
Graduate Texts in Mathematics

Brian C. Hall

Quantum 
Theory for 
Mathematicians



Graduate Texts in Mathematics 267



Graduate Texts in Mathematics

Series Editors:

Sheldon Axler

San Francisco State University, San Francisco, CA, USA

Kenneth Ribet

University of California, Berkeley, CA, USA

Advisory Board:

Colin Adams, Williams College, Williamstown, MA, USA

Alejandro Adem, University of British Columbia, Vancouver, BC, Canada

Ruth Charney, Brandeis University, Waltham, MA, USA

Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA

Roger E. Howe, Yale University, New Haven, CT, USA

David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA

Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA

Jill Pipher, Brown University, Providence, RI, USA

Fadil Santosa, University of Minnesota, Minneapolis, MN, USA

Amie Wilkinson, University of Chicago, Chicago, IL, USA

Graduate Texts in Mathematics bridge the gap between passive study and

creative understanding, offering graduate-level introductions to advanced topics

in mathematics. The volumes are carefully written as teaching aids and highlight

characteristic features of the theory. Although these books are frequently used as

textbooks in graduate courses, they are also suitable for individual study.

For further volumes:

http://www.springer.com/series/136

http://www.springer.com/series/136


Brian C. Hall

Quantum Theory for
Mathematicians

123



Brian C. Hall
Department of Mathematics
University of Notre Dame
Notre Dame, IN, USA

ISSN 0072-5285
ISBN 978-1-4614-7115-8 ISBN 978-1-4614-7116-5 (eBook)
DOI 10.1007/978-1-4614-7116-5
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013937175

Mathematics Subject Classification: 81-01, 81S05, 81R05, 46N50, 81Q20, 81Q10, 81S40, 53D50

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissim-
ilar methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the pur-
pose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


For as the heavens are higher than the earth, so are my ways higher than
your ways, and my thoughts than your thoughts, says the Lord.

Isaiah 55:9





Preface

Ideas from quantum physics play important roles in many parts of modern
mathematics. Many parts of representation theory, for example, are moti-
vated by quantum mechanics, including the Wigner–Mackey theory of in-
duced representations, the Kirillov–Kostant orbit method, and, of course,
quantum groups. The Jones polynomial in knot theory, the Gromov–Witten
invariants in topology, and mirror symmetry in algebraic topology are other
notable examples. The awarding of the 1990 Fields Medal to Ed Witten, a
physicist, gives an idea of the scope of the influence of quantum theory in
mathematics.
Despite the importance of quantum mechanics to mathematics, there is

no easy way for mathematicians to learn the subject. Quantum mechan-
ics books in the physics literature are generally not easily understood by
most mathematicians. There is, of course, a lower level of mathematical
precision in such books than mathematicians are accustomed to. In addi-
tion, physics books on quantum mechanics assume knowledge of classical
mechanics that mathematicians often do not have. And, finally, there is a
subtle difference in “culture”—differences in terminology and notation—
that can make reading the physics literature like reading a foreign language
for the mathematician. There are few books that attempt to translate quan-
tum theory into terms that mathematicians can understand.
This book is intended as an introduction to quantum mechanics for math-

ematicians with little prior exposure to physics. The twin goals of the book
are (1) to explain the physical ideas of quantum mechanics in language
mathematicians will be comfortable with, and (2) to develop the neces-
sary mathematical tools to treat those ideas in a rigorous fashion. I have

vii



viii Preface

attempted to give a reasonably comprehensive treatment of nonrelativistic
quantum mechanics, including topics found in typical physics texts (e.g.,
the harmonic oscillator, the hydrogen atom, and the WKB approximation)
as well as more mathematical topics (e.g., quantization schemes, the Stone–
von Neumann theorem, and geometric quantization). I have also attempted
to minimize the mathematical prerequisites. I do not assume, for example,
any prior knowledge of spectral theory or unbounded operators, but pro-
vide a full treatment of those topics in Chaps. 6 through 10 of the text.
Similarly, I do not assume familiarity with the theory of Lie groups and
Lie algebras, but provide a detailed account of those topics in Chap. 16.
Whenever possible, I provide full proofs of the stated results.
Most of the text will be accessible to graduate students in mathematics

who have had a first course in real analysis, covering the basics of L2 spaces
and Hilbert spaces. Appendix A reviews some of the results that are used in
the main body of the text. In Chaps. 21 and 23, however, I assume knowl-
edge of the theory of manifolds. I have attempted to provide motivation for
many of the definitions and proofs in the text, with the result that there
is a fair amount of discussion interspersed with the standard definition-
theorem-proof style of mathematical exposition. There are exercises at the
end of each chapter, making the book suitable for graduate courses as well
as for independent study.
In comparison to the present work, classics such as Reed and Simon [34]

and Glimm and Jaffe [14], along with the recent book of Schmüdgen [35],
are more focused on the mathematical underpinnings of the theory than
on the physical ideas. Hannabuss’s text [22] is fairly accessible to math-
ematicians, but—despite the word “graduate” in the title of the series—
uses an undergraduate level of mathematics. The recent book of Takhtajan
[39], meanwhile, has an expository bent to it, but provides less physical
motivation and is less self-contained than the present book. Whereas, for
example, Takhtajan begins with Lagrangian and Hamiltonian mechanics
on manifolds, I begin with “low-tech” classical mechanics on the real line.
Similarly, Takhtajan assumes knowledge of unbounded operators and Lie
groups, while I provide substantial expositions of both of those subjects.
Finally, there is the work of Folland [13], which I highly recommend, but
which deals with quantum field theory, whereas the present book treats
only nonrelativistic quantum mechanics, except for a very brief discussion
of quantum field theory in Sect. 20.6.
The book begins with a quick introduction to the main ideas of classical

and quantum mechanics. After a brief account in Chap. 1 of the historical
origins of quantum theory, I turn in Chap. 2 to a discussion of the neces-
sary background from classical mechanics. This includes Newton’s equa-
tion in varying degrees of generality, along with a discussion of important
physical quantities such as energy, momentum, and angular momentum,
and conditions under which these quantities are “conserved” (i.e., constant
along each solution of Newton’s equation). I give a short treatment here
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of Poisson brackets and Hamilton’s form of Newton’s equation, deferring a
full discussion of “fancy” classical mechanics to Chap. 21.
In Chap. 3, I attempt to motivate the structures of quantum mechanics in

the simplest setting. Although I discuss the “axioms” (in standard physics
terminology) of quantum mechanics, I resolutely avoid a strictly axiomatic
approach to the subject (using, say, C∗-algebras). Rather, I try to provide
some motivation for the position and momentum operators and the Hilbert
space approach to quantum theory, as they connect to the probabilistic as-
pect of the theory. I do not attempt to explain the strange probabilistic
nature of quantum theory, if, indeed, there is any explanation of it. Rather,
I try to elucidate how the wave function, along with the position and mo-
mentum operators, encodes the relevant probabilities.
In Chaps. 4 and 5, we look into two illustrative cases of the Schrödinger

equation in one space dimension: a free particle and a particle in a square
well. In these chapters, we encounter such important concepts as the dis-
tinction between phase velocity and group velocity and the distinction be-
tween a discrete and a continuous spectrum.
In Chaps. 6 through 10, we look into some of the technical mathematical

issues that are swept under the carpet in earlier chapters. I have tried to
design this section of the book in such a way that a reader can take in as
much or as little of the mathematical details as desired. For a reader who
simply wants the big picture, I outline the main ideas and results of spec-
tral theory in Chap. 6, including a discussion of the prototypical example
of an operator with a continuous spectrum: the momentum operator. For
a reader who wants more information, I provide statements of the spec-
tral theorem (in two different forms) for bounded self-adjoint operators in
Chap. 7, and an introduction to the notion of unbounded self-adjoint op-
erators in Chap. 9. Finally, for the reader who wants all the details, I give
proofs of the spectral theorem for bounded and unbounded self-adjoint
operators, in Chaps. 8 and 10, respectively.
In Chaps. 11 through 14, we turn to the vitally important canonical com-

mutation relations. These are used in Chap. 11 to derive algebraically the
spectrum of the quantum harmonic oscillator. In Chap. 12, we discuss the
uncertainty principle, both in its general form (for arbitrary pairs of non-
commuting operators) and in its specific form (for the position and momen-
tum operators). We pay careful attention to subtle domain issues that are
usually glossed over in the physics literature. In Chap. 13, we look at differ-
ent “quantization schemes” (i.e., different ways of ordering products of the
noncommuting position and momentum operators). In Chap. 14, we turn to
the celebrated Stone–von Neumann theorem, which provides a uniqueness
result for representations of the canonical commutation relations. As in the
case of the uncertainty principle, there are some subtle domain issues here
that require attention.
In Chaps. 15 through 18, we examine some less elementary issues in quan-

tum theory. Chapter 15 addresses the WKB (Wentzel–Kramers–Brillouin)
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approximation, which gives simple but approximate formulas for the eigen-
vectors and eigenvalues for the Hamiltonian operator in one dimension.
After this, we introduce (Chap. 16) the notion of Lie groups, Lie alge-
bras, and their representations, all of which play an important role in
many parts of quantum mechanics. In Chap. 17, we consider the example
of angular momentum and spin, which can be understood in terms of the
representations of the rotation group SO(3). Here a more mathematical
approach—especially the relationship between Lie group representations
and Lie algebra representations—can substantially clarify a topic that is
rather mysterious in the physics literature. In particular, the concept of
“fractional spin” can be understood as describing a representation of the
Lie algebra of the rotation group for which there is no associated represen-
tation of the rotation group itself. In Chap. 18, we illustrate these ideas by
describing the energy levels of the hydrogen atom, including a discussion
of the hidden symmetries of hydrogen, which account for the “accidental
degeneracy” in the levels. In Chap. 19, we look more closely at the concept
of the “state” of a system in quantum mechanics. We look at the notion
of subsystems of a quantum system in terms of tensor products of Hilbert
spaces, and we see in this setting that the notion of “pure state” (a unit
vector in the relevant Hilbert space) is not adequate. We are led, then, to
the notion of a mixed state (or density matrix). We also examine the idea
that, in quantum mechanics, “identical particles are indistinguishable.”
Finally, in Chaps. 21 through 23, we examine some advanced topics in

classical and quantum mechanics. We begin, in Chap. 20, by considering the
path integral formulation of quantum mechanics, both from the heuristic
perspective of the Feynman path integral, and from the rigorous perspective
of the Feynman–Kac formula. Then, in Chap. 21, we give a brief treatment
of Hamiltonian mechanics on manifolds. Finally, we consider the machinery
of geometric quantization, beginning with the Euclidean case in Chap. 22
and continuing with the general case in Chap. 23.
I am grateful to all who have offered suggestions or made corrections

to the manuscript, including Renato Bettiol, Edward Burkard, Matt Cecil,
Tiancong Chen, Bo Jacoby, Will Kirwin, Nicole Kroeger,Wicharn Lewkeer-
atiyutkul, Jeff Mitchell, Eleanor Pettus, Ambar Sengupta, and Augusto
Stoffel. I am particularly grateful to Michel Talagrand who read almost
the entire manuscript and made numerous corrections and suggestions. Fi-
nally, I offer a special word of thanks to my advisor and friend, Leonard
Gross, who started me on the path toward understanding the mathemati-
cal foundations of quantum mechanics. Readers are encouraged to send me
comments or corrections at bhall@nd.edu.

Notre Dame, IN, USA Brian C. Hall

http://www.bhall@nd.edu
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1
The Experimental Origins of Quantum
Mechanics

Quantum mechanics, with its controversial probabilistic nature and curious
blending of waves and particles, is a very strange theory. It was not
invented because anyone thought this is the way the world should behave,
but because various experiments showed that this is the way the world
does behave, like it or not. Craig Hogan, director of the Fermilab Particle
Astrophysics Center, put it this way:

No theorist in his right mind would have invented quantum
mechanics unless forced to by data.1

Although the first hint of quantum mechanics came in 1900 with Planck’s
solution to the problem of blackbody radiation, the full theory did not
emerge until 1925–1926, with Heisenberg’s matrix model, Schrödinger’s
wave model, and Born’s statistical interpretation of the wave model.

1.1 Is Light a Wave or a Particle?

1.1.1 Newton Versus Huygens

Beginning in the late seventeenth century and continuing into the early
eighteenth century, there was a vigorous debate in the scientific community

1Quoted in “Is Space Digital?” by Michael Moyer, Scientific American, February
2012, pp. 30–36.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5 1,
© Springer Science+Business Media New York 2013

1



2 1. The Experimental Origins of Quantum Mechanics

over the nature of light. One camp, following the views of Isaac
Newton, claimed that light consisted of a group of particles or “corpus-
cles.” The other camp, led by the Dutch physicist Christiaan Huygens,
claimed that light was a wave. Newton argued that only a corpuscular the-
ory could account for the observed tendency of light to travel in straight
lines. Huygens and others, on the other hand, argued that a wave theory
could explain numerous observed aspects of light, including the bending
or “refraction” of light as it passes from one medium to another, as from
air into water. Newton’s reputation was such that his “corpuscular” theory
remained the dominant one until the early nineteenth century.

1.1.2 The Ascendance of the Wave Theory of Light

In 1804, Thomas Young published two papers describing and explaining
his double-slit experiment. In this experiment, sunlight passes through a
small hole in a piece of cardboard and strikes another piece of cardboard
containing two small holes. The light then strikes a third piece of cardboard,
where the pattern of light may be observed. Young observed “fringes” or
alternating regions of high and low intensity for the light. Young believed
that light was a wave and he postulated that these fringes were the result
of interference between the waves emanating from the two holes. Young
drew an analogy between light and water, where in the case of water,
interference is readily observed. If two circular waves of water cross each
other, there will be some points where a peak of one wave matches up with
a trough of another wave, resulting in destructive interference, that is, a
partial cancellation between the two waves, resulting in a small amplitude
of the combined wave at that point. At other points, on the other hand, a
peak in one wave will line up with a peak in the other, or a trough with
a trough. At such points, there is constructive interference, with the result
that the amplitude of the combined wave is large at that point. The pattern
of constructive and destructive interference will produce something like a
checkerboard pattern of alternating regions of large and small amplitudes
in the combined wave. The dimensions of each region will be roughly on
the order of the wavelength of the individual waves.
Based on this analogy with water waves, Young was able to explain the

interference fringes that he observed and to predict the wavelength that
light must have in order for the specific patterns he observed to occur.
Based on his observations, Young claimed that the wavelength of visible
light ranged from about 1/36,000 in. (about 700nm) at the red end of the
spectrum to about 1/60,000 in. (about 425nm) at the violet end of the
spectrum, results that agree with modern measurements.
Figure 1.1 shows how circular waves emitted from two different points

form an interference pattern. One should think of Young’s second piece of
cardboard as being at the top of the figure, with holes near the top left and
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FIGURE 1.1. Interference of waves emitted from two slits.

top right of the figure. Figure 1.2 then plots the intensity (i.e., the square of
the displacement) as a function of x, with y having the value corresponding
to the bottom of Fig. 1.1.
Despite the convincing nature of Young’s experiment, many proponents

of the corpuscular theory of light remained unconvinced. In 1818, the
French Academy of Sciences set up a competition for papers explaining
the observed properties of light. One of the submissions was a paper by
Augustin-Jean Fresnel in which he elaborated on Huygens’s wave model
of refraction. A supporter of the corpuscular theory of light, Siméon-Denis
Poisson read Fresnel’s submission and ridiculed it by pointing out that
if that theory were true, light passing by an opaque disk would diffract
around the edges of the disk to produce a bright spot in the center of the
shadow of the disk, a prediction that Poisson considered absurd. Never-
theless, the head of the judging committee for the competition, François
Arago, decided to put the issue to an experimental test and found that
such a spot does in fact occur. Although this spot is often called “Arago’s
spot,” or even, ironically, “Poisson’s spot,” Arago eventually realized that
the spot had been observed 100 years earlier in separate experiments by
Delisle and Maraldi.
Arago’s observation of Poisson’s spot led to widespread acceptance of

the wave theory of light. This theory gained even greater acceptance in
1865, when James Clerk Maxwell put together what are today known as
Maxwell’s equations. Maxwell showed that his equations predicted that
electromagnetic waves would propagate at a certain speed, which agreed
with the observed speed of light. Maxwell thus concluded that light is sim-
ply an electromagnetic wave. From 1865 until the end of the nineteenth



4 1. The Experimental Origins of Quantum Mechanics

FIGURE 1.2. Intensity plot for a horizontal line across the bottom of Fig. 1.1

.

century, the debate over the wave-versus-particle nature of light was con-
sidered to have been conclusively settled in favor of the wave theory.

1.1.3 Blackbody Radiation

In the early twentieth century, the wave theory of light began to experience
new challenges. The first challenge came from the theory of blackbody radia-
tion. In physics, a blackbody is an idealized object that perfectly absorbs all
electromagnetic radiation that hits it. A blackbody can be approximated in
the real world by an object with a highly absorbent surface such as “lamp
black.” The problem of blackbody radiation concerns the distribution of
electromagnetic radiation in a cavity within a blackbody. Although the
walls of the blackbody absorb the radiation that hits it, thermal vibrations
of the atoms making up the walls cause the blackbody to emit electromag-
netic radiation. (At normal temperatures, most of the radiation emitted
would be in the infrared range.)
In the cavity, then, electromagnetic radiation is constantly absorbed and

re-emitted until thermal equilibrium is reached, at which point the absorp-
tion and emission of radiation are perfectly balanced at each frequency.
According to the “equipartition theorem” of (classical) statistical mechan-
ics, the energy in any given mode of electromagnetic radiation should be
exponentially distributed, with an average value equal to kBT, where T is
the temperature and kB is Boltzmann’s constant. (The temperature should
be measured on a scale where absolute zero corresponds to T = 0.) The dif-
ficulty with this prediction is that the average amount of energy is the same
for every mode (hence the term “equipartition”). Thus, once one adds up
over all modes—of which there are infinitely many—the predicted amount
of energy in the cavity is infinite. This strange prediction is referred to as
the ultraviolet catastrophe, since the infinitude of the energy comes from the
ultraviolet (high-frequency) end of the spectrum. This ultraviolet catastro-
phe does not seem to make physical sense and certainly does not match up
with the observed energy spectrum within real-world blackbodies.
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An alternative prediction of the blackbody energy spectrum was offered
by Max Planck in a paper published in 1900. Planck postulated that
the energy in the electromagnetic field at a given frequency ω should be
“quantized,” meaning that this energy should come only in integer mul-
tiples of a certain basic unit equal to �ω, where � is a constant, which
we now call Planck’s constant. Planck postulated that the energy would
again be exponentially distributed, but only over integer multiples of �ω.
At low frequencies, Planck’s theory predicts essentially the same energy as
in classical statistical mechanics. At high frequencies, namely at frequen-
cies where �ω is large compared to kBT, Planck’s theory predicts a rapid
fall-off of the average energy (see Exercise 2 for details). Indeed, if we mea-
sure mass, distance, and time in units of grams, centimeters, and seconds,
respectively, and we assign � the numerical value

� = 1.054× 10−27,

then Planck’s predictions match the experimentally observed blackbody
spectrum.
Planck pictured the walls of the blackbody as being made up of inde-

pendent oscillators of different frequencies, each of which is restricted to
have energies of �ω. Although this picture was clearly not intended as a
realistic physical explanation of the quantization of electromagnetic energy
in blackbodies, it does suggest that Planck thought that energy quantiza-
tion arose from properties of the walls of the cavity, rather than in intrinsic
properties of the electromagnetic radiation. Einstein, on the other hand, in
assessing Planck’s model, argued that energy quantization was inherent in
the radiation itself. In Einstein’s picture, then, electromagnetic energy at
a given frequency—whether in a blackbody cavity or not—comes in pack-
ets or quanta having energy proportional to the frequency. Each quantum
of electromagnetic energy constitutes what we now call a photon, which
we may think of as a particle of light. Thus, Planck’s model of blackbody
radiation began a rebirth of the particle theory of light.
It is worth mentioning, in passing, that in 1900, the same year in which

Planck’s paper on blackbody radiation appeared, Lord Kelvin gave a lec-
ture that drew attention to another difficulty with the classical theory
of statistical mechanics. Kelvin described two “clouds” over nineteenth-
century physics at the dawn of the twentieth century. The first of these
clouds concerned aether—a hypothetical medium through which electro-
magnetic radiation propagates—and the failure of Michelson and Morley to
observe the motion of earth relative to the aether. Under this cloud lurked
the theory of special relativity. The second of Kelvin’s clouds concerned
heat capacities in gases. The equipartition theorem of classical statisti-
cal mechanics made predictions for the ratio of heat capacity at constant
pressure (cp) and the heat capacity at constant volume (cv). These pre-
dictions deviated substantially from the experimentally measured ratios.
Under the second cloud lurked the theory of quantum mechanics, because
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the resolution of this discrepancy is similar to Planck’s resolution of the
blackbody problem. As in the case of blackbody radiation, quantum me-
chanics gives rise to a correction to the equipartition theorem, thus result-
ing in different predictions for the ratio of cp to cv, predictions that can be
reconciled with the observed ratios.

1.1.4 The Photoelectric Effect

The year 1905 was Einstein’s annus mirabilis (miraculous year), in which
Einstein published four ground-breaking papers, two on the special theory
of relativity and one each on Brownian motion and the photoelectric effect.
It was for the photoelectric effect that Einstein won the Nobel Prize in
physics in 1921. In the photoelectric effect, electromagnetic radiation strik-
ing a metal causes electrons to be emitted from the metal. Einstein found
that as one increases the intensity of the incident light, the number of emit-
ted electrons increases, but the energy of each electron does not change.
This result is difficult to explain from the perspective of the wave theory of
light. After all, if light is simply an electromagnetic wave, then increasing
the intensity of the light amounts to increasing the strength of the electric
and magnetic fields involved. Increasing the strength of the fields, in turn,
ought to increase the amount of energy transferred to the electrons.
Einstein’s results, on the other hand, are readily explained from a particle

theory of light. Suppose light is actually a stream of particles (photons) with
the energy of each particle determined by its frequency. Then increasing
the intensity of light at a given frequency simply increases the number of
photons and does not affect the energy of each photon. If each photon has
a certain likelihood of hitting an electron and causing it to escape from
the metal, then the energy of the escaping electron will be determined
by the frequency of the incident light and not by the intensity of that
light. The photoelectric effect, then, provided another compelling reason
for believing that light can behave in a particlelike manner.

1.1.5 The Double-Slit Experiment, Revisited

Although the work of Planck and Einstein suggests that there is a par-
ticlelike aspect to light, there is certainly also a wavelike aspect to light,
as shown by Young, Arago, and Maxwell, among others. Thus, somehow,
light must in some situations behave like a wave and in some situations
like a particle, a phenomenon known as “wave–particle duality.” William
Lawrence Bragg described the situation thus:

God runs electromagnetics on Monday, Wednesday, and Friday
by the wave theory, and the devil runs them by quantum theory
on Tuesday, Thursday, and Saturday.

(Apparently Sunday, being a day of rest, did not need to be accounted for.)
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In particular, we have already seen that Young’s double-slit experiment
in the early nineteenth century was one important piece of evidence in fa-
vor of the wave theory of light. If light is really made up of particles, as
blackbody radiation and the photoelectric effect suggest, one must give a
particle-based explanation of the double-slit experiment. J.J. Thomson sug-
gested in 1907 that the patterns of light seen in the double-slit experiment
could be the result of different photons somehow interfering with one an-
other. Thomson thus suggested that if the intensity of light were sufficiently
reduced, the photons in the light would become widely separated and the
interference pattern might disappear. In 1909, Geoffrey Ingram Taylor set
out to test this suggestion and found that even when the intensity of light
was drastically reduced (to the point that it took three months for one of
the images to form), the interference pattern remained the same.
Since Taylor’s results suggest that interference remains even when the

photons are widely separated, the photons are not interfering with one an-
other. Rather, as Paul Dirac put it in Chap. 1 of [6], “Each photon then
interferes only with itself.” To state this in a different way, since there is no
interference when there is only one slit, Taylor’s results suggest that each
individual photon passes through both slits. By the early 1960s, it became
possible to perform double-slit experiments with electrons instead of pho-
tons, yielding even more dramatic confirmations of the strange behavior of
matter in the quantum realm. (See Sect. 1.2.4.)

1.2 Is an Electron a Wave or a Particle?

In the early part of the twentieth century, the atomic theory of matter
became firmly established. (Einstein’s 1905 paper on Brownian motion was
an important confirmation of the theory and provided the first calculation
of atomic masses in everyday units.) Experiments performed in 1909 by
Hans Geiger and Ernest Marsden, under the direction of Ernest Rutherford,
led Rutherford to put forward in 1911 a picture of atoms in which a small
nucleus contains most of the mass of the atom. In Rutherford’s model,
each atom has a positively charged nucleus with charge nq, where n is
a positive integer (the atomic number) and q is the basic unit of charge
first observed in Millikan’s famous oil-drop experiment. Surrounding the
nucleus is a cloud of n electrons, each having negative charge −q. When
atoms bind into molecules, some of the electrons of one atom may be shared
with another atom to form a bond between the atoms. This picture of atoms
and their binding led to the modern theory of chemistry.
Basic to the atomic theory is that electrons are particles; indeed, the

number of electrons per atom is supposed to be the atomic number. Never-
theless, it did not take long after the atomic theory of matter was confirmed
before wavelike properties of electrons began to be observed. The situation,
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then, is the reverse of that with light. While light was long thought to be
a wave (at least from the publication of Maxwell’s equations in 1865 until
Planck’s work in 1900) and was only later seen to have particlelike behavior,
electrons were initially thought to be particles and were only later seen to
have wavelike properties. In the end, however, both light and electrons have
both wavelike and particlelike properties.

1.2.1 The Spectrum of Hydrogen

If electricity is passed through a tube containing hydrogen gas, the gas will
emit light. If that light is separated into different frequencies by means
of a prism, bands will become apparent, indicating that the light is not a
continuous mix of many different frequencies, but rather consists only of a
discrete family of frequencies. In view of the photonic theory of light, the
energy in each photon is proportional to its frequency. Thus, each observed
frequency corresponds to a certain amount of energy being transferred from
a hydrogen atom to the electromagnetic field.
Now, a hydrogen atom consists of a single proton surrounded by a single

electron. Since the proton is much more massive than the electron, one
can picture the proton as being stationary, with the electron orbiting it.
The idea, then, is that the current being passed through the gas causes some
of the electrons to move to a higher-energy state. Eventually, that electron
will return to a lower-energy state, emitting a photon in the process. In this
way, by observing the energies (or, equivalently, the frequencies) of the
emitted photons, one can work backwards to the change in energy of the
electron.
The curious thing about the state of affairs in the preceding paragraph

is that the energies of the emitted photons—and hence, also, the energies
of the electron—come only in a discrete family of possible values. Based
on the observed frequencies, Johannes Rydberg concluded in 1888 that the
possible energies of the electron were of the form

En = − R

n2
. (1.1)

Here, R is the “Rydberg constant,” given (in “Gaussian units”) by

R =
meQ

4

2�2
,

where Q is the charge of the electron and me is the mass of the electron.
(Technically, me should be replaced by the reduced mass μ of the proton–
electron system; that is, μ = memp/(me + mp), where mp is the mass
of the proton. However, since the proton mass is much greater than the
electron mass, μ is almost the same as me and we will neglect the difference
between the two.) The energies in (1.1) agree with experiment, in that all
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the observed frequencies in hydrogen are (at least to the precision available
at the time of Rydberg) of the form

ω =
1

�
(En − Em) , (1.2)

for some n > m. It should be noted that Johann Balmer had already
observed in 1885 frequencies of the same form, but only in the case m = 2,
and that Balmer’s work influenced Rydberg.
The frequencies in (1.2) are known as the spectrum of hydrogen. Balmer

and Rydberg were merely attempting to find a simple formula that would
match the observed frequencies in hydrogen. Neither of them had a the-
oretical explanation for why only these particular frequencies occur. Such
an explanation would have to wait until the beginnings of quantum theory
in the twentieth century.

1.2.2 The Bohr–de Broglie Model of the Hydrogen Atom

In 1913, Niels Bohr introduced a model of the hydrogen atom that at-
tempted to explain the observed spectrum of hydrogen. Bohr pictured the
hydrogen atom as consisting of an electron orbiting a positively charged
nucleus, in much the same way that a planet orbits the sun. Classically,
the force exerted on the electron by the proton follows the inverse square
law of the form

F =
Q2

r2
, (1.3)

where Q is the charge of the electron, in appropriate units.
If the electron is in a circular orbit, its trajectory in the plane of the

orbit will take the form

(x(t), y(t)) = (r cos(ωt), r sin(ωt)).

If we take the second derivative with respect to time to obtain the acceler-
ation vector a, we obtain

a(t) = (−ω2r cos(ωt),−ω2r sin(ωt)),

so that the magnitude of the acceleration vector is ω2r. Newton’s second
law, F = ma, then requires that

meω
2r =

e2

r2
,

so that

ω =

√
Q2

mer3
.



10 1. The Experimental Origins of Quantum Mechanics

From the formula for the frequency, we can calculate that the momentum
(mass times velocity) has magnitude

p =

√
meQ2

r
. (1.4)

We can also calculate the angular momentum J, which for a circular orbit
is just the momentum times the distance from the nucleus, as

J =
√

meQ2r.

Bohr postulated that the electron obeys classical mechanics, except that
its angular momentum is “quantized.” Specifically, in Bohr’s model, the
angular momentum is required to be an integer multiple of � (Planck’s
constant). Setting J equal to n� yields

rn =
n2�2

meQ2
. (1.5)

If one calculates the energy of an orbit with radius rn, one finds (Exercise 3)
that it agrees precisely with the Rydberg energies in (1.1). Bohr further
postulated that an electron could move from one allowed state to another,
emitting a packet of light in the process with frequency given by (1.2).
Bohr did not explain why the angular momentum of an electron is quan-

tized, nor how it moved from one allowed orbit to another. As such, his
theory of atomic behavior was clearly not complete; it belongs to the “old
quantum mechanics” that was superseded by the matrix model of Heisen-
berg and the wave model of Schrödinger. Nevertheless, Bohr’s model was an
important step in the process of understanding the behavior of atoms, and
Bohr was awarded the 1922 Nobel Prize in physics for his work. Some rem-
nant of Bohr’s approach survives in modern quantum theory, in the WKB
approximation (Chap. 15), where the Bohr–Sommerfeld condition gives an
approximation to the energy levels of a one-dimensional quantum system.
In 1924, Louis de Broglie reinterpreted Bohr’s condition on the angular

momentum as a wave condition. The de Broglie hypothesis is that an elec-
tron can be described by a wave, where the spatial frequency k of the wave
is related to the momentum of the electron by the relation

p = �k. (1.6)

Here, “frequency” is defined so that the frequency of the function cos(kx)
is k. This is “angular” frequency, which differs by a factor of 2π from the
cycles-per-unit-distance frequency. Thus, the period associated with a given
frequency k is 2π/k.
In de Broglie’s approach, we are supposed to imagine a wave super-

imposed on the classical trajectory of the electron, with the quantization
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FIGURE 1.3. The Bohr radii for n = 1 to n = 10, with de Broglie waves super-
imposed for n = 8 and n = 10.

condition now being that the wave should match up with itself when going
all the way around the orbit. This condition means that the orbit should
consist of an integer number of periods of the wave:

2πr = n
2π

k
.

Using (1.6) along with the expression (1.4) for p, we obtain

2πr = n2π
�

p
= 2πn�

√
r

meQ2
.

Solving this equation for r gives precisely the Bohr radii in (1.5).
Thus, de Broglie’s wave hypothesis gives an alternative to Bohr’s quan-

tization of angular momentum as an explanation of the allowed energies of
hydrogen. Of course, if one accepts de Broglie’s wave hypothesis for elec-
trons, one would expect to see wavelike behavior of electrons not just in the
hydrogen atom, but in other situations as well, an expectation that would
soon be fulfilled. Figure 1.3 shows the first 10 Bohr radii. For the 8th and
10th radii, the de Broglie wave is shown superimposed onto the orbit.

1.2.3 Electron Diffraction

In 1925, Clinton Davisson and Lester Germer were studying properties of
nickel by bombarding a thin film of nickel with low-energy electrons. As a
result of a problem with their equipment, the nickel was accidentally heated
to a very high temperature. When the nickel cooled, it formed into large
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crystalline pieces, rather than the small crystals in the original sample.
After this recrystallization, Davisson and Germer observed peaks in the
pattern of electrons reflecting off of the nickel sample that had not been
present when using the original sample. They were at a loss to explain this
pattern until, in 1926, Davisson learned of the de Broglie hypothesis and
suspected that they were observing the wavelike behavior of electrons that
de Broglie had predicted.
After this realization, Davisson and Germer began to look systemati-

cally for wavelike peaks in their experiments. Specifically, they attempted
to show that the pattern of angles at which the electrons reflected matched
the patterns one sees in x-ray diffraction. After numerous additional mea-
surements, they were able to show a very close correspondence between
the pattern of electrons and the patterns seen in x-ray diffraction. Since
x-rays were by this time known to be waves of electromagnetic radiation,
the Davisson–Germer experiment was a strong confirmation of de Broglie’s
wave picture of electrons. Davisson and Germer published their results in
two papers in 1927, and Davisson shared the 1937 Nobel Prize in physics
with George Paget, who had observed electron diffraction shortly after
Davisson and Germer.

1.2.4 The Double-Slit Experiment with Electrons

Although quantum theory clearly predicts that electrons passing through
a double slit will experience interference similar to that observed in light,
it was not until Clauss Jönsson’s work in 1961 that this prediction was
confirmed experimentally. The main difficulty is the much smaller wave-
length for electrons of reasonable energy than for visible light. Jönsson’s
electrons, for example, had a de Broglie wavelength of 5 nm, as compared to
a wavelength of roughly 500nm for visible light (depending on the color).
In results published in 1989, a team led by Akira Tonomura at Hitachi

performed a double-slit experiment in which they were able to record the
results one electron at a time. (Similar but less definitive experiments were
carried out by Pier Giorgio Merli, GianFranco Missiroli and Giulio Pozzi
in Bologna in 1974 and published in the American Journal of Physics in
1976.) In the Hitachi experiment, each electron passes through the slits and
then strikes a screen, causing a small spot of light to appear. The location of
this spot is then recorded for each electron, one at a time. The key point is
that each individual electron strikes the screen at a single point. That is to
say, individual electrons are not smeared out across the screen in a wavelike
pattern, but rather behave like point particles, in that the observed location
of the electron is indeed a point. Each electron, however, strikes the screen
at a different point, and once a large number of the electrons have struck
and their locations have been recorded, an interference pattern emerges.
It is not the variability of the locations of the electrons that is surprising,

since this could be accounted for by small variations in the way the electrons
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FIGURE 1.4. Four images from the 1989 experiment at Hitachi showing the
impact of individual electrons gradually building up to form an interference pat-
tern. Image by Akira Tonomura and Wikimedia Commons user Belsazar. File
is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported
license.

are shot toward the slits. Rather, it is the distinctive interference pattern
that is surprising, with rapid variations in the pattern of electron strikes
over short distances, including regions where almost no electron strikes
occur. (Compare Fig. 1.4 to Fig. 1.2.) Note also that in the experiment, the
electrons are widely separated, so that there is never more than one electron
in the apparatus at any one time. Thus, the electrons cannot interfere with
one another; rather, each electron interferes with itself. Figure 1.4 shows
results from the Hitachi experiment, with the number of observed electrons
increasing from about 150 in the first image to 160,000 in the last image.

1.3 Schrödinger and Heisenberg

In 1925, Werner Heisenberg proposed a model of quantum mechanics based
on treating the position and momentum of the particle as, essentially,
matrices of size ∞×∞. Actually, Heisenberg himself was not familiar with
the theory of matrices, which was not a standard part of the mathematical
education of physicists at the time. Nevertheless, he had quantities of the
form xjk and pjk (where j and k each vary over all integers), which we
can recognize as matrices, as well as expressions such as

∑
l xjlplk, which

we can recognize as a matrix product. After Heisenberg explained his the-
ory to Max Born, Born recognized the connection of Heisenberg’s formulas
to matrix theory and made the matrix point of view explicit, in a paper
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coauthored by Born and his assistant, Pascual Jordan. Born, Heisenberg,
and Jordan then all published a paper together elaborating upon their the-
ory. The papers of Heisenberg, of Born and Jordan, and of Born, Heisen-
berg, and Jordan all appeared in 1925. Heisenberg received the 1932 Nobel
Prize in physics (actually awarded in 1933) for his work. Born’s exclusion
from this prize was controversial, and may have been influenced by Jordan’s
connections with the Nazi party in Germany. (Heisenberg’s own work for
the Nazis during World War II was also a source of much controversy after
the war.) In any case, Born was awarded the Nobel Prize in physics in
1954 for his work on the statistical interpretation of quantum mechanics
(Sect. 1.4).
Meanwhile, in 1926, Erwin Schrödinger published four remarkable papers

in which he proposed a wave theory of quantum mechanics, along the lines
of the de Broglie hypothesis. In these papers, Schrödinger described how the
waves evolve over time and showed that the energy levels of, for example,
the hydrogen atom could be understood as eigenvalues of a certain oper-
ator. (See Chap. 18 for the computation for hydrogen.) Schrödinger also
showed that the Heisenberg–Born–Jordan matrix model could be incorpo-
rated into the wave theory, thus showing that the matrix theory and the
wave theory were equivalent (see Sect. 3.8). This book describes the math-
ematical structure of quantum mechanics in essentially the form proposed
by Schrödinger in 1926. Schrödinger shared the 1933 Nobel Prize in physics
with Paul Dirac.

1.4 A Matter of Interpretation

Although Schrödinger’s 1926 papers gave the correct mathematical descrip-
tion of quantum mechanics (as it is generally accepted today), he did not
provide a widely accepted interpretation of the theory. That task fell to
Born, who in a 1926 paper proposed that the “wave function” (as the wave
appearing in the Schrödinger equation is generally called) should be inter-
preted statistically, that is, as determining the probabilities for observations
of the system. Over time, Born’s statistical approach developed into the
Copenhagen interpretation of quantum mechanics. Under this interpreta-
tion, the wave function ψ of the system is not directly observable. Rather,
ψ merely determines the probability of observing a particular result.
In particular, if ψ is properly normalized, then the quantity |ψ(x)|2 is

the probability distribution for the position of the particle. Even if ψ itself
is spread out over a large region in space, any measurement of the position
of the particle will show that the particle is located at a single point, just
as we see for the electrons in the two-slit experiment in Fig. 1.4. Thus, a
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measurement of a particle’s position does not show the particle “smeared
out” over a large region of space, even if the wave function ψ is smeared
out over a large region.
Consider, for example, how Born’s interpretation of the Schrödinger

equation would play out in the context of the Hitachi double-slit exper-
iment depicted in Fig. 1.4. Born would say that each electron has a wave
function that evolves in time according to the Schrödinger equation (an
equation of wave type). Each particle’s wave function, then, will propa-
gate through the slits in a manner similar to that pictured in Fig. 1.1. If
there is a screen at the bottom of Fig. 1.1, then the electron will hit the
screen at a single point, even though the wave function is very spread out.
The wave function does not determine where the particle hits the screen; it
merely determines the probabilities for where the particle hits the screen. If
a whole sequence of electrons passes through the slits, one after the other,
over time a probability distribution will emerge, determined by the square
of the magnitude of the wave function, which is shown in Fig. 1.2. Thus,
the probability distribution of electrons, as seen from a large number of
electrons as in Fig. 1.4, shows wavelike interference patterns, even though
each individual electron strikes the screen at a single point.
It is essential to the theory that the wave function ψ(x) itself is not the

probability density for the location of the particle. Rather, the probability
density is |ψ(x)|2. The difference is crucial, because probability densities
are intrinsically positive and thus do not exhibit destructive interference.
The wave function itself, however, is complex-valued, and the real and
imaginary parts of the wave function take on both positive and negative
values, which can interfere constructively or destructively. The part of the
wave function passing through the first slit, for example, can interfere with
the part of the wave function passing through the second slit. Only after
this interference has taken place do we take the magnitude squared of the
wave function to obtain the probability distribution, which will, therefore,
show the sorts of peaks and valleys we see in Fig. 1.2.
Born’s introduction of a probabilistic element into the interpretation of

quantum mechanics was—and to some extent still is—controversial. Ein-
stein, for example, is often quoted as saying something along the lines of,
“God does not play at dice with the universe.” Einstein expressed the same
sentiment in various ways over the years. His earliest known statement to
this effect was in a letter to Born in December 1926, in which he said,

Quantum mechanics is certainly imposing. But an inner voice
tells me that it is not yet the real thing. The theory says a lot,
but does not really bring us any closer to the secret of the “old
one.” I, at any rate, am convinced that He does not throw dice.

Many other physicists and philosophers have questioned the probabilistic
interpretation of quantum mechanics, and have sought alternatives, such
as “hidden variable” theories. Nevertheless, the Copenhagen interpretation



16 1. The Experimental Origins of Quantum Mechanics

of quantum mechanics, essentially as proposed by Born in 1926, remains
the standard one. This book resolutely avoids all controversies surround-
ing the interpretation of quantum mechanics. Chapter 3, for example,
presents the standard statistical interpretation of the theory without ques-
tion. The book may nevertheless be of use to the more philosophically
minded reader, in that one must learn something of quantum mechanics
before delving into the (often highly technical) discussions about its inter-
pretation.

1.5 Exercises

1. Beginning with the formula for the sum of a geometric series, use
differentiation to obtain the identity

∞∑

n=0

ne−An =
e−A

(1− e−A)2
.

2. In Planck’s model of blackbody radiation, the energy in a given fre-
quency ω of electromagnetic radiation is distributed randomly over
all numbers of the form n�ω, where n = 0, 1, 2, . . . . Specifically, the
likelihood of finding energy n�ω is postulated to be

p(E = n�ω) =
1

Z
e−βn�ω,

Z =
1

1− e−β�ω

where Z is a normalization constant, which is chosen so that the sum
over n of the probabilities is 1. Here β = 1/(kBT ), where T is the
temperature and kB is Boltzmann’s constant. The expected value of
the energy, denoted 〈E〉, is defined to be

〈E〉 = 1

Z

∞∑

n=0

(n�ω)e−βn�ω.

(a) Using Exercise 1, show that

〈E〉 = �ω

eβ�ω − 1
.

(b) Show that 〈E〉 behaves like 1/β = kBT for small ω, but that
〈E〉 decays exponentially as ω tends to infinity.

Note: In applying the above calculation to blackbody radiation, one
must also take into account the number of modes having frequency
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in a given range, say between ω0 and ω0 + ε. The exact number of
such frequencies depends on the shape of the cavity, but according to
Weyl’s law, this number will be approximately proportional to εω2

0 for
large values of ω0. Thus, the amount of energy per unit of frequency is

C
�ω3

eβ�ω − 1
, (1.7)

where C is a constant involving the volume of the cavity and the
speed of light. The relation (1.7) is known as Planck’s law.

3. In classical mechanics, the kinetic energy of an electron is mev
2/2,

where v is the magnitude of the velocity. Meanwhile, the potential
energy associated with the force law (1.3) is V (r) = −Q2/r, since
dV/dr = F. Show that if the particle is moving in a circular orbit
with radius rn given by (1.5), then the total energy (kinetic plus
potential) of the particle is En, as given in (1.1).



2
A First Approach to Classical
Mechanics

2.1 Motion in R1

2.1.1 Newton’s law

We begin by considering the motion of a single particle in R1, which may
be thought of as a particle sliding along a wire, or a particle with motion
that just happens to lie in a line. We let x(t) denote the particle’s position
as a function of time. The particle’s velocity is then

v(t) := ẋ(t),

where we use a dot over a symbol to denote the derivative of that quantity
with respect to the time t.
The particle’s acceleration is then

a(t) = v̇(t) = ẍ(t),

where ẍ denotes the second derivative of x with respect to t. We assume
that there is a force acting on the particle and we assume at first that the
force F is a function of the particle’s position only. (Later, we will look at
the case of forces that depend also on velocity.)
Under these assumptions, Newton’s second law (F = ma) takes the form

F (x(t)) = ma = mẍ(t), (2.1)

wherem is the mass of the particle, which is assumed to be positive. We will
henceforth abbreviate Newton’s second law as simply “Newton’s law,” since
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we will use the second law much more frequently than the others. Since
(2.1) is of second order, the appropriate initial conditions (needed to get
a unique solution) are the position and velocity at some initial time t0. So
we look for solutions of (2.1) subject to

x(t0) = x0

ẋ(t0) = v0.

Assuming that F is a smooth function, standard results from the ele-
mentary theory of differential equations tell us that there exists a unique
local solution to (2.1) for each pair of initial conditions. (A local solution
is one defined for t in a neighborhood of the initial time t0.) Since (2.1) is
in general a nonlinear equation, one cannot expect that, for a general force
function F, the solutions will exist for all t. If, for example, F (x) = x2, then
any solution with positive initial position and positive initial velocity will
escape to infinity in finite time. (Apply Exercise 4 with V (x) = −x3/3.)
For a proof existence and uniqueness, see Example 8.2 and Theorem 8.13
in [28].

Definition 2.1 A solution x(t) to Newton’s law is called a trajectory.

Example 2.2 (Harmonic Oscillator) If the force is given by Hooke’s
law, F (x) = −kx, where k is a positive constant, then Newton’s law can be
written as mẍ+ kx = 0. The general solution of this equation is

x(t) = a cos(ωt) + b sin(ωt),

where ω :=
√
k/m is the frequency of oscillation.

The system in Example 2.2 is referred to as a (classical) harmonic os-
cillator. This system can describe a mass on a spring, where the force is
proportional to the distance x that the spring is stretched from its equi-
librium position. The minus sign in −kx indicates that the force pulls the
oscillator back toward equilibrium. Here and elsewhere in the book, we
use the “angular” notion of frequency, which is the rate of change of the
argument of a sine or cosine function. If ω is the angular frequency, then
the “ordinary” frequency—i.e., the number of cycles per unit of time—is
ω/2π. Saying that x has (angular) frequency ω means that x is periodic
with period 2π/ω.

2.1.2 Conservation of Energy

We return now to the case of a general force function F (x). We define
the kinetic energy of the system to be 1

2mv2. We also define the potential
energy of the system as the function

V (x) = −
∫

F (x) dx, (2.2)
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so that F (x) = −dV/dx. (The potential energy is defined only up to adding
a constant.) The total energy E of the system is then

E(x, v) =
1

2
mv2 + V (x). (2.3)

The chief significance of the energy function is that it is conserved, meaning
that its value along any trajectory is constant.

Theorem 2.3 Suppose a particle satisfies Newton’s law in the form mẍ =
F (x). Let V and E be as in (2.2) and (2.3). Then the energy E is conserved,
meaning that for each solution x(t) of Newton’s law, E(x(t), ẋ(t)) is inde-
pendent of t.

Proof. We verify this by differentiation, using the chain rule:

d

dt
E(x(t), ẋ(t)) =

d

dt

(
1

2
m(ẋ(t))2 + V (x(t))

)

= mẋ(t)ẍ(t) +
dV

dx
ẋ(t)

= ẋ(t)[mẍ(t)− F (x(t))].

This last expression is zero by Newton’s law. Thus, the time-derivative of
the energy along any trajectory is zero, so E(x(t), ẋ(t)) is independent of
t, as claimed.
We may call the energy a conserved quantity (or constant of motion),

since the particle neither gains nor loses energy as the particle moves
according to Newton’s law.
Let us see how conservation of energy helps us understand the solution

to Newton’s law. We may reduce the second-order equation mẍ = F (x) to
a pair of first-order equations, simply by introducing the velocity v as a
new variable. That is, we look for pairs of functions (x(t), v(t)) that satisfy
the following system of equations

dx

dt
= v(t)

dv

dt
=

1

m
F (x(t)). (2.4)

If (x(t), v(t)) is a solution to this system, then we can immediately see that
x(t) satisfies Newton’s law, just by substituting dx/dt for v in the second
equation. We refer to the set of possible pairs of the form (x, v) (i.e., R2)
as the phase space of the particle in R1. The appropriate initial conditions
for this first-order system are x(0) = x0 and v(0) = v0.
Once we are working in phase space, we can use the conservation of

energy to help us. Conservation of energy means that each solution to
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the system (2.4) must lie entirely on a single “level curve” of the energy
function, that is, the set

{
(x, v) ∈ R2

∣∣E(x, v) = E(x0, v0)
}
. (2.5)

If F—and therefore also V—is smooth, then E is a smooth function of x
and v. Then as long as (2.5) contains no critical points of E, this set will
be a smooth curve in R2, by the implicit function theorem. If the level set
(2.5) is also a simple closed curve, then the solutions of (2.5) will simply
wind around and around this curve. Thus, the set that the solutions to (2.5)
trace out in phase space can be determined simply from the conservation
of energy. The only thing not apparent at the moment is how this curve is
parameterized as a function of time.
In mechanics, a conserved quantity—such as the energy in the one-

dimensional version of Newton’s law—is often referred to as an “integral
of motion.” The reason for this is that although Newton’s second law is a
second-order equation in x, the energy depends only on x and ẋ and not
on ẍ. Thus, the equation

m

2
(ẋ(t))2 + V (x(t)) = E0,

where E0 is the value of the energy at time t0, is actually a first-order
differential equation. We can solve for ẋ to put this equation into a more
standard form:

ẋ(t) = ±
√

2(E0 − V (x(t)))

m
. (2.6)

What this means is that by using conservation of energy we have turned the
original second-order equation into a first-order equation. We have therefore
“integrated” the original equation once, that is, changed an equation of
the form ẍ(t) = · · · into an equation of the form ẋ(t) = · · · . The first-
order equation (2.6) is separable and can be solved more-or-less explicitly
(Exercise 1).

2.1.3 Systems with Damping

Up to now, we have considered forces that depend only on position. It is
common, however, to consider forces that depend on the velocity as well
as the position. In the case of a damped harmonic oscillator, for example,
one typically assumes that there is, in addition to the force of the spring,
a damping force (friction, say) that is proportional to the velocity. Thus,
F = −kx− γẋ, where k is, as before, the spring constant and where γ > 0
is the damping constant. The minus sign in front of γẋ reflects that the
damping force operates in the opposite direction to the velocity, causing
the particle to slow down. The equation of motion for such a system is then

mẍ+ γẋ+ kx = 0.
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If γ is small, the solutions to this equation display decaying oscillation,
meaning sines and cosines multiplied by a decaying exponential; if γ is
large, the solutions are pure decaying exponentials (Exercise 5).
In the case of the damped harmonic oscillator, there is no longer a

conserved energy. Specifically, there is no nonconstant continuous func-
tion E on R2 such that E(x(t), ẋ(t)) is independent of t for all solutions of
Newton’s law. To see this, we simply observe that for γ > 0, all solutions
x(t) have the property that (x(t), ẋ(t)) tends to the origin in the plane as t
tends to infinity. Thus, if E is continuous and constant along each trajec-
tory, the value of E at the starting point has to be the same as the value
at the origin.
We now consider a general system with damping.

Proposition 2.4 Suppose a particle moves in the presence of a force law
given by F (x, ẋ) = F1(x) − γẋ, with γ > 0. Define the energy E of the
system by

E(x, ẋ) =
1

2
mẋ2 + V (x),

where dV/dx = −F1(x). Then along any trajectory x(t), we have

d

dt
E(x(t), ẋ(t)) = −γẋ(t)2 ≤ 0.

Thus, although the energy is not conserved, it is decreasing with time,
which gives us some information about the behavior of the system.
Proof. We differentiate as in the proof of Theorem 2.3, except that now
dV/dx = −F1(x):

d

dt
E(x(t), ẋ(t)) = ẋ(t)[mẍ(t)− F1(x(t))].

Since F1 is not the full force function, the quantity in square brackets equals
not zero but −γẋ. Thus, dE/dt = −γẋ2.
We can interpret Proposition 2.4 as saying that in the presence of friction,

the system we are studying gives up some of its energy to heat energy in
the environment, so that the energy of our system decreases with time.
We will see that in higher dimensions, it is possible to have conservation
of energy in the presence of velocity-dependent forces, provided that these
forces act perpendicularly to the velocity.

2.2 Motion in Rn

We now consider a particle moving in Rn. The position x = (x1, . . . , xn)
of a particle is now a vector in Rn, as is the velocity v and acceleration a.
We let

ẋ = (ẋ1, . . . , ẋn)
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denote the derivative of x with respect to t and we let ẍ denote the second
derivative of x with respect to t. Newton’s law now takes the form

mẍ(t) = F(x(t), ẋ(t)), (2.7)

where F : Rn × Rn → Rn is some force law, which in general may depend
on both the position and velocity of the particle.
We begin by considering forces that are independent of velocity, and we

look for a conserved energy function in this setting.

Proposition 2.5 Consider Newton’s law (2.7) in the case of a velocity-
independent force: mẍ(t) = F(x(t)). Then an energy function of the form

E(x, ẋ) =
1

2
m |ẋ|2 + V (x)

is conserved if and only if V satisfies

−∇V = F,

where ∇V is the gradient of V.

Saying that E is “conserved” means that E(x(t), ẋ(t)) is independent of
t for each solution x(t) of Newton’s law. The function V is the potential
energy of the system.
Proof. Differentiating gives

d

dt

(
1

2
m |ẋ(t)|2 + V (x(t))

)
= m

n∑

j=i

ẋj(t)ẍj(t) +

n∑

j=1

∂V

∂xj
ẋj(t)

= ẋ(t) · [mẍ(t) +∇V ]

= ẋ(t) · [F(x) +∇V (x)]

Thus, dE/dt will always be equal to zero if and only if we have

−∇V (x) = F(x)

for all x.
We now encounter something that did not occur in the one-dimensional

case. In R1, any smooth function can be expressed as the derivative of some
other function. In Rn, however, not every vector-valued function F(x) can
be expressed as the (negative of) the gradient of some scalar-valued function
V.

Definition 2.6 Suppose F is a smooth, Rn-valued function on a domain
U ⊂ Rn. Then F is called conservative if there exists a smooth, real-valued
function V on U such that F = −∇V.

If the domain U is simply connected, then there is a simple local condition
that characterizes conservative functions.
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Proposition 2.7 Suppose U is a simply connected domain in Rn and F
is a smooth, Rn-valued function on U. Then F is conservative if and only
if F satisfies

∂Fj

∂xk
− ∂Fk

∂xj
= 0 (2.8)

at each point in U.

When n = 3, it is easy to check that the condition (2.8) is equivalent
to the curl ∇× F of F being zero on U. The hypothesis that U be simply
connected cannot be omitted; see Exercise 7.
Proof. If F is conservative, then

∂Fj

∂xk
= − ∂2V

∂xk∂xj
= − ∂2V

∂xj∂xk
=

∂Fk

∂xj

at every point in U. In the other direction, if F satisfies (2.8), V can be
obtained by integrating F along paths and using the Stokes theorem to
establish independence of choice of path. See, for example, Theorem 4.3 on
p. 549 of [44] for a proof in the n = 3 case. The proof in higher dimensions
is the same, provided one knows the general version of the Stokes theorem.

We may also consider velocity-dependent forces. If, for example, F(x,v)
= −γv + F1(x), where γ is a positive constant, then we will again have
energy that is decreasing with time. There is another new phenomenon,
however, in dimension greater than 1, namely the possibility of having a
conserved energy even when the force depends on velocity.

Proposition 2.8 Suppose a particle in Rn moves in the presence of a force
F of the form

F(x,v) = −∇V (x) + F2(x,v),

where V is a smooth function and where F2 satisfies

v ·F2(x,v) = 0 (2.9)

for all x and v in Rn. Then the energy function E(x,v) = 1
2m |v|2 + V (x)

is constant along each trajectory.

If, for example, F2 is the force exerted on a charged particle in R3 by a
magnetic field B(x), then

F2(x,v) = qv ×B(x),

where q is the charge of the particle, which clearly satisfies (2.9).
Proof. See Exercise 8.
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2.3 Systems of Particles

If we have a system if N particles, each moving in Rn, then we denote the
position of the jth particle by

xj = (xj
1, . . . , x

j
n).

Thus, in the expression xj
k, the superscript j indicates the jth particle, while

the subscript k indicates the kth component. Newton’s law then takes the
form

mj ẍ
j = Fj(x1, . . . ,xN , ẋ1, . . . , ẋN ), j = 1, 2, . . . , N,

where mj is the mass of the jth particle. Here, Fj is the force on the jth
particle, which in general will depend on the position and velocity not only
of that particle, but also on the position and velocity of the other particles.

2.3.1 Conservation of Energy

In a system of particles, we cannot expect that the energy of each individ-
ual particle will be conserved, because as the particles interact, they can
exchange energy. Rather, we should expect that, under suitable assump-
tions on the forces Fj , we can define a conserved energy function for the
whole system (the total energy of the system).
Let us consider forces depending only on the position of the particles,

and let us assume that the energy function will be of the form

E(x1, . . . ,xN ,v1, . . . ,vN ) =

N∑

j=1

1

2
mj

∣∣vj
∣∣2 + V (x1, . . . ,xN ). (2.10)

We will now try to see what form for V (if any) will allow E to be constant
along each trajectory.

Proposition 2.9 An energy function of the form (2.10) is constant along
each trajectory if

∇jV = −Fj (2.11)

for each j, where ∇j is the gradient with respect to the variable xj .

Proof. We compute that

dE

dt
=

N∑

j=1

[
mj ẋ

j · ẍj +∇jV · ẋj
]

=

N∑

j=1

ẋj ·
[
mj ẍ

j +∇jV
]

=
N∑

j=1

ẋj ·
[
Fj +∇jV

]
.
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If ∇jV = −Fj, then E will be conserved.
As in the one-particle case, there is a simple condition for the existence

of a potential function V satisfying (2.11).

Proposition 2.10 Suppose a force function F = (F1, . . . ,FN) is defined
on a simply connected domain U in RnN . Then there exists a smooth
function V on U satisfying

∇jV = −Fj

for all j if and only if we have

∂F j
k

∂xl
m

=
∂F l

m

∂xj
k

(2.12)

for all j, k, l, and m.

Proof. Apply Proposition 2.7 with n replaced by nN and with j and k
replaced by the pairs (j, k) and (l,m).

2.3.2 Conservation of Momentum

We now introduce the notion of the momentum of a particle.

Definition 2.11 In an N -particle system, the momentum of the jth
particle, denoted pj , is the product of the mass and the velocity of that
particle:

pj = mj ẋ
j .

The total momentum of the system, denoted p, is defined as

p =

N∑

j=1

pj .

Observe that
dpj

dt
= mj ẍ

j= Fj .

Thus, Newton’s law may be reformulated as saying, “The force is the rate
of change of the momentum.” This is how Newton originally formulated
his second law.
Newton’s third law says, “For every action, there is an equal and opposite

reaction.” This law will apply if all forces are of the “two-particle” variety
and satisfy a natural symmetry property. Having two-particle forces means
that the force Fj on the jth particle is a sum of terms Fj,k, j 
= k, where
Fj,k depends only xj and xk. The relevant symmetry property is that
Fj,k(xj ,xk) = −Fk,j(xk,xj); that is, the force exerted by the jth particle
on the kth particle is the negative (i.e., “equal and opposite”) of the force
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exerted by the kth particle on the jth particle. If the forces are assumed
also to be conservative, then the potential energy of the system will be of
the form

V (x1,x2, . . . ,xN ) =
∑

j<k

V j,k(xj − xk). (2.13)

One important consequence of Newton’s third law is conservation of the
total momentum of the system.

Proposition 2.12 Suppose that for each j, the force on the jth particle is
of the form

Fj(x1,x2, . . . ,xN ) =
∑

k �=j

Fj,k(xj ,xk),

for certain functions Fj,k. Suppose also that we have the “equal and
opposite” condition

Fj,k(xj ,xk) = −Fk,j(xj ,xk).

Then the total momentum of the system is conserved.

Note that since the rate of change of pj is Fj , the force on the jth
particle, the momentum of each individual particle is not constant in time,
except in the trivial case of a noninteracting system (one in which all forces
are zero).
Proof. Differentiating gives

dp

dt
=

N∑

j=1

dpj

dt
=

N∑

j=1

Fj =
∑

j

∑

k �=j

Fj,k(xj ,xk).

By the equal and opposite condition, Fj,k(xj ,xk) cancels with Fk,j(xj ,xk),
so dp/dt = 0.
Let us consider, now, a more general situation in which we have con-

servative forces, but not necessarily of the “two-particle” form. It is still
possible to have conservation of momentum, as the following result shows.

Proposition 2.13 If a multiparticle system has a force law coming from
a potential V, then the total momentum of the system is conserved if and
only if

V (x1 + a,x2 + a, . . . ,xN + a) = V (x1,x2, . . . ,xN ) (2.14)

for all a ∈ Rn.

Proof. Apply (2.14) with a = tek, where ek is the vector with a 1 in the
kth spot and zeros elsewhere. Differentiating with respect to t at t = 0
gives

0 =

N∑

j=1

∂V

∂xj
k

= −
N∑

j=1

F j
k = −

N∑

j=1

dpjk
dt

= −dpk
dt

,
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where pk is the kth component of the total momentum p. Thus, if (2.14)
holds, p is constant in time.
Conversely, if the momentum is conserved, then the sum of the forces is

zero at every point, and so

d

dt
V (x1 + ta,x2 + ta, . . . ,xN + ta)

=

N∑

j=1

∇jV (x1 + ta,x2 + ta, . . . ,xN + ta) · a

= −

⎛
⎝

N∑

j=1

Fj(x1 + ta,x2 + ta, . . . ,xN + ta)

⎞
⎠ · a

= 0

for all t. Thus, the value of the quantity being differentiated is the same at
t = 0 as at t = 1, which establishes (2.14).
The moral of the story is that conservation of momentum is a consequence

of translation-invariance of the system, where “translation invariance ”
means invariance under simultaneous translations of every particle by the
same amount. (See Exercise 11 for a more general version of this result.)
If the potential is of the “two-particle” form (2.13), then it is evident that
the condition (2.14) is satisfied.

2.3.3 Center of Mass

We now consider an important application of momentum conservation.

Definition 2.14 For a system of N particles moving in Rn, the center

of mass of the system at a fixed time is the vector c ∈ Rn given by

c =

N∑

j=1

mj

M
xj ,

where M =
∑N

j=1 mj is the total mass of the system.

The center of mass is a weighted average of the positions of the various
particles. Differentiating c(t) with respect to t gives

dc

dt
=

1

M

N∑

j=1

mj ẋ
j =

p

M
, (2.15)

where p is the total momentum.
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Proposition 2.15 Suppose the total momentum p of a system is conserved.
Then the center of mass moves in a straight line at constant speed.
Specifically,

c(t) = c(t0) + (t− t0)
p

M
,

where c(t0) is the center of mass at some initial time t0.

Proof. The result follows easily from (2.15).
The notion of center of mass is particularly useful in a system of two

particles in which momentum is conserved. For a system of two particles, if
the potential energy V (x1,x2) is invariant under simultaneous translations
of x1 and x2, then it is of the form

V (x1,x2) = Ṽ (x1 − x2),

where Ṽ (a) = V (a, 0).
Now, the positions x1,x2 of the particles can be recovered from knowledge

of the center of mass and the relative position

y := x1 − x2

as follows:

x1 =
c+m2y

m1 +m2

x2 =
c−m1y

m1 +m2
.

Meanwhile, we may compute that

ÿ(t) = ẍ1 − ẍ2 = − 1

m1
∇Ṽ (x1 − x2)− 1

m2
∇Ṽ (x1 − x2).

This calculation gives the following result.

Proposition 2.16 For a two-particle system with potential energy of the
form V (x1,x2) = Ṽ (x1 − x2), the relative position y := x1 − x2 satisfies
the differential equation

μÿ = −∇Ṽ (y),

where μ is the reduced mass given by

μ =
1

1
m1

+ 1
m2

=
m1m2

m1 +m2
.

Thus, when the total momentum of a two-particle system is conserved,
the relative position evolves as a one-particle system with “effective” mass μ,
while the center of mass moves “trivially,” as described in Proposition 2.15.
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x(t)

A(t)

FIGURE 2.1. A(t) is the area of the shaded region.

2.4 Angular Momentum

We start by considering angular momentum in the simplest nontrivial case,
motion in R2.

Definition 2.17 Consider a particle moving in R2, having position x,
velocity v, and momentum p = mv. Then the angular momentum of
the particle, denoted J, is given by

J = x1p2 − x2p1. (2.16)

In more geometric terms, J = |x| |p| sinφ, where φ is the angle (measured
counterclockwise) between x and p. We can look at J in yet another way
as follows. If θ is the usual angle in polar coordinates on R2, then an
elementary calculation (Exercise 9) shows that

J = mr2
dθ

dt
. (2.17)

It then follows that

J = 2m
dA

dt
, (2.18)

where A = (1/2)
∫
r2 dθ is the area being swept out by the curve x(t).

See Fig. 2.1.
One significant property of the angular momentum is that it (like the

energy) is conserved in certain situations.

Proposition 2.18 Suppose a particle of mass m is moving in R2 under
the influence of a conservative force with the potential function V (x). If
V is invariant under rotations in R2, then the angular momentum J =
x1p2−x2p1 is independent of time along any solution of Newton’s equation.
Conversely, if J is independent of time along every solution of Newton’s
equation, then V is invariant under rotations.
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Proof. Differentiating (2.16) along a solution of Newton’s law gives

dJ

dt
=

dx1

dt
p2 + x1

dp2
dt

− dx2

dt
p1 − x2

dp1
dt

=
1

m
p1p2 − x1

∂V

∂x2
− 1

m
p2p1 + x2

∂V

∂x1

= x2
∂V

∂x1
− x1

∂V

∂x2
.

On the other hand, consider rotations Rθ in R2 given by

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

If we differentiate V along this family of rotations, we obtain

d

dθ
V (Rθx)

∣∣∣∣
θ=0

=
∂V

∂x

dx

dθ
+

∂V

∂y

dy

dθ
= −x2

∂V

∂x1
+ x1

∂V

∂x2
= −dJ

dt
(x).

Thus, the angular derivative of V is zero if and only if J is constant.
Conservation of J [together with the relation (2.18)] gives the following

result.

Corollary 2.19 (Kepler’s Second Law) Suppose a particle is moving
in R2 in the presence of a force associated with a rotationally invariant
potential. If x(t) is the trajectory of the particle, then the area swept out by
x(t) between times t = a and t = b is (b−a)J/(2m), where J is the constant
value of the angular momentum along the trajectory. Since the area swept
out depends only on b − a, we may say that “equal areas are swept out in
equal times.”

Kepler, of course, was interested in the motion of planets in R3, not in
R2. The motion of a planet moving in the “inverse square” force of a sun
will, however, always lie in a plane. (This claim follows from the three-
dimensional version of conservation of angular momentum, as explained in
Sect. 2.6.1.)
In R3, the angular momentum of the particle is a vector, given by

J = x× p, (2.19)

where × denotes the cross product (or vector product). Thus, for example,

J3 = x1p2 − x2p1. (2.20)

If, then, we have a particle in R3 that just happens to be moving in R2

(i.e., x3 = 0 and p3 = 0), then the angular momentum will be in the z-
direction with z-component given by the quantity J defined in
Definition 2.17.
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The representation of the angular momentum of a particle in R3 as a
vector is a low-dimensional peculiarity. For a particle in Rn, the angular
momentum is a skew-symmetric matrix given by

Jjk = xjpk − xkpj . (2.21)

In the R3 case, the entries of the 3×3 angular momentum matrix are made
up by the three components of the angular momentum vector together with
their negatives, with zeros along the diagonal. [Compare, e.g., (2.20) and
(2.21).]

Definition 2.20 For a system of N particles moving in Rn, the total

angular momentum of the system is the skew-symmetric matrix J given
by

Jjk =
N∑

l=1

(
xl
jp

l
k − xl

kp
l
j

)
. (2.22)

Theorem 2.21 Suppose a system of N particles in Rn is moving under
the influence of conservative forces with potential function V. If V satisfies

V (Rx1, Rx2, . . . , RxN ) = V (x1,x2, . . . ,xN ) (2.23)

for every rotation matrix R, then the total angular momentum of the system
is conserved (constant along each trajectory). Conversely, if the total an-
gular momentum is constant along each trajectory, then V satisfies (2.23).

The proof of this result is similar to that of Proposition 2.18 and is left
as an exercise (Exercise 10). We will re-examine the concept of angular
momentum in the next section using the language of Poisson brackets and
Hamiltonian flows.

2.5 Poisson Brackets and Hamiltonian Mechanics

We consider now the Hamiltonian approach to classical mechanics. (There
is also the Lagrangian approach, but that approach is not as relevant for
our purposes.) The Hamiltonian approach, and in particular the Poisson
bracket, will help us to understand the general phenomenon of conserved
quantities. The Poisson bracket is also an important source of motivation
for the use of commutators in quantum mechanics.
In the Hamiltonian approach to mechanics, we think of the energy func-

tion as a function of position and momentum, rather than position and
velocity, and we refer to it as the “Hamiltonian.” If a particle in Rn has
the usual sort of energy function (kinetic energy plus potential energy), we
have

H(x,p) =
1

2m

n∑

j=1

p2j + V (x). (2.24)
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Here, as usual, pj = mj ẋj . We now observe that Newton’s law can be
expressed in the following form:

dxj

dt
=

∂H

∂pj
dpj
dt

= − ∂H

∂xj
. (2.25)

After all, with H of the indicated form, these equations read dxj/dt =
pj/m, which is just the definition of pj, and dpj/dt = −∂V/∂xj = Fj , which
is just Newton’s law, in the form originally given by Newton. We refer to
Newton’s law, in the form (2.25) as Hamilton’s equations.
Although it is not obvious at the moment that we have gained anything

by writing Newton’s law in the form (2.25), let us proceed on a bit further
and see. Our next step is to introduce the Poisson bracket.

Definition 2.22 Let f and g be two smooth functions on R2n, where an
element of R2n is thought of as a pair (x,p), with x ∈ Rn representing the
position of a particle and p ∈ Rn representing the momentum of a particle.
Then the Poisson bracket of f and g, denoted {f, g} , is the function on
R2n given by

{f, g} (x,p) =
n∑

j=1

(
∂f

∂xj

∂g

∂pj
− ∂f

∂pj

∂g

∂xj

)
.

The Poisson bracket has the following properties.

Proposition 2.23 For all smooth functions f, g, and h on R2n we have
the following:

1. {f, g + ch} = {f, g}+ c{f, h} for all c ∈ R

2. {g, f} = −{f, g}

3. {f, gh} = {f, g}h+ g{f, h}

4. {f, {g, h}} = {{f, g}, h}+ {g, {f, h}}

Properties 1 and 2 of Proposition 2.23 say that the Poisson bracket is
bilinear and skew-symmetric. Property 3 says that the operation of “bracket
with f” satisfies the derivation property (similar to the product rule for
derivatives) with respect to pointwise multiplication of functions, while
Property 4 says that “bracket with f” satisfies the derivation property
with respect to the Poisson bracket itself. Property 4 is equivalent to the
Jacobi identity:

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0, (2.26)



2.5 Poisson Brackets and Hamiltonian Mechanics 35

as may easily be seen using the skew-symmetry of the Poisson bracket.
The Jacobi identity, along with bilinearity and skew-symmetry, means that
the space of C∞ functions on R2n forms a Lie algebra under the operation
of a Poisson bracket. (See Chap. 16.)
Proof. The first two properties of the Poisson bracket are obvious and the
third is an easy consequence of the product rule. Let us think about what
goes into proving Property 4 by direct computation. (An alternative proof
is given in Exercise 15.) We compute that

{f, {g, h}} =
n∑

j=1

∂f

∂xj

∂

∂pj

(
∂g

∂xj

∂h

∂pj
− ∂g

∂pj

∂h

∂xj

)

−
n∑

j=1

∂f

∂pj

∂

∂xj

(
∂g

∂xj

∂h

∂pj
− ∂g

∂pj

∂h

∂xj

)
.

Just the first term in the expression for {f, {g, h}} generates the following
four terms (all summed over j) after we use the product rule:

∂f

∂xj

∂2g

∂xj∂pj

∂h

∂pj
+

∂f

∂xj

∂g

∂xj

∂2h

∂p2j
− ∂f

∂xj

∂2g

∂p2j

∂h

∂xj
− ∂f

∂xj

∂g

∂pj

∂2h

∂xj∂pj
. (2.27)

We see, then, that the left-hand side of (2.26) will have a total of 24 terms,
each summed over j. Each term will have a single derivative on two of the
three functions, and two derivatives on the third function. There are three
possibilities for which function gets two derivatives. Once that function is
chosen, there are four possibilities for which derivatives go on the other
two functions, with the function that gets two derivatives getting whatever
derivatives remain (for a total of two x-derivatives and two p-derivatives).
That makes 12 possible terms. It is a tedious but straightforward exercise
to check that each of these 12 possible terms occurs twice in the left-hand
side of (2.26), with opposite signs. To check just one case explicitly, in
computing {h, {f, g}}, we will get a term like the second term in (2.27),
but with (f, g, h) replaced by (h, f, g):

∂h

∂xj

∂f

∂xj

∂2g

∂p2j
.

This term (in the computation of {h, {f, g}}) cancels with the third term
in (2.27) (in the computation of {f, {g, h}}).
The following elementary result will provide a helpful analogy to the

“canonical commutation relations” in quantum mechanics.

Proposition 2.24 The position and momentum functions satisfy the fol-
lowing Poisson bracket relations:

{xj , xk} = 0

{pj , pk} = 0

{xj , pk} = δjk.
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Proof. Direct calculation.
One of the main reasons for considering the Poisson bracket is the

following simple result.

Proposition 2.25 If (x(t),p(t)) is a solution to Hamilton’s equation
(2.25), then for any smooth function f on R2n we have

d

dt
f(x(t),p(t)) = {f,H} (x(t),p(t)).

We generally write Proposition 2.25 in a more concise form as

df

dt
= {f,H} ,

where the time derivative is understood as being along some trajectory.
Proof. Using the chain rule and Hamilton’s equations, we have

df

dt
=

n∑

j=1

(
∂f

∂xj

dxj

dt
+

∂f

∂pj

dpj
dt

)

=

n∑

j=1

(
∂f

∂xj

∂H

∂pj
+

∂f

∂pj

(
− ∂H

∂xj

))

= {f,H} ,

as claimed.
Observe that Proposition 2.25 includes Hamilton’s equations themselves

as special cases, by taking f(x, p) = xj and by taking f(x, p) = pj . Thus,
this proposition gives a more coordinate-independent way of expressing the
time-evolution.

Corollary 2.26 Call a smooth function f on R2n a conserved quantity if
f(x(t),p(t)) is independent of t for each solution (x(t),p(t)) of Hamilton’s
equations. Then f is a conserved quantity if and only if

{f,H} = 0.

In particular, the Hamiltonian H is a conserved quantity.

Conserved quantities are also called constants of motion. See Conclusion
2.31 for another perspective on this result. Conserved quantities (when one
can find them) are useful in that we know that trajectories must lie in
the level surfaces of any conserved quantity. Suppose, for example, that
we have a particle moving in R2 and that the Hamiltonian H and one
other independent function f (such as, say, the angular momentum) are
conserved quantities. Then, rather than looking for trajectories in the four-
dimensional phase space, we look for them inside the joint level sets of H
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and f (sets of the form H(x, p) = a, f(x, p) = b, for some constants a
and b). These joint level sets are (generically) two-dimensional instead of
four-dimensional, so using the constants of motion greatly simplifies the
problem—from an equation in four variables to one in only two variables.
Solving Hamilton’s equations on R2n gives rise to a flow on R2n, that is, a

family Φt of diffeomorphisms of R2n, where Φt(x,p) is equal to the solution
at time t of Hamilton’s equations with initial condition (x,p). Since it is
possible (depending on the choice of potential function V ) that a particle
can escape to infinity in finite time, the maps Φt are not necessarily defined
on all of R2n, but only on some open subset thereof. If Φt does happen to
be defined on all of R2n (for all t), then we say that the flow is complete.

Theorem 2.27 (Liouville’s Theorem) The flow associated with Hamil-
ton’s equations, for an arbitrary Hamiltonian function H, preserves the
(2n)-dimensional volume measure

dx1dx2 · · · dxndp1dp2 · · · dpn.

What this means, more precisely, is that if a measurable set E is con-
tained in the domain of Φt for some t ∈ R, then the volume of Φt(E) is
equal to the volume of E.
Proof. Hamilton’s equations may be written as

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

...
xn

p1
...
pn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂H
∂p1

...
∂H
∂pn

− ∂H
∂x1

...
− ∂H

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.28)

This means that Hamilton’s Equations describe the flow along the vector
field on R2n appearing on the right-hand side of (2.28). By a standard result
from vector calculus (see, e.g., Proposition 16.33 in [29]), this flow will be
volume-preserving if and only if the divergence of the vector field is zero.
We compute this divergence as

∂

∂x1

∂H

∂p1
+ · · ·+ ∂

∂xn

∂H

∂pn
− ∂

∂p1

∂H

∂x1
− · · · − ∂

∂pn

∂H

∂xn
. (2.29)

Since
∂2H

∂xj∂pj
=

∂2H

∂pj∂xj
,

the divergence is zero.
The existence of an invariant volume has important consequences for

the dynamics of a system. For example, for “confined” systems, an invari-
ant volume implies that the system exhibits “recurrence,” which means
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(roughly) that for most initial conditions, the particle will eventually come
back arbitrarily close to its initial state in phase space. We will not, how-
ever, delve into this aspect of the theory.
Note that the divergence of XH , computed in (2.29), vanishes in a very

particular way, namely the sum of the jth and (n + j)th terms vanishes
for all 1 ≤ j ≤ n. This stronger condition turns out to be equivalent to
the condition that the Hamiltonian flow Φt associated with an arbitrary
smooth function on R2n preserves the symplectic form ω, defined by

ω((x,p), (x′,p′)) = x · p′ − p · x′.

What this means, more precisely, is that for any t ∈ R and any (x,p) ∈ R2n,
the matrix of partial derivatives of Φt at the point (x,p)—thought of as a
linear map of R2n to R2n—preserves ω. This property of Φt, as it turns out,
is equivalent to the property that Φt preserves Poisson brackets, meaning
that

{f ◦ Φt, g ◦ Φt} = {f, g} ◦ Φt

for all f, g ∈ C∞(Rn). A map Ψ : R2n → R2n that preserves ω is called
a symplectomorphism (in mathematics notation) or a canonical transfor-
mation (in physics notation). We defer the proofs of these claims until
Chap. 21, where we can consider them in a more general setting.

Definition 2.28 For any smooth function f on R2n, the Hamiltonian

flow generated by f is the flow obtained by solving Hamilton’s equation (2.25)
with the Hamiltonian H replaced by f. The function f is called the Hamil-

tonian generator of the associated flow.

Although any smooth function on R2n can be inserted into Hamilton’s
equations to produce a flow, physically one should think that there is a
distinguished function, the Hamiltonian H of the system, such that the
flow generated by H is the time-evolution of the system. For any other
function f, the Hamiltonian flow generated by f should not be thought
of as time-evolution, but as some other flow, which might, for example,
represent some family of symmetries of our system.

Proposition 2.29 The Hamiltonian flow generated by the function

fa(x,p) := a · p (2.30)

is given by

x(t) = x0 + ta

p(t) = p0, (2.31)

and the Hamiltonian flow generated by the function

gb(x,p) := b · x (2.32)
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is given by

x(t) = x0

p(t) = p0 − tb.

Proof. Direct calculation.
What this means is that the Hamiltonian flow generated by a linear

combination of the momentum functions consists of translations in position
of the particle. That is to say, in the flow (2.31) generated by the function
fa in (2.30), the particle’s initial position x0 is translated by ta while the
particle’s momentum is independent of t. Similarly, the Hamiltonian flow
generated by a linear combination of the position functions [the function
gb in (2.32)] consists of translations in the particle’s momentum.

Proposition 2.30 For a particle moving in R2, the Hamiltonian flow gen-
erated by the angular momentum function

J(x,p) = x1p2 − x2p1

consists of simultaneous rotations of x and p. That is to say,

[
x1(t)
x2(t)

]
=

[
cos t − sin t
sin t cos t

] [
x1(0)
x2(0)

]

[
p1(t)
p2(t)

]
=

[
cos t − sin t
sin t cos t

] [
p1(0)
p2(0)

]
. (2.33)

Proof. If we plug the angular momentum function J into Hamilton’s equa-
tions in place of H , we obtain

dx1

dt
=

∂J

∂p1
= −x2;

dp1
dt

= − ∂J

∂x1
= −p2

dx2

dt
=

∂J

∂p2
= x1;

dp2
dt

= − ∂J

∂x2
= p1

.

The solution to this system is given by the expression in the proposition,
as is easily verified by differentiation of (2.33).
Note that since the Hamiltonian flow generated by J does not have the

interpretation of the time-evolution of the particle, the parameter t in (2.33)
should not be interpreted as the physical time; it is just the parameter in a
one-parameter group of diffeomorphisms. In this case, t is the angle of rota-
tion. Thus, one answer to the question, “What is the angular momentum?”
is that J is the Hamiltonian generator of rotations.
If f is any smooth function, then by the proof of Proposition 2.25, the

time derivative of any other function g along the Hamiltonian flow gener-
ated by f is given by dg/dt = {g, f}. In particular, the derivative of the
Hamiltonian H along the flow generated by f is {H, f}. Thus, f is constant
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along the flow generated by H if and only if {f,H} = 0, which holds if and
only if {f,H} = 0, which holds if and only if H is constant along the flow
generated by f. This line of reasoning leads to the following result.

Conclusion 2.31 A function f is a conserved quantity for solutions of
Hamilton’s equation (2.25) if and only if H is invariant under the Hamil-
tonian flow generated by f. In particular, the angular momentum J is con-
served if and only if H is invariant under simultaneous rotations of x and p.

We will return to this way of thinking about conserved quantities in
Chap. 21. Compare Exercise 12.
The Hamiltonian framework can be extended in a straightforward way

to systems of particles.

Proposition 2.32 Consider the phase space for a system of N particles
moving in Rn, namely R2nN , thought of as the set of (2N)-tuples of the
form

(x1, . . . ,xN ,p1, . . . ,pN )

with xj and pj belonging to Rn. Define the Poisson bracket of two smooth
functions f and g on the phase space by

{f, g} =

N∑

j=1

n∑

k=1

(
∂f

∂xj
k

∂g

∂pjk
− ∂f

∂pjk

∂g

∂xj
k

)

and consider a Hamiltonian function of the form

H(x1, . . . ,xN ,p1, . . . ,pN ) =

N∑

j=1

1

2mj

∣∣pj
∣∣2 + V (x1, . . . ,xN ).

Then Newton’s law in the form mj ẍ
j = −∇jV is equivalent to Hamilton’s

equations in the form

dxj
k

dt
=

∂H

∂pjk

dpjk
dt

= − ∂H

∂xj
k

. (2.34)

For any smooth function f, the derivative of f along a solution of Hamil-
ton’s equations is given by

df

dt
= {f,H}.

The proof of these results is entirely similar to the one-particle case and
is omitted.
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2.6 The Kepler Problem and the Runge–Lenz
Vector

2.6.1 The Kepler Problem

We consider now the classical Kepler problem, that of finding the
trajectories of a planet orbiting the sun. Since the sun is very much more
massive than any of the planets, we may consider the position of the sun
to be fixed at the origin of our coordinate system. The sun exerts a force
on a planet given by

F = −k
x

|x|3
. (2.35)

Here k = GmM, where m is the mass of the planet, M is the mass of the
sun, and G is the universal gravitational constant. Note that the magnitude
of F is proportional to the reciprocal of the square of the distance from the
origin; thus, the force follows an inverse square law. Since k contains a
factor of the mass m of the planet, this quantity drops out of the equation
of motion, mẍ = F. The potential associated with the force (2.35) is easily
seen to be

V (x) = − k

|x| . (2.36)

Since our potential V is invariant under rotations, the angular momentum
vector J = x × p is a conserved quantity (Theorem 2.21 with N = 1 and
n = 3). If J = 0, the particle is moving along a ray through the origin.
In that case, either the particle will pass through the origin at some point
in the future (if the initial momentum points toward the origin), or else
the particle must have passed through the origin at some point in the past
(if the initial momentum points away from the origin). Trajectories of this
sort are called collision trajectories, and we will regard such trajectories as
pathological.
We will, from now on, consider only trajectories along which the angular

momentum vector is nonzero. Fixing the energy and angular momentum of
the particle guarantees that the particle stays a certain minimum distance
from the origin (Exercise 20). Meanwhile, since J = x × p, the position
x(t) of the particle will always be perpendicular to the constant value of J.
We will therefore refer to the plane (through the origin) perpendicular to
J as the “plane of motion.”

2.6.2 Conservation of the Runge–Lenz Vector

We are going to obtain a description of the classical trajectories in an
indirect way, using something called the Runge–Lenz vector.
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Definition 2.33 The Runge–Lenz vector is the vector-valued function
on R3\{0} × R3 given by

A(x,p) =
1

mk
p× J− x

|x| .

Here x represents the position of a classical particle and p its momentum.

The significance of this vector is that it is a conserved quantity for the
Kepler problem. Of course, whenever the potential energy is radial (a func-
tion of the distance from the origin), the angular momentum vector is a
conserved quantity. What is special about the 1/r potential of the Kepler
problem is that there is another conserved vector-valued quantity.

Proposition 2.34 The Runge–Lenz vector is conserved quantity for New-
ton’s law with force given by (2.35).

Proof. Since J is conserved, we compute that

Ȧ(t) =
1

mk
F× J− 1

|x|
p

m
+

x

|x|2
3∑

j=1

∂ |x|
∂xj

dxj

dt

= − 1

m

1

|x|3
x× (x × p)− 1

|x|
p

m
+

x

|x|2
3∑

j=1

xj

|x|
pj
m

=
1

m

(
− 1

|x|3
x(x · p) + 1

|x|3
p(x · x)− p

|x| +
x(x · p)
|x|3

)

= 0.

Here we have used the identity b× (c×d) = c(b ·d)−d(b ·c), which holds
for all vectors b, c,d ∈ R3.

2.6.3 Ellipses, Hyperbolas, and Parabolas

We now use the Runge–Lenz vector to determine the trajectories for the
Kepler problem.

Proposition 2.35 The magnitude of the Runge–Lenz vector A satisfies

|A|2 = 1 +
2 |J|2
mk2

E,

where E = |p|2 /(2m) − k/ |x| is the energy of the particle. Furthermore,
if x̂ := x/ |x| is the unit vector in the x-direction, we have

A · x̂ =
|J|2

mk |x| − 1 (2.37)
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for all nonzero x. It follows from (2.37) that

|x| = |J|2
mk(1 +A · x̂) .

Note that from (2.37), A · x̂ > −1 for all points (x,p) with x 
= 0.
Proof. Using the identity b · (c× d) = d · (b× c), we see that

x̂ · (p× J) = J · (x̂ × p) = |J|2 / |x| .

Since J and p are orthogonal, we get

|A|2 =
1

m2k2
|p|2 |J|2 + 1− 2

mk
x̂ · (p× J)

= 1 +
2 |J|2
mk2

(
|p|2
2m

− k

|x|

)

= 1 +
2 |J|2
mk2

E.

Using again the identity for b · (c × d), we next compute that

A · x =
1

mk
J · (x× p)− x · x

|x|

=
|J|2
mk

− |x| .

We may now divide by |x| to obtain the desired expression for A · x̂. It is
then straightforward to solve for |x| .

Corollary 2.36 Choose orthonormal coordinates in the plane of motion
so that A lies along the positive x1-axis. If r and θ are the polar coor-
dinates associated with this coordinate system, then along each trajectory
(r(t), θ(t)), we have

r(t) =
|J|2
mk

1

1 +A cos θ(t)
, (2.38)

where A = |A| .

If A = 0, any orthonormal coordinates can be used.

Proposition 2.37 If A := |A| < 1, (2.38) is the equation of an ellipse with
eccentricity A and with the origin being one focus of the ellipse. If A > 1,
(2.38) is the equation of a hyperbola, and if A = 1, (2.38) is the equation
of a parabola.
The orbit of the particle in the plane of motion is an ellipse if the energy

of the particle is negative, a hyperbola if the energy is positive, and a
parabola if the energy is zero.
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Sun

FIGURE 2.2. Elliptical orbit for the Kepler problem, with two equal areas shaded.

Kepler’s first law is the assertion that planets move in elliptical trajec-
tories with the sun at one focus, as shown in Fig. 2.2. The shaded regions
indicate two equal areas that are swept out in equal times, in accordance
with Kepler’s second law (Corollary 2.19).
Recall that the eccentricity of an ellipse is

√
1− (b/a)2, where a is half

the length of the major axis and b is half the length of the minor axis.
Thus, when A = 0, we have b = a, meaning that the ellipse is a circle.
Proof. We continue to work in a coordinate system in which A is along
the positive x1-axis. Then (2.38) becomes

√
x2 + y2 = α

1

1 +A x√
x2+y2

,

where α = |J|2 /(mk). From this we obtain

1 =
1

α

(√
x2 + y2 +Ax

)
.

Now we can solve for
√
x2 + y2, square both sides of the equation, and

simplify. Assuming A2 
= 1, we obtain

α2

(
1

1−A2

)
= (1−A2)

(
x+

Aα

1−A2

)2

+ y2. (2.39)

This is the equation of an ellipse (if A2 < 1) or a hyperbola (if A2 > 1),
where the center of the ellipse or hyperbola is the point (−α/(1 −A2), 0).
In light of the formula for A := |A| in Proposition 2.35, we obtain an ellipse
if the energy of the particle is negative and a hyperbola if the energy is
positive.
In the case A2 < 1, we may readily compute the half-lengths a and b of

the major and minor axes as

a =
α

1−A2
; b =

α√
1−A2

.

From this, we readily calculate that the eccentricity is A. Now, the distance
between the foci of an ellipse is the length of the major axis times the
eccentricity, in our case, 2Aα/(1 − A2). Since the center of the ellipse in
(2.39) is at the point (Aα/(1−A2), 0), the origin is one focus of the ellipse.
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If A2 = 1, then when we perform the same analysis, x2 drops out of the
equation and we obtain

x =
1

2Aα

(
−y2 + α2

)

which is the equation of a parabola opening along the x-axis. This case
corresponds to energy zero.
Note that Proposition 2.37 does not tell us how the particle moves along

the ellipse, hyperbola, or parabola as a function of time. We can, however,
determine this, at least in principle, by making use of the angular momen-
tum. After all, applying (2.17) in the plane of motion gives

dθ

dt
=

1

mr2
|J| , (2.40)

where θ is the polar angle variable in the plane of motion. Since we have
computed r as a function of θ in Corollary 2.36, (2.40) gives us a (first-
order, separable) differential equation, from which we can attempt to solve
to obtain θ—and thus also r—as a function of t.

2.6.4 Special Properties of the Kepler Problem

As we have said, the existence of another conserved vector-valued function—
in addition to the conserved energy and angular momentum—is special to
a potential of the form −k/ |x| . For a general radial potential, the energy
and the angular momentum will be the only conserved quantities. Assuming
J 
= 0, the motion of a particle in any radial potential will always lie in the
plane perpendicular to J. Taking this into account, we think of our particle

FIGURE 2.3. Trajectory in the plane of motion for a typical radial potential.
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as moving in R2 rather than R3, and accordingly think of our phase space
as being four-dimensional rather than six-dimensional. From this point of
view, there are two remaining conserved quantities, the energy E and the
scalar angular momentum J in the plane, as given by Definition 2.17. Thus,
each trajectory will lie in a set of the form

{
(x,p) ∈ R2 × R2

∣∣E(x,p) = a, J(x,p) = b
}
.

We refer to such a set as a joint level set of E and J. These sets are two-
dimensional surfaces inside our four-dimensional phase space.
For a general radial potential, a trajectory (x(t),p(t)) in phase space

may not be a closed curve, but may fill up a dense subset of the joint
level surface on which it lives. In particular, the trajectory x(t) in position
space will typically not be a closed curve. For example, x(t) may trace out
a roughly elliptical region in the plane, but where the axes of the ellipse
“precess,” that is, vary with time. Such a trajectory is shown in Fig. 2.3,
which should be contrasted with Fig. 2.2.
In the Kepler problem, even after restricting attention to the plane of

motion, we still have one conserved quantity in addition to E and J, namely
the direction of A, which can be expressed in terms of the angle φ between
A and the x1-axis in the plane of motion. (Note that both terms in the
definition ofA lie in the plane of motion. Note also that the magnitude ofA
is, by Proposition 2.35, computable in terms of E and J.) The trajectories
of the Kepler problem, then, lie in the joint level sets of E and J and φ,
which are one-dimensional. When E < 0, the joint level sets of E and J are
compact, in which case the joint level sets of E and J and φ are compact
and one-dimensional, that is, simple closed curves.
Another special property of the Kepler problem is that the period of the

closed trajectories (the trajectories with negative energy) is the same for all
trajectories with the same energy (Exercise 21). This apparent coincidence
can be explained by showing that the Hamiltonian flows (Definition 2.28)
generated by J and A act transitively on the energy surfaces. These flows
commute with the time evolution of the system, because they are all con-
served quantities (Conclusion 2.31). Thus, any two points with the same
energy are “equivalent” with respect to time evolution. Although we will
not go into the details of this analysis, we will gain a better understanding
of the flows generated by the components of A in Sect. 18.4.

2.7 Exercises

1. Consider a particle moving in the real line in the presence of a force
coming from a potential function V. Given some value E0 for the
energy of the particle, suppose that V (x) < E0 for all x in some
closed interval [x0, x1]. Then a particle with initial position x0 and
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positive initial velocity will continue to move to the right until it
reaches x1. Using (2.6), show that the time needed to travel from x0

to x1 is given by

t =

∫ x1

x0

√
m

2(E0 − V (y))
dy.

Note: This shows that we can solve Newton’s equation in R1 more
or less explicitly for time as a function of position, which in principle
determines the position as a function of time.

2. In the notation of the previous problem, suppose now that V (x) < E0

for x0 ≤ x < x1, but that V (x1) = E0.

(a) Show that if V ′(x1) 
= 0, then the particle reaches x1 in a finite
time.

(b) Show that if V ′(x1) = 0, then the time it takes the particle to
reach x1 is infinite; that is, the particle approaches but never
actual reaches x1.

Note: In Part (b), the point x1 is an unstable equilibrium for the
system, that is, a critical point for V that is not a local minimum.

3. Consider the equation of motion of a pendulum of length L,

d2θ

dt2
+

g

L
sin θ = 0,

where g is the acceleration of gravity. Here θ is the angle between the
pendulum and the negative y-axis in the plane. This system has a
stable equilibrium at θ = 0 and an unstable equilibrium at θ = π.

Consider initial conditions of the form θ(0) = π − δ, θ̇(0) = 0, for
0 < δ < π/4. Fix some angle θ0 and let T (δ) denote the time it takes
for the pendulum with the given initial conditions to reach the angle
θ0. (Here θ0 represents an arbitrarily chosen cutoff point at which the
pendulum is no longer “close” to θ = π.) Show that T (δ) grows only
logarithmically as δ tends to zero.

Note: Logarithmic growth of T as a function of δ corresponds to
exponential decay of δ as a function of T. Thus, if we want T to be
large, we must choose δ to be very small.

4. Consider a particle moving in the real line in the presence of a
“repelling potential,” such that there is an A with V ′(x) < 0 for
all x > A. Then a particle with initial position x0 > A and positive
initial velocity will have positive velocity for all positive times. Sup-
pose now that V (x) = −xa for all x > 1, for some positive constant
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a. Suppose also that the particle is given initial position x0 > 1 and
positive initial velocity. Show that for a > 2, the particle escapes to
infinity in finite time, but that for a ≤ 2, the position of the particle
remains finite for all finite times.

Hint : Use Problem 1.

5. Consider the equation mẍ+ γẋ+ kx = 0, where γ and k are positive
constants (the damping constant and spring constant, respectively).
Find the critical value γc of γ (for a fixed m and k) such that for
γ < γc, we get solutions that are sines and cosines times a decaying
exponential and for γ > γc, we get pure decaying exponentials.

6. Continue with the notation of Exercise 5. Given particular choices
for m, γ, and k, let r be the rate of exponential decay of a “generic”
solution to the equation of motion. Here, if the solution is of the form
ae−rt cos(ωt)+ be−rt sin(ωt), the rate of exponential decay is r. If the
solution is of the form ae−r1t + be−r2t, then r = min(r1, r2), since
the slower-decaying term will dominate as long as a and b are both
nonzero.

For a fixed value of m and k, show that the maximum value for r
is achieved by taking γ = γc. (This accounts for the terminology
“critical damping” for the case in which γ = γc.)

7. Consider the R2-valued function F on R2 \ {0} given by

F(x1, x2) =

(
− x2

x2
1 + x2

2

,
x1

x2
1 + x2

2

)
.

Show that ∂F1/∂x2− ∂F2/∂x1 = 0 but that there does not exist any
smooth function V on R2 \ {0} with F = −∇V.

Hint : If F were of the form −∇V, we would have

V (x(b)) − V (x(a)) = −
∫ b

a

F(x(t)) · dx
dt

dt

for every smooth path x(·) : [a, b] → R2\{0}, by the fundamental
theorem of calculus and the chain rule.

8. Consider a particle moving in Rn with a velocity-dependent force law
given by

F(x,v) = −∇V (x) + F2(x,v),

where the velocity-dependent term F2 acts perpendicularly to the
velocity of the particle. (That is, we assume that v · F2(x,v) = 0
for all x and v.) Let E denote the usual energy function E(x,v) =
1
2m |v|2+V (x), unmodified by the presence of the velocity-dependent
term in the force. Show that E is conserved.
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9. (a) If r and θ are the usual polar coordinates on R2, compute ∂θ/∂x1

and ∂θ/∂x2.

(b) If x(·) denotes the trajectory of a particle of mass m moving in
R2, show that

d

dt
θ(x(t)) =

1

mr2
J(x(t),p(t)).

10. Prove Theorem 2.21, by imitating the proof of Proposition 2.18. You
may assume that every rotation can be built up as a product of
repeated rotations in the various coordinate planes (i.e., rotations in
the (xj , xk) plane, for various pairs (j, k), where the same plane may
be used more than once).

11. Consider Hamilton’s equations for N particles moving in Rn, as in
Proposition 2.32. Show that the total momentum p =

∑N
j=1 p

j of the
system is a conserved quantity if and only if the quantity

H(x1 + a, . . . ,xN + a,p1 + a, . . . ,pN + a), a ∈ Rn,

is independent of a for all x1, . . . ,xN and p1, . . . ,pN in Rn.

Hint : Use (the N -particle version of) Conclusion 2.31.

12. Let J denote the angular momentum of a particle moving in R2.
Let Rθ denote a counterclockwise rotation by angle θ in R2.

(a) If f is any smooth function on R4, show that

{f, J} (x,p) = d

dθ
f (Rθx, Rθp)

∣∣∣∣
θ=0

.

(b) Let H be any smooth function on R4 and consider Hamilton’s
equations with this function playing the role of the Hamilto-
nian. Show that J is conserved (i.e., constant in time along any
solution of Hamilton’s equations) if and only if

H(Rθx, Rθp) = H(x,p)

for all θ in R and all x and p in R2. (This argument is a more
explicit way to obtain Conclusion 2.31.)

13. Suppose that f and g are smooth functions on R2n and that at least
one of the two functions has compact support. Show that

∫

Rn

∫

Rn

{f, g}(x,p) dnx dnp = 0.

Hint : Use integration by parts or Liouville’s theorem.
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14. LetX and Y be “vector fields” onRn, viewed as first-order differential
operators. This means that X and Y are of the form

X =

n∑

j=1

aj(x)
∂

∂xj
; Y =

n∑

j=1

bj(x)
∂

∂xj
.

[If X̃(x) = (a1(x), . . . , an(x)), then the operator X is the directional
derivative in the direction of X̃. It is common to identify the vector-
valued function X̃ with the associated first-order differential operator
X .]

Show that the commutator [X,Y ] of X and Y, defined by

[X,Y ] = XY − Y X

is again a vector field (i.e., a first -order differential operator).

15. Given a smooth function f on R2n, define an operator Xf , acting on
C∞(R2n), by the formula

Xf (g) = {f, g}.

That is to say,

Xf =

n∑

j=1

(
∂f

∂xj

∂

∂pj
− ∂f

∂pj

∂

∂xj

)
.

The operator Xf is called the Hamiltonian vector field associated
with the function f. (Here, as in Exercise 14, we identify vector fields
with first-order differential operators.)

(a) Show that for all f, g ∈ C∞(R2n), we have

X{f,g} = [Xf , Xg],

where [Xf , Xg] = XfXg −XgXf .

Hint : By Exercise 14, all terms in the computation of [Xf , Xg](h)
involving second derivatives of h can be neglected, since they will
always cancel out to zero.

(b) Use Part (a) to compute {{f, g}, h} = X{f,g}(h) and thereby ob-
tain another proof of the Jacobi identity for the Poisson bracket.

16. Recall the definition of a Hamiltonian vector field Xf in Exercise 15.

(a) Consider a smooth vector field X on R2 (viewed as a first-order
differential operator as in Exercise 14) of the form

X(x) = g1(x, p)
∂

∂x
+ g2(x, p)

∂

∂p
.
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Show that X can be expressed as X = Xf , for some f ∈
C∞(R2), if and only X is divergence free, that is, if and only
if

∇ ·X :=
∂g1
∂x

+
∂g2
∂p

= 0.

Hint : As in Proposition 2.7, given a pair of functions h1 and h2

on R2, there exists a function f with ∂f/∂x = h1 and ∂f/∂p =
h2 if and only if we have ∂h1/∂p = ∂h2/∂x.

(b) Show that there exists a smooth vector field X on R4 of the form

X =

2∑

j=1

(
gj(x)

∂

∂xj
+ gj+2(x)

∂

∂pj

)

such that

∇ ·X :=

2∑

j=1

(
∂gj
∂xj

+
∂gj+2

∂pj

)
= 0

but such that there does not exist f ∈ C∞(R4) with X = Xf .

Hint : You should be able to find a counterexample in which the
coefficient functions gj are linear.

17. Show that the space of homogeneous polynomials of degree 2 on R2n

is closed under the Poisson bracket.

18. Determine the Hamiltonian flow on R2 generated by the function
f(x, p) = xp.

19. Let J denote the angular momentum vector for a particle moving in
R3, namely J = x × p. Show that the components J1, J2, and J3 of
J satisfy the following Poisson bracket relations:

{J1, J2} = J3; {J2, J3} = J1; {J3, J1} = J2.

20. In the Kepler problem, show that for each real number E and positive
number J, there exists ε > 0 such that for all (x,p) with E(x,p) = E
and |J(x,p)| = J, we have |x| ≥ ε.

Hint : Suppose that (xn,pn) is a sequence with |J(xn,pn)| = J and
|xn| tending to zero. Show that E(xn,pn) tends to +∞.

21. (a) Determine the area of the ellipse in the plane of motion in Propo-
sition 2.37, in the case A < 1.

(b) Show that the time T it takes the particle to travel once around
the ellipse is given by

π√
2
GM(−Ẽ)−3/2,
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where Ẽ is the “massless energy” of the particle, given by

Ẽ =
E

m
=

1

2
|ẋ| − GM

|x| .

Note in the case where the trajectory in the plane of motion is
elliptical, the energy of the particle is negative.

Note: The result of Part (b) is closely related to Kepler’s third law.



3
A First Approach to Quantum
Mechanics

In this chapter, we try to understand the main ideas of quantum mechanics.
In quantum mechanics, the outcome of a measurement cannot—even in
principle—be predicted beforehand; only the probabilities for the outcome
of the measurement can be predicted. These probabilities are encoded in a
wave function, which is a function of a position variable x ∈ Rn. The square
of the absolute value of the wave function encodes the probabilities for the
position of the particle. Meanwhile, the probabilities for the momentum of
the particle are encoded in the frequency of oscillation of the wave function.
The probabilities can be described using the position operator and the
momentum operator. The time-evolution of the wave function is described
by the Hamiltonian operator, which is analogous to the Hamiltonian (or
energy) function in Hamilton’s equations.

3.1 Waves, Particles, and Probabilities

There are two key ingredients to quantum theory, both of which arose from
experiments. The first ingredient is wave–particle duality, in which objects
are observed to have both wavelike and particlelike behavior. Light, for
example, was thought to be a wave throughout much of the nineteenth
century, but was observed in the early twentieth century to have parti-
cle behavior as well. Electrons, meanwhile, were originally thought to be
particles, but were then observed to have wave behavior.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5 3,
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The second ingredient of quantum theory is its probabilistic behavior.
In the two-slit experiment, for example, electrons that are “identically
prepared” do not all hit the screen at the same point. Quantum theory
postulates that this randomness is fundamental to the way nature behaves.
According to quantum mechanics, it is impossible (theoretically, not just
in practice) to predict ahead of time what the outcome of an experiment
will be. The best that can be done is to predict the probabilities for the
outcome of an experiment.
These two aspects of quantum theory come together in the wave function.

The wave function is a function of a variable x ∈ Rn, which we interpret as
describing the possible values of the position of a particle, and it evolves in
time according to a wavelike equation (the Schrödinger equation). The wave
function and its time-evolution account for the wave aspect of quantum
theory. The particle aspect of the theory comes from the interpretation of
the wave function. Although it is tempting to interpret the wave function
as a sort of cloud, where we have, say, a little bit of electron-cloud over
here, and little bit of electron-cloud over there, this interpretation is not
consistent with experiment. Whenever we attempt to measure the position
of a single electron, we always find the electron at a single point. A single
electron in the two-slit experiment is observed at a single point on the
screen, not spread out over the screen the way the wave function is. The
wave function does not describe something that is directly observable for a
single particle; rather, the wave function determines the statistical behavior
of a whole sequence of identically prepared particles. See Fig. 1.4 for a
dramatic experimental demonstration of this effect.
In the two-slit experiment, for example, it is possible to determine how

the wave function behaves as a function of time by solving the (determin-
istic) Schrödinger equation. Knowledge of the wave function of an individ-
ual electron, however, does not determine where that electron will hit the
screen. The wave function merely tells us the probability distribution for
where the electron might hit the screen, something that is only observable
by shooting a whole sequence of electrons at the screen.
It is an oversimplification, but a useful one, to describe the wave–particle

aspect of quantum theory in this way: a single electron (or photon, or
whatever) acts like a particle, but a large collection of electrons behaves
like a wave. A single measurement of a single electron always gives its
position as a point, just as we would expect for a particle. This point,
however, varies from one electron to the next, even if we shoot each electron
toward the screen in precisely the same way. Repeated measurements of
identically prepared electrons give a distribution that can, for example,
exhibit interference patterns, just as we would expect for a wave. See, again,
Fig. 1.4, which should be compared to Figs. 1.1 and 1.2.
It is interesting to note that at the macroscopic scale, where quantum ef-

fects are not apparent, light appears to be a wave, whereas electrons appear
to be particles. This is the case even though both light and electrons are



3.2 A Few Words About Operators and Their Adjoints 55

really wave–particle hybrids, described in probabilistic terms by a wave
function. The difference between the two situations is that photons (the par-
ticles of light) have mass zero, whereas electrons have positive mass. This
means that photons, unlike electrons, can easily be created and destroyed
even at low energies. Thus, the discrete aspect of light—namely, that the
energy in light comes only in discrete “quanta,” namely the photons—is
less evident than the corresponding discrete aspect of electrons.

3.2 A Few Words About Operators
and Their Adjoints

In quantum mechanics, physical quantities—such as position, momentum,
and energy—are represented by operators on a certain Hilbert space H.
These operators are unbounded operators, reflecting that in classical me-
chanics, these quantities are unbounded functions on the classical phase
space. In this section, we look briefly at some technical issues related to
unbounded operators and their adjoints. We will delay a full discussion of
these technicalities (Chap. 9) until after we have understood the basic ideas
of quantum mechanics.
Here and throughout the book, H will represent a Hilbert space over C,

always assumed to be separable. We follow the convention in the physics
literature that the inner product be linear in the second factor:

〈φ, λψ〉 = λ 〈φ, ψ〉 ; 〈λφ, ψ〉 = λ̄ 〈φ, ψ〉

for all φ, ψ ∈ H and all λ ∈ C.
Recall (Appendix A.3.4) that a linear operator A : H → H is bounded

if there is a constant C such that ‖Aψ‖ ≤ C ‖ψ‖ for all ψ ∈ H. For any
bounded operator A, there is a unique bounded operator A∗, called the
adjoint of A, such that

〈φ,Aψ〉 = 〈A∗φ, ψ〉

for all φ, ψ ∈ H. The existence of A∗ follows from the Riesz theorem (Ap-
pendix A.4.3), by observing that for each fixed φ, the map ψ �→ 〈φ,Aψ〉
is a bounded linear functional on H. A bounded operator is said to be
self-adjoint if A∗ = A.
For various reasons, both physical and mathematical, we want the

operators of quantum mechanics operators to be self-adjoint. Once one
sees the formulas for these operators, however, one is confronted with a
serious technical difficulty: the operators are not bounded.
If A is a linear operator defined on all of H and having the property

that 〈φ,Aψ〉 = 〈Aφ,ψ〉 for all φ, ψ ∈ H, then A is automatically bounded.
(See Corollary 9.9.) To put this fact the other way around, an unbounded
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self-adjoint operator cannot be defined on the entire Hilbert space. Thus, to
deal with the unbounded operators of quantum mechanics, we must deal
with operators that are defined only on a subspace of the relevant Hilbert
space, called the domain of the operator.

Definition 3.1 An unbounded operator A on H is a linear map from
a dense subspace Dom(A) ⊂ H into H.

More precisely, the operator A is “not necessarily bounded,” since noth-
ing in the definition prevents us from having Dom(A) = H and having A
be bounded.
In defining the adjoint of an unbounded operator, we immediately en-

counter a difficulty: for a given φ ∈ H, the linear functional 〈φ,A·〉 may
not be bounded, in which case we cannot use the Riesz theorem to define
A∗φ. What this means is that the adjoint of A, like A itself, will be defined
not on all of H but only on some subspace thereof.

Definition 3.2 For an unbounded operator A on H, the adjoint A∗ of A
is defined as follows. A vector φ ∈ H belongs to the domain Dom(A∗) of
A∗ if the linear functional

〈φ,A·〉 ,
defined on Dom(A), is bounded. For φ ∈ Dom(A∗), let A∗φ be the unique
vector χ such that

〈χ, ψ〉 = 〈φ,Aψ〉
for all ψ ∈ Dom(A).

Saying that the linear functional 〈φ,A·〉 is bounded means that there is
a constant C such that |〈φ,Aψ〉| ≤ C ‖ψ‖ for all ψ ∈ Dom(A). If 〈φ,A·〉 is
bounded, then since Dom(A) is dense, the BLT theorem (Theorem A.36)
tells us that 〈φ,A·〉 has a unique bounded extension to all of H. The Riesz
theorem then guarantees the existence and uniqueness of χ. The adjoint of
an unbounded linear operator is a linear operator on its domain.
We are now ready to define self-adjointness (and some related notions)

for unbounded operators.

Definition 3.3 An unbounded operator A on H is symmetric if

〈φ,Aψ〉 = 〈Aφ,ψ〉

for all φ, ψ ∈ Dom(A). The operator A is self-adjoint if Dom(A∗) =
Dom(A) and A∗φ = Aφ for all φ ∈ Dom(A). Finally, A is essentially

self-adjoint if the closure in H × H of the graph of A is the graph of a
self-adjoint operator.

That is to say, A is self-adjoint if A∗ and A are the same operator with
the same domain. Every self-adjoint or essentially self-adjoint operator is
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symmetric, but not every symmetric operator is essentially self-adjoint.
For any symmetric operator, Dom(A∗) ⊃ Dom(A) and A∗ agrees with A
on Dom(A). The reason a symmetric operator may fail to be self-adjoint is
that Dom(A∗) may be strictly larger than Dom(A).
Although the condition of being symmetric is certainly easier to

understand (and to verify) than the condition of being self-adjoint, self-
adjointness is the “right” condition. In particular, the spectral theorem,
which is essential to much of quantum mechanics, applies only to operators
that are self-adjoint and not to operators that are merely symmetric. If A
is essentially self-adjoint, then we can obtain a self-adjoint operator from
A simply by taking the closure of the graph of A, and we can then apply
the spectral theorem to this self-adjoint operator. Thus, for may purposes,
it is enough to have our operators be essentially self-adjoint rather than
self-adjoint.
It is generally easy to verify that the operators of quantum mechanics

(those representing position, momentum, and so forth) are symmetric on
some suitably chosen domain. Proving that these operators are essentially
self-adjoint, however, is substantially more difficult. Although establishing
essential self-adjointness is a crucial technical issue, it is best not to worry
too much about it on a first encounter with quantum mechanics. In this
chapter, we will not concern ourselves overly with technical details con-
cerning essential self-adjointness and the precise choice of domain for our
operators, depending on Chap. 9 to take care of such matters. For now, we
content ourselves with deriving some very elementary properties of sym-
metric (and thus also self-adjoint) operators.

Proposition 3.4 Suppose A is a symmetric operator on H.

1. For all ψ ∈ Dom(A), the quantity 〈ψ,Aψ〉 is real. More generally, if
ψ,Aψ, . . . , Am−1ψ all belong to Dom(A), then 〈ψ,Amψ〉 is real.

2. Suppose λ is an eigenvector for A, meaning that Aψ = λψ for some
nonzero ψ ∈ Dom(A). Then λ ∈ R.

Proof. Since A is symmetric, we have

〈ψ,Aψ〉 = 〈Aψ,ψ〉 = 〈ψ,Aψ〉

for all ψ ∈ Dom(A). If ψ,Aψ, . . . , Am−1ψ all belong to the domain of A,
we can use the symmetry of A repeatedly to show that

〈ψ,Amψ〉 = 〈Amψ, ψ〉 = 〈ψ,Amψ〉.

Meanwhile, if ψ is an eigenvector for A with eigenvalue λ, then

λ 〈ψ, ψ〉 = 〈ψ,Aψ〉 = 〈Aψ,ψ〉 = λ̄ 〈ψ, ψ〉 .

Since ψ is assumed to be nonzero, this implies that λ = λ̄.
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Physically, 〈ψ,Aψ〉 represents—as we will see later in this chapter—
the expectation value for measurements of A in the state ψ, whereas the
eigenvalue λ represents one of the possible values for this measurement.
On physical grounds, we want both of these numbers to be real. If A is
self-adjoint, and not just symmetric, then the spectral theorem will give
a canonical way of associating to each ψ ∈ H a probability measure on
the real line that encodes the probabilities for measurements of A in the
state ψ.

3.3 Position and the Position Operator

Let us consider at first a single particle moving on the real line. The wave
function for such a particle is a map ψ : R1 → C. Although this map will
evolve in time, let us think for now that the time is fixed. The function
|ψ(x)|2 is supposed to be the probability density for the position of the
particle. This means that the probability that the position of the particle
belongs to some set E ⊂ R1 is

∫

E

|ψ(x)|2 dx.

For this prescription to make sense, ψ should be normalized so that
∫

R

|ψ(x)|2 dx = 1. (3.1)

That is, ψ should be a unit vector in the Hilbert space L2(R).

Now, if the function |ψ(x)|2 is the probability density for the position of
a particle, then according to the standard definitions of probability theory,
the expectation value of the position will be

E(x) =

∫

R

x |ψ(x)|2 dx, (3.2)

provided that the integral is absolutely convergent. More generally, we can
compute any moment of the position (i.e., the expectation value of some
power of the position) as

E(xm) =

∫

R

xm |ψ(x)|2 dx, (3.3)

assuming, again, the convergence of the integral.
A key idea in quantum theory is to express expectation values of various

quantities (position, momentum, energy, etc.) in terms of operators and
the inner product on the relevant Hilbert space, in this case, L2(R). In the
case of position, we may introduce the position operator X defined by

(Xψ)(x) = xψ(x).
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That is, X is the “multiplication by x” operator. The point of introducing
this operator is that the expectation value of the position [defined in (3.2)]
may now be expressed as

E(x) = 〈ψ,Xψ〉 ,

where the inner product is the usual one on L2(R):

〈φ, ψ〉 =
∫

φ(x)ψ(x) dx.

(Recall that we are following the physics convention of putting the conju-
gate on the first factor in the inner product.)
We use the following notation for the expectation value of the operator

X in the state ψ:
〈X〉ψ := 〈ψ,Xψ〉 .

The higher moments of the position, as defined in (3.3), are also computable
in terms of the position operator:

E(xm) = 〈ψ,Xmψ〉 .

At this point, it is not clear that we have gained anything by writing
our moments in terms of an operator and the inner product instead of in
terms of the integral (3.3). The operator description will, however, motivate
a parallel description of moments for the momentum, energy, or angular
momentum of a particle in terms of corresponding operators.
It should be noted that, for a given ψ ∈ L2(R), Xψ might fail to be in

L2(R). This failure of X to be defined on all of our Hilbert space reflects
that X is an unbounded operator, something that we discussed briefly in
Sect. 3.2. Even if Xψ is in L2(R), Xmψ might fail to be in L2(R) for some
m. Nevertheless, for any unit vector ψ in L2(R), we have a well-defined

probability density on R, given by |ψ(x)|2 .

3.4 Momentum and the Momentum Operator

At any fixed time, the wave function ψ(x) of a particle (according to the
wave theory postulated by Schrödinger) is a function of a “position” vari-
able x only. Although the wave function ψ directly encodes the probabilities
for the position of the particle, through |ψ(x)|2 , it is not as clear how in-
formation about the particle’s momentum is encoded. As it turns out, the
momentum is encoded in the oscillations of the wave function. A crucial
idea in quantum mechanics is the de Broglie hypothesis, which we intro-
duced in Sect. 1.2.2 as a way of understanding the allowed energies in the
Bohr model of the hydrogen atom. The de Broglie hypothesis proposes
a particular relationship between the frequency of oscillation of the wave
function—as a function of position at a fixed time—and its momentum.
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Proposition 3.5 (de Broglie hypothesis) If the wave function of a
particle has spatial frequency k, then the momentum p of the particle is

p = ℏk, (3.4)

where ℏ is Planck’s constant.

The Davisson–Germer electron-diffraction experiments, described in Sect.
1.2.3, strongly support not only the idea that electrons have wavelike
behavior, but also the specific relationship (3.4) between the momentum
of an electron and the spatial frequency of the associated wave. Of course,
Proposition 3.5 is rather vague. To be a bit more precise, Proposition 3.5 is
supposed to mean that a wave function of the form ψ(x) = eikx represents
a particle with momentum p = ℏk. [Here, as in Chap. 2, “frequency” is in
the angular sense. The cycles-per-unit-distance frequency is ν = k/(2π).]
Now, the function eikx is obviously not square integrable, so it is not

strictly possible for the wave function [which is supposed to satisfy (3.1)]
to be eikx. Let us therefore briefly switch to thinking of a particle on a circle,
so that we can avoid certain technicalities. We think of the wave function
ψ for a particle on a circle as a 2π-periodic function on R, satisfying the
normalization condition

∫ 2π

0

|ψ(x)|2 dx = 1.

For any integer k, it makes sense to say that the normalized wave function
ψ(x) = eikx/

√
2π represents a particle with momentum p = ℏk. In this case,

we are supposed to think that the momentum of the particle is definite,
that is, nonrandom. If the particle’s wave function is eikx/

√
2π, then a

measurement of the particle’s momentum should (with probability 1) give
the value ℏk.
Now, the functions eikx/

√
2π, k ∈ Z, form an orthonormal basis for the

Hilbert space of 2π-periodic, square-integrable functions, which may be
identified with L2([0, 2π]). Thus, the typical wave function for a particle on
a circle is

ψ(x) =

∞∑

k=−∞
ak

eikx√
2π

, (3.5)

where the sum is convergent in L2([0, 2π]). If ψ is normalized to be a unit
vector, then we have

∞∑

k=−∞
|ak|2 = ‖ψ‖2L2([0,2π]) = 1. (3.6)

For a particle with wave function given by (3.5), the momentum of the
particle is no longer definite. Rather, we are supposed to think that a
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measurement of the particle’s momentum will yield one of the values ℏk,
k ∈ Z, with the probability of getting a particular value �k being |ak|2 .
Following elementary probability theory, then, the expectation values for
the momentum should be

E(p) =

∞∑

k=−∞
ℏk |ak|2 , (3.7)

and higher moments for the momentum should be

E(pm) =

∞∑

k=−∞
(ℏk)m |ak|2 , (3.8)

assuming absolute convergence of the sum.
We would like to encode the moment conditions (3.7) and (3.8) in a

momentum operator P, which should be defined in such a way that if the
particle’s wave function ψ is given by (3.5), then E(pm) = 〈ψ, Pmψ〉 .
We can achieve this relation if P satisfies

Peikx = ℏkeikx, (3.9)

since then,

〈ψ, Pmψ〉 =
∞∑

k=−∞
(ℏk)m |ak|2 = E(pm). (3.10)

The (presumably unique) choice for P satisfying (3.9) is

P = −iℏ
d

dx
.

Returning now to the setting of the real line, it is natural to postu-
late that the momentum operator P on the line should also be given by
P = −i� d/dx. This operator satisfies the relation

Peikx = (�k)eikx,

which is supposed to capture the idea that the wave function eikx has
momentum �k. Although the function eikx is not square-integrable with re-
spect to x, the Fourier transform allows us to build up any square-integrable
function as a “superposition” of functions of the form eikx. (Superposition
is the term physicists use for a linear combination or the continuous analog
thereof, namely an integral.) This means that [by analogy to (3.5)] we have

ψ(x) =
1√
2π

∫ ∞

−∞
eikxψ̂(k) dk, (3.11)

where ψ̂(k) is the Fourier transform of ψ, defined by

ψ̂(k) =
1√
2π

∫ ∞

−∞
e−ikxψ(x) dx. (3.12)
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(See Appendix A.3.2 for information about the Fourier transform.)
The Plancherel theorem (Theorem A.19) then tells us that the Fourier

transform is a unitary map of L2(R) onto L2(R). Thus, for any unit vector
ψ ∈ L2(R), ∫ ∞

−∞
|ψ(x)|2 dx =

∫ ∞

−∞

∣∣∣ψ̂(k)
∣∣∣
2

dk = 1.

In light of what we have in the circle case, it is natural to think that |ψ̂(k)|2
is essentially the probability density for the momentum of the particle.
(To be precise, |ψ̂(k)|2 is the probability density for p/�.)
We can now express the properties of the momentum operator entirely

within the Hilbert space L2(R), without making explicit mention of the
non–square-integrable functions eikx.

Proposition 3.6 Define the momentum operator P by

P = −i�
d

dx
.

Then for all sufficiently nice unit vectors ψ in L2(R), we have

〈ψ, Pmψ〉 =
∫ ∞

−∞
(ℏk)m

∣∣∣ψ̂(k)
∣∣∣
2

dk (3.13)

for all positive integers m. The quantity in (3.13) is interpreted as the
expectation value of the mth power of the momentum, E(pm).

Equation (3.13) should be compared to (3.10) in the case of the circle.
Proof. If ψ is in, say, the Schwartz space (Definition A.15), then, by ap-
plying Proposition A.17 m times, we see that the Fourier transform of the
nth derivative of ψ is (ik)mψ̂(k), and so the Fourier transform of Pmψ is

(�k)mψ̂(k). Meanwhile, since the Fourier transform is unitary, we have

〈ψ, Pmψ〉 =
∫ ∞

−∞
ψ̂(k)(�k)mψ̂(k) dk,

which gives (3.13). (The assumption that ψ be in the Schwartz space is
stronger than necessary. The reader is invited to use integration by parts
and the definition of the Fourier transform to find weaker assumptions that
allow the same conclusion.)

3.5 The Position and Momentum Operators

In the following definition, we summarize what we have learned, in the two
previous sections, about the position and momentum operators.
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Definition 3.7 For a particle moving in R1, let the quantum Hilbert space
be L2(R) and define the position and momentum operators X and P
by

Xψ(x) = xψ(x)

Pψ(x) = −iℏ
dψ

dx
.

Neither the position nor the momentum operator is defined as mapping
the entire Hilbert space L2(R) into itself. After all, for ψ ∈ L2(R), the
function xψ(x) may fail to be in L2(R). Similarly, a function ψ in L2(R) may
fail to be differentiable, and even if it is differentiable, the derivative may fail
to be in L2(R). What this means is that X and P are unbounded operators,
of the sort discussed briefly in Sect. 3.2. They are defined on suitable dense
subspaces Dom(X) and Dom(P ) of L2(R). We defer a detailed examination
of the domains of these operators until Chap. 9.
A vitally important property of this pair of operators is that they do not

commute.

Proposition 3.8 The position and momentum operators X and P do not
commute, but satisfy the relation

XP − PX = iℏI, (3.14)

This relation is known as the canonical commutation relation.
Proof. Using the product rule we calculate that

PXψ = −iℏ
d

dx
(xψ(x))

= −iℏψ(x)− iℏx
dψ

dx
= −iℏψ(x) +XPψ,

from which (3.14) follows.
There are many important consequences of the relation (3.14), which we

will examine at length in Chaps. 11– 14 of the book. For now, we simply note
a parallel between (3.14) and the Poisson bracket relationship in classical
mechanics: {x, p} = 1, as follows directly from the definition of the Poisson
bracket. This hints at an analogy, which we will explore further in Sect. 3.7,
between the commutator of two operators A and B on the quantum side
(namely, the operator AB −BA) and the Poisson bracket of two functions
f and g on the classical side.

Proposition 3.9 For all sufficiently nice functions φ and ψ in L2(R),
we have

〈φ,Xψ〉 = 〈Xφ,ψ〉
and

〈φ, Pψ〉 = 〈Pφ, ψ〉 .
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Proof. Suppose that φ and ψ belong to L2(R) and that the functions xφ(x)
and xψ(x) also belong to L2(R). Then since x is real, we have

∫ ∞

−∞
φ(x)xψ(x) dx =

∫ ∞

−∞
xφ(x)ψ(x) dx,

where both integrals are convergent because they are both integrals of the
product of two L2 functions.
Meanwhile, for the second claim, let us assume that φ and ψ are con-

tinuously differentiable and that φ(x) and ψ(x) tend to zero as x tends to
±∞. Let us also assume that φ, ψ, dφ/dx and dψ/dx belong to L2(R). We
note that dφ̄/dx is the same as dφ/dx. Thus, using integration by parts,
we obtain

−i�

∫ A

−A

φ(x)
dψ

dx
dx = −i� φ(x)ψ(x)

∣∣∣
A

−A
+ i�

∫ A

−A

dφ

dx
ψ(x) dx.

Under our assumptions on φ and ψ, as A tends to infinity, the bound-
ary terms will vanish and the remaining integrals will tend (by dominated
convergence) to integrals over the whole real line. Thus,

∫ ∞

−∞
φ(x)

(
−i�

dψ

dx

)
dx = i�

∫ ∞

−∞

dφ

dx
ψ(x) dx

=

∫ ∞

−∞

(
−i�

dφ

dx

)
ψ(x) dx,

which is the second claim in the proposition.
In the language of Definition 3.3, Proposition 3.9 means that X and P

are symmetric operators on certain dense subspaces of L2(R) (the space of
functions for which the proposition is proved). It is actually true that X
and P are essentially self-adjoint on these domains. The proof of essential
self-adjointness, however, will have to wait until Chap. 9.

3.6 Axioms of Quantum Mechanics: Operators
and Measurements

In this section we consider the general “axioms” of quantum mechanics.
These axioms are not to be understood in the mathematical sense as rules
from which all other results are derived in a strictly deductive fashion.
Rather, the axioms are the main principles of how quantum mechanics
works. Here we look at the “kinematic” axioms, those that apply at one
fixed time. There is one additional axiom, governing the time-evolution of
the system, which we consider in the next section.
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Axiom 1 The state of the system is represented by a unit vector ψ in an
appropriate Hilbert space H. If ψ1 and ψ2 are two unit vectors in H with
ψ2 = cψ1 for some constant c ∈ C, then ψ1 and ψ2 represent the same
physical state.

The Hilbert space H is frequently called the “quantum Hilbert space.”
This does not, however, mean that H is some variant of the notion of a
Hilbert space, the way a quantum group is a variant of the notion of a
group. Rather, “quantum Hilbert space” means simply, “the Hilbert space
associated with a given quantum system.”
In Axiom 1, it should be noted that unit vectors in H actually represent

only the “pure states” of the theory. There is a more general notion of a
“mixed state” (described by a “density matrix”) that we will consider in
Chap. 19. We will follow the custom in most physics texts of considering at
first only pure states.

Axiom 2 To each real-valued function f on the classical phase space there
is associated a self-adjoint operator f̂ on the quantum Hilbert space.

In almost all cases, the operator f̂ is unbounded. This unboundedness
is unsurprising when we realize that physically relevant functions f on
the classical phase space (e.g., position and momentum) are unbounded
functions. In the unbounded case, the notion of self-adjointness is rather
technical; see Definition 3.3 in Sect. 3.2. In most applications, it is not
really necessary to define f̂ for all functions on the classical phase space,
but only for certain basic functions, such as position, momentum, energy,
and angular momentum. We will describe the quantizations of these basic
functions in this chapter. If one really needs to define f̂ for an arbitrary
function f (satisfying some regularity assumptions), the standard approach
is to use the Weyl quantization scheme, described in Chap. 13.
For a particle moving in R1, the classical phase space is R2, which we

think of as pairs (x, p) with x being the particle’s position and p being
its momentum. The quantum Hilbert space in this case is usually taken
to be L2(R) [not L2(R2)]. In that case, if the function f in Axiom 2 is

the position function, f(x, p) = x, then the associated operator f̂ is the
position operator X, given by multiplication by x. If f is the momentum
function, f(x, p) = p, then f̂ is the momentum operator P = −iℏ d/dx.
In the physics literature, a function f on the classical phase space is called

a classical observable, meaning that it is some physical quantity that could
be observed by taking a measurement of the system. The corresponding
operator f̂ is then called a quantum observable.

Axiom 3 If a quantum system is in a state described by a unit vector
ψ ∈ H, the probability distribution for the measurement of some observable
f satisfies

E(fm) =
〈
ψ, (f̂)mψ

〉
. (3.15)
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In particular, the expectation value for a measurement of f is given by
〈
ψ, f̂ψ

〉
. (3.16)

Note that we have adopted the point of view that even in a quantum
mechanical system, what one is measuring is the classical observable f.
In the quantum case, however, f no longer has a definite value, but only
probabilities, which are encoded by the quantum observable f̂ and the
vector ψ ∈ H.
If ψ is a nonzero vector in H but not a unit vector, then (3.16) should

be replaced by 〈
ψ, f̂ψ

〉

〈ψ, ψ〉 =
〈
ψ̃, f̂ ψ̃

〉
,

where ψ̃ := ψ/ ‖ψ‖ is the unit vector associated with ψ. It is convenient to
assume that our vectors have been normalized to be unit vectors, simply
to avoid having to divide by 〈ψ, ψ〉 in our expectation values.

Since f̂ is assumed to be self-adjoint and every self-adjoint operator is
symmetric, Proposition 3.4 tells us that the moments E(fm), and in partic-

ular the expectation value E(f), are real numbers. Since f̂ is assumed to be
self-adjoint and not just symmetric, the spectral theorem (Chaps. 7 and 10)
will give a canonical way of constructing a probability measure μA,ψ on R

that may be interpreted as the probability distribution for measurements
of A in the state ψ.
Axiom 3 provides motivation for the idea that two unit vectors that differ

by a constant represent the same physical state. If ψ2 = cψ1 with |c| = 1,
then for any operator A, we have

〈ψ2, Aψ2〉 = 〈cψ1, Acψ1〉 = |c|2 〈ψ1, Aψ1〉 = 〈ψ1, Aψ1〉 .
Thus, the expectation values of all observables are the same in the state
ψ2 as in the state ψ1.

Notation 3.10 If A is a self-adjoint operator on H and ψ ∈ H is a unit
vector, the expectation value of A in the state ψ is denoted 〈A〉ψ and is
defined (in light of Axiom 3) to be

〈A〉ψ = 〈ψ,Aψ〉 . (3.17)

Proposition 3.11 (Eigenvectors) If a quantum system is in a state

described by a unit vector ψ ∈ H and for some quantum observable f̂ we
have f̂ψ = λψ for some λ ∈ R, then

E(fm) =
〈
(f̂)m

〉
ψ
= λm (3.18)

for all positive integers m. The unique probability measure consistent with
this condition is the one in which f has the definite value λ, with probabil-
ity one.
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What the proposition means is that if ψ is an eigenvector for f̂ , then
measurements of f for a particle in the state ψ are not actually random,

but rather always give the answer of λ. If f̂ψ = λψ, then
〈
ψ, (f̂)mψ

〉
=

λm 〈ψ, ψ〉 = λm. Thus, by (3.15), we want to find a probability measure μ
on R such that ∫

R

xm dμ = λm, (3.19)

for all non-negative integers m. The proposition is claiming that there is
one and only one such measure, namely the δ-measure at the point λ.
Because f̂ is assumed to be self-adjoint and therefore symmetric, Propo-

sition 3.4 thus tells us that the every eigenvalue for f̂ is real.
Proof. The relation (3.18) follows from (3.15) and the fact that f̂ψ =
λψ. Meanwhile, if μ is the δ-measure at λ, then certainly (3.19) holds.
Meanwhile, since the mth moment grows only exponentially with m, even
the most elementary uniqueness results for the moment problem show that
the δ-measure is the only measure with these moments. (See, e.g., Theorem
8.1 in Chap. 4 of [18].)
If, more generally, the state of the system is a linear combination of

eigenvectors for f̂ , measurements of f will no longer be deterministic.

Example 3.12 Suppose f̂ has an orthonormal basis {ej} of eigenvectors
with distinct (real) eigenvalues λj . Suppose also that ψ is a unit vector in
H with the expansion

ψ =
∞∑

j=1

ajej. (3.20)

Then for a measurement in the state ψ of the observable f, the observed
value of f will always be one of the numbers λj . Furthermore, the probability
of observing the value λj is given by

Prob{f = λj} = |aj |2 . (3.21)

Assuming that ψ is in the domain of (f̂)m, it is easy to verify that the
probabilities in (3.21) are consistent with the expectation values given in
Axiom 3. After all, if ψ is given as in (3.20), then we can readily calculate

that 〈ψ, (f̂)mψ〉 equals
∑

|aj |2 λm
j , which is nothing but the mth moment

associated with the probability distribution in (3.21). In general, we can-
not quite derive (3.21) from Axiom 3, since the uniqueness results for the
moment problem might not apply. Nevertheless, (3.21) is the most natural
candidate for the probabilities, and we will assume that this formula holds.
It is not difficult to extend Example 3.12 to the case where the eigenvalues

are not distinct: For any sequence {λj} of eigenvalues, the probability of

observing some value λ will be the sum of |aj |2 over all those values of j
for which λj = λ. For any self-adjoint operator A, the spectral theorem
implies that A has either an orthonormal basis of eigenvectors or some
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continuous analog thereof. In particular, given a self-adjoint operator A
and a unit vector ψ ∈ H, the spectral theorem will give us a probability
measure μA

ψ on R that we interpret as describing the probabilities for a
measurement of A in the state ψ. See Proposition 7.17 in the bounded case
and Definition 10.7 in the unbounded case.

Axiom 4 Suppose a quantum system is initially in a state ψ and that a
measurement of an observable f is performed. If the result of the measure-
ment is the number λ ∈ R, then immediately after the measurement, the
system will be in a state ψ′ that satisfies

f̂ψ′ = λψ′.

The passage from ψ to ψ′ is called the collapse of the wave function. Here
f̂ is the self-adjoint operator associated with f by Axiom 2.

Let us assume again that f̂ has an orthonormal basis of eigenvectors {ej}
with distinct eigenvalues λj . Then we can say, more specifically, that if we

observe the value λj in a measurement of f̂ (and we will always observe
one of the λj ’s) then ψ′ = ej . That is, the measurement “collapses” the
wave function by throwing away all the components of ψ in the direction
of the ek’s, except the one with k = j.
This idea of the collapse of the wave function has generated an enormous

amount of discussion and controversy. One way to look at the situation is
to think that the wave function ψ is not actually the state of the system—
although we continue to use the standard physics term, “state.” Rather,
the wave function is the thing that encodes the probabilities for the state of
the system. The collapse of the wave function is then something similar to
a conditional probability; the probabilities for future measurements of the
system should be consistent with the outcome of the measurement we just
made. Paul Dirac has described the collapse of the wave function as being
not a discontinuous change in the state of the system, but a discontinuous
change in our knowledge of the state of the system.
In any case, Axiom 4 guarantees the following reasonable principle: If

we measure f and then measure f again a very short time later, the result
of the second measurement will agree with the result of the first measure-
ment. Thus, immediately after the first measurement, the probabilities for
a second measurement of f are not those associated with the vector ψ, but
rather those associated with the state ψ′. (Since ψ′ is an eigenvector for f̂
with eigenvalue λ, Proposition 3.11 tells us that measurements of f in the
state ψ′ always give the value of λ.)
Note that Axiom 4 only tells us something about the state of the system

immediately after a measurement. Following the measurement, the state of
the system will evolve in time in the usual way (Sect. 3.7). A significant
time after the measurement, then, the system will probably no longer be
in the state ψ′.
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Let us conclude this section by considering an example of how one makes
a measurement of a real-world physical system, namely, the hydrogen atom.
The Hamiltonian operator Ĥ for a hydrogen atom has negative eigenvalues
of the form

− R

n2
, (3.22)

where R is the Rydberg constant and n = 1, 2, 3, . . . These energies will be
derived in Chap. 18. Negative eigenvalues are of greater interest than posi-
tive ones, because negative eigenvalues describes states where the electron
is bound to the nucleus. If an electron is placed into a state having energy
−R/n2

1, with n1 > 1, it will eventually “decay” into a state with lower
energy, say, −R/n2

2, with n2 < n1. (The most readily observed cases are
those with n2 = 2 and n2 = 1.) In the process of decaying, the electron
emits a photon, with the energy of the photon being equal to the change
in energy of the electron, namely,

Ephoton =
R

n2
2

− R

n2
1

. (3.23)

Meanwhile, the frequency of the photon is proportional to its energy. Thus,
by observing the frequency of the emitted photon, one can determine the
change in energy of the electron and thus determine the values of n1 and n2.
A general “bound state” of the hydrogen atom (a state in which the

electron is bound to the nucleus), will be a linear combination of eigenvec-
tors for Ĥ with various different eigenvalues of the form (3.22). To measure
the energy of the electron, we simply wait for the electron to decay into a
lower-energy state and emit a photon, observe the frequency of the photon,
and work backwards to the energy of the electron. If we consider many
“identically prepared” electrons, all having the same wave function that
is a linear combination of eigenvectors, we will observe many different fre-
quencies for the emitted photons, and thus many different energies for the
electron. The probabilities for the observed energies of the electron will
follow the principle spelled out in Example 3.12.
In basic probability theory, if Y is a random variable then the variance

σ2 of Y is computed as

σ2 = E
[
(Y − E(Y ))2

]
,

where E denotes the mean or expectation value of a random variable. The
standard deviation σ :=

√
σ2 is a measure of the “typical” deviation from

the mean E(X). Observe that the variance may be computed as

σ2 = E
[
Y 2 − 2E(Y )Y + E(Y )2

]

= E(Y 2)− 2E(Y )2 + E(Y )2

= E(Y 2)− E(Y )2. (3.24)
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Definition 3.13 If A is a self-adjoint operator on a Hilbert space H and
ψ is a unit vector in H, let ∆ψA denote the standard deviation associated
with measurements of A in the state ψ, which is computed as

(∆ψA)
2
=
〈
(A− 〈A〉ψ I)2

〉
ψ

=
〈
A2

〉
ψ
−
(
〈A〉ψ

)2

.

We refer to ∆ψA as the uncertainty of A in the state ψ.

For any single observable A, it is possible to choose ψ so that ∆ψA
is as small as we like. In Chap. 12, however, we will see that when two
observables A and B do not commute, then ∆ψA and ∆ψB cannot both
be made arbitrarily small for the same ψ. In particular, we will derive there
the famous Heisenberg uncertainty principle, which states that

(∆ψX)(∆ψP ) ≥ �

2
,

for all ψ for which ∆ψX and ∆ψP are defined.

3.7 Time-Evolution in Quantum Theory

3.7.1 The Schrödinger Equation

Up to now, we have been considering the wave function ψ at a fixed time.
We now consider the way in which the wave function evolves in time. Recall
that in the Hamiltonian formulation of classical mechanics (Sect. 2.5), the
time-evolution of the system is governed by the Hamiltonian (energy) func-
tion H, through Hamilton’s equations. According to Axiom 2, there is a
corresponding self-adjoint linear operator Ĥ on the quantum Hilbert space
H, which we call the Hamiltonian operator for the system. See Sect. 3.7.4
for an example.
Recall that we motivated the definition of the momentum operator by

the de Broglie hypothesis, p = �k, where k is the spatial frequency of the
wave function. We can similarly motivate the time-evolution in quantum
mechanics by a similar relation between the energy and the temporal fre-
quency of our wave function:

E = �ω. (3.25)

This relationship between energy and temporal frequency is nothing but the
relationship proposed by Planck in his model of blackbody radiation (Sect.
1.1.3). Suppose that a wave function ψ0 has definite energy E, meaning
that ψ0 is an eigenvector for Ĥ with eigenvalue E. Then (3.25) means that
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the time-dependence of the wave function should be purely at frequency
ω = E/�. That is to say, if the state of the system at time t = 0 is ψ0, then
the state of the system at any other time t should be

ψ(t) = e−iωtψ0 = e−iEt/�ψ0. (3.26)

We can rewrite (3.26) as a differential equation:

dψ

dt
= − iE

�
ψ =

E

i�
ψ. (3.27)

Note that we are taking “temporal frequency ω” to mean that the time-
dependence is of the form e−iωt, whereas we took “spatial frequency k” to
mean that the space-dependence is of the form eikx, with no minus sign in
the exponent. This curious convention is convenient when we look at pure
exponential solutions to the free Schrödinger equation (Chap. 4) of the form
exp[i(kx− ωt)], which describes a solution moving to the right with speed
ω/k.
Equation (3.27) tells us the time-evolution for a particle that is initially

in a state of definite energy, that is, an eigenvector for the Hamiltonian
operator. A natural way to generalize this equation is to recognize that Eψ
is nothing but Ĥψ, since ψ is just a multiple of ψ0, which is an eigenvector
for Ĥ with eigenvalue E. Replacing E by Ĥ in (3.27) leads to the following
general prescription for the time-evolution of a quantum system.

Axiom 5 The time-evolution of the wave function ψ in a quantum system
is given by the Schrödinger equation,

dψ

dt
=

1

iℏ
Ĥψ. (3.28)

Here Ĥ is the operator corresponding to the classical Hamiltonian H by
means of Axiom 2.

Although both Hamilton’s equations and the Schrödinger equation
involve a Hamiltonian, the two equations otherwise do not seem parallel.
Of course, since quantum mechanics is not classical mechanics, we should
not expect the two theories to have the same time-evolution. Neverthe-
less, we might hope to see some similarities between the time-evolution of
a classical system and that of the corresponding quantum system. Such
a similarity can be seen when we consider how the expectation values of
observables evolve in quantum mechanics.

Proposition 3.14 Suppose ψ(t) is a solution of the Schrödinger equation
and A is a self-adjoint operator on H. Assuming certain natural domain
conditions hold, we have

d

dt
〈A〉ψ(t) =

〈
1

iℏ
[A, Ĥ ]

〉

ψ(t)

, (3.29)
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where 〈A〉ψ is as in Notation 3.10 and where [·, ·] denotes the commutator,
defined as

[A,B] = AB −BA.

Equation (3.29) should be compared to the way a function f on the clas-
sical phase space evolves in time along a solution of Hamilton’s equations:
df/dt = {f,H}. We see, then, that the commutator of operators (divided
by i�) plays a role in quantum mechanics similar to the role of the Poisson
bracket in classical mechanics.
Proof. Let ψ(t) be a solution to the Schrödinger equation and let us com-
pute at first without worrying about domains of the operators involved. If
we use the product rule (Exercise 1) for differentiation of the inner product,
we obtain

d

dt
〈ψ(t), Aψ(t)〉 =

〈
dψ

dt
, Aψ

〉
+

〈
ψ,A

dψ

dt

〉

=
i

ℏ

〈
Ĥψ,Aψ

〉
− i

ℏ

〈
ψ,AĤψ

〉

=
1

iℏ

〈
ψ, [A, Ĥ ]ψ

〉
,

where in the last step we have used the self-adjointness of Ĥ to move it
to the other side of the inner product. Recall that we are following the
convention of putting the complex conjugate on the first factor in the inner
product, which accounts for the plus sign in the first term on the second
line. Rewriting this using Notation 3.10 gives the desired result.
If A and Ĥ are (as usual) unbounded operators, then the preceding

calculation is not completely rigorous. Since, however, we are deferring a
detailed examination of issues of unbounded operators until Chap. 9, let
us simply state the conditions needed for the calculation to be valid. For
every t ∈ R, we need to have ψ(t) ∈ Dom(A) ∩Dom(Ĥ), we need Aψ(t) ∈
Dom(Ĥ), and we need Ĥψ(t) ∈ Dom(A). (These conditions are needed for
[A, Ĥ ]ψ(t) to be defined.) In addition, we need Aψ(t) to be a continuous
path in H.

Note that to see interesting behavior in the time-evolution of a quantum
system, there has to be noncommutativity present. If all the physically
interesting operators A commuted with the Hamiltonian operator Ĥ, then
[Ĥ, A] would be zero and the expectation values of these operators would
be constant in time. Noncommutativity of the basic operators is therefore
an essential property of quantum mechanics. In the case of a particle in
R1, noncommutativity is built into the commutation relation for X and P,
given in Proposition 3.8.
Although it is not reasonable to have all physically interesting opera-

tors commute with Ĥ, there may be some operators with this property. If
[A, Ĥ ] = 0, then the expectation value of A (and, indeed, all the moments
of A) is independent of time along any solution of the Schrödinger equation.
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We may therefore call such an operator A a conserved quantity (or constant
of motion). Just as in the classical setting, conserved quantities (when we
can find them) are helpful in understanding how to solve the Schrödinger
equation.
Proposition 3.14 suggests that the map

(A,B) �−→ 1

iℏ
[A,B],

where A and B are self-adjoint operators, plays a role similar to that of the
Poisson bracket in classical mechanics. This analogy is supported by the
following list of elementary properties of the commutator, which should be
compared to the properties of the Poisson bracket listed in Proposition 2.23.

Proposition 3.15 For any vector space V over C and linear operators A,
B, and C on V , the following relations hold.

1. [A,B + αC] = [A,B] + α[A,C] for all α ∈ C

2. [B,A] = −[A,B]

3. [A,BC] = [A,B]C +B[A,C]

4. [A, [B,C]] = [[A,B], C] + [B, [A,C]]

Property 4 is equivalent to the Jacobi identity,

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0, (3.30)

as can easily be seen using the skew-symmetry of the commutator.
Proof. The first two properties of the commutator are obvious, and the
third is easily verified by writing things out. Property 4 can also be proved
by writing things out, but it is slightly messier. Each of the three double
commutators on the left-hand side of (3.30) generates four terms, for a total
of 12 terms. Each term has the operators A, B, and C multiplied together
in some order. It is a straightforward but unenlightening calculation to
verify that each of the six possible orderings of A, B, and C occurs twice,
with opposite signs.
If A and B are bounded self-adjoint operators on some Hilbert space,

then it is straightforward to check that (1/(i�))[A,B] is again self-adjoint
(Exercise 3). If A and B are unbounded self-adjoint operators, then the
operator (1/(i�))[A,B] will be self-adjoint under suitable assumptions on
the domains of A and B.

Proposition 3.16 If φ(t) and ψ(t) are solutions to the Schrödinger equa-
tion (3.28), the quantity 〈φ(t), ψ(t)〉 is independent of t. In particular,
‖ψ(t)‖ is independent of t, for any solution ψ(t) of the Schrödinger equation.
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Proof. Using again the product rule, we have

d

dt
〈φ(t), ψ(t)〉 =

〈
1

i�
Ĥφ(t), ψ(t)

〉
+

〈
φ(t),

1

i�
Ĥψ(t)

〉

= − 1

i�

〈
Ĥφ(t), ψ(t)

〉
+

1

i�

〈
φ(t), Ĥψ(t)

〉

Since Ĥ is self-adjoint, we can move Ĥ to the other side of the inner product
and the derivative is equal to 0.

3.7.2 Solving the Schrödinger Equation by Exponentiation

The Schrödinger equation is an example of a equation of the form

dv

dt
= Av, (3.31)

where A is a linear operator on a Hilbert space. (In the Schrödinger case,
we have A = −(i/ℏ)Ĥ.) Let us think of (3.31) in the case where the Hilbert
space is the finite-dimensional space Cn. In that case, we can think of A as
an n × n matrix, in which case (3.31) is the sort of equation encountered
in the elementary theory of ordinary differential equations. The solution of
this system (in the finite-dimensional case) can be expressed as

v(t) = etAv0,

where the matrix exponential etA is defined by a convergent power series
and where v0 = v(0) is the initial condition. If A is diagonalizable, then
the exponential can by computed by using a basis of eigenvectors. (See
Sect. 16.4 for more information.)
The Schrödinger equation simply replaces Cn by a Hilbert space H and

the matrix A by the linear operator −(i/ℏ)Ĥ.

Claim 3.17 Suppose Ĥ is a self-adjoint operator on H. If a reasonable

meaning can be given to the expression e−itĤ/�, then the Schrödinger equa-
tion can be solved by setting

ψ(t) = e−itĤ/ℏψ0. (3.32)

To see why the claim should be true, we expect that we can differentiate

the operator-valued expression e−itĤ/ℏ with respect to t as we would in the
finite-dimensional case. The differentiation, then, would pull down a factor
of −iĤ/�, which would indicate that ψ(t) indeed solves the Schrödinger

equation. Furthermore, when t = 0, e−itĤ/ℏ should be equal to I, so that
ψ(0) is indeed ψ0.
If Ĥ is a bounded operator (which is rarely the case), then the expo-

nential e−itĤ/ℏ can be defined by a convergent power series, precisely as
in the finite-dimensional case. In that case, Claim 3.17 is an easily proved
theorem.
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In the more typical case where Ĥ is unbounded, convergence of the series
for the exponential is a rather delicate matter, and it is better instead to
use the spectral theorem. We leave a general discussion of the spectral
theorem to Chaps. 7 and 10, and here consider only the case of a pure
point spectrum. A (possibly unbounded) self-adjoint operator Ĥ is said to
have a pure point spectrum if there exists an orthonormal basis {ej} for H

consisting of eigenvectors for Ĥ. If Ĥej = Ejej for some Ej ∈ R, then the
exponential can be defined by requiring that

e−itĤ/ℏej = e−itEj/ℏej . (3.33)

The operator e−itĤ/ℏ is unitary and thus bounded; it is the unique bounded
operator on H satisfying (3.33).
It is not precisely true that every self-adjoint operator has an orthonor-

mal basis of eigenvectors, even if the operator is bounded. Nevertheless,
given a self-adjoint operator A, the spectral theorem tells us that there is a
decomposition of H into “generalized eigenspaces” for A. It is, however, a
bit complicated to state the precise sense of this decomposition, especially
in the case of unbounded operators. Still, Claim 3.17 allows us to identify
one goal for the spectral theorem: Whatever the spectral theorem says, it
ought to allow us to make sense of the expression eiaA, for any self-adjoint
operator A and real number a. This goal will indeed be realized, in the
bounded case in Chap. 7 and in the unbounded case in Chap. 10.
We should add two points of clarification regarding the expression (3.32).

First, in writing (3.32), we have not “really” solved the Schrödinger equa-

tion. For this expression to be useful, we need to compute e−itĤ/ℏ in some
relatively explicit way. If, for example, we can actually compute an or-
thonormal basis of eigenvectors for Ĥ , then in light of (3.33), we are on

our way to understanding the behavior of the operator e−itĤ/ℏ. Second,
although Ĥ is an unbounded operator, which is not defined on all of H

but only on a dense subspace, the operator e−itĤ/ℏ is unitary and de-
fined on all of H. Thus, the right-hand side of (3.32) makes sense for any

ψ0 in H. Nevertheless, we cannot expect that e−itĤ/ℏψ0 actually solves the
Schrödinger equation (in the natural Hilbert space sense) unless ψ0 belongs
to the domain of Ĥ. (See Lemma 10.17 in Sect. 10.2.)

3.7.3 Eigenvectors and the Time-Independent Schrödinger

Equation

As we saw in the preceding section, eigenvectors for the Hamiltonian oper-
ator are of great importance in solving the Schrödinger equation. In light
of this fact, we make the following definition.
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Definition 3.18 If Ĥ is the Hamiltonian operator for a quantum system,
the eigenvector equation

Ĥψ = Eψ, E ∈ R, (3.34)

is called the time-independent Schrödinger equation.

As always in eigenvector equations, we are trying to determine both the
numbers E for which (3.34) has a nonzero solution (the eigenvalues) and the
corresponding vectors ψ (the eigenvectors). When quantum texts speak of
“solving,” say, the quantum harmonic oscillator, what they usually mean is
finding all of the solutions to the time-independent Schrödinger equation.
(See, e.g., Chaps. 5 and 11.) If ψ is a solution to the time-independent
Schrödinger equation, then the solution to the time-dependent Schrödinger
equation with initial condition ψ is simply ψ(t) = e−itE/�ψ. Since ψ(t) is
just a constant multiple of ψ, we see that ψ(t) represents the same physical
state as ψ. Thus, a solution to the time-independent Schrödinger equation
is sometimes called a stationary state.

3.7.4 The Schrödinger Equation in R1

Let us now consider the simplest example for the Hamiltonian operator
Ĥ. For a particle moving in R1, recall (Sect. 3.5) that we have identified
the position operator X as being multiplication by x and the momentum
operator as P = −iℏ d/dx. The classical Hamiltonian for such a particle
is typically taken to be of the form H(x, p) = p2/(2m) + V (x), where V is
the potential energy function. In that case, we may reasonably take

Ĥ =
P 2

2m
+ V (X).

Here the operator V (X) is simply multiplication by the potential energy
function V (x). (This operator may also be thought of as the function V
applied to the operator X in the sense of the functional calculus coming
from the spectral theorem.) We see, then, that

Ĥψ(x) = − ℏ2

2m

d2ψ

dx2
+ V (x)ψ(x). (3.35)

An operator of the form (3.35), or an analogously defined operator in higher
dimensions, is referred to as a Schrödinger operator. (The term Hamilto-
nian operator refers more generally to whatever operator governs the time-
evolution of a quantum system, regardless of its form.)
If our Hamiltonian is of the form given in (3.35), then the time-dependent

Schrödinger equation takes the form

∂ψ(x, t)

∂t
=

iℏ

2m

∂2ψ(x, t)

∂x2
− i

ℏ
V (x)ψ(x, t), (3.36)
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which is a linear partial differential equation. By contrast, Newton’s
equation for a particle in R1 is a typically nonlinear ordinary differential
equation.
For a particle in R1, the time-independent Schrödinger equation is an

ordinary differential equation, one that is linear but that has nonconstant
coefficients, unless V happens to be constant. For simple examples of the
potential function V, there are relatively standard methods of ordinary
differential equations that can be brought to bear on the time-independent
Schrödinger equation.

3.7.5 Time-Evolution of the Expected Position

and Expected Momentum

Since a quantum particle does not have a fixed position or momentum, it
does not make sense to ask whether the particle satisfies Newton’s equation.
It does, however, make sense to ask whether the expected values of the po-
sition and momentum satisfy Newton’s equation (in the form of Hamilton’s
equations).

Proposition 3.19 Suppose ψ(t) is a solution to the Schrödinger equa-
tion (3.36) for a sufficiently nice potential V and for a sufficiently nice
initial condition ψ(0) = ψ0. Then the expected position and expected mo-
mentum in the state ψ(t) satisfy

d

dt
〈X〉ψ(t) =

1

m
〈P 〉ψ(t) (3.37)

d

dt
〈P 〉ψ(t) = −〈V ′(X)〉ψ(t) . (3.38)

The assumptions in the proposition are there for two reasons: First, to en-
sure that Ĥ is actually a self-adjoint operator (see Sect. 9.9) and second, to
ensure that the domain assumptions in Proposition 3.14 are satisfied. If we
assume, for example, that V (x) is a bounded-below polynomial in x and
that ψ0 belongs to the Schwartz space (A.15), then both of these concerns
will be taken care of. Once these technicalities are addressed, the proof of
Proposition 3.19 is a straightforward application of Proposition 3.14; see
Exercise 4. Note that (3.37) says that in a certain sense, the velocity of a
quantum particle is 1/m times the momentum, just as in the classical case.
At first glance, it might appear that the pair (〈X〉ψ(t) , 〈P 〉ψ(t)) is a solu-

tion to Hamilton’s equations, and indeed (3.37) is precisely what Hamilton’s
equations require. To get a solution to Hamilton’s equations, however, we
would need the right-hand side of (3.38) to equal −V ′(〈X〉ψ(t)). But in
general,

〈V ′(X)〉ψ 
= V ′(〈X〉ψ).
Consider, for example, the case V ′(x) = x3 + x2. If ψ is an even func-
tion, then 〈X〉ψ = 0 and so V ′(〈X〉ψ) = 0. But

〈
X3 +X2

〉
ψ
will not be
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zero, because the X3 term will be zero and the X2 term will be positive.
We conclude, then, that 〈X〉ψ(t) and 〈P 〉ψ(t) usually do not evolve along
solutions to Hamilton’s equations.
There is, however, one case in which 〈V ′(X)〉ψ coincides with V ′(〈X〉ψ),

and that is the case in which V is quadratic, in which case V ′ is linear. In
that case we have

〈V ′(X)〉ψ = 〈aX + bI〉ψ = a 〈X〉ψ + b = V ′(〈X〉ψ).

Thus, the expected position and expected momentum do follow classical
trajectories in the case of a quadratic potential. It is not surprising that
this case is special in quantum mechanics, since it is also special in classical
mechanics; this is the case in which Newton’s law is a linear differential
equation.
Although the expected position and expected momentum do not (in gen-

eral) exactly follow classical trajectories, they will do so approximately un-
der certain conditions. If the wave function ψ(x) is concentrated mostly
near a single point x = x0, then 〈V ′(X)〉ψ and V ′(〈X〉ψ) will both be
approximately equal to V ′(x0). In that case, the expected position and
expected momentum of the particle will approximately follow a classical
trajectory, at least for as long as the wave function remains concentrated
near a single point.

3.8 The Heisenberg Picture

The “Heisenberg picture” of quantum mechanics is based on Heisenberg’s
matrix model of quantum mechanics (Sect. 1.3). In the Heisenberg picture,
one thinks of the operators (quantum observables) as evolving in time, while
the vectors in the Hilbert space (quantum states) remain independent of
time. This is to be contrasted with the approach to quantum mechanics
we have been using up to now (the “Schrödinger picture”), in which the
observables are independent of time and the states evolve in time.

Definition 3.20 In the Heisenberg picture, each self-adjoint operator A
evolves in time according to the operator-valued differential equation

dA(t)

dt
=

1

iℏ
[A(t), Ĥ ], (3.39)

where Ĥ is the Hamiltonian operator of the system, and where [·, ·] is the
commutator, given by [A,B] = AB −BA.

Note that since Ĥ commutes with itself, the operator Ĥ remains constant
in time, even in the Heisenberg picture. This observation is the quantum
counterpart to the fact that the classical Hamiltonian H remains constant
along a solution of Hamilton’s equations.
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Given the self-adjoint operator Ĥ, the spectral theorem will give us a way

to construct a family of unitary operators e−itĤ/�, t ∈ R, and this family of
operators computes the time-evolution of states in the Schrödinger picture
(Sect. 3.7.2). It is easy to check (at least formally) that the solution to
(3.39) can be expressed as

A(t) = eitĤ/ℏAe−itĤ/ℏ. (3.40)

Now, if ψ is the state of the system (now considered to be independent of
time), then the expectation of A(t) in the state ψ is defined to be 〈A(t)〉ψ =
〈ψ,A(t)ψ〉 . We may then compute that

〈A(t)〉ψ =
〈
ψ, eitĤ/ℏAe−itĤ/ℏψ

〉

=
〈
e−itĤ/ℏψ,Ae−itĤ/ℏψ

〉

= 〈ψ(t), Aψ(t)〉 ,

where ψ(t) is time-evolved state of the system in the Schrödinger picture.

Here, we have used that the adjoint of eitĤ/� is e−itĤ/�, which is formally
clear and which is a consequence of the spectral theorem.
Note that in the Schrödinger picture, 〈ψ(t), Aψ(t)〉 is the expectation

value of A in the state ψ(t). We conclude, then, that the Heisenberg picture
and the Schrödinger picture give rise to precisely the same expectation
values for observables as a function of time, and are therefore physically
equivalent. Although we will work primarily with the Schrödinger picture of
quantum mechanics, the Heisenberg picture is also important, for example,
in quantum field theory.

Proposition 3.21 Suppose Ĥ = P 2/(2m)+V (X), where V is a bounded-
below polynomial. Then for any t ∈ R we have

Ĥ =
1

2m
(P (t))

2
+ V (X(t)). (3.41)

Note that since [Ĥ, Ĥ ] = 0, the Hamiltonian Ĥ is independent of time,
even in the Heisenberg picture. Thus, the right-hand side of (3.41) is ac-
tually independent of t, even though P (t) and X(t) depend on t. Equa-
tion (3.41) holds also for sufficiently nice nonpolynomial functions V, but
some limiting argument would be required in the proof. The assumption
that V be bounded below is to ensure that Ĥ is actually an (essentially)
self-adjoint operator; compare Sect. 9.10.

Lemma 3.22 Suppose A is a self-adjoint operator on H and that A(·) is
a solution to (3.39) with A(0) = A. Then for any positive integer m, the
map

t �→ (A(t))m

is also a solution to (3.39).
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That is to say, the time-evolution of the mth power of A is the same as
the mth power of the time-evolution of A; that is, Am(t) = (A(t))m.
Proof. If we use (3.40), then the result holds because

eitĤ/ℏAme−itĤ/ℏ = eitĤ/ℏAe−itĤ/ℏeitĤ/ℏAe−itĤ/ℏ · · · eitĤ/ℏAe−itĤ/ℏ

=
(
eitĤ/ℏAe−itĤ/ℏ

)m

.

It is also easy to check that A(t)m satisfies the differential equation (3.39).

With this lemma in hand, it is easy to prove the proposition.
Proof of Proposition 3.21. On the one hand, since [Ĥ, Ĥ ] = 0, the
time-evolved operator Ĥ(t) is simply equal to Ĥ. On the other hand, if we
time-evolve P 2/(2m) + V (X) using Lemma 3.22, we obtain the expression
on the right-hand side of (3.41).

Proposition 3.23 Suppose the Hamiltonian of a quantum system is as
in Proposition 3.21. Then the operators X(t) and P (t) defined by (3.39)
satisfy the following operator-valued differential equation:

dX

dt
=

1

m
P (t)

dP

dt
= −V ′(X(t)). (3.42)

Proof. See Exercise 7.
Proposition 3.23 means that the operator-valued functions X(t) and P (t)

satisfy the operator analogs of the classical equations of motion dx/dt =
p(t)/m and dp/dt = −V ′(x(t)). Nevertheless, the expectation values ofX(t)
and P (t) do not satisfy the ordinary equations of motion, as we have already
seen by calculating in the Schrödinger picture. If we take expectation values
in the system (3.42), we get the same answer as in Proposition 3.19, namely,

d

dt
〈X(t)〉ψ =

1

m
〈P (t)〉ψ

d

dt
〈P (t)〉ψ = −〈V ′(X(t))〉ψ .

These are not the classical equations of motion, unless the expectation value
of the operator V ′(X(t)) coincides with V ′ applied to the expectation value
of X(t), which is usually not the case.

3.9 Example: A Particle in a Box

Let us consider quantum mechanics in one space dimension for a particle
that is confined to move in a “box,” which we describe as the interval
0 ≤ x ≤ L. Our goal is to find all of the eigenvectors and eigenvalues of
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the Schrödinger operator, that is, to find solutions of the time-independent
Schrödinger equation Ĥψ = Eψ. In solving this equation, we may think of
the constraint to the box as follows. Imagine a particle moving in R1 in the
presence of a potential V that is 0 for x between 0 and L and takes some
very large constant value C on the rest of the real line. Classically, this
would mean that the particle has to have very high energy (greater than
C) to escape from the box. Quantum mechanically, if we have a solution
of the time-independent Schrödinger equation Ĥψ = Eψ for this potential
(with E ≪ C), then we expect ψ to decay rapidly for x outside of the box.
(We will see this behavior explicitly in Chap. 5.) In the limit as C tends to
infinity, we expect solutions of the time-independent Schrödinger equation
to be zero outside the box and to tend to zero as we approach the ends of
the box.
The upshot of this discussion is that we are looking for smooth functions

ψ on [0, L] that satisfy the differential equation

− ℏ2

2m

d2ψ

dx2
= Eψ(x), 0 ≤ x ≤ L (3.43)

and the boundary conditions

ψ(0) = ψ(L) = 0. (3.44)

For E > 0, the solution space to (3.43) will be the span of two complex
exponentials, or equivalently a sine and a cosine function:

ψ(x) = a sin

(√
2mE

ℏ
x

)
+ b cos

(√
2mE

ℏ
x

)
. (3.45)

If we now impose the boundary condition ψ(0) = 0, we get that b = 0,
leaving only the sine term. If we then impose the condition ψ(L) = 0, we
will obtain a = 0—which would mean that ψ is identically zero—unless

sin

(√
2mE

ℏ
L

)
= 0. (3.46)

Since we are interested in solutions to (3.43) where ψ is not identically
zero, we want (3.46) to hold. Thus, the argument of sine function must be
an integer multiple of π. This condition imposes a restriction on the value
of E, namely that E should be of the form

Ej :=
j2π2ℏ2

2mL2
, (3.47)

for some positive integer j.
It is a simple exercise (Exercise 8) to verify that for E ≤ 0, the only

solution to (3.43) satisfying the boundary conditions (3.44) is the one with
ψ identically zero.
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Proposition 3.24 The following functions are solutions to (3.43)
satisfying the boundary conditions (3.44):

ψj(x) =

√
2

L
sin

(
jπx

L

)
, j = 1, 2, 3, . . . ,

and the corresponding eigenvalues Ej are given by (3.47). The functions
ψj form an orthonormal basis for the Hilbert space L2([0, L]).

Proof. We have already verified the equation and eigenvalue for each ψj .
It is a simple computation to verify that the ψj ’s are orthonormal, and the
elementary theory of Fourier series (Fourier sine series, in this case) shows
that the ψj ’s form an orthonormal basis for L2([0, L]).
The Hamiltonian operator for this problem (in which V = 0 inside the

box) is given by

Ĥψ = − ℏ2

2m

d2ψ

dx2
.

This operator is an unbounded operator and is not defined on the whole
Hilbert space L2([0, L]), but only on a dense subspace Dom(Ĥ) ⊂ L2([0, L]).
The domain of Ĥ should be chosen in such a way that Ĥ is essentially self-
adjoint and, thus, symmetric (Sect. 3.2), meaning that

〈
φ, Ĥψ

〉
=
〈
Ĥφ, ψ

〉
(3.48)

for all φ, ψ in Dom(Ĥ). For (3.48) to hold, φ and ψ must satisfy appro-
priate boundary conditions, which will allow the boundary terms in the
integration by parts to be zero. (See Exercise 9.)
Mathematically, then, it is necessary to impose some boundary condi-

tions in order for Ĥ to be an essentially self-adjoint operator. The particular
choice of boundary conditions (3.44) is based on the idea of approximating
the box by a very large “confining” potential outside the box. See Chap. 9
for an extensive discussion of domain issues for unbounded operator.

3.10 Quantum Mechanics for a Particle in Rn

Up to this point, we have been considering a quantum particle moving
in R1. It is straightforward, however, to generalize to a quantum particle
moving in Rn. The Hilbert space for a particle in Rn is L2(Rn), rather than
L2(R). Instead of single position operator, we have n such operators, given
by

Xjψ(x) = xjψ(x), j = 1, . . . , n.

Similarly, we have n momentum operators, given by

Pjψ(x) = −iℏ
∂ψ

∂xj
.
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As in the R1 case, Xj does not commute with Pj but satisfies [Xj , Pj ] =
i�I. On the other hand, Xj commutes with Xk and Pj commutes with Pk.
Furthermore, Xj commutes with Pk for j 
= k. These formulas are referred
to as the canonical commutation relations.

Proposition 3.25 (Canonical Commutation Relations) The position
and momentum operators satisfy

1

i�
[Xj , Xk] = 0

1

i�
[Pj , Pk] = 0

1

i�
[Xj, Pk] = δjkI (3.49)

for all 1 ≤ j, k ≤ n.

These relations are the quantum counterparts of the Poisson bracket rela-
tions among the position and momentum functions in classical mechanics.
Specifically, the role of the Poisson bracket in Proposition 2.24 is played in
Proposition 3.25 by the quantity (1/(i�))[·, ·].
If the classical Hamiltonian for a particle in Rn is of the usual form

(kinetic energy plus potential energy), then we may analogously define the
Hamiltonian operator to be of the form

Ĥ =
n∑

j=1

P 2
j

2m
+ V (X), (3.50)

where V (X) denotes the result of applying the function V to the commuting
family of operators X = (X1, . . . , Xn). It it natural to identify V (X) with
the operator of multiplication by the function V (x). In that case, we may
write Ĥ more explicitly as

Ĥψ(x) = − ℏ

2m
∆ψ(x) + V (x)ψ(x),

where ∆ is the Laplacian, given by

∆ =

n∑

j=1

∂2

∂x2
j

.

We refer to an operator of the form (3.50) as a Schrödinger operator.
We may also introduce angular momentum operators defined by analogy

to the classical angular momentum functions.

Definition 3.26 For each pair (j, k) with 1 ≤ j, k ≤ n, define the angular
momentum operator Ĵjk by the formula

Ĵjk = XjPk −XkPj .
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As in the classical case, we have Ĵjk = 0 when j = k. When j 
= k, Xj

and Pk commute, so the order of the factors in the definition of Ĵjk is not
important. Explicitly, we have

Ĵjk = −i�

(
xj

∂

∂xk
− xk

∂

∂xj

)
.

The operator in parentheses is the angular derivative (∂/∂θ) in the (xj , xk)
plane.
When n = 3, it is customary to use the quantum counterpart of the

classical angular momentum vector, namely,

Ĵ1 := X2P3 −X3P2; Ĵ2 := X3P1 −X1P3; Ĵ3 := X1P2 −X2P1. (3.51)

When n = 3, every Ĵjk with j 
= k is one of the above three operators or
the negative thereof.

3.11 Systems of Multiple Particles

Suppose now we have a system of N quantum particles moving in Rn. If the
particles are all of different types (e.g., one electron and one proton), then
the Hilbert space for this system is L2(RnN ). That is, the wave function
ψ of the system is a function of variables x1,x2, . . . ,xN , with each xj

belonging to Rn. If we normalize ψ to be a unit vector in L2(RnN ), then
|ψ(x1,x2, . . . ,xN )|2 is to be interpreted as the joint probability distribution
for the positions of the N particles.
We may introduce position operators Xj

k (the kth component of the

position of the jth particle) and momentum operators P j
k in obvious anal-

ogy to the definition for a single particle. The typical Hamiltonian operator
for such a system is then

Ĥψ(x1, . . . ,xN ) = −
N∑

j=1

ℏ2

2mj
∆jψ(x

1, . . . ,xN ) + V (x1, . . . ,xN )ψ(x),

where mj is the mass of the jth particle. Here ∆j means the Laplacian
with respect to the variable xj ∈ Rn, with the other variables fixed.
As we will see in Chap. 19, the Hilbert space for a composite system,

made up of various subsystems, is typically taken to be the (Hilbert) tensor
product of the individual Hilbert spaces. In the present context, we may
think of our system of being made up ofN subsystems, each being one of the
individual particles. Fortunately, there is a natural isomorphism (Proposi-
tion 19.12) between L2(RnN ) and the tensor product of N copies of Rn,
so that the approach we are taking here is consistent with the general
philosophy.
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If the particles in question are identical (say, all electrons), then there
is an additional complication to the description of the Hilbert space for
the system. In standard quantum theory, we are supposed to believe that
“identical particles are indistinguishable.” What this means is that the wave
function should have the property that if we interchange, say, x1 with x2,
then the new wave function should represent the same physical state as
the original wave function. Recalling that two unit vectors in the quantum
Hilbert space represent the same physical state if and only if they differ by
a constant of absolute value 1, this means we should have

ψ(x2,x1,x3, . . . ,xN ) = uψ(x1,x2,x3, . . . ,xN ),

for some constant u with |u| = 1. Applying this rule twice gives that ψ is
u2ψ, so evidently u must be either 1 or −1.
Particles in quantum mechanics are grouped into two types, according

to whether the constant u in the previous paragraph is 1 or −1. Particles
with u = 1 are called bosons and particles with u = −1 are called fermions.
Whether a particle is a boson or a fermion is determined by the spin of the
particle, a concept that we have not yet introduced. Nevertheless, we can
say that particles without spin are bosons. For a collection of N identical
spinless particles moving in R3, the proper Hilbert space is the symmetric
subspace of L2(R3N ), that is, the space of functions in L2(R3N ) that are
invariant under arbitrary permutations of the variables. We will have more
to say about spin and systems of identical particles in Chaps. 17 and 19.

3.12 Physics Notation

In quantum mechanics, physicists almost invariably use the Dirac nota-
tion (or bra-ket notation) introduced by Dirac in 1939 [5]. This notation
is made up of Notations 3.27–3.29 below. In this section, we explore the
Dirac notation along with a few other notational differences between the
mathematics and physics literature.
Before proceeding it is important to point out that when using Dirac

notation, it is essential that the complex conjugate in the inner product
should go on the first factor.

Notation 3.27 A vector ψ in H is referred to as a ket and is denoted
|ψ〉 . A continuous linear functional on H is called a bra. For any φ ∈ H,
let 〈φ| denote the bra given by

〈φ| (ψ) = 〈φ, ψ〉 .

That is to say, 〈φ| is the “inner product with φ” functional. The bracket
(or bra-ket) of two vectors φ, ψ ∈ H is the result of applying the bra 〈φ| to
the ket |ψ〉 , namely the inner product of the φ and ψ, denoted 〈φ|ψ〉 .
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If A is an operator on H and φ is a vector in H, then we can form
the linear functional 〈φ|A, i.e., the linear map ψ �→ 〈φ|Aψ〉 . Physicists
generally write an expression of this form as

〈φ |A|ψ〉 .
This notation emphasizes that there are two different ways of thinking of
this quantity. We may think of 〈φ |A|ψ〉 either as the linear functional
〈φ|A applied to the vector |ψ〉 , or as the linear functional 〈φ| applied to
the vector A |ψ〉 .
Notation 3.28 For any φ and ψ in H, the expression |φ〉〈ψ| denotes the
linear operator on H given by

(|φ〉〈ψ|) (χ) = |φ〉〈ψ|χ〉 = 〈ψ|χ〉 |φ〉 .
That is, in mathematics notation, |φ〉〈ψ| is the operator sending χ to 〈ψ, χ〉φ.
The operator |φ〉〈ψ| associates to each (ket) vector |χ〉 a new vector in

the only way that makes notational sense: We interpret |φ〉〈ψ||χ〉 as the
vector |φ〉 multiplied by the scalar 〈ψ|χ〉 .
Notation 3.29 Given a family of vectors in H labeled by, say, three indices
n, l, and m, rather than denoting these vectors as |ψn,l,m〉 , a physicist will
denote them simply as |n, l,m〉 .
This notation is not without its pitfalls. If we have two different sets

of vectors labeled by the same set of indices, a mathematician can simply
label them as φn,l,m and ψn,l,m, but the physicist has a problem.

As an example of the Dirac notation, suppose that an operator Ĥ has
an orthonormal basis of eigenvectors ψn. A physicist would express the
decomposition of a general vector in terms of this basis as

I =
∑

n

|n〉〈n| , (3.52)

where ψn is represented simply as |n〉 and where |n〉〈n| is (given that |n〉 is
a unit vector) the orthogonal projection onto the one-dimensional subspace
spanned by the vector |n〉 .
Notation 3.30 In the physics literature, the complex conjugate of a com-
plex number z is denoted as z∗, rather than z̄, as in the mathematics liter-
ature. What a mathematician calls the adjoint of an operator and denotes
by A∗, a physicist calls the Hermitian conjugate of A and denotes by A†.
Physicists refer to self-adjoint operators as Hermitian.

We may express the concept of an adjoint (or Hermitian conjugate) of
an operator using Dirac notation, as follows. If A is a bounded operator on
H, then A† is the unique bounded operator such that

〈ψ|A =
〈
A†ψ

∣∣ .
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One peculiarity of the physics literature on quantum mechanics is a
conspicuous failure of most articles to state what the Hilbert space is.
Rather than starting by defining the Hilbert space in which they are work-
ing, physicists generally start by writing down the commutation relations
that hold among various operators on the space. Thus, for example, a physi-
cist might begin with position and momentum operators X and P, satis-
fying [X,P ] = i�I, without ever specifying what space these operators are
operating on. The justification for this omission is, presumably, the Stone–
von Neumann theorem, which asserts that (provided the operators satisfy
the expected “exponentiated” relations) there is, up to unitary equiva-
lence, only one Hilbert space with operators satisfying these relations and
on which the operators act irreducibly. (See Chap. 14 for a precise state-
ment of the result.) It is, nevertheless, disconcerting for a mathematician to
encounter an entire paper full of computations involving certain operators,
without any specification of what space these operators are operating on,
let alone how the operators act on the space.
This practice among physicists represents something of a role reversal.

In the setting of linear algebra, for example, a mathematician might say,
“Let V be a n-dimensional vector space over R.” If a physicist says, “Oh, so
it’s Rn,” the mathematician will reply, “No, no, you don’t have to choose a
basis.” By contrast, in quantum mechanics, it is the physicist who does not
want to choose a particular realization of the space. A physicist will simply
write down the commutation relations between, say, X and P . If pressed,
the physicist might say that he is working in an irreducible representation
of those relations. If a mathematician then says, “Oh, so it’s L2(R),” the
physicist will reply, “No, no, there is no preferred realization.”

Notation 3.31 Given an irreducible representation of the canonical com-
mutation relations, and given a vector ψ in the corresponding Hilbert space,
a physicist will speak of the position wave function ψ(x), defined by

ψ(x) = 〈x|ψ〉 . (3.53)

Here, 〈x| is the bra associated with the ket |x〉 , where |x〉 is supposed to be
an eigenvector for the position operator with eigenvalue x.

See, again, Chap. 14 for the precise notion of “irreducible representa-
tion of the canonical commutation relations.” One may similarly define the
momentum wave function by taking the inner product of ψ with the eigen-
vectors of the momentum operator, which are also non-normalizable. See
Sect. 6.6 for details.
A mathematician might find Notation 3.31 objectionable on the grounds

that the operator X does not actually have any eigenvectors. After all,
it is harmless, in view of the Stone–von Neumann theorem, to work in
the “Schrödinger representation,” in which our Hilbert space is L2(R) and
the position operator X is just multiplication by x. Given a number x0,
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there is no nonzero element ψ of L2(R) for which Xψ = x0ψ. After all,
any ψ satisfying this equation would have to be supported at the point
x = x0, in which case ψ would equal zero almost everywhere and would be
the zero element of L2(R). A physicist, on the other hand, would say that
the desired eigenfunction is ψ(x) = δ(x − x0), where δ is the Dirac delta-
“function.” The fact that δ(x − x0) is not actually in the Hilbert space
L2(R) does not concern the physicist; it is simply a “non-normalizable
state.” The mathematical theory of such non-normalizable states comes
under the heading “generalized eigenvectors.” See Sect. 6.6 for a discussion
of this issue in the case of the eigenvectors of the momentum operator.
A more subtle issue regarding the “position eigenvectors” is that each

eigenvector is unique only up to multiplication by a constant. If one wants
the momentum operator to act on the position wave function, as defined by
(3.53), in the usual way, one must make a consistent choice of normalization
of the eigenvectors of the position operators. Specifically, one should choose
the constants in such a way that the exponentiated momentum operator
exp(iaP/�) maps |x〉 to |x+ a〉 .

3.13 Exercises

1. Suppose that φ(t) and ψ(t) are differentiable functions with values in
a Hilbert space H, meaning that the limit

dφ

dt
:= lim

h→0

φ(t + h)− φ(t)

h

exists in the norm topology of H for each t, and similarly for ψ(t).
Show that

d

dt
〈φ(t), ψ(t)〉 =

〈
dφ

dt
, ψ(t)

〉
+

〈
φ(t),

dψ

dt

〉
.

2. Suppose A and B are operators on a finite-dimensional Hilbert space
and suppose that AB − BA = cI for some constant c. Show that
c = 0.

Note: This shows that the commutation relations in (3.8) are a purely
infinite-dimensional phenomenon.

3. If A is a bounded operator on a Hilbert space H, then there exists a
unique bounded operator A∗ on H satisfying 〈φ,Aψ〉 = 〈A∗φ, ψ〉 for
all φ and ψ in H. (Appendix A.4.3.) The operator A∗ is called the
adjoint of A, and A is called self-adjoint if A∗ = A.

(a) Show that for any bounded operator A and constant c ∈ C, we
have (cA)∗ = c̄A∗, where c̄ is the complex conjugate of c.
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(b) Show that if A and B are self-adjoint, then the operator

1

i�
[A,B]

is also self-adjoint.

4. Verify Proposition 3.19 using Proposition 3.14. Note that the operator
V ′(X) means simply the operator of multiplication by the function
V ′(x).

5. Suppose that ψ is a unit vector in L2(R) such that the functions
xψ(x) and x2ψ(x) also belong to L2(R). Show that

〈
X2

〉
ψ
>
(
〈X〉ψ

)2

.

Hint : Consider the integral

∫ ∞

−∞
(x− a)2 |ψ(x)|2 dx,

where a = 〈X〉ψ .

6. Consider the Hamiltonian Ĥ for a quantum harmonic oscillator, given
by

Ĥ = − ℏ2

2m

d2

dx2
+

k

2
x2,

where k is the spring constant of the oscillator. Show that the function

ψ0(x) = exp

{
−
√
km

2ℏ
x2

}

is an eigenvector for Ĥ with eigenvalue ℏω/2, where ω :=
√
k/m is

the classical frequency of the oscillator.

Note: We will explore the eigenvectors and eigenvalues of Ĥ in detail
in Chap. 11.

7. Prove Proposition 3.23.

Hint : Show that [P (t), Ĥ ] = ([P, Ĥ ])(t) and [X(t), Ĥ] = ([X, Ĥ ])(t).

8. (a) Find the general solution to (3.43), where E is a negative real
number. Show that the only such solution that satisfies the
boundary conditions (3.44) is identically zero.

(b) Establish the same result as in Part (a) for E = 0.
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9. (a) Suppose φ and ψ are smooth functions on [0, L] satisfying the
boundary conditions (3.44). Using integration by parts, show
that 〈

φ, Ĥψ
〉
=
〈
Ĥφ, ψ

〉
,

where Ĥ = −(ℏ2/2m) d2/dx2 and where

〈φ, ψ〉 =
∫ L

0

φ(x)ψ(x) dx.

(b) Show that the result of Part (a) fails if φ and ψ are arbitrary
smooth functions (not satisfying the boundary conditions).

10. Let Ĵ1, Ĵ2, and Ĵ3 be the angular momentum operators for a particle
moving in R3. Using the canonical commutation relations (Proposi-
tion 3.25), show that these operators satisfy the commutation rela-
tions

1

i�
[Ĵ1, Ĵ2] = Ĵ3;

1

i�
[Ĵ2, Ĵ3] = Ĵ1;

1

i�
[Ĵ3, Ĵ1] = Ĵ2.

This is the quantum mechanical counterpart to Exercise 19 in the
previous chapter.



4
The Free Schrödinger Equation

In this chapter, we consider various methods of solving the free Schrödinger
equation in one space dimension. Here “free” means that there is no force
acting on the particle, so that we may take the potential V to be identically
zero. Thus, the free Schrödinger equation is

∂ψ

∂t
=

iℏ

2m

∂2ψ

∂x2
, (4.1)

subject to an initial condition of the form

ψ(x, 0) = ψ0(x).

We will identify some key features of solutions to this equation, such as the
“spread of the wave packet” and the distinction between “phase velocity”
and “group velocity.” In particular, the notion of group velocity will confirm
our expectation that a particle of momentum p should travel with velocity
v = p/m.
Before attempting to solve the free Schrödinger equation, let us make a

simple observation about the time evolution of the expected values of the
position and momentum. If we apply Proposition 3.19 in the case that V
is identically equal to zero, we have

d

dt
〈X〉ψ(t) =

1

m
〈P 〉ψ(t)

d

dt
〈P 〉ψ(t) = 0.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
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92 4. The Free Schrödinger Equation

Thus, the expectation value of P is independent of time, which then means
that the expectation value of X is linear in time:

〈X〉ψ(t) = 〈X〉ψ0
+

t

m
〈P 〉ψ0

〈P 〉ψ(t) = 〈P 〉ψ0
.

Thus, the free Schrödinger equation is one of the special cases in which
the expected values of the position and momentum exactly follow classical
trajectories (and those classical trajectories are very simple in the case
V ≡ 0).

4.1 Solution by Means of the Fourier Transform

We look for solutions of the free Schrödinger equation on R1 of the form

ψ(x, t) = ei(kx−ω(k)t), (4.2)

where k is the frequency in space and ω(k) is the frequency in time, which
is an as-yet-undetermined function of k. (Of course, such a solution is not
square-integrable in x for a fixed t, but we will find our way back to square-
integrable solutions eventually.) Plugging this into (4.1) easily gives the
formula for ω as a function of k:

ω(k) =
ℏk2

2m
. (4.3)

A formula of this sort, expressing the temporal frequency ω as a function of
the spatial frequency k in a solution of some partial differential equation,
is called a dispersion relation.
Observe that (4.2) can be written as

ψ(x, t) = exp

[
ik

(
x− ω(k)

k
t

)]
. (4.4)

Now, replacing a function f(x) by f(x − a) has the effect of shifting f to
the right by a. Thus, the time-evolution has the effect of shifting the initial
function to the right by an amount equal to (ω(k)/k)t. This means that
the function ψ(x, t) is moving to the right with speed ω(k)/k. This speed,
for reasons that will be clearer in Sect. 4.3, is called the phase velocity.
The phase velocity, then, is the speed at which a pure exponential solution

of our equation (the free Schrödinger equation) propagates. We compute
the phase velocity as ω(k)/k = ℏk/(2m). Now, we have said that a wave
function of the form eikx represents a particle with momentum p = ℏk.
We thus arrive at the following curious conclusion.
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Proposition 4.1 The phase velocity of a particle with momentum p = ℏk is

phase velocity =
ω(k)

k
=

ℏk

2m
=

p

2m
.

This velocity is half the velocity of a classical particle of momentum p.

Proposition 4.1 might make us think that our basic relation p = ℏk is
off by a factor of 2. We will see, however, that the phase velocity, that is,
the velocity of a pure exponential solution, is not the “real” velocity of a
particle with momentum p. The real velocity is the “group velocity,” which
will turn out to be, as expected, p/m.
Leaving aside for now the question of the velocity, let us build up a

general solution to (4.1) from solutions of the form (4.2). We make use of
the Fourier transform, discussed in Appendix A.3. We can then express the
solution to the free Schrödinger equation, for “nice” initial conditions, as a
“superposition” of these pure exponential solutions.

Proposition 4.2 Suppose that ψ0 is a “nice” function, for example, a
Schwartz function (Definition A.15). Let ψ̂0 denote the Fourier transform
of ψ0 and define ψ(x, t) by

ψ(x, t) =
1√
2π

∫ ∞

−∞
ψ̂0(k)e

i(kx−ω(k)t) dk, (4.5)

where ω(k) is defined by (4.3). Then ψ(x, t) solves the free Schrödinger
equation with initial condition ψ0.

The assumption that ψ be a Schwartz function is stronger than neces-
sary. The reader is invited to trace through the argument and find suitable
weaker conditions.
Proof. Since the Fourier transform of a Schwartz function is a Schwartz
function, ψ̂0(k) will decay faster than 1/k4 as k tends to ±∞. Meanwhile,
by integrating the derivative of the function eikx, we obtain the estimate

∣∣∣∣
eik(x+h) − eikx

h

∣∣∣∣ ≤ |k| .

We can then apply dominated convergence, using |k|
∣∣∣ψ̂0(k)

∣∣∣ as our domi-

nating function, to move a derivative with respect to x under the integral
sign in the formula for ψ(x, t). This derivative pulls down a factor of ik

inside the integral. The decay of ψ̂0 allows us to repeat this argument to
move a second derivative with respect inside the integral. We can also move
a derivative with respect to t inside the integral, by a similar argument.
Since exp{i(kx − ω(k)t)} satisfies the Schrödinger equation for each

fixed k, differentiation under the integral shows that ψ(x, t) satisfies the
Schrödinger equation as well. The Fourier inversion formula shows that
ψ(x, 0) = ψ0(x).
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Proposition 4.3 If ψ(x, t) is as in Proposition 4.2, then the Fourier
transform of ψ(x, t), with respect to x with t fixed, is given by

ψ̂(k, t) = ψ̂0(k) exp

[
−i

ℏk2t

2m

]
. (4.6)

Proof. We can write (4.5) as

ψ(x, t) =
1√
2π

∫ ∞

−∞
eikx

[
ψ̂0(k)e

−iω(k)t
]
dk.

By the uniqueness of the Fourier decomposition (i.e., the injectivity of the
inverse Fourier transform, which follows from the Plancherel formula), the
Fourier transform of ψ(x, t) (with respect to x) must be the function in
square brackets. Putting in the expression (4.3) for ω(k) establishes the
desired result.
Now, the Fourier transform is a unitary map from L2(R) onto L2(R).

Thus, for any ψ0 in L2(R), ψ̂0 also belongs to L2(R). Since the quantity

multiplying ψ̂0(k) in (4.6) has absolute value 1, the right-hand side of (4.6)
is a well-defined square-integrable function of k, for any ψ0 in L2(R), which
has a well-defined inverse Fourier transform in L2(R).

Definition 4.4 For any ψ0 ∈ L2(R), define, for each t ∈ R, ψ(x, t) to be
the unique element of L2(R) that has a Fourier transform (with respect to
x) given by (4.6).

Definition 4.4 defines a time-evolution for arbitrary initial conditions
in L2(R). For general ψ0 ∈ L2(R), however, ψ(x, t) may not satisfy the
Schrödinger equation in the classical, pointwise sense, simply because ψ(x, t)
may fail to be differentiable, either in x or in t. Nevertheless, ψ(x, t), as
defined by Definition 4.4, always satisfies the Schrödinger equation in the
weak (distributional) sense. See Exercise 1.

4.2 Solution as a Convolution

According to Proposition 4.3, we see that the Fourier transform of the
time-t wave function is the product of the Fourier transform of ψ0 and
the function exp[−itℏk2/(2m)]. According to Proposition A.21, the inverse
Fourier transform of a product of two sufficiently nice functions is 1/

√
2π

times the convolution of the two separate inverse Fourier transforms. Here
the convolution φ ∗ ψ of two functions φ and ψ is defined to be

(φ ∗ ψ)(x) =
∫ ∞

−∞
φ(x − y)ψ(y) dy,

whenever the integral is convergent for all x.
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Formally, then, we ought to have

ψ(x, t) = ψ0 ∗Kt, (4.7)

where

Kt =
1√
2π

F−1

{
exp

[
−i

ℏk2t

2m

]}
.

The problem with is idea is that the function exp[−itℏk2/(2m)] is not
a “nice” function in the usual sense. Certainly, this function is not the
Fourier transform of some function in L1(R) ∩ L2(R), because if it were,
then the function would have to tend to zero at infinity (Proposition A.14).
Therefore, we cannot directly apply Proposition A.21, even if ψ0 is in
L1(R) ∩ L2(R).
Fortunately, the desired inverse Fourier transform can be computed as a

convergent improper integral (Exercise 2), with the following result:

Kt(x) :=
1

2π

∫ ∞

−∞
eikx exp

[
−i

ℏk2t

2m

]
dk =

√
m

i2πℏt
exp

{
i
mx2

2tℏ

}
. (4.8)

Here, the square root is the one with positive real part. The function Kt

is called the fundamental solution of the free Schrödinger equation. (See
Fig. 4.1.) This function does indeed satisfy the free Schrödinger equation,
as we can easily verify by direct differentiation.
The preceding discussion should make the following result plausible.

Theorem 4.5 Suppose ψ0 ∈ L2(R) ∩ L1(R). Then ψ(x, t), as defined by
(4.5), may be computed for all t 
= 0 as

ψ(x, t) =

√
m

2πitℏ

∫ ∞

−∞
exp

{
i
m

2tℏ
(x− y)2

}
ψ0(y) dy.

The expression for ψ(x, t) is (2π)−1/2Kt ∗ ψ0, where Kt is as in (4.8).

Proof. For any set E ⊂ R, let 1E denote the indicator function of E, that
is, the function that is 1 on E and 0 elsewhere. Then Kt1[−n,n] belongs to
L1(R) ∩ L2(R) for any positive integer n. By Proposition A.21, then, we
have

F
(
(Kt1[−n,n]) ∗ ψ0

)
=

√
2πF(Kt1[−n,n])F(ψ0). (4.9)

Because ψ0 is in L1(R), it is easy to see that Kt1[−n,n] ∗ ψ0 converges
pointwise to Kt ∗ψ0. On the other hand, using the argument in Exercise 2,
we can see that F(Kt1[−n,n]) is bounded by a constant independent of n
and converges pointwise to the function

1√
2π

exp

[
−i

ℏk2t

2m

]
. (4.10)
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x

x

Re(Kt(x))

Re(Kt(x))

FIGURE 4.1. The real part of Kt(x), for t = 1 (top) and t = 0.2 (bottom).
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Equation (4.10) is enough to show that the right-hand side of (4.9)
converges in L2(R) to the function

exp

[
−i

ℏk2t

2m

]
ψ̂0(k).

By the Plancherel theorem,Kt1[−n,n]∗ψ0 must also be converging in L2(R),
and the L2 limit must coincide with the pointwise limit, which is Kt ∗ ψ0.
Thus, taking limits on both sides of (4.9) shows that the Fourier transform
of Kt ∗ ψ0 is what we want it to be.
In general, to be considered the fundamental solution of a certain equa-

tion, a function should converge to a Dirac δ-function (Example A.26), in
the distribution sense, as t tends to zero. Since |Kt(x)| is independent of
x for each t, it might seem doubtful that Kt has this property. On the
other hand, we can see Kt(x) oscillates very rapidly except near x = 0.
(See Fig. 4.1.) This oscillation causes the integral of Kt(x) against some
nice function ψ(x) to be small, except for the part of the integral near
x = 0. Indeed, because the Fourier transform of Kt converges to the con-
stant function 1/

√
2π (which is what we get by formally taking the Fourier

transform of the δ-function) as t tends to zero, it is not hard to show that
Kt does, in fact, converge to a δ-function. The details of this verification
are left to the reader.

4.3 Propagation of the Wave Packet: First
Approach

Let us consider the Schrödinger equation in R1 with an initial condition
ψ0 that is a “wave packet,” meaning a complex exponential multiplied by
some function that localizes ψ0 in space. Specifically, we take

ψ0(x) = eip0x/ℏA0(x), (4.11)

where A0 is some real, positive function and p0 is a nonzero real number.
(The case p0 = 0 should be treated separately.) We also assume that A0 is
“slowly varying” compared to eip0x/ℏ, meaning that A0 is approximately
constant over many periods of the function eip0x/ℏ. (We will give a more
precise meaning to the “slowly varying” condition shortly.) Thus, if we look
at ψ0(x) on a distance scale of a small number of periods of the function
eip0x/ℏ, then ψ0 will look like a constant times eip0x/ℏ, which, as we have
seen, represents a particle with momentum p0. We expect, then, that the
wave function ψ0 represents a particle with momentum approximately equal
to p0.
Let us now try to solve the free Schrödinger equation in terms of the

amplitude and phase of the wave function. We write

ψ(x, t) = A(x, t)eiθ(x,t)
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where A and θ are real-valued functions. If we plug this expression for ψ
into the free Schrödinger equation and then cancel a factor of eiθ(x,t) from
every term, we obtain the equation

∂A

∂t
+ i

∂θ

∂t
A =

i�

2m

∂2A

∂x2
− �

m

∂A

∂x

∂θ

∂x
− i�

2m
A

(
∂θ

∂x

)2

− �

2m
A
∂2θ

∂x2
. (4.12)

Since A and θ are real-valued, we may separately equate the real and
imaginary parts of (4.12), giving

∂A

∂t
= − ℏ

m

∂A

∂x

∂θ

∂x
− ℏ

2m
A
∂2θ

∂x2
(4.13)

and (after dividing the imaginary part of (4.12) by A)

∂θ

∂t
=

ℏ

2m

1

A

∂2A

∂x2
− ℏ

2m

(
∂θ

∂x

)2

. (4.14)

Any solution to this system of partial differential equations will yield a
solution ψ(x, t) = A(x, t)eiθ(x,t) to the free Schrödinger equation.
Since we are assuming A is “slowly varying” compared to θ, it is reason-

able to think that the first term on the right-hand side of (4.14) will be
small compared to the second term. That is to say, we interpret the slowly
varying condition to mean

1

A

∂2A

∂x2
≪

(
∂θ

∂x

)2

, (4.15)

where the symbol ≪ means “much smaller than.” We will take initial con-
ditions such that (4.15) holds at t = 0, and then we will assume that (4.15)
continues to hold at least for small positive times. We may then (to first
approximation) drop the first term on the right-hand side of (4.14), giving
the following simplified version of (4.14):

∂θ

∂t
= − ℏ

2m

(
∂θ

∂x

)2

. (4.16)

We now look for a solution to the pair of equations (4.13) and (4.16)
with initial conditions corresponding to (4.11).

Proposition 4.6 A solution to the approximate equations (4.13) and
(4.16) with initial condition θ(x, 0) = p0x/� is given by

θ(x, t) =
p0
ℏ

(
x− p0

2m
t
)

(4.17)

and
A(x, t) = A0

(
x− p0

m
t
)
. (4.18)
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This yields an approximate solution to the free Schrödinger equation
given by

ψ(x, t) = A0

(
x− p0

m
t
)
exp

[
i
p0
�

(
x− p0

2m
t
)]

. (4.19)

Note from (4.17) and (4.18) that if the “slowly varying” condition (4.15)
holds at time 0, it will continue to hold for all positive times in our approx-
imate solution.
Proof. Although (4.16) is a nonlinear equation, we can find a solution to
it with the simple initial conditions θ(x, 0) = p0x/ℏ, namely,

θ(x, t) =
p0x

ℏ
− p20

2mℏ
t

=
p0
ℏ

(
x− p0

2m
t
)
. (4.20)

Since ∂θ/∂x = p0/ℏ and ∂2θ/∂x2 = 0, if we plug (4.20) back into (4.13)
we obtain

∂A

∂t
= −p0

m

∂A

∂x
.

The (presumably unique) solution to this linear equation with initial con-
dition A(x, 0) = A0(x) is

A(x, t) = A0

(
x− p0

m
t
)
, (4.21)

as claimed.
We hope that the solution (4.19) to the system of equations (4.13)

and (4.16) is a close approximation to the solution to the original pair of
equations (4.13) and (4.14)—assuming, of course, that A0 is slowly varying
compared to θ0(x) = p0x/�. It is not especially easy to estimate directly
how rapidly solutions to (4.13) and (4.16) diverge from solutions to (4.13)
and (4.14). We will therefore leave an estimate of the error in our approxi-
mation until the next section, where we will obtain the same approximate
solution by a different method.
Note that a function of the form f(x, t) = φ(x−vt) is moving to the right

with constant velocity v. (If v is negative, then, of course, this means the
function is moving to the left.) Observe that both the amplitude A(x, t) and
the phase exp{iθ(x, t)} are of this form, but with two different velocities.

Conclusion 4.7 In the approximate solution (4.19) to the free Schrödinger
equation, the amplitude A(x, t) is moving with velocity p0/m, whereas the
phase θ(x, t) is moving with velocity p0/(2m). These two velocities are called
the group velocity and the phase velocity, respectively:

phase velocity =
p0
2m

group velocity =
p0
m

.
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Note that the formula for the phase velocity agrees with the one given
previously in Sect. 4.1, the velocity of propagation of a pure exponential so-
lution to the free Schrödinger equation. Indeed, nothing prevents us from
taking A0 ≡ 1, in which case the left-hand side of (4.15) is actually identi-
cally zero, so that a solution to (4.13) and (4.16) is actually a solution to
(4.13) and (4.14).
Which of the velocities is the “real” velocity of the particle? The answer

is: the group velocity. After all, the probability distribution for the parti-
cle’s position is determined by the amplitude of the wave function and is
unaffected by the phase. It is the amplitude that determines (as much as it
can be determined) where the particle is. Thus, the true velocity of the par-
ticle should be the velocity at which the amplitude propagates. Figure 4.2
shows the propagation of the real part of a wave packet, with the motion
of a single peak indicated by the shaded region. The phase velocity deter-
mines the speed at which the individual peaks in the real part of ψ move,
whereas the group velocity determines the speed of the packet as a whole.
Since the peak we are tracking lags well behind the motion of the whole
packet, we see that the phase velocity is smaller than the group velocity.
We should expect that solutions to our approximate equations (4.13)

and (4.16) will diverge slowly over time from solutions to the free
Schrödinger equation (4.13) and (4.14). For sufficiently long times, there
may be a significant difference between approximate and true solutions.
This expectation is confirmed in Sect. 4.5, where we investigate the spread
of the wave packet, a phenomenon that is not seen in our approximation.

4.4 Propagation of the Wave Packet: Second
Approach

We have seen that the general solution of the free Schrödinger equation can
be obtained by means of the Fourier transform as

ψ(x, t) =
1√
2π

∫ ∞

−∞
ψ̂0(k) exp [i (kx− ω(k)t)] dk, (4.22)

where

ω(k) =
ℏk2

2m
. (4.23)

Let us assume that ψ0 has approximate momentum equal to p0. Thus, we
expect that ψ̂0(k) will be concentrated near k0 := p0/ℏ. If that is the case,
then only the values of k close to k0 are important. For k close to k0, we
use the first-order Taylor expansion

ω(k) ≈ ω(k0) + ω′(k0)(k − k0), (4.24)

where for now we do not put in the explicit formula for ω′(k0).
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FIGURE 4.2. Propagation of Re[ψ], with motion of a single peak shaded.
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Inserting (4.24) into (4.22), we get two factors that are independent of k
and come outside the integral, leaving us with

ψ(x, t) ≈ 1√
2π

eiω
′(k0)k0te−iω(k0)t

∫ ∞

−∞
ψ̂0(k) exp [ik(x− ω′(k0)t)] dk

= eiω
′(k0)k0te−iω(k0)tψ0(x− ω′(k0)t). (4.25)

Note that the factors in front of ψ0(x − ω′(k0)t) are simply constants,
that is, independent of x. These constants do not affect the “state” of the
system, in that we have said that two vectors in the quantum Hilbert space
that differ by a constant represent the same physical state. Ignoring these
constants, we are left with the factor of ψ0(x − ω′(k0)t), which is simply
shifting to the right at speed ω′(k0). Thus, the (approximate) velocity at
which our wave packet is moving is

velocity ≈ ω′(k0) =
ℏk0
m

=
p0
m

.

Let us consider the special case in which ψ0 is of the form

ψ0(x) = eik0xA0(x),

where A0 is real and positive. Then (4.25) becomes

eiω
′(k0)k0te−iω(k0)teik0(x−ω′(k0)t)A0(x− ω′(k0)t).

After canceling the terms involving ω′(k0)k0t in the exponent, we obtain

ψ(x, t) ≈ ei(k0x−ω(k0)t)A0(x− ω′(k0)t).

Recalling that p0 = �k0 and putting in the formula for ω, we see that this
approximation to ψ(x, t) is precisely the same as the one we obtained, by
a different method, in Proposition 4.6.
As in Sect. 4.3, we see that the velocity at which a pure exponential

solution of the free Schrödinger equation propagates [namely, ω(k0)/k0 =
ℏk0/(2m)] is not the same as the velocity at which the overall wave packet
propagates. Rather, as seen in (4.25), the wave packet propagates at a
velocity given by ω′(k0) = ℏk0/m. We may summarize this conclusion in
the following proposition.

Proposition 4.8 The speed at which a pure exponential solution of the
free Schrödinger equation propagates is

phase velocity =
ω(k0)

k0
=

�k0
2m

=
p0
2m

.

By contrast, the (approximate) speed at which the wave packet propagates is

group velocity =
dω

dk

∣∣∣∣
k=k0

=
�k0
m

=
p0
m

.
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The disadvantage of the method we used in Sect. 4.3 is that it does not
easily yield estimates on how big an error there is in our approximation.
In the current section, however, we can estimate the error by comparing
the Fourier transforms of the exact solution and the approximate solution.
Our error estimate will involve a quantity κ defined as follows:

κ =

[∫ ∞

−∞

∣∣∣ψ̂0(k)
∣∣∣
2

(k − k0)
4 dk

]1/4
. (4.26)

The quantity κ is, roughly, half the width of the interval around k0 on
which most of ψ̂(k) is concentrated. If, for example, ψ̂ is supported in the

interval [k0 − ε, k0 + ε], then κ ≤ ε, assuming that ψ—and therefore ψ̂—is
a unit vector. (A more common measure of concentration would replace
(k − k0)

4 by (k − k0)
2 and the fourth root of the integral by the square

root. But the “quartic” measure of concentration in (4.26) is the one that
arises in estimating the error of our approximations in this section.)

Proposition 4.9 Let ψ(x, t) be the exact solution to the free Schrödinger
equation with initial condition ψ0, and let φ(x, t) be the approximate solu-
tion given by the right-hand side of (4.25). Then the following L2 estimate
holds:

‖ψ(x, t) − φ(x, t)‖L2(R) ≤
|t| �κ2

2m
= |t|ω(κ), (4.27)

where the L2 norm is with respect to x with t fixed and where ω(·) is defined
by (4.23).

Equation (4.27) means that the L2 norm of the error will be small, pro-
vided that

|t| ≪ 1

ω(κ)
.

If κ is much smaller than k0, then 1/ω(κ) will be much larger than 1/ω(k0).
That means that the timescale on which the true and approximate solutions
diverge will be long compared to the timescale on which our approximate
solution is oscillating.
Proof. Let ψ̂(k, t) and φ̂(k, t) denote the Fourier transforms of φ and ψ
with respect to x, with t fixed. From (4.22) we can read off that

ψ̂(k, t) = e−iω(k)tψ̂0(k).

Meanwhile, φ̂(k, t) is obtained from ψ̂(k, t) by replacing ω(k) by the right-
hand side of (4.24). Now, direct calculation shows that

ω(k)− (ω(k0) + ω′(k0)(k − k0)) =
�

2m
(k − k0)

2.
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From this expression and the elementary estimate
∣∣eiθ − eiφ

∣∣ ≤ |θ − φ|,
we obtain

∣∣∣ψ̂(k, t)− φ̂(k, t)
∣∣∣ ≤ |t| �

2m
(k − k0)

2
∣∣∣ψ̂0(k)

∣∣∣ . (4.28)

The estimate (4.27) then follows by the Plancherel theorem and the
definition of κ.
For a more detailed version of the approach used in this section, see

Sect. 5.6 of [30].

4.5 Spread of the Wave Packet

We use the uncertainty (Definition 3.13) ∆ψX in the position of the particle
as a measure of the “width” of ψ(x) as a function of x. At the level of
approximation considered in the previous two sections, the uncertainty in
the position of a free particle is independent of time. After all, in the
approximate solution (4.19), the amplitude of the wave function simply
shifts to the right at a speed equal to the group velocity, without changing
shape. A more precise calculation, however, shows that after sufficiently
long times, the wave packet spreads out in space. (Exercise 7 gives an idea
of the time scale on which this spread takes place.)
We can compute the time-evolution of the uncertainty in the particle’s

position without having to solve the full Schrödinger equation, by using
Proposition 3.14 from Chap. 3. We start by observing that for a free par-
ticle, our Hamiltonian is simply P 2/(2m), which commutes with P. It fol-
lows that the expected value and uncertainty for the particle’s momentum
(and, indeed, the entire probability distribution of the momentum) are in-
dependent of time. Meanwhile, to compute the time-dependence of 〈X〉
and

〈
X2

〉
, we use Proposition 3.14 along with the commutation relation

[X,P ] = i�I (Proposition 3.8).

Proposition 4.10 For a wave function ψ(x, t) evolving according to the
free Schrödinger equation on R1, the expectation values for X andX2 evolve
as follows:

〈X〉ψ(t) = 〈X〉ψ0
+

t

m
〈P 〉ψ0

and
〈
X2

〉
ψ(t)

=
〈
X2

〉
ψ0

+
t

m
〈XP + PX〉ψ0

+
t2

m2

〈
P 2

〉
ψ(0)

.

These relations imply the following result:

(
∆ψ(t)X

)2

=
t2

m2
(∆ψ0

P )
2
+

t

m

(
〈XP + PX〉ψ0

− 2 〈X〉ψ0
〈P 〉ψ0

)
+ (∆ψ0

X)
2
.
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For a unit vector ψ0 in L2(R), the uncertainty ∆ψ0
P in the momentum

cannot be zero, because the uncertainty would be zero only if ψ0 is an
eigenvector for the momentum operator. But the eigenvectors for P are
the functions of the form eikx, which are not in L2(R). Thus, the leading
coefficient in the expression for (∆ψ(t)X)2 is never zero, and thus ∆ψ(t)X
tends to infinity as t tends to infinity.
Proof. We compute that

[
P 2, X

]
= P 2X − PXP + PXP −XP 2

= P [P,X ] + [P,X ]P

= −2iℏP.

Thus (as we have already noted in Sect. 3.7.5),

d

dt
〈X〉ψ(t) =

〈
i

ℏ
(−2iℏP )

〉

ψ(t)

=
〈P 〉ψ(t)

m
=

〈P 〉ψ0

m
, (4.29)

where we have used in the last equality that the expected momentum is
independent of time. Since the derivative of 〈X〉ψ(t) is constant, 〈X〉ψ(t)

itself is a linear function of t, which gives the first result in the proposition.
Meanwhile, a little algebra shows that

[
P 2, X2

]
= P [P,X ]X + [P,X ]PX +XP [P,X ] +X [X,P ]P

= −2iℏ (PX +XP ) ,

and [
P 2, PX +XP

]
= P

[
P 2, X

]
+
[
P 2, X

]
P = −4iℏP 2.

Thus

d

dt

〈
X2

〉
ψ(t)

=
i

2mℏ

〈[
P 2, X2

]〉
ψ(t)

=
1

m
〈XP + PX〉ψ(t)

and

d2

dt2
〈
X2

〉
ψ(t)

=
i

ℏ

1

m

1

2m

〈[
P 2, XP + PX

]〉
ψ(t)

=
2

m2

〈
P 2

〉
ψ(t)

=
2

m2

〈
P 2

〉
ψ0

.

Since the second derivative of
〈
X2

〉
ψ(t)

is independent of t,
〈
X2

〉
ψ(t)

itself

is a quadratic polynomial in t, the coefficients of which are determined by
the value of 〈X〉ψ(t) and its first two time-derivatives at t = 0. This leads
to the second result in the proposition. The last result follows by direct
calculation.
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4.6 Exercises

1. A locally integrable function ψ(x, t) satisfies the free Schrödinger
equation in the weak (or distributional) sense if for each smooth com-
pactly supported function χ, we have

∫

R2

ψ(x, t)

[
∂χ

∂t
+

i�

2m

∂2χ

∂x2

]
dx dt = 0. (4.30)

[One obtains (4.30) by assuming ∂ψ/∂t − (i�/2m)∂2ψ/∂x2 is zero,
integrating against χ(x, t), and then formally integrating by parts.]

(a) Show that if ψ(x, t) is smooth as a function of x and t then ψ
satisfies the free Schrödinger equation in the pointwise sense if
and only if ψ satisfies the free Schrödinger equation in the weak
sense.

Hint : Proposition A.23 may be useful.

(b) For any ψ0 ∈ L2(R), define ψ(x, t) by Definition 4.4. Show that
ψ satisfies the free Schrödinger equation in the weak sense.

First show that the function ψA given by

ψA(x, t) =
1√
2π

∫ A

−A

ψ̂0(k)e
i(kx−ω(k)t) dk

satisfies the free Schrödinger equation in the weak sense, for each A.

2. (a) Show that for any a ∈ C with Re(a) > 0,

(∫ ∞

−∞
e−x2/(2a) dx

)2

=

∫

R2

e−(x2+y2)/(2a) dx dy

= 2πa,

where the integral over R2 can be evaluated using polar coordi-
nates. Conclude that

∫ ∞

−∞
e−x2/(2a) dx =

√
2πa, (4.31)

where the square root is the one with positive real part.

(b) Show that for all A,B > 0 we have

∫ B

A

e−x2/(2a) dx = −a

x
e−x2/(2a)

∣∣∣
B

A
+

∫ B

A

a

x2
e−x2/(2a) dx

for any nonzero complex number a. Using this, show that the
integral in (4.31) is convergent for all nonzero a with Re a ≥ 0,
provided the integral is interpreted as an improper integral (i.e.,
the limit as A tends to infinity of an integral from −A to A).
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(c) Now show that the result of Part (a) is valid also for nonzero
values of a with Re a = 0.

Hint : Given β 
= 0, show that the (improper) integral from A
to ∞ of exp[−x2/(2(α+ iβ))] is small for large A, uniformly in
α ∈ [0, 1].

(d) Show that

1

2π

∫ ∞

−∞
eikxe−itℏk2/(2m) dk =

√
m

2πiℏt
eimx2/(2tℏ),

where the integral is interpreted as an improper integral and the
square root is the one with positive real part.

3. Suppose φ is a Schwartz function (Definition A.15) and ψ belongs to
L2(R). Show that the convolution φ ∗ ψ is smooth (infinitely differ-
entiable).

4. Consider the heat equation for a function ψ(x, t), given by

∂ψ

∂t
= α

∂2ψ

∂x2
,

where α is a constant, subject to the initial condition ψ(x, 0) = ψ0(x).

(a) Derive a differential equation for ψ̂(k, t), the Fourier transform
of a solution of the heat equation with respect to x, with t fixed,
assuming that ψ(x, t) is a “nice” function of x for each t. Solve

this equation subject to the initial condition ψ̂(k, 0) = ψ̂0(k).

(b) Obtain an expression for the solution to the heat equation as
a convolution of ψ0 with a “fundamental solution” to the heat
equation.

Note: As we will discuss in Chap. 20, the heat equation can be thought
of as a sort of “imaginary time” version of the free Schrödinger
equation.

5. Suppose we take an initial condition in the free Schrödinger equation
with initial phase given by θ0(x) = p0x/� and initial amplitude given
by A0(x), as in (4.11). Suppose also that the initial amplitude is of
the form

A0(x) = exp

{
−1

2

(
x− x0

L

)2
}
.

Note that A0 is centered around the point x0 and that the parameter
L is a measure of the “width” in space of our initial wave packet.
A function of the form ψ0(x) = eip0x/�A0(x), with A0 as above, is
called a Gaussian wave packet.
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Compute the quantity

1
(
∂θ0
∂x

)2
(

1

A0

∂2A0

∂x2

)
. (4.32)

Assuming that � is small compared to Lp0, show that (4.32) is small,
except at points where our initial wave packet is very small.

Note: This shows that our “slowly varying” assumption (4.15) is rea-
sonable for the case of Gaussian wave packets.

6. The Klein–Gordon equation, a proposed relativistic alternative to the
Schrödinger equation, is the equation

1

c2
∂2ψ

∂t2
=

∂2ψ

∂x2
− m2c2

�2
ψ,

where m > 0 is the mass of the particle and c is the speed of light.

(a) Obtain the dispersion relation for the Klein–Gordon equation,
that is, the expression for ω(k) that makes the function exp[i(kx−
ω(k)t] a solution to the Klein–Gordon equation.

(b) Show that the phase velocity ω(k)/k satisfies |ω(k)/k| > c, that
the group velocity dω(k)/dk satisfies |dω/dk| < c, and that

(phase velocity)(group velocity) = c2.

Note: Since the Klein–Gordon equation is second order in time, there
will be two possible values for ω(k) for each k, one positive and one
negative. The results of Part (b) hold for both of the two “branches”
of ω(k).

7. Consider the uncertainty ∆ψ(t)X of a wave function ψ(t) evolving
according to the free Schrödinger equation. Show that

∣∣∣∣
d

dt

(
∆ψ(t)X

)∣∣∣∣ ≤
∆ψ0

P

m
(4.33)

for all t and that

lim
t→+∞

d

dt

(
∆ψ(t)X

)
=

∆ψ0
P

m
.

Note: By comparison,

d

dt
〈X〉ψ(t) =

〈P 〉ψ0

m
. (4.34)

If ψ̂0(k) is concentrated in a sufficiently small region around a nonzero
number k0 = p0/�, then ∆ψ0

P will be small compared to 〈P 〉ψ0
. In

that case, by comparing (4.33) to (4.34), we see that the rate at which
the wave packet spreads out is small compared to the rate at which
the wave packet moves.



5
A Particle in a Square Well

5.1 The Time-Independent Schrödinger Equation

It is difficult to solve the time-dependent Schrödinger equation explicitly,
even in relatively simple cases. (Even for the free Schrödinger equation,
we made do in Chap. 4 with solutions that are either approximate or that
involve an integral that is not explicitly evaluated.) Usually, then, one ana-
lyzes the time-independent Schrödinger equation (the eigenvector equation
for Ĥ) and then attempts to infer something about the time-dependent
problem from the results. There are a number of problems, including the
harmonic oscillator and the hydrogen atom, in which the time-independent
Schrödinger equation can be solved explicitly.
In this section, we will consider a simple but instructive example, which

can be solved by elementary methods. We consider the time-independent
Schrödinger equation in R1, with a potential of the form

V (x) =

{
−C, −A ≤ x ≤ A

0, |x| > A
, (5.1)

where A and C are positive constants. The region −A ≤ x ≤ A is the
“square well” for the potential (Fig. 5.1).
Let us think first for a moment about the behavior of a classical particle

in a square well. If we think of V as the limit of a sequence of potentials
that change linearly from −1 to 0 in a small interval around ±1, we may
expect the following behavior for a particle in a square well. If the energy
of the particle is negative, then the particle must be in the well. In that
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−A A

−C

FIGURE 5.1. A square well potential.

case, it will move with constant speed until it hits the edge of the well,
at which point it will reflect instantaneously off the wall and move with
the same speed in the opposite direction. If the energy of the particle is
positive, it will move always in the same direction, with speed equal to one
constant when it is not in the well and speed equal to a different constant
when it is in the well.
In the quantum case, we will be interested mainly in eigenvectors for the

Schrödinger operator with negative eigenvalues (E < 0). Of course, on the
quantum side of things, energy eigenvectors do not change in time, except
for an overall phase factor. Nevertheless, since the classical particle with
E < 0 spends the same amount of time in each part of the well, we may
expect that the quantum particle will have approximately equal probability
of being found in each part of the well. This expectation will be fulfilled
for “highly excited states,” such as the one in Fig. 5.7. For the quantum
particle, however, there is a small but nonzero probability of finding the
particle outside the well, which is impossible classically.
Our goal is to study the time-independent Schrödinger equation, that is,

the eigenvalue equation

− ℏ2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x), (5.2)

where both the eigenvalues E and the associated eigenvectors ψ (or “eigen-
functions,” in physics terminology) are as yet unknown. As a second-order
linear ordinary differential equation, this equation always has (for any value
of E) a two-dimensional solution space. We are, however, looking for solu-
tions that lie in the quantum Hilbert space L2(R). We will see there are
actually only a finitely many E’s, all of them with E < 0, for which (5.2)
has a nonzero solution in L2(R). In this case, then, the Schrödinger op-
erator Ĥ has a discrete spectrum below zero and a continuous spectrum
above zero.
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5.2 Domain Questions and the Matching
Conditions

Before starting to solve (5.2), we must give some heed to the unbounded
nature of the Hamiltonian operator. The Schrödinger operator

Ĥ = − ℏ2

2m

d2

dx2
+ V (X)

on the left-hand side of (5.2) is an unbounded operator, meaning that there
is no constant C such that ‖Ĥψ‖ ≤ C ‖ψ‖, where ‖·‖ is the L2 norm. On
the other hand, we want to define Ĥ in such a way that it is self-adjoint.
But according to Corollary 9.9, a self-adjoint operator that is defined on
the whole Hilbert space must be bounded.
We conclude, then, that Ĥ is not going to be defined on the entire Hilbert

space L2(R), but only on a dense subspace thereof. In practical terms,
saying that Ĥ is not defined on the whole Hilbert space means simply that
for many functions ψ in L2(R), the second derivative d2ψ/dx2 does not
exist, or exists but fails to be in L2. (In our example, the potential V is
bounded, and so V ψ will always be in L2 provided that ψ is in L2.)
Since the potential V for a square well is bounded, the domain of the

Hamiltonian Ĥ = P 2/(2m) + V (X) is the same as the domain of the
kinetic energy operator P 2/(2m) = −(ℏ2/2m)d2/dx2. As we will see in
Sect. 9.7, the domain of the kinetic energy operator may be described as
the space of L2 functions ψ for which d2ψ/dx2, computed in the weak
or distributional sense (Appendix A.3.3), again belongs to L2(R). This
condition is equivalent to the statement that there exists some L2 function
φ such that ψ is the second integral of φ (for some choice of the constants
of integration).
Meanwhile, since our potential is piecewise constant, any solution ψ

to (5.2) will be smooth except possibly at the transition points x = ±A,
and both ψ and ψ′ will have left and right limits at A and −A. Indeed, on
each of the intervals (−∞,−A), (−A,A), and (A,∞), any solution to (5.2)
will be simply a linear combination of (real or complex) exponentials. For
functions of this sort, it is not hard to see when we are in the domain of Ĥ .

Proposition 5.1 Suppose ψ is smooth on each of the intervals (−∞,−A),
(−A,A), and (A,∞). Then ψ belongs to the domain of Ĥ [with potential
function given by (5.1)] if and only if the (1) ψ and dψ/dx are continuous
at x = ±A, and (2) d2ψ/dx2 belongs to L2(R).

Proof. Suppose first that ψ satisfies the conditions (1) and (2). Then it is
not hard to see (Exercise 1) that the second derivative of ψ in the distribu-
tion sense is simply the function d2ψ/dx2, computed in the ordinary point-
wise sense for x 
= ±A. (The second derivative may not exist at x = ±A,
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but we simply leave d2ψ/dx2 undefined at these two points, which form a
set of measure zero.) Thus, d2ψ/dx2, computed in the distribution sense,
is an element of L2(R).
On the other hand, if either ψ of ψ′ has a discontinuity at x = A or at

x = −A, then (Exercise 1 again) the distributional derivative will contain
either a multiple of a δ-function of a multiple of the derivative of δ-function
at one of these points. But neither a δ-function nor the derivative of δ-
function is a square-integrable function.
Let us think about what the continuity condition on ψ and dψ/dx means

in practical terms. Since V is constant on (−∞,−A), we can easily solve
(5.2) on that interval, obtaining a two-dimensional solution space. Once we
choose a solution from this solution space, then the values of ψ and dψ/dx
as x approaches−A from the left will serve as the initial conditions for solv-
ing (5.2) on (−A,A). Thus, the requirement of continuity for ψ and dψ/dx
serve as a “matching condition” between the solution on (−∞,−A) and the
solution on (−A,A). We cannot just separately pick any solution to (5.2)
on (−∞,−A) and any solution on (−A,A); at the boundary, the values of
ψ and dψ/dx must match. (This same matching condition appears in el-
ementary treatments of ordinary differential equations with discontinuous
coefficients.)
Once we pick a solution on (−∞,−A) we get a unique solution on

(−A,A)—and then the values of ψ and dψ/dx as we approach A from
the left will serve as the initial conditions for solving (5.2) on (A,∞). The
conclusion is that once we pick a solution to (5.2) on (−∞,−A) (from the
two-dimensional solution space), we have no additional choices to make;
the differential equation along with the matching conditions give a unique
way to extend the solution from (−∞,−A) to the whole real line.

5.3 Finding Square-Integrable Solutions

If E > 0, then any solution to (5.2) will be a combination of two complex
exponentials in the range x < −A; such a function cannot be square-
integrable unless it is identically zero. If, however, we take ψ to be iden-
tically zero in the region x < −A, then our continuity condition requires
that ψ and dψ/dx approach 0 as x approaches −A from the right. Thus,
the matching conditions at −A force the solution to be identically zero in
[−A,A] as well. Finally, by matching across x = A, we get an identically
zero solution on [A,∞). Thus, for E > 0, any solution to (5.2) satisfy-
ing the continuity conditions in Proposition 5.1 must be identically zero.
A similar analysis applies when E = 0, where the solutions to (5.2) on
(−∞, A] would be of the form c1 + c2x, which is square-integrable only if
c1 = c2 = 0.
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The conclusion, then, is that to have a chance to get a solution to (5.2)
that is square-integrable and in the domain of Ĥ , we must take E < 0. For
E < 0, the solution to (5.2) on (−∞,−A) will be a linear combination of
the two exponentials exp(αx) and exp(−αx), where

α =

√
2m |E|
ℏ

. (5.3)

For ψ to be square-integrable over (−∞,−A), the coefficient of exp(−αx)
must be zero, since this term grows exponentially as x tends to −∞. Thus,
the value of ψ on (−∞,−A) must be c exp(αx). Once we choose a value
for c, we get a unique solution on (−A,A) by matching ψ and ψ′ across
x = −A. We then get a unique solution on (A,∞) by matching across
x = A. The solution on (A,∞) will be again be a linear combination
of exp(αx) and exp(−αx). For ψ to be in L2, we need the coefficient of
exp(αx) on (A,∞) to be zero. We have no choice, however, about what ψ
is on (A,∞); the coefficient of exp(αx) either comes out to be zero or it
does not.
The conclusion, then, is that for anyE < 0, there is a unique (up to a con-

stant) solution to (5.2) that is square-integrable on the interval (−∞,−A).
This solution then gives rise to a unique solution on (−A,A) and then to a
unique solution on (A,∞), up to a constant. Unless we are lucky, the solu-
tion on (A,∞) will grow exponentially and thus fail to be in L2. Therefore,
in most cases there will be no nonzero solution to (5.2) that satisfies the
continuity condition and is square-integrable over the whole real line. The
hope is that for certain special values of E, we will be able to find a solu-
tion that decays exponentially both on (−∞,−A) and on (A,∞), in which
case the solution will belong to L2(R).
It can be shown (Exercise 6) that there are no nonzero square-integrable

solutions with E ≤ −C. Therefore, any square-integrable solutions to (5.2)
that may exist must come from the range −C < E < 0. To analyze this
range, let us rewrite the time-independent Schrödinger equation by dividing
through by −�2/(2m), yielding the equation

d2ψ

dx2
=

⎧
⎨
⎩

εψ |x| > A

−(c− ε)ψ |x| < A
. (5.4)

where

ε = −2mE

�2

c =
2mC

�2
. (5.5)

Note that although E is assumed to be negative, we have normalized ε to
be positive; the condition −C < E < 0 corresponds to 0 < ε < c.
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Because our potential function V is even, it is easy to see that for any
solution ψ to (5.4), the even and odd parts of ψ are also solutions. We can,
therefore, analyze even solutions and odd solutions separately. We begin
with the even case. For x < −A, every solution to (5.4) that is square-
integrable over (−∞, A) is of the form

ψ(x) = ae
√
εx, x ≤ −A. (5.6)

Since we assume that ψ is even, we then have

ψ(x) = ae−
√
εx, x ≥ A. (5.7)

Meanwhile, for −A < x < A, every even solution is of the form

ψ(x) = b cos
(√

c− εx
)
. (5.8)

Proposition 5.2 Let ψ be the function defined in (5.6)–(5.8). Then there
exist nonzero constants a and b so that ψ belongs to the domain of Ĥ if
and only if the following matching condition holds:

√
ε =

√
c− ε tan

(√
c− εA

)
. (5.9)

Proof. Clearly both ψ and d2ψ/dx2 belong to L2(R). Thus, in light of
Proposition 5.1, we need only ensure that ψ(x) and ψ′(x) are continuous
at x = ±A. Since the exponential functions are never zero, we may always
ensure that ψ itself is continuous by taking any value we like for b and then
choosing a appropriately Once ψ has been made to be continuous, ψ′ will
be continuous provided that ψ′(x)/ψ(x) has the same value as we approach
±A from inside the well or from the outside. To obtain the condition (5.9),
we compute ψ′/ψ from (5.6) and then from (5.8), evaluate both quantities
at x = −A, and then equate the two values of ψ′/ψ. Because we have
made our solution an even function, we get the same matching condition
at x = A as at x = −A.
Now, in deriving (5.9), we implicitly assumed that ψ is nonzero at x =

±A. We do not, however, get any nonzero solutions in which ψ(±A) = 0.
After all, at points where the cosine function in (5.8) is zero, its derivative
is nonzero. But no choice of the constant in front of the exponentials (5.6)
and (5.7) will produce a function that is zero but has a derivative that is
nonzero.

Proposition 5.3 For all positive values of c and A, there exists at least
one ε ∈ (0, c) such that (5.9) holds.

Proof. Case 1:
√
cA < π/2. In this case, as ε varies between 0 and c,

the left-hand side of (5.9) will vary between 0 and some positive number,
whereas the right-hand side of (5.9) will vary between some positive number
and 0. By the intermediate value theorem, there must exist ε ∈ (0, c) for
which (5.9) holds. See Fig. 5.2.
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Case 2:
√
cA ≥ π/2. In this case, there is ε0 ∈ [0, c] for which

√
c− ε0A =

π/2. As ε decreases from c to ε0, the right-hand side of (5.9) will vary from
0 to +∞. Thus, for ε slightly larger than ε0, the right-hand side of (5.9)
will be larger than the left-hand side. By the intermediate value theorem,
there must exist ε ∈ (ε0, c) for which (5.9) holds. See Fig. 5.3 for a case√
cA slightly larger than π/2 and Fig. 5.4 for a case with

√
cA much larger

than π/2.
Note that if

√
cA is much larger than π/2, then there will be multiple

solutions of (5.9), as can be seen in Fig. 5.4.
We have found, then, at least one solution ψ to (5.4) that satisfies the

matching condition and for which both ψ and ψ′′ decay exponentially at
infinity. Since this ψ belongs to the domain of Ĥ , we have established the
following result.

FIGURE 5.2. Solving the matching condition, Case 1.

Proposition 5.4 For any positive values of A and C, there exists at least
one value of E in the range −C < E < 0 for which (5.2) has a nonzero
solution in the domain of Ĥ, given by the formula

ψ(x) =

⎧
⎨
⎩

cos
(√

c− εx
)

−A ≤ x ≤ A

cos
(√

c− εA
)
exp[−√

ε(|x| −A)] |x| ≥ A
,

where c and ε are defined in (5.5) and where ε satisfies (5.9).

In Proposition 5.4, we have not normalized ψ to be a unit vector in
L2(R), but rather have normalized ψ to equal 1 at the origin. In Figs. 5.5–
5.7, we plot our eigenfunction in several different cases. In Fig. 5.5, we have
a “shallow” well, with

√
cA = 1. In that case, we obtain only one even

eigenvector, which is the ground state of the system (i.e., the eigenvector
with the smallest eigenvalue). Next, we consider a “deep” well, with

√
cA =

30. For this well, the ground state is shown in Fig. 5.5 and an “excited state”
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FIGURE 5.3. Solving the matching condition, Case 2a.

FIGURE 5.4. Solving the matching conditions, Case 2b.

−A A

FIGURE 5.5. Ground state for a shallow potential well.
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−A A

FIGURE 5.6. Ground state for a deep potential well.

−A A

FIGURE 5.7. Excited state for a deep potential well.

(i.e., an eigenvector with an eigenvalue that is not the smallest) is shown
in Fig. 5.7.
Note that in the shallow well, the ground state extends quite a bit beyond

the interval [−A,A], whereas in the deep well, the ground state goes to zero
very quickly as soon as we move outside the well. On the other hand, the
excited state in Fig. 5.7 extends comparatively far outside the well.
It is straightforward to adapt the preceding analysis to the odd case. The

matching condition (5.9) is replaced by

√
ε = −

√
c− ε cot

(√
c− εA

)
(5.10)

(Exercise 2) and the formula for the eigenvectors is now

ψ(x) =

⎧
⎨
⎩

sin
(√

c− εx
)

−A ≤ x ≤ A

± sin
(√

c− εA
)
exp[−√

ε(|x| −A)] |x| ≥ A
,

where we take the + sign for x > A and the − sign for x < −A.
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FIGURE 5.8. Matching condition for odd solutions.

−A A

FIGURE 5.9. An odd solution.

If
√
cA < π/2, then the matching condition (5.10) will have no solu-

tions, since the right-hand side of (5.10) will be negative for all ε ∈ (0, c).
For large values of

√
cA, there will be several solutions to (5.10). A typical

matching scenario and an associated eigenfunction are plotted in Figs. 5.8
and 5.9.

5.4 Tunneling and the Classically Forbidden
Region

Let us now briefly compare the classical situation to the quantum one.
Classically, if a particle has energy E, then since the kinetic energy p2/(2m)
is always non-negative, the particle simply cannot be located at a point x
with V (x) > E. Thus, the region V (x) ≤ E may be called the “classically
allowed” region and the region V (x) > E the “classically forbidden” region.
In the case of a square well potential (5.1), if −C < E < 0, then the “well”
itself (i.e., the region with −A ≤ x ≤ A) is the classically allowed region
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and the outside of the well (i.e., the region with |x| > A) is the classically
forbidden region.
Quantum mechanically, if Ĥψ = Eψ, then the particle has a definite

value for the energy, namely E. We see, however, that such a particle has
a nonzero probability of being located in the classically forbidden region.
Note that although the wave function is not zero in the classically forbidden
region, it does decay exponentially with the distance from the classically
allowed region. That is to say, the quantum particle can penetrate some
distance into the classically forbidden region. Note, however, that if E is
much less than zero—i.e., ε is large—then a state with Ĥψ = Eψ will decay
very rapidly outside the well (like exp[−√

ε(|x| −A)]).
More generally, we can think about the time-dependent Schrödinger

equation for a particle with energy approximately equal to E. If we require
that the energy be exactly equal to E, then there is no interesting time-
dependence, since the solution to the time-dependent Schrödinger equation
is simply a constant time ψ0. We can, however, think of a particle where
the uncertainty in the energy is nonzero but small. Suppose such a particle
is traveling through a region with V < E and then approaches a region
with V > E (a “potential barrier”). Classically, the particle would just
reflect off of this barrier and go back in the other direction. Quantum me-
chanically, though, it is possible for the particle to “tunnel” through the
potential barrier and come out the other side. That is to say, at some later
time, there will be some non-negligible portion of the wave function on the
far side of the barrier.

5.5 Discrete and Continuous Spectrum

Our analysis of the eigenvector equation (5.2) for −C < E < 0 shows that
there are only finitely many values of E in this range for which we get
square-integrable solutions. It is not hard to analyze the case E ≤ −C
with the result that all nonzero solutions grow exponentially in at least
one direction (Exercise 6). Meanwhile, for E > 0, any solution to (5.2) on
(−∞,−A) has sinusoidal behavior and is not square-integrable unless it
is identically zero, in which case (by our matching condition) the solution
must be zero everywhere.
The upshot is that we obtain only finitely many square-integrable so-

lutions to (5.2), up to multiplying each solution by a constant. Clearly,
then, the “true” eigenvectors for Ĥ [i.e., the ones that actually belong to
the Hilbert space L2(R)] cannot form an orthonormal basis for L2(R).
Nevertheless, the spectral theorem (Chap. 7) provides something like a
orthonormal-basis decomposition of elements of L2(R) in terms of the so-
lutions to (5.2). A general element ψ of L2(R) will be a sum of two terms.
The first term is a linear combination of the true (L2) eigenvectors for
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Ĥ , which have E < 0. The second term is a continuous superposition
(i.e., an integral) of the non–square-integrable “generalized eigenvectors”
with E > 0.
In Chap. 9, we will introduce the notion of the spectrum of a (possibly

unbounded) self-adjoint operator A. We will see that a number λ belongs
to the spectrum of A if for all ε > 0 there exists a unit vector ψ in the
domain of A for which ‖Aψ − λψ‖ < ε. In the case of the Hamiltonian
operator Ĥ with a square well potential, it is not hard to show that every
real number E with E ≥ 0 belongs to the spectrum of Ĥ (Exercise 4.).
It can be shown that if a number E < 0 is not an eigenvalue (i.e., if there

are no nonzero L2 solutions to Ĥψ = Eψ), then E is not an element of the
spectrum of Ĥ . This result is hinted at by Exercise 5. Thus, the spectrum
of Ĥ consists of a finite number of points in (−C, 0) (at least one), together
with the whole half line [0,∞).

5.6 Exercises

1. (a) Suppose ψ is a smooth function on each of the intervals
(−∞,−A), (−A,A), and (A,∞) and that both ψ and ψ′ are
continuous at x = A and at x = −A. Show that for any smooth
function χ with compact support, we have

∫ ∞

−∞
χ′′(x)ψ(x) dx =

∫ ∞

−∞
χ(x)ψ′′(x) dx, (5.11)

where we leave ψ′′(x) undefined at x = ±A if the second deriva-
tive does not exist at those points. (In light of Definition A.28,
(5.11) means that the second derivative of ψ, in the distribution
sense, is simply the function ψ′′.)

Hint : Choose some interval [−R,R] with R > A containing the
support of χ. Now use integration by parts separately on each
of the intervals [−R,−A], [−A,A], and [A,R], paying careful
attention to the boundary terms.

(b) Suppose now that ψ is a smooth function on each of the inter-
vals (−∞,−A), (−A,A), and (A,∞), and that both ψ and ψ′

have left and right limits at x = ±A, but that, say, ψ′ has a
discontinuity at x = −A. Show that (5.11) has to be modified
by adding a nonzero multiple of χ(−A) to the right-hand side.

2. Verify the matching condition (5.10) for odd solutions of the time-
independent Schrödinger equation.

3. Let ω be a nonzero real number and consider a function of the form

ψ(x) = a cos(ωx) + b sin(ωx),
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for real numbers a and b. If a and b are not both zero, show that for
any A ∈ R, we have

lim
B→+∞

∫ B

A

ψ(x)2 dx = +∞.

4. Let f be a C∞ function on the interval (0, 1) with the property that
f(x) = 1 for 0 < x < 1/3 and f(x) = 0 for 2/3 < x < 1. Then define
a family of “cutoff” functions χn on R by the formula

χn(x) =

⎧
⎪⎪⎨
⎪⎪⎩

0 |x| ≥ n+ 1
1 |x| ≤ n

f(−x− n) −(n+ 1) < x < −n
f(x− n) n < x < n+ 1

.

Given any E > 0, let ψ be a nonzero solution to (5.2) for which ψ(x)
and ψ′(x) are continuous at x = ±A. Let ψn = ψχn. Show that ψn

belongs to the domain of Ĥ and that

lim
n→∞

∥∥∥Ĥψn − Eψn

∥∥∥
‖ψn‖

= 0.

Note: As we will see in Chap. 9, this implies that every real number
E with E > 0 belongs to the spectrum of the operator Ĥ .

Hint : In estimating ‖ψn‖, it may be helpful to apply Exercise 3 to
the real and imaginary parts of ψ outside the well.

5. Suppose E < 0 and suppose that there exists no nonzero square-
integrable solutions to (5.2) for which ψ and ψ′ are continuous. Let ψ
be a nonzero solution of (5.2) for which ψ(x) and ψ′(x) are continuous
at x = ±A and let ψn be as in Exercise 4. Show that

∥∥∥Ĥψn − Eψn

∥∥∥
‖ψn‖

does not tend to zero as n tends to infinity.

6. (a) Show that for E < −C, there are no nonzero square-integrable
solutions to (5.2) for which ψ and ψ′ are continuous.

(b) Obtain the result of Part (a) when E = −C.

Hint : Analyze the even and odd cases separately.

7. Let the ground state for a particle in a square well denote the eigen-
vector with the lowest (most negative) eigenvalue, which corresponds
to the largest value for ε.
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(a) Show that the ground state is always an even function. That is
to say, show that the largest value of ε satisfying (5.9) is always
larger than any solution to (5.10).

(b) Show that the ground state is a nowhere-zero function.



6
Perspectives on the Spectral Theorem

6.1 The Difficulties with the Infinite-Dimensional
Case

Suppose A is a self-adjoint n × n matrix, meaning that Akj = Ajk for all
1 ≤ j, k ≤ n. Then a standard result in linear algebra asserts that there
exist an orthonormal basis {vj}nj=1 for Cn and real numbers λ1, . . . , λn

such that Avj = λjvj . (See Theorem 18 in Chap. 8 of [24] and Exercise 4
in Chap. 7.)
We may state the same result in basis-independent language as follows.

Suppose H is a finite-dimensional Hilbert space and A is a self-adjoint
linear operator on H, meaning that 〈φ,Aψ〉 = 〈Aφ,ψ〉 for all φ, ψ ∈ H.
Then there exists an orthonormal basis ofH consisting of eigenvectors for A
with real eigenvalues.
Since there is a standard notion of orthonormal bases for general Hilbert

spaces, we might hope that a similar result would hold for self-adjoint
operators on infinite-dimensional Hilbert spaces. Simple examples, however,
show that a self-adjoint operator may not have any eigenvectors. Consider,
for example, H = L2([0, 1]) and an operator A on H defined by

(Aψ)(x) = xψ(x). (6.1)

Then A satisfies 〈φ,Aψ〉 = 〈Aφ,ψ〉 for all φ, ψ ∈ L2([0, 1]), and yet A
has no eigenvectors. After all, if xψ(x) = λψ(x), then ψ would have to be
supported on the set where x = λ, which is a set of measure zero. Thus,
only the zero element of L2([0, 1]) satisfies Aψ = λψ.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5 6,
© Springer Science+Business Media New York 2013
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Now, a physicist would say that the operator A in (6.1) does have
eigenvectors, namely the distributions δ(x − λ). (See Appendix A.3.3.)
These distributions indeed satisfy xδ(x − λ) = λδ(x − λ), but they do
not belong to the Hilbert space L2([0, 1]). Such “eigenvectors,” which be-
long to some larger space than H, are known as generalized eigenvectors.
Even though these generalized eigenvectors are not actually in the Hilbert
space, we may hope that there is some sense in which they form something
like a orthonormal basis. See Sect. 6.6 for an example of how such a “basis”
might function.
Let us mention in passing that our simple expectation of a true orthonor-

mal basis of eigenvectors is realized for compact self-adjoint operators,
where an operator A on H is said to be compact if the image under A of
every bounded set in H has compact closure; see Theorem VI.16 in Vol-
ume I of [34]. The operators of interest in quantum mechanics, however,
are not compact. (Of course, even if a self-adjoint operator is not compact,
it might still have an orthonormal basis of eigenvectors, as, e.g., in the case
of the Hamiltonian operator for a harmonic oscillator. See Chap. 11.)
Meanwhile, there is another serious difficulty that arises with self-adjoint

operators in the infinite-dimensional case. Most of the self-adjoint operators
A of quantum mechanics are unbounded operators, meaning that there is
no constant C such that ‖Aψ‖ ≤ C ‖ψ‖ for all ψ. Suppose, for example,
that A is the position operator X on L2(R), given by (Xψ)(x) = xψ(x). If
1E denotes the indicator function of E (the function that is 1 on E and 0
elsewhere), then it is apparent that

∥∥X1[n,n+1]

∥∥ ≥ n
∥∥1[n,n+1]

∥∥

for every positive integer n, and, thus, X cannot be bounded. Now, using
the closed graph theorem and elementary results from Sect. 9.3, it can be
shown that if A is defined on all of H and satisfies 〈φ,Aψ〉 = 〈Aφ,ψ〉 for
all φ, ψ ∈ H, then A must be bounded. (See Corollary 9.9.) Thus, if A is
unbounded and self-adjoint, it cannot be defined on all of H.
We define, then, an “unbounded operator on H ” to be a linear operator

from a dense subspace of H—known as the domain of A—to H. The no-
tion of self-adjointness for such operators is more complicated than in the
bounded case. The obvious condition, that 〈φ,Aψ〉 should equal 〈Aφ,ψ〉 for
all φ and ψ in the domain of A, is not the “right” condition. Specifically,
that condition is not sufficient to guarantee that the spectral theorem ap-
plies to A. Rather, for any unbounded operator A, we will define the adjoint
A∗ of A, which will be an unbounded operator with its own domain. An
unbounded operator is then defined to be self-adjoint if the domains of A
and A∗ are the same and A and A∗ agree on their common domain. That
is to say, self-adjointness means not only that A and A∗ agree whenever
they are both defined, but also that the domains of A and A∗ agree.
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6.2 The Goals of Spectral Theory

Before getting into the details of the spectral theory, let us think for a
moment about what it is we want the spectral theorem to do for us. In the
first place, we would like the spectral theorem to allow us to apply various
functions to an operator. We saw, for example, that the time-dependent
Schrödinger equation can be “solved” by setting ψ(t) = exp{−itĤ/ℏ}ψ0.
Because the Hamiltonian operator Ĥ is unbounded, it is not convenient
to use power series to define the exponential. If, however, Ĥ has a true
orthonormal basis {ek} of eigenvectors with corresponding eigenvalues λn,
then we can define exp{−itĤ/ℏ} to be the unique bounded operator with
the property that

e−itĤ/ℏek = e−itλk/ℏek

for all k.
In cases where Ĥ does not have a true orthonormal basis of eigenvectors,

we would like the spectral theorem to provide a “functional calculus” for
Ĥ , that is, a system for applying functions (including exponentials) to Ĥ .
This functional calculus should have properties similar to what we have in
the case of a true orthonormal basis of eigenvectors.
In the second place, we would like the spectral theorem to provide a

probability distribution for the result of measuring a self-adjoint opera-
tor A. Let us recall how measurement probabilities work in the case that
A has a true orthonormal basis {ej} of eigenvectors with eigenvalues λj .
Building on Example 3.12, we may compute the probabilities in such a case
as follows. Given any Borel set E of R, let VE be the closed span of all the
eigenvectors for A with eigenvalues in E, and let PE be the orthogonal
projection onto VE . Then for any unit vector ψ, we have

probψ(A ∈ E) = 〈ψ, PEψ〉 . (6.2)

In particular, if the eigenvalues are distinct and ψ decomposes as ψ =∑
j cjej , the probability of observing the value λj will be |cj |2 (as in Ex-

ample 3.12), since P{λj} is just the projection onto ej .
In cases where A does not have a true orthonormal basis of eigenvectors,

we would like the spectral theorem to provide a family of projection oper-
ators PE , one for each Borel subset E ⊂ R, which will allow us to define
probabilities as in (6.2). We will call these projection operators spectral
projections and the associated subspaces VE spectral subspaces. (Thus, PE

is the orthogonal projection onto VE .) Intuitively, VE may be thought of as
the closed span of all the generalized eigenvectors with eigenvalues in E.
In the first version of the spectral theorem, both these goals will be

achieved, with the spectral projections being provided by a projection-
valued measure and the functional calculus being provided by integration
with respect to this measure. Although having (generalized) eigenvectors
for a self-adjoint operator is, from a practical standpoint, of secondary
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importance, we provide a framework for understanding such eigenvectors,
using the concept of a direct integral. The second version of the spectral
theorem decomposes the Hilbert space H as a direct integral, with respect
to a certain measure μ, of generalized eigenspaces for a self-adjoint oper-
ator A. The generalized eigenspace for a particular eigenvalue λ will not
actually be a subspace ofH, unless μ({λ}) > 0. Thus, the notion of a direct
integral gives a rigorous meaning to the notion of “eigenvectors” that are
not actually in the Hilbert space.

6.3 A Guide to Reading

Although the portion of this book devoted to spectral theory is unavoidably
technical in places, it has been designed so that the reader can take in as
much or as little as desired. The reader who is willing to take things on faith
can simply take in the examples of the position and momentum operators
in Sects. 6.4 and 6.6 and accept these as prototypes of how the spectral
theorem works. The reader who wants more details can find the statement
of the spectral theorem for bounded operators, in two different forms, in
Chap. 7, and can find the basics of unbounded self-adjoint operators in
Chap. 9. Finally, the reader who wants a complete treatment of the subject
can find full proofs of the spectral theorem in both forms, first for bounded
operators in Chap. 8, and then for unbounded operators in Chap. 10.

6.4 The Position Operator

As our first example, let us consider the position operator X , given by
(Xψ)(x) = xψ(x), acting on the Hilbert space H = L2(R). As for the
similar operator in Sect. 6.1, X has no true eigenvectors, that is, no eigen-
vectors that are actually in H. If we think that the generalized eigenvectors
for X are the distributions δ(x−λ), λ ∈ R, then we may make an educated
guess that the spectral subspace VE should consist of those functions that
“supported” on E, that is, those that are zero almost everywhere on the
complement of E. (A superposition of the “functions” δ(x−λ), with λ ∈ E,
should be a function supported on E.)
The spectral projection PE is then the orthogonal projection onto VE ,

which may be computed as

PEψ = 1Eψ,

where 1E is the indicator function of E. In that case, we have, follow-
ing (6.2),

probψ (X ∈ E) = 〈ψ, PEψ〉 =
∫

E

|ψ(x)|2 dx.
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This formula is just what we would have expected from our discussion in
Chap. 3, where we claimed that the probability distribution for the position
of the particle is |ψ(x)|2.
Meanwhile, let us consider the functional calculus for X . If f(λ) = λm,

then f(X) should be just the mth power of X , which is multiplication by
xm. It seems reasonable, then, to think that for any function f , we should
define f(X) to be simply multiplication by f(x). In particular, the operator
eiaX should be simply multiplication by eiax, which is a bounded operator
on L2(R).

6.5 Multiplication Operators

Since the position operator acts simply as multiplication by the function
x, it is straightforward to find the spectral subspaces and also to construct
the functional calculus for X . We may consider multiplication operators in
a more general setting. If H = L2(X,μ) and h is a real-valued measurable
function on X , then we may define the multiplication operator Mh on
L2(X,μ) by

Mhψ = hψ.

We can then construct spectral subspaces as

VE = {ψ
∣∣ψ is supported on h−1(E)}

and define a functional calculus by

f(A) = multiplication by f ◦ h.

One form of spectral theorem may now be stated simply as follows: A
self-adjoint operator A on a separable Hilbert space is unitarily equivalent
to a multiplication operator. That is to say, there is some σ-finite mea-
sure space (X,μ) and some measurable function h on X such that A is
unitarily equivalent to multiplication by h. (See Theorem 7.20.) Although
this version of the spectral theorem is compellingly easy to state, there is
slight modification of it, involving direct integrals, that is in some ways
even better. See Sect. 7.3 for more information.

6.6 The Momentum Operator

Let us now see how the spectral theorem works out in the case of the
momentum operator, P = −i� d/dx on L2(R). The “eigenvectors” for
P are the functions eikx, k ∈ R, with the corresponding eigenvalues be-
ing �k. Although the functions eikx are not in L2(R), the Fourier trans-
form shows that any function in L2(R) can be expanded as a superposition
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(i.e., continuous version of a linear combination) of these functions. (See
Appendix A.3.2.) Indeed, the Fourier transform is very much like the de-
composition of a vector in an orthonormal basis, in that the Fourier coeffi-
cients ψ̂(k) can be expressed in terms of the “inner product” of a function
ψ with eikx:

ψ̂(k) = (2π)−1/2

∫ ∞

−∞
e−ikxψ(x) dx = (2π)−1/2

〈
eikx, ψ

〉
L2(R)

,

if we ignore the fact that eikx is not actually in L2.
Indeed, physicists frequently understand the Fourier transform by assert-

ing that the functions eikx/
√
2π form an “orthonormal basis in the contin-

uous sense” for L2(R). Orthonormality in the continuous sense is supposed
to mean that one replaces the usual Kronecker delta in the definition of an
orthonormal set by the Dirac δ-function

〈
eikx√
2π

,
eilx√
2π

〉

L2(R)

= δ(k − l), (6.3)

where δ is supposed to satisfy

∫ ∞

−∞
f(k)δ(k − l) dk = f(l)

for all continuous functions f . (Rigorously, δ(k − l) is a distribution; see
Appendix A.3.3.)
To give some rigorous meaning to (6.3), note that although the inner

product of eikx and eilx is not defined, we may approximate this inner
product by the expression

1

2π

∫ A

−A

e−ikxeilx dx =
1

2π

e−i(k−l)x

−i(k − l)

∣∣∣∣
A

−A

=
A

π

sin [A(k − l)]

A(k − l)
.

It is possible to show that the above function, viewed as a function of k for
fixed A and l, behaves like δ(k− l) in the limit as A tends to infinity. That
is to say, for all sufficiently nice functions ψ, we have

lim
A→∞

∫ ∞

−∞
ψ(k)

A

π

sin [A(k − l)]

A(k − l)
dk = ψ(l). (6.4)

Here is a heuristic argument for (6.4). By making the change of variable
k′ = k− l, we may reduce the general problem to the case l = 0. If we then
make the change of variable κ = Ak, the desired result is equivalent to

lim
A→+∞

∫ ∞

−∞

1

π

sinκ

κ
f
( κ

A

)
dκ = f(0). (6.5)
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Now, if we can bring the limit inside the integral, f(κ/A) will tend to f(0)
as A tends to infinity. Since the rest of the integrand on the right-hand
side of (6.5) is already independent of A, the result would then follow if we
could show that ∫ ∞

−∞

1

π

sinκ

κ
dκ = 1. (6.6)

Even though the integral in (6.6) is not absolutely convergent, it is a con-
vergent improper integral. The value of the integral can be obtained by the
method of contour integration (or the method of consulting a table of in-
tegrals), and indeed (6.6) holds. Since (6.3) is, in any case, only a heuristic
way of thinking about the Fourier transform, we will not take the time to
develop a rigorous version of the preceding argument.
It is possible to derive, at least formally, many of the standard properties

of the Fourier transform by using (6.3), just as one can obtain properties
of Fourier series by using the orthonormality of the functions e2πinx in
L2([0, 1]). More importantly, the Fourier transform is precisely the unitary
transformation that changes the momentum operator into a multiplication
operator. To see this property of the Fourier transform more clearly, we
introduce a simple rescaling of it.

Definition 6.1 For any ψ ∈ L2(R), define ψ̃ by

ψ̃(p) =
1√
ℏ
ψ̂
(p
�

)
,

so that

ψ̃(p) =
1√
2πℏ

∫ ∞

−∞
e−ipx/ℏψ(x) dx.

The function ψ̃(p) is the momentum wave function associated with ψ.

By the Plancherel theorem (Theorem A.19) and a change of variable, if ψ

is a unit vector, then so is ψ̂ and also ψ̃. For any unit vector ψ, we interpret
|ψ̃(p)|2 as the probability density for the momentum of the particle, just as

|ψ(x)|2 is the probability distribution of the position of the particle. Using
Proposition A.17, we may readily verify that for nice enough ψ, we have

P̃ψ(p) = pψ̃(p). (6.7)

Equation (6.7) means that the unitary map ψ → ψ̃ turns the momentum
operator P into multiplication by p. That is to say, the spectral theorem,
in its “multiplication operator” form, is accomplished in this case by the
Fourier transform (scaled as in Definition 6.1).
In terms of the momentum wave function, we may define spectral pro-

jections and a functional calculus for P , just as in Sect. 6.5. For any Borel
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set E ⊂ R, we may define a projection PE to be the orthogonal projection
onto to the space of functions ψ for which ψ̃(p) is zero almost everywhere
outside of E. If f is any bounded measurable function on R, we can define
an operator f(P ) by defining f(P )ψ to be the unique element of L2(R) for
which

f̃(P )ψ(p) = f(p)ψ̃(p).



7
The Spectral Theorem for Bounded
Self-Adjoint Operators: Statements

In the present chapter, we will consider the spectral theorem for bounded
self-adjoint operators, leaving a discussion of unbounded operators to
Chaps. 9 and 10. The proofs of the main theorems (two different versions
of the spectral theorem) are moderately long and are deferred to Chap. 8.
After some elementary definitions and results in Sect. 7.1, we come to the
main results in Sects. 7.2 and 7.3. Throughout the chapter, H will, as usual,
denote a separable Hilbert space over C.

7.1 Elementary Properties of Bounded Operators

As usual, we will let H denote a separable complex Hilbert space. Recall
from Appendix A.3.4 that a linear operator A on H is said to be bounded
if the operator norm of A,

‖A‖ := sup
ψ∈H\{0}

‖Aψ‖
‖ψ‖ (7.1)

is finite. The space of bounded operators on H forms a Banach space under
the operator norm, and we have the inequality

‖AB‖ ≤ ‖A‖ ‖B‖ (7.2)

for all bounded operators A and B.

Definition 7.1 The Banach space of bounded operators on H, with respect
to the operator norm (7.1), is denoted B(H).

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
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Recall (Appendix A.4.3) that for anyA ∈ B(H) there is a unique operator
A∗ ∈ B(H), called the adjoint of A, such that

〈φ,Aψ〉 = 〈A∗φ, ψ〉
for all φ, ψ ∈ H. An operator A ∈ B(H) is called self-adjoint if A∗ = A.
We say that A ∈ B(H) is non-negative if

〈ψ,Aψ〉 ≥ 0 (7.3)

for all ψ ∈ H.

Proposition 7.2 For all A ∈ B(H), we have

‖A∗‖ = ‖A‖
and

‖A∗A‖ = ‖A‖2 .
In particular, if A is self-adjoint, we have the useful result that

∥∥A2
∥∥ =

‖A‖2.
Proof. The operator norm of A can also be computed as

‖A‖ = sup
‖ψ‖=1

‖Aψ‖ .

Furthermore, for any vector φ ∈ H, ‖φ‖ = sup‖χ‖=1 |〈χ, φ〉|. (Inequality
one direction is by the Cauchy–Schwarz inequality, and inequality the other
direction is by taking χ to be a multiple of φ.) Thus,

‖A‖ = sup
‖φ‖=‖ψ‖=1

|〈φ,Aψ〉| .

From this, we get

‖A∗‖ = sup
‖φ‖=‖ψ‖=1

|〈φ,A∗ψ〉|

= sup
‖φ‖=‖ψ‖=1

|〈Aφ,ψ〉|

= sup
‖φ‖=‖ψ‖=1

|〈ψ,Aφ〉|

= ‖A‖ .

Meanwhile, ‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2. On the other hand,

‖A∗A‖ = sup
‖φ‖=‖ψ‖=1

|〈φ,A∗Aψ〉|

= sup
‖φ‖=‖ψ‖=1

|〈Aφ,Aψ〉|

≥ sup
‖ψ‖=1

|〈Aψ,Aψ〉|

= ‖A‖2 ,
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which establishes the inequality in the other order.
We now record an elementary but very useful result.

Proposition 7.3 For all A ∈ B(H), we have

[Range(A)]
⊥
= ker(A∗),

where for any B ∈ B(H), ker(B) denotes the kernel of B.

Proof. Suppose first that ψ belongs to [Range(A)]
⊥
. Then for all φ ∈ H,

we have

0 = 〈ψ,Aφ〉 = 〈A∗ψ, φ〉 . (7.4)

This implies that A∗ψ = 0 and thus that ψ ∈ ker(A∗). Conversely, suppose
ψ ∈ ker(A∗). Then for all φ ∈ H, (7.4) holds (reading the equation from
right to left). This shows that ψ is orthogonal to every element of the form

Aφ, meaning that ψ ∈ [Range(A)]
⊥
.

Next, we define the spectrum of a bounded operator, which plays the
same role as the set of eigenvalues in the finite-dimensional case.

Definition 7.4 For A ∈ B(H), the resolvent set of A, denoted ρ(A)
is the set of all λ ∈ C such that the operator (A − λI) has a bounded
inverse. The spectrum of A, denoted by σ(A), is the complement in C of
the resolvent set. For λ in the resolvent set of A, the operator (A− λI)−1

is called the resolvent of A at λ.

Saying that (A − λI) has a bounded inverse means that there exists a
bounded operator B such that

(A− λI)B = B(A− λI) = I.

If A is bounded and A − λI is one-to-one and maps H onto H, then it
follows from the closed graph theorem (Theorem A.39) that the inverse
map must be bounded. Thus, the resolvent set of A can alternatively be
described as the set of λ ∈ C for which A− λI is one-to-one and onto.

Proposition 7.5 For all A ∈ B(H), the following results hold.

1. The spectrum σ(A) of A is a closed, bounded, and nonempty subset
of C.

2. If |λ| > ‖A‖, then λ is in the resolvent set of A.

Lemma 7.6 Suppose X ∈ B(H) satisfies ‖X‖ < 1. Then the operator
I−X is invertible, with the inverse given by the following convergent series
in B(H):

(I −X)−1 = I +X +X2 +X3 + · · · (7.5)
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Proof. As a consequence of (7.2), we have ‖Xm‖ ≤ ‖X‖m. The (geometric)
series on the right-hand side of (7.5) is therefore absolutely convergent and
thus convergent in the Banach space B(H) (Appendix A.3.4). If we multiply
this series on either side by (I−X), everything will cancel except I, showing
that the sum of the series is the inverse of (I −X).
Proof of Proposition 7.5. For any nonzero λ ∈ C, consider the operator

A− λI = −λ

(
I − A

λ

)
.

If |λ| > ‖A‖, then ‖A/λ‖ < 1, and I − A/λ is invertible by the lemma. It
then follows that A− λI is invertible, with

(A− λI)−1 = − 1

λ

(
I +

A

λ
+

A2

λ2
+ · · ·

)
. (7.6)

Thus, λ is in the resolvent set of A. This establishes Point 2 in the propo-
sition and shows that σ(A) is bounded.
Suppose now that λ0 ∈ C is in the resolvent set of A. Then for another

number λ ∈ C, we have

A− λI = A− λ0I − (λ− λ0)I

= (A− λ0I) (I − (λ− λ0) (A− λ0I)
−1). (7.7)

Thus, if

|λ− λ0| <
1

‖(A− λ0I)−1‖ ,

both factors on the right-hand side of (7.7) will be invertible, so that A−λI
is also invertible. Thus, the resolvent set of A is open and the spectrum is
closed.
To show that σ(A) is nonempty, note that A− λI may be computed as

follows:

(A− λI)−1 = (I − (λ− λ0)(A− λ0I)
−1)−1(A− λ0I)

−1

=

( ∞∑

m=0

(λ− λ0)
m((A− λ0I)

−1)m

)
(A− λ0I)

−1. (7.8)

Thus, near any point λ0 in the resolvent set of A, the resolvent (A−λI)−1

can be computed by the locally convergent series (7.8) in powers of λ−λ0,
with the coefficients of the series being elements of B(H). For any φ, ψ ∈ H,
the map

λ �→
〈
φ, (A − λI)−1ψ

〉
(7.9)

will be given by a locally convergent power series with coefficients in C,
meaning that the function (7.9) is a holomorphic function on the resolvent
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set of A. Furthermore, from (7.6) we can see that
∥∥(A− λI)−1

∥∥ tends to
zero as |λ| tends to infinity, and so also does the right-hand side of (7.9).
If σ(A) were the empty set, the function (7.9) would be holomorphic

on all of C and tending to zero at infinity. By Liouville’s theorem, the
right-hand side of (7.9) would have to be identically zero for all φ and
ψ, which would mean that (A − λI)−1 is the zero operator. But since
(A− λI)(A − λI)−1 = I, the operator (A− λI)−1 cannot be zero.
If Aψ = λψ for some λ ∈ C and some nonzero ψ ∈ H, then (A−λI) has

a nonzero kernel and so λ is in the spectrum of A. Thus, any eigenvalue
for A is contained in the spectrum of A. In the infinite-dimensional case,
however, the converse is not true: A point in the spectrum may not be an
eigenvalue for A. Nevertheless, for a bounded self-adjoint operator A, the
spectrum of A may be described in a way that is not too far removed from
what we have in the finite-dimensional case.

Proposition 7.7 If A ∈ B(H) is self-adjoint, then the following results
hold.

1. The spectrum of A is contained in the real line.

2. A number λ ∈ R belongs to the spectrum of A if and only if there
exists a sequence ψn of nonzero vectors in H such that

lim
n→∞

‖Aψn − λψn‖
‖ψn‖

= 0. (7.10)

Condition 2 in the proposition says that λ ∈ R belongs to the spectrum
if and only if λ is “almost an eigenvalue,” meaning that there exists ψ 
= 0
for which Aψ is equal to λψ plus an error that is small compared to the
size of ψ.

Lemma 7.8 If A ∈ B(H) is self-adjoint, then for all λ = a + ib ∈ C, we
have

〈(A− λI)ψ, (A− λI)ψ〉 ≥ b2 〈ψ, ψ〉 . (7.11)

Proof. We compute that

〈(A− (a+ ib)I)ψ, (A− (a+ ib)I)ψ〉
= 〈(A− aI)ψ, (A− aI)ψ〉+ ib 〈ψ, (A− aI)ψ〉
− ib 〈(A− aI)ψ, ψ〉+ b2 〈ψ, ψ〉 . (7.12)

Since A is self-adjoint, so is A− aI, from which we see that the second and
third terms on the right-hand side of (7.12) cancel, leaving us with

〈(A− λI)ψ, (A − λI)ψ〉 = 〈(A− aI)ψ, (A− aI)ψ〉+ b2 〈ψ, ψ〉 ,

from which the desired inequality follows.
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Proof of Proposition 7.7. For Point 1, we need to show that any complex
number λ = a + ib with b 
= 0 belongs to the resolvent set of A. Since
b 
= 0, (7.11) shows that A−λI is injective. Meanwhile, by Proposition 7.3,
Range(A − λI)⊥ = ker(A − λ̄I). Since λ̄ also has nonzero imaginary part,
A − λ̄I is injective, and so the range of A − λI is dense in H. To show
that the range is all of H, consider any φ ∈ H and choose a sequence
φn = (A− λI)ψn in Range(A− λI) with φn → φ. Applying (7.11) with ψ
replaced by ψn−ψm shows that 〈ψn〉 is a Cauchy sequence. Thus, ψn → ψ
for some ψ ∈ H. Since A is bounded,

(A− λI)ψ = lim
n→∞

(A− λI)ψn = lim
n→∞

φn = φ.

We conclude, then, that A−λI is one-to-one and onto. The inverse operator
(A− λI)−1 is bounded, by (7.11) (or by the closed graph theorem).
For Point 2, assume there exists a sequence as in (7.10), and suppose that

A−λI had an inverse. Letting φn = (A−λI)ψn, we have ψn = (A−λI)−1φn

and so (7.10) says that

lim
n→∞

‖φn‖
‖(A− λI)−1φn‖

= 0,

which shows that (A− λI)−1 is actually unbounded. Thus, A− λI cannot
have a bounded inverse.
Conversely, if, for some λ ∈ R, no such sequence exists, then there exists

some ε > 0 such that
‖(A− λI)ψ‖ ≥ ε ‖ψ‖ (7.13)

for all ψ ∈ H. Then A − λI is injective and Proposition 7.3 tells us that
the range of the self-adjoint operator A − λI is dense in H. Arguing as in
the preceding paragraphs with (7.13) in place of (7.11), we can see that the
range of A− λI is also closed, hence all of H. This shows that A− λI has
an inverse.

Example 7.9 Let H = L2([0, 1]) and let A be the operator on H defined
by

(Aψ)(x) = xψ(x).

Then this operator is bounded and self-adjoint, and its spectrum is given by

σ(A) = [0, 1].

As we have already noted in Sect. 6.1, the operator A does not have any
(true) eigenvectors.
Proof. It is apparent that ‖Aψ‖ ≤ ‖ψ‖ and that 〈φ,Aψ〉 = 〈Aφ,ψ〉 for all
φ, ψ ∈ H, so that A is bounded and self-adjoint. Given λ ∈ (0, 1), consider

the functions ψn := 1[λλ+1/n], which satisfy ‖ψn‖2 = 1/n. On the other
hand, since |x− λ| ≤ 1/n on [λ, λ+ 1/n], we have

‖(A− λI)ψn‖2 ≤ 1/n3.
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Thus, by Proposition 7.7, λ belongs to the spectrum of A. Since this holds
for all λ ∈ (0, 1) and the spectrum of A is closed, σ(A) ⊃ [0, 1].
Meanwhile, if λ /∈ [0, 1], then the function 1/(x − λ) is bounded on

[0, 1], and so A−λI has a bounded inverse, consisting of multiplication by
1/(x− λ). Thus, σ(A) = [0, 1].

7.2 Spectral Theorem for Bounded Self-Adjoint
Operators, I

7.2.1 Spectral Subspaces

Given a bounded (for now) self-adjoint operator A, we hope to associate
with each Borel set E ⊂ σ(A) a closed subspace VE of H, where we think
intuitively that VE is the closed span of the generalized eigenvectors for A
with eigenvalues in E. [We could do this more generally for any E ⊂ R,
but we do not expect any contribution from R\σ(A).] We would expect the
collection of these subspaces to have the following properties.

1. Vσ(A) = H and V∅ = {0}.

2. If E and F are disjoint, then VE ⊥ VF .

3. For any E and F , VE∩F = VE ∩ VF .

4. If E1, E2, . . . are disjoint and E = ∪jEj , then

VE =
⊕

j

VEj
.

5. For any E, VE is invariant under A.

6. If E ⊂ [λ0 − ε, λ0 + ε] and ψ ∈ VE , then

‖(A− λ0I)ψ‖ ≤ ε ‖ψ‖ .

The condition Vσ(A) = H captures the idea that our generalized eigenvec-
tors should spanH, while Property 2 captures the idea that our generalized
eigenvectors should have some sort of orthogonality for distinct eigenval-
ues, even if they are not actually in the Hilbert space. In Property 4, there
may be infinitely many of the Ej ’s, in which case, the direct sum is in the
Hilbert space sense (Definition A.45). Properties 5 and 6 capture the idea
that VE is made up of generalized eigenvectors for A with eigenvalues in E.
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7.2.2 Projection-Valued Measures

It is convenient to describe closed subspaces of a Hilbert spaceH in terms of
the associated orthogonal projection operators. Recall (Proposition A.57)
that, given a closed subspace V of H, there exists a unique bounded op-
erator P that equals the identity on V and equals zero on the orthogonal
complement V ⊥ of V . This operator is called the orthogonal projection
onto V and satisfies P 2 = P and P ∗ = P . The following definition ex-
presses the first four properties of our spectral subspaces—the ones that
do not involve the operator A—in terms of the corresponding orthogonal
projections. Since those properties are similar to those of a measure, we
use the term projection-valued measure.

Definition 7.10 Let X be a set and Ω a σ-algebra in X. A map μ : Ω →
B(H) is called a projection-valued measure if the following properties
are satisfied.

1. For each E ∈ Ω, μ(E) is an orthogonal projection.

2. μ(∅) = 0 and μ(X) = I.

3. If E1, E2, E3, . . . in Ω are disjoint, then for all v ∈ H, we have

μ

⎛
⎝

∞⋃

j=1

Ej

⎞
⎠ v =

∞∑

j=1

μ(Ej)v,

where the convergence of the sum is in the norm topology on H.

4. For all E1, E2 ∈ Ω, we have μ(E1 ∩ E2) = μ(E1)μ(E2).

Note that if E1 and E2 are disjoint, then Properties 2 and 4 tell us
that μ(E1)μ(E2) = 0, from which it follows (Exercise 10) that the range
of μ(E1) and the range of μ(E2) are perpendicular. It is then not hard to
verify that μ(E1)μ(E2) is the projection onto the intersection of the ranges
of μ(E1) and μ(E2) (Exercise 11). Thus, if we define, for each E ∈ Ω, a
closed subspace VE := Range(μ(E)), then the collection of VE ’s satisfy the
first four properties that we anticipated for spectral subspaces.
In the next subsection, we will associate a projection-valued measure μA

with each bounded self-adjoint operator A. In that case, the projection
μA(E) will be thought of as a projection onto the spectral subspace cor-
responding to E. We are about to introduce the notion of operator-valued
integration with respect to a projection-valued measure. In the case of the
projection-valued measure μA associated with A, this operator-valued in-
tegral will be the functional calculus for A.
Observe that, for any projection-valued measure μ and ψ ∈ H, we can

form an ordinary (positive) real-valued measure μψ by setting

μψ(E) = 〈ψ, μ(E)ψ〉 (7.14)
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for all E ∈ Ω. This observation provides a link between integration with
respect to a projection-valued measure and integration with respect to an
ordinary measure.

Proposition 7.11 (Operator-Valued Integration) Let Ω be a σ-alge-
bra in a set X and let μ : Ω → B(H) be a projection-valued measure. Then
there exists a unique linear map, denoted f �→

∫
Ω
f dμ, from the space of

bounded, measurable, complex-valued functions on Ω into B(H) with the
property that 〈

ψ,

(∫

X

f dμ

)
ψ

〉
=

∫

X

f dμψ (7.15)

for all f and all ψ ∈ H, where μψ is given by (7.14). This integral has the
following additional properties.

1. For all E ∈ Ω, we have

∫

X

1E dμ = μ(E).

In particular, the integral of the constant function 1 is I.

2. For all f , we have

∥∥∥∥
∫

X

f dμ

∥∥∥∥ ≤ sup
λ∈X

|f(λ)| . (7.16)

3. Integration is multiplicative: For all f and g, we have

∫

X

fg dμ =

(∫

X

f dμ

)(∫

X

g dμ

)
. (7.17)

4. For all f , we have

∫

X

f̄ dμ =

(∫

X

f dμ

)∗
.

In particular, if f is real-valued, then
∫
X
f dμ is self-adjoint.

By Property 1 and linearity, integration with respect to μ has the ex-
pected behavior on simple functions. It then follows from Property 2 that
the integral of an arbitrary bounded measurable function f can be computed
as follows. Take a sequence sn of simple functions converging uniformly to
f ; the integral of f is then the limit, in the operator norm topology, of the
integral of the sn’s.
Although the multiplicative property of the integral may seem surprising

at first, observe that for any E1, E2 ∈ Ω, Property 3 in Definition 7.10 tells
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us that
(∫

X

1E1
dμ

)(∫

X

1E2
dμ

)
= μ(E1)μ(E2) = μ(E1 ∩ E2)

=

∫

X

1E1
· 1E2

dμ.

Thus, multiplicativity of the integral at the level of indicator functions is
built into the definition of a projection-valued measure.
If one wanted to make a real-valued measure for which the corresponding

integral was multiplicative, then since 1E · 1E = 1E , the integral of 1E—
namely, μ(E)—would have to satisfy μ(E)2 = μ(E). This would mean
that μ(E) is 0 or 1 for all E. For such measures, one would indeed obtain
multiplicativity of the integral, but measures with this property are not
very interesting. For operator-valued measures, we can have interesting
examples where the integral is multiplicative, simply because there are
many more idempotents (elements A with A2 = A) in B(H) than in R.
Proof of Proposition 7.11. Given a projection-valued measure μ and a
bounded measurable function f on X , define a map Qf : H → C by

Qf (ψ) =

∫

X

f dμψ ,

where μψ is given by (7.14). If f is an indicator function, then Qf (ψ) =
〈ψ, μ(E)ψ〉 is a bounded quadratic form. (See Definition A.60.) It is straight-
forward to show, passing from indicator functions to simple functions and
then to general functions, that for any bounded measurable f , Qf is a
bounded quadratic form, with

|Qf (ψ)| ≤
(
sup
λ∈X

|f(λ)|
)
‖ψ‖2 . (7.18)

It then follows from Proposition A.63 that there is a unique bounded
operator Af such that

Qf (ψ) = 〈ψ,Afψ〉
for all ψ ∈ H. We set

∫
X f dμ = Af . From the way Af is defined, it

satisfies (7.15). The uniqueness of the linear map f �→
∫
X
f dμ follows

from the uniqueness in Proposition A.63.
If f = 1E , then Qf (ψ) = μψ(E) = 〈ψ, μ(E)ψ〉, in which case the unique

associated operator Af is μ(E). This establishes Property 1. Property 2
follows from (7.18).
For Property 3, we have already observed that multiplicativity of the

integral, at the level of indicator functions, is built into the definition of a
projection-valued measure. Since both sides of (7.17) are bilinear in (φ, ψ),
we have (7.17) for simple functions. Using Property 2, we can then ob-
tain (7.17) for all bounded measurable functions by taking limits.
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Finally, if f is real valued, then Qf (ψ) will be real for all ψ ∈ H. Thus, by
Proposition A.63, the associated operator Af will be self-adjoint. Property
4 then follows by linearity.

7.2.3 The Spectral Theorem

We are ready to state one version of the spectral theorem for bounded
self-adjoint operators.

Theorem 7.12 (Spectral Theorem, First Form) If A ∈ B(H) is self-
adjoint, then there exists a unique projection-valued measure μA on the
Borel σ-algebra in σ(A), with values in projections on H, such that

∫

σ(A)

λ dμA(λ) = A. (7.19)

Since the spectrum σ(A) of A is bounded, the function f(λ) := λ is
bounded on σ(A). The proof of this theorem is given in Chap. 8.

Definition 7.13 (Functional Calculus) If A ∈ B(H) is self-adjoint and
f : σ(A) → C is a bounded measurable function, define an operator f(A)
by setting

f(A) =

∫

σ(A)

f(λ) dμA(λ),

where μA is the projection-valued measure in Theorem 7.12.

We may extend the projection-valued measure μA from σ(A) to all of
R by assigning measure 0 to R \ σ(A). Then, roughly speaking, f(A) is
the operator that is equal to f(λ)I on the range of the projection operator
μA([λ, λ+ dλ)).
Since the integral with respect to μA is multiplicative, it follows from

(7.19) that if f(λ) = λm for some positive integer m, then f(A) is the
mth power of A. Further, since the series eaλ =

∑∞
m=0(aλ)

m/m! converges
uniformly on the compact set σ(A), the operator eaA (computed using the
functional calculus for the function f(λ) = eaλ) may be computed as a
power series.

Definition 7.14 (Spectral Subspaces) For A ∈ B(H), let μA be the
associated projection-valued measure, extended to be a measure on R by
setting μA(R \ σ(A)) = 0. Then for each Borel set E ⊂ R, define the
spectral subspace VE of H by

VE = Range(μA(E)).

The definition of a projection-valued measure implies that these spectral
subspaces satisfy the first four properties listed in Sect. 7.2.1. We now show
that (7.19) implies the remaining two properties we anticipated for the
spectral subspaces.
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Proposition 7.15 If A ∈ B(H) is self-adjoint, the spectral subspaces as-
sociated with A have the following properties.

1. Each spectral subspace VE is invariant under A.

2. If E ⊂ [λ0 − ε, λ0 + ε] then for all ψ ∈ VE , we have

‖(A− λ0I)ψ‖ ≤ ε ‖ψ‖ .

3. The spectrum of A|VE
is contained in the closure of E.

4. If λ0 is in the spectrum of A, then for every neighborhood U of λ0,
we have VU 
= {0}, or, equivalently, μ(U) 
= 0.

Proof. For Point 1, observe that for any bounded measurable functions f
and g on σ(A), the operators f(A) and g(A) commute, since the product
in either order is equal to the integral of the function fg = gf with respect
to μA. In particular, A, which is the integral of the function f(λ) = λ,
commutes with μA(E), which is the integral of the function 1E. Thus,
given a vector μA(E)φ in the range of μA(E), we have

AμA(E)φ = μA(E)Aφ,

which is again in the range of μA(E), establishing the invariance of the
spectral subspace.
For Point 2, suppose that ψ ∈ VE , where E ⊂ [λ0 − ε, λ0 + ε]. Then ψ is

in the range of μA(E), and so

(A− λ0I)ψ = (A− λ0I)μ
A(E)ψ.

But μA(E) = 1E(A) and A − λ0I = f(A), where f(λ) = λ − λ0. By the
multiplicativity of the integral, then,

(A− λ0I)ψ = (f1E)(A)ψ.

But |f(λ)1E(λ)| ≤ ε and so by (7.16), the operator (f1E)(A) has norm at
most ε.
For Point 3, if λ0 is not in Ē, then the function g(λ) := 1E(λ)(1/(λ−λ0))

is bounded. Thus, g(A) is a bounded operator and

g(A)(A− λ0I) = (A− λ0I)g(A) = 1E(A).

This shows that the restriction to VE of g(A) is the inverse of the restriction
to VE of A. Thus, λ0 is not in the spectrum of A|VE

.
For Point 4, fix λ0 ∈ σ(A) and suppose for some ε > 0, we have μ((λ0 −

ε, λ0 + ε)) = 0. Consider, then, the bounded function f defined by

f(λ) =

{
1

λ−λ0
|λ− λ0| ≥ ε

0 |λ− λ0| < ε
.
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Since f(λ) · (λ − λ0) equals 1 except on (λ0 − ε, λ0 + ε), the equation
f(λ) · (λ − λ0) = 1 holds μ-almost everywhere. Thus, the integral of this
function coincides with the integral of the constant function 1, which is I.
Since the integral is multiplicative, we see that

f(A)(A− λ0I) = (A− λ0I)f(A) = I,

showing that the bounded operator f(A) is the inverse of (A− λ0I). This
contradicts the assumption that λ0 ∈ σ(A).

Proposition 7.16 If A ∈ B(H) is self-adjoint and B ∈ B(H) commutes
with A, the following results hold.

1. For all bounded measurable functions f on σ(A), the operator f(A)
commutes with B.

2. Each spectral subspace for A is invariant under B.

The proof of this proposition is deferred until Chap. 8. We conclude this
section by fulfilling (at least for bounded self-adjoint operators) one of
the goals of the spectral theorem, namely to give a probability measure
describing the probabilities for measurements of a self-adjoint operator A
in the state ψ.

Proposition 7.17 Suppose A ∈ B(H) is self-adjoint and ψ ∈ H is a unit
vector. Then there exists a unique probability measure μA

ψ on R such that

∫

R

λm dμA
ψ (λ) = 〈ψ,Amψ〉

for all non-negative integers m.

We will prove a version of Proposition 7.17 for unbounded self-adjoint
operators in Chap. 9. In the unbounded case, however, we will not obtain
uniqueness of the probability measure, even if ψ is in the domain of Am for
all m. Even in the unbounded case, however, the spectral theorem provides
a canonical choice of the probability measure.
Proof. We define a measure μA

ψ on σ(A) as in Sect. 7.2.2 by

μA
ψ (E) =

〈
ψ, μA(E)ψ

〉
.

The properties of integration with respect to μA then tell us that

〈ψ,Amψ〉 =
〈
ψ,

(∫

σ(A)

λm dμA(λ)

)
ψ

〉
=

∫

σ(A)

λm dμA
ψ (λ).

We then extend μA
ψ to R by setting it equal to zero on R\σ(A), establishing

the existence of the desired probability measure on R. Since

|〈ψ,Amψ〉| ≤ ‖ψ‖2 ‖Am‖ ≤ ‖ψ‖2 ‖A‖m ,
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the moments grow only exponentially with m. Thus, standard uniqueness
results for the moment problem (e.g., Theorem 8.1 in Chap. 4 of [18]) give
the uniqueness of μA

ψ .

7.3 Spectral Theorem for Bounded Self-Adjoint
Operators, II

As we have already noted in Sect. 6.5, one version of the spectral theorem
asserts that every self-adjoint operator is unitarily equivalent to a multi-
plication operator. In the case of a bounded self-adjoint operator A, on a
separable Hilbert space H, this result means that A is unitarily equiva-
lent to the operator Mh on L2(X,μ), where (X,μ) is a σ-finite measure
space, h is a measurable, real-valued function, and Mh is the operator of
multiplication by h:

(Mhψ)(λ) = h(λ)ψ(λ).

Although the “multiplication operator” form of the spectral theorem
(Theorem 7.20) has the advantage of being easy to state, there is an even
better version involving the concept of a direct integral. It is straightforward
to extend the notion of an L2 space to an L2 space with values in a Hilbert
space H. In a direct integral, we extend the concept one step further, by
allowing the Hilbert space to depend on the point. We begin with a measure
space (X,μ) and then have one Hilbert space Hλ for each λ in X . An
element of the direct integral is a function s on X such that s(λ) belongs
to Hλ for each λ ∈ X . Given a real-valued measurable function h on X , it
makes sense to multiply an element s of the direct integral by h.
The direct integral form of the spectral theorem says a bounded self-

adjoint operator A is unitarily equivalent to a multiplication operator on a
direct integral. By extending multiplication operators to the more general
setting of direct integrals (instead of just ordinary L2 spaces), we gain sev-
eral benefits. First, the set X and the function h become canonical: The
set X is simply the spectrum of A and the function h is simply h(λ) = λ.
Second, the direct integral approach carries with it a notion of “generalized
eigenvectors,” since the space Hλ can be thought of as the space of gener-
alized eigenvectors with eigenvalue λ. (The spaces Hλ are not, in general,
contained in the direct integral Hilbert space. Thus, direct integrals give a
rigorous meaning to the idea of “eigenvectors” that are not in the Hilbert
space on which the operator acts.) Third, the direct integral approach gives
a simple way to classify self-adjoint operators up to unitary equivalence:
Two self-adjoint operators are unitarily equivalent if and only if their direct
integral representations are equivalent in a natural sense (Proposition 7.24).
If one really wants the simplicity of the (ordinary) multiplication operator

version of the spectral theorem, it is a simple matter to prove this result
using precisely the same methods as in the proof of the direct integral
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version. (See Theorem 7.20.) Nevertheless, the direct integral version is,
arguably, the most definitive version of the spectral theorem for a single
self-adjoint operator.
We turn now to the definition of a direct integral. Suppose μ is a σ-finite

measure on a σ-algebra Ω of sets in X . Suppose also that for each λ ∈ X ,
we have a separable Hilbert space Hλ with inner product 〈·, ·〉λ. We want
to define the direct integral of the Hλ’s with respect to μ. Elements of the
direct integral will be sections s, meaning that s is a function on X with
values in the union of the Hλ’s, having the property that

s(λ) ∈ Hλ

for each λ in X . We would like to define the norm of a section s by the
formula

‖s‖2 =

∫

X

〈s(λ), s(λ)〉λ dμ(λ),

provided that the integral on the right-hand side is finite. The inner product
of two sections s1 and s2 (with finite norm) should then be given by the
formula

〈s1, s2〉 :=
∫

X

〈s1(λ), s2(λ)〉λ dμ(λ).

The problem with this description of the norm and inner product on
the direct integral is that we have not said anything about measurability.
As things stand, it does not make sense to ask whether a section s is
measurable, since the space in which s(λ) takes its values is different for
each λ. We must, therefore, introduce some additional structure that gives
rise to a notion of measurability. (The measurability issue is a technicality
that can be ignored on a first reading.)
One way to address the measurability issue is to choose a simultaneous

orthonormal basis for each of the Hilbert spaces Hλ. To deal with the
possibility that different spaces can have different dimensions, we slightly
modify the concept of an orthonormal basis. We say that a family {ej} of
vectors is an orthonormal basis for a Hilbert space H if 〈ej , ek〉 = 0 for
j 
= k, the norm of each ej is either 0 or 1, and the closure of the span
of the ej’s is all of H. This just means that we allow some of the vectors
in our basis to be zero, with the nonzero vectors forming an orthonormal
basis in the usual sense.
We now define a simultaneous orthonormal basis for a family {Hλ} of

separable Hilbert spaces to be a collection {ej(·)}∞j=1 of sections with the
property that for each λ, {ej(λ)}∞j=1 is an orthonormal basis for Hλ. Pro-
vided that the function λ �→ dimHλ is a measurable function from X into
[0,∞], it is possible to choose a simultaneous orthonormal basis {ej(·)}
such that 〈ej(λ), ek(λ)〉 is measurable for all j and k. Having chosen a si-
multaneous orthonormal basis with this property, we define a section s to
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be measurable if the function

λ �→ 〈ej(λ), s(λ)〉λ
is a measurable complex-valued function for each j. Our assumption on the
ej’s means that the ej ’s themselves are measurable sections.
We refer to a choice of simultaneous orthonormal basis, chosen so that

〈ej(λ), ek(λ)〉 is measurable, as a measurability structure on the collection
of Hλ’s. Given two measurable sections s1 and s2, the function

λ �→ 〈s1(λ), s2(λ)〉λ =
∞∑

j=1

〈s1(λ), ej(λ)〉λ 〈ej(λ), s2(λ)〉λ

is also measurable.

Definition 7.18 Suppose the following structures are given: (1) a σ-finite
measure space (X,Ω, μ), (2) a collection {Hλ}λ∈X of separable Hilbert
spaces for which the dimension function is measurable, and (3) a mea-
surability structure on {Hλ}λ∈X . Then the direct integral of the Hλ’s
with respect to μ, denoted

∫ ⊕

X

Hλ dμ(λ),

is the space of equivalence classes of almost-everywhere-equal measurable
sections s for which

‖s‖2 :=

∫

X

〈s(λ), s(λ)〉λ dμ(λ) < ∞.

The inner product 〈s1, s2〉 of two such sections s1 and s2 is given by the
formula

〈s1, s2〉 :=
∫

X

〈s1(λ), s2(λ)〉λ dμ(λ).

To see that the integral defining the inner product of two finite-norm
sections is finite, note that |〈s1(λ), s2(λ)〉λ| ≤ ‖s1(λ)‖λ ‖s2(λ)‖λ. By as-
sumption, ‖sj(λ)‖λ is a square-integrable function of λ for j = 1, 2, and
the product of two square-integrable functions is integrable. Thus, the inte-
grand in the definition of 〈s1, s2〉 is also integrable. It is not hard to show,
using an argument similar to the proof of completeness of L2 spaces, that
a direct integral of Hilbert spaces is a Hilbert space.
Let us think of two important special cases of the direct integral con-

struction. First, if each of the Hλ’s is simply C, then the direct integral
(with the obvious measurability structure) is simply L2(X,μ). Second, sup-
pose that X = {λ1, λ2, . . .} is countable, Ω is the σ-algebra of all subsets
of X , and μ is the counting measure on X . Then the direct integral is the
Hilbert space direct sum (Definition A.45).
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Given a direct integral, suppose we have some λ0 ∈ X for which {λ0}
is measurable and such that c := μ({λ0}) > 0. Then we can embed Hλ0

isometrically into the direct integral by mapping each ψ ∈ Hλ0
to the

section s given by

s(λ) =

{ 1√
c
ψ, λ = λ0

0, λ 
= λ0
.

Even if μ({λ0}) = 0, we may still think that Hλ0
is a sort of “generalized

subspace” of the direct integral.

Theorem 7.19 (Spectral Theorem, Second Form) If A ∈ B(H) is
self-adjoint, then there exists a σ-finite measure μ on σ(A), a direct in-
tegral ∫ ⊕

σ(A)

Hλ dμ(λ),

and a unitary map U between H and the direct integral such that
[
UAU−1(s)

]
(λ) = λs(λ) (7.20)

for all sections s in the direct integral.

The proof of Theorem 7.19 is given in the next chapter, along with the
proof of our first version of the spectral theorem. In the meantime, let us
think about what this version of the spectral theorem is saying. We may
think that the unitary map U is an identification of our original Hilbert
space H with a certain direct integral over the spectrum of A. Under this
identification, the self-adjoint operator A becomes the operator of multi-
plication by λ, that is, the map sending the section s(λ) to λs(λ). Roughly
speaking, then, the operator A acts (under our identification) as λI on
each space Hλ. Thus, we may think of Hλ as being something like an
“eigenspace” for A, for each element λ of the spectrum of A. Of course,
unless μ({λ}) > 0, the Hilbert space Hλ is not actually contained in H.
Nevertheless, we may think of elements of a givenHλ as “generalized eigen-
vectors” for the operator A.
The direct integral formulation of the spectral theorem leads readily to a

classification result for bounded self-adjoint operators. See Proposition 7.24
later in this section. Meanwhile, as we noted earlier in this section, the
method of proof for Theorem 7.19 also yields a version of the spectral
theorem involving multiplication operators on ordinary L2 spaces.

Theorem 7.20 (Spectral Theorem, MultiplicationOperator Form)
Suppose A ∈ B(H) is self-adjoint. Then there exists a σ-finite measure
space (X,μ), a bounded, measurable, real-valued function h on X, and a
unitary map U : H → L2(X,μ) such that

[UAU−1(ψ)](λ) = h(λ)ψ(λ)

for all ψ ∈ L2(X,μ).
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We return now to a discussion of the direct integral version of the spectral
theorem. This version gives a simple description of the functional calculus.

Proposition 7.21 Suppose A ∈ B(H) is self-adjoint and U is a unitary
map as in Theorem 7.19. Then for any bounded measurable function f on
σ(A), we have

[Uf(A)U−1(s)](λ) = f(λ)s(λ).

Thus, roughly speaking, f(A) is defined to be f(λ)I on each “generalized
eigenspace” Hλ. Proposition 7.21 follows directly from (7.20) if f is a poly-
nomial; the result for continuous f then follows by taking uniform limits.
The result for general f is then easily established by using the limiting
arguments of Chap. 8, especially Exercise 3.
Let us now consider what sort of uniqueness there should be in the second

version of the spectral theorem. There is a “trivial” source of nonuniqueness
coming from the possibility that some of the Hλ’s may have dimension 0.
Let E0 denote the set of λ for which dimHλ = 0. Even if μ(E0) > 0, the set
E0 makes no contribution to the norm of a section, since every section is
automatically zero on E0. Thus, we may define a new measure μ̃ by setting
μ̃(E) = μ(E ∩Ec

0), so that μ̃ agrees with μ on Ec
0 but is zero on E0. Then

the direct integrals of the Hλ’s with respect to μ and with respect to μ̃ are
“indistinguishable.” Thus, we can always modify a direct integral so as to
assume that dimHλ > 0 for almost every λ.
Meanwhile, unlike the projection-valued measure μA in Theorem 7.12,

the measure μ in Theorem 7.19 is not unique, but only unique up to equiva-
lence, where two σ-finite measures on a given measurable space are equiva-
lent if they have precisely the same sets of measure zero. For a given measure
μ, the Hilbert spaces Hλ are unique only up to unitary equivalence, mean-
ing that only the dimension of the spaces is uniquely determined. Even
the dimension of Hλ is uniquely determined only up to a set of μ-measure
zero. As it turns out, the sources of nonuniqueness in this paragraph and
the previous paragraph are all that exist.

Proposition 7.22 (Uniqueness in Theorem 7.19) Suppose A ∈ B(H)
is self-adjoint and consider two different direct integrals as in Theorem 7.19,

one with measure μ(1) and Hilbert spaces H
(1)
λ and the other with mea-

sure μ(2) and Hilbert spaces H
(2)
λ . If dimH

(j)
λ > 0 for μ(j)-almost every λ

(j = 1, 2), then μ(1) and μ(2) are mutually absolutely continuous and

dimH
(1)
λ = dimH

(2)
λ

for μ(j)-almost every λ (j = 1, 2).

See the end of the next chapter for a sketch of the proof of this uniqueness
result.
Theorem 7.19 should be thought of as a refinement of our earlier form

(Theorem 7.12) of the spectral theorem, in the sense that we can easily
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recover Theorem 7.12 from Theorem 7.19. In the setting of Theorem 7.19,
and given a measurable set E ⊂ σ(A), let VE denote the space of (equiv-
alence classes) of sections s that are supported on E, that is, for which
s(λ) = 0 for μ-almost every λ in Ec. This is easily seen to be a closed
subspace. Let PE denote the orthogonal projection onto VE , and define

μA(E) = U−1PEU. (7.21)

It is straightforward to check that μA is a projection-valued measure on
σ(A), with values in B(H), and that

∫
σ(A)

λ dμA(λ) = A.

Note that both versions of the spectral theorem for A involve a measure,
the first, denoted μA, being a projection-valued measure, and the second,
denoted μ, being an ordinary measure with values in the non-negative real
numbers. The following result shows the relationship between the two mea-
sures.

Proposition 7.23 Suppose A ∈ B(H) is self-adjoint, μA is the projection-
valued measure given by Theorem 7.12 and μ is a real-valued measure as
in Theorem 7.19. If dimHλ > 0 for μ-almost every λ, then for any Borel
set E ⊂ σ(A), μA(E) = 0 if and only if μ(E) = 0.

Of course, the 0 in the expression μA(E) = 0 is the zero operator, whereas
the 0 in the expression μ(E) = 0 is the number 0. Nevertheless, we may
think of Proposition 7.23 as saying that μA and μ are equivalent in the
usual measure-theoretic sense, having precisely the same sets of measure
zero.
Proof. As we have remarked, given a direct integral as in Theorem 7.19,
we can construct a projection-valued measure by means of (7.21), and this
projection-valued measure satisfies

∫
σ(A)

λ dμA(λ) = A. This projection-

valued measure must coincide with the one in Theorem 7.12, by the unique-
ness in that theorem.
Now, if μ(E) = 0, then any section supported on E is zero almost every-

where and thus represents the zero element of the direct integral. In that
case, VE = 0 and so μA(E) = 0 by (7.21). In the other direction, suppose
μ(E) > 0. Since μ is σ-finite, E will contain a measurable subset F such
that 0 < μ(F ) < ∞. Then let s be the section given by

s(λ) =

∞∑

j=1

1

2j
ej(λ)

for λ ∈ F and s(λ) = 0 for λ ∈ F c, where {ej(·)} is our measurability
structure for the direct integral. Then

〈s(λ), ej(λ)〉λ =
1

2j
〈ej(λ), ej(λ)〉λ 1F (λ),

which is a measurable function of λ for all j, so that s is measurable. Since
we assume that Hλ has nonzero dimension for μ-almost every λ, s will be
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nonzero almost everywhere on F and thus will have positive norm. The
norm of s is finite because ‖s(λ)‖ ≤ 1 and F has finite measure. Thus,
VE 
= 0 and μA(E) 
= 0.
We say that self-adjoint operators A1 and A2 on Hilbert spaces H1 and

H2 are unitarily equivalent if there exists a unitary map U : H1 → H2

such that
A2 = UA1U

−1.

Using Proposition 7.22, we can give a classification of bounded self-adjoint
operators on separable Hilbert spaces up to unitary equivalence. For a given
bounded self-adjoint operator A, we call the function λ �→ dimHλ the
multiplicity function for A. It is well defined (independent of the choice of
direct integral decomposition) up to a set of measure zero. It turns out that
bounded self-adjoint operators are characterized, up to unitary equivalence,
by the spectrum of A as a set, the equivalence class of the measure μ in
Theorem 7.19, and the multiplicity function.

Proposition 7.24 Suppose A1 and A2 are bounded self-adjoint operators
on separable Hilbert spaces H1 and H2, respectively. Choose direct integral
representations for A1 and A2 as in Theorem 7.19, with the associated
measures μ1 and μ2 chosen so that dimHλ > 0 for μj-almost every λ
(j = 1, 2). Then A1 and A2 are unitarily equivalent if and only if the
following conditions are satisfied.

1. σ(A1) = σ(A2).

2. The measures μ1 and μ2 are mutually absolutely continuous.

3. The multiplicity functions of A1 and A2 coincide up to a set of mea-
sure zero.

See Exercise 12 for a proof of this result.

7.4 Exercises

1. Suppose A and B are commuting linear operators on a nonzero finite-
dimensional vector space.

(a) Show that each eigenspace for A is invariant under B.

(b) Show that A and B have at least one simultaneous eigenvector,
that is, a nonzero vector v with Av = λv and Bv = μv, for some
constants λ, μ ∈ C.

2. Suppose that A ∈ B(H) is normal, meaning that AA∗ = A∗A. Sup-
pose that for some ψ ∈ H and λ ∈ C we have Aψ = λψ. Show that
A∗ψ = λ̄ψ.

Hint : Compute
∥∥(A∗ − λ̄)ψ

∥∥.
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3. Suppose a closed subspace V of H is invariant under a bounded oper-
ator A, meaning that Aψ ∈ V for all ψ ∈ V . Show that the orthogonal
complement V ⊥ of V is invariant under A∗.

4. (a) Suppose that H is a finite-dimensional Hilbert space over C and
A is a normal linear operator on H in the sense of Exercise 2.
Show that there exists an orthonormal basis for V consisting of
simultaneous eigenvectors for A and A∗.

Hint : Use Exercises 1 and 3.

(b) Suppose A is a linear operator on a finite-dimensional Hilbert
space H over C and suppose there exists an orthonormal basis
for V consisting of eigenvectors of A. Show that A commutes
with A∗.

5. Suppose A ∈ B(H) has an inverse A−1 in B(H). Show that (A−1)∗A∗

= A∗(A−1)∗ = I. Conclude that A∗ is invertible and (A∗)−1=(A−1)∗.

6. Suppose U is a unitary operator on H (Definition A.55). Show that
the spectrum of U is contained in the unit circle.

Hint : By writing U − λI as (−λ)(I −U/λ) or as U(I − λU−1), show
that any λ with |λ| 
= 1 is in the resolvent set of λ.

7. Suppose that A ∈ B(H) is self-adjoint and non-negative, that is, that
A satisfies (7.3). Show that the spectrum of A is contained in the
interval [0,∞).

Note: Conversely, if A ∈ B(H) is self-adjoint and σ(A) ⊂ [0,∞), then
A is non-negative. See Exercise 2 in Chap. 8.

8. Suppose A ∈ B(H) is invertible. Show that there exists ε > 0 such
that for all B ∈ B(H) with ‖B −A‖ < ε, B is also invertible.

Hint : Use a power series argument as in the proof of Proposition 7.5.

9. Assume A ∈ B(H) is self-adjoint.

(a) Suppose λ0 ∈ C is a point in the resolvent set of A. Show that

∥∥(A− λ0I)
−1
∥∥ =

1

d(λ0, σ(A))
,

where d(λ0, σ(A)) = infλ∈σ(A) |λ− λ0|.
Hint : Think of (A − λ0I)

−1 as a function of A in the sense of
the functional calculus for A.

(b) Given λ0 ∈ C, suppose that there exists some nonzero ψ ∈ H
such that

‖Aψ − λ0ψ‖ < ε ‖ψ‖ .
Show that there exists λ ∈ σ(A) such that |λ− λ0| < ε.
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10. Suppose V1 and V2 are two closed subspaces of H, with associated
orthogonal projections P1 and P2. Show that V1 and V2 are orthogonal
if and only if P1P2 = 0.

11. Suppose μ is a projection-valued measure on (X,Ω). Show that for
any E1, E2 ∈ Ω, μ(E1)μ(E2) is the projection onto the closed sub-
space Range(μ(E1)) ∩Range(μ(E2)).

Hint : Write E1 as E1 = (E1 ∩ E2) ∪ (E1\E2) and use Exercise 10.

12. Prove Proposition 7.24.

Hint : Use Proposition 7.22 and the Radon–Nikodym theorem
(Theorem A.6).



8
The Spectral Theorem for Bounded
Self-Adjoint Operators: Proofs

In this chapter we give proofs of all versions of the spectral theorem stated
in the previous chapter.

8.1 Proof of the Spectral Theorem, First Version

A proof of the spectral theorem, in its projection-valued measure form, can
be obtained in two main stages. The first stage of the proof is to define a
continuous functional calculus, meaning we associate with each continuous
function f on σ(A) an operator f(A). The map f �→ f(A) should have the
property that if f is the function f(λ) = λm, then f(A) = Am. The contin-
uous functional calculus is then constructed by approximating continuous
functions on σ(A) by polynomials. The Stone–Weierstrass theorem tells us
that polynomials are dense in the continuous functions on σ(A); it remains
only to show that if a sequence pn of polynomials converges uniformly to
some continuous function f on σ(A), then the operators pn(A) converge to
some operator, which we will then call f(A).
The second stage of the proof is to show that the continuous functional

calculus can be represented as integration against a projection-valued mea-
sure. This result is just an operator-valued version of the Riesz represen-
tation theorem from measure theory (Theorem 8.5). Indeed, we will see
that this operator-valued version of the Riesz representation theorem can
be reduced to the usual form of the theorem.
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8.1.1 Stage 1: The Continuous Functional Calculus

We begin by defining, for any A ∈ B(H), the spectral radius R(A) by

R(A) = sup
λ∈σ(A)

|λ| .

(By Propositions 7.5 and 7.7, σ(A) is a nonempty, bounded subset of R.)
According to Point 2 of Proposition 7.5, we have

R(A) ≤ ‖A‖

for any A ∈ B(H). In general, ‖A‖ can be much bigger than R(A). For ex-
ample, if A is a nilpotent matrix, then R(A) = 0 but ‖A‖ can be arbitrarily
large.

Lemma 8.1 If A ∈ B(H) is self-adjoint, the norm and the spectral radius
of A are equal:

‖A‖ = R(A).

In preparation for the proof, we determine the radius of convergence of
the power series for the resolvent given in the proof of Proposition 7.5.
According to Proposition 7.2, we have

‖A∗A‖ = ‖A‖2

for any A ∈ B(H). If A is self-adjoint, we obtain

∥∥A2
∥∥ = ‖A‖2 .

Iterating this relation gives

∥∥∥A2n
∥∥∥ = ‖A‖2

n

(8.1)

for all n.
Consider, for a bounded self-adjoint operator A, the following formal

expression for the resolvent of A:

(A− λI)−1 = − 1

λ

(
I − A

λ

)−1

= −
∞∑

m=0

Am

λm+1
. (8.2)

If |λ| > ‖A‖, then the proof of Proposition 7.5 shows that the series (8.2)
converges in the operator norm topology and that the sum of the series is
indeed the inverse of (A− λI). If, on the other hand, |λ| ≤ ‖A‖, it follows
from (8.1) that the norms of the terms in (8.2) do not tend to zero, and
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so the series cannot converge in the operator norm topology. We may say,
then, that the series (8.2) has radius of convergence equal to ‖A‖.
Proof of Lemma 8.1. We know that R(A) ≤ ‖A‖. To show that R(A) =
‖A‖, we wish to argue that (A − λI)−1 is a holomorphic operator-valued
function of λ on the set |λ| > R(A), and therefore the Laurent series
of (A − λI)−1 must converge for |λ| > R(A). But the Laurent series of
(A − λI)−1 is just the series in (8.2), and we have shown that the series
diverges when |λ| ≤ ‖A‖. This would be a contradiction if R(A) were less
than ‖A‖.
To flesh out the argument, recall the formula (7.8) in the proof of Propo-

sition 7.5 for the resolvent of A.
That formula expresses the map λ �→ (A− λI)−1 as a convergent power

series in powers of λ − λ0, near any point λ0 in the resolvent set of A. It
follows that for any bounded linear functional ξ ∈ B(H)∗, the complex-
valued function

λ �→ ξ((A− λI)−1)

is holomorphic on the resolvent set of A. This function has a unique Laurent
series, which is given by applying ξ term by term to (8.2). The series will
converge on the largest annulus contained in the resolvent set of A, namely
the set of λ with |λ| > R(A).
Convergence of (8.2) means that

∣∣ξ(Am/λm+1)
∣∣ is bounded as function

of m, for each ξ and each λ with |λ| > R(A). Thus, by (a corollary of) the
uniform boundedness principle (Appendix A.3.4), the set {Am/λm+1}∞m=0

is bounded in the Banach space B(H), for all λ with |λ| > R(A). In par-
ticular, for each λ with |λ| > R(A), there is a constant C such that

∥∥A2n
∥∥

|λ|2n
=

‖A‖2
n

|λ|2n
≤ C.

If ‖A‖ were greater than R(A), this inequality would be false for λ satisfying
R(A) < |λ| < ‖A‖.
The next key step in Stage 1 of the proof is to understand how the

spectrum of a self-adjoint operator transforms under application of a poly-
nomial.

Lemma 8.2 (Spectral Mapping Theorem) For all A ∈ B(H) and all
polynomials p, we have

σ(p(A)) = p(σ(A)).

That is to say, the spectrum of p(A) consists precisely of the numbers of
the form p(λ), with λ in the spectrum of A.
Proof. The result is trivial if p is constant. When deg p ≥ 1, let p given by

p(z) = anz
n + an−1z

n−1 + · · ·+ a0
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be an arbitrary polynomial. We first show that p(σ(A)) ⊂ σ(p(A)).
Suppose, then, that λ ∈ σ(A). Observe that

p(A)− p(λ)I = an(A
n − λnI) + an−1(A

n−1 − λn−1I) + · · ·+ a0I − a0I.

Now,

Ak − λkI = (A− λI)(Ak−1 + λAk−2 + λ2Ak−3 + · · ·+ λk−1I).

Thus, we can pull out a factor of (A − λI) from each nonzero term in
p(A)− p(λ)I, giving

p(A)− p(λ)I = (A− λI)q(A)

where q is a polynomial (depending on λ). Since, by assumption, A−λI is
not invertible, and since (A−λI) commutes with q(A), (A−λI)q(A) cannot
be invertible (Exercise 1). This shows that p(λ) belongs to the spectrum of
p(A).
We now show that σ(p(A)) ⊂ p(σ(A)). Suppose, then, that γ ∈ σ(p(A)).

Since C is algebraically closed, we can factor the polynomial p(z)− γ, as a
function of z, as

p(z)− γ = c(z − b1)(z − b2) · · · (z − bn). (8.3)

Thus,
p(A)− γI = c(A− b1I)(A − b2I) · · · (A− bnI).

Since p(A)− γI is assumed to be noninvertible, there must be some j such
that (A − bjI) is noninvertible, that is, for which bj ∈ σ(A). Then (8.3)
tells us that p(bj)− γ = 0, meaning that γ = p(bj). Thus, γ is of the form
p(λ) for some λ (= bj) in σ(A).
The last step in Stage 1 of our proof is to apply the Stone–Weierstrass

theorem to show that polynomials are dense in C(σ(A);R) (the space of
continuous, real-valued functions on σ(A)) with respect to the supremum
norm.

Proposition 8.3 Suppose A ∈ B(H) is self-adjoint. Then there exists a
unique bounded linear map from C(σ(A);R) into B(H), denoted by f �→
f(A), such that when f(λ) = λm, we have f(A) = Am. The map f �→ f(A),
f ∈ C(σ(A);R), is called the (real-valued) functional calculus for A.

Proof. Note that if A is self-adjoint, then p(A) is self-adjoint provided
that p is a real-valued polynomial (i.e., one where all the coefficients are
real numbers). Thus, combining the spectral mapping theorem with the
equality of the norm and spectral radius, we have the following: If A is a
self-adjoint operator and p is a real-valued polynomial, then

‖p(A)‖ = sup
λ∈σ(A)

|p(λ)| . (8.4)
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Thus, the map p → p(A) is an isometric linear map from the space of
polynomials on σ(A) (with the supremum norm) into the space of bounded
operators on H.
According to the Stone–Weierstrass theorem polynomials are dense in

C(σ(A);R). Thus, by the BLT theorem (Theorem A.36), we can extend the
map p �→ p(A) uniquely to a bounded linear map of C(σ(A);R) into B(H).

Proposition 8.4 If A ∈ B(H) is self-adjoint, the (real-valued) continuous
functional calculus for A, mapping C(σ(A);R) into B(H), has the following
properties.

1. Multiplicativity: For all f, g, we have

(fg)(A) = f(A)g(A),

where fg denotes the pointwise product of f and g.

2. Self-adjointness: For all f , the operator f(A) is self-adjoint.

3. Non-negativity: For all f , if f is non-negative, then f(A) is a non-
negative operator.

4. Norm and spectrum properties: For all f , we have

‖f(A)‖ = sup
λ∈σ(A)

|f(λ)| (8.5)

and
σ(f(A)) = {f(λ) |λ ∈ σ(A)} . (8.6)

Proof. Point 1 holds for polynomials and thus, by taking limits, for all
f ∈ C(σ(A);R). Furthermore, if p is a real-valued polynomial and A is
self-adjoint, then p(A) is self-adjoint. From this, we get Point 2 by taking
limits. If f ∈ C(σ(A);R) is non-negative, then f = g2, where g =

√
f is

real-valued. Thus, g(A) is self-adjoint and for all ψ ∈ H, Point 1 tells us
that

〈ψ, f(A)ψ〉 =
〈
ψ, g(A)2ψ

〉
= 〈g(A)ψ, g(A)ψ〉 ≥ 0, (8.7)

which establishes Point 3. We have already established (8.5) in (8.4) for
polynomials; the result for general f ∈ C(σ(A);R) follows by taking limits.
To establish (8.6), suppose first that λ0 ∈ C is not in the range of f .

Then the function g(λ) := 1/(f(λ) − λ0) is continuous on σ(A) and the
operator g(A) will be the inverse of f(A) − λ0I, showing that λ0 is not in
the spectrum of f(A).
In the other direction, suppose that λ0 = f(μ) for some μ ∈ σ(A); we

want to show that f(μ) ∈ σ(f(A)). Suppose now that f(A) − f(μ)I were
invertible and choose a sequence pn of polynomials converging uniformly
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to f on σ(A). By Exercise 8 in Chap. 7, any operator sufficiently close to
f(A) − f(μ)I in the operator norm topology would also be invertible. In
particular, pn(A) − pn(μ)I would have to be invertible for all sufficiently
large n, contradicting the spectral mapping theorem.

8.1.2 Stage 2: An Operator-Valued Riesz Representation

Theorem

We turn now to Stage 2 of the proof of the spectral theorem. We will make
use of the Riesz representation theorem from measure theory (not the result
about continuous linear functionals on a Hilbert space). The following form
of this result is sufficient for our purposes.

Theorem 8.5 (Riesz Representation Theorem) Let X be a compact
metric space and let C(X ;R) denote the space of continuous, real-valued
functions on X. Suppose Λ : C(X ;R) → R is a linear functional with the
property that Λ(f) is non-negative whenever all the values of f are non-
negative. Then there exists a unique (real-valued, positive) measure μ on
the Borel σ-algebra in X for which

Λ(f) =

∫

X

f dμ

for all f ∈ C(X ;R).

See pp. 353–354 of Volume I of [34] for a short proof in the case in which
X is a compact subset of R, which is all we really require. For the full result
stated above, see Theorems 7.2 and 7.8 in [12]. Observe that μ is a finite
measure, with μ(X) = Λ(1), where 1 is the constant function.
Given a bounded self-adjoint operator A ∈ B(H), we have constructed,

in the previous subsection, a continuous functional calculus for A. This
calculus is a map, denoted f �→ f(A), from C(σ(A);R) into B(H). If f ∈
C(σ(A);R) is non-negative, then (Point 3 of Proposition 8.4) f(A) is a non-
negative operator. Thus, given ψ ∈ H, if we define a linear functional Λψ

on C(σ(A);R) by the formula

Λψ(f) = 〈ψ, f(A)ψ〉 ,

Λψ will satisfy the hypotheses of the Riesz representation theorem. Thus,
for each ψ ∈ H, we obtain a unique measure μψ such that

〈ψ, f(A)ψ〉 =
∫

σ(A)

f(λ) dμψ(λ) (8.8)

for all f ∈ C(σ(A);R). Note that

μψ(σ(A)) = Λψ(1) = ‖ψ‖2 . (8.9)
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Definition 8.6 If f is a bounded measurable (complex-valued) function on
σ(A), define a map Qf : H → C by the formula

Qf (ψ) =

∫

σ(A)

f(λ) dμψ(λ),

where μψ is the measure in (8.8).

If f happens to be real valued and continuous, then Qf(ψ) is equal
〈ψ, f(A)ψ〉, in which case Qf is a bounded quadratic form. (See Defini-
tion A.60 and Example A.62.) It turns out that Qf is a bounded quadratic
form for any bounded measurable f , in which case Proposition A.63 allows
us to associate with Qf a bounded operator, which we denote by f(A).
Once the relevant properties of f(A) are established, we will construct the
desired projection-valued measure by setting μA(E) = 1E(A).

Proposition 8.7 For any bounded measurable function f on σ(A), the
map Qf in Definition 8.6 is a bounded quadratic form.

Proof. Let F denote the space of all bounded, Borel-measurable func-
tions f for which Qf is a quadratic form. Then F is a vector space and
contains C(σ(A);R). Furthermore, F is closed under uniformly bounded
pointwise limits, because Qf (ψ) is continuous with respect to such limits,
by dominated convergence. Standard measure-theoretic techniques (Exer-
cise 3) then show that F is the space of all bounded Borel-measurable
functions on X .
Meanwhile, it follows from (8.9) that

|Qf (ψ)| ≤ sup
λ∈σ(A)

|f(λ)| ‖ψ‖2 ,

showing that Qf is always a bounded quadratic form.

Definition 8.8 For a bounded measurable function f on σ(A), let f(A) be
the operator associated to the quadratic form Qf by Proposition A.63. This
means that f(A) is the unique operator such that

〈ψ, f(A)ψ〉 = Qf (ψ) =

∫

σ(A)

f dμψ

for all ψ ∈ H.

Observe that if f is real valued, then Qf (ψ) is real for all ψ ∈ H, which
means (Proposition A.63) that the associated operator f(A) is self-adjoint.
We will shortly associate with A a projection-valued measure μA, and we
will show that f(A), as given by Definition 8.8, agrees with f(A) as given
by

∫
σ(A)

f(λ) dμA(λ). [See (8.10) and compare Definition 7.13.]
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Proposition 8.9 For any two bounded measurable functions f and g, we
have

(fg)(A) = f(A)g(A).

Proof. Let F1 denote the space of bounded measurable functions f such
that (fg)(A) = f(A)g(A) for all g ∈ C(σ(A);R). Then F1 is a vector space
and contains C(σ(A);R). We have already noted that dominated conver-
gence guarantees that the map f �→ Qf (ψ), ψ ∈ H, is continuous un-
der uniformly bounded pointwise convergence. By the polarization identity
(Proposition A.59), the same is true for the map f �→ Lf(φ, ψ), where Lf is
the sesquilinear form associated to Qf . Now, by the polarization identity, f
will be in F1 provided that

〈ψ, (fg)(A)ψ〉 = 〈ψ, f(A)g(A)ψ〉

or, equivalently,
Qfg(ψ) = Lf (ψ, g(A)ψ)

for all ψ ∈ H and all g ∈ C(σ(A);R). From this, we can see that F1 is
closed under uniformly bounded pointwise limits. Thus, by Exercise 3, F1

consists of all bounded, Borel-measurable functions.
We now let F2 denote the space of all bounded, Borel-measurable func-

tions f such that (fg)(A) = f(A)g(A) for all bounded Borel-measurable
functions g. Our result for F1 shows that F2 contains C(σ(A);R). Thus,
the same argument as for F1 shows that F2 consists of all bounded, Borel-
measurable functions.

Theorem 8.10 Suppose A ∈ B(H) is self-adjoint. For any measurable set
E ⊂ σ(A), define an operator μA(E) by

μA(E) = 1E(A),

where 1E(A) is given by Definition 8.8. Then μA is a projection-valued
measure on σ(A) and satisfies

∫

σ(A)

λ dμA(λ) = A.

Theorem 8.10 establishes the existence of the projection-valued measure
in our first version of the spectral theorem (Theorem 7.12).
Proof. Since 1E is real-valued and satisfies 1E · 1E = 1E , Proposition 8.4
tells us that 1E(A) is self-adjoint and satisfies 1E(A)

2 = 1E(A). Thus,
μA(E) is an orthogonal projection (Proposition A.57), for any measurable
set E ⊂ X . If E1 and E2 are measurable sets, then 1E1∩E2

= 1E1
· 1E2

and so
μA(E1 ∩ E2) = μA(E1)μ

A(E2).

If E1, E2, . . . are disjoint measurable sets, then μA(Ej)μ
A(Ek)=μA(∅)=0,

for j 
= k, and so the ranges of the projections μA(Ej) and μA(Ek) are
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orthogonal. It then follows by an elementary argument that, for all ψ ∈ H,
we have

∞∑

j=1

μA(Ej)ψ = Pψ,

where the sum converges in the norm topology of H and where P is the
orthogonal projection onto the smallest closed subspace containing the
range of μA(Ej) for every j. On the other hand, if E := ∪∞

j=1Ej , then

the sequence fN :=
∑N

j=1 1Ej
is uniformly bounded (by 1) and converges

pointwise to 1E . Thus, using again dominated convergence in (8.8),

lim
N→∞

〈
ψ,

N∑

j=1

1Ej
(A)ψ

〉
= 〈ψ, 1E(A)ψ〉 .

It follows that 1E(A) coincides with P , which establishes the desired
countable additivity for μA.
Finally, if f = 1E for some Borel set E, then

∫

σ(A)

f(λ) dμA(λ) = f(A), (8.10)

where f(A) is given by Definition 8.8. [The integral is equal to μA(E), which
is, by definition, equal to 1E(A).] The equality (8.10) then holds for simple
functions by linearity and for all bounded, Borel-measurable functions by
taking limits. In particular, if f(λ) = λ, then the integral of f against μA

agrees with f(A) as defined in Definition 8.8, which agrees with f(A) as
defined in the continuous functional calculus, which in turn agrees with
f(A) as defined for polynomials—namely, f(A) = A. This means that

∫

σ(A)

λ dμA(λ) = A

as desired.
We have now completed the existence of the projection-valued measure

μA in Theorem 7.12. The uniqueness of μA is left as an exercise (Exercise 4).
We close this section by proving Proposition 7.16, which states that if a
bounded operator B commutes with a bounded self-adjoint operator A,
then B commutes with f(A), for all bounded, Borel-measurable functions
f on σ(A).
Proof of Proposition 7.16. If B commutes with A, then B commutes
with p(A), for any polynomial p. Thus, by taking limits as in the construc-
tion of the continuous functional calculus, B will commute with f(A) for
any continuous real-valued function f on σ(A). We now let F denote the
space of all bounded, Borel-measurable functions f on σ(A) for which f(A)
commutes with B, so that C(σ(A);R).
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To show that a bounded measurable f belongs to F , it suffices to show
that for all φ, ψ ∈ H we have 〈φ, f(A)Bψ〉 = 〈φ,Bf(A)ψ〉, or, equivalently,
〈φ, f(A)Bψ〉 = 〈B∗φ, f(A)ψ〉. That is, we want

Lf (φ,Bψ) = Lf(B
∗φ, ψ).

But we have seen that for fixed vectors ψ1, ψ2 ∈ H, the map f �→ Lf (ψ1, ψ2)
is continuous under uniformly bounded pointwise limits. Thus, F is closed
under such limits, which implies (Exercise 3) that F contains all bounded,
Borel-measurable functions.

8.2 Proof of the Spectral Theorem, Second Version

We now turn to the proof of Theorem 7.19. As in the proof of Theorem 7.12,
we will make use of continuous functional calculus for a bounded self-adjoint
operator A and the Riesz representation theorem. We begin by establishing
the special case in which A has a cyclic vector, that is, a vector ψ with
the property that the vectors Akψ, k = 0, 1, 2, . . ., span a dense subspace
of H. In that case, the direct integral will be simply an L2 space (i.e., the
Hilbert spacesHλ are equal to C for all λ). Thus, in this special case, the di-
rect integral and multiplication operator versions of the spectral theorem
coincide.

Lemma 8.11 Suppose A ∈ B(H) is self-adjoint and ψ is a cyclic vector
for A. Let μψ be the unique measure on σ(A), given by Theorem 8.5, for
which

〈ψ, f(A)ψ〉 =
∫

σ(A)

f(λ) dμψ(λ) (8.11)

for all f ∈ C(σ(A);R). Then there exists a unitary map

U : H → L2(σ(A), μψ)

such that [
UAU−1φ

]
(λ) = λφ(λ)

for all φ ∈ L2(σ(A), μψ).

Proof. We start by defining U on the complex vector space of vectors of
the form p(A)ψ, where p is a complex-valued polynomial, as follows:

U [p(A)ψ] = p.

To show that U is well defined, write p as p = p1 + ip2, where p1 and p2
are real-valued polynomials. Since p1(A) and p2(A) are self-adjoint and
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commuting, we obtain

〈p(A)ψ, p(A)ψ〉 =
〈
ψ,
[
p1(A)

2 + p2(A)
2
]
ψ
〉

=

∫

σ(A)

[
p1(λ)

2 + p2(λ)
2
]
dμψ(λ), (8.12)

by canceling cross terms and applying (8.11). Thus, if p(A)ψ = 0 in H,
then p(λ) = 0 for μψ-almost every λ in σ(A), so that p represents the zero
element of L2(σ(A), μψ).
Equation (8.12) shows also that the map U is isometric on its initial

domain. This initial domain is dense in H since it contains the vectors
Akψ and ψ is cyclic. Thus, the BLT theorem (Theorem A.36) tells us that
U extends uniquely to an isometric map of H into L2(σ(A), μψ). Since
polynomials are dense in L2(σ(A), μψ) (by the Stone–Weierstrass theorem
and Theorem A.10), U actually is unitary.
Now, since U takes Akψ to the function λ �→ λk in L2(σ(A), μψ), we

have that UAU−1(λk) = λk+1. Thus,

[UAU−1p](λ) = λp(λ)

for all polynomials p. Since polynomials are dense in L2(σ(A), μψ), we have
[UAU−1φ](λ) = λφ(λ) for all φ ∈ L2(σ(A), μψ), as claimed.

Lemma 8.12 Suppose A ∈ B(H) is self-adjoint and μA is the associated
projection-valued measure on σ(A), as in Theorem 8.10. Then there exists
a non-negative real-valued measure μ on σ(A) such that for all Borel sets
E ⊂ σ(A), we have μA(E) = 0 if and only if μ(E) = 0.

Proof. Let {ej} be an orthonormal basis forH and let μej be the associated
real-valued measures, given by μej (E) =

〈
ej , μ

A(E)ej
〉
. Then μej (σ(A)) =

〈ej , Iej〉 = 1 for all j. Thus, the formula

μ :=
∑

j

1

j2
μej

defines a finite measure on σ(A). Given some Borel set E ⊂ σ(A), if
μA(E) = 0, then μej (E) = 0 for all j and so μ(E) = 0. Conversely, if
μ(E) = 0, then

0 =
〈
ej , μ

A(E)ej
〉
=
〈
μA(E)ej , μ

A(E)ej
〉

for all j, since μA(E) is self-adjoint and μA(E)2 = μA(E). Thus, μA(E)ej =
0 for all j, which means that μA(E) = 0.

Lemma 8.13 If A ∈ B(H) is self-adjoint, then H can be decomposed as
an orthogonal direct sum of closed nonzero subspaces Wj, where each Wj is
invariant under A and where the restriction of A to Wj has a cyclic vector
ψj. The number of Wj ’s is either finite or countably infinite.
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Proof. Recall our standing assumption that H is separable, and let {φj}
be a countable dense subset of H. Let W1 be the closed subspace of H
spanned by φ1, Aφ1, A

2φ1, . . .. Then W1 is invariant under A and ψ1 := φ1

is a cyclic vector for A|W1
. If W1 = H then we are done. If not, let j be

the smallest number such that φj is not contained in W1. Let ψ2 be the
orthogonal projection of φj onto the orthogonal complement of W1, and let
W2 be the closed span of ψ2, Aψ2, A

2ψ2, . . .. Then W2 is invariant under A
and ψ2 is a cyclic vector for A|W2

. Furthermore, since A is self-adjoint and

leaves W1 invariant, it also leaves W⊥
1 invariant, which means that Akψ2

is orthogonal to W1 for all k, so that W2 is orthogonal to W1.
If, now, W1 ⊕ W2 = H, we are done. If not, we let k be the smallest

number such that φk is not in W1 ⊕ W2 and we let ψ3 be the projection
of φk onto the orthogonal complement of W1 ⊕W2, and so on. Continuing
on in this way, we obtain an orthogonal collection of closed subspaces that
are invariant under A, each of which has a cyclic vector. Either the process
terminates with finitely many of these subspaces spanning H, or we get an
infinite family. In the latter case, each φj belongs to the span of the Wj ’s
and hence the (Hilbert space) direct sum of the Wj ’s is all of H.
We are now ready for the proof of our second form of the spectral theo-

rem.
Proof of Theorem 7.19. Let {Wj, ψj} be as in Lemma 8.13, and let Aj

denote the restriction of A to Wj , which is a bounded self-adjoint operator
on the Hilbert space Wj . For each Aj , we can obtain a unitary map Uj as in
Lemma 8.11, and we wish to piece these maps together for different values
of j to obtain a direct integral decomposition for all of H. To facilitate
piecing the maps together, we will modify the Uj ’s so that they all map to
L2 spaces over a subset of σ(A) with respect to the same measure μ.
If we apply Lemma 8.11 to Aj , we get a unitary map

Uj : Wj → L2(σ(Aj), μψj
)

such that UjAU
−1
j is the operator of multiplication by λ. Here, μψj

is the

measure on σ(Aj) given by μψj
(E) =

〈
ψj , μ

Aj (E)ψj

〉
. Now, according to

Exercise 5, the spectrum of Aj is contained in the spectrum of A. Fur-
thermore, if E is a measurable subset of σ(Aj) ⊂ σ(A), then 1E may be
thought of as a measurable function either on σ(Aj) or on σ(A). Exercise 5
tells us that 1E(Aj), as defined by the functional calculus for Aj , coincides
with the restriction to Wj of 1E(A). Thus, if 1E(A) = 0 then 1E(Aj) = 0
as well. Equivalently, if μA(E) = 0 then μAj (E) = 0, where μAj is the
projection-valued measure associated to the self-adjoint operator Aj .
Let us now choose a measure μ as in Lemma 8.12. Any set of measure

zero for μ is a set of measure zero for μA and thus also for μAj and then
for μψj

. Thus, if we extend μψj
to a measure on σ(A) by making it zero on

σ(A) \ σ(Aj), we have that μψj
is absolutely continuous with respect to μ.
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By the Radon–Nikodym theorem (Theorem A.6), each μψj
has a density

ρj with respect to μ, and this density is nonzero μψj
-almost everywhere.

Now, the map

f �→ ρ
1/2
j f

is easily seen to be a unitary map of L2(σ(Aj), μψj
) to L2(σ(Aj), μ). Thus,

we can define a unitary map

Ũj : Wj → L2(σ(Aj), μ)

by setting
(Ũjψ)(λ) = ρj(λ)

1/2(Ujψ)(λ).

Since multiplication by (ρj)
1/2 commutes with multiplication by λ, we have

(
ŨjAjŨ

−1
j

)
(ψ)(λ) = λψ(λ).

Now, L2(σ(Aj), μ) can be thought of as a direct integral over σ(A) with

respect to μ, where we take Hj
λ = C for λ ∈ σ(Aj) and we take Hj

λ = {0}
if λ ∈ σ(Aj)

c. We now define another direct integral over σ(A) in which
the Hilbert spaces Hλ, λ ∈ σ(A), are defined by

Hλ =
⊕

j

Hj
λ.

Here the measurable structure on the direct integral is defined by setting

ej(λ) =

{
(0, 0, . . . , 1, 0, 0, . . .), λ ∈ Ej

(0, 0, . . . , 0, 0, 0, . . .), λ ∈ Ec
j

,

where the 1 is in the jth slot. Since each Hλ is a direct sum of the Hj
λ’s,

the direct integral of the Hλ’s is the Hilbert space direct sum of the direct
integral of the Hj

λ’s, which is just L2(σ(Aj), μ).
Meanwhile, H is the direct sum of the Wj ’s, and we have unitary maps

Ũj of Wj to L2(σ(Aj), μ) such that ŨjAŨ
−1
j is just multiplication by λ on

L2(Ej , μ). Thus, we can assemble the Ũj ’s into a single unitary map U of H
to the integral of the Hλ’s, and we will have UAU−1 equal to multiplication
by λ, as desired.

In the interest of brevity, we will not give a complete proof of Proposi-
tion 7.22 (uniqueness in Theorem 7.19), but only indicate the main ideas.
To establish the equivalence of μ(1) and μ(2), we observe that both mea-
sures have the same sets of measure zero as the projection-valued measure
μA (Proposition 7.23). Meanwhile, if we have two different direct integrals,
each unitarily equivalent to H as in (7.20), then there will be a unitary
map V between the two direct integrals that commutes with the opera-
tor s(λ) �→ λs(λ). Using an argument similar to that in Exercise 7, we
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can show that there must be bounded maps Vλ : H
(1)
λ → H

(2)
λ such that

(V s)(λ) = Vλs(λ) for almost every λ. Then we argue that the only way
V can be unitary is if Vλ is unitary for almost every λ. This implies that

dimH
(1)
λ = dimH

(2)
λ for almost every λ.

Finally, we briefly indicate the proof of the multiplication operator form
of the spectral theorem.
Proof of Theorem 7.20. Let Wj be as in Lemma 8.13 and let Aj be the
restriction of A to Wj . By the proof of Theorem 7.19, each Aj is unitarily
equivalent to multiplication by λ on the Hilbert space L2(σ(Aj), μj), for
some finite measure μj on σ(Aj). Let X be the disjoint union of the sets
σ(Aj), let μ be the sum of the measures μj , and let h be the function
whose restriction to each σ(Aj) is the function λ �→ λ. Then L2(X,μ) is
the orthogonal direct sum of the Hilbert spaces L2(σ(Aj), μj), which means
that L2(X,μ) may be identified unitarily with H = ⊕Wj in an obvious way.
Under this identification, the operatorA corresponds to multiplication by h.

8.3 Exercises

1. (a) Suppose A,B ∈ B(H) commute and A is not invertible. Show
that AB is not invertible.

Hint : First show that if AB were invertible, then A would have
both a left inverse and a right inverse. Then show that the left
inverse and right inverse would need to be equal.

(b) Show that the result of Part (a) is false if we omit the assumption
that A and B commute.

2. (a) Suppose A ∈ B(H) is self-adjoint and σ(A) ⊂ [0,∞). Show that
A has a self-adjoint square root in B(H) and therefore that A is
a non-negative operator (i.e., 〈ψ,Aψ〉 ≥ 0 for all ψ ∈ H).

(b) Give an example of a bounded operator A on a Hilbert space
such that σ(A) ⊂ [0,∞) but A is not non-negative.

3. Let X be a compact metric space and let C(X ;R) denote the space
of continuous real-valued functions on X . Suppose that F is a set of
bounded, measurable, complex-valued functions on X with the fol-
lowing properties: (1) F is a complex vector space, (2) F contains
C(X ;R), and (3) F is closed under pointwise limits of uniformly
bounded sequences. (A sequence fn is uniformly bounded if there
exists a constant C such that |fn(x)| ≤ C for all n and x).

(a) Let L0 denote the collection of those measurable sets E for which
1E is a uniformly bounded limit of a sequence of continuous
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functions. Show that L0 is an algebra and contains all open sets
in X .

(b) Let L1 denote the collection of all measurable sets in E for
which 1E belongs to F . Using the monotone class lemma (The-
orem A.8), show that L1 consists of all Borel sets in X .

(c) Show that F consists of all bounded, Borel-measurable functions
on X .

4. Suppose A ∈ B(H) is self-adjoint μA and νA are two projection-
valued measures on σ(A) such that

∫

σ(A)

λ dμA(λ) =

∫

σ(A)

λ dνA(λ) = A.

Show that integration with respect to μA agrees with integration with
respect to νA, first on polynomials, then on continuous functions, and
finally on bounded measurable functions. Conclude that μA = νA.

Hint : Use Exercise 17.

5. Suppose A ∈ B(H) is self-adjoint operator and V is a closed subspace
of H that is invariant under A.

(a) Using Proposition 7.7, show that the spectrum of the restriction
to V of A is contained in the spectrum of A.

(b) Suppose now that f is a bounded measurable function on σ(A),
which means that f is also a function on σ (A|V ) ⊂ σ(A). Show
that V is invariant under f(A) and that

f(A)|V = f (A|V ) ,

where the operator on the right-hand side is defined by the
measurable functional calculus for the bounded self-adjoint op-
erator A|V .

6. Suppose A ∈ B(H) is self-adjoint and ψ is an eigenvector for A, that
is, a nonzero vector with Aψ = λψ for some λ ∈ R. Show that for
any bounded measurable function f on σ(A) we have

f(A)ψ = f(λ)ψ.

Hint : Use Exercise 5.

7. Suppose K ⊂ R is a compact set and μ is a finite measure on K. Let
A be the bounded operator on L2(K,μ) given by

(Aψ)(λ) = λψ(λ).

Now suppose that B is a bounded operator on L2(K,μ) that com-
mutes with A.
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(a) Let φ = B1, where 1 denotes the constant function, so that
φ ∈ L2(K,μ). Show that for all continuous functions ψ on K,
we have Bψ = φψ.

(b) Using Exercise 3, show that for all bounded, Borel-measurable
functions ψ on K, we have Bψ = φψ.

(c) Show that φ is essentially bounded (i.e., bounded outside a set of
μ-measure zero). Conclude that Bψ = φψ for all ψ ∈ L2(K,μ).

8. If A ∈ B(H) is self-adjoint, define U(t) ∈ B(H) by U(t) = exp{itA}
for each t ∈ R, where the exponential is defined by the functional
calculus for A.

(a) Show that U(t) is unitary for all t and that U(s)U(t) = U(s +
t). (A family of operators with this property is called a one-
parameter unitary group.)

(b) Show that the map t �→ U(t) is continuous in the operator norm
topology.

(c) Give an example of a one-parameter unitary group on a Hilbert
space that is not continuous in the operator norm topology.

See Sect. 10.2 for more on one-parameter unitary groups.



9
Unbounded Self-Adjoint Operators

9.1 Introduction

Recall that most of the operators of quantum mechanics, including those
representing position, momentum, and energy, are not defined on the en-
tirety of the relevant Hilbert space, but only on a dense subspace thereof.
In the case of the position operator, for example, given ψ ∈ L2(R), the
function Xψ(x) = xψ(x) could easily fail to be in L2(R). Nevertheless, the
space of ψ’s in L2(R) for which xψ(x) is again in L2(R) is a dense subspace
of L2(R). A closely related property of these operators is that they are not
bounded, meaning that there is no constant C such that

‖Aψ‖ ≤ C ‖ψ‖

for all ψ for which A is defined. Because our operators are unbounded, we
cannot use the BLT (bounded linear transformation) theorem to extend
them to the whole Hilbert space.
In this chapter and the following one, we are going to study unbounded

operators defined on dense subspaces of a Hilbert space H. We will in-
troduce the “correct” notion of self-adjointness for unbounded operators,
namely the one for which the spectral theorem holds. As it turns out, the
obvious candidate for a definition of self-adjointness, namely that 〈φ,Aψ〉 =
〈Aφ,ψ〉 for all φ and ψ in the domain of A, is not the correct one. Rather,
for any unbounded operator A, we will define another unbounded operator
A∗, the adjoint of A, with its own naturally defined domain. Then A is

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5 9,
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said to be self-adjoint if A∗ and A are the same operators with the same
domain.
In the present chapter, we give the definition of an unbounded self-adjoint

operator, along with conditions for self-adjointness and several examples
and counterexamples. We defer a discussion of the spectral theorem itself
until Chap. 10. The statement of the spectral theorem (either in terms of
projection-valued measures or in terms of direct integrals) is essentially the
same as in the bounded case, with only a few modifications to deal with
the domain of the operator.
Although this chapter is rather technical, a reader who is willing to ac-

cept some things on faith may wish simply to read the definitions of self-
adjoint and essentially self-adjoint operators in Sect. 9.2, and then skip to
the statements of Theorem 9.21 and Corollary 9.22 in Sect. 9.5. As in pre-
vious chapters, H will denote a separable Hilbert space over C.

9.2 Adjoint and Closure of an Unbounded
Operator

Recall that we briefly introduced unbounded operators in Sect. 3.2. Accord-
ing to Definition 3.1, an unbounded operator A on H is a linear map of some
dense subspace Dom(A) ⊂ H (the domain of A) into H. As in Sect. 3.2,
“unbounded” means “not necessarily bounded,” meaning that we permit
the case in which Dom(A) = H and A is bounded.
Now, if A is bounded, then for any φ, the linear functional

〈φ,A·〉

is bounded. Thus, by the Riesz theorem (Theorem A.52), there is a unique
χ such that

〈φ,A·〉 = 〈χ, ·〉 .
We then define the adjoint A∗ of A by setting A∗φ equal to χ. (See
Sect. A.4.)
If A is unbounded, then 〈φ,A·〉 is not necessarily bounded, but may be

bounded for certain vectors φ. If 〈φ,A·〉 does happen to be bounded, for
some φ ∈ H, then the BLT theorem (Theorem A.36) says that this linear
functional has a unique bounded extension from Dom(A) to all H. The
Riesz theorem then tells us that there is a unique χ such that this linear
functional is “inner product with χ.” This line of reasoning leads to the
following definition, which was already introduced briefly in Sect. 3.2.

Definition 9.1 Suppose A is an operator defined on a dense subspace
Dom(A) ⊂ H. Let Dom(A∗) to be the space of all φ ∈ H for which the
linear functional

ψ �→ 〈φ,Aψ〉 , ψ ∈ Dom(A),
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is bounded. For φ ∈ Dom(A∗), define A∗φ to be the unique vector such that
〈φ,Aψ〉 = 〈A∗φ, ψ〉 for all ψ ∈ Dom(A).

Saying that 〈φ,A·〉 is bounded means, explicitly, that there exists a con-
stant C such that |〈φ,Aψ〉| ≤ C ‖ψ‖ for all ψ ∈ Dom(A). As in the bounded
case, the operator A∗ is linear on its domain, and is called the adjoint of A.
Another way to think about the definition of A∗ is as follows. Given

a vector φ, if there exists a vector χ such that 〈φ,Aψ〉 = 〈χ, ψ〉 for all
ψ ∈ Dom(A), then φ belongs to Dom(A∗) and A∗φ = χ. By the Riesz
theorem, such a χ will exist if and only if 〈φ,A·〉 is bounded, which means
this way of thinking about A∗ is equivalent to Definition 9.1.
Given a densely defined operator A, the adjoint A∗ of A could fail to

be densely defined. This situation, however, is a pathology that does not
usually occur for operators of interest in applications.

Definition 9.2 An unbounded operator A on H is symmetric if

〈φ,Aψ〉 = 〈Aφ,ψ〉 (9.1)

for all φ, ψ ∈ Dom(A).

As we will see shortly, if A is symmetric, then A∗ is an extension of A,
in the sense of the following definition.

Definition 9.3 An unbounded operator A is an extension of an unbounded
operator B if Dom(A) ⊃ Dom(B) and A = B on Dom(B).

If A is an extension of B, then very likely A is given by the same “for-
mula” as B. If H = L2(R), for example, both operators might be given
by the formula −i� d/dx on their respective domains. Nevertheless, if
Dom(A) 
= Dom(B), then A is still a different operator from B.

Proposition 9.4 An unbounded operator A is symmetric if and only if A∗

is an extension of A.

Proof. If A is symmetric, then for all φ ∈ Dom(A), (9.1) and the Cauchy–
Schwarz inequality show that

|〈φ,Aψ〉| ≤ ‖Aφ‖ ‖ψ‖ ,

showing that φ ∈ Dom(A∗). In that case, (9.1) shows that the unique vector
A∗φ for which 〈φ,Aψ〉 = 〈A∗φ, ψ〉 is nothing but Aφ, which means that A∗

agrees with A on Dom(A).
In the other direction, if A∗ is an extension of A, then for each φ ∈

Dom(A), we have

〈φ,Aψ〉 = 〈A∗φ, ψ〉 = 〈Aφ,ψ〉 ,

for all ψ ∈ Dom(A), which shows that A is symmetric.
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We come now to the key definition of this section, that of self-adjointness.
This notion constitutes the hypothesis of the spectral theorem for un-
bounded operators.

Definition 9.5 An unbounded operator A on H is self-adjoint if

Dom(A∗) = Dom(A)

and A∗φ = Aφ for all φ ∈ Dom(A).

We may reformulate the definition of self-adjointness by saying that A
is self-adjoint if A∗ is equal to A, provided that equality of unbounded
operators is understood to include equality of domains. Every self-adjoint
operator is symmetric (by Proposition 9.4), but there exist many operators
that are symmetric without being self-adjoint. In light of Proposition 9.4,
a symmetric operator is self-adjoint if and only if Dom(A∗) = Dom(A). In
trying to show that a symmetric operator is self-adjoint, the difficulty lies
in showing that Dom(A∗) is no bigger than Dom(A).

Definition 9.6 An unbounded operator A on H is said to be closed if the
graph of A is a closed subset of H×H. An unbounded operator A on H is
said to be closable if the closure in H×H of the graph of A is the graph of
a function. If A is closable, then the closure Acl of A is the operator with
graph equal to the closure of the graph of A.

To be more explicit, an operator A is closed if and only if the following
condition holds: Suppose a sequence ψn belongs to Dom(A) and suppose
that there exist vectors ψ and φ in H with ψn → ψ and Aψn → φ. Then
ψ belongs to Dom(A) and Aψ = φ. Regarding closability, an operator A is
not closable if there exist two elements in the closure of the graph of A of
the form (φ, ψ) and (φ, χ), with ψ 
= χ. Another way of putting it is to say
that an operator A is closable if there exists some closed extension of it, in
which case the closure of A is the smallest closed extension of A.
The notion of the closure of a (closable) operator is useful because it

sweeps away some of the arbitrariness in the choice of a domain of an
operator. If we consider, for example, the operator A = −i� d/dx as an
unbounded operator on L2(R), there are many different reasonable choices
for Dom(A), including (1) the space of C∞ functions of compact support,
(2) the Schwartz space (Definition A.15), and (3) the space of continuously
differentiable functions ψ for which both ψ and ψ′ belong to L2(R). As it
turns out, each of these three choices for Dom(A) leads to the same operator
Acl. Note that we are not claiming that every choice for Dom(A) leads to
the same closure; nevertheless, it is often the case that many reasonable
choices do lead to the same closure.

Definition 9.7 An unbounded operator A on H is said to be essentially

self-adjoint if A is symmetric and closable and Acl is self-adjoint.
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Actually, as we shall see in the next section, a symmetric operator is
always closable. Many symmetric operators fail to be even essentially self-
adjoint. We will see examples of such operators in Sects. 9.6 and 9.10. Sec-
tion 9.5 gives some reasonably simple criteria for determining when a sym-
metric operator is essentially self-adjoint.

9.3 Elementary Properties of Adjoints and Closed
Operators

In this section, we spell out some of the most basic and useful properties
of adjoints and closures of unbounded operators. In Sect. 9.5, we will draw
on these results to prove some more substantial results. In what follows,
if we say that two operators “coincide,” it means that they have the same
domain and that they are equal on that common domain.

Proposition 9.8 1. If A is an unbounded operator on H, then the
graph of the operator A∗ (which may or may not be densely defined)
is closed in H×H.

2. A symmetric operator is always closable.

Proof. Suppose ψn is a sequence in the domain of A∗ that converges to
some ψ ∈ H. Suppose also that A∗ψn converges to some φ ∈ H. Then
〈ψn, A·〉 = 〈A∗ψn, ·〉 and for any χ ∈ Dom(A), we have

〈ψ,Aχ〉 = lim
n→∞

〈ψn, Aχ〉 = lim
n→∞

〈A∗ψn, χ〉 = 〈φ, χ〉 .

This shows that ψ belongs to the domain of A∗ and that A∗ψ = φ, estab-
lishing that the graph of A∗ is closed.
If A is symmetric, A∗ is an extension of A. Since, as we have just proved,

A∗ is closed, A has a closed extension and is therefore closable.

Corollary 9.9 If A is a symmetric operator with Dom(A) = H, then A is
bounded.

Proof. Since A is symmetric, it is closable by Proposition 9.8. But since
the domain of A is already all of H, the closure of A must coincide with
A itself. (The closure of A always agrees with A on Dom(A), which in this
case is all of H.) Thus, A is a closed operator defined on all of H, and the
closed graph theorem (Theorem A.39) implies that A is bounded.

Proposition 9.10 If A is a closable operator on H, then the adjoint of
Acl coincides with the adjoint of A.

Proof. Suppose that for some ψ ∈ H there exists a φ such that
〈
ψ,Aclχ

〉
=

〈φ, χ〉 for all χ ∈ Dom(Acl). Since Acl is an extension of A, it follows
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that 〈ψ,Aχ〉 = 〈φ, χ〉 for all χ ∈ Dom(A). This shows that Dom(A∗) ⊃
Dom((Acl)∗) and that A∗ agrees with (Acl)∗ on Dom((Acl)∗).
In the other direction, suppose for some ψ ∈ H there exists a φ such

that 〈ψ,Aχ〉 = 〈φ, χ〉 for all χ ∈ Dom(A). Suppose now ξ ∈ Dom(Acl) with
Aclξ = η. Then there exists a sequence χn in Dom(A) with χn → ξ and
Aχn → η, and we have

〈ψ,Aχn〉 = 〈φ, χn〉

for all n. Letting n tend to infinity, we obtain 〈ψ, η〉 = 〈φ, ξ〉, or
〈
ψ,Aclξ

〉
=

〈φ, ξ〉. This shows that ψ ∈ Dom((Acl)∗) and Aclψ = φ. Thus, Dom(A∗) ⊂
Dom((Acl)∗).

Proposition 9.11 If A is essentially self-adjoint, then Acl is the unique
self-adjoint extension of A.

Proof. Suppose B is a self-adjoint extension of A. SinceB = B∗,B is closed
and is, therefore, an extension of Acl. It then follows from the definition of
the adjoint that Dom(B∗) ⊂ Dom(Acl). Thus, we have

Dom(B∗) ⊂ Dom(Acl) ⊂ Dom(B).

Since B is self-adjoint, all three of the above sets must be equal, so actually
B = Acl.

Proposition 9.12 If A is an unbounded operator on H, then

(Range(A))⊥ = ker(A∗).

Proof. First assume that ψ ∈ (Range(A))⊥. Then for all φ ∈ Dom(A) we
have

〈ψ,Aφ〉 = 0.

That is to say, the linear functional 〈ψ,A·〉 is bounded—in fact, zero—
on Dom(A). Thus, from the definition of the adjoint, we conclude that
ψ ∈ Dom(A∗) and A∗ψ = 0.

Meanwhile, suppose that ψ is in Dom(A∗) and that A∗ψ = 0. The only
way this can happen is if the linear functional 〈ψ,A·〉 is zero on Dom(A),
which means that ψ is orthogonal to the image of A.

Proposition 9.13 Suppose A is an unbounded operator on H and that B
is a bounded operator defined on all of H. Let A + B denote the operator
with Dom(A + B) = Dom(A) and given by (A + B)ψ = Aψ + Bψ for all
ψ ∈ Dom(A). Then (A+B)∗ has the same domain as A∗ and (A+B)∗ψ =
A∗ψ +B∗ψ for all ψ ∈ Dom(A∗).
In particular, the sum of an unbounded self-adjoint operator and a

bounded self-adjoint operator (defined on all of H) is self-adjoint on the
domain of the unbounded operator.
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Proof. See Exercise 3.
The sum of two unbounded self-adjoint operators is not, in general, self-

adjoint. See Sect. 9.9 for more information about this issue.

Proposition 9.14 Let A be a closed operator and λ an element of C.
Suppose that there exists ε > 0 such that

‖(A− λI)ψ‖ ≥ ε ‖ψ‖ (9.2)

for all A in Dom(A). Then the range of A− λI is a closed subspace of H.

Here, we take the domain of the operator A − λI to coincide with the
domain of A, as in Proposition 9.13.
Proof. Assume that φn is a sequence in the range of A − λI converging
to some φ. Then φn = (A− λI)ψn, for some sequence ψn in Dom(A). Ap-
plying (9.2) with ψ = ψn − ψm shows that ‖ψn − ψm‖ ≤ (1/ε) ‖φn − φm‖.
This means that ψn is Cauchy and thus convergent to some vector ψ. Since
ψn → ψ and (A− λI)ψn = φn → φ, we have that

Aψn = λψn + φn → λψ + φ.

Thus, by the definition of a closed operator, ψ ∈ Dom(A) and Aψ = λψ+φ.
This means that (A− λI)ψ = φ and so the range of A− λI is closed.
We conclude this section with a simple example for which we can compute

the adjoint and closure explicitly.

Example 9.15 Let 〈ej〉 be an orthonormal basis for H and let 〈λj〉 be
an arbitrary sequence of real numbers. Define an operator A on H with
Dom(A) equal to the space of finite linear combinations of the ej’s, with A
itself defined by

Aej = λjej .

Then A is symmetric and closable and Dom(A∗) = Dom(Acl) = V , where

V =

⎧
⎨
⎩ψ =

∑

j

ajej

∣∣∣∣∣∣
∑

j

(1 + λ2
j) |aj |2 < ∞

⎫
⎬
⎭ . (9.3)

For any ψ =
∑

j ajej in V , we have

A∗ψ = Aclψ =
∑

j

ajλjej . (9.4)

Thus, (Acl)∗ = A∗ = Acl, showing that A is essentially self-adjoint.

Proof. Note that for any sequence 〈aj〉 of coefficients satisfying the condi-

tion on the right-hand side of (9.3), we have
∑

j |aj |
2
< ∞ and, thus, the
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sum
∑

j ajej converges in H. Suppose first that φ =
∑

j ajej belongs V .
Then for any ψ =

∑
j bjej (finite sum) in the domain of A we have

〈φ,Aψ〉 =
∑

j

ajλjbj

and so by the Cauchy–Schwarz inequality,

|〈φ,Aψ〉| ≤

⎛
⎝∑

j

λ2
j |aj |2

⎞
⎠

1/2

‖ψ‖ .

Thus, 〈φ,A·〉 is a bounded linear functional, showing that φ ∈ Dom(A∗).
Furthermore, it is apparent that 〈φ,Aψ〉 = 〈χ, ψ〉 for all ψ ∈ Dom(A),
where χ =

∑
j ajλjej .

Meanwhile, suppose φ =
∑

j ajej belongs to the domain of A∗, and

consider ψN :=
∑N

j=1 λjajej in Dom(A). Then

|〈φ,AψN 〉| =
N∑

j=1

λ2
j |aj|2 =

⎛
⎝

N∑

j=1

λ2
j |aj |2

⎞
⎠

1/2

‖ψN‖ .

Since φ ∈ Dom(A∗), the functional 〈φ,A·〉 is bounded, and so
∑N

j=1 λ
2
j |aj|

2

must be bounded, independent of N , and so
∑

j λ
2
j |aj |

2
< ∞. Since φ

belongs to H, we have also that
∑

j |aj |
2
< ∞, showing that φ is in V .

Turning now to the closure of A, it is apparent that A is symmetric and
thus closable, by Proposition 9.8. Suppose ψ =

∑
j ajej belongs to V and

consider ψN :=
∑N

j=1 ajej . Clearly, ψN converges to ψ. Furthermore, since
ψ ∈ V , we see that AψN converges to the vector

∑
j ajλjej. This shows

that ψ ∈ Dom(Acl) and that Aclψ =
∑

j ajλjej. Thus, each element of V

belongs to Dom(Acl) and Acl is given on V by (9.4).
Now, the space V forms a Hilbert space with respect to the norm given

by

‖ψ‖2V =
∑

j

(1 + λ2
j ) |aj |2 ,

where ψ =
∑

j ajej. [To establish completeness of V with respect to this

norm, note that V can be identified isometrically with L2(N) with respect
to the measure μ for which μ({j}) = 1+λ2

j .] Suppose, now, that we have a
sequence 〈ψm〉 in Dom(A) for which both 〈ψm〉 and 〈Aψm〉 are convergent.
Then 〈ψm〉 forms a Cauchy sequence in V which converges to some element
ψ of V . Since ‖ψ‖H ≤ ‖ψ‖V for all ψ ∈ Dom(A), we see that ψm also
converges in H to ψ ∈ V . This shows that each element of Dom(Acl)
belongs to V .
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9.4 The Spectrum of an Unbounded Operator

Recall that if A is a bounded operator, then a number λ ∈ C belongs to
the resolvent set of A if the operator A− λI has a bounded inverse, and λ
belongs to the spectrum of A if A − λI does not have a bounded inverse.
For an unbounded operator A, we will say that a number λ ∈ C is in the
resolvent set of A if A − λI has a bounded inverse. That is, even though
A is unbounded, for λ to be in the resolvent set of A, there must be a
bounded inverse to A− λI; otherwise, λ is in the spectrum of A. We make
this characterization more precise in the following definition.

Definition 9.16 Suppose A is an unbounded operator on H. A number
λ ∈ C belongs to the resolvent set of A if there exists a bounded operator
B with the following properties: (1) For all ψ ∈ H, Bψ belongs to Dom(A)
and (A−λI)Bψ = ψ, and (2) for all ψ ∈ Dom(A) we have B(A−λI)ψ = ψ.
If no such bounded operator B exists, then λ belongs to the spectrum of A.

Note that we are implicitly taking Dom(A− λI) to equal Dom(A), as in
Proposition 9.13. As in the bounded case, even if A is self-adjoint, points
λ in the spectrum of A are not necessarily eigenvalues; that is, there does
not necessarily exist a nonzero ψ ∈ Dom(A) with Aψ = λψ. On the other
hand, if Aψ = λψ for some ψ ∈ Dom(A), then A− λI is not injective and
thus λ certainly does belong to the spectrum of A.

Theorem 9.17 If A is an unbounded self-adjoint operator on H, the spec-
trum of A is contained in the real line.

If A is symmetric but not self-adjoint, then the spectrum of A must
contain points not in the real line. Indeed, Theorem 9.21 will show that at
least one of (A − iI) and (A + iI) must fail to be surjective, and thus at
least one of the numbers i and −i is in the spectrum of A. Nevertheless, a
symmetric operator cannot have nonreal eigenvalues, as we showed already
in Proposition 3.4.
Proof. Consider a complex number λ = a + ib with b 
= 0. Since A is
symmetric, the proof of Lemma 7.8 applies, giving

〈(A− λI)ψ, (A − λI)ψ〉 ≥ b2 〈ψ, ψ〉 (9.5)

for all ψ ∈ Dom(A). This shows that (A− λI) is injective.
Meanwhile, applying Propositions 9.12 and 9.13 with B = −λI we see

that

(Range(A− λI))⊥ = ker((A− λI)∗) = ker(A∗ − λ̄I) = ker(A− λ̄I).

Since λ̄ again has nonzero imaginary part, A− λ̄I is also injective, showing
that Range(A − λI) is dense in H. Since A = A∗ is closed, (9.5) allows us
to apply Proposition 9.14 to show that Range(A− λI) is closed, hence all
of H.
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We have shown, then, that (A−λI) maps Dom(A) injectively onto H. It
follows from (9.5) (or the closed graph theorem) that the inverse operator
is bounded, so that λ is in the resolvent set of A.
Our next result shows that the spectrum of an unbounded self-adjoint

operator has properties similar to that of a bounded self-adjoint operator.

Proposition 9.18 If A is an unbounded self-adjoint operator on H, then
the following hold.

1. A number λ ∈ R belongs to the spectrum of A if and only if there
exists a sequence ψn of nonzero vectors in Dom(A) such that

lim
n→∞

‖(A− λI)ψn‖
‖ψn‖

= 0. (9.6)

2. The spectrum σ(A) of A is a closed subset of R.

Although the spectrum of a bounded self-adjoint operator is a bounded
subset of R, the spectrum of an unbounded self-adjoint operator will be
unbounded. Indeed, it can be shown (using the spectral theorem) that if
a self-adjoint operator has bounded spectrum, then the operator must be
bounded.
Proof. For Point 1, if a sequence as in (9.6) existed, then as in the proof
of Proposition 7.7, A− λI could not have a bounded inverse, so λ must be
in the spectrum of A. Conversely, suppose no such sequence exists. Then
there is some ε > 0 such that

‖(A− λI)ψ‖ ≥ ε ‖ψ‖ (9.7)

for all ψ ∈ Dom(A). This means that A − λI is injective and that, by
Proposition 9.14, the range of A− λI is closed. But

(A− λI)∗ = A∗ − λI = A− λI

and A − λI is injective, so by Proposition 9.12, the range of A − λI is all
of H. This means A− λI has an inverse, which is bounded by (9.7). Thus
λ is not in the spectrum of A.
Point 2 is left as an exercise (Exercise 4).

Definition 9.19 Let A be an unbounded operator on H. Then A is non-

negative if 〈ψ,Aψ〉 ≥ 0 for all ψ ∈ Dom(A) and A is bounded below by

c ∈ R if 〈ψ,Aψ〉 ≥ c ‖ψ‖2 for all ψ ∈ Dom(A).

Proposition 9.20 Let A be an unbounded self-adjoint operator on H. If
A is non-negative, then the spectrum of A is contained in [0,∞). More
generally, if A is bounded below by c, then the spectrum of A is contained
in [c,∞).
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We will eventually see, using the spectral theorem for unbounded self-
adjoint operators, that the converse to Proposition 9.20 also holds: If the
spectrum of a self-adjoint operator A is contained in [0,∞), then A is non-
negative, and if the spectrum of A is contained in [c,∞), then A is bounded
below by c. These results follow easily, for example, from the form of the
spectral theorem in Theorem 10.9.
Proof. Suppose A is bounded below by c and λ is a point in the spectrum
of A. If ψn be a sequence as in Point 1 of Proposition 9.18, with the ψn’s
normalized to be unit vectors, then

lim
n→∞

|〈ψn, (A− λI)ψn〉| ≤ lim
n→∞

‖(A− λI)ψn‖ = 0.

On the other hand, A = λI + (A− λI), and so

〈ψn, Aψn〉 = λ+ 〈ψn, (A− λI)ψn〉 .

Thus, 〈ψn, Aψn〉 converges to λ (= λ 〈ψn, ψn〉) as n tends to infinity. Since
A is bounded below by c, we must have λ ≥ c. This establishes the result
for operators bounded below by c. Specializing to c = 0 gives the result for
non-negative operators.

9.5 Conditions for Self-Adjointness and Essential
Self-Adjointness

In this section, we give criteria for determining whether a symmetric oper-
ator is self-adjoint or essentially self-adjoint. See also Sect. 10.2 for the con-
nection between self-adjoint operators and one-parameter unitary groups.

Theorem 9.21 If A is a symmetric operator on H, then A is essentially
self-adjoint if and only if Range(A − iI) and Range(A + iI) are dense
subspaces of H.

Using Proposition 9.12, we can reformulate this result as follows.

Corollary 9.22 If A is a symmetric operator on H, then A is essentially
self-adjoint if and only if the operators A∗ + iI and A∗ − iI are injective
on Dom(A∗).

As Exercise 11 shows, it is possible to have one of the operators A∗ + iI
and A∗ − iI be injective and the other fail to be injective.
Proof of Theorem 9.21. Assume first that A is essentially self-adjoint,
so that Acl is self-adjoint. Then A∗ = (Acl)∗ = Acl, and so

[Range(A− iI)]⊥ = ker(A∗ + iI) = ker(Acl + iI) = {0},

by Theorem 9.17, and similarly for the range of A+ iI.
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Conversely, assume A is symmetric and that A − iI and A + iI both
have dense range. Since (Acl)∗ = A∗ is a closed extension of A, it is also
an extension of Acl, showing that Acl is symmetric. We may then apply
Lemma 7.8—the proof of which requires only symmetry—to the operator
Acl with λ = i, giving

∥∥(Acl − iI)ψ
∥∥2 ≥ ‖ψ‖2 (9.8)

and showing that Acl − iI is injective. Since the range of A − iI is dense,
the range of Acl − iI is certainly also dense. But since Acl is closed, (9.8)
and Proposition 9.14 tell us that the range of Acl − iI is closed, hence all
of H. Similar reasoning shows that the range of Acl + iI is also all of H.
Now, by Proposition 9.13, (Acl−iI)∗ = (Acl)∗+iI, which is an extension

of Acl + iI. Suppose (Acl)∗ + iI is a proper extension of Acl + iI, that is,
that the domain of (Acl)∗+iI is strictly bigger than the domain of Acl+iI.
Then since Acl + iI already maps onto H, (Acl)∗ + iI cannot be injective.
Thus, the operator

(Acl)∗ + iI = A∗ + iI = (A− iI)∗

must have a nontrivial kernel. Then by Proposition 9.12, Range(A− iI) is
not dense, contradicting our assumptions.
We conclude, therefore, that (Acl)∗ + iI is not a proper extension of

Acl + iI, i.e., that (Acl)∗ + iI = Acl + iI (with equality of domains). This,
by Proposition 9.13, means that (Acl)∗ = A∗ (with equality of domains),
which is what we are trying to prove.

Proposition 9.23 If A is a symmetric operator on H, then A is self-
adjoint if and only if

Range(A− iI) = Range(A+ iI) = H.

Proof. Suppose first that A is self-adjoint. Then by Theorem 9.21, the
ranges of A− iI and A+ iI are dense in H. On the other hand,

‖(A− iI)ψ‖2 ≥ ‖ψ‖2 , (9.9)

by (the proof of) Lemma 7.8, with λ = i. Since, also, A = A∗ is closed,
Proposition 9.14 tells us that the range of A− iI is closed, hence all of H.
A similar argument shows that the range of A+ iI is all of H.
Conversely, suppose that the ranges of A − iI and A + iI are all of H.

Then A is essentially self-adjoint by Theorem 9.21, so that A∗ is self-adjoint.
Since A− iI already maps onto H, if A∗ were a nontrivial extension of A,
then A∗−iI could not be injective. But (9.9), with A replaced by A∗, shows
that A∗ − iI is injective. Thus, A = A∗ and so A is self-adjoint.
In the case that A is positive-semidefinite (i.e., 〈ψ,Aψ〉 ≥ 0 for all ψ ∈

Dom(A)), there is another self-adjointness condition, the proof of which is
very similar to that of Theorem 9.22.
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Theorem 9.24 Suppose that A is a symmetric operator on H and that
〈ψ,Aψ〉 ≥ 0 for all ψ ∈ Dom(A). Then A is essentially self-adjoint if and
only if A+ I has dense range. Equivalently, A is essentially self-adjoint if
and only if A∗ + I is injective.

Proof. Assume first that A is essentially self-adjoint. Then (A + I)∗ =
A∗ + I = Acl + I. It is easily seen that Acl is also positive definite, and so

〈
ψ, (Acl + I)ψ

〉
= 〈ψ, ψ〉+

〈
ψ,Aclψ

〉
≥ 〈ψ, ψ〉 (9.10)

Thus, Acl + I = (A+ I)∗ is injective. Thus, the range of A+ I is dense, by
Proposition 9.12.
Now assume that A+I has dense range. By (9.10), Acl+I is injective and

by (9.10) and Proposition 9.14, the range of Acl+I is closed, hence all of H.
Assume Dom(A∗) is strictly larger than Dom(Acl). Then because Acl+I is
already surjective, A∗ + I (which has a domain equal to the domain of A∗)
cannot be injective. Thus, A∗+ I = (A+ I)∗ has a nontrivial kernel, which
means that the range of A + I is not dense. This is a contradiction, and
so the domain of A∗ must actually be equal to the domain of Acl. Since A
and so also Acl are symmetric, this means that Acl is self-adjoint.

Example 9.25 Suppose that A is a symmetric operator on H that has
an orthonormal basis of eigenvectors. That is to say, suppose there is an
orthonormal basis {ej} for H such that for each j, we have ej ∈ Dom(A)
and Aej = λjej for some real number λj . Then A is essentially self-adjoint.

This result is a strengthening of Example 9.15, in that we do not assume
that the domain of A is equal to the space of finite linear combinations of
the ej’s.
Proof. For any j, (A − iI)ej = (λj − i)ej . Since λj is real, we have a
nonzero multiple of ej belonging to Range(A− iI), for each j. This shows
that Range(A− iI) is dense, and similarly for Range(A+ iI).

Example 9.26 Suppose H is a Hilbert space direct sum of a sequence of
separable Hilbert spaces Hj:

H =

∞⊕

j=1

Hj .

Suppose also that Aj is a bounded self-adjoint operator on Hj, for each j.
Define a subspace V of H by

V =

⎧
⎨
⎩ψ = (ψ1, ψ2, . . .)

∣∣∣∣∣∣

∞∑

j=1

(
‖ψj‖2j + ‖Ajψj‖2j

)
< ∞

⎫
⎬
⎭ .

Suppose now that A is a symmetric operator on H whose domain contains
the finite direct sum of the Hj’s and such that A|Hj

= Aj. Then A is
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essentially self-adjoint, Dom(Acl) = Dom(A∗) = V , and

Aclψ = A∗ψ = (A1ψ1, A2ψ2, . . .) (9.11)

for all ψ = (ψ1, ψ2, . . .) in V .

See Definition A.45 for the definition of the Hilbert direct sum and the
finite direct sum of a sequence of Hilbert spaces. Example 9.25 is the special
case of Example 9.26 in which each Hj has dimension 1. This result will
be useful to us in Chap. 10.
Proof. Since Aj is self-adjoint, the ranges of Aj − iI and Aj + iI are
dense in Hj . Thus, the closure of the range of A − iI contains each Hj

and is therefore dense in H, and similarly for A+ iI. This shows that A is
essentially self-adjoint.
It remains to show that the domain of A∗ = Acl is V . Let W denote the

finite direct sum of the Hj ’s. By the argument in the previous paragraph,
A|W is essentially self-adjoint. Then A∗ is a symmetric extension of (A|W )∗,
which must coincide with (A|W )∗. Thus, it suffices to consider the case
Dom(A) = W .
If we assume that Dom(A) = W , we can compute the adjoint of A by the

argument in Example 9.15. If φ ∈ V , then the Cauchy–Schwarz inequality
shows that the linear functional 〈φ,A·〉 is bounded and that A∗φ is as
(9.11). On the other hand, if 〈φ,A·〉 is bounded, where φ = (φ1, φ2, . . .),
take

ψN = (φ1, φ2, . . . , φN , 0, 0, . . .).

Then, as in the proof of Example 9.15, the only way we can have |〈φ,AψN 〉| ≤
C ‖ψN‖ is if φ belongs to V .

9.6 A Counterexample

In this section, we will examine an elementary example of an operator that
is symmetric but not essentially self-adjoint. Our example will be essen-
tially the momentum operator on a finite interval, with “wrong” boundary
conditions. (A more sophisticated example is given in Sect. 9.10.) We take
our Hilbert space to be L2([0, 1]).

Proposition 9.27 Let Dom(A) ⊂ L2([0, 1]) be the space of continuously
differentiable functions f on [0, 1] satisfying

ψ(0) = ψ(1) = 0.

For ψ ∈ Dom(A), define

Aψ = −i�
dψ

dx
.

Then A is symmetric but not essentially self-adjoint.
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We can understand the failure of essential self-adjointness of A in prac-
tical terms as a failure of the spectral theorem. The eigenvector equation
Aψ = λψ for λ ∈ R is a first-order ordinary differential equation, whose
general solution is ψ(x) = ceiλx, where c is a constant. The only way such a
function can satisfy the boundary conditions ψ(0) = ψ(1) = 0 is if c = 0, in
which case ψ is the zero vector. Thus, A has no eigenvectors. Furthermore,
taking the closure of A does not help, because, as the proof will show, the
boundary conditions survive taking the closure.
Proof of symmetry. Using integration by parts we see that for all φ and
ψ in Dom(A) we have

∫ 1

0

φ(x)
dψ

dx
dx = φ(1)ψ(1)− φ(0)ψ(0)−

∫ 1

0

dφ

dx
ψ(x) dx. (9.12)

Since we assume φ and ψ are in Dom(A), the boundary terms are zero and
we get 〈

φ,
dψ

dx

〉

L2([0,1])

= −
〈
dφ

dx
, ψ

〉

L2([0,1])

.

Because there is a conjugate in one side of the inner product but not the
other, it follows that

〈
φ,−i�

dψ

dx

〉

L2([0,1])

=

〈
−i�

dφ

dx
, ψ

〉

L2([0,1])

,

as claimed.
We now consider Acl and A∗ = (Acl)∗. We will see that there are elements

of the domain of the adjoint that are not in the domain of the closure.

Lemma 9.28 If φ is a continuously differentiable function on [0, 1], then
φ ∈ Dom(A∗) and A∗φ = −i� dφ/dx.

Proof. If φ is continuously differentiable, then for any ψ in Dom(A), we
may integrate by parts as in (9.12). Since ψ is zero at both ends of the
interval, the boundary terms vanish and we obtain

〈φ,Aψ〉 = i�

∫ 1

0

dφ

dx
ψ(x) dx

=

∫ 1

0

(
−i�

dφ

dx

)
ψ(x) dx (9.13)

Since dφ/dx is continuous and hence in L2([0, 1]), we see that (9.13) is a
continuous linear functional, as a function of ψ with fixed φ. Thus, ψ is in
the domain of A∗, and A∗φ = −i dφ/dx.
Proof of Proposition 9.27. Suppose ψ is in the domain of Acl. Then
there exist ψn in Dom(A) such that ψn converges to ψ and Aψn converges
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to some χ ∈ L2([0, 1]). Since the derivatives of the ψn’s are converging in
L2, the ψn’s themselves must be converging uniformly, as can be shown by
writing each ψn as the integral of its derivative. (See Exercise 10.) It follows
that every element of Dom(Acl) is continuous and vanishes at both ends of
the interval. On the other hand, Dom(A∗) contains all smooth functions,
including many that do not vanish at the ends of the interval. Thus, Acl

and (Acl)∗ = A∗ do not have the same domains.
It follows from Lemma 9.28 that every complex number λ belongs to the

spectrum of Acl. See Exercise 9.
The reason that A fails to be essentially self-adjoint is that we impose too

many boundary conditions on functions in the domain of A, which results
in there being too few boundary conditions (in this case, no boundary
conditions at all) on functions in the domain of A∗. In this example, A∗ is
given by the same formula as A (−id/dx in both cases), but the domain of
A∗ is bigger than the domain of Acl.
Suppose we define another operatorB, still given by the formula −i d/dx,

but with the domain of B to be the space of continuously differentiable
functions ψ with ψ(0) = ψ(1). If we integrate by parts as in (9.12), the
boundary terms will cancel, showing that B is symmetric. Meanwhile, the
functions ψn(x) := e2πinx, n ∈ Z, form an orthonormal basis for L2([0, 1])
consisting of eigenvectors for B, with real eigenvalues λn = 2πn. Thus, by
Example 9.25, B is essentially self-adjoint.

9.7 An Example

We now give an example of an operator that is essentially self-adjoint. Let
C∞

c (R) denote the space of smooth, compactly supported functions on R.

Proposition 9.29 Let P be the densely defined operator with Dom(P ) =
C∞

c (R) ⊂ L2(R) and given by Pψ = −iℏ dψ/dx. Then P is essentially
self-adjoint.

Proof. Our strategy is to apply Corollary 9.22. Since P is symmetric, we
expect that P ∗ will be given by the formula −i� d/dx, on some suitable
domain inside L2(R). Thus, if ψ ∈ ker(P ∗ + iI), this should mean that
−iℏ dψ/dx = −iψ, or dψ/dx = (1/ℏ)ψ(x), which ought to imply that
ψ(x) = cex/ℏ, for some constant c. Since cex/ℏ belongs to L2(R) only if
c = 0, we hope to conclude that ψ = 0.
To say that ψ ∈ L2(R) belongs to the kernel of P ∗ + iI means that ψ

belongs to Dom(P ∗) and that P ∗ψ = −iψ. This holds if and only if

−iℏ

∫

R

dχ

dx
ψ(x) dx = i

∫

R

χ(x)ψ(x) dx
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for all χ ∈ C∞
c (R). For any ξ ∈ C∞

c (R), if we take χ(x) = ξ(x)e−x/� and
combine the integrals into one, we get

0 = −i

∫

R

[
ℏe−x/ℏ dξ

dx
− e−x/ℏξ(x) + e−x/ℏξ(x)

]
ψ(x) dx

= −iℏ

∫

R

dξ

dx
e−x/ℏψ(x) dx. (9.14)

Now, (9.14) says that the derivative of e−x/�ψ(x) in the weak or distribu-
tional sense is zero. (See Proposition A.29 in Appendix A.3.3.) Thus, by the
remarks immediately following Proposition A.5, we must have e−x/�ψ(x) =
c for some c, meaning that ψ(x) = cex/�. Since we also assume that ψ be-
longs to Dom(P ∗) ⊂ L2(R), we must have c = 0, so that ψ is the zero
element of L2(R).
We have shown, then, that only 0 belongs to the kernel of P ∗ + iI. A

similar argument with i replaced by −i and ex/ℏ by e−x/ℏ shows that only
0 belongs to the kernel of P ∗− iI. Thus, by Corollary 9.22, P is essentially
self-adjoint.

9.8 The Basic Operators of Quantum Mechanics

In this section, we consider several of the unbounded self-adjoint operators
that arise in quantum mechanics. We find natural domains of self- ad-
jointness for the position, momentum, kinetic energy, and potential energy
operators. Since Schrödinger operators are more complicated to analyze,
we postpone a discussion of them until the next section. We begin with the
potential energy operator.

Proposition 9.30 Suppose V : Rn → R is a measurable function. Let
V (X) be the unbounded operator with domain

Dom(V (X)) =
{
ψ ∈ L2(Rn)

∣∣V (x)ψ(x) ∈ L2(Rn)
}

and given by
[V (X)ψ](x) = V (x)ψ(x).

Then Dom(V (X)) is dense in L2(Rn) and V (X) is self-adjoint on this
domain.

Proof. Define a subset Em of Rn by

Em = {x ∈ Rn ||V (x)| < m} ,

so that ∪mEm = Rn. Then for any ψ ∈ L2(Rn), the function ψ1Em
belongs

to Dom(V (X)). On the other hand, using dominated convergence, we have
ψ1Em

→ ψ as m → ∞, establishing that Dom(V (X)) is dense.
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Since V is real-valued, it is easy to see that V (X) is symmetric on
Dom(V (X)). Thus, V (X)∗ is an extension of V (X).
Meanwhile, suppose φ ∈ Dom(V (X)∗), meaning that

ψ �→
∫

X

φ(x)V (x)ψ(x) dx, ψ ∈ Dom(V (X)) (9.15)

is a bounded linear functional. This linear functional has a unique bounded
extension to L2 and, thus, Thus, there exists a unique χ ∈ L2(Rn) such
that ∫

X

ψ(x)V (x)φ(x) dx =

∫

X

χ(x)φ(x) dx, (9.16)

or ∫

X

[
ψ(x)V (x)− χ(x)

]
φ(x) dx = 0

for all φ ∈ Dom(V (X)).
Taking φ = (ψV −χ)1Em

, we see that ψV −χ is zero almost everywhere
on Em, for all m, hence zero almost everywhere on Rn. Thus, ψV is equal
to χ as an element of L2(Rn). This shows that ψ ∈ Dom(V (X)). Thus,
actually, Dom(V (X)∗) = Dom(V (X)). Since we have already shown that
V (X)∗ is an extension of V (X), we conclude that V (X) is self-adjoint on
Dom(V (X)).
If we specialize the preceding proposition to the case V (x) = xj , we

obtain the following result about the position operator.

Corollary 9.31 The position operator Xj is self-adjoint on the domain

Dom(Xj) =
{
ψ ∈ L2(Rn)

∣∣xjψ(x) ∈ L2(Rn)
}
.

We now turn to consideration of the momentum operator. Since the
Fourier transform converts ∂/∂xj into multiplication by ikj (Proposition
A.17) we can use the preceding results on multiplication operators to obtain
a natural domain on which the momentum operator is self-adjoint.

Proposition 9.32 For each j = 1, 2, . . . , n, define a domain Dom(Pj) ⊂
L2(Rn) as follows:

Dom(Pj) =
{
ψ ∈ L2(Rn)

∣∣∣kj ψ̂(k) ∈ L2(Rn)
}
,

where ψ̂ is the Fourier transform of ψ. Define Pj on this domain by

Pjψ = F−1(�kjψ̂(k)).

Then Pj is self-adjoint on Dom(Pj).
The domain Dom(Pj) of Pj can also be described as the set of all ψ ∈

L2(Rn) such that ∂ψ/∂xj, computed in the distribution sense, belongs to
L2(Rn). For any ψ ∈ Dom(Pj), we have Pjψ = −i�∂ψ/∂xj, where ∂ψ/∂xj

is computed in the distribution sense.
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Saying that the distributional derivative of ψ belongs to L2(Rn) means
(Proposition A.29) that there exists a (unique) φ in L2(Rn) such that

−
〈

∂χ

∂xj
, ψ

〉
= 〈χ, φ〉

for all χ ∈ C∞
c (Rn). If ψ is continuously differentiable, then the distribu-

tional derivative of ψ coincides with the ordinary derivative of ψ. Thus, if
ψ ∈ L2(Rn) is continuously differentiable, then ψ belongs to Dom(Pj) if
and only if ∂ψ/∂xj , computed in the pointwise sense, belongs to L2(Rn),
in which case Pjψ = −i�∂ψ/∂xj. On the other hand, if ψ ∈ Dom(Pj), it is
not necessarily the case that ψ is continuously differentiable.
In the case n = 1, the domain of P1 certainly contains C∞

c (R), since each

element ψ of C∞
c (R) is a Schwartz function (Definition A.15), so that ψ̂

is also a Schwartz function, in which case kψ̂(k) belongs to L2(R). Now,
as shown in Sect. 9.7, the operator −i�d/dx is essentially self-adjoint on
C∞

c (R), which means that this operator has a unique self-adjoint extension.
This self-adjoint extension must, therefore, agree with the operator P1 in
the n = 1 case of Proposition 9.32.

Lemma 9.33 Suppose ψ ∈ L2(Rn) has the property that ∂ψ/∂xj, com-

puted in the distribution sense, is equal to an L2 function φ. Then φ̂(k) =

ikjψ̂(k), showing that kjψ̂(k) belongs to L2(Rn).

Conversely, suppose ψ ∈ L2(Rn) has the property that kjψ̂(k) belongs to
L2(Rn). Then ∂ψ/∂xj, computed in the distribution sense, is equal to the
L2 function F−1(ikjF(ψ)).

Proof. Suppose ∂ψ/∂xj, computed in the distribution sense, is equal to the
L2 function φ (see Definition A.28). Then by the unitarity of the Fourier
transform (Theorem A.19) and its behavior with respect to differentiation
(Proposition A.17), we have

〈χ, φ〉 = −
〈

∂χ

∂xj
, ψ

〉

= −〈ikjF(χ),F(ψ)〉 ,
for all χ ∈ C∞

c (R). Thus,

〈F(χ),F(φ)〉 = −〈ikjF(χ),F(ψ)〉 , χ ∈ C∞
c (R).

Writing this equality out as an integral, we have
∫

Rn

χ̂(k)φ̂(k) dk = −
∫

Rn

ikjχ̂(k)ψ̂(k) dk

=

∫

Rn

χ̂(k)ikjψ̂(k) dk (9.17)

for all χ ∈ C∞
c (Rn).



188 9. Unbounded Self-Adjoint Operators

We now claim that because (9.17) holds for all χ ∈ C∞
c (Rn), we must

have φ̂(k) = ikjψ̂(k) for almost every k. Using the Stone–Weierstrass the-
orem and Theorem A.10, it is not hard to show that the space of smooth
functions with support in [a, b] is dense in L2([a, b]), for all a < b ∈ R.

Since both φ̂ and kjψ̂(k) are locally square-integrable, we see that these
two functions are equal almost everywhere on [a, b], for all a < b ∈ R, and
hence equal almost everywhere on R.
Since φ̂ is globally square-integrable, so is kj ψ̂(k). Furthermore, by the

injectivity of the L2 Fourier transform, we have

∂ψ

∂xj
= φ = F−1(ikjF(ψ))

as claimed.
The argument for the second part of the lemma is similar and left as an

exercise (Exercise 12).
Proof of Proposition 9.32. By Proposition 9.30, the operator of mul-
tiplication by kj is an unbounded self-adjoint operator on L2(Rn), with
domain equal to the set of φ for which kjφ(k) belongs to L2(Rn). It then
follows from the unitarity of the Fourier transform that Pj = �F−1Mkj

F is
self-adjoint on F−1(Dom(Mkj

)), where Mkj
denotes multiplication by kj .

The second characterization of Dom(Pj) follows from Lemma 9.33.

Proposition 9.34 Define a domain Dom(∆) as follows:

Dom(∆) =
{
ψ ∈ L2(Rn)

∣∣∣|k|2 ψ̂(k) ∈ L2(Rn)
}
.

Define ∆ on this domain by the expression

∆ψ = −F−1(|k|2 ψ̂(k)), (9.18)

where ψ̂ is the Fourier transform of ψ and F−1 is the inverse Fourier.
Then ∆ is self-adjoint on Dom(∆).
The domain Dom(∆) may also be described as the set of all ψ ∈ L2(Rn)

such that ∆ψ, computed in the distribution sense, belongs to L2(Rn). If
ψ ∈ Dom(∆), then ∆ψ as defined by (9.18) agrees with ∆ψ computed in
the distribution sense.

The proof of Proposition 9.34 is extremely similar to that of Proposi-
tion 9.32 and is omitted. Of course, the kinetic energy operator−�2∆/(2m)
is also self-adjoint on the same domain as ∆. It is easy to see from (9.18)
and the unitarity of the Fourier transform that −�2∆/(2m) is non-negative,
that is, that 〈

ψ,− �2

2m
∆ψ

〉
≥ 0

for all ψ ∈ Dom(∆).
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Using the same reasoning as in Sects. 9.6 and 9.7, it is not hard to show
that the operators Pj and ∆ are essentially self-adjoint on C∞

c (Rn). See
Exercise 16.
Care must be exercised in applying Proposition 9.34. Although the func-

tion

ψ(x) :=
1

|x|
is harmonic on R3\{0}, the Laplacian over R3 of ψ in the distribution
sense is not zero (Exercise 13). (It can be shown, by carefully analyzing the
calculation in the proof of Proposition 9.35, that ∆ψ is a nonzero multiple
of a δ-function.) This example shows that if a function ψ has a singularity,
calculating the Laplacian of ψ away from the singularity may not give the
correct distributional Laplacian of ψ. For example, the function φ in L2(R3)
given by

φ(x) :=
e−|x|2

|x| (9.19)

is not in Dom(∆), even though both φ and ∆φ are (by direct computa-
tion) square-integrable over R3\{0}. Indeed, when n ≤ 3, every element of
Dom(∆) is continuous (Exercise 14).

Proposition 9.35 Suppose ψ(x) = g(x)f(|x|), where g is a smooth func-
tion on Rn and f is a smooth function on (0,∞). Suppose also that f
satisfies

lim
r→0+

rn−1f(r) = 0

lim
r→0+

rn−1f ′(r) = 0.

If both ψ and ∆ψ are square-integrable over Rn\{0}, then ψ belongs to
Dom(∆).

Note that the second condition in the proposition fails if n = 3 and
f(r) = 1/r. We will make use of this result in Chap. 18.
Proof. To apply Proposition 9.34, we need to compute 〈ψ,∆χ〉, for each
χ ∈ C∞

c (Rn). We choose a large cube C, centered at the origin and such
that the support of χ is contained in the interior of C. Then we consider
the integral of ψ̄(∂2χ/∂x2

j) over C\Cε, where Cε is a cube centered at the
origin and having side-length ε. We evaluate the xj -integral first and we
integrate by parts twice. For “good” values of the remaining variables, xj

ranges over all of C, in which case there are no boundary terms to worry
about. For “bad” values of the remaining variables, we get two kinds of
boundary terms, one involving ψ̄(∂χ/∂xj) and one involving (∂ψ̄/∂xj)χ,
in both cases integrated over two opposite faces of Cε.
Now,

∂ψ

∂xj
=

∂g

∂xj
f(|x|) + g(x)

df

dr

xj

r
.
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Since the area of the faces of the cube is εn−1, the assumption on f will
cause the boundary terms to disappear in the limit as ε tends to zero.
Furthermore, both ψ and ∆ψ are in L2(Rn) and thus in L1(C), where in
the case of ∆ψ, we simply leave the value at the origin (which is a set of
measure zero) undefined. Thus, integrals of ψ̄∆χ and (∆ψ̄)χ over C\Cε

will converge to integrals over C. Since the boundary terms vanish in the
limit, we are left with

〈ψ,∆χ〉 = 〈∆ψ, χ〉 .
Thus, the distributional Laplacian of ψ is simply integration against the
“pointwise” Laplacian, ignoring the origin. Proposition 9.34 then tells us
that ψ ∈ Dom(∆).

9.9 Sums of Self-Adjoint Operators

In the previous section, we have succeeded in defining the Laplacian ∆,
and hence also the kinetic energy operator −�2∆/(2m), as a self-adjoint
operator on a natural dense domain in L2(Rn). We have also defined the
potential energy operator V (X) as a self-adjoint operator on a different
dense domain, for any measurable function V : Rn → R. To obtain the
Schrödinger operator −�2∆/(2m)+V (X), we “merely” have to make sense
of the sum of two unbounded self-adjoint operators. This task, however,
turns out to be more difficult than might be expected. In particular, if
V is a highly singular function, then −�2∆/(2m) + V (X) may fail to be
self-adjoint or essentially self-adjoint on any natural domain.

Definition 9.36 If A and B are unbounded operators on H, then A + B
is the operator with domain

Dom(A+B) := Dom(A) ∩Dom(B)

and given by (A+B)ψ = Aψ +Bψ.

The sum of two unbounded self-adjoint operators A and B may fail to be
self-adjoint or even essentially self-adjoint. [If, however, B is bounded with
Dom(B) = H, then Proposition 9.13 shows that A + B is self-adjoint on
Dom(A)∩Dom(B) = Dom(A).] For one thing, if A and B are unbounded,
then Dom(A) ∩Dom(B) may fail to be dense in H. But even if Dom(A) ∩
Dom(B) is dense in H, it can easily happen that A + B is not essentially
self-adjoint on this domain. (See, for example, Sect. 9.10.) Many things that
are simple for bounded self-adjoint operators becomes complicated when
dealing with unbounded self-adjoint operators!
In this section, we examine criteria on a function V under which the

Schrödinger operator

Ĥ = − �2

2m
∆+ V



9.9 Sums of Self-Adjoint Operators 191

is self-adjoint or essentially self-adjoint on some natural domain inside
L2(Rn).

Theorem 9.37 (Kato–Rellich Theorem) Suppose that A and B are
unbounded self-adjoint operators on H. Suppose that Dom(A) ⊂ Dom(B)
and that there exist positive constants a and b with a < 1 such that

‖Bψ‖ ≤ a ‖Aψ‖ + b ‖ψ‖ (9.20)

for all ψ ∈ Dom(A). Then A+B is self-adjoint on Dom(A) and essentially
self-adjoint on any subspace of Dom(A) on which A is essentially self-
adjoint. Furthermore, if A is non-negative, then the spectrum of A+ B is
bounded below by −b/(1− a).

Note that since we assume Dom(B) ⊃ Dom(A), the natural domain for
A + B is Dom(A) ∩ Dom(B) = Dom(A). An operator B satisfying (9.20)
is said to be relatively bounded with respect to A, with relative bound a.
Proof. We use the trivial variant of Theorem 9.21 given in Exercise 8.
Choose a positive real number μ large enough that a + b/μ < 1, which is
possible because we assume a < 1. Then for any ψ ∈ Dom(A), we have

(A+B + iμI)ψ =
(
B(A+ iμI)−1 + I

)
(A+ iμI)ψ. (9.21)

For any ψ ∈ H, we compute that
∥∥B(A+ iμI)−1ψ

∥∥ ≤ a
∥∥A(A+ iμI)−1ψ

∥∥+ b
∥∥(A+ iμI)−1ψ

∥∥

≤
(
a+

b

μ

)
‖ψ‖ . (9.22)

Here we have made use of the estimates

∥∥A(A+ iμI)−1
∥∥ < 1,

∥∥(A+ iμI)−1
∥∥ <

1

μ
,

both of which are elementary (Exercise 17).
If C denotes the operator B(A + iμI)−1, (9.22) tells us that ‖C‖ <

(a+ b/μ) < 1. Thus, by Lemma 7.6, C+ I is invertible. Furthermore, since
A is self-adjoint, A+ iμI maps Dom(A) onto H. Thus, (9.21) tells us that
A + B + iμI also maps Dom(A) onto H. The same argument shows that
A + B − iμI maps Dom(A) onto H and we conclude, by Exercise 8, that
A+B is self-adjoint on Dom(A).
Suppose, in addition, that A is non-negative. Let us replace iμ by λ > 0,

in (9.21). Calculating as in (9.22), using the estimates in Exercise 18, we
obtain that ∥∥B(A+ λI)−1ψ

∥∥ ≤
(
a+

b

λ

)
‖ψ‖

for all ψ ∈ H. If λ > b/(1 − a), then a + b/λ < 1, and by the above
argument, Range(A+B+λI) = H. Furthermore, since A+B+λI is self-
adjoint, Proposition 9.12 tells us that ker(A + B + λI) = {0}. This shows
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that A +B + λI is invertible and −λ is in the resolvent set of A+ B. We
conclude, then, that the spectrum of A+B is contained in [−b/(1−a),+∞).
The last part of the theorem, concerning essential self-adjointness, is left

as an exercise (Exercise 19).

Theorem 9.38 Suppose n is at most 3 and V : Rn → R is a measur-
able function that can be decomposed as a sum of two real-valued, mea-
surable functions V1 and V2, with V1 belonging to L2(Rn) and V2 being
bounded. Then the Schrödinger operator −�2∆/(2m)+V (X) is self-adjoint
on Dom(∆). Furthermore, −�2∆/(2m) + V (X) is bounded below.

Implicit in the statement of the theorem is that Dom(V (X)), as given
in Proposition 9.30, contains Dom(∆). A result similar to Theorem 9.38 in
Rn, n ≥ 4, but the condition that V1 belongs to L2(Rn) is replaced by the
condition that V1 belongs to Lp(Rn) for some p > n/2. See Theorem X.20
in Volume II of [34].
Proof. We apply the Kato–Rellich theorem with A = −�2∆/2m and B =
V (X). Assume ψ ∈ Dom(∆) and fix some ε > 0. By Exercise 14, there
exists a constant cε such that

|ψ(x)| ≤ ε ‖∆ψ‖+ cε ‖ψ‖
for all x ∈ Rn. Thus, if V is as in the theorem and ψ ∈ Dom(∆),

‖V ψ‖ ≤ sup |ψ(x)| ‖V1‖+ sup |V2(x)| ‖ψ‖
≤ ε ‖V1‖ ‖∆ψ‖+ (cε ‖V1‖+ sup |V2(x)|) ‖ψ‖ .

This shows that Dom(V (X)) ⊃ Dom(∆). Since ε is arbitrary, we can
arrange for the constant in front of ‖∆ψ‖ to be less than one and the
Kato–Rellich theorem applies.

Theorem 9.39 Suppose n is at most 3 and V : Rn → R is a measur-
able function that can be decomposed as a sum of three real-valued, mea-
surable functions V1, V2, and V3, with V1 belonging to L2(Rn), V2 being
bounded, and V3 being non-negative and locally square-integrable. Then
the Schrödinger operator −�2∆/(2m)+ V (X) is essentially self-adjoint on
C∞

c (Rn).

The proof of this result would take us too far afield and is omitted. See
Theorem X.29 in Volume II of [34]. Note that we assume only that V3 is
non-negative and locally square-integrable; V3 can tend to +∞ arbitrarily
fast at infinity. Again, the same result applies in Rn, n ≥ 4, if the condition
on V1 is replaced by the assumption that V1 ∈ Lp(Rn) for some p > n/2.

Proposition 9.40 Fix a and b in Rn and let a · X + b · P denote the
operator given by

(a ·X+ b ·P)ψ(x) = (a · x)ψ(x) − i�

n∑

j=1

bj
∂ψ

∂xj
.
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Then a ·X+ b ·P is essentially self-adjoint on C∞
c (Rn).

Proof. We use the same strategy as in Sect. 9.7, namely we explicitly
solve the equation A∗ψ = ±iψ and find that there are no nonzero, square-
integrable solutions.
The case b = 0 is not hard to analyze and is left as an exercise (Ex-

ercise 20). Assume, then, that b 
= 0. By making a rotational change of
variables, we can assume that b = αe1 and a = βe1 + γe2, so that

(Aψ)(x) = (βx1 + γx2)ψ(x) − i�α
∂ψ

∂x1
. (9.23)

(If n = 1, the γx2 term is not present.) As in the proof of Proposition 9.29,
the adjoint A∗ of A will be given by the same formula as A, with Dom(A∗)
consisting of those elements ψ of L2(Rn) for which the right-hand side of
(9.23), computed in the distributional sense, belongs to L2(Rn).
We now apply the criterion for essential self-adjointness in Corollary 9.22.

We need to show that the equations A∗ψ = iψ and A∗ψ = −iψ have no
nonzero solutions in Dom(A∗). After rewriting the equation A∗ψ = iψ as

∂ψ

∂x1
= − i

�α
(βx1 + γx2)ψ(x)−

1

�α
ψ(x), (9.24)

we can easily find the general distributional solution as

ψ(x) = c(x2, . . . , xn) exp

{
− iβ

2α�
x2
1 −

iγ

α�
x1x2 −

1

α�
x1

}
. (9.25)

[It is easily verified that if we let φ equal ψ divided by the exponential on the
right-hand side of (9.25), then φ satisfies ∂φ/∂x1 = 0 in the distributional
sense. Exercise 21 then tells us that φ must be a function of x2, . . . , xn.]
Since the exponential factor is never square integrable as a function of x1

with x2 fixed, the only way that ψ can be square integrable is if c is zero
for almost every value of (x2, . . . , xn), in which case ψ is the zero element
of L2(Rn). A similar argument shows that the equation A∗ψ = −iψ has no
nonzero solutions.

9.10 Another Counterexample

In this section, we will show that the Schrödinger operator Ĥ = P 2/(2m)−
X4 is not essentially self-adjoint on C∞

c (R), even though Ĥ is certainly
symmetric. By contrast, P 2/(2m) +X4 is essentially self-adjoint, by The-
orem 9.39. The operator P 2/(2m)−X4 is a more serious counterexample
than the one in Sect. 12.2, in that it does not involve any obviously in-
correct choice of boundary conditions. On the other hand, it should not
be surprising that something goes “wrong” in a quantum system with a
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potential equal to −x4. After all, a classical system with this potential has
trajectories that go to infinity in finite time (see Exercise 4 in Chap. 2).
To show that Ĥ is not essentially self-adjoint, we will show that the

adjoint Ĥ∗ is not symmetric. Suppose ψ is a C∞ function such that both
ψ and the function

− �2

2m
ψ′′(x)− x4ψ(x) (9.26)

belong to L2(R). Using integration by parts, as in the proof of Lemma 9.28,
we can see that ψ is in the domain of Ĥ∗ and Ĥ∗ψ is the function in (9.26).
We will construct an approximate eigenvector ψ ∈ Dom(Ĥ∗) for Ĥ∗ with
an imaginary eigenvalue iα, which will show that Ĥ∗ is not symmetric and
thus Ĥ is not essentially self-adjoint.

Theorem 9.41 Define an operator Ĥ with Dom(Ĥ) = C∞
c (R) by the for-

mula

Ĥ = − �2

2m

d2

dx2
− x4.

Then Ĥ is not essentially self-adjoint.

In preparation for the proof, let us define a function p(x) on R such that

p(x)2

2m
− x4 = iα,

that is,

p(x) =
√
2m

√
x4 + iα. (9.27)

Here we take the square root that is in the first quadrant. The function
p(x) represents “the momentum of a classical particle with energy iα.”

Lemma 9.42 If ψα is given by

ψα(x) =
1√
p(x)

exp

{
i

�

∫ x

0

p(y) dy

}
, (9.28)

then ψα belongs to L2(R) and the function

− �2

2m

d2ψα

dx2
− x4ψα (9.29)

also belongs to L2(R). Furthermore, we have

[
− �2

2m

d2

dx2
− x4 − iα

]
ψα(x) = − �2

2m
ψα(x)mα(x),

where

mα(x) =
5

4

x6

(x4 + iα)2
− 3

x2

(x4 + iα)
.
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It will be apparent from the proof that the two terms in (9.29) are not
separately in L2(R). The motivation for the definition of ψα comes from
the WKB approximation (Chap. 15) with a complex value for the energy.
Proof. Let us consider the integral of p,

∫ x

0

p(y) dy =
√
2m

∫ x

0

√
y4 + iα dy.

Using the power series for (1 + x)a we see that for large y,

√
y4 + iα = y2

√
1 + iα/y4 = y2

(
1 +

iα

2y4
+O

(
1

y8

))
.

From this estimate, it is easy to see that the imaginary part of
∫ x

0
p(y) dy

remains bounded as x tends to ±∞. It follows that the exponential in the
definition of ψ is bounded, from which it is easy to see that ψ is square
integrable.
Now, using the formula for the second derivative of a product, we obtain

− �2
d2

dx2
ψα =

[
p(x)2√
p(x)

− i�
p′(x)√
p(x)

− 2�2
(
−1

2

p′(x)

p(x)3/2

)
ip(x)

�

−�2
d2

dx2

1√
p(x)

]
exp

{
i

�

∫ x

0

p(y) dy

}
. (9.30)

The factor of 1/
√
p(x) in the definition of ψα was chosen precisely so that

the second and third terms in square brackets will cancel. If we replace
p2(x) in the numerator of the first term by 2m(x4 + iα), we obtain

− �2

2m
ψ′′
α(x)− x4ψα − iαψα = − �2

2m

(
d2

dx2
p(x)−1/2

)
exp

{
i

�

∫ x

0

p(y) dy

}
.

It is then an elementary calculation to show that

d2

dx2
p(x)−1/2 = p(x)−1/2

[
5

4
(x4 + iα)−2x6 − 3(x4 + iα)−1x2

]
,

from which the lemma follows.
Proof of Theorem 9.41. If Ĥ were essentially self-adjoint, Ĥ∗ (which
would coincide with Ĥcl) would be self-adjoint and, in particular, symmetric.
If this were the case, we would have, by the proof of Lemma 7.8,

〈
(Ĥ∗ − iαI)ψ, (Ĥ∗ − iαI)ψ

〉
≥ α2 〈ψ, ψ〉 (9.31)

for all ψ ∈ Dom(Ĥ∗) and α ∈ R. But if ψα is the function in Lemma 9.42,
the discussion preceding Theorem 9.41 shows that ψα belongs to Dom(Ĥ∗).
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Furthermore, it is easily verified that there is a constant C such that
|mα(x)| ≤ C for all α ≥ 1 and x ∈ R. Thus, for all sufficiently large
α, we have

∥∥∥(Ĥ∗ − iαI)ψα

∥∥∥
2

≤ �4

4m2
C2 ‖ψα‖2 < α2 ‖ψα‖2 ,

contradicting (9.31).
See Exercise 22 for a more explicit approach to showing that Ĥ∗ is not

symmetric.

9.11 Exercises

1. Show that an unbounded operator A fails to be closable if and only
if the closure of the graph of A contains an element of the form (0, ψ)
with ψ 
= 0.

2. Define an unbounded operatorA on L2([0, 1]) with domain Dom(A) =
C([0, 1]) by

Af = f(0)1,

where 1 is the constant function. Show that A is not closable.

3. Prove Proposition 9.13.

4. Suppose that A is an unbounded self-adjoint operator on H and that
numbers λn in σ(A) converge to some λ ∈ R. Using Point 1 of Propo-
sition 9.18, show that λ ∈ σ(A).

5. Suppose A is a closed operator on H. Show that the kernel of A is a
closed subspace of H.

6. Suppose A is a closed operator on H. Define a norm ‖·‖1 on Dom(A)
by

‖ψ‖1 = ‖ψ‖+ ‖Aψ‖ .
Show that Dom(A) is a Banach space with respect to ‖·‖1.

7. Let A be an unbounded operator on H.

(a) Show that if A is symmetric, then Acl is also symmetric.

(b) Show that if B is an extension of A, then A∗ is an extension of
B∗.

(c) Suppose A is self-adjoint and B is an extension of A. Show that
if B is symmetric, then Dom(A) = Dom(B). (That is to say, a
self-adjoint operator has no proper symmetric extensions.)
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8. Fix a positive real number μ.

(a) Show that a symmetric operator A is self-adjoint if and only if
Range(A+ iμI) and Range(A− iμI) are equal to H.

(b) Show that a symmetric operator A is essentially self-adjoint if
and only if Range(A+ iμI) and Range(A− iμI) are dense in H.

9. Let A be the operator considered in Sect. 9.6. Using Lemma 9.28,
show that for each λ ∈ C, there exists ψ ∈ Dom(A∗) with A∗ψ = λψ.
Conclude that each λ ∈ C belongs to the spectrum of Acl.

Hint : Recall that (Acl)∗ = A∗.

10. Let A be the operator considered in Sect. 9.6 and suppose ψ is in the
domain of Acl. Then there exists a sequence ψn in Dom(A) such that
ψn converges to ψ in L2([0, 1]) and such that Aψn converges to some
χ in L2([0, 1]).

(a) Show that

ψn(x) =

〈
1[0,x],

dψn

dx

〉
= i

〈
1[0,x], Aψn

〉

for all x ∈ [0, 1].

(b) Show that ψn converges uniformly to the function

ψ(x) = i
〈
1[0,x], χ

〉
.

(c) Conclude that ψ is continuous and satisfies ψ(0) = ψ(1) = 0.

11. Take H = L2((0,∞)) and let A be the operator −i d/dx, with
Dom(A) consisting of those smooth functions that are supported on
a compact subset of (0,∞). (Such a function is, in particular, zero on
(0, ε) for some ε > 0.) Show that A is symmetric and that A∗ + iI is
injective but that A∗ − iI is not injective.

Hint : Imitate the arguments in the proof of Propositions 9.27 and 9.29.

12. Prove the second part of Lemma 9.33.

13. Let χ be a smooth, radial function on R3 such that for |x| < 1 we
have χ(x) = 1, for |x| > 2 we have χ(x) = 0, and for 1 < |x| < 2, we
have ∂χ/∂r < 0. Show that

∫

R3

1

|x|∆χ(x) dx < 0,

which shows that the Laplacian of 1/ |x|, in the distribution sense, is
not zero.



198 9. Unbounded Self-Adjoint Operators

Hint : Let E = C1\C2, where C1 is a cube centered at the origin with
side length 3 and where C2 is a cube centered at the origin with side
length 1/2. Then E contains the support of ∆χ. Using integration by
parts on E, show that

∫

R3

1

|x|∆χ(x) dx = −
∫

R3

∇
(

1

|x|

)
· ∇χ(x) dx.

14. Let Dom(∆) ⊂ L2(Rn) denote the domain of the Laplacian, as given
in Proposition 9.34, and assume n ≤ 3.

(a) Show that each ψ ∈ Dom(∆) is continuous and that there exists
constants c1 and c2 such that

|ψ(x)| ≤ c1 ‖ψ‖+ c2

∥∥∥|k|9/5
∣∣∣ψ̂(k)

∣∣∣
∥∥∥ ,

for all ψ ∈ Dom(∆).

Hint : Show that ψ̂ is in L1 by expressing ψ̂ as the product of
two L2 functions.

(b) Show that for any ε > 0, there exists a constant cε such that

|ψ(x)| ≤ cε ‖ψ‖+ ε ‖∆ψ‖

for all ψ ∈ Dom(∆).

15. Recall the definitions of Dom(Pj) and Dom(∆) in Sect. 9.8. Let
Dom(P 2

j ) be the set of all ψ belonging to Dom(Pj) such that Pjψ
again belongs to Dom(Pj). Show that

n⋂

j=1

Dom(P 2
j ) = Dom(∆).

16. Let Qj denote the restriction to C∞
c (Rn) of the momentum operator

Pj . Show that Dom(Q∗
j ) = Dom(Pj). Conclude that Qj is essentially

self-adjoint.

17. Let A be an unbounded self-adjoint operator on H and let μ be a
nonzero real number.

(a) Show that
∥∥(A+ iμI)−1

∥∥ ≤ 1/ |μ|. Note that (A+iμI)−1 exists,
by Theorem 9.17.

(b) Show that for all ψ ∈ H,

‖ψ‖2 =
∥∥A(A+ iμI)−1ψ

∥∥2 + μ2
∥∥(A+ iμI)−1ψ

∥∥2 .

Conclude that
∥∥A(A + iμI)−1

∥∥ ≤ 1.
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18. Let A be an unbounded self-adjoint operator on H. Suppose A is
non-negative (Definition 9.19) and let λ be a positive real number.

(a) Show that
∥∥(A+ λI)−1

∥∥ ≤ 1/λ.

(b) Show that for all ψ ∈ H,

‖ψ‖2 ≥
∥∥A(A+ λI)−1ψ

∥∥2 + λ2
∥∥(A+ λI)−1ψ

∥∥2 .

Conclude that
∥∥A(A + λI)−1

∥∥ < 1.

19. Prove the last part of Theorem 9.37, concerning domains of essential
self-adjointness.

Hint : If A is self-adjoint on Dom(A) and V ⊂ Dom(A) is a dense
subspace of H, then A is essentially self-adjoint on V if and only if
the closure of A|V is equal to A.

20. Let A be the operator b ·X on the domain C∞
c (Rn), for some b ∈ Rn.

(a) Using the definition of the adjoint of an unbounded operator,
show that Dom(A∗) consists of all those ψ in L2(Rn) for which
the function (b · x)ψ(x) again belongs to L2(Rn).

(b) Using Proposition 9.30, show that A is essentially self-adjoint.

21. (a) Show that a function φ ∈ C∞
c (Rn) can be expressed as φ =

∂χ/∂x1 for some χ ∈ C∞
c (Rn) if and only if φ satisfies

∫ ∞

−∞
φ(x1, x2, . . . , xn) dx1 = 0

for all (x2, . . . , xn).

(b) Fix a function γ ∈ C∞
c (R) such that

∫∞
−∞ γ(x) dx = 1. Show

that any φ ∈ C∞
c (Rn) can be expressed as

φ(x) = f(x2, . . . , xn)γ(x1) +
∂χ

∂x1

for some χ ∈ C∞
c (Rn), where f is the element of C∞

c (Rn−1)
given by

f(x2, . . . , xn) =

∫ ∞

−∞
φ(x1, x2, . . . , xn) dx1.

(c) Suppose T is a distribution on Rn with the property that

∂T

∂x1
= 0.



200 9. Unbounded Self-Adjoint Operators

Define a distribution c on Rn−1 by the formula

c(f) = T (f(x2, . . . , xn)γ(x1)).

Show that for all φ ∈ C∞
c (Rn) we have

T (φ) = c(φ̃),

where φ̃ ∈ C∞
c (Rn−1) is given by

φ̃(x2, . . . , xn) =

∫

R

φ(x1, x2, . . . , xn) dx1.

22. Let Ĥ denote the Schrödinger operator in Theorem 9.41 and let ψα

be the function defined in Lemma 9.42.

(a) Show that

〈
ψα, Ĥ

∗ψα

〉
−
〈
Ĥ∗ψα, ψα

〉

= − �2

2m
lim

A→∞

[
ψα(x)ψ

′
α(x)

∣∣∣
A

−A
− ψ′

α(x)ψα(x)
∣∣∣
A

−A

]
.

(b) Now show by direct calculation that
〈
ψ, Ĥ∗ψ

〉

=
〈
Ĥ∗ψ, ψ

〉
.



10
The Spectral Theorem for Unbounded
Self-Adjoint Operators

This chapter gives statements and proofs of the spectral theorem for
unbounded self-adjoint operators, in the same forms as in the bounded
case, in terms of projection-valued measures, in terms of direct integrals,
and in terms of multiplication operators. The proof reduces the spectral
theorem for an unbounded self-adjoint operator A to spectral theorem for
the bounded operator U := (A + iI)(A − iI)−1 (Sect. 10.4). This bounded
operator is, however, not self-adjoint but rather unitary. Thus, before com-
ing to the proof of the spectral theorem for unbounded self-adjoint op-
erators, we prove (Sect. 10.3) the spectral theorem for bounded normal
operators, those that commute with their adjoints. (A unitary operator U
certainly commutes with its adjoint U∗ = U−1.) The proof for a bounded
normal operator B is the same as for bounded self-adjoint operators, ex-
cept for the step in which we approximate continuous functions on σ(B)
by polynomials. Since σ(B) is not necessarily contained in R, we need to
use the complex version of the Stone–Weierstrass theorem, which requires
us to consider polynomials in λ and λ̄. We must then prove a strengthened
version of the spectral mapping theorem before proceeding along the lines
of the proof for bounded self-adjoint operators.
In Sect. 10.2, we discuss Stone’s theorem, which gives a one-to-one corre-

spondence between strongly continuous one-parameter unitary groups and
self-adjoint operators. One direction of Stone’s theorem follows from the
spectral theorem, that is, from the functional calculus that results from the
spectral theorem.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5 10,
© Springer Science+Business Media New York 2013
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10.1 Statements of the Spectral Theorem

The statement of the spectral theorem—in any of the forms that we have
considered—is almost the same for unbounded self-adjoint operators as for
bounded ones. The only difference is that the statement of the theorem in
the unbounded case has to contain some description of the domain of the
operator.
Recall that if μ is a projection-valued measure on (X,Ω) with values in

B(H) and ψ is an element of H, then we can construct a non-negative,
real-valued measure μψ from μ by setting μψ(E) = 〈ψ, μ(E)ψ〉, for each
measurable set E. To motivate the following definition, consider integration
of a bounded measurable function f against a projection-valued measure μ.
Since the integral is multiplicative and complex-conjugation of a function
corresponds to adjoint of the operator, we have

〈(∫

X

f dμ

)
ψ,

(∫

X

f dμ

)
ψ

〉
=

〈
ψ,

(∫

X

f̄f dμ

)
ψ

〉

=

∫

X

|f |2 dμψ. (10.1)

Suppose, now, that f is an unbounded measurable function on X and we
wish to define

∫
X
f dμ, which will presumably be an unbounded operator.

It seems reasonable to define the domain of f to be the set of ψ for which
the right-hand side of (10.1) is finite.

Proposition 10.1 Suppose μ is a projection-valued measure on (X,Ω)
with values in B(H) and f : X → C is a measurable function (not nec-
essarily bounded). Define a subspace Wf of H by

Wf =

{
ψ ∈ H

∣∣∣∣
∫

X

|f(λ)|2 dμψ(λ) < ∞
}
. (10.2)

Then there exists a unique unbounded operator on H with domain Wf—
which is denoted by

∫
X
f dμ—with the property that

〈
ψ,

(∫

X

f dμ

)
ψ

〉
=

∫

X

f(λ) dμψ(λ)

for all ψ in Wf . This operator satisfies (10.1) for all ψ ∈ Wf .

Note that since μψ is a finite measure for all ψ, if f is bounded then the
domain of

∫
X
f dμ is all of H. Thus, in the bounded case, the definition of∫

X
f dμ in Proposition 10.1 agrees with our earlier definition (in Chap. 7)

of the integral. This means, in particular, that if f is a bounded function,∫
X
f dμ is a bounded operator. Proposition 10.1 follows immediately from

the following result.
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Proposition 10.2 Let f be a measurable function on X and let Wf be as
in (10.2). Then the following results hold.

1. The space Wf is a dense subspace of H and the map Qf : Wf → C

given by

Qf (ψ) =

∫

X

f(λ) dμψ(λ)

is a quadratic form on Wf .

2. If Lf is the associated sesquilinear form on Wf , we have

|Lf (φ, ψ)| ≤ ‖φ‖ ‖f‖L2(X,µψ) (10.3)

for all φ, ψ ∈ Wf .

3. For each ψ ∈ Wf , there is a unique χ ∈ H such that Lf(φ, ψ) = 〈φ, χ〉
for all φ ∈ Wf . Furthermore, the map ψ �→ χ is linear and for all
ψ ∈ Wf , we have

‖χ‖2 =

∫

X

|f |2 dμψ (10.4)

Proof. It is easy to see that Wf is closed under scalar multiplication. To
show that it is closed under addition, note that since μ(E) is self-adjoint
and satisfies μ(E)2 = μ(E), we have

μφ+ψ(E) = ‖μ(E)(φ + ψ)‖2

≤ (‖μ(E)φ‖ + ‖μ(E)ψ‖)2

≤ 2 ‖μ(E)φ‖2 + 2 ‖μ(E)ψ‖2

= 2μφ(E) + 2μψ(E),

where in the third line we have use the elementary inequality (x + y)2 ≤
2x2 + 2y2.
To show that Wf is dense in H, let En = {x ∈ X | |f(x)| < n}. If ψ ∈

Range(μ(En)), then μψ(E
c
n) = 0, and, thus,

∫

X

|f |2 dμψ =

∫

En

|f |2 dμψ ≤ n2μψ(En) < ∞, (10.5)

showing that ψ belongs to Wf . Since also ∪nEn = X , the union of the
ranges of the μ(En)’s is dense and contained in Wf .
If f is bounded, Qf may be computed as

Qf(ψ) =

〈
ψ,

(∫

X

f dμ

)
ψ

〉
, ψ ∈ H,
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where
∫
X
f dμ is as in Chap. 7. Thus, Qf is a quadratic form for which the

associated sesquilinear form is

Lf(φ, ψ) =

〈
φ,

(∫

X

f dμ

)
ψ

〉
, φ, ψ ∈ H.

This form satisfies

|Lf (φ, ψ)| ≤ ‖φ‖
∥∥∥∥
(∫

X

f dμ

)
ψ

∥∥∥∥
= ‖φ‖ ‖f‖L2(X,µψ) , (10.6)

for all φ, ψ ∈ H, where in the second line we have used (10.1).
If f is unbounded and ψ belongs to Wf , let fn = f1En

. Then Qf (ψ) =
limn→∞ Qfn(ψ), by monotone convergence, in which case, it is easy to
see that Qf is still a quadratic form and that (10.6) still holds for all
φ ∈ H. From (10.6), we see that for each ψ ∈ Wf , the conjugate-linear
functional φ �→ Lf (φ, ψ) is bounded. Thus, by (the complex-conjugate
of) the Riesz theorem, there is a unique vector χ such that Lf(φ, ψ) =
〈φ, χ〉. Furthermore, (10.6) tells us that ‖χ‖ ≤ ‖f‖L2(X,µψ). Conversely,

since Lf (φ, ψ) = 〈φ, χ〉, (10.6) is an equality when φ = χ, showing that
‖χ‖ ≥ ‖f‖L2(X,µψ). Finally, the map ψ �→ χ is linear because Lf(φ, ψ) is
linear in ψ.

Proposition 10.3 If f is a real-valued, measurable function on X, then∫
X f dμ is self-adjoint on Wf .

Proof. Let Af =
∫
X f dμ. Define subsets Fn of X by

Fn = {x ∈ X | n− 1 ≤ |f(x)| < n} ,

so that X is the disjoint union of the Fn’s, and let Wn = Range(μ(Fn)). As
in the proof of Proposition 10.2, any ψ ∈ Wn is in Wf , and the quadratic
form Qf is bounded on Wn [compare (10.5)]. Furthermore, if φ ∈ (Wn)⊥

and ψ ∈ Wn, it is straightforward to check that μφ+ψ = μφ + μψ and so

Qf (φ+ ψ) = Qf (φ) +Qf (ψ). (10.7)

From (10.7), we obtain, by the polarization identity,

〈φ,Afψ〉 = Lf (φ, ψ) = 0.

This shows that Afψ belongs to (Wn)⊥⊥ = Wn.
We conclude that Af maps Wn boundedly to itself. Indeed, the restric-

tion to Wn of Af coincides with the restriction to Wn of the bounded
operator obtained by integrating f1Fn

with respect to μ (compare the
quadratic forms). Furthermore, since Qf is real-valued, the restriction of
Af to Wn is self-adjoint (Proposition A.63).
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Now,H is the orthogonal direct sum of theWn’s, meaning thatHmay be
identified with the set of infinite sequences (ψ1, ψ2, ψ3, . . .) with ψn ∈ Wn

and such that ∞∑

n=1

‖ψn‖2 < ∞.

If An denotes the restriction of Af to Wn, then under this decomposition
of H, we have

Wf =

{
ψ ∈ H

∣∣∣∣∣
∞∑

n=1

‖Anψn‖2 < ∞
}

=

{
ψ = (ψ1, ψ2, . . .)

∣∣∣∣∣
∞∑

n=1

(
‖ψn‖2 + ‖Anψn‖2

)
< ∞

}
. (10.8)

To verify (10.8), we note that

∫

X

|f |2 dμψ =
∞∑

n=1

∫

Wn

|f |2 dμψ =
∞∑

n=1

‖Anψn‖2 . (10.9)

The first equality is by monotone convergence and the second holds because
μψ = μψn

on Wn. In particular, the first quantity in (10.9) is finite if and
only if the last quantity if finite.
By a similar argument, for ψ ∈ Wf , we have

Qf (ψ) =

∫

X

f(λ) dμψ(λ) =

∞∑

n=1

〈ψn, Anψn〉 ,

from which it follows that

Lf(φ, ψ) =

∞∑

n=1

〈φn, Anψn〉

for all φ, ψ ∈ Wf . From this we see that Afψ is the vector represented by
the sequence (A1ψ1, A2ψ2, . . .). It then follows from Example 9.26 that Af

is self-adjoint.

Theorem 10.4 (Spectral Theorem, First Form) Suppose A is a
self-adjoint operator on H. Then there is a unique projection-valued measure
μA on σ(A) with values in B(H) such that

∫

σ(A)

λ dμA(λ) = A. (10.10)

Since the spectrum of A is typically an unbounded set, the function
f(λ) = λ is an unbounded function on σ(A). Note also that the equality
in (10.10) includes, as always, equality of domains. That is, the domain of
the integral on the left-hand side, namely the spaceWf in Proposition 10.1,
coincides with Dom(A). The proof of this theorem is given in Sect. 10.4.
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Definition 10.5 (Functional Calculus) For any measurable function f
on σ(A), define a (possibly unbounded) operator, denoted f(A), by

f(A) =

∫

σ(A)

f(λ) dμA(λ).

As usual, we can extend the projection-valued measure μA from σ(A) to
R by setting μA equal to zero on the complement of σ(A).

Definition 10.6 (Spectral Subspaces) If A is a self-adjoint operator
on H, then for any Borel set E ⊂ R, define the spectral subspace VE

of H by
VE = Range(μA(E)).

Definition 10.7 (Measurement Probabilities) If A is a self-adjoint
operator on H, then for any unit vector ψ ∈ H, define a probability measure
μA
ψ on R by the formula

μA
ψ (E) =

〈
ψ, μA(E)ψ

〉
.

If the operator A represents some observable in quantum mechanics,
then we interpret μA

ψ to be the probability distribution for the result of
measuring A in the state ψ.

Proposition 10.8 Let A be a self-adjoint operator on H. Then the spectral
subspaces VE associated to A have the following properties.

1. If E is a bounded subset of R, then VE ⊂ Dom(A), VE is invariant
under A, and the restriction of A to VE is bounded.

2. If E is contained in (λ0 − ε, λ0 + ε), then for all ψ ∈ VE , we have

‖(A− λ0I)ψ‖ ≤ ε ‖ψ‖ .

Proof. Point 1 holds because the function f(λ) = λ is bounded on E. (See
the proof of Proposition 10.3.) Point 2 then holds because, as in the proof
of Proposition 10.3, the restriction of A to VE coincides with the restriction
to VE of the operator f(A), where f(λ) = λ1E(λ).

Theorem 10.9 (Spectral Theorem, Second Form) Suppose A is a
self-adjoint operator on H. Then there is a σ-finite measure μ on σ(A),
a direct integral ∫ ⊕

σ(A)

Hλ dμ(λ),

and a unitary map U from H to the direct integral such that:

U(Dom(A)) =

{
s ∈

∫ ⊕

σ(A)

Hλ dμ(λ)

∣∣∣∣∣

∫

σ(A)

‖λs(λ)‖2λ dμ(λ) < ∞
}
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and such that (
UAU−1(s)

)
(λ) = λs(λ)

for all s ∈ U(Dom(A)).

Theorem 10.10 (Spectral Theorem,MultiplicationOperator Form)
Suppose A is a self-adjoint operator on H. Then there is a σ-finite measure
space (X,μ), a measurable, real-valued function h on X, and a unitary map
U : H → L2(X,μ) such that

U(Dom(A)) =
{
ψ ∈ L2(X,μ)

∣∣hψ ∈ L2(X,μ)
}

and such that

(UAU−1(ψ))(x) = h(x)ψ(x)

for all ψ ∈ U(Dom(A)).

These theorems are also proved in Sect. 10.4.

10.2 Stone’s Theorem and One-Parameter Unitary
Groups

In this section we explore the notion of one-parameter unitary groups and
their connection to self-adjoint operators. We assume here the spectral
theorem, the proof of which (in Sect. 10.4) does not use any results from
this section.

Definition 10.11 A one-parameter unitary group on H is a family
U(t), t ∈ R, of unitary operators with the property that U(0) = I and that
U(s+t) = U(s)U(t) for all s, t ∈ R. A one-parameter unitary group is said
to be strongly continuous if

lim
s→t

‖U(t)ψ − U(s)ψ‖ = 0 (10.11)

for all ψ ∈ H and all t ∈ R.

Almost all one-parameter unitary groups arising in applications are
strongly continuous.

Example 10.12 Let H = L2(Rn) and let Ua(t) be the translation operator
given by

(Ua(t)ψ) (x) = ψ(x+ ta). (10.12)

Then U(·) is a strongly continuous one-parameter unitary group.
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Proof. It is easy to see that Ua(·) is a one-parameter unitary group. To see
that Ua(·) is strongly continuous, consider first the case in which ψ is
continuous and compactly supported. Since a continuous function on a
compact metric space is automatically uniformly continuous, it follows that
ψ(x+ ta) tends uniformly to ψ(x) as t tends to zero. Since also the support
of ψ is compact and thus of finite measure, it follows that ψ(x+ ta) tends
to ψ(x) in L2(Rn) as t tends to zero.
Now, the space Cc(R

n) of continuous functions of compact support is
dense in L2(Rn) (Theorem A.10). Thus, given ε > 0 and ψ ∈ L2(Rn), we
can find φ ∈ Cc(R

n) such that ‖ψ − φ‖L2(R) < ε/3. Then choose δ so that

‖Ua(a)φ− φ‖ < ε/3 whenever |a| < δ. Then given t ∈ R, if |t− s| < δ, we
have

‖Ua(t)ψ − Ua(s)ψ‖
≤ ‖Ua(t)ψ − Ua(t)φ‖ + ‖Ua(t)φ − Ua(s)φ‖ + ‖Ua(s)φ− Ua(s)ψ‖
= ‖Ua(t)(ψ − φ)‖ + ‖Ua(s) (Ua(t− s)φ− φ)‖+ ‖Ua(s)(φ − ψ)‖ . (10.13)

Since Ua(t) and Ua(s) are unitary, we can see that each of the terms on the
last line of (10.13) is less than ε/3.
Note that for a 
= 0 the unitary group Ua(·) in Example 10.12 is not

continuous in the operator norm topology. After all, given any ε 
= 0, we
can take a nonzero element ψ of L2(Rn) that is supported in a very small
ball around the origin. Then Ua(ε)ψ is orthogonal to ψ and has the same
norm as ψ, so that

‖Ua(ε)ψ − Ua(0)ψ‖ = ‖Ua(ε)ψ − ψ‖ =
√
2 ‖ψ‖ .

Thus, ‖Ua(ε)− Ua(0)‖ ≥
√
2 for all ε 
= 0.

Definition 10.13 If U(·) is a strongly continuous one-parameter unitary
group, the infinitesimal generator of U(·) is the operator A given by

Aψ = lim
t→0

1

i

U(t)ψ − ψ

t
, (10.14)

with Dom(A) consisting of the set of ψ ∈ H for which the limit in (10.14)
exists in the norm topology on H.

The following result shows that we can construct a strongly continuous
one-parameter unitary group from any self-adjoint operator A by setting
U(t) = eiAt. Furthermore, the original operator A is precisely the infinites-
imal generator of U(t).

Proposition 10.14 Suppose A is a self-adjoint operator on H and let U(·)
be defined by

U(t) = eitA,

where the operator eitA is defined by the functional calculus for A. Then
the following hold.
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1. U(·) is a strongly continuous one-parameter unitary group.

2. For all ψ ∈ Dom(A), we have

Aψ = lim
t→0

1

i

U(t)ψ − ψ

t
,

where the limit is in the norm topology on H.

3. For all ψ ∈ H, if the limit

lim
t→0

1

i

U(t)ψ − ψ

t

exists in the norm topology on H, then ψ ∈ Dom(A) and the limit is
equal to Aψ.

Proof. Since σ(A) ⊂ R, the function f(λ) := eitλ is bounded on σ(A) and
satisfies f(λ)f(λ) = 1 for all λ ∈ σ(A). Thus, the operator f(A) is bounded
and satisfies

f(A)f(A)∗ = f(A)∗f(A) = I,

which shows that f(A) = eitA is unitary. The multiplicativity of the func-
tional calculus then tells us that U(·) is a one-parameter unitary group. To
see that U(t) is strongly continuous, note that

‖U(t)ψ − U(s)ψ‖2 = 〈ψ, (U(t)∗ − U(s)∗)(U(t)− U(s))ψ〉

=

∫ ∞

−∞

∣∣eitλ − eisλ
∣∣2 dμA

ψ (λ). (10.15)

The integral on the right-hand side of (10.15) tends to zero as s approaches
t, by dominated convergence.
For Point 2, from recall from Theorem 10.4 that A =

∫∞
−∞ λ dμA(λ), and

take ψ ∈ Dom(A). Then, by (10.4), we have

∥∥∥∥
1

i

U(t)ψ − ψ

t
−Aψ

∥∥∥∥
2

=

∫ ∞

−∞

∣∣∣∣
1

i

eitλ − 1

t
− λ

∣∣∣∣
2

dμA
ψ (λ). (10.16)

If we write the function eitλ−1 as the integral of its derivative with respect
to λ, starting at λ = 0, we can see that

∣∣(eitλ − 1)/t
∣∣ ≤ λ. Meanwhile,

since ψ is in the domain of the operator A =
∫∞
−∞ λ dμA(λ), we have∫∞

−∞ λ2 dμA
ψ (λ) < ∞. Thus, we may apply dominated convergence, with

4λ2 as our dominating function, to show that the right-hand side of (10.16)
tends to zero as t tends to zero.



210 10. The Spectral Theorem for Unbounded Self-Adjoint Operators

For Point 3, let B be the infinitesimal generator of U(·). If φ and ψ belong
to Dom(B), then

〈φ,Bψ〉 = lim
t→0

〈
φ,

1

i

U(t)ψ − ψ

t

〉

= lim
t→0

〈
−1

i

U(t)∗φ− φ

t
, ψ

〉

= lim
t→0

〈
1

i

U(−t)φ− φ

(−t)
, ψ

〉

= 〈Bφ,ψ〉 .
Thus, B is symmetric. On the other hand, Point 2 shows that B is an
extension of A, so by Exercise 7 in Chap. 9, B = A (with equality of
domain).

Theorem 10.15 (Stone’s Theorem) Suppose U(·) is a strongly contin-
uous one-parameter unitary group on H. Then the infinitesimal generator
A of U(·) is densely defined and self-adjoint, and U(t) = eitA for all t ∈ R.

If U(·) is a strongly continuous one-parameter unitary group, then U(·)
is continuous in the operator norm topology if and only if the infinitesimal
generator of U(·) is a bounded operator (Exercise 1). As Example 10.12
suggests, most one-parameter unitary groups that arise in applications are
not continuous in the operator norm topology.
Before giving the proof of Stone’s theorem, let us work out the generator

of the group in Example 10.12.

Example 10.16 If Ua(·), a ∈ Rn, is the strongly continuous one-
parameter unitary group in Example 10.12, then each ψ ∈ C∞

c (Rn) is in
the domain of the infinitesimal generator A of Ua(·) and for all such ψ, we
have

Aψ = −i
∑

j

aj
∂ψ

∂xj
. (10.17)

Furthermore, A is essentially self-adjoint on C∞
c (Rn).

Proof. The formula for the infinitesimal generator is easy to establish for
ψ in C∞

c (Rn). The essential self-adjointness of A is a special case of Propo-
sition 13.5 (the proof of which is similar to the proof of Proposition 9.29).

We now establish two intermediate results before coming to the proof of
Stone’s theorem.

Lemma 10.17 Let U(·) be a strongly continuous one-parameter unitary
group and let A be its infinitesimal generator. If ψ ∈ Dom(A), then for all
t ∈ R, the vector U(t)ψ belongs to Dom(A) and

lim
h→0

U(t+ h)ψ − U(t)ψ

h
= iU(t)Aψ = iAU(t)ψ. (10.18)
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Note that Lemma 10.17 tells us that the curve ψ(t) := U(t)ψ0 in H
satisfies the differential equation

dψ

dt
= iAψ(t)

in the natural Hilbert space sense, provided that ψ0 belongs to Dom(A).
This result, together with Proposition 10.14, tells us that if ψ0 ∈ Dom(Ĥ),

then the curve ψ(t) := e−itĤ/�ψ0 indeed solves the Schrödinger equation
in the Hilbert space sense.
Proof. We compute that

U(t+ h)ψ − U(t)ψ

h
= U(t)

[U(h)ψ − ψ]

h
. (10.19)

Since ψ ∈ Dom(A), the limit as h tends to zero of (10.19) exists and is
equal to iU(t)Aψ. On the other hand,

U(t+ h)ψ − U(t)ψ

h
=

U(h)(U(t)ψ)− (U(t)ψ)

h
.

Thus, the limit as h tends to zero of (10.19) is, by the definition of A, equal
to iA(U(t)ψ). This shows that U(t)ψ is in the domain of A and establishes
the second equality in (10.18).

Lemma 10.18 For any strongly continuous one-parameter unitary group
U(·), the infinitesimal generator A is densely defined.

Proof. Given any continuous function f of compact support, define an
operator Bf by setting

Bf =

∫ ∞

−∞
f(τ)U(τ) dτ.

Here, the operator-valued integral is the unique bounded operator such
that

〈φ,Bfψ〉 =
∫ ∞

−∞
f(τ) 〈φ, U(τ)ψ〉 dτ. (10.20)

[It is easy to see that right-hand side of (10.20) defines a bounded sesquilin-
ear form, for each fixed f ∈ C∞

c (R).]
Using the group property of U(·), we see that

U(t)Bfψ −Bfψ =

∫ ∞

−∞
[f(τ)U(τ + t)ψ − f(τ)U(τ)ψ] dτ

=

∫ ∞

−∞
[f(τ − t)− f(τ)]U(τ)ψ dτ,



212 10. The Spectral Theorem for Unbounded Self-Adjoint Operators

where in the second line, we have made a change of variable in the first
term in the integral. From this, we easily obtain that

lim
t→0

U(t)Bfψ −Bfψ

t
= −

∫ ∞

−∞
f ′(τ)U(τ)ψ dτ.

This shows that Bfψ is in the domain of A for all ψ ∈ H and f ∈ C∞
c (R).

Now choose a sequence fn ∈ C∞
c (R) such that fn is non-negative and

supported in the interval [−1/n, 1/n] and such that
∫∞
−∞ fn(τ) dτ = 1.

Then for any ψ ∈ H, we have

Bfnψ − ψ =

∫ ∞

−∞
fn(τ)[Un(τ)ψ − ψ] dτ,

so that

‖Bfnψ − ψ‖ ≤
∫ ∞

−∞
fn(τ) ‖U(τ)ψ − ψ‖ dτ

≤ sup
−1/n≤τ≤1/n

‖U(τ)ψ − ψ‖ .

Since U(·) is strongly continuous, we see that Bfnψ converges to ψ as
n → ∞. Thus, every element of H can be approximated by vectors in the
domain of A.
Proof of Theorem 10.15. Suppose U(·) is a strongly continuous one-
parameter unitary group and A is its infinitesimal generator. By Lemma
10.18, A is densely defined. As shown in the proof of Proposition 10.14, A
(denoted by B in that proof) is symmetric.
Next, we show that A is essentially self-adjoint. Suppose now that ψ

belongs to the kernel of A∗ − iI, i.e., A∗ψ = iψ. Given φ ∈ Dom(A),
set y(t) = 〈U(t)φ, ψ〉, so that |y(t)| ≤ ‖φ‖ ‖ψ‖. On the other hand, we
expect that U(t) = eiAt, so that U(t)∗ should be e−iA∗t. Thus, y(t) should
(formally) be equal to 〈φ, etψ〉. If this is correct, then since y(t) is a bounded
function of t, we must have 〈φ, ψ〉 = 0. Thus, ψ would be orthogonal to
every element of a dense subspace of H, showing that ψ = 0. We could
then similarly argue that ker(A∗ + iI) = {0}, which would show that A is
essentially self-adjoint.
To make the argument rigorous, we apply Lemma 10.17, giving

d

dt
〈U(t)φ, ψ〉 = 〈iAU(t)φ, ψ〉 = 〈iU(t)φ,A∗ψ〉

= 〈iU(t)φ, iψ〉 = 〈U(t)φ, ψ〉 .

Thus, the function y(t) := 〈U(t)φ, ψ〉 satisfies the ordinary differential
equation dy/dt = y. The unique solution to this equation is y(t) = y(0)et.
Since y is bounded, we must have 0 = y(0) = 〈φ, ψ〉 for all φ ∈ Dom(A),
which implies that ψ = 0. Thus, ker(A∗ − iI) = {0}, and by a similar
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argument ker(A∗ + iI) = {0}. This shows (Corollary 9.22) that A is essen-
tially self-adjoint.
We can now construct a strongly continuous unitary group V (·) by set-

ting V (t) = eiA
clt. To show that V (·) = U(·), take ψ ∈ Dom(A) ⊂

Dom(Acl) and set w(t) = U(t)ψ − V (t)ψ. By Proposition 10.14, the in-
finitesimal generator of V (·) is Acl. Thus, applying Lemma 10.17 to both
U(·) and V (·), we have

d

dt
w(t) = iAU(t)ψ − iAV (t)ψ

= iAw(t),

where the limit defining dw/dt is taken in the norm topology on H. Thus,

d

dt
‖w(t)‖2 = 〈iAw(t), w(t)〉 + 〈w(t), iAw(t)〉

= −i 〈Aw(t), w(t)〉 + i 〈w(t), Aw(t)〉
= 0,

because A is symmetric. Since also w(0) = 0, we conclude that w(t) = 0
for all t. Thus, U(·) and V (·) agree on a dense subspace and hence on all
of H.
We now know that U(t) = eiA

clt. It then follows from Points 2 and
3 of Proposition 10.14 that the infinitesimal generator of U(·) (namely
A) is precisely Acl. That is, A = Acl and U(t) = eiAt. Furthermore, we
have already shown that A is essentially self-adjoint and we now know
that A = Acl, so A is actually self-adjoint. Finally, if B is any self-adjoint
operator for which U(t) = eiBt, then by Proposition 10.14, B must be the
infinitesimal generator of U(·), i.e., B = A.

10.3 The Spectral Theorem for Bounded Normal
Operators

We are going to prove the spectral theorem for an unbounded self-adjoint
operator by reducing it to the spectral theorem for a bounded operator.
The reduction, however, will not be to a bounded self-adjoint operator, but
rather to a unitary operator. Although we proved the spectral theorem only
for bounded self-adjoint operators, the theorem applies more generally to
bounded normal operators. (See Exercise 4 in Chap. 7 for the matrix case.)

Definition 10.19 A bounded operator A on H is normal if A commutes
with its adjoint: AA∗ = A∗A.

Every bounded self-adjoint operator is obviously normal. Other examples
of normal operators are skew-self-adjoint operators (A∗ = −A) and unitary
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operators (UU∗ = U∗U = I). The spectrum of a bounded normal operator
need not be contained in R, but can be an arbitrary closed, bounded,
nonempty subset of C. On the other hand, if U is unitary, then the spectrum
of U is contained in the unit circle (Exercise 6 in Chap. 7).
In this section, we consider the spectral theorem for a bounded normal

operator A. The statements of the two versions of the theorem are precisely
the same as in the self-adjoint case, except that σ(A) is no longer necessarily
contained in the real line. Almost all of the proofs of these results are the
same as in the self-adjoint case; we will, therefore, consider only those steps
where some modification in the argument is required.

Theorem 10.20 Suppose A ∈ B(H) is normal. Then there exists a unique
projection-valued measure μA on the Borel σ-algebra in σ(A), with values
in B(H), such that ∫

σ(A)

λ dμA(λ) = A.

Furthermore, for any measurable set E ⊂ σ(A), Range(μA(E)) is invariant
under A and A∗.

Once we have the projection-valued measure μA, we can define a func-
tional calculus for A, as in the self-adjoint case, by setting

f(A) =

∫

σ(A)

f(λ) dμA(λ)

for any bounded measurable function f on σ(A).
We can also define spectral subspaces, as in the self-adjoint case, by setting

VE := Range(μA(E))

for each Borel set E ⊂ σ(A). These spectral subspaces have precisely the
same properties (with the same proofs) as in Proposition 7.15, with the
following two exceptions. First, the assertion that VE is invariant under A
should be replaced by the assertion that VE is invariant under A and A∗.
Second, in Point 2 of the proposition, the condition E ⊂ [λ0 − ε, λ0 + ε]
should be replaced by E ⊂ D(λ0, ε), where D(z, r) denotes the disk of
radius r in C centered at z.
Meanwhile, the spectral theorem in its direct integral and multiplica-

tion operator versions also holds for a bounded normal operator A. The
statements are identical to the self-adjoint case, except that we no longer
assume σ(A) ⊂ R and we no longer assume that the function h in the
multiplication operator version is real valued.
Let us recall the two stages in the proof of the spectral theorem (first

version) for bounded self-adjoint operators. The first stage is the construc-
tion of the continuous functional calculus. The steps in this construction are
(1) the equality of the norm and spectral radius for self-adjoint operators,
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(2) the spectral mapping theorem, and (3) the Stone–Weierstrass theorem.
The second stage is a sort of operator-valued Riesz representation theo-
rem, which we prove by reducing it to the ordinary Riesz representation
theorem using quadratic forms. In generalizing from bounded self-adjoint
to bounded normal operators, the second stage of the proof is precisely the
same as in the self-adjoint case. In the first stage, however, there are some
additional ideas needed in each step of the argument.
There is a relatively simple argument that reduces the equality of norm

and spectral radius for normal operators to the self-adjoint case. Mean-
while, since the spectral mapping theorem, as stated in Chap. 8, already
holds for arbitrary bounded operators, it appears that no change is needed
in this step. We must think, however, about the proper notion of “polyno-
mial.” For a general normal operator A, the spectrum of A is not contained
in R, and, thus, powers of λ are complex-valued functions on σ(A). We
must, therefore, use the complex-valued version of the Stone–Weierstrass
theorem (Appendix A.3.1), which requires that our algebra of functions be
closed under complex-conjugation. This means that we need to consider
polynomials in λ and λ̄, that is, linear combinations of functions of the
form λmλ̄n.
What we need, then, is a form of the spectral mapping theorem that

applies to this sort of polynomial. On the operator side, the natural coun-
terpart to the complex conjugate of a function is the adjoint of an opera-
tor. Thus, applying the function λmλ̄n to a normal operator A should give
Am(A∗)n. The desired “spectral mapping theorem” is then the following:
If p is a polynomial in two variables, and A is a bounded normal operator,
then

σ(p(A,A∗)) =
{
p(λ, λ̄)

∣∣λ ∈ σ(A)
}
. (10.21)

This statement is true (Theorem 10.23), but its proof is not nearly as
simple as the proof of the ordinary spectral mapping theorem. One way
to prove (10.21) is to use the theory of commutative C∗-algebras, as in
[33]. (See Theorem 11.19 in [33] along with the assertion on p. 321 that
the spectrum of an element is independent of the algebra containing that
element.) Another approach is the direct argument found in Bernau [3],
which uses no fancy machinery but which is long and not easily motivated.
A third approach is to use the spectral theorem for bounded self-adjoint
operators to help us prove (10.21); this is the approach we will follow.
We begin with the equality of norm and spectral radius and then turn

to (10.21).

Proposition 10.21 If A ∈ B(H) is normal, then

‖A‖ = R(A).

Lemma 10.22 If A and B are commuting elements of B(H), then

R(AB) ≤ R(A)R(B).
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Proof. If A is any bounded operator, the proof of Lemma 8.1 shows that
for any real number T with T > R(A), we have

lim
m→∞

‖Am‖
Tm

= 0.

If A and B are two commuting bounded operators and S and T are two
real numbers, with S > R(A) and T > R(B), then

‖(AB)m‖
SmTm

=
‖AmBm‖
SmTm

≤ ‖Am‖ ‖Bm‖
SmTm

.

Thus,

lim
m→∞

‖(AB)m‖
SmTm

= 0. (10.22)

Meanwhile, if we apply the expression for the resolvent in the proof of
Lemma 8.1 to AB, we obtain

(AB − λ)−1 = −
∞∑

m=0

AmBm

λm+1
, (10.23)

since A and B commute. For any λ1 with |λ1| > R(A)R(B), take λ2 with
|λ1| > |λ2| > R(A)R(B). The terms in (10.23) with λ = λ2 tend to zero
by (10.22), which means that (10.23) converges with λ = λ1. Thus, λ1 is
in the resolvent set of AB.
Proof of Proposition 10.21. For any bounded operator, ‖A‖ ≥ R(A)
(Proposition 7.5). To get the inequality in the other direction, recall (Propo-

sition 7.2) that ‖A‖2 = ‖A∗A‖. Note also that A∗A is self-adjoint, since its
adjoint is A∗A∗∗ = A∗A. Thus, if A and A∗ commute, we have

‖A‖2 = ‖A∗A‖ = R(A∗A) ≤ R(A∗)R(A)

≤ ‖A∗‖R(A) = ‖A‖R(A).

Here we have used Lemmas 8.1 and 10.22 and the general inequality be-
tween norm and spectral radius. Dividing by ‖A‖ gives ‖A‖ ≤ R(A), unless
‖A‖ = 0, in which case the desired inequality is trivially satisfied.

Theorem 10.23 If A ∈ B(H) is normal, then for any polynomial p in two
variables, we have

σ (p(A,A∗)) =
{
p(λ, λ̄)

∣∣λ ∈ σ(A)
}
.

If, for example, p(λ, λ̄) = λ2λ̄3, then p(A,A∗) = A2(A∗)3. Note that since
A and A∗ are assumed to commute, the map sending the polynomial p(λ, λ̄)
to p(A,A∗) is an algebra homomorphism. That is to say, (pq)(A,A∗) =
p(A,A∗)q(A,A∗). This would not be the case if A did not commute with A∗.
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We begin by proving Theorem 10.23 in the case that A is a normal
matrix. Although the matrix case is quite simple, it provides an outline for
our assault on the general result.
Proof of Theorem 10.23 in the Matrix Case. For matrices, the spec-
trum is nothing but the set of eigenvalues. If A commutes with A∗, then
for any λ ∈ C,

〈
(A∗ − λ̄I)ψ, (A∗ − λ̄I)ψ

〉
=
〈
ψ, (A− λI)(A∗ − λ̄I)ψ

〉

=
〈
ψ, (A∗ − λ̄I)(A− λI)ψ

〉

= 〈(A− λI)ψ, (A− λI)ψ〉 (10.24)

Thus, if ψ is an eigenvalue for A with eigenvalue λ, ψ is automatically
an eigenvalue for A∗ with eigenvalue λ̄. It then easily follows that ψ is an
eigenvector for p(A,A∗) with eigenvalue p(λ, λ̄).
In the other direction, suppose μ is an eigenvalue for p(A,A∗) and let W

denote the μ-eigenspace for p(A,A∗). Since A and A∗ commute with each
other, they also commute with p(A,A∗). Thus, A and A∗ preserve W , as
is easily verified, and the operator A|W will have some eigenvector ψ with
eigenvalue λ. Since Aψ = λψ, then, as in (10.24), A∗ψ = λ̄ψ and so

p(A,A∗)ψ = p(λ, λ̄)ψ.

Since also p(A,A∗)ψ = μψ, by assumption, we have μ = p(λ, λ̄), where λ
is an eigenvalue for A.
We now attempt to run the same argument for a bounded normal op-

erator on H, replacing “eigenvector” with “almost eigenvector,” where ψ
is an ε-almost eigenvector for ψ if ‖(A− λI)ψ‖ is less than ε ‖ψ‖. The
main difficulty with this approach is that for a given eigenvalue λ, the set
of ε-almost eigenvectors is not a vector space. To surmount this difficulty,
we will use the spectral theorem for the self-adjoint operator B∗B, where
B = p(A,A∗) − μI, with μ ∈ σ(p(A,A∗)). We will construct a spectral
subspace W for B∗B such that W is invariant under A and A∗ and such
that each element of W is an ε-almost eigenvector for p(A,A∗) with eigen-
value μ. (Note, however, that we are not claiming that W contains all the
ε-almost eigenvectors for p(A,A∗).)

Definition 10.24 If A ∈ B(H), then an ε-almost eigenvector for A
with eigenvalue λ ∈ C is a nonzero vector ψ ∈ H such that

‖(A− λI)ψ‖ < ε ‖ψ‖ .

We now establish three lemmas about almost eigenvectors, the last of
which makes use of the spectral theorem for bounded self-adjoint operators.
With these lemmas in hand, we will have a clear path to imitate the proof
of the matrix case of Theorem 10.23.
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Lemma 10.25 Suppose A ∈ B(H) is normal.

1. If ψ is an ε-almost eigenvector for A with eigenvalue λ, then ψ is an
ε-almost eigenvector for A∗ with eigenvalue λ̄.

2. A number λ ∈ C belongs to σ(A) if and only if for all ε > 0, there
exists an ε-almost eigenvector with eigenvalue λ.

Proof. Point 1 follows immediately from (10.24), which holds for bounded
normal operators, not just matrices. For Point 2, suppose that an ε-almost
eigenvector with eigenvalue λ exists for all ε > 0. Then A−λI cannot have
a bounded inverse, and so λ ∈ σ(A). In the other direction, if there is some
ε > 0 for which no ε-almost eigenvector exists, then

‖(A− λI)ψ‖ ≥ ε ‖ψ‖ (10.25)

for all ψ ∈ H, showing that A − λI is injective. By (10.24), the same
inequality hods with A−λI replaced by A∗− λ̄I. Thus, A∗− λ̄I is injective,
so by Proposition 7.3, the range of A− λI is dense in H. Using (10.25) as
in the proof of Proposition 7.7, it is easily seen that the range of A− λI is
also closed, hence all of H. Thus, (A − λI) is invertible and the inverse is
bounded, by (10.25).

Lemma 10.26 Suppose A ∈ B(H) is normal. Then for each polynomial
p in two variables and each number λ ∈ C, there is a constant C such
that if ψ is an ε-almost eigenvector for A with eigenvalue λ, then ψ is a
(Cε)-almost eigenvector for p(A,A∗) with eigenvalue p(λ, λ̄).

Proof. We decompose p(A,A∗) − p(λ, λ̄)I into a linear combination of
terms of the form Ak(A∗)l−λkλ̄l and we estimate such terms by induction
on k + l. If k = 1 and l = 0, there is nothing to prove, and if k = 0 and
l = 1, we use (10.24). Assume now that we have established the desired
result for k + l = N and consider a case with k + l = N + 1. If k > 0, we
write

(
Ak(A∗)l − λkλ̄l

)
ψ = Ak−1(A∗)l (A− λI)ψ

+ λ
(
Ak−1(A∗)l − λk−1λ̄lI

)
ψ. (10.26)

Since ψ is an ε-almost eigenvector and A and A∗ are bounded, the norm of
the first term on the right-hand side of (10.26) is at most c1ε. By induction,
the norm of the second term on the right-hand side of (10.26) is at most
|λ| c2ε. Thus, the norm of the left-hand side of (10.26) is at most (c1 +
|λ| c2)ε. A similar analysis holds if k = 0, in which case l > 0.

Lemma 10.27 Let A ∈ B(H) be normal, let p be a polynomial in two
variables, and let μ be an element of the spectrum of p(A,A∗). Then for
all ε > 0, there exists a nonzero closed subspace W ε of H such that W ε is
invariant under A and A∗ and such that every nonzero element of W ε is
an ε-almost eigenvector for p(A,A∗) with eigenvalue μ.
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Proof. Fix some μ in the spectrum of p(A,A∗) and let B = p(A,A∗)−μI.
Then B is normal and 0 belongs to the spectrum of B. Using Point 2 of
Lemma 10.25 and Lemma 10.26, we see that 0 belongs to the spectrum of
the self-adjoint operator B∗B. We apply the spectral theorem to B∗B and
we let W ε be the spectral subspace for B∗B corresponding to the interval
(−ε2, ε2). By Proposition 7.15, W ε is nonzero and invariant under B∗B,
and the restriction of B∗B toW ε has norm at most ε2. Thus, for all ψ ∈ W ε

we have

〈Bψ,Bψ〉 = 〈ψ,B∗Bψ〉 ≤ ‖ψ‖ ‖B∗Bψ‖ ≤ ε2 ‖ψ‖2 .

Since B = p(A,A∗) − μI, this shows that every nonzero element of W ε

is an ε-almost eigenvector for p(A,A∗) with eigenvalue μ. Furthermore, A
and A∗ commute with B∗B and thus they preserve each spectral subspace
of B∗B (Proposition 7.16) including W ε.
Proof of Theorem 10.23. Suppose first that λ belongs to the spectrum of
A. By Point 2 of Lemma 10.25, A has ε-almost eigenvalues with eigenvalue
λ for every ε > 0. Lemma 10.26 then shows that p(A,A∗) has (Cε)-almost
eigenvectors with eigenvalue p(λ, λ̄) for every ε > 0, which shows that
p(λ, λ̄) is in the spectrum of p(A,A∗).
In the other direction, suppose that μ is in the spectrum of p(A,A∗).

For any ε > 0, we consider the nonzero subspace W ε in Lemma 10.27,
which is invariant under A and A∗. The restriction of A to W ε is again a
normal operator (Exercise 8), and A|W ε has nonempty spectrum (Propo-
sition 7.5). If we fix some λ ∈ σ(A|W ε), Lemma 10.25 tells us that there
exists an ε-almost eigenvector ψ for A in W ε. By Lemma 10.26, ψ is a (Cε)-
almost eigenvector for p(A,A∗) with eigenvalue p(λ, λ̄). Meanwhile, since
ψ ∈ W ε, the same vector ψ is also an ε-almost eigenvector for p(A,A∗)
with eigenvalue μ. It then is easy to see (Exercise 10) that

∣∣μ− p(λ, λ̄)
∣∣ < Cε+ ε. (10.27)

Since (10.27) holds for all ε > 0, we can find a sequence λn of points in
σ(A) such that p(λn, λ̄n) → μ. Since σ(A) is compact, we can pass to a
subsequence of the λn’s that is convergent to some λ ∈ σ(A), and this λ
will satisfy p(λ, λ̄) = μ.
Combining Theorem 10.23 with the equality of the norm and spectral

radius for normal operators (Proposition 10.21), we have the following re-
sult. If A ∈ B(H) is normal and p is a polynomial in two variables, then

‖p(A,A∗)‖ = sup
λ∈σ(A)

∣∣p(λ, λ̄)
∣∣ .

The map p �→ p(A,A∗) has the property that p̄(A,A∗) = (p(A,A∗))∗,
where the polynomial p̄ is the complex-conjugate of p. In particular, if p
takes only real values on σ(A), then p(A,A∗) is self-adjoint.
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By the complex-valued version of the Stone–Weierstrass theorem (A.12),
polynomials in λ and λ̄ are dense in C(σ(A);C), the space of continuous
complex-valued functions on σ(A). Thus, the BLT theorem (Theorem A.36)
tells that we can extend the map p �→ p(A,A∗) to an isometric map of
C(σ(A);C) into B(H). This extension, which we call the continuous func-
tional calculus for A, has all the same properties as in the self-adjoint case.
Now that the continuous functional calculus for normal operators has

been established, the proof of the spectral theorem—in any of its various
versions—proceeds exactly as in the self-adjoint case. There is no need,
then, to repeat the arguments given in Chap. 8.

10.4 Proof of the Spectral Theorem for Unbounded
Self-Adjoint Operators

To prove the spectral theorem for an unbounded self-adjoint operator A,
we will construct from A a certain unitary (and thus normal) operator
U . We then apply the spectral theorem for bounded normal operators to
U and translate this result into the desired result for A. To motivate the
construction of U , consider the function

C(x) :=
x+ i

x− i
, x ∈ R. (10.28)

It is a simple matter to check that C maps R injectively onto S1\{1}, with
inverse given by

D(u) := i
u+ 1

u− 1
, u ∈ S1\{1}. (10.29)

Furthermore, we have limx→±∞ C(x) = 1. The function C(x) in (10.28) is
the simplest bounded, injective function one can define on R.
We wish to apply the map C to a self-adjoint operator A. If A is bounded

and self-adjoint, it is straightforward to check that the operator (A+iI)(A−
iI)−1 is unitary (Exercise 5). Even in the unbounded case, it is possible to
make sense of the operator U := C(A), and we can recover A from U , by
(essentially) applying D. The operator U is unitary and is known as the
Cayley transform of A.
Recall that if A is self-adjoint, then i is in the resolvent set of A and the

operator (A− iI)−1 maps H into Dom(A).

Theorem 10.28 (Cayley Transform) If A is a self-adjoint operator on
H, let U be the operator defined by

Uψ = (A+ iI)(A− iI)−1ψ.

Then the following results hold.
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1. The operator U is a unitary operator on H.

2. The operator U − I is injective.

3. The range of the operator U − I is equal to Dom(A) and for all ψ ∈
Range(U − I) we have

Aψ = i(U + I)(U − I)−1ψ. (10.30)

According to Point 2, U − I is injective, while according to Point 3, the
range of U − I is Dom(A). Thus, in (10.30), the expression (U − I)−1 refers
to the inverse of the one-to-one and onto map U − I : H → Dom(A). We
are not claiming that 1 is in the resolvent set of U . That is to say, (U−I)−1

is not a bounded operator, unless Dom(A) = H, which occurs only if A is
bounded.
Proof. The resolvent operator (A− iI)−1 must be injective, because

(A− iI)(A− iI)−1ψ = ψ

for all ψ ∈ H. Furthermore, (A− iI)−1 maps H onto Dom(A), because

ψ = (A− iI)−1(A− iI)ψ

for all ψ ∈ Dom(A). Since −i is also in the resolvent set of A, similar
reasoning shows that A+ iI maps Dom(A) injectively onto H. Thus, U is
the composition of one operator that maps H injectively onto Dom(A) and
another operator that maps Dom(A) injectively onto H, so that U maps
H injectively onto H.
Now, for any φ ∈ Dom(A) we have

〈(A+ iI)φ, (A+ iI)φ〉 = 〈Aφ,Aφ〉 + 〈φ, φ〉
= 〈(A− iI)φ, (A− iI)φ〉 ,

because of a familiar cancellation of cross terms. Thus, applying this with
φ = (A− iI)−1ψ shows that for any ψ ∈ H, we have

〈
(A+ iI)(A− iI)−1ψ, (A+ iI)(A− iI)−1ψ

〉

=
〈
(A− iI)(A− iI)−1ψ, (A− iI)(A− iI)−1ψ

〉

= 〈ψ, ψ〉 .

Thus, U is one-to-one and onto and preserves norms and is therefore
unitary.
For Point 2, observe that for any ψ ∈ H, we have

(A+ iI)(A− iI)−1ψ = ((A− iI) + 2iI)(A− iI)−1ψ

= ψ + 2i(A− iI)−1ψ. (10.31)



222 10. The Spectral Theorem for Unbounded Self-Adjoint Operators

Thus, since (A− iI)−1 is injective, we cannot have Uψ = ψ unless ψ = 0.
Finally, for Point 3, (10.31) says that

U − I = 2i(A− iI)−1, (10.32)

which means (by the reasoning at the start of the proof) that the range of
U − I is Dom(A). For ψ ∈ Dom(A), we then have

(U + I)(U − I)−1ψ =
1

2i
(U + I)(A − iI)ψ

=
1

2i
[(A+ iI) + (A− iI)]ψ

=
1

i
Aψ,

which establishes Point 3.
We may apply the spectral theorem for bounded normal operators to

associate a projection-valued measure μU to U . We will then transfer this
measure from S1\{0} to R by means of the map D in (10.29) to obtain the
desired projection-valued measure μA for A.

Proposition 10.29 Let A be a self-adjoint operator on H, let U be the uni-
tary operator in Theorem 10.28, and let D : S1\{0} → R be as in (10.29).
Then

A = D(U), (10.33)

where D(U) is defined by the functional calculus for U .

More precisely, D(U) =
∫
σ(U)

D(λ) dμU (λ), where μU is the projection-

valued measure associated to U by the spectral theorem for bounded normal
operators. Note that by Point 2 of Theorem 10.28, 1 is not an eigenvalue for
U and thus μU ({1}) = 0. Thus,D is an almost-everywhere-defined function
on σ(U), even if 1 ∈ σ(A). As always, the equality in (10.33) includes
equality of domains, where the domain of

∫
σ(U) D dμU is the space WD in

Proposition 10.1.
Proposition 10.29 should certainly be plausible in light of the previously

established formula (10.30) for A in terms of U .
Proof. Suppose E is a Borel subset of S1\{0} such that the closure of E
does not contain 1, and let VE = Range(μU (E)) be the associated spectral
subspace. Then the spectrum of U |E is contained in Ē, which means that
the functions u �→ D(u) and u �→ 1/(u− 1) are bounded on σ(U |VE

). Now,
by comparing the quadratic forms, we can see that D(U)|VE

= D(U |VE
).

Then by the multiplicativity of the functional calculus for U on bounded
functions, we have

D(U)ψ = i(U + I)(U − I)−1ψ

for all ψ ∈ VE . Thus, by Point 3 of Theorem 10.28, D(U) agrees with A
on VE .
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Meanwhile, if we decompose S1\{0} as the disjoint union of sets En

for which Ēn does not contain 1, then H is the Hilbert space direct sum
of the subspaces VEn

. Now, A and (by Proposition 10.3) D(U) are both
self-adjoint. Furthermore, these operators agree on the finite direct sum
of the VEn

’s and they are essentially self-adjoint on this finite sum, by
Example 9.26. Thus, A and D(U) must be equal (with equality of domain).

Theorem 10.30 Define a projection-valued measure μA on R by

μA(E) = μU (C(E)). (10.34)

Then

A =

∫

R

λ dμA(λ), (10.35)

where μU is the projection-valued measure coming from the spectral theorem
for the bounded normal operator U and C is the map defined in (10.28).

Proof. If for any ψ ∈ H, we define μU
ψ (E) =

〈
ψ, μUψ

〉
and similarly define

μA
ψ , then we have

μA
ψ (E) = μU

ψ (C(E)).

By the abstract change of variables theorem from measure theory, we have

∫

R

λ2 dμA
ψ (λ) =

∫

S1\{0}
D(u)2 dμU

ψ (u), (10.36)

since D is the inverse map to C. Thus, the two operators in (10.35) have
the same domain. Furthermore, if we replace λ2 by λ and D(u)2 by D(u)
in (10.36), we see that the operators in (10.35) are also equal.

Proof of Theorem 10.4. The existence of the desired projection-valued
measure μA is the content of Theorem 10.30. To establish uniqueness, sup-
pose νA is a projection-valued measure on σ(A) such that

∫
λ dνA(λ) = A.

Consider then the operator C(A) as defined by integration of the function
c(λ) against νA. Arguing as in the proof of Proposition 10.29, we can see
that C(A), computed in this fashion, coincides with the operator U = C(A)
defined as the product of (A+ iI) and (A− iI)−1.
Now define a projection-valued measure νU on S1 by setting νU (E) =

νA(C−1(E)). Then as in the proof of Theorem 10.30, we have
∫
S1 u dνU

(u) = U . The uniqueness part of the spectral theorem for U (Theorem 10.20)
then tells us that νU = μU , from which it follows that νA = μA.

Proof of Theorem 10.9. By the direct-integral form of the spectral the-
orem for U = C(A), there is a family of Hilbert spaces Hλ, λ ∈ σ(U) ⊂ S1,
and a positive, real-valued measure μ on σ(U) such that H is unitarily
equivalent to

∫
σ(U)

Hλ dμ, in such a way that the operator U corresponds to
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the map s(λ) �→ λs(λ). Since 1 is not an eigenvalue for U , either H1 = {0}
or μ({1}) = 0. Either way, H1 is “negligible” in the direct integral. We can
then define a family of Hilbert spaces Kλ := HC(λ), for λ ∈ σ(A) ⊂ R, and
a measure ν on σ(A) given by ν(E) = μ(C(E)). We may then form the
direct integral

∫
σ(A) Kλ dν. This direct integral is unitarily equivalent in

an obvious way to
∫
σ(U)

Hλ dμ. We wish to show, then, that
∫
σ(A)

Kλ dν

is unitarily equivalent to H in such a way that the operator A corresponds
to the (unbounded) operator mapping s(λ) to λs(λ). Since the argument
is similar to that in the proof of Theorem 10.4, we omit the details.

As in the proof of Theorem 10.4, the uniqueness in Theorem 10.9 can
be reduced to the uniqueness for the direct-integral form of the spectral
theorem for U .
The proof of the multiplication operator form of the spectral theorem

for unbounded operators is similar to the preceding proofs and is omitted.

10.5 Exercises

1. (a) If A is a bounded self-adjoint operator, show that U(t) := eiAt

is continuous in the operator norm topology.

(b) Using the spectral theorem, show that if A is a self-adjoint op-
erator and σ(A) is a bounded subset of R, then A is bounded.

(c) Suppose A is a self-adjoint operator that is not bounded. Show
that U(t) := eiAt is not continuous in the operator norm
topology.

Hint : Consider ψ in a spectral subspace of the form V(λ0−ε,λ0+ε),
where λ0 is a point in σ(A) with |λ0| large.

2. Let Pj be the unbounded self-adjoint operator defined in Sect. 9.8.
Show that the one-parameter unitary group eitPj generated by Pj is
given by

(eitPjψ)(x) = ψ(x+ t�ej)

for all ψ ∈ L2(Rn), where ej is the jth element of the standard basis
for Rn.

Hint : First determine the Fourier transform of eitPjψ, using Propo-
sition 9.32.

3. If A is an unbounded self-adjoint operator on H, let us say that a
family ψ(t) of elements of H satisfies the equation

dψ

dt
= iAψ(t) (10.37)
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in the strong sense if each ψ(t) belongs to Dom(A) and

lim
h→0

∥∥∥∥
ψ(t+ h)− ψ(t)

h
− iAψ(t)

∥∥∥∥ = 0

for every t ∈ R. If we define ψ(t) by ψ(t) = eitAψ0, for some ψ0 ∈ H,
show that ψ(t) satisfies (10.37) in the strong sense if and only if ψ0

belongs to Dom(A).

4. Suppose A is an unbounded self-adjoint operator and suppose that
there exists a number γ ∈ R and a nonzero vector ψ ∈ Dom(A) such
that

‖Aψ − γψ‖ < ε ‖ψ‖

for some ε > 0. Show that there exists a number γ̃ in the spectrum
of A such that |γ − γ̃| < ε.

Hint : If no such γ̃ existed, the function f(λ) := 1/|λ − γ| would
satisfy |f(λ)| ≤ 1/ε for all λ ∈ σ(A). Consider, then, the operator
f(A), which is nothing but (A− γI)−1.

5. If A is a bounded self-adjoint operator, show that the operator C(A)
given by

C(A) = (A+ iI)(A− iI)−1

is unitary and that 1 is in the resolvent set of C(A). Show also that
A can be recovered from C(A) by the formula

A = i(C(A) + I)(C(A) − I)−1.

6. Show that Lemma 10.22 is false if we do not assume that A and B
commute.

7. Let A be a normal matrix and p a polynomial in two variables. Show
by example that an eigenvector for p(A,A∗) is not necessarily an
eigenvector for A.

Note: Nevertheless, the proof of the matrix case of Theorem 10.23
shows that if μ is an eigenvalue for p(A,A∗), then there exists some
eigenvector for p(A,A∗) with eigenvalue μ that is also an eigenvector
for A.

8. Suppose A ∈ B(H) and W is a closed subspace of H that is invariant
under A and A∗.

(a) Show that (A|W )∗ = A∗|W .

(b) Show that if A is normal, the restriction of A to W is normal.
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9. (a) Suppose that H is finite dimensional, A is a normal operator on
H, and W is a subspace of H that is invariant under A. Show
that W is invariant under A∗.

(b) Show by example that the result of Part (a) is false ifH is infinite
dimensional.

10. Given A ∈ B(H), suppose that the same vector ψ is an ε-almost
eigenvector for A with eigenvalue λ and a δ-almost eigenvector for A
with eigenvalue μ. Show that |λ− μ| < ε+ δ.



11
The Harmonic Oscillator

11.1 The Role of the Harmonic Oscillator

The harmonic oscillator is an important model for various reasons. In
solid-state physics, for example, a crystal is modeled as a large number
of coupled harmonic oscillators. Using the notion of “normal modes,” this
model is then transformed into independent one-dimensional harmonic
oscillators with different frequencies. In the quantum mechanical setting,
the excitations of the different normal modes are called phonons.
A free quantum field theory is similarly modeled as a family of cou-

pled harmonic oscillators, except that in the field theory setting we have
infinitely many of the oscillators. Even interacting quantum field theo-
ries are often described using the harmonic oscillator raising and lowering
operators, which are referred to as creation and annihilation operators in
the context of field theory.
Our approach to analyzing the harmonic oscillator also introduces the

algebraic approach to quantum mechanics, in which algebra (commuta-
tion relations between various operators) substantially replaces analysis
(differential equations) as the way to solve quantum systems. Most of the
effort in analyzing the harmonic oscillator occurs in the algebraic sec-
tion (Sect. 11.2), with the remaining analytic issues being taken care of
in Sects. 11.3 and 11.4.
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11.2 The Algebraic Approach

In this section we will derive as much information as possible about the
Hamiltonian operator for a quantum harmonic oscillator using only the
commutation relation between the position and momentum operators,

[X,P ] = iℏI. (11.1)

Here, as usual, [·, ·] denotes the commutator, given by [A,B] = AB −BA.
We consider, then, a harmonic oscillator with Hamiltonian given by

Ĥ =
P 2

2m
+

k

2
X2, (11.2)

where k is a positive constant. Our goal is to see what we can say about
the eigenvectors and eigenvalues of Ĥ using only the fact that X and P are
self-adjoint operators satisfying (11.1), without making use of the actual
formulas for these operators.
To be honest, we are actually assuming certain domain conditions regard-

ing the operators X and P , in addition to the commutation relation (11.1),
namely that the vectors ψn in Theorem 11.2 are actually in the domain of
X and P (and thus, also, in the domain of the raising and lowering opera-
tors). In this section, we follow the usual physics practice of assuming that
all the vectors we work with are in the domain of all the relevant opera-
tors. This assumption will turn out to be correct in the case we are actually
considering, in which X and P are the usual position and momentum op-
erators on L2(R). (See Sect. 11.4.) It is a more complicated matter to work
out the domain conditions that must be imposed on two self-adjoint oper-
ators satisfying (11.1) in order for the argument of the present section to
be valid. We will come back to this issue in Chap. 14.
Following, again, the convention in the physics literature, we now elimi-

nate the spring constant k in favor of the frequency ω =
√
k/m of the cor-

responding classical harmonic oscillator. [Solutions to Hamilton’s equations
with classical Hamiltonian H(x, p) equal to p2/(2m)+kx2/2 are sinusoidal
with frequency

√
k/m.] Replacing k by mω2, we may rewrite (11.2) as

Ĥ =
1

2m

(
P 2 + (mωX)2

)
. (11.3)

We now introduce the lowering operator a, given by

a =
mωX + iP√

2ℏmω
(11.4)

and its adjoint a∗, the raising operator,” given by

a∗ =
mωX − iP√

2ℏmω
. (11.5)
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The reason for the terminology “raising” and “lowering” is that these
operators raise and lower the eigenvalue for the Hamiltonian, as we will
see shortly. In the context of quantum field theory, operators very much
like a and a∗ are called creation operators and annihilation operators, re-
spectively, because they map from the n-particle space to either the (n+1)-
particle space or the (n−1)-particle space, thus “creating” or “annihilating”
a particle.
In the world of noncommuting operators, (A−B)(A+B) does not equal

A2 −B2; rather,

(A−B)(A+B) = A2 −B2 + [A,B] .

Thus, if we compute a∗a using (11.1) we get

a∗a =
1

2ℏmω

(
(mωX)2 + P 2 + imω [X,P ]

)

=
1

ℏω

1

2m

(
P 2 + (mωX)2

)
− 1

2
I.

From this we obtain

Ĥ = ℏω

(
a∗a+

1

2
I

)
.

The 1
2I on the right-hand side of this expression should be thought of as a

“quantum correction,” in that there would be no such term in the analogous
formula for the classical Hamiltonian.
It suffices to work out the spectral properties (eigenvectors and

eigenvalues) of a∗a. To get back to Ĥ , we keep the same eigenvectors and
simply add 1/2 to the eigenvalues and then multiply by ℏω. We compute
that

[a, a∗] =
1

2ℏmω
([mωX,−iP ] + [iP,mωX ])

=
1

2ℏmω
(ℏmωI + ℏmωI)

= I. (11.6)

From this, it is easy to compute that

[a, a∗a] = a (11.7)

[a∗, a∗a] = −a∗. (11.8)

Now, a∗a is self-adjoint (or, at the least, symmetric) because (a∗a)∗ =
a∗a∗∗ = a∗a. This operator is also non-negative, because

〈ψ, a∗aψ〉 = 〈aψ, aψ〉 ≥ 0

for all ψ. We now come to a key computation, which demonstrates the
utility of the operators a and a∗.
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Proposition 11.1 Suppose that ψ is an eigenvector for a∗a with
eigenvalue λ. Then

a∗a(aψ) = (λ− 1)aψ

a∗a(a∗ψ) = (λ+ 1)a∗ψ.

Thus, either aψ is zero or aψ is an eigenvector for a∗a with eigenvalue
λ − 1. Similarly, either a∗ψ is zero or a∗ψ is an eigenvector for a∗a with
eigenvalue λ+1. That is to say, the operators a∗ and a raise and lower the
eigenvalues of a∗a, respectively.
Proof. Using the commutation relation (11.7), we find that

a∗a(aψ) = (a(a∗a)− a)ψ = (λ− 1)aψ.

A similar calculation applies to a∗ψ, using (11.8).
If ψ is an eigenvector for a∗a with eigenvalue λ, then

λ 〈ψ, ψ〉 = 〈ψ, a∗aψ〉 = 〈aψ, aψ〉 ≥ 0,

which means that λ ≥ 0. Let us assume that a∗a has at least one eigenvec-
tor ψ, with eigenvalue λ, which we expect since a∗a is self-adjoint. Since
a lowers the eigenvalue of a∗a, if we apply a repeatedly to ψ, we must
eventually get zero. After all, if anψ were always nonzero, these vectors
would be, for large n, eigenvectors for a∗a with negative eigenvalue, which
we have seen is impossible.
It follows that there exists someN ≥ 0 such that aNψ 
= 0 but aN+1ψ=0.

If we define ψ0 by

ψ0 := aNψ,

then aψ0 = 0, which means that a∗aψ0 = 0. Thus, ψ0 is an eigenvector for
a∗a with eigenvalue 0. (It follows that the original eigenvalue λ must have
been equal to the non-negative integer N .)
The conclusion is this: Provided that a∗a has at least one eigenvector ψ,

we can find a nonzero vector ψ0 such that

aψ0 = a∗aψ0 = 0.

Since a∗a cannot have negative eigenvalues, we may call ψ0 a “ground state”
for a∗a, that is, an eigenvector with lowest possible eigenvalue. We may then
apply the raising operator a∗ repeatedly to ψ0 to obtain eigenvectors for
a∗a with positive eigenvalues.

Theorem 11.2 If ψ0 is a unit vector with the property that aψ0 = 0, then
the vectors

ψn := (a∗)nψ0, n ≥ 0,
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satisfy the following relations for all n,m ≥ 0:

a∗ψn = ψn+1

a∗aψn = nψn

〈ψn, ψm〉 = n!δn,m

aψn+1 = (n+ 1)ψn.

Let us think for a moment about what this is saying. We have an orthog-
onal “chain” of eigenvectors for a∗a with eigenvalues 0, 1, 2, . . . ., with the
norm of ψn equal to

√
n!. The raising operator a∗ shifts us up the chain,

while the lowering operator a shifts us down the chain (up to a constant).
In particular, the “ground state” ψ0 is annihilated by a. Thus, we have a
complete understanding of how a and a∗ act on this chain of eigenvectors
for a∗a.
Proof. The first result is the definition of ψn+1 and the second follows
from Proposition 11.1 and the fact that a∗aψ0 = 0. For the third result,
if n 
= m, we use the general result that eigenvectors for a self-adjoint
operator (in our case, a∗a) with distinct eigenvalues are orthogonal. (This
result actually applies to operators that are only symmetric.)
If n = m, we work by induction. For n = 0, 〈ψ0, ψ0〉 = 1 is assumed. If

we assume 〈ψn, ψn〉 = n!, we compute that

〈ψn+1, ψn+1〉 = 〈a∗ψn, a
∗ψn〉

= 〈ψn, aa
∗ψn〉

= 〈ψn, (a
∗a+ 1)ψn〉

= (n+ 1) 〈ψn, ψn〉
= (n+ 1)!.

Finally, we compute that

aψn+1 = aa∗ψn = (a∗a+ I)ψn = (n+ 1)ψn,

which establishes the last claimed result.
It is now reasonable to ask whether the vectors {ψn}∞n=0 form an

orthonormal basis for the quantum Hilbert space. Suppose this is not the
case. If we then let V denote the closed span of the ψn’s, V will be invariant
under both a and a∗. Thus, by elementary linear algebra, the orthogonal
complement V ⊥ of V will also be invariant under the adjoint operators a∗

and a, and therefore also under a∗a. Therefore, we can begin our analysis
anew in V ⊥, with the result that we will obtain a new ground state φ0 ∈ V ⊥

(satisfying aφ0 = 0) that is orthogonal to the original ground state ψ0. If,
then, the closed span of the ψn’s is not the whole Hilbert space, there will
exist at least two independent solutions of the equation aψ = 0. To put this
claim the other way around, if it turns out that there is only one solution
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(up to a constant) of aψ = 0, then we expect that the vectors obtained by
applying a∗ repeatedly to the solution will form an orthogonal basis for our
Hilbert space. (Because we are glossing over various technical issues having
to do with the domains of various operators, this conclusion should not be
regarded as completely rigorous.)

11.3 The Analytic Approach

In the preceding section, we analyzed the eigenvectors of the operator a∗a
as much as possible using only the commutation relation [a, a∗] = I, which
follows from the underlying commutation relation [X,P ] = iℏI. To progress
further, we must recall the actual formula for the operators a and a∗.
To simplify our analysis, let us introduce the following natural scale of

distance for our problem:

D :=

√
ℏ

mω
.

We then introduce a normalized position variable, measured in units of D,

x̃ :=
x

D
, (11.9)

so that
d

dx̃
=

√
ℏ

mω

d

dx
.

A calculation gives the following simple expressions for the raising and
lowering operators:

a =
1√
2

(
x̃+

d

dx̃

)

a∗ =
1√
2

(
x̃− d

dx̃

)
. (11.10)

Note that the constants m, ω, and ℏ have conveniently disappeared from
the formulas.
Given the expression in (11.10), we can easily solve the (first-order, lin-

ear) equation aψ0 = 0 as

ψ0(x̃) = Ce−x̃2/2. (11.11)

If we take C to be positive, then our normalization condition determines
its value to be

√
π/D, by Proposition A.22. (The normalization condition

is that the integral of |ψ0|2 with respect to dx—not dx̃—should be 1.) We
obtain, then,

ψ0(x) =

√
πmω

�
exp

{
−mω

2�
x2
}
. (11.12)
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It remains only to apply a∗ repeatedly to ψ0 to get the “excited states”
ψn.

Theorem 11.3 The ground state ψ0 of the harmonic oscillator is given
by (11.12). The excited states ψn are given by

ψn = Hn ψ0 (11.13)

where Hn is a polynomial of degree n given inductively by the formulas

H0(x̃) = 1

Hn+1(x̃) =
1√
2

(
2x̃Hn(x̃)−

dHn(x̃)

dx̃

)
.

Here, x̃ is the normalized position variable given by (11.9).

The polynomials Hn are essentially (modulo various normalization con-
ventions) the Hermite polynomials.
Proof. When n = 0, (11.13) reduces to ψ0 = ψ0. Assuming that (11.13)
holds for some n, we compute ψn+1 as

ψn+1 = a∗ψn =
1√
2

(
x̃Hn(x̃)Ce−x̃2/2 − d

dx̃

[
Hn(x̃)Ce−x̃2/2

])

=
1√
2

(
2x̃Hn(x̃)−

dHn

dx̃

)
Ce−x̃2/2 = Hn+1(x̃)ψ0(x̃),

as claimed.
Figure 11.1 shows the ground state of the harmonic oscillator, along with

the excited states with n = 5 and n = 30. Each eigenfunction is plotted as
a function of the normalized position variable x̃. In each case, the shaded
region indicates the extent of the classically allowed region, that is, the
range in which a classical particle with energy En can move. Note that
each wave function decays rapidly outside the classically allowed region.
In the last image, we can see that frequency of oscillation of the wave
function is greatest in the middle of the classically allowed region, while the
amplitude of the wave function is greatest near the ends of the classically
allowed region. Intuitively, these properties of the wave function reflect that
a classical particle with energy En has largest momentum in the middle of
the classically allowed region (where the potential is smallest) and that the
classical particle spends more time at the ends of the classically allowed
region, since it is moving slowest there. Further development of this sort of
reasoning may be found in Chap. 15.

11.4 Domain Conditions and Completeness

Although the analysis in Sect. 11.2 is typical of what is found in physics
texts, it is not completely rigorous from a mathematician’s point of view.
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FIGURE 11.1. Harmonic oscillator eigenvectors with n = 0, n = 5, and n = 30.
In each case, the classically allowed region is shaded.

The main problem is that the lowing operator a, the raising operator a∗,
and the product operator a∗a are all unbounded operators. The difficulty
in working with unbounded operators is that one constantly has to check
that a vector is in the domain of the relevant operator before applying that
operator. For example, suppose we have a vector ψ0 in the domain of a and
satisfying aψ0 = 0. We wish to apply the raising operator a∗ to ψ0 and we
then want to argue that

a∗a(a∗ψ0) = a∗ψ0.

This is easy enough to verify (as we did in the previous section) provided
that all vectors are in the domain of the relevant operators. But how do
we know that ψ0 is in the domain of a∗? And even if it is, how do we know
that a∗ψ0 is in the domain of a∗a?
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These concerns are not just theoretical. Consider a general pair of
operators A and B satisfying [A,B] = i�I. If we try to analyze an op-
erator of the form αA2 + βB2, for α, β > 0, by the methods of Sect. 11.2,
things can easily go awry, as the counterexample in Sect. 12.2 demonstrates.
Fortunately, in the case of the ordinary position and momentum operators,
the putative eigenfunctions ψn for a∗a in Theorem 11.3 are very nice func-
tions, in the form of a polynomial times a Gaussian. Thus, there is no
difficulty in verifying that these functions are in the domain of any finite
product of creation and annihilation operators. It follows that if a and a∗

are given in terms of the usual position and momentum operators and ψ0

given by (11.12), the relations in Theorem 11.2 indeed hold.
In particular, we can see that the ψn’s form an orthogonal set of functions

in L2(R). Showing that they form an orthogonal basis is also not terribly
difficult.

Theorem 11.4 The functions

ψn(x) = Hn(x̃)ψ0(x̃)

= Hn

(√
mω

ℏ
x

)√
πmω

�
exp

{
−mω

2ℏ
x2
}

form an orthogonal basis for the Hilbert space L2(R).

The following result is the key to the proof.

Lemma 11.5 For all α ∈ C, the partial sums of the series

∞∑

n=0

αnx̃n

n!
e−x̃2/2

converge in L2(R) to the function eαx̃e−x̃2/2.

Proof. We need to show that

∥∥∥∥∥e
αx̃e−x̃2/2 −

N∑

n=0

αnx̃n

n!
e−x̃2/2

∥∥∥∥∥

2

=

∫ ∣∣∣∣∣
∞∑

n=N+1

αnx̃n

n!
e−x̃2/2

∣∣∣∣∣

2

dx̃ (11.14)

tends to zero as N tends to infinity. The integrand on the right-hand side
of (11.14) tends to zero pointwise. If we can find a suitable dominating
function, we can use dominated convergence to conclude that the integral
also tends to zero. We see that

∣∣∣∣∣
∞∑

n=N+1

αnx̃n

n!
e−x̃2/2

∣∣∣∣∣

2

≤
( ∞∑

n=0

|αx̃|n
n!

e−x̃2/2

)2

= e2|α||x̃|e−x̃2

.
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Since this last function certainly has finite integral, dominated convergence
applies and we are done.
Proof of Theorem 11.4. It is easily seen that the raising and lower-
ing operators map the Schwartz space S(R) (Definition A.15) into itself.
Furthermore, it is easy to verify (Exercise 1) that〈

dφ

dx
, ψ

〉
=

〈
φ,

dψ

dx

〉
,

for all φ, ψ ∈ S(R). From this, we can easily verify that for all φ, ψ ∈ S(R),
〈φ, aψ〉 = 〈a∗φ, ψ〉

and so also
〈φ, a∗aψ〉 = 〈a∗aφ, ψ〉 .

It is evident that both the ground state ψ0 and all the excited states ψn

occurring in Theorem 11.4 belong to S(R). Thus, the proof of Theorem 11.2
is indeed valid. We conclude, then, that the ψn’s form an orthogonal set of
vectors in L2(R) and that they are eigenvectors for Ĥ with the indicated
eigenvalues.
It remains to show that the ψn’s form an orthogonal basis for L2(R). Let

V denote the space of finite linear combinations of the ψn’s. Since Hn is a
polynomial of degree n, it is easily seen that V consists precisely functions
of the form

ψ(x̃) = p(x̃)e−x̃2/2,

where p is a polynomial.
Lemma 11.5 then shows that eikx̃e−x̃2/2 belongs to the L2-closure of V

for all k ∈ R. Thus, if ψ is orthogonal to every element of V̄ , we have
∫

R

e−ikx̃e−x̃2/2ψ(x̃) dx̃ = 0 (11.15)

for all k. Now, since e−x̃2/2 belongs to L∞(R) ∩ L2(R) and ψ belongs to
L2(R), their product belongs to L2(R)∩L1(R). Thus, (11.15) tells us that

the L2 Fourier transform of e−x̃2/2ψ(x̃) is identically zero. Thus, e−x̃2/2ψ(x̃)
must be the zero element of L2(R), by the Plancherel theorem, and so
ψ(x̃) = 0 almost everywhere. This shows that V ⊥ = {0}, meaning that V
is dense in L2(R).

11.5 Exercises

1. Show that for any Schwartz functions φ and ψ, we have

〈φ, aψ〉 = 〈a∗φ, ψ〉 ,
as expected.

Hint : Use integration by parts on the interval [−A,A] and show that
the boundary terms tend to zero as A tends to infinity.
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2. Show that the polynomials Hn satisfy the following relations:

Hn−1(y) =
1

n
√
2
H ′

n(y)

and

Hn+1(y) =
1√
2

(
2yHn(y)− n

√
2Hn−1(y)

)
.

Hint : Start with the relation aψn = nψn−1.

3. Establish the following Rodrigues formula for the polynomials Hn:

Hn(y) = (−1)n2−n/2

(
d
dy

)n

e−y2

e−y2 .

4. In this exercise, we prove the following claim: The polynomial Hn has
n distinct real zeros and the zeros of Hn “interlace” with the zeros of
Hn−1, meaning that there is exactly one zero of Hn−1 between each
pair of consecutive zeros of Hn.

(a) Verify the claim for H1 and H0.

(b) Assume, inductively, that Hn and Hn−1 have distinct real zeros
and that the zeros interlace. Show that Hn−1 alternates in sign
at consecutive zeros ofHn. Then show thatHn+1 andHn−1 have
opposite signs at each zero of Hn, so that Hn+1 also alternates
in sign at consecutive zeros of Hn. Conclude that Hn+1 must
have at least one zero between each pair of consecutive zeros
of Hn.

Hint : Use Exercise 2.

(c) Show that Hn+1 and Hn−1 have the same sign near ±∞ but
opposite signs at the largest and smallest zeros of Hn. Conclude
that Hn+1 has at least one zero below the smallest zero of Hn

and at least one zero above the largest zero of Hn.

(d) Conclude that Hn+1 has n+1 real zeros that interlace with the
zeros of Hn.

5. Let ψ̃n = ψn/ ‖ψn‖ be the normalized nth excited state.

(a) Let X̃ = X/D, where D = (�/mω)1/2. Show that

〈
X̃2

〉
ψ̃n

= n+
1

2
.

Hint : Express X̃ in terms of a and a∗, using (11.10), and then
use Theorem 11.2.
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(b) Show that
〈X〉ψ̃n

= 0

∆ψ̃n
X =

(
�(n+ 1/2)

mω

)1/2

.

(c) If T and V denote the kinetic energy and potential energy terms,
respectively, in (11.3), show that

〈T 〉ψ̃n
= 〈V 〉ψ̃n

=
1

2
�ω

(
n+

1

2

)
.



12
The Uncertainty Principle

In this chapter, we will continue our investigation of the consequences of
the commutation relations among the position and momentum operators.
We will mostly consider a particle in R1, where we have

[X,P ] = iℏI. (12.1)

We have already seen that much of the analysis of the Hamiltonian Ĥ
for the quantum harmonic oscillator (given by c1P

2 + c2X
2) can be car-

ried out using only the commutation relation (12.1). There are two other
main results that can be derived from these commutation relations: the
Heisenberg uncertainty principle and the Stone–von Neumann theorem.
The uncertainty principle states that the product of the uncertainty in X
and the uncertainty in P cannot be smaller than ℏ/2. The Stone-von Neu-
mann theorem, meanwhile, states that any two self-adjoint operators A
and B satisfying [A,B] = iℏI “look like” several copies of the standard
position and momentum operators acting on L2(R). Both results are true
only under certain technical domain conditions, which we will need to ex-
amine carefully. We discuss the uncertainty principle in this chapter and
the Stone–von Neumann theorem in the next chapter.
The uncertainty principle states that for all ψ in L2(R) satisfying certain

domain conditions, we have

(∆ψX)(∆ψP ) ≥ �

2
,

where, for any observable A, we let ∆ψA denote the “uncertainty” in mea-
surements of A in the state ψ (Definition 3.13). This means that one cannot
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make both the uncertainty in position and the uncertainty in momentum
arbitrarily small in the same state ψ.
Although we can easily make ∆ψX as small as we want simply be taking

ψ to be supported in a small interval, if we do that, ∆ψP will be large.
Similarly, we can make ∆ψP as small as we like, by taking the momentum

wave function ψ̃(p) (Sect. 6.6) to be supported in a small interval, but
then ∆ψX will get large. In the idealized limit in which the position wave
function is concentrated at a single point, ψ(x) would be a multiple of
δ(x − a) for some a, in which case, the momentum wave function ψ̃(p)
would be a multiple of e−ipa/�. In that case, |ψ̃(p)|2 is constant, meaning
that the momentum wave function is completely spread out over the whole
real line.
This uncertainty principle may be interpreted as saying that it is impos-

sible to simultaneously measure the position and momentum of a quantum
particle. After all, we have said (Axiom 4) that if we perform a measure-
ment of an observable A with a discrete spectrum, then immediately after
the measurement the state ψ of the system should be an eigenvector for A.
If A has a continuous spectrum, this principle is replaced by the require-
ment that after the measurement, the uncertainty in A should very small.
If we could measure both the position and the momentum of the parti-
cle simultaneously with arbitrary precision, then after the measurement,
both ∆X and ∆P would have to be very small, violating the uncertainty
principle.
Now, on the scale of everyday life, Planck’s constant is very small. If,

for example, we measure mass in units of grams, distance in units of cen-
timeters, and time in units of seconds, then � has the numerical value of
1.054× 10−27. Thus, on “macroscopic” scales of energy and momentum, it
is possible for the uncertainties in position and momentum both to be very
small. But on the atomic scale, the uncertainty principle puts a substan-
tial limitation on how localized the position and momentum of a particle
can be.
In Sect. 12.1, we prove a version of the uncertainty principle for any two

operators A and B satisfying [A,B] = iℏI, under a seemingly innocuous
assumption on the domains of the operators involved. In Sect. 12.2, how-
ever, we see that the domain assumptions are not so innocuous after all.
In that section, we encounter two operators satisfying [A,B] = iℏI on a
dense subspace of the Hilbert space, along with a vector ψ such that the
uncertainty in A is finite and the uncertainty in B is zero. The existence
of such a vector is surely contrary to the spirit of the uncertainty princi-
ple, even though it does not violate the version of the uncertainty principle
proved in Sect. 12.1. (The vector ψ in Sect. 12.2 does not satisfy the domain
assumptions of Theorem 12.4.) Finally, in Sect. 12.3, we show that for the
usual position and momentum operators on L2(R), no such counterexam-
ples occur: If ∆ψX and ∆ψP are both defined, then (∆ψX)(∆ψP ) ≥ ℏ/2.
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12.1 Uncertainty Principle, First Version

In this section, it is essential that we make sure that all vectors are in
the domains of the various operators we want to apply to these vectors.
With this concern in mind, we make the following definition. (Compare
Definition 9.36.)

Definition 12.1 If A and B are unbounded operators on H, define AB to
be the operator with domain

Dom(AB) = {ψ ∈ Dom(B) |Bψ ∈ Dom(A)}

and given by (AB)ψ = A(Bψ).

Even if Dom(A) and Dom(B) are dense in H, it could happen that
Dom(AB) is not dense in H.
Recall (Definition 3.13) that the uncertainty of a symmetric operator A

in a state ψ is defined to be

(∆ψA)
2 =

〈(
A− 〈A〉ψ I

)2
〉

ψ

. (12.2)

As written, this definition requires that ψ belong to the domain of (A −
〈A〉ψ I)2, which is the same as the domain of A2. However, since we assume
that A is symmetric, then 〈A〉ψ = 〈ψ,Aψ〉 is real, so that A − 〈A〉ψ I is
again symmetric. Thus, (12.2) can be rewritten as

(∆ψA)
2 =

〈
(A− 〈A〉ψ I)ψ, (A− 〈A〉ψ I)ψ

〉
.

Having written the uncertainty in this way, it is natural to extend the
definition of uncertainty to vectors that belong only to Dom(A), as follows.

Definition 12.2 If A is a symmetric operator on H, then for all unit
vectors ψ in Dom(A), the uncertainty ∆ψA of A in the state ψ is given
by

(∆ψA)
2 =

〈
(A− 〈A〉ψ I)ψ, (A− 〈A〉ψ I)ψ

〉
. (12.3)

By expanding out the right-hand side of (12.3), we see that the uncer-
tainty may also be computed as

(∆ψA)
2 = 〈Aψ,Aψ〉 − (〈ψ,Aψ〉)2.

[Compare (3.24).] Of course, if ψ happens to be in the domain of A2, then
Definition 12.2 agrees with (12.2).

Proposition 12.3 If A is a symmetric operator on H, then for all unit
vectors ψ ∈ Dom(A), we have ∆ψA = 0 if and only if ψ is an eigenvector
for A.
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Proof. If ∆ψA = 0, then from (12.3), we see that (A − 〈A〉ψ I)ψ = 0,
meaning that ψ is an eigenvector for A with eigenvalue 〈A〉ψ . Conversely, if
Aψ = λψ for some λ, then 〈ψ,Aψ〉 = λ 〈ψ, ψ〉 = λ. Thus, (A−〈A〉ψ I)ψ = 0,
which, by (12.3), means that ∆ψA = 0.
As discussed in the introduction to this chapter, we expect that imme-

diately after a measurement of an observable A, the state of the system
will have very small uncertainty for A. Indeed, if A has discrete spectrum,
we expect that the state of the system will be an eigenvector for A. Even
in the case of a continuous spectrum, we expect that the uncertainty in
A can be made as small as one wishes, by making more and more precise
measurements. Suppose now that one wishes to observe simultaneously two
(or more) different observables, represented by operators A and B. In the
case of a discrete spectrum, the system after the measurement should be
simultaneously an eigenvector for A and an eigenvector for B. In the case
where A and B commute, this idea is reasonable. There is a version of
the spectral theorem for commuting self-adjoint operators; in the case of
discrete spectrum, it says that two commuting self-adjoint operators have
an orthonormal basis of simultaneous eigenvectors with real eigenvalues.
(In the case of unbounded operators, there are, as usual, technical domain
conditions in defining what it means for two self-adjoint operators to com-
mute.)
In the case where A and B do not commute, they do not need to have any

simultaneous eigenvectors. Certainly, A and B cannot have an orthonormal
basis of simultaneous eigenvectors, or they would in fact commute. The lack
of simultaneous eigenvectors suggests, then, that it is simply not possible
to make a simultaneous measurement of two self-adjoint operators unless
they commute. In standard physics terminology, the quantities A and B
are said to be “incommensurable,” meaning not capable of being measured
at the same time. (See Exercise 2 for a classification of the simultaneous
eigenvectors of a representative pair of noncommuting operators.)
In the case of a continuous spectrum, the notion of an eigenvector is

replaced by the notion of a state with very small uncertainty for the relevant
operator. In light of our discussion of simultaneous eigenvectors, we may
expect that for noncommuting operators, it may be difficult to find states
where the uncertainties of both operators are small. This expectation is
realized in the following version of the uncertainty principle.

Theorem 12.4 Suppose A and B are symmetric operators and ψ is a unit
vector belonging to Dom(AB) ∩Dom(BA). Then

(∆ψA)
2(∆ψB)2 ≥ 1

4

∣∣∣〈[A,B]〉ψ
∣∣∣
2

. (12.4)

Note that if ψ ∈ Dom(AB) then in particular, ψ ∈ Dom(B), and if
ψ ∈ Dom(BA) then ψ ∈ Dom(A). Thus, the assumptions on ψ are sufficient
to guarantee that ∆ψA and ∆ψB make sense as in Definition 12.2.
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Proof. Define operators A′ and B′ by A′ := A − 〈ψ,Aψ〉 I and B′ :=
B − 〈ψ,Bψ〉 I. (We use the same domains for A′ and B′ as for A and
B, and it is easily verified that A′ and B′ are still symmetric on those
domains.) Then by the Cauchy–Schwarz inequality, we obtain

〈A′ψ,A′ψ〉 〈B′ψ,B′ψ〉 ≥ |〈A′ψ,B′ψ〉|2 (12.5)

≥ |Im 〈A′ψ,B′ψ〉|2 (12.6)

=
1

4
|〈A′ψ,B′ψ〉 − 〈B′ψ,A′ψ〉|2 . (12.7)

The assumptions on ψ guarantee that Bψ ∈ Dom(A) and hence also that
B′ψ ∈ Dom(A′), and similarly with A′ and B′ reversed. Since A′ and B′

are symmetric, we may rewrite (12.7) as

〈A′ψ,A′ψ〉 〈B′ψ,B′ψ〉 ≥ 1

4
|〈ψ,A′B′ψ〉 − 〈ψ,B′A′ψ〉|2

=
1

4
|〈ψ, [A′, B′]ψ〉|2 .

Now, since the identity operator commutes with everything, the commu-
tator of A′ and B′ is the same as the commutator of A and B. Furthermore,
〈A′ψ,A′ψ〉 is nothing but (∆ψA)

2 and similarly for B. Thus, we obtain

(∆ψA)
2(∆ψB)2 ≥ 1

4
|〈ψ, [A,B]ψ〉|2 ,

which is what we wanted to prove.
We now specialize Theorem 12.4 to the case in which the commutator is

iℏI and take the square root of both sides.

Corollary 12.5 Suppose A and B are symmetric operators satisfying

[A,B] = iℏI

on Dom(AB) ∩ Dom(BA). Then if ψ ∈ Dom(AB) ∩ Dom(BA) is a unit
vector, we have

(∆ψA)(∆ψB) ≥ ℏ

2
. (12.8)

In particular, for all unit vectors ψ ∈ L2(R) in Dom(XP )∩Dom(PX), we
have

(∆ψX)(∆ψP ) ≥ ℏ

2
. (12.9)

Note that the factor of ℏ appearing on the right-hand side of (12.8) is re-
ally just |〈ψ, [A,B]ψ〉| . Since, however, ψ is a unit vector and [A,B] = iℏI,
ψ drops out of the right-hand side of our inequality. We see then that both
sides of (12.9) make sense whenever ∆ψX and ∆ψP make sense, namely,
whenever ψ belongs to Dom(X) and to Dom(P ). (Recall Definition 12.2.)
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On the other hand, the proof that we have given for (12.9) requires ψ to
be in both Dom(XP ) and Dom(PX). Nevertheless, it is natural to ask
whether (12.9) holds for all ψ in Dom(X) ∩ Dom(P ). We may similarly
ask whether (12.8) holds for all ψ in Dom(A) ∩Dom(B). As we will see in
Sects. 12.2 and 12.3, the answer to the first question is yes and the answer
to the second question is no.
Meanwhile, it is of interest to investigate “minimum uncertainty states,”

that is, states ψ for which the inequality (12.4) is an equality.

Proposition 12.6 If A and B are symmetric and ψ is a unit vector in
Dom(AB) ∩ Dom(BA), equality holds in (12.4) if and only if one of the
following holds: (1) ψ is an eigenvector for A, (2) ψ is an eigenvector for
B, or (3) ψ is an eigenvector for an operator of the form

A− iγB

for some nonzero real number γ.

In the case A = X and B = P, we will consider examples where equality
holds in Sect. 12.4.
Proof. To get equality in (12.4), we must have equality in both (12.5)
and (12.6). Equality in (12.5) occurs if and only if A′ψ = 0 or B′ψ = 0 or
A′ψ = cB′ψ for some nonzero constant c. If A′ψ is zero, ψ is an eigenvector
for A with eigenvalue 〈A〉ψ . In that case, equality holds in (12.6) as well.
Conversely, if ψ is an eigenvector for A with some eigenvalue λ, then 〈A〉ψ =
λ and A′ψ = 0. Similarly, B′ψ = 0 if and only if ψ is an eigenvector for B.
Meanwhile, suppose A′ψ and B′ψ are nonzero and A′ψ = cB′ψ, so that

equality holds in (12.5). Then equality holds (12.6) if and only if c = iγ for
some nonzero γ ∈ R. Thus, when A′ψ and B′ψ are nonzero, we get equality
in (12.4) if and only if

A′ψ = iγB′ψ (12.10)

for some nonzero real number γ. Recalling the definition of A′ and B′,
(12.10) says that

(A− 〈ψ,Aψ〉 I)ψ = iγ(B − 〈ψ,Bψ〉 I)ψ (12.11)

or
(A− iγB)ψ = λψ, (12.12)

where λ = 〈ψ,Aψ〉 − iγ 〈ψ,Bψ〉 .
Thus, if (12.11) holds, ψ is an eigenvector of A − iγB. Conversely, if ψ

is an eigenvector for A− iγB with some eigenvalue λ = c+ id in C, then

(c+ id) ‖ψ‖2 = 〈ψ, (A− iγB)ψ〉 = 〈ψ,Aψ〉 − iγ 〈ψ,Bψ〉 . (12.13)

Since A and B are assumed to be symmetric and ψ is a unit vector, we
may equate real and imaginary parts in (12.13) to obtain

c = 〈ψ,Aψ〉 ; d = −γ 〈ψ,Bψ〉 .
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From this we can see that (12.11) and (12.10) hold, and thus equality holds
in (12.4).

12.2 A Counterexample

In this section, we consider the Hilbert space L2[−1, 1]. As our “position”
operator, we use the usual formula,

Aψ(x) = xψ(x).

Note that A is a bounded operator, because we restrict x to the bounded
interval [−1, 1]. As such, A is defined (and self-adjoint) on the whole Hilbert
space L2(R). As our “momentum” operator, we again use the usual formula,

B = −iℏ
d

dx
.

As the domain of B we will take the space of continuously differentiable
functions ψ on [−1, 1] satisfying the periodic boundary condition,

ψ(−1) = ψ(1). (12.14)

To verify that B is symmetric, note that for any C1 functions φ and ψ,
we have

∫ 1

−1

φ(x)
dψ

dx
dx = φ(1)ψ(1)− φ(−1)ψ(−1)−

∫ 1

−1

dφ

dx
ψ(x) dx.

If both φ and ψ satisfy the periodic boundary condition (12.14), the bound-
ary terms cancel out to zero. This shows that the operator d/dx is skew-
symmetric on Dom(B), from which it follows that −iℏd/dx is symmetric
on Dom(B). Actually, since the functions

ψn(x) :=
1√
2
eπinx, n ∈ Z, (12.15)

constitute an orthonormal basis of eigenvectors for B with real eigenvalues,
B is essentially self-adjoint, by Example 9.25.
Now, for all ψ ∈ Dom(AB) ∩Dom(BA) we have, by direct calculation,

ABψ −BAψ = iℏψ, (12.16)

just as for the usual position and momentum operators. Furthermore,
Dom(AB) ∩ Dom(BA) is dense in H, since it contains all continuously
differentiable functions ψ such that ψ(0) = ψ(1) = 0. Consider, now, the
function ψn(x) in (12.15), for some integer n. Clearly, ψn is in the domain
of B, since Bψn is just a multiple of ψn. Since ψn is an eigenvector for B,
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the uncertainty of B in the state ψn is zero! Meanwhile, since A is bounded,
the uncertainty of A is well defined and finite. Thus, ∆ψn

A and ∆ψn
B are

both unambiguously defined and

(∆ψn
A)(∆ψn

B) = 0. (12.17)

How can (12.17) hold? Is it not, in light of (12.16), a violation of (12.8)
in Corollary 12.5? The answer is no, for the reason that ψn does not satisfy
the domain assumptions in that corollary. Specifically, Aψn is not in the
domain of B, since Aψn is does not satisfy the periodic boundary condition
in the definition of Dom(B). Thus, ψn does not belong to Dom(BA).
Although it does not contradict Corollary 12.5, (12.17) certainly violates

the spirit of the uncertainty principle. In the next section, we will show
that no such strange counterexamples occur for the usual position and
momentum operators.

12.3 Uncertainty Principle, Second Version

In this section, we will see that if A and B are taken to be the usual
position and momentum operatorsX and P , the uncertainty principle holds
whenever ∆ψX and ∆ψP are defined. We continue to use Definition 12.2
for the definition of the uncertainty in any operator, in which case, for
∆ψX and ∆ψP to be defined, we require only that ψ belong to Dom(X)
and Dom(P ).
We are now ready to formulate the strong version of the uncertainty

principle.

Theorem 12.7 Suppose ψ is a unit vector in L2(R) belonging to Dom(X)∩
Dom(P ). Then

(∆ψX)(∆ψP ) ≥ ℏ

2
, (12.18)

where ∆ψX and ∆ψP are given by Definition 12.2.

Proof. According to Stone’s theorem and Example 10.16, the operator P
is � times the infinitesimal generator of the group U(·) of translations. That
is to say, for all ψ ∈ Dom(P ), we have

(Pψ)(x) = −i� lim
a→0

ψ(x+ a)− ψ(x)

a
,
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where the limit is in the L2 norm sense. Thus,

〈Xψ,Pψ〉 = lim
a→0

〈
Xψ,−i�

(
ψ(x+ a)− ψ(x)

a

)〉

= lim
a→0

(
1

a
〈xψ(x),−i�ψ(x + a)〉+ i�

a
〈Xψ,ψ〉

)

= lim
a→0

(
1

a
〈i�(y − a)ψ(y − a), ψ(y)〉+ i�

a
〈Xψ,ψ〉

)
,

where in the last step we have made the change of variable y = x+ a.
If we rename the variable of integration back to x, we get

〈Xψ,Pψ〉

= lim
a→0

(〈
i�X

(
ψ(x− a)− ψ(x)

a

)
, ψ(x)

〉
+ i� 〈ψ(x− a), ψ(x)〉

)

= lim
a→0

(〈
i�

(
ψ(x − a)− ψ(x)

a

)
, Xψ(x)

〉
+ i� 〈ψ(x− a), ψ(x)〉

)

= 〈Pψ,Xψ〉+ i� 〈ψ, ψ〉 . (12.19)

In the second equality, we have used that X is symmetric and that (check)
if ψ ∈ Dom(X), then ψ(x − a) ∈ Dom(X) for each fixed a. In the last
equality, we get a minus sign from having ψ(x − a) − ψ(x) rather than
ψ(x+ a)− ψ(x), and we use that translation is strongly continuous.
It should be noted that (12.19) is precisely what we would get by formally

moving X to the right-hand side of the inner product, using the commuta-
tion relation XP − PX = i�I, and then moving P to the left-hand side of
the inner product. But to make that calculation rigorous, we would need to
assume that ψ is in the domain of XP and the domain of PX. In (12.19),
on the other hand, we have obtained the desired conclusion assuming only
that ψ is in the domain of X and in the domain of P.
Having obtained (12.19), we can easily verify that for any real constants

α and β, we have

〈(X − αI)ψ, (P − βI)ψ〉 = 〈(P − βI)ψ, (X − αI)ψ〉 + i� 〈ψ, ψ〉 . (12.20)

Solving (12.20) for 〈ψ, ψ〉 gives

〈ψ, ψ〉 = 1

i�
(〈(X − αI)ψ, (P − βI)ψ〉 − 〈(P − βI)ψ, (X − αI)ψ〉)

=
2

�
Im 〈(X − αI)ψ, (P − βI)ψ〉

≤ 2

�
‖(X − αI)ψ‖ ‖(P − βI)ψ‖ , (12.21)

by the Cauchy–Schwarz inequality. If ψ is a unit vector and we take α =
〈X〉ψ , and β = 〈P 〉ψ, then ‖(X − αI)ψ‖2 = (∆ψX)2 and ‖(P − βI)ψ‖2 =

(∆ψP )2. Thus, we get
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1 ≤ 2

�
(∆ψX)(∆ψP ),

which is equivalent to what we want to prove.
We know from Sect. 12.2 that the strong form of the uncertainty principle

does not hold if X and P are replaced by two arbitrary operators satisfying
AB−BA = ihI on Dom(AB)∩Dom(BA), even if Dom(AB)∩Dom(BA) is
dense in H. Nevertheless, if we look carefully at the proof of Theorem 12.7,
we can see what assumptions we would need on A and B to make the proof
go through in a more general setting.

Theorem 12.8 Suppose A and B are self-adjoint operators on H. Suppose
that for all a ∈ R and ψ ∈ Dom(A), we have that eiaBψ belongs to Dom(A)
and that

AeiaBψ = eiaBAψ − �aeiaBψ. (12.22)

Then for all unit vectors ψ in Dom(A) ∩Dom(B), we have

(∆ψA)(∆ψB) ≥ �

2
,

where ∆ψA and ∆ψB are defined by Definition 12.2.

The relation

eiaBA = AeiaB + �aeiaB, a ∈ R, (12.23)

which holds on Dom(A), is a “semi-exponentiated” form of the canonical
commutation relations. As shown in Exercise 6, there is a formal argument
(ignoring domain issues) that the commutation relations [A,B] = i�I ought
to imply the relations (12.22). Nevertheless, as Exercise 7 shows, this formal
argument does not always give the correct conclusion. In Sect. 14.2, we
will encounter a “fully exponentiated” form of the canonical commutation
relations, in which both A and B are exponentiated.
Proof. See Exercise 5.

Corollary 12.9 For any j = 1, . . . n and any unit vector ψ ∈ L2(Rn) with
ψ ∈ Dom(Xj) ∩Dom(Pj), we have

(∆ψXj)(∆ψPj) ≥
�

2
.

Proof. In the case that A = Xj and B = Pj , we have (eiaB/�ψ)(x) =
ψ(x+ aej), by Exercise 2 in Chap. 10. Thus, in this case, (12.22) says that

(xj + a)ψ(x+ aej) = xjψ(x+ aej) + aψ(x+ aej),

which is true.
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12.4 Minimum Uncertainty States

In this section, we look at the states that give equality in the uncertainty
principle. Such states are known as minimum uncertainty states or coher-
ent states. As in the general setting of Proposition 12.6, the condition for
a equality is an eigenvector condition. That is to say, even though in The-
orem 12.7, we allow ψ’s that are not Dom(XP ) ∩ Dom(PX), we do not
get any new minimum uncertainty states by this weakening of our domain
assumptions.

Proposition 12.10 A unit vector ψ ∈ Dom(X) ∩Dom(P ) satisfies

(∆ψX)(∆ψP ) =
�

2

if and only if ψ satisfies

(X + iδP )ψ = λψ (12.24)

for some nonzero real number δ and some complex number λ.

For convenience, we have made the substitution δ = −γ in (12.24) rela-
tive to Proposition 12.6.

1
x

Re[y (x)]

FIGURE 12.1. Minimum uncertainty state with 〈X〉 = 1, 〈P 〉 = 0, and
∆X = 1/2.

Proof. All the relations in the proof of Theorem 12.7 are equalities, except
for the inequality in the last line of (12.21). Equality will hold in that line
if and only if one of (X − αI)ψ and (P − βI)ψ is zero or (P − βI)ψ is a
pure-imaginary multiple of (X−αI)ψ. Now, if ψ is a unit vector in L2(R),
then neither ψ nor the Fourier transform of ψ can be supported at a single
point; thus, neither (X − αI)ψ nor (P − βI)ψ can be zero. We are left,
then, with the condition that

(X − αI)ψ = iγ(P − βI)ψ, (12.25)
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1
x

Re[y (x)]

FIGURE 12.2. Minimum uncertainty state with 〈X〉 = 1, 〈P 〉 = 10, and
∆X = 1/2.

where γ is a nonzero real number, α = 〈A〉ψ and β = 〈B〉ψ . As in the
proof of Proposition 12.6, (12.25) is equivalent to the assertion that ψ is
an eigenvector for the operator X − iγP. Letting δ = −γ gives the desired
result.

Proposition 12.11 If the parameter δ in (12.24) is negative, there are
no nonzero solutions to (12.24). If the parameter δ is positive, there exists
a unique (up to multiplication by a constant) solution ψδ,λ to (12.24) for
every complex number λ. The function ψδ,λ has the following additional
properties

〈X〉 = Reλ

〈P 〉 = 1

δ
Imλ

∆X

∆P
= δ.

Explicitly, we have

ψδ,λ(x) = c1 exp

{
− (x− λ)2

2δ�

}

= c2 exp

{
− (x− 〈X〉)2

2δ�

}
exp

{
i 〈P 〉x

�

}
,

where all expectation values are taken in the state ψδ,λ.

Note that among states with (∆X)(∆P ) = �/2, we can arrange for
∆X/∆P to be any positive real number, and once we have chosen ∆X/∆P,
we can then arrange for 〈X〉 and 〈P 〉 to be any two real numbers. On the
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1
x

Re[y (x)]

FIGURE 12.3. Minimum uncertainty state with 〈X〉 = 1, 〈P 〉 = 20, and ∆X = 1.

other hand, once ∆X/∆P and 〈X〉 and 〈P 〉 have been specified, there is a
unique quantum state with (∆X)(∆P ) = �/2. In Figs. 12.1–12.3, we have
plotted the real part of ψδ,λ for several different values of the parameters,
in a system of units for which � = 1.
Proof. The equation (X + iδP )ψ = λψ amounts to

xψ + δ�
dψ

dx
= λψ(x), (12.26)

where ψ is assumed to be in the domain of P , so that the distributional
derivative of ψ is an L2 function. If ψ were smooth, then the unique solu-
tion to (12.26) would be the function ψδ,λ given in the proposition, which
is square-integrable if and only if δ > 0. Even (12.26) is only assumed
to hold in the distribution sense, the argument in the proof of Proposi-
tion 9.29 (with e−x/�ψ(x) replaced by exp[(x−λ)2/(2δ�)]ψ(x)) shows that
there are no additional solutions. The formulas for 〈X〉 , 〈P 〉 , and ∆X/∆P
can be computed either by tracing through the arguments in the proof of
Theorem 12.7 or by direct calculation with the formula for ψδ,λ.

12.5 Exercises

1. Let α be a positive real number. Show that the following “additive”
version of the uncertainty principle holds for all unit vectors ψ ∈
Dom(X) ∩Dom(P ) :

α∆ψX +
1

α
∆ψP ≥

√
2�.

2. In this exercise, we classify the simultaneous eigenvectors of the non-
commuting operators Ĵ1 and Ĵ2. Let Ĵ1, Ĵ2, and Ĵ3 denote the angular
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momentum operators on L2(R3) as defined in Sect. 3.10. Suppose ψ
is in the domain of any product Ĵj Ĵk of two angular momentum op-
erators. (For example, ψ could be a Schwartz function.) Suppose also
that ψ is an eigenvector for Ĵ1 and for Ĵ2 with eigenvalues α and β,
respectively.

(a) Using the commutation relations in Exercise 10 in Chap. 3, show
that ψ is an eigenvector for Ĵ3 with eigenvalue 0.

(b) Show that the eigenvalues α and β for Ĵ1 and Ĵ2 must be zero.

(c) What type of function ψ ∈ L2(R3) satisfies Ĵjψ = 0 for j =
1, 2, 3?

3. Given any unit vector ψ ∈ Dom(X) ∩ Dom(P ), consider another
vector φ given by

φ(x) = eibx/�ψ(x− a).

Show that φ is a unit vector belonging to Dom(X) ∩ Dom(P ) and
that

〈X〉φ = 〈X〉ψ + a

∆φX = ∆ψX

and

〈P 〉φ = 〈P 〉ψ + b

∆φP = ∆ψP.

4. We have seen that a unit vector ψ ∈ Dom(X)∩Dom(P ) is a minimum
uncertainty state [i.e., (∆ψX)(∆ψP ) = �/2] if and only if there exists
some δ > 0 such that ψ is an eigenvector of the operator X + iδP.
In that case, ψ is also an eigenvector for any operator of the form
c(X + iδP ), with c being a nonzero constant. Consider, then, some
fixed δ > 0 and define an operator a by the formula

a =
1
δ (X + iδP )√

2�/δ
.

Then a is just the annihilation operator, as defined in Chap. 11, for a
harmonic oscillator with mω = 1/δ. Thus, a and its adjoint a∗ satisfy
the relation [a, a∗] = I, and we have the “chain” of eigenvectors
ψn ∈ L2(R) satisfying the properties listed in Theorem 11.2.

(a) For any λ ∈ C, find constants cn so that the vector

φλ :=

∞∑

n=0

cnψn

is an eigenvector for a with eigenvalue λ. Show that the resulting
series converges in H.
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(b) Let φλ denote the eigenvector obtained in Part (a), normalized
so that c0 = 1. Show that

φλ = eλa
∗

φ0,

where the exponential is defined by

eλa
∗

φ0 =

∞∑

n=0

λn

n!
(a∗)nφ0.

with convergence in L2(R).

5. Prove Theorem 12.8, following the outline of the proof of Theo-
rem 12.7. Recall from Sect. 10.2 that B/� is the infinitesimal gen-
erator of the one-parameter unitary group U(a) := eiaB/�.

6. If X and Y are bounded operators, we may define adX(Y ) = [X,Y ],
where [X,Y ] = XY − Y X. Thus, say, (adX)3(Y ) = [X, [X, [X,Y ]]].
It is not hard to show that for any bounded operators Y and X, we
have

eXY e−X = eadX (Y )

= Y + [X,Y ] +
[X, [X,Y ]]

2!
+

[X, [X, [X,Y ]]]

3!
+ · · · .

(12.27)

(See Proposition 2.25 and Exercise 2.19 of [21].)

Suppose A and B are unbounded self-adjoint operators satisfying
[A,B] = i�I on Dom(AB) ∩ Dom(BA). Show that if we could ap-
ply (12.27) with X = iaB/� and Y = A (even though X and Y are
unbounded), then A and B would satisfy (12.22).

7. Let A be the operator in Sect. 12.2, and let B be the unique self-
adjoint extension of the operator B in that section. Show that the
operators X = iaB/� and Y = A do not satisfy (12.27).

Note: This result shows the hazards involved formally applying results
for bounded operators to unbounded operators.

Hint : Show that the unitary operators U(a) := exp(iaB/�) consist
of “translation with wrap around,” first on the eigenvectors of B and
then on the whole Hilbert space.



13
Quantization Schemes for Euclidean
Space

13.1 Ordering Ambiguities

One of the axioms of quantum mechanics states, “To each real-valued
function f on the classical phase space there is associated a self-adjoint
operator f̂ on the quantum Hilbert space.” The attentive reader will note
that we have not, up to this point, given a general procedure for con-
structing f̂ from f. If we call f̂ the quantization of f, then we have only
discussed the quantizations of a few very special classical observables, such
as position, momentum, and energy.
Let us now think about what would go into quantizing a (more-or-less)

general observable. Let us consider for simplicity a particle moving in R1

and let us assume that quantizations of x and p are the usual position
and momentum operators X and P. What should the quantization of, say,
xp be? Classically, xp and px are the same, but quantum mechanically,
XP does not equal PX. Furthermore, neither XP nor PX is self-adjoint,
because (XP )∗ = P ∗X∗ = PX, and PX 
= XP. In this case, then, a
reasonable candidate for the quantization would be

x̂p =
1

2
(XP + PX).

The significance of this simple example is that the failure of commuta-
tivity among quantum operators creates an ambiguity in the quantization
process. It does not make sense to simply “replace x by X and p by P
everywhere in the formula,” since the ordering of position and momen-
tum makes no difference on the classical side, but it does on the quantum
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side. Up to this point, we have not really had to confront this ambiguity,
because of the special form of the observables we have quantized. The
Hamiltonian, for example, is typically of the form H(x, p) = p2/(2m) +
V (x). Since each term contains only x or only p, it is natural to quantize
H to Ĥ = P 2/(2m)+V (X), where V (X) may be defined by the functional
calculus or simply as multiplication by V (x). In defining the angular mo-
mentum operators, we do encounter products of position and momentum,
but never of the same component of position and momentum. For a parti-
cle in R2, for example, we have, J = x1p2 − x2p1. On the quantum side,
X1 commutes with P2 and X2 with P2, and thus there is no ambiguity:
X1P2 −X2P1 is the same as P2X1 − P1X2.
When we turn to the quantization of a general observable, however,

we must confront the ordering ambiguity directly. Groenewold’s theorem
(Sect. 13.4) suggests that there is no single “perfect” quantization scheme.
Nevertheless, there is one that is generally acknowledged as having the best
properties, the Weyl quantization, and we spend most of our time with
that particular scheme. Other quantization schemes do also play a role in
physics, however; Wick-ordered quantization, notably, plays an important
role in quantum field theory. (In quantum field theory, the replacement of
certain Weyl-quantized operators with their Wick-quantized counterparts
is interpreted as a type of renormalization.)

13.2 Some Common Quantization Schemes

In this section, we consider several of the most commonly used quantization
schemes. For simplicity, we limit our attention to systems with one degree
of freedom and to classical observables that are polynomials in x and p.
(We consider the Weyl quantization in greater generality in Sect. 13.3.)
Furthermore, we resolve in this section not to worry about domain questions
and simply to use C∞

c (R) as the domain for all of our operators. Thus,
in this section, equality of operators means equality as maps of C∞

c (R) to
itself. It should be noted that the operators of the sort we will be considering
may very well fail to be essentially self-adjoint, even if they are symmetric.
Section 9.10 shows, for example, that the operator P 2 − cX4, for c >
0, is not essentially self-adjoint on C∞

c (R). We follow the terminology of
harmonic analysis by referring to a classical symbol f as the symbol of its
quantization f̂ . Once we have discussed each quantization scheme briefly,
we will formalize the definitions of all the schemes in Definition 13.1.
The simplest approach to quantization is to choose, once and for all,

which to put first, the position or the momentum operators. We may, for
example, choose to put the momentum operators to the right, acting first,
and the position operators to the left, acting second. In this approach, a
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polynomial in x and p will quantize to a differential operator in “standard
form,” with all the derivatives acting first, followed by multiplication oper-
ators. In harmonic analysis, there is a method for extending this quantiza-
tion scheme to more-or-less arbitrary symbols, f. For a general (nonpoly-

nomial) symbol f, the resulting operator f̂ is known as a pseudodifferential
operator.
A serious drawback of the pseudodifferential quantization is that even

when the symbol f is real-valued, the operator f̂ it produces is typically
not self-adjoint (or even symmetric). If, for example, f(x, p) = xp, then the
associated operator is XP, the adjoint of which is PX, which is not equal
to XP. The simplest way to fix this problem is to symmetrize the operator
by taking half the sum of the operator and its adjoint.
The Weyl quantization, meanwhile, takes more seriously the possibility

of different orderings of X and P, by considering all possible orderings.
Thus, in quantizing, say, x2p2, the Weyl quantization will give

1

6
(X2P 2 +XPXP +XP 2X + PX2P + PXPX + P 2X2).

For a general monomial, the Weyl quantization similarly averages all the
possible orderings of the position and momentum operators.
For Wick-ordered and anti-Wick-ordered quantization, we no longer

regard the position and momentum operators as the “basic” operators,
but rather the creation and annihilation operators. Specifically, given any
positive real number α, we introduce complex coordinates on the classical
phase space by

z = x− iαp

z̄ = x+ iαp. (13.1)

(Although it would seem more natural to define z to be x + iαp, this
choice would lead to problems later, especially with the Segal–Bargmann
transform.) We then consider the corresponding quantum operators, which
we call the raising and lowering operators:

a∗ = X − iαP

a = X + iαP. (13.2)

In comparing these operators to the ones defined in the context of the
harmonic oscillator, we should think of α as corresponding to 1/(mω).
Even with this identification, however, the operators in (13.2) differ by a
constant from the raising and lowering operators of Chap. 11. [The over-
all normalization of the raising and lowering operators is not important
in this context, provided that we are consistent in the normalization be-
tween (13.1) and (13.2).] In particular, the commutator of a and a∗ is not
I but rather 2α�I.
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In Wick-ordered quantization, we begin by expressing the classical
observable f in terms of z and z̄ rather than in terms of x and p. When we
quantize, we put all the lowering operators (coming from the factors of z̄
in f) to the right, acting first, and the raising operators (coming from the
factors of z in f) to the left, acting second. This approach to quantization is
useful in quantum field theory, where letting the lowering operators act first
can cause certain otherwise ill-defined expressions to become well defined.
In anti-Wick-ordered quantization, we do the reverse, putting the raising
operators to the right, acting first. Although anti-Wick-ordered quantiza-
tion seems singular in the context of quantum field theory, in systems with
finitely many degrees of freedom, it is actually better behaved than Wick-
ordered quantization.

Definition 13.1 Define several different quantization schemes for symbols
that are polynomials in x and p as follows. Each scheme is uniquely
determined—as a map from polynomials on R2 into operators on C∞

c (R)—
by the indicated formulas.

1. Pseudodifferential operator quantization:

Q(xjpk) = XjP k.

2. Symmetrized pseudodifferential operator quantization:

Q(xjpk) =
1

2
(XjP k + P kXj).

3. Weyl quantization:

Q(xjpk) =
1

(j + k)!

∑

σ∈Sj+k

σ (X,X, . . . , X, P, P, . . . , P ) ,

where for any operators A1, A2, . . . , An and any σ ∈ Sn, we define

σ(A1, A2, . . . , An) = Aσ(1)Aσ(2) · · ·Aσ(n). (13.3)

4. Wick-ordered quantization with parameter α:

Q((x+ iαp)j(x− iαp)k) = (X − iαP )k(X + iαP )j , α > 0.

5. Anti-Wick-ordered quantization with parameter α:

Q((x+ iαp)j(x− iαp)k) = (X + iαP )j(X − iαP )k, α > 0.

In applications, the most useful quantization schemes are the Wick-
ordered, anti-Wick-ordered, and Weyl schemes. All of the quantization
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schemes in Definition 13.1 except the pseudodifferential operator quantiza-
tion have the property of mapping real-valued polynomials to symmetric
operators on C∞

c (R). (See Exercise 3 in the case of the Wick- and anti-
Wick-ordered quantizations.)
In comparing the different quantization schemes, it is important to rec-

ognize that two different expressions may describe the same operator. We
may calculate, for example, that

1

2
(XP 2 + P 2X) =

1

2
(PXP + [X,P ]P + PXP − P [X,P ])

= PXP,

since [X,P ] is a multiple of the identity and thus commutes with P. As a
result, we can eliminate the PXP term in the Weyl quantization of xp2,
with the result that

QWeyl(xp
2) =

1

3
(XP 2 + PXP + P 2X) =

1

2
(XP 2 + P 2X), (13.4)

which coincides, in this very special case, with the symmetrized pseudod-
ifferential quantization of xp2.

Example 13.2 If f(x, p) = x2, then the Weyl, Wick-ordered and anti-
Wick-ordered quantizations of f are as follows:

QWeyl(x
2) = X2

QWick(x
2) = X2 − 1

2
α�I

Qanti−Wick(x
2) = X2 +

1

2
α�I.

Proof. The value for QWeyl(x
2) is apparent. To compute the Wick- and

anti-Wick-ordered quantizations, we first write x as (z + z̄)/2, so that

x2 =
(z + z̄)2

4
=

1

4
(z2 + 2zz̄ + z̄2).

Thus, we have, for example,

QWick(x
2) =

1

4

(
(X − iαP )2 + 2(X − iαP )(X + iαP ) + (X + iαP )2

)
.

When we expand this expression out, the P 2 terms cancel, and the XP
and PX terms from (X − iαP )2 will cancel with the XP and PX terms
from (X + iαP )2. Thus, we will be left with X2 terms and the XP and
PX terms from the cross-term above:

QWick(x
2) =

1

4

(
4X2 + 2iα[X,P ]

)
.
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Using the commutation relation between X and P gives the desired result.
The calculation of QantiWick(x

2) is identical except that the order of the
factors in the cross-term is reversed, which gives the opposite sign for the
[X,P ] term.

Proposition 13.3 The Weyl quantization—viewed as a linear map of the
space of polynomials on R2 into operators on C∞

c (R)—is uniquely charac-
terized by the following identity:

QWeyl((ax + bp)j) = (aX + bP )j (13.5)

for all non-negative integers j and all a, b ∈ C.

Proof. The Weyl quantization is easily seen to satisfy the identity

QWeyl((a1x+ b1p) · · · (ajx+ bjp))

=
1

j!

∑

σ∈Sj

σ(a1X + b1P, . . . , ajX + bjP ), (13.6)

for all sequences a1, . . . , aj and b1, . . . , bj of complex numbers, where the
expression σ(·, ·, . . . , ·) is defined by (13.3). Specializing to the case where all
the aj ’s are equal to a and all the bj ’s are equal to b gives (13.5). Conversely,
suppose that Q is any linear map of polynomials into operators on C∞

c (R)
satisfying Q((ax + bp)j) = (aX + bP )j for all a, b, and j. For each j, let
Vj denote the space of homogeneous polynomials f of degree j such that
Q(f) = QWeyl(f). Then Vj contains all polynomials of the form (ax+ bp)j ,
and thus, by Exercise 1, Vj consists of all homogeneous polynomials of
degree j, so that Q = QWeyl.

Proposition 13.4 The Weyl quantization satisfies

QWeyl(xg) = QWeyl(x)QWeyl(g)−
i�

2
QWeyl

(
∂g

∂p

)
(13.7)

= QWeyl(g)QWeyl(x) +
i�

2
QWeyl

(
∂g

∂p

)
(13.8)

and

QWeyl(pg) = QWeyl(p)QWeyl(g) +
i�

2
QWeyl

(
∂g

∂x

)
(13.9)

= QWeyl(g)QWeyl(p)−
i�

2
QWeyl

(
∂g

∂x

)
(13.10)

for all polynomials g in x and p.

It should be noted that the formulas for the Weyl quantization in Propo-
sition 13.4 may not give the same “expression” for QWeyl(f) as does
Definition 13.1, but it does give the same operator. [Compare (13.4).]
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Proof. Suppose A = (a1X + b1P ) and B = (a2X + b2P ). Then [A,B] is a
multiple of I, from which we can easily verify that

ABj = BkABj−k + k[A,B]Bj−1,

for 0 ≤ k ≤ j. If we sum this relation over k and divide by j+1, we obtain

ABj =
1

j + 1

j∑

k=0

BkABj−k +
1

j + 1

j(j + 1)

2
[A,B]Bj−1. (13.11)

Now, A is the Weyl quantization of (a1X+b1p) and Bj is the Weyl quanti-
zation of (a2x+ b2p)

j , and both terms on the right-hand side of (13.11) are
easily recognized as Weyl quantizations. Thus, after rearranging the terms
and evaluating the commutator, (13.11) becomes,

QWeyl((a1x+ b1p)(a2x+ b2p)
j)

= QWeyl(a1x+ b1p)QWeyl((a2x+ b2p)
j)

− i�
j

2
(a1b2 − a2b1)QWeyl((a1x+ b1p)

j−1). (13.12)

Meanwhile, if we run the same argument starting with BjA we obtain a
similar result:

QWeyl((a1x+ b1p)(a2x+ b2p)
j)

= QWeyl((a2x+ b2p)
j)QWeyl(a1x+ b1p)

+ i�
j

2
(a1b2 − a2b1)QWeyl((a1x+ b1p)

j−1). (13.13)

If we specialize to the case (a1, b1) = (1, 0) and (a2, b2) = (a, b), we get

QWeyl(x(ax + bp)j) = QWeyl(x)QWeyl((ax+ bp)j)

− i�
j

2
bQWeyl((ax + bp)j−1), (13.14)

where the last term on the right-hand side of (13.14) is −i�/2 times the
Weyl quantization of ∂(ax+bp)j/∂p. Thus, (13.14) is precisely (13.7) in the
case g(x, p) = (ax+ bp)j . We can then see from Exercise 1 that (13.7) hold
for all polynomials g. The proofs of (13.8), (13.9), and (13.10) are similar.

13.3 The Weyl Quantization for R2n

In this section, we study the Weyl quantization on a much larger class of
symbols (i.e., classical observables) than the polynomial symbols considered
in the previous section. We also generalize from symbols defined on R2 to
symbols defined on R2n.
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13.3.1 Heuristics

It is a straightforward matter to extent the Weyl quantization on
polynomials from R2 to R2n. This extended quantization will satisfy

QWeyl((a · p+ b · p)j) = (a ·X+ b ·P)j (13.15)

for all a,b ∈ Rn and all non-negative integers j, as in Proposition 13.3 in
the n = 1 case. Suppose we wish to extend QWeyl to certain nonpolynomial
symbols, starting with complex exponentials. If we multiply (13.15) by
(i)j/j! and sum on j, we would expect to have

QWeyl

(
ei(a·x+b·p)

)
= ei(a·X+b·P). (13.16)

Now, if f is any sufficiently nice function on R2n, we can expand f as an
integral involving functions of the form exp(i(a · x + b · p)), by using the
Fourier transform:

f(x,p) = (2π)−n

∫

R2n

f̂(a,b)ei(a·x+b·p) da db,

where f̂ is the Fourier transform of f. In light of (13.16), it is then natural
to define

QWeyl(f) = (2π)−n

∫

R2n

f̂(a,b)ei(a·X+b·P) da db. (13.17)

Before proceeding, let us pause for a moment to compute the operator
exp(i(a ·X+b ·P)). If A and B are bounded operators that commute with
their commutator (i.e., such that [A, [A,B]] = [B, [A,B]] = 0), then

eA+B = e−[A,B]/2eAeB. (13.18)

(See Theorem 14.1, which is proved in Sect. 3.1 of [21]. Equation (13.18) is
a special case of the Baker–Campbell–Hausdorff Formula.) If we formally
apply (13.18) with A = ia · X and B = ib · P (even though these are
unbounded operators), we obtain

ei(a·X+b·P) = ei�(a·b)/2eia·Xeib·P. (13.19)

Meanwhile, by Example 10.16 in Sect. 10.2, we know that

(eib·Pψ)(x) = ψ(x+ �b).

Thus, we may reasonably hope that
(
ei(a·X+b·P)ψ

)
(x) = ei�(a·b)/2eia·xψ (x+ �b) . (13.20)

In general, we get incorrect results if we formally apply results for bounded
operators to operators that are unbounded. In this case, however, the result
of the formal calculation is correct. The simplest way to prove this is to
replace a and b by ta and tb on the right-hand side of (13.19) and to check
that the result is a strongly continuous one-parameter unitary group.
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Proposition 13.5 For all a and b in Rn, the operators Ua,b(t) on L2(Rn)
given by

(Ua,b(t)ψ)(x) = eit
2
�(a·b)/2eita·xψ (x+ t�b) (13.21)

form a strongly continuous one-parameter unitary group. The infinitesimal
generator of this group coincides with a · X + b · P on C∞

c (Rn) and is
essentially self-adjoint on this domain. Thus, if a · X + b · P denotes the
unique self-adjoint extension of the infinitesimal generator on C∞

c (Rn), it
follows from Stone’s theorem that

eit(a·X+b·P) = eit
2
�(a·b)/2eita·Xeitb·P

for all t ∈ R. In particular, (13.19) and (13.20) hold.

Proof. It is apparent that Ua,b is unitary for each a and b, and it is a
simple direct computation to show that it is indeed a unitary group. Strong
continuity is proved in the usual way using a dense subspace, as in the proof
of Example 10.12. When ψ is in C∞

c (Rn), it is easy to differentiate the right-
hand side of (13.21) with respect to t at t = 0 to obtain the formula for the
infinitesimal generator. Finally, the essential self-adjointness of a ·X+b ·P
on C∞

c (Rn) is precisely the content of Proposition 9.40.
With the computation of the operator ei(a·X+b·P) in hand, we return to

our analysis of the proposed formula (13.17) for the general Weyl quan-
tization. If the Fourier transform of f is in L1(R2n), we can regard the
right-hand side of (13.17) as an absolutely convergent “Bochner” integral
with values in the Banach space B(H). For our purposes, however, it is
more convenient to think of operators on L2(Rn) as integral operators and
to write down a formula for the integral kernel of QWeyl(f) in terms of f
itself. (But see Exercise 7.)
At a formal level, the operator mapping ψ to ei�(a·b)/2eia·xψ (x+ �b)

may be thought of as an “integral” operator, with integral kernel given by

ei�(a·b)/2eia·xδn(x+ �b− y), (13.22)

where δn is an n-dimensional delta-function (the n-dimensional analog of
the distribution in Example A.26). Thus, it should be possible to obtain the
integral kernel of QWeyl(f) by integrating the preceding expression against

f̂(a,b). To evaluate the resulting integral, we make the change of variable
c = �b, in which case we obtain

(2π�)−n

∫

Rn

∫

Rn

ei(a·β)/2eia·xδn(x+ c− y)f̂(a, c/�) dc da

= (2π�)−n

∫

Rn

ei(a·(y−x))/2eia·xf̂(a, (y − x)/�) da

= �−n(2π)−n/2

[
(2π)−n/2

∫

Rn

eia·(x+y)/2f̂(a, (y − x)/�) da

]
. (13.23)
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We may recognize the integral in square brackets in the last line of (13.23)
as undoing the Fourier transform of f in the x-variable, leaving us with the
partial Fourier transform of f in the p variable, evaluated at the points (x+
y)/2, (y−x)/�. (The partial Fourier transform means the ordinary Fourier
transform with respect to one of the variables, with the other variable
fixed.) Thus, we expect that QWeyl(f) should be the integral operator with
integral kernel κf given by

κf (x,y) = (2π�)−n

∫

Rn

f((x+ y)/2,p)e−i(y−x)·p/� dp. (13.24)

13.3.2 The L2 Theory

With the preceding calculations as motivation, we now define QWeyl(f) to
be the integral operator with kernel κf , beginning with the case in which
f belongs to L2(R2n). The resulting operators will turn out to be Hilbert–
Schmidt operators on L2(Rn).
If H is a Hilbert space and A ∈ B(H) is a non-negative self-adjoint

operator on H, then it can be shown that A has a well-defined (but possibly
infinite) trace. What this means is that the value of

trace(A) :=
∑

j

〈ej, Aej〉

is the same for each orthonormal basis {ej} of H. Note that since A is a
non-negative operator, 〈ej, Aej〉 is a non-negative real number, so that the
sum is always defined, but may have the value +∞.
Now, if A is any bounded operator, then A∗A is self-adjoint and non-

negative. We say that A is Hilbert–Schmidt if

trace(A∗A) < ∞.

Given two Hilbert–Schmidt operators A and B, it can be shown that A∗B
is a trace-class operator, meaning that the sum

trace(A∗B) :=

∞∑

j=1

〈ej, A∗Bej〉

is absolutely convergent and the value of the sum is independent of the
choice of orthonormal basis. We define the Hilbert–Schmidt inner product
of A and B and the associated Hilbert–Schmidt norm of A by

〈A,B〉HS := trace(A∗B)

‖A‖HS :=
√
trace(A∗A).

It can be shown that the space of Hilbert–Schmidt operators on H forms a
Hilbert space with respect to the Hilbert–Schmidt inner product.
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(See Sect. 19.2 for more details.) We denote the space of Hilbert–Schmidt
operators on H by HS(H).
We will make use of the following standard (and elementary) result

characterizing Hilbert–Schmidt operators on L2(Rn) in terms of integral
operators. (See, for example, Theorem VI.23 in Volume I of [34].)

Proposition 13.6 If κ is in L2(Rn ×Rn) then for every ψ ∈ L2(Rn), the
integral

Aκ(ψ)(x) :=

∫

Rn

κ(x,y)ψ(y) dy (13.25)

is absolutely convergent for almost every x ∈ Rn, and Aκ(ψ) also belongs
to L2(Rn). Furthermore, the operator Aκ is a Hilbert–Schmidt operator on
L2(Rn) and

‖Aκ‖HS = ‖κ‖L2(Rn×Rn) .

Conversely, for any Hilbert–Schmidt operator A on L2(Rn), there exists
a unique κ ∈ L2(Rn × Rn) such that A = Aκ.

We are now ready, using discussion in Sect. 13.3.1 as motivation, to define
the Weyl quantization of L2 symbols.

Definition 13.7 For all f ∈ L2(R2n), define κf : R2n → C by

κf (x,y) = (2π�)−n

∫

Rn

f((x+ y)/2,p)e−i(y−x)·p/� dp, (13.26)

and define the Weyl quantization of f , as an operator on L2(Rn), by

QWeyl(f) = Aκf
,

where Aκf
is defined by (13.25).

The integral in (13.26) is not necessarily absolutely convergent, and
should be understood as computing a partial Fourier transform. Thus, we
should, strictly speaking, replace the right-hand side of (13.26) with

lim
R→∞

(2π�)−n

∫

|p|≤R

f((x+ y)/2,p)e−i(y−x)·p/� dp, (13.27)

where the limit is in the norm topology of L2(R2n). [The partial Fourier
transform maps the Schwartz space S(R2n) to itself. By Fubini’s theorem
and the Plancherel formula for Rn, the partial Fourier transform is an L2-
isometry and extends to a unitary map of L2(R2n) to itself. This unitary
map can be computed by the usual formula on functions in L1 ∩ L2 and
can be computed by the limiting formula similar to (13.27) in general.]
In words, we may describe the procedure for computing κf at a point

(x1,x2) in R2n as follows. First, compute the partial Fourier transform Fp
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of f(x,p) in the p-variable, resulting in the function (Fpf)(x, ξ). Then
evaluate Fpf at the point x = (x1 + x2)/2, ξ = (x2 − x1)/�. Finally,
multiply the result by �−n(2π)−n/2 to get

κf (x
1,x2) = �−n(2π)−n/2(Fpf)((x

1 + x2)/2, (x2 − x1)/�). (13.28)

Theorem 13.8 The map QWeyl is a constant multiple of a unitary map
of L2(R2n) onto HS(L2(Rn)). The inverse map Q−1

Weyl : HS(L2(Rn)) →
L2(R2n) is given by

Q−1
Weyl(A)(x,p) = �n

∫

Rn

κ(x− �b/2,x+ �b/2)eib·p db,

where κ is the integral kernel of A as in Proposition 13.6.
Furthermore, for all f ∈ L2(R2n), we have QWeyl(f̄) = QWeyl(f)

∗; in
particular, QWeyl(f) is self-adjoint if f is real valued.

Properly speaking, the integral in the theorem should be understood
as an L2 limit, as in (13.27). The fact that QWeyl is unitary (up to a con-
stant) tells us that for an appropriate constant c, the operators cei(a·X+b·P)

form an “orthonormal basis in the continuous sense” for the Hilbert space
HS(L2(Rn)). (Compare Sect. 6.6.)
It is possible, using the same formulas, to extend the notion of Weyl

quantization to symbols belonging the space of tempered distributions,
that is, the space of continuous linear functionals on S(R2n). We will not,
however, develop this construction here. See [11] for more information.
Proof. Proposition 13.6 gives a unitary identification of HS(L2(Rn)) with
L2(Rn × Rn). Thus, it suffices to show that the map f �→ κf is a multiple
of a unitary map. This result holds because the partial Fourier transform
is a unitary map of L2(R2n) to itself and composition with an invertible
linear map is a constant multiple of a unitary map. The inverse of the map
f �→ κf is obtained by inverting the linear map and undoing the partial
Fourier transform. Finally, it is apparent from (13.26) that

κf̄ (x,y) = κf(y,x).

This, along with Exercise 6, shows that QWeyl(f̄) = QWeyl(f)
∗.

13.3.3 The Composition Formula

If f and g are L2 functions on R2n, then QWeyl(f) andQWeyl(g) are Hilbert–
Schmidt operators, in which case their product is again Hilbert–Schmidt.
(Indeed, the product of a Hilbert–Schmidt operator and a bounded operator
is always Hilbert–Schmidt.) Thus, sinceQWeyl is a bijection of L2(R2n) with
HS(L2(Rn)), there is a unique L2 function, which we denote by f ⋆ g, such
that

QWeyl(f)QWeyl(g) = QWeyl(f ⋆ g). (13.29)
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(Of course, the operator ⋆, like the Weyl quantization itself, depends on �,
but we suppress this dependence in the notation.)

Proposition 13.9 The Moyal product f ⋆ g may be characterized in terms
of the Fourier transform as

(̂f ⋆ g)(a,b) = (2π)−n

∫∫
e−i�(a·b′−b·a′)/2

× f̂(a− a′,b− b′)ĝ(a′,b′) da′ db′,

where both integrals are over Rn.

Note that if we set � = 0 in the above formula, f̂ ⋆ g reduces to (2π)−n

times the convolution of f̂ and ĝ, which is nothing but the Fourier transform
of fg. It is thus not difficult to show (Exercise 10) that

lim
�→0+

f ⋆ g = fg.

That is to say, the Moyal product f ⋆ g is a “deformation” of the ordinary
pointwise product of functions on R2n. More generally, the Moyal product
can be expanded in an asymptotic expansion in powers of �, as explained
in Sect. 2.3 of [11]. This expansion terminates in the case that f and g are
both polynomials.
Proof. It is, of course, possible to obtain this formula using kernel func-
tions. It is, however, easier to work with the (13.17), which can be shown
(Exercise 7) to give the same result as Definition 13.7 when f is a Schwartz
function. We assume standard properties of the Bochner integral for func-
tions with values in a Banach space [in our case, B(H)], which are similar
to those of the Lebesgue integral. (See, for example, Sect. V.5 of [46].)
We have, then,

QWeyl(f)QWeyl(g) = (2π)−n

∫∫
f̂(a,b)ei(a·X+b·P) da db

× (2π)−n

∫∫
ĝ(a′,b′)ei(a

′·X+b′·P) da′ db′. (13.30)

Now, it is an easy calculation to verify, using Proposition 13.5, that

ei(a·X+b·P)ei(a
′·X+b′·P) = e−i�(a·b′−b·a′)/2ei((a+a′)·X+(b+b′)·P), (13.31)

which is what one obtains by formally applying the special case of the
Baker–Campbell–Hausdorff formula in (13.18). Thus, we may combine the
integrals in (13.30) to obtain

QWeyl(f)QWeyl(g) = (2π)−2n

∫∫∫∫
e−i�(a·b′−b·a′)/2ei((a+a′)·X+(b+b′)·P)

× f̂(a,b)ĝ(a′,b′) da db da′ db′.
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By introducing new variables c = a+ a′ and d = b+ b′ in the a and b
integrals and reversing the order of integration, we obtain, after simplifying
the exponent,

QWeyl(f)QWeyl(g)

= (2π)−n

∫∫
[(2π)−n

∫∫
e−i�(c·b′−d·a′)/2

× f̂(c− a′,d− b′)ĝ(a′,b′) da′ db′] ei(c·X+d·P) dc dd.

From this and (13.17), we see that QWeyl(f)QWeyl(g) is the Weyl quanti-
zation of the function whose Fourier transform is the quantity in square
brackets above, which is what we wanted to show.

Proposition 13.10 The Moyal product f ⋆ g extends to a continuous map
of L2(R2n) × L2(R2n) into L2(R2n) and the composition formula (13.29)
holds for all f and g in L2(R2n).

Proof. A standard inequality asserts that for any two Hilbert–Schmidt
operators A and B, we have

‖AB‖HS ≤ ‖A‖HS ‖B‖HS .

It follows that the product map (A,B) �→ AB is a continuous map of
HS(L2(Rn))×HS(L2(Rn)) to HS(L2(Rn)). Meanwhile, the Weyl quantiza-
tion is a constant multiple of a unitary map from L2(R2n) to HS(L2(Rn)).
For Schwartz functions f and g, the Moyal product is nothing but

f ⋆ g = Q−1
Weyl(QWeyl(f)QWeyl(g)). (13.32)

The right-hand side of (13.32) provides the desired continuous extension of
f ⋆ g. Clearly, the composition formula (13.29) holds for this extension.

13.3.4 Commutation Relations

In quantum mechanics, the commutator of two operators (divided by i�)
plays a role similar to that of the Poisson bracket in classical mechanics.
Thus, we may naturally ask: To what extent does the Weyl quantization
(or any other quantization scheme) map Poisson brackets to commutators?
The short answer is: Not always. Indeed, as we will see in Sect. 13.4, no
“reasonable” quantization scheme can give an exact correspondence be-
tween {f, g} on the classical side and [A,B]/(i�) on the quantum side.
Nevertheless, such an exact correspondence does hold for various special
classes of symbols. If we consider, for example, the class of symbols that
depend only on x and not on p, then on the classical side, all such functions
Poisson commute. The Weyl quantization maps such functions f(x) to the
operator of multiplication by f(x), and thus the quantizations of any two
such functions commute. A more interesting (in particular, noncommuta-
tive) example is as follows.
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Proposition 13.11 Suppose f is a polynomial in x and p of degree at
most 2 and g is an arbitrary polynomial in x and p. Then

1

i�
[QWeyl(f), QWeyl(g)] = QWeyl({f, g}), (13.33)

where {f, g} is the Poisson bracket of f and g.

Here, we define the Weyl quantization by the obvious n-variable exten-
sion of Definition 13.1, and we regard all operators as operating simply
on C∞

c (Rn). See Exercise 8 for another class of symbols on which (13.33)
holds. Although the requirement that g be a polynomial can be relaxed,
we will not attempt to obtain the optimal version of the result.
Proof. For notational simplicity, we abbreviate QWeyl(f) to Q(f) for the
duration of the proof. If f has degree zero, then both sides of the desired
equality are zero. Turning to case in which f has degree 1, we use the n-
variable extension of Proposition 13.4, the proof of which is essentially the
same as the 1-variable result. The result is as follows:

Q(xjg) = Q(xj)Q(g)− i�

2
Q

(
∂g

∂pj

)

= Q(g)Q(xj) +
i�

2
Q

(
∂g

∂pj

)
.

By subtracting these two formulas and rearranging, we get

1

i�
[Q(xj), Q(g)] = Q

(
∂g

∂pj

)
= Q({xj , g}).

A very similar argument establishes the desired result when f = pj and
thus for all homogeneous polynomials of degree 1.
Suppose now that f1 and f2 are homogeneous polynomials of degree

1 in x and p. Then it follows easily from Proposition 13.4 that for any
polynomial h, we have

Q(fjh) =
1

2
(Q(fj)Q(h) +Q(h)Q(fj)), j = 1, 2. (13.34)

In particular, we have

Q(f1f2) =
1

2
(Q(f1)Q(f2) +Q(f2)Q(f1)). (13.35)

Using (13.35) and the product rule for commutators (Proposition 3.15), we
have

1

i�
[Q(f1f2), Q(g)]

=
1

2i�
([Q(f1), Q(g)]Q(f2) +Q(f1)[Q(f2), Q(g)]

+ [Q(f2), Q(g)]Q(f1) +Q(f2)[Q(f1), Q(g)]).
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Using the degree-1 case of the result we are trying to prove, along with
(13.34), we get

1

i�
[Q(f1f2), Q(g)] =

1

2
(Q({f1, g})Q(f2) +Q(f1)Q({f2, g})

+Q({f2, g})Q(f1) +Q(f2)Q({f1, g}))
= Q(f2{f1, g}) +Q(f1{f2, g})
= Q({f1f2, g}), (13.36)

where in the last equality we have used the product rule for the Poisson
bracket. We have now established the desired result when f is a homoge-
neous polynomial of degree 0, 1, or 2.
At first glance, it appears that one could extend the result to the case

where f has degree 3, by considering three homogenous polynomials f1, f2,
and f3 of degree 1 and symmetrizing as in (13.35). The argument breaks
down, however, because the Q(fj)’s do not commute. The Q(fj)’s will not
always occur in the correct order to allow us to pull the fj ’s back inside the
Weyl quantization, the way we did in (13.36) in the degree-2 case. Indeed,
an elementary but tedious calculations shows that

1

i�
[QWeyl(x

2p), QWeyl(xp
2)] = 3X2P 2 − 6i�XP − �2I,

whereas

QWeyl({x2p, xp2}) = 3X2P 2 − 6i�XP − 3

2
�2I,

so that the two expressions differ by �2I/2.
We conclude this section with a brief glimpse of an important “equivari-

ance” property of the Weyl quantization. Note that the Poisson bracket of
two real valued homogeneous polynomials of degree 2 is again real valued
and homogeneous of degree 2. The space of real homogeneous polynomials
of degree 2 thus forms a Lie algebra (Sect. 16.3) with respect to the Poisson
bracket. This Lie algebra is naturally isomorphic to the Lie algebra sp(n;R)
of Lie group Sp(n;R), the real symplectic group. This group is the group of
invertible linear transformations that preserve a skew-symmetric form on
R2n. See Chap. 16 for information about Lie groups and their Lie algebras.
If we apply Proposition 13.11 in the case in which both f and g are

homogeneous of degree 2, we see that the map π(f) := QWeyl(f) is a repre-
sentation of sp(n;R) in the space of skew-symmetric operators on L2(Rn).
It can be shown that associated to this representation of sp(n;R) there is
a projective unitary representation Π of the group Sp(n;R), known as the
metaplectic representation. (See, again, Chap. 16 for definitions.) Proposi-
tion 13.11 is the infinitesimal version of the following equivariance property
of the Weyl quantization: For all A ∈ Sp(n;R) and all f ∈ L2(R2n), we
have

QWeyl(f ◦A−1) = Π(A)QWeyl(f)Π(A)
−1.
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See Theorem 2.15 and Chap. 4 of [11] [where our Π(A) corresponds to
μ((A∗)−1) in Folland’s notation] for this result and much more about the
metaplectic representation.

13.4 The “No Go” Theorem of Groenewold

In Sect. 13.3.4, we noted that the Weyl quantization on polynomials satisfies

1

i�
[QWeyl(f), QWeyl(g)] = QWeyl({f, g}), (13.37)

provided that f is a polynomial of degree 2, but not in general. One might
think that the failure of (13.37) represents a shortcoming in the definition
of the Weyl quantization, which could be remedied by an alternative defini-
tion. In this section, however, we will see that no quantization scheme that
maps xj and pj to the usual position and momentum operators Xj and Pj

can satisfy (13.37) for general polynomials in x and p. This sort of nonex-
istence result, of a construct satisfying seemingly natural and desirable
conditions, is referred to in the physics literature as a “no go” theorem.
In light of this result, one might think that perhaps the position and

momentum operators should be defined differently, possibly with an ac-
companying change in the choice of the quantum Hilbert space. Indeed,
there is a map Q that satisfies (13.37) for all f and g, namely the pre-
quantization map described in Sect. 23.3. The prequantization map accom-
plishes this feat by drastically enlarging the quantum Hilbert space, from
L2(Rn) to L2(R2n). The Hilbert space L2(R2n) is considered to be “too
big” from a physical standpoint, which explains why the map Q is only
“prequantization” rather than “quantization.” (The prequantization map
has a number of other undesirable features that are described in Sect. 23.3.)
If one imposes a natural “smallness” assumption on the quantum Hilbert
space (irreducibility under the action of the position and momentum op-
erators), then the Stone–von Neumann theorem will tell us that (modulo
certain technical domain assumptions) any choice of position and momen-
tum operators satisfying the canonical commutation relations is unitarily
equivalent to the usual ones.
The upshot of the discussion in the two preceding paragraphs is that

there is no physically reasonable quantization scheme that satisfies (13.37)
for all (polynomial) functions f and g.
We turn, now, to Groenewold’s “no go” theorem. We need to make

domain assumptions, so that it makes sense to compute the commuta-
tors of the quantized operators. The simplest approach is to assume that
the quantization Q(f) of any polynomial f will be in the algebra gener-
ated by the X ’s and P ’s, and thus that Q(f) will be a differential operator
with polynomial coefficients. There is a variant of this result, known as van
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Hove’s theorem, that proves a similar “no go” result under a more gen-
eral assumption about the form of the quantized operators. See [15] for a
rigorous proof of van Hove’s theorem.

Definition 13.12 For any k ≥ 0, let Pk denote the space of homogeneous
polynomials of degree k and let P≤k denote the space of all polynomials of
degree at most k.

Theorem 13.13 (Groenewold’s Theorem) Let D(Rn) denote the space
of differential operators on Rn with polynomial coefficients. There does not
exist a linear map Q : P≤4 → D(Rn) with the following properties.

1. Q(1) = I.

2. Q(xj) = Xj and Q(pj) = Pj.

3. For all f and g in P≤3, we have

Q({f, g}) = 1

i�
[Q(f), Q(g)]. (13.38)

Note that in Property 3 of the theorem, we assume that f and g belong
to P≤3 rather than P≤4. This assumption guarantees that {f, g} belongs
to P≤4, so that the left-hand side of (13.38) is defined.
Our strategy in proving Groenewold’s theorem is the following. We know

(Proposition 13.11) that the Weyl quantization satisfies (13.38) if f has
degree at most 2 and g has degree at most 3. Using this result, we can
show that any map Q satisfying the properties in Theorem 13.13 must
coincide with the Weyl quantization on P≤3. We then identify a polynomial
f ∈ P4 that can be expressed as a Poisson bracket in two different ways,
f = {g, h} = {g′, h′}, with g, h, g′, and h′ in P3. Upon calculating that
[QWeyl(g), QWeyl(h)] does not coincide with [QWeyl(g

′), QWeyl(h
′)], we will

have a contradiction.
The proof will consist of several lemmas, followed by the coup de grâce.

Lemma 13.14 Consider an element A of D(Rn) expressed as

A =
∑

k

fk(x)

(
∂

∂x

)k

,

where k ranges over multi-indices, where the fk’s are polynomials, and
where only finitely many of the fk’s are nonzero. Then A is the zero oper-
ator on C∞

c (Rn) only if each of the fk’s is zero.

Proof. For each multi-index k, let |k| = k1 + · · · + kn. Suppose not all
the fk’s are zero, let N be the smallest non-negative integer for which fk
is nonzero for some k with |k| = N, and let k0 be some multi-index with
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|k0| = N and fk0

= 0. Let us apply A to a function g that is equal, in a

neighborhood of the origin, to xk0 . Then all the terms in Ag other than
the fk0

term will be zero in a neighborhood of the origin, whereas the fk0

term will be a nonzero constant in a neighborhood of the origin. Thus, A
is not the zero operator.

Lemma 13.15 If A belongs to D(Rn) and A commutes with Xj and Pj

for all j = 1, . . . , n, then A = cI for some c ∈ C.

Proof. We may easily prove by induction that
(

∂

∂xj

)k

(xjg(x)) = k

(
∂

∂xj

)k−1

g(x) + xj

(
∂

∂xj

)k

g(x)

for any polynomial g. Thus, for any multi-index k, we have
[
f(x)

(
∂

∂x

)k

, Xj

]
= kjf(x)

(
∂

∂x

)k−ej

. (13.39)

Suppose A is a nonzero element of D(Rn) that commutes with each Xj .
If deg(A) = M, consider a nonzero term in A of degree M :

fk0
(x)

(
∂

∂x

)k0

, |k0| = M, fk0

= 0.

If M > 0, we can pick some j such that the jth entry of k0 is nonzero.
By (13.39) and our assumption on A, we have

0 = [A,Xj ] = (k0)jfk0
(x)

(
∂

∂x

)k0−ej

+ other terms,

where the other terms involve multi-indices of the form k−ej, with k 
= k0.
Thus, by Lemma 13.14, [A,Xj ] is not the zero operator.
We see, then, that any A ∈ D(Rn) that commutes with each Xj must be

of degree zero; that is, Amust simply be multiplication by some polynomial
f(x). If, in addition, A commutes with each Pj , then

0 = [f(x), Pj ] = i�
∂f

∂xj
(x).

Thus, actually, f must be constant and A is a multiple of the identity
operator.

Lemma 13.16 For any f ∈ P2, there exist g1, . . . , gj and h1, . . . , hj in P2

such that
f = {g1, h1}+ · · ·+ {gj, hj}.

Furthermore, for any f ′ ∈ P3, there exist elements g′1, . . . , g
′
kof P3 and

h′
1, . . . , h

′
k of P2 such that

f ′ = {g′1, h′
1}+ · · ·+ {g′k, h′

k}.
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Proof. See Exercise 12.

Lemma 13.17 If Q satisfies the conditions in Theorem 13.13, then Q
coincides with QWeyl on P≤3.

Proof. Our argument leans heavily on Proposition 13.11. Note that, by
assumption, Q coincides with QWeyl on P≤1. For f ∈ P2, let us write
Q(f) as

Q(f) = QWeyl(f) +Af .

For any g ∈ P≤1, we have, by (13.38) and Proposition 13.11,

Q({f, g}) = 1

i�
[Q(f), Q(g)]

=
1

i�
[QWeyl(f), QWeyl(g)] +

1

i�
[Af , QWeyl(g)]

= QWeyl({f, g}) +
1

i�
[Af , QWeyl(g)]

= Q({f, g}) + 1

i�
[Af , QWeyl(g)], (13.40)

since {f, g} ∈ P≤1. Thus, [Af , QWeyl(g)] = 0 for every g ∈ P1, and so, by
Lemma 13.15, we must have Af = cfI for some constant cf .
Now, if h is in P2, we have, by the just-established result and Proposi-

tion 13.11,

Q({f, h}) = 1

i�
[Q(f), Q(h)]

=
1

i�
[QWeyl(f) + cfI,QWeyl(h) + chI]

=
1

i�
[QWeyl(f), QWeyl(h)]

= QWeyl({f, h}). (13.41)

That is to say, Q and QWeyl agree on elements of P2 of the form {f, h}, for
f, h ∈ P2. Thus, by Lemma 13.16, Q and QWeyl agree on all of P2, and so
on all of P≤2.
We now use the P≤2 case of the lemma to establish the P3 case. Given f ∈

P3, we write Q(f) = QWeyl(f)+Bf . Given g ∈ P≤1, we have {f, g} ∈ P≤2.
Thus, we may argue as in (13.40), applying the just-established P≤2 case of
the lemma to {f, g} in the last step. The conclusion is that [Bf , Q(g)] = 0
for all f ∈ P≤2 and thus, by Lemma 13.15, that Bf = dfI for some constant
df . Meanwhile, if h ∈ P2, we argue as in (13.41), but with cf replaced by
df and with ch now known to be zero. The conclusion is that Q agrees with
QWeyl for all elements of P3 of the form {f, h} with f ∈ P3 and h ∈ P2,
and thus, by Lemma 13.16, for all elements of P3.
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Proof of Theorem 13.13. Assume, toward a contradiction, that a map Q
as in the theorem exists. Let f be the polynomial given by

f(x,p) = x2
1p

2
1.

We observe that f can be written in two different ways as a Poisson bracket:

x2
1p

2
1 =

1

9
{x3

1, p
3
1} =

1

3
{x2

1p1, x1p
2
1}.

Thus, by Lemma 13.17, we must have

1

9
[QWeyl(x

3
1), QWeyl(p

3
1)] = i�Q(x2

1p
2
1)

=
1

3
[QWeyl(x

2
1p1), QWeyl(x1p

2
1)].

On the other hand, if we apply both commutators to the constant func-
tion 1 (or to a function equal to 1 in a neighborhood of the origin), we
obtain

1

9
[QWeyl(x

3
1), QWeyl(p

3
1)]1 =

1

9
(X3

1P
3
1 − P 3

1X
3
1 )1

= −1

9
(−i�)36 · 1.

Meanwhile, if we compute the quantizations as in (13.4) and then drop all
terms involving P11, we obtain (after a small computation)

1

3
[QWeyl(x

2
1p1), QWeyl(x1p

2
1)]1 =

1

12
(X2

1P
3
1X1 + P1X

2
1P

2
1X1)1

− 1

12
(X1P

3
1X

2
1 + P 2

1X1P1X
2
1 )1

= − 1

12
P 2
1X1P1X

2
11

= − 1

12
(−i�)34 · 1.

Since 6/9 does not equal 4/12, we have a contradiction.

13.5 Exercises

1. Let Pj denote the space of complex-valued homogeneous polynomials
on R2 of degree j. Then Pj is a complex vector space of dimension
j+1, which we may identify with Cj+1 using the obvious basis for Pj .
Let Vj denote the complex subspace of Pj spanned by polynomials
of the form (ax+ bp)j , with a, b ∈ C. Show that Vj = Pj .

Hint : Since every subspace of Cj+1 is (topologically) closed, if γ(t) is
a smooth curve in Vj , the derivative γ′(t) will also lie in Vj .
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2. Show that symmetrized pseudodifferential operator quantization of
x2p2 is equal to QWeyl(x

2p2)− �2/2.

3. Show that Wick-ordered and anti-Wick-ordered quantizations map
real-valued polynomials to symmetric operators on C∞

c (R).

Hint : Compare the values of each quantization scheme on zkz̄l and
on (zkz̄l).

4. Consider a classical harmonic oscillator with Hamiltonian

H(x, p) =
p2

2m
+

1

2
mω2x2 =

1

2
mω2

(
x2 +

( p

mω

)2
)
,

where ω is the frequency of the oscillator. Consider the Wick- and
anti-Wick-ordered quantizations with parameter α = 1/(mω). Show
that

QWick(H) = QWeyl(H)− 1

2
�ω

Qanti−Wick(H) = QWeyl(H) +
1

2
�ω.

5. Let Ua,b(t) be as in Proposition 13.5. Show by direct calculation that
these operators form a one-parameter unitary group.

6. Given κ ∈ L2(Rn×Rn), let Aκ denote the associated integral operator
on L2(Rn), as in Proposition 13.6. Show that the adjoint A∗ of A is
also an integral operator, with integral kernel κ′ given by

κ′(x,y) = κ(y,x).

7. Suppose that f ∈ L2(R2n) and that f̂ ∈ L1(R2n). Then the right-
hand side of (13.17) may be understood as an absolutely convergent
“Bochner” integral with values in the Banach space B(L2(Rn)). Show
that QWeyl(f) as defined by (13.17) coincides with QWeyl(f) as de-
fined in Definition 13.7.

Hint : The Bochner integral commutes with applying a bounded lin-
ear functional. Use this result with the linear functional Λφ,ψ(A) :=
〈φ,Aψ〉 on B(L2(Rn)). Then use the expression in (13.23) for κf ,
which follows from Definition 13.7 by applying a partial Fourier trans-
form.

8. (a) Show that for any polynomial f in one variable, we have

QWeyl(f(x)p) = f(X)P − i�

2
f ′(X).
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(b) Show that for any two polynomials f and g, the Poisson bracket
{f(x)p, g(x)p} is of the form h(x)p for some polynomial h.

(c) Show that for any two polynomials f and g, we have

1

i�
[QWeyl(f(x)p), QWeyl(g(x)p)] = QWeyl({f(x)p, g(x)p}).

9. (a) Given φ and ψ in L2(Rn), let |φ〉〈ψ| be the operator defined in
Notation 3.28. Show that |φ〉〈ψ| can be expressed as an integral
operator as in Proposition 13.6 and determine the associated
integral kernel κ.

(b) For σ > 0, let ψσ ∈ L2(Rn) be given by the expression

ψσ(x) = (πσ)−n/4e−|x|2/(2σ).

Using Proposition A.22, show that ψσ is a unit vector in L2(Rn)
and that the Weyl symbol of the corresponding one-dimensional
projection operator |ψσ〉〈ψσ| is given by

Q−1
Weyl(|ψσ〉〈ψσ|) = 2ne−|x|2/σe−σ|p|2/�2

.

Note: If we give σ the value �/(mω), the Gaussian function ψα may
be thought of as the ground state for an n-dimensional harmonic os-
cillator. (Compare the functions in Theorem 11.3.) The computation
in this exercise plays an important role in the proof of the Stone–von
Neumann theorem in Chap. 14.8.

10. If f and g are Schwartz functions on R2n, show that f̂ ⋆ g converges
in the L1 norm to (2π)−nf̂ ∗ ĝ, where ∗ denotes convolution. Conclude
that f ⋆ g converges uniformly to fg as � tends to zero.

11. Suppose that f(p,q) is a homogeneous polynomial of degree 2. Show
that for each t, the Hamiltonian flow Φt associated with f is a linear
map of R2n to itself.

12. Prove Lemma 13.16.

Hint : Let g1 ∈ P2 be given by

g1(x,p) =
n∑

j=1

xjpj .

Show that for any monomial of the form xjpk, we have {g1,xjpk} =
(|k| − |j|)xjpk. Thus, most of the standard basis elements f for P2

and all of the standard basis elements f for P3 can be obtained as
nonzero multiples of {g1, f}.



14
The Stone–von Neumann Theorem

The Stone–von Neumann theorem is a uniqueness theorem for operators
satisfying the canonical commutation relations. Suppose A and B are two
self-adjoint operators on H satisfying [A,B] = i�I. Suppose also that A
and B act irreducibly on H, meaning that the only closed subspaces of
H invariant under A and B are {0} and H. Then provided that certain
technical assumptions hold (the exponentiated commutation relations), we
will conclude that A and B are unitarily equivalent to the usual position
and momentum operators X and P. That is, there is a unitary operator
U : H → L2(R) such that UAU−1 = X and UBU−1 = P. If H is not
irreducible, then it decomposes as a direct sum of invariant subspaces Vl

for A and B, and the restrictions of A and B to each Vl are unitarily
equivalent to the usual X and P.
We begin this chapter with a heuristic argument for the Stone–von Neu-

mann theorem, an argument that glosses over certain (essential but tech-
nical) domain issues. Then we introduce the exponentiated commutation
relations, which should be thought of as a sort of mild strengthening of
the ordinary canonical commutation relations. Finally, we give a precise
statement of the theorem and provide a proof.

14.1 A Heuristic Argument

Suppose that A and B are any two (possibly unbounded) self-adjoint op-
erators on a separable Hilbert space H satisfying [A,B] = iℏI. What we
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would like to conclude is that H looks like a Hilbert space direct sum of
closed subspaces Vl that are invariant under A and B, and such that each
Vl is unitarily equivalent to L2(R) in a way that turns the operators A and
B into the standard position and momentum operators X and P. That is
to say, we hope to find unitary maps Ul : Vl → L2(R) such that

UlAU
−1
l = X

UlBU−1
l = P.

This conclusion is, however, not quite correct, for reasons having to do
with the domains of the relevant operators. Nevertheless, let us consider
a heuristic argument for this conclusion. We start by forming a lowering
operator α and a raising operator α∗ by analogy to the definitions of a and
a∗ in Chap. 11:

α =
mωA+ iB√

2ℏmω
; α∗ =

mωA− iB√
2ℏmω

.

Then we look at the kernel W of the lowering operator α, which will be a
closed subspace of H, provided that α is a closed operator. The elements
of W may be thought of as “ground states” for the operator α∗α. Choose
an orthonormal basis

{
φl
0

}
for W and define vectors

φl
m := (α∗)mφl

0.

It is not hard to show that for l 
= l′, φl
m is orthogonal to φl′

m′ for all m and
m′. Let Vl denote the closed span of the vectors ψl

m, m = 0, 1, 2, . . ..
Using the calculation in Sect. 11.2, we can see that the way α and α∗ act

on each chain (the vectors ψl
m with l fixed and m varying) is precisely the

same as the way the standard lowering and raising operators a and a∗ act
on the chain of eigenvectors for a∗a. Thus, for each l, we can construct a
unitary map Ul from Vl to L2(R) by mapping the vectors φl

m in Vj to the
vectors ψm in L2(R) described in Theorems 11.3 and 11.4. (In particular,
the vector ψ0 ∈ L2(R) is the ground state for the harmonic oscillator, which
is a Gaussian.) Since the formula for how α and α∗ act is the same as the
formula for how a and a∗ act, Ul will “intertwine” α with a and α∗ with
a and a∗, meaning that Ulα = aUl, and similarly for α∗ and a∗. It follows
that Ul also intertwines A with X and B with P.
It remains only to argue (heuristically) that the spaces Vl fill up the whole

Hilbert space H. Clearly, the span V of the Vl’s is invariant under both
α and α∗. Thus, the orthogonal complement V ⊥ of V is invariant under
the adjoints α∗ and α. If V ⊥ is not zero, then arguing as in Chap. 11,
there should be a ground state in V ⊥, that is a nonzero vector annihilated
by α. This vector would be orthogonal to all the φl

0’s, contradicting the
assumption that the φl

0’s form an orthonormal basis for the kernel of α.
The preceding heuristic argument cannot be completely rigorous, how-

ever, since the counterexample in Sect. 12.2 gives a pair of operators A
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and B that satisfy the canonical commutation relations but are clearly not
unitarily equivalent to the usual position and momentum operators. After
all, the “position” operator A in that section is a bounded operator, which
cannot be unitarily equivalent to the usual position operator.
What goes wrong is, as usual, a matter of domain considerations. Setting

m, �, and ω equal to 1, we can look for a vector φ0 that is annihilated by
the operator

α =
1√
2
(A+ iB) =

1√
2

(
x+

d

dx

)
.

By the same argument as in Chap. 11, φ0 must be a constant multiple of the
function e−x2/2. The function φ1 := α∗φ0 is then a multiple of xe−x2/2. The
problem is that φ1 is not in the domain of α∗. After all, φ1 does not satisfy
the periodic boundary condition ψ(−1) = ψ(1) that defines the domain
of B. Thus, we cannot continue to apply α∗ to obtain an orthogonal chain
of vectors and the entire argument breaks down.
What we need, then, is some additional condition that will distinguish

between the “good” cases of the canonical commutation relations and the
“bad” cases. One possibility for this additional condition is the exponen-
tiated form of the canonical commutation relations, which are discussed
in the following section. Our rigorous proof (Sect. 14.3) of the Stone–von
Neumann theorem will follow the same outline as the heuristic argument
in this section, except that the unbounded operators α and α∗ will be re-
placed by certain bounded operators, constructed by an analog of the Weyl
quantization.

14.2 The Exponentiated Commutation Relations

If A is a bounded operator on a Hilbert space H, we may define the expo-
nential of A, denoted either eA or exp(A), by the power series

eA =

∞∑

m=0

Am

m!
,

where A0 = I. A standard power series argument shows that if A,B ∈
B(H) commute, then

eA+B = eAeB, [A,B] = 0. (14.1)

(See Exercise 6 in Chap. 16.) Even when A and B do not commute, there
is a formula, called the Baker–Campbell–Hausdorff formula, that expresses
eAeB, for sufficiently small A and B, in the form

eAeB = exp

{
A+B +

1

2
[A,B] +

1

12
[A, [A,B]] + · · ·

}
,



282 14. The Stone–von Neumann Theorem

where the terms indicated by · · · are iterated commutators involving A
and B. (See Chap. 3 of [21] for more information.) A very special case of
this formula is obtained in the case where A and B commute with their
commutator, so that all higher commutators are zero.

Theorem 14.1 Suppose A,B ∈ B(H) commute with their commutator,
that is,

[A, [A,B]] = [B, [A,B]] = 0.

Then
eAeB = eA+B+ 1

2
[A,B].

This relation may also be written as

eA+B = e−
1
2
[A,B]eAeB.

Note that in this special case of the Baker–Campbell–Hausdorff formula,
no smallness assumption is imposed on A and B.
Proof. We will prove that

etAetB = et(A+B)+ t2

2
[A,B], (14.2)

which reduces to the desired result at t = 1. Since [A,B] commutes with
everything in sight, we can use (14.1) to split the exponential on the right-
hand side of (14.2) into two and then move the factor involving [A,B] to
the other side. Thus, (14.2) is equivalent to the relation

etAetBe−t2[A,B]/2 = et(A+B). (14.3)

Let α(t) denote the left-hand side of (14.3). We will show that α(t) satisfies
a simple differential equation, which may be solved explicitly to obtain
α(t) = et(A+B).
Using term-by-term differentiation, it is easy to verify that

d

dt
etC = CetC = etCC

for any C ∈ B(H), and that

d

dt
e−t2[A,B]/2 = e−t2[A,B]/2(−t[A,B]).

We may then differentiate α(t) using the product rule, which is proved the
same way as in the scalar case, giving

dα

dt
= etAAetBe−t2[A,B]/2 + etAetBBe−t2[A,B]/2

+ etAetBe−t2[A,B]/2(−t[A,B]).
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To simplify our expression for dα/dt, we need an intermediate result. By
the product rule

d

dt
e−tBAetB = e−tB[A,B]etB = [A,B], (14.4)

becauseB—and, thus, eB—commutes with [A,B]. Noting that e−tBAetB =
A when t = 0, we may integrate (14.4) to get

e−tBAetB = A+ t[A,B]. (14.5)

(The difference of the two sides of (14.5) has derivative zero, so by Part (a)
of Exercise 2, the two sides are equal up to a constant, which is seen to be
zero by evaluating at t = 0.)
Using (14.5), we obtain

etAAetB = etAetB(e−tBAetB) = etAetB(A+ t[A,B]).

Moreover, since everything commutes with [A,B], we may commute any-

thing we want past e−t2[A,B]/2. Thus,

dα

dt
= α(t)(A + t[A,B] +B − t[A,B])

= α(t)(A +B).

Now, according to Exercise 2, the unique solution to the differential equa-
tion dα/dt = α(t)(A+B) is α(t) = α(0)et(A+B). Since α(0) = I, we obtain
the desired result (14.3).
Suppose, now, that A and B are unbounded self-adjoint operators satis-

fying

[A,B] = i�I, (14.6)

where the exponentials eisA and eitB are defined by means of the spectral
theorem. If we formally apply Theorem 14.1 to isA and itB (even these
operators are unbounded), we obtain

ei(sA+tB) = eist�/2eisAeitB = e−ist�/2eitBeisA

so that

eisAeitB = e−ist�eitBeisA. (14.7)

It is essential to emphasize that the conclusion (14.7) is only formal, since
it assumes that results for bounded operators carry over to unbounded
operators, which is false in general. Nevertheless, we may hope that in
“good” cases, self-adjoint operators satisfying (14.6) will also satisfy (14.7).
Extending the preceding discussion to the case of several degrees of free-

dom in an obvious way, we are led to the following definition.
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Definition 14.2 If A1, . . . , An and B1, . . . , Bn are possibly unbounded self-
adjoint operators on H, the A’s and B’s satisfy the exponentiated com-

mutation relations if the following relations hold for all 1 ≤ j, k ≤ n and
s, t ∈ R:

eisAj eitAk = eitAkeisAj

eisBj eitBk = eitBkeisBj

eisAj eitBk = e−ist�δjkeitBkeisAj .

The operators eisAj and eitBk are defined by the spectral theorem for un-
bounded self-adjoint operators, and they are unitary operators, defined on
all of H. Thus, when we say that the exponentiated commutation relations
hold, we mean that they hold on the entire Hilbert space H.

Notation 14.3 Suppose operators A1, . . . , An and B1, . . . , Bn satisfy the
exponentiated commutation relations. Then for all a and b in Rn, let
ei(a·A+b·B) denote the unitary operator given by

ei(a·A+b·B) = ei�(a·b)/2eia1A1 · · · eianAneib1B1 · · · eibnBn . (14.8)

Equation (14.8) is nothing but what we obtain by formally applying
Theorem 14.1 to the operators ia ·A and ib ·B and then further splitting
the exponentials by formally applying (14.1). The notation may be further
justified by checking (Exercise 4) that the operators

Ua,b(t) := eit
2
�(a·b)/2eita1A1 · · · eitanAneitb1B1 · · · eitbnBn (14.9)

form a strongly continuous one-parameter unitary group. If we then de-
fine a · A + b · B as the infinitesimal generator (Sect. 10.2) of Ua,b, the
relation (14.8) will indeed hold. Using the definition of ei(a·A+b·B) and the
exponentiated commutation relations, a simple calculation shows that

ei(a·A+b·B)ei(a
′·A+b′·B) = e−i�(a·b′−b·a′)/2ei((a+a′)·A+(b+b′)·B). (14.10)

In particular, e−i(a·A+b·B) is the inverse of ei(a·A+b·B), as the notation
suggests.
The following examples show that in the good case (the usual position

and momentum operators on L2(Rn)), the exponentiated commutation re-
lations do hold, where as in the bad case (the counterexample in Sect. 12.2),
they do not.

Example 14.4 Let Aj be the usual position operator Xj acting on L2(Rn)
and let Bj be the usual momentum operator Pj . Then the A’s and B’s
satisfy the exponentiated commutation relations.

Proof. Since Xj is just multiplication by xj , it is easily verified that eisXj

is just multiplication by eisxj . Meanwhile, the exponentiated momentum
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operators satisfy (Example 10.16)

(eitPjψ)(x) = ψ(x+ t�ej).

It is then evident that eisXj commutes with eitXk and that eisPj commutes
with eitPk . We may also compute that

(eitPkeisXjψ)(x) = eis(x+t�ek)jψ(x+ t�ek)

= eist�δjk (eisXj eitPkψ)(x),

which is what we wanted to prove.

Example 14.5 Let A be the operator in Sect. 12.2 and let B be the (unique
self-adjoint extension of) the operator in that section. Then A and B do
not satisfy the exponentiated commutation relations.

Proof. The operator A is multiplication by x, and so the operator eisA

is just multiplication by eisx. Meanwhile, the operator B is −i� d/dx,
with periodic boundary conditions. We will now demonstrate that eitB

consists of “translation with wraparound.” Specifically, for any a ∈ R and
ψ ∈ L2([−1, 1]), let us define Saψ ∈ L2([−1, 1]) by

(Saψ)(x) = ψ(x+ a− 2mx,a),

where mx is the unique integer such that

−1 ≤ x+ a− 2mx,a < 1.

It is easy to check that Sa is a unitary map of L2([0, 1]) for each a ∈ R.
We then claim that

eitB = S�t. (14.11)

To verify the correctness of (14.11), observe that B has an orthonormal
basis of eigenvectors, namely the functions ψn(x) := eπinx, n ∈ Z, with the
corresponding eigenvalues being πn�. Thus, if we compute eitB by means
of the spectral theorem, we have

eitBψn = eπint�ψn.

On the other hand,

(Saψn)(x)(e
πinx) = eπin(x+a−2mx,a)

= e−2πinmx,aeπinaeπinx

= eπinaψn(x),

showing that eitB and S�t agree on each of the functions ψn, n ∈ Z, and
thus on all of L2([−1, 1]).
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Having computed both eisA and eitB, we may now easily see that these
operators do not satisfy the exponentiated commutation relations. We have,
for example, that

eisAeitB1 = eisx,

whereas
eitBeisA1 = eis(x+t�−2mx,a).

The function eis(x+t�−2mx,a) is not equal to eist�eisx but rather to

eist�eisxe−2ismx,a ,

where e−2ismx,a is not always equal to 1.

14.3 The Theorem

We give two versions of the Stone–von Neumann theorem, one for general
operators satisfying the exponentiated commutation relations and one for
the special case where the operators act irreducibly.

Definition 14.6 Operators A1, . . . , An and B1, . . . , Bn satisfying the ex-
ponentiated commutation relations are said to act irreducibly on H if the
only closed subspaces of H that are invariant under every eitAj and every
eitBj are {0} and H.

Proposition 14.7 The usual position and momentum operators act irre-
ducibly on L2(Rn).

We delay the proof of this result until near the end of this section.

Theorem 14.8 (Stone–von Neumann Theorem) Suppose A1, . . . , An

and B1, . . . , Bn are self-adjoint operators on H satisfying the exponentiated
commutation relations. Then H can be decomposed as an orthogonal direct
sum of closed subspaces {Vl} with the following properties. First, each Vl is
invariant under eitAj and eitBj for all j and t. Second, there exist unitary
operators Ul : Vl → L2(Rn) such that

Ule
itAjU−1

l = eitXj

and
Ule

itBjU−1
l = eitPj

for all j and t.
If, in addition, the A’s and B’s act irreducibly on H, then there exists a

single unitary map U : H → L2(Rn) such that

UeitAjU−1 = eitXj
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and

UeitBjU−1 = eitPj ,

for all t. The map U is unique up to multiplication by a constant of absolute
value 1.

The preceding results can be expressed in terms of the Heisenberg group;
see Exercise 6.
Our strategy (as in von Neumann’s 1931 paper [41]) in proving Theo-

rem 14.8 is to follow the outline of the heuristic argument in Sect. 14.1, but
replacing the unbounded raising and lowering operators by the bounded
operators ei(a·A+b·B) in Notation 14.3. If we define φ0 ∈ L2(Rn) by

φ0(x) = (πσ)−n/4e−|x|2/(2σ), (14.12)

for some σ > 0, then φ0 is a unit vector, which we may think of as the
ground state of an n-dimensional harmonic oscillator with frequency ω =
�/(mσ). We can easily compute the Weyl symbol of the projection |φ0〉〈φ0|
onto φ0 as follows:

f0(x,p) := Q−1
Weyl(|φ0〉〈φ0|) = 2ne−|x|2/σe−σ|p|2/�2

. (14.13)

(See Exercise 9 in Chap. 13).
We may define a generalized Weyl quantization Q for H by using the op-

erators ei(a·A+b·B) in place of the operators ei(a·X+b·P) in (13.17). We will
show that the operator P := Q(f0) is an orthogonal projection, and we will
take W := Range(P ) as our space of ground states in H. A crucial result
will be that the projection P is nonzero and, indeed, that the restriction
of P to any nonzero subspace invariant under the ei(a·A+b·B)’s is nonzero.
If {ψl} is an orthonormal basis for W, consider the vectors

ψl
a,b := ei(a·A+b·B)ψl.

We will show that these vectors are orthogonal for different values of l,
and that for fixed l, the inner product of two such vectors is the same
as in the L2(Rn) case. Thus, if Vl denotes the closed span of the ψl

a,b’s
with l fixed and a and b varying, we can construct a unitary map from
Vl to L2(Rn) that intertwines the operators ei(a·A+b·B) with the operators
ei(a·X+b·P). The sum of the Vl’s must be all of H, for if not, the orthogonal
complement Y of the span would be invariant under the ei(a·A+b·B)’s. Thus,
the restriction of P to Y would be nonzero, implying that there are elements
of W := Range(P ) orthogonal to every ψl, contradicting the assumption
that the ψl’s span W .
The rest of this section will flesh out the argument sketched in the pre-

ceding paragraphs.
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Definition 14.9 Suppose self-adjoint operators A1, . . . , An and B1, . . . , Bn

satisfy the exponentiated commutation relations on H. For any f ∈ S(R2n),
define Q(f) ∈ B(H) by the formula

Q(f) = (2π)−n

∫

R2n

f̂(a,b)ei(a·A+b·B) da db,

where f̂ is the Fourier transform of f and where ei(a·A+b·B) is as in
Notation 14.3. The integral is a Bochner integral with values in the Ba-
nach space B(H).

We will assume the following standard properties of the Bochner integral
(Sect. V.5 of [46]). First, any continuous function f : R2n → B(H) for which∫
‖f(x)‖ dx < ∞ has a well-defined Bochner integral. Second, the Bochner

integral commutes with applying bounded linear transformations. Third, a
version of Fubini’s theorem holds.

Proposition 14.10 For any operators satisfying the exponentiated com-
mutation relations, the associated map Q in Definition 14.9 has the follow-
ing properties.

1. If f ∈ S(R2n) is real valued, Q(f) is self-adjoint.

2. For all a and b in Rn and f ∈ S(Rn), we have

ei(a·A+b·B)Q(f) = Q(f ′)

Q(f)ei(a·A+b·B) = Q(f ′′),

where f ′ and f ′′ are the functions with Fourier transforms given by

f̂ ′(a′,b′) = ei�(a
′·b−a·b′)/2 f̂(a′ − a,b′ − b)

f̂ ′′(a′,b′) = e−i�(a′·b−a·b′)/2f̂(a′ − a,b′ − b)

3. For all f and g in S(R2n), we have

Q(f)Q(g) = Q(f ⋆ g),

where ⋆ is the Moyal product described in Proposition 13.9.

4. For all f ∈ S(Rn), if Q(f) = 0 then f = 0.

Using both parts of Point 2 of the theorem, we can see that for all
a,b ∈ Rn, we have

e−i(a·A+b·B)Q(f)ei(a·A+b·B) = Q(g),

where
ĝ(a′,b′) = ei�(a

′·b−a·b′)f̂(a′,b′). (14.14)
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Proof. For Point 1, we can re-express Q(f) as

(2π)−n

∫

R2n

1

2

[
f̂(a,b)ei(a·A+b·B) + f̂(−a,−b)e−i(a·A+b·B)

]
da db,

since the change of variable a′ = −a, b′ = −b brings the second term
equal to the first term. If f is real valued, then f̂(−a,−b) is the conjugate

of f̂(a,b), so that the expression in square brackets in the integral is self-
adjoint for each (a,b).
For the first part of Point 2, we use (14.10) to obtain

ei(a·A+b·B)Q(f)

= (2π)−n

∫

R2n

e−i�(a·b′−b·a′)/2f̂(a′,b′)ei((a+a′)·A+(b+b′)·B) da′ db′.

Making the change of variables a′′ = a′+a and b′′ = b′+b and simplifying
gives the desired result. The proof of the second part of Point 2 is similar.
The proof of Point 3 is precisely the same as the proof of Proposition 13.9,

which relies only on the exponentiated commutation relations.
For Point 4, suppose that Q(f) = 0 for some f ∈ S(R2n). Then for all

φ, ψ ∈ H and all a,b ∈ Rn, we have

0 =
〈
ei(a·A+b·B)φ,Q(f)ei(a·A+b·B)ψ

〉

=
〈
φ, e−i(a·A+b·B)Q(f)ei(a·A+b·B)ψ

〉

= 〈φ,Q(g)ψ〉

where g is as in (14.14). Thus,

0 =

∫
ei�(a

′·b−a·b′)f̂(a′,b′)
〈
φ, ei(a

′·A+b′·B)ψ
〉

da′ db′ (14.15)

for all φ, ψ and a,b. But (14.15) is just computing the inverse Fourier

transform of the function f̂(a′,b′)〈φ, ei(a′·A+b′·B)ψ〉, evaluated at the point
(−a,b). By the Fourier inversion formula, then, this function must be zero
for almost every pair (a′,b′). Now, the function 〈φ, ei(a′·A+b′·B)ψ〉 is a
continuous function of (a,b) and by taking φ = ei(a0·A+b0·B)ψ, it can be
made to be nonzero at any given point (a0,b0) in R2n, and thus also in

a neighborhood of that point. Thus, actually, f̂ is identically zero and so
also is f.

Lemma 14.11 Let f0 be the function on R2n given by

f0(x,p) = 2ne−|x|2/σe−σ|p|2/�2

,

where σ is a fixed positive number. Then for all a,b ∈ Rn, we have

Q(f0)e
i(a·A+b·B)Q(f0) = e−σ|a|2/4e−�

2|b|2/(4σ)Q(f0). (14.16)
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In particular,
Q(f0)

2 = Q(f0).

Proof. By Proposition 14.10, (14.16) is equivalent to the assertion that

f0 ⋆ f
′
0 = e−σ|a|2/4e−�

2|b|2/(4σ)f0. (14.17)

Now, it is certainly possible to establish (14.17) by direct computation from
the definitions of f ′

0 and ⋆; all the integrals involved will be Gaussian inte-
grals, which can be evaluated by means of Proposition A.22. This approach,
however, is both painful and unilluminating. A more sensible approach is
to observe that is suffices to verify (14.16) for the ordinary Weyl quantiza-
tion on L2(Rn). After all, (14.16) is equivalent to (14.17), which in turn is
equivalent to the identity

QWeyl(f0)e
i(a·X+b·P)QWeyl(f0)

= e−σ|a|2/4e−�
2|b|2/(4σ)QWeyl(f0), (14.18)

by applying Proposition 14.10 in the case Q = QWeyl.
Now, by Exercise 9 in Chap. 13, QWeyl(f0) is the one-dimensional pro-

jection |φ0〉〈φ0| , where φ0(x) = (πα)−n/4e−|x|2/(2σ). Thus,

QWeyl(f0)e
i(a·A+b·B)QWeyl(f0) = |φ0〉〈φ0| ei(a·X+b·P) |φ0〉〈φ0|

= c |φ0〉〈φ0| , (14.19)

where
c = 〈φ0| ei(a·X+b·P) |φ0〉 .

To compute c, we use (13.20), which gives

c = (πα)−n/2ei�(a·b)/2
∫

Rn

e−|x|2/(2σ)eia·xe−|x+�b|2/(2σ) dx. (14.20)

The integral in (14.20) can be computed by expanding |x+ �b|2 , collecting
terms in the exponent, and applying Proposition A.22. The result, after a
bit of algebra, is

c = e−σ|a|2/4e−�|b|2/(4σ),

which gives (14.18).
We now prove the claimed irreducibility of the usual position and mo-

mentum operators.
Proof of Proposition 14.7. Given operators A1, . . . , An and B1, . . . , Bn

satisfying the exponentiated commutation relations, consider the operator
Q(f0), where f0 is as in (14.13). According to Lemma 14.11, Q(f0)

2 =
Q(f0). Since also f0 is real valued, Q(f0) is self-adjoint and thus an orthog-
onal projection. Suppose that the range of the orthogonal projection Q(f0)
is one-dimensional. We then claim that the A ’s and B’s act irreducibly. If
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not, there would exist a nontrivial closed subspace V that is invariant un-
der each of the operators ei(a·A+b·B). Then the nonzero subspace V ⊥ would
also be invariant under each of the operators (ei(a·A+b·B))∗ = e−i(a·A+b·B).
Thus, the exponentiated commutation relations are satisfied in both V and
V ⊥, with the A’s and B’s being the infinitesimal generators of the restric-
tions of eitAj and eitBj to each subspace.
It follows that the restriction of Q(f0) to each of these subspaces may be

thought of as the generalized Weyl quantizations for V and V ⊥ of the func-
tion f0. Applying Point 4 of Proposition 14.10 to V and to V ⊥, we conclude
that the restrictions of Q(f0) to V and to V ⊥ are nonzero. Thus, both V
and V ⊥ will contain nonzero elements of Range(Q(f0)), contradicting our
assumption that Range(Q(f0)) is one dimensional.
In case of L2(Rn), we have QWeyl(f0) = |φ0〉〈φ0|, where φ0 is given

by (14.12), which clearly has a one-dimensional range. Thus, the usual
position and momentum operators act irreducibly on L2(Rn).
We are finally ready for the proof of the Stone–von Neumann theorem.

Proof of Theorem 14.8. Let W = Range(Q(f0)), where f0 is given
by (14.13) for some fixed σ > 0. For φ, ψ ∈ W, we can use (14.10),
Lemma 14.11, and the fact that Q(f0) is the identity on W to obtain

〈
ei(a·A+b·B)φ, ei(a

′·A+b′·B)ψ
〉

=
〈
Q(f0)φ, e

−i(a·A+b·B)ei(a
′·A+b′·B)Q(f0)ψ

〉

= ei�(a·b
′−b·a′)/2

〈
φ,Q(f0)e

i((a′−a)·A+(b′−b)·B)Q(f0)ψ
〉

= ei�(a·b
′−b·a′)/2e−σ|a′−a|2/4e−�

2|b′−b|2/(4σ) 〈φ, ψ〉 . (14.21)

Now let {ψl} be an orthonormal basis for W and define vectors ψl
a,b,

a,b ∈ Rn, by
ψl
a,b = ei(a·A+b·B)ψl.

By (14.21), ψl
a,b is orthogonal to ψl′

a′,b′ whenever l 
= l′. Furthermore,

〈
ψl
a,b, ψ

l
a′,b′

〉
= ei�(a·b

′−b·a′)/2e−σ|a′−a|2/4e−�
2|b′−b|2/(4σ), (14.22)

where the right-hand side of (14.22) is “universal,” that is, independent of
l and independent of the particular Hilbert space in which we are working.
Let Vl be the closed span of the vectors ψl

a,b with l fixed and a,b varying.

We may define a map Ul : Vl → L2(Rn) by requiring that

Ul

⎛
⎝

N∑

j=1

αjψ
l
aj ,bj

⎞
⎠ =

N∑

j=1

αjφaj ,bj
,

for every sequence a1, . . . , aN and b1, . . . ,bN of vectors, where

φa,b = ei(a·X+b·P)φ0.
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This map is isometric by (14.22) on linear combinations of the ψl
a,b’s and

thus extends uniquely to an isometric map of Vl into L2(Rn). [In particular,
Ul is well defined: If some linear combination of ψl

a,b’s is zero, then this
linear combination has norm zero and so its image under Ul also has norm
zero and is thus zero in L2(Rn).]
Now, Vl is invariant under the operators e

i(a·A+b·B) by (14.10), and, simi-
larly, the image of Vl under Ul is invariant under the operators e

i(a·X+b·P).
By the irreducibility of L2(Rn) (Proposition 14.7), we conclude that Vl

maps onto L2(Rn) and is, therefore, unitary. Furthermore, using (14.10) and
the analogous expression (13.31) for the position and momentum operators,
it is easy to check that each Ul intertwines e

i(a·A+b·B) with ei(a·A+b·B), for
all a,b ∈ Rn. In particular, taking either a = tej and b = 0 or a = 0 and
b = tej we see that Ul intertwines e

itAj with eitXj . Similarly, Ul intertwines
eitBj with eitPj .
We now argue that the Hilbert space direct sum of the orthogonal sub-

spaces Vl is all of H. If not, then as in the proof of Proposition 14.7, the
orthogonal complement Y of this sum would be invariant under the oper-
ators ei(a·A+b·B) and thus also under the operator Q(f0). Furthermore, as
in the proof of Proposition 14.7, the restriction of Q(f0) to Y would be
nonzero. Thus, there would exist elements of W = Range(Q(f0)) orthogo-
nal to each ψl, contradicting the assumption that the ψl’s span W.
It remains only to address the irreducible case. If the A’s and B’s act

irreducibly, then there can be only one subspace, V1 = H, which means
that W must be one dimensional. Any unitary map U : H → L2(Rn) that
intertwines each operator ei(a·A+b·B) with ei(a·X+b·P) must also intertwine
each operator of the form Q(f) with QWeyl(f). It follows that U must map
the one-dimensional subspace W unitarily onto the one-dimensional range
of QWeyl(f0) = |φ0〉〈φ0| . Thus, the restriction of U to W is unique up to a
constant of absolute value 1. But the reasoning leading to the existence of
U shows that U is determined by its action on W, so the entire map U is
unique up to a constant.

14.4 The Segal–Bargmann Space

A simple example of the Stone–von Neumann theorem is provided by the
Hilbert space H := L2(Rn), together with the operators Aj := Pj , and
Bj := −Xj. In that case (Exercise 3), the unitary map U in the Stone–von
Neumann theorem will simply be a scaled version of the Fourier transform,
as in Definition 6.1. To obtain a more interesting example, we construct a
Hilbert space consisting of holomorphic functions on Cn.
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14.4.1 The Raising and Lowering Operators

A smooth function on F : Cn → C is said to be holomorphic if it is
holomorphic as a function of zj with the other zk’s fixed. Equivalently, F
is holomorphic if ∂F/∂z̄j = 0, where

∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
.

The operator

∂

∂zj
:=

1

2

(
∂

∂xj
− i

∂

∂yj

)

preserves the space of holomorphic functions on Cn.
Considered the operators zj (i.e., multiplication by zj) and � ∂/∂zj,

acting on the space of holomorphic functions on Cn. Fock [9] observed that
these operators satisfy the following commutation relations:

[zj, zk] =

[
�

∂

∂zj
, �

∂

∂zk

]
= 0

[
�

∂

∂zj
, zk

]
= �δjkI. (14.23)

These are essentially the same commutation relations as the raising and
lowering operators considered in Sect. 11.2. Specifically, (14.23) are the re-
lations that would be satisfied by the natural higher-dimensional analogs
of the operators a and a∗ in that section if we omitted the factor of

√
� in

the denominator in (11.4) and (11.5).
Now, if we wish to interpret the operators zj and � ∂/∂zj as raising and

lowering operators, then we should look for an inner product on the space
of holomorphic functions that would make these two operators adjoints
of each other. After all, the analysis in Chap. 11 strongly depends on the
assumption that a and a∗ are adjoints of each other. In the early 1960s,
Segal [36] and Bargmann [2] identified such an inner product. Once we have
described this Segal–Bargmann inner product, we will construct self-adjoint
“position” and “momentum” operators as appropriate linear combinations
of zj and � ∂/∂zj. We will then verify the exponentiated commutation
relations and irreducibility, allowing us to apply the Stone–von Neumann
theorem.
We look for an L2 inner product with respect to a measure having a

positive density with respect to the Lebesgue measure on Cn.

Lemma 14.12 Suppose that μ is a smooth, strictly positive density on Cn

and that F and G are sufficiently nice (but not necessarily holomorphic)
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functions on Cn. Then
∫

Cn

F (z)
∂G

∂zj
μ(z) dz

= −
∫

Cn

∂F

∂z̄j
G(z)μ(z) dz−

∫

Cn

∂ logμ

∂z̄j
F (z) G(z) dz, (14.24)

where dz denotes the 2n-dimensional Lebesgue measure on Cn ∼= R2n.

Equation (14.24) tells us that

(
∂

∂zj

)∗
= − ∂

∂z̄j
− ∂ logμ

∂z̄j
,

where the adjoint is computed with respect to the inner product for the
Hilbert space L2(Cn, μ). If we restrict the adjoint operator (∂/∂zj)

∗ to
the space of holomorphic functions, then the ∂/∂z̄j term is zero, by the
definition of a holomorphic function.
Proof. Let us approximate the integral over Cn on the left-hand side
of (14.24) by an integral over a large cube. By performing either the xj-
integral or the yj-integral first, we can integrate by parts to push the deriva-
tives with respect to xj or yj off of G and onto the product of F̄ and μ
(with a minus sign). The boundary term in the integration by parts will
involve the function F (z)G(z)μ(z) integrated over two opposite faces of
the cube. If this function tends to zero sufficiently rapidly at infinity, the
boundary terms will vanish in the limit. In that case, we obtain

∫

Cn

F (z)
∂G

∂zj
μ(z) dz

= −
∫

Cn

(
∂

∂zj
F (z)

)
G(z)μ(z) dz−

∫

Cn

F (z)G(z)
∂μ

∂zj
dz,

provided that all three of the above integrals are absolutely convergent.
Since ∂F̄/∂zj = ∂F/∂z̄j and

∂μ

∂zj
=

∂ logμ

∂zj
μ =

∂ logμ

∂z̄j
μ,

we obtain (14.24).
We now look for a density μ� for which ∂ logμ/∂z̄j = −zj/�. In that

case, the adjoint operator (∂/∂zj)
∗ preserves the holomorphic subspace of

L2(Cn, μ�) and is given on this subspace by multiplication by zj/�.

Lemma 14.13 Specialize Lemma 14.12 to the case in which F and G are
holomorphic polynomials and μ is the density μ� given by

μ�(z) =
1

(π�)n
e−|z|2/�. (14.25)
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Then we have
∫

Cn

F (z)
∂G

∂zj
μ�(z) dz =

1

�

∫

Cn

zjF (z)G(z)μ�(z) dz. (14.26)

Proof. In the case that F andG are holomorphic polynomials, ∂F/∂z̄j = 0,
so the first term on the right-hand side of (14.24) is zero. Furthermore, F̄Gμ
decreases rapidly at infinity and so the boundary terms vanish in this case.
Finally, we may compute ∂ logμh/∂z̄j as −zj/�, giving (14.26).

Definition 14.14 The Segal–Bargmann space, denoted HL2(Cn, μ�) is
the space of holomorphic functions F on Cn for which

‖F‖
�
:=

(∫

Cn

|F (z)|2 μ�(z) dz

)1/2

< ∞,

where μ� is as in (14.25). Define raising and lowering operators a∗j and

aj on HL2(Cn, μ�) by

a∗j = zj

aj = �
∂

∂zj
,

with the domain of aj and a∗j consisting of the space of holomorphic poly-
nomials.

In light of Lemma 14.13, the operators aj and a∗j satisfy

〈F, ajG〉HL2(Cn,µ�)
=
〈
a∗jF,G

〉
HL2(Cn,µ�)

for all holomorphic polynomials F and G, thus justifying the notation a∗j
for the raising operator. The space HL2(Cn, μ�) is also sometimes called
the Fock space. It should be noted, however, that in quantum field the-
ory, the term Fock space also refers to a different (but related) space—the
completion of the tensor algebra over a fixed Hilbert space.

Proposition 14.15 The Segal–Bargmann space is complete with respect
to the norm ‖·‖

�
and forms a Hilbert space with respect to the associated

inner product,

〈F,G〉
�
:=

∫

Cn

F (z)G(z)μ�(z) dz.

Furthermore, the space of holomorphic polynomials forms a dense subspace
of the Segal–Bargmann space.

Note that elements ofHL2(Cn, μ�) are actual functions on Cn, not equiv-
alence classes of functions. Nevertheless, we can regard HL2(Cn, μ�) as a
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subspace of L2(Cn, μ�), since each equivalence class of almost-everywhere
equal functions contains at most one holomorphic representative.
Proof. Given any z0 ∈ Cn and R > 0, let Pz0,R denote the polydisk given
by

Pz0 = {z ∈ Cn| |zj − (z0)j | < R, j = 1, . . . , n} .

Using a power-series argument, it is easy to show that the value of a holo-
morphic function F at z0 is equal to the average of F over Pz0,R. We can
then multiply and divide by μ� to obtain

F (z0) =
1

(πR2)n

∫

Pz0,R

1

μ�(z)
F (z) μ�(z) dz.

The Cauchy–Schwarz inequality then tells us that

|F (z0)|

≤ 1

(πR2)n

(
sup

z∈Pz0,R

1

μ�(z)

)
∥∥1Pz0

,R

∥∥
L2(Cn,µ�)

‖F‖L2(Cn,µ�)
. (14.27)

This inequality tells us that pointwise evaluation [the map F �→ F (z0)] is
a bounded linear functional on the Segal–Bargmann space.
Suppose now that Fn is a sequence of holomorphic functions such that

Fn converges in L2(Cn, μ�) to some F. Using (14.27), we can easily show
that Fn converges to F uniformly on compact sets, which implies that F is
also holomorphic. This shows that the holomorphic subspace of L2(Cn, μ�)
is closed and hence is a Hilbert space.
To show the denseness of polynomials, consider some F ∈ HL2(Cn, μ�)

and let

F (z) =
∑

n

anz
n (14.28)

be the Taylor expansion of F, where n ranges over all multi-indices. This
series converges to F uniformly on compact subsets of Cn. We claim that
the terms in (14.28) are orthogonal. To see this, use Fubini’s theorem to
perform the integration of zn against zm one variable at a time. Using
polar coordinates in each copy of C, we can see that we will get zero if the
power of zj in zn is not the same as the power of zj in zm.
Since it is orthogonal, the series in (14.28) will converge in L2(Cn, μ�)

provided that the sum of the squares of the norms of the terms is finite. If
P0,R is a sequence of polydisks of increasing radius centered at the origin,
the argument in the preceding paragraph shows that the terms in (14.28)
are orthogonal in L2(P0,R, μ�). Since the series converges uniformly on P0,R,
we can then interchange sum and integral to obtain

∑

n

|an|2 ‖zn‖2L2(P0,R,µ�)
= ‖F‖2L2(P0,R,µ�)

.
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By applying monotone convergence to both the sum over n and the integrals
over P0,R, we may let R tend to infinity to obtain

∑

n

|an|2 ‖zn‖2L2(Cn,µ�)
= ‖F‖2L2(Cn,µ�)

< ∞.

Thus, the series in (14.28) converges in L2(Cn, μ�) and this L2 limit must
coincide with the pointwise limit, namely F itself.

14.4.2 The Exponentiated Commutation Relations

To apply the Stone–von Neumann theorem to the Segal–Bargmann space,
we define self-adjoint “position” and “momentum” operators as follows:

Aj =
1√
2

(
zj + �

∂

∂zj

)

Bj =
i√
2

(
zj − �

∂

∂zj

)
.

We will identify one-parameter unitary groups having (extensions of) these
operators as their infinitesimal generators, which will show (by Stone’s
theorem) that the generators are indeed self-adjoint on suitable domains.
We will then verify the exponentiated commutation relations and check
irreducibility.
Let us compute heuristically and then check that our results are correct.

If we formally apply Theorem 14.1 to the (unbounded) operators
∑

ājzj
and −�

∑
aj∂/∂zj, we obtain

exp

⎧
⎨
⎩

n∑

j=1

(
−ājzj + �aj

∂

∂zj

)⎫⎬
⎭

= exp

{
−1

2
� |a|2

}
exp

⎧
⎨
⎩−

n∑

j=1

ājzj

⎫
⎬
⎭ exp

⎧
⎨
⎩�

n∑

j=1

aj
∂

∂zj

⎫
⎬
⎭ . (14.29)

This calculation suggests that we define operators Ta by the formula

(TaF )(z) = e−�|a|2/2e−ā·zF (z+ �a), a ∈ Cn, (14.30)

where for any a,b ∈ Cn, we define a·b =
∑

j ajbj (no complex conjugates).
Since the exponent on the left-hand side of (14.29) is skew-self-adjoint (the
difference of an operator and its adjoint), we expect the operators Ta to
be unitary. For suitable choices of a, the operator on the left-hand side
of (14.29) will become the one-parameter group generated by Aj or Bj .
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Theorem 14.16 For each a ∈ Cn, the operator Ta defined by (14.30) is
a unitary operator on the Segal–Bargmann space, and the map a �→ Ta is
strongly continuous. These operators satisfy

TaTb = ei� Im(ā·b)Ta+b. (14.31)

In particular, for each j, the maps

Uj(t) := Titej/
√
2; Vj(t) := Ttej/

√
2

are strongly continuous one-parameter unitary groups. The infinitesimal
generators Aj and Bj of these groups satisfy the exponentiated commutation
relations.
For any F ∈ Dom(Aj), we have

(AjF )(z) =
1√
2

(
zjF (z) + �

∂F

∂zj

)

and for any F ∈ Dom(Bj), we have

(BjF )(z) =
i√
2

(
zjF (z)− �

∂F

∂zj

)
.

Furthermore, the domains of Aj and Bj contain all holomorphic polyno-
mials.
Finally, the operators Aj and Bj act irreducibly on the Segal–Bargmann

space, in the sense of Definition 14.6.

Proof. It is evident that TaF (z) is holomorphic as a function of z for each
fixed a. Meanwhile, for any F ∈ HL2(Cn, μ�), we have

‖TaF‖2L2(Cn,µ�)
= (π�)−n

∫

Cn

e−�|a|2e−2Re(ā·z) |F (z+ �a)|2 e−|z|2/� dz

= (π�)−n

∫

Cn

e−|z+�a|2/� |F (z+ �a)|2 dz

= ‖F‖2L2(Cn,µ�)
,

showing that Ta is isometric. The formula for TaTb follows from direct
computation (Exercise 7), and from this formula we see that TaT−a = I,
which shows that Ta is surjective and thus unitary. The strong continuity
of Ta is easily verified on polynomials (Exercise 8), which are dense in the
HL2(Cn, μ�).
It easily follows from (14.31) that Uj(·) and Vj(·) are one-parameter uni-

tary groups, and also that (the infinitesimal generators of) these unitary
groups satisfy the exponentiated commutation relations. If F is in the do-
main of the infinitesimal generator of Uj(·), the limit

(AjF )(z) :=
1

i
lim
t→0

1

t

[
e−�t2/4eitzj/

√
2F (z+ it�ej/

√
2)− F (z)

]
(14.32)
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must exist in L2(Cn, μ�). The L2 limit coincides with the easily computed
pointwise limit, giving

AjF (z) =
1

i

(
i√
2
zjF (z) +

i�√
2

∂F

∂zj

)
,

as claimed. If F is a polynomial, it is easily shown, using dominated con-
vergence, that the limit in (14.32) exists in L2(Cn, μ�). The analysis of Bj

is similar.
Finally, we address irreducibility. If the Aj ’s and Bj ’s did not act ir-

reducibly, then in the application of the Stone–von Neumann theorem to
HL2(Cn, μ�), there would exist at least two subspaces Vl. Thus, there would
exist at least two linearly independent vectors Fl such that for all j, we have
that Fl is in the domain of Aj and Bj and

0 = (Aj + iBj)Fl =
2�√
2

∂Fl

∂zj
.

(Take Fl to be the preimage under Ul of the function φ0 in (14.12), with σ =
�.) This would mean that each Fl is constant, contradicting the assumption
that the Fl’s are linearly independent.

14.4.3 The Reproducing Kernel

According to (14.27), evaluation of F ∈ HL2(Cn, μ�) at a fixed point z is
a continuous linear functional. Thus, this linear functional can be written
as the inner product with a unique element χz of HL2(Cn, μ�), which we
now compute. The vector χz is called the coherent state with parameter z.

Proposition 14.17 For all F ∈ HL2(Cn, μ�), we have

F (z) =

∫

Cn

ez·w̄/�F (w)μ�(w) dw. (14.33)

The function ez·w̄/� is called the reproducing kernel for HL2(Cn, μ�),
since integration against this kernel simply gives back (or “reproduces”)
the function F. Of course, the relation (14.33) holds only for holomorphic
functions in L2(Cn, μ�). Equation (14.33) can be rewritten as

F (z) = 〈χz, F 〉HL2(Cn,µ�)
,

where
χz(w) = ez̄·w/�.

Proof. We begin by establishing the result in the case z = 0. We have
already established, in the proof of Proposition 14.15, that the Taylor series
of F converges to F in HL2(Cn, μ�), and the distinct monomials in this
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series are orthogonal. Thus, when computing 〈1, F 〉HL2(Cn,µ�)
, only the

constant term in the expansion of F survives, giving

〈1, F 〉HL2(Cn,µ�)
= F (0) 〈1,1〉HL2(Cn,µ�)

= F (0), (14.34)

since μ� is a probability measure. But this relation is precisely the z = 0
case of (14.33).
Let us now apply (14.34) to TaF, where Ta is the unitary operator

in (14.30). According to Theorem 14.16, Ta is unitary with inverse equal
to T−a, giving

(TaF )(0) = 〈1, TaF 〉HL2(Cn,µ�)
= 〈T−a1, F 〉HL2(Cn,µ�)

.

Writing this relation out using w as our variable of integration gives

e−�|a|2/2F (�a) =

∫
e−�|a|2/2eā·wF (w)μ�(w) dw.

Setting a = z/� and simplifying gives the desired result.

14.4.4 The Segal–Bargmann Transform

Since the operators Aj and Bj in Theorem 14.16 satisfy the exponentiated
commutation relations and act irreducibly onHL2(Cn, μ�), the second part
of the Stone–von Neumann theorem tells us that there is a unitary map
U : HL2(Cn, μ�) → L2(Rn), unique up to a constant, that intertwines these
operator with the usual position and momentum operators. The inverse
map V : L2(Rn) → HL2(Cn, μ�) is called the Segal–Bargmann transform.

Theorem 14.18 Let V be the inverse of the map U : HL2(Cn, μ�) →
L2(Rn) given by the Stone–von Neumann theorem, normalized so that V
takes the function φ0 ∈ L2(Rn) in (14.12) (with σ = �) to the constant
function 1 ∈ HL2(Cn, μ�). Then V may be computed as follows:

(V ψ)(z) = (π�)−n/4

∫

Rn

exp

{
− 1

2�

(
z · z− 2

√
2z · x+ x · x

)}
ψ(x) dx.

Recall that we define a · b =
∑

j ajbj for all a,b ∈ Cn, with no complex
conjugates in the definition. In particular, the integrand in the formula for
V ψ is a holomorphic function of z, for each fixed x.
Note that the value of (V ψ)(z) at z = 0 is simply the inner product of ψ

with the ground state function φ0, with σ = �. The proof of Theorem 14.18
will show that the value of (V ψ)(z) at an arbitrary z is a certain constant
cz times the inner product of ψ with a phase space translate of φ0, that is,
a vector of the form eia·Xeib·Pφ0. [See (14.36).] According to (the obvious
higher-dimensional counterpart to) Proposition 12.11, φ0 is a minimum un-
certainty state, meaning that equality is achieved in Corollary 12.9 for each
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j. Thus, by (the obvious higher-dimensional counterpart to) Exercise 3 in
Chap. 12, each state of the form eia·Xeib·Pφ0 is also a minimum uncertainty
state.
Proof. By the unitarity of V and the z = 0 case of Proposition 14.17, we
have

〈φ0, ψ〉L2(Rn) = 〈V φ0, V ψ〉HL2(Cn,µ�)
= 〈1, V ψ〉HL2(Cn,µ�)

= (V ψ)(0).

Thus, the value of V ψ at 0 is just the inner product of ψ with φ0. More
generally,

〈
e−ia·Xe−ib·Pφ0, ψ

〉
=
〈
φ0, e

ib·Peia·Xψ
〉

=
〈
V φ0, V eib·Peia·Xψ

〉

=
〈
1, eib·Beia·AV ψ

〉

= (eib·Beia·AV ψ)(0), (14.35)

where eia·A means the product (in any order) of the operators eiajAj , and
similarly for eib·B.
Recall that Aj ’s and Bj ’s are defined as the infinitesimal generators

of the groups Uj and Vj in Theorem 14.16, which in turn are defined in
terms of the operators Ta. If we use (14.31) to compute the right-hand side
of (14.35), we obtain

(eib·Beia·AV ψ)(0) = (Tb/
√
2Tia/

√
2V ψ)(0)

= ei�a·b/2(T(b+ia)/
√
2V ψ)(0)

= ei�a·b/2e−�(|a|2+|b|2)/4(V ψ)(�(b+ ia)/
√
2).

Thus, if we apply (14.35) with a =
√
2y0/� and b =

√
2x0/�, we obtain

〈
e−i

√
2y0·X/�e−i

√
2x0·P/�φ0, ψ

〉

= eix0·y0/�e−(|x0|2+|y0|2)/(2�)(V ψ)(x0 + iy0). (14.36)

Solving (14.36) for (V ψ)(x0 + iy0) gives

(V ψ)(x0 + iy0) = (π�)−n/4e−ix0·y0/�e(|x0|2+|y0|2)/(2�)

×
∫

Rn

ei
√
2y0·x/�e−|x−

√
2x0|2/(2�)ψ(x) dx,

which simplifies to the claimed formula for V ψ.

14.5 Exercises

1. Show that if operators A and B satisfy the exponentiated commu-
tation relations of Sect. 14.2, they satisfy the “semi-exponentiated”
commutation relations, that is, the hypotheses of Theorem 12.8.
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Hint : For any a, s ∈ R and ψ ∈ Dom(A), rearrange the expression

eisA(eiaBψ)− (eiaBψ)

s

using the exponentiated commutation relations. Then let s tend to
zero and apply Stone’s theorem.

2. (a) Suppose α : R → B(H) is a differentiable map, meaning that

lim
h→0

α(t+ h)− α(t)

h

exists in the norm topology of B(H) for each t. Show that if
dα/dt = 0 for all t, then α is constant.

(b) Suppose α : R → B(H) is a differentiable map such that

dα

dt
= α(t)A

for some fixed A ∈ B(H). Show that α(t) = α(0)etA for all t.

3. Show that the operators Aj := Pj and Bj := −Xj on L2(Rn) sat-
isfy the exponentiated commutation relations. Determine the unitary
operator U : L2(Rn) → L2(Rn) (unique up to a constant) such that

UeitAjU−1 = eitXj

UeitBjU−1 = eitPj .

4. Verify that the operators Ua,b(t) in (14.9) form a strongly continuous
one-parameter unitary group.

5. In this exercise, we develop a discrete version of (the n = 1 case of)
the Stone–von Neumann theorem. Let p be a prime number, let Z/p
denote the field of integers modulo p, and let h be a nonzero ele-
ment of Z/p. Consider the finite-dimensional Hilbert space L2(Z/p),
taken with respect to the counting measure on Z/p. Let U denote the
“modulation” operator

(Uf)(n) = e2πin/pf(n)

and let V denote the “translation” operator on L2(Z/p), given by

(V f)(n) = f(n+ h).

In the case of the modulation operator, note that the expression
e2πin/p descends unambiguously from n ∈ Z to n ∈ Z/p.
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(a) Verify that Up = V p = I and that, for all l and m in Z,

U lV m = e−2πilm/pV mU l.

(b) Suppose now that A and B are unitary operators on a finite-
dimensional Hilbert space H satisfying Ap = Bp = I and

AlBm = e−2πilm/pBmV l.

Suppose also that the only subspaces of H invariant under both
A and B are {0} and H. Show that there is a unitary map W
from H to L2(Z/p) such that

WAW−1 = U

WBW−1 = V.

Hint : Show that if v ∈ H is an eigenvector for A, then so is
Blv for any l. Show that each eigenspace for A has dimension 1
and identify the associated eigenvectors with the “δ-functions”
in L2(Z/p).

6. Given a constant u ∈ C with |u| = 1 and a pair of vectors a,b ∈ Rn,
let Uu,a,b be the unitary operator on L2(Rn) given by

(Uu,a,bψ)(x) = ueia·xψ(x+ �b).

(a) Verify that the set of operators of this form a group under the
operation of composition, and denote this group by Hn.

(b) Let H̃n denote the set of (n+ 2)× (n+ 2) matrices of the form

A =

⎛
⎜⎜⎜⎜⎜⎝

1 a1 · · · an c
1 b1

. . .
...

1 bn
1

⎞
⎟⎟⎟⎟⎟⎠

,

with a1, . . . , an and b1, . . . , bn in R. (The only nonzero entries
in A are on the main diagonal, in the first row, and in the last
column.) Verify that H̃n forms a group under matrix multipli-
cation. Show that there is a surjective group homomorphism
Φ : H̃n → Hn with discrete kernel.

Hint : Compare the formulas for group multiplication in Hn

and H̃n.

Note: In the language of Chap. 16, H̃n is the universal covering group
of Hn. The group H̃n is called the Heisenberg group.
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7. Show by direct computation that the operators Ta in (14.30) satisfy
the relations (14.31).

8. Using dominated convergence, show that for every holomorphic poly-
nomial F on Cn, we have

lim
a→b

‖TaF − TbF‖2L2(Cn,µ�)
= 0,

where Ta is as in (14.30).



15
The WKB Approximation

15.1 Introduction

The WKB method, named for Gregor Wentzel, Hendrik Kramers, and Léon
Brillouin, gives an approximation to the eigenfunctions and eigenvalues of
the Hamiltonian operator Ĥ in one dimension. The approximation is best
understood as applying to a fixed range of energies as � tends to zero. (It
is also reasonable in many cases to think of the approximation as applying
to a fixed value of � as the energy tends to infinity.)
The idea of the WKB approximation is that the potential function V (x)

can be thought of as being “slowly varying,” with the result that solutions
to the time-independent Schrödinger equation will look locally like the so-
lutions in the case of a constant potential. In the classically allowed region,
this line of thinking will yield an approximation consisting of a rapidly os-
cillating complex exponential multiplied by a slowly varying amplitude. We
make the “local frequency” of the exponential equal to what it would be if
V were constant. Having made this choice, there is a unique choice for the
amplitude that yields an error that is of order �2. This amplitude, however,
tends to infinity as we approach the “turning points,” that is, the points
where the classical particle changes directions. Similarly, in the classically
forbidden region, we obtain approximate solutions that are rapidly grow-
ing or decaying exponentials, multiplied by a slowly varying factor. Again,
there is a unique choice for the slowly varying factor that gives errors of
order �2, and again, this factor blows up at the turning points.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5 15,
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The difficulty near the turning points means that we cannot directly
“match” the approximate solutions in different regimes the way we did in
Chap. 5. Instead, we will use the Airy function to approximate the solution
to the Schrödinger equation near the turning points. Asymptotics of the
Airy function will then yield the appropriate matching condition, which
turns out to be a corrected form of the Bohr–Sommerfeld rule that appears
in the “old” quantum theory.

15.2 The Old Quantum Theory and the
Bohr–Sommerfeld Condition

The old quantum theory, developed by Bohr, Sommerfeld, and de Broglie,
among others, may be pictured as follows. Consider, for simplicity, a par-
ticle with one degree of freedom, and let C be a level set in phase space of
the Hamiltonian,

C =
{
(x, p) ∈ R2

∣∣H(x, p) = E
}
, (15.1)

which we assume to be a closed curve. We now imagine drawing a “wave”
on C, that is, some oscillatory function defined over C. Following the de
Broglie hypothesis (Sect. 1.2.2), we postulate that the local frequency k of
the wave as a function of x is p/�. This means that the phase of our wave
should be obtained by integrating the 1-form

1

�
p dx (15.2)

along the curve. Thus, the wave itself can be pictured as a function on C
of the form

cos

(
1

�

∫ x

x0

p dx− δ

)
, (15.3)

where x0 is some arbitrary starting point on the curve C and where δ is an
arbitrary phase. Note that the old quantum theory did not offer a physical
interpretation of this wave; it was simply a crude attempt to introduce
waves into the picture.
The Bohr–Sommerfeld condition is simply the requirement that the func-

tion in (15.3) should match up with itself when we go all the way around
the curve. This will happen precisely if

1

�

∫

C

p dx = 2πn, (15.4)

for some integer n. The energy levels in the old quantum theory were taken
to be those numbers E for which the corresponding level curve C sat-
isfies the Bohr–Sommerfeld condition (15.4). Although Bohr–Sommerfeld
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quantization had some successes, notably explaining the energy levels of
the hydrogen atom, it ultimately failed to correctly predict the energies of
complex systems.
For systems with one degree of freedom, a vestige of the Bohr–Sommerfeld

approach survives in modern quantum theory, with two modifications.
First, the condition (15.4) has to be corrected by replacing the n by n+1/2
on the right-hand side of (15.4). (The replacement of n by n+1/2 is known
as the Maslov correction.) Second, this condition does not (in most cases)
give the exact energy levels, but only the leading-order semiclassical ap-
proximation to the energy levels. The preceding discussion leads to the
following definition.

Condition 15.1 A number E is said to satisfy the Maslov-corrected Bohr–
Sommerfeld condition if

1

�

∫

C

p dx = 2π(n+ 1/2) (15.5)

for some integer n, where C is the classical energy curve in (15.1). In light
of Green’s theorem, this condition may be rewritten as

1

2π�
(Area enclosed by C) = n+

1

2
.

When the Maslov correction is included, the Bohr–Sommerfeld condition
can be stated as saying that the wave with phase given by integrating the
1-form in (15.2) should be 180◦ out of phase with itself after one trip around
the energy curve. Figure 15.1 shows an example, which should be contrasted
with Fig. 1.3. (Note also that Fig. 1.3 is drawn in the configuration space,
whereas Fig. 15.1 is in the phase space.)
In our analysis in the subsequent sections, we will see that the Maslov

correction—that is, the extra 1/2 in (15.5), as compared to (15.4)—actually
consists of a contribution of 1/4 from each of the two “turning points” of
the classical particle. (The turning points are the points where the classical
particle changes directions.) Specifically, in the WKB approximation, the
phase of the wave function will be computed as the integral of (p dx)/�
along one “branch” of the classical energy curve C. Using the Airy function
to approximate the wave function near the turning points, we will obtain
an “extra” π/4 of phase between each turning point and the last local
maximum or minimum of the wave function. Because of the two branches
of C, the extra π/4 of phase near each of the two turning points actually
contributes an extra π to the integral on the left-hand side of (15.5).
The reader may wonder why there is no comparable correction term

in our discussion of the Bohr–de Broglie model of the hydrogen atom in
Sect. 1.2.2. One way to answer this question is as follows. As we will see in
Sect. 18.1, the Schrödinger operator for the hydrogen atom can be reduced
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x

p

FIGURE 15.1. A trajectory satisfying the corrected Bohr–Sommerfeld condition
with n = 10.

to a one-dimensional Schrödinger operator with an effective potential of the
form

Veff(r) = −Q2

r
+

�2l(l + 1)

2mr2
.

Here l is a non-negative integer that labels the “total angular momentum”
of the wave function. At least when l > 0, one can analyze this Schrödinger
operator using a WKB-type analysis very similar to the one in the current
chapter, with one important modification: The radial wave function [the
quantity h(r) in (18.5)] must be zero at r = 0 in order for the wave function
to be in the domain of the Hamiltonian.
If one analyzes the situation carefully, it turns out that the zero boundary

condition at r = 0 introduces another correction into the Bohr–Sommerfeld
condition in the amount of 1/2. There is still also a correction of 1/4 for
each of the two turning points, leading to the condition

1

�

∫

C

p dx = 2π

(
n+

1

4
+

1

4
+

1

2

)
= 2π(n+ 1).

Since n + 1 is again an integer, we are effectively back to the uncorrected
Bohr–Sommerfeld condition. See Chap. 11 of [8] for a discussion of different
approaches to the WKB approximation for radial potentials.

15.3 Classical and Semiclassical Approximations

We are interested in finding approximate solutions to the time-independent
Schrödinger equation,

− �2

2m

d2ψ

dx2
+ (V (x) − E)ψ(x) = 0 (15.6)
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for small values of �. Ultimately, we will need to analyze the behavior of
solutions in three different regions, the classically allowed region [points
where V (x) < E], the classically forbidden region (points where V (x) >
E), and the region near the “turning points,” that is, the points where
V (x) = E.
Let us consider at first the classically allowed region. Given a potential

V and an energy level E, we can solve (up to a choice of sign) for the
momentum of a classical particle as a function of position as

p(x) =
√

2m(E − V (x)).

We look for approximate solutions ψ to (15.6) of the form

ψ(x) = A(x)e±iS(x)/�, (15.7)

where S satisfies S′(x) = p(x). Note that we are taking the phase of our
wave function to be

phase = ± 1

�

∫
p(x) dx,

as in the old quantum theory in Sect. 15.2. The “amplitude function” A(x)
will be chosen to be independent of � and thus “slowly varying” (for small �)
compared to the exponent S(x)/�.
Our first, elementary, result is that for any number E for which there is

a classically allowed region and for any reasonable choice of the amplitude
A(x) in (15.7), we obtain an approximate eigenvector solution to the time-
independent Schrödinger equation, with an error term of order �.

Proposition 15.2 For any two numbers E1 and E2 with E1> infx∈R V (x),
there exists a constant C and a nonzero function A ∈ C∞

c (R) with the
following property. For every E ∈ [E1, E2], the support of A is contained
in the classically allowed region at energy E and the function ψ given by

ψ(x) = A(x) exp

{
± i

�

∫
p(x) dx

}

satisfies

‖Ĥψ − Eψ‖ ≤ C� ‖ψ‖ . (15.8)

Proof. For any E ∈ [E1, E2], the classically allowed region for energy E
contains the classically allowed region for energy E1. We choose, then, A to
be any nonzero element of C∞

c (R) with support in the classically allowed
region for energy E1. If we evaluate Ĥψ − Eψ by direct calculation, there
will a term in which two derivatives fall on the exponential factor, bringing
down a factor involving p(x)2. The definition of p(x) is such that the term
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involving p(x)2 will cancel the term involving V (x) − E, leaving us with

Ĥψ − Eψ = − �2

2m

(
A′′(x) ± i

�
2A′(x)p(x) ± i

�
p′(x)A(x)

)

× exp

{
± i

�

∫
p(x) dx

}
. (15.9)

(Here, each occurrence of the symbol ± has the same value, either all pluses
or all minuses.) Thus,

‖Ĥψ − Eψ‖ ≤ �2

2m
‖A′′‖+ �

2m
‖2A′p+Ap′‖. (15.10)

Since ‖ψ‖ is independent of �, the right-hand side of (15.10) is of order
� ‖ψ‖ . It is easy to check that ‖2A′p+Ap′‖ is bounded as a function of E
for any E in the range [E1, E2] and the result follows.
Proposition 15.2, along with elementary spectral theory, tells us that for

any E larger than the minimum of V, there is a point Ẽ in the spectrum
of Ĥ such that

|E − Ẽ| ≤ c�. (15.11)

(See Exercise 4 in Chap. 10.) If we assume that V (x) tends to +∞ as
x → ±∞, then Ĥ will have discrete spectrum and we can say that Ẽ is
an eigenvalue for Ĥ. The conclusion, for such potentials, is this: Given any
number E ∈ [E1, E2], there is an eigenvalue of Ĥ within C� of E. Thus, as
� tends to zero, the eigenvalues of Ĥ “fill up” the entire range of values of
the classical energy function.
Proposition 15.2 is one manifestation of the “classical limit” of quantum

mechanics: the quantum energy spectrum is, in a certain sense, approxi-
mating the classical energy spectrum as � gets small. Notice, however, that
this result tells us only that the eigenvalues are at most order � apart and
nothing further about the location of the individual eigenvalues.
In this chapter, we will show that if E satisfies the corrected Bohr–

Sommerfeld condition, then there exists an eigenvalue Ẽ of Ĥ such that

|E − Ẽ| ≤ C�9/8. (15.12)

An estimate of the form (15.12) locates eigenvalues with an error bound
that is small compared to the expected average spacing between the eigen-
values, which is of order �. On the other hand, the approximate energy
levels E are determined by Condition 15.1, which is a condition on the
classical energy curve. Thus, (15.12) can be described as a semiclassi-
cal estimate: It is estimating quantum mechanical quantities (the indi-
vidual energy levels) in classical terms (the level curves of the classical
Hamiltonian).
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15.4 The WKB Approximation Away
from the Turning Points

We consider only the simplest interesting case of the WKB approximation,
in which the following assumption holds. See the book of Miller [30] for
much about this sort of asymptotic analysis.

Assumption 15.3 Consider a smooth, real-valued potential V (x), with
V (x) → +∞ as x → ±∞. Assume that the functions V ′(x)/V (x) and
V ′′(x)/V (x) are bounded for x near ±∞.
Consider also a range of energies of the form E1 ≤ E ≤ E2. Assume

that for each E in this range, there are exactly two points, a(E) and b(E),
with a(E) < b(E), for which V (x) = E. Further assume that the derivative
of V is nonzero at a(E) and b(E), for all E ∈ [E1, E2].

See Fig. 15.2 for a typical example. Since V is locally bounded and tends
to +∞ at infinity, Ĥ is essentially self-adjoint on C∞

c (R) (Theorem 9.39)
and has purely discrete spectrum (Theorem XIII.16 in Volume IV of [34]).
The assumption that V ′/V and V ′′/V be bounded near infinity is stronger
than necessary, but still applies to most of the interesting cases.
We refer to a(E) and b(E) as the turning points, since these are the

points where a classical particle with energy E changes direction. When
the energy E is understood as being fixed, we will write the turning points
simply as a and b.

15.4.1 The Classically Allowed Region

As in Sect. 15.3, we seek approximate solutions to the time-independent
Schrödinger equation having the following form in the classically allowed
region:

ψ = A(x) exp

{
± i

�

∫
p(x) dx

}
, (15.13)

where p(x) =
√
2m(E − V (x)) is the momentum of a classical particle with

energy E and position x. According to (15.9), this form for ψ gives

Ĥψ − Eψ = − �2

2m

(
A′′(x) ± i

�
2A′(x)p(x) ± i

�
p′(x)A(x)

)

× exp

{
± i

�

∫
p(x) dx

}
. (15.14)

Since we want to obtain an approximate solution with an error smaller
than �, we require that the second and third terms in parentheses in (15.14)
cancel. This cancellation will occur if A satisfies

2A′(x)p(x) = −p′(x)A(x)
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a(E)

E1

E2

E

b(E)

FIGURE 15.2. A potential satisfying Assumption 15.3.

or

A′(x)

A(x)
= −1

2

p′(x)

p(x)
, (15.15)

which we can easily solve (Exercise 3) as

A(x) = C(p(x))−1/2. (15.16)

If A is given by (15.16), we will have

Ĥψ − Eψ = − �2

2m

A′′(x)

A(x)
ψ(x), (15.17)

indicating that our error is of order �2. This expression, however, is only
local, in that it applies only in the classically allowed region. Furthermore,
p(x) tends to zero at the turning points, which means that A(x) becomes
unbounded at these points. This blow-up of the amplitude is a substantial
complicating factor in the analysis.
We can get an approximate solution to the Schrödinger equation by tak-

ing a linear combination of the function in (15.13) with two different choices
for the sign in the exponent, with constants c1 and c2. It is convenient to
take the basepoint of our integration to be the left-hand turning point
a = a(E). Furthermore, since the Schrödinger operator Ĥ commutes with
complex conjugation, the real and imaginary parts of any solution to the
time-independent Schrödinger equation is again a solution. We will there-
fore consider only real-valued approximate solutions, i.e., those in which
c2 = c1. Using Exercise 1, we can then write our approximate solution as
follows.
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Summary 15.4 Suppose ψ is a real-valued solution to the time-independent
Schrödinger equation. Then in the classically allowed region but away from
the turning points, we expect that ψ is well approximated by an expression
of the form

R√
p(x)

cos

{
1

�

∫ x

a

p(y) dy − δ

}
, (15.18)

where p(x) =
√
2m(E − V (x)) is the momentum of a classical particle with

energy E and position x. Here R and δ are real constants, referred to as
the amplitude and the phase of the approximate solution.

We refer to the function in (15.18) as the oscillatory WKB function. In
integrating the square of the oscillatory WKB function over some interval,
we may apply the identity cos2 θ = (1 + cos(2θ))/2 to the cosine factor.
The rapidly oscillating cos(2θ) term will be small for small � because of
cancellation between positive and negative values. Thus, the integral of
ψ2(x) over an interval will be, to leading order, just a constant times the
integral of 1/p(x), or, equivalently, a constant times 1/v(x), where v is
the velocity of the classical particle. But the integral of 1/v(x) = dt/dx
with respect to x is just the time t that the classical particle spends in the
interval. We obtain, then, the following result.

Conclusion 15.5 If the amplitude R in (15.18) is chosen so that ψ has
L2 norm 1 over [a, b], then the probability of finding the quantum particle in
an interval [c, d] ⊂ [a, b] is approximately the fraction of time the classical
particle spends in [c, d] over one period of classical motion.

15.4.2 The Classically Forbidden Region

In the classically forbidden region, let us introduce the quantity

q(x) :=
√
2m(V (x)− E).

We look for approximate solutions to the Schrödinger equation (15.6) of
the form

ψ(x) = A(x) exp

{
± 1

�

∫ x

x0

q(y) dy

}
.

If we analyze approximate solutions of this form precisely as in the classi-
cally allowed region, we again find that there is a unique choice for A (up
to multiplication by a constant) that causes the order-� terms in Ĥψ−Eψ
to cancel, namely A(x) = C(q(x))−1/2. If we are hoping to approximate a
square-integrable solution of the Schrödinger equation, we want to take a
minus sign in the exponent on the interval (b,∞), and it is convenient to
the basepoint of our integration to be b. In the region (−∞, a), we want to
take a plus sign in the exponent; it is then convenient to take the basepoint
of our integration to be a and to reverse the direction of integration, which
changes the sign in the exponent back to being negative.
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a b

E

FIGURE 15.3. The WKB functions, extended all the way to the turning points.

Summary 15.6 If ψ1(x) is a solution to the time-independent Schrödinger
equation that tends to zero as x approaches −∞, we expect that ψ1 will be
well approximated on (−∞, a), but away from the turning point, by the
expression

c1√
q(x)

exp

{
− 1

�

∫ a

x

q(y) dy

}
, (15.19)

where q(x) =
√
2m(V (x) − E). Meanwhile, if ψ2(x) is a solution to the

time-independent Schrödinger equation that tends to zero as x approaches
+∞, we expect that ψ will be well approximated on (b,+∞), but away from
the turning point, by the expression

c2√
q(x)

exp

{
− 1

�

∫ x

b

q(y) dy

}
. (15.20)

We refer to the functions in (15.19) and (15.20) as the exponential WKB
functions. The general theory of ordinary differential equations tells us that
any solution to the time-independent Schrödinger equation for a smooth
potential is smooth. Thus, the singularity at the turning points is an artifact
of our approximation method. Nevertheless, for small values of �, the true
solution will “track” the WKB approximation until x gets very close to
the turning point, with the result that the true solution will be large, but
finite, near the turning points.
Figure 15.3 plots a potential function V (x), an energy level E, and the

WKB functions in both the classically allowed and classically forbidden
regions. In the figure, the WKB functions have been (improperly) used all
the way up to the turning points.
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15.5 The Airy Function and the Connection
Formulas

For any constant c1 and any energy level E, we expect that there is a unique
solution ψ1 of the Schrödinger equation (15.6) that is well approximated
for x tending to −∞ by a function of the form (15.19). We expect that this
solution will be well approximated in the classically allowed region (but
not too close to the turning points) by a function of the form (15.18) for
a unique pair of constants R and δ. In this section, we will see that the
correct choices for R and δ are

R = 2c1, δ =
π

4
. (15.21)

The formula (15.21) for R and δ is called a connection formula; there is a
similar formula connecting an approximate solution that tends to zero as x
tends to +∞ to an approximate solution in the classically allowed region.
By comparing the two connection formulas, we will obtain conditions on
the energy E under which the two approximate solutions (one that decays
near −∞ and one that decays near +∞) agree up to a constant in the
classically allowed region. The condition on E will turn out to be precisely
Condition 15.1.
The discussion in the previous paragraph should be compared to the

analysis in Chap. 5, where we determined the constants for the solution
inside the well in terms of the energy level and the constant in front of
the exponentially decaying solution outside the well. Here, of course, the
analysis is more complicated because neither of the approximations (15.19)
or (15.18) is valid near the turning point. The connection formula will be
obtained, then, by using the Airy equation to approximate the Schrödinger
equation near the turning points.
To get a reasonable approximation of our wave function near the turning

points, we approximate V locally by a linear function. (By contrast, in the
WKB functions, we are essentially thinking of V as being locally constant.)
Thus, for example, near the turning point a, we write V (x) ≈ (a − x)F0,
where F0 = −V ′(a), yielding the approximate equation

− �2

2m

d2ψ

dx2
+ (a− x)F0ψ = 0.

By making the change of variable

u =

(
2mF0

�2

)1/3

(a− x) (15.22)

we can reduce the equation to

d2ψ

du2
− uψ(u) = 0, (15.23)
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which is the Airy equation.
Equation (15.23) has two linearly independent solutions, denoted Ai(u)

and Bi(u). We are interested in the solution Ai(u), since this is the one
that decays for u > 0, that is, for x < a. The function Ai(u) is defined by
the following convergent improper integral

Ai(u) =
1

π

∫ ∞

0

cos

(
t3

3
+ ut

)
dt. (15.24)

Intuitively, convergence is due to the very rapid oscillation of the integrand
for large t, which produces a cancellation between the positive and nega-
tive values of the cosine function. Rigorously, convergence can be proved
using integration by parts, as in Exercise 6. By differentiating under the
integral sign (Exercise 7), one can show that Ai indeed satisfies the Airy
equation (15.23).
As |u| gets large, the integrand in (15.24) becomes more and more rapidly

oscillating, producing more cancellation. The only exception to this behav-
ior is when the derivative (with respect to t) of the function t3/3+ut is zero.
Near such a point, the argument of the cosine function is changing slowly
and there is little oscillation. If u is negative, there is a unique critical point
of t3/3+ ut, at t =

√−u, and we expect that the main contribution to the
integral in (15.24) will come from t ≈

√
−u. If u is positive, t3/3+ut has no

critical points, and we expect that the integral in (15.24) will become quite
small as u tends to +∞. This sort of reasoning can be used to determine
the precise asymptotics of the Airy function as u tends to +∞ and as u
tends to −∞; see the discussion following (15.32) and (15.33).
We now state our main result, which will be derived in the remainder of

this section. The result is not rigorous, because we have not estimated any
of errors involved; such error estimates will be performed in Sect. 15.6.

Claim 15.7 If ψ1 is a solution of the Schrödinger equation (15.6) that
tends to zero near −∞, then ψ1 can be normalized so that the following
approximations hold

ψ1(x) ≈
1

2
√
q(x)

exp

{
− 1

�

∫ a

x

q(y) dy

}
(near −∞) (15.25)

ψ1(x) ≈
√
π

(2mF0�)1/6
Ai

((
2mF0

�2

)1/3

(a− x)

)
(near x = a) (15.26)

ψ1(x) ≈
1√
p(x)

cos

{
1

�

∫ x

a

p(y) dy − π

4

}
(a < x < b). (15.27)

Here F0 = −V ′(a) and in the case of (15.27), x should not be too close to
a or to b.



15.5 The Airy Function and the Connection Formulas 317

Similarly, if ψ2 is a solution of the Schrödinger equation (15.6) that
tends to zero near +∞, then ψ2 can be normalized so that the following
approximations hold

ψ2(x) ≈
1√
p(x)

cos

{
− 1

�

∫ b

x

p(y) dy +
π

4

}
(a < x < b) (15.28)

ψ2(x) ≈
√
π

(2mF1�)1/6
Ai

((
2F1m

�2

)1/3

(x− b)

)
(near x = b) (15.29)

ψ2(x) ≈
1

2
√
q(x)

exp

{
− 1

�

∫ x

b

q(y) dy

}
(near +∞). (15.30)

Here F1 = V ′(b) and in the case of (15.28), x should not be too close to a
or to b.
The approximate formulas for ψ1 and ψ2 will agree, up to multiplication

by a constant, in the classically allowed region if and only if we have

1

�

∫ b

a

p(x) dx =

(
n+

1

2

)
π (15.31)

for some non-negative integer n.

More specifically, (15.27) and (15.28) are equal when the integer n in
(15.31) is even and they are negatives of each other when n is odd. Note
that there is a factor of 2 in the denominator in (15.25) but not in (15.27);
this factor accounts for the expression R = 2c1 in (15.21).
Since the classical energy curve consists of two “branches,” of the form

(x, p(x)) and (x,−p(x)), the compatibility condition (15.31) is equivalent
to Condition 15.1. Since the phase of the approximate wave function in
the classically allowed region is given by 1/� times the integral of p dx,
the condition (15.31) says that the wave function goes through a little
more than n half-cycles between the two turning points, where a half-cycle
corresponds to a change in the phase in the amount of π, or the interval
between two critical points of the wave function. In particular, the wave
function has exactly n+1 critical points inside the classically allowed region.
The first and last critical points occur slightly inside the turning points,
leaving a change in phase of roughly π/4 between the extreme critical point
and the turning point.
Figure 15.4 considers the same potential as in Fig. 15.3. The figure shows

the WKB functions (15.25) and (15.27), together with the scaled Airy func-
tion (15.26), near the turning point x = a. Note that there is a good match
between the WKB functions and the scaled Airy function when x is close
to, but not too close to, the turning point. Meanwhile, Fig. 15.5 then shows
the full approximate wave function with � chosen so that (15.31) holds
with n = 39, obtained by using the WKB functions away from the turn-
ing points and the scaled Airy functions near the turning points. Finally,
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a

FIGURE 15.4. Plots of the scaled Airy function (thick curve) and the WKB
functions, near the turning point x = a.

a b

E

FIGURE 15.5. The approximate wave function with n = 39.

Fig. 15.6 shows the probability distribution associated to the approximate
wave function, plotted together with the function 1/p(x). (Compare the
discussion preceding Conclusion 15.5.)
We now derive the results in Claim 15.7. The Airy function Ai(u) is

known to have the following asymptotic behavior:

Ai(u) ≈ 1

2
√
πu1/4

exp

{
−2

3
u3/2

}
, u → +∞, (15.32)

and

Ai(u) ≈ 1√
π(−u)1/4

cos

(
2

3
(−u)3/2 − π

4

)
, u → −∞. (15.33)

For u tending to −∞, the asymptotics in (15.33) can be obtained by a
straightforward application of the “method of stationary phase,” as ex-
plained in Exercise 9. For u tending to +∞, repeated integrations by parts
(Exercise 8) show that Ai(u) decays faster than any power of u, which is all
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a b

FIGURE 15.6. The probability distribution of the approximate wave function,
plotted against the function 1/p(x).

that is strictly required for the main theorem of Sect. 15.6. To obtain the
precise asymptotics in (15.32), one should deform the contour of integra-
tion to obtain a different integral representation of Ai(u), and then apply
some variant of the method of stationary phase, such as Laplace’s method
or the method of steepest descent. See Sect. 4.7 of [30] for one approach to
this analysis.
We will use the Airy function on an interval around the turning points

with a length that goes to zero as � tends to zero (so that the linear
approximation to the potential gets better and better) but with a length
that is large compared to �2/3 (so that the value of u at the ends of the
interval will be large, putting us into the asymptotic region of the Airy
function). See Sect. 15.6 for more information.
We use the linear approximation V (x) ≈ (a− x)F0 to the potential near

x = a, where F0 = −V ′(a), which turns the Schrödinger equation (15.6)
into the Airy equation, as previously noted. Now, the linear approximation
to V yields

p ≈
√
2mF0

√
x− a (15.34)

and

1

�

∫ x

a

p(y) dy ≈
√
2mF0

�

(x − a)3/2

3/2
=

2

3
(−u)3/2. (15.35)

From here it is a simple matter to check, using (15.33), that

√
π

(2mF0�)1/6
Ai(u) ≈ 1√

p(x)
cos

(
1

�

∫ x

a

p(y) dy − π

4

)

for x > a, where the approximation holds in an intermediate region where
x is close to a but not too close to a. Thus, if we scale our solution ψ1 to
the Schrödinger equation so that it is approximated by π1/2(2mF0�)

−1/6

times Ai(u) near x = a, it should satisfy (15.27) in the classically allowed
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region (but away from the turning points). It is then straightforward to
verify, using (15.32), that this multiple of Ai(u) satisfies (15.25) for x near
−∞. The analysis of ψ2 is entirely similar.
Finally, to compare the approximations (15.27) and (15.28), we note that

− 1

�

∫ b

x

p(y) dy +
π

4
=

(∫ x

a

p(y) dy − π

4

)
− φ,

where

φ =
1

�

∫ b

a

p(y) dy − π/2.

Now, if φ is an odd multiple of π, then cos(θ − φ) = − cos θ and if φ is
an even multiple of π, then cos(θ − φ) = cos θ. For all other values of φ
(Exercise 4), cos(θ − φ) is not a constant multiple of cos θ. Thus, (15.31)
is a necessary and sufficient condition for the two approximate solutions to
agree up to a constant in the classically allowed region.

15.6 A Rigorous Error Estimate

The preceding sections give a treatment of the WKB approximation that is
typical of many books in the literature. This treatment gives the idea that
energies E satisfying the corrected Bohr–Sommerfeld Condition (Condi-
tion 15.1) should be approximate eigenvalues for the Hamiltonian operator
Ĥ, without specifying the sense in which this approximation holds. In this
section, we prove a rigorous estimate, as follows.

Theorem 15.8 For any potential V and range [E1, E2] of energies sat-
isfying Assumption 15.3, there is a constant C such that the following
holds. For any energy E ∈ [E1, E2] satisfying Condition 15.1, there exists
a nonzero function ψ belonging to Dom(Ĥ) such that

‖Ĥψ − Eψ‖ < C�9/8 ‖ψ‖ . (15.36)

As noted already in Sect. 15.3, an estimate of the form ‖Ĥψ − Eψ‖ <
ε ‖ψ‖ implies that there is a point Ẽ in the spectrum of Ĥ with |E −
Ẽ| < ε. (See Exercise 4 in Chap. 10.) Since, under our assumptions on V,
the spectrum of Ĥ is purely discrete, we conclude that for each number
E ∈ [E1, E2] satisfying Condition 15.1, there is an actual eigenvalue Ẽ for
Ĥ with

|E − Ẽ| < C�9/8. (15.37)

If E satisfies Condition 15.1, then the estimate (15.37) actually holds
with �9/8 replaced by �2 on the right-hand side. It is not, however, pos-
sible to obtain such an optimal estimate by the methods we are using
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in this chapter. Specifically, the approximate eigenvector ψ constructed
in the proof of Theorem 15.8 does not satisfy an estimate of the form
‖Ĥψ−Eψ‖ < C�2. One can, however, construct an approximate eigenvec-
tor by different methods—for example, the method in [31]—that satisfies an
order-�2 error estimate, for any E satisfying the corrected Condition 15.1.
Nevertheless, the error bound in (15.37) is small compared to the typical
spacing between the energy levels, which is of order �.
Recall, as we noted at the beginning of Sect. 15.4, that a Schrödinger

operator with potential V that is smooth and tends to +∞ at ±∞ is
essentially self-adjoint on C∞

c (R). The operator Ĥ in Theorem 15.8 is,
more precisely, the unique self-adjoint extension of the Schrödinger operator
defined on C∞

c (R).

15.6.1 Preliminaries

Our construction of the approximate eigenfunction ψ will be essentially
by the WKB approximation as outlined in Claim 15.7. That is to say,
we will define ψ using scaled Airy functions near the turning points and
by the standard WKB functions in the classically allowed and classically
forbidden regions. There is, however, a difficulty with this approach, which
is that at the boundary between different regions, the scaled Airy function
does not exactly match the WKB functions, but only approximately. What
this means is that if we define ψ by the WKB formula in, say, an interval
of the form (−∞, a − ε) and we define ψ by a scaled Airy function on
(a − ε, a + ε), then ψ may be discontinuous at a − ε. Even if we scale ψ
by a constant on one of these intervals to eliminate the discontinuity in ψ
itself, the derivative of ψ will still probably be discontinuous. But if the
derivative of ψ is discontinuous, ψ is not actually in the domain of Ĥ, and
the left-hand side of (15.36) does not make sense. (Compare Sect. 5.2.)
The condition that ψ′ be continuous is not just a technicality: If we

did not worry about continuity of ψ′, then we could always match the
scaled Airy function to the WKB functions, just by multiplying the various
functions by constants, regardless of whether or not the energy satisfies the
corrected Bohr–Sommerfeld Condition. In that case, we would be claiming
that any number E ∈ [E1, E2] is within C�9/8 of an eigenvalue of Ĥ, which
is false already for the harmonic oscillator.
To work around the difficulty described in the previous paragraphs, we

must put in a transition region over which we smoothly pass from one func-
tion to the other, using the “join” construction described in Sect. 15.6.4.
Thus, we define the function ψ in Theorem 15.8 as follows. We use the
formulas in Claim 15.7 in the indicated intervals, except that multiply
the functions (15.28), (15.29), and (15.30) by −1 when n is odd. We use
the scaled Airy functions (15.26) and (15.29) on intervals of the form
(a− ε, a+ ε) and (b− ε, b+ ε), respectively, for some ε depending on � in a
manner to be determined later. We then put in four transition regions, each
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a a aa a

FIGURE 15.7. The approximate eigenfunction ψ, with the transition regions
shaded.

having length δ, where δ also depends on � in a manner to be determined
later. The first transition region, for example, is the interval (a−ε−δ, a−ε)
between the first classically forbidden region and the first turning point.
In each transition region, we change over smoothly from one function to
another. See Fig. 15.7 for an illustration of the transition regions around
the turning point x = a.
Suppose Ĥ0 denotes the Schrödinger operator with potential V, with

domain equal to C∞
c (R). Then, as we have noted, Ĥ0 is essentially self-

adjoint, and we are letting Ĥ, which coincides with the adjoint operator
Ĥ∗

0 , denote the unique self-adjoint extension of Ĥ0. Now, the domain of
Ĥ∗

0 consists of all functions ψ ∈ L2(R) such that the Schrödinger operator,
computed in the distributional sense, again belongs to L2(R). In particular,
if ψ is smooth, then ψ belongs to the domain of Ĥ = Ĥ∗

0 if and only if ψ
is in L2(R) and −(�2/2m)ψ′′ + V ψ is also in L2(R).
Because of the joins, our approximate eigenfunction is ψ actually in-

finitely differentiable on all of R. And since V (x) tends to +∞ at ±∞,
the exponential WKB functions (15.25) and (15.30) have rapid decay at
infinity, which shows that ψ is in L2(R). Furthermore, for x near ±∞, the
calculation (15.17) applies, with A(x) = Cq(x)−1/2. We obtain, after a
short calculation,

− �2

2m
ψ′′(x) + V (x)ψ(x)

= − �2

2m

(
5

16

(
V ′(x)

V (x) − E

)2

− 1

4

V ′′(x)

V (x) − E

)
ψ(x). (15.38)

Since V ′/V and V ′′/V are assumed to be bounded near infinity and ψ(x)
tends to +∞ at ±∞, we see that the Schrödinger operator applied to ψ is
bounded by a constant times ψ near infinity and is thus square integrable.
This shows that ψ is in the domain Ĥ.
In Sect. 15.6.2, we will take the width 2ε of the region around the turning

points to be of order �1/2. In that case, the L2 norm of our approximate
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wave function is of order 1 (bounded and bounded away from zero) as �

tends to zero, despite the blow-up of order �−1/6 very near the turning
points. Although this result is not hard to verify (Exercise 10), if anything,
the norm would be blowing up as � tends to zero, which would only help
us in showing that ‖Ĥψ − Eψ‖ is small compared to ‖ψ‖ .
To prove Theorem 15.8, we must estimate the contributions to the quan-

tity ‖Ĥψ−Eψ‖ from four different types of regions: the classically allowed
region, the classically forbidden regions, the regions near the turning points,
and the transition regions. These estimates will occupy the remainder of
this section, with the analysis in the transition regions being the most in-
volved. In particular, it is essential that the derivative of scaled Airy func-
tion almost match the derivative of the WKB function in the transition
region, as in the second part of Lemma 15.9.

15.6.2 The Regions Near the Turning Points

We use a scaled Airy function in an interval around each turning point.
[We use (15.26) near x = a and either (15.29) or the negative thereof near
x = b, depending on whether n is even or odd.] We now verify that taking
these intervals to have length of order �1/2 will give satisfactory estimates.
If ψ denotes one of the scaled Airy functions, then ψ satisfies a Schrödinger
equation in which the potential V is replaced by a linear approximation Ṽ
near one of the turning points, which means that

Ĥψ − Eψ = (V (x)− Ṽ (x))ψ. (15.39)

The difference between V (x) and its linear approximation Ṽ (x) grows at
most quadratically with the distance from the turning point. Meanwhile,
the asymptotics of the Airy function tell us that it can be bounded as
|Ai(u)| ≤ Cu−1/4. (This is terrible estimate for small u, but still true.)
Now u, as defined in (15.22), is of order �−2/3 times the distance to the
turning point. Since, also, there is factor of �−1/6 in (15.26) and the distance
from the turning point is at most of order �1/2, we find that

|Ĥψ − Eψ| ≤ C(�1/2)2�−1/6(�−2/3�1/2)−1/4 = C�7/8

over the interval around each turning point. Finally, if a function f satisfies
|f | ≤ D on an interval of length L, then the L2 norm of f over that interval
will be at most D

√
L. Thus, over the interval around the turning points,

||Ĥψ − Eψ|| = O(�7/8�1/4) = O(�9/8).

15.6.3 The Classically Allowed and Classically Forbidden

Regions

The expression (15.38) for Ĥψ−Eψ, derived from (15.17), applies both in
the classically allowed region and in the classically forbidden regions. Let us
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consider first the classically allowed region. Although (15.38) is nominally
of order �2, we use this expression on an interval whose ends get closer and
closer to the turning point as � tends to zero. Since, also, the expression
in (15.38) is blowing up at the turning points, the contribution to ‖Ĥψ −
Eψ‖ from this interval is of order larger than �2.
We have taken the interval around the turning point to have length 2ε

that is of order �1/2, and we will also take (Sect. 15.6.4) the transition
regions to have length δ that is of order �1/2. Thus, we use the oscillatory
WKB function on an interval of the form (a+ γ, b− γ), where γ = ε+ δ is
of order �1/2. Now, the formula for ψ in the classically allowed regions has
a factor of 1/

√
p(x) times a bounded quantity (the cosine factor). Since

V ′(a) is assumed to be nonzero, V (x) − E behaves like a constant times
(x − a) and so 1/

√
p(x) behaves like a constant time (x − a)−1/4 for x

approaching a, with similar behavior near the other turning point.
Meanwhile, the more problematic term in (15.38) is the term having

(V (x) − E)2 in the denominator. Keeping in mind the 1/
√
p blowup of ψ

itself, this term behaves like (x− a)−9/4 as x approaches a. Thus, we may
estimate the norm of Ĥψ − Eψ over the left half of the classically allowed
region as

||Ĥψ − Eψ‖ ≤ C�2

(∫ a+γ

(a+b)/2

(x− a)−9/2 dx

)1/2

= C′�2(γ−7/2 − ((a+ b)/2)7/2)1/2.

Since γ is of order �1/2, the contribution to ‖Ĥψ − Eψ‖ from the interval
(a+ γ, (a+ b)/2) will consist of a term of order �2�−7/8 = �9/8, plus lower-
order terms. The estimate over the other half of the classically allowed
region is similar.
Meanwhile, in the first classically forbidden region, we also apply (15.38).

By Assumption 15.3, V ′/V and V ′′/V are bounded near infinity. Thus,
V ′/(V − E) and V ′′/(V − E) will also be bounded near infinity, and thus
also bounded on (−∞, a−1), since V −E is strictly positive on this interval
and tends to +∞ as x tends to −∞.We see, then, that the norm of Ĥψ−Eψ
over (−∞, a− 1) is bounded by a constant times �2 ‖ψ‖ .
The norm of Ĥψ−Eψ over an interval of the form (a− 1, a− γ) can be

analyzed similarly to the classically allowed region. The estimates from this
region are better, however, because of the exponentially decaying factor in
the definition of the WKB function. Thus, the contribution to ‖Ĥψ−Eψ‖
from the classically forbidden region (−∞, a−γ) is certainly no larger than
order �9/8, and similarly for the other classically forbidden region.
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FIGURE 15.8. The join of two functions over the interval [α, α+ δ] (thick curve).

15.6.4 The Transition Regions

Given two smooth functions ψ1 and ψ2 and some interval of the form
[α, α+ δ], we now define a “join” ψ1 ⊔ ψ2 of ψ1 and ψ2, where ψ1 ⊔ ψ2(x)
is equal to ψ1(x) for x < α and equal to ψ2(x) for x > α + δ, and where
ψ1 ⊔ ψ2 is smooth everywhere. Let χ be a smooth function on [0, 1] that is
identically equal to 0 in a neighborhood of 0 and identically equal to 1 in
a neighborhood of 1. Then define ψ1 ⊔ ψ2 by

(ψ1 ⊔ ψ2)(x) = ψ1(x) + (ψ2(x) − ψ1(x))χ((x − α)/δ).

(See Fig. 15.8.) By direct calculation, we have

(Ĥ − EI)(ψ1 ⊔ ψ2) = (Ĥψ1 − Eψ1) ⊔ (Ĥψ2 − Eψ2)

− 1

δ

�2

m
(ψ′

2(x) − ψ′
1(x))χ

′((x− a)/δ)

− 1

δ2
�2

2m
(ψ2(x) − ψ1(x))χ

′′((x− a)/δ). (15.40)

In our constructing our approximate eigenfunction, we use five different
formulas in five different regions: the two classically forbidden regions, the
classically allowed region, and the regions near the two turning points. Since
none of these functions exactly matches the function in the next interval,
we put in a total of four joins in order to produce a function that is in the
domain of Ĥ. We choose the width δ of the interval on which the join takes
place to be of the same size as the intervals around the turning points,
namely, order �1/2.
The most critical case is the transition from the region near the turning

points to the classically allowed region. Consider, for example, the scaled
Airy function ψ1 in (15.26) and the oscillatory WKB function ψ2 in (15.27).
There are two contributions to the mismatch between these two functions.
First, there is a discrepancy between the Airy function and its leading-
order asymptotics. Second, there is an error in the approximations (15.34)
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and (15.35), which come from the discrepancy between the potential V (x)
and its linear approximation Ṽ (x) near x = a. We need to consider both
contributions to the mismatch in our estimation of ψ1−ψ2 and of ψ′

1−ψ′
2.

Lemma 15.9 Let ψ1 denote the scaled Airy function in (15.26), let ψ̃1

denote the same function with the Airy function replaced by the right-hand
side of (15.33), and let ψ2 denote the oscillatory WKB function in (15.27).
If x− a is positive and of order �1/2, we have

|ψ1(x)− ψ̃1(x)| = O(�1/8)

|ψ̃1(x)− ψ2(x)| = O(�1/8)

and

|ψ′
1(x) − ψ̃′

1(x)| = O(�−5/8)

|ψ̃′
1(x) − ψ2(x)| = O(�−5/8).

Before giving the proof of this lemma, let us verify that these estimates
are sufficient to control the contribution to ‖Ĥψ−Eψ‖ from the transition
region (a+ ε, a+ ε+ δ) between the first turning point and the classically
allowed region, where both ε and δ are taken to be of order �1/2. We must
consider each of the three lines in (15.40). The L2 norm of the first line is
of order at most �9/8, by precisely the same argument as in Sect. 15.6.3.
For the second and third lines, we recall that if a function f is bounded

by C, then the L2 norm of f over an interval of length L is at most C
√
L.

Since we are taking the length δ of our transition interval to be of order
�1/2, the L2 norm of the second line of (15.40) is of order

1

�1/2
�2�−5/8�1/4 = �9/8.

Meanwhile, the contribution from the third line of (15.40) is of order

1

�
�2�1/8�1/4 = �11/8.

Thus, the contribution to ‖Ĥψ−Eψ‖ from the transition region (a+ε, a+
ε+ δ) is of order at most �9/8.
The analysis of the transition between the classically allowed region and

the region around x = b is entirely similar. The analysis of the transitions
between the regions near the turning points and the classically forbidden
regions is also similar, but much less delicate, because all of the functions
involved are very small in the transition region. When (a − x) is positive
and of order �1/2, for example, u, as defined in (15.22) will be of order �−1/6

and so u3/2 is of order �−1/4. Thus, the exponential factor in leading-order
asymptotics of the Airy function for u > 0 will behave like exp(−C�−1/4),
which is very small for small �, certainly smaller than any power of �. Since
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all the factors in front of the exponential will behave like � to a power, the
overall contribution to ‖Ĥψ−Eψ‖ from the transition between the region
near the turning points and the classically forbidden region is smaller than
any power of �. Thus, none of the transition regions contributes an error
worse that O(�9/8).
Proof of Lemma 15.9. We consider only the estimates for the derivatives
of the functions involved. The analysis of the functions themselves is similar
(but easier) and is left as an exercise to the reader (Exercise 11).
We begin by considering ψ′

1− ψ̃′
1. With a little algebra, we compute that

dψ1

dx
− dψ̃′

1

dx
= −

√
π(2mF0)

1/6�−5/6(Ai′ (u)− Ãi
′
(u)) (15.41)

where u is as in (15.22) and where Ãi is the function on the right-hand side
of (15.33).
Now, Ai(u) has an asymptotic expansion for u → −∞ given by

Ai(u) = Ãi(u)(1 + Cu−3/2 + · · · ),

and Ai′(u) has the asymptotic expansion obtained by formally differenti-
ating this with respect to u. [See Eq. (7.64) in [30].] From this, we obtain

Ai′(u)− Ãi
′
(u) = Ãi

′
(u)O((−u)−3/2) + Ãi(u)O((−u)−5/2). (15.42)

From the explicit formula for Ãi, we see that Ãi(u) is of order (−u)−1/4.

Meanwhile, the formula Ãi
′
(u) will contain two terms, the larger of which

will be of order u1/4. Thus, the slower-decaying term on the right-hand side
of (15.42) is the first one, which is of order (−u)−5/4. Now, in the transition
regions, u behaves like �−2/3�1/2 = �−1/6. Thus, (15.42) goes like �5/24 and
so (15.41) goes like �−5/6+5/24 = �−5/8, as claimed.
We now consider ψ̃′

1 − ψ′
2. By direct calculation, the derivatives of ψ̃1

and ψ2 each consist of two terms, a “dominant” obtained by differentiating
the cosine factor and a “subdominant” term obtained by differentiating the
coefficient of the cosine factor. In the case of ψ̃′

1, the dominant term in the
derivative may be simplified to

− 1

�
((2mF0)(x − a))1/4 sin

(
2

3
(−u)3/2 − π

4

)
. (15.43)

According to Exercise 12, we have, when x − a is of order �1/2, the
estimates

((2mF0)(a− x))1/4 =
√
p+

√
pO(�1/2) (15.44)

and
2

3
(−u)3/2 =

1

�

∫ x

a

p(y) dy +O(�1/4). (15.45)
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Since the derivative of sin θ is bounded, a change of order �1/4 in the
argument of a sine function produces a change of order �1/4 in the value
of the sine. Thus, if we substitute (15.44) and (15.45) into (15.43), we find
that the difference between the dominant term in ψ̃′

1 and the dominant
term in ψ′

1 is
1

�

√
pO(�1/4) + lower-order terms.

Since
√
p is of order (x − a)1/4 or �1/8, we get an error of order �−5/8, as

claimed.
Finally, the subdominant terms in the derivatives of ψ̃1 and ψ2 are easily

seen to be separately of order �−5/8. Thus, even without taking into account
the cancellation between these terms, they do not change the order of the
estimate.

15.6.5 Proof of the Main Theorem

We have estimated the contributions to ‖Ĥψ − Eψ‖ from each type of
region: classically allowed and classically forbidden regions, the regions
around the turning points, and the transition regions. In each case, we have
found a contribution that is of order at most �9/8 ‖ψ‖ . Thus, it remains
only to verify that the constants in all estimates are bounded uniformly
over the given range E1 ≤ E ≤ E2 of energies.
This verification is straightforward. Near the turning point x = a, for

example, we need to estimate the difference between the potential V (x)
and its linear approximation Ṽ (x) near x = a. As a consequence of the

Taylor remainder formula, |V (x)− Ṽ (x)| will be bounded by C |x− a|2 /2,
where C is the maximum of |V ′′(x)| over the interval from a to x. As E
varies over [E1, E2], the set of points where we have to evaluate |V ′′(x)|
will be bounded, meaning that C can be taken to be independent of E, for
E in such a range.
Similarly, in the classically allowed region, the blow-up of 1/(V (x)−E)2

near x = a(E) can be controlled by the minimum of |V ′(y)| for y between a
and x. By assumption, |V ′(x)| > 0 at all the turning points a(E) and b(E)
with E1 ≤ E ≤ E2, and thus, by continuity, in some neighborhood of that
set of turning points. Thus, blow-up of 1/(V (x)−E)2 will be controlled by
the minimum of |V ′(x)| on an interval of the form [a(E2) + α, a(E1) + α]
for some small α > 0. The remaining details of this verification are left to
the reader.

15.7 Other Approaches

The main complicating factor in the WKB approximation is the singular
behavior near the turning points. The turning points, meanwhile, are only
problematic because we are working in the position representation. The
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turning points, after all, are the points on the classical trajectory where
the position of the particle achieves a maximum or a minimum. If we were
to work in the momentum representation, the points where the momen-
tum achieves a maximum or a minimum would instead be the problematic
points. A. Voros [42] has proposed working in the Segal–Bargmann repre-
sentation (Sect. 14.4). In Voros’s analysis, there are no turning points and,
thus, the analysis is much simpler. The problem with Voros’s approach is
that he only gives an approximation to the wave function on the classical
energy curve. Even in simple cases, Voros’s expression does not admit a
holomorphic extension to the whole plane, but has branching behavior in-
side the classical energy curve. Thus, Voros’s formula does not define an
element of the quantum Hilbert space (which is a space of entire holomor-
phic functions), let alone an element of the domain of the Hamiltonian.
Nevertheless, it is possible to build approximate eigenfunctions as su-

perpositions of coherent states, using formulas similar to those in Voros.
This approach avoids dealing with turning points but still yields a rigorous
eigenvalue estimate, with the same corrected Bohr–Sommerfeld condition
as in Condition 15.1. See [31, 23, 7], or (in greater generality) [26].

15.8 Exercises

1. Show that if c1 is any complex number, then we have an identity of
the form

c1e
iθ + c1e

−iθ = R cos(θ − δ)

for some real numbers R and δ.

2. Let H(x, p) = p2/2m+mω2x2/2 be the Hamiltonian for a harmonic
oscillator having mass m and classical frequency ω. Show that a pos-
itive number E satisfies the corrected Bohr–Sommerfeld condition
(Condition 15.1) if and only if E is of the form (n+1/2)�ω, where n
is a non-negative integer.

Note: In light of the results of Chap. 11, this calculation means that,
in this very special case, the corrected Bohr–Sommerfeld condition
gives the exact eigenvalues of the quantum Hamiltonian Ĥ.

3. Suppose A and p are two nonzero, smooth functions satisfying (15.15).
Show that A(x) = C(p(x))−1/2 for some constant C.

Hint : Think in terms of the logarithms of the functions involved.

4. Show that cos(θ − δ), viewed as a function of θ, agrees, up to mul-
tiplication by a constant, with cos(θ − δ′) if and only if δ − δ′ is an
integer multiple of π.
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5. If ψ is an eigenvector for Ĥ that is approximated by (15.25) near
−∞, one might hope to find an approximate expression for ψ in
the classically allowed region by analytically continuing around the
turning point in the complex plane. Even assuming V is analytic,
however, it is fairly evident that analytic continuation in the upper
half-plane does not give the same answer as in the lower half-planes.
Nevertheless, one could use the average of the upper and lower half-
plane results as a (totally nonrigorous) guess for the behavior of ψ in
the classically allowed region.

Show that the above approach gives the correct phase δ in the con-
nection formula (15.21) but is off by a factor of 2 in the amplitude R.

6. Using integration by parts, show that the limit

lim
A→+∞

∫ A

0

cos

(
t3

3
+ ut

)
dt

exists.

Hint : Multiply and divide by t2+u (avoiding points where t2+u = 0
in the case u < 0).

7. In this exercise, we sketch an argument that the Airy function in
(15.24) satisfies the differential equation ψ′′(u) − uψ(u) = 0. For
the purposes of this exercise, let us say that

∫∞
0

f(t) dt = C if∫ A

0
f(t) dt = C+g(A), where the function g is bounded and oscillates

around an average value of zero.

Assuming that it is legal to differentiate under the integral sign, verify
that Ai(u) satisfies the stated equation.

Hint : After differentiating under the integral, look for a term that
can be integrated explicitly.

Note: A more rigorous approach to this verification would be to in-
tegrate by parts as in Exercise 6 and then differentiate under the
integral. This approach is, however, a bit messier.

8. By integrating by parts repeatedly in (15.24), show that Ai(u) decays
faster than any power of u as u tends to +∞.

Hint : A key point is to show that the boundary terms in the integra-
tion by parts vanish at every stage. After performing the integrations
by parts, estimate the resulting integral by using the inequality

1

(t2 + u)n
<

1

(t2 + 1)k
1

un−k
, u > 1,

for some appropriate choice of k.
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9. (a) For u < 0, make the change-of-variable τ = t/
√−u in the

integral formula for the Airy function, to obtain the expression

Ai(u) =

√
−u

π

∫ ∞

0

cos

(
α

(
τ3

3
− τ

))
dτ, (15.46)

where α = (−u)3/2.

(b) Suppose f is a smooth function on [a, b] having a unique critical
point x0. Assuming that x0 is in the interior of [a, b] and that
f ′′(x0) 
= 0, the method of stationary phase asserts that

∫ b

a

g(x)eiαf(x) dx = g(x0)e
iαf(x0)e±iπ/4

√
2π

α |f ′′(x0)|
+O

(
1

α

)

for α tending to +∞, where the plus sign in the exponent is taken
when f ′′(x0) > 0 and the minus sign is taken when f ′′(x0) < 0.
(See, e.g., Eq. (5.12) in [30].)

Using this result, obtain the asymptotic formula (15.33).

Hint : Divide the integral in (15.46) into an integral over [0, 2] and an
integral over [2,∞). Use stationary phase for the first interval and
integration by parts (as in Exercise 6) for the second interval.

10. Let ψ be the approximate eigenfunction for Ĥ defined in the begin-
ning of Sect. 15.6. Show that the norm of ψ is bounded and bounded
away from zero as � tends to zero.

Hint : First show that the L2 norm of ψ over the intervals around
the turning points goes like �−1/6�1/4. Then check that the functions
p(x)−1/2 and q(x)−1/2 are square integrable near the turning points.

11. By imitating the arguments in the proof of Lemma 15.9, prove the
estimates for ψ1 − ψ̃1 and ψ̃1 − ψ2 in the lemma.

12. By writing V (x) as F0(a−x) plus an error term of order (x−a)2, verify
that the estimates (15.44) and (15.45) in the proof of Lemma 15.9
hold in the transition region. (Assume that x − a is of order �1/2 in
the transition region.)

Hint : The leading-order Taylor expansion of (1+z)a is 1+az+O(z2),
for any real number a.



16
Lie Groups, Lie Algebras, and
Representations

An important concept in physics is that of symmetry, whether it be
rotational symmetry for many physical systems or Lorentz symmetry in
relativistic systems. In many cases, the group of symmetries of a system is
a continuous group, that is, a group that is parameterized by one or more
real parameters. More precisely, the symmetry group is often a Lie group,
that is, a smooth manifold endowed with a group structure in such a way
that operations of inversion and group multiplication are smooth. The tan-
gent space at the identity in a Lie group has a natural “bracket” operation
that makes the tangent space into a Lie algebra. The Lie algebra of a Lie
group encodes many of the properties of the Lie group, and yet the Lie
algebra is easier to work with because it is a linear space.
In quantum mechanics, the way symmetry is encoded is usually through

a unitary action of the group on the relevant Hilbert space. That is, we
assume we are given a unitary representation of the relevant symmetry
group G, that is, a continuous homomorphism of G into U(H), the group
of unitary operators on the quantum Hilbert space H. Actually, since two
unit vectors in H that differ only by a constant represent the same physi-
cal state, we should more properly consider projective unitary representa-
tions. A projective representation is a homomorphism of a group G into
U(H)/U(1), where U(1) is the group of complex numbers of magnitude 1,
thought of multiples of I in U(H). An ordinary or projective representa-
tion of a Lie group gives rise to an ordinary or projective representation
of its Lie algebra. The angular momentum operators, for example, form a
representation of the Lie algebra of the rotation group.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5 16,
© Springer Science+Business Media New York 2013
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Saying that, for example, the Hamiltonian operator of a quantum system
is invariant under rotations means that Ĥ commutes with the relevant
representation of the rotation group and thus also with the associated Lie
algebra operators. This commutativity, in turn, implies that the eigenspaces
for Ĥ are invariant under rotations. We will use this commutativity in
Chap. 18 to help us in determining the energy eigenvectors for the hydrogen
atom.
In this chapter, we will make a brief survey of Lie groups, Lie algebras,

and their representations. For our purposes, it suffices to consider matrix
Lie groups, those that can be realized as closed subgroups of the group of
n × n invertible matrices. Inevitably, I have had to present some of the
deeper results without proof. Proofs of all results stated here can be found
in [21]. The results of this chapter will be put to use in Chap. 17, in our
study of angular momentum, and in Chap. 18, in our study of the hydrogen
atom.

16.1 Summary

In this chapter, we will consider a matrix Lie group G, which is, by defini-
tion, a (topologically) closed subgroup of some GL(n;C), where GL(n;C) is
the group of n× n invertible matrices with complex entries. To each such
G, we will associate the Lie algebra g of G, where g is a real subspace of
Mn(C), the space of all n×n matrices. We will see that G is automatically
an embedded real submanifold of Mn(C) and that g is the tangent space
of G at the identity matrix.
Now, g is not just a real vector space, but comes with a “bracket” opera-

tion mapping g×g into g. Specifically, we will show that for all X and Y in
g, the matrix XY −Y X belongs again to g. Thus, we define our bracket by
setting [X,Y ] equal to XY − Y X. As it turns out, the Lie algebra g, as a
vector space with the bracket operation, encodes a lot of information about
the group G. On the other hand, computing at the level of the Lie algebra
is generally easier than computing at the group level, simply because g is
a linear space.
We will be interested in unitary representations of our group G, that is,

continuous homomorphisms of G into U(H), the group of unitary operators
on a Hilbert space. If we restrict attention, at first, to the case in which
H is finite dimensional, then each representation Π of G gives rise to a
representation π of the Lie algebra g of G. That is to say, π is a linear
map of g into the space of linear maps of V to V, satisfying π([X,Y ]) =
[π(X), π(Y )]. A deeper question is whether every representation π of g

comes from a representation Π of G. As it turns out, the answer in general
is no, but the answer is yes if G is simply connected.
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We may consider, for example, the case G = SO(3). This group is not
simply connected. On the other hand, the Lie algebra so(3) of SO(3) is iso-
morphic to the Lie algebra su(2) of SU(2), and SU(2) is simply connected.
[That is, SU(2) is the “universal cover” of SO(3).] Thus, given a represen-
tation π of so(3), there may or may not be an associated representation Π
of SO(3). Even if there is not, however, there is always a representation Π′

of the group SU(2).
In quantum mechanics, the vector eiθψ represents the same physical

state as ψ. Thus, it is natural to consider “projective” unitary representa-
tions, that is, homomorphisms of G into the quotient group U(H)/{eiθI}.
In the finite-dimensional case, each projective representation can be “de-
projectivized” at the level of the Lie algebra g of G. We can then pass
from the Lie algebra to the universal cover of G, that is, the simply con-
nected group with Lie algebra g. In particular, in the finite-dimensional
case, the irreducible projective unitary representations of SO(3) are in one-
to-one correspondence with irreducible ordinary unitary representations of
the universal cover SU(2) of SO(3). Although the Hilbert spaces of phys-
ical systems are usually infinite dimensional, for compact groups such as
SO(3), general unitary representations can be decomposed as direct sums
of finite-dimensional ones. (See, e.g., Proposition 17.19 and the discussion
following it.)

16.2 Matrix Lie Groups

Let Mn(C) denote the space of n × n matrices with complex entries. We

identify Mn(C) with Cn2

, equipped with the usual topology. Thus, a se-
quence Am inMn(C) converges to a matrix A ∈ Mn(C) if (Am)jk converges
to Ajk as m tends to infinity, for all 1 ≤ j, k ≤ n. Let GL(n;C) denote the
general linear group, consisting of all invertible n × n matrices with com-
plex entries. Then GL(n;C) forms a group under the operation of matrix
multiplication. Furthermore, GL(n;C)—that is, the set of A ∈ Mn(C) with
detA 
= 0—is an open subset of Mn(C). Since Mn(C) is a complex vector

space of dimension n2, it may be identified with Cn2 ∼= R2n2

. Since GL(n;C)

is an open subset of Mn(C), it looks locally like R2n2

and is therefore a real
manifold of dimension 2n2.

Definition 16.1 A subgroup G of GL(n;C) is closed if for each sequence
Am in G that converges to a matrix A, either A is again in G or A is not
invertible. A matrix Lie group is a closed subgroup of some GL(n;C).

A subgroup G of GL(n;C) is closed if it is topologically closed as a subset
of GL(n;C)—but not necessarily as a subset of Mn(C). We will see that
each matrix Lie group is a real embedded submanifold of GL(n;C) and thus
is a Lie group.
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Definition 16.2 If G1 and G2 are matrix Lie groups, then a Lie group

homomorphism of G1 to G2 is a continuous group homomorphism of G1

into G2. A Lie group homomorphism is called a Lie group isomorphism

if it is one-to-one and onto with continuous inverse. Two matrix Lie groups
are called isomorphic if there exists a Lie group isomorphism between
them.

Example 16.3 The real general linear group, denoted GL(n,R), is the
group of invertible n × n matrices with real entries. The groups SL(n,C)
and SL(n,R) are, respectively, the groups of complex and real matrices with
determinant 1. They are called the special linear groups.

Example 16.4 An n × n matrix U ∈ Mn(C) is said to be unitary if
U∗U = UU∗ = I. A matrix U is unitary if and only if

〈Uv, Uw〉 = 〈v, w〉
for all v, w ∈ Cn. The group of unitary matrices is denoted U(n) and called
the (n× n) unitary group. The special unitary group, denoted SU(n),
is the subgroup of U(n) consisting of unitary matrices with determinant 1.

The condition (U∗U)jk = δjk is equivalent to the condition that the
columns of U form an orthonormal set in Cn, as can be seen by direct
computation. Geometrically, the condition U∗U = I is equivalent to the
condition that 〈Uv1, Uv2〉 = 〈v1, v2〉 for all v1, v2 ∈ Cn, i.e., that U pre-
serves the inner product on Cn. By taking the determinant of the condition
U∗U = I, we see that |detU | = 1 for all U ∈ U(n).
In this, the finite-dimensional case, the condition U∗U = I implies that

U∗ is the inverse of U and thus that UU∗ = I. This result does not hold
in the infinite-dimensional case.

Example 16.5 An n× n real matrix R ∈ Mn(R) is said to be orthogonal
if RtrR = RRtr = I. A matrix R is orthogonal if and only if

〈Rv,Rw〉 = 〈v, w〉
for all v, w ∈ Rn. The group of orthogonal matrices is denoted O(n) and
is called the (n×n) orthogonal group. The special orthogonal group,
denoted SO(n), is the subgroup of O(n) consisting of orthogonal matrices
with determinant 1.

As in the unitary case, the condition RtrR = I implies that RRtr = I
and that the columns of R form an orthonormal set in Rn. Geometrically,
a real matrix R is in O(n) if and only if 〈Rv1, Rv2〉 = 〈v1, v2〉 for all
v1, v2 ∈ Rn, i.e., if and only if R preserves the inner product on Rn. By
taking the determinant of the condition RtrR = I we see that detR = ±1
for all R ∈ O(n).
It is easy to verify that all the groups in Examples 16.3, 16.4, and 16.5

are, indeed, subgroups of GL(n,C) and that they are closed.
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Definition 16.6 A matrix Lie group G is connected if for all A,B ∈ G
there is a continuous path A : [0, 1] → Mn(C) such that A(0) = A and
A(1) = B and such that A(t) lies in G for all t. A matrix Lie group G is
simply connected if it is connected and every continuous loop in G can
be shrunk continuously to a point in G. A matrix Lie group G is compact

if it is compact as a subset of Mn(C) ∼= R2n2

.

By the Heine–Borel theorem (e.g., Proposition 0.26 of [12]), a matrix
Lie group G is compact if and only if it is a closed and bounded subset
of Mn(C). The condition we are calling “connected” is, more properly, the
condition of being path connected. We will see, however, that each matrix
Lie group is an embedded real submanifold of Mn(C) and is, therefore,
locally path connected. For matrix Lie groups, then, connectedness and
path connectedness are equivalent.
To prove that a matrix Lie group G is connected, it suffices to prove that

for all A ∈ G, there is a continuous path in G connecting A to I. After all,
if both A and B can be connected to I, then they can be connected to each
other.

Example 16.7 The groups O(n), SO(n), U(n), and SU(n) are compact.

Proof. The conditions defining these groups are obtained by setting certain
continuous functions equal to a constant. The group SU(n), for example, is
defined by setting (U∗U)jk = δjk for each j and k and by setting detU = 1.
These groups are thus closed not just as subsets of GL(n;C) but also as
subsets of Mn(C). Furthermore, each of these groups has the property that
each column of any matrix in the group is a unit vector. Thus, each group
is a bounded subset of Mn(C).

Example 16.8 The group U(n) is connected.

Proof. If U ∈ Mn(C) is unitary, then U has an orthonormal basis of
eigenvectors with eigenvalues of absolute value 1. Thus, there is another
unitary matrix V (the change of basis matrix) such that

U = V

⎛
⎜⎜⎜⎝

eiθ1

eiθ2

. . .

eiθn

⎞
⎟⎟⎟⎠V −1,

for some real numbers θ1, θ2, . . . , θn. Thus, we can define a family U(t) of
unitary matrices by setting

U(t) = V

⎛
⎜⎜⎜⎝

eitθ1

eitθ2

. . .

eitθn

⎞
⎟⎟⎟⎠V −1.
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Then U(·) is a continuous path lying in U(n) with U(0) = I and U(1) = U.

Example 16.9 The group SU(2) is simply connected.

Proof. We claim that

SU(2) =

{(
α −β̄
β ᾱ

)∣∣∣∣α, β ∈ C, |α|2 + |β|2 = 1

}
.

It is easy to see that each matrix of the indicated form is indeed unitary and
has determinant 1. On the other hand, if U is any element of SU(2), then
the first column of U is a unit vector (α, β) ∈ C2. The second column of
U must then be orthogonal to (α, β). Since (−β̄, ᾱ) is orthogonal to (α, β)
and C2 is 2-dimensional, the second column of U must be a multiple of
(−β̄, ᾱ). But the only multiple that produces a matrix with determinant
1 is 1.
We see, then, that SU(2) is, topologically, the unit sphere S3 inside C2 ∼=

R4 and is, therefore, simply connected.

16.3 Lie Algebras

We now introduce the general algebraic concept of a Lie algebra. Once this
is done, we will show how to associate a real Lie algebra with an arbitrary
matrix Lie group.

Definition 16.10 A Lie algebra over a field F is a vector space g over
F, together with a “bracket” map [·, ·] : g × g → g having the following
properties:

1. [·, ·] is bilinear

2. [Y,X ] = − [X,Y ] for all X,Y ∈ g

3. [X,X ] = 0 for all X ∈ g

4. For all X,Y, Z ∈ g we have the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0.

If the characteristic of F is not equal to 2, then Property 3 is a conse-
quence of Property 2. If F = R, then we say that g is a real Lie algebra. An
example of a real Lie algebra is the vector space R3 with the bracket equal
to the cross product. Properties 1, 2, and 3 are evident from the definition
of the cross product, while the Jacobi identity is a known property of the
cross product that can be verified by direct calculation.
A large class of Lie algebras may be obtained by the following procedure.
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Example 16.11 Let A be an associative algebra and let g be a subspace of
A with the property that for all x, y in g, xy − yx is again in g. Then the
bracket

[x, y] := xy − yx

makes g into a Lie algebra.

In Example 16.11, we may take, for example, g = A. It is evident that
this bracket satisfies Properties 1, 2, and 3 of a Lie algebra, and the Ja-
cobi identity is easily verified by direct calculation. As it turns out, every
Lie algebra is isomorphic to a Lie algebra of this type. (This claim is a
consequence of the Poincaré–Birkhoff–Witt theorem, which is proved, for
example, in Sect. 5.2 of [25]. The algebra A in the Poincaré–Birkhoff–Witt
theorem is the so-called universal enveloping algebra of g.)

Definition 16.12 If g1 and g2 are Lie algebras, a map φ : g1 → g2 is
called a Lie algebra homomorphism if φ is linear and φ satisfies

φ([X,Y ]) = [φ(X), φ(Y )]

for all X,Y ∈ g1. A Lie algebra homomorphism is called a Lie algebra

isomorphism if it is one-to-one and onto.

Definition 16.13 If g is a Lie algebra, a subalgebra of g is a subspace h

of g with the property that [X,Y ] ∈ h for all X and Y in h. An ideal in g

is a subalgebra h of g with the stronger property that [X,Y ] ∈ h for all X
in g and Y in h.

The notion of a subalgebra of a Lie algebra is analogous to the notion
of a subgroup of a group, while the notion of an ideal in a Lie algebra is
analogous to the notion of a normal subgroup of a group. In particular,
the kernel of any Lie algebra homomorphism is an ideal, just as the kernel
of a group homomorphism is a normal subgroup.

Definition 16.14 The direct sum of Lie algebras g1 and g2, denoted
g1 ⊕ g2, is the direct sum of g1 and g2 as a vector space, equipped with the
bracket given by

[(X1, Y1), (X2, Y2)] = ([X1, X2], [Y1, Y2])

for all X1, X2 ∈ g1 and Y1, Y2 ∈ g2.

16.4 The Matrix Exponential

In the next section, we will associate a Lie algebra with each matrix Lie
group. To describe this association, we need the notion of the exponential
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of a matrix. Given a matrix X ∈ Mn(C), we define the matrix exponential
of X, denoted by eX or exp(X), by the usual power series,

eX =

∞∑

m=0

Xm

m!
,

where X0 = I (the identity matrix). This series converges absolutely for
all X ∈ Mn(C), as can easily be seen using the inequality ‖Xm‖ ≤ ‖X‖m ,
where ‖X‖ is the operator norm of X ; see Definition A.35. (In this, the
finite-dimensional case, we could just as well use the Hilbert–Schmidt norm,
which amounts to using the usual Euclidean norm on Mn(C) ∼= Cn2

. See
Exercise 3.) The matrix exponential shares some but not all of the proper-
ties of the exponential of a number.

Theorem 16.15 The matrix exponential has the following properties for
all X,Y ∈ Mn(C).

1. e0 = I

2. eX
tr

= (eX)tr and eX
∗

= (eX)∗

3. If A is an invertible n× n matrix, then

eAXA−1

= AeXA−1.

4. det(eX) = etrace(X)

5. If XY = Y X then eX+Y = eXeY

6. eX is invertible and (eX)−1 = e−X

7. Even if XY 
= Y X, we have

eX+Y = lim
m→∞

(
eX/meY/m

)m

.

HereXtr and X∗ denote the transpose and adjoint (conjugate transpose)
of X, respectively. Property 7 is known as the Lie Product Formula and is
a special case of the Trotter Product formula (Theorem 20.1). Properties
1, 2, and 3 are easily verified using term-by-term computation. Property 6
follows from Property 5 by taking Y = −X and applying Property 1. The
proofs of Properties 4, 5, and 7 are outlined in Exercises 5, 6, and 7.
Suppose a matrix X is diagonalizable, meaning that

X = A

⎛
⎜⎝

λ1 0
. . .

0 λn

⎞
⎟⎠A−1,
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for some invertible matrix A and complex numbers λ1, λ2, . . . , λn. Then
using Property 3 of Theorem 16.15, it is easy to see that

eX = A

⎛
⎜⎝

eλ1 0
. . .

0 eλn

⎞
⎟⎠A−1.

If X is not diagonalizable, eX can be computed in terms of the SN decom-
position of X. See Sect. 2.2 of [21] for details.

Example 16.16 If

X =

(
0 a
−a 0

)

then

eX =

(
cos a sin a

− sina cos a

)
.

Proof. The eigenvalues of X are ±ia and the corresponding eigenvectors
are (1,±i). Thus, we may calculate that

eX =

(
1 1
i −i

)(
eia 0
0 e−ia

)
1

(−2i)

(
−i −1
−i 1

)

= − 1

2i

(
−i(eia + e−ia) −eia + e−ia

eia − e−ia −i(eia + e−ia)

)
,

which simplifies to the desired result.
The relation eX+Y = eXeY certainly does not hold for general (noncom-

muting) matrices X and Y. Nevertheless, for any X ∈ Mn(C) we have

e(s+t)X = esXetX

for all s and t in R, since sX commutes with tX. Thus, for each X, the set
of matrices of the form etX , t ∈ R, forms a subgroup of GL(n;C). It is not
hard to show (Exercise 4), using term-by-term differentiation, that

d

dt
etX

∣∣∣∣
t=0

= X. (16.1)

Here, the derivative of a matrix-valued function is defined as being entry-
wise. [That is, if f(t) is a matrix-valued function, df/dt is the matrix-valued
function whose (j, k) entry is d(f(t)jk)/dt.]

Definition 16.17 A one-parameter subgroup of GL(n;C) is a continu-
ous homomorphism of R into GL(n;C), that is, a continuous map A : R →
GL(n;C) such that A(0) = I and A(s+ t) = A(s)A(t) for all s, t ∈ R.
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Theorem 16.18 If A(·) is a one-parameter subgroup of GL(n;C), there
exists a unique X ∈ Mn(C) such that

A(t) = etX

for all t ∈ R.

This is Theorem 2.13 in [21].

16.5 The Lie Algebra of a Matrix Lie Group

We now associate a Lie algebra g to each matrix Lie group G.

Definition 16.19 If G ⊂ GL(n;C) is a matrix Lie group, then the Lie

algebra g of G is defined as follows:

g =
{
X ∈ Mn(C)

∣∣etX ∈ G for all t ∈ R
}
.

That is to say, X belongs to g if and only if the one-parameter subgroup
generated by X lies entirely in G. Note that to have X belong to g, we
need only have etX belong to G for all real numbers t.

Proposition 16.20 For any matrix Lie group G, the Lie algebra g of G
has the following properties.

1. The zero matrix 0 belongs to g.

2. For all X in g, tX belongs to g for all real numbers t.

3. For all X and Y in g, X + Y belongs to g.

4. For all A ∈ G and X ∈ g we have AXA−1 ∈ g.

5. For all X and Y in g, the commutator [X,Y ] := XY − Y X belongs
to g.

The first three properties of g say that g is a real vector space. Since
Mn(C) is an associative algebra under the operation of matrix multipli-
cation, the last property of g shows that g is a real Lie algebra (Exam-
ple 16.11).
Proof. Points 1 and 2 are elementary, and Point 3 follows from the Lie
product formula, using the assumption that G is closed. Point 4 follows
from Property 3 in Theorem 16.15. To verify Point 5, we observe that the
commutator [X,Y ] may be computed as

[X,Y ] =
d

dt
etXY e−tX

∣∣∣∣
t=0

,
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using (4) and an easily verified product rule for differentiation of matrix-
valued functions. For X,Y ∈ g, etXY e−tX belongs to g for all t ∈ R, by
Point 4. Furthermore, we have already shown that g is a real subspace of
Mn(C) and therefore a closed subset of Mn(C). Thus,

[X,Y ] = lim
h→0

ehXY e−hX − Y

h

belongs to g.

Example 16.21 Let gl(n;C), gl(n;R), sl(n;C), and sl(n;R) denote the Lie
algebras of GL(n;C), GL(n;R), SL(n;C), and SL(n;R), respectively. Then
we have

gl(n;C) = Mn(C)

gl(n;R) = Mn(R)

sl(n;C) = {X ∈ Mn(C) |trace(X) = 0}
sl(n;R) = {X ∈ Mn(R) |trace(X) = 0} .

Proof. Let us consider, for example, the case of sl(n;C). By Property 4 of
Theorem 16.15, if trace(X) = 0, then

det(etX) = ettrace(X) = e0 = 1,

so that etX ∈ SL(n;C). In the other direction, if X ∈ sl(n;C), then by
the above calculation, we must have ettrace(X) = 0 for all t ∈ R, which is
possible only if trace(X) = 0. The proofs of the other cases are similar and
are omitted.

Example 16.22 The Lie algebras u(n) and su(n) of U(n) and SU(n) are
given by

u(n) = {X ∈ Mn(C) |X∗ = −X }
su(n) = {X ∈ u(n) |trace(X) = 0} .

The Lie algebra so(n) of SO(n) is given by

so(n) =
{
X ∈ Mn(R)

∣∣Xtr = −X
}
.

Finally, the Lie algebra of O(n) is equal to so(n).

Proof. If X∗ = −X, then by Property 2 of Theorem 16.15,

(etX)∗ = etX
∗

= e−tX = (etX)−1,

showing that etX is unitary. In the other direction, if etX is unitary for all
t ∈ R, then (etX)∗ = (etX)−1 = e−tX . Thus, etX

∗

= e−tX . Differentiating
this relation at t = 0, using (16.1), givesX∗ = −X. Thus, the Lie algebra of
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U(n) consists exactly of the matrices with the property that X∗ = −X. For
the Lie algebra of SU(n), we add the trace-zero condition, as in the proof
of Example 16.21. The calculations for SO(n) are similar and are omitted.
Note that if X ∈ Mn(R) satisfies X

tr = −X, then the diagonal entries of X
are zero and, thus, trace(X) is automatically 0. This observation explains
why the Lie algebras of O(n) and SO(n) are the same.
Specializing Proposition 16.22 the case n = 3 gives

so(3) =

⎧
⎨
⎩

⎛
⎝

0 a b
−a 0 c
−b −c 0

⎞
⎠
∣∣∣∣∣∣
a, b, c ∈ R

⎫
⎬
⎭ .

We can use the following basis for so(3):

F1 :=

⎛
⎝

0 0 0

0 0 −1

0 1 0

⎞
⎠ ; F2 :=

⎛
⎝

0 0 1

0 0 0

−1 0 0

⎞
⎠ ; F3 :=

⎛
⎝

0 −1 0

1 0 0

0 0 0

⎞
⎠ .

(16.2)

Direct calculation establishes the following commutation relations for the
Fj ’s:

[F1, F2] = F3

[F2, F3] = F1

[F3, F1] = F2. (16.3)

More concisely, we have [F1, F2] = F3, together with relations obtained
from this one by cyclic permutation of the indices. Note that all remaining
commutation relations follow from (16.3) by means of the skew-symmetry
of the bracket; we have, for example, [F2, F1] = −F3 and [F1, F1] = 0.

16.6 Relationships Between Lie Groups and Lie
Algebras

In this section, we explore the relationships between matrix Lie groups and
their Lie algebras. In particular, we investigate the question of the extent
to which a matrix Lie group is determined (up to isomorphism) by its Lie
algebra. We begin by showing that every Lie group homomorphism gives
rise to a Lie algebra homomorphism in a natural way.

Theorem 16.23 Suppose G1 and G2 are matrix Lie groups with Lie al-
gebras g1 and g2, respectively, and suppose Φ : G1 → G2 is a Lie group
homomorphism. Then there exists a unique linear map φ : g1 → g2 such
that

Φ(etX) = etφ(X)
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for all t ∈ R and X ∈ g. This linear map has the following additional
properties:

1. φ([X,Y ]) = [φ(X), φ(Y )] for all X,Y ∈ g

2. φ(AXA−1) = Φ(A)φ(X)Φ(A)−1 for all A ∈ G and X ∈ g

3. φ(X) may be computed as

φ(X) =
d

dt
Φ
(
etX

)∣∣∣∣
t=0

.

Point 1 shows that φ is a Lie algebra homomorphism. Part of the assertion
of Point 3 of the theorem is that Φ(etX) is a smooth function of t for eachX.
To construct φ, note that since Φ is a continuous homomorphism, the

map t �→ Φ(etX) is a one-parameter subgroup. By Theorem 16.18, there
exists a unique Y such that Φ(etX) = etY for all t ∈ R. We then set
φ(X) = Y. An argument similar to the proof of Proposition 16.20 then
establishes the desired properties of φ. See the proof of Theorem 2.21 in
[21] for the details.

Corollary 16.24 Suppose that G1 and G2 are matrix Lie groups with Lie
algebras g1 and g2, respectively. If G1 is isomorphic to G2, then g1 is iso-
morphic to g2.

Proof. See Exercise 11.
Our next task is to show that for any matrix Lie group G, the Lie algebra

g of G is large enough to capture what is happening in a neighborhood of
the identity in G. This will show, for example, that for connected matrix
Lie groups, a Lie group homomorphism is determined by the corresponding
Lie algebra homomorphism.

Theorem 16.25 Let G be a matrix Lie group with Lie algebra g. Then
there exists a neighborhood U of 0 in Mn(C) and a neighborhood V of I in
Mn(C) such that the matrix exponential maps U diffeomorphically onto V
and such that for all X ∈ U, we have that X belongs to g if and only if eX

belongs to G.

See Theorem 2.27 in [21]. This result has a number of important conse-
quences.

Corollary 16.26 Every matrix Lie group G ⊂ GL(n;C) is a real embedded
submanifold of Mn(C) with the dimension of G equal to the dimension of
g as a real vector space.

The claim means, more precisely, that for each A ∈ G, there exists a
neighborhood U of A and a diffeomorphism Φ of U with a neighborhood
V of 0 in R2n2

such that Φ(U ∩G) = V ∩ Rd, where d = dim g. That is to
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say, after a change of coordinates, G “looks” locally like a little piece of Rd

sitting inside Mn(C) ∼= R2n2

.
Proof. We use exponential coordinates in the neighborhood V of I in
Mn(C), meaning that we write each element A of V as A = eX , with
X ∈ U. Theorem 16.25 says that near the identity, in these coordinates, G
“looks like” the real vector space g inside Mn(C). Given any other point
A ∈ G, we can use left multiplication by A−1 to move the action to the
identity (Exercise 17), with the result that G looks like g ⊂ Mn(C) near A.
Thus, G is a real embedded submanifold of dimension d = dim g.

Corollary 16.27 The Lie algebra g of a matrix Lie group G is the tangent
space to G at I. That is to say, g coincides with the set of those X in Mn(C)
for which there exists a smooth curve γ : R → Mn(C) lying entirely in G
and such that γ(0) = I and γ′(0) = X.

Proof. If X ∈ g, then X is the derivative of etX at t = 0, so g is contained
in the tangent space at I. In the other direction, if γ is any smooth curve
in Mn(C) that lies entirely in G and passes through I at t = 0, then by
Theorem 16.25, we can express γ as γ(t) = eδ(t) (at least for small t), where
δ is a smooth curve in g with δ(0) = 0. It is then easy to see (Exercise 8)
that γ′(0) = δ′(0). But if δ lies in g, then δ′(0), which equals γ′(0), also lies
in g, as in the proof of Proposition 16.20. Thus, the tangent space at I is
contained in g.

Corollary 16.28 If a matrix Lie group G is connected, then for all A ∈ G
there exists a finite sequence X1, X2, . . . , XN of elements of g such that

A = eX1eX2 · · · eXN .

Proof. If G is connected in the sense of Definition 16.6 (which really means
that G is path connected), then G is certainly connected in the usual topo-
logical sense of having no nontrivial sets that are both open and closed.
Let U denote the set of points in G that can be expressed as a product
of exponentials of elements of g. This set is open in G because if A ∈ U
and B ∈ G is close to A, then A−1B is close to I in G, and therefore
A−1B = eX for some X ∈ g. Thus, B = AeX , which means that B is also
a product of exponentials. In the other direction, if B ∈ G is in the closure
of U, then there is some element A of U that is close to B. We then have,
again, that B = AeX for some X ∈ g, which, again, means that B ∈ U.
Now, G is connected and U is both open and closed. Since U is nonempty
(I ∈ U), we have U = G.

Corollary 16.29 Suppose that G1 and G2 are matrix Lie groups with
Lie algebras g1 and g2, respectively. Suppose that Φ1 : G1 → G2 and
Φ2 : G1 → G2 are Lie group homomorphisms, with associated Lie algebra
homomorphisms φ1 and φ2, respectively. If G1 is connected and φ1 = φ2,
then Φ1 = Φ2.
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Proof. The result follows from Corollary 16.28 and the condition Φj(e
X) =

eφj(X), j = 1, 2.
We have seen that a homomorphism of matrix Lie groups gives rise to a

homomorphism of the associated Lie algebra, and (Corollary 16.29) that if
the domain group is connected, the Lie algebra homomorphism determines
the Lie group homomorphism. A more difficult question is whether we can
go in the opposite direction, from a Lie algebra homomorphism to a Lie
group homomorphism. That is to say, given a Lie algebra homomorphism
between the Lie algebras of two matrix Lie groups, does there exist a Lie
group homomorphism related in the usual way to the Lie algebra homomor-
phism? The answer turns out to be yes, provided that the domain group
G1 is connected and simply connected (i.e., that every continuous loop in
G1 can be shrunk continuously in G1 to a point).

Theorem 16.30 Suppose that G1 and G2 are matrix Lie groups with Lie
algebras g1 and g2, respectively, and suppose that φ : g1 → g2 is a Lie
algebra homomorphism. If G1 is connected and simply connected, then
there exists a unique Lie group homomorphism Φ : G1 → G2 such that Φ
and φ are related as in Theorem 16.23.

One way to prove this deep result is to make use of the Baker–Campbell–
Hausdorff formula. (See, e.g., Chap. 3 of [21].) This formula states that for
all sufficiently small X and Y in Mn(C) we have

eXeY = eX+Y+ 1
2
[X,Y ]+ 1

12
[X,[X,Y ]]− 1

12
[Y,[X,Y ]]+···.

Here · · · denotes terms that are expressible in terms of repeated commu-
tators involving X and Y, with coefficients that are “universal,” that is,
independent of n (the size of the matrices) and of the choice of X and Y in
Mn(C). Given a Lie algebra homomorphism φ : g1 → g2, one can use the
Baker–Campbell–Hausdorff formula to construct a “local homomorphism,”
mapping a neighborhood of the identity in G1 into G2. If G1 is connected
and simply connected, it is possible to extend this local representation to a
global representation. See Sect. 3.6 of [21] for the details of this construc-
tion.

Corollary 16.31 Suppose that G1 and G2 are matrix Lie groups with Lie
algebras g1 and g2, respectively. If G1 and G2 are connected and simply
connected and g1 is isomorphic to g2, then G1 is isomorphic to G2.

Proof. Suppose φ : g1 → g2 is a Lie algebra isomorphism. Since G1 is
connected and simply connected, there exists a Lie group homomorphism
Φ : G1 → G2 related in the usual way to φ. Since G2 is connected and
simply connected, there exists a Lie group homomorphism Ψ : G2 → G1

related in the usual way to φ−1. Consider now the homomorphism Ψ ◦ Φ :
G1 → G1.
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By the composition property of Lie algebra homomorphisms (Exercise 10),
the Lie algebra homomorphism associated with Ψ◦Φ is φ−1 ◦φ = I. It then
follows from Corollary 16.29 that Ψ◦Φ = I. A similar argument shows that
Φ ◦Ψ = I, which means that Φ is a Lie group isomorphism.
Corollary 16.31 does not hold without the assumption that both groups

are simply connected, as the following important example shows.

Example 16.32 The Lie algebras su(2) and so(3) are isomorphic, but the
groups SU(2) and SO(3) are not isomorphic.

Since SU(2) is simply connected (Example 16.9), SO(3) must fail to be
simply connected. Indeed, π1(SO(3)) ∼= Z/2, as can be seen from Exam-
ple 16.34.
Proof. The Lie algebra su(2) of SU(2) is the space of 2×2 skew-self-adjoint
matrices with trace zero. Explicitly,

su(2) =

{(
ia b+ ic

−b+ ic −ia

)∣∣∣∣ a, b, c ∈ R

}
.

We may consider the following basis for su(2):

E1 =
1

2

(
i 0
0 −i

)
; E2 =

1

2

(
0 1

−1 0

)
; E3 =

1

2

(
0 i
i 0

)
. (16.4)

Direct calculation shows that [E1, E2] = E3 and relations obtained from
this by cyclic permutation of the indices. These are the same relations as
those satisfied by the basis elements Fj , j = 1, 2, 3, for so(3) in (16.2)
and (16.3). Thus, there is a Lie algebra isomorphism φ : su(2) → so(3) such
that φ(Ej) = Fj , j = 1, 2, 3.
On the other hand, there can be no isomorphism between SU(2) and

SO(3), since SU(2) has a nontrivial center (containing at least I and −I),
whereas the center of SO(3) is trivial (Exercise 14).

Definition 16.33 Suppose G is a connected matrix Lie group with Lie
algebra g. A universal cover of G is an ordered pair (G̃,Φ) consisting
of a simply connected matrix Lie group G̃ and a Lie group homomorphism
Φ : G̃ → G such that the associated Lie algebra homomorphism φ : g̃ → g

is an isomorphism of the Lie algebra g̃ of G̃ with g. The map Φ is called
the covering map for G̃.

Although each Lie group has a universal cover that is again a Lie group,
the universal cover of a matrix Lie group may not be isomorphic to any
matrix Lie group. [The universal cover of SL(2;R), e.g., is not a matrix Lie
group.] It can be shown, however, that if a matrix Lie group G is compact,
then the universal cover of G is again a matrix Lie group (not necessarily
compact).
Suppose G̃ is any simply connected Lie group with a Lie algebra g̃ that

is isomorphic to g. The choice of a particular isomorphism φ : g̃ → g gives



16.6 Relationships Between Lie Groups and Lie Algebras 349

rise, by Theorem 16.30, to a Lie group homomorphism Φ : G̃ → G, so that
(G̃,Φ) is a universal cover of G.
If (G̃,Φ) is a universal cover of G, it is often convenient to use the

isomorphism φ to identify g̃ with g. If we follow this convention, we may
say that a universal cover of G is a simply connected group G̃ having “the
same” Lie algebra as G.
If (G̃1,Φ1) and (G̃2,Φ2) are two universal covers of a given matrix Lie

group G, then there is a unique Lie group isomorphism Ψ : G̃1 → G̃2 such
that Φ2(Ψ(A)) = Φ1(A) for all A ∈ G̃1. (This result follows easily from
Corollary 16.31.) In light of this uniqueness result, we will often speak of
“the” universal cover of G.

Example 16.34 Let Φ : SU(2) → SO(3) be the unique Lie group homo-
morphism for which the associated Lie algebra homomorphism φ satisfies
φ(Ej) = Fj , j = 1, 2, 3. Then kerΦ = {I,−I} and (SU(2),Φ) is a universal
cover of SO(3).

Proof. Since E1 is diagonal, it is easy to see that e2πE1 = −I in SU(2).
On the other hand, by a trivial extension of Example 16.16, we have

eaF1 =

⎛
⎝

1 0 0
0 cos a − sina
0 sin a cos a

⎞
⎠

for all a ∈ R. In particular, e2πF1 = I. Thus,

Φ(−I) = Φ(e2πE1) = e2πF1 = I.

This shows that −I belongs to the kernel of Φ.
Now, since φ is injective, Φ is injective in a neighborhood of I. After all,

given distinct elements A and B of SU(2) near I, Theorem 16.25 tells us
that we can express A as eX and B as eY , with X and Y being distinct
small elements of su(2). Then φ(X) and φ(Y ) are distinct small elements
of so(3). Applying Theorem 16.25 again tells us that Φ(A) = eφ(X) and
Φ(B) = eφ(Y ) are distinct.
We see, then, that kerΦ is a discrete normal subgroup of SU(2). But a

standard exercise (Exercise 1) shows that a discrete normal subgroup of a
connected group is automatically central. On the other hand, it is easily
verified (Exercise 2) that the center of SU(2) is {I,−I}, so kerΦ cannot be
larger than {I,−I}.
To show that Φ maps onto SO(3), we first verify (Exercise 13) that each

element R of SO(3) can be expressed as R = eX , with X ∈ so(3). Since φ
is surjective and Φ(eX) = eφ(X), Φ maps onto SO(3).
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16.7 Finite-Dimensional Representations of Lie
Groups and Lie Algebras

A representation of a group G is a homomorphism Π of G into GL(V ),
the group of invertible linear transformations on some vector space. If Π
is injective then G is isomorphic to its image under Π; thus, Π serves to
“represent” G concretely as a group of invertible linear transformations.
(We continue to use the term “representation” even if Π is not injective.)
Similarly, a representation of a Lie algebra g is a Lie algebra homomorphism
of g into gl(V ), the space of all linear transformations of V, where we equip
gl(V ) with the bracket [X,Y ] := XY − Y X.
Recall that an action of a group G on a set X is a map from G×X to X,

denoted (g, x) �→ g ·x satisfying e·x = x for all x ∈ X and g ·(h·x) = (gh)·x
for all g, h ∈ G and x ∈ X. A representation Π of G on some vector space
V gives rise to a linear action of G on V, given by g · v = Π(g)v. (A linear
action is an action for which the map v �→ g · v is linear for each g.) Thus,
we may use g · v as an alternative notation to Π(g)v, when convenient.

16.7.1 Finite-Dimensional Representations

If G is a matrix Lie group, then G is already represented as a group of
matrices. Nevertheless, it is of interest [as we will see in Chap. 17 in the
case G = SO(3)] to explore other representations of G. Since a matrix Lie
group has a topological structure (inherited from Mn(C)), it is natural to
require representations to be continuous. It is also simpler to deal at first
with finite-dimensional representations, that is, those where the vector
space in question is finite dimensional, although eventually we will need to
consider infinite-dimensional representations as well. This discussion leads
to the following definition.

Definition 16.35 Let G ⊂ GL(n;C) be a matrix Lie group. A finite-
dimensional representation of G is a continuous homomorphism of G
into GL(V ), the group of invertible linear transformations of a finite-
dimensional vector space V.

We will assume that all of our vector spaces are over the field C, even
though it is occasionally of interest to consider also representations over R.
The topology on GL(V ) is defined by picking a basis, and thereby identifying
the space of linear maps of V to V with Mn(C). We then use the subset
topology on GL(V ) ∼= GL(n;C) ⊂ Mn(C). This topology is easily seen to
be independent of the choice of basis.
An important example of representations in quantum theory arises from

the time-independent Schrödinger equation in Rn, namely the equation
Ĥψ = Eψ, for a fixed constant E ∈ R. If Ĥ is invariant under rotations,
then the space of solutions to this equation is invariant under rotations.
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Note that an individual solution ψ to this equation may or may not be a
rotationally invariant (i.e., radial) function. But if Ĥ is rotationally invari-
ant, then rotating a solution to Ĥψ = Eψ will give another solution of this
equation. Even if the quantum Hilbert space is infinite dimensional, the
solution spaces to Ĥψ = Eψ are typically finite dimensional and consti-
tute finite dimensional representations of the group SO(n) of rotations. If
we can understand what all possible finite-dimensional representations of
SO(n) look like, we will have made a lot of progress in understanding solu-
tions to Ĥψ = Eψ in the rotationally invariant case. This line of reasoning
will be explored in detail in Chap. 18.
We may consider as well finite-dimensional representations of Lie alge-

bras. Assuming our Lie algebra g is finite dimensional (which is the only
case we will consider in this chapter), there is no need to impose a re-
quirement of continuity, since a linear map of one finite-dimensional real
or complex vector space to another is automatically continuous.

Definition 16.36 A finite-dimensional representation of a Lie algebra
g is a Lie algebra homomorphism of g into gl(V ), the space of all linear
transformations of V. Here gl(V ) is considered as a Lie algebra with bracket
given by [X,Y ] = XY − Y X.

We typically consider Lie algebras defined over the field R, since the Lie
algebra of a matrix Lie group is in general only a real subspace of Mn(C).
Nevertheless, it is convenient to consider vector spaces over C. If g is a
real Lie algebra and V , and therefore also gl(V ), is a complex vector space,
then we require only that π : g → gl(V ) be real linear, which is the only
requirement that makes sense.
In the interest of simplifying the terminology, we will sometimes speak

of “a representation V ,” without making explicit mention of the homomor-
phism Π or π.

Definition 16.37 If Π : G → GL(V ) is a representation of a matrix Lie
group G, then a subspace W of V is called an invariant subspace if
Π(g)w ∈ W for all g ∈ G and w ∈ W. Similarly, if π : g → gl(V ) is
a representation of a Lie algebra g, then a subspace W of V is called an
invariant subspace if π(X)w ∈ W for all X ∈ g and w ∈ W. A represen-
tation of a group or Lie algebra is called irreducible if the only invariant
subspaces are W = V and W = {0}.

Definition 16.38 If (Π, V1) and (Σ, V2) are representations of a matrix
Lie group G, a map Φ : V1 → V2 is called an intertwining map (or
morphism) if Φ(Π(g)v) = Σ(g)Φ(v) for all v ∈ V1, with an analogous
definition for intertwining maps of Lie algebra representations. If an in-
tertwining map is an invertible linear map, it is called an isomorphism.
Two representations are said to be isomorphic (or equivalent) if there
exists an isomorphism between them.



352 16. Lie Groups, Lie Algebras, and Representations

In the “action” notation, the requirement on an intertwining map Φ is
that Φ(g · v) = g · Φ(v), meaning that Φ commutes with the action of G.
A typical goal of representation theory is to classify all finite-dimensional
irreducible representations of G up to isomorphism.
Given a representation Π : G → GL(V ) of a matrix Lie group G, we

can identify GL(V ) with GL(N ;C) and gl(V ) with gl(n;C) by picking a
basis for V. We may then apply Theorem 16.23 to obtain a representation
π : g → gl(V ) such that

Π(eX) = eπ(X)

for all X ∈ g.

Proposition 16.39 Suppose G is a connected matrix Lie group with Lie
algebra g. Suppose that Π : G → GL(V ) is a finite-dimensional representa-
tion of G and π : g → gl(V ) is the associated Lie algebra representation.
Then a subspace W of V is invariant under the action of G if and only if it
is invariant under the action of g. In particular, Π is irreducible if and only
if π is irreducible. Furthermore, two representations of G are isomorphic if
and only if the associated Lie algebra representations are isomorphic.

In general, given an representation π of g, there may be no representation
Π such that π and Π are related in the usual way. If, however, G is simply
connected, Theorem 16.30 tells us that there is, in fact, a Π associated with
every π.
Proof. Suppose W ⊂ V is invariant under π(X) for all X ∈ g. Then
W is invariant under π(X)m for all m. Since V is finite dimensional, any
subspace of it is automatically a closed subset and thus W is invariant
under

Π(eX) = eπ(X) =

∞∑

m=0

π(X)m

m!
.

Since G is connected, every element of G is (Corollary 16.28) a product
of exponentials of elements of g, and so W is invariant under Π(A) for all
A ∈ G.
In the other direction, if W is invariant under Π(A) for all A ∈ G, then

since W is closed, it is invariant under

π(X) = lim
h→0

ehX − I

h
,

for all X ∈ g.
Now suppose Π1 and Π2 are two representations of G, acting on vector

spaces V1 and V2, respectively. If Φ : V1 → V2 is an invertible linear map,
then an argument similar to the above shows ΦΠ1(A) = Π2(A)Φ for all
A ∈ G if and only if Φπ1(X) = π2(X)Φ for all X ∈ g. Thus, Φ is an
isomorphism of group representations if and only if it is an isomorphism of
Lie algebra representations.
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Theorem 16.40 (Schur’s Lemma) If V1 and V2 are two irreducible rep-
resentations of a group or Lie algebra, then the following hold.

1. If Φ : V1 → V2 is an intertwining map, then either Φ = 0 or Φ is an
isomorphism.

2. If Φ : V1 → V2 and Ψ : V1 → V2 are nonzero intertwining maps, then
there exists a nonzero constant c ∈ C such that Φ = cΨ. In particular,
if Φ is an intertwining map of V1 to itself then Φ = cI.

Although the first part of Schur’s lemma holds for representations over
an arbitrary field, the second part holds only for representations over alge-
braically closed fields.
Proof. It is easy to see that kerΦ is an invariant subspace of V1. Since
V1 is irreducible, this means that either kerΦ = V1, in which case Φ = 0,
or kerΦ = {0}, in which case Φ is injective. Similarly, the range of Φ is
invariant, and thus equal to either {0} or V2. If Φ is not zero, then the
range of Φ is not zero, hence all of V2. Thus, if Φ is not zero, it is both
injective and surjective, establishing Point 1.
For Point 2, since Φ and Ψ are nonzero, they are isomorphisms, by

Point 1. It suffices to prove that Γ := Φ−1Ψ is a multiple of the iden-
tity, where Γ is an intertwining map of V1 to itself. Since we are work-
ing over C, Γ must have at least one eigenvalue λ. If W denotes the λ-
eigenspace of Γ, then W is invariant under the action of the group or Lie
algebra. After all, if Γw = λw, then (in the notation of the group case)
Γ(Π(A)w) = Π(A)Γw = λΠ(A)w. Since λ is an eigenvector of Γ, the in-
variant subspace W is nonzero and thus W = V1, which means precisely
that Γ = λI.

16.7.2 Unitary Representations

In quantum mechanics, we are interested not only in vector spaces, but,
more specifically, in Hilbert spaces, since expectation values are defined in
terms of an inner product. We wish to consider, then, actions of a group
that preserve the inner product as well as the linear structure. Although
the Hilbert spaces in quantum mechanics are generally infinite dimensional,
we restrict our attention in this section to the finite-dimensional case.

Definition 16.41 Suppose V is a finite-dimensional Hilbert space over C.
Denote by U(V ) the group of invertible linear transformations of V that pre-
serve the inner product. A (finite-dimensional) unitary representation

of a matrix Lie group G is a continuous homomorphism of Π : G → U(V ),
for some finite-dimensional Hilbert space V.

Proposition 16.42 Let Π : G → GL(V ) be a finite-dimensional repre-
sentation of a connected matrix Lie group G, and let π be the associated
representation of the Lie algebra g of G. Let 〈·, ·〉 be an inner product on V.
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Then Π is unitary with respect to 〈·, ·〉 if and only if π(X) is skew-self-
adjoint with respect to 〈·, ·〉 for all X ∈ g, that is, if and only if

π(X)∗ = −π(X)

for all X ∈ g.

In a slight abuse of notation, we will refer to a representation π of a
Lie algebra g on a finite-dimensional inner product space as unitary if
π(X)∗ = −π(X) for all X ∈ g.
Proof. Suppose first that Π(A) is unitary for all A ∈ G. Then for all X ∈ g

and t ∈ R we have

Π(etX)∗ = Π(etX)−1 = Π(e−tX) = e−tπ(X).

On the other hand,

Π(etX)∗ = (etπ(X))∗ = etπ(X)∗ .

Thus,
etπ(X)∗ = e−tπ(X)

for all t. Differentiating at t = 0 yields π(X)∗ = −π(X).
In the other direction, if π(X)∗ = −π(X) for all X ∈ g, then

Π(eX)∗ = eπ(X)∗ = e−π(X) = Π(e−X) = Π(eX)−1,

meaning that Π(eX) is unitary. Since G is connected, Corollary 16.28 tells
us that each element A of G is expressible as a product of exponentials,
from which it follows that Π(A) is unitary.

16.7.3 Projective Unitary Representations

In quantum mechanics, two unit vectors in the quantum Hilbert space that
differ by multiplication by a constant are considered to represent the same
physical state. Thus, an operator of the form eiθI, with θ ∈ R, will act as the
identity at the level of the physical states. Suppose that V is a Hilbert space
over C, assumed for the moment to be finite dimensional. Then it is natural
to consider homomorphisms not into U(V ) but rather into the quotient
group U(V )/{eiθI}. Of course, given a homomorphism Π of G into U(V ),
we can always turn Π into a homomorphism of G into the quotient group,
just by composing Π with the quotient map. Not every homomorphism into
the quotient group, however, arises from a homomorphism into U(V ).

Definition 16.43 Suppose V is a finite-dimensional Hilbert space over C.
Then the projective unitary group over V, denoted PU(V ), is the quo-
tient group

PU(V ) = U(V )/{eiθI},
where {eiθI} denotes the group of matrices of the form eiθI, θ ∈ R.
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Note that {eiθI} is a closed normal subgroup of U(V ). Now, U(V ) is
(isomorphic to) a matrix Lie group, since we can identify it with U(n) by
picking an orthonormal basis for V. In general, the quotient of a matrix
Lie group by a closed normal subgroup may not be a matrix Lie group. In
this case, however, it is not hard to realize the quotient U(n)/{eiθI} as a
matrix Lie group.

Proposition 16.44 If V is a finite-dimensional Hilbert space over C, then
PU(V ) is isomorphic to a matrix Lie group.
Let Q : U(V ) → PU(V ) be the quotient homomorphism and let q :

u(V ) → pu(V ) be the associated Lie algebra homomorphism. Then q maps
u(V ) onto pu(V ) and the kernel of q is the space of matrices of the form
iaI with a ∈ R. Thus, pu(V ) is isomorphic to u(V )/{iaI}.

The Lie algebra u(V ) of U(V ) is the space of skew-self-adjoint operators
on V. In Proposition 16.44, the space {iaI} is an ideal in u(V ) and the
quotient is in the sense of Lie algebras over R; see Exercise 9. If dimV = N,
then it is not hard to see that the Lie algebra pu(V ) ∼= u(V )/{iaI} is
isomorphic to the Lie algebra su(N). The group PU(V ) is not, however,
isomorphic to the group SU(N). See Exercise 16.
Proof. If dim V = N, then gl(V ), the space of all linear maps of V to V,
has dimension N2. Given U ∈ U(V ), we can define

CU : gl(V ) → gl(V )

by

CU (X) = UXU−1.

(That is to say, CU is conjugation by U.) Note that (CU )
−1 = CU−1 and

CUV = CUCV . Thus, C (i.e., the map U �→ CU ) is a homomorphism of
U(V ) into GL(gl(V )), and this homomorphism is clearly continuous. If U
is a multiple of the identity, then CU is the identity operator on gl(V ).
Conversely, if CU is the identity, then UX = XU for all X ∈ gl(V ), which
implies (Exercise 18) that U is a multiple of the identity. Thus, the kernel
of C consists precisely of those scalar multiples of the identity that are in
U(V ); that is, kerC = {eiθI}.
We have constructed, then, a homomorphism of U(V ) into GL(gl(V )) ∼=

GL(N2;C) with a kernel that is precisely {eiθI}. The image of U(V ) un-
der this homomorphism is, therefore, isomorphic to the quotient group
U(V )/{eiθI}. Furthermore, since U(V ) is compact, the image of U(V ) un-
der C is compact and thus closed. This image is, then, a matrix Lie group
isomorphic to PU(V ).
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Let c be the associated Lie algebra homomorphism associated with the
homomorphism C. Using Point 3 of Theorem 16.23, we may calculate that

cX(Y ) =
d

dt
etXY e−tX

∣∣∣∣
t=0

= XY − Y X

= [X,Y ].

Using Exercise 18 again, we see that cX = 0 if and only if X is a multiple
of the identity. Thus, the kernel of c consists of all the scalar multiples of
I in u(V ), namely {iaI}.
Now, the image of U(V ) under C is (isomorphic to) PU(V ); in particular,

C maps U(V ) onto PU(V ). It follows that c must map u(V ) onto pu(V ).
(This claim follows from Theorem 3.15 in [21].) Thus, pu(V ) ∼= u(V )/{iaI}.

Definition 16.45 A finite-dimensional projective unitary representa-

tion of a matrix Lie group G is a continuous homomorphism Π of G into
PU(V ), where V is a finite-dimensional Hilbert space over C. A subspace
W of V is said to be invariant under Π if for each A ∈ G, W is invariant
under U for every U ∈ U(V ) such that [U ] = Π(A). A projective unitary
representation (Π, V ) is irreducible if the only invariant subspaces are {0}
and V.

Given an ordinary unitary representation, Σ : G → U(V ), we can always
form a projective representation, Π : G → PU(V ), simply by setting Π =
Q ◦Σ. Not every projective representation, however, arises in this fashion.
Thus, considering projective representations gives us more flexibility than
considering ordinary unitary representations.

Proposition 16.46 Let Π : G → PU(V ) be a finite-dimensional projective
unitary representation of a matrix Lie group G, and let π : g → pu(V ) be
the associated Lie algebra homomorphism. Then there exists a Lie algebra
homomorphism σ : g → u(V ) such that π(X) = q(σ(X)) for all X ∈ g.
It is possible to choose σ so that trace(σ(X)) = 0 for all X ∈ g, and σ is
unique if we require this condition.

That is to say, every finite-dimensional projective representation can be
“de-projectivized” at the Lie algebra level. In general, σ is not unique,
because there may be σ’s for which trace(σ(X)) is nonzero for some X.
On the other hand, if g has the property that every X ∈ g is a linear
combination of commutators—which is true if g = so(3)—then σ is unique.
See Exercise 15.
Proof. Recall that pu(V ) ∼= u(V )/{iaI}. That is, for each X ∈ g, π(X)
denotes a whole family of operator that differ by adding iaI. If Y ∈ u(n)
is any representative of π(X), then since Y ∗ = −Y, the trace of Y will
be pure imaginary. Thus, there is a unique pure-imaginary constant c =
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−trace(Y )/ dimV such that the trace of Y + cI is zero. Let us then set
σ(X) = Y + cI. Since π is a Lie algebra homomorphism, σ([X,Y ]) will
equal [σ(X), σ(Y )] + iaI, for some a ∈ R. Since trace(σ([X,Y ])) = 0 by
construction and since the commutator of any two matrices has trace zero,
we see that actually a = 0. Thus, a σ as in the proposition exists, and it is
unique if we require that σ(X) have trace zero.

Theorem 16.47 Suppose G is a matrix Lie group and G̃ is a universal
cover of G, with covering map Φ. Then the following hold.

1. Let Π : G → PU(V ) be a finite-dimensional projective unitary rep-
resentation of G. Then there is an ordinary unitary representation
Σ : G̃ → U(V ) of G̃ such that Π ◦ Φ = Q ◦ Σ. Any such Σ is irre-
ducible if and only if Π is irreducible. It is possible to choose Σ so
that det(Σ(A)) = 1 for all A ∈ G̃, and Σ is unique if we require this
condition.

2. Let Σ be a finite-dimensional irreducible unitary representation of G̃.
Then the kernel of the associated projective unitary representation
Q ◦Σ contains the kernel of the covering map Φ. Thus, Q ◦Σ factors
through G and gives rise to a projective unitary representation of G.

In the finite-dimensional case, then, there is a one-to-one correspondence
between irreducible projective unitary representations of G and irreducible,
determinant-one ordinary unitary representations of G̃. Point 1 of the the-
orem means that any finite-dimensional projective unitary representation
of the group G can be “de-projectivized” at the expense of passing to the
universal cover G̃ of G.
Note that Theorem 16.47 applies only to finite-dimensional projective

unitary representations. Example 16.56 will provide an infinite-dimensional
example in which Point 1 of the theorem fails.
Proof. If g is the Lie algebra of G, Proposition 16.46 tells us that we can
find an ordinary representation σ : g → u(V ) such that q ◦ σ = π. We then
define a representation σ̃ : g̃ → u(V ) of the Lie algebra g̃ of G̃ by setting
σ̃(X) = σ(φ(X)), X ∈ g̃. Since G̃ is simply connected, we can then find
a unique representation Σ : G̃ → U(V ) such that Σ(eX) = eσ̃(X) for all
X ∈ g̃. Since

q ◦ σ̃ = q ◦ σ ◦ φ = π ◦ φ,

it follows that Q◦Σ = Π◦Φ. Furthermore, if Σ maps into SU(V ), σ = σ̃◦φ−1

maps into su(n). This condition uniquely determines σ and thus also σ̃ and
Σ, establishing Point 1 of the theorem.
For Point 2, observe that kerΦ is a discrete normal subgroup of G̃, which

is therefore central (Exercises 1 and 12). Thus, for all A ∈ kerΦ, we have

Σ(A)Σ(B) = Σ(AB) = Σ(BA) = Σ(B)Σ(A)
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for all B ∈ G̃. That is to say, Σ(A) is an intertwining map of V to itself.
Since V is also irreducible as a representation of G̃, Schur’s lemma tells us
that Σ(A) = cI, where |c| = 1 because Σ(A) ∈ U(V ). Thus, A is in the
kernel of the associated projective representation Q ◦ Σ.

16.8 New Representations from Old

In this section, we consider three basic mechanisms for combining repre-
sentations to produce new representations: direct sums, tensor products,
and duals. This section assumes familiarity with these notions at the level
of vector spaces; a brief review is provided in Appendix A.1.

Definition 16.48 Suppose (Π1, V1) and (Π2, V2) are representations of a
matrix Lie group G. The direct sum of these two representations is the
representation Π1 ⊕Π2 : G → GL(V1 ⊕ V2) given by

(Π1 ⊕Π2)(A) = Π1(A)⊕Π2(A).

The tensor product of Π1 and Π2 is the representation Π1 ⊗ Π2 : G →
GL(V1 ⊗ V2) given by

(Π1 ⊗Π2)(A) = Π1(A)⊗Π2(A).

Finally, the dual of Π1 is the representation Πtr
1 : G → GL(V ∗) given by

Πtr
1 (A) = Π1(A

−1)tr =
(
Π1(A)

tr
)−1

.

Similarly, the direct sum, tensor product, and dual of Lie algebra repre-
sentations can be defined by

(π1 ⊕ π2)(X) = π1(X)⊕ π2(X)

(π1 ⊗ π2)(X) = π1(X)⊗ I + I ⊗ π2(X)

πtr
1 (X) = −π1(X)tr.

It is important to note the differences in formulas between the group and
the Lie algebra in the case of tensor products and dual representations. It
is easy to motivate the definitions for the Lie algebra: If G acts on V1 ⊗ V2

by Π1(A)⊗Π2(A), then the associated Lie algebra action will be given by

d

dt
Π1(e

tX)⊗Π2(e
tX)

∣∣∣∣
t=0

= π1(X)⊗ I + I ⊗ π2(X).

Of course, we continue to use this last formula for tensor products of Lie
algebra representations, even if there is no associated group representations.
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Remark 16.49 If (Π1, V1) and (Π2, V2) are representations of a group G,
it is possible to view V1⊗V2 as a representation of the direct product group
G×G, by setting

(Π1 ⊗Π2)(A,B) = Π1(A)⊗Π2(B).

Similarly, if (π1, V1) and (π2, V2) are representations of a Lie algebra g, it
is possible to view V1 ⊗ V2 as a representation of g⊕ g by setting

(π1 ⊗ π2)(X,Y ) = π1(X)⊗ I + I ⊗ π2(Y ).

Nevertheless, it is, in most cases, more natural to view V1 ⊗ V2 as a
representation of G itself, rather than of G × G. Even if V1 and V2 are
irreducible representations of G, the space V1 ⊗ V2 will in most cases fail
to be irreducible as a representation of G. If, for example, we take V1 =
V2 = V, then the space of symmetric tensors inside V ⊗ V will form a
nontrivial invariant subspace, unless dimV = 1. An important problem in
representation theory is to decompose V1⊗V2 as a direct sum of irreducible
representations, where V1 and V2 are irreducible representations of a fixed
group or Lie algebra. In the case of the Lie algebra su(2), this decomposition
is discussed in Sect. 17.9.

Definition 16.50 A finite-dimensional representation of a group or Lie
algebra is said to be completely reducible if it is isomorphic to a direct
sum of irreducible representations.

Proposition 16.51 Every finite-dimensional unitary representation of a
group or Lie algebra is completely reducible.

Proof. Suppose (Π, V ) is a unitary representation of a matrix Lie group G.
If W is a subspace of V invariant under each Π(A), then W⊥ is invariant
under each Π(A)∗, as the reader may easily verify. But since Π is unitary,

Π(A)∗ = Π(A)−1 = Π(A−1).

Thus,W⊥ is invariant under Π(A−1) for all A ∈ G, hence under Π(A) for all
A ∈ G. We conclude that, in the unitary case, the orthogonal complement
of an invariant subspace is always invariant.
If V is irreducible, there is nothing to prove. If not, we pick a nontrivial

invariant subspace W and decompose V as W ⊕W⊥. The restriction of Π
to W or to W⊥ is again a unitary representation, so we can repeat this
procedure for each of these subspaces. Since V is finite dimensional, the
process must eventually terminate, yielding an orthogonal decomposition
of V as a direct sum of irreducible invariant subspaces.
If we consider a unitary representation π of a Lie algebra g, we have

the same argument, but with the identity Π(A)∗ = Π(A−1) replaced by
π(X)∗ = −π(X).
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Proposition 16.52 Suppose K is a compact matrix Lie group. For any
finite-dimensional representation (Π, V ) of K, there exists an inner product
on V such that Π(A) is unitary for all A ∈ G. In particular, every finite-
dimensional representation of K is completely reducible.

See Proposition 4.36 in [21].

16.9 Infinite-Dimensional Unitary Representations

For the applications we have in mind, we need to consider representa-
tions that are infinite dimensional. The theory of such representations is
inevitably more complicated than that of finite-dimensional representa-
tions. For our purposes, it suffices to consider the nicest sort of infinite-
dimensional representations—unitary representations in a Hilbert space.

16.9.1 Ordinary Unitary Representations

We begin by considering ordinary representations and then turn to projec-
tive representations.

Definition 16.53 Suppose G is a matrix Lie group. Then a unitary rep-

resentation of G is a strongly continuous homomorphism Π : G → U(H),
where H is a separable Hilbert space and U(H) is the group of unitary op-
erators on H. Here, strong continuity of Π means that if a sequence Am in
G converges to A ∈ G, then

lim
m→∞

‖Π(Am)ψ − Π(A)ψ‖ = 0

for all ψ ∈ H.

We can attempt to associate to a unitary representation Π of G some
sort of representation π of the Lie algebra g of G, by imitating the con-
struction in Theorem 16.23. For any X ∈ g, the map t �→ Π(etX) is a
strongly continuous one-parameter unitary group. Thus, Stone’s theorem
(Theorem 10.15) tells us that there exists a unique self-adjoint operator A
such that Π(etX) = eitA for all t ∈ R. If we let π(X) denote the skew-self-
adjoint operator iA, we will have

Π(etX) = etπ(X). (16.5)

The operators π(X), X ∈ g, are in general unbounded and defined only
on a dense subspace of H. Nevertheless, it can be shown (see, e.g., [43])
that there exists a dense subspace V of H contained in the domain of
each π(X) and that is invariant under each π(X), and on which we have
π([X,Y ]) = [π(X), π(Y )]. In the case of the particular representation that
we will consider in the next chapter, we can avoid these difficulties by
looking at finite-dimensional invariant subspaces.
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Proposition 16.54 Suppose G is a matrix Lie group and Π : G → U(H) is
a unitary representation of G. For each X ∈ g, let π(X) denote the operator
in (16.5). Suppose V ⊂ H is a finite-dimensional subspace of H such that
Π(A) maps V into V, for all A ∈ G. Then for all X ∈ g, V ⊂ Dom(π(X)),
π(X) maps V into V, and we have

π([X,Y ])v = [π(X), π(Y )]v (16.6)

for all v ∈ V.
In the other direction, suppose G is connected and suppose V is any

finite-dimensional subspace of H such that for all X ∈ g, V ⊂ Dom(π(X))
and π(X) maps V into V. Then Π(A) also maps V into V, for all A ∈ G.

Proof. Since V is invariant under both Π(A) and Π(A)∗ = Π(A−1), the
restriction to V of each Π(A) is unitary. The operators Π(A)|V form a
finite-dimensional unitary representation of G that is strongly continuous
and thus continuous. (In the finite-dimensional case, all reasonable notions
of continuity for representations coincide.) For each X ∈ g, Theorem 16.18
tells us that there is an operator X̃ on V such that

Π(etX)
∣∣
V
= etX̃ .

Thus, for any v ∈ V, we have

lim
t→0

Π(etX)v − v

t
= lim

t→0

etX̃v − v

t
= X̃v.

This calculation shows that v is in the domain of the infinitesimal gener-
ator π(X) of the unitary group Π(etX), and that π(X)v = X̃v. Since the
operators X̃, X ∈ g, form a representation of g, we have the relation (16.6).
In the other direction, if V is invariant under π(X), the restriction of

π(X) to V is automatically bounded. Thus, there is a constant C such that

‖π(X)mv‖ ≤ Cm ‖v‖ (16.7)

for all v ∈ V. If we use the direct-integral form of the spectral theorem
for the self-adjoint operator A := −iπ(X), it is easy to see that (16.7) can
only hold if v, viewed as an element of the direct integral, is supported on
a bounded interval inside the spectrum of A. Since the power series of the
function λ �→ etλ converges to etλ uniformly on any finite interval, we will
have

Π(etX)v = eitAv =
∞∑

m=0

tmπ(X)m

m!
v.

Each term in the above power series belongs to V, which is finite dimen-
sional and thus closed. We conclude that Π(etX)v belongs to V for all
X ∈ g. Since G is connected, each element of G is a product of exponen-
tials of Lie algebra elements, and we have the claim.
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16.9.2 Projective Unitary Representations

Given a Hilbert space H, let SH denote the unit sphere in H, that is, the
set of vectors with norm 1. Let PH be the quotient space (SH)/ ∼, where
“∼” denotes the equivalence relation in which u ∼ v if and only if u = eiθv
for some θ ∈ R. The quotient map q : SH → PH induces a topology on
PH in which a set U ⊂ PH is open if and only if q−1(U) is open as a
subset of the metric space SH ⊂ H.
As in the finite-dimensional case, we can form the quotient group

PU(H) := U(H)/{eiθI}.

The action of U(H) on SH descends to a well-defined action of PU(H)
on PH.

Definition 16.55 A projective unitary representation of a matrix Lie
group G is a homomorphism Π : G → PU(H), for some Hilbert space H,
with the property that if a sequence Am in G converges to A in G, then

Π(Am)x → Π(A)x

for all x ∈ PH.

Recall that in the finite-dimensional case, every projective unitary rep-
resentation of G can be “de-projectivized” at the expense of possibly having
to pass to the universal cover G̃ of G (Theorem 16.47). The
de-projectivization proceeds by passing to the Lie algebra, choosing the
trace-zero representative of each equivalence class, and then exponentiat-
ing back to the universal cover of the original group. This approach does
not work in the infinite-dimensional case. After all, even assuming we can
construct a Lie algebra homomorphism π(X) for each X ∈ g, the repre-
sentatives of π(X) are typically unbounded operators on H, for which the
notion of trace does not make sense. This difficulty is not just a technical-
ity; the corresponding result in the infinite-dimensional case is false, as we
will now see.

Example 16.56 For all (a, b) ∈ R2, define an operator T(a,b) on L2(R) by

(T(a,b)ψ)(x) = eiaxψ(x− b).

Then T(a,b) is unitary for all (a, b) ∈ R2 and we have

(
T(a,b)T(a′,b′)ψ

)
(x) = eiaxeia

′(x−b)ψ(x− (b+ b′))

= e−ia′b
(
T(a+a′,b+b′)ψ

)
(x). (16.8)

The map (a, b) �→ [T(a,b)] is a homomorphism of R2 into PU(L2(R)), and
this homomorphism is continuous in the sense of Definition 16.55. There
does not, however, exist any homomorphism S : R2 → U(L2(R)) such that
[S(a,b)] = [T(a,b)] for all (a, b) ∈ R2.
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Thus, even though R2 is simply connected (and thus its own universal
cover), there is no way to de-projectivize the projective unitary represen-
tation (a, b) �→ [T(a,b)] of R

2.
Proof. The map (a, b) → T(a,b) is easily seen to be strongly continuous,
and thus the map (a, b) �→ [T(a,b)] is continuous in the sense of Defini-
tion 16.55. If a homomorphism S with the indicated properties existed,
then there would be constants θa,b such that S(a,b) = eiθa,bT(a,b). But then
since S is a homomorphism from the commutative group R2 into U(L2(R)),
the operator S(a,b) would have to commute with S(a′,b′) for all (a, b) and
(a′, b′). But then the operators T(a,b) and T(a′,b′), being constant multiples
of commuting operators, would need to commute as well. But this is not the
case; for example, T(a,0) does not commute with T(0,b′), as is easily verified
using (16.8).
Despite the negative result in Example 16.56, there is a positive result in

this direction: If G is connected and “semi-simple,” every projective unitary
representation of G can be de-projectivized after passing to the universal
cover. Here, a Lie algebra g is said to be simple if g has no nontrivial ideals
and dim g ≥ 2. A Lie algebra is said to be semi-simple if it is a direct sum
of simple algebras. Finally, a Lie group G is said to be semi-simple if the
Lie algebra g of G is semi-simple.
For any connected Lie group G, a projective unitary representation Π of

G can be de-projectivized by passing to a one-dimensional central exten-
sion. A one-dimensional central extension of G is a Lie group G′ together
with a surjective homomorphism Φ : G′ → G such that the kernel of Φ is
one-dimensional and contained in the center of G′. See the article [1] of V.
Bargmann for more information about these issues.

16.10 Exercises

1. Suppose that G is a connected matrix Lie group and that N is a
discrete normal subgroup of G, meaning that there is some neighbor-
hood U of I in G such that U ∩N = {I}. Show that N is contained
in the center of G.

Hint : Consider the quantity gng−1 for g ∈ G and n ∈ N.

2. (a) Suppose two elements U and V of SU(2) commute. Show that
each eigenspace for U is invariant under V and vice versa.

(b) Show that if U is in the center of SU(2), then U = I or U = −I.

3. Define the Hilbert–Schmidt norm of a matrix X ∈ Mn(C) by the
formula

‖X‖2HS =

n∑

j,k=1

|Xjk|2 .
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Using the Cauchy–Schwarz inequality, show that

‖XY ‖HS ≤ ‖X‖HS ‖Y ‖HS (16.9)

for all X,Y ∈ Mn(C).

4. Using term-by-term differentiation of power series, show that for all
X ∈ Mn(C) and all 1 ≤ j, k ≤ n, we have

d

dt

[(
etX

)
jk

]∣∣∣
t=0

= Xjk.

5. Verify Property 4 of Theorem 16.15. This should be easy in the case
that X is diagonalizable. In the general case, either use the Jordan
canonical form or appeal to the fact that diagonalizable matrices are
dense in Mn(C).

6. Suppose X and Y are commuting n× n matrices. Show that

eXeY = eX+Y .

This is Property 5 of Theorem 16.15.

Hint : Multiply together the power series for eX and eY and then
group terms where the total power of X and Y is n.

7. For A ∈ Mn(C), define the logarithm of A by the power series

logA = A− I − (A− I)2

2
+

(A− I)3

3
− · · ·

whenever this series converges. Assume the following result: If A is
sufficiently close to I, then logA is defined and exp(logA) = A.
[This can be seen easily when A is diagonalizable, and the set of
diagonalizable matrices is dense in Mn(C).]

(a) Show that there exists a constant C such that for all A with
‖A− I‖ < 1/2 we have

‖logA− (A− I)‖ ≤ C ‖A− I‖2 .

(b) Show that for all X,Y ∈ Mn(C) we have

log
(
eX/meY/m

)
=

X

m
+

Y

m
+O

(
1

m2

)
. (16.10)

Note that eX/meY/m tends to I as m tends to infinity, so that
the left-hand side of (16.10) is defined for all sufficiently largem.

(c) Prove the Lie Product Formula.



16.10 Exercises 365

8. (a) Show that for all X,Y ∈ Mn(C),

∥∥∥∥
d

dt
(X + tY )m

∣∣∣∣
t=0

∥∥∥∥ ≤ m ‖X‖m−1 ‖Y ‖ .

(b) Show that the map X �→ etX is a continuously differentiable

map of Mn(C) ∼= R2n2

to itself.

(c) Using Exercise 4, show that the differential of the map X �→ eX

at X = 0 is the identity map of Mn(C) to itself. (Recall that the
differential of smooth map of Rj to Rk, evaluated at a point in
Rj , is a linear map of Rj to Rk.)

9. Suppose g is a Lie algebra and h is an ideal in g. Let g/h denote the
vector space quotient of g by h. Show that the bracket on g descends
unambiguously to a bilinear map on g/h, and that g/h forms a Lie
algebra under this map.

10. Suppose that G1, G2, and G3 are matrix Lie groups with Lie algebras
g1, g2, and g3, respectively. Suppose that Φ : G1 → G2 and Ψ :
G2 → G3 are Lie group homomorphisms with associated Lie algebra
homomorphisms φ and ψ, respectively. Show that the Lie algebra
homomorphism associated to Ψ ◦ Φ : G1 → G3 is ψ ◦ φ.

11. Show that isomorphic matrix Lie groups have isomorphic Lie alge-
bras.

12. Suppose G1 and G2 are matrix Lie groups with Lie algebras g1 and
g2, respectively. Suppose Φ : G1 → G2 is a Lie group homomorphism
with the property that the associated Lie algebra homomorphism
φ : g1 → g2 is injective. Show that there exists a neighborhood U of
the identity in G1 such that U ∩ kerΦ = {I}.
Hint : Use Theorem 16.25.

13. (a) Show that every R ∈ SO(3) has an eigenvalue of 1.

(b) Show that every R ∈ SO(3) is conjugate in SO(3) to matrix of
the form ⎛

⎝
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞
⎠

for some θ ∈ R.

(c) Show that the exponential map from so(3) to SO(3) is surjective.

(d) Show that SO(3) is connected.

14. Show that the center of SO(3) is trivial.

Hint : Use Part (a) of Exercise 13.
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15. Given a Lie algebra g, let [g, g] denote the space of linear combinations
of commutators, that is, the space spanned by elements of the form
[X,Y ] with X,Y ∈ g.

(a) Show that [g, g] is an ideal in g and that the quotient g/[g, g]
is commutative. (The ideal [g, g] is called the commutator ideal
of g.)

(b) If g = so(3), show that [g, g] = g.

(c) If π : g → gl(V ) is any finite-dimensional representation of g,
show that π([g, g]) is contained in sl(V ), the space of endomor-
phisms of V with trace zero.

16. (a) Show that the Lie algebra pu(n) ∼= u(n)/{iaR} is isomorphic to
the Lie algebra su(n).

(b) Let {e2πik/nI} denote the group of matrices that are of the form
of an nth root of unity times the identity. Show that the group
PU(n) is isomorphic to SU(n)/{e2πik/nI}.

17. Suppose that G is a matrix Lie group with Lie algebra g and that
A is an element of G. Show that the operation of left multiplication
by A−1 is a diffeomorphism of Mn(C). Now show that there exist
neighborhoods U of 0 in Mn(C) and V of A in Mn(C) such that the
map X �→ AeX maps U diffeomorphically onto V and such that for
X ∈ U, we have X ∈ g if and only if AeX ∈ V. (Use Theorem 16.25.)

18. Suppose that Z ∈ Mn(C) has the property that ZX = XZ for all
X ∈ Mn(C). Show that Z = cI for some c ∈ C.

19. Suppose (Π,H) is a unitary representation of a matrix Lie group
G, and suppose V1 and V2 are finite-dimensional irreducible invari-
ant subspaces of H. Show that if V1 and V2 are not isomorphic as
representations of G, then V1 is orthogonal to V2 inside H.

Hint : Show that the orthogonal projection of H onto V1 or V2 is an
intertwining map, and use Schur’s lemma.



17
Angular Momentum and Spin

17.1 The Role of Angular Momentum
in Quantum Mechanics

Classically, angular momentum may be thought of as the Hamiltonian
generator of rotations (Proposition 2.30). Angular momentum is a particu-
larly useful concept when a system has rotational symmetry, since in that
case the angular momentum is a conserved quantity (Proposition 2.18).
Quantum mechanically, angular momentum is still the “generator” of ro-
tations, meaning that it is the infinitesimal generator of a one-parameter
group of unitary rotation operators, in the sense of Stone’s theorem (The-
orem 10.15). The quantum angular momentum is again conserved in sys-
tems with rotational symmetry. This means that if the Hamiltonian Ĥ is
invariant under rotations, then Ĥ commutes with the angular momentum
operators, in which case, the angular momentum operators are constants
of motion in the quantum mechanical sense.
The various components of the classical angular momentum vector for

a particle in R3 satisfy certain simple commutation relations under the
Poisson bracket (Exercise 19 in Chap. 2). We will see that those relations are
the commutation relations for the Lie algebra so(3) of the rotation group
SO(3). If Ĥ commutes with each component of the angular momentum,
each eigenspace for Ĥ (the solution space to Ĥψ = λψ for a given λ) is
invariant under the angular momentum operators. Thus, the eigenspace
constitutes a representation of the Lie algebra so(3). By classifying the
irreducible (finite-dimensional) representations of so(3), we can obtain a lot

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5 17,
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of information about the structure of the solution spaces to the equation
Ĥψ = λψ, in the case that Ĥ is invariant under rotations. Specifically, the
representation theory of so(3) allows us to determine completely the angular
dependence of a solution ψ(x), leaving only the radial dependence of ψ to
be determined. This has the effect of reducing the number of independent
variables from three to one (just the radius r in polar coordinates), thereby
reducing the problem to solving an ordinary differential equation.
Understanding angular momentum from the point of view of representa-

tions of a Lie algebra also prepares us to understand the concept of spin.
The Hilbert space for a particle in R3 with spin is the tensor product
of L2(R3) with a finite-dimensional vector space V, where V carries an
irreducible action of the rotation group SO(3). In this setting, the proper
notion of “action” is a projective representation of SO(3), meaning a family
of operators satisfying the relations of SO(3) up to phase factors (constants
of absolute value one). These phase factors are permitted because, physi-
cally, two vectors that differ only by a constant represent the same physical
state. By Proposition 16.46, every projective representation of SO(3) can
be de-projectivized at the level of the Lie algebra so(3). Conversely, every
irreducible ordinary representation of the Lie algebra so(3) gives rise to a
representation of the universal cover SU(2) of SO(3), which in turn gives
rise (Theorem 16.47) to a projective representation of SO(3). Thus, the
possibilities for the space V are in one-to-one correspondence with the irre-
ducible representations of the Lie algebra so(3). In the case of “half-integer
spin,” the space V does not carry an ordinary representation of the group
SO(3).

17.2 The Angular Momentum Operators in R3

Recall from Sect. 2.4 that the classical angular momentum for a particle in
R3 is given by J = x × p, so that, say, J3 = x1p2 − x2p1. As in Sect. 3.10,
we introduce the quantum mechanical counterpart, a “vector” Ĵ with com-
ponents that are operators,

Ĵ = X×P.

Thus, for example, Ĵ1 = X2P3 −X3P2. Note that each component of the
angular momentum involves products of distinct components of the po-
sition and momentum operators X and P, which commute. Thus, in the
expression for, say, Ĵ3, it does not matter whether we write X2P3 or P3X2.
The angular momentum operators are unbounded operators and are de-

fined only on a dense subspace of L2(R3). For the moment, we will not
specify the domain of these operators, leaving that until the next section.
We will see, however, that the domain of each angular momentum operator
contains the Schwartz space S(R3) (Definition A.15).
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As in Exercise 10 in Chap. 3, we can use the canonical commutation
relations to obtain [Ĵ1, Ĵ2] = i�Ĵ3. We may similarly compute [Ĵ2, Ĵ3] and
[Ĵ1, Ĵ2] to obtain the complete set of commutation relations among the Ĵ ’s:

1

i�
[Ĵ1, Ĵ2] = Ĵ3;

1

i�
[Ĵ2, Ĵ3] = Ĵ1;

1

i�
[Ĵ3, Ĵ1] = Ĵ2.

These relations compare well with the Poisson bracket relations among the
various components of the classical angular momentum vector (Exercise 19
in Chap. 2).
Writing out Ĵ3 explicitly, we have

(Ĵ3ψ)(x) = −i�

(
x1

∂

∂x2
− x2

∂

∂x1

)
ψ(x) (17.1)

− i�
d

dθ
ψ(Rθx)

∣∣∣∣
θ=0

, (17.2)

where Rθ denotes a counterclockwise rotation by angle θ in the (x1, x2)
plane, with similar expression for Ĵ1 and Ĵ2. This description of the angu-
lar momentum operators demonstrates that they—like the components of
the classical angular momentum—are closely connected to rotations (recall
Propositions 2.18 and 2.30). The connection between angular momentum
and rotations will be made more explicit in the following sections by recog-
nizing that they make up the Lie algebra action associated with the natural
action of the rotation group on L2(R3).
We may define a new version of the angular momentum operators J̃j ,

given by

J̃j =
1

�
Ĵj . (17.3)

Since Planck’s constant and angular momentum have the same units, the
J̃j ’s do not depend on the choice of units; we refer to them as the dimen-
sionless versions of the angular momentum operators.

17.3 Angular Momentum from the Lie Algebra
Point of View

We begin this section by looking at the natural action of the rotation group
SO(3) on L2(R3).

Definition 17.1 For each R ∈ SO(3), define Π(R) : L2(R3) → L2(R3) by

(Π(R)ψ)(x) = ψ(R−1x). (17.4)

Proposition 17.2 For each R ∈ SO(3), the map Π(R) : L2(R3) → L2(R3)
is unitary. Furthermore, the map Π : SO(3) → U(L2(R3)) is a strongly
continuous homomorphism.
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Proof. Since the Lebesgue measure on R3 is invariant under rotations,
Π(R) is unitary for all R ∈ SO(3). It is easily checked that Π(R1R2) =
Π(R1)Π(R2); for this to be true, we need to have ψ(R−1x) rather than
ψ(Rx) in the definition of Π(R). Arguing as in the proof of Example 10.12,
we can easily verify that Π is strongly continuous.
Recall the computation of the Lie algebra so(3) of SO(3) in Sect. 16.5,

and the basis {F1, F2, F3} for so(3) in (16.2) in that section.

Proposition 17.3 For each X ∈ so(3), let π(X) denote the skew-self-
adjoint operator such that

Π(etX) = etπ(X). (17.5)

Then the domain of each π(Fj) contains the Schwartz space S(R3) and on
S(R3) we have the relation

Ĵj = i�π(Fj).

In the notation of Stone’s theorem (Theorem 10.15), the operator π(X)
in (17.5) is i times the infinitesimal generator of the one-parameter unitary
group t �→ Π(etX).
Proof. In the case of Ĵ3, we compute as in Example 16.16 that etF3 is a
counterclockwise rotation in the (x1, x2)-plane. If ψ belongs to S(R3) then
the limit defining the derivative in (17.2) is easily seen to hold in the L2

sense. Thus, recalling the inverse on the right-hand side of (17.4), we see
that Ĵ3 coincides with i�π(F3), as claimed. Similar calculations apply to
Ĵ1 and Ĵ2.
Although it is not easy to determine the precise domain of each angular

momentum operator, we can see from Proposition 16.54 that if ψ belongs
to a finite-dimensional subspace of L2(R3) that is invariant under rotations,
then ψ belongs to the domain of each Ĵj .

17.4 The Irreducible Representations of so(3)

In this section, we classify the irreducible finite-dimensional representations
of the Lie algebra so(3), up to isomorphism. (See Sect. 16.7 for the defini-
tions and elementary properties of representations.) All representations are
taken over the field of complex numbers and assumed to have dimension
at least one. We continue to use the basis {F1, F2, F3} for so(3) in (16.2).

Theorem 17.4 Let π : so(3) → gl(V ) be a finite-dimensional irreducible
representation of so(3). Define operators L+, L−, and L3 on V by

L+ = iπ(F1)− π(F2)

L− = iπ(F1) + π(F2)

L3 = iπ(F3).
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Let l = 1
2 (dim V − 1), so that dimV = 2l + 1. Then there exists a basis

v0, v1, . . . , v2l of V such that

L3vj = (l − j)vj

L−vj =

{
vj+1 if j < 2l
0 if j = 2l

(17.6)

L+vj =

{
j(2l+ 1− j)vj−1 if j > 0

0 if j = 0
.

Thus, the quantity l completely determines the structure of an irreducible
representation of so(3). Since dimV is a positive integer, l has to have one
of the following values:

l = 0,
1

2
, 1,

3

2
, . . . . (17.7)

The proof of Theorem 17.4 is given later in this section.

Definition 17.5 If (π, V ) is an irreducible finite-dimensional representa-
tion of so(3), then the spin of (π, V ) is the largest eigenvalue of the operator
L3 := iπ(F3). Equivalently, l is the unique number such that dimV = 2l+1.

Our next result says that all the values of l in (17.7) actually arise as
spins of irreducible representations of so(3).

Theorem 17.6 For any l = 0, 12 , 1,
3
2 , . . . there exists an irreducible repre-

sentation of so(3) of dimension 2l+1, and any two irreducible representa-
tions of so(3) of dimension 2l+ 1 are isomorphic.

Note that the theorem is only asserting the existence, for each l, of a
representation of the Lie algebra so(3). As we will see in the next section,
an irreducible representation π of so(3) comes from a representation Π of
SO(3) if and only if l is an integer. Nevertheless, the representations of
so(3) with half-integer values of l—the ones where l is half of an integer
but not an integer—still play an important role in quantum physics, as
discussed in Sect. 17.8. (Although it would be clearer to refer to the case
l = 1/2, 3/2, 5/2, . . . as “integer plus a half,” the terminology “half-integer”
is firmly established.)
By comparison to Proposition 17.3, we may think of L3 as the analog

of the third component of the dimensionless angular momentum operator
on the space V. Indeed, we will eventually be interested in applying Theo-
rem 17.4 to the case in which V is a subspace of L2(R3) that is invariant
under the action of SO(3). In that case, L3 will be precisely (the restriction
to V of) the dimensionless angular momentum operator J̃3.
Observe that Theorem 17.4 bears a strong similarity to our analysis of

the quantum harmonic oscillator. In both cases, we have a “chain” of eigen-
vectors for a certain operator, along with raising and lowering operators
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that raise and lower the eigenvalue of that operator. In the case of the
harmonic oscillator, we have a chain that begins with a ground state and
then extends infinitely in one direction. In the case of so(3) representations,
we have a chain that is finite in both directions. The chain begins with an
eigenvector v0 for L3 with maximal eigenvalue, so that v0 is annihilated
by the raising operator L+. A key step in the proof of Theorem 17.4 is to
determine how the chain can terminate (in the direction of lower eigenval-
ues for L3) without violating the commutation relations among L3, L

+,
and L−.
Proof of Theorem 17.4. Since π is a Lie algebra homomorphism, the
π(Fj)’s satisfy the same commutation relations as the Fj ’s themselves.
From this we can easily verify the following relations among the operators
L+, L−, and L3:

[L3, L
+] = L+ (17.8)

[L3, L
−] = −L− (17.9)

[L+, L−] = 2L3. (17.10)

Now, since we are working over the algebraically closed field C, the operator
L3 has at least one eigenvector v with eigenvalue λ. Consider, then, L+v.
Using (17.8), we compute that

L3L
+v = (L+L3 + L+)v = L+(λv) + L+v = (λ+ 1)L+v. (17.11)

Thus, either L+v = 0 or L+v is an eigenvector for L3 with eigenvalue
λ + 1. We call L+ the “raising operator,” since it has the effect of raising
the eigenvalue of L3 by 1.
If we apply L+ repeatedly to v, we obtain eigenvectors for L3 with eigen-

values increasing by 1 at each step, as long as we do not get the zero vector.
Eventually, though, we must get 0, since the operator L3 has only finitely
many eigenvalues. Thus, there exists k ≥ 0 such that (L+)kv 
= 0 but
(L+)k+1v = 0. By applying (17.11) repeatedly, we see that (L+)kv is an
eigenvector for L3 with eigenvalue λ+ k.
Let us now introduce the notation v0 := (L+)kv and μ = λ+ k. Then v0

is a nonzero vector with L+v0 = 0 and L3v0 = μv0. We now forget about
the original vector v and eigenvalue λ and consider only v0 and μ. Define
vectors vj by

vj = (L−)jv0, j = 0, 1, 2, . . . .

Arguing as in (17.11), but using (17.9) in place of (17.8), we see that L−

has the effect of either lowering the eigenvalue of L3 by 1 or of giving the
zero vector. Thus, L3vj = (μ− j)vj .
Next, we claim that for j ≥ 1 we have

L+vj = j(2μ+ 1− j)vj , j = 1, 2, 3, . . . , (17.12)
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which is easily proved by induction on j, using (17.10) (Exercise 2). Since,
again, L3 has only finitely many eigenvectors, vj must eventually be zero.
Thus, there exists some N ≥ 0 such that vN 
= 0 but vN+1 = 0. Since
vN+1 = 0, applying (17.12) with j = N gives

0 = L+vN+1 = (N + 1)(2μ−N)vN .

Since vN 
= 0 and N +1 > 0, we must have (2μ−N) = 0. This means that
μ must equal N/2.
Letting l = N/2 and putting μ = N/2 = l, we have the formulas recorded

in (17.6). Meanwhile, since the vj ’s are eigenvectors for L3 with distinct
eigenvalues, the vj ’s are automatically linearly independent. Furthermore,
the span of the vj ’s is invariant under L

+, L−, and L3, hence under all of
so(3). Since V is assumed to be irreducible, the span of the vj ’s must be
all of V . Thus, the vj ’s form a basis for V. The dimension of V is therefore
equal to the number of vj ’s, which is N + 1 = 2l + 1.
Proof of Theorem 17.6. We construct V simply by defining a space
V with basis v0, v1, . . . , v2l and defining the action of so(3) by (17.6). It
is a simple matter (Exercise 4) to check that L+, L−, and L3, defined in
this way, have the correct commutation relations, so that V is indeed a
representation of so(3).
It remains to show that V is irreducible. Suppose that W is an invariant

subspace of V and that W 
= {0}. We need to show that W = V. To
this end, suppose that w is some nonzero element of W, which we can
decompose as w =

∑2l
j=0 ajvj . Let j0 be the largest index for which aj is

nonzero. According to the formula for L+ in (17.6), applying L+ to any
of the vectors v1, . . . , v2l gives a nonzero multiple of the previous element
in our chain. Thus, (L+)j0w will be a nonzero multiple of v0. Since W
is invariant, this means that v0 belongs to W. But then by applying L−

repeatedly, we see that vj belongs to W for each j, so that W = V.
Theorem 17.4 tells us that any irreducible representation of so(3) of di-

mension 2l + 1 has a basis as in (17.6). We can then construct an isomor-
phism between any two irreducible representations by mapping this basis
in one space to the corresponding basis in the other space.
In the rest of this section, we look at some additional properties of rep-

resentations of so(3).

Proposition 17.7 Let π : so(3) → gl(V ) be an irreducible representation
of so(3). Then there exists an inner product on V, unique up to multiplica-
tion by a constant, such that π(X) is skew-self-adjoint for all X ∈ so(3).

Proof. Recalling how the operators L3, L
+, and L− are defined, we can

see that the assertion that each π(X), X ∈ so(3), is skew-self-adjoint is
equivalent to the assertion that L3 is self-adjoint and that L+ and L−

are adjoints of each other. Since the vj ’s are eigenvectors for L3 with dis-
tinct eigenvalues, if L3 is to be self-adjoint, the vj ’s must be orthogonal.
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Conversely, if we have any inner product for which the vj ’s are orthogonal,
then L3 will be self-adjoint, as is easily verified.
It remains to investigate the consequences of the condition (L+)∗ = L−.

Assuming this condition, we compute that

〈vj , vj〉 =
〈
L−vj−1, L

−vj−1

〉
=
〈
vj−1, L

+L−vj−1

〉
.

But L+L− = L−L+ + 2L3. Furthermore, L3vj−1 = (l − j + 1)vj−1 and
L+vj−1 = (j − 1)(2l− j + 2)vj−1 and, thus,

〈vj , vj〉 =
〈
vj−1, L

+L−vj−1

〉

= (j − 1)(2l− j + 2)
〈
vj−1, L

−vj−2

〉
+ 2(l− j + 1) 〈vj−1, vj−1〉 .

Recalling that L−vj−2 = vj−1 and simplifying gives

〈vj , vj〉 = j(2l − j + 1) 〈vj−1, vj−1〉 . (17.13)

It is easy to see that if the vj ’s are orthogonal, then L+ and L− are adjoints
of each other if and only if the normalization condition (17.13) holds for
j = 1, 2, . . . , 2l. Since j(2l − j + 1) is positive for each such j, there is no
obstruction to normalizing the vj ’s so that this condition holds, and so an
inner product with the desired property exists. Since the only freedom of
choice in defining the inner product is the normalization of v0, the inner
product is unique up to multiplication by a constant.

Proposition 17.8 Suppose (π, V ) is an irreducible representation of so(3)
of dimension 2l + 1. Define the Casimir operator Cπ ∈ End(V ) by the
formula

Cπ = π(F1)
2 + π(F2)

2 + π(F3)
2.

Then for all v ∈ V, we have

Cπv = −l(l+ 1)v.

Proof. See Exercise 3.
If we look at the proof of Theorem 17.4, we see that the only place in

which irreducibility was used is in showing that the span of v0, v1, . . . , v2l
is equal to V. We can therefore obtain the following result, which will be
used in Sect. 17.9.

Proposition 17.9 Let (π, V ) be any finite-dimensional representation of
so(3), not necessarily irreducible. Suppose v0 is a nonzero element of V such
that L+v0 = 0 and L3v0 = λv0 for some λ ∈ C. Then λ is equal to a non-
negative integer or half-integer l. Furthermore, the vectors v0, v1, . . . , v2l
defined by

vj = (L−)jv0, j = 0, 1, . . . , 2l,

span an irreducible invariant subspace of V of dimension 2l + 1, and L+,
L−, and L3 act on these vectors according to the formulas in Theorem 17.4.
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In general, given a finite-dimensional representation (π, V ) of a Lie
algebra and a nonzero vector v0 ∈ V, we say that v0 is a cyclic vec-
tor for V if the smallest invariant subspace of V containing v0 is all
of V. In Proposition 17.9, the vector v0 is certainly a cyclic vector for
W := span(v0, . . . , v2l). It should be noted, however, that a representation’s
having a cyclic vector does not, in general, mean that the representation
is irreducible (Exercise 5). Thus, the irreducibility of W is not the result
of some general result about cyclic vectors, but holds only because of the
assumed special properties of the vector v0.

17.5 The Irreducible Representations of SO(3)

Having classified the irreducible representations of the Lie algebra so(3),
we now turn to the classification of the representations of the group SO(3).
Since SO(3) is connected (Exercise 13 in Chap. 16), Proposition 16.39 tells
us that a representation of SO(3) is irreducible if and only if the associated
Lie algebra representation is irreducible, and that two representations of
SO(3) are isomorphic if and only if the associated Lie algebra represen-
tations are isomorphic. Thus, to classify the irreducible representations of
SO(3) up to isomorphism, we merely have to determine which irreducible
representations of the Lie algebra so(3) come from a representation of the
group SO(3).

Proposition 17.10 Let πl : so(3) → gl(V ) be an irreducible representation
of so(3), with spin l := 1

2 (dimV − 1). If l is an integer (i.e., if the dimension
of V is odd), then there exists a representation Πl : SO(3) → GL(V ) such
that Πl and πl are related as in Theorem 16.23. If l is a half-integer (i.e.,
if the dimension of V is even) then no such representation Πl exists.

It follows from this result and Proposition 16.39 that the irreducible
representations of the group SO(3) are precisely the Πl’s for which l is an
integer.
Proof. If l is a half-integer, then L3 is diagonal in the basis {vj}, with
eigenvalues being half-integers. Thus,

e2ππl(F3) = e2πiL3 = −I.

(Here the “π” in front of πl is the number π = 3.14 . . ..) On the other hand,
by a simple modification of Example 16.16, we can see that the matrix
F3 ∈ so(3) satisfies e2πF3 = I. Thus, if a corresponding representation Πl

of SO(3) existed, we would have

Πl(I) = Πl

(
e2πF3

)
= e2ππl(F3) = −I,

which is a contradiction.
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If l is an integer, we make use of the isomorphism φ between su(2)
and so(3) described in the proof of Example 16.32, which maps the ba-
sis {E1, E2, E3} of su(2) to the basis {F1, F2, F3} of so(3). We obtain a
representation π′

l of su(2) by setting π′
l(X) = πl(φ(X)). Since SU(2) is sim-

ply connected, Theorem 16.30 tell us that there is a representation Π′
l of

SU(2) related to π′
l in the usual way. We then compute that

Π′
l (−I) = Π′

l

(
e2πE1

)
= e2ππ

′
l(E1) = e2ππl(F1) = e2πiL3 = I,

since the eigenvalues of L3 are integers.
Now, by Example 16.34, there is a surjective homomorphism Φ from

SU(2) onto SO(3) for which the associated Lie algebra homomorphism is φ,
and kerΦ = {I,−I}. Since the kernel of Π′

l contains {I,−I}, the map Π′
l

factors through SO(3), giving a representation Πl of SO(3) such that Π′
l =

Πl◦Φ. By Exercise 10 in Chap. 16, the associated Lie algebra representation
σl of so(3) satisfies π

′
l = σl ◦ φ, so that σl = π′

l ◦ φ−1 = πl. Thus, Πl is the
desired representation of SO(3).

17.6 Realizing the Representations Inside L
2(S2)

In this section, we deviate from the traditional treatment in the physics lit-
erature by thinking of the “spherical harmonics” as restrictions to the unit
sphere of certain polynomials on R3, rather than describing the spherical
harmonics in angular coordinates on the sphere. Our approach avoids some
messy computations in polar coordinates and it also generalizes readily to
higher dimensions.
Recall from Sect. 17.3 that there is a natural unitary representation Π :

SO(3) → L2(R3) given by Π(R)ψ(x) = ψ(R−1x). In solving rotationally
invariant problems such as the quantum hydrogen atom, it will be useful
to understand the structure of finite-dimensional subspaces V of L2(R3)
such that V is invariant under Π and such that the restriction of Π to V is
irreducible.
If we write functions on R3 in polar coordinates, then SO(3) acts only on

the angle variables. Thus, it is useful to consider also the action of SO(3)
on L2(S2), given by the same formula as for L2(R3), namely

(Π(R)ψ)(x) = ψ(R−1x), x ∈ S2.

In computing the norm for L2(S2), we use the surface area measure on
S2, which is invariant under the action of SO(3). Once we have found
invariant subspaces inside L2(S2), it is a simple matter to produce invariant
subspaces inside L2(R3) as well, as we will see in the next section.
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We will be interested in this section in harmonic polynomials on R3, that
is, polynomials p satisfying ∆p = 0, where ∆ is the Laplacian. Since we
always consider representations over C, we allow these polynomials to have
complex coefficients.

Definition 17.11 Let l be a non-negative integer. Define a subspace Vl of
L2(S2) by setting Vl equal to the space of restrictions to S2 of harmonic
polynomials on R3 that are homogeneous of degree l. Then Vl is called the
space of spherical harmonics of degree l.

Note that if p is a homogeneous polynomial on R3 of some degree l, then
the restriction of p to S2 is identically zero only if p itself is identically zero.
After all, if p is homogeneous of degree l and zero on S2, then

p(x) = |x|l p
(

x

|x|

)
= 0

for all x 
= 0, and hence, by continuity, for all x ∈ R3. (By contrast, the
nonzero, nonhomogeneous polynomial p(x) := x2

1+x2
2+x2

3−1 is identically
zero on S2.) We are therefore free to shift back and forth between thinking
of the elements of Vl as functions on S2 or as functions on R3.
It is well known that the Laplacian ∆ commutes with rotations. It follows

that each Vl is invariant under the action of the rotation group. We will
eventually see that Vl is irreducible under this action.
Every homogeneous polynomial of degree 0 or 1 is harmonic. Thus, V0

consists of the constant functions on S2 and V1 is spanned by the restric-
tions to S2 of the functions x1, x2, and x3. Meanwhile, the space of homoge-
neous polynomials of degree 2 is 6-dimensional, and the space of harmonic
polynomials that are homogeneous of degree 2 is spanned by the following
five polynomials: x1x2, x2x3, x3x1, x

2
1 − x2

2, and x2
2 − x2

3. (The polynomial
x2
1 − x2

3 is also harmonic, but it is just the sum x2
1 − x2

2, and x2
2 − x2

3.)

Theorem 17.12 The spaces Vl have the following properties.

1. Each Vl has dimension 2l + 1.

2. Each Vl is invariant under the action of the rotation group and
irreducible under this action.

3. For l 
= m, the spaces Vl and Vm are orthogonal in L2(S2).

4. The Hilbert space L2(S2) decomposes as the orthogonal direct sum of
the Vl’s, as l ranges over the non-negative integers.

The remainder of this section will be devoted to the proof of
Theorem 17.12. We proceed in a series of lemmas, along with some corol-
laries of those lemmas.
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Lemma 17.13 Let P denote the space of polynomials on R3 with complex
coefficients. There exists an inner product 〈·, ·〉 on P with the property that

〈p,∆q〉P =
〈
x2p, q

〉
P ,

where
x2 = x2

1 + x2
2 + x2

3.

Proof. Although it is possible to give a combinatorial construction of the
desired inner product, we can also give an analytic construction. Every
polynomial p on R3 certainly has a holomorphic extension to C3, denoted
pC. We may define, then,

〈p, q〉P =

∫

C3

pC(z)qC(z)
e−|z|2/2

π3/2
d6z,

which is nothing but the inner product of pC and qC as elements of the
Segal–Bargmann space HL2(C3, μ1). According to Lemma 14.12, we have

∫

C3

pC(z)
∂qC
∂zj

(z)
e−|z|2/2

π3/2
d6z =

∫

C3

zjpC(z)qC(z)
e−|z|2/2

π3/2
d6z

for all p, q ∈ P and all j = 1, 2, 3. This relation means that

〈
p,

∂q

∂xj

〉

P
= 〈xjp, q〉P ,

from which we readily obtain the desired property of our inner product.
A standard bit of elementary combinatorics shows that the number of

ordered triples (l1, l2, l3) with l1 + l2 + l3 = l is equal to (l + 2)(l + 1)/2.
Since the monomials xl1

1 x
l2
2 x

l3
3 with l1 + l2 + l3 = l form a basis for Pl, we

have dimPl = (l + 2)(l+ 1)/2.

Corollary 17.14 If Pl denotes the space of polynomials on R3 that are
homogeneous of degree l, then the Laplacian ∆ maps Pl onto Pl−2 for all
l ≥ 2. Thus, for all l ≥ 2, we have

dimVl = dimPl − dimPl−2

=
(l + 2)(l+ 1)

2
− l(l− 1)

2
= 2l + 1.

Proof. Let us equip the finite-dimensional spaces Pl and Pl−2 with the
inner product from Lemma 17.13. It is easy to see that the statement,
“The orthogonal complement of the image is the kernel of the adjoint,”
applies to linear maps of one finite-dimensional inner product space to
another. Applying this to ∆ : Pl → Pl−2, we note that the adjoint of ∆ is
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multiplication by x2, which is clearly injective, since x2
1 + x2

2 + x2
3 is zero

only at the origin. Thus, the orthogonal complement of the image of ∆ is
{0}. Since the spaces are finite-dimensional, this means that ∆ maps Pl

onto Pl−2.

Corollary 17.15 Let l be a non-negative integer and let k = l/2 if l is
even and let k = (l− 1)/2 if l is odd. Then each p ∈ Pl can be decomposed
in the form

p(x) = p0(x) + |x|2 p1(x) + |x|4 p2(x) + · · ·+ |x|2k pk(x),

where each pj(x) is a harmonic polynomial that is homogeneous of degree
l − 2j. In particular, the restriction of p to S2 satisfies

p|S2 = (p0 + p1 + · · ·+ pk)|S2 ,

where p0 + p1 + · · ·+ pk is a (nonhomogeneous) harmonic polynomial.

Given any polynomial p, not necessarily homogeneous, we can apply
Corollary 17.15 to each homogeneous piece of p. We see, then, that given
any polynomial p, there exists a harmonic polynomial p̃ such that p and p̃
have the same restriction to S2.
Proof. We proceed by induction on l. If l = 0 or l = 1, then all p ∈ Pl

are harmonic and the desired decomposition is simply p = p0. Consider,
then, some l ≥ 2 and assume the result holds for all degrees less than l.
Lemma 17.13 tells us that Pl decomposes as an orthogonal direct sum of
the kernel of ∆ and the image of Pl−2 under multiplication by |x|2 . Thus,
any p ∈ Pl can be decomposed as p = p0 + |x|2 q0, where p0 is harmonic
and q0 belongs to Pl−2. By induction, q0 has a decomposition of the desired
form; substituting this in for q0 in the decomposition p = p0 + |x|2 q0 gives
the desired decomposition of p.
To show that Vl is irreducible under the action Π of SO(3), we pass to

the Lie algebra. Since, as we have remarked, restriction to the sphere is
injective on homogeneous polynomials, we may think of the elements of Vj

as polynomials on R3, in which case, the Lie algebra action π associated
with Π is given in terms of the usual angular momentum operators.

Lemma 17.16 As in Theorem 17.4, let L3 = iπ(F3) = J̃3 and let L+ =
iπ(F1)− π(F2) = J̃1 + iJ̃2. For any non-negative integer l, the polynomial
p(x1, x2, x3) := (x1 + ix2)

l belongs to Vl and satisfies

L3p = lp

and

L+p = 0.
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Proof. Since it is independent of x3 and holomorphic as a function of
z := x1 + ix2, the polynomial p is automatically harmonic, which can also
be verified by direct calculation. Meanwhile, applying L3 to p gives

− i

(
x1

∂

∂x2
− x2

∂

∂x1

)
(x1 + ix2)

l

= −i
[
x1l(x1 + ix2)

l−1(i)− x2l(x1 + ix2)
l−1

]

= l(x1 + ix2)
l.

Finally, applying L+ := iπ(F1)− π(F2) to p gives

− i

(
x2

∂

∂x3
− x3

∂

∂x2

)
p+

(
x3

∂

∂x1
− x1

∂

∂x3

)
p

= −i(−x3l(x1 + ix2)
l−1(i)) + x3l(x1 + ix2)

l−1(1)

= 0,

as claimed.

Corollary 17.17 The space Vl is irreducible under the action of SO(3).

Proof. By Proposition 17.9, if we apply L− repeatedly to the polynomial
p, we obtain a “chain” of eigenvectors of length 2l + 1. These eigenvectors
span an irreducible invariant subspace of dimension 2l + 1. Since we have
already established that dimVl = 2l + 1, the elements of the chain must
span Vl, which implies that Vl is irreducible.
We have now assembled all the pieces necessary for a proof of the main

result of this section.
Proof of Theorem 17.12. We have already proved Points 1 and 2 of the
theorem in Corollaries 17.14 and 17.17, respectively. Now, each Vl is an
irreducible representation of SO(3), and no two of the Vl’s can be isomor-
phic, because they all have different dimensions. Thus, by Exercise 19 in
Chap. 16, Vl and Vm must be orthogonal inside L2(S2) for l 
= m, which is
Point 3.
Finally, by the Stone–Weierstrass theorem and the density results of

Theorem A.10, the restrictions to S2 of polynomials on R3 form a dense
subspace of L2(S2). But Corollary 17.15 shows that the space of restric-
tions to S2 of polynomials coincides with the space of restrictions to S2

of harmonic polynomials. Thus, the span of the Vj ’s is dense in L2(S2),
establishing Point 4.

17.7 Realizing the Representations Inside L2(R3)

Recall that for homogeneous polynomials on R3, the restriction map from
R3 to S2 is injective. Thus, we may think of the space Vl equally well as
a space of functions on S2 (as in the previous section) or as a space of
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functions on R3. In this section, then, we will let Vl denote the space of
harmonic polynomials on R3 that are homogeneous of degree l.

Definition 17.18 Suppose l is a non-negative integer and f is a measur-
able function on (0,∞) such that

∫ ∞

0

|f(r)|2 r2l+2 dr < ∞. (17.14)

Let Vl,f ⊂ L2(R3) denote the space of functions ψ of the form

ψ(x) = p(x)f(|x|), (17.15)

where p ∈ Vl.

The condition on f(r) is precisely what one needs to make ψ(x) a square-
integrable function on R3 (compute the L2 norm in spherical coordinates).
Definition 17.18 is not the one that physicists typically use. In the physics

literature, one sees a functions of the form

ψ(x) = Ylm(θ, φ)g(r), (17.16)

where r, θ, and φ are the usual spherical coordinates. Here Ylm is the re-
striction to the sphere of a particular harmonic polynomial that is homoge-
neous of degree l, written in spherical coordinates. (Up to a normalization
factor, the Ylm’s are obtained by using the basis for Vl in Theorem 17.4.)
Thus, if we move along a ray from the origin in R3, only the value of g(r)
changes. By contrast, in (17.15), as we move along a ray, the p(x) factor
contributes a factor of rl.We can write the physics expression in rectangular
coordinates as

ψ(x) = Ylm

(
x

|x|

)
g(|x|)

= Ylm(x)
g(|x|)
|x|l

. (17.17)

For computational purposes, the expression (17.15) is more convenient
than (17.17); in fact, in the analysis of the hydrogen atom, physicists mul-
tiply by rl at some later point in the calculation, just so that the relevant
differential equation will take on a simpler form.

Proposition 17.19 Every space of the form Vl,f ⊂ L2(R3) is invari-
ant and irreducible under the action of SO(3). Conversely, every finite-
dimensional, irreducible, SO(3)-invariant subspace of L2(R3) is of the form
Vl,f for some non-negative integer l and some f satisfying (17.14).
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Proof. Since the factor f(|x|) is invariant under rotations, the action of
SO(3) only affects the function p. Thus, Vl,f is isomorphic, as a represen-
tation of SO(3), to the space Vl, which is irreducible by Theorem 17.12.
For the other direction, the Lebesgue measure on R3 decomposes as a

product of the surface area measure on S2 with the measure 4πr2 dr on
(0,∞). Thus, by a standard measure-theoretic result (Proposition 19.12),
L2(R3) decomposes canonically as the Hilbert tensor product of L2(S2)
and L2((0,∞)), where a vector of the form f ⊗g in the tensor product cor-
responds to the function f(θ, φ)g(r) in L2(R3), as in (17.16). Since L2(S2)
decomposes (Theorem 17.12) as the sum of the spaces Vl, l = 0, 1, 2, . . . ,
we can decompose L2(R3) as sum of spaces of the form

Vl,k := Vl ⊗ gk,

where the gk’s form an orthonormal basis for L2((0,∞)).
Now, let V be any finite-dimensional, irreducible, SO(3)-invariant

subspace of L2(R3). Let πl,k : L2(R3) → Vl,k be the orthogonal projec-
tion operator, and let ρl,k be the restriction of πl,k to V. This map is easily
seen to be an intertwining map for the action of SO(3). Thus, since both V
and Vl,k are irreducible, Schur’s lemma tells us that each ρl,k is either zero
or an isomorphism. Furthermore, since the spaces Vl,k are nonisomorphic
for different values of l, we cannot have both ρk,l and ρk′,l′ being nonzero
for l 
= l′. On the other hand, ρk,l cannot be zero for all k and l, since the
Vk,l’s span L2(R3). Thus, there must be some value l0 of l such that ρl0,k0

is nonzero for some k0 but such that ρl,k = 0 for all l 
= l0.
Applying Schur’s lemma again, we see that ρl0,k(ρl0,k0

)−1 must be of the
form ckI for each k. Given any ψ ∈ V, let v be the unique element of V
such that ρl0,k0

(ψ) = v ⊗ gk0
. Then we have

ρl0,k(ψ) = ck(v ⊗ gk)

for every k. Since also ρl,k(ψ) = 0 for l 
= l0, we conclude that ψ must be
of the form v ⊗ g, where

g =
∑

k

ckgk.

Since this holds for each ψ ∈ V (with the same set of constants ck), we see
that V = Vl0 ⊗ g, which is nothing but the form in (17.16). Then V is of
the form claimed in the proposition, where f(r) = g(r)/rl0 .
It can further be shown that each closed, SO(3)-invariant subspace of

L2(R3) decomposes as an orthogonal direct sum of finite-dimensional, ir-
reducible, SO(3)-invariant subspaces. This result is just a special case of a
general result for strongly continuous unitary representations of compact
topological groups. (See, e.g., Chap. 5 of [10].) Since we already know that
L2(R3) is a direct sum of finite-dimensional, irreducible invariant subspaces,
it is probably possible to give an elementary proof of this result, but we
will not pursue that approach here.
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17.8 Spin

We classified irreducible finite-dimensional representations of the Lie
algebra so(3) by their “spin” l, where l is the largest eigenvalue for the
operator L3 = iπ(F3). The possible values for l are non-negative integers
(0, 1, 2, . . .) and the positive half-integers (1/2, 3/2, . . .). Inside L2(S2) and
L2(R3), however, we found only irreducible representations of so(3) with
integer spin. It is easy to understand why the half-integer spin represen-
tations do not occur: They do not correspond to any representation of the
group SO(3). Since L2(S2) and L2(R3) both carry a natural unitary action
Π of the group SO(3), any finite-dimensional subspace that is invariant un-
der the associated Lie algebra representation π will also be invariant under
Π and thus constitute a representation of SO(3).
Although the half-integer representations πl of the Lie algebra so(3) can-

not be exponentiated to representations of SO(3), they can be exponenti-
ated to representations of the universal cover SU(2) of SO(3), as in the proof
of Proposition 17.10. For a half-integer l, the associated representation Π′

l of
SU(2) satisfies Π′

l(−I) = −I, which means that Π′
l does not factor through

SO(3) ∼= SU(2)/{I,−I}. If, however, we think about projective representa-
tions, we see that [−I] is the identity element in PU(V ). Thus, even when l
is a half-integer, we get a well-defined projective representation Πl of SO(3)
that satisfies

Πl(e
tX) = [etπl(X)]

for all X ∈ so(3), where [U ] denotes the image of U ∈ U(V ) in PU(V ).
It is generally believed that the physics of the universe is invariant under

the rotation group SO(3). This does not mean that one never considers
models without rotational symmetry, because the local environment of,
say, a hydrogen atom in a magnetic field breaks the rotational symmetry of
the hydrogen atom. Nevertheless, if we were to rotation both the hydrogen
atom and the magnetic field, the physics of the problem would not change.
In quantum mechanics, rotational symmetry means that there should be
a projective unitary representation of SO(3) on the Hilbert space of the
universe that commutes with the Hamiltonian operator. Now, the Hilbert
space of the universe (if there is such a thing) is built up out of Hilbert
spaces for each type of particle. Thus, we expect that the Hilbert space
for a single particle will also carry a projective unitary representation of
SO(3).
The simplest possibility for the Hilbert space of a single particle is the

Hilbert space L2(R3), which certainly carries an (ordinary) unitary action
of SO(3), as we have been discussing in this chapter. Based on various ex-
perimental observations, however, physicists have proposed a modification
to the Hilbert space for an individual particle that incorporates “inter-
nal degrees of freedom.” The proposal is that for each type of particle,
the quantum Hilbert space should be of the form L2(R3)⊗̂V, where V
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is a finite-dimensional Hilbert space that carries an irreducible projective
unitary representation of SO(3). Here ⊗̂ is the Hilbert tensor product (Ap-
pendix A.4.5). The (projective) action of SO(3) on V describes the action
of the rotation group on the internal degrees of freedom of the particle.
Now, according to Proposition 16.46, the space V carries a (trace-zero)

ordinary representation π of the Lie algebra so(3). In customary physics
terminology, the largest eigenvalue l of the operator L3 := iπ(F3) in V is
then called the spin of the particle. We then denote the space V by Vl to
indicate the value of the spin. Electrons, for example, are “spin 1/2” par-
ticles, meaning that the Hilbert space for a single electron is L2(R3)⊗̂V1/2,
where V1/2 is a two-dimensional projective representation of SO(3).
It is easy to see that the tensor product of two projective unitary repre-

sentations of a given group is again a projective unitary representation of
that group. (By contrast, the direct sum of two projective unitary repre-
sentations is in general not again a projective unitary representation.) In
the case at hand, we can think of L2(R3) as carrying a unitary representa-
tion Π of SU(2) that factors through SO(3), that is, for which Π(−I) = I.
Meanwhile, we can think of Vl as a carrying a unitary representation Πl

of SU(2) in which Πl(−I) = ±I, with the plus sign if l is an integer and
the minus sign if l is a half-integer. Thus, L2(R3)⊗̂Vl carries a unitary rep-
resentation Π ⊗ Πl of SU(2) in which (Π ⊗ Πl)(−I) = ±I. Thus, in the
projective sense, Π⊗Πl factors through SO(3).

Summary 17.20 (Spin) Each type of particle has a “spin” l, which is a
non-negative integer or half-integer. The Hilbert space for such a particle
is L2(R3)⊗̂Vl, where Vl is an irreducible projective representation of SO(3)
of dimension 2l + 1.

Since Vl is finite dimensional, the Hilbert tensor product L2(R3)⊗̂Vl co-
incides with the algebraic tensor product of L2(R3) with Vl.

Definition 17.21 A particle for which the spin is an integer is called a bo-

son, and a particle for which the spin is a half-integer is called a fermion.

To see the significance of the distinction between integer and half-integer
spin, one needs to look at the structure of the Hilbert space describing
multiple particles of a given type, such as the Hilbert space for five electrons.
This topic is discussed in Chap. 19.

17.9 Tensor Products of Representations:
“Addition of Angular Momentum”

Let Vl and Vm be irreducible representations of so(3) with dimensions 2l+1
and 2m + 1, respectively. As discussed in Sect. 16.8, the tensor product
space Vl ⊗ Vm can be viewed as another representation of so(3). Unless
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one of l and m is zero, Vl ⊗ Vm is not irreducible. It is of interest, then,
to decompose Vl ⊗ Vm as a direct sum of irreducible invariant subspaces.
This decomposition—in the case that Vl is an irreducible SO(3)-invariant
subspace of L2(R3) and Vm is the space of internal degrees of freedom of a
particle—will help us in decomposing the Hilbert space for a particle with
spin into irreducible, SO(3)-invariant subspaces.

Proposition 17.22 Let V1/2 be an irreducible representation of so(3) of
dimension 2, and let Vl be an irreducible representation of so(3) of dimen-
sion 2l + 1, where l is a non-negative integer or half-integer. If l = 0,
Vl ⊗ V1/2 is irreducible. If l > 0, then we have

Vl ⊗ V1/2
∼= Vl+1/2 ⊕ Vl−1/2,

where “∼=” denotes an isomorphism of representations.

Proof. If l = 0, then it is easy to see that Vl ⊗ V1/2 is isomorphic to V1/2,
which is irreducible. Assume, then, that l > 0.
Let L+, L−, and L3 be the operators in Theorem 17.4, constructed using

the representation πl, and let σ+, σ−, and σ3 be the analogous operators
constructed using the representation π1/2. As in Sect. 16.8, we define oper-
ators J+, J−, and J3 on Vl ⊗ V1/2 by

J+ = L+ ⊗ I + I ⊗ σ+

J− = L− ⊗ I + I ⊗ σ− (17.18)

J3 = L3 ⊗ I + I ⊗ σ3.

Let {v0, . . . , v2l} be a basis for Vl as in Theorem 17.4, and let {e0, e1} be
a similar basis for V1/2. Then the vectors of the form vj ⊗ ek form a basis
for Vl ⊗ V1/2. The eigenvalues of J3 are the numbers of the form

(l − j) +

(
1

2
− k

)
,

j = 0, 1, . . . , 2l, k = 0, 1. Thus, the eigenvalues of J3 range from l+ 1/2 to
−(l+ 1/2). The numbers l+ 1/2 and −(l+ 1/2) occur as eigenvalues only
once. All other eigenvalues λ occur twice, once as (λ− 1/2)+1/2 and once
as (λ+ 1/2)− 1/2.
The vector v0 ⊗ e0 is an eigenvector for J3 with the largest possible

eigenvalue l+1/2, so that J+(v0 ⊗ e0) = 0. According to Proposition 17.9,
if we apply J− repeatedly, we will obtain a “chain” of eigenvectors of length
2l+2, and the span of these vectors forms an irreducible invariant subspace
W0 isomorphic to Vl+1/2.
Now, by Proposition 17.7, there exist inner products on Vl and V1/2

that make πl and π1/2 “unitary,” meaning that π(X)∗ = −π(X) for all
X ∈ so(3). If we use on Vl ⊗ V1/2 the natural inner product, obtained from
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the inner products on Vl and V1/2 as in Appendix A.4.5, then πl ⊗ π1/2 is
also unitary. Thus, the orthogonal complement of the invariant subspace
W0 is also invariant. Since all eigenvalues for J3 except the largest and
smallest have multiplicity 2, we see that the largest eigenvalue for J3 in
W⊥

0 is l − 1/2. Let w0 ∈ W⊥
0 be an eigenvector for J3 with eigenvalue

l− 1/2. If we repeatedly apply the lowering operator J− : L− ⊗ I + I ⊗ σ−

to w0, we will obtain a chain of eigenvectors of length 2l. These eigenvectors
span an irreducible invariant subspaceW1 of Vl⊗V1/2 of dimension 2l. Since

dimW0 + dimW1 = 4l+ 2 = dim(Vl ⊗ V1/2),

we must have W1 = W⊥
0 , completing the proof.

Since an electron is a “spin 1/2” particle, the Hilbert space for a single
electron is, according to Sect. 17.8, L2(R3)⊗̂V1/2, where V1/2 is an irre-
ducible projective unitary representation of SO(3) of dimension 2. Mean-
while, in Sect. 17.7, we saw how to find irreducible, SO(3)-invariant sub-
spaces Vl,f of L2(R3) of dimension 2l + 1, for l = 0, 1, 2, . . . , where f is
an arbitrary radial function. By applying Proposition 17.22 to the case
Vl = Vl,f , we obtain irreducible SO(3)-invariant subspaces of the Hilbert
space L2(R3)⊗̂V1/2. Finding such subspaces is essential in, for example,
analyzing the fine structure of the hydrogen atom.
In the case that Vl is an SO(3)-invariant subspace of L2(R3), the for-

mula for, say, the operator J3 in (17.18) 17.22 is written in the physics
literature as

J3 = L3 + σ3, (17.19)

where it is understood that L3 acts on the first factor in the tensor prod-
uct and σ3 acts on the second factor. (That is to say, the tensor product
with the identity operator is understood and thus not written.) Here L3 is
the ordinary angular momentum operator and σ3 describes the action of
the basis element F3 ∈ so(3) on the space V1/2. Formulas such as (17.19)
account for the physics terminology “addition of angular momentum” to
describe the analysis of tensor products of representations of so(3). In this
context, the operator L3 (= L3⊗ I) is called an orbital angular momentum
operator, and the operator σ3 (= I⊗σ3) is called a spin angular momentum
operator, and similarly for L± and σ±.
We now record the general result for tensor products of irreducible rep-

resentations of so(3).

Proposition 17.23 For any j = 0, 1/2, 1, . . . , let Vj denote the unique
irreducible representation of so(3) of dimension 2j+1. Then for any l and
m with l ≥ m, we have

Vl ⊗ Vm
∼= Vl+m ⊕ Vl+m−1 ⊕ · · · ⊕ Vl−m+1 ⊕ Vl−m. (17.20)

The proof of this result is similar to that of Proposition 17.22, and is
omitted; see Theorem D.1 in Appendix D of [21]. An important property
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of this decomposition is that each irreducible representation that occurs
on the right-hand side of (17.20) occurs only once. This property of the
representations of so(3) is the key idea in the proof of the Wigner–Eckart
theorem. See Appendix D of [21] for details.

17.10 Vectors and Vector Operators

Definition 17.24 A function c : R3×R3 → R3 is said to transform like

a vector if
c(Rx, Rp) = R(c(x,p)) (17.21)

for all R ∈ SO(3).

In the physics literature, the expression “is a vector” is sometimes used
in place of “transforms like a vector.”
Note that in Definition 17.24, we only consider the transformation prop-

erty of c under elements of SO(3) rather than under a general element of
O(3). If c transforms like a vector, one says that c is an “true vector” if c
satisfies (17.21) for all R in O(3) [not just in SO(3)] and one says that c is a
“pseudovector” if c satisfies c(Rx, Rp) = −R(c(x,p)) for R ∈ O(3)\SO(3).
For our purposes, it is not necessary to distinguish between true vectors
and pseudovectors.
The position function c1(x,p) := x, the momentum function c2(x,p) :=

p, and the angular momentum function c3(x,p) := x×p are simple exam-
ples of functions that transform like vectors. (Transformation under rota-
tions is one of the standard properties of the cross product.) A typical ex-
ample of a function transforming like a vector is c(x,p) = (x·p) |x| (x× p).

Proposition 17.25 Let j(x,p) = x × p denote the angular momentum
function on R3 × R3. Suppose a smooth function c : R3 × R3 → R3 trans-
forms like a vector. Then we have

{ck, jk} = 0 (17.22)

for k = 1, 2, 3. Furthermore, we have

{c1, j2} = {j1, c2} = c3 (17.23)

and other relations obtained from (17.23) by cyclically permuting the
indices.

Proof. Let R(θ) denote a counterclockwise rotation by angle θ in the
(x1, x2)-plane. Applying (17.21) with R = R(θ) and looking only at the
first component of the vectors, we have

c1(R(θ)x, R(θ)p) = c1(x,p) cos θ − c2(x,p) sin θ. (17.24)
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Now, as in the proof of Proposition 2.30, the Poisson bracket {c1, j3} is
precisely the derivative of the left-hand side of (17.24) with respect to θ,
evaluated at θ = 0. Thus,

{c1, j3} = −c2

and so {j3, c1} = c2, which is one of the relations obtained from (17.23) by
cyclically permuting the indices.
Meanwhile, if we again apply (17.21) with R = R(θ) but look now at the

third component of the vectors, we have that

c3(R(θ)x, R(θ)p) = c3(x,p).

Differentiating this relation with respect to θ at θ = 0 gives {c3, j3} = 0.
All other brackets are computed similarly.
We now turn to the quantum counterpart of a function that transforms

like a vector.

Definition 17.26 For any ordered triple C := (C1, C2, C3) of operators
on L2(R3) and any vector v ∈ R3, let v ·C be the operator

v ·C =

3∑

j=1

vjCj . (17.25)

Then an ordered triple C of operators on L2(R3) is called a vector oper-

ator if
(Rv) ·C = Π(R)(v ·C)Π(R)−1 (17.26)

for all R ∈ SO(3).

Here Π(·) is the natural unitary action of SO(3) on L2(R3) in Defini-
tion 17.1. Let us try to understand what this definition is saying in the
case of, say, the angular momentum, which is (as we shall see) a vector op-
erator. The operators Ĵ1, Ĵ2, and Ĵ3 represent the components of Ĵ in the
directions of e1, e2, and e3, respectively. More generally, we can consider
the component of Ĵ in the direction of any unit vector v, which will be
nothing but v · Ĵ, as defined in (17.25). Since there is no preferred direction
in space, we expect that for any two unit vectors v1 and v2, the operators
v1 · Ĵ and v2 · Ĵ should be “the same operator, up to rotation.” Specifically,
if R is some rotation with Rv1 = v2, then v1 · Ĵ and v2 · Ĵ should differ
only by the action of R on the Hilbert space L2(R3). But this is precisely
what (17.26) says, with v = v1 and C = Ĵ:

v2 · Ĵ = Π(R)(v1 · Ĵ)Π(R)−1

We will not concern ourselves with the question of whether (17.26)
continues to hold for R ∈ O(3)\SO(3). The position and momentum opera-
tors X and P are easily seen to be vector operators. As in the classical case,
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the cross product of two vector operators is again a vector operator. (See
Exercise 7 in Chap. 18.) In particular, the angular momentum, Ĵ = X×P
is a vector operator.
If the operators C1, C2, and C3 are unbounded, we should say something

in Definition 17.26 about the domains of the operators in question. The sim-
plest approach is to find some dense subspace V of L2(R3) that is contained
in the domain of each Cj and such that V is invariant under rotations. In
that case, the equality in (17.26) is understood to hold when applied to a
vector in V. In many cases, we can take V to be the Schwartz space S(R3).
In the following proposition, the space V should satisfy certain technical
domain conditions that permit differentiation of (17.29) when applied to a
vector ψ in V. We will not pursue the details of such conditions here.

Proposition 17.27 If C is a vector operator, then the components of C
satisfy

1

i�
[Cj , Ĵj] = 0 (17.27)

for j = 1, 2, 3. Furthermore, we have

1

i�
[C1, Ĵ2] =

1

i�
[Ĵ1, C2] = C3, (17.28)

and other relations obtained from (17.28) by cyclically permuting the
indices.

Proof. As in the proof of Proposition 17.25, R(θ) denote a rotation in the
(x1, x2)-plane, and let e1 = (1, 0, 0). Applying (17.26) with R = R(θ) and
v = e1, we have

Π(R(θ))C1Π(R(θ))−1 = C1 cos θ + C2 sin θ. (17.29)

But R(θ) = eθF3, where {Fj} is the basis for so(3) described in Sect. 16.5.
Thus, differentiating (17.29) with respect to θ at θ = 0 gives

π(F3)C1 − C1π(F3) = C2.

Since Ĵ3 = i�π(F3) (Proposition 17.3), we obtain (1/(i�))[Ĵ3, C1] = C2,
which is one of the relations obtained from (17.28) by cyclically permuting
the variables.
Meanwhile, applying (17.26) with R = R(θ) and v = e3 gives

Π(R(θ))C3Π(R(θ))−1 = C3.

Differentiating this relation with respect to θ at θ = 0 gives [π(F3), C3] = 0.
All other relations are obtained similarly.
For more information about vector operators, including the Wigner–

Eckart theorem, see Appendix D of [21]. See also Exercise 7.
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17.11 Exercises

1. Verify the expression (17.2) for the vector field x1∂/∂x2 − x2∂/∂x1.

2. Verify the relation (17.12) in the proof of Theorem 17.4, using induc-
tion on j and the commutation relation (17.10).

3. This exercise provides a proof of Proposition 17.8. Let (π, Vl) denote
an irreducible representation of so(3) of dimension 2l + 1 and let Cπ

denote the Casimir operator as defined in the proposition.

(a) Show that [π(Fj), Cπ ] = 0 for all j = 1, 2, 3.

(b) Using Schur’s lemma, show that there is some λ ∈ C such that
Cπv = λv for all v ∈ V.

(c) Show that
Cπ = −

(
L2
3 + L−L+ + L3

)
,

where L+, L−, and L3 are as in Theorem 17.4.

(d) By computing Cπ on some suitably chosen vector in V, show
that the constant λ in Part (b) has the value −l(l+ 1).

4. Let l be any non-negative integer or half-integer. Construct a vec-
tor space V by decreeing that vectors {v0, v1, . . . , v2l} form a basis
for V. Define operators L+, L−, and L3 on V by the expressions
in (17.6). Show that these operators satisfy the commutation rela-
tions (17.8), (17.9), and (17.10).

Hint : In the case of L−, treat the vector v2l separately from the other
basis vectors. In the case of the L+, treat the vector v0 separately
from the other basis vectors.

5. Let (π, V ) be an irreducible representation of so(3) of dimension 2,
with basis {v0, v1} as in (17.6). Consider V ⊕ V as a representation
of so(3) as in Sect. 16.8. Let v = (v0, v1). Show that the smallest
invariant subspace of V ⊕ V containing v is V ⊕ V.

Note: This shows that V ⊕V has a cyclic vector, even though V ⊕V
is not irreducible.

6. Compute explicit bases for the two irreducible invariant subspaces
W0

∼= V3/2 and W⊥
0

∼= V1/2 of V1 ⊗ V1/2. Each basis element for W0

or W⊥
0 should be expressed as a linear combination of the elements

vj ⊗ ek in the proof of Proposition 17.22.

7. Let Vl, Vm, and Vn be irreducible representation of so(3) of dimension
2l + 1, 2m+ 1, and 2n+ 1, respectively. Suppose that Φ and Ψ are
nonzero intertwining maps of Vl into Vm ⊗Vn. Show that Φ = cΨ for
some c ∈ C.
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Hint : Use Proposition 17.23 and Schur’s lemma.

Note: This result is closely related to the Wigner–Eckart theorem for
“irreducible tensor operators.”



18
Radial Potentials and the Hydrogen
Atom

18.1 Radial Potentials

If V is any radial function on R3, let Ĥ = −(�2/(2m))∆ + V be the
corresponding Hamiltonian operator, acting on L2(R3). We will look for
solutions to the time-independent Schrödinger equation Ĥψ = Eψ of the
form ψ(x) = p(x)f(|x|), where f is a smooth function on (0,∞) and p is a
harmonic polynomial on R3 that is homogeneous of degree l.

Proposition 18.1 Let p be a harmonic polynomial on R3 that is homoge-
neous of degree l and let f be a smooth function on (0,∞). Let ψ be the
function on R3\{0} given by

ψ(x) = p(x)f(|x|). (18.1)

Then on R3\{0} we have

∆ψ(x) = p(x)

[
d2f

dr2
+

2(l + 1)

r

df

dr

]
.

Proof. We begin with the case l = 0, so that p is a constant—which we
take to be 1—and ψ is just the radial function f(|x|). Then

∂

∂xj
f(|x|) = df

dr

d

dxj

√
x2
1 + x2

2 + x2
3

=
df

dr

xj

|x|
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and so

3∑

j=1

∂2

∂x2
j

f(|x|) =
3∑

j=1

[
d2f

dr2
x2
j

|x|2
+

df

dr

(
1

|x| −
x2
j

|x|3

)]

=
d2f

dr2
+

2

r

df

dr
.

For the general case, the product rule for the Laplacian gives

∆ψ = (∆p)f(|x|) + 2∇p · ∇f(|x|) + p∆f(|x|).

Now, ∆p = 0 by assumption. Furthermore, since f(|x|) is radial, its gra-
dient points in the radial direction. Thus, only the radial component of
∇p is relevant. Moreover, on each ray through the origin, p behaves like a
constant times rl. Thus, the r-derivative of p is (l/r)p, giving

∆ψ =
2l

r
p
df

dr
+ p

d2f

dr2
+

2

r
p
df

dr
,

which simplifies to the desired expression.
Although the decomposition of functions in Definition 17.18 is for many

purposes the most convenient one, it is not quite the customary way of turn-
ing spherical harmonics into functions on R3. Conventionally, one works in
polar coordinates and considers functions of the form

ψ(r, θ, φ) = p(θ, φ)g(r),

where p is the restriction to S2 of an element of Vl. We can express this
decomposition in rectangular coordinates as

ψ(x) = p

(
x

|x|

)
g(|x|) = p(x)

|x|l
g(|x|).

We can then obtain a more customary form of Proposition 18.1 as follows.

Proposition 18.2 Suppose p ∈ Vl and f is a smooth function on (0,∞),
and let ψ by the function on R3\{0} given by

ψ(x) = p

(
x

|x|

)
g(|x|).

Then

(∆ψ)(rx) = p(x)

[
d2g

dr2
+

2

r

dg

dr
− l(l + 1)

r2
g(r)

]
(18.2)

for all x ∈ S2 and r ∈ (0,∞).
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Proof. Since p is homogeneous of degree l,

p

(
x

|x|

)
=

p(x)

|x|l
.

Thus,

ψ(x) = p(x)

(
f(|x|)
|x|l

)
.

Applying Proposition 18.1 gives

∆ψ(x) = p(x)

[
d2

dr2
+

2(l + 1)

r

d

dr

](
f(r)

rl

)
.

From here it is straightforward but unilluminating calculation to verify the
formula in the proposition.
Still another way to write functions on R3 is in the form

ψ(x) =
1

|x|p
(

x

|x|

)
h(|x|), (18.3)

so that h(r) = rg(r). If we replace g(r) by h(r)/r in (18.2), we obtain, after
a short calculation,

(∆ψ)(rx) =
1

|x|p(x)
[
d2h

dr2
− l(l + 1)

r2
h(r)

]
, x ∈ S2. (18.4)

Writing wave functions in the form (18.3) is convenient because we then
have, for any radial potential,

− �2

2m
∆ψ + V (|x|)ψ =

1

|x|p(x)
[
− �2

2m

d2h

dr2
+ Veff(r)h(r)

]
, (18.5)

where Veff is the effective potential given by

Veff(r) = V (r) +
�2l(l + 1)

2mr2
. (18.6)

Note that the quantity in square brackets in (18.5) is just an ordinary one-
dimensional Schrödinger operator, since the first derivative term in (18.2)
has been eliminated. Despite the naturalness of the form (18.3), it is the
form (18.1) that is ultimately most convenient for finding the bound states
of the hydrogen atom Hamiltonian.
Now, as the discussion following Proposition 9.34 illustrates, even if ψ

is square-integrable over R3\{0} and ∆ψ is square-integrable over R3\{0},
ψ may not be in the domain of the Laplacian, since the distributional
Laplacian of ψ may contain a term that is supported at the origin. In
the case of the hydrogen atom, however, we will consider functions ψ of
the form (18.1) where f and df/dr are bounded near the origin and have
exponential decay near infinity. Proposition 9.35 then tells us that ψ is in
the domain of ∆.
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18.2 The Hydrogen Atom: Preliminaries

A hydrogen atom is formed out of a single electron that is “bound” to a
proton by means of the electromagnetic attraction between the oppositely
charged particles. The study of the hydrogen atom is a very important test
case in quantum mechanics, and the ability of the Schrödinger equation to
explain the observed energy levels of hydrogen was a crucial early success
of the theory.
A proton is approximately 1,800 times as massive as an electron. Thus,

to first approximation, we may think of the location of the proton as being
fixed, with the electron “orbiting” around this location. A more careful
analysis considers both the proton and the electron as orbiting around
their center of mass. The Hamiltonian for the relative position of the two
particles is precisely that of a particle orbiting around a fixed center, except
that the mass of the electron is replaced by the reduced mass μ of the
electron–proton system. (See Exercise 1.) Here, as in Proposition 2.16 in
the classical case,

μ =
memp

me +mp
,

where me and mp are the masses of the proton and electron, respectively.
Since mp ≫ me, the reduced mass is nearly the same as the mass of the
electron.
After separating out the motion of the center of mass, we are left with

the following Hamiltonian for the relative position of the electron:

Ĥ = − �2

2μ
∆− Q2

|x| , (18.7)

where Q is the charge of the electron. (We use a system of units, such
as “electrostatic” or “Gaussian” units, in which the Coulomb constant is
equal to 1.) It follows from Theorem 9.38 that Ĥ is self-adjoint on Dom(∆)
and that Ĥ is bounded below.
Note that the classical Hamiltonian H(x,p) for a hydrogen atom is not

bounded below. After all, we can simply take p = 0 and take x very
close to the origin. This unboundedness would cause strange behavior for
a hypothetical classical hydrogen atom. After all, modeling a hydrogen
atom using the 1/r potential is only an approximation. We are using an
electrostatic formula for the force, the correct one when the positions of the
particles are held fixed, in a dynamical situation. A more realistic model
of hydrogen takes into account radiation, that is, the interaction of the
charged electron with the electromagnetic fields. Classically, a negatively
charge particle orbiting a positively charged nucleus would radiate, thus
giving up energy to the electromagnetic fields. The classical particle would
spiral rapidly toward the origin, with the particle’s energy going to −∞ and
the energy of the electromagnetic field going to +∞. Thus, if hydrogen were
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made up of classical charged particles, the electron would go into a “death
spiral” and emit a giant burst of electromagnetic radiation.
Fortunately for us, this is not how real particles behave! In actuality, the

electron is a quantum particle. A quantum electron “orbiting” a proton can
still give up energy to the electromagnetic field. The Hamiltonian for the
quantum hydrogen atom, however, is bounded below, as a consequence of
Theorem 9.38. Thus, the electron can only drop to its ground state (the
state of lowest energy), at which point it becomes stable.

18.3 The Bound States of the Hydrogen Atom

Our goal in this section is to find the eigenvectors for the Hamiltonian Ĥ
in (18.7) with negative eigenvalues. Such eigenvectors constitute “bound
states,” that is, states in which the electron is bound to the proton. For
each negative number E, we look at the eigenspace VE for Ĥ with eigenvalue
E, that is, the space of all ψ ∈ Dom(Ĥ) satisfying Ĥψ = Eψ. Since Ĥ is
self-adjoint and, therefore, closed, this eigenspace will be a closed subspace
of L2(R3). Since, also, Ĥ commutes with rotations, VE will be invariant
under the usual action (Definition 17.1) of SO(3) on L2(R3). Thus, by
the discussion at the end of Sect. 17.7, VE decomposes as a direct sum of
finite-dimensional, irreducible SO(3)-invariant subspaces.
We now look for such subspaces of VE . In the following theorem, we

assume that the radial part of the wave function (the function f in the
notation Vl,f in Definition 17.18) has a certain very special form. After
analyzing this case, we argue that we have found in this way all of the
eigenvectors for Ĥ with negative eigenvalues.

Theorem 18.3 For each positive integer n, let

En = −μQ4

2�2
1

n2
(18.8)

where Q is the charge of the electron and μ is the reduced mass of the
electron–proton system, and let

ρn(x) =

√
8μ |En|
�

|x| .

Then for each l = 0, 1, . . . , n − 1, there exists a polynomial Ln,l such that
for each homogeneous harmonic polynomial q of degree l, the function

ψ(x) = q(x)e−ρn(x)/2Ln,l(ρn(x)) (18.9)

satisfies
Ĥψ = Enψ.
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It follows from Proposition 9.35 that the functions ψ in (18.9) belong to
Dom(∆) and thus, by Theorem 9.38, to Dom(Ĥ). The polynomials Ln,l are
the Laguerre polynomials. The coefficient of −1/n2 in the formula (18.8)
for En is the Rydberg constant (compare Sect. 1.2.1).
Let us see how to connect Theorem 18.3 to the usual expression for

the hydrogen atom eigenvectors in the physics literature. In the first place,
physicists choose a certain basis ql,m for the space of harmonic polynomials,
which is—up to normalization constants—the basis in Theorem 17.4. In the
second place, physicists write the solutions in spherical coordinates. When
changing to spherical coordinates, we should keep in mind that ql,m is
homogeneous of degree l and that ρn(x) is just a constant multiple of the
distance from the origin. We obtain, then, the following expression:

ψn,l,m(r, θ, φ) = Yl,m(θ, φ)ρlne
−ρn/2Ln,l(ρn), (18.10)

where Yl,m(θ, φ) is the restriction to the unit sphere of pl,m.

Proof. If E is a negative real number, we look for solutions to Ĥψ = Eψ
of the form q(x)f(|x|), where q ∈ Vl. Provided that f(r) and f ′(r) are
bounded near the origin, Proposition 9.35 allows us to compute ∆ψ on
R3\{0} without worrying about whether ψ is differentiable at the origin.
Using Proposition 18.1, the equation for f is

− �2

2μ

[
d2f

dr2
+

2(l + 1)

r

df

dr

]
− Q2

r
f(r) = Ef(r). (18.11)

For large r, where the two terms that involve a factor of 1/r become neg-
ligible, and so

− �2

2μ

d2f

dr2
≈ Ef. (18.12)

Recalling that E is negative, (18.12) tells us that near infinity, f should
behave like a combination of a growing and a decaying exponential. Since
we want square-integrable solutions, we require that only the exponentially
decaying term be present.
We therefore postulate a solution of the form

f(r) = exp

{
−
√
2μ |E|
�

r

}
g(r), (18.13)

for some function g. If we plug (18.13) into (18.11) for f , there are canceling
terms equal to Eg(r) on each side, leaving

− �2

2μ

[
d2g

dr2
− 2

√
2μ |E|
�

dg

dr
+

2(l + 1)

r

dg

dr
− 2(l+ 1)

r

√
2μ |E|
�

g(r)

]

=
Q2

r
g(r).
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We now introduce the new variable ρ = (
√
8μ |E|/�)r. After making this

change of variable, we find that each term in square brackets obtains a
factor of 8μ |E| /�2, so that our equation becomes

− �2

2μ

8μ |E|
�2

[
d2g

dρ2
− dg

dρ
+

2(l+ 1)

ρ

dg

dρ
− (l + 1)

ρ
g(ρ)

]
=

2
√
2μ |E|
�

Q2

ρ
g(ρ).

Multiplying through by ρ and simplifying yields the equation.

ρ
d2g

dρ2
− ρ

dg

dρ
+ 2(l + 1)

dg

dρ
+

[
Q2√μ

�
√
2 |E|

− (l + 1)

]
g(ρ) = 0. (18.14)

If we postulate for g a power series
∑∞

k=0 akρ
k, we obtain the following

recurrence relations for the coefficients:

ak+1 = ak
[k + l + 1− λ]

k[(k + 1) + 2(l + 1)]
(18.15)

where

λ =
Q2√μ

�
√
2 |E|

.

The series for g will terminate, yielding a polynomial solution to (18.14),
provided that λ is an integer n with n ≥ l + 1. We can then solve for the
energy in terms of n as follows:

|E| = μQ4

2n2�2
.

Recalling that E is negative, we have obtained the desired form for the
energy levels. Furthermore, the condition n ≥ l+1 is the same as l ≤ n−1.
Finally, if we plug in the formula for ρ in terms of r and the formula for f
in terms of g, we obtain the form of the solution stated in the theorem.
It is important to emphasize that the functions in Theorem 18.3 do not

span the entire Hilbert space L2(R3). After all, these functions are all eigen-
vectors for Ĥ with negative eigenvalues. If these vectors spanned L2(R3),
then the expectation value of the energy would always be negative. But it
is easy to produce functions ψ in the domain of Ĥ for which 〈ψ, Ĥψ〉 > 0.
Simply take ψ to be a Gaussian wave packet with mean position far from
the origin and with very large mean momentum. Then 〈ψ, V ψ〉 will be
close to zero but 〈ψ, P 2ψ〉 will be large and positive. Nevertheless, it can
be shown that the functions in Theorem 18.3 span the negative energy
subspace of L2(R3). It is possible to analyze also the positive part of the
spectrum of Ĥ, but the spectrum above zero is purely continuous and rep-
resents a hydrogen atom that has ionized, that is, in which the electron has
escaped from the proton.
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Theorem 18.4 As n varies over all positive integers, l varies from 0 to
n − 1, and g varies over all homogeneous harmonic polynomials of degree
l, the eigenvectors in Theorem 18.3 span the negative-energy subspace of

L2(R3), that is, the range of the projection μĤ((−∞, 0)), where μĤ is the
projection-valued measure associated to Ĥ by the spectral theorem.

Proof. The proof requires results from spectral theory that go beyond the
machinery that we have developed in Chaps. 9 and 10, and which we cannot
reproduce in full here. Specifically, we make use of Theorem V.5.7 of [27],
which tells us that the negative-energy portion of the spectrum of Ĥ is
discrete, consisting of eigenvalues of finite multiplicity accumulating only
at zero.
We indicate briefly why the above result holds. If A and B are unbounded

self-adjoint operators, let us say that B is a relatively compact perturbation
of A if A(B − λI)−1 is a compact operator for every λ in the resolvent set
of B. According to Lemma V.5.8 of [27], the potential energy operator
for the hydrogen atom is a relatively compact perturbation of the kinetic
energy operator. This is a strengthening of what we showed in the proof
of Theorem 9.38, namely that the potential energy operator is relatively
bounded with respect to the kinetic energy operator, with relative bound
less than 1. The proof of relative compactness relies on the fact that the
potential for the hydrogen atom goes to zero at infinity.
Meanwhile, let us say that λ belongs to the essential spectrum of an un-

bounded self-adjoint operator A if either λ is a nonisolated point in σ(A)
or λ is an eigenvalue for A with infinite multiplicity. According to The-
orem IV.5.35 of [27], a relatively compact perturbation of a self-adjoint
operator does not change the essential spectrum. Thus, the essential spec-
trum of Ĥ is equal to the essential spectrum of the kinetic energy operator,
which is certainly contained in [0,∞), since the kinetic energy operator is
non-negative. It follows that any point in the negative-energy part of the
spectrum of Ĥ must be an isolated point in σ(Ĥ) and an eigenvalue of
finite multiplicity.
In light of the preceding result, there is no continuous spectrum for Ĥ

below zero, and we need only look for square-integrable eigenvectors. Since,
also, each eigenspace for Ĥ with eigenvalue E < 0 is finite dimensional, it
will decompose as a direct sum of irreducible, SO(3)-invariant subspaces.
Such subspaces, according to Proposition 17.19, are always of the form Vl,f

for some l and f, where Vl,f is as in Definition 17.18. Thus, we look for

functions ψ of the form ψ(x) = p(x)f(|x|) such that Ĥψ = Eψ for some
E < 0.
Now, if a function of the form p(x)f(|x|) is to be an eigenfunction of

the Hamiltonian, f must satisfy the differential equation (18.11). By ele-
mentary results from the theory of linear ordinary differential equations,
this equation has precisely two linearly independent solutions, for any value
of E. Both solutions can be constructed by postulating a solution of the
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form (18.13), introducing the new variable ρ, and then using a power series
expansion for g(ρ) (Exercise 9). One of the solutions for g(ρ) will have a
power series starting with ρ−(2l+1), in which case ψ(x) will blow up like

1/ |x|(l+1)
near the origin; such a function is not in the domain of the Hamil-

tonian (Exercise 14 in Chap. 9). The other solution for g(ρ) will start with
ρ0 and may be obtained by using the form (18.13), changing from the vari-
able r to the variable ρ, and then using the recurrence relation (18.15) to
define the coefficients of a power series. If the resulting series does not ter-
minate, it is not hard to see that the terms will behave for large k like the
series for eρ. Since the function f is equal to e−ρ/2g(ρ), this function will
grow like eρ/2 near infinity, which means that ψ will not be in L2(R3). Thus,
to get a square-integrable solution, the series for g(ρ) must terminate, in
which case ψ is one of the functions in Theorem 18.3.

Corollary 18.5 Each eigenvalue En, as given in Theorem 18.3, has mul-
tiplicity n2.

Proof. According to Theorem 18.4, the eigenvectors in Theorem 18.3 con-
stitute all of the eigenvectors for Ĥ with eigenvalue En. The number of
independent eigenvectors with eigenvalue En is thus the sum of the dimen-
sions of the spaces Vl of spherical harmonics, with l = 0, 1, . . . , n− 1. This
number is, by Theorem 17.12,

n−1∑

l=0

(2l+ 1) = n2,

as claimed.

18.4 The Runge–Lenz Vector in the Quantum
Kepler Problem

In Sect. 2.6, we showed that the classical Kepler problem can be solved
almost completely by making use of the Runge–Lenz vector, which is a con-
served quantity. The quantum version of the Runge–Lenz vector commutes
with the Hamiltonian and can elucidate a number of special properties of
the quantum Kepler problem, which we typically think of as describing a
hydrogen atom. In particular, the Runge–Lenz vector will help to explain
(1) the simple form −R/n2 of the negative energies of the hydrogen atom
and (2) the apparent coincidence by which energy of the states in (18.9)
is independent of l for a given n. Note that the rotational symmetry of
the problem explains why the energy of the states in (18.9) is indepen-
dent of the choice of the harmonic polynomial q. Nevertheless, rotational
symmetry cannot explain why states for different values of l—and thus dif-
ferent radial dependence in the wave function—have the same energy. This
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apparent coincidence will be explained by an additional symmetry of the
problem, that is expressible in terms of the Runge–Lenz vector. See also
Sect. 7 of [17] for a somewhat different (but related) explanation for the
structure of the eigenvalues of the hydrogen atom and their multiplicities.
There are several computations involving the Runge–Lenz vector that,

while elementary, are laborious. Those computations are deferred to
Sect. 18.6.

18.4.1 Some Notation

To keep the notation as simple as possible, we will adopt in this section
Einstein’s summation convention, which states that repeated indices are
always summed on, even if there is no summation sign written. In this
section, the sum will always range from 1 to 3. Using this convention, we
write, say, the dot product of two vectors u,v in R3 as u · v = ujvj ,where
the summation convention frees us from having to write out explicitly the
sum over j.
We will make frequent use of the totally antisymmetric symbol εjkl, where

j, k, and l range from 1 to 3, defined as follows,

Definition 18.6 For j, k, l ∈ {1, 2, 3}, define εjkl by the formula

εjkl =

⎧
⎨
⎩

1 if (j, k, l) is an even permutation of (1, 2, 3)
−1 if (j, k, l) is an odd permutation of (1, 2, 3)
0 if any two of j, k, l are equal

.

Thus, for example, ε321 = −1 and ε212 = 0. The commutation relations
for the basis {F1, F2, F3} for so(3) may be written (using the summation
convention!) as

[Fj , Fk] = εjklFl. (18.16)

For instance, if we take j = 1 and k = 2 in (18.16), then the sum on l gives
a nonzero value only when l = 3, and we recover the relation [F1, F2] = F3.

18.4.2 The Classical Runge–Lenz Vector, Revisited

We have already introduced, in Sect.2.6, the Runge–Lenz vector A in the
classical mechanics of a particle moving in a 1/r potential. We require a few
more properties of A before turning to the quantum version. We consider
a classical particle in R3 with Hamiltonian given by

H(x,p) =
|p|2
2μ

− Q2

|x| . (18.17)

This is just the Hamiltonian for the classical Kepler problem, except that
we replace the mass m of the planet by the reduced mass μ of the electron–
proton system, and we replace the constant k := mMG by Q2.



18.4 The Runge–Lenz Vector in the Quantum Kepler Problem 403

For the Hamiltonian in (18.17), the Runge–Lenz vector is given by the
formula

A(x,p) =
1

μQ2
p× J− x

|x| ,

where J := x × p is the angular momentum. By Proposition 2.34, the
Runge–Lenz vector is a conserved quantity for the classical Kepler prob-
lem, in addition to H and J, which are conserved quantities for any radial
potential. By results of Sect. 2.6, we have the following relations among
these conserved quantities:

A · J = 0

|A|2 = 1 +
2H

μQ4
|J|2 .

Lemma 18.7 The Runge–Lenz vector A and the Hamiltonian H in (18.17)
satisfy the following Poisson bracket relations:

{Aj , H} = 0

{Aj, Am} = − 2

μQ4
εjmlJlH. (18.18)

We have already shown that the Runge–Lenz vector is a conserved quan-
tity (Proposition 2.34), which is equivalent (Proposition 2.25) to saying that
the Poisson bracket of Aj with H is zero, as claimed. The proof of (18.18)
is deferred to Sect. 18.6. We now introduce certain combinations of the
Runge–Lenz vector, the angular momentum, and the Hamiltonian that
form a Lie algebra under the Poisson bracket. In the construction of these
functions, we need to take a square root of the Hamiltonian, which necessi-
tates separating the positive-energy and negative-energy parts of the phase
space. Our interest is primarily in the negative-energy case.

Definition 18.8 Let U− denote the negative-energy part of the classical
phase space,

U− =
{
(x,p) ∈ R6

∣∣H(x,p) < 0
}
.

Consider on U− the normalized Runge–Lenz vector B given by

B =

√
μQ4

2 |H | A.

Define also vector-valued functions I and K on U− by

I =
J+B

2
; K =

J−B

2
.
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Theorem 18.9 The functions I and K Poisson-commute with the Hamil-
tonian and satisfy the following Poisson-bracket relations on the negative-
energy set U−:

{Ij , Ik} = εjklIl

{Kj,Kk} = εjklKl

{Ij ,Kk} = 0.

The functions I and K also satisfy the following algebraic relations:

|I|2 = |K|2 =
μQ4

8 |H | .

In Theorem 18.9, we use the summation convention introduced in the
previous subsection. The proof of this theorem is elementary but rather
laborious, and is deferred to Sect. 18.6.
The span of the functions I1, I2, I3 and K1,K2,K3 on U−, which is

the same as the span of the functions B1, B2, B3 and J1, J2, J3, forms a
6-dimensional Lie algebra under the Poisson bracket. Comparing the Poisson-
bracket relations among the I’s and among the K’s to the relations among
the basis elements F1, F2, F3 for so(3), we see that the span of the I’s and
the span of the K’s are both isomorphic to so(3) [or, if you prefer, to su(2)].
Since also each Ij commutes with each Kk, the 6-dimensional Lie algebra
spanned by the I’s and the K’s is isomorphic to so(3)⊕ so(3). Meanwhile,
as demonstrated in Exercise 4, so(3)⊕so(3) is isomorphic to the Lie algebra
so(4). Since all the I’s and K’s Poisson-commute with the Hamiltonian, we
say that the Kepler problem has so(4) symmetry. This is in contrast to the
dynamics of a particle moving in R3 in the force generated by a typical
radial potential, which has only so(3) symmetry.
To be more precise, “so(4) symmetry” prevails only on the negative-

energy subset U− of the classical phase space. On the positive-energy subset
U+, the span of the functions B1, B2, B3 and J1, J2, J3 again forms a 6-
dimensional Lie algebra. This Lie algebra, however, is not isomorphic to
so(4), but rather to so(3, 1), where so(3, 1) is the Lie algebra of the group of
4×4 matrices that preserve the quadratic form x2

1+x2
2+x2

3−x2
4. The reason

the formulas on U+ are different from those on U− is that calculations of
the relevant Poisson brackets involves the function H/ |H | , which has the
value 1 on U+ and the value −1 on U−. (The factor of H comes from
Lemma 18.7 and the factor of |H | from the factor of

√
|H | in the definition

of B.)

18.4.3 The Quantum Runge–Lenz Vector

We now introduce the quantum counterpart Â of the classical Runge–Lenz
vector A. The quantum Runge–Lenz satisfies most of the same properties
as the classical version, with a few small but crucial “quantum corrections.”
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Definition 18.10 Define the quantum Runge–Lenz vector by

Â =
1

μQ2

1

2

(
P× Ĵ− Ĵ×P

)
− X

|X| .

Note that in the quantum case,−Ĵ×P is not the same asP×Ĵ, because of
the noncommutativity of the factors. The particular combination of P× Ĵ
and Ĵ × P in Definition 18.10 is used because it is yields a self-adjoint
operator. The Runge–Lenz vector can also be computed as

Â =
1

μQ2

(
P× Ĵ− i�P

)
− X

|X| , (18.19)

as will be verified in Sect. 18.6.
In the interests of keeping the exposition manageable, we will not concern

ourselves in what follows with determining the precise domains on which
various identities hold.

Proposition 18.11 The quantum Runge–Lenz vector Â satisfies the fol-
lowing relations:

Â · Ĵ = Ĵ · Â = 0

Â · Â = 1 +
2Ĥ

μQ4

(
Ĵ · Ĵ+ �2

)
. (18.20)

Note that there is a “quantum correction” in (18.20); the factor of J · J
in the classical expression for A ·A is replaced by Ĵ · Ĵ+�2. This correction
gives rise to a quantum correction in (18.22), which in turn is essential
to getting the correct value for the energy eigenvalues in Corollary 18.17.
The proof of this result and the other results of this section are deferred to
Sect. 18.6.

Lemma 18.12 The quantum Runge–Lenz vector Â and the Hamiltonian
Ĥ satisfy the following commutation relations:

1

i�
[Âj,Ĥ ] = 0

1

i�
[Âj , Âm] = − 2

μQ4
εjmlĴlĤ. (18.21)

Note that since Ĥ commutes with rotations, it commutes with the angu-
lar momentum operators Ĵl. Thus, in (18.21), we could just as well write
ĤĴl in place of ĴlĤ. As in the classical case, if we normalize the com-
ponents of the Runge–Lenz vector by dividing by the square root of the
Hamiltonian, then these operators together with the angular momentum
operators form a 6-dimensional Lie algebra.
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Definition 18.13 Let V − denote the negative-energy subspace of L2(R3),

that is, the range of the spectral projection μĤ((−∞, 0)). Let |Ĥ | denote
the restriction to V − of the operator −Ĥ. On V −, define operators B̂ by

B̂ =
μQ2

√
2μ|Ĥ |

Â.

Define also operators Î and K̂, as in the classical case, by

Î =
Ĵ+ B̂

2
; K̂ =

Ĵ− B̂

2
.

It is possible to define the absolute value of any self-adjoint operator
by means of the functional calculus. However, since the restriction of Ĥ
to V − is, by definition, negative definite, the restriction of |Ĥ | to V − co-

incides with the restriction to V − of −Ĥ. The operator 1/

√
|Ĥ | is the

operator with a restriction to the energy eigenspace with eigenvalue En

that is 1/
√
|En|I. The components of B̂ are unbounded operators, defined

on suitable dense subspaces of the Hilbert space V −.

Theorem 18.14 The operators Î and K̂ commute with the Hamiltonian
Ĥ and satisfy the following commutation relations:

1

i�
[Îj , Îk] = εjkl Îl

1

i�
[K̂j , K̂k] = εjklK̂l

1

i�
[Îj , K̂k] = 0.

These operators also satisfy the following algebraic relations:

Î · Î = K̂ · K̂ =
μQ4

8|Ĥ |
− �2

4
. (18.22)

18.4.4 Representations of so(4)

In light of the commutation relations in Theorem 18.14, we can define a
representation π of the Lie algebra so(4) ∼= so(3) ⊕ so(3) on the negative-
energy subspace V − as follows:

π(Fj , 0) =
1

i�
Îj ; π(0, Fj) =

1

i�
K̂j. (18.23)

It is therefore desirable to classify the irreducible finite-dimensional repre-
sentations of so(3)⊕ so(3), which we do in the following proposition.
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Proposition 18.15 Suppose Vk and Vl are irreducible representations of
so(3) of dimensions 2k+1 and 2l+1, respectively. Then Vk⊗Vl is irreducible
when viewed as a representation of so(3)⊕ so(3) as in Remark 16.49. Fur-
thermore, every irreducible finite-dimensional representation of so(3)⊕so(3)
is isomorphic to Vk ⊗ Vl for a unique ordered pair (k, l).
For any representation Vk ⊗Vl of so(3)⊕ so(3), define Casimir operators

C1 and C2 by the formula

C1 =
3∑

j=1

πk(Fj)
2 ⊗ I; C2 =

3∑

j=1

I ⊗ πl(Fj)
2.

Then we have
C1 = −k(k + 1)I; C2 = −l(l+ 1)I.

Proof. To classify the irreducible representations of so(3)⊕ so(3), we could
appeal to the general theory of representations of direct sums of Lie alge-
bras. It is not hard, however, to give a direct proof using the same sort
of reasoning we used in the classifications of irreducible representations
of so(3). We will omit the details of this computation. The result on the
Casimir operators follows easily from Proposition 17.8.
In any finite-dimensional subspace of V − that is invariant and irreducible

under the action of so(3)⊕so(3) in (18.23), the Casimir operators are given
by C1 = −Î·̂I/�2 and C2 = −K̂·K̂/�2. Since, by Theorem 18.14, Î·̂I = K̂·K̂
on V −, all of the irreducible representations of so(3)⊕so(3) that arise inside
V − will be of the form Vk ⊗ Vk.

Theorem 18.16 Let W (n) denote the eigenspace for the Hamiltonian with
eigenvalue En. Then W (n) is invariant and irreducible under the action of
so(3)⊕ so(3) in (18.23). More specifically, we have the isomorphism

W (n) ∼= Vk ⊗ Vk,

as representations of so(3) ⊕ so(3), where k = (n − 1)/2 and where Vk is
the irreducible representation of so(3) of dimension 2k + 1 = n.

Corollary 18.17 If n, k, and W (n) are as in Theorem 18.16, then for all
ψ ∈ W (n), we have

Î · Îψ = Ĵ · Ĵψ = �2k(k + 1).

Using (18.22), the eigenvalue En of Ĥ on W (n) can be solved for as

En = − μQ4

8�2
(
k + 1

2

)2 = − μQ2

2�2n2
.

The expression for En in Corollary 18.17 is the same as in Theorem 18.3.
The remarkable thing about the proof of Theorem 18.17 is that it is purely
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algebraic, relying only on the commutation relations among the operators
Îk and K̂l, along with the relationship (18.22) between the Hamiltonian
operator Ĥ and the Îk’s and K̂l’s.
Proof of Corollary 18.17. It is easily seen that the operators Î · Î and
K̂ · K̂, when restricted to an irreducible subspace for the action of so(3)⊕
so(3), are equal to −�2C1 and −�2C2, where C1 and C2 are the Casimir
operators appearing in Proposition 18.15. Thus, if W (n) is isomorphic to
Vk⊗Vk, with k = (n−1)/2, then Î · Î and K̂ ·K̂ will be equal to �2k(k+1)I,
as claimed. On the other hand, Î·Î and K̂·K̂ are related to the Hamiltonian
Ĥ by (18.22), from which we can solve for En.
Proof of Theorem 18.16. Since each component of A and Ĵ commutes
with Ĥ, each component of Î and K̂ will also commute with Ĥ. Each
eigenspace of Ĥ is therefore invariant under the action of Î and K̂. Since
the Î’s and K̂’s are self-adjoint and W (n) is finite dimensional, W (n) will
decompose as a direct sum of irreducible invariant subspaces. By Proposi-
tion 18.15, these irreducible subspaces will be of the form Vk ⊗ Vl, where
Vk and Vl are irreducible representations of so(3) of dimension 2k + 1 and
2l+1, respectively. But now, the operators Î · Î and K̂ · K̂, when restricted
to one of the irreducible subspaces of W (n), are equal to −�2C1 and −�2C2,
where C1 and C2 are the Casimir operators appearing in Proposition 18.15.
Since Î · Î = K̂ ·K̂ on all of V −, the eigenvalues of C1 and C2 must be equal
on each irreducible subspace of W (n). Thus, we must have k = l, meaning
that only irreducible subspaces of the form Vk ⊗ Vk arise.
Now, under the isomorphism of some irreducible subspace of W (n) with

Vk⊗Vk, the operators Îk and K̂k act as i�Fk⊗I and i�I⊗Fk, respectively,
where the Fk’s are the usual basis for so(3). Since Ĵ = Î+ K̂, each Ĵk acts
as i�(Fk ⊗ I + I ⊗ Fk). This means that Vk ⊗ Vk, under the action of the
Ĵk’s, can be thought of as a tensor product of two representations of so(3),
viewed as another representation of so(3) as in Definition 16.48. Viewed
this way, Vk ⊗ Vk decomposes as in Proposition 17.23 as

Vk ⊗ Vk
∼= V0 ⊕ V1 ⊕ · · · ⊕ V2k. (18.24)

On the other hand, we know from Theorem 18.3 that W (n) decomposes
under the action of so(3) as

V0 ⊕ V1 ⊕ · · · ⊕ Vn−1. (18.25)

Thus, the space of the form Vk ⊗ Vk must be all of W (n); if there were
another term then the trivial representation V0 would occur more than
once in W (n). This being the case, matching the decompositions (18.24)
and (18.25) requires that 2k = n− 1, as claimed in the theorem.
The proof of Theorem 18.16 relies to some extent on the results of

Sect. 18.3. Using only algebraic manipulations involving the Runge–Lenz
vector, however, we could still argue that the eigenvalues of Ĥ must be of
the form given in Corollary 18.17. We would not, however, know that for
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every positive integer n, the number En is actually an eigenvalue for Ĥ.
We would also not know that each eigenspace W (n) is irreducible under the
action of so(4); conceivably, based only on the algebra, W (n) could have,
say, dimension 2n2 instead of n2.

18.5 The Role of Spin

The spin of the electron is 1/2. As discussed in Sect. 17.8, this means
that the Hilbert space for an electron is L2(R3)⊗̂V1/2, where V1/2 is a
2-dimensional vector space that carries an irreducible projective unitary
representation of SO(3). Up to now, we have neglected the spin in our
calculations. The reason for this omission is simple: to first approximation,
the spin plays no role in the calculation. Specifically, in the simplest model
of a hydrogen atom with spin, the Hamiltonian is simply Ĥ ⊗ I, where Ĥ
is the operator in (18.7), acting on L2(R3). For any n > 0, we can obtain a
basis of eigenvectors for Ĥ ⊗ I with eigenvalue En by taking vectors of the
form ψn,l,m ⊗ ej , where the ψn,l,m’s are as in (18.10) and where {e1, e2}
forms a basis for V1/2.
Now, from the point of view of rotational symmetry, the basis ψn,l,m⊗ej

is not the most natural one. Rather, we should decompose the eigenspaces
into irreducible invariant subspaces for the (projective) action of SO(3),
where SO(3) acts on both L2(R3) and V1/2. We have already decomposed
the eigenspaces inside L2(R3) into irreducible invariant subspaces, namely
the span of ψn,l,m where n and l are fixed and m varies. Thus, to obtain
the irreducible invariant subspaces inside L2(R3)⊗̂V1/2, we use the method
of “addition of angular momentum” from Sect. 17.9. According to Proposi-
tion 17.22, Vl⊗V1/2 is irreducible if l = 0 and isomorphic to Vl+1/2⊕Vl−1/2

if l > 0. Consider, for example, the case n = 3, l = 1, the so-called “3p
states” in traditional chemistry terminology. Since V1 ⊗ V1/2 decomposes
as V3/2 ⊕ V1/2, when we take spin into account, we obtain a 4-dimensional
space and a 2-dimensional space. We can obtain bases for these spaces by
tracing through the proof of Proposition 17.22.
The decomposition described in the previous paragraph is essential when

considering the “fine structure” of hydrogen. Our model of hydrogen using
the Hamiltonian (18.7) is only a first approximation. More realistic mod-
els take into account various corrections, including radiative corrections, a
finite size for the nucleus, and “spin–orbit coupling,” among other things.
The notion of spin–orbit coupling adds a term into the Hamiltonian involv-
ing the operator Ĵ · σ, where σ1, σ2, and σ3 are the operators describing
the action of so(3) on V1/2. When this term is included, the Hamiltonian
is no longer of the form A ⊗ I for some operator A on L2(R3). Thus, we
can no longer simply append the spin to the end of the computation, but
must take it into account from the beginning.
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The various corrections to the Hamiltonian for the hydrogen atom have
the effect of reducing the multiplicities of the eigenvalues. Almost any cor-
rection we make, for example, will destroy the independence of the eigen-
value on l for a given n, simply because the correction terms in the Hamilto-
nian will not commute with the quantum Runge–Lenz vector. Nevertheless,
all of the corrections that make up the fine structure of hydrogen preserve
the rotational symmetry of the problem. Thus, the same irreducible repre-
sentations of SO(3) that we had in the simple model will appear after the
corrections are made. For n = 2, l = 1, for example, we will still have a
4-dimensional space and 2-dimensional space, but these two spaces will no
longer have the same energy.

18.6 Runge–Lenz Calculations

In this section, we fill in many of the computations that we passed over
without proof in Sect. 18.4. Although all the calculations are, in principle,
elementary, there are a number of nonobvious tricks that help simplify
the algebra. We will make frequent use of the concepts of functions that
transform like vectors (on the classical side) and of vector operators (on
the quantum side), including Propositions 17.25 and 17.27 (Sect. 17.10).
In particular, we note that the position x, the momentum p, the angular
momentum j, and the Runge–Lenz vector A all transform like vectors,
and that the corresponding quantum quantities are all vector operators.
(Compare Exercise 7.) In the “ε” notation of Sect. 18.4.1, Proposition 17.27
takes the form

1

i�
[Cj , Ĵk] =

1

i�
[Ĵj , Ck] = εjklCl. (18.26)

In the quantum mechanical calculations, there are a number of “quantum
corrections,” in which dot products and cross products of vector operators
do not behave as they do in the classical case.

Lemma 18.18 The ε-function in Definition 18.6 satisfies the relations

εjklεjmn = δkmδln − δknδlm

εjklεjkm = 2δlm.

The proof of these results is not difficult and is left to the reader (Ex-
ercise 6). The following identities involving the cross product of vector
operators will be useful to us.

Lemma 18.19 If C, D, and E are arbitrary vector operators, we have

C · (D×E) = (C×D) · E (18.27)

C×D+D×C = εjkl[Ck, Dl] (18.28)

C×C =
1

2
εjkl[Ck, Cl]. (18.29)
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In particular, if the different components of C commute, then C×C = 0.
Finally,

(C× (D×E))j = CkDjEk − CkDkEj . (18.30)

As special cases of these results, we have

Ĵ×P+P× Ĵ = 2i�P (18.31)

Ĵ× Ĵ = i�Ĵ (18.32)

Note that if the entries of D and E commute, then the right-hand side
of (18.30) reduces to the classical expression, (C · E)D − (C · D)E. Us-
ing (18.31), we can easily verify the alternative expression (18.19) for the
Runge–Lenz vector.
Proof. The right-hand side of (18.27) is computed as εjklCkDlEj . If we
note that εjkl = εklj and then relabel the indices, we obtain εjklCjDkEl,
which is equal to the left-hand side of (18.27). For (18.28), we compute
that

(C×D+D×C)j = εjklCkDl + εjklDkCl

= εjklCkDl + εjklClDk − εjkl[Cl, Dk]. (18.33)

If we note that εjkl = −εjlk and then relabel the indices k and l, we see
that εjklClDk = −εjklCkDl, so that the first two terms in the second line
of (18.33) cancel. The remaining term can be put into the claimed form by
relabeling the indices k and l. The identity (18.29) is just the D = C case
of (18.28). Finally, (18.30) follows easily from Lemma 18.18.
To obtain (18.31) and (18.32), we apply (18.28) and (18.29), respectively.

Since both Ĵ and P are vector operators, the desired result follows easily
from Lemma 18.18.
We now turn to the proofs of the results of Sect. 18.4. We prove only the

quantum versions of the results, since the classical results are extremely
similar, except that certain quantum corrections can be ignored.
Proof of Lemma 18.12, First Part. We begin by showing that Âj

commutes with Ĥ for each j. Since Ĥ commutes with Ĵ, we have

[Âj , Ĥ] =
1

μQ2

1

2

(
εjkl[Pk, Ĥ]Ĵl − Ĵk[Pl, Ĥ ]

)
−
[
Xj

|X| , Ĥ
]
.

Meanwhile, since the P ’s commute among themselves, we have

[Pk, Ĥ ] = −Q2

[
Pk,

1

|X|

]
= −i�Q2 Xk

|X|3
.
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Thus,

εjkl[Pk, Ĥ ]Ĵl = −i�Q2εjklεlmn
Xk

|X|3
XmPn

= −i�Q2(δjmδkn − δjnδkm)
Xk

|X|3
XmPn

= −i�Q2 1

|X|3
(XnXjPn −XmXmPj)

= −i�Q2 1

|X|3
(Xj(X ·P)− (X ·X)Pj) . (18.34)

We compute εjklĴk[Pl, Ĥ] in a similar way. Note that Ĵk = εkmnXmPn =
εkmnPnXm, since Xm and Pn commute except when m = n, in which case
εkmn = 0. The result is

εjklĴk[Pl, Ĥ ] = −i�(Pj(X ·X)− (P ·X)Xj)
1

|X|3
.

Meanwhile, since the X ’s commute among themselves, we have
[
Xj

|X| , Ĥ
]

=

[
Xj

|X| ,
P 2

2μ

]

=
1

2μ

[
Xj

|X| , Pk

]
Pk +

1

2μ
Pk

[
Xj

|X| , Pk

]

=
i�

2μ

(
1

|X|δjk − XjXk

|X|3

)
Pk +

i�

2μ
Pk

(
1

|X|δjk − XjXk

|X|3

)

=
i�

2μ

(
1

|X|Pj −
Xj

|X|3
(X ·P)

)
+

i�

2μ

(
Pj

1

|X| − (P ·X)
Xj

|X|3

)
. (18.35)

It is now a simple matter to compute [Âj , Ĥ ] by combining (18.34) and
(18.35) and verify that everything cancels. We have, for example, a term

involving (Xj/ |X|3)(X ·P) in (18.34) and a canceling term in (18.35).
Before proceeding with the remaining results concerning the Runge–Lenz

vector, we verify some results that will be needed later. There are some
quantum corrections compared to the corresponding classical results.

Lemma 18.20 As in the classical case, the following “orthogonality” re-
lations among vector operators hold:

Ĵ ·P = P · Ĵ = 0 (18.36)

Ĵ ·X = X · Ĵ = 0 (18.37)

(P× Ĵ) · Ĵ = Ĵ · (P× Ĵ) = 0. (18.38)
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Meanwhile, there is a quantum correction in the dot product between P and
P× Ĵ, as follows:

P · (P× Ĵ) = 0 (18.39)

(P× Ĵ) ·P = 2i�(P ·P). (18.40)

Finally, we have

(P× Ĵ) · (P× Ĵ) = (P ·P)(Ĵ · Ĵ) (18.41)

X · (P× Ĵ) = Ĵ · Ĵ (18.42)

(P× Ĵ) ·X = Ĵ · Ĵ+ 2i�P ·X. (18.43)

Proof. By (18.27) and (18.29), we have

Ĵ ·P = (X×P) ·P = X · (P×P) = 0,

since the different components of P commute. The same reasoning shows
that P · Ĵ, Ĵ · X, and X · Ĵ are all zero. To compute (P × Ĵ) · Ĵ, we first
use (18.27), then use (18.32), and then use that P · Ĵ = 0. For Ĵ · (P× Ĵ),
we rewrite P × Ĵ in terms of Ĵ × P, using (18.31). The correction term
involves P, which has a dot product of zero with Ĵ, and so the answer is
again zero.
We use (18.27) and (18.29) again to establish (18.39). To get (18.40), we

first rewrite P× Ĵ in terms of Ĵ×P using (18.31) and then apply (18.39).
To establish (18.41), we apply (18.27) and then (18.30), giving

(P× Ĵ) · (P× Ĵ) = Pj ĴkPj Ĵk − PjJkPkĴj . (18.44)

The second term on the right-hand side of (18.44) is zero because Ĵ ·P = 0.
For the first term, we move Ĵk to the right past Pj . This generates the term

we want plus a correction term equal to i�εkjlPjPlĴk. The correction term is
zero because Pj and Pl commute and εkjl is changes sign under interchange
of j and l. The identity (18.42) follows immediately from (18.27) and the
definition of Ĵ. The identity (18.43) follows from (18.27) and (18.28).

Lemma 18.21 For all j and m, we have

[(P× Ĵ)j , (P× Ĵ)m] = −i�(P ·P)εjmlĴl.

Proof. In computing [PkĴl, PnĴo], we use repeatedly the product rule for
commutators (Point 3 of Proposition 3.15). We obtain four terms, one of
which is zero (the term involving [Pk, Pn]). We use Proposition 17.27 (in
the form (18.26)) to evaluate all remaining terms, giving

1

i�
[εjklPkĴl, εmnoPnĴo]

= εjklεmno

(
Pk[Ĵl, Pn]Ĵo + PnPk[Ĵl, Ĵo] + Pn[Pk, Ĵo]Ĵl

)
. (18.45)
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Let us compute the first of the three terms on the right-hand side of (18.45).
Using Lemma 18.18 and the fact that P is a vector operator, we get

εjklεmnoPk[Ĵl, Pn]Ĵo = εjkl(δopδml − δolδmp)PkPpĴo

= εjkmPkPpĴp − εjkoPkPmĴo

= εjkmPk(P · Ĵ)− Pm(P× Ĵ)j .

If we compute the second and third terms similarly, we obtain

1

i�
[εjklPkĴl, εmnoPnĴo] = εjkmPk(P · Ĵ)− Pm(P× Ĵ)j

+ (P×P)j Ĵm − εjkmPk(P · Ĵ) + Pm(P× Ĵ)j − (P ·P)εjmlĴl.

Three of the above terms are zero (those involving P · Ĵ or P×P) and two
other terms cancel, leaving us with

1

i�
[εjklPkĴl, εmnoPnĴo] = −(P ·P)εjmlĴl,

as claimed.
We now continue with the proof of the properties of the Runge–Lenz

vector.
Proof Proposition 18.11. From the first set of orthogonality relations in
Lemma 18.20, we can see easily that Ĵ · Â = Â · Ĵ = 0. Meanwhile, using
the expression (18.19) for Â and expanding out Â · Â yields, after a little
simplification,

Â · Â = 1 +
1

μ2Q4
(P ·P)

(
Ĵ · Ĵ+ �2

)

− 1

μQ2

(
2Ĵ · Ĵ 1

|X| + i�

(
P · X

|X| −
X

|X| ·P
))

.

Now,

X

|X| ·P−P · X

|X| = i�

(
δkk
|X| −

Xk

|X|2
Xk

|X|

)
= 2i�

1

|X| .

Thus,

Â · Â = 1 +
(
(Ĵ · Ĵ) + �2

) 2

μQ4

(
(P ·P)

2μ
−Q2 1

|X|

)
,

as claimed.
Proof of Lemma 18.12, Second Part. We write Â in the form given
in (18.19). In computing the commutator of Âj with Âm, we get several
different types of terms, which we compute one at a time. Of course, the
commutator of Xj/ |X| with Xm/ |X| is zero. The commutator of the P× Ĵ
terms has been computed in Lemma 18.21.
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Meanwhile, to compute the commutator of PkĴl with Xm(1/ |X|), we
again get four terms and, again, one of these is zero, namely the one in-
volving {Ĵl, 1/ |X|}, since 1/ |X| is invariant under rotations. We have, then,

1

i�

[
εjklPkĴl, Xm

1

|X|

]

= εjkl[Pk, Xm]Ĵl
1

|X| + εjklPk[Ĵl, Xm]
1

|X| + εjklXm

[
Pk,

1

|X|

]
Ĵl

= −εjklδkmĴl
1

|X| + εjklεlmnPkXn
1

|X| + εjklXm
Xk

|X|3
εlnoXnPo.

If we apply Lemma 18.18 and carry out some computations similar to ones
we have already performed, we obtain

1

i�

[
εjklPkĴl, Xm

1

|X|

]
= −εjmlĴl

1

|X| + δjm(P ·X)
1

|X|

+XmXj
1

|X|3
(X ·P)−

(
Pm

Xj

|X| +
Xm

|X| Pj

)
. (18.46)

In a commutator of the form [αj +βj , αm+βm], the terms involving the
commutator of an α with a β will be [αj , βm] + [βj , αm], which is equal
to [αj , βm]− [αm, βj ]. This quantity is skew-symmetric j with m, meaning
that it changes sign when we interchange j with m. Thus, terms in (18.46)
that are symmetric in j and m will disappear when we compute the full
commutator of Âj with Âm. Thus, the second and third terms in (18.46)
can be ignored. In the last term, we can commute Pm past Xj to obtain

Pm
Xj

|X| +
Xm

|X| Pj =
Xj

|X|Pm +
Xm

|X| Pj − i�

(
δjm
|X| −

XjXm

|X|3

)
, (18.47)

which is also symmetric. Thus, only the first term in (18.46) contributes to
the computation of [Âj , Âm]. This term is skew-symmetric in j and m and

will be doubled when we compute [Âj , Âm].

Now, it is straightforward to compute [εjklPkĴl, Pm] and [Pj , Xm/ |X|]
and to verify that these commutators are symmetric in j andm (Exercise 8)
and therefore do not contribute to the computation of [Âj , Âm]. We are left,
then, with the following

1

i�
[Âj , Âm] = − 1

μ2Q4
εjml(P ·P)Ĵl +

1

μQ2
2εjmlĴl

1

|X|

= − 2

μQ4
εjmlĴl

(
P ·P
2μ

− Q2

|X|

)
,

which is what is claimed in the lemma.
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Proof of Theorem 18.14. Since the Hamiltonian Ĥ is invariant under
rotations, Ĥ commutes with each component of the angular momentum.
We have also established that Ĥ commutes with each component of the
Runge–Lenz vector. From this it follows easily that Î and K̂ commute with
the Hamiltonian.
Since Ak commutes with Ĥ, it also commutes with any function of Ĥ .

It then follows from Lemma 18.12 that

1

i�
[B̂k, B̂l] =

μQ4

2|Ĥ|
[Âk, Âl] = − μQ4

2|Ĥ|
2

μQ4
εjmlĴlĤ.

Since Ĥ/|Ĥ | = −I on the negative-energy subspace V −, the above expres-
sion reduces to εjmlĴl. (The result on the positive-energy subspace will
differ by a crucial minus sign from what we have on V −.)
Meanwhile, since both B̂ and Ĵ are vector operators, we have, by Propo-

sition 17.27, (1/(i�))[B̂j , Ĵk] = εjklB̂l and (1/(i�))[Ĵj , Ĵk] = εjklĴl. From

the commutation relations among the B̂j ’s and Ĵj ’s, it is an easy calcula-
tion to verify the claimed commutation relations among the components of
Î and K̂.

18.7 Exercises

1. Consider the quantum Hamiltonian for two particles in R3 interacting
by means of a 1/r potential:

Ĥ = − �2

2m1
∆1 −

�2

2m2
∆2 −

Q2

|x1 − x2| .

Here, as in Sect. 3.11, ∆1 is the Laplacian with respect to the variable
x1 and ∆2 is the Laplacian with respect to the variable x2. As in
Sect. 2.3.3, introduce new variables consisting of the center of mass,
c = (m1x

1+m2x
2)/(m1+m2), and the relative position, y = x1−x2.

Show that Ĥ2 can be expressed in these variables as

− �2

2(m1 +m2)
∆c −

�2

2μ
∆y − Q2

|y| ,

where μ is the reduced mass, given by μ = m1m2/(m1 +m2).

Note: In the new variables, Ĥ is the sum of two terms, one of which in-
volves only the variable c and one of which involves only the
variable y. The term involving only c is the Hamiltonian for a free
particle with mass m1+m2, whereas the term involving only y is the
Hamiltonian for a particle of mass μ moving in a 1/r potential.
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2. Let H(x,p) = |p|2 /(2μ) − Q2/ |x| denote the Hamiltonian for the
classical Kepler problem in R3. Show that for every ε > 0, the region
in R6 given by {(x,p) |H(x,p) < −ε} has finite volume.

3. Let H denote the real span of the following four elements of M2(C):

1 :=

(
1 0
0 1

)
; i :=

(
i 0
0 −i

)
;

j :=

(
0 1

−1 0

)
; j :=

(
0 i
i 0

)
.

(a) Show that H forms an associative algebra over R, under the op-
eration of matrix multiplication, and that the following relations
are satisfied:

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j.

The algebra H is (one particular realization of) the quaternion
algebra.

(b) Show that each nonzero element of H has a multiplicative in-
verse.

Hint : Imitate the argument that each nonzero complex number has
a multiplicative inverse.

4. Let H denote the quaternion algebra defined in Exercise 3. This ex-
ercise establishes explicitly an isomorphism between the Lie algebras
so(4) and so(3)⊕ so(3) (compare Definition 16.14).

(a) Let V be the subspace of H spanned by i, j, and k. Show that
V forms a Lie algebra under the bracket [α, β] = αβ − βα and
that V is isomorphic as a Lie algebra to so(3).

(b) Let End(H) denote the algebra of real-linear maps of H to it-
self. Given α ∈ V, let Lα ∈ End(H) be the “left multiplication
by α” map, Lα(β) = αβ, and let Rα ∈ End(H) be the “right
multiplication by α” map, Rα(β) = βα. Show that the maps
α �→ Lα and α �→ −Rα are Lie algebra homomorphisms of V
into End(H).

(c) Consider the inner product on H in which {1, i, j,k} forms an
orthonormal basis. Given α ∈ V, show that

〈Lαβ, γ〉 = −〈β, Lαγ〉
〈Rαβ, γ〉 = −〈β,Rαγ〉 .
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That is to say, Lα and Rα belong to so(4), which we identify
with the space of elements of End(H) that are skew-symmetric
with respect to the inner product in Part (c).

(d) Show that the map (α, β) �→ Lα − Rβ is a Lie algebra isomor-
phism of so(3)⊕ so(3) to so(4).

(e) Let D denote the diagonal subalgebra of so(3) ⊕ so(3), that is,
the set of elements of the form (X,X). Show that the image of
D under the isomorphism in Part (d) is the set of elements Y of
so(4) ⊂ End(H) having the following form with respect to the
basis in Part (c):

Y =

(
0 0
0 Z

)
,

where Z ∈ so(3).

5. Describe explicitly the two subalgebras of so(4) corresponding to the
two copies of so(3) in the isomorphism

so(4) ∼= so(3)⊕ so(3)

in Exercise 4.

6. Verify Lemma 18.18.

Hint : First show that εjklεjmn = 0 unless (k, l) = (m,n) or (k, l) =
(n,m).

7. In this exercise, we use the summation convention of Sect. 18.4.1.

(a) Show that for any 3 × 3 matrix M and any indices j, k, l ∈
{1, 2, 3}, we have

εmnoMjmMknMlo = εjkl(detM).

(b) Show that if C is a vector operator, then for all R ∈ SO(3), we
have

Π(R)CkΠ(R)−1 = RlkCl.

(c) Show that the cross product of two vector operators is a vector
operator.

Hint : Write the definition of a vector operator in the equivalent
form

v ·C = Π(R)((R−1v) ·C)Π(R)−1.

8. Compute [εjklPkĴl, Pm] and [Pj , Xm/ |X|] and show that both of
these quantities are symmetric in j and m, meaning that the value is
unchanged if we interchange j and m.

9. Show that the Eq. (18.14) has two power series solutions for g(ρ), one
starting with ρ−(2l+1) and one starting with ρ0.
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Systems and Subsystems,
Multiple Particles

19.1 Introduction

Up to this point, we have considered the state of a quantum system to
be described by a unit vector in the corresponding Hilbert space, or more
properly, an equivalence class of unit vectors under the equivalence relation
ψ ∼ eiθψ. We will see in this section that this notion of the state of a
quantum system is too limited. We will introduce a more general notion
of the state of a system, described by a density matrix. The special case
in which the system can be described by a unit vector will be called a
pure state.
One way to see the inadequacy of the notion of state as a unit vector is

to consider systems and subsystems. We will examine this topic in greater
detail in Sect. 19.5, but for now let us consider the example of a system of
two spinless “distinguishable” particles moving in R3. (For now, the reader
need not worry about the notion of distinguishable particles; just think of
them as being two different types of particles, with, say, different masses
or charges.) Let us assume the combined state of the two particles can be
described by a unit vector in the corresponding Hilbert space, which is
(according to Sect. 3.11) L2(R6). We have, then, a wave function ψ(x,y),
where x is the position of the first particle and y is the position of the
second particle.
Given a wave function ψ(x,y) for the combined system, what is the

wave function describing the state of the first particle only? If the wave
function of the combined system happens to be a product, say, ψ(x,y) =
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ψ1(x)ψ2(y), then, naturally, we would say that the state of the first
particle is simply ψ1. Of course, one might object that we could rewrite
ψ as ψ(x,y) = [cψ1(x)][ψ2(y)/c] for any constant c, but this only affects
the wave function for the first particle by a constant, which does not affect
the physical state.
In general, however, the wave function of the combined system need

not be a product. Already when ψ is a linear combination of two prod-
ucts, ψ(x,y) = ψ1(x)ψ2(y) + φ1(x)φ2(y), it is unclear what the correct
wave function is for the first particle. At first glance, it might seem nat-
ural to try ψ1(x) + φ1(x), but upon closer examination, this is not an
unambiguous proposal. After all, we can just as well write ψ(x,y) =
[c1ψ1(x)][ψ2(y)/c1]+[c2φ1(x)][φ2(y)/c2], but then the resulting wave func-
tions for the first particle, ψ1(x) + ψ2(x) and c1ψ1(x) + c2ψ2(x), are not
scalar multiples of one another. For a general unit vector ψ in L2(R6), the
situation is even worse. The conclusion is this: There does not seem to be
any way to associate to ψ a general unit vector ψ′ in L2(R3) such that ψ′

could sensibly be described as “the state of the first particle.”
Although we cannot associate with ψ a wave function ψ′ for the first

particle, there is no difficulty in taking expectation values of observables
related to the first particle. We can make perfect sense of, say, the expected
position of the first particle, as

〈
ψ,X

(1)
j ψ

〉
=

∫

R6

xj |ψ(x,y)|2 dx dy.

Here X
(1)
j indicates the operator of multiplication by the jth component

of the first vector in the function ψ(·, ·) : R3 × R3 → C. That is to say,
the operator Xj acting on L2(R3) can be “promoted” to an operator on
L2(R6) by having it act in the first variable only. Similarly, the momentum

operator Pj on L2(R3) can be promoted to an operator P
(1)
j on L2(R6),

by letting it act on the first variable, meaning that P
(1)
j ψ is −i� times the

partial derivative with respect to the jth component of the first vector in
ψ(·, ·). In fact, as we will see in Sect. 19.5, given any self-adjoint operator
on L2(R3), there is a natural way to promote it into an operator on L2(R6),
where its expectation value may then be defined.
Thus, although there is no natural way to associate with a unit vector

ψ in L2(R6) a unit vector in L2(R3), there is a natural way to associate
with ψ expectation values of observables on L2(R3). This suggests that we
should introduce a more general notion of the “state” of a quantum system,
a notion in which with each “reasonable” family of expectation values for
the quantum observables there is associated a quantum state. This notion
turns out to be that of density matrices (positive, self-adjoint operators
with trace 1).
In Sect. 19.3, we introduce the notion of a density matrix. Theorem 19.9

in that section will tell us that, given any reasonable assignment φ of
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expectation values to observables, there is a unique density matrix ρ such
that φ(A) = trace(ρA) for all observables A. In the special case in which
the state of the system is given by a unit vector ψ in the Hilbert space,
then ρ will be just the projection onto ψ and trace(ρA) will be equal to
the familiar expression 〈ψ,Aψ〉 . In Sect. 19.5, we will consider composite
quantum systems and introduce a method (the partial trace) of defining a
density matrix for a subsystem from a density matrix for the whole sys-
tem. Finally, in Sect. 19.6, we will consider the important special case of
composite systems made up of multiple identical particles.

19.2 Trace-Class and Hilbert–Schmidt Operators

In this section, we explore notions related to the trace of an operator on a
Hilbert space. The results of this section are presented without proof; see
Chap.VI in Volume I of [34] for proofs and additional information.

Proposition 19.1 Suppose A ∈ B(H) is non-negative and self-adjoint.
Then for any two orthonormal bases {ej} and {fj} for H, we have

∑

j

〈ej , Aej〉 =
∑

j

〈fj, Afj〉 .

Note that sinceA is non-negative, 〈ej , Aej〉 and 〈fj, Afj〉 are non-negative
real numbers. Thus, the sums are always well defined, but may have the
value of +∞.

Definition 19.2 If A ∈ B(H) is non-negative and self-adjoint, the value
of
∑

j 〈ej, Aej〉 , for any arbitrarily chosen orthonormal basis, is called the
trace of A. If trace(A) < +∞, then we say that A is trace class.
For a general A ∈ B(H), we say that A is trace class if the non-negative

self-adjoint operator
√
A∗A is a trace class.

Note that for any A ∈ B(H), A∗A is self-adjoint and non-negative. Thus,
the square root of A∗A may be defined by the functional calculus (Defini-
tion 7.13 or Proposition 8.4).

Proposition 19.3

1. If A ∈ B(H) is trace class, then for any orthonormal basis {ej}, the
sum

∑
j 〈ej , Aej〉 is absolutely convergent. Furthermore, the value of

this sum, which we denote as trace(A), is independent of the choice
of orthonormal basis.

2. If A ∈ B(H) is trace class, then A∗ is also trace class and

trace(A∗) = trace(A).



422 19. Systems and Subsystems, Multiple Particles

3. If A ∈ B(H) is trace class, then for all B ∈ B(H), the operators AB
and BA are also trace class, and

trace(AB) = trace(BA).

Recall that A ∈ B(H) is said to be compact if A maps every bounded
set in H to a set with compact closure. If a self-adjoint operator A is trace
class, it is necessarily compact and thus has an orthonormal basis {ej} of
eigenvectors, for which the associated eigenvalues λj are real and tend to
zero as j tends to infinity. (See Theorem VI.16 in Volume I of [34]. One can
deduce the result from, say, the direct integral form of the spectral theorem
for bounded self-adjoint operators by verifying that unless A has point
spectrum with eigenvalues tending to zero, the operator of multiplication
by λ in the direct integral will not be compact.) Point 1 of Proposition 19.3
then tells us that

∑
j |λj | < ∞ and that trace(A) =

∑
j λj . Conversely, if

A is a self-adjoint operator having an orthonormal basis of eigenvectors for
which the associated eigenvalues satisfy

∑
j |λj | < ∞, then A is trace class.

Definition 19.4 An operator A ∈ B(H) is said to be Hilbert–Schmidt

if trace(A∗A) < ∞.

Since A∗A is self-adjoint and non-negative, trace(A∗A) is defined (but
possibly infinite) for any A ∈ B(H). If A is trace class, then (by definition)
the trace of

√
A∗A is finite, in which case, the trace of

√
A∗A

√
A∗A is also

finite, by Point 3 of Proposition 19.3. Thus, every trace-class operator is
Hilbert–Schmidt (but not vice versa).

Proposition 19.5 If A ∈ B(H) is Hilbert–Schmidt, so is A∗. If A,B ∈
B(H) are Hilbert–Schmidt, then AB and BA are trace class and trace(AB)
equals trace(BA).

If A and B are Hilbert–Schmidt operators, the Hilbert–Schmidt inner
product of A and B is 〈A,B〉HS := trace(A∗B) and the Hilbert–Schmidt

norm of A satisfies ‖A‖2HS = 〈A,A〉HS . The space of Hilbert–Schmidt
operators is a Hilbert space with respect to 〈·, ·〉HS .

19.3 Density Matrices: The General Notion
of the State of a Quantum System

Typically, we think of the quantum observables—the ones with expecta-
tions values that we wish to take—as being unbounded self-adjoint oper-
ators. But of course we can also take expectation values of bounded self-
adjoint operators, and indeed expectations for bounded operators deter-
mine those for unbounded operators. After all, suppose A is an unbounded
self-adjoint operator and suppose we know the expectation value for 1E(A)
for every Borel set E ⊂ R, where 1E is the indicator function of E and
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1E(A) is defined by the functional calculus (Definition 7.13). The expec-
tation value for 1E(A) is the probability of obtaining a value in E for a
measurement of the observable A. If we know this probability for each E,
then we know the full probability distribution of the measurements, and
thus we can compute the expectation value of A. Furthermore, we can
always introduce expectation values for (bounded) non-self-adjoint opera-
tors. Each such operator A is of the form A = A1 + iA2 with A1 and A2

self-adjoint, and so we may reasonably define the expectation value of A to
be the expectation value of A1 plus i times the expectation value of A2.
We then postulate that the general notion of the “state” of a quantum

system should be simply a “list” of expectation values for all bounded
operators, satisfying some reasonable hypotheses.

Definition 19.6 A linear map Φ : B(H) → C is a family of expectation

values if the following conditions hold.

1. Φ(I) = 1.

2. Φ(A) is real whenever A is self-adjoint.

3. Φ(A) ≥ 0 whenever A is self-adjoint and non-negative.

4. For any sequence An in B(H), if ‖Anψ −Aψ‖ → 0 for all ψ ∈ H,
then Φ(An) → Φ(A).

Point 4 in the definition says that Φ is continuous with respect to the
strong (sequential) convergence in B(H). By Exercise 3, any linear map
on B(H) satisfying Points 1, 2, and 3 is automatically continuous with
respect to the operator norm topology, meaning that if ‖An −A‖ → 0
then Φ(An) → Φ(A). However, to establish our characterization of families
of expectation values in terms of density matrices, we need continuity of
Φ under a more general sort of convergence, where we only assume that
‖Anψ −Aψ‖ → 0 for each ψ. This stronger continuity property does not
follow from Properties 1–3. Exercise 5 gives an example of a linear func-
tional on B(H) that satisfies Points 1–3 of Definition 19.6, but not Point 4.

Definition 19.7 An operator ρ ∈ B(H) is a density matrix if ρ is self-
adjoint and non-negative and trace(ρ) = 1.

Of course, since the trace of a density matrix is assumed to be finite, every
density matrix is trace class. The next two results give a precise characteri-
zation of families of expectation values in terms of density
matrices.

Proposition 19.8 Suppose ρ is a density matrix on H. Then the map
Φρ : B(H) → C given by

Φρ(A) = trace(ρA) = trace(Aρ)

is a family of expectation values.
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Proof. If we define Φρ(A) = trace(ρA), then Φρ(I) = trace(ρ) = 1. For
any A ∈ B(H), we have,

trace(ρA∗) = trace(A∗ρ) = trace((ρA)∗) = trace(ρA).

It follows that trace(ρA) is real when A is self-adjoint. Let ρ1/2 be the non-
negative self-adjoint square root of ρ. Then ρ1/2 and Aρ1/2 are Hilbert–
Schmidt (in the latter case, by Point 3 of Proposition 19.3). It follows that
trace(Aρ1/2ρ1/2) = trace(ρ1/2Aρ1/2), by Proposition 19.5. Thus, if A is
self-adjoint and non-negative,

trace(ρA) = trace(ρ1/2ρ1/2A) = trace(ρ1/2Aρ1/2) ≥ 0, (19.1)

because ρ1/2Aρ1/2 is self-adjoint and non-negative. We have established
that Φρ satisfies Points 1, 2, and 3 of Definition 19.6.
Meanwhile, suppose Anψ converges in norm to Aψ, for each ψ in H.

Then ‖Anψ‖ is bounded as a function of n for each fixed ψ. Thus, by the
principle of uniform boundedness (Theorem A.40), there is a constant C
such that ‖An‖ ≤ C. Now, if {ej} is an orthonormal basis for H, we have

∣∣∣
〈
ej , ρ

1/2Anρ
1/2ej

〉∣∣∣ =
∣∣∣
〈
ρ1/2ej , Anρ

1/2ej

〉∣∣∣ ≤ C
∥∥∥ρ1/2ej

∥∥∥
2

,

and,

∑

j

∥∥∥ρ1/2ej
∥∥∥
2

=
∑

j

〈
ρ1/2ej , ρ

1/2ej

〉
=
∑

j

〈ej , ρej〉 = trace(ρ) < ∞.

Furthermore, since An(ρ
1/2ej) converges to A(ρ

1/2ej) for each j, dominated
convergence tells us that

trace(ρ1/2Aρ1/2) =
∑

j

〈
ej , ρ

1/2Aρ1/2ej

〉

= lim
n→∞

∑

j

〈
ej , ρ

1/2Anρ
1/2ej

〉

= lim
n→∞

trace(ρ1/2Anρ
1/2).

As in (19.1), we can shift the second factor of ρ1/2 to the front of the trace
to obtain Point 4 in Definition 19.6.

Theorem 19.9 For any family of expectation values Φ : B(H) → C, there
is a unique density matrix ρ such that Φ(A) = trace(ρA) for all A ∈ B(H).

Proof. Recall from Sect. 3.12 the Dirac notation, in which the expression
|φ〉〈ψ| denotes the linear operator taking any vector χ ∈ H to the vec-
tor |φ〉〈ψ|χ〉 (in physics notation), that is, the vector 〈ψ, χ〉φ (in math
notation). If ρ is trace class, then by Exercise 2,

trace(ρ |φ〉〈ψ|) = 〈ψ, ρφ〉 .
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Thus, if an operator ρ with the desired properties is to exist, we must have

〈ψ, ρφ〉 = Φ(|φ〉〈ψ|).

Now, by Exercise 3, Φ satisfies ‖Φ(A)‖ ≤ ‖A‖ . From this, we can see
that the map

LΦ(φ, ψ) := Φ(|φ〉〈ψ|)
is a bounded sesquilinear form, so that (by Proposition A.63), there is
a unique bounded operator ρ such that Φ(|φ〉〈ψ|) = 〈ψ, ρφ〉 for all φ
and ψ. Since |φ〉〈φ| is self-adjoint and non-negative, LΦ(φ, φ) is real and
non-negative, which means that ρ is self-adjoint (by Proposition A.63) and
non-negative.
Meanwhile, if {ej} is an orthonormal basis forH, then by Definition 19.2,

trace(ρ) = lim
N→∞

N∑

j=1

〈ej , ρej〉

= lim
N→∞

Φ (|e1〉〈e1|+ · · ·+ |eN〉〈eN |)

= Φ(I) = 1.

In passing from the second line to the third, we have used Point 4 of
Definition 19.6. Thus, ρ is a density matrix.
We have now found a density matrix ρ such that Φ(|φ〉〈ψ|) agrees with

trace(ρ |φ〉〈ψ|) for all φ, ψ ∈ H. By linearity, Φ(A) = trace(ρA) for all finite-
rank operators A (see Exercise 4). Now, if {ej} is an orthonormal basis for
H, let PN be the orthogonal projection onto the span of e1, . . . , eN . Then
for any A ∈ B(H), the operator PNA has finite rank and PNAψ → Aψ for
all ψ ∈ H. Thus, for all A ∈ B(H),

Φ(A) = lim
N→∞

Φ(PNA) = lim
N→∞

trace(ρPNA) = trace(ρA),

by Proposition 19.8
Our next result shows that our new notion of the state of a system

includes our old notion.

Proposition 19.10 For any unit vector ψ ∈ H, let |ψ〉〈ψ| , in accordance
with Notation 3.29, denote the orthogonal projection onto the span of ψ.
Then |ψ〉〈ψ| is a density matrix and for all A ∈ B(H), we have

trace(|ψ〉〈ψ|A) = 〈ψ,Aψ〉 .

Note that if ψ2 = eiθψ1, then |ψ1〉〈ψ1| = |ψ2〉〈ψ2| . Thus, from our new
point of view, we may say that the reason ψ1 and ψ2 represent the same
“physical state” is that they determine the same density matrix.
Proof. Since it is an orthogonal projection, |ψ〉〈ψ| is bounded, self-adjoint,
and non-negative. To compute its trace, we choose an orthonormal basis
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{ej} for H with e1 = ψ, which gives trace(|ψ〉〈ψ|) = 1. Using the same
orthonormal basis, we compute that, for any A ∈ B(H),

trace(|ψ〉〈ψ|A) =
∑

j

〈ej , ψ〉〈ψ,Aej〉 = 〈ψ,Aψ〉 ,

as desired.

Definition 19.11 A density matrix ρ ∈ B(H) is a pure state if there
exists a unit vector ψ ∈ H such that ρ is equal to the orthogonal projection
onto the span of ψ. The density matrix ρ is called a mixed state if no
such unit vector ψ exists.

An isolated system that is in a pure state initially will remain in a pure
state for all later times, since the initial state ψ0 evolves to the pure state

e−iĤt/�ψ0, where Ĥ is the Hamiltonian for the system. But if a system is
interacting with its environment, then as discussed in Sect. 19.5, the system
may move into a mixed state at a later time.
There are several different ways of characterizing the pure states as a

subset of the density matrices. First, it is not hard to see (Exercise 6) that
a density matrix ρ is a pure state if and only if trace(ρ2) = 1. Second, the
set of density matrices is a convex set, since if ρ1 and ρ2 are non-negative
and have trace 1, then so is λρ1 + (1 − λ)ρ2, for 0 < λ < 1. According to
Exercise 7, the pure states are precisely the extreme points of this set. That
is, a density matrix ρ is a pure state if and only if it cannot be expressed
as ρ = λρ1 + (1 − λ)ρ2 where ρ1 and ρ2 are distinct density matrices and
λ belongs to (0, 1). Third, we may define the von Neumann entropy S(ρ)
of a density matrix ρ by

S(ρ) = trace(−ρ log ρ),

where ρ log ρ is defined by the functional calculus. (Since limλ→0+ λ log λ =
0, we interpret 0 log 0 as being 0.) Since the eigenvalues of ρ are all be-
tween 0 and 1, we see that −ρ log ρ is a non-negative self-adjoint operator,
which has a well-defined trace, which may have the value +∞. According
to Exercise 8, a density matrix ρ is a pure state if and only if S(ρ) = 0.
Suppose that we have two pure states, coming from unit vectors ψ1 and

ψ2. Then there are two different senses in which we can take a superposition,
that is, linear combination, of the corresponding quantum states. If we use
our old point of view, in which the states are vectors inH, then we may take
the linear combination c1ψ1 + c2ψ2, and then normalize this vector to be a
unit vector. If we use our new point of view, in which the states are density
matrices, then we may take the linear combination c1 |ψ1〉〈ψ1|+c2 |ψ2〉〈ψ2| ,
where in this case c1 and c2 should be non-negative and should add to 1.
These two notions of superposition are different, since

C |c1ψ1 + c2ψ2〉〈c1ψ1 + c2ψ2| 
= c1 |ψ1〉〈ψ1|+ c2 |ψ2〉〈ψ2| , (19.2)
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no matter how the constant C is chosen. After all, the state on the left-
hand side of (19.2) is a pure state, whereas (unless ψ2 is a multiple of ψ1),
the state on the right-hand side of (19.2) is a mixed state, since the range
of this operator is 2-dimensional rather than 1-dimensional.
Physicists call the first sort of superposition (in which we take a linear

combination of vectors in H) coherent superposition or quantum superpo-
sition, and they call the second sort of superposition (in which we take a
linear combination of the associated density matrices) incoherent superpo-
sition. The reason for the term “coherent” is that coherent superposition
depends on the phases of the coefficients. That is, if ψ1 and ψ2 are linearly
independent, the vector c1e

iθψ1 + c2e
iφψ2 does not represent the same

quantum state as c1ψ1 + c2ψ2, unless eiθ = eiφ. By contrast, the density
matrix associated with eiθψ is the same as the density matrix associated
with ψ, and so the phases have no effect when taking linear combinations
of the density matrices associated to vectors in H. When taking a coher-
ent superposition, there is no simple relationship between the expectation
value of an observable in the states ψ1 and ψ2 and the expectation value
of the same observable in the state c1ψ1 + c2ψ2. On the other hand, when
taking an incoherent superposition, expectation values in the new state are
just linear combinations of the original expectation values:

trace ((c1 |ψ1〉〈ψ1|+ c2 |ψ2〉〈ψ2|)A) = c1 〈ψ1, Aψ1〉+ c2 〈ψ2, Aψ2〉 .

19.4 Modified Axioms for Quantum Mechanics

We may now modify the axioms of quantum mechanics introduced in
Sect. 3.6 to incorporate density matrices, beginning with our revised no-
tion of a state.

Axiom 6 The state of a quantum system is described by a density matrix ρ
on an appropriate Hilbert space H. If A is any bounded operator on H, the
expectation value of A in the state ρ is given by the quantity trace(ρA) =
trace(Aρ).

In Axiom 6, we assume thatA is bounded, so that trace(ρA) and trace(Aρ)
are defined and equal by Proposition 19.3. If A is unbounded and self-
adjoint, we can construct a probability measure μA

ρ describing the proba-
bilities for measurements of A in the state ρ, by the formula

μA
ρ (E) = trace(ρ1E(A)),

where 1E(A) is defined by the functional calculus.
We then define the expectation value of A in the state ρ as

∫
R
λ dμA

ρ (λ),
provided the integral is absolutely convergent. If the integral is absolutely
convergent, it is reasonable to hope that both ρA and Aρ will be densely
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defined and bounded, that (the bounded extension to H of) these operators
will be trace class, and that both trace(ρA) and trace(Aρ) will coincide with∫
R
λ dμA

ρ (λ). We will not, however, enter into an investigation of this issue.
Next, we propose a variant of Axiom 4, describing the “collapse of the

wave function.”

Axiom 7 Suppose a quantum system is initially in a state ρ and a mea-
surement of a self-adjoint operator A with point spectrum is performed. If
the measurement results in the value λ for A, then immediately after the
measurement, the system will be in the state ρ′, where

ρ′ =
1

Z
PλρPλ.

Here Pλ is the orthogonal projection onto the λ-eigenspace of A and Z =
trace(PλρPλ).

Note that if ρ is non-negative, self-adjoint, and trace class, then PλρPλ

is also non-negative, self-adjoint, and trace class. Implicit in Axiom 7 is
the assumption that the measurement can only result in values λ for which
PλρPλ is nonzero. In particular, λ must be an eigenvalue for A.
Finally, we introduce the notion of time-evolution for our new notion of

“state.”

Axiom 8 The time evolution of the state of the system is described by the
following equation for a time-dependent density matrix ρ(t):

dρ

dt
= − 1

i�
[ρ, Ĥ]. (19.3)

This equation may be solved, formally, by setting

ρ(t) = e−itĤ/ℏρ0e
itĤ/ℏ, (19.4)

where ρ0 is the state of the system at time t = 0.

There are some domain issues involved in the interpretation of the equa-
tion (19.3). Rather than entering into an examination of those issues here,
we will simply take (19.4) as the definition of the time-evolution of a den-
sity matrix. Presumably, if ρ0 is nice enough, then the map t �→ ρ(t) will be
differentiable as a curve in the Banach space B(H) and its derivative will
be (an extension of) the operator on the right-hand side of (19.3). By com-
parison, it follows from Stone’s theorem and Lemma 10.17 that the family

of pure states ψ(t) := e−itĤ/�ψ0 satisfies the Schrödinger equation in the
natural Hilbert space sense if and only if ψ0 belongs to the domain of Ĥ.
To see that the time-evolution in (19.4) is consistent with the previously
defined time-evolution of pure states, observe that

e−itĤ/ℏ |ψ0〉〈ψ0| eitĤ/ℏ = |e−itĤ/ℏψ0〉〈e−itĤ/ℏψ0| = |ψ(t)〉〈ψ(t)| ,

since (eitĤ/ℏ)∗ = e−itĤ/ℏ.
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It should be noted that (19.3) differs by a minus sign from the time-
evolution in the Heisenberg picture of quantum mechanics (Definition 3.20).
Although this difference may seem strange, keep in mind that in Axiom 8,
we are not adopting the Heisenberg point of view, in which the states
are independent of time and the observables evolve in time. Rather, we
are adopting a modified version of the Schrödinger picture, in which it
is the states that evolve in time, but where the states are now certain
sorts of operators. Even though both the states and the observables are
now operators, the observables (in the Heisenberg picture) and the states
(in the Schrödinger picture) must evolve in opposite directions in time, in
order for the expectation values of the observables to be the same in the
two pictures.

19.5 Composite Systems and the Tensor Product

As discussed in Sect. 3.11, the Hilbert space for two (nonidentical, spinless)
particles moving in R3 is L2(R6). Given a unit vector (i.e., a pure state)

ψ in L2(R6), the quantity
∣∣ψ(x1,x2)

∣∣2 represents the joint probability dis-
tribution for the position x1 of the first particle and the position x2 of
the second particle. The following result shows that L2(R6) is naturally
isomorphic to the Hilbert tensor product of two copies of the Hilbert space
for the individual particles, namely L2(R3).

Proposition 19.12 Suppose that (X1, μ1) and (X2, μ2) are σ-finite
measure spaces. Then there is a unique unitary map

p : L2(X1, μ1)⊗̂L2(X2, μ2) → L2(X1 ×X2, μ1 × μ2)

such that

p(φ⊗ ψ)(x, y) = φ(x)ψ(y)

for all φ ∈ L2(X1, μ1) and ψ ∈ L2(X2, μ2).

Here ⊗̂ denotes the Hilbert tensor product defined in Appendix A.4.5.
Proof. For simplicity of notation, we suppress the dependence of L2 spaces
on the measure, writing, say, L2(X1) rather than L2(X1, μ1). Consider first
the algebraic (i.e., uncompleted) tensor product L2(X1)⊗L2(X2). Using the
universal property of tensor products, we can construct a linear map p of
L2(X1)⊗L2(X2) → L2(X1 ×X2) determined uniquely by the requirement
that

p(φ⊗ ψ)(x, y) = φ(x)ψ(y).

Now, every element of the algebraic tensor product L2(X1) ⊗ L2(X2) can
be expressed as a linear combination of elements of the form φj ⊗ψj , with
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φj ∈ L2(X1) and ψj in L2(X2). By computing on such linear combina-
tions, we can easily verify that p is isometric. Thus, by the bounded linear
transformation (BLT) theorem (Theorem A.36), p has a unique isometric
extension to a map of the completed tensor product L2(X1)⊗̂L2(X2) into
L2(X1 ×X2).
It remains only to show that p is surjective. Since both measures are

σ-finite, it is a simple exercise to reduce the problem to the case where μ1

and μ2 are finite, which we henceforth assume. Suppose ψ ∈ L2(X1 ×X2)
is orthogonal to the image of p. Then ψ is orthogonal to the indicator
function of every measurable rectangle, and hence to the indicator function
of any finite disjoint union of measurable rectangles. The collection A of
such disjoint unions is an algebra of sets. Let M denote the collection of
measurable subsets E of X1×X2 such that the integral of ψ over E is zero.
Then M is a monotone class containing A. By the monotone class lemma
(Theorem A.8), M contains the σ-algebra generated by A, which is the
σ-algebra on which μ1 × μ2 is defined. Thus, the integral of ψ over every
measurable set is zero, which implies that ψ is zero almost everywhere.
The preceding example suggests the following general principle.

Axiom 9 The Hilbert space for a composite system made up of two sub-
systems is the Hilbert tensor product H1⊗̂H2 of the Hilbert spaces H1 and
H2 describing the subsystems.

If A and B are bounded operators on H1 and H2, respectively, then there
is a unique bounded operator A⊗B on H1⊗̂H2 such that

(A⊗B)(φ ⊗ ψ) = (Aφ) ⊗ (Bψ)

for all φ ∈ H1 and ψ ∈ H2. (See Appendix A.4.5.)

Theorem 19.13 Suppose that ρ is a density matrix on H1⊗̂H2. Then
there exists a unique density matrix ρ(1) on H1 with the property that

trace(ρ(1)A) = trace(ρ(A⊗ I)) (19.5)

for all A ∈ B(H1). We call ρ(1) the partial trace of ρ with respect to H2. If
{fk} is an orthonormal basis for H2, then the operator ρ(1) satisfies

〈φ, ρ(1)ψ〉 =
∑

k

〈φ⊗ fk, ρ(ψ ⊗ fk)〉 (19.6)

for all φ, ψ ∈ H1. Similarly, there is a unique density matrix ρ(2) on H2

satisfying trace(ρ(2)B) = trace(ρ(I ⊗ B)) for all B ∈ B(H2). If {ej} is an
orthonormal basis for H1, then ρ(2) satisfies

〈φ, ρ(2)ψ〉 =
∑

j

〈ej ⊗ φ, ρ(ej ⊗ ψ)〉 (19.7)

for all φ, ψ ∈ H2.
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The motivation for the terminology “partial trace” is provided by (19.6)
and (19.7), which are similar to the formula for the trace of an operator,
except that the sums range only over a basis for one of the two Hilbert
spaces. One special case of Theorem 19.13 is the one in which the density
matrix ρ is of the form ρ = ρ1⊗ρ2, where ρ1 and ρ2 are density matrices on
H1 and H2, respectively. (Any operator ρ of this form is a density matrix
on H1×H2.) In that case, it is not hard to see that ρ(1) = ρ1 and ρ(2) = ρ2.
We may describe this case by saying that the state of the first system is
“independent” of the state of the second system.

Lemma 19.14 For any sequence An ∈ B(H1), if ‖Anψ −Aψ‖ → 0 for
some A ∈ B(H) and all ψ ∈ H1, then

‖(An ⊗ I)φ− (A⊗ I)φ‖ → 0

for all φ ∈ H1⊗H2. A similar result holds for operators of the form I⊗Bn.

Proof. See Exercise 9.
Proof of Theorem 19.13. The existence and uniqueness of ρ(1) and ρ(2)

follow from Lemma 19.14 and Theorem 19.9. Meanwhile, if {ej} is an
orthonormal basis for H1 and {fk} is an orthonormal basis for H2, we
have

〈φ, ρ(1)ψ〉 = trace(ρ(1) |ψ〉〈φ|)
=
∑

j,k

〈ej ⊗ fk, ρ(|ψ〉〈φ| ⊗ I)(ej ⊗ fk)〉

=
∑

j,k

〈ej ⊗ fk, ρ(ψ 〈φ, ej〉 ⊗ fk)〉

=
∑

k

〈⎛
⎝∑

j

〈ej , φ〉 ej

⎞
⎠⊗ fk, ρ(ψ ⊗ fk)

〉

=
∑

k

〈φ⊗ fk, ρ(ψ ⊗ fk)〉 .

This is the desired formula for
〈
φ, ρ(1)ψ

〉
. Note that because ρ is trace class

and |ψ〉〈φ|⊗I is bounded, ρ(|ψ〉〈φ|⊗I) is trace class, in which case the sum
in the second line is absolutely convergent, by Proposition 19.3. Thus, we
are allowed to rearrange the sum freely.
Suppose we have two quantum systems with Hilbert spaces H1 and H2

and Hamiltonians Ĥ1 and Ĥ2. If the two systems do not interact with each
other and the composite system is initially in a (pure) state of the form
φ0⊗ψ0, then we expect that at some later time, the composite system will
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be in the state φ(t) ⊗ ψ(t), where φ(t) = e−itĤ1/�ψ0 and ψ(t) = e−itĤ2/�.
Ignoring domain considerations, we may compute that

i�
d

dt
[φ(t) ⊗ ψ(t)] = (Ĥ1φ(t)) ⊗ ψ(t) + φ(t)⊗ (Ĥ2ψ(t))

= (Ĥ1 ⊗ I + I ⊗ Ĥ2)(φ(t) ⊗ ψ(t)).

This calculation suggests that the correct Hamiltonian for a noninteracting
composite system is the operator Ĥ1 ⊗ I + I ⊗ Ĥ2.
It is not, however, obvious how to select a domain for Ĥ1 ⊗ I + I ⊗ Ĥ2

in such a way that this operator will be self-adjoint. (The reader is invited
to try to choose such a domain “by hand.”) The easiest way to deal with
this issue is to use Stone’s theorem, as in the following definition.

Definition 19.15 If A and B are self-adjoint operators on H1 and H2, de-
fine the operator A⊗I+I⊗B to be the infinitesimal generator of the strongly
continuous one-parameter unitary group eitA ⊗ eitB. Thus, by Stone’s the-
orem, A⊗ I + I ⊗B is self-adjoint.

It is not hard to check that eitA ⊗ eitB is indeed strongly continuous. In
the case B = 0, the operator A⊗ I is defined as the infinitesimal generator
of eitA⊗I. If A and B happen to be bounded, then A⊗I+I⊗B defined by
Definition 19.15 coincides with A⊗ I + I ⊗B defined as the sum of tensor
products of bounded operators, as in Sect. A.4.5.

Axiom 10 Suppose H1 and H2 are the Hilbert spaces for two quantum
systems, with Hamiltonians Ĥ1 and Ĥ2, respectively. Then the Hamiltonian
for the noninteracting composite system is Ĥ1⊗I+I⊗Ĥ2, where the domain
of Ĥ1 ⊗ I + I ⊗ Ĥ2 is as in Definition 19.15.

A physicist would write Ĥ1 ⊗ I + I ⊗ Ĥ2 simply as Ĥ1 + Ĥ2, with the
understanding that Ĥ1 acts only on the first factor in the tensor product
and Ĥ2 acts only on the second factor.
In general, the two components of a composite system will interact, in

which case the Hamiltonian for the composite system is typically of the
form

Ĥ = Ĥ1 ⊗ I + I ⊗ Ĥ2 + Ĥint,

where Ĥint is an “interaction term.” Often, the interaction term may be
considered “small” compared with the other terms in the Hamiltonian.
Consider, for example, a system consisting of particles in a box, with a
barrier dividing the box in half. Suppose the particles interact by means of
a two-particle potential of the form

∑
j<k V (xj −xk) (Sect. 2.3.2) and that

V (xj − xk) is very small unless the two particles are close together. There
will typically be far more pairs of nearby particles in which the two particles
are on the same side of the box than nearby pairs on opposite sides. Thus,
even though the interaction between the two systems may substantially
affect the behavior of the composite system over long periods of time, it is
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still reasonable to think of Ĥ1 ⊗ I as “the energy of the first subsystem”
and I ⊗ Ĥ2 as “the energy of the second subsystem.”
Suppose we start out in a state ρ of the composite system for which

the state ρ(1) of the first subsystem is a pure state. If the system is an
interacting one, the first subsystem will probably not remain in a pure
state at later times. Indeed, suppose that the second subsystem is very
large system having temperature T . Then, according to the postulates of
quantum statistical mechanics, we are supposed to believe that once the two
systems have reached thermal equilibrium, the state of the first subsystem
will be given by the following highly mixed state:

ρ(1) =
1

Z(β)
e−βĤ1 . (19.8)

Here β = 1/(kBT ), where kB is Boltzmann’s constant, and Z(β) is a nor-
malization constant, known as the partition function of the theory, given

by Z(β) = trace(e−βĤ1).

Of course, for this idea to make sense, e−βĤ1 must be trace class. This
will be the case provided that Ĥ1 has discrete spectrum with eigenvalues
tending to +∞ at some reasonable rate. Thus, in quantum statistical me-
chanics, the expectation value of some observable A for the first subsystem
will be (once equilibrium is reached)

〈A〉 = 1

Z
trace(e−βĤ1A). (19.9)

In particular, when A = Ĥ1, (19.9) provides a natural generalization of
Planck’s model of blackbody radiation; compare Exercise 2 in Chap. 1.

19.6 Multiple Particles: Bosons and Fermions

As discussed in Sect. 17.8, each type of particle (electron, proton, neutron,
etc.) has a spin l, where the possible value for l are

l = 0,
1

2
, 1,

3

2
, . . . .

The Hilbert space for a particle moving in R3 and having spin l is L2(R3)⊗̂
Vl, where Vl is a finite-dimensional Hilbert space that carries an irreducible
projective unitary representation of SO(3) of dimension 2l + 1. There is a
natural unitary identification of L2(R3)⊗̂Vl with L2(R3;Vl), the space of
square-integrable functions on R3 with values in Vl, in which the element
ψ ⊗ v of L2(R3)⊗̂Vl is identified with the function

x �→ ψ(x)v

in L2(R3;Vl).
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Now, we have already mentioned, in Sect. 3.11, the idea that in quantum
mechanics, identical particles are indistinguishable. Let us think about this
in the case of two identical particles with spin l. Our first guess as to
the Hilbert space for such a system is the tensor product of two copies of
L2(R3;Vl), which may be identified with

L2(R6;Vl ⊗ Vl).

If ψ is a unit vector in this space, thought of as a pure state, then saying that
the two particles are “indistinguishable” means that ψ(x2,x1) should rep-
resent the same physical state as ψ(x1,x2), that is, ψ(x2,x1) = cψ(x1,x2)
for some nonzero constant c. Applying this rule twice shows that c must
be either 1 or −1.
A variety of theoretical and experimental considerations suggest the fol-

lowing principle: For particles with integer spin (l = 0, 1, . . .), the constant
c in the preceding paragraph is 1, whereas for particles with half-integer
spin (l = 1/2, 3/2, . . .) the constant c is −1. Particles with integer spin
are called bosons and particles with half-integer spin are called fermions.
We encode the discussion in the two preceding paragraphs in the following
axiom.

Axiom 11 Consider a collection of N identical particles moving in R3

and having integer spin l. Then the Hilbert space for such a collection is the
subspace of L2(R3N ; (Vl)

⊗N ) consisting of those square-integrable functions
ψ for which

ψ(xσ(1),xσ(2), . . . ,xσ(N)) = ψ(x1,x2, . . . ,xN )

for every permutation σ. Consider also a collection of N identical particles
moving in R3 and having half-integer spin l. Then the Hilbert space for
such a collection is the subspace of L2(R3N ; (Vl)

⊗N ) consisting of those
square-integrable functions ψ for which

ψ(xσ(1),xσ(2), . . . ,xσ(N)) = sign(σ)ψ(x1,x2, . . . ,xN )

for every permutation σ.

One may well ask why Axiom 11 holds. More specifically, one may first
ask why it is that identical particles are indistinguishable, and then sepa-
rately ask why integer-spin particles are bosons and half-integer-spin par-
ticles are fermions. Both questions are best answered from the point of
view of quantum field theory, to which ordinary nonrelativistic quantum
mechanics is an approximation.
In field theory, one starts with a “classical” field theory, meaning a dif-

ferential equation for functions φ(x, t) on R4 with values in some finite-
dimensional vector space. Electromagnetic fields, for example, are—at any
one fixed time—functions on R3 with values in R6, where R6 describes
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the three components of the electric field and the three components of the
magnetic field. These functions on R3 then evolve in time according to
Maxwell’s equation. In quantum field theory, one regards, say, Maxwell’s
equations as a sort of infinite-dimensional dynamical system, which we may
quantize in something like the way we quantize Newton’s equation to get
ordinary nonrelativistic quantum mechanics. In the quantum version of
Maxwell’s equations, the energy in each mode of the fields is “quantized,”
meaning that one can only add energy to each mode in multiples of a certain
unit (or “quantum”) of energy. This is analogous to the quantum harmonic
oscillator, in which the allowed energies differ by integer multiples of the
�ω. In quantum field theory, then, a particle is one quantum of excitation
of a certain field.
For simplicity, let us think of a field theory in which the classical fields

take values in R. Then even at the classical level, it is possible to think
that we have something like particles, namely localized bumps in the field
φ(x) located at several different points in space. These bumps might, for
example, be in the shape of a Gaussian wave-packet, that is, a Gaussian en-
velope multiplied by a sinusoidally oscillating function. From this point of
view, we can gain some understanding of why identical particles are indis-
tinguishable. Suppose we have a Gaussian wave packet near a point a in R3

and then an identically shaped Gaussian wave packet near another point b.
The state φ(x) of the field is precisely the same as if we have a packet near
b and then also a packet near a. That is to say, there is no distinct state of
the system that corresponds to interchanging the two particles; whichever
bump we think of as the “first” particle, we have the same field φ(x). Even
in the quantum version of such a system, there no meaning to asking which
is the first particle and which is the second. Thus, even in nonrelativistic
quantum mechanics, which is a low-energy approximation to quantum field
theory, we expect identical particles to be indistinguishable.
Although the preceding discussion does not explain the distinction be-

tween bosons and fermions, that distinction also emerges from quantum
field theory, through something called the spin–statistics theorem
(see, e.g., [38]).

19.7 “Statistics” and the Pauli Exclusion Principle

The spin of an electron is equal to 1/2 and electrons are, therefore, fermions.
The famous Pauli exclusion principle is a consequence of the fermionic
nature of electrons. Pauli’s principle states that two electrons cannot be
in the same state at the same time. This means that if ψ is a square-
integrable, C2-valued function on R3 (which could describe the state of a
single electron), then the function Ψ : R6 → C2 ⊗ C2 given by

Ψ(x1,x2) = ψ(x1)⊗ ψ(x2)
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is not a possible state of a two-electron system, since Ψ does not satisfy
Axiom 11. On the other hand, if ψ1 and ψ2 are two linearly independent
elements of L2(R3;C2), then the function Φ : R6 → C2 ⊗ C2 given by

Φ(x1,x2) = ψ1(x
1)ψ2(x

2)− ψ2(x
1)ψ1(x

2) (19.10)

is a possible state of a two-electron system. [If ψ1 and ψ2 are indepen-
dent, then Φ is a nonzero element of L2(R6;C2 ⊗ C2), which can then be
normalized to be a unit vector. See Exercise 10.]

Let us try to understand the implications of the Pauli exclusion principle
for multielectron atoms. Let us model an N -electron atom as having a
nucleus with positive charge Nq, where the charge of a single electron is
−q. Since the nucleus is much more massive than the electrons, we can
treat the nucleus as being fixed and the electrons as moving in potential
of the form −Nq/ |x| . As a very rough approximation to the structure of
such an atom, we can ignore the electron–electron interaction and take a
Hamiltonian of the form

Ĥ =

N∑

j=1

(
− �2

2m
∆j − Nq2

|xj |

)
,

where ∆j is the Laplacian acting on the jth variable. That is, we are taking
our Hamiltonian to be simply

(Ĥ ⊗ I ⊗ I ⊗ · · · ⊗ I) + (I ⊗ Ĥ ⊗ I ⊗ · · · ⊗ I) + (I ⊗ I ⊗ Ĥ ⊗ · · · ⊗ I) + · · · ,

where Ĥ is the Hamiltonian for a single electron.
If, say, N is even, the lowest-energy state for this Hamiltonian in the

antisymmetric subspace of L2(R3N ; (C2)⊗N ) will be

Ψ0(x
1,x2, . . . ,xN )

= AS
(
ψ+
0 (x

1)⊗ ψ−
0 (x

2)⊗ ψ+
1 (x

3)⊗ · · · ⊗ ψ+
N/2(x

N−1)⊗ ψ−
N/2(x

N )
)
.

(19.11)

If N is odd, the product ends with ψ+
(N+1)/2(x

N ). The notation in (19.11)

is as follows. First, AS is the antisymmetrization operator, given by

AS(f)(x1, . . . ,xN ) =
∑

σ∈SN

sign(σ)f(xσ(1),xσ(2), · · · ,xσ(N)).

Second, the functions ψ0, ψ1, ψ2, . . . are the eigenvectors in L2(R3) for the
Hamiltonian of a single particle in R3 moving in a potential of the form
−Nq2/ |x| , arranged so that the eigenvalues of ψj are weakly increasing
with j. The ψj ’s are just the states computed in Chap. 18, but with q

replaced by
√
Nq. Third, ψ+

j (x) denotes ψj(x) ⊗ e1 and ψ−
j (x) denotes

ψj(x)⊗ e2, where {e1, e2} is the standard basis for C2.
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What the expression for Ψ0 means is that, if we ignore (at first) the inter-
action between the electrons, but retain the Pauli exclusion principle, then
we put the first electron into the ground state of the single-electron system,
with “spin up” (i.e., tensored with e1). Then we put the second electron
into the ground state with “spin down” (tensored with e2). Then the third
electron goes into the first excited state of the single-electron system with
spin up, and so on. Of course, this model of a multielectron atom is very
rough, since the interaction between the electrons actually plays a signif-
icant role. Nevertheless, this model highlights the critical role played by
the exclusion principle, which forces successive electrons to go into higher
and higher energy states. In particular, this crude approximation suggests
(correctly!) that even for more realistic models of a multielectron atom, the
lowest energy level in the antisymmetric subspace of L2(R3N ; (C2)⊗N ) is
much higher than the lowest energy level of the same Hamiltonian in all of
L2(R3N ; (C2)⊗N ).
Meanwhile, in quantum statistical mechanics, one considers a large col-

lection of identical particles confined to some finite region of space. If the
system is isolated (rather than in thermal equilibrium with its environ-
ment), the goal of statistical mechanics is to “count” the number N(E) of
quantum states with energy less than E, as a function of E. [That is, N(E)
is number of eigenvalues for the Hamiltonian less than E, counted with their
multiplicity.] As the preceding discussion of the Pauli exclusion principle
suggests, we will get very different answers for N(E) if the particles are
fermions than if they are bosons. Bosons are said to follow Bose–Einstein
statistics, whereas fermions are said to follow Fermi–Dirac statistics. The
term “statistics” here refers to the different behavior of the two types of
particles in quantum statistical mechanics. The spin–statistics theorem in
quantum field theory tells us that particles with integer spin have to be
bosons (obeying Bose–Einstein statistics) and particles with half-integer
spin have to be fermions (obeying Fermi–Dirac statistics).
One fascinating example of quantum statistical mechanics occurs when

the particles are bosons and the interaction between particles is negligible.
In that case, the lowest energy state will simply be

Ψ0(x
1,x2, . . . ,xN ) = ψ0(x

1)⊗ ψ0(x
2)⊗ · · · ⊗ ψ0(x

N ),

where ψ0 is the ground state of the single-particle system. Now, quantum
statistical mechanics tells us that at a given temperature, the state of the
system will be an (incoherent) superposition of the ground state and the
various excited states. If the temperature is low enough, then the coeffi-
cient of the ground state will be close to 1, and thus, “all the particles are
in the ground state.” A system in such a state is called a Bose–Einstein
condensate, a state that was predicted on theoretical grounds by Satyendra
Nath Bose and Einstein in the 1920s. Bose–Einstein condensates were first
observed experimentally in laser-cooled gases in June 1995 by Eric Cornell
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and Carl Wieman, in work for which they, along with Wolfgang Ketterle,
were awarded the 2001 Nobel Prize in physics.

19.8 Exercises

1. Suppose that X is a Hilbert–Schmidt operator on H and that {ej} is
an orthonormal basis for H. Show that

‖X‖2HS =
∑

j,k

|〈ej, Xek〉|2 .

2. Given φ, ψ ∈ H, let |φ〉〈ψ| denote the operator defined in Notation 3.28.
Show that if A ∈ B(H) is trace class, then

trace(A |φ〉〈ψ|) = 〈ψ,Aφ〉 .

Hint : If {ej} is an orthonormal basis for H, then for any χ ∈ H, we
have χ =

∑
j 〈ej , χ〉 ej .

3. Suppose Φ : B(H) → C is a linear functional with the properties
(1) that Φ(A) is real whenever A is self-adjoint and (2) that Φ(A)
is real and non-negative whenever A is self-adjoint and non-negative.
Show that if A is self-adjoint, then

−‖A‖Φ(I) ≤ Φ(A) ≤ ‖A‖Φ(I).

Conclude that Φ is bounded relative to the operator norm on B(H).

Hint : Show that if A is self-adjoint, then ‖A‖ I +A and ‖A‖ I −A are
non-negative.

4. An operator A ∈ B(H) is said to have finite rank if range(A) is finite
dimensional.

(a) Show that if A ∈ B(H) has finite rank, then so does A∗.

(b) Given A ∈ B(H), show that A has finite rank if and only if there
exist vectors φ1, . . . , φN and ψ1, . . . , ψN such that

A = |φ1〉〈ψ1|+ · · ·+ |φN 〉〈ψN | .

(c) Let A be any element of B(H), let {ej} be an orthonormal basis
for H, and let PN be the orthogonal projection onto the span
of e1, . . . , eN . Show that PNA has finite rank and that for all
ψ ∈ H, we have

lim
N→∞

‖PNAψ −Aψ‖ = 0.
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Note: This result shows that each bounded operator can be ex-
pressed as a strong limit of finite-rank operators. By contrast,
if dimH = ∞, then Part (a) of Exercise 5 shows that not every
bounded operator can be expressed as an operator-norm limit
of finite-rank operators.

5. In this exercise, assume that dimH = ∞.

(a) Show that if A has finite rank, then ‖A+ cI‖ ≥ |c| for any c ∈ C.
(With c = −1, this shows that I is not an operator-norm limit
of finite-rank operators.)

(b) Let K(H) denote the closure of the finite-rank operators with
respect to the operator norm on B(H). Let V denote the space
of operators of the form B+ cI, with B ∈ K(H). Define a linear
functional Φ : V → C by Φ(B+ cI) = c for all B ∈ K(H). Show
that |Φ(A)| ≤ ‖A‖ for all A ∈ V.

Note: It can be shown that K(H) is precisely the space of
compact operators on H.

(c) Let Ψ1 : B(H) → C be any linear functional such that Ψ1 = Φ on
V and such that |Ψ1(A)| ≤ ‖A‖ for all A ∈ B(H). (Such a func-
tional exists by the Hahn–Banach theorem.) Let Ψ2 : B(H) → C

be defined by

Ψ2(A) =
1

2
(Ψ1(A) + Ψ1(A∗)).

Show that Ψ2 satisfies Properties 1, 2, and 3 of Definition 19.6,
but that there does not exist any density matrix ρ such that
Ψ2(A) = trace(ρA) for all A ∈ B(H). (Thus, in light of
Theorem 19.9, Ψ2 must not satisfy Property 4 of Definition 19.6.)

6. In Exercises 6, 7, and 8, assume that each density matrix ρ is
compact, so that ρ has an orthonormal basis {ej} of eigenvectors, for
which the associated eigenvalues {λj} are real and tend to zero as j
tends to infinity. (Compare Theorem VI.16 in [34].)

Show that a density matrix ρ is a pure state if and only if trace(ρ2) = 1.

7. (a) Show that each mixed state ρ is a nontrivial convex combination
of other density matrices.

(b) Show that a pure state cannot be expressed as a nontrivial convex
combination of other density matrices.

Hint : Show that the function f(λ) := trace
(
(λρ1 + (1− λ)ρ2)

2
)
is a

convex function of λ.
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8. For any density matrix ρ, show that the von Neumann entropy S(ρ) :=
trace(−ρ log ρ) is zero if and only if ρ is a pure state.

9. Prove Lemma 19.14.

Hint : First use the principle of uniform boundedness (Theorem A.40)
to show that there exists a constant C with ‖An‖ ≤ C for all n. Then, if
{fj} is an orthonormal basis for H2, decompose H1⊗̂H2 as the Hilbert
space direct sum of the subspacesH1⊗fj, where each of these subspaces
is isometrically identified with H1 in the obvious way.

10. Suppose that ψ1 and ψ2 are two linearly independent elements of
L2(R3;C2). Show that the function Φ in (19.10) is a nonzero element
of L2(R6;C2 ⊗ C2).



20
The Path Integral Formulation
of Quantum Mechanics

We turn now to a topic that is important already for ordinary quantum
mechanics and essential in quantum field theory: the so-called path inte-
gral. In the setting of ordinary quantum mechanics (of the sort we have
been considering in this book), the integrals in question are over spaces of
“paths,” that is, maps of some interval [a, b] into Rn. In the setting of quan-
tum field theory, the integrals are integrals over spaces of “fields,” that is,
maps of some region inside Rd into Rn. Formal integrals of this sort abound
in the physics literature, and it is typically difficult to make rigorous math-
ematical sense of them—although much effort has been expended in the
attempt! In this chapter, we will develop a rigorous integral over spaces of
paths by using theWiener measure, resulting in the Feynman–Kac formula.
We begin with the Trotter product formula, which will be our main tool

in deriving the path integral formulas. From there we turn to the (heuristic)
path integral formula of Feynman, and then to the rigorous version of
Feynman’s result obtained by M. Kac, the so-called Feynman–Kac formula.
Although it is not feasible to give complete proofs of all results presented
here, we give enough proofs to get a flavor of the mathematics involved.
We will prove a version of the Trotter product formula and, assuming the
existence of the Wiener measure, a version of the Feynman–Kac formula.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5 20,
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20.1 Trotter Product Formula

The Lie product formula (Point 7 of Theorem 16.15) says that for all X
and Y in Mn(C), we have

eX+Y = lim
m→∞

(eX/meY/m)m.

The Trotter product formula asserts that a similar result holds for certain
classes of unbounded operators on Hilbert spaces.

Theorem 20.1 (Trotter Product Formula) Suppose that A and B are
self-adjoint operators on H and that A+B is densely defined and essentially
self-adjoint on Dom(A) ∩Dom(B). Then the following results hold.

1. For all ψ ∈ H, we have

lim
N→∞

∥∥∥eit(A+B)ψ − (eitA/NeitB/N )Nψ
∥∥∥ . (20.1)

2. If A and B are bounded below, then for all ψ ∈ H, we have

lim
N→∞

∥∥∥e−t(A+B)ψ − (e−tA/Ne−tB/N )Nψ
∥∥∥ . (20.2)

In both results, the expression A + B refers to the unique self-adjoint ex-
tension of the operator defined on Dom(A) ∩Dom(B).

In the usual terminology of functional analysis, (20.1) asserts that the
operators (eitA/NeitB/N )N converge to eit(A+B) in the “strong operator
topology,” and similarly with (20.2).
We will give a proof of this result in the special case in which A + B

is densely defined and self-adjoint on Dom(A) ∩ Dom(B). This condition
holds, for example, whenever the Kato–Rellich theorem (Theorem 9.37)
applies. See Sect. A.5 of [14] for a proof of the version stated above.
Proof. Since all the operators in Point 1 of the theorem are unitary, it
is easy to see that if the result holds on some dense subspace W of H,
it holds on all of H. In Point 2 of the theorem, we first make a simple
reduction to the case where A and B are non-negative, and then have the
same conclusion, since all operators involved will then be contractions.
We will prove Point 1 of the theorem, with the proof of Point 2 being sim-

ilar. Let us introduce the notation Ss := eis(A+B) and Ts := eisAeisB .What
we want to prove is that for each ψ ∈ H, the quantity

∥∥(St − (Tt/N )N )ψ
∥∥

tends to zero as N tends to infinity. Now, a simple calculation shows that

∥∥(St − (Tt/N )N )ψ
∥∥ =

∥∥∥∥∥∥

N−1∑

j=0

(Tt/N )j(St/N − Tt/N )(St/N )N−j−1ψ

∥∥∥∥∥∥
. (20.3)
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Since S· is a one-parameter unitary group, (St/N )N−j−1ψ = Ssψ, where
s = (N − j − 1)t/N. Thus, if we let ψs = Ssψ, we have

∥∥(St − (Tt/N )N )ψ
∥∥ ≤ N sup

0≤s≤t

∥∥(St/N − Tt/N )ψs

∥∥ . (20.4)

Now, for any ψ in Dom(A+B), we have

lim
N→∞

N(St/Nψ − ψ) = it(A+B)ψ,

by Stone’s theorem. Meanwhile, according to Exercise 2, we have

lim
s→0

1

s
(Ts − I)ψ = iAψ + iBψ, (20.5)

for all ψ ∈ Dom(A) ∩Dom(B). (This result is clear at the heuristic level.)
Thus,

lim
N→∞

N(St/N − Tt/N )ψ = lim
N→∞

N(St/N − I)ψ − lim
N→∞

N(Tt/N − I)ψ

= it(A+B)ψ − it(A+B)ψ = 0 (20.6)

for every ψ ∈ Dom(A) ∩Dom(B).
Let W = Dom(A) ∩ Dom(B), which is, by assumption, dense in H,

equipped with the norm ‖·‖1 given by

‖ψ‖1 = ‖ψ‖+ ‖(A+B)ψ‖ .

Since we are assuming A + B is self-adjoint, and thus also closed, on W,
we see that W is a Banach space with respect ‖·‖1 (Exercise 6 in Chap. 9).
Now, the operators N(St/N − Tt/N ) are certainly bounded from W to H,
for each N. Furthermore, (20.6) shows that for each ψ ∈ W, we have

sup
N

∥∥N(St/N − Tt/N )ψ
∥∥ < ∞.

Thus, by the principle of uniform boundedness (Theorem A.40), there is a
constant C such that

∥∥N(St/N − Tt/N )ψ
∥∥ ≤ C ‖ψ‖1

for all ψ ∈ W. It then follows (Exercise 3) that
∥∥N(St/N − Tt/N )ψ

∥∥ tends
to zero uniformly on every compact subset of W.
Suppose, now, that for each ψ ∈ W, the s �→ ψs is continuous in W . If

so, the image of the compact interval [0, t] under s �→ ψs will be compact
in W, and so

∥∥N(St/N − Tt/N )ψs

∥∥ will tend to zero uniformly in s. Thus,
by (20.4), we will have Point 1 of the theorem. To establish the desired
continuity, we first note that by Lemma 10.17, the operators Ss = eis(A+B)
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preserve Dom(A + B), which is equal to W, by assumption. Then for any
s, r ∈ [0, t] and ψ ∈ W, we have

∥∥∥eis(A+B)ψ − eir(A+B)ψ
∥∥∥
1

=
∥∥∥eis(A+B)ψ − eir(A+B)ψ

∥∥∥+
∥∥∥(A+B)(eis(A+B)ψ − eir(A+B)ψ)

∥∥∥

=
∥∥∥(eis(A+B) − eir(A+B))ψ

∥∥∥+
∥∥∥(eis(A+B) − eir(A+B))(A+B)ψ

∥∥∥ , (20.7)

where we have used Lemma 10.17 again in the second equality. The strong
continuity of eis(A+B) (Proposition 10.14) then ensures that the right-hand
side of (20.7) tends to zero as s approaches r.

20.2 Formal Derivation of the Feynman Path
Integral

In this section, we apply Point 1 of the Trotter product formula to the
operator

− 1

�
Ĥ =

�

2m
∆− 1

�
V (X). (20.8)

Let us call the operators on the right-hand side of (20.8) A and B, re-
spectively, and let us assume V is sufficiently nice that Ĥ is essentially
self-adjoint on Dom(A) ∩ Dom(B). Any bounded potential certainly has
this property, as do many unbounded potentials. (See, e.g., Theorem 9.38.)
Point 1 of Theorem 20.1 then tells us that

e−itĤ/ℏψ = lim
N→∞

(
exp

{
itℏ∆

2mN

}
exp

{
− itV (X)

Nℏ

})N

ψ.

Under mild assumptions on ψ, Theorem 4.5 (extended to n dimensions)
tells us that exp(itℏ∆/(2mN)) may be computed as

eit�∆/(2mN)ψ(x0) =

(
mN

itℏ

)n/2 ∫

Rn

exp

{
i
mN

2tℏ
|x1 − x0|2

}
ψ(x1) dx1.

Meanwhile, exp(−itV (X)/(Nℏ)) is simply a multiplication operator.
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Thus, assuming that Theorem 4.5 applies at each stage, we have

[(
exp

{
itℏ∆

2mN

}
exp

{
− itV (X)

Nℏ

})N

ψ

]
(x0)

= C

∫

Rn

exp

{
i
mN

2tℏ
|x1 − x0|2

}
exp

{
− itV (x1)

Nℏ

}

×
∫

Rn

exp

{
i
mN

2tℏ
|xN−1 − xN−2|2

}
exp

{
− itV (xN−1)

Nℏ

}

× · · · ×
∫

Rn

exp

{
i
mN

2tℏ
|xN − xN−1|2

}
exp

{
− itV (xN )

Nℏ

}

× ψ(xN ) dxN dxN−1 · · · dx1,

where C = (mN/(itℏ))nN/2. Letting ε = t/N and assuming we can freely
rearrange the order of integration, we obtain

(e−itĤ/�ψ)(x0)

= lim
N→∞

C

∫

(Rn)N
exp

⎧
⎨
⎩

i

ℏ

N∑

j=1

ε

[
m

2

∣∣∣∣
xj − xj−1

ε

∣∣∣∣
2

− V (xj−1)

]⎫⎬
⎭

× ψ(xN ) dx1 dx2 · · · dxN . (20.9)

So far, the argument is mostly rigorous, coming from the Trotter product
formula and Theorem 4.5. The nonrigorous part comes in attempting to
evaluate the limit on the right-hand side of (20.9). Let us think of the
values xj , j = 0, . . . , N as constituting the values of a path x(s) at the
points sj := jε = jt/N :

xj = x(jt/N).

Since the distance between sj−1 and sj is ε, the quantity |xj − xj−1|/ε is
an approximation to the derivative of x(s) with respect to s. Meanwhile,
the sum over j in the right-hand side of (20.9) is an approximation to an
integral. Thus, if we then take the limit of the right-hand of (20.9) in a
totally nonrigorous fashion, we obtain

(e−itĤ/�ψ)(x0)

= C

∫
paths with
x(0)=x0

exp

{
i

ℏ

∫ t

0

[
m

2

∣∣∣∣
dx

ds

∣∣∣∣
2

− V (x(s))

]
ds

}
ψ(x(t)) Dx.

(20.10)

Here, C is a normalization constant and Dx is something like “Lebesgue
measure” on the space of all paths x(·) mapping [0, t] into Rn. (The quantity
x in the expression Dx is a path, not a point in Rn.)
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The reader who is familiar with the Lagrangian approach to mechanics
will recognize the expression in square brackets in the exponent on the
right-hand side of (20.10) as the Lagrangian of the particle, L = T − V,

where T = (1/2)m |v|2 is the kinetic energy and V is the potential energy.
The integral of the Lagrangian over some time interval is called the action
functional, denoted by the letter S. That is to say, given a path x(·), we
define the action functional of x(·) over a time-interval [a, b] as follows:

S(x(·), a, b) :=
∫ b

a

[
m

2

∣∣∣∣
dx

ds

∣∣∣∣
2

− V (x(s))

]
ds. (20.11)

In Lagrangian mechanics, one shows that the solutions to Newton’s law are
precisely the stationary points of the action functional. Using the notation
in (20.11), we may rewrite (20.10) as

(e−itĤ/�ψ)(x0) = C

∫
paths with
x(0)=x0

exp

{
i

ℏ
S(x(·), 0, t)

}
ψ(x(t)) Dx. (20.12)

This formula is the Feynman path integral formula.
Now, knowledge of Lagrangian mechanics is not directly relevant to the

derivation of the Feynman path integral formula. Nevertheless, it is intrigu-
ing that the an important quantity from classical mechanics should appear
in the Feynman path integral formula in quantum mechanics. Indeed, this
appearance raises the possibility that one can use the path integral formula
to make connections between quantum mechanics and classical mechanics.
Indeed, the “method of stationary phase” (when applied, formally, in an
infinite-dimensional setting) asserts that for small values of �, the main
contribution to the right-hand side of (20.12) comes from regions near the
stationary points of the action functional, namely the classical trajectories.
Using this method, Gutzwiller was able to derive his famous trace formula,
which provides predictions of typical eigenvalue spacings for Schrödinger
operators based on the behavior of the underlying classical system. More
information about this fascinating subject can be found in books on “quan-
tum chaos,” including [19] by Gutzwiller himself.
It is notoriously difficult to attach a rigorous meaning to the right-hand

side of the Feynman path integral formula. Note that the formal expression
“Dx” is the limit as N tends to infinity of the integral over (Rn)N in
(20.9) with respect to the Lebesgue measure (i.e., the measure given by
dx1 dx2 · · · dxN ). Thus, “Dx” should be something like Lebesgue measure
on the space of all paths (maps from [0, t] into Rn). However, it is known
that an infinite-dimensional vector space (say, a Banach space) does not
have any “reasonable” (say, σ-finite) translation-invariant measure that
could play the role of Lebesgue measure. Furthermore, the absolute value
of the constant C is easily seen to be infinite. Thus, we certainly cannot
take the right-hand side of (20.12) literally.
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A better approach is to avoid looking at the component parts of the
Feynman path integral and instead to look at the whole expression against
which the function ψ(x(t)) is being integrated. If we could attach a rigorous
meaning to the expression

C exp

{
i

ℏ
S(x(·), 0, t)

}
Dx, (20.13)

as, say, a complex-valued measure on the space of continuous paths, then
this could serve to give a meaning to the path integral. It is known, however,
that there is no complex measure on the space of paths that makes the
Feynman path integral formula true. The oscillatory behavior produced by
the i in the exponent in (20.13) makes it difficult to give a rigorous meaning
to the Feynman path integral in its original form.

20.3 The Imaginary-Time Calculation

In trying to give a rigorous meaning to the path integral formula of Feyn-
man, Kac proceeded by considering the “imaginary time” time-evolution
operator exp(−tĤ/ℏ), which is just the usual time-evolution operator
exp(−itĤ/ℏ) evaluated with t replaced by −it. The idea is that if one
can use path integrals to understand the operators exp(−tĤ/ℏ), one can
go back to the “real time” operator exp(−itĤ/�) by analytic continuation
with respect to t.
The counterpart of Theorem 4.5 for exp(−tℏ∆/(2m)) (proved in the

same way) is

(e−t�∆/(2m)ψ)(x0) =
( m

2πtℏ

)n/2
∫

Rn

exp
{
− m

2tℏ
|x1 − x0|2

}
ψ(x1) dx1.

Unlike Theorem 4.5, however, the above expression holds for all ψ ∈ L2(Rn),
with absolute convergence of the integral for every x0 ∈ Rn. Applying the
Trotter product formula and rearranging the integral as before gives

(e−tĤ/�ψ)(x0)

= lim
N→∞

C

∫

(Rn)N
exp

⎧
⎨
⎩− 1

ℏ

N∑

j=1

ε

[
m

2

∣∣∣∣
xj − xj−1

ε

∣∣∣∣
2

+ V (xj−1)

]⎫⎬
⎭

× ψ(xN ) dx1 dx2 · · · dxN . (20.14)

If V is, say, bounded below, then there is no difficulty in changing the
order of integration, because of the rapid decay of the integrand. Note that
there is a relative sign change between the two terms in square brackets,
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compared to (20.9). Taking a formal limit as before gives

(e−tĤ/�ψ)(x)

= C

∫
paths with
x(0)=x0

exp

{
− 1

ℏ

∫ t

0

[
m

2

∣∣∣∣
dx

ds

∣∣∣∣
2

+ V (x(s))

]
ds

}
ψ(x(t)) Dx.

(20.15)

Note that the integral in the exponent on the right-hand side is not the
classical action in (20.11), because the potential term has the wrong sign.
Kac’s idea was to separate out the quadratic part of the exponent on the

right-hand side of (20.15) and attempt to interpret the expression

C exp

{
− 1

ℏ

∫ t

0

m

2

∣∣∣∣
dx

ds

∣∣∣∣
2

ds

}
Dx (20.16)

as a measure on the space of paths. Specifically, this is a Gaussian measure,
one with a (formal) density with respect to the Lebesgue measure that is
the exponential of a quadratic expression. There is a well-developed the-
ory of Gaussian measures on infinite-dimensional spaces. Although there
is no Lebesgue measure in the infinite-dimensional case, one can construct
Gaussian measures as limits of Gaussian measures on spaces of large finite
dimension.

20.4 The Wiener Measure

Kac identified the formal expression in (20.16) as the Wiener measure. To
be precise, for each fixed x0 ∈ R, there is a Wiener measure μx0

, where μx0

is supported on the set of paths x : [0, t] → R with x(0) = x0. The Wiener
measure was developed by Norbert Wiener as a rigorous embodiment of
Albert Einstein’s mathematical model of Brownian motion. Einstein, in one
of his 1905 papers, had proposed that the random motion of a very small
particle in water was due to collisions between the particle and the water
molecules. Einstein postulated that the increments of a Brownian path
x [quantities of the form x(t) − x(s)] should be independent for disjoint
time intervals and should be normal random variables with mean zero and
variance proportional to t − s. The following theorem shows that there
is a unique measure on the space of continuous paths satisfying Einstein’s
criteria. Let Cx0

([0, t];Rn) denote the space of continuous maps x(·) of [0, t]
into Rn satisfying x(0) = x0, equipped with the supremum norm.

Theorem 20.2 (Wiener) For each vector x0 ∈ Rn and each pair of pos-
itive numbers σ and t, there exists a unique measure μσ

x0
on the Borel σ-

algebra in Cx0
([0, t];Rn) such that the following condition holds. For each



20.5 The Feynman–Kac Formula 449

sequence 0 = t0 < t1 < · · · < tN ≤ t of real numbers and each non-negative
measurable function f on (Rn)N , we have

∫

Cx0
([0,t];Rn)

f(x(t1),x(t2), . . . ,x(tN )) dμσ
x0
(x)

= C

∫

RN

exp

⎧
⎨
⎩− 1

2σ

N∑

j=1

|xj − xj−1|2
tj − tj−1

⎫
⎬
⎭ f(x1,x2, . . . ,xN ) dx1 · · · dxN ,

(20.17)

where

C =

N∏

j=1

1√
2πσ(tj − tj−1)

.

Note that the right-hand side of (20.17) is extremely similar to the right-
hand side of (20.14), except that there are no terms involving the potential
V in the exponent in (20.17). Thus, it is reasonable to think that the Wiener
measure is a rigorous version of the formal expression in (20.16). It should
be noted, however, that the heuristic expression (20.16) is misleading in one
important respect. That expression suggests that the measure is supported
on paths x(·) for which dx/dt belongs to L2([0, t];Rn), since the exponential
factor would seemingly “damp out” any paths for which this is not the case.
This conclusion is, however, incorrect. [One should, in general, be extremely
cautious in drawing conclusions based on purely formal expressions such as
the one in (20.16).] Actually, the “typical” path with respect to the Wiener
measure is nowhere differentiable; that is, the set of paths x(t) that are
differentiable for even one value of t form a set of measure zero.
This discrepancy is actually a general feature of Gaussian measures on

infinite-dimensional spaces: They are always supported on a larger space
than the formal expression would suggest. In the case of the Wiener mea-
sure, the space on which the measure actually lives (the space of continuous
functions) is nice enough that no difficulties arise in the formulation of our
main result, the Feynman–Kac formula. In the setting of quantum field the-
ory, however, issues concerning the support of a Gaussian measure become
serious difficulties. See Sect. 20.6 for more information.

20.5 The Feynman–Kac Formula

The Wiener measure gives a rigorous interpretation to the expression in
(20.16). Thus, the Wiener measure encapsulates everything in (20.15) ex-
cept for the term involving V in the exponent and the factor of ψ(x(t)).
This reasoning accounts for the form of the following result.
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Theorem 20.3 (Feynman–Kac Formula) Suppose V : R3 → R can be
expressed as the sum of a function in L2(R3) and a bounded function. Then
for all x0 ∈ R3, we have

(e−tĤ/�ψ)(x0)

=

∫

Cx0
([0,t];R3)

exp

{
− 1

ℏ

∫ t

0

V (x(s)) ds

}
ψ (x(t)) dμσ

x0
(x),

where μσ
x0

is the Wiener measure on Cx0
([0, t];R3) and where σ = �/m.

Of course, similar results hold in other dimensions, under suitable as-
sumptions on the potential. We refer the interested reader to [37] or [14]
for details on different versions of the Feynman–Kac formula. Theorem 20.3
cannot be obtained directly from the Trotter product formula, because the
limit in (20.14) is an L2 limit rather than a pointwise limit. We will con-
tent ourselves with proving an “integrated” version of the Feynman–Kac
formula for nice potentials; Theorem 20.3 is Theorem 6.5 of [37].

Definition 20.4 Let C([0, t];Rn) denote the space of all continuous paths
on [0, t] with values in Rn. For all σ > 0, let μσ be the measure on
C([0, t];Rn) given by

μ(E) =

∫

Rn

μσ
x0
(E) dx0.

Proposition 20.5 Suppose V : Rn → R is bounded and continuous. Then
for all φ, ψ ∈ L2(Rn), we have

〈φ, e−tĤ/�ψ〉

=

∫

C([0,t];Rn)

φ(x(0)) exp

{
− 1

ℏ

∫ t

0

V (x(s)) ds

}
ψ (x(t)) dμσ(x),

where μσ is as in Definition 20.4 and where σ = �/m.

Proof. We begin with (20.14) and apply Theorem 20.2 with parameters
chosen as follows. We take σ = �/m, we take the sequence 〈tj〉 to be given
by tj = jt/N, and we take f to be the function given by

f(x1,x2, . . . ,xN ) = ψ(xN ).

Theorem 20.2 then allows us to express the right-hand side of (20.14) as
an integral against the Wiener measure, giving

(e−tĤ/�ψ)(x0)

= lim
N→∞

∫

Cx0
([0,t];Rn)

exp

⎧
⎨
⎩− 1

ℏ

N∑

j=1

t

N
V

(
x

(
jt

N

))⎫⎬
⎭ψ(x(t)) dμσ

x0
(x).
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Since the limit in the above equation is an L2 limit, we may move the
inner product with φ inside the limit on the right-hand side. The integral
with respect to μσ

x0
and the integral with respect to dx0 may then be

combined into a single integral with respect to μσ, giving

〈φ, e−tĤ/�ψ〉 = lim
N→∞

∫

C([0,t];Rn)

φ(x(0))

× exp

⎧
⎨
⎩− 1

ℏ

N∑

j=1

t

N
V

(
x

(
jt

N

))⎫⎬
⎭ψ (x(t)) dμσ(x). (20.18)

Now, since V is continuous,

lim
N→∞

N∑

j=1

t

N
V

(
x

(
jt

N

))
=

∫ t

0

V (x(s)) ds,

for every continuous path x. Furthermore, it is easily seen that the “distri-
bution” of the quantity x(s) with respect to the measure μσ is the Lebesgue
measure on Rn, for any s ∈ [0, t]. Thus, the function x �→ φ(x(0)) is
square-integrable with respect to μσ, with L2 norm equal to the L2 norm
of φ over Rn, and similarly for x �→ ψ(x(t)). It follows that the quantity
φ(x(0))ψ (x(t)) is an L1 function on C([0, t];Rn). Since V is bounded, we
may apply dominated convergence to move the limit inside the integral, at
which point we obtain the desired result.

20.6 Path Integrals in Quantum Field Theory

In this section, we briefly discuss the path integral approach to quantum
field theory. We consider quantum field theory in a space–time of dimension
d, so that space has dimension d−1.The configuration space for the classical
version of the theory is the collection of “spatial” fields, that is, maps φ(x)
of Rd−1 into some finite-dimensional vector space V. A path in the space
of fields is then a map φ(x, t) of Rd−1 × R ∼= Rd into V. In the path
integral approach to quantum field theory (which is the most commonly
used approach to the subject), one considers integrals over the space of
such paths.
Let us consider, as a simple example, what is called φ4 theory. In this

theory, the fields φ map into R and we consider a path integral of the form

C

∫

Fd

exp

{
− 1

�

∫

Rd

[
c1 ‖∇φ(x)‖2 + c2φ(x)

2 + c3φ(x)
4
]
dx

}

× F (φ) Dφ, (20.19)

for some functional F (φ) on the space of fields. [The expression in (20.19)
is, more precisely, a “Euclidean” or “imaginary time” path integral. Such
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an integral is the counterpart in quantum field theory of the integral occur-
ring in the Feynman–Kac formula in quantum mechanics.] In (20.19), Fd

represents the space of all “fields” (i.e., functions) mapping our space–time
Rd into R. In an attempt to make sense of this heuristic expression, we
may follow the strategy we used in deriving the Feynman–Kac formula by
separating out the quadratic part of the exponent. We look, then, for a
measure μ on Fd given by the heuristic expression

dμ(φ) “=” C exp

{
− 1

�

∫

Rd

[
c1 ‖∇φ(x)‖2 + c2φ(x)

2
]
dx

}
Dφ. (20.20)

Using the theory of Gaussian measures, one can construct a rigorously
defined measure corresponding to the heuristic expression in (20.20). There
is, however, a serious difficulty with this approach: The measure μ is sup-
ported on very “rough” fields, much rougher than the heuristic expression
suggests. In fact, we have the following result.

Proposition 20.6 For all d ≥ 1, there exists a Gaussian measure on the
space Fd of fields on Rd corresponding to the heuristic expression (20.20).
For d ≥ 2, however, this measure is not supported on any space of ordinary
functions, but rather on a space of distributions.

We will not prove this result here; see Sect. 8.5 of [14] for more informa-
tion. Here, then, is the problem with the path integral approach to quantum
field theory on space–times of dimension d ≥ 2: The functional

∫
Rd φ(x)

4 dx
does not make sense for a “typical” field with respect to the measure μ in
(20.20). As a result, we cannot make sense of (20.19) simply by absorbing
all the Gaussian part into the definition of the measure μ, since what is
left over is not a μ-almost everywhere defined functional of φ. Indeed, even
a local integral, of the form

∫
U
φ(x)4 dx for some bounded region U in

Rd, fails to be almost-everywhere defined with respect to μ. After all, if∫
U
φ(x)4 dx made sense, then φ would be a locally L4 function, rather than

a distribution.
It should be emphasized that the difficulty described in the previous

paragraph is not just a technicality that can be swept away by some simple
trick. Furthermore, this difficulty is not specific to φ4 theory, but is present
in all “nontrivial” field theories. In all interesting field theories, the fields
defined by the Gaussian part of the path integral are fundamentally “too
rough” to allow us to make sense of the non-Gaussian part of the integral.
This phenomenon is the fundamental mathematical difficulty in the path
integral approach to quantum field theory.
To have a chance to make rigorous sense of path integrals in quantum

field theory, one has to employ a complicated regularization process known
as renormalization. This process has, so far, been carried out in a rigorous
fashion only for a very small number of field theories. One of the Clay
Millennium Prize problems is to make rigorous sense out of the Yang–Mills
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field theory in four space–time dimensions. See [14] for a detailed survey
of the mathematical issues connected with the path integral approach to
quantum field theory. See also [13] for a treatment of quantum field theory
and renormalization with a greater eye toward the physical content.
Since the roughness of the fields is a major problem in trying to give a

rigorous meaning to path integrals, let us think for moment why it arises.
Suppose we wish to construct a Gaussian measure from a certain heuristic
expression of the form μ = Ce−Q(x)Dx, where Q is a positive-definite
quadratic functional of x. A reasonable approach is to consider the (real)

Hilbert space H for which ‖x‖2H = Q(x). [In the case of (20.20), H would
be the “Sobolev space” of fields having one derivative in L2.] The heuristic
expression for the Gaussian measure then takes the form

dμ(x) = Ce−‖x‖2
H Dx. (20.21)

One might now try to approximate μ by Gaussian measures μN on
Hilbert spaces HN of dimension N < ∞. If dimH < ∞, then the expres-
sion (20.21) is perfectly rigorous, where the constant C may be taken to
normalize μ to be a probability measure. A simple calculation (Exercise 4),
however, shows that for any R, we have

lim
N→∞

μN (BR,N ) = 0,

where BR,N denotes the ball of radius R in HN . This means that in the
N → ∞ limit, all of the “mass” of the measure is outside the ball of radius
R, for every R. Thus, in the limit, the measure is supported entirely on
points x where ‖x‖H = ∞, that is, on points that are not actually in H.
The measures μN do converge to a measure μ as N tends to infinity, but
μ does not live on H, but on some larger space B ⊃ H. The original space
H is a set of μ-measure zero inside B. See [16] for more information. In the
case of the measure μ corresponding to the heuristic expression in (20.20),
μ does not—as the expression suggests—live on the Sobolev space of fields
with one derivative in L2, but on a larger space, which turns out to be a
space of distributions.

20.7 Exercises

1. Verify the identity (20.3) in the proof of the Trotter product formula.

2. Verify (20.5) in the proof of the Trotter product formula, using Stone’s
theorem and the following identity:

1

s
(eisAeisB − I)ψ = eisA(iBψ) + eisA

(
1

s
(eisB − I)ψ − iBψ

)

+
1

s
(eisA − I)ψ.
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3. Suppose {AN} is a family of bounded operators mapping a Banach
space W1 to a Banach space W2. Suppose that for some constant C,
we have ‖AN‖ ≤ C for all N. Finally, suppose that ‖ANψ‖ → 0 as
N → ∞, for every ψ ∈ W.

(a) Show that for each ψ ∈ W and each ε > 0, there exists a neigh-
borhood U of ψ and an integer M such that

‖ANφ‖ < ε

for all φ ∈ U and N ≥ M.

(b) If K is a compact subset of W, show that ‖ANψ‖ tends to zero
uniformly for ψ ∈ K.

4. (a) Let HN be an N -dimensional Hilbert space. Show that the mea-
sure

dμN (x) := π−N/2e−‖x‖2

dx

is a probability measure. Here dx is the Lebesgue measure on
HN , normalized to that the unit cube has volume 1.

Hint : Use Proposition A.22.

(b) Let BR,N denote the ball of radius R in HN . Show that for each
R < ∞, there exists number aR < 1 such that

μN (BR,N ) < (aR)
N .

Thus, limN→∞ μN (BR,N ) = 0.

Hint : The ball BR,N is contained in a cube centered at the origin
with side length 2R.
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Hamiltonian Mechanics on Manifolds

In this chapter, we generalize the Hamiltonian approach to mechanics (in-
troduced already in the Euclidean case in Sect. 2.5) to general manifolds.
The chapter assumes familiarity with the basic notions of smooth mani-
folds, including tangent and cotangent spaces, vector fields, and differen-
tial forms. These notions are reviewed very briefly in Sect. 21.1, mainly in
the interest of fixing the notation. See, for example, Chap. 2 of [40] for a
concise treatment of manifolds and [29] for a detailed account. Throughout
the chapter, we will use the summation convention, that repeated indices
are always summed on.

21.1 Calculus on Manifolds

Throughout this section, M will denote a smooth, n-dimensional manifold.

21.1.1 Tangent Spaces, Vector Fields, and Flows

For each x ∈ M, we have the tangent space to M at x, denoted TxM. Given
a smooth coordinate system x1, . . . , xn on M, the vectors

∂

∂x1
, . . . ,

∂

∂xn
(21.1)

form a basis for the tangent space at each point. A vector field X on M
is map assigning to each point x ∈ M an element Xx of TxM. A vector
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field X is smooth if the coefficients of X in a basis of the form (21.1) are
smooth functions, for every smooth coordinate system. As in Exercise 14
in Chap. 2, we think of a vector field as a first-order differential operator
satisfying the Leibniz rule:

X(fg) = X(f)g + fX(g).

Given a smooth vector field X on M and a point x ∈ M, there exists a
curve γx : (a, b) → M such that γx(0) = x and

dγx
dt

= Xγx(t).

Any two such curves agree on the intersection of their intervals of definition.
There is a largest interval (amax

x , bmax
x ) on which such a curve can be defined.

If, for each x ∈ M, we have amax
x = −∞ and bmax

x = +∞, we say that the
vector field X is complete. If M is compact, then each smooth vector field
onM is complete. We may assemble the curves γx into the flow Φ generated
by X, defined as

Φt(x) = γx(t),

whenever amax
x < t < bmax

x . If t does not belong to (amax
x , bmax

x ), then Φt(x)
is not defined. The flow Φ satisfies

Φ0(x) = x. (21.2)

Furthermore, if x is in the domain of Φt and Φt(x) is in the domain of Φs,
then x is in the domain of Φs+t and

Φs(Φt(x)) = Φs+t(x). (21.3)

In the other direction, given a family of maps Φ satisfying (21.2) and
(21.3) and appropriate domain properties, there is a unique vector field X
such that Φ is the flow generated by X. In particular, if Φt(x) is defined
for all x and t, is smooth as a map of M × R into M, and satisfies (21.2)
and (21.3), there is a unique complete vector field X such that Φ is the
flow generated by X.

21.1.2 Differential Forms

For each x, the tangent space TxM is an n-dimensional real vector space.
The dual vector space to TxM is the cotangent space to M at x, denoted
T ∗
xM. Given a smooth function f on M and a point x ∈ M, the differential

of f at x is the element of T ∗
xM given by

df(X) = X(f)
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for each X ∈ Txf. In particular, in any local coordinate system x1, . . . , xn,
the elements dx1, . . . , dxn satisfy

dxj

(
∂

∂xk

)
= δjk.

Thus, the elements dx1, . . . , dxn form a basis for T ∗
xM at each point. For

any smooth function f, we have

df =
∂f

∂xj
dxj . (21.4)

A k-form α on M is a mapping assigning to each point x ∈ M a k-linear,
alternating functional αx on TxM. A k-form is smooth if α(X1, . . . , Xk) is a
smooth function on M for each k-tuple of smooth vector fields X1, . . . , Xk

on M. In particular, if f is a smooth function, then df is a smooth 1-form.
If α is a smooth k-form and X a smooth vector field, we may define the
contraction of α with X, which is the (k − 1)-form iXα given by

(iXα)(X1, . . . , Xk−1) = α(X,X1, . . . , Xk−1).

Given a k-linear form φ on a vector space V, define the antisymmetriza-
tion AS(φ) of φ by

AS(φ)(v1, . . . , vk) =
∑

σ∈Sk

sign(σ)φ(vσ(1), vσ(2), . . . , vσ(k)),

where Sk denotes the permutation group on k elements. Given a k-form α
and an l-form β on M, let α ⊗ β be the (k + l)-linear form on each TxM
given by

(α⊗ β)(X1, . . . , Xk+l) = α(X1, . . . , Xk)β(Xk+1, . . . , Xk+l).

Then let α ∧ β denote the (k + l)-form given by

α ∧ β = AS(α⊗ β).

In particular, if α and β are 1-forms, then α ∧ β is the 2-form given by

(α ∧ β)(X,Y ) = α(X)β(Y )− α(Y )β(X).

In a smooth coordinate system x1, . . . , xn, a smooth k-form α can be ex-
pressed uniquely as

α = aj1,...,jk(x) dxj1 ∧ · · · ∧ dxjk .

A 2-form ω onM is said to be nondegenerate if ω defines a nondegenerate
bilinear form on each TxM. More explicitly, this means that for each x ∈ M
and each nonzero X ∈ TxM, there exists a Y ∈ TxM such that

ω(X,Y ) 
= 0.



458 21. Hamiltonian Mechanics on Manifolds

Suppose α is a smooth k-form on M and S is a compact, oriented, k-
dimensional submanifold-with-boundary of M. Then one can define the
integral of α over M. There is a map d, called the exterior derivative,
mapping smooth k-forms to smooth (k+1)-forms and having the property
that ∫

S

dβ =

∫

∂S

β (21.5)

for every compact, oriented, k-dimensional submanifold-with-boundary S
ofM and every (k−1)-form β onM. Here ∂S is the boundary of S, with the
natural orientation induced by the orientation on M. The relation (21.5) is
known as Stoke’s theorem. A k-form α is said to be closed if dα = 0.
The exterior derivative may be computed in coordinates by the formula

d(f dxj1 ∧ · · · ∧ dxjk) =
∂f

∂xl
dxl ∧ dxj1 ∧ · · · ∧ dxjk .

A coordinate-invariant formula for the exterior derivative of a k-form α is:

dα(X1, . . . , Xk+1) =

k+1∑

j=1

(−1)j+1α(X1, . . . , X̂j , . . . , Xk+1)

+
∑

j<l

(−1)j+lα([Xj , Xl], X1, , . . . , X̂j , . . . , Xk+1),

where X̂j indicates that the Xj term is omitted and where [Xj, Xl] is the
commutator ofXj and Xl as first-order differential operators. In particular,
if α is a 1-form, we have

(dα)(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ]). (21.6)

A key identity satisfied by the exterior derivative is

d(dα) = 0

for all k-forms α. Conversely, if β is a closed (k+1)-form (i.e., dβ = 0), then
β can be expressed locally in the form β = dα for some k-form α. More
precisely, if β is closed, then for any x ∈ M there exists a neighborhood U of
x and a k-form α defined on U such that β = dα on U. If M satisfies certain
topological conditions, then each closed k-form α on M can be expressed
globally in the form α = dβ. In particular, if M is simply connected, then
each closed 1-form β can be expressed globally in the form β = df for some
smooth function (i.e., 0-form) f.
If X is a vector field and α is a k-form, we may define the Lie derivative

of α in the direction of X , denoted LXα, as follows:

LXα =
d

dt
(Φ∗

t )(α)

∣∣∣∣
t=0

,
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where Φt is the flow generated by X and (Φ∗
t )(α) is the pullback of α by

Φt. The Lie derivative may be computed using the formula

LX = iX ◦ d+ d ◦ iX . (21.7)

21.2 Mechanics on Symplectic Manifolds

The reader is warned that sign conventions in the subject of Hamiltonian
mechanics are not consistent from author to author.

21.2.1 Symplectic Manifolds

A symplectic manifold is, roughly, a manifold with enough additional struc-
ture to allow one to define the Poisson bracket of two functions.

Definition 21.1 A symplectic manifold is a smooth manifold N to-
gether with a closed, nondegenerate 2-form ω on N. If (N1, ω1) and (N2, ω2)
are symplectic manifolds, a map Φ : N1 → N2 is a symplectomorphism

if Φ is a diffeomorphism and in addition

Φ∗(ω2) = ω1.

It is not hard to see that every symplectic manifold must be even dimen-
sional, for the simple reason that an odd-dimensional vector space does not
admit a nondegenerate, skew-symmetric bilinear form.
Throughout this chapter, N will always denote a symplectic manifold of

dimension 2n with symplectic form ω.
We now show that the cotangent bundle of any manifold has the struc-

ture of a symplectic manifold in a canonical way. Suppose x1, . . . , xn is
a coordinate system defined on an open set U ⊂ M. Then at each point
x ∈ U, an element φ of T ∗

xM can be expressed uniquely in the form

φ = pj dxj

for a sequence p1, . . . , pn of real numbers. The quantities x1, . . . , xn and
p1, . . . , pn constitute a coordinate system on π−1(U). We refer to a coordi-
nate system of this sort as a standard coordinate system on T ∗M.

Example 21.2 For any smooth manifold M, define a 1-form θ on the
cotangent bundle T ∗M by

θ(X)(x,φ) = φ(π∗(X))

for each tangent vector X ∈ T(x,φ)(T
∗M), where π : T ∗M → M is the

canonical projection. Then the 2-form ω := dθ is closed and nondegenerate.
We refer to θ and ω as the canonical 1-form and the canonical 2-form on
T ∗M, respectively.
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Proof. Using a coordinate system {xj} on X and the associated stan-
dard coordinate system {xj , pj} on T ∗M, the projection π is given by
π(x, p) = x. Meanwhile, a tangent vector X to T ∗M is expressible as a
linear combination the ∂/∂xj ’s and ∂/∂pj’s. Thus,

θ

(
ak

∂

∂xk
+ bk

∂

∂pk

)
= (pj dxj)

(
ak

∂

∂xk

)
.

What this means is that
θ = pj dxj ,

where the xj ’s are now viewed as functions on T ∗M rather than on M. We
have, then,

ω = dθ = dpj ∧ dxj .

It is now easy to see that ω is nondegenerate (Exercise 1).

21.2.2 Poisson Brackets and Hamiltonian Vector Fields

If ω is nondegenerate, then it gives a canonical identification of TzN with
T ∗
zN at each point, by identifying a vector X in TzN with the linear func-

tional ω(X, ·) in T ∗
zN. We can then transfer the bilinear form ω from TzN

to T ∗
zN by means of this identification. We denote the resulting bilinear

form on T ∗
z N by ω−1.

Definition 21.3 If f and g are smooth functions on N, define the Pois-

son bracket {f, g} of f and g by

{f, g} = −ω−1(df, dg).

In particular, if 1 denotes the constant function on N, then {1, f} =
{f,1} = 0 for all smooth functions f.

Example 21.4 If ω is the canonical 2-form on T ∗M, then the associated
Poisson bracket may be computed in standard coordinates as

{f, g} =
∂f

∂xj

∂g

∂pj
− ∂f

∂pj

∂g

∂xj

for all smooth functions f and g on T ∗M.

Proof. The linear functional

ω

(
∂

∂xj
, ·
)

has a value of −1 on the vector ∂/∂pj and a value of 0 on all the other
basic partial derivatives. This means that ω(∂/∂xj, ·) = −dpj. Similarly,
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ω(∂/∂pj, ·) = dxj . We may thus compute, for example, that

−1 = ω

(
∂

∂xj
,

∂

∂pj

)

= ω−1(−dpj , dxj)

= ω−1(dxj , dpj).

Meanwhile, ω−1(dxj , dxk) = ω−1(dpj , dpk) = 0 and ω−1(dpj , dxk) = 0
when j 
= k. Thus, we compute that

{f, g} = −ω−1

(
∂f

∂xj
dxj +

∂f

∂pj
dpj ,

∂g

∂xk
dxk +

∂g

∂pk
dpk

)

=
∂f

∂xj

∂g

∂pk
δjk − ∂f

∂pj

∂g

∂xk
δjk,

which reduces to the claimed expression.

Proposition 21.5 For any smooth functions f, g, h on N , we have

{g, f} = −{f, g}

and
{f, gh} = {f, g}h+ g{f, h}.

Proof. Since ω is skew-symmetric on the tangent space to N at each point
and ω−1 is obtained from ω by means of an isomorphism of tangent and
cotangent space, ω−1 is a skew-symmetric form on the cotangent space. The
skew-symmetry of the Poisson bracket follows. The second relation follows
from the Leibniz product rule for d(gh) together with the bilinearity of
ω−1.

Definition 21.6 If f is a smooth function on N, let Xf be the unique
vector field on N such that

df = ω(Xf , ·). (21.8)

We call Xf the Hamiltonian vector field associated to f.

That is to say, Xf corresponds to df under the isomorphism between
tangent and cotangent spaces established by ω.

Proposition 21.7 For all f and g,

Xf (g) = {f, g} = −Xg(f).

Furthermore,
ω(Xf , Xg) = −{f, g}.
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Proof. For each z ∈ N, we are using ω to identify TzN with T ∗
zN. Equa-

tion (21.8) says that under this identification, Xf is identified with df.
Thus,

−ω−1(df, dg) = −ω(Xf , Xg) = −df(Xg) = −Xg(f).

Thus, {f, g} = −Xg(f), as claimed. A similar argument with the roles of
f and g reversed gives the claimed relationship between Xf (g) and {g, f}.
Finally,

ω(Xf , Xg) = df(Xg) = Xg(f) = −{f, g},

as claimed.

Definition 21.8 For any smooth function f on N, the Hamiltonian

flow generated by f, denoted Φf , is the flow generated by the vector field
−Xf .

In the case N = T ∗Rn ∼= R2n, this definition agrees with our notation in
Sect. 2.5.

Proposition 21.9 For any smooth function f on N, the Hamiltonian flow
Φf preserves ω.

Proof. In general, a flow Φ preserves a differential form α if and only if
the Lie derivative LXα = 0, where X is the vector field generating Φ. In
our case, since ω is closed, we have, by (21.7),

LXf
ω = d[iXf

ω] = d2f = 0,

since iXf
ω is, by the definition of Xf , equal to df.

Proposition 21.10 For any smooth functions f, g, h on N, the Jacobi
identity holds:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

This result shows that the space of smooth function on N forms a Lie
algebra under the Poisson bracket. The proof of Proposition 21.10 relies on
Proposition 21.9, which in turn relies on the fact that ω is closed.
Proof. Since the Hamiltonian flow Φf preserves ω, it also preserves ω−1

and thus

ω−1(d(g ◦ Φf
t ), d(h ◦ Φf

t )) = ω−1(dg, dh) ◦ Φf
t ,

or, equivalently,

{g ◦ Φf
t , h ◦ Φf

t } = {g, h} ◦ Φf
t .

Differentiating this relation with respect to t at t = 0 gives

{−Xf(g), h}+ {g,−Xf(h}} = −Xf({g, h}),
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or, equivalently,

−{{f, g}, h}+ {g, {f, h}} = −{f, {g, h}}.

After moving −{f, {g, h}} to the left-hand side of the equation and using
the skew-symmetry of the Poisson bracket, we obtain the Jacobi identity.

Proposition 21.11 For any smooth functions f and g on N, the Hamil-
tonian vector fields Xf and Xg satisfy

[Xf , Xg] = X{f,g}.

Proof. See Exercise 3.

21.2.3 Hamiltonian Flows and Conserved Quantities

We have seen (Proposition 21.9) that if f is a smooth function, then the
flow generated by Xf preserves ω. We have the following partial converse
to this result.

Proposition 21.12 Suppose Φ is the flow generated by a vector field −X
on N. If Φ preserves ω then X can be represented locally in the form X =
Xf for some smooth function f on N. If N is simply connected, the function
f exists globally on N.

Proof. The statement that Φ preserves ω can be expressed infinitesi-
mally as

LXω = 0.

Since also ω is closed, (21.7) tells us that

d(iXω) = 0.

Since iXω is closed, this 1-form can be expressed locally as iXω = df for
some smooth function f, which says precisely that X = Xf . If N is simply
connected, then every closed 1-form can be expressed globally as df, for
some smooth function f.
A flow of the sort in Proposition 21.12 is said to be locally Hamiltonian.

Such a flow is said to be (globally) Hamiltonian if the function f in the
proposition can be defined on all of N. (Compare Definition 21.8.) If Φ is a
Hamiltonian flow, the function f such that Φ = Φf is called a Hamiltonian
generator of Φ. If N is connected, then any two Hamiltonian generators of
Φ must differ by a constant.
To see that, in general, f is only defined locally, consider the symplectic

manifold S1×R, with symplectic form ω = dφ∧dx, where φ is the angular
coordinate on S1 and x is the linear coordinate on R. Note that the 1-form
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dφ is independent of the choice of a local angle variable on S1, since any two
such angle functions differ by a constant (an integer multiple of 2π). Thus,
dφ is a globally defined, smooth 1-form, even though there is no globally
defined, smooth angle function φ. Define a flow Φ by

Φt(φ, x) = (φ, x + t).

This flow certainly preserves ω, since dx is invariant under translations.
The flow Φ is generated by the vector field −X = ∂/∂x, and

ω(−∂/∂x, ·) = dφ.

As we have already noted, however, there is no globally defined function φ
whose differential is dφ.
Although any smooth function on a symplectic manifold N generates a

Hamiltonian flow, in physical examples there is usually one distinguished
function with a Hamiltonian flow that is thought of as “the” time-evolution
of the system.

Definition 21.13 A Hamiltonian system is a symplectic manifold N
together with a distinguished Hamiltonian flow ΦH , generated by smooth
function H on N, called the Hamiltonian of the system. A function
f is called a conserved quantity for a Hamiltonian system (N,ΦH) if
f(ΦH

t (x)) is independent of t for each fixed x ∈ N.

As in the R2n case, conserved quantities are useful in understanding the
nature of the dynamics. See the discussion following Corollary 2.26.

Proposition 21.14 For any Hamiltonian system (N,ΦH), we have

d

dt
f(ΦH

t (z)) = {f,H}(ΦH
t (z)),

for all z ∈ N, or, more concisely,

df

dt
= {f,H}.

In particular, a smooth function f on N is a conserved quantity for a
Hamiltonian system ΦH if and only if {f,H} = 0.

Proof. For the flow generated by any vector field X, we have

d

dt
f(Φt(z)) = XΦt(z)f.

If X = −Xf , then by Proposition 21.7, we have the claimed result.

Proposition 21.15 A smooth function f is a conserved quantity for a
Hamiltonian system (N,ΦH) if and only if H is invariant under the Hamil-
tonian flow Φf generated by f.
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Proof. By the previous proposition,H is invariant under the flow generated
by f if and only if {H, f} = 0, which holds if and only if {f,H} = 0, which
holds if and only if f is a conserved quantity.

21.2.4 The Liouville Form

A symplectic manifold N has a natural volume form, which allows us to
formulate an analog on N of Liouville’s theorem (Theorem 2.27).

Definition 21.16 If N is a 2n-dimensional symplectic manifold, the
Liouville form on N is the 2n-form λ given by

λ =
1

n!
ωn,

where ωn = ω ∧ · · · ∧ ω.

Since ω is, by assumption, a nondegenerate form on each tangent space
TzN, it is not hard to check that λ is a nonvanishing (2n)-linear form on
each TzN. Thus, λ determines an orientation on N. Given a compactly
supported continuous function f on N, we can define the integral of f
over N, computed with respect to the orientation determined by λ itself.
Using the version of the Riesz representation theorem for locally compact
topological spaces, one can show that there is a unique measure, called
the Liouville volume measure, for which the integral of every continuous
compactly supported function f is given by

∫
N f λ.

We are now ready to state the general form of Liouville’s theorem.

Theorem 21.17 (Liouville’s Theorem) For any smooth function f on
N, the Hamiltonian flow Φf preserves λ.

Proof. The flow Φf will preserve λ if and only if the vector field Xf satisfies
LXf

λ = 0. But

LXf
λ =

1

n!
[(LXf

ω) ∧ ω ∧ · · · ∧ ω

+ ω ∧ (LXf
ω) ∧ ω ∧ · · · ∧ ω

+ · · ·+ ω ∧ · · · ∧ ω ∧ (LXf
ω)].

Since we have already shown (Proposition 21.9) that LXf
ω = 0, we see

that LXf
λ = 0.

21.3 Exercises

1. Show that the canonical 2-form ω on T ∗M is nondegenerate.

Hint : Work in standard coordinates {xj , pj}.
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2. Show that if Φ : M → M is a diffeomorphism, then the induced map
Φ∗ : T ∗M → T ∗M is a symplectomorphism.

3. Using Proposition 21.7 and the Jacobi identity for the Poisson bracket,
verify that

[Xf , Xg] = X{f,g}

for all smooth functions f and g on N.

4. If N is compact, show that

∫

N

{f, g} λ = 0

for all smooth function f and g on N.

Hint : Apply Liouville’s theorem to the flow Φf
t .



22
Geometric Quantization on Euclidean
Space

22.1 Introduction

In this chapter, we consider the geometric quantization program in the
setting of the symplectic manifold R2n, with the canonical 2-form ω =
dpj ∧ dxj . We begin with the “prequantum” Hilbert space L2(R2n) and
define “prequantum” operators Qpre(f). These operators satisfy

Qpre({f, g}) =
1

i�
[Qpre(f), Qpre(g)]

for all f and g. Nevertheless, there are several undesirable aspects to the
prequantization map that make it physically unreasonable to interpret it
as “quantization.” To obtain the quantum Hilbert space, we reduce the
number of variables from 2n to n. Depending on how we do this reduction,
we will obtain either the position Hilbert space, the momentum Hilbert
space, or the Segal–Bargmann space. Each of these subspaces is preserved
by the prequantized position and momentum operators, and by certain
other operators of the form Qpre(f).
Although the material in this chapter is a special case of what we do in

Chap. 23, doing this case first allows us to get a feeling for the methods and
results of geometric quantization quickly, without needing to develop the
full machinery of line bundles, connections, and polarizations over general
symplectic manifolds. In any case, we would need to carry out most of the
calculations in this chapter eventually, as standard examples of the general
theory.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5 22,
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Although this chapter does not require the full machinery of symplectic
manifolds, we will make use of the notions of 1-forms and 2-forms on R2n,
along with the notion of the differential of a 1-form. In particular, the
expression (21.6) for the differential of a 1-form will be used.
The reader should be warned that sign conventions in geometric quan-

tization are not consistent from author to author. The sign conventions
used here are chosen to maintain consistency with the physics literature.
In particular, we could eliminate an annoying minus sign in the definition
of the holomorphic subspace if we were willing to allow the function pj to
quantize to i� ∂/∂xj . Since, however, the convention Pj = −i� ∂/∂xj is
universal in the physics literature, we have chosen to be consistent with
that convention and to accept some slightly inconvenient sign choices else-
where. We continue to follow the summation convention, in which repeated
indices are always summed on.

22.2 Prequantization

Ideally, a quantization procedure Q, mapping functions on a symplectic
manifold N to operators on some Hilbert space H, should satisfy the
following properties. First, Q(f) should be self-adjoint whenever f is real
valued. Second, we should have Q(1) = I, where 1 is the constant function.
Third, Q({f, g}) should be equal to [Q(f), Q(g)]/(i�). Fourth, there should
be some sort of “smallness” assumption. In the case N = R2n, for exam-
ple, we may require that H should be irreducible under the action of the
(exponentiated) position and momentum operators. (See Definition 14.6.)
Although Groenewold’s theorem (Theorem 13.13) suggests that it is unre-
alistic to expect to find a quantization procedure that satisfies all of these
properties exactly, we try to come as close as possible.
Throughout this chapter, we follow the convention of thinking of a “vec-

tor field” on RN as a first-order differential operator, as in Exercise 14 in
Chap. 2. Given, for example, the vector-valued function

X = (2x1 + x2, x1x2)

on R2, we identify X with the operator of “differentiation in the direction
of X,” that is, with the following first-order differential operator:

X = (2x1 + x2)
∂

∂x1
+ x1x2

∂

∂x2
.

In particular, given a smooth function f on R2n, the Hamiltonian vector
field Xf associated to f is thought of as a differential operator:

Xf = {f, ·} =
∂f

∂xj

∂

∂pj
− ∂f

∂pj

∂

∂xj
, (22.1)
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acting on C∞(R2n). (Compare Proposition 21.7.) By Proposition 21.11, the
commutator (as differential operators) of two Hamiltonian vector fields Xf

andXg isX{f,g}. Thus, the operators i�Xf satisfy the desired commutation
relations:

[i�Xf , i�Xg] = (i�)2X{f,g} = (i�)(i�X{f,g}).

It is tempting, then, to define a (pre)quantization map simply by tak-
ing Q(f) = i�Xf , viewed as a self-adjoint operator on the Hilbert space
L2(R2n). This map, however, does not satisfy Q(1) = I. If we to correct
our definition to Q(f) = i�Xf + f, where f means the operator of mul-
tiplication by f, then Q(1) = I but the desired commutation property is
destroyed.
It is possible to achieve both Q(1) = I and the desired commutation

relations by adding one more term as follows. If ω = dpj ∧ dxj is the
canonical 2-form on R2n, let θ be any symplectic potential for ω, that is,
any one-form with

dθ = ω. (22.2)

(We may, e.g., take θ = pjdxj .) For a smooth function f on R2n, define an
operator Qpre(f), acting on C∞(R2n), by

Qpre(f) = i�

(
Xf − i

�
θ(Xf )

)
+ f. (22.3)

The expression f on the right-hand side of (22.3) means, more precisely,
the operator of multiplication by f, and similarly for the function θ(Xf ).
Note that since θ is a 1-form and Xf is a vector field, θ(Xf ) is a function on
R2n. The operator Qpre(f) is the prequantization of f and is to be viewed
as an unbounded operator on L2(R2n), where we refer to L2(R2n) as the
prequantum Hilbert space.
According to Exercise 1, any divergence free vector field on RN is a skew-

symmetric operator on C∞
c (RN ) ⊂ L2(RN ). Meanwhile, each Hamiltonian

vector field is divergence free, as we have already remarked in the proof
of Liouville’s theorem (Theorem 2.27). Thus, for any smooth, real-valued
function f on R2n, the operator Qpre(f) is at least symmetric. It can be
shown that ifXf is complete, meaning that the associated Hamiltonian flow
is defined for all times, then Qpre(f) is actually self-adjoint on a natural
domain. (See the discussion following the proof of Proposition 23.13.)
As it turns out, the θ(Xf ) term in (22.3) is precisely what is needed to

restore the desired commutation relations, while still allowing Qpre(1) to
equal the identity.

Proposition 22.1 For all f, g ∈ C∞(R2n), we have

1

i�
[Qpre(f), Qpre(g)] = Qpre({f, g}),

where the identity is to be understood as an equality of operators on C∞

(R2n).
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Before proving this result, it is useful to understand the behavior of the
expression Xf − (i/�)θ(Xf ) occurring in the definition of Qpre(f).

Definition 22.2 For any symplectic potential θ and vector field X on R2n,
let ∇X denote the covariant derivative operator, acting on C∞(R2n),
given by

∇X = X − i

�
θ(X). (22.4)

Note that our prequantized operators can be written as

Qpre(f) = i�∇Xf
+ f.

Proposition 22.3 For any symplectic potential θ, let ∇X denote the
associated covariant derivative in (22.4). Then for all smooth vector fields
X and Y on R2n, we have

[∇X ,∇Y ] = ∇[X,Y ] −
i

�
ω(X,Y ). (22.5)

In particular, if X = Xf and Y = Xg, we have

[
∇Xf

,∇Xg

]
= ∇X{f,g}

+
i

�
{f, g}.

According to standard differential geometric definitions, the 2-form ω/�
on the right-hand side of (22.5) is the curvature of the covariant derivative
∇. For our purposes, the fact that

[
∇Xf

,∇Xg

]
in not simply ∇X{f,g}

is an
advantage. The extra term in the formula for the commutator is just what
we need to compensate for the failure of the operators i�Xf + f to have
the desired commutation relations.
Proof. Using the easily verified identity [∇X , f ] = X(f), we obtain

[∇X ,∇Y ]−∇[X,Y ] = − i

�
[X(θ(Y ))− Y (θ(X))− θ([X,Y ])].

In light of (21.6), the right-hand side becomes −(i/�)(dθ)(X,Y ), where
dθ = ω.

We may now easily prove Proposition 22.1.
Proof of Proposition 22.1. Using Proposition 22.3, we obtain

1

i�

[
i�∇Xf

+ f, i�∇Xg
+ g

]

= (i�)

(
∇X{f,g}

+
i

�
{f, g}

)
+Xf (g)−Xg(f)

= i�∇X{f,g}
− {f, g}+ {f, g}+ {f, g},

which reduces to what we want.



22.2 Prequantization 471

Example 22.4 If θ = pjdxj , the prequantized position and momentum
operators are given by

Qpre(xj) = xj + i�
∂

∂pj

Qpre(pj) = −i�
∂

∂xj
.

These operators are essentially self-adjoint on C∞
c (R2n) and their

self-adjoint extensions satisfy the exponentiated commutation relations of
Definition 14.2.

Proof. We compute that Xxj
= ∂/∂pj and that θ(Xxj

) = 0, giving the
indicated expression for Qpre(xj). Meanwhile,Xpj

= −∂/∂xj and θ(Xpj
) =

−pj. There is a cancellation of the θ(Xpj
) term in the definition of Qpre(pj)

with the pj term, leaving Qpre(pj) = i�Xpj
.

The essential self-adjointness of the operators follows from Proposition
9.40. To verify the exponentiated commutation relations, we calculate the
associated one-parameter unitary groups as

(eitQpre(xj)ψ)(x,p) = eitxjψ(x,p− t�ej)

(eitQpre(pj)ψ)(x,p) = ψ(x+ t�ej,p), (22.6)

where we now let Qpre(xj) and Qpre(pj) denote the unique self-adjoint
extensions of the given operators on C∞

c (R2n). (Compare Proposition 13.5.)
The exponentiated commutation relations can now be easily verified by
direct calculation.
As we have presented things so far, the concept of covariant derivative,

and thus also of prequantization, depends on the choice of symplectic po-
tential θ. This dependence is, however, illusory; we will now show that the
prequantum maps obtained with two different symplectic potentials are
unitarily equivalent.

Proposition 22.5 Suppose that θ1 and θ2 are two different symplectic po-
tentials for the canonical 2-form ω, so that d(θ1−θ2) = 0. Let the associated
covariant derivatives be denoted by ∇1 and ∇2 . Choose a real-valued func-
tion γ so that dγ = θ1 − θ2 and let Uγ be the unitary map of L2(R2n) to
itself given by

Uγψ = e−iγ/�ψ.

Then for every vector field X, we have

Uγ∇1
XU−1

γ = ∇2
X . (22.7)

If Qj
pre(f), j = 1, 2, are the associated prequantization maps, it follows that

UγQ
1
pre(f)U

−1
γ = Q2

pre(f). (22.8)

The map Uγ is called a gauge transformation.
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Proof. The operation of multiplication by θ1(X) commutes with
multiplication by e−iγ/�, whereas

X(eiγ/�ψ) = eiγ/�Xψ +
i

�
eiγ/�X(γ)ψ.

Since X(γ) = (dγ)(X) = θ1(X)− θ2(X), we obtain

∇1
X(eiγ/�ψ) = eiγ/�

(
X +

i

�
X(γ)− i

�
θ1(Xf )

)
ψ

= eiγ/�
(
X − i

�
θ2(Xf )

)
ψ

= eiγ/�∇2
Xψ.

Multiplying both sides of this equality by e−iγ/� gives (22.7). Equation
(22.8) follows by observing that multiplication by f commutes with multi-
plication by e−iγ/�.

22.3 Problems with Prequantization

Given the naturalness of the prequantization construction, it is tempting
to think that prequantization could actually be considered as quantization.
Why not take our Hilbert space to be L2(R2n) and the quantized operators
to be Qpre(f)? To answer this question, we now examine some undesirable
properties of prequantization.
In the first place, the Hilbert space L2(R2n) is very far from irreducible

under the action of the quantized position and momentum operators, in
contrast to the ordinary Schrödinger Hilbert space L2(Rn), which is irre-
ducible, by Proposition 14.7. Indeed, in Sect. 22.4, we will construct a large
family of invariant subspaces. (See Proposition 22.13.)
In the second place, the prequantization map is very far from being mul-

tiplicative. Of course, since quantum operators do not commute, we cannot
expect any quantization scheme Q to satisfy Q(fg) = Q(f)Q(g) for all f
and g. Nevertheless, the standard quantization schemes we have considered
in Chap. 13 do satisfy this relation for certain classes of observables f and
g. In the Weyl quantization, for example, we have multiplicativity if f and
g are both functions of x only, independent of p (or functions of p, inde-
pendent of x). For the prequantization map, however, we almost never have
multiplicativity, for the simple reason that Qpre(fg) is a first-order differ-
ential operator, whereas Qpre(f)Qpre(g) is second-order, provided there is
at least one point where Xf and Xg are both nonzero.
In the third place, the prequantization map badly fails to map positive

functions to positive operators. Although most of the quantization schemes
in Chap. 13 do not always map positive functions to positive operators, they



22.3 Problems with Prequantization 473

somehow come close to doing so. Indeed, QWeyl, QWick, and Qanti−Wick

all map the harmonic oscillator Hamiltonian to a non-negative operator,
since a∗a + (1/2)I, a∗a, and aa∗ are all non-negative. (See Exercise 4 in
Chap. 13.) By contrast, the prequantized harmonic oscillator Hamiltonian
has spectrum that is unbounded below, as we now demonstrate.

Proposition 22.6 Consider a harmonic oscillator Hamiltonian of the
form

H(x, p) =
1

2m

(
p2 + (mωx)2

)
.

Then for each integer n, the number n�ω is an eigenvalue for Qpre(H).

Note that n in the proposition is allowed to be negative, so that the
spectrum of Qpre(H) is not even bounded below. On the other hand, in
Sect. 22.5, we will consider a certain closed subspace Hα of the prequantum
Hilbert space, which is one candidate for the quantum Hilbert space. For
appropriate choice of α, the space Hα is invariant under Qpre(H) and the
restriction of Qpre(H) is self-adjoint with spectrum n�ω, where n ranges
over the non-negative integers. See Proposition 22.14. And finally, when
we introduce half-forms in Sect. 23.7, we will finally restore the spectrum
(n+1/2)�ω, where n ranges over the non-negative integers, that we found
in Chap. 11.
Proof. We can write H as

H(x, p) =
1

2m
(p2 + y2),

where y = mωx. The flow associated to this Hamiltonian consists of rota-
tions in the (y, p)-plane. If we choose our symplectic potential to be

θ =
1

2
(p dx− x dp) =

1

2mω
(p dy − y dp),

then the θ(XH) term in Qpre(H) cancels with the H term, leaving

Qpre(H) = i�XH

= i�

(
mω2x

∂

∂p
− p

m

∂

∂x

)

= i�ω

(
y
∂

∂p
− p

∂

∂y

)
.

Now, if φ denotes the angular variable for polar coordinates in the (y, p)-
plane, then y ∂/∂p− p ∂/∂y is just ∂/∂φ. Thus, we can find eigenvectors
for Qpre(H) of the form

ψn(r, φ) = f(r)e−inφ
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where n is an integer and f is an arbitrary function with
∫∞
0

|f(r)|2 r dr<∞.

The conclusion of the matter is that it is not physically reasonable to
use prequantization as our quantization scheme. Instead, we will pass to
a “smaller” Hilbert space on which the position and momentum operators
act irreducibly.

22.4 Quantization

To obtain a Hilbert space that can be thought of as giving us a “quanti-
zation” (as opposed to a prequantization) of R2n, we restrict ourselves to
a subspace of the prequantum Hilbert space. The idea is that we should
be using only half of the variables on R2n. We might, for example, restrict
ourselves to functions that depend only on the position variables and are
independent of the momentum variables. Now, the space of functions ψ that
are, say, independent of p in the ordinary sense (i.e., ψ(x,p) = ψ(x,p′))
is not invariant under gauge transformations (the maps Uγ in Proposi-
tion 22.5). The gauge-invariant notion of being independent of p is that
the covariant derivatives of ψ should be zero in the p-directions. Similarly,
we may consider spaces of functions with covariant derivatives that are are
zero in some other set of n directions.

Definition 22.7 Fix a symplectic potential θ. Define the position sub-

space as the subspace of C∞(R2n) consisting of functions ψ for which

∇∂/∂pj
ψ = 0

for all j. Similarly, define the momentum subspace as the subspace of C∞

(R2n) consisting of functions ψ for which

∇∂/∂xj
= 0

for all j. Finally, define the holomorphic subspace with parameter α to
be the subspace of C∞(R2n) consisting of functions ψ for which

∇∂/∂z̄jψ = 0

for all j, where zj = xj − iαpj and where ∂/∂zj and ∂/∂z̄j are defined by

∂

∂zj
=

1

2

(
∂

∂xj
+

i

α

∂

∂pj

)
;

∂

∂z̄j
=

1

2

(
∂

∂xj
− i

α

∂

∂pj

)
, (22.9)

The operators ∂/∂zj and ∂/∂z̄j are nothing but the usual complex deriva-
tive operators on Cn written in terms of the variables x and p, where we
identify R2n with Cn by the map (x,p) �→ x− iαp.
Of course, the exact form of the various subspaces in Definition 22.7

depends on the choice of symplectic potential. It is convenient to use the
symplectic potential θ = pj dxj .
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Proposition 22.8 Take the symplectic potential θ = pj dxj . Then the
position, momentum, and holomorphic subspaces may be computed as fol-
lows. The position subspace consists of smooth functions ψ on R2n of the
form

ψ(x,p) = φ(x),

where φ is an arbitrary smooth function on Rn. The momentum subspace
consists of smooth functions ψ of the form

ψ(x,p) = eix·p/�φ(p), (22.10)

where φ is an arbitrary smooth function on Rn. Finally, the holomorphic
subspace consists of functions of the form

ψ(x,p) = F (z1, . . . , zn)e
−α|p|2/(2�), (22.11)

where F is an arbitrary holomorphic function on Cn and where zj = xj −
iαpj .

Proof. Since θ(∂/∂pj) = 0, we have ∇∂/∂pj
= ∂/∂pj, so that functions

that are covariantly constant in the p-directions are actually constant in
the p-directions. Meanwhile, θ(∂/∂xj) = pj and so

∇∂/∂xj
=

∂

∂xj
− i

�
pj .

Now, any function ψ on R2n can be written in the form eix·p/�φ(x,p) for
some other function φ. If we use this form to compute ∇∂/∂pj

ψ, there is a
convenient cancellation, giving

(∇∂/∂xj
ψ)(x,p) = eix·p/�

∂φ

∂xj
.

Thus, ∇∂/∂xj
ψ = 0 for all j if and only if φ is independent of x.

Finally, we note that θ(∂/∂z̄j) = pj/2, so that

∇∂/∂z̄j =
∂

∂z̄j
− i

2�
pj .

Any function ψ on R2n can be written in the form ψ(x,p) = e−α|p|2/(2�)F
for some other function F, where we note that

e−α|p|2/(2�) = exp

⎛
⎝∑

j

(z̄j − zj)
2/(8α�)

⎞
⎠ .

Thus,

∂

∂z̄j
e−α|p|2/(2�) =

z̄j − zj
4α�

e−α|p|2/(2�) =
i

2�
pje

−α|p|2/(2�).



476 22. Geometric Quantization on Euclidean Space

When we compute ∇∂/∂z̄jψ using the indicated form, there is another
convenient cancellation, giving

(∇∂/∂z̄jψ)(x,p) = e−α|p|2/(2�) ∂F

∂z̄j
.

Thus, ∇∂/∂z̄jψ = 0 for all j if and only if F is holomorphic as a function
of the variables zj = xj − iαpj .
From the physical standpoint, we do not merely want a vector space of

functions, but a Hilbert space. It is natural, then, to look at functions of the
forms computed in Proposition 22.8 that belong to L2(R2n). In the case of
the position and momentum subspaces, we encounter a serious problem:
There are no nonzero functions of the indicated form that are square inte-
grable over R2n. After all, if ψ is in the position subspace, then ψ(x,p) is

independent of p and the integral of |ψ|2 over the p-variables will be infi-
nite, unless ψ is zero almost everywhere. If ψ is in the momentum subspace,
|ψ|2 is independent of x and we have a similar problem.
The solution to this problem is to integrate not over R2n but over Rn.

Although the “proper” way to make this change of integration is to intro-
duce the notion of “half-forms,” as in Chap. 23, we will content ourselves
in this chapter with the following simplistic rule: integrate only over the
variables on which |ψ|2 depends. If we want to get a Hilbert space (not just
an inner product space), we must also allow functions of the specified form
that are square integrable but not necessarily smooth. We may therefore
identify the position Hilbert space and momentum Hilbert space as follows.

Conclusion 22.9 The position Hilbert space is the space of functions on
R2n of the form

ψ(x,p) = φ(x),

where φ ∈ L2(Rn). The norm of such a function is computed as

‖ψ‖2 =

∫

Rn

|φ(x)|2 dx.

The momentum Hilbert space is the space of functions on R2n of the form

ψ(x,p) = eix·p/�φ(p),

where φ ∈ L2(Rn). The norm of such a function is computed as

‖ψ‖2 =

∫

Rn

|φ(p)|2 dp.

If we consider the holomorphic subspace, we find that it behaves better
than the position and momentum subspaces, in that there exist nonzero
functions of the form (22.11) that are square integrable over R2n, as we
will see shortly. Furthermore, the space of functions of the form (22.11)
that are square integrable over R2n form a closed subspace of L2(R2n), by
the same argument as in the proof of Proposition 14.15.
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Conclusion 22.10 The holomorphic Hilbert space consists of those
functions ψ of the form (22.11) that are square integrable over R2n. If ψ
is identified with the holomorphic function F in (22.11), then this Hilbert
space may be identified with HL2(Cn, ν), where

ν(z) = e−|Im z|2/(α�).

The space HL2(Cn, ν) is nothing but an invariant form of the Segal–
Bargmann space (Definition 14.14), where here “invariant” means that
the density ν is invariant under translations in the real directions. This
space can be identified unitarily with the ordinary Segal–Bargmann space
HL2(Cn, μ2α�) as follows. Define a map Ψ : HL2(Cn, μ2α�) → HL2

(Cn, ν) by

Ψ(F )(z) = (2πα�)−n/2e−z2/(4α�)F (z), (22.12)

where z2 = z21 + · · ·+ z2n. Then a simple calculation shows that

‖Ψ(F )‖2L2(Cn,ν) =

∫

Cn

|F (z)|2 μ2α�(z) dz.

Since also e−z2/(4α�) is holomorphic as a function of z, we see that Ψ maps
HL2(Cn, μ2α�) isometrically into HL2(Cn, ν). The map Ψ has an inverse

given by multiplication by (2πα�)n/2ez
2/(4α�), showing that Ψ is actually

unitary. In particular, there exist many nonzero holomorphic functions on
Cn that belong to HL2(Cn, ν).
We will regard any of the Hilbert spaces in Conclusions 22.9 and 22.10

as our quantum Hilbert space. These spaces are to be compared to the pre-
quantum Hilbert space L2(R2n), which is in some sense “bigger,” consisting
of functions of twice as many variables. Note there are multiple possibili-
ties for the quantum Hilbert space. To reduce from the prequantum Hilbert
space to the quantum Hilbert space, we have to choose a set of n variables,
and then we look a functions that depend only on those n variables. In-
deed, there are many other possibilities for the quantum Hilbert space; we
have considered only the most common choices. We defer a discussion of
the general theory until Chap. 23.
The reader may wonder why we are using the definition zj = xj − iαpj

(α > 0) rather than zj = xj+iαpj. If we repeated the preceding calculations
with zj = xj + iαpj , with a corresponding sign change in the definition of
∂/∂z̄j, we would find that ψ satisfies ∇∂/∂z̄jψ for all j if and only if ψ is
of the form

ψ(x,p) = F (z1, . . . , zn)e
α|p|2/(2�), (22.13)

where F is holomorphic on Cn. The change in sign in the exponent between
(22.11) and (22.13) has a drastic effect: There are no nonzero holomorphic
functions F for which the function ψ in (22.13) is square integrable over
R2n. (See Exercise 3.) Unlike the situation with the position and momentum
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Hilbert spaces, there is no natural way to alter the domain of integration
to make a function of the form (22.13) have finite norm.
We see, then, that there is a big difference between the definitions zj =

xj − iαpj and zj = xj + iαpj . In the general framework of geometric
quantization, we will have a similar distinction, where complex structures
satisfying a certain positivity condition behave well, whereas the “opposite”
complex structures behave badly. (See Definition 23.19 in Sect. 23.4.)

22.5 Quantization of Observables

Now that we have constructed our quantum (as opposed to prequantum)
Hilbert spaces, we need to construct operators on these spaces. According
to the standard geometric quantization program, the quantum operator
associated with a function f is supposed to be simply the restriction to the
quantum Hilbert space of the prequantum operator Qpre(f), provided that
Qpre(f) leaves the quantum Hilbert space invariant.

Proposition 22.11 The position, momentum, and holomorphic subspaces
in Definition 22.7 are all invariant under the prequantum operators Qpre(xj)
and Qpre(pj). Specifically, in the position subspace, we have

Qpre(xj)φ(x) = xjφ(x)

Qpre(pj)φ(x) = −i�
∂φ

∂xj
,

in the momentum subspace, we have

Qpre(xj)(e
ix·p/�φ(p)) = eix·p/�

(
i�

∂φ

∂pj
(p)

)

Qpre(pj)(e
ix·p/�φ(p)) = eix·p/�(pjφ(p)),

and in the holomorphic subspace, we have

Qpre(xj)(F (z)e−α|p|2/(2�)) =

(
α�

∂F

∂zj
+ zjF (z)

)
e−α|p|2/(2�)

Qpre(pj)(F (z)e−α|p|2/(2�)) =

(
−i�

∂F

∂zj

)
e−α|p|2/(2�).

Proof. See Exercise 4.
The invariance of the three subspaces under the prequantized position

and momentum operators follows from a general result in geometric quanti-
zation, that for a real-valued function f, the prequantum operator Qpre(f)
preserves a given quantum space if and only if the Hamiltonian flow gen-
erated by f preserves the polarization defining the quantum space. The
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term “polarization” refers to the set of directions in which the elements of
the quantum space are covariantly constant. In the case of the position,
momentum, and holomorphic spaces, the set of such directions is the same
at every point, which means that the polarization is invariant under trans-
lations. But the Hamiltonian flows generated by xj and pj are nothing
but translations in the −pj-directions and the xj-directions, respectively.
Of course, in this simple example, we can verify the invariance by direct
computation, which also gives the indicated form of the operators on each
subspace.
Note also that in each case, the “preferred” functions act simply as mul-

tiplication operators. In the position subspace, for example, the position
operator Qpre(xj) acts simply as multiplication by xj , whereas in the mo-
mentum subspace, the operator Qpre(pj) acts as multiplication by pj . Fi-
nally, in the holomorphic subspace, the operator

Qpre(zj)
(
F (z)e−α|p|2/(2�)

)
= (zjF (z)) e−α|p|2/(2�),

where zj = xj − iαpj , since the terms involving ∂F/∂zj cancel.
We now focus on the position Hilbert space and look for operators of the

form Qpre(f) that leave the position subspace invariant.

Proposition 22.12 The position subspace is invariant under Qpre(f) when-
ever f is of the form

f(x,p) = a(x) + bj(x)pj (22.14)

for some smooth functions a and b1, . . . , bn on Rn. On the other hand, the
position subspace in not invariant under the operator Qpre(p

2
j).

Proof. If f is of the form (22.14), calculation shows that θ(Xf )+f = a(x).
If we drop any terms in Xf involving ∂/∂pj, since these are zero on the
position subspace, we end up with

Qpre(f)(φ(x)) = −i�bj(x)
∂φ

∂xj
+ a(x)φ(x), (22.15)

which is again in the position subspace. [There is no p-dependence in the
coefficient of ∂/∂xj in (22.15) because ∂f/∂pj is independent of p.] On
the other hand, direct calculation shows that the restriction to the position
subspace of Qpre(f) is

−2i�pj
∂

∂xj
− p2j ,

which does not preserve the space of functions on R2n that are independent
of p.
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It should be noted that the expression on the right-hand side of (22.15)
is not a self-adjoint, or even symmetric, operator on L2(Rn), unless the
vector field b(x) happens to be divergence free. (Even though the vector
field Xf is divergence free on R2n, the way Xf acts on functions that are
independent of p is not necessarily a divergence free vector field on Rn.)
This undesirable feature of our quantization scheme is the result of our
simplistic method of passing from L2(R2n) to L2(Rn) in our derivation of
Conclusion 22.9. When we do this reduction properly, using half-forms, we
will obtain a self-adjoint operator. See Sect. 23.6.
We now consider the behavior of the holomorphic subspace under the

prequantized position and momentum operators.

Proposition 22.13 For any α > 0, let Hα be the subspace of L2(R2n)
consisting of smooth functions ψ that satisfy ∇∂/∂z̄jψ = 0, where ∂/∂z̄j
is as in (22.9). Then Hα is a closed subspace of L2(R2n) and Hα is in-
variant under the one-parameter unitary groups generated by Qpre(xj) and
Qpre(pj). Furthermore, Qpre(xj) and Qpre(pj) act irreducibly on Hα in the
sense of Definition 14.6.

For each α > 0, the holomorphic Hilbert space is a subspace of the
prequantum Hilbert space invariant under the exponentiated position and
momentum operators. Thus, the prequantum Hilbert space is far from being
irreducible under the action of those operators.
Proof. The invariance of Hα is a simple calculation (Exercise 5).
Irreducibility can be established by reducing to the previously established
irreducibility of the Segal–Bargmann space under the operators Ta in The-
orem 14.16. To this end, we should check that the unitary map Ψ in (22.12)
intertwines products of exponentials of Qpre(xj) and Qpre(pj) with opera-
tors of the form Ta (with � replaced by 2α�). This is a straightforward but
tedious calculation, and we omit the details.
We conclude this section with an example of a quantum subspace that is

invariant under the (pre)quantized Hamiltonian of a harmonic oscillator.

Proposition 22.14 Consider a harmonic oscillator with Hamiltonian

H =
1

2m

(
p2 + (mωx)2

)
.

Consider also the subspace Hα in Proposition 22.13, with α = 1/(mω).
Then the operator Qpre(H) leaves Hα invariant. Furthermore, the restric-
tion of Qpre(H) to Hα has non-negative spectrum consisting of eigenvalues
of the form n�ω, where n ranges over the non-negative integers.

Proposition 22.14 is a much more physically reasonable result for the
spectrum of the quantization of the non-negative function H than on the
full prequantum Hilbert space, where (Proposition 22.6) the spectrum of
Qpre(H) is not even bounded below. When we introduce the “half-form
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correction” in Sect. 23.7, we will finally be able to obtain the “correct”
spectrum for the quantum harmonic oscillator, consisting of numbers of
the form (n+ 1/2)�ω, n = 0, 1, 2, . . . . See Example 23.53.
Proof. As in the proof of Proposition 22.6, we introduce the variable
y = mωx. With α = 1/(mω), this gives z = (y − ip)/(mω). We use the
symplectic potential

θ =
1

2
(p dx− x dp) =

1

2mω
(p dy − y dp).

Then

θ

(
∂

∂z̄

)
=

1

2

(
p+

i

α
x

)
=

i

2α
z

and so ∇∂/∂z̄ = ∂/∂z̄ + z/(2α�). From this, we can easily check that the
holomorphic subspace consists of functions of the form

F (z)e−|z|2/(2α�) = F (z) exp

{
− (y2 + p2)

2mω�

}
, (22.16)

where F is holomorphic.
Meanwhile, as in the proof of Proposition 22.6, we have

Qpre(H) = i�ω

(
y
∂

∂p
− p

∂

∂y

)
,

which is just an angular derivative in the (y, p)-plane. Since the exponential
factor in (22.16) is rotationally invariant, Qpre(H) only hits F. Meanwhile,

(
y
∂

∂p
− p

∂

∂y

)
F

(
y − ip

mω

)
= y

dF

dz

(
− i

mω

)
− p

dF

dz

1

mω

= − i

mω
(y − ip)

dF

dz

= −iz
dF

dz
.

Thus,

Qpre(H)(F (z)e−|z|2/(2α�)) =

(
�ωz

dF

dz

)
e−|z|2/(2α�),

which is again in the holomorphic subspace.
Finally, as in Proposition 14.15, the functions zn, n = 0, 1, 2, . . ., form

an orthogonal basis for the Hilbert space Hα. Each monomial zn is an
eigenvector for the operator z d/dz with eigenvalue n. This establishes the
claim about the spectrum of the restriction to Hα of Qpre(H).
The operator F �→ �ωz dF/dz is self-adjoint on the holomorphic Hilbert

space, in contrast to the operators in (22.15) in the case of the position
Hilbert space. Indeed, self-adjointness is “automatic” in this case, because
the holomorphic Hilbert space is actually a subspace of the prequantum
Hilbert space, and the restriction of a self-adjoint operator to an invariant
subspace is self-adjoint.
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22.6 Exercises

1. Consider the vector field

X := aj(x)
∂

∂xj

on R2n, where the aj ’s are smooth, real-valued functions. Show that
X is skew-self-adjoint on C∞

c (RN ) if and only if the divergence of X
(i.e., the quantity ∂aj/∂xj) is identically zero.

2. Using the symplectic potential θ = p dx, compute Qpre(xp
2). Show

that Qpre(xp
2) is not in the algebra of operators generated by Qpre(x)

and Qpre(p).

Hint : Consider how Qpre(xp
2) acts on functions that are independent

of p.

3. (a) Suppose F is a holomorphic function on C such that

∫

C

|F (z)|2 dz < ∞,

where here dz denotes the 2-dimensional Lebesgue measure on
C ∼= R2. Show that F is identically zero.

Hint : If F is not identically zero, use a power series argument
to show that the L2 norm of F over a disk of radius R tends to
infinity as R tends to infinity.

(b) Show that if a function of the form (22.13), with F holomorphic
on Cn, is square integrable, then F must be identically zero.

4. Prove Proposition 22.11, using the explicit form of Qpre(xj) and
Qpre(pj) in Example 22.4.

Hint : In the case of the holomorphic subspace, express the operators
∂/∂xj and ∂/∂pj in terms of the operators ∂/∂zj and ∂/∂z̄j in (22.9).

5. Show that the space of functions of the form in (22.11), where F is
holomorphic on Cn, is invariant under the operators eitQpre(xj) and
eitQpre(pj) computed in (22.6), for all t ∈ R and j = 1, 2, . . . , n.



23
Geometric Quantization on Manifolds

23.1 Introduction

Geometric quantization is a type of quantization, which is a general term
for a procedure that associates a quantum system with a given classical
system. In practical terms, if one is trying to deduce what sort of quantum
system should model a given physical phenomenon, one often begins by
observing the classical limit of the system. Electromagnetic radiation, for
example, is describable on a macroscopic scale by Maxwell’s equations. On
a finer scale, quantum effects (photons) become important. How should one
determine the correct quantum theory of electromagnetism? It seems that
the only reasonable way to proceed is to “quantize” Maxwell’s equations—
and then to compare the resulting quantum system to experiment.
Meanwhile, not every physically interesting system has R2n as its phase

space. Geometric quantization, then, is an attempt to construct a quantum
Hilbert space, together with appropriate operators, starting from a phys-
ical system having an arbitrary 2n-dimensional symplectic manifold N as
its phase space. To perform geometric quantization on N, one must first
choose a polarization, that is, roughly, a choice of n directions onN in which
the wave functions will be constant. If N = T ∗M, then one may use the
“vertical polarization,” in which the wave functions are constant along the
fibers of T ∗M. For cotangent bundles with the vertical polarization, geo-
metric quantization reproduces the “half-density quantization” of Blattner
[4]. (See Examples 23.45 and 23.48.) Even for cotangent bundles, however,
it is of interest to use polarizations other than the vertical polarization, as
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we have seen already in the Rn case. In the case of the cotangent bundle of
a compact Lie group, for example, the paper [20] shows how quantization
with a complex polarization gives rise to a generalized Segal–Bargmann
transform.
Some phase spaces, meanwhile, may not even be in the form of a cotan-

gent bundle. In the orbit method in representation theory, for example,
the relevant symplectic manifolds are “coadjoint orbits,” which typically
are not cotangent bundles. [In the SU(2) case, for instance, these orbits are
2-spheres with the natural rotationally invariant symplectic form.] In quan-
tum field theory, meanwhile, one encounters Lagrangians that are linear,
rather than quadratic, in the “velocity” variables. In such cases, the initial
velocity is determined by the initial position, and one cannot think of the
space of initial conditions as a (co)tangent bundle. Systems of this form can
still be symplectic, but they are not cotangent bundles. Furthermore, it is
common to think of compact symplectic manifolds (such as S2 with a ro-
tationally invariant symplectic form) as classical models of internal degrees
of freedom, such as spin.
To quantize these more general symplectic manifolds, one needs a more

general approach to quantization. Given a symplectic manifold (N,ω) sat-
isfying a certain integrality condition, one can construct a line bundle L
over N along with a connection ∇ on L which has a curvature of ω/�.
One can then define “prequantum” operators, acting on sections of L, in
much the same way we did in the Euclidean case in Chap. 22, and these
operators will have the desired relationship between Poisson brackets and
commutators. One then chooses a polarization on N and defines the quan-
tum Hilbert space to be the space of sections that are covariantly constant
in the directions of that polarization. If the Hamiltonian flow generated by
a function f preserves the relevant polarization, then Qpre(f) will preserve
the quantum Hilbert space. In the case of real polarizations, there may fail
to be any nonzero square-integrable sections that are covariantly constant
in the directions of the polarization, a possibility that forces us to introduce
the machinery of “half-forms.”
Let us end this introduction with a brief critique of the framework of geo-

metric quantization. In the first place, geometric quantization has too many
definitions (bundles, connections, curvature, polarizations, half-forms) and
too few theorems. In the second place, the class of functions that geometric
quantization allows us to quantize—those functions for which the associ-
ated Hamiltonian flow preserves the polarization—is often dishearteningly
small. In the case N = T ∗M, for example, with the natural “vertical”
polarization, geometric quantization does not allow us to quantize the ki-
netic energy function, at least not by the “standard procedure” of geomet-
ric quantization. Nevertheless, geometric quantization is the only game in
town if one wants to quantize general symplectic manifolds in a way that
produces an actual Hilbert space and operators thereon.
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This chapter lays out in an orderly fashion all the ingredients needed
to “do” geometric quantization. Furthermore, although this approach in-
creases length, the chapter fills in the details of several arguments that
are only sketched in the standard reference on the subject, the book [45] of
Woodhouse. The presentation assumes basic results about symplectic man-
ifolds from Chap. 21. Besides the basic results about manifolds reviewed in
Sect. 21.1, we will make use of the Frobenius theorem (see, e.g., Chap. 19
of [29]).
As we have noted already in the introduction to Chap. 22, sign con-

ventions in the subject of geometric quantization are not consistent from
author to author.

23.2 Line Bundles and Connections

In this section, we develop the necessary machinery to extend the prequan-
tization construction of Sect. 22.2 to arbitrary symplectic manifolds. We
introduce the notion of a line bundle over a manifold and sections thereof,
which look locally like complex-valued functions. We then introduce the
notion of covariant derivatives of sections of a line bundle, where locally
these covariant derivatives take the form ∇X = X − iθ(X) for a certain
1-form θ. We then introduce the curvature 2-form, which is a globally de-
fined, closed 2-form that can be computed locally as dθ. We continue to
observe the summation convention, in which repeated indices are always
summed on.

Definition 23.1 If X is a smooth manifold, a complex line bundle over
X is a smooth manifold L together with the following additional structures.
First, we have a smooth, surjective map π : L → X. Second, for each x ∈ X,
the set π−1({x}) is equipped with the structure of a complex vector space of
dimension 1. For each x ∈ N, the vector space π−1({x}) is called the fiber

of L over x.
These structures are assumed to satisfy the local triviality property,

namely that each x ∈ X has a neighborhood U such that there exists a
diffeomorphism χ : π−1(U) → U × C with the following properties. First,

π(p) = π1(χ(p)),

where π1 : U × C → U is projection onto the first factor. Second, for each
x ∈ U, the map p �→ π2(χ(p)) is a vector space isomorphism of π−1({x})
with C.
A section of a line bundle L over X is a map s : X → L such that

π(s(p)) = p for all p ∈ X.

For any manifold X, we can form the trivial line bundle X × C, where
π(x, z) = z and where the vector space structure on {x} × C is just the
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usual vector space structure on C. The local triviality property for a general
line bundle L means that L “looks” locally like the trivial line bundle.

Definition 23.2 A connection ∇ on a line bundle L over N is a map
associating to each vector field X on N and section s of L another sec-
tion ∇X(s) of L satisfying the following properties. First, for each smooth
function f on N, we have

∇fX(s) = f∇X(s) (23.1)

for all vector fields X and sections s. Second, for each smooth function f
on N, we have the product rule

∇X(fs) = (X(f))s+ f∇X(s) (23.2)

for all vector fields X and sections s.

Note that for any section s of L and any function f on N, the quantity
fs is a section of s. Given a connection ∇ and a vector field X, the operator
∇X is called the covariant derivative in the direction of X.

Definition 23.3 A Hermitian structure on a line bundle L over N is
a choice of an inner product (·, ·) on each fiber π−1({x}) of L such that
for each smooth section s of L, (s, s) is a smooth function on N. A line
bundle L together with a choice of a Hermitian structure on L will be called
a Hermitian line bundle. A connection ∇ on a Hermitian line bundle
L is called Hermitian if for every vector field on X, we have

(∇X(s1), s2) + (s1,∇X(s2)) = X(s1, s2) (23.3)

for all smooth sections s1 and s2 of L.

We will let the expression “Hermitian line bundle with connection” refer
to a Hermitian line bundle L together with a Hermitian connection on L;
that is, in this expression, “Hermitian” applies both to the bundle and to
the connection.
Given a Hermitian line bundle L with connection, it is always possible

to choose a locally defined smooth section s0 near any point such that
(s0, s0) ≡ 1. We call s0 a local isometric trivialization of L. Any section
s of L can be written locally as s = fs0 for a unique complex-valued
function f. Given a vector field X, let θ(X) be the unique function such
that

∇X(s0) = −iθ(X)s0.

Using the assumption ∇fX = f∇X , it can be shown (Exercise 1) that the
value of θ(X) at a point p depends only on the value of X at p. Thus, θ
defines a 1-form on N. Using the assumption that ∇ is Hermitian, it can
be shown (Exercise 2) that θ(X) is always real valued.
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Now, using the product rule (23.2) for covariant derivatives, we have

∇X(fs0) = X(f)s0 + f∇X(s0)

= (X(f)− iθ(X)f)s0.

Thus, if we identify sections of L locally with the coefficient function f , we
have

∇X(f) = X(f)− iθ(X)f, (23.4)

as in Sect. 22.2. We call θ the connection 1-form associated to the particular
local isometric trivialization.

Definition 23.4 For any Hermitian line bundle (L,∇) with connection,
define the curvature 2-form ω of ∇ by requiring that

ω(X,Y )s = i
(
∇X∇Y −∇Y ∇X −∇[X,Y ]

)
(s)

for all sections s and vector fields X and Y.

Of course, one should check that the given expression for ω is really a
2-form, meaning that the value of ω(X,Y ) at a point z depends only on
the values of X and Y at z, and that it does not depend on the choice of
section s, provided only that s(z) 
= 0. One way to do this is to compute ω
in a local isometric trivialization, as in the following result. (See Exercise 3
for a different approach.)

Proposition 23.5 Let s0 be a local isometric trivialization of L and let θ
be the associated connection 1-form. Then the curvature 2-form ω of ∇ is
expressed locally as

ω = dθ.

In particular, ω is a closed 2-form.

Proof. The computation is precisely the same as in the proof of Proposition
22.3 in the Euclidean case.
A locally defined 1-form θ satisfying dθ = ω is called a (local) symplectic

potential for ω. Our next result says that every symplectic potential is the
connection 1-form for some local isometric trivialization of L.

Proposition 23.6 Let (L,∇) be a Hermitian line bundle with connection
over N with curvature 2-form ω. For each point z0 ∈ N and 1-form θ
defined in a neighborhood U of z0 satisfying dθ = ω, there is a subneigh-
borhood V ⊂ U of z0 and a local isometric trivialization of L over V such
that the connection 1-form of the trivialization is θ.

Proof. Let s0 be any isometric trivializing section defined in a neighbor-
hood of z0 and let η be the associated connection 1-form. Since d(η−θ) = 0,
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there is a subneighborhood V ⊂ U of z0 on which η − θ = df, for some
smooth function f. If s1 = eifs0, then

∇X(s1) = iX(f)eifs0 + eif∇X(s0)

= iX(f)eifs0 − iη(X)eifs0

= −i(η(X)− df(X))s1.

Thus, the connection 1-form associated with the local isometric trivializa-
tion s1 is η − df = θ.

Proposition 23.7 If (L1,∇1) and (L2,∇2) are Hermitian line bundles
with connection over N, let L1 ⊗ L2 denote the line bundle over N for
which the fiber over x is L1,x⊗L2,x, with the natural inner product induced
by the inner products on L1,x and L2,x. Then there is a unique Hermitian
connection ∇ on L1 ⊗ L2 with the property that

∇X(s1 ⊗ s2) = (∇1
Xs1)⊗ s2 + s1 ⊗ (∇2

Xs2),

for all vector fields X on N and all smooth sections s1 of L1 and s2 of L2.
The curvature 2-form ω for (L1 ⊗ L2,∇) is given by

ω = ω1 + ω2,

where ω1 and ω2 are the curvature 2-forms for (L1,∇1) and (L2,∇2), re-
spectively.

The proof of this proposition is a straightforward exercise in “definition
chasing” and is left as an exercise to the reader.
Suppose that L is a Hermitian line bundle over N with connection ∇

and curvature 2-form ω. Given a loop γ : [a, b] → N , we can construct a
section s of L that is defined over γ such that the covariant derivative of s
in the directions along γ is zero. Indeed, in a local isometric trivialization,
such a section can be constructed as

s(γ(T )) = exp

{
i

∫ γ(T )

γ(a)

θ(γ(t)) dt

}
. (23.5)

The value of s at the endpoint of the loop will in general not agree with the
value at the starting point, but will differ by multiplication by a constant
of absolute value 1.

Definition 23.8 The holonomy of a loop γ : [a, b] → N is the unique
constant α (of absolute value 1) such that s(γ(b)) = αs(γ(a)), where s is a
nonzero section defined over γ that is covariantly constant in the directions
of γ.
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The value of the holonomy of γ is easily seen to be independent of the
value of s at the starting point, provided this starting value is nonzero.
Suppose that S is a compact, oriented surface with boundary in N whose

boundary ∂S is a loop. It is not hard to show that the holonomy around
∂S can be computed as

holonomy(∂S) = exp

{
i

∫

S

ω

}
. (23.6)

Indeed, if S is contained in the domain of a local isometric trivializa-
tion, then this result follows from (23.5) by means of Stoke’s theorem
(Sect. 21.1.2).
Now, if S is a closed (i.e., boundaryless) surface, its boundary is the

trivial loop, which has a holonomy that is trivial, that is, equal to 1. (Think
of approximating S by a surface for which the boundary is a very small
loop.) Thus, for any closed surface S, (23.6) gives

exp

{
i

∫

S

ω

}
= 1, ∂S = ∅. (23.7)

Equivalently, we have
1

2π

∫

S

ω ∈ Z. (23.8)

The condition (23.8) says that ω/(2π) is an integral 2-form. Clearly, not
every closed 2-form satisfies this property.
The closedness of ω (Proposition 23.5) and the condition (23.8) represent

necessary conditions that the curvature of a Hermitian connection must
satisfy. It turns out that these two conditions are also sufficient.

Theorem 23.9 Suppose ω is a closed 2-form on a manifold N for which
ω/(2π) is integral in the sense of (23.8). Then there exists a Hermitian
line bundle L over N with Hermitian connection ∇ such that the curvature
of ∇ is equal to ω. If, in addition, N is simply connected, then (L,∇) is
unique up to equivalence.

See Sect. 8.3 of [45] for a proof of this result. An equivalence of two
Hermitian line bundles L1 and L2 with Hermitian connection over N is a
diffeomorphism Φ : L1 → L2 such that for each x ∈ N, the restriction of
Φ to π−1

1 ({x}) is an isometric linear map onto π−1
2 ({x}) and such that for

each section s of L1, we have

Φ(∇X(s)) = ∇X(Φ(s)).

We now have the necessary tools to proceed with the program of geo-
metric quantization on symplectic manifolds.
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23.3 Prequantization

The first step in the program of geometric quantization for a symplectic
manifold (N,ω) is to construct a Hermitian line bundle L over N with
Hermitian connection for which the curvature 2-form is equal to ω/�. The-
orem 23.9 gives the condition for the existence of such a bundle.

Definition 23.10 A symplectic manifold (N,ω) is quantizable (for a
particular value of �) if

1

2π�

∫

S

ω ∈ Z

for every closed surface S in N.

Note that if (N,ω) is quantizable for a given value �0 of Planck’s con-
stant, then (N,ω) is also quantizable for � = �0/k for every positive integer
k. Indeed, according to Proposition 23.7, if L is a Hermitian line bundle
with connection having curvature ω/�0, then L⊗k (the tensor product of
L with itself k times) is a Hermitian line bundle with connection having
curvature ω/(�0/k).
For the remainder of this chapter, we will assume that N is a quantizable

symplectic manifold with symplectic form ω and that (L,∇) is a fixed
Hermitian line bundle with connection of N with curvature ω/�.
If L is a Hermitian line bundle over a symplectic manifold N, we say

that a measurable section s of L is square integrable if

‖s‖ :=

(∫

N

(s1(x), s1(x)) λ(x)

)1/2

is finite, where λ is the Liouville volume form on N. Given two square-
integrable sections s1 and s2 of L, we define the inner product of s1 and
s2 by

〈s1, s2〉 =
∫

N

(s1(x), s2(x)) λ(x). (23.9)

We use parentheses to denote the pointwise inner product (s1(x), s2(x))
of two sections s1 and s2, which is a function on N, and we use angled
brackets to denote the global inner product 〈s1, s2〉 of the sections, which
is a number.

Definition 23.11 The prequantum Hilbert space for N is the space of
equivalence classes of square-integrable sections of L, where two sections are
equivalent if they are equal almost everywhere with respect to the Liouville
volume measure.

Definition 23.12 If f is a smooth complex-valued function on N, the pre-
quantum operator Qpre(f) is the unbounded operator on the prequantum
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Hilbert space given by

Qpre(f) = i�∇Xf
+ f,

where f represents the operation of multiplying a section by f.

Proposition 23.13 If f is real-valued, then Qpre(f) is symmetric on the
space of smooth compactly supported sections of L.

Proof. Let s1 and s2 be smooth, compactly supported sections of L and let
Φf denote the Hamiltonian flow generated by f. For all sufficiently small
t, every point in the supports of s1 and s2 will contained in the domain of
Φf

t . Furthermore, by Liouville’s theorem, the value of

∫

N

[(s1, s2) ◦ Φt] λ

is independent of t. If we differentiate this relation with respect to t and
evaluate at t = 0, we obtain, by (23.3),

0 =

∫

N

[(∇Xf
(s1), s2) + (s1,∇Xf

(s2))] λ.

Thus,∇Xf
is a skew-symmetric operator on the space of smooth, compactly

supported sections, from which it follows that Qpre(f) is symmetric.
By the product rule for covariant derivatives and the identity Xf (f) =

{f, f} = 0, we see that the two terms in the definition of Qpre(f) commute.
We would then expect the exponential eitQpre(f) to decompose as a product
of two exponentials. One of these exponentials is just eitf and the other
may be constructed as “parallel transport along the flow generated by Xf .”
Thus, if the flow generated by Xf is complete, it is possible to use Stone’s
theorem to construct Qpre(f) as a self-adjoint operator on a domain that
includes the space of smooth compactly supported sections.

Proposition 23.14 For any f, g ∈ C∞(X), we have

1

i�
[Qpre(f), Qpre(g)] = Qpre({f, g}),

where the equality holds as operators on the space of smooth sections of L.

Proof. The argument is precisely the same as in Proposition 22.1 in the
R2n case.
As we have seen already in Sect. 22.3 in the R2n case, the prequantum

Hilbert space is “too large” to be considered the quantization of N.
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23.4 Polarizations

In the Rn case, we have the position, momentum, and holomorphic sub-
spaces (Definition 22.7), consisting of functions that depend only on x, p,
or z, in the sense that the covariant derivatives of functions in the direc-
tions of p, x, and z̄ are zero. In each case, the “basic observables” of the
particular representation (the xj ’s, the pj’s, and the zj ’s, respectively) act
simply as multiplication operators.
To generalize this to a symplectic manifold N of dimension 2n, we may

think of choosing n functions α1, . . . , αn on N that are “independent,” in
the sense that dα1, . . . , dαn are linearly independent at each point. We as-
sume that the functions αj Poisson commute ({αj , αk} = 0), which makes
it reasonable to hope that the quantizations of the αj ’s could act as (com-
muting) multiplication operators. For each z ∈ N , we let Pz be the n-
dimensional space of directions in which the αj ’s are constant, that is,
the intersection of the kernels of dα1, . . . , dαn. Since we wish to allow the
functions αj to be complex valued, Pz should be thought of as a subspace
of the complexified tangent space TC

z (N). The idea is that our quantum
Hilbert space should consist of sections of a prequantum line bundle that
are covariantly constant in the directions of P.
Now, at each point z, the Hamiltonian vector field Xαj

will belong to
Pz, because

dαj(Xαk
) = Xαk

(αj) = {αk, αj} = 0.

Furthermore, since the dαj ’s are linearly independent, the Xαj
’s are also

independent, since Xαj
is obtained from dαj by an isomorphism of tangent

and cotangent spaces. Thus, the Xαj
’s must actually span Pz at each point,

by a dimension count. Since also ω(Xαj
, Xαk

) = −{αj, αk} = 0, we con-
clude that ω is identically zero on Pz . Furthermore, if X and Y are vector
fields lying in P at each point, we can express them as

X = aj(z)Xαj
, Y = bj(z)Xαj

,

for some smooth functions aj and bj . Then

[X,Y ] = aj(z)Xαj
(bk)Xαk

− bk(z)Xαk
(aj)Xαj

,

because [Xαj
, Xαk

] = X{αj ,αk} = 0. Thus, the commutator of two vector
fields lying in P will again lie in P.

Definition 23.15 For any z ∈ N, a subspace P of TzN is said to be
Lagrangian if dimP = n and ω(X,Y ) = 0 for all X,Y ∈ P.

Definition 23.16 A polarization of a symplectic manifold N is a choice
at each point z ∈ N of a Lagrangian subspace Pz ⊂ TC

z (X), satisfying the
following two conditions.
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1. If two complex vector fields X and Y lie in Pz at each point z, then
so does [X,Y ].

2. The dimension of Pz ∩ Pz is constant.

The first condition is called integrability, and we have motivated this
condition in the discussion preceding the definition. The second condition
is a technical one that prevents problems with certain constructions, such
as the pairing map. (Although, in practice, one sometimes needs to work
with “polarizations” in which the second condition is violated, extra care
is needed in such cases.)
There is one small inaccuracy in our discussion of polarizations: For

purely conventional reasons, the quantum Hilbert space is defined as the
space of sections that are covariantly constant in the direction of P̄ , rather
than P. Thus, P should really be the complex conjugate of the space of
directions in which the sections are constant. This convention, however,
makes no difference to the definition of a polarization, since if P satisfies
the conditions of Definition 23.16, so does P̄ .

Example 23.17 If M is any smooth manifold, let N = T ∗M be the cotan-
gent bundle of M, equipped with the canonical 2-form ω (Example 21.2).
For each z ∈ T ∗M, let Pz be the complexification of the tangent space
to the fiber T ∗

zM. Then P is a polarization on T ∗M, called the vertical

polarization.

Proof. If {xj} is any local coordinate system on M, let {xj , pj} be the
associated local coordinate system on T ∗M. The canonical 2-form is given
by ω = dpj ∧ dxj . At each point z ∈ T ∗M, the vertical subspace Pz is
spanned by the vectors ∂/∂pj. Since ω(∂/∂pj, ∂/∂pk) = 0, we see that Pz

is Lagrangian. Furthermore, Pz = P̄z at every point, and so dimPz ∩ Pz

has the constant value n = dimM. Finally, the integrability of P follows by
computing the commutator of two vector fields of the form fj(x, p) ∂/∂pj,
which will again be a linear combination of the ∂/∂pj’s. Integrability also
follows from the easy direction of the Frobenius theorem, since the fibers
of T ∗M are integral submanifolds for P.
We may identify two special classes of polarizations, those that are purely

real (i.e., Pz = Pz for all z ∈ N) and those that are purely complex (i.e.,
Pz ∩ Pz = {0} for all z ∈ N). The vertical polarization, for example, is
purely real.
If P is purely real, the integrability of P implies, by the Frobenius theo-

rem, that every point in N is contained in a unique submanifold R that is
maximal in the class of connected integral submanifolds for P. [An integral
submanifold R for P is submanifold for which TC

z (R) = Pz for all z ∈ R.]
We will refer to the maximal connected, integral submanifolds of a purely
real polarization as the leaves of the polarization.
In general, the leaves may not be embedded submanifolds of N. Suppose,

for example, that N = S1×S1, with ω = dθ∧dφ, where θ and φ are angular
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coordinates on the two copies of S1. Then the tangent space to N at any
point may be identified with R2 by means of the basis {∂/∂θ, ∂/∂φ}. We
may define a polarization P on N by defining Pz to be the span of the
vector

∂

∂θ
+ a

∂

∂φ
,

for some fixed irrational number a. Each leaf of P is then a set of the form

{
(eiθ0eit, eiat) ∈ S1 × S1

∣∣ t ∈ R
}
,

for some θ0, which is an “irrational line” in S1 × S1. Each leaf is then
dense in S1 × S1 and, thus, not embedded. We will need to avoid such
pathological examples if we hope to successfully carry out the program
of geometric quantization with respect to a real polarization. Much more
information about the structure of real polarizations may be found in Sects.
4.5–4.7 of [45].
We now consider some elementary results concerning purely complex

polarizations.

Proposition 23.18 Suppose P is a purely complex polarization on N. For
each z ∈ N, let Jz : TC

z N → TC
z N be the unique linear map such that Jz =

iI on Pz and Jz = −iI on Pz . Then Jz is real (i.e., it maps the real tangent
space to itself) and ω is Jz-invariant [i.e., ω(JzX1, JzX2) = ω(X1, X2) for
all X1, X2 ∈ TC

z N ].

Proof. Since the restriction of Jz to Pz is the complex-conjugate of its
restriction to Pz, the map Jz commutes with complex conjugation and thus
maps real vectors (those satisfying X̄ = X) to real vectors. Meanwhile,
since Pz is Lagrangian and ω is real, Pz is also Lagrangian. Given two
vectors X1 = Y1 + Z1 and X2 = Y2 + Z2, with Yj ∈ Pz and Zj ∈ Pz , we
compute that

ω(JzX1, JzX2)

= ω(iY1, iY2) + ω(iY1,−iZ2) + ω(−iZ1, iY2) + ω(−iZ1,−iZ2)

= ω(Y1, Z2) + ω(Z1, Y2).

A similar calculation gives the same value for ω(X1, X2), showing that ω
is Jz-invariant.
A complex structure on a 2n-dimensional manifold N is a collection of

“holomorphic” coordinate systems that cover N and such that the transi-
tion maps between coordinate systems are holomorphic as maps between
open sets in R2n ∼= Cn. At each point z ∈ N, there is a linear map
Jz : TzN → TzN defined by the expression

Jz

(
∂

∂xj

)
=

∂

∂yj
; Jz

(
∂

∂yj

)
= − ∂

∂xj
,
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where the xj ’s and yj’s are the real and imaginary parts of holomorphic
coordinates. This map is independent of the choice of holomorphic coordi-
nates and satisfies J2

z = −I. At each point z ∈ N, the complexified tangent
space TC

z N can be decomposed into eigenspaces for Jz with eigenvalues i
and −i; these are called the (1, 0)- and (0, 1)-tangent spaces, respectively.
Meanwhile, if N is any 2n-dimensional manifold and J is a smoothly

varying family of linear maps on each tangent space satisfying J2
z = −I for

all z, then J is called an almost-complex structure. Given an almost complex
structure, we can divide the complexified tangent space into ±i eigenspaces
for J. The Newlander–Nirenberg theorem asserts that if the family of +i
eigenspaces is integrable (in the sense of Point 1 of Definition 23.16), then
there exists a unique complex structure on N for which these are the (1, 0)-
tangent spaces.
A purely complex polarization P gives rise to a complex structure on N,

as follows. By Proposition 23.18 and the Newlander–Nirenberg theorem,
there is a unique complex structure on N for which Pz is the (1, 0)-tangent
space, for all z ∈ N.
Now, we have already seen in the R2n case that some purely complex

polarizations behave better than others. [Compare (22.11) to (22.13)]. The
geometric condition that characterizes the “good” polarizations is the fol-
lowing.

Definition 23.19 For any purely complex polarization P, let J be the
unique almost-complex structure on N such that Jz = iI on Pz and Jz =
−iI on Pz. We say that P is a Kähler polarization if the bilinear form

g(X,Y ) := ω(X, JzY ) (23.10)

is positive definite for each z ∈ N.

For any purely complex polarization, the bilinear form g in (23.10) is
symmetric, as the reader may easily verify using the Jz-invariance of ω.
Suppose, for example, that we identify R2 with C by the map z = x−iαp,

for some fixed α > 0. If we define a purely complex polarization on R2 by
taking Pz to be the span of the vector ∂/∂z in (22.9), then (Exercise 4), P
is a Kähler polarization.

23.5 Quantization Without Half-Forms

To construct a prequantum Hilbert space, we must choose a line bundle
(L,∇) over (N,ω) having curvature ω/�. Such a bundle exists if ω/� is
an integral 2-form and is unique (up to equivalence) if N is simply con-
nected. To pass to the quantum Hilbert space, we must make a substantial
additional choice, that of a polarization P on N. In our first attempt at
defining the quantum Hilbert space associated with P, we consider the
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space of sections of (L,∇) that are covariantly constant in the directions
of P . Although this approach works reasonably well for a purely complex
polarization, in the case of a purely real polarization, there typically are no
square-integrable sections satisfying this condition. (Indeed, we have seen
this problem already in the R2n case, in Sect. 22.4.) In the next section, we
will introduce half-forms to address this problem.
In the remainder of the chapter, we will let P denote a fixed polarization

on N.

23.5.1 The General Case

As we have remarked, it is customary to consider sections that are
covariantly constant in the directions of P̄ rather than in the directions
of P.

Definition 23.20 A smooth section s of L is polarized (with respect to
P ) if

∇Xs = 0 (23.11)

for every vector field X lying in P . The quantum Hilbert space associated
with P is the closure in the prequantum Hilbert space of the space of smooth,
square-integrable, polarized sections of L.

As in the Euclidean case, we will simply restrict the prequantum opera-
tors to the quantum Hilbert space, in those cases where Qpre(f) preserves
the space of polarized sections.

Definition 23.21 A smooth, complex-valued function f on N is quanti-

zable with respect to P if Qpre(f) preserves the space of smooth sections
that are polarized with respect to P.

The following definition will provide a natural geometric condition guar-
anteeing quantizability of a function.

Definition 23.22 A possibly complex vector field X preserves a polar-
ization P if for every vector field Y lying in P, the vector field [X,Y ] also
lies in P .

Note that if X lies in P, then X preserves P, by the integrability assump-
tion on P. There will typically be, however, many vector fields that do not
lie in P but nevertheless preserve P.
If X is a real vector field, then [X,Y ] is the same as the Lie derivative

LX(Y ). It is then not hard to show that X preserves P if and only if the
flow generated by X preserves P, that is, if and only if (Φt)∗(Pz) = PΦt(z)

for all z and t, where Φ is the flow of X. Furthermore, if X is real, then X
preserves P if and only if X preserves P̄ .
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Example 23.23 If N = T ∗M for some manifold M and P is the vertical
polarization on N, then a Hamiltonian vector field Xf preserves P if and
only if f = f1 + f2, where f1 is constant on each fiber and f2 is linear on
each fiber.

Proof. In local coordinates {xj , pj}, a vector field X lying in P has the
form X = gj ∂/∂pj. Thus,

[Xf , X ] =

[
∂f

∂pj

∂

∂xj
, gk

∂

∂pk

]
−
[
∂f

∂xj

∂

∂pj
, gk

∂

∂pk

]
.

This commutator will consist of three “good” terms, which involve only
p-derivatives, along with the following “bad” term:

−gk
∂2f

∂pk∂pj

∂

∂xj
.

If ∂2f/∂pk∂pj is 0 for all j and k, then the bad term vanishes and [Xf , X ]
again lies in P. Conversely, if we want the bad term to vanish for each
choice of the coefficient functions gj, we must have ∂2f/∂pk∂pj = 0 for all
j and k. Thus, for each fixed value of x, f must contain only terms that
are independent of p and terms that are linear in p.
We now identify the condition for quantizability of functions.

Theorem 23.24 For any smooth, complex-valued function f on N, if the
Hamiltonian vector field Xf preserves P̄ , then f is quantizable.

Since we do not assume that f is real-valued, the condition that Xf

preserve P̄ is not equivalent to the condition that Xf preserve P.
Proof. Given a polarized section s, we apply Qpre(f) to s and then test
whether Qpre(f)s is still polarized, by applying ∇X for some vector field
X lying in P̄ . To this end, it is useful to compute the commutator of ∇X

and Qpre(f), as follows:

[∇X , Qpre(f)] = i�
[
∇X ,∇Xf

]
+ [∇X , f ]

= i�

(
∇[X,Xf ] −

i

�
ω(X,Xf)

)
+X(f)

= i�∇[X,Xf ], (23.12)

where we have used that

ω(X,Xf ) = −ω(Xf , X) = −df(X) = −X(f),

by Definition 21.6. Since Xf preserves P̄ , the vector field [X,Xf ] again lies
in P̄ and, thus,

∇X(Qpre(f)s) = Qpre(f)∇Xs+ i�∇[X,Xf ]s = 0,
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for every polarized section s, showing that Qpre(f)s is again polarized.
The converse of Theorem 23.24 is false in general. After all, as we will see

in the following subsections, for a given polarization, there may not be any
nonzero globally defined polarized sections, in which case, any function is
quantizable. On the other hand, it can be shown that if Qpre(f) preserves
the space of locally defined polarized sections, then the Hamiltonian flow
generated by f must preserve P̄ . This result follows by the same reasoning
as in the proof of Theorem 23.24, once we know that there are sufficiently
many locally defined polarized sections. We will establish such an existence
result for purely real and purely complex polarizations in the following
subsections; for the general case, see the discussion following Definition
9.1.1 in [45].
A special case of Theorem 23.24 is provided by “polarized functions,”

that is, functions f for which X(f) = 0 for all vector fields X lying in
P̄ . For such an f, the action of Qpre(f) on the quantum space is simply
multiplication by f, as we anticipated in the introductory discussion in
Sect. 23.4.

Proposition 23.25 If f is a smooth, complex-valued function on N and
the derivatives of f in the P̄ directions are zero, then Qpre(f) preserves the
space P -polarized sections, and the restriction of Qpre(f) to this space is
simply multiplication by f.

We have already seen special cases of this result in the R2n case; see the
discussion following Proposition 22.11.
Proof. If the derivatives of f in the direction of P̄ are zero, then forX ∈ P̄ ,
we have

0 = X(f) = df(X) = ω(Xf , X),

meaning that Xf is in the ω-orthogonal complement of P̄ . But since P̄
is Lagrangian, this complement is just P̄ . Thus, Xf belongs to P̄ and, in
particular, Xf preserves P̄ , so that f is quantizable, by Theorem 23.24.
Furthermore, ∇Xf

s = 0 for any P -polarized section s, leaving only the fs
term in the formula for Qpre(f)s.

23.5.2 The Real Case

In the R2n case, we have already computed the space of polarized sections
for the vertical polarization in Proposition 22.8. As we observed there, there
are no nonzero polarized sections that are square integrable over R2n. The
same difficulty is easily seen to arise for the vertical polarization on any
cotangent bundle N = T ∗M. In Sect. 23.6, we will introduce half-forms to
deal with this failure of square integrability.
We now examine properties of general real polarizations. We will see that

polarized sections always exist locally, but not always globally.
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Proposition 23.26 If P is a purely real polarization on N, then for any
z0 ∈ N, there exist a neighborhood U of z0 and a P -polarized section s of
L defined over U such that s(z0) 
= 0.

Proof. According to the local form of the Frobenius theorem, we can find
a neighborhood U of z0 and a diffeomorphism Φ of U with a neighborhood
V of the origin in Rn×Rn such that under Φ, the polarization P looks like
the vertical polarization. That is to say, for each z ∈ U, the image of Pz

under Φ∗(z) is just the span of the vectors ∂/∂y1, . . . , ∂/∂yn, where the y’s
are the coordinates on the second copy of Rn. By shrinking U if necessary,
we can assume that L can be trivialized over U and that the open set V is
the product of a ball B1 centered at the origin in the first copy of Rn with
a ball B2 centered at the origin in the second copy of Rn.
Let θ be the connection 1-form for an isometric trivialization of L over

U and let θ̃ = (Φ−1)∗(θ). Since the subspaces Pz are Lagrangian, the
restriction of θ̃ to the each set of the form {x} × B2 is closed. Since B2

is simply connected, there exists, for each x ∈ B1, a function fx on B2

such that the restriction of θ̃ to {x} × B2 equals dfx. If we assume that
fx(0) = 0, then fx(y) will be smooth as a function of (x,y), since it is
obtained simply by integrating θ̃ from 0 to y in the vertical directions.
Now, let φ be any smooth function on B1 with φ(0) 
= 0 and define a

function ψ on B1 ×B2 by

ψ(x,y) = φ(x)eifx(y)/�.

For any “vertical” vector field X (i.e., one where X is a linear combination
of ∂/∂y1, . . . , ∂/∂yn with smooth coefficients), we compute that

Xψ =
i

�
(Xfx)ψ =

i

�
dfx(X)ψ =

i

�
θ̃(X)ψ.

Thus, (
X − i

�
θ̃(X)

)
ψ = 0,

from which it follows that the function ψ̂ := ψ ◦ Φ represents a polarized
section on U in the given local trivialization of L.
The existence of nonzero global polarized sections for a purely real po-

larization P is a more delicate question. If the leaves of P are not embed-
ded, there is little chance of finding global polarized sections. Even if the
leaves are embedded, there are obstructions. Since the tangent spaces to
the leaves of P are Lagrangian subspaces, the restriction of L to R has zero
curvature. There may, nevertheless, be loops in R for which the holonomy
(Definition 23.8) is nontrivial. After all, if a loop γ in R is not the bound-
ary of a surface S in R, then we cannot apply (23.6) to conclude that the
holonomy of γ is trivial. The collection of holonomies for a leaf R of P can
be understood as a homomorphism of π1(R) into S1. If there is any loop in
R with nontrivial holonomy, any polarized section of L must vanish on R.
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Definition 23.27 A submanifold R of N is said to be Lagrangian if dim
R = n and TzR is a Lagrangian subspace of TzN for each z ∈ R. A
Lagrangian submanifold R of N is said to be Bohr–Sommerfeld (with
respect to L) if the holonomy in L of every loop in R is trivial.

We may summarize the preceding discussion as follows.

Conclusion 23.28 For a purely real polarization P with embedded leaves,
a polarized section vanishes on every leaf of P that is not Bohr–Sommerfeld.

Our next example suggests that when the leaves are compact, the Bohr–
Sommerfeld leaves typically form a discrete set within the set of all leaves.

Example 23.29 Let N = S1 × R, equipped with the symplectic form ω =
dx∧dφ, where x is the linear coordinate on R and φ is the angular coordinate
on S1. Let L be the trivial line bundle on N, with sections that are identified
with smooth functions. Let θ = x dφ and define a connection ∇ on L by
∇X = X − (i/�)θ(X), and let P be the purely real polarization of N for
which the leaves are the sets of the form S1 × {x}, for x ∈ R. Then a leaf
S1 × {x} is Bohr–Sommerfeld if and only if x/� is an integer.
In particular, there are no nonzero, smooth polarized sections of L.

Proof. If we define a section locally on a given leaf S1 × {x} as

s(φ) = ceixφ/�

for some nonzero constant c, then it is easily verified that ∇∂/∂φs = 0. After
one trip around the circle, the value of this section will be the starting value
times e2πix/�. Thus, the holonomy around S1 × {x} is trivial if and only if
x/� is an integer. A polarized section, then, would have to vanish on all the
leaves where x/� is not an integer. Since such leaves form a dense subset
of N, any smooth polarized section must be identically zero.
Even in cases, such as Example 23.29, where there are no smooth po-

larized sections, one may still consider “distributional” polarized sections
that are supported on the Bohr–Sommerfeld leaves, as on pp. 251–252 of
[45].

23.5.3 The Complex Case

In Proposition 22.8, we computed the space of polarized sections for a cer-
tain positive, translation-invariant polarization on R2n, namely the one for
which Pz is spanned by the vectors ∂/∂zj in (22.9). The situation here
is better than that for the vertical polarization, in that there are nonzero
polarized sections that are square integrable over R2n. Recall, however,
that if we take our polarization to be spanned by the vectors ∂/∂z̄j, then
[see (22.13)], then there are no nonzero square-integrable polarized sec-
tions. This example indicates the importance of the positivity condition in
Definition 23.19.
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For our next example, we consider the example of the unit disk D,
equipped with the unique (up to a constant) symplectic form that is in-
variant under the group of fractional linear transformations that map D
onto D. In this case, the quantum Hilbert space can be identified with a
weighted Bergman space, that is, an L2 space of holomorphic functions on
D with respect to a measure of the form (1− |z|2)νdx dy.

Example 23.30 Let N be the unit disk D ⊂ R2 equipped with the following
symplectic form:

ω = 4(1− |z|2)−2 dx ∧ dy = (1 − r2)−2r dr ∧ dφ,

where (r, φ) are the usual polar coordinates. Let L be the trivial line bun-
dle over D with connection ∇X = X − (i/�)θ, where θ is the symplectic
potential for ω given by

θ = 2
r2

1− r2
dφ.

Define a complex polarization on D by letting Pz = Span(∂/∂z), where
z = x− iy. In that case, holomorphic sections s have the form

s(z) = F (z)(1− |z|2)1/�,

where F is holomorphic. The norm of such a section is computed as

‖s‖2 = 4

∫

D

|F (z)|2 (1− |z|2)2/�−2 dx dy.

As in the case of the plane, the seemingly unnatural definition z = x− iy
is necessary to obtain a Kähler polarization. If we used z = x+ iy instead,
the holomorphic sections would have the form F (z)(1− |z|2)−1/�, in which
case there would be no nonzero, square-integrable holomorphic sections.
Proof. See Exercise 8.
We now consider general purely complex polarizations. Recall that, by

Proposition 23.18 and the Newlander–Nirenberg theorem, N has a unique
complex structure for which Pz is the (1, 0)-subspace of TC

z N, for all z ∈ N.
As in the purely real case, there always exist local polarized sections.

Theorem 23.31 Suppose P is a purely complex polarization on N. Then
for each z0 ∈ N, there exists a P -polarized section s of L, defined in a
neighborhood of z0, such that s(z0) 
= 0.

We defer the proof of Theorem 23.31 until the end of this subsection.
Suppose s is as in the theorem and s′ is any other locally defined P -

polarized section. Then s′ = fs for some unique complex-valued function f ,
and by the product rule for covariant derivatives, X(f) = 0 for all X ∈ P̄z .
This means that f is holomorphic with respect to the complex structure
on N for which P is the (1, 0)-tangent space. Thus, we have a preferred
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family of local trivializations of L (the ones given by nonvanishing local
polarized sections) such that the “ratio” of any two such trivializations is
a holomorphic function. This means that we have given L the structure of
a “holomorphic line bundle” over the complex manifold N in such a way
that the holomorphic sections of L are precisely the polarized sections with
respect to P.
Arguing as in the proof of Proposition 14.15, it is not hard to show that

for a purely complex polarization, the space of square-integrable polarized
sections of L forms a closed subspace of the prequantum Hilbert space. For
any z ∈ N, if we choose a linear identification of the fiber of L over z with
C, then the map s �→ s(z) is a linear functional on the quantum Hilbert
space. It is not hard to show, as in the proof of Proposition 14.15, that
this linear functional is continuous, and can therefore be represented as an
inner product with a unique element of the quantum Hilbert space.

Definition 23.32 Let P be a purely complex polarization on N. For each
z ∈ N, choose a linear identification of the fiber of L over z with C. Then
the coherent state χz is the unique element of the quantum Hilbert space
with respect to P such that

s(z) = 〈χz, s〉

for all s.

Suppose N = R2 with a polarization given by Pz = Span(∂/∂z), where
z = x − iαp. If we use the symplectic potential θ = (p dx − x dp)/2,
then, as in the proof of Proposition 22.14, the quantum Hilbert space is
naturally identifiable with the Segal–Bargmann space. In this case, the
coherent states can be read off from Proposition 14.17.
It could happen that χz = 0 for some z ∈ N, or even for all z ∈ N,

depending on the choice of P. Even if χz is nonzero, χz is only well defined
up to multiplication by a constant, because we must choose an identification
of L−1({z}) with C. But if χz 
= 0, the one-dimensional subspace spanned
by χz is independent of this choice. That is to say, whenever χz 
= 0, the
span of χz is a well-defined element of the projective space P(H), where
H is the quantum Hilbert space.
Recall, meanwhile, that if (L,∇) is a Hermitian line bundle with con-

nection having curvature ω/�, then for any positive integer n, there is a
natural Hermitian connection on L⊗k having curvature kω/�. This means
that if L is a prequantum line bundle with one value �0 of Planck’s con-
stant, then L⊗k is a prequantum line bundle with Planck’s constant equal
to �0/k. The following result shows that in the case of compact symplectic
manifolds with Kähler polarizations, things behave nicely when k tends to
infinity.

Theorem 23.33 Assume N is compact and let P be a Kähler polarization
on N. For each positive integer k, let Hk denote the space of polarized
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sections of L⊗k. Then for all k, Hk is finite dimensional. Furthermore, for
all sufficiently large k, we have the following results. First, the coherent
state χz ∈ Hk is nonzero for each z ∈ N. Second, the map

z �→ Span(χz)

is an antiholomorphic embedding of N into P(Hk).

The finite dimensionality of Hk is a standard result in the theory of com-
pact, complex manifolds. The embedding of N into P(Hk) is the Kodaira
embedding theorem, which we will not prove here. The Kodaira embedding
theorem implies, in particular, that there exist nonzero, globally defined
polarized sections of L⊗k, at least for large k. Since the value of Planck’s
constant for L⊗k is �0/k, Planck’s constant tends to zero as k tends to
infinity. Thus, the study of holomorphic sections of L⊗k for large k can be
understood as being part of semiclassical analysis.
We now turn to the proof of Theorem 23.31, in which we will make

use of basic properties of complex-valued differential forms on complex
manifolds. (“Complex-valued” means that we allow the value of a k-form on
a collection of k tangent vectors to be a complex number.) In a holomorphic
local coordinate system z1, . . . , zn, each form can be written as a wedge
product of the dzj ’s and dz̄j ’s. A form is called a (p, q)-form if it is a
linear combination of wedge products of p factors involving the dzj’s and
q factors involving the dz̄j ’s. Each form can be decomposed uniquely as a
linear combination of (p, q)-forms for various values of p and q, and this
decomposition does not depend on the choice of holomorphic coordinate
system. If α is a (p, q)-form, then dα will be a linear combination of a
(p+ 1, q)-form and a (p, q + 1)-form. We define operators ∂ and ∂̄ in such
a way that ∂ maps (p, q)-forms to (p + 1, q)-forms, ∂̄ maps (p, q)-forms to
(p, q + 1) forms, and d = ∂ + ∂̄. In particular,

∂(f dzj1 ∧ · · · ∧ dzjp ∧ dz̄k1
∧ · · · ∧ dzkq

)

=
∑

l

∂f

∂zl
dzl ∧ dzj1 ∧ · · · ∧ dzjp ∧ dz̄k1

∧ · · · ∧ dzkq

and similarly for ∂̄ with (∂f/∂zl) dzl replaced by (∂f/∂z̄l) dz̄l.
The maps ∂ and ∂̄ satisfy the identities:

∂∂ = ∂̄∂̄ = 0

∂∂̄ = −∂̄∂.

The Dolbeault lemma states that if a (p, q)-form α satisfies ∂α = 0, then α
can be expressed locally as ∂β for some (p− 1, q)-form, and if ∂̄α = 0, then
α can be expressed locally as ∂̄β for some (p, q − 1)-form. A (p, 0)-form α
is said to be holomorphic if it can be expressed in holomorphic coordinates
as a sum of terms of the form

f(z) dzj1 ∧ · · · ∧ dzjp ,
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where the coefficient functions f is holomorphic. A (p, 0)-form α is holomor-
phic if and only if ∂̄α = 0. If a holomorphic (p, 0)-form α satisfies dα = 0
(or, equivalently, ∂α = 0), then α can be written locally as α = dβ, for
some holomorphic (p− 1, 0)-form.
Let P be a purely complex polarization on N and let J be the almost-

complex structure for which Pz is the (1, 0)-tangent space at z. Since
(Proposition 23.18), ω is J-invariant, it follows (Exercise 6) that ω is a
(1, 1)-form.

Lemma 23.34 Let N be a complex manifold with almost-complex struc-
ture J and let ω be a closed, J-invariant, real-valued (1,1)-form on N. Then
for every point z0 ∈ N, there exists a smooth, real-valued function κ defined
in a neighborhood of z0 such that i∂∂̄κ = ω.

In the case that N is Kähler [i.e., the case where ω(X, JX) ≥ 0], a
function κ as in the lemma is called a (local) Kähler potential for N.
Proof. By assumption, dω = (∂ + ∂̄)ω = 0, from which it follows that
∂ω = ∂̄ω = 0, because ∂ω is a (2, 1)-form and ∂̄ω is a (1, 2) form. Thus, by
the Dolbeault lemma, there exists a (1, 0)-form α, defined in a neighborhood
of z0, such that ∂̄α = ω. Then ∂α is a (2, 0)-form that satisfies

∂̄∂α = −∂∂̄α = −∂ω = 0.

This shows that ∂α is actually a holomorphic (2, 0)-form.
Since also ∂∂α = 0, we see that ∂α is closed, which means that there

exists a holomorphic 1-form η, defined in a possibly smaller neighborhood
of z0, such that dη = ∂η = ∂α. Thus, ∂(α−η) = 0, and so by the Dolbeault
lemma, there exists a function g, defined in a neighborhood of z0, such that
∂g = α− η. Thus, α = η + ∂g and so

ω = ∂̄α = ∂̄∂g = −∂∂̄g

since ∂̄η = 0. The function κ := ig then satisfies i∂∂̄κ = ω.
Now, a calculation in coordinates (Exercise 7) shows that the map κ �→

i∂∂̄f is real, that is, it maps real-valued functions to real-valued 2-forms.
Since ω is real, the operator i∂∂̄ must map the imaginary part of κ to zero.
Thus, i∂∂̄κ is unchanged if κ is replaced by its real part.
Proof of Theorem 23.31. Let κ be as in Lemma 23.34 and let θ be the
real-valued 1-form given by

θ = Im(∂κ) =
1

2i

(
∂κ− ∂̄κ

)
. (23.13)

Then because ∂2 = ∂̄2 = 0, we have

dθ = (∂ + ∂̄)θ =
1

2i
(∂̄∂κ− ∂∂̄κ) = ω.
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That is to say, θ is a symplectic potential for ω. Thus, by Proposition 23.6,
we can find a local isometric trivialization s0 of L for which the connection
1-form is θ/�.
For any vector X, we have

∇X

(
e−κ/(2�)s0

)
=

(
− 1

2�
X(κ)− i

�
θ(X)

)
e−κ/�s0, (23.14)

where X(κ) = dκ(X) = ∂κ(X) + ∂̄κ(X). Now, if X is of type (0, 1), then
∂κ(X) = 0, in which case, if we use (23.13), we find that the two terms on
the right-hand side of (23.14) cancel. Thus, e−κ/(2�)s0 is the desired local
polarized section.

23.6 Quantization with Half-Forms: The Real Case

In this section, we introduce a concept known as half-forms, which are
designed to work around the problem that, in the case of real polarizations,
there often do not exist any nonzero square-integrable polarized sections.
A polarized section s for a real polarization P tends to have infinite

norm, because we may get infinity from integrating |s|2 along the leaves of
the polarization. To illustrate how half-forms work around this problem,
consider the case of the vertical polarization on R2 ∼= T ∗R. Elements of the
half-form Hilbert space will be representable in the form s⊗

√
dx, where s

is a polarized section of L and where
√
dx will be interpreted as a “section

of the square root of the canonical bundle.” To compute the norm of such
an object, we first square it at each point to obtain the quantity |s|2 dx.

Since s is polarized, |s|2 is a function of x only, independent of p. Thus,

|s|2 dx may be thought of as a 1-form on R, rather than on R2, which we
may then integrate to obtain

‖s‖2 :=

∫

R

|s|2 (x) dx.

This procedure has two advantages over the one we used in Sect. 22.4,
where we simply integrated |s|2 itself over R. First, a version of this proce-
dure works for real polarizations on general symplectic manifolds. Second,
the half-form approach will allow quantized observables to be self-adjoint,
which was not the case in Sect. 22.5 when we simply restricted prequan-
tized observables to the polarized subspace. (See the discussion following
Proposition 22.12.)
Throughout this section, we assume that N is a quantizable symplectic

manifold, that L is a fixed prequantum line bundle over N, and that P is
a fixed purely real polarization on N.
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23.6.1 The Space of Leaves

Recall that a leaf of P is a maximal connected, integral submanifold of
P. We may then form the leaf space Ξ (the set of all leaves of P ) and a
quotient map q : N → Ξ sending each point z ∈ N to the unique leaf
containing z. We may topologize Ξ by defining a set U in Ξ to be open if
q−1(U) is open in N.
In order to be able to carry out the program of geometric quantization

with respect to P, we must assume that Ξ can be given the structure
of a smooth, n-dimensional manifold in such a way that q : N → Ξ is
smooth and such that the kernel of q∗,z is equal to PR

z , the intersection of
Pz with the real tangent space of Pz. We abbreviate this assumption on
Ξ by saying that Ξ is a smooth manifold. In the case N = T ∗M with the
vertical polarization (Example 23.17), the leaf space Ξ is a smooth manifold
diffeomorphic to M.
It should be emphasized that even if Ξ is a smooth manifold, there is no

canonical “volume measure” on Ξ. Thus, our half-form Hilbert space will
be defined in such a way that the pointwise “square” of an element will
be an n-form, rather than a function, on the leaf space, which can then be
integrated over the n-manifold Ξ.

23.6.2 The Canonical Bundle

We now introduce the canonical bundle of a purely real polarization P,
with sections that are a special sort of n-form on N, along with a notion
of polarized section of the canonical bundle. If the leaf space Ξ is a smooth
manifold, the space of polarized sections of the canonical bundle can be
identified with the space of all n-forms on the n-manifold Ξ.

Definition 23.35 The canonical bundle KP of P is the real line bundle
with sections that are n-forms α having the property that

X�α = 0 (23.15)

for every vector field X lying in P. A section α of KP is polarized if

X�(dα) = 0 (23.16)

for every vector field X lying in P.

If an n-form α satisfies (23.15), then α(X1, . . . , Xn) = 0 if any of the
Xj ’s belongs to P. Thus, the value of α at any point z can be viewed as
an n-linear, alternating functional on the quotient vector space TzN/PR

z ,
where PR

z is the intersection of Pz with the real tangent space. Since this
quotient space is n-dimensional, we see that at each point, the space of
possible values for α is one dimensional.
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Meanwhile, if α satisfies (23.16), then at each point, dα is an (n + 1)-
linear, alternating functional on TzN/PR

z , which must be zero. Thus, for
sections of KP , (23.16) is equivalent to the condition

dα = 0. (23.17)

We can also introduce the complexified canonical bundle KC

P , the sections
of which are complex-valued n-forms satisfying (23.15). We define a section
of KC

P to be polarized if it satisfies (23.16).

Example 23.36 Let N = T ∗Rn∼= R2n and let P be the vertical polariza-
tion on N. Then an n-form α on R2n is a section of KP if and only if α
is of the form

α = f(x,p) dx1 ∧ · · · ∧ dxn, (23.18)

and α is a polarized section of KP if and only if α is of the form

α = g(x) dx1 ∧ · · · ∧ dxn, (23.19)

for smooth functions f on R2n and g on Rn.

Proof. If α contained any term involving dpj , the contraction of α with
∂/∂pj would not be zero, leaving (23.18) as the only possible form for a
section of KP . Assuming α is of the form (23.18), if f is not independent
of p, then dα will contain a nonzero term of the form dpj ∧dx1 ∧ · · · ∧dxn,
leaving (23.19) as the only possible form for a polarized section of KP .
In Example 23.36, the polarized sections of KP are effectively just n-

forms on the configuration space Rn. This conclusion is a special case of
the following result.

Proposition 23.37 If the leaf space Ξ of P is a smooth manifold and α
is a polarized section of KP , then there exists a unique n-form α̃ on Ξ such
that

α = q∗(α̃),

where q : N → Ξ is the quotient map. Conversely, if β is any n-form on Ξ,
then α := q∗(β) is a polarized section of KP .

Proof. Suppose, first, that α = q∗(β), for an n-form β on Ξ. ThenX�α = 0
whenever X lies in P, since P is the kernel of q∗. Furthermore, dα =
q∗(dβ) = 0, since β is an n-form on an n-manifold, showing that α is a
polarized section of KP .
In the other direction, we have already noted in the proof of Proposition

23.26 that N can be identified locally with a neighborhood U × V of the
origin Rn×Rn in such a way that leaves of P correspond to the sets of the
form {x} × V. We can use q to identify U ∼= U × {0} with an open set Ũ
in Ξ. Thus, P looks locally just like the vertical polarization on R2n, and
so, by Example 23.36, any polarized section α of KP will be of the form



508 23. Geometric Quantization on Manifolds

(23.19). Thus, α determines an n-form α̂ on U and α is the pullback of
α̂ by the projection map of U × V onto U. It follows that α is locally the
pullback by q of an n-form α̃ on Ũ . We leave it to the reader to check that
overlapping neighborhoods in N give the same form α̃ on Ξ and that the
desired result holds globally.
Recall from Theorem 23.24 that Qpre(f) preserves the space of polarized

sections with respect to P, provided that the flow of Xf preserves P̄ (which
equals P , in this case). We now establish that for any such f, the Lie
derivative LXf

preserves the space of polarized sections of KP . This result
will eventually allow us to define a quantum operatorQ(f) on the half-form
Hilbert space associated to P.

Proposition 23.38 Suppose X is a vector field on N that preserves P,
in the sense of Definition 23.22, and suppose α is a smooth section of KP .
Then the Lie derivative LXα is another section of KP and if α is polarized,
LXα is also polarized.

Proof. Suppose X1, . . . , Xn are smooth vector fields, with X1 lying in
P̄ = P. Then, by a standard formula for the Lie derivative,

(LXα)(X1, . . . , Xn)

= X(α(X1, . . . , Xn))− α([X,X1], X2, . . . , Xn)

−
n∑

j=2

α(X1, . . . , Xj−1, [X,Xj], Xj+1, . . . , Xn). (23.20)

Now, because α is a section of KP , the first and third terms on the right-
hand side of (23.20) vanish. Because X preserves P , [X,X1] will again lie
in P, and so the second term vanishes as well. Thus, X1�(LXα) = 0, which
means that LXα is again a section of KP .
Since LXα = X�dα+ d(X�α), if α satisfies (23.17), we have

d(LXα) = d2(X�α) = 0,

showing that α is again polarized.

Proposition 23.39 Suppose the leaf space Ξ of P is a smooth manifold
and that a vector field X on N preserves P. Then there exists a unique
vector field Y on Ξ such that

q∗,z(X) = Y (23.21)

for all z ∈ N. Furthermore, if α = q∗(β) is a polarized section of KP , as
in Proposition 23.37, then

LX(q∗(β)) = q∗(LY (β)). (23.22)
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That is to say, under the identification in Proposition 23.37 of polarized
sections of KP with n-forms on Ξ, the operator LX corresponds to the Lie
derivative on Ξ in the direction of Y.
Proof. By Definition 23.22, [X,Z] lies in P whenever the vector field Z
lies in P. Thus, if a function φ is constant along P (i.e., annihilated by
every vector field Z lying in P ), the same will be true of Xφ. Thus, if φ is
of the form φ = ψ ◦ q for some function ψ on Ξ, then Xφ is of the form
ψ̂ ◦ q for some other function ψ̂ on Ξ. The map ψ �→ ψ̂ is easily seen to be a
vector field, that is, a derivation of C∞(Ξ). We conclude, then, that there
is a unique vector field Y on Ξ such that

X(ψ ◦ q) = (Y ψ) ◦ q (23.23)

for every smooth function ψ on Ξ. It then follows from the definition of the
differential that (23.21) holds for all z ∈ N. From (23.21), it follows easily
that for any n-form β on Ξ, we have

X�(q∗(β)) = q∗(Y �β). (23.24)

Since β, being a top-degree form, is closed, q∗(β) is also closed. Thus, one
of the terms in the formula (21.7) for the Lie derivative of β and q∗(β) is
zero. Applying d to both sides of (23.24) then gives (23.22).
Given a vector field Y and a nowhere-vanishing n-form β on Ξ, let divβ Y

be the unique function on Ξ such that

LY (β) = (divβ Y )β.

Then by (23.22), we have

LX(q∗(β)) = ((divβ Y ) ◦ q)q∗(β). (23.25)

The expression (23.25) will be helpful in analyzing the quantization of
observables in Sect. 23.6.5.

23.6.3 Square Roots of the Canonical Bundle

We now assume that the leaf space Ξ of P is an orientable manifold, and
we choose on particular orientation of Ξ.

Definition 23.40 Choose a nowhere-vanishing, oriented n-form β on Ξ,
so that α := q∗(β) is (Proposition 23.37) a nowhere-vanishing section of
KP . A section of KP is non-negative if it is, at each point, a non-negative
multiple of α. This notion does not depend on the choice of oriented n-form
β.

Since Ξ is orientable, the canonical bundle KP is trivializable, since the
section α in Definition 23.40 is a globally trivializing section. Thus, we can
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find a square root of KP , that is, a line bundle δP such that δP ⊗ δP is
isomorphic to KP . (We may, for example, take δP to be the trivial bundle.)
When we speak of a square root of KP , we will mean, more precisely, a
bundle δP together with a particular isomorphism of δP ⊗ δP with KP .
Thus, if s1 and s2 are sections of δP , we think of s1 ⊗ s2 as being a section
of KP . We assume, further, that the isomorphism of δP ⊗ δP with KP is
chosen so that for any section s of δP , the section s ⊗ s of KP is non-
negative. (If the initial isomorphism of δP ⊗ δP with KP does not have this
property, compose it with −I in the fibers of KP .)
We may consider the complexification of δP , that is, the line bundle δCP

whose fiber at each point is the complexification of the fiber of δP . There
is then a notion of complex conjugation for sections of δCP , which fixes the
fiber of δP inside the fiber of δCP at each point. If s1 and s2 are sections of
δCP , we think of s1 ⊗ s2 as a section of the complexified canonical bundle
KC

P .
If α is a section of KP and X is a vector field lying in P, let us define an

n-form ∇Xα by

∇Xα = X�(dα). (23.26)

Since α is a section of KP , we have X�α = 0, which means that ∇Xα
actually coincides with LXα, by (21.7). Since it lies in P, the vector field
X preserves P, and thus ∇Xα = LXα is again a section of KP , by Proposi-
tion 23.38. The operator ∇ in (23.26) has all the properties of a connection
on KP except that it is only defined in the directions of P . [Note that LX

does not, in general, satisfy the condition LfX = fLX , as required by Def-
inition 23.2. Since, however, LXα can also be computed as in (23.26), for
any section α of KP , the map ∇ does satisfy ∇fX = f∇X .]
We call ∇ the natural partial connection on KP . According to Defini-

tion 23.35, a section α of KP is polarized if and only if ∇Xα = 0 for each
vector field X lying in P. We now show that both the partial connection
and the Lie derivative “descend” to sections of δP in a natural way. This
result will, in particular, allow us to define a notion of polarized sections
of δP .

Proposition 23.41 Let δP be a fixed square root of KP . For any vector
field X lying in P, there is a unique linear operator ∇X mapping sections
of δP to sections of δP , such that

∇X(fs1) = X(f)s1 + f∇Xs1 (23.27)

∇X(s1 ⊗ s2) = (∇Xs1)⊗ s2 + s1 ⊗ (∇Xs2) (23.28)

for all smooth functions f and all sections s1 and s2 of δP . On the left-hand
side of (23.28), ∇X is the partial connection on KP given by (23.26).
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If X is a vector field on N that preserves P, then there is a unique linear
operator LX , mapping sections of δP to sections of δP such that

LX(fs1) = X(f)s1 + fLXs1

LX(s1 ⊗ s2) = (LXs1)⊗ s2 + s1 ⊗ (LXs2)

for all smooth functions f and all sections s1 and s2 of δP .
Both of these constructions extend naturally from sections of δP to sec-

tions of δCP .

We may then say that a section s of δCP is polarized if ∇Xs = 0 for every
smooth vector field X lying in P.
Proof. If V is a one-dimensional vector space, then the map ⊗ : V × V →
V ⊗V is commutative: u⊗v = v⊗u for all u, v ∈ V. Furthermore, if u0 is a
nonzero element of V, then the map u �→ u⊗ u0 is an invertible linear map
of V to V ⊗ V. Suppose s0 is a local nonvanishing section of δP . Applying
(23.28) with s1 = s2 = s0, we want

2(∇Xs0)⊗ s0 = ∇X(s0 ⊗ s0). (23.29)

Since the operation of tensoring with s0 is invertible, there is a unique
section “∇Xs0” of δP for which (23.29) holds.
Locally, any section s of δP can be written as s = gs0 for a unique

function g. We then define ∇Xs by

∇Xs = X(g)s0 + g∇Xs0, (23.30)

in which case, (23.27) is easily seen to hold. If s1 = g1s0 and s2 = g2s0,
then using (23.29) and the symmetry of the tensor product, it is easy to
verify that (23.28) holds, with both sides of the equation equal to

X(g1g2)∇X(s0 ⊗ s0).

Uniqueness of ∇X holds because both (23.29) and (23.30) are required
by the definition of ∇X . The action of ∇X extends to sections of δCP , by
writing such sections as complex-valued functions times s0. The analysis of
the Lie derivative is similar and is omitted.

23.6.4 The Half-Form Hilbert Space

We continue to assume that the leaf space Ξ of P is an orientable manifold,
and that we have chosen an orientation on Ξ. We assume that we have
chosen a square root δP of KP , as in Sect. 23.6.3. If L is a prequantum line
bundle over N, we now form the tensor product bundle L⊗ δCP . Given two
sections s1 and s2 of L ⊗ δCP , we decompose them locally as sj = μj ⊗ νj ,
where μj is a section of L and νj is a section of δCP , and where, say, the
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μj ’s are taken to be nonvanishing. Then we can combine these sections to
form the quantity

(s1, s2) := (μ1, μ2)ν1 ⊗ ν2, (23.31)

where (μ1, μ2) is the pointwise inner product given by the Hermitian struc-
ture on L. Since (μ1, μ2) is a scalar-valued function and ν1⊗ ν2 is a section
of KC

P , the quantity (s1, s2) is a section of KC

P . Any other decomposition
of sj as the tensor product of a nonvanishing section of a L and a section
of δP is of the form (fμj)⊗ (νj/f) for some nonvanishing function f, and
the value of (s1, s2) is the same as for the original decomposition. Since
it is independent of the choice of local decomposition, (s1, s2) is actually
defined globally.
Given the connection on L and the partial connection (23.41) on δCP , we

can form a partial connection on L ⊗ δCP with the following property. For
any vector field X lying in P, and any section s of L⊗ δCP , if we decompose
s locally as s = μ ⊗ ν, where μ is a nonvanishing section of L and ν is a
section of δP , then

∇X(s) = (∇Xμ)⊗ ν + μ⊗ (∇Xν). (23.32)

The reader may verify that if μ ⊗ ν is replaced by (fμ) ⊗ (ν/f) for some
nonvanishing function f, the value of ∇X(s) is unchanged. Thus, as with
the quantity (s1, s2) in (23.31), ∇X(s) is defined globally. We then define
a section s of L ⊗ δCP to be polarized if ∇Xs = 0 for each vector field X
lying in P. If s1 and s2 are polarized sections of L ⊗ δCP , then the section
(s1, s2) in (23.31) is easily seen to be a polarized section of KP .
As in the case without half-forms there is an obstruction to the existence

of globally defined polarized sections of L⊗δCP .We say that a leafR is Bohr–
Sommerfeld (in the half-form sense, with respect to a particular choice of
δP ) if there exists a nonzero section s of L ⊗ δCP defined over R such that
∇Xs = 0 for each tangent vector to R. As in the case without half-forms,
if the leaves are topologically nontrivial, the Bohr–Sommerfeld leaves will
in general be a discrete set in the space of all leaves.
The Bohr–Sommerfeld leaves in the half-form sense need not be the same

as the Bohr–Sommerfeld leaves in the sense of Definition 23.27. In the
setting of Example 23.29, for instance, the canonical bundle KP is trivial,
but the square-root bundle δP may be chosen to be nontrivial, by putting
in a twist by 180 degrees over each copy of S1. (That is to say, we think
of S1 as the interval [0, 2π] with the ends identified, and we attach a copy
of R to each point. But when identifying the fiber at 2π with the fiber at
0, we use the negative of the identity map.) As Exercise 9 shows, in this
example, the Bohr–Sommerfeld leaves are the sets of the form {x} × S1,
where x/� = n+ 1/2 for some integer n.

Definition 23.42 For any purely real polarization P and any square root
δP of KP , the half-form space is the space of smooth, polarized sections
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of L⊗ δCP . For a polarized section s of L⊗ δCP , define the norm of s by

‖s‖2 =

∫

Ξ

(̃s, s), (23.33)

where (s, s) is as in (23.31) and where (̃s, s) is the n-form on Ξ given by
Proposition 23.37. If s1 and s2 are elements of the half-form space with
‖s1‖ < ∞ and ‖s2‖ < ∞, define the inner product of s1 and s2 by

〈s1, s2〉 =
∫

Ξ

˜(s1, s2).

The half-form Hilbert space is the completion with respect to the norm
(23.33) of the space of polarized sections s for which ‖s‖2 < ∞.

The integral of n-forms on Ξ is taken with respect to the chosen orien-
tation on Ξ. We can always decompose s locally as s = μ⊗ ν with ν being
a section of δP (as opposed to δCP ) and μ being a section of L. Then

(s, s) = (μ, μ)ν ⊗ ν,

from which we see that (s, s) is a non-negative section of KP (Defini-
tion 23.40). (Recall that we have chosen the identification of δP ⊗ δP with
KP in a particular way, so that ν ⊗ ν is always the pullback by q of an
oriented form on Ξ.) Thus, the integral on the right-hand side of (23.33) is
non-negative, but possibly infinite.

Example 23.43 Let N = T ∗R ∼= R2 and let L be the trivial bundle on
N , with connection ∇X = X − (i/�)θ(X), where θ = p dx. Let P be the
vertical polarization on N and orient R so that oriented 1-forms are positive
multiples of dx. Let δP to be the trivial bundle and with a trivializing section
“
√
dx” of δP such that

√
dx⊗

√
dx = dx. Then every polarized section s of

L⊗ δCP has the form

s = ψ(x) ⊗
√
dx (23.34)

for some function ψ on R. The norm of such a section is computed as

‖s‖2 =

∫

R

|ψ(x)|2 dx.

Proof. The sections of KP are 1-forms that are zero on ∂/∂p, that is,
1-forms of the form α = f(x, p) dx. Such a 1-form satisfies dα = 0 if
and only if f is independent of p. Thus, dx is a globally defined polarized
section of KP . If we choose δP to be trivial and let

√
dx be such that√

dx⊗
√
dx = dx, then

√
dx will be a polarized section of δP . Every section

s of L⊗ δCP can be written uniquely as s = ψ(x, p)⊗
√
dx for some function

ψ. Since
√
dx is polarized and θ(∂/∂p) = 0, we see that s is polarized if

and only if ψ is independent of p. For a section of the form (23.34), we have

(s, s) = |ψ(x)|2 dx, in which case, (̃s, s) is given by the same formula as
(s, s), but now interpreted as a 1-form on Ξ ∼= R rather than R2.
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23.6.5 Quantization of Observables

Suppose f is a function on N for which Xf preserves P in the sense of
Definition 23.22. We will now associate with f a self-adjoint (or, at least,
symmetric) operator Q(f) on the half-form Hilbert space of P. Operators
of this sort will satisfy exactly the desired commutation relations.

Definition 23.44 For any function f on N for which Xf preserves P, let
Q(f) be the operator on the half-form space of P given by

Q(f)s = (Qpre(f)μ)⊗ ν + i� μ⊗ LXf
ν,

where s is decomposed locally as s = μ⊗ ν, with μ being a section of L and
ν a section of δCP .

The operator Q(f) is well defined (i.e., independent of the choice of local
trivialization) as may easily be verified. This independence holds, however,
only because the coefficient i� of ∇Xf

in the first term exactly matches the
coefficient i� of LXf

in the second term.
Before describing the general properties of the operators Q(f), we con-

sider a simple example that illustrates the essential role of the Lie derivative
term in Definition 23.44.

Example 23.45 Let the notation be as in Example 23.43, and let f : R2 →
R be of the form

f(x, p) = a(x) + b(x)p,

for some smooth functions a and b on R. Then Xf preserves P and

Q(f)(ψ(x) ⊗
√
dx) = ψ̃(x)⊗

√
dx,

where

ψ̃(x) = −i�

(
b(x)ψ′(x) +

1

2
b′(x)ψ(x)

)
+ a(x)ψ(x).

In particular, if f(x, p) = x, then ψ̃(x) = xψ(x) and if f(x, p) = p, then
ψ̃(x) = −i� ∂ψ/∂x. More generally, if a and b are polynomials, then the
action of Q(f) on ψ coincides with the Weyl quantization of f (Exercise 8
in Chap. 13).
The term involving b′(x) comes from the presence of half-forms and is

absent in the formula (22.15) for Qpre(f). The b′ term, with the exact
coefficient of 1/2, is necessary for Q(f) to be self-adjoint (or, at least,
symmetric); see Exercise 10. Example 23.45 is actually quite representative
of the general case. [Compare (23.38) in the proof of Theorem 23.47 and
Example 23.48.]
Proof. We have computed Qpre(f) in (22.15) in the proof of Proposi-
tion 22.12. We compute that Xf is equal to −b(x) ∂/∂x plus a term in-
volving ∂/∂p. Since the 1-form dx is closed, we obtain, by (21.7),

LXf
(dx) = d(Xf�dx) = −db(x) = −b′(x) dx.
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Using Proposition 23.41, we then obtain

LXf

(√
dx
)
⊗
√
dx = −1

2
b′(x) dx = −1

2
b′(x)

√
dx⊗

√
dx, (23.35)

which gives

LXf

(√
dx
)
= −1

2
b′(x)

√
dx.

Adding the LXf
term to the previously computed expression for Qpre(f)

gives the desired result.
Returning now to the setting of general real polarizations, we establish

two key results for the quantized observables Q(f), that they satisfy the
desired commutation relations and that they are self-adjoint (or, at least,
symmetric) whenever f is real valued. It can also be shown that when f is
a polarized function (i.e., constant along each leaf of P ), then Q(f) acts on
the quantum Hilbert space simply as multiplication by f. See Exercise 11.

Theorem 23.46 Suppose f and g are functions on N for which Xf and
Xg preserve P. Then the operators Q(f) and Q(g) satisfy

1

i�
[Q(f), Q(g)] = Q({f, g})

on the space of smooth, polarized sections of L⊗ δCP .

Proof. Since Q(h) is a local operator for any function h, it suffices to prove
the result locally. Let us choose, then, a local nonvanishing section ν0 of
δCP , so that, locally, each section s of L⊗δCP can be decomposed uniquely as
s = μ⊗ ν0. For any vector field preserving P, we let γ(X) be the function
such that

LX(ν0) = γ(X)ν0.

We then have Q(f)(μ⊗ ν0) = μ̃⊗ ν0, where

μ̃ = [Qpre(f) + i�γ(Xf)]μ.

We now compute that

[Qpre(f) + i�γ(Xf ), Qpre(g) + i�γ(Xg)]

= [Qpre(f), Qpre(g)] + i�[Qpre(f), γ(Xg)] + i�[γ(Xg), Qpre(f)]

= i�Qpre({f, g}) + (i�)2 (Xf (γ(Xg))−Xg(γ(Xf ))) .

The desired result will follow if we can verify that

Xf (γ(Xg))−Xg(γ(Xf )) = γ(X{f,g}). (23.36)

To verify (23.36), we use a standard identity for the Lie derivative on
forms: L[X,Y ] = [LX ,LY ]. Using Proposition 23.41, we can easily show that

this identity holds also on sections of δCP , for vector fields that preserve P.
It is then a simple calculation (Exercise 12) to verify (23.36).
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Theorem 23.47 If f ∈ C∞(N) is real valued and Xf preserves P, then
the operator Q(f) is symmetric on the space of smooth sections s in the

half-form space for which (̃s, s) has compact support on Ξ.

Proof. Suppose α = q∗(β) is polarized section of KP , so that there is,
at least locally, a corresponding polarized section

√
q∗(β) of δP . If Xf

preserves P, then by Proposition 23.39, there is a unique vector field Yf on Ξ
such that q∗,z(Xf ) = Yf for all z ∈ N. Using (23.25) and Proposition 23.41,
we get

LXf

(√
q∗(β)

)
=

1

2
((divβ Yf ) ◦ q)

√
q∗(β).

Meanwhile, it is not hard to show (Exercise 13) that it is possible to
choose a local symplectic potential θ that is zero in the directions of P.
Thus, we can trivialize L locally in such a way that sections that are co-
variantly constant along P are simply functions that are constant along P
in the ordinary sense. Thus, elements s of the half-form space have, locally,
the form

s = (ψ ◦ q)⊗
√
q∗(β) (23.37)

for some function ψ and n-form β on Ξ. Thus, if Xf preserves P, and a
section s is decomposed locally as in (23.37), we have

Q(f)(s) = (ψ̃ ◦ q)⊗
√
q∗(β),

where

ψ̃ = i�

(
Yfψ +

1

2
(divβ Yf )ψ

)
+ (−θ(Xf )− f)ψ. (23.38)

It can be verified (Exercise 14) that the function −θ(Xf ) − f is constant
along P and thus may be thought of as a function on Ξ.
By multiplying elements of the half-form space by functions of the form

χ◦q, with χ having compact support in Ξ, we can “localize” the calculations
on Ξ. Suppose s1 and s2 are two elements of the half-form space decomposed
as in (23.37) near a point z ∈ N, with the same β and two different functions

ψ1 and ψ2 on Ξ. Then ˜(s1, s2) has the form ψ1ψ2β in a neighborhood U of

q(z). By localization, we may assume that ˜(s1, s2) has compact support in
U, and we then have

〈s1, Q(f)s2〉 = −i�

∫

Ξ

ψ1ψ̃2 β,

where ψ̃2 is as in (23.38). “Integration by parts” (Exercise 15) with respect
to β then shows that this quantity coincides with 〈Q(f)s1, s2〉 .

Example 23.48 (Cotangent Bundles) Let N = T ∗M for an oriented
manifold M , let θ be the canonical 1-form on N , and let L be the trivial
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line bundle on N, with connection ∇X = X − (i/�)θ(X). Let P be the
vertical polarization on N , so that KP is trivial, and let δP be chosen to
be trivial. Let β be an arbitrary nowhere-vanishing, oriented n-form on M,
so that α := π∗(β) is a nowhere-vanishing section of KP , and choose a
trivializing section

√
α of δP with

√
α ⊗√

α = α. In that case, elements s
of the half-form Hilbert space have the form s = (ψ ◦ π) ⊗√

α, where ψ is
a function on M, and

‖s‖2 =

∫

M

|ψ|2 β.

The half-form Hilbert space may, thus, be identified with L2(M,β).
Suppose now that f is a function on T ∗M of the form f = f1+f2, where

f1 is constant on each fiber of T ∗M and f2 is linear on each fiber. Then
f2 may be thought of as a section of T ∗∗M ∼= TM, that is, as a vector field
Yf on M. In that case, Xf preserves P and Q(f) acts on elements of the
half-forms space as

Q(f)
(
(ψ ◦ π)⊗

√
α
)
= (ψ̃ ◦ π)⊗

√
α,

where

ψ̃ = i�

(
Yfψ +

1

2
(divβ Yf )ψ

)
+ f1ψ.

Here divβ Yf is the unique function such that LYf
β = (divβ Yf )β.

A simple calculation in coordinates shows that the vector field Yf in the
example satisfies Xf(ψ ◦ π) = (Yfψ) ◦ π, so that our notation is consistent
with that in Proposition 23.39 [see (23.23)].
Proof. The calculation is precisely the same as in the proof of Theorem
23.47, except that the decomposition in (23.37) is now global. The claimed
form of Q(f) is nothing but the expression (23.38), where the reader may
easily compute, using local coordinates, that −θ(Xf )− f = f1.
It is an unfortunate feature of geometric quantization that in the case

of the vertical polarization on cotangent bundles, it only permits us to
quantize functions that are at most linear in the momentum variables. In
a typical physical system having T ∗M as its phase space, there will be a
“kinetic energy” term in the classical Hamiltonian that is quadratic in p.
To quantize such a system, one has to find a way to quantize the kinetic
energy term, “by hook or by crook.”
One approach to this problem is to allow the exponentiated quantized

Hamiltonian to change the polarization, and then to use pairing maps
(Sect. 23.8) to “project” back to the Hilbert space for the original polar-
ization. As explained in Sect. 9.7 of [45], this approach succeeds in the
case that the kinetic energy term is g(p, p)/(2m), where g is the Rieman-
nian structure on T ∗M induced by a Riemannian structure on TM. The
quantized kinetic energy operator turns out to be given by the map

ψ �→ − �2

2m

(
(∆ψ)(x) − 1

6
R(x)ψ(x)

)
, (23.39)
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where ∆ is the Laplacian for M (taken to be a negative operator) and
where R(x) is the scalar curvature of the Riemannian structure on TM.
The calculation in [45] glosses over one technical issue, which is that the
time-evolved polarizations may not be everywhere transverse to the original
polarization. Nevertheless, the calculation provides a reasonable geometric
motivation for the formula (23.39).
It should be emphasized that, because of the projections involved in

the computation of the quantized kinetic energy operator, it does not sat-
isfy the desired commutation relations with the quantizations of functions
whose flow preserves the vertical polarization. Nevertheless, this approach
to quantizing the kinetic energy may simply be the best one can do.

23.7 Quantization with Half-Forms: The
Complex Case

In the case of a purely complex polarization, half-forms are not “neces-
sary,” in that we typically have a nonzero Hilbert space even without them.
Nevertheless, their inclusion gives advantages. In the first place, using half-
forms makes the complex case more parallel to the real case. In the second
place, complex quantization with half-forms simply gives better results than
without half-forms. In the case of the harmonic oscillator, for example, the
inclusion of half-forms allows (Example 23.53) geometric quantization to
reproduce precisely the spectrum (n+1/2)�ω, n = 0, 1, 2, . . . , that we found
in the traditional treatment. This result should be compared to Proposition
22.14 without half-forms, where the spectrum is found to be n�ω.
Throughout this section, we assume that (N,ω) is a 2n-dimensional

quantizable symplectic manifold, that (L,∇) is prequantum line bundle
over N, and that P is a Kähler polarization on N (Definition 23.19). Since
the definitions in the complex case are very similar to those in the real
case (with a few important differences), we will run through them quickly.
Since P̄ is no longer equal to P, we need to replace P by P̄ in may of the
formulas from Sect. 23.6.
The canonical bundle KP of P is the complex line bundle for which the

sections are n-forms α satisfying

X�α

for each vector field X lying in P̄ . Sections of KP are precisely the (n, 0)-
forms on N. A section of KP is said to be polarized if

X�(dα) = 0 (23.40)

for every vector field lying in P̄ , or, equivalently, if dα = 0. Polarized
sections of KP are precisely the holomorphic (n, 0)-forms on N. By a square
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root of KP we will mean a complex line bundle δP over N such that δP ⊗δP
is isomorphic with KP , together with a particular isomorphism of δP ⊗ δP
with KP . Thus, if s1 and s2 are sections of δP , we think of s1 ⊗ s2 as being
a section of KP . We assume that such a square root exists and we fix for
the remainder of this section one particular square root δP .
If X is a vector field that preserves P̄ , in the sense of Definition 23.22,

then LX preserves the space of sections of KP and also the space of po-
larized sections of KP . The condition (23.40) defining polarized sections of
KP can be understood as the vanishing of a partial connection ∇·, defined
for vector fields lying in P̄ , and given by ∇Xα = X�(dα). Both the partial
connection (for vector fields lying in P̄ ) and the Lie derivative (for vector
fields preserving P̄ ) descend from KP to δP , as in Proposition 23.41 in the
real case. The connection on L and the partial connection on δP combine
to give a partial connection on L⊗ δP . A section s of L⊗ δP is said to be
polarized if ∇Xs = 0 for all vector fields X lying in P̄ .

Notation 23.49 If β is any 2n-form on N, let the expression

β

λ

denote the unique function on N such that β = (β/λ)λ, where λ is the
Liouville form in Definition 21.16.

Unlike the canonical bundle in the real case, the canonical bundle in the
purely complex case carries a natural Hermitian structure.

Proposition 23.50 If α is an (n, 0)-form on N, then at each point the
2n-form

(−1)n(n−1)/2(−i)n ᾱ ∧ α

is a non-negative multiple of the Liouville form λ. There is then a unique
Hermitian structure on δP with the property that for each section s of δP
we have

|s|2 =

(
(−1)n(n−1)/2(−i)n

2n
(s⊗ s) ∧ (s⊗ s)

λ

)1/2

. (23.41)

The factor of 2n in the denominator in (23.41) is inserted for convenience,
to make certain formulas come out more nicely.
Proof. See Exercise 17.
Since, by assumption, there is Hermitian structure on L, the above Her-

mitian structure on δP gives rise in a natural way to a Hermitian structure
on L⊗ δP .

Definition 23.51 The half-form Hilbert space for a Kähler polariza-
tion P on N is the space of square-integrable polarized sections of L⊗ δP .
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In the Cn case, using the canonical 1-form as our symplectic potential,
elements of the half-form Hilbert space take the form

e−|Im z|2/(2α�)F (z)⊗
√
dz1 ∧ · · · ∧ dzn.

In this special case, the norm of the half-form factor
√
dz1 ∧ · · · ∧ dzn is

constant and the half-form Hilbert space is still identifiable with the space
in Conclusion 22.10. In the case of the unit disk, on the other hand, the
presence of half-forms alters the inner product; see Exercise 16.
We now define quantized observables on the half-form Hilbert space,

using the same formula as in the real case.

Definition 23.52 If f is a function on N for which Xf preserves P̄ , let
Q(f) be the operator on the half-form Hilbert space of P given by

Q(f)s = (Qpre(f)μ)⊗ ν − i� μ⊗ LXf
ν,

where s is decomposed locally as s = μ⊗ ν, with μ being a section of L and
ν a section of δP .

These operators satisfy [Q(f), Q(g)] /(i�) = Q({f, g}) on the space of
smooth polarized sections of L ⊗ δP , with the proof of this result being
identical to the proof of Theorem 23.46 in the real case. If f is real-valued
and Xf preserves P̄ , then Q(f) will be at least symmetric, assuming we can
find a dense subspace of the half-form Hilbert space consisting of “nice”
functions. (Finding dense subspaces is more difficult in the holomorphic
case than in the real case.) A proof of this claim is sketched in Exercise 18.

Example 23.53 Consider R2 ∼= T ∗R with the Kähler polarization P given
by the global complex coordinate z = (x − ip/(mω)), for some positive
number ω. Take δP to be trivial with trivializing section

√
dz. Consider

also the harmonic oscillator Hamiltonian H := (p2 +(mωx)2)/(2m). Then
XH preserves the P and the operator Q(H) on the half-form Hilbert space
has spectrum consisting of numbers of the form (n + 1/2)�ω, where n =
0, 1, 2, . . . .

In this example, ω is the frequency of the oscillator and not the canonical
2-form.
Proof. The calculation is the same as in the proof of Proposition 22.14,
except for the addition of the Lie derivative term. A simple calculation
shows that LXH

(dz) = iω dz, from which it follows that LXH

√
dz =

(iω/2)
√
dz. It is then easy to see that the set of elements of the form

e−mω|Im z|2/(2�)zn ⊗
√
dz form an orthonormal basis of eigenvectors for

Q(H), with eigenvalues (n+ 1/2)�ω.
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23.8 Pairing Maps

Pairing maps are designed to allow us to compare the results of quantizing
with respect to two different polarizations. We consider mainly the case
of two “transverse” real polarizations; the case of two complex polariza-
tions or one real and one complex polarization can be treated with minor
modifications.
Suppose that P and P ′ are two purely real polarizations and that the

associated leaf spaces Ξ1 and Ξ2 are oriented manifolds. Suppose also that
P and P ′ are transverse at each point z ∈ N, meaning that Pz ∩ P ′

z =
{0}. If α and β are polarized sections of KP and KP ′ , respectively, the
transversality assumption is easily shown to imply that α∧β is a nowhere-
vanishing 2n-form on N. Thus, for any point z ∈ N, we can define a bilinear
“pairing” from δP,z × δP ′,z → R by

(ν1, ν2) =

(
(ν1 ⊗ ν1) ∧ (ν2 ⊗ ν2)

λ

)1/2

. (23.42)

(Recall Notation 23.49.) We can extend this pairing to a pairing δCP,z ×
δCP ′,z → C that is conjugate linear in the first factor and linear in the second

factor. Finally, we extend to a pairing of (Lz ⊗ δCP,z)× (Lz ⊗ δCP ′,z) → C by
setting (μ1⊗ν1, μ2⊗ν2) equal to (μ1, μ2)(ν1, ν2), where (μ1, μ2) is computed
with respect to the Hermitian structure on L.
Let H1 and H2 denote the half-form Hilbert spaces for P and P ′, re-

spectively. Given s1 ∈ H1 and s2 ∈ H2, we define the pairing of s1 and
s2 by

〈s1, s2〉P,P ′ := c

∫

N

(s1, s2) λ,

provided that the integral is absolutely convergent. Here (s1, s2) is the
pointwise pairing of s1 and s2 defined in the previous paragraph and c is
a certain “universal” constant, depending only on � and the dimension of
n, that can be chosen to make certain examples work out nicely. We now
look for a pairing map ΛP,P ′ : H1 → H2 with the property that

〈s1, s2〉P,P ′ = 〈ΛP,P ′s1, s2〉H2
. (23.43)

If the pairing is bounded (i.e., it satisfies |〈s1, s2〉P,P ′ | ≤ C ‖s1‖ ‖s2‖ for
some constant C), there is a unique bounded operator ΛP,P ′ satisfying
(23.43). Even if the pairing is unbounded, we may be able to define ΛP,P ′

as an unbounded operator.
If we were optimistic, we might hope that the pairing map for any two

transverse polarizations would be unitary, or at least a constant multiple
of a unitary map. If this were the case, it would suggest that quantization
is independent of the choice of polarization, in the sense that there would
be a natural unitary map between the Hilbert spaces for two different
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polarizations. As it turns out, however, the typical pairing map is not a
constant multiple of a unitary map. Nevertheless, there are certain special
cases where the pairing map is unitary (up to a constant), including the case
of translation-invariant polarizations on R2n. See also [20] for an example of
a pairing map between a real and a complex polarization that is a constant
multiple of a unitary map.
We compute just one very special case of the pairing map between two

real polarizations.

Example 23.54 Consider N = R2 ∼= T ∗R and take L to be trivial with
connection 1-form θ = p dx. Let P be the vertical polarization, spanned at
each point by ∂/∂p, and let P ′ be the horizontal polarization, spanned at
each point by ∂/∂x. Then elements s1 of the half-form space for P have the
form

s1(x, p) = φ(x) ⊗
√
dx (23.44)

and elements s2 of the half-form space for P ′ have the form

s2(x, p) = ψ(p)eixp/� ⊗
√
dp, (23.45)

where φ and ψ are functions on R. If c = 1, the pairing is computed as

〈s1, s2〉P,P ′ = −
∫

R2

φ(x)ψ(p)eixp/� dx dp. (23.46)

If s1 has the form (23.44), then ΛP,P ′(s1) has the form (23.45), where

ψ(p) = −
∫

R

φ(x)e−ixp/� dx.

Thus, ΛP,P ′ is a scaled version of the Fourier transform and is, in partic-
ular, a constant multiple of a unitary map.

The pairing should be defined initially on some dense subspace of the
Hilbert spaces, such as the subspaces where φ and ψ are Schwartz func-
tions. The pairing map can also be defined initially on the Schwartz space,
recognized as being unitary (up to a constant), and then extended by con-
tinuity to all of H1. Once the pairing map is extended to H1, the pairing
itself can be defined for all s1 ∈ H1 and s2 ∈ H2 by taking (23.43) as the
definition of 〈s1, s2〉P,P ′ . Even though it is possible, as just described, to
extend the pairing to all of H1 ×H2, the integral in (23.46) is not always
absolutely convergent.
Proof. The forms (23.44) and (23.45) are obtained by a simple modification
of the argument in the proof of Proposition 22.8. We can compute that the
pointwise pairing of

√
dx and

√
dp is −1, which gives the indicated form of

the pairing in (23.46). The pairing may be rewritten as
∫

R

∫

R

φ(x)e−ixp/� dx ψ(p) dp,

which gives the indicated form of the pairing map.
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23.9 Exercises

1. Let L be a line bundle with connection∇ overN. Let s be a section of L
and let X1 and X2 be two vector fields on N such that X1(z) = X2(z)
for some fixed point z ∈ N. Show that

∇X1
(s)(z) = ∇X2

(s)(z).

Hint : Use the assumption that ∇fX = f∇X .

2. Let L be a Hermitian line bundle with Hermitian connection ∇ and
let s0 be a locally defined section of L such that (s0, s0) ≡ 1. Given a
vector field X, let θ(X) be the unique function such that

∇Xs0 = −iθ(X)s0.

Show that θ(X) is real valued.

Hint : Use the Hermitian property of the connection.

3. Consider the definition of the curvature 2-form ω(X,Y ) in Defini-
tion 23.4.

(a) Show that the expression for ω is C∞-linear in each of the vari-
ables X, Y, and s. That is to say, show that for all smooth
functions f, we have ω(fX, Y )s = fω(X,Y )s, and similarly for
the variables Y and s.

(b) Show that the value of ω(X,Y )s at a point z depends only on
the values of X, Y, and s at the point z.

(c) Show that the value of ω(X,Y ) at a point z does not depend on
the value of s at z, provided that s(z) 
= 0.

4. Consider the symplectic form ω = dp∧dx on R2. Define a purely com-
plex polarization on R2 by taking Pz to be the span of the vector ∂/∂z
in (22.9), for some fixed α > 0. Show that P is a Kähler polarization.

5. Let P be the polarization on R2 in Exercise 4. Show that the function
κ(x, p) := αp2 is a Kähler potential for P.

6. Suppose that ω is a J-invariant 2-form on a complex manifold N. Show
that ω is a (1, 1)-form. (Recall the definitions preceding Lemma 23.34.)

Hint : Write ω = ω1 +ω2, where ω1 is a (1, 1)-form and ω2 is a sum of
a (2, 0)-form and a (0, 2)-form. Show that

ω2(JX, JY ) = −ω2(X,Y )

for all tangent vectors X and Y.
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7. Suppose that κ is a smooth, real-valued function on a complex mani-
fold N. Show that the 2-form i∂∂̄κ is a real-valued 2-form.

8. In Example 23.30, verify that θ is a symplectic potential for ω, and
compute θ(∂/∂z̄), where, with z = x − iy, we have ∂/∂z̄ = (∂/∂x −
i∂/∂y)/2. Then verify that s0(z) := (1− |z|2)1/� satisfies ∇∂/∂z̄s0 = 0
and thus constitutes a global trivializing holomorphic section.

9. Consider the situation in Example 23.29. Show that the canonical bun-
dle for P is trivial, with trivializing section dx. Let δP be the (non-
trivial) bundle described in the paragraph preceding Definition 23.42.
Since the tensor product of any real line bundle with itself is trivial,
δP ⊗ δP is isomorphic to KP . Let

√
dx denote a discontinuous section

defined over the set 0 < φ < 2π such that
√
dx⊗

√
dx = dx. Show that

∇X(dx) = 0 and ∇X

√
dx = 0 for every vector field lying in P . Now

show that the Bohr–Sommerfeld leaves (in the half-form sense, for this
choice of δP ) are the sets of the form {x} × S1, where x/� = n+ 1/2
for some integer n.

10. Let b be a smooth, real-valued function on R and let c be a real
constant. Show that an operator of the form

ψ �→ −i� (b(x)ψ′(x) + cb′(x)ψ(x))

is symmetric on C∞
c (R) ⊂ L2(R) if and only if c = 1/2.

11. Let P be a real polarization and let f be a smooth polarized function
on N, that is, one for which derivatives in the direction of P are
zero. Show that Q(f) acts on the half-form Hilbert space simply as
multiplication by f. (Compare Proposition 23.25 in the case without
half-forms.)

Hint : Show that LXf
α = 0 whenever α is a polarized section of KP .

12. Using the identities L[X,Y ] = [LX ,LY ] and X{f,g} = [Xf , Xg], verify
the identity (23.36).

13. Prove that if P is a real polarization on N, it is possible to choose a
symplectic potential θ locally in such a way that θ is zero on P.

Hint : Use functions fx as in the proof of Proposition 23.26.

14. Suppose that P is a purely real polarization on N and θ is a local
symplectic potential that vanishes on P. Suppose also that f is a real-
valued function for which Xf preserves P. Show that the function
−θ(Xf )− f is constant along the leaves of P.

Hint : IfX is a vector field lying in P, use (21.6) to show thatX(θ(Xf)) =
dθ(X,Xf ).
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15. Suppose that β is a nowhere vanishing n-form on an oriented manifold
Ξ, that X is a real vector field on Ξ, and that φ and ψ are smooth,
compactly supported functions on Ξ. Verify the following formula for
“integration by parts”:

∫

Ξ

(Xφ)ψ β = −
∫

Ξ

φ(Xψ) β −
∫

Ξ

φψ(divβ X) β,

where divβ X is the function such that LXβ = (divβ X)β.

Hint : If Φt is the flow generated by X, then for all sufficiently small
t, Φt(x) is defined for all x in the support of φψ and the integral of
(Φt)

∗(φψβ) over Ξ is independent of t.

16. Let the notation be as in Exercise 8. Then the canonical bundle for
P is trivial, with trivializing section dz. Take δP to be trivial, with
trivializing section

√
dz. Show that every polarized section s of L⊗ δP

is of the form
s = F (z)s0(z)⊗

√
dz,

where F is holomorphic. Show that the norm of such a section is, up
to a constant, the L2 norm of F with respect to a measure of the form
(1− |z|2)ν , but that the value of ν is not the same as when half-forms
are not included.

17. Let P be a Kähler polarization on N, let z1, . . . , zn be holomorphic
local coordinates on N, and let A be the matrix given by

Ajk = ω

(
∂

∂z̄j
,

∂

∂zk

)
.

(a) Show that the matrix iA is positive definite.

(b) Show that ω = Ajk dz̄j ∧ dzk.

(c) Show that the quantity ω⊗n/n! may be computed as

det(iA)(−1)n(n−1)/2(−i)ndz̄1 ∧ · · · ∧ dz̄n ∧ dz1 ∧ · · · ∧ dzn.

(d) Verify Proposition 23.50.

18. Let P be a Kähler polarization on N , let δP be a fixed square root of
KP , and let f be a smooth, real-valued function such thatXf preserves
P̄ . Throughout this problem, if s1 and s2 are local sections of a line
bundle, with s2 nonvanishing, s1/s2 will denote the unique function
such that s1 = (s1/s2)s2.

(a) Show that for any continuous compactly supported function ψ
on N, we have ∫

N

Xf (ψ) λ = 0.
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Hint : Use Liouville’s theorem.

Note: The same result holds if ψ is not compactly supported but
is “sufficiently nice.”

(b) If ν is a local nonvanishing section of δP , show that

LXf
ν

ν
=

1

2

LXf
(ν ⊗ ν)

ν ⊗ ν
.

(c) If α is any 2n-form on N, show that

LXf
α

λ
= Xf

(α
λ

)
.

(d) Suppose s1 and s2 are polarized sections of L⊗ δP , decomposed
locally as sj = μj ⊗ νj , j = 1, 2. Show that

iXf (s1, s2) = (i(∇Xf
μ1)⊗ ν1, s2) + (iμ1 ⊗ (LXf

ν1)⊗ s2)

+ (s1, i(∇Xf
μ2)⊗ ν2) + (s1, iμ2 ⊗ (LXf

ν2)),

where (·, ·) is computed with respect to the Hermitian structure
on L⊗ δP described in Sect. 23.7.

Hint : Use the identity LXf
(α ∧ β) = (LXf

α) ∧ β + α ∧ (LXf
β).

(e) Suppose s1 and s2 are polarized sections of L⊗ δP belonging to
the domain of Q(f) and such that (s1, s2) is “sufficiently nice.”
Show that

〈s1, Q(f)s2〉 = 〈Q(f)s1, s2〉 .



Appendix A
Review of Basic Material

A.1 Tensor Products of Vector Spaces

Given two vector spaces V1 and V2 overC, the tensor product is a new vector
space V1⊗V2, together with a bilinear “product” map ⊗ : V1×V2 → V1⊗V2.
If V1 and V2 are finite dimensional with bases {uj} and {vk}, then V1 ⊗ V2

is finite dimensional with {uj⊗vk} forming a basis for V1⊗V2. In the finite-
dimensional case, we could simply define the tensor product by this basis
property, but then we would have to worry about whether the construction
is basis independent. Instead, we define V1 ⊗ V2 by a “universal property.”

Definition A.1 Suppose V1 and V2 are vector spaces over a field F. Then
a tensor product of V1 and V2 is a vector space W over F together with
a bilinear map T : V1 ×V2 → W having the following “universal property”:
If U is any vector space over F and Φ : V1 × V2 → U is a bilinear map,
then there exists a unique linear map Φ̃ : W → U such that the following
diagram commutes:

V1 × V2
T−→ W

Φ ↓ ւ Φ̃
U

.

Proposition A.2 For any two vector spaces V1 and V2, a tensor product
of V1 and V2 exists and is unique up to “canonical isomorphism.” That is,
for two tensor products (W1, T1) and (W2, T2), there is a unique invertible
linear map Ψ : W1 → W2 such that T2 = Ψ ◦ T1.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5,
© Springer Science+Business Media New York 2013
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In light of the uniqueness result, we may speak of “the” tensor product of
V1 and V2. We choose any one tensor product and we denote it by V1 ⊗V2.
We also denote the linear map T : V1 × V2 → V1 ⊗ V2 as (u, v) �→ u⊗ v. In
this notation, the universal property reads as follows: Given any bilinear
map Φ of V1 × V2 into a vector space U, there exists a unique linear map
Φ̃ : V1 ⊗ V2 → U such that

Φ̃(u ⊗ v) = Φ(u, v).

Proposition A.3 If V1 and V2 are finite-dimensional vector spaces with
bases {uj}n1

j=1 and {vk}n2

k=1, then V1 ⊗ V2 is finite dimensional and the set
of elements of the form uj ⊗ vk, 1 ≤ j ≤ n1, 1 ≤ k ≤ n2, forms a basis for
V1 ⊗ V2. In particular,

dim(V1 ⊗ V2) = (dim V1)(dim V2).

It should be emphasized that, in general, not every element of V1 ⊗ V2

is of the form u ⊗ v with u ∈ V1 and v ∈ V2. All we can say is that each
element of V1 ⊗ V2 can be decomposed as a linear combination of elements
of the form u⊗ v. This decomposition, furthermore, is far from canonical;
even in the finite-dimensional case, it depends on a choice of bases for V1

and V2. Nevertheless, the universal property of the tensor product tells us
that we can define linear maps from V1 ⊗ V2 to any vector space U, simply
by defining them on elements of the form u ⊗ v. Provided that Φ(u, v) is
bilinear in u and v, the universal property tells us that there is a unique
linear map Φ̃ on V1 ⊗V2 such that on element of the form u⊗ v, Φ̃ is equal
to Φ(u, v). A representative application of the universal property is in the
following result.

Proposition A.4 If A ∈ End(V1) and B ∈ End(V2), there exists a unique
linear map A⊗B : V1 ⊗ V2 → V1 ⊗ V2 such that

(A⊗B)(u ⊗ v) = (Au)⊗ (Bv).

For A1, A2 ∈ End(V1) and B1, B2 ∈ End(V2), we have

(A1 ⊗B1)(A2 ⊗B2) = (A1A2)⊗ (B1B2).

To construct A ⊗B, we apply the universal property with U = V1 ⊗ V2

and Φ(u, v) = (Au)⊗ (Bv). Since A and B are linear and ⊗ is bilinear, Φ
is bilinear. The linear map Φ̃ : V1 ⊗ V2 → V1 ⊗ V2 is then the map that we
denote A⊗B.
The tensor product, as we have defined it in this section, applies to

all vector spaces, whether finite dimensional or infinite dimensional. The
construction, however, is purely algebraic; if there is a topology on V1 and
V2, the tensor product takes no account of that topology. In the Hilbert
space setting, then, we will have to refine the notion of the tensor product
so that the tensor product of two Hilbert spaces will again be a Hilbert
space. See Sect. A.4.5.
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A.2 Measure Theory

It is assumed that the reader is familiar with the basic notions of measure
theory, including the concepts of σ-algebras, measures, measurable func-
tions, and the Lebesgue integral. A triple (X,Ω, μ), consisting of a set X , a
σ-algebra Ω of subsets of X, and a (non-negative) measure μ on Ω is called
a measure space. A measurable function ψ : X → C is said to be integrable
if
∫
X |ψ| dμ < ∞. The σ-algebra generated by any collection of subsets of a

set X is the smallest σ-algebra of subsets of X containing that collection.
We assume those parts of measure theory that are entirely standard: the

monotone convergence and dominated convergence theorems, Lp spaces,
and Fubini’s theorem. We briefly review a few other topics that might not
be as familiar.
A measure μ on a measurable space (X,μ) is said to be σ-finite if X can

be written as a countable union of measurable sets of finite measure.

Definition A.5 Suppose μ and ν are two σ-finite measures on a measure
space (X,Ω). Then we say that μ is absolutely continuous with respect
to ν if for all E ∈ Ω, if ν(E) = 0 then μ(E) = 0. We say that μ and ν
are equivalent if each measure is absolutely continuous with respect to the
other.

Theorem A.6 (Radon–Nikodym) Suppose μ and ν are two σ-finite
measures on a measure space (X,Ω) and that μ is absolutely continuous
with respect to ν. Then there exists a non-negative, measurable function ρ
on X such that

μ(E) =

∫

E

ρ dν,

for all E ∈ Ω. The function ρ is called the density of μ with respect to ν.

Definition A.7 A collection M of subsets of a set X is called a mono-

tone class if M is closed under countable increasing unions and countable
decreasing intersections.

A countable increasing union means the union of a sequence Ej of sets
where Ej is contained in Ej+1 for each j, with a similar definition for
countable decreasing intersections.

Theorem A.8 (Monotone Class Lemma) Suppose M is a monotone
class of subsets of a set X and suppose M contains an algebra A of subsets
of X. Then M contains the σ-algebra generated by A.

Corollary A.9 Suppose μ and ν are two finite measures on a measure
space (X,Ω). Suppose μ and ν agree on an algebra A ⊂ Ω. Then μ and ν
agree on the σ-algebra generated by A.

Note that in general, the collection of sets on which two measures agree
is not a σ-algebra, nor even an algebra.
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Theorem A.10 Suppose μ is a measure on the Borel σ-algebra in a locally
compact, separable metric space X. Suppose also that μ(K) < ∞ for each
compact subset K of X. Then the space of continuous functions of compact
support on X is dense in Lp(X,μ), for all p with 1 ≤ p < ∞.

A word of clarification is in order here. If ψ is a continuous function on
X with compact support, then

∫
X |ψ|p dμ is finite, since ψ is bounded and

μ is finite on compact sets. Thus, we can define a map from Cc(X) into
Lp(X,μ) by mapping a continuous function ψ of compact support to the
equivalence class [ψ]. The theorem is asserting, more precisely, that the
image of Cc(X) under this map is dense in Lp(X,μ). It should be noted,
however, that the map ψ �→ [ψ] need not be injective. After all, if there
is a nonempty open set U inside X with μ(U) = 0, then for any ψ with
support contained in U, the equivalence class [ψ] will be the zero element of
Lp(X,μ). Nevertheless, we will allow ourselves a small abuse of terminology
and say that Cc(X) is dense in Lp(X,μ).

A.3 Elementary Functional Analysis

In this section, we briefly review some of the results from elementary func-
tional analysis that we make use of the text. Most of these results can be
found in the book of Rudin [32].

A.3.1 The Stone–Weierstrass Theorem

The Weierstrass theorem states that every continuous, real-valued function
on an interval can be uniformly approximated by polynomials. A substan-
tial generalization of this was obtained by Stone. If X is a compact metric
space, let C(X ;R) and C(X ;C) denote the space of continuous real- and
complex-valued continuous functions, respectively. A subset A of C(X ;F)
is called an algebra if it is closed under pointwise addition, pointwise mul-
tiplication, and multiplication by elements of F, where F = R or C. An
algebra A is said to separate points if for any two distinct points x and y
in X, there exists f ∈ A such that f(x) 
= f(y). We use on C(X ;F) the
supremum norm, given by

‖f‖sup := sup
x∈X

|f(x)| ,

and C(X,F) is complete with respect to the associated distance function,
d(f, g) = ‖f − g‖sup .

Theorem A.11 (Stone–Weierstrass, Real Version) Let X be a com-
pact metric space and let A be an algebra in C(X ;R). If A contains the
constant functions and separates points, then A is dense in C(X ;R) with
respect to the supremum norm.
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Theorem A.12 (Stone–Weierstrass, Complex Version) Let X be a
compact metric space and let A be an algebra in C(X ;C). If A contains the
constant functions, separates points, and is closed under complex conjuga-
tion, then A is dense in C(X ;C) with respect to the supremum norm.

A consequence of the complex version of the Stone–Weierstrass theorem
is the following: If K is a compact subset of C, then every continuous,
complex-valued function on K can be uniformly approximated by polyno-
mials in z and z̄.

A.3.2 The Fourier Transform

We now describe the Fourier transform on Rn, in various forms.

Definition A.13 For any ψ ∈ L1(Rn), define the Fourier transform of

ψ to be the function ψ̂ on Rn given by

ψ̂(k) = (2π)−n/2

∫ ∞

−∞
e−ik·xψ(x) dx.

Proposition A.14 For any ψ ∈ L1(Rn), the Fourier transform ψ̂ of ψ has

the following properties: (1)
∣∣∣ψ̂(k)

∣∣∣ ≤ (2π)−n/2 ‖ψ‖L1 , (2) ψ̂ is continuous,

and (3) ψ̂(k) tends to zero as |k| tends to ∞.

The bound on ψ̂ is obvious and the continuity of ψ̂ follows from dom-
inated convergence. To show that ψ̂ tends to zero at infinity, we first es-
tablish this on a dense subspace of L1(Rn) (e.g., the Schwartz space; see
below) and then take uniform limits.

Definition A.15 The Schwartz space S(Rn) is the space of all C∞ func-
tions ψ on Rn such that

lim
x→±∞

∣∣xj∂kψ(x)
∣∣ = 0

for all n-tuples of non-negative integers j and k. Here if j = (j1, . . . , jn)
then xj = xj1

1 · · ·xjn
n and

∂j =

(
∂

∂x1

)j1

· · ·
(

∂

∂xn

)jn

.

An element of the Schwartz space is called a Schwartz function.

Proposition A.16 If ψ belongs to S(Rn), then ψ̂ also belongs to S(Rn).

The proof of this result hinges on the behavior of the Fourier transform
under differentiation and under multiplication by x, results which are of
interest in their on right.
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Proposition A.17 If ψ is a Schwartz function, the following properties
hold

1. We have
∂̂ψ

∂xj
(k) = ikjψ̂(k). (A.1)

2. The function ψ̂ is differentiable at every point and the Fourier trans-
form of the function xjψ(x) is given by

x̂jψ(k) = i
∂

∂kj
ψ̂(k). (A.2)

The first point is proved by integration by parts and the second by dif-
ferentiation under the integral in the definition of ψ̂.

Theorem A.18 (Fourier Inversion and Plancherel Formula, I) The
Fourier transform on S(Rn) has the following properties.

1. The Fourier transform maps the Schwartz space onto the Schwartz
space.

2. For all ψ ∈ S(Rn), the function ψ can be recovered from its Fourier
transform by the Fourier inversion formula:

ψ(x) = (2π)−n/2

∫ ∞

−∞
eik·xψ̂(k) dk.

3. For all ψ ∈ S(Rn), we have the Plancherel theorem:
∫

Rn

|ψ(x)|2 dx =

∫

Rn

|ψ̂(k)|2 dk.

Since the Schwartz space is dense in L2(Rn), the BLT theorem and Theo-
rem A.18 imply that the Fourier transform extends uniquely to an isometric
map of L2(Rn) onto L2(Rn).

Theorem A.19 (Fourier Inversion and Plancherel Theorem, II)
The Fourier transform extends to an isometric map F of L2(Rn) onto
L2(Rn). This map may be computed as

F(ψ)(k) = (2π)−n/2 lim
A→∞

∫

|x|≤A

e−ik·xψ(x) dx, (A.3)

where the limit is in the norm topology of L2(Rn). The inverse map F−1

may be computed as

(
F−1f

)
(x) = (2π)−n/2 lim

A→∞

∫

|x|≤A

eik·xf(k) dk.
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If ψ belongs to L1(Rn) ∩ L2(Rn), then by dominated convergence, the
limit in coincides with the L1 Fourier transform in Definition A.13.

Definition A.20 For two measurable functions φ and ψ, define the con-

volution φ ∗ ψ of φ and ψ by the formula

(φ ∗ ψ)(x) =
∫

Rn

φ(x − y)ψ(y) dy,

provided that the integral is absolutely convergent for all x.

Proposition A.21 Suppose that φ and ψ belong to L1(Rn)∩L2(Rn). Then
φ ∗ ψ is defined and belongs to L1(Rn) ∩ L2(Rn) and we have

(2π)−n/2F(φ ∗ ψ) = F(φ)F(ψ).

This result is proved by plugging φ ∗ ψ into the definition of the Fourier
transform, writing e−ik·x as e−ik·ye−ik·(x−y), and using Fubini’s theorem.
We will have occasion to use the following Gaussian integral.

Proposition A.22 For all a > 0 and b ∈ C, we have

1√
2π

∫ ∞

−∞
e−x2/(2a)ebx dx =

√
aeab

2/2.

Taking b = ik in the last part of the proposition gives us the Fourier
transform of the Gaussian function e−x2/(2a). Taking b = 0 allows us to
determine the proper normalization of the Gaussian probability density.

A.3.3 Distributions

In this section we give a brief account of the theory of distributions—what
physicists call “generalized functions”—including the notion of “derivative
in the distribution sense.”
The idea is that we study functions by studying their integral against

some class of very nice “test functions.” Consider, for example, a locally
integrable function f and consider integrals of the form

∫

Rn

χ(x)f(x) dx, (A.4)

where χ belongs to C∞
c (Rn), the space of smooth, compactly supported

functions. We might think, for example, that χ is positive, has integral
equal to 1, and is supported near some point a ∈ Rn. In that case, the
integral (A.4) is an approximation to the value of f at a, what physicists
describe as a “smeared out” version of f(a).
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Proposition A.23 Suppose f1 and f2 are locally integrable functions on
Rn. If ∫

Rn

χ(x)f1(x) dx =

∫

Rn

χ(x)f2(x) dx

for all χ ∈ C∞
c (Rn), then f1(x) = f2(x) for almost every x.

The idea now is that we allow objects that do not have values at points,
but for which something like (A.4) makes sense. Mathematically, we think
of (A.4) as a linear functional on C∞

c (Rn).

Definition A.24 A sequence χm ∈ C∞
c (Rn) is said to converge to χ ∈

C∞
c (Rn) if (1) there exists a single compact set K containing the support

of all the χn’s, (2) χm converges uniformly to χ, and (3) each derivative
of χm converges uniformly to the corresponding derivative of χ.

Definition A.25 A distribution on Rn is a linear map T : C∞
c (Rn) → C

having the following continuity property: If χm converges to χ in the sense
of Definition A.24, T (χm) converges to T (χ).

The continuity condition on T should be regarded as a technicality, in
that any functional that is well defined and linear on all of C∞

c (Rn) and is
obtained in a reasonably constructive fashion will satisfy this property.

Example A.26 The Dirac δ-“function” is the distribution δ defined by

δ(χ) = χ(0).

Definition A.27 If T is a distribution and f is a locally integrable func-
tion, the expression “T is equal to f” or “T is given by f” means that

T (χ) =

∫

Rn

χ(x)f(x) dx

for all χ ∈ C∞
c (Rn).

Definition A.28 If T is a distribution, define the distribution ∂T/∂xj by
the formula

∂T

∂xj
(χ) = −T

(
∂χ

∂xj

)
.

It is easy to verify that if T has the continuity property in Definition
A.25, then so does ∂T/∂xj . Furthermore, if T is given by a continuously
differentiable function, then the derivative of T is in the distribution sense
coincides with the derivative of T in the classical sense, as can easily be
shown using integration by parts. If T is a distribution, we may define ∆T
by repeated applications of Definition A.28, with the result that

(∆T )(χ) = T (∆χ).
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Proposition A.29 If φ and ψ are L2 functions, the equation ∂ψ/∂xj = φ
holds in the distribution sense if and only if

−
〈

∂χ

∂xj
, ψ

〉
= 〈χ, φ〉

for all χ ∈ C∞
c (Rn). Similarly, the equation ∆ψ = φ holds in the distribu-

tion sense if and only if

〈∆χ, ψ〉 = 〈χ, φ〉

for all χ ∈ C∞
c (Rn).

Proposition A.30 If T is a distribution on R and dT/dx is the zero dis-
tribution, then T is a constant, meaning that there is some constant c such
that

T (χ) =

∫ ∞

−∞
χ(x)c dx. (A.5)

Suppose, in particular, that if T is given by a locally integrable function f,
and the derivative of T is zero. Then Proposition A.30 tells us that for some
constant c, we have

∫∞
−∞ χ(x)(f(x) − c) dx = 0 for all χ ∈ C∞

c (R). Then
Proposition A.23 tells us that f(x) = c almost everywhere. This means that
if the derivative of f is zero, even in the weak (or distributional) sense, then
f must be constant.

A.3.4 Banach Spaces

In this section, we define Banach spaces and describe some of their elemen-
tary properties.

Definition A.31 A norm on a vector space V over F (F = R or C) is a
map from V into R, denoted ψ �→ ‖ψ‖ , with the following properties.

1. For all ψ ∈ V, ‖ψ‖ ≥ 0, with equality if and only if ψ = 0.

2. For all ψ ∈ V and c ∈ F, we have ‖cψ‖ = |c| ‖ψ‖ .

3. For all φ, ψ ∈ V, we have ‖φ+ ψ‖ ≤ ‖φ‖ + ‖ψ‖ .

If ‖·‖ is a norm on V, then we can define a distance function d on V by
setting d(φ, ψ) = ‖ψ − φ‖ .

Definition A.32 A normed vector space is said to be a Banach space

if it is complete with respect to the associated distance function. A Banach
space is said to be separable if contains a countable dense subset.

One important class of examples of Banach spaces are the Lp spaces.
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Definition A.33 An infinite series,
∑∞

n=1 ψn, with values in normed space
V, is said to converge if there exists some L ∈ V such that

lim
N→∞

‖Sn − L‖ = 0,

where SN =
∑N

n=1 ψn.

Proposition A.34 If V is a Banach space, then absolute convergence im-
plies convergence in V . That is, if

∞∑

n=1

‖ψn‖ < ∞,

then
∑∞

n=1 ψn converges in V.

Definition A.35 If V1 and V2 are normed spaces, a linear map T : V1 →
V2 is bounded if

sup
ψ∈V1\{0}

‖Tψ‖
‖ψ‖ < ∞. (A.6)

If T is bounded, then the supremum in (A.6) is called the operator norm

of T, denoted ‖T ‖ .

Theorem A.36 (Bounded Linear Transformation Theorem) Let V1

be a normed space and V2 a Banach space. Suppose W is a dense subspace
of V1 and T : W → V2 is a bounded linear map. Then there exists a unique
bounded linear map T̃ : V1 → V2 such that T̃ |W = T. Furthermore, the
norm of T̃ equals the norm of T.

Definition A.37 If V is a normed space over F (F = R or C), then a
bounded linear functional on V is a bounded linear map of V into F,
where on F we use the norm given by the absolute value. The collection of
all bounded linear functionals, with the norm given by (A.6), is called the
dual space to V, denoted V ∗.

Theorem A.38 If V is a normed vector space, then the following results
hold.

1. The dual space V ∗ is a Banach space.

2. For all ψ ∈ V, there exists a nonzero ξ ∈ V ∗ such that

|ξ(ψ)| = ‖ξ‖ ‖ψ‖ .

In particular, if ξ(ψ) = 0 for all ξ ∈ V ∗, then ψ = 0.

Theorem A.39 (ClosedGraphTheorem) Suppose that V1 is a Banach
space and V2 a normed vector space. For any linear map T : V1 → V2, let
Graph(T ) denote the set of pairs (ψ, Tψ) in V1 × V2 such that ψ ∈ V1. If
the graph of T is a closed subset of V1 × V2, then T is bounded.
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Here is a simple example of how the closed graph theorem can be applied.
Suppose V1 and V2 are Banach spaces and T : V1 → V2 is a linear map that
is one-to-one, onto, and bounded. Then the inverse map T−1 : V2 → V1 is
automatically bounded. To verify this, we first check that if T is bounded,
then the graph of T is closed (easy). Then we observe that the graph of
T−1 is also closed, since it is obtained from the graph of T by the map
(φ, ψ) �→ (ψ, φ). Thus, the theorem tells us that T−1 is bounded.

Theorem A.40 (Principle of Uniform Boundedness) Suppose {Tα}
is any family of bounded linear maps from a Banach space V1 to a normed
space V2. Suppose that for each ψ ∈ V1, there is a constant Cψ such that
‖Tαψ‖ ≤ Cψ for all α. Then there exists a constant C such that ‖Tα‖ ≤ C
for all α.

That is, in contrapositive form, if the family {Tα} is unbounded, {Tαψ}
must be unbounded on ψ for some ψ ∈ V1.

Corollary A.41 Suppose V is a Banach space and E is a nonempty subset
of V. Suppose that for all ξ ∈ V ∗ there exists a constant Cξ such that
|ξ(ψ)| ≤ Cξ for all ψ ∈ E. Then E is a bounded set.

The corollary is obtained by identifying each ψ ∈ V with the linear map
eψ : V ∗ → C given by evaluation on ψ; that is, eψ(ξ) = ξ(ψ). Note that by
Point 2 of Theorem A.38, the norm of eψ as an element of V ∗∗ is equal to
the norm of ψ as an element of V.

A.4 Hilbert Spaces and Operators on Them

A.4.1 Inner Product Spaces and Hilbert Spaces

We now introduce a generalization to arbitrary vector spaces over R or C
of the usual inner product (or dot product) on Rn.

Definition A.42 An inner product on a vector space over F (F = R or
C) is a map 〈·, ·〉 : V × V → F with the following properties.

1. For all φ, ψ ∈ V, we have 〈ψ, φ〉 = 〈φ, ψ〉.

2. For all φ ∈ V, 〈φ, φ〉 is real and non-negative, and 〈φ, φ〉 = 0 only if
φ = 0.

3. For all φ, ψ ∈ V and c ∈ F, we have 〈cφ, ψ〉 = c̄ 〈φ, ψ〉 and 〈φ, cψ〉 =
c 〈φ, ψ〉 .

4. For all φ, ψ, χ ∈ V , we have 〈φ+ ψ, χ〉 = 〈φ, χ〉+ 〈ψ, χ〉 and

〈φ, ψ + χ〉 = 〈φ, ψ〉+ 〈φ, χ〉 .
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Note that we are following the physics convention of taking the complex
conjugate in Point 3 of the definition on the first factor in the inner product.

Proposition A.43 If V is an inner product space, then for all φ, ψ ∈ V,
we have the Cauchy–Schwarz inequality:

|〈φ, ψ〉|2 ≤ 〈φ, φ〉〈ψ, ψ〉 .

Furthermore, if ‖·‖ : V → R is defined by

‖ψ‖ =
√
〈ψ, ψ〉, (A.7)

then ‖·‖ is a norm on V.

Definition A.44 A Hilbert space is a vector space H over R or C,
equipped with an inner product 〈·, ·〉 , such that H is complete in the norm
given by (A.7).

That is to say, a Hilbert space is a Banach space in which the norm
comes from an inner product. In Appendix A.4 only, we allow H to denote
an arbitrary Hilbert space over R or C. (In the main body of the text, H
denotes a separable complex Hilbert space.)

Definition A.45 Suppose Hj is a sequence of separable Hilbert spaces.
Then the Hilbert space direct sum, denoted

H :=
∞⊕

j=1

Hj ,

is the space of sequences ψ = (ψ1, ψ2, ψ3, . . .) such that ψn ∈ Hn and such
that

‖ψ‖2 :=
∞∑

j=1

‖ψj‖2j < ∞. (A.8)

The finite direct sum of the Hj’s is the set of ψ = (ψ1, ψ2, ψ3, . . .) such
that ψj = 0 for all but finitely many values of j.

We define an inner product on the direct sum by setting

〈φ, ψ〉 =
∞∑

j=1

〈φj , ψj〉 (A.9)

for all φ, ψ ∈ H. This inner product is well defined and H is complete with
respect to this inner product, and hence a Hilbert space.
One important example of a Hilbert space is L2(X,μ), where (X,μ) is a

measure space.
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Definition A.46 If (X,μ) is a measure space, define an inner product on
L2(X,μ) by the formula

〈φ, ψ〉 =
∫

X

φ(x)ψ(x) dμ(x). (A.10)

A standard result in measure theory states that the integral on the right-
hand side of (A.10) is absolutely convergent for all φ and ψ in L2(X,μ).
It is then easy to verify that 〈·, ·〉 is indeed an inner product on L2(X,μ).
Another standard result states that L2(X,μ) is complete with respect to
the norm associated with the inner product in (A.10); thus, L2(X,μ) is a
Hilbert space.

A.4.2 Orthogonality

One reason that Hilbert spaces are nicer to work with than general Banach
spaces is that we have the concept of orthogonality.

Definition A.47 Two elements φ and ψ of an inner product space are
orthogonal if 〈φ, ψ〉 = 0.

Definition A.48 If V is any subspace of H, define a subspace V ⊥ of H
by

V ⊥ = {φ ∈ H| 〈φ, ψ〉 = 0 for all ψ ∈ V } .
Then V ⊥ is called the orthogonal space of V.

Proposition A.49

1. If V is a closed subspace of H, every ψ ∈ H can be decomposed
uniquely as ψ = ψ1 + ψ2, with ψ1 ∈ V and ψ2 ∈ V ⊥.

2. If V is any subspace of H, then (V ⊥)⊥ = V , where V is the closure
of V. In particular, if V is closed, then (V ⊥)⊥ = V.

If V is closed, we call V ⊥ the orthogonal complement of V.

Definition A.50 A set {ej} of elements of H, where j ranges over an
arbitrary index set, is said to be orthonormal if

〈ej , ek〉 =
{

0 j 
= k
1 j = k

.

An orthonormal set {ej} is an orthonormal basis for H if the space of
finite linear combinations of the ej’s is dense in H.

If H = L2([−L,L]), for some positive number L, then the functions,

ψn =
1√
2L

e2πinx/L, n ∈ Z, (A.11)

form an orthonormal basis for H.
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Proposition A.51 Suppose {ej} is an orthonormal basis for H. Then ev-
ery ψ can be expressed uniquely as a convergent sum

ψ =
∑

j

ajej, (A.12)

where the coefficients are given by aj = 〈ej , ψ〉 . If ψ is as in (A.12), then

‖ψ‖2 =
∑

j

|aj |2 .

Finally, if 〈aj〉 is any sequence such that
∑

j |aj |
2 < ∞, there exists a

unique ψ ∈ H such that 〈ej , ψ〉 = aj for all j.

In the case that the orthonormal basis is the one in (A.11), the resulting
series (A.12) is called the Fourier series of ψ.

A.4.3 The Riesz Theorem and Adjoints

We let B(H) denote the space of bounded linear maps of H to H. It is not
hard to show that B(H) forms a Banach space under the operator norm.

Theorem A.52 (Riesz Theorem) If ξ : H → C is a bounded linear
functional, then there exists a unique χ ∈ H such that

ξ(ψ) = 〈χ, ψ〉

for all ψ ∈ H. Furthermore, the operator norm of ξ as a linear functional
is equal to the norm of χ as an element of H.

We now turn to the concept of the adjoint of a bounded operator, along
with the related concept of quadratic forms on H.

Proposition A.53 For any A ∈ B(H), there exists a unique linear oper-
ator A∗ : H → H, called the adjoint of A, such that

〈φ,Aψ〉 = 〈A∗φ, ψ〉

for all φ, ψ ∈ H. For all A,B ∈ B(H) and α, β ∈ C we have

(A∗)∗ = A

(AB)∗ = B∗A∗

(αA + βB)∗ = ᾱA∗ + β̄B∗

I∗ = I.

The operator A∗ is bounded and ‖A∗‖ = ‖A‖ .
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Since A is a bounded operator, the map ψ �→ 〈φ,Aψ〉 is a bounded linear
functional for each fixed φ ∈ H. The Riesz theorem then tells us that there
is a unique χ ∈ H such that 〈φ,Aψ〉 = 〈χ, ψ〉 . The operator A∗ is defined
by setting A∗φ = χ. It is not hard to check that this definition makes A∗

into a bounded linear operator.

Definition A.54 An operator A ∈ B(H) is said to be self-adjoint if
A∗ = A and skew-self-adjoint if A∗ = −A.

Definition A.55 An operator U on H is unitary if U is surjective and
preserves inner products, that is, 〈Uφ,Uψ〉 = 〈φ, ψ〉 for all φ, ψ ∈ H.

If U is unitary, then U preserves norms (‖Uψ‖ = ‖ψ‖ for all ψ ∈ H);
therefore, U is bounded with ‖U‖ = 1. By the polarization identity (Propo-
sition A.59), if U preserves norms, then it also preserves inner products.

Proposition A.56 A bounded operator U is unitary if and only if U∗ =
U−1, that is, if and only if UU∗ = U∗U = I.

Proposition A.57 For any closed subspace V ⊂ H, there is a unique
bounded operator P such that P = I on V and P = 0 on the orthogonal
complement V ⊥. This operator is called the orthogonal projection onto
V and it satisfies P 2 = P and P ∗ = P.
Conversely, if P is any bounded operator on H satisfying P 2 = P and

P ∗ = P, then P is the orthogonal projection onto a closed subspace V, where
V = range(P ).

A.4.4 Quadratic Forms

In this section, we develop the theory of quadratic forms on Hilbert spaces.
Since this is customarily done only for the inner product itself, we include
the proofs of the results.

Definition A.58 A sesquilinear form on H is a map L : H ×H → C

that is conjugate linear in the first factor and linear in the second factor.
A sesquilinear form is bounded if there exists a constant C such that

|L(φ, ψ)| ≤ C ‖φ‖ ‖ψ‖

for all φ, ψ ∈ H.

Proposition A.59 If L is a sesquilinear form on H, L can be recovered
from its values on the diagonal (i.e., the value of L(ψ, ψ) for various ψ’s)
as follows:

L(φ, ψ) =
1

2
[L(φ+ ψ, φ+ ψ)− L(φ, φ)− L(ψ, ψ)]

− i

2
[L(φ+ iψ, φ+ iψ)− L(φ, φ)− L(iψ, iψ)] . (A.13)
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This formula is known as the polarization identity.

Note that we do not assume any relationship between L(φ, ψ) and L(ψ, φ).
Proof. Direct calculation.

Definition A.60 A quadratic form on a Hilbert space H is a map Q :
H → C with the following properties: (1) Q(λψ) = |λ|2 Q(ψ) for all ψ ∈ H
and λ ∈ C, and (2) the map L : H×H → C defined by

L(φ, ψ) =
1

2
[Q(φ+ ψ)−Q(φ)−Q(ψ)]

− i

2
[Q(φ+ iψ)−Q(φ)−Q(iψ)]

is a sesquilinear form. A quadratic form Q is bounded if there exists a
constant C such that

|Q(φ)| ≤ C ‖φ‖2

for all φ ∈ H. The smallest such constant C is the norm of Q.

Proposition A.61 If Q is a quadratic form on H and L is the associated
sesquilinear form, we have the following results.

1. For all ψ ∈ H, we have Q(ψ) = L(ψ, ψ).

2. If Q is a bounded, then L is bounded.

3. If Q(ψ) belongs to R for all ψ ∈ H, then L is conjugate symmetric,
that is,

L(φ, ψ) = L(ψ, φ)

for all φ, ψ ∈ H.

Proof. Point 1 of the proposition is verified by taking φ = ψ in the expres-
sion for L(φ, ψ) and then using the relation Q(λψ) = |λ|2 Q(ψ). For Point

2, suppose |Q(ψ)| ≤ C ‖ψ‖2 for all ψ ∈ H. If ‖φ‖ = ‖ψ‖ = 1, then φ + ψ
and φ+ iψ have norm at most 2, and so

|L(φ, ψ)| ≤ 1

2
C (4 + 1 + 1 + 4 + 1 + 1) = 6C.

Now, for any φ and ψ in H, we can find unit vectors φ̃ and ψ̃ such that
φ = ‖φ‖ φ̃ and ψ = ‖ψ‖ ψ̃. Then since L is assumed to be sesquilinear, we
have

|L(φ, ψ)| = ‖φ‖ ‖ψ‖L
(
φ̃, ψ̃

)
≤ 6C ‖φ‖ ‖ψ‖ ,

showing that L is bounded.
For Point 3, assume that Q(ψ) is real for all ψ ∈ H and define a map

M : H×H → R by

M(φ, ψ) =
1

2
[Q(φ+ ψ)−Q(φ)−Q(ψ)] = Re [L(φ, ψ)] .
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Then M is real-bilinear (because it is the real part of L) and symmetric
(because of the expression for M in terms of Q). Furthermore, M(iφ, iψ) =
M(φ, ψ). These properties of M show that M(φ, iψ) = −M(ψ, iφ), and so

L(φ, ψ) = M(φ, ψ)− iM(φ, iψ)

= M(ψ, φ) + iM(ψ, iφ)

= L(ψ, φ),

which is what we wanted to prove.

Example A.62 If A is a bounded operator on H, one can construct a
bounded quadratic form QA on H by setting

QA(ψ) = 〈ψ,Aψ〉 , ψ ∈ H.

The associated sesquilinear form LA is then given by

LA(φ, ψ) = 〈φ,Aψ〉 , φ, ψ ∈ H.

Proposition A.63 If Q is a bounded quadratic form on H, there is a
unique A ∈ B(H) such that Q(ψ) = 〈ψ,Aψ〉 for all ψ ∈ H. If Q(ψ) belongs
to R for all ψ ∈ H, then the operator A is self-adjoint.

Proof. Since Q is bounded, L is also bounded, meaning that there exists
a constant C such that |L(φ, ψ)| ≤ C ‖φ‖ ‖ψ‖ for all φ, ψ ∈ H. Thus, for
any φ ∈ H, the linear functional ψ �→ L(φ, ψ) is bounded, with norm at
most C ‖φ‖ . By the Riesz theorem, then, there exists a unique χ ∈ H,
with ‖χ‖ ≤ C ‖φ‖ , such that L(φ, ψ) = 〈χ, ψ〉 . We now define a map
B : H → H by defining Bφ = χ. Direct calculation shows that B is linear,
and the inequality ‖χ‖ ≤ C ‖φ‖ shows that B is bounded. Setting A = B∗

establishes the existence of the desired operator. Uniqueness of A follows
from the observation that if 〈φ,Aψ〉 = 0 for all φ, ψ ∈ H, then A is the
zero operator.
If Q(ψ) is real for all ψ ∈ H, then by Point 3 of Proposition A.61, L is

conjugate symmetric. Thus,

〈φ,Aψ〉 = L(φ, ψ) = L(ψ, φ) = 〈ψ,Aφ〉 = 〈Aφ,ψ〉

for all φ, ψ ∈ H, showing that A is self-adjoint.

A.4.5 Tensor Products of Hilbert Spaces

Recall from Appendix A.1 the concept of the tensor product of two vector
spaces.
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Proposition A.64 Suppose V1 and V2 are inner product spaces, with inner
products 〈·, ·〉1 and 〈·, ·〉2. Then there exists a unique inner product 〈·, ·〉 on
V1 ⊗ V2 such that

〈u1 ⊗ v1, u2 ⊗ v2〉 = 〈u1, u2〉1 〈v1 ⊗ v2〉2

for all u1, u2 ∈ V1 and v1, v2 ∈ V2.

If H1 and H2 are Hilbert spaces, then we can equip the tensor product
H1⊗H2 with the inner product in Proposition A.64. If H1 andH2 are both
infinite dimensional, however, H1 ⊗H2 will not be complete with respect
to this inner product. Nevertheless, we can complete H1⊗H2 with respect
to this inner product, thus obtaining a new Hilbert space.

Definition A.65 If H1 and H2 are Hilbert spaces, then the Hilbert ten-

sor product of H1 and H2, denoted H1⊗̂H2, is the Hilbert space obtained
by completing H1 ⊗ H2 with respect to the inner product in Proposition
A.64.

Proposition A.66 If H1 and H2 are Hilbert spaces with orthonormal
bases {ej} and {fk}, respectively, then {ej ⊗ fk} is an orthonormal basis
for the Hilbert space H1⊗̂H2.

Proposition A.67 If A is a bounded operator on H1 and B is a bounded
operator on H2, then there exists a unique bounded operator on H1⊗̂H2,
denoted A⊗B, such that

(A⊗B)(φ ⊗ ψ) = (Aφ) ⊗ (Bψ)

for all φ ∈ H1 and ψ ∈ H2.

To see that A⊗B is bounded, first write A⊗B as (A⊗ I)(I⊗B). Then,
given any orthonormal basis {fj} for H2, we can decompose H1⊗̂H2 as the
Hilbert space direct sum of subspaces of the form H1 ⊗ fj . The operator
A ⊗ I acts on this decomposition as a block-diagonal operator with A in
each diagonal block. From this, it is easy to verify that ‖A⊗ I‖ = ‖A‖. A
similar argument shows that ‖I ⊗B‖ = ‖B‖, and so

‖A⊗B‖ ≤ ‖A⊗ I‖ ‖I ⊗B‖ = ‖A‖ ‖B‖ .

Meanwhile, by taking a sequence of unit vector φn ∈ H1 and ψn ∈ H2

with ‖Aφn‖ → ‖A‖ and ‖Bψn‖ → ‖B‖ , we see that the reverse inequality
holds, and thus that ‖A⊗B‖ = ‖A‖ ‖B‖ .
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Math. Ann. 105, 570–578 (1931)

[42] A. Voros, Wentzel–Kramers–Brillouin method in the Bargmann rep-
resentation. Phys. Rev. A 40(3), 6814–6825 (1989)

[43] N.R. Wallach, Real Reductive Groups I (Academic, San Diego, 1988)

[44] R.E. Williamson, R.H. Crowell, H.F. Trotter, Calculus of Vector Func-
tions, 3rd edn. (Prentice-Hall, Englewood Cliffs, NJ, 1968)

[45] N. Woodhouse, Geometric Quantization, 2nd edn. (Oxford University
Press, Oxford, 1992)

[46] K. Yosida, Functional Analysis, 4th edn. (Springer, New York, 1980)



Index

Action functional, 446
Adjoint

of a bounded operator, 55,
540

of an unbounded operator,
56, 170

Airy function, 315
Almost complex structure, 495
Angular momentum

addition of, 384
function, 31, 39
operator, 83, 367
vector, 32, 368, 369

Axioms of quantum mechanics,
64, 427

Baker–Campbell–Hausdorff
formula, 262, 281, 347

Banach space, 535
Bargmann space, see

Segal–Bargmann space
Bergman space, 501
Blackbody radiation, 4, 433
BLT theorem, 536
Bohr, Niels, 9

Bohr–de Broglie model of
hydrogen, 9

Bohr–Sommerfeld condition,
306, 307, 317, 500, 512

Born, Max, 13, 14
Bose–Einstein

condensate, 437
statistics, 437

Boson, 85, 384, 434, 437
Bounded operator, 55, 131
Bounded-below operator, 178
Bra-ket notation, 85
Brownian motion, 6, 448

Canonical
1-form, 459
2-form, 459
bundle, 506, 518
commutation relations, 63,

83, 228, 229, 279
Canonical transformation, see

Symplectomorphism
Casimir operator, 374, 407
Cauchy–Schwarz inequality, 538
Cayley transform, 220, 222

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5,
© Springer Science+Business Media New York 2013

549



550 Index

Center of mass, 29
Classically forbidden region, 118,

313
Closed graph theorem, 536
Closed operator, 172
Closure of an operator, 172
Coherent

state, 249, 299, 329, 502
superposition, 427

Collapse of the wave function, 68
Commutator, 63, 73, 78, 342
Compact operator, 124
Complex structure, 494
Connection 1-form, 487
Connection formula, 315
Conservation

of angular momentum, 31,
33, 40, 49

of energy, 20, 24–26, 36
of momentum, 27, 28, 49
of the Runge–Lenz vector,

41
Conserved quantity, 36, 40, 73,

464
Constant of motion, see

Conserved quantity
Continuous spectrum, see

Spectrum, continuous
Convolution, 94, 533
Copenhagen interpretation, 14
Cotangent bundle, 459, 516
Covariant derivative, 470
Creation and annihilation

operators, see Raising
operator, lowering
operator

Cross product, 32, 338, 387, 389,
418

Curvature, 470, 487, 489
Cyclic vector, 162, 375

de Broglie hypothesis, 10, 12, 59,
70, 306

de Broglie, Louis, 10
Density matrix, 423

Dirac notation, 85
Direct integral, 126, 146
Discrete spectrum, see

Spectrum, discrete
Dispersion relation, 92, 108
Distribution, 533
Domain of an operator, 56, 111,

170
Double-slit experiment, 2, 6, 12

Eigenvector, 57, 66, 241
Einstein’s summation

convention, see
Summation convention

Einstein, Albert, 5, 15
Electron diffraction, 11
Elliptical trajectory, 43
Energy conservation, see

Conservation of energy
Entropy, see von Neumann

entropy
εjkl, see Totally antisymmetric

symbol
Equipartition theorem, 4, 5
Essential spectrum, 400
Essentially self-adjoint operator,

56, 172, 179, 182, 184
Excited state, 117, 233
Expectation value, 65, 71, 77,

91, 104, 423, 427
Exponential

of a matrix, 339
of an operator, 74, 208

Exponentiated commutation
relations, 281, 471

Extension of an operator, 171

Fermi–Dirac statistics, 437
Fermion, 85, 384, 434, 435, 437
Feynman path integral formula,

444
Feynman–Kac formula, 449
Flow, 456
Fourier transform, 61, 92, 127,

522, 531



Index 551

Functional calculus
for a bounded operator,

141, 148, 156
for a normal operator, 214
for an unbounded operator,

125, 206
Fundamental solution, 95

Gauge transformation, 471
Gaussian measure, 448, 453
Generalized eigenvector, 120,

124, 126, 144
Generalized function, see

Distribution
Geometric quantization, 483
GL(n;C), 335
Groenewold’s theorem, 271
Ground state, 115, 232
Group velocity, 99, 102, 108

Half-forms, 480, 505, 509
Hamilton’s equations, 34, 36
Hamiltonian

flow, 38, 462, 463
operator, 70, 78, 79, 83, 84
system, 464
vector field, 37, 50, 461

Harmonic oscillator, 20, 227,
329, 473, 480, 520

Heisenberg picture, 13, 78
Heisenberg uncertainty principle,

see Uncertainty
principle

Heisenberg, Werner, 13
Hermite polynomials, 233
Hermitian

conjugate, 86
line bundle, 486
operator, 86

Hilbert space, 537
direct sum, 538

Hilbert–Schmidt operator, 264,
422

Holonomy, 488
Homomorphism

of Lie algebras, 339, 344,
347

of matrix Lie groups, 336,
344, 347

Hydrogen atom, 8, 9, 393

Identical particles, 85, 434, 435
Imaginary time, 447
Incoherent superposition, 427
Infinitesimal generator, 208
Inner product, 537
Integral operator, 265
Interference, 2, 7, 13
Interpretation of quantum

mechanics, 14
Intertwining map, 351
Invariant subspace, 351
Inverse square law, 41
Irreducible representation, 351

Jacobi identity, 34, 50, 73, 338,
462

Kähler
polarization, 495
potential, 504

Kato–Rellich theorem, 191
Kepler problem, 41, 396
Kepler’s laws

first, 44
second, 32
third, 51

Ket, 85
Kinetic energy operator, 188
Kodaira embedding theorem,

503

Lagrangian, 446
submanifold, 500
subspace, 492

Laplacian, 83, 188
Lie

algebra, 35, 270, 338, 342,
369

derivative, 458



552 Index

group, 333
product formula, 340

Line bundle, 485
Liouville form, 37, 465
Liouville’s theorem, 37, 465
Lowering operator, 228, 232, 295

Maslov correction, 307
Matrix Lie group, 334, 335
Measurement, 68, 125, 143, 206,

428
Metaplectic correction, see

Half-forms
Minimum uncertainty state, 244,

249
Mixed state, 426
Moments, 65
Momentum

operator, 59, 62, 63, 82, 127,
186

wave function, 129
Monotone class lemma, 529
Morphism, see Intertwining map
Moyal product, 267, 288
Multiplication operator, 127,

147, 207
Multiplicity function, 150

Newton’s laws
second, 19, 24, 26
third, 27

Newton, Isaac, 2
“No go” theorem, 271
Nobel Prize, 6, 10, 12, 14, 438
Non-negative operator, 132, 166,

178, 181
Norm, 535

Hilbert–Schmidt, 264, 363,
422

operator, 131, 154, 340
Normal operator, 150, 213

Observable, 65
Old quantum theory, 306, 309
O(n), 336

One-parameter
subgroup, 341
unitary group, 74, 207, 210

Operator norm, see Norm,
operator

Orthogonal
complement, 539
projection, 541

Orthonormal basis, 67, 82, 123,
181, 235, 539

continuous, 128

Pairing map, 521
Partial connection, 510, 519
Particle in a box, 80, 245
Particle in a square well, 109
Partition function, 433
Path integral, 441
Pauli exclusion princple, 435
Phase velocity, 93, 99, 102, 108
Photoelectric effect, 6
Photon, 6
Plancherel theorem, 532
Planck’s constant, 5
Planck, Max, 5
Poisson bracket, 34, 40, 50, 269,

403, 460
Polarization, 492
Polarization identity, 541
Polarized section, 496
Position operator, 58, 63, 82,

126, 186
Potential energy

function, 20, 24
operator, 76, 185

Prequantization, 468, 472, 490
Prequantized operator, 469
Prequantum Hilbert space, 469
Principle of uniform

boundedness, 537
Product of unbounded

operators, 241
Projection-valued measure, 125,

138, 160, 202



Index 553

Pseudodifferential operator
quantization, 258

Pure state, 65, 426

Quadratic form, 159, 542
Quantizable

function, 496
manifold, 490

Quantization, 255, 474
of observables, 478, 496, 514

Quantum field theory, 451

Radon–Nikodym theorem, 529
Raising operator, 228, 232, 295
Reduced mass, 30, 396
Relatively bounded operator,

191
Relatively compact

perturbation, 400
Representation

finite dimensional, 350
infinite dimensional, 360
projective unitary, 354, 362,

383
unitary, 353, 360

Reproducing kernel, 299
Resolvent

operator, 133
set, 133, 177

Riesz representation theorem,
158

Riesz theorem, 540
Rodrigues formula, 237
Runge–Lenz vector, 41, 42, 401
Rydberg constant, 8, 69, 398
Rydberg, Johannes, 8

Schrödinger equation
free, 91
time dependent, 70, 71, 76
time independent, 75

Schrödinger operator, 76, 83, 84,
111, 192

Schrödinger, Erwin, 14
Schur’s lemma, 353

Schwartz space, 531
Section

of a direct integral, 145
of a line bundle, 485

Segal–Bargmann
space, 292, 329, 378, 477,

520
transform, 300

Self-adjoint operator
bounded, 55, 132, 541
unbounded, 56, 172, 180

Sesquilinear form, 541
SO(n), 336
SO(3), 365
so(3), 344, 370
so(4), 404, 406
so(n), 343
Spectral mapping theorem, 155,

215
Spectral radius, 154, 215
Spectral subspace, 125, 127, 137,

141, 206, 214
Spectral theorem

for a bounded operator,
141, 147

for a normal operator, 214
for an unbounded operator,

205, 206
Spectrum

continuous, 119
discrete, 119
of a bounded operator, 133
of a self-adjoint operator,

135, 177
of an unbounded operator,

177
Spherical harmonics, 376, 381,

393, 397
Spin, 371, 383, 384, 409, 434
Spin–statistics theorem, 435
Spread of wave packet, see wave

packet, spread of
Star product, 267
State of a system, 65, 422
Stationary state, 76



554 Index

Statistical mechanics, 4, 5, 433
Statistics, 435
Stoke’s theorem, 458
Stone’s theorem, 210
Stone–von Neumann theorem,

279, 286
Stone–Weierstrass theorem, 530
Strong continuity, 207
Subsystem, 430
Sum of self-adjoint operators,

174, 190
Summation convention, 402
SU(n), 336
su(2), 348
su(n), 343
Symmetric operator, 56, 171
Symplectic

manifold, 459
potential, 469, 487

Symplectomorphism, 459

Tensor product
of Hilbert spaces, 84, 429,

543
of line bundles, 488
of operators, 430, 528, 544
of representations, 358, 385
of vector spaces, 527

Totally antisymmetric symbol,
402

Trace of an operator, 264, 421
Trace-class operator, 421
Trajectory, 20
Trotter product formula, 442
Tunneling, 118

Turning point, 311, 315, 323
Two-slit experiment, see

Double-slit experiment

U(n), 336
Unbounded operator, 56, 124,

170
Uncertainty, 241

of an operator, 70
principle, 70, 239

Unitary equivalence, 150
Unitary operator, 221, 541
Universal covering group, 348,

357

van Hove’s theorem, 272
Vector, 387

operator, 388, 410
Vector field, 50, 455, 468
Vector product, see Cross

product
Vertical polarization, 493
von Neumann entropy, 426

Wave packet, 97
spread of, 104

Wave–particle duality, 6
Weyl quantization, 257, 260,

261, 287
Wick-ordered quantization, 258
Wiener measure, 448
Wigner–Eckart theorem, 387,

391
WKB approximation, 195, 305


	Preface
	Contents
	1 The Experimental Origins of Quantum Mechanics
	1.1 Is Light a Wave or a Particle?
	1.1.1 Newton Versus Huygens
	1.1.2 The Ascendance of the Wave Theory of Light
	1.1.3 Blackbody Radiation
	1.1.4 The Photoelectric Effect
	1.1.5 The Double-Slit Experiment, Revisited

	1.2 Is an Electron a Wave or a Particle?
	1.2.1 The Spectrum of Hydrogen
	1.2.2 The Bohr–de Broglie Model of the Hydrogen Atom
	1.2.3 Electron Diffraction
	1.2.4 The Double-Slit Experiment with Electrons

	1.3 Schrödinger and Heisenberg
	1.4 A Matter of Interpretation
	1.5 Exercises

	2 A First Approach to Classical Mechanics
	2.1 Motion in R1
	2.1.1 Newton's law
	2.1.2 Conservation of Energy
	2.1.3 Systems with Damping

	2.2 Motion in Rn
	2.3 Systems of Particles
	2.3.1 Conservation of Energy
	2.3.2 Conservation of Momentum
	2.3.3 Center of Mass

	2.4 Angular Momentum
	2.5 Poisson Brackets and Hamiltonian Mechanics
	2.6 The Kepler Problem and the Runge–Lenz Vector
	2.6.1 The Kepler Problem
	2.6.2 Conservation of the Runge–Lenz Vector
	2.6.3 Ellipses, Hyperbolas, and Parabolas
	2.6.4 Special Properties of the Kepler Problem

	2.7 Exercises

	3 A First Approach to Quantum Mechanics
	3.1 Waves, Particles, and Probabilities
	3.2 A Few Words About Operators and Their Adjoints
	3.3 Position and the Position Operator
	3.4 Momentum and the Momentum Operator
	3.5 The Position and Momentum Operators
	3.6 Axioms of Quantum Mechanics: Operatorsand Measurements
	3.7 Time-Evolution in Quantum Theory
	3.7.1 The Schrödinger Equation
	3.7.2 Solving the Schrödinger Equation by Exponentiation
	3.7.3 Eigenvectors and the Time-Independent Schrödinger Equation
	3.7.4 The Schrödinger Equation in R1
	3.7.5 Time-Evolution of the Expected Position and Expected Momentum

	3.8 The Heisenberg Picture
	3.9 Example: A Particle in a Box
	3.10 Quantum Mechanics for a Particle in Rn
	3.11 Systems of Multiple Particles
	3.12 Physics Notation
	3.13 Exercises

	4 The Free Schrödinger Equation
	4.1 Solution by Means of the Fourier Transform
	4.2 Solution as a Convolution
	4.3 Propagation of the Wave Packet: First Approach
	4.4 Propagation of the Wave Packet: Second Approach
	4.5 Spread of the Wave Packet 
	4.6 Exercises

	5 A Particle in a Square Well
	5.1 The Time-Independent Schrödinger Equation
	5.2 Domain Questions and the Matching Conditions
	5.3 Finding Square-Integrable Solutions
	5.4 Tunneling and the Classically Forbidden Region 
	5.5 Discrete and Continuous Spectrum  
	5.6 Exercises

	6 Perspectives on the Spectral Theorem
	6.1 The Difficulties with the Infinite-Dimensional Case
	6.2 The Goals of Spectral Theory
	6.3 A Guide to Reading
	6.4 The Position Operator
	6.5 Multiplication Operators 
	6.6 The Momentum Operator

	7 The Spectral Theorem for Bounded Self-AdjointOperators: Statements
	7.1 Elementary Properties of Bounded Operators
	7.2 Spectral Theorem for Bounded Self-AdjointOperators, I
	7.2.1 Spectral Subspaces
	7.2.2 Projection-Valued Measures
	7.2.3 The Spectral Theorem

	7.3 Spectral Theorem for Bounded Self-AdjointOperators, II
	7.4 Exercises

	8 The Spectral Theorem for Bounded Self-AdjointOperators: Proofs
	8.1 Proof of the Spectral Theorem, First Version
	8.1.1 Stage 1: The Continuous Functional Calculus
	8.1.2 Stage 2: An Operator-Valued Riesz Representation Theorem

	8.2 Proof of the Spectral Theorem, Second Version
	8.3 Exercises

	9 Unbounded Self-Adjoint Operators
	9.1 Introduction
	9.2 Adjoint and Closure of an Unbounded Operator
	9.3 Elementary Properties of Adjoints and ClosedOperators
	9.4 The Spectrum of an Unbounded Operator
	9.5 Conditions for Self-Adjointness and EssentialSelf-Adjointness
	9.6 A Counterexample
	9.7 An Example
	9.8 The Basic Operators of Quantum Mechanics
	9.9 Sums of Self-Adjoint Operators
	9.10 Another Counterexample
	9.11 Exercises

	10 The Spectral Theorem for Unbounded Self-AdjointOperators
	10.1 Statements of the Spectral Theorem
	10.2 Stone's Theorem and One-Parameter Unitary Groups
	10.3 The Spectral Theorem for Bounded NormalOperators
	10.4 Proof of the Spectral Theorem for UnboundedSelf-Adjoint Operators
	10.5 Exercises

	11 The Harmonic Oscillator
	11.1 The Role of the Harmonic Oscillator 
	11.2 The Algebraic Approach
	11.3 The Analytic Approach
	11.4 Domain Conditions and Completeness
	11.5 Exercises

	12 The Uncertainty Principle
	12.1 Uncertainty Principle, First Version
	12.2 A Counterexample
	12.3 Uncertainty Principle, Second Version
	12.4 Minimum Uncertainty States
	12.5 Exercises

	13 Quantization Schemes for Euclidean Space
	13.1 Ordering Ambiguities
	13.2 Some Common Quantization Schemes
	13.3 The Weyl Quantization for R2n
	13.3.1 Heuristics
	13.3.2 The L2 Theory
	13.3.3 The Composition Formula
	13.3.4 Commutation Relations

	13.4 The ``No Go'' Theorem of Groenewold
	13.5 Exercises

	14 The Stone–von Neumann Theorem 
	14.1 A Heuristic Argument
	14.2 The Exponentiated Commutation Relations
	14.3 The Theorem
	14.4 The Segal–Bargmann Space
	14.4.1 The Raising and Lowering Operators
	14.4.2 The Exponentiated Commutation Relations
	14.4.3 The Reproducing Kernel
	14.4.4 The Segal–Bargmann Transform

	14.5 Exercises

	15 The WKB Approximation
	15.1 Introduction
	15.2 The Old Quantum Theory and the Bohr–SommerfeldCondition
	15.3 Classical and Semiclassical Approximations
	15.4 The WKB Approximation Away from the TurningPoints
	15.4.1 The Classically Allowed Region
	15.4.2 The Classically Forbidden Region

	15.5 The Airy Function and the Connection Formulas
	15.6 A Rigorous Error Estimate
	15.6.1 Preliminaries
	15.6.2 The Regions Near the Turning Points
	15.6.3 The Classically Allowed and Classically Forbidden Regions
	15.6.4 The Transition Regions
	15.6.5 Proof of the Main Theorem

	15.7 Other Approaches
	15.8 Exercises

	16 Lie Groups, Lie Algebras, and Representations
	16.1 Summary
	16.2 Matrix Lie Groups
	16.3 Lie Algebras
	16.4 The Matrix Exponential
	16.5 The Lie Algebra of a Matrix Lie Group
	16.6 Relationships Between Lie Groups and Lie Algebras
	16.7 Finite-Dimensional Representations of Lie Groupsand Lie Algebras
	16.7.1 Finite-Dimensional Representations
	16.7.2 Unitary Representations
	16.7.3 Projective Unitary Representations

	16.8 New Representations from Old
	16.9 Infinite-Dimensional Unitary Representations 
	16.9.1 Ordinary Unitary Representations
	16.9.2 Projective Unitary Representations

	16.10 Exercises

	17 Angular Momentum and Spin
	17.1 The Role of Angular Momentumin Quantum Mechanics
	17.2 The Angular Momentum Operators in R3
	17.3 Angular Momentum from the Lie Algebra Pointof View
	17.4 The Irreducible Representations of so(3)
	17.5 The Irreducible Representations of SO(3)
	17.6 Realizing the Representations Inside L2(S2)
	17.7 Realizing the Representations Inside L2(R3)
	17.8 Spin
	17.9 Tensor Products of Representations: “Addition ofAngular Momentum”
	17.10 Vectors and Vector Operators
	17.11 Exercises

	18 Radial Potentials and the Hydrogen Atom
	18.1 Radial Potentials
	18.2 The Hydrogen Atom: Preliminaries
	18.3 The Bound States of the Hydrogen Atom
	18.4 The Runge–Lenz Vector in the Quantum KeplerProblem
	18.4.1 Some Notation
	18.4.2 The Classical Runge–Lenz Vector, Revisited
	18.4.3 The Quantum Runge–Lenz Vector
	18.4.4 Representations of so(4)

	18.5 The Role of Spin
	18.6 Runge–Lenz Calculations
	18.7 Exercises

	19 Systems and Subsystems, Multiple Particles
	19.1 Introduction
	19.2 Trace-Class and Hilbert–Schmidt Operators
	19.3 Density Matrices: The General Notionof the State of a Quantum System
	19.4 Modified Axioms for Quantum Mechanics
	19.5 Composite Systems and the Tensor Product
	19.6 Multiple Particles: Bosons and Fermions
	19.7 “Statistics” and the Pauli Exclusion Principle
	19.8 Exercises

	20 The Path Integral Formulation of Quantum Mechanics
	20.1 Trotter Product Formula
	20.2 Formal Derivation of the Feynman Path Integral
	20.3 The Imaginary-Time Calculation
	20.4 The Wiener Measure
	20.5 The Feynman–Kac Formula
	20.6 Path Integrals in Quantum Field Theory
	20.7 Exercises

	21 Hamiltonian Mechanics on Manifolds
	21.1 Calculus on Manifolds
	21.1.1 Tangent Spaces, Vector Fields, and Flows
	21.1.2 Differential Forms

	21.2 Mechanics on Symplectic Manifolds
	21.2.1 Symplectic Manifolds
	21.2.2 Poisson Brackets and Hamiltonian Vector Fields
	21.2.3 Hamiltonian Flows and Conserved Quantities
	21.2.4 The Liouville Form

	21.3 Exercises

	22 Geometric Quantization on Euclidean Space
	22.1 Introduction
	22.2 Prequantization
	22.3 Problems with Prequantization
	22.4 Quantization
	22.5 Quantization of Observables
	22.6 Exercises

	23 Geometric Quantization on Manifolds
	23.1 Introduction
	23.2 Line Bundles and Connections
	23.3 Prequantization
	23.4 Polarizations
	23.5 Quantization Without Half-Forms
	23.5.1 The General Case
	23.5.2 The Real Case
	23.5.3 The Complex Case

	23.6 Quantization with Half-Forms: The Real Case
	23.6.1 The Space of Leaves
	23.6.2 The Canonical Bundle
	23.6.3 Square Roots of the Canonical Bundle
	23.6.4 The Half-Form Hilbert Space
	23.6.5 Quantization of Observables

	23.7 Quantization with Half-Forms: The Complex Case
	23.8 Pairing Maps
	23.9 Exercises

	AppendixA Review of Basic Material
	A.1 Tensor Products of Vector Spaces
	A.2 Measure Theory
	A.3 Elementary Functional Analysis
	A.3.1 The Stone–Weierstrass Theorem
	A.3.2 The Fourier Transform
	A.3.3 Distributions
	A.3.4 Banach Spaces

	A.4 Hilbert Spaces and Operators on Them
	A.4.1 Inner Product Spaces and Hilbert Spaces
	A.4.2 Orthogonality
	A.4.3 The Riesz Theorem and Adjoints
	A.4.4 Quadratic Forms
	A.4.5 Tensor Products of Hilbert Spaces


	 References
	 Index

