

Use R!
Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani

Use R!

Pfaff: Analysis of Integrated and Cointegrated Time Series with R
Paradis: Analysis of Phylogenetics and Evolution with R

Albert:Bayesian Computation with R

With R and GGobi
Cook/Swayne: Interactive and Dynamic Graphics for Data Analysis:

 with R

Jim Albert

Bayesian Computation

Series Editors:
Robert Gentleman Kurt Hornik
Program in Computational Biology Department für Statistik und Mathematik
Division of Public Health Sciences Wirtschaftsuniversität Wien Augasse 2-6
Fred Hutchinson Cancer Research Center A-1090 Wien
1100 Fairview Ave. N, M2-B876 Austria
Seattle, Washington, 981029-1024
USA

Giovanni Parmigiani

550 North Broadway
Baltimore, MD, 21205-2011
USA

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

Library of Congress Control Number: 2007929182

Professor Jim Albert
Department of Mathematics and Statistics
Bowling Green State University
Bowling Green, OH 43403-0221
USA
albert@bgnet.bgsu.edu

The Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins University

ISBN: 978-0-387-71384-7 e-ISBN: 978-0-387-71385-4

Preface

There has been dramatic growth in the development and application of
Bayesian inference in statistics. Berger (2000) documents the increase in
Bayesian activity by the number of published research articles, the number of
books, and the extensive number of applications of Bayesian articles in applied
disciplines such as science and engineering.

One reason for the dramatic growth in Bayesian modeling is the availabil-
ity of computational algorithms to compute the range of integrals that are
necessary in a Bayesian posterior analysis. Due to the speed of modern com-
puters, it is now possible to use the Bayesian paradigm to fit very complex
models that cannot be fit by alternative frequentist methods.

To fit Bayesian models, one needs a statistical computing environment.
This environment should be such that one can

• write short scripts to define a Bayesian model
• use or write functions to summarize a posterior distribution
• use functions to simulate from the posterior distribution
• construct graphs to illustrate the posterior inference

An environment that meets these requirements is the R system. R provides a
wide range of functions for data manipulation, calculation, and graphical dis-
plays. Moreover, it includes a well-developed, simple programming language
that users can extend by adding new functions. Many such extensions of the
language in the form of packages are easily downloadable from the Compre-
hensive R Archive Network (CRAN).

The purpose of this book is to introduce Bayesian modeling by the use
of computation using the R language. At Bowling Green State University,
I have taught an introductory Bayesian inference class to students in masters
and doctoral programs in statistics for which this book would be appropriate.
This book would serve as a useful companion to the introductory Bayesian
texts Gelman et al (2003), Carlin and Louis (2000), Press (2003), Gill (2002),
or Lee (2004). Also the book would be valuable to the statistical practitioner
who wishes to learn more about the R language and Bayesian methodology.

vi Preface

Chapters 2, 3, and 4 illustrate the use of R for Bayesian inference for
standard one- and two-parameter problems. These chapters discuss the use of
different types of priors, the use of the posterior distribution to perform dif-
ferent types of inference, and the use of the predictive distribution. The base
package of R provides functions to simulate from all of the standard probabil-
ity distributions, and these functions can be used to simulate from a variety
of posterior distributions. Modern Bayesian computing is introduced in Chap-
ters 5 and 6. Chapter 5 discusses the summarization of posterior distribution
by posterior modes and introduces rejection sampling and the Monte Carlo
approach for computing integrals. Chapter 6 introduces the fundamental ideas
of Markov chain Monte Carlo (MCMC) methods and the use of MCMC output
analysis to decide if the batch of simulated draws provides a reasonable app-
roximation to the posterior distribution of interest. The remaining chapters
illustrate the use of these computational algorithms for a variety of Bayesian
applications. Chapter 7 introduces the use of exchangeable models in the
simultaneous estimation of a set of Poisson rates. Chapter 8 describes Bayesian
tests of simple hypotheses and the use of Bayes factors in comparing models.
Chapter 9 describes Bayesian regression models, and Chapter 10 describes
several applications, such as robust modeling, binary regression with a probit
link, and order-restricted inference that are well-suited for the Gibbs sampling
algorithm. Chapter 11 describes the use of R to interface with WinBUGS,
a popular program for implementing MCMC algorithms.

An R package, LearnBayes, available from the CRAN site, has been written
to accompany this text. This package contains all of the Bayesian R functions
and datasets described in the book. One goal in writing LearnBayes is to
provide guidance for the student and applied statistician in writing short R
functions for implementing Bayesian calculations for their specific problems.
Also the LearnBayes package will make it easier for users to use the growing
number of R packages for fitting a variety of Bayesian models.

I would like to express my appreciation for the people who provided assis-
tance in preparing this book. John Kimmel, my editor, was most helpful in
encouraging me to write this book and provide helpful feedback. I am appre-
ciative of Patricia Williamson and Sherwin Toribio for providing useful sug-
gestions. I am appreciative to all of the students at Bowling Green who have
enrolled in my Bayesian statistics class over the years. Finally, but certainly
not least, I wish to thank my wife Anne and my children Lynne, Bethany and
Steven for encouragement and inspiration.

Bowling Green, Ohio, Jim Albert
January 2007

Contents

1 An Introduction to R . 1
1.1 Overview . 1
1.2 Exploring a Student Dataset . 1

1.2.1 Introduction to the Dataset . 1
1.2.2 Reading the Data into R . 2
1.2.3 R Commands to Summarize and Graph a Single Batch . 2
1.2.4 R Commands to Compare Batches 4
1.2.5 R Commands for Studying Relationships 6

1.3 Exploring the Robustness of the t Statistic 8
1.3.1 Introduction . 8
1.3.2 Writing a Function to Compute the t Statistic 9
1.3.3 Programming a Monte Carlo Simulation 11
1.3.4 The Behavior of the True Significance Level Under

Different Assumptions . 12
1.4 Further Reading . 13
1.5 Summary of R Functions . 14
1.6 Exercises . 15

2 Introduction to Bayesian Thinking . 19
2.1 Introduction . 19
2.2 Learning About the Proportion of Heavy Sleepers 19
2.3 Using a Discrete Prior . 20
2.4 Using a Beta Prior . 22
2.5 Using a Histogram Prior . 26
2.6 Prediction . 29
2.7 Further Reading . 34
2.8 Summary of R Functions . 34
2.9 Exercises . 35

viii Contents

3 Single-Parameter Models . 39
3.1 Introduction . 39
3.2 Normal Distribution with Known Mean

but Unknown Variance . 39
3.3 Estimating a Heart Transplant Mortality Rate 41
3.4 An Illustration of Bayesian Robustness . 44
3.5 A Bayesian Test of the Fairness of a Coin 50
3.6 Further Reading . 53
3.7 Summary of R Functions . 53
3.8 Exercises . 54

4 Multiparameter Models . 57
4.1 Introduction . 57
4.2 Normal Data with Both Parameters Unknown 57
4.3 A Multinomial Model . 60
4.4 A Bioassay Experiment . 60
4.5 Comparing Two Proportions . 65
4.6 Further Reading . 70
4.7 Summary of R Functions . 70
4.8 Exercises . 71

5 Introduction to Bayesian Computation . 75
5.1 Introduction . 75
5.2 Computing Integrals . 76
5.3 Setting Up a Problem on R . 77
5.4 A Beta-Binomial Model for Overdispersion 78
5.5 Approximations Based on Posterior Modes 80
5.6 The Example . 82
5.7 Monte Carlo Method for Computing Integrals 84
5.8 Rejection Sampling . 85
5.9 Importance Sampling . 88
5.10 Sampling Importance Resampling . 91
5.11 Further Reading . 94
5.12 Summary of R Functions . 94
5.13 Exercises . 96

6 Markov Chain Monte Carlo Methods . 101
6.1 Introduction . 101
6.2 Introduction to Discrete Markov Chains . 101
6.3 Metropolis-Hasting Algorithms . 104
6.4 Gibbs Sampling . 106
6.5 MCMC Output Analysis . 106
6.6 A Strategy in Bayesian Computing . 108
6.7 Learning About a Normal Population from Grouped Data 108
6.8 Example of Output Analysis . 113
6.9 Modeling Data with Cauchy Errors . 116

Contents ix

6.10 Analysis of the Stanford Heart Transplant Data 124
6.11 Further Reading . 129
6.12 Summary of R Functions . 130
6.13 Exercises . 131

7 Hierarchical Modeling . 137
7.1 Introduction . 137
7.2 Introduction to Hierarchical Modeling . 137
7.3 Individual and Combined Estimates . 139
7.4 Equal Mortality Rates? . 141
7.5 Modeling a Prior Belief of Exchangeability 145
7.6 Posterior Distribution . 147
7.7 Simulating from the Posterior . 147
7.8 Posterior Inferences . 151

7.8.1 Shrinkage . 152
7.8.2 Comparing Hospitals . 153

7.9 Posterior Predictive Model Checking . 155
7.10 Further Reading . 157
7.11 Summary of R Functions . 158
7.12 Exercises . 158

8 Model Comparison . 163
8.1 Introduction . 163
8.2 Comparison of Hypotheses . 163
8.3 A One-Sided Test of a Normal Mean . 164
8.4 A Two-Sided Test of a Normal Mean . 167
8.5 Comparing Two Models . 168
8.6 Models for Soccer Goals . 169
8.7 Is a Baseball Hitter Really Streaky? . 172
8.8 A Test of Independence in a Two-Way Contingency Table 176
8.9 Further Reading . 180
8.10 Summary of R Functions . 181
8.11 Exercises . 183

9 Regression Models . 187
9.1 Introduction . 187
9.2 Normal Linear Regression . 187

9.2.1 The Model . 187
9.2.2 The Posterior Distribution . 188
9.2.3 Prediction of Future Observations 188
9.2.4 Computation . 189
9.2.5 Model Checking . 189
9.2.6 An Example . 190

9.3 Survival Modeling . 199
9.4 Further Reading . 204

x Contents

9.5 Summary of R Functions . 205
9.6 Exercises . 206

10 Gibbs Sampling . 211
10.1 Introduction . 211
10.2 Robust Modeling . 212
10.3 Binary Response Regression with a Probit Link 216
10.4 Estimating a Table of Means . 219

10.4.1 Introduction . 219
10.4.2 A Flat Prior Over the Restricted Space 223
10.4.3 A Hierarchical Regression Prior . 227
10.4.4 Predicting the Success of Future Students 232

10.5 Further Reading . 233
10.6 Summary of R Functions . 233
10.7 Exercises . 234

11 Using R to Interface with WinBUGS . 237
11.1 Introduction to WinBUGS . 237
11.2 An R Interface to WinBUGS. 238
11.3 MCMC Diagnostics Using the boa Package 239
11.4 A Change-Point Model . 240
11.5 A Robust Regression Model . 243
11.6 Estimating Career Trajectories . 247
11.7 Further Reading . 253
11.8 Exercises . 254

References . 259

Index . 263

1

An Introduction to R

1.1 Overview

R is a rich environment for statistical computing and has many capabilities
to explore data in its base package. In addition, R contains a collection of
functions for simulating and summarizing the familiar one-parameter proba-
bility distributions. One goal of this chapter is to provide a brief introduction
to basic commands for summarizing and graphing data. We illustrate these
commands on a dataset about students in a an introductory statistics class. A
second goal of this chapter is to introduce the use of R as an environment for
programming Monte Carlo simulation studies. We describe a simple Monte
Carlo study to explore the behavior of the two-sample t statistic when testing
from populations that deviate from the usual assumptions. We will find these
data analysis and simulation commands very helpful in Bayesian computation.

1.2 Exploring a Student Dataset

1.2.1 Introduction to the Dataset

To illustrate some basic commands for summarizing and graphing data, we
consider answers from a sheet of questions given to all students in an introduc-
tory statistics class at Bowling Green State University. Some of the questions
that were asked included:

1. What is your gender?
2. What is your height in inches?
3. Choose a whole number between 1 and 10.
4. Give the time you went to bed last night.
5. Give the time you woke up this morning.
6. What was the cost (in dollars) of your last haircut including the tip?
7. Do you prefer water, pop, or milk with your evening meal?

2 1 An Introduction to R

This is a rich dataset that can be used to illustrate methods for exploring
a single batch of categorical or quantitative data, for comparing subgroups
of the data, such as comparing the haircut costs of men and women, and for
exploring relationships.

1.2.2 Reading the Data into R

The data for 657 students were recorded in a spreadsheet and saved as the file
“studentdata.txt” in text format with tabs between the fields. The first line of
the data file is a header that includes the variable names.

One can read this data into R by the read.table command. There are
three arguments used in this command. The first argument is the name of the
datafile in quotes; the next argument, sep, indicates that fields in the file are
separated by tab characters; and the header=TRUE argument indicates that
the file has a header line with the variable names. This dataset is stored in
the R data frame called studentdata.

> studentdata = read.table("studentdata.txt", sep = "\t",

+ header = TRUE)

This dataset is also available as part of the LearnBayes package. Assuming
that the package has been installed and loaded into R, one accesses the data
by means of the data command:

> data(studentdata)

To see the variable names, we display the first row of the data frame by
the studentdata[1,] command.

> studentdata[1,]

Student Height Gender Shoes Number Dvds ToSleep WakeUp
1 1 67 female 10 5 10 -2.5 5.5
Haircut Job Drink

1 60 30 water

To make the variable names visible in the R environment, we use the
attach command.

> attach(studentdata)

1.2.3 R Commands to Summarize and Graph a Single Batch

One categorical variable in this dataset is Drink which indicates the student’s
drinking preference between milk, pop, and water. One can tally the different
responses by the table command.

> table(Drink)

1.2 Exploring a Student Dataset 3

Drink
milk pop water
113 178 355

We see that more than half the students preferred water, and pop was more
popular than milk.

One can graph these frequencies with a bar graph by the barplot com-
mand. We first save the output of table in the variable t and then use barplot
with t as an argument. We add labels to the horizontal and vertical axes by
the xlab and ylab argument options. Fig. 1.1 displays the resulting graph.

> t=table(Drink)

> barplot(t,xlab="Drink",ylab="Count")

milk pop water

Drink

C
ou

nt

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Fig. 1.1. Bar plot of the drinking preference of the statistics students.

Suppose we are next interested in examining how long the students slept
the previous night. We did not directly ask the students about their sleeping

4 1 An Introduction to R

time, but we can compute a student’s hours of sleep by subtracting her go-
to-bed time from her wakeup time. In R we perform this computation for all
students and the variable hours.of.sleep contains the sleeping times.

> hours.of.sleep = WakeUp - ToSleep

A simple way to summarize this quantitative variable is by the summary
command that gives a variety of descriptive statistics about the variable.

> summary(hours.of.sleep)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
2.500 6.500 7.500 7.385 8.500 12.500 4.000

On average, we see that students slept 7.5 hours and half of the students slept
between 6.5 and 8.5 hours.

To see the distribution of sleeping times, we can construct a histogram
using the hist command (see Fig. 1.2).

> hist(hours.of.sleep,main="")

The shape of this distribution looks symmetric about the average value of 7.5
hours.

1.2.4 R Commands to Compare Batches

Since the gender of each student was recorded, one can make comparisons
between men and women on any of the quantitative variables. Do men tend
to sleep longer than women? We can answer this question graphically by
constructing parallel boxplots of the sleeping times of men and women. Parallel
boxplots can be displayed by the boxplot command. The argument is given
by

hours.of.sleep ~ Gender

This indicates that a boxplot of the hours of sleep will be constructed for each
level of Gender. The resulting graph is displayed in Fig. 1.3. From the display,
it appears that men and women are similar with respect to their sleeping time.

> boxplot(hours.of.sleep~Gender)

> title(ylab="Hours of Sleep")

For other variables, there are substantial differences between the two gen-
ders. Suppose we wish to divide the haircut prices into two groups – the
haircut prices for the men and the haircut prices for the women. We do this
by use of the R logical operator ==. The syntax

1.2 Exploring a Student Dataset 5

hours.of.sleep

F
re

qu
en

cy

2 4 6 8 10 12

0
50

10
0

15
0

Fig. 1.2. Histogram of the hours of sleep of the statistics students.

Gender=="female"

is a logical statement that will be TRUE if Gender is “female”; otherwise it will
be FALSE. The expression

Haircut[condition]

will produce a subset of Haircut according to when the condition is TRUE.
So the statement

> female.Haircut=Haircut[Gender=="female"]

will select the haircut prices only for the female students and store the prices
into the variable female.Haircut. Similarly, we use the logical operator to
store the male haircut prices into the variable male.Haircut.

> male.Haircut=Haircut[Gender=="male"]

By use of the summary command, we summarize the haircut prices of the
women and the men.

> summary(female.Haircut)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.00 15.00 25.00 34.08 45.00 180.00 19.00

6 1 An Introduction to R

female male

4
6

8
10

12

H
ou

rs
 o

f S
le

ep

Fig. 1.3. Parallel boxplots of the hours of sleep of the male and female students.

> summary(male.Haircut)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.00 0.00 12.00 10.54 15.00 75.00 1.00

We see large differences between men and women – the men average about
$10 for a haircut and the women average about $34.

1.2.5 R Commands for Studying Relationships

There are many interesting relationships that can be explored in this student
dataset. To get a good night’s sleep, one may want to go to bed early in the
evening. This raises the question:“Is the length of sleep for a student related to
the time that he or she goes to bed?”We can explore the relationship between
the ToSleep and hours.of.sleep variables by means of a scatterplot. The R
command plot(ToSleep,hours.of.sleep) will construct a scatterplot with
ToSleep on the horizontal scale and hours.of.sleep on the vertical scale. If
we draw this scatterplot, it is a little difficult to see the pattern in the graph
since many of the points are identical. We use the jitter function on each
variable before plotting – this has the effect of adding a small amount of noise
so that more points are visible on the graph (see Fig. 1.4).

1.2 Exploring a Student Dataset 7

> plot(jitter(ToSleep),jitter(hours.of.sleep))

−2 0 2 4 6

4
6

8
10

12

jitter(ToSleep)

jit
te

r(
ho

ur
s.

of
.s

le
ep

)

Fig. 1.4. Scatterplot of wake-up time and hours of sleep for students.

We can describe the decreasing pattern in this scatterplot by fitting a line.
A least-squares fit is done using the lm command; this has the syntax

> fit=lm(hours.of.sleep~ToSleep)

The output of this fitting is stored in the variable fit. If we display this
variable, we see the intercept and slope of the least-squares line.

> fit

Call:
lm(formula = hours.of.sleep ~ ToSleep)

Coefficients:
(Intercept) ToSleep

7.9628 -0.5753

8 1 An Introduction to R

The slope is approximately −0.5, which means that a student loses about a
half-hour of sleep for every hour later that he or she goes to bed.

We can display this line on top of the scatterplot by the abline command
(see Fig. 1.5) . There are two arguments to the function, the intercept and
slope of the line to be plotted.

> abline(7.9628,-0.5753)

−2 0 2 4 6

4
6

8
10

12

jitter(ToSleep)

jit
te

r(
ho

ur
s.

of
.s

le
ep

)

Fig. 1.5. Scatterplot of wake-up time and hours of sleep for students with least-
squares line plotted on top.

1.3 Exploring the Robustness of the t Statistic

1.3.1 Introduction

Suppose one has two independent samples x1, ..., xm and y1, ..., yn, and one
wishes to test the hypothesis that the mean of the x population is equal to
the mean of the y population:

1.3 Exploring the Robustness of the t Statistic 9

H0 : µx = µy.

Let X̄ and Ȳ denote the sample means of the xs and ys and let sx and sy

denote the respective standard deviations. The standard test of this hypothesis
H0 is based on the t statistic

T =
X̄ − Ȳ

sp

√
1/m + 1/n

,

where sp is the pooled standard deviation

sp =

√
(m − 1)s2

x + (n − 1)s2
y

m + n − 2
.

Under the hypothesis H0, the test statistic T has a t distribution with m+n−2
degrees of freedom when

• both the xs and ys are independent random samples from normal distrib-
utions

• the standard deviations of the x and y populations, σx and σy, are equal

Suppose the level of significance of the test is set at α. Then one will reject
H when

|T | ≥ tn+m−2,α/2,

where tdf,α is the (1 − α) quantile of a t random variable with df degrees of
freedom.

If the underlying assumptions of normal populations and equal variances
hold, then the level of significance of the t-test will be the stated level of
α. But in practice, many people use the t statistic to compare two samples
even when the underlying assumptions are in doubt. So an interesting prob-
lem is to investigate the robustness or sensitivity of this popular test statistic
with respect to changes in the assumptions. If the stated significance level is
α = .10 and the populations are skewed or have heavy tails, what will be the
true significance level? If the assumption of equal variances is violated and
there are significant differences in the spreads of the two populations, what is
the true significance level? One can answer these questions through a Monte
Carlo simulation study. R is a very suitable platform for writing a simulation
algorithm. One can generate random samples from a wide variety of proba-
bility distributions and R has an extensive set of data analysis capabilities
for summarizing and graphing the simulation output. Here we illustrate the
construction of a simple R function to address the robustness of the t statistic.

1.3.2 Writing a Function to Compute the t Statistic

To begin, we generate some random data for the samples of xs and ys. We
simulate a sample of 10 observations from a normal distribution with mean

10 1 An Introduction to R

50 and standard deviation 10 using the rnorm function and store the vector
of values in the variable x. Likewise we simulate a sample of ys by simulating
10 values from a N(50, 10) distribution and store these values in the variable
y.

> x=rnorm(10,mean=50,sd=10)

> y=rnorm(10,mean=50,sd=10)

Next we write a few lines of R code to compute the value of the t statistic
from the samples in x and y. We find the sample sizes m and n by the R
length command.

> m=length(x)

> n=length(y)

We compute the pooled standard deviation sp – in the R code, sd is the
standard deviation function and sqrt takes the square root of its argument.

> sp=sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2))

With m, n, and sp defined, we compute the t statistic

> t=(mean(x)-mean(y))/(sp*sqrt(1/m+1/n))

By combining these R statements, we can write a short R function
tstatistic to compute the t statistic. This function has two arguments,
the vectors x and y, and the output of the function (indicated by the return
statement) is the value of the t statistic.

tstatistic=function(x,y)
{
m=length(x)
n=length(y)
sp=sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2))
t=(mean(x)-mean(y))/(sp*sqrt(1/m+1/n))
return(t)
}

Suppose this function has been saved in the file “tstatistic.R”. We enter
this function into R by means of the source command.

> source("tstatistic.R")

We try the function by placing some fake data in vectors data.x and data.y
and then computing the t statistic on these data:

> data.x=c(1,4,3,6,5)

> data.y=c(5,4,7,6,10)

> tstatistic(data.x, data.y)

[1] -1.937926

1.3 Exploring the Robustness of the t Statistic 11

1.3.3 Programming a Monte Carlo Simulation

Suppose we are interested in learning about the true significance level for
the t statistic when the populations don’t follow the standard assumptions
of normality and equal variances. In general, the true significance level will
depend on

• the stated level of significance α
• the shape of the populations (normal, skewed, heavy-tailed, etc.)
• the spreads of the two populations as measured by the two standard devi-

ations
• the sample sizes m and n

Given a particular choice of α, shape, spreads, and sample sizes, we wish to
estimate the true significance level given by

αT = P (|T | ≥ tn+m−2,α/2).

Here is an outline of a simulation algorithm to compute αT :

1. Simulate a random sample x1, ..., xm from the first population and y1, ..., yn

from the second population.
2. Compute the t statistic T from the two samples.
3. Decide if |T | exceeds the critical point and H0 is rejected.

One repeats steps 1–3 of the algorithm N times. One estimates the true sig-
nificance level by

α̂T =
number of rejections of H0

N
.

The following is an R script that implements the simulation algorithm for
normal populations with mean 0 and standard deviation 1. The R variable
alpha is the stated significance level, m and n are the sample sizes, and N is
the number of simulations. The rnorm command is used to simulate the two
samples and t contains the value of the t statistic. One decides to reject if

abs(t)>qt(1-alpha/2,n+m-2)

where qt(p,df) is the pth quantile of a t distribution with df degrees of free-
dom. The observed significance level is stored in the variable true.sig.level.

alpha=.1; m=10; n=10 # sets alpha, m, n
N=10000 # sets the number of simulations
n.reject=0 # counter of num. of rejections
for (i in 1:N)
{

x=rnorm(m,mean=0,sd=1) # simulates xs from population 1
y=rnorm(n,mean=0,sd=1) # simulates ys from population 2
t=tstatistic(x,y) # computes the t statistic
if (abs(t)>qt(1-alpha/2,n+m-2))

12 1 An Introduction to R

n.reject=n.reject+1 # reject if |t| exceeds critical pt
}
true.sig.level=n.reject/N # est. is proportion of rejections

1.3.4 The Behavior of the True Significance Level Under Different
Assumptions

The R script described in the previous section can be used to explore the
pattern of the true significance level αT for different choices of sample sizes
and populations. The only two lines that need to be changed in the R script
are the definition of the sample sizes m and n and the two lines where the two
samples are simulated.

Suppose we fix the stated significance level at α = .10 and keep the sample
sizes at m = 10 and n = 10. We simulate samples from the following popula-
tions, where the only restriction is that the population means are equal.

• Normal populations with zero means and equal spreads (σx = σy = 1).

x=rnorm(m,mean=0,sd=1)
y=rnorm(n,mean=0,sd=1)

• Normal populations with zero means and very different spreads (σx =
1, σy = 10).

x=rnorm(m,mean=0,sd=1)
y=rnorm(n,mean=0,sd=10)

• T populations, 4 degrees of freedom and equal spreads

x=rt(m,df=4)
y=rt(n,df=4)

• Exponential populations with µx = µy = 1.

x=rexp(m,rate=1)
y=rexp(n,rate=1)

• One normal population (µx = 10, σx = 2) and one exponential population
(µy = 10).

x=rnorm(m,mean=10,sd=2)
y=rexp(n,rate=1/10)

The R script was run for each of these five population scenarios using
N = 10, 000 iterations and the estimated true significance levels are displayed
in Table 1.1. These values should be compared with the stated significance
level of α = .1, keeping in mind that the simulation standard error of each
estimate is equal to .003. (The simulation standard error, the usual standard
error in computing a binomial proportion, is equal to

√
.1(.9)/10000 = 0.003.)

1.4 Further Reading 13

In this brief study, it appears that if the populations have equal spreads, then
the true significance level is approximately equal to the stated level for dif-
ferent population shapes. If the populations have similar shapes and different
spreads, then the true significance level can be slightly higher than 10%. If the
populations have substantially different shapes (such as normal and exponen-
tial) and unequal spreads, then the true significance level can be substantially
higher than the stated level.

Table 1.1. True significance levels of the t-test computed by Monte Carlo experi-
ments. The standard error of each estimate is approximately 0.003.

Populations True Significance Level

Normal populations with equal spreads 0.0986

Normal populations with unequal spreads 0.1127

t(4) distributions with equal spreads 0.0968

Exponential populations with equal spreads 0.1019

Normal and exponential populations with unequal spreads 0.1563

Since the true significance level in the last case is 50% higher than the
stated level, one might be interested in seeing the exact sampling distribution
of the t statistic. We rerun this simulation for the normal and exponential pop-
ulations, storing the simulated values of the t statistic in a vector tstat. We
use the R command density to construct a nonparametric density estimate
of the exact sampling distribution of the t statistic. The lines command is
used to plot the t density with 18 degrees of freedom on top. Fig. 1.6 displays
the resulting graph of the two densities. Note that the actual sampling dis-
tribution of the t statistic is right-skewed, which would account for the large
true significance level.

> plot(density(tstat),xlim=c(-5,8),ylim=c(0,.4),lwd=3)

> lines(x,dt(x,df=18))

> legend(4,.3,c("exact","t(18)"),lwd=c(3,1))

1.4 Further Reading

Although R is a sophisticated package with many commands, there are many
resources available for learning the package. There is some basic instruction
on R that can be found from the R Help menu. The R project home page at
http://www.r-project.org lists a number of books describing different levels
of statistical computing using R. Verzani (2004) is a good book describing the
use of R in an introductory statistics course; in particular, the book is helpful

14 1 An Introduction to R

−4 −2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

density.default(x = tstat)

N = 10000 Bandwidth = 0.1679

D
en

si
ty

exact
t(18)

Fig. 1.6. Exact sampling density of the t statistic when sampling from normal and
exponential distributions.

for getting started in constructing different types of graphical displays. Gentle
(2002), Appendix A, gives a general description of Monte Carlo experiments
with an extended example.

1.5 Summary of R Functions

An outline of the R functions used in this chapter is presented here. Detailed
information about any specific function, say abline, can be found by typing

?abline

in the R command window.

abline – add a straight line to a plot

attach – attach a set of R objects to search path

barplot – create a barplot with vertical or horizontal bars

boxplot – produce box-and-whisker plot(s) of the given (grouped) values

1.6 Exercises 15

density – computes kernel density estimates

hist – computes a histogram of the given data values

lm – used to fit linear models such as regression

mean – computes the arithmetic mean

plot – generic function for plotting R objects

read.table – reads a file in table format and creates a data frame from it,
with cases corresponding to lines and variables to fields in the file

rexp – random generation for the exponential distribution

rnorm – random generation for the normal distribution

rt – random generation for the t distribution

sd – computes the value of the standard deviation

summary – generic function used to produce result summaries of the results of
various model fitting functions

table – uses the cross-classifying factors to build a contingency table of the
counts at each combination of factor levels

1.6 Exercises

1. Movie DVDs owned by students
The variable Dvds in the student dataset contains the number of movie
DVDs owned by students in the class.
a) Construct a histogram of this variable by use of the hist command.
b) Summarize this variable by the summary command.
c) Use the table command to construct a frequency table of the indi-

vidual values of Dvds that were observed. If one constructs a barplot
of these tabled values by use of the command

barplot(table(Dvds))
one will see that particular response values are very popular. Is there
any explanation for these popular values for number of DVDs owned?

2. Student heights
The variable Height contains the height (in inches) of each student in the
class.
a) Construct parallel boxplots of the heights by the Gender variable.
b) If one assigns the boxplot output to a variable

output=boxplot(Height~Gender)
then output is a list that contains statistics used in constructing the
boxplots. Print output to see the statistics that are stored.

c) On average, how much taller are male students than female students?

16 1 An Introduction to R

3. Sleeping times
The variables ToSleep and WakeUp contain, respectively, the time to bed
and wakeup time for each student the previous evening. (The data are
recorded as hours past midnight, so a value of −2 indicates 10 p.m.)
a) Construct a scatterplot of ToSleep and WakeUp.
b) Find a least-squares fit to these data by the lm command.
c) Place the least-squares fit on the scatterplot by the abline command.
d) Use the line to predict the wakeup time for a student who went to bed

at midnight.
4. Performance of the traditional confidence interval for a propor-

tion
Suppose one observes y that is binomially distributed with sample size n
and probability of success p. The standard 90% confidence interval for p
is given by

C(y) = (p̂ − 1.645

√
p̂(1 − p̂)

n
, p̂ + 1.645

√
p̂(1 − p̂)

n
),

where p̂ = y/n. We use this procedure under the assumption that

P (p ∈ C(y)) = 0.90 for all 0 < p < 1.

The function binomial.conf.interval will return the limits of a 90%
confidence interval given values of y and n.

binomial.conf.interval=function(y,n)
{
z=qnorm(.95)
phat=y/n
se=sqrt(phat*(1-phat)/n)
return(c(phat-z*se,phat+z*se))
}

a) Read the function binomial.conf.interval into R.
b) Suppose that samples of size n = 20 are taken and the true value

of the proportion is p = .5. Using the rbinom command, simulate
a value of y and use binomial.conf.interval to compute the 90%
confidence interval. Repeat this a total of 20 times and estimate the
true probability of coverage P (p ∈ C(y)).

c) Suppose that n = 20 and the true value of the proportion is p = .05.
Simulate 20 binomial random variates with n = 20 and p = .05 and
for each simulated y, compute a 90% confidence interval. Estimate the
true probability of coverage.

5. Performance of the traditional confidence interval for a propor-
tion
Exercise 4 demonstrated that the actual probability of coverage of the
traditional confidence interval depends on the values of n and p. Construct

1.6 Exercises 17

a Monte Carlo study that investigates how the probability of coverage
depends on the sample size and true proportion value. In the study, let n
be 10, 25, and 100, and let p be .05, .25, and .50. Write an R function that
has three inputs: n, p, and the number of Monte Carlo simulations m, and
will output the estimate of the exact coverage probability. Implement your
function using each combination of n and p and m = 1000 simulations.
Describe how the actual probability of converge of the traditional interval
depends on the sample size and true proportion value.

2

Introduction to Bayesian Thinking

2.1 Introduction

In this chapter, the basic elements of the Bayesian inferential approach are
introduced through the basic problem of learning about a population propor-
tion. Before taking data, one has beliefs about the value of the proportion and
one models his or her beliefs in terms of a prior distribution. We will illus-
trate the use of different functional forms for this prior. After data have been
observed, one updates one’s beliefs about the proportion by the computation
of the posterior distribution. One summarizes this probability distribution to
perform inferences. Also one may be interested in predicting the likely out-
comes of a new sample taken from the population.

Many of the commands in the R base package can be used in this setting.
The probability distribution commands such as dbinom and dbeta and simu-
lation commands such as rbeta, rbinom and sample are helpful in simulating
draws from the posterior and predictive distributions. Also we illustrate some
special R commands pdisc, histprior, and discint in the LearnBayes pack-
age that are helpful in constructing priors and computing and summarizing a
posterior.

2.2 Learning About the Proportion of Heavy Sleepers

Suppose a person is interested in learning about the sleeping habits of Amer-
ican college students. She hears that doctors recommend eight hours of sleep
for an average adult. What proportion of college students get at least eight
hours of sleep?

Here we think of a population consisting of all American college students
and let p represent the proportion of this population who sleep (on a typical
night during the week) at least eight hours. We are interested in learning
about the location of p.

20 2 Introduction to Bayesian Thinking

The value of the proportion p is unknown. In the Bayesian viewpoint a
person’s beliefs about the uncertainty in this proportion are represented by
a probability distribution placed on this parameter. This distribution reflects
the person’s subjective prior opinion about plausible values of p.

A random sample of students from a particular university will be taken to
learn about this proportion. But first the person does some initial research to
learn about the sleeping habits of college students. This research will help her
in constructing a prior distribution.

In the Internet article “College Students Don’t Get Enough Sleep” in The
Gamecock, the student newspaper of the University of South Carolina (April
20, 2004), the person reads that a sample survey reports that most students
spend only six hours sleeping. She reads a second article “Sleep on It: Imple-
menting a Relaxation Program into the College Curriculum” in Fresh Writing,
a 2003 publication of the University of Notre Dame. Based on a sample of
100 students, “approximately 70% reported receiving only five to six hours of
sleep on the weekdays, 28% receiving seven to eight, and only 2% receiving
the healthy nine hours for teenagers.”

Based on this information, this person believes that college students gen-
erally get less than eight hours of sleep and so p (the proportion that sleep
at least eight hours) is likely smaller than .5. After some reflection, her best
guess at the value of p is .3. But it is very plausible that this proportion could
be any value in the interval from 0 to .5.

A sample of 27 students is taken – in this group, 11 record that they had
at least eight hours of sleep the previous night. Based on the prior information
and this observed data, the person is interested in estimating the proportion
p. In addition, she is interested in predicting the number of students that get
at least eight hours of sleep if a new sample of 20 students is taken.

Suppose that our prior density for p is denoted by g(p). If we regard a
“success” as sleeping at least eight hours and we take a random sample with
s successes and f failures, then the likelihood function is given by

L(p) = ps(1 − p)f , 0 < p < 1.

The posterior density for p, by Bayes’ rule, is obtained, up to a proportionality
constant, by multiplying the prior density by the likelihood.

g(p|data) ∝ g(p)L(p).

We demonstrate posterior distribution calculations using three different choices
of the prior density g corresponding to three methods for representing the per-
son’s prior knowledge about the proportion.

2.3 Using a Discrete Prior

A simple approach for assessing a prior for p is to write down a list of plausible
proportion values and then assign weights to these values. In our example, the

2.3 Using a Discrete Prior 21

person believes that

.05, .15, .25, .35, .45, .55, .65, .75, .85, .95

are possible values for p. Based on her beliefs, she assigns these values the
corresponding weights

2, 4, 8, 8, 4, 2, 1, 1, 1, 1,

which can be converted to prior probabilities by dividing each weight by the
sum. In R, we define p to be the vector of proportion values and prior the
corresponding weights that we normalize to probabilities. The plot command
is used with the “histogram” type option to graph the prior distribution, and
Fig. 2.1 displays the graph.

> p = seq(0.05, 0.95, by = 0.1)

> prior = c(2, 4, 8, 8, 4, 2, 1, 1, 1, 1)

> prior = prior/sum(prior)

> plot(p, prior, type = "h", ylab="Prior Probability")

0.2 0.4 0.6 0.8

0.
05

0.
10

0.
15

0.
20

0.
25

p

P
rio

r
P

ro
ba

bi
lit

y

Fig. 2.1. A discrete prior distribution for a proportion p.

22 2 Introduction to Bayesian Thinking

In our example, 11 of 27 students sleep a sufficient number of hours, so
s = 11 and f = 16, and the likelihood function is

L(p) = p11(1 − p)16, 0 < p < 1.

(Note that the likelihood is a beta density with parameters s + 1 = 12 and
f + 1 = 17.) The R function pdisc in the package LearnBayes computes
the posterior probabilities. To use pdisc, one inputs the vector of proportion
values p, the vector of prior probabilities prior, and a data vector data con-
sisting of s and f . The output of pdisc is a vector of posterior probabilities.
The cbind command is used to display a table of the prior and posterior
probabilities, and Fig. 2.2 displays a line graph of the posterior probabilities.

> data = c(11, 16)

> post = pdisc(p, prior, data)

> cbind(p, prior, post)

p prior post
[1,] 0.05 0.06250 2.882642e-08
[2,] 0.15 0.12500 1.722978e-03
[3,] 0.25 0.25000 1.282104e-01
[4,] 0.35 0.25000 5.259751e-01
[5,] 0.45 0.12500 2.882131e-01
[6,] 0.55 0.06250 5.283635e-02
[7,] 0.65 0.03125 2.976107e-03
[8,] 0.75 0.03125 6.595185e-05
[9,] 0.85 0.03125 7.371932e-08
[10,] 0.95 0.03125 5.820934e-15

> plot(p, post, type = "h", ylab="Posterior Probability")

Here we note that most of the posterior probability is concentrated on the
values p = .35 and p = .45. If we combine the probabilities for the three most
likely values, we can say the posterior probability that p falls in the set {.25,
.35, .45} is equal to .942.

2.4 Using a Beta Prior

Since the proportion is a continuous parameter, an alternative approach is to
construct a density g(p) on the interval (0, 1) that represents the person’s
initial beliefs. Suppose she believes that the proportion is equally likely to be
smaller or larger than p = .3. Moreover, she is 90% confident that p is less
than .5. A convenient family of densities for a proportion is the beta with
kernel proportional to

2.4 Using a Beta Prior 23

0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p

P
os

te
rio

r
P

ro
ba

bi
lit

y

Fig. 2.2. Posterior distribution for a proportion p using a discrete prior.

g(p) ∝ pa−1(1 − p)b−1, 0 < p < 1,

where the hyperparameters a and b are chosen to reflect the user’s prior beliefs
about p. Here the person believes that the median and 90th percentiles are
given, respectively, by .3 and .5, and this can be matched, by trial and error,
with a beta density with a = 3.4 and b = 7.4. Combining this beta prior with
the likelihood function, one can show that the posterior density is also of the
beta form with updated parameters a + s and b + f .

g(p|data) ∝ pa+s−1(1 − p)b+f−1, 0 < p < 1,

where a + s = 3.4 + 11 and b + f = 7.4 + 16. (This is an example of a conju-
gate analysis where the prior and posterior densities have the same functional
form.) Since the prior, likelihood, and posterior are all in the beta family, we
can use the R command dbeta to compute values of prior, likelihood, and
posterior. These three densities are displayed using the R commands plot
and lines in the same graph in Fig. 2.3. This figure is helpful in seeing that
the posterior density in this case compromises between the initial prior beliefs
and the information in the data.

24 2 Introduction to Bayesian Thinking

> p = seq(0, 1, length = 500)

> a = 3.4

> b = 7.4

> s = 11

> f = 16

> prior=dbeta(p,a,b)

> like=dbeta(p,s+1,f+1)

> post=dbeta(p,a+s,b+f)

> plot(p,post,type="l",ylab="Density",lty=2,lwd=3)

> lines(p,like,lty=1,lwd=3)

> lines(p,prior,lty=3,lwd=3)

> legend(.7,4,c("Prior","Likelihood","Posterior"),

+ lty=c(3,1,2),lwd=c(3,3,3))

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

p

D
en

si
ty

Prior
Likelihood
Posterior

Fig. 2.3. The prior density g(p), the likelihood function L(p), and the posterior
density g(p|data) for learning about a proportion p.

We illustrate different ways of summarizing the beta posterior distribution
to make inferences about the proportion of heavy sleepers p. The beta cdf and

2.4 Using a Beta Prior 25

inverse cdf functions pbeta and qbeta are useful in computing probabilities
and constructing interval estimates for p. Is it likely that the proportion of
heavy sleepers is greater than .5? This is answered by computing the posterior
probability P (p >= .5|data), which is given by the R command

> 1 - pbeta(0.5, a + s, b + f)

[1] 0.0684257

This probability is small, so it is unlikely that more than half of the students
are heavy sleepers. A 90% interval estimate for p is found by computing the
5th and 95th percentiles of the beta density:

> qbeta(c(0.05, 0.95), a + s, b + f)

[1] 0.2562364 0.5129274

We are 90% confident that the proportion is between .256 and .513.
These summaries are exact because they are based on R functions for the

beta posterior density. An alternative method of summarization of a posterior
density is based on simulation. In this case we can simulate a large number of
values from the beta posterior density and summarize the simulated output.
Using the random beta command rbeta, we simulate 1000 random proportion
values from the beta(a + s, b + f) posterior by the command

> ps = rbeta(1000, a + s, b + f)

and display the posterior as a histogram of the simulated values in Fig. 2.4.

> hist(ps,xlab="p",main="")

The probability that the proportion is larger than .5 is estimated by the
proportion of simulated values in this range.

> sum(ps >= 0.5)/1000

[1] 0.075

A 90 percent interval estimate can be estimated by the 5th and 95th sample
quantiles of the simulated sample.

> quantile(ps, c(0.05, 0.95))

5% 95%
0.2599039 0.5172406

Note that these summaries of the posterior density for p based on simulation
are approximately equal to the exact values based on calculations from the
beta distribution.

26 2 Introduction to Bayesian Thinking

p

F
re

qu
en

cy

0.2 0.3 0.4 0.5 0.6

0
50

10
0

15
0

20
0

25
0

Fig. 2.4. A simulated sample from the beta posterior distribution of p.

2.5 Using a Histogram Prior

Although there are computational advantages to the use of a beta prior, it is
straightforward to perform posterior computations for any choice of prior. We
outline a “brute-force” method of summarizing posterior computations for an
arbitrary prior density g(p).

• Choose a grid of values of p over an interval that covers the posterior
density.

• Compute the product of the likelihood L(p) and the prior g(p) on the grid.
• Normalize by dividing each product by the sum of the products. In this

step, we are approximating the posterior density by a discrete probability
distribution on the grid.

• By use of the R command sample, take a random sample with replacement
from the discrete distribution.

The resulting simulated draws are an approximate sample from the posterior
distribution.

We illustrate this “brute-force” algorithm for a “histogram”prior that may
better reflect the person’s prior opinion about the proportion p. Suppose it

2.5 Using a Histogram Prior 27

is convenient for our person to state her prior beliefs about the proportion of
heavy sleepers by dividing the range of p into 10 subintervals (0, .1), (.1, .2),
. . . (.9, 1), and then assigning probabilities to the intervals. In our example,
the person assigns the weights 2, 4, 8, 8, 4, 2, 1, 1, 1, 1 to these intervals –
this can be viewed as a continuous version of the discrete prior used earlier.

In R, we represent this histogram prior with the vector midpt that con-
tains the midpoints of the intervals and the vector prior that contains the
associated prior weights. We convert the prior weights to probabilities by di-
viding each weight by the sum. We graph this prior in Fig. 2.5 on a grid of
values p using the R function histprior in the LearnBayes package.

> midpt = seq(0.05, 0.95, by = 0.1)

> prior = c(2, 4, 8, 8, 4, 2, 1, 1, 1, 1)

> prior = prior/sum(prior)

> p = seq(0, 1, length = 500)

> plot(p,histprior(p,midpt,prior),type="l",

+ ylab="Prior density",ylim=c(0,.25))

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

p

P
rio

r
de

ns
ity

Fig. 2.5. A histogram prior for a proportion p.

28 2 Introduction to Bayesian Thinking

On the grid of values of p, we compute the posterior density by multiplying
the histogram prior by the likelihood function. (Recall that the likelihood
function for binomial density is given by a beta(s + 1, f + 1) density; this
function is available by the dbeta function.) In Fig. 2.6, the posterior density
is displayed.

> like = dbeta(p, s + 1, f + 1)

> post = like * histprior(p, midpt, prior)

> plot(p, post, type = "l",ylab="Posterior density")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

P
os

te
rio

r
de

ns
ity

Fig. 2.6. The posterior density for a proportion using a histogram prior

To obtain a simulated sample from the posterior density by our algorithm,
we convert the products on the grid to probabilities

> post = post/sum(post)

and take a sample with replacement from the grid using the R function sample.

> ps = sample(p, replace = TRUE, prob = post)

2.6 Prediction 29

Fig. 2.7 shows a histogram of the simulated values.

> hist(ps, xlab="p")

Histogram of ps

p

F
re

qu
en

cy

0.2 0.3 0.4 0.5 0.6

0
50

10
0

15
0

Fig. 2.7. A histogram of simulated draws from the posterior distribution of p with
the use of a histogram prior.

The simulated draws can be used as before to summarize any feature of the
posterior distribution of interest.

2.6 Prediction

We have focused on learning about the population proportion of heavy sleepers
p. Suppose our person is also interested in predicting the number of heavy
sleepers ỹ in a future sample of m = 20 students. If the current beliefs about
p are contained in the density g(p), then the predictive density of ỹ is given
by

f(ỹ) =
∫

f(ỹ|p)g(p)dp.

30 2 Introduction to Bayesian Thinking

If g is a prior density, then we refer to this as the prior predictive density, and
if g is a posterior, then f is a posterior predictive density.

We illustrate the computation of the predictive density using the different
forms of prior density described in this chapter. Suppose we use a discrete prior
where {pi} represent the possible values of the proportion with respective
probabilities {g(pi)}. Let fB(y|n, p) denote the binomial sampling density
given values of the sample size n and proportion p:

fB(y|n, p) =
(

n

y

)
py(1 − p)n−y, y = 0, ..., n.

Then the predictive probability of ỹ successes in a future sample of size m is
given by

f(ỹ) =
∑

fB(ỹ|m, pi)g(pi).

The function pdiscp in the LearnBayes package can be used to compute the
predictive probabilities when p is given a discrete distribution. As before p is
a vector of proportion values and prior a vector of current probabilities. The
remaining arguments are the future sample size m and a vector ys of numbers
of successes of interest. The output is a vector of the corresponding predictive
probabilities.

> p=seq(0.05, 0.95, by=.1)

> prior=c(2, 4, 8, 8, 4, 2, 1, 1, 1, 1)

> prior=prior/sum(prior)

> m=20; ys=0:20

> pred=pdiscp(p, prior, m, ys)

> cbind(0:20,pred)

pred
[1,] 0 0.02808924
[2,] 1 0.04647102
[3,] 2 0.05979678
[4,] 3 0.07613188
[5,] 4 0.09129575
[6,] 5 0.10025206
[7,] 6 0.10094968
[8,] 7 0.09389857
[9,] 8 0.08141436
[10,] 9 0.06654497
[11,] 10 0.05199912
[12,] 11 0.03953367
[13,] 12 0.02990315
[14,] 13 0.02314587
[15,] 14 0.01889113
[16,] 15 0.01654018
[17,] 16 0.01538073

2.6 Prediction 31

[18,] 17 0.01492458
[19,] 18 0.01552235
[20,] 19 0.01679584
[21,] 20 0.01251910

We see from the output that the most likely number of successes in this future
sample are ỹ = 5 and ỹ = 6.

Suppose instead that we model our beliefs about p using a beta(a, b) prior.
In this case, we can analytically integrate out p to get a closed-form expression
for the predictive density.

f(ỹ) =
∫

fB(ỹ|m, p)g(p)dp

=
(

m

ỹ

)
B(a + ỹ, b + m − ỹ)

B(a, b)
, ỹ = 0, ...,m.

where B(a, b) is the beta function. The predictive probabilities using the beta
density are computed using the function pbetap. The inputs to this function
are the vector ab of beta parameters a and b, the size of the future sample m,
and the vector of numbers of successes y. The output is a vector of predictive
probabilities corresponding to the values in y. We illustrate this computation
using the beta(3.4, 7.4) prior used to reflect the person’s beliefs about the
proportion of heavy sleepers at the school.

> ab=c(3.4, 7.4)

> m=20; ys=0:20

> pred=pbetap(ab, m, ys)

We have illustrated the computation of the predictive density for two
choices of prior densities. One convenient way of computing a predictive den-
sity for any prior is by simulation. To obtain ỹ, we first simulate, say, p∗ from
g(p), and then simulate ỹ from the binomial distribution fB(ỹ|p∗).

We demonstrate this simulation approach for the beta(3.4, 7.4) prior. We
first simulate 1000 draws from the prior and store the simulated values in p:

> p=rbeta(1000,3.4, 7.4)

Then we simulate values of ỹ for these random p’s by the rbinom function.

> y = rbinom(1000, 20, p)

To summarize the simulated draws of ỹ, we first use the table command
to tabulate the distinct values.

> table(y)

y
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
13 32 65 103 102 115 114 115 95 83 58 36 29 14 15
15 16
6 5

32 2 Introduction to Bayesian Thinking

We save the frequencies of ỹ in a vector freq. Then we convert the frequencies
to probabilities by dividing each frequency by the sum and use the plot
command to graph the predictive distribution (see Fig. 2.8).

> freq=table(y)

> ys=c(0:max(y))

> predprob=freq/sum(freq)

> plot(ys,predprob,type="h",xlab="y",

+ ylab="Predictive Probability")

0 5 10 15

0.
02

0.
04

0.
06

0.
08

0.
10

y

P
re

di
ct

iv
e

P
ro

ba
bi

lit
y

Fig. 2.8. A graph of the predictive probabilities of the number of sleepers ỹ in a
future sample of size 20 when the proportion is assigned a beta(3.4, 7.4) prior.

Suppose we wish to summarize this discrete predictive distribution by an
interval that covers at least 90% of the probability. The R function discint
in the LearnBayes package is useful for this purpose. In the output the vector
ys contains the values of ỹ and predprob contains the associated probabili-
ties found from the table output. The matrix dist contains the probability
distribution with the columns ys and predprob. The function discint has

2.6 Prediction 33

two inputs: the matrix dist and a given coverage probability covprob. The
output is a list where the component set gives the confidence set and prob
gives the exact coverage probability.

> dist=cbind(ys,predprob)

> dist
ys predprob

[1,] 0 0.013
[2,] 1 0.032
[3,] 2 0.065
[4,] 3 0.103
[5,] 4 0.102
[6,] 5 0.115
[7,] 6 0.114
[8,] 7 0.115
[9,] 8 0.095
[10,] 9 0.083
[11,] 10 0.058
[12,] 11 0.036
[13,] 12 0.029
[14,] 13 0.014
[15,] 14 0.015
[16,] 15 0.006
[17,] 16 0.005

> covprob=.9

> discint(dist,covprob)

$prob
[1] 0.918

$set
[1] 1 2 3 4 5 6 7 8 9 10 11

We see that the probability that ỹ falls in the interval {1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11} is 91.8%. To say it in a different way, let ỹ/20 denote the propor-
tion of sleepers in the future sample. The probability this sample proportion
falls in the interval [1/20, 11/20] is 91.8%. As expected, this interval is much
wider than a 91.8% probability interval for the population proportion p. In
predicting a future sample proportion, there are two sources of uncertainty,
the uncertainty in the value of p and the binomial uncertainty in the value of
ỹ and the predictive interval is relatively long since it incorporates both types
of uncertainty.

34 2 Introduction to Bayesian Thinking

2.7 Further Reading

A number of books are available that describe the basic tenets of Bayesian
thinking. Berry (1996) and Albert and Rossman (2001) describe the Bayesian
approach for proportions at an introductory statistics level. Albert (1996) de-
scribes Bayesian computational algorithms for proportions using the statistics
package Minitab. Antleman (1996) and Bolstad (2004) provide elementary de-
scriptions of Bayesian thinking suitable for undergraduate statistics classes.

2.8 Summary of R Functions

discint – computes a highest probability interval for a discrete distribution
Usage: discint(dist,prob)
Arguments: dist, a probability distribution written as a matrix where the first
column contains the values and the second column contains the probabilities;
prob, the probability content of interest
Value: prob, the exact probability content of the interval, and set, the set of
values of the probability interval

histprior – computes the density of a probability distribution defined on a
set of equal-width intervals
Usage: histprior(p,midpts,prob)
Arguments: p, the vector of values for which the density is to computed;
midpts, the vector of midpoints of the intervals; prob, the vector of prob-
abilities of the intervals
Value: vector of values of the probability density

pdisc – computes the posterior distribution for a proportion for a discrete
prior distribution
Usage: pdisc(p, prior, data)
Arguments: p, a vector of proportion values; prior, a vector of prior proba-
bilities; data, a vector consisting of the number of successes and number of
failures
Value: the vector of posterior probabilities

pdiscp – computes predictive distribution for the number of successes of a
future binomial experiment with a discrete distribution for the proportion
Usage: pdiscp(p, probs, n, s)
Arguments: p, the vector of proportion values; probs, the vector of proba-
bilities; n, the size of the future binomial sample; s, the vector of number of
successes for future binomial experiment
Value: the vector of predictive probabilities for the values in the vector s

pbetap – computes predictive distribution for the number of successes of a
future binomial experiment with a beta distribution for the proportion
Usage: pbetap(ab, n, s)

2.9 Exercises 35

Arguments: ab, the vector of parameters of the beta prior; n, the size of the fu-
ture binomial sample; s, the vector of number of successes for future binomial
experiment
Value: the vector of predictive probabilities for the values in the vector s

2.9 Exercises

1. Estimating a proportion with a discrete prior
Bob claims to have ESP. To test this claim, you propose the following
experiment. You will select one from four large cards with different geo-
metric figures and Bob will try to identify it. Let p denote the probability
that Bob is correct in identifying the figure for a single card. You believe
that Bob has no ESP ability (p = .25), but there is a small chance that
p is either larger or smaller than .25. After some thought, you place the
following prior distribution on p:

p 0 .125 .250 .375 .500 .625 .750 .875 1
g(p) .001 .001 .950 .008 .008 .008 .008 .008 .008

Suppose that the experiment is repeated ten times and Bob is correct six
times and incorrect four times. Using the function pdisc, find the posterior
probabilities of these values of p. What is your posterior probability that
Bob has no ability?

2. Estimating a proportion with a histogram prior
Consider the following experiment. Hold a penny on edge on a flat hard
surface, and spin it with your fingers. Let p denote the probability that it
lands heads. To estimate this probability, we will use a histogram to model
our prior beliefs about p. Divide the interval [0,1] into the 10 subintervals
[0,.1], [.1,.2], ..., [.9,1], and specify probabilities that p is in each interval.
Next spin the penny 20 times and count the number of successes (heads)
and failures (tails). Simulate from the posterior distribution by (1) com-
puting the posterior density of p on a grid of values on (0, 1) and (2)
taking a simulated sample with replacement from the grid. (The func-
tions histprior and sample are helpful in this computation.) How have
the interval probabilities changed on the basis of your data?

3. Estimating a proportion and prediction of a future sample
A study reported on the long-term effects of exposure to low levels of
lead in childhood. Researchers analyzed children’s shed primary teeth for
lead content. Of the children whose teeth had a lead content of more than
22.22 parts per million (ppm), 22 eventually graduated from high school
and 7 did not. Suppose your prior density for p, the proportion of all such
children who will graduate from high school is beta(1, 1), and so your
posterior density is beta(23, 8).
a) Use the function qbeta to find a 90% interval estimate for p.
b) Use the function pbeta to find the probability that p exceeds .6.

36 2 Introduction to Bayesian Thinking

c) Use the function rbeta to take a simulated sample of size 1000 from
the posterior distribution of p.

d) Suppose you find 10 more children who have a lead content of more
than 22.22 ppm. Find the predictive probability that 9 or 10 of them
will graduate from high school. (Use your simulated sample from part
(c) and the rbinom function to take a simulated sample from the
predictive distribution.)

4. Contrasting predictions using two different priors
Suppose two persons are interested in estimating the proportion p of stu-
dents at a college who commute to school. Suppose Joe uses a discrete
prior given in the following table:

p 0.1 0.2 0.3 0.4 0.5
g(p) 0.5 0.2 0.2 0.05 0.05

Sam decides instead to use a beta(3, 12) prior for the proportion p.
a) Use R to compute the mean and standard deviation of p for Joe’s prior

and for Sam’s prior. Based on this computation, do Joe and Sam have
similar prior beliefs about the location of p?

b) Suppose one is interested in predicting the number of commuters y in
a future sample of size 12. Use the functions pdiscp and pbetap to
compute the predictive probabilities of y using both Joe’s prior and
Sam’s prior. Do the two people have similar beliefs about the outcomes
of a future sample?

5. Estimating a normal mean with a discrete prior
Suppose you are interested in estimating the average total snowfall per
year µ (in inches) for a large city on the East Coast of the United States.
Assume individual yearly snow totals y1, ..., yn are collected from a popu-
lation that is assumed to be normally distributed with mean µ and known
standard deviation σ = 10 inches.
a) Before collecting data, suppose you believe that the mean snowfall µ

can be the values 20, 30, 40, 50, 60, and 70 inches with the following
probabilities:

µ 20 30 40 50 60 70
g(µ) .1 .15 .25 .25 .15 .1

Place the values of µ in the vector mu and the associated prior proba-
bilities in the vector prior.

b) Suppose you observe the yearly snowfall totals 38.6, 42.4, 57.5, 40.5,
51.7, 67.1, 33.4, 60.9, 64.1, 40.1, 40.7, and 6.4. Enter these data into
a vector y and compute the sample mean ybar.

c) In this problem, the likelihood function is given by

L(µ) = exp(− n

2σ2
(µ − ȳ)2),

where ȳ is the sample mean. Compute the likelihood on the list of
values in mu and place the likelihood values in the vector like.

2.9 Exercises 37

d) One can compute the posterior probabilities for µ using the formula
post=prior*like/sum(prior*like)

Compute the posterior probabilities of µ for this example.
e) Using the function discint, find an 80% probability interval for µ.

6. Estimating a Poisson mean using a discrete prior (from Antleman
(1996))
Suppose you own a trucking company with a large fleet of trucks. Break-
downs occur randomly in time and the number of breakdowns during an
interval of t days is assumed to be Poisson distributed with mean tλ. The
parameter λ is the daily breakdown rate. The possible values for λ are
.5, 1, 1.5, 2, 2.5, and 3 with respective probabilities .1, .2, .3, .2, .15, and
.05. If one observes y breakdowns, then the posterior probability of λ is
proportional to

g(λ) exp(−tλ)(tλ)y,

where g is the prior probability.
a) If 12 trucks break down in a six-day period, find the posterior proba-

bilities for the different rate values.
b) Find the probability that there are no breakdowns during the next

week. Hint: If the rate is λ, the conditional probability of no break-
downs during a seven-day period is given by exp{−7λ}. One can com-
pute this predictive probability by multiplying a list of conditional
probabilities by the posterior probabilities of λ and finding the sum
of the products.

3

Single-Parameter Models

3.1 Introduction

In this chapter, we introduce the use of R in summarizing the posterior distri-
butions for several single-parameter models. We begin by describing Bayesian
inference for a variance for a normal population and inference for a Poisson
mean when informative prior information is available. For both problems,
summarization of the posterior distribution is facilitated by the use of R func-
tions to compute and simulate distributions from the exponential family. In
Bayesian analyses, one may have limited beliefs about a parameter and there
may be several priors that provide suitable matches to these beliefs. In esti-
mating a normal mean, we illustrate the use of two distinct priors in modeling
beliefs, and show that inferences may or may not be sensitive to the choice
of prior. In this example, we illustrate the “brute force” method of summariz-
ing a posterior where the density is computed by the “prior times likelihood”
recipe over a fine grid. We conclude by describing a Bayesian test of the simple
hypothesis that a coin is fair. The computation of the posterior probability of
“fair coin” is facilitated using beta and binom functions in R.

3.2 Normal Distribution with Known Mean
but Unknown Variance

Gelman et al (2003) consider a problem of estimating an unknown variance
using American football scores. The focus is on the difference d between a game
outcome (winning score minus losing score) and a published point spread. We
observe d1, ..., dn, the observed differences between game outcomes and point
spreads for n football games. If these differences are assumed to be a random
sample from a normal distribution with mean 0 and unknown variance σ2, the
likelihood function is given by

40 3 Single-Parameter Models

L(σ2) = (σ2)−n/2 exp{−
n∑

i=1

d2
i /(2σ2)}, σ2 > 0.

Suppose the noninformative prior density p(σ2) = 1/σ2 is assigned to the
variance. Then the posterior density of σ2 is given, up to a proportionality
constant, by

g(σ2|data) ∝ (σ2)−n/2−1 exp{−v/(2σ2)},
where v =

∑n
i=1 d2

i . If we define the precision parameter P = 1/σ2, then it can
be shown that P is distributed as U/v, where U has a chi-squared distribution
with n degrees of freedom. Suppose we are interested in a point estimate and
a 95% probability interval for the standard deviation σ.

In the following R output, we first read in the datafile footballscores
that is available in the LearnBayes package. For each of 672 games, the data
file contains favorite and underdog, the actual scores of the favorite and
underdog teams, and spread, the published point spread. We compute the
difference variable d. As in the preceding notation, n is the sample size and v
is the sum of squares of the differences.

> data(footballscores)

> attach(footballscores)

> d = favorite - underdog - spread

> n = length(d)

> v = sum(d^2)

We simulate 1000 values from the posterior distribution of the standard
deviation σ in two steps. First, we simulate values of the precision parame-
ter P = 1/σ2 from the scaled chi-square(n) distribution by the command
rchisq(1000, n)/v. Then we perform the transformation σ =

√
1/P to get

values from the posterior distribution of the standard deviation σ. We use the
hist command to construct a histogram of the draws of σ (see Fig. 3.1).

> P = rchisq(1000, n)/v

> s = sqrt(1/P)

> hist(s,main="")

The R quantile command is used to extract the 2.5%, 50%, and 97.5%
percentiles of this simulated sample. A point estimate for σ is provided by
the posterior median 13.85 . In addition, the extreme percentiles (13.2, 14.6)
represent a 95% probability interval for σ.

> quantile(s, probs = c(0.025, 0.5, 0.975))

2.5% 50% 97.5%
13.17012 13.85135 14.56599

3.3 Estimating a Heart Transplant Mortality Rate 41

s

F
re

qu
en

cy

13.0 13.5 14.0 14.5 15.0 15.5

0
50

10
0

15
0

20
0

Fig. 3.1. Histogram of simulated sample of the standard deviation σ of differences
between game outcomes and point spreads.

3.3 Estimating a Heart Transplant Mortality Rate

Consider the problem of learning about the rate of success of heart transplant
surgery of a particular hospital in the United States. For this hospital, we
observe the number of transplant surgeries n and the number of deaths within
30 days of surgery y is recorded. In addition, one can predict the probability
of death for an individual patient. This prediction is based on a model that
uses information such as patients’ medical condition before surgery, gender,
and race. Based on these predicted probabilities, one can obtain an expected
number of deaths, denoted by e. A standard model assumes that the number
of deaths y follows a Poisson distribution with mean eλ, and the objective is
to estimate the mortality rate per unit exposure λ.

The standard estimate of λ is the maximum likelihood estimate λ̂ = y/e.
Unfortunately, this estimate can be poor when the number of deaths y is
close to zero. In this situation when small death counts are possible, it is
desirable to use a Bayesian estimate that uses prior knowledge about the size of
the mortality rate. A convenient choice for a prior distribution is a member
of the gamma(α, β) density of the form

42 3 Single-Parameter Models

p(λ) ∝ λα−1 exp(−βλ), λ > 0.

A convenient source of prior information is heart transplant data from a
small group of hospitals that we believe has the same rate of mortality as the
rate from the hospital of interest. Suppose we observe the number of deaths
zj and the exposure oj for 10 hospitals (j = 1, ..., 10), where zj is Poisson with
mean ojλ. If we assign λ the standard noninformative prior p(λ) = λ−1, then
the updated distribution for λ, given this data from the 10 hospitals, is

p(λ) ∝ λ
�10

j=1 zj−1 exp
(
− (

10∑

j=1

oj

)
λ).

Using this information, we have a gamma(α, β) prior for λ, where α =
∑10

j=1 zj

and β =
∑10

j=1 oj . In this example, we have

10∑

j=1

zj = 16,

10∑

j=1

oj = 15174,

and so we assign λ a gamma(16, 15174) prior.
If the observed number of deaths from surgery yobs for a given hospital

with exposure e is Poisson (eλ) and λ is assigned the gamma(α, β) prior, then
the posterior distribution will also have the gamma form with parameters
α + yobs and β + e. Also the (prior) predictive density of y (before any data
are observed) can be computed by the formula

f(y) =
f(y|λ)g(λ)

g(λ|y)
,

where f(y|λ) is the Poisson(eλ) sampling density and g(λ) and g(λ|y) are,
respectively, the prior and posterior densities of λ.

By the model checking strategy of Box (1980), both the posterior den-
sity g(λ|y) and the predictive density f(y) play important roles in a Bayesian
analysis. By use of the posterior density, one performs inference about the
unknown parameter conditional on the Bayesian model that includes the as-
sumptions of sampling density and the prior density. One can check the valid-
ity of the proposed model by inspecting the predictive density. If the observed
data value yobs is consistent with the predictive density p(y), then the model
seems reasonable. On the other hand, if yobs is in the extreme tail portion of
the predictive density, then this casts doubt on the validity of the Bayesian
model, and perhaps the prior density or the sampling density has been mis-
specified.

We consider inference about the heart transplant rate for two hospitals
– one that has experienced a small number of surgeries and a second that
has experienced many surgeries. First consider hospital A which experienced
only one death (yobs = 1) with an exposure of e = 66. The standard estimate
of this hospital’s rate, 1/66, is suspect due to the small observed number of

3.3 Estimating a Heart Transplant Mortality Rate 43

deaths. The following R calculations illustrate the Bayesian calculations. After
the gamma prior parameters alpha and beta and exposure ex are defined,
the predictive density of the values y = 0, 1, ..., 10 are found by use of
the preceding formula and the R functions dpois and dgamma. The formula
for the predictive density is valid for all λ, but to ensure that there is not
any underflow in the calculations, the values of f(y) are computed for the
prior mean value λ = α/β. Note that practically all of the probability of the
predictive density is concentrated on the two values y = 0 and 1. The observed
number of deaths (yobs = 1) is in the middle of this predictive distribution
and so there is no reason to doubt our Bayesian model.

> alpha=16;beta=15174

> yobs=1; ex=66

> y=0:10

> lam=alpha/beta

> py=dpois(y, lam*ex)*dgamma(lam, shape = alpha,

+ rate = beta)/dgamma(lam, shape= alpha + y,

+ rate = beta + ex)

> cbind(y, round(py, 3))

y
[1,] 0 0.933
[2,] 1 0.065
[3,] 2 0.002
[4,] 3 0.000
[5,] 4 0.000
[6,] 5 0.000
[7,] 6 0.000
[8,] 7 0.000
[9,] 8 0.000
[10,] 9 0.000
[11,] 10 0.000

The posterior density of λ can be summarized by simulating 1000 values
from the gamma density.

> lambdaA = rgamma(1000, shape = alpha + yobs, rate = beta + ex)

Let’s consider the estimation of a different hospital that experiences many
surgeries. Hospital B had yobs = 4 deaths with an exposure of e = 1767. For
this data, we again have R compute the prior predictive density and simulate
1000 draws from the posterior density using the rgamma command. Again we
see that the observed number of deaths seems consistent with this model since
yobs = 4 is not in the extreme tails of this distribution.

> ex = 1767; yobs=4

> y = 0:10

44 3 Single-Parameter Models

> py = dpois(y, lam * ex) * dgamma(lam, shape = alpha,

+ rate = beta)/dgamma(lam, shape = alpha + y,

+ rate = beta + ex)

> cbind(y, round(py, 3))

y
[1,] 0 0.172
[2,] 1 0.286
[3,] 2 0.254
[4,] 3 0.159
[5,] 4 0.079
[6,] 5 0.033
[7,] 6 0.012
[8,] 7 0.004
[9,] 8 0.001
[10,] 9 0.000
[11,] 10 0.000

> lambdaB = rgamma(1000, shape = alpha + yobs, rate = beta + ex)

To see the impact of the prior density on the inference, it is helpful to
display the prior and posterior distributions on the same graph. In Fig. 3.2,
the histograms of the draws from the posterior distributions of the rates are
shown for hospitals A and B. The gamma prior density is placed on top of
the histogram in each case. We see that for hospital A with relatively little
experience in surgeries, the prior information is significant and the posterior
distribution resembles the prior distribution. In contrast, for hospital B with
many surgeries, the prior information is less influential and the posterior dis-
tribution resembles the likelihood function.

> lambda = seq(0, max(c(lambdaA,lambdaB)), length = 500)

> par(mfrow = c(2, 1))

> hist(lambdaA, freq = FALSE, main="", ylim=c(0,1500))

> lines(lambda, dgamma(lambda, shape = alpha, rate = beta))

> hist(lambdaB, freq = FALSE, main="", ylim=c(0,1500))

> lines(lambda, dgamma(lambda, shape = alpha, rate = beta))

3.4 An Illustration of Bayesian Robustness

In practice, one may have incomplete prior information about a parameter in
the sense that one’s beliefs won’t entirely define a prior density. There may
be a number of different priors that match the given prior information. For
example, if you believe a priori that the median of a parameter θ is 30 and its
80th percentile is 50, certainly there are many prior probability distributions
that can be chosen that match these two percentiles. In this situation where

3.4 An Illustration of Bayesian Robustness 45

lambdaA

D
en

si
ty

0.0005 0.0010 0.0015 0.0020

0
50

0
15

00

lambdaB

D
en

si
ty

0.0005 0.0010 0.0015 0.0020

0
50

0
15

00

Fig. 3.2. Histograms for simulated samples from the posterior distributions for two
transplant rates. The prior density for the corresponding rate is drawn in each graph.

different priors are possible, it is desirable that inferences from the posterior
not be dependent on the exact functional form of the prior. A Bayesian analysis
is said to be robust to the choice of prior if the inference is insensitive to
different priors that match the user’s beliefs.

To illustrate this idea, suppose you are interested in estimating the true IQ
θ for a person we’ll call Joe. You believe Joe has an average intelligence and
the median of your prior distribution is 100. Also you are 90% confident that
Joe’s IQ falls between 80 and 120. You construct a prior density by matching
this information with a normal density with mean µ and standard deviation
τ , or N(µ, τ). It is straightforward to show that the parameter values that
match this prior information are µ = 100 and τ = 12.16.

Joe takes four IQ tests and his scores are y1, y2, y3, y4. Assuming that
an individual score y is distributed N(θ, σ) with known standard deviation
σ = 15, the observed mean score ȳ is N(θ, σ/

√
4).

With the use of a normal prior in this case, the posterior density of θ will
also be normal with standard deviation

τ1 = 1/(
√

4/σ2 + 1/τ2)

46 3 Single-Parameter Models

and mean

µ1 =
ȳ(4/σ2) + µ(1/τ2)

4/σ2 + 1/τ2
.

We illustrate the posterior calculations for three hypothetical test results
for Joe. We suppose that the observed mean test score is ȳ = 110, or ȳ = 125,
or ȳ = 140. In each case we compute the posterior mean and posterior standard
deviation of Joe’s true IQ θ. These values are denoted by the R variables mu1
and tau1 in the following output.

> mu = 100

> tau = 12.16

> sigma = 15

> n = 4

> se = sigma/sqrt(4)

> ybar = c(110, 125, 140)

> tau1 = 1/sqrt(1/se^2 + 1/tau^2)

> mu1 = (ybar/se^2 + mu/tau^2) * tau1^2

> summ1=cbind(ybar, mu1, tau1)

> summ1

ybar mu1 tau1
[1,] 110 107.2442 6.383469
[2,] 125 118.1105 6.383469
[3,] 140 128.9768 6.383469

Let’s now consider an alternative prior density to model our beliefs about
Joe’s true IQ. Any symmetric density instead of a normal could be used, so we
use a t density with location µ, scale τ , and two degrees of freedom. Since our
prior median is 100, we let the median of our t density be equal to µ = 100.
We find the scale parameter τ so the t density matches our prior belief that
the 95th percentile of θ is equal to 120. Note that

P (θ < 120) = P (T <
20
τ

) = .95,

where T is a standard t variate with two degrees of freedom. It follows that

τ = 20/t2(.95),

where tv(p) is the pth quantile of a t random variable with v degrees of free-
dom. We find τ by use of the t quantile function qt in R.

> tscale = 20/qt(0.95, 2)

> tscale

[1] 6.849349

3.4 An Illustration of Bayesian Robustness 47

We display the normal and t priors in a single graph in Fig. 3.3. Although
they have the same basic shape, note that the t density has significantly flatter
tails – we will see that this will impact the posterior density for “extreme” test
scores.

> theta = seq(60, 140, length = 200)

> plot(theta,1/tscale*dt((theta-mu)/tscale,2),

+ type="l",ylab="Prior Density")

> lines(theta,1/10*dnorm((theta-mu)/tau),lwd=3)

> legend(locator(1),legend=c("t density","normal density"),

+ lwd=c(1,3))

60 80 100 120 140

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

theta

P
rio

r
D

en
si

ty

t density
normal density

Fig. 3.3. Normal and t priors for representing prior opinion about a person’s true
IQ score.

We perform the posterior calculations using the t prior for each of the
possible sample results. Note that the posterior density of θ is given, up to a
proportionality constant, by

g(θ|data) ∝ φ(ȳ|θ, σ/
√

n)gT (θ|v, µ, τ),

48 3 Single-Parameter Models

where φ(y|θ, σ) is a normal density with mean θ and standard deviation σ,
and gT (µ|v, µ, τ) is a t density with median µ, scale parameter τ and degrees
of freedom v. Since this density does not have a convenient functional form,
we summarize it by a direct “prior times likelihood” approach. We construct
a grid of θ values that covers the posterior density, compute the product of
the normal likelihood and the t prior on the grid, and convert these products
to probabilities by dividing by the sum. Essentially we are approximating the
continuous posterior density by a discrete distribution on this grid. We then
use this discrete distribution to compute the posterior mean and posterior
standard deviation. We apply this computation algorithm for the three values
of ȳ and the posterior moments are displayed in the second and third columns
of the R matrix summ2.

> summ2 = c()

> for (i in 1:3) {

+ theta = seq(60, 180, length = 500)

+ like = dnorm((theta - ybar[i])/7.5)

+ prior = dt((theta - mu)/tscale, 2)

+ post = prior * like

+ post = post/sum(post)

+ m = sum(theta * post)

+ s = sqrt(sum(theta^2 * post) - m^2)

+ summ2 = rbind(summ2, c(ybar[i], m, s))

+ }

> summ2

[,1] [,2] [,3]
[1,] 110 105.2921 5.841676
[2,] 125 118.0841 7.885174
[3,] 140 135.4134 7.973498

Let’s compare the posterior moments of θ using the two priors by combin-
ing the two R matrices summ1 and summ2.

> cbind(summ1,summ2)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 110 107.2442 6.383469 110 105.2921 5.841676
[2,] 125 118.1105 6.383469 125 118.0841 7.885174
[3,] 140 128.9768 6.383469 140 135.4134 7.973498

When ȳ = 110, the values of the posterior mean and posterior standard de-
viation are similar using the normal and t priors. However, there can be sub-
stantial differences in the posterior moments using the two priors when the
observed mean score is inconsistent with the prior mean. In the“extreme”case
where ȳ = 140, Fig. 3.4 graphs the posterior densities for the two priors.

3.4 An Illustration of Bayesian Robustness 49

> normpost = dnorm(theta, mu1[3], tau1)

> normpost = normpost/sum(normpost)

> plot(theta,normpost,type="l",lwd=3,ylab="Posterior Density")

> lines(theta,post)

> legend(locator(1),legend=c("t prior","normal prior"),lwd=c(1,3))

60 80 100 120 140 160 180

0.
00

0
0.

00
5

0.
01

0
0.

01
5

theta

P
os

te
rio

r
D

en
si

ty

t prior
normal prior

Fig. 3.4. Posterior densities for a person’s true IQ using normal and t priors.

When a normal prior is used, the posterior will always be a compromise be-
tween the prior information and the observed data, even when the data result
conflicts with one’s prior beliefs about the location of Joe’s IQ. In contrast,
when a t prior is used, the likelihood will be in the flat-tailed portion of the
prior and the posterior will resemble the likelihood function.

In this case, the inference about the mean is robust to the choice of prior
(normal or t) when the observed mean IQ score is consistent with the prior
beliefs. But in the case when an extreme IQ score is observed, we see that the
inference is not robust to the choice of prior density.

50 3 Single-Parameter Models

3.5 A Bayesian Test of the Fairness of a Coin

Suppose you are interested in assessing the fairness of a coin. You observe
y distributed binomial with parameters n and p and you are interested in
testing the hypothesis H that p = .5. If y is observed, then it is usual practice
to make a decision on the basis of the p-value

2 × P (Y ≤ y).

If this p-value is small, then you reject the hypothesis H and conclude that
the coin is not fair. Suppose, for example, the coin is flipped 20 times and
only 5 heads are observed. In R we compute the probability of obtaining five
or fewer heads:

> pbinom(5, 20, 0.5)

[1] 0.02069473

The p-value here is 2 × .021 = .042. Since this value is smaller than the
common significance level of .05, you would decide to reject the hypothesis H
and conclude that the coin is not fair.

Let’s consider this problem from a Bayesian perspective. There are two
possible models here – either the coin is fair (p = .5) or the coin is not fair
(p �= .5). Suppose that you are indifferent between the two possibilities, and
so you initially assign each model a probability of 1/2. Now if you believe the
coin is fair, then your entire prior distribution for p would be concentrated on
the value p = .5. If instead the coin is unfair, you would assign a different prior
distribution on (0, 1), call it g1(p), that would reflect your beliefs about the
unfair coin probability. Suppose you assign a beta(a, a) prior on p. This beta
distribution is symmetric about .5 – it says that you believe the coin is not
fair, the probability is close to p = .5. To summarize, your prior distribution
in this testing situation can be written

g(p) = .5I(p = .5) + .5I(p �= .5)g1(p),

where I(A) is an indicator function equal to 1 if the event A is true and
otherwise equal to 0.

After observing the number of heads in n tosses, we would update our
prior distribution by Bayes’ rule. The posterior density for p can be written
as

g(p|y) = λ(y)I(p = .5) + (1 − λ(y))g1(p|y),

where g1 is a beta(a+y, a+n−y) density and λ(y) is the posterior probability
of the model that the coin is fair

λ(y) =
.5p(y|.5)

.5p(y|.5) + .5m1(y)
.

3.5 A Bayesian Test of the Fairness of a Coin 51

In the expression for λ(y), p(y|.5) is the binomial density for y when p = .5,
and m1(y) is the (prior) predictive density for y using the beta density.

In R the posterior probability of fairness λ(y) is easily computed. The
R command dbinom will compute the binomial probability p(y|.5) and the
predictive density for y can be computed using the identity

m1(y) =
f(y|p)g1(p)

g1(p|y)
.

Assume first that we assign a beta(10, 10) prior for p when the coin is not
fair and we observe y = 5 heads in n = 20 tosses. The posterior probability of
fairness is stored in the R variable lambda.

> n = 20

> y = 5

> a = 10

> p = 0.5

> m1 = dbinom(y, n, p) * dbeta(p, a, a)/dbeta(p, a + y, a + n -

+ y)

> lambda = dbinom(y, n, p)/(dbinom(y, n, p) + m1)

> lambda

[1] 0.2802215

We get the surprising result that the posterior probability of the hypothesis
of fairness H is .28, which is less evidence against fairness than implied by the
above p-value calculation.

The function pbetat in the LearnBayes package performs a test of a bino-
mial proportion. The inputs to the function are the value of p to be tested, the
prior probability of that value, a vector of parameters of the beta prior when
the hypothesis is not true, and a vector of numbers of successes and failures.
In this example, the syntax would be

> pbetat(p,.5,c(a,a),c(y,n-y))

$bf
[1] 0.3893163

$post
[1] 0.2802215

The output variable post is the posterior probability that p = .5, which agrees
with the calculation. The output variable bf is the Bayes factor in support of
the null hypothesis which is discussed in Chapter 8.

Since the choice of the prior parameter a = 10 in this analysis seems
arbitrary, it is natural to ask about the sensitivity of this posterior calculation
to the choice of this parameter. To answer this question, we compute the
posterior probability of fairness for a range of values of log a. We graph the
posterior probability against log a in Fig. 3.5.

52 3 Single-Parameter Models

> loga = seq(-4, 5, length = 100)

> a = exp(loga)

> m2 = dbinom(y, n, p) * dbeta(p, a, a)/dbeta(p, a + y, a + n -

+ y)

> lambda = dbinom(y, n, p)/(dbinom(y, n, p) + m2)

> plot(loga,lambda,type="l",xlab="log(a)",ylab="Prob(coin is fair)")

−4 −2 0 2 4

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

log(a)

P
ro

b(
co

in
 is

 fa
ir)

Fig. 3.5. Posterior probability that coin is fair graphed against values of the prior
parameter log a.

We see from this graph that the probability of fairness appears to be greater
than .2 for all choices of a. Since the value of .2 is larger than the p-value
calculation of .042, this suggests that the p-value is overstating the evidence
against the hypothesis that the coin is fair.

Another distinction between the frequentist and Bayesian calculations
is the event that led to the decision about rejecting the hypothesis that
the coin was fair. The p-value calculation was based on the probability of the
event “5 heads or fewer,” but the Bayesian calculation was based solely on the
likelihood based on the event “exactly 5 heads.”That raises the question: how

3.7 Summary of R Functions 53

would the Bayesian answers change if we observed “5 heads or fewer”? One
can show that the posterior probability that the coin is fair is given by

λ(y) =
.5P0(Y ≤ 5)

.5P0(Y ≤ 5) + .5P1(Y ≤ 5)
.

where P0(Y ≤ 5) is the probability of five heads or fewer under the binomial
model with p = .5, and P1(Y ≤ 5) is the predictive probability of this event
under the alternative model with a beta(10, 10) prior on p. In the following
R output, the cumulative probability of five heads under the binomial model
is computed by the R function pbinom. The probability of five or fewer heads
under the alternative model is computed by summing the predictive density
over the six values of y.

> n=20

> y=5

> a=10

> p=.5

> m2=0

> for (k in 0:y)

+ {m2=m2+dbinom(k,n,p)*dbeta(p,a,a)/dbeta(p,a+k,a+n-k)}

> lambda=pbinom(y,n,p)/(pbinom(y,n,p)+m2)

> lambda

[1] 0.2184649

Note that the posterior probability of fairness is .218 based on the data “5
heads or fewer.” This posterior probability is smaller than the value of .280
found earlier based on y = 5. This is a reasonable result, since observing “5
heads or fewer” is stronger evidence against fairness than the result “5 heads.”

3.6 Further Reading

Carlin and Louis (2000), chapter 2, and Gelman et al (2003), chapter 2, pro-
vide general discussions of Bayesian inference for one-parameter problems. Lee
(2004), Antleman (1996), and Bolstad (2004) provide extensive descriptions
of inference for a variety of one-parameter models. The notion of Bayesian
robustness is discussed in detail in Berger (1985). Bayesian testing for basic
inference problems is outlined in Lee (2004).

3.7 Summary of R Functions

pbetat – Bayesian test that a proportion is equal to a specified prior using a
beta prior

54 3 Single-Parameter Models

Usage: pbetat(p0,prob,ab,data)
Arguments: p0, the value of the proportion to be tested; prob, the prior prob-
ability of the hypothesis; ab, the vector of parameter values of the beta prior
under the alternative hypothesis; data, vector containing the number of suc-
cesses and number of failures
Value: bf, the Bayes factor in support of the null hypothesis; post, the pos-
terior probability of the null hypothesis

3.8 Exercises

1. Cauchy sampling model
Suppose one observes a random sample y1, ..., yn from a Cauchy density
with location θ and scale parameter 1. If a uniform prior is placed on θ,
then the posterior density is given (up to a proportionality constant) by

g(θ|data) ∝
n∏

i=1

1
1 + (yi − θ)2

.

Suppose one observes the data 0, 10, 9, 8, 11, 3, 3, 8, 8, 11.
a) Using the R command seq, set up a grid of values of θ from −2 to 12

in steps of 0.1.
b) Compute the posterior density on this grid.
c) Plot the density and comment on its main features.
d) Compute the posterior mean and posterior standard deviation of θ.

2. Learning about an exponential mean
Suppose a random sample is taken from an exponential distribution with
mean λ. If we assign the usual noninformative prior g(λ) = 1/λ, then the
posterior density is given, up to a proportionality constant, by

g(λ|data) = λ−n−1 exp{−s/λ},

where n is the sample size and s is the sum of the observations.
a) Show that if we transform λ to θ = 1/λ, then λ has a gamma density

with shape parameter n and rate parameter s. (A gamma density with
shape α and rate β is proportional to h(x) = xα−1 exp(−βx).)

b) In a life-testing illustration, five bulbs are tested with observed burn
times (in hours) of 751, 594, 1213, 1126, and 819. Using the R function
rgamma, simulate 1000 values from the posterior distribution of θ.

c) By transforming these simulated draws, obtain a simulated sample
from the posterior distribution of λ.

d) Estimate the posterior probability that λ exceeds 1000 hours.
3. Learning about the upper bound of a discrete uniform density

Suppose one takes independent observations y1, ..., yn from a uniform dis-
tribution on the set {1, 2, ..., N}, where the upper bound N is unknown.

3.8 Exercises 55

Suppose one places a uniform prior for N on the values 1, ..., B, where B
is known. Then the posterior probabilities for N are given by

g(N |y) ∝ 1
Nn

, y(n) ≤ N ≤ B,

where y(n) is the maximum observation. To illustrate this situation, sup-
pose a tourist is waiting for a taxi in a city. During this waiting time, she
observes five taxis with the numbers 43, 24, 100, 35, and 85. She assumes
that taxis in this city are numbered from 1 to N , she is equally likely to
observe any numbered taxi at a given time, and observations are inde-
pendent. She also knows that there cannot be more than 200 taxis in the
city.
a) Use R to compute the posterior probabilities of N on a grid of values.
b) Compute the posterior mean and posterior standard deviation of N .
c) Find the probability that there are more than 150 taxis in the city.

4. Bayesian robustness
Suppose you are about to flip a coin that you believe is fair. If p denotes the
probability of flipping a head, then your “best guess” at p is .5. Moreover,
you believe that it is highly likely that the coin is close to fair, which you
quantify by P (.44 < p < .56) = .9. Consider the following two priors for
p:
P1:p distributed beta(100, 100)
P2:p distributed according to the mixture prior

g(p) = .9fB(p; 500, 500) + .1fB(p; 1, 1),

where fB(p; a, b) is the beta density with parameters a and b.
a) Simulate 1000 values from each prior density P1 and P2. By summa-

rizing the simulated samples, show that both priors match the given
prior beliefs about the coin flipping probability p.

b) Suppose you flip the coin 100 times and obtain 45 heads. Simulate
1000 values from the posteriors from priors P1 and P2, and compute
90% probability intervals.

c) Suppose that you only observe 30 heads out of 100 flips. Again simulate
1000 values from the two posteriors and compute 90% probability
intervals.

d) Looking at your results from (b) and (c), comment on the robustness
of the inference with respect to the choice of prior density in each case.

5. Test of a proportion
In the standard Rhine test of extra-sensory perception (ESP), a set of
cards is used where each card has a circle, a square, wavy lines, a cross, or
a star. A card is selected at random from the deck and a person tries to
guess the symbol on the card. This experiment is repeated 20 times and
the number of correct guesses y is recorded. Let p denote the probability
that the person makes a correct guess, where p = .2 if the person does not

56 3 Single-Parameter Models

have ESP and is just guessing at the card symbol. To see if the person
truly has some ESP, we would like to test the hypothesis H : p = .2.
a) If the person identifies y = 8 cards correctly, compute the p-value.
b) Suppose you believe a priori that the probability that p = .2 is .5 and

if p �= .2, you assign a beta(1, 4) prior on the proportion. Using the
function pbetat, compute the posterior probability of the hypothesis
H. Compare your answer with the p-value computed in part (a).

c) The posterior probability computed in part (b) depended on your
belief about plausible values of the proportion p when p �= .2. For
each of the following priors, compute the posterior probability of H:
(1) p ∼ beta(.5, 2), (2) p ∼ beta(2, 8), (3) p ∼ beta(8, 32).

d) On the basis of your Bayesian computations, do you think that y = 8
is convincing evidence that the person really has some ESP? Explain.

6. Learning from grouped data
Suppose you drive on a particular interstate roadway and typically drive
at a constant speed of 70 mph. One day, you pass one car and get passed by
17 cars. Suppose that the speeds are normally distributed with unknown
mean µ and standard deviation σ = 10. If you pass s cars, and f cars pass
you, the likelihood of µ is given by

L(µ) = Φ(70, µ, σ)s(1 − Φ(70, µ, σ))f ,

where Φ(y, µ, σ) is the cdf of the normal distribution with mean µ and
standard deviation σ. Assign the unknown mean µ a flat prior density.
a) If s = 1 and f = 17, plot the posterior density of µ.
b) Using the density found in part (a), find the posterior mean of µ.
c) Find the probability that the average speed of the cars on this inter-

state roadway exceeds 80 mph.

4

Multiparameter Models

4.1 Introduction

In this chapter, we describe the use of R to summarize Bayesian models
with several unknown parameters. In learning about parameters of a normal
population or multinomial parameters, posterior inference is accomplished by
simulating from distributions of standard forms. Once a simulated sample is
obtained from the joint posterior, it is straightforward to perform transforma-
tions on these simulated draws to learn about any function of the parameters.
We next consider estimating the parameters of a simple logistic regression
model. Although the posterior distribution does not have a simple functional
form, it can be summarized by computing the density on a fine grid of points.
A common inference problem is to compare two proportions in a 2 × 2 contin-
gency table. We illustrate the computation of the posterior probability that
one proportion exceeds the second proportion in the situation in which one
believes a priori that the proportions are dependent.

4.2 Normal Data with Both Parameters Unknown

A standard inference problem is to learn about a normal population where
both the mean and variance are unknown. To illustrate Bayesian computation
for this problem, suppose we are interested in learning about the distribution
of completion times for men between ages 20 and 29 who are running the New
York Marathon. We observe the times y1, . . . , y20 for 20 runners in minutes,
and we assume they represent a random sample from an N(µ, σ) distribution.
If we assume the standard noninformative prior g(µ, σ2) ∝ 1/σ2, then the
posterior density of the mean and variance is given by

g(µ, σ2|y) ∝ 1
(σ2)n/2+1

exp(− 1
2σ2

(S + n(µ − ȳ)2)),

where n is the sample size, ȳ is the sample mean, and S =
∑n

i=1(yi − ȳ)2.

58 4 Multiparameter Models

This joint posterior has the familiar normal/inverse chi-square form where

• the posterior of µ conditional on σ2 is distributed N(ȳ, σ/
√

n)
• the marginal posterior of σ2 is distributed Sχ−2

n−1 where χ−2
ν denotes an

inverse chi-square distribution with ν degrees of freedom.

We first use R to construct a contour plot of the joint posterior density
for this example. We read in the data marathontimes; when we attach this
dataset, we can use the variable time that contains the vector of running
times. The R function normchi2post.R in the LearnBayes package computes
the logarithm of the joint posterior density of (µ, σ2). We also use a function
mycontour.R in the LearnBayes package that facilitates the use of the R
contour command. There are three inputs to mycontour: the name of the
function that defines the log density, a vector with the values (xlo, xhi, ylo,
and yhi) that define the rectangle where the density is to graphed, and the
data used in the function for the log density. The function produces a contour
graph shown in Fig. 4.1, where the contour lines are drawn at 10%, 1%, and
.1% of the maximum value of the posterior density over the grid.

> data(marathontimes)

> attach(marathontimes)

> d = mycontour(normchi2post, c(220, 330, 500, 9000), time)

> title(xlab="mean",ylab="variance")

It is convenient to summarize this posterior distribution by simulation.
One can simulate a value of (µ, σ2) from the joint posterior by first simulating
σ2 from an Sχ−2

n−1 distribution and then simulating µ from the N(ȳ, σ/
√

n)
distribution. In the following R output, we first simulate a sample of size
1000 from the chi-squared distribution by use of the function rchisq. Then
simulated draws of the“scale times inverse chi-square”distribution of the vari-
ance σ2 are obtained by transforming the chi-square draws. Finally, simulated
draws of the mean µ are obtained by use of the function rnorm.

> S = sum((time - mean(time))^2)

> n = length(time)

> sigma2 = S/rchisq(1000, n - 1)

> mu = rnorm(1000, mean = mean(time), sd = sqrt(sigma2)/sqrt(n))

We display the simulated sampled values of (µ, σ2) on top of the contour
plot of the distribution in Fig. 4.1.

> points(mu, sigma2)

Inferences about the parameters or functions of the parameters are avail-
able from the simulated sample. To construct a 95% interval estimate for the
mean µ, we use the R quantile function to find percentiles of the simulated
sample of µ.

4.2 Normal Data with Both Parameters Unknown 59

220 240 260 280 300 320

20
00

40
00

60
00

80
00

meanmean

va
ria

nc
e

Fig. 4.1. Contour plot of the joint posterior distribution of (µ, σ2) for a normal
sampling model. The points represent a simulated random sample from this distri-
bution.

> quantile(mu, c(0.025, 0.975))

2.5% 97.5%
254.0937 301.7137

A 95% credible interval for the mean completion time is (254.1, 301.7) minutes.
Suppose we are interested in learning about the standard deviation σ that

describes the spread of the population of marathon running times. To obtain
a sample of the posterior of σ, we take square roots of the simulated draws
of σ2. From the output, we see that an approximate 95% probability interval
for σ is (37.5, 70.9) minutes.

> quantile(sqrt(sigma2), c(0.025, 0.975))

2.5% 97.5%
37.48217 70.89521

60 4 Multiparameter Models

4.3 A Multinomial Model

Gelman et al (2003) describe a sample survey conducted by CBS news before
the 1988 presidential election. A total of 1447 adults were polled to indi-
cate their preference; y1 = 727 supported George Bush, y2 = 583 supported
Michael Dukakis, and y3 = 137 supported other candidates or expressed no
opinion. The counts y1, y2, and y3 are assumed to have a multinomial distribu-
tion with sample size n and respective probabilities θ1, θ2, and θ3. If a uniform
prior distribution is assigned to the multinomial vector θ = (θ1, θ2, θ3), then
the posterior distribution of θ is proportional to

g(θ) = θy1
1 θy2

2 θy3
3 ,

which is recognized as a Dirichlet distribution with parameters (y1 + 1, y2 +
1, y3 + 1). The focus is to compare the proportions of voters for Bush and
Dukakis by the difference θ1 − θ2.

The summarization of the Dirichlet posterior distribution is again con-
veniently done by simulation. Although the base R package does not have
a function to simulate Dirichlet variates, it is easy to write a function to
simulate this distribution based on the fact that if W1,W2,W3 are indepen-
dent distributed from gamma(α1, 1), gamma(α2, 1), gamma(α3, 1) distribu-
tions and T = W1 + W2 + W3, then the distribution of the proportions
(W1/T,W2/T,W3/T) has a Dirichlet(α1, α2, α3) distribution. The R function
rdirichlet.R in the package LearnBayes uses this transformation of random
variates to simulate draws of a Dirichlet distribution. One thousand vectors θ
are simulated and stored in the matrix theta.

> alpha = c(728, 584, 138)

> theta = rdirichlet(1000, alpha)

Since we are interested in comparing the proportions for Bush and Dukakis,
we focus on the difference θ1 − θ2. A histogram of the simulated draws of this
difference is displayed in Fig. 4.2. Note that all of the mass of this distrib-
ution is on positive values, indicating that there is strong evidence that the
proportion of voters for Bush exceeds the proportion for Dukakis.

> hist(theta[, 1] - theta[, 2], main="")

4.4 A Bioassay Experiment

In the development of drugs, bioassay experiments are often performed on
animals. In a typical experiment, various dose levels of a compound are ad-
ministered to batches of animals and a binary outcome (positive or negative)
is recorded for each animal. We consider data from Gelman et al (2003), where

4.4 A Bioassay Experiment 61

theta[, 1] − theta[, 2]

F
re

qu
en

cy

0.00 0.05 0.10 0.15

0
50

10
0

15
0

20
0

25
0

Fig. 4.2. Histogram of simulated sample of the marginal posterior distribution of
θ1 − θ2 for the multinomial sampling example.

Table 4.1. Data from the bioassay experiment

Dose Deaths Sample size

−0.86 0 5
−0.30 1 5
−0.05 3 5
0.73 5 5

one observes a dose level (in log g/ml), the number of animals, and the number
of deaths for each of four groups. The data are displayed in Table 4.1.

Let yi denote the number of deaths observed out of ni with dose level xi.
We assume yi is binomial(ni, pi), where the probability pi follows the logistic
model

log(pi/(1 − pi)) = β0 + β1xi.

The likelihood function of the unknown regression parameters β0 and β1 is
given by

L(β0, β1) =
4∏

i=1

pyi

i (1 − pi)ni−yi ,

62 4 Multiparameter Models

where pi = exp(β0 +β1xi)/(1+exp(β0 +β1xi)). If the standard flat noninfor-
mative prior is placed on (β0, β1), then the posterior density is proportional
to the likelihood function.

We begin in R by defining the covariate vector x and the vectors of sample
sizes and observed success counts n and y.

> x = c(-0.86, -0.3, -0.05, 0.73)

> n = c(5, 5, 5, 5)

> y = c(0, 1, 3, 5)

> data = cbind(x, n, y)

A standard classical analysis fits the model by maximum likelihood. The
R function glm is used to do this fitting, and the summary output presents
the estimates and the associated standard errors.

> response = cbind(y, n - y)

> results = glm(response ~ x, family = binomial)

> summary(results)

Call:
glm(formula = glmdata ~ x, family = binomial)

Deviance Residuals:
1 2 3 4

-0.17236 0.08133 -0.05869 0.12237

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.8466 1.0191 0.831 0.406
x 7.7488 4.8728 1.590 0.112

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.791412 on 3 degrees of freedom
Residual deviance: 0.054742 on 2 degrees of freedom
AIC: 7.9648

Number of Fisher Scoring iterations: 7

The log posterior density for (β0, β1) in this logistic model is contained in
the R function logisticpost. To summarize the posterior distribution, we
first find a rectangle that covers essentially all of the posterior probability.
The maximum likelihood fit is helpful for finding this rectangle. As seen by
the contour plot displayed in Fig. 4.3, we see the rectangle −4 ≤ β0 ≤ 8,−5 ≤
β1 ≤ 39 contains the contours that are greater than .1% of the modal value.

> mycontour(logisticpost, c(-4, 8, -5, 39), data)

> title(xlab="beta0",ylab="beta1")

4.4 A Bioassay Experiment 63

−4 −2 0 2 4 6 8

0
10

20
30

40

beta0

be
ta

1

Fig. 4.3. Contour plot of the posterior distribution of (β0, β1) for the bioassay
example. The contour lines are drawn at 10%, 1%, and .1% of the model height.

Now that we have found the posterior distribution, we use the function
simcontour to simulate pairs of (β0, β1) from the posterior density computed
on this rectangular grid. We display the contour plot with the points su-
perimposed in Fig. 4.4 to confirm that we are sampling from the posterior
distribution.

> s = simcontour(logisticpost, c(-4, 8, -5, 39), data, 1000)

> points(sx, sy)

We illustrate several types of inferences for this problem. Fig. 4.5 displays
a density estimate of the simulated values (using the R function density) of
the slope parameter β1. All of the mass of the density of β1 is on positive
values, indicating that there is significant evidence that increasing the level of
the dose does increase the probability of death.

> plot(density(s$y),xlab="beta1")

64 4 Multiparameter Models

−4 −2 0 2 4 6 8

0
10

20
30

40

beta0

be
ta

1

Fig. 4.4. Contour plot of the posterior distribution of (β0, β1) for the bioassay
example. A simulated random sample from this distribution is shown on top of the
contour plot.

In this setting, one parameter of interest is the LD-50, the value of the dose
x such that the probability of death is equal to one half. It is straightforward
to show that the LD-50 is equal to θ = −β0/β1. One can obtain a simulated
sample from the marginal posterior density of θ by computing a value of θ from
each simulated pair (β0, β1). A histogram of the LD-50 is shown in Fig. 4.6.

> theta=-sx/sy

> hist(theta,xlab="LD-50")

In contrast to the histogram of β1, the LD-50 is more difficult to estimate and
the posterior density of this parameter is relatively wide. We compute a 95%
credible interval from the simulated draws of θ.

> quantile(theta,c(.025,.975))

2.5% 97.5%
-0.2903822 0.1140151

The probability that θ is contained in the interval (−.290, .114) is .95.

4.5 Comparing Two Proportions 65

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

density.default(x = s$y)

beta1

D
en

si
ty

Fig. 4.5. Histogram of simulated values from the posterior of the slope parameter
β1 in the bioassay example.

4.5 Comparing Two Proportions

Howard (1998) considers the general problem of comparing the proportions
from two independent binomial distributions. Suppose we observe y1 distrib-
uted binomial(n1, p1), y2 distributed binomial(n2, p2). One wants to know if
the data favor the hypothesis H1 : p1 > p2 or the hypothesis H2 : p1 < p2

and want a measure of the strength of the evidence in support of one hy-
pothesis. Howard gives a broad survey of frequentist and Bayesian approaches
for comparing two proportions. Here we focus on the application of Howard’s
recommended “dependent prior” for this particular testing problem.

In this situation, suppose that one is given the information that one pro-
portion is equal to a particular value, say p1 = .8. This knowledge can influence
a user’s prior beliefs about the location of the second proportion p2; specifi-
cally, one may believe that the value of p2 is also close to .8. This implies that
the use of dependent priors for p1 and p2 may be more appropriate than the
common use of uniform independent priors for the proportions.

Howard proposes the following dependent prior. First the proportions are
transformed into the real-valued logit parameters

66 4 Multiparameter Models

Histogram of theta

LD−50

F
re

qu
en

cy

−0.4 −0.2 0.0 0.2

0
50

10
0

15
0

20
0

25
0

Fig. 4.6. Histogram of simulated values of the LD-50 parameter −β0/β1 in the
bioassay example.

θ1 = log
p1

1 − p1
, θ2 = log

p2

1 − p2
.

Then suppose that given a value of θ1, the logit θ2 is assumed to be normally
distributed with mean θ1 and standard deviation σ. By generalizing this idea,
Howard proposes the dependent prior of the general form

g(p1, p2) ∝ e−(1/2)u2
pα−1
1 (1 − p1)β−1pγ−1

2 (1 − p2)δ−1, 0 < p1, p2 < 1,

where
u =

1
σ

log
θ1

θ2
.

This class of dependent priors is indexed by the parameters (α, β, γ, δ, σ). The
first four parameters reflect one’s beliefs about the locations of p1 and p2 and
the parameter σ indicates one prior belief in the dependence between the two
proportions.

Suppose that α = β = γ = δ = 1, reflecting vague prior beliefs about each
individual parameter. The logarithm of the dependent prior is defined in the
R function howardprior. By use of the function mycontour, Fig. 4.7 shows
contour plots of the dependent prior for values of the association parameter

4.5 Comparing Two Proportions 67

σ = 2, 1, .5, and .25. Note as the value of σ goes to zero, the prior is placing
more of its mass along the line where the two proportions are equal.

> sigma=c(2,1,.5,.25)

> plo=.0001;phi=.9999

> par(mfrow=c(2,2))

> for (i in 1:4)

+ {

+ mycontour(howardprior,c(plo,phi,plo,phi),c(1,1,1,1,sigma[i]))

+ title(main=paste("sigma=",as.character(sigma[i])),

+ xlab="p1",ylab="p2")

+ }

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p1

p2

sigma=2

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma=1

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma=0.5

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma=0.25

p1

p2

Fig. 4.7. Contour graphs of Howard’s dependent prior for values of the association
parameter σ = 2, 1, .5, and .25.

Suppose we observe counts y1, y2 from the two binomial samples. The
likelihood function is given by

L(p1, p2) = py1
1 (1 − p1)n1−y1py2

2 (1 − p2)n2−y2 , 0 < p1, p2 < 1.

68 4 Multiparameter Models

Combining the likelihood with the prior, one sees that the posterior density
has the same functional “dependent” form with updated parameters

(α + y1, β + n1 − y1, γ + y2, δ + n2 − y2, σ).

We illustrate testing the hypotheses using a dataset discussed by Pearson
(1947) shown in Table 4.2.

Table 4.2. Pearson’s example

Successes Failures Total

Sample 1 3 15 18
Sample 2 7 5 12
Totals 10 20 30

Since the posterior distribution is the same functional form as the prior,
we can use the same howardprior function for the posterior calculations. In
Fig. 4.8, contour plots of the posterior are shown for the four values of the
association parameter σ.

> sigma=c(2,1,.5,.25)

> par(mfrow=c(2,2))

> for (i in 1:4)

+ {

+ mycontour(howardprior,c(plo,phi,plo,phi),

+ c(1+3,1+15,1+7,1+5,sigma[i]))

+ lines(c(0,1),c(0,1))

+ title(main=paste("sigma=",as.character(sigma[i])),

+ xlab="p1",ylab="p2")

+ }

We can test the hypothesis H1 : p1 > p2 simply by computing the posterior
probability of this region of the parameter space. We first produce by the
function simcontour a simulated sample from the posterior distribution of
(p1, p2) and then find the proportion of simulated pairs where p1 > p2. For
example, we display the R commands for the computation of the posterior
probability for σ = 2.

> s=simcontour(howardprior,c(plo,phi,plo,phi),

+ c(1+3,1+15,1+7,1+5,2),1000)

> sum(s$x>s$y)/1000

[1] 0.012

4.5 Comparing Two Proportions 69

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma= 2

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma= 1

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma= 0.5

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma= 0.25

p1

p2

Fig. 4.8. Contour graphs of posterior for Howard’s dependent prior for values of
the association parameter σ = 2, 1, .5, and .25.

Table 4.3 displays the posterior probability that p1 exceeds p2 for four
choices of the dependent prior parameter σ. Note that this posterior proba-
bility is sensitive to the prior belief about the dependence between the two
proportions.

Table 4.3. Posterior probabilities of the hypothesis.

Dependent parameter σ P (p1 > p2)

2 0.012
1 0.035
.5 0.102
.25 0.201

70 4 Multiparameter Models

4.6 Further Reading

Chapter 3 of Gelman et al (2003) describes the normal sampling problem and
other multiparameter problems from a Bayesian perspective. In particular,
Gelman et al (2003) illustrate the use of simulation when the posterior has
been computed on a grid. Carlin and Louis (2000), chapter 2, and Lee (2004)
illustrate Bayesian inference for some basic two-parameter problems. Howard
(1998) gives a general discussion of inference for the two-by-two contingency
table, contrasting frequentist and Bayesian approaches.

4.7 Summary of R Functions

howardprior – computes the logarithm of a dependent prior on two propor-
tions proposed by Howard in a Statistical Science paper in 1998
Usage: howardprior(xy,par)
Arguments: xy, a matrix of parameter values where each row represents a
value of the proportions (p1, p2); par, a vector containing parameter values
alpha, beta, gamma, delta, sigma
Value: vector of values of the log posterior where each value corresponds to
each row of the parameters in xy

logisticpost – computes the log posterior density of (beta0, beta1) when yi
are independent binomial(ni, pi) and logit(pi)=beta0+beta1*xi
Usage: logisticpost(beta,data)
Arguments: beta, a matrix of parameter values where each row represents
a value of (beta0, beta1); data, a matrix of columns of covariate values x,
sample sizes n, and number of successes y
Value: vector of values of the log posterior where each value corresponds to
each row of the parameters in beta

mycontour – for a general two parameter density, draws a contour graph where
the contour lines are drawn at 10%, 1%, and .1% of the height at the mode
Usage: mycontour(logf,limits,data)
Arguments: logf, a function that defines the logarithm of the density; limits,
a vector of limits (xlo, xhi, ylo, yhi) where the graph is to be drawn; data, a
vector or list of parameters associated with the function logpost
Value: a contour graph of the density is drawn

normchi2post – computes the log of the posterior density of a mean M and
a variance S2 when a sample is taken from a normal density and a standard
noninformative prior is used
Usage: normchi2post(theta,data)
Arguments: theta, a matrix of parameter values where each row is a value of
(M, S2); data, a vector containing the sample observations
Value: a vector of values of the log posterior where the values correspond to
the rows in theta

4.8 Exercises 71

rdirichlet – simulates values from a Dirichlet distribution
Usage: rdirichlet(n,par)
Arguments: n, the number of simulations required; par, the vector of parame-
ters of the Dirichlet distribution
Value: a matrix of simulated draws, where a row contains one simulated Dirich-
let draw

simcontour – for a general two-parameter density defined on a grid, simulates
a random sample
Usage: simcontour(logf,limits,data,m)
Arguments: logf, a function that defines the logarithm of the density; limits,
a vector limits (xlo, xhi, ylo, yhi) that cover the joint probability density; data,
a vector or list of parameters associated with the function logpost; m, the size
of simulated sample
Value: x, the vector of simulated draws of the first parameter; y, the vector of
simulated draws of the second parameter

4.8 Exercises

1. Inference about a normal population
Suppose we are interested in learning about the sleeping habits of stu-
dents at a particular college. We collect y1, ..., y20, the sleeping times (in
hours), for 20 randomly selected students in a statistics course. Here are
the observations:

9.0 8.5 7.0 8.5 6.0 12.5 6.0 9.0 8.5 7.5
8.0 6.0 9.0 8.0 7.0 10.0 9.0 7.5 5.0 6.5

a) Assuming that the observations represent a random sample from a
normal population with mean µ and variance σ2 and the usual nonin-
formative prior is placed on (µ, σ2), simulate a sample of 1000 draws
from the joint posterior distribution.

b) Use the simulated sample to find 90% interval estimates for the mean
µ and the standard deviation σ.

c) Suppose one is interested in estimating the upper quartile p75 of the
normal population. Using the fact that p75 = µ + 0.674σ, find the
posterior mean and posterior standard deviation of p75.

2. The Behrens-Fisher problem
Suppose that we observe two independent normal samples, the first dis-
tributed according to an N(µ1, σ1) distribution, the second according to an
N(µ2, σ2) distribution. Denote the first sample by x1, ..., xm and the sec-
ond sample by y1, ..., yn. Suppose also that the parameters (µ1, σ

2
1 , µ2, σ

2
2)

are assigned the vague prior

g(µ1, σ
2
1 , µ2, σ

2
2) ∝ 1

σ2
1σ2

2

.

72 4 Multiparameter Models

a) Find the posterior density. Show that the vectors (µ1, σ
2
1) and (µ2, σ

2
2)

have independent posterior distributions.
b) Describe how to simulate from the joint posterior density of

(µ1, σ
2
1 , µ2, σ

2
2).

c) The following data give the mandible lengths in millimeters for 10
male and ten female golden jackals in the collection of the British
Museum. Using simulation, find the posterior density of the difference
in mean mandible length between the sexes. Is there sufficient evidence
to conclude that the males have a larger average?

Males
120 107 110 116 114 111 113 117 114 112

Females
110 111 107 108 110 105 107 106 111 111

3. Comparing two proportions
The following table gives the records of accidents in 1998 compiled by the
Department of Highway Safety and Motor Vehicles in Florida.

Injury
Safety equipment in use Fatal Nonfatal

None 1601 162,527
Seat belt 510 412,368

Denote the number of accidents and fatalities when no safety equipment
was in use by nN and yN , respectively. Similarly, let nS and yS denote the
number of accidents and fatalities when a seat belt was in use. Assume
that yN and yS are independent with yN distributed binomial(nN , pN)
and yS distributed binomial(nS , pS). Assume a uniform prior is placed on
the vector of probabilities (pN , pS).
a) Show that pN and pS have independent beta posterior distributions.
b) Use the function rbeta to simulate 1000 values from the joint posterior

distribution of (pN , pS).
c) Using your sample, construct a histogram of the relative risk pN/pS .

Find a 95% interval estimate of this relative risk.
d) Construct a histogram of the difference in risks pN − pS .
e) Compute the posterior probability that the difference in risks exceeds

0.
4. Learning from rounded data

It is a common problem for measurements to be observed in rounded form.
Suppose we weigh an object five times and measure weights rounded to the
nearest pound of 10, 1, 12, 11, 9. Assume the unrounded measurements
are normally distributed with a noninformative prior distribution on the
mean µ and variance σ2.
a) Pretend that the observations are exact unrounded measurements.

Simulate a sample of 1000 draws from the joint posterior distribution
by using the algorithm described in Section 4.2.

4.8 Exercises 73

b) Write down the correct posterior distributions for (µ, σ2) treating the
measurements as rounded.

c) By computing the correct posterior distribution on a grid of points
(as in Section 4.4), simulate a sample from this distribution.

d) How do the incorrect and correct posterior distributions for µ com-
pare? Answer this question by comparing posterior means and vari-
ances from the two simulated samples.

5. Estimating the parameters of a Poisson/gamma density
Suppose that y1, ..., yn are a random sample from the Poisson/gamma
density

f(y|a, b) =
Γ (y + a)
Γ (a)y!

ba

(b + 1)y+a
,

where a > 0 and b > 0. This density is an appropriate model for observed
counts that show more dispersion than predicted under a Poisson model.
Suppose that (a, b) are assigned the noninformative prior proportional
to 1/(ab). If we transform to the real-valued parameters θ1 = log a and
θ2 = log b, the posterior density is proportional to

g(θ1, θ2|data) ∝
n∏

i=1

Γ (yi + a)
Γ (a)yi!

ba

(b + 1)yi+a
,

where a = exp{θ1} and b = exp{θ2}. Use this framework to model data
collected by Gilchrist (1984), in which a series of 33 insect traps were
set across sand dunes and the numbers of different insects caught over a
fixed time were recorded. The number of insects of the taxa Staphylinoidea
caught in the traps are shown here.

2 5 0 2 3 1 3 4 3 0 3
2 1 1 0 6 0 0 3 0 1 1
5 0 1 2 0 0 2 1 1 1 0

By computing the posterior density on a grid, simulate 1000 draws from
the joint posterior density of (θ1, θ2). From the simulated sample, find
90% interval estimates for the parameters a and b.

6. Comparison of two Poisson rates (from Antleman (1996))
A seller receives 800-number telephone orders from a first geographic area
at a rate of λ1 per week and from a second geographic area at a rate
of λ2 per week. Assume that incoming orders behave as if generated by a
Poisson distribution; if the rate is λ, then the number of orders y in t weeks
is distributed Poisson(tλ). Suppose a series of newspaper ads are run in
the first area for a period of four weeks, and sales for these four weeks are
260 units in area 1 and 165 units in area 2. The seller is interested in the
effectiveness of these ads. One measure of this would be the probability
that the sales rate in area 1 is greater than 1.5 times the sales rate in area
2:

P(λ1 > 1.5λ2).

74 4 Multiparameter Models

Before the ads run, the seller has assessed a prior distribution for λ1 to be
gamma with parameters 144 and .417, and the prior for λ2 to be gamma
(100, .4).
a) Show that λ1 and λ2 have independent gamma posterior distributions.
b) Using the R function rgamma, simulate 1000 draws from the joint pos-

terior distribution of (λ1, λ2).
c) Compute the posterior probability that the sales rate in area 1 is

greater than 1.5 times the sales rate in area 2.

5

Introduction to Bayesian Computation

5.1 Introduction

In the previous two chapters, two types of strategies were used in the sum-
marization of posterior distributions. If the sampling density has a familiar
functional form, such as a member of an exponential family, and a conju-
gate prior is chosen for the parameter, then the posterior distribution often
is expressible in terms of familiar probability distributions. In this case, we
can simulate parameters directly by use of the R collection of random variate
functions (such as rnorm, rbeta and rgamma), and we can summarize the
posterior by computations on this simulated sample. A second type of com-
puting strategy is what we called the “brute-force” method. In the case where
the posterior distribution is not a familiar functional form, then one simply
computes values of the posterior on a grid of points and then approximates
the continuous posterior by a discrete posterior that is concentrated on the
values of the grid. This brute-force method can be generally applied for one-
and two-parameter problems such as those illustrated in Chapters 3 and 4.

In this chapter, we describe the Bayesian computational problem and in-
troduce some of the more sophisticated computational methods that will be
employed in later chapters. One general approach is based on the behavior of
the posterior distribution about its mode. This gives a multivariate normal
approximation to the posterior that serves as a good first approximation in the
development of more exact methods. We then provide a general introduction
to the use of simulation in computing summaries of the posterior distribution.
When one can directly simulate samples from the posterior distribution, then
the Monte Carlo algorithm gives an estimate and associated standard error
for the posterior mean of any function of the parameters of interest. In the
situation where the posterior distribution is not a standard functional form,
rejection sampling with a suitable choice of proposal density provides an alter-
native method for producing draws from the posterior. Importance sampling
and sampling importance resampling (SIR) algorithms are alternative gen-
eral methods for computing integrals and simulating from a general posterior

76 5 Introduction to Bayesian Computation

distribution. The SIR algorithm is especially useful when one wishes to inves-
tigate the sensitivity of a posterior distribution with respect to changes in the
prior and likelihood functions.

5.2 Computing Integrals

The Bayesian recipe for inference is conceptually simple. If we observe data
y from a sampling density f(y|θ), where θ is a vector of parameters and one
assigns θ a prior g(θ), then the posterior density of θ is proportional to

g(θ|y) ∝ g(θ)f(y|θ).

The computational problem is to summarize this multivariate probability dis-
tribution to perform inference about functions of θ.

Many of the posterior summaries are expressible in terms of integrals.
Suppose we are interested in the posterior mean of a function h(θ). This
mean is expressible as a ratio of integrals

E(h(θ)|y) =
∫

h(θ)g(θ)f(y|θ)dθ∫
g(θ)f(y|θ)dθ

.

If we are interested in the posterior probability that h(θ) falls in a set A, we
wish to compute

P (h(θ) ∈ A|y) =

∫
h(θ)∈A

g(θ)f(y|θ)dθ
∫

g(θ)f(y|θ)dθ
.

Integrals are also involved when we are interested in obtaining marginal
densities of parameters of interest. Suppose the parameter θ = (θ1, θ2), where
θ1 are the parameters of interest and θ2 are so-called nuisance parameters. One
obtains the marginal posterior density of θ1 by integrating out the nuisance
parameters from the joint posterior:

g(θ1|y) ∝
∫

g(θ1, θ2|y)dθ2.

In the common situation where one needs to evaluate these integrals nu-
merically, there are a number of quadrature methods available. However, these
quadrature methods have limited use for Bayesian integration problems. First,
the choice of quadrature method depends on the location and shape of the
posterior distribution. Second, for a typical quadrature method, the number
of evaluations of the posterior density grows exponentially as a function of the
number of components of θ. In this chapter, we focus on the use of computa-
tional methods for computing integrals that are applicable to high-dimensional
Bayesian problems.

5.3 Setting Up a Problem on R 77

5.3 Setting Up a Problem on R

Before we describe some general summarization methods, we first describe
setting up a Bayesian problem on R. Suppose one is able to write an ex-
plicit expression for the joint posterior density. In writing this expression, it
is not necessary to include any normalizing constants that don’t involve the
parameters. Next, for the algorithms described in this book, it is helpful to
reparameterize all parameters so that they are all real-valued. If one has a
positive parameter such as a variance, then transform using a log function. If
one has a proportion parameter p, then it can be transformed to the real line
by the logit function logit(p) = log(p/(1 − p)).

After the posterior density has been expressed in terms of transformed
parameters, the first step in summarizing this density is to write an R function
defining the logarithm of the joint posterior density.

The general structure of this R function is

mylogposterior=function(theta,data)
{
[statements that compute the log density]
return(val)
}

To apply the functions described in this chapter, theta is assumed to be a
matrix with n rows and k columns, where each row of theta corresponds to
a value of the parameter vector θ = (θ1, ..., θk). The input data is a vector of
observed values or a list of data values and other model specifications such as
the values of prior hyperparameters. The output vector val contains n values
corresponding to the n values of the parameter vector θ.

One common situation is where one observes a random sample y1, ..., yn

from a sampling density f(y|θ) and one assigns θ the prior density. The loga-
rithm of the posterior density of θ is given, up to an additive constant, by

log g(θ|y) = log g(θ) +
n∑

i=1

log f(yi|θ).

When programming this function, it is important to note that the input is a
matrix theta of parameter values. So it is necessary to use a loop to perform
the summation when programming this function. Suppose we are sampling
from a normal distribution with mean µ and standard deviation σ, the para-
meter vector θ = (µ, log σ) and we place an N(10, 20) prior on µ and a flat
prior on log σ. The log posterior would have the form

log g(θ|y) = log φ(µ; 10, 20) +
n∑

i=1

log φ(yi;µ, σ),

where φ(y;µ, σ) is the normal density with mean µ and standard deviation σ.
If data is the vector of observations y1, ..., yn, then the function defining the
log posterior would in this case would be written as follows.

78 5 Introduction to Bayesian Computation

mylogposterior=function(theta,data)
{
n=length(data)
mu=theta[,1]; sigma=exp(theta[,2])
val=0*mu
for (i in 1:n)
{
val=val+dnorm(data[i],mean=mu,sd=sigma,log=TRUE)
}
val=val+dnorm(mu, mean=10, sd=20,log=TRUE)
return(val)
}

We use the log = TRUE option in dnorm to compute the logarithm of the
density. Note the use of the small trick val=0*mu; this is a simple way of
creating a zero column vector of the same size as the vector mu.

5.4 A Beta-Binomial Model for Overdispersion

Tsutakawa et al (1985) describe the problem of simultaneously estimating the
rates of death from stomach cancer for males at risk in the age bracket 45–64
for the largest cities in Missouri. Table 5.1 displays the mortality rates for 20
of these cities, where a cell contains the number nj at risk and the number of
cancer deaths yj for a given city.

Table 5.1. Cancer mortality data. Each ordered pair represents the number of
cancer deaths yj and the number at risk nj for an individual city in Missouri.

(0, 1083) (0, 855) (2, 3461) (0, 657) (1, 1208) (1, 1025)

(0, 527) (2, 1668) (1, 583) (3, 582) (0, 917) (1, 857)

(1, 680) (1, 917) (54, 53637) (0, 874) (0, 395) (1, 581)

(3, 588) (0, 383)

A first modeling attempt might assume that the {yj} represent indepen-
dent binomial samples with sample sizes {nj} and common probability of
death p. But it can be shown that these data are overdispersed in the sense
that the counts {yj} display more variation that would be predicted under a
binomial model with a constant probability p. A better fitting model assumes
that yj is distributed from a beta-binomial model with mean η and precision
K:

f(yj |η,K) =
(

nj

yj

)
B(Kη + yj ,K(1 − η) + nj − yj)

B(Kη,K(1 − η))
.

Suppose we assign the parameters the vague prior proportional to

5.4 A Beta-Binomial Model for Overdispersion 79

g(η,K) ∝ 1
η(1 − η)

1
(1 + K)2

.

Then the posterior density of (η,K) is given, up to a proportionality constant,
by

g(η,K) ∝ 1
η(1 − η)

1
(1 + K)2

20∏

j=1

B(Kη + yj ,K(1 − η) + nj − yj)
B(Kη,K(1 − η))

,

where 0 < η < 1 and K > 0.
We write a short function betabinexch0 to compute the logarithm of the

posterior density. The inputs to the function are theta, a matrix where the
values of η and K are respectively in the first and second columns, and data,
a matrix with columns the vector of counts {yj} and the vector of sample
sizes {nj}.

betabinexch0=function(theta,data)
{
eta=theta[,1]
K=theta[,2]
y=data[,1]; n=data[,2]
N=length(y)
val=0*K;
for (i in 1:N)

val=val+lbeta(K*eta+y[i],K*(1-eta)+n[i]-y[i])
val=val-N*lbeta(K*eta,K*(1-eta))
val=val-2*log(1+K)-log(eta)-log(1-eta)
return(val)
}

We read in the dataset cancermortality and use the function mycontour
together with the log density function betabinexch0 to display a contour plot
of the posterior density of (η,K) (See Fig. 5.1).

> data(cancermortality)

> mycontour(betabinexch0,c(.0001,.003,1,20000),cancermortality)

Note the strong skewness in the density, especially toward large values of the
precision parameter K. This right skewness is a common characteristic of the
likelihood function of a precision or variance parameter. Following the general
guidance in Section 5.3, suppose we transform each parameter to the real line
by the reexpressions

θ1 = logit(η) = log
(η

1 − η

)
, θ2 = log(K).

The log posterior density of the transformed parameters is programmed in the
function betabinexch. Note the change in the next-to-last line of the function
that accounts for the Jacobian term in the transformation.

80 5 Introduction to Bayesian Computation

betabinexch=function(theta,data)
{
theta1=theta[,1]
theta2=theta[,2]
eta=exp(theta1)/(1+exp(theta1))
K=exp(theta2)
y=data[,1]; n=data[,2]
N=length(y);
val=0*K;
for (i in 1:N)

val=val+lbeta(K*eta+y[i],K*(1-eta)+n[i]-y[i])
val=val-N*lbeta(K*eta,K*(1-eta))
val=val+theta2-2*log(1+exp(theta2))
return(val)
}

Fig. 5.2 displays a contour plot of the posterior of (θ1, θ2) using the
mycontour function. Although the density has an unusual shape, the strong
skewness has been reduced and the distribution is more amenable to the com-
putational methods described in this and the following chapters.

5.5 Approximations Based on Posterior Modes

One method of summarizing a multivariate posterior distribution is based on
the behavior of the density about its mode. Let θ be a vector-valued parameter
with prior density g(θ). If we observe data y with sampling density f(y|θ),
then consider the logarithm of the joint density of θ and y

h(θ, y) = log(g(θ)f(y|θ)).

In the following, we write this log density as h(θ) since after the data are
observed θ is the only random quantity. Denoting the posterior mode of θ by
θ̂, we expand the log density in a second-order Taylor series about θ̂. This
gives the approximation

h(θ) ≈ h(θ̂) + (θ − θ̂)′h′′(θ̂)(θ − θ̂)/2,

where h′′(θ̂) is the Hessian of the log density evaluated at the mode. By this
expansion, the posterior density is approximated by a multivariate normal
density with mean θ̂ and variance-covariance matrix

V = (−h′′(θ̂))−1.

5.5 Approximations Based on Posterior Modes 81

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

0
50

00
10

00
0

15
00

0
20

00
0

eta

K

Fig. 5.1. Contour plot of parameters η and K in the beta-binomial model problem.

In addition, this approximation allows one to analytically integrate out θ
from the joint density and obtain the following approximation to the prior
predictive density:

f(y) ≈ (2π)d/2g(θ̂)f(y|θ̂)| − h′′(θ̂)|1/2,

where d is the dimension of θ.
To apply this approximation, one needs to find the mode of the posterior

density of θ. A good general-purpose optimization algorithm for finding this
mode is provided by Newton’s method. Suppose one has a guess at the poste-
rior mode θ0. If θt−1 is the estimate at the mode at the t − 1 iteration of the
algorithm, then the next iterate is given by

θt = θt−1 − [h′′(θt−1)]−1h′(θt−1).

One continues these iterations until convergence.
After one writes an R function to evaluate the log posterior density, the

R function laplace in the LearnBayes package finds the joint posterior mode
by several iterations of Newton’s method. The inputs to laplace are the
function defining the joint posterior, an intelligent guess at the posterior mode,

82 5 Introduction to Bayesian Computation

−8.0 −7.5 −7.0 −6.5 −6.0 −5.5 −5.0 −4.5

4
6

8
10

12
14

16

logit eta

lo
g

K

Fig. 5.2. Contour plot of transformed parameters logit(η) and log K in the beta-
binomial model problem.

the number of iterations of this algorithm, and data and parameters used in
the definition of the log posterior. The choice of “intelligent guess” can be
important since Newton’s algorithm may fail to converge with a poor choice
of starting value.

Suppose that a suitable starting value is used and laplace is successful
in finding the posterior mode. The output of laplace is a list with three
components. The component mode gives the value of the posterior mode θ̂,
the component var is the associated variance-covariance matrix V , and the
component int is the approximation to the logarithm of the prior predictive
density.

5.6 The Example

We illustrate the use of the function laplace for our beta-binomial modeling
example. Based on our contour plot, we start Newton’s method with the initial
guess (logit(η), log K) = (−7, 6) and perform 10 Newton steps.

5.6 The Example 83

> fit=laplace(betabinexch,array(c(-7,6),c(1,2)),10,cancermortality)

> fit

$mode
[,1] [,2]

[1,] -6.818793 7.57451

$var
[,1] [,2]

[1,] 0.07903107 -0.1490403
[2,] -0.14904028 1.3490592

$int
[1] -570.7744

We find the posterior mode to be (−6.82, 7.57). Also this gives the approxima-
tion that (logit(η), log K) is approximately bivariate normal with mean vector
fit$mode and variance-covariance matrix fit$var. By use of the mycontour
function with the log bivariate normal function lbinorm, Fig. 5.3 displays the
contours of the approximate normal density. Comparing Fig. 5.2 and Fig.5.3,
we see significant differences between the exact and approximate normal pos-
teriors.

> npar=list(m=fit$mode,v=fit$var)

> mycontour(lbinorm,c(-8,-4.5,3,16.5),npar)

> title(xlab="logit eta", ylab="log K")

One advantage of this algorithm is that one obtains quick summaries of
the parameters by use of the multivariate normal approximation. By use of
the diagonal elements of the variance-covariance matrix, one can construct
approximate probability intervals for logit(η) and log K. For example, the
following code constructs 90% probability intervals for the parameters:

> se=diag(fit$var)

> fit$mode-1.645*se

[,1] [,2]
[1,] -6.948801 5.35523

> fit$mode+1.645*se

[,1] [,2]
[1,] -6.688786 9.79379

So a 90% interval estimate for logit(η) is (−6.95,−6.69), and a 90% interval
estimate for log K is (5.36, 9.79).

84 5 Introduction to Bayesian Computation

−8.0 −7.5 −7.0 −6.5 −6.0 −5.5 −5.0 −4.5

4
6

8
10

12
14

16

logit eta

lo
g

K

Fig. 5.3. Contour plot of normal approximation of logit(η) and log K in the beta-
binomial model problem.

5.7 Monte Carlo Method for Computing Integrals

A second general approach for summarizing a posterior distribution is based on
simulation. Suppose that θ has a posterior density g(θ|y) and we are interested
in learning about a particular function of the parameters h(θ). The posterior
mean of h(θ) is given by

E(h(θ)|y) =
∫

h(θ)g(θ|y)dθ.

Suppose we are able to simulate an independent sample θ1, ..., θm from the
posterior density. Then the Monte Carlo estimate at the posterior mean is
given by the sample mean

h̄ =

∑m
j=1 h(θj)

m
.

The associated simulation standard error of this estimate is estimated by

seh̄ =

√∑m
j=1(h(θj) − h̄)2

(m − 1)m
.

5.8 Rejection Sampling 85

The Monte Carlo approach is an effective method for summarizing a poste-
rior distribution when simulated samples are available from the exact posterior
distribution. For a simple illustration of the Monte Carlo method, return to
Section 2.4 where we were interested in the proportion of heavy sleepers p
at a college. With the use of a beta prior, the posterior distribution for p
was beta(14.4, 23.4). Suppose we are interested in the posterior mean of p2.
(This is the predictive probability that two students in a future sample will
be heavy sleepers.) We simulate 1000 draws from the beta posterior distribu-
tion. If {pj} represent the simulated sample, the Monte Carlo estimate at this
posterior mean will be the mean of the {(pj)2}, and the simulated standard
error is the standard deviation of the {(pj)2} divided by the square root of
the simulation sample size.

> p=rbeta(1000, 14.4, 23.4)

> est=mean(p^2)

> se=sd(p^2)/sqrt(1000)

> c(est,se)

[1] 0.152099714 0.001925061

The Monte Carlo estimate at E(p2|data) is 0.152 with an associated simulation
standard error of 0.002.

5.8 Rejection Sampling

In the examples of Chapter 2, 3, and 4, we were able to produce simulated
samples directly from the posterior distribution since the distributions were
familiar functional forms. Then we would be able to obtain Monte Carlo es-
timates at the posterior mean of any function of the parameters of interest.
But in many situations such as the beta-binomial example of this chapter,
the posterior does not have a familiar form and we need to use an alternative
algorithm for producing a simulated sample.

A general-purpose algorithm for simulating random draws from a given
probability distribution is rejection sampling. In this setting, suppose we wish
to produce an independent sample from a posterior density g(θ|y) where the
normalizing constant may not be known. The first step in rejection sampling
is to find another probability density p(θ) such that

• It is easy to simulate draws from p.
• The density p resembles the posterior density of interest g in terms of

location and spread.
• For all θ and a constant c, g(θ|y) ≤ cp(θ).

Suppose we are able to find a density p with these properties. Then one
obtains draws from g by the following accept/reject algorithm:

86 5 Introduction to Bayesian Computation

1. Simulate independently θ from p and a uniform random variable U on the
unit interval.

2. If U ≤ g(θ|y)/(cp(θ)), then accept θ as a draw from the density g, other-
wise reject θ.

3. Continue steps 1 and 2 of the algorithm until one has collected a sufficient
number of “accepted” θ.

Rejection sampling is one of the most useful methods for simulating draws
from a variety of distributions and standard methods for simulating from stan-
dard probability distributions such as normal, gamma, and beta are typically
based on rejection algorithms. The main task in designing a rejection sampling
algorithm is finding a suitable proposal density p and constant value c. At step
2 of the algorithm, the probability of accepting a candidate draw is given by
g(θ|y)/(cp(θ)). One can monitor the algorithm by computing the proportion
of draws of p that are accepted; an efficient rejection sampling algorithm has
a high acceptance rate.

We consider the use of rejection sampling to simulate draws of
θ =(logit(η), log K) in the beta-binomial example. We wish to find a proposal
density of a simple functional form that, when multiplied by an appropriate
constant, covers the posterior density of interest. One choice for p would be
a bivariate normal density with mean and variance given as outputs of the
function laplace. Although this density does resemble the posterior density,
the normal density has relatively sharp tails and likely the ratio g(θ|y)/p(θ)
would not be bounded. A better choice for a covering density is a multivariate
t with mean and scale matrix chosen to match the posterior density and a
small number of degrees of freedom. The small number of degrees of freedom
gives the density heavy tails and one is more likely to find bounds for the ratio
g(θ|y)/p(θ).

In our earlier work, we found approximations to the posterior mean
and variance-covariance matrix of θ =(logit(η), log K) based on the Laplace
method. If the output variable of laplace is fit, then fit$mode is the pos-
terior mode and fit$var the associated variance-covariance matrix. Suppose
we decide to use a multivariate t density with location fit$mode, scale matrix
2 fit$var, and four degrees of freedom. These choices are made to mimic
the posterior density and ensure that the ratio g(θ|y)/p(θ) is bounded from
above.

To set up, we need to find the value of the bounding constant. We want
to find the constant c such that

g(θ|y) ≤ cp(θ) for all θ.

Equivalently, since g is programmed on the log scale, we want to find the
constant d = log c such that

log g(θ|y) − log p(θ) ≤ d for all θ.

5.8 Rejection Sampling 87

Basically we wish to maximize the function log g(θ|y) − log p(θ) over all θ. A
convenient way to perform this maximization is by use of the laplace func-
tion. We write a new function betabinT that computes values of this difference
function. There are two inputs, the parameter theta and a list datapar with
components data, the data matrix, and par, a list with the parameters of the
t proposal density (mean, scale matrix, and degrees of freedom)

betabinT=function(theta,datapar)
{
data=datapar$data
tpar=datapar$par
d=betabinexch(theta,data)-dmt(theta,mean=c(tpar$m),
S=tpar$var,df=tpar$df,log=TRUE)

return(d)
}

For our problem, we define the parameters of the t proposal density and the
list datapar:

> tpar=list(m=fit$mode,var=2*fit$var,df=4)

> datapar=list(data=cancermortality,par=tpar)

We run the function laplace with this new function and use of an “intel-
ligent” starting value.

> start=array(c(-6.9,12.4),c(1,2))

> fit1=laplace(betabinT,start,10,datapar)

> fit1$mode

[,1] [,2]
[1,] -6.889 12.42736

We find the maximum value d occurs at the value θ = (−6.889, 12.42736). We
note that this θ value is not at the extreme portion of the space of simulated
draws that indicates that we indeed have found an approximate maximum.
The value of d is found by evaluating the function at the modal value.

> betabinT(fit1$mode,datapar)

[1] -569.2813

We implement rejection sampling using the function rejectsampling. The
inputs are the function defining the log posterior, the parameters of the t
covering density, the value of d, the number of candidate values simulated,
and the data for the log posterior function. In this function, we simulate a
vector of θ from the proposal density, compute the values of log g and log f
on these simulated draws, compute the acceptance probabilities, and return
only the simulated values of θ where the uniform draws are smaller than the
acceptance probabilities.

88 5 Introduction to Bayesian Computation

rejectsampling=function(logf,tpar,dmax,n,data)
{
theta=rmt(n,mean=c(tpar$m),S=tpar$var,df=tpar$df)
lf=logf(theta,data)
lg=dmt(theta,mean=c(tpar$m),S=tpar$var,df=tpar$df,log=TRUE)
prob=exp(lf-lg-dmax)
return(theta[runif(n)<prob,])

}

We run the function rejectsampling using the constant value of d found
earlier and simulate 10,000 draws from the proposal density. We see that
the output value theta has only 2406 rows, so the acceptance rate of this
algorithm is 2406/10,000 = .24. This is a relatively inefficient algorithm since
it has a small acceptance rate, but the proposal density was found without
too much effort.

> theta=rejectsampling(betabinexch,tpar,-569.2813,10000,

cancermortality)

> dim(theta)

[1] 2406 2

We plot the simulated draws from rejection sampling on the contour plot
of the log posterior density in Fig. 5.4. As expected, most of the draws fall
within the inner contour of the exact density.

> mycontour(betabinexch,c(-8,-4.5,3,16.5),cancermortality)

> points(theta[,1],theta[,2])

5.9 Importance Sampling

Let us return to the basic problem of computing an integral in Bayesian in-
ference. In many situations, the normalizing constant of the posterior density
g(θ|y) will be unknown. So the posterior mean of the function h(θ) will be
given by the ratio of integrals

E(h(θ)|y) =
∫

h(θ)g(θ|y)dθ∫
g(θ|y)dθ

.

If we were able to simulate a sample {θj} directly from the posterior density
g, then one could approximate this expectation by a Monte Carlo estimate. In
the case where we are not able to generate a sample directly from g, suppose
instead that we can construct a probability density p that we can simulate and
that approximates the posterior density g. We rewrite the posterior mean as

5.9 Importance Sampling 89

−8.0 −7.5 −7.0 −6.5 −6.0 −5.5 −5.0 −4.5

4
6

8
10

12
14

16

logit eta

lo
g

K

Fig. 5.4. Contour plot of logit(η) and log K in the beta-binomial model problem
together with simulated draws from the rejection algorithm.

E(h(θ)|y) =

∫
h(θ) g(θ|y)

p(θ) p(θ)dθ
∫ g(θ|y)

p(θ) p(θ)dθ

=
∫

h(θ)w(θ)p(θ)dθ∫
w(θ)p(θ)dθ

,

where w(θ) = g(θ|y)/p(θ) is the weight function. If θ1, ..., θm are a simulated
sample from the approximation density p, then the importance sampling es-
timate at the posterior mean is

h̄IS =

∑m
j=1 h(θj)w(θj)
∑m

j=1 w(θj)
.

This is called an importance sampling estimate because we are sampling values
of θ that are important in computing the integrals in the numerator and de-
nominator. The simulation standard error of an importance sampling estimate
is estimated by

seh̄IS
=

√∑m
j=1((h(θj) − h̄IS)w(θj))2

∑m
j=1 w(θj)

.

90 5 Introduction to Bayesian Computation

As in rejection sampling, the main issue in designing a good importance
sampling estimate is finding a suitable sampling density p. This density should
be of a familiar functional form so simulated draws are available. The density
should mimic the posterior density g and have relatively flat tails so that the
weight function w(θ) is bounded from above. One can monitor the choice of p
by inspecting the values of the simulated weights w(θj). If there are not any
unusually large weights, then it is likely that the weight function is bounded
and the importance sampler is providing a suitable estimate.

To illustrate importance sampling, let us return to our beta-binomial ex-
ample and consider the problem of estimating the posterior mean of log K.
For a posterior density of real-valued parameters, a convenient choice of sam-
pler p is a multivariate t density. The R function impsampling will implement
importance sampling when p is a t density. There are five inputs to this func-
tion: logf is the function defining the logarithm of the posterior, tpar is a
list of parameter values of the t density, h is a function defining the function
h(θ) of interest, n is the size of the simulated sample, and data is the vector
or list used in the definition of logf. In the function impsampling, the func-
tions rmt and dmt from the mnormt library are used to simulate and compute
values of the t density. Note that the value md is the maximum value of the
difference of logs of the posterior and proposing density – this value is used
in the computation of the weights to prevent possible overflow. The output of
impsampling is a list with four components: est is the importance sampling
estimate, se is the corresponding simulation standard error, theta is a matrix
of simulated draws from the proposing density p, and wt is a vector of the
corresponding weights.

impsampling=function(logf,tpar,h,n,data)
{
theta=rmt(n,mean=c(tpar$m),S=tpar$var,df=tpar$df)
lf=logf(theta,data)
lp=dmt(theta,mean=c(tpar$m),S=tpar$var,df=tpar$df,log=TRUE)
md=max(lf-lp)
wt=exp(lf-lp-md)
est=sum(wt*h(theta))/sum(wt)
SEest=sqrt(sum((h(theta)-est)^2*wt^2))/sum(wt)
return(list(est=est,se=SEest,theta=theta,wt=wt))
}

For this example, the choice of proposal density used in the development
of a rejection algorithm seems to be a good choice for importance sampling.
We choose a t density where the location is the posterior mode (found from
laplace), the scale matrix is twice the estimated variance-covariance matrix,
and the number of degrees of freedom is four. This choice for p will resemble
the posterior density and have flat tails that we hope will result in bounded
weights. We define a short function myfunc to compute the function h; since

5.10 Sampling Importance Resampling 91

we are interested in the posterior mean of log K we define the function to be
the second column of the matrix θ. We are now ready to run impsampling.

> tpar=list(m=fit$mode,var=2*fit$var,df=4)

> myfunc=function(theta)

+ return(theta[,2])

> s=impsampling(betabinexch,tpar,myfunc,10000,cancermortality)

> cbind(sest,sse)

[,1] [,2]
[1,] 7.957802 0.01967276

We see from the output that the importance sampling estimate of the mean
of log K is 7.958 with an associated standard error of 0.020. To check if the
weight function is bounded, we compute a histogram of the simulated weights
(not shown here) and note that there are no extreme weights.

5.10 Sampling Importance Resampling

In rejection sampling, we simulated draws from a proposal density p and
accepted a subset of these values to be distributed according to the poste-
rior density of interest g(θ|y). There is an alternative method of obtaining a
simulated sample from the posterior density g motivated by the importance
sampling algorithm.

As before, we simulate m draws from the proposal density p denoted by
θ1, ..., θm and compute the weights {w(θj) = g(θj |y)/p(θj)}. Convert the
weights to probabilities by the formula

pj =
w(θj)

∑m
j=1 w(θj)

.

Suppose we take a new sample θ∗1, ..., θ∗m from the discrete distribution
over θ1, ..., θm with respective probabilities p1, ..., pm. Then the {θ∗j} will
be approximately distributed according to the posterior distribution g. This
method, called sampling importance sampling or SIR for short, is a weighted
bootstrap procedure where we sample with replacement from the sample {θj}
with unequal sampling probabilities.

This sampling algorithm is straightforward to implement in R using the
sample command. Suppose we wish to obtain a simulated sample of size n.
As in importance sampling, we first simulate from the proposal density which
in this situation is a multivariate t distribution, and then compute the impor-
tance sampling weights stored in the vector wt.

theta = rmt(n, mean = c(tpar$m), S = tpar$var, df = tpar$df)
lf = logf(theta, data)

92 5 Introduction to Bayesian Computation

lp = dmt(theta, mean = c(tpar$m), S = tpar$var, df = tpar$df,
log = TRUE)

md = max(lf - lp)
wt = exp(lf - lp - md)

To implement the SIR algorithm, we first convert the weights to probabilities
and store them in the vector probs. Next we use sample to take a sample
with replacement from the indices 1, ..., n, where the sampling probabilities
are contained in the vector probs; the simulated indices are stored in the
vector indices.

probs=wt/sum(wt)
indices=sample(1:n,size=n,prob=probs,replace=TRUE)

Finally, we use the random indices in indices to select the rows of theta
and assign to the matrix theta.s. The matrix theta.s contain the simulated
draws from the posterior.

theta.s=theta[indices,]

The function sir implements this algorithm for a multivariate t proposal
density. The inputs to this function are the function defining the log posterior
logf, the list tpar of parameters of the multivariate proposal density, the
number n of simulated draws, and the data used in the log posterior function.
The output is a matrix of simulated draws from the posterior. In the beta-
binomial modeling example, we implement the SIR algorithm by the command

> theta.s=sir(betabinexch,tpar,10000,cancermortality)

We have illustrated the use of the SIR algorithm in converting simulated
draws from a proposal density to draws from the posterior density. But this
algorithm can be used to convert simulated draws from one probability density
to a second probability density. To show the power of this method, suppose we
wish to perform a Bayesian sensitivity analysis with respect to the individual
observations in the dataset. Suppose we focus on posterior inference about the
log precision parameter log K and question how the inference would change
if we removed individual observations from the likelihood. Let g(θ|y) denote
the posterior density from the full dataset and g(θ|y(−i)) denote the posterior
density with the ith observation removed. Let {θj} represent a simulated
sample from the full dataset. We can obtain a simulated sample from g(θ|y(−i))
by resampling from {θj}, where the sampling probabilities are proportional
to the weights

w(θ) =
g(θ|y(−i))

g(θ|y)

=
1

f(yi|θ)

=
B(Kη,K(1 − η))

B(Kη + yi,K(1 − η) + ni − yi)
.

5.10 Sampling Importance Resampling 93

Suppose that the inference of interest is a 90% probability interval for the
log precision log K. The R code for this resampling for the “leave observation
i out” follows. One first computes the sampling weights and the sampling
probabilities. Then the sample command is used to do the resampling from
theta and the simulated draws from the “leave one out” posterior are stored
in the variable theta.s. We summarize the simulated values of log K by the
5th, 50th, and 95th quantiles.

weight=exp(lbeta(K*eta,K*(1-eta))-
lbeta(K*eta+y[i],K*(1-eta)+n[i]-y[i]))

probs=weight/sum(weight)
indices=sample(1:m,size=m,prob=probs,replace=TRUE)
theta.s=theta[indices,]
summary.obs[i,]=quantile(theta.s[,2],c(.05,.5,.95))

The function bayes.influence computes probability intervals for log K
for the complete dataset and“leave one out”datasets using the SIR algorithm.
We assume one already has simulated a sample of values from the complete
data posterior and the draws are stored in the matrix variable theta.s. The
inputs to bayes.influence are theta.s and the dataset data. In this case,
suppose we have just implemented the SIR algorithm and the posterior draws
are stored in the matrix theta.s. Then the form of the function would be

> S=bayes.influence(theta.s,cancermortality)

The output of this function is a list S; S$summary is a vector containing the
5th, 50th, and 95th percentiles and S$summary.obs is a matrix where the ith
row gives the percentiles for the posterior with the ith observation removed.

Fig. 5.5 is a graphical display of the sensitivity of the posterior inference
about log K with respect to the individual observations. The bold line shows
the posterior median and 90% probability interval for the complete dataset
and the remaining lines show the inference with each possible observation re-
moved. Note that if observation number 15 is removed ((yi, ni) = (54, 53637)),
then the location of log K is shifted toward smaller values. Also if either obser-
vation 10 or observation 19 is removed, log K is shifted toward larger values.
These two observations are notable since each city experienced three deaths
and had relatively high mortality rates.

> plot(c(0,0,0),S$summary,type="b",lwd=3,xlim=c(-1,21),

+ ylim=c(5,11), xlab="Observation removed",ylab="log K")

> for (i in 1:20)

+ lines(c(i,i,i),S$summary.obs[i,],type="b")

94 5 Introduction to Bayesian Computation

0 5 10 15 20

5
6

7
8

9
10

11

Observation removed

lo
g

K

Fig. 5.5. Ninety percent interval estimates for log K for full dataset (thick line) and
interval estimates for datasets with each individual observation removed.

5.11 Further Reading

Rejection sampling is a general method used in simulating probability distrib-
utions; discussion of rejection sampling for statistical problems is described in
Givens and Hoeting (2005), Monahan (2001), and Robert and Casella (2004).
Tanner (1996) introduces normal approximations to posterior distributions in
chapter 2 and Monte Carlo methods in chapter 3. Robert and Casella (2004)
in chapter 3 describe different aspects of Monte Carlo integration. Smith and
Gelfand (1992) introduce the use of rejecting sampling and the SIR algorithm
in simulating from the posterior distribution.

5.12 Summary of R Functions

bayes.influence – computes probability intervals for the log precision para-
meter K in a beta-binomial model for all“leave one out”models using sampling
importance resampling
Usage: bayes.influence(theta,data)

5.12 Summary of R Functions 95

Arguments: theta, matrix of simulated draws from the posterior of (logit eta,
log K) for a beta-binomial model; data, matrix with columns of counts and
sample sizes
Value: summary, vector of 5th, 50th and 95th percentiles of log K for posterior
of complete sample; summary.obs, matrix where the ith row contains the 5th,
50th and 95th percentiles of log K for posterior when the ith observation is
removed

betabinexch0 – computes the logarithm of the posterior for the parameters
(mean and precision) in a beta/binomial model
Usage: betabinexch0(theta,data)
Arguments: theta, matrix of parameter values where each row represents a
value of (eta, K); data, matrix with columns of counts and sample sizes
Value: vector of values of the log posterior where each value corresponds to
each row in the parameters in theta

betabinexch – computes the logarithm of the posterior for the parameters
(logit mean and log precision) in a beta/binomial model
Usage: betabinexch(theta,data)
Arguments: theta, matrix of parameter values where each row represents a
value of (logit eta, log K); data, matrix with columns of counts and sample
sizes
Value: vector of values of the log posterior where each value corresponds to
each row in the parameters in theta

impsampling – implements importance sampling to compute the posterior
mean of a function using a multivariate t proposal density
Usage: impsampling(logf,tpar,h,n,data)
Arguments: logf, function defining the log density; tpar, list of parameters of
a multivariate t proposal density including the mean m, the scale matrix var,
and the degrees of freedom df; h, function that defines h(theta); n, number
of simulated draws from the proposal density; data, data and or parameters
used in the function logf
Value: est, estimate at the posterior mean; se, simulation standard error of
the estimate; theta, matrix of simulated draws from proposal density; wt,
vector of importance sampling weights

laplace – for a general posterior density, computes the posterior mode, the
associated variance-covariance matrix, and an estimate at the logarithm at
the normalizing constant
Usage: laplace(logpost,mode,iter,par)
Arguments: logpost, function that defines the logarithm of the posterior den-
sity; mode, vector that is a guess at the posterior mode; iter, number of
iterations of Newton-Raphson algorithm; par, vector or list of parameters
associated with the function logpost

96 5 Introduction to Bayesian Computation

Value: mode, current estimate at the posterior mode; var, current estimate at
the associated variance-covariance matrix; int, estimate at the logarithm of
the normalizing constant

rejectsampling – implements a rejection sampling algorithm for a probabil-
ity density using a multivariate t proposal density
Usage: rejectsampling(logf,tpar,dmax,n,data)
Arguments: logf, function that defines the logarithm of the density of interest;
tpar, list of parameters of a multivariate t proposal density including the mean
m, the scale matrix var, and the degrees of freedom df; dmax, logarithm of the
rejection sampling constant; n, number of simulated draws from the proposal
density; data, data and or parameters used in the function logf
Value: matrix of simulated draws from density of interest

sir – implements the sampling importance resampling algorithm for a multi-
variate t proposal density
Usage: sir(logf,tpar,n,data)
Arguments: logf, function defining logarithm of density of interest; tpar, list
of parameters of a multivariate t proposal density including the mean m, the
scale matrix var, and the degrees of freedom df; n, number of simulated draws
from the posterior; data, data and parameters used in the function logf
Value: matrix of simulated draws from the posterior where each row corre-
sponds to a single draw

5.13 Exercises

1. Estimating a log-odds with a normal prior
Suppose y has a binomial distribution with parameters n and p, and we
are interested in the log-odds value θ = log (p/(1 − p)) . Our prior for θ is
that θ ∼ N(µ, σ). It follows that the posterior density of θ is given, up to
a proportionality constant, by

g(θ|y) ∝ exp(yθ)
(1 + exp(θ))n

exp
[
−(θ − µ)2

2σ2

]
.

More concretely, suppose we are interested in learning about the proba-
bility a special coin lands heads when tossed. A priori we believe that the
coin is fair, so we assign θ an N(0, .25) prior. We toss the coin n = 5 times
and obtain y = 5 heads.
a) Using a normal approximation to the posterior density, compute the

probability that the coin is biased toward heads (i.e., that θ is posi-
tive).

b) Using the prior density as a proposal density, design a rejection algo-
rithm for sampling from the posterior distribution. Using simulated
draws from your algorithm, approximate the probability that the coin
is biased toward heads.

5.13 Exercises 97

c) Using the prior density as a proposal density, simulate values from
the posterior distribution using the SIR algorithm. Approximate the
probability the coin is biased toward heads.

2. Genetic linkage model from Rao (2002)
Suppose 197 animals are distributed into four categories with the following
frequencies:

Category 1 2 3 4
Frequency 125 18 20 34

Assume that the probabilities of the four categories are given by the vector
(

1
2

+
θ

4
,
1
4
(1 − θ),

1
4
(1 − θ),

θ

4

)
,

where θ is an unknown parameter between 0 and 1. If θ is assigned a
uniform prior, then the posterior density of θ is given by

g(θ|data) ∝
(

1
2

+
θ

4

)125(1
4
(1 − θ)

)18(1
4
(1 − θ)

)20(
θ

4

)34

,

where 0 < θ < 1. If θ is transformed to the real-valued logit η =
log (θ/(1 − θ)), then the posterior density of η can be written as

f(η|data) ∝
(

2 +
eη

1 + eη

)125 1
(1 + eη)39

(
eη

1 + eη

)35

,−∞ < η < ∞.

a) Use a normal approximation to find a 95% probability interval for η.
Transform this interval to obtain a 95% probability interval for the
original parameter of interest θ.

b) Design a rejection sampling algorithm for simulating from the pos-
terior density of η. Use a t proposal density using a small number
of degrees of freedom and mean and scale parameters given by the
normal approximation.

3. Estimation for the two-parameter exponential distribution
Martz and Waller (1982) describe the analysis of a“type I/time-truncated”
life testing experiment. Fifteen reciprocating pumps were tested for a pre-
specified time; any failures among the pumps were replaced. One assumes
that the failure times follow the two-parameter exponential distribution

f(y|β, µ) =
1
β

e−(y−µ)/β , y ≥ µ.

Suppose one places a uniform prior on (µ, β). Then Martz and Waller
show that the posterior density is given by

g(β, µ|data) ∝ 1
βs

exp{−(t − nµ)/β}, µ ≤ t1,

98 5 Introduction to Bayesian Computation

where n is the number of items placed on test, t is the total time on test,
t1 is the smallest failure time, and s is the observed number of failures
in a sample of size n. In the example, data were reported in cycles to
failure; n = 15 pumps were tested for a total time of t = 15, 962, 989.
Eight failures (s = 8) were observed and the smallest failure time was
t1 = 237, 217.
a) Suppose one transforms the parameters to the real line by the trans-

formations θ1 = log β, θ2 = log(t1 − µ). Write down the posterior
density of (θ1, θ2).

b) Construct an R function that computes the log posterior density of
(θ1, θ2).

c) Use the laplace function to approximate the posterior density.
d) Use a multivariate t proposal density and the SIR algorithm to simu-

late a sample of 1000 draws from the posterior distribution.
e) Suppose one is interested in estimating the reliability at time t0 defined

by
R(t0) = e−(t0−µ)/β .

Using your simulated values from the posterior, find the posterior
mean and posterior standard deviation of R(t0) when t0 = 106 cycles.

4. Poisson regression
Haberman (1978) considers an experiment involving subjects reporting
one stressful event. The collected data are y1, ..., y18, where yi is the num-
ber of events recalled i months before the interview. Suppose yi is distrib-
uted Poisson with mean λi, where the {λi} satisfy the loglinear regression
model

log λi = β0 + β1i.

The data are shown in Table 5.2. If (β0, β1) is assigned a uniform prior,
then the logarithm of the posterior density is given, up to an additive
constant, by

log g(β0, β1|data) =
18∑

i=1

[
yi(β0 + β1i) − exp(β0 + β1i)

]
.

Table 5.2. Numbers of subjects recalling one stressful event.

Months 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

yi 15 11 14 17 5 11 10 4 8 10 7 9 11 3 6 1 1 4

a) Write a R function to compute the logarithm of the posterior density
of (β0, β1).

5.13 Exercises 99

b) Suppose we are interested in estimating the posterior mean and stan-
dard deviation for the slope β1. Approximate these moments by a
normal approximation about the posterior mode (function laplace).

c) Use a multivariate t proposal density and the SIR algorithm to simu-
late 1000 draws from the posterior density. Use this sample to estimate
the posterior mean and standard deviation of the slope β1. Compare
your estimates with the estimates using the normal approximation.

5. Grouped Poisson data
Hartley (1958) fits a Poisson model to the following grouped data:

Number of Events 0 1 2 3+ Total
Group Frequency 11 37 64 128 240

Suppose the mean Poisson parameter is λ and the frequency of observa-
tions with j events is nj , j = 0, 1, 2, and n3 is the frequency of observations
with at least three events. If the standard noninformative prior g(λ) = 1/λ
is assigned, then the posterior density is given by

g(λ|data) ∝ e−λ(n0+n1+n2)λn1+2n2−1

[
1 − e−λ

(
1 + λ +

λ2

2
)]n3

.

• Write an R function to compute the logarithm of the posterior density
of λ.

• Use the function laplace to find a normal approximation to the pos-
terior density of the transformed parameter θ = log λ.

• Use a t proposal density and the SIR algorithm to simulate 1000 draws
from the posterior. Use the simulated sample to estimate the posterior
mean and standard deviation of λ. Compare the estimates with the
normal approximation estimates found in part (a).

6

Markov Chain Monte Carlo Methods

6.1 Introduction

In Chapter 5, we introduced the use of simulation in Bayesian inference. Rejec-
tion sampling is a general method for simulating from an arbitrary posterior
distribution, but it can be difficult to set up since it requires the construc-
tion of a suitable proposal density. Importance sampling and SIR algorithms
are also general-purpose algorithms, but they also require proposal densities
that may be difficult to find for high-dimensional problems. In this chapter,
we illustrate the use of Markov chain Monte Carlo (MCMC) algorithms in
summarizing posterior distributions. Markov chains are introduced in the dis-
crete state space situation in Section 6.2. Through a simple random walk
example, we illustrate some of the important properties of a special Markov
chain, and we use R to simulate from the chain and move toward the sta-
tionary distribution. In Section 6.3, we describe two variants of the popular
Metropolis-Hastings algorithms in setting up Markov chains, and in Section
6.4, we describe Gibbs sampling where the Markov chain is set up through the
conditional distributions of the posterior. We describe one strategy for sum-
marizing a posterior distribution and illustrate it for three problems. MCMC
algorithms are very attractive in that they are easy to set up and program and
require relatively little prior input from the user. R is a convenient language
for programming these algorithm and is also very suitable for performing out-
put analysis, where one does several graphical and numerical computations
to check if the algorithm is indeed producing draws from the target posterior
distribution.

6.2 Introduction to Discrete Markov Chains

Suppose a person takes a random walk on a number line on the values 1, 2, 3,
4, 5, 6. If the person is currently at an interior value (2, 3, 4, or 5), in the next
second she is equally likely to remain at that number or move to an adjacent

102 6 Markov Chain Monte Carlo Methods

number. If she does move, she is equally likely to move left or right. If the
person is currently at one of the end values (1 or 6), in the next second she is
equally likely to stay or move to the adjacent location.

This is a simple example of a discrete Markov chain. A Markov chain de-
scribes probabilistic movement between a number of states. Here there are
six possible states, 1 through 6, corresponding to the possible location of the
walker. Given that the person is at a current location, she moves to other
locations with specified probabilities. The probability she moves to another
location depends only on her current location and not on previous locations
visited. We describe movement between states in terms of transition proba-
bilities – they describe the likelihoods of moving between all possible states
in a single step in a Markov chain. We summarize the transition probabilities
by means of a transition matrix T :

T =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

.50 .50 0 0 0 0

.25 .50 .25 0 0 0
0 .25 .50 .25 0 0
0 0 .25 .50 .25 0
0 0 0 .25 .50 .25
0 0 0 0 .50 .50

⎤

⎥⎥⎥⎥⎥
⎥
⎦

The first row in T gives the probabilities of moving to all states 1 through 6 in
a single step from location 1, the second row gives the transition probabilities
in a single step from location 2, and so on.

There are several important properties of this particular Markov chain.
It is possible to go from every state to every state in one or more steps –
a Markov chain with this property is said to be irreducible. Given that the
person is in a particular state, if the person can only return to this state at
regular intervals, then the Markov chain is said to be periodic. This example
is aperiodic since it is not a periodic Markov chain.

We can represent one’s current location as a probability row vector of the
form

p = (p1, p2, p3, p4, p5, p6),

where pi represents the probability the person is currently in state i. If pj

represents the location of the traveler at step j, then the location of the
traveler at the j + 1 step is given by the matrix product

pj+1 = pjT.

Suppose we can find a probability vector w such that wP = w. Then w is
said to be the stationary distribution. If a Markov chain is irreducible and
aperiodic, then it has a unique stationary distribution. Moreover, the limiting
distribution of this Markov chain, as the number of steps approaches infinity,
will be equal to this stationary distribution.

We can empirically demonstrate the existence of the stationary distribu-
tion of our Markov chain by running a simulation experiment. We start our

6.2 Introduction to Discrete Markov Chains 103

random walk at a particular state, say location 3, and then simulate many
steps of the Markov chain using the transition matrix T . The relative fre-
quencies of our traveler in the six locations after many steps will eventually
approach the stationary distribution w.

We start our simulation in R by reading in the transition matrix T and
setting up a storage vector s for the locations of our traveler in the random
walk.

> T=matrix(c(.5,.5,0,0,0,0,.25,.5,.25,0,0,0,0,.25,.5,.25,0,0,

+ 0,0,.25,.5,.25,0,0,0,0,.25,.5,.25,0,0,0,0,.5,.5),

+ nrow=6,ncol=6,byrow=TRUE)

> T

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.50 0.50 0.00 0.00 0.00 0.00
[2,] 0.25 0.50 0.25 0.00 0.00 0.00
[3,] 0.00 0.25 0.50 0.25 0.00 0.00
[4,] 0.00 0.00 0.25 0.50 0.25 0.00
[5,] 0.00 0.00 0.00 0.25 0.50 0.25
[6,] 0.00 0.00 0.00 0.00 0.50 0.50

> s=array(0,c(50000,1))

We indicate that the starting location for our traveler is state 3 and perform
a loop to simulate 50,000 draws from the Markov chain. We use the sample
function to simulate one step – the arguments to this function indicate that
we are sampling a single value from the set {1, 2, 3, 4, 5, 6} with probabilities
given by the sj−1 row of the transition matrix T , where sj−1 is the current
location of our traveler.

> s[1]=3

> for (j in 2:50000)

+ s[j]=sample(1:6,size=1,prob=T[s[j-1],])

We summarize the frequencies of visits to the six states after 500, 2000,
8000, and 50,000 steps of the chain by use of the table command; we convert
the counts to relative frequencies by dividing by the number of steps.

> m=c(500,2000,8000,50000)

> for (i in 1:4)

+ print(table(s[1:m[i]])/m[i])

1 2 3 4 5 6
0.164 0.252 0.174 0.130 0.174 0.106

1 2 3 4 5 6
0.1205 0.1965 0.1730 0.1735 0.2170 0.1195

104 6 Markov Chain Monte Carlo Methods

1 2 3 4 5 6
0.109250 0.188000 0.183875 0.194625 0.212000 0.112250

1 2 3 4 5 6
0.10970 0.20770 0.19450 0.19342 0.19628 0.09840

It appears from the output that the relative frequencies of the states are con-
verging to the stationary distribution w = (0.1, 0.2, 0.2, 0.2, 0.2, 0.1). We can
confirm that w is indeed the stationary distribution of this chain by multiply-
ing w by the transition matrix T :

> w=matrix(c(.1,.2,.2,.2,.2,.1),nrow=1,ncol=6)

> w%*%T

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.1 0.2 0.2 0.2 0.2 0.1

6.3 Metropolis-Hasting Algorithms

A popular way of simulating from a general posterior distribution is by Markov
chain Monte Carlo (MCMC) methods. This essentially is a continuous-valued
generalization of the discrete Markov chain setup described in the previous sec-
tion. The MCMC sampling strategy sets up an irreducible, aperiodic Markov
chain for which the stationary distribution equals the posterior distribution
of interest. A general way of constructing a Markov chain is by a Metropolis-
Hastings algorithm. In this section, we focus on two particular variants of
Metropolis-Hastings algorithms, the independence chain and the random walk
chain, that are applicable to a wide variety of Bayesian inference problems.

Suppose we wish to simulate from a posterior density g(θ|y). In the follow-
ing, to simplify notation, we write the density simply as g(θ). A Metropolis-
Hastings algorithm begins with an initial value θ0 and specifies a rule for
simulating the tth value in the sequence θt given the (t − 1)st value in the
sequence θt−1. This rule consists of a proposal density which simulates a can-
didate value θ∗, and the computation of an acceptance probability P that
indicates the probability the candidate value will be accepted to be the next
value in the sequence. Specifically, this algorithm can be described as follows:

• Simulate a candidate value θ∗ from a proposal density p(θ∗|θt−1).
• Compute the ratio

R =
g(θ∗)p(θt−1|θ∗)

g(θt−1)p(θ∗|θt−1)
.

• Compute the acceptance probability P = min{R, 1}.
• Sample a value θt such that θt = θ∗ with probability P ; otherwise θt =

θt−1.

6.3 Metropolis-Hasting Algorithms 105

Under some easily satisfied regularity conditions on the proposal density
p(θ∗|θt−1), the sequence of simulated draws θ1, θ2, ... will converge to a random
variable that is distributed according to the posterior distribution g(θ).

Different Metropolis-Hastings algorithms are constructed by the choice of
proposal density. If the proposal density is independent of the current value
in the sequence, that is,

p(θ∗|θt−1) = p(θ∗),

then the resulting algorithm is called an independence chain. Other proposal
densities can be defined by letting the density have the form

p(θ∗|θt−1) = h(θ∗ − θt−1),

where h is a symmetric density about the origin. In this type of random walk
chain, the ratio R has the simple form

R =
g(θ∗)

g(θt−1)
.

The R functions rwmetrop and indepmetrop in the LearnBayes pack-
age implement, respectively, the random-walk and independence Metropolis-
Hasting algorithms for special choices of proposal densities. For the function
rwmetrop, the proposal density has the form

θ∗ = θt−1 + scale Z,

where Z is multivariate normal with mean vector 0 and variance-covariance
matrix V and scale is a positive scale parameter. For the function indepmetrop,
the proposal density for θ∗ is multivariate normal with mean vector µ and co-
variance matrix V .

To use a Metropolis-Hastings algorithm, one first decides on the proposal
density and then obtains a simulated sample of draws {θt, t = 1, ...m} by use
of the R functions rwmetrop or indepmetrop. The output of each of these
functions has two components: par is a matrix of simulated draws where each
row corresponds to a value of θ, and accept gives the acceptance rate of the
algorithm.

Desirable features of the proposal density in an algorithm depend on the
MCMC algorithm employed. For an independence chain, we desire that the
proposal density p approximates the posterior density g, suggesting a high
acceptance rate. But, as in rejection sampling, it is important that the ratio
g/p is bounded, especially in the tail portion of the posterior density. This
means that one may choose a proposal p that is more diffuse than the posterior,
resulting in a lower acceptance rate. For random walk chains with normal
proposal densities, it has been suggested that acceptance rates between 25%
and 45% are good. The “best” choice of acceptance rate ranges from 45% for
one and two parameters to 25% for problems with more parameters. This
advice also applies when one monitors the Metropolis within Gibbs algorithm
described in Section 6.4.

106 6 Markov Chain Monte Carlo Methods

6.4 Gibbs Sampling

One of the attractive methods of setting up an MCMC algorithm is Gibbs
sampling. Suppose that the parameter vector of interest is θ = (θ1, ..., θp).
The joint posterior distribution of θ, which we denote by [θ|data], may be
of high dimension and difficult to summarize. Suppose we define the set of
conditional distributions

[θ1|θ2, ..., θp,data],

[θ2|θ1, θ3, ..., θp,data],

...

[θp|θ1, ..., θp−1,data],

where [X|Y,Z] represents the distribution of X conditional on values of the
random variables Y and Z. The idea behind Gibbs sampling is that we can
set up a Markov chain simulation algorithm from the joint posterior distribu-
tion by successfully simulating individual parameters from the set of p condi-
tional distributions. Simulating in turn one value of each individual parameter
from these distributions is called one cycle of Gibbs sampling. Under general
conditions, draws from this simulation algorithm will converge to the target
distribution (the joint posterior of θ) of interest.

In situations where it is not convenient to sample directly from the condi-
tional distributions, one can use a Metropolis algorithm such as the random
walk type to simulate from each distribution. A “Metropolis within Gibbs” al-
gorithm of this type is programmed in the function gibbs in the LearnBayes
package. Suppose that θt

i represents the current value of θi in the simulation
and let g(θi) represent the conditional distribution where we have suppressed
the dependence of this distribution on values of the remaining components of
θ. Then a candidate value for θi is given by

θ∗i = θt
i + ciZ,

where Z is a standard normal variate and ci is a fixed scale parameter. The
next simulated value of θi, θt+1

i , will be equal to the candidate value with
probability P = min{1, g(θ∗i)/g(θt

i)}; otherwise the value θt+1
i = θt

i . To use
the function gibbs, one inputs the function defining the log posterior, the
starting value of the simulation, the number of Gibbs cycles, and a vector
of scale parameters containing c1, ..., cp. The output of gibbs is a list; the
component par is a matrix of simulated draws and accept is a vector of
acceptance rates for the individual Metropolis steps.

6.5 MCMC Output Analysis

For the MCMC algorithms described in this book, the distribution of the sim-
ulated value at the jth iterate, θj , will converge to a draw from the posterior

6.5 MCMC Output Analysis 107

distribution as j approaches infinity. Unfortunately, this theoretical result pro-
vides no practical guidance on how to decide if the simulated sample provides
a reasonable approximation to the posterior density g(θ|data).

In typical practice, one monitors the performance of an MCMC algorithm
by inspecting the value of the acceptance rate, constructing graphs, and com-
puting diagnostic statistics on the stream of simulated draws. We call this in-
vestigation an MCMC output analysis. By means of this exploratory analysis,
one decides if the chain has sufficiently explored the entire posterior distri-
bution (there is good mixing) and the sequence of draws has approximately
converged. If one has a sample from the posterior distribution, then one wishes
to obtain a sufficient number of draws so that one can accurately estimate any
particular summary of the posterior of interest.

In this section we briefly describe some of the important issues in interpret-
ing MCMC output and describe a few graphical and numerical diagnostics for
assessing convergence. One issue in understanding MCMC output is detecting
the size of the burn-in period. The simulated values of θ obtained at the be-
ginning of an MCMC run are not distributed from the posterior distribution.
However, after some number of iterations have been performed (the burn-in
period), the effect of the initial values wears off and the distribution of the new
iterates approaches the true posterior distribution. One way of estimating the
length of the burn-in period is to examine trace plots of simulated values of
a component or particular function of θ against the iteration number. Trace
plots are especially important when MCMC algorithms are initialized with
parameter values that are far from the center of the posterior distribution.

A second concern in analyzing output from MCMC algorithms is the de-
gree of autocorrelation in the sampled values. In both the Metropolis and
Gibbs sampling algorithms, the simulated value of θ at the (j + 1)st iteration
is dependent on the simulated value at the jth iteration. If there is strong
correlation between successive values in the chain, then two consecutive val-
ues provide only marginally more information about the posterior distribution
than a single simulated draw. Also, a strong correlation between successive
iterates may prevent the algorithm from exploring the entire region of the
parameter space. A standard statistic for measuring the degree of dependence
between successive draws in the chain is the autocorrelation that measures the
correlation between the sets {θj} and {θj+L}, where L is the lag or number
of iterates separating the two sets of values. A standard graph is to plot the
values of the autocorrelation against the log L. If the chain is mixing ade-
quately, the values of the autocorrelation will decrease to zero as the lag value
is increased.

Another issue that arises in output analysis is the choice of the simulated
sample size and the resulting accuracy of calculated posterior summaries. Since
iterates in an MCMC algorithm are not independent, one cannot use stan-
dard “independent sample” methods to compute estimated standard errors.
One simple method of computing standard errors for correlated output is the
method of batch means. Suppose we estimate the posterior mean of θi with

108 6 Markov Chain Monte Carlo Methods

the summary sample mean

θ̄i =

∑m
j=1 θj

i

m
.

What is the simulation standard error of this estimate? In the batch means
method, the stream of simulated draws {θj

i } is subdivided into b batches, each
batch of size v, where m = bv. In each batch, we compute a sample mean;
call the set of sample means θ̄1

i , ..., θ̄b
i . If the lag one autocorrelation in the

sequence in the batch means is small, then we can approximate the standard
error of the estimate θ̄i by the standard deviation of the batch means divided
by the square root of the number of batches.

6.6 A Strategy in Bayesian Computing

For a particular Bayesian inference problem, we assume that one has defined
the log posterior density by an R function. Following the recommendation of
Gelman et al (2003), Chapter 11, a good approach for summarizing this den-
sity is to set up a Markov chain simulation algorithm. The Metropolis-Hastings
random walk and independence chains and the Gibbs sampling algorithm are
attractive Markov chains since they are easy to program and require relatively
little prior input. But these algorithms do require some initial guesses at the
location and spread of the parameter vector θ. These initial guesses can be
found by non-Bayesian methods such as the method of moments or maximum
likelihood. Alternatively, one can obtain an approximation to the posterior
distribution by finding the mode by use of some optimization algorithm. For
example, Newton’s method gives the posterior mode and an approximation
to the variance-covariance matrix that can be used in specifying the proposal
densities in the Metropolis-Hastings algorithms.

In our examples, we illustrate the use of the function laplace to locate
the posterior density. We can check the accuracy of the normal approximation
in the two-parameter case by the construction of a contour graph of the joint
posterior. These examples show that there can be some errors in the normal
approximation. But the laplace function is still helpful in that the values of
θ̂ and V can be used to construct efficient Metropolis-Hastings algorithms for
simulating from the exact joint posterior distribution. Once one has decided
that the simulated stream of values represents an approximate sample from
the posterior, then one can summarize this sample in different ways to perform
inferences about θ.

6.7 Learning About a Normal Population from Grouped
Data

As a first example, suppose a random sample is taken from a normal popula-
tion with mean µ and standard deviation σ. But one only observes the data

6.7 Learning About a Normal Population from Grouped Data 109

in “grouped” form, where the frequencies of the data in bins are recorded. For
example, suppose one is interested in learning about the mean and standard
deviation of the heights (in inches) of men from a local college. One is given
the summary frequency data shown in Table 6.1. One sees that 14 men were
shorter than 66 inches, 30 men had heights between 66 and 68 inches, and so
on.

Table 6.1. Grouped frequency data for heights of male students at a college.

Height Interval (in.) Frequency

less than 66 14
between 66 and 68 30
between 68 and 70 49
between 70 and 72 70
between 72 and 74 33

over 74 15

We are observing multinomial data with unknown bin probabilities p1, ..., p6

where the probabilities are functions of the unknown parameters of the normal
population. For example, the probability that a student’s height is between
66 and 68 inches is given by p2 = Φ(68, µ, σ) − Φ(66, µ, σ), where Φ(;µ, σ) is
the cdf of a normal(µ, σ) random variable. It is straightforward to show that
the likelihood of the normal parameters given this grouped data is given by

L(µ, σ) = Φ(66, µ, σ)14(Φ(68, µ, σ) − Φ(66, µ, σ))30

× (Φ(70, µ, σ) − Φ(68, µ, σ))49(Φ(72, µ, σ) − Φ(70, µ, σ))70

× (Φ(74, µ, σ) − Φ(72, µ, σ))33(1 − Φ(74, µ, σ))15.

Suppose (µ, σ) are assigned the usual noninformative prior proportional
to 1/σ. Then the posterior density of the parameters is proportional to

g(µ, σ|data) ∝ 1
σ

L(µ, σ).

Following our general strategy, we transform the positive standard deviation
by λ = log(σ) and the posterior density of (µ, λ) is given by

g(µ, λ|data) ∝ L(µ, exp(λ)).

We begin by writing a short function groupeddatapost that computes the
logarithm of the posterior density of (µ, λ). There are two arguments to this
function: a matrix theta, where each row corresponds to a value of (µ, λ),
and a list data. The list has two components: data$b is a vector of cutpoints
for the bins and data$f is a vector of bin frequencies.

110 6 Markov Chain Monte Carlo Methods

groupeddatapost=function(theta,data)
{
cpoints=data$b
freq=data$f
nbins=length(cpoints)
m=theta[,1]; logsigma=theta[,2]
z=0*m; s=exp(logsigma)
z=freq[1]*log(pnorm(cpoints[1],m,s))
for (j in 1:(nbins-1))
z=z+freq[j+1]*log(pnorm(cpoints[j+1],m,s)-
pnorm(cpoints[j],m,s))

z=z+freq[nbins]*log(1-pnorm(cpoints[nbins],m,s))
return(z)
}

We begin by defining the grouped data by the list d.

> d=list(b=seq(66,74,by=2),f=c(14,30,49,70,33,15))

To use the function laplace, one requires a good guess at the location
of the posterior mode. To estimate the mode of (µ, log σ), we first create
an artificial continuous dataset by replacing each grouped observation by its
bin midpoint. Then we approximate the posterior mode by computing the
sample mean and the logarithm of the standard deviation of these artificial
observations.

> y=c(rep(65,14),rep(67,30),rep(69,49),rep(71,70),rep(73,33),

+ rep(75,15))

> mean(y)

[1] 70.16588

> log(sd(y))

[1] 0.9504117

Based on this computation, we believe that the posterior of the vector
(µ, log σ) is approximately (70, 1). We use the laplace function, where the
log posterior is defined in the function groupeddatapost, start is set equal to
this starting value, 10 iterations of Newton’s method are run, and the grouped
data are contained in the list d.

> start=array(c(70,1),c(1,2))

> fit=laplace(groupeddatapost,start,10,d)

> fit

$mode
[,1] [,2]

[1,] 70.61358 1.104264

6.7 Learning About a Normal Population from Grouped Data 111

$var
[,1] [,2]

[1,] 0.0425681264 0.0005563627
[2,] 0.0005563627 0.0032063738

$int
[1] -391.794

From the output, the posterior mode of (µ, log σ) is found to be (70.61, 1.10).
The associated posterior standard deviations of the parameters can be esti-
mated by computing the square roots of the diagonal elements of the variance-
covariance matrix.

> modal.sds=sqrt(diag(fit$var))

We use the output from the function laplace to design a Metropolis ran-
dom walk algorithm to simulate from the joint posterior. For the proposal
density we use the variance-covariance matrix obtained from laplace and we
set the scale parameter equal to 2. We run 10,000 iterations of the random
walk algorithm starting at the value start. The output fit2 is a list with two
components: par is a matrix of simulated values where each row corresponds
to a single draw of the parameter vector, and accept gives the acceptance
rate of the random walk chain.

> proposal=list(var=fit$var,scale=2)

> fit2=rwmetrop(groupeddatapost,proposal,start,10000,d)

We monitor the algorithm by displaying the acceptance rate; here the
value is .2937 which is close to the desired acceptance rate for this Metropolis
random walk algorithm.

> fit2$accept

[1] 0.2937

We can summarize the parameters µ and log σ by computation of the
posterior means and posterior standard deviations.

> post.means=apply(fit2$par,2,mean)

> post.sds=apply(fit2$par,2,sd)

One can assess the accuracy of the model approximation to the posterior by
comparing the means and standard deviations from the function laplace with
the values computed from the simulated output from the MCMC algorithm.

> cbind(c(fit$mode),modal.sds)

modal.sds
[1,] 70.613579 0.20632045
[2,] 1.104264 0.05662485

112 6 Markov Chain Monte Carlo Methods

> cbind(post.means,post.sds)

post.means post.sds
[1,] 70.609472 0.21042984
[2,] 1.110115 0.05790169

For this model, there is close agreement in the two sets of posterior moments
which indicates that the modal approximation to the posterior distribution is
reasonably accurate.

We confirm this statement by using the function mycontour to draw a
contour plot of the joint posterior of µ and log σ. The last 5000 simulated draws
from the random walk Metropolis algorithm are drawn on top in Fig. 6.1. Note
that the contour lines have an elliptical shape that confirms the accuracy of
the normal approximation in this example.

> mycontour(groupeddatapost,c(69.5,71.5,.8,1.4),d)

> points(fit2$par[5001:10000,1],fit2$par[5001:10000,2])

> title(xlab="mu",ylab="log sigma")

69.5 70.0 70.5 71.0 71.5

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

mu

lo
g

si
gm

a

Fig. 6.1. Contour plot of posterior of µ and log σ for grouped data example. A
simulated sample of 5000 draws of the posterior is also shown.

6.8 Example of Output Analysis 113

6.8 Example of Output Analysis

We illustrate the use of MCMC output analysis by use of the R package boa
that will be described in Chapter 11. Suppose we rerun the Metropolis random
walk algorithm for the grouped data posterior with poor choices of starting
value and proposal density. As a starting value, we choose (µ, log σ) = (65, 1)
(the choice of µ is too small) and we select the small scale factor of 0.2 (instead
of 2):

> start=array(c(65,1),c(1,2))

> proposal=list(var=fit$var,scale=0.2)

We then rerun the Metropolis function rwmetrop:

> bayesfit=rwmetrop(groupeddatapost,proposal,start,10000,d)

We find that the acceptance rate of this modified algorithm is 0.89 which is
much larger than the 0.29 rate that we found using the scale factor 2.

Fig. 6.2 displays a trace plot of the simulated draws of µ from this Metropo-
lis algorithm. Note that there is a significant burn-in period, approximately
600 iterations, before the simulated draws reach the main support of the pos-
terior of µ. Also note the irregularity of the simulated sequence; for example,
the iterates will explore the region where µ > 71 for a while before returning
to the center of the distribution.

One can observe the strong correlation structure of the sequence by the
use of an autocorrelation plot shown in Fig. 6.3. The autocorrelations are close
to one for lag one and reduce very slowly as a function of the lag.

The following summary output of the simulated draws of µ confirm the
behavior of the MCMC run seen in Fig. 6.2 and Fig. 6.3. The estimate at the
posterior mean of µ is 70.32. If we assume naively that this simulated sample
represented independent draws, then the standard error of this estimate is
.0106. However, a more accurate estimate at the standard error is the Batch
SE given by .0744. The lag one autocorrelation of the batch means (using
batches of size 50) is .924.

SUMMARY STATISTICS:
===================
Bin size for calculating Batch SE and (Lag 1) ACF = 50

Chain: mu

114 6 Markov Chain Monte Carlo Methods

0 2000 4000 6000 8000 10000

65
66

67
68

69
70

71

Iteration

pa
r1

mu

Sampler Trace

Fig. 6.2. Trace plot of simulated draws of µ for an MCMC chain with poor choices
for starting value and scale factor.

Mean SD Naive SE MC Error Batch SE Batch ACF

par1 70.31933 1.055536 0.01055536 0.1395873 0.07443487 0.9243932
0.025 0.5 0.975 MinIter MaxIter Sample

par1 65.98562 70.57855 70.99605 1 10000 10000

It is instructive to compare these diagnostic graphs with the graphs using
the better starting value and choice of proposal density used in Section 6.7.
Fig. 6.4 and Fig. 6.5 display a trace plot and autocorrelation graph of the
simulated draws of µ using the starting value (µ, log σ) = (70, 1) and scale
factor equal to 2. The trace plot of the simulated stream of µ looks more like
random noise. The lag one autocorrelation is high, but the autocorrelation
values dissipate rapidly as a function of the lag.

As before, we can compute summary statistics for this stream of MCMC
output.

6.8 Example of Output Analysis 115

0 10 20 30 40

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

par1

Lag

A
ut

oc
or

re
la

tio
n

mu

Sampler Lag−Autocorrelations

Fig. 6.3. Autocorrelation plot of simulated draws of µ for an MCMC chain with
poor choices for starting value and scale factor.

SUMMARY STATISTICS:
===================
Bin size for calculating Batch SE and (Lag 1) ACF = 50

Chain: mu

Mean SD Naive SE MC Error Batch SE
par1 70.61206 0.2065044 0.002065044 0.005924462 0.005778565

Batch ACF 0.025 0.5 0.975 MinIter MaxIter
par1 -0.003788097 70.19776 70.61043 71.01351 1 10000

Sample
par1 10000

Here the estimate of the posterior mean of µ is 70.61 with a batch standard
error of .006. The autocorrelation between batch means of size 50 is the small
value −0.0037. The graphs and the summary statistics confirm the better
performance of the MCMC chain with a starting value (µ, log σ) = (70, 1) and
scale factor of 2.

116 6 Markov Chain Monte Carlo Methods

0 2000 4000 6000 8000 10000

70
.0

70
.5

71
.0

71
.5

Iteration

pa
r1

mu

Sampler Trace

Fig. 6.4. Trace plot of simulated draws of µ for MCMC chain with good choices for
starting value and scale factor.

6.9 Modeling Data with Cauchy Errors

For a second example, suppose that we are interested in modeling data where
outliers may be presented. Suppose y1, ..., yn are a random sample from a
Cauchy density with location parameter µ and scale parameter σ:

f(y|µ, σ) =
1

πσ(1 + z2)
,

where z = (y − µ)/σ. Suppose that we assign the usual noninformative prior
to (µ, σ):

g(µ, σ) =
1
σ

.

The posterior density of µ and σ is given, up to a proportionality constant,
by

g(µ, σ|data) ∝ 1
σ

n∏

i=1

f(yi|µ, σ).

=
1
σ

n∏

i=1

[1
σ

(
1 + (yi − µ)2/σ2

)−1]
.

6.9 Modeling Data with Cauchy Errors 117

0 10 20 30 40

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

par1

Lag

A
ut

oc
or

re
la

tio
n

mu

Sampler Lag−Autocorrelations

Fig. 6.5. Autocorrelation plot of simulated draws of µ for an MCMC chain with
good choices for starting value and scale factor.

Again we first transform the positive parameter σ to the real line by the
reexpression λ = log σ, leading to the posterior density of (µ, λ):

g(µ, λ|data) ∝
n∏

i=1

[
exp(−λ)

(
1 + exp(−2λ)(yi − µ)2

)−1]
.

The logarithm of the density is then given, up to an additive constant, by

log g(µ, λ|data) =
n∑

i=1

[
− λ − log

(
1 + exp(−2λ)(yi − µ)2

)]
.

We write the following R function cauchyerrorpost to compute the log-
arithm of the posterior density. There are two arguments to the function:
theta, a matrix where each row corresponds to a value of the pair (µ, λ), and
the vector of observations y. Since the parameters are vectors, we use a loop
in the function where the individual terms of the log likelihood are summed
over the values of y1, ..., yn. To simplify the code, we use the R function dt,
which computes the density of the t random variable. (The Cauchy density is
the t density with a single degree of freedom.)

118 6 Markov Chain Monte Carlo Methods

cauchyerrorpost=function(theta,y)
{
mu=theta[,1]; lambda=theta[,2]
sigma=exp(lambda)
val=0*mu
for (i in 1:length(y))

{val=val+log(dt((y[i]-mu)/sigma,df=1)/sigma)}
return(val)
}

We apply this model to Darwin’s famous dataset concerning 15 differences
of the heights of cross- and self-fertilized plants quoted by Fisher (1960). This
dataset can be found in the LearnBayes library with the name darwin. We
read in the dataset and attach the dataframe so we can access the variable
difference. We initially compute the mean and logarithm of the standard
deviation of the data to get some initial estimates at the locations of the
posterior distributions of µ and λ = log(σ).

> data(darwin)

> attach(darwin)

> mean(difference)

[1] 21.66667

> log(sd(difference))

[1] 3.65253

To find the posterior mode, we use the function laplace. The arguments
are the name of the function cauchyerrorpost defining the log posterior den-
sity, an array of initial estimates at the parameters, the number of iterations of
the Newton-Raphson algorithm, and the data used in the log posterior func-
tion. For initial estimates, we use the values µ = 21.6, λ = 3.6 found earlier,
and we use 10 iterations of the algorithm.

> laplace(cauchyerrorpost,array(c(21.6,3.6),c(1,2)),10,difference)

$mode
[,1] [,2]

[1,] 24.70160 2.772829

$var
[,1] [,2]

[1,] 34.9647321 0.3672069
[2,] 0.3672069 0.1378207

$int
[1] -73.24035

6.9 Modeling Data with Cauchy Errors 119

The posterior mode is given by (µ, λ) = (24.7, 2.77). The output also gives
the associated variance-covariance matrix and an estimate at the log integral.

We can use these estimates of center and spread to construct a rectangle
that covers essentially all of the posterior probability of the parameters. As an
initial guess at this rectangle, we take for each parameter the posterior mode
plus and minus four standard deviations, where the standard deviations are
obtainable from the diagonal elements of the variance-covariance matrix.

> c(24.7-4*sqrt(34.96),24.7+4*sqrt(34.96))

[1] 1.049207 48.350793

> c(2.77-4*sqrt(.138),2.77+4*sqrt(.138))

[1] 1.284066 4.255934

After some trial and error, we use the rectangle µ ∈ (−10, 60), λ ∈ (1, 4.5)
as the bounding rectangle for the function mycontour. Fig. 6.6 displays the
contour graph of the exact posterior distribution.

> mycontour(cauchyerrorpost,c(-10,60,1,4.5),difference)

> title(xlab="mu",ylab="log sigma")

The contours of the exact posterior distribution have an interesting shape
and one may wonder how these contours compare to those for a bivariate nor-
mal approximation. In the R code, we rerun the laplace function to obtain
the posterior mode t$mode and associated variance-covariance matrix t$var.
Using these values as inputs, we draw contours of a bivariate normal density
in Fig. 6.7 where the log bivariate normal density is programmed in the func-
tion lbinorm. The eliptical shape of these normal contours seems significantly
different from the shape of the exact posterior contours, which indicates that
the normal approximation may be inadequate.

> fitlaplace=laplace(cauchyerrorpost,array(c(21.6,3.6),c(1,2)),

+ 10,difference)

> mycontour(lbinorm,c(-10,60,1,4.5),list(m=fitlaplace$mode,

+ v=fitlaplace$var))

> title(xlab="mu",ylab="log sigma")

Although the normal approximation may not be the best summary of the
posterior distribution, the estimated variance-covariance matrix is helpful in
setting up a Metropolis random walk chain. We initially define a list proposal
that contains the estimated variance-covariance matrix and a scale factor. We
define the starting value of the chain in the array start. The simulation
algorithm is run using the function rwmetrop. The inputs are the function
defining the log posterior, the list proposal, the starting value, the number
of simulations, and the data vector.

120 6 Markov Chain Monte Carlo Methods

−10 0 10 20 30 40 50 60

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

mu

lo
g

si
gm

a

Fig. 6.6. Contour plot of posterior of µ and log σ for Cauchy error model problem.

> proposal=list(var=fitlaplace$var,scale=2.5)

> start=array(c(20,3),c(1,2))

> m=1000

> s=rwmetrop(cauchyerrorpost,proposal,start,m,difference)

> mycontour(cauchyerrorpost,c(-10,60,1,4.5),difference)

> title(xlab="mu",ylab="log sigma")

> points(s$par[,1],s$par[,2])

In Fig. 6.8 we display simulated draws from rwmetrop on top of the contour
graph.

Fig. 6.9 and Fig. 6.10 show the “exact” marginal posterior densities of µ
and log σ found from a density estimate from 50,000 simulated draws from
the random walk algorithm. Also each figure shows the approximate normal
approximation from the laplace output. These figures demonstrate the non-
normal shape of these marginal posteriors.

6.9 Modeling Data with Cauchy Errors 121

−10 0 10 20 30 40 50 60

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

mu

lo
g

si
gm

a

Fig. 6.7. Contour plot of normal approximation to posterior of µ and log σ for
Cauchy error model problem.

It is instructive to illustrate “brute-force” and other Metropolis-Hastings
algorithms for this problem. The brute-force algorithm is based on simulating
draws of (µ, log σ) from the grid using the function simcontour. One can use
a Metropolis-Hastings independence chain, where the proposal density is mul-
tivariate normal with mean and variance given by the normal approximation.
Alternatively, one can apply a Gibbs sampling algorithm with a vector of scale
parameters equal to (12, .75); these values are approximately equal to twice
the estimated posterior standard deviations of the two parameters. All the
simulation algorithms were run with a simulation sample size of 50,000. The
R code for the implementation of the four simulation algorithms follows.

> fitgrid=simcontour(cauchyerrorpost,c(-10,60,1,4.5),difference,

+ 50000)

> proposal=list(var=fitlaplace$var,scale=2.5)

> start=array(c(20,3),c(1,2))

> fitrw=rwmetrop(cauchyerrorpost,proposal,start,50000,

+ difference)

> proposal2=list(var=fitlaplace$var,mu=t(fitlaplace$mode))

> fitindep=indepmetrop(cauchyerrorpost,proposal2,start,50000,

122 6 Markov Chain Monte Carlo Methods

−10 0 10 20 30 40 50 60

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

mu

lo
g

si
gm

a

Fig. 6.8. Contour plot of posterior of µ and log σ with simulated sample for Cauchy
error model problem.

+ difference)

> fitgibbs=gibbs(cauchyerrorpost,start,50000,c(12,.75),

+ difference)

The simulated draws for a parameter can be summarized by the computation
of the 5th, 50th, and 95th percentiles. For example, one can find the summaries
of µ and log σ from the random walk simulation by the command

> apply(fitrw$par,2,mean)

[1] 25.562859 2.843484

> apply(fitrw$par,2,sd)

[1] 7.175004 0.372534

Table 6.2 displays the estimated posterior quantiles for all of the algorithms
described in this chapter. In addition, the acceptance rates for the Metropolis-
Hastings random walk and independence chains and the Gibbs sampler are
shown. Generally there is agreement among the simulation-based methods and
these “exact” posterior summaries are different from the quantiles found using

6.9 Modeling Data with Cauchy Errors 123

−20 0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

mu

P
os

te
rio

r
D

en
si

ty

Random walk
Normal

Fig. 6.9. Posterior density of µ using normal approximation and simulated draws
from the Metropolis random walk chain.

the Laplace normal approximation. The exact marginal posterior distribution
of µ has heavier tails than suggested by the normal approximation; also there
is some skewness in the marginal posterior distribution of log σ.

Table 6.2. Summaries of the marginal posterior densities of µ and log σ using five
computational methods.

Method Acceptance Rate µ log σ

Normal approx. (15.0, 24.7, 34.4) (2.16, 2.77, 3.38)

Brute force (14.5, 25.1, 37.7) (2.22, 2.85, 3.45)

Random walk .231 (14.8, 25.1, 38.0) (2.23, 2.85, 3.45)

Independence .849 (14.4, 25.0, 37.1) (2.22, 2.85, 3.44)

Gibbs (.318, .314) (14.5, 25.2, 38.0) (2.20, 2.86, 3.45)

124 6 Markov Chain Monte Carlo Methods

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log sigma

P
os

te
rio

r
D

en
si

ty

Random walk
Normal

Fig. 6.10. Posterior density of log σ using normal approximation and simulated
draws from the Metropolis random walk chain.

6.10 Analysis of the Stanford Heart Transplant Data

Turnbull et al (1974) describe a number of approaches for analyzing heart
transplant data from the Stanford Heart Transplanation Program. One of the
inferential goals is to decide if heart transplantation extends a patient’s life.
One of their models, the Pareto model, assumes individual patients in the
nontransplant group have exponential lifetime distributions with mean 1/θ,
where θ is assumed to vary between patients and is drawn from a gamma
distribution with density

f(θ) =
λp

Γ (p)
θp−1 exp(−λθ).

Patients in the transplant group have a similar exponential lifetime distribu-
tion where the mean is 1/(θτ). This model assumes that the patient’s risk of
death changes by an unknown constant factor τ > 0. If τ = 1, then there is
no increased risk by having a transplant operation.

Suppose the survival times {xi} are observed for N nontransplant patients.
For n of these patients, xi represents the actual survival time (in days); the

6.10 Analysis of the Stanford Heart Transplant Data 125

remaining N−n patients were still alive at the end of the study, so xi represents
the censoring time. For the M patients that have a heart transplant, let yj and
zj denote the time to transplant and survival time; m of these patients died
during the study. The unknown parameter vector is (τ, λ, p) with likelihood
function given by

L(τ, λ, p) =
n∏

i=1

pλp

(λ + xi)p+1

N∏

i=n+1

(λ

λ + xi

)p

×
m∏

j=1

τpλp

(λ + yj + τzj)p+1

M∏

j=m+1

(λ

λ + yj + τzj

)p

,

where all the parameters are positive. Suppose we place a uniform prior on
(τ, λ, p), and so the posterior density is proportional to the likelihood.

Following our summarization strategy, we transform the parameters by
logs:

θ1 = log τ, θ2 = log λ, θ3 = log p.

The posterior density of θ = (θ1, θ2, θ3) is given by

g(θ|data) ∝ L(exp(θ1), exp(θ2), exp(θ3))
3∏

i=1

exp(θi).

The dataset stanfordheart in the LearnBayes package contains the data
for 82 patients; for each patient, there are four variables: survtime, the sur-
vival time; transplant, a variable that is 1 or 0 if the patient had a transplant
or not; timetotransplant, the time a transplant patient waits for the oper-
ation; and state, a variable that indicates if the survival time was censored
(0 if the patient died and 1 if he was still alive). We load this datafile into R.

> data(stanfordheart)

We write a function transplantpost that computes a value of the log
posterior. In the following code, we generally follow the earlier notation. The
numbers of nontransplant and transplant patients are denoted by N and M.
We divide the data into two groups by the transplant indicator variable t. For
the nontransplant patients, the survival times and censoring indicators are
denoted by xnt and dnt, and for the transplant patients, the waiting times,
survival times, and censoring indicators are denoted by y, z, and dt.

transplantpost=function(theta,data)
{
x=data[,1] # survival time
y=data[,3] # time to transplant
t=data[,2] # transplant indicator
d=data[,4] # censoring indicator (d = 0 if died)

126 6 Markov Chain Monte Carlo Methods

tau=exp(theta[,1])
lambda=exp(theta[,2])
p=exp(theta[,3])
val=0*tau
xnt=x[t==0]; dnt=d[t==0]
z=x[t==1]; y=y[t==1]; dt=d[t==1]
N=length(xnt)
M=length(z)
for (i in 1:N)
val=val+(dnt[i]==0)*(p*log(lambda)+log(p)-

(p+1)*log(lambda+xnt[i]))+
(dnt[i]==1)*p*log(lambda/(lambda+xnt[i]))

for (i in 1:M)
val=val+(dt[i]==0)*(p*log(lambda)+log(p*tau)-

(p+1)*log(lambda+y[i]+tau*z[i]))+
(dt[i]==1)*p*log(lambda/(lambda+y[i]+tau*z[i]))

val=val+theta[,1]+theta[,2]+theta[,3]
return(val)
}

To get an initial idea about the location of the posterior, we run the func-
tion laplace. Our initial estimate at the posterior mode is θ = (0, 3,−1) and
we run 10 Newton steps. The algorithm converges and we obtain the posterior
mode and an estimate at the variance-covariance matrix.

> start=array(c(0,3,-1),c(1,3))

> laplacefit=laplace(transplantpost,start,10,stanfordheart)

> laplacefit

$mode
[,1] [,2] [,3]

[1,] -0.0924209 3.38503 -0.722881

$var
[,1] [,2] [,3]

[1,] 0.17275867 -0.00925073 -0.04994602
[2,] -0.00925073 0.21467648 0.09300626
[3,] -0.04994602 0.09300626 0.06893108

$int
[1] -376.2505

We use a Metropolis random walk algorithm (implemented in the function
rwmetrop) to simulate from the posterior. We use a proposal variance of 2V ,
where V is the estimated variance-covariance matrix from the Laplace fit.
We run the simulation for 10,000 iterations and as the output indicates, the
acceptance rate was equal to 19%.

6.10 Analysis of the Stanford Heart Transplant Data 127

> proposal=list(var=laplacefit$var,scale=2)

> s=rwmetrop(transplantpost,proposal,start,10000,stanfordheart)

> s$accept

[1] 0.1893

One primary inference in this problem is to learn about the three parame-
ters τ, λ, and p. Fig. 6.11 displays density estimates of the simulated draws
from the marginal posterior densities of each parameter. These are simply ob-
tained by exponentiating the simulated draws of θ that are output from the
function rwmetrop. For example, the first plot in Fig. 6.11 is constructed by
first computing the simulated draws of τ and then using the plot(density())
command.

> tau=exp(s$par[,1])

> plot(density(tau),main="TAU")

0 1 2 3 4

0.
0

0.
4

0.
8

1.
2

TAU

N = 10000 Bandwidth = 0.05912

D
en

si
ty

0 50 100 150

0.
00

0
0.

01
0

0.
02

0
0.

03
0

LAMBDA

N = 10000 Bandwidth = 1.958

D
en

si
ty

0.5 1.0 1.5

0.
0

1.
0

2.
0

3.
0

P

N = 10000 Bandwidth = 0.0181

D
en

si
ty

Fig. 6.11. Posterior densities of parameters τ , λ, and p in Pareto survival model.

We can summarize the parameters τ, λ, and p by computing the 5th, 50th,
and 95th percentiles of the simulated draws by the apply command.

128 6 Markov Chain Monte Carlo Methods

> apply(exp(s$par),2,quantile,c(.05,.5,.95))

[,1] [,2] [,3]
5% 0.4720614 13.35309 0.3133939
50% 0.9562069 29.01064 0.4746410
95% 2.0703049 63.54526 0.7623879

From Fig. 6.11 and these summaries, we see that the value τ = 1 is in the
center of the posterior distribution and so there is insufficient evidence to
conclude from this data that τ �= 1. This means that there is insufficient evi-
dence to conclude that the risk of death is higher (or lower) with a transplant
operation.

In this problem, one is typically interested in estimating a patient’s survival
curve. For a nontransplant patient, the survival function is equal to

S(t) =
λp

(λ + t)p
, t > 0.

For a given value of the time t0, one can compute a sample from the posterior
distribution of S(t0) by computing the function λp/(λ+t0)p from the simulated
values from the joint posterior distribution of λ and p. In the following code,
we assume that simulated samples from the marginal posterior distributions
of λ and p are stored in the vectors lambda and p, respectively. Then we (1)
set up a grid of values of t and storage vectors p5, p50, and p95; (2) simulate a
sample of values of S(t) for each value of t on the grid; and (3) summarize the
posterior sample by the computation of the 5th, 50th, and 95th percentiles.
These percentiles are stored in the variables p5, p50, and p95. In Fig. 6.12,
we graph these percentiles as a function of the time variable t. Since there
is little evidence that τ �= 1, this survival curve represents the risk for both
transplant and nontransplant patients.

> lambda=exp(s$par[,2])

> t=seq(1,240)

> p5=0*t; p50=0*t; p95=0*t

> for (j in 1:240)

+ { S=(lambda/(lambda+t[j]))^p

+ q=quantile(S,c(.05,.5,.95))

+ p5[j]=q[1]; p50[j]=q[2]; p95[j]=q[3]}

> plot(t,p50,type="l",ylim=c(0,1),ylab="Prob(Survival)",

+ xlab="time")

> lines(t,p5,lty=2)

> lines(t,p95,lty=2)

6.11 Further Reading 129

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

P
ro

b(
S

ur
vi

va
l)

Fig. 6.12. Posterior distribution of probability of survival S(t) for heart transplant
patients. Lines correspond to the 5th, 50th, and 95th percentiles of the posterior of
S(t) for each time t.

6.11 Further Reading

A good overview of discrete Markov chains is contained in Kemeny and
Snell (1976). Since MCMC algorithms currently play a central role in app-
lied Bayesian inference, most modern textbooks devote significant content to
these methods. Chapter 11 of Gelman et al (2003) and chapter 5 of Carlin
and Louis (2000) provide good introductions to MCMC methods and their
application in Bayesian methods. Robert and Casella (2004) and Givens and
Hoeting (2005) give more detailed descriptions of MCMC algorithms within
the context of computational statistical methods. Introductory discussions of
Metropolis and Gibbs sampling are provided, respectively, in Chib and Green-
berg (1995) and Casella and George (1992).

130 6 Markov Chain Monte Carlo Methods

6.12 Summary of R Functions

cauchyerrorpost – computes the log posterior density of (M,log S) when a
sample is taken from a Cauchy density with location M and scale S and a
uniform prior distribution is taken on (M, log S)
Usage: cauchyerrorpost(theta, data)
Arguments: theta, matrix of parameter values where each row represents a
value of (M, log S); data, vector containing sample of observations
Value: vector of values of the log posterior where each value corresponds to
each row of the parameters in theta

gibbs – implements a Metropolis within Gibbs algorithm for an arbitrary
real-valued posterior density defined by the user
Usage: gibbs(logpost,start,m,scale,data)
Arguments: logpost, function defining the log posterior density; start, array
with a single row that gives the starting value of the parameter vector; m,
the number of iterations of the Gibbs sampling algorithm; scale, vector of
scale parameters for the random walk Metropolis steps; data, data used in
the function logpost
Value: par, a matrix of simulated values where each row corresponds to a value
of the vector parameter; accept, vector of acceptance rates of the Metropolis
steps of the algorithm

groupeddatapost – computes the log posterior for (M, log S), when sampling
from a normal density and the data are recorded in grouped format
Usage: groupeddatapost=function(theta,data)
Arguments: theta, matrix of parameter values where each row represents a
value of (M, log S); data, list with components b, a vector of midpoints, and
f, the corresponding bin frequencies
Value: vector of values of the log posterior where each value corresponds to
each row of the parameters in theta

indepmetrop – simulates iterates of a Metropolis independence chain for an
arbitrary real-valued posterior density defined by the user
Usage: indepmetrop(logpost,proposal,start,m,data)
Arguments: logpost, function defining the log posterior density; proposal,
a list containing mu, an estimated mean and var, an estimated variance-
covariance matrix of the normal proposal density; start, array with a single
row that gives the starting value of the parameter vector; m, the number of
iterations of the chain data, data used in the function logpost
Value: par, a matrix of simulated values where each row corresponds to a
value of the vector parameter; accept, the acceptance rate of the algorithm.

lbinorm – computes the logarithm of a bivariate normal density
Usage: lbinorm(xy,par)
Arguments: xy, matrix of values where each row corresponds to a value of
(x, y); par, list containing m, a vector of means, and v, a variance-covariance
matrix

6.13 Exercises 131

Value: vector of values of the kernel of the log density function

rwmetrop – simulates iterates of a random walk Metropolis chain for an arbi-
trary real-valued posterior density defined by the user
Usage: rwmetrop(logpost,proposal,start,m,par)
Arguments: logpost, function defining the log posterior density; proposal, a
list containing var, an estimated variance-covariance matrix, and scale, the
Metropolis scale factor; start, array with a single row that gives the starting
value of the parameter vector; m, the number of iterations of the chain; par,
data used in the function logpost
Value: par, a matrix of simulated values where each row corresponds to a
value of the vector parameter; accept, the acceptance rate of the algorithm

transplantpost – computes the log posterior for (log tau, log lambda, log p)
for a Pareto model for survival data
Usage: transplantpost=function(theta,data)
Arguments: theta, matrix of parameter values where each row represents a
value of (log tau, log lambda, log p); data, data matrix where columns are
survival time, time to transplant, transplant indicator, and censoring indicator
Value: vector of values of the log posterior where each value corresponds to
each row of the parameters in theta

6.13 Exercises

1. A random walk
The following matrix represents the transition matrix for a random walk
on the integers {1, 2, 3, 4, 5}.

T =

⎡

⎢⎢
⎢⎢
⎣

.2 .8 0 0 0

.2 .2 .6 0 0
0 .4 .2 .4 0
0 0 .6 .2 .2
0 0 0 .8 .2

⎤

⎥⎥
⎥⎥
⎦

a) Suppose one starts at the location 1. By use of the sample command,
simulate 1000 steps of the Markov chain using the probabilities given
in the transition matrix. Store the locations of the walk in a vector.

b) Compute the relative frequencies of the walker in the five states from
the simulation output. Guess at the value of the stationary distribution
vector w.

c) Confirm that your guess is indeed the stationary distribution by the
matrix computation w %*% T.

2. Estimating a log-odds with a normal prior
In Exercise 1 of Chapter 5, we considered the estimation of a log-odds
parameter when y is binomial(n, p) and the log-odds θ = log (p/(1 − p))

132 6 Markov Chain Monte Carlo Methods

is distributed N(µ, σ) with µ = 0 and σ = .25. The coin was tossed n = 5
times and y = 5 heads were observed.
Use a Metropolis-Hastings random walk algorithm to simulate from the
posterior density. In the algorithm, let s be equal to twice the approximate
posterior standard deviation found in the normal approximation. Use the
simulation output to approximate the posterior mean and standard devi-
ation of θ, and the posterior probability that θ is positive. Compare your
answers with those obtained by the normal approximation in Exercise 1
of Chapter 5.

3. Genetic linkage model from Rao (2002)
In Exercise 2 of Chapter 5, we considered the estimation of a parameter θ
in a genetic linkage model. The posterior density was expressed in terms
of the real-valued logit η = log (θ/(1 − θ)).
a) Use a Metropolis-Hastings random walk algorithm to simulate from

the posterior density of η. (Choose the scale parameter s to be twice
the approximate posterior standard deviation of η found in a normal
approximation.) Compare the histogram of the simulated output of η
with the normal approximation. From the simulation output, find a
95% interval estimate for the parameter of interest θ.

b) Use a Metropolis-Hastings independence algorithm to simulate from
the posterior density of η. Use a normal proposal density. Again
compare the histogram of the simulated output with the normal ap-
proximation and find a 95% probability interval for the parameter of
interest θ.

4. Modeling data with Cauchy errors
As in Section 6.8, suppose we observe y1, ..., yn from a Cauchy density with
location µ and scale σ and a noninformative prior is placed on (µ, σ). Con-
sider the following hypothetical test scores from a class that is a mixture
of good and poor students.

36 13 23 6 20 12 23 93
98 91 89 100 90 95 90 87

The function cauchyerrorpost computes the log of the posterior density.
A contour plot of the posterior (µ, log σ) for this data is shown in Fig. 6.13.
a) Use the laplace function to find the posterior mode. Check that you

have indeed found the posterior mode by trying several starting values
in Newton’s algorithm.

b) Use the Metropolis random walk algorithm (using the function
rwmetrop) to simulate 1000 draws from the posterior density. Com-
pute the posterior mean and standard deviation of µ and log σ.

6.13 Exercises 133

20 40 60 80 100

0
1

2
3

4
5

mu

lo
g

si
gm

a

Fig. 6.13. Posterior distribution of µ and log σ for the Cauchy sampling exercise.

5. Estimation for the two-parameter exponential distribution
Exercise 3 of Chapter 5 considered the “type I/time-truncated” life testing
experiment. We are interested in the posterior density of θ = (θ1, θ2),
where θ1 = log β, θ2 = log(t1 − µ).
a) Using the posterior mode and variance-covariance matrix from laplace,

simulate 1000 values from the posterior distribution by the Metropolis
random walk algorithm (function rwmetrop).

b) Suppose one is interested in estimating the reliability at time t0 defined
by

R(t0) = e−(t0−µ)/β .

Using your simulated values from the posterior, find the posterior
mean and posterior standard deviation of R(t0) when t0 = 106 cycles.

6. Poisson regression
Exercise 4 of Chapter 5 describes an experiment from Haberman (1978)
involving subjects reporting one stressful event. The number of events
recalled i months before an interview yi is distributed Poisson with mean
λi, where the {λi} satisfy the loglinear regression model

log λi = β0 + β1i.

134 6 Markov Chain Monte Carlo Methods

One is interested in learning about the posterior density of the regression
coefficients (β0, β1).
a) Using the output of laplace, construct a Metropolis random walk

algorithm for simulating from the posterior density. Use the function
rwmetrop to simulate 1000 iterates and compute the posterior mean
and standard deviation of β1.

b) Construct a Metropolis independence algorithm and use the function
rwindep to simulate 1000 iterates from the posterior. Compute the
posterior mean and standard deviation of β1.

c) Use a table such as Table 6.2 to compare the posterior estimates using
the three computational methods.

7. Generalized logit model
Carlin and Louis (2000) describe the use of a generalized logit model to
fit dose-mortality data from Bliss (1935). Table 6.3 records the number of
adult flour beetles killed after five hours of exposure to various levels of
gaseous carbon disulphide. The number of insects killed yi under dose wi

is assumed binomial(ni, pi), where the probability pi of death is given by

pi =
(

exp(xi)
1 + exp(xi)

)m1

,

where xi = (wi − µ)/σ. The prior distributions for µ, σ,m1 are assumed
independent, where µ is assigned a uniform prior, σ is assigned a prior pro-
portional to 1/σ, and m1 is gamma with parameters a0 and b0. In the exa-
mple, the prior hyperparameters of a0 = .25 and b0 = 4 were used. If one
transforms to the real-valued parameters (θ1, θ2, θ3) = (µ, log σ, log m1),
then Carlin and Louis (2000) show the posterior density is given by

g(θ|data) ∝
8∏

i=1

[
pyi

i (1 − pi)ni−yi
]

exp(a0θ3 − eθ3/b0).

Table 6.3. Flour beetle mortality data

Dosage Number Killed Number Exposed
wi yi ni

1.6907 6 59
1.7242 13 60
1.7552 18 62
1.7842 28 56
1.8113 52 63
1.8369 53 59
1.8610 61 62
1.8839 60 60

6.13 Exercises 135

a) Write an R function that defines the log posterior of (θ1, θ2, θ3).
b) Carlin and Louis (2000) suggest running a Metropolis random walk

chain with a multivariate normal proposal density where the variance-
covariance matrix is diagonal with elements 0.00012, 0.033, and 0.10.
Use the function rwmetrop to run this chain for 10,000 iterations.
Compute the acceptance rate and the 5th and 95th percentiles for
each parameter.

c) Run the function laplace to get a non-diagonal estimate of the
variance-covariance matrix. Use this estimate in the proposal den-
sity of rwmetrop and run the chain for 10,000 iterations. Compute the
acceptance rate and the 5th and 95th percentiles for each parameter.

d) Compare your answers in parts (b) and (c).

7

Hierarchical Modeling

7.1 Introduction

In this chapter, we illustrate the use of R to summarize an exchangeable
hierarchical model. We begin by giving a brief introduction to hierarchical
modeling. Then we consider the simultaneous estimation of the true mortal-
ity rates from heart transplants for a large number of hospitals. Some of the
individual estimated mortality rates are based on limited data and it may be
desirable to combine the individual rates in some way to obtain more accurate
estimates. We describe a two-stage model, a mixture of gamma distributions,
to represent prior beliefs that the true mortality rates are exchangeable. We
describe the use of R to simulate from the posterior distribution. We first use
contour graphs and simulation to learn about the posterior distribution of the
hyperparameters. Once we simulate hyperparameters, we can simulate from
the posterior distributions of the true mortality rates from gamma distribu-
tions. We conclude by illustrating how the simulation of the joint posterior
can be used to perform different types of inferences in the heart transplant
application.

7.2 Introduction to Hierarchical Modeling

In many statistical problems, we are interested in learning about many para-
meters that are connected in some way. To illustrate, consider the following
three problems described in this chapter and the chapters to follow.

1. Simultaneous estimation of hospital mortality rates
In the main example of this chapter, one is interested in learning about
the mortality rates due to heart transplant surgery for 94 hospitals. Each
hospital has a true mortality rate λi, and so one wishes to simultaneously
estimate the 94 rates λ1, ..., λ94. It is reasonable to believe a priori that
the true rates are similar in size, which implies a dependence structure

138 7 Hierarchical Modeling

between the parameters. If one is told some information about a particular
hospital’s true rate, that information would likely affect one’s belief about
the location of a second hospital’s rate.

2. Estimating college grade point averages
In an example in Chapter 10, admissions people at a particular university
collect a table of means of freshman grade point averages (GPA) organized
by the student’s high school rank and his or her score on a standardized
test. One wishes to learn about the collection of population mean GPAs
with the ultimate goal of making predictions about the success of fut-
ure students that attend the university. One believes that the population
GPAs can be represented as a simple linear function of the high school
rank and standardized test score.

3. Estimating career trajectories
In an example in Chapter 11, one is learning about the pattern of perfor-
mance of athletes as they age during their sports careers. In particular, one
wishes to estimate the career trajectories of the batting performances of a
number of baseball players. For each player, one fits a model to estimate
his career trajectory, and Fig. 7.1 displays the fitted career trajectories
for nine players. Note that the shapes of these trajectories are similar; a
player generally will increase in performance until his late 20s or early
30s and then decline until retirement. The prior belief is that the true
trajectories will be similar between players, which again implies a prior
distribution with dependence.

In many-parameter situations like the ones described here, it is natural to
construct a prior distribution in a hierarchical fashion. In this type of model,
the observations are given distributions conditional on parameters, and the
parameters in turn have distributions conditional on additional parameters
called hyperparameters. Specifically, we begin by specifying a data distribution

y ∼ f(y|θ),

and the prior vector θ will be assigned a prior distribution with unknown
hyperparameters λ:

θ ∼ g1(θ|λ).

The hyperparameter vector λ in turn will be assigned a distribution

λ ∼ g2(λ).

One general way of constructing a hierarchical prior is based on the prior
belief of exchangeability. A set of parameters θ = (θ1, ..., θk) is exchangeable if
the distribution of θ is unchanged if the parameter components are permuted.
This implies that one’s prior belief about θj , say, will be the same as one’s
belief about θh. One can construct an exchangeable prior by assuming that
the components of θ are a random sample from a distribution g1:

7.3 Individual and Combined Estimates 139

20 25 30 35 40

0.
02

0.
06

0.
10

Sosa

Age

F
itt

ed

20 25 30 35 40

0.
02

0.
06

0.
10

Greenberg

Age

F
itt

ed

20 25 30 35 40

0.
02

0.
06

0.
10

Aaron

Age

F
itt

ed

20 25 30 35 40

0.
02

0.
06

0.
10

Ott

Age

F
itt

ed

20 25 30 35 40

0.
02

0.
06

0.
10

Mays

Age

F
itt

ed

20 25 30 35 40

0.
02

0.
06

0.
10

Mantle

Age

F
itt

ed

20 25 30 35 40

0.
02

0.
06

0.
10

Schmidt

Age

F
itt

ed

20 25 30 35 40

0.
02

0.
06

0.
10

Ruth

Age

F
itt

ed

20 25 30 35 40

0.
02

0.
06

0.
10

Killebrew

Age

F
itt

ed

Fig. 7.1. Plots of fitted career trajectories for nine baseball players as a function of
their age.

θ1, ..., θk random sample from g1(θ|λ),

and the unknown hyperparameter vector λ is assigned a known prior at the
second stage:

λ ∼ g2(λ).

This particular form of hierarchical prior will be used for the mortality rates
example of this chapter and the career trajectories example of Chapter 11.

7.3 Individual and Combined Estimates

Consider again the heart transplant mortality data discussed in Chapter 3.
The number of deaths within 30 days of heart transplant surgery is recorded
for each of 94 hospitals. In addition, we record for each hospital an expected
number of deaths called the exposure denoted by e. We let yi and ei denote
the respective observed number of deaths and exposure for the ith hospital.
In R, we read in the relevant dataset hearttransplants in the LearnBayes
package.

140 7 Hierarchical Modeling

> data(hearttransplants)

> attach(hearttransplants)

A standard model assumes that the number of deaths yi follows a Poisson
distribution with mean eiλi and the objective is to estimate the mortality
rate per unit exposure λi. The fraction yi/ei is the number of deaths per
unit exposure and can be viewed as an estimate of the death rate for the ith
hospital. In Fig. 7.2, we plot the ratios {yi/ei} against the logarithms of the
exposures {log(ei)} for all hospitals where each point is labeled by the number
of observed deaths yi.

> plot(log(e), y/e, pch = as.character(y))

0 0

2

1

1

00

1

3

00

1

0

2

3

0 0

3

1

111

4

3

3

1

0

2

2

4

4
3

2

4

1

3

0

4

1

2

3

4

4

2

2

4

2

3

00

2

5
5

11

3

11

3

1

2

6

0

2

2

1
2

8

6

1

6

4

1

3

5

2

43

4
5

2

6

8

5

0

6

8

7

3 3

9

7

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

log(e1)

y1
/e

1

18
17

Fig. 7.2. Plot of death rates against log exposure for all hospitals. Each point is
labeled by the number of observed deaths.

Note that the estimated rates are highly variable, especially for programs with
small exposures. The programs experiencing no deaths (a plotting label of 0)
also are primarily associated with small exposures.

Suppose we are interested in simultaneously estimating the true mortality
rates {λi} for all hospitals. One option is to simply estimate the true rates by

7.4 Equal Mortality Rates? 141

the individual death rates
y1

e1
, ...,

y94

e94
.

Unfortunately these individual rates can be poor estimates, especially for the
hospitals with small exposures. In Fig. 7.2, we saw that some of these hospitals
did not experience any deaths and the individual death rate yi/ei = 0 would
likely underestimate the hospital’s true mortality rate. Also it is clear from
the figure that the rates for the hospitals with small exposures have high
variability.

Since the individual death rates can be poor, it seems desirable to combine
the individual estimates in some way to obtain improved estimates. Suppose
we can assume that the true mortality rates are equal across hospitals; that
is,

λ1 = ... = λ94.

Under this “equal-means” Poisson model, the estimate of the mortality rate
for the ith hospital would be the pooled estimate

∑94
j=1 yj

∑94
j=1 ej

.

But this pooled estimate is based on the strong assumption that the true
mortality rate is the same across hospitals. This is questionable since one
would expect some variation in the true rates.

We have discussed two possible estimates for the mortality rate of the ith
hospital: the individual estimate yi/ei and the pooled estimate

∑
yj/

∑
ej .

A third possibility is the compromise estimate

(1 − λ)
yi

ei
+ λ

∑94
j=1 yj

∑94
j=1 ej

.

This estimate shrinks or moves the individual estimate yi/ei toward the pooled
estimate

∑
yj/

∑
ej where the parameter 0 < λ < 1 determines the size of

the shrinkage. We will see that this shrinkage estimate is a natural byproduct
of the application of an exchangeable prior model on the true mortality rates.

7.4 Equal Mortality Rates?

Before we consider an exchangeable model, let’s illustrate fitting and checking
the model where the mortality rates are assumed equal. Suppose yi is distrib-
uted Poisson(eiλ), i = 1, ..., 94, and the common mortality rate λ is assigned
a standard noninformative prior of the form

g(λ) ∝ 1
λ

.

142 7 Hierarchical Modeling

Then the posterior density of λ is given by

g(λ|data) ∝ 1
λ

94∏

j=1

[
λyj exp(−ejλ)

]

= λ
�94

j=1 yj−1 exp(−
94∑

j=1

ejλ)

which is recognized as a gamma density with parameters
∑94

j=1 yj and
∑94

j=1 ej .
For our data, we compute

> sum(y)

[1] 277

> sum(e)

[1] 294681

and so the posterior density for the common rate λ is gamma(277, 294681).
One general Bayesian method of checking the suitability of a fitted model

such as this is based on the posterior predictive distribution. Let y∗
i denote

the number of transplant deaths for hospital i with exposure ei in a future
sample. Conditional on the true rate λ, y∗

i has a Poisson distribution with
mean eiλ. Our current beliefs about the ith true rate are contained in the
posterior density g(λ|y). The unconditional distribution of y∗

i , the posterior
predictive density, is given by

f(y∗
i |ei, y) =

∫
fP (y∗

i |eiλ)g(λ|y)dλ,

where fP (y|λ) is the Poisson sampling density with mean λ. The posterior
predictive density represents the likelihood of future observations based on
our fitted model. For example, the density f(y∗

i |ei, y) represents the number
of transplants that we would predict in the future for a hospital with exposure
ei. If the actual number of observed deaths yi is in the middle of this predic-
tive distribution, then we can say that our observation is consistent with our
model fit. On the other hand, if the observed yi is in the extreme tails of
the distribution f(y∗

i |ei, y), then this observation indicates that the model is
inadequate in fitting this observation.

To illustrate the use of the posterior predictive distribution, consider hospi-
tal 94 that had 17 transplant deaths, that is, y94 = 17. Did this hospital have
an unusually high number of deaths? To answer this question, we simulate
1000 values from the posterior predictive density of y∗

94.
To simulate from the predictive distribution of y∗

94, we first simulate 1000
draws of the posterior density of λ

> lambda=rgamma(1000,shape=277,rate=294681)

7.4 Equal Mortality Rates? 143

and then simulate draws of y∗
94 from a Poisson distribution with mean e94λ.

> ys94=rpois(1000,e[94]*lam)

Using the following R code, Fig. 7.3 displays a histogram of this poste-
rior predictive distribution and the actual number of transplant deaths y94 is
shown by a vertical line.

> hist(ys94,breaks=seq(1.5,26.5,by=1))

> lines(c(y[94],y[94]),c(0,120),lwd=3)

Since the observed yj is in the tail portion of the distribution, it seems
inconsistent with the fitted model – it suggests that this hospital actually
has a higher true mortality rate than estimated from this equal-rates model.

Histogram of ys94

ys94

F
re

qu
en

cy

5 10 15 20 25

0
20

40
60

80
10

0
12

0

Fig. 7.3. Histogram of simulated draws from the posterior predictive distribution
of y∗

94. The actual number of transplant deaths is shown by a vertical line.

We can check the consistency of the observed yi with its posterior pre-
dictive distribution for all hospitals. For each distribution, we compute the
probability that the future observation y∗

i is at least as extreme as yi:

144 7 Hierarchical Modeling

min{P (y∗
i ≤ yi), P (y∗

i ≥ yi)}.

The following R code computes the probabilities of “at least as extreme” for
all observations and places the probabilities in the vector pout.

> pout=0*y

> lambda=rgamma(1000,shape=277,rate=294681)

> for (i in 1:94){

+ ysi=rpois(1000,e[i]*lambda)

+ pleft=sum(ysi<=y[i])/1000

+ pright=sum(ysi>=y[i])/1000

+ pout[i]=min(pleft,pright)

+ }

We plot the probabilities against the log exposures which is displayed in
Fig. 7.4.

> plot(log(e),pout,ylab="Prob(extreme)")

6.5 7.0 7.5 8.0 8.5 9.0 9.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

log(e)

P
ro

b(
ex

tr
em

e)

Fig. 7.4. Scatterplot of predictive probabilities of “at least as extreme” against log
exposures for all observations.

7.5 Modeling a Prior Belief of Exchangeability 145

Note that a number of these tail probabilities appear small (15 are smaller than
0.10) which means that the “equal rates” model is inadequate for explaining
the distribution of mortality rates for the group of 94 hospitals. We will have
to assume differences between the true mortality rates that will be modeled
by the exchangeable model described in the next section.

7.5 Modeling a Prior Belief of Exchangeability

At the first stage of the prior, the true death rates λ1, ..., λ94 are assumed to
be a random sample from a gamma(α, α/µ) distribution of the form

g(λ|α, µ) =
(α/µ)αλα−1 exp(−αλ/µ)

Γ (α)
, λ > 0.

The prior mean and variance of λ are given by µ and µ2/α, respectively. At the
second stage of the prior, the hyperparameters µ and α are assumed indepen-
dent, with µ assigned a gamma(a, b) distribution with density µa−1 exp(−bµ)
and α the density g(α).

This prior distribution induces positive correlation between the true death
rates. To see this, suppose one assigns the hyperparameter µ a gamma(10, 10)
distribution and sets the hyperparameter α equal to a fixed value α0. (This is
equivalent to assigning a density g(α) that places probability one on the value
α0.) One can simulate values of, say (λ1, λ2), from the prior distribution by

• simulating values from µ from the gamma(a, b) distribution, α from the
prior density g(α)

• for each simulated pair (µ, α), simulate λ1, λ2 from gamma(α, α/µ) distri-
butions

This simulation is illustrated in the following R code. Fig. 7.5 displays
500 simulated values from the prior distribution of (λ1, λ2) for the values α0

equal to 5, 20, 80, and 400. Note that since µ is assigned a gamma(10, 10)
distribution, both the true rates λ1 and λ2 are centered about the value 1.
The hyperparameter α is a precision parameter that controls the correlation
between the parameters. For the fixed value α = 400, note that λ1 and λ2 are
concentrated along the line λ1 = λ2. As the precision parameter α approaches
infinity, the exchangeable prior places all of its mass along the space where
λ1 = ... = λ94.

> par(mfrow = c(2, 2))

> m = 500

> alphas = c(5, 20, 80, 400)

> for (j in 1:4) {

+ mu = rgamma(m, shape = 10, rate = 10)

+ lambda1 = rgamma(m, shape=alphas[j], rate=alphas[j]/mu)

+ lambda2 = rgamma(m, shape=alphas[j], rate=alphas[j]/mu)

146 7 Hierarchical Modeling

+ plot(lambda1, lambda2)

+ title(main=paste("alpha=",as.character(alphas[j])))

+ }

0 1 2 3

0.
0

1.
0

2.
0

3.
0

lambda1

la
m

bd
a2

alpha= 5

0.5 1.0 1.5 2.0 2.5

0.
5

1.
0

1.
5

2.
0

lambda1

la
m

bd
a2

alpha= 20

0.5 1.0 1.5 2.0 2.5

0.
5

1.
0

1.
5

2.
0

lambda1

la
m

bd
a2

alpha= 80

0.5 1.0 1.5 2.0 2.5 3.0

0.
5

1.
5

2.
5

lambda1

la
m

bd
a2

alpha= 400

Fig. 7.5. Simulated values from the exchangeable prior on (λ1, λ2) for values of the
precision parameter α = 5, 20, 80, and 400.

Although we used subjective priors to illustrate the behavior of the prior
distribution, in practice vague distributions can be chosen for the hyperpara-
meters µ and α. In this example, we assign the mean parameter the typical
vague prior of the form

g(µ) ∝ 1
µ

, µ > 0.

The precision parameter α assigned the proper, but relatively flat, prior den-
sity of the form

g(α) =
z0

(α + z0)2
, α > 0.

The user will specify a value of the parameter z0 that is the median of α. In
this example, we let z0 = 0.53.

7.7 Simulating from the Posterior 147

7.6 Posterior Distribution

Owing to the conditionally independent structure of the hierarchical model
and the choice of a conjugate prior form at stage 2, there is a relatively simple
posterior analysis. Conditional on values of the hyperparameters µ and α, the
rates λ1, ..., λ94 have independent posterior distributions. The posterior distri-
bution of λi is gamma(yi +α, ei +α/µ). The posterior mean of λi, conditional
on α and µ, can be written as

E(λi|y, α, µ) =
yi + α

ei + α/µ
= (1 − Bi)

yi

ei
+ Biµ,

where
Bi =

α

α + eiµ
.

The posterior mean of the true rate λi can be viewed as a shrinkage estimator,
where Bi is the shrinkage fraction of the posterior mean away from the usual
estimate yi/ei toward the prior mean µ.

Also since a conjugate model structure was used, the rates λi can be
integrated out of the joint posterior density, resulting in the marginal pos-
terior density of (α, µ):

p(α, µ|data) = K
1

Γ 94(α)

94∏

j=1

[
(α/µ)αΓ (α + yi)
(α/µ + ei)(α+yi)

]
z0

(α + z0)2
1
µ

,

where K is a proportionality constant.

7.7 Simulating from the Posterior

In the previous section the posterior density of all parameters was expressed
as

g(hyperparameters|data) g(true rates|hyperparameters,data),

where the hyperparameters are (µ, α) and the true rates are (λ1, ..., λ94). By
the composition method, we can simulate a random draw from the joint pos-
terior by

• simulating (µ, α) from the marginal posterior distribution
• simulating λ1, ..., λ94 from their distribution conditional on the values of

the simulated µ and α

First we need to simulate from the marginal density of the hyperparameters
µ and α. Since both parameters are positive, a good first step in this simulation
process is to transform each to the real-valued parameters

θ1 = log(α), θ2 = log(µ).

148 7 Hierarchical Modeling

The marginal posterior of the transformed parameters is given by

p(θ1, θ2|data) = K
1

Γ 94(α)

94∏

j=1

[
(α/µ)αΓ (α + yi)
(α/µ + ei)(α+yi)

]
z0α

(α + z0)2
.

The following R function poissgamexch contains the definition of the log
posterior of θ1 and θ2.

poissgamexch=function(theta,datapar)
{
y=datapar$data[,2]; e=datapar$data[,1]
z0=datapar$z0
alpha=exp(theta[,1]); mu=exp(theta[,2])
beta=alpha/mu
N=length(y)
val=0*alpha;
for (i in 1:N)
{
val=val+lgamma(alpha+y[i])-(y[i]+alpha)*log(e[i]+beta)+
alpha*log(beta)

}
val=val-N*lgamma(alpha)+log(alpha)-2*log(alpha+z0)
return(val)
}

Note that this function has two inputs:

• theta– a matrix of two columns where each row corresponds to a value of
(θ1, θ2)

• datapar – a R list with two components, the data and the value of the
hyperparameter z0

Note that since theta is a matrix, we sum over the observations to compute
the log posterior. We use the function lgamma that computes the log of the
gamma function, log Γ (x).

Using the R function laplace, we find the posterior mode and associated
variance-covariance matrix. We perform five iterations of the Newton-Raphson
algorithm at the starting value (θ1, θ2) = (2,−7). The output of laplace
includes the mode and the corresponding estimate at the variance-covariance
matrix.

> datapar = list(data = hearttransplants, z0 = 0.53)

> start=array(c(2, -7), c(1, 2))

> fit = laplace(poissgamexch, start, 5, datapar)

> fit

$mode
[,1] [,2]

7.7 Simulating from the Posterior 149

[1,] 1.88535 -6.955614

$var
[,1] [,2]

[1,] 0.23412668 -0.003077430
[2,] -0.00307743 0.005863179

$int
[1] -2208.502

This output gives us information about the location of the posterior density.
By trial and error, we use the function mycontour to find a grid that contains
the posterior density of (θ1, θ2). The resulting graph is displayed in Fig. 7.6.

> par(mfrow = c(1, 1))

> mycontour(poissgamexch, c(0, 8, -7.3, -6.6), datapar)

> title(xlab="log alpha",ylab="log mu")

0 2 4 6 8

−
7.

3
−

7.
2

−
7.

1
−

7.
0

−
6.

9
−

6.
8

−
6.

7
−

6.
6

log alpha

lo
g

m
u

Fig. 7.6. Contour plot of the posterior density of (log α, log µ) for the heart trans-
plant example. Contour lines are drawn at 10%, 1%, and .1% of the modal value.

150 7 Hierarchical Modeling

By inspection of Fig. 7.6, we see that the posterior density for (θ1, θ2) is
nonnormal shaped, especially in the direction of θ1 = log α. Since the normal
approximation to the posterior is inadequate, we obtain a simulated sample
of (θ1, θ2) by use of the “Metropolis within Gibbs” algorithm in the function
gibbs. In this Gibbs sampling algorithm, we start at the value (θ1, θ2) =
(4,−7) and iterate through 1000 cycles with Metropolis scale parameters c1 =
1, c2 = .15. As the output indicates, the acceptance rates in the simulation of
the two conditional distributions are each about 30%.

> start = array(c(4, -7), c(1, 2))

> fitgibbs = gibbs(poissgamexch, start, 1000, c(1,.15), datapar)

> fitgibbs$accept

[,1] [,2]
[1,] 0.312 0.284

Fig. 7.7 shows a simulated sample of 1000 placed on top of the contour
graph. Note that most of the points fall within the first two contour lines
of the graph, indicating that the algorithm appears to give a representative
sample from the marginal posterior distribution of θ1 and θ2.

> mycontour(poissgamexch, c(0, 8, -7.3, -6.6), datapar)

> points(fitgibbs$par[, 1], fitgibbs$par[, 2])

Fig. 7.8 shows a kernel density estimate of the simulated draws from the
marginal posterior distribution of the precision parameter θ1 = log(α).

> plot(density(fitgibbs$par[, 1], bw = 0.2))

We can learn about the true mortality rates λ1, ..., λ94 by simulating values
of from their posterior distributions. Given values of the hyperparameters α
and µ, the true rates have independent posterior distributions with λi distrib-
uted gamma(yi +α, ei +α/µ). For each rate, we use the R rgamma function to
obtain a sample from the gamma distribution, where the gamma parameters
are functions of the simulated values of α and µ. For example, one can obtain
a sample from the posterior distribution of λ1 by the R code

> alpha = exp(fitgibbs$par[, 1])

> mu = exp(fitgibbs$par[, 2])

> lam1 = rgamma(1000, y[1] + alpha, e[1] + alpha/mu)

After we obtain a simulated sample of size 1000 for each true rate λi, we
can summarize each sample by computing the 5th and 95th percentiles. The
interval from these two percentiles constitutes an approximate 90% probability
interval for λi. We graph these 90% probability intervals as vertical lines on
our original graph of the log exposures and the individual rates in Fig. 7.9. In
contrast to the wide variation in the observed death rates, note the similarity
in the locations of the probability intervals for the true rates. This indicates

7.8 Posterior Inferences 151

0 2 4 6 8

−
7.

3
−

7.
2

−
7.

1
−

7.
0

−
6.

9
−

6.
8

−
6.

7
−

6.
6

log alpha

lo
g

m
u

Fig. 7.7. Contour plot of the posterior density of (log α, log µ) for the heart trans-
plant example with a sample of simulated values placed on top.

that these Bayesian estimates are shrinking the individual rates toward the
pooled estimate.

> alpha = exp(fitgibbs$par[, 1])

> mu = exp(fitgibbs$par[, 2])

> plot(log(e), y/e, pch = as.character(y))

> for (i in 1:94) {

+ lami = rgamma(1000, y[i] + alpha, e[i] + alpha/mu)

+ probint = quantile(lami, c(0.05, 0.95))

+ lines(log(e[i]) * c(1, 1), probint)

+ }

7.8 Posterior Inferences

Once a simulated sample of true rates {λi} and the hyperparameters µ, α has
been generated from the joint posterior distribution, we can use this sample
to perform various types of inferences.

152 7 Hierarchical Modeling

1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = theta$var[, 1], bw = 0.2)

N = 1000 Bandwidth = 0.2

D
en

si
ty

Fig. 7.8. Density estimate of simulated draws from the marginal posterior of log α.

7.8.1 Shrinkage

The posterior mean of the ith true mortality rate λi can be approximated by

E(λi|data) ≈ (1 − E(Bi|data))
yi

ei
+ E(Bi|data)

∑94
j=1 yj

∑94
j=1 ej

,

where Bi = α/(α + eiµ) is the size of the shrinkage of the ith observed rate
yi/ei toward the pooled estimate

∑94
j=1 yj/

∑94
j=1 ej . In the following R code,

we compute the posterior mean of the shrinkage sizes {Bi} for all 94 com-
ponents. In Fig. 7.10, we plot the mean shrinkages against the logarithms of
the exposures. For the hospitals with small exposures, the Bayesian estimate
shrinks the individual estimate 90% toward the combined estimate. In con-
trast, for large hospitals with high exposures, the shrinkage size is closer to
50%.

> shrinkage = 0 * e

> for (i in 1:94) shrinkage[i] = mean(alpha/(alpha + e[i] * mu))

> plot(log(e), shrinkage)

7.8 Posterior Inferences 153

0 0

2

1

1

00

1

3

00

1

0

2

3

0 0

3

1

111

4

3

3

1

0

2
2

4
4

3

2

4

1

3

0

4

1

2

3

4

4

2

2

4

2

3

00

2

5
5

11

3

11

3

1

2

6

0

2

2

1
2

8

6

1

6

4

1

3

5

2

43

4
5

2

6

8

5

0

6

8

7

3 3

9

7

11

6.5 7.0 7.5 8.0 8.5 9.0 9.5

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

log(e)

z/
e

Fig. 7.9. Plot of observed death rates against log exposures together with intervals
representing 90% posterior probability bands for the true rates {λi}.

7.8.2 Comparing Hospitals

Suppose one is interested in comparing the true mortality rates of the hos-
pitals. Specifically, suppose one wishes to compare the “best hospital” with
the other hospitals. First, we find the hospital with the smallest estimated
mortality rate. In the following R output, we compute the posterior mean of
the mortality rates, where the posterior mean of the true rate for hospital i is
given by

E

(
yi + α

ei + α/µ

)
,

where the expectation is taken over the marginal posterior distribution of
(α, µ).

> hospital=1:94

> meanrate=array(0,c(94,1))

> for (i in 1:94)

+ meanrate[i]=mean(rgamma(1000, y[i] + alpha, e[i] + alpha/mu))

> hospital[meanrate==min(meanrate)]

154 7 Hierarchical Modeling

6.5 7.0 7.5 8.0 8.5 9.0 9.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log(e)

sh
rin

ka
ge

Fig. 7.10. Plot of the posterior shrinkages against the log exposures for the heart
transplant example.

[1] 85

We identify hospital 85 as the one with the smallest true mortality rate.
Suppose we wish to compare hospital i with hospital j. One first obtains

simulated draws from the marginal distribution of (λi, λj). Then the probabil-
ity that hospital i has a smaller mortality rate, P(λi < λj), can be estimated
by the proportion of simulated (λi, λj) pairs where λi is smaller than λj . In
the following R code, we compute these probabilities for all pairs of hospitals
and the results are stored in the matrix better. The probability that hospi-
tal i’s rate is smaller than hospital j’s rate is stored in the ith row and jth
element of better.

> better=array(0,c(94,94))

> for (i in 1:94){

+ for (j in (i+1):94){

+ if (j <=94) {

+ lami=rgamma(1000,y[i]+alpha,e[i]+alpha/mu)

+ lamj=rgamma(1000,y[j]+alpha,e[j]+alpha/mu)

+ better[i,j]=mean(lami<lamj)

7.9 Posterior Predictive Model Checking 155

+ better[j,i]=1-better[i,j]

+ }}}

To compare the best hospital 85 with the remaining hospitals, we display
the 85th column of the matrix better. These give the probabilities P(λi <
λ85) for all i. We display these probabilities for the first 24 hospitals. Note that
hospital 85 is better than most of these hospitals since most of the posterior
probabilities are close to zero.

> better[1:24,85]

[1] 0.166 0.184 0.078 0.114 0.131 0.217 0.205 0.165 0.040 0.196
[11] 0.192 0.168 0.184 0.071 0.062 0.196 0.231 0.056 0.303 0.127
[21] 0.160 0.135 0.041 0.070

7.9 Posterior Predictive Model Checking

In Section 7.3, we used the posterior predictive distribution to examine the
suitability of the “equal rates” model where λ1 = ... = λ94, and we saw
that the model seemed inadequate in explaining the number of transplant
deaths for individual hospitals. Here we use the same methodology to check
the appropriateness of the exchangeable model.

Again we consider hospital 94, which experienced 17 deaths. Recall that
simulated draws of the hyperparameters α and µ are contained in the vectors
alpha and mu, respectively. To simulate from the predictive distribution of y∗

94

we first simulate draws of the posterior density of λ94

> lam94=rgamma(1000,y[94]+alpha,e[94]+alpha/mu)

and then simulate draws of y∗
94 from a Poisson distribution with mean e94λ94.

> ys24=rpois(1000,e[94]*lam94)

Fig. 7.11 displays the histogram of y∗
94 and places a vertical line on top

corresponding to the value y94 = 17 using the commands

> hist(ys94,breaks=seq(1.5,39.5,by=1))

> lines(y[94]*c(1,1),c(0,100),lwd=3)

Note that in this case the observed number of deaths for this hospital is
in the middle of the predictive distribution that indicates agreement of this
observation with the fitted model.

We can perform diagnostics for this exchangeable model by checking the
consistency of the observed yi with its posterior predictive distribution for all
hospitals. In the following R code, we compute the probability that the future
observation y∗

i is at least as extreme as yi for all observations; the probabilities
are placed in the vector pout.exchange.

156 7 Hierarchical Modeling

Histogram of ys94

ys94

F
re

qu
en

cy

0 10 20 30 40

0
20

40
60

80

Fig. 7.11. Histogram of posterior predictive distribution of y∗
94 for hospital 94 from

the exchangeable model. The observed value of y94 is indicated by the vertical line.

> pout.exchange=0*y

> for (i in 1:94){

+ lami=rgamma(1000,y[i]+alpha,e[i]+alpha/mu)

+ ysi=rpois(1000,e[i]*lami)

+ pleft=sum(ysi<=y[i])/1000

+ pright=sum(ysi>=y[i])/1000

+ pout.exchange[i]=min(pleft,pright)

+ }

Recall that the probabilities of at least as extreme for the equal means model
were contained in the vector pout. To compare the goodness of fits of the two
models, Fig. 7.12 shows a scatterplot of the two sets of probabilities with a
comparison line y = x placed on top.

> plot(pout,pout.exchange,xlab="P(extreme), equal means",

+ ylab="P(extreme), exchangeable")

> abline(0,1)

Note that the probabilities of extreme for the exchangeable model are larger,
indicating that the observations are more consistent with the exchangeable

7.10 Further Reading 157

fitted model. Note that only two of the observations have a probability smaller
than 0.1 for the exchangeable model, indicating general agreement of the
observed data with this model.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

P(extreme), equal means

P
(e

xt
re

m
e)

, e
xc

ha
ng

ea
bl

e

Fig. 7.12. Scatterplot of posterior predictive probabilities of “at least as extreme”
for the equal means and exchangeable models.

7.10 Further Reading

Gelman et al (2003), chapter 5, provide a good introduction to hierarchical
models. Carlin and Louis (2000), chapter 3, introduce hierarchical modeling
from an empirical Bayes perspective. Posterior predictive model checking is
described as a general method for model checking in chapter 6 of Gelman et al
(2003). The use of hierarchical modeling to analyze the heart transplant data
is described in Christiansen and Morris (1995).

158 7 Hierarchical Modeling

7.11 Summary of R Functions

poissgamexch – computes the logarithm of the posterior for the parameters
(log alpha, log mu) in a Poisson/gamma model
Usage: poissgamexch(theta,datapar)
Arguments: theta, matrix of parameter values where each row represents a
value of (log alpha, log mu); datapar, list with components data (matrix
with column of counts and column of exposures) and z0, the value of the
second-stage hyperparameter
Value: vector of values of the log posterior where each value corresponds to
each row of the parameters in theta

7.12 Exercises

1. Normal/normal exchangeable model
Suppose we have J independent experiments, where in the jth experiment,
we observe the single observation yj that is normally distributed with
mean θj and known variance σ2

j . Suppose the parameters θ1, ..., θJ are
drawn from a normal population with mean µ and variance τ2. The vector
of hyperparameters (µ, τ) is assigned a uniform prior. Gelman et al (2003)
describe the posterior calculations for this model. To summarize,
• Conditional on the hyperparameters µ and τ , the θj have independent

posterior distributions, where θj |µ, τ, y is normally distributed with
mean θ̂j and variance Vj , where

θ̂j =
yj/σ2

j + µ/τ2

1/σ2
j + 1/τ2

, Vj =
1

1/σ2
j + 1/τ2

.

• The marginal posterior density of the hyperparameters (µ, τ) is given
by

g(µ, τ |y) ∝
J∏

j=1

φ(yj |µ,
√

σ2
j + τ2),

where φ(y|µ, σ) denotes the normal density with mean µ and variance
σ.

To illustrate this model, Gelman et al (2003) describe the results of inde-
pendent experiments to determine the effects of special coaching programs
on SAT scores. For the jth experiment, one observes an estimated coach-
ing effect yj with associated standard error σj ; the values of the effects
and standard errors are displayed in Table 7.1. The objective is to com-
bine the coaching estimates in some way to obtain improved estimates at
the true effects θj .

7.12 Exercises 159

Table 7.1. Observed effects of special preparation on SAT scores in eight random-
ized experiments.

School Treatment Effect yj Standard Error σj

A 28 15

B 8 10

C −3 16

D 7 11

E −1 9

F 1 11

G 18 10

H 12 18

a) Write an R function to compute the logarithm of the posterior den-
sity of the hyperparameters µ and log τ . (Don’t forget to include the
Jacobian term in the transformation to (µ, log τ).) Use a simulation
algorithm such as Gibbs sampling (function gibbs), random walk
Metropolis (function rwmetrop), or independence Metropolis (func-
tion indepmetrop) to obtain a sample of size 1000 from the posterior
of (µ, log τ).

b) Using the simulated sample from the marginal posterior of (µ, log τ),
simulate 1000 draws from the joint posterior density of the means
θ1, ..., θJ . Summarize the posterior distribution of each θj by the com-
putation of a posterior mean and posterior standard deviation.

2. Normal/normal exchangeable model (continued)
We assume that the sampling algorithm in Exercise 7.1 has been followed
and one has simulated a sample of 1000 values from the marginal posterior
of the hyperparameters µ and log τ , and also from the posterior densities
of θ1, ..., θJ .
a) The posterior mean of θj , conditional on µ and τ , can be written as

E(θj |y, µ, τ) = (1 − Bj)yj + Bjµ,

where Bj = τ−2/(τ−2 + σ−2
j) is the size of the shrinkage of yj toward

the mean µ. For all observations, compute the shrinkage size E(Bj |y)
from the simulated draws of the hyperparameters. Rank the schools
from the largest shrinkage to the smallest shrinkage and explain why
there are differences.

b) School A had the largest observed coaching effect of 28. From the
simulated draws from the joint distribution of θ1, ..., θJ , compute the
posterior probability P(θ1 > θj) for j = 2, ..., J .

3. Binomial/beta exchangeable model
In Chapter 5, we described the problem of simultaneously estimating
the rates of death from stomach cancer for males at risk in the age

160 7 Hierarchical Modeling

bracket 45–64 for the largest cities in Missouri. The dataset is available
as cancermortality in the LearnBayes package. Assume that the num-
bers of cancer deaths {yj} are independent, where yj is binomial with
sample size nj and probability of death pj . To model a prior belief of
exchangeability, it is assumed that p1, ..., p20 are a random sample from
a beta distribution with parameters a and b. We reparameterize the beta
parameters a and b to new values

η =
a

a + b
, K = a + b.

The hyperparameter η is the prior mean of each pj and K is a precision
parameter. At the last stage of this model, we assign (η,K) the noninfor-
mative proper prior

g(η,K) =
1

(1 + K)2
, 0 < η < 1,K > 0.

Due to the conjugate form of the prior, one can derive the following pos-
terior distributions.
• Conditional on the values of the hyperparameters η and K, the prob-

abilities p1, ..., p20 are independent, with pj distributed beta with
parameters aj = Kη + yj and bj = K(1 − η) + nj − yj .

• The marginal posterior density of (η,K) has the form

g(η,K|y) ∝ 1
(1 + K)2

20∏

j=1

B(Kη + yj ,K(1 − η) + nj − yj)
B(Kη,K(1 − η)

,

where K > 0 and 0 < η < 1.
a) To summarize the posterior distribution of the hyperparameters η and

K, first transform the parameters to the real line by the reexpressions
θ1 = log K and θ2 = log(η/(1 − η)). Write an R function to compute
values of the log posterior of θ1 and θ2.

b) Use a simulation algorithm such as Gibbs sampling (function gibbs),
random walk Metropolis (function rwmetrop), or independence Metro-
polis (function indepmetrop) to obtain a sample of size 1000 from the
posterior of (θ1, θ2). Summarize the posterior distributions of K and
η by 90% interval estimates.

c) Using the simulated sample from the marginal posterior of (θ1, θ2),
simulate 1000 draws from the joint posterior density of the probabil-
ities p1, ..., p20. Summarize the posterior distribution of each pj by a
90% interval estimate.

4. Binomial/beta exchangeable model (continued)
We assume that the sampling algorithm in Exercise 7.3 has been followed
and one has simulated a sample of 1000 values from the marginal posterior
of the hyperparameters K and m, and also from the posterior densities of
p1, ..., p20.

7.12 Exercises 161

a) Let y∗
j denote the number of cancer deaths of a future sample of size nj

from the jth city in Missouri. Conditional on the probability pj distri-
bution of y∗

j is binomial(nj , pj). For city 1 (with nj = 1083 patients)
and city 15 (with nj = 53637 patients), simulate a sample of 1000
values from the posterior predictive distribution of y∗

j .
b) For cities 1 and 15, the observed numbers of cancer deaths were 0 and

54, respectively. By comparing the observed values of yj against the
respective predictive distributions, decide if these values are consistent
with the binomial/beta exchangeable model.

8

Model Comparison

8.1 Introduction

In this chapter we illustrate the use of R to compare models from a Bayesian
perspective. We introduce the notion of a Bayes factor in the setting where one
is comparing two hypotheses about a parameter. In the setting where one is
testing hypotheses about a population mean, we illustrate the computation of
Bayes factors in both the one-sided and two-sided settings. We then generalize
to the setting where one is comparing two Bayesian models, each consisting
of a choice of prior and sampling density. In this case, the Bayes factor is
the ratio of the marginal densities for the two models. We illustrate Bayes
factor computations in two examples. In the analysis of hitting data for a
baseball player, one wishes to compare a “consistent” model with a “streaky”
model where the probability of a success may change over a season. In the
second application, we illustrate the computation of Bayes factors against
independence in a two-way contingency table.

8.2 Comparison of Hypotheses

To introduce Bayesian measures of evidence, suppose one observes Y from a
sampling distribution f(y|θ) and one wishes to test the hypotheses

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1,

where Θ0 and Θ1 form a partition of the parameter space. If one assigns a
proper prior density g(θ), then one can judge the two hypotheses a priori by
the prior odds ratio

π0

π1
=

P (θ ∈ Θ0)
P (θ ∈ Θ1)

=

∫
Θ0

g(θ)dθ
∫

Θ1
g(θ)dθ

.

164 8 Model Comparison

After data Y = y is observed, one’s beliefs about the parameter are
updated by the posterior density

g(θ|y) ∝ L(θ)g(θ),

where L(θ) is the likelihood function. One’s new beliefs about the two
hypotheses are summarized by the posterior odds ratio

p0

p1
=

P (θ ∈ Θ0|y)
P (θ ∈ Θ1|y)

=

∫
Θ0

g(θ|y)dθ
∫

Θ1
g(θ|y)dθ

.

The Bayes factor is the ratio of the posterior odds to the prior odds of the
hypotheses

BF =
posterior odds

prior odds
=

p0/p1

π0/π1
.

The statistic BF is a measure of the evidence provided by the data in support
of the hypothesis H0. The posterior probability of the hypothesis H0 can be
expressed as a function of the Bayes factor and the prior probabilities of the
hypotheses by

p0 =
π0BF

π0BF + 1 − π0
.

8.3 A One-Sided Test of a Normal Mean

In an example from chapter 14 of Berry (1996), the author was interested in
determining his true weight from a variable bathroom scale. We assume the
measurements are normally distributed with mean µ and standard deviation
σ. The author weighs himself 10 times with the measurements (in pounds)
182, 172, 173, 176, 176, 180, 173, 174, 179, and 175. For simplicity, assume
that he knows the accuracy of the scale and σ = 3 pounds.

If we let µ denote the author’s true weight, suppose he is interested in
assessing if his true weight is larger than 175 pounds. He wishes to test the
hypotheses

H0 : µ ≤ 175, H1 : µ > 175.

Suppose the author has little prior knowledge about his true weight and so
he assigns µ a normal prior with mean 170 and standard deviation 5

µ distributed N(170, 5).

The prior odds of the null hypothesis H0 is given by

π0

π1
=

P (µ ≤ 175)
P (µ > 175)

.

We compute this prior odds from the N(170, 5) density using the pnorm
function. In the following output, pmean and pvar are, respectively, the prior
mean and prior variance of µ.

8.3 A One-Sided Test of a Normal Mean 165

> pmean=170; pvar=25

> probH=pnorm(175,pmean,sqrt(pvar))

> probA=1-probH

> prior.odds=probH/probA

> prior.odds

[1] 5.302974

So a priori the null hypothesis is five times more likely than the alternative
hypothesis.

We enter the 10 weight measurements into R and compute the sample
mean ȳ and the associated sampling variance sigma2 equal to σ2/n.

> weights=c(182, 172, 173, 176, 176, 180, 173, 174, 179, 175)

> ybar=mean(weights)

> sigma2=3^2/length(weights)

By the familiar normal density/normal prior updating formula, the poste-
rior precision (inverse of the variance) of µ is the sum of the precisions of the
data and the prior.

> post.precision=1/sigma2+1/pvar

> post.var=1/post.precision

The posterior mean of µ is the weighted sum of the sample mean and the
prior mean where the weights are proportional to the respective precisions.

> post.mean=(ybar/sigma2+pmean/pvar)/post.precision

> c(post.mean,sqrt(post.var))

[1] 175.7915058 0.9320547

The posterior density of µ is N(175.79, 0.93).
Using this normal posterior density, we calculate the odds of the null

hypothesis.

> post.odds=pnorm(175,post.mean,sqrt(post.var))/

+ (1-pnorm(175,post.mean,sqrt(post.var)))

> post.odds

[1] 0.2467017

So the Bayes factor in support of the null hypothesis is

> BF = post.odds/prior.odds

> BF

[1] 0.04652139

From the prior probabilities and the Bayes factor, we can compute the
posterior probability of the null hypothesis.

166 8 Model Comparison

> postH=probH*BF/(probH*BF+probA)

> postH

[1] 0.1978835

Based on this calculation, the author can conclude that it is unlikely that his
weight is at most 175 pounds.

There is an interesting connection between this Bayesian measure of evi-
dence and the frequentist p-value. Here with a known value of the standard
deviation σ, the traditional test of H0 is based on the test statistic

z =
√

n(ȳ − 175)
3

.

The p-value is the probability that a standard normal variate exceeds z. In
the R output, we compute the p-value using the pnorm function.

> z=sqrt(length(weights))*(mean(weights)-175)/3

> 1-pnorm(z)

[1] 0.1459203

Suppose we repeat the Bayesian analysis using a very flat prior where
the mean and standard deviation are 170 and 1000, respectively. The function
mnormt.onesided in the LearnBayes package performs the calculations where
one inputs the value of the mean to be tested, the parameters (mean and
standard deviation) of the normal prior, and the data values (sample mean,
sample size, known sampling standard deviation).

> weights=c(182, 172, 173, 176, 176, 180, 173, 174, 179, 175)

> data=c(mean(weights),length(weights),3)

> prior.par=c(170,1000)

> mnormt.onesided(175,prior.par,data)

$BF
[1] 0.1694947
$prior.odds
[1] 1.008011
$post.odds
[1] 0.1708525
$postH
[1] 0.1459215

Note that the probability of the null hypothesis is approximately equal to
the p-value. This illustrates a general result that a Bayesian probability of a
hypothesis is equal to the p-value for one-sided testing problems when a vague
prior distribution is placed on the parameter.

8.4 A Two-Sided Test of a Normal Mean 167

8.4 A Two-Sided Test of a Normal Mean

Consider the “two-sided” test of the hypothesis that a mean from a normal
distribution (with known standard deviation) is equal to a specific value. Con-
tinuing the example from the last section, suppose that Berry knows that his
weight last year was 170 pounds and he wonders whether he still weighs 170
this year. So he is interested in the hypothesis H0 that his true current weight
µ is equal to 170. The alternative hypothesis H1 is that his weight is now
either larger or smaller than 170.

The construction of the prior distribution is somewhat unique here since
there will be a point mass at the value of µ in the null hypothesis. In the
example, the author believes that there is a good chance that his weight
did not change from last year, and so he assigns the statement µ = 170 a
probability of .5.

Next, the author has to think about plausible values for µ if the hypothesis
H0 is not true. If his weight did change from last year, then he may think that
it is more likely that µ is close to last year’s weight (170) than far from it. A
normal distribution with mean 170 and standard deviation τ will then be a
suitable model for alternative values for µ.

In general, we are testing the hypothesis H0 : µ = µ0 against the alter-
native hypothesis H1 : µ �= µ0 in the case where the standard deviation σ is
known. A normal prior distribution with mean µ0 and standard deviation τ
will be used to represent one’s opinion under the alternative hypothesis H1.

In this situation the Bayes factor in support of the hypothesis H is given
by

BF =
n1/2

σ exp{− n
2σ2 (ȳ − µ0)2}

(σ2/n + τ2)−1/2 exp{− 1
2(σ2/n+τ2) (ȳ − µ0)2}

.

As before, if π0 is the prior probability of the null hypothesis H0 that µ = µ0,
then the posterior probability of H0 is

p0 =
π0BF

π0BF + 1 − π0
.

To compute the Bayes factor in practice, one has to input the standard
deviation τ of the normal density under the alternative hypothesis H1. If the
author’s weight did change from last year, how large will the change be? One
way of obtaining the value of τ is to think of the range of possible alternative
values for µ and then solve for this standard deviation by setting the 95%
range of the normal distribution, 4τ , to this range. To illustrate, suppose that
the author thinks that his current weight could be five pounds less or more
than last year’s weight of 170. The range of alternative values for µ is 175−165
= 10 and by setting 10 = 4τ , one obtains τ = 2.5.

The function mnormt.twosided in the LearnBayes package computes the
Bayes factor and the posterior probability of the null hypothesis in this prob-
lem. The inputs to the function are the value µ0 to be tested, the prior prob-
ability π0 of the hypothesis H0, the prior standard deviation τ , and the data

168 8 Model Comparison

values (sample mean, sample size, known sampling standard deviation). Since
it may be difficult to assess values for τ , the function allows the user to input
a vector of plausible values.

The R code for the computation in this example is shown here. Note the
values .5, 1, 2, 4, and 8 are inputted as possible values for τ .

> weights=c(182, 172, 173, 176, 176, 180, 173, 174, 179, 175)
> data=c(mean(weights),length(weights),3)
> t=c(.5,1,2,4,8)
> mnormt.twosided(170,.5,t,data)
$bf
[1] 1.462146e-02 3.897038e-05 1.894326e-07 2.591162e-08
[5] 2.309739e-08
$post
[1] 1.441076e-02 3.896887e-05 1.894325e-07 2.591162e-08
[5] 2.309739e-08

For each value of the prior standard deviation τ , the program gives the
Bayes factor in support of the hypothesis that µ takes on the specific value
and the posterior probability that the hypothesis H is true. If the author uses
a normal (170, 2) density to reflect alternative values for his weight µ, then
the Bayes factor in support of the hypothesis µ = 170 is equal to .0000002.
The posterior probability that his weight hasn’t changed is .0000002, which
is much smaller than the author’s prior probability of .5. He should conclude
that his current weight is not 170.

8.5 Comparing Two Models

The Bayesian approach to comparing hypotheses can be generalized to com-
pare two models. If we let y denote the vector of data and θ the parameter,
then a Bayesian model consists of a specification of the sampling density f(y|θ)
and the prior density g(θ). Given this model, one can compute the marginal
or prior predictive density of the data

m(y) =
∫

f(y|θ)g(θ)dθ.

Suppose we wish to compare two Bayesian models

M0 : y ∼ f1(y|θ0), θ0 ∼ g1(θ0), M1 : y ∼ f2(y|θ1), θ1 ∼ g2(θ1),

where it is possible that the definition of the parameter θ may differ between
models. Then the Bayes factor in support of model M0 is the ratio of the
respective marginal densities (or prior predictive densities) of the data for the
two models.

BF =
m0(y)
m1(y)

.

8.6 Models for Soccer Goals 169

If π0 and π1 denote the respective prior probabilities of the models M0 and
M1, then the posterior probability of model M0 is given by

P (M0|y) =
π0BF

π0BF + π1
.

A simple way of approximating a marginal density is by Laplace’s method,
described in Section 3 of Chapter 5. Let θ̂ denote the posterior mode and H(θ)
denote the Hessian (second derivative matrix) of the log posterior density.
Then the prior predictive density can be approximated as

m(y) ≈ (2π)d/2g(θ̂)f(y|θ̂)| − H(θ̂)|1/2,

where d is the number of parameters. On the log scale, we have

log m(y) ≈ (d/2) log(2π) + log(g(θ̂)f(y|θ̂)) + (1/2) log | − H(θ̂)|.

Once an R function is written to compute the logarithm of the product
f(y|θ)g(θ), then the function laplace can be applied and the component
of the output int gives an estimate of log m(y). By applying this method for
several models, one can use the computed values of m(y) to compute a Bayes
factor.

8.6 Models for Soccer Goals

To illustrate the use of the function laplace in computing Bayes factors,
suppose you are interested in learning about the mean number of goals scored
by a team in Major League Soccer. You observe the number of goals scored
y1, ..., yn for n games. Since goals are relatively rare events, it is reasonable to
assume that the yis are distributed according to a Poisson distribution with
mean λ. We consider the use of the following four subjective priors for λ:

1. Prior 1. You assign a conjugate gamma prior to λ of the form

g(λ) ∝ λα−1 exp{−βλ}, λ > 0,

with α = 4.57 and β = 1.43. This prior says that you believe that a team
averages about 3 goals a game and the quartiles for λ are given by 2.10
and 4.04.

2. Prior 2. It is more convenient for you to represent prior opinion in terms
of symmetric distributions. So you assume that log λ is normal with mean
1 and standard deviation .5. The quartiles of this prior for log λ are 0.66
and 1.34, which translates to prior quartiles for λ of 1.94 and 3.81. Note
that Prior 1 and this prior reflect similar beliefs about the location of the
mean rate λ.

170 8 Model Comparison

3. Prior 3. This prior assumes that log λ is N(2, .5). The prior quartiles for
the rate λ are 5.27 and 10.35. This prior says that you believe teams score
a lot of goals in Major League Soccer.

4. Prior 4. This prior assumes that log λ is N(1, 2)with associated quartiles
for the rate λ of 1.92 and 28.5. This prior reflects little knowledge about
the scoring pattern of soccer games.

The number of goals were observed for a particular team in Major League
Soccer for the 2006 season. The dataset is available as soccergoals in the
LearnBayes package. The likelihood of λ, assuming the Poisson model, is given
by

L(λ) =
exp(−nλ)λs

∏n
i=1 yi!

,

where s =
∑n

i=1 yi. For our dataset, n = 35 and s = 57. Fig. 8.1 displays the
likelihood on the log λ scale together with the four proposed priors described
earlier. Priors 1 and 2 seem pretty similar in location and shape. We see
substantial conflict between the likelihood and Prior 3, and the shape of Prior
4 is very flat relative to the likelihood.

To use the function laplace, we have to write short functions defining the
log posterior. The first function logpoissgamma computes the log posterior
with Poisson sampling and a gamma prior. Following our usual strategy, we
transform λ to the real-valued parameter θ = log λ. The arguments to the
function are theta and datapar, a list that contains the data vector data
and the parameters of the gamma prior par. Note that we use the R function
dgamma in computing both the likelihood and the prior.

logpoissgamma=function(theta,datapar)
{
y=datapar$data
npar=datapar$par
lambda=exp(theta)
loglike=log(dgamma(lambda,shape=sum(y)+1,rate=length(y)))
logprior=log(dgamma(lambda,shape=npar[1],rate=npar[2])*lambda)
return(loglike+logprior)
}

Similarly, we write the function logpoissnormal to compute the log posterior
of log λ for Poisson sampling and a normal prior. This function uses both the
R functions dgamma and dnorm.

logpoissnormal=function(theta,datapar)
{
y=datapar$data
npar=datapar$par

8.6 Models for Soccer Goals 171

−1 0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

log lambda

de
ns

ity
like
prior 1
prior 2

−1 0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

log lambda

de
ns

ity

like
prior 3
prior 4

Fig. 8.1. The likelihood function and four priors on θ = log λ for the soccer goal
example.

lambda=exp(theta)
loglike=log(dgamma(lambda,shape=sum(y)+1,scale=1/length(y)))
logprior=log(dnorm(theta,mean=npar[1],sd=npar[2]))
return(loglike+logprior)
}

We first load in the datafile soccergoals; there is one variable goals
in this dataset that we make available by the attach command. For each of
the four priors, we use the function laplace to summarize the posterior. If the
output of the function is fit, fit$mode is the posterior mode, fit$var is the
associated estimate at the posterior variance and fit$int is the estimate at
log m(y).

> data(soccergoals)

> attach(soccergoals)

> datapar=list(data=goals,par=c(4.57,1.43))

> fit1=laplace(logpoissgamma,.5,10,datapar)

> datapar=list(data=goals,par=c(1,.5))

> fit2=laplace(logpoissnormal,.5,10,datapar)

172 8 Model Comparison

> datapar=list(data=goals,par=c(2,.5))

> fit3=laplace(logpoissnormal,.5,10,datapar)

> datapar=list(data=goals,par=c(1,2))

> fit4=laplace(logpoissnormal,.5,10,datapar)

We display the posterior modes, posterior standard deviations, and log
marginal densities for the four models corresponding to the four priors.

> postmode=c(fit1$mode,fit2$mode,fit3$mode,fit4$mode)

> postsd=sqrt(c(fit1$var,fit2$var,fit3$var,fit4$var))

> logmarg=c(fit1$int,fit2$int,fit3$int,fit4$int)

> cbind(postmode,postsd,logmarg)

postmode postsd logmarg
[1,] 0.5247821 0.1274428 -1.502965
[2,] 0.5207796 0.1260714 -1.255170
[3,] 0.5825327 0.1224715 -5.076322
[4,] 0.4899378 0.1320168 -2.137214

By use of the values of log m(y), one can compare the different models
by Bayes factors. Does it matter if we use a gamma(4.57, .7) prior on λ or
a normal(1, .5) prior on log λ? To answer this question, we can compute the
Bayes factor in support of Prior 2 over Prior 1:

BF21 =
m2(y)
m1(y)

= exp(−1.255170 + 1.502965) = 1.28.

There is slight support for the normal prior – this makes sense from Fig. 8.1
since Prior 2 is slightly closer to the likelihood function. Comparing Prior 2
with Prior 3, the Bayes factor in support of Prior 2 is

BF23 =
m2(y)
m3(y)

= exp(−1.255170 + 5.076322) = 45.6,

indicating large support for Prior 2. Actually, note that the locations of the
likelihood and Prior 3 are far apart, indicating a conflict between the data
and the prior and a small value of m3(y). Comparing Prior 2 with Prior 4,
the Bayes factor in support of Prior 2 is

BF24 =
m2(y)
m4(y)

= exp(−1.255170 + 2.137214) = 2.42.

Generally, the marginal probability for a prior will decrease as the prior density
becomes more diffuse.

8.7 Is a Baseball Hitter Really Streaky?

In sports, we observe much streaky behavior in players and teams. For exam-
ple, in the sport of baseball, one measure of success of a hitter is the batting

8.7 Is a Baseball Hitter Really Streaky? 173

average or proportion of base hits. During a baseball season, there will be
periods when a player is “hot” and has an unusually high batting average, and
there will also be periods when the player is “cold” and has a very small bat-
ting average. We observe many streaky patterns in the performance of players.
The interesting question is what this streaky data says about the ability of a
player to be streaky.

In baseball, the player has opportunities to bat in an individual season –
we call these opportunities “at-bats.” In each at-bat, there are two possible
outcomes – a hit (a success) or an out (a failure). Suppose we divide all of
the at-bats in a particular baseball season into N periods. Let pi denote the
probability the player gets a hit in a single at-bat during the ith period,
i = 1, ..., N . If a player is truly consistent or nonstreaky, then the probability
of a hit stays constant across all periods; we call this the nonstreaky model
M0:

M0 : p1 = ... = pN = p.

To complete this model specification, we assign the common probability value
p a uniform prior on (0, 1).

On the other hand, if the player is truly streaky, then the probability of a
hit pi will change across the season. A convenient way to model this variation
in the probabilities is to assume that p1, ..., pN are a random sample from a
beta density of the form

g(p) =
1

B(Kη,K(1 − η))
pKη−1(1 − p)K(1−η)−1, 0 < p < 1.

In the density g, η is the mean and K is a precision parameter. We can index
this streaky model by the parameter K; we represent the streaky model by

MK : p1, ..., pN iid beta(Kη,K(1 − η)).

For this model, we place a uniform prior on the mean parameter η, reflecting
little knowledge about the location of the random effects distribution. Note
that as the precision parameter K approaches infinity, the streaky model MK

approaches the consistent model M0.
To compare the models M0 and MK , we need to compute the associated

marginal densities. Under the model M0, the numbers of hits y1, ..., yN are
independent, where yi is binomial(ni, p). With the assumption that p is uni-
form(0, 1), we obtain the marginal density

m0(y) =
∫ N∏

i=1

(
ni

yi

)
pyi(1 − p)ni−yidp

=
N∏

i=1

(
ni

yi

)
B(

N∑

i=1

yi + 1,
N∑

i=1

(ni − yi) + 1).

Under the alternative “streaky” model, the marginal density is given by

174 8 Model Comparison

mK(y) =
∫ N∏

i=1

(
ni

yi

)
pyi

i (1 − pi)ni−yi
pKη−1

i (1 − pi)K(1−η)−1

B(Kη,K(1 − η))
dp1...dpN

=
N∏

i=1

(
ni

yi

)∫ 1

0

∏N
i=1 B(yi + Kη, ni − yi + K(1 − η))

B(Kη,K(1 − η))N
dη.

The Bayes factor in support of the “streaky” model HK compared to the
“nonstreaky” model H0 is given by

BK =
mK(y)
m0(y)

=
1

B(
∑

yi + 1,
∑

(ni − yi) + 1)

∫ 1

0

∏N
i=1 B(yi + Kη, ni − yi + K(1 − η))

B(Kη,K(1 − η))N
dη.

We use the function laplace to compute the integral in the Bayes factor
BK . We first transform the variable η in the integral to the real-valued variable
θ = log(η/(1 − η)). Using the R function lbeta that computes the logarithm
of the beta function, we define the following function bfexch that computes
the log integral. The inputs to this function are theta and a list datapar with
components data (a matrix with columns y and n) and K.

bfexch=function(theta,datapar)
{
y=datapar$data[,1]; n=datapar$data[,2]; K=datapar$K
eta=exp(theta)/(1+exp(theta))
N=length(y)
z=0*theta;
for (i in 1:N)
z=z+lbeta(K*eta+y[i],K*(1-eta)+n[i]-y[i])

z=z-N*lbeta(K*eta,K*(1-eta))+log(eta*(1-eta))
z=z-lbeta(sum(y)+1,sum(n-y)+1)
return(z)
}

To compute the Bayes factor BK for a specific value, say K0, we use the
function laplace with inputs the function bfexch, a starting value of η = 0,
10 iterations of Newton’s method, and the list datapar using the value K0.

s=laplace(bfexch,0,10,list(data=data,K=K0)))

The list s is the output of laplace; the component s$int gives the estimate
at the logarithm of the Bayes factor log BK .

To illustrate the use of this method, we consider the hitting data for the
New York Yankee player Derek Jeter for the 2004 baseball season. Jeter was
one of the “star” players on this team, and he experienced an unusual hitting
slump during the early part of the season that attracted much attention from
the local media.

8.7 Is a Baseball Hitter Really Streaky? 175

Hitting data for Jeter were collected for each of the 155 games he played
in that particular season. A natural way of defining periods during the season
is by games, so N = 155. However, it is difficult to detect streakiness in these
hitting data since Jeter only had about 4–5 opportunities to hit in each game.
So we group the data into five-game intervals. The original game-by-game
data are available as jeter2004 in the LearnBayes package. In the following
R code, we read in the complete hitting data for Jeter and use the regroup
function to group the data into periods of five games.

> data(jeter2004)

> attach(jeter2004)

> data=cbind(H,AB)

> data1=regroup(data,5)

The matrix data1 contains the grouped hitting data (yi, ni), i = 1, ..., 31,
where yi is the number of hits by Jeter in ni at-bats in the ith interval of
games. These data are listed in Table 8.1.

Table 8.1. Hitting data from Derek Jeter for 2004 baseball season.

Period (y, n) Period (y, n) Period (y, n) Period (y, n)

1 (4, 19) 9 (6, 24) 17 (5, 21) 25 (5, 20)
2 (6, 22) 10 (12,24) 18 (6, 21) 26 (4, 17)
3 (4, 22) 11 (4, 15) 19 (4, 23) 27 (11, 20)
4 (0, 20) 12 (11,21) 20 (8, 19) 28 (7, 21)
5 (5, 22) 13 (5 ,21) 21 (8, 21) 29 (9, 21)
6 (3, 19) 14 (8, 21) 22 (6, 23) 30 (6, 20)
7 (8, 24) 15 (7, 18) 23 (3, 22) 31 (7, 19)
8 (3, 23) 16 (7, 22) 24 (6, 18)

We compute the Bayes factor for a sequence of values of log K using the
function laplace and the definition of the log integral defined in the function
bfexch. In this example, the vector logK contains the values log(K) = 2, 3,
4, 5, and 6 and the vector logBF stores the corresponding values of the log
Bayes factor log BK . We display in a matrix the values of log K, the values of
K, the values of log BK , and the values of the Bayes factor BK .

> logK=seq(2,6)

> logBF=0*logK

> for (j in 1:length(logK))

+ {

+ s=laplace(bfexch,0,10,list(data=data1,K=exp(logK[j])))

+ logBF[j]=s$int

+ }

> cbind(logK,exp(logK),logBF,exp(logBF))

176 8 Model Comparison

[,1] [,2] [,3] [,4]
[1,] 2 7.389056 -2.9441182 0.05264847
[2,] 3 20.085537 1.0482048 2.85252569
[3,] 4 54.598150 1.4380139 4.21232144
[4,] 5 148.413159 0.8160944 2.26164940
[5,] 6 403.428793 0.3538964 1.42460759

We see from the output that the value log K = 4 is most supported by the
data with a corresponding Bayes factor of BK = 4.21. This particular streaky
model is approximately four times as likely as the consistent model. This
indicates that Jeter indeed did display some true streakiness in his hitting
behavior for this particular baseball season.

8.8 A Test of Independence in a Two-Way Contingency
Table

A basic problem in statistics is to explore the relationship between two categor-
ical measurements. To illustrate this situation, consider the following example
presented in Moore (1995) in which North Carolina State University looked
at student performance in a course taken by chemical engineering majors.
Researchers wished to learn about the relationship between the time spent
in extracurricular activities and the grade in the course. Data on these two
categorical variables were collected from 119 students, and the responses are
presented using the contingency table in Table 8.2.

Table 8.2. Two-way table relating student performance and time spent in extracur-
ricular activities.

Extracurricular Activities
(hr per week)

< 2 2 to 12 > 12

C or better 11 68 3

D or F 9 23 5

To learn about the possible relationship between participation in extracur-
ricular activities and grade, one tests the hypothesis of independence. The
usual non-Bayesian approach of testing the independence hypothesis is based
on a Pearson chi-squared statistic that contrasts the observed counts with
expected counts under an independence model. In R, we read in the table of
counts and use the function chisq.test to test the independence hypothesis:

> data=matrix(c(11,9,68,23,3,5),c(2,3))

> data

8.8 A Test of Independence in a Two-Way Contingency Table 177

[,1] [,2] [,3]
[1,] 11 68 3
[2,] 9 23 5

> chisq.test(data)

Pearson’s Chi-squared test

data: data
X-squared = 6.9264, df = 2, p-value = 0.03133

Warning message:
Chi-squared approximation may be incorrect in: chisq.test(data)

Here the p-value is approximately .03, which is some evidence that one’s grade
is related to the time spent on extracurricular activities.

From a Bayesian viewpoint, there are two possible models – the model MI

that the two categorical variables are independent and the model MD that the
two variables are dependent in some manner. To describe the Bayesian models,
assume that these data represent a random sample from the population of
interest and the counts of the table have a multinomial distribution with
proportion values as shown in Table 8.3. Under the dependence model MD,
the proportion values p11, . . . , p23 can take any values that sum to 1, and we
assume the prior density places a uniform distribution over this space.

Table 8.3. Probabilities of the table under the hypothesis of dependence.

Extracurricular Activities
(hr per week)

< 2 2 to 12 > 12

C or better p11 p12 p13

D or F p21 p22 p23

Under the independence model MI , the proportions in the table are
determined by the marginal probabilities {p1+, p2+} and {p+1, p+2, p+3} as
displayed in Table 8.4. Here the unknown parameters are the proportions of
students in different activity levels and the proportions with different grades.
We assume that our knowledge about these two sets of proportions, {pi+}
and {p+j}, are independent and assign to each set a uniform density over all
possible values.

We have defined two models – a dependence model MD where the multino-
mial proportions are uniformly distributed and an independence model MI

where the multinomial proportions have an independence structure and the
marginal proportions are assigned independent uniform priors. It can be shown

178 8 Model Comparison

Table 8.4. Probabilities of the table under the hypothesis of independence.

Extracurricular Activities
(hr per week)

< 2 2 to 12 > 12

C or better p1+p+1 p1+p+2 p1+p+3 p1+

D or F p2+p+1 p2+p+2 p2+p+3 p2+

p+1 p+2 p+3

that the Bayes factor in support of the dependence model over the indepen-
dence model is given by

BF =
D(y + 1)D(1R)D(1C)

D(1RC)D(yR + 1)D(yC + 1)
,

where y is the matrix of counts, yR is the vector of row totals, yC is the vector
of column totals, 1R is the vector of ones of length R, and D(ν) is the Dirichlet
function defined by

D(ν) =
∏

Γ (νi)/Γ (
∑

νi).

The R function ctable will compute this Bayes factor for a two-way con-
tingency table. One inputs a matrix a of prior parameters for the matrix of
probabilities. By taking a matrix a of ones, one is assigning a uniform prior
on {pij} and uniform priors on {pi+} and {p+j} under the dependence model.
The output of this problem is the value of the Bayes factor. Here the value is
BF = 1.66, which indicates modest support against independence.

> a=matrix(rep(1,6),c(2,3))

> a

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1

> ctable(data,a)

[1] 1.662173

We are comparing“uniform”with“independence”models for a contingency
table. One criticism of this method is that we may not really be interested in
a “uniform” alternative model. Perhaps we would like to compare “indepen-
dence” with a model where the cell probabilities are “close to independence.”
Such a model was proposed by Albert and Gupta (1981). Suppose the table
probabilities {pij} are assigned a conjugate Dirichlet distribution of the form

g(p) ∝
∏

p
Kηij−1
ij ,

where the prior means {ηij} satisfy an independence configuration

8.8 A Test of Independence in a Two-Way Contingency Table 179

ηij = ηA
i ηB

j .

This structure of prior means is illustrated for our example in Table 8.5. Then
the vectors of prior means of the margins {ηA

i }, and {ηB
j } are assigned uniform

distributions. This model will be labeled MK as it is indexed by the Dirichlet
precision parameter K. As K approaches infinity, the model approaches the
independence hypothesis MI , where the marginal probabilities have uniform
distributions.

Table 8.5. Prior means of the cell probabilities of the table under “close to inde-
pendence” model.

Extracurricular Activities
(hr per week)

< 2 2 to 12 > 12

C or better ηA
1 ηB

1 ηA
1 ηB

2 ηA
1 ηB

3 ηA
1

D or F ηA
2 ηB

1 ηA
2 ηB

2 ηA
2 ηB

3 ηA
2

ηB
1 ηB

2 ηB
3

It can be shown that the Bayes factor in support of the “close to indepen-
dence” model MK over the independence model MI is given by

BFK =
1

D(yR + 1)D(yC + 1)

∫
D(KηAηB + y)

D(KηAηB)
dηAdηB,

where KηAηB + y is the vector of values {KηA
i ηB

j + yij} and the integral is
taken over the vectors of marginal prior means ηA = {ηA

i } and ηB = {ηB
j }.

One straightforward way of computing the Bayes factor is by importance
sampling. The Bayes factor can be represented as the integral

BFK =
∫

h(θ)dθ,

where θ = (ηA, ηB). Suppose the integrand can be approximated by the den-
sity g(θ), where g is easy to simulate. Then by writing the integral as

BFK =
∫

h(θ)
g(θ)

g(θ)dθ,

we can approximate the integral as

BFK ≈
∑m

j=1 h(θj)/g(θj)
m

,

where θ1, ..., θm are independent simulated draws from g(θ). The simulation
standard error of this importance sampler estimate is given by

180 8 Model Comparison

se = standard deviation ({h(θj)/g(θj)})/
√

m.

In our example, it can be shown, as K approaches infinity, the posterior of
the vectors of marginal prior means ηA and ηB can be shown to be independent
with

ηAdistributed Dirichlet(yR + 1), ηBdistributed Dirichlet(yC + 1),

where the Dirichlet distribution on the vector η with parameter vector a has
the density proportional to

∏
ηai−1

i . This density is a convenient choice for
importance sampler since it is easy to simulate draws from a Dirichlet distri-
bution.

Using this importance sampling algorithm, the function bfindep computes
the Bayes factor using this alternative “close to independence” model. One
inputs the data matrix y, the Dirichlet precision parameter K, and the size of
the simulated sample m. The output is a list with two components: bf, the
value of the Bayes factor, and nse, an estimate at the simulation standard
error of the computed value of BF.

In the following R input, we compute the Bayes factor for a sequence of
values of log K. The output gives the value of the log Bayes factor and the
Bayes factor for some values of log K. Fig. 8.2 displays the log Bayes factor as
a function of log K and 10,000 simulation draws. (We used the R function spm
in the SemiPar package to smooth out the simulation errors in the computed
log Bayes factors before plotting.) Note that this maximum value of the Bayes
factor is 2.3, indicating some support for an alternative model that is in the
neighborhood of the independence model.

> logK=seq(2,7,by=.2)

> logBF=0*logK

> for (j in 1:length(logK))

+ {x=bfindep(data,exp(logK[j]),100000); logBF[j]=log(x$bf)}

> cbind(logK,logBF,exp(logBF))

logK logBF
[1,] 2.0 -1.53308341 0.2158690
[6,] 3.0 0.04157343 1.0424497
[11,] 4.0 0.83315205 2.3005588
[16,] 5.0 0.73923892 2.0943409
[21,] 6.0 0.43584433 1.5462681
[26,] 7.0 0.19970982 1.2210484

8.9 Further Reading

Carlin and Louis (2000), chapter 6, and Kass and Raftery (1995) provide
general discussions of the use of Bayes factors in selecting models. Berger

8.10 Summary of R Functions 181

2 3 4 5 6 7

−
1.

0
−

0.
5

0.
0

0.
5

logK

fit
$f

it$
fit

te
d

Fig. 8.2. Plot of log Bayes factor in support of model MK over MI against the
precision parameter log K.

and Sellke (1987) and Casella and Berger (1987) describe the relationship
between Bayesian and frequentist measures of evidence in the two-sided and
one-sided testing situations, respectively. Gunel and Dickey (1974) describe
the use of Dirichlet distributions in the development of tests for contingency
tables, and Albert and Gupta (1981) introduce the use of mixtures of Dirichlet
distributions for contingency tables.

8.10 Summary of R Functions

bfexch – computes the logarithm of the integral of the Bayes factor for testing
homogeneity of a set of probabilities
Usage: bfexch(theta,datapar)
Arguments: theta, vector of values of the logit of the prior hyperparameter
η; datapar, list with components data (matrix with columns y and n) and K
(prior precision hyperparameter)
Value: vector of values of the logarithm of the integral

182 8 Model Comparison

bfindep – computes a Bayes factor against independence for a two-way con-
tingency table assuming a “close to independence” alternative model
Usage: bfindep(y, K, m)
Arguments: y, matrix of counts; K, Dirichlet precision hyperparameter; m, num-
ber of simulations
Value: bf, value of the Bayes factor against independence; nse, estimate of
the simulation standard error of the computed value of the Bayes factor

ctable – computes a Bayes factor against independence for a two-way con-
tingency table assuming uniform prior distributions
Usage: ctable(y,a)
Arguments: y, matrix of counts; a, matrix of prior parameters for the matrix
of probabilities
Value: the Bayes factor against the hypothesis of independence

logpoissgamma – computes the logarithm of the posterior with Poisson sam-
pling and a gamma prior
Usage: logpoissgamma(theta, datapar)
Arguments: theta, vector of values of the log mean parameter; datapar, list
with components data (vector of sample values) and par (vector of parameters
of the gamma prior)
Value: value of the log posterior for all values in theta

logpoissnormal – computes the logarithm of the posterior with Poisson sam-
pling and a normal prior
Usage: logpoissnormal(theta, datapar)
Arguments: theta, vector of values of the log mean parameter; datapar, list
with components data (vector of sample values) and par (vector of parameters
of the normal prior)
Value: value of the log posterior for all values in theta

mnormt.onesided – Bayesian test of the hypothesis that a normal mean M is
less than or equal to a specific value
Usage: mnormt.onesided(mu0,normpar,data)
Arguments: mu0, value of the normal mean to be tested; normpar, vector of
mean and standard deviation of the normal prior distribution; data, vector
of sample mean, sample size, and known value of the population standard
deviation
Value: BF, Bayes factor in support of the null hypothesis; prior.odds, the
prior odds of the null hypothesis; post.odds, the posterior odds of the null
hypothesis, postH, the posterior probability of the null hypothesis

mnormt.twosided – Bayesian test of the hypothesis that a normal mean M is
equal to a specific value
Usage: mnormt.twosided(mu0, probH, tau, data)
Arguments: mu0, the value of the normal mean to be tested; probH, the prior
probability of the null hypothesis; tau, vector of values of the prior standard

8.11 Exercises 183

deviation under the alternative hypothesis; data, vector of sample mean, sam-
ple size, and known value of the population standard deviation
Value: bf, vector of values of the Bayes factor in support of the null hypothesis;
post, vector of values of the posterior probability of the null hypothesis

8.11 Exercises

1. A one-sided test of a binomial probability
In 1986, the St. Louis Post Dispatch was interested in measuring public
support for the construction of a new indoor stadium. The newspaper
conducted a survey in which they interviewed 301 registered voters. Let
p denote the proportion of all registered voters in the St. Louis voting
district opposed to the stadium. A city councilman wishes to test the
hypotheses H : p ≥ .5, K : p < .5.
a) The number y opposed to the stadium construction is assumed

binomial(301, p). Suppose the survey result is y = 135. Using the
R function pbinom, compute the p-value P (y ≤ 135|p = .5). If this
probability is small, say under 5%, then one concludes that there is
significant evidence in support of the hypothesis K : p < .5.

b) Suppose one places a uniform prior on p. Compute the prior odds of
the hypothesis K.

c) After observing y = 135, the posterior distribution of p is beta(136,
167). By use of the R function pbeta, compute the posterior odds of
the hypothesis K.

d) Compute the Bayes factor in support of the hypothesis K.
2. A two-sided test of a normal mean (example from Weiss (2001))

For last year, a sample of 50 cell phone users had a mean local monthly
bill of $41.40. Do these data provide sufficient evidence to conclude that
last year’s mean local monthly bill for cell phone users has changed from
the 1996 mean of $47.70? (Assume that the population standard deviation
is σ = $25.)
a) The usual statistic for testing the value of a normal mean µ is z =√

n(ȳ − µ)/σ. Use this statistic and the R function pnorm to compute
a p-value for testing the hypothesis H : µ = 47.7.

b) Suppose one assigns a prior probability of .5 to the null hypothesis. Use
the R function mnormt.twosided to compute the posterior probability
of H. The arguments to mnormt.twosided are the value to be tested
(47.70), the prior probability of H (.5), the standard deviation τ of
the prior under the alternative hypothesis (assume τ = 4), and the
data vector (values of sample mean, sample size, and known sampling
standard deviation).

c) Compute the posterior probability of H for the alternative values τ
=1, 4, 6, 8, and 10. Compare the values of the posterior probability
with the value of the p-value computed in part (a).

184 8 Model Comparison

3. Comparing Bayesian models by a Bayes factor
Suppose that the number of births to women during a month at a partic-
ular hospital has a Poisson distribution with parameter R. During a given
year at a particular hospital, 66 births were recorded in January and 48
births were recorded in April. If the birth rates during January and April
are given by RJ and RA respectively, then (assuming independence) the
probability of the sample result is

f(data|RJ , RA) =
e−RJ R66

J

66!
e−RAR48

A

48!
.

Consider the following two priors for (RJ , RA):
• M1 : RJ ∼ gamma(240, 4), RA ∼ gamma(200, 4).
• M2: RJ = RA and the common value of the rate R ∼ gamma(220, 4).
a) Write R functions to compute the logarithm of the posterior density of

(RJ , RA) under model M1, and the logarithm of the posterior density
of R under model M2.

b) Use the function laplace to compute the logarithm of the predictive
density for both models M1 and M2.

c) Compute the Bayes factor in support of the model M1.
4. Is a basketball player streaky?

Kobe Bryant is one of the most famous players in professional basketball.
Shooting data were obtained for Bryant for the first 15 games in the 2006
season. For game i, one records the number of field goal attempts ni and
the number of successful field goals yi; the data are displayed in Table 8.6.
If pi denotes the probability that Kobe makes a shot during the ith game,
it is of interest to compare the nonstreaky hypothesis

M0 : p1 = ... = p15 = p, p ∼ uniform(0, 1)

against the streaky hypothesis that the pi vary according to a beta dis-
tribuiton

MK : p1, ..., p15 random sample from beta(Kη,K(1−η)), η ∼ uniform(0, 1).

Use the function laplace together with the function bfexch to compute
the logarithm of the Bayes factor in support of the streaky hypothesis MK .
Compute the log of the Bayes factors for values of K = 10, 20, 50, and
100. Based on your work, is there much evidence that Bryant displayed
true streakiness in his shooting performance in these 15 games?

5. Test of independence (example from Agresti and Franklin (2005))
The 2002 General Social Survey asked the question “Taken all together,
would you say that you are very happy, pretty happy, or not too happy?”
Also the survey asked“Compared with American families in general, would
you say that your family income is below average, average, or above
average?” Table 8.7 cross-tabulates the answers to these two questions.

8.11 Exercises 185

Table 8.6. Shooting data for Kobe Bryant for the first 15 games during the 2006
basketball season.

Game (y, n) Game (y, n)

1 (8, 15) 9 (12, 23)
2 (4, 10) 10 (9, 18)
3 (5, 7) 11 (8, 24)
4 (12, 19) 12 (7, 23)
5 (5, 11) 13 (19, 26)
6 (7, 17) 14 (11, 23)
7 (10, 19) 15 (7, 16)
8 (5, 14)

Table 8.7. Happiness and family income from 2002 General Social Survey.

Happiness

Income Not Too Happy Pretty Happy Very Happy

Above Average 17 90 51

Average 45 265 143

Below Average 31 139 71

a) By use of the Pearson chi-square statistic, use the function chisq.test
to test the hypothesis that happiness and family income are indepen-
dent. Based on the p-value, is there evidence to suggest that the level
of happiness is dependent on the family income?

b) Consider two models, a “dependence model” where the underlying
multinomial probability vector is uniformly distributed and an “inde-
pendence model” where the cell probabilities satisfy an independence
configuration and the marginal probability vectors have uniform dis-
tributions. Using the R function ctable, compute the Bayes factor in
support of the dependence hypothesis.

c) Instead of the analysis in part (b), suppose that one wishes to compare
the independence model with the “close to independence” model MK

described in Section 8.8. Using the function bfindep, compute the
Bayes factor in support of the model MK for values of log K = 2, 3,
4, 5, 6, and 7.

d) Compare the frequentist measure of evidence against independence
with the Bayesian measures of evidence computed in parts (b) and
(c). Which type of measure, frequentist or Bayesian, indicates more
evidence against independence?

9

Regression Models

9.1 Introduction

In this chapter, we illustrate R to fit some common regression models from a
Bayesian perspective. We first outline the Bayesian normal regression model
and describe algorithms to simulate from the joint distribution of regression
parameters and error variance and the predictive distribution of future obser-
vations. One can judge the adequacy of the fitted model through use of the
posterior predictive distribution and the inspection of the posterior distribu-
tions of Bayesian residuals. We then illustrate the R Bayesian computations
in an example where one is interested in explaining the variation of extinction
times of birds in terms of their nesting behavior, their size, and their migrant
status. We conclude by illustrating the Bayesian fitting of a survival regression
model.

9.2 Normal Linear Regression

9.2.1 The Model

In the usual multiple regression problem, we are interested in describing the
variation in a response variable y in terms of k predictor variables x1, ..., xk.
We describe the mean value of yi, the response for the ith individual, as

E(yi|β,X) = β1xi1 + ... + βkxik, i = 1, ..., n,

where xi1, ..., xik are the predictor values for the ith individual and β1, ..., βk

are unknown regression parameters. If we let xi = (xi1, ..., xik) denote the
row vector of predictors for the ith individual and β = (β1, ..., βk) the column
vector of regression coefficients, we can reexpress the mean value as

E(yi|β,X) = xiβ.

188 9 Regression Models

The {yi} are assumed to be conditionally independent given values of the pa-
rameters and the predictor variables. In the ordinary linear regression setting,
we assume equal variances where var(yi|θ,X) = σ2. We let θ = (β1, ..., βk, σ2)
denote the vector of unknown parameters. Finally, we assume that the errors
εi = yi − E(yi|β,X) are independent normally distributed with mean 0 and
variance σ2.

In matrix notation, this model can be written for all observations as

y|β, σ2,X ∼ Nn(Xβ, σ2I),

where y is the vector of observations; X is the design matrix with rows
x1, ..., xn; I is the identity matrix; and Nk(µ,A) indicates a multivariate nor-
mal distribution of dimension k with mean vector µ and variance-covariance
matrix A.

To complete the Bayesian formulation of the model, we assume (β, σ2)
have the typical noninformative prior

g(β, σ2) ∝ 1
σ2

.

9.2.2 The Posterior Distribution

The posterior analysis for the normal regression model has a form similar to
the posterior analysis of a mean and variance for a normal sampling model.
We represent the joint density of (β, σ2) as the product

g(β, σ2|y) = g(β|y, σ2)g(σ2|y).

The posterior distribution of the regression vector β conditional on the error
variance σ2, g(β|y, σ2), is multivariate normal with mean β̂ and variance-
covariance matrix Vβσ2, where

β̂ = (X ′X)−1X ′y, Vβ = (X ′X)−1.

If one defines the inverse gamma(a, b) density proportional to y−a−1exp{−b/y},
then the marginal posterior distribution of σ2 is inverse gamma((n−k)/2, S/2),
where

S = (y − Xβ̂)T (y − Xβ̂).

9.2.3 Prediction of Future Observations

Suppose we are interested in predicting a future observation ỹ corresponding
to a covariate vector x∗. From the regression sampling model we have that ỹ,
conditional on β and σ2, is N(x∗β, σ). The posterior predictive density of ỹ,
p(ỹ|y), can be represented by a mixture of these sampling densities p(ỹ|β, σ2),
where they are averaged over the posterior distribution of the parameters β
and σ2:

p(ỹ|y) =
∫

p(ỹ|β, σ2)g(β, σ2|y)dβdσ2.

9.2 Normal Linear Regression 189

9.2.4 Computation

The expressions for the posterior and predictive distributions lead to efficient
simulation algorithms. To simulate from the joint posterior distribution of the
regression coefficient vector β and the error variance σ2, one

• simulates a value of the error variance σ2 from its marginal posterior den-
sity g(σ2|y)

• simulates a value of β from the conditional posterior density g(β|σ2, y).

Since the two component distributions (inverse gamma and multivariate nor-
mal) are convenient functional forms, it is relatively easy to construct an al-
gorithm in R such as the one programmed in the function blinreg to perform
this simulation.

Once the joint posterior distribution has been simulated, it is straight-
forward to obtain a sample from the marginal posterior distribution of any
function h(β, σ) of interest. For example, if x∗ denotes a row vector of par-
ticular values of covariates, suppose one is interested in the mean response at
x∗

E(y|x∗) = x∗β.

If β∗ is a simulated draw from the marginal posterior of β, then x∗β∗ will
be a simulated draw from the marginal posterior of x∗β. The R function
blinregexpected facilitates the simulation of linear combinations of the beta
coefficients.

Likewise the representation of the posterior predictive distribution of fu-
ture response values suggests a simple algorithm for simulation. Suppose ỹ is
a future response value corresponding to the row vector of covariates x∗. One
simulates a single value of ỹ by

• simulating (β, σ2) from the joint posterior given the data y
• simulating ỹ from its sampling density given the simulated values of β and

σ2

ỹ ∼ N(x∗β, σ).

The R function blinregpred can be used to simulate sets of draws of future
observations corresponding to a list of covariate values of interest.

9.2.5 Model Checking

One method of assessing the goodness of fit of the model uses the posterior
predictive distribution defined in the previous section. Suppose one simulates
many samples ỹ1, ..., ỹn from the posterior predictive distribution conditional
on the same covariate vectors x1, ..., xn used to simulate the data. To judge if
a particular response value yi is consistent with the fitted model, one looks at
the position of yi relative to the histogram of simulated values of ỹi from the
corresponding predictive distribution. If yi is in the tail of the distribution,
that indicates that this observation is a potential outlier.

190 9 Regression Models

A second approach is based on the use of “Bayesian residuals.” In a tra-
ditional regression analysis, one judges the adequacy of the fitted model by
inspection of the standardized residuals

ri =
yi − xiβ̂

σ̂
√

1 − hii

,

where β̂ and σ̂ are the usual estimates of the regression vector and error stan-
dard deviation, and hii is the ith diagonal element of the “hat” matrix. From
a Bayesian perspective, one can consider the distribution of the parametric
residuals

{εi = yi − xiβ}.
Before any data are observed, the parametric residuals are a random sample
from an N(0, σ) distribution. Suppose we say that the ith observation is an
outlier if |εi| > kσ, where k is a predetermined constant such as 2 or 3. The
prior probability that a particular observation is an outlier is 2Φ(−k), where
Φ(z) is the standard normal cdf.

After data y are observed, we can compute the posterior probability that
each observation is an outlier. Define the functions z1 and z2 as

z1 = (k − ε̂i/σ)/
√

hii, z2 = (−k − ε̂i/σ)/
√

hii,

where
ε̂i = yi − xiβ̂.

Then the posterior probability that the ith observation is an outlier is

pi = P (|εi| > kσ|y) =
∫

(1 − Φ(z1) + Φ(z2))g(σ2|y)dσ2.

In practice, the pis can be computed and compared to the prior probabil-
ity 2Φ(−k). The R function bayesresiduals can be used to compute the
posterior outlying probabilities for a linear regression model.

9.2.6 An Example

Ramsey and Schafer (1997), chapter 10, describe an interesting study from
Pimm et al (1988) on the extinction of birds. Measurements on breeding pairs
of land-bird species were collected from 16 islands around Britain over the
course of several decades. For each species, the dataset contains TIME, the
average time of extinction on the islands where it appeared, NESTING, the
average number of nesting pairs, SIZE, the size of the species (large or small),
and STATUS, the migratory status of the species (migrant or resident). The
objective is to fit a model that describes the variation in the time of extinction
of the bird species in terms of the covariates NESTING, SIZE, and STATUS.

This dataset is available as birdextinct in the LearnBayes package. We
read in the datafile and construct some initial graphs. Since the TIME variable

9.2 Normal Linear Regression 191

is strongly right-skewed, we initially transform it by a logarithm creating the
variable LOGTIME. Fig. 9.1, Fig. 9.2, and Fig. 9.3 plot LOGTIME against
each of the three predictor variables. Since the categorical variables SIZE and
STATUS take only two values, we use the R jitter function to jitter the hor-
izontal location of the points so we can see any overlapping points. Note that
there is a positive relationship between the average number of nesting pairs
and time to extinction. However, there are five particular species (labeled in
the graph) with points that seem to vary from the general pattern. There may
be relationships of each of the categorical variables with LOGTIME, but the
strength of the relationship seems weak in comparison with the relationship
of NESTING and LOGTIME.

> data(birdextinct)

> attach(birdextinct)

> logtime=log(time)

> plot(nesting,logtime)

> identify(nesting,logtime,label=species,n=5)

> plot(jitter(size),logtime,xaxp=c(0,1,1))

> plot(jitter(status),logtime,xaxp=c(0,1,1))

2 4 6 8 10 12

0
1

2
3

4

nesting

lo
gt

im
e

Ringed_plover

Rock_dove

Raven

Skylark
Starlin

Fig. 9.1. Plot of logarithm of the extinction time against the average number of
nesting pairs for the bird study.

192 9 Regression Models

0 1

0
1

2
3

4

jitter(size)

lo
gt

im
e

Fig. 9.2. Plot of the logarithm of the extinction time against the bird size for the
bird study. The bird size variable is coded 0 for small and 1 for large.

We write the regression model as

E(log TIMEi|x, θ) = β0 + β1NESTINGi + β2SIZEi + β3STATUSi.

As two of the covariates are categorical with two levels, they can be represented
by binary indicators; in the data file birdextinct, SIZE is coded 0 (1) for
small (large), and STATUS is coded 0 (1) for migrant (resident).

We first perform the traditional least-squares fit by the lm command.

> fit=lm(logtime~nesting+size+status,data=birdextinct,x=TRUE,y=TRUE)

> summary(fit)

Residuals:

Min 1Q Median 3Q Max

-1.8410 -0.2932 -0.0709 0.2165 2.5167

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.43087 0.20706 2.081 0.041870 *

nesting 0.26501 0.03679 7.203 1.33e-09 ***

9.2 Normal Linear Regression 193

0 1

0
1

2
3

4

jitter(status)

lo
gt

im
e

Fig. 9.3. Plot of the logarithm of the extinction time against the bird status for the
bird study. The bird status variable is coded 0 for migrant and 1 for resident.

size -0.65220 0.16667 -3.913 0.000242 ***

status 0.50417 0.18263 2.761 0.007712 **

We see from the output that NESTING is a strong effect; species with larger
number of nesting pairs tend to have longer extinction times which means that
these species are less likely to be extinct. The SIZE and STATUS effects ap-
pear to be less significant; larger birds (with SIZE = 1) have smaller extinction
times and resident birds (with STATUS = 1) have longer extinction times.

The function blinreg is used to sample from the joint posterior distri-
bution of β and σ. The inputs to this function are the vector of values of
the response variable y, the design matrix of the linear regression fit X, and
the number of simulations m. Note that we used the optional arguments x =
TRUE, y = TRUE in the function lm so that the design matrix and response
vector are available as components of the structure fit.

> theta.sample=blinreg(fity,fitx,5000)

The algorithm in binreg is based on the decomposition of the joint pos-
terior [β, σ2|y] as the product [σ2|y][β|σ2, y]. To simulate one draw of (σ2, β),
σ2 is first drawn from the inverse gamma((n − k)/2, S/2) density:

S=sum(fit$residual^2)

194 9 Regression Models

shape=fit$df.residual/2; rate=S/2
sigma2=rigamma(1,shape,rate)

Then the regression vector β is simulated from the multivariate normal density
with mean β̂ and variance-covariance matrix Vβσ2. Note that we obtain the
matrix Vβ by dividing the estimated variance-covariance matrix vcov from
the least-squares fit by the mean square error stored in the variable MSE.

MSE = sum(fit$residuals^2)/fit$df.residual
vbeta=vcov(fit)/MSE
beta=rmnorm(1,mean=fit$coef,varcov=vbeta*sigma2)

The function blinreg returns two components, beta is a matrix of simulated
draws from the marginal posterior of β, where each row is a simulated draw,
and sigma is a vector of simulated draws from the marginal posterior of σ.

The following R commands construct histograms of the simulated posterior
draws of the individual regression coefficients β1, β2, and β3 and the error
standard deviation σ (see Fig. 9.4).

> par(mfrow=c(2,2))

> hist(theta.sample$beta[,2],main="NESTING",

+ xlab=expression(beta[1]))

> hist(theta.sample$beta[,3],main="SIZE",

+ xlab=expression(beta[2]))

> hist(theta.sample$beta[,4],main="STATUS",

+ xlab=expression(beta[3]))

> hist(theta.sample$sigma,main="ERROR SD",

+ xlab=expression(sigma))

We can summarize each individual parameter by computing the 5th, 50th, and
95th percentiles of each collection of simulated draws. In the output, we use
the apply and quantile commands to summarize the simulation matrix of
β theta.sample$beta. Similarly, we use the quantile command to simulate
the draws of σ.

> apply(theta.sample$beta,2,quantile,c(.05,.5,.95))

X(Intercept) Xnesting Xsize Xstatus
5% 0.09789072 0.2038980 -0.9374168 0.2050562
50% 0.42705148 0.2648745 -0.6475561 0.5024234
95% 0.77067086 0.3259122 -0.3803261 0.8082491

> quantile(theta.sample$sigma,c(.05,.5,.95))

5% 50% 95%
0.5679346 0.6576295 0.7725279

9.2 Normal Linear Regression 195

NESTING

β1

F
re

qu
en

cy

0.10 0.20 0.30 0.40

0
20

0
60

0
10

00

SIZE

β2

F
re

qu
en

cy

−1.0 −0.5 0.0

0
20

0
60

0
10

00

STATUS

β3

F
re

qu
en

cy

0.0 0.5 1.0

0
20

0
60

0
10

00

ERROR SD

σ

F
re

qu
en

cy

0.5 0.6 0.7 0.8 0.9 1.0

0
50

0
10

00
15

00

Fig. 9.4. Histogram of simulated draws from the marginal posterior distributions
of β1, β2, β3, and σ.

As expected, the posterior medians of the regression parameters are similar in
value to the ordinary regression estimates. Actually they are equivalent since
we applied a vague prior for β; any small differences between the posterior
medians and the least-square estimates are due to small errors inherent in the
simulation.

Next, suppose we are interested in estimating the mean log extinction time
E(y|x∗) = x∗β for four nesting pairs and for different combinations of SIZE
and STATUS. The values of the four sets of covariates are shown in Table 9.1.

Table 9.1. Four sets of covariates of interest in the bird study.

Covariate Set Nesting Pairs Size Status

A 4 small migrant
B 4 small resident
C 4 large migrant
D 4 large resident

196 9 Regression Models

In the following input, we define the four sets of covariates and stack these
sets in the matrix X1. The function blinregexpected will give a simulated
sample for the expected response E(y|x∗) = x∗β for each set of covariate
values. The inputs to the function are the matrix X1 of covariate values and
the list of simulated values of β and σ obtained from the function binlinreg.
The output of the function is a matrix where a column contains the simulated
draws for a given covariate set. We construct histograms of the simulated
draws for each of the mean extinction times and the plots are displayed in
Fig. 9.5.

> cov1=c(1,4,0,0)

> cov2=c(1,4,1,0)

> cov3=c(1,4,0,1)

> cov4=c(1,4,1,1)

> X1=rbind(cov1,cov2,cov3,cov4)

> mean.draws=blinregexpected(X1,theta.sample)

> par(mfrow=c(2,2))

> hist(mean.draws[,1],main="Covariate set A",xlab="log TIME")

> hist(mean.draws[,2],main="Covariate set B",xlab="log TIME")

> hist(mean.draws[,3],main="Covariate set C",xlab="log TIME")

> hist(mean.draws[,4],main="Covariate set D",xlab="log TIME")

In the preceding work, we were interested in learning about the mean re-
sponse value E(y|x∗) for a given set of covariate values. Instead, suppose we
are interested in predicting a future response ỹ for a given covariate vector x∗.
The function blinregpred will produce a simulated sample of future response
values for a regression model. Similar to the function binlinregexpected, the
inputs to the function blinregpred are a matrix X1 where each row corre-
sponds to a covariate set and the structure of simulated values of the para-
meters β and σ.

> cov1=c(1,4,0,0)

> cov2=c(1,4,1,0)

> cov3=c(1,4,0,1)

> cov4=c(1,4,1,1)

> X1=rbind(cov1,cov2,cov3,cov4)

> pred.draws=blinregpred(X1,theta.sample)

> par(mfrow=c(2,2))

> hist(pred.draws[,1],main="Covariate set A",xlab="log TIME")

> hist(pred.draws[,2],main="Covariate set B",xlab="log TIME")

> hist(pred.draws[,3],main="Covariate set C",xlab="log TIME")

> hist(pred.draws[,4],main="Covariate set D",xlab="log TIME")

9.2 Normal Linear Regression 197

Covariate set A

log TIME

F
re

qu
en

cy

1.0 1.5 2.0

0
20

0
60

0
10

00

Covariate set B

log TIME

F
re

qu
en

cy

0.0 0.5 1.0 1.5

0
20

0
60

0
10

00

Covariate set C

log TIME

F
re

qu
en

cy

1.6 1.8 2.0 2.2 2.4

0
40

0
80

0
12

00

Covariate set D

log TIME

F
re

qu
en

cy

1.0 1.2 1.4 1.6 1.8

0
20

0
40

0
60

0
80

0

Fig. 9.5. Histograms of simulated draws of the posterior of the mean extinction
time for four sets of covariate values.

Fig. 9.6 displays histograms of the simulated draws from the predictive distri-
bution for the same four sets of covariates. Comparing Fig. 9.5 and Fig. 9.6 ,
note that the predictive distributions are substantially wider than the mean
response distributions.

We illustrate two methods of checking if the observations are consistent
with the fitted model. The first method is based on the use of the posterior
predictive distribution described in Section 9.2.5. Let y∗

i denote the density
of a future log extinction time for a bird with covariate vector xi. Using
the function binregpred we can simulate draws of the posterior predictive
distributions for all y∗

1 , ..., y∗
62 by using fit$x as an argument. In the R code,

we summarize each predictive distribution by the 5th and 95th quantiles and
graph these distributions as line plots using the matplot command (see Fig.
9.7). We place the actual log extinction times y1, ..., y62 as solid dots in the
figure. We are looking to see if the observed response values are consistent
with the corresponding predictive distributions; any points that fall outside
of the corresponding 90% interval band are possible outliers. There are three
points that exceed the 95th percentile that correspond to the species snipe,
raven, and skylark.

198 9 Regression Models

Covariate set A

log TIME

F
re

qu
en

cy

−1 0 1 2 3 4

0
40

0
80

0
12

00

Covariate set B

log TIME

F
re

qu
en

cy

−1 0 1 2 3 4

0
40

0
80

0
12

00

Covariate set C

log TIME

F
re

qu
en

cy

−1 0 1 2 3 4 5

0
40

0
80

0
12

00

Covariate set D

log TIME

F
re

qu
en

cy

−1 0 1 2 3 4

0
50

0
10

00
15

00

Fig. 9.6. Histograms of simulated draws of the predictive distribution for a future
extinction time for four sets of covariate values.

> pred.draws=blinregpred(fit$x,theta.sample)

> pred.sum=apply(pred.draws,2,quantile,c(.05,.95))

> par(mfrow=c(1,1))

> ind=1:length(logtime)

> matplot(rbind(ind,ind),pred.sum,type="l",lty=1,col=1,

+ xlab="INDEX",ylab="log TIME")

> points(ind,logtime,pch=19)

Another method for outlier detection is based on the use of the Bayesian
residuals εi = yi − xiβ. Following the strategy described in Section 9.2.5, we
can compute the posterior outlying probabilities

P (|εi| > k|y),

for all observations for a constant value k. These probabilities can be com-
puted using the function bayesresiduals. The inputs are the lm fit structure
fit, the matrix of simulated parameter draws theta.sample, and the value of
k. The output is a vector of posterior outlying probabilities. In this example,

9.3 Survival Modeling 199

0 10 20 30 40 50 60

−
1

0
1

2
3

4

INDEX

lo
g

T
IM

E

Fig. 9.7. Posterior predictive distributions of {y∗
i } with actual log extinction times

{yi} indicated by solid points.

we use a cutoff value of k = 2. We use the plot command to construct a scat-
terplot of the probabilities against the nesting covariate; the resulting display
is in Fig. 9.8. By use of the identify command, we identify four birds that
have outlying probabilities of .4 or higher. These birds have extinction times
that are not well-explained by the variables NESTING, SIZE, and STATUS.
Two of the outlying species, raven and skylark, were also identified by the
posterior predictive methodology.

> prob.out=bayesresiduals(fit,theta.sample,2)

> par(mfrow=c(1,1))

> plot(nesting,prob.out)

> identify(nesting,prob.out,label=species,n=4)

9.3 Survival Modeling

Suppose one is interested in constructing a model for lifetimes in a survival
study. For a set of n individuals, one observes the lifetimes t1, ..., tn. It is

200 9 Regression Models

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nesting

pr
ob

.o
ut

Snipe

JackdawRaven

Skylark

Fig. 9.8. Plot of posterior probabilities of outlying for all observations. Four un-
usually large probabilities are identified with the name of the species.

possible that some of the lifetimes are not observable since some individuals
are still alive at the end of the study. In this case we represent the response
by the pair (ti, δi), where ti is the observation and δi is a censoring indicator.
If δi = 1, the observation is not censored and ti is the actual survival time.
Otherwise when δi = 0, the observation ti is the censored time.

Suppose we wish to describe the variation in the survival times using p
covariates x1, ..., xp. One can describe this relationship by the Weibull pro-
portional hazards model. This model can be expressed as the log-linear model

log ti = µ + β1xi1 + ... + βpxip + σεi,

where xi1, ..., xip are the values of the p covariates for the ith individual and
εi is assumed to have a Gumbel distribution with density f(ε) = exp(ε − eε).
There are p+2 unknown parameters in this model, the p regression coefficients,
the constant term µ, and the scale parameter σ.

It can be shown that the density of the log time, yi = log ti is given by

fi(yi) =
1
σ

exp(zi − ezi),

9.3 Survival Modeling 201

where zi = (yi −µ− β1xi1 − ...− βpxip)/σ. Also, the survival function for the
ith individual is given by Si(yi) = exp(−ezi). Then the likelihood function of
the regression vector β = (β1, ..., βp), µ and σ is given by

L(β, µ, σ) =
n∏

i=1

{fi(yi)}δi{Si(yi)}1−δi .

Suppose we assign µ, β uniform priors and the scale parameter σ the usual
noninformative prior proportional to 1/σ. Then the posterior density is given,
up to a proportionality constant, by

g(β, µ, σ|data) ∝ 1
σ

L(β, µ, σ).

To illustrate the application of this model, Edmunson et al (1979) studied
the effect of different chemotherapy treatments following surgical treatment
of ovarian cancer. The response variable TIME was the survival time in
days following randomization to one of two chemotherapy treatments. Also
we record a censoring variable STATUS that indicates if TIME is an actual
survival time (STATUS = 1) or censored at that time (STATUS = 0). The
two covariates are TREAT , the treatment group, and AGE, the age of the
patient. The log-linear model is

log TIMEi = µ + β1TREATi + β2AGEi + σεi.

The dataset is given the name chemotherapy in the LearnBayes package.
To begin, we read in the dataset and illustrate fitting this model using the
survreg function in the survival library.

> data(chemotherapy)

> attach(chemotherapy)

> library(survival)

> survreg(Surv(time,status)~factor(treat)+age,dist="weibull")

Call:
survreg(formula = Surv(time, status) ~ factor(treat) + age,
dist = "weibull")

Coefficients:
(Intercept) factor(treat)2 age
10.98683919 0.56145663 -0.07897718

Scale= 0.5489202

Loglik(model)= -88.7 Loglik(intercept only)= -98
Chisq= 18.41 on 2 degrees of freedom, p= 1e-04

n= 26

202 9 Regression Models

Unlike the normal regression model, the posterior distribution of the pa-
rameters of this survival model can not be simulated by standard probability
distributions. But we are able to apply our general computing strategy de-
scribed in Chapter 6 to summarize the posterior distribution for this problem.
We first make all parameters real-valued by transforming the scale parameter
σ to η = log σ. We write the following function weibullregpost, which com-
putes the joint posterior density of θ = (η, µ, β1, β2). The argument data is the
data matrix where the first two columns are {ti} and {ci} and the remaining
columns are the covariates TREAT and AGE.

weibullregpost=function(theta,data)
{
s=dim(data); k=s[2]; p=k-2
sp=dim(theta); N=sp[1]
t=data[,1]; c=data[,2]; X=data[,3:k]
sigma=exp(theta[,1])
mu=theta[,2]
beta=array(theta[,3:k],c(N,p))
n=length(t)
o=0*mu
for (i in 1:n)
{
lp=0
for (j in 1:p) lp=lp+beta[,j]*X[i,j]
zi=(log(t[i])-mu-lp)/sigma
fi=1/sigma*exp(zi-exp(zi))
Si=exp(-exp(zi))
o=o+c[i]*log(fi)+(1-c[i])*log(Si)

}
return(o)
}

To get some initial estimates at the location and spread of the posterior
density, we use the laplace function. We use the output of the survreg fit to
suggest the initial guess at the posterior mode (−.5, 9, .5,−.05). The output
of this function is the posterior mode θ̂ and associated variance-covariance
matrix V .

> start=array(c(-.5,9,.5,-.05),c(1,4))

> d=cbind(time,status,treat-1,age)

> fit=laplace(weibullregpost,start,5,d)

> fit

$mode
[,1] [,2] [,3] [,4]

[1,] -0.5998159 10.98666 0.5614697 -0.07897431

9.3 Survival Modeling 203

$var
[,1] [,2] [,3] [,4]

[1,] 0.055357819 0.12113625 0.005351316 -0.0018662702
[2,] 0.121136245 1.62894124 -0.155833863 -0.0248862629
[3,] 0.005351316 -0.15583386 0.115557274 0.0017804199
[4,] -0.001866270 -0.02488626 0.001780420 0.0003905468

$int
[1] -25.32347

We then use the information from the laplace function to find a proposal
density for the Metropolis random walk chain programmed in the R function
rwmetrop. The proposal density will be a multivariate normal density with
mean 0 and variance-covariance scaleV , where scale is a scale parameter
chosen so that the random walk chain has an acceptance range in the 20–40%
range. With some trial and error, we find that scale = 1.5 seems to give a
satisfactory acceptance rate.

> proposal=list(var=fit$var,scale=1.5)

> bayesfit=rwmetrop(weibullregpost,proposal,fit$mode,10000,d)

> bayesfit$accept

[1] 0.2677

By use of several hist commands, we display histograms of the simulated
draws from the marginal posterior densities of β1 (corresponding to TREAT),
β2 (corresponding to AGE), and the scale parameter σ (see Fig. 9.9).

> par(mfrow=c(2,2))

> sigma=exp(bayesfit$par[,1])

> mu=bayesfit$par[,2]

> beta1=bayesfit$par[,3]

> beta2=bayesfit$par[,4]

> hist(beta1,xlab="treatment")

> hist(beta2,xlab="age",main="")

> hist(sigma,xlab="sigma",main="")

Suppose one is interested in estimating the survival curve for an individual
in the treatment group (TREAT = 1) who is 60 years old. For a given time t,
the probability that this individual survives beyond t days is given by

P (T > t) = exp(− exp(z)),

where z = (log t−µ−β1(1)−β2(60))/σ. A simulated sample of draws from this
survival probability is obtained by computing this function on the simulated
draws of θ, and this simulated sample can be summarized by the 5th, 50th, and

204 9 Regression Models

treatment

F
re

qu
en

cy

−1 0 1 2 3

0
10

00
30

00

age

F
re

qu
en

cy

−0.25 −0.15 −0.05

0
10

00
20

00
30

00

sigma

F
re

qu
en

cy

0.5 1.0 1.5 2.0 2.5

0
10

00
30

00

Fig. 9.9. Plot of the posterior probabilities of regression coefficients for TREAT
and AGE and the scale parameter σ for the chemotherapy example.

95th percentiles. This procedure was repeated for a grid of t values between
0 and 2000 days. Fig. 9.10 graphs the 5th, 50th, and 95th percentiles for the
survival curve for this individual. In a similar fashion, it is straightforward to
make inferences about any function of the parameters of interest.

9.4 Further Reading

Chapter 14 of Gelman et al (2003) introduces Bayesian model building and
inference for normal linear models. Analogous methods for generalized linear
models are presented in chapter 16 of Gelman et al (2003). The Bayesian linear
regression model is also described in chapter 6 of Gill (2002) and chapter 12
of Press (2003). The classical Weibull survival regression model is discussed
in Collett (1994). Chaloner and Brant (1988) describes the use of Bayesian
residuals in a linear regression model.

9.5 Summary of R Functions 205

0 500 1000 1500 2000

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l

Fig. 9.10. Posterior median and 90% Bayesian interval estimates for the survival
function S for an individual 60 years old in the treatment group.

9.5 Summary of R Functions

bayesresiduals – computation of posterior outlying probabilities for a linear
regression model with a noninformative prior
Usage: bayesresiduals(fit, theta.sample, k)
Arguments: fit, output of a least-squares fit (R function lm); theta.sample,
list with components beta (matrix of simulated draws from the posterior of
beta) and sigma (vector of simulated draws from the posterior of sigma); k,
cutoff value that defines an outlier
Value: vector of posterior outlying probabilities

blinreg – gives a simulated sample from the joint posterior distribution of
the regression vector and the error standard deviation for a linear regression
model with a noninformative prior
Usage: blinreg(y,X,m)
Arguments: y, vector of responses; X, design matrix; m, number of simulations
desired
Value: beta, matrix of simulated draws of beta where each row corresponds
to one draw; sigma, vector of simulated draws of the error standard deviation

206 9 Regression Models

blinregexpected – simulates draws of the expected response for a linear
regression model with a noninformative prior
Usage: binregexpected(X,theta.sample)
Arguments: X, matrix where each row corresponds to a covariate set;
theta.sample, list with components beta (matrix of simulated draws from
the posterior of beta) and sigma (vector of simulated draws from the posterior
of sigma
Value: matrix where a column corresponds to the simulated draws of the
expected response for a given covariate set

blinregpred - simulates draws of the predicted future response for a linear
regression model with a noninformative prior
Usage: binregpred(X,theta.sample)
Arguments: X, matrix where each row corresponds to a covariate set;
theta.sample; list with components beta (matrix of simulated draws from
the posterior of beta) and sigma (vector of simulated draws from the posterior
of sigma
Value: matrix where a column corresponds to the simulated draws of the
predicted future response for a given covariate set

weibullregpost – computes the logarithm of the posterior of (log sigma, mu,
beta) for a Weibull proportional odds model
Usage: weibullregpost(theta,data)
Arguments: theta, matrix of parameter values where each row represents a
value of (log sigma, mu, beta); data, matrix with columns survival time,
censoring variable, and covariate matrix
Value: vector of values of the log posterior where each value corresponds to
each row of the parameters in theta

9.6 Exercises

1. Normal linear regression
Dobson (2001) describes a birthweight regression study. One is interested
in predicting a baby’s birthweight (in grams) based on the gestational age
(in weeks) and the gender of the baby. The data are presented in Table 9.2
and available as birthweight in the LearnBayes package. In the standard
linear regression model, we assume that

BIRTHWEIGHTi = β0 + β1AGEi + GENDERi + ε,

where the εi are independent and normally distributed with mean 0 and
variance σ2.
a) Use the R function lm to fit this model by least-squares. From the out-

put, assess if the effects AGE and GENDER are significant, and if they
are significant, describe the effects of each covariate on birthweight.

9.6 Exercises 207

Table 9.2. Birthweight (in grams) and gestational age (weeks) for male and female
babies.

Male Female

Age Birthweight Age Birthweight

40 2968 40 3317
38 2795 36 2729
40 3163 40 2935
35 2925 38 2754
36 2625 42 3210
37 2847 39 2817
41 3292 36 3126
40 3473 37 2539
37 2628 36 2412
38 3176 38 2991
40 3421 39 2875
38 2975 40 3231

b) Suppose a uniform prior is placed on the regression parameter vec-
tor β = (β0, β1, β2). Use the function blinreg to simulate a sample
of 5000 draws from the joint posterior distribution of (β, σ2). From
the simulated sample, compute posterior means and standard devia-
tions of β1 and β2. Check the consistency of the posterior means and
standard deviations with the least-squares estimates and associated
standard errors from the lm run.

c) Suppose one is interested in estimating the expected birthweight for
male and female babies of gestational weeks 36 and 40. From the simu-
lated draws of the posterior distribution and function binregexpected,
construct 90% interval estimates for 36-week males, 36-week females,
40-week males, and 40-week females.

d) Suppose instead one wishes to predict the birthweight for a 36-week
male, a 36-week female, a 40-week male, and a 40-week female. Use the
function blinregpred and the simulated posterior sample to construct
90% prediction intervals for the birthweight for each type of baby.

2. Logistic regression
For a given professional athlete, his or her performance level will tend
to increase until midcareer and then deteriorate until retirement. Let yi

denote the number of home runs hit by the professional baseball player
Mike Schmidt in ni at-bats (opportunities) during the ith season. Table
9.3 gives Schmidt’s age, yi and ni for all 18 years of his baseball career.
The datafile is named schmidt in the LearnBayes package. The home
run rates {yi/ni} are graphed against Schmidt’s year in Fig. 9.11. If yi is
assumed to be binomial(ni, pi), where pi denotes the probability of hitting
a home run during the ith season, then a reasonable model for the {pi} is
the logit quadratic model of the form

208 9 Regression Models

log
(pi

1 − pi

)
= β0 + β1AGEi + β2AGE2

i ,

where AGEi is Schmidt’s age during the ith season.

Table 9.3. Home run hitting data for baseball player Mike Schmidt.

Age Home Runs At-Bats Age Home Runs At-Bats

23 1 34 32 31 354

24 18 367 33 35 514

25 36 568 34 40 534

26 38 562 35 36 528

27 38 584 36 33 549

28 38 544 37 37 552

29 21 513 38 35 522

30 45 541 39 12 390

31 48 548 40 6 148

a) Assume that the regression vector β = (β0, β1, β2) has a uniform non-
informative prior. Write a short R function to compute the logarithm
of the posterior density of β.

b) Use the function laplace to find the posterior mode and associated
variance-covariance matrix of β.

c) Based on the output from laplace, use the function rwmetrop to
simulate 5000 draws from the posterior distribution of β.

d) One would expect the fitted parabola to have a concave down shape
where β2 < 0. Use the simulation output from part (c) to find the
posterior probability that the fitted curve is concave down.

3. Logistic regression (continued)
For this exercise, we assume that a simulated sample from the posterior
distribution of the regression vector β has been obtained.
a) When evaluating a baseball player, one is interested in estimating the

player’s ability at his peak. One can show that if β3 < 0, the peak
value of the probability, on the logit scale, is given by

PEAK = β1 −
β2

4β3
.

Compute a density estimate of the marginal posterior density of
PEAK.

b) One is also interested in the age at which a player achieves his peak
performance. From the quadratic model, the peak age can be shown
to be equal to

9.6 Exercises 209

25 30 35

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

Age

H
om

e
R

un
 R

at
e

Fig. 9.11. Scatterplot of home run rates HR/AB against age for Mike Schmidt.

PEAK AGE = − β2

2β2
.

Using the simulated draws from the posterior of β, find a 90% interval
estimate for the PEAK AGE.

4. Survival modeling
Collett (1994) describes an investigation to evaluate a histochemical
marker HPA, which discriminates between primary breast cancer that
has metastasized and that which has not. The question is whether HPA
staining can be used to predict the survival experience of women with
breast cancer. Tumors of the women were treated with HPA, and each
tumor was classified as being positively or negatively stained, positively
staining corresponds to a tumor with the potential for metastasis. Sur-
vival times of the women who died of breast cancer were collected; the
data are displayed in Table 9.4. For some women (indicated by an aster-
isk in Table 9.4), the survival status at the end of the study was unknown
and the time from surgery to last date they were known to be alive is
a censored survival time. The datafile breastcancer in the LearnBayes
package contains the data. There are three variables: time is the survival
time (in months); status gives the censoring status, where status = 1

210 9 Regression Models

indicates a complete survival time and status = 0 indicates a time that
is censored; and stain indicates the group, where stain = 0 (1) indicates
a tumor that was negatively (positively) stained.

Table 9.4. Survival times of women with tumors that were negatively or positively
stained with HPA from Collett.

Negative Staining Positive Staining

23 5 68
47 5 71
69 10 78∗

70∗ 13 105∗

71∗ 18 107∗

100∗ 24 109∗

101∗ 26 113
148 26 116∗

181 31 118
198∗ 35 143
208∗ 40 154∗

212∗ 41 162∗

224∗ 48 188∗

50 212∗

59 217∗

61 225∗

a) Use the function survreg to fit a Weibull proportional hazards model
of the form

log TIMEi = µ + βGROUPi + σεi,

where εi is assumed to have a standard Gumbul distribution. Obtain
estimates and associated standard errors for the group regression co-
efficient β and the scale parameter σ.

b) The function weibullregpost computes the log posterior of
(log σ, µ, β) assuming the standard noninformative prior. Use the func-
tion laplace to find the posterior mode and associated variance-
covariance matrix. Then apply the function rwmetrop to simulate a
sample of 1000 iterates from the joint posterior. Compute the posterior
mean and standard deviation of β and σ and compare your answers
with the estimates from part (a).

c) Using the simulated sample from the posterior of (log σ, µ, β), estimate
the survival curve S(t) for a patient in the negatively stained group
and a patient in the positively stained group. Choose a sequence of
values of the time t, and for each t, find 5th, 50th, and 95th percentiles
of the survival probability S(t). As in Fig. 9.10, graph the median
estimates of the survival curves for the two individuals.

10

Gibbs Sampling

10.1 Introduction

One attractive method for constructing an MCMC algorithm is Gibbs sam-
pling, introduced in Chapter 6. To slightly generalize our earlier discussion,
suppose that we partition the parameter vector of interest into p components
θ = (θ1, ..., θp), where θk may consist of a vector of parameters. The MCMC
algorithm is implemented by sampling in turn from the p conditional posterior
distributions

[θ1|θ2, ..., θp], ..., [θp|θ1, ..., θp−1].

Under general regularity conditions, draws from this Gibbs sampler will con-
verge to the target joint posterior distribution [θ1, ..., θp] of interest.

For a large group of inference problems, Gibbs sampling is automatic in
the sense that all conditional posterior distributions are available or easy to
simulate using standard probability distributions. There are several attractive
aspects of “automatic” Gibbs sampling. First, one can program these simu-
lation algorithms with a small amount of R code, especially when one can
use vector and matrix representations for parameters and data. Second, un-
like the more general Metropolis-Hastings algorithms described in Chapter
6, there are no tuning constants or proposal densities to define. Last, these
Gibbs sampling algorithms provide a nice introduction to the use of more
sophisticated MCMC algorithms in Bayesian fitting.

We illustrate the use of R to write Gibbs sampling algorithms for several
popular inferential models. We revisit the robust modeling example of Section
6.8 where we applied various computational algorithms to summarize the exact
posterior distribution. In Section 10.2, we illustrate a simple Gibbs sampler by
representing the t sampling model as a scale mixture of normal densities. In
Section 10.3, we apply the idea of latent variables to simulate from a binary
response model where a probit link is used. This algorithm is attractive in
that one can simulate from this probit model by iterating between truncated
normal and multivariate normal probability distributions.

212 10 Gibbs Sampling

We conclude the chapter by considering a problem where one desires to
smooth a two-way table of means. One model for these data is to assume
that the underlying population means of the table follow a particular order
restriction. A second model assumes that the population means follow a hier-
archical regression model, where the population means are a linear function
of row and column covariates. For both problems, R functions can be used to
implement Gibbs sampling algorithms for simulating from the joint posterior
of all parameters. These algorithms are automatic in that they are entirely
based on standard probability distribution simulations.

10.2 Robust Modeling

We revisit the situation in Section 6.9 where we model data with a symmetric
continuous distribution. When there is a possibility of outliers, a good strategy
assumes the observations are distributed from a population with tails that are
heavier than the normal form. One example of a heavy-tailed distribution is
the t family with a small number of degrees of freedom.

With this motivation we suppose y1, ..., yn are a sample from a t distribu-
tion with location µ, scale parameter σ, and known degrees of freedom ν. If
we assign the usual noninformative prior on (µ, σ)

g(µ, σ) ∝ 1
σ

,

the posterior density is given by

g(µ, σ|y) ∝ 1
σ

n∏

i=1

1
σ

(
1 +

(yi − µ)2

σ2

)−(ν+1)/2

.

In the case of Cauchy sampling (ν = 1), we illustrated in Section 6.9 the use
of different computational algorithms to summarize this representation of the
posterior density.

By use of a simple trick, we can implement an automatic Gibbs sampler
for this problem. A t density with location µ, scale σ, and degrees of freedom
ν can be represented as the following mixture:

y|λ ∼ N(µ, σ/
√

λ), λ ∼ gamma(ν/2, ν/2).

Suppose each observation yi is represented as a scale mixture of normals with
the introduction of the scale parameter λi. Then we can write our model as

yi|λi ∼ N(µ, σ/
√

λi), i = 1, ..., n

λi ∼ gamma(ν/2, ν/2), i = 1, ..., n

(µ, σ) ∼ g(µ, σ) ∝ 1/σ.

10.2 Robust Modeling 213

In the following, it is convenient to express the posterior in terms of the
variance σ2 instead of the standard deviation σ. Using the scale-mixture rep-
resentation, the joint density of all parameters (µ, σ2, {λi}) is given by

1
σ2

n∏

i=1

(λ
1/2
i

σ
exp

[
− λi

2σ2
(yi − µ)2

]) n∏

i=1

(
λ

ν/2−1
i exp

[
− νλi

2
])

.

On the surface, it appears that we have complicated the analysis through
the introduction of the scale parameters {λi}. But Gibbs sampling is easy now
since all of the conditional distributions have the following simple functional
forms:

1. Conditional on µ and σ2, λ1, ..., λn are independent where

λi ∼ gamma
(

ν + 1
2

,
(yi − µ)2

2σ2
+

ν

2

)
.

2. Conditional on σ2 and {λi}, the mean µ has a normal distribution:

µ ∼ N

(∑n
i=1 λiyi∑n
i=1 λi

,
σ

√∑n
i=1 λi

)
.

3. Conditional on µ and {λi}, the variance σ2 has an inverse gamma distri-
bution:

σ2 ∼ inv − gamma
(

n

2
,

∑n
i=1 λi(yi − µ)2

2

)
.

In R, we can let lam denote the vector {λi}, and mu and sig2 denote the
values of µ and σ2. These three conditional distribution simulations can be
implemented by the following R commands:

lam=rgamma(n,shape=(v+1)/2,rate=v/2+(y-mu)^2/2/sig2)
mu=rnorm(1,mean=sum(y*lam)/sum(lam),sd=sqrt(sig2/sum(lam)))
sig2=rigamma(1,n/2,sum(lam*(y-mu)^2)/2)

Note that we are using the random gamma function rgamma using a vector
rate parameter; due to the conditional independence property, λ1, ..., λn can
be simultaneously simulated by a single command. Also we have defined the
function rigamma in the LearnBayes package to simulate from the inverse
gamma density y−a−1 exp(−b/y) with arguments a and b.

The function robustt will implement this Gibbs sampling algorithm. The
three arguments to this function are the data vector y, the degrees of freedom
v, and the number of cycles of the Gibbs sampler m. The output of this function
is a list with three components: mu is a vector of simulated draws of µ, s2 is
a vector of simulated draws of σ2, and lam is a matrix of simulated draws of
{λi}, where each row corresponds to a single draw.

We apply this algorithm to Darwin’s dataset of the differences of the
heights of cross- and self-fertilized plants analyzed in Chapter 6. We model
the observations with a t(4) density and run the algorithm for 10,000 cycles.

214 10 Gibbs Sampling

> data(darwin)

> attach(darwin)

> fit=robustt(difference,4,10000)

We use the density estimation command density to construct a smooth
estimate of the marginal posterior density of the location parameter µ. The
resulting graph is shown in Fig. 10.1.

> plot(density(fit$mu),xlab="mu")

−20 0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

density.default(x = fit$m)

mu

D
en

si
ty

Fig. 10.1. Density estimate of simulated sample of marginal posterior density of µ
in t modeling example.

The {λi} parameters are interesting to examine since λi represents the
weight of the observation yi in the estimation of the location and scale para-
meters of the t population. In the following R code, we compute the posterior
mean of each λi and place the posterior means in the vector mean.lambda.
Likewise, we compute the 5th and 95th percentiles of each simulated sam-
ple of {λi} (by use of the apply command with the function quantile) and

10.2 Robust Modeling 215

store these quantiles in the vectors lam5 and lam95. We first plot the pos-
terior means of the {λi} against the observations {yi}, then we overlay lines
that represent 90% interval estimates for these parameters (see Fig. 10.2).
Note that the location of the posterior density of λi tends to be small for the
outlying observations; these particular observations are downweighted in the
estimation of the location and scale parameters.

> mean.lambda=apply(fit$lam,2,mean)

> lam5=apply(fit$lam,2,quantile,.05)

> lam95=apply(fit$lam,2,quantile,.95)

> plot(difference,mean.lambda,lwd=2,ylim=c(0,3),ylab="Lambda")

> for (i in 1:length(difference))

+ lines(c(1,1)*difference[i],c(lam5[i],lam95[i]))

> points(difference,0*difference-.05,pch=19,cex=2)

−60 −40 −20 0 20 40 60 80

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y

La
m

bd
a

Fig. 10.2. 90% posterior interval estimates of scale parameters {λi} plotted against
the observations y. The observations are also plotted along the horizontal axis.

216 10 Gibbs Sampling

10.3 Binary Response Regression with a Probit Link

In Section 4.4, we considered a regression problem where we modeled the
probability of death as a function of the dose level of a compound. We now
consider the more general case where a probability is represented as a function
of several covariates. By regarding this problem as a missing data problem,
one can develop an automatic Gibbs sampling method described in Albert
and Chib (1993) for simulating from the posterior distribution.

Suppose one observes binary observations y1, ..., yn. Associated with the
ith response, one observes the values of k covariates xi1, ..., xik. In the probit
regression model, the probability that yi = 1, pi, is written as

pi = P (yi = 1) = Φ(xi1β1 + ... + xikβk),

where β = (β1, ..., βk) is a vector of unknown regression coefficients and Φ()
is the cdf of a standard normal distribution. If we place a uniform prior on β,
then the posterior density is given by

g(β|y) ∝
n∏

i=1

pyi

i (1 − pi)1−yi .

In the example to be discussed shortly, the binary response yi is an in-
dicator of survival, where yi = 1 indicates the person survived the ordeal
and yi = 0 indicates the person did not survive. Suppose that there exists
a continuous measurement Zi of health such that if Zi is positive, then the
person survives; otherwise the person does not survive. Moreover the health
measurement is related to the k covariates by the normal regression model

Zi = xi1β1 + ... + xikβk + εi,

where ε1, ..., εn are a random sample from a standard normal distribution. It
is a straightforward calculation to show that

P (yi = 1) = P (Zi > 0) = Φ(xi1β1 + ... + xikβk).

So we can regard this problem as a missing data problem where we have a
normal regression model on latent data Z1, ..., Zn and the observed responses
are missing or incomplete in that we only observe if Zi > 0 (yi = 1) or Zi ≤
0 (yi = 0).

An automatic Gibbs sampling algorithm is constructed by adding the (un-
known) latent data Z = (Z1, ..., Zn) to the parameter vector β and sampling
from the joint posterior distribution of Z and β. Both conditional posterior
distributions, [Z|β] and [β|Z], have convenient functional forms. If we are
given a value of the vector of latent data Z, then it can be shown that the
conditional posterior distribution of β is

[β|Z,data] ∼ Nk((X ′X)−1X ′Z, (X ′X)−1),

10.3 Binary Response Regression with a Probit Link 217

where X is the design matrix for the problem. If we are given a value of the
regression parameter vector β, then Z1, ..., Zn are independent, with

[Zi|β,data] ∼ N(xiβ, 1)I(Zi > 0), if yi = 1,

[Zi|β,data] ∼ N(xiβ, 1)I(Zi < 0), if yi = 0,

and xi denotes the vector of covariates for the ith individual. So given the
value of β, we simulate the latent data Z from truncated normal distributions,
where the truncation point is 0 and the side of the truncation depends on the
values of the binary response.

The function bayes.probit implements this Gibbs sampling algorithm
for the probit regression model. The key lines in the R code of this function
simulate from the two conditional distributions. To simulate a variate Z from
a normal(µ, 1) distribution truncated on the interval (a, b), one uses the recipe

Z = Φ−1
[
Φ(a − µ) + U(Φ(b − µ) − Φ(a − µ))

]
+ µ,

where Φ() and Φ−1() are, respectively, the standard normal cdf and inverse
cdf, and U is a uniform variate on the unit interval. In the following code, lp
is the vector of linear predictors and y is the vector of binary responses. Then
the latent data z are simulated by the following code:

lp=x%*%beta
bb=pnorm(-lp)
tt=(bb*(1-y)+(1-bb)*y)*runif(n)+bb*y
z=qnorm(tt)+lp

Given values of the latent data in the vector z and the design matrix in x,
the following code simulates the vector data from the multivariate normal
distribution:

v=solve(t(x)%*%x)
mn=solve(t(x)%*%x)%*%(t(x)%*%z)
beta=rmnorm(1,mean=c(mn),varcov=v)

To illustrate the use of the function bayes.probit, we consider a dataset
on the Donner party, a group of wagon train emigrants who had difficulty in
crossing the Sierra Nevada mountains in California and a large number starved
to death. (See Grayson (1990) for more information about the Donner party.)
The dataset donner in the LearnBayes package contains the age, gender, and
survival status for 45 members of the party age 15 and older. For the ith
member, we let yi denote the survival status (1 if survived, 0 if not survived),
MALEi denote the gender (1 if male, 0 if female), and AGEi denote the age
in years. We wish to fit the model

P (yi = 1) = Φ(β0 + β1MALEi + β2AGEi).

We read in the dataset that has variable names survival, male, and age.
We create the design matrix and store it in the variable X.

218 10 Gibbs Sampling

> data(donner)

> attach(donner)

> X=cbind(1,age,male)

A maximum likelihood fit of the probit model can be found using the glm
function with the family=binomial option, indicating by link=probit that
a probit link is used.

> fit=glm(survival~X-1,family=binomial(link=probit))

> summary(fit)

Call:

glm(formula = survival ~ X - 1, family = binomial(link = probit))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

X 1.91730 0.76438 2.508 0.0121 *

Xage -0.04571 0.02076 -2.202 0.0277 *

Xmale -0.95828 0.43983 -2.179 0.0293 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

To fit the posterior distribution of β by Gibbs sampling, we use the function
bayes.probit. The inputs to this function are the vector of binary responses
survival, the design matrix X, and the number of cycles of Gibbs sampling
m.

> m=10000

> fit=bayes.probit(survival,X,m)

The output of this function is a matrix of simulated draws, where each
row corresponds to a single draw of β. We can compute the posterior means
and posterior standard deviations of the regression coefficients by use of the
apply function.

> apply(fit,2,mean)

[1] 2.10178712 -0.05090274 -1.00917397

> apply(fit,2,sd)

[1] 0.78992508 0.02127450 0.45329737

The posterior mean and standard deviations are similar in value to the max-
imum likelihood estimates and their associated standard errors. This is ex-
pected since the posterior analysis was based on a noninformative prior on
the regression vector β.

Since both the age and gender variables appear to be significant in this
study, it is interesting to explore the probability of survival

10.4 Estimating a Table of Means 219

p = P (y = 1) = Φ(β0 + β1AGE + β2MALE)

as a function of these two variables. The function bprobit.probs is useful
for computing a simulated posterior sample of probabilities for covariate sets
of interest. For example, suppose we wish to estimate the probability of sur-
vival for males age 15 through 65. We construct a matrix of covariate vectors
X1, where a row corresponds to the values of the covariates for a male of a
particular age. The function bprobit.probs is used with inputs X1 and the
simulated matrix of simulated regression coefficients from bayes.probit. The
output is a matrix of simulated draws p.male, where each column corresponds
to a simulated sample for a given survival probability.

> a=seq(15,65)

> X1=cbind(1,a,1)

> p.male=bprobit.probs(X1,fit)

We can summarize the simulated matrix of probabilities by the apply
command. We compute the 5th, 25th, and 95th percentiles of the simulated
sample of

p = Φ(β0 + β1AGE + β2(MALE = 1))

for each of the AGE values. In Fig. 10.3, we graph these percentiles as a
function of age. For each age, the solid line is the location of the median of
the survival probability and the interval between the dashed lines corresponds
to a 90% interval estimate for this probability. In Fig. 10.4, we repeat this work
to estimate the survival probabilities of females of different ages. These two
figures clearly show how survival is dependent on the age and gender of the
emigrant.

> plot(a,apply(p.male,2,quantile,.5),type="l",ylim=c(0,1),

+ xlab="age",ylab="Probability of Survival")

> lines(a,apply(p.male,2,quantile,.05),lty=2)

> lines(a,apply(p.male,2,quantile,.95),lty=2)

10.4 Estimating a Table of Means

10.4.1 Introduction

A university would like its students to be successful in their classes. Since all
students do not do well and some may eventually drop out, the admissions
office is interested in understanding what measures of high school performance
are helpful in predicting success in college. The standard measure of perfor-
mance in university courses is the grade point average (GPA). The admissions

220 10 Gibbs Sampling

20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

P
ro

ba
bi

lit
y

of
 S

ur
vi

va
l

Fig. 10.3. Posterior distribution of probability of survival for males of different
ages. For each age, the 5th, 50th, and 95th percentiles of the posterior are plotted.

people are interested in understanding the relationship between a student’s
GPA with two particular high school measures: the student’s score on the ACT
exam (a standardized test given to all high school juniors) and the student’s
percentile rank in his or her high school class.

The datafile iowagpa in the LearnBayes package contains the data for this
problem. This dataset is a matrix of 40 rows, where a row contains the sample
mean, the sample size, the high school rank percentile and the ACT score. By
use of the R matrix command, these data are represented by the following
two-way table of means. The row of the table corresponds to the high school
rank (HSR) of the student and the column corresponds to the level of the
ACT score. The entry of the table is the mean GPA of all students with the
particular high school rank and ACT score.

> data(iowagpa)

> rlabels = c("91-99", "81-90", "71-80", "61-70", "51-60",

"41-50", + "31-40", "21-30")

> clabels = c("16-18", "19-21", "22-24", "25-27", "28-30")

> gpa = matrix(iowagpa[, 1], nrow = 8, ncol = 5, byrow = T)

10.4 Estimating a Table of Means 221

20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

P
ro

ba
bi

lit
y

of
 S

ur
vi

va
l

Fig. 10.4. Posterior distribution of probability of survival for females of different
ages. For each age, the 5th, 50th, and 95th percentiles of the posterior are plotted.

> dimnames(gpa) = list(HSR = rlabels, ACTC = clabels)

> gpa

ACTC
HSR 16-18 19-21 22-24 25-27 28-30
91-99 2.64 3.10 3.01 3.07 3.34
81-90 2.24 2.63 2.74 2.76 2.91
71-80 2.43 2.47 2.64 2.73 2.47
61-70 2.31 2.37 2.32 2.24 2.31
51-60 2.04 2.20 2.01 2.43 2.38
41-50 1.88 1.82 1.84 2.12 2.05
31-40 1.86 2.28 1.67 1.89 1.79
21-30 1.70 1.65 1.51 1.67 2.33

The following table gives the number of students in each level of high school
rank and ACT score. Note that most of the students are in the upper-right
corner of the table corresponding to high values of both variables.

222 10 Gibbs Sampling

> samplesizes = matrix(iowagpa[, 2], nrow = 8, ncol = 5, byrow = T)

> dimnames(samplesizes) = list(HSR = rlabels, ACTC = clabels)

> samplesizes

ACTC
HSR 16-18 19-21 22-24 25-27 28-30
91-99 8 15 78 182 166
81-90 20 71 168 178 91
71-80 40 116 180 133 46
61-70 34 93 124 101 19
51-60 41 73 62 58 9
41-50 19 25 36 49 16
31-40 8 9 15 29 9
21-30 4 5 9 11 1

The admissions people at this university believe that both high school
rank and ACT score are useful predictors of grade point average. One way of
expressing this belief is to state that the corresponding population means of
the table satisfy a particular order restriction. Let µij denote the mean GPA
of the population of students with the ith level of HSR and jth level of ACT
score. If one looks at the ith row of the table with a fixed HSR rank, it is
reasonable to believe that the column means satisfy the order restriction

µi1 ≤ µi2 ≤ ... ≤ µi5.

This expresses the belief that if you focus on students with a given high-
school rank, then students with higher ACT scores will obtain higher grade
point averages. Likewise, for a particular ACT level (jth column), one may
believe that students with higher percentile ranks will get higher grades, and
thus the row means satisfy the order restriction

µ1j ≤ µ2j ≤ ... ≤ µ9j .

The standard estimates of the population means are the corresponding
observed sample means. Fig. 10.5 displays the matrix of sample means using
a series of line graphs where each row of means is represented by a single
line. (This graph is created using the R function matplot.) Note from the
figure that the sample means do not totally satisfy the order restrictions. For
example, in the “31–40” row of HSR, the mean GPA for ACT score 19–21 is
larger than the mean GPA in the same row for larger values of ACT. It is
desirable to obtain smoothed estimates of the population means that more
closely follow the belief in order restriction.

> act = seq(17, 29, by = 3)

> matplot(act, t(gpa), type = "l", lwd = 2,

+ xlim = c(17, 34))

> legend(30, 3, lty = 1:8, lwd = 2, legend = c("HSR=9", "HSR=8",

+ "HSR=7", "HSR=6", "HSR=5", "HSR=4", "HSR=3", "HSR=2"))

10.4 Estimating a Table of Means 223

20 25 30

1.
5

2.
0

2.
5

3.
0

act

t(
gp

a)

HSR=9
HSR=8
HSR=7
HSR=6
HSR=5
HSR=4
HSR=3
HSR=2

Fig. 10.5. Sample mean GPAs of students for each level of high school rank (HSR)
and ACT score.

10.4.2 A Flat Prior Over the Restricted Space

Suppose one is certain before sampling that the population means follow the
order restriction, but otherwise one has little opinion about the location of the
means. Then if µ denotes the vector of population means, one could assign
the flat prior

g(µ) ∝ c, µ ∈ A,

where A is the space of values of µ that follow the order restrictions.
Let yij and nij denote the sample mean GPA and sample size, respectively,

of the (i, j) cell of the table. We assume that the observations y11, ..., y85 are
independent with yij distributed normal with mean µij and variance σ2/nij

where σ is known. The likelihood function of µ then is given by

L(µ) =
8∏

i=1

5∏

j=1

exp
{
− nij

2σ2
(yij − µij)2

}
.

Combining the likelihood with the prior, the posterior density is given by

g(µ|y) ∝ L(µ), µ ∈ A.

224 10 Gibbs Sampling

This is a relatively complicated 40-dimensional posterior distribution due
to the restriction of its mass to the region A. However, to implement the Gibbs
sampler, one only requires the availability of the set of full conditional distri-
butions. Here “available” means that the one-dimensional distributions have
recognizable distributions that are easy to simulate. Note that the posterior
distribution of µij , conditional on the remaining components of µ, has the
truncated normal form

g(µij |y, {µjk, (j, k) �= (i, j)}) ∝ exp
{
− nij

2σ2
(yij − µij)2

}
,

where max{µi−1,j , µi,j−1} ≤ µij ≤ min{µi,j+1, µi+1,j}.
The R function ordergibbs implements Gibbs sampling for this model.

As mentioned earlier, we assume that the standard deviation σ is known,
and the known value σ = .65 is assigned inside the function. To begin the
algorithm, the program uses a starting value for the matrix of means µ that
satisfies the order restriction. Also for ease in programming, the means are
embedded within a larger matrix augmented by two rows and two columns
containing values of −∞ and +∞. Note in this programming we have changed
the ordering of the rows so that the means are increasing from the first to last
rows.

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] -Inf -Inf -Inf -Inf -Inf -Inf -Inf
[2,] -Inf 1.59 1.59 1.59 1.67 1.88 Inf
[3,] -Inf 1.85 1.85 1.85 1.88 1.88 Inf
[4,] -Inf 1.85 1.85 1.85 2.10 2.10 Inf
[5,] -Inf 2.04 2.11 2.11 2.33 2.33 Inf
[6,] -Inf 2.31 2.33 2.33 2.33 2.33 Inf
[7,] -Inf 2.37 2.47 2.64 2.66 2.66 Inf
[8,] -Inf 2.37 2.63 2.74 2.76 2.91 Inf
[9,] -Inf 2.64 3.02 3.02 3.07 3.34 Inf
[10,] -Inf Inf Inf Inf Inf Inf Inf

In the one main loop, the program goes sequentially through all entries
of the population matrix µ, simulating at each step from the posterior of an
individual cell mean conditional on the values of the remaining means of the
table. The posterior density of µij is given by a truncated normal form, where
the truncation points depend on the current simulated values of the means in a
neighborhood of this (i, j) cell. For example, beginning with the starting value
of µ, one would first simulate µ11 from a normal (y11, σ/

√
n11) distribution

truncated on the interval (−∞,min{1.59, 1.85}). As shown in this fragment
of the code of the function ordergibbs, a truncated normal simulation is
accomplished by the special R function rnormt.

lo=max(c(mu[i-1,j],mu[i,j-1]))
hi=min(c(mu[i+1,j],mu[i,j+1]))
mu[i,j]=rnormt(1,y[i-1,j-1],s/sqrt(n[i-1,j-1]),lo,hi)

10.4 Estimating a Table of Means 225

Given the R matrix iowagpa containing two columns of sample means
and sample sizes, the command s=ordergibbs(iowagpa,m) implements Gibbs
sampling for m cycles and the matrix of simulated values is stored in the
matrix MU. A column of the matrix represents an approximate random sample
from the posterior distribution for a single cell mean. In the following, we use
m = 5000 iterations.

> MU = ordergibbs(iowagpa, 5000)

The apply command is used to find the posterior means of all cell means
and the collection of posterior means is placed in an 8-by-5 matrix. Fig. 10.6
displays these posterior means. Note that since the prior support is entirely
on the order-restricted space, these posterior means do follow the order re-
strictions.

> postmeans = apply(MU, 2, mean)

> postmeans = matrix(postmeans, nrow = 8, ncol = 5)

> postmeans=postmeans[seq(8,1,-1),]

> dimnames(postmeans)=list(HSR=rlabels,ACTC=clabels)

> round(postmeans,2)

ACTC
HSR 16-18 19-21 22-24 25-27 28-30
91-99 2.66 2.92 3.01 3.09 3.34
81-90 2.41 2.62 2.73 2.78 2.92
71-80 2.33 2.47 2.62 2.67 2.71
61-70 2.20 2.29 2.33 2.37 2.50
51-60 1.99 2.11 2.15 2.31 2.40
41-50 1.76 1.86 1.94 2.10 2.21
31-40 1.58 1.74 1.80 1.91 2.05
21-30 1.23 1.42 1.55 1.69 1.88

> matplot(act, t(postmeans), type = "l", lwd = 2, xlim = c(17, 34))

> legend(30, 3, lty = 1:8, lwd = 2, legend = c("HSR=9", "HSR=8",

+ "HSR=7", "HSR=6", "HSR=5", "HSR=4", "HSR=3", "HSR=2"))

One way of investigating the impact of the prior belief in order restriction
on inference is to compute the posterior standard deviations of the cell means
and compare these estimates with the classical standard errors. By use of the
apply command, we compute the posterior standard deviations:

> postsds = apply(MU, 2, sd)

> postsds = matrix(postsds, nrow = 8, ncol = 5)

> postsds=postsds[seq(8,1,-1),]

> dimnames(postsds)=list(HSR=rlabels,ACTC=clabels)

> round(postsds,3)

226 10 Gibbs Sampling

20 25 30

1.
5

2.
0

2.
5

3.
0

act

t(
po

st
m

ea
ns

)

HSR=9
HSR=8
HSR=7
HSR=6
HSR=5
HSR=4
HSR=3
HSR=2

Fig. 10.6. Plot of posterior means of GPAs using noninformative prior on order-
restricted space.

ACTC
HSR 16-18 19-21 22-24 25-27 28-30
91-99 0.139 0.082 0.053 0.043 0.051
81-90 0.079 0.058 0.038 0.038 0.062
71-80 0.066 0.052 0.038 0.038 0.045
61-70 0.065 0.039 0.035 0.038 0.082
51-60 0.073 0.054 0.055 0.048 0.075
41-50 0.082 0.069 0.068 0.071 0.086
31-40 0.118 0.080 0.074 0.075 0.096
21-30 0.181 0.137 0.118 0.114 0.131

The standard error of the observed sample mean yij is given by SE(yij) =
σ/

√
nij , where we assume that σ = .65. The following table computes the

ratios {SD(µij |y)/SE(yij)} for all cells. Note that most of the ratios are in
the .5 to .7 range, indicating that we are adding significant prior information
by use of this order-restricted prior.

10.4 Estimating a Table of Means 227

> s=.65

> se=s/sqrt(samplesizes)

> round(postsds/se,2)

ACTC
HSR 16-18 19-21 22-24 25-27 28-30
91-99 0.61 0.49 0.71 0.89 1.00
81-90 0.54 0.75 0.75 0.78 0.91
71-80 0.64 0.87 0.79 0.67 0.47
61-70 0.58 0.58 0.60 0.58 0.55
51-60 0.72 0.71 0.66 0.57 0.34
41-50 0.55 0.53 0.63 0.76 0.53
31-40 0.51 0.37 0.44 0.62 0.44
21-30 0.56 0.47 0.54 0.58 0.20

10.4.3 A Hierarchical Regression Prior

The use of the flat prior over the restricted space A resembles a frequentist
analysis where one would find the maximum likelihood estimate. However,
from a subjective Bayesian viewpoint, alternative priors could be considered.
If one believes that the means satisfy an order restriction, then one may also
have prior knowledge about the location of the means. Specifically, one may
believe that the mean GPAs may be linearly related to the high school rank
and ACT scores of the students.

One can construct a hierarchical regression prior to reflect the relationship
between the GPA and the two explanatory variables. At the first stage of the
prior, we assume the means are independent where µij is normal with location
given by the regression structure

β0 + β1ACTi + β2HSRj

and variance σ2
π. At the second stage of the prior model, we assume the hy-

perparameters β = (β0, β1, β2) and σ2
π are independent with β distributed

N3(β̄, Σβ) and σ2
π distributed Sχ−2

ν .
Prior knowledge about the regression parameter β is expressed by means

of the normal prior with mean β̄ and variance-covariance matrix Σβ . These
values can be obtained by an analysis of similarly classified data for 1978 Iowa
students. One can find the MLE and associated variance-covariance matrix
from an additive fit to these data. If one assumes that the regression structure
between GPA and the covariates has not significantly changed between 1978
and 1990, these values can be used for β̄ and Σβ .

To construct a suitable prior for σ2
π, observe that this parameter reflects

the strength of the user’s prior belief that the regression model fits the ta-
ble of observed means. Also this parameter is strongly related to the prior
belief that the table of means satisfies the order restriction. The prior mean
and standard deviation are given, respectively, by E(σ2

π) = S/(v − 2) and

228 10 Gibbs Sampling

SD(σ2
π) =

√
2/(v − 2)/

√
v − 4. By fixing a value of S and increasing v, the

prior for σ2
π is placing more of its mass toward zero and reflects a stronger be-

lief in order restriction. In the following, we use the parameter values S = 0.02
and v = 16.

The posterior density of all parameters (µ, β, σ2
π) is given by the following:

g(µ, β, σ2
π|y) ∝

8∏

i=1

5∏

j=1

exp{− nij

2σ2
(yij − µij)2}

×
8∏

i=1

5∏

j=1

1
σπ

exp{− 1
2σ2

π

(µij − x′
ijβ)2}

× exp{(β − β̄)′Σ−1(β − β̄)}(σ2
π)−ν/2−1 exp{− S

2σ2
π

}.

Simulation from the joint posterior distribution is possible by a Gibbs
sampling algorithm. We partition the parameters into the three components
µ, β, and σ2

π, and consider the distribution of each component conditional on
the remaining parameters. We describe the set of conditional distributions
here; we will see that all of these distributions have convenient functional
forms that are easy to simulate on R.

• The population means µ11, ..., µ85, conditional on β and σ2
π, are indepen-

dent N(µij(y),√vij), where

µij(y) = vij

(nijyij

σ2
+

xijβ

σ2
π

)
, vij =

(nij

σ2
+

1
σ2

π

)−1

.

• The regression vector β, conditional on µ and σ2
π, is distributed N3(β∗, Σβ∗),

where

Σβ∗ = (Σ−1
β + X ′Xσ−2

π)−1, β∗ = Σβ∗(Σ−1
β β̄ + X ′σ−2

π µ).

• The variance σ2
π, conditional on µ and β, is distributed according to the

inverse gamma form

σ2
π
−(40+v)/2−1

exp{ 1
2σ2

π

(S +
∑

(µij − xijβ)2)}.

The R function hiergibbs implements this Gibbs sampling algorithm.
There are two inputs to this function, the data matrix data and the number
of iterations of the Gibbs sampler m. In the program setup, one defines the
vector of cell means {yij} (y), the vector of sample sizes { nij} (n), the design
matrix consisting of rows {(1, ACTi,HSRj)} (X) and the vector of known
sampling variances {σ2/nij} (s2). One defines the prior mean b̄ (b1), the
prior covariance-variance matrix Σβ (bvar), and the hyperparameters of the
prior on σ2

π, S (s), and v (v). Also, the inverse of Σβ (ibar) is computed.

10.4 Estimating a Table of Means 229

Before the Gibbs sampling begins, initial values need to be set for the
population means {µij} and the prior variance σ2

π. It is convenient to simply
let an initial estimate for µij be the observed sample mean yij . Also we let
σ2

π denote the relatively large value .006 that corresponds to little shrinkage
toward the regression model.

We describe the R implementation for a single Gibbs cycle that simulates
in turn from the three sets of conditional posterior distributions.

1. Simulation of β. This fragment of R code simulates the regression vector
β from a multivariate normal distribution. The R command solve is used
to compute the inverse of the matrix Σ−1

β + X ′Xσ−2
π and the variance-

covariance matrix is stored in the variable pvar. The posterior mean is
stored in the variable pmean and the function rmnorm is used to simulate
the multivariate normal variate.
pvar=solve(ibvar+t(a)%*%a/s2pi)

pmean=pvar%*%(ibvar%*%b1+t(a)%*%mu/s2pi)

beta=rmnorm(1,mean=c(pmean),varcov=pvar)

2. Simulation of σ2
π. This R fragment simulates the prior variance from an

inverse gamma distribution.
s2pi=rigamma(1,(N+v)/2,sum((mu-a%*%beta)^2)/2+s/2)

3. Simulation of µ. Conditional on the remaining parameters, the com-
ponents of µ have independent normal distributions. It is convenient to
simultaneously simulate all distributions by means of vector operations.
The R variable postvar contains values of the posterior variances for the
components of µ and postmean contains the respective posterior means.
Then the command rnorm(n,postmean,sqrt(postvar)) simulates the
values from the 40 independent normal distributions.
postvar=1/(1/s2+1/s2pi)

postmean=(y/s2+a%*%beta/s2pi)*postvar

mu=rnorm(n,postmean,sqrt(postvar))

The Gibbs sampler is run for 5000 cycles by executing the function
hiergibbs.

> FIT=hiergibbs(iowagpa,5000)

The output variable FIT is a list consisting of three elements: beta, the matrix
of simulated regression coefficients β where each row is a simulated draw; mu,
the matrix of simulated cell means; and var, the vector of simulated variances
σ2

π.
Fig. 10.7 shows density estimates of the simulated draws of the regression

coefficients β1 and β2 corresponding respectively to the two covariates high
school rank and ACT score. We summarize each coefficient by the computation
of the .025, .25, .5, .75, and .975 quantiles of each batch of simulated draws.
A 95% interval estimate for β2, for example, is given by the .025 and .975
quantiles: (.0223, .0346).

230 10 Gibbs Sampling

0.017 0.018 0.019 0.020 0.021 0.022

0
20

0
40

0

HIGH SCHOOL RANK

β2

D
en

si
ty

0.015 0.020 0.025 0.030 0.035 0.040

0
40

80
12

0

ACT SCORE

β3

D
en

si
ty

Fig. 10.7. Density estimates of simulated draws of regression coefficients β1 and β2

in hierarchical regression model.

> par(mfrow=c(2,1))

> plot(density(FIT$beta[,2]),xlab=expression(beta[2]),

+ main="HIGH SCHOOL RANK")

> plot(density(FIT$beta[,3]),xlab=expression(beta[3]),

+ main="ACT SCORE")

> quantile(FIT$beta[,2],c(.025,.25,.5,.75,.975))

2.5% 25% 50% 75% 97.5%
0.01800818 0.01883586 0.01926438 0.01968747 0.02052101

> quantile(FIT$beta[,3],c(.025,.25,.5,.75,.975))

2.5% 25% 50% 75% 97.5%
0.02231820 0.02628508 0.02844086 0.03050381 0.03464926

We summarize the posterior distribution of the variance parameter σ2
π; this

parameter is helpful for understanding the shrinkage of the observed sample
means toward the regression structure.

10.4 Estimating a Table of Means 231

> quantile(FIT$var,c(.025,.25,.5,.75,.975))

2.5% 25% 50% 75% 97.5%
0.001163374 0.002017212 0.002771330 0.003924643 0.007475468

Last, we compute and display the posterior means of the cell means in
Fig. 10.8. These posterior mean estimates using a hierarchical prior look sim-
ilar to the posterior estimates using a noninformative prior on the restricted
space displayed in Fig. 10.6.

> posterior.means = apply(FIT$mu, 2, mean)

> posterior.means = matrix(posterior.means, nrow = 8, ncol = 5,

+ byrow = T)

> matplot(act, t(posterior.means), type = "l", lwd = 2,

+ xlim = c(17, 34))

> legend(30, 3, lty = 1:8, lwd = 2, legend = c("HSR=9", "HSR=8",

+ "HSR=7", "HSR=6", "HSR=5", "HSR=4", "HSR=3", "HSR=2"))

20 25 30

1.
5

2.
0

2.
5

3.
0

act

t(
po

st
er

io
r.

m
ea

ns
)

HSR=9
HSR=8
HSR=7
HSR=6
HSR=5
HSR=4
HSR=3
HSR=2

Fig. 10.8. Plot of posterior means of GPAs using hierarchical prior.

232 10 Gibbs Sampling

10.4.4 Predicting the Success of Future Students

The university is most interested in predicting the success of future students
from this model. Let z∗ij denote the college GPA for a single future student
with ACT score in class i and high school percentile in class j. If the university
believes that a GPA at least 2.5 defines success, then they are interested in
computing the posterior predictive probability

P (z∗ij ≥ 2.5|y).

One can express this probability as the integral

P (z∗ij ≥ 2.5|y) =
∫

P (z∗ij ≥ 2.5|µ, y)g(µ|y)dµ,

where g(µ|y) is the posterior distribution of the vector of cell means µ. In our
model, we assume that the distribution of z∗ij , conditional on µ, is N(µij , σ).
So we can write the predictive probability as

P (z∗ij ≥ 2.5|y) =
∫ [

1 − Φ

(
2.5 − µij

σ

)]

g(µ|y)dµ,

where Φ() is the standard normal cdf. A simulated sample from the posterior
distribution of the cell means is available as one of the outputs of the Gibbs
sampling algorithms ordergibbs and hiergibbs. If {µt

ij , t = 1, ...,m} rep-
resents the sample from the marginal posterior distribution of µij , then the
posterior predictive probability that the student will be successful is estimated
by

P (z∗ij ≥ 2.5|y) ≈ 1
m

m∑

t=1

[

1 − Φ

(
2.5 − µt

ij

σ

)]

.

We illustrate this computation when a hierarchical regression model is
placed on the cell means. Recall that the output of the function hiergibbs in
our example was FIT and so FIT$mu is the matrix of simulated cell means from
the posterior distribution. We transform all the cell means to probabilities of
success by use of the pnorm function and we compute the sample means for
all cells by use of the apply function.

> p=1-pnorm((2.5-FIT$mu)/.65)

> prob.success=apply(p,2,mean)

We convert this vector of estimated probabilities of success to a matrix
by the matrix command, attach row and column labels to the table by the
dimnames command, and then display the probabilities, rounding to the third
decimal space.

> prob.success=matrix(prob.success,nrow=8,ncol=5,byrow=T)

> dimnames(prob.success)=list(HSR=rlabels,ACTC=clabels)

> round(prob.success,3)

10.6 Summary of R Functions 233

ACTC
HSR 16-18 19-21 22-24 25-27 28-30
91-99 0.689 0.748 0.781 0.812 0.878
81-90 0.555 0.617 0.663 0.690 0.757
71-80 0.466 0.504 0.579 0.630 0.627
61-70 0.360 0.410 0.426 0.440 0.538
51-60 0.249 0.304 0.304 0.410 0.441
41-50 0.168 0.193 0.222 0.283 0.321
31-40 0.107 0.141 0.153 0.190 0.225
21-30 0.062 0.079 0.096 0.121 0.153

This table of predictive probabilities should be useful to the admissions officer
at the university. By this table, one may wish to admit students who have a
predictive probability of, say, at least 0.70, of being successful in college.

10.5 Further Reading

Gelfand and Smith (1990) and Gelfand et al (1990) were the first papers
to describe the statistical applications for Gibbs sampling. Wasserman and
Verdinelli (1991) and Albert (1992) describe the use of Gibbs sampling in
outlier models. The use of latent variables and Gibbs sampling for fitting
binary response models is described in Albert and Chib (1993). The use of
Gibbs sampling in modeling order restrictions in a two-way table of means
was illustrated in Albert (1994).

10.6 Summary of R Functions

bayes.probit – simulates from a probit binary response regression model
using data augmentation and Gibbs sampling
Usage: bayes.probit(y, X, m)
Arguments: y, vector of binary responses; X, covariate matrix; m, number of
simulations
Value: matrix of simulated draws of the regression vector beta, where each
row corresponds to a draw of beta

bprobit.probs – simulates fitted probabilities for a probit regression model
Usage: bprobit.probs(X, fit)
Arguments: X, matrix where each row corresponds to a covariate set;
fit, matrix of simulated draws from the posterior distribution of the regres-
sion vector beta
Value: matrix of simulated draws of the fitted probabilities, where a column
corresponds to a particular covariate set

hiergibbs – implements Gibbs sampling for estimating a two-way table of
normal means under a hierarchical regression model

234 10 Gibbs Sampling

Usage: hiergibbs(data, m)
Arguments: data, data matrix where columns are observed sample means,
sample sizes, and values of two covariates; m, number of cycles of Gibbs sam-
pling
Value: beta, matrix of simulated values of regression parameter; mu, matrix of
simulated values of cell means; var vector of simulated values of second-stage
prior variance

ordergibbs – implements Gibbs sampling for estimating a two-way table of
normal means under an order restriction
Usage: ordergibbs(data, m)
Arguments: data, data matrix where first column contains the sample means
and the second column contains the sample sizes; m, number of iterations of
Gibbs sampling
Value: matrix of simulated draws of the normal means where each row repre-
sents one simulated draw

robustt – implements Gibbs sampling for a robust t sampling model with
location mu, scale sigma, and degrees of freedom v
Usage: robustt(y, v, m)
Arguments: y, vector of data values; v, degrees of freedom for t model; m,
number of cycles of the Gibbs sampler
Value: mu, vector of simulated values of mu; s2, vector of simulated draws of
sigma2; lam, matrix of simulated draws of lambda where each row corresponds
to a single draw

10.7 Exercises

1. Robust modeling with Cauchy sampling
In Section 6.9, different computational methods are used to model data
where outliers may be present. The data y1, ...yn are assumed independent,
where yi is Cauchy with location µ and scale σ. Using the standard nonin-
formative prior of the form g(µ, σ) = 1/σ and Darwin’s dataset, Table 6.2
presents 5th, 50th, and 95th percentiles of the marginal posterior densities
of µ and log σ using Laplace, brute force, random walk Metropolis, inde-
pendence Metropolis, and Metropolis within Gibbs algorithms. Use the
“automatic” Gibbs sampler as implemented in the function robustt to fit
this Cauchy error model where the degrees of freedom of the t density is
set to one. Run the algorithm for 10,000 cycles and compute the posterior
mean and standard deviation of µ and log σ. Compare your answers with
the values given in Table 6.2 using the other computational methods.

2. Mixtures of sampling densities
Suppose one observes a random sample y1, ..., yn from the mixture density

f(y|p, λ1, λ2) = pf(y|λ1) + (1 − p)f(y|λ2),

10.7 Exercises 235

where f(y|λ) is a Poisson density with mean λ, p is a mixture parame-
ter between 0 and 1, and λ1 < λ2. Suppose that a priori the parameters
(p, λ1, λ2) are independent with p assigned a uniform density and λi as-
signed gamma(ai, bi), i = 1, 2. Then the joint posterior density is given
by

g(p, λ1, λ2|data) ∝ g(p, λ1, λ2)
n∏

i=1

f(yi|p, λ1, λ2).

Suppose one introduces the latent data Z1, ..., Zn, where Zi = 1 or 2 if
yi ∼ Poisson(λ1) or yi ∼ Poisson(λ2), respectively. The joint posterior
density of the vector of latent data Z = (Z1, ..., Zn) and the parameters
is given by

g(p, λ1, λ2, Z|data) ∝ g(p, λ1, λ2)

×
n∏

i=1

(
I(Zi = 1)pf(yi|λ1) + I(Zi = 2)(1 − p)f(yi|λ2)

)
,

where I(A) is the indicator function that is equal to 1 if A is true, or 0
otherwise.
a) Find the complete conditional densities of p, λ1, λ2, and Zi.
b) Describe a Gibbs sampling algorithm for simulating from the joint

density of (p, λ1, λ2, Z).
c) Write an R function to implement the Gibbs sampler.
d) To test your function, the following data were simulated from the

mixture density with p = .3, λ1 = 5, and λ2 = 15:
24 18 21 5 5 11 11 17 6 7
20 13 4 16 19 21 4 22 8 17

Let the prior hyperparameters be equal to a1 = b1 = a2 = b2 = 1. Run
the Gibbs sampler for 10,000 iterations. From the simulated output,
compute the posterior mean and standard deviation of p, λ1, and
λ2, and compare the posterior means with the parameter values from
which the data were simulated.

3. Censored data
Suppose that observations x1, ..., xn are normally distributed with mean
µ and variance σ2. However the measuring device has malfunctioned and
one only knows the first observation x1 exceeds a known constant c; the
remaining observations x2, ..., xn are recorded correctly. If we regard the
censored observation x1 as an unknown and we assign the usual noninfor-
mative prior on (µ, σ2), then the joint density of all unknowns (the single
observation and the two parameters) has the form

g(µ, σ2, x1|data) ∝ 1
σ2

n∏

i=2

1√
2πσ2

exp
{
− 1

2σ2
(yi − µ)2

}

× 1√
2πσ2

exp
{
− 1

2σ2
(x1 − µ)2

}

236 10 Gibbs Sampling

a) Suppose one partitions the unknowns by [µ, σ2] and [x1]. Describe the
conditional posterior distributions [µ, σ2|x1] and [x1|µ, σ2].

b) Write an R function to program the Gibbs sampling algorithm based
on the conditional distributions found in part (a).

c) Suppose the sample observations are 110, 104, 98, 101, 105, 97, 106,
107, 84, 104, where the measuring device is “stuck” at 110 and one
knows that the first observation exceeds 110. Use the Gibbs sampling
algorithm to find 90% interval estimates for µ and σ,

4. Order restricted inference
Suppose one observes y1, ..., yN , where yi is distributed binomial with
sample size ni and probability of success pi. A priori suppose one assigns
a uniform prior over the space where the probabilities satisfy the order
restriction

p1 < p2 < ... < pn.

a) Describe a Gibbs sampling algorithm for simulating from the joint
posterior distribution of (p1, ..., pN).

b) Write an R function to implement the Gibbs sampler found in part
(a).

c) Suppose N = 4, the sample sizes are n1 = ... = n4 = 20 and one
observes y1 = 2, y2 = 5, y3 = 12, and y4 = 9. Use the R func-
tion to simulate 1000 draws from the joint posterior distribution of
(p1, p2, p3, p4).

5. Grouped data
In Section 6.7, inference about the mean µ and the variance σ2 of a normal
population is considered, where the heights of male students are observed
in grouped form as displayed in Table 6.1. Let y = (y1, ..., yn) denote the
vector of actual unobserved heights that are distributed N(µ, σ). Consider
the joint posterior distribution of all unobservables (y, µ, σ2). As in Section
6.7, we assume that the parameters (µ, σ2) have the noninformative prior
proportional to 1/σ2.
a) Describe the conditional posterior distributions [y|µ, σ2] and [µ, σ2|y].
b) Program an R function that implements a Gibbs sampler based on

the conditional posterior distributions found in part (a).
c) Using the R function, simulate 1000 cycles of the Gibbs sampler. Com-

pute the posterior mean and posterior standard deviation of µ and
σ and compare your estimates with the values reported using the
Metropolis random walk algorithm in Section 6.7.

11

Using R to Interface with WinBUGS

11.1 Introduction to WinBUGS

The BUGS project is focused on the development of software to facilitate
Bayesian fitting of complex statistical models using Markov chain Monte Carlo
algorithms. In this chapter, we introduce the use of R in running WinBUGS,
a stand-alone software program for the Windows operating system.

WinBUGS is a program for sampling from a general posterior distribution
of a Bayesian model by use of Gibbs sampling and a general class of proposal
densities. To describe the use of WinBUGS in a very simple setting, suppose
you observe y distributed binomial(n, p) and a beta(α, β) prior is placed on p
where α = 0.5 and β = 0.5. You observe y = 7 successes in a sample of n = 50
and you wish to construct a 90% interval estimate for p.

After you launch the WinBUGS program, you create a file that describes
the Bayesian model. For this example, the model script looks like the following:

model
{

y ~ dbin(p, n)
p ~ dbeta(alpha, beta)

}

Note that the script begins with model and one indicates distributional as-
sumptions by the “∼” symbol. The names for different distributions (dbin,
dbeta, etc.) are similar to the names of these densities in the R system.

After the model is described, one defines the data and any known para-
meter values in the file. This script begins with the word data and we use a
list to specify the values of y, n, α, and β.

data
list(y = 7, n = 50, alpha = 0.5, beta = 0.5)

Last, we specify the initial values of parameters in the MCMC simulation.
This section begins with the word inits and a list specifies the initial values.

238 11 Using R to Interface with WinBUGS

Here we have a single parameter p and we decide to begin the simulation at
p = .1.

inits
list(p = 0.1)

Once the model, data, and initial values have been defined, we tell Win-
BUGS, in the Sample Monitor Tool, what parameters to monitor in the sim-
ulation. These will be the parameters of primary interest in the inferential
problem. Here there is only one parameter p that we wish to monitor.

By use of the Update Tool we are able to use WinBUGS to take a sim-
ulated sample of a particular size from the posterior distribution. Once the
MCMC simulation is finished, we want to make plots or compute diagnostic
statistics of the parameters that help us learn if the MCMC simulation has
approximately converged to the posterior distribution. If we believe that the
simulation draws represent (approximately) a sample from the posterior, then
we want to construct a graph of various marginal posterior distributions of
interest and compute various summaries to draw inferences about the para-
meters.

WinBUGS is useful for fitting a variety of Bayesian models, some of high
dimension. But the program runs independently of other programs such as R
and one is limited to the data analysis tools available in the WinBUGS sys-
tem. Recently, there have been efforts to provide interfaces between popular
statistical packages (such as R) and WinBUGS. In the remainder of the chap-
ter, we describe one attractive R function bugs that simplifies the process of
using the WinBUGS program and allows one to use the R system to analyze
the simulation output.

11.2 An R Interface to WinBUGS

Before you can use this R/WinBUGS interface, some setup needs to be done.
The WinBUGS and OpenBUGS programs should be downloaded and installed
on your Windows system. Also, special packages including R2WinBUGS and
BRugs need to be downloaded and installed on your R system. This setup
procedure likely will be modified over time; you should consult with the Win-
BUGS home page (http://www.mrc-bsu.cam.ac.uk/bugs/) for the most re-
cent information.

Once the setup is completed, it is easy to define a Bayesian problem for
WinBUGS by use of this R interface. There are four necessary inputs that are
similar to the inputs required within the WinBUGS program:

• Model. One describes the statistical model by means of a “model” file
that describes the model in the BUGS language.

• Data. One inputs data directly into R in the form of constants, vectors,
matrices and model parameters.

11.3 MCMC Diagnostics Using the boa Package 239

• Parameters. Within R, one specifies the parameters to be monitored in
the simulation run.

• Initial values. One specifies initial values of the parameters in the R
console.

Suppose the model is defined in the file model.bug and the data, para-
meters, and initial values are defined in R in the respective variables data,
parameters and inits. Then one simulates from the Bayesian model by the
R command bugs:

> model.sim <- bugs (data, inits, parameters, "model.bug")

When this command is executed, the model information is sent to the
WinBUGS program. The WinBUGS program will run in the background,
simulating parameters from the model. At the completion of the simulation,
WinBUGS will close, and one is returned to the R console. The output of bugs
is a structure containing the output from the WinBUGS run. Specifically, from
the object model.sim, one can access the matrix of simulated draws of the
monitored parameters.

One controls different aspects of the simulation by use of optional argu-
ments to the function bugs. A more general form of bugs including optional
arguments is given here:

bugs(data, inits, parameters.to.save, model.file = "model.bug",

n.chains = 3, n.iter = 2000, n.burnin = floor(n.iter/2),

n.thin = max(1, floor(n.chains*(n.iter - n.burnin)/1000)),

bin = (n.iter - n.burnin) / n.thin)

• n.chains contains the number of Markov chains that are run. By default,
three parallel chains will be run; if one wishes only to simulate one chain,
the argument n.chains = 1 should be used.

• n.iter is the number of total iterations for each chain.
• n.burnin is the number of iterations to discard at the beginning. Typically,

one will discard a specific number of the initial draws and base inference
on the remaining output. By default, the first half of the iterations are
removed; that is, n.burnin = n.iter/2.

• n.thin is the thinning rate. If n.thin = 1, every iterate will be collected;
if n.thin = 2, every other iterate will be collected, and so on. By default,
the thinning rate is set so that 1000 iterations will be collected for each
chain.

• bin is the number of iterations between savings of results; the default is
only to save at the end.

11.3 MCMC Diagnostics Using the boa Package

Once the MCMC chain has been run and simulated samples from the algo-
rithm have been stored, then the user needs to perform some diagnostics on

240 11 Using R to Interface with WinBUGS

the simulations to determine if they approximately represent the posterior
distribution of interest. Some diagnostic questions include the following:

1. How many chains should be run in the simulation? Does the choice of
starting value in the chain make a difference?

2. How long is the burn in time before the simulated draws approximately
represent a sample from the posterior distribution?

3. How many simulated draws should be collected to get accurate approxi-
mations at summaries of the posterior?

4. What is the simulation standard error of a particular summary of the
posterior distribution?

5. Are there high correlations between successive simulated draws?

The boa (Bayesian Output Analysis) package, written by Brian Smith,
is based on the Convergence Diagnosis and Output Analysis Software for
Gibbs sampling output (CODA) developed by Best, Cowles, and Vines. This
package provides a variety of diagnostic functions useful for MCMC output.
In particular, the boa package

• provides various summary statistics such as means, standard deviations,
quantiles, highest probability density intervals, and simulation standard
errors for correlated output based on batch means

• allows one to compare autocorrelations and cross-correlations of simulated
samples from different parameters

• computes various convergence diagnostics, such as those proposed by
Geweke, Gelman and Rubin, and Raftery and Lewis

• provides a variety of different plots, such as lag correlations, density esti-
mates, and running means

It is convenient to use the boa package after the bugs function is used to
perform the MCMC sampling in WinBUGS. One can access the boa func-
tions by the menu option boa.menu(). When the menu appears, one selects
Import Data > Data Matrix Object to load vectors or matrices of simu-
lated parameters into the package. Many of the MCMC diagnostics can then
be performed by using the Analysis and Plot items on the main menu.

11.4 A Change-Point Model

We begin with an analysis of counts of British coal mining disasters described
in Carlin et al (1992). The number of disasters is recorded for each year from
1851 to 1962; we let yt denote the number of disasters in year t, where t =
actual year− 1850. Looking at the data, it appears that the rate of accidents
decreased in some year during the end of the 19th century. We assume for the
early years, say when t < τ , yt has a Poisson distribution where the logarithm
of the mean log µt = β0, and for the later years (t ≥ τ) log µt = β0 + β1. We
represent this as

11.4 A Change-Point Model 241

yt ∼ Poisson(µt), log(µi) = β0 + β1 × δ(t − τ),

where δ() is defined to be 1 if its argument is nonnegative, and 0 otherwise. The
unknown parameters are the regression parameters β0, β1, and the change-
point parameter τ . We complete the model by assigning vague uniform priors
to β0 and β1 and assigning τ a uniform prior on the interval (1, N), where N
is the number of years.

The first step in using WinBUGS is to write a short script defining the
model in the BUGS language. The description of the change-point model is
displayed next. Note that the observation for a particular year is denoted
by D[year] and the corresponding mean as mu[year]. The parameters are
b[1],b[2], and the change-point parameter τ is called changeyear. Note that
the syntax is similar to that used in R with some exceptions. The syntax

D[year] ~ dpois(mu[year])

indicates that D[year] is distributed Poisson with mean mu[year]. Similarly,
the code

b[j] ~ dnorm(0.0,1.0E-6)

indicates that βj is assigned a normal prior distribution with mean 0 and a
precision (reciprocal of the variance) equal to 0.000001. In WinBUGS, one
must assign proper distributions to all parameters, and this normal density
approximates the improper uniform prior density. Also

changeyear ~ dunif(1,N)

indicates that τ has a continuous uniform prior density on the interval (1, N).
The operator <- indicates an assignment to a variable; for example, the syntax

log(mu[year]) <- b[1] + step(year - changeyear) * b[2]

assigns the linear expression on the right-hand side to the variable
log(mu[year]). The step function in WinBUGS is equivalent to the function
δ() defined earlier. The entire model description file is saved as a text file
coalmining.bug.

model
{
for(year in 1 : N)
{

D[year] ~ dpois(mu[year])
log(mu[year]) <- b[1] + step(year - changeyear) * b[2]

}
for (j in 1:2) {b[j] ~ dnorm(0.0,1.0E-6)}
changeyear ~ dunif(1,N)

}

242 11 Using R to Interface with WinBUGS

After the model has been defined, we enter the data directly into the R
console. The R constant N is the number of years and D is the vector of observed
counts. The variable data is a list containing the names of the variables N and
D that are sent to WinBUGS.

> N=112

> D=c(4,5,4,1,0,4,3,4,0,6,

+ 3,3,4,0,2,6,3,3,5,4,5,3,1,4,4,1,5,5,3,4,2,5,2,2,3,4,2,1,3,2,

+ 1,1,1,1,1,3,0,0,1,0,1,1,0,0,3,1,0,3,2,2,

+ 0,1,1,1,0,1,0,1,0,0,0,2,1,0,0,0,1,1,0,2,

+ 2,3,1,1,2,1,1,1,1,2,4,2,0,0,0,1,4,0,0,0,

+ 1,0,0,0,0,0,1,0,0,1,0,0)

> data=list("N","D")

Next we indicate by the parameters line

> parameters <- c("changeyear","b")

that we wish to monitor the simulated samples of the change-point parameter
τ and the regression vector β.

Last, we indicate by the line

> inits = function() {list(b=c(0,0),changeyear=50)}

that the starting value for the parameter (β1, β2) is (0, 0), and the starting
value of τ is 50.

Now that the problem has been set up, the function bugs is used to run
WinBUGS.

> coalmining.sim <- bugs (data, inits, parameters,

+ "coalmining.bug", n.chains=3, n.iter=1000)

The output of bugs is the simulation object coalmining.sim.
To obtain some basic information about the simulated draws, one can ap-

ply the print function on the simulation object coalmining.sim. The output
explains that three chains were used, each with 1000 iterations, and the first
500 iterations (the burn-in) were discarded in each chain. Summary statistics
for each parameter are given for the total 1500 iterations that were saved.

> print(coalmining.sim)

Inference for Bugs model at "coalmining.bug", fit using winbugs,
3 chains, each with 1000 iterations (first 500 discarded)
n.sims = 1500 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
changeyear 39.5 2.1 36.1 37.8 39.8 40.7 43.6 1 1500
b[1] 1.1 0.1 0.9 1.1 1.1 1.2 1.3 1 350
b[2] -1.3 0.2 -1.6 -1.4 -1.3 -1.2 -1.0 1 1300
deviance 337.5 2.6 334.2 335.6 336.8 338.6 344.0 1 820

11.5 A Robust Regression Model 243

For each parameter, n.eff is a crude measure of effective sample
size, and Rhat is the potential scale reduction factor (at
convergence, Rhat=1).

pD = 3.5 and DIC = 341.0 (using the rule, pD = var(deviance)/2)
DIC is an estimate of expected predictive error (lower deviance
is better).

To be able to work with the simulated samples, one applies the
attach.bugs command on the simulation object. Once this command is ap-
plied, the variable changeyear will contain the simulated draws for τ , and b
is a matrix that contains the simulated draws of β1 and β2.

> attach.bugs(coalmining.sim)

We can construct and display a density estimate of the simulated sample
of τ by the plot(density()) command (see Fig. 11.1). This density has an
interesting bimodal shape; this indicates that there is support for a change-
point near 37 and 40 years past 1850.

> plot(density(changeyear))

Similarly, we can construct density estimates for the simulated draws of
β1 and β2. It is clear from Fig. 11.2 that β2 < 0 which indicates a drop in the
rate of coal mining facilities beyond the change-point year.

> par(mfrow=c(2,1))

> plot(density(b[,1]),xlab="beta1")

> plot(density(b[,2]),xlab="beta2")

11.5 A Robust Regression Model

As a second illustration of the R/WinBUGS interface, we consider the fitting
of a robust simple regression model. One is interested in the relationship be-
tween the vote count in the 1996 and 2000 presidential elections in the state
of Florida. For each of 67 counties in Florida, one records the voter count for
Pat Buchanan, the Reform party candidate in 2000, and the voter count for
Ross Perot, the Reform party candidate in 1996. Fig. 11.3 plots the square
root of the Buchanan vote against the square root of the Perot count. One
notices a linear relationship with one distinctive outlier. This outlier is due
to an unusual high vote count for Buchanan in Palm Beach County due to a
butterfly ballot design used in that county.

244 11 Using R to Interface with WinBUGS

35 40 45

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

density.default(x = changeyear)

N = 1500 Bandwidth = 0.4301

D
en

si
ty

Fig. 11.1. Density estimate of parameter τ for the change-point problem.

Let yi and xi denote the square root of the voter count in the ith county
for Buchanan and Perot, respectively. From our preliminary analysis, a linear
regression assuming normal errors seems inappropriate. Instead, we assume
that y1, ..., yn follow the regression model

yi = β0 + β1xi + εi,

where ε1, ..., εn are a random sample from a t distribution with mean 0, scale
parameter σ and ν = 4 degrees of freedom. As in Section 10.2, we can represent
this model as the following scale mixture of normal distributions:

yi ∼ N(β0 + β1xi, (τλi)−1/2)
λi ∼ gamma(2, 2)

To complete the model, we assign β0 and β1 uniform priors and let the preci-
sion τ have the standard noninformative prior proportional to 1/τ .

This model is described by means of the following model script in Win-
BUGS. The observations are y[1], ..., y[N]; the observation means are
mu[1], ..., mu[N]; and the observation precisions are p[1], ..., p[N].

11.5 A Robust Regression Model 245

0.8 1.0 1.2 1.4

0
1

2
3

4

density.default(x = b[, 1])

beta1

D
en

si
ty

−1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6

0.
0

1.
0

2.
0

density.default(x = b[, 2])

beta2

D
en

si
ty

Fig. 11.2. Density estimates of parameters β1 and β2 for the change-point problem.

The ith precision, p[i] is defined by tau*lam[i], where the scale parameter
lam[i] is assigned a gamma(2, 2) distribution. One cannot formally assign
improper priors to parameters, but we approximate a uniform prior for b[1]
by assigning it a normal prior with mean 0 and small precision value .001. In
a similar fashion, we assign the precision parameter tau a gamma prior with
shape and scale parameters each set to the small value of .001. This script is
saved as the file robust.bug.

model {
for (i in 1:N) {
y[i] ~ dnorm(mu[i],p[i])
p[i] <- tau*lam[i]
lam[i] ~ dgamma(2,2)
mu[i] <- b[1]+b[2]*x[i]}

for (j in 1:2) {b[j] ~ dnorm(0,0.001)}
tau ~ dgamma(0.001,0.001)
}

Next we define the data in R. The Florida voter data for the 1996 and
2000 elections is stored in the dataset election in the package LearnBayes.

246 11 Using R to Interface with WinBUGS

50 100 150 200

10
20

30
40

50
60

sqrt(perot)

sq
rt

(b
uc

ha
na

n)

Fig. 11.3. Scatterplot of Buchanan and Perot voter counts in Florida in the 1996
and 2000 presidential elections.

The variables buchanan and perot contain, respectively, the Buchanan and
Perot vote totals. There are three quantities to define, the number of paired
observations N, the vector of responses y, and the vector of covariates x. Recall
that we applied an initial square root reexpression of both 1996 and 2000 vote
totals.

> data(election)

> attach(election)

> y=sqrt(buchanan)

> x=sqrt(perot)

> N=length(y)

The final two inputs are the selection of initial values for the parameters
and the decision on what parameters to monitor in the simulation run. In the
command

> inits = function() {list(b=c(0,0),tau=1)}

we indicate that the starting values for the regression parameters are 0 and
0, and the starting value of the precision parameter τ is 1. We last indicate

11.6 Estimating Career Trajectories 247

through the parameters statement that we wish to monitor τ , the vector of
values {λi}, and the regression vector β.

> data=list("N","y","x")

> inits = function() {list(b=c(0,0),tau=1)}

> parameters <- c("tau","lam","b")

We are ready to use WinBUGS to simulate from the model by the bugs
function.

> robust.sim <- bugs (data, inits, parameters, "robust.bug")

Suppose we are interested in estimating the mean Buchanan (root) count
E(y|x) for a range of values of the Perot (root) count x. In the R code, we first
create a sequence of x values in the variable xo and store the corresponding
design matrix in the variable X0. By multiplying this matrix by the matrix of
simulated draws of the regression vector b, we get a simulated sample from
the posterior of E(y|x) for all values of x in xo. We summarize the matrix of
posterior distributions meanresponse with the 5th, 50th, and 95th percentiles
and plot these values as lines in Fig. 11.4. Note that this robust fit is relatively
unaffected by the one outlier with an unusually large value of y.

> attach.bugs(robust.sim)

> xo=seq(18,196,2)

> X0=cbind(1,xo)

> meanresponse=b%*%t(X0)

> meanp=apply(meanresponse,2,quantile,c(.05,.5,.95))

> lines(xo,meanp[2,])

> lines(xo,meanp[1,],lty=2)

> lines(xo,meanp[3,],lty=2)

11.6 Estimating Career Trajectories

A professional athlete’s performance level will tend to increase until the middle
of his or her career and then deteriorate until retirement. For a baseball player,
suppose one records the number of home runs yj out of the number of balls
that are put into play nj (formally, the number of balls put in play is equal
to the number of “at-bats” minus the number of strikeouts) for the jth year
of his career. One is interested in the pattern of the home run rate yj/nj as
a function of the player’s age xj . Fig. 11.5 displays a graph of home run rate
against age for the great slugger Mickey Mantle.

To understand a player’s career trajectory, we fit a model. Suppose yj is
binomial(nj , pj), where pj is the probability of a home run during the jth
season. We assume the probabilities follow the logistic quadratic model

248 11 Using R to Interface with WinBUGS

50 100 150 200

10
20

30
40

50
60

sqrt(perot)

sq
rt

(b
uc

ha
na

n)

Fig. 11.4. Scatterplot of Buchanan and Perot voter counts. The solid line represents
the median of the posterior distribution of the expected response and the dashed
lines correspond to the 5th and 95th percentiles of the distribution.

log
(pj

1 − pj

)
= β0 + β1xj + β2x

2
j .

Fig. 11.5 displays the fitted probabilities for Mickey Mantle using the glm
function.

In studying a player’s career performance, one may be interested in the
player’s peak ability and the age where he achieved this peak ability. From
the quadratic model, if β2 < 0, then the probability is maximized at the value

agePEAK = − β1

2β2

and the peak value of the probability (on the logit scale) is

PEAK = β0 −
β2

1

4β2
.

11.6 Estimating Career Trajectories 249

20 25 30 35

0.
06

0.
08

0.
10

0.
12

AGE

H
O

M
E

 R
U

N
 R

A
T

E

Fig. 11.5. Career trajectory and fitted probabilities for Mickey Mantle’s home run
rates.

Although fitting this model is informative about a player’s career trajec-
tory, it has some limitations. Since a player only plays for 15–20 years and
there is sizable binomial variation, it can be difficult to get precise estimates at
a player’s peak age and his peak ability. But there are many players in base-
ball history who display similar career trajectories. It would seem that one
could obtain improved estimates at players’ career trajectories by combining
data from players with similar abilities.

One can get improved estimates by fitting an exchangeable model. Suppose
we have k similar players; for player i we record the number of home runs yij ,
number of balls put in-play nij , and the age xij for the seasons j = 1, ...Ti.
We assume that the associated probabilities {pij} satisfy the logistic model

log
(pij

1 − pij

)
= βi0 + βi1xij + βi2x

2
ij , j = 1, ..., Ti.

Let βi = (βi0, βi1, βi2) denote the regression coefficient vector for the ith
player. To represent the belief in exchangeability, we assume that β1, ..., βk

are a random sample from a common multivariate normal prior with mean
vector µβ and variance-covariance matrix V :

250 11 Using R to Interface with WinBUGS

βi|µβ , R ∼ N3(µβ , V), i = 1, ..., k.

At the second stage of the prior, we assign vague priors to the hyperparame-
ters.

µβ ∼ c, V ∼ inverseWishart(S−1, ν),

where inverse Wishart(S−1, ν) denotes the inverse Wishart distribution with
scale matrix S and degrees of freedom ν. In WinBUGS, information about a
variance-covariance matrix is represented by means of a Wishart(S, ν) distri-
bution placed on the precision matrix P :

P = V −1 ∼ Wishart(S, ν).

Data are available for 10 great home run hitters in baseball history in the
dataset sluggerdata in the package LearnBayes. This dataset contains bat-
ting statistics for these players for all seasons of their careers. The R function
careertraj.setup is used to extract the matrices from sluggerdata that
will be used in the WinBUGS program.

> data(sluggerdata)

> s=careertraj.setup(sluggerdata)

> N=s$N; T=s$T; y=s$y; n=s$n; x=s$x

The variable N is the number of players and the vector T contains the number
of seasons for each player. The matrix y has 10 rows and 23 columns where
the ith row in y represents the number of home runs of the ith player for the
years of his career. Similarly, the matrix n contains the number of balls put
in play for all players and the matrix x contains the ages of the players for all
seasons.

A listing of the file career.bug describing the model in the WinBUGS
language is shown next. The variable beta is a matrix where the ith row
corresponds to the regression vector for the ith player. The syntax

beta[i , 1:3] ~ dmnorm(mu.beta[], R[,])

indicates that the i row of beta is assigned a multivariate normal prior with
mean vector mu.beta and precision matrix R. The syntax

y[i,j] ~ dbin(p[i,j],n[i,j])
logit(p[i,j])<-beta[i,1]+beta[i,2]*x[i,j]+

beta[i,3]*x[i, j]*x[i, j]

gives the logistic model for the home run probabilities in the matrix p. Finally,
the syntax

mu.beta[1:3] ~ dmnorm(mean[1:3],prec[1:3 ,1:3])
R[1:3 , 1:3] ~ dwish(Omega[1:3 ,1:3], 3)

assigns the second-stage priors. The mean vector mu.beta is assigned a mul-
tivariate normal prior with mean mean and precision matrix prec; the preci-
sion matrix R is assigned a Wishart distribution with scale matrix Omega and
degrees of freedom 3.

11.6 Estimating Career Trajectories 251

model
{
for(i in 1 : N) {
b
for(j in 1 : T[i]) {
y[i,j] ~ dbin(p[i,j],n[i,j])
logit(p[i,j])<-beta[i,1]+beta[i,2]*x[i,j]+

beta[i,3]*x[i, j]*x[i, j]
}

}
mu.beta[1:3] ~ dmnorm(mean[1:3],prec[1:3 ,1:3])
R[1:3 , 1:3] ~ dwish(Omega[1:3 ,1:3], 3)
}

The dataset variables N, T, y, n, and x have already been defined in R
with help of the careertraj.setup function. One defines the hyperparameter
values at the last stage of the prior.

mean = c(0, 0, 0)

Omega=diag(c(.1,.1,.1))

prec=diag(c(1.0E-6,1.0E-6,1.0E-6))

Next one gives initial estimates for β, µβ , and R. The estimate of βi is
found by fitting a logistic model to the pooled dataset for all players and µβ

is also set to be this value. The precision matrix R is initially given a diagonal
form with small values.

beta0=matrix(c(-7.69,.350,-.0058),nrow=10,ncol=3,byrow=TRUE)

mu.beta0=c(-7.69,.350,-.0058)

R0=diag(c(.1,.1,.1))

We then indicate in the data line the list of variables, the inits func-
tion specifies the initial values and the parameter line indicates that we will
monitor only the matrix beta. We run the MCMC simulation by the bugs
command.

data=list("N","T","y","n","x","mean","Omega","prec")

inits = function() {list(beta=beta0,mu.beta=mu.beta0,R=R0)}

parameters <- c("beta")

career.sim <- bugs (data, inits, parameters, "career.bug",

n.chains=1, n.iter=10000, n.thin=1)

Since we saved the output in the variable career.sim, the simulated draws
of β are contained in the component career.sims$sims.list$beta. This is
a three-dimensional array, where beta[,i,1] contains the simulated draws of
βi0, beta[,i,2] contains the simulated draws of βi1, and beta[,i,3] contains
the simulated draws of βi2. Suppose we focus on the estimates of the peak age
for each player. In the following R code, we create a new matrix to hold the
simulated draws of the peak age and then compute the functions in a loop.

252 11 Using R to Interface with WinBUGS

peak.age=matrix(0,5000,10)

for (i in 1:10)

peak.age[,i]=-career.sim$sims.list$beta[,i,2]/2/

career.sim$sims.list$beta[,i,3]

We illustrate the use of the boa package to perform output analysis and
summarize the samples of peak age parameters. We invoke the boa menu
system by typing

boa.menu()

BOA MAIN MENU

1: File >>
2: Data >>
3: Analysis >>
4: Plot >>
5: Options >>
6: Window >>

To read in the matrix peak.age into the package, we choose the menu
option File -> Import Data -> Data Matrix Object and entered the ob-
ject name peak.age. To obtain trace plots for each parameter, we return
to the main menu and choose the menu option Plot -> Descriptive ->
Trace. Fig. 11.6 displays the trace plots that are produced for the peak age
parameters for the first six players. In a similar fashion, one can produce al-
ternative graphs such as autocorrelations or running means. Density plots for
the parameters can be obtained by the menu selection Plot -> Descriptive
-> Density. Fig. 11.7 displays density estimates of the peak ages for the
same six players. Finally, to compute 95% interval estimates of each para-
meter, we use the menu option Analysis -> Descriptive Statistics ->
Highest Probability Density Intervals and the following output is pro-
duced:

Lower Bound Upper Bound
par1 31.03141 35.65860
par10 28.35016 30.92325
par2 29.68170 34.69904
par3 31.17224 33.74842
par4 26.49693 29.03557
par5 29.27239 31.55626
par6 26.90644 29.53686
par7 27.74544 30.79067
par8 29.99571 32.96604
par9 26.53799 28.93148

We see that baseball players generally peak in home run hitting ability in their
early 30s, although there are some exceptions.

11.7 Further Reading 253

0 1000 2000 3000 4000 5000

30
32

34
36

Iteration

pa
r1

peak.age

Sampler Trace

0 1000 2000 3000 4000 5000

28
29

30
31

32

Iteration

pa
r1

0

peak.age

Sampler Trace

0 1000 2000 3000 4000 5000

30
32

34
36

Iteration

pa
r2

peak.age

Sampler Trace

0 1000 2000 3000 4000 5000

31
32

33
34

Iteration

pa
r3

peak.age

Sampler Trace

0 1000 2000 3000 4000 5000

26
27

28
29

30

Iteration

pa
r4

peak.age

Sampler Trace

0 1000 2000 3000 4000 5000

29
30

31
32

33

Iteration

pa
r5

peak.age

Sampler Trace

Fig. 11.6. Trace plots of the peak age parameters for six of the baseball players.

11.7 Further Reading

Cowles (2004) gives a general review and evaluation of WinBUGS. A tuto-
rial on computing Bayesian analyses via WinBUGS is provided by George
Woodworth in the complement of chapter 6 of Press (2003). General infor-
mation about WinBUGS including the program code for many examples can
be found in the WinBUGS user manual Spiegelhalter et al (2003). Congdon
(2003, 2005, 2007) describes a wide variety of Bayesian inference problems
that can be fit using WinBUGS. Cowles and Carlin (1996) give an overview
of diagnostics for MCMC output. Sturtz et al (2005) give a general description
of the R2WinBUGS package including examples demonstrating the use of the
package. Smith (2004) describes the use of the package BOA in implementing
MCMC output analysis on R.

254 11 Using R to Interface with WinBUGS

30 32 34 36

0.
00

0.
10

0.
20

0.
30

par1

D
en

si
ty

peak.age

Estimated Posterior Density

27 28 29 30 31 32

0.
0

0.
2

0.
4

0.
6

par10

D
en

si
ty

peak.age

Estimated Posterior Density

28 30 32 34 36

0.
00

0.
10

0.
20

0.
30

par2

D
en

si
ty

peak.age

Estimated Posterior Density

31 32 33 34 35

0.
0

0.
2

0.
4

0.
6

par3

D
en

si
ty

peak.age

Estimated Posterior Density

26 27 28 29 30

0.
0

0.
2

0.
4

0.
6

par4

D
en

si
ty

peak.age

Estimated Posterior Density

28 29 30 31 32 33

0.
0

0.
2

0.
4

0.
6

par5

D
en

si
ty

peak.age

Estimated Posterior Density

Fig. 11.7. Density estimates of the peak age parameters for six of the baseball
players.

11.8 Exercises

1. Estimation of a proportion with a discrete prior
In Chapter 2, we considered the situation where one observes y ∼
binomial(n, p) and the proportion p is assigned a discrete prior. Suppose
the possible values of p are .05, .15, ..., .95, with respective prior probabil-
ities .0625, .125, .25, .25, .125, .0625, .03125, .03125, .03125, .03125. Place
the values of p in a vector p and the probabilities in the vector prior. As
in the example of Chapter 2, set y = 11 and n = 27. Define data, inits,
and parameters as follows:

data=list("p","prior","n","y")
inits=function() {list(ind=2)}
parameters=list("prob")

Save the following script in a file “proportion.bug”.

model
{
ind~dcat(prior[])

11.8 Exercises 255

prob<-p[ind]
y~dbin(prob,n)
}

Use the R interface to simulate 1000 draws from the posterior distribution
of p. Compute the posterior probability that p is larger than .5.

2. Fitting an binomial/beta exchangeable model
In Chapter 5, we considered the problem of simultaneously estimating the
rates of death from stomach cancer for males at risk for cities in Missouri.
Assume the number of cancer deaths yj for a given city is binomial with
sample size nj and probability of success pj . To model the belief that
the {pj} are exchangeable, we assume that they are a random sample
from a beta(α, β) distribution. The beta parameters α and β are assumed
independent from gamma(.11,.11) distributions. The WinBUGS model file
is shown here. Note that the variable betamean is the prior mean of pj

and K1 is the prior precision.

model
{
for (i in 1:N) {

y[i] ~ dbin(p[i], n[i])
p[i] ~ dbeta(alpha, beta)

}
alpha ~ dgamma(.11, .11)
beta ~ dgamma(.11, .11)
betamean <- alpha /(alpha + beta)
K1<-alpha+beta;
}

Use the R interface to simulate from the joint posterior distribution of
({pj}, α, β). Summarize each probability pj and the prior mean α/(α+β)
and prior precision K = α + β by 90% interval estimates.

3. Smoothing multinomial counts
Consider the observed multinomial frequencies (14, 20, 20, 13, 14, 10, 18,
15, 11, 16, 16, 24). Using a GLIM formulation for these data, suppose that
the counts {yi} are independent Poisson with means {µi}. The multino-
mial proportion parameters are defined by θi = µi/

∑
j µj . Suppose one

believes that the {θi} are similar in size. To model this belief, assume that
{θi} has a symmetric Dirichlet distribution of the form

g({θi}|k) ∝
12∏

i=1

θk−1
i .

The hyperparameter k has a prior density proportional to (1 + k)−2 that
is equivalent to log k distributed according to a standard logistic distrib-
ution. The WinBUGS model description is shown here:

256 11 Using R to Interface with WinBUGS

model
{
logk~dlogis(0,1)
k<-exp(logk)
for (i in 1:I) { mu[i] ~ dgamma(k,1)

x[i] ~ dpois(mu[i])
theta[i] <- mu[i]/mu.sum }

mu.sum <- sum(mu[]);
}

Using the R interface, simulate from the posterior distribution of {θi}
and K. Summarize each parameter by a posterior mean and standard
deviation.

4. A gamma regression model
Congdon (2007) gives a Bayesian analysis of an example from McCul-
lagh and Nelder (1989) modeling the effects of three nutrients on coastal
Bermuda grass. The design was a 4 × 4 × 4 factorial experiment defined
by replications involving the nutrients nitrogen (N), phosphorus (P), and
potassium (K). The response yi is the yield of grass in tons/acre. We as-
sume yi is gamma with shape ν and scale parameter νεi where the mean
εi satisfies

1/εi = β0 + β1/(Ni + α1) + β2/(Pi + α2) + β3/(Ki + α3).

In Congdon’s formulation, α1, α2, and α3 (background nutrient levels) are
assigned independent normal priors with respective means 40, 22, and 32
and variance 100. Noninformative priors were assigned to β0, ν and the
growth effect parameters β1, β2, and β3, except that the growth effects are
assumed to be positive.
The WinBUGS model description is shown here. The LearnBayes data
file bermuda.grass contains the data; the factor levels are stored in the
variables Nit, Phos, and Pot and the response values are stored in the
variable y. Also one needs to define the sample size variable n = 64 and
the nutrient value vectors N= 0, 100, 200, and 400, P= 0, 22, 44, and 88,
and K =0, 42, 84, and 168.

model {for (i in 1:n) {y[i]~ dgamma(nu,mu[i])
mu[i] <- nu*eta[i]
yhat[i] <- 1/eta[i]
eta[i] <- beta0

+beta[1]/(N[Nit[i]+1]+alpha[1])
+beta[2]/(P[Phos[i]+1]+alpha[2])
+beta[3]/(K[Pot[i]+1]+alpha[3])}

beta0 ~ dnorm(0,0.0001)
nu ~ dgamma(0.01,0.01)
alpha[1] ~ dnorm(40,0.01)

11.8 Exercises 257

alpha[2] ~ dnorm(22,0.01)
alpha[3] ~ dnorm(32,0.01)
for (j in 1:3) {beta[j] ~ dnorm(0,0.0001) I(0,)}}

Use WinBUGS and the R interface to simulate 10,000 iterations from this
model. Compute 90% interval estimates for all parameters.

5. A non-linear hierarchical growth curve model
The BUGS manual presents an analysis of data originally presented in
Draper and Smith (1998). The response yij is the trunk circumference
recorded at time xj = 1, ..., 7 for each of i = 1, ..., 5 orange trees; the data
are displayed in Table 11.1. One assumes yij is normally distributed with
mean ηij and variance σ2 where the means satisfy the nonlinear growth
model

ηij =
φ1i

1 + φi2 exp(φi3xj)
.

Suppose one reexpresses the parameters into the real-valued parameters

θi1 = log φi1, θi2 = log(φi2 + 1), θi3 = log(−φi3), i = 1, ...5.

Table 11.1. Data on the growth of five orange trees over time.

Response for Tree Number

x 1 2 3 4 5

118 30 33 30 32 30
484 58 69 51 62 49
664 87 111 75 112 81
1004 115 156 108 167 125
1231 120 172 115 179 142
1372 142 203 138 209 174
1582 145 203 140 214 177

Let θi = (θi1, θi2, θi3) represent the vector of growth parameters for the
ith tree. To reflect a prior belief in similarity in the growth patterns of
the five trees, one assumes that {θi, i = 1, ..., 5} are a random sample
from a multivariate normal distribution with mean vector µ and variance-
covariance matrix Ω. At the final stage of the prior, one assumes Ω−1 is
Wishart with parameters R and 3, and assumes µ is multivariate normal
with mean vector µ0 and variance-covariance matrix M . In this example,
one assumes R is a diagonal matrix with diagonal elements .1, .1, and
.1, µ0 is the zero vector, and M−1 is the diagonal matrix with diagonal
elements 1.0E-.6, 1.0E-6, and 1.0E-6.
The WinBUGS model description is shown here:

258 11 Using R to Interface with WinBUGS

model {
for (i in 1:K) {
for (j in 1:n) {

Y[i, j] ~ dnorm(eta[i, j], tauC)
eta[i, j] <- phi[i, 1] / (1 + phi[i, 2] *
exp(phi[i, 3] * x[j]))

}
phi[i, 1] <- exp(theta[i, 1])
phi[i, 2] <- exp(theta[i, 2]) - 1
phi[i, 3] <- -exp(theta[i, 3])
theta[i, 1:3] ~ dmnorm(mu[1:3], tau[1:3, 1:3])

}
mu[1:3] ~ dmnorm(mean[1:3], prec[1:3, 1:3])
tau[1:3, 1:3] ~ dwish(R[1:3, 1:3], 3)
sigma2[1:3, 1:3] <- inverse(tau[1:3, 1:3])
for (i in 1 : 3) {sigma[i] <- sqrt(sigma2[i, i]) }
tauC ~ dgamma(1.0E-3, 1.0E-3)
sigmaC <- 1 / sqrt(tauC)
}

Use WinBUGS and the R interface to simulate 10,000 iterations from this
model. Compute 90% interval estimates for all parameters.

References

Agresti, A., and Franklin, C. (2005), Statistics: The Art and Science of Learn-
ing from Data, Prentice-Hall.

Albert, J. (1992), “A Bayesian analysis of a Poisson random effects model for
home run hitters,” The American Statistician, 46, 246-253.

Albert, J. (1994), “A Bayesian approach to estimation of GPA’s of University
of Iowa freshmen under order restrictions,” Journal of Educational Statis-
tics, 19, 1-22.

Albert, J. (1996), Bayesian Computation Using Minitab, Belmont, CA:
Duxbury Press.

Albert, J., and Chib, S. (1993), “Bayesian analysis of binary and polychoto-
mous response data,” Journal of the American Statistical Association, 88,
669-679.

Albert, J., and Gupta, A. (1981), “Mixtures of Dirichlet distributions and
estimation in contingency tables,” Annals of Statistics, 10, 1261-1268.

Albert, J., and Rossman, A. (2001), Workshop Statistics: Discovery with Data,
a Bayesian Approach, Emeryville, CA: Key College.

Antleman, G. (1996), Elementary Bayesian Statistics, Cheltenham: Edward
Elgar Publishing.

Berger, J. (1985), Statistical Decision Theory and Bayesian Analysis, New
York: Springer-Verlag.

Berger, J. (2000), “Bayesian analysis: A look at today and thoughts of tomor-
row,” Journal of the American Statistical Association, 95, 1269-1276.

Berger, J., and Sellke, T. (1987), “Testing a point null hypothesis: The irrec-
oncilability of p values and evidence,” Journal of the American Statistical
Association, 397, 112-122.

Berry, D. (1996), Statistics: A Bayesian Perspective, Belmont, CA: Duxbury
Press.

260 References

Bliss, C. (1935), “The calculation of the dosage-mortality curve,” Annals of
Applied Biology, 22, 134-167.

Bolstad, W. (2004), Introduction to Bayesian Statistics, Hoboken, NJ: John
Wiley.

Box, G. (1980), “Sampling and Bayes’ inference in scientific modelling and ro-
bustness (with discussion),” Journal of the Royal Statistical Society, Series
A, 143, 383-430.

Carlin, B., Gelfand, A. and Smith, A. (1992), “Hierarchical Bayesian analysis
of changepoint problems,” Applied Statistics, 41, 389-405.

Carlin, B., and Louis, T. (2000), Bayes and Empirical Bayes Methods for Data
Analysis, Boca Rotan: Chapman and Hall.

Casella, G., and Berger, R. (1987), “Testing a point null hypothesis: The irrec-
oncilability of p values and evidence,” Journal of the American Statistical
Association, 397, 106-111.

Casella, G., and George, E. (1992), “Explaining the Gibbs sampler,” The
American Statistician, 46, 167-174.

Chaloner, K., and Brant, R. (1988), “A Bayesian approach to outlier detection
and residual analysis,” Biometrika, 75, 651-659.

Chib, S., and Greenberg, E. (1995), “Understanding the Metropolis-Hastings
algorithm,” The American Statistician, 49, 327-335.

Christiansen, C., and Morris, C. (1995),“Fitting and checking a two-level Pois-
son model: modeling patient mortality rates in heart transplant patients,”
in Berry, D. and Stangl, D, eds, Bayesian Biostatistics, New York: Marcel
Dekker.

Collett, D. (1994), Modelling Survival Data in Medical Research, London:
Chapman and Hall.

Congdon, P. (2007), Bayesian Statistical Modelling, second edition, Chich-
ester: John Wiley.

Congdon, P. (2004), Applied Bayesian Modelling, Chichester: John Wiley.
Congdon, P. (2005), Bayesian Models for Categorical Data, Chichester: John

Wiley.
Cowles, K. (2004), “Review of WinBUGS 1.4,”The American Statistician, 58,

330–336.
Cowles, K., and Carlin, B. (1996), “Markov chain Monte Carlo convergence

diagnostics: a comparative review,” Journal of the American Statistical As-
sociation, 91, 883–904.

Dobson, A. (2001), An Introduction to Generalized Linear Models, New York:
Chapman and Hall.

Draper, N., and Smith, H. (1998), Applied Regression Analysis, New York:
John Wiley.

References 261

Edmonson, J., Fleming, T., Decker, D., Malkasian, G., Jorgensen, E., Jefferies,
J., Webb, M, and Kvols, L. (1979), “Different chemotherapeutic sensitivities
and host factors affecting prognosis in advanced ovarian carcinoma versus
minimal residual disease,” Cancer Treatment Reports, 63, 241–247.

Fisher, R. (1960), Statistical Methods for Research Workers, Edinburgh: Oliver
& Boyd.

Gelfand, A., and Smith, A. (1990),“Sampling-based approaches to calculating
marginal densities,” Journal of the American Statistical Association, 85,
398–409.

Gelfand, A., Hills, S., Racine-Poon, A., and Smith, A. (1990), “Illustration of
Bayesian inference in normal data models using Gibbs sampling,” Journal
of the American Statistical Association, 85, 972–985.

Gelman, A., Carlin, J., Stern, H. and Rubin, D. (2003), Bayesian Data Analy-
sis, New York: Chapman and Hall.

Gelman, A., Meng, X. and Stern, H. (1996), “Posterior predictive assessment
of model fitness via realized discrepancies,” Statistics Sinica, 6, 733–807.

Gentle, J. (2002), Elements of Computational Statistics, New York: Springer.
Gilchrist, W. (1984), Statistical Modeling, Chichester: John Wiley and Sons.
Gill, J. (2002), Bayesian Methods,, New York: Chapman and Hall.
Givens, G., and Hoeting, J. (2005), Computational Statistics, Hoboken, NJ:

John Wiley.
Grayson, D. (1990), “Donner party deaths: a demographic assessment,” Jour-

nal of Anthropological Assessment, 46, 223–242.
Gunel, E., and Dickey, J. M. (1974), “Bayes factors for independence in con-

tingency tables,” Biometrika, 61, 545–557.
Haberman, S. (1978), Analysis of Qualitative Data: Introductory topics (Vol.

1), New York: Academic Press.
Hartley, H. O. (1958),“Maximum likelihood estimation from incomplete data,”

Biometrics, 14, 174–194.
Howard, J. (1998), “The 2 × 2 table: a discussion from a Bayesian viewpoint,”

Statistical Science, 13, 351–367.
Kass, R., and Raftery, A. (1995), “Bayes factors,” Journal of the American

Statistical Association, 90, 773–795.
Kemeny, J., and Snell, J. (1976), Finite Markov Chains,”New York: Springer-

Verlag.
Lee, P. (2004), Bayesian Statistics: An Introduction, New York: Oxford Uni-

versity Press.
Martz, H., and Waller, R. (1982), Bayesian Reliability Analysis, New York:

John Wiley.
McCullagh, P., and Nelder, J. (1989), Generalized Linear Models, New York:

Chapman and Hall.

262 References

Monahan, J. (2001), Numerical Methods of Statistics, Cambridge: Cambridge
University Press.

Moore, D. (1995), The Basic Practice of Statistics, New York: W. H. Freeman.
Pearson, E. (1947), “The choice of statistical tests illustrated in the interpre-

tation of data classed in a 2 x 2 table,” Biometrika, 34, 139–167.
Pimm, S., Jones, H., and Diamond, J. (1988), “On the risk of extinction,”

American Naturalist, 132, 757–785.
Press, J. (2003), Subjective and Objective Bayesian Statistics, Hoboken, NJ:

John Wiley.
Ramsey F., and Schafer, D. (1997), The Statistical Sleuth, Belmont CA:

Duxbury Press.
Rao, C. R. (2002), Linear Statistical Inference and Applications, New York:

John Wiley & Sons.
Robertson, T., Wright, F. and Dykstra, R. (1988), Order Restricted Statistical

Inference, London: John Wiley.
Robert, C., and Casella, G. (2004), Monte Carlo Statistical Methods, New

York: Springer.
Smith, B. (2004), “boa: Bayesian output analysis program

(BOA) for MCMC,” R package version 1.1.2-1, URL
http://www.public-health.uiowa.edu/boa.

Smith, A., and Gelfand, A. (1992), “Bayesian statistics without tears: a
sampling-resampling perspective,” The American Statistician, 46, 84–88.

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2003), WinBUGS 1.4
Manual.

Sturtz, S., Ligges, U., and Gelman, A. (2005), “R2WinBUGS: A package for
running WinBUGS from R,” Journal of Statistical Software, 12, 1–16.

Tanner, M. (1996), Tools for Statistical Inference, New York: Springer-Verlag.
Tsutakawa, R., Shoop, G., and Marienfeld, C. (1985), “Empirical Bayes Esti-

mation of Cancer Mortality Rates,” Statistics in Medicine, 4, 201–212.
Turnbull, B., Brown, B. and Hu, M. (1974), “Survivorship analysis of heart

transplant data,”Journal of the American Statistical Association, 69, 74–80.
Verzani, J. (2004), Using R for Introductory Statistics, Boca Raton: Chapman

and Hall.
Wasserman, L., and Verdinelli, I. (1991), “Bayesian analysis of outlier models

using the Gibbs sampler,” Statistics and Computing, 1, 105–117.
Weiss, N. (2001), Elementary Statistics, Boston: Addison-Wesley.

Index

acceptance rate
for Metropolis-Hastings algorithm,

105
in rejection sampling, 86, 88

approximating a posterior by a discrete
distribution, 48

association parameter, 67

Bayes factor
for comparing two hypotheses, 167
for testing for independence in a

contingency table, 178, 179
in support of a model, 172
in support of a streaky model, 174
to compare models, 168
to compare two hypotheses, 164, 165

bayes.influence function, 93
bayes.probit function, 217
Bayesian model, 237
Bayesian Output Analysis (boa)

package, 240, 252
Bayesian recipe for inference, 76
Bayesian residuals, 190, 198
bayesresiduals function, 190, 198
beta distribution, 50

as a likelihood, 27
as posterior, 23, 85
as prior, 22, 50, 173

beta-binomial model, 78, 90, 92
betabinexch function, 79
betabinexch0 function, 79
bfexch function, 174, 175
bfindep function, 180
binary response regression, 216

binomial distribution, 29, 50
bioassay experiment, 60
bivariate normal density, 86, 119
blinreg function, 189, 193
blinregexpected function, 189, 196
blinregpred function, 189, 196
bounding constant in rejection

sampling, 86
bprobit.probs function, 219
British coal mining disasters, 240
brute force method, 25
bugs function, 238
BUGS project, 237

cancer mortality dataset, 78
candidate draw, 86
careertraj.setup function, 250
Cauchy sampling model, 116
cauchyerrorpost function, 117
censored data, 125
chemotherapy treatment survival data,

201
chi-square distribution, 40
close to independence model, 179
college admissions data, 220
comparing Bayesian models, 168
comparing hospital rates, 153
complete data posterior, 93
composition simulation method, 147
consistent ability in sports, 173
contour function, 58
contour plot, 58
credible interval, 59, 64
ctable function, 178

264 Index

Darwin’s dataset, 118, 213
dbeta function, 27, 51
dbinom function, 51
density estimate, 13, 63, 150, 214, 229,

243, 252
density function, 127, 214
dependence model, 177
dependent prior for proportions, 65
dgamma function, 43, 170
Dirichlet distribution, 60, 178

simulating from, 60
Dirichlet function, 178
discint function, 32
dmt function, 87
dnorm function, 48, 77, 170
dpois function, 43
dt function, 47, 117

evidence
against coin is fair, 51

exchangeable prior model, 138
of career trajectories, 249
of mortality rates, 145

exponential lifetime distribution, 124

Florida voting data, 243
football scores, 39

gamma distribution
as a posterior for a rate, 142
as a prior for a rate, 41, 169
as posterior in exchangeable model,

147
as prior in exchangeable model, 145
as random effects distribution, 124
in outlier model, 212

gibbs function, 106, 150
glm function, 62, 218
grouped data from a normal population,

109
groupeddatapost function, 109
Gumbel distribution, 200

heart transplant mortality data, 41, 139
heart transplant survival data, 124
hierarchical prior, 138

for regression model, 227
hiergibbs function, 228
histprior function, 27

home run rate, 247
howardprior function, 66
hyperparameters, 145

importance sampling estimate, 89, 179
impsampling function, 90
independence hypothesis, 176
indepmetrop function, 105
intelligence quotient, 45
interval estimate, 58, 229
inverse chi-square distribution, 58
inverse gamma distribution, 188, 213
inverse Wishart distribution, 250

Laplace expansion, 80
laplace function, 81, 87, 110, 118, 126,

148, 169, 170, 174, 175, 202
Laplace’s method, 169
latent data representation, 216
lbeta function, 174
lbinorm function, 83
LD-50, 64
lgamma function, 148
likelihood function, 39
linear regression, 187

Bayesian formulation, 188
Bayesian residuals, 190, 198
estimating mean response, 195, 247
model checking, 197
posterior analysis, 188
posterior simulation, 189, 193
prediction, 188, 196
residuals, 190
robust model, 243
with t errors, 244

log-linear model, 200
logistic regression model, 61, 247
logisticpost function, 62
logpoissgamma function, 170
logpoissnormal function, 170

marathon running times, 57
marginal density, 168, 173
marginal posterior distributions, 76
Markov chain simulation

acceptance rate, 113, 122, 150
autocorrelation plot, 107, 113
batch means method, 107
burn-in length, 239
diagnostics, 239

Index 265

discrete case, 102
Gibbs sampling, 106
independence chain, 105, 121
initial values, 237
Metropolis within Gibbs algorithm,

106, 150
Metropolis/Hastings algorithm, 104
number of chains, 239
output analysis, 107
random walk algorithm, 105, 111,

126, 203
thinning rate, 239
trace plot, 107, 113, 252
using WinBUGS, 237

matplot function, 222
maximum likelihood estimate, 41

of logistic regression model, 62
probit model, 218

mnormt.onesided function, 166
mnormt.twosided function, 167
model checking

Bayesian residuals, 198
outlying probabilities, 198
using posterior predictive distribu-

tion, 142, 155, 189, 197
using the prior predictive distribution,

42
model file

for WinBUGS, 238, 241
Monte Carlo estimate, 84
Monte Carlo simulation study, 9
multinomial distribution, 60, 109
multivariate normal approximation, 80
multivariate normal distribution, 188,

249
multivariate t density, 86

as importance sampler, 90
mycontour function, 58, 80, 83, 112, 149

Newton’s method, 81
noninformative prior

for a rate, 141
for a proportion, 173
for a variance, 40
for beta-binomial parameters, 78
for mean and scale parameters, 212
for mean and variance, 57, 109
for regression model, 188

for Weibull survival model, 201
mean and standard deviation, 116
on changepoint parameter, 241
on order restricted space, 223
on regression coefficients, 62, 216, 241

normal distribution, 39
as a posterior, 45, 165
as a prior, 45, 66, 164, 167, 169
as a sampling distribution, 57
scale mixture of, 212, 244
truncated, 217

normal/inverse chisquare posterior, 58
normalizing constant, 77, 85
normchi2post function, 58
nuisance parameters, 76

observed significance level, 11
order restricted inference, 222
ordergibbs function, 224
outliers

in regression, 190, 197, 243
posterior probability of, 190

overdispersed data, 78

p-value, 50, 52, 166
relationship with Bayesian measure

of evidence, 166
parametric residuals, 190
Pareto survival model, 124
pbeta function, 24
pbetap function, 31
pbetat function, 51
pbinom function, 53
pdisc function, 22
pdiscp function, 30
peak ability, 248
Pearson chi-squared statistic, 176
percentiles of a posterior distribution,

40
pnorm function, 164, 166, 232
poissgamexch function, 148
Poisson model, 41, 140, 169, 240

equal means, 141
pooled estimate, 141
posterior computation

brute force method, 25, 75, 121
by simulation, 75

posterior mean, 76, 111
by Monte Carlo estimate, 88
computation by simulation, 84

266 Index

posterior median, 40
posterior mode, 80
posterior odds of hypothesis, 164
posterior outlying probability, 198
posterior predictive distribution, 142,

155
for linear regression, 188
for model checking in regression, 189,

197
posterior probability

coin is fair, 50, 53
of a hypothesis, 167
of a set, 76
of hypothesis, 164

posterior simulation,
for logistic regression model, 63
beta posterior, 25
by rejection sampling, 87
Dirichlet distribution, 60
exchangeable posterior, 147
Monte Carlo method, 84
of a mean and variance, 58
of a standard deviation, 40
that one proportion exceeds a second

proportion, 68
posterior standard deviation, 111
precision, 40
precision parameter, 173, 180

of a beta-binomial, 78
predictive density, 29

Laplace approximation to, 82
predictive distribution computation

for beta prior, 30
for discrete prior, 30
using simulation, 31

prior belief
order restriction, 222

prior distribution
beta for proportion, 22
constructing, 44
dependent type, 66
discrete for proportion, 20
for testing if a coin is fair, 50
for variance parameter, 228
histogram type, 26
informative normal, 227

prior information
about a heart transplant death rate,

42

prior odds of hypothesis, 163
prior predictive density

approximation using Laplace’s
method, 81, 169

probability interval, 32
prior predictive distribution, 42
prior robustness, 45
probability interval, 25, 40, 83, 93, 150
probit regression model, 216
proposal density

for importance sampling, 90
for Metropolis-Hastings algorithm,

104
in rejection sampling, 86

qbeta function, 24
qt function, 46
quadrature methods, 76

rbeta function, 25
rchisq function, 40, 58
rdirichlet function, 60
regression model, 187
regression slope

inference about, 63
regroup function, 175
rejection sampling, 85
rejectsampling function, 87
residuals in regression, 190
rgamma function, 43, 142, 145, 213
rigamma function, 213, 229
rmnorm function, 194, 217, 229
rmt function, 87
rnorm function, 58, 213, 229
rnormt function, 224
robust regression, 243
robustness

of t statistic, 9
with respect to the prior, 49

robustt function, 213
rpois function, 143
rwmetrop function, 105, 119, 126, 203

sample function, 28, 92, 103
sampling distribution, 13
sampling importance sampling

algorithm, 91
sampling with replacement, 91
sensitivity

Index 267

of posterior with respect to prior, 45
sensitivity analysis

of posterior with respect to parameter,
51

with respect to observation, 92
shrinkage, 152

towards regression model, 229
shrinkage estimator, 147
simcontour function, 63
simulation standard error, 13

of importance sampling estimate, 89,
179

of Monte Carlo estimate, 84
SIR algorithm, 91
sir function, 92
smoothing table of means, 222
square root transformation, 243
stationary distribution, 102
streaky ability in sports, 173
survival curve, 128, 203
survival probability, 203, 219
survreg function, 201

t distribution
as a prior, 46
as a sampling model, 212
in sampling, 9

t statistic, 9

sampling distribution, 13
Taylor series, 80
testing

if a coin is fair, 50
testing hypotheses, 163

one-sided, 164
two-sided, 167

transformation of parameters, 79
transition probability matrix, 102
transplantpost function, 125
true significance level, 11
truncated normal distribution, 224

uniform prior, 177

variance
estimating, 39

variance-covariance matrix, 82
voting preferences data, 60

Weibull proportional hazards model,
200

weibullregpost function, 202
weighted bootstrap, 91
weights

for importance sampling, 90
Wishart distribution, 250
writing an R function to define

posterior, 77

springer.com

Bayesian Core: A Practical Approach to
Computational Bayesian Statistics

Jean-Michel Marin and Christian P. Robert

This Bayesian modeling book is intended for practitioners and ap-
plied statisticians looking for a self-contained entry to computational
Bayesian statistics. Focusing on standard statistical models and
backed up by discussed real datasets available from the book web-
site, it provides an operational methodology for conducting Bayesian
inference, rather than focusing on its theoretical justifications. Special
attention is paid to the derivation of prior distributions in each case
and specific reference solutions are given for each of the models.

2007. 270 pp. (Springer Texts in Statistics) Hardcover
ISBN 978-0-387-38979-0

Pattern Recognition and Machine Learning

Christopher M. Bishop

The dramatic growth in practical applications for machine learning
over the last ten years has been accompanied by many important
developments in the underlying algorithms and techniques. This
completely new textbook reflects these recent developments while
providing a comprehensive introduction to the fields of pattern recog-
nition and machine learning. It is aimed at advanced undergraduates
or first-year PhD students, as well as researchers and practitioners.
No previous knowledge of pattern recognition or machine learning
concepts is assumed.

2006. 702 pp. (Information Science and Statistics) Hardcover
ISBN 978-0-387-31073-2

Model-based Geostatistics

Peter J. Diggle and Paulo Justiniano Ribeiro

Model-based geostatistics refers to the application of general statisti-
cal principles of modeling and inference to geostatistical problems.
This volume is the first book-length treatment of model-based geosta-
tistics. The book assumes a working knowledge of classical and
Bayesian methods of inference, linear models, and generalized linear
models, but does not require previous exposure to spatial statistical
models or methods. The authors have used the material in MSc-level
statistics courses.

2006. 230 pp. (Springer Series in Statistics) Hardcover
ISBN 978-0-387-32907-9

Easy Ways to Order► Call: Toll-Free 1-800-SPRINGER ▪ E-mail: orders-ny@springer.com ▪ Write:
Springer, Dept. S8113, PO Box 2485, Secaucus, NJ 07096-2485 ▪ Visit: Your
local scientific bookstore or urge your librarian to order.

	Cover
	front-matter
	01 - An Introduction to R
	02 - Introduction to Bayesian Thinking
	03 - Single-Parameter Models
	04 - Multiparameter Models
	05 - Introduction to Bayesian Computation
	06 - Markov Chain Monte Carlo Methods
	07 - Hierarchical Modeling
	08 - Model Comparison
	09 - Regression Models
	10 - Gibbs Sampling
	11 - Using R to Interface with WinBUGS
	back-matter

