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Preface
The development and use of statistical methods has grown exponentially over the last two
decades. Nowhere is this more evident than in their application to biostatistics and, in par-
ticular, to clinical medical research. To keep abreast with the rapid pace of development,
the journal Statistics in Medicine alone is published 24 times a year. Here and in other
journals, books and professional meetings, new theory and methods are constantly presented.
However, the transitions of the new methods to actual use are not always as rapid. There
are problems and obstacles. In such an applied interdisciplinary �eld as biostatistics, in which
even the simplest study often involves teams of researchers with varying backgrounds and
which can generate massive complicated data sets, new methods, no matter how powerful and
robust, are of limited use unless they are clearly understood by practitioners, both clinical and
biostatistical, and are available with well-documented computer software.
In response to these needs Statistics in Medicine initiated in 1996 the inclusion of tutorials

in biostatistics. The main objective of these tutorials is to generate, in a timely manner, brief
well-written articles on biostatistical methods; these should be complete enough so that the
methods presented are accessible to a broad audience, with su�cient information given to
enable readers to understand when the methods are appropriate, to evaluate applications and,
most importantly, to use the methods in their own research.
At �rst tutorials were solicited from major methodologists. Later, both solicited and unso-

licited articles were, and are still, developed and published. In all cases major researchers,
methodologists and practitioners wrote and continue to write the tutorials. Authors are guided
by four goals. The �rst is to develop an introduction suitable for a well-de�ned audience (the
broader the audience the better). The second is to supply su�cient references to the literature
so that the readers can go beyond the tutorial to �nd out more about the methods. The ref-
erenced literature is, however, not expected to constitute a major literature review. The third
goal is to supply su�cient computer examples, including code and output, so that the reader
can see what is needed to implement the methods. The �nal goal is to make sure the reader
can judge applications of the methods and apply the methods. The tutorials have become ex-
tremely popular and heavily referenced, attesting to their usefulness. To further enhance their
availability and usefulness, we have gathered a number of these tutorials and present them in
this two-volume set.
Each volume has a brief preface introducing the reader to the aims and contents of the

tutorials. Here we present an even briefer summary. We have arranged the tutorials by subject
matter, starting in Volume 1 with 18 tutorials on statistical methods applicable to clinical
studies, both observational studies and controlled clinical trials. Two tutorials discussing the
computation of epidemiological rates such as prevalence, incidence and lifetime rates for
cohort studies and capture–recapture settings begin the volume. Propensity score adjustment
methods and agreement statistics such as the kappa statistic are dealt with in the next two
tutorials. A series of tutorials on survival analysis methods applicable to observational study
data are next. We then present �ve tutorials on the development of prognostics or clinical
prediction models. Finally, there are six tutorials on clinical trials. These range from designing
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and analysing dose response studies and Bayesian data monitoring to analysis of longitudinal
data and generating simple summary statistics from longitudinal data. All these are in the
context of clinical trials. In all tutorials, the readers is given guidance on the proper use of
methods.
The subject-matter headings of Volume 1 are, we believe, appropriate to the methods. The

tutorials are, however, often broader. For example, the tutorials on the kappa statistics and
survival analysis are useful not only for observational studies, but also for controlled clinical
studies. The reader will, we believe, quickly see the breadth of the methods.
Volume 2 contains 16 tutorials devoted to the analysis of complex medical data. First, we

present tutorials relevant to single data sets. Seven tutorials give extensive introductions to and
discussions of generalized estimating equations, hierarchical modelling and mixed modelling.
A tutorial on likelihood methods closes the discussion of single data sets. Next, two exten-
sive tutorials cover the concepts of meta-analysis, ranging from the simplest conception of a
�xed e�ects model to random e�ects models, Bayesian modelling and highly involved models
involving multivariate regression and meta-regression. Genetic data methods are covered in
the next three tutorials. Statisticians must become familiar with the issues and methods rele-
vant to genetics. These tutorials o�er a good starting point. The next two tutorials deal with
the major task of data reduction for functional magnetic resonance imaging data and disease
mapping data, covering the complex data methods required by multivariate data. Complex and
thorough statistical analyses are of no use if researchers cannot present results in a meaningful
and usable form to audiences beyond those who understand statistical methods and complexi-
ties. Reader should �nd the methods for presenting such results discussed in the �nal tutorial
simple to understand.
Before closing this preface to the two volumes we must state a disclaimer. Not all the

tutorials that are in these two volumes appeared as tutorials. Three were regular articles.
These are in the spirit of tutorials and �t well within the theme of the volumes.
We hope that readers enjoy the tutorials and �nd them bene�cial and useful.

RALPH B. D’AGOSTINO, SR. EDITOR
Boston University

Harvard Clinical Research Institute



Preface to Volume 1
This �rst volume of Tutorials in Biostatistics is devoted to statistical methods in clinical
research. By this we mean statistical methods applied to medical problems involving human
beings, either as members of populations or groups in observational and epidemiological
research or as participants in clinical trials. The tutorials are divided into three parts. Here
we brie�y mention the general themes of each part and the articles within them.
Part I is on observational studies and epidemiology. These articles clarify the uniqueness

and complications that arise from observational data and present methods to obtain meaningful
and unbiased inferences. Section 1.1 is devoted to epidemiology and contains two tutorials.
The �rst, by Beiser, D’Agostino, Seshadri, Sullivan and Wolf, presents a thorough discussion
of epidemiological event rates such as incidence rates and lifetime risks, clari�es issues such
as competing risks in the calculation of these rates and includes computer programs to carry
out computations. The second tutorial, by Chao, Tsay, Lin, Shau and Chao, describes the
computation of epidemiological rates for capture-recapture data such as would be obtained
from multiple surveys attempting to estimate the disease prevalence rate for, say, hepatitis A
virus or diabetes in a population. The issue of minimizing biases is discussed. Section 1.2, on
adjustment methods, contains one article by Ralph D’Agostino, Jr., on the use of propensity
scores for reducing bias in treatment comparisons from observational studies. This tutorial
has become a standard reference for propensity scoring. The article from Section 1.3, on
agreement statistics, by Kraemer, Periyakoil and Noda, covers in detail the use of the kappa
statistic in medical research.
Section 1.4 presents three tutorials devoted to survival methods applicable to observational

studies. First, Bull and Spiegelhalter clearly identify the complications and other issues in-
volved in using survival methods in observational studies (in contrast to clinical trials). Interval
estimation and binary outcomes in longitudinal studies are then developed in the next two tu-
torials by Lindsey and Ryan and by Carlin, Wolfe, Co�ey and Patton. The latter two tutorials
have uses beyond survival analysis in observational studies. We group them in this part of
the volume mainly for convenience. The reader should quickly see the broader applicability
of the methods and not be limited by our classi�cation.
Part II is concerned with prognostic/clinical prediction models and contains two sections.

Here the aim is to present methods for developing mathematical models that can be used to
identify people at risk for an outcome such as the development of heart disease or for the
prognosis of subjects with certain clinical characteristics such as cancer tumour size. Some
of these tutorials have become major references for clinical prediction model development.
Section 2.1 contains one article by Mazumdar and Glassman on categorizing prognostic vari-
ables. The question is often how best to dichotomize a diagnostic variable so that it can be
used in a clinical setting. Issues such as multiple testing often render useless such ’obvious’
methods as trying to �nd the best cut point. A careful review of the �eld is presented and
helpful suggestions abound.
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Section 2.2, ‘Prognostic/Clinical Prediction Models’, presents in four detailed tutorials meth-
ods for developing and evaluating multivariable clinical prediction models. The �rst, by
D’Agostino, Belanger, Markson, Kelly-Hayes and Wolf, illustrates how to deal with a large
set of potentially useful prediction variables. Methods such as principal components analysis
and hierarchical variable selection methods for survival analysis are highlighted. The next two
articles have Frank Harrell as the �rst author and deal in detail with developing prediction
models for time to event, binary and ordinal outcomes. (The �rst is authored by Harrel, Lee
and Mark, and the second by Harrell, Margolis, Gove, Mason, Mulholland, Lehmann, Muhe,
Gatchalian and Eichenwald.) Questions of model development are explored completely, as
are issues of making predictions and concerns about validation. The last tutorial in Section
2.2 deals with estimating prognosis based on observational data such as are obtainable in a
registry. It is authored by DeLong, Nelson, Wong, Pryor, Peterson, Lee, Mark, Cali� and
Pauker. These four tutorials are among the best literature sources for the development and
appropriate use of clinical prediction models.
Part III is on clinical trials and contains three sections. While given as tutorials, the articles

of this section are innovative in understanding as well as in the presentation of the issues and
methods. Section 3.1 contains a clever article by Wong and Lachenbruch on the optimal design
of dose response studies. Section 3.2, on monitoring in clinical trails, contains an article on
Bayesian data monitoring by Fayers, Ashby and Parmar pointing to the bene�ts of a Bayesian
analysis even in this setting. Section 3.3 contains four articles on analysis. These bring together
ideas and methods available for use, but not presented elsewhere with such completeness and
clear focus. They �ll a serious void and add wonderfully to the �eld. The �rst, by Albert, deals
with longitudinal clinical trial data analysis. The second, by Senn, Stevens and Chaturvedi,
deals with generating simple summary numbers from repeated measures studies so that the
analysis and interpretations of the study are intuitive and meaningful. The next article, by
Agresti and Hartzel, concerns binary data from multi-centre trials. Lastly, Chuang-Stein and
Agresti discuss dose responses with ordinal data.
We hope these 18 tutorials will be of use to readers.
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1.3 Agreement Statistics

TUTORIAL IN BIOSTATISTICS

Kappa coe�cients in medical research

Helena Chmura Kraemer1;∗;†, Vyjeyanthi S. Periyakoil2 and Art Noda1

1Department of Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford;
California; U.S.A.

2VA Palo Alto Health Care System; Palo Alto; CA; U.S.A.

SUMMARY

Kappa coe�cients are measures of correlation between categorical variables often used as reliability or
validity coe�cients. We recapitulate development and de�nitions of the K (categories) by M (ratings)
kappas (K ×M), discuss what they are well- or ill-designed to do, and summarize where kappas now
stand with regard to their application in medical research. The 2×M (M¿2) intraclass kappa seems the
ideal measure of binary reliability; a 2× 2 weighted kappa is an excellent choice, though not a unique
one, as a validity measure. For both the intraclass and weighted kappas, we address continuing problems
with kappas. There are serious problems with using the K ×M intraclass (K¿2) or the various K ×M
weighted kappas for K¿2 or M¿2 in any context, either because they convey incomplete and possibly
misleading information, or because other approaches are preferable to their use. We illustrate the use
of the recommended kappas with applications in medical research. Copyright ? 2002 John Wiley &
Sons, Ltd.

KEY WORDS: kappa; reliability; validity; consensus

1. INTRODUCTION

‘Many human endeavors have been cursed with repeated failures before �nal success is
achieved. The scaling of Mount Everest is one example. The discovery of the Northwest
Passage is a second. The derivation of a correct standard error for kappa is a third’. This wry
comment by Fleiss et al. in 1979 [1] continues to characterize the situation with regard to
the kappas coe�cients up to the year 2001, including not only derivation of correct standard
errors, but also the formulation, interpretation and application of kappas.

∗Correspondence to: Helena Chmura Kraemer, Department of Psychiatry and Behavioral Sciences, MC 5717,
Stanford University, Stanford, CA 94305, U.S.A.

†E-mail: hck@leland.stanford.edu

Contract=grant sponsor: National Institute of Mental Health; contract=grant number: MH40041
Contract=grant sponsor: National Institute of Aging; contract=grant number: AG17824
Contract=grant sponsor: Department of Veterans A�airs Sierra-Paci�c MIRECC
Contract=grant sponsor: Medical Research Service of the Department of Veterans A�airs
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The various kappa coe�cients are measures of association or correlation between variables
measured at the categorical level. The �rst formal introductions of kappa were those, more
than 40 years ago, by Scott [2] and Cohen [3]. Since then, the types of research questions
in medical research that are well addressed with kappas (for example, reliability and validity
of diagnosis, risk factor estimation) abound, and such areas of research have become of
ever growing interest and importance [4]. Not surprisingly, numerous papers both using and
criticizing the various forms of kappas have appeared in the statistical literature, as well as
in the psychology, education, epidemiology, psychiatry and other medical literature. It is thus
appropriate, despite the many existing ‘revisits’ of kappas [5–15], to take stock of what kappas
are, what they are well-designed or ill-designed to do, and to bring up to date where kappas
stand with regard to their applications in medical research.
To set the stage for discussion let us consider �ve major issues concerning kappas that are

often forgotten or misinterpreted in the literature:

1. Kappa has meaning beyond percentage agreement corrected for chance (PACC). Sir
Alexander Fleming in 1928 discovered penicillin by noticing that bacteria failed to grow
on a mouldy Petri dish. However, in summarizing current knowledge of penicillin and
its uses, a mouldy Petri dish is at most a historical curiosity, not of current relevance to
knowledge about penicillin. In much the same way, Jacob Cohen discovered kappa by
noticing that this statistic represented percentage agreement between categories corrected
for chance (PACC). Since then, there has also been much expansion and re�nement of
our knowledge about kappa, its meaning and its use. Whether to use or not use kappa has
very little to do with its relationship to PACC. With regard to kappa, that relationship
is a historical curiosity. Just as some scientists study moulds, and others bacteria, to
whom penicillin is a side issue, there are scientists speci�cally interested in percentage
agreement. To them whether rescaling it to a kappa is appropriate to its understanding and
use is a side issue [16–20]. Consequently there are now two separate and distinct lines
of inquiry, sharing historical roots, one concerning use and interpretation of percentage
agreement that will not be addressed here, and that concerning use and interpretation of
kappa which is here the focus.

2. Kappas were designed to measure correlation between nominal, not ordinal, measures.
While the kappas that emerged from consideration of agreement between non-ordered
categories can be extended to ordinal measures [21–23], there are better alternatives
to kappas for ordered categories. Technically, one can certainly compute kappas with
ordered categories, for example, certain, probable, possible and doubtful diagnosis of
multiple sclerosis [24], and the documentation of many statistical computer programs
(for example, SAS) seem to support this approach, but the interpretation of the results
can be misleading. In all that follows, the measures to be considered will be strictly
nominal, not ordered categories.

3. Even restricted to non-ordered categories, kappas are meant to be used, not only as
descriptive statistics, but as a basis of statistical inference. RBI or batting averages in
baseball are purely descriptive statistics, not meant to be used as a basis of statistical
inference. Once one understands how each is computed, it is a matter of personal pref-
erence and subjective judgement which statistic would be preferable in evaluating the
performance of batters. In contrast, means, variance, correlation coe�cients etc., as they
are used in medical research, are descriptive statistics of what is seen in a particular
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sample, but are also meant to estimate certain clinically meaningful population charac-
teristics, and to be used as a basis of inference from the sample to its population. To be
of value to medical research, kappas must do likewise.
Nevertheless, presentations of kappas often do not de�ne any population or any pa-

rameter of the population that sample kappas are meant to estimate, and treat kappas
purely as descriptive statistics [7]. Then discussions of bias, standard error, or any other
such statistical inference procedures from sample to population are compromised. Many
of the criticisms of kappas have been based on subjective opinions as to whether kappas
are ‘fair to the raters’ or ‘large enough’, behave ‘as they should’, or accord with some
personal preference as to what ‘chance’ means [7, 13, 25, 26]. These kinds of discussions
of subjective preferences are appropriate to discussing RBI versus batting average, but
not to estimation of a well-de�ned parameter in a population. We would urge that the
sequence of events leading to use of a kappa coe�cient should be: (i) to start with an
important problem in medical research; (ii) to de�ne the population and the parameter
that the problem connotes; (iii) to discuss how (or whether) sample kappa might esti-
mate that parameter, and (iv) to derive its statistical properties in that population. When
this procedure is followed, it becomes clear that there is not one kappa coe�cient, but
many, and that which kappa coe�cient is used in which situation is of importance.
Moreover, there are many situations in which kappa can be used, but probably should
not be.

4. In using kappas as a basis of statistical inference, whether or not kappas are con-
sistent with random decision making is usually of minimal importance. Tests of the
null hypothesis of randomness (for example, chi-square contingency table analyses) are
well established and do not require kappa coe�cients for implementation. Kappas are
designed as e�ect sizes indicating the degree or strength of association. Thus bias of the
sample kappas (relative to their population values), their standard errors (in non-random
conditions), computation of con�dence intervals, tests of homogeneity etc. are the sta-
tistical issues of importance [27–30]. However, because of overemphasis on testing null
hypotheses of randomness, much of the kappa literature that deals with statistical infer-
ence focuses not on kappa as an e�ect size, but on testing whether kappas are random or
not. In this discussion no particular emphasis will be placed on the properties of kappas
under the assumption of randomness.

5. The use of kappas in statistical inference does not depend on any distributional assump-
tions on the process underlying the generation of the classi�cations. However, many
presentations impose such restricting assumptions on the distributions of pi that may not
well represent what is actually occurring in the population.
The population model for a nominal rating is as follows. Patients in a population

are indexed by i; i=1; 2; 3; : : : : A single rating of a patient is a classi�cation of pa-
tient i into one of K(K¿1) mutually exclusive and exhaustive non-ordered categories
and is represented by a K-dimensional vector Xi=(Xi1; Xi2; : : : ; XiK), where Xij =1, if
patient i is classi�ed into category j, and all other entries equal 0. For each patient,
there might be M (M¿1) such ratings, each done blinded to all the others. Thus any
correlation between the ratings arises from correlation within the patients and not be-
cause of the in�uence of one rater or rating on another. The probability that patient
i (i=1; 2; : : :) is classi�ed into category j (j=1; 2; : : : ; K) is denoted pij , and pi is the
K-dimensional vector (pi1; pi2; : : : ; piK) with non-negative entries summing to 1. In a
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particular population of which patient i is a member, pi has some, usually unknown,
distribution over the K − 1 dimensional unit cube.
For example, when there are two categories (K=2), for example, diagnosis of disease

positive or negative, one common assumption is that the probability that a patient actually
has the disease is �, and that if s=he has the disease, there is a �xed probability of
a positive diagnosis (Xi1 = 1), the sensitivity (Se) of the diagnosis (pi1 =Se); if s=he
does not have the disease (Xi2 = 2), a �xed probability of a negative diagnosis, the
speci�city (Sp) of the diagnosis (1−pi1 =Sp). This limits the distribution of pi1 to two
points, Se and 1− Sp (pi2 = 1− pi1): the ‘sensitivity=speci�city model’ [31].
In the same situation, another model suggested has been the ‘know=guess’

model [25, 32, 33]. In this case, it is assumed that with a certain probability, �1, a patient
will be known with certainty to have the disease (pi1= 1); with a certain probability,
�0, a patient will be known with certainty not to have the disease (pi1= 0). For these
patients, there is no probability of classi�cation error. Finally, with the remaining prob-
ability, 1 − �1 − �0, the diagnosis will be guessed with probability pi1= �. This limits
the distribution of pi1 to 3 points (1; �; 0).
One can check the �t of any such model by obtaining multiple blinded replicate di-

agnoses per patient. For these two models, three blinded diagnoses per patient would be
required to estimate the three parameters in each model, (�;Se;Sp) or (�1; �0; �), and at
least one additional diagnosis per patient to test the �t of the model. In practice, it is hard
to obtain four or more diagnoses per patient for a large enough sample size for adequate
power, but in the rare cases where this has been done, such restrictive models are often
shown to �t the data poorly [34]. If inferences are based on such limiting distributional
assumptions that do not hold in the population, no matter how reasonable those assump-
tions might seem, or how much they simplify the mathematics, the conclusions drawn
on that basis may be misleading. Kappas are based on no such limiting assumptions.
Such models merely represent special cases often useful for illustrating certain proper-
ties of kappa, or for disproving certain general statements regarding kappa, as they here
will be.

2. ASSESSMENT OF RELIABILITY OF NOMINAL DATA:
THE INTRACLASS KAPPA

The reliability of a measure, as technically de�ned, is the ratio of the variance of the ‘true’
scores to that of the observed scores, where the ‘true’ score is the mean over independent
replications of the measure [35, 36]. Since the reliability of a measure, so de�ned, indicates
how reproducible that measure will be, how attenuated correlations against that measure will
be, what loss of power of statistical tests use of that measure will cause, as well as how
much error will be introduced into clinical decision making based on that measure [37], this
is an important component of the quality of a measure both for research and clinical use.
Since one cannot have a valid measure unless the measure has some degree of reliability,
demonstration of reliability is viewed as a necessary �rst step to establishing the quality of
a measure [14, 38].
The simplest way to estimate the reliability of a measure is to obtain a representative sample

of N patients from the population to which results are to be generalized. (The same measure
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may have di�erent reliabilities in di�erent populations.) Then M ratings are sampled from
the �nite or in�nite population of ratings=raters to which results are to be generalized, each
obtained blinded to every other. Thus the ratings might be M ratings by the same pathologist
of tissue slides presented over a period of time in a way that ensures blindness: intra-observer
reliability. The ratings might be diagnoses by M randomly selected clinicians from a pool
of clinicians all observing the patient at one point in time: inter-observer reliability. The
ratings might be observations by randomly selected observers from a pool of observers, each
observing the patient at one of M randomly selected time points over a span of time during
which the characteristic of the patient being rated is unlikely to change: test–retest reliability.
Clearly there are many di�erent types of reliability depending on when, by whom, and how
the multiple blinded ratings for each patient are generated. What all these problems have in
common is that because of the way ratings are generated, the M successive ratings per patient
are ‘interchangeable’, that is, the process underlying the M successive ratings per patient has
the same underlying distribution of pi, whatever that distribution might be [39].

2.1. The 2× 2 intraclass kappa
The simplest and most common reliability assessment with nominal data is that of two
ratings (M=2), with two categories (K=2). In that case, we can focus on the Xi1 since
Xi2 = 1 − Xi1 and on pi1, since pi2 = 1 − pi1. Then E(Xi1)=pi1, the ‘true score’ for
patient i; E(pi1)=P; variance(pi1)=�2p . Thus by the classical de�nition of reliability, the
reliability of X is variance(pi1)=variance(Xi1)=�2p =PP

′, where P′=1− P.
This intraclass kappa, �, may also be expressed as

�=(p0 − pc)=(1− pc)

where p0 is the probability of agreement, and pc=P2 + P′2, that is, the PACC, for this has
been shown to equal �2p =PP′ [31]. So accustomed are researchers to estimating the reliability
of ordinal or interval level measures with a product-moment, intraclass or rank correlation
coe�cient, that one frequently sees ‘reliability’ there de�ned by the correlation coe�cient
between test–retest data. In the same sense, for binary data the reliability coe�cient is de�ned
by the intraclass kappa.
The original introductions of kappa [3, 40] de�ned not the population parameter, �, but the

sample estimate k, where the probability of agreement is replaced by the observed proportion
of agreement, and P is estimated by the proportion of the classi�cations that selected cate-
gory 1. This was proposed as a measure of reliability long before it was demonstrated that
it satis�ed the classical de�nition of reliability [31]. Fortunately, the results were consistent.
However, that sequence of events spawned part of the problems surrounding kappa, since it
opened the door for others to propose various sample statistics as measures of binary relia-
bility, without demonstration of the relationship of their proposed measure with reliability as
technically de�ned. Unless such a statistic estimates the same population parameter as does
the intraclass kappa, it is not an estimate of the reliability of a binary measure. However,
there are other statistics when M=2, that estimate the same parameter in properly designed
reliability studies (random sample from the population of subjects, and a random sample of
blinded raters=ratings for each subject), such as all weighted kappas (not the same as an
intraclass kappa as will be seen below), or the sample phi coe�cient, the risk di�erence or
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the attributable risk. Typically these provide less e�cient estimators than does the sample
intraclass kappa.
It is useful to note that �=0 indicates either that the heterogeneity of the patients in the

population is not well detected by the raters or ratings, or that the patients in the population
are homogeneous. Consequently it is well known that it is very di�cult to achieve high
reliability of any measure (binary or not) in a very homogeneous population (P near 0 or 1
for binary measures). That is not a �aw in kappa [26] or any other measure of reliability, or
a paradox. It merely re�ects the fact that it is di�cult to make clear distinctions between the
patients in a population in which those distinctions are very rare or �ne. In such populations,
‘noise’ quickly overwhelms the ‘signals’.

2.2. The K × 2 intraclass kappa
When there are more than two categories (K¿2) both Xi and pi are K-dimensional vectors.
The classical de�nition of reliability requires that the covariance matrix of pi ; �p, be compared
with the covariance matrix of Xi ; �X . The diagonal elements of �p are �jPjP′

j , where �j is the
2× 2 intraclass kappa with category j versus ‘not-j’, a pooling of the remaining categories, Pj
is the E(pij); P′

j =1−Pj. The o�-diagonal elements are �jj∗PjPj∗ ; j �= j∗, with �jj∗ the correlation
coe�cient between pij and pij∗ . The diagonal elements of �X are PjP′

j , and the o�-diagonal
elements are −PjPj∗ .
What has been proposed as a measure of reliability is the K × 2 intraclass kappa

�= trace(�p)=trace(�X )=�(PjP′
j �j)=�(PjP

′
j )

Again it can be demonstrated that this is equivalent to PACC with p0 again the probability
of agreement, now with pc=�PjP′

j .
From the above, it is apparent that to obtain a non-zero K × 2 intraclass kappa requires

that only one of the K categories have non-zero �j. If that one category has reasonable
heterogeneity in the population (PjP′

j large) and has large enough �j, the K × 2 intraclass
kappa may be large.
Consider the special case for K=3, when pi=(1; 0; 0) with probability �, and pi=

(0; 0:5; 0:5) with probability �′=1 − �. In this case category 1 is completely discriminated
from categories 2 and 3, but the decisions between 2 and 3 are made randomly. Then �1 = 1,
and �2 =�3 =�=(� + 1), and the 3× 2 intraclass kappa is 3�=(3� + 1). When �=0:5, for
example, �=0:60, and �2 =�3 = 0:33, even if 2 and 3 are here randomly assigned. Such
a large overall � can be mistakenly interpreted as a good reliability for all three categories,
where here clearly only category 1 is reliably measured.
No one index, the K × 2 intraclass kappa or any other, clearly indicates the reliability of

a multi-category X . For categorical data, one must consider not only how distinct each cat-
egory is from the pooled remaining categories (as re�ected in the �j; j=1; 2; : : : ; K), but
how easily each category can be confused with each other [13, 41]. Consequently, we would
suggest that: (i) multi-category kappas are not used as a measure of reliability with K¿2
categories; (ii) that seeking any single measure of multi-category reliability is a vain e�ort;
and (iii) at least the K individual category �j’s be reported, but that, better yet, methods be
further developed to evaluate the entire misclassi�cation matrix [42]. In particular, the deci-
sion to recommend kappa with two categories, but to recommend against kappa with more
than two categories, is not in�uenced by the fact that kappa is related to PACC in both cases.
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Table I. Estimation of the 2×M intraclass correlation coe�cient in the Periyakoil et al. data,
with s the number of positive (grief) classi�cations from the M=4 raters, fs the proportion of
items with that number, ks the kappa coe�cient based on omitting one subject with s positive

classi�cations, and ws the weight needed to calculate the asymptotic variance.

s fs s=M 1− s=M ks

0 0.2029 0.0000 1.0000 0.5700
1 0.1739 0.2500 0.7500 0.5860
2 0.0870 0.5000 0.5000 0.5918
3 0.1159 0.7500 0.2500 0.5873
4 0.4203 1.0000 0.0000 0.5725

General formula for k: k =1−M�fs(sM)(1− sM)=((M − 1)PP′)
P=�fs(sM)

Jack-knife formulae: Jack-knife k =Nk − (N − 1)average(ks)
Jack-knife SE2 = (N − 1)2s2k =N
s2k =sample variance(ks)

Results from above case: P=0:5942
k =0:5792

Jack-knife k =0:6429

The 2× 2 intraclass kappa seems ideal as a measure of binary reliability, but the K × 2 in-
traclass kappa we recommend against as uninterpretable. What if one had only two categories,
but M¿2 raters?

2.3. The 2×M (multi-rater) intraclass kappa

With only two categories, the reliability coe�cient is still �=�2=PP′, as shown above. The
multi-rater sample kappa statistic [43] is based on comparing pairwise agreement among
the M (M − 1)=2 pairs of raters evaluating each patient with what would be expected if
classi�cations were randomly made. This process has been shown to obtain the equivalent
result as applying the formula for the intraclass � for interval data to these binary data [44].
This statistic estimates the same � as does the 2× 2 intraclass kappa. For a �xed sample size
of subjects, the larger the M , the smaller the estimation error.
There are several ways to estimate intraclass kappa here, but the easiest both for theory

and application requires that the data be organized by s, the number of positive (category 1)
classi�cations per patient (See Table I, column 1), s=0; 1; 2; : : : ; M . The proportion of the
N patients sampled who have s of the M categorizations positive is fs. The formula for
calculation is presented in Table I, along with a demonstration of the calculation of this
statistic based on a study conducted by one of the authors (VSP).
In this case, N=69 items were sampled from the population of items that might be used

to distinguish preparatory grief (category 1) from depression (category 2) in dying adult
patients. The issue was to assess to what extent clinicians could reliably distinguish the two.
Depression, when it exists, is hypothesized to diminish quality of the dying process but can be
e�ectively treated, while normal preparatory grief, when it exists, is hypothesized to be a sign
of positive coping with the dying process that should be facilitated. M=4 expert clinicians
were sampled and complied with classifying each item as more indicative of preparatory grief
or depression. The results appear in Table I, with k=0:579.
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Table II. The population probability distribution of the number of positive responses with
M raters, generated from the sensitivity=speci�city model (model A: Se= 0:60, Sp= 0:99,
�=0:1525) and the know=guess model (model B: �1 = 0:0250, �0 = 0:7875, �=0:4054). Both
models have P=0:10 and �=0:50 to two decimal places. Implication: the distribution of

responses for M¿2 di�er even when P and � are the same.

Number of M=2 M=4 M=6
positive= s A B A B A B

0 85.5% 85.4% 81.8% 81.1% 79.8% 79.6%
1 9.0% 9.0% 5.6% 6.4% 5.4% 3.4%
2 5.5% 5.6% 5.3% 6.5% 2.2% 5.8%
3 5.3% 3.0% 4.2% 5.2%
4 2.0% 3.0% 4.7% 2.7%
5 2.8% 0.7%
6 0.7% 2.6%

While the standard error is known and easily accessible when M=2 [43, 45–47], to date
when M¿2 it is known and easily accessible only under the null hypothesis of random-
ness [43]. The calculation of the standard error in general when M¿2 was described by
Fleiss as ‘too complicated for presentation’ (reference [43], p. 232), referring readers to Lan-
dis and Koch [48]. Not only is this standard error di�cult to access, but also it is not
known exactly how accurate it is for small to moderate sample size. Part of the problem lies
in attempting to obtain a general solution when there are more than two categories (where
intraclass kappa may be misleading), and when the number of ratings per patient is itself
a variable from patient to patient (which may be problematic). The situation with the 2×M
intraclass kappa is much simpler.
For patient i, with probability pi1, the probability that s of the interchangeable independent

M ratings will be positive is the binomial probability (s=0; 1; 2; : : : ; M) with probability pi1
the binomial probability (say Bin(s;pi1; M); s=0; 1; 2; : : : ; M). The probability that a randomly
sample subject will be positive is the expected value of Bin(s;pi1; M) over the unknown
distribution of pi1. This involves moments of the pi1 distribution up to order M . Since P and
� involve only the �rst two moments, the distribution of the number of positive responses is
determined by P and � only when M=2. Consequently the quest for a standard error of the
2×M intraclass sample kappas for M¿2 that involves only parameters P and �, that is, only
moments up to order 2, is one of those futile quests [49]. One might have many di�erent
distributions of pi1 that have the same �rst two moments (P and �) but that di�er in the
higher moments. For each such distribution the sample distribution for the 2×M intraclass
sample kappa would di�er. This fact di�erentiates the distribution theory of the intraclass
kappa for binary data from that of the intraclass correlation coe�cient, �, to which it is
closely computationally related, for interchangeable normal variates, for in the latter case, the
distribution is determined by �, however large the number of raters, M .
For example, in Table II, we present an example of a ‘sensitivity=speci�city’ model and of a

‘know=guess’ model selected to have almost exactly the same P=0:10 and �=0:50, and show
the distribution of response for M=2; 4; 6. It can be seen that the population distributions are
almost the same for M=2, slightly di�erent for M=4 and very di�erent for M=6. Thus,
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unless M=2, one would not expect that the distributions of the 2×M intraclass kappa would
be the same in these two cases, much less in all cases with P=0:10 and k=0:50.
The vector of observed frequencies of the numbers of positive responses has a multinomial

distribution with probabilities determined by the expected values of Bin(s:pi;M). Thus one
can use the methods derived by Fisher [50] to obtain an approximate (asymptotic) standard
error of kappa. An approximate standard error of k can also be obtained very easily us-
ing jack-knife procedures omitting one patient at time [45, 47, 51–53], as shown in Table I.
These results correspond closely to those derived in various ways for the 2× 2 intraclass kap-
pas [43, 46, 47, 54]. The jack-knife procedure is demonstrated in Table I. (As a ‘rule of thumb’,
the minimum number of patients should exceed both 10=P and 10=P′. When P=0:5; 20 pa-
tients are minimal; when P=0:01, no fewer than 1000 patients are needed.) A generalized
version of the SAS program (SAS Institute Inc., Cary NC) that performs the calculations can
be located at http:==mirecc.stanford.edu
When there are a variable number of raters per patient, the problem becomes more com-

plicated, since the exact distribution of responses changes as M varies, involving more or
fewer unknown moments of the pi1 distribution. If the patient’s number of ratings is totally
independent of his=her pi1, one could stratify the patients by the number of ratings, obtain
a 2× 2 intraclass kappa from those with M=2, a 2× 3 intraclass kappa from those with
M=3 etc., and a standard error for each. Since these are independent samples from the same
parent population, one could then obtain a weighted average of the kappas and its standard
error using standard methods.
However, often the variation of the number of ratings is related to pi1. Patients with more

serious illnesses, for example, are more likely to have a positive diagnosis and less likely to
provide the greater number of ratings. In that case, the subsamples of patients with 2; 3; 4; : : :
ratings may represent di�erent populations and thus have di�erent reliabilities that should not
be muddled. This raises some serious questions about the practical application of the standard
error derived by Landis and Koch [48] or any solution in which the number of ratings is
variable.
To summarize, for the purpose of measuring reliability of a binary measure, the 2×M

(M¿2) is highly recommended, but the use of the K×M kappa for K¿2 is questionable.
To this it should be added that useful standards have been suggested for evaluation of the
2×M kappa as a measure of reliability [24], with k60:2 considered slight, 0:2¡k60:4 as
fair; 0:4¡k60:6 as moderate, 0:6¡k60:8 as substantial and k¿0:8 as almost perfect. It
is important to realize that a kappa coe�cient below 0.2 is slight, no matter what the p-
value is of a test of the null hypothesis of randomness. Moreover, a kappa coe�cient above
0.6 that is not ‘statistically signi�cant’ on such a test indicates inadequate sample size, not
a de�nitive conclusion about the reliability of the measure. It is the magnitude of k that
matters, and how precisely that is estimated, not the p-value of a test of the null hypothesis
of randomness [55].

3. VALIDITY OF CATEGORICAL MEASURES: THE K×M WEIGHTED KAPPAS

The validity of a measure is de�ned as the proportion of the observed variance that re�ects
variance in the construct the measure was intended to measure [36, 38], and is thus always
no greater than the reliability of a measure. Validity is generally assessed by a correlation
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coe�cient between a criterion or ‘gold standard’ (Xi) and the measure (Yi) for each patient
in a representative sample from the population to which the results are to be generalized.
(Once again, a measure might be more valid in one population than in another.) If a measure
is completely valid against a criterion, there should be a 1:1 mapping of the values of Yi
onto the values of Xi. With categorical measures, the hope is to be able to base clinical or
research decisions on Yi that would be the same as if those decisions were based on the
‘gold standard’ Xi. That would require not only that the number of categories of Yi match the
number of categories of Xi, but that the labels be the same.
The ‘gold standard’ is the major source of di�culty in assessing validity, for there are very

few true ‘gold standards’ available. Instead, many ‘more-or-less gold standards’ are considered,
each somewhat �awed, but each of which provides some degree of challenge to the validity of
the measure. Thus, as in the case of reliability, there are many types of validity, depending on
how the ‘gold standard’ is selected: face validity; convergent validity; discriminative validity;
predictive validity; construct validity.
While there are many problems in medical research that follow this paradigm, few of which

are actually labelled ‘validity’ studies, we will for the moment focus on medical test evalua-
tion. In medical test evaluation, one has a ‘gold standard’ evaluation of the presence=absence
or type of disease, usually the best possible determination currently in existence, against which
a test is assessed. To be of clinical and policy importance the test result for each patient should
correspond closely to the results of the ‘gold standard’, for treatment decisions for patients
are to be based on that result.

3.1. A 2× 2 weighted kappa coe�cient
Once again the most common situation is with two ratings per patient, say Xi and Yi each
having only two categories of response. We use di�erent designations here for the two ratings,
Xi and Yi, in order to emphasize that the decision process underlying the ‘gold standard’ (Xi)
and the diagnosis under evaluation (Yi) are, by de�nition, not the same. For the same reason,
we focus on the probability of a positive result (category 1) in each case, with probability
pi1 for Xi and qi1 for Yi, using di�erent notation for the probabilities.
The distribution of pi1 and qi1 in the population of patients may be totally di�erent, even

if P=E(pi1) and Q=E(qi1) are equal. The equality of P and Q cannot be used to justify the
use of the intraclass kappa in this situation, for the intraclass kappa is appropriate only to the
situation in which all the moments, not just the �rst, are equal (interchangeable variables).
Since Xi and Yi are ‘blinded’ to each other, the probability that for patient i both Xi and Yi

are positive is pi1qi1. Thus in the population, the probability that a randomly selected patient
has both Xi and Yi positive is E(pi1qi1)=PQ + ��p�q, where P=E(pi1); Q=E(qi1); � is
the product moment correlation coe�cient between pi1 and qi1; �2p =variance(pi1); �

2
q =

variance(qi1). All the probabilities similarly computed are presented in Table III.
It can be seen in Table III that the association between Xi and Yi becomes stronger as ��p�q

increases from zero. At zero, the results in the table are consistent with random decision
making. Any function of ��p�q; P and Q, that is strictly monotonic in ��p�q, that takes on
the value zero when �=0, and takes on the value +1 when the probabilities on the cross
diagonal are both 0, and −1 when the probabilities on the main diagonal are both 0, is
a type of correlation coe�cient between X and Y . The di�culty is that there are an in�nite
number of such functions (some of the most common de�ned in Table III), and therefore an
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Table III. The 2×2 weighted kappa: probabilities and weights. De�nitions of some common
measures used in medical test evaluation or in risk assessment.

Y=1 Y=2 Total

Probabilities
X=1 a=PQ + ��p�q b=PQ′ − ��p�q P
X=2 c=P′Q − ��p�q d=P′Q′ + ��p�q P′=1− P
Total Q Q′=1− Q

Weights indicating loss or regret (0¡r¡1):
X=1 0 r
X=2 r′=1− r 0

�(r)= (ad− bc)=(PQ′r + P′Qr′)= ��p�q=(PQ′r + P′Qr′); (0¡r¡1).
�(1=2)=2(ad− bc)=(PQ′ + P′Q)= (p0 − pc)=(1− pc); (p0 = a+ d; pc =PQ + P′Q′).

Sensitivity of Y to X : Se= a=P=Q + Q′�(1).
Speci�city of Y to X : Sp=d=P′=Q′ + Q�(0).
Predictive value of a positive test: PVP= a=Q=P + P′�(0).
Predictive value of a negative test: PVN=d=Q′=P′ + P�(1).
Percent agreement =p0 = a+ d=pc + p′

c�(1=2).
Risk di�erence=Se + Sp− 1= a=P − c=P′= �(Q′).
Attributable risk = �(0).
Odds ratio= ad=bc=(SeSp)/(Se′Sp′)= (PVP PVN)=(PVP′ PVN′).

in�nite number of correlation coe�cients that yield results not necessarily concordant with
each other.
There is one such correlation coe�cient, a certain 2× 2 weighted kappa, unique because

it is based on an acknowledgement that the clinical consequences of a false negative (Xi
positive, Yi negative) may be quite di�erent from the clinical consequences of a false positive
(Xi negative, Yi positive) [47]. For example, a false negative medical test might delay or
prevent a patient from obtaining needed treatment in timely fashion. If the test were to fail
to detect the common cold, that might not matter a great deal, but if the test were to fail
to detect a rapidly progressing cancer, that might be fatal. Similarly a false positive medical
test may result in unnecessary treatment for the patient. If the treatment involved taking two
aspirin and calling in the morning, that might not matter a great deal, but if it involved
radiation, chemotherapy or surgical treatment, that might cause severe stress, pain, costs and
possible iatragenic damage, even death, to the patient. The balance between the two types of
errors shifts depending on the population, the disorder and the medical sequelae of a positive
and negative test. This weighted kappa coe�cient is unique among the many 2× 2 correlation
coe�cients in that in each context of its use, it requires that this balance be explicitly assessed
a priori and incorporated into the parameter.
For this particular weighted kappa, a weight indicating the clinical cost of each error is

attributed to each outcome (see Table III); an index r is set that ranges from 0 to 1 indicating
the relative importance of false negatives to false positives. When r=1, one is primarily con-
cerned with false negatives (as with a screening test); when r=0, one is primarily concerned
with false positives (as with a de�nitive test); when r=1=2, one is equally concerned with
both (as with a discrimination test). The de�nition of �(r) in this case [47, 56] is

�(r)=��p�q=(PQ′r + P′Qr′)
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The sample estimator is k(r)= (ad−bc)=(PQ′r+P′Qr′), where a; b; c; d are the proportions of
the sample in the cells so marked in Table III, P and Q estimated by the sample proportions.
Cohen’s kappa [40], often called the ‘unweighted’ kappa, is �(1=2)

�(1=2)= (p0 − pc)=(1− pc)
where p0 again is the proportion of agreement, and here pc=PQ + P′Q′, once again
a PACC (see Table III for a summary of de�nitions). When papers or programs refer to
‘the’ kappa coe�cient, they are almost inevitably referring to �(1/2), but it must be recog-
nized that �(1=2) re�ects a decision (conscious or unconscious) that false negatives and false
positives are equally clinically undesirable, and �(r) equals PACC only when r=1=2.
Di�erent researchers are familiar with di�erent measures of 2× 2 association, and not all

readers will be familiar with all the following. However, it is important to note the strong
interrelationships among the many measures of 2× 2 association. Risk di�erence (Youden’s
index) is �(Q′), and attributable risk is �(0), re�ecting quite di�erent decisions about the
relative importance of false positives and negatives. The phi coe�cient is the geometric mean
of �(0) and �(1): (�(0)�(1))1=2. Sensitivity and predictive value of a negative test rescaled
to equal 0 for random decision making and 1 when there are no errors, equal �(1). The
speci�city and predictive values of a positive test, similarly rescaled, equal �(0). For any r
between 0 and 1; �(r)=max �(r) and phi=max phi [57], where max �(r) and max phi are the
maximal achievable values of �(r) and phi, respectively, equal either �(0) or �(1), depending
on whether P is greater or less than Q. This brie�y demonstrates that most of the common
measures of 2× 2 association either (i) equal �(r) for some value of r, or, (ii) when rescaled,
equal �(r) for some value of r, or (iii) equal some combination of the �(r). Odds ratio and
measures of association closely related to odds ratio seem the notable exceptions.
Researchers sometimes see the necessity of deciding a priori on the relative clinical impor-

tance of false negatives versus false positives as a problem with �(r), since other measures
of 2× 2 association do not seem to require any such a priori declaration. In fact, the opposite
is true. It has been demonstrated [58] that every measure of 2× 2 association has implicit in
its de�nition some weighting of the relative importance of false positives and false negatives,
often unknown to the user. The unique value of this weighted kappa as a measure of validity
is that it explicitly incorporates the relative importance of false positives and false negatives,
whereas users of other 2× 2 measures of association make that same choice by choosing
one measure rather than another, and often do so unaware as to the choice they have de
facto made. If they are unaware of the choice, that is indeed a problem, for there is risk of
misleading clinical and policy decisions in the context in which the user applies it [58].
However, unlike the situation with reliability, it cannot be argued that �(r), in any sense,

de�nes validity, for the appropriate choice of a validity measure depends on what the user
stipulates as the relative importance of false positives and false negatives. How these are
weighted may indicate a choice of index not directly related to any �(r) (the odds ratio, for
example).
It is of importance to note how the relative clinical importance (r) and the reliabilities

of X and Y (the intraclass �X and �Y de�ned above for X and Y ) in�uence the magnitude
of �(r):

�(r)=�(�X�Y )1=2(PP′QQ′)1=2=(PQ′r + P′Qr′)

with P′=1− P; Q′=1−Q; r′=1− r.
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Here, as de�ned above, � is the correlation between pi1 and qi1 (which does not change
with r). �X and �Y are the test–retest reliabilities of X and Y (which do not depend on r). As
is always expected of a properly de�ned reliability coe�cient, the correlation between X and Y
re�ected in �(r) su�ers attenuation due to the unreliabilities of X and Y , here measured by the
intraclass kappas �X and �Y . Only the relationship between P and Q a�ects �(r) di�erently
for di�erent values of r. When P=Q; �(r) is the same for all values of r and estimates
the same population parameter as does the intraclass kappa although the distribution of the
sample intraclass kappa is not exactly the same as that of the sample weighted kappa. For that
matter, when P=Q, the sample distributions of k(r) for di�erent values of r are not all the
same, even though all estimate the same parameter. Otherwise, in e�ect, too many positive
tests (Q¿P) are penalized by �(r) when false positives are of more concern (r nearer 0),
and too many negative tests (Q¡P) are penalized by �(r) when false negatives are of more
concern (r nearer 1).
A major source of confusion in the statistical literature related to kappa is the assignment

of weights [13]. Here we have chosen to use weights that indicate loss or regret, with zero
loss for agreements. Fleiss [43] used weights that indicate gain or bene�t, with maximal
weights of 1 for agreements. Here we propose that false positives and false negatives may
have di�erent weights. Fleiss required that they be the same. Both approaches are viable for
di�erent medical research problems, as indeed are many other sets of weights, including sets
that assign di�erent weights to the two types of agreements.
If the weights re�ect losses or regrets, �(r)= (Ec(r) − Eo(r))=(Ec(r) − min), while if the

weights re�ect gains or bene�ts, �(r)= (Eo(r) − Ec(r))=(max−Ec(r)), where Ec(r) is the
expected weight when �=0 and Eo(r) the expected weight with the observed probabilities.
The scaling factor min is the ideal minimal value of Eo(r) when losses are considered, and
max is the ideal maximal value of Eo(r) when gains are considered, for the particular research
question. Here min is 0, where there are no disagreements; Fleiss’ max is 1, also when there
are no disagreements. Regardless of the weight assigned to disagreements in Fleiss’ version
of kappa, his weighted kappas in the 2× 2 situation all correspond to what is here de�ned as
�(1=2), while if P and Q are unequal, here �(r) changes with r, and generally equals �(1=2)
only when r=1=2.
How the weights, min and max, are assigned changes the sampling distribution of �(r),

which may be one of the reasons �nding its correct standard error has been so problematic.
Since the weights should be dictated by the nature of the medical research question, they
should and will change from one situation to another. It is not possible to present a formula
for the standard error that would be correct for all possible future formulations of the weights.
For the particular weights used here (Table III) the Fisher procedure [50] could be used to
obtain an asymptotic standard error. However, given the di�culties engendered by the wide
choice of weights, and the fact that it is both easier and apparently about as accurate [54] when
sample size is adequate, we would here recommend instead that the jack-knife estimator be
used. That would guarantee that the estimate of the standard error be accurate for the speci�c
set of weights selected and avoid further errors.

3.2. The K × 2 multi-category kappa
In the validity context, as noted above, if the ‘gold standard’ has K categories, any candi-
date valid measure must also have K categories with the same labels. Thus, for example,
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Table IV. Example: the joint probability distribution of a three-category X and a three-category Y ,
with one perfectly valid category (Y=1 for X=1), and two invalid categories (Y=2 for X=2)

and (Y=3 for X=3) because of an interchange of Y=2 and Y=3 (P1 + P2 + P3 = 1).

Y=1 Y=2 Y=3 Total

X=1 P1 0 0 P1
X=2 0 0 P2 P2
X=3 0 P3 0 P3
Total P1 P3 P2

if the ‘gold standard’ identi�es patients with schizophrenia, depression, personality disorder,
and ‘other’, any potentially valid diagnostic test would also identify the same four categories.
In a direct generalization of the above, if ‘gold standard’ and diagnosis agree, disagreement
is zero. If, however, someone who is schizophrenic is treated for depression, that is not an
error necessarily of equal clinical importance as someone who is depressed being treated for
schizophrenia. For each possible disgreement, one could assess the relative clinical impor-
tance of that misclassi�cation, denoted rjj∗ for j �= j∗. The only requirement is that rjj∗¿0
for all j �= j∗, and that �rjj∗=1. Then the weighted kappa, �(r), is de�ned as above as
(Ec(r)− Eo(r))=Ec(r).
The di�culty here, as with the K × 2 intraclass kappa, is that �(r) is sure to equal 0 only

if all classi�cations are random. Thus having only one valid category can yield a positive
�(r), or we might have �(r) near zero when all but one category are completely valid.
For example, consider the case shown in Table IV. Here diagnostic category 1 is com-

pletely valid for ‘gold standard’ category 1, but diagnostic categories 2 and 3 are obviously
switched. When (all rjj∗ here equal) P1 = 0:1; P2 = 0:4 and P3 = 0:5; k(r)=−0:525. When
P1 = 0:3; P2 = 0:5; P3 = 0:2; k(r)=+0:014. When P1 = 0:8; P2 =P3 = 0:1; k(r)=+0:412. None
of these results (−0:525;+0:014;+0:412) suggests what is obvious from examination of the
complete cross-classi�cation matrix: Y -categories 2 and 3 must be switched to obtain perfect
validity. Consequently, once again, we propose that, like the multi-category intraclass kappa,
the multi-category weighted kappas not be used as a measure of validity, for no single mea-
sure of validity can convey completely and accurately the validity of a multi-category system,
where some categories may be valid but vary in terms of degree of validity, and others may
be invalid.

3.3. The 2×M Multi-rater kappa

Now suppose that we had a binary ‘gold standard’ Xi, and M binary diagnostic tests:
Yi1; Yi2; : : : ; YiM . Can the M diagnostic tests be used to obtain a valid diagnosis of Xi, and
how valid would that test be? In this case, Xi and each Yij may have a di�erent underly-
ing distribution of pi1 or qi1. While we could propose a multi-rater kappa [59], generally
the way this problem is approached in medical test evaluation is by developing a function
g(Yi1; Yi2; : : :), called a ‘risk score’, such that g() is monotonically related to Prob(Xi=1).
Then some cutpoint is selected so that if g(Yi1; Yi2; : : :)¿C, the diagnostic test is positive, and
otherwise negative.
Almost inevitably, applying such a cutpoint dichotomizing the ordinal risk score to a binary

classi�cation reduces the power of statistical tests based on the measures [60]. If the cutpoint is
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injudiciously chosen, it may also mislead research conclusions. However, for clinical decision
making, that is, deciding who to treat and not treat for a condition, who to hospitalize or not,
a binary measure is necessary. Thus while the recommendation not to dichotomize for purposes
of research is almost universal, dichotomization for clinical purposes is often necessary. Such
dichotomization reduces the multivariate tests to a binary test based on all the individual tests.
The 2× 2 weighted kappa may then be used as a measure of the validity of the combined
test.
The most common method of developing this function is multiple logistic regression analysis

where it is assumed that logit Prob(Xi=1|Yi1; Yi2; : : :)=�0+��jYij , that is, some linear function
of the Y ’s, with a ‘risk score’ (��jYij) assigned to each patient. Regression trees [56, 61] can
also be used, using whatever validity criterion the developer chooses to determine the optimal
test at each stage and a variety of stopping rules. Each patient in a �nal branch is given
a ‘risk score’ equal to the Prob(Xi=1) in that subgroup. Finally, one might simply count the
number of positive tests for each patient, g(Y )=�Yij , and use this as a ‘risk score’. There
are many such approaches, all of which reduce the 2M possible di�erent responses to the M
binary tests to a single ordinal response, the ‘risk score’, using all M tests in some sense
optimally. The relative strengths and weaknesses of these and other approaches to developing
the ‘risk score’ can be vigorously debated. However, that is not the issue here.
When the ‘risk score’ is determined, the cutpoint C is often selected to equate P and

Q, that is, so that Q=Prob(g(Yi1; Yi2; : : :)¿C)=P. This is not always ideal. Better yet, the
optimal cutpoint would be the one that maximizes �(r), where r again indicates the relative
importance of false negatives to false positives [56], or whichever other measure of 2× 2
association best re�ects the trade-o�s between false positives and false negatives.
We do not recommend any 2×M weighted kappa coe�cient as a measure of validity,

for there are already a variety of other standard methods used in this problem that seem
to deal well with the problem. None seems to require or would bene�t from a 2×M kappa
coe�cient, for all focus more appropriately on reducing the problem to a 2× 2 problem. Then
the 2× 2 weighted kappa might be used as a measure of validity.

4. THE PROBLEM OF CONSENSUS DIAGNOSIS

The �nal context of medical research in which kappa coe�cients have proved uniquely useful
is that of the consensus diagnosis. Suppose one assesses the reliability of a binary Xi, and
found that its reliability, as measured by a 2×M intraclass kappa, was greater than zero,
but not satisfactory. ‘Rule of thumb’ standards for reliability have been proposed [14, 24]. By
those standards, �=0:579, as in the Periyakoil data, or �=0:5, as in both cases of Table II,
would be considered ‘moderate’ [24] or ‘fair’ [14]. Could one use a consensus of M raters,
requiring at least C positive diagnoses for a consensus positive diagnosis, and thereby achieve
adequate (say �¿0:8, ‘almost perfect’ or ‘substantial’) reliability? How large should M be,
and what value of C should be chosen?
One could deal with the problem using brute force: sample 2M raters for each patient sam-

pled, randomly split the raters into two groups of M for each patient. Then for C=1; 2; : : : ; M ,
determine the diagnosis for that value of C, and obtain 2× 2 intraclass kappa, �CM . Then
choose the optimal cutpoint C as the one that maximizes �CM for that value of M . Then
vary M .
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Table V. The optimal consensus diagnoses for the sensitivity/speci�city model with Se= 0:60.
Sp′=0:01, �=0:1525, and for the know=guess model with �1 = 0:0250, �0 = 0:7875, �=0:4054.
Both models have P=0:10, �=0:50. The number of diagnoses in the consensus is M , with C
the optimal cutpoint (a positive diagnosis is given those with C or more positive diagnoses
of the M). Q is the proportion diagnosed positive with the optimal consensus, and � is the

intraclass � for that consensus.

M Sensitivity/speci�city model Know/guess model

C Q � C Q �

1 1 0.10 0.50 1 0.10 0.50
2 1 0.14 0.70 1 0.15 0.66
3 1 0.17 0.76 1 0.17 0.78
4 2 0.13 0.79 1 0.19 0.87
5 2 0.14 0.89 1 0.20 0.92
6 2 0.15 0.94 1 0.20 0.95
7 2 0.15 0.96 1 0.21 0.97
8 2 0.15 0.97 1 0.21 0.98
9 2 0.15 0.97 1 0.21 0.99
10 3 0.15 0.98 1 0.21 0.99

With the four raters in Table I, we have already calculated that �11 = 0:579. We then
randomly split the pool of four raters into two sets of two for each patient, and found that
�12 = 0:549, and �22 = 0:739. Thus the optimal consensus of 2 is to use a cutpoint C=2,
and the reliability then rises from �11 = 0:579 with one rater to �22 = 0:739 for an optimal
consensus of two. For an expanded discussion of these methods, see Noda et al. [62], and
for a program to perform such calculations see http:==mirecc.stanford.edu
It is of note that if the optimal consensus of 2 is obtained when C=1, in practice one

would not request a second opinion when the �rst one was positive. If, as above, the optimal
consensus of 2 is obtained when C=2, in practice one would not request a second opinion
when the �rst one was negative. It often happens with the optimal consensus that, when put
into practice, the number of ratings per patient to obtain a consensus of M is far less than
M ratings per patient. This often means one can increase the quality of the diagnosis with
minimal increase in time and cost. However, to identify that optimal consensus in the �rst
place requires 2M ratings for each patient. Thus to evaluate a consensus of 3, one needs 6
ratings per patient, for 4, one needs 8, etc. This rapidly becomes an unfeasible solution in
practice.
The theoretical solution is easy. For a patient with probability pi1 on a single rating, the

probability of a positive diagnosis for a consensus of C of M is

qiCM =Bin(C;pi1; M)

where Bin(C;pi1; M) is the probability that a binomial random variable with parameters pi
and M equals or exceeds C. Thus QCM =E(Bin(C;pi1; M)) and �CM =var(qiCM )=(QCMQ′

CM ).
If we knew the distribution of pi1, we would also know the distribution of qiCM for all C
and M , and thus know �CM . In Table V, for example, are presented the two hypothetical
cases of Table II, where we do know the distribution and they have almost identical P and �.
Here for the sensitivity=speci�city model, as M increases from 1 to 10, the optimal C rises
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from 1 to 2 to 3, and the � from 0:50 for one observation to 0:98 for a consensus of 10. One
would need a consensus of 2 positive out of 5 to achieve �¿0:8. On the other hand, for the
‘know=guess’ model, as M increases from 1 to 10, the optimal C is always equal to 1, but
the � still rises from 0:50 for one observation to 0:99 for a consensus of 10. One would now
need a consensus of 1 positive out of 4 to achieve �¿0:8.
The above illustration demonstrates the fallacy of certain intuitive notions:

(i) It is not necessarily true that the optimal consensus equates Q with P.
(ii) The ‘majority rule’ (always use the �rst C exceeding M=2), is not always best.
(iii) The ‘unanimity rule’ (always use C=0 or C=M), too, is not always best.
(iv) Knowing P and � does not settle the issue, for quite di�erent optimal consensus rules

were derived for the two situations in Table II having almost the same P and �.

Since the reason for dichotomization is most compelling for purposes of clinical decision
making, these false intuitive notions can mislead such decisions.
Examination of cases such as these provides some insight into the solution. For the

‘sensitivity=speci�city’ model, it can be seen that for every M , the optimal C cuts o� as
close to the top 15 per cent of the number of positives as is possible. That 15 per cent
corresponds to the ‘high risk’ subgroup with pi1=Se=0:60. For the ‘know=guess’ model, the
optimal C cuts o� as close to the top 21 per cent of the number of positives as is possi-
ble. That 21 per cent corresponds to the ‘high risk’ comprising the subgroup of 2.5 per cent
with pi1= 1 plus the subgroup of 18.8 per cent with pi1= 0:4054. However, in general, what
proportion Q∗ constitutes the ‘high risk’ subgroup?
The numerator of � is var(pi1) which, for any P∗ between 0 and 1, can be partitioned into

two components:

var(pi1)=2Q∗Q∗′(�1 − �2)2 +Q∗var(pi1|pi1¿P∗) +Q∗′var(pi1|pi1¡P∗)

where Q∗=prob(pi1¿P∗); Q∗′=1−Q∗; �1 =E(pi1|pi1¿P∗), and �2 =E(pi1|pi1¡P∗). The
percentage cut o� by optimal C approximates Q∗, for that value of P∗ for which the �rst
term of var(pi1) is maximized. Thus the optimal cutpoint for pi1 (P∗), which determines the
percentage of ‘high risk’ subjects (Q∗), is determined by what dichotomization of the pi1
distribution absorbs as much of the variance as possible [63].

5. CONCLUSIONS

To summarize:

(i) The 2×M intraclass kappa (M¿2) for a well-designed reliability study directly es-
timates reliability as de�ned in the classical sense and is thus the ideal reliability
coe�cient for a binary measure. For reasonable sample size, its standard error can
be easily computed, and used to formulate con�dence intervals, to test homogeneity
of �’s and to address other such statistical challenges, such as developing optimal
consensus rules.

(ii) The 2× 2 weighted kappa �(r) described here is an excellent choice as a validity
measure, although not a unique choice. However, since it explicitly requires that the
relative importance of false positives and false negatives be speci�ed and incorporated
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into the validity measure, while all other 2× 2 measures require that choice implicitly,
�(r) is highly recommended in this context. For reasonable sample size, its standard
error can easily be computed using jack-knife methods.

(iii) The K ×M intraclass kappa, for K¿2, is not recommended as a measure of reliability,
for no single measure is su�cient to completely and accurately convey information
on reliability when there are more than two categories.

(iv) The K ×M weighted kappas for K¿2 or M¿2 are not recommended as validity
measures. When K¿2, the situation is similar to that with the K ×M intraclass kappa.
Any single measure, including �(r), is not enough to provide the necessary information
on validity when some categories may be valid and others not. When M¿2, all the
preferred methods in one way or another dichotomize the multi-dimensional Y space
to create a binary outcome, and may then choose to use the 2× 2 weighted kappa as
a measure of validity. A K ×M weighted kappa is not needed.

Even limited to these two contexts of reliability and validity, a broad spectrum of impor-
tant medical research problems are encompassed. The 2×M intraclass kappa applies to any
situation in which units are sampled from some population, and multiple subunits are sampled
from each unit, where the intra-unit concordance or the inter-unit heterogeneity is of research
interest.
For example, the intraclass kappa is useful as a measure of twin concordance in genetic

studies of twins [64] (and could be used for triplets or quadruplets), as a measure of inter-
sibling concordance in family studies, of intra-group concordance among patients in a therapy
group etc. A research question such as the following also falls into the same category: If
one sampled physicians or hospitals who performed a certain procedure, and assessed the
outcome (success=failure) on a random sample of M of each physician’s or hospital’s patients
undergoing that procedure, how heterogeneous would the physicians or hospitals prove to be?
Here �=0 would indicate absolute homogeneity of results; larger � would indicate greater
heterogeneity (perhaps related to the type of patients referred, training, skill, resources or
experience). Moreover, if there were a hypothesized source of heterogeneity (perhaps those
that specialize in that procedure versus those that only occasionally do it), one could stratify
the population by that source, compute the 2×M intraclass kappa within each stratum. If
indeed that source accounted for most of the heterogeneity, the 2×M intraclass kappa within
each stratum would approach zero.
The 2× 2 weighted kappa in general could be applied to any situation in which the corre-

lation between binary Xi and binary Yi is of interest, where there are clinical consequences to
be associated with the decisions. The particular weighted kappa discussed here is particularly
relevant when Yi is to be used to make decisions relative to Xi, in which case it is prudent
to consider the relative clinical importance of false positives and false negatives. There are
a vast number of research questions of this type in medical research. We have used as an
example the evaluation of a medical test against a binary ‘gold standard’. Since such medical
tests are often the basis of medical decisions of whom to treat and how, such problems are
of crucial importance. However, Xi might also represent the presence or absence of a disor-
der, and Yi a possible risk factor for that disorder. Such information often in�uences policy
recommendations as to preventive measures or targeting of certain populations for preventive
interventions. In that situation, �(r) would be used as a measure of potency of that risk
factor [58]. Xi might be the diagnosis by an acknowledged expert, and Yi the diagnosis by
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a less expert clinician, a nurse, a layman, from a di�erent source, or under di�erent con-
ditions. Such questions often arise in health services research, for if one can achieve the
same (or better) quality of diagnosis from less costly sources, one could decrease medical
costs with no decrease in quality of care. What characterizes all these situations is that Xi is
a criterion against which Yi is to be evaluated, and that there are costs to misclassi�cation
that are embodied in the weight, r, that de�nes �(r).
There are many other medical research questions for which some form of kappa could

conceivably be used, but to date, the logic of suggesting any form of kappa is either absent or
weak. For example, to show that two disorders are non-randomly comorbid in a population,
one would assess how frequently they co-occur in that population and show this is more
frequent than random association would suggest [65]. One could certainly use a kappa to
measure such comorbidity, but which kappa, and why any kappa would be preferable to the
odds ratio, for example, is not clear. If one were interested in whether one could use a single
nominal observation plus other information to predict a second nominal observation, one might
prefer various regression modelling approaches, such as log-linear models [5, 20, 66]. So far,
there appear to be few other contexts not covered above, where use of a kappa coe�cient
might be unequivocally recommended or preferred to other methods. Thus it appears that there
are certain situations where kappa coe�cients are ideally suited to address research questions
(2×M intraclass kappa for reliability), certain situations in which kappa coe�cients have
qualities that make them outstanding choices (2× 2 weighted kappa in the validity context),
and many other situations in which kappa coe�cients may mislead or where other approaches
might be preferable.
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SUMMARY

With the proliferation of clinical data registries and the rising expense of clinical trials, observational
data sources are increasingly providing evidence for clinical decision making. These data are viewed
as complementary to randomized clinical trials (RCT). While not as rigorous a methodological design,
observational studies yield important information about e�ectiveness of treatment, as compared with the
e�cacy results of RCTs. In addition, these studies often have the advantage of providing longer-term
follow-up, beyond that of clinical trials. Hence, they are useful for assessing and comparing patients’
long-term prognosis under di�erent treatment strategies. For patients with coronary artery disease, many
observational comparisons have focused on medical therapy versus interventional procedures. In addition
to the well-studied problem of treatment selection bias (which is not the focus of the present study),
three signi�cant methodological problems must be addressed in the analysis of these data: (i) desig-
nation of the therapeutic arms in the presence of early deaths, withdrawals, and treatment cross-overs;
(ii) identi�cation of an equitable starting point for attributing survival time; (iii) site to site variability
in short-term mortality. This paper discusses these issues and suggests strategies to deal with them.
A proposed methodology is developed, applied and evaluated on a large observational database that has
long-term follow-up on nearly 10 000 patients. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the most important aspects of clinical decision making is selecting treatment strategies
for individual patients. A patient’s general health, demographic status and disease severity
will in�uence both the choice of therapy and the prognosis. For patients with coronary artery
disease (CAD), the patient’s risk pro�le can determine whether a more invasive, and costly,
strategy is indicated. Because CAD accounts for a major portion of cardiovascular disease
(the U.S.A.’s number one cause of death, with incurred costs exceeding $150 billion annually
[1]), these decisions are relevant to society as well as to individual patients.
This study addresses some of the methodological issues in using observational data to

create prognostic models for CAD patients under di�erent therapeutic options. Currently, the
three primary options after diagnosis by cardiac catheterization are medical therapy (MED),
percutaneous transluminal coronary angioplasty (PTCA), and coronary artery bypass graft
surgery (CABG), the latter two being revascularization procedures.
Ideally, data to assess the in�uence of treatment strategy on prognosis would come from

randomized trials. However, these trials are expensive and often have limited sample size and
follow-up. Further, they cannot always be generalized to the broader spectrum of patients and
practice settings. Thus, observational data must sometimes supply information for medical
decision-making. In this case, the choice of therapy, the prognosis, and the relative survival
bene�t depend to a great extent on the patient’s risk pro�le. In particular, because treatment
groups are not necessarily comparable prior to treatment, quantitative statistical models that
attempt to account for treatment selection bias while estimating survival under alternative
treatment strategies are needed. In addition to the selection bias that is inherent in treatment
comparisons with such data, a number of other issues are relevant, and these additional issues
are the focus of this manuscript.

1.1. Issues in assessing prognosis for CAD patients using observational data sources

A fundamental di�culty when using observational data to estimate prognosis for CAD pa-
tients involves de�ning treatment-speci�c survival. Physicians and patients who initially select
a less invasive treatment option understand that later cross-over to a more invasive alterna-
tive is possible. For example, a patient may begin treatment with medical therapy, but later
undergo CABG. The initial post-catheterization treatment ‘strategy’ incorporates this potential
change in treatment. The prognosis that includes survival from treatment initiation through
any subsequent cross-overs will be designated as arising from a ‘treatment strategy’ perspec-
tive. This perspective is in distinction to the ‘single treatment’ perspective, which evaluates
prognosis while receiving only the initial treatment and censors at any cross-over, such as
expected survival while on MED (described further in Section 1.2).
In randomized trials, treatment assignment is unbiased and survival time is initiated at ran-

domization. Observational studies of CAD patients, however, often lack an explicitly recorded
treatment assignment and thus have no uniformly logical treatment initiation time. Although
the treatment decision occurs soon after the catheterization, it is generally not recorded in
the observational data set. Furthermore, personal reasons or scheduling di�culties can delay
the actual performance of a procedure for several days; consequently, some patients could
be lost to follow-up if they go elsewhere for procedures or some may die while awaiting
revascularization. For such patients, if no revascularization procedure has occurred following
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catheterization, a default assignment to the medical therapy arm would attribute both early
deaths and early losses to follow-up to MED. This policy assumes medical survival time
begins at catheterization, whereas procedural survival begins at the procedure date. Using
this convention and assuming the patient has survived the catheterization procedure, medi-
cal survival is unconditional, but procedural survival is implicitly conditioned on surviving
to receive the procedure. This problem is similar to one described in transplantation liter-
ature. When patients who do not survive long enough to undergo transplantation are, in
analyses, assigned to the non-transplant group, this creates a selection ‘waiting time’ bias in
favour of the transplantation group. The methodological problem of when to begin ‘survival
time’ has led to a serious and sustained debate questioning if heart transplantation survival
bene�ts may have been caused by selection bias [2–5]. With the pace of care increasing,
the delay from catheterization to PTCA is often far shorter than the delay from catheteri-
zation to CABG. Hence the potential ‘waiting time bias’ is particularly favourable toward
CABG. This dilemma underscores the need for establishing an equitable ‘treatment initiation’
time.
A further issue in assessing prognosis is that peri-procedural care (usually de�ned as the

�rst 30 days following a procedure) and long-term care are generally handled di�erently and
by di�erent types of care providers. The early survival after catheterization and treatment
assignment is a variable component of overall survival that depends to a great extent on insti-
tutional constraints and individual care providers. This ‘problem’ also exists when physicians
wish to make decisions based on RCT data. It is especially true for CABG and PTCA, which
depend on the skill of the operator. Hence, local e�ects on early mortality need to be con-
sidered in long-term prognosis. Also, the factors that are important determinants of this early
risk may di�er from those a�ecting long-term survival.
An additional statistical concern is the di�erential risk associated with alternative treatments

in the early period. CABG is known to incur a much higher early risk than either PTCA or
MED, but this risk declines sharply in the �rst few days after the surgery. Because the early
hazards for the three treatments are not proportional, a simple proportional hazards survival
model cannot be used directly to obtain estimates of relative treatment hazards. Treatment
e�ects in the later interval are more likely to conform to proportional hazards.
A survival model that allows the variable 30-day mortality component to be estimated in-

dependently (possibly locally) and then coupled with the long-term component may be used
to compare prognosis under di�erent short-term scenarios. In addition, estimates of the condi-
tional survival (dependent on surviving this initial 30-day period) can be used by patients and
providers following a successful procedure, or by those who want data that is not in�uenced
by the early mortality rate.

1.2. Previous approaches

Some of the earliest observational prognostic assessments for CAD patients came from the
CASS multi-site data registry [6, 7]. Acknowledging the di�culties of determining treatment
assignment and exposure time, these studies performed analyses using several methods. One
comparative analysis between MED and CABG assigned patients to medical therapy unless
CABG was performed within an established time window. Patients who did not undergo
CABG and either died or were lost to follow-up before the average time to CABG were
excluded from analysis to avoid biasing the estimates against medical therapy survival. This
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exclusion addressed the potential for waiting time bias, although the time to CABG is a
skewed distribution with a heavy tail and a mean that is far greater than the median.
Another CASS method used what we designate as the ‘single treatment’ perspective for

medical therapy, a method that was also used for survival comparisons in the Duke Cardio-
vascular Database [8–10]. In these comparisons, medical survival represented the interval of
time a patient spent on medical therapy prior to death, revascularization or loss to follow-
up. The medical survival of a patient who crossed over from medicine to a procedure was
censored at the time of the procedure, and that patient’s remaining survival was analysed as
procedural survival. Whereas survival time for medical patients began at catheterization, the
procedural survival times began at the time of procedure. Patients who died in the �rst few
days after catheterization without undergoing a procedure, including those few deaths due to
catheterization, were assumed to be medical failures.
Blackstone et al. [11] used parametric modelling of a cumulative hazard function to esti-

mate survival to di�erent time-related events following cardiac valve surgery. Their approach
allows a time-varying decomposition of the hazard into as many as three phases, with the in-
corporation of potentially di�erent covariates into each phase. Using this method, the problems
of non-proportional early hazards and a separate covariate set for di�erent time periods can be
addressed directly. Treatment comparisons are not an issue in these analyses. Hence, because
valve surgery has a logical treatment initiation and assignment, whereas medical therapy does
not, this method does not address the issues of treatment assignment and initiation.

2. METHODS

2.1. Overview

We developed a strategy to de�ne treatment assignment and treatment initiation and to accom-
modate a site- or region-speci�c 30-day mortality when using observational data for prognostic
comparisons among CAD patients. This �rst step in our procedure was to implement a ‘treat-
ment strategy’ approach by empirically designating a treatment assignment window. The next
step was to designate a logical ‘treatment initiation’ point. Using the traditional 30-day pe-
riod to de�ne short-term mortality, we then separated the short- and long-term components
of survival. Figure 1 demonstrates the proposed scheme for treatment assignment, treatment
initiation and designation of the modelling population. Modelling e�orts involved constructing
a conditional survival model that would allow the short-term survival component for each of
the three treatment strategies to be imported from an external source. The long-term condi-
tional model was thus estimated on the population of all patients who initiated treatment and
then survived the short-term 30-day period after treatment initiation. This framework allows
for site- or region-speci�c short-term mortality models to be combined with the long-term
conditional survival model to estimate overall prognosis for individuals or classes of patients.

2.2. Application population

We developed and applied our methods using the Duke Cardiovascular Database. This prospec-
tively collected database and its follow-up procedures have been described elsewhere [12]. The
patient population for the current study was 9251 consecutive patients referred to Duke Uni-
versity Medical Center for cardiac catheterization between 1 March 1984 and 1 August 1990.
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Figure 1. Decision rule for treatment assignment, treatment initiation, and
inclusion in modelling population.

Patients were included if they had not previously undergone a revascularization procedure and
were considered eligible for all three of the treatment options. This latter criterion excluded
patients with left main disease, because they generally undergo CABG. Follow-up extended
to July 1994.

2.3. Treatment perspective

In a ‘treatment strategy’ perspective, the initial treatment decision is considered a strategy that
incorporates the opportunity for subsequent cross-over to an alternative treatment. For example,
a patient who lives one year on medical therapy and an additional �ve years following CABG
is considered to have lived six years after the decision to begin with medical therapy. Hence,
medical survival represents the survival that could be attributed to a strategy of initial medical
therapy (‘intention to treat’), with subsequent revascularization possible depending on clinical
circumstances.
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We used Kaplan–Meier [13] survival curves to display di�erences in treatment assignment
perspectives. It will be informative to recall that the Kaplan–Meier curve is constructed as
a product over all event times; at any particular event time, the contribution is a fraction
that contains the population at risk in the denominator and the number of non-events in the
numerator. For purposes of comparison, we calculated Kaplan–Meier [13] survival curves
for patients assigned to MED according to three di�erent perspectives designated as ‘single
treatment’, ‘treatment strategy’, and ‘medicine only’. With the ‘single treatment’ perspective,
every patient who survives the catheterization is assigned to the MED group, if only tem-
porarily. Survival time is initiated at catheterization and extends until the patient has an event
(death) while still on medical therapy; it is censored when the patient is lost to follow-up or
undergoes a procedure (PTCA or CABG), in which case the treatment assignment transfers
to the respective procedure. On the other extreme, the ‘medicine only’ treatment perspective
de�nes the MED group to include only patients who never underwent revascularization during
follow-up; their survival time is censored at loss to follow-up. This latter group of patients
is a subset of the ‘single treatment’ MED group and includes a mixture of patients who are
not considered healthy enough to withstand a procedure, along with those who are considered
not to need a procedure. The events (deaths) in these two groups are identical because they
include all deaths among patients who have never been revascularized. Hence, any di�erences
between the two Kaplan–Meier curves are due to di�erences in the populations at risk at each
event time, which are re�ected in the denominators of the components of the curves.
The ‘treatment strategy’ perspective provides an intermediate de�nition of the MED group,

but requires that a treatment assignment window be designated. For our comparisons, we
implemented three di�erent treatment assignment windows, as described below.

2.4. Treatment assignment window

As noted previously, the intended treatment assignment is rarely captured in a computerized
observational database. Hence, an initial goal of these analyses was to establish a treatment
assignment time window. The treatment assignment window represents a period of time fol-
lowing cardiac catheterization, during which patients who were initially intended to receive a
procedure would likely receive it. Within this window, patients who underwent procedures are
assigned to the respective revascularization strategy (patients who underwent both procedures
are assigned to that which occurred �rst). All other patients, including those who received
PTCA or CABG after the treatment assignment window, are assigned to the MED strategy.
Thus, the MED population at risk for a ‘treatment strategy’ perspective includes all of the
patients identi�ed by the ‘medicine only’ perspective. Within the treatment assignment win-
dow, the risk set (denominator) for the Kaplan–Meier curve at any event time is a subset of
the ‘single treatment’ MED at-risk population. The numerator is identical, because all events
are among patients not yet revascularized in each case. Beyond the treatment assignment win-
dow, the risk sets and events for the ‘treatment strategy’ perspective include patients who
underwent late procedures.
To determine an appropriate treatment assignment window, we �rst evaluated the cumulative

distributions of days until CABG for all patients in the database who eventually underwent
a CABG procedure and days until PTCA for all patients who eventually underwent a PTCA
procedure. Based on these distributions and current clinical practice, we selected 30, 45 and
60 days following catheterization as candidates for a treatment assignment window. We then
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compared the Kaplan–Meier survival curves for the medically assigned patients under each of
these potential treatment assignment windows (see Section 3) and also compared them with
the ‘medicine only’ group and the ‘single treatment’ group, de�ned above.

2.5. Treatment initiation and waiting time bias

With no explicit treatment assignment recorded in an observational data record, the assignment
of early deaths to a treatment strategy is problematic. To address the problem of potential
waiting time bias, which can adversely a�ect comparative MED survival estimates, we created
a ‘treatment initiation’ designation for medical therapy. Patients who had not undergone a
revascularization procedure and either died or were lost to follow-up prior to the ‘treatment
initiation’ point (a number of days after catheterization) were excluded. This was an attempt
to equalize the starting point for survival across treatments, so that medical survival can be
considered conditional on ‘treatment initiation’ in the same way that procedural survival is
conditional on undergoing the procedure.
To assess the impact of assigning early deaths to the medical therapy arm and to �nd a

reasonable ‘treatment initiation’ time point, we inspected the distribution of times to early
death or loss to follow-up (LTF) for patients assigned to medical therapy according to the
designated treatment assignment window. We then compared the MED Kaplan–Meier survival
curves for three candidate ‘treatment initiation’ points of 0, 7 and 14 days.
CABG and PTCA treatment strategies were initiated at procedure date. The starting time

points (0.0 on the survival time axis) for all three strategies were then conditional on treatment
initiation. At treatment initiation, the survival time clock began and survival was de�ned to
be 100 per cent at this point for all three strategies.

2.6. Data con�guration for long-term conditional survival model

The long-term survival modelling relied on Cox regression analysis to account for patient
characteristics while assessing the e�ects of treatment strategy on an underlying, unspeci�ed,
hazard function. Because there are no published short-term medical mortality models, our
particular application allows for external CABG and PTCA short-term models, but uses the
Duke Database to estimate the MED short-term mortality. Other institutions may have their
own short-term MED models that re�ect their local experience and procedures, including
admission criteria, use of specialty services, nursing protocols and transitional care. They may
wish to supplement their short-term data with a long-term prognostic model for which they
do not have local data.
We thus separated the short-term modelling from the long-term modelling component. The

�rst module (called the short-term module) comprised all patients who initiated therapy and
their 30-day survival was either imported or modelled separately. The second module (called
the long-term conditional module) consisted of all patients who survived at least 30 days after
treatment initiation, regardless of treatment assignment. Thus, the short-term module represents
the initial 30-day survival, conditioned only on treatment initiation. The long-term conditional
module provides a long-term component that is conditional on 30-day survival for each of
the three treatment strategies. Figure 2 displays a hypothetical modelling scenario using this
con�guration.
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Figure 2. Schematic of hypothetical conditional model and subsequent overall survival model.

We implemented the long-term module by modelling the underlying conditional hazard as

�(t |Xi)= �0(t) exp(�Xi + �PIP + �CIC); t¿30

where �(t |Xi) is the underlying hazard at time t for a patient with covariate vector Xi.
IP and IC are indicator variables for PTCA and CABG, respectively, and �P and �C are the
corresponding parameter estimates. The underlying hazard, �0(t), starts at day 30 and applies
to all patients surviving at least 30 days after treatment initiation.
This modelling structure incorporates some basic assumptions. First, a patient’s speci�c haz-

ard is assumed to relate to the underlying hazard by the proportionality factor, exp(�Xi). The
model is also parameterized so that the PTCA and CABG strategies are each represented by
indicator covariates and are thus assumed to conform to the proportional hazards assumption
in the conditional stratum. This assumption can be tested, as described below. An additional
assumption is that the MED long-term conditional module absorbs the short-term procedural
mortality incurred by the small percentage of patients who are assigned to medical therapy
but later cross over from MED to a procedure. In addition, although our application involves
a single site, other databases may accumulate long-term data from several sites; this strategy
can be employed in those databases with the addition of site-speci�c parameters.

2.7. Model construction

Standard model building procedures were used to select covariates for the long-term survival
model, to test for non-proportional hazards, and to determine signi�cant variable interactions.
Our analytic approach was to test model variables �rst for signi�cance, and then for violations
of the proportional hazards assumption. Variable transformations were implemented during the
testing phase to help improve the model �t and to resolve violations of model assumptions.
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The proportional hazards assumption was tested by assessing the log hazard ratio over time
using scaled Schoenfeld partial residuals [14, 15]. We also used time-dependent covariates to
test for time by predictor interactions. For the few covariates that violated the proportional
hazards assumption, we strati�ed the model by estimating di�erent underlying hazards rather
than hazard ratios (taking into consideration that hazards are not proportional across strata,
and hence an estimated hazard ratio is not appropriate). The resulting model can be written
as

�k(t |Xi)= �k0(t) exp(�Xi + �PIP + �CIC); t¿30

where k indexes the covariate strata.

2.8. Adequacy of the conditional model

We used several measures of observed versus expected survival to assess the �t of the con-
ditional model in various subgroups. Because the underlying hazard is allowed to vary across
strata, model estimates will be likely to �t the individual strata well. We therefore evaluated
the adequacy of the model in subgroups that had not been used to stratify the model and
that included patients from more than one stratum. The most relevant of these were the three
subgroups determined by the number of diseased vessels (1, 2 or 3). For each of these sub-
groups, we generated the observed (Kaplan–Meier) �ve-year survival curve along with the
average individual conditional predicted survival at each failure time point.
The long-term conditional model was used to estimate individual patient survival curves

up to �ve years. As described above, the estimates from this module represent long-term
conditional survival for all three-treatment strategies. This conditional survival is estimated as

ŜkX (t)= Ŝ
k
0 (t)

exp(�̂Xi+�̂PIP+�̂CIC); t¿30

for a patient in stratum k with covariate vector Xi. Ŝk0 (t) is the underlying estimated survival
curve derived by iteratively solving a maximum likelihood equation involving the estimated
parameters from the proportional hazards model and a set of hazard contributions at each fail-
ure time [16]. It is produced by most software programs that perform Cox survival modelling.
For each subgroup, we averaged the individual survival predictions over all patients in

the subgroup (for example, one vessel disease). The resultant average curve represents the
estimated truncated survival at �ve years for this subgroup. Several comparative measures of
model �t were then generated. First, the average observed survival at �ve years, calculated
from the Kaplan–Meier curve, was compared with the average estimated �ve-year survival.
We also calculated three discrepancy measures between the overall curves. The �rst is the
maximum absolute di�erence between the curves over the entire �ve years, expressed as
per cent survival. This measure re�ects the maximum error at any time point. The second
measure is the di�erence between the areas under the two curves, which can be interpreted
as an estimate of di�erence in �ve-year life expectancy between observed and predicted. The
third measure is the total absolute area between the two curves, as a measure of ‘absolute
deviation’. This last measure can be envisioned as the sum of areas of all of the regions
that are de�ned by the two curves. It is identical to the di�erence between the areas under
the two curves when one curve always lies above the other, but the two measures can di�er
substantially if the curves cross.
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2.9. Computing overall survival and testing for di�erences between treatments

Unconditional survival from 30 days forward can be calculated for all three treatment strategies
by multiplying the long-term conditional survival by (1–30-day mortality), using the respective
short-term mortality. To complete the survival curve from day 0 (treatment initiation) to day
30, the survival at time 0 (1.0) can be linearly connected to the 30-day survival estimate.
As an example of the short-term CABG risk, we used the in-hospital mortality model

developed by Hannan et al. [17] in the New York State CABG Surgery Reporting System
data. For PTCA mortality, we applied the model developed in the Cooperative Cardiovascular
Project [18]. MED short-term mortality was modelled within the Duke Database. Using these
estimates, a �ve-year truncated life expectancy for an individual patient can be calculated as
the area under the curve for each of the three treatment strategies. This set of triplets (one for
each patient) can used to investigate whether there are certain groups of patients for whom
treatment di�erences are maximized on this response scale.

3. APPLICATION

3.1. Determining the treatment assignment window

Of the 9251 study patients, 6506 eventually underwent a PTCA or CABG during follow-up.
Cumulative distributions of time from catheterization to CABG, PTCA and either procedure
for these patients are displayed in Figure 3. For 2855 of these patients, the initial proce-
dure was PTCA, with 75 per cent undergoing PTCA within 4 days and 91 per cent within

Figure 3. Cumulative distributions time to procedure for PTCA, CABG and either.
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Figure 4. Kaplan–Meier survival comparison among methods for assigning patients to MED.

30 days of catheterization. An additional 3651 patients underwent CABG as a �rst procedure,
75 per cent within 14 days and 81 per cent within 30 days of catheterization. The overall
75th percentile for time to procedure for CABG and PTCA patients combined was 8 days. By
60 days after catheterization, all three cumulative distributions appear to level o�, indicating
that after this period, new procedures accumulate slowly. In fact, the distributions are ex-
tremely skewed: the 90th percentile for time to PTCA is 12 days and the 95th percentile is
466 days; the 90th percentile for time to CABG is 487 days and the 95th percentile is 1311
days.
Figure 4 demonstrates the seven-year Kaplan–Meier survival comparison among the ‘treat-

ment strategy’, the ‘medicine only’, and the ‘single treatment’ approaches for assignments to
the medical therapy arm. At this point in the analysis, no early deaths have been excluded
from any of the groups. The ‘single treatment’ MED group includes all patients until they
undergo a procedure, are lost to follow-up, or die without having a procedure. The MED
group de�ned by the 30-day treatment assignment window is initially a subset of the ‘sin-
gle treatment’ group and contains all patients except those who undergo procedures within
30 days of catheterization. Likewise, the 45- and 60-day groups form decreasing subsets of
the ‘single treatment’ group. The ‘medicine only’ group is the limiting extension of the treat-
ment assignment window and only includes patients who never underwent a procedure. In the
�rst 30 days after catheterization, the Kaplan–Meier curves can only di�er due to the sizes
of the populations at risk (denominators), because no procedural deaths are counted as events
in any of these groups. After 30 days, the 30-day treatment assignment group also contains
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Figure 5. Cumulative deaths and losses to follow-up (LTF) without undergoing PTCA or CABG.

events among those few patients who undergo procedures after 30 days and subsequently
die during follow-up. Similar reasoning holds for the 45- and 60-day groups. The estimated
‘single treatment’ survival has a substantial early advantage over the other curves because of
the in�ated denominator in the Kaplan–Meier calculations.
As expected, the ‘medicine only’ curve is substantially below the others, in part because pa-

tients who are never referred for procedure are generally a higher-risk group. This phenomenon
is also seen when the ‘single treatment’ curve crosses the ‘treatment strategy’ curves at about
�ve years, indicating that the healthier patients are being censored from the ‘single treatment’
curve in the later years. Patients who are considered hardy enough to withstand a procedure
are selectively removed from the medical ‘single treatment’ group, leaving the sicker patients
[19]. These healthier patients are retained in the medical group when the ‘treatment strategy’
perspective is taken.
Among the three candidates for treatment assignment windows (30, 45 and 60 days), there

is virtually no di�erence in the survival curves. Hence, because 30 days incorporates over
90 per cent of all PTCA procedures, 80 per cent of all CABG procedures, and 85 per cent
of all procedures in general, it was selected for a logical treatment assignment window.

3.2. Determining the treatment initiation point

Using the 30-day treatment assignment window for de�ning the MED arm, Figure 5 displays
the cumulative distribution of early deaths and losses to follow-up (LTF) for medically as-
signed patients. There are a large number of each during the �rst 7 days, but after that the
LTF are infrequent and the number of deaths continues to accumulate, but less dramatically.
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Figure 6. Kaplan–Meier survival comparisons varying exclusion period for
determining MED treatment initiation.

Figure 6 compares the Kaplan–Meier survival curves computed by using no exclusions,
or 7 or 14 days as exclusions for a ‘treatment initiation’ period. For reference, the ‘single
treatment’ curve is also plotted.
We reason that the survival of patients actually intended to receive medical therapy is

compromised when the early failures and LTF who are not intended for medical therapy
are included. Thus, the actual medical survival curve would not be expected to drop as
precipitously in the early period as the ‘single treatment’ curve, which includes the deaths of
all patients who are not revascularized. Both the 7- and 14-day exclusion periods remedy this
situation. Synthesizing the information from Figures 5 and 6, we selected the 7-day exclusion
period as a reasonable compromise.
Thus, based on clinical reasoning and empirical data, we established 30 days as the ‘treat-

ment assignment’ window and the eighth day following catheterization as the ‘treatment ini-
tiation’ point. In Figure 1, which displays the decision algorithm for assigning patients in the
survival model, the treatment assignment window is now determined as 30 days, not to be
confused with the short-term mortality period, which is also 30 days. The exclusion period
is now 7 days in Figure 1. Only patients who remained alive at least a week after catheteri-
zation without being revascularized can be considered to have initiated medical therapy. For
example, a patient who died 15 days after catheterization without undergoing a procedure was
assigned to the medical treatment strategy and had an exposure time of 8 days of survival



300 E. R. DELONG ET AL.

after treatment initiation. A patient who underwent CABG at 35 days post catheterization and
died 9 days after that was also considered to be on the medical treatment strategy (because the
patient crossed over to surgery more than 30 days after the catheterization) and was credited
with 37 (35 + 9− 7) days of medical survival.
Of the 2855 patients undergoing PTCA as the �rst procedure after catheterization, 2606

had their procedures within 30 days and were assigned to the PTCA group. Similarly, 2978
patients were assigned to the CABG group. After excluding 86 early deaths and 25 LTF,
an additional 3556 who were assigned to medical therapy initiated medical therapy. The
673 medical patients who underwent CABG and the 249 who underwent PTCA more than
30 days after catheterization comprised a cross-over rate from MED of 19 per cent to CABG
and 7 per cent to PTCA.
For the conditional modelling, we excluded 99 deaths within 30 days of CABG and 100

PTCA deaths within 30 days. This PTCA mortality rate of 3.8 per cent was relatively high
and is due to the large number of patients with myocardial infarction receiving PTCA at this
tertiary care institution. (Other institutions may have a less critically ill population with better
estimates for low risk patients.) In addition, 82 of the 3556 patients who initiated medical
therapy (2.3 per cent) died in the �rst 30 days following treatment initiation.

3.3. Long-term conditional survival modelling

We determined that both MI status and extent of disease were signi�cantly important prog-
nostic factors for conditional survival and that neither conformed to the proportional hazards
assumption. After stratifying on three levels of MI status (1=MI within 24 hours, 2= recent
MI within 6 weeks or currently unstable, 3=no recent MI) and two levels of disease severity
(1=one or two vessel disease with no proximal left anterior descending disease; 2= two
vessel disease with proximal LAD or three vessel disease), no further violations of propor-
tional hazards were encountered (recall that patients with left main disease were excluded
because they were not considered candidates for all three treatment options). In this con-
ditional model, treatment e�ects were modelled directly, without violating the proportional
hazards assumptions.
Besides treatment e�ects, the �nal model included the extent of coronary artery disease, as

coded by the CAD index (range 23 to 74), incorporating the number and location of diseased
vessels [9, 12] ejection fraction, age, gender, severity of congestive heart failure (CHF), mitral
regurgitation (MR), and a Charlson [20] index that was modi�ed to exclude myocardial
infarction and CHF. The relation between ejection fraction and survival was di�erent for
medical patients than for patients who underwent CABG or PTCA. We also found that the
e�ect of increasing CAD index was di�erent for the three treatments so we included interaction
terms to capture these di�erential relationships.

3.4. Adequacy of the conditional model

Figures 7(a)–(c) display the results of the modelling process. The computer code for gener-
ating a typical curve is given in Example 1 of the appendix. For PTCA and CABG, mean
predicted conditional survival are plotted against the observed Kaplan–Meier survival for one,
two and three vessel patients. For MED, because we created both short- and long-term mod-
els within the Duke data set, we plot the entire unconditional curves. Table I tabulates the
accompanying survival estimates and discrepancy measures. The conditional survival curves
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Figure 7. Observed and predicted survival: (a) single-vessel disease; (b) two-vessel disease;
(c) three-vessel disease.
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Figure 7. Continued.

Table I. Five-year survival estimates and measures of discrepancy for the �nal conditional model.

Subgroup N Survival estimates at �ve years Discrepancy measures

Kaplan–Meier Predicted Maximum Di�erence Absolute
di�erence∗ between areas† deviation‡

(%)

One vessel
Medicine 1669 0.863 0.859 0.5 0.007 0.010
PTCA 1569 0.922 0.920 0.6 0.007 0.008
CABG 284 0.912 0.895 2.0 0.009 0.037

Two vessel
Medicine 1088 0.747 0.755 1.7 0.041 0.041
PTCA 728 0.872 0.875 1.4 0.015 0.021
CABG 979 0.863 0.870 1.3 0.024 0.024

Three vessel
Medicine 799 0.570 0.586 2.9 0.062 0.071
PTCA 209 0.783 0.778 2.0 0.029 0.040
CABG 1616 0.851 0.842 1.6 0.046 0.047

∗Di�erence in per cent survival over �ve years.
†Five year di�erence between areas under Kaplan–Meier and predicted curves.
‡Five year total area between the curves.



ESTIMATING PROGNOSIS USING OBSERVATIONAL DATA 303

Figure 8. Ninety �ve per cent con�dence intervals for hazard ratios. Ejection fraction from 35 to 60
within each CAD index level for PTCA=MED and for CABG=MED.

begin at 100 per cent at day 30. The scale of these plots is from 50 per cent to 100 per cent
survival probability to magnify areas of discrepancy. For single vessel disease, the maximum
di�erence between observed and expected curves is 2.0 per cent at 4.75 years for CABG;
for MED and PTCA, the maximum di�erences are 0.5 per cent and 0.6 per cent, respec-
tively. For two-vessel disease, the maximum discrepancy of 1.7 per cent occurs at 2.5 years
for the medically treated group, and is 1.4 per cent at 3 months for CABG and 1.3 per
cent at 2.5 years for PTCA. The prediction for three-vessel MED patients demonstrates the
greatest discrepancy from observed survival with a maximum di�erence of 2.9 per cent at
4 years. Maximum di�erences for PTCA and CABG were 2.0 per cent and 1.6 per cent,
respectively. The di�erence in �ve-year truncated life expectancy is less than 0.05 years (less
than 20 days), with an absolute deviation less than 0.05, for all subgroups except the med-
ically treated three-vessel disease group. As expected, the discrepancy measures tend to be
largest in those subgroups for which �ve-year survival is worst, such as medically treated
patients with three-vessel disease.
The conditional treatment hazard ratios vary with level of CAD index and ejection fraction.

Hence, we calculated them at each level of CAD index for 5-unit increments of ejection
fraction from 35 to 60. These are displayed in Figure 8 along with 95 per cent con�dence
intervals, with CAD index increasing in severity from the �rst level (level A) to the highest
level (level J). (The computer code for producing this �gure is given in Example 2 of the
appendix.) Because of the �nding that the CABG=PTCA hazard ratios do not depend on
ejection fraction, there is a single con�dence interval for this comparison for each value
of CAD index. For the other two comparisons, as ejection fraction increases from 35 to
60, the superiority over MED becomes less pronounced. For this long-term component of
survival, without discounting for procedural mortality, PTCA confers signi�cantly lower risk
than medical therapy at essentially all levels of CAD index and ejection fraction, except for
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Table II. Conditional and unconditional truncated life expectancy over �ve years
for each treatment strategy.

Treatment Conditional truncated survival Unconditional truncated survival
Mean years ± standard deviation Mean years ± standard deviation

Medicine 4:35± 0:63 4:36± 0:71
CABG 4:56± 0:38 4:53± 0:45
PTCA 4:52± 0:45 4:53± 0:51

marginal superiority at the highest ejection fraction values. CABG has increasing superiority
over medical therapy with more severe coronary artery disease. For patients at the highest
levels of CAD index, CABG is also signi�cantly superior to PTCA.
Although CABG appears to be the treatment of choice for most patients when conditional

survival is evaluated, the overall �ve-year truncated life expectancy depends on the expected
procedural mortality. We �rst calculated the conditional truncated life expectancy over �ve
years for all three treatments by taking the areas under the individual patient estimated curves.
Then, using the Hannan CABG procedural mortality model [17], the CCP PTCA [18] procedu-
ral mortality model, and the internally developed MED short-term model, we also calculated
the corresponding unconditional �gures. Table II displays the means and standard devia-
tions of these measures. Whereas CABG yields somewhat better conditional survival in this
group of patients, the PTCA and CABG unconditional survivals are essentially equivalent
after accounting for the di�erential short-term mortality. Because of the steep early mortality
for CABG, the unconditional survival, obtained by multiplying the conditional curve by the
30-day CABG survival and then adding the 30-day component, turns out to be less than
the conditional survival. This result implies that, once the patient has survived 30 days from
procedure, life expectancy is greater than it was prior to the surgery.
Figure 9 demonstrates the e�ect of incorporating a variable procedural mortality into the

long-term treatment decision. Note that the scale of the survival probability axis has been
truncated at 0.7 as a lower bound, to highlight di�erences in the curves. This �gure dis-
plays estimated �ve-year survival for a typical patient treated with PTCA with 1.5 per cent
acute mortality risk versus CABG with 1.5 per cent operative mortality risk and CABG with
a 4 per cent operative mortality risk. Here, �ve-year survival is clearly superior for CABG
when acute mortality is 1.5 per cent, but when CABG acute mortality is 4 per cent, patient
preferences with respect to risk aversion and long-term versus short-term bene�t may play a
signi�cant role.

4. DISCUSSION

We have used an example from coronary artery disease to demonstrate issues in the use of
observational data, for both a treatment comparison analysis and for supplying information to
the medical decision making process. We used a ‘treatment strategy’ approach to develop a
statistical model that assesses long-term survival for patients with coronary artery disease fol-
lowing an initial treatment decision among MED, PTCA and CABG. Using a data framework
that creates a treatment assignment and attributes survival conditional on treatment initiation,
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Figure 9. Predicted long-term survival as a function of acute risk.

the model allows for independently developed short-term mortality components. Our approach
simulates an ‘intention to treat’ analysis because survival is credited to the treatment initially
selected. It also establishes a context for the analyses. Whereas survival after PTCA or CABG
is implicitly conditional on having lived to receive the procedure, survival on MED has no
corresponding initiation event.
Peduzzi and colleagues [21], in analysing the VA randomized trial of CABG versus MED,

demonstrated that a randomized trial can be subject to severe bias if it does not adhere to the
‘as randomized’ treatment assignment. Their study compared four di�erent approaches to the
‘as randomized’ analysis of randomized data and concluded that when observational analyses:
(i) credit long waiting times for surgery to the surgery group; or (ii) exclude patients who
cross over from medicine to surgery; or (iii) count a surgical death after a long medical
follow-up as early surgical mortality, they are likely to incur bias. They concluded that the
gold standard ‘as randomized’ analysis may not, in fact, compare actual treatments, but rather
it compares treatment ‘strategies’. This was precisely the goal of the present analyses, which
incorporate methods to avoid the above sources of bias and produce a survival model for
treatment strategy, rather than treatment received.
Our ‘treatment strategy’ perspective for treatment comparisons attributes survival after

changes in treatment to the initial assignment. Other perspectives would require di�erent
analytic approaches and possibly di�erent interpretations. For example, another perspective
might assess survival on the ultimate treatment, rather than the initial treatment. Such analy-
ses would need to carefully assess the implicit waiting time bias prior to an intervention. The
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problem has been addressed in the transplantation literature, in which several parametric and
non-parametric approaches for comparing survival among transplanted and non-transplanted
patients have been tried [3] including the use of time-dependent covariates [4]. Some analy-
ses have proposed a modi�cation of comparative life tables to incorporate the transient states
transplantation candidates traverse [5]. No single approach has been advocated as a mechanism
for solving the waiting time bias problem.
A multiple failure time perspective could also be employed [22], whereby PTCA and CABG

would be considered as di�erent types of failures and any individual could experience multiple
events. We chose not to take this perspective because the occurrence of PTCA or CABG is
in�uenced to a great extent by the practising clinician. In addition, our goal was to compare
treatment strategies with respect to survival, rather than to evaluate the time until treatment.
Our analysis o�ers a mechanism for dealing with some speci�c issues with regard to esti-

mating prognosis from observational data. We are not proposing a particular method for the
problem of treatment selection bias, which is an inherent issue in most observational analysis.
We used a risk adjustment model in our application, although other methods are available. For
example, Rosenbaum and Rubin [23] demonstrate that propensity scores can be e�ective in
estimating treatment di�erences, assuming treatment assignment and treatment initiation have
been decided.
The treatment comparison results from our model are consistent with previously published

prognostic studies for CAD patients. After attempting to account for treatment selection, we
found that for less severe presentation of disease, PTCA is superior to medicine. For the
most severe presentation of disease, CABG is superior, recognizing that CABG may not be
an option for patients with signi�cant comorbid burden. For intermediate disease states, the
treatment strategy cannot be determined on the basis of long-term survival, but must also
consider patient preferences and local procedural success rates, which can have a substantial
impact on the overall prognosis.
One advantage of our conditional approach is that it allowed us to incorporate and estimate

the e�ects of treatment strategy directly in the model, without stratifying on this variable. After
determining that the hazard associated with a treatment strategy varies with CAD index and
ejection fraction, we were able to estimate these relative hazards. With a model that begins
survival time at the time of procedure, proportional hazards are clearly violated because of
the procedural mortality risk.
In addition, this approach optimizes the clinical utility of both long- and short-term data

collection e�orts. Few sites have the resources to accumulate long-term follow-up on large
numbers of patients. However, short-term procedural outcome data are increasingly available.
Risk algorithms that accurately account for early mortality following these procedures have
been extensively studied and are in the public domain. The ability to account for or vary the
early mortality in assessing long-term prognosis is an appealing aspect for medical decision
making.

APPENDIX

Below are examples of computer code used to generate two of the �gures presented in this
manuscript. The �rst is an S-plus program that plots observed Kaplan–Meier curves overlaid
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on the average estimated patient-speci�c survival function. The second is an SAS program
for calculating con�dence intervals for odds ratios and hazard ratios.

Example 1: note comments and documentation in S-plus begin with a #

#######################################################################
# Plot observed and predicted survival curve #
# Input: #
# km.object - A Kaplan-Meier object from a model fit using cph, #
# stratified on treatment (TREAT) and number of #
# diseased vessels (NO). #
# my.data - An Splus dataframe containing all data to be used #
# for prediction. #
# my.model - The Cox Proportional Hazards survival model; an #
# object fit using cph. #
#######################################################################

library(Design,T) #####################################################
# Attach Frank Harrell’s Design library. #
# Harrell FE (2000): Design: S functions for #
# biostatistical/epidemiologic modeling, testing, #
# stimation, validation, graphics, and prediction. #
# Programs available from lib.stat.cmu.edu or #
# hesweb1.med.virginia.edu/biostat/s/Design.html. #
#####################################################

store()
postscript(horizontal=T)

########## Obtain vector of time points for predicted survival ####
########## from 0.0 to 5.0 years ####
timepoints<-seq(0, 5,by =.02)
last.time<-length(timepoints)
pmv(last.time)

############## PTCA, NUMBER OF DISEASED VESSELS = 3 #######

######## Subset dataset on PTCA treated, no=3 subset ##############
dfptca<-my.data[my.data$treat=="PTCA" & my.data$no==3,]

######## Use survival model to predict survival for each patient ######
######## in this subset at each specified timepoint ######
pred.ptca <- survest.cph(my.model,dfptca,times=timepoints,conf.int=F)

######## Calculate mean survival estimate at each timepoint ######
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mean.ptca<-apply(pred.ptca$surv,2,mean)
last.ptca<-mean.ptca[last.time]
pmv(last.ptca)

############## CABG, NUMBER OF DISEASED VESSELS = 3 #######

######## Subset dataset on CABG treated, no=3 subset ##################
dfcabg<-my.data[my.data$treat=="CABG" & my.data$no==3,]

######## Use survival model to predict survival for each patient ######
######## in this subset at each specified timepoint ######
pred.cabg <- survest.cph(my.model,dfcabg,times=timepoints,conf.int=F)

######## Calculate mean survival estimate at each timepoint ######
mean.cabg<-apply(pred.cabg$surv,2,mean)
last.cabg<-mean.cabg[last.time]
pmv(last.cabg)

############## MED, NUMBER OF DISEASED VESSELS = 3 ########

######## Subset dataset on Med treated, no=3 subset ###################
dfmed<-my.data[my.data$treat=="Med" & my.data$no==3,]

######## Use survival model to predict survival for each patient ######
######## in this subset at each specified timepoint ######
pred.med <- survest.cph(my.model,dfmed,times=timepoints,conf.int=F)

######## Calculate mean survival estimate at each timepoint ######
mean.med<-apply(pred.med$surv,2,mean)
last.med<-mean.med[last.time]
pmv(last.med)

####### Observed and Conditional predicted suvival NO=3 Plots #########
survplot(km.object,treat="PTCA",no=3,ylim=c(.5,1),xlim=c(0,5),

lty=8,label.curves=F,adj.subtitle=F,n.risk=F,pr=T)

lines(pred.ptca$time,mean.ptca,lty=8,lwd=3)

survplot(km.object,treat="CABG",no=3,ylim=c(.5,1),xlim=c(0,5),
lty=4,label.curves=F,adj.subtitle=F,n.risk=F,add=T,pr=T)

lines(pred.cabg$time,mean.cabg,lty=4,lwd=3)
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survplot(km.object,treat="Med",no=3,ylim=c(.5,1),xlim=c(0,5),
lty=1,label.curves=F,adj.subtitle=F,n.risk=F,add=T,pr=T)

lines(pred.med$time,mean.med,lty=1,lwd=3)

legend(1.25,.75,c("PTCA conditional Kaplan-Meier",
"PTCA mean predicted survival",
"CABG conditional Kaplan-Meier",
"CABG mean predicted survival",
"Medical conditional Kaplan-Meier",
"Medical mean predicted survival"),cex=.75,

lty=c(8,8,4,4,1,1),lwd=c(1,3,1,3,1,3))
title("Observed and Predicted Conditional Survival
Three vessel disease",cex=.8)
mtitle()

text(5,last.ptca+.02,"PTCA",cex=.5)
text(5,last.cabg+.02,"CABG",cex=.5)
text(5,last.med-.02,"Medicine",cex=.5)
#######################################################################

Example 2: note comments and documentation begin with an asterisk and end with a semi-
colon
∗This macro uses output estimates from SAS PROC LOGISTIC
or SAS PROC PHREG to create confidence intervals for treatment
odds ratios (LOGISTIC) or hazard ratios (PHREG) as a function of
other covariates when the model contains treatment by covariate
interactions. The macro is customized to a specific PHREG model
that has two treatment indicators (PTCA CABG) compared against the
treatment MED, one covariate that interacts with these variables,
CADINDEX, and one covariate (EJECFRAFC) that interacts such that the
effect is the same for PTCA and CABG, but differs from that of MED.
The interaction variables are CADPTCA (CADINDEX*PTCA), CADCABG (
CADINDEX*CABG), and MEDEJEC (MED*EJECFRAC). The macro outputs a
dataset for plotting the estimated confidence intervals as a function
of CADINDEX and EJECFRAC;

%macro OR_RR ;
∗Prepare dataset to be used by IML by keeping only the covariates that
will be used;
data params; set params;
∗Keep only the parameters that will be used to calculate the odds
ratios or hazard ratios;
keep ptca cabg cadptca cadcabg medejec;
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if upcase( name ) in (‘SURVTIME’, ‘PTCA’, ‘CABG’, ‘CADPTCA’,
‘CADCABG’, ‘MEDEJEC’);

proc iml workspace=50;
use params;
read all into total [colname=cols];

∗Separate the model parameter estimates from their covariance matrix;
covmax=total[2:nrow(total),];
meanvec=total[1,];

∗Set range of values for CADINDEX;
cadindex={23 32 37 42 48 56 63 67 74};

∗Set range of values for medical ejection fraction: MEDEJEC;
medejec={35 40 45 50 55 60};

∗Do each combination in turn;
do jj=1 to ncol(medejec);

ef=medejec[,jj];
do ii=1 to ncol(cadindex);
cad1=cadindex[,ii];

∗Calculate the estimates for the PTCA vs MED odds or risk ratio;
∗First create linear combination vector for PTCA vs MED;

cadx_vec=cad1||{0};
ef\_vec=-ef; *The parameter is associated with MED, so the

negative is needed for PTCA;
ptca_vec={1 0} ||cadx_vec||ef_vec;

∗Calculate the point estimate of the PTCA/MED odds or risk ratio;
ptca_mn=ptca_vec* meanvec‘;

∗Find the covariance matrix;
ptca\_var=ptca\_vec*covmax*ptca_vec‘;
ptca_se=sqrt(ptca_var);

∗Create confidence intervals;
ptca_low=ptca_mn -1.96 *ptca_se;
ptca_hi =ptca_mn + 1.96* ptca_se;

∗Repeat for CABG vs MED;
cadx_vec={0}||cad1;
cabg_vec={0 1} ||cadx_vec||ef_vec;

∗Calculate the point estimate of the CABG/MED odds or risk ratio;
cabg_mn=cabg_vec* meanvec‘;

∗Find the covariance matrix;
cabg_var=cabg_vec*covmax*cabg_vec‘;
cabg_se=sqrt(cabg_var);
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∗Create confidence intervals;
cabg_low=cabg_mn - 1.96*cabg_se;
cabg_hi =cabg_mn + 1.96*cabg_se;

∗Now do the CABG vs PTCA ratios - these do not vary with ejection
fraction;

cadx_1=-cad1;
cadx_vec=cadx_1||cad1;
cp_vec={-1 1}||cadx_vec||{0};

∗Calculate the point estimate of the CABG vs PTCA odds or risk ratio;
cp_mn=cp_vec*meanvec‘;

∗Find the covariance matrix;
cp_var=cp_vec*covmax*cp_vec‘;
cp_se=sqrt(cp_var);

∗Create confidence intervals;
cp_low=cp_mn-1.96*cp_se;
cp_hi=cp_mn+1.96*cp_se;

∗Concatenate all estimates into a vector to be output to a dataset and
exponentiate;

vector= ptca_mn||ptca_se||ptca_low||ptca_hi
||cabg_mn||cabg_se||cabg_low||cabg_hi
|| cp_mn|| cp_se|| cp_low|| cp_hi;

vector=exp(vector);
∗Add values of ejection fraction and cadindex;

vector=ef||cad1||vector;
if ii + jj=2 then holding=vector;
else holding=holding//vector;

end;
end;

∗Create variable names such that ptca refers to PTCA vs MED, cabg
refers to

CABG vs MED and cp refers to CABG vs PTCA;
namespec={‘ejecfrac’ ‘cadindex’ ‘ptca_mn’ ‘ptca_se’ ‘ptca_lo’
‘ptca_hi’ ‘cabg_mn’ ‘cabg_se’ ‘cabg_lo’ ‘cabg_hi’ ‘cp_mn’ ‘cp_se’
‘cp_lo’ ‘cp_hi’ };
run;

∗Output the dataset;
create dplots from holding [colname=namespec];
append from holding;
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quit;
%mend;

∗Run the stratified survival model with PROC PHREG;

proc phreg data=itt2 covout outest=params ;
model survtime*dead(0)=chfindex age50 mitral charlson sex cadindex

ptca cabg ejecfrac cadptca cadcabg medejec
/ties=efron; strata migrp cadigp;

run;

∗Call the macro to calculate confidence intervals as a function of
CADINDEX and EJECFRAC;

%or_rr;

proc sort data=dplots; by cadindex ejecfrac;

data dplots; set dplots; by cadindex ejecfrac;

∗offset each successive level of EJECFRAC by .7, so that they can be
embedded within the CADINDEX range;

retain offset;
if first.cadindex then offset=0;

else offset+.7;
cad_ef=cadindex+offset;

∗Keep only the lowest level of EJECFRAC for the CABG vs PTCA comparison
because the hazard ratio does not vary with EJECFRAC;

if ejecfrac>35 then do; cp_mn=.; cp_hi=.; cp_lo=.; end;
∗Change the vertical axis to separate the sets of confidence intervals.
NOTE: the axis labels for the resulting plot will have to be changed
manually;

else do; cp_mn=cp_mn+4; cp_hi=cp_hi+4; cp_lo=cp_lo+4; end;
ptca_mn=ptca_mn+2; ptca_hi=ptca_hi+2; ptca_lo=ptca_lo+2;

cp=cp_hi; cm=cabg_hi; pm=ptca_hi; output;
cp=cp_mn; cm=cabg_mn; pm=ptca_mn; output;
cp=cp_lo; cm=cabg_lo; pm=ptca_lo; output;

∗Set options for the plot;
goptions hsize=6in vsize=8in;
goptions device=cgmmwwc gsfname=gsfile gsfmode=replace hpos=40 vpos=40;
filename gsfile ‘FILENAME’; ********REPLACE WITH FILENAME;
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∗Set symbol and axis specifications;
symbol1 i=hilo v=none color=black;
symbol2 i=hilo v=none color=black;
symbol3 i=hilo v=none color=black;
axis2 offset=(1 cm) order=0 to 6 by .5 major = (height=.7)

label=(height=1.0 r=90 a=-90 "Hazard Ratio")
minor=none;

axis1 minor=(width=1) offset=(1 cm) order=23 32 37 42 48 56 63 67 74
80;

∗Call PROC GPLOT, using vref to separate panels;
proc gplot data=dplots;
plot cp*cad_ef=1 cm*cad_ef=2 pm*cad_ef=3 /overlay vref=1 3 5
vaxis=axis2 haxis=axis1;

label cad_ef= ‘CAD Index’;
run;
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Strategies for comparing treatments on a binary response with
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SUMMARY

This paper surveys methods for comparing treatments on a binary response when observations occur for
several strata. A common application is multi-centre clinical trials, in which the strata refer to a sample
of centres or sites of some type. Questions of interest include how one should summarize the di�erence
between the treatments, how one should make inferential comparisons, how one should investigate
whether treatment-by-centre interaction exists, how one should describe e�ects when interaction exists,
whether one should treat centres and centre-speci�c treatment e�ects as �xed or random, and whether
centres that have either 0 successes or 0 failures should contribute to the analysis. This article discusses
these matters in the context of various strategies for analysing such data, in particular focusing on
special problems presented by sparse data. Copyright ? 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

For motivation regarding the questions addressed in this paper, we begin with an example. Table I
shows results of a clinical trial conducted at eight centres. The purpose was to compare two cream
preparations, an active drug and a control, with respect to their success or failure in curing an
infection [1]. This table illustrates a common situation in many pharmaceutical and biomedical
applications – comparison of two treatments on a binary response (‘success’ or ‘failure’) when
observations occur for several strata. The strata are often medical centres or clinics, or they may be
levels of a control variable, such as age or severity of the condition being treated, or combinations
of levels of several control variables, or they may be di�erent studies of the same sort evaluated
in a meta analysis [2–10].
Table I exhibits a potential di�culty that often occurs with multi-centre clinical trials or strati-

�cation using several control variables: the sample sizes for the treatments in many of the clinics
are modest, and the corresponding cell counts are relatively small. Indeed, for the control group
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Table I. Clinical trial relating treatment to response for eight centres.

Centre Treatment Response Total Per cent ‘success’
Success Failure

1 Drug 11 25 36 30.6
Control 10 27 37 27.0

2 Drug 16 4 20 80.0
Control 22 10 32 68.8

3 Drug 14 5 19 73.7
Control 7 12 19 36.8

4 Drug 2 14 16 12.5
Control 1 16 17 5.9

5 Drug 6 11 17 35.3
Control 0 12 12 0.0

6 Drug 1 10 11 9.1
Control 0 10 10 0.0

7 Drug 1 4 5 20.0
Control 1 8 9 11.1

8 Drug 4 2 6 66.7
Control 6 1 7 85.7

Total Drug 55 75 130 42.3
Control 47 96 143 32.9

Source of data: Beitler and Landis [1].

in two centres, all observations are failures. Ordinary maximum likelihood (ML) estimation can
provide badly biased (even in�nite) estimates of some parameters in such cases, and in certain
asymptotic frameworks it can even be inconsistent. Bias also occurs, however, from combining
strata to increase the stratum-speci�c sample sizes.
Among the questions of interest for data of this sort are the following: (i) How should one sum-

marize, descriptively, the di�erence between the treatments? (ii) How should one make inferential
comparisons of the treatments? (iii) How should one investigate whether there is treatment-by-
centre interaction? (iv) If such interaction exists, how should one describe the e�ect heterogeneity?
(v) Should centres be treated as �xed or random, and could that choice a�ect any results in a
substantive way? (vi) Should centres with 0 successes or with 0 failures contribute to descriptive
and inferential analyses? (vii) Should one combine centres or add small constants to empty cells
in descriptive and inferential analyses, for instance to use information that otherwise is discarded
in the statistical analysis?
In considering these questions, this article discusses strategies for analysing data of the form of

Table I. Section 2 presents some possible models for the data and corresponding summaries of the
e�ects. Section 3 presents ways of estimating those e�ects, and Section 4 illustrates the models
for Table I. Section 5 discusses inferential analyses for the models. Section 6 studies the e�ects of
severe sparseness on the analyses, using a data set that is even more sparse than Table I. Section 7
compares the strategies, makes some recommendations, and mentions extensions, alternative ap-
proaches, and open questions.
Possible analyses result from all combinations of several factors, including: (i) the choice of

link function relating response probabilities to predictors in the model; (ii) whether the model
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permits interaction; (iii) whether the model treats centres as random or �xed; (iv) whether
inference uses a small-sample analysis or an asymptotic one with the number of centres �xed
or an asymptotic one with the number of centres growing with the sample size; (v) whether
one uses a Bayes or a frequentist approach or some non-likelihood-based method such as gen-
eralized estimating equations (GEE). Here, we consider only the frequentist approach and binary
responses. Other papers have presented related discussion of some of these issues in the contexts
of Bayesian approaches [4, 6, 11, 12] and continuous responses [13–15]. Also, we do not consider
other issues of importance in actual clinical trials, such as adequacy of sample size and selection
of centres.
This paper does not claim any new or surprising results, and although it is called a ‘tutorial’,

we fully expect that many readers will have strong opinions about the appropriateness of certain
methods. We hope, however, that a uni�ed discussion of various strategies may be helpful for
many biostatisticians and quantitatively-oriented medical researchers and perhaps even stimulate
research on alternative approaches.

2. MODELS AND SUMMARIES OF EFFECTS

For data in the form of Table I, let X denote treatment, let Y denote the response variable, and
let Z denote the strati�cation factor. Let X =1 denote the drug and X =2 denote the control (or
placebo), and let Y =1 denote ‘success’ and Y =2 denote ‘failure’. Let �ik =P(Y =1|X = i; Z = k),
for i=1; 2; k =1; : : : ; K . Let nijk denote the cell count for treatment i and response outcome
j in stratum k. In this article we often refer to Z using the generic term ‘centre’, although
as mentioned above it might refer to di�erent studies or combinations of levels of control
variables.

2.1. Models assuming a lack of interaction

A simple model for Table I, although usually only plausible to a rough approximation, has additive
treatment and centre e�ects on some scale. For instance, with the logit link function (that is, log
of the odds) logit(�ik)= log[�ik =(1− �ik)], this is

logit(�1k)= �k + �=2; logit(�2k)= �k − �=2; k =1; : : : ; K (1)

That is, � is the di�erence between the logit for drug and the logit for control. One could include
an overall intercept in this model and then use a constraint such as

∑
k �k =0 or �1 = 0, but we

use parameterization (1) to discuss more easily (later in the paper) the e�ects of strata with 0
successes or with 0 failures.
This model assumes a lack of treatment-by-centre interaction. For the logit scale, � refers to a

log-odds ratio, so a lack of interaction implies that the true odds ratio e� between X and Y is the
same in all centres. Usually primary interest focuses on estimating the treatment e�ect � rather
than the centre e�ects {�k}.
When additivity exists, it need not be on the logit scale. In addition, many practitioners have

di�culty interpreting the odds ratio. One could use the same predictor form with an alternative
link function such as the probit or log-log or complementary log-log, although these can also be
di�cult to interpret. Simpler interpretations occur with the log link, by which

log(�1k)= �k + 	=2; log(�2k)= �k − 	=2 (2)
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With this model, exp(	)= �1k =�2k is a ratio of success rates, analogous to a relative risk in each
centre. (Here, we use notation 	 rather than � to re�ect the e�ect having a di�erent meaning
than in model (1); likewise, the intercept also refers to a di�erent scale, but we use common �k
notation for simplicity since this parameter is not the main focus of interest.)
Model (2) has the structural disadvantage of constraining �k±	=2 to be negative, so that �ik falls

between 0 and 1. Iterative methods for �tting the model may either ignore this, perhaps yielding
estimates of some �ik above the permissible [0; 1] range, or may fail to converge if estimates at
some stage violate this restriction; normally this does not happen when {�ik} are not near 1. This
model approximates the logit model when {�ik} are close to 0, but it has interpretations for ratios
of probabilities rather than ratios of odds. Model (2) refers to a ratio of success rates, and unlike
other models considered in this subsection, when it holds it no longer applies if one interchanges
the labelling of ‘success’ and ‘failure’ categories.
Simple interpretations also occur with the identity link, by which

�1k = �k + 
=2; �2k = �k − 
=2 (3)

For this model, the probability of success is �1k − �2k = 
 higher for drug than control in each
centre. This model has the severe constraint that �k ± 
=2 must fall in [0; 1]. Iterative methods
often fail for it. It is unlikely to �t well when any �ik are near 0 or 1 as well as somewhat
removed from those boundary values, since smaller values of �1k − �2k typically occur near the
parameter space boundary. Thus, the model has less scope than the ones with logit and log links.
Even so, unless the model �ts very poorly, an advantage of summarizing the e�ect by 
 is its
ease of interpretation by non-statisticians.
In summarizing association for a set of centres by a single measure such as the odds ratio or

relative risk, it is preferable to use the measure that is more nearly constant across those centres.
In practice, however, for sparse data it is usually di�cult to establish superiority of one link
function over others, especially when all {�ik} are close to 0. This article discusses all three of
these link functions but pays greatest attention to the logit, which is the most popular one in
practice.

2.2. Random e�ects models

The standard ML approach for �tting models such as (1) treats {�k} as �xed e�ects. In many
applications, such as multi-centre clinical trials and meta analyses, the strata are themselves a
sample. When this is true and one would like inferences to apply more generally than to the strata
sampled, a random e�ects approach may be more natural. In practice, the sample of strata are
rarely randomly selected. However, Grizzle [16] expressed the belief of many statisticians when
he argued that ‘Although the clinics are not randomly chosen, the assumption of random clinic
e�ect will result in tests and con�dence intervals that better capture the variability inherent in
the system more realistically than when clinic e�ects are considered �xed’. This approach seems
reasonable to us for many applications of this type.
For the logit link, a logit-normal random e�ects model [17] with the same form as (1)

logit(�1k)= ak + �=2; logit(�2k)= ak − �=2 (4)

assumes that {ak} are independent from a N(�; �) distribution. The parameter �, itself unknown,
summarizes centre heterogeneity in the success probabilities. This model also makes the strong
assumption that the treatment e�ect � is constant over strata.
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For binary data, random e�ects models are most commonly used with logit or probit link
functions. A structural defect exists with the log and identity links in treating {ak} as normally
distributed; for any parameter values with �¿0, with positive probability a particular realization
of the random e�ect corresponds to �ik outside [0; 1].

2.3. Treatment-by-centre interaction

Even if a model that is additive in centre and treatment e�ects �ts sample data adequately, it is
usually unrealistic to expect the true association to be identical (or essentially identical) in each
stratum. This subsection considers models that permit interaction. With a �xed-e�ects approach,
the model

logit(�1k)= �k + �k=2; logit(�2k)= �k − �k=2 (5)

has odds ratio e�k in centre k. It is saturated (residual d:f :=0), having 2K parameters for the
2K binomial probabilities. The ML estimate of �k is the sample log-odds ratio in stratum k,
�̂k = log(n11kn22k =n12kn21k).
Usually, such as in meta analyses, one would want to extend such a model to determine expla-

nations for the variability in associations among the strata. When the strata have a natural ordering
with scores {zk}, an unsaturated model (d:f :=K − 2) results from assuming a linear trend in
the log-odds ratios; that is, by replacing �k in model (5) by � + zk�. Often other explanatory
variables are available for modelling the odds ratio [18–20]. Then, one could construct a model
of form

�k = z′k[

describing the centre-speci�c log-odds ratios, where zk is a column vector of explanatory variables
and [ is a column vector of parameters. A related model adds a random e�ect term for each centre
to re�ect unexplained variability [21].
For the random e�ects approach without other explanatory variables, an additional parameter

can represent variability in the true e�ects. The logit-normal model is

logit(�1k)= ak + bk=2; logit(�2k)= ak − bk=2 (6)

where {ak} are independent from N(�; �a); {bk} are independent from N(�; �b), and {ak} are
independent of {bk}. Here, � is the expected value of centre-speci�c log-odds ratios, and �b
describes their variability. An equivalent model form is logit(�ik)= ak + �xi + bik , where xi is
a treatment dummy variable (x1 = 1; x2 = 0) and b1k and b2k are independent N(0; �), where �2

corresponds to �2b=2 in parameterization (6). Note that one should not formulate the model as
logit(�ik)= ak + bkxi, since the model then imposes greater variability on the logit for the �rst
treatment unless one permits (ak ; bk) to be correlated.
Analogous random e�ects models apply with alternative link functions. Again, the models with

identity or log link are structurally improper when either variance component is positive. This
suggests a caution, as results reported for software using a particular estimation method may
depend on whether the parameter constraints are recognized. In our experience, the identity link
often has convergence problems. Good initial estimates of (�; �; �a; �b) can be helpful, such as
using values suggested by �xed e�ects modelling. In some applications it is also sensible to let
(ak ; bk) be correlated, by treating it as a bivariate normal random e�ect [22]. With the identity
link, for instance, centres with ak close to 0 may tend to have values of bk relatively close to
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0. We do not discuss such models here, as such modelling is better supported with moderate to
large K , and our examples have relatively small K with sparse data. With such examples, some
will think it bold or foolhardy of us to use even relatively simple random e�ects models!

3. MODEL FITTING AND ESTIMATING EFFECTS

We now discuss model �tting and parameter estimation. Unless stated otherwise, the discussion
refers to the logit models.

3.1. Model �tting

It is straightforward to �t the �xed e�ects models with standard software. Possibilities include
software for binary responses such as PROC LOGISTIC in SAS, or software for generalized
linear models such as PROC GENMOD in SAS and the glm function in S-plus.
Random e�ects models for binary data are more di�cult to �t. One must integrate the joint mass

function of the responses with respect to the random e�ects distributions to obtain the likelihood
function [23], which is a function of � and the other parameters of those distributions. With the
logit interaction model (6), for instance, the likelihood function equals

‘(�; �; �a; �b)=�k�i

[ ∫
ak

∫
bk

�ni1kik (1− �ik)ni2k dG(bk) dF(ak)
]

where F is a N(�; �a) CDF, G is a N(�; �b) CDF, �1k =exp(ak + bk=2)=[1 + exp(ak + bk=2)],
and �2k =exp(ak − bk=2)=[1 + exp(ak − bk=2)]. One can approximate the likelihood function using
numerical integration methods, such as Gauss–Hermite quadrature. The approximation improves as
the number of quadrature points q increases, more points being needed as the variance components
increase in size. Performance is enhanced by an adaptive version of quadrature that transforms the
variable of integration so that the integrand is sampled in an appropriate region [24, 25]. Having
approximated the likelihood, one can use standard maximization methods such as Newton–Raphson
to obtain the estimates. As a by-product, the observed information matrix, based on the curvature
(second derivatives) of the log-likelihood at the ML estimates, is inverted to provide an estimated
asymptotic covariance matrix.
Other approximations for integrating out the random e�ects lead to related approximations of

the likelihood function and the ML estimates. Most of these utilize linearizations of the model.
A Laplace approximation yields penalized quasi-likelihood (PQL) estimates [26], and a related
generalization includes an extra scale parameter [27]. These approximations can behave poorly
when variance components are large or when distributions are far from normal, such as Bernoulli
or binomial with small indices at each setting of predictors [25, 26, 28]. When feasible, it is better to
use adaptive Gauss–Hermite quadrature with su�ciently large q, the determination of ‘su�ciently
large’ being based on monitoring the convergence of estimates and standard errors as q increases.
Other promising ML approximations use Monte Carlo approximation methods [28, 29], for which
the approximation error is estimable and decreases as the number of simulations increases. One
can also use Markov chain Monte Carlo methods with an approximating Bayes model that uses �at
prior distributions for the other parameters [30], although the danger exists of improper posterior
distributions [31–33].
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Most major software packages are not equipped to �t generalized linear models with random
e�ects. Version 7 of SAS includes PROC NLMIXED, which can provide a good approxima-
tion to ML using adaptive Gauss–Hermite quadrature. The linearization approximations [26, 27]
are available in earlier versions with a SAS macro, called GLIMMIX, that uses iterative call-
ing of PROC MIXED. Most other specialized programs for hierarchical models with random
e�ects likewise use various normal approximations to the working response in the mixed logit
model.

3.2. The sparse asymptotic framework

In many applications, such as when the strata are centres, asymptotic arguments for increasing the
sample size most naturally refer to increasing simultaneously the number of strata, K . A disad-
vantage then of the usual large-sample methods with the �xed e�ects logit models is that they are
based on n→ ∞ with a �xed number of parameters (for example, K �xed), whereas the more
appropriate ‘sparse asymptotic’ framework has K→ ∞ as n→ ∞. For sparse asymptotics, consis-
tency of ordinary ML estimators breaks down for the odds ratio, relative risk, and di�erence of
proportions [34]. An extreme case (Anderson [35], p. 244) occurs with matched-pairs data (two
observations for each k), in which case the ordinary ML estimator of � in model (1) converges
in probability to 2�.
The sparse asymptotic framework does not cause special problems for the random e�ects ap-

proach. After integrating out the random e�ects, the likelihood function depends only on the
remaining parameters (for example, �; � and � in model (4)), so the parameter space does not
increase as K does. In particular, if the random e�ects model holds, the ordinary ML estimator of
� is consistent. In practice, however, if n and K have only moderate size, as in Table I, inferences
about the size of the variance components may be very imprecise.
In the logit �xed e�ects model (1), the conditional likelihood approach provides an alter-

native way of guaranteeing a consistent estimator of �. With it, one eliminates {�k} in con-
structing the likelihood function by conditioning on their su�cient statistics [36]. Software is
available for this approach, such as LogXact [37]. It has the advantage of not requiring a dis-
tributional assumption about the random e�ects yet still being valid for sparse asymptotics. A
disadvantage of conditional ML is that the �tting procedure does not provide predicted values
for {�k} or an estimate of their variability. Also, this approach is applicable only with the logit
link (that is, only the canonical link of a generalized linear model provides reduced su�cient
statistics).

3.3. Mantel–Haenszel type estimators of common e�ects

An alternative estimator of � in the no interaction model (1) is the Mantel–Haenszel (M–H)
estimator [38]

�̂MH = log
(∑

k n11kn22k =n++k∑
k n12kn21k =n++k

)
(7)

Like the conditional ML estimator, it is consistent both in sparse-stratum (K increases with n) or
large-stratum (K �xed but n increases) asymptotics. It has the advantage over conditional ML of
simplicity. It su�ers no e�ciency loss when �=0 and usually little otherwise.
Mantel–Haenszel type estimators are also available for the relative risk and the di�erence of

proportions. As noted in Section 2, models for these parameters have severe parameter restrictions.
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Even if the model holds only approximately, however, a summary measure of this type is useful
for communication with scientists who are unfamiliar with odds ratios. The M–H type estimator
of a common log relative risk [39, 40] (that is, 	 in model (2)) is

	̂MH = log
(∑

k n11kn2+k =n++k∑
k n21kn1+k =n++k

)
(8)

whereas the M–H type estimator of a common di�erence of proportions [34] (that is, 
 in model
(3)) is


̂MH =
∑

k(n11kn2+k =n++k − n21kn1+k =n++k)∑
k n1+kn2+k =n++k

(9)

If a no interaction model �ts adequately but the data are highly sparse, the corresponding M–H
estimator may even be preferred to the ML estimator, because of the bias that exists in sparse
asymptotics [34] for the ML estimator. The conditional ML approach does not apply to the log
and identity link functions and the random e�ects model has structural problems (for example,
probabilities outside the [0; 1] interval), so these estimates are particularly useful for these link
functions.
Given their good performance under sparse asymptotics and their ease of computation, one might

consider always using M–H instead of ML estimators. However, for large-stratum asymptotics
(�xed K), M–H estimators lose some e�ciency compared to ML, and the e�ciency loss can be
considerable for 	̂MH and 
̂MH in some cases [34]. Moreover, software for ML estimation is widely
available for �xed e�ects analyses and becoming more so for random e�ects analyses. Thus, if
the data have moderate to large samples in each stratum, it is better to use the model-based ML
estimators.

3.4. Centre estimates

In most applications, main interest focuses on the treatment e�ect and its variability among centres.
However, centre estimates also result from the �xed e�ects or random e�ects ML approaches.
With the random e�ects approach, the expected values of {ak} given the data are analogues of
best linear unbiased predictors (BLUP) for mixed models with normal responses. These expected
values themselves depend on unknown parameters, so one obtains the predicted values by plugging
in the ML estimates of those parameters. Ordinary standard errors of these predictors, like those of
empirical Bayes estimators, do not take into account that the variance component is estimated rather
than known; hence, they tend to be too small, and adjustments are available [41, 42]. Adjustments
are also available to help account for the bias in estimating the variance components [43], which
can be considerable, but we shall not address that issue here.
For �xed e�ects logit models, the su�cient statistic for �k is n+1k , conditional on the binomial

sample sizes in that stratum. By contrast, for the random e�ects models estimates of centre e�ects
‘borrow from the whole’, and the estimate of ak can be considerably a�ected by results in other
strata. As the sample size grows in stratum k, however, the in�uence of other strata decreases.

3.5. Logit model: Allowing interaction

For the random e�ects model (6) that permits interaction, the complexity of model �tting is com-
pounded by estimating two variance components. When the data are sparse but do contain su�cient
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information to provide estimates of (�; �; �a; �b), the estimated average e�ects (�̂; �̂) are more re-
liable than the estimated variability (�̂a; �̂b) of e�ects, especially when K is not especially large.
When �̂b¿0, the standard error of �̂ is typically larger than with the model (4) of homogeneous
odds ratios (that is, the special case in which �b=0), because of the extra variance component
due to treating the treatment e�ect as random rather than �xed.
Liu and Pierce [44] proposed an alternative way of estimating (�; �b) for the model (6) that

assumes the log-odds ratios are a N(�; �b) random sample. They �rst eliminated {ak} by a con-
ditioning argument, focusing solely on the variability in association, and then provided a simple
solution based on an approximation to the likelihood function using Laplace’s method. They sug-
gested that their method is primarily intended for cases in which cell counts are relatively large
and the variability �b is not great, say, �b¡1. See Raghunathan and Ii [45] and Liang and Self
[46] for related work.

4. MODEL FITTING FOR TABLE I

We now apply these methods to Table I. For these data the sample success rates vary markedly
among centres both for the control and drug treatments, but in all except the last centre that rate is
higher for drug. Normally in using models with random centre and possibly random treatment ef-
fects, one would prefer to have more than K =8 centres; keeping in mind the di�culty particularly
of getting good variance component estimates with such a small value of K , we use these data to
illustrate the models. Table II shows the use of SAS (PROC NLMIXED and PROC GENMOD) for
ML �tting of logit models to Table I. Alternative link functions utilize similar statements. For the
random e�ects interaction model, for instance, the code pi=exp(a+b*treat) requests the log link
model and pi=a+b*treat requests the identity link model. In the NLMIXED code in Table II
for the no interaction model with random centre e�ects, the ‘predict’ option requests the logit
estimates of ak ± �=2 for the eight centres and stores them in the data set OUT1.
Table III summarizes results of estimating the treatment e�ect � using various logit models. The

parameter � is the common log-odds ratio for the no interaction models and the expected value
of the log-odds ratio for the interaction model with random treatment e�ects. For the random
e�ects model (6) permitting interaction, the estimated standard deviation of the log-odds ratios
is relatively small, �̂b=0.15 (standard error = 1:1). For all approaches, estimates of the common
log-odds ratio or its expected value are similar. In each case the estimated value of about 0.75
equals about 2.5 standard errors; this corresponds to an estimated common odds ratio of about
e0:75 = 2:1 and a 95 per cent con�dence interval for the common odds ratio of about (1.2, 3.8).
There is considerable evidence of a drug e�ect, but with such a small sample one cannot determine
whether that e�ect is weak or moderate.
For the interaction model, since �̂b is small, the random e�ects model provides a considerable

smoothing of the sample odds ratios. Table IV shows the eight sample odds ratios and their random
e�ects model estimates, computed by exponentiating the estimated expected log-odds ratios given
the sample data. The smoothed estimates show considerably less variability and do not have the
same ordering as the sample values. For instance, the smoothed estimate is greater for centre 3
than for centre 6 even though the sample value is in�nite for the latter, partly re�ecting the greater
shrinkage that occurs when sample sizes are smaller. When �̂b=0, the interaction model provides
the same �t as the no interaction model, so the model estimated odds ratios are identical in each
centre.
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Table II. Example of SAS code for using GENMOD to �t �xed e�ects logit model and NLMIXED to �t
random e�ects logit models to Table I.

data binomial;
input center treat y n @@ ; * y successes out of n trials;
if treat = 1 then treat = .5; else treat =−.5;
cards;
1 1 11 36 1 0 10 37 2 1 16 20 2 0 22 32
3 1 14 19 3 0 7 19 4 1 2 16 4 0 1 17
5 1 6 17 5 0 0 12 6 1 1 11 6 0 0 10
7 1 1 5 7 0 1 9 8 1 4 6 8 0 6 7
;
run;

proc genmod data = binomial; * fixed effects, no interaction model;
class center;
model y/n = treat center / dist = bin link = logit noint;

run;

proc nlmixed data = binomial qpoints = 15; * random effects, no interaction;
parms alpha =−1 beta = 1 sig = 1; * initial values for parameter estimates;
pi = exp(a + beta*treat)/(1+exp(a + beta*treat)); * logistic formula for prob;
model y ˜ binomial(n, pi);
random a ˜ normal(alpha, sig*sig) subject = center;
predict a + beta*treat out = OUT1;

run;

proc nlmixed data = binomial qpoints = 15; * random effects, interaction;
parms alpha =−1 beta = 1 sig a = 1 sig b = 1; * initial values;
pi = exp(a + b*treat)/(1+exp(a + b*treat));
model y ˜ binomial(n, pi);
random a b ˜ normal([alpha,beta], [sig a*sig a,0,sig b*sig b]) subject = center;

run;

Table III also summarizes estimates for other descriptive measures, with ML results obtained
using GENMOD and NLMIXED in SAS. As noted before, the restricted parameter space for the
log and identity links can provide problems. Having good starting values increases the chance of
proper convergence. We used starting values near the estimates obtained with the SAS GLIMMIX
macro.
For the random e�ects interaction model with the log link, the ML estimated standard deviation

of the log relative risks equals 0. Hence, the �tted relative risks are the same in each centre,
the estimate of 1.27 being identical to that for the random e�ects no interaction model. For this
sample the association is more nearly constant for the relative risk than the odds ratio.
For the random e�ects interaction model with the identity link, we were unable to obtain conver-

gence with NLMIXED. Using GLIMMIX, Littell et al. [47] reported an estimated mean of 0.120
(standard error = 0:051) and an estimated standard deviation of 0.098 for the clinic-speci�c di�er-
ences of proportions, but we could not obtain these results even with GLIMMIX. A weighted least
squares estimate of the clinic-speci�c di�erence of proportions [8] is 0.131 (standard error = 0:052)
with an estimated standard deviation of 0.075.
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Table III. Estimated treatment e�ect and standard error, and results of likelihood ratio (LR) and Wald tests
of hypothesis of no treatment e�ect, for Table I.

Measure Interaction Centre Method Estimate Standard Wald LR P-value
(Equation number) error statistic statistic

Odds ratio (1) No Fixed ML 0.777 (2.2) 0.307 6.4 6.7 0.01
Cond. ML 0.756 (2.1) 0.303 6.2
M–H 0.758 (2.1) 0.304 6.2

(4) Random ML 0.739 (2.1) 0.300 6.0 6.3 0.01
(6) Yes Random ML 0.746 (2.1) 0.325 5.3 4.6 0.03

Relative risk (2) No Fixed ML 0.247 (1.3) 0.126 3.8 3.9 0.05
M–H 0.354 (1.4) 0.142 6.2

Random ML 0.241 (1.3) 0.126 3.6 3.8 0.05
Yes Random ML 0.241 (1.3) 0.126 3.6 3.7 0.08

Di�erence of prop. (3) No Fixed ML 0.137 0.055 6.2 6.6 0.01
M–H 0.130 0.050 6.7

Random ML 0.148 0.055 7.2 7.6 0.01

Odds ratio and relative risk estimates appear in parentheses next to their log estimates. Wald and LR test statistics
have approximate null chi-squared distributions with d:f :=1; P-value refers to LR statistic.

Table IV. Estimated centre-speci�c odds ratio and relative risk for Table I, based on
sample and on predictions for random e�ects interaction models.

Centre Odds ratio Relative risk
Sample Model Sample Model

1 1.19 2.02 1.13 1.27
2 1.82 2.09 1.16 1.27
3 4.80 2.19 2.00 1.27
4 2.29 2.11 2.13 1.27
5 ∞ 2.18 ∞ 1.27
6 ∞ 2.12 ∞ 1.27
7 2.00 2.11 1.80 1.27
8 0.33 2.06 0.78 1.27

5. INFERENCE ABOUT EFFECTS

5.1. Inference for logit models

For the �xed and random e�ects logit models, standard methods yield inferences about the treatment
e�ect. For instance, the likelihood-ratio test statistic is minus twice the di�erence in maximized
log-likelihoods between model (1) or (4) with �=0 and the model with unrestricted �. It has a
null chi-squared distribution with d:f :=1, as does the Wald statistic, which is the squared ratio
of the estimate to its standard error. The standard error is obtained from the inverse information
matrix. The simple Wald form of 95 per cent con�dence interval for the common odds ratio is
obtained by exponentiating the endpoints of �̂ ± 1:96(standard error). Better, one could construct
a pro�le likelihood con�dence interval (for example, for the �xed e�ects solution using the LRCI
option in PROC GENMOD) or an interval based on inverting a score test [48].
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With the �xed e�ects approach, for highly sparse data it is preferable to conduct inference using
the conditional likelihood. For model (1), this likelihood depends only on �. A 95 per cent large-
sample likelihood-based con�dence interval consists of all � values for which minus two times
the log-likelihood falls within 3.84 (the 95th percentile of the �21 distribution) of the maximum.
Tests and con�dence intervals with this approach are available with LogXact.

5.2. Mantel–Haenszel inference

For model (1), the Mantel–Haenszel estimator (7) of a common log-odds ratio has a standard
error estimate [49] that is valid for both large-stratum and sparse-stratum asymptotics. The variance
estimate equals

v̂ar(�̂MH) =

∑
k (n11k + n22k)(n11kn22k)=n

2
++k

2(
∑

k n11kn22k =n++k)
2 +

∑
k(n12k + n21k)(n12kn21k)=n

2
++k

2(
∑

k n12kn21k =n++k)
2

+

∑
k [(n11k + n22k)(n12kn21k) + (n12k + n21k)(n11kn22k)]=n

2
++k

2(
∑

k n11kn22k =n++k)(
∑

k n12kn21k =n++k)

One can use this to form a con�dence interval for the common log-odds ratio, exponentiating
endpoints to obtain the interval for the odds ratio. Like the conditional ML approach, this is
preferred over ordinary intervals for the �xed-e�ects logit model (1) when the data are highly
sparse.
Similarly, estimated variances for both types of asymptotics are available for the estimator of

a common di�erence of proportions (9) and the estimator of a common log relative risk (8). Let
Rk = n11kn2+k =n++k and Sk = n21kn1+k =n++k . For the log relative risk, the estimated variance is [34]

v̂ar(	̂MH)=

∑
k(n1+kn2+kn+1k − n11kn21kn++k)=n2++k)

(
∑

k Rk)(
∑

k Sk)
(10)

For the di�erence in proportions, the estimated variance is [50]

v̂ar(
̂MH)=

̂MH(

∑
k Pk) + (

∑
k Qk)

(
∑

k n1+kn2+k =n++k)
2 (11)

where

Pk = [n21+kn21k − n22+kn11k + n1+kn2+k(n2+k − n1+k)=2]=n2++k
and

Qk = [n11kn22k + n21kn12k ]=2n++k

A disadvantage of these inferences is their restriction to the no interaction models and their
treatment e�ects. Since the variance formulae assume a common treatment e�ect for each centre,
they should not be used when substantial heterogeneity exists.

5.3. Tests of no interaction

A test of no interaction for the �xed e�ects logit model is equivalently a goodness-of-�t test of
model (1) and a test for equality of the K true odds ratios. When the data are not sparse and K is
�xed, one can use ordinary likelihood-ratio and Pearson chi-squared statistics for this purpose, with
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d:f :=(K − 1). The likelihood-ratio statistic refers to the likelihood-ratio test comparing the model
(1) to the saturated model. An alternative chi-squared test provided by some software for this
case is the Breslow–Day test [36, 51], which is based on heterogeneity in the K sample log-odds
ratios. For this situation with K �xed, an exact conditional test [52] of equality of odds ratios is
available in StatXact [53].
When the stratum-speci�c sample sizes are small and K is large, none of these tests has much

power. It may be possible to increase power by checking for a particular type of interaction, such
as a linear trend in the log-odds ratios when the strata have a natural ordering. For the �xed e�ects
approach, a bene�t of using the simpler model when the degree of interaction is not signi�cant is
that the common odds ratio estimator can be a better estimator of the true stratum-speci�c odds
ratios than the separate sample values (for example, having smaller total mean squared error) even
when those true odds ratios are not identical, for the usual reasons of model parsimony.
For the random e�ects approach, one can test for a lack of interaction by testing that �b=0 in

model (6). The score test with an arbitrary mixture distribution for the random e�ect leads to an
asymptotically normal statistic [46]. Under the null, the likelihood-ratio statistic equals 0 (that is,
because �̂b=0) or approximately a �21 variate, each with probability about 0.5; thus, the usual chi-
squared right-tail probability is halved to get the P-value. However, for random e�ects models, one
might question the entire enterprise of conducting tests of no interaction. Typically the likelihood
reveals that values of �b¿0 are consistent with the data, and when �̂b¿0 the con�dence interval
for � with the interaction model is somewhat wider than with the no interaction model, better
re�ecting the actual heterogeneity that ordinarily occurs in practice.

5.4. Summarizing e�ects when interaction exists

When signi�cant interaction exists, with the �xed e�ects approach the saturated model provides
an odds ratio estimate for each stratum. Alternatively, a covariate may be apparent such that odds
ratios are more nearly constant after adjusting for that covariate. For instance, there may be one
or two centres that are considerably di�erent from the others in some way. With the random
e�ects approach (6), it is natural to describe the interaction by (�̂; �̂b), providing an estimate of
an average log-odds ratio and the variability about that average. With the random e�ects model,
one can also obtain approximate BLUP estimates of the log-odds ratios {bk}. These provide a
smoothing of the sample log-odds ratio estimates from the �xed-e�ects saturated model. As the
sample size increases within a particular stratum, the random e�ects estimate becomes more similar
to the sample value for that stratum.
Similar remarks regarding interaction apply for analyses involving the di�erence of proportions

and relative risk. For example, for �xed K , large-sample d:f :=K − 1 chi-squared tests exist of
whether the di�erence of proportions is the same for all strata [8, 48]. A corresponding test holds
for sparse data with K large [3]. When interaction exists with a �xed e�ects model with parameter
�k in stratum k, an alternative [54–56] to simply reporting the stratum-speci�c estimates is to
estimate

∑
k �k�k , where �k is the population proportion classi�ed in stratum k (or if this is

unknown, simply �k =1=K).
For the random e�ects interaction model with identity link, alternative estimates exist of the mean

and variance of the stratum-speci�c di�erences of proportions [1, 8]. These approaches weight the
sample estimate from each stratum inversely proportional to its estimated variance. A modi�ed
approach uses an alternative weighting scheme to reduce bias [57]. An analogous random e�ects
analysis exists for the relative risk [9].
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5.5. Goodness-of-�t

We mentioned above the goodness-of-�t test for the �xed e�ects models. These treat K as �xed.
For sparse data with large K , these tests lack power and may be poorly approximated by chi-
squared distributions. Model checking is very challenging with highly sparse data.
The random e�ects model (4) assuming no interaction also satis�es the �xed e�ects structure

(1). So, lack of �t in the ordinary goodness-of-�t test for model (1) also implies lack of �t in
the random e�ects model. When the random e�ects model holds, its �t behaves asymptotically
like that of the �xed e�ects model, for �xed K with n→ ∞. Similarly, for the models permitting
interaction with �xed K , the �xed and random e�ects estimates are asymptotically equivalent. It
is not obvious how to check the �t of such models for sparse asymptotics in which K→ ∞. The
usual goodness-of-�t statistics are then approximately normal [58], and there is some evidence that
the jack-knife can work well in estimating asymptotic variances of such statistics [59]. We are
unaware, however, of any checks on this yet for models of the type discussed in this article.

5.6. Inferential results for Table I

Table III also shows standard errors for the various estimators and the results of Wald and
likelihood-ratio tests of no e�ect. Substantive results are similar with all link functions, with
evidence of a better success rate with drug than with control, although the model-based inferences
with the relative risk provide slightly less evidence of association. The estimated e�ect can be
described by a stratum-speci�c odds ratio of about 2.1, relative risk of about 1.3, or di�erence of
proportions of about 0.14. For each measure the data do not contradict the models that assume
a lack of interaction; for instance, the interaction models provide similar summary estimates and
standard errors. Also, the traditional goodness-of-�t statistics do not show lack of �t when applied
to the �xed e�ects versions of the no interaction models. The Pearson statistic equals 8.0 for the
logit link, 9.9 for the log link, and 9.9 for the identity link, each with d:f :=7.

6. EFFECTS OF SEVERE SPARSENESS

This section summarizes some special considerations and results when the data are severely sparse,
such as e�ects of centres containing certain patterns of empty cells and e�ects of modifying the
data such as by adding constants to empty cells or combining centres. Table V is an example of
such data [60]. This table was shown to the �rst author a few years back by an attendee of a short
course on categorical data analysis. It shows results for �ve centres of a clinical trial designed to
compare an active drug to placebo in treating toenail fungal infections. Again, success rates vary
markedly among centres, but note that the binomial sample sizes are very small. Here, two centres
have no successes and one centre has only one success. Although one cannot expect to conduct
precise inference with such small n and K and although normally K would be much larger than
5 in the application of random e�ects models (especially to estimate variance components), these
data are useful for illustrating e�ects of such severe sparseness.
Here, a reasonable asymptotic framework is the sparse one whereby K increases proportionally

to n. When n is small, it is di�cult to detect when heterogeneity truly exists among strata in the
treatment e�ects. Thus, our remarks are directed primarily toward models such as (1) and (4),
that is, we assume that reality is reasonably well described by the �xed e�ects or random e�ects
model with homogeneous odds ratios.



COMPARING TREATMENTS ON A BINARY RESPONSE 411

Table V. Clinical trial relating treatment to response for �ve centres.

Centre Treatment Response Total Per cent ‘success’
Success Failure

1 Active drug 0 5 5 0.0
Placebo 0 9 9 0.0

2 Active drug 1 12 13 7.7
Placebo 0 10 10 0.0

3 Active drug 0 7 7 0.0
Placebo 0 5 5 0.0

4 Active drug 6 3 9 66.7
Placebo 2 6 8 25.0

5 Active drug 5 9 14 35.7
Placebo 2 12 14 14.3

Total Active drug 12 36 48 25.0
Placebo 4 42 46 8.7

Source: Agresti [60], p. 193.

For severely sparse data, the strata sample sizes are very small and using ordinary ML with the
�xed e�ects model may provide seriously biased estimates. If that approach is used, it is safest to
do so using conditional ML estimation.

6.1. Extreme cases: centres with 0 successes or 0 failures

For stratum k, let sk = n11k + n21k denote the number of successes and let fk = n12k + n22k denote
the number of failures. First, we study the e�ects on the analyses of strata that have either sk =0
or fk =0, such as centres 1 and 3 of Table V.
Consider �xed e�ects models relating to the odds ratio. Then, ML estimates exist only in the

extended sense that �̂k =−∞ when sk =0 and �̂k =∞ when fk =0. The likelihood approaches its
maximum in the limit as these estimates grow unboundedly in the appropriate direction and �̂ and
{�̂k} for strata with min(sk ; fk)¿0 take the �nite values the ML estimates assume after deleting
the o�ending strata from the data set. Although �̂k is in�nite when min(sk ; fk)= 0; in practice it
is common for software to be fooled by the very �at log-likelihood and converge, reporting large
centre estimates. The reported standard errors for such strata are huge, since they are based on
inverting a matrix that summarizes the curvature of the log-likelihood at convergence.
In any case, for logit model (1), centres with sk =0 or fk =0 have no e�ect on �̂. Similarly,

the conditional likelihood approach to �tting model (1) ignores strata with sk =0 or fk =0; as
does the M–H estimate and its standard error. When one conditions on row and column totals,
the observed counts in the stratum are the only ones possible, and the distribution is degenerate;
for instance, conditionally, the count in the �rst cell equals the observed value with probability 1,
and the variance of the distribution of that count is 0. Similarly, the M–H test statistic [38] for
testing that the strati�ed treatment e�ect is null, which was originally derived for such conditional
distributions, is una�ected by such tables.
Next, consider the random e�ects approach. Since it borrows from the whole, one obtains a

�nite estimate of ak even when sk =0 or fk =0. Strata with sk =0 or fk =0 are relevant for
the random e�ects model (4) also in terms of estimating the variance �2 of the centre estimates.
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Deleting such a stratum usually has a decreasing e�ect on �̂, since the remaining strata show
less variability in their overall success rates. Certainly, one would want to utilize data from all
the centres if one were interested in estimating centre variability or individual centre e�ects {ak}.
Normally such tables have little e�ect on �̂ or inference about �, an exception being mentioned
below. Similar comments apply to random e�ects models for the relative risk or di�erence of
proportions.
For inference with the relative risk or the di�erence in proportions, we next study analyses

based on M–H estimators, for which e�ects of 0 column totals in strata are clear from the relevant
formulae. The relative risk estimator (8) is una�ected by strata with sk =0, but strata with fk =0
provide a shrinkage toward 1.0. This is sensible, since when the two sample proportions of success
fall within a small ¿0 of 0, the sample relative risk can be any non-negative value, but when
the two sample proportions are within  of 1, the sample relative risk must fall very close to 1.
Similarly, strata with sk =0 make no contribution to the estimated variance (10), and strata with
fk =0 contribute to the denominator alone, thus providing a shrinkage in the variance estimate.
For testing, strata with sk =0 make no contribution to the ratio of estimate to standard error, and
provide no information about whether this type of e�ect exists.
For the M–H estimator (9) of the di�erence of proportions, strata with sk =0 or fk =0 make no

contribution to the numerator but do contribute to the denominator. Thus, including such strata has
the e�ect of shrinking the estimated di�erence of proportions toward 0 compared to the estimate
that excludes them. This is expected, since such strata have a sample di�erence of proportions
of 0. There is a compensating shrinkage e�ect on the standard error, and the ratio of estimate to
standard error is una�ected by such strata. Thus, these strata also provide no information about
whether this type of e�ect exists, although they do contribute toward estimating the size of the
e�ect and hence provide evidence about whether interaction exists.

6.2. Analyses of Table V

Keeping in mind the highly tentative nature of any random e�ects modelling with such a small K ,
we summarize in Tables VI and VII various logit model analyses of Table V. The �rst row of
Table VI reports estimates of the log-odds ratio � and their standard errors, for the ML �xed
e�ects approach, the ML random e�ects approaches, and the M–H approach. Results are similar
for all approaches, with the estimated common log-odds ratio of 1.5 (odds ratio of about 4.5)
being about 2.2 standard errors.
The two centres with no successes can provide no information about the log-odds ratio treatment

e�ect � as estimated by the �xed e�ects model or the M–H method. Very similar results occur
with the random e�ects approach for the reduced data set deleting centres 1 and 3, as shown in
the second line of Table VI.
For the no interaction models, the �rst row of Table VII reports ML estimates of {�k} for the

�xed e�ects model (1) and approximate BLUP estimates of {ak} for the random e�ects model (4).
Because s1 = s3 = 0; �̂1 = �̂3 = − ∞ for model (1). Software may provide misleading indications
in such situations, and a danger sign is when standard errors are enormous compared to the esti-
mates, re�ecting the very �at log-likelihood. The values in Table VII are those reported by PROC
GENMOD in SAS (Version 7). PROC LOGISTIC provides �̂1 =−15:0 (standard error= 312.8)
and �̂3 =−15:3 (standard error= 339.7) but warns that the ML estimates may not exist. The other
centre estimates are the same for both procedures and the same as one obtains by deleting centres
1 and 3 from the data set (see row 2 of Table VII).
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Table VI. Estimated treatment log-odds ratio (standard error in parentheses) for various
logit models with Table V.

Data Logit model (equation number)
Fixed, Random, Random Random Mantel–Haenszel

no interaction no interaction non-parametric, interaction
(1) (4) no interaction (6) (7)

Table V unadjusted 1.55 1.52 1.53 1.52 1.55
(0.70) (0.70) (0.69) (0.70) (0.71)

Delete centres 1,3 1.55 1.48 1.51 1.48 1.55
(0.70) (0.70) (0.69) (0.70) (0.71)

Combine centres 1–3 1.56 1.54 1.53 1.54 1.56
(0.70) (0.70) (0.69) (0.70) (0.70)

Add 0.000001 all cells 1.55 1.52 1.53 1.52 1.55
(0.70) (0.70) (0.69) (0.70) (0.71)

Add 0.05 all cells 1.48 1.45 1.46 1.45 1.48
(0.68) (0.67) (0.67) (0.67) (0.68)

Corresponding odds ratio estimates vary between e1:45 = 4:3 and e1:56 = 4:8.

As noted before, naive standard errors of estimates of random e�ects ignore the fact that the
variance of those random e�ects is itself estimated. (Moreover, one is naive to expect to esti-
mate well a variance component when K and n are as small as in the examples of this article!)
Booth and Hobert [42] proposed a method for calculating standard errors based on the condi-
tional mean squared error of prediction (CMSEP), given the data. This method incorporates a
positive correction for the variability of the parameter estimates as well as an estimate of the
bias incurred by using an estimate for the unknown conditional variance. Although this bias is
often larger than the variance correction and thus non-ignorable, it is computationally di�cult to
calculate. Morris [41] proposed an analytic correction which can work well for the logistic mixed
model [61]. Table VII reports the standard errors for the random e�ects centre estimates pro-
vided by NLMIXED, using the PREDICT option, which are based on a Laplace approximation to
the CMSEP.
An ML estimate �̂k =−∞ is not very appealing when one truly believes that �ik¿0. Because

of the normality assumption, the random e�ects estimate of ak also uses information from other
centres and is �nite. For centre 1, for instance, the estimate â1 =−1:07 provides an estimated
success probability of exp(−1:07)=[1 + exp(−1:07)=0:255 for placebo, even though that group
had no successes at that centre. The estimated standard deviation of the centre e�ects is �̂=1:8.
Although centres with min(sk ; fk)= 0 provide no information about the treatment e�ect, deleting
them from the analysis will tend to decrease �̂. In this case, �̂ decreases to 1.1.
The no interaction models, whether �xed e�ects or random e�ects, showed moderate evidence

of a treatment e�ect. The random e�ects model permitting interaction has identical results (see
Table VI), since the ML estimate of the standard deviation of the log-odds ratio is 0. This also
happens when deleting centres 1 and 3 or when combining centres 1–3.

6.3. Extreme cases: centres with one observation per treatment

Simpli�ed forms of the various estimates and standard errors occur for matched pairs data in which
each row of each stratum contains a single observation. This is an extreme form of sparseness
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Table VII. Estimated centre e�ects (standard error in parentheses) for no interaction models with Table V.

Data Fixed e�ects model (1) Random e�ects model (4)
�1 �2 �3 �4 �5 a1 a2 a3 a4 a5

Table V −28.0 −4.2 −27.9 −1.0 −2.0 −1.1 −0.5 −1.5 2.3 1.4
unadjusted (2:1× 105) (1.2) (1:9× 105) (0.7) (0.7) (1.4) (1.2) (1.4) (1.2) (1.2)

Delete −4.2 −1.0 −2.0 −1.2 1.1 0.2
centres 1,3 (1.2) (0.7) (0.7) (0.9) (0.8) (0.8)

Combine −4.9 −1.0 −2.0 −1.8 1.5 0.5
centres 1–3 (1.2) (0.7) (0.7) (1.1) (1.0) (1.0)

Add 0.000001 −16.6 −4.2 −16.8 −1.0 −2.0 −1.1 −0.5 −1.2 2.3 1.4
all cells (707.1) (1.2) (707.1) (0.7) (0.7) (1.4) (1.2) (1.4) (1.2) (1.2)

Add 0.05 −5.7 −4.1 −5.9 −0.9 −2.0 −0.9 −0.6 −1.0 2.1 1.2
all cells (3.2) (1.1) (3.2) (0.6) (0.6) (1.2) (1.0) (1.2) (1.1) (1.0)

Fixed e�ects estimates obtained using PROC GENMOD in SAS.

in which n=2K . An important application is in cross-over studies, in which stratum k provides
subject k’s response for each treatment.
Let a=

∑
k n11kn21k denote the number of pairs where both observations are successes, b=∑

k n11kn22k the number where the �rst is a success and the second is a failure, c=
∑

k n12kn21k
the number where the �rst is a failure and the second is a success, and d=

∑
k n12kn22k the

number where both are failures. Then, the M–H log-odds ratio estimate simpli�es to

�̂MH = log(b=c); v̂ar(�̂MH)= b
−1 + c−1

which is identical to the conditional ML estimate. Also, the M–H type of log relative risk estimate
is

	̂MH = log[(a+ b)=(a+ c)]; v̂ar(	̂MH)= (b+ c)=(a+ b)(a+ c)

and the M–H type of di�erence of proportions estimate is


̂MH = (b− c)=K; v̂ar(
̂MH)= [(b+ c)− (b− c)2=K]=K2

where K = a+ b+ c + d.
For this degree of sparseness, it is inappropriate to use ordinary ML estimators of these pa-

rameters based on models such as (1), as such estimators are inconsistent. The random e�ects
version (4) is adequate, since the number of parameters in the marginal likelihood stays constant
as K increases. In fact, suppose the association between the two responses is non-negative, in the
sense that log(ad=bc) ¿ 0; then, for any parametric random e�ects model that is consistent with
the data, the estimate of the log-odds ratio � is identical [62] to the M–H and conditional ML
estimates, namely log(b=c).

6.4. E�ects of adding constants or combining centres

When �nite ML estimates do not exist, one approach in �xed e�ects models for contingency table
analysis is to add a small positive constant to each cell (or to the empty cells), thus ensuring that
all resulting estimates are �nite. When that constant is small, however, the resulting value of �̂
for model (1) and its standard error are usually almost identical to what one obtains by ignoring
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strata for which sk =0 or fk =0. Table VI illustrates, showing the e�ect of adding 0.000001 to
each cell and adding one observation to the data set (1=20 to each cell) for the sparse data of
Table V. The treatment e�ects and goodness-of-�t are stable, as the addition of any such constant
less than 0.001 to each cell yields �̂=1:55 (ASE=0:70) and a G2 goodness-of-�t statistic equal
to 0.50.
Although this process also provides �nite centre estimates for strata with min(sk ; fk)= 0; the

estimates for these strata depend strongly on the constant chosen. Table VII illustrates, again
showing the e�ect for added constants of 0.000001 and 0.05. The ad hoc nature of this approach
is a severe disadvantage. Random e�ects and Bayesian approaches seem more suited to smoothing
e�ects of zeros, and do not require adding arbitrary constants. Thus, we do not advocate adding
constants in order to arti�cially include data from certain centres in the analysis.
An alternative strategy in multi-centre analyses combines centres of a similar type. Then, if each

resulting partial table has responses with both outcomes, the ordinary descriptions and inferences
use all the data. This, however, can a�ect somewhat the interpretations and conclusions made from
those inferences. An extreme form of combining centres results from adding together all K tables
and performing inference and description for that marginal X -by-Y 2× 2 table. Although apparently
sometimes done in practice, this can be dangerous, as Simpson’s paradox [60] illustrates.
It seems reasonable to combine two centres if the descriptive measure of interest is similar for

each and similar to what one gets by combining them. Su�cient conditions exist for when this
happens. For instance, suppose the relative risk or the di�erence of proportions is identical for two
centres. Then, the value of that measure takes the same value when the centres are combined [63]
if the sample size ratio n1+k =n2+k is the same for each centre. For the odds ratio, collapsibility
is more complex, su�cient conditions being the conditional independence of Z with either X
or Y for those two strata. These conditions have limited relevance here, however, since when
min(sk ; fk)= 0; there is no information about the size of the relative risk or odds ratio for that
centre. Thus, it seems dangerous to combine that centre with others unless there are good reasons
to believe that those centres are very similar and could be expected to share similar values of the
measure of interest. For the di�erence of proportions, it is unnecessary in any case to combine
a centre having min(sk ; fk)= 0 with other centres, since it makes a contribution as it is to the
summary di�erence of proportions (although, as noted above, it provides no information about the
signi�cance of that di�erence).
For Table V, perhaps centres 1 and 3 are similar to centre 2, since the success rate is also very

low for that centre. Table VI also shows the results of combining these three centres and re-�tting
the models to this table and the tables for the other two centres. Here, the e�ect is negligible.
In summary, with frequentist approaches there seems to be no loss of information regarding the
signi�cance of treatment e�ects by simply deleting centres having min(sk ; fk)= 0, although it is
useful to include them for random e�ects analyses designed to estimate centre variability.

6.5. Assumptions in models

For severely sparse data, e�ects of model misspeci�cation can be especially worrisome. Rarely
would it be possible to check assumptions about homogeneity of e�ects or about a form of
distribution for random e�ects. In estimating parameters in random e�ects models with sparse
data, one might be concerned about how much those estimates may depend on the assumption
for the random e�ects distribution. One way to check this assumption is to compare results to
those obtained with a distribution-free approach for the random e�ects distribution, [64, 65] which
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estimates that distribution using a �nite number of mass points and probabilities. This approach is
available with a GLIM macro [66]. Results for examples here are very similar to those assuming
a normal random e�ect. Table VI illustrates for the no interaction model applied to Table V,
providing results supplied by that GLIM macro.
At a minimum, it seems sensible to conduct some analyses designed to investigate sensitivity

to assumptions and the in�uence of changes in the model and slight changes in the data. A model
sensitivity study checks whether conclusions about the treatment e�ect are similar for a variety of
plausible models. A case sensitivity analysis checks the e�ect on estimates and test statistics of
deleting or adding a single observation or changing a single observation from success to failure
or vice versa, checking this separately for each cell in the contingency table.
We illustrate the case sensitivity analysis for the no interaction random e�ects model with

Table V. Checking the in�uence of each observation by deleting it from the data set, the estimated
mean log-odds ratios vary from 1.42 to 1.87 with standard error ranging from 0.69 to 0.77,
compared to the values of 1.52 and 0.696 for the observed data; the ratios of estimates to standard
errors range from 2.02 to 2.42, compared to the observed 1:519=0:696=2:18. The two smallest
estimates and ratios result from deleting a success for the active drug in centre 4 or 5. When
we instead add a single observation, the estimated mean log-odds ratios range from 1.16 to 1.61
with standard errors ranging from 0.63 to 0.70, while the ratios of estimates to standard errors
range from 1.84 to 2.36. The �ve smallest estimates and ratios result from adding a success in
the placebo group, in turn for each centre. After changing a single observation from success to
failure or vice versa, the estimated mean log-odds ratios vary from 1.15 to 1.90 with standard
errors ranging from 0.63 to 0.77; the ratios of estimates to standard errors range from 1.81 to
2.47. These results indicate the very tentative nature of any conclusions about the signi�cance of
the results in Table V.
As mentioned, it can be di�cult to estimate well the variance components or standard errors

of those components or the random e�ects. To check whether certain ones seem plausible, one
might use the jack-knife or else treat the �tted model as if it were the true one and conduct
a parametric bootstrap for independent binomials of the given row sizes satisfying that model
[59]. This may be useful also to provide alternative con�dence intervals. There is no guarantee
that bootstrap methods will work well for highly sparse data, but a dramatically di�erent result
can suggest potential problems with the standard error estimate and corresponding Wald interval
estimates.

6.6. Dependence of results on method of �tting

When using Gauss–Hermite quadrature to approximate the likelihood function in obtaining ML es-
timates for random e�ects models, the resulting quality of the approximations for the ML estimates
can depend strongly on the number of quadrature points used. This is especially true when the data
are sparse or the variance components are large. We recommend that the number of quadrature
points be increased until the change in parameter estimates and standard errors is negligible. In our
experience the standard errors and variance component estimates usually require a greater number
of quadrature points for convergence than the treatment parameter estimates.
The number of quadrature points can be greatly decreased by centring the quadrature nodes at

the mode of the function being integrated and scaling them by the curvature at the mode [24, 25].
Using this approach with the no interaction model for Table I, we needed only 9 quadrature points
to obtain convergence (to four decimal places) in the parameter estimates and about 13 for the
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standard errors, as opposed to about 200 quadrature points (about 270 for the standard errors)
using the standard Gauss–Hermite nodes and weights. With the centred nodes approach one must
take care when calculating predicted centre e�ects and interaction e�ects, since the functions being
approximated may not be unimodal.
By default, PROC NLMIXED in SAS selects the number of quadrature points. Starting with one

quadrature point, the log-likelihood is evaluated at the parameter starting values. The number of
quadrature points is then increased and the log-likelihood re-evaluated until the di�erence between
two successive evaluations is less than some user-controlled epsilon. That necessary number of
quadrature points at the initial values is then used in all successive cycles in determining the pa-
rameter values that maximize the likelihood function. In our experience this often leads to only �ve
or six points and can be inadequate for standard error calculations or predictions. Users can avoid
the default method by using the QPOINTS= option. We also recommend expressing the variance
components as products of standard deviations in the RANDOM statement of NLMIXED. Esti-
mation of the standard deviation often avoids convergence problems when the estimated variance
component is close to zero.

7. SUMMARY COMMENTS AND RECOMMENDATIONS

7.1. Similarities and di�erences in substantive results

For the examples in this paper, we reached similar conclusions about the treatment e�ect whether
we used �xed e�ects or random e�ects models. Our experience with a variety of examples indicates
that the �xed e�ects model and the random e�ects model assuming no interaction tend to provide
similar results about the common treatment e�ect. Those results are also similar to the ones for
the mean of the treatment e�ects for the random e�ects interaction model when the variance
component estimate for the treatment e�ects equals 0 or close to 0. The latter model may provide
a much wider con�dence interval for the average e�ect when that variance component estimate is
substantial. To illustrate, we alter Table I slightly, changing three of the failures to successes for
drug in centre 3 and three of the successes to failures for drug in centre 8. Then the ML estimates
are �̂=0:759 with SE=0:305 for �xed e�ects model (1) and �̂=0:722 with SE=0:299 for the
random e�ects model (4) without interaction, but �̂=0:767 with SE=0:623 for the random e�ects
model (6) permitting interaction. For the latter model, �̂b=1:37, compared to 0.15 for the actual
data.
By contrast to the usual similarity of estimates of overall treatment e�ects with �xed e�ects

and random e�ects models, the two model types can provide quite di�erent estimates of individual
centre or treatment e�ects. For instance, when all observations in a centre fall in the same outcome
category, the random e�ects models smooth the centre e�ects considerably from the in�nite values
obtained with the �xed e�ects models.
An interesting question is to study the types of sparse data con�gurations or highly unbalanced

data sets that can result in the two types of analyses giving substantively di�erent treatment
estimates or inferences about the treatment e�ect. As an extreme example (mentioned to us by Dr
C. McCulloch in a personal communication), suppose that some strata have observations only for
treatment 1 and the other strata have observations only for treatment 2. The �xed e�ects approach
has insu�cient information to estimate the treatment e�ect, since there are K binomial observations
but K + 1 parameters for the no interaction model. By contrast, with the random e�ects approach
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data of this form provide information about the treatment e�ect and about a mean and standard
deviation of the random e�ects distribution, at least if one can regard the strata of each of these
two types (having observations with only treatment 1 or having observations with only treatment 2)
as a random sample from that distribution.

7.2. Strategies for choice of model and analysis

In selecting a method, a key determinant is the intended scope of inferences. If the strata truly are
a sample of all possible strata and one would like to make inferences that apply more generally
than to only the strata sampled, then the random e�ects approach is more natural. Data from
multi-centre clinical trials and meta analyses are usually of that type, although the samples are
usually not random. However, many share the view quoted earlier of Grizzle [16] that a random
e�ects approach still better re�ects all the actual sources of variability. If the strata sampled are
the only ones of interest, such as when the strata are levels of control variables such as gender
and race, the �xed e�ects approach is natural. Even when the strata are not a sample, however,
the random e�ects estimators can be bene�cial because of their smoothing e�ects. For instance,
when there is signi�cant interaction, the random e�ects estimates of stratum-speci�c log-odds ratios
might be preferred to the separate sample values, especially when some of those sample values
are in�nite. See Senn [14] for a more sceptical view noting potential problems with using random
e�ects approaches.
The choice of a �xed e�ects or random e�ects analysis can be a complex one having many

considerations. [14, 16]. Among statistical considerations, for random e�ects modelling one should
preferably have many more centres than the 8 in Table I and the 5 in Table V, yet the combining
of information that occurs with random e�ects modelling is often very appealing. Among non-
statistical considerations, a ‘centre’ is often quite arbitrary and not as well de�ned as a ‘subject’,
yet we develop treatments not just for the subjects who attended the centres used in the study [14].
A referee has pointed out that one could consider ‘�xed’ and ‘random’ as but two labels for a con-
tinuum of sampling models that includes, for instance, systematic cases that are more representative
than a random sample in certain senses and illustrative cases that are less so. Further development
of such a framework of types of e�ects would be an interesting topic for further research.
Next, whatever one’s choice of �xed or random e�ects model, one must decide whether to

include interaction terms in the model. With many strata or highly sparse data, the power of tests
of the hypothesis of no interaction may be weak. The safest approach is then to use the interaction
model; otherwise, if one uses the simpler model but interaction truly exists, the standard error of
the estimated treatment e�ect may be unrealistically low. Fixed e�ects and random e�ects no
interaction models will tend to report smaller standard errors for the treatment e�ect than the
interaction model, since the latter model permits an extra component of variance. Even when
�̂b=0, the likelihood function often reveals that values of �b quite far from 0 are also plausible;
thus, it is safest to use the interaction model. One may pay a penalty for doing so, having an
increased standard error, but this simply re�ects scepticism about the homogeneity model and the
desire for inferences to apply more generally than for only the centres sampled.
With the random e�ects approach, one must also consider the validity of a normal assumption for

the random e�ects. When the primary interest is in the treatment e�ect, the choice of distribution
for the random e�ect should not be crucial [67], as a wide variety of mixing distributions lead to
similar marginal distributions (averaged over the random e�ects). For model (4), for instance, if
the normal distribution can induce an intracluster correlation approximately equal to the intracluster
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correlation for the actual mixing distribution, then there is little bias in estimation of � or in the
standard error estimates [67]. When the actual distribution is highly skewed, some bias [65, 67]
may occur in estimating �.
The above remarks refer to the treatment e�ect. When estimation of centre e�ects are the

focus, it is of interest to study the degree to which the estimates could depend on the choice
of distribution. For �xed K , asymptotically this does not seem to be a problem. For instance,
when the additive model form (1) holds, for any �nite set of centre e�ects, as {nik} increase the
random e�ect estimators of treatment and centre parameters behave like the �xed e�ect estimators;
in particular, both sets converge to the true values. In practice this manifests itself by the random
e�ects estimates being very similar to the �xed e�ects estimates when the stratum-speci�c sample
sizes are large.
An interesting open question is to study the e�ect of misspeci�cation of the random e�ects

distribution for the sparse asymptotic framework in which K grows with n. It is then too much
to ask for consistency of centre estimates, but does one obtain consistency of estimation of the
treatment e�ect and the variance components? One way to check the e�ect of the normality
assumption is to compare results to those obtained with a non-parametric approach [64]. An
advantage of the normal choice, other than convenience, is that it extends naturally to multivariate
random e�ects that may have some correlation structure.
We have seen that centres with 0 successes or 0 failures can be disregarded in terms of deciding

whether a treatment e�ect exists. They are needed, however, for estimating the variance component
of centre e�ects in the random e�ects model, and for estimating the size of the e�ect in �xed and
random e�ects models for the di�erence of proportions.

7.3. Extensions and alternative methods

Our emphasis has been on binary data with two groups, but the models and issues discussed
generalize to multinomial data and several groups. For instance, for an ordinal response, one can
use a proportional odds model with centre and treatment e�ects, with the centre e�ects being
treated either as �xed or random. Recent work has focused on ways of �tting such models with
random e�ects [68, 69], and one can use NLMIXED to �t the proportional odds model and related
models (such as with probit link) based on the Gauss–Hermite quadrature approximation of the
likelihood function.
Finally, this paper has focused on frequentist approaches. Alternative approaches include Bayes

and empirical Bayes methods [4, 6, 11, 12, 70, 71]. The random e�ects model has much in common
with empirical Bayes, in that it assumes a distribution for a set of parameters and uses the data
to estimate parameters of that distribution.
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