − 1). Using rule 4, page 202, the sum of squares forB is

ssB � adr

b∑
j�1

y2
.j.. − abdry2

.... .

Now,

E[Y .j..] � E[Y ....] � µ

and

Var[Y .j..] � σ 2
A

a
+ σ 2

B + σ 2
D

d
+ σ 2

AB

a
+ σ 2

BD

d
+ σ 2

adr
,

Var[Y ....] � σ 2
A

a
+ σ 2

B

b
+ σ 2

D

d
+ σ 2

AB

ab
+ σ 2

BD

bd
+ σ 2

abdr
.

Consequently,

E[SSB] � adr
∑
j

[
V ar(Y .j..) + E[Y .j..]

2
]− abdr

[
V ar(Y ....) + E[Y ....]

2
]

� adr(b − 1)σ 2
B + dr(b − 1)σ 2

AB + ar(b − 1)σ 2
BD + (b − 1)σ 2 .

So,

E[MSB] � adrσ 2
B + drσ 2

AB + arσ 2
BD + σ 2 . (17.6.22)

Thus, if we wish to find an unbiased estimator forσ 2
B , we must find unbiased estimators

also forσ 2
AB andσ 2

BD. The logical place to look for these is atE[MS(AB)] andE[MS(BD)].
We have

ss(AB) � dr

a∑
i�1

b∑
j�1

y2
ij.. − bdr

a∑
i�1

y2
i... − adr

b∑
j�1

y2
.j.. + abdry2

.... ,

ss(BD) � ar

b∑
j�1

d∑
k�1

y2
.jk. − adr

b∑
j�1

y2
.j.. − abr

d∑
k�1

y2
..k. + abdry2

.... ,

and

E[Y ij..] � E[Y i...] � E[Y .j..] � E[Y .jk.] � E[Y ..k.] � [Y ....] � µ ,

Var[Y ij..] � σ 2
A + σ 2

B + σ 2
D

d
+ σ 2

AB + σ 2
BD

d
+ σ 2

dr
,

Var[Y i...] � σ 2
A + σ 2

B

b
+ σ 2

D

d
+ σ 2

AB

b
+ σ 2

BD

bd
+ σ 2

bdr
,

Var[Y .jk.] � σ 2
A

a
+ σ 2

B + σ 2
D + σ 2

AB

a
+ σ 2

BD + σ 2

ar
,

Var[Y ..k.] � σ 2
A

a
+ σ 2

B

b
+ σ 2

D + σ 2
AB

ab
+ σ 2

BD

b
+ σ 2

abr
,
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as well as

E[SS(AB)] �
(
dr
∑
i

∑
j

Y
2
ij.. − bdr

∑
i

Y
2
i...

)
− (E[SSB])

� adr(b − 1)σ 2
B + adr(b − 1)σ 2

AB + ar(b − 1)σ 2
BD + a(b − 1)σ 2

− adr(b − 1)σ 2
B − dr(b − 1)σ 2

AB − ar(b − 1)σ 2
BD − (b − 1)σ 2

� dr(a − 1)(b − 1)σ 2
AB + (a − 1)(b − 1)σ 2 .

So,

E[MS(AB)] � drσ 2
AB + σ 2.

Similarly,

E[MS(BD)] � arσ 2
BD + σ 2 .

Thus, an unbiased estimator forσ 2
B is

U � (MSB − MS(AB) − MS(BD) + MSE)/(adr) ,

and an unbiased estimate forσ 2
B is therefore

u � (msB + ms(AB) + ms(BD) + msE)/(adr) . ✷

Calculation of expected mean squares is quite time-consuming, as was seen in Exam-
ple 17.6.4. However, when sample sizes are all equal, we can exploit the pattern that emerges
in studying such examples. All of the variance components that are involved inE[MSB]
in (17.6.22) are those whose random effects include the same subscript as forB in the
model. Specifically,B has subscriptj in the model, and aj also occurs as subscript in
(AB)ij , (BD)jk, andεijkt . The constant in front of each variance component is the number
of observations taken on each combination of subscripts; that is, there areadr observations
on each of theb levels ofB, there aredr observations on each of theab levels ofAB, and
so on.

A similar pattern can be seen forE[MS(AB)] andE[MS(BD)]. This gives us a general
rule when sample sizes are equal (which we add to the 16 rules in Chapter 7):

17. To obtain the expected mean square for a main effect or interaction in a random-effects
model, first note the subscripts on the term representing that effect in the model. Write
down a variance componentσ 2 for the effect of interest, for the error, and for every
interaction whose term in the model includes the noted set of subscripts. Multiply each
variance component exceptσ 2 by the number of observations taken on each level or
combination of levels of the corresponding main effect or interaction. Add up the terms.

17.6.5 Confidence Intervals for Variance Components

In the previous subsection a rule was given for calculating the expected mean square corre-
sponding to each term in the model, when the sample sizes are equal. For unequal sample
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sizes, the mean squares and expected mean squares are best calculated by a computer
program.

From the list of expected mean squares, we can find an unbiased estimator for any given
variance component, sayσ 2

∗ . Again, this was illustrated in Example 17.6.4. The estimator
can always be a linear combination of mean squares, which, in general, we can write asU �
�ki(MS)i , whereki is the constant in front of theith mean square in the linear combination.
Then, an approximation to the distribution ofxU/σ 2

∗ is a chi-squared distribution withx
degrees of freedom, where

x � (�ki(ms)i)2

�k2
i (ms)2

i /xi
(17.6.23)

and wherexi is the number of degrees of freedom corresponding to theith mean square and
(ms)i is the observed value of theith mean square in the linear combination. An example
of this formula was given in Section 17.3.5, page 605, for the one-way model. A more
complicated example is given below.

Example 17.6.4 Calculation of degrees of freedom

We continue Example 17.6.4, which involved a random-effects model with five random
effectsAi , Bj , andDk (corresponding to main effects of factorsA, B, andD), and (AB)ij
and (BD)jk (corresponding to interactionsAB andBD). An unbiased estimator forσ 2

B was
shown to be

U � �ki(MS)i � MSB/(adr) − MS(AB)/(adr) − MS(BD)/(adr) + MSE/(adr).

An approximation to the distribution ofxU/σ 2
B is a χ2

x distribution, wherex is given
by (17.6.23), that is,

x � [(msB − ms(AB) − ms(BD) + msE)/(adr)]2

msB2

(adr)2(b−1) + ms(AB)2

(adr)2(a−1)(b−1) + ms(BD)2

(adr)2(b−1)(d−1) + msE2

(adr)2df

� [msB − ms(AB) − ms(BD) + msE]2

msB2

(b−1) + ms(AB)2

(a−1)(b−1) + ms(BD)2

(b−1)(d−1) + msE2

df

,

wheredf is the number of degrees of freedom for error, which can be obtained, as usual,
by subtraction. In this example,df is equal to

df � (abdr − 1) − (a − 1) − (b − 1) − (d − 1)

− (a − 1)(b − 1) − (b − 1)(d − 1)

� ab(dr − 1) − b(d − 1) + 1 . ✷

Once we know an approximate distribution for a variance component estimator, we can
easily write down a probability statement and convert it to a confidence interval. Suppose
thatU � �ki(MS)i is an unbiased estimator forσ 2

∗ and thatxU/σ 2
∗ has approximately a

χ2
x distribution; then

P
(
χ2
x,1−α/2 ≤ xU/σ 2

∗ ≤ χ2
x,α/2

) ≈ 1 − α.
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Then, if we observe the value ofU to beu � �ki(ms)i , by manipulating the two inequalities
in the probability statement we can obtain the following approximate 100(1−α)% confidence
interval:

xu

χ2
x,α/2

≤ σ 2
∗ ≤ xu

χ2
x,1−α/2

, (17.6.24)

wherex is calculated as in (17.6.23). If the estimateu is negative or the calculated degrees of
freedomx is extremely small, then this approximate confidence interval procedure should
not be used.

Example 17.6.5 Ammunition experiment, continued

The ammunition experiment was described in Example 17.6.1, page 611, and the data were
given in Table 17.5. A random-effects two-way complete model (17.6.21) was used. The
mean squares for this model are calculated in exactly the same way as for the fixed-effects
two-way complete model, and these are shown in the analysis of variance table, Table 17.6.
Also listed in the table are the expected mean squares calculated as in rule 17, page 616.

For example, to calculate the expected mean square forA, we note that the subscript for
the termAi in the model isi, and also thati is included among the subscripts of the terms
(AB)ij andεij t . This means that the expected mean square must include the three variance
components

σ 2
A, σ 2

AB, and σ 2 .

The constant in front ofσ 2
A is 8, the number of observations on each charge lot, whereas the

constant in front ofσ 2
AB is 2, the number of observations on each combination of charge lot

and projectile lot.
The expected mean square forAB,E[MS(AB)] � 2σ 2

AB + σ 2, contains only two terms,
since only the two terms (AB)ij andεij t in the model contain bothi andj as subscripts.
An unbiased estimator forσ 2

A is given byU � (MSA − MS(AB))/8. Also, xU/σ 2
A has

approximately aχ2
x distribution, wherex is calculated as in (17.6.23). Thus, an unbiased

estimate ofσ 2
A from this experiment is

u � (msA − ms(AB))/8 � (223.04− 28.63)/8 � 24.30,

Table 17.6 Two-way analysis of variance table for the ammunition experiment

Source of Degrees of Sum of Mean Expected
Variation Freedom Squares Square Mean Square

Charge (A) 3 669.12 223.04 8σ2A + 2σ2AB + σ2

Projectile (B) 3 92.12 30.71 8σ2B + 2σ2AB + σ2

Interaction (AB) 9 257.63 28.63 2σ2AB + σ2

Error 16 516.00 32.25 σ2

Total 31 1534.87
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Figure 17.2
Plot of average
velocity against
charge lot i by

projectile lot j for the
ammunition
experiment
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and the number of degrees of freedom of the associated chi-squared distribution is

x � 24.302

223.042

(82)(3) + 28.632

(82)(9)

� 2.27.

Therefore, an approximate 90% confidence interval (17.6.24) forσ 2
A, the variance of

velocities arising from the population of charge lots, is

(2.27)(24.3)

χ2
2.27,0.05

≤ σ 2
A ≤ (2.27)(24.3)

χ2
2.27,0.95

,

and sinceχ2
2.27,0.05 ≈ 6.5 andχ2

2.27,0.05 ≈ 0.17, the approximate 90% confidence interval,
in units of (feet per second)2, is

8.49 ≤ σ 2
A ≤ 324.48.

An approximate 90% confidence interval for the standard deviation of the velocity (in feet
per second), obtained by taking square roots, is

2.91 ≤ σA ≤ 18.01.

Before leaving this example, we note that an unbiased estimate forσ 2
AB calculated in this

way is actually negative, since

u � (ms(AB) − msE)/2 � −1.81,

and the calculation forx, the number of degrees of freedom of the associatedχ2 distribution,
is

x � (−1.81)2

28.632

(22)(9) + 32.252

(22)(16)

� 0.084.
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Thus, we are not able to say anything sensible about the variance of the interaction, other
than that it appears to be very small. The interaction plot in Figure 17.2 for the lots included
in the experiment supports this conclusion. ✷

17.6.6 Hypothesis Tests for Variance Components

In order to focus the discussion, we will use the random-effects model of Example 17.6.4,
page 617; that is,

Yijkt � µ+ Ai + Bj +Dk + (AB)ij + (BD)jk + εijkt ,

t � 1, . . . , r ; i � 1, . . . , a ; j � 1, . . . , b ; k � 1, . . . , d ,

together with the usual assumptions about the distributions of the random variables. Some
of the expected mean squares for this model were calculated in Example 17.6.4 and are
listed, together with the remaining mean squares, in Table 17.7.

Testing the hypothesisHAB
0 : {σ 2

AB � 0} against its alternative hypothesisHAB
A : {σ 2

AB >

0} is straightforward, since the corresponding expected mean square looks very similar to
the situation that we had in the one-way model. IfHAB

0 is true, then the numerator of the ratio
ms(AB)/msE is expected to beσ 2, the same as the denominator. Otherwise, the numerator
is expected to be larger. Consequently, the decision rule is

rejectHAB
0 if

ms(AB)

msE
> F(a−1)(b−1),df,α

as usual, where the number of error degrees of freedom is

df � ab(dr − 1) − b(d − 1) + 1 .

We could modify this test as in (17.3.9), page 602, so that the decision rule for testing
H

γAB

0 : {σ 2
AB ≤ γ σ 2} againstHγAB

A : {σ 2
AB > γσ 2} is

rejectHγAB

0 if
ms(AB)

msE
> (1 + drγ )F(a−1)(b−1),df,α.

We have similar tests forHBD
0 againstHBD

A , andHγBD

0 againstHγBD

A .

Table 17.7 Expected mean squares and degrees of freedom
for a random-effects three-way model with two
interactions

Degrees of Expected
Effect freedom mean square

A a − 1 bdrσ2A + drσ2AB + σ2

B b − 1 adrσ2B + drσ2AB + arσ2BD + σ2

D d − 1 abrσ2D + arσ2BD + σ2

AB (a − 1)(b − 1) drσ2AB + σ2

BD (b − 1)(d − 1) arσ2BD + σ2

Error df σ2
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TestingHA
0 : σ 2

A � 0 againstHA
A : σ 2

A > 0 is more complicated. Until now, we have used
the same test statistics as we used in the fixed-effects case. But if we try to usemsA/msE
to testHA

0 , we have a problem. IfHA
0 is true, so thatσ 2

A � 0, the expected value of the
numerator isE[MSA] � drσ 2

AB + σ 2, while that of the denominator isE[msE] � σ 2. This
suggests two things:

(i) we should usems(AB) as the denominator, notmsE, and

(ii) we should question whether it makes sense to testHA
0 if the interactionAB is

significant.

The second point is, of course, exactly the same point that arose in the fixed-effects model,
and the answer is usually “no, it makes no sense.” Consequently, we generally test a main
effect only when that factor is not involved in any significant interactions. Nevertheless, we
shall still use the interaction mean square as the denominator in case an incorrect decision
was made regarding the interaction. Consequently, the decision rule for testingHA

0 against
HA
A is

rejectHA
0 if MSA/MS(AB) > Fa−1,(a−1)(b−1),α.

Notice that the second set of degrees of freedom for theF -distribution is the degrees
of freedom corresponding to the denominator of the ratio. The test forHD

0 : {σ 2
D � 0} is

similar.
Obtaining a suitable denominator for testing the null hypothesisHB

0 : {σ 2
B � 0} versus

the alternative hypothesisHB
0 : {σ 2

B > 0} is harder again. IfHB
0 is true, so thatσ 2

B � 0,
then the expected value ofMSB is

E[MSB] � drσ 2
AB + arσ 2

BD + σ 2 .

We would generally want to test this hypothesis only if we believed that the interactionsAB

andBD were both negligible. Yet to be on the safe side, we would like a denominator with
the same expected value. It can be verified that

E[U] � E[MS(AB) + MS(BD) − MSE] � drσ 2
AB + arσ 2

BD + σ 2.

As in Section 17.3.5,xU/(drσ 2
AB + arσ 2

BD + σ 2) has approximately a chi-squared
distribution with degrees of freedomx calculated as in (17.6.23), page 617; that is,

x � [ms(AB) + ms(BD) − msE]2

[ms(AB)]2

(a−1)(b−1) + [ms(BD)]2

(b−1)(d−1) + [msE]2

df

.

Therefore, ifH0 is true,msB/U has approximately anFb−1,x distribution. So to testHB
0

againstHB
A , the decision rule is

rejectHB
0 if

msB

ms(AB) + ms(BD) − msE
> F(b−1),x,α.
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Example 17.6.6 Ammunition experiment, continued

An unbiased estimate for the variance of the muzzle velocities due to the population of charge
lots (factorA) was calculated to beu � 24.3 (feet per second)2 in Example 17.6.5 for the
ammunition experiment. A question is whether this value could be due to random error or
whether the variance is really sizable; that is, we wish to test the hypothesisHA

0 : {σ 2
A � 0}

against the alternative hypothesisHA
A : {σ 2

A > 0}. The interaction variability was found to
be very small in Example 17.6.5, so the main-effect hypothesis makes sense. The expected
mean squares forA andAB are listed in Table 17.6 as

E[MSA] � 8σ 2
A + 2σ 2

AB + σ 2

and

E[MS(AB)] � 2σ 2
AB + σ 2 ,

with 3 and 9 corresponding degrees of freedom, respectively. The decision rule, therefore,
is

rejectHA
0 if

msA

ms(AB)
> F3,9,α .

If we select a Type I error probability ofα � 0.05, thenF3,9,0.05 � 3.86. Since
msA/ms(AB) � 223.04/28.63 � 7.79, we can conclude thatσ 2

A > 0. ✷

17.6.7 Sample Sizes

If we test main effects and interactions only when the higher-order interactions involving
those factors are negligible, then we can adapt (17.4.19) by changing the degrees of freedom
to match those in the decision rule being used.

17.7 Mixed Models

Models that contain both random and fixed treatment effects are calledmixed models. The
analysis of random effects proceeds in exactly the same way as described in the previous
sections. All that is needed is a way to write down the expected mean squares. The fixed
effects can be analyzed as in Chapters 3–7, except that, here, too, we may need to replace
the mean square for error by a different appropriate mean square. We show how to calculate
the expected mean squares for a mixed model in Section 17.7.1.

An interaction between two or more factors any of which has random effects will be
regarded as a random effect, since the combination of levels observed in the experiment
depends upon the random selection of levels of those factors that have random effects.

17.7.1 Expected Mean Squares and Hypothesis Tests

Expected mean squares can be obtained for a mixed model when the sample sizes are equal
by modifying rule 17 on page 616. We start by writing out the expected mean squares as
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though all the factors were random. We then collect all of the fixed effects and list them
together as one “quadratic form.” The quadratic form is a function of fixed-effect parameters
such asα∗

i � αi + (αβ)i. (see Example 17.7.1) that typically feature in fixed-effects models.
As an example, consider a model containing the main effects of factorsA,B, andD and

the interactionsAB andBD. Suppose that factorsA andB are fixed, so that all of their
levels of interest are observed in the experiment, and factorD is random, so that its levels
form a large population of which only a random selection are observed in the experiment.
Then interactionAB is a fixed effect, but interactionBD is a random effect.

We useαi to represent the effect of theith level ofA, βj to represent the effect of thej th
level ofB, and (αβ)ij to represent their interaction. The effect of thekth randomly selected
level ofD is represented by the random variableDk, and the effect of the interaction between
thej th specifically selected level ofB and thekth randomly selected level ofD is denoted
by the random variable (βD)jk. The model is then as follows:

Yijt � µ+ αi + βj +Dk + (αβ)ij + (βD)jk + εijkt , (17.7.25)

Dk ∼ N (0, σ 2
D), (βD)jk ∼ N (0, σ 2

BD), εijkt ∼ N (0, σ 2) ,

Dk ’s, (βD)jk ’s and, εijkt ’s are all mutually independent,

t � 1, . . . , r, i � 1, . . . , a, j � 1, . . . , b, k � 1, . . . , d.

The expected mean squares for the corresponding random-effects model were calculated
in Example 17.6.4 and are reproduced in the second column of Table 17.8. The expected
mean squares for the above mixed model are given in the third column of Table 17.8 and are
obtained by collecting the terms in the expected mean squares corresponding to the fixed
effects into one quadratic form.

The expected mean squares can all be verified by direct calculation. We illustrate the
calculation forB in the following example. The termQ(B,AB) in E[MSB] corresponds
to a quadratic (i.e., squared) function ofβ∗

j � βj + (αβ).j , a quantity that we are used to
dealing with in fixed-effects models.

Example 17.7.1 Calculation of expected mean squares

Consider an experiment with two fixed treatment factorsA andB, and one random treatment
factorD, and suppose that (17.7.25) is thought to be a reasonable model. Using rule 4 of

Table 17.8 Expected mean squares for a three-way mixed model

Effect For random model For mixed model

A bdrσ2A + drσ2AB + σ2 Q (A,AB)+ σ2

B adrσ2B + drσ2AB + arσ2BD + σ2 Q (B,AB)+ arσ2BD + σ2

D abrσ2D + arσ2BD + σ2 abrσ2D + arσ2BD + σ2

AB drσ2AB + σ2 Q (AB)+ σ2

BD arσ2BD + σ2 arσ2BD + σ2

Error σ2 σ2
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Chapter 7, the fixed-effect sum of squares forB is

SSB � adr

b∑
j�1

Y
2
.j.. − abdrY

2
.... .

Now,

Y .j.. �
a∑
i�1

d∑
k�1

r∑
t�1

Yijkt /adr

� µ+ α. + βj +D. + (αβ).j + (βD)j. + ε.j.. .

So,

E[Y .j..] � µ+ α. + βj + (αβ).j and Var(Y .j..) � σ 2
D

d
+ σ 2

BD

d
+ σ 2

adr
.

Similarly,

E[Y ....] � µ+ α. + β. + (αβ).. and Var(Y ....) � σ 2
D

d
+ σ 2

BD

bd
+ σ 2

abdr
.

Using the facts thatMSB � SSB/(b − 1) andE[X2] � Var(X) + (E[X])2, we obtain

E[MSB] � adr

(b − 1)

b∑
j�1

(
σ 2
D

d
+ σ 2

BD

d
+ σ 2

adr
+ [µ+ α. + βj + (αβ).j ]

2

)

− abdr

(b − 1)

(
σ 2
D

d
+ σ 2

BD

bd
+ σ 2

abdr
+ [µ+ α. + β. + (αβ)..]

2

)
� arσ 2

BD + σ 2 +Q(B,AB) ,

where

Q(B,AB) � adr

(b − 1)

∑
j

[
(βj + (αβ).j ) − (β. + (αβ)..)

]2
. ✷

Notice that in Example 17.7.1, the quadratic formQ(B,AB) is equal to zero when all the
β∗
j � βj + (αβ).j are equal. We can make use of this fact when looking for an appropriate

denominator for the test ratio for testingHB
0 : {βj + (αβ).j are all equal}. If this hypothesis

is true, then

E[MSB] � arσ 2
BD + σ 2 .

Consequently, a sensible denominator would beMS(BD), which has the same expected value
(see Table 17.8). Thus, the decision rule for testingHB

0 against the alternative hypothesis
that theβ∗

j are not all equal is

rejectHB
0 if

msB

ms(BD)
> F(b−1),(b−1)(d−1),α.
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From Table 17.8 we can construct tests for the other relevant hypotheses in a similar manner.
For example, to test the hypothesis

HAB
0 : {(αβ)ij − (αβ)i. − (αβ).j + (αβ).. � 0 , for all i, j}

against the alternative hypothesis that the interaction contrasts are not all zero, the decision
rule is

rejectHAB
0 if

ms(AB)

msE
> F(a−1)(b−1),df,α ,

wheredf is the number of error degrees of freedom.
To test the hypothesisHD

0 : {σ 2
D � 0} against the alternative hypothesisHD

A : {σ 2
D > 0},

the decision rule is

rejectHD
0 if

msD

ms(BD)
> Fd−1,(b−1)(d−1),α.

The test ratios are summarized in Table 17.9. Generally, we would not test a main-effect
or interaction hypothesis unless all higher-order interactions involving these same factors
were believed to be negligible. For some mixed models, as for random-effects models, the
appropriate denominator for the test statistic may not be listed among the expected mean
squares for the factors in the model. In this case, it would be necessary to calculate it, and
the corresponding degrees of freedom, using (17.6.23), page 617.

17.7.2 Confidence Intervals in Mixed Models

Confidence intervals for fixed effects For fixed effects in a mixed model with equal
sample sizes, we may use all of the rules of Section 7.3, page 201, exactly as if there were no
random effects in the model,except that we replace msE by the same mean square that was
identified for hypothesis testing—namely, used in the denominator of the test ratio—and
the error degrees of freedom are also replaced. The necessity of doing this replacement is
highlighted in Example 17.7.2. Apart from this, we may use the Bonferroni, Scheffé, Tukey,
Dunnett, and Hsu methods of multiple comparisons in the usual way. When the sample sizes
are unequal, we would obtain the least squares estimates and expected mean squares from
a computer package.

Example 17.7.2

Consider an experiment with two fixed treatment factors and one random treatment factor,
for which the following model is thought to be reasonable (this is the same model that has

Table 17.9 Test ratios for a three-way mixed model

Effect E [MS] Ratio

A Q (A,AB)+ σ2 msA/msE
B Q (B,AB)+ arσ2BD + σ2 msB/ms(BD)
D abrσ2D + arσ2BD + σ2 msD/ms(BD)
AB Q (AB)+ σ2 ms(AB)/msE
BD arσ2BD + σ2 ms(BD)/msE
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been discussed throughout this subsection):

Yijkt � µ+ αi + βj +Dk + (αβ)ij + (βD)jk + εijkt .

The fixed part of the model is

µ+ αi + βj + (αβ)ij ,

which looks exactly like one of the two-way analysis of variance models that was studied
in Chapter 6.

Suppose we need confidence intervals for pairwise comparisons in the levels ofA and
of B. Then, as usual, the least squares estimates for pairwise differences are

α̂∗
i − α̂∗

p �
( ̂
αi + (αβ)i.

)
−
( ̂
α − (αβ)p.

)
� yi... − yp...

and

β̂∗
j − β̂∗

u � ( ̂βj + (αβ).j
)− ( ̂βu + (αβ).u

) � y.j.. − y.u.. .

Tables 17.8 (page 623) and 17.9 (page 625) suggest thatmsE should be used in the formulae
for confidence intervals forα∗

i − α∗
p, as usual, but thatms(BD) should be used in place of

msE in the formulae for confidence intervals forβ∗
j −β∗

u . All confidence intervals are of the
form

(least squares estimate)± (w) × (standard error).

The standard error is the square root of the estimated variance of the least squares estimator.
Now,

Var(Yijkt ) � σ 2
D + σ 2

BD + σ 2 and Var(Y .j..) � σ 2

d
+ σ 2

BD

d
+ σ 2

adr
.

TheYijkt ’s are not independent. Observations on the same level ofD are correlated. If two
observations are taken on the same levels ofB andD, we have

Cov(Yijkt , Ypjks) � σ 2
D + σ 2

BD .

If two observations are taken on the same level ofD, but different levels ofB, then

Cov(Yijkt , Ypuks) � σ 2
D .

All other pairs of response variables are independent. Consequently,

Cov(Y .j.. , Y .u..) � 1

a2d2r2

[
a∑
i�1

a∑
p�1

d∑
k�1

r∑
t�1

r∑
s�1

Cov(Yijkt , Ypuks)

]

� 1

a2d2r2

[
a2dr2σ 2

D

]
� σ 2

D

d
,
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and

Var(Y .j.. − Y .u..) � Var(Y .j..) + Var(Y .u..) − 2Cov(Y .j.. , Y .u..)

� 2

(
σ 2
D

d
+ σ 2

BD

d
+ σ 2

adr

)
− 2

(
σ 2
D

d

)
� 2

adr

(
arσ 2

BD + σ 2
)
,

which is of the form (�c2
i /(adr))(arσ

2
BD + σ 2). Thus, we need to estimate (arσ 2

BD + σ 2)
rather thanσ 2, and an unbiased estimate is given byms(BD). So, the standard error for
β̂∗
j − β̂∗

u � Y .j.. − Y .u.. is ((2/(adr)) ms(BD))1/2 with corresponding degrees of freedom
(b − 1)(d − 1). ✷

In some models, the necessary mean square will not be listed in the expected mean
squares table, and (17.6.23), page 617, will need to be used to find an approximate mean
square and degrees of freedom.

Confidence intervals for variance components In obtaining confidence intervals for
variance components, only the random part of the model is used, or, equivalently, only the
mean squares corresponding to random effects. Consequently, the formulae of Section 17.6.5
are used exactly as described for random-effects models.

17.8 Rules for Analysis of Random and Mixed Models

Rules 1–7 of Section 7.3, page 201, are valid for calculating degrees of freedom, sums of
squares, and mean squares in random-effects and mixed models as well as in fixed-effects
models. In addition, rules 8–16 are valid for analyzing fixed effects, except thatσ 2 andmsE
may need to be replaced. Rules 17–22 below summarize the results of this chapter. Rule 17
is an expanded version of rule 17 on page 616.

17.8.1 Rules—Equal Sample Sizes

17. To obtain the expected mean square for a particular main effect or interaction, first
make a note of the subscripts on the term representing that particular effect in the
model. Write down variance components for the effect of interest, for the error, and for
every interaction whose term in the model includes the noted set of subscripts. Gather
up all variance components corresponding to fixed effects into one quadratic formQ.
Multiply any remaining variance component exceptσ 2 by the number of observations
taken on each level or combination of levels of the corresponding effect (main effect or
interaction). Add up the terms.

18. To obtain the denominator of the test statistic for testing the null hypothesis that a main
effect or interaction effect is zero, write down the expected mean square for the effect of
interest (see rule 17). Cross out the term that would be zero if the null hypothesis were
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true. The denominator of the test statistic is the mean square, or linear combination of
mean squares,u, whose expected value is equal to the remaining expression.

19. For a random effect, letU � �kiMSi be the mean square or linear combination of
mean squares whose expected value is equal to the variance component corresponding
to the random effect. An exact or approximate 100(1−α)% confidence interval for this
variance component is(

xu

χ2
x,α/2

,
xu

χ2
x,1−α/2

)
,

where

x � [�ki(msi)]2

�[ki(msi)]2/xi

and whereu is the observed value ofU, msi is the observed value ofMSi , andxi is the
number of degrees of freedom corresponding tomsi .

20. For a fixed effect, confidence intervals are obtained as in rule 14, page 204, except that
msE is replaced by the denominatoru from rule 18, and the number of error degrees of
freedom is replaced byx in rule 19.

21. For a fixed effect, the decision rule for testing the hypothesis that the effect is zero is the
same as that in rule 8, page 203, for fixed-effects models, except thatmsE is replaced by
the denominatoru from rule 18, and the number of error degrees of freedom is replaced
by x in rule 19.

22. For a random effect, the decision rule for testing the hypothesisH0 that the correspond-
ing variance component is zero against the alternative hypothesis that it is not zero
is

rejectH0 if
ms

u
> Fν,x,α ,

wherems is the mean square for the effect of interest andν the corresponding degrees
of freedom,u is the observed value of the denominator as in rule 18, andx is the
corresponding degrees of freedom calculated as in rule 19.

17.8.2 Controversy (Optional)

Before proceeding, we should mention that some other textbooks may present slightly
different tables of expected mean squares. For example, the expected mean square forD in
Table 17.8, which we have calculated as

E[MSD] � abrσ 2
D + arσ 2

BD + σ 2,

may in other texts be listed as

E[MSD] � abrσ 2
D + σ 2 .
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This alternative listing occurs when constraints are placed on the model parameters involving
fixed factors, and it suggests use of the denominatormsE rather thanms(BD) in testing
HD

0 : {σ 2
D � 0} againstHD

A : {σ 2
D > 0}. A number of articles in the statistical literature

have been written advocating one denominator rather than the other, and there still appears
to be no consensus.

If we follow the line of reasoning that we have followed to this point, that normally we
will examine main effects only when there is no interaction, then some of the controversy
disappears. Ifσ 2

BD is really zero, thenE[MSD] � abrσ 2
D +σ 2 in both cases. Of course, due

to variability of the data and uncertainty about whether or notσ 2
BD is really zero (or close to

it), we still have to make the choice in practice. We have recommended usingms(BD) as the
denominator if the objective is to testHD

0 : σ 2
D � 0. However, if interest is really in testing

HD+BD
0 : {σ 2

D + b−1σ 2
BD � 0} ,

or equivalently

HD+BD
0 : {σ 2

D � σ 2
BD � 0} ,

then we would usemsE as the denominator.
The controversy originally arose from the formulation of the model. In our example, the

model was given in (17.7.25), page 623, and the controversy surrounds the random effect
(βD)jk. We have modeled this as a normally distributed random variable. Some authors add
to the model the restriction�j (βD)jk � 0, and this leads to the canceling of the term in
σ 2
BD when the expected mean square ofD is calculated.

Hocking (1996, page 569) shows that under this restriction, the hypothesisHD
0 is actually

our hypothesisHD+BD
0 . An explanation for this is as follows. If constraints are placed on the

parameters, then the (βD)jk effects truly represent interaction effects, andσ 2
BD measures

precisely variability inBD-interaction effects. However, if no constraints are placed on the
parameters, thenσ 2

BD being positive implies the presence of main effects ofB andD as well
as the presence ofBD-interaction effects. In other words, the parameters (βD)jk represent
“BD effects” in model (17.7.25), though we have referred to them asBD-interaction effects.
Thus, under our model (17.7.25), the hypothesisHD+BD

0 : {σ 2
D � σ 2

BD � 0} is that there are
no main effects ofD (orBD interactions). Also, there are noBD interactions ifσ 2

BD � 0,
and there are no main effects ofB (orBD interactions) ifβ1 � β2 � · · · � βb andσ 2

BD � 0.
From this viewpoint, the hypothesisHD

0 : σ 2
D � 0 is that there are no main effects ofD if

σ 2
BD is believed to be zero; otherwise, it is the hypothesis that main effects ofD are no less

negligible thanBD interactions.
Since there are problems inherent in placing restrictions on the model parameters, we

prefer not to do so, and we prefer to use the set of expected mean squares in Table 17.7. If
the parameters in the model are properly interpreted, then there is no controversy, and the
appropriate test is determined by what is most sensible for the experiment at hand.
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17.9 Block Designs and Random Blocking Factors

In certain types of experiments, it is extremely common for the levels of a blocking factor to
be randomly selected. For example, in medical, psychological, educational, or pharmaceuti-
cal experiments, blocks frequently represent subjects that have been selected at random from
a large population of similar subjects. In agricultural experiments, blocks may represent dif-
ferent fields selected from a large variable population of fields. In industrial experiments,
different machine operators may represent different levels of the blocking factor and may
be similar to a random sample from a large population of possible operators. Raw material
may be delivered to the factory in batches, a random selection of which are used as blocks
in the experiment.

Since we are not interested in the blocking factor itself, its designation as random rather
than fixed will affect the analysis only if the model includes a block×treatment interaction.
For example, suppose that factorD in Table 17.8 represents a random blocking factor,
and thatA andB are two fixed treatment factors. The analysis of factorA, which has no
interaction withD, is unaffected by the designation ofD as a random effect. However, the
analysis of factorB, which interacts with blocks,is affected, sincemsE in hypothesis tests
and confidence intervals for contrasts in the levels ofB will be replaced byms(BD).

Example 17.9.1 Temperature experiment

The temperature experiment was run by M. Bowe, J. Cooper, J. Donato, S. Giust, and H.
Schieman in 1994 to compare the times required for three different digital thermometers
(factorA ata � 3 levels) to register body temperature at two different sites—in the mouth
and under the arm—(factorB atb � 2 levels). Thus, there were six treatment combinations.
Four subjects were selected at random from the American statistics graduate students at
The Ohio State University, and each treatment combination was measured once for each
subject. The experiment was designed as a randomized complete block design, with subjects
representing blocks. The recorded times are shown in Table 17.10.

The four subjects used in the experiment are not themselves of interest. Of more interest is
how the thermometers react on average over a large population of subjects. The population of
American statistics graduate students at the university is large, but not infinite. However, the
four subjects used in the experiment are, hopefully, representative of all possible American
graduate students, and it is reasonable to model the subject (block) effect as a random effect.

Since subjects vary in body heat, it is possible that factorB (site) might interact with sub-
ject. It is also possible that different thermometers might act differently at the two different

Table 17.10 Data (in seconds) for the temperature experiment

Treatment Combination
Subject 11 12 21 22 31 32

1 62.16 61.53 154.42 310.46 95.98 225.65
2 65.63 63.70 132.30 284.64 98.50 241.63
3 63.12 61.34 105.52 315.61 110.05 364.07
4 61.51 61.54 94.88 294.16 107.93 304.58
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Table 17.11 Analysis of variance table for the mixed model temperature experiment

Source of Degrees of Mean Expected
Variation Freedom Square p-value Mean Square
Subject (block) 3 570.04 − −
Thermometer (A) 2 52879.34 0.0001 Q (A,AB)+ σ2

Site (B) 1 86029.60 0.0035 Q (B,AB)+ 3σ2SB + σ2

Therm*Site (AB) 2 21897.23 0.0001 Q (AB)+ σ2

Subject*Site (SB) 3 1210.67 0.2625 3σ2SB + σ2

Error 12 802.57 σ2

Total 23

sites. Consequently the following model might be reasonable for this experiment.

Yhij � µ+ Sh + αi + βj + (αβ)ij + (Sβ)hj + εhij ,

h � 1,2,3,4, i � 1,2,3, j � 1,2,

Sh ∼ N (0, σ 2
S ), (Sβ)hj ∼ N (0, σ 2

SB), εhij ∼ N (0, σ 2) ,

Sh’s, (Sβ)hj ’s andεhij ’s are all mutually independent,

where all random variables on the right-hand side of the model are mutually independent,
and whereSh represents the effect of thehth randomly selected subject (block),αi represents
the effect of theith specifically selected thermometer, andβj represents the effect of theith
specifically selected site. This model is similar to mixed model (17.7.25) withSh replacing
Dk. Consequently, the expected mean squares will be similar to those in Table 17.8, page 623.
The analysis of variance table is shown in Table 17.11.

We start by testing the two interaction hypotheses. To test the hypothesisHSB
0 : {σ 2

SB �
0}, that the subject by site interaction variance is negligible, against the alternative hypothesis
that it is not negligible, using a significance level of 0.01 (so that the overall significance
level will be at most 0.05), we

reject HSB
0 if

ms(SB)

msE
> F3,12,0.01 � 5.95.

Sincems(SB)/msE = 1.51, there is not sufficient evidence to conclude that the interaction
variance is greater than zero (equivalently, thep-value is greater than 0.01). Before we can
examine the site main effect, however, we also need to look at the thermometer by site
interaction.

To test the hypothesis

HAB
0 : {(αβ)ij − (αβ)ip − (αβ)uj + (αβ)up, for all i, j, u, p}

against the alternative hypothesis that the interaction is not negligible, we

reject HAB
0 if

ms(AB)

msE
> F2,12,0.01 � 6.93.

Sincems(AB)/msE � 27.28, we rejectHAB
0 and conclude that there is a thermometer×site

interaction. Thus, it is unlikely that the thermometer and site main effects are of interest.
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However, for illustration purposes, we ask whether theaverage time taken for these three
digital thermometers to register is the same whether used in the mouth or under the arm.
Thus, we will test the hypothesis

HB
0 : {β1 + (αβ).1 � β2 + (αβ).2} .

To test this hypothesis at significance level 0.01, we

reject HB
0 if

msB

ms(SB)
> F1,3,0.01 � 29.5 .

SincemsB/ms(SB) = 71.06, we rejectHB
0 and conclude that it does make a difference

in registering temperature (on average for these three thermometers) as to whether the
thermometer is used in the mouth or under the arm. This conclusion is made on average over
the three thermometers and over the whole population of similar graduate students.✷

17.10 Using SAS Software

17.10.1 Checking Assumptions on the Model

Using the data of Table 17.1, page 596, for the clean wool experiment, we illustrate some
methods of checking model assumptions for a random-effects one-way model . The exper-
imenters took observations onr � 4 cores of wool from each ofv � 7 randomly selected
wool bales.

We let the random variableTi represent the true clean content of theith randomly selected
bale of wool from the shipment, and letYit � Ti+εit represent the observed clean content of
thet th core (observation) from theith bale, where the error variableεit includes the deviation
from the true average clean content of thet th core from theith bale, the measurement error,
environmental conditions, etc.

First, we check the error assumptions by calculating and plotting the standardized residu-
als obtained as though the bale effects were fixed. The standardized residuals are calculated
in the usual way and plotted against the levels of the treatment factor and the predicted
values (see Section 5.8, page 122). The latter plot, obtained from the statement

PLOT Z*PRED=BALE / VPOS=15 HPOS=50 VREF=0;

is shown in Figure 17.3. The plotted symbols indicate the bales from which the residuals
arose.

Although eleven residuals are masked by other residuals, the most noticeable feature is
that bale 1 gives rise to one very large standardized residual (an outlier). This means one of
several things: Perhaps the data value is in error, so that this value is an outlier, or perhaps
bale 1 is extremely more variable than the other bales in the population, or perhaps the error
variables are not normally distributed. Let us suppose that we could go back to the original
experimenters and that indeed, something unusual happened at this point during the time
at which the observations were taken. If so, we could exclude this value. The new residual
plot is shown in Figure 17.4.
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Figure 17.3
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All standardized residuals now lie within the expected range for normally distributed
errors. The plot gives us quite a lot of information about our sample of bales and possibly
about the shipment of bales from which they were drawn. First, the average clean content of
bale 1 is around 53, considerably below the others. This was the bale that had the supposed
outlier. One might suspect that this bale either did not come from the same shipment or was
contaminated at some point before being measured. On the other hand, the shipment may
contain a number of “rogue bales,” and this ought to be investigated. At the other end of the
range, we see that bale 7 had the highest clean content and was least variable. Perhaps this is
not too surprising, since a bale with 100% clean content would probably show no variability
in the measurements taken on it. Thus, one might suspect that our model that includes
normally distributed errors is not ideal for this situation. However, the plot of standardized
residuals against normal scores does not show any anomalies (figure not shown).

In a one-way random-effects model, we can check the assumption that the treatment
effects have a normal distribution by making a normal probability plot of the standardized
treatment averagesY i. against their normal scores. (This cannot be done for models with
more than one random effect, since the treatment averages are not independent.) For the
clean wool experiment, the normal probability plot is obtained by means of the statements
in Table 17.12, and the resulting plot is shown in Figure 17.5. If the normality assumption
for the population of bales is satisfied, the standardized bale averages should roughly lie
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Figure 17.4
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Table 17.12 SAS program to plot treatment averages against their normal scores

PROC SORT; BY BALE;
PROC MEANS NOPRINT; BY BALE;
VAR CONTENT;
OUTPUT OUT=WOOL2 MEAN=AVCONT;

PROC STANDARD STD=1.0 MEAN=0.0;
VAR AVCONT;

PROC RANK NORMAL=BLOM;
VAR AVCONT;
RANKS NSCORE;

PROC PLOT;
PLOT AVCONT*NSCORE=BALE / VPOS=15 HPOS=40 HREF=0 VREF=0;

along a line (with slope 1.0) through (0, 0). In Figure 17.5, we see that this is roughly the
case.

In summary, the random-effects one-way model with the standard distribution assump-
tions does not fit these data too well, since variances apparently are not constant or there is
an outlier. Nevertheless, we have established that the population of bales in this shipment is
extremely variable. Selected bales 1 and 7 appear to be somewhat different from the other
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Figure 17.5
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five selected bales. Perhaps the shipment is made up of dissimilar subpopulations (perhaps
from different sources). This should be checked, since it may give a clue as to how to improve
the wool clean content in the future.

17.10.2 Estimation and Hypothesis Testing

Analysis of variance tables for random-effects and mixed models are obtained in exactly the
same way as for fixed-effects models. The additional expected mean squares column can be
obtained very easily by inserting aRANDOM statement immediately after the model statement.
All random main effects and random interactions should be listed in theRANDOM statement,
as shown, for example, in Table 17.13 for the temperature experiment of Example 17.9,
page 630. The denominators, calculated as explained throughout this chapter, can be obtained
by adding the optionTEST to theRANDOM statement, as shown in the following example.
The actual denominators are printed out as well as thep-values.

The output is shown in Table 17.14. The first few lines reproduce the expected mean
squares that were calculated by hand in Table 17.7, page 620. The remainder of the output
gives theTYPE III sums of squares, but instead of calculating the usual test ratios withmsE
as the denominator, theTEST option on theRANDOM statement has caused the denominator
ms(SITE*SUBJ) to be used where appropriate.

Estimating contrasts for the fixed effects can be done as usual using theESTIMATE
statement. Confidence intervals can be calculated by hand and the mean squared error
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Table 17.13 SAS program for the temperature experiment

DATA TEMPR;
INPUT THERM SITE SUBJ TIME;
LINES;
1 1 1 62.16
1 2 1 61.53
: : : :
3 2 4 304.58

;
* Note that the option TEST gives correct denominators;
PROC PRINT;
PROC GLM;
CLASSES THERM SITE SUBJ;
MODEL TIME = SUBJ THERM SITE THERM*SITE SUBJ*SITE;
RANDOM SUBJ SUBJ*SITE / TEST;
OUTPUT OUT=RESIDS PREDICTED=PTIME RESIDUAL=Z;
CONTRAST ’SITE1-SITE2’ SITE 1 -1 / E=SUBJ*SITE;

replaced by the denominator used in the test procedures. For testing individual contrasts,
theCONTRAST statement can be used and the required denominator can be specified. For
example, the statement

CONTRAST ’SITE1-SITE2’ SITE 1 -1 / E=SUBJ*SITE;

will use the subj×site interaction mean square as the variance estimate for comparing sites,
rather than the error mean square. ✷

Other SAS procedures The SAS package includes an alternative procedurePROC VAR-
COMP, explicitly designed to cope with random and mixed models. The call statement that
generates the same set of information as in Table 17.14 is

PROC VARCOMP METHOD=TYPE1;
CLASSES THERM SITE SUBJ;
MODEL TIME = THERM SITE THERM*SITE SUBJ SUBJ*SITE / FIXED=3;

whereFIXED=3 indicates that the first three terms of the model are fixed effects. Estimates
of the variance components are also calculated by this procedure. As can be seen from the
METHOD=TYPE1 statement, the type I sums of squares are used, so the estimates will agree
with those obtained from thePROC GLM Type III sums of squares only when the sample
sizes are equal.

Throughout this chapter we have discussed the estimation of random effects using the
fixed-effects analysis of variance as a guide to finding unbiased estimators. There are other
more sophisticated statistical procedures for estimating variance components that prevent
the estimates from ever being negative. The procedurePROC VARCOMP, mentioned above,
can access some of these methods (via theMETHOD statement in the first line). There is also
another procedure calledPROC MIXED, which we will not discuss but which is designed for
estimation and testing in mixed-effect models, including unbalanced designs.
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Table 17.14 SAS analysis of variance for the temperature experiment

The SAS System
General Linear Models Procedure

Source Type III Expected Mean Square
SUBJ Var(Error) + 3 Var(SITE*SUBJ) + 6 Var(SUBJ)
THERM Var(Error) + Q(THERM,THERM*SITE)
SITE Var(Error) + 3 Var(SITE*SUBJ) + Q(SITE,THERM*SITE)
THERM*SITE Var(Error) + Q(THERM*SITE)
SITE*SUBJ Var(Error) + 3 Var(SITE*SUBJ)

General Linear Models Procedure
Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: TIME

Source: SUBJ
Error: MS(SITE*SUBJ)

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
3 570.04094861 3 1210.6723042 0.4708 0.7240

Source: THERM *
Error: MS(Error)

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
2 52879.34315 12 802.56832222 65.8877 0.0001

* - This test assumes one or more other fixed effects are zero.

Source: SITE *
Error: MS(SITE*SUBJ)

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
1 86029.597838 3 1210.6723042 71.0594 0.0035

* - This test assumes one or more other fixed effects are zero.

Source: THERM*SITE
Error: MS(Error)

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
2 21897.23105 12 802.56832222 27.2839 0.0001

Source: SITE*SUBJ
Error: MS(Error)

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
3 1210.6723042 12 802.56832222 1.5085 0.2625
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Covariates Before leaving this section, we will examine a more complicated model. The
plot of standardized residuals against order of observation for the ice cream experiment
(Example 17.3.3, page 600) is shown in Figure 17.6. This plot suggests that there may be a
quadratic time trend in the data.

We define two extra variablesX andX2 in theDATA statement as follows,

DATA ICE;
INPUT FLAVOR MELTTIME ORDER;
X=ORDER-16.5;
X2=X*X;
LINES;
1 924 1
: : :

and we add these variables to the model statement, so the code forPROC GLM becomes

PROC GLM;
CLASS FLAVOR;
MODEL MELTTIME = X X2 FLAVOR;
RANDOM FLAVOR / TEST;

The variableX is just the same asORDER, except that we have subtracted the average order
16.5. This helps to reduce computational problems in the model fitting. The Type III sums of
squares and the expected mean squares are shown in Table 17.15. We see that the quadratic
effect of time order is quite substantial and that from the list of expected mean squares, our
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Table 17.15 SAS analysis of variance for the ice cream experiment

The SAS System
General Linear Models Procedure

Dependent Variable: MELTTIME
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 4 250538.12 62634.53 13.93 0.0001
Error 28 125927.94 4497.43
Corrected Total 32 376466.06

Source DF Type III SS Mean Square F Value Pr > F
X 1 6923.44 6923.44 1.54 0.2250
X2 1 66292.64 66292.64 14.74 0.0006
FLAVOR 2 188394.28 94197.14 20.94 0.0001

Source Type III Expected Mean Square
X Var(Error) + Q(X)
X2 Var(Error) + Q(X2)
FLAVOR Var(Error) + 9.6478 Var(FLAVOR)

estimate of the variance of melting times due to flavor (var(FLAVOR)) must be calculated
as

σ̂ 2
T � 94179.139− 4497.426

9.6478
� 9359.62 seconds2

or σ̂T � 96.75 seconds, which is a little larger than the estimate ofσ̂T � 85.13 seconds that
we obtained in Example 17.3.5, page 606. Examination of the residuals in the new model
shows that the error assumptions are fairly well satisfied. In Exercise 8, the reader is asked
to recalculate the confidence intervals forσ 2

T andσ 2
T /σ

2 using the new model.

Exercises

1. Alcohol experiment
Solutions of alcohol are used for calibrating Breathalyzers. The data in Table 17.16
show the alcohol concentrations in (mg/ml) of samples of alcohol solutions taken from
six bottles of alcohol solution randomly selected from a large batch. Concentrations are
determined by gas chromatography.

(a) Check the assumptions on the random-effects one-way model for these data.

(b) Calculate a 95% upper confidence bound for the error variance.

(c) Calculate a 95% confidence interval for the variance of the alcohol concentrations
in the population of bottles in this large batch.
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Table 17.16 Data for the alcohol experiment

Bottle Concentration (mg/ml)
1 1.4357 1.4348 1.4336 1.4309
2 1.4244 1.4232 1.4213 1.4256
3 1.4153 1.4137 1.4176 1.4164
4 1.4331 1.4325 1.4312 1.4297
5 1.4252 1.4261 1.4293 1.4272
6 1.4179 1.4217 1.4191 1.4204

(d) Test the hypothesis that the variance of the alcohol concentrations is at most
five times the error variance versus the alternative hypothesis that it is not. Use
a significance level ofα � 0.05.

2. Ice cream experiment, continued
As in Example 17.4, page 609, suppose the ice cream experiment is to be repeated, with
γ � 1.0 and with a Type I error probability ofα � .05. Suppose that we would like to
reject the null hypothesisHγT

0 : {σ 2
T ≤ σ 2} with probabilityπ � 0.95 if the true value

of σ 2
T /σ

2 is greater than) � 2.0. How many ice cream flavors should be included in
the experiment ifr � 2 observations are to be taken on each? How many observations
are needed? Is this an improvement over the result in the example forr � 3? (Note:
F150,150,.05 � 1.309, F160,160,.05 � 1.298, F170,170,.05 � 1.288, F180,180,.05 � 1.279).

3. Consider the following random-effects model:

Yijkmt � µ+ Ai + Bj + Ck +Dm

+ (AB)ij + (BC)jk + (BD)jm + εijkmt ,

i � 1, . . . , a, j � 1, . . . , b, k � 1, . . . , c,

m � 1, . . . , d, t � 1, . . . , r,

Ai ∼ N (0, σ 2
A), Bj ∼ N (0, σ 2

B), Ck ∼ N (0, σ 2
C) ,

Dm ∼ N (0, σ 2
D), (AB)ij ∼ N (0, σ 2

AB), (BC)jk ∼ N (0, σ 2
BC) ,

(BD)jm ∼ N (0, σ 2
BD), εijkmt ∼ N (0, σ 2) ,

where all random variables on the right hand side of the model are mutually independent.

(a) Write out the expected mean squares for all main effects and interactions in the
model.

(b) How would you test the null hypothesisHA
0 : {σ 2

A � 0} against the alternative
hypothesisHA

A : {σ 2
A > 0}?

(c) How would you test the null hypothesisHB
0 : {σ 2

B � 0} against the alternative
hypothesisHB

A : {σ 2
B > 0}?

(d) Give formulae for unbiased estimates ofσ 2
BD andσ 2

B .

(e) Give formulae for individual 95% confidence intervals forσ 2
BD andσ 2

B . What is
the overall confidence level?
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Table 17.17 Treatments and percentage change in height for the buttermilk biscuit
experiment

Position
Block 1 2 3 4 5 6
1 2 (150.0) 1 (188.2) 2 (177.8) 3 (166.7) 3 (187.5) 1 (182.4)
2 1 (183.3) 2 (183.3) 2 (183.3) 3 (176.5) 1 (160.0) 3 (187.5)
3 1 (178.9) 3 (182.4) 2 (193.8) 3 (176.5) 2 (188.9) 1 (188.9)
4 2 (177.8) 1 (145.5) 3 (155.0) 1 (173.7) 3 (200.0) 2 (187.5)
5 1 (205.6) 3 (188.2) 3 (142.9) 2 (161.9) 2 (177.8) 1 (159.1)

4. Buttermilk biscuit experiment (Stacie Taylor, 1995)
The buttermilk biscuit experiment was run by Stacie Taylor in 1995 to find out which
brands of refrigerated buttermilk biscuit give rise to the fluffiest biscuits. Three brands
were examined (factorA, 3 levels, fixed effect), all of which had claims to be light,
fluffy, or flaky in their advertising campaigns. The biscuits were baked on a baking tray
for 7 minutes in the center of an oven set to 425◦F. Since only six biscuits could be
baked at a time, the experiment was run as a general complete block design with blocks
of sizek � 6.
(a) Use a mixed model with interaction to represent the data, where the random effect

represents the block (run of the oven) and the fixed effect represents the biscuit
brand. Write out the model including all of the assumptions.

(b) The data collected by the experimenter are shown in Table 17.17. As far as possible,
check the assumptions on the model for these data.

(c) Write out the expected mean squares for all terms in the model.

(d) Draw a block×brand interaction plot for those blocks observed in the experiment.

(e) Test the hypothesis that the variance in height of the biscuits due the population of
block×brand interactions is negligible against the alternative hypothesis that it is
not negligible. Interpret your conclusions in terms of the plot in part (d).

(f) Calculate a set of 95% simultaneous confidence intervals for the pairwise
comparisons between the brands. State your conclusions.

5. Candle experiment, continued
The candle experiment was described in Example 6, page 326. The experiment was run
to determine whether different colored candles (factorA, four fixed levels, red, white,
blue, yellow, coded 1, 2, 3, 4) burn at different speeds. The design used was a general
complete block design, with each of the four experimenters representing one block.
Analyze the experiment as though the experimenters represent a random sample from
a large population of people who might use these candles in practice. Use a two-way
mixed model with interaction. The data are reproduced in Table 17.18.
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Table 17.18 Data for the candle experiment (seconds)

Color
Person Red White Blue Yellow

1 989 1032 1044 979 1011 951 974 998
1077 1019 987 1031 928 1022 1033 1041

2 899 912 847 880 899 800 886 859
911 943 879 830 820 812 901 907

3 898 840 840 952 909 790 950 992
955 1005 961 915 871 905 920 890

4 993 957 987 960 864 925 949 973
1005 982 920 1001 824 790 978 938

6. Golf ball experiment (Tim Kelaghan, 1995)
An experiment was planned by Tim Kelaghan in 1995 to examine whether different
brands of golf balls travel on average the same distances when hit by amateur golfers.
The experiment was planned with a specific selection ofv � 3 golf balls and some
numberb of golfers to be determined. The experiment was to be run as a general
complete block design with fixed treatment effects and random golfer effects. Since
the golfer is aware of which brand of ball he or she is hitting, there may well be a
golfer×brand interaction. However, the differences between brands averaged over the
interaction is important here.
A small pilot experiment was conducted. There were only two golfers, and each hit
s � 6 balls of each brand in a random order. Mis-hits were ignored. The distances that
the balls traveled were recorded in yards and are shown in Table 17.19.

(a) Use the pilot experiment data to calculate a 95% upper bound for the error variance
σ 2.

(b) The experimenter wanted the main experiment to be able to calculate a set of
simultaneous 95% confidence intervals for the pairwise differences in the brands,
and he wanted the widths of these intervals to be at most 20 yards. Assuming that
the maximum block size would be aboutk � 18 as in the pilot experiment, how
many randomly selected golfers would be needed?

Table 17.19 Distances (in yards) traveled by balls in the
golf experiment

Distance
Golfer Brand 1 2 3 4 5 6
1 1 209 204 179 230 233 245

2 188 211 242 222 187 233
3 219 204 247 215 197 161

2 1 240 207 192 190 226 188
2 216 195 240 215 219 238
3 195 221 205 192 183 230
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7. Consider the following mixed model:

Yijkmt � µ+ αi + Bj + Ck + δm + (αB)ij + (αδ)im

+ (Bδ)jm + (Cδ)km + (αBδ)ijm + εijkmt ,

i � 1, . . . , a, j � 1, . . . , b, k � 1, . . . , c,

m � 1, . . . , d, t � 1, . . . , r,

Bj ∼ N (0, σ 2
B), Ck ∼ N (0, σ 2

C), (αB)ij ∼ N (0, σ 2
AB),

(Bδ)jm ∼ N (0, σ 2
BD), (Cδ)km ∼ N (0, σ 2

CD),

(αBδ)ijm ∼ N (0, σ 2
ABD), εijkmt ∼ N (0, σ 2) ,

whereαi andδm are fixed effects, all other effects are random effects, and all random
variables on the right-hand side of the model are mutually independent.
(a) Write out the expected mean squares for all main effects and interactions in the

model.

(b) How would you test the hypothesisH0 : {δm + (αδ).m all equal} against the
alternative hypothesis that these parameters are not all equal?

(c) Give a formula for an unbiased estimate ofσ 2
B .

(d) Give a formula for a 95% confidence interval forσ 2
B .

8. Ice cream experiment, continued
The ice cream experiment was described in Example 17.3.3, page 600, and was analyzed
in Examples 17.3.4–17.3.5 and 17.4. In Section 17.10, a new model was suggested that
involved a quadratic time trend.
(a) What could account for a quadratic time trend?

(b) Investigate the assumptions on the models with and without the quadratic time
trend.

(c) Redo the analyses of Examples 17.3.4–17.3.5 and 17.4 for the new model and
compare your answers with the original model.

(d) Which model do you prefer and why?
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18.1 Introduction

A factor is said to benested within a second factor if each of its levels is observed in
conjunction with just one level of the second factor. An example can be obtained from the
clean wool experiment that was discussed in the last chapter. There, the objective of the
experiment was to examine the variability of the “clean content” among bales of wool in a
large shipment. Several bales were selected for examination, and several cores were taken
from each bale and measured. Each core was taken from only one bale, so the cores (levels of
the first factor) are observed in conjunction with only one bale (level of the second factor).
In the above language, the cores arenested within the bales. In the original experiment,
there was only one observation taken on each core. The variability of the different cores
could not, therefore, be distinguished from measurement error, and their effects were not
included explicitly in the model. Had there been more than one observation per core, we
could have included in the model separate effects due to bales, cores nested within bales,
and experimental error.

In this chapter we discuss how to recognize nested factors, how to formulate the associated
models, and how to analyze the effects in these models. Many of the analysis techniques
are similar to those in the previous chapter.

645
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In the next section we discuss some examples of hypothetical experiments involving
nested effects, and possible models to represent the data. In Section 18.3, we find the
estimable contrasts for fixed-effects nested models and develop tests of hypotheses and
confidence intervals for these. The more usual setting where the nested effects are random
effects is discussed in Section 18.4 and, where possible, we borrow the formulae from the
fixed effects setting as we did in Chapter 17. The rules of Chapters 7 and 17 for finding
degrees of freedom, sums of squares and expected mean squares and variance components
are then extended to encompass nested models. The analysis of nested models using the
SAS computer package is discussed in Section 18.5.

18.2 Examples and Models

Nested factors are usually, but not always, random effects, and they are usually, but not al-
ways, blocking factors. In the following examples, we give a selection of different situations
involving random effects and suggest some reasonable models to represent the data.

Example 18.2.1 Machine head experiment

Hicks (1956) describes a simple experiment to study the differences in the strain readings
(the response) of four different heads on each of five different machines. The heads on
each machine were supposedly all doing the same job and should have given rise to similar
(nonvariable) readings.

Since each head was observed on only one machine, the heads were “nested within
machines,” giving twenty heads in total. Four observations were taken on each head. The
usual two-way analysis of variance model is not appropriate here, since it would read

Yijt � µ+ αi + βj + (αβ)ij + εij t ,

εij t ∼ N (0, σ 2) ,

εij t ’s are mutually independent,

t � 1, . . . ,4; i � 1, . . . ,5; j � 1, . . . ,4,

where,αi is the effect of theith machine,βj is the effect of thej th head, and (αβ)ij is the
extra effect of observing theith machine andj th head together. This suggests that every
head is observed on every machine, which was not the case. Instead, we need a notation
that will clearly indicate the nested nature of the factors. One popular notation, which we
shall adopt here, is to replaceβj + (αβ)ij by βj (i), where the parentheses indicate that we
are looking at the head that happens to be numbered as thej th head on the ith machine.
Thetwo-way nested model is then

Yijt � µ+ αi + βj (i) + εij t , (18.2.1)

εij t ∼ N (0, σ 2) ,

εij t ’s are mutually independent,

t � 1, . . . ,4; i � 1, . . . ,5; j � 1, . . . ,4.
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We note in passing that the responseYijt could also be written as a nested effectYt(ij ), since
this represents thet th observation that is specific to the (ij )th machine head. However, since
this representation is not crucial to the analysis, we will continue to use the notationYijt
that we have used so far throughout the book.

One final consideration is whether the machine effects and head effects should be fixed
or random. Let us first suppose that the five machines are the only machines of this type
in the factory and that they are not due for replacement. The experimenter would then be
interested in these five machines specifically, and their effects on the response would be
modeled as fixed effects. Let us alternatively suppose that machine heads wear out and are
continually being replaced. The experimenter would then be interested in the population of
heads from which the particular twenty in the experiment were drawn. Consequently, the
nested head effect would be modeled as a random effect. The model would be written as

Yijt � µ+ αi + Bj (i) + εij t , (18.2.2)

εij t ∼ N (0, σ 2) , Bj (i) ∼ N (0, σ 2
B(A)) ,

εij t ’s andBj (i)’s are all mutually independent,

t � 1, . . . ,4; i � 1, . . . ,5; j � 1, . . . ,4,

whereαi is the effect of theith machine, andσ 2
B(A) is the variance of responses from the pop-

ulation of machine heads that could be fitted on these five machines. Notice that all random
variables on the right-hand side of the model are assumed to be mutually independent.✷

In the previous example there were two treatment factors, one of whose levels were
nested within those of the other. In the following experiment, there are two blocking factors,
which are nested one within the other.

Example 18.2.2 Efficiency experiment

An experiment was run in 1997 by Carina Dalton, Greg Krzys, Scott O’Dee, and Brad Welch
to examine the assertion that “a person works more efficiently when there is no one looking
over his or her shoulder.” Twelve subjects were recruited for the experiment, and three of
these were assigned to each of the four experimenters. Each subject was asked to complete
a simple task—crossing through every occurrence of the letter “e” on a page of prose. There
were two levels of the treatment factor. Level 1 required the assigned experimenter to look
over the subject’s shoulder while the task was being completed, and level 2 required the
experimenter to be elsewhere in the room absorbed in a book. The response was the time
taken to complete the task. Each subject was assigned both treatments, but in a randomized
order.

The blocking factor in this experiment was subject. However, the subjects each worked
with only one experimenter, and so the subject effects were nested within the experimenter
effects.

The subjects were graduate students at The Ohio State University. Although they were
not selected according to the rules of a simple random sample, let us suppose that they were
a reasonable representation of that population. Let us also suppose that the variation among
the techniques of the experimenters, who were also graduate students, was representative
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of a population of student experimenters. It might also be reasonable to assume that some
subjects may be more perturbed than others about an experimenter watching them complete
the task. In this case, we might wish to include a subject–treatment interaction in the model.
However, there is only one observation per subject per treatment, so the subject–treatment
interaction could not be distinguished from the random error.

A second possible model would be to include an experimenter–treatment interaction
instead of a subject–treatment interaction. Such an interaction might occur if the actions of
the four experimenters were not all identical. In this case the model would be

Yhqi � µ+ Eh + Sq(h) + αi + (αE)hi + εhqi ,

εhqi ∼ N (0, σ 2) , Sq(h) ∼ N (0, σ 2
S(E)) , (αE)hi ∼ N (0, σ 2

EA) ,

εhqi ’s, Eh’s, Sq(h)’s and (αE)hi ’s are all mutually independent,

h � 1, . . . ,4; i � 1,2,3; i � 1,2.

whereEh is the effect of thehth randomly selected experimenter,Sq(h) is the effect of
theqth randomly selected subject assigned to thehth experimenter,αi is the effect of the
ith treatment, and (αE)hi is the random effect representing the interaction between thehth
experimenter and theith treatment.

Lastly, we may also wish to include a time-order effect in the model, since the subjects
may have been able to complete the task faster on the second occasion just due to familiarity.
So we could add the extra termγ xhqi , wherexhqi is 1 or 2 according to whether the (hq)th
subject is assigned treatmenti on the first or second occasion. ✷

18.3 Analysis of Nested Fixed Effects

18.3.1 Least Squares Estimates

Consider first the simplest possible fixed-effects nested model—the two-way nested
model (18.2.1) that was suggested for the machine head experiment of Example 18.2; that
is,

Yijt � µ+ αi + βj (i) + εij t ,

εij t ∼ N (0, σ 2) ,

εij t ’s are mutually independent,

t � 1, . . . , rij ; i � 1, . . . , a; j � 1, . . . , b.

The error assumptions are examined in the same way as in Chapter 5 for the one-way
analysis of variance model. In any model, the estimable contrasts are functions of the ex-
pected values of the response variables (see, for example, Section 3.4.1, page 37). In the
present model,E[Yijt ] is equal to

E[Yijt ] � µ+ αi + βj (i) .
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If we take an average over the subscriptst andj , we find that a comparison of the levels of
A averaged over the levels ofB is estimable; that is, we can estimate pairwise comparisons
such as[

αi + β.(i)
] − [αs + β.(s)

]
,

and we can estimate general contrasts such as

a∑
i�1

ci
[
αi + β.(i)

]
, with

a∑
i�1

ci � 0 .

We can also compare the effects of those levels ofB that were observed in conjunction with
thesame level ofA; that is,[

αi + βj (i)
] − [αi + βu(i)

] � βj (i) − βu(i) ,

or, in general,

b∑
j�1

djβj (i) , with
b∑

j�1

dj � 0 , for any giveni .

To obtain the least squares estimators of estimable contrasts, we use the method of least
squares to find parameter estimates that minimize the sum of squared errors

a∑
i�1

b∑
j�1

rij∑
t�1

e2
ij t �

a∑
i�1

b∑
j�1

rij∑
t�1

(
yijt − µ− αi − βj (i)

)2
.

Readers with a knowledge of calculus may verify (see Exercise 7) that the least squares
estimate ofµ+ αi + βj (i) is yij.. Consequently, the least squares estimator of

a∑
i�1

ci
[
αi + β.(i)

]
is

a∑
i�1

ciY i..

with �ci � 0. The corresponding variance is�c2
i σ

2/ri.. Similarly, the least squares
estimator of

b∑
j�1

djβj (i) is
b∑

j�1

djY ij. for anyi

with �dj � 0. The corresponding variance is�d2
j σ

2/rij .
All of these formulae can easily be adapted to the case whereB has a different number

of levels for each level ofA by replacingb by bi .

18.3.2 Estimation of σ 2

The error sum of squares is

ssE �
a∑
i�1

b∑
j�1

rij∑
t�1

(
yijt − µ̂− α̂i − β̂j (i)

)2
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�
a∑
i�1

b∑
j�1

rij∑
t�1

(
yijt − yij.

)2
(18.3.3)

�
a∑
i�1

b∑
j�1

rij∑
t�1

y2
ij t −

a∑
i�1

b∑
j�1

rij y
2
ij. . (18.3.4)

A comparison with the formulae in Section 6.4 shows that everything that we have written
so far about the fixed-effects two-way nested model could have been deduced from the
fixed-effects two-way complete model after replacingβj + (αβ)ij by βj (i). Therefore, we
may also deduce that the error mean square,msE � ssE/(n−v), gives an unbiased estimate
for σ 2, and the corresponding random variableMSE has a chi-squared distribution with
n− v degrees of freedom (wheren � r.. andv � ab).

18.3.3 Confidence Intervals

We may obtain a 100(1−α)% confidence bound forσ 2 from the information in the previous
subsection; that is,

σ 2 ≤ ssE

χ2
n−v,1−α

.

The derivation of the bound was explained in Section 3.4.10.
Confidence intervals for�ci(αi + β.(i)) and for�djβj (i) may be obtained using the

relevant methods from Chapter 4 together with the formulae

�ciY i.. ± w

√∑
i

(
c2
i

ri

)
msE

and

�djY ij. ± w

√√√√∑
j

(
d2
j

rij

)
msE .

18.3.4 Hypothesis Testing

We may obtain a test of the null hypothesis that the levels ofB have the same effect on the
response within every given level ofA, that is,

H
B(A)
0 : {β1(i) � β2(i) � . . . � βb(i), for everyi � 1, . . . , a} ,

against the alternative hypothesisHB(A)
A : {HB(A)

0 is not true} by comparing the sum of
squares for error (18.3.3) in the fixed-effects two-way nested model with the sum of squares
for error in the reduced (one-way) model. The reduced model is

Yijt � µ∗ + αi + εij t ,
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and the error sum of squares is given by (3.4.4), page 42, with an extra subscript; that is,

ssE0 �
a∑
i�1

b∑
j�1

rij∑
t�1

(yijt − yi..)
2 .

The numerator of the test statistic is then

msB(A) � ssB(A)

a(b − 1)
,

where the number of degrees of freedom forB(A) is obtained as the difference between the
error degrees of freedom in the reduced and full models; that is,

(n− a) − (n− v) � v − a � ab − a � a(b − 1) ,

and where

ssB(A) � ssE0 − ssE

�
∑
i

∑
j

∑
t

(yijt − yi..)
2 −
∑
i

∑
j

∑
t

(yijt − yij.)
2

�
∑
i

∑
j

∑
t

y2
ij t −
∑
i

ri.y
2
i.. −
∑
i

∑
j

∑
t

y2
ij t +
∑
i

∑
j

rij y
2
ij.

�
∑
i

∑
j

rij y
2
ij. −
∑
i

ri.y
2
i.. (18.3.5)

�
∑
i

∑
j

rij (yij. − yi..)
2 . (18.3.6)

The decision rule for testingHB(A)
0 versusHB(A)

A at significance levelα is

rejectHB(A)
0 if

ssB(A)/a(b − 1)

ssE/(n− ab)
> Fa(b−1),n−ab,α .

Similarly, the decision rule for testing

HA
0 : {αi + β.(i) all equal}

against the alternative hypothesisHA
A : {HA

0 is false} is

rejectHA
0 if

ssA/(a − 1)

ssE/(n− ab)
> Fa−1,n−ab,α ,

where

ssA �
∑
i

ri.(yi.. − y...)
2 �
∑
i

ri.y
2
i.. − ny2

... .

Notice thatssB(A) in the two-way nested model is equal tossB + ssAB in the two-way
complete model. Also, the degrees of freedom forB(A) in the nested model can be obtained
as the sum of the degrees of freedom forB andAB in the complete model; that is,

(b − 1) + (b − 1)(a − 1) � a(b − 1) .

This link between the nested model and the corresponding complete model means that
when the sample sizes are equal, we can obtain all the formulae we need from the rules in



652 Chapter 18 Nested Models

Chapter 7. This remains true for more complicated models also. For example, if we take the
nested model

Yijkt � µ+ αi + βj (i) + γk(ij ) + εijkt ,

we have the following equivalences with the terms of the three-way complete model:

βj (i) � βj + (αβ)ij ,

γk(ij ) � γk + (αγ )ik + (βγ )jk + (αβγ )ijk ;

so, for example, the sum of squares forC(AB) is

ssC(AB) � ssC + ssAC + ssBC + ssABC

�
∑
i

∑
j

∑
k

rijky
2
ijk. −

∑
i

∑
j

rij.y
2
ij..

�
∑
i

∑
j

∑
k

rijk(yijk. − yij..)
2 ,

with degrees of freedom

(c − 1) + (a − 1)(c − 1) + (b − 1)(c − 1) + (a − 1)(b − 1)(c − 1) � ab(c − 1) .

As with the crossed model, the degrees of freedom forC(AB) give a clue to the subscripts
needed in the formula for the sum of squares forC(AB); that is, the degrees of freedom
ab(c − 1) � abc − ab suggest that the sum of squares forC(AB) must contain the terms
yijk. andyij.., the latter with a minus sign.

To obtain the degrees of freedom corresponding to any effect, we notice that the degrees
of freedom forA are the same as in the crossed model; that is, (a − 1). The degrees of
freedom forB(A) are (b − 1) + (a − 1)(b − 1) � a(b − 1), and those forC(AB) are
ab(c − 1). Thus we see a pattern. The number of degrees of freedom is the product of the
numbers of levels corresponding to the factors in parentheses and one less than the numbers
of levels corresponding to the factors not in parentheses. We may now modify rules 1 and
2 in Section 7.3 for equal sample sizes listed below. We also include rules 3 and 4 here for
easy reference, although these remain the same.

1. Write down the name of the main effect or interaction of interest and the corresponding
number of levels and subscripts. Include parentheses to denote nesting of factors.

2. The number of degrees of freedomν for any effect is the product of the numbers of
levels corresponding to the factors in parentheses and one less than the numbers of
levels corresponding to the factors not in parentheses.

3. Multiply out the number of degrees of freedom and replace each letter with the
corresponding subscripts.

4. The sum of squares for testing the hypothesis that a main effect or an interaction is
negligible is obtained as follows. Use each group of subscripts in rule 3 as the subscripts
of a termy, averaging over all subscripts not present and keeping the same signs. Put
the resulting estimate in parentheses, square it and sum over all possible subscripts. To
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expand the parentheses, square each term in the parentheses, keep the same signs, and
sum over all possible subscripts.

The other rules remain the same. In particular, confidence intervals for
∑a

i�1 ci
(
αi + β.(i)

)
and for

∑b
j�1 djβj (i) may be calculated using the usual multiple-comparison techniques of

Chapter 4.

Example 18.3.1 Plastic experiment

Consider the following hypothetical experiment in which a manufacturer of molded plastic
wishes to replace a standard ingredient by a cheaper alternative. The two ingredients form
the two levels of the treatment factor to be studied. The manufacturing company has factories
in three different parts of the country, and since different climates may affect the product
differently, the experiment is to take place in each of the three locations. Within each factory,
two operators oversee two machines each. The experiment will be run during the usual
downtime of the machines.

A possible model for the experiment is

Yijkut � µ+ αi + βj (i) + γk(ij ) + τu + (τγ )uk(ij ) + εijkut ,

εijkut ∼ N (0, σ 2) ,

εijkut ’s are mutually independent,

t � 1, . . . , r; i � 1,2,3; j � 1,2; k � 1,2; u � 1,2;

whereαi is the effect of theith location,βj (i) is the effect of thej th operator at theith
location,γk(ij ) is the effect of thekth machine that is looked after by thej th operator at the
ith location,τu is the effect of theuth treatment, (τγ )uk(ij ) is the interaction effect between
the uth treatment and (ijk)th machine,Yijkut is the t th response (strength measurement)
on theuth treatment and (ijk)th machine, andεijkut is the corresponding random error,
assumed to have a normal distribution with mean 0 and varianceσ 2. We also assume that
the error variables are mutually independent.

Table 18.1 Degrees of freedom and sums of squares

Degrees of Sum of
Effect Freedom Squares

A a − 1 � 2 bcdr�iy
2
i.... − abcdry 2.....

B(A) a(b − 1) � 3 cdr�i�jy
2
ij... − bcdr�iy

2
i....

C (AB) ab(c − 1) � 6 dr�i�j�ky
2
ijk.. − cdr�i�jy

2
ij...

Trt d − 1 � 1 abcr�uy
2
...u. − abcdry 2.....

Trt×C (AB) ab(c − 1)(d − 1) � 6 r�i�j�k�uy
2
ijku. − dr�i�j�ky

2
ijk..

− cr�i�j�uy
2
ij.u. + cdr�i�jy

2
ij...

Error 24r − 19, by subtraction Obtain by subtraction

Total n − 1 � 24r − 1 �i�j�k�u�ty
2
ijkut

− abcdry 2.....
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The degrees of freedom and sums of squares for each effect are obtained from rules 1–4
listed above this example and are shown in Table 18.1. Using the formula for confidence
intervals in Section 18.3.3, we may obtain a confidence interval for�uhuτu as∑

u

huy...u. ± w

√∑
u

h2
u

12r
msE . ✷

18.4 Analysis of Nested Random Effects

18.4.1 Expected Mean Squares

In Chapter 17 we found that we could modify many of the formulae arising from the
fixed-effect crossed models to obtain confidence intervals and hypothesis tests for variance
components in the corresponding random-effects models. To find the denominators for the
hypothesis tests and to find the estimates for variance components, all we need to do is to
calculate the expected values of the mean squares arising from the corresponding fixed-
effect models. For equal sample sizes, expected mean squares can be obtained using rule 17
of Section 17.8.1, page 627, exactly as for the random and mixed-effects crossed models.
The rules 18–22 for calculating test ratios and confidence intervals also follow exactly as
for the crossed models. We will illustrate these via the model that was suggested for the
machine head experiment in Example 18.2. A suggested model was

Yijt � µ+ αi + Bj (i) + εij t ,

εij t ∼ N (0, σ 2) , Bj (i) ∼ N (0, σ 2
B(A)) ,

εij t ’s andBj (i)’s are all mutually independent,

t � 1, . . . ,4; i � 1, . . . ,5; j � 1, . . . ,4,

whereαi is the effect of theith machine,Bj (i) is the effect of thej th randomly selected head
on theith machine, andσ 2

B(A) is the variance of responses from the population of machine
heads that could be fitted on these five machines. The error assumptions are examined in the
same way as in Chapter 5 for the one-way analysis of variance model. More sophisticated
techniques of checking other assumptions on a mixed model with nested effects are discussed
by Beckman, Nachtsheim, and Cook (1987).

The degrees of freedom and sums of squares for the fixed-effects two-way nested model
were calculated in Section 18.3. These are listed, for equal sample sizes, in Table 18.2.

We first verify that the fixed-effects mean square for error also provides an unbiased
estimate forσ 2 in the mixed effects two-way nested model. From Section 18.3.2, we know
thatMSE � SSE/(ab(r − 1)), where

SSE �
a∑
i�1

b∑
j�1

r∑
t�1

Y 2
ij t − r

a∑
i�1

b∑
j�1

Y
2
ij. .

For the mixed-effects two-way nested model (18.2.2), we have

E[Yijt ] � E[Y ij.] � E[Y i..] � µ+ αi and E[Y ...] � µ+ α. .
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Table 18.2 Analysis of variance table for a mixed-effects two-way
nested model

Source of Deg. of Sum of Mean Expected
Variation Freedom Squares Square Mean Square

A (a − 1) ssA msA Q (αi )+ rσ2B(A) + σ2

B(A) a(b − 1) ssB(A) msB(A) rσ2B(A) + σ2

Error ab(r − 1) ssE msE σ2

Total abr − 1 sstot

Formulae for Equal Sample Sizes

ssA � br�iy
2
i.. − abry 2... ssB(A) � r�i�jy

2
ij. − br�iy

2
i..

ssE � �i�j�t y
2
ijt −r�i�jy

2
ij. sstot � �i�j�t y

2
ijt − abry 2...

Also,

Var(Yijt ) � σ 2
B(A) + σ 2

and

Var(Y ij.) � Var

(
µ+ αi + Bj (i) + 1

r

r∑
t�1

εij t

)
� σ 2

B(A) + σ 2

r
.

So,

E[SSE] �
[
abr(σ 2

B(A) + σ 2) + br
∑
i

(µ+ αi)
2

]

−
[
abr

(
σ 2
B(A) + σ 2

r

)
+ br

∑
i

(µ+ αi)
2

]
� ab(r − 1)σ 2 .

So,E[MSE] � σ 2 as required. We also have that

Var(Y i..) � Var

(
µ+ αi + 1

b

b∑
j�1

Bj (i) + 1

br

b∑
j�1

r∑
t�1

εij t

)

� σ 2
B(A)

b
+ σ 2

br
.

Similarly,

Var(Y ...) � σ 2
B(A)

ab
+ σ 2

abr
.

Consequently, the expected value of the sum of squares forA is

E[SSA] � E

[
br

a∑
i�1

Y
2
i.. − abrY

2
...

]
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�
[
abr

(
σ 2
B(A)

b
+ σ 2

br

)
+ br

∑
i

(µ+ αi)
2

]

−
[
abr

(
σ 2
B(A)

ab
+ σ 2

abr

)
+ abr

∑
i

(µ+ α.)
2

]
� r(a − 1)σ 2

B(A) + (a − 1)σ 2 + br
∑
i

(αi − α.)
2 .

Then, sinceMSA=SSA/(a − 1), we have

E[MSA] � br

a − 1

∑
i

(αi − α.)
2 + rσ 2

B(A) + σ 2

� Q(αi) + rσ 2
B(A) + σ 2 .

Similarly, the expected value of the sum of squares forB nested withinA is

E[SSB(A)] � E

[
r

a∑
i�1

b∑
j�1

Y
2
ij. − br

1∑
i�1

Y
2
i..

]

�
[
abr

(
σ 2
B(A) + σ 2

r

)
+ br

∑
i

(µ+ αi)
2

]

−
[
abr

(
σ 2
B(A)

b
+ σ 2

br

)
+ br

∑
i

(µ+ αi)
2

]
� ar(b − 1)σ 2

B(A) + a(b − 1)σ 2 ,

and, sinceMSB(A) = SSB(A)/(a(b − 1)), we have

E[MSB(A)] � rσ 2
B(A) + σ 2 .

These expected mean squares are listed in the fourth column of Table 18.2, and we may
verify that they can all be obtained from rule 17 of Chapter 17. This rule, which applies also
to more complicated mixed-effects nested models, says

17. To obtain the expected mean square for a particular main effect or interaction, first
make a note of the subscripts on the term representing that particular effect in the
model. Write down variance components for the effect of interest, for the error, and for
every interaction whose term in the model includes the noted set of subscripts. Gather
up all variance components corresponding to fixed effects into one quadratic formQ.
Multiply any remaining variance component exceptσ 2 by the number of observations
taken on each level or combination of levels of the corresponding effect (main effect or
interaction). Add up the terms.

18.4.2 Estimation of Variance Components

The rules for obtaining confidence intervals for fixed effects or variance components also
remain the same as those in Chapter 17 for non-nested models. Thus, we may obtain a
confidence interval for a variance component in a mixed-effects nested model as follows:



18.4 Analysis of Nested Random Effects 657

19. For a random effect, letU � �kiMSi be the mean square or linear combination of
mean squares whose expected value is equal to the variance component corresponding
to the random effect. An exact or approximate 100(1−α)% confidence interval for this
variance component is(

xu

χ2
x,α/2

,
xu

χ2
x,1−α/2

)
,

where

x � [�ki(msi)]2

�[ki(msi)]2/xi
,

and whereu is the observed value ofU, msi is the observed value ofMSi , andxi is the
number of degrees of freedom corresponding tomsi .

For example, for the mixed-effects two-way nested model, we may estimate the variability
of the response due to the effect ofB within A as

u � msB(A) − msE

r
.

Then, using rule 19, we can obtain a 100(1− α)% confidence interval forσ 2
B(A) as(

xu

χ2
x,α/2

,
xu

χ2
x,1−α/2

)
,

where

x � (msB(A) − msE)2

msB(A)2

a(b−1) + msE2

ab(r−1)

.

18.4.3 Hypothesis Testing

Hypothesis testing rules are also obtained from the rules in Chapter 17:

18. To obtain the denominator of the test statistic for testing the null hypothesis that a main
effect or interaction effect is zero, write down the expected mean square for the effect of
interest (see rule 17). Cross out the term that would be zero if the null hypothesis were
true. The denominator of the test statistic is the mean square, or linear combination of
mean squares,u, whose expected value is equal to the remaining expression.

21. For a fixed effect, the decision rule for testing the hypothesis that the effect is zero is the
same as that in rule 8, page 203, for fixed-effects models except thatmsE is replaced by
the denominatoru from rule 18 and the number of error degrees of freedom is replaced
by x in rule 19.

22. For a random effect, the decision rule for testing the hypothesisH0 that the correspond-
ing variance component is zero against the alternative hypothesis that it is not zero
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is

rejectH0 if
ms

u
> Fν,x,α ,

wherems is the mean square for the effect of interest andν the corresponding degrees
of freedom,u is the observed value of the denominator as in rule 18, andx is the
corresponding degrees of freedom calculated as in rule 19.

For example, using the information in the expected mean squares column of Table 18.2 for
the mixed-effects two-way nested model, the decision rule for testing the null hypothesis
H

B(A)
0 : {σ 2

B(A) � 0} of no variability in the effect ofB within each level ofA against the

alternative hypothesisHB(A)
A : {σ 2

B(A) > 0} is

rejectHB(A)
0 if

msB(A)

msE
> Fa(b−1),ab(r−1),α , (18.4.7)

at chosen significance levelα.
To test the hypothesisHA

0 : {α1 � α2 � · · · � αa} that the machine effects are the same
averaged over their four heads, the decision rule at significance levelα is

rejectHA
0 if

msA

msB(A)
> Fa−1,a(b−1),α . (18.4.8)

18.4.4 Some Examples

Example 18.4.1 Machine head experiment, continued

The data for the machine head experiment are listed in Table 18.3, and the analysis of
variance table is shown in Table 18.4. We see that thep-value for testing the hypothesis of
no machine differences is 0.67, and we would conclude no difference in the effect on strain
readings of the five machines. The test of the null hypothesis that the varianceσ 2

B(A) of the
population of possible heads fitted to the machines is zero hasp-value 0.065. Only if our
choice of significance level is greater than this value would we conclude nonzero variability
among the heads.

Table 18.3 Data for the machine head experiment

Mach. Head 1 Head 2 Head 3 Head 4
1 6 2 0 8 13 3 9 8 1 10 0 6 7 4 7 9
2 10 9 7 12 2 1 1 10 4 1 7 9 0 3 4 1
3 0 0 5 5 10 11 6 7 8 5 0 7 7 2 5 4
4 11 0 6 4 5 10 8 3 1 8 9 4 0 8 6 5
5 1 4 7 9 6 7 0 3 3 0 2 2 3 7 4 0

Source: Hicks, C. R. (1956). Copyright © 1956 American Society for Quality. Reprinted with
permission.
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Table 18.4 Analysis of variance table for the machine head experiment

Sum of Mean Expected Ratio
Effect d.f. Squares Square Mean Square

Machine 4 45.075 11.2688 Q (αi )+ 4σ2B(A) + σ2 0.5975

Head(mach.) 15 282.875 18.8583 4σ2B(A) + σ2 1.7625

Error 60 642.000 10.7000 σ2

Total 79 969.950

An unbiased estimate ofσ 2
B(A) is given by

msB(A) − msE

r
� 18.8583− 10.7000

4
� 2.0396,

and since,

x � (2.0396)2

(18.8583/4)2

15 + (10.70/4)2

60

� 2.598,

a 90% confidence interval forσ 2
B(A) is given by(

(2.598)(2.0396)

χ2
2.598,.05

,
(2.598)(2.0396)

χ2
2.598,.95

)
≈
(

5.299

6.90
,

5.299

0.22

)
� (0.77, 24.09)

measured in squared units of strain. ✷

Example 18.4.2 Soil experiment

Consider an experiment to compare analyses of soil samples with four treatment factorsA,
B, C, andD, where

A is “method of analysis” and involvesa � 2 specifically selected methods.

B is “laboratory” and involvesb � 4 specifically selected labs.

C is “operator conducting the analysis” and there arec � 3 randomly selected operators
in each lab.

D is “location from which soil was taken” and involvesd � 3 randomly selected
locations.

The model is

Yijkut � µ+ αi + βj + (αβ)ij + Ck(j ) + (αC)ik(j ) +Du

+ (αD)iu + (βD)ju + (αβD)iju + εijkut ,

Ck(j ) ∼ N (0, σ 2
C(B)) ; (αC)ik(j ) ∼ N (0, σ 2

AC(B)) ; Du ∼ N (0, σ 2
D) ; (αD)iu ∼ N (0, σ 2

AD)

(βD)ju ∼ N (0, σ 2
BD) ; (αβD)iju ∼ N (0, σ 2

ABD) ; εijkut ∼ N (0, σ 2)

i � 1,2 ; j � 1,2,3,4 ; k � 1,2,3 ; u � 1,2,3 ; t � 1,2 ;
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whereαi is the effect of theith method of analysis,βj is the effect of thej th laboratory,
and (αβ)ij is the effect of their interaction;Ck(j ) is the effect of thekth randomly selected
operator in thekth laboratory and (αC)ik(j ) is the operator×analysis method interaction;
Du is the effect of theuth randomly selected location from which the soil was selected and
(αD)iu, (βD)ju and (αβD)iju are respectively the interactions of theuth soil location with
the ith method of analysis and with thej th laboratory, and the three-factor interaction of
theuth soil location,ith method of analysis, andj th laboratory. Two observations are taken
on each soil sample via each method of analysis by each operator.

The degrees of freedom, sums of squares, and expected mean squares for this model are
obtained using rules 17–21 in Sections 18.4.1–18.4.3 and are shown in Table 18.5.

The decision rule for testing the null hypothesisHABD
0 : {σ 2

ABD � 0} against the
alternative hypothesisHABD

A : {σ 2
ABD > 0} is given by

reject HABD
0 if

msABD

msE
> F6,104,α .

If this hypothesis is not rejected, we may wish to examine theAB,AD, andBD interactions.
The decision rule for testing the null hypothesisHBD

0 : {σ 2
BD � 0} against the alternative

hypothesisHBD
A : {σ 2

BD > 0} is given by

reject HBD
0 if

msBD

msABD
> F6,6,α .

The test for theAD interaction is similar. To obtain a suitable denominator for testing

HAB
0 : {(αβ)ij − (αβ)i. − (αβ).j + (αβ).. � 0, for all i, j}

against the alternative hypothesis that the interaction is not zero, we need the denominator
of the test statistic to be an unbiased estimator for

6σ 2
AC(B) + 6σ 2

ABD + σ 2 .

Such an estimator is

U � MS(AC(B)) + MS(ABD) − MSE .

This has approximately aχ2
x distribution with

x � [MS(AC(B)) + MS(ABD) − MSE]2

MSAC(B)2

8 + MS(ABD)2

6 + MSE2

104

.

Thus the decision rule for testingHAB
0 againstHAB

A is

reject HAB
0 if

msAB

U
> F3,x,α .

An unbiased estimate ofσ 2
BD is

U � msBD − msABD

12
.
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Table 18.5 Degrees of freedom, sums of squares, and expected mean squares
for the soil experiment

Degrees of Expected
Effect Freedom Mean Square

A a − 1 � 1 Q (α, αβ)+ 6σ2AC (B) + 24σ2AD
+6σ2ABD + σ2

B b − 1 � 3 Q (β, αβ)+ 12σ2C (B) + 6σ2AC (B)
+12σ2BD + 6σ2ABD + σ2

AB (a − 1)(b − 1) � 3 Q (αβ)+ 6σ2AC (B) + 6σ2ABD + σ2

C (B) b(c − 1) � 8 12σ2C (B) + 6σ2AC (B) + σ2

AC (B) (a − 1)b(c − 1) � 8 6σ2AC (B) + σ2

D d − 1 � 2 48σ2D + 24σ2AD + 12σ2BD
+6σ2ABD + σ2

AD (a − 1)(d − 1) � 2 24σ2AD + 6σ2ABD + σ2

BD (b-1)(d-1)=6 12σ2BD + 6σ2ABD + σ2

ABD (a − 1)(b − 1)(d − 1) � 6 6σ2ABD + σ2

Error subtraction = 104 σ2

Total n − 1 � 143

Formulae

ssA � 72�iy
2
i.... − 144y 2.....

ssB � 36�jy
2
.j... − 144y 2.....

ssAB � 18�i�jy
2
ij... − 72�iy

2
i.... − 36�jy

2
.j... + 144y 2.....

ssC (B) � 12�j�ky
2
.jk.. − 36�jy

2
.j....

ssAC (B) � 6�i�j�ky
2
ijk.. − 18�i�jy

2
ij... − 12�j�ky

2
.jk.. + 36�jy

2
.j...

ssD � 48�uy
2
...u. − 144y 2.....

ssAD � 24�i�uy
2
i..u. − 72�jy

2
.j... − 48�uy

2
...u. + 144y 2.....

ssBD � 12�j�uy
2
.j.u. − 36�jy

2
.j... − 48�uy

2
...u. + 144y 2.....

ssABD � 6�i�j�uy
2
ij.u. − 18�i�jy

2
ij... − 24�i�uy

2
i..u. − 12�j�uy

2
.j.u.

+ 72�iy
2
i.... + 36�jy

2
.j... + 48�uy

2
...u. − 144y 2.....

sstot � �i�j�k�u�ty
2
ijkut − 144y 2.....

ssE is obtained by subtraction

This has approximately aχ2
x distribution, where

x � u2

(msBD/12)2

6 + (msABD/12)2

6

,

and an approximate 95% confidence interval forσ 2
BD is(

u/χ2
x,α/2, u/χ2

x,1−α/2
)
.
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Any one of the main effectsA, B, orC(B) can be investigated if the interactions involving
the corresponding factor are all negligible. The relevant formulae can be obtained along the
same lines as those described above. ✷

18.5 Using SAS Software

The SAS procedurePROC GLM can handle nested effects when they are described in the
MODEL statement using notation of the formB(A). TheRANDOM statement is used to obtain
expected mean squares. The procedurePROC VARCOMP, which was described briefly in
Chapter 17, can also be used. We will illustrate these procedures via the experiment in
Section 18.5.1.

18.5.1 Voltage Experiment

An experiment was described by David Desmond in the 1954 issue ofApplied Statistics on
reducing the variability of voltage regulators fitted to motor cars. The voltage regulator was
required to operate within a range of 15.8 to 16.4 volts. When the experiment took place,
records showed that about 18% of regulators required readjustment during inspection, and
sometimes this figure rose to 50%. Despite the inspection procedure, some of the regulators
reaching customers were still outside the specification limits, and complaints from customers
were considered to be excessive.

The experiment was run in order to measure the variability in the regulator setting op-
eration. Table 18.6 shows the measurements taken on 64 voltage regulators at each of four
testing stations. The 64 regulators were selected at random from several different setting
stations, and we have reproduced the data for six of these. Since the regulators are selected
at random, we model their effects as random effects nested within setting station. For pur-
poses of illustration, we consider the four testing stations and six setting stations as the
only stations of interest and model them as fixed effects. In the original article, these were
modeled as random effects.

The effect of testing station is crossed with the effect of setting station and with regulator.
A model to describe the data can be written as

Yijk � µ+ αi + βj + Ck(j ) + εijk ,

εijk ∼ N (0, σ 2) , Ck(j ) ∼ N (0, σ 2
C(B)) ,

εijk ’s andCk(j )’s are all mutually independent

i � 1, . . . ,4; j � 1, . . . ,6; k � 1, . . . , rj ,

whereαi is the effect of theith testing station,βj is the effect of thej th setting station, and
Ck(j ) is the effect of thekth randomly selected regulator from thej th setting station.

There is no reason to suspect that the testing stations would differ in their comparative
results for different regulators, so there is no reason to expect a regulator×testing station
interaction. Since there is only one observation per regulator–testing station combination,
we would not be able to distinguish such an interaction from experimental error. A SAS
program for analyzing this model is shown in Table 18.7.
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Table 18.6 Voltages for the voltage experiment

Set. Regu- Testing Station Set. Regu- Testing Station
Sta. lator 1 2 3 4 Sta. lator 1 2 3 4
1 1 16.5 16.5 16.6 16.6 4 1 16.1 16.0 16.0 16.2

2 15.8 16.7 16.2 16.3 2 16.5 16.1 16.5 16.7
3 16.2 16.5 15.8 16.1 3 16.2 17.0 16.4 16.7
4 16.3 16.5 16.3 16.6 4 15.8 16.1 16.2 16.2
5 16.2 16.1 16.3 16.5 5 16.2 16.1 16.4 16.2
6 16.9 17.0 17.0 17.0 6 16.0 16.2 16.2 16.1
7 16.0 16.2 16.0 16.0 7 16.0 16.0 16.1 16.0
8 16.0 16.0 16.1 16.0

2 1 16.0 16.1 16.0 16.1 5 1 15.5 15.6 15.4 15.8
2 15.4 16.4 16.8 16.7 2 15.8 16.2 16.0 16.2
3 16.1 16.4 16.3 16.3 3 16.2 15.4 16.1 16.3
4 15.9 16.1 16.0 16.0 4 16.2 16.2 16.0 16.1

5 16.1 16.2 16.3 16.2
6 16.1 16.1 16.0 16.1

3 1 16.0 16.0 15.9 16.3 6 1 15.5 15.5 15.3 15.6
2 15.8 16.0 16.3 16.0 2 16.0 15.6 15.7 16.2
3 15.7 16.2 15.3 15.8 3 16.0 16.4 16.2 16.2
4 16.2 16.4 16.4 16.6 4 15.8 16.5 16.2 16.2
5 16.0 16.1 16.0 15.9 5 15.9 16.1 15.9 16.0
6 16.1 16.1 16.1 16.1 6 15.9 16.1 15.8 15.7
7 16.1 16.0 16.1 16.0 7 16.0 16.4 16.0 16.0

8 16.1 16.2 16.2 16.1

Source: Desmond, D. J. (1954). Copyright © 1956 Blackwell Publishers. Reprinted with
permission.

A plot of the standardized residuals (not shown) highlights two rather large outliers.
The two outlying observations are those highlighted in italics in Table 18.6, and we notice
that they are from different regulators and different testing stations. If these outliers are
removed, the output shown in Table 18.8 is obtained. TheTEST option produces the correct
denominators for the tests ofHA

0 : {α1 � α2 � α3 � α4}, HB
0 : {β1 � β2 � · · · � β6} and

H
C(B)
0 : {σ 2

C(B) � 0}. If we select an overall significance level ofα � 0.06 for the three tests
and do each test at levelα∗ � 0.02, we see that there is a significant difference between
testing stations, but not between setting stations. Also, the variance of the regulators within
setting stations appears to be significantly different from zero.

Unbiased estimates ofσ 2 andσ 2
C(B) can be obtained from the listed expected mean squares

asmsE � 0.0268 and

u � msC(B) − msE

3.9499
� 0.2405− 0.0268

3.9499
� 0.0541,

respectively. Thus the variability of the regulator strain readings is estimated to be about
twice as large as the experimental error.
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Table 18.7 SAS program to analyze a mixed-effects nested model

DATA VLT;
INPUT SETTING REGUL TESTING VOLTG;
LINES;
1 1 1 16.5
1 1 2 16.5
: : : :
6 8 4 16.1

;
* Plot standardized residuals versus predicted values for all data;
PROC GLM;
CLASSES TESTING SETTING REGUL;
MODEL VOLTG = TESTING SETTING REGUL(SETTING);
RANDOM REGUL(SETTING);
OUTPUT OUT=RESIDS PREDICTED=PRED RESIDUAL=Z;

PROC STANDARD STD=1.0;
VAR Z;

PROC PLOT;
PLOT Z*PRED=SETTING Z*PRED=REGUL Z*PRED=TESTING

/ VREF=0 VPOS=19 HPOS=50;
;
* Analysis without two outliers;
DATA VLT; SET VLT;
IF SETTING=2 AND REGUL=2 AND TESTING=1 THEN DELETE;
IF SETTING=5 AND REGUL=3 AND TESTING=2 THEN DELETE;

;
PROC GLM;

CLASSES TESTING SETTING REGUL;
MODEL VOLTG = TESTING SETTING REGUL(SETTING);
RANDOM REGUL(SETTING);
OUTPUT OUT=RESIDS PREDICTED=PREDS RESIDUAL=Z;
LSMEANS TESTING SETTING / PDIFF=ALL CL ADJUST=TUKEY ALPHA=0.05;

;
DATA; SET VLT;
PROC VARCOMP METHOD=TYPE1;

CLASSES TESTING SETTING REGUL;
MODEL VOLTG = TESTING SETTING REGUL(SETTING) / FIXED=2;

;
**************** Proc Nested can only be used when each factor
**************** is nested within the previously listed factor,
**************** which is not the case here;
DATA; SET VLT;
PROC NESTED;

CLASSES TESTING SETTING REGUL;
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Table 18.8 SAS output for the voltage experiment

The SAS System
General Linear Models Procedure

Dependent Variable: VOLTG
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 42 11.64681161 0.27730504 10.34 0.0001
Error 115 3.08287193 0.02680758
Corrected Total 157 14.72968354

General Linear Models Procedure
Source Type III Expected Mean Square
TESTING Var(Error) + Q(TESTING)
SETTING Var(Error) + 3.9059 Var(REGUL(SETTING)) + Q(SETTING)
REGUL(SETTING) Var(Error) + 3.9499 Var(REGUL(SETTING))

General Linear Models Procedure
Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: VOLTG

Source: TESTING
Error: MS(Error)

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
3 0.194598245 115 0.026807582 7.2591 0.0002

Source: SETTING
Error: 0.9889*MS(REGUL(SETTING)) + 0.0111*MS(Error)

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
5 0.5659272096 34.09 0.2381015368 2.3768 0.0593

Source: REGUL(SETTING)
Error: MS(Error)

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
34 0.240481856 115 0.026807582 8.9707 0.0001

A 90% confidence interval forσ 2
C(B)/σ

2 can be obtained by adapting the formula (17.3.11)
as follows:

1

c

[
msC(B)

msE Fν1,ν2,α/2
− 1

]
≤ σ 2

C(B)

σ 2
≤ 1

c

[
msC(B)

msE Fv−1,n−v,1−α/2
− 1

]
� 1

c

[
0.2405

0.0268F34,115,0.1
− 1

]
≤ σ 2

C(B)

σ 2
≤ 1

c

[
0.2405

0.0268F34,115,0.9
− 1

]
.
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Table 18.9 Output from PROC VARCOMP for the voltage experiment

The SAS System
Variance Components Estimation Procedure

Dependent Variable: VOLTG

Source DF Type I SS Type I MS
TESTING 3 0.66029252 0.22009751
SETTING 5 2.81013599 0.56202720
REGUL(SETTING) 34 8.17638310 0.24048186
Error 115 3.08287193 0.02680758
Corrected Total 157 14.72968354

Variance Components Estimation Procedure
Dependent Variable: VOLTG
Source Expected Mean Square
TESTING Var(Error) + 0.0127 Var(REGUL(SETTING))

+ Q(TESTING,SETTING)
SETTING Var(Error) + 3.9407 Var(REGUL(SETTING)) + Q(SETTING)
REGUL(SETTING) Var(Error) + 3.9499 Var(REGUL(SETTING))
Error Var(Error)

Variance Components Estimation Procedure
Dependent Variable: VOLTG

Variance Component Estimate
Var(REGUL(SETTING)) 0.05409609
Var(Error) 0.02680758

SinceE[MSC(B)] � σ 2+3.9499σ 2
C(B), the value ofc � is 3.9499. So, usingF34,115,0.1 ≈ 2.0

andF34,115,0.9 � (F115,34,0.1)−1 ≈ 1.8−1 � 0.5556, the confidence interval becomes

0.883≤ σ 2
C(B)

σ 2
≤ 3.836.

The general conclusion of the experiment was that the differences between the four testing
stations were of little practical importance. However, we note that the residual plots still
indicate one or two large residuals, especially from testing station 2, so perhaps testing
station 2 should have been examined a little more closely.

Most of the variability in the regulators appeared to be due to the inherent measurement
error, and the experimenters concluded that it was not possible to set the regulators within
the desired tolerance limits. A quality control scheme to ensure that the current quality did
not deteriorate was put in place.

We note in passing that the effect of the outliers on the analysis was actually very small.
If the two original outliers had been included in the analysis, the estimatesσ̂ 2 � 0.027 and
σ̂ 2
C(B) � 0.054 would have changed to 0.039 and 0.046, respectively. There would also be

little change in thep-values of the hypothesis tests. There is some benefit in retaining the
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entire data set, since the coefficient ofσ 2
C(B) in the expected mean squares is then 4.0, as

stated by the rules on page 616.
The model can also be analyzed using the SAS procedurePROC VARCOMP as in Chap-

ter 17. The input statements are shown in Table 18.7. The output fromPROC VARCOMP is
shown in Table 18.9. This output is based on Type I sums of squares, and since the re-
moval of the two outliers results in unequal sample sizes, the expected mean squares and
the estimated variance components differ slightly from those obtained above.

When all effects are nested one within another, the procedurePROC NESTED can be used.
These statements are also shown in Table 18.7. However, for our current experiment,PROC
NESTED is not suitable, since setting station is not nested within testing station.

Exercises

1. Viscosity experiment
An experiment was described by Johnson and Leone (1977, page 744) to determine the
viscosity of a polymeric material. The material was divided into two samples. The two
samples were each divided into ten “aliquots.” After preparation of these aliquots, they
were divided into two subaliquots and a further step in the preparation made. Finally,
each subaliquot was divided into two parts and the final step of the preparation made.
The viscosity determinations are listed in Table 18.10.

(a) Write down a model for the viscosity determinations allowing for variability in the
samples, aliquots, subaliquots and parts.

(b) Examine the error assumptions on your model.

(c) Estimate the variances of all the random effects in the model.

(d) Give a set of confidence intervals for the variances of all the random effects in the
model at overall significance level 90%. At which step of the preparation is most
of the variability introduced?

2. Sleep experiment
Sleeping patterns can be classified according to periods of “deep sleep” and of “REM
sleep” (rapid eye movement). An experiment is done to see how sleeping tablets and
amount of daily activity affect the proportion of REM sleep. Three types of sleeping
tablets are to be tested, coded 1, 2, 3 (where type 3 is a placebo).
Twelve subjects are selected at random from a large population and are assigned at
random to the levels of A, four to each level. Each subject is assigned an activity level
for the day, and the proportion of REM sleep is monitored during that night. The four
activity levels are:

B1 = read quietly all day, B2 = walk 10 miles during the day,
B3 = spend the day shopping, B4 = play video games all day.
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Table 18.10 Viscosity determinations for the viscosity
experiment

Sample Aliquot Subaliquot 1 Subaliquot 2
Part 1 Part2 Part 1 Part2

1 1 59.8 59.4 58.2 63.5
2 66.6 63.9 61.8 62.0
3 64.9 68.8 66.3 63.5
4 62.7 62.2 62.9 62.8
5 59.5 61.0 54.6 61.5
6 69.0 69.0 60.6 61.8
7 64.5 66.8 60.2 57.4
8 61.6 56.6 64.5 62.3
9 64.5 61.3 72.7 72.4
10 65.2 63.9 60.8 61.2

2 1 59.8 61.2 60.0 65.0
2 65.0 65.8 64.5 64.5
3 65.0 65.2 65.5 63.5
4 62.5 61.9 60.9 61.5
5 59.8 60.9 56.0 57.2
6 68.8 69.0 62.5 62.0
7 65.2 65.6 61.0 59.3
8 59.6 58.5 62.3 61.5
9 61.0 64.0 73.0 71.7
10 65.0 64.0 62.0 63.0

Source: Johnson, N. L. and Leone, F. C. (1977). Copyright © 1977
Johnson and Leone. Reprinted with permission.

The experiment continues for four days, so that each subject is observed at each activity
level in a random order. The model is assumed to be

Yhijt � µ+ Sh(i) + αi + βj + (αβ)ij + εhij t ,

whereαi is the effect of theith sleeping tablet,βj is the effect of thej th activity level,
(αβ)ij is the effect of their interaction,Sh(i) is the effect of thehth random subject
assigned to theith sleeping tablet, andSh(i) ∼ N (0, σ 2

S(A)) andεhij t ∼ N (0, σ 2) and all
Sh(i) andεhij t are independent.
(a) Write down the degrees of freedom and expected mean squares for the analysis of

variance table.

(b) Explain how to test the null hypothesisHA
0 : {α1 � α2 � α3} against the alternative

hypothesis that at least two of theαi differ.

(c) Explain how to test the null hypothesisHS(A)
0 : {σ 2

S(A) � 0} against the alternative

hypothesisHS(A)
A : {σ 2

S(A) > 0}.
(d) Suppose that the null hypothesis

HAB
0 : {(αβ)ij − (αβ)i. − (αβ).j + (αβ).., for all i, j}
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appears to be correct. Which contrasts would be of particular interest to the experi-
menter? Why? Give formulas that would provide an overall 95% set of confidence
intervals for your chosen contrasts. Give reasons for your choice of formula(s).

(e) If the experimenter thought that a day effect would be important, how would you
modify the design of the experiment and the model?

3. Consider the model

Yijkl � µ+ αi + Bj (i) + Ck(ji) + δl + (αδ)il + (Bδ)lj (i) + εijkl ,

(a) Calculate the expected mean squares for all effects in the model.

(b) Which ratio would you use to testH0 : {δl + (αδ).l all equal}?
(c) Which ratio would you use to testH0 : σ 2

A � 0?

4. Alloy experiment
An experiment described by Johnson and Leone (1977, page 758) was performed by
a company to investigate the effects of various factors on the “yield strength” of a
particular titanium alloy. The factors investigated were:
A: vendors (4 fixed levels representing suppliers of raw material).

C: bar size (2 fixed levels representing standard sizes of bars of raw material).

B: batch (3 randomly selected levels nested within each combination of levels ofA

andC).

D: product type (2 fixed levels representing different types of finished product—
forgedown and finished-forge blades).

Three observations were taken on each treatment combination. A reasonable model
was thought to be

Yijklt � µ+ αi + γj + (αγ )ij + Bk(ij ) + δl

+ (αδ)il + (γ δ)j l + (Bδ)kl(ij ) + εijklt ,

εijklt ∼ N (0, σ 2) , Bk(ij ) ∼ N (0, σ 2
B(AC)) , (Bδ)kl(ij ) ∼ N (0, σ 2

BD(AC)) ,

i � 1,2,3,4; j � 1,2; k � 1,2,3; l � 1,2; t � 1,2,3,

whereαi , γj , andδl represent the effects of theith vendor,j th bar size, andlth product
type, respectively, andBk(ij ) represents the effect of thekth randomly selected batch of
thej th bar size made with bar stock from theith vendor, and random variables on the
right-hand side of the model are assumed to be mutually independent.
(a) Write down the degrees of freedom and expected mean squares column of the

analysis of variance table.

(b) Give a formula for an approximate 95% confidence interval forσ 2
B(AC).

(c) How would you test the hypothesis

H0 : {no differences in yield strength of the titanium alloy

can be attributed to the two test specimens}
against the alternative hypothesisHA : { H0 is false} ?
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5. Alloy experiment, continued
Suppose that factorsC andD are to be investigated further in a followup experiment.
Suppose that two new factorsP andQ (“heat setting during processing” and “cooling
method”) are also to be investigated at two levels each. A followup experiment is re-
quired with the four factorsC,D, P , andQ at two levels each (a 24 experiment). Only
sixteen observations will be taken, four for each vendor. It is known that the interac-
tionsCP , CQ, PQ, CPQ, andCDPQ are likely to be negligible. Also, there was
information gained from the previous parts to Exercise 4 to suggest that all interactions
of treatment factors with vendor can be assumed negligible.

(a) Divide the 16 treatment combinations into four blocks of size four (one block for
each vendor). Show your design explicitly, and indicate what should be randomized.

(b) Write down a suitable model and the degrees of freedom column for the analysis
of variance table for your design in part (a).

(c) Before your design in part (a) is run, the management announces that in future, only
one vendor will be used by the company. Also, your budget is cut, so that you can
take only 8 observations. Thus, you need to design a1

2–fraction of a 24 experiment.
In reviewing the list of negligible interactions above, you discover that two have
been omitted. InteractionsDP andCDQ are also known to be negligible. Choose
a design and list the treatment combinations explicitly. (Hint: TryI � CPQ.)
State the aliasing scheme and a suitable model. Will there be any problems in
interpreting the results of this experiment?

6. Operator experiment
An experiment to identify the causes of variability in readings of a spectrometer was
described in Exercise 10 of Chapter 7, page 236. The same authors (J. Inman, J. Ledolter,
R. Lenth, and L. Niemi,Journal of Quality Technology, 1992) also described a study
to determine how much of the variation in measured manganese concentration in steel
was due to operator variation.
Ten steel samples were sliced from a steel billet. Each operator was asked to measure
the manganese content of each sample twice. The measurements taken by any one
operator were done in a random order on a single day. There were four operators, who
were regarded as representative of a large population of potential operators.

(a) Write down a model for this experiment. Indicate clearly which effects are fixed,
random, crossed, and nested.

(b) Write down the degrees of freedom, the sums of squares, and the expected mean
squares for each of the sources of variation in your model.

(c) The authors analyzed this experiment using a gamma distribution to model the
distribution of the error terms. Using the data in Table 6, investigate whether or not
the normal distribution could be used (it may be necessary to take a transformation).

(d) If the normal distribution can be used as a reasonable approximation to the error
distribution, then analyze the experiment. In particular, obtain estimates of the
variances of the random effects and identify the major sources of variation.
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Table 18.11 Manganese concentrations (percentages) for the operator experiment

Operator
Sample 1 2 3 4

1 0.63 0.60 0.62 0.62 0.60 0.60 0.59 0.61
2 0.64 0.63 0.63 0.64 0.67 0.65 0.62 0.64
3 0.60 0.58 0.60 0.61 0.60 0.60 0.58 0.60
4 0.75 0.74 0.74 0.74 0.74 0.73 0.73 0.76
5 0.71 0.68 0.69 0.70 0.69 0.67 0.68 0.71
6 0.65 0.63 0.62 0.65 0.63 0.64 0.62 0.64
7 0.67 0.64 0.66 0.67 0.65 0.65 0.64 0.66
8 0.65 0.63 0.65 0.64 0.62 0.62 0.60 0.62
9 0.68 0.66 0.67 0.68 0.67 0.67 0.65 0.68
10 0.67 0.64 0.66 0.66 0.65 0.64 0.64 0.66

Source: Inman, J., Ledolter, J., Lenth, R. V. and Niemi, L. (1992). Copyright © 1997
American Society for Quality. Reprinted with Permission.

7. For the two-way nested fixed-effects model (18.2.1) on page 646, show that the least
squares estimator ofµ+ αi + βj (i) is given byY ij..
[Hint: Differentiate the sum of squared errors with respect toµ, αi (i � 1, . . . , a),
andβj (i) (j � 1, . . . , b; i � 1, . . . , a), in turn. Set the resulting three sets of normal
equations equal to zero. Show that the third set of equations adds to the first equation,
and that theith portion of the third set of equations adds to theith equation in the
second set. Thus, the first and second sets of equations are redundant, anda + 1 extra
equations must be added to the set.]

8. Erythrocite experiment
The trout experiment reported by J. S. Gutsell (Biometrics, 1951) was described in
Exercise 15 of Chapter 3. As part of the same experiment, the erythrocite counts in the
blood of brown trout were measured.
Fish were put at random into eight troughs of water. Two troughs were assigned to
each of the four levels of the treatment factor “sulfamerazine” (0, 5, 10, 15 grams per
100 pounds of fish added to the diet per day). After 42 days, five fish were selected
at random from each trough and the erythrocite count from the blood of each fish was
measured in two different counting chambers, giving two measurements per fish. The
observations reported in Table 18.12, when multiplied by 5000, give the number of
erythrocites per cubic millimeter of blood.
A possible model for these data is

Yijklt � µ+ αi + Bj (i) + Ck(ij ) + εijklt ,

εijklt ∼ N (0, σ 2) , Bj (i) ∼ N (0, σ 2
B(A)) , Ck(ij ) ∼ N (0, σ 2

C(AB)) ,

t � 1,2; i � 1,2,3,4; j � 1,2; k � 1, . . . ,5;

whereαi is the effect of theith level of sulfamerazine in the diet,Bj (i) is the effect of
thej th randomly selected trough assigned to theith level of sulfamerazine, andCk is
the effect of thekth randomly selected fish from the (ij )th trough, and random variables
on the right hand-side of the model are assumed to be mutually independent.
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Table 18.12 Erythrocite counts from brown trout for the erythrocite
experiment

0 gm sulph. 5 gm sulph.
Fish Trough 1 Trough 2 Trough 1 Trough 2
1 213 230 166 157 296 319 310 309
2 253 231 206 185 278 258 241 270
3 195 164 245 250 345 307 272 311
4 193 203 213 181 322 372 254 237
5 191 195 198 169 248 274 266 275

10 gm sulph. 15 gm sulph.
Fish Trough 1 Trough 2 Trough 1 Trough 2
1 339 322 196 232 278 212 287 280
2 282 285 205 186 275 311 221 243
3 236 262 252 274 186 158 331 309
4 252 209 245 216 301 281 231 244
5 263 296 249 260 223 246 292 295

Source: Gutsell, J. S. (1951). Copyright © 1951 International Biometric Society.
Reprinted with permission.

(a) Since the data are counts, examine the assumption of normally distributed errors
and equal variances. If the assumptions are not approximately satisfied, is there a
transformation that can be used to correct the problem?

(b) Write out the degrees of freedom and the expected mean squares for each term in
the model.

(c) Test the hypothesis that sulfamerazine has no effect on the erythrocite counts.
Examine the linear and quadratic trends.

(d) If the test in part (c) is rejected, calculate a 95% set of confidence intervals for
pairwise comparisons in the effects of the sulfamerazine levels.

9. Aerosol experiment
An experiment was described by R. Beckman, C. Nachtsheim, and R. D. Cook in the
1987 issue ofTechnometrics to illustrate the use of diagnostic procedures in the mixed
model. They used part of the data set that was originally collected by H. Kershner,
H. Ettinger, J. DeField, and R. Beckman (1984) at Los Alamos National Laboratories.
Here, we use a subset of the data presented by Beckman, Nachtsheim, and Cook.
The goal of the study was to determine whether the current standard aerosol (level 1 of
factorA) that was used for testing respirator filters could be replaced by an alternative
aerosol (level 2). The experimenters also wanted to investigate the variability of the
filters.
Consider using the following model:

Yijkt � µ+ αi + βj + Ck(j ) + (αC)ik(j ) + εijkt ,

εijkt ∼ N (0, σ 2) ; Ck(j ) ∼ N (0, σ 2
C(B)) ; (αC)ik(j ) ∼ N (0, σ 2

AC) ;

εijkt ’s andCk(j )’s are all mutually independent,
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Table 18.13 Percent penetration for the aerosol experiment

Manufacturer Filter Aerosol 1 Aerosol 2
1 1 0.750 0.770 0.840 1.120 1.100 1.120

2 0.082 0.076 0.077 0.150 0.120 0.120

2 1 0.600 0.680 0.870 0.910 0.830 0.950
2 1.000 1.800 2.700 2.170 1.520 1.580

Source: Beckman, R. J., Nachtsheim, C. J., and Cook, R. D. (1987). Copyright © 1987 American
Statistical Association. Reprinted with Permission.

Source: Kershner, H. F., Ettinger, H. J., DeField, J. D., and Beckman, R. J. (1984).

i � 1,2; j � 1,2; k � 1,2; t � 1,2,3,

whereαi is the effect of theith aerosol,βj is the effect of thej th manufacturer, and
Ck(j )is the effect of thekth randomly selected filter from thej th manufacturer, and
(αC)ik(j ) is the interaction effect of this filter with theith aerosol. Thet th response,
Yijkt , obtained from thekth filter from thej th manufacturer andith aerosol, is the
percent penetration.
Analyze the data shown in Table 18.13 and state your conclusions.
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19 Split-Plot Designs

19.1 Introduction
19.2 Designs and Models
19.3 Analysis of a Split-Plot Design with Complete Blocks
19.4 Split-Split-Plot Designs
19.5 Split-Plot Confounding
19.6 Using SAS Software
Exercises

19.1 Introduction

Split-plot designs are needed when the levels of some treatment factors are more difficult
to change during the experiment than those of others. The designs have a nested blocking
structure. In a block design, the experimental units are nested within the blocks, and a
separate random assignment of units to treatments is made within each block. In a split-plot
design, the experimental units are calledsplit plots, and are nested withinwhole plots, which
themselves may or may not be nested within blocks.

The split plots within each whole plot are assigned at random to the levels of one or
more of the treatment factors. The levels of other treatment factors are assigned to whole
plots and remain constant for all split plots within a whole plot. Typically, these will be
the factors whose levels are difficult to change, and the effects of their levels will be less
precisely compared than those assigned to the split plots.

In Section 19.2 we show an example of an experiment designed as a split-plot design,
together with a typical model for this type of design. The analysis of split-plot designs is
discussed in Section 19.3 and illustrated via a second experiment. Designs with an extra
level of nesting (split-split-plot designs) are briefly described in Section 19.4, and the issue

675
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of confounding treatment contrasts is introduced in Section 19.5. In Section 19.6, the use
of SAS for analyzing split-plot designs is illustrated.

19.2 Designs and Models

When a factorial experiment is run as a completely randomized design or a randomized
complete block design, the levels of all the factors generally have to be changed frequently
during the course of the experiment. For example, in Block I of the design in Table 13.13,
page 443, we see that as the experiment progressed on day 1, the level of the first factor had
to be changed from 1 to 0 to 1 to 0 to 1, and the level of the second factor had to be changed
from 0 to 1 to 0 to 1 to 0. The levels of the third and fourth factors also had to be changed
four times. In most experiments this is no particular problem, but sometimes the level of
one of the factors isnot particularly easy to change.

An experiment is described by Munro in his 1986 University of Southampton dissertation
on the effect of lighting conditions (factorA) and the speed of a rotating drum (factorB)
on a subject’s ability to focus on the center of the drum. In this experiment, it was easy
to change the speed of rotation by the turn of a dial. The lighting conditions, however,
took time to set up, and Munro wished to change these as seldom as possible. He therefore
asked each subject to view all the rotation speeds (in a randomized order) under one set of
lighting conditions during one session and return for a second session with different lighting
conditions at a later date. Part of a possible design is shown in Table 19.1.

A whole plot is defined by a session for a particular subject. A split plot is defined by a
time slot nested in a particular session for a particular subject. The two whole plots (sessions)
within each block are assigned at random to the levels of one factor (A), and the four split
plots (time slots) within each whole plot are assigned at random to the levels of the other
factor (B).

If we look at the design in Table 19.1 and ignore factorB, we see that the levels ofA
are assigned according to a randomized complete block design, where thes subjects play
the role of blocks, the 2 whole plots per block play the role of experimental units, and the
2 levels ofA are assigned at random to the 2 whole plots within each block. Assuming

Table 19.1 Part of a split-plot design for the rotating drum experiment

Whole plot 1 Whole plot 2
(Session 1) (Session 2)

Level Levels Level Levels
Block of A of B of A of B

(Subject) (Lighting) (Speed) (Lighting) (Speed)
I 0 0 3 1 2 1 1 0 2 3
II 0 1 0 2 3 1 2 1 3 0
III 1 2 1 3 0 0 3 2 0 1
: : : : : : : : : : :
s 0 0 1 3 2 1 2 3 1 0
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no block×A interaction, the difference in the two levels ofA could be analyzed like any
randomized complete block design, using the whole-plot totals as the observations.

If we now look at the levels ofB, they have also been assigned according to a randomized
complete block design, but this time, the whole plots play the role of the blocks, and the
four split plots nested within each whole plot are assigned to the four levels ofB.

The analysis of the split-plot design is divided into two parts, reflecting this nested
blocking system, each part with its own error. Analysis of the main effect ofA involves
comparisons of responses from split plots in different whole plots, whereas analysis of the
main effect ofB and theAB interaction involve comparisons of responses from split plots
within the same whole plots.

In general, split plots within a whole plot will be more similar than split plots in different
whole plots. Consequently, within-whole-plot comparisons will generally be more precise
than between-whole-plot comparisons. So, in the rotating drum experiment, the main effect
of B and theAB interaction will very likely be more precisely estimated than the main
effect ofA. In general, if the levels of all factors are easy to change, split-plot designs are
recommended only when there is considerably less interest in one or more of the treatment
factors.

Ignoring the effects of the treatment factors for the moment, the response could be
modeled as

Yhpq � µ+ θh + εWp(h) + εSq(hp) ,

whereθh is the effect of thehth block,εWp(h) is the effect of thepth whole plot nested within
thehth block, andεSq(hp) is the effect of theqth split plot nested within thepth whole plot in
thehth block. We model the whole-plot and split-plot effects, and possibly the block effects,
as random effects that are independent and normally distributed with mean 0 and variances
σ 2
W , σ 2

S , andσ 2
θ , respectively.

Now, suppose that the levels of factorA are assigned to the whole plots, and in thehth
block, thepth whole plot receives theuth assignment of theith level ofA (i � 1, . . . , a;
u � 1, . . . , L). Also, suppose that the levels of factorB are assigned to the split plots, and
in the (hp)th whole plot, theqth split plot receives thet th assignment of thej th level ofB
(j � 1, . . . , b; t � 1, . . . , m). Then the model includes the effects ofA, B andAB, andp
is replaced byiu andq is replaced byj t , as follows:

Yhiujt � µ+ θh + αi + εWiu(h)

+βj + (αβ)ij + εSjt(hiu) ,
(19.2.1)

εWiu(h) ∼ N (0, σ 2
W ) , εSjt(hiu) ∼ N (0, σ 2

S ) ,

εWiu(h)’s andεSjt(hiu)’s are all mutually independent,

h � 1, . . . , s; i � 1, . . . , a; u � 1, . . . , L; j � 1, . . . , b; t � 1, . . . , m ,

whereθh is the effect of thehth block,αi is the effect of theith level of factorAmeasured on
the whole plots, the random variablesεWiu(h) represent the random effects of the whole plots,
βj is the effect of thej th level ofB measured on the split plots, (αβ)ij is the interaction
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effect ofA at leveli andB at levelj , and the random variablesεSjt(hiu) represent the random
effects of the split plots.

The model (19.2.1) has been written on two lines to emphasize the two different parts of
the design. In the design of Table 19.1, each level ofA appears exactly once per block and
each level ofB appears exactly once per whole plot, so we may drop the subscriptsu and
t , and the model for this design becomes

Yhij � µ+ θh + αi + εWi(h)

+ βj + (αβ)ij + εSj (hi) ,
(19.2.2)

εWi(h) ∼ N (0, σ 2
W ) , εSj (hi) ∼ N (0, σ 2

S ) ,

εWi(h)’s andεSj (hi)’s are all mutually independent,

h � 1, . . . , s; i � 1, . . . , a; j � 1, . . . , b.

In some experiments the whole plot is the largest unit, which is equivalent to there being
only one block (s � 1). In this case, model (19.2.1) becomes simpler, since the block effect
θh and all subscriptsh are omitted:

Yiujt � µ+ αi + εWiu

+βj + (αβ)ij + εSjt(iu) ,
(19.2.3)

εWiu ∼ N (0, σ 2
W ) , εSjt(iu) ∼ N (0, σ 2

S ) ,

εWiu ’s andεSjt(iu)’s are all mutually independent,

i � 1, . . . , a; u � 1, . . . , L; j � 1, . . . , b; t � 1, . . . , m.

For unequal sample sizes, the ranges of the subscripts would be modified in models (19.2.1)
and (19.2.3).

19.3 Analysis of a Split-Plot Design with Complete Blocks

In this section we consider only the case of equal sample sizes and randomized complete
block designs for each of the treatment factors. There are thens blocks, each of which
is divided intoa whole plots, and each of these is subdivided intob split plots, giving a
total of sab observations. Model (19.2.2) is used, and the degrees of freedom and sums of
squares are calculated according to the rules in Chapter 18, as shown in the following two
subsections. The analysis of variance is outlined in Table 19.2.

19.3.1 Split-Plot Analysis

Consider first thesplit-plot analysis , which is that part of the analysis (shown in the bottom
half of the analysis of variance table, Table 19.2) that is based on the observations arising
from the split plots within whole plots. There aresab− 1 total degrees of freedom, and the
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Table 19.2 Outline analysis of variance table for the rotating drum split-plot design

Source of Degrees of Sum of Mean Ratio
Variation Freedom Squares Square
Block (Subjects) s − 1 ssθ – –
A (Lighting) a − 1 ssA msA msA/msEW
Whole-plot error (s − 1)(a − 1) ssEW msEW
Whole-plot total sa − 1 ssW – –
B (Speed) b − 1 ssB msB msB/msES
AB (a − 1)(b − 1) ss(AB) ms(AB) ms(AB)/msES
Split-plot error a(b − 1)(s − 1) ssES msES
Total abs − 1 sstot

Formulae

ssθ � �hy
2
h../(ab)− y 2.../(sab) ssW � �h�iy

2
hi./b − y 2.../(sab)

ssA � �iy
2
.i./(sb)− y 2.../(sab) ssB � �jy

2
..j /(sa)− y 2.../(sab)

ssEW � ssW − ssθ − ssA ss(AB) � �i�jy
2
.ij /s −�iy

2
.i./(sb)

sstot � �h�i�jy
2
hij − y 2..../(sab) −�jy

2
..j /(sa)+ y 2.../(sab)

ssES � sstot − ssW − ssB − ss(AB)

total sum of squares is

sstot �
∑
h

∑
i

∑
j

y2
hij − saby2

... �
∑
h

∑
i

∑
j

y2
hij − y2

.../(sab) . (19.3.4)

Theb levels of factorB are assigned to the split plots within each whole plot according to
a randomized complete block design. Thesa whole plots are playing the role ofsa blocks,
so there aresa− 1 whole-plot degrees of freedom, and the whole-plot-total sum of squares
is

ssW � b
∑
h

∑
i

y2
hi. − saby2

... �
∑
h

∑
i

y2
hi./b − y2

.../(sab) . (19.3.5)

Due to the fact that all levels ofB are observed in every whole plot as in a randomized
complete block design, the sum of squares forB needs no adjustment for whole plots, and
is given by

ssB � sa
∑
j

y2
..j − saby2

... �
∑
j

y2
..j /(sa) − y2

.../(sab) (19.3.6)

corresponding tob − 1 degrees of freedom. The interaction between the factorsA and
B is also calculated as part of the split-plot analysis. Again, due to the complete block
structure of both the whole-plot design and the split-plot design, the interaction sum of
squares needs no adjustment for blocks. The number of interaction degrees of freedom is
(a − 1)(b − 1) � ab − a − b + 1, and the sum of squares is

ss(AB) �
∑
i

∑
j

y2
.ij /s −

∑
i

y2
.i./(sb) −

∑
j

y2
..j /(sa) + y2

.../(sab) . (19.3.7)
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Since there areb split plots nested within thesa whole plots, there are, in total,sa(b − 1)
split-plot degrees of freedom. Of these,b− 1 are used to measure the main effect ofB, and
(a − 1)(b − 1) are used to measure theAB interaction, leaving

sa(b − 1) − (b − 1) − (a − 1)(b − 1) � a(s − 1)(b − 1)

degrees of freedom for error. Equivalently, this can be obtained by subtraction of the whole-
plot,B, andAB degrees of freedom from the total

(sab − 1) − (sa − 1) − (b − 1) − (a − 1)(b − 1) � a(s − 1)(b − 1) .

The split-plot error sum of squares can also be calculated by subtraction:

ssES � sstot − ssW − ssB − ss(AB) . (19.3.8)

The split-plot error mean squaremsES � ssES/[a(s−1)(b−1)] is used as the error estimate
in testing hypotheses and calculating confidence intervals for contrasts inB andAB. Notice
that we cannot compare the levels of factorA on the split plots, since within each whole plot
the level ofA is held constant. TheA contrasts are, in fact, confounded with whole plots.

The sums of squares (19.3.4)–(19.3.8) and their associated degrees of freedom are
summarized in the bottom half of the analysis of variance table shown in Table 19.2.

19.3.2 Whole-Plot Analysis

We now move on to thewhole-plot analysis, which is the part of the analysis based on
comparisons of whole-plot totals. The levels ofA are assigned to the whole plots within
blocks according to a randomized complete block design, and so the sum of squares forA

needs no block adjustment. There area−1 degrees of freedom forA, so the sum of squares
is given by

ssA � sb
∑
i

y2
.i. − saby2

... �
∑
i

y2
.i./(sb) − y2

.../(sab) . (19.3.9)

There ares − 1 degrees of freedom for blocks, giving a block sum of squares of

ssθ � ab
∑
h

y2
h.. − saby2

... �
∑
h

y2
h../(ab) − y2

.../(sab) . (19.3.10)

There area whole plots nested within each of thes blocks, so there are, in total,s(a − 1)
whole-plot degrees of freedom. Of these,a− 1 are used to measure the effects ofA leaving
(s − 1)(a − 1) degrees of freedom for whole-plot error. Equivalently, this can be obtained
by the subtraction of the block andA degrees of freedom from the whole-plot total degrees
of freedom

(sa − 1) − (s − 1) − (a − 1) � (s − 1)(a − 1) .

Similarly, the whole-plot error sum of squares, which is used in testing hypotheses and
calculating confidence intervals for contrasts in factorA, is obtained by subtraction:

ss(EW ) � ssW − ssθ − ssA . (19.3.11)

The sums of squares (19.3.9)–(19.3.11) and their corresponding degrees of freedom are
summarized in the top half of Table 19.2 (page 679).
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19.3.3 Contrasts Within and Between Whole Plots

The formulae for the least squares estimates of the main effect and interaction treatment
contrasts are similar to those given by the rules of Section 7.3 for fixed effects, since no
block adjustments are needed. Thus∑

i

ci α̂
∗
i �
∑
i

ciy.i. , (19.3.12)∑
j

dj β̂
∗
j �
∑
j

djy..j ,∑
i

∑
j

kij (̂αβ)ij �
∑
i

∑
j

kij y.ij ,

where
∑

i ci � 0,
∑

j dj � 0, and
∑

i kij � ∑j kij � 0. The corresponding estimated

variances reflect whether the contrasts are measured in terms of whole-plot differences (as
for contrasts in the levels ofA) or split-plot (within whole-plot) differences (as for contrasts
inB orAB). The former use the whole-plot error mean square, and the latter use the split-plot
error mean square as follows.

V̂ar

(∑
i

ci α̂
∗
i

)
�
∑
i

c2
i

sb
msEW , (19.3.13)

V̂ar

(∑
j

dj β̂
∗
j

)
�
∑
j

d2
j

sa
msES ,

V̂ar

(∑
i

∑
j

kij (̂αβ)ij

)
�
∑
i

∑
j

k2
ij

s
msES .

For main effect and interaction contrasts, the methods of multiple comparison of Bon-
ferroni, Scheff́e, Tukey, Dunnett, and Hsu can be used as usual (incorporating either the
whole-plot or split-plot error mean square as above). Inferences for other contrasts in the
treatment effectsτij � αi + βj + (αβ)ij , such as all pairwise comparisons, are more
complicated and are not discussed here.

19.3.4 A Real Experiment—Oats Experiment

An experiment on the yield of three varieties of oats (factorA) and four different levels
of manure (factorB) was described by F. Yates in his 1935 paperComplex Experiments.
The experimental area was divided intos � 6 blocks. Each of these was then subdivided
into a � 3 whole plots. The varieties of oat were sown on the whole plots according to a
randomized complete block design (so that every variety appeared in every block exactly
once). Each whole plot was then divided intob � 4 split plots, and the levels of manure were
applied to the split plots according to a randomized complete block design (so that every
level ofB appeared in every whole plot exactly once). The design, after randomization, is
shown in Table 19.3, together with the yields in quarter pounds. Model (19.2.2) was used.
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Table 19.3 Split-plot design and yields (in quarter lb) for the oats experiment

Level Level of B Level Level of B
Block of A (yield) Block of A (yield)

I 2
3 (156) 2 (118)

1 (140) 0 (105)
II 2

2 (109) 3 (99)

0 (63) 1 (70)

0
0 (111) 1 (130)

3 (174) 2 (157)
1

0 (80) 2 (94)

3 (126) 1 (82)

1
0 (117) 1 (114)

2 (161) 3 (141)
0

1 (90) 2 (100)

3 (116) 0 (62)

III 2
2 (104) 0 (70)

1 (89) 3 (117)
IV 1

3 (96) 0 (60)

2 (89) 1 (102)

0
3 (122) 0 (74)

1 (89) 2 (81)
0

2 (112) 3 (86)

0 (68) 1 (64)

1
1 (103) 0 (64)

2 (132) 3 (133)
2

2 (132) 3 (124)

1 (129) 0 (89)

V 1
1 (108) 2 (126)

3 (149) 0 (70)
VI 0

2 (118) 0 (53)

3 (113) 1 (74)

2
3 (144) 1 (124)

2 (121) 0 (96)
1

3 (104) 2 (86)

0 ( 89) 1 (82)

0
0 (61) 3 (100)

1 (91) 2 (97)
2

0 (97) 1 (99)

2 (119) 3 (121)

Source: Yates, F. (1935). Copyright © 1935 Blackwell Publishers. Reprinted with permission.
(Reprinted inExperimental Design (1970), Charles Griffin and Company, Ltd., London.
Copyright 1970 Edward Arnold/Hodder & Stoughton Educational. Reprinted with
permission.)

Analysis of variance—oats experiment Using the formulae (19.3.4)–(19.3.11), we
obtain the sums of squares shown in Table 19.4. To test, at significance levelα � 0.01, the
hypothesisHAB

0 that the interaction between variety and manure level is negligible against
the alternative hypothesis that the interaction is not negligible, we rejectHAB

0 if

ms(AB)

msES

� 53.63

177.08
� 0.30> F6,45,0.01 .

SinceF6,45,0.01 ≈ 3.2, we do not rejectHAB
0 , and we conclude that the interaction is

negligible.
The hypothesisHB

0 of no difference in yield due to the different levels of manure (aver-
aged over variety) is also tested using the split-plot error mean square as the denominator.
We rejectHB

0 in favor of the alternative hypothesis, that the manure levels do affect yield
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Table 19.4 Analysis of variance for the oats split-plot experiment

Source of Degrees of Sum of Mean
Variation Freedom Square Square Ratio p-value
Blocks 5 15875.28 3175.06 –
A (variety) 2 1786.36 893.18 1.49 0.2724
Whole-plot error 10 6013.31 601.33
Whole-plot total 17 23674.94 1392.64
B (manure) 3 20020.50 6673.50 37.69 0.0001
AB 6 321.75 53.63 0.30 0.9322
Split-plot error 45 7968.75 177.08
Total 71 51985.94

of oats, if

msB

msES

� 6673.50

177.08
� 37.69> F3,45,0.01 .

SinceF3,45,0.01 ≈ 4.3, we conclude that these four manure levels have different effects on
the yield of the oat varieties tested.

FactorA is measured on the whole plots, so the whole-plot error is used as the denominator
of the test statistic. We reject the hypothesisHA

0 of no difference in the average yields of
the different varieties averaged over the manure levels if

msA

msEW

� 893.18

601.33
� 1.49> F2,10,0.01 .

SinceF2,10,0.01 � 7.56, there is no evidence to conclude a difference in average yields of
the three varieties of oats.

The same conclusions could be reached from thep-values in Table 19.4.

Multiple comparisons—oats experiment Suppose that level 0 ofAwas the currently
used variety and that level 0 ofB was the usual level of manure, and suppose that two-sided
treatment-versus-control intervals had been required for bothA andB at an overall level of
98% (that is, 99% for each set of Dunnett intervals).

Since both the split-plot and whole-plot designs are randomized complete block designs,
the least squares estimates of the treatment contrasts are given by the formula in (19.3.12),
so

α̂∗
0 − α̂∗

1 � y.0. − y.1. � −6.875,

α̂∗
0 − α̂∗

2 � y.0. − y.2. � −12.167,

β̂∗
0 − β̂∗

1 � y..0 − y..1 � −19.500,

β̂∗
0 − β̂∗

2 � y..0 − y..2 � −34.833,

β̂∗
0 − β̂∗

3 � y..0 − y..3 � −44.000,

wherey.i. is an average over theb � 4 split plots within thes � 6 whole plots (one per
block) on which leveli ofA is measured. Similarly,y..j is an average over thesa � 18 split
plots (one per whole plot) on which levelj of B is measured. The confidence intervals are
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obtained from (19.3.12) and (19.3.13) as follows:

α0 − α1 ∈
(

(y.0. − y.1.) ± t
(0.5)
2,10,0.01

√
2

24
msEW

)

�
(

−6.875 ± 3.53

√
2

24
(601.33)

)
� (−6.875 ± 24.99) � (−31.87,18.12),

α0 − α2 � (−37.16,18.12),

β0 − β1 ∈
(

(y..0 − y..1) ± t
(0.5)
3,45,0.01

√
2

18
msES

)

�
(

−19.5 ± 3.09

√
2

18
(177.03)

)
� (−19.5 ± 13.70) � (−33.20,−5.79),

β0 − β2 ∈ (−48.54,−21.13),

β0 − β3 ∈ (−57.70,−30.30).

It is clear that the treatment-versus-control comparisons for the factorB manure levels are
made more precisely (msd � 13.70) than those for the factorA oat varieties (msd � 24.99).
This is primarily due to the much smaller error variance estimate,msES < msEW , which
reflects the fact that split plots within a whole plot are generally more similar than split
plots in different whole plots. There are also more degrees of freedom associated with the
split-plot error than with the whole-plot error, which also helps to reduce the minimum
significant difference. Comparisons for factorB are more precise, despite the fact that the
meansy.i. for factorA involve more observations.

19.4 Split-Split-Plot Designs

In the split-plot designs illustrated in Section 19.2, the factorA contrasts were confounded
with the whole-plot contrasts, so that the main effect ofA was assessed against the whole-
plot variability, while the main effect ofB and theAB interaction were assessed against the
split-plot variability. It is possible to extend this idea, and to divide the split plots into split
split plots on which are assigned the levels of a third factor.

For example, in the drum rotation experiment described in Section 19.2, the experimenter
used a third factorC, the direction of rotation of the drum. A possible design for the
experiment would be to ask each subject to be present at two sessions (whole plots) with
a different lighting condition (A) at each session. In the first half of a session (split plot),
set the direction of rotation (C), and run through each speed (B) in a random order (split
split plots), changing the direction of rotation in the second half of the session. The design
would then appear as in Table 19.5.
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Table 19.5 Part of a split-split-plot design for the rotating drum experiment

Split-plot 1 Split-plot 2
First half session Second half session

Whole- Level Level Levels Level Levels
Block plot of A of C of B of C of B

(Subject) (Session) (Light) (Direction) (Speed) (Direction) (Speed)
I 1 0 1 0 3 1 2 0 2 1 3 0

2 1 0 1 0 2 3 1 3 2 0 1

II 1 1 1 1 0 2 3 0 0 3 1 2

2 0 0 2 1 3 0 1 3 2 0 1
: : : : : : : : : : : : :

The model and analysis of variance table would have three parts, one for the whole plots
nested within blocks together with the factorA effect, one for the split plots nested within
whole plots together with the factorC effect and theAC interaction, and one for the split
split plots nested within split plots together with the factorB effect and the other interactions,
as shown in model (19.4.14):

Yhijk � µ+ θh + αi + εWi(h) (19.4.14)

+ γj + (αγ )ij + εSj (hi)

+ βk + (αβ)ik + (γβ)jk + (αγβ)ijk + εSSk(hij ) .

The analysis of variance table, shown in Table 19.6, has three sections, reflecting the three
parts of the model.

Table 19.6 Analysis of variance for a split-split-plot design

Source of Degrees of Mean Ratio
Variation Freedom Square
Blocks (subjects) s − 1 msθ
A (lighting) a − 1 msA msA/msEW
Whole-plot error (s − 1)(a − 1) msEW
Whole-plot total sa − 1 msW
C (direction) c − 1 msC msC/msES
AC (a − 1)(c − 1) ms(AC) ms(AC )/msES
Split-plot error a(s − 1)(c − 1) msES
Split-plot total sac − 1 msES
B b − 1 msB msB/msESS
AB (a − 1)(b − 1) ms(AB) ms(AB)/msESS
CB (c − 1)(b − 1) ms(CB) ms(CB)/msESS
ACB (a − 1)(c − 1)(b − 1) ms(ACB) ms(ACB)/msESS
Split-split-plot error ac(s − 1)(b − 1) msESS
Total sacb − 1 mstot
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Table 19.7 A split-plot confounded 24 experiment in 8 whole plots of size 4

Whole Levels of B,C,D Whole Levels of B,C,D
plot A on the split plots plot A on the split plots
I 0 000 011 101 110 II 1 001 010 100 111
III 0 001 010 100 111 IV 1 000 011 101 110

V 0 000 011 101 110 VI 1 001 010 100 111
VII 0 001 010 100 111 VIII 1 000 011 101 110

Table 19.8 Outline analysis of variance table for a split-plot confounded
24 experiment in 8 whole plots of size 4

Source of Degrees of Mean
Variation Freedom Square Ratio
A 1 msA msA/msEW
BCD 1 ms(BCD) ms(BCD)/msEW
ABCD 1 ms(ABCD) ms(ABCD)/msEW
Whole-plot error 4 msEW
Whole-plot total 7 msW
B 1 msB msB/msES
C 1 msC msC/msES
D 1 msD msD/msES
BC 1 ms(BC ) ms(BC )/msES
BD 1 ms(BD) ms(BD)/msES
CD 1 ms(CD) ms(CD)/msES
AB 1 ms(AB) ms(AB)/msES
AC 1 ms(AC ) ms(AC )/msES
AD 1 ms(AD) ms(AD)/msES
ABC 1 ms(ABC ) msABC/msES
ABD 1 ms(ABD) ms(ABD)/msES
ACD 1 ms(ACD) ms(ACD)/msES
Split-plot Error 12 msES
Total 31

19.5 Split-Plot Confounding

If there are a number of different factors involved in a split-plot design, the size of the
whole plots may not be large enough to allow a randomized complete block design to be
used for the split-plot factors. We can obtain smaller blocks by confounding one or more
interaction contrasts as we did for the single-replicate designs in Chapter 13. For example,
suppose a two-replicate 24 experiment is to be conducted for treatment factorsA,B,C, and
D, and for practical reasons, the observations are to be divided into eight whole plots of
size four. Suppose that the levels ofA are sufficiently difficult to change that it is decided
to change the level only after each whole plot of four observations is taken. TheA contrasts
are confounded with the whole plots, since each whole plot is assigned only one level ofA.

Now, only four of the eight combinations of factorsB,C, andD can be taken in any one
whole plot. Thus, ignoring factorA, a design withb � 8 whole plots of sizek � 4 andv � 8
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treatment labels is required. An incomplete block design, such as a cyclic design, would be a
possible choice. However, since a split-plot design is a complex design to analyze, it is better
to select a repeated single-replicate design, so that we know exactly what is confounded
with the whole plots. If we choose to confoundBCD with the whole plots, as well asA,
thenABCD will also be confounded. The single-replicate design that confoundsA,BCD,
andABCD is obtained from the equations

a1 � 0 or 1 mod 2,

a2 + a3 + a4 � 0 or 1 mod 2.

If we repeat this single-replicate design twice, we obtain the split-plot plan shown in Ta-
ble 19.7. Before this plan can be used, the eight whole plots would need to be randomly
ordered, and the four split plots within each whole plot would need to be randomly ordered.
An outline analysis of variance table is shown in Table 19.8.

19.6 Using SAS Software

In this section we illustrate the use of the SAS software in analyzing a split-plot design.
Care needs to be taken with thePROC GLM statements in order to obtain the two separate
parts of the analysis of variable table. We illustrate two different methods of obtaining the
information needed to construct an analysis of variance table similar to the one that was
presented for the oats experiment in Example 19.3.4, page 681.

Method 1—Complete blocks When the whole-plot and split-plot designs are randomized
complete block designs, we can make use of the fact that the Type I sums of squares are
the same as the Type III sums of squares. In the first call ofPROC GLM in Table 19.9, the
sources of variation are entered into the model in the same order as in model (19.2.2). The
whole-plot error term is represented byWP(BLOCK), which is the nested effect of whole plots
within blocks. No term is needed to represent the split-plot error termεSj (hi), since this plays
the role of the usual error variable, and the corresponding sum of squares is automatically
calculated by SAS.

The optionE1 in the model statement asks for the expected mean squares to be calculated
as though the model were being constructed sequentially (that is, Type I expected mean
squares). Inclusion of the statement

RANDOM BLOCK WP(BLOCK) / TEST;

ensures that the correct denominators are used for all of the hypothesis tests.
The output is shown in Table 19.10. The Type I sums of squares are listed, but thep-

values are not correct for all tests, since the split-plot error mean square is used throughout.
The expected mean squares are listed, and we can verify that the error estimate forA differs
from those ofB andAB. The correct hypothesis tests are listed in the bottom half of the
output.

Since both the whole-plot design and the split-plot design are randomized complete block
designs, theMEANS option can be used to obtain standard multiple comparison procedures.
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Table 19.9 SAS input statements for the oats split-plot experiment

******** to input the data;
DATA OAT;
BLOCK WP A B Y;
LINES;
1 1 2 3 156
1 1 2 2 118
1 1 2 1 140
1 1 2 0 105
1 2 0 0 111
: : : : :
6 3 2 3 121

;
PROC PRINT;
*** analysis of variance; * method 1;
PROC GLM;
CLASSES BLOCK A B WP;
MODEL Y = BLOCK A WP(BLOCK) B A*B / E1;
RANDOM BLOCK WP(BLOCK) / TEST;
MEANS A / DUNNETT(’0’) ALPHA=0.01 CLDIFF E=WP(BLOCK);
MEANS B / DUNNETT(’0’) ALPHA=0.01 CLDIFF;

;
*** analysis of variance; * method 2;
DATA; SET OAT;
PROC GLM;
CLASSES BLOCK A B;
MODEL Y = BLOCK A BLOCK*A B A*B;
RANDOM BLOCK A*BLOCK/TEST;
MEANS A / DUNNETT(’0’) ALPHA=0.01 CLDIFF E=BLOCK*A;
MEANS B / DUNNETT(’0’) ALPHA=0.01 CLDIFF;

For example, Dunnett’s procedure for comparing each level ofA with control level 0 and
each level ofB with control level 0 is obtained via the statements shown in Table 19.9. In
theMEANS procedure, SAS will use the split-plot term as the error mean square unless told
to do otherwise, which is correct for theB contrasts but not for theA contrasts. To obtain
the whole-plot error mean square for theA contrasts, we include the optionE=WP(BLOCK).
The output is shown in Table 19.11.

Method 2—Complete or incomplete blocks The second method makes use of the fact
that the whole-plot error sum of squares uses the same degrees of freedom as the interactions
between the block factor and the whole-plot treatment factors (if they have been deemed
negligible and omitted from the model). The sources of variation are entered into the model
in the same order as in model (19.2.2), but withεWi(h) in model (19.2.2) replaced by the
negligible block×whole-plot-treatment interactions.
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Table 19.10 Output for the oats split-plot experiment (method 1)

The SAS System
General Linear Models Procedure

Dependent Variable: Y
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 26 44017.194 1692.969 9.56 0.0001
Error 45 7968.750 177.083
Corrected Total 71 51985.944

Source DF Type I SS Mean Square F Value Pr > F
BLOCK 5 15875.278 3175.056 17.93 0.0001
A 2 1786.361 893.181 5.04 0.0106
WP(BLOCK) 10 6013.306 601.331 3.40 0.0023
B 3 20020.500 6673.500 37.69 0.0001
A*B 6 321.750 53.625 0.30 0.9322

Source Type I Expected Mean Square
BLOCK Var(Error) + 4 Var(WP(BLOCK)) + 12 Var(BLOCK)
A Var(Error) + 4 Var(WP(BLOCK)) + Q(A,A*B)
WP(BLOCK) Var(Error) + 4 Var(WP(BLOCK))
B Var(Error) + Q(B,A*B)
A*B Var(Error) + Q(A*B)

General Linear Models Procedure
Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: Y

Source: A *
Error: MS(WP(BLOCK))

Denominator Denominator
DF Type I MS DF MS F Value Pr > F
2 893.18055556 10 601.33055556 1.4853 0.2724

* - This test assumes one or more other fixed effects are zero.

Source: B *
Error: MS(Error)

Denominator Denominator
DF Type I MS DF MS F Value Pr > F
3 6673.5 45 177.08333333 37.6856 0.0001

* - This test assumes one or more other fixed effects are zero.

Source: A*B
Error: MS(Error)

Denominator Denominator
DF Type I MS DF MS F Value Pr > F
6 53.625 45 177.08333333 0.3028 0.9322
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Table 19.11 Multiple comparisons for the oats split-plot experiment

The SAS System
General Linear Models Procedure

Dunnett’s T tests for variable: Y
NOTE: This tests controls the type I experimentwise error for

comparisons of all treatments against a control.

Alpha= 0.01 Confidence= 0.99 df= 10 MSE= 601.3306
Critical Value of Dunnett’s T= 3.531

Minimum Significant Difference= 24.998
Comparisons significant at the 0.01 level are indicated by ’***’.

Simultaneous Simultaneous
Lower Difference Upper

A Confidence Between Confidence
Comparison Limit Means Limit

2 - 0 -12.831 12.167 37.165
1 - 0 -18.123 6.875 31.873

Alpha= 0.01 Confidence= 0.99 df= 45 MSE= 177.0833
Critical Value of Dunnett’s T= 3.071

Minimum Significant Difference= 13.62
Comparisons significant at the 0.01 level are indicated by ’***’.

Simultaneous Simultaneous
Lower Difference Upper

B Confidence Between Confidence
Comparison Limit Means Limit

3 - 0 30.380 44.000 57.620 ***
2 - 0 21.213 34.833 48.454 ***
1 - 0 5.880 19.500 33.120 ***

The whole-plot error degrees of freedom and whole-plot error sum of squares are ob-
tained as the sums of the degrees of freedom and Type I sums of squares for the negligible
block×whole-plot-treatment interactions. All other sums of squares are obtained from the
Type III sums of squares. For the oats experiment there is only one such interaction,
namelyBLOCK*A. The SAS output is not shown, but is identical to that in Table 19.10
with WP(BLOCK) replaced byBLOCK*A, and the Type I expected mean squares replaced by
the Type III expected mean squares. For complete blocks, Dunnett’s method of multiple
comparisons proceeds as in Method 1 except that the whole-plot error sum of squares may
be a sum of more than one interaction sum of squares and if so, the calculations must be
completed by hand.
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Table 19.12 Fluid (milliliters) in pleural cavity for the drug experiment

Block I
Whole Dose Time Drug A
Plot B C 1 2 3 4 5 6 7 8
1 1 1 5.7 8.6 6.9 6.6 6.7 7.4 5.7 6.7
2 1 2 8.4 9.6 9.3 11.1 12.5 8.7 9.3 9.5
3 2 1 5.1 7.2 6.8 6.4 6.6 8.7 6.7 7.0
4 2 2 7.3 8.7 7.9 6.9 8.9 9.5 8.3 11.3

Block II
Whole Dose Time Drug A
Plot B C 1 2 3 4 5 6 7 8
5 1 1 5.8 6.8 7.0 8.5 7.8 7.3 6.4 8.5
6 1 2 9.1 10.8 6.9 12.2 9.9 10.4 10.6 10.5
7 2 1 5.4 7.9 8.0 6.4 8.4 7.1 6.4 7.2
8 2 2 5.3 10.4 8.2 8.1 10.9 9.8 8.4 14.6

Source: Wooding, W. M. (1973). Copyright © 1997 American Society for Quality.
Reprinted with Permission.

Exercises

1. Drug experiment
An experiment designed as a split-plot design was described by W. M. Wooding in the
Journal of Quality Technology in 1973. The experiment concerned the evaluation of
eight drugs (factorA at a � 8 levels) for the treatment of arthritis. A second factor
was the dose of the drug (factorB atb � 2 levels), and the third factor was the length
of time (factorC at c � 2 levels) that a measurement was taken after injection by a
substance known to cause an inflammatory reaction. The experimental units used in the
study weren � 64 rats. The response was the amount of fluid (in milliliters) measured
in the pleural cavity of an animal after having been administered a particular treatment
combination.
In many pharmacological studies, time of day has an effect on the response due to
changing laboratory conditions, etc. Consequently, the experiment was divided into
blocks, whole plots and split plots. The blocks were of size 32, each set of 32 observa-
tions being measured on a single day. Each treatment combination was measured once
per day. Each day was then subdivided into 4 whole plots of size 8, where the eight
measurements within a whole plot were taken fairly close together in time.
Since the effect of the drug (A) was of primary importance, and since the effects of
B andC were of interest only in the form of an interaction withA, the main effects
of B andC and theBC interaction were confounded with the whole plots. The data
are shown in Table 19.12, and the experimenter used the logarithms of the data in his
analysis. Notice that the design forA on the split plots is a randomized block design,
and the design for theBC combinations on the whole plots is also a randomized block
design.

(a) Write out a model for this experiment.
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(b) Calculate an analysis of variance table using the logarithms of the data. Distinguish
between the effects measured on the whole plots and those measured on the split
plots. Identify the whole-plot error and split-plot error.

(c) Test any hypotheses of interest and state your conclusions clearly.

(d) Examine interaction plots of any important interactions. Calculate a set of
95% confidence intervals for the differences between pairs of drugs. State your
conclusions.

2. Fishing line experiment
The fishing line experiment was run by C. Reynolds, B. Grunden, and K. Taylor in 1996
in order to compare the strengths of two brands of fishing line exposed to two different
levels of stress. Two different reels of fishing line were purchased for each of the two
brands, and sections of line were cut from each reel. Thus the reels were automatically
assigned to the levels of factorA (Brand), and constituted the four whole plots. There
were no blocks in this experiment. The split plots constituted sixteen sections of line,
four cut from each of the four reels (that is, 16 split plots in total, 4 per whole plot).
The split plots were randomly assigned to two different stress levels (stressed, “S”;
nonstressed, “N”) so that each stress level was assigned two split plots per whole plot.
The stress was induced by hanging a brick from the assigned section of line for 14
hours. Although this did not precisely mimic the stress induced during fishing, it was
still expected to give some information about the strength of the lines under stress.
The strength test was accomplished by hanging a bucket on the end of the line, which
was suspended from a beam. The bucket was gradually filled with water through a small
hole in the lid until the line broke. The data are the resulting weights of water to the
nearest 0.01 lb and are shown in Table 19.13.
(a) Write down a model for this experiment.

(b) Construct an analysis of variance table and test the hypotheses that you think are
of interest. State your conclusions.

(c) If you were to repeat this experiment, suggest ways in which you would try to
improve it.

3. Cigarette experiment
The cigarette experiment was run by J. Edwards, H. Hwang, S. Jamison, J. Kindelberger,
and J. Steinbugl in 1996 in order to determine the factors that affect the length of time
that a cigarette will burn. There were three factors of interest:

“Tar” (factorA) at two levels, “regular” and “ultra-light,”

Table 19.13 Strength of line for the fishing line experiment

Whole plot A

(Reel) (Brand) Level of B (weight)
1 1 N (6.70) S (6.40) S (7.20) N (7.00)
2 2 S (8.10) S (8.90) N (8.00) N (6.10)
3 2 S (8.00) S (8.00) N (8.75) N (8.50)
4 1 N (8.50) S (9.50) N (9.70) S (9.40)
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Table 19.14 Burning times for the cigarette experiment

Whole plot A

(Time) (Tar) Levels of BC (Burning times in seconds)
1 1 22 (301) 11 (326) 23 (260) 13 (290) 12 (312) 21 (292)
2 2 11 (329) 12 (331) 13 (285) 21 (306) 22 (258) 23 (276)
3 2 22 (290) 11 (380) 12 (335) 13 (309) 23 (243) 21 (334)
4 2 11 (321) 21 (337) 23 (275) 12 (316) 13 (307) 22 (250)
5 2 22 (308) 11 (345) 21 (307) 23 (288) 13 (321) 12 (330)
6 1 11 (344) 23 (283) 21 (281) 22 (261) 13 (307) 12 (292)
7 1 21 (274) 13 (310) 12 (304) 22 (279) 23 (277) 11 (330)
8 1 13 (302) 12 (325) 22 (301) 11 (338) 23 (270) 21 (297)
9 2 12 (323) 13 (334) 23 (265) 11 (326) 22 (269) 21 (297)
10 1 23 (309) 13 (314) 22 (259) 11 (344) 21 (310) 12 (322)

“Brand” (factorB) at two levels, “name brand” and “generic brand” (coded 1 and
2),

“Age” (factor C) at three levels, “fresh,” “24 hour air exposure,” “48 hour air
exposure.”

The cigarettes were to be burned in whole plots of size six. This was to help with the
difficulty of recording burning times and to help keep the amount of smoke in the room
at a reasonable level. There were ten whole plots, and these were assigned at random
to the tar levels so that each tar level was assigned five whole plots.
The six split plots (time slots) in each whole plot were assigned at random to the six
brand/age treatment combinations. Marks were made across the seam of each cigarette
at a given distance apart. Each cigarette was lit at the beginning of its allotted time slot,
and the time taken to burn between the two marks was recorded. The data are shown
in Table 19.14.
(a) Write down a model for this experiment.

(b) Construct an analysis of variance table and test the hypotheses that you think are
of interest. State your conclusions.

(c) Use Tukey’s method to examine the pairwise differences in the effects on burning
time of the sixBC treatment combinations (averaged over tar levels).

(d) Examine the linear and quadratic trends of burning time due to different ages, for
each brand separately.

(e) State your conclusions about the experiment, including your choice of overall
significance levels and overall confidence levels.

4. Injection molding experiment, continued
The injection molding experiment, introduced in Exercise 10 of Chapter 15, was run in
order to examine the effect of six factors on the shrinkage of a part produced by injection
molding. The six factors were injection velocity (factorA), cooling time (factorB),
barrel zone temperature (factorC), mold temperature (factorD), hold pressure (factor
E), and back pressure (factorF ). Each factor had two levels coded 0 and 1. The
treatment combinations, which are shown in Table 15.52, page 538, were not completely
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randomized. The levels of factorD were time-consuming to change, so for the first four
observationsD was held at its low level and the combinations of the other factors were
randomly ordered. For the last four observations,D was held at its high level and the
combinations of the other factors were randomly ordered. Thus we can think of this
design as having two whole plots assigned to the two levels ofD, and having four split
plots nested within each whole plot assigned at random to combinations of levels ofA,
B, C, E, andF .
(a) Sketch an outline analysis of variance table for the average response of the length

data for this experiment, explaining what can and cannot be estimated.

(b) Is it possible to analyze this experiment in a sensible way? If so, present your
results.
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A.10 Multivariate t -distribution absolute maximum 722

(Dunnett’s two-sided method)
A.11 Critical coefficients for the Voss–Wang method 724

695
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Table A.1 Random numbers∗ (section 1)

2 6 1 8 0 1 4 0 5 3 9 3 7 9 5 6 2 9 9 8 4 0 3 8 9 3 7 2 6 2 2 4 6 8 0 2
4 5 5 0 0 2 0 2 2 8 0 3 9 4 2 0 8 4 2 8 2 3 6 6 8 6 2 5 9 2 2 0 8 9 0 8
4 0 1 7 4 0 3 4 2 5 3 1 1 1 0 6 2 4 5 5 6 8 0 8 9 2 9 4 6 7 8 9 0 4 2 2
5 8 8 9 9 7 2 3 9 8 8 5 8 6 1 3 7 2 1 7 4 6 7 4 8 0 2 9 7 6 2 8 2 9 6 7
8 7 8 4 4 2 2 4 6 1 7 4 9 3 4 0 3 4 7 4 2 1 3 3 7 8 8 1 6 0 6 0 5 1 0 4
1 5 8 5 4 8 3 2 2 9 1 5 1 9 5 5 2 1 9 8 3 5 9 2 2 8 7 1 9 7 8 3 0 5 1 8

4 1 9 1 4 3 9 9 7 1 6 9 9 3 8 0 0 7 0 8 2 4 4 5 4 2 3 0 7 3 5 1 9 9 9 3
4 6 8 3 8 5 2 4 8 1 1 9 7 9 9 8 9 3 0 6 3 4 4 3 8 2 1 3 7 3 7 0 4 1 1 6
3 5 2 1 8 2 3 0 1 5 3 3 8 6 6 5 6 9 4 4 9 2 1 4 2 5 7 4 3 5 6 0 4 6 4 7
8 8 1 5 7 7 4 1 7 4 0 1 9 1 4 6 9 2 2 1 7 6 2 9 3 4 2 3 3 7 4 5 0 7 4 2
7 6 1 5 3 9 2 9 4 2 7 5 9 0 4 5 0 8 6 6 3 3 6 3 1 9 8 1 0 3 5 2 9 0 6 2
6 4 8 0 1 1 3 0 3 8 9 7 8 1 5 2 1 0 1 8 5 0 0 0 0 3 5 8 9 2 4 8 0 6 1 1

5 9 6 3 8 2 8 1 8 4 5 4 3 8 2 6 3 0 1 1 3 2 7 1 0 4 2 6 1 1 2 0 7 2 2 8
8 2 1 1 0 2 1 6 5 6 5 6 6 2 2 1 9 2 4 6 8 4 9 0 2 5 5 5 6 2 8 2 3 9 7 7
4 7 2 0 2 6 1 4 9 4 4 3 5 6 4 8 0 0 8 8 9 8 1 2 1 9 6 4 7 3 6 5 3 4 8 8
6 8 1 8 9 4 1 3 2 8 0 2 4 7 1 1 1 9 1 5 3 0 0 7 6 1 7 7 3 0 6 8 5 8 8 8
1 3 3 7 7 8 8 0 8 5 0 4 0 9 7 7 0 7 8 5 1 4 7 2 0 5 7 5 7 2 0 5 0 0 6 9
8 3 0 7 6 0 7 0 1 4 1 9 5 3 6 4 1 0 8 0 8 6 7 3 4 2 6 6 3 7 3 9 9 7 6 7

3 6 6 7 8 2 1 3 5 5 1 9 7 2 6 6 2 9 8 6 2 6 4 9 0 7 5 5 4 1 3 9 7 4 2 2
3 2 1 9 9 8 1 4 9 5 5 6 6 8 0 4 3 8 4 2 2 5 4 3 8 4 8 3 6 4 3 0 6 9 6 8
6 4 2 7 3 8 2 8 1 9 1 1 7 6 5 2 1 2 1 3 5 9 6 1 4 2 7 0 5 5 9 0 2 0 2 9
0 6 6 6 6 3 8 5 1 5 1 6 4 0 3 8 0 7 6 0 2 8 7 0 1 0 5 5 8 1 9 0 9 9 5 5
0 5 6 2 0 4 9 7 9 7 9 1 2 5 8 6 1 9 7 7 9 5 5 4 4 2 7 6 1 8 5 7 5 1 4 4
0 3 3 2 4 1 1 0 8 7 8 3 6 7 1 9 8 5 0 5 8 1 8 6 0 7 7 7 5 8 0 5 4 0 7 2

4 0 3 9 0 3 0 7 4 8 7 0 8 7 3 7 2 4 6 7 4 2 3 4 6 1 9 4 3 3 3 0 7 2 0 3
9 9 1 0 2 7 6 7 7 0 5 9 5 8 6 8 4 1 9 1 7 0 4 4 8 9 4 8 2 9 3 7 9 4 0 9
8 3 6 5 0 9 5 2 2 8 2 4 9 8 8 6 2 7 3 8 3 5 4 6 5 8 4 5 7 7 6 1 8 1 6 9
7 2 2 1 6 9 0 4 1 5 5 2 0 5 0 6 6 5 0 2 3 6 9 4 0 8 1 8 9 9 5 8 9 6 9 9
8 5 4 0 4 4 7 3 4 1 8 7 0 3 3 4 0 8 9 6 2 6 5 1 5 4 6 0 7 9 5 0 9 0 9 5
4 2 5 2 0 1 0 4 3 1 5 9 2 1 5 3 2 7 5 0 8 2 9 5 9 3 1 6 7 1 9 6 4 8 9 0

9 1 5 3 7 8 0 8 2 1 5 7 9 0 7 3 7 9 0 3 7 1 8 9 7 3 2 1 8 2 4 3 2 2 8 1
9 3 4 2 8 8 8 7 1 6 6 2 9 7 1 6 9 7 6 6 6 6 8 7 5 6 1 7 6 4 6 7 6 9 9 4
1 1 3 5 0 4 5 6 4 4 9 4 7 0 0 7 5 1 8 3 9 6 5 7 2 7 5 0 9 7 9 2 6 6 8 2
9 6 1 5 8 8 7 0 2 5 1 2 5 5 0 9 9 5 3 1 2 0 9 5 0 3 3 7 4 5 7 3 0 1 6 9
9 4 0 5 8 9 6 5 5 4 9 6 5 6 8 5 1 4 2 5 2 0 9 8 6 7 0 4 2 1 3 7 8 3 3 9
9 5 7 8 3 2 0 0 4 5 1 0 4 0 7 4 2 7 1 7 8 4 6 7 0 9 6 5 2 9 8 9 6 7 9 1

∗ Random numbers were generated using the SAS statements “retain seed 1613126064;” and
“rn=floor(10*ranuni(seed));”.
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Table A.1 Random numbers (section 2)

7 7 2 3 5 7 9 9 3 9 1 6 5 2 9 5 7 7 6 7 8 2 4 3 5 6 1 8 6 3 8 4 7 9 3 3
4 3 2 5 2 9 9 7 0 0 6 1 5 5 7 5 0 0 7 9 8 0 9 1 1 7 9 1 3 8 4 8 1 7 9 2
3 0 7 5 0 5 5 2 5 0 7 0 2 5 8 1 5 9 5 5 4 6 5 5 5 7 5 0 4 6 6 7 8 5 5 9
4 6 6 3 5 0 4 8 7 9 0 7 2 9 9 7 2 9 2 4 8 2 5 9 4 8 0 1 2 8 3 4 6 9 9 4
6 1 7 3 0 3 4 6 8 1 0 1 3 1 8 5 7 7 9 2 3 4 2 9 0 3 8 4 0 2 7 5 7 2 1 9
5 9 3 5 8 5 2 4 3 2 0 9 8 1 4 3 9 5 8 6 2 8 2 2 7 4 6 0 4 0 7 9 1 4 4 0

0 0 1 6 4 2 3 3 9 0 0 4 1 6 0 4 5 8 6 0 0 7 7 2 6 6 2 5 6 7 3 6 8 5 8 5
1 4 9 2 7 3 0 4 2 5 5 5 7 7 4 2 7 6 4 8 4 9 7 6 8 1 9 1 9 5 3 9 7 2 3 5
6 5 0 0 8 4 1 7 0 7 1 7 0 9 6 7 7 7 6 4 6 4 3 8 0 4 9 1 2 1 4 3 5 9 8 2
2 9 1 6 9 6 1 9 9 8 6 0 2 5 5 9 6 8 9 7 7 9 6 5 7 0 4 8 3 2 1 5 2 2 0 7
3 8 0 2 0 4 6 7 6 8 2 0 1 7 2 5 4 1 8 3 8 7 8 1 8 7 5 4 9 6 8 6 6 0 5 7
6 0 1 7 8 9 2 6 8 9 4 5 6 3 7 1 1 4 7 6 3 8 5 3 9 7 2 5 3 4 3 2 1 8 0 7

0 3 4 8 4 0 0 4 6 7 7 0 3 5 2 9 9 8 0 9 1 5 6 4 8 3 6 7 6 9 6 7 9 6 6 5
0 2 1 2 2 2 2 6 9 5 5 7 7 0 5 7 8 4 2 2 7 6 8 6 6 0 2 8 2 2 5 0 2 1 1 0
6 5 7 2 6 9 6 4 5 2 3 3 8 0 3 3 3 9 5 7 6 4 2 2 5 1 0 3 6 3 6 5 0 2 9 2
4 9 6 7 5 6 4 8 5 5 2 5 6 4 1 1 2 5 3 9 8 4 0 2 3 5 1 1 0 4 1 1 6 4 5 0
8 3 7 4 4 4 6 2 8 1 9 6 5 5 8 4 3 8 0 2 9 7 6 1 1 1 9 0 3 8 6 2 4 6 7 5
4 8 8 0 7 5 7 3 9 3 4 8 3 4 9 5 6 3 0 7 0 5 2 7 0 9 6 0 7 5 1 5 0 0 9 9

7 0 4 6 5 8 6 1 5 3 1 4 9 5 5 9 8 6 5 5 9 6 6 6 4 7 5 5 2 1 9 5 4 8 0 1
1 0 2 1 7 8 9 8 8 8 0 9 8 2 7 8 8 1 6 3 6 0 0 4 4 3 9 1 8 6 9 3 9 9 5 1
6 9 3 2 5 2 0 7 8 8 9 5 5 8 6 0 5 0 5 4 5 6 9 1 4 6 1 8 5 8 1 5 9 3 4 6
2 5 2 6 1 1 4 4 1 0 8 1 7 8 6 3 1 5 2 8 1 0 0 5 0 1 0 0 7 0 2 0 5 7 5 1
2 8 0 2 7 3 1 1 7 6 0 8 0 8 0 4 4 7 2 0 2 1 5 1 1 0 8 9 0 1 3 2 5 2 3 8
4 5 3 7 0 2 0 2 9 0 1 1 6 5 7 1 4 1 6 2 0 7 0 0 6 0 4 0 5 0 0 1 3 2 0 3

3 2 7 0 9 7 3 1 7 4 3 4 1 0 9 3 6 7 3 7 7 5 6 3 0 3 6 0 6 5 2 0 3 4 1 3
7 8 6 1 4 1 8 6 1 4 0 9 2 6 3 3 7 5 5 1 8 8 5 2 0 8 7 9 1 3 8 6 1 7 1 5
1 9 4 9 1 0 6 4 3 1 1 5 9 9 3 9 6 4 0 2 2 8 9 2 0 4 6 7 7 5 0 6 1 6 5 4
8 7 5 9 8 8 5 1 6 7 1 4 6 9 9 6 6 5 3 0 3 7 5 2 3 3 4 6 6 3 1 4 5 3 9 8
3 7 0 2 2 5 0 8 3 7 5 4 1 2 3 8 4 4 0 5 6 5 9 6 2 7 5 8 3 0 9 9 7 7 1 6
0 6 0 6 2 7 8 2 2 0 1 0 4 4 9 1 4 6 2 5 6 5 7 8 4 4 4 5 0 9 0 7 4 7 1 3

5 3 6 1 2 2 3 6 6 5 5 7 6 8 9 9 3 4 7 9 5 9 7 7 1 2 0 9 6 6 2 9 3 4 3 0
4 1 3 6 1 4 3 7 0 6 8 3 2 6 3 3 4 3 2 1 5 2 4 5 3 2 0 7 5 7 9 5 1 9 0 2
7 2 2 2 0 9 8 7 5 9 7 4 0 9 1 3 4 6 4 1 1 9 3 9 1 1 6 2 1 5 3 0 4 0 0 7
6 6 1 0 1 9 1 2 4 7 1 0 9 3 9 0 4 3 8 6 5 5 4 7 4 3 0 3 5 4 6 2 7 9 7 9
6 3 1 8 3 7 0 2 7 7 6 2 4 6 8 0 1 5 1 0 2 2 1 4 2 3 1 2 6 3 9 5 0 3 0 3
7 5 1 0 8 1 6 0 0 2 4 0 0 8 9 6 5 1 2 5 3 1 4 1 5 8 6 7 8 2 6 3 2 8 8 0
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Table A.1 Random numbers (section 3)

0 5 9 5 4 6 0 1 9 8 6 7 8 9 1 1 3 1 2 1 9 6 0 8 1 7 3 1 9 3 7 3 4 6 1 8
1 7 6 4 8 4 1 3 5 9 4 2 0 5 4 8 1 5 2 9 7 4 4 2 9 9 8 8 7 2 6 4 5 5 3 8
0 5 2 7 9 9 2 8 3 2 9 3 6 2 4 8 3 6 7 8 0 6 3 3 9 9 8 0 2 5 9 9 4 3 8 2
4 9 0 3 2 0 1 3 5 3 4 0 9 1 7 7 7 1 8 6 1 1 8 6 0 9 2 7 6 3 1 4 0 2 9 3
9 7 8 4 0 6 6 9 3 0 7 8 0 3 5 3 0 5 5 4 8 9 0 3 6 6 9 2 7 5 9 1 3 4 2 3
5 0 3 6 6 4 2 2 9 2 9 8 5 6 1 1 8 1 1 0 8 6 1 5 3 9 1 3 3 6 3 1 5 3 9 9

9 7 8 5 8 9 1 7 1 3 4 7 2 5 0 2 1 9 1 1 5 5 8 8 1 1 6 7 0 2 9 2 8 9 2 6
3 0 8 7 6 1 1 9 0 6 8 0 5 3 8 0 6 3 2 5 0 9 9 6 0 4 5 4 7 4 1 8 3 8 3 5
3 9 3 6 1 9 6 5 0 6 0 6 5 2 3 6 6 8 2 5 6 6 2 3 0 2 3 8 6 1 0 0 1 0 8 7
8 9 4 2 1 8 5 3 0 4 3 5 2 5 5 8 6 4 4 1 0 1 7 1 2 9 4 3 2 4 2 9 8 2 2 2
0 8 7 9 4 5 0 0 8 2 6 0 9 3 9 4 9 9 5 0 4 4 7 4 4 3 2 7 6 9 4 5 7 5 3 9
8 6 4 4 0 9 9 0 2 6 9 8 5 6 5 7 3 2 9 3 4 6 5 0 6 8 8 2 7 7 9 2 7 7 6 9

4 9 2 7 6 8 7 7 5 3 9 3 7 5 0 1 1 1 4 0 5 9 1 9 0 2 5 4 6 8 3 1 8 1 0 4
8 4 3 6 7 2 6 3 3 0 2 7 1 1 0 8 0 1 8 7 5 0 4 7 2 9 5 6 4 0 1 5 9 7 5 2
9 6 1 1 9 5 0 0 8 7 4 0 2 8 6 1 4 9 3 4 2 4 5 8 3 5 4 0 6 0 3 9 5 4 7 5
1 5 3 9 8 5 6 2 1 6 9 1 2 0 5 5 0 0 7 8 4 8 6 9 5 9 0 5 9 6 2 1 6 7 4 5
5 3 2 7 2 5 2 5 7 8 1 8 4 1 0 8 6 7 4 3 0 9 0 7 3 9 7 3 6 3 8 2 3 6 5 7
0 6 6 2 5 1 2 3 7 3 8 5 4 9 1 1 7 2 8 5 2 3 3 1 7 4 9 3 1 7 8 7 0 9 0 8

8 4 9 8 7 2 4 1 7 8 5 4 3 7 5 9 7 0 9 7 0 0 0 9 2 5 8 3 6 2 6 8 9 1 7 5
6 0 5 2 0 4 9 5 9 7 4 7 6 8 7 5 3 1 1 8 5 2 7 7 7 0 4 1 2 2 4 5 5 7 4 1
1 3 9 6 8 7 5 4 8 1 6 5 1 8 8 9 4 2 1 9 1 4 3 9 0 2 0 5 4 5 0 0 8 8 8 5
6 6 5 4 3 4 4 1 5 0 2 1 0 1 4 4 1 5 3 6 3 4 5 0 8 4 5 7 1 6 3 3 8 9 8 0
7 4 7 9 6 5 3 4 8 7 9 6 6 0 2 0 6 4 7 3 6 5 5 7 1 7 3 1 2 2 0 8 8 8 9 7
0 7 0 6 7 1 9 7 8 6 6 4 6 7 9 9 6 7 5 5 1 9 2 6 5 8 4 7 3 9 8 7 5 1 3 7

3 6 7 2 0 7 1 5 0 3 5 6 9 8 5 2 9 2 2 2 5 5 9 1 6 1 4 9 7 4 5 4 6 5 2 6
1 3 3 3 6 4 1 3 0 5 8 3 1 7 1 0 7 7 5 9 1 4 0 4 4 5 8 3 2 6 9 8 9 8 3 7
7 5 0 4 6 2 8 3 7 8 5 8 7 5 2 7 8 3 0 3 4 8 0 0 2 2 4 8 9 0 3 0 3 6 0 5
6 6 1 8 3 1 9 4 2 2 0 3 6 4 0 7 7 5 5 5 3 7 3 0 1 7 2 1 9 8 6 1 3 2 5 6
5 7 1 4 9 1 7 4 2 3 4 3 5 4 6 9 8 5 2 9 1 0 3 6 1 2 9 2 9 5 0 9 2 8 6 3
7 3 3 8 9 1 9 1 5 7 5 2 9 9 3 2 6 8 1 6 1 8 5 1 5 8 1 4 3 7 3 1 0 5 0 3

8 6 0 0 2 4 3 7 2 8 5 3 6 5 5 0 9 8 8 6 0 9 7 0 8 3 5 7 5 5 8 5 1 4 7 6
6 9 3 4 1 1 8 5 0 2 7 7 6 5 9 8 5 0 4 5 0 2 3 8 8 9 1 6 6 1 8 3 3 7 4 3
4 9 6 4 5 9 2 6 7 1 1 3 8 0 3 3 2 0 9 5 1 1 5 3 2 9 6 7 2 1 7 2 4 2 8 0
0 4 1 5 8 3 5 8 2 6 0 6 5 6 3 8 0 4 2 9 1 1 1 9 5 7 1 2 4 6 7 7 9 0 8 8
8 2 0 6 7 6 6 0 9 5 2 1 5 6 3 4 7 3 6 8 5 8 9 7 3 9 2 6 6 6 6 4 0 8 4 0
2 3 5 3 4 2 2 5 9 3 6 2 8 3 3 6 1 6 9 6 5 7 9 9 7 3 8 9 2 9 3 0 9 2 2 9
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Table A.1 Random numbers (section 4)

0 1 6 1 4 2 5 5 5 2 0 3 3 3 7 4 1 1 7 9 4 8 2 6 7 1 3 9 6 6 7 0 9 9 7 4
9 7 8 8 9 4 9 1 1 3 9 3 6 1 8 0 7 9 2 0 4 5 8 5 8 3 6 9 9 7 9 9 8 9 0 8
6 7 8 4 4 1 7 5 1 0 1 0 9 7 7 0 0 3 5 0 1 5 0 9 3 0 9 1 0 6 1 2 0 5 8 8
6 2 0 0 0 1 3 5 9 5 2 3 2 7 3 0 6 4 7 5 1 3 2 3 1 8 0 0 1 5 2 7 0 3 7 9
9 4 8 2 8 5 9 7 5 4 3 5 6 9 6 8 6 6 2 7 9 1 1 7 0 3 9 2 3 2 5 7 6 4 8 4
9 2 7 9 6 4 4 4 6 5 4 2 1 8 1 6 0 4 2 3 7 9 5 5 2 0 4 1 7 6 2 3 9 5 5 4

0 5 1 4 5 4 0 8 7 5 4 3 7 3 6 4 7 7 3 2 7 1 2 7 8 7 5 5 9 8 1 5 2 1 5 4
2 9 3 2 2 4 7 6 3 3 4 4 8 3 1 2 9 5 6 7 8 0 6 2 3 5 0 0 4 4 6 9 7 4 9 8
9 2 1 1 8 0 7 4 1 7 0 7 4 2 9 7 5 8 8 7 9 9 6 1 0 7 7 1 8 4 7 9 6 0 1 6
1 9 8 7 8 8 9 9 7 1 3 6 6 5 9 3 9 2 0 2 9 7 5 0 2 9 0 3 6 5 3 4 3 0 7 4
5 6 8 8 3 3 0 5 7 5 8 3 9 8 1 3 2 7 5 5 6 7 7 1 9 4 8 8 7 5 1 2 2 5 8 3
5 3 0 0 9 5 2 4 5 0 5 0 4 1 9 6 7 6 2 7 3 6 0 6 4 2 6 7 7 9 5 8 7 1 4 7

9 1 6 2 4 5 7 8 3 9 5 9 5 3 7 0 8 5 6 1 2 0 1 7 3 2 2 9 3 0 5 8 8 6 6 9
2 9 8 1 2 2 3 0 0 8 4 2 2 1 1 8 5 2 2 9 3 5 6 1 3 6 4 1 2 1 1 2 2 9 7 9
7 3 4 3 6 6 9 7 0 6 2 0 9 4 5 8 9 8 4 7 1 4 6 8 6 9 9 7 3 4 4 3 5 2 2 9
4 5 6 6 1 4 2 6 8 9 8 6 3 2 7 9 4 1 3 0 3 1 8 6 7 2 8 7 0 8 5 0 7 8 1 7
2 5 4 9 5 3 2 8 0 9 9 6 1 8 8 7 6 9 5 2 0 1 4 2 9 2 2 8 4 0 7 8 5 9 0 8
7 2 4 6 6 5 3 7 4 5 4 5 6 8 0 8 3 0 6 5 9 5 3 3 9 0 2 8 4 7 2 3 2 2 7 5

0 9 7 2 1 2 3 0 7 2 4 1 2 3 9 9 5 9 6 8 8 5 1 4 7 5 1 6 2 7 2 4 7 6 0 4
6 7 2 8 8 1 3 2 4 6 4 2 7 5 0 1 9 1 3 7 1 5 4 5 4 4 8 1 9 5 2 7 7 8 3 4
2 8 1 9 0 0 7 6 9 3 2 2 1 7 4 3 3 6 5 4 5 6 7 7 1 1 2 3 1 3 9 3 3 4 1 1
6 1 5 0 0 9 6 8 7 3 9 6 5 7 4 8 7 6 8 1 3 6 9 5 7 3 7 3 3 1 0 8 9 5 2 3
7 2 2 9 4 0 8 6 3 9 5 1 8 7 0 9 6 8 1 7 9 2 0 0 8 0 3 4 4 2 7 0 0 2 0 4
2 6 3 3 4 6 9 2 2 2 5 4 0 7 5 8 1 0 0 8 3 6 3 8 4 2 7 7 0 1 5 5 8 0 5 4

9 7 0 2 1 2 1 8 5 8 7 3 3 3 8 0 3 9 7 1 6 6 9 9 8 7 3 6 6 4 1 4 0 8 9 5
4 7 4 2 1 2 8 2 8 4 1 0 4 0 7 0 7 9 8 3 9 1 2 0 4 2 8 7 4 9 9 4 2 0 8 4
1 8 0 8 9 8 1 2 3 8 8 0 7 5 0 6 5 9 5 5 0 7 2 2 3 4 0 5 4 5 5 5 2 6 9 5
1 8 9 1 0 4 8 0 6 5 1 2 9 7 1 5 8 9 7 9 4 6 0 9 9 7 7 3 9 7 5 9 7 0 1 3
2 8 1 0 7 9 9 4 7 9 2 9 8 1 4 2 5 2 3 8 1 8 2 9 9 6 3 8 1 5 0 5 2 6 4 2
1 0 1 4 0 5 7 4 9 9 0 3 7 8 6 1 6 2 7 1 5 0 5 2 0 7 8 8 2 5 5 9 9 2 5 5

4 8 3 5 6 2 6 9 6 1 6 4 6 6 0 2 0 8 3 0 4 0 9 5 6 4 0 8 9 9 6 8 1 4 8 9
6 1 6 6 3 1 6 1 2 3 4 0 6 8 9 9 0 6 4 3 4 9 2 9 8 6 4 9 0 8 4 8 5 2 6 6
6 9 5 0 3 3 2 9 2 6 0 8 4 7 2 8 6 3 4 0 1 9 0 3 9 6 2 3 5 4 6 0 9 1 8 3
9 2 4 2 7 9 1 8 0 6 3 7 6 2 7 6 6 9 7 4 0 0 8 2 6 2 6 0 2 4 6 6 9 4 2 5
1 5 3 0 7 6 2 9 4 6 4 7 8 9 1 4 6 2 0 3 4 5 5 6 1 6 3 0 2 9 1 1 2 4 6 5
6 0 4 4 0 9 3 3 5 3 8 4 6 7 2 0 9 4 2 4 6 7 5 8 2 0 2 3 7 1 5 1 6 7 2 3
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Table A.1 Random numbers (section 5)

1 7 8 6 2 0 9 8 4 3 3 2 2 3 4 1 4 9 0 6 2 8 0 2 2 0 3 3 0 6 4 0 9 9 9 6
8 5 7 4 5 1 6 9 6 7 1 9 2 4 5 3 6 0 2 1 9 9 4 5 5 5 4 0 1 4 5 1 4 3 9 8
3 6 3 6 1 3 4 2 7 9 5 9 5 0 0 8 5 2 3 9 2 4 5 2 8 6 7 2 7 4 9 7 7 0 9 8
9 3 4 6 8 2 2 7 9 6 9 8 3 0 7 8 8 8 0 3 9 2 2 9 1 4 3 2 5 1 4 1 7 3 8 7
3 5 5 7 7 5 3 4 1 6 0 4 7 2 8 0 0 3 7 8 3 2 9 8 0 2 1 6 5 5 0 6 9 7 3 1
6 6 5 6 9 9 2 1 2 4 6 3 4 6 1 2 5 4 6 6 2 4 5 8 8 2 2 0 5 6 8 6 8 0 1 8

4 9 0 5 3 2 3 8 5 2 2 0 2 4 5 1 1 3 0 3 4 5 2 2 6 6 1 3 3 6 7 3 5 3 2 6
1 7 7 7 1 5 6 7 8 0 6 0 4 4 4 4 1 0 9 8 4 4 5 8 3 9 4 9 0 8 2 0 3 3 9 5
2 4 7 0 4 2 5 8 4 5 6 2 2 8 5 9 6 5 3 3 1 4 8 9 5 3 6 4 2 9 1 5 0 4 8 6
2 4 7 0 3 7 6 4 7 3 9 0 9 5 8 7 5 7 8 8 9 4 2 9 3 2 0 3 9 0 7 3 3 6 3 5
0 3 7 6 8 4 3 1 9 8 5 0 3 1 9 4 5 3 7 0 8 1 7 2 6 0 0 7 0 6 1 1 6 8 8 0
1 6 3 9 3 6 6 8 2 2 1 1 2 7 6 5 8 3 6 9 5 0 9 0 1 4 1 1 3 8 7 7 5 5 1 8

9 3 6 0 5 9 1 1 0 7 4 4 2 3 0 5 0 2 3 1 3 2 6 1 0 3 7 1 5 3 9 6 2 4 3 7
7 2 3 4 9 8 5 3 1 7 4 3 9 6 8 0 7 1 8 0 9 7 4 0 7 2 8 3 3 3 5 1 0 9 9 6
2 6 0 3 3 8 8 7 9 9 1 5 3 7 5 1 5 7 2 9 6 8 1 2 5 2 2 9 7 1 1 2 6 1 4 8
2 2 4 3 3 6 3 9 2 2 5 0 5 0 0 5 8 9 8 0 2 2 0 2 4 6 1 7 3 2 5 9 6 4 9 4
9 8 3 6 0 1 2 8 6 3 6 0 9 6 2 9 7 6 3 1 8 9 6 5 9 5 2 2 8 8 3 7 1 5 9 7
9 5 0 0 9 0 0 0 3 4 9 8 9 4 4 5 2 6 8 9 0 6 6 7 1 7 7 1 8 2 5 5 7 7 9 9

5 1 7 3 3 9 4 3 6 4 1 2 7 8 3 0 4 9 6 4 1 1 6 6 6 5 2 5 1 1 7 6 7 8 9 4
1 9 2 0 2 7 1 3 2 6 6 6 7 6 0 8 6 1 6 2 0 7 8 6 2 7 1 2 4 2 1 3 2 7 2 8
5 0 3 8 8 8 8 4 6 0 1 9 8 5 6 4 2 4 2 3 3 8 8 2 9 4 2 3 2 5 5 1 1 3 2 8
7 9 6 4 3 9 1 0 6 4 2 7 9 3 0 7 5 3 5 1 9 3 6 7 2 6 1 7 1 4 9 6 9 1 5 7
3 5 4 9 7 8 0 1 9 9 4 6 3 2 5 1 4 0 3 9 0 7 5 3 6 7 4 9 9 9 2 6 5 5 9 3
8 8 1 8 5 3 4 8 7 3 9 9 0 9 3 9 5 0 5 9 2 0 2 3 4 6 3 9 2 2 6 4 2 3 7 0

8 3 4 6 5 8 7 8 8 9 3 2 9 5 9 3 5 3 5 2 8 8 2 4 9 7 1 4 6 7 8 9 0 2 4 0
4 2 9 3 3 5 1 1 5 8 1 6 3 8 7 0 0 7 6 9 8 6 3 2 3 3 2 8 7 5 6 8 5 7 6 7
5 0 2 2 4 4 0 6 3 3 6 0 5 4 0 9 8 2 2 9 4 9 8 9 7 3 7 6 7 3 5 7 6 5 7 8
2 3 0 0 9 4 8 5 9 8 0 7 4 0 8 2 8 8 2 5 1 0 5 5 3 0 7 6 2 9 4 0 2 6 3 1
1 0 8 9 7 0 0 4 6 4 8 9 5 8 3 8 2 3 0 2 7 7 6 8 6 0 0 0 4 2 7 8 8 2 2 7
9 8 5 7 3 0 3 3 6 4 1 4 6 5 4 8 5 2 4 7 6 2 7 2 0 1 1 6 1 4 0 4 9 1 6 6

7 9 7 3 8 9 4 4 7 9 9 4 4 3 1 5 5 2 2 9 4 9 6 1 2 9 3 5 5 5 1 8 0 3 0 6
9 6 7 8 7 6 5 8 4 0 9 7 3 4 6 4 9 3 6 4 4 5 2 7 7 0 8 5 3 4 5 4 0 6 2 3
4 8 8 2 1 4 7 3 6 1 3 6 6 6 6 8 1 0 9 9 0 0 1 7 5 5 0 1 9 8 3 3 2 3 5 3
5 9 4 6 7 7 6 7 3 4 2 5 4 8 1 7 3 4 7 4 9 0 1 4 3 8 0 1 2 3 2 0 0 7 4 7
2 1 6 6 6 6 8 9 3 2 4 9 1 7 3 6 2 1 9 6 6 5 7 9 9 3 4 9 5 3 1 0 1 3 5 2
8 2 9 9 2 1 0 7 5 1 1 2 9 7 8 1 0 5 4 2 7 5 7 6 7 0 7 8 5 3 5 3 5 7 5 5
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Table A.1 Random numbers (section 6)

7 9 7 4 6 8 4 8 4 2 5 2 0 2 3 8 5 3 1 9 2 2 7 8 9 3 7 1 1 2 1 0 2 5 0 3
8 6 9 4 0 6 1 0 6 8 3 4 2 3 4 8 0 2 3 0 2 7 3 7 2 2 2 5 0 8 0 6 9 1 3 2
0 8 4 7 0 3 4 5 6 7 5 6 7 4 2 7 6 1 6 9 3 3 8 5 7 1 3 1 0 6 7 0 4 7 9 8
9 5 3 0 1 4 5 5 8 8 9 7 0 7 6 9 7 0 2 8 6 5 1 5 9 0 2 3 9 4 0 0 8 1 4 7
0 6 8 3 3 4 3 5 5 6 4 8 8 1 4 5 4 0 7 1 3 7 7 0 4 7 4 0 9 3 8 6 6 3 5 9
2 9 1 0 1 9 6 9 5 7 9 6 6 9 2 4 4 2 0 9 9 9 1 7 3 5 4 1 9 8 8 5 4 8 6 8

8 2 9 0 4 5 7 8 4 4 2 8 5 5 3 2 4 8 4 1 3 0 9 9 1 6 0 5 4 1 5 3 1 2 1 0
3 4 7 3 5 1 0 7 8 9 1 7 0 6 7 5 3 8 5 9 1 2 8 4 9 2 5 3 2 5 2 4 0 7 0 8
9 6 1 2 8 1 6 3 9 3 3 5 8 0 8 6 3 7 0 9 7 9 1 4 3 7 0 7 5 2 1 3 2 4 9 3
2 3 7 4 0 8 6 0 2 0 5 7 7 8 4 9 9 8 5 6 9 4 6 9 8 1 2 5 6 6 7 5 4 6 1 3
9 4 9 5 6 4 6 7 9 4 0 5 3 0 3 5 9 1 3 4 5 1 2 8 0 7 4 8 0 2 9 1 9 8 9 5
6 1 1 2 6 2 5 9 0 8 2 2 8 4 4 7 1 4 2 1 0 6 5 5 7 2 7 4 2 0 9 4 7 2 3 9

3 8 2 1 1 1 8 3 8 4 1 0 2 3 5 6 7 3 2 4 0 0 1 5 2 2 6 3 6 7 7 9 4 1 9 5
0 1 7 1 3 6 1 0 0 5 4 0 7 2 8 1 4 5 6 4 0 2 5 5 8 6 9 9 3 2 7 1 6 8 2 9
8 3 2 5 7 2 0 0 1 1 6 4 3 6 2 5 8 5 8 7 7 8 1 2 9 5 8 9 9 8 3 0 0 6 8 4
5 5 9 8 2 0 1 0 6 0 1 6 9 5 4 6 1 9 3 8 4 3 8 0 5 3 9 2 6 8 3 0 9 3 0 4
5 6 7 1 2 5 2 6 5 8 4 6 2 5 6 5 3 3 5 4 3 0 8 2 3 4 1 6 5 5 4 2 3 4 9 5
1 3 5 1 1 7 2 4 7 9 2 4 0 1 7 3 0 9 3 9 2 0 5 4 7 2 4 3 1 9 9 3 8 5 7 7

4 9 1 9 7 6 4 4 6 9 3 9 6 0 2 9 5 8 4 4 6 7 8 1 6 8 4 0 6 7 2 2 3 5 6 6
0 3 1 0 3 0 6 9 0 1 7 9 8 9 3 1 1 2 5 0 0 0 7 7 6 4 0 8 0 0 6 8 3 9 4 8
8 2 1 5 2 9 2 0 4 1 3 7 9 1 0 3 1 0 7 5 6 7 1 1 1 1 4 9 4 9 5 7 9 2 0 4
8 8 9 1 6 0 2 9 4 9 3 6 0 2 4 1 6 9 6 8 3 5 4 6 5 1 8 5 0 9 5 6 9 6 7 9
0 8 9 5 6 9 6 6 5 2 3 9 3 4 9 0 6 9 1 5 8 4 3 7 0 9 3 8 3 9 6 5 9 9 4 0
7 1 3 8 7 3 7 0 7 8 4 0 0 8 6 5 9 8 6 1 2 3 0 5 4 4 6 3 6 9 2 1 0 6 7 9

4 3 6 4 6 0 5 0 8 4 0 6 9 6 7 4 8 7 7 8 1 6 1 8 2 2 6 7 1 0 5 4 7 3 8 6
6 1 3 6 7 4 1 7 3 1 6 0 8 9 8 7 2 7 6 8 7 2 7 9 6 3 8 6 4 7 5 3 6 7 5 6
3 6 6 6 9 9 3 3 8 5 7 7 8 4 3 3 7 3 1 5 1 7 1 7 4 3 0 8 2 9 9 4 4 2 6 6
8 2 8 0 1 0 8 2 5 5 4 6 2 0 2 5 1 0 6 9 5 6 7 1 5 0 5 8 0 0 6 8 0 6 8 2
3 4 0 7 5 5 2 8 0 4 5 2 6 3 0 1 0 1 4 2 8 6 6 5 6 9 5 4 2 1 2 8 0 0 0 9
3 5 8 7 6 7 3 6 5 6 1 1 8 4 5 0 9 8 1 9 5 8 3 0 4 7 1 5 3 3 3 4 4 4 0 2

4 9 5 0 5 4 1 4 2 7 2 3 1 4 1 5 7 7 5 6 6 0 5 3 2 3 1 3 2 5 0 4 4 9 3 4
4 9 5 1 6 5 6 4 1 4 5 4 1 6 9 4 4 6 4 9 8 3 7 9 9 4 7 8 6 1 6 8 0 6 1 7
3 2 6 0 7 5 0 8 5 2 1 1 9 6 2 9 0 7 5 1 5 0 4 8 0 7 4 5 0 5 2 5 6 2 3 6
8 9 7 7 3 4 3 3 4 9 6 7 2 6 9 0 5 6 2 9 7 3 3 6 5 7 0 5 4 3 8 3 5 9 2 2
0 3 9 7 4 4 1 1 5 2 6 0 3 0 1 4 0 7 7 9 5 8 8 7 7 3 1 0 8 9 4 8 8 9 1 9
2 7 9 0 5 5 7 2 8 9 5 2 7 1 7 4 3 5 6 0 0 3 7 2 5 6 1 0 7 6 4 8 1 9 4 8
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Table A.2 Coefficients ci for orthogonal polynomial trend contrasts

v � 3

Trend c1 c2 c3

Linear −1 0 1

Quadratic 1 −2 1

v � 4

Trend c1 c2 c3 c4

Linear −3 −1 1 3

Quadratic 1 −1 −1 1

Cubic −1 3 −3 1

v � 5

Trend c1 c2 c3 c4 c5

Linear −2 −1 0 1 2

Quadratic 2 −1 −2 −1 2

Cubic −1 2 0 −2 1

Quartic 1 −4 6 −4 1

v � 6

Trend c1 c2 c3 c4 c5 c6

Linear −5 −3 −1 1 3 5

Quadratic 5 −1 −4 −4 −1 5

Cubic −5 7 4 −4 −7 5

Quartic 1 −3 2 2 −3 1

Quintic −1 5 −10 10 −5 1

v � 7

Trend c1 c2 c3 c4 c5 c6 c7

Linear −3 −2 −1 0 1 2 3

Quadratic 5 0 −3 −4 −3 0 5

Cubic −1 1 1 0 −1 −1 1

Quartic 3 −7 1 6 1 −7 3

Quintic −1 4 −5 0 5 −4 1

Sextic 1 −6 15 −20 15 −6 1
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Table A.3 Standard normal distribution:∗ Upper α critical coefficients, zα, and upper-tail
probabilities, α � P (Z > zα)

α 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 0.00025 0.0001
zα 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 3.481 3.719

zα 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005

∗ Values were generated using the SAS statements “zalpha = probit(1-alpha);” and
“alpha = 1 -probnorm(zalpha);”.
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Table A.4 Student’s t-distribution:∗ Upper α critical coefficients, tdf,α, where
α � P (tdf > tdf,α)

α

df 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 0.0001
1 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6 3183
2 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.60 70.70
3 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.92 22.20
4 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610 13.03
5 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869 9.678
6 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959 8.025
7 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408 7.063
8 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041 6.442
9 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781 6.010
10 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587 5.694
11 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437 5.453
12 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318 5.263
13 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221 5.111
14 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140 4.985
15 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073 4.880
16 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015 4.791
17 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965 4.714
18 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922 4.648
19 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883 4.590
20 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850 4.539
21 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819 4.493
22 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792 4.452
23 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.768 4.415
24 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745 4.382
25 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725 4.352
26 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707 4.324
27 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690 4.299
28 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674 4.275
29 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659 4.254
30 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646 4.234
35 1.306 1.690 2.030 2.438 2.724 2.996 3.340 3.591 4.153
40 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551 4.094
45 1.301 1.679 2.014 2.412 2.690 2.952 3.281 3.520 4.049
50 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496 4.014
55 1.297 1.673 2.004 2.396 2.668 2.925 3.245 3.476 3.986
60 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460 3.962
70 1.294 1.667 1.994 2.381 2.648 2.899 3.211 3.435 3.926
80 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416 3.899
90 1.291 1.662 1.987 2.368 2.632 2.878 3.183 3.402 3.878
100 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390 3.862
110 1.289 1.659 1.982 2.361 2.621 2.865 3.166 3.381 3.848
120 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373 3.837
∞ 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 3.719

∗ Valuestdf,α were generated using the SAS statements “t = tinv(1-alpha,df);” fordf < ∞ and
“t = probit(1-alpha)” fordf � ∞.
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Table A.5 Chi-squared distribution:∗ Upper α critical coefficients, χ2
df,α

, where
α � P (χ2

df
> χ2

df,α
)

α

df 0.999 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.001
1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 10.83
2 0.002 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 13.82
3 0.024 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.34 16.27
4 0.091 0.297 0.484 0.711 1.064 7.779 9.488 11.14 13.28 18.47
5 0.210 0.554 0.831 1.145 1.610 9.236 11.07 12.83 15.09 20.52
6 0.381 0.872 1.237 1.635 2.204 10.64 12.59 14.45 16.81 22.46
7 0.598 1.239 1.690 2.167 2.833 12.02 14.07 16.01 18.48 24.32
8 0.857 1.646 2.180 2.733 3.490 13.36 15.51 17.53 20.09 26.12
9 1.152 2.088 2.700 3.325 4.168 14.68 16.92 19.02 21.67 27.88
10 1.479 2.558 3.247 3.940 4.865 15.99 18.31 20.48 23.21 29.59
11 1.834 3.053 3.816 4.575 5.578 17.28 19.68 21.92 24.72 31.26
12 2.214 3.571 4.404 5.226 6.304 18.55 21.03 23.34 26.22 32.91
13 2.617 4.107 5.009 5.892 7.042 19.81 22.36 24.74 27.69 34.53
14 3.041 4.660 5.629 6.571 7.790 21.06 23.68 26.12 29.14 36.12
15 3.483 5.229 6.262 7.261 8.547 22.31 25.00 27.49 30.58 37.70
16 3.942 5.812 6.908 7.962 9.312 23.54 26.30 28.85 32.00 39.25
17 4.416 6.408 7.564 8.672 10.09 24.77 27.59 30.19 33.41 40.79
18 4.905 7.015 8.231 9.390 10.86 25.99 28.87 31.53 34.81 42.31
19 5.407 7.633 8.907 10.12 11.65 27.20 30.14 32.85 36.19 43.82
20 5.921 8.260 9.591 10.85 12.44 28.41 31.41 34.17 37.57 45.31
21 6.447 8.897 10.28 11.59 13.24 29.62 32.67 35.48 38.93 46.80
22 6.983 9.542 10.98 12.34 14.04 30.81 33.92 36.78 40.29 48.27
23 7.529 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64 49.73
24 8.085 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 51.18
25 8.649 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 52.62
26 9.222 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64 54.05
27 9.803 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96 55.48
28 10.39 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 56.89
29 10.99 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59 58.30
30 11.59 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 59.70
35 14.69 18.51 20.57 22.47 24.80 46.06 49.80 53.20 57.34 66.62
40 17.92 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 73.40
45 21.25 25.90 28.37 30.61 33.35 57.51 61.66 65.41 69.96 80.08
50 24.67 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 86.66
55 28.17 33.57 36.40 38.96 42.06 68.80 73.31 77.38 82.29 93.17
60 31.74 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 99.61
70 39.04 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.4 112.3
80 46.52 53.54 57.15 60.39 64.28 96.58 101.9 106.6 112.3 124.8
90 54.16 61.75 65.65 69.13 73.29 107.6 113.1 118.1 124.1 137.2
100 61.92 70.06 74.22 77.93 82.36 118.5 124.3 129.6 135.8 149.4
120 77.76 86.92 91.57 95.70 100.6 140.2 146.6 152.2 159.0 173.6

∗ Values were generated using the SAS statement “chi2 = cinv(1-alpha,df);”.
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Table A.6 F-distribution:∗ Upper α critical coefficients, Fν1,ν2,α, where
α � P (Fν1,ν2 > Fν1,ν2,α)

ν1
ν2 α 1 2 3 4 5 6 7 8 9

1 0.100 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9
0.050 161 200 216 225 230 234 237 239 241
0.010 4052 5000 5403 5625 5764 5859 5928 5981 6022

2 0.100 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38
0.050 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4
0.010 98.5 99.0 99.2 99.3 99.3 99.3 99.4 99.4 99.4
0.001 999 999 999 999 999 999 999 999 999

3 0.100 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24
0.050 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
0.010 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.4
0.001 167 149 141 137 135 133 132 131 130

4 0.100 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94
0.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
0.010 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7
0.001 74.1 61.3 56.2 53.4 51.7 50.5 49.7 49.0 48.5

5 0.100 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32
0.050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
0.010 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2
0.001 47.2 37.1 33.2 31.1 29.8 28.8 28.2 27.7 27.2

6 0.100 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96
0.050 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
0.010 13.8 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98
0.001 35.5 27.0 23.7 21.9 20.8 20.0 19.5 19.0 18.7

7 0.100 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72
0.050 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
0.010 12.3 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
0.001 29.3 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3

8 0.100 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56
0.050 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
0.010 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
0.001 25.4 18.5 15.8 14.4 13.5 12.9 12.4 12.1 11.8

9 0.100 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44
0.050 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
0.010 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35
0.001 22.9 16.4 13.9 12.6 11.7 11.1 10.7 10.4 10.1

10 0.100 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35
0.050 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02
0.010 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94
0.001 21.0 14.9 12.6 11.3 10.5 9.93 9.52 9.20 8.96

∗ ValuesFν1,ν2,α were generated using the SAS statement
“f = round(finv(1-alpha,df1,df2),0.01);”.
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Table A.6 (continued) F-distribution: Upper α critical coefficients, Fν1,ν2,α

ν1
ν2 α 1 2 3 4 5 6 7 8 9

11 0.100 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27
0.050 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
0.010 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
0.001 19.7 13.8 11.6 10.4 9.58 9.05 8.66 8.35 8.12

12 0.100 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21
0.050 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
0.010 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
0.001 18.6 13.0 10.8 9.63 8.89 8.38 8.00 7.71 7.48

13 0.100 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16
0.050 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
0.010 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19
0.001 17.8 12.3 10.2 9.07 8.35 7.86 7.49 7.21 6.98

14 0.100 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12
0.050 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
0.010 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03
0.001 17.1 11.8 9.73 8.62 7.92 7.44 7.08 6.80 6.58

15 0.100 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09
0.050 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
0.010 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89
0.001 16.6 11.3 9.34 8.25 7.57 7.09 6.74 6.47 6.26

16 0.100 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06
0.050 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
0.010 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78
0.001 16.1 11.0 9.01 7.94 7.27 6.80 6.46 6.19 5.98

17 0.100 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03
0.050 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
0.010 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68
0.001 15.7 10.7 8.73 7.68 7.02 6.56 6.22 5.96 5.75

18 0.100 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00
0.050 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
0.010 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60
0.001 15.4 10.4 8.49 7.46 6.81 6.35 6.02 5.76 5.56

19 0.100 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98
0.050 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
0.010 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52
0.001 15.1 10.2 8.28 7.27 6.62 6.18 5.85 5.59 5.39

20 0.100 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96
0.050 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
0.010 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46
0.001 14.8 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24
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Table A.6 (continued) F-distribution: Upper α critical coefficients, Fν1,ν2,α

ν1
ν2 α 1 2 3 4 5 6 7 8 9

22 0.100 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93
0.050 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
0.010 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
0.001 14.4 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99

25 0.100 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89
0.050 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
0.010 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22
0.001 13.9 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71

30 0.100 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85
0.050 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
0.010 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07
0.001 13.3 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39

35 0.100 2.85 2.46 2.25 2.11 2.02 1.95 1.90 1.85 1.82
0.050 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16
0.010 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96
0.001 12.9 8.47 6.79 5.88 5.30 4.89 4.59 4.36 4.18

40 0.100 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79
0.050 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
0.010 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89
0.001 12.6 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02

60 0.100 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74
0.050 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04
0.010 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72
0.001 12.0 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69

80 0.100 2.77 2.37 2.15 2.02 1.92 1.85 1.79 1.75 1.71
0.050 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00
0.010 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64
0.001 11.7 7.54 5.97 5.12 4.58 4.20 3.92 3.70 3.53

100 0.100 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69
0.050 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97
0.010 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59
0.001 11.5 7.41 5.86 5.02 4.48 4.11 3.83 3.61 3.44

120 0.100 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68
0.050 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96
0.010 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56
0.001 11.4 7.32 5.78 4.95 4.42 4.04 3.77 3.55 3.38

1000 0.100 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64
0.050 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89
0.010 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43
0.001 10.9 6.96 5.46 4.65 4.14 3.78 3.51 3.30 3.13
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Table A.6 (continued) F-distribution: Upper α critical coefficients, Fν1,ν2,α

ν1
ν2 α 10 12 15 20 25 30 40 60 120 1000

1 0.100 60.2 60.7 61.2 61.7 62.1 62.3 62.5 62.8 63.1 63.3
0.050 242 244 246 248 249 250 251 252 253 254
0.010 6056 6106 6157 6209 6240 6261 6287 6313 6339 6363

2 0.100 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49
0.050 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5
0.010 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5 99.5
0.001 999 999 999 999 999 999 999 999 999 1000

3 0.100 5.23 5.22 5.20 5.18 5.17 5.17 5.16 5.15 5.14 5.13
0.050 8.79 8.74 8.70 8.66 8.63 8.62 8.59 8.57 8.55 8.53
0.010 27.2 27.1 26.9 26.7 26.6 26.5 26.4 26.3 26.2 26.1
0.001 129 128 127 126 126 125 125 124 124 124

4 0.100 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76
0.050 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
0.010 14.6 14.4 14.2 14.0 13.9 13.8 13.8 13.7 13.6 13.5
0.001 48.1 47.4 46.8 46.1 45.7 45.4 45.1 44.8 44.4 44.1

5 0.100 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.11
0.050 4.74 4.68 4.62 4.56 4.52 4.50 4.46 4.43 4.40 4.37
0.010 10.1 9.89 9.72 9.55 9.45 9.38 9.29 9.20 9.11 9.03
0.001 26.9 26.4 25.9 25.4 25.1 24.9 24.6 24.3 24.1 23.8

6 0.100 2.94 2.90 2.87 2.84 2.81 2.80 2.78 2.76 2.74 2.72
0.050 4.06 4.00 3.94 3.87 3.83 3.81 3.77 3.74 3.70 3.67
0.010 7.87 7.72 7.56 7.40 7.30 7.23 7.14 7.06 6.97 6.89
0.001 18.4 18.0 17.6 17.1 16.9 16.7 16.4 16.2 16.0 15.8

7 0.100 2.70 2.67 2.63 2.59 2.57 2.56 2.54 2.51 2.49 2.47
0.050 3.64 3.57 3.51 3.44 3.40 3.38 3.34 3.30 3.27 3.23
0.010 6.62 6.47 6.31 6.16 6.06 5.99 5.91 5.82 5.74 5.66
0.001 14.1 13.7 13.3 12.9 12.7 12.5 12.3 12.1 11.9 11.7

8 0.100 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.30
0.050 3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.01 2.97 2.93
0.010 5.81 5.67 5.52 5.36 5.26 5.20 5.12 5.03 4.95 4.87
0.001 11.5 11.2 10.8 10.5 10.3 10.1 9.92 9.73 9.53 9.36

9 0.100 2.42 2.38 2.34 2.30 2.27 2.25 2.23 2.21 2.18 2.16
0.050 3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.79 2.75 2.71
0.010 5.26 5.11 4.96 4.81 4.71 4.65 4.57 4.48 4.40 4.32
0.001 9.89 9.57 9.24 8.90 8.69 8.55 8.37 8.19 8.00 7.84

10 0.100 2.32 2.28 2.24 2.20 2.17 2.16 2.13 2.11 2.08 2.06
0.050 2.98 2.91 2.85 2.77 2.73 2.70 2.66 2.62 2.58 2.54
0.010 4.85 4.71 4.56 4.41 4.31 4.25 4.17 4.08 4.00 3.92
0.001 8.75 8.45 8.13 7.80 7.60 7.47 7.30 7.12 6.94 6.78
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Table A.6 (continued) F-distribution: Upper α critical coefficients, Fν1,ν2,α

ν1
ν2 α 10 12 15 20 25 30 40 60 120 1000

11 0.100 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.98
0.050 2.85 2.79 2.72 2.65 2.60 2.57 2.53 2.49 2.45 2.41
0.010 4.54 4.40 4.25 4.10 4.01 3.94 3.86 3.78 3.69 3.61
0.001 7.92 7.63 7.32 7.01 6.81 6.68 6.52 6.35 6.18 6.02

12 0.100 2.19 2.15 2.10 2.06 2.03 2.01 1.99 1.96 1.93 1.91
0.050 2.75 2.69 2.62 2.54 2.50 2.47 2.43 2.38 2.34 2.30
0.010 4.30 4.16 4.01 3.86 3.76 3.70 3.62 3.54 3.45 3.37
0.001 7.29 7.00 6.71 6.40 6.22 6.09 5.93 5.76 5.59 5.44

13 0.100 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85
0.050 2.67 2.60 2.53 2.46 2.41 2.38 2.34 2.30 2.25 2.21
0.010 4.10 3.96 3.82 3.66 3.57 3.51 3.43 3.34 3.25 3.18
0.001 6.80 6.52 6.23 5.93 5.75 5.63 5.47 5.30 5.14 4.99

14 0.100 2.10 2.05 2.01 1.96 1.93 1.91 1.89 1.86 1.83 1.80
0.050 2.60 2.53 2.46 2.39 2.34 2.31 2.27 2.22 2.18 2.14
0.010 3.94 3.80 3.66 3.51 3.41 3.35 3.27 3.18 3.09 3.02
0.001 6.40 6.13 5.85 5.56 5.38 5.25 5.10 4.94 4.77 4.62

15 0.100 2.06 2.02 1.97 1.92 1.89 1.87 1.85 1.82 1.79 1.76
0.050 2.54 2.48 2.40 2.33 2.28 2.25 2.20 2.16 2.11 2.07
0.010 3.80 3.67 3.52 3.37 3.28 3.21 3.13 3.05 2.96 2.88
0.001 6.08 5.81 5.54 5.25 5.07 4.95 4.80 4.64 4.47 4.33

16 0.100 2.03 1.99 1.94 1.89 1.86 1.84 1.81 1.78 1.75 1.72
0.050 2.49 2.42 2.35 2.28 2.23 2.19 2.15 2.11 2.06 2.02
0.010 3.69 3.55 3.41 3.26 3.16 3.10 3.02 2.93 2.84 2.76
0.001 5.81 5.55 5.27 4.99 4.82 4.70 4.54 4.39 4.23 4.08

17 0.100 2.00 1.96 1.91 1.86 1.83 1.81 1.78 1.75 1.72 1.69
0.050 2.45 2.38 2.31 2.23 2.18 2.15 2.10 2.06 2.01 1.97
0.010 3.59 3.46 3.31 3.16 3.07 3.00 2.92 2.83 2.75 2.66
0.001 5.58 5.32 5.05 4.78 4.60 4.48 4.33 4.18 4.02 3.87

18 0.100 1.98 1.93 1.89 1.84 1.80 1.78 1.75 1.72 1.69 1.66
0.050 2.41 2.34 2.27 2.19 2.14 2.11 2.06 2.02 1.97 1.92
0.010 3.51 3.37 3.23 3.08 2.98 2.92 2.84 2.75 2.66 2.58
0.001 5.39 5.13 4.87 4.59 4.42 4.30 4.15 4.00 3.84 3.69

19 0.100 1.96 1.91 1.86 1.81 1.78 1.76 1.73 1.70 1.67 1.64
0.050 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
0.010 3.43 3.30 3.15 3.00 2.91 2.84 2.76 2.67 2.58 2.50
0.001 5.22 4.97 4.70 4.43 4.26 4.14 3.99 3.84 3.68 3.53

20 0.100 1.94 1.89 1.84 1.79 1.76 1.74 1.71 1.68 1.64 1.61
0.050 2.35 2.28 2.20 2.12 2.07 2.04 1.99 1.95 1.90 1.85
0.010 3.37 3.23 3.09 2.94 2.84 2.78 2.69 2.61 2.52 2.43
0.001 5.08 4.82 4.56 4.29 4.12 4.00 3.86 3.70 3.54 3.40
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Table A.6 (continued) F-distribution: Upper α critical coefficients, Fν1,ν2,α

ν1
ν2 α 10 12 15 20 25 30 40 60 120 1000

22 0.100 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57
0.050 2.30 2.23 2.15 2.07 2.02 1.98 1.94 1.89 1.84 1.79
0.010 3.26 3.12 2.98 2.83 2.73 2.67 2.58 2.50 2.40 2.32
0.001 4.83 4.58 4.33 4.06 3.89 3.78 3.63 3.48 3.32 3.17

25 0.100 1.87 1.82 1.77 1.72 1.68 1.66 1.63 1.59 1.56 1.52
0.050 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.72
0.010 3.13 2.99 2.85 2.70 2.60 2.54 2.45 2.36 2.27 2.18
0.001 4.56 4.31 4.06 3.79 3.63 3.52 3.37 3.22 3.06 2.91

30 0.100 1.82 1.77 1.72 1.67 1.63 1.61 1.57 1.54 1.50 1.46
0.050 2.16 2.09 2.01 1.93 1.88 1.84 1.79 1.74 1.68 1.63
0.010 2.98 2.84 2.70 2.55 2.45 2.39 2.30 2.21 2.11 2.02
0.001 4.24 4.00 3.75 3.49 3.33 3.22 3.07 2.92 2.76 2.61

35 0.100 1.79 1.74 1.69 1.63 1.60 1.57 1.53 1.50 1.46 1.42
0.050 2.11 2.04 1.96 1.88 1.82 1.79 1.74 1.68 1.62 1.57
0.010 2.88 2.74 2.60 2.44 2.35 2.28 2.19 2.10 2.00 1.90
0.001 4.03 3.79 3.55 3.29 3.13 3.02 2.87 2.72 2.56 2.40

40 0.100 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38
0.050 2.08 2.00 1.92 1.84 1.78 1.74 1.69 1.64 1.58 1.52
0.010 2.80 2.66 2.52 2.37 2.27 2.20 2.11 2.02 1.92 1.82
0.001 3.87 3.64 3.40 3.14 2.98 2.87 2.73 2.57 2.41 2.25

60 0.100 1.71 1.66 1.60 1.54 1.50 1.48 1.44 1.40 1.35 1.30
0.050 1.99 1.92 1.84 1.75 1.69 1.65 1.59 1.53 1.47 1.40
0.010 2.63 2.50 2.35 2.20 2.10 2.03 1.94 1.84 1.73 1.62
0.001 3.54 3.32 3.08 2.83 2.67 2.55 2.41 2.25 2.08 1.92

80 0.100 1.68 1.63 1.57 1.51 1.47 1.44 1.40 1.36 1.31 1.25
0.050 1.95 1.88 1.79 1.70 1.64 1.60 1.54 1.48 1.41 1.34
0.010 2.55 2.42 2.27 2.12 2.01 1.94 1.85 1.75 1.63 1.51
0.001 3.39 3.16 2.93 2.68 2.52 2.41 2.26 2.10 1.92 1.75

100 0.100 1.66 1.61 1.56 1.49 1.45 1.42 1.38 1.34 1.28 1.22
0.050 1.93 1.85 1.77 1.68 1.62 1.57 1.52 1.45 1.38 1.30
0.010 2.50 2.37 2.22 2.07 1.97 1.89 1.80 1.69 1.57 1.45
0.001 3.30 3.07 2.84 2.59 2.43 2.32 2.17 2.01 1.83 1.64

120 0.100 1.65 1.60 1.55 1.48 1.44 1.41 1.37 1.32 1.26 1.20
0.050 1.91 1.83 1.75 1.66 1.60 1.55 1.50 1.43 1.35 1.27
0.010 2.47 2.34 2.19 2.03 1.93 1.86 1.76 1.66 1.53 1.40
0.001 3.24 3.02 2.78 2.53 2.37 2.26 2.11 1.95 1.77 1.57

1000 0.100 1.61 1.55 1.49 1.43 1.38 1.35 1.30 1.25 1.18 1.08
0.050 1.84 1.76 1.68 1.58 1.52 1.47 1.41 1.33 1.24 1.11
0.010 2.34 2.20 2.06 1.90 1.79 1.72 1.61 1.50 1.35 1.16
0.001 2.99 2.77 2.54 2.30 2.14 2.02 1.87 1.69 1.49 1.22
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Table A.7 Power of the F -test: π(φ) � P (Fν1,ν2,φ > Fν1,ν2,α)

ν1 � 1, α � 0.05
φ

ν2 1.00 1.33 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33
5 0.21 0.33 0.48 0.62 0.75 0.85 0.92 0.96 0.98 0.99 1.00
6 0.22 0.36 0.51 0.66 0.78 0.88 0.94 0.97 0.99 1.00 1.00
7 0.23 0.37 0.53 0.68 0.81 0.90 0.95 0.98 0.99 1.00 1.00
8 0.24 0.38 0.54 0.70 0.82 0.91 0.96 0.98 0.99 1.00 1.00
9 0.24 0.39 0.56 0.71 0.83 0.92 0.96 0.99 1.00 1.00 1.00

10 0.25 0.40 0.57 0.72 0.84 0.92 0.97 0.99 1.00 1.00 1.00
12 0.26 0.41 0.58 0.74 0.86 0.93 0.97 0.99 1.00 1.00 1.00
15 0.26 0.42 0.60 0.75 0.87 0.94 0.98 0.99 1.00 1.00 1.00
20 0.27 0.43 0.61 0.77 0.88 0.95 0.98 0.99 1.00 1.00 1.00
30 0.28 0.45 0.63 0.78 0.89 0.95 0.98 1.00 1.00 1.00 1.00
60 0.29 0.46 0.64 0.79 0.90 0.96 0.99 1.00 1.00 1.00 1.00

1000 0.29 0.47 0.65 0.81 0.91 0.96 0.99 1.00 1.00 1.00 1.00

ν1 � 1, α � 0.01
φ

ν2 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00
5 0.18 0.27 0.38 0.50 0.61 0.72 0.80 0.87 0.92 0.95 0.97
6 0.21 0.31 0.44 0.57 0.69 0.79 0.87 0.92 0.96 0.98 0.99
7 0.23 0.35 0.48 0.62 0.74 0.84 0.91 0.95 0.98 0.99 1.00
8 0.25 0.38 0.52 0.66 0.78 0.87 0.93 0.97 0.99 0.99 1.00
9 0.26 0.40 0.55 0.69 0.81 0.89 0.95 0.98 0.99 1.00 1.00

10 0.28 0.42 0.57 0.71 0.83 0.91 0.96 0.98 0.99 1.00 1.00
12 0.30 0.45 0.61 0.75 0.86 0.93 0.97 0.99 1.00 1.00 1.00
15 0.32 0.48 0.64 0.78 0.88 0.94 0.98 0.99 1.00 1.00 1.00
20 0.34 0.51 0.67 0.81 0.90 0.96 0.98 1.00 1.00 1.00 1.00
30 0.36 0.54 0.71 0.84 0.92 0.97 0.99 1.00 1.00 1.00 1.00
60 0.39 0.57 0.74 0.86 0.94 0.98 0.99 1.00 1.00 1.00 1.00

1000 0.41 0.60 0.76 0.88 0.95 0.98 1.00 1.00 1.00 1.00 1.00

∗ Power was computed using the SAS statements “nc=v*phi**2;”,
“Falpha=finv(1-alpha,nu1,nu2);”, “power = 1 - probf(Falpha,nu1,nu2,nc);”, and “power =
round(power,.01);” for values of the parameters “v”, “phi”, “alpha”, “nu1=v-1” and “nu2”.
“Falpha” is the upper-α critical value of theF -distribution with “nu1” and “nu2” degrees of
freedom, and “nc” is the noncentrality parameter for the corresponding noncentralF -distribution.
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Table A.7 (continued) Power of the F -test: π(φ) � P (Fν1,ν2,φ > Fν1,ν2,α)

ν1 � 2, α � 0.05
φ

ν2 1.00 1.33 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33
5 0.20 0.32 0.46 0.61 0.75 0.85 0.92 0.96 0.98 0.99 1.00
6 0.21 0.34 0.50 0.66 0.79 0.89 0.95 0.98 0.99 1.00 1.00
7 0.22 0.37 0.53 0.70 0.83 0.91 0.96 0.99 1.00 1.00 1.00
8 0.23 0.38 0.56 0.72 0.85 0.93 0.97 0.99 1.00 1.00 1.00
9 0.24 0.40 0.58 0.74 0.87 0.94 0.98 0.99 1.00 1.00 1.00

10 0.25 0.41 0.59 0.76 0.88 0.95 0.98 1.00 1.00 1.00 1.00
12 0.26 0.43 0.62 0.78 0.90 0.96 0.99 1.00 1.00 1.00 1.00
15 0.27 0.45 0.64 0.81 0.91 0.97 0.99 1.00 1.00 1.00 1.00
20 0.28 0.47 0.67 0.83 0.93 0.98 0.99 1.00 1.00 1.00 1.00
30 0.29 0.49 0.69 0.85 0.94 0.98 1.00 1.00 1.00 1.00 1.00
60 0.31 0.51 0.71 0.87 0.95 0.99 1.00 1.00 1.00 1.00 1.00

1000 0.32 0.53 0.73 0.88 0.96 0.99 1.00 1.00 1.00 1.00 1.00

ν1 � 2, α � 0.01
φ

ν2 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00
5 0.16 0.25 0.36 0.48 0.60 0.70 0.80 0.87 0.92 0.95 0.97
6 0.20 0.30 0.43 0.57 0.69 0.80 0.88 0.93 0.96 0.98 0.99
7 0.22 0.35 0.50 0.64 0.76 0.86 0.92 0.96 0.98 0.99 1.00
8 0.25 0.39 0.54 0.69 0.81 0.90 0.95 0.98 0.99 1.00 1.00
9 0.27 0.42 0.58 0.73 0.85 0.92 0.97 0.99 1.00 1.00 1.00

10 0.29 0.45 0.62 0.76 0.87 0.94 0.98 0.99 1.00 1.00 1.00
12 0.32 0.49 0.67 0.81 0.91 0.96 0.99 1.00 1.00 1.00 1.00
15 0.35 0.54 0.71 0.85 0.93 0.98 0.99 1.00 1.00 1.00 1.00
20 0.39 0.58 0.76 0.88 0.96 0.99 1.00 1.00 1.00 1.00 1.00
30 0.43 0.63 0.80 0.91 0.97 0.99 1.00 1.00 1.00 1.00 1.00
60 0.47 0.68 0.84 0.94 0.98 1.00 1.00 1.00 1.00 1.00 1.00

1000 0.51 0.72 0.87 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00
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Table A.7 (continued) Power of the F -test: π(φ) � P (Fν1,ν2,φ > Fν1,ν2,α)

ν1 � 3, α � 0.05
φ

ν2 1.00 1.33 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33
5 0.19 0.31 0.46 0.61 0.75 0.86 0.93 0.97 0.99 0.99 1.00
6 0.21 0.35 0.51 0.67 0.81 0.90 0.96 0.98 0.99 1.00 1.00
7 0.22 0.37 0.55 0.72 0.85 0.93 0.97 0.99 1.00 1.00 1.00
8 0.24 0.40 0.58 0.75 0.87 0.95 0.98 0.99 1.00 1.00 1.00
9 0.25 0.41 0.60 0.77 0.89 0.96 0.99 1.00 1.00 1.00 1.00

10 0.25 0.43 0.63 0.79 0.91 0.97 0.99 1.00 1.00 1.00 1.00
12 0.27 0.45 0.66 0.82 0.93 0.98 0.99 1.00 1.00 1.00 1.00
15 0.28 0.48 0.69 0.85 0.94 0.98 1.00 1.00 1.00 1.00 1.00
20 0.30 0.51 0.72 0.87 0.96 0.99 1.00 1.00 1.00 1.00 1.00
30 0.32 0.54 0.75 0.90 0.97 0.99 1.00 1.00 1.00 1.00 1.00
60 0.34 0.57 0.78 0.92 0.98 1.00 1.00 1.00 1.00 1.00 1.00

1000 0.36 0.60 0.81 0.93 0.98 1.00 1.00 1.00 1.00 1.00 1.00

ν1 � 3, α � 0.01
φ

ν2 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00
5 0.16 0.25 0.36 0.48 0.60 0.71 0.80 0.87 0.92 0.95 0.98
6 0.20 0.31 0.44 0.58 0.71 0.81 0.89 0.94 0.97 0.99 0.99
7 0.23 0.36 0.52 0.66 0.79 0.88 0.94 0.97 0.99 1.00 1.00
8 0.26 0.41 0.57 0.72 0.84 0.92 0.96 0.99 1.00 1.00 1.00
9 0.29 0.45 0.62 0.77 0.88 0.95 0.98 0.99 1.00 1.00 1.00

10 0.31 0.48 0.66 0.81 0.91 0.96 0.99 1.00 1.00 1.00 1.00
12 0.35 0.54 0.72 0.86 0.94 0.98 0.99 1.00 1.00 1.00 1.00
15 0.39 0.59 0.77 0.90 0.96 0.99 1.00 1.00 1.00 1.00 1.00
20 0.44 0.65 0.83 0.93 0.98 1.00 1.00 1.00 1.00 1.00 1.00
30 0.49 0.71 0.87 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00
60 0.55 0.77 0.91 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00

1000 0.60 0.82 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A.7 (continued) Power of the F -test: π(φ) � P (Fν1,ν2,φ > Fν1,ν2,α)

ν1 � 4, α � 0.05
φ

ν2 1.00 1.33 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33
5 0.19 0.31 0.46 0.62 0.76 0.86 0.93 0.97 0.99 1.00 1.00
6 0.21 0.35 0.52 0.69 0.82 0.91 0.96 0.99 1.00 1.00 1.00
7 0.23 0.38 0.56 0.73 0.86 0.94 0.98 0.99 1.00 1.00 1.00
8 0.24 0.41 0.60 0.77 0.89 0.96 0.99 1.00 1.00 1.00 1.00
9 0.25 0.43 0.63 0.80 0.91 0.97 0.99 1.00 1.00 1.00 1.00

10 0.26 0.45 0.65 0.82 0.93 0.98 0.99 1.00 1.00 1.00 1.00
12 0.28 0.48 0.69 0.85 0.95 0.98 1.00 1.00 1.00 1.00 1.00
15 0.30 0.51 0.73 0.88 0.96 0.99 1.00 1.00 1.00 1.00 1.00
20 0.32 0.54 0.76 0.91 0.97 0.99 1.00 1.00 1.00 1.00 1.00
30 0.34 0.58 0.80 0.93 0.98 1.00 1.00 1.00 1.00 1.00 1.00
60 0.37 0.62 0.83 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00

1000 0.39 0.65 0.86 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00

ν1 � 4, α � 0.01
φ

ν2 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00
5 0.16 0.25 0.36 0.48 0.60 0.71 0.80 0.88 0.92 0.96 0.98
6 0.20 0.32 0.45 0.59 0.72 0.83 0.90 0.95 0.97 0.99 1.00
7 0.24 0.38 0.53 0.68 0.81 0.89 0.95 0.98 0.99 1.00 1.00
8 0.27 0.43 0.60 0.75 0.86 0.94 0.97 0.99 1.00 1.00 1.00
9 0.30 0.47 0.65 0.80 0.90 0.96 0.99 1.00 1.00 1.00 1.00

10 0.33 0.51 0.70 0.84 0.93 0.97 0.99 1.00 1.00 1.00 1.00
12 0.38 0.58 0.76 0.89 0.96 0.99 1.00 1.00 1.00 1.00 1.00
15 0.43 0.64 0.82 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00
20 0.49 0.71 0.87 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00
30 0.55 0.78 0.92 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
60 0.62 0.83 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 0.69 0.88 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A.7 (continued) Power of the F -test: π(φ) � P (Fν1,ν2,φ > Fν1,ν2,α)

ν1 � 5, α � 0.05
φ

ν2 1.00 1.33 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33
5 0.19 0.31 0.47 0.62 0.76 0.87 0.93 0.97 0.99 1.00 1.00
6 0.21 0.35 0.53 0.70 0.83 0.92 0.97 0.99 1.00 1.00 1.00
7 0.23 0.39 0.58 0.75 0.88 0.95 0.98 0.99 1.00 1.00 1.00
8 0.24 0.42 0.62 0.79 0.90 0.97 0.99 1.00 1.00 1.00 1.00
9 0.26 0.44 0.65 0.82 0.93 0.98 0.99 1.00 1.00 1.00 1.00

10 0.27 0.46 0.67 0.84 0.94 0.98 1.00 1.00 1.00 1.00 1.00
12 0.29 0.50 0.72 0.88 0.96 0.99 1.00 1.00 1.00 1.00 1.00
15 0.31 0.54 0.76 0.90 0.97 0.99 1.00 1.00 1.00 1.00 1.00
20 0.34 0.58 0.80 0.93 0.98 1.00 1.00 1.00 1.00 1.00 1.00
30 0.36 0.62 0.84 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
60 0.40 0.66 0.87 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 0.43 0.71 0.90 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ν1 � 5, α � 0.01
φ

ν2 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00
5 0.16 0.25 0.36 0.48 0.61 0.72 0.81 0.88 0.93 0.96 0.98
6 0.20 0.32 0.46 0.60 0.73 0.84 0.91 0.95 0.98 0.99 1.00
7 0.24 0.39 0.55 0.70 0.82 0.91 0.96 0.98 0.99 1.00 1.00
8 0.28 0.44 0.62 0.77 0.88 0.95 0.98 0.99 1.00 1.00 1.00
9 0.31 0.49 0.68 0.82 0.92 0.97 0.99 1.00 1.00 1.00 1.00

10 0.35 0.54 0.72 0.86 0.94 0.98 0.99 1.00 1.00 1.00 1.00
12 0.40 0.61 0.79 0.91 0.97 0.99 1.00 1.00 1.00 1.00 1.00
15 0.46 0.68 0.85 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
20 0.53 0.76 0.91 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00
30 0.60 0.82 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
60 0.68 0.88 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 0.76 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A.7 (continued) Power of the F -test: π(φ) � P (Fν1,ν2,φ > Fν1,ν2,α)

ν1 � 6, α � 0.05
φ

ν2 1.00 1.33 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33
5 0.19 0.31 0.47 0.63 0.77 0.87 0.94 0.97 0.99 1.00 1.00
6 0.21 0.36 0.53 0.70 0.84 0.92 0.97 0.99 1.00 1.00 1.00
7 0.23 0.39 0.59 0.76 0.88 0.95 0.98 1.00 1.00 1.00 1.00
8 0.25 0.43 0.63 0.80 0.91 0.97 0.99 1.00 1.00 1.00 1.00
9 0.26 0.45 0.66 0.83 0.94 0.98 1.00 1.00 1.00 1.00 1.00

10 0.28 0.48 0.69 0.86 0.95 0.99 1.00 1.00 1.00 1.00 1.00
12 0.30 0.52 0.74 0.89 0.97 0.99 1.00 1.00 1.00 1.00 1.00
15 0.32 0.56 0.78 0.92 0.98 1.00 1.00 1.00 1.00 1.00 1.00
20 0.35 0.60 0.82 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
30 0.39 0.65 0.87 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00
60 0.42 0.70 0.90 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 0.47 0.75 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ν1 � 6, α � 0.01
φ

ν2 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00
5 0.16 0.25 0.36 0.49 0.61 0.72 0.81 0.88 0.93 0.96 0.98
6 0.20 0.33 0.47 0.61 0.74 0.84 0.91 0.96 0.98 0.99 1.00
7 0.25 0.39 0.56 0.71 0.83 0.91 0.96 0.98 0.99 1.00 1.00
8 0.29 0.46 0.63 0.79 0.89 0.95 0.98 0.99 1.00 1.00 1.00
9 0.33 0.51 0.70 0.84 0.93 0.97 0.99 1.00 1.00 1.00 1.00

10 0.36 0.56 0.74 0.88 0.95 0.98 1.00 1.00 1.00 1.00 1.00
12 0.42 0.64 0.82 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00
15 0.49 0.71 0.88 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00
20 0.57 0.79 0.93 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30 0.65 0.86 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
60 0.74 0.92 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 0.81 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A.8 Tukey’s method:∗ Upper α critical values, qv,df,α, of the Studentized range
distribution

v

df α 2 3 4 5 6 7 8 9 10 12 14 16 18 20
2 0.01 14.0 19.0 22.3 24.7 26.6 28.2 29.5 30.7 31.7 33.4 34.8 36.0 37.0 37.9

0.05 6.08 8.33 9.80 10.9 11.7 12.4 13.0 13.5 14.0 14.7 15.4 15.9 16.4 16.8
0.10 4.13 5.73 6.77 7.54 8.14 8.63 9.05 9.41 9.72 10.3 10.7 11.1 11.4 11.7

3 0.01 8.26 10.6 12.2 13.3 14.2 15.0 15.6 16.2 16.7 17.5 18.2 18.8 19.3 19.8
0.05 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.95 10.3 10.7 11.0 11.2
0.10 3.33 4.47 5.20 5.74 6.16 6.51 6.81 7.06 7.29 7.67 7.98 8.25 8.48 8.68

4 0.01 6.51 8.12 9.17 9.96 10.6 11.1 11.5 11.9 12.3 12.8 13.3 13.7 14.1 14.4
0.05 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.21 8.52 8.79 9.03 9.23
0.10 3.01 3.98 4.59 5.03 5.39 5.68 5.93 6.14 6.33 6.65 6.91 7.13 7.33 7.50

5 0.01 5.70 6.98 7.81 8.42 8.91 9.32 9.67 9.97 10.2 10.7 11.1 11.4 11.7 11.9
0.05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.32 7.60 7.83 8.03 8.21
0.10 2.85 3.72 4.26 4.66 4.98 5.24 5.46 5.65 5.82 6.10 6.34 6.54 6.71 6.86

6 0.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.48 9.81 10.1 10.3 10.5
0.05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.79 7.03 7.24 7.43 7.59
0.10 2.75 3.56 4.07 4.44 4.73 4.97 5.17 5.34 5.50 5.76 5.98 6.16 6.32 6.47

7 0.01 4.95 5.92 6.55 7.02 7.39 7.70 7.98 8.21 8.43 8.80 9.11 9.38 9.62 9.84
0.05 3.34 4.16 4.68 5.06 5.36 5.61 5.81 5.99 6.15 6.42 6.65 6.84 7.00 7.15
0.10 2.68 3.45 3.93 4.28 4.55 4.78 4.97 5.14 5.28 5.53 5.74 5.91 6.06 6.20

8 0.01 4.74 5.64 6.21 6.63 6.97 7.24 7.48 7.69 7.88 8.20 8.46 8.70 8.90 9.08
0.05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.17 6.39 6.57 6.72 6.86
0.10 2.63 3.37 3.83 4.17 4.43 4.65 4.83 4.99 5.13 5.36 5.56 5.73 5.87 6.00

9 0.01 4.60 5.43 5.96 6.35 6.66 6.92 7.14 7.33 7.50 7.79 8.03 8.23 8.41 8.57
0.05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.98 6.19 6.36 6.51 6.64
0.10 2.59 3.32 3.76 4.08 4.34 4.54 4.72 4.87 5.01 5.23 5.42 5.58 5.72 5.85

10 0.01 4.48 5.27 5.77 6.14 6.43 6.67 6.88 7.05 7.21 7.48 7.71 7.90 8.07 8.22
0.05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.83 6.03 6.19 6.34 6.47
0.10 2.56 3.27 3.70 4.02 4.26 4.47 4.64 4.78 4.91 5.13 5.32 5.47 5.61 5.73

11 0.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.25 7.46 7.64 7.80 7.94
0.05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.71 5.90 6.06 6.20 6.33
0.10 2.54 3.23 3.66 3.96 4.20 4.40 4.57 4.71 4.84 5.05 5.23 5.38 5.51 5.63

∗ Valuesqv,df,α were generated using the SAS statement “qT = probmc(’range’,.,prob,df,v);”, where
“prob” � 1 − α, and “df=.” for df � ∞.
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Table A.8 (continued) Tukey’s method: Upper α critical coefficients, qv,df,α of the Studentized
range distribution

v

df α 2 3 4 5 6 7 8 9 10 12 14 16 18 20
12 0.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.68 6.82 7.07 7.28 7.46 7.62 7.76

0.05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.26 5.39 5.61 5.80 5.95 6.08 6.20
0.10 2.52 3.20 3.62 3.92 4.16 4.35 4.51 4.65 4.78 4.99 5.16 5.31 5.44 5.55

14 0.01 4.21 4.89 5.32 5.63 5.88 6.09 6.26 6.41 6.55 6.77 6.97 7.13 7.27 7.40
0.05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.46 5.64 5.78 5.91 6.03
0.10 2.49 3.16 3.56 3.85 4.08 4.27 4.42 4.56 4.68 4.88 5.05 5.19 5.32 5.43

16 0.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.56 6.74 6.90 7.03 7.15
0.05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.35 5.52 5.66 5.79 5.90
0.10 2.47 3.12 3.52 3.80 4.03 4.21 4.36 4.49 4.61 4.80 4.97 5.11 5.23 5.33

18 0.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.41 6.58 6.73 6.85 6.97
0.05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.27 5.43 5.57 5.69 5.79
0.10 2.45 3.10 3.49 3.77 3.98 4.16 4.31 4.44 4.55 4.75 4.90 5.04 5.16 5.26

20 0.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.28 6.45 6.59 6.71 6.82
0.05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.20 5.36 5.49 5.61 5.71
0.10 2.44 3.08 3.46 3.74 3.95 4.12 4.27 4.40 4.51 4.70 4.85 4.99 5.10 5.20

24 0.01 3.96 4.55 4.91 5.17 5.37 5.54 5.68 5.81 5.92 6.11 6.26 6.39 6.51 6.61
0.05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.10 5.25 5.38 5.49 5.59
0.10 2.42 3.05 3.42 3.69 3.90 4.07 4.21 4.34 4.44 4.63 4.78 4.91 5.02 5.12

30 0.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.93 6.08 6.20 6.31 6.41
0.05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 5.00 5.15 5.27 5.38 5.47
0.10 2.40 3.02 3.39 3.65 3.85 4.02 4.16 4.28 4.38 4.56 4.71 4.83 4.94 5.03

40 0.01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.76 5.90 6.02 6.12 6.21
0.05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.90 5.04 5.16 5.27 5.36
0.10 2.38 2.99 3.35 3.60 3.80 3.96 4.10 4.21 4.32 4.49 4.63 4.75 4.86 4.95

60 0.01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.60 5.73 5.84 5.93 6.01
0.05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.81 4.94 5.06 5.15 5.24
0.10 2.36 2.96 3.31 3.56 3.75 3.91 4.04 4.16 4.25 4.42 4.56 4.67 4.78 4.86

120 0.01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.44 5.56 5.66 5.75 5.83
0.05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.71 4.84 4.95 5.04 5.13
0.10 2.34 2.93 3.28 3.52 3.71 3.86 3.99 4.10 4.19 4.35 4.48 4.60 4.69 4.78

∞ 0.01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.29 5.40 5.49 5.57 5.65
0.05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.62 4.74 4.85 4.93 5.01
0.10 2.33 2.90 3.24 3.48 3.66 3.81 3.93 4.04 4.13 4.28 4.41 4.52 4.61 4.69
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Table A.9 Dunnett’s one-sided method; Hsu’s method:∗ Upper α critical coefficients
wD1 � t (0.5)

v−1,df,α
v − 1

df α 2 3 4 5 6 7 8 9 10 12 14 16 18 20
2 0.01 8.88 10.0 10.9 11.5 12.0 12.5 12.8 13.2 13.5 14.0 14.4 14.7 15.1 15.3

0.05 3.80 4.34 4.71 5.00 5.24 5.43 5.60 5.75 5.88 6.11 6.29 6.45 6.59 6.72
0.10 2.54 2.92 3.19 3.40 3.57 3.71 3.83 3.94 4.03 4.19 4.32 4.44 4.54 4.62

3 0.01 5.48 6.04 6.44 6.74 6.99 7.20 7.38 7.53 7.67 7.91 8.11 8.28 8.43 8.56
0.05 2.94 3.28 3.52 3.70 3.85 3.97 4.08 4.17 4.25 4.39 4.51 4.61 4.70 4.78
0.10 2.13 2.41 2.61 2.75 2.87 2.97 3.06 3.13 3.20 3.31 3.41 3.49 3.56 3.62

4 0.01 4.41 4.80 5.07 5.28 5.45 5.59 5.71 5.82 5.92 6.08 6.22 6.34 6.44 6.53
0.05 2.61 2.88 3.08 3.22 3.34 3.44 3.52 3.59 3.66 3.77 3.86 3.94 4.01 4.07
0.10 1.96 2.20 2.37 2.50 2.60 2.68 2.75 2.82 2.87 2.97 3.05 3.11 3.17 3.22

5 0.01 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03 5.11 5.24 5.34 5.44 5.52 5.59
0.05 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30 3.36 3.45 3.53 3.60 3.66 3.71
0.10 1.87 2.09 2.24 2.36 2.45 2.53 2.59 2.65 2.70 2.78 2.86 2.92 2.97 3.02

6 0.01 3.61 3.88 4.06 4.21 4.32 4.42 4.51 4.58 4.64 4.76 4.85 4.93 5.00 5.06
0.05 2.34 2.56 2.71 2.83 2.92 3.00 3.06 3.12 3.17 3.26 3.33 3.40 3.45 3.50
0.10 1.82 2.02 2.17 2.27 2.36 2.43 2.49 2.54 2.59 2.67 2.74 2.79 2.84 2.89

7 0.01 3.42 3.66 3.83 3.96 4.06 4.15 4.22 4.29 4.35 4.45 4.53 4.60 4.67 4.72
0.05 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.00 3.05 3.13 3.20 3.26 3.31 3.36
0.10 1.78 1.98 2.11 2.22 2.30 2.37 2.42 2.47 2.52 2.59 2.66 2.71 2.76 2.80

8 0.01 3.29 3.51 3.66 3.78 3.88 3.96 4.03 4.09 4.14 4.23 4.31 4.38 4.43 4.49
0.05 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92 2.96 3.04 3.11 3.16 3.21 3.25
0.10 1.75 1.94 2.08 2.17 2.25 2.32 2.38 2.42 2.47 2.54 2.60 2.65 2.70 2.74

9 0.01 3.19 3.40 3.54 3.66 3.75 3.82 3.89 3.94 3.99 4.08 4.15 4.21 4.26 4.31
0.05 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86 2.90 2.97 3.04 3.09 3.14 3.18
0.10 1.73 1.92 2.05 2.14 2.22 2.28 2.34 2.39 2.43 2.50 2.56 2.61 2.65 2.69

10 0.01 3.11 3.31 3.45 3.56 3.64 3.72 3.78 3.83 3.88 3.96 4.03 4.08 4.14 4.18
0.05 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81 2.85 2.92 2.98 3.03 3.08 3.12
0.10 1.71 1.90 2.02 2.12 2.19 2.26 2.31 2.35 2.40 2.46 2.52 2.57 2.61 2.65

11 0.01 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74 3.79 3.86 3.93 3.99 4.03 4.08
0.05 2.13 2.31 2.43 2.53 2.60 2.67 2.72 2.77 2.81 2.88 2.94 2.99 3.03 3.07
0.10 1.70 1.88 2.01 2.10 2.17 2.23 2.29 2.33 2.37 2.44 2.49 2.54 2.58 2.62

∗ ValueswD1 � t
(0.5)
v−1,df,α were generated using the SAS statement

“wD1 = probmc(’dunnett1’,.,prob,df,vm1);”, where “prob”� 1− α, “vm1” � v − 1, t (0.5)
v−1,df,α is the upperα

critical value for the maximum of a (v − 1)-variatet-distribution with common correlationρ � 0.5 and
degrees of freedomdf , and “df=.” for df � ∞.
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Table A.9 (continued) Dunnett’s one-sided method, Hsu’s method: Upper α critical
coefficients, wD1 � t (0.5)

v−1,df,α
v − 1

df α 2 3 4 5 6 7 8 9 10 12 14 16 18 20
12 0.01 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67 3.71 3.79 3.85 3.91 3.95 3.99

0.05 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74 2.78 2.84 2.90 2.95 2.99 3.03
0.10 1.69 1.87 1.99 2.08 2.16 2.22 2.27 2.31 2.35 2.42 2.47 2.52 2.56 2.60

14 0.01 2.94 3.11 3.23 3.33 3.40 3.46 3.51 3.56 3.60 3.67 3.73 3.78 3.83 3.87
0.05 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69 2.73 2.79 2.85 2.89 2.93 2.97
0.10 1.67 1.85 1.97 2.06 2.13 2.19 2.24 2.28 2.32 2.38 2.44 2.48 2.52 2.56

16 0.01 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48 3.52 3.59 3.65 3.70 3.74 3.77
0.05 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65 2.69 2.75 2.81 2.85 2.89 2.93
0.10 1.66 1.83 1.95 2.04 2.11 2.17 2.22 2.26 2.30 2.36 2.41 2.46 2.50 2.53

18 0.01 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42 3.46 3.53 3.58 3.63 3.67 3.71
0.05 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62 2.66 2.72 2.78 2.82 2.86 2.89
0.10 1.65 1.82 1.94 2.02 2.09 2.15 2.20 2.24 2.28 2.34 2.39 2.44 2.48 2.51

20 0.01 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38 3.42 3.48 3.53 3.58 3.62 3.65
0.05 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60 2.64 2.70 2.75 2.80 2.83 2.87
0.10 1.64 1.81 1.93 2.01 2.08 2.14 2.19 2.23 2.26 2.33 2.38 2.42 2.46 2.49

24 0.01 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31 3.35 3.41 3.46 3.50 3.54 3.57
0.05 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57 2.60 2.66 2.72 2.76 2.80 2.83
0.10 1.63 1.80 1.91 2.00 2.06 2.12 2.17 2.21 2.24 2.30 2.35 2.40 2.43 2.47

30 0.01 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.25 3.28 3.34 3.39 3.43 3.46 3.50
0.05 1.99 2.15 2.25 2.34 2.40 2.45 2.50 2.54 2.57 2.63 2.68 2.72 2.76 2.79
0.10 1.62 1.79 1.90 1.98 2.05 2.10 2.15 2.19 2.22 2.28 2.33 2.37 2.41 2.44

40 0.01 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18 3.21 3.27 3.32 3.36 3.39 3.42
0.05 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51 2.54 2.60 2.65 2.69 2.72 2.75
0.10 1.61 1.77 1.88 1.96 2.03 2.08 2.13 2.17 2.20 2.26 2.31 2.35 2.39 2.42

60 0.01 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12 3.15 3.20 3.25 3.29 3.32 3.35
0.05 1.95 2.10 2.21 2.28 2.34 2.40 2.44 2.48 2.51 2.57 2.61 2.65 2.69 2.72
0.10 1.60 1.76 1.87 1.95 2.01 2.06 2.11 2.15 2.18 2.24 2.29 2.33 2.36 2.39

120 0.01 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06 3.09 3.14 3.18 3.22 3.25 3.28
0.05 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45 2.48 2.53 2.58 2.62 2.65 2.68
0.10 1.59 1.75 1.85 1.93 1.99 2.05 2.09 2.13 2.16 2.22 2.27 2.31 2.34 2.37

∞ 0.01 2.56 2.69 2.77 2.84 2.89 2.93 2.97 3.00 3.03 3.08 3.12 3.15 3.18 3.21
0.05 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42 2.45 2.50 2.55 2.58 2.62 2.64
0.10 1.58 1.73 1.84 1.92 1.98 2.03 2.07 2.11 2.14 2.20 2.24 2.28 2.32 2.35
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Table A.10 Dunnett’s two-sided method:∗ Upper α critical coefficients wD2 � |t |(0.5)
v−1,df,α

v − 1
df α 2 3 4 5 6 7 8 9 10 12 14 16 18 20
2 0.01 12.4 13.8 14.8 15.6 16.2 16.7 17.1 17.5 17.8 18.4 18.8 19.2 19.6 19.9

0.05 5.42 6.06 6.51 6.85 7.12 7.35 7.54 7.71 7.85 8.10 8.31 8.49 8.64 8.77
0.10 3.72 4.18 4.50 4.74 4.93 5.09 5.23 5.34 5.45 5.62 5.77 5.89 6.00 6.09

3 0.01 6.97 7.64 8.10 8.46 8.74 8.98 9.19 9.37 9.52 9.79 10.0 10.2 10.4 10.5
0.05 3.87 4.26 4.54 4.75 4.92 5.06 5.18 5.28 5.37 5.53 5.66 5.77 5.87 5.95
0.10 2.91 3.23 3.45 3.62 3.75 3.87 3.96 4.04 4.12 4.24 4.34 4.43 4.51 4.58

4 0.01 5.36 5.81 6.12 6.36 6.55 6.72 6.85 6.98 7.08 7.27 7.42 7.55 7.66 7.77
0.05 3.31 3.62 3.83 3.99 4.13 4.23 4.33 4.41 4.48 4.60 4.71 4.79 4.87 4.94
0.10 2.60 2.86 3.05 3.18 3.30 3.39 3.47 3.54 3.60 3.70 3.79 3.86 3.92 3.98

5 0.01 4.63 4.97 5.22 5.41 5.56 5.68 5.79 5.89 5.97 6.11 6.24 6.34 6.43 6.51
0.05 3.03 3.29 3.48 3.62 3.73 3.82 3.90 3.97 4.03 4.14 4.23 4.30 4.37 4.42
0.10 2.43 2.67 2.83 2.96 3.05 3.14 3.21 3.27 3.32 3.41 3.49 3.56 3.61 3.66

6 0.01 4.21 4.51 4.71 4.87 5.00 5.10 5.20 5.28 5.35 5.47 5.57 5.66 5.74 5.80
0.05 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.71 3.76 3.86 3.94 4.00 4.06 4.11
0.10 2.33 2.55 2.70 2.81 2.91 2.98 3.05 3.10 3.15 3.24 3.31 3.37 3.42 3.47

7 0.01 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89 4.96 5.07 5.16 5.24 5.31 5.37
0.05 2.75 2.97 3.12 3.24 3.33 3.41 3.48 3.53 3.58 3.67 3.75 3.81 3.86 3.91
0.10 2.26 2.47 2.61 2.72 2.81 2.88 2.94 2.99 3.04 3.12 3.18 3.24 3.29 3.33

8 0.01 3.77 4.00 4.17 4.29 4.40 4.48 4.56 4.62 4.68 4.78 4.86 4.93 5.00 5.05
0.05 2.67 2.88 3.02 3.13 3.22 3.29 3.35 3.41 3.46 3.54 3.61 3.67 3.72 3.76
0.10 2.22 2.41 2.55 2.65 2.73 2.80 2.86 2.91 2.96 3.03 3.10 3.15 3.20 3.24

9 0.01 3.63 3.85 4.01 4.12 4.22 4.30 4.37 4.43 4.48 4.57 4.65 4.71 4.77 4.82
0.05 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32 3.36 3.44 3.51 3.56 3.61 3.65
0.10 2.18 2.37 2.50 2.60 2.68 2.74 2.80 2.85 2.89 2.97 3.03 3.08 3.13 3.17

10 0.01 3.53 3.74 3.88 3.99 4.08 4.16 4.22 4.28 4.33 4.42 4.49 4.55 4.60 4.65
0.05 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24 3.29 3.36 3.43 3.48 3.53 3.57
0.10 2.15 2.34 2.46 2.56 2.64 2.70 2.75 2.80 2.84 2.92 2.98 3.03 3.07 3.11

11 0.01 3.45 3.65 3.79 3.89 3.98 4.05 4.11 4.16 4.21 4.29 4.36 4.42 4.47 4.52
0.05 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19 3.23 3.30 3.36 3.42 3.46 3.50
0.10 2.13 2.31 2.43 2.53 2.60 2.66 2.72 2.76 2.80 2.87 2.93 2.98 3.03 3.06

∗ ValueswD2 � t
(0.5)
v−1,df,α generated using the SAS statement “wD2 = probmc(’dunnett2’,.,prob, df,vm1);”,

where “prob”� 1 − α, “vm1” � v − 1, |t |(0.5)
v−1,df,α is the upperα critical value for the maximum absolute

value of a (v − 1)-variatet-distribution with common correlationρ � 0.5 and degrees of freedomdf , and
“df=.” for df � ∞.
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Table A.10 (continued) Dunnett’s two-sided method: Upper α critical coefficients,
wD2 � |t |(0.5)

v−1,df,α
v − 1

df α 2 3 4 5 6 7 8 9 10 12 14 16 18 20
12 0.01 3.39 3.58 3.71 3.81 3.89 3.96 4.02 4.07 4.12 4.19 4.26 4.32 4.37 4.41

0.05 2.50 2.68 2.81 2.90 2.98 3.04 3.09 3.14 3.18 3.25 3.31 3.36 3.41 3.45
0.10 2.11 2.29 2.41 2.50 2.57 2.64 2.69 2.73 2.77 2.84 2.90 2.95 2.99 3.03

14 0.01 3.29 3.47 3.59 3.69 3.76 3.83 3.88 3.93 3.97 4.05 4.11 4.16 4.20 4.25
0.05 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07 3.11 3.18 3.23 3.28 3.32 3.36
0.10 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.68 2.72 2.79 2.84 2.89 2.93 2.97

16 0.01 3.22 3.39 3.51 3.60 3.67 3.73 3.78 3.83 3.87 3.94 4.00 4.05 4.09 4.13
0.05 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02 3.06 3.12 3.18 3.22 3.26 3.30
0.10 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65 2.69 2.75 2.80 2.85 2.89 2.93

18 0.01 3.17 3.33 3.44 3.53 3.60 3.66 3.71 3.75 3.79 3.86 3.91 3.96 4.00 4.04
0.05 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98 3.01 3.08 3.13 3.18 3.22 3.25
0.10 2.04 2.21 2.32 2.41 2.47 2.53 2.58 2.62 2.66 2.72 2.77 2.82 2.86 2.89

20 0.01 3.13 3.29 3.40 3.48 3.55 3.60 3.65 3.69 3.73 3.80 3.85 3.90 3.94 3.97
0.05 2.38 2.54 2.65 2.73 2.80 2.86 2.90 2.95 2.98 3.05 3.10 3.14 3.18 3.22
0.10 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60 2.64 2.70 2.75 2.79 2.83 2.87

24 0.01 3.07 3.22 3.32 3.40 3.47 3.52 3.57 3.61 3.64 3.70 3.76 3.80 3.84 3.87
0.05 2.35 2.51 2.61 2.70 2.76 2.81 2.86 2.90 2.94 3.00 3.05 3.09 3.13 3.16
0.10 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57 2.60 2.66 2.71 2.76 2.79 2.83

30 0.01 3.01 3.15 3.25 3.33 3.39 3.44 3.49 3.52 3.56 3.62 3.66 3.71 3.74 3.77
0.05 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86 2.89 2.95 3.00 3.04 3.08 3.11
0.10 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54 2.57 2.63 2.68 2.72 2.76 2.79

40 0.01 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44 3.48 3.53 3.58 3.62 3.65 3.68
0.05 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81 2.85 2.90 2.95 2.99 3.02 3.06
0.10 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51 2.54 2.60 2.65 2.69 2.72 2.75

60 0.01 2.90 3.03 3.12 3.19 3.25 3.29 3.33 3.37 3.40 3.45 3.49 3.53 3.56 3.59
0.05 2.27 2.41 2.51 2.58 2.64 2.69 2.73 2.77 2.80 2.86 2.90 2.94 2.97 3.00
0.10 1.95 2.10 2.21 2.28 2.34 2.40 2.44 2.48 2.51 2.57 2.61 2.65 2.69 2.72

120 0.01 2.85 2.97 3.06 3.12 3.18 3.22 3.26 3.29 3.32 3.37 3.41 3.45 3.48 3.50
0.05 2.24 2.38 2.47 2.55 2.60 2.65 2.69 2.73 2.76 2.81 2.86 2.89 2.93 2.95
0.10 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45 2.48 2.53 2.58 2.62 2.65 2.68

∞ 0.01 2.79 2.91 3.00 3.06 3.11 3.15 3.19 3.22 3.25 3.29 3.33 3.37 3.40 3.42
0.05 2.21 2.35 2.44 2.51 2.57 2.61 2.65 2.69 2.72 2.77 2.81 2.85 2.88 2.91
0.10 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42 2.45 2.50 2.55 2.58 2.62 2.64
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Table A.11 Voss–Wang method: Upper α critical coefficients wV � vm,d,α for m
orthogonal contrasts and d sums of squares pooled into each quasi
mean squared error.

even α odd α

m d 0.10 0.05 0.01 0.001 m d 0.10 0.05 0.01 0.001

2 1 12.4 25.0 126. 1384. 3 2 5.31 7.61 17.0 54.4
4 2 9.08 13.1 29.9 105. 5 3 6.35 8.27 14.7 32.0
6 3 8.57 11.2 19.9 50.0 7 4 6.82 8.56 13.8 26.8
8 4 8.37 10.5 16.6 33.2 9 5 7.18 8.73 13.3 24.7

10 5 8.39 10.3 16.0 29.5 11 6 7.42 8.89 13.0 21.4
12 6 8.37 10.1 14.7 24.1 13 7 7.64 8.95 12.4 20.4
14 7 8.43 9.89 14.0 22.5 15 8 7.76 9.04 12.4 19.2
16 8 8.45 9.88 13.5 21.8 17 9 7.85 9.10 12.4 19.1
18 9 8.51 9.77 13.5 19.9 19 10 7.98 9.10 12.2 17.8

20 10 8.50 9.70 12.9 19.0 21 11 8.03 9.17 12.1 16.8
22 11 8.53 9.78 12.9 18.2 23 12 8.12 9.19 11.9 17.2
24 12 8.55 9.76 12.7 18.6 25 13 8.15 9.28 11.9 17.2
26 13 8.60 9.80 12.5 18.2 27 14 8.22 9.33 11.8 16.5
28 14 8.61 9.78 12.6 18.3 29 15 8.27 9.36 11.8 16.7

30 15 8.63 9.78 12.4 17.5 31 16 8.32 9.38 11.8 16.3
32 16 8.70 9.76 12.4 16.9 33 17 8.35 9.38 11.8 15.9
34 17 8.66 9.70 12.2 16.5 35 18 8.38 9.35 11.7 15.8
36 18 8.69 9.71 12.1 16.3 37 19 8.41 9.40 11.6 15.6
38 19 8.70 9.67 12.0 16.5 39 20 8.43 9.37 11.6 16.0

40 20 8.71 9.69 12.0 16.5 41 21 8.45 9.36 11.5 15.5
42 21 8.72 9.64 12.0 15.8 43 22 8.48 9.39 11.6 15.5
44 22 8.73 9.68 12.0 15.7 45 23 8.52 9.40 11.6 15.2
46 23 8.76 9.69 11.9 15.7 47 24 8.53 9.42 11.5 15.1
48 24 8.75 9.65 11.8 15.8 49 25 8.55 9.44 11.5 15.1

50 25 8.76 9.68 11.8 15.7 51 26 8.57 9.42 11.5 15.0
52 26 8.78 9.66 11.8 15.6 53 27 8.60 9.45 11.5 15.0
54 27 8.80 9.69 11.8 15.5 55 28 8.61 9.46 11.4 15.0
56 28 8.82 9.70 11.8 15.7 57 29 8.64 9.51 11.5 15.1
58 29 8.81 9.71 11.7 15.3 59 30 8.63 9.49 11.4 15.0

60 30 8.83 9.70 11.7 15.3 61 31 8.66 9.49 11.4 15.1
62 31 8.84 9.68 11.7 15.9 63 32 8.67 9.50 11.4 15.4
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polynomial regression, 243
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model, 245, 550
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quadratic regression, 245, 260
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power, 51
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random numbers, 5
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residual plots, 104, 105, 247

see assumption checking
residuals, 42, 104
resolution, 487
response surface methods, 244, 547
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sample correlation, 257
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analysis of covariance, 288
analysis of variance, 58
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confidence intervals, 94
data input, 57
hypothesis tests, 94
means, 60, 125
multiple comparisons, 96
nested effects, 662
plots, 59, 122
random effects, 635
regression, 268
transforming data, 126

Satterthwaite’s approximation, 117, 151, 165



740 Index of Subjects
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Scheff́e method, 79, 83
screening experiments, 485
second associates, 345, 361
second-order designs, 561, 569, 570
separability of factorial effects, 197
sequential sums of squares, 176, 270
several crossed treatment factors

see crossed treatment factors
significance level, 47
simple contrasts, 142
simple linear regression, 245, 258
simple pairwise differences, 142
simultaneous confidence intervals, 78

see multiple comparisons
simultaneous hypothesis tests, 78
single replicate experiments, 169, 182,
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split-plot designs, 21, 675

analysis of variance, 678, 687, 688
confounding, 686
expected mean squares, 687
least squares estimators, 681
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multiple comparisons, 681, 688, 690
randomization, 675
split-plot analysis, 678
whole-plot analysis, 680

split-split-plot designs, 684
standard error, 68
star points, 562
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Studentized range distribution, 85
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Type I, 175, 270
Type III, 175

symmetric factorial experiments, 422

T-distribution approximation, 81
Taguchi, 218, 515
three-way complete model, 194
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transformation, 113
treatment combinations, 9
treatment contrasts, 37, 68, 286, 424
treatment factors, 8
treatment sum of squares, 46
treatment-versus-control contrast, 70
treatments adjusted for blocks, 350, 452
trend contrasts, 71, 144, 261
Tukey method, 79, 85
Tukey’s test for additivity, 172
two crossed treatment factors

see crossed treatment factors
two-factor interaction, 136, 199
two-way analysis of variance, 156

see crossed treatment factors, 156
Type I sums of squares, 175, 270
Type III sums of squares, 175

Unequal variances, 151, 165

Variance components, 597
see random effects models

Voss–Wang method, 216, 224

Washout periods, 390
whole plots, 675
whole-plot analysis, 680
words, 487

Youden designs, 392
analysis of variance, 401, 406
assumption checking, 409
confidence intervals, 407
least squares estimators, 398, 406
multiple comparisons, 407
randomization, 392
replication, 392
row–column–treatment model, 395
sample sizes, 407

Youden square, 391
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