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Preface

This book originates from lecture notes for an introductory course on stochastic

calculus taught as part of the master’s program in probability and statistics at

Université Pierre et Marie Curie and then at Université Paris-Sud. The aim of this

course was to provide a concise but rigorous introduction to the theory of stochastic

calculus for continuous semimartingales, putting a special emphasis on Brownian

motion. This book is intended for students who already have a good knowledge

of advanced probability theory, including tools of measure theory and the basic

properties of conditional expectation. We also assume some familiarity with the

notion of uniform integrability (see, for instance, Chapter VII in Grimmett and

Stirzaker [30]). For the reader’s convenience, we record in Appendix A2 those

results concerning discrete time martingales that we use in our study of continuous

time martingales.

The first chapter is a brief presentation of Gaussian vectors and processes. The

main goal is to arrive at the notion of a Gaussian white noise, which allows us to give

a simple construction of Brownian motion in Chap. 2. In this chapter, we discuss

the basic properties of sample paths of Brownian motion and the strong Markov

property with its classical application to the reflection principle. Chapter 2 also gives

us the opportunity to introduce, in the relatively simple setting of Brownian motion,

the important notions of filtrations and stopping times, which are studied in a more

systematic and abstract way in Chap. 3. The latter chapter discusses continuous time

martingales and supermartingales and investigates the regularity properties of their

sample paths. Special attention is given to the optional stopping theorem, which

in connection with stochastic calculus yields a powerful tool for lots of explicit

calculations. Chapter 4 introduces continuous semimartingales, starting with a

detailed discussion of finite variation functions and processes. We then discuss local

martingales, but as in most of the remaining part of the course, we restrict our

attention to the case of continuous sample paths. We provide a detailed proof of

the key theorem on the existence of the quadratic variation of a local martingale.

Chapter 5 is at the core of this book, with the construction of the stochastic

integral with respect to a continuous semimartingale, the proof in this setting of the

celebrated Itô formula, and several important applications (Lévy’s characterization

v



vi Preface

theorem for Brownian motion, the Dambis–Dubins–Schwarz representation of

a continuous martingale as a time-changed Brownian motion, the Burkholder–

Davis–Gundy inequalities, the representation of Brownian martingales as stochastic

integrals, Girsanov’s theorem and the Cameron–Martin formula, etc.). Chapter 6,

which presents the fundamental ideas of the theory of Markov processes with

emphasis on the case of Feller semigroups, may appear as a digression to our main

topic. The results of this chapter, however, play an important role in Chap. 7, where

we combine tools of the theory of Markov processes with techniques of stochastic

calculus to investigate connections of Brownian motion with partial differential

equations, including the probabilistic solution of the classical Dirichlet problem.

Chapter 7 also derives the conformal invariance of planar Brownian motion and

applies this property to the skew-product decomposition, which in turn leads to

asymptotic laws such as the celebrated Spitzer theorem on Brownian windings.

Stochastic differential equations, which are another very important application of

stochastic calculus and in fact motivated Itô’s invention of this theory, are studied

in detail in Chap. 8, in the case of Lipschitz continuous coefficients. Here again

the general theory developed in Chap. 6 is used in our study of the Markovian

properties of solutions of stochastic differential equations, which play a crucial

role in many applications. Finally, Chap. 9 is devoted to local times of continuous

semimartingales. The construction of local times in this setting, the study of their

regularity properties, and the proof of the density of occupation formula are very

convincing illustrations of the power of stochastic calculus techniques. We conclude

Chap. 9 with a brief discussion of Brownian local times, including Trotter’s theorem

and the famous Lévy theorem identifying the law of the local time process at level 0.

A number of exercises are listed at the end of every chapter, and we strongly

advise the reader to try them. These exercises are especially numerous at the end

of Chap. 5, because stochastic calculus is primarily a technique, which can only

be mastered by treating a sufficient number of explicit calculations. Most of the

exercises come from exam problems for courses taught at Université Pierre et Marie

Curie and at Université Paris-Sud or from exercise sessions accompanying these

courses.

Although we say almost nothing about applications of stochastic calculus in

other fields, such as mathematical finance, we hope that this book will provide a

strong theoretical background to the reader interested in such applications. While

presenting all tools of stochastic calculus in the general setting of continuous

semimartingales, together with some of the most important developments of the

theory, we have tried to keep this text to a reasonable size, without making any

concession to mathematical rigor. The reader who wishes to go further in the theory

and applications of stochastic calculus may consult the classical books of Karatzas

and Shreve [49], Revuz and Yor [70], or Rogers and Williams [72]. For a historical

perspective on the development of the theory, we recommend Itô’s original papers

[41] and McKean’s book [57], which greatly helped to popularize Itô’s work. More

information about stochastic differential equations can be found in the books by

Stroock and Varadhan [77], Ikeda and Watanabe [35], and Øksendal [66]. Stochastic

calculus for semimartingales with jumps, which we do not present in this book, is
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treated in Jacod and Shiryaev [44] or Protter [63] and in the classical treatise of

Dellacherie and Meyer [13, 14]. Many other references for further reading appear in

the notes and comments at the end of every chapter.

I wish to thank all those who attended my stochastic calculus lectures in the last

20 years and who contributed to this book through their questions and comments.

I am especially indebted to Marc Yor, who left us too soon. Marc taught me most

of what I know about stochastic calculus, and his numerous remarks helped me to

improve this text.

Orsay, France Jean-François Le Gall

January 2016
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Chapter 1

Gaussian Variables and Gaussian Processes

Gaussian random processes play an important role both in theoretical probability

and in various applied models. We start by recalling basic facts about Gaussian ran-

dom variables and Gaussian vectors. We then discuss Gaussian spaces and Gaussian

processes, and we establish the fundamental properties concerning independence

and conditioning in the Gaussian setting. We finally introduce the notion of a

Gaussian white noise, which will be used to give a simple construction of Brownian

motion in the next chapter.

1.1 Gaussian Random Variables

Throughout this chapter, we deal with random variables defined on a probability

space .˝;F ;P/. For some of the existence statements that follow, this probability

space should be chosen in an appropriate way. For every real p � 1, Lp.˝;F ;P/,

or simply Lp if there is no ambiguity, denotes the space of all real random variables

X such that jXjp is integrable, with the usual convention that two random variables

that are a.s. equal are identified. The space Lp is equipped with the usual norm.

A real random variable X is said to be a standard Gaussian (or normal) variable

if its law has density

pX.x/ D 1p
2�

exp.�x2

2
/

with respect to Lebesgue measure on R. The complex Laplace transform of X is

then given by

EŒezX� D ez2=2; 8z 2 C:

© Springer International Publishing Switzerland 2016
J.-F. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus,
Graduate Texts in Mathematics 274, DOI 10.1007/978-3-319-31089-3_1
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2 1 Gaussian Variables and Gaussian Processes

To get this formula (and also to verify that the complex Laplace transform is well

defined), consider first the case when z D � 2 R:

EŒe�X � D 1p
2�

Z

R

e�x e�x2=2 dx D e�
2=2 1p

2�

Z

R

e�.x��/2=2 dx D e�
2=2:

This calculation ensures that EŒezX� is well-defined for every z 2 C, and defines a

holomorphic function on C. By analytic continuation, the identity EŒezX� D ez2=2,

which is true for every z 2 R, must also be true for every z 2 C.

By taking z D i�, � 2 R, we get the characteristic function of X :

EŒei�X � D e��2=2:

From the expansion

EŒei�X � D 1C i�EŒX�C � � � C .i�/n

nŠ
EŒXn�C O.j�jnC1/;

as � ! 0 (this expansion holds for every n � 1 when X belongs to all spaces Lp,

1 � p < 1, which is the case here), we get

EŒX� D 0; EŒX2� D 1

and more generally, for every integer n � 0,

EŒX2n� D .2n/Š

2nnŠ
: EŒX2nC1� D 0:

If � > 0 and m 2 R, we say that a real random variable Y is Gaussian with

N .m; �2/-distribution if Y satisfies any of the three equivalent properties:

(i) Y D �X C m, where X is a standard Gaussian variable (i.e. X follows the

N .0; 1/-distribution);

(ii) the law of Y has density

pY.y/ D 1

�
p
2�

exp � .y � m/2

2�2
I

(iii) the characteristic function of Y is

EŒei�Y � D exp.im� � �2

2
�2/:

We have then

EŒY� D m; var.Y/ D �2:



1.1 Gaussian Random Variables 3

By extension, we say that Y is Gaussian with N .m; 0/-distribution if Y D m a.s.

(property (iii) still holds in that case).

Sums of independent Gaussian variables Suppose that Y follows the N .m; �2/-

distribution, Y 0 follows the N .m0; � 02/-distribution, and Y and Y 0 are independent.

Then Y C Y 0 follows the N .m C m0; �2 C � 02/-distribution. This is an immediate

consequence of (iii).

Proposition 1.1 Let .Xn/n�1 be a sequence of real random variables such that, for

every n � 1, Xn follows the N .mn; �
2
n /-distribution. Suppose that Xn converges in

L2 to X. Then:

(i) The random variable X follows the N .m; �2/-distribution, where m D lim mn

and � D lim �n.

(ii) The convergence also holds in all Lp spaces, 1 � p < 1.

Remark The assumption that Xn converges in L2 to X can be weakened to

convergence in probability (and in fact the convergence in distribution of the

sequence .Xn/n�1 suffices to get part (i)). We leave this as an exercise for the reader.

Proof

(i) The convergence in L2 implies that mn D EŒXn� converges to EŒX� and �2n D
var.Xn/ converges to var.X/ as n ! 1. Then, setting m D EŒX� and �2 D
var.X/, we have for every � 2 R,

EŒei�X � D lim
n!1

EŒei�Xn � D lim
n!1

exp.imn� � �2n
2
�2/ D exp.im� � �2

2
�2/;

showing that X follows the N .m; �2/-distribution.

(ii) Since Xn has the same distribution as �nN Cmn, where N is a standard Gaussian

variable, and since the sequences .mn/ and .�n/ are bounded, we immediately

see that

sup
n

EŒjXnjq� < 1; 8q � 1:

It follows that

sup
n

EŒjXn � Xjq� < 1; 8q � 1:

Let p � 1. The sequence Yn D jXn � Xjp converges in probability to 0 and

is uniformly integrable because it is bounded in L2 (by the preceding bound

with q D 2p). It follows that this sequence converges to 0 in L1, which was the

desired result.

ut



4 1 Gaussian Variables and Gaussian Processes

1.2 Gaussian Vectors

Let E be a d-dimensional Euclidean space (E is isomorphic to Rd and we may take

E D Rd, with the usual inner product, but it will be more convenient to work with

an abstract space). We write
˝
u; v

˛
for the inner product in E. A random variable X

with values in E is called a Gaussian vector if, for every u 2 E,
˝
u;X

˛
is a (real)

Gaussian variable. (For instance, if E D Rd, and if X1; : : : ;Xd are are independent

Gaussian variables, the property of sums of independent Gaussian variables shows

that the random vector X D .X1; : : : ;Xd/ is a Gaussian vector.)

Let X be a Gaussian vector with values in E. Then there exist mX 2 E and a

nonnegative quadratic form qX on E such that, for every u 2 E,

EŒ
˝
u;X

˛
� D

˝
u;mX

˛
;

var.
˝
u;X

˛
/ D qX.u/:

Indeed, let .e1; : : : ; ed/ be an orthonormal basis on E, and write X D
Pd

iD1 Xj ej

in this basis. Notice that the random variables Xj D
˝
ej;X

˛
are Gaussian. It is then

immediate that the preceding formulas hold with mX D
Pd

jD1 EŒXj� ej

.not:/D EŒX�,

and, if u D
Pd

jD1 ujej,

qX.u/ D
dX

j;kD1
ujuk cov.Xj;Xk/:

Since
˝
u;X

˛
follows the N .

˝
u;mX

˛
; qX.u//-distribution, we get the characteristic

function of the random vector X,

EŒexp.i
˝
u;X

˛
/� D exp.i

˝
u;mX

˛
� 1

2
qX.u//: (1.1)

Proposition 1.2 Under the preceding assumptions, the random variables

X1; : : : ;Xd are independent if and only if the covariance matrix .cov.Xj;Xk//1� j;k�d

is diagonal or equivalently if and only if qX is of diagonal form in the basis

.e1; : : : ; ed/.

Proof If the random variables X1; : : : ;Xd are independent, the covariance matrix

.cov.Xj;Xk//j;kD1;:::d is diagonal. Conversely, if this matrix is diagonal, we have for

every u D
Pd

jD1 ujej 2 E,

qX.u/ D
dX

jD1
�j u2j ;
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where �j D var.Xj/. Consequently, using (1.1),

E
h

exp
�

i

dX

jD1
ujXj

�i
D

dY

jD1
exp.iujEŒXj� �

1

2
�ju

2
j / D

dY

jD1
EŒexp.iujXj/�;

which implies that X1; : : : ;Xd are independent. ut
With the quadratic form qX , we associate the unique symmetric endomorphism

X of E such that

qX.u/ D
˝
u; X.u/

˛

(the matrix of X in the basis .e1; : : : ; ed/ is .cov.Xj;Xk//1�j;k�d but of course

the definition of X does not depend on the choice of a basis). Note that X is

nonnegative in the sense that its eigenvalues are all nonnegative.

From now on, to simplify the statements, we restrict our attention to centered

Gaussian vectors, i.e. such that mX D 0, but the following results are easily adapted

to the non-centered case.

Theorem 1.3

(i) Let  be a nonnegative symmetric endomorphism of E. Then there exists a

Gaussian vector X such that X D  .

(ii) Let X be a centered Gaussian vector. Let ."1; : : : ; "d/ be a basis of E in which

X is diagonal, X"j D �j"j for every 1 � j � d, where

�1 � �2 � � � � � �r > 0 D �rC1 D � � � D �d

so that r is the rank of X . Then,

X D
rX

jD1
Yj"j;

where Yj, 1 � j � r, are independent (centered) Gaussian variables and

the variance of Yj is �j. Consequently, if PX denotes the distribution of X,

the topological support of PX is the vector space spanned by "1; : : : ; "r.

Furthermore, PX is absolutely continuous with respect to Lebesgue measure

on E if and only if r D d, and in that case the density of X is

pX.x/ D 1

.2�/d=2
p

det X

exp �1
2

˝
x; �1

X .x/
˛
:
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Proof

(i) Let ."1; : : : ; "d/ be an orthonormal basis of E in which  is diagonal, ."j/ D
�j"j for 1 � j � d, and let Y1; : : : ;Yd be independent centered Gaussian

variables with var.Yj/ D �j, 1 � j � d. We set

X D
dX

jD1
Yj"j:

Then, if u D
Pd

jD1 uj"j,

qX.u/ D E
h� dX

jD1
ujYj

�2i
D

dX

jD1
�ju

2
j D

˝
u; .u/

˛
:

(ii) Let Y1; : : : ;Yd be the coordinates of X in the basis ."1; : : : ; "d/. Then the

matrix of X in this basis is the covariance matrix of Y1; : : : ;Yd. The latter

covariance matrix is diagonal and, by Proposition 1.2, the variables Y1; : : : ;Yd

are independent. Furthermore, for j 2 fr C 1; : : : ; dg, we have EŒY2j � D 0 hence

Yj D 0 a.s.

Then, since X D
Pr

jD1 Yj"j a.s., it is clear that supp PX is contained in the

subspace spanned by "1; : : : ; "r. Conversely, if O is a rectangle of the form

O D fu D
rX

jD1
˛j"j W aj < ˛j < bj; 81 � j � rg;

we have PŒX 2 O� D
Qr

jD1 PŒaj < Yj < bj� > 0. This is enough to get that supp PX

is the subspace spanned by "1; : : : ; "r.

If r < d, since the vector space spanned by "1; : : : ; "r has zero Lebesgue measure,

the distribution of X is singular with respect to Lebesgue measure on E. Suppose

that r D d, and write Y for the random vector in Rd defined by Y D .Y1; : : : ;Yd/.

Note that the bijection '.y1; : : : ; yd/ D
P

yj"j maps Y to X. Then, writing y D
.y1; : : : ; yd/, we have

EŒg.X/� D EŒg.'.Y//�

D 1

.2�/d=2

Z

Rd

g.'.y// exp
�

� 1

2

dX

jD1

y2j

�j

� dy1 : : : dydp
�1 : : : �d

D 1

.2�/d=2
p

det X

Z

Rd

g.'.y// exp
�

� 1

2

˝
'.y/; �1

X .'.y//
˛�

dy1 : : : dyd

D 1

.2�/d=2
p

det X

Z

E

g.x/ exp
�

� 1

2

˝
x; �1

X .x/
˛�

dx;
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since Lebesgue measure on E is by definition the image of Lebesgue measure on Rd

under ' (or under any other vector isometry from Rd onto E). In the second equality,

we used the fact that Y1; : : : ;Yd are independent Gaussian variables, and in the third

equality we observed that

˝
'.y/; �1

X .'.y//
˛
D
˝ dX

jD1
yj"j;

dX

jD1

yj

�j

"j

˛
D

dX

jD1

y2j

�j

:

ut

1.3 Gaussian Processes and Gaussian Spaces

From now on until the end of this chapter, we consider only centered Gaussian

variables, and we frequently omit the word “centered”.

Definition 1.4 A (centered) Gaussian space is a closed linear subspace of

L2.˝;F ;P/ which contains only centered Gaussian variables.

For instance, if X D .X1; : : : ;Xd/ is a centered Gaussian vector in Rd, the vector

space spanned by fX1; : : : ;Xdg is a Gaussian space.

Definition 1.5 Let .E;E / be a measurable space, and let T be an arbitrary index

set. A random process (indexed by T) with values in E is a collection .Xt/t2T of

random variables with values in E. If the measurable space .E;E / is not specified,

we will implicitly assume that E D R and E D B.R/ is the Borel �-field on R.

Here and throughout this book, we use the notation B.F/ for the Borel �-field

on a topological space F. Most of the time, the index set T will be RC or another

interval of the real line.

Definition 1.6 A (real-valued) random process .Xt/t2T is called a (centered) Gaus-

sian process if any finite linear combination of the variables Xt; t 2 T is centered

Gaussian.

Proposition 1.7 If .Xt/t2T is a Gaussian process, the closed linear subspace of

L2 spanned by the variables Xt; t 2 T, is a Gaussian space, which is called the

Gaussian space generated by the process X.

Proof It suffices to observe that an L2-limit of centered Gaussian variables is still

centered Gaussian, by Proposition 1.1. ut
We now turn to independence properties in a Gaussian space. We need the

following definition.

Definition 1.8 Let H be a collection of random variables defined on .˝;F ;P/.

The �-field generated by H, denoted by �.H/, is the smallest �-field on˝ such that
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all variables � 2 H are measurable for this �-field. If C is a collection of subsets of

˝ , we also write �.C / for the smallest �-field on ˝ that contains all elements of

C .

The next theorem shows that, in some sense, independence is equivalent to

orthogonality in a Gaussian space. This is a very particular property of the Gaussian

distribution.

Theorem 1.9 Let H be a centered Gaussian space and let .Hi/i2I be a collection of

linear subspaces of H. Then the subspaces Hi; i 2 I, are (pairwise) orthogonal in

L2 if and only the �-fields �.Hi/; i 2 I, are independent.

Remark It is crucial that the vector spaces Hi are subspaces of a common Gaussian

space H. Consider for instance a random variable X distributed according to

N .0; 1/ and another random variable " independent of X and such that PŒ" D 1� D
PŒ" D �1� D 1=2. Then X1 D X and X2 D "X are both distributed according

to N .0; 1/. Moreover, EŒX1X2� D EŒ"�EŒX2� D 0. Nonetheless X1 and X2 are

obviously not independent (because jX1j D jX2j). In this example, .X1;X2/ is not a

Gaussian vector in R2 despite the fact that both coordinates are Gaussian variables.

Proof Suppose that the �-fields �.Hi/ are independent. Then, if i 6D j, if X 2 Hi

and Y 2 Hj,

EŒXY� D EŒX�EŒY� D 0;

so that the linear spaces Hi are pairwise orthogonal.

Conversely, suppose that the linear spaces Hi are pairwise orthogonal. From the

definition of the independence of an infinite collection of �-fields, it is enough to

prove that, if i1; : : : ; ip 2 I are distinct, the �-fields �.Hi1/; : : : ; �.Hip/ are indepen-

dent. To this end, it is enough to verify that, if �11 ; : : : ; �
1
n1

2 Hi1 ; : : : ; �
p

1 ; : : : ; �
p
np

2
Hip are fixed, the vectors .�11 ; : : : ; �

1
n1
/; : : : ; .�

p

1 ; : : : ; �
p
np
/ are independent (indeed,

for every j 2 f1; : : : ; pg, the events of the form f� j

1 2 A1; : : : ; �
j
nj

2 Anj
g give a class

stable under finite intersections that generates the �-field �.Hij /, and the desired

result follows by a standard monotone class argument, see Appendix A1). However,

for every j 2 f1; : : : ; pg we can find an orthonormal basis .�
j

1; : : : ; �
j
mj
/ of the linear

subspace of L2 spanned by f� j

1; : : : ; �
j
nj

g. The covariance matrix of the vector

.�11; : : : ; �
1
m1
; �21; : : : ; �

2
m2
; : : : ; �

p

1 ; : : : ; �
p
mp
/

is then the identity matrix (for i 6D j, EŒ�i
l�

j
r � D 0 because Hi and Hj are orthogonal).

Moreover, this vector is Gaussian because its components belong to H. By Proposi-

tion 1.2, the components of the latter vector are independent random variables. This

implies in turn that the vectors .�11; : : : ; �
1
m1
/; : : : ; .�

p

1 ; : : : ; �
p
mp
/ are independent.

Equivalently, the vectors .�11 ; : : : ; �
1
n1
/; : : : ; .�

p

1 ; : : : ; �
p
np
/ are independent, which was

the desired result. ut
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As an application of the previous theorem, we now discuss conditional expecta-

tions in the Gaussian framework. Again, the fact that these conditional expectations

can be computed as orthogonal projections (as shown in the next corollary) is very

particular to the Gaussian setting.

Corollary 1.10 Let H be a (centered) Gaussian space and let K be a closed linear

subspace of H. Let pK denote the orthogonal projection onto K in the Hilbert space

L2, and let X 2 H.

(i) We have

EŒX j �.K/� D pK.X/:

(ii) Let �2 D EŒ.X � pK.X//
2�. Then, for every Borel subset A of R, the random

variable PŒX 2 A j �.K/� is given by

PŒX 2 A j �.K/�.!/ D Q.!;A/;

where Q.!; �/ denotes the N . pK.X/.!/; �
2/-distribution:

Q.!;A/ D 1

�
p
2�

Z

A

dy exp
�

� .y � pK.X/.!//
2

2�2

�

(and by convention Q.!;A/ D 1A. pK.X// if � D 0).

Remarks

(a) Part (ii) of the statement can be interpreted by saying that the conditional

distribution of X knowing �.K/ is N . pK.X/; �
2/.

(b) For a general random variable X in L2, one has

EŒX j �.K/� D pL2.˝;�.K/;P/.X/:

Assertion (i) shows that, in our Gaussian framework, this orthogonal projection

coincides with the orthogonal projection onto the space K, which is “much

smaller” than L2.˝; �.K/;P/.

(c) Assertion (i) also gives the principle of linear regression. For instance, if

.X1;X2;X3/ is a (centered) Gaussian vector in R3, the best approximation in

L2 of X3 as a (not necessarily linear) function of X1 and X2 can be written

�1X1 C�2X2 where �1 and �2 are computed by saying that X3 � .�1X1 C�2X2/

is orthogonal to the vector space spanned by X1 and X2.
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Proof

(i) Let Y D X � pK.X/. Then Y is orthogonal to K and, by Theorem 1.9, Y is

independent of �.K/. Then,

EŒX j �.K/� D EŒ pK.X/ j �.K/�C EŒY j �.K/� D pK.X/C EŒY� D pK.X/:

(ii) For every nonnegative measurable function f on RC,

EŒ f .X/ j �.K/� D EŒ f . pK.X/C Y/ j �.K/� D
Z

PY.dy/ f . pK.X/C y/;

where PY is the law of Y, which is N .0; �2/ since Y is centered Gaussian with

variance �2. In the second equality, we also use the following general fact: if

Z is a G -measurable random variable and if Y is independent of G then, for

every nonnegative measurable function g, EŒg.Y;Z/ j G � D
R

g.y;Z/PY.dy/.

Property (ii) immediately follows.

ut
Let .Xt/t2T be a (centered) Gaussian process. The covariance function of X is

the function 	 W T � T �! R defined by 	 .s; t/ D cov.Xs;Xt/ D EŒXsXt�. This

function characterizes the collection of finite-dimensional marginal distributions of

the process X, that is, the collection consisting for every choice of the distinct indices

t1; : : : ; tp in T of the law of the vector .Xt1 ; : : : ;Xtp/. Indeed this vector is a centered

Gaussian vector in Rp with covariance matrix .	 .ti; tj//1�i;j�p.

Remark One can define in an obvious way the notion of a non-centered Gaussian

process. The collection of finite-dimensional marginal distributions is then charac-

terized by the covariance function and the mean function t 7! m.t/ D EŒXt�.

Given a function 	 on T � T, one may ask whether there exists a Gaussian

process X whose 	 is the covariance function. The function 	 must be symmetric

(	 .s; t/ D 	 .t; s/) and of positive type in the following sense: if c is a real function

on T with finite support, then

X

T�T

c.s/c.t/ 	 .s; t/ � 0:

Indeed, if 	 is the covariance function of the process X, we have immediately

X

T�T

c.s/c.t/ 	 .s; t/ D var
�X

T

c.s/Xs

�
� 0:

Note that when T is finite, the problem of the existence of X is solved under the

preceding assumptions on 	 by Theorem 1.3.

The next theorem solves the existence problem in the general case. This theorem

is a direct consequence of the Kolmogorov extension theorem, which in the
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particular case T D RC is stated as Theorem 6.3 in Chap. 6 below (see e.g.

Neveu [64, Chapter III], or Kallenberg [47, Chapter VI] for the general case). We

omit the proof as this result will not be used in the sequel.

Theorem 1.11 Let 	 be a symmetric function of positive type on T � T. There

exists, on an appropriate probability space .˝;F ;P/, a centered Gaussian process

whose covariance function is 	 .

Example Consider the case T D R and let � be a finite measure on R, which is

also symmetric (i.e. �.�A/ D �.A/). Then set, for every s; t 2 R,

	 .s; t/ D
Z

ei�.t�s/�.d�/:

It is easy to verify that 	 has the required properties. In particular, if c is a real

function on R with finite support,

X

R�R

c.s/c.t/ 	 .s; t/ D
Z

j
X

R

c.s/ei�sj2�.d�/ � 0:

The process 	 enjoys the additional property that 	 .s; t/ only depends on t � s. It

immediately follows that any (centered) Gaussian process .Xt/t2R with covariance

function 	 is stationary (in a strong sense), meaning that

.Xt1Ct;Xt2Ct; : : : ;XtnCt/
.d/D .Xt1 ;Xt2 ; : : : ;Xtn/

for any choice of t1; : : : ; tn; t 2 R. Conversely, any stationary Gaussian process

X indexed by R has a covariance of the preceding type (this is Bochner’s theorem,

which we will not use in this book), and the measure� is called the spectral measure

of X.

1.4 Gaussian White Noise

Definition 1.12 Let .E;E / be a measurable space, and let � be a �-finite measure

on .E;E /. A Gaussian white noise with intensity � is an isometry G from

L2.E;E ; �/ into a (centered) Gaussian space.

Hence, if f 2 L2.E;E ; �/, G. f / is centered Gaussian with variance

EŒG. f /2� D kG. f /k2
L2.˝;F ;P/

D k f k2
L2.E;E ;�/

D
Z

f 2 d�:
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If f ; g 2 L2.E;E ; �/, the covariance of G. f / and G.g/ is

EŒG. f /G.g/� D h f ; giL2.E;E ;�/ D
Z

fg d�:

In particular, if f D 1A with �.A/ < 1, G.1A/ is N .0; �.A//-distributed. To

simplify notation, we will write G.A/ D G.1A/.

Let A1; : : : ;An 2 E be disjoint and such that �.Aj/ < 1 for every j. Then the

vector

.G.A1/; : : : ;G.An//

is a Gaussian vector in Rn and its covariance matrix is diagonal since, if i 6D j,

EŒG.Ai/G.Aj/� D
˝
1Ai
; 1Aj

˛
L2.E;E ;�/

D 0:

From Proposition 1.2, we get that the variables G.A1/; : : : ;G.An/ are independent.

Suppose that A 2 E is such that �.A/ < 1 and that A is the disjoint union of

a countable collection A1;A2; : : : of measurable subsets of E. Then, 1A D
P1

jD1 1Aj

where the series converges in L2.E;E ; �/, and by the isometry property this implies

that

G.A/ D
1X

jD1
G.Aj/

where the series converges in L2.˝;F ;P/ (since the random variables G.Aj/

are independent, an easy application of the convergence theorem for discrete

martingales also shows that the series converges a.s.).

Properties of the mapping A 7! G.A/ are therefore very similar to those of a

measure depending on the parameter ! 2 ˝ . However, one can show that, if ! is

fixed, the mapping A 7! G.A/.!/ does not (in general) define a measure. We will

come back to this point later.

Proposition 1.13 Let .E;E / be a measurable space, and let� be a �-finite measure

on .E;E /. There exists, on an appropriate probability space .˝;F ;P/, a Gaussian

white noise with intensity �.

Proof We rely on elementary Hilbert space theory. Let . fi; i 2 I/ be a total

orthonormal system in the Hilbert space L2.E;E ; �/. For every f 2 L2.E;E ; �/,

f D
X

i2I

˛i fi



1.4 Gaussian White Noise 13

where the coefficients ˛i D
˝
f ; fi
˛

are such that

X

i2I

˛2i D k f k2 < 1:

On an appropriate probability space .˝;F ;P/ we can construct a collection .Xi/i2I ,

indexed by the same index set I, of independent N .0; 1/ random variables (see [64,

Chapter III] for the existence of such a collection – in the sequel we will only need

the case when I is countable, and then an elementary construction using only the

existence of Lebesgue measure on Œ0; 1� is possible), and we set

G. f / D
X

i2I

˛i Xi:

The series converges in L2 since the Xi, i 2 I, form an orthonormal system in

L2. Then clearly G takes values in the Gaussian space generated by Xi, i 2 I.

Furthermore, G is an isometry since it maps the orthonormal basis . fi; i 2 I/ to

an orthonormal system. ut
We could also have deduced the previous result from Theorem 1.11 applied with

T D L2.E;E ; �/ and 	 . f ; g/ D
˝
f ; g
˛
L2.E;E ;�/

. In this way we get a Gaussian

process .Xf ; f 2 L2.E;E ; �// and we just have to take G. f / D Xf .

Remark In what follows, we will only consider the case when L2.E;E ; �/ is

separable. For instance, if .E;E / D .RC;B.RC// and � is Lebesgue measure, the

construction of G only requires a sequence .�n/n�0 of independent N .0; 1/ random

variables, and the choice of an orthonormal basis .'n/n�0 of L2.RC;B.RC/; dt/:

We get G by setting

G. f / D
X

n�0

˝
f ; 'n

˛
�n:

See Exercise 1.18 for an explicit choice of .'n/n�0 when E D Œ0; 1�.

Our last proposition gives a way of recovering the intensity�.A/ of a measurable

set A from the values of G on the atoms of finer and finer partitions of A.

Proposition 1.14 Let G be a Gaussian white noise on .E;E / with intensity �. Let

A 2 E be such that �.A/ < 1. Assume that there exists a sequence of partitions

of A,

A D An
1 [ : : : [ An

kn
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whose “mesh” tends to 0, in the sense that

lim
n!1

 
sup

1� j�kn

�.An
j /

!
D 0:

Then,

lim
n!1

knX

jD1
G.An

j /
2 D �.A/

in L2.

Proof For every fixed n, the variables G.An
1/; : : : ;G.A

n
kn
/ are independent. Further-

more, EŒG.An
j /
2� D �.An

j /. We then compute

E

2
64

0
@

knX

jD1
G.An

j /
2 � �.A/

1
A
2
3
75 D

knX

jD1
var.G.An

j /
2/ D 2

knX

jD1
�.An

j /
2;

because, if X is N .0; �2/, var.X2/ D E.X4/� �4 D 3�4 � �4 D 2�4. Then,

knX

jD1
�.An

j /
2 �

 
sup

1� j�kn

�.An
j /

!
�.A/

tends to 0 as n ! 1 by assumption. ut

Exercises

Exercise 1.15 Let .Xt/t2Œ0;1� be a centered Gaussian process. We assume that the

mapping .t; !/ 7! Xt.!/ from Œ0; 1� � ˝ into R is measurable. We denote the

covariance function of X by K.

1. Show that the mapping t 7! Xt from Œ0; 1� into L2.˝/ is continuous if and only if

K is continuous on Œ0; 1�2: In what follows, we assume that this condition holds.

2. Let h W Œ0; 1� ! R be a measurable function such that
R 1
0

jh.t/j
p

K.t; t/ dt < 1:

Show that, for a.e. !, the integral
R 1
0

h.t/Xt.!/dt is absolutely convergent. We set

Z D
R 1
0

h.t/Xtdt.

3. We now make the stronger assumption
R 1
0

jh.t/jdt < 1. Show that Z is the L2-

limit of the variables Zn D
Pn

iD1 X i
n

R i
n

i�1
n

h.t/dt when n ! 1 and infer that Z is

a Gaussian random variable.
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4. We assume that K is twice continuously differentiable. Show that, for every t 2
Œ0; 1�, the limit

PXt WD lim
s!t

Xs � Xt

s � t

exists in L2.˝/:Verify that . PXt/t2Œ0;1� is a centered Gaussian process and compute

its covariance function.

Exercise 1.16 (Kalman filtering) Let .�n/n�0 and .�n/n�0 be two independent

sequences of independent Gaussian random variables such that, for every n, �n is

distributed according to N .0; �2/ and �n is distributed according to N .0; ı2/,

where � > 0 and ı > 0. We consider two other sequences .Xn/n�0 and .Yn/n�0
defined by the properties X0 D 0, and, for every n � 0; XnC1 D anXn C �nC1 and

Yn D cXn C �n, where c and an are positive constants. We set

OXn=n D EŒXn j Y0;Y1; : : : ;Yn�;

OXnC1=n D EŒXnC1 j Y0;Y1; : : : ;Yn�:

The goal of the exercise is to find a recursive formula allowing one to compute these

conditional expectations.

1. Verify that OXnC1=n D an
OXn=n, for every n � 0.

2. Show that, for every n � 1;

OXn=n D OXn=n�1 C EŒXnZn�

EŒZ2n �
Zn;

where Zn WD Yn � c OXn=n�1:
3. Evaluate EŒXnZn� and EŒZ2n � in terms of Pn WD EŒ.Xn � OXn=n�1/2� and infer that,

for every n � 1,

OXnC1=n D an

�
OXn=n�1 C cPn

c2Pn C ı2
Zn

�
:

4. Verify that P1 D �2 and that, for every n � 1; the following induction formula

holds:

PnC1 D �2 C a2n
ı2Pn

c2Pn C ı2
:

Exercise 1.17 Let H be a (centered) Gaussian space and let H1 and H2 be linear

subspaces of H. Let K be a closed linear subspace of H: We write pK for the



16 1 Gaussian Variables and Gaussian Processes

orthogonal projection onto K: Show that the condition

8X1 2 H1;8X2 2 H2; EŒX1X2� D EŒpK.X1/pK.X2/�

implies that the �-fields �.H1/ and �.H2/ are conditionally independent given

�.K/. (This means that, for every nonnegative �.H1/-measurable random variable

X1, and for every nonnegative �.H2/-measurable random variable X2, one has

EŒX1X2j�.K/� D EŒX1j�.K/�EŒX2j�.K/�.) Hint: Via monotone class arguments

explained in Appendix A1, it is enough to consider the case where X1, resp. X2,

is the indicator function of an event depending only on finitely many variables in

H1, resp. in H2.

Exercise 1.18 (Lévy’s construction of Brownian motion) For every t 2 Œ0; 1�, we

set h0.t/ D 1, and then, for every integer n � 0 and every k 2 f0; 1; : : : ; 2n � 1g,

hn
k.t/ D 2n=2 1Œ.2k/2�n�1;.2kC1/2�n�1/.t/ � 2n=2 1Œ.2kC1/2�n�1;.2kC2/2�n�1/.t/:

1. Verify that the functions h0; .h
n
k/n�1;0�k�2n�1 form an orthonormal basis of

L2.Œ0; 1�;B.Œ0; 1�/; dt/. (Hint: Observe that, for every fixed n � 0, any function

f W Œ0; 1/ ! R that is constant on every interval of the form Œ. j � 1/2�n; j2�n/,

for 1 � j � 2n, is a linear combination of the functions h0; .h
m
k /0�m<n;0�k�2m�1.)

2. Suppose that N0; .N
n
k /n�1;0�k�2n�1 are independent N .0; 1/ random variables.

Justify the existence of the (unique) Gaussian white noise G on Œ0; 1�, with

intensity dt, such that G.h0/ D N0 and G.hn
k/ D Nn

k for every n � 0 and

0 � k � 2n � 1.

3. For every t 2 Œ0; 1�, set Bt D G.Œ0; t�/. Verify that

Bt D t N0 C
1X

nD0

� 2n�1X

kD0
gn

k.t/Nn
k

�
;

where the series converges in L2, and the functions gn
k W Œ0; 1� ! Œ0;1/ are given

by

gn
k.t/ D

Z t

0

hn
k.s/ ds:

Note that the functions gn
k are continuous and satisfy the following property: For

every fixed n � 0, the functions gn
k , 0 � k � 2n � 1, have disjoint supports and

are bounded above by 2�n=2.

4. For every integer m � 0 and every t 2 Œ0; 1� set

B
.m/
t D t N0 C

m�1X

nD0

� 2n�1X

kD0
gn

k.t/Nn
k

�
:
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B
(0)
t

B
(1)
t

B
(2)
t

B
(3)
t

1 4 1 2 3 4 1

t

Fig. 1.1 Illustration of the construction of B
.m/
t in Exercise 1.18, for m D 0; 1; 2; 3. For the clarity

of the figure, lines become thinner when m increases. The lengths of the dashed segments are
determined by the values of N0 and Nm

k for m D 0; 1; 2

See Fig. 1.1 for an illustration. Verify that the continuous functions t 7! B
.m/
t .!/

converge uniformly on Œ0; 1� as m ! 1, for a.a. !. (Hint: If N is N .0; 1/-

distributed, prove the bound P.jNj � a/ � e�a2=2 for a � 1, and use this estimate

to bound the probability of the event fsupfjNn
k j W 0 � k � 2n � 1g > 2n=4g, for

every fixed n � 0.)

5. Conclude that we can, for every t � 0, select a random variable B0
t which is a.s.

equal to Bt, in such a way that the mapping t 7! B0
t.!/ is continuous for every

! 2 ˝ .

Notes and Comments

The material in this chapter is standard. We refer to Adler [1] and Lifshits [55] for

more information about Gaussian processes. The more recent book [56] by Marcus

and Rosen develops striking applications of the known results about Gaussian

processes to Markov processes and their local times. Exercise 1.16 involves a simple

particular case of the famous Kalman filter, which has numerous applications in

technology. See [49] or [62] for the details of the construction in Exercise 1.18.



Chapter 2

Brownian Motion

In this chapter, we construct Brownian motion and investigate some of its properties.

We start by introducing the “pre-Brownian motion” (this is not a canonical

terminology), which is easily defined from a Gaussian white noise on RC whose

intensity is Lebesgue measure. Going from pre-Brownian motion to Brownian

motion requires the additional property of continuity of sample paths, which is

derived here via the classical Kolmogorov lemma. The end of the chapter discusses

several properties of Brownian sample paths, and establishes the strong Markov

property, with its classical application to the reflection principle.

2.1 Pre-Brownian Motion

Throughout this chapter, we argue on a probability space .˝;F ;P/. Most of the

time, but not always, random processes will be indexed by T D RC and take values

in R.

Definition 2.1 Let G be a Gaussian white noise on RC whose intensity is Lebesgue

measure. The random process .Bt/t2RC
defined by

Bt D G.1Œ0;t�/

is called pre-Brownian motion.

Proposition 2.2 Pre-Brownian motion is a centered Gaussian process with covari-

ance

K.s; t/ D minfs; tg .not:/D s ^ t:

© Springer International Publishing Switzerland 2016
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Proof By the definition of a Gaussian white noise, the variables Bt belong to a

common Gaussian space, and therefore .Bt/t�0 is a Gaussian process. Moreover, for

every s; t � 0,

EŒBsBt� D EŒG.Œ0; s�/G.Œ0; t�/� D
Z 1

0

dr 1Œ0;s�.r/1Œ0;t�.r/ D s ^ t:

ut
The next proposition gives different ways of characterizing pre-Brownian

motion.

Proposition 2.3 Let .Xt/t�0 be a (real-valued) random process. The following

properties are equivalent:

(i) .Xt/t�0 is a pre-Brownian motion;

(ii) .Xt/t�0 is a centered Gaussian process with covariance K.s; t/ D s ^ t;

(iii) X0 D 0 a.s., and, for every 0 � s < t, the random variable Xt � Xs is

independent of �.Xr; r � s/ and distributed according to N .0; t � s/;

(iv) X0 D 0 a.s., and, for every choice of 0 D t0 < t1 < � � � < tp, the variables

Xti � Xti�1 , 1 � i � p are independent, and, for every 1 � i � p, the variable

Xti � Xti�1 is distributed according to N .0; ti � ti�1/.

Proof The fact that (i))(ii) is Proposition 2.2. Let us show that (ii))(iii). We

assume that .Xt/t�0 is a centered Gaussian process with covariance K.s; t/ D s ^ t,

and we let H be the Gaussian space generated by .Xt/t�0. Then X0 is distributed

according to N .0; 0/ and therefore X0 D 0 a.s. Then, fix s > 0 and write Hs for the

vector space spanned by .Xr; 0 � r � s/, and QHs for the vector space spanned by

.XsCu � Xs; u � 0/. Then Hs and QHs are orthogonal since, for r 2 Œ0; s� and u � 0,

EŒXr.XsCu � Xs/� D r ^ .s C u/� r ^ s D r � r D 0:

Noting that Hs and QHs are subspaces of H, we deduce from Theorem 1.9 that �.Hs/

and �. QHs/ are independent. In particular, if we fix t > s, the variable Xt � Xs is

independent of �.Hs/ D �.Xr; r � s/. Finally, using the form of the covariance

function, we immediately get that Xt � Xs is distributed according to N .0; t � s/.

The implication (iii))(iv) is straightforward. Taking s D tp�1 and t D tp we

obtain that Xtp � Xtp�1 is independent of .Xt1 ; : : : ;Xtp�1/. Similarly, Xtp�1 � Xtp�2 is

independent of .Xt1 ; : : : ;Xtp�2/, and so on. This implies that the variables Xti �Xti�1 ,

1 � i � p, are independent.

Let us show that (iv))(i). It easily follows from (iv) that X is a centered Gaussian

process. Then, if f is a step function on RC of the form f D
Pn

iD1 �i 1.ti�1;ti �, where

0 D t0 < t1 < t2 < � � � < tp, we set

G. f / D
nX

iD1
�i .Xti � Xti�1/
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(note that this definition of G. f / depends only on f and not on the particular way

we have written f D
Pn

iD1 �i 1.ti�1;ti �). Suppose then that f and g are two step

functions. We can write f D
Pn

iD1 �i 1.ti�1;ti� and g D
Pn

iD1 �i 1.ti�1;ti � with the

same subdivision 0 D t0 < t1 < t2 < � � � < tp for f and for g (just take the union of

the subdivisions arising in the expressions of f and g). It then follows from a simple

calculation that

EŒG. f /G.g/� D
Z

RC

f .t/g.t/ dt;

so that G is an isometry from the vector space of step functions on RC into the

Gaussian space H generated by X. Using the fact that step functions are dense

in L2.RC;B.RC/; dt/, we get that the mapping f 7! G. f / can be extended to

an isometry from L2.RC;B.RC/; dt/ into the Gaussian space H. Finally, we have

G.Œ0; t�/ D Xt � X0 D Xt by construction. ut
Remark The variant of (iii) where the law of Xt � Xs is not specified but required

to only depend on t � s is called the property of stationarity (or homogeneity) and

independence of increments. Pre-Brownian motion is thus a special case of the class

of processes with stationary independent increments (under an additional regularity

assumption, these processes are also called Lévy processes, see Sect. 6.5.2).

Corollary 2.4 Let .Bt/t�0 be a pre-Brownian motion. Then, for every choice of 0 D
t0 < t1 < � � � < tn, the law of the vector .Bt1 ;Bt2 ; : : : ;Btn/ has density

p.x1; : : : ; xn/ D 1

.2�/n=2
p

t1.t2 � t1/ : : : .tn � tn�1/
exp

�
�

nX

iD1

.xi � xi�1/2

2.ti � ti�1/

�
;

where by convention x0 D 0.

Proof The random variables Bt1 ;Bt2 � Bt1 ; : : : ;Btn � Btn�1 are independent with

respective distributions N .0; t1/;N .0; t2 � t1/; : : : ;N .0; tn � tn�1/. Hence the

vector .Bt1 ;Bt2 � Bt1 ; : : : ;Btn � Btn�1/ has density

q.y1; : : : ; yn/ D 1

.2�/n=2
p

t1.t2 � t1/ : : : .tn � tn�1/
exp

�
�

nX

iD1

y2i

2.ti � ti�1/

�
;

and the change of variables xi D y1 C � � � C yi for i 2 f1; : : : ; ng completes the

argument. Alternatively we could have used Theorem 1.3 (ii). ut

Remark Corollary 2.4, together with the property B0 D 0, determines the collec-

tion of finite-dimensional marginal distributions of pre-Brownian motion. Property

(iv) of Proposition 2.3 shows that a process having the same finite-dimensional

marginal distributions as pre-Brownian motion must also be a pre-Brownian motion.
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Proposition 2.5 Let B be a pre-Brownian motion. Then,

(i) �B is also a pre-Brownian motion (symmetry property);

(ii) for every � > 0, the process B�t D 1
�

B�2t is also a pre-Brownian motion

(invariance under scaling);

(iii) for every s � 0, the process B
.s/
t D BsCt � Bs is a pre-Brownian motion and is

independent of �.Br; r � s/ (simple Markov property).

Proof (i) and (ii) are very easy. Let us prove (iii). With the notation of the proof

of Proposition 2.3, the �-field generated by B.s/ is �. QHs/, which is independent of

�.Hs/ D �.Br; r � s/. To see that B.s/ is a pre-Brownian motion, it is enough to

verify property (iv) of Proposition 2.3, which is immediate since B
.s/
ti � B

.s/
ti�1 D

BsCti � BsCti�1 . ut
Let B be a pre-Brownian motion and let G be the associated Gaussian white noise.

Note that G is determined by B: If f is a step function there is an explicit formula

for G. f / in terms of B, and one then uses a density argument. One often writes for

f 2 L2.RC;B.RC/; dt/,

G. f / D
Z 1

0

f .s/ dBs

and similarly

G. f 1Œ0;t�/ D
Z t

0

f .s/ dBs ; G. f 1.s;t�/ D
Z t

s

f .r/ dBr :

This notation is justified by the fact that, if u < v,

Z v

u

dBs D G..u; v�/ D G.Œ0; v�/ � G.Œ0; u�/ D Bv � Bu:

The mapping f 7!
R1
0

f .s/ dBs (that is, the Gaussian white noise G) is then called

the Wiener integral with respect to B. Recall that
R1
0

f .s/dBs is distributed according

to N .0;
R1
0

f .s/2ds/.

Since a Gaussian white noise is not a “real” measure depending on !,
R1
0

f .s/dBs

is not a “real” integral depending on!. Much of what follows in this book is devoted

to extending the definition of
R1
0

f .s/dBs to functions f that may depend on !.

2.2 The Continuity of Sample Paths

We start with a general definition. Let E be a metric space equipped with its Borel

�-field.
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Definition 2.6 Let .Xt/t2T be a random process with values in E. The sample paths

of X are the mappings T 3 t 7! Xt.!/ obtained when fixing ! 2 ˝ . The sample

paths of X thus form a collection of mappings from T into E indexed by ! 2 ˝ .

Let B D .Bt/t�0 be a pre-Brownian motion. At the present stage, we have no

information about the sample paths of B. We cannot even assert that these sample

paths are measurable functions. In this section, we will show that, at the cost of

“slightly” modifying B, we can ensure that sample paths are continuous.

Definition 2.7 Let .Xt/t2T and . QXt/t2T be two random processes indexed by the

same index set T and with values in the same metric space E. We say that QX is a

modification of X if

8t 2 T; P. QXt D Xt/ D 1:

This implies in particular that QX has the same finite-dimensional marginals as X.

Thus, if X is a pre-Brownian motion, QX is also a pre-Brownian motion. On the other

hand, sample paths of QX may have very different properties from those of X. For

instance, considering the case where T D RC and E D R, it is easy to construct

examples where all sample paths of QX are continuous whereas all sample paths of X

are discontinuous.

Definition 2.8 The process QX is said to be indistinguishable from X if there exists

a negligible subset N of ˝ such that

8! 2 ˝nN; 8t 2 T; QXt.!/ D Xt.!/:

Put in a different way, QX is indistinguishable from X if

P.8t 2 T; Xt D QXt/ D 1:

(This formulation is slightly incorrect since the set f8t 2 T; Xt D QXtg need not be

measurable.)

If QX is indistinguishable from X then QX is a modification of X. The notion

of indistinguishability is however much stronger: Two indistinguishable processes

have a.s. the same sample paths. In what follows, we will always identify two

indistinguishable processes. An assertion such as “there exists a unique process such

that . . . ” should always be understood “up to indistinguishability”, even if this is not

stated explicitly.

The following observation will play an important role. Suppose that T D I is an

interval of R. If the sample paths of both X and QX are continuous (except possibly

on a negligible subset of ˝), then QX is a modification of X if and only if QX is

indistinguishable from X. Indeed, if QX is a modification of X we have a.s. Xt D QXt

for every t 2 I \ Q (we throw out a countable union of negligible sets) hence a.s.

Xt D QXt for every t 2 I, by a continuity argument. We get the same result if we only

assume that the sample paths are right-continuous, or left-continuous.
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Theorem 2.9 (Kolmogorov’s lemma) Let X D .Xt/t2I be a random process

indexed by a bounded interval I of R, and taking values in a complete metric space

.E; d/. Assume that there exist three reals q; ";C > 0 such that, for every s; t 2 I,

EŒd.Xs;Xt/
q� � C jt � sj1C":

Then, there is a modification QX of X whose sample paths are Hölder continuous

with exponent ˛ for every ˛ 2 .0; "
q
/: This means that, for every ! 2 ˝ and every

˛ 2 .0; "
q
/, there exists a finite constant C˛.!/ such that, for every s; t 2 I,

d. QXs.!/; QXt.!// � C˛.!/ jt � sj˛ :

In particular, QX is a modification of X with continuous sample paths (by the

preceding observations such a modification is unique up to indistinguishability).

Remarks

(i) If I is unbounded, for instance if I D RC, we may still apply Theorem 2.9

successively with I D Œ0; 1�; Œ1; 2�; Œ2; 3�; etc. and we get that X has a

modification whose sample paths are locally Hölder with exponent ˛ for every

˛ 2 .0; "=q/.

(ii) It is enough to prove that, for every fixed ˛ 2 .0; "=q/, X has a modification

whose sample paths are Hölder with exponent ˛. Indeed, we can then apply

this result to every choice of ˛ in a sequence ˛k " "=q, noting that the resulting

modifications are indistinguishable, by the observations preceding the theorem.

Proof To simplify the presentation, we take I D Œ0; 1�, but the proof would be the

same for any bounded interval (closed or not). We fix ˛ 2 .0; "
q
/.

The assumption of the theorem implies that, for a > 0 and s; t 2 I,

P.d.Xs;Xt/ � a/ � a�qEŒd.Xs;Xt/
q� � C a�q jt � sj1C":

We apply this inequality to s D .i � 1/2�n, t D i2�n (for i 2 f1; : : : ; 2ng) and

a D 2�n˛:

P
�

d.X.i�1/2�n ;Xi2�n/ � 2�n˛
�

� C 2nq˛2�.1C"/n:

By summing over i we get

P

 
2n[

iD1
fd.X.i�1/2�n ;Xi2�n/ � 2�n˛g

!
� 2n � C 2nq˛�.1C"/n D C 2�n."�q˛/:
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By assumption, " � q˛ > 0. Summing now over n, we obtain

1X

nD1
P

 
2n[

iD1
fd.X.i�1/2�n ;Xi2�n/ � 2�n˛g

!
< 1;

and the Borel–Cantelli lemma implies that, with probability one, we can find a finite

integer n0.!/ such that

8n � n0.!/; 8i 2 f1; : : : ; 2ng; d.X.i�1/2�n ;Xi2�n/ � 2�n˛ :

Consequently the constant K˛.!/ defined by

K˛.!/ D sup
n�1

 
sup

1�i�2n

d.X.i�1/2�n ;Xi2�n/

2�n˛

!

is finite a.s. (If n � n0.!/, the supremum inside the parentheses is bounded above

by 1, and, on the other hand, there are only finitely many terms before n0.!/.)

At this point, we use an elementary analytic lemma, whose proof is postponed

until after the end of the proof of Theorem 2.9. We write D for the set of all reals of

Œ0; 1/ of the form i2�n for some integer n � 1 and some i 2 f0; 1; : : : ; 2n � 1g.

Lemma 2.10 Let f be a mapping defined on D and with values in the metric space

.E; d/. Assume that there exists a real ˛ > 0 and a constant K < 1 such that, for

every integer n � 1 and every i 2 f1; 2; : : : ; 2n � 1g,

d. f ..i � 1/2�n/; f .i2�n// � K 2�n˛ :

Then we have, for every s; t 2 D,

d. f .s/; f .t// � 2K

1 � 2�˛ jt � sj˛ :

We immediately get from the lemma and the definition of K˛.!/ that, on the

event fK˛.!/ < 1g (which has probability 1), we have, for every s; t 2 D,

d.Xs;Xt/ � C˛.!/ jt � sj˛;

where C˛.!/ D 2.1 � 2�˛/�1K˛.!/. Consequently, on the event fK˛.!/ < 1g,

the mapping t 7! Xt.!/ is Hölder continuous on D, hence uniformly continuous

on D. Since .E; d/ is complete, this mapping has a unique continuous extension to

I D Œ0; 1�, which is also Hölder with exponent ˛. We can thus set, for every t 2 Œ0; 1�

QXt.!/ D
(

lim
s!t; s2D

Xs.!/ if K˛.!/ < 1 ;

x0 if K˛.!/ D 1 ;
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where x0 is a point of E which can be fixed arbitrarily. Clearly QXt is a random

variable.

By the previous remarks, the sample paths of the process QX are Hölder with

exponent ˛ on Œ0; 1�. We still need to verify that QX is a modification of X. To this

end, fix t 2 Œ0; 1�. The assumption of the theorem implies that

lim
s!t

Xs D Xt

in probability. Since by definition QXt is the almost sure limit of Xs when s ! t,

s 2 D, we conclude that Xt D QXt a.s. ut
Proof of Lemma 2.10 Fix s; t 2 D with s < t. Let p � 1 be the smallest integer

such that 2�p � t� s, and let k � 0 be the smallest integer such that k2�p � s. Then,

we may write

s D k2�p � "12�p�1 � : : : � "l2
�p�l

t D k2�p C "0
02

�p C "0
12

�p�1 C : : :C "0
m2

�p�m;

where l;m are nonnegative integers and "i; "
0
j D 0 or 1 for every 1 � i � l and

0 � j � m. Set

si D k2�p � "12
�p�1 � : : : � "i2

�p�i for every 0 � i � l;

tj D k2�p C "0
02

�p C "0
12

�p�1 C : : :C "0
j2

�p�j for every 0 � j � m:

Then, noting that s D sl; t D tm and that we can apply the assumption of the lemma

to each of the pairs .s0; t0/, .si�1; si/ (for 1 � i � l) and .tj�1; tj/ (for 1 � j � m),

we get

d. f .s/; f .t// D d. f .sl/; f .tm//

� d. f .s0/; f .t0//C
lX

iD1
d. f .si�1/; f .si//C

mX

jD1
d. f .tj�1/; f .tj//

� K 2�p˛ C
lX

iD1
K 2�.pCi/˛ C

mX

jD1
K 2�.pCj/˛

� 2K .1 � 2�˛/�1 2�p˛

� 2K .1 � 2�˛/�1 .t � s/˛

since 2�p � t � s. This completes the proof of Lemma 2.10. ut
We now apply Theorem 2.9 to pre-Brownian motion.
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Corollary 2.11 Let B D .Bt/t�0 be a pre-Brownian motion. The process B

has a modification whose sample paths are continuous, and even locally Hölder

continuous with exponent 1
2

� ı for every ı 2 .0; 1
2
/.

Proof If s < t, the random variable Bt � Bs is distributed according to N .0; t � s/,

and thus Bt � Bs has the same law as
p

t � s U, where U is N .0; 1/. Consequently,

for every q > 0,

EŒjBt � Bsjq� D .t � s/q=2EŒjUjq� D Cq .t � s/q=2

where Cq D EŒjUjq� < 1. Taking q > 2, we can apply Theorem 2.9 with " D
q

2
� 1. It follows that B has a modification whose sample paths are locally Hölder

continuous with exponent ˛ for every ˛ < .q � 2/=.2q/. If q is large we can take ˛

arbitrarily close to 1
2
. ut

Definition 2.12 A process .Bt/t�0 is a Brownian motion if:

(i) .Bt/t�0 is a pre-Brownian motion.

(ii) All sample paths of B are continuous.

This is in fact the definition of a real (or linear) Brownian motion started from

0. Extensions to arbitrary starting points and to higher dimensions will be discussed

later.

The existence of Brownian motion in the sense of the preceding definition

follows from Corollary 2.11. Indeed, starting from a pre-Brownian motion, this

corollary provides a modification with continuous sample paths, which is still a

pre-Brownian motion. In what follows we no longer consider pre-Brownian motion,

as we will be interested only in Brownian motion.

It is important to note that the statement of Proposition 2.5 holds without change

if pre-Brownian motion is replaced everywhere by Brownian motion. Indeed, with

the notation of this proposition, it is immediate to verify that �B;B�;B.s/ have

continuous sample paths if B does.

The Wiener measure. Let C.RC;R/ be the space of all continuous functions from

RC into R. We equip C.RC;R/with the �-field C defined as the smallest �-field on

C.RC;R/ for which the coordinate mappings w 7! w.t/ are measurable for every

t � 0 (alternatively, one checks that C coincides with the Borel �-field on C.RC;R/
associated with the topology of uniform convergence on every compact set). Given

a Brownian motion B, we can consider the mapping

˝ �! C.RC;R/

! 7! .t 7! Bt.!//

and one verifies that this mapping is measurable (if we take its composition with a

coordinate map w 7! w.t/ we get the random variable Bt, and a simple argument

shows that this suffices for the desired measurability).
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The Wiener measure (or law of Brownian motion) is by definition the image

of the probability measure P.d!/ under this mapping. The Wiener measure, which

we denote by W.dw/, is thus a probability measure on C.RC;R/, and, for every

measurable subset A of C.RC;R/, we have

W.A/ D P.B� 2 A/;

where in the right-hand side B: stands for the random continuous function t 7!
Bt.!/.

We can specialize the last equality to a “cylinder set” of the form

A D fw 2 C.RC;R/ W w.t0/ 2 A0;w.t1/ 2 A1; : : : ;w.tn/ 2 Ang;

where 0 D t0 < t1 < � � � < tn, and A0;A1; : : : ;An 2 B.R/ (recall that B.R/ stands

for the Borel �-field on R). Corollary 2.4 then gives

W.fwI w.t0/ 2 A0;w.t1/ 2 A1; : : : ;w.tn/ 2 Ang/
D P.Bt0 2 A0;Bt1 2 A1; : : : ;Btn 2 An/

D 1A0.0/

Z

A1�����An

dx1 : : : dxn

.2�/n=2
p

t1.t2 � t1/ : : : .tn � tn�1/
exp

�
�

nX

iD1

.xi � xi�1/2

2.ti � ti�1/

�
;

where x0 D 0 by convention.

This formula for the W-measure of cylinder sets characterizes the probability

measure W. Indeed, the class of cylinder sets is stable under finite intersections

and generates the �-field C , which by a standard monotone class argument (see

Appendix A1) implies that a probability measure on C is characterized by its values

on this class. A consequence of the preceding formula for the W-measure of cylinder

sets is the (fortunate) fact that the definition of the Wiener measure does not depend

on the choice of the Brownian motion B: The law of Brownian motion is uniquely

defined!

Suppose that B0 is another Brownian motion. Then, for every A 2 C ,

P.B0
� 2 A/ D W.A/ D P.B� 2 A/:

This means that the probability that a given property (corresponding to a measurable

subset A of C.RC;R/) holds is the same for the sample paths of B and for the

sample paths of B0. We will use this observation many times in what follows (see in

particular the second part of the proof of Proposition 2.14 below).

Consider now the special choice of a probability space,

˝ D C.RC;R/; F D C ; P.dw/ D W.dw/:
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Then on this probability space, the so-called canonical process

Xt.w/ D w.t/

is a Brownian motion (the continuity of sample paths is obvious, and the fact that

X has the right finite-dimensional marginals follows from the preceding formula for

the W-measure of cylinder sets). This is the canonical construction of Brownian

motion.

2.3 Properties of Brownian Sample Paths

In this section, we investigate properties of sample paths of Brownian motion

(Fig. 2.1). We fix a Brownian motion .Bt/t�0. For every t � 0, we set

Ft D �.Bs; s � t/:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Fig. 2.1 Simulation of a Brownian sample path on the time interval Œ0; 1�
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Note that Fs � Ft if s � t. We also set

F0C D
\

s>0

Fs:

We start by stating a useful 0 � 1 law.

Theorem 2.13 (Blumenthal’s zero-one law) The �-field F0C is trivial, in the

sense that P.A/ D 0 or 1 for every A 2 F0C.

Proof Let 0 < t1 < t2 < � � � < tk and let g W Rk �! R be a bounded continuous

function. Also fix A 2 F0C. Then, by a continuity argument,

EŒ1A g.Bt1 ; : : : ;Btk /� D lim
"#0

EŒ1A g.Bt1 � B"; : : : ;Btk � B"/�:

If 0 < " < t1, the variables Bt1 � B"; : : : ;Btk � B" are independent of F" (by the

simple Markov property of Proposition 2.5) and thus also of F0C. It follows that

EŒ1A g.Bt1 ; : : : ;Btk/� D lim
"#0

P.A/EŒg.Bt1 � B"; : : : ;Btk � B"/�

D P.A/EŒg.Bt1 ; : : : ;Btk/�:

We have thus obtained that F0C is independent of �.Bt1 ; : : : ;Btk/. Since this holds

for any finite collection ft1; : : : ; tkg of (strictly) positive reals, F0C is independent of

�.Bt; t > 0/. However, �.Bt; t > 0/ D �.Bt; t � 0/ since B0 is the pointwise limit

of Bt when t ! 0. Since F0C � �.Bt; t � 0/, we conclude that F0C is independent

of itself, which yields the desired result. ut
Proposition 2.14

(i) We have, a.s. for every " > 0,

sup
0�s�"

Bs > 0; inf
0�s�"

Bs < 0:

(ii) For every a 2 R, let Ta D infft � 0 W Bt D ag (with the convention inf ¿ D 1).

Then,

a.s.; 8a 2 R; Ta < 1:

Consequently, we have a.s.

lim sup
t!1

Bt D C1; lim inf
t!1

Bt D �1:

Remark It is not a priori obvious that sup0�s�" Bs is measurable, since this is an

uncountable supremum of random variables. However, we can take advantage of the

continuity of sample paths to restrict the supremum to rational values of s 2 Œ0; "�,
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so that we have a supremum of a countable collection of random variables. We will

implicitly use such remarks in what follows.

Proof

(i) Let ."p/ be a sequence of positive reals strictly decreasing to 0, and let

A D
\

p

n
sup

0�s�"p

Bs > 0
o
:

Since this is a monotone decreasing intersection, it easily follows that A is F0C-

measurable (we can restrict the intersection to p � p0, for any choice of p0 � 1).

On the other hand,

P.A/ D lim
p!1

# P
�

sup
0�s�"p

Bs > 0
�
;

and

P
�

sup
0�s�"p

Bs > 0
�

� P.B"p
> 0/ D 1

2
;

which shows that P.A/ � 1=2. By Theorem 2.13 we have P.A/ D 1, hence

a:s: 8" > 0; sup
0�s�"

Bs > 0:

The assertion about inf0�s�" Bs is obtained by replacing B by �B.

(ii) We write

1 D P
�

sup
0�s�1

Bs > 0
�

D lim
ı#0

" P
�

sup
0�s�1

Bs > ı
�
;

and we use the scale invariance property (see Proposition 2.5 (ii) and the

notation of this proposition) with � D ı to see that, for every ı > 0,

P
�

sup
0�s�1

Bs > ı
�

D P
�

sup
0�s�1=ı2

Bıs > 1
�

D P
�

sup
0�s�1=ı2

Bs > 1
�
:

In the second equality, we use the remarks following the definition of the

Wiener measure to observe that the probability of the event fsup0�s�1=ı2 Bs >

1g is the same for any Brownian motion B. If we let ı go to 0, we get

P
�

sup
s�0

Bs > 1
�

D lim
ı#0

" P
�

sup
0�s�1=ı2

Bs > 1
�

D 1:
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Then another scaling argument shows that, for every M > 0,

P
�

sup
s�0

Bs > M
�

D 1

and replacing B by �B we have also

P
�

inf
s�0

Bs < �M
�

D 1:

The assertions in (ii) now follow easily. For the last one we observe that a

continuous function f W RC �! R can visit all reals only if lim supt!C1 f .t/ D
C1 and lim inft!C1 f .t/ D �1.

ut
Corollary 2.15 Almost surely, the function t 7! Bt is not monotone on any non-

trivial interval.

Proof Using assertion (i) of Proposition 2.14 and the simple Markov property, we

immediately get that a.s. for every rational q 2 QC, for every " > 0,

sup
q�t�qC"

Bt > Bq; inf
q�t�qC"

Bt < Bq:

The desired result follows. Notice that we restricted ourselves to rational values of q

in order to throw out a countable union of negligible sets (and by the way the result

would fail if we had considered all real values of q). ut
Proposition 2.16 Let 0 D tn

0 < tn
1 < � � � < tn

pn
D t be a sequence of subdivisions of

Œ0; t� whose mesh tends to 0 (i.e. sup1�i�pn
.tn

i � tn
i�1/ ! 0 as n ! 1). Then,

lim
n!1

pnX

iD1
.Btni

� Btni�1
/2 D t;

in L2.

Proof This is an immediate consequence of Proposition 1.14, writing Btni
� Btni�1

D
G..tn

i�1; t
n
i �/, where G is the Gaussian white noise associated with B. ut

If a < b and f is a real function defined on Œa; b�, the function f is said to have

infinite variation if the supremum of the quantities
Pp

iD1 jf .ti/ � f .ti�1/j, over all

subdivisions a D t0 < t1 < � � � < tp D b, is infinite.

Corollary 2.17 Almost surely, the function t 7! Bt has infinite variation on any

non-trivial interval.

Proof From the simple Markov property, it suffices to consider the interval Œ0; t�

for some fixed t > 0. We use Proposition 2.16, and note that by extracting a
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subsequence we may assume that the convergence in this proposition holds a.s. We

then observe that

pnX

iD1
.Btni

� Btni�1
/2 �

�
sup

1�i�pn

jBtni
� Btni�1

j
�

�
pnX

iD1
jBtni

� Btni�1
j:

The supremum inside parentheses tends to 0 by the continuity of sample paths,

whereas the left-hand side tends to t a.s. It follows that
Ppn

iD1 jBtni
� Btni�1

j tends to

infinity a.s., giving the desired result. ut
The previous corollary shows that it is not possible to define the integralR t

0
f .s/dBs as a special case of the usual (Stieltjes) integral with respect to functions

of finite variation (see Sect. 4.1.1 for a brief presentation of the integral with respect

to functions of finite variation, and also the comments at the end of Sect. 2.1).

2.4 The Strong Markov Property of Brownian Motion

Our goal is to extend the simple Markov property (Proposition 2.5 (iii)) to the case

where the deterministic time s is replaced by a random time T. We first need to

specify the class of admissible random times.

As in the previous section, we fix a Brownian motion .Bt/t�0. We keep the

notation Ft introduced before Theorem 2.13 and we also set F1 D �.Bs; s � 0/.

Definition 2.18 A random variable T with values in Œ0;1� is a stopping time if, for

every t � 0, fT � tg 2 Ft.

It is important to note that the value 1 is allowed. If T is a stopping time, we

also have, for every t > 0,

fT < tg D
[

q2Œ0;t/\Q

fT � qg 2 Ft:

Examples The random variables T D t (constant stopping time) and T D Ta are

stopping times (notice that fTa � tg D finf0�s�t jBs � aj D 0g). On the other hand,

T D supfs � 1 W Bs D 0g is not a stopping time (arguing by contradiction, this will

follow from the strong Markov property stated below and Proposition 2.14). If T is

a stopping time, then, for every t � 0, T C t is also a stopping time.

Definition 2.19 Let T be a stopping time. The �-field of the past before T is

FT D fA 2 F1 W 8t � 0; A \ fT � tg 2 Ftg:

It is easy to verify that FT is indeed a �-field, and that the random variable T

is FT -measurable. Moreover, if we define the real random variable 1fT<1gBT by
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setting

1fT<1gBT.!/ D
�

BT.!/.!/ if T.!/ < 1 ;

0 if T.!/ D 1 ;

then 1fT<1gBT is also FT -measurable. To see this, we first observe that

1fT<1gBTD lim
n!1

1X

iD0
1fi2�n�T<.iC1/2�ngBi2�n D lim

n!1

1X

iD0
1fT<.iC1/2�ng1fi2�n�TgBi2�n :

We then note that, for any s � 0, Bs1fs�Tg is FT -measurable, because if A is a Borel

subset of R not containing 0 (the case where 0 2 A is treated by considering the

complementary event) we have

fBs1fs�Tg 2 Ag \ fT � tg D
�

¿ if t < s

fBs 2 Ag \ fs � T � tg if t � s

which is Ft-measurable in both cases (write fs � T � tg D fT � tg \ fT < sgc).

Theorem 2.20 (strong Markov property) Let T be a stopping time. We assume

that P.T < 1/ > 0 and we set, for every t � 0,

B
.T/
t D 1fT<1g.BTCt � BT/:

Then under the probability measure P.� j T < 1/, the process .B
.T/
t /t�0 is a

Brownian motion independent of FT .

Proof We first consider the case where T < 1 a.s. We fix A 2 FT and 0 � t1 <

� � � < tp, and we let F be a bounded continuous function from Rp into RC. We will

verify that

EŒ1A F.B
.T/
t1 ; : : : ;B

.T/
tp /� D P.A/EŒF.Bt1 ; : : : ;Btp/�: (2.1)

The different assertions of the theorem then follow. First the case A D ˝ shows

that the process .B
.T/
t /t�0 has the same finite-dimensional marginal distributions

as B and is thus a Brownian motion (notice that the sample paths of B.T/ are

continuous). Then (2.1) implies that, for every choice of 0 � t1 < � � � < tp, the

vector .B
.T/
t1 ; : : : ;B

.T/
tp / is independent of FT and it follows that B.T/ is independent

of FT .

Let us prove (2.1). For every integer n � 1, and for every real t � 0, we write Œt�n
for the smallest real of the form k2�n, with k 2 ZC, belonging to the interval Œt;1/.

We also set Œ1�n D 1 by convention. In order to prove (2.1), we observe that we

have a.s.

F.B
.T/
t1 ; : : : ;B

.T/
tp / D lim

n!1
F.B

.ŒT�n/
t1 ; : : : ;B

.ŒT�n/
tp /;
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hence by dominated convergence

EŒ1A F.B
.T/
t1 ; : : : ;B

.T/
tp /�

D lim
n!1

EŒ1A F.B
.ŒT�n/
t1 ; : : : ;B

.ŒT�n/
tp /�

D lim
n!1

1X

kD0
EŒ1A1f.k�1/2�n<T�k2�ngF.Bk2�nCt1 � Bk2�n ; : : : ;Bk2�nCtp � Bk2�n/�;

where to get the last equality we have decomposed the expectation according to the

possible values of ŒT�n. The point now is the fact that, since A 2 FT , the event

A \ f.k � 1/2�n < T � k2�ng D .A \ fT � k2�ng/ \ fT � .k � 1/2�ngc

is Fk2�n -measurable. By the simple Markov property (Proposition 2.5 (iii)), we have

thus

EŒ1A\f.k�1/2�n<T�k2�ngF.Bk2�nCt1 � Bk2�n ; : : : ;Bk2�nCtp � Bk2�n/�

D P.A \ f.k � 1/2�n < T � k2�ng/EŒF.Bt1 ; : : : ;Btp/�;

and we just have to sum over k to get (2.1).

Finally, when P.T D 1/ > 0, the same arguments give, instead of (2.1),

EŒ1A\fT<1g F.B
.T/
t1 ; : : : ;B

.T/
tp /� D P.A \ fT < 1g/EŒF.Bt1 ; : : : ;Btp/�

and the desired result again follows in a straightforward way. ut
An important application of the strong Markov property is the “reflection

principle” that leads to the following theorem.

Theorem 2.21 For every t > 0, set St D sups�t Bs. Then, if a � 0 and b 2 .�1; a�,

we have

P.St � a; Bt � b/ D P.Bt � 2a � b/:

In particular, St has the same distribution as jBtj.

Proof We apply the strong Markov property at the stopping time

Ta D infft � 0 W Bt D ag:
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We already saw (Proposition 2.14) that Ta < 1 a.s. Then, using the notation of

Theorem 2.20, we have

P.St � a; Bt � b/ D P.Ta � t; Bt � b/ D P.Ta � t; B
.Ta/
t�Ta

� b � a/;

since B
.Ta/
t�Ta

D Bt � BTa
D Bt � a on the event fTa � tg. Write B0 D B.Ta/, so that,

by Theorem 2.20, the process B0 is a Brownian motion independent of FTa
hence

in particular of Ta. Since B0 has the same distribution as �B0, the pair .Ta;B
0/ also

has the same distribution as .Ta;�B0/ (this common distribution is just the product

of the law of Ta with the Wiener measure). Let

H D f.s;w/ 2 RC � C.RC;R/ W s � t; w.t � s/ � b � ag:

The preceding probability is equal to

P..Ta;B
0/ 2 H/ D P..Ta;�B0/ 2 H/

D P.Ta � t; �B
.Ta/
t�Ta

� b � a/

D P.Ta � t; Bt � 2a � b/

D P.Bt � 2a � b/

because the event fBt � 2a � bg is a.s. contained in fTa � tg. This gives the first

assertion (Fig. 2.2).

✲

✻

Ta
t

a

b

2a−b

Fig. 2.2 Illustration of the reflection principle: the conditional probability, knowing that fTa � tg,
that the graph is below b at time t is the same as the conditional probability that the graph reflected
at level a after time Ta (in dashed lines) is above 2a � b at time t
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For the last assertion of the theorem, we observe that

P.St � a/ D P.St � a;Bt � a/C P.St � a;Bt � a/ D 2P.Bt � a/ D P.jBtj � a/;

and the desired result follows. ut
It follows from the previous theorem that the law of the pair .St;Bt/ has density

g.a; b/ D 2.2a � b/p
2�t3

exp

�
� .2a � b/2

2t

�
1fa>0;b<ag: (2.2)

Corollary 2.22 For every a > 0, Ta has the same distribution as
a2

B21
and has density

f .t/ D ap
2�t3

exp
�

� a2

2t

�
1ft>0g:

Proof Using Theorem 2.21 in the second equality, we have, for every t � 0,

P.Ta � t/ D P.St � a/ D P.jBtj � a/ D P.B2t � a2/ D P.tB21 � a2/ D P.
a2

B21
� t/:

Furthermore, since B1 is distributed according to N .0; 1/, a straightforward

calculation gives the density of a2=B21. ut
Remark From the form of the density of Ta, we immediately get that EŒTa� D 1.

We finally extend the definition of Brownian motion to the case of an arbitrary

(possibly random) initial value and to any dimension.

Definition 2.23 If Z is a real random variable, a process .Xt/t�0 is a real Brownian

motion started from Z if we can write Xt D Z C Bt where B is a real Brownian

motion started from 0 and is independent of Z.

Definition 2.24 A random process Bt D .B1t ; : : : ;B
d
t / with values in Rd is a d-

dimensional Brownian motion started from 0 if its components B1; : : : ;Bd are

independent real Brownian motions started from 0. If Z a random variable with

values in Rd and Xt D .X1t ; : : : ;X
d
t / is a process with values in Rd, we say that X is

a d-dimensional Brownian motion started from Z if we can write Xt D Z CBt where

B is a d-dimensional Brownian motion started from 0 and is independent of Z.

Note that, if X is a d-dimensional Brownian motion and the initial value of X is

random, the components of X may not be independent because the initial value may

introduce some dependence (this does not occur if the initial value is deterministic).

In a way similar to the end of Sect. 2.2, the Wiener measure in dimension

d is defined as the probability measure on C.RC;Rd/ which is the law of a
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d-dimensional Brownian motion started from 0. The canonical construction of

Sect. 2.2 also applies to d-dimensional Brownian motion.

Many of the preceding results can be extended to d-dimensional Brownian

motion with an arbitrary starting point. In particular, the invariance properties of

Proposition 2.5 still hold with the obvious adaptations. Furthermore, property (i)

of this proposition can be extended as follows. If X is a d-dimensional Brownian

motion and ˚ is an isometry of Rd, the process .˚.Xt//t�0 is still a d-dimensional

Brownian motion. The construction of the Wiener measure and Blumenthal’s zero-

one law are easily extended, and the strong Markov property also holds: One can

adapt the proof of Theorem 2.20 to show that, if T is a stopping time – in the sense of

the obvious extension of Definition 2.18 – which is finite with positive probability,

then under the probability measure P.� j T < 1/, the process X
.T/
t D XTCt � XT ,

t � 0, is a d-dimensional Brownian motion started from 0 and is independent of

FT .

Exercises

In all exercises below, .Bt/t�0 is a real Brownian motion started from 0, and St D
sup0�s�t Bs:

Exercise 2.25 (Time inversion)

1. Show that the process .Wt/t�0 defined by W0 D 0 and Wt D tB1=t for t > 0 is

(indistinguishable of) a real Brownian motion started from 0. (Hint: First verify

that W is a pre-Brownian motion.)

2. Infer that lim
t!1

Bt

t
D 0 a.s.

Exercise 2.26 For every real a � 0, we set Ta D infft � 0 W Bt D ag. Show that the

process .Ta/a�0 has stationary independent increments, in the sense that, for every

0 � a � b, the variable Tb � Ta is independent of the �-field �.Tc; 0 � c � a/ and

has the same distribution as Tb�a.

Exercise 2.27 (Brownian bridge)

We set Wt D Bt � tB1 for every t 2 Œ0; 1�.
1. Show that .Wt/t2Œ0;1� is a centered Gaussian process and give its covariance

function.

2. Let 0 < t1 < t2 < � � � < tp < 1. Show that the law of .Wt1 ;Wt2 ; : : : ;Wtp/ has

density

g.x1; : : : ; xp/ D
p
2� pt1.x1/pt2�t1.x2 � x1/ � � � ptp�tp�1.xp � xp�1/p1�tp.�xp/;

where pt.x/ D 1p
2� t

exp.�x2=2t/. Explain why the law of .Wt1 ;Wt2 ; : : : ;Wtp/ can

be interpreted as the conditional law of .Bt1 ;Bt2 ; : : : ;Btp/ knowing that B1 D 0.
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3. Verify that the two processes .Wt/t2Œ0;1� and .W1�t/t2Œ0;1� have the same distribu-

tion (similarly as in the definition of Wiener measure, this law is a probability

measure on the space of all continuous functions from Œ0; 1� into R).

Exercise 2.28 (Local maxima of Brownian paths) Show that, a.s., the local

maxima of Brownian motion are distinct: a.s., for any choice of the rational numbers

p; q; r; s � 0 such that p < q < r < s we have

sup
p�t�q

Bt 6D sup
r�t�s

Bt :

Exercise 2.29 (Non-differentiability) Using the zero-one law, show that, a.s.,

lim sup
t#0

Btp
t

D C1 ; lim inf
t#0

Btp
t

D �1 :

Infer that, for every s � 0, the function t 7! Bt has a.s. no right derivative at s.

Exercise 2.30 (Zero set of Brownian motion) Let H WD ft 2 Œ0; 1� W Bt D 0g. Using

Proposition 2.14 and the strong Markov property, show that H is a.s. a compact

subset of Œ0; 1� with no isolated point and zero Lebesgue measure.

Exercise 2.31 (Time reversal) We set B0
t D B1�B1�t for every t 2 Œ0; 1�. Show that

the two processes .Bt/t2Œ0;1� and .B0
t/t2Œ0;1� have the same law (as in the definition of

Wiener measure, this law is a probability measure on the space of all continuous

functions from Œ0; 1� into R).

Exercise 2.32 (Arcsine law)

Set T WD infft � 0 W Bt D S1g:
1. Show that T < 1 a.s. (one may use the result of the previous exercise) and then

that T is not a stopping time.

2. Verify that the three variables St, St � Bt and jBtj have the same law.

3. Show that T is distributed according to the so-called arcsine law, whose density

is

g.t/ D 1

�
p

t.1 � t/
1.0;1/.t/:

4. Show that the results of questions 1. and 3. remain valid if T is replaced by

L WD supft � 1 W Bt D 0g:
Exercise 2.33 (Law of the iterated logarithm)

The goal of the exercise is to prove that

lim sup
t!1

Btp
2t log log t

D 1 a.s.
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We set h.t/ D p
2t log log t:

1. Show that, for every t > 0, P.St > u
p

t/ � 2

u
p
2�

e�u2=2, when u ! C1.

2. Let r and c be two real numbers such that 1 < r < c2: From the behavior of the

probabilities P.Srn > c h.rn�1// when n ! 1, infer that, a.s.,

lim sup
t!1

Btp
2t log log t

� 1:

3. Show that a.s. there are infinitely many values of n such that

Brn � Brn�1 �
r

r � 1

r
h.rn/:

Conclude that the statement given at the beginning of the exercise holds.

4. What is the value of lim inf
t!1

Btp
2t log log t

?

Notes and Comments

The first rigorous mathematical construction of Brownian motion is due to

Wiener [81] in 1923. We use the nonstandard terminology of “pre-Brownian

motion” to emphasize the necessity of choosing an appropriate modification in

order to get a random process with continuous sample paths. There are several

constructions of Brownian motion from a sequence of independent Gaussian

random variables that directly yield the continuity property, and a very elegant

one is Lévy’s construction (see Exercise 1.18), which can be found in the books

[49] or [62]. Lévy’s construction avoids the use of Kolmogorov’s lemma, but the

latter will have other applications in this book. We refer to Talagrand’s book [78]

for far-reaching refinements of the “chaining method” used above in the proof of

Kolmogorov’s lemma. Much of what we know about linear Brownian motion comes

from Lévy, see in particular [54, Chapitre VI]. Perhaps surprisingly, the strong

Markov property of Brownian motion was proved only in the 1950s by Hunt [32]

(see also Dynkin [19] for a more general version obtained independently of Hunt’s

work), but it had been used before by other authors, in particular by Lévy [54],

without a precise justification. The reflection principle and its consequences already

appeared, long before Brownian motion was rigorously constructed, in Bachelier’s

thesis [2], which was a pioneering work in financial mathematics. The book [62]

by Mörters and Peres is an excellent source for various sample path properties of

Brownian motion.



Chapter 3

Filtrations and Martingales

In this chapter, we provide a short introduction to the theory of continuous time

random processes on a filtered probability space. On the way, we generalize several

notions introduced in the previous chapter in the framework of Brownian motion,

and we provide a thorough discussion of stopping times. In a second step, we

develop the theory of continuous time martingales, and, in particular, we derive

regularity results for sample paths of martingales. We finally discuss the optional

stopping theorem for martingales and supermartingales, and we give applications to

explicit calculations of distributions related to Brownian motion.

3.1 Filtrations and Processes

Throughout this chapter, we consider a probability space .˝;F ;P/. In this section,

we introduce some general notions that will be of constant use later.

Definition 3.1 A filtration on .˝;F ;P/ is a collection .Ft/0�t�1 indexed by

Œ0;1� of sub-�-fields of F , such that Fs � Ft for every s � t � 1.

We have thus, for every 0 � s < t,

F0 � Fs � Ft � F1 � F :

We also say that .˝;F ; .Ft/;P/ is a filtered probability space

Example If B is a Brownian motion, we considered in Chap. 2 the filtration

Ft D �.Bs; 0 � s � t/; F1 D �.Bs; s � 0/:

© Springer International Publishing Switzerland 2016
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More generally, if X D .Xt; t � 0/ is any random process indexed by RC, the

canonical filtration of X is defined by F X
t D �.Xs; 0 � s � t/ and F X

1 D
�.Xs; s � 0/.

Let .Ft/0�t�1 be a filtration on .˝;F ;P/. We set, for every t � 0

FtC D
\

s>t

Fs;

and F1C D F1. Note that Ft � FtC for every t 2 Œ0;1�. The collection

.FtC/0�t�1 is also a filtration. We say that the filtration .Ft/ is right-continuous if

FtC D Ft; 8t � 0:

By construction, the filtration .FtC/ is right-continuous.

Let .Ft/ be a filtration and let N be the class of all .F1;P/-negligible sets (i.e.

A 2 N if there exists an A0 2 F1 such A � A0 and P.A0/ D 0). The filtration is

said to be complete if N � F0 (and thus N � Ft for every t).

If .Ft/ is not complete, it can be completed by setting F 0
t D Ft _ �.N /, for

every t 2 Œ0;1�, using the notation Ft _�.N / for the smallest �-field that contains

both Ft and �.N / (recall that �.N / is the �-field generated by N ). We will

often apply this completion procedure to the canonical filtration of a random process

.Xt/t�0, and call the resulting filtration the completed canonical filtration of X. The

reader will easily check that all results stated in Chap. 2, where we were considering

the canonical filtration of a Brownian motion B, remain valid if instead we deal

with the completed canonical filtration. The point is that augmenting a �-field with

negligible sets does not alter independence properties.

Let us turn to random processes, which in this chapter will be indexed by RC.

Definition 3.2 A process X D .Xt/t�0 with values in a measurable space .E;E / is

said to be measurable if the mapping

.!; t/ 7! Xt.!/

defined on ˝ � RC equipped with the product �-field F ˝ B.RC/ is measurable.

(We recall that B.RC/ stands for the Borel �-field of R.)

This is stronger than saying that, for every t � 0, Xt is F -measurable. On the

other hand, considering for instance the case where E D R, it is easy to see that

if the sample paths of X are continuous, or only right-continuous, the fact that Xt

is F -measurable for every t implies that the process is measurable in the previous

sense – see the argument in the proof of Proposition 3.4 below.

In the remaining part of this chapter, we fix a filtration .Ft/ on .˝;F ;P/,

and the notions that will be introduced depend on the choice of this filtration.

Definition 3.3 A random process .Xt/t�0 with values in a measurable space .E;E /

is called adapted if, for every t � 0, Xt is Ft-measurable. This process is said to be
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progressive if, for every t � 0, the mapping

.!; s/ 7! Xs.!/

defined on ˝ � Œ0; t� is measurable for the �-field Ft ˝ B.Œ0; t�/.

Note that a progressive process is both adapted and measurable (saying that a

process is measurable is equivalent to saying that, for every t � 0, the mapping

.!; s/ 7! Xs.!/ defined on ˝ � Œ0; t� is measurable for F ˝ B.Œ0; t�/).

Proposition 3.4 Let .Xt/t�0 be a random process with values in a metric space

.E; d/ (equipped with its Borel �-field). Suppose that X is adapted and that the

sample paths of X are right-continuous (i.e. for every ! 2 ˝ , t 7! Xt.!/ is right-

continuous). Then X is progressive. The same conclusion holds if one replaces right-

continuous by left-continuous.

Proof We treat only the case of right-continuous sample paths, as the other case is

similar. Fix t > 0. For every n � 1 and s 2 Œ0; t�, define a random variable Xn
s by

setting

Xn
s D Xkt=n if s 2 Œ.k � 1/t=n; kt=n/; k 2 f1; : : : ; ng;

and Xn
t D Xt. The right-continuity of sample paths ensures that, for every s 2 Œ0; t�

and ! 2 ˝ ,

Xs.!/ D lim
n!1

Xn
s .!/:

On the other hand, for every Borel subset A of E,

f.!; s/ 2 ˝ � Œ0; t� W Xn
s .!/ 2 Ag D .fXt 2 Ag � ftg/

[� n[

kD1

�
fXkt=n 2 Ag � Œ .k � 1/t

n
;

kt

n
/
��

which belongs to the �-field Ft ˝ B.Œ0; t�/. Hence, for every n � 1, the mapping

.!; s/ 7! Xn
s .!/, defined on ˝ � Œ0; t�, is measurable for Ft ˝ B.Œ0; t�/. Since a

pointwise limit of measurable functions is also measurable, the same measurability

property holds for the mapping .!; s/ 7! Xs.!/ defined on˝ � Œ0; t�. It follows that

the process X is progressive. ut
The progressive � -field The collection P of all sets A 2 F ˝ B.RC/ such that

the process Xt.!/ D 1A.!; t/ is progressive forms a �-field on ˝ � RC, which is

called the progressive �-field. A subset A of ˝ � RC belongs to P if and only if,

for every t � 0, A \ .˝ � Œ0; t�/ belongs to Ft ˝ B.Œ0; t�/.

One then verifies that a process X is progressive if and only if the mapping

.!; t/ 7! Xt.!/ is measurable on ˝ � RC equipped with the �-field P .
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3.2 Stopping Times and Associated � -Fields

In this section, we extend certain notions that were already introduced in the

previous chapter in the framework of Brownian motion. The following definition

is just a repetition of the corresponding one in the previous chapter.

Definition 3.5 A random variable T W ˝ �! Œ0;1� is a stopping time of the

filtration .Ft/ if fT � tg 2 Ft, for every t � 0. The �-field of the past before T is

then defined by

FT D fA 2 F1 W 8t � 0; A \ fT � tg 2 Ftg:

The reader will verify that FT is indeed a �-field.

In what follows, “stopping time” will mean stopping time of the filtration .Ft/

unless otherwise specified. If T is a stopping time, we also have fT < tg 2 Ft for

every t > 0, by the same argument as in the Brownian case, and moreover

fT D 1g D
� 1[

nD1
fT � ng

�c

2 F1:

Recall the definition of the filtration .FtC/. A stopping time (of the filtration

.Ft/) is obviously also a stopping time of the filtration .FtC/, but the converse

need not be true in general.

Proposition 3.6 Write Gt D FtC for every t 2 Œ0;1�.

(i) A random variable T W ˝ �! Œ0;1� is a stopping time of the filtration .Gt/ if

and only if fT < tg 2 Ft for every t > 0. This is also equivalent to saying that

T ^ t is Ft-measurable for every t > 0.

(ii) Let T be a stopping time of the filtration .Gt/. Then

GT D fA 2 F1 W 8t > 0; A \ fT < tg 2 Ftg:

We will write

FTC WD GT :

Proof

(i) Suppose that T is a stopping time of the filtration .Gt/. Then, for every t > 0,

fT < tg D
[

q2QC; q<t

fT � qg 2 Ft
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because fT � qg 2 Gq � Ft if q < t. Conversely, assume that fT < tg 2 Ft

for every t > 0. Then, for every t � 0 and s > t,

fT � tg D
\

q2QC; t<q<s

fT < qg 2 Fs

and it follows that fT � tg 2 FtC D Gt.

Then, saying that T ^ t is Ft-measurable for every t > 0 is equivalent to

saying that, for every s < t, fT � sg 2 Ft. Taking a sequence of values of s that

increases to t, we see that the latter property implies that fT < tg 2 Ft, and so

T is a stopping time of the filtration .Gt/. Conversely, if T is a stopping time of

the filtration .Gt/, we have fT � sg 2 Gs � Ft whenever s < t, and thus T ^ t

is Ft-measurable.

(ii) First, if A 2 GT , we have A \ fT � tg 2 Gt for every t � 0. Hence, for t > 0,

A \ fT < tg D
[

q2QC; q<t

�
A \ fT � qg

�
2 Ft

since A \ fT � qg 2 Gq � Ft, for every q < t.

Conversely, assume that A \ fT < tg 2 Ft for every t > 0. Then, for every

t � 0, and s > t,

A \ fT � tg D
\

q2QC; t<q<s

�
A \ fT < qg

�
2 Fs:

In this way, we get that A \ fT � tg 2 FtC D Gt and thus A 2 GT .

ut
Properties of stopping times and of the associated � -fields

(a) For every stopping time T, we have FT � FTC. If the filtration .Ft/ is right-

continuous, we have FTC D FT .

(b) If T D t is a constant stopping time, FT D Ft and FTC D FtC.

(c) Let T be a stopping time. Then T is FT -measurable.

(d) Let T be a stopping time and A 2 F1. Set

TA.!/ D
�

T.!/ if ! 2 A ;

C1 if ! … A :

Then A 2 FT if and only if TA is a stopping time.

(e) Let S;T be two stopping times such that S � T. Then FS � FT and FSC �
FTC

.

(f) Let S;T be two stopping times. Then, S _ T and S ^ T are also stopping times

and FS^T D FS \ FT . Furthermore, fS � Tg 2 FS^T and fS D Tg 2 FS^T .
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(g) If .Sn/ is a monotone increasing sequence of stopping times, then S D lim " Sn

is also a stopping time.

(h) If .Sn/ is a monotone decreasing sequence of stopping times, then S D lim # Sn

is a stopping time of the filtration .FtC/, and

FSC D
\

n

FSnC:

(i) If .Sn/ is a monotone decreasing sequence of stopping times, which is also

stationary (in the sense that, for every !, there exists an integer N.!/ such

that Sn.!/ D S.!/ for every n � N.!/) then S D lim # Sn is also a stopping

time, and

FS D
\

n

FSn
:

( j) Let T be a stopping time. A function ! 7! Y.!/ defined on the set fT < 1g
and taking values in the measurable set .E;E / is FT -measurable if and only if,

for every t � 0, the restriction of Y to the set fT � tg is Ft-measurable.

Remark In property ( j) we use the (obvious) notion of G -measurability for a

random variable ! 7! Y.!/ that is defined only on a G -measurable subset of ˝

(here G is a �-field on ˝). This notion will be used again in Theorem 3.7 below.

Proof (a), (b) and (c) are almost immediate from our definitions. Let us prove the

other statements.

(d) For every t � 0,

fTA � tg D A \ fT � tg

and the result follows from the definition of FT .

(e) It is enough to prove that FS � FT . If A 2 FS, we have

A \ fT � tg D .A \ fS � tg/ \ fT � tg 2 Ft;

hence A 2 FT .

(f) We have

fS ^ T � tg D fS � tg [ fT � tg 2 Ft;

fS _ T � tg D fS � tg \ fT � tg 2 Ft;

so that S ^ T and S _ T are stopping times.

It follows from (e) that FS^T � .FS \ FT/. Moreover, if A 2 FS \ FT ,

A \ fS ^ T � tg D .A \ fS � tg/ [ .A \ fT � tg/ 2 Ft;

hence A 2 FS^T .
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Then, for every t � 0,

fS � Tg \ fT � tg D fS � tg \ fT � tg \ fS ^ t � T ^ tg 2 Ft;

fS � Tg \ fS � tg D fS ^ t � T ^ tg \ fS � tg 2 Ft;

because S ^ t and T ^ t are both Ft-measurable by Proposition 3.6 (i). It follows

that fS � Tg 2 FS \ FT D FS^T . Then fS D Tg D fS � Tg \ fT � Sg.

(g) For every t � 0,

fS � tg D
\

n

fSn � tg 2 Ft:

(h) Similarly

fS < tg D
[

n

fSn < tg 2 Ft;

and we use Proposition 3.6 (i). Then, by (e), we have FSC � FSnC for every n,

and conversely, if A 2
T

n FSnC,

A \ fS < tg D
[

n

.A \ fSn < tg/ 2 Ft;

hence A 2 FSC.

(i) In that case, we also have

fS � tg D
[

n

fSn � tg 2 Ft;

and if A 2
T

n FSn
,

A \ fS � tg D
[

n

.A \ fSn � tg/ 2 Ft;

so that A 2 FS.

( j) First assume that, for every t � 0, the restriction of Y to fT � tg is Ft-

measurable. Then, for every measurable subset A of E,

fY 2 Ag \ fT � tg 2 Ft:

Letting t ! 1, we first obtain that fY 2 Ag 2 F1, and then we deduce from

the previous display that fY 2 Ag 2 FT .

Conversely, if Y is FT -measurable, fY 2 Ag 2 FT and thus fY 2 Ag \ fT �
tg 2 Ft, giving the desired result. ut
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Theorem 3.7 Let .Xt/t�0 be a progressive process with values in a measurable

space .E;E /, and let T be a stopping time. Then the function ! 7! XT.!/ WD
XT.!/.!/, which is defined on the event fT < 1g, is FT -measurable.

Proof We use property ( j) above. Let t � 0. The restriction to fT � tg of the

function ! 7! XT.!/ is the composition of the two mappings

fT � tg 3 ! 7! .!;T.!/ ^ t/

Ft Ft ˝ B.Œ0; t�/

and

˝ � Œ0; t� 3 .!; s/ 7! Xs.!/

Ft ˝ B.Œ0; t�/ E

which are both measurable (the first one since T ^ t is Ft-measurable, by

Proposition 3.6 (i), and the second one by the definition of a progressive process). It

follows that the restriction to fT � tg of the function ! 7! XT.!/ is Ft-measurable,

which gives the desired result by property ( j). ut
Proposition 3.8 Let T be a stopping time and let S be an FT -measurable random

variable with values in Œ0;1�, such that S � T. Then S is also a stopping time.

In particular, if T is a stopping time,

Tn D
1X

kD0

k C 1

2n
1fk2�n<T�.kC1/2�ng C 1 � 1fTD1g ; n D 0; 1; 2; : : :

defines a sequence of stopping times that decreases to T.

Proof For the first assertion, we write, for every t � 0,

fS � tg D fS � tg \ fT � tg 2 Ft

since fS � tg is FT -measurable. The second assertion follows since Tn � T, and Tn

is a function of T, hence FT -measurable, and Tn # T as n " 1 by construction. ut
The following proposition will be our main tool to construct stopping times

associated with random processes.

Proposition 3.9 Let .Xt/t�0 be an adapted process with values in a metric space

.E; d/.

(i) Assume that the sample paths of X are right-continuous, and let O be an open

subset of E. Then

TO D infft � 0 W Xt 2 Og

is a stopping time of the filtration .FtC/.
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(ii) Assume that the sample paths of X are continuous, and let F be a closed subset

of E. Then

TF D infft � 0 W Xt 2 Fg

is a stopping time (of the filtration .Ft/).

Proof

(i) For every t > 0,

fTO < tg D
[

s2Œ0;t/\Q

fXs 2 Og 2 Ft;

and we use Proposition 3.6 (i).

(ii) For every t � 0,

fTF � tg D
n

inf
0�s�t

d.Xs;F/ D 0
o

D
n

inf
s2Œ0;t�\Q

d.Xs;F/ D 0
o

2 Ft:

ut

3.3 Continuous Time Martingales and Supermartingales

Recall that we have fixed a filtered probability space .˝;F ; .Ft/;P/. In the

remaining part of this chapter, all processes take values in R. The following is an

obvious analog of the corresponding definition in discrete time (see Appendix A2

below).

Definition 3.10 An adapted real-valued process .Xt/t�0 such that Xt 2 L1 for every

t � 0 is called

• a martingale if, for every 0 � s < t, EŒXt j Fs� D Xs;

• a supermartingale if, for every 0 � s < t, EŒXt j Fs� � Xs;

• a submartingale if, for every 0 � s < t, EŒXt j Fs� � Xs.

If .Xt/t�0 is a submartingale, .�Xt/t�0 is a supermartingale. For this reason, some

of the results below are stated for supermartingales only, but the analogous results

for submartingales immediately follow.

If .Xt/t�0 is a martingale (resp. a supermartingale, resp. a submartingale), we

have EŒXs� D EŒXt� (resp. EŒXs� � EŒXt�, resp. EŒXs� � EŒXt�) whenever 0 � s � t.

A simple way to construct a martingale is to take a random variable Z 2 L1 and

to set Xt D EŒZ j Ft� for every t � 0. Not all martingales are of this type, however.

Let us turn to an important class of examples.
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Important example We say that a process .Zt/t�0 with values in R or in Rd has

independent increments with respect to the filtration .Ft/ if Z is adapted and if, for

every 0 � s < t, Zt � Zs is independent of Fs (for instance, a Brownian motion has

independent increments with respect to its canonical filtration). If Z is a real-valued

process having independent increments with respect to .Ft/, then

(i) if Zt 2 L1 for every t � 0, theneZt D Zt � EŒZt� is a martingale;

(ii) if Zt 2 L2 for every t � 0, then Yt DeZ2t � EŒeZ2t � is a martingale;

(iii) if, for some � 2 R, we have EŒe�Zt � < 1 for every t � 0, then

Xt D e�Zt

EŒe�Zt �

is a martingale.

Proofs of these facts are very easy. In the second case, we have for every 0 � s < t,

EŒ.eZt/
2 j Fs� D EŒ.eZs CeZt �eZs/

2 j Fs�

D eZ2s C 2eZsEŒeZt �eZs j Fs�C EŒ.eZt �eZs/
2 j Fs�

D eZ2s C EŒ.eZt �eZs/
2�

D eZ2s C EŒeZ2t � � 2EŒeZs
eZt�C EŒeZ2s �

D eZ2s C EŒeZ2t � � EŒeZ2s �;

because EŒeZs
eZt� D EŒeZsEŒeZt j Fs�� D EŒeZ2s �. The desired result follows. In the third

case,

EŒXt j Fs� D e�Zs EŒe�.Zt�Zs/ j Fs�

EŒe�Zs �EŒe�.Zt�Zs/�
D e�Zs

EŒe�Zs �
D Xs;

using the fact that EŒe�.Zt�Zs/ j Fs� D EŒe�.Zt�Zs/� by independence.

Consider the special case of Brownian motion.

Definition 3.11 A real-valued process B D .Bt/t�0 is an .Ft/-Brownian motion

if B is a Brownian motion and if B is adapted and has independent increments

with respect to .Ft/. Similarly, a process B D .Bt/t�0 with values in Rd is a d-

dimensional .Ft/-Brownian motion if B is a d-dimensional Brownian motion and if

B is adapted and has independent increments with respect to .Ft/.

Note that if B is a (d-dimensional) Brownian motion and .F B
t / is the (possibly

completed) canonical filtration of B, then B is a (d-dimensional) .F B
t /-Brownian

motion.

Let B be an .Ft/-Brownian motion started from 0 (or from any a 2 R). Then it

follows from the above observations that the processes

Bt ; B2t � t ; e�Bt� �2

2 t
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are martingales with continuous sample paths. The processes e�Bt� �2

2 t are called

exponential martingales of Brownian motion

We can also take, for f 2 L2.RC;B.RC/; dt/,

Zt D
Z t

0

f .s/ dBs :

Properties of Gaussian white noise imply that Z has independent increments with

respect to the canonical filtration of B, and thus

Z t

0

f .s/dBs ;
� Z t

0

f .s/dBs

�2
�
Z t

0

f .s/2ds ; exp
�
�

Z t

0

f .s/dBs � �2

2

Z t

0

f .s/2ds
�

are martingales (with respect to this filtration). One can prove that these martingales

have a modification with continuous sample paths – it is enough to do it for the first

one, and this will follow from the more general results in Chap. 5 below.

Finally, if Z D N is a Poisson process with parameter� (and .Ft/ is the canonical

filtration of N), it is well known that Z has independent increments, and we get that

Nt � �t ; .Nt � �t/2 � �t; exp.�Nt � �t.e� � 1//

are martingales. In contrast with the previous examples, these martingales do not

have a modification with continuous sample paths.

Proposition 3.12 Let .Xt/t�0 be an adapted process and let f W R �! RC be a

convex function such that EŒf .Xt/� < 1 for every t � 0.

(i) If .Xt/t�0 is a martingale, then .f .Xt//t�0 is a submartingale.

(ii) If .Xt/t�0 is a submartingale, and if in addition f is nondecreasing, then

.f .Xt//t�0 is a submartingale.

Proof By Jensen’s inequality, we have, for s < t,

EŒ f .Xt/ j Fs� � f .EŒXt j Fs�/ � f .Xs/:

In the last inequality, we need the fact that f is nondecreasing when .Xt/ is only a

submartingale. ut
Consequences If .Xt/t�0 is a martingale, jXtj is a submartingale and more gener-

ally, for every p � 1, jXtjp is a submartingale, provided that we have EŒjXtjp� < 1
for every t � 0. If .Xt/t�0 is a submartingale, .Xt/

C D Xt _0 is also a submartingale.

Remark If .Xt/t�0 is any martingale, Jensen’s inequality shows that EŒjXtjp� is a

nondecreasing function of t with values in Œ0;1�, for every p � 1.
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Proposition 3.13 Let .Xt/t�0 be a submartingale or a supermartingale. Then, for

every t > 0,

sup
0�s�t

EŒjXsj� < 1:

Proof It is enough to treat the case where .Xt/t�0 is a submartingale. Since .Xt/
C is

also a submartingale, we have for every s 2 Œ0; t�,

EŒ.Xs/
C� � EŒ.Xt/

C�:

On the other hand, since X is a submartingale, we also have for s 2 Œ0; t�,

EŒXs� � EŒX0�:

By combining these two bounds, and noting that jxj D 2xC � x, we get

sup
s2Œ0;t�

EŒjXsj� � 2EŒ.Xt/
C� � EŒX0� < 1;

giving the desired result. ut
The next proposition will be very useful in the study of square integrable

martingales.

Proposition 3.14 Let .Mt/t�0 be a square integrable martingale (that is, Mt 2 L2

for every t � 0). Let 0 � s < t and let s D t0 < t1 < � � � < tp D t be a subdivision

of the interval Œs; t�. Then,

E
h pX

iD1
.Mti � Mti�1/

2
ˇ̌
ˇFs

i
D EŒM2

t � M2
s j Fs� D EŒ.Mt � Ms/

2 j Fs�:

In particular,

E
h pX

iD1
.Mti � Mti�1/

2
i

D EŒM2
t � M2

s � D EŒ.Mt � Ms/
2�:

Proof For every i D 1; : : : ; p,

EŒ.Mti � Mti�1/
2 j Fs� D EŒEŒ.Mti � Mti�1/

2 j Fti�1 � j Fs�

D E
h
EŒM2

ti
j Fti�1 � � 2Mti�1 EŒMti j Fti�1 �C M2

ti�1

ˇ̌
ˇFs

i

D E
h
EŒM2

ti
j Fti�1 � � M2

ti�1

ˇ̌
ˇFs

i

D EŒM2
ti

� M2
ti�1

j Fs�

and the desired result follows by summing over i. ut
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Our next goal is to study the regularity properties of sample paths of martingales

and supermartingales. We first establish continuous time analogs of classical

inequalities in the discrete time setting.

Proposition 3.15

(i) (Maximal inequality) Let .Xt/t�0 be a supermartingale with right-continuous

sample paths. Then, for every t > 0 and every � > 0,

�P
�

sup
0�s�t

jXsj > �
�

� EŒjX0j�C 2EŒjXtj�:

(ii) (Doob’s inequality in Lp) Let .Xt/t�0 be a martingale with right-continuous

sample paths. Then, for every t > 0 and every p > 1,

E
h

sup
0�s�t

jXsjp
i

�
� p

p � 1

�p

EŒjXtjp�:

Note that part (ii) of the proposition is useful only if EŒjXtjp� < 1.

Proof

(i) Fix t > 0 and consider a countable dense subset D of RC such that 0 2 D

and t 2 D. Then D \ Œ0; t� is the increasing union of a sequence .Dm/m�1 of

finite subsets Œ0; t� of the form Dm D ftm
0 ; t

m
1 ; : : : ; t

m
mg where 0 D tm

0 < tm
1 <

� � � < tm
m D t. For every fixed m, we can apply the discrete time maximal

inequality (see Appendix A2) to the sequence Yn D Xtn^m
, which is a discrete

supermartingale with respect to the filtration Gn D Ftn^m
. We get

�P
�

sup
s2Dm

jXsj > �
�

� EŒjX0j�C 2EŒjXtj�:

Then, we observe that

P
�

sup
s2Dm

jXsj > �
�

" P
�

sup
s2D\Œ0;t�

jXsj > �
�

when m " 1. We have thus

�P
�

sup
s2D\Œ0;t�

jXsj > �
�

� EŒjX0j�C 2EŒjXtj�:

Finally, the right-continuity of sample paths (and the fact that t 2 D) ensures

that

sup
s2D\Œ0;t�

jXsj D sup
s2Œ0;t�

jXsj: (3.1)

Assertion (i) now follows.
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(ii) Following the same strategy as in the proof of (i), and using now Doob’s

inequality in Lp for discrete martingales (see Appendix A2), we get, for every

m � 1,

E
h

sup
s2Dm

jXsjp
i

�
� p

p � 1
�p

EŒjXtjp�:

Now we just have to let m tend to infinity, using the monotone convergence

theorem and then the identity (3.1).

ut

Remark If we no longer assume that the sample paths of the supermartingale X are

right-continuous, the preceding proof shows that, for every countable dense subset

D of RC, and every t > 0,

P
�

sup
s2D\Œ0;t�

jXsj > �
�

� 1

�
.EŒjX0j�C 2EŒjXtj�/:

Letting � ! 1, we have in particular

sup
s2D\Œ0;t�

jXsj < 1 ; a.s.

Upcrossing numbers Let f W I �! R be a function defined on a subset I of RC. If

a < b, the upcrossing number of f along Œa; b�, denoted by M
f

ab.I/, is the maximal

integer k � 1 such that there exists a finite increasing sequence s1 < t1 < � � � <
sk < tk of elements of I such that f .si/ � a and f .ti/ � b for every i 2 f1; : : : ; kg
(if, even for k D 1, there is no such subsequence, we take M

f

ab.I/ D 0, and if such a

subsequence exists for every k � 1, we take M
f

ab.I/ D 1). Upcrossing numbers are

a convenient tool to study the regularity of functions.

In the next lemma, the notation

lim
s##t

f .s/ .resp. lim
s""t

f .s/ /

means

lim
s#t;s>t

f .s/ .resp. lim
s"t;s<t

f .s/ /:

We say that g W RC ! R is càdlàg (for the French “continue à droite avec des

limites à gauche”) if g is right-continuous and has left-limits at every t > 0.

Lemma 3.16 Let D be a countable dense subset of RC and let f be a real function

defined on D. We assume that, for every T 2 D,

(i) the function f is bounded on D \ Œ0;T�;

(ii) for all rationals a and b such that a < b,

M
f

ab.D \ Œ0;T�/ < 1:
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Then, the right-limit

f .tC/ WD lim
s##t;s2D

f .s/

exists for every real t � 0, and similarly the left-limit

f .t�/ WD lim
s""t;s2D

f .s/

exists for every real t > 0. Furthermore, the function g W RC �! R defined by

g.t/ D f .tC/ is càdlàg.

We omit the proof of this analytic lemma. It is important to note that the right and

left-limits f .tC/ and f .t�/ are defined for every t � 0 (t > 0 in the case of f .t�/)
and not only for t 2 D.

Theorem 3.17 Let .Xt/t�0 be a supermartingale, and let D be a countable dense

subset of RC.

(i) For almost every ! 2 ˝ , the restriction of the function s 7! Xs.!/ to the set D

has a right-limit

XtC.!/ WD lim
s##t;s2D

Xs.!/ (3.2)

at every t 2 Œ0;1/, and a left-limit

Xt�.!/ WD lim
s""t;s2D

Xs.!/

at every t 2 .0;1/.

(ii) For every t 2 RC, XtC 2 L1 and

Xt � EŒXtC j Ft�;

with equality if the function t �! EŒXt� is right-continuous (in particular if X

is a martingale). The process .XtC/t�0 is a supermartingale with respect to the

filtration .FtC/. It is a martingale if X is a martingale.

Remark For the last assertions of (ii), we need XtC.!/ to be defined for every

! 2 ˝ and not only outside a negligible set. As we will see in the proof, we can

just take XtC.!/ D 0 when the limit in (3.2) does not exist.

Proof

(i) Fix T 2 D. By the remark following Proposition 3.15, we have

sup
s2D\Œ0;T�

jXsj < 1 ; a.s.
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As in the proof of Proposition 3.15, we can choose a sequence .Dm/m�1 of

finite subsets of D that increase to D \ Œ0;T� and are such that 0;T 2 Dm.

Doob’s upcrossing inequality for discrete supermartingales (see Appendix A2)

gives, for every a < b and every m � 1,

EŒMX
ab.Dm/� � 1

b � a
EŒ.XT � a/��:

We let m ! 1 and get by monotone convergence

EŒMX
ab.D \ Œ0;T�/� � 1

b � a
EŒ.XT � a/�� < 1:

We thus have

MX
ab.Œ0;T� \ D/ < 1 ; a.s.

Set

N D
[

T2D

�n
sup

t2D\Œ0;T�
jXtj D 1

o[� [

a;b2Q;a<b

fMX
ab.D \ Œ0;T�/ D 1g

��
:

(3.3)

Then P.N/ D 0 by the preceding considerations. On the other hand, if ! … N,

the function D 3 t 7! Xt.!/ satisfies all assumptions of Lemma 3.16. Assertion

(i) now follows from this lemma.

(ii) To define XtC.!/ for every ! 2 ˝ and not only on ˝nN, we set

XtC.!/ D
(

lim
s##t;s2D

Xs.!/ if the limit exists

0 otherwise.

With this definition, XtC is FtC-measurable.

Fix t � 0 and choose a sequence .tn/n�0 in D such that tn decreases strictly

to t as n ! 1. Then, by construction, we have a.s.

XtC D lim
n!1

Xtn :

Set Yk D Xt�k
for every integer k � 0. Then Y is a backward super-

martingale with respect to the (backward) discrete filtration Hk D Ft�k
(see

Appendix A2). From Proposition 3.13, we have supk�0 EŒjYkj� < 1. The

convergence theorem for backward supermartingales (see Appendix A2) then

implies that the sequence Xtn converges to XtC in L1. In particular, XtC 2 L1.

Thanks to the L1-convergence, we can pass to the limit n ! 1 in the

inequality Xt � EŒXtn j Ft�, and we get

Xt � EŒXtC j Ft�
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(we use the fact that the conditional expectation is continuous for the L1-norm,

and it is important to realize that an a.s. convergence would not be sufficient

to warrant this passage to the limit). Furthermore, thanks again to the L1-

convergence, we have EŒXtC� D lim EŒXtn �. Thus, if the function s �! EŒXs�

is right-continuous, we must have EŒXt� D EŒXtC� D EŒEŒXtC j Ft��, and the

inequality Xt � EŒXtC j Ft� then forces Xt D EŒXtC j Ft�.

We already noticed that XtC is FtC-measurable. Let s < t and let .sn/n�0
be a sequence in D that decreases strictly to s. We may assume that sn � tn for

every n. Then as previously Xsn
converges to XsC in L1, and thus, if A 2 FsC,

which implies A 2 Fsn
for every n, we have

EŒXsC1A�D lim
n!1

EŒXsn
1A� � lim

n!1
EŒXtn 1A�D EŒXtC1A� D EŒEŒXtC j FsC�1A�:

Since this inequality holds for every A 2 FsC, and since XsC and EŒXtC j FsC�
are both FsC-measurable, it follows that XsC � EŒXtC j FsC� . Finally, if

X is a martingale, inequalities can be replaced by equalities in the previous

considerations.

ut
Theorem 3.18 Assume that the filtration .Ft/ is right-continuous and complete.

Let X D .Xt/t�0 be a supermartingale, such that the function t �! EŒXt� is right-

continuous. Then X has a modification with càdlàg sample paths, which is also an

.Ft/-supermartingale.

Proof Let D be a countable dense subset of RC as in Theorem 3.17. Let N be the

negligible set defined in (3.3). We set, for every t � 0,

Yt.!/ D
�

XtC.!/ if ! … N

0 if ! 2 N:

Lemma 3.16 then shows that the sample paths of Y are càdlàg.

The random variable XtC is FtC-measurable, and thus Ft-measurable since

the filtration is right-continuous. As the negligible set N belongs to F1, the

completeness of the filtration ensures that Yt is Ft-measurable. By Theorem 3.17

(ii), we have for every t � 0,

Xt D EŒXtC j Ft� D XtC D Yt; a:s:

because XtC is Ft-measurable. Consequently, Y is a modification of X. The process

Y is adapted to the filtration .Ft/. Since Y is a modification of X the inequality

EŒXt j Fs� � Xs, for 0 � s < t, implies that the same inequality holds for Y. ut
Remarks

(i) Let us comment on the assumptions of the theorem. A simple example shows

that our assumption that the filtration is right-continuous is necessary. Take
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˝ D f�1; 1g, with the probability measure P defined by P.f1g/ D P.f�1g/ D
1=2. Let " be the random variable ".!/ D !, and let the process .Xt/t�0 be

defined by Xt D 0 if 0 � t � 1, and Xt D " if t > 1. Then it is easy to verify

that X is a martingale with respect to its canonical filtration .F X
t / (which is

complete since there are no nonempty negligible sets!). On the other hand, no

modification of X can be right-continuous at t D 1. This does not contradict the

theorem since the filtration is not right-continuous (F X
1C 6D F X

1 ).

(ii) Similarly, to show that the right-continuity of the mapping t �! EŒXt� is

needed, we can just take Xt D f .t/, where f is any nonincreasing deterministic

function. If f is not right-continuous, no modification of X can have right-

continuous sample paths.

3.4 Optional Stopping Theorems

We start with a convergence theorem for supermartingales.

Theorem 3.19 Let X be a supermartingale with right-continuous sample paths.

Assume that the collection .Xt/t�0 is bounded in L1. Then there exists a random

variable X1 2 L1 such that

lim
t!1

Xt D X1; a.s.

Proof Let D be a countable dense subset of RC. From the proof of Theorem 3.17,

we have, for every T 2 D and a < b,

EŒMX
ab.D \ Œ0;T�/� � 1

b � a
EŒ.XT � a/��:

By monotone convergence, we get, for every a < b,

EŒMX
ab.D/� � 1

b � a
sup
t�0

EŒ.Xt � a/�� < 1;

since the collection .Xt/t�0 is bounded in L1. Hence, a.s. for all rationals a < b, we

have MX
ab.D/ < 1. This implies that the limit

X1 WD lim
D3t!1

Xt (3.4)

exists a.s. in Œ�1;1�. We can in fact exclude the values C1 and �1, since

Fatou’s lemma gives

EŒjX1j� � lim inf
D3t!1

EŒjXtj� < 1;
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and we get that X1 2 L1. The right-continuity of sample paths (which we have not

yet used) allows us to remove the restriction t 2 D in the limit (3.4). ut
Under the assumptions of Theorem 3.19, the convergence of Xt towards X1 may

not hold in L1. The next result gives, in the case of a martingale, necessary and

sufficient conditions for the convergence to also hold in L1.

Definition 3.20 A martingale .Xt/t�0 is said to be closed if there exists a random

variable Z 2 L1 such that, for every t � 0,

Xt D EŒZ j Ft�:

Theorem 3.21 Let X be a martingale with right-continuous sample paths. Then the

following properties are equivalent:

(i) X is closed;

(ii) the collection .Xt/t�0 is uniformly integrable;

(iii) Xt converges a.s. and in L1 as t ! 1.

Moreover, if these properties hold, we have Xt D EŒX1 j Ft� for every t � 0, where

X1 2 L1 is the a.s. limit of Xt as t ! 1.

Proof The fact that (i))(ii) is easy: If Z 2 L1, the collection of all random variables

EŒZ j G �, when G varies over sub-�-fields of F , is uniformly integrable. If (ii)

holds, in particular the collection .Xt/t�0 is bounded in L1 and Proposition 3.19

implies that Xt converges a.s. to X1. By uniform integrability, the latter convergence

also holds in L1. Finally, if (iii) holds, for every s � 0, we can pass to the limit t !
1 in the equality Xs D EŒXt j Fs� (using the fact that the conditional expectation is

continuous for the L1-norm), and we get Xs D EŒX1 j Fs�. ut
We will now use the optional stopping theorems for discrete martingales and

supermartingales in order to establish similar results in the continuous time setting.

Let .Xt/t�0 be a martingale or a supermartingale with right-continuous sample paths,

and such that Xt converges a.s. as t ! 1 to a random variable denoted by X1. Then,

for every stopping time T, we write XT for the random variable

XT.!/ D 1fT.!/<1gXT.!/.!/C 1fT.!/D1gX1.!/:

Compare with Theorem 3.7, where the random variable XT was only defined on

the subset fT < 1g of ˝ . With this definition, the random variable XT is still

FT -measurable: Use Theorem 3.7 and the easily verified fact that 1fTD1gX1 is

FT -measurable.

Theorem 3.22 (Optional stopping theorem for martingales) Let .Xt/t�0 be a

uniformly integrable martingale with right-continuous sample paths. Let S and T be

two stopping times with S � T. Then XS and XT are in L1 and

XS D EŒXT j FS�:
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In particular, for every stopping time S, we have

XS D EŒX1 j FS�;

and

EŒXS� D EŒX1� D EŒX0�:

Proof Set, for every integer n � 0,

Tn D
1X

kD0

k C 1

2n
1fk2�n<T�.kC1/2�ng C 1 � 1fTD1g

and similarly

Sn D
1X

kD0

k C 1

2n
1fk2�n<S�.kC1/2�ng C 1 � 1fSD1g:

By Proposition 3.8, .Tn/ and .Sn/ are two sequences of stopping times that decrease

respectively to T and to S. Moreover, we have Sn � Tn for every n � 0.

Now observe that, for every fixed n, 2nSn and 2nTn are stopping times of the

discrete filtration H
.n/

k WD Fk=2n , and Y
.n/
k WD Xk=2n is a discrete martingale

with respect to this filtration. From the optional stopping theorem for uniformly

integrable discrete martingales (see Appendix A2) we get that Y
.n/
2nSn

and Y
.n/
2nTn

are in

L1, and

XSn
D Y

.n/
2nSn

D EŒY
.n/
2nTn

j H
.n/
2nSn
� D EŒXTn

j FSn
�

(here we need to verify that H
.n/
2nSn

D FSn
, but this is straightforward).

Let A 2 FS. Since FS � FSn
, we have A 2 FSn

and thus

EŒ1AXSn
� D EŒ1AXTn

�:

By the right-continuity of sample paths, we get a.s.

XS D lim
n!1

XSn
; XT D lim

n!1
XTn
:

These limits also hold in L1. Indeed, thanks again to the optional stopping theorem

for uniformly integrable discrete martingales, we have XSn
D EŒX1 j FSn

� for every

n, and thus the sequence .XSn
/ is uniformly integrable (and the same holds for the

sequence .XTn
/).
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The L1-convergence implies that XS and XT belong to L1, and also allows us to

pass to the limit n ! 1 in the equality EŒ1AXSn
� D EŒ1AXTn

� in order to get

EŒ1A XS� D EŒ1A XT �:

Since this holds for every A 2 FS, and since the variable XS is FS-measurable (by

the remarks before the theorem), we conclude that

XS D EŒXT j FS�;

which completes the proof. ut
We now give two corollaries of Theorem 3.22.

Corollary 3.23 Let .Xt/t�0 be a martingale with right-continuous sample paths,

and let S � T be two bounded stopping times. Then XS and XT are in L1 and

XS D EŒXT j FS� :

Proof Let a � 0 such that S � T � a. We apply Theorem 3.22 to the martingale

.Xt^a/t�0 which is closed by Xa. ut
The second corollary shows that a martingale (resp. a uniformly integrable

martingale) stopped at an arbitrary stopping time remains a martingale (resp. a

uniformly integrable martingale). This result will play an important role in the next

chapters.

Corollary 3.24 Let .Xt/t�0 be a martingale with right-continuous sample paths,

and let T be a stopping time.

(i) The process .Xt^T/t�0 is still a martingale.

(ii) Suppose in addition that the martingale .Xt/t�0 is uniformly integrable. Then

the process .Xt^T/t�0 is also a uniformly integrable martingale, and more

precisely we have for every t � 0,

Xt^T D EŒXT j Ft�: (3.5)

Proof We start with the proof of (ii). Note that t ^ T is a stopping time by property

(f) of stopping times. By Theorem 3.22, Xt^T and XT are in L1, and we also know

that Xt^T is Ft^T -measurable, hence Ft-measurable since Ft^T � Ft. So in order

to get (3.5), it is enough to prove that, for every A 2 Ft,

EŒ1A XT � D EŒ1A Xt^T �:

Let us fix A 2 Ft. First, we have trivially

EŒ1A\fT�tg XT � D EŒ1A\fT�tg Xt^T �: (3.6)
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On the other hand, by Theorem 3.22, we have

Xt^T D EŒXT j Ft^T �;

and we notice that we have both A \ fT > tg 2 Ft and A \ fT > tg 2 FT (the latter

as a straightforward consequence of the definition of FT ), so that A \ fT > tg 2
Ft \ FT D Ft^T . Using the preceding display, we obtain

EŒ1A\fT>tg XT � D EŒ1A\fT>tg Xt^T �:

By adding this equality to (3.6), we get the desired result.

To prove (i), we just need to apply (ii) to the (uniformly integrable) martingale

.Xt^a/a�0, for any choice of a � 0. ut
Applications Above all, the optional stopping theorem is a powerful tool for

explicit calculations of probability distributions. Let us give a few important and

typical examples of such applications (several other examples can be found in the

exercises of this and the following chapters). Let B be a real Brownian motion started

from 0. We know that B is a martingale with continuous sample paths with respect

to its canonical filtration. For every real a, set Ta D infft � 0 W Bt D ag. Recall that

Ta < 1 a.s.

(a) Law of the exit point from an interval. For every a < 0 < b, we have

P.Ta < Tb/ D b

b � a
; P.Tb < Ta/ D �a

b � a
:

To get this result, consider the stopping time T D Ta ^ Tb and the stopped

martingale Mt D Bt^T (this is a martingale by Corollary 3.24). Then, jMj is

bounded above by b _ jaj, and the martingale M is thus uniformly integrable.

We can apply Theorem 3.22 and we get

0 D EŒM0� D EŒMT � D b P.Tb < Ta/C a P.Ta < Tb/:

Since we also have P.Tb < Ta/CP.Ta < Tb/ D 1, the desired result follows. In

fact the proof shows that the result remains valid if we replace Brownian motion

by a martingale with continuous sample paths and initial value 0, provided we

know that this process exits .a; b/ a.s.

(b) First moment of exit times. For every a > 0, consider the stopping time Ua D
infft � 0 W jBtj D ag. Then

EŒUa� D a2:

To verify this, consider the martingale Mt D B2t � t. By Corollary 3.24,

Mt^Ua
is still a martingale, and therefore EŒMt^Ua

� D EŒM0� D 0, giving

EŒ.Bt^Ua
/2� D EŒt ^ Ua�. Then, on one hand, EŒt ^ Ua� converges to EŒUa� as
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t ! 1 by monotone convergence, on the other hand, EŒ.Bt^Ua
/2� converges to

EŒ.BUa
/2� D a2 as t ! 1, by dominated convergence (note that .Bt^Ua

/2 � a2).

The stated result follows. We may observe that we have EŒUa� < 1 in contrast

with the property EŒTa� D 1, which was noticed in Chap. 2.

(c) Laplace transform of hitting times. We now fix a > 0 and our goal is to compute

the Laplace transform of Ta. For every � 2 R, we can consider the exponential

martingale

N�
t D exp.�Bt � �2

2
t/:

Suppose first that � > 0. By Corollary 3.24, the stopped process N�
t^Ta

is still

a martingale, and we immediately see that this martingale is bounded above by

e�a, hence uniformly integrable. By applying the last assertion of Theorem 3.22

to this martingale and to the stopping time S D Ta (or to S D 1) we get

e�aEŒe� �2

2 Ta � D EŒN�
Ta
� D EŒN�

0 � D 1 :

Replacing � by
p
2�, we conclude that, for every � > 0,

EŒe��Ta � D e�a
p
2�: (3.7)

(This formula could also be deduced from the knowledge of the density of Ta,

see Corollary 2.22.) As an instructive example, one may try to reproduce the

preceding line of reasoning, using now the martingale N�
t for � < 0: one gets

an absurd result, which can be explained by the fact that the stopped martingale

N�
t^Ta

is not uniformly integrable when � < 0. When applying Theorem 3.22,

it is crucial to always verify the uniform integrability of the martingale. In most

cases, this is done by verifying that the (stopped) martingale is bounded.

(d) Laplace transform of exit times from an interval. With the notation of (b), we

have for every a > 0 and every � > 0,

EŒexp.��Ua/� D 1

cosh.a
p
2�/

:

To see this, first note that Ua and BUa
are independent since, using the symmetry

property of Brownian motion,

EŒ1fBUa Dag exp.��Ua/� D EŒ1fBUa D�ag exp.��Ua/� D 1

2
EŒexp.��Ua/�:

Then the claimed formula is proved by the same method as in (c), writing

EŒN�
Ua
� D EŒN�

0 � D 1 and noting that the application of the optional stopping
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theorem is justified by the fact that N�
t^Ua

is bounded above by e�a. See also

Exercise 3.27 for a more general formula.

We end this chapter with the optional stopping theorem for nonnegative super-

martingales. This result will be useful in later applications to Markov processes.

We first note that, if .Zt/t�0 is a nonnegative supermartingale with right-continuous

sample paths, .Zt/t�0 is automatically bounded in L1 since EŒZt� � EŒZ0�, and by

Theorem 3.19, Zt converges a.s. to a random variable Z1 2 L1 as t ! 1. As

explained before Theorem 3.22, we can thus make sense of ZT for any (finite or not)

stopping time T.

Theorem 3.25 Let .Zt/t�0 be a nonnegative supermartingale with right-continuous

sample paths. Let U and V be two stopping times such that U � V. Then, ZU and

ZV are in L1, and

ZU � EŒZV j FU�:

Remark This implies that EŒZU� � EŒZV �, and since ZU D ZV D Z1 on the event

fU D 1g, it also follows that

EŒ1fU<1g ZU� � EŒ1fU<1g ZV � � EŒ1fV<1g ZV �:

Proof In the first step of the proof, we make the extra assumption that U and V are

bounded and we verify that we then have EŒZU� � EŒZV �. Let p � 1 be an integer

such that U � p and V � p. For every integer n � 0, set

Un D
p2n�1X

kD0

k C 1

2n
1fk2�n<U�.kC1/2�ng ; Vn D

p2n�1X

kD0

k C 1

2n
1fk2�n<V�.kC1/2�ng

in such a way (by Proposition 3.8) that .Un/ and .Vn/ are two sequences of bounded

stopping times that decrease respectively to U and V , and additionally we have Un �
Vn for every n � 0. The right-continuity of sample paths ensures that ZUn

�! ZU

and ZVn
�! ZV a.s. as n ! 1. Then, by the optional stopping theorem for discrete

supermartingales in the case of bounded stopping times (see Appendix A2), with

respect to the filtration .Fk=2nC1/k�0, we have for every n � 0,

ZUnC1
� EŒZUn

j FUnC1
�:

Setting Yn D ZU�n
and Hn D FU�n

, for every integer n � 0, we get that

the sequence .Yn/n�0 is a backward supermartingale with respect to the filtration

.Hn/n�0. Since, for every n � 0, EŒZUn
� � EŒZ0� (by another application of the

discrete optional stopping theorem), the sequence .Yn/n�0 is bounded in L1, and

by the convergence theorem for backward supermartingales (see Appendix A2), it

converges in L1. Hence the convergence of ZUn
to ZU also holds in L1 and similarly



Exercises 65

the convergence of ZVn
to ZV holds in L1. Since Un � Vn, by yet another application

of the discrete optional stopping theorem, we have EŒZUn
� � EŒZVn

�. Using the

L1-convergence of ZUn
and ZVn

we can pass to the limit n ! 1 and obtain that

EŒZU� � EŒZV � as claimed.

Let us prove the statement of the theorem (no longer assuming that U and V are

bounded). By the first step of the proof applied to the stopping times 0 and U ^p, we

have EŒZU^p� � EŒZ0� for every p � 1, and Fatou’s lemma gives EŒZU� � EŒZ0� <

1 and similarly EŒZV � < 1. Fix A 2 FU � FV and recall our notation UA for

the stopping time defined by UA.!/ D U.!/ if ! 2 A and UA.!/ D 1 otherwise

(cf. property (d) of stopping times). By the first part of the proof, we have, for every

p � 1,

EŒZUA^p� � EŒZVA^p�:

By writing each of these two expectations as a sum of expectations over the sets Ac,

A \ fU � pg and A \ fU > pg, and noting that U > p implies V > p, we get

EŒZU 1A\fU�pg� � EŒZV 1A\fU�pg�:

Letting p ! 1 then gives

EŒZU 1A\fU<1g� � EŒZV 1A\fU<1g�:

On the other hand, the equality EŒZU 1A\fUD1g� D EŒZV 1A\fUD1g� is trivial and

by adding it to the preceding display, we obtain

EŒZU 1A� � EŒZV 1A� D EŒEŒZV j FU� 1A�:

Since this holds for every A 2 FU and ZU is FU-measurable, the desired result

follows. ut

Exercises

In the following exercises, processes are defined on a probability space .˝;F ;P/

equipped with a complete filtration .Ft/t2Œ0;1�.

Exercise 3.26

1. Let M be a martingale with continuous sample paths such that M0 D x 2 RC.

We assume that Mt � 0 for every t � 0, and that Mt ! 0 when t ! 1, a.s.

Show that, for every y > x,

P
�

sup
t�0

Mt � y
�

D x

y
:
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2. Give the law of

sup
t�T0

Bt

when B is a Brownian motion started from x > 0 and T0 D infft � 0 W Bt D 0g.

3. Assume now that B is a Brownian motion started from 0, and let � > 0. Using

an appropriate exponential martingale, show that

sup
t�0
.Bt � �t/

is exponentially distributed with parameter 2�.

Exercise 3.27 Let B be an .Ft/-Brownian motion started from 0. Recall the

notation Tx D infft � 0 W Bt D xg, for every x 2 R. We fix two real numbers

a and b with a < 0 < b, and we set

T D Ta ^ Tb :

1. Show that, for every � > 0,

EŒexp.��T/� D
cosh. bCa

2

p
2�/

cosh. b�a
2

p
2�/

:

(Hint: One may consider a martingale of the form

Mt D exp
�p

2�.Bt � ˛/ � �t
�

C exp
�

�
p
2�.Bt � ˛/ � �t

�

with a suitable choice of ˛.)

2. Show similarly that, for every � > 0,

EŒexp.��T/ 1fTDTag� D sinh.b
p
2�/

sinh..b � a/
p
2�/

:

3. Recover the formula for P.Ta < Tb/ from question (2).

Exercise 3.28 Let .Bt/t�0 be an .Ft/-Brownian motion started from 0. Let a > 0

and

�a D infft � 0 W Bt � t � ag:

1. Show that �a is a stopping time and that �a < 1 a.s.
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2. Using an appropriate exponential martingale, show that, for every � � 0,

EŒexp.���a/� D exp.�a.
p
1C 2�� 1//:

The fact that this formula remains valid for � 2 Œ� 1
2
; 0Œ can be obtained via an

argument of analytic continuation.

3. Let � 2 R and Mt D exp.�Bt � �2

2
t/. Show that the stopped martingale M�a^t

is closed if and only if � � 1. (Hint: This martingale is closed if and only if

EŒM�a
� D 1.)

Exercise 3.29 Let .Yt/t�0 be a uniformly integrable martingale with continuous

sample paths, such that Y0 D 0. We set Y1 D limt!1 Yt. Let p � 1 be a fixed

real number. We say that Property (P) holds for the martingale Y if there exists a

constant C such that, for every stopping time T, we have

EŒjY1 � YT jp j FT � � C:

1. Show that Property (P) holds for Y if Y1 is bounded.

2. Let B be an .Ft/-Brownian motion started from 0. Show that Property (P) holds

for the martingale Yt D Bt^1. (Hint: One may observe that the random variable

supt�1 jBtj is in Lp.)

3. Show that Property (P) holds for Y, with the constant C, if and only if, for any

stopping time T,

EŒjYT � Y1jp� � C PŒT < 1�:

(Hint: It may be useful to consider the stopping times TA defined for A 2 FT in

property (d) of stopping times.)

4. We assume that Property (P) holds for Y with the constant C. Let S be a

stopping time and let YS be the stopped martingale defined by YS
t D Yt^S (see

Corollary 3.24). Show that Property (P) holds for YS with the same constant

C. One may start by observing that, if S and T are stopping times, one has

YS
T D YS^T D YT

S D EŒYT j FS�.

5. We assume in this question and the next one that Property (P) holds for Y with

the constant C D 1. Let a > 0, and let .Rn/n�0 be the sequence of stopping times

defined by induction by

R0 D 0 ; RnC1 D infft � Rn W jYt � YRn
j � ag .inf ¿ D 1/:

Show that, for every integer n � 0,

ap P.RnC1 < 1/ � P.Rn < 1/:
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6. Infer that, for every x > 0,

P
�

sup
t�0

Yt > x
�

� 2p 2�px=2:

Notes and Comments

This chapter gives a brief presentation of the so-called general theory of processes.

We limited ourselves to the notions that are needed in the remaining part of

this book, but the interested reader can consult the treatise of Dellacherie and

Meyer [13, 14] for more about this subject. Most of the martingale theory presented

in Sections 3 and 4 goes back to Doob [15]. A comprehensive study of the theory of

continuous time martingales can be found in [14]. The applications of the optional

stopping theorem to Brownian motion are very classical. For other applications in

the same vein, see in particular the book [70] by Revuz and Yor. Exercise 3.29 is

taken from the theory of BMO martingales, see e.g. [18, Chapter 7].



Chapter 4

Continuous Semimartingales

Continuous semimartingales provide the general class of processes with continuous

sample paths for which we will develop the theory of stochastic integration in

the next chapter. By definition, a continuous semimartingale is the sum of a

continuous local martingale and a (continuous) finite variation process. In the

present chapter, we study separately these two classes of processes. We start

with some preliminaries about deterministic functions with finite variation, before

considering the corresponding random processes. We then define (continuous) local

martingales and we construct the quadratic variation of a local martingale, which

will play a fundamental role in the construction of stochastic integrals. We explain

how properties of a local martingale are related to those of its quadratic variation.

Finally, we introduce continuous semimartingales and their quadratic variation

processes.

4.1 Finite Variation Processes

In this chapter, all processes are indexed by RC and take real values. The first section

provides a brief presentation of finite variation processes. We start by discussing

functions with finite variation in a deterministic setting.

4.1.1 Functions with Finite Variation

In our discussion of functions with finite variation, we restrict our attention to

continuous functions, as this is the case of interest in the subsequent developments.

Recall that a signed measure on a compact interval Œ0;T� is the difference of two

finite positive measures on Œ0;T�.

© Springer International Publishing Switzerland 2016
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Definition 4.1 Let T � 0. A continuous function a W Œ0;T��!R such that a.0/D 0

is said to have finite variation if there exists a signed measure � on Œ0;T� such that

a.t/ D �.Œ0; t�/ for every t 2 Œ0;T�.
The measure � is then determined uniquely by a. Since a is continuous and

a.0/ D 0, it follows that � has no atoms.

Remark The general definition of a function with finite variation does not require

continuity nor the condition a.0/ D 0. We impose these two conditions for

convenience.

The decomposition of � as a difference of two finite positive measures on Œ0;T�

is not unique, but there exists a unique decomposition � D �C � �� such that

�C and �� are supported on disjoint Borel sets. To get the existence of such a

decomposition, start from an arbitrary decomposition� D �1��2, set � D �1C�2
and then use the Radon–Nikodym theorem to find two nonnegative Borel functions

h1 and h2 on Œ0;T� such that

�1.dt/ D h1.t/�.dt/; �2.dt/ D h2.t/�.dt/:

Then, if h.t/ D h1.t/ � h2.t/, we have

�.dt/ D h.t/�.dt/ D h.t/C�.dt/ � h.t/��.dt/;

which gives the decomposition� D �C��� with �C.dt/ D h.t/C�.dt/,��.dt/ D
h.t/��.dt/, and the measures �C and �� are supported respectively on the disjoint

Borel sets DC D ft W h.t/ > 0g and D� D ft W h.t/ < 0g. The uniqueness of this

decomposition � D �C � �� follows from the fact that we have necessarily, for

every A 2 B.Œ0;T�/,

�C.A/ D supf�.C/ W C 2 B.Œ0;T�/; C � Ag:

We write j�j for the (finite) positive measure j�j D �C C ��. The measure j�j
is called the total variation of a. We have j�.A/j � j�j.A/ for every A 2 B.Œ0;T�/.

Moreover, the Radon–Nikodym derivative of � with respect to j�j is

d�

dj�j D 1DC
� 1D�

:

The fact that a.t/ D �C.Œ0; t�/ � ��.Œ0; t�/ shows that a is the difference

of two monotone nondecreasing continuous functions that vanish at 0 (since �

has no atoms, the same holds for �C of ��). Conversely, the difference of two

monotone nondecreasing continuous functions that vanish at 0 has finite variation

in the sense of the previous definition. Indeed, this follows from the well-known fact

that the formula g.t/ D �.Œ0; t�/, t 2 Œ0;T� induces a bijection between monotone

nondecreasing right-continuous functions g W Œ0;T� �! RC and finite positive

measures � on Œ0;T�.
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Let f W Œ0;T� �! R be a measurable function such that
R
Œ0;T� j f .s/j j�j.ds/ < 1.

We set

Z T

0

f .s/ da.s/ D
Z

Œ0;T�

f .s/ �.ds/;

Z T

0

f .s/ jda.s/j D
Z

Œ0;T�

f .s/ j�j.ds/:

Then the bound

ˇ̌
ˇ̌
Z T

0

f .s/ da.s/

ˇ̌
ˇ̌ �

Z T

0

j f .s/j jda.s/j

holds. By restricting a to Œ0; t� (which amounts to restricting �, �C, ��), we

can define
R t

0
f .s/ da.s/ for every t 2 Œ0;T�, and we observe that the function

t 7!
R t

0 f .s/ da.s/ also has finite variation on Œ0;T� (the associated measure is just

�0.ds/ D f .s/�.ds/).

Proposition 4.2 For every t 2 .0;T�,

Z t

0

jda.s/j D sup

(
pX

iD1
ja.ti/� a.ti�1/j

)
;

where the supremum is over all subdivisions 0 D t0 < t1 < � � � < tp D t of Œ0; t�.

More precisely, for any increasing sequence 0 D tn
0 < tn

1 < � � � < tn
pn

D t of

subdivisions of Œ0; t� whose mesh tends to 0, we have

lim
n!1

pnX

iD1
ja.tn

i / � a.tn
i�1/j D

Z t

0

jda.s/j:

Remark In the usual presentation of functions with finite variation, one starts from

the property that the supremum in the first display of the proposition is finite.

Proof Clearly, it is enough to treat the case t D T. The inequality � in the first

assertion is very easy since, for any subdivision 0 D t0 < t1 < � � � < tp D T of

Œ0;T�,

ja.ti/ � a.ti�1/j D j�..ti�1; ti�/j � j�j..ti�1; ti�/; 8i 2 f1; : : : ; pg;

and

pX

iD1
j�j..ti�1; ti�/ D j�j.Œ0; t�/ D

Z T

0

jda.s/j:
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In order to get the reverse inequality, it suffices to prove the second assertion. So

we consider an increasing sequence 0 D tn
0 < tn

1 < � � � < tn
pn

D T of subdivisions

of Œ0;T�, whose mesh maxftn
i � tn

i�1 W 1 � i � png tends to 0. Although we are

proving a “deterministic” result, we will use a martingale argument. Leaving aside

the trivial case where j�j D 0, we introduce the probability space˝ D Œ0;T�, which

is equipped with the Borel �-field B D B.Œ0;T�/ and the probability measure

P.ds/ D .j�j.Œ0;T�//�1j�j.ds/. On this probability space, we consider the discrete

filtration .Bn/n�0 such that, for every integer n � 0, Bn is the �-field generated by

the intervals .tn
i�1; t

n
i �, 1 � i � pn. We then set

X.s/ D 1DC
.s/ � 1D�

.s/ D d�

dj�j .s/;

and, for every n � 0,

Xn D EŒX j Bn�:

Properties of conditional expectation show that Xn is constant on every interval

.tn
i�1; t

n
i � and takes the value

�..tn
i�1; t

n
i �/

j�j..tn
i�1; t

n
i �/

D a.tn
i / � a.tn

i�1/

j�j..tn
i�1; t

n
i �/

on this interval. On the other hand, the sequence .Xn/ is a closed martingale, with

respect to the discrete filtration .Bn/. Since X is measurable with respect to B DW
n Bn, this martingale converges to X in L1, by the convergence theorem for closed

discrete martingales (see Appendix A2). In particular,

lim
n!1

EŒjXnj� D EŒjXj� D 1;

where the last equality is clear since jX.s/j D 1, j�j.ds/ a.e. The desired result

follows by noting that

EŒjXnj� D .j�j.Œ0;T�//�1
pnX

iD1
ja.tn

i / � a.tn
i�1/j;

and recalling that j�j.Œ0;T�/ D
R T

0
jda.s/j. ut

We now give a useful approximation lemma for the integral of a continuous

function with respect to a function with finite variation.
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Lemma 4.3 If f W Œ0;T� �! R is a continuous function, and if 0 D tn
0 < tn

1 < � � � <
tn
pn

D T is a sequence of subdivisions of Œ0;T� whose mesh tends to 0, we have

Z T

0

f .s/ da.s/ D lim
n!1

pnX

iD1
f .tn

i�1/ .a.t
n
i / � a.tn

i�1//:

Proof Let fn be defined on Œ0;T� by fn.s/ D f .tn
i�1/ if s 2 .tn

i�1; t
n
i �, 1 � i � pn, and

fn.0/ D f .0/. Then,

pnX

iD1
f .tn

i�1/ .a.t
n
i / � a.tn

i�1// D
Z

Œ0;T�

fn.s/ �.ds/;

and the desired result follows by dominated convergence since fn.s/ �! f .s/ as

n ! 1, for every s 2 Œ0;T�. ut
We say that a function a W RC �! R is a finite variation function on RC if the

restriction of a to Œ0;T� has finite variation on Œ0;T�, for every T > 0. Then there is

a unique �-finite (positive) measure on RC whose restriction to every interval Œ0;T�

is the total variation measure of the restriction of a to Œ0;T�, and we write

Z 1

0

f .s/ jda.s/j

for the integral of a nonnegative Borel function f on RC with respect to this �-finite

measure. Furthermore, we can define

Z 1

0

f .s/da.s/ D lim
T!1

Z T

0

f .s/da.s/ 2 .�1;1/

for any real Borel function f on RC such that
R1
0

j f .s/jjda.s/j < 1.

4.1.2 Finite Variation Processes

We now consider random variables and processes defined on a filtered probability

space .˝;F ; .Ft/;P/.

Definition 4.4 An adapted process A D .At/t�0 is called a finite variation process

if all its sample paths are finite variation functions on RC. If in addition the sample

paths are nondecreasing functions, the process A is called an increasing process.

Remark In particular, A0 D 0 and the sample paths of A are continuous – one

can define finite variation processes with càdlàg sample paths, but in this book

we consider only the case of continuous sample paths. Our special convention
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that the initial value of a finite variation process is 0 will be convenient for certain

uniqueness statements.

If A is a finite variation process, the process

Vt D
Z t

0

jdAsj

is an increasing process. Indeed, it is clear that the sample paths of V are

nondecreasing functions (as well as continuous functions that vanish at t D 0). The

fact that Vt is an Ft-measurable random variable can be deduced from the second

part of Proposition 4.2. Writing At D 1
2
.Vt C At/� 1

2
.Vt � At/ shows that any finite

variation process can be written as the difference of two increasing processes (the

converse is obvious).

Proposition 4.5 Let A be a finite variation process, and let H be a progressive

process such that

8t � 0; 8! 2 ˝;
Z t

0

jHs.!/j jdAs.!/j < 1:

Then the process H � A D ..H � A/t/t�0 defined by

.H � A/t D
Z t

0

Hs dAs

is also a finite variation process.

Proof By the observations preceding the statement of Proposition 4.2, we know

that the sample paths of H � A are finite variation functions. It remains to verify

that the process H � A is adapted. To this end, it is enough to check that, if t > 0

is fixed, if h W ˝ � Œ0; t� �! R is measurable for the �-field Ft ˝ B.Œ0; t�/, and

if
R t

0
jh.!; s/jjdAs.!/j < 1 for every !, then the variable

R t

0
h.!; s/dAs.!/ is Ft-

measurable.

If h.!; s/ D 1.u;v�.s/1	 .!/ with .u; v� � Œ0; t� and 	 2 Ft, the result

is immediate since
R t

0
h.!; s/dAs.!/ D 1	 .!/ .Av.!/ � Au.!// in that case. A

monotone class argument (see Appendix A1) then gives the case h D 1G, G 2
Ft ˝ B.Œ0; t�/. Finally, in the general case, we observe that we can write h as a

pointwise limit of a sequence of simple functions (i.e. finite linear combinations of

indicator functions of measurable sets) hn such that jhnj � jhj for every n, and that

we then have
R t

0
hn.!; s/dAs.!/ �!

R t

0
h.!; s/dAs.!/ by dominated convergence,

for every ! 2 ˝ . ut



4.2 Continuous Local Martingales 75

Remarks

(i) It happens frequently that instead of the assumption of the proposition we have

the weaker assumption

a:s: 8t � 0;

Z t

0

jHs.!/j jdAs.!/j < 1:

If the filtration is complete, we can still define H � A as a finite variation process

under this weaker assumption. We replace H by the process H0 defined by

H0
t.!/ D

�
Ht.!/ if

R n

0
jHs.!/j jdAs.!/j < 1; 8n ;

0 otherwise.

Thanks to the fact that the filtration is complete, the process H0 is still

progressive, which allows us to define H �A D H0 �A. We will use this extension

of Proposition 4.5 implicitly in what follows.

(ii) Under appropriate assumptions (if H and K are progressive and
R t

0
jHsj jdAsj <

1,
R t

0 jHsKsj jdAsj < 1 for every t � 0), we have the “associativity” property

K � .H � A/ D .KH/ � A: (4.1)

This indeed follows from the analogous deterministic result saying informally

that k.s/ .h.s/ �.ds// D .k.s/h.s// �.ds/ if h.s/ and k.s/h.s/ are integrable with

respect to the signed measure � on Œ0; t�.

An important special case of the proposition is the case where At D t. If H is a

progressive process such that

8t � 0; 8! 2 ˝;
Z t

0

jHs.!/j ds < 1;

the process
R t

0
Hs ds is a finite variation process.

4.2 Continuous Local Martingales

We consider again a filtered probability space .˝;F ; .Ft/;P/. If T is a stopping

time, and if X D .Xt/t�0 is an adapted process with continuous sample paths, we

will write XT for process X stopped at T, defined by XT
t D Xt^T for every t � 0. It is

useful to observe that, if S is another stopping time,

.XT/S D .XS/T D XS^T :
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Definition 4.6 An adapted process M D .Mt/t�0 with continuous sample paths

and such that M0 D 0 a.s. is called a continuous local martingale if there exists a

nondecreasing sequence .Tn/n�0 of stopping times such that Tn " 1 (i.e. Tn.!/" 1
for every !) and, for every n, the stopped process MTn is a uniformly integrable

martingale.

More generally, when we do not assume that M0 D 0 a.s., we say that M is

a continuous local martingale if the process Nt D Mt � M0 is a continuous local

martingale.

In all cases, we say that the sequence of stopping times .Tn/ reduces M if Tn " 1
and, for every n, the stopped process MTn is a uniformly integrable martingale.

Remarks

(i) We do not require in the definition of a continuous local martingale that

the variables Mt are in L1 (compare with the definition of martingales). In

particular, the variable M0 may be any F0-measurable random variable.

(ii) Any martingale with continuous sample paths is a continuous local martingale

(see property (a) below) but the converse is false, and for this reason we will

sometimes speak of “true martingales” to emphasize the difference with local

martingales. Let us give a few examples of continuous local martingales which

are not (true) martingales. If B is an .Ft/-Brownian motion started from 0,

and Z is an F0-measurable random variable, the process Mt D Z C Bt is

always a continuous local martingale, but is not a martingale if EŒjZj� D 1.

If we require the property M0 D 0, we can also consider Mt D ZBt, which is

always a continuous local martingale (see Exercise 4.22) but is not a martingale

if EŒjZj� D 1. For a less artificial example, we refer to question (8) of

Exercise 5.33.

(iii) One can define a notion of local martingale with càdlàg sample paths. In this

course, however, we consider only continuous local martingales.

The following properties are easily established.

Properties of continuous local martingales.

(a) A martingale with continuous sample paths is a continuous local martingale,

and the sequence Tn D n reduces M.

(b) In the definition of a continuous local martingale starting from 0, one can

replace “uniformly integrable martingale” by “martingale” (indeed, one can

then observe that MTn^n is uniformly integrable, and we still have Tn ^ n " 1).

(c) If M is a continuous local martingale, then, for every stopping time T, MT is a

continuous local martingale (this follows from Corollary 3.24).

(d) If .Tn/ reduces M and if .Sn/ is a sequence of stopping times such that Sn " 1,

then the sequence .Tn ^ Sn/ also reduces M (use Corollary 3.24 again).



4.2 Continuous Local Martingales 77

(e) The space of all continuous local martingales is a vector space (to check stability

under addition, note that if M and M0 are two continuous local martingales such

that M0 D 0 and M0
0 D 0, if the sequence .Tn/ reduces M and if the sequence

.T 0
n/ reduces M0, property (d) shows that the sequence Tn ^T 0

n reduces M CM0).

The next proposition gives three other useful properties of local martingales.

Proposition 4.7

(i) A nonnegative continuous local martingale M such that M0 2 L1 is a

supermartingale.

(ii) A continuous local martingale M such that there exists a random variable Z 2
L1 with jMtj � Z for every t � 0 (in particular a bounded continuous local

martingale) is a uniformly integrable martingale.

(iii) If M is a continuous local martingale and M0 D 0 (or more generally M0 2
L1), the sequence of stopping times

Tn D infft � 0 W jMtj � ng

reduces M.

Proof

(i) Write Mt D M0 C Nt. By definition, there exists a sequence .Tn/ of stopping

times that reduces N. Then, if s � t, we have for every n,

Ns^Tn
D EŒNt^Tn

j Fs�:

We can add on both sides the random variable M0 (which is F0-measurable

and in L1 by assumption), and we get

Ms^Tn
D EŒMt^Tn

j Fs�:

Since M takes nonnegative values, we can now let n tend to 1 and apply the

version of Fatou’s lemma for conditional expectations, which gives

Ms � EŒMt j Fs�:

Taking s D 0, we get EŒMt� � EŒM0� < 1, hence Mt 2 L1 for every t � 0.

The previous inequality now shows that M is a supermartingale.

(ii) By the same argument as in (i), we get for 0 � s � t,

Ms^Tn
D EŒMt^Tn

j Fs�: (4.2)

Since jMt^Tn
j � Z, we can use dominated convergence to obtain that the

sequence Mt^Tn
converges to Mt in L1. We can thus pass to the limit n ! 1

in (4.2), and get that Ms D EŒMt j Fs�.
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(iii) Suppose that M0 D 0. The random times Tn are stopping times by Proposi-

tion 3.9. The desired result is an immediate consequence of (ii) since MTn is a

continuous local martingale and jMTn j � n. If we only assume that M0 2 L1,

we observe that MTn is dominated by n C jM0j. ut
Remark Considering property (ii) of the proposition, one might expect that a

continuous local martingale M such that the collection .Mt/t�0 is uniformly

integrable (or even a continuous local martingale satisfying the stronger property

of being bounded in Lp for some p > 1) is automatically a martingale. This is

incorrect!! For instance, if B is a three-dimensional Brownian motion started from

x 6D 0, the process Mt D 1=jBtj is a continuous local martingale bounded in L2, but

is not a martingale: see Exercise 5.33.

Theorem 4.8 Let M be a continuous local martingale. Assume that M is also a

finite variation process (in particular M0 D 0). Then Mt D 0 for every t � 0, a.s.

Proof Set

�n D infft � 0 W
Z t

0

jdMsj � ng

for every integer n � 0. By Proposition 3.9, �n is a stopping time (recall that
R t

0 jdMsj
is an increasing process if M is a finite variation process).

Fix n � 0 and set N D M�n . Note that, for every t � 0,

jNtj D jMt^�n
j �

Z t^�n

0

jdMsj � n:

By Proposition 4.7, N is a (bounded) martingale. Let t > 0 and let 0 D t0 < t1 <

� � � < tp D t be any subdivision of Œ0; t�. Then, from Proposition 3.14, we have

EŒN2
t � D

pX

iD1
EŒ.Nti � Nti�1/

2�

� E
h�

sup
1�i�p

jNti � Nti�1 j
� pX

iD1
jNti � Nti�1 j

i

� n E
h

sup
1�i�p

jNti � Nti�1 j
i

noting that
R t

0 jdNsj � n by the definition of �n, and using Proposition 4.2.

We now apply the preceding bound to a sequence 0 D tk
0 < tk

1 < � � � < tk
pk

D t of

subdivisions of Œ0; t� whose mesh tends to 0. Using the continuity of sample paths,
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and the fact that N is bounded (to justify dominated convergence), we get

lim
k!1

E
h

sup
1�i�pk

jNtki
� Ntki�1

j
i

D 0:

We then conclude that EŒN2
t � D 0, hence Mt^�n

D 0 a.s. Letting n tend to 1, we get

that Mt D 0 a.s. ut

4.3 The Quadratic Variation of a Continuous Local
Martingale

From now on until the end of this chapter (and in the next chapter), we assume that

the filtration .Ft/ is complete. The next theorem will play a very important role in

forthcoming developments.

Theorem 4.9 Let M D .Mt/t�0 be a continuous local martingale. There exists an

increasing process denoted by .hM;Mit/t�0, which is unique up to indistinguisha-

bility, such that M2
t � hM;Mit is a continuous local martingale. Furthermore, for

every fixed t > 0, if 0 D tn
0 < tn

1 < � � � < tn
pn

D t is an increasing sequence of

subdivisions of Œ0; t� with mesh tending to 0, we have

hM;Mit D lim
n!1

pnX

iD1
.Mtni

� Mtni�1
/2 (4.3)

in probability. The process hM;Mi is called the quadratic variation of M.

Let us immediately mention an important special case. If M D B is an .Ft/-

Brownian motion (see Definition 3.11) then B is a martingale with continuous

sample paths, hence a continuous local martingale. Then by comparing (4.3) with

Proposition 2.16, we get that, for every t � 0,

hB;Bit D t:

So the quadratic variation of a Brownian motion is the simplest increasing process

one can imagine.

Remarks

(i) We observe that the process hM;Mi does not depend on the initial value M0,

but only on the increments of M: if Mt D M0 C Nt, we have hM;Mi D hN;Ni.

This is obvious from the second assertion of the theorem, and this will also be

clear from the proof that follows.

(ii) In the second assertion of the theorem, it is in fact not necessary to assume that

the sequence of subdivisions is increasing.
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Proof We start by proving the first assertion. Uniqueness is an easy consequence

of Theorem 4.8. Indeed, let A and A0 be two increasing processes satisfying the

condition given in the statement. Then the process At � A0
t D .M2

t � A0
t/� .M2

t � At/

is both a continuous local martingale and a finite variation process. It follows that

A � A0 D 0.

In order to prove existence, consider first the case where M0 D 0 and M is

bounded (hence M is a true martingale, by Proposition 4.7 (ii)). Fix K > 0 and an

increasing sequence 0 D tn
0 < tn

1 < � � � < tn
pn

D K of subdivisions of Œ0;K� with

mesh tending to 0.

We observe that, for every 0 � r < s and for every bounded Fr-measurable

variable Z, the process

Nt D Z.Ms^t � Mr^t/

is a martingale (the reader is invited to write down the easy proof!). It follows that,

for every n, the process

Xn
t D

pnX

iD1
Mtni�1

.Mtni ^t � Mtni�1^t/

is a (bounded) martingale. The reason for considering these martingales comes from

the following identity, which results from a simple calculation: for every n, for every

j 2 f0; 1; : : : ; png,

M2
tnj

� 2Xn
tnj

D
jX

iD1
.Mtni

� Mtni�1
/2: (4.4)

Lemma 4.10 We have

lim
n;m!1

EŒ.Xn
K � Xm

K /
2� D 0:

Proof of the lemma Let us fix n � m and evaluate the product EŒXn
KXm

K �. This

product is equal to

pnX

iD1

pmX

jD1
EŒMtni�1

.Mtni
� Mtni�1

/Mtmj�1
.Mtmj

� Mtmj�1
/�:

In this double sum, the only terms that may be nonzero are those corresponding

to indices i and j such that the interval .tm
j�1; t

m
j � is contained in .tn

i�1; t
n
i �. Indeed,

suppose that tn
i � tm

j�1 (the symmetric case tm
j � tn

i�1 is treated in an analogous way).
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Then, conditioning on the �-field Ftmj�1
, we have

EŒMtni�1
.Mtni

� Mtni�1
/Mtmj�1

.Mtmj
� Mtmj�1

/�

D EŒMtni�1
.Mtni

� Mtni�1
/Mtmj�1

EŒMtmj
� Mtmj�1

j Ftmj�1
�� D 0:

For every j D 1; : : : ; pm, write in;m. j/ for the unique index i such that .tm
j�1; t

m
j � �

.tn
i�1; t

n
i �. It follows from the previous considerations that

EŒXn
KXm

K � D
X

1�j�pm ; iDin;m. j/

EŒMtni�1
.Mtni

� Mtni�1
/Mtmj�1

.Mtmj
� Mtmj�1

/�:

In each term EŒMtni�1
.Mtni

� Mtni�1
/Mtmj�1

.Mtmj
� Mtmj�1

/�, we can now decompose

Mtni
� Mtni�1

D
X

kWin;m.k/Di

.Mtmk
� Mtmk�1

/

and we observe that, if k is such that in;m.k/ D i but k 6D j,

EŒMtni�1
.Mtmk

� Mtmk�1
/Mtmj�1

.Mtmj
� Mtmj�1

/� D 0

(condition on Ftmk�1
if k > j and on Ftmj�1

if k < j). The only case that remains is

k D j, and we have thus obtained

EŒXn
KXm

K � D
X

1�j�pm; iDin;m. j/

EŒMtni�1
Mtmj�1

.Mtmj
� Mtmj�1

/2�:

As a special case of this relation, we have

EŒ.Xm
K /
2� D

X

1�j�pm

EŒM2
tmj�1
.Mtmj

� Mtmj�1
/2�:

Furthermore,

EŒ.Xn
K/
2� D

X

1�i�pn

EŒM2
tni�1
.Mtni

� Mtni�1
/2�

D
X

1�i�pn

EŒM2
tni�1

EŒ.Mtni
� Mtni�1

/2 j Ftni�1
��

D
X

1�i�pn

E
h
M2

tni�1

X

jWin;m. j/Di

EŒ.Mtmj
� Mtmj�1

/2 j Ftni�1
�
i

D
X

1�j�pm; iDin;m. j/

EŒM2
tni�1
.Mtmj

� Mtmj�1
/2�;

where we have used Proposition 3.14 in the third equality.
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If we combine the last three displays, we get

EŒ.Xn
K � Xm

K /
2� D E

h X

1�j�pm; iDin;m. j/

.Mtni�1
� Mtmj�1

/2 .Mtmj
� Mtmj�1

/2
i
:

Using the Cauchy–Schwarz inequality, we then have

EŒ.Xn
K � Xm

K /
2� � E

h
sup

1�j�pm; iDin;m. j/

.Mtni�1
� Mtmj�1

/4
i1=2

� E
h� X

1�j�pm

.Mtmj
� Mtmj�1

/2
�2i1=2

:

By the continuity of sample paths (together with the fact that the mesh of our

subdivisions tends to 0) and dominated convergence, we have

lim
n;m!1; n�m

E
h

sup
1�j�pm; iDin;m. j/

.Mtni�1
� Mtmj�1

/4
i

D 0:

To complete the proof of the lemma, it is then enough to prove the existence of a

finite constant C such that, for every m,

E
h� X

1�j�pm

.Mtmj
� Mtmj�1

/2
�2i

� C: (4.5)

Let A be a constant such that jMtj � A for every t � 0. Expanding the square and

using Proposition 3.14 twice, we have

E
h� X

1�j�pm

.Mtmj
� Mtmj�1

/2
�2i

D E
h X

1�j�pm

.Mtmj
� Mtmj�1

/4
i

C 2E
h X

1�j<k�pm

.Mtmj
� Mtmj�1

/2.Mtmk
� Mtmk�1

/2
i

� 4A2E
h X

1�j�pm

.Mtmj
� Mtmj�1

/2
i

C2
pm�1X

jD1
E
h
.Mtmj

� Mtmj�1
/2E

h pmX

kDjC1
.Mtmk

� Mtmk�1
/2
ˇ̌
ˇFtmj

ii

D 4A2E
h X

1�j�pm

.Mtmj
� Mtmj�1

/2
i

C2
pm�1X

jD1
E
h
.Mtmj

� Mtmj�1
/2 EŒ.MK � Mtmj

/2 j Ftmj
�
i



4.3 The Quadratic Variation of a Continuous Local Martingale 83

� 12A2 E
h X

1�j�pm

.Mtmj
� Mtmj�1

/2
i

D 12A2 EŒ.MK � M0/
2�

� 48A4

which gives the bound (4.5) with C D 48A4. This completes the proof. ut
We now return to the proof of the theorem. Thanks to Doob’s inequality in L2

(Proposition 3.15 (ii)), and to Lemma 4.10, we have

lim
n;m!1

E
h

sup
t�K

.Xn
t � Xm

t /
2
i

D 0: (4.6)

In particular, for every t 2 Œ0;K�, .Xn
t /n�1 is a Cauchy sequence in L2 and thus

converges in L2. We want to argue that the limit yields a process Y indexed by Œ0;K�

with continuous sample paths. To see this, we note that (4.6) allows us find a strictly

increasing sequence .nk/k�1 of positive integers such that, for every k � 1,

E
h

sup
t�K

.X
nkC1
t � Xnk

t /
2
i

� 2�k:

This implies that

E
h 1X

kD1
sup
t�K

jXnkC1
t � Xnk

t j
i
< 1

and thus

1X

kD1
sup
t�K

jXnkC1
t � Xnk

t j < 1 ; a.s.

Consequently, except on the negligible set N where the series in the last display

diverges, the sequence of random functions .X
nk
t ; 0 � t � K/ converges uniformly

on Œ0;K� as k ! 1, and the limiting random function is continuous by uniform

convergence. We can thus set Yt.!/ D lim X
nk
t .!/, for every t 2 Œ0;K�, if ! 2

˝nN , and Yt.!/ D 0, for every t 2 Œ0;K�, if ! 2 N . The process .Yt/0�t�K

has continuous sample paths and Yt is Ft-measurable for every t 2 Œ0;K� (here we

use the fact that the filtration is complete, which ensures that N 2 Ft for every

t � 0). Furthermore, since the L2-limit of .Xn
t /n�1 must coincide with the a.s. limit

of a subsequence, Yt is also the limit of Xn
t in L2, for every t 2 Œ0;K�, and we can

pass to the limit in the martingale property for Xn, to obtain that EŒYt j Fs� D Ys

for every 0 � s � t � K. It follows that .Yt^K/t�0 is a martingale with continuous

sample paths.
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On the other hand, the identity (4.4) shows that the sample paths of the process

M2
t �2Xn

t are nondecreasing along the finite sequence .tn
i ; 0 � i � pn/. By passing to

the limit n ! 1 along the sequence .nk/k�1, we get that the sample paths of M2
t �

2Yt are nondecreasing on Œ0;K�, except maybe on the negligible set N . For every

t 2 Œ0;K�, we set A
.K/
t D M2

t � 2Yt on ˝nN , and A
.K/
t D 0 on N . Then A

.K/
0 D

0, A
.K/
t is Ft-measurable for every t 2 Œ0;K�, A.K/ has nondecreasing continuous

sample paths, and .M2
t^K � A

.K/
t^K/t�0 is a martingale.

We apply the preceding considerations with K D `, for every integer ` � 1,

and we get a process .A
.`/
t /0�t�`. We then observe that, for every ` � 1, A

.`C1/
t^` D

A
.`/

t^` for every t � 0, a.s., by the uniqueness argument explained at the beginning

of the proof. It follows that we can define an increasing process hM;Mi such that

hM;Mit D A
.`/
t for every t 2 Œ0; `� and every ` � 1, a.s., and clearly M2

t � hM;Mit

is a martingale.

In order to get (4.3), we observe that, if K > 0 and the sequence of subdivisions

0 D tn
0 < tn

1 < � � � < tn
pn

D K are fixed as in the beginning of the proof, the

process A
.K/
t^K must be indistinguishable from hM;Mit^K , again by the uniqueness

argument (we know that both M2
t^K � A

.K/
t^K and M2

t^K � hM;Mit^K are martingales).

In particular, we have hM;MiK D A
.K/
K a.s. Then, from (4.4) with j D pn, and the

fact that Xn
K converges in L2 to YK D 1

2
.M2

K � A
.K/
K /, we get that

lim
n!1

pnX

jD1
.Mtnj

� Mtnj�1
/2 D hM;MiK

in L2. This completes the proof of the theorem in the case when M0 D 0 and M is

bounded.

Let us consider the general case. Writing Mt D M0 C Nt, so that M2
t D

M2
0 C 2M0Nt C N2

t , and noting that M0Nt is a continuous local martingale (see

Exercise 4.22), we see that we may assume that M0 D 0. We then set

Tn D infft � 0 W jMtj � ng

and we can apply the bounded case to the stopped martingales MTn . Set AŒn� D
hMTn ;MTn i. The uniqueness part of the theorem shows that the processes A

ŒnC1�
t^Tn

and

A
Œn�
t are indistinguishable. It follows that there exists an increasing process A such

that, for every n, the processes At^Tn
and A

Œn�
t are indistinguishable. By construction,

M2
t^Tn

� At^Tn
is a martingale for every n, which precisely implies that M2

t � At is a

continuous local martingale. We take hM;Mit D At, which completes the proof of

the existence part of the theorem.

Finally, to get (4.3), it suffices to consider the case M0 D 0. The bounded case

then shows that (4.3) holds if M and hM;Mit are replaced respectively by MTn and

hM;Mit^Tn
(even with convergence in L2). Then it is enough to observe that, for

every t > 0, P.t � Tn/ converges to 1 when n ! 1. ut
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Proposition 4.11 Let M be a continuous local martingale and let T be a stopping

time. Then we have a.s. for every t � 0,

hMT ;MTit D hM;Mit^T :

This follows from the fact that M2
t^T �hM;Mit^T is a continuous local martingale

(cf. property (c) of continuous local martingales).

Proposition 4.12 Let M be a continuous local martingale such that M0 D 0. Then

we have hM;Mi D 0 if and only if M D 0.

Proof Suppose that hM;Mi D 0. Then M2
t is a nonnegative continuous local

martingale and, by Proposition 4.7 (i), M2
t is a supermartingale, hence EŒM2

t � �
EŒM2

0 � D 0, so that Mt D 0 for every t. The converse is obvious. ut
The next theorem shows that properties of a continuous local martingale are

closely related to those of its quadratic variation. If A is an increasing process, A1
denotes the increasing limit of At as t ! 1 (this limit always exists in Œ0;1�).

Theorem 4.13 Let M be a continuous local martingale with M0 2 L2.

(i) The following are equivalent:

(a) M is a (true) martingale bounded in L2.

(b) EŒhM;Mi1� < 1.

Furthermore, if these properties hold, the process M2
t � hM;Mit is a uniformly

integrable martingale, and in particular EŒM2
1� D EŒM2

0 �C EŒhM;Mi1�.
(ii) The following are equivalent:

(a) M is a (true) martingale and Mt 2 L2 for every t � 0.

(b) EŒhM;Mit� < 1 for every t � 0.

Furthermore, if these properties hold, the process M2
t � hM;Mit is a martingale.

Remark In property (a) of (i) (or of (ii)), it is essential to suppose that M is a

martingale, and not only a continuous local martingale. Doob’s inequality used in

the following proof is not valid in general for a continuous local martingale!

Proof

(i) Replacing M by M � M0, we may assume that M0 D 0 in the proof. Let us

first assume that M is a martingale bounded in L2. Doob’s inequality in L2

(Proposition 3.15 (ii)) shows that, for every T > 0,

E
h

sup
0�t�T

M2
t

i
� 4EŒM2

T �:

By letting T go to 1, we have

E
h

sup
t�0

M2
t

i
� 4 sup

t�0
EŒM2

t � DW C < 1:
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Set Sn D infft � 0 W hM;Mit � ng. Then the continuous local martingale

M2
t^Sn

� hM;Mit^Sn
is dominated by the variable

sup
s�0

M2
s C n;

which is integrable. From Proposition 4.7 (ii), we get that this continuous local

martingale is a uniformly integrable martingale, hence

EŒhM;Mit^Sn
� D EŒM2

t^Sn
� � E

h
sup
s�0

M2
s

i
� C:

By letting n, and then t tend to infinity, and using monotone convergence, we get

EŒhM;Mi1� � C < 1.

Conversely, assume that EŒhM;Mi1� < 1. Set Tn D infft � 0 W jMtj � ng.

Then the continuous local martingale M2
t^Tn

� hM;Mit^Tn
is dominated by the

variable

n2 C hM;Mi1;

which is integrable. From Proposition 4.7 (ii) again, this continuous local

martingale is a uniformly integrable martingale, hence, for every t � 0,

EŒM2
t^Tn

� D EŒhM;Mit^Tn
� � EŒhM;Mi1� DW C0 < 1:

By letting n ! 1 and using Fatou’s lemma, we get EŒM2
t � � C0, so that the

collection .Mt/t�0 is bounded in L2. We have not yet verified that .Mt/t�0 is a

martingale. However, the previous bound on EŒM2
t^Tn

� shows that the sequence

.Mt^Tn
/n�1 is uniformly integrable, and therefore converges both a.s. and in L1 to

Mt, for every t � 0. Recalling that MTn is a martingale (Proposition 4.7 (iii)), the

L1-convergence allows us to pass to the limit n ! 1 in the martingale property

EŒMt^Tn
j Fs� D Ms^Tn

, for 0 � s < t, and to get that M is a martingale.

Finally, if properties (a) and (b) hold, the continuous local martingale M2 �
hM;Mi is dominated by the integrable variable

sup
t�0

M2
t C hM;Mi1

and is therefore (by Proposition 4.7 (ii)) a uniformly integrable martingale.

(ii) It suffices to apply (i) to .Mt^a/t�0 for every choice of a � 0. ut
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4.4 The Bracket of Two Continuous Local Martingales

Definition 4.14 If M and N are two continuous local martingales, the bracket

hM;Ni is the finite variation process defined by setting, for every t � 0,

hM;Nit D 1

2
.hM C N;M C Nit � hM;Mit � hN;Nit/:

Let us state a few easy properties of the bracket.

Proposition 4.15

(i) hM;Ni is the unique (up to indistinguishability) finite variation process such

that MtNt � hM;Nit is a continuous local martingale.

(ii) The mapping .M;N/ 7! hM;Ni is bilinear and symmetric.

(iii) If 0 D tn
0 < tn

1 < � � � < tn
pn

D t is an increasing sequence of subdivisions of

Œ0; t� with mesh tending to 0, we have

lim
n!1

pnX

iD1
.Mtni

� Mtni�1
/.Ntni

� Ntni�1
/ D hM;Nit

in probability.

(iv) For every stopping time T, hMT ;NT it D hMT ;Nit D hM;Nit^T .

(v) If M and N are two martingales (with continuous sample paths) bounded in L2,

MtNt � hM;Nit is a uniformly integrable martingale. Consequently, hM;Ni1
is well defined as the almost sure limit of hM;Nit as t ! 1, is integrable, and

satisfies

EŒM1N1� D EŒM0N0�C EŒhM;Ni1�:

Proof (i) follows from the analogous characterization in Theorem 4.9 (uniqueness

follows from Theorem 4.8). Similarly (iii) is a consequence of the analogous

assertion in Theorem 4.9. (ii) follows from (iii), or can be proved directly via the

uniqueness argument. We can then get (iv) as a consequence of property (iii), noting

that this property implies, for every 0 � s � t, a.s.,

hMT ;NTit D hMT ;Nit D hM;Nit on fT � tg;
hMT ;NTit � hMT ;NTis D hMT ;Nit � hMT ;Nis D 0 on fT � s < tg:

Finally, (v) follows as a consequence of Theorem 4.13 (i). ut
Remark A consequence of (iv) is the fact that MT .N � NT/ is a continuous local

martingale, which is not so easy to prove directly.
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Proposition 4.16 Let B and B0 be two independent .Ft/-Brownian motions. Then

hB;B0it D 0 for every t � 0.

Proof By subtracting the initial values, we may assume that B0 D B0
0 D 0. We then

observe that the process Xt D 1p
2
.Bt C B0

t/ is a martingale, as a linear combination

of martingales. By checking the finite-dimensional marginals of X, we verify that X

is also a Brownian motion (notice that we do not claim that X is an .Ft/-Brownian

motion). Proposition 2.16 implies that hX;Xit D t, and, using the bilinearity of the

bracket, it follows that hB;B0it D 0. ut
Definition 4.17 Two continuous local martingales M and N are said to be orthogo-

nal if hM;Ni D 0, which holds if and only if MN is a continuous local martingale.

In particular, two independent .Ft/-Brownian motions are orthogonal martin-

gales, by Proposition 4.16.

If M and N are two orthogonal martingales bounded in L2, we have EŒMtNt� D
EŒM0N0�, and even EŒMSNS� D EŒM0N0� for any stopping time S. This follows from

Theorem 3.22, using property (v) of Proposition 4.15.

Proposition 4.18 (Kunita–Watanabe) Let M and N be two continuous local

martingales and let H and K be two measurable processes. Then, a.s.,

Z 1

0

jHsj jKsj jdhM;Nisj �
� Z 1

0

H2
s dhM;Mis

�1=2� Z 1

0

K2
s dhN;Nis

�1=2
:

Proof Only in this proof, we use the special notation hM;Nit
s D hM;Nit � hM;Nis

for 0 � s � t. The first step of the proof is to observe that we have a.s. for every

choice of the rationals s < t (and also by continuity for every reals s < t),

jhM;Nit
sj �

q
hM;Mit

s

q
hN;Nit

s:

Indeed, this follows from the approximations of hM;Mi and hM;Ni given in

Theorem 4.9 and in Proposition 4.15 respectively (note that these approximations

are easily extended to the increments of hM;Mi and hM;Ni), together with the

Cauchy–Schwarz inequality. From now on, we fix ! such that the inequality of the

last display holds for every s < t, and we argue with this value of ! (the remaining

part of the argument is “deterministic”).

We then observe that we also have, for every 0 � s � t,

Z t

s

jdhM;Niuj �
q

hM;Mit
s

q
hN;Nit

s: (4.7)
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Indeed, we use Proposition 4.2, noting that, for any subdivision s D t0 < t1 < � � � <
tp D t, we can bound

pX

iD1
jhM;Niti

ti�1
j �

pX

iD1

q
hM;Miti

ti�1

q
hN;Niti

ti�1

�
� pX

iD1
hM;Miti

ti�1

�1=2� pX

iD1
hN;Niti

ti�1

�1=2

D
q

hM;Mit
s

q
hN;Nit

s:

We then get that, for every bounded Borel subset A of RC,

Z

A

jdhM;Niuj �
sZ

A

dhM;Miu

sZ

A

dhN;Niu:

When A D Œs; t�, this is the bound (4.7). If A is a finite union of intervals, this follows

from (4.7) and another application of the Cauchy–Schwarz inequality. A monotone

class argument shows that the inequality of the last display remains valid for any

bounded Borel set A (here we use a version of the monotone class lemma that is

different from the one in Appendix A1: precisely, a class of sets which is stable

under increasing and decreasing sequential limits and which contains an algebra of

sets must contain the �-field generated by this algebra – see the first chapter of [64]).

Next let h D
Pp

iD1 �i1Ai
and k D

Pp

iD1 �i1Ai
be two nonnegative simple

functions on RC with bounded support contained in Œ0;K�, for some K > 0. Here

A1; : : : ;Ap is a measurable partition of Œ0;K�, and �1; : : : ; �p; �1; : : : ; �p are reals

(we can always assume that h and k are expressed in terms of the same partition).

Then,

Z
h.s/k.s/jdhM;Nisj D

pX

iD1
�i�i

Z

Ai

jdhM;Nisj

�
� pX

iD1
�2i

Z

Ai

dhM;Mis

�1=2� pX

iD1
�2i

Z

Ai

dhN;Nis

�1=2

D
� Z

h.s/2dhM;Mis

�1=2� Z
k.s/2dhN;Nis

�1=2
;

which gives the desired inequality for simple functions. Since every nonnegative

Borel function is a monotone increasing limit of simple functions with bounded

support, an application of the monotone convergence theorem completes the proof.

ut
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4.5 Continuous Semimartingales

We now introduce the class of processes for which we will develop the theory of

stochastic integrals.

Definition 4.19 A process X D .Xt/t�0 is a continuous semimartingale if it can be

written in the form

Xt D Mt C At;

where M is a continuous local martingale and A is a finite variation process.

The decomposition X D M C A is then unique up to indistinguishability thanks

to Theorem 4.8. We say that this is the canonical decomposition of X.

By construction, continuous semimartingales have continuous sample paths. It is

possible to define a notion of semimartingale with càdlàg sample paths, but in this

book, we will only deal with continuous semimartingales, and for this reason we

sometimes omit the word continuous.

Definition 4.20 Let X D M C A and Y D M0 C A0 be the canonical decompositions

of two continuous semimartingales X and Y. The bracket hX;Yi is the finite variation

process defined by

hX;Yit D hM;M0it:

In particular, we have hX;Xit D hM;Mit.

Proposition 4.21 Let 0 D tn
0 < tn

1 < � � � < tn
pn

D t be an increasing sequence of

subdivisions of Œ0; t� whose mesh tends to 0. Then,

lim
n!1

pnX

iD1
.Xtni

� Xtni�1
/.Ytni

� Ytni�1
/ D hX;Yit

in probability.

Proof We treat the case where X D Y and leave the general case to the reader.

We have

pnX

iD1
.Xtni

� Xtni�1
/2 D

pnX

iD1
.Mtni

� Mtni�1
/2 C

pnX

iD1
.Atni

� Atni�1
/2

C2
pnX

iD1
.Mtni

� Mtni�1
/.Atni

� Atni�1
/:
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By Theorem 4.9,

lim
n!1

pnX

iD1
.Mtni

� Mtni�1
/2 D hM;Mit D hX;Xit;

in probability. On the other hand,

pnX

iD1
.Atni

� Atni�1
/2 �

�
sup
1�i�pn

jAtni
� Atni�1

j
� pnX

iD1
jAtni

� Atni�1
j

�
� Z t

0

jdAsj
�

sup
1�i�pn

jAtni
� Atni�1

j;

which tends to 0 a.s. when n ! 1 by the continuity of sample paths of A. The same

argument shows that

ˇ̌
ˇ

pnX

iD1
.Atni

� Atni�1
/.Mtni

� Mtni�1
/
ˇ̌
ˇ �

� Z t

0

jdAsj
�

sup
1�i�pn

jMtni
� Mtni�1

j

tends to 0 a.s. ut

Exercises

In the following exercises, processes are defined on a probability space .˝;F ;P/

equipped with a complete filtration .Ft/t2Œ0;1�.

Exercise 4.22 Let U be an F0-measurable real random variable, and let M be a

continuous local martingale. Show that the process Nt D UMt is a continuous local

martingale. (This result was used in the construction of the quadratic variation of a

continuous local martingale.)

Exercise 4.23

1. Let M be a (true) martingale with continuous sample paths, such that M0 D 0. We

assume that .Mt/t�0 is also a Gaussian process. Show that, for every t � 0 and

every s > 0, the random variable MtCs � Mt is independent of �.Mr; 0 � r � t/.

2. Under the assumptions of question 1., show that there exists a continuous

monotone nondecreasing function f W RC ! RC such that hM;Mit D f .t/

for every t � 0.
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Exercise 4.24 Let M be a continuous local martingale with M0 D 0.

1. For every integer n � 1, we set Tn D infft � 0 W jMtj D ng. Show that, a.s.

n
lim

t!1
Mt exists and is finite

o
D

1[

nD1
fTn D 1g � fhM;Mi1 < 1g:

2. We set Sn D infft � 0 W hM;Mit D ng for every n � 1. Show that, a.s.,

fhM;Mi1 < 1g D
1[

nD1
fSn D 1g �

n
lim

t!1
Mt exists and is finite

o
;

and conclude that

n
lim

t!1
Mt exists and is finite

o
D fhM;Mi1 < 1g ; a.s.

Exercise 4.25 For every integer n � 1, let Mn D .Mn
t /t�0 be a continuous local

martingale with M0 D 0. We assume that

lim
n!1

hMn;Mni1 D 0

in probability.

1. Let " > 0, and, for every n � 1, let

Tn
" D infft � 0 W hMn;Mnit � "g:

Justify the fact that Tn
" is a stopping time, then prove that the stopped continuous

local martingale

Mn;"
t D Mn

t^Tn
"
; 8t � 0 ;

is a true martingale bounded in L2.

2. Show that

E
h

sup
t�0

jMn;"
t j2

i
� 4 "2:

3. Writing, for every a > 0,

P
�

sup
t�0

jMn
t j � a

�
� P

�
sup
t�0

jMn;"
t j � a

�
C P.Tn

" < 1/;
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show that

lim
n!1

�
sup
t�0

jMn
t j
�

D 0

in probability.

Exercise 4.26

1. Let A be an increasing process (adapted, with continuous sample paths and such

that A0 D 0) such that A1 < 1 a.s., and let Z be an integrable random variable.

We assume that, for every stopping time T,

EŒA1 � AT � � EŒZ 1fT<1g�:

Show, by introducing an appropriate stopping time, that, for every � > 0,

EŒ.A1 � �/ 1fA1>�g� � EŒZ 1fA1>�g�:

2. Let f W RC �! R be a continuously differentiable monotone increasing function

such that f .0/ D 0 and set F.x/ D
R x

0 f .t/dt for every x � 0. Show that, under

the assumptions of question 1., one has

EŒF.A1/� � EŒZ f .A1/�:

(Hint: It may be useful to observe that F.x/ D xf .x/ �
R x

0
� f 0.�/ d� for every

x � 0.)

3. Let M be a (true) martingale with continuous sample paths and bounded in L2

such that M0 D 0, and let M1 be the almost sure limit of Mt as t ! 1. Show

that the assumptions of question 1. hold when At D hM;Mit and Z D M2
1. Infer

that, for every real q � 1,

EŒ.hM;Mi1/
qC1� � .q C 1/EŒ.hM;Mi1/

q M2
1�:

4. Let p � 2 be a real number such that EŒ.hM;Mi1/p� < 1. Show that

EŒ.hM;Mi1/
p� � pp EŒjM1j2p�:

5. Let N be a continuous local martingale such that N0 D 0, and let T be a stopping

time such that the stopped martingale NT is uniformly integrable. Show that, for

every real p � 2,

EŒ.hN;NiT/
p� � pp EŒjNT j2p�:

Give an example showing that this result may fail if NT is not uniformly

integrable.
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Exercise 4.27 Let .Xt/t�0 be an adapted process with continuous sample paths

and taking nonnegative values. Let .At/t�0 be an increasing process (adapted,

with continuous sample paths and such that A0 D 0). We consider the following

condition:

(D) For every bounded stopping time T, we have EŒXT � � EŒAT �.

1. Show that, if M is a square integrable martingale with continuous sample paths

and M0 D 0, the condition (D) holds for Xt D M2
t and At D hM;Mit.

2. Show that the conclusion of the previous question still holds if one only assumes

that M is a continuous local martingale with M0 D 0.

3. We set X�
t D sups�t Xs. Show that, under the condition (D), we have, for every

bounded stopping time S and every c > 0,

P.X�
S � c/ � 1

c
EŒAS�:

(Hint: One may apply (D) to T D S ^ R, where R D infft � 0 W Xt � cg.)

4. Infer that, still under the condition (D), one has, for every (finite or not) stopping

time S,

P.X�
S > c/ � 1

c
EŒAS�

(when S takes the value 1, we of course define X�
1 D sups�0 Xs).

5. Let c > 0 and d > 0, and S D infft � 0 W At � dg. Let T be a stopping time.

Noting that

fX�
T > cg �

�
fX�

T^S > cg [ fAT � dg
�

show that, under the condition (D), one has

P.X�
T > c/ � 1

c
EŒAT ^ d�C P.AT � d/:

6. Use questions (2) and (5) to verify that, if M.n/ is a sequence of continuous

local martingales and T is a stopping time such that hM.n/;M.n/iT converges in

probability to 0 as n ! 1, then,

lim
n!1

�
sup
s�T

jM.n/
s j
�

D 0 ; in probability.
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Notes and Comments

The book [14] of Dellacherie and Meyer is again an excellent reference for

the topics of this chapter, in the more general setting of local martingales and

semimartingales with càdlàg sample paths. See also [72] and [49] (in particular,

a discussion of the elementary theory of finite variation processes can be found in

[72]). The notion of a local martingale appeared in Itô and Watanabe [43] in 1965.

The notion of a semimartingale seems to be due to Fisk [25] in 1965, who used

the name “quasimartingales”. See also Meyer [60]. The classical approach to the

quadratic variation of a continuous (local) martingale is based on the Doob–Meyer

decomposition theorem [58], see e.g. [49]. Our more elementary presentation is

inspired by [70].



Chapter 5

Stochastic Integration

This chapter is at the core of the present book. We start by defining the stochastic

integral with respect to a square-integrable continuous martingale, considering first

the integral of elementary processes (which play a role analogous to step functions

in the theory of the Riemann integral) and then using an isometry between Hilbert

spaces to deal with the general case. It is easy to extend the definition of stochastic

integrals to continuous local martingales and semimartingales. We then derive the

celebrated Itô’s formula, which shows that the image of one or several continuous

semimartingales under a smooth function is still a continuous semimartingale,

whose canonical decomposition is given in terms of stochastic integrals. Itô’s

formula is the main technical tool of stochastic calculus, and we discuss several

important applications of this formula, including Lévy’s theorem characterizing

Brownian motion as a continuous local martingale with quadratic variation process

equal to t, the Burkholder–Davis–Gundy inequalities and the representation of

martingales as stochastic integrals in a Brownian filtration. The end of the chapter

is devoted to Girsanov’s theorem, which deals with the stability of the notions

of a martingale and a semimartingale under an absolutely continuous change of

probability measure. As an application of Girsanov’s theorem, we establish the

famous Cameron–Martin formula giving the image of the Wiener measure under

a translation by a deterministic function.

5.1 The Construction of Stochastic Integrals

Throughout this chapter, we argue on a filtered probability space .˝;F ; .Ft/;P/,

and we assume that the filtration .Ft/ is complete. Unless otherwise specified, all

processes in this chapter are indexed by RC and take real values. We often say

“continuous martingale” instead of “martingale with continuous sample paths”.

© Springer International Publishing Switzerland 2016
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5.1.1 Stochastic Integrals for Martingales Bounded in L2

We write H2 for the space of all continuous martingales M which are bounded in

L2 and such that M0 D 0, with the usual convention that two indistinguishable

processes are identified. Equivalently, M 2 H2 if and only if M is a continuous

local martingale such that M0 D 0 and EŒhM;Mi1� < 1 (Proposition 4.13). By

Proposition 3.21, if M 2 H2, we have Mt D EŒM1 j Ft� where M1 2 L2 is the

almost sure limit of Mt as t ! 1.

Proposition 4.15 (v) shows that, if M;N 2 H2, the random variable hM;Ni1 is

well defined, and we have EŒjhM;Ni1j� < 1. This allows us to define a symmetric

bilinear form on H2 via the formula

.M;N/H2 D EŒhM;Ni1� D EŒM1N1�;

where the second equality comes from Proposition 4.15 (v). Clearly .M;M/H2 D 0

if and only if M D 0. The scalar product .M;N/H2 thus yields a norm on H2 given

by

kMkH2 D .M;M/
1=2

H2
D EŒhM;Mi1�

1=2 D EŒ.M1/
2�1=2:

Proposition 5.1 The space H2 equipped with the scalar product .M;N/H2 is a

Hilbert space.

Proof We need to verify that the vector space H2 is complete for the norm k kH2 .
Let .Mn/n�1 be a sequence in H2 which is Cauchy for that norm. We have then

lim
m;n!1

EŒ.Mn
1 � Mm

1/
2� D lim

m;n!1
.Mn � Mm;Mn � Mm/H2 D 0:

Consequently, the sequence .Mn
1/ converges in L2 to a limit, which we denote

by Z. On the other hand, Doob’s inequality in L2 (Proposition 3.15 (ii)) and a

straightforward passage to the limit show that, for every m; n,

E
h

sup
t�0
.Mn

t � Mm
t /
2
i

� 4EŒ.Mn
1 � Mm

1/
2�:

We thus obtain that

lim
m;n!1

E
h

sup
t�0
.Mn

t � Mm
t /
2
i

D 0: (5.1)

Hence, for every t � 0, Mn
t converges in L2, and we want to argue that the limit

yields a process with continuous sample paths. To this end, we use (5.1) to find an
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increasing sequence nk " 1 such that

E
h 1X

kD1
sup
t�0

jMnk
t � M

nkC1
t j

i
�

1X

kD1
E
h

sup
t�0
.Mnk

t � M
nkC1
t /2

i1=2
< 1:

The last display implies that, a.s.,

1X

kD1
sup
t�0

jMnk
t � M

nkC1
t j < 1;

and thus the sequence .Mnk
t /t�0 converges uniformly on RC, a.s., to a limit denoted

by .Mt/t�0. On the zero probability set where the uniform convergence does not

hold, we take Mt D 0 for every t � 0. Clearly the limiting process M has continuous

sample paths and is adapted (here we use the fact that the filtration is complete).

Furthermore, from the L2-convergence of .Mn
1/ to Z, we immediately get by passing

to the limit in the identity M
nk
t D EŒMnk1 j Ft� that Mt D EŒZ j Ft�. Hence .Mt/t�0

is a continuous martingale and is bounded in L2, so that M 2 H2. The a.s. uniform

convergence of .Mnk
t /t�0 to .Mt/t�0 then ensures that M1 D lim Mnk1 D Z a.s.

Finally, the L2-convergence of .Mn
1/ to Z D M1 shows that the sequence .Mn/

converges to M in H2. ut
We denote the progressive �-field on ˝ � RC by P (see the end of Sect. 3.1),

and, if M 2 H2, we let L2.M/ be the set of all progressive processes H such that

E
h Z 1

0

H2
s dhM;Mis

i
< 1;

with the convention that two progressive processes H and H0 satisfying this

integrability condition are identified if Hs D H0
s D 0, dhM;Mis a.e., a.s. We can

view L2.M/ as an ordinary L2 space, namely

L2.M/ D L2.˝ � RC;P; dP dhM;Mis/

where dP dhM;Mis refers to the finite measure on .˝ � RC;P/ that assigns the

mass

E
h Z 1

0

1A.!; s/ dhM;Mis

i

to a set A 2 P (the total mass of this measure is EŒhM;Mi1� D kMk2
H2

) .

Just like any L2 space, the space L2.M/ is a Hilbert space for the scalar product

.H;K/L2.M/ D E
h Z 1

0

HsKs dhM;Mis

i
;
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and the associated norm is

kHkL2.M/ D
�

E
h Z 1

0

H2
s dhM;Mis

i�1=2
:

Definition 5.2 An elementary process is a progressive process of the form

Hs.!/ D
p�1X

iD0
H.i/.!/ 1.ti;tiC1�.s/;

where 0 D t0 < t1 < t2 < � � � < tp and for every i 2 f0; 1; : : : ; p � 1g, H.i/ is a

bounded Fti -measurable random variable.

The set E of all elementary processes forms a linear subspace of L2.M/. To be

precise, we should here say “equivalence classes of elementary processes” (recall

that H and H0 are identified in L2.M/ if kH � H0kL2.M/ D 0).

Proposition 5.3 For every M 2 H2, E is dense in L2.M/.

Proof By elementary Hilbert space theory, it is enough to verify that, if K 2 L2.M/

is orthogonal to E , then K D 0. Assume that K 2 L2.M/ is orthogonal to E , and set,

for every t � 0,

Xt D
Z t

0

Ku dhM;Miu:

To see that the integral in the right-hand side makes sense, and defines a finite

variation process .Xt/t�0, we use the Cauchy–Schwarz inequality to observe that

E
h Z t

0

jKuj dhM;Miu

i
�
�

E
h Z t

0

.Ku/
2 dhM;Miu

i�1=2
� .EŒhM;Mi1�/

1=2:

The right-hand side is finite since M 2 H2 and K 2 L2.M/, and thus we have in

particular

a.s. 8t � 0;

Z t

0

jKuj dhM;Miu < 1:

By Proposition 4.5 (and Remark (i) following this proposition), .Xt/t�0 is well

defined as a finite variation process. The preceding bound also shows that Xt 2 L1

for every t � 0.

Let 0 � s < t, let F be a bounded Fs-measurable random-variable, and let H 2 E

be the elementary process defined by Hr.!/ D F.!/ 1.s;t�.r/. Writing .H;K/L2.M/ D
0, we get

E
h
F

Z t

s

Ku dhM;Miu

i
D 0:
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It follows that EŒF.Xt � Xs/� D 0 for every s < t and every bounded Fs-measurable

variable F. Since the process X is adapted and we know that Xr 2 L1 for every r � 0,

this implies that X is a (continuous) martingale. On the other hand, X is also a finite

variation process and, by Theorem 4.8, this is only possible if X D 0. We have thus

proved that

Z t

0

Ku dhM;Miu D 0 8t � 0; a:s:

which implies that, a.s., the signed measure having density Ku with respect to

dhM;Miu is the zero measure, which is only possible if

Ku D 0; dhM;Miu a:e:; a:s:

or equivalently K D 0 in L2.M/. ut
Recall our notation XT for the process X stopped at the stopping time T: XT

t D
Xt^T . If M 2 H2, the fact that hMT ;MTi1 D hM;MiT immediately implies that

MT also belongs to H2. Furthermore, if H 2 L2.M/, the process 1Œ0;T� H defined

by .1Œ0;T� H/s.!/ D 1f0�s�T.!/gHs.!/ also belongs to L2.M/ (note that 1Œ0;T� is

progressive since it is adapted with left-continuous sample paths).

Theorem 5.4 Let M 2 H2. For every H 2 E of the form

Hs.!/ D
p�1X

iD0
H.i/.!/ 1.ti;tiC1�.s/;

the formula

.H � M/t D
p�1X

iD0
H.i/ .MtiC1^t � Mti^t/

defines a process H � M 2 H2. The mapping H 7! H � M extends to an isometry from

L2.M/ into H2. Furthermore, H � M is the unique martingale of H2 that satisfies the

property

hH � M;Ni D H � hM;Ni; 8N 2 H2: (5.2)

If T is a stopping time, we have

.1Œ0;T�H/ � M D .H � M/T D H � MT : (5.3)
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We often use the notation

.H � M/t D
Z t

0

Hs dMs

and call H � M the stochastic integral of H with respect to M.

Remark The quantity H � hM;Ni in the right-hand side of (5.2) is an integral with

respect to a finite variation process, as defined in Sect. 4.1. The fact that we use a

similar notation H � A and H � M for the integrals with respect to a finite variation

process A and with respect to a martingale M creates no ambiguity since these two

classes of processes are essentially disjoint.

Proof As a preliminary observation, we note that the definition of H � M when

H 2 E does not depend on the decomposition chosen for H in the first display of

the theorem. Using this remark, one then checks that the mapping H 7! H � M is

linear. We next verify that this mapping is an isometry from E (viewed as a subspace

of L2.M/) into H2.

Fix H 2 E of the form given in the theorem, and for every i 2 f0; 1; : : : ; p � 1g,

set

Mi
t D H.i/ .MtiC1^t � Mti^t/;

for every t � 0. Then a simple verification shows that Mi is a continuous martingale

(this was already used in the beginning of the proof of Theorem 4.9), and that this

martingale belongs to H2. It follows that H � M D
Pp�1

iD0 Mi is also a martingale

in H2. Then, we note that the continuous martingales Mi are orthogonal, and their

respective quadratic variations are given by

hMi;Miit D H2
.i/

�
hM;MitiC1^t � hM;Miti^t

�

(the orthogonality of the martingales Mi as well as the formula of the last display are

easily checked, for instance by using the approximations of hM;Ni). We conclude

that

hH � M;H � Mit D
p�1X

iD0
H2
.i/

�
hM;MitiC1^t � hM;Miti^t

�
D
Z t

0

H2
s dhM;Mis:

Consequently,

kH � Mk2
H2

D EŒhH � M;H � Mi1� D E
h Z 1

0

H2
s dhM;Mis

i
D kHk2

L2.M/
:

By linearity, this implies that H �M D H0 �M if H0 is another elementary process that

is identified with H in L2.M/. Therefore the mapping H 7! H � M makes sense from
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E viewed as a subspace of L2.M/ into H2. The latter mapping is linear, and, since

it preserves the norm, it is an isometry from E (equipped with the norm of L2.M/)

into H2. Since E is dense in L2.M/ (Proposition 5.3) and H2 is a Hilbert space

(Proposition 5.1), this mapping can be extended in a unique way to an isometry

from L2.M/ into H2.

Let us verify property (5.2). We fix N 2 H2. We first note that, if H 2 L2.M/, the

Kunita–Watanabe inequality (Proposition 4.18) shows that

E
h Z 1

0

jHsj jdhM;Nisj
i

� kHkL2.M/ kNkH2 < 1

and thus the variable
R1
0

HsdhM;Nis D .H � hM;Ni/1 is well defined and in L1.

Consider first the case where H is an elementary process of the form given in the

theorem, and define the continuous martingales Mi, 0 � i � p � 1, as previously.

Then, for every i 2 f0; 1; : : : ; p � 1g,

hH � M;Ni D
p�1X

iD0
hMi;Ni

and we have

hMi;Nit D H.i/

�
hM;NitiC1^t � hM;Niti^t

�
:

It follows that

hH � M;Nit D
p�1X

iD0
H.i/

�
hM;NitiC1^t � hM;Niti^t

�
D
Z t

0

Hs dhM;Nis

which gives (5.2) when H 2 E . We then observe that the linear mapping X 7!
hX;Ni1 is continuous from H2 into L1. Indeed, by the Kunita–Watanabe inequality,

EŒjhX;Ni1j� � EŒhX;Xi1�
1=2EŒhN;Ni1�

1=2 D kNkH2 kXkH2 :

If .Hn/n�1 is a sequence in E , such that Hn ! H in L2.M/, we have therefore

hH � M;Ni1 D lim
n!1

hHn � M;Ni1 D lim
n!1

.Hn � hM;Ni/1 D .H � hM;Ni/1;

where the convergences hold in L1, and the last equality again follows from the

Kunita–Watanabe inequality by writing

E
hˇ̌
ˇ
Z 1

0

.Hn
s � Hs/ dhM;Nis

ˇ̌
ˇ
i

� EŒhN;Ni1�
1=2 kHn � HkL2.M/:
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We have thus obtained the identity hH � M;Ni1 D .H � hM;Ni/1, but replacing N

by the stopped martingale Nt in this identity also gives hH � M;Nit D .H � hM;Ni/t,
which completes the proof of (5.2).

It is easy to see that (5.2) characterizes H � M among the martingales of H2.

Indeed, if X is another martingale of H2 that satisfies the same identity, we get, for

every N 2 H2,

hH � M � X;Ni D 0:

Taking N D H � M � X and using Proposition 4.12 we obtain that X D H � M.

It remains to verify (5.3). Using the properties of the bracket of two continuous

local martingales, we observe that, if N 2 H2,

h.H � M/T ;Nit D hH � M;Nit^T D .H � hM;Ni/t^T D .1Œ0;T� H � hM;Ni/t

which shows that the stopped martingale .H �M/T satisfies the characteristic property

of the stochastic integral .1Œ0;T�H/ �M. The first equality in (5.3) follows. The second

one is proved analogously, writing

hH � MT ;Ni D H � hMT ;Ni D H � hM;NiT D 1Œ0;T� H � hM;Ni:

This completes the proof of the theorem. ut
Remark We could have used the relation (5.2) to define the stochastic integral H�M,

observing that the mapping N 7! EŒ.H � hM;Ni/1� yields a continuous linear form

on H2, and thus there exists a unique martingale H � M in H2 such that

EŒ.H � hM;Ni/1� D .H � M;N/H2 D EŒhH � M;Ni1�:

Using the notation introduced at the end of Theorem 5.4, we can rewrite (5.2) in

the form

h
Z �

0

HsdMs;Nit D
Z t

0

Hs dhM;Nis:

We interpret this by saying that the stochastic integral “commutes” with the bracket.

Let us immediately mention a very important consequence. If M 2 H2, and H 2
L2.M/, two successive applications of (5.2) give

hH � M;H � Mi D H � .H � hM;Mi/ D H2 � hM;Mi;



5.1 The Construction of Stochastic Integrals 105

using the “associativity property” (4.1) of integrals with respect to finite variation

processes. Put differently, the quadratic variation of the continuous martingale

H � M is

h
Z �

0

HsdMs;

Z �

0

HsdMsit D
Z t

0

H2
s dhM;Mis: (5.4)

More generally, if N is another martingale of H2 and K 2 L2.N/, the same argument

gives

h
Z �

0

HsdMs;

Z �

0

KsdNsit D
Z t

0

HsKs dhM;Nis: (5.5)

The following “associativity” property of stochastic integrals, which is analogous

to property (4.1) for integrals with respect to finite variation processes, is very

useful.

Proposition 5.5 Let H 2 L2.M/. If K is a progressive process, we have KH 2
L2.M/ if and only if K 2 L2.H � M/. If the latter properties hold,

.KH/ � M D K � .H � M/:

Proof Using property (5.4), we have

E
h Z 1

0

K2
s H2

s dhM;Mis

i
D E

h Z 1

0

K2
s dhH � M;H � Mis

i
;

which gives the first assertion. For the second one, we write for N 2 H2,

h.KH/ � M;Ni D KH � hM;Ni D K � .H � hM;Ni/ D K � hH � M;Ni

and, by the uniqueness statement in (5.2), this implies that .KH/ � M D K � .H � M/.

ut
Moments of stochastic integrals. Let M 2 H2, N 2 H2, H 2 L2.M/ and K 2
L2.N/. Since H � M and K � N are martingales in H2, we have, for every t 2 Œ0;1�,

E
h Z t

0

Hs dMs

i
D 0 (5.6)

E
h� Z t

0

HsdMs

�� Z t

0

KsdNs

�i
D E

h Z t

0

HsKs dhM;Nis

i
; (5.7)

using Proposition 4.15 (v) and (5.5) to derive (5.7). In particular,

E
h� Z t

0

Hs dMs

�2i
D E

h Z t

0

H2
s dhM;Mis

i
: (5.8)
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Furthermore, since H � M is a (true) martingale, we also have for every 0 � s < t �
1,

E
h Z t

0

Hr dMr

ˇ̌
ˇFs

i
D
Z s

0

Hr dMr; (5.9)

or equivalently

E
h Z t

s

Hr dMr

ˇ̌
ˇFs

i
D 0

with an obvious notation for
R t

s
Hr dMr. It is important to observe that these formulas

(and particularly (5.6) and (5.8)) may no longer hold for the extensions of stochastic

integrals that we will now describe.

5.1.2 Stochastic Integrals for Local Martingales

We will now use the identities (5.3) to extend the definition of H � M to an arbitrary

continuous local martingale. If M is a continuous local martingale, we write L2loc.M/

(resp. L2.M/) for the set of all progressive processes H such that

Z t

0

H2
s dhM;Mis < 1; 8t � 0; a:s: .resp. such that E

h Z 1

0

H2
s dhM;Mis

i
< 1/:

For future reference, we note that L2.M/ (with the same identifications as in the

case where M 2 H2) can again be viewed as an “ordinary” L2-space and thus has a

Hilbert space structure.

Theorem 5.6 Let M be a continuous local martingale. For every H 2 L2loc.M/,

there exists a unique continuous local martingale with initial value 0, which is

denoted by H � M, such that, for every continuous local martingale N,

hH � M;Ni D H � hM;Ni: (5.10)

If T is a stopping time, we have

.1Œ0;T�H/ � M D .H � M/T D H � MT : (5.11)

If H 2 L2loc.M/ and K is a progressive process, we have K 2 L2loc.H � M/ if and only

if HK 2 L2loc.M/, and then

H � .K � M/ D HK � M: (5.12)
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Finally, if M 2 H2, and H 2 L2.M/, the definition of H � M is consistent with that of

Theorem 5.4.

Proof We may assume that M0 D 0 (in the general case, we write M D M0 C M0

and we just set H � M D H � M0, noting that hM;Ni D hM0;Ni for every continuous

local martingale N). Also we may assume that the property
R t

0
H2

s dhM;Mis < 1
for every t � 0 holds for every ! 2 ˝ (on the negligible set where this fails we may

replace H by 0).

For every n � 1, set

Tn D infft � 0 W
Z t

0

.1C H2
s / dhM;Mis � ng;

so that .Tn/ is a sequence of stopping times that increase to C1. Since

hMTn ;MTn it D hM;Mit^Tn
� n;

the stopped martingale MTn is in H2 (Theorem 4.13). Furthermore, we also have

Z 1

0

H2
s dhMTn ;MTn is D

Z Tn

0

H2
s dhM;Mis � n:

Hence, H 2 L2.MTn/, and the definition of H � MTn makes sense by Theorem 5.4.

Moreover, by property (5.3), we have, if m > n,

H � MTn D .H � MTm/Tn :

It follows that there exists a unique process denoted by H � M such that, for every n,

.H � M/Tn D H � MTn :

Clearly H � M has continuous sample paths and is also adapted since .H � M/t D
lim.H � MTn/t. Since the processes .H � M/Tn are martingales in H2, we get that H � M
is a continuous local martingale.

Then, to verify (5.10), we may assume that N is a continuous local martingale

such that N0 D 0. For every n � 1, set T 0
n D infft � 0 W jNtj � ng, and Sn D Tn ^T 0

n.

Then, noting that NT0
n 2 H2, we have

hH � M;NiSn D h.H � M/Tn ;NT0
n i

D hH � MTn ;NT0
ni

D H � hMTn ;NT0
ni

D H � hM;NiSn

D .H � hM;Ni/Sn ;
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which gives the equality hH �M;Ni D H � hM;Ni. since Sn " 1 as n ! 1. The fact

that this equality (written for every continuous local martingale N) characterizes

H � M among continuous local martingales with initial value 0 is derived from

Proposition 4.12 as in the proof of Theorem 5.4.

The property (5.11) is then obtained by the very same arguments as in the proof of

property (5.3) in Theorem 5.4 (these arguments only depended on the characteristic

property (5.2) which we have just extended in (5.10)). Similarly, the proof of (5.12)

is analogous to the proof of Proposition 5.5.

Finally, if M 2 H2 and H 2 L2.M/, the equality hH � M;H � Mi D H2 � hM;Mi
follows from (5.10), and implies that H � M 2 H2. Then the characteristic

property (5.2) shows that the definitions of Theorems 5.4 and 5.6 are consistent. ut
In the setting of Theorem 5.6, we will again write

.H � M/t D
Z t

0

Hs dMs:

It is worth pointing out that formulas (5.4) and (5.5) remain valid when M and

N are continuous local martingales and H 2 L2loc.M/, K 2 L2loc.N/. Indeed, these

formulas immediately follow from (5.10).

Connection with the Wiener integral Suppose that B is an .Ft/-Brownian

motion, and h 2 L2.RC;B.RC/; dt/ is a deterministic square integrable function.

We can then define the Wiener integral
R t

0
h.s/dBs D G.f 1Œ0;t�/, where G is the

Gaussian white noise associated with B (see the end of Sect. 2.1). It is easy to verify

that this integral coincides with the stochastic integral .h � B/t, which makes sense

by viewing h as a (deterministic) progressive process. This is immediate when h is

a simple function, and the general case follows from a density argument.

Let us now discuss the extension of the moment formulas that we stated above

in the setting of Theorem 5.4. Let M be a continuous local martingale, H 2 L2loc.M/

and t 2 Œ0;1�. Then, under the condition

E
h Z t

0

H2
s dhM;Mis

i
< 1; (5.13)

we can apply Theorem 4.13 to .H � M/t, and get that .H � M/t is a martingale of H2.

It follows that properties (5.6) and (5.8) still hold:

E
h Z t

0

Hs dMs

i
D 0; E

h� Z t

0

Hs dMs

�2i
D E

h Z t

0

H2
s dhM;Mis

i
;

and similarly (5.9) is valid for 0 � s � t. In particular (case t D 1), if H 2 L2.M/,

the continuous local martingale H � M is in H2 and its terminal value satisfies

E
h� Z 1

0

Hs dMs

�2i
D E

h Z 1

0

H2
s dhM;Mis

i
:
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If the condition (5.13) does not hold, the previous formulas may fail. However, we

always have the bound

E
h� Z t

0

Hs dMs

�2i
� E

h Z t

0

H2
s dhM;Mis

i
: (5.14)

Indeed, if the right-hand side is finite, this is an equality by the preceding

observations. If the right-hand side is infinite, the bound is trivial.

5.1.3 Stochastic Integrals for Semimartingales

We finally extend the definition of stochastic integrals to continuous semimartin-

gales. We say that a progressive process H is locally bounded if

8t � 0; sup
s�t

jHsj < 1; a.s.

In particular, any adapted process with continuous sample paths is a locally bounded

progressive process. If H is (progressive and) locally bounded, then for every finite

variation process V , we have

8t � 0;

Z t

0

jHsj jdVsj < 1; a.s.

and similarly H 2 L2loc.M/ for every continuous local martingale M.

Definition 5.7 Let X be a continuous semimartingale and let X D M C V

be its canonical decomposition. If H is a locally bounded progressive process,

the stochastic integral H � X is the continuous semimartingale with canonical

decomposition

H � X D H � M C H � V;

and we write

.H � X/t D
Z t

0

Hs dXs:

Properties

(i) The mapping .H;X/ 7! H � X is bilinear.

(ii) H � .K � X/ D .HK/ � X, if H and K are progressive and locally bounded.

(iii) For every stopping time T, .H � X/T D H1Œ0;T� � X D H � XT .

(iv) If X is a continuous local martingale, resp. if X is a finite variation process,

then the same holds for H � X.
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(v) If H is of the form Hs.!/ D
Pp�1

iD0 H.i/.!/ 1.ti;tiC1 �.s/, where 0 D t0 < t1 <

� � � < tp, and, for every i 2 f0; 1; : : : ; p � 1g, H.i/ is Fti -measurable, then

.H � X/t D
p�1X

iD0
H.i/ .XtiC1^t � Xti^t/:

We can restate the “associativity” property (ii) by saying that, if Yt D
R t

0
KsdXs

then

Z t

0

Hs dYs D
Z t

0

HsKs dXs:

Properties (i)–(iv) easily follow from the results obtained when X is a continuous

local martingale, resp. a finite variation process. As for property (v), we first note

that it is enough to consider the case where X D M is a continuous local martingale

with M0 D 0, and by stopping M at suitable stopping times (and using (5.11)),

we can even assume that M is in H2. There is a minor difficulty coming from the

fact that the variables H.i/ are not assumed to be bounded (and therefore we cannot

directly use the construction of the integral of elementary processes). To circumvent

this difficulty, we set, for every n � 1,

Tn D infft � 0 W jHtj � ng D inffti W jH.i/j � ng .where inf ¿ D 1/:

It is easy to verify that Tn is a stopping time, and we have Tn " 1 as n ! 1.

Furthermore, we have for every n,

Hs 1Œ0;Tn �.s/ D
p�1X

iD0
Hn
.i/ 1.ti;tiC1�.s/

where the random variables Hn
.i/ D H.i/ 1fTn>tig satisfy the same properties as the

H.i/’s and additionally are bounded by n. Hence H 1Œ0;Tn � is an elementary process,

and by the very definition of the stochastic integral with respect to a martingale of

H2, we have

.H � M/t^Tn
D .H 1Œ0;Tn � � M/t D

p�1X

iD0
Hn
.i/ .MtiC1^t � Mti^t/:

The desired result now follows by letting n tend to infinity.
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5.1.4 Convergence of Stochastic Integrals

We start by giving a “dominated convergence theorem” for stochastic integrals.

Proposition 5.8 Let X D M C V be the canonical decomposition of a continuous

semimartingale X, and let t > 0. Let .Hn/n�1 and H be locally bounded progressive

processes, and let K be a nonnegative progressive process. Assume that the

following properties hold a.s.:

(i) Hn
s �! Hs as n ! 1, for every s 2 Œ0; t�;

(ii) jHn
s j � Ks , for every n � 1 and s 2 Œ0; t�;

(iii)
R t

0
.Ks/

2 dhM;Mis < 1 and
R t

0
Ks jdVsj < 1.

Then,

Z t

0

Hn
s dXs �!

n!1

Z t

0

Hs dXs

in probability.

Remarks

(a) Assertion (iii) holds automatically if K is locally bounded.

(b) Instead of assuming that (i) and (ii) hold for every s 2 Œ0; t� (a.s.), it is enough to

assume that these conditions hold for dhM;Mis-a.e. s 2 Œ0; t� and for jdVsj-a.e.

s 2 Œ0; t�, a.s. This will be clear from the proof.

Proof The a.s. convergence

Z t

0

Hn
s dVs �!

n!1

Z t

0

Hs dVs

follows from the usual dominated convergence theorem. So we just have to verify

that
R t

0
Hn

s dMs converges in probability to
R t

0
Hs dMs. For every integer p � 1,

consider the stopping time

Tp WD inffr 2 Œ0; t� W
Z r

0

.Ks/
2dhM;Mis � pg ^ t;

and observe that Tp D t for all large enough p, a.s., by assumption (iii). Then, the

bound (5.14) gives

E
h� Z Tp

0

Hn
s dMs �

Z Tp

0

Hs dMs

�2i
� E

h Z Tp

0

.Hn
s � Hs/

2dhM;Mis

i
;

which tends to 0 as n ! 1, by dominated convergence, using assumptions (i) and

(ii) and the fact that
R Tp

0 .Ks/
2 dhM;Mis � p. Since P.Tp D t/ tends to 1 as p ! 1,

the desired result follows. ut
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We apply the preceding proposition to an approximation result in the case of

continuous integrands, which will be useful in the next section.

Proposition 5.9 Let X be a continuous semimartingale, and let H be an adapted

process with continuous sample paths. Then, for every t > 0, for every sequence

0 D tn
0 < � � � < tn

pn
D t of subdivisions of Œ0; t� whose mesh tends to 0, we have

lim
n!1

pn�1X

iD0
Htni
.Xtn

iC1
� Xtni

/ D
Z t

0

Hs dXs;

in probability.

Proof For every n � 1, define a process Hn by

Hn
s D

8
<
:

Htni
if tn

i < s � tn
iC1; for every i 2 f0; 1; : : : ; pn � 1g

H0 if s D 0

0 if s > t:

Note that Hn is progressive. We then observe that all assumptions of Proposition 5.8

hold if we take

Ks D max
0�r�s

jHsj;

which is a locally bounded progressive process. Hence, we conclude that

Z t

0

Hn
s dXs �!

n!1

Z t

0

Hs dXs

in probability. This gives the desired result since, by property (v) in Sect. 5.1.3, we

have

Z t

0

Hn
s dXs D

pn�1X

iD0
Htni
.Mtn

iC1
� Mtni

/:

ut
Remark The preceding proposition can be viewed as a generalization of

Lemma 4.3 to stochastic integrals. However, in contrast with that lemma, it is

essential in Proposition 5.9 to evaluate H at the left end of the interval .tn
i ; t

n
iC1�:

The result will fail if we replace Htni
by Htn

iC1
. Let us give a simple counterexample.

We take Ht D Xt and we assume that the sequence of subdivisions .tn
i /0�i�pn

is

increasing. By the proposition, we have

lim
n!1

pn�1X

iD0
Xtni
.Xtn

iC1
� Xtni

/ D
Z t

0

Xs dXs;
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in probability. On the other hand, writing

pn�1X

iD0
Xtn

iC1
.Xtn

iC1
� Xtni

/ D
pn�1X

iD0
Xtni
.Xtn

iC1
� Xtni

/C
pn�1X

iD0
.Xtn

iC1
� Xtni

/2;

and using Proposition 4.21, we get

lim
n!1

pn�1X

iD0
Xtn

iC1
.Xtn

iC1
� Xtni

/ D
Z t

0

Xs dXs C hX;Xit;

in probability. The resulting limit is different from
R t

0 XsdXs unless the martingale

part of X is degenerate. Note that, if we add the previous two convergences, we

arrive at the formula

.Xt/
2 � .X0/

2 D 2

Z t

0

XsdXs C hX;Xit

which is a special case of Itô’s formula of the next section.

5.2 Itô’s Formula

Itô’s formula is the cornerstone of stochastic calculus. It shows that, if we apply a

twice continuously differentiable function to a p-tuple of continuous semimartin-

gales, the resulting process is still a continuous semimartingale, and there is an

explicit formula for the canonical decomposition of this semimartingale.

Theorem 5.10 (Itô’s formula) Let X1; : : : ;Xp be p continuous semimartingales,

and let F be a twice continuously differentiable real function on Rp. Then, for every

t � 0,

F.X1t ; : : : ;X
p
t / D F.X10; : : : ;X

p

0/C
pX

iD1

Z t

0

@F

@xi
.X1s ; : : : ;X

p
s / dXi

s

C1

2

pX

i;jD1

Z t

0

@2F

@xi@xj
.X1s ; : : : ;X

p
s / dhXi;Xjis:

Proof We first deal with the case p D 1 and we write X D X1 for simplicity. Fix

t > 0 and consider an increasing sequence 0 D tn
0 < � � � < tn

pn
D t of subdivisions

of Œ0; t� whose mesh tends to 0. Then, for every n,

F.Xt/ D F.X0/C
pn�1X

iD0
.F.Xtn

iC1
/ � F.Xtni

//:
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For every i 2 f0; 1; : : : ; pn � 1g, we apply the Taylor–Lagrange formula to the

function Œ0; 1� 3 � 7! F.Xtni
C �.Xtn

iC1
� Xtni

//, between � D 0 and � D 1, and we

get that

F.Xtn
iC1
/� F.Xtni

/ D F0.Xtni
/.Xtn

iC1
� Xtni

/C 1

2
fn;i .Xtn

iC1
� Xtni

/2;

where the quantity fn;i can be written as F00.Xtni
C c.Xtn

iC1
� Xtni

// for some c 2 Œ0; 1�.
By Proposition 5.9 with Hs D F0.Xs/, we have

lim
n!1

pn�1X

iD0
F0.Xtni

/.Xtn
iC1

� Xtni
/ D

Z t

0

F0.Xs/ dXs;

in probability. To complete the proof of the case p D 1 of the theorem, it is therefore

enough to verify that

lim
n!1

pn�1X

iD0
fn;i.Xtn

iC1
� Xtni

/2 D
Z t

0

F00.Xs/ dhX;Xis; (5.15)

in probability. We observe that

sup
0�i�pn�1

jfn;i � F00.Xtni
/j � sup

0�i�pn�1

 
sup

x2ŒXtni
^Xtn

iC1
;Xtni

_Xtn
iC1

�

jF00.x/ � F00.Xtni
/j
!
:

The right-hand side of the preceding display tends to 0 a.s. as n ! 1, as a simple

consequence of the uniform continuity of F00 (and of the sample paths of X) over a

compact interval.

Since
Ppn�1

iD0 .Xtn
iC1

� Xtni
/2 converges in probability (Proposition 4.21), it follows

from the last display that

ˇ̌
ˇ̌
ˇ

pn�1X

iD0
fn;i.Xtn

iC1
� Xtni

/2 �
pn�1X

iD0
F00.Xtni

/.Xtn
iC1

� Xtni
/2

ˇ̌
ˇ̌
ˇ �!

n!1
0

in probability. So the convergence (5.15) will follow if we can verify that

lim
n!1

pn�1X

iD0
F00.Xtni

/.Xtn
iC1

� Xtni
/2 D

Z t

0

F00.Xs/ dhX;Xis; (5.16)

in probability. In fact, we will show that (5.16) holds a.s. along a suitable sequence

of values of n (this suffices for our needs, because we can replace the initial sequence
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of subdivisions by a subsequence). To this end, we note that

pn�1X

iD0
F00.Xtni

/.Xtn
iC1

� Xtni
/2 D

Z

Œ0;t�

F00.Xs/ �n.ds/;

where �n is the random measure on Œ0; t� defined by

�n.dr/ WD
pn�1X

iD0
.Xtn

iC1
� Xtni

/2 ıtni
.dr/:

Write D for the dense subset of Œ0; t� that consists of all tn
i for n � 1 and 0 � i � pn.

As a consequence of Proposition 4.21, we get for every r 2 D,

�n.Œ0; r�/ �!
n!1

hX;X
˛
r

in probability. Using a diagonal extraction, we can thus find a subsequence of values

of n such that, along this subsequence, we have for every r 2 D,

�n.Œ0; r�/
a:s:�!

n!1
hX;X

˛
r
;

which implies that the sequence �n converges a.s. to the measure 1Œ0;t�.r/ dhX;Xir,

in the sense of weak convergence of finite measures. We conclude that we have

Z

Œ0;t�

F00.Xs/ �n.ds/
a:s:�!

n!1

Z t

0

F00.Xs/ dhX;Xis

along the chosen subsequence. This completes the proof of the case p D 1.

In the general case, the Taylor–Lagrange formula, applied for every n � 1 and

every i 2 f0; 1; : : : ; pn � 1g to the function

Œ0; 1� 3 � 7! F.X1tni
C �.X1tn

iC1
� X1tni

/; : : : ;X
p

tni
C �.X

p

tn
iC1

� X
p

tni
// ;

gives

F.X1tn
iC1
; : : : ;X

p

tn
iC1
/ � F.X1tni

; : : : ;X
p

tni
/ D

pX

kD1

@F

@xk
.X1tni

; : : : ;X
p

tni
/ .Xk

tn
iC1

� Xk
tni
/

C
pX

k;lD1

f
k;l
n;i

2
.Xk

tn
iC1

� Xk
tni
/.Xl

tn
iC1

� Xl
tni
/
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where, for every k; l 2 f1; : : : ; pg,

f
k;l
n;i D @2F

@xk@xl

.Xtni
C c.Xtn

iC1
� Xtni

//;

for some c 2 Œ0; 1� (here we use the notation Xt D .X1t ; : : : ;X
p
t /).

Proposition 5.9 can again be used to handle the terms involving first derivatives.

Moreover, a slight modification of the arguments of the case p D 1 shows that, at

least along a suitable sequence of values of n, we have for every k; l 2 f1; : : : ; pg,

lim
n!1

pn�1X

iD0
f

k;l
n;i .X

k
tn
iC1

� Xk
tni
/.Xl

tn
iC1

� Xl
tni
/ D

Z t

0

@2F

@xk@xl

.X1s ; : : : ;X
p
s / dhXk;Xlis

in probability. This completes the proof of the theorem. ut
An important special case of Itô’s formula is the formula of integration by

parts, which is obtained by taking p D 2 and F.x; y/ D xy: if X and Y are two

continuous semimartingales, we have

XtYt D X0Y0 C
Z t

0

Xs dYs C
Z t

0

Ys dXs C hX;Yit:

In particular, if Y D X,

X2t D X20 C 2

Z t

0

Xs dXs C hX;Xit:

When X D M is a continuous local martingale, we know from the definition of the

quadratic variation that M2 � hM;Mi is a continuous local martingale. The previous

formula shows that this continuous local martingale is

M2
0 C 2

Z t

0

Ms dMs:

We could have seen this directly from the construction of hM;Mi in Chap. 4 (this

construction involved approximations of the stochastic integral
R t

0
MsdMs).

Let B be an .Ft/-real Brownian motion (recall from Definition 3.11 that this

means that B is a Brownian motion, which is adapted to the filtration .Ft/ and such

that, for every 0 � s < t, the variable Bt � Bs is independent of the �-field Fs). An

.Ft/-Brownian motion is a continuous local martingale (a martingale if B0 2 L1)

and we already noticed that its quadratic variation is hB;Bit D t.

In this particular case, Itô’s formula reads

F.Bt/ D F.B0/C
Z t

0

F0.Bs/ dBs C 1

2

Z t

0

F00.Bs/ds:



5.2 Itô’s Formula 117

Taking X1t D t, X2t D Bt, we also get for every twice continuously differentiable

function F.t; x/ on RC � R,

F.t;Bt/ D F.0;B0/C
Z t

0

@F

@x
.s;Bs/ dBs C

Z t

0

.
@F

@t
C 1

2

@2F

@x2
/.s;Bs/ ds:

Let Bt D .B1t ; : : : ;B
d
t / be a d-dimensional .Ft/-Brownian motion. Note that the

components B1; : : : ;Bd are .Ft/-Brownian motions. By Proposition 4.16, hBi;Bji D
0 when i 6D j (by subtracting the initial value, which does not change the bracket

hBi;B ji, we are reduced to the case where B1; : : : ;Bd are independent). Itô’s formula

then shows that, for every twice continuously differentiable function F on Rd,

F.B1t ; : : : ;B
d
t /

D F.B10; : : : ;B
d
0/C

dX

iD1

Z t

0

@F

@xi

.B1s ; : : : ;B
d
s / dBi

s C 1

2

Z t

0

�F.B1s ; : : : ;B
d
s / ds:

The latter formula is often written in the shorter form

F.Bt/ D F.B0/C
Z t

0

rF.Bs/ � dBs C 1

2

Z t

0

�F.Bs/ ds;

where rF stands for the vector of first partial derivatives of F. There is again an

analogous formula for F.t;Bt/.

Important remark It frequently occurs that one needs to apply Itô’s formula to

a function F which is only defined (and twice continuously differentiable) on an

open subset U of Rp. In that case, we can argue in the following way. Suppose

that there exists another open set V , such that .X10; : : : ;X
p

0/ 2 V a.s. and NV � U

(here NV denotes the closure of V). Typically V will be the set of all points whose

distance from Uc is strictly greater than ", for some " > 0. Set TV WD infft �
0 W .X1t ; : : : ;X

p
t / … Vg, which is a stopping time by Proposition 3.9. Simple

analytic arguments allow us to find a function G which is twice continuously

differentiable on Rp and coincides with F on NV . We can now apply Itô’s formula to

obtain the canonical decomposition of the semimartingale G.X1t^TV
; : : : ;X

p

t^TV
/ D

F.X1t^TV
; : : : ;X

p

t^TV
/, and this decomposition only involves the first and second

derivatives of F on V . If in addition we know that the process .X1t ; : : : ;X
p
t / a.s. does

not exit U, we can let the open set V increase to U, and we get that Itô’s formula for

F.X1t ; : : : ;X
p
t / remains valid exactly in the same form as in Theorem 5.10. These

considerations can be applied, for instance, to the function F.x/ D log x and to a

semimartingale X taking strictly positive values: see the proof of Proposition 5.21

below.
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We now use Itô’s formula to exhibit a remarkable class of (local) martingales,

which extends the exponential martingales associated with processes with indepen-

dent increments. A random process with values in the complex plane C is called a

complex continuous local martingale if both its real part and its imaginary part are

continuous local martingales.

Proposition 5.11 Let M be a continuous local martingale and, for every � 2 C, let

E .�M/t D exp
�
�Mt � �2

2
hM;Mit

�
:

The process E .�M/ is a complex continuous local martingale, which can be written

in the form

E .�M/t D e�M0 C �

Z t

0

E .�M/s dMs:

Remark The stochastic integral in the right-hand side of the last display is defined

by dealing separately with the real and the imaginary part.

Proof If F.r; x/ is a twice continuously differentiable function on R2, Itô’s formula

gives

F.hM;Mit;Mt/ D F.0;M0/C
Z t

0

@F

@x
.hM;Mis;Ms/ dMs

C
Z t

0

�@F

@r
C 1

2

@2F

@x2

�
.hM;Mis;Ms/ dhM;Mis:

Hence, F.hM;Mit;Mt/ is a continuous local martingale as soon as F satisfies the

equation

@F

@r
C 1

2

@2F

@x2
D 0:

This equation holds for F.r; x/ D exp.�x � �2

2
r/ (more precisely for both the real

and the imaginary part of this function). Moreover, for this choice of F we have
@F
@x

D �F, which leads to the formula of the statement. ut

5.3 A Few Consequences of Itô’s Formula

Itô’s formula has a huge number of applications. In this section, we derive some of

the most important ones.
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5.3.1 Lévy’s Characterization of Brownian Motion

We start with a striking characterization of real Brownian motion as the unique

continuous local martingale M such that hM;Mit D t. In fact, we give a

multidimensional version of this result, which is known as Lévy’s theorem.

Theorem 5.12 Let X D .X1; : : : ;Xd/ be an adapted process with continuous

sample paths. The following are equivalent:

(i) X is a d-dimensional .Ft/-Brownian motion.

(ii) The processes X1; : : : ;Xd are continuous local martingales, and hXi;Xjit D ıij t

for every i; j 2 f1; : : : ; dg (here ıij is the Kronecker symbol, ıij D 1fiDjg).

In particular, a continuous local martingale M is an .Ft/-Brownian motion if and

only if hM;Mit D t, for every t � 0, or equivalently if and only if M2
t � t is a

continuous local martingale.

Proof The fact that (i) ) (ii) has already been derived. Let us assume that (ii)

holds. Let � D .�1; : : : ; �d/ 2 Rd. Then, � � Xt D
Pd

jD1 �jX
j
t is a continuous local

martingale with quadratic variation

dX

jD1

dX

kD1
�j�khXj;Xkit D j�j2t:

By Proposition 5.11, exp.i� � Xt C 1
2
j�j2t/ is a complex continuous local martingale.

This complex continuous local martingale is bounded on every interval Œ0; a�, a > 0,

and is therefore a (true) martingale, in the sense that its real and imaginary parts are

both martingales. Hence, for every 0 � s < t,

EŒexp.i� � Xt C 1

2
j�j2t/ j Fs� D exp.i� � Xs C 1

2
j�j2s/;

and thus

EŒexp.i� � .Xt � Xs/ j Fs� D exp.�1
2

j�j2.t � s//:

It follows that, for every A 2 Fs,

EŒ1A exp.i� � .Xt � Xs//� D P.A/ exp.�1
2

j�j2.t � s//:

Taking A D ˝ , we get that Xt � Xs is a centered Gaussian vector with covariance

matrix .t � s/Id (in particular, the components X
j
t � Xj

s, 1 � j � d are independent).

Furthermore, fix A 2 Fs with P.A/ > 0, and write PA for the conditional probability
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measure PA.�/ D P.A/�1P.� \ A/. We also obtain that

PAŒexp.i� � .Xt � Xs//� D exp.�1
2

j�j2.t � s//

which means that the law of Xt � Xs under PA is the same as its law under P.

Therefore, for any nonnegative measurable function f on Rd, we have

PAŒf .Xt � Xs/� D EŒf .Xt � Xs/�;

or equivalently

EŒ1Af .Xt � Xs/� D P.A/EŒf .Xt � Xs/�:

This holds for any A 2 Fs (when P.A/ D 0 the equality is trivial), and thus Xt � Xs

is independent of Fs.

It follows that, if t0 D 0 < t1 < : : : < tp, the vectors Xt1 � Xt0 ;Xt2 �
Xt1 ; : : : ;Xtp � Xtp�1 are independent. Since the components of each of these vectors

are independent random variables, we obtain that all variables X
j
tk � X

j
tk�1
; 1 �

j � d; 1 � k � p are independent, and X
j
tk � X

j
tk�1

is distributed according to

N .0; tk�tk�1/. This implies that X�X0 is a d-dimensional Brownian motion started

from 0. Since we also know that X�X0 is independent of X0 (as an easy consequence

of the fact that Xt � Xs is independent of Fs, for every 0 � s < t), we get that X

is a d-dimensional Brownian motion. Finally, X is adapted and has independent

increments with respect to the filtration .Ft/ so that X is a d-dimensional .Ft/-

Brownian motion. ut

5.3.2 Continuous Martingales as Time-Changed Brownian

Motions

The next theorem shows that any continuous local martingale M can be written as a

“time-changed” Brownian motion (in fact, we prove this only when hM;Mi1 D 1,

but see the remarks below). It follows that the sample paths of M are Brownian

sample paths run at a different (varying) speed, and certain almost sure properties of

sample paths of M can be deduced from the corresponding properties of Brownian

sample paths. For instance, under the condition hM;Mi1 D 1, the sample paths

of M must oscillate between C1 and �1 as t ! 1 (cf. the last assertion of

Proposition 2.14).
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Theorem 5.13 (Dambis–Dubins–Schwarz) Let M be a continuous local martin-

gale such that hM;Mi1 D 1 a.s. There exists a Brownian motion .ˇs/s�0 such

that

a:s: 8t � 0; Mt D ˇ<M;M>t
:

Remarks

(i) One can remove the assumption hM;Mi1 D 1, at the cost of enlarging the

underlying probability space, see [70, Chapter V].

(ii) The Brownian motion ˇ is not adapted with respect to the filtration .Ft/, but

with respect to a “time-changed” filtration, as the following proof will show.

Proof We first assume that M0 D 0. For every r � 0, we set

�r D infft � 0 W hM;Mit � rg:

Note that �r is a stopping time by Proposition 3.9. Furthermore, we have �r < 1
for every r � 0, on the event fhM;Mi1 D 1g. It will be convenient to redefine the

variables �r on the (negligible) event N D fhM;Mi1 < 1g by taking �r.!/ D 0

for every r � 0 if ! 2 N . Since the filtration is complete, �r remains a stopping

time after this modification.

By construction, for every ! 2 ˝ , the function r 7! �r.!/ is nondecreasing and

left-continuous, and therefore has a right limit at every r � 0. This right limit is

denoted by �rC and we have

�rC D infft � 0 W hM;Mit > rg;

except of course on the negligible set N , where �rC D 0.

We set ˇr D M�r
for every r � 0. By Theorem 3.7, the process .ˇr/r�0 is adapted

with respect to the filtration .Gr/ defined by Gr D F�r
for every r � 0, and G1 D

F1. Note that the filtration .Gr/ is complete since this property holds for .Ft/.

The sample paths r 7! ˇr.!/ are left-continuous and have right limits given for

every r � 0 by

ˇrC D lim
s##r

ˇs D M�rC
:

In fact we have ˇrC D ˇr for every r � 0, a.s., as a consequence of the following

lemma.

Lemma 5.14 We have a.s. for every 0 � a < b,

Mt D Ma; 8t 2 Œa; b� ” hM;Mib D hM;Mia:

Let us postpone the proof of the lemma. Since hM;Mi�r
D hM;Mi�rC

for every

r � 0, Lemma 5.14 implies that M�r
D M�rC

, for every r � 0, a.s. Hence the sample
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paths of ˇ are continuous (to be precise, we should redefine ˇr D 0, for every r � 0,

on the zero probability set where the property of Lemma 5.14 fails).

Let us verify that ˇs and ˇ2s � s are martingales with respect to the filtration

.Gs/. For every integer n � 1, the stopped continuous local martingales M�n and

.M�n/2�hM;Mi�n are uniformly integrable martingales (by Theorem 4.13, recalling

that M0 D 0 and noting that hM�n ;M�ni1 D hM;Mi�n
D n a.s.). The optional

stopping theorem (Theorem 3.22) then implies that, for every 0 � r � s � n,

EŒˇs j Gr� D EŒM�n
�s

j F�r
� D M�n

�r
D ˇr

and similarly

EŒˇ2s � s j Gr� D EŒ.M�n
�s
/2 � hM�n ;M�n i�s

j F�r
� D .M�n

�r
/2 � hM�n ;M�n i�r

D ˇ2r � r:

Then the case d D 1 of Theorem 5.12 shows that ˇ is a .Gr/-Brownian motion.

Finally, by the definition of ˇ, we have a.s. for every t � 0,

ˇ<M;M>t
D M�<M;M>t

:

But since �<M;M>t
� t � �<M;M>tC and since hM;Mi takes the same value at �<M;M>t

and at �<M;M>tC, Lemma 5.14 shows that Mt D M�<M;M>t
for every t � 0, a.s. We

conclude that we have Mt D ˇ<M;M>t
for every t � 0, a.s. This completes the proof

when M0 D 0.

If M0 6D 0, we write Mt D M0 C M0
t , and we apply the previous argument to M0,

in order to get a Brownian motion ˇ0 with ˇ0
0 D 0, such that M0

t D ˇ0
<M0 ;M0>t

for

every t � 0 a.s. Since ˇ0 is a .Gr/-Brownian motion, ˇ0 is independent of G0 D F0,

hence of M0. Therefore, ˇs D M0 C ˇ0
s is also a Brownian motion, and we get the

desired representation for M. ut
Proof of Lemma 5.14 Thanks to the continuity of sample paths of M and hM;Mi,

it is enough to verify that for any fixed a and b such that 0 � a < b, we have

fMt D Ma; 8t 2 Œa; b�g D fhM;Mib D hM;Miag ; a.s.

The fact that the event in the left-hand side is (a.s.) contained in the event in the

right-hand side is easy from the approximations of hM;Mi in Theorem 4.9.

Let us prove the converse. Consider the continuous local martingale Nt D Mt �
Mt^a and note that

hN;Nit D hM;Mit � hM;Mit^a:

For every " > 0, introduce the stopping time

T" D infft � 0 W hN;Nit � "g:
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Then NT" is a martingale in H2 (since hNT" ;NT"i1 � "). Fix t 2 Œa; b�. We have

EŒN2
t^T"

� D EŒhN;Nit^T" � � ":

Hence, considering the event A WD fhM;Mib D hM;Miag � fT" � bg,

EŒ1AN2
t � D EŒ1AN2

t^T"
� � EŒN2

t^T"
� � ":

By letting " go to 0, we get EŒ1AN2
t � D 0 and thus Nt D 0 a.s. on A, which completes

the proof. ut
We can combine the arguments of the proof of Theorem 5.13 with Theorem 5.12

to get the following technical result, which will be useful when we consider the

image of planar Brownian motion under holomorphic transformations in Chap. 7.

Proposition 5.15 Let M and N be two continuous local martingales such that M0 D
N0 D 0. Assume that

(i) hM;Mit D hN;Nit for every t � 0, a.s.

(ii) M and N are orthogonal (hM;Nit D 0 for every t � 0, a.s.)

(iii) hM;Mi1 D hN;Ni1 D 1, a.s.

Let ˇ D .ˇt/t�0, resp.  D .t/t�0, be the real Brownian motion such Mt D ˇhM;Mit
,

resp. Nt D hN;Nit
, for every t � 0, a.s. Then ˇ and  are independent.

Proof We use the notation of the proof of Theorem 5.13 and note that we have

ˇr D M�r
and r D N�r

, where

�r D infft � 0 W hM;Mit � rg D infft � 0 W hN;Nit � rg:

We know that ˇ and  are .Gr/-Brownian motions. Since M and N are orthogonal

martingales, we also know that MtNt is a local martingale. As in the proof of

Theorem 5.13, and using now Proposition 4.15 (v), we get that, for every n � 1,

M
�n
t N

�n
t is a uniformly integrable martingale, and by applying the optional stopping

theorem, we obtain that for r � s � n,

EŒˇss j Gr� D EŒM�n
�s

N�n
�s

j F�r
� D M�n

�r
N�n
�r

D ˇsr

so that ˇrr is a .Gr/-martingale and the bracket hˇ; i (evaluated in the filtration

.Gr/) is identically zero. By Theorem 5.12, it follows that .ˇ; / is a two-

dimensional Brownian motion and, since ˇ0 D 0 D 0, this implies that ˇ and

 are independent. ut
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5.3.3 The Burkholder–Davis–Gundy Inequalities

We now state important inequalities connecting a continuous local martingale with

its quadratic variation. If M is a continuous local martingale, we set

M�
t D sup

s�t

jMsj

for every t � 0. Theorem 5.16 below shows that, under the condition M0 D 0,

for every p > 0, the p-th moment of M�
t is bounded above and below (up to

universal multiplicative constants) by the p-th moment of
p

hM;Mit. These bounds

are very useful because, in particular when M is a stochastic integral, it is often

easier to estimate the moments of
p

hM;Mit than those of M�
t . Such applications

arise, for instance, in the study of stochastic differential equations (see e.g. the proof

of Theorem 8.5 below).

Theorem 5.16 (Burkholder–Davis–Gundy inequalities) For every real p > 0,

there exist two constants cp; Cp > 0 depending only on p such that, for every

continuous local martingale M with M0 D 0, and every stopping time T,

cp EŒhM;Mip=2
T � � EŒ.M�

T /
p� � Cp EŒhM;Mip=2

T �:

Remark It may happen that the quantities EŒhM;Mip=2
T � and EŒ.M�

T /
p� are infinite.

The theorem says that these quantities are either both finite (then the stated bounds

hold) or both infinite.

Proof Replacing M by the stopping martingale MT , we see that it is enough to treat

the special case T D 1. We then observe that it suffices to consider the case when

M is bounded: Assuming that the bounded case has been treated, we can replace M

by MTn , where Tn D infft � 0 W jMtj D ng, and we get the general case by letting n

tend to 1.

The left-hand side inequality, in the case p � 4, follows from the result of

question 4. in Exercise 4.26. We prove below the right-hand side inequality for all

values of p. This is the inequality we will use in the sequel (we refer to [70, Chapter

IV] for the remaining case).

We first consider the case p � 2. We apply Itô’s formula to the function jxjp:

jMtjp D
Z t

0

pjMsjp�1sgn.Ms/ dMs C 1

2

Z t

0

p.p � 1/jMsjp�2 dhM;Mis:

Since M is bounded, hence in particular M 2 H2, the process

Z t

0

pjMsjp�1sgn.Ms/ dMs
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is a martingale in H2. We therefore get

EŒjMtjp� D p.p � 1/

2
E
h Z t

0

jMsjp�2 dhM;Mis

i

� p.p � 1/

2
EŒ.M�

t /
p�2hM;Mit�

� p.p � 1/

2
.EŒ.M�

t /
p�/.p�2/=p.EŒhM;Mip=2

t �/2=p;

by Hölder’s inequality. On the other hand, by Doob’s inequality in Lp (Proposi-

tion 3.15),

EŒ.M�
t /

p� �
� p

p � 1

�p

EŒjMtjp�

and combining this bound with the previous one, we arrive at

EŒ.M�
t /

p� �
�� p

p � 1

�p p.p � 1/

2

�p=2

EŒhM;Mip=2
t �:

It now suffices to let t tend to 1.

Consider then the case p < 2. Since M 2 H2, M2 � hM;Mi is a uniformly

integrable martingale and we have, for every stopping time T,

EŒ.MT /
2� D EŒhM;MiT �:

Let x > 0 and consider the stopping time Tx WD infft � 0 W .Mt/
2 � xg. Then, if T

is any bounded stopping time,

P..M�
T /
2 � x/ D P.Tx � T/ D P..MTx^T/

2 � x/ � 1

x
EŒ.MTx^T/

2�

D 1

x
EŒhM;MiTx^T �

� 1

x
EŒhM;MiT �:

Next consider the stopping time Sx WD infft � 0 W hM;Mit � xg. Observe that,

for every t � 0, we have f.M�
t /
2 � xg � .f.M�

Sx^t/
2 � xg [ fSx � tg/. Using the

preceding bound with T D Sx ^ t, we thus get

P..M�
t /
2 � x/ � P..M�

Sx^t/
2 � x/C P.Sx � t/

� 1

x
EŒhM;MiSx^t�C P.hM;Mit � x/
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D 1

x
EŒhM;Mit ^ x�C P.hM;Mit � x/

D 1

x
EŒhM;Mit 1fhM;Mit<xg�C 2P.hM;Mit � x/:

To complete the proof, set q D p=2 2 .0; 1/ and integrate each side of the last bound

with respect to the measure q xq�1 dx. We have first

Z 1

0

P..M�
t /
2 � x/ q xq�1 dx D E

h Z .M�
t /
2

0

q xq�1 dx
i

D EŒ.M�
t /
2q�;

and similarly

Z 1

0

P.hM;Mit � x/ q xq�1 dx D EŒhM;Miq
t �:

Furthermore,

Z 1

0

1

x
EŒhM;Mit 1fhM;Mit<xg� q xq�1 dx

D E
h
hM;Mit

Z 1

hM;Mit

q xq�2 dx
i

D q

1 � q
EŒhM;Miq

t �:

Summarizing, we have obtained the bound

EŒ.M�
t /
2q� �

�
2C q

1 � q

�
EŒhM;Miq

t �;

and we just have to let t ! 1 to get the desired result. ut
Corollary 5.17 Let M be a continuous local martingale such that M0 D 0. The

condition

EŒhM;Mi1=21 � < 1

implies that M is a uniformly integrable martingale.

Proof By the case p D 1 of Theorem 5.16, the condition EŒhM;Mi1=21 � < 1
implies that EŒM�

1� < 1. Proposition 4.7 (ii) then shows that the continuous local

martingale M, which is dominated by the variable M�
1, is a uniformly integrable

martingale. ut

The condition EŒhM;Mi1=21 � < 1 is weaker than the condition EŒhM;Mi1� <
1, which ensures that M 2 H2. The corollary can be applied to stochastic integrals.

If M is a continuous local martingale and H is a progressive process such that, for



5.4 The Representation of Martingales as Stochastic Integrals 127

every t � 0,

E
h� Z t

0

H2
s dhM;Mis

�1=2i
< 1 ;

then
R t

0
HsdMs is a martingale, and formulas (5.6) and (5.9) for the first moment and

the conditional expectations of
R t

0 HsdMs hold (of course with t < 1).

5.4 The Representation of Martingales as Stochastic

Integrals

In the special setting where the filtration on ˝ is the completed canonical filtration

of a Brownian motion, we will now show that all martingales can be represented as

stochastic integrals with respect to that Brownian motion. For the sake of simplicity,

we first consider a one-dimensional Brownian motion, but we will discuss the

extension to Brownian motion in higher dimensions at the end of this section.

Theorem 5.18 Assume that the filtration .Ft/ on ˝ is the completed canonical

filtration of a real Brownian motion B started from 0. Then, for every random

variable Z 2 L2.˝;F1;P/, there exists a unique progressive process h 2 L2.B/

(i.e. EŒ
R1
0 h2s ds� < 1) such that

Z D EŒZ�C
Z 1

0

hs dBs:

Consequently, for every martingale M that is bounded in L2 (respectively, for every

continuous local martingale M), there exists a unique process h 2 L2.B/ (resp.

h 2 L2loc.B/) and a constant C 2 R such that

Mt D C C
Z t

0

hs dBs:

Remark As the proof will show, the second part of the statement applies to a

martingale M that is bounded in L2, without any assumption on the continuity

of sample paths of M. This observation will be useful later when we discuss

consequences of the representation theorem. Note that continuous local martingales

have continuous sample paths by definition.

Lemma 5.19 Under the assumptions of the theorem, the vector space generated by

the random variables

exp
�

i

nX

jD1
�j.Btj � Btj�1/

�
;
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for any choice of 0 D t0 < t1 < � � � < tn and �1; : : : ; �n 2 R, is dense in the space

L2C.˝;F1;P/ of all square-integrable complex-valued F1-measurable random

variables.

Proof It is enough to prove that, if Z 2 L2C.˝;F1;P/ is such that

E
h
Z exp

�
i

nX

jD1
�j.Btj � Btj�1/

�i
D 0 (5.17)

for any choice of 0 D t0 < t1 < � � � < tn and �1; : : : ; �n 2 R, then Z D 0.

Fix 0 D t0 < t1 < � � � < tn, and consider the complex measure � on Rn defined

by

�.F/ D E
h
Z 1F.Bt1 ;Bt2 � Bt1 ; : : : ;Btn � Btn�1/

i

for any Borel subset F of Rn. Then (5.17) exactly shows that the Fourier transform

of � is identically zero. By the injectivity of the Fourier transform on complex

measures on Rd, it follows that � D 0. We have thus EŒZ 1A� D 0 for every A 2
�.Bt1 ; : : : ;Btn/.

A monotone class argument then shows that the identity EŒZ 1A� D 0 remains

valid for any A 2 �.Bt; t � 0/, and then by completion for any A 2 F1. It follows

that Z D 0. ut
Proof of Theorem 5.18 We start with the first assertion. We first observe that the

uniqueness of h is easy since, if the representation of a given variable Z holds with

two processes h and h0 in L2.B/, we have

E
h Z 1

0

.hs � h0
s/
2ds
i

D E
h� Z 1

0

hs dBs �
Z 1

0

h0
s dBs

�2i
D 0;

hence h D h0 in L2.B/.

Let us turn to the existence part. Let H stand for the vector space of all variables

Z 2 L2.˝;F1;P/ for which the property of the statement holds. We note that if

Z 2 H and h is the associated process in L2.B/, we have

EŒZ2� D .EŒZ�/2 C E
h Z 1

0

.hs/
2 ds

i
:

It follows that H is a closed subspace of L2.˝;F1;P/. Indeed, if .Zn/ is a

sequence in H that converges to Z in L2.˝;F1;P/, the processes h.n/ corre-

sponding respectively to the variables Zn form a Cauchy sequence in L2.B/, hence

converge in L2.B/ to a certain process h 2 L2.B/ – here we use the Hilbert space

structure of L2.B/ – and it immediately follows that Z D EŒZ�C
R1
0

hs dBs.

Since H is closed, in order to prove that H D L2.˝;F1;P/, we just have to

verify that H contains a dense subset of L2.˝;F1;P/. Let 0 D t0 < t1 < � � � < tn
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and �1; : : : ; �n 2 R, and set f .s/ D
Pn

jD1 �j1.tj�1;tj�.s/. Write E
f

t for the exponential

martingale E .i
R �
0

f .s/ dBs/ (cf. Proposition 5.11). Proposition 5.11 shows that

exp
�

i

nX

jD1
�j.Btj � Btj�1/C 1

2

nX

jD1
�2j .tj � tj�1/

�
D E

f
1 D 1C i

Z 1

0

E
f

s f .s/ dBs

and it follows that both the real part and the imaginary part of variables of the form

exp
�

i
Pn

jD1 �j.Btj �Btj�1/
�

are in H . By Lemma 5.19, linear combinations of such

random variables are dense in L2.˝;F1;P/. This completes the proof of the first

assertion of the theorem.

Let us turn to the second assertion. If M is a martingale that is bounded in L2,

then M1 2 L2.˝;F1;P/, and thus can be written in the form

M1 D EŒM1�C
Z 1

0

hs dBs;

where h 2 L2.B/. Thanks to (5.9), it follows that

Mt D EŒM1 j Ft� D EŒM1�C
Z t

0

hs dBs

and the uniqueness of h is also immediate from the uniqueness in the first assertion.

Finally, if M is a continuous local martingale, we have first M0 D C 2 R because

the �-field F0 contains only events of probability zero or one. If Tn D infft � 0 W
jMtj � ng we can apply the case of martingales bounded in L2 to MTn and we get a

process h.n/ 2 L2.B/ such that

MTn
t D C C

Z t

0

h.n/s dBs:

Using the uniqueness of the progressive process in the representation, we get that

h
.m/
s D 1Œ0;Tm �.s/ h

.n/
s if m < n, ds a.e., a.s. It is now easy to construct a process

h 2 L2loc.B/ such that, for every m, h
.m/
s D 1Œ0;Tm �.s/ hs, ds a.e., a.s. The representation

formula of the theorem follows, and the uniqueness of h is also straightforward. ut
Consequences Let us give two important consequences of the representation

theorem. Under the assumptions of the theorem:

(1) The filtration .Ft/t�0 is right-continuous. Indeed, let t � 0 and let Z be FtC-

measurable and bounded. We can find h 2 L2.B/ such that

Z D EŒZ�C
Z 1

0

hsdBs:
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If " > 0, Z is FtC"-measurable, and thus, using (5.9),

Z D EŒZ j FtC"� D EŒZ�C
Z tC"

0

hsdBs:

When " ! 0 the right-hand side converges in L2 to

EŒZ�C
Z t

0

hsdBs:

Thus Z is equal a.s. to an Ft-measurable random variable, and, since the

filtration is complete, Z is Ft-measurable.

A similar argument shows that the filtration .Ft/t�0 is also left-continuous:

If, for t > 0, we let

Ft� D
_

s2Œ0;t/
Fs

be the smallest �-field that contains all �-fields Fs for s 2 Œ0; t/, we have

Ft� D Ft.

(2) All martingales of the filtration .Ft/t�0 have a modification with continu-

ous sample paths. For a martingale that is bounded in L2, this follows from the

representation formula (see the remark after the statement of the theorem). Then

consider a uniformly integrable martingale M (if M is not uniformly integrable,

we just replace M by Mt^a for every a � 0). In that case, we have, for every

t � 0,

Mt D EŒM1 j Ft�:

By Theorem 3.18 (whose application is justified as we know that the filtration is

right-continuous), the process Mt has a modification with càdlàg sample paths,

and we consider this modification. Let M
.n/
1 be a sequence of bounded random

variables such that M
.n/
1 �! M1 in L1 as n ! 1. Introduce the martingales

M
.n/
t D EŒM.n/

1 j Ft�;

which are bounded in L2. By the beginning of the argument, we can assume

that, for every n, the sample paths of M.n/ are continuous. On the other hand,

Doob’s maximal inequality (Proposition 3.15) implies that, for every � > 0,

P
h

sup
t�0

jM.n/
t � Mtj > �

i
� 3

�
EŒjM.n/

1 � M1j�:
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It follows that we can find a sequence nk " 1 such that, for every k � 1,

P
h

sup
t�0

jM.nk/
t � Mtj > 2�k

i
� 2�k:

An application of the Borel–Cantelli lemma now shows that

sup
t�0

jM.nk/
t � Mtj

a:s:�!
k!1

0

and we get that the sample paths of M are continuous as uniform limits of

continuous functions.

Multidimensional extension Let us briefly describe the multidimensional exten-

sion of the preceding results. We now assume that the filtration .Ft/ on ˝ is

the completed canonical filtration of a d-dimensional Brownian motion B D
.B1; : : : ;Bd/ started from 0. Then, for every random variable Z 2 L2.˝;F1;P/,
there exists a unique d-tuple .h1; : : : ; hd/ of progressive processes, satisfying

E
h Z 1

0

.hi
s/
2 ds

i
< 1 ; 8i 2 f1; : : : ; dg;

such that

Z D EŒZ�C
dX

iD1

Z 1

0

hi
s dBi

s:

Similarly, if M is a continuous local martingale, there exist a constant C and a unique

d-tuple .h1; : : : ; hd/ of progressive processes, satisfying

Z t

0

.hi
s/
2 ds < 1 ; a.s. 8t � 0; 8i 2 f1; : : : ; dg;

such that

Mt D C C
dX

iD1

Z t

0

hi
s dBi

s:

The proofs are exactly the same as in the case d D 1 (Theorem 5.18). Consequences

(1) and (2) above remain valid.
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5.5 Girsanov’s Theorem

Throughout this section, we assume that the filtration .Ft/ is both complete and

right-continuous. Our goal is to study how the notions of a martingale and of a

semimartingale are affected when the underlying probability measure P is replaced

by another probability measure Q. Most of the time we will assume that P and Q are

mutually absolutely continuous, and then the fact that the filtration .Ft/ is complete

with respect to P implies that it is complete with respect to Q. When there is a risk of

confusion, we will write EP for the expectation under the probability measure P, and

similarly EQ for the expectation under Q. Unless otherwise specified, the notions of a

(local) martingale or of a semimartingale refer to the underlying probability measure

P (when we consider these notions under Q we will say so explicitly). Note that, in

contrast with the notion of a martingale, the notion of a finite variation process does

not depend on the underlying probability measure.

Proposition 5.20 Assume that Q is a probability measure on .˝;F /, which is

absolutely continuous with respect to P on the �-field F1. For every t 2 Œ0;1�, let

Dt D dQ

dP jFt

be the Radon–Nikodym derivative of Q with respect to P on the �-field Ft. The

process .Dt/t�0 is a uniformly integrable martingale. Consequently .Dt/t�0 has a

càdlàg modification. Keeping the same notation .Dt/t�0 for this modification, we

have, for every stopping time T,

DT D dQ

dP jFT

:

Finally, if we assume furthermore that P and Q are mutually absolutely continuous

on F1, we have

inf
t�0

Dt > 0 ; P a.s.

Proof If A 2 Ft, we have

Q.A/ D EQŒ1A� D EPŒ1AD1� D EPŒ1AEPŒD1 j Ft��

and, by the uniqueness of the Radon–Nikodym derivative on Ft, it follows that

Dt D EPŒD1 j Ft�; a:s:

Hence D is a uniformly integrable martingale, which is closed by D1. Theorem 3.18

(using the fact that .Ft/ is both complete and right-continuous) then allows us to

find a càdlàg modification of .Dt/t�0, which we consider from now on.
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Then, if T is a stopping time, the optional stopping theorem (Theorem 3.22) gives

for every A 2 FT ,

Q.A/ D EQŒ1A� D EPŒ1AD1� D EPŒ1A EPŒD1 j FT �� D EPŒ1ADT �;

and, since DT is FT -measurable, it follows that

DT D dQ

dP jFT

:

Let us prove the last assertion. For every " > 0, set

T" D infft � 0 W Dt < "g

and note that T" is a stopping time as the first hitting time of an open set by a càdlàg

process (recall Proposition 3.9 and the fact that the filtration is right-continuous).

Then, noting that the event fT" < 1g is FT" -measurable,

Q.T" < 1/ D EPŒ1fT"<1g DT" � � "

since DT" � " on fT" < 1g by the right-continuity of sample paths. It immediately

follows that

Q
� 1\

nD1
fT1=n < 1g

�
D 0

and since P is absolutely continuous with respect to Q we have also

P
� 1\

nD1
fT1=n < 1g

�
D 0:

But this exactly means that, P a.s., there exists an integer n � 1 such that T1=n D 1,

giving the last assertion of the proposition. ut
Proposition 5.21 Let D be a continuous local martingale taking (strictly) positive

values. There exists a unique continuous local martingale L such that

Dt D exp
�

Lt � 1

2
hL;Lit

�
D E .L/t:

Moreover, L is given by the formula

Lt D log D0 C
Z t

0

D�1
s dDs:
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Proof Uniqueness is an easy consequence of Theorem 4.8. Then, since D takes

positive values, we can apply Itô’s formula to log Dt (see the remark before

Proposition 5.11), and we get

log Dt D log D0 C
Z t

0

dDs

Ds

� 1

2

Z t

0

dhD;Dis

D2
s

D Lt � 1

2
hL;Lit;

where L is as in the statement. ut
We now state the main theorem of this section, which explains the relation

between continuous local martingales under P and continuous local martingales

under Q.

Theorem 5.22 (Girsanov) Assume that the probability measures P and Q are

mutually absolutely continuous on F1. Let .Dt/t�0 be the martingale with càdlàg

sample paths such that, for every t � 0,

Dt D dQ

dP jFt

:

Assume that D has continuous sample paths, and let L be the unique continuous

local martingale such that Dt D E .L/t. Then, if M is a continuous local martingale

under P, the process

QM D M � hM;Li

is a continuous local martingale under Q.

Remark By consequences of the martingale representation theorem explained at

the end of the previous section, the continuity assumption for the sample paths of

D always holds when .Ft/ is the (completed) canonical filtration of a Brownian

motion. In applications of Theorem 5.22, one often starts from the martingale .Dt/

to define the probability measure Q, so that the continuity assumption is satisfied by

construction (see the examples in the next section).

Proof The fact that Dt can be written in the form Dt D E .L/t follows from

Proposition 5.21 (we are assuming that D has continuous sample paths, and we also

know from Proposition 5.20 that D takes positive values). Then, let T be a stopping

time and let X be an adapted process with continuous sample paths. We claim that,

if .XD/T is a martingale under P, then XT is a martingale under Q. Let us verify the

claim. By Proposition 5.20, EQŒjXT^tj� D EPŒjXT^tDT^tj� < 1, and it follows that

XT
t 2 L1.Q/. Then, let A 2 Fs and s < t. Since A \ fT > sg 2 Fs, we have, using

the fact that .XD/T is a martingale under P,

EPŒ1A\fT>sgXT^tDT^t� D EPŒ1A\fT>sgXT^sDT^s�:
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By Proposition 5.20,

DT^t D dQ

dP jFT^t

; DT^s D dQ

dP jFT^s

;

and thus, since A \ fT > sg 2 FT^s � FT^t, it follows that

EQŒ1A\fT>sgXT^t� D EQŒ1A\fT>sgXT^s�:

On the other hand, it is immediate that

EQŒ1A\fT�sgXT^t� D EQŒ1A\fT�sgXT^s�:

By combining with the previous display, we have EQŒ1AXT^t� D EQŒ1AXT^s�; giving

our claim. As a consequence of the claim, we get that, if XD is a continuous local

martingale under P, then X is a continuous local martingale under Q.

Next let M be a continuous local martingale under P, and let QM be as in the

statement of the theorem. We apply the preceding observation to X D QM, noting

that, by Itô’s formula,

QMtDt D M0D0 C
Z t

0

QMs dDs C
Z t

0

Ds dMs �
Z t

0

Ds dhM;Lis C hM;Dit

D M0D0 C
Z t

0

QMs dDs C
Z t

0

Ds dMs

since dhM;Lis D D�1
s dhM;Dis by Proposition 5.21. We get that QMD is a continuous

local martingale under P, and thus QM is a continuous local martingale under Q. ut
Consequences

(a) A process M which is a continuous local martingale under P remains a

semimartingale under Q, and its canonical decomposition under Q is M D
QMChM;Li (recall that the notion of a finite variation process does not depend on

the underlying probability measure). It follows that the class of semimartingales

under P is contained in the class of semimartingales under Q.

In fact these two classes are equal. Indeed, under the assumptions of

Theorem 5.22, P and Q play symmetric roles, since the Radon–Nikodym

derivative of P with respect to Q on the �-field Ft is D�1
t , which has continuous

sample paths if D does.

We may furthermore notice that

D�1
t D exp

�
� Lt C hL;Lit � 1

2
hL;Lit

�
D exp

�
� QLt � 1

2
h QL; QLit

�
D E .�QL/t;
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where QL D L � hL;Li is a continuous local martingale under Q, and h QL; QLi D
hL;Li. So, under the assumptions of Theorem 5.22, the roles of P and Q can be

interchanged provided D is replaced by D�1 and L is replaced by �QL.

(b) Let X and Y be two semimartingales (under P or under Q). The bracket hX;Yi
is the same under P and under Q. In fact this bracket is given in both cases by

the approximation of Proposition 4.21 (this observation was used implicitly in

(a) above).

Similarly, if H is a locally bounded progressive process, the stochastic

integral H � X is the same under P and under Q. To see this it is enough to

consider the case when X D M is a continuous local martingale (under P).

Write .H � M/P for the stochastic integral under P and .H � M/Q for the one

under Q. By linearity,

.H � QM/P D .H � M/P � H � hM;Li D .H � M/P � h.H � M/P;Li;

and Theorem 5.22 shows that .H � QM/P is a continuous local martingale under Q.

Furthermore the bracket of this continuous local martingale with any continuous

local martingale N under Q is equal to H � hM;Ni D H � h QM;Ni, and it follows

from Theorem 5.6 that .H � QM/P D .H � QM/Q hence also .H � M/P D .H � M/Q.

With the notation of Theorem 5.22, set QM D G P
Q .M/. Then G P

Q maps the

set of all P-continuous local martingales onto the set of all Q-continuous local

martingales. One easily verifies, using the remarks in (a) above, that G
Q
P ıG P

Q D
Id. Furthermore, the mapping G P

Q commutes with the stochastic integral: if H is

a locally bounded progressive process, H � G P
Q .M/ D G P

Q .H � M/.

(c) Suppose that M D B is an .Ft/-Brownian motion under P, then QB D B � hB;Li
is a continuous local martingale under Q, with quadratic variation h QB; QBit D
hB;Bit D t. By Theorem 5.12, it follows that QB is an .Ft/-Brownian motion

under Q.

In most applications of Girsanov’s theorem, one constructs the probability

measure Q in the following way. Start from a continuous local martingale L such

that L0 D 0 and hL;Li1 < 1 a.s. The latter condition implies that the limit L1 WD
limt!1 Lt exists a.s. (see Exercise 4.24). Then E .L/t is a nonnegative continuous

local martingale hence a supermartingale (Proposition 4.7), which converges a.s.

to E .L/1 D exp.L1 � 1
2
hL;Li1/, and EŒE .L/1� � 1 by Fatou’s lemma. If the

property

EŒE .L/1� D 1 (5.18)

holds, then E .L/ is a uniformly integrable martingale (by Fatou’s lemma again, one

has E .L/t � EŒE .L/1 j Ft�, but (5.18) implies that EŒE .L/1� D EŒE .L/0� D
EŒE .L/t� for every t � 0). If we let Q be the probability measure with density

E .L/1 with respect to P, we are in the setting of Theorem 5.22, with Dt D E .L/t.

It is therefore very important to give conditions that ensure that (5.18) holds.
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Theorem 5.23 Let L be a continuous local martingale such that L0 D 0. Consider

the following properties:

(i) EŒexp 1
2
hL;Li1� < 1 (Novikov’s criterion);

(ii) L is a uniformly integrable martingale, and EŒexp 1
2
L1� < 1 (Kazamaki’s

criterion);

(iii) E .L/ is a uniformly integrable martingale.

Then, (i) ) (ii) ) (iii).

Proof (i) ) (ii) Property (i) implies that EŒhL;Li1� < 1 hence also that L is a

continuous martingale bounded in L2 (Theorem 4.13). Then,

exp
1

2
L1 D .E .L/1/

1=2 .exp.
1

2
hL;Li1//

1=2

so that, by the Cauchy–Schwarz inequality,

EŒexp
1

2
L1� � .EŒE .L/1�/

1=2.EŒexp.
1

2
hL;Li1/�/

1=2

� .EŒexp.
1

2
hL;Li1/�/

1=2 < 1:

(ii) ) (iii) Since L is a uniformly integrable martingale, Theorem 3.22 shows

that, for any stopping time T, we have LT D EŒL1 j FT �. Jensen’s inequality then

gives

exp
1

2
LT � EŒexp

1

2
L1 j FT �:

By assumption, EŒexp 1
2
L1� < 1, which implies that the collection of all variables

of the form EŒexp 1
2
L1 j FT �, for any stopping time T, is uniformly integrable.

The preceding bound then shows that the collection of all variables exp 1
2
LT , for any

stopping time T, is also uniformly integrable.

For 0 < a < 1, set Z
.a/
t D exp. aLt

1Ca
/. Then, one easily verifies that

E .aL/t D .E .L/t/
a2 .Z

.a/
t /1�a2 :

If 	 2 F and T is a stopping time, Hölder’s inequality gives

EŒ1	 E .aL/T � � EŒE .L/T �
a2EŒ1	 Z

.a/
T �1�a2 � EŒ1	 Z

.a/
T �1�a2 � EŒ1	 exp

1

2
LT �

2a.1�a/:

In the second inequality, we used the property EŒE .L/T � � 1, which holds by

Proposition 3.25 because E .L/ is a nonnegative supermartingale and E .L/0 D 1.

In the third inequality, we use Jensen’s inequality, noting that 1Ca
2a

> 1. Since the
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collection of all variables of the form exp 1
2
LT , for any stopping time T, is uniformly

integrable, the preceding display shows that so is the collection of all variables

E .aL/T for any stopping time T. By the definition of a continuous local martingale,

there is an increasing sequence Tn " 1 of stopping times, such that, for every n,

E .aL/t^Tn
is a martingale. If 0 � s � t, we can use uniform integrability to pass to

the limit n ! 1 in the equality EŒE .aL/t^Tn
j Fs� D E .aL/s^Tn

and we get that

E .aL/ is a uniformly integrable martingale. It follows that

1 D EŒE .aL/1� � EŒE .L/1�
a2EŒZ.a/1 �1�a2 � EŒE .L/1�

a2EŒexp
1

2
L1�

2a.1�a/;

using again Jensen’s inequality as above. When a ! 1, this gives EŒE .L/1� � 1

hence EŒE .L/1� D 1. ut

5.6 A Few Applications of Girsanov’s Theorem

In this section, we describe a few applications of Girsanov’s theorem, which

illustrate the strength of the previous results.

Constructing solutions of stochastic differential equations Let b be a bounded

measurable function on RC � R. We assume that there exists a function g 2
L2.RC;B.RC/; dt/ such that jb.t; x/j � g.t/ for every .t; x/ 2 RC � R. This holds

in particular if there exists an A > 0 such that jbj is bounded on Œ0;A� � RC and

vanishes on .A;1/ � RC.

Let B be an .Ft/-Brownian motion. Consider the continuous local martingale

Lt D
Z t

0

b.s;Bs/ dBs

and the associated exponential martingale

Dt D E .L/t D exp
� Z t

0

b.s;Bs/ dBs � 1

2

Z t

0

b.s;Bs/
2ds
�
:

Our assumption on b ensures that condition (i) of Theorem 5.23 holds, and thus D

is a uniformly integrable martingale. We set Q D D1 � P. Girsanov’s theorem, and

remark (c) following the statement of this theorem, show that the process

ˇt WD Bt �
Z t

0

b.s;Bs/ ds

is an .Ft/-Brownian motion under Q.
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We can restate the latter property by saying that, under the probability measure

Q, there exists an .Ft/-Brownian motion ˇ such that the process X D B solves the

stochastic differential equation

dXt D dˇt C b.t;Xt/ dt:

This equation is of the type that will be considered in Chap. 7 below, but in contrast

with the statements of this chapter, we are not making any regularity assumption

on the function b. It is remarkable that Girsanov’s theorem allows one to construct

solutions of stochastic differential equations without regularity conditions on the

coefficients.

The Cameron–Martin formula We now specialize the preceding discussion to

the case where b.t; x/ does not depend on x. We assume that b.t; x/ D g.t/, where

g 2 L2.RC;B.RC/; dt/, and we also set, for every t � 0,

h.t/ D
Z t

0

g.s/ ds:

The set H of all functions h that can be written in this form is called the Cameron–

Martin space. If h 2 H , we sometimes write Ph D g for the associated function in

L2.RC;B.RC/; dt/ (this is the derivative of h in the sense of distributions).

As a special case of the previous discussion, under the probability measure

Q WD D1 � P D exp
� Z 1

0

g.s/ dBs � 1

2

Z 1

0

g.s/2ds
�

� P;

the process ˇt WD Bt � h.t/ is a Brownian motion. Hence, for every nonnegative

measurable function ˚ on C.RC;R/,

EPŒD1˚..Bt/t�0/� D EQŒ˚..Bt/t�0/� D EQŒ˚..ˇt C h.t//t�0/�

D EPŒ˚..Bt C h.t//t�0/�:

The equality between the two ends of the last display is the Cameron–Martin

formula. In the next proposition, we write this formula in the special case of the

canonical construction of Brownian motion on the Wiener space (see the end of

Sect. 2.2).

Proposition 5.24 (Cameron–Martin formula) Let W.dw/ be the Wiener measure

on C.RC;R/, and let h be a function in the Cameron–Martin space H . Then, for

every nonnegative measurable function ˚ on C.RC;R/,

Z
W.dw/ ˚.w C h/ D

Z
W.dw/ exp

� Z 1

0

Ph.s/ dw.s/� 1

2

Z 1

0

Ph.s/2 ds
�
˚.w/:
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Remark The integral
R1
0

Ph.s/ dw.s/ is a stochastic integral with respect to w.s/

(which is a Brownian motion under W.dw/), but it can also be viewed as a Wiener

integral since the function Ph.s/ is deterministic. The Cameron–Martin formula can

be established by Gaussian calculations that do not involve stochastic integrals or

Girsanov’s theorem (see e.g. Chapter 1 of [62]). Still it is instructive to derive this

formula as a special case of Girsanov’s theorem.

The Cameron–Martin formula gives a “quasi-invariance” property of Wiener

measure under the translations by functions of the Cameron–Martin space: The

image of Wiener measure W.dw/ under the mapping w 7! w C h has a density with

respect to W.dw/ and this density is the terminal value of the exponential martingale

associated with the martingale
R t

0
Ph.s/dw.s/.

Law of hitting times for Brownian motion with drift Let B be a real Brownian

motion with B0 D 0, and for every a > 0, let Ta WD infft � 0 W Bt D ag. If c 2 R is

given, we aim at computing the law of the stopping time

Ua WD infft � 0 W Bt C ct D ag:

Of course, if c D 0, we have Ua D Ta, and the desired distribution is given by

Corollary 2.22. Girsanov’s theorem (or rather the Cameron–Martin formula) will

allow us to derive the case where c is arbitrary from the special case c D 0.

Fix t > 0 and apply the Cameron–Martin formula with

Ph.s/ D c 1fs�tg ; h.s/ D c.s ^ t/ ;

and, for every w 2 C.RC;R/,

˚.w/ D 1fmaxŒ0;t� w.s/�ag:

It follows that

P.Ua � t/ D EŒ˚.B C h/�

D E
h
˚.B/ exp

� Z 1

0

Ph.s/ dBs � 1

2

Z 1

0

Ph.s/2 ds
�i

D EŒ1fTa�tg exp.cBt � c2

2
t//�

D EŒ1fTa�tg exp.cBt^Ta
� c2

2
.t ^ Ta//�

D EŒ1fTa�tg exp.ca � c2

2
Ta/�



Exercises 141

D
Z t

0

ds
ap
2�s3

e� a2

2s eca� c2

2 s

D
Z t

0

ds
ap
2�s3

e� 1
2s .a�cs/2 ;

where, in the fourth equality, we used the optional stopping theorem (Corol-

lary 3.23) to write

EŒexp.cBt � c2

2
t/ j Ft^Ta

� D exp.cBt^Ta
� c2

2
.t ^ Ta//;

and we also made use of the explicit density of Ta given in Corollary 2.22. This

calculation shows that the variable Ua has a density on RC given by

 .s/ D ap
2�s3

e� 1
2s
.a�cs/2 :

By integrating this density, we can verify that

P.Ua < 1/ D
�
1 if c � 0;

e2ca if c � 0;

which may also be checked more easily by applying the optional stopping theorem

to the continuous martingale exp.�2c.Bt C ct//.

Exercises

In the following exercises, processes are defined on a probability space .˝;F ;P/

equipped with a complete filtration .Ft/t2Œ0;1�.

Exercise 5.25 Let B be an .Ft/-Brownian motion with B0 D 0, and let H be an

adapted process with continuous sample paths. Show that 1
Bt

R t

0
HsdBs converges in

probability when t ! 0 and determine the limit.

Exercise 5.26

1. Let B be a one-dimensional .Ft/-Brownian motion with B0 D 0. Let f be a twice

continuously differentiable function on R, and let g be a continuous function on

R. Verify that the process

Xt D f .Bt/ exp
�

�
Z t

0

g.Bs/ ds
�
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is a semimartingale, and give its decomposition as the sum of a continuous local

martingale and a finite variation process.

2. Prove that X is a continuous local martingale if and only if the function f satisfies

the differential equation

f 00 D 2g f :

3. From now on, we suppose in addition that g is nonnegative and vanishes outside a

compact subinterval of .0;1/. Justify the existence and uniqueness of a solution

f1 of the equation f 00 D 2g f such that f1.0/ D 1 and f 0
1.0/ D 0. Let a > 0 and

Ta D infft � 0 W Bt D ag. Prove that

E
h

exp
�

�
Z Ta

0

g.Bs/ ds
�i

D 1

f1.a/
:

Exercise 5.27 (Stochastic calculus with the supremum) Preliminary question. Let

m W RC �! R be a continuous function such that m.0/ D 0, and let s W RC �! R

be the monotone increasing function defined by

s.t/ D sup
0�r�t

m.r/:

Show that, for every bounded Borel function h on R and every t > 0,

Z t

0

.s.r/ � m.r// h.r/ ds.r/ D 0:

(One may first observe that
R

1I.r/ ds.r/ D 0 for every open interval I that does not

intersect fr � 0 W s.r/ D m.r/g.)

1. Let M be a continuous local martingale such that M0 D 0, and for every t � 0,

let

St D sup
0�r�t

Mr:

Let ' W RC �! R be a twice continuously differentiable function. Justify the

equality

'.St/ D '.0/C
Z t

0

' 0.Ss/ dSs:
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2. Show that

.St � Mt/ '.St/ D ˚.St/ �
Z t

0

'.Ss/ dMs

where ˚.x/ D
R x

0
'.y/ dy for every x 2 R.

3. Infer that, for every � > 0,

e��St C �.St � Mt/e
��St

is a continuous local martingale.

4. Let a > 0 and T D infft � 0 W St � Mt D ag. We assume that hM;Mi1 D 1 a.s.

Show that T < 1 a.s. and ST is exponentially distributed with parameter 1=a.

Exercise 5.28 Let B be an .Ft/-Brownian motion started from 1. We fix " 2 .0; 1/
and set T" D infft � 0 W Bt D "g. We also let � > 0 and ˛ 2 Rnf0g.

1. Show that Zt D .Bt^T"/
˛ is a semimartingale and give its canonical decomposi-

tion as the sum of a continuous local martingale and a finite variation process.

2. Show that the process

Zt D .Bt^T"/
˛ exp

�
� �

Z t^T"

0

ds

B2s

�

is a continuous local martingale if ˛ and � satisfy a polynomial equation to be

determined.

3. Compute

E
h

exp
�

� �
Z T"

0

ds

B2s

�i
:

Exercise 5.29 Let .Xt/t�0 be a semimartingale. We assume that there exists an

.Ft/-Brownian motion .Bt/t�0 started from 0 and a continuous function b W R �!
R, such that

Xt D Bt C
Z t

0

b.Xs/ ds:

1. Let F W R �! R be a twice continuously differentiable function on R. Show

that, for F.Xt/ to be a continuous local martingale, it suffices that F satisfies a

second-order differential equation to be determined.

2. Give the solution of this differential equation which is such that F.0/ D 0 and

F0.0/ D 1. In what follows, F stands for this particular solution, which can be

written in the form F.x/ D
R x

0
exp.�2ˇ.y// dy, with a function ˇ that will be

determined in terms of b.
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3. In this question only, we assume that b is integrable, i.e.
R
R

jb.x/jdx < 1.

(a) Show that the continuous local martingale Mt D F.Xt/ is a martingale.

(b) Show that hM;Mi1 D 1 a.s.

(c) Infer that

lim sup
t!1

Xt D C1 ; lim inf
t!1

Xt D �1 ; a.s.

4. We come back to the general case. Let c < 0 and d > 0, and

Tc D infft � 0 W Xt � cg ; Td D infft � 0 W Xt � dg :

Show that, on the event fTc ^ Td D 1g, the random variables jBnC1 � Bnj, for

integers n � 0, are bounded above by a (deterministic) constant which does not

depend on n. Infer that P.Tc ^ Td D 1/ D 0.

5. Compute P.Tc < Td/ in terms of F.c/ of F.d/.

6. We assume that b vanishes on .�1; 0� and that there exists a constant ˛ > 1=2

such that b.x/ � ˛=x for every x � 1. Show that, for every " > 0, one can choose

c < 0 such that

P.Tn < Tc; for every n � 1/ � 1 � ":

Infer that Xt �! C1 as t ! 1, a.s. (Hint: Observe that the continuous local

martingale Mt^Tc
is bounded.)

7. Suppose now b.x/ D 1=.2x/ for every x � 1. Show that

lim inf
t!1

Xt D �1 ; a.s.

Exercise 5.30 (Lévy area) Let .Xt;Yt/t�0 be a two-dimensional .Ft/-Brownian

motion started from 0. We set, for every t � 0 :

At D
Z t

0

Xs dYs �
Z t

0

Ys dXs ( Lévy’s area):

1. Compute hA ;A it and infer that .At/t�0 is a square-integrable (true) martingale.

2. Let � > 0. Justify the equality

EŒei�At � D EŒcos.�At/�:
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3. Let f be a twice continuously differentiable function on RC. Give the canonical

decomposition of the semimartingales

Zt D cos.�At/;

Wt D � f 0.t/

2
.X2t C Y2t /C f .t/:

Verify that hZ;Wit D 0.

4. Show that, for the process Zt eWt to be a continuous local martingale, it suffices

that f solves the differential equation

f 00.t/ D f 0.t/2 � �2 :

5. Let r > 0. Verify that the function

f .t/ D � log cosh.�.r � t//

solves the differential equation of question 4. and derive the formula

EŒei�Ar � D 1

cosh.�r/
:

Exercise 5.31 (Squared Bessel processes) Let B be an .Ft/-Brownian motion

started from 0, and let X be a continuous semimartingale. We assume that X takes

values in RC, and is such that, for every t � 0,

Xt D x C 2

Z t

0

p
Xs dBs C ˛ t

where x and ˛ are nonnegative real numbers.

1. Let f W RC �! RC be a continuous function, and let ' be a twice continuously

differentiable function on RC, taking strictly positive values, which solves the

differential equation

' 00 D 2 f '

and satisfies '.0/ D 1 and ' 0.1/ D 0. Observe that the function ' must then be

decreasing over the interval Œ0; 1�.

We set

u.t/ D ' 0.t/

2'.t/
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for every t � 0. Verify that we have, for every t � 0,

u0.t/C 2 u.t/2 D f .t/;

then show that, for every t � 0,

u.t/Xt �
Z t

0

f .s/Xs ds D u.0/x C
Z t

0

u.s/ dXs � 2

Z t

0

u.s/2Xs ds:

We set

Yt D u.t/Xt �
Z t

0

f .s/Xs ds:

2. Show that, for every t � 0,

'.t/�˛=2 eYt D E .N/t

where E .N/t D exp.Nt � 1
2
hN;Nit/ denotes the exponential martingale associ-

ated with the continuous local martingale

Nt D u.0/x C 2

Z t

0

u.s/
p

Xs dBs:

3. Infer from the previous question that

E
h

exp
�

�
Z 1

0

f .s/Xs ds
�i

D '.1/˛=2 exp.
x

2
' 0.0//:

4. Let � > 0. Show that

E
h

exp
�

� �
Z 1

0

Xs ds
�i

D .cosh.
p
2�//�˛=2 exp.� x

2

p
2� tanh.

p
2�//:

5. Show that, if ˇ D .ˇt/t�0 is a real Brownian motion started from y, one has, for

every � > 0,

E
h

exp
�

� �

Z 1

0

ˇ2s ds
�i

D .cosh.
p
2�//�1=2 exp.�y2

2

p
2� tanh.

p
2�//:

Exercise 5.32 (Tanaka’s formula and local time) Let B be an .Ft/-Brownian

motion started from 0. For every " > 0, we define a function g" W R �! R by

setting g".x/ D
p
"C x2.
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1. Show that

g".Bt/ D g".0/C M"
t C A"t

where M" is a square integrable continuous martingale that will be identified in

the form of a stochastic integral, and A" is an increasing process.

2. We set sgn.x/ D 1fx>0g � 1fx<0g for every x 2 R. Show that, for every t � 0,

M"
t

L2�!
"!0

Z t

0

sgn.Bs/ dBs:

Infer that there exists an increasing process L such that, for every t � 0,

jBtj D
Z t

0

sgn.Bs/ dBs C Lt :

3. Observing that A"t �! Lt when " ! 0, show that, for every ı > 0, for every

choice of 0 < u < v, the condition (jBtj � ı for every t 2 Œu; v�) a.s. implies

that Lv D Lu. Infer that the function t 7! Lt is a.s. constant on every connected

component of the open set ft � 0 W Bt 6D 0g.

4. We set ˇt D
R t

0 sgn.Bs/ dBs for every t � 0. Show that .ˇt/t�0 is an .Ft/-

Brownian motion started from 0.

5. Show that Lt D sup
s�t

.�ˇs/, a.s. (In order to derive the bound Lt � sup
s�t

.�ˇs/, one

may consider the last zero of B before time t, and use question 3.) Give the law

of Lt.

6. For every " > 0, we define two sequences of stopping times .S"n/n�1 and .T"n/n�1,
by setting

S"1 D 0 ; T"1 D infft � 0 W jBtj D "g

and then, by induction,

S"nC1 D infft � T"n W Bt D 0g ; T"nC1 D infft � S"nC1 W jBtj D "g:

For every t � 0, we set N"
t D supfn � 1 W T"n � tg, where sup ¿ D 0. Show that

"N"
t

L2�!
"!0

Lt:

(One may observe that

Lt C
Z t

0

� 1X

nD1
1ŒS"n;T"n �.s/

�
sgn.Bs/ dBs D "N"

t C r"t

where the “remainder” r"t satisfies jr"t j � ".)
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7. Show that N1
t =

p
t converges in law as t ! 1 to jUj, where U is N .0; 1/-

distributed.

(Many results of Exercise 5.32 are reproved and generalized in Chap. 8.)

Exercise 5.33 (Study of multidimensional Brownian motion) Let Bt D
.B1t ;B

2
t ; : : : ;B

N
t / be an N-dimensional .Ft/-Brownian motion started from

x D .x1; : : : ; xN/ 2 RN . We suppose that N � 2.

1. Verify that jBtj2 is a continuous semimartingale, and that the martingale part of

jBtj2 is a true martingale.

2. We set

ˇt D
NX

iD1

Z t

0

Bi
s

jBsj
dBi

s

with the convention that
Bi

s

jBsj D 0 if jBsj D 0. Justify the definition of the

stochastic integrals appearing in the definition of ˇt, then show that the process

.ˇt/t�0 is an .Ft/-Brownian motion started from 0.

3. Show that

jBtj2 D jxj2 C 2

Z t

0

jBsj dˇs C N t:

4. From now on, we assume that x 6D 0. Let " 2 .0; jxj/ and T" D infft � 0 W jBtj �
"g. We set f .a/ D log a if N D 2, and f .a/ D a2�N if N � 3, for every a > 0.

Verify that f .jBt^T" j/ is a continuous local martingale.

5. Let R > jxj and SR D infft � 0 W jBtj � Rg. Show that

P.T" < SR/ D f .R/ � f .jxj/
f .R/� f ."/

:

Observing that P.T" < SR/ �! 0 when " ! 0, show that Bt 6D 0 for every t � 0,

a.s.

6. Show that, a.s., for every t � 0,

jBtj D jxj C ˇt C N � 1
2

Z t

0

ds

jBsj
:

7. We assume that N � 3. Show that jBtj �! 1 when t ! 1, a.s. (Hint: Observe

that jBtj2�N is a nonnegative supermartingale.)

8. We assume N D 3. Using the form of the Gaussian density, verify that the

collection of random variables .jBtj�1/t�0 is bounded in L2. Show that .jBtj�1/t�0
is a continuous local martingale but is not a (true) martingale.
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(Chapter 7 presents a slightly different approach to the results of this exercise, see

in particular Proposition 7.16.)

Exercise 5.34 (Application of the Cameron–Martin formula) Let B be an .Ft/-

Brownian motion started from 0. We set B�
t D supfjBsj W s � tg for every t � 0.

1. Set U1 D infft � 0 W jBtj D 1g and V1 D infft � U1 W Bt D 0g. Justify

the equality P.B�
V1
< 2/ D 1=2, and then show that one can find two constants

˛ > 0 and  > 0 such that

P.V1 � ˛; B�
V1
< 2/ D  > 0:

2. Show that, for every integer n � 1, P.B�
n˛ < 2/ � n. Hint: Construct a suitable

sequence V1;V2; : : : of stopping times such that, for every n � 2,

P.Vn � n˛ ;B�
Vn
< 2/ �  P.Vn�1 � .n � 1/˛ ;B�

Vn�1
< 2/:

Conclude that, for every " > 0 and t � 0, P.B�
t � "/ > 0.

3. Let h be a twice continuously differentiable function on RC such that h.0/ D 0,

and let K > 0. Via a suitable application of Itô’s formula, show that there exists

a constant A such that, for every " > 0,

ˇ̌
ˇ
Z K

0

h0.s/ dBs

ˇ̌
ˇ � A " a.s. on the event fB�

K � "g:

4. We set Xt D Bt � h.t/ and X�
t D supfjXsj W s � tg. Infer from question 3. that

lim
"#0

P.X�
K � "/

P.B�
K � "/

D exp
�

� 1

2

Z K

0

h0.s/2 ds
�
:

Notes and Comments

The reader who wishes to learn more about the topics of this chapter is strongly

advised to look at the excellent books by Karatzas and Shreve [49], Revuz and

Yor [70] and Rogers and Williams [72]. A more concise introduction to stochastic

integration can also be found in Chung and Williams [10].

Stochastic integrals with respect to Brownian motion were introduced by Itô [36]

in 1944. His motivation was to give a rigorous approach to the stochastic differential

equations that govern diffusion processes. Doob [15] suggested to study stochastic

integrals as martingales. Several authors then contributed to the theory, including

Kunita and Watanabe [50] and Meyer [60]. We have chosen to restrict our attention

to stochastic integration with respect to continuous semimartingales. The reader

interested in the more general case of semimartingales with jumps can consult the
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treatise of Dellacherie and Meyer [14] and the more recent books of Protter [63]

or Jacod and Shiryaev [44]. Itô’s formula was derived in [40] for processes that are

stochastic integrals with respect to Brownian motions, and in our general context it

appeared in the work of Kunita and Watanabe [50]. Theorem 5.12, at least in the case

d D 1, is usually attributed to Lévy, although it seems difficult to find this statement

in Lévy’s work (see however [54, Chapitre III]). Theorem 5.13 showing that any

continuous martingale can be written as a time-changed Brownian motion is due to

Dambis [11] and Dubins–Schwarz [17]. The Burkholder–Davis–Gundy inequalities

appear in [7], see also the expository article of Burkholder [6] for the history of

these famous inequalities. Theorem 5.18 goes back to Itô [39] – in the different

form of the chaos decomposition of Wiener functionals – and was a great success of

the theory of stochastic integration. This theorem and its numerous extensions have

found many applications in the area of mathematical finance. Girsanov’s theorem

appears in [29] in 1960, whereas the Cameron–Martin formula goes back to [8] in

1944. Applications of Girsanov’s theorem to stochastic differential equations are

developed in the book [77] of Stroock and Varadhan. Exercise 5.30 is concerned

with the so-called Lévy area of planar Brownian motion, which was studied by

Lévy [53, 54] with a different definition. Exercise 5.31 is inspired by Pitman and

Yor [67].



Chapter 6

General Theory of Markov Processes

Our goal in this chapter is to give a concise introduction to the main ideas of the

theory of continuous time Markov processes. Markov processes form a fundamental

class of stochastic processes, with many applications in real life problems outside

mathematics. The reason why Markov processes are so important comes from the

so-called Markov property, which enables many explicit calculations that would

be intractable for more general random processes. Although the theory of Markov

processes is by no means the central topic of this book, it will play a significant

role in the next chapters, in particular in our discussion of stochastic differential

equations. In fact the whole invention of Itô’s stochastic calculus was motivated by

the study of the Markov processes obtained as solutions of stochastic differential

equations, which are also called diffusion processes.

This chapter is mostly independent of the previous ones, even though Brownian

motion is used as a basic example, and the martingale theory developed in Chap. 3

plays an important role. After a section dealing with the general definitions and

the problem of existence, we focus on the particular case of Feller processes,

and in that framework we introduce the key notion of the generator. We establish

regularity properties of Feller processes as consequences of the analogous results

for supermartingales. We then discuss the strong Markov property, and we conclude

the chapter by presenting three important classes of Markov processes.

6.1 General Definitions and the Problem of Existence

Let .E;E / be a measurable space. A Markovian transition kernel from E into E is a

mapping Q W E � E �! Œ0; 1� satisfying the following two properties:

(i) For every x 2 E, the mapping E 3 A 7! Q.x;A/ is a probability measure on

.E;E /.

(ii) For every A 2 E , the mapping E 3 x 7! Q.x;A/ is E -measurable.

© Springer International Publishing Switzerland 2016
J.-F. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus,
Graduate Texts in Mathematics 274, DOI 10.1007/978-3-319-31089-3_6

151



152 6 General Theory of Markov Processes

In what follows we say transition kernel instead of Markovian transition kernel.

Remark In the case where E is finite or countable (and equipped with the �-field

of all subsets of E), Q is characterized by the “matrix” .Q.x; fyg//x;y2E.

If f W E �! R is bounded and measurable (resp. nonnegative and measurable),

the function Qf defined by

Q f .x/ D
Z

Q.x; dy/ f .y/

is also bounded and measurable (resp. nonnegative and measurable) on E. Indeed,

if f is an indicator function, the measurability of Qtf is just property (ii) and the

general case follows from standard arguments.

Definition 6.1 A collection .Qt/t�0 of transition kernels on E is called a transition

semigroup if the following three properties hold.

(i) For every x 2 E, Q0.x; dy/ D ıx.dy/.

(ii) For every s; t � 0 and A 2 E ,

QtCs.x;A/ D
Z

E

Qt.x; dy/Qs.y;A/

(Chapman–Kolmogorov identity).

(iii) For every A 2 E , the function .t; x/ 7! Qt.x;A/ is measurable with respect to

the �-field B.RC/˝ E .

Let B.E/ be the vector space of all bounded measurable real functions on E,

which is equipped with the norm k f k D supfjf .x/j W x 2 Eg. Then the linear

mapping B.E/ 3 f 7! Qtf is a contraction of B.E/. From this point of view, the

Chapman–Kolmogorov identity is equivalent to the relation

QtCs D QtQs

for every s; t � 0. This allows one to view .Qt/t�0 as a semigroup of contractions of

B.E/.

We now consider a filtered probability space .˝;F ; .Ft/t2Œ0;1�;P/.

Definition 6.2 Let .Qt/t�0 be a transition semigroup on E. A Markov process (with

respect to the filtration .Ft/) with transition semigroup .Qt/t�0 is an .Ft/-adapted

process .Xt/t�0 with values in E such that, for every s; t � 0 and f 2 B.E/,

EŒf .XsCt/ j Fs� D Qtf .Xs/:

Remark When we speak about a Markov process X without specifying the

filtration, we implicitly mean that the property of the definition holds with the

canonical filtration F X
t D �.Xr; 0 � r � t/. We may also notice that, if X is a
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Markov process with respect to a filtration .Ft/, it is automatically also a Markov

process (with the same semigroup) with respect to .F X
t /.

The definition of a Markov process can be interpreted as follows. Taking f D 1A,

we have

PŒXsCt 2 A j Fs� D Qt.Xs;A/

and in particular

PŒXsCt 2 A j Xr; 0 � r � s� D Qt.Xs;A/:

Hence the conditional distribution of XsCt knowing the “past” .Xr; 0 � r � s/

before time s is given by Qt.Xs; �/, and this conditional distribution only depends

on the “present” state Xs. This is the Markov property (informally, if one wants to

predict the future after time s, the past up to time s does not give more information

than just the present at time s).

Consequences of the definition Let .dx/ be the law of X0. Then if 0 < t1 < t2 <

� � � < tp and A0;A1; : : : ;Ap 2 E ,

P.X0 2 A0;Xt1 2 A1;Xt2 2 A2; : : : ;Xtp 2 Ap/

D
Z

A0

.dx0/

Z

A1

Qt1.x0; dx1/

Z

A2

Qt2�t1.x1; dx2/ � � �
Z

Ap

Qtp�tp�1.xp�1; dxp/:

More generally, if f0; f1; : : : ; fp 2 B.E/,

EŒ f0.X0/f1.Xt1/ � � � fp.Xtp/� D
Z
.dx0/f0.x0/

Z
Qt1.x0; dx1/f1.x1/

�
Z

Qt2�t1.x1; dx2/f2.x2/ � � �
Z

Qtp�tp�1.xp�1; dxp/fp.xp/:

This last formula is derived from the definition by induction on p. Note that,

conversely, if the latter formula holds for any choice of 0 < t1 < t2 < � � � < tp
and f0; f1; : : : ; fp 2 B.E/, then .Xt/t�0 is a Markov process of semigroup .Qt/t�0,
with respect to its canonical filtration F X

t D �.Xr; 0 � r � t/ (use a monotone

class argument to see that the property of the definition holds with Ft D F X
t , see

Appendix A1).

From the preceding formulas, we see that the finite-dimensional marginals of the

process X are completely determined by the semigroup .Qt/t�0 and the law of X0
(initial distribution).

Example If E D Rd, we can take, for every t > 0 and x 2 Rd,

Qt.x; dy/ D pt.y � x/ dy
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where, for z 2 Rd,

pt.z/ D .2�t/�d=2 exp �jzj2
2t
;

is the density of the Gaussian vector in Rd with covariance matrix t Id. It is

straightforward to verify that this defines a transition semigroup on Rd, and the

associated Markov process is d-dimensional Brownian motion (it would be more

accurate to say pre-Brownian motion since we have not yet said anything about

sample paths). In the case d D 1, compare with Corollary 2.4.

We now address the problem of the existence of a Markov process with a given

semigroup. To this end, we will need a general theorem of construction of random

processes, namely the Kolmogorov extension theorem. We give without proof the

special case of this theorem that is of interest to us (a proof in a more general setting

can be found in [64, Chapter III], see also [47, Chapter VII], and [49, Section 2.2]

for the special case E D R).

Let ˝� D ERC be the space of all mappings ! W RC �! E. We equip ˝� with

the �-field F� generated by the coordinate mappings ! 7! !.t/ for t 2 RC. Let

F.RC/ be the collection of all finite subsets of RC, and, for every U 2 F.RC/, let

�U W ˝� �! EU be the mapping which associates with every ! W RC �! E its

restriction to U. If U;V 2 F.RC/ and U � V , we similarly write �V
U W EV �! EU

for the obvious restriction mapping.

We recall that a topological space is Polish if its topology is separable (there

exists a dense sequence) and can be defined by a complete metric.

Theorem 6.3 Assume that E is a Polish space equipped with its Borel �-field E .

For every U 2 F.RC/, let �U be a probability measure on EU . Assume that the

collection .�U ;U 2 F.RC// is consistent in the following sense: If U � V, �U

is the image of �V under �V
U . Then there exists a unique probability measure � on

.˝�;F�/ such that �U.�/ D �U for every U 2 F.RC/.

Remark The uniqueness of � is an immediate consequence of the monotone class

lemma (cf. Appendix A1).

The Kolmogorov extension theorem allows one to construct random processes

having prescribed finite-dimensional marginals. To see this, let .Xt/t�0 be the

canonical process on ˝� :

Xt.!/ D !.t/; t � 0:

If � is a probability measure on ˝� and U D ft1; : : : ; tpg 2 F.RC/, with t1 <

t2 < � � � < tp, then .Xt1 ; : : : ;Xtp/ can be viewed as a random variable with values

in EU, provided we identify EU with Ep via the mapping ! �! .!.t1/; : : : ; !.tp//.

Furthermore, the distribution of .Xt1 ; : : : ;Xtp/ under � is �U.�/. The Kolmogorov

theorem can thus be rephrased by saying that given a collection .�U ;U 2 F.RC// of
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finite-dimensional marginal distributions, which satisfies the consistency condition

(this condition is clearly necessary for the desired conclusion), one can construct

a probability measure � on the space ˝�, under which the finite-dimensional

marginals of the canonical process X are the measures �U ;U 2 F.RC/.

Corollary 6.4 We assume that E satisfies the assumption of the previous theorem

and that .Qt/t�0 is a transition semigroup on E. Let  be a probability measure

on E. Then there exists a (unique) probability measure P on ˝� under which the

canonical process .Xt/t�0 is a Markov process with transition semigroup .Qt/t�0
and the law of X0 is  .

Proof Let U D ft1; : : : ; tpg 2 F.RC/, with 0 � t1 < � � � < tp. We define a

probability measure PU on EU (identified with Ep as explained above) by setting

Z
PU.dx1 : : : dxp/ 1A.x1; : : : ; xp/

D
Z
.dx0/

Z
Qt1.x0; dx1/

Z
Qt2�t1.x1; dx2/ � � �

Z
Qtp�tp�1.xp�1; dxp/1A.x1; : : : ; xp/

for any measurable subset A of EU .

Using the Chapman–Kolmogorov relation, one verifies that the measures PU

satisfy the consistency condition. The Kolmogorov theorem then gives the existence

(and uniqueness) of a probability measure P on ˝� whose finite-dimensional

marginals are the measures PU;U 2 F.RC/. By a previous observation, this implies

that .Xt/t�0 is under P a Markov process with semigroup .Qt/t�0, with respect to the

canonical filtration. ut
For x 2 E, let Px be the measure given by the preceding corollary when  D ıx.

Then, the mapping x 7! Px is measurable in the sense that x 7! Px.A/ is measurable,

for every A 2 F�. In fact, the latter property holds when A only depends on a finite

number of coordinates (in that case, there is an explicit formula for Px.A/) and

a monotone class argument gives the general case. Moreover, for any probability

measure  on E, the measure defined by

P./.A/ D
Z
.dx/Px.A/

is the unique probability measure on ˝� under which the canonical process .Xt/t�0
is a Markov process with semigroup .Qt/t�0 and the law of X0 is  .

Summarizing, the preceding corollary allows one to construct (under a topologi-

cal assumption on E) a Markov process .Xt/t�0 with semigroup .Qt/t�0, which starts

with a given initial distribution. More precisely, we get a measurable collection of

probability measures .Px/x2E such that the Markov process X starts from x under

Px. However, a drawback of the method that we used is the fact that it does not

give any information on the regularity properties of sample paths of X – at present

we cannot even assert that these sample paths are measurable. We will come back
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to this question later, but this will require additional assumptions on the semigroup

.Qt/t�0.
We end this section by introducing the important notion of the resolvent.

Definition 6.5 Let � > 0. The �-resolvent of the transition semigroup .Qt/t�0 is

the linear operator R� W B.E/ �! B.E/ defined by

R� f .x/ D
Z 1

0

e��tQt f .x/ dt

for f 2 B.E/ and x 2 E.

Remark Property (iii) of the definition of a transition semigroup is used here to get

the measurability of the mapping t 7! Qtf .x/, which is required to make sense of

the definition of R�f .x/.

Properties of the resolvent.

(i) kR� f k � 1
�
k f k.

(ii) If 0 � f � 1, then 0 � �R�f � 1.

(iii) If �;� > 0, we have R� � R� C .� � �/R�R� D 0 (resolvent equation).

Proof Properties (i) and (ii) are very easy. Let us only prove (iii). We may assume

that � 6D �. Then,

R�.R�f /.x/ D
Z 1

0

e��sQs

� Z 1

0

e��tQt f dt
�
.x/ ds

D
Z 1

0

e��s
� Z

Qs.x; dy/

Z 1

0

e��tQt f .y/ dt
�

ds

D
Z 1

0

e��s
� Z 1

0

e��tQsCt f .y/ dt
�

ds

D
Z 1

0

e�.���/s
� Z 1

0

e��.sCt/QsCt f .y/ dt
�

ds

D
Z 1

0

e�.���/s
� Z 1

s

e��rQrf .y/ dr
�

ds

D
Z 1

0

Qrf .y/ e��r
� Z r

0

e�.���/sds
�

dr

D
Z 1

0

Qrf .y/
�e��r � e��r

� � �

�
dr

giving the desired result. ut
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Example In the case of real Brownian motion, one verifies that

R�f .x/ D
Z

r�.y � x/f .y/ dy

where

r�.y � x/ D
Z 1

0

.2�t/�1=2 exp.�jy � xj2
2t

� �t/ dt D 1p
2�

exp.�jy � xj
p
2�/:

A neat way of getting the last equality is to use the formula EŒe��Ta � D e�a
p
2� for

the Laplace transform of the hitting time a > 0 by a real Brownian motion started

from 0 (see formula (3.7)). By differentiating with respect to �, we get EŒTa e��Ta � D
.a=

p
2�/e�a

p
2� and using the density of Ta (Corollary 2.22) to rewrite EŒTa e��Ta �,

we exactly find the integral that comes up in the calculation of r�.y � x/.

A key motivation of the introduction of the resolvent is the fact that it allows one

to construct certain supermartingales associated with a Markov process.

Lemma 6.6 Let X be a Markov process with semigroup .Qt/t�0 with respect to the

filtration .Ft/. Let h 2 B.E/ be nonnegative and let � > 0. Then the process

e��tR�h.Xt/

is an .Ft/-supermartingale.

Proof The random variables e��tR�h.Xt/ are bounded and thus in L1. Then, for

every s � 0,

QsR�h D
Z 1

0

e��tQsCth dt

and it follows that

e��sQsR�h D
Z 1

0

e��.sCt/QsCth dt D
Z 1

s

e��tQth dt � R�h:

Hence, for every s; t � 0,

EŒe��.tCs/R�h.XtCs/ j Ft� D e��.tCs/QsR�h.Xt/ � e��tR�h.Xt/;

giving the desired supermartingale property. ut
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6.2 Feller Semigroups

From now on, we assume that E is a metrizable locally compact topological space.

We also assume that E is countable at infinity, meaning that E is a countable union

of compact sets. The space E is equipped with its Borel �-field.

Under the previous assumptions, it is well known that the space E is Polish.

Moreover, one can find an increasing sequence .Kn/n�1 of compact subsets of E,

such that any compact set of E is contained in Kn for some n. A function f W E �! R

tends to 0 at infinity if, for every " > 0, there exists a compact subset K of E such

that j f .x/j � " for every x 2 EnK. This is equivalent to requiring that

sup
x2EnKn

j f .x/j �!
n!1

0:

We let C0.E/ stand for the set of all continuous real functions on E that tend to 0

at infinity. The space C0.E/ is a Banach space for the supremum norm

k f k D sup
x2E

j f .x/j:

Definition 6.7 Let .Qt/t�0 be a transition semigroup on E. We say that .Qt/t�0 is a

Feller semigroup if:

(i) 8f 2 C0.E/, Qtf 2 C0.E/;

(ii) 8f 2 C0.E/, kQtf � f k �! 0 as t ! 0.

A Markov process with values in E is a Feller process if its semigroup if Feller.

Remark One can prove (see for instance [70, Proposition III.2.4]) that condition

(ii) can be replaced by the seemingly weaker property

8f 2 C0.E/; 8x 2 E; Qtf .x/ �!
t!0

f .x/:

We will not use this, except in one particular example at the end of this chapter.

Condition (ii) implies that, for every s � 0,

lim
t#0

kQsCtf � Qsf k D lim
t#0

kQs.Qtf � f /k D 0

since Qs is a contraction of C0.E/. We note that the convergence is uniform when s

varies over RC, which ensures that the mapping t 7! Qtf is uniformly continuous

from RC into C0.E/, for any fixed f 2 C0.E/.

In what follows, we fix a Feller semigroup .Qt/t�0 on E. Using property (i) of

the definition and the dominated convergence theorem, one easily verifies that R�f 2
C0.E/ for every f 2 C0.E/ and � > 0.
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Proposition 6.8 Let � > 0, and set R D fR�f W f 2 C0.E/g. Then R does not

depend on the choice � > 0. Furthermore, R is a dense subspace of C0.E/.

Proof If � 6D �, the resolvent equation gives

R�f D R�. f C .� � �/R�f /:

Hence any function of the form R�f with f 2 C0.E/ is also of the form R�g for some

g 2 C0.E/. This gives the first assertion.

Clearly, R is a linear subspace of C0.E/. To see that it is dense, we simply note

that, for every f 2 C0.E/,

�R�f D �

Z 1

0

e��tQtf dt D
Z 1

0

e�tQt=�f dt �!
�!1

f in C0.E/;

by property (ii) of the definition of a Feller semigroup and dominated convergence.

ut
Definition 6.9 We set

D.L/ D f f 2 C0.E/ W Qtf � f

t
converges in C0.E/ when t # 0g

and, for every f 2 D.L/,

Lf D lim
t#0

Qtf � f

t
:

Then D.L/ is a linear subspace of C0.E/ and L W D.L/ �! C0.E/ is a linear operator

called the generator of the semigroup .Qt/t�0. The subspace D.L/ is called the

domain of L.

Let us start with two simple properties of the generator.

Proposition 6.10 Let f 2 D.L/ and s > 0. Then Qsf 2 D.L/ and L.Qsf / D Qs.Lf /.

Proof Writing

Qt.Qsf / � Qsf

t
D Qs

�Qtf � f

t

�

and using the fact that Qs is a contraction of C0.E/, we get that t�1.Qt.Qsf / � Qsf /

converges to Qs.Lf /, which gives the desired result. ut
Proposition 6.11 If f 2 D.L/, we have, for every t � 0,

Qtf D f C
Z t

0

Qs.Lf / ds D f C
Z t

0

L.Qsf / ds:
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Proof Let f 2 D.L/. For every t � 0,

"�1.QtC"f � Qtf / D Qt."
�1.Q"f � f // �!

"#0
Qt.Lf /:

Moreover, the preceding convergence is uniform when t varies over RC. This

implies that, for every x 2 E, the function t 7! Qtf .x/ is differentiable on RC
and its derivative is Qt.Lf /.x/, which is a continuous function of t. The formula of

the proposition follows, also using the preceding proposition. ut
The next proposition identifies the domain D.L/ in terms of the resolvent

operators R�.

Proposition 6.12 Let � > 0.

(i) For every g 2 C0.E/, R�g 2 D.L/ and .� � L/R�g D g.

(ii) If f 2 D.L/, R�.� � L/f D f .

Consequently, D.L/ D R and the operators R� W C0.E/ ! R and � � L W D.L/ !
C0.E/ are the inverse of each other.

Proof

(i) If g 2 C0.E/, we have for every " > 0,

"�1.Q"R�g � R�g/ D "�1
� Z 1

0

e��tQ"Ctg dt �
Z 1

0

e��tQtg dt
�

D "�1
�
.1 � e��"/

Z 1

0

e��tQ"Ctg dt �
Z "

0

e��tQtg dt
�

�!
"!0

�R�g � g

using property (ii) of the definition of a Feller semigroup (and the fact that this

property implies the continuity of the mapping t 7! Qtg from RC into C0.E/).

The preceding calculation shows that R�g 2 D.L/ and L.R�g/ D �R�g � g.

(ii) Let f 2 D.L/. By Proposition 6.11, Qtf D f C
R t

0 Qs.Lf / ds, hence

Z 1

0

e��tQtf .x/ dt D f .x/

�
C
Z 1

0

e��t
� Z t

0

Qs.Lf /.x/ ds
�

dt

D f .x/

�
C
Z 1

0

e��s

�
Qs.Lf /.x/ ds:

We have thus obtained the equality

�R�f D f C R�Lf

giving the result in (ii).
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The last assertions of the proposition follow from (i) and (ii): (i) shows that R �
D.L/ and (ii) gives the reverse inclusion, then the identities in (i) and (ii) show that

R� and � � L are inverse of each other. ut
Corollary 6.13 The semigroup .Qt/t�0 is determined by the generator L (including

also the domain D.L/).

Proof Let f be a nonnegative function in C0.E/. Then R�f is the unique element

of D.L/ such that .� � L/R�f D f . On the other hand, knowing R�f .x/ DR1
0 e��tQtf .x/dt for every � > 0 determines the continuous function t 7! Qtf .x/.

To complete the argument, note that Qt is characterized by the values of Qtf for

every nonnegative function f in C0.E/. ut
Example It is easy to verify that the semigroup .Qt/t�0 of real Brownian motion is

Feller. Let us compute its generator L. We saw that, for every � > 0 and f 2 C0.R/,

R�f .x/ D
Z

1p
2�

exp.�
p
2�jy � xj/ f .y/ dy:

If h 2 D.L/, we know that there exists an f 2 C0.R/ such that h D R�f . Taking

� D 1
2
, we have

h.x/ D
Z

exp.�jy � xj/ f .y/ dy:

By differentiating under the integral sign (we leave the justification to the reader),

we get that h is differentiable on R, and

h0.x/ D
Z

sgn.y � x/ exp.�jy � xj/ f .y/ dy

with the notation sgn.z/ D 1fz>0g � 1fz�0g (the value of sgn.0/ is unimportant). Let

us also show that h0 is differentiable on R. Let x0 2 R. Then, for x > x0,

h0.x/ � h0.x0/D
Z �

sgn.y � x/ exp.�jy � xj/� sgn.y � x0/ exp.�jy � x0j/
�

f .y/dy

D
Z x

x0

�
� exp.�jy � xj/ � exp.�jy � x0j/

�
f .y/ dy

C
Z

RnŒx0 ;x�
sgn.y � x0/

�
exp.�jy � xj/ � exp.�jy � x0j/

�
f .y/ dy:

It follows that

h0.x/ � h0.x0/

x � x0
�!
x#x0

�2f .x0/C h.x0/:
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We get the same limit when x " x0, and we thus obtain that h is twice differentiable,

and h00 D �2f C h.

On the other hand, since h D R1=2f , Proposition 6.12 shows that

.
1

2
� L/ h D f

hence Lh D �f C 1
2
h D 1

2
h00.

Summarizing, we have obtained that

D.L/ � fh 2 C2.R/ W h and h00 2 C0.R/g

and that, if h 2 D.L/, we have Lh D 1
2
h00.

In fact, the preceding inclusion is an equality. To see this, we may argue in the

following way. If g is a twice differentiable function such that g and g00 are in C0.R/,

we set f D 1
2
.g � g00/ 2 C0.R/, then h D R1=2f 2 D.L/. By the preceding argument,

h is twice differentiable and h00 D �2f Ch. It follows that .h�g/00 D h�g. Since the

function h�g belongs to C0.R/, it must vanish identically and we get g D h 2 D.L/.

Remark In general, it is very difficult to determine the exact domain of the

generator. The following theorem often allows one to identify elements of this

domain using martingales associated with the Markov process with semigroup

.Qt/t�0.

We consider again a general Feller semigroup .Qt/t�0. We assume that on some

probability space, we are given, for every x 2 E, a process .Xx
t /t�0 which is Markov

with semigroup .Qt/t�0, with respect to a filtration .Ft/t�0, and such that P.Xx
0 D

x/ D 1. To make sense of the integrals that will appear below, we also assume that

the sample paths of .Xx
t /t�0 are càdlàg (we will see in the next section that this

assumption is not restrictive).

Theorem 6.14 Let h; g 2 C0.E/. The following two conditions are equivalent:

(i) h 2 D.L/ and Lh D g.

(ii) For every x 2 E, the process

h.Xx
t / �

Z t

0

g.Xx
s / ds

is a martingale, with respect to the filtration .Ft/.

Proof We first prove that (i) ) (ii). Let h 2 D.L/ and g D Lh. By Proposition 6.11,

we have then, for every s � 0,

Qsh D h C
Z s

0

Qrg dr:
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It follows that, for t � 0 and s � 0,

EŒh.Xx
tCs/ j Ft� D Qsh.X

x
t / D h.Xx

t /C
Z s

0

Qrg.X
x
t / dr:

On the other hand,

E
h Z tCs

t

g.Xx
r / dr

ˇ̌
ˇ Ft

i
D
Z tCs

t

EŒg.Xx
r / j Ft� dr D

Z tCs

t

Qr�tg.X
x
t / dr

D
Z s

0

Qrg.X
x
t / dr:

The fact that the conditional expectation and the integral can be interchanged (in the

first equality of the last display) is easy to justify using the characteristic property

of conditional expectations. It follows from the last two displays that

E
h
h.Xx

tCs/ �
Z tCs

0

g.Xx
r / dr

ˇ̌
ˇ Ft

i
D h.Xx

t / �
Z t

0

g.Xx
r / dr

giving property (ii).

Conversely, suppose that (ii) holds. Then, for every t � 0,

E
h
h.Xx

t / �
Z t

0

g.Xx
r / dr

i
D h.x/

and on the other hand, from the definition of a Markov process,

E
h
h.Xx

t / �
Z t

0

g.Xx
r / dr

i
D Qth.x/�

Z t

0

Qrg.x/ dr:

Consequently,

Qth � h

t
D 1

t

Z t

0

Qrg dr �!
t#0

g

in C0.E/, by property (ii) of the definition of a Feller semigroup. We conclude that

h 2 D.L/ and Lh D g. ut
Example In the case of d-dimensional Brownian motion, Itô’s formula shows that,

if h 2 C2.Rd/,

h.Xt/ � 1

2

Z t

0

�h.Xs/ ds

is a continuous local martingale. This continuous local martingale is a martingale if

we furthermore assume that h and�h are in C0.R
d/ (hence bounded). It then follows
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from Theorem 6.14 that h 2 D.L/ and Lh D 1
2
�h. Recall that we already obtained

this result by a direct computation of L when d D 1 (in fact in a more precise form

since here we can only assert that D.L/ � fh 2 C2.Rd/ W h and �h 2 C0.R
d/g,

whereas equality holds if d D 1).

6.3 The Regularity of Sample Paths

Our aim in this section is to show that one construct Feller processes in such a way

that they have càdlàg sample paths. We consider a Feller semigroup .Qt/t�0 on a

topological space E (assumed to be metrizable, locally compact and countable at

infinity as above).

Theorem 6.15 Let .Xt/t�0 be a Markov process with semigroup .Qt/t�0, with

respect to the filtration .Ft/t2Œ0;1�. Set eF 1 D F1 and, for every t � 0,

eF t D FtC _ �.N /;

where N denotes the class of all F1-measurable sets that have zero probability.

Then, the process .Xt/t�0 has a càdlàg modification . QXt/t�0, which is adapted to

the filtration .eF t/. Moreover, . QXt/t�0 is a Markov process with semigroup .Qt/t�0,
with respect to the filtration .eF t/t2Œ0;1�.

Remark The filtration .eF t/ is right-continuous because so is the filtration .FtC/
and the right-continuity property is preserved when adding the class of negligible

sets N .

Proof Let E� D E [ f�g be the Alexandroff compactification of E, which is

obtained by adding the point at infinity� to E (and by definition the neighborhoods

of � are the complements of compact subsets of E). We agree that every function

f 2 C0.E/ is extended to a continuous function on E� by setting f .�/ D 0.

Write CC
0 .E/ for the set of all nonnegative functions in C0.E/. We can find a

sequence .fn/n�0 in CC
0 .E/ which separates the points of E�, in the sense that, for

every x; y 2 E� with x 6D y, there is an integer n such that fn.x/ 6D fn.y/. Then,

H D fRpfn W p � 1; n � 0g

is also a countable subset of CC
0 .E/ which separates the points of E� (use the fact

that kpRpf � f k �! 0 when p ! 1).

If h 2 H , Lemma 6.6 shows that there exists an integer p � 1 such that e�pth.Xt/

is a supermartingale. Let D be a countable dense subset of RC. Then Theorem 3.17

(i) shows that the limits

lim
D3s##t

h.Xs/ ; lim
D3s""t

h.Xs/
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exist simultaneously for every t 2 RC (the second one only for t > 0) outside

an F1-measurable event Nh of zero probability. Indeed, as in the proof of

Theorem 3.17, we may define the complementary event Nc
h as the set of all ! 2 ˝

for which the function D 3 s 7! e�psh.Xs/ makes a finite number of upcrossings

along any interval Œa; b� (a; b 2 Q, a < b) on every finite time interval. We then set

N D
[

h2H

Nh

in such a way that we still have N 2 N . Then if ! … N, the limits

lim
D3s##t

Xs.!/ ; lim
D3s""t

Xs.!/

exist for every t � 0 (the second one only for t > 0) in E�. In fact, if we assume

that Xs.!/ has two distinct accumulation points in E� when D 3 s ## t, we get a

contradiction by considering a function h 2 H that separates these two points. We

can then set, for every ! 2 ˝nN and every t � 0,

QXt.!/ D lim
D3s##t

Xs.!/:

If ! 2 N, we set QXt.!/ D x0 for every t � 0, where x0 is a fixed point in E.

Then, for every t � 0, QXt is an eF t-measurable random variable with values in E�.

Furthermore, for every ! 2 ˝ , t 7! QXt.!/, viewed as a mapping with values in E�,

is càdlàg by Lemma 3.16 (this lemma shows that the functions t 7! h. QXt.!//, for

h 2 H , are càdlàg, and this suffices since H separates points of E).

Let us now show that P.Xt D QXt/ D 1, for every fixed t � 0. Let f ; g 2 C0.E/

and let .tn/ be a sequence in D that decreases (strictly) to t. Then,

EŒf .Xt/g. QXt/� D lim
n!1

EŒf .Xt/g.Xtn/�

D lim
n!1

EŒf .Xt/Qtn�tg.Xt/�

D EŒf .Xt/g.Xt/�

since Qtn�tg �! g by the definition of a Feller semigroup. The preceding equality

entails that the two pairs .Xt; QXt/ and .Xt;Xt/ have the same distribution and thus

P.Xt D QXt/ D 1.

Let us then verify that . QXt/t�0 is a Markov process with semigroup .Qt/t�0 with

respect to the filtration .eF t/. It is enough to prove that, for every s � 0, t > 0 and

A 2 eF s, f 2 C0.E/, we have

EŒ1A f . QXsCt/� D EŒ1A Qtf . QXs/�:
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Since QXs D Xs a.s. and QXsCt D XsCt a.s., this is equivalent to proving that

EŒ1A f .XsCt/� D EŒ1A Qtf .Xs/�:

Because A is equal a.s. to an element of FsC, we may assume that A 2 FsC. Let

.sn/ be a sequence in D that decreases to s, so that A 2 Fsn
for every n. Then, as

soon as sn � s C t, we have

EŒ1A f .XsCt/� D EŒ1A EŒf .XsCt/ j Fsn
�� D EŒ1A QsCt�sn

f .Xsn
/�:

But QsCt�sn
f converges (uniformly) to Qtf by properties of Feller semigroups, and

since Xsn
D QXsn

a.s. we also know that Xsn
converges a.s. to QXs D Xs a.s. We thus

obtain the desired result by letting n tend to 1.

It remains to verify that the sample paths t 7! QXt.!/ are càdlàg as E-valued

mappings, and not only as E�-valued mappings (we already know that, for every

fixed t � 0, QXt.!/ D Xt.!/ a.s. is in E with probability one, but this does not imply

that the sample paths, and their left-limits, remain in E). Fix a function g 2 CC
0 .E/

such that g.x/ > 0 for every x 2 E. The function h D R1g then satisfies the same

property. Set, for every t � 0,

Yt D e�th. QXt/:

Then Lemma 6.6 shows that .Yt/t�0 is a nonnegative supermartingale with respect

to the filtration .eF t/. Additionally, we know that the sample paths of .Yt/t�0 are

càdlàg (recall that h.�/ D 0 by convention).

For every integer n � 1, set

T.n/ D infft � 0 W Yt <
1

n
g:

Then T.n/ is a stopping time of the filtration .eF t/ (we can apply Proposition 3.9,

because T.n/ is the first hitting time of an open set by an adapted process with càdlàg

sample paths, and the filtration .eF t/ is right-continuous). Consequently,

T D lim
n!1

" T.n/

is a stopping time. The desired result will follow if we can verify that P.T < 1/ D
0. Indeed, it is clear that, for every t 2 Œ0;T.n//, QXt 2 E and QXt� 2 E, and we may

redefine QXt.!/ D x0 (for every t � 0) for all ! belonging to the event fT < 1g
2 N .
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To verify that P.T < 1/ D 0, we apply Theorem 3.25 and the subsequent

remark to Z D Y and U D T.n/, V D T C q, where q > 0 is a rational number. We

get

EŒYTCq 1fT<1g� � EŒYT.n/ 1fT.n/<1g� � 1

n
:

By letting n tend to 1, we thus have

EŒYTCq 1fT<1g� D 0;

hence YTCq D 0 a.s. on fT < 1g. By the right-continuity of sample paths of Y, we

conclude that Yt D 0, for every t 2 ŒT;1/, a.s. on fT < 1g. But we also know

that, for every integer k � 0, Yk D e�kh. QXk/ > 0 a.s., since QXk 2 E a.s. This suffices

to get P.T < 1/ D 0. ut
Remark The previous proof applies with minor modifications to the different

setting where we are given the process .Xt/t�0 together with a collection .Px/x2E

of probability measures such that, under Px, .Xt/t�0 is a Markov process with

semigroup .Qt/t�0, with respect to a filtration .Ft/t2Œ0;1�, and Px.X0 D x/ D 1

(in the first section above, we saw that these properties will hold for the canonical

process .Xt/t�0 on the space ˝� D ERC if the measures Px are constructed from

the semigroup .Qt/t�0 using the Kolmogorov extension theorem). In that setting, we

can define the filtration .eF t/t2Œ0;1� by

eF t D FtC _ �.N 0/;

where N 0 denotes the class of all F1-measurable sets that have zero Px-probability

for every x 2 E. By the same arguments as in the preceding proof, we can then

construct an .eF t/-adapted process . QXt/t�0 with càdlàg sample paths, such that, for

every x 2 E,

Px. QXt D Xt/ D 1; 8t � 0;

and . QXt/t�0 is under Px a Markov process with semigroup .Qt/t�0, with respect to

the filtration .eF t/t2Œ0;1�, such that Px. QX0 D x/ D 1.

6.4 The Strong Markov Property

In the first part of this section, we come back to the general setting of Sect. 6.1

above, where .Qt/t�0 is a (not necessarily Feller) transition semigroup on E. We

assume here that E is a metric space (equipped with its Borel �-field), and moreover

that, for every x 2 E, one can construct a Markov process .Xx
t /t�0 with semigroup
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.Qt/t�0 such that Xx
0 D x a.s. and the sample paths of X are càdlàg. In the case of

a Feller semigroup, the existence of such a process follows from Corollary 6.4 and

Theorem 6.15.

The space of all càdlàg paths f W RC �! E is denoted by D.E/. This space is

equipped with the �-field D generated by the coordinate mappings f 7! f .t/. For

every x 2 E, we write Px for the probability measure on D.E/ which is the law of

the random path .Xx
t /t�0. Notice that Px does not depend on the choice of Xx, nor of

the probability space where Xx is defined: This follows from the fact that the finite-

dimensional marginals of a Markov process are determined by its semigroup and

initial distribution.

We first give a version of the (simple) Markov property, which is a simple

extension of the definition of a Markov process. We use the notation Ex for the

expectation under Px.

Theorem 6.16 (Simple Markov property) Let .Yt/t�0 be a Markov process with

semigroup .Qt/t�0, with respect to the filtration .Ft/t�0. We assume that the sample

paths of Y are càdlàg. Let s � 0 and let ˚ W D.E/ �! RC be a measurable

function. Then,

EŒ˚..YsCt/t�0/ j Fs� D EYs
Œ˚�:

Remark The right-hand side of the last display is the composition of Ys and of the

mapping y 7! EyŒ˚�. To see that the latter mapping is measurable, it is enough to

consider the case where ˚ D 1A, A 2 D . When A only depends on a finite number

of coordinates, there is an explicit formula, and an application of the monotone class

lemma completes the argument.

Proof As in the preceding remark, it suffices to consider the case where ˚ D 1A

and

A D f f 2 D.E/ W f .t1/ 2 B1; : : : ; f .tp/ 2 Bpg;

where 0 � t1 < t2 < � � � < tp and B1; : : : ;Bp are measurable subsets of E. In that

case, we need to verify that

P.YsCt1 2 B1; : : : ;YsCtp 2 Bp j Fs/

D
Z

B1

Qt1.Ys; dx1/

Z

B2

Qt2�t1.x1; dx2/ � � �
Z

Bp

Qtp�tp�1.xp�1; dxp/:

We in fact prove more generally that, if '1; : : : ; 'p 2 B.E/,

EŒ'1.YsCt1/ � � �'p.YsCtp/ j Fs�

D
Z

Qt1.Ys; dx1/'1.x1/

Z
Qt2�t1.x1; dx2/'2.x2/ � � �

Z
Qtp�tp�1.xp�1; dxp/'p.xp/:
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If p D 1 this is the definition of a Markov process. We then argue by induction,

writing

EŒ'1.YsCt1/ � � �'p.YsCtp/ j Fs�

D EŒ'1.YsCt1/ � � �'p�1.YsCtp�1/EŒ'p.YsCtp/ j FsCtp�1 � j Fs�

D EŒ'1.YsCt1/ � � �'p�1.YsCtp�1/Qtp�tp�1'p.YsCtp�1/ j Fs�

and the desired result easily follows. ut
We now turn to the strong Markov property.

Theorem 6.17 (Strong Markov property) Retain the assumptions of the previous

theorem, and suppose in addition that .Qt/t�0 is a Feller semigroup (in particular,

E is assumed to be metrizable locally compact and countable at infinity). Let T be

a stopping time of the filtration .FtC/, and let ˚ W D.E/ �! RC be a measurable

function. Then, for every x 2 E,

EŒ1fT<1g˚..YTCt/t�0/ j FT � D 1fT<1gEYT
Œ˚�:

Remark We allow T to be a stopping time of .FtC/, which is slightly more general

than saying that T is a stopping time of the filtration .Ft/.

Proof We first observe that the right-hand side of the last display is FT -measurable,

because fT < 1g 3 ! 7! YT.!/ is FT -measurable (Theorem 3.7) and the function

y 7! EyŒ˚� is measurable. It is then enough to show that, for A 2 FT fixed,

EŒ1A\fT<1g˚..YTCt/t�0/� D EŒ1A\fT<1gEYT
Œ˚��:

As above, we can restrict our attention to the case where

˚.f / D '1.f .t1// � � �'p.f .tp//

where 0 � t1 < t2 < � � � < tp and '1; : : : ; 'p 2 B.E/. It is in fact enough to take

p D 1: If the desired result holds in that case, we can argue by induction, writing

EŒ1A\fT<1g'1.YTCt1/ � � �'p.YTCtp/�

D EŒ1A\fT<1g'1.YTCt1/ � � �'p�1.YTCtp�1/EŒ'p.YTCtp/ j FTCtp�1 ��

D EŒ1A\fT<1g'1.YTCt1/ � � �'p�1.YTCtp�1/Qtp�tp�1'p.YTCtp�1/�:

We thus fix t � 0 and ' 2 B.E/ and we aim to prove that

EŒ1A\fT<1g'.YTCt/� D EŒ1A\fT<1gQt'.YT/��:
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We may assume that ' 2 C0.E/ (a finite measure on E is determined by its values

against functions of C0.E/).

On the event T < 1, write ŒT�n for the smallest real number of the form i2�n,

i 2 ZC, which is strictly greater than T. Then,

EŒ1A\fT<1g'.YTCt/� D lim
n!1

EŒ1A\fT<1g'.YŒT�nCt/�

D lim
n!1

1X

iD1
EŒ1A\f.i�1/2�n�T<i2�ng'.Yi2�nCt/�

D lim
n!1

1X

iD1
EŒ1A\f.i�1/2�n�T<i2�ngQt'.Yi2�n/�

D lim
n!1

EŒ1A\fT<1gQt'.YŒT�n /�

D EŒ1A\fT<1gQt'.YT/�

giving the desired result. In the first (and in the last) equality, we use the right

continuity of sample paths. In the third equality, we observe that the event

A \ f.i � 1/2�n � T < i2�ng

belongs to Fi2�n because A 2 FT and T is a stopping time of the filtration .FtC/
(use Proposition 3.6). Finally, and this is the key point, in the last equality we also

use the fact that Qt' is continuous, since ' 2 C0.E/ and the semigroup is Feller. ut
Remark In the special case of (linear) Brownian motion, the result of Theorem 6.17

is essentially equivalent to Theorem 2.20 stated in Chap. 2. The reason why the

formulation in Theorem 2.20 looks different comes from the property of stationarity

and independence of the increments of Brownian motion, which of course does

not subsist in our general setting. Even for Brownian motion, the formulation

of Theorem 6.17 turns out to be more appropriate in a number of situations: A

convincing illustration is the proof of Proposition 7.7 (ii) in the next chapter.

6.5 Three Important Classes of Feller Processes

6.5.1 Jump Processes on a Finite State Space

In this subsection, we assume that the state space E is finite (and equipped with the

discrete topology). Note that any càdlàg function f 2 D.E/must be of the following

type: There exists a real t1 2 .0;1� such that f .t/ D f .0/ for every t 2 Œ0; t1/, then,

if t1 < 1, there exists a real t2 2 .t1;1� such that f .t/ D f .t1/ 6D f .0/ for every

t 2 Œt1; t2/, and so on.
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x

XT1

XT2

XT3

t

E

T1 T2 T3

Fig. 6.1 A sample path of the jump process X under Px

Consider a Feller semigroup .Qt/t�0 on E. By the remark of the end of Sect. 6.3,

we can construct, on a probability space ˝ equipped with a right-continuous

filtration .Ft/t2Œ0;1�, a collection .Px/x2E of probability measures and a process

.Xt/t�0 with càdlàg sample paths such that, under Px, X is Markov with semigroup

.Qt/t�0 with respect to the filtration .Ft/, and Px.X0 D x/ D 1. As previously,

Ex stands for the expectation under Px. Since the sample paths of X are càdlàg, we

know that, for every ! 2 ˝ , there exists a sequence

T0.!/ D 0 < T1.!/ � T2.!/ � T3.!/ � � � � � 1;

such that Xt.!/ D X0.!/ for every t 2 Œ0;T1.!// and, for every integer i � 1,

the condition Ti.!/ < 1 implies Ti.!/ < TiC1.!/, XTi.!/.!/ 6D XTi�1.!/.!/ and

Xt.!/ D XTi.!/.!/ for every t 2 ŒTi.!/;TiC1.!//. Moreover, Tn.!/ " 1 as n !
1. See Fig. 6.1.

It is not hard to verify that T0;T1;T2; : : : are stopping times. For instance,

fT1 < tg D
[

q2Œ0;t/\Q

fXq 6D X0g 2 Ft:

Recall that, for � > 0, a positive random variable U is exponentially distributed

with parameter � if P.U > r/ D e��r for every r � 0. In the following lemma, we

make the convention that an exponential variable with parameter 0 is equal to 1
a.s.

Lemma 6.18 Let x 2 E. There exists a real number q.x/ � 0 such that the random

variable T1 is exponentially distributed with parameter q.x/ under Px. Furthermore,

if q.x/ > 0, T1 and XT1 are independent under Px.
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Proof Let s; t � 0. We have

Px.T1 > s C t/ D ExŒ1fT1>sg ˚..XsCr/r�0/�;

where ˚.f / D 1ff .r/Df .0/; 8r2Œ0;t�g for f 2 D.E/. Using the simple Markov property

(Theorem 6.16), we get

Px.T1 > s C t/ D ExŒ1fT1>sg EXs
Œ˚..Xr/r�0��

D ExŒ1fT1>sg Px.T1 > t/�

D Px.T1 > s/Px.T1 > t/;

which implies that T1 is exponentially distributed under Px.

Assume that q.x/ > 0, so that T1 < 1, Px a.s. Then, for every t � 0 and y 2 E,

Px.T1 > t; XT1 D y/ D ExŒ1fT1>tg �..XtCr/r�0/�;

where for f 2 D.E/, �.f / D 0 is f is constant, and otherwise �. f / D 1f1.f /Dyg, if

1.f / is the value of f after its first jump. We thus get

Px.T1 > t; XT1 D y/ D ExŒ1fT1>tg EXt
Œ�..Xr/r�0/��

D ExŒ1fT1>tg Px.XT1 D y/�

D Px.T1 > t/Px.XT1 D y/;

which gives the desired independence. ut
Points x such that q.x/ D 0 are absorbing states for the Markov process, in the

sense that Px.Xt D x;8t � 0/ D 1.

For every x 2 E such that q.x/ > 0, and every y 2 E, we set

˘.x; y/ D Px.XT1 D y/:

Note that ˘.x; �/ is a probability measure on E, and ˘.x; x/ D 0.

Proposition 6.19 Let L denote the generator of .Qt/t�0. Then D.L/ D C0.E/ D
B.E/, and, for every ' 2 B.E/, for every x 2 E:

• if q.x/ D 0, L'.x/ D 0;

• if q.x/ > 0,

L'.x/ D q.x/
X

y2E;y 6Dx

˘.x; y/.'.y/ � '.x// D
X

y2E

L.x; y/ '.y/;
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where

L.x; y/ D
�

q.x/˘.x; y/ if y 6D x;

�q.x/ if y D x:

Proof Let ' 2 B.E/ and x 2 E. If q.x/ D 0, it is trivial that Qt'.x/ D '.x/ and so

lim
t#0

Qt'.x/ � '.x/
t

D 0:

Suppose then that q.x/ > 0. We first observe that

Px.T2 � t/ D O.t2/ (6.1)

as t ! 0. Indeed, using the strong Markov property at T1,

Px.T2 � t/ � Px.T1 � t; T2 � T1 C t/ D ExŒ1fT1�tg PXT1
.T1 � t/�;

and we can bound

PXT1
.T1 � t/ � sup

y2E

Py.T1 � t/ � t sup
y2E

q.y/;

giving the desired result since we have also Px.T1 � t/ � q.x/t.

It follows from (6.1) that

Qt'.x/ D ExŒ'.Xt/� D ExŒ'.Xt/ 1ft<T1g�C ExŒ'.XT1/ 1fT1�tg�C O.t2/

D '.x/ e�q.x/t C .1 � e�q.x/t/
X

y2E;y 6Dx

˘.x; y/ '.y/C O.t2/;

using the independence of T1 and XT1 and the definition of ˘.x; y/. We conclude

that

Qt'.x/ � '.x/
t

�!
t!0

�q.x/'.x/C q.x/
X

y2E;y 6Dx

˘.x; y/ '.y/;

and this completes the proof. ut
In particular, taking '.y/ D 1fyg, we have if y 6D x,

L.x; y/ D d

dt
Px.Xt D y/jtD0;

so that L.x; y/ can be interpreted as the instantaneous rate of transition from x to y.



174 6 General Theory of Markov Processes

The next proposition provides a complete description of the sample paths of X

under Px. For the sake of simplicity, we assume that there are no absorbing states,

but the reader will easily extend the statement to the general case.

Proposition 6.20 We assume that q.y/ > 0 for every y 2 E. Let x 2 E. Then,

Px a.s., the jump times T1 < T2 < T3 < � � � are all finite and the sequence

X0;XT1 ;XT2 ; : : : is under Px a discrete Markov chain with transition kernel˘ started

from x. Furthermore, conditionally on .X0;XT1 ;XT2 ; : : :/, the random variables

T1 � T0;T2 � T1; : : : are independent and, for every integer i � 0, the conditional

distribution of TiC1 � Ti is exponential with parameter q.XTi
/.

Proof An application of the strong Markov property shows that all stopping times

T1;T2; : : : are finite Px a.s. Then, let y; z 2 E, and f1; f2 2 B.RC/. By the strong

Markov property at T1,

ExŒ1fXT1Dygf1.T1/ 1fXT2Dzgf2.T2 � T1/�

D ExŒ1fXT1Dygf1.T1/EXT1
Œ1fXT1Dzgf2.T1/��

D ˘.x; y/˘.y; z/

Z 1

0

ds1 e�q.x/s1 f1.s1/

Z 1

0

ds2e
�q.y/s2 f2.s2/:

Arguing by induction, we get for every y1; : : : ; yp 2 E and f1; : : : ; fp 2 B.RC/,

ExŒ1fXT1Dy1g1fXT2Dy2g � � � 1fXTp Dypg f1.T1/f2.T2 � T1/ � � � fp.Tp � Tp�1/�

D ˘.x; y1/˘.y1; y2/ � � �˘.yp�1; yp/

pY

iD1

� Z 1

0

ds e�q.yi�1/sfi.s/
�
;

where y0 D x by convention. The various assertions of the proposition follow. ut
Jump processes play an important role in various models of applied probability,

in particular in reliability and in queueing theory. In such applications, one usually

starts from the transition rates of the process. It is thus important to know whether,

given a collection .q.x//x2E of nonnegative real numbers and, for every x such

that q.x/ > 0, a probability measure ˘.x; �/ on E such that ˘.x; x/ D 0,

there exists a corresponding Feller semigroup .Qt/t�0 and therefore an associated

Markov process. The answer to this question is yes, and one can give two different

arguments:

• Probabilistic method. Use the description of Proposition 6.20 (or its extension

to the case where there are absorbing states) to construct the process .Xt/t�0
starting from any x 2 E, and thus the semigroup .Qt/t�0 via the formula

Qt'.x/ D ExŒ'.Xt/�.
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• Analytic method. Define the generator L via the formulas of Proposition 6.19,

and observe that the semigroup .Qt/t�0, if it exists, must solve the differential

equation

d

dt
Qt.x; y/ D QtL.x; y/

by Proposition 6.11. This leads to

Qt D exp.t L/;

in the sense of the exponential of matrices. Since �Id C L has nonnegative

entries if � > 0 is large enough, one immediately gets that Qt has nonnegative

entries. Writing 1 for the vector .1; 1; : : : ; 1/, the property L1 D 0 gives

Qt1 D 1, so that .Qt.x; �//x2E defines a transition kernel. Finally, the property

exp..s C t/ L/ D exp.s L/ exp.t L/ gives the Chapman–Kolmogorov property,

and we get that .Qt/t�0 is a transition semigroup on E, whose Feller property is

also immediate.

Many of the preceding results can be extended to Feller Markov processes on a

countable state space E. Note, however, that certain difficulties arise in the question

of the existence of a process with given transition rates. In fact, starting from the

probabilistic description of Proposition 6.20, one needs to avoid the possibility of

an accumulation of jumps in a finite time interval, which may occur if the rates

.q.y/; y 2 E/ are unbounded – of course this problem does not occur when E is

finite.

6.5.2 Lévy Processes

Consider a real process .Yt/t�0 which satisfies the following three assumptions:

(i) Y0 D 0 a.s.

(ii) For every 0 � s � t, the variable Yt � Ys is independent of .Yr; 0 � r � s/ and

has the same law as Yt�s.

(iii) Yt converges in probability to 0 when t # 0.

Two special cases are real Brownian motion (started from 0) and the process

.Ta/a�0 of hitting times of a real Brownian motion (cf. Exercise 2.26).

Notice that we do not assume that sample paths of Y are càdlàg, but only the

weaker regularity assumption (iii). The preceding theory will allow us to find a

modification of Y with càdlàg sample paths.

For every t � 0, we denote the law of Yt by Qt.0; dy/, and, for every x 2 R, we

let Qt.x; dy/ be the image of Qt.0; dy/ under the translation y 7! x C y.



176 6 General Theory of Markov Processes

Proposition 6.21 The collection .Qt/t�0 is a Feller semigroup on R. Furthermore,

.Yt/t�0 is a Markov process with semigroup .Qt/t�0.

Proof Let us show that .Qt/t�0 is a transition semigroup. Let ' 2 B.R/, s; t � 0 and

x 2 R. Property (ii) shows that the law of .Yt;YtCs � Yt/ is the product probability

measure Qt.0; �/˝ Qs.0; �/. Hence,

Z
Qt.x; dy/

Z
Qs.y; dz/'.z/ D

Z
Qt.0; dy/

Z
Qs.0; dz/'.x C y C z/

D EŒ'.x C Yt C .YtCs � Yt//�

D EŒ'.x C YtCs/�

D
Z

QtCs.x; dz/'.z/

giving the Chapman–Kolmogorov relation. We should also verify the measurability

of the mapping .t; x/ 7! Qt.x;A/, but this will follow from the stronger continuity

properties that we will establish in order to verify the Feller property.

Let us start with the first property of the definition of a Feller semigroup. If

' 2 C0.R/, the mapping

x 7! Qt'.x/ D EŒ'.x C Yt/�

is continuous by dominated convergence, and, again by dominated convergence, we

have

EŒ'.x C Yt/� �!
x!1

0

showing that Qt' 2 C0.R/. Then,

Qt'.x/ D EŒ'.x C Yt/� �!
t!0

'.x/

thanks to property (iii). The uniform continuity of ' even shows that the latter

convergence is uniform in x. This completes the proof of the first assertion of the

proposition. To get the second one, we write, for every s; t � 0 and every ' 2 B.R/,

EŒ'.YsCt/ j Yr; 0 � r � s� D EŒ'.Ys C .YsCt � Ys// j Yr; 0 � r � s�

D
Z
'.Ys C y/Qt.0; dy/

D
Z
'.y/Qt.Ys; dy/;

using property (ii) and the definition of Qt.0; �/ in the second equality. ut
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It then follows from Theorem 6.15 that there exists a modification of .Yt/t�0 with

càdlàg sample paths. Obviously this modification still satisfies (i) and (ii).

A Lévy process is a process satisfying properties (i) and (ii) above, and having

càdlàg sample paths (which implies (iii)). We refer to [3] for a thorough account of

the theory of Lévy processes.

6.5.3 Continuous-State Branching Processes

A Markov process .Xt/t�0 with values in E D RC is called a continuous-state

branching process if its semigroup .Qt/t�0 satisfies the following property: for every

x; y 2 RC and t � 0,

Qt.x; �/ � Qt.y; �/ D Qt.x C y; �/;

where � � � denotes the convolution of the probability measures � and � on RC.

Note that this implies Qt.0; �/ D ı0 for every t � 0.

Exercise Verify that, if X and X0 are two independent continuous-state branching

processes with the same semigroup .Qt/t�0, then .Xt C X0
t/t�0 is also a Markov

process with semigroup .Qt/t�0. This is the so-called branching property: compare

with discrete time Galton–Watson processes.

Let us fix the semigroup .Qt/t�0 of a continuous-state branching process, and

assume that:

(i) Qt.x; f0g/ < 1 for every x > 0 and t > 0;

(ii) Qt.x; �/ �! ıx.�/ when t ! 0, in the sense of weak convergence of probability

measures.

Proposition 6.22 Under the preceding assumptions, the semigroup .Qt/t�0 is

Feller. Furthermore, for every � > 0, and every x � 0,

Z
Qt.x; dy/ e��y D e�x t.�/

where the functions t W .0;1/ �! .0;1/ satisfy t ı s D  tCs for every s; t � 0.

Proof Let us start with the second assertion. If x; y > 0, the equality Qt.x; �/ �
Qt.y; �/ D Qt.x C y; �/ implies that

� Z
Qt.x; dz/ e��z

�� Z
Qt.y; dz/ e��z

�
D
Z

Qt.x C y; dz/ e��z:
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Thus the function

x 7! � log
� Z

Qt.x; dz/ e��z
�

is nondecreasing and linear on RC, hence of the form x t.�/ for some constant

 t.�/ > 0 (the case  t.�/ D 0 is excluded by assumption (i)). To obtain the identity

 t ı  s D  tCs, we write

Z
QtCs.x; dz/ e��z D

Z
Qt.x; dy/

Z
Qs.y; dz/ e��z

D
Z

Qt.x; dy/ e�y s.�/

D e�x t. s.�//:

We still have to prove that the semigroup is Feller. For every � > 0, set '�.x/ D
e��x. Then,

Qt'� D ' t.�/ 2 C0.RC/:

Furthermore, an application of the Stone–Weierstrass theorem shows that the vector

space generated by the functions '�, � > 0, is dense in C0.RC/. It easily follows

that Qt' 2 C0.RC/ for every ' 2 C0.RC/.
Finally, if ' 2 C0.RC/, for every x � 0,

Qt'.x/ D
Z

Qt.x; dy/ '.y/ �!
t!0

'.x/

by assumption (ii). Using a remark following the definition of Feller semigroups,

this suffices to show that kQt' �'k �! 0 when t ! 0, which completes the proof.

ut
Example For every t > 0 and every x � 0, define Qt.x; dy/ as the law of

e1 C e2 C � � � C eN , where e1; e2; : : : are independent random variables with

exponential distribution of parameter 1=t, and N is Poisson with parameter x=t, and

is independent of the sequence .ei/. Then a simple calculation shows that

Z
Qt.x; dy/ e��y D e�x t.�/

where

 t.�/ D �

1C �t
:
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Noting that  t ı  s D  tCs, we obtain that .Qt/t�0 satisfies the Chapman–

Kolmogorov identity, and then that .Qt/t�0 is the transition semigroup of a

continuous-state branching process. Furthermore, .Qt/t�0 satisfies assumptions (i)

and (ii) above. In particular, the semigroup .Qt/t�0 is Feller, and one can construct

an associated Markov process .Xt/t�0 with càdlàg sample paths. One can in fact

prove that the sample paths of .Xt/t�0 are continuous, and this process is called

Feller’s branching diffusion, see Sect. 8.4.3 below.

Exercises

Exercise 6.23 (Reflected Brownian motion) We consider a probability space

equipped with a filtration .Ft/t2Œ0;1�. Let a � 0 and let B D .Bt/t�0 be an

.Ft/-Brownian motion such that B0 D a. For every t > 0 and every z 2 R, we set

pt.z/ D 1p
2�t

exp.� z2

2t
/:

1. We set Xt D jBtj for every t � 0. Verify that, for every s � 0 and t � 0, for every

bounded measurable function f W RC �! R,

EŒf .XsCt/ jFs� D Qtf .Xs/;

where Q0f D f and, for every t > 0, for every x � 0,

Qtf .x/ D
Z 1

0

�
pt.y � x/C pt.y C x/

�
f .y/ dy:

2. Infer that .Qt/t�0 is a transition semigroup, then that .Xt/t�0 is a Markov process

with values in E D RC, with respect to the filtration .Ft/, with semigroup

.Qt/t�0.
3. Verify that .Qt/t�0 is a Feller semigroup. We denote its generator by L.

4. Let f be a twice continuously differentiable function on RC, such that f and

f 00 belong to C0.RC/. Show that, if f 0.0/ D 0, f belongs to the domain of L,

and Lf D 1
2

f 00. (Hint: One may observe that the function g W R ! R defined

by g.y/ D f .jyj/ is then twice continuously differentiable on R.) Show that,

conversely, if f 0.0/ 6D 0, f does not belong to the domain of L.

Exercise 6.24 Let .Qt/t�0 be a transition semigroup on a measurable space E. Let

� be a measurable mapping from E onto another measurable space F. We assume

that, for any measurable subset A of F, for every x; y 2 E such that �.x/ D �.y/,

we have

Qt.x; �
�1.A// D Qt.y; �

�1.A//;
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for every t > 0. We then set, for every z 2 F and every measurable subset A of F,

for every t > 0,

Q0
t.z;A/ D Qt.x; �

�1.A//

where x is an arbitrary point of E such that �.x/ D z. We also set Q0
0.z;A/ D 1A.z/.

We assume that the mapping .t; z/ 7! Q0
t.z;A/ is measurable on RC � F, for every

fixed A.

1. Verify that .Q0
t/t�0 forms a transition semigroup on F.

2. Let .Xt/t�0 be a Markov process in E with transition semigroup .Qt/t�0 with

respect to the filtration .Ft/t�0. Set Yt D �.Xt/ for every t � 0. Verify that

.Yt/t�0 is a Markov process in F with transition semigroup .Q0
t/t�0 with respect

to the filtration .Ft/t�0.
3. Let .Bt/t�0 be a d-dimensional Brownian motion, and set Rt D jBtj for every

t � 0. Verify that .Rt/t�0 is a Markov process and give a formula for its

transition semigroup. (The case d D 1 was treated via a different approach in

Exercise 6.23.)

In the remaining exercises, we use the following notation. .E; d/ is a locally

compact metric space, which is countable at infinity, and .Qt/t�0 is a Feller

semigroup on E. We consider an E-valued process .Xt/t�0 with càdlàg sample paths,

and a collection .Px/x2E of probability measures on E, such that, under Px, .Xt/t�0
is a Markov process with semigroup .Qt/t�0, with respect to the filtration .Ft/, and

Px.X0 D x/ D 1. We write L for the generator of the semigroup .Qt/t�0, D.L/ for

the domain of L and R� for the �-resolvent, for every � > 0.

Exercise 6.25 (Scale function) In this exercise, we assume that E D RC and that

the sample paths of X are continuous. For every x 2 RC, we set

Tx WD infft � 0 W Xt D xg

and

'.x/ WD Px.T0 < 1/:

1. Show that, if 0 � x � y;

'.y/ D '.x/Py.Tx < 1/:

2. We assume that '.x/ < 1 and Px.supt�0 Xt D C1/ D 1, for every x > 0. Show

that, if 0 < x � y;

Px.T0 < Ty/ D '.x/ � '.y/
1 � '.y/ :
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Exercise 6.26 (Feynman–Kac formula) Let v be a nonnegative function in C0.E/.

For every x 2 E and every t � 0, we set, for every ' 2 B.E/,

Q�
t '.x/ D Ex

h
'.Xt/ exp

�
�
Z t

0

v.Xs/ ds
�i
:

1. Show that, for every ' 2 B.E/ and s; t � 0, Q�
tCs' D Q�

t .Q
�
s '/.

2. After observing that

1 � exp
�

�
Z t

0

v.Xs/ ds
�

D
Z t

0

v.Xs/ exp
�

�
Z t

s

v.Xr/ dr
�

ds

show that, for every ' 2 B.E/,

Qt' � Q�
t ' D

Z t

0

Qs.vQ�
t�s'/ ds:

3. Assume that ' 2 D.L/. Show that

d

dt
Q�

t 'jtD0 D L' � v':

Exercise 6.27 (Quasi left-continuity) Throughout the exercise we fix the starting

point x 2 E. For every t > 0, we write Xt�.!/ for the left-limit of the sample path

s 7! Xs.!/ at t.

Let .Tn/n�1 be a strictly increasing sequence of stopping times, and T D lim "
Tn. We assume that there exists a constant C < 1 such that T � C. The goal of the

exercise is to verify that XT� D XT , Px a.s.

1. Let f 2 D.L/ and h D Lf . Show that, for every n � 1,

ExŒf .XT / j FTn
� D f .XTn

/C Ex

h Z T

Tn

h.Xs/ ds

ˇ̌
ˇFTn

i
:

2. We recall from the theory of discrete time martingales that

ExŒf .XT/ j FTn
�

a:s:; L1�!
n!1

ExŒf .XT/ j eF T �

where

eF T D
1_

nD1
FTn

:
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Infer from question (1) that

ExŒf .XT / j eF T � D f .XT�/:

3. Show that the conclusion of question (2) remains valid if we only assume that

f 2 C0.E/, and infer that, for every choice of f ; g 2 C0.E/,

ExŒf .XT /g.XT�/� D ExŒf .XT�/g.XT�/�:

Conclude that XT� D XT , Px a.s.

Exercise 6.28 (Killing operation) In this exercise, we assume that X has continuous

sample paths. Let A be a compact subset of E and

TA D infft � 0 W Xt 2 Ag:

1. We set, for every t � 0 and every bounded measurable function ' on E,

Q�
t '.x/ D ExŒ'.Xt/ 1ft<TAg� ; 8x 2 E:

Verify that Q�
tCs' D Q�

t .Q
�
s '/, for every s; t > 0.

2. We set E D .EnA/ [ f�g, where � is a point added to EnA as an isolated point.

For every bounded measurable function ' on E and every t � 0, we set

Qt'.x/ D ExŒ'.Xt/ 1ft<TAg�C PxŒTA � t� '.�/ ; if x 2 EnA

and Qt'.�/ D '.�/. Verify that .Qt/t�0 is a transition semigroup on E. (The

proof of the measurability of the mapping .t; x/ 7! Qt'.x/ will be omitted.)

3. Show that, under the probability measure Px, the process X defined by

Xt D
�

Xt if t < TA

� if t � TA

is a Markov process with semigroup .Qt/t�0, with respect to the canonical

filtration of X.

4. We take it for granted that the semigroup .Qt/t�0 is Feller, and we denote its

generator by L. Let f 2 D.L/ such that f and Lf vanish on an open set containing

A. Write f for the restriction of f to EnA, and consider f as a function on E by

setting f .�/ D 0. Show that f 2 D.L/ and L f .x/ D Lf .x/ for every x 2 EnA.

Exercise 6.29 (Dynkin’s formula)

1. Let g 2 C0.E/ and x 2 E, and let T be a stopping time. Justify the equality

Ex

h
1fT<1ge

��T

Z 1

0

e��tg.XTCt/ dt
i

D ExŒ1fT<1g e��T R�g.XT/�:
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2. Infer that

R�g.x/ D Ex

h Z T

0

e��tg.Xt/ dt
i

C ExŒ1fT<1g e��T R�g.XT/�:

3. Show that, if f 2 D.L/,

f .x/ D Ex

h Z T

0

e��t.�f � Lf /.Xt/ dt
i

C ExŒ1fT<1g e��T f .XT/�:

4. Assuming that ExŒT� < 1, infer from the previous question that

Ex

h Z T

0

Lf .Xt/ dt
i

D ExŒf .XT /�� f .x/:

How could this formula have been established more directly?

5. For every " > 0, we set T";x D infft � 0 W d.x;Xt/ > "g. Assume that ExŒT";x� <

1, for every sufficiently small ". Show that (still under the assumption f 2 D.L/)

one has

Lf .x/ D lim
"#0

ExŒf .XT";x/� � f .x/

ExŒT";x�
:

6. Show that the assumption ExŒT";x� < 1 for every sufficiently small " holds if the

point x is not absorbing, that is, if there exists a t > 0 such that Qt.x; fxg/ < 1.

(Hint: Observe that there exists a nonnegative function h 2 C0.E/which vanishes

on a ball centered at x and is such that Qth.x/ > 0. Infer that one can choose

˛ > 0 and � 2 .0; 1/ such that Px.T˛;x > nt/ � .1� �/n for every integer n � 1.)

Notes and Comments

The theory of Markov processes is a very important area of probability theory.

Markov processes have a long history that would be too long to summarize here.

Dynkin and Feller played a major role in the development of the theory (see

in particular Dynkin’s books [20, 21]). We limited our treatment to the minimal

material needed for our later applications to stochastic differential equations. Our

treatment of Feller processes is inspired by the corresponding chapters in [70] and

[71]. We chose to focus on Feller semigroups because this special case allows

an easy presentation of key notions such as the generator, and at the same time

it includes the main examples we consider in this book. The reader interested in

the more general theory of Markov processes may have a look at the classical

books of Blumenthal and Getoor [5], Meyer [59] and Sharpe [73]. The idea of

characterizing a Markov process by a collection of associated martingales (in the



184 6 General Theory of Markov Processes

spirit of Theorem 6.14) has led to the theory of martingale problems, for which

we refer the reader to the classical book of Stroock and Varadhan [77]. Martingale

problems are also discussed in the book [24] of Ethier and Kurtz, which focuses

on problems of characterization and convergence of Markov processes, with many

examples and applications. Markov processes with a countable state space are

treated, along with other topics, in the more recent book [76] of Stroock. We refer

to the monograph [3] of Bertoin for a modern presentation of the theory of Lévy

processes.



Chapter 7

Brownian Motion and Partial Differential
Equations

In this chapter, we use the results of the preceding two chapters to discuss

connections between Brownian motion and partial differential equations. After a

brief discussion of the heat equation, we focus on the Laplace equation�u D 0 and

on the relations between Brownian motion and harmonic functions on a domain of

Rd. In particular, we give the probabilistic solution of the classical Dirichlet problem

in a bounded domain whose boundary satisfies the exterior cone condition. In the

case where the domain is a ball, the solution is made explicit by the Poisson kernel,

which corresponds to the density of the exit distribution of the ball for Brownian

motion. We then discuss recurrence and transience of d-dimensional Brownian

motion, and we establish the conformal invariance of planar Brownian motion as a

simple corollary of the results of Chap. 5. An important application is the so-called

skew-product decomposition of planar Brownian motion, which we use to derive

several asymptotic laws, including the celebrated Spitzer theorem on Brownian

windings.

7.1 Brownian Motion and the Heat Equation

Throughout this chapter, we let B stand for a d-dimensional Brownian motion that

starts from x under the probability measure Px, for every x 2 Rd (one may use

the canonical construction of Sect. 2.2, defining Px as the image of Wiener measure

W.dw/ under the translation w 7! x C w). Then .Bt/t�0 is a Feller process with

semigroup

Qt'.x/ D
Z

Rd

.2�t/�d=2 exp.�jy � xj2
2t

/ '.y/ dy;

© Springer International Publishing Switzerland 2016
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for ' 2 B.Rd/. We write L for the generator of this Feller process. If  is a twice

continuously differentiable function on Rd such that both  and � belong to

C0.R
d/, then  2 D.L/ and L D 1

2
� (see the end of Sect. 6.2).

If ' 2 B.Rd/, then, for every fixed t > 0, Qt' can be viewed as the convolution

of ' with the C1 function

pt.x/ D .2�t/�d=2 exp.�jxj2
2t
/:

It follows that Qt' is also a C1 function. Furthermore, if ' 2 C0.R
d/, differentia-

tion under the integral sign shows that all derivatives of Qt' also belong to C0.R
d/.

It follows that we have Qt' 2 D.L/ and L.Qt'/ D 1
2
�.Qt'/, for every t > 0.

Theorem 7.1 Let ' 2 C0.R
d/. For every t > 0 and x 2 Rd, set

ut.x/ D Qt'.x/ D ExŒ'.Bt/�:

Then, the function .ut.x//t>0;x2Rd solves the partial differential equation

@ut

@t
D 1

2
�ut;

on .0;1/� Rd. Furthermore, for every x 2 Rd,

lim
s#0
y!x

us.y/ D '.x/:

Proof By the remarks preceding the theorem, we already know that, for every

t > 0, ut is a C1 function, ut 2 D.L/, and Lut D 1
2
�ut. Let " > 0. By applying

Proposition 6.11 to f D u", we get for every t � ",

ut D u" C
Z t�"

0

L.Qsu"/ ds D u" C
Z t

"

Lus ds:

Since Lus D Qs�".Lu"/ depends continuously on s 2 Œ";1/, it follows that, for

t � ",

@ut

@t
D Lut D 1

2
�ut:

The last assertion is just the fact that Qs' �! ' as s ! 0. ut
Remark We could have proved Theorem 7.1 by direct calculations from the explicit

form of Qt', and these calculations imply that the same statement holds if we

only assume that ' is bounded and continuous. The above proof however has the

advantage of showing the relation between this result and our general study of
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Markov processes. It also indicates that similar results will hold for more general

equations of the form @u
@t

D Au provided A can be interpreted as the generator of an

appropriate Markov process.

Brownian motion can be used to provide probabilistic representations for solu-

tions of many other parabolic partial differential equations. In particular, solutions

of equations of the form

@u

@t
D 1

2
�u � v u;

where v is a nonnegative function on Rd, are expressed via the so-called Feynman–

Kac formula: See Exercise 7.28 below for a precise statement.

7.2 Brownian Motion and Harmonic Functions

Let us now turn to connections between Brownian motion and the Laplace equation

�u D 0. We start with a classical definition.

Definition 7.2 Let D be a domain of Rd. A function u W D �! R is said to be

harmonic on D if it is twice continuously differentiable and �u D 0 on D.

Let D0 be a subdomain of D whose closure is contained in D. Consider the

stopping time T WD infft � 0 W Bt … D0g. An application of Itô’s formula (justified

by the remark preceding Proposition 5.11) shows that, if u is harmonic on D, then

for every x 2 D0, the process

u.Bt^T/ D u.B0/C
Z t^T

0

ru.Bs/ � dBs (7.1)

is a local martingale under Px [here and later, to apply the stochastic calculus results

of Chap. 5, we let .Ft/ be the canonical filtration of B completed under Px].

So, roughly speaking, harmonic functions are functions which when composed

with Brownian motion give (local) martingales.

Proposition 7.3 Let u be harmonic on the domain D. Let D0 be a bounded

subdomain of D whose closure is contained in D, and consider the stopping time

T WD infft � 0 W Bt … D0g. Then, for every x 2 D0,

u.x/ D ExŒu.BT/�:

Proof Since D0 is bounded, both u and ru are bounded on D0, and we also know

that Px.T < 1/ D 1 for every x 2 D0. It follows from (7.1) that u.Bt^T/ is a (true)

martingale, and in particular, we have

u.x/ D ExŒu.Bt^T/�
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for every x 2 D0. By letting t ! 1 and using dominated convergence we get that

u.x/ D ExŒu.BT/�

for every x 2 D0. ut
The preceding proposition easily leads to the mean value property for harmonic

functions. In order to state this property, first recall that the uniform probability

measure on the unit sphere, denoted by �1.dy/, is the unique probability measure on

fy 2 Rd W jyj D 1g that is invariant under all vector isometries. For every x 2 Rd and

r > 0, we then let �x;r.dy/ be the image of �1.dy/ under the mapping y 7! x C ry.

Proposition 7.4 (Mean value property) Suppose that u is harmonic on the

domain D. Then, for every x 2 D and for every r > 0 such that the closed ball

of radius r centered at x is contained in D, we have

u.x/ D
Z
�x;r.dy/ u.y/:

Proof First observe that, if T1 D infft � 0 W jBtj D 1g, the distribution of BT1

under P0 is invariant under all vector isometries of Rd (by the invariance properties

of Brownian motion stated at the end of Chap. 2) and therefore this distribution is

�1.dy/. By scaling and translation invariance, it follows that for every x 2 Rd and

r > 0, if Tx;r D infft � 0 W jBt � xj D rg, the distribution of BTx;r under Px is �x;r .

However, Proposition 7.3 implies that, under the conditions in the proposition, we

must have u.x/ D ExŒu.BTx;r/�. The desired result follows. ut
We say that a (locally bounded and measurable) function u on D satisfies the

mean value property if the conclusion of Proposition 7.4 holds. It turns out that this

property characterizes harmonic functions.

Lemma 7.5 Let u be a locally bounded and measurable function on D that satisfies

the mean value property. Then u is harmonic on D.

Proof Fix r0 > 0 and let D0 be the open subset of D consisting of all points whose

distance to Dc is greater than r0. It is enough to prove that u is twice continuously

differentiable and�u D 0 on D0. Let h W R �! RC be a C1 function with compact

support contained in .0; r0/ and not identically zero. Then, for every x 2 D0 and

every r 2 .0; r0/, we have

u.x/ D
Z
�x;r.dy/ u.y/:

We multiply both sides of this equality by rd�1h.r/ and integrate with respect

to Lebesgue measure dr on .0; r0/. Using the formula for integration in polar

coordinates, and agreeing for definiteness that u D 0 on Dc, we get, for every x 2 D0,

c u.x/ D
Z

fjyj<r0g
dy h.jyj/ u.x C y/ D

Z

Rd

dz h.jz � xj/ u.z/;
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where c > 0 is a constant and we use the fact that h.jz � xj/ D 0 if jz � xj � r0.

Since z 7! h.jzj/ is a C1 function, the convolution in the right-hand side of the last

display also defines a C1 function on D0.
It remains to check that �u D 0 on D0. To this end, we use a probabilistic

argument (an analytic argument is also easy). By applying Itô’s formula to u.Bt/

under Px, we get, for x 2 D0 and r 2 .0; r0/,

ExŒu.Bt^Tx;r /� D u.x/C Ex

h Z t^Tx;r

0

ds�u.Bs/
i
:

If we let t ! 1, noting that ExŒTx;r� < 1 (cf. example (b) after Corollary 3.24),

we get

ExŒu.BTx;r /� D u.x/C Ex

h Z Tx;r

0

ds�u.Bs/
i
:

The mean value property just says that ExŒu.BTx;r /� D u.x/ and so we have

Ex

h Z Tx;r

0

ds�u.Bs/
i

D 0:

Since this holds for any r 2 .0; r0/ it follows that �u.x/ D 0. ut
From now on, we assume that the domain D is bounded.

Definition 7.6 (Classical Dirichlet problem) Let g be a continuous function on

@D. A function u W D �! R solves the Dirichlet problem in D with boundary

condition g, if u is harmonic on D and has boundary condition g, in the sense that,

for every y 2 @D, u.x/ �! g.y/ as x ! y, x 2 D.

Recall that ND stands for the closure of D. If u solves the Dirichlet problem with

boundary condition g, the function Qu defined on ND by Qu.x/ D u.x/ if x 2 D, and

Qu.x/ D g.x/ if x 2 @D, is then continuous, hence bounded on ND.

Proposition 7.7 Let D be a bounded domain, and write T D infft � 0 W Bt … Dg
for the exit time of Brownian motion from D.

(i) Let g be a continuous function on @D, and let u be a solution of the Dirichlet

problem in D with boundary condition g. Then, for every x 2 D,

u.x/ D ExŒg.BT/�:

(ii) Let g be a bounded measurable function on @D. Then the function

u.x/ D ExŒg.BT/�; x 2 D;

is harmonic on D.
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Remark Assertion (i) implies that, if a solution to the Dirichlet problem with

boundary condition g exists, then it is unique, which is also easy to prove using

the mean value property.

Proof

(i) Fix x 2 D and "0 > 0 such that the ball of radius "0 centered at x is contained

in D. For every " 2 .0; "0/, let D" be the connected component containing x of

the open set consisting of all points of D whose distance to Dc is greater than ".

If T" D infft � 0 W Bt … D"g, Proposition 7.3 shows that

u.x/ D ExŒu.BT"/�:

Now observe that T" " T as " # 0 (if T 0 is the increasing limit of T" as " # 0,

we have T 0 � T and on the other hand BT0 2 @D by the continuity of sample

paths). Using dominated convergence, it follows that ExŒu.BT"/� converges to

ExŒg.BT/� as " ! 0.

(ii) By Lemma 7.5, it is enough to verify that the function u.x/ D ExŒg.BT/� satisfies

the mean value property. Recall the notation Tx;r D infft � 0 W jBt � xj D rg
for x 2 Rd and r > 0. Fix x 2 D and r > 0 such that the closed ball of radius

r centered at x is contained in D. We apply the strong Markov property in the

form given in Theorem 6.17: With the notation of this theorem, we let˚.w/, for

w 2 C.RC;Rd/ such that w.0/ 2 D, be the value of g at the first exit point of

w from D (we take ˚.w/ D 0 if w never exits D) and we observe that we have

g.BT/ D ˚.Bt; t � 0/ D ˚.BTx;rCt; t � 0/; Px a.s.

because the paths .Bt; t � 0/ and .BTx;rCt; t � 0/ have the same exit point

from D. It follows that

u.x/ D ExŒg.BT/� D ExŒ˚.BTx;rCt; t � 0/� D ExŒEBT";r
Œ˚.Bt; t � 0/�� D ExŒu.BT";r /�:

Since we know that the law of BT";r under Px is �x;r , this gives the mean value

property. ut
Part (i) of Proposition 7.7 tells us that the solution of the Dirichlet problem with

boundary condition g, if it exists, is given by the probabilistic formula u.x/ D
ExŒg.BT/�. On the other hand, for any choice of the (bounded measurable) function

g on @D, part (ii) tells us that the probabilistic formula yields a function u that is

harmonic on D. Even if g is assumed to be continuous, it is however not clear that

the function u has boundary condition g, and this need not be true in general (see

Exercises 7.24 and 7.25 for examples where the Dirichlet problem has no solution).

We state a theorem that gives a partial answer to this question.

If y 2 @D, we say that D satisfies the exterior cone condition at y if there exist

a (nonempty) open cone C with apex y and a real r > 0 such that the intersection

of C with the open ball of radius r centered at y is contained in Dc. For instance,

a convex domain satisfies the exterior cone condition at every point of its boundary.
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Theorem 7.8 (Solution of the Dirichlet problem) Let D be a bounded domain

in Rd. Assume that D satisfies the exterior cone condition at every y 2 @D. Then,

for every continuous function g on @D, the formula

u.x/ D ExŒg.BT/� ; where T D infft � 0 W Bt … Dg;

gives the unique solution of the Dirichlet problem with boundary condition g.

Proof Thanks to Proposition 7.7 (ii), we only need to verify that, for every fixed

y 2 @D,

lim
x!y;x2D

u.x/ D g.y/: (7.2)

Let " > 0. Since g is continuous, we can find ı > 0 such that we have jg.z/�g.y/j �
"=3 whenever z 2 @D and jz � yj < ı. Let M > 0 be such that jg.z/j � M for every

z 2 @D. Then, for every � > 0,

ju.x/ � g.y/j � ExŒjg.BT/ � g.y/j1fT��g�C ExŒjg.BT/ � g.y/j1fT>�g�

� ExŒjg.BT/ � g.y/j1fT��g1fsupfjBt�xjWt��g�ı=2g�

C2M Px

�
sup
t��

jBt � xj > ı

2

�
C 2M Px.T > �/:

Write A1;A2;A3 for the three terms in the sum in the right-hand side of the last

display. We assume that jy�xj < ı=2, and we bound successively these three terms.

First note that we have jBT � yj � jBT � xj C jy � xj < ı on the event

fT � �g \ supfjBt � xj W t � �g � ı=2g;

and our choice of ı ensures that A1 � "=3.

Then, translation invariance gives

A2 D 2M P0

�
sup
t��

jBtj >
ı

2

�
;

which tends to 0 when � > 0 by the continuity of sample paths. So we can fix � > 0

so that A2 < "=3.

Finally, we claim that we can choose ˛ 2 .0; ı=2� small enough so that we

also have A3 D 2M Px.T > �/ < "=3 whenever jx � yj < ˛. It follows that

ju.x/� g.y/j < ", whenever jx � yj < ˛, thus completing the proof of (7.2). Thus it

only remains to prove our claim, which is the goal of the next lemma. ut
Lemma 7.9 Under the exterior cone condition, we have for every y 2 @D and every

� > 0,

lim
x!y;x2D

Px.T > �/ D 0:



192 7 Brownian Motion and Partial Differential Equations

Proof For every u 2 Rd with juj D 1 and every  2 .0; 1/, consider the circular

cone

C .u; / WD fz 2 Rd W z � u > .1 � /jzjg;

where z � u stands for the usual scalar product. If y 2 @D is given, the exterior cone

condition means that we can fix r > 0, u and  such that

y C .C .u; /\ Br/ � Dc;

where Br denotes the open ball of radius r centered at 0. To simplify notation, we

set C D C .u; /\ Br , and also

C
0 D C .u;



2
/ \ Br=2

which is the intersection of a smaller cone with Br=2.

For every open subset F of Rd, write TF D infft � 0 W Bt 2 Fg. An application

of Blumenthal’s zero-one law (Theorem 2.13, or rather its easy extension to

d-dimensional Brownian motion) along the lines of the proof of Proposition 2.14 (i)

shows that P0.TC .u;=2/ D 0/ D 1 and hence P0.TC 0 D 0/ D 1 by the continuity of

sample paths. On the other hand, set C 0
a D fz 2 C 0 W jzj > ag, for every a 2 .0; r=2/.

The sets C 0
a increase to C 0 as a # 0, and thus we have TC 0

a
# TC 0 D 0 as a # 0, P0

a.s. Hence, given any ˇ > 0 we can fix a small enough so that

P0.TC 0
a

� �/ � 1 � ˇ:

Recalling that y C C � Dc, we have

Px.T � �/ � Px.TyCC � �/ D P0.Ty�xCC � �/:

However, a simple geometric argument shows that, as soon as jy�xj is small enough,

the shifted cone y � x C C contains C 0
a , and therefore

Px.T � �/ � P0.TC 0
a

� �/ � 1 � ˇ:

Since ˇ was arbitrary, this completes the proof. ut
Remark The exterior cone condition is only a sufficient condition for the existence

(and uniqueness) of a solution to the Dirichlet problem. See e.g. [69] for necessary

and sufficient conditions that ensure the existence of a solution for any continuous

boundary value.
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7.3 Harmonic Functions in a Ball and the Poisson Kernel

Consider again a bounded domain D and a continuous function g on @D. Let T D
infft � 0 W Bt … Dg be the exit time of D by Brownian motion. Proposition 7.7 (i)

shows that the solution of the Dirichlet problem in D with boundary condition g, if

it exists (which is the case under the assumption of Theorem 7.8), is given by

u.x/ D ExŒg.BT/� D
Z

@D

!.x; dy/ g.y/;

where, for every x 2 D, !.x; dy/ denotes the distribution of BT under Px. The

measure !.x; dy/ is a probability measure on @D called the harmonic measure of

D relative to x. In general, it is hopeless to try to find an explicit expression for the

measures !.x; dy/. It turns out that, in the case of balls, such an explicit expression

is available and makes the representation of solutions of the Dirichet problem more

concrete.

From now on, we suppose that D D B1 is the open unit ball in Rd. We also

assume that d � 2 to avoid trivialities. The boundary @B1 is the unit sphere in Rd.

Definition 7.10 The Poisson kernel (of the unit ball) is the function K defined on

B1 � @B1 by

K.x; y/ D 1 � jxj2
jy � xjd

;

for every x 2 B1 and y 2 @B1.

Lemma 7.11 For every fixed y 2 @B1, the function x 7! K.x; y/ is harmonic

on B1.

Proof Set Ky.x/ D K.x; y/ for x 2 B1. Then Ky is a C1 function on B1. Moreover

a (somewhat tedious) direct calculation left to the reader shows that �Ky D 0

on B1. ut
In view of deriving further properties of the Poisson kernel, the following lemma

about radial harmonic functions will be useful.

Lemma 7.12 Let 0 � r1 < r2 be two real numbers and let h W .r1; r2/ ! R

be a measurable function. The function u.x/ D h.jxj/ is harmonic on the domain

fx 2 Rd W r1 < jxj < r2g if and only if there exist two constants a and b such that

h.r/ D
�

a C b log r if d D 2;

a C b r2�d if d � 3:

Proof Suppose that u.x/ D h.jxj/ is harmonic on fx 2 Rd W r1 < jxj < r2g.

Then u is twice continuously differentiable and so is h. From the expression of the
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Laplacian of a radial function, we get that �u D 0 if and only if

h00.r/C d � 1
r

h0.r/ D 0 ; r 2 .r1; r2/:

The solutions of this second order linear differential equations are the functions of

the form given in the statement. The lemma follows. ut
Recall our notation �1.dy/ for the uniform probability measure on the unit

sphere @B1.

Lemma 7.13 For every x 2 B1,

Z

@B1

K.x; y/ �1.dy/ D 1:

Proof For every x 2 B1, set

F.x/ D
Z

@B1

K.x; y/ �1.dy/:

Then the preceding lemma implies that F is harmonic on B1. Indeed, if x 2 B1 and

r < 1�jxj, Lemma 7.11 and the mean value property imply that, for every y 2 @B1,

K.x; y/ D
Z

K.z; y/ �x;r.dz/:

Hence, using Fubini’s theorem,

Z
F.z/ �x;r.dz/ D

Z � Z
K.z; y/ �1.dy/

�
�x;r.dz/

D
Z � Z

K.z; y/ �x;r.dz/
�
�1.dy/ D

Z
K.x; y/ �1.dy/ D F.x/;

showing that the mean value property holds for F.

If  is a vector isometry of Rd, we have K. .x/;  .y// D K.x; y/ for every

x 2 B1 and y 2 @B1, and the fact that �1.dy/ is invariant under  implies that

F. .x// D F.x/ for every x 2 B1. Hence F is a radial harmonic function and

Lemma 7.12 (together with the fact that F is bounded in the neighborhood of 0)

implies that F is constant. Since F.0/ D 1, the proof is complete. ut
Theorem 7.14 Let g be a continuous function on @B1. The unique solution of the

Dirichlet problem in B1 with boundary condition g is given by

u.x/ D
Z

@B1

g.y/K.x; y/ �1.dy/ ; x 2 B1:
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Proof The very same arguments as in the beginning of the proof of Lemma 7.13

show that u is harmonic on B1. To verify the boundary condition, fix y0 2 @B1.

For every ı > 0, the explicit form of the Poisson kernel shows that, if x 2 B1 and

y 2 @B1 are such that jx � y0j < ı=2 and jy � y0j > ı, then

K.x; y/ � .
2

ı
/d .1 � jxj2/:

It follows from this bound that, for every ı > 0,

lim
x!y0;x2B1

Z

fjy�y0j>ıg
K.x; y/ �1.dy/ D 0: (7.3)

Then, given " > 0, we can choose ı > 0 sufficiently small so that the conditions

y 2 @B1 and jy � y0j � ı imply jg.y/ � g.y0/j � ". If M D supfjg.y/j W y 2 @B1g,

it follows that

ju.x/� g.y0/j D
ˇ̌
ˇ
Z

K.x; y/ .g.y/� g.y0// �1.dy/
ˇ̌
ˇ

� 2M

Z

fjy�y0j>ıg
K.x; y/ �1.dy/C ";

using Lemma 7.13 in the first equality, and then our choice of ı. Thanks to (7.3), we

now get

lim sup
x!y0;x2B1

ju.x/ � g.y0/j � ":

Since " was arbitrary, this yields the desired boundary condition. ut
The preceding theorem allows us to identify the harmonic measures of the

unit ball.

Corollary 7.15 Let T D infft � 0 W Bt … B1g. For every x 2 B1, the distribution

of BT under Px has density K.x; y/ with respect to �1.dy/.

This is immediate since, by combining Proposition 7.7 (i) with Theorem 7.14,

we get that, for any continuous function g on @B1,

ExŒg.BT/� D
Z

@B1

g.y/K.x; y/ �1.dy/ ; 8x 2 B1:
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7.4 Transience and Recurrence of Brownian Motion

We consider again a d-dimensional Brownian motion .Bt/t�0 that starts from x under

the probability measure Px. We again suppose that d � 2, since the corresponding

results for d D 1 have already been derived in the previous chapters.

For every a � 0, we introduce the stopping time

Ua D infft � 0 W jBtj D ag;

with the usual convention inf ¿ D 1.

Proposition 7.16 Suppose that x 6D 0, and let " and R be such that 0 < " < jxj < R.

Then,

Px.U" < UR/ D

8
ˆ̂̂
<
ˆ̂̂
:

log R � log jxj
log R � log "

if d D 2;

R2�d � jxj2�d

R2�d � "2�d
if d � 3:

(7.4)

Consequently, we have Px.U0 < 1/ D 0 and for every " 2 .0; jxj/,

Px.U" < 1/ D

8
<̂

:̂

1 if d D 2;

� "
jxj
�d�2

if d � 3:

Proof Write D";R for the annulus fy 2 Rd W " < jyj < Rg. Let u.x/ be the function

defined for x 2 D";R that appears in the right-hand side of (7.4). By Lemma 7.12,

u is harmonic on D";R, and it is also clear that u solves the Dirichlet problem in

D";R with boundary condition g.y/ D 0 if jyj D R and g.y/ D 1 if jyj D ". If

T";R denotes the first exit time from D";R, Proposition 7.7 shows that we must have

u.x/ D ExŒg.BT";R/� for every x 2 D";R. Formula (7.4) follows since ExŒg.BT";R/� D
Px.U" < UR/.

If R > jxj is fixed, the event fU0 < URg is (Px a.s.) contained in fU" < URg, for

every 0 < " < jxj. By passing to the limit " ! 0 in the right-hand side of (7.4),

we thus get that Px.U0 < UR/ D 0. Since UR " 1 as R " 1, it follows that

Px.U0 < 1/ D 0.

Finally, we have also Px.U" < 1/ D lim Px.U" < UR/ as R ! 1, and

by letting R ! 1 in the right-hand side of (7.4) we get the stated formula for

Px.U" < 1/. ut
Remark The reader will compare formula (7.4) with the exit distribution from an

interval for real Brownian motion that was derived in Chap. 4 (example (a) after

Corollary 3.24). We could have proved (7.4) in a way similar to what we did for
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its one-dimensional analog, by applying the optional stopping theorem to the local

martingale log jBtj (if d D 2) or jBtj2�d (if d D 3). See Exercise 5.33.

For every y 2 Rd, set �y D infft � 0 W Bt D yg, so that in particular �0 D U0. The

property Px.�0 < 1/ D 0 for x 6D 0 implies that Px.�y < 1/ D 0 whenever y 6D x,

by translation invariance. This means that the probability for Brownian motion to

visit a fixed point other than its starting point is zero: one says that points are polar

for d-dimensional Brownian motion with d � 2 (see Exercise 7.25 for more about

polar sets).

If m denotes Lebesgue measure on Rd, it follows from Fubini’s theorem that

ExŒm.fBt; t � 0g/� D Ex

h Z

Rd

dy 1f�y<1g
i

D
Z

Rd

dy Px.�y < 1/ D 0;

and therefore m.fBt; t � 0g/ D 0, Px a.s. One can nonetheless prove that the

Hausdorff dimension of the curve fBt; t � 0g is equal to 2 in any dimension d � 2

(see e.g. [62]). In some sense, this shows that the planar Brownian curve is “not so

far” from having positive Lebesgue measure.

Theorem 7.17

(i) In dimension d D 2, Brownian motion is recurrent, meaning that almost surely,

for every nonempty open subset O of Rd, the set ft � 0 W Bt 2 Og is unbounded.

(ii) In dimension d � 3, Brownian motion is transient, meaning that

lim
t!1

jBtj D 1 ; a.s.

Proof

(i) It is enough to prove that the statement holds when O is an open ball of rational

radius centered at a point with rational coordinates. So it suffices to consider

a fixed open ball B and we may assume that B is centered at 0 and that the

starting point of B is x 6D 0. By Proposition 7.16 we know that Brownian motion

will never hit 0 (so that inffjBrj W 0 � r � tg > 0 for every t � 0, a.s.) but still

will hit any open ball centered at 0. It follows that B must visit B at arbitrarily

large times, a.s.

(ii) Again we can assume that the starting point of B is x 6D 0. Since the function

y 7! jyj2�d is harmonic on Rdnf0g, and since we saw that B does not hit

0, we get that jBtj2�d is a local martingale and hence a supermartingale by

Proposition 4.7. By Theorem 3.19 (and the fact that a positive supermartingale

is automatically bounded in L1), we know that jBtj2�d converges a.s. as t ! 1.

The a.s. limit must be zero (otherwise the curve fBt W t � 0g would be bounded!)

and this says exactly that jBtj converges to 1 as t ! 1. ut
Remark In dimension d D 2, one can (slightly) reinforce the recurrence property

by saying that a.s. for every nonempty open subset O of R2, the Lebesgue measure

of ft � 0 W Bt 2 Og is infinite. This follows by a straightforward application of the

strong Markov property, and we omit the details.
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7.5 Planar Brownian Motion and Holomorphic Functions

In this section, we concentrate on the planar case d D 2, and we write Bt D .Xt;Yt/

for a two-dimensional Brownian motion. It will be convenient to identify R2 with

the complex plane C, so that Bt D Xt C iYt, and we sometimes say that B is a

complex Brownian motion. As previously B starts from z under the probability Pz,

for every z 2 C.

If ˚ W C �! C is a holomorphic function, the real and imaginary parts of ˚ are

harmonic functions, and thus we know that the real and imaginary parts of ˚.Bt/

are continuous local martingales. In fact, much more is true.

Theorem 7.18 Let˚ W C �! C be a nonconstant holomorphic function. For every

t � 0, set

Ct D
Z t

0

j˚ 0.Bs/j2 ds:

Let z 2 C. There exists a complex Brownian motion 	 that starts from ˚.z/ under

Pz, such that

˚.Bt/ D 	Ct
; for every t � 0; Pz a.s.

In other words, the image of complex Brownian motion under a holomorphic

function is a time-changed complex Brownian motion. This is the conformal

invariance property of planar Brownian motion. It is possible (and useful for

many applications) to extend Theorem 7.18 to the case where ˚ is defined and

holomorphic in a domain D of C (such that z 2 D). A similar representation then

holds for ˚.Bt/ up to the first exit time of D (see e.g. [18]).

Proof Let g and h stand respectively for the real and imaginary parts of ˚ . Since g

and h are harmonic, an application of Itô’s formula gives under Pz,

g.Bt/ D g.z/C
Z t

0

@g

@x
.Bs/ dXs C

Z t

0

@g

@y
.Bs/ dYs

and similarly

h.Bt/ D h.z/C
Z t

0

@h

@x
.Bs/ dXs C

Z t

0

@h

@y
.Bs/ dYs:

So Mt D g.Bt/ and Nt D h.Bt/ are local martingales. Moreover, the Cauchy–

Riemann equations

@g

@x
D @h

@y
;
@g

@y
D �@h

@x
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give

hM;Nit D 0

and

hM;Mit D hN;Nit D
Z t

0

j˚ 0.Bs/j2 ds D Ct:

The recurrence of planar Brownian motion implies that C1 D 1 a.s. (take a ball B

where j˚ 0j is bounded below by a positive constant, and note that the total time spent

by B in the ball B is a.s. infinite). We can then apply Proposition 5.15 to Mt � g.z/

and Nt � h.z/ under Pz, and we find two independent real Brownian motions ˇ and

 started from 0 such that Mt D g.z/ C ˇCt
and Nt D h.z/ C Ct

, for every t � 0,

a.s. The desired result follows by setting 	t D ˚.z/C ˇt C it. ut
We will apply the conformal invariance property of planar Brownian motion

to its decomposition in polar coordinates, which is known as the skew-product

representation.

Theorem 7.19 Let z 2 Cnf0g and write z D exp.r C i�/ where r 2 R and � 2
.��; ��. There exist two independent linear Brownian motions ˇ and  that start

respectively from r and from � under Pz, such that we have Pz a.s. for every t � 0,

Bt D exp.ˇHt
C i Ht

/;

where

Ht D
Z t

0

ds

jBsj2
:

Proof The “natural” method for proving Theorem 7.19 would be to apply a

generalized version of Theorem 7.18 to a suitable determination of the complex

logarithm. This, however, leads to some technical difficulties, and for this reason we

will argue differently.

We may assume that z D 1 (and thus r D � D 0). The general case can be

reduced to that one using scaling and rotational invariance of Brownian motion. Let

	t D 	 1
t C i	 2

t be a complex Brownian motion started from 0. By Theorem 7.18,

we have a.s. for every t � 0,

exp.	t/ D ZCt
; (7.5)

where Z is a complex Brownian motion started from 1, and for every t � 0,

Ct D
Z t

0

exp.2 	 1
s / ds:
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Let .Hs; s � 0/ be the inverse function of .Ct; t � 0/, so that, by the formula for the

derivative of an inverse function,

Hs D
Z s

0

exp.�2 	 1
Hu
/ du D

Z s

0

du

jZuj2 ;

using the fact that exp.	 1
Hu
/ D jZuj in the last equality. By (7.5) with t D Hs, we

now get

Zs D exp.	 1
Hs

C i	 2
Hs
/:

This is the desired result (since 	 1 and 	 2 are independent linear Brownian motions

started from 0) except we did not get it for B but for the complex Brownian motion

Z introduced in the course of the argument.

To complete the proof, we argue as follows. Write arg Bt for the continuous

determination of the argument of Bt such that arg B0 D 0 (this makes sense since

we know that B does not visit 0, a.s.). The statement of Theorem 7.19 (with z D 1)

is equivalent to saying that, if we set

ˇt D log jBinffs�0W
R s
0 jBuj�2du>tgj;

t D arg Binffs�0W
R s
0 jBuj�2du>tg;

then ˇ and  are two independent real Brownian motions started from 0. Note that

ˇ and  are deterministic functions of B, and so their law must be the same if we

replace B by the complex Brownian motion Z. This gives the desired result. ut
Let us briefly comment on the skew-product representation. By writing Ht as the

inverse of its inverse, we get

Ht D inffs � 0 W
Z s

0

exp.2ˇu/ du > tg; (7.6)

and it follows that

log jBtj D ˇinffs�0W
R s
0 exp.2ˇu/ du>tg;

showing that jBj is completely determined by the linear Brownian motion ˇ. This is

related to the fact that jBtj is a Markov process, namely a two-dimensional Bessel

process (cf. Exercise 6.24, and Sect. 8.4.3 for a brief discussion of Bessel processes).

On the other hand, write �t D arg Bt D Ht
. Then �t is not a Markov process:

At least intuitively, this can be understood by the fact that the past of � up to time

t gives information on the current value of jBtj (for instance if �t oscillates very

rapidly just before t this indicates that jBtj should be small) and therefore on the

future evolution of the process � .
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7.6 Asymptotic Laws of Planar Brownian Motion

In this section, we apply the skew-product decomposition to certain asymptotic

results for planar Brownian motion. We fix the starting point z 2 Cnf0g (we will

often take z D 1) and for simplicity we write P instead of Pz. We keep the notation

�t D arg Bt for a continuous determination of the argument of Bt. Although the

process �t is not a Markov process, the fact that it can be written as a linear Brownian

motion time-changed by an independent increasing process allows one to derive a

lot of information about its path properties. For instance, since Ht �! 1 as t ! 1,

we immediately get from Proposition 2.14 that, a.s.,

lim sup
t!1

�t D C1;

lim inf
t!1

�t D �1:

One may then ask about the typical size of �t when t is large. This is the celebrated

Spitzer theorem on the winding number of planar Brownian motion.

Theorem 7.20 Let .�t; t � 0/ be a continuous determination of the argument of the

complex Brownian motion B started from z 2 Cnf0g. Then

2

log t
�t

converges in distribution as t ! 1 to a standard symmetric Cauchy distribution.

In other words, for every x 2 R,

lim
t!1

P
� 2

log t
�t � x

�
D
Z x

�1

dy

�.1C y2/
:

Before proving the theorem, we will establish a key lemma. Without loss of

generality, we may assume that z D 1 and �0 D 0. We use the notation of

Theorem 7.19, so that ˇ and  are two independent linear Brownian motions started

from 0.

Lemma 7.21 For every � > 0, consider the scaled Brownian motion ˇ
.�/
t D 1

�
ˇ�2t,

for every t � 0, and set T
.�/
1 D infft � 0 W ˇ.�/t D 1g. Then

4

.log t/2
Ht � T

..log t/=2/
1 �!

t!1
0

in probability.

Remark This shows in particular that 4.log t/�2Ht converges in distribution to the

law of the hitting time of 1 by a linear Brownian motion started from 0.
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Proof For every a > 0, set Ta D infft � 0 W ˇt D ag and, for every � > 0,

T
.�/
a D infft � 0 W ˇ.�/t D ag. For the sake of simplicity, we write �t D .log t/=2

throughout the proof and always assume that t > 1. We first verify that, for every

" > 0,

P
�
.�t/

�2 Ht > T
.�t/
1C"

�
�!
t!1

0: (7.7)

To this end, recall formula (7.6), which shows that

f.�t/
�2 Ht > T

.�t/
1C"g D

n Z .�t/
2T
.�t /

1C"

0

exp.2ˇu/ du < t
o

D
n 1
2�t

log

Z .�t/
2T
.�t /

1C"

0

exp.2ˇu/ du < 1
o
; (7.8)

since 2�t D log t. From the change of variables u D .�t/
2v in the integral, we get

1

2�t

log

Z .�t/
2T
.�t /

1C"

0

exp.2ˇu/ du D log�t

�t

C 1

2�t

log

Z T
.�t /

1C"

0

exp.2�tˇ
.�t/
v / dv:

We then note that, for every fixed t > 1, the quantity in the right-hand side has the

same distribution as

log�t

�t

C 1

2�t

log

Z T1C"

0

exp.2�tˇv/ dv (7.9)

since for any � > 0 the scaled Brownian motion .ˇ
.�/
t /t�0 has the same distribution

as .ˇt/t�0. We then use the simple analytic fact stating that, for any continuous

function f W RC �! R, for any s > 0,

1

2�
log

Z s

0

exp.2� f .v// dv �!
�!1

sup
0�r�s

f .r/:

We leave the proof as an exercise for the reader. It follows that

1

2�
log

Z T1C"

0

exp.2�ˇv/ dv �!
�!1

sup
0�r�T1C"

ˇr D 1C ";

a.s., and so the quantity in (7.9) converges to 1C ", a.s. as t ! 1. Thus,

1

2�t

log

Z .�t/
2T
.�t /

1C"

0

exp.2ˇu/ du �!
t!1

1C "
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in probability. Hence the probability of the event in the right-hand side of (7.8)

tends to 0, proving that (7.7) holds. The very same arguments show that, for every

" 2 .0; 1/,

P
�
.�t/

�2 Ht < T
.�t/
1�"

�
�!
t!1

0:

The desired result now follows, noting that T
.�t/
1�" < T

.�t/
1 < T

.�t/
1C" and that T

.�t/
1C"�T

.�t/
1�"

has the same distribution as T1C"�T1�", which tends to 0 in probability when " ! 0

(clearly, T1�" " T1 as " ! 0, and on the other hand T1C" # T1 a.s. as " ! 0, as a

consequence of the strong Markov property at time T1 and Proposition 2.14 (i)). ut
Proof of Theorem 7.20 We keep the notation introduced in the preceding proof

and also consider, for every � > 0, the scaled Brownian motion 
.�/
t D 1

�
�2t.

Recalling our notation �t D .log t/=2 for t > 1, we have

2

log t
�t D 1

�t

Ht
D 

.�t/

.�t/�2Ht
:

It then follows from Lemma 7.21 (using also the fact that the linear Brownian

motions  .�/ all have the same distribution) that

2

log t
�t �  .�t/

T
.�t /
1

�!
t!1

0;

in probability.

To complete the proof, we just have to notice that, for every fixed � > 0, 
.�/

T
.�/
1

has the standard symmetric Cauchy distribution. Indeed, since .ˇ.�/;  .�// is a pair

of independent linear Brownian motions started from 0, this variable has the same

distribution as T1 , and its characteristic distribution is computed by conditioning

first with respect to T1, and then using the Laplace transform of T1 found in Example

(c) after Corollary 3.24,

EŒexp.i�T1/� D EŒexp.�1
2
�2T1/� D exp.�j�j/;

which we recognize as the characteristic function of the Cauchy distribution. ut
The skew-product decomposition and Lemma 7.21 can be used to derive other

asymptotic laws. We know that the planar Brownian motion B started from z 6D
0 does not hit 0 a.s., but on the other hand the recurrence property ensures that

minfjBsj W 0 � s � tg tends to 0 as t ! 1. One may then ask about the typical size

of minfjBsj W 0 � s � tg when t is large: In other words, at which speed does planar

Brownian motion approach a point different from its starting point?
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Proposition 7.22 Consider the planar Brownian motion B started from z 6D 0.

Then, for every a > 0,

lim
t!1

P
�

min
0�s�t

jBsj � t�a=2
�

D 1

1C a
:

For instance, the probability that Brownian motion started from a nonzero initial

value comes within distance 1=t from the origin before time t converges to 1=3 as

t ! 1, a result which was not so easy to guess!

Proof Without loss of generality, we take z D 1. We keep the notation introduced

in the proofs of Lemma 7.21 and Theorem 7.20. We observe that

log
�

min
0�s�t

jBsj
�

D min
0�s�t

ˇHs
D min

0�s�Ht

ˇs:

It follows that

2

log t
log

�
min
0�s�t

jBsj
�

D 1

�t

min
0�s�Ht

ˇs D min
0�s�.�t/�2

ˇ.�t/
s :

By Lemma 7.21,

min
0�s�.�t/�2

ˇ.�t/
s � min

0�s�T
.�t /
1

ˇ.�t/
s �!

t!1
0

in probability. We conclude that we have the following convergence in distribution,

2

log t
log

�
min
0�s�t

jBsj
�

�!
t!1

min
0�s�T1

ˇs;

where ˇ is a linear Brownian motion started from 0 and T1 D inffs � 0 W ˇs D 1g.

To complete the argument, note that

P
�

min
0�s�T1

ˇs � �a
�

D P.T�a < T1/;

if T�a D inffs � 0 W ˇs D �ag, and that P.T�a < T1/ D .1C a/�1 (cf. Sect. 3.4).

ut
As a last application of the skew-product decomposition, we state the Kallianpur–

Robbins asymptotic law for the time spent by Brownian motion in a ball. Here the

initial value can be arbitrary.
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Theorem 7.23 Let z 2 C and R > 0. Then, under Pz ,

2

log t

Z t

0

1fjBsj<Rg ds

converges in distribution as t ! 1 to an exponential distribution with mean R2.

We postpone our proof of Theorem 7.23 to the end of Chap. 9 since it relies in

part on the theory of local times developed in that chapter.

Exercises

In all exercises, .Bt/t�0 is a d-dimensional Brownian motion starting from x under

the probability measure Px. Except in Exercise 7.28, we always assume that d � 2.

Exercise 7.24 Let B1 be the open unit ball of Rd (d � 2), and B�
1 D B1nf0g. Let

g be the continuous function defined on @B�
1 by g.x/ D 0 if jxj D 1 and g.0/ D 1.

Prove that the Dirichlet problem in B�
1 with boundary condition g has no solution.

Exercise 7.25 (Polar sets) Throughout this exercise, we consider a nonempty

compact subset K of Rd (d � 2). We set TK D infft � 0 W Bt 2 Kg. We say

that K is polar if there exists an x 2 Kc such that Px.TK < 1/ D 0.

1. Using the strong Markov property as in the proof of Proposition 7.7 (ii), prove

that the function x 7! Px.TK < 1/ is harmonic on every connected component

of Kc.

2. From now on until question 4., we assume that K is polar. Prove that Kc is

connected, and that the property Px.TK < 1/ D 0 holds for every x 2 Kc.

(Hint: Observe that fx 2 Kc W Px.TK < 1/ D 0g is both open and closed).

3. Let D be a bounded domain containing K, and D0 D DnK. Prove that any

bounded harmonic function h on D0 can be extended to a harmonic function on

D. Does this remain true if the word “bounded” is replaced by “positive”?

4. Set g.x/ D 0 if x 2 @D and g.x/ D 1 if x 2 @D0n@D. Prove that the

Dirichlet problem in D0 with boundary condition g has no solution. (Note that

this generalizes the result of Exercise 7.24.)

5. If ˛ 2 .0; d�, we say that the compact set K has zero ˛-dimensional Hausdorff

measure if, for every " > 0, we can find an integer N" � 1 and N" open balls

B.1/; : : : ;B.N"/ with respective radii r.1/; : : : r.N"/, such that K is contained in the

union B.1/ [ � � � [ B.N"/, and

N"X

jD1
.rj/

˛ � ":

Prove that if d � 3 and K has zero d � 2-dimensional Hausdorff measure then K

is polar.
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Exercise 7.26 In this exercise, d � 3. Let K be a compact subset of the open unit

ball of Rd, and TK WD infft � 0 W Bt 2 Kg. We assume that D WD RdnK is connected.

We also consider a function g defined and continuous on K. The goal of the exercise

is to determine all functions u W ND ! R that satisfy:

(P) u is bounded and continuous on ND, harmonic on D, and u.y/ D g.y/ if y 2 @D.

(This is the Dirichlet problem in D, but in contrast with Sect. 7.3 above, D is

unbounded here.) We fix an increasing sequence .Rn/n�1 of reals, with R1 � 1

and Rn " 1 as n ! 1. For every n � 1, we set T.n/ WD infft � 0 W jBtj � Rng.

1. Suppose that u satisfies (P). Prove that, for every n � 1 and every x 2 D such

that jxj < Rn,

u.x/ D ExŒg.BTK
/ 1fTK�T.n/g�C ExŒu.BT.n// 1fT.n/�TKg�:

2. Show that, by replacing the sequence .Rn/n�1 with a subsequence if necessary,

we may assume that there exists a constant ˛ 2 R such that, for every x 2 D,

lim
n!1

ExŒu.BT.n//� D ˛;

and that we then have

lim
jxj!1

u.x/ D ˛:

3. Show that, for every x 2 D,

u.x/ D ExŒg.BTK
/ 1fTK<1g�C ˛ Px.TK D 1/:

4. Assume that D satisfies the exterior cone condition at every y 2 @D (this is

defined in the same way as when D is bounded). Show that, for any choice of

˛ 2 R, the formula of question 3. gives a solution of the problem (P).

Exercise 7.27 Let f W C ! C be a nonconstant holomorphic function. Use planar

Brownian motion to prove that the set ff .z/ W z 2 Cg is dense in C. (Much more is

true, since Picard’s little theorem asserts that the complement of ff .z/ W z 2 Cg in C

contains at most one point: This can also be proved using Brownian motion, but the

argument is more involved, see [12].)

Exercise 7.28 (Feynman–Kac formula for Brownian motion) This is a continua-

tion of Exercise 6.26 in Chap. 6. With the notation of this exercise, we assume that

E D Rd and Xt D Bt. Let v be a nonnegative function in C0.R
d/, and assume that

v is continuously differentiable with bounded first derivatives. As in Exercise 6.26,

set, for every ' 2 B.Rd/,

Q�
t '.x/ D Ex

h
'.Xt/ exp

�
�
Z t

0

v.Xs/ ds
�i
:
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1. Using the formula derived in question 2. of Exercise 6.26, prove that, for

every t > 0, and every ' 2 C0.R
d/, the function Q�

t ' is twice continuously

differentiable on Rd, and that Q�
t ' and its partial derivatives up to order 2 belong

to C0.R
d/. Conclude that Q�

t ' 2 D.L/.

2. Let ' 2 C0.R
d/ and set ut.x/ D Q�

t '.x/ for every t > 0 and x 2 Rd. Using

question 3. of Exercise 6.26, prove that, for every x 2 Rd, the function t 7! ut.x/

is continuously differentiable on .0;1/, and

@ut

@t
D 1

2
�ut � v ut:

Exercise 7.29 In this exercise d D 2 and R2 is identified with the complex plane

C. Let ˛ 2 .0; �/, and consider the open cone

C˛ D fr ei� W r > 0; � 2 .�˛; ˛/g:

Set T WD infft � 0 W Bt … C˛g.

1. Show that the law of log jBT j under P1 is the law of ˇinfft�0Wjt jD˛g, where ˇ and

 are two independent linear Brownian motions started from 0.

2. Verify that, for every � 2 R,

E1Œe
i� log jBT j� D 1

cosh.˛�/
:

Notes and Comments

Connections between Brownian motion and partial differential equations have been

known for a long time and motivated the study of this random process. A survey of

the partial differential equations that can be solved in terms of Brownian motion can

be found in the book of Durrett [18, Chapter 8]. The representation of Theorem 7.1

(written in terms of the Gaussian density) goes back to the ninetieth century and the

work of Fourier and Laplace – see the references in [49]. The beautiful relations

between Brownian motion and harmonic functions were discovered and studied

by Kakutani [45, 46], and Hunt [33, 34] later studied the connections between

potential theory and transient Markov processes (see the Blumenthal–Getoor book

[5] for more on this topic). Nice accounts of the links between Brownian motion

and classical potential theory can be found in the books by Port and Stone [69]

and Doob [16] (see also Itô and McKean [42], Chung [9], and Chapters 3 and 8 of

[62]). The conformal invariance of planar Brownian motion was stated by Lévy [54]

with a very sketchy proof. Davis’ paper [12] is a nice survey of relations between

planar Brownian motion and analytic functions, see also Durrett’s book [18], and the

paper [28] by Getoor and Sharpe for a notion of conformal martingale that plays in

martingale theory a role similar to that of analytic functions. Spitzer’s theorem was
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obtained in the classical paper [75], and the Kallianpur–Robbins law was derived in

[48]. A number of remarkable properties of planar Brownian motion had already

been observed by Lévy [53] in 1940. We refer to Pitman and Yor [68] for a

systematic study of asymptotic laws of planar Brownian motion. Our presentation

closely follows [52], where other applications of the skew-product decomposition

can be found.



Chapter 8

Stochastic Differential Equations

This chapter is devoted to stochastic differential equations, which motivated Itô’s

construction of stochastic integrals. After giving the general definitions, we provide

a detailed treatment of the Lipschitz case, where strong existence and uniqueness

statements hold. Still in the Lipschitz case, we show that the solution of a stochastic

differential equation is a Markov process with a Feller semigroup, whose generator

is a second-order differential operator. By results of Chap. 6, the Feller property

immediately gives the strong Markov property of solutions of stochastic differential

equations. The last section presents a few important examples. This chapter can be

read independently of Chap. 7.

8.1 Motivation and General Definitions

The goal of stochastic differential equations is to provide a model for a differential

equation perturbed by a random noise. Consider an ordinary differential equation of

the form

y0.t/ D b.y.t//;

or, in differential form,

dyt D b.yt/ dt:

Such an equation is used to model the evolution of a physical system. If we take

random perturbations of the system into account, we add a noise term, which is

typically of the form � dBt, where B denotes a Brownian motion, and � is a constant

corresponding to the intensity of the noise. Note that the use of Brownian motion

here is justified by its property of independence of increments, corresponding to the

© Springer International Publishing Switzerland 2016
J.-F. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus,
Graduate Texts in Mathematics 274, DOI 10.1007/978-3-319-31089-3_8
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fact that the random perturbations affecting disjoint time intervals are assumed to

be independent.

In this way, we arrive at a stochastic differential equation of the form

dyt D b.yt/ dt C � dBt;

or in integral form, the only one with a rigorous mathematical meaning,

yt D y0 C
Z t

0

b.ys/ ds C � Bt:

We generalize the preceding equation by allowing � to depend on the state of the

system at time t :

dyt D b.yt/ dt C �.yt/ dBt;

or, in integral form,

yt D y0 C
Z t

0

b.ys/ ds C
Z t

0

�.ys/ dBs:

Because of the integral in dBs, the preceding equation only makes sense thanks to

the theory of stochastic integrals developed in Chap. 5. We can still generalize the

preceding equation by allowing � and b to depend on the time parameter t. This

leads to the following definition.

Definition 8.1 Let d and m be positive integers, and let � and b be locally bounded

measurable functions defined on RC � Rd and taking values in Md�m.R/ and in Rd

respectively, where Md�m.R/ is the set of all d � m matrices with real coefficients.

We write � D .�ij/1�i�d;1�j�m and b D .bi/1�i�d.

A solution of the stochastic differential equation

E.�; b/ dXt D �.t;Xt/ dBt C b.t;Xt/ dt

consists of:

• a filtered probability space .˝;F ; .Ft/t2Œ0;1�;P/ (where the filtration is always

assumed to be complete);

• an m-dimensional .Ft/-Brownian motion B D .B1; : : : ;Bm/ started from 0;

• an .Ft/-adapted process X D .X1; : : : ;Xd/ with values in Rd, with continuous

sample paths, such that

Xt D X0 C
Z t

0

�.s;Xs/ dBs C
Z t

0

b.s;Xs/ ds;
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meaning that, for every i 2 f1; : : : ; dg,

Xi
t D Xi

0 C
mX

jD1

Z t

0

�ij.s;Xs/ dBj
s C

Z t

0

bi.s;Xs/ ds:

If additionally X0 D x 2 Rd, we say that X is a solution of Ex.�; b/.

Note that, when we speak about a solution of E.�; b/, we do not fix a priori the

filtered probability space and the Brownian motion B. When we fix these objects,

we will say so explicitly.

There are several notions of existence and uniqueness for stochastic differential

equations.

Definition 8.2 For the equation E.�; b/ we say that there is

• weak existence if, for every x 2 Rd, there exists a solution of Ex.�; b/;

• weak existence and weak uniqueness if in addition, for every x 2 Rd, all solutions

of Ex.�; b/ have the same law;

• pathwise uniqueness if, whenever the filtered probability space .˝;F ; .Ft/;P/

and the .Ft/-Brownian motion B are fixed, two solutions X and X0 such that

X0 D X0
0 a.s. are indistinguishable.

Furthermore, we say that a solution X of Ex.�; b/ is a strong solution if X is adapted

with respect to the completed canonical filtration of B.

Remark It may happen that weak existence and weak uniqueness hold but pathwise

uniqueness fails. For a simple example, consider a real Brownian motion ˇ started

from ˇ0 D y, and set

Bt D
Z t

0

sgn .ˇs/ dˇs;

where sgn .x/ D 1 if x > 0 and sgn .x/ D �1 if x � 0. Then, one immediately gets

from the “associativity” of stochastic integrals that

ˇt D y C
Z t

0

sgn .ˇs/ dBs:

Moreover, B is a continuous martingale with quadratic variation hB;Bit D t, and

Theorem 5.12 shows that B is a Brownian motion started from 0. We thus see that ˇ

solves the stochastic differential equation

dXt D sgn .Xt/ dBt; X0 D y;

and it follows that weak existence holds for this equation. Theorem 5.12 again shows

that any other solution of this equation must be a Brownian motion, which gives
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weak uniqueness. On the other hand, pathwise uniqueness fails. In fact, taking y D 0

in the construction, one easily sees that both ˇ and �ˇ solve the preceding stochastic

differential equation with the same Brownian motion B and initial value 0 (note thatR t

0
1fˇsD0g ds D 0, which implies

R t

0
1fˇsD0g dBs D 0). One can also show that ˇ is

not a strong solution: One verifies that the canonical filtration of B coincides with

the canonical filtration of jˇj, which is strictly smaller than that of ˇ (we omit the

proof, which is a simple application of formula (9.18) in Chap. 9).

The next theorem links the different notions of existence and uniqueness.

Theorem (Yamada–Watanabe) If both weak existence and pathwise uniqueness

hold, then weak uniqueness also holds. Moreover, for any choice of the filtered

probability space .˝;F ; .Ft/;P/ and of the .Ft/-Brownian motion B, there exists

for every x 2 Rd a (unique) strong solution of Ex.�; b/.

We omit the proof (see Yamada and Watanabe [83]) because we will not need

this result. In the Lipschitz case that we will consider, we will establish directly the

properties given by the Yamada–Watanabe theorem.

8.2 The Lipschitz Case

In this section, we work under the following assumptions.

Assumptions The functions � are b are continuous on RC � Rd and Lipschitz in

the variable x: There exists a constant K such that, for every t � 0, x; y 2 Rd,

j�.t; x/ � �.t; y/j � K jx � yj;
jb.t; x/ � b.t; y/j � K jx � yj:

Theorem 8.3 Under the preceding assumptions, pathwise uniqueness holds for

E.�; b/, and, for every choice of the filtered probability space .˝;F ; .Ft/;P/ and

of the .Ft/-Brownian motion B, for every x 2 Rd, there exists a (unique) strong

solution of Ex.�; b/.

The theorem implies in particular that weak existence holds for E.�; b/. Weak

uniqueness will follow from the next theorem (it can also be deduced from pathwise

uniqueness using the Yamada–Watanabe theorem).

Remark One can “localize” the Lipschitz assumption on � and b, meaning that

the constant K may depend on the compact set on which the parameters t and x; y

are considered. In that case, it is, however, necessary to keep a condition of linear

growth of the form

j�.t; x/j � K.1C jxj/; jb.t; x/j � K.1C jxj/:
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This kind of condition, which avoids the blow-up of solutions, already appears in

ordinary differential equations.

Proof For the sake of simplicity, we consider only the case d D m D 1. The reader

will be able to check that the general case follows from exactly the same arguments,

at the cost of a heavier notation. Let us start by proving pathwise uniqueness. We

consider (on the same filtered probability space, with the same Brownian motion B)

two solutions X and X0 such that X0 D X0
0. Fix M > 0 and set

� D infft � 0 W jXtj � M or jX0
t j � Mg:

Then, for every t � 0,

Xt^� D X0 C
Z t^�

0

�.s;Xs/ dBs C
Z t^�

0

b.s;Xs/ ds

and an analogous equation holds for X0
t^� . Fix a constant T > 0. By considering

the difference between the two equations and using the bound (5.14), we get, for

t 2 Œ0;T�,

EŒ.Xt^� � X0
t^� /

2�

� 2E
h� Z t^�

0

.�.s;Xs/ � �.s;X0
s// dBs

�2i
C 2E

h� Z t^�

0

.b.s;Xs/ � b.s;X0
s// ds

�2i

� 2

�
E
h Z t^�

0

.�.s;Xs/� �.s;X0
s//

2ds
i

C T E
h Z t^�

0

.b.s;Xs/ � b.s;X0
s//

2ds
i�

� 2K2.1C T/E
h Z t^�

0

.Xs � X0
s/
2ds
i

� 2K2.1C T/E
h Z t

0

.Xs^� � X0
s^� /

2ds
i
:

Hence the function h.t/ D EŒ.Xt^� � X0
t^�/

2� satisfies

h.t/ � C

Z t

0

h.s/ ds

for every t 2 Œ0;T�, with C D 2K2.1C T/.

Lemma 8.4 (Gronwall’s lemma) Let T > 0 and let g be a nonnegative bounded

measurable function on Œ0;T�. Assume that there exist two constants a � 0 and

b � 0 such that, for every t 2 Œ0;T�,

g.t/ � a C b

Z t

0

g.s/ ds:



214 8 Stochastic Differential Equations

Then, we also have, for every t 2 Œ0;T�,

g.t/ � a exp.bt/:

Proof of the lemma By iterating the condition on g, we get,

g.t/ � a C a.bt/C b2
Z t

0

ds

Z s

0

dr g.r/

� a C a.bt/C a
.bt/2

2
C � � � C a

.bt/n

nŠ
C bnC1

Z t

0

ds1

Z s1

0

ds2 � � �
Z sn

0

dsnC1g.snC1/;

for every n � 1. If A is a constant such that 0 � g � A, the last term in the right-

hand side is bounded above by A.bt/nC1=.n C 1/Š, hence tends to 0 as n ! 1. The

desired result now follows. ut
Let us return to the proof of the theorem. The function h is bounded above by

4M2 and the assumption of the lemma holds with a D 0, b D C. We thus get h D 0,

so that Xt^� D X0
t^� . By letting M tend to 1, we get Xt D X0

t , which completes the

proof of pathwise uniqueness.

For the second assertion, we construct a solution using Picard’s approximation

method. We define by induction

X0t D x;

X1t D x C
Z t

0

�.s; x/ dBs C
Z t

0

b.s; x/ ds;

Xn
t D x C

Z t

0

�.s;Xn�1
s / dBs C

Z t

0

b.s;Xn�1
s / ds:

The stochastic integrals are well defined since one verifies by induction that, for

every n, the process Xn is adapted and has continuous sample paths.

It is enough to show that, for every T > 0, there is a strong solution of Ex.�; b/

on the time interval Œ0;T�. Indeed, the uniqueness part of the argument will then

allow us to get a (unique) strong solution on RC that will coincide with the solution

on Œ0;T� up to time T.

We fix T > 0 and, for every n � 1 and every t 2 Œ0;T�, we set

gn.t/ D E
h

sup
0�s�t

jXn
s � Xn�1

s j2
i
:

We will bound the functions gn by induction on n (at present, it is not yet clear

that these functions are finite). The fact that the functions �.�; x/ and b.�; x/ are

continuous, hence bounded, over Œ0;T� implies that there exists a constant C0
T such

that g1.t/ � C0
T for every t 2 Œ0;T� (use Doob’s inequality in L2 for the stochastic

integral term).
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Then we observe that

XnC1
t � Xn

t D
Z t

0

.�.s;Xn
s / � �.s;Xn�1

s // dBs C
Z t

0

.b.s;Xn
s / � b.s;Xn�1

s // ds:

Hence, using the case p D 2 of the Burkholder–Davis–Gundy inequalities in the

second bound (and writing C.2/ for the constant in this inequality),

E
h

sup
0�s�t

jXnC1
s � Xn

s j2
i

� 2E
h

sup
0�s�t

ˇ̌
ˇ
Z s

0

.�.u;Xn
u/ � �.u;Xn�1

u // dBu

ˇ̌
ˇ
2

C sup
0�s�t

ˇ̌
ˇ
Z s

0

.b.u;Xn
u/� b.u;Xn�1

u // du

ˇ̌
ˇ
2i

� 2
�

C.2/ E
h Z t

0

.�.u;Xn
u/ � �.u;Xn�1

u //2 du
i

CT E
h Z t

0

.b.u;Xn
u/ � b.u;Xn�1

u //2 du
i�

� 2.C.2/ C T/K2 E
h Z t

0

jXn
u � Xn�1

u j2 du
i

� CT E
h Z t

0

sup
0�r�u

jXn
r � Xn�1

r j2 du
i

where CT D 2.C.2/ C T/K2. We have thus obtained that, for every n � 1,

gnC1.t/ � CT

Z t

0

gn.u/ du: (8.1)

Recalling that g1.t/ � C0
T , an induction argument using (8.1) shows that, for every

n � 1 and t 2 Œ0;T�,

gn.t/ � C0
T .CT/

n�1 tn�1

.n � 1/Š
:

In particular,
P1

nD1 gn.T/
1=2 < 1, which implies that

1X

nD0
sup
0�t�T

jXnC1
t � Xn

t j < 1; a.s.

Hence the sequence .Xn
t ; 0 � t � T/ converges uniformly on Œ0;T�, a.s., to a limiting

process .Xt; 0 � t � T/, which has continuous sample paths. By induction, one also

verifies that, for every n, Xn is adapted with respect to the (completed) canonical

filtration of B, and the same holds for X.
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Finally, from the fact that � and b are Lipschitz in the variable x, we also get that,

for every t 2 Œ0;T�,

lim
n!1

� Z t

0

�.s;Xs/ dBs �
Z t

0

�.s;Xn
s / dBs

�
D 0;

lim
n!1

� Z t

0

b.s;Xs/ ds �
Z t

0

b.s;Xn
s / ds

�
D 0;

in probability (to deal with the stochastic integrals, we may use Proposition 5.8,

noting that jXn
s � Xsj is dominated by

P1
kD0 sup0�r�s jXkC1

r � Xk
r j). By passing to

the limit in the induction equation defining Xn, we get that X solves Ex.�; b/ on

Œ0;T�. This completes the proof of the theorem. ut
In the following statement, W.dw/ stands for the Wiener measure on the

canonical space C.RC;Rm/ of all continuous functions from RC into Rm (W.dw/

is the law of .Bt; t � 0/ if B is an m-dimensional Brownian motion started from 0).

Theorem 8.5 Under the assumptions of the preceding theorem, there exists, for

every x 2 R, a mapping Fx W C.RC;Rm/ �! C.RC;Rd/, which is measurable when

C.RC;Rm/ is equipped with the Borel �-field completed by the W-negligible sets,

and C.RC;Rd/ is equipped with the Borel �-field, such that the following properties

hold:

(i) for every t � 0, Fx.w/t coincides W.dw/ a.s. with a measurable function of

.w.r/; 0 � r � t/;

(ii) for every w 2 C.RC;Rm/, the mapping x 7! Fx.w/ is continuous;

(iii) for every x 2 Rd, for every choice of the (complete) filtered probability

space .˝;F ; .Ft/;P/ and of the m-dimensional .Ft/-Brownian motion B

with B0 D 0, the process Xt defined Xt D Fx.B/t is the unique solution of

Ex.�; b/; furthermore, if U is an F0-measurable real random variable, the

process FU.B/t is the unique solution with X0 D U.

Remark Assertion (iii) implies in particular that weak uniqueness holds for

E.�; b/: any solution of Ex.�; b/ must be of the form Fx.B/ and its law is thus

uniquely determined as the image of W.dw/ under Fx.

Proof Again we consider only the case d D m D 1. Let N be the class of all

W-negligible sets in C.RC;R/, and, for every t 2 Œ0;1�, set

Gt D �.w.s/; 0 � s � t/ _ N :

For every x 2 R, we write Xx for the solution of Ex.�; b/ corresponding to the

filtered probability space .C.RC;R/;G1; .Gt/;W/ and the (canonical) Brownian

motion Bt.w/ D w.t/. This solution exists and is unique (up to indistinguishability)

by Theorem 8.3, noting that the filtration .Gt/ is complete by construction.
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Let x; y 2 R and let Tn be the stopping time defined by

Tn D infft � 0 W jXx
t j � n or jXy

t j � ng:

Let p � 2 and T � 1. Using the Burkholder–Davis–Gundy inequalities (Theo-

rem 5.16) and then the Hölder inequality, we get, for t 2 Œ0;T�,

E
h

sup
s�t

jXx
s^Tn

� X
y

s^Tn
jp
i

� Cp

�
jx � yjp C E

h
sup
s�t

ˇ̌
ˇ
Z s^Tn

0

.�.r;Xx
r /� �.r;Xy

r // dBr

ˇ̌
ˇ
pi

CE
h

sup
s�t

ˇ̌
ˇ
Z s^Tn

0

.b.r;Xx
r / � b.r;Xy

r // dr

ˇ̌
ˇ
pi�

� Cp

�
jx � yjp C C0

pE
h� Z t^Tn

0

.�.r;Xx
r / � �.r;Xy

r //
2dr
�p=2i

CE
h� Z t^Tn

0

jb.r;Xx
r / � b.r;Xy

r /j dr
�pi�

� Cp

�
jx � yjp C C0

pt
p
2�1E

h Z t

0

j�.r ^ Tn;X
x
r^Tn

/� �.r ^ Tn;X
y

r^Tn
/jpdr

i

Ctp�1 E
h Z t

0

jb.r ^ Tn;X
x
r^Tn

/ � b.r ^ Tn;X
y

r^Tn
/jpdr

i�

� C00
p

�
jx � yjp C Tp

Z t

0

EŒjXx
r^Tn

� X
y

r^Tn
jp� dr

�
;

where the constants Cp;C
0
p;C

00
p < 1 depend on p (and on the constant K appearing

in our assumption on � and b) but not on n or on x; y and T.

As the function t 7! E
h

sups�t jXx
s^Tn

� X
y

s^Tn
jp
i

is bounded, Lemma 8.4 implies

that, for t 2 Œ0;T�,

E
h

sup
s�t

jXx
s^Tn

� X
y

s^Tn
jp
i

� C00
p jx � yjp exp.C00

p Tpt/;

hence, letting n tend to 1,

E
h

sup
s�t

jXx
s � Xy

s jp
i

� C00
p jx � yjp exp.C00

p Tpt/:

The topology on the space C.RC;R/ is defined by the distance

d.w;w0/ D
1X

kD1
˛k

�
sup
s�k

jw.s/ � w0.s/j ^ 1
�
;
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where the sequence of positive reals ˛k can be chosen in an arbitrary way, provided

that the series
P
˛k converges. We may choose the coefficients ˛k so that

1X

kD1
˛k exp.C00

p kpC1/ < 1:

For every x 2 R, we consider Xx as a random variable with values in C.RC;R/. The

preceding estimates and Jensen’s inequality then show that

EŒd.Xx;Xy/p� �
� 1X

kD1
˛k

�p�1 1X

kD1
˛k E

h
sup
s�k

jXx
s � Xy

s jp
i

� NCp jx � yjp;

with a constant NCp independent of x and y. By Kolmogorov’s lemma (Theorem 2.9),

applied to the process .Xx; x 2 R/ with values in the space E D C.RC;R/ equipped

with the distance d, we get that .Xx; x 2 R/ has a modification with continuous

sample paths, which we denote by . QXx; x 2 R/. We set Fx.w/ D QXx.w/ D
. QXx

t .w//t�0. Property (ii) is then obvious.

The mapping w 7! Fx.w/ is measurable from C.RC;R/ equipped with the �-

field G1 into C.RC;R/ equipped with the Borel �-field C D �.w.s/; s � 0/.

Moreover, for every t � 0, Fx.w/t D QXx
t .w/

a:s:D Xx
t .w/ is Gt-measurable hence

coincides W.dw/ a.s. with a measurable function of .w.s/; 0 � s � t/. Thus

property (i) holds.

Let us now prove the first part of assertion (iii). To this end, we fix the filtered

probability space .˝;F ; .Ft/;P/ and the .Ft/-Brownian motion B. We need to

verify that the process .Fx.B/t/t�0 then solves Ex.�; b/. This process (trivially) has

continuous sample paths, and is also adapted since Fx.B/t coincides a.s. with a

measurable function of .Br; 0 � r � t/, by (i), and since the filtration .Ft/ is

complete. On the other hand, by the construction of Fx (and because QXx D Xx a.s.),

we have, for every t � 0, W.dw/ a.s.

Fx.w/t D x C
Z t

0

�.s;Fx.w/s/ dw.s/C
Z t

0

b.s;Fx.w/s/ds;

where the stochastic integral
R t

0
�.s;Fx.w/s/dw.s/ can be defined by

Z t

0

�.s;Fx.w/s/ dw.s/ D lim
k!1

2nk �1X

iD0
�.

it

2nk
;Fx.w/it=2nk / .w.

.i C 1/t

2nk
/ � w.

it

2nk
//;
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W.dw/ a.s. Here .nk/k�1 is a suitable subsequence, and we used Proposition 5.9. We

can now replace w by B (whose distribution is W.dw/!) and get a.s.

Fx.B/t D x C lim
k!1

2nk �1X

iD0

�.
it

2nk
;Fx.B/it=2nk / .B.iC1/t=2nk � Bit=2nk /C

Z t

0

b.s;Fx.B/s/ds

D x C
Z t

0

�.s;Fx.B/s/dBs C
Z t

0

b.s;Fx.B/s/ds;

again thanks to Proposition 5.9. We thus obtain that Fx.B/ is the desired solution.

We still have to prove the second part of assertion (iii). We again fix the filtered

probability space .˝;F ; .Ft/;P/ and the .Ft/-Brownian motion B. Let U be an

F0-measurable random variable. If in the stochastic integral equation satisfied by

Fx.B/ we formally substitute U for x, we obtain that FU.B/ solves E.�; b/ with

initial value U. However, this formal substitution is not so easy to justify, and we

will argue with some care.

We first observe that the mapping .x; !/ 7! Fx.B/t is continuous with respect to

the variable x (if ! is fixed) and Ft-measurable with respect to ! (if x is fixed). It

easily follows that this mapping is measurable for the �-field B.R/˝ Ft. Since U

is F0-measurable, we get that FU.B/t is Ft-measurable. Hence the process FU.B/

is adapted. For x 2 R and w 2 C.RC;R/, we define G.x;w/ 2 C.RC;R/ by the

formula

G.x;w/t D
Z t

0

b.s;Fx.w/s/ ds:

We also set H.x;w/ D Fx.w/ � x � G.x;w/. We have already seen that, for every

x 2 R, we have W.dw/ a.s.,

H.x;w/t D
Z t

0

�.s;Fx.w/s/ dw.s/:

Hence, if

Hn.x;w/t D
2n�1X

iD0
�.

it

2n
;Fx.w/it=2n/ .w.

.i C 1/t

2n
/ � w.

it

2n
//;

Proposition 5.9 shows that

H.x;w/t D lim
n!1

Hn.x;w/t;

in probability under W.dw/, for every x 2 R. Using the fact that U and B are

independent (because U is F0-measurable), we infer from the latter convergence
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that

H.U;B/t D lim
n!1

Hn.U;B/t

in probability. Thanks again to Proposition 5.9, the limit must be the stochastic

integral

Z t

0

�.s;FU.B/s/ dBs:

We have thus proved that

Z t

0

�.s;FU.B/s/ dBs D H.U;B/t D FU.B/t � U �
Z t

0

b.s;FU.B/s/ ds ;

which shows that FU.B/ solves E.�; b/ with initial value U. ut
A consequence of Theorem 8.5, especially of property (ii) in this theorem, is the

continuity of solutions with respect to the initial value. Given the filtered probability

space .˝;F ; .Ft/;P/ and the .Ft/-Brownian motion B, one can construct, for

every x 2 Rd, the solution Xx of Ex.�; b/ in such a way that, for every ! 2 ˝ , the

mapping x 7! Xx.!/ is continuous. More precisely, the arguments of the previous

proof give, for every " 2 .0; 1/ and for every choice of the constants A > 0 and

T > 0, a (random) constant C";A;T.!/ such that, if jxj; jyj � A,

sup
t�T

jXx
t .!/ � X

y
t .!/j � C";A;T .!/ jx � yj1�"

(in fact the version of Kolmogorov’s lemma in Theorem 2.9 gives this only for

d D 1, but there is an analogous version of Kolmogorov’s lemma for processes

indexed by a multidimensional parameter, see [70, Theorem I.2.1]).

8.3 Solutions of Stochastic Differential Equations as Markov
Processes

In this section, we consider the homogeneous case where �.t; y/ D �.y/ and

b.t; y/ D b.y/. As in the previous section, we assume that � and b are Lipschitz:

There exists a constant K such that, for every x; y 2 Rd,

j�.x/� �.y/j � Kjx � yj ; jb.x/ � b.y/j � Kjx � yj:

Let x 2 Rd, and let Xx be a solution of Ex.�; b/. Since weak uniqueness holds, for

every t � 0, the law of Xx
t does not depend on the choice of the solution. In fact, this
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law is the image of Wiener measure on C.RC;Rd/ under the mapping w 7! Fx.w/t,

where the mappings Fx were introduced in Theorem 8.5. The latter theorem also

shows that the law of Xx
t depends continuously on the pair .x; t/.

Theorem 8.6 Assume that .Xt/t�0 is a solution of E.�; b/ on a (complete) filtered

probability space .˝;F ; .Ft/;P/. Then .Xt/t�0 is a Markov process with respect

to the filtration .Ft/, with semigroup .Qt/t�0 defined by

Qtf .x/ D EŒf .Xx
t /�;

where Xx is an arbitrary solution of Ex.�; b/.

Remark With the notation of Theorem 8.5, we have also

Qtf .x/ D
Z

f .Fx.w/t/W.dw/: (8.2)

Proof We first verify that, for any bounded measurable function f on Rd, and for

every s; t � 0, we have

EŒf .XsCt/ j Fs� D Qtf .Xs/;

where Qtf is defined by (8.2). To this end, we fix s � 0 and we write, for every

t � 0,

XsCt D Xs C
Z sCt

s

�.Xr/ dBr C
Z sCt

s

b.Xr/ dr (8.3)

where B is an .Ft/-Brownian motion starting from 0. We then set, for every t � 0,

X0
t D XsCt ; F

0
t D FsCt ; B0

t D BsCt � Bs:

We observe that the filtration .F 0
t / is complete (of course F 0

1 D F1), that the

process X0 is adapted to .F 0
t /, and that B0 is an m-dimensional .F 0

t /-Brownian

motion. Furthermore, using the approximation results for the stochastic integral

of adapted processes with continuous sample paths (Proposition 5.9), one easily

verifies that, a.s. for every t � 0,

Z sCt

s

�.Xr/ dBr D
Z t

0

�.X0
u/ dB0

u

where the stochastic integral in the right-hand side is computed in the filtration .F 0
t /.

It follows from (8.3) that

X0
t D Xs C

Z t

0

�.X0
u/ dB0

u C
Z t

0

b.X0
u/ du:
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Hence X0 solves E.�; b/, on the space .˝;F ; .F 0
t /;P/ and with the Brownian

motion B0, with initial value X0
0 D Xs (note that Xs is F 0

0-measurable). By the last

assertion of Theorem 8.5, we must have X0 D FXs
.B0/, a.s.

Consequently, for every t � 0,

EŒf .XsCt/jFs� D EŒf .X0
t/jFs� D EŒf .FXs

.B0/t/jFs� D
Z

f .FXs
.w/t/W.dw/

D Qtf .Xs/;

by the definition of Qtf . In the third equality, we used the fact that B0 is independent

of Fs, and distributed according to W.dw/, whereas Xs is Fs-measurable.

We still have to verify that .Qt/t�0 is a transition semigroup. Properties (i) and

(iii) of the definition are immediate (for (iii), we use the fact that the law of Xx
t

depends continuously on the pair .x; t/). For the Chapman–Kolmogorov relation,

we observe that, by applying the preceding considerations to Xx, we have, for every

s; t � 0,

QtCsf .x/ D EŒf .Xx
sCt/� D EŒEŒf .Xx

sCt/jFs�� D EŒQtf .X
x
s /� D

Z
Qs.x; dy/Qtf .y/:

This completes the proof. ut
We write C2

c .R
d/ for the space of all twice continuously differentiable functions

with compact support on Rd.

Theorem 8.7 The semigroup .Qt/t�0 is Feller. Furthermore, its generator L is such

that

C2
c.R

d/ � D.L/

and, for every f 2 C2
c .R

d/,

Lf .x/ D 1

2

dX

i;jD1
.���/ij.x/

@2f

@xi@xj

.x/C
dX

iD1
bi.x/

@f

@xi

.x/

where �� denotes the transpose of the matrix � .

Proof For the sake of simplicity, we give the proof only in the case when � and

b are bounded. We fix f 2 C0.R
d/ and we first verify that Qtf 2 C0.R

d/. Since

the mappings x 7! Fx.w/ are continuous, formula (8.2) and dominated convergence

show that Qtf is continuous. Then, since

Xx
t D x C

Z t

0

�.Xx
s / dBs C

Z t

0

b.Xx
s / ds;
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and � and b are assumed to be bounded, we get the existence of a constant C, which

does not depend on t; x, such that

EŒ.Xx
t � x/2� � C.t C t2/: (8.4)

Using Markov’s inequality, we have thus, for every t � 0,

sup
x2Rd

P.jXx
t � xj > A/ �!

A!1
0:

Writing

jQtf .x/j D jEŒf .Xx
t /�j � jEŒf .Xx

t / 1fjXx
t �xj�Ag�j C kf k P.jXx

t � xj > A/;

we get, using our assumption f 2 C0.R
d/,

lim sup
x!1

jQtf .x/j � kf k sup
x2Rd

P.jXx
t � xj > A/;

and thus, since A was arbitrary,

lim
x!1

Qtf .x/ D 0;

which completes the proof of the property Qtf 2 C0.R
d/.

Let us show similarly that Qtf �! f when t ! 0. For every " > 0,

sup
x2Rd

jEŒf .Xx
t /� � f .x/j � sup

x;y2Rd ;jx�yj�"
jf .x/ � f .y/j C 2kf k sup

x2Rd

P.jXx
t � xj > "/:

However, using (8.4) and Markov’s inequality again, we get

sup
x2Rd

P.jXx
t � xj > "/ �!

t!0
0;

hence

lim sup
t!0

kQtf � f k D lim sup
t!0

�
sup
x2Rd

jEŒf .Xx
t /� � f .x/j

�
� sup

x;y2Rd ;jx�yj�"
jf .x/� f .y/�

which can be made arbitrarily close to 0 by taking " small.

Let us prove the second assertion of the theorem. Let f 2 C2
c .R

d/. We apply

Itô’s formula to f .Xx
t /, recalling that, if Xx

t D .X
x;1
t ; : : : ;X

x;d
t /, we have, for every

i 2 f1; : : : ; dg,

Xx;i
t D xi C

mX

jD1

Z t

0

�ij.X
x
s / dBj

s C
Z t

0

bi.X
x
s / ds:
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We get

f .Xx
t / D f .x/C Mt C

dX

iD1

Z t

0

bi.X
x
s /
@f

@xi

.Xx
s /ds C 1

2

dX

i;i0D1

Z t

0

@2f

@xi@xi0
.Xx

s /dhXx;i;Xx;i0is

where M is a continuous local martingale. Moreover, if i; i0 2 f1; : : : ; dg,

dhXx;i;Xx;i0is D
mX

jD1
�ij.X

x
s /�i0j.X

x
s / ds D .���/ii0.X

x
s / ds:

We thus see that, if g is the function defined by

g.x/ D 1

2

dX

i;i0D1
.���/ii0.x/

@2f

@xi@xi0
.x/C

dX

iD1
bi.x/

@f

@xi

.x/;

the process

Mt D f .Xx
t / � f .x/ �

Z t

0

g.Xx
s / ds

is a continuous local martingale. Since f and g are bounded, Proposition 4.7 (ii)

shows that M is a martingale. It now follows from Theorem 6.14 that f 2 D.L/ and

Lf D g. ut
Corollary 8.8 Suppose that .Xt/t�0 solves E.�; b/ on a filtered probability space

.˝;F ; .Ft/;P/. Then .Xt/t�0 satisfies the strong Markov property: If T is a

stopping time and if ˚ is a Borel measurable function from C.RC;Rd/ into RC,

EŒ1fT<1g˚.XTCt; t � 0/ j FT � D 1fT<1g EXT
Œ˚�;

where, for every x 2 Rd, Px denotes the law on C.RC;Rd/ of an arbitrary solution

of Ex.�; b/.

Proof It suffices to apply Theorem 6.17. Alternatively, we could also argue in a

similar manner as in the proof of Theorem 8.6, letting the stopping time T play the

same role as the deterministic time s in the latter proof, and using the strong Markov

property of Brownian motion. ut
Markov processes with continuous sample paths that are obtained as solutions

of stochastic differential equations are sometimes called diffusion processes (certain

authors call a diffusion process any strong Markov process with continuous sample

paths in Rd or on a manifold). Note that, even in the Lipschitz setting considered

here, Theorem 8.7 does not completely identify the generator L, but only its action

on a subset of the domain D.L/: As we already mentioned in Chap. 6, it is often very
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difficult to give a complete description of the domain. However, in many instances,

one can show that a partial knowledge of the generator, such as the one given by

Theorem 8.7, suffices to characterize the law of the process. This observation is at

the core of the powerful theory of martingale problems, which is developed in the

classical book [77] by Stroock and Varadhan.

At least when restricted to C2
c .R

d/, the generator L is a second order differential

operator. The stochastic differential equation E.�; b/ allows one to give a proba-

bilistic approach (as well as an interpretation) to many analytic results concerning

this differential operator, in the spirit of the connections between Brownian motion

and the Laplace operator described in the previous chapter. We refer to Durrett

[18, Chapter 9] and Friedman [26, 27] for more about links between stochastic

differential equations and partial differential equations. These connections between

probability and analysis were an important motivation for the definition and study

of stochastic differential equations.

8.4 A Few Examples of Stochastic Differential Equations

In this section, we briefly discuss three important examples, all in dimension one.

In the first two examples, one can obtain an explicit formula for the solution, which

is of course not the case in general.

8.4.1 The Ornstein–Uhlenbeck Process

Let � > 0. The (one-dimensional) Ornstein–Uhlenbeck process is the solution of

the stochastic differential equation

dXt D dBt � �Xt dt:

This equation is solved by applying Itô’s formula to e�tXt, and we get

Xt D X0e
��t C

Z t

0

e��.t�s/ dBs:

Note that the stochastic integral is a Wiener integral (the integrand is deterministic),

which thus belongs to the Gaussian space generated by B.
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First consider the case where X0 D x 2 R. By the previous remark, X is a (non-

centered) Gaussian process, whose mean function is m.t/ D EŒXt� D x e��t, and

whose covariance function is also easy to compute:

K.s; t/ D cov.Xs;Xt/ D e��jt�sj � e��.tCs/

2�
:

It is also interesting to consider the case when X0 is distributed according to

N .0; 1
2�
/. In that case, X is a centered Gaussian process with covariance function

1

2�
e��jt�sj:

Notice that this is a stationary covariance function. In that case, the Ornstein–

Uhlenbeck process X is both a stationary Gaussian process (indexed by RC) and

a Markov process.

8.4.2 Geometric Brownian Motion

Let � > 0 and r 2 R. The geometric Brownian motion with parameters � and r is

the solution of the stochastic differential equation

dXt D �Xt dBt C rXt dt:

One solves this equation by applying Itô’s formula to log Xt (say in the case where

X0 > 0), and it follows that:

Xt D X0 exp
�
�Bt C .r � �2

2
/t
�
:

Note in particular that, if the initial value X0 is (strictly) positive, the solution

remains so at every time t � 0. Geometric Brownian motion is used in the celebrated

Black–Scholes model of financial mathematics. The reason for the use of this

process comes from an economic assumption of independence of the successive

ratios

Xt2 � Xt1

Xt1

;
Xt3 � Xt2

Xt2

; : : : ;
Xtn � Xtn�1

Xtn�1

corresponding to disjoint time intervals: From the explicit formula for Xt, we see

that this is nothing but the property of independence of increments of Brownian

motion.
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8.4.3 Bessel Processes

Let m � 0 be a real number. The m-dimensional squared Bessel process is the real

process taking nonnegative values that solves the stochastic differential equation

dXt D 2
p

Xt dBt C m dt : (8.5)

Notice that this equation does not fit into the Lipschitz setting studied in this chapter,

because the function �.x/ D 2
p

x is not Lipschitz over RC (one might also observe

that this function is only defined on RC and not on R, but this is a minor point

because one can replace 2
p

x by 2
p

jxj and check a posteriori that a solution starting

from a nonnegative value stays nonnegative). However, there exist (especially in

dimension one) criteria weaker than our Lipschitz continuity assumptions, which

apply to (8.5) and give the existence and pathwise uniqueness of solutions of (8.5).

See in particular Exercise 8.14 for a criterion of pathwise uniqueness that applies

to (8.5).

One of the main reasons for studying Bessel processes comes from the following

observation. If d � 1 is an integer and ˇ D .ˇ1; : : : ; ˇd/ is a d-dimensional

Brownian motion, an application of Itô’s formula shows that the process

jˇtj2 D .ˇ1t /
2 C � � � C .ˇd

t /
2

is a d-dimensional squared Bessel process: See Exercise 5.33. Furthermore, one can

also check that, when m D 0, the process . 1
2
Xt/t�0 has the same distribution as

Feller’s branching diffusion discussed at the end of Chap. 6 (see Exercise 8.11).

Suppose from now on that m > 0 and X0 D x > 0. For every r � 0, set

Tr WD infft � 0 W Xt D rg. If r > x, we have P.Tr < 1/ D 1. To get this, use (8.5)

to see that Xt^Tr
D x C m.t ^ Tr/C Yt^Tr

, where EŒ.Yt^Tr
/2� � 4 r t. By Markov’s

inequality, P.Yt^Tr
> t3=4/ �! 0 as t ! 1, and if we assume that P.Tr D 1/ > 0

the preceding expression for Xt^Tr
gives a contradiction.

Set, for every t 2 Œ0;T0/,

Mt D
�
.Xt/

1� m
2 if m 6D 2;

log.Xt/ if m D 2:

It follows from Itô’s formula that, for every " 2 .0; x/, Mt^T" is a continuous

local martingale. This continuous local martingale is bounded over the time interval

Œ0;T" ^ TA�, for every A > x, and an application of the optional stopping theorem

(using the fact that TA < 1 a.s.) gives, if m 6D 2,

P.T" < TA/ D A1�
m
2 � x1�

m
2

A1�
m
2 � "1�

m
2

;
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and if m D 2,

P.T" < TA/ D log A � log x

log A � log "
:

When m D d is an integer, we recover the formulas of Proposition 7.16.

Let us finally concentrate on the case m � 2. Letting " go to 0 in the preceding

formulas, we obtain that P.T0 < 1/ D 0. If we let A tend to 1, we also get that

P.T" < 1/ D 1 if m D 2 (as we already noticed in Chap. 7) and P.T" < 1/ D
."=x/.m=2/�1 if m > 2.

It then follows from the property P.T0 < 1/ D 0 that the process Mt is well-

defined for every t � 0 and is a continuous local martingale. When m > 2, Mt

takes nonnegative values and is thus a supermartingale (Proposition 4.7 (i)), which

converges a.s. as t ! 1 (Proposition 3.19). The limit must be 0, since we already

noticed that P.TA < 1/ D 1 for every A > x, and we conclude that Xt converges

a.s. to 1 as t ! 1 when m > 2. One can show that the continuous local martingale

Mt is not a (true) martingale (cf. Question 8. in Exercise 5.33 in the case m D 3).

Exercise 5.31 in Chap. 5 gives a number of important calculations related to

squared Bessel processes. We refer to Chapter XI in [70] for a thorough study of

this class of processes.

Remark The m-dimensional Bessel process is (of course) obtained by taking

Yt D
p

Xt, and, when m D d is a positive integer, it corresponds to the norm of d-

dimensional Brownian motion. When m > 1, the process Y also satisfies a stochastic

differential equation, which is however less tractable than (8.5): See Exercise 8.13

below.

Exercises

Exercise 8.9 (Time change method) We consider the stochastic differential equa-

tion

E.�; 0/ dXt D �.Xt/ dBt

where the function � W R �! R is continuous and there exist constants " > 0 and

M such that " � � � M.

1. In this question and the next one, we assume that X solves E.�; 0/ with X0 D x.

We set, for every t � 0,

At D
Z t

0

�.Xs/
2 ds ; �t D inffs � 0 W As > tg:
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Justify the equalities

�t D
Z t

0

dr

�.X�r
/2
; At D inffs � 0 W

Z s

0

dr

�.X�r
/2
> tg:

2. Show that there exists a real Brownian motion ˇ D .ˇt/t�0 started from x such

that, a.s. for every t � 0,

Xt D ˇinffs�0W
R s
0 �.ˇr/�2dr>tg:

3. Show that weak existence and weak uniqueness hold for E.�; 0/. (Hint: For

the existence part, observe that, if X is defined from a Brownian motion ˇ by

the formula of question 2., X is (in an appropriate filtration) a continuous local

martingale with quadratic variation hX;Xit D
R t

0
�.Xs/

2ds.)

Exercise 8.10 We consider the stochastic differential equation

E.�; b/ dXt D �.Xt/ dBt C b.Xt/ dt

where the functions �; b W R �! R are bounded and continuous, and such thatR
R

jb.x/jdx < 1 and � � " for some constant " > 0.

1. Let X be a solution of E.�; b/. Show that there exists a monotone increasing

function F W R �! R, which is also twice continuously differentiable, such that

F.Xt/ is a martingale. Give an explicit formula for F in terms of � and b.

2. Show that the process Yt D F.Xt/ solves a stochastic differential equation of the

form dYt D � 0.Yt/ dBt, with a function � 0 to be determined.

3. Using the result of the preceding exercise, show that weak existence and weak

uniqueness hold for E.�; b/. Show that pathwise uniqueness also holds if � is

Lipschitz.

Exercise 8.11 We suppose that, for every x 2 RC, one can construct on the same

filtered probability space .˝;F ; .Ft/;P/ a process Xx taking nonnegative values,

which solves the stochastic differential equation

�
dXt D

p
2Xt dBt

X0 D x

and that the processes Xx are Markov processes with values in RC, with the same

semigroup .Qt/t�0, with respect to the filtration .Ft/. (This is, of course, close to

Theorem 8.6, which however cannot be applied directly because the function
p
2x

is not Lipschitz.)

1. We fix x 2 RC, and a real T > 0. We set, for every t 2 Œ0;T�

Mt D exp
�

� �Xx
t

1C �.T � t/

�
:

Show that the process .Mt^T/t�0 is a martingale.
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2. Show that .Qt/t�0 is the semigroup of Feller’s branching diffusion (see the end

of Chap. 6).

Exercise 8.12 We consider two sequences .�n/n�1 and .bn/n�1 of real functions

defined on R. We assume that:

(i) There exists a constant C > 0 such that j�n.x/j � C and jbn.x/j � C for every

n � 1 and x 2 R.

(ii) There exists a constant K > 0 such that, for every n � 1 and x; y 2 R,

j�n.x/ � �n.y/j � Kjx � yj ; jbn.x/� bn.y/j � Kjx � yj:

Let B be an .Ft/-Brownian motion and, for every n � 1, let Xn be the unique

adapted process satisfying

Xn
t D

Z t

0

�n.X
n
s / dBs C

Z t

0

bn.X
n
s / ds:

1. Let T > 0. Show that there exists a constant A > 0 such that, for every real

M > 0 and for every n � 1,

P
�

sup
t�T

jXn
t j � M

�
� A

M2
:

2. We assume that the sequences .�n/ and .bn/ converge uniformly on every

compact subset of R to limiting functions denoted by � and b respectively. Justify

the existence of an adapted process X D .Xt/t�0 with continuous sample paths,

such that

Xt D
Z t

0

�.Xs/ dBs C
Z t

0

b.Xs/ ds;

then show that there exists a constant A0 such that, for every real M > 0, for every

t 2 Œ0;T� and n � 1,

E
h

sup
s�t

.Xn
s � Xs/

2
i

� 4.4C T/K2

Z t

0

EŒ.Xn
s � Xs/

2� ds C A0

M2

C4T
�
4 sup

jxj�M

.�n.x/ � �.x//2 C T sup
jxj�M

.bn.x/ � b.x//2
�
:

3. Infer from the preceding question that

lim
n!1

E
h

sup
s�T

.Xn
s � Xs/

2
i

D 0:
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Exercise 8.13 Let ˇ D .ˇt/t�0 be an .Ft/-Brownian motion started from 0. We fix

two real parameters ˛ and r, with ˛ > 1=2 and r > 0. For every integer n � 1 and

every x 2 R, we set

fn.x/ D 1

jxj ^ n :

1. Let n � 1. Justify the existence of the unique semimartingale Zn that solves the

equation

Zn
t D r C ˇt C ˛

Z t

0

fn.Z
n
s / ds:

2. We set Sn D infft � 0 W Zn
t � 1=ng. After observing that, for t � Sn ^ SnC1,

ZnC1
t � Zn

t D ˛

Z t

0

� 1

ZnC1
s

� 1

Zn
s

�
ds ;

show that ZnC1
t D Zn

t for every t 2 Œ0; Sn ^ SnC1�, a.s. Infer that SnC1 � Sn.

3. Let g be a twice continuously differentiable function on R. Show that the process

g.Zn
t / � g.r/ �

Z t

0

�
˛g0.Zn

s /fn.Z
n
s /C 1

2
g00.Zn

s /
�

ds

is a continuous local martingale.

4. We set h.x/ D x1�2˛ for every x > 0. Show that, for every integer n � 1,

h.Zn
t^Sn

/ is a bounded martingale. Infer that, for every t � 0, P.Sn � t/ tends to 0

as n ! 1, and consequently Sn ! 1 a.s. as n ! 1.

5. Infer from questions 2. and 4. that there exists a unique positive semimartingale

Z such that, for every t � 0,

Zt D r C ˇt C ˛

Z t

0

ds

Zs

:

6. Let d � 3 and let B be a d-dimensional Brownian motion started from y 2
Rdnf0g. Show that Yt D jBtj satisfies the stochastic equation in question 5. (with

an appropriate choice of ˇ) with r D jyj and ˛ D .d � 1/=2. One may use the

results of Exercise 5.33.

Exercise 8.14 (Yamada–Watanabe uniqueness criterion) The goal of the exercise

is to get pathwise uniqueness for the one-dimensional stochastic differential equa-

tion

dXt D �.Xt/dBt C b.Xt/dt
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when the functions � and b satisfy the conditions

j�.x/ � �.y/j � K
p

jx � yj ; jb.x/ � b.y/j � K jx � yj ;

for every x; y 2 R, with a constant K < 1.

1. Preliminary question. Let Z be a semimartingale such that hZ;Zit D
R t

0
hs ds,

where 0 � hs � C jZsj, with a constant C < 1. Show that, for every t � 0,

lim
n!1

n E
h Z t

0

1f0<jZsj�1=ng dhZ;Zis

i
D 0:

(Hint: Observe that, for every n � 1,

E
h Z t

0

jZsj�11f0<jZsj�1g dhZ;Zis

i
� C t < 1: /

2. For every integer n � 1, let 'n be the function defined on R by

'n.x/ D

8
<
:

0 if jxj � 1=n;

2n.1� nx/ if 0 � x � 1=n;

2n.1C nx/ if � 1=n � x � 0:

Also write Fn for the unique twice continuously differentiable function on R

such that Fn.0/ D F0
n.0/ D 0 and F00

n D 'n. Note that, for every x 2 R, one has

Fn.x/ �! jxj and F0
n.x/ �! sgn.x/ WD 1fx>0g � 1fx<0g when n ! 1.

Let X and X0 be two solutions of E.�; b/ on the same filtered probability space

and with the same Brownian motion B. Infer from question 1. that

lim
n!1

E
h Z t

0

'n.Xs � X0
s/ dhX � X0;X � X0is

i
D 0:

3. Let T be a stopping time such that the semimartingale Xt^T � X0
t^T is bounded.

By applying Itô’s formula to Fn.Xt^T � X0
t^T/, show that

EŒjXt^T � X0
t^T j� D EŒjX0 � X0

0j�C E
h Z t^T

0

.b.Xs/ � b.X0
s// sgn.Xs � X0

s/ ds
i
:

4. Using Gronwall’s lemma, show that, if X0 D X0
0, one has Xt D X0

t for every t � 0,

a.s.
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Notes and Comments

As already mentioned, the treatment of stochastic differential equations motivated

Itô’s invention of stochastic differential equations. For further reading on this

topic, the reader may consult the classical books of Ikeda and Watanabe [43] and

Stroock and Varadhan [77], the latter studying stochastic differential equations

in connection with martingale problems. Øksendal’s book [66] emphasizes the

applications of stochastic differential equations in other fields. The books [26, 27]

of Friedman focus on connections with partial differential equations. We have

chosen to concentrate on the Lipschitz case, where the main results of existence

and uniqueness were already obtained by Itô [37, 38]. In dimension one, the criteria

ensuring pathwise uniqueness can be weakened significantly (see in particular

Yamada and Watanabe [83], which inspired Exercise 8.14) but this is no longer the

case in higher dimensions. Chapter XI of [70] contains a lot of information about

Bessel processes.



Chapter 9

Local Times

In this chapter, we apply stochastic calculus to the theory of local times of

continuous semimartingales. Roughly speaking, the local time at level a of a

semimartingale X is an increasing process that measures the “number of visits” of

X at level a. We use the classical Tanaka formulas to construct local times and then

to study their regularity properties with respect to the space variable. We show how

local times can be used to obtain a generalized version of Itô’s formula, and we

establish the so-called density of occupation time formula. We also give several

approximations of local times. We then focus on the case of Brownian motion,

where we state the classical Trotter theorem as a corollary of our results for general

semimartingales, and we derive the famous Lévy theorem identifying the law of the

Brownian local time process at level 0. In the last section, we use Brownian local

times to prove the Kallianpur–Robbins law that was stated at the end of Chap. 7.

This chapter can be read independently of Chaps. 6, 7 and 8, except for the last

section that relies on Chap. 7.

9.1 Tanaka’s Formula and the Definition of Local Times

Throughout this chapter, we argue on a filtered probability space .˝;F ; .Ft/t�0;P/,
and the filtration .Ft/t�0 is assumed to be complete. Let X be a continuous

semimartingale. If f is a twice continuously differentiable function defined on

R, Itô’s formula asserts that f .Xt/ is still a continuous semimartingale, and

f .Xt/ D f .X0/C
Z t

0

f 0.Xs/ dXs C 1

2

Z t

0

f 00.Xs/ dhX;Xis:

The next proposition shows that this formula can be extended to the case when f is

a convex function.

© Springer International Publishing Switzerland 2016
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Proposition 9.1 Let f be a convex function on R. Then f .Xt/ is a semimartingale,

and, more precisely, there exists an increasing process Af such that, for every t � 0,

f .Xt/ D f .X0/C
Z t

0

f 0
�.Xs/ dXs C A

f
t ;

where f 0
�.x/ denotes the left-derivative of f at x.

More generally, f .Xt/ is a semimartingale if f is a difference of convex functions.

Proof Let h be a nonnegative continuous function on R such that h.x/ D 0 if x …
Œ0; 1� and

R 1
0

h.x/ dx D 1. For every integer n � 1, set hn.x/ D n h.nx/. Define a

function 'n W R �! R by

'n.x/ D hn � f .x/ D
Z

R

hn.y/ f .x � y/ dy:

Then it is elementary to verify that 'n is twice continuously differentiable on R,

' 0
n D hn � f 0

�, and 'n.x/ �! f .x/, ' 0
n.x/ �! f 0

�.x/ as n ! 1, for every x 2 R.

Furthermore, the functions 'n are also convex, so that ' 00
n � 0.

Let X D M C V be the canonical decomposition of the semimartingale X, and

consider an integer K � 1. Introduce the stopping time

TK WD infft � 0 W jXtj C hM;Mit C
Z t

0

jdVsj � Kg:

From Itô’s formula, we have

'n.Xt^TK
/ D 'n.X0/C

Z t^TK

0

' 0
n.Xs/ dXs C 1

2

Z t^TK

0

' 00
n .Xs/ dhM;Mis: (9.1)

From the definition of TK , we have hM;MiTK
� K. Noting that the functions ' 0

n are

uniformly bounded over any compact interval, we get, by a simple application of

Proposition 5.8,

Z t^TK

0

' 0
n.Xs/ dXs �!

n!1

Z t^TK

0

f 0
�.Xs/ dXs; (9.2)

in probability. For every t � 0, set

A
f ;K
t WD f .Xt^TK

/ � f .X0/ �
Z t^TK

0

f 0
�.Xs/ dXs: (9.3)
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Since 'n.X0/ ! f .X0/ and 'n.Xt^TK
/ ! f .Xt^TK

/ as n ! 1, we deduce from (9.2)

and (9.1) that

1

2

Z t^TK

0

' 00
n .Xs/ dhM;Mis �!

n!1
A

f ;K
t ; (9.4)

in probability. By (9.3), the process .A
f ;K
t /t�0 has continuous sample paths, and

A
f ;K
0 D 0. Since ' 00

n � 0, it follows from the convergence (9.4) that the sample paths

of .A
f ;K
t /t�0 are also nondecreasing. Hence Af ;K is an increasing process. Finally,

one gets from (9.4) that A
f ;K
t D A

f ;K0

t^TK
if K � K0. It follows that there exists an

increasing process Af such that A
f ;K
t D A

f

t^TK
for every t � 0 and K � 1. We then

get the formula of the proposition by letting K ! 1 in (9.3). ut
Remark Write f 0

C for the right-derivative of f . An argument similar to the preceding

proof shows that there exists an increasing process QAf such that

f .Xt/ D f .X0/C
Z t

0

f 0
C.Xs/ dXs C QAf

t :

If f is twice continuously differentiable, A
f
t D QAf

t D 1
2

R t

0
f 00.Xs/ dhX;Xis. In general,

however, we may have QAf
t 6D A

f
t .

The previous proposition leads to an easy definition of the local times of a

semimartingale. For every x 2 R, we set sgn.x/ WD 1fx>0g � 1fx�0g (the fact that

we define sgn.0/ D �1 here plays a significant role).

Proposition 9.2 Let X be a continuous semimartingale and a 2 R. There exists an

increasing process .La
t .X//t�0 such that the following three identities hold:

jXt � aj D jX0 � aj C
Z t

0

sgn.Xs � a/ dXs C La
t .X/; (9.5)

.Xt � a/C D .X0 � a/C C
Z t

0

1fXs>ag dXs C 1

2
La

t .X/; (9.6)

.Xt � a/� D .X0 � a/� �
Z t

0

1fXs�ag dXs C 1

2
La

t .X/: (9.7)

The increasing process .La
t .X//t�0 is called the local time of X at level a.

Furthermore, for every stopping time T, we have La
t .X

T/ D La
t^T.X/.
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We will refer to any of the identities (9.5), (9.6), (9.7) as Tanaka’s formula.

Proof We apply Proposition 9.1 to the convex function f .x/ D jx � aj, noting that

f 0
�.x/ D sgn.x � a/. It follows from Proposition 9.1 that the process .La

t .X//t�0
defined by

La
t .X/ WD jXt � aj � jX0 � aj �

Z t

0

sgn.Xs � a/ dXs

is an increasing process. We then need to verify that (9.6) and (9.7) also hold. To

this end, we apply Proposition 9.1 to the convex functions f .x/ D .x � a/C and

f .x/ D .x � a/�. It follows that there exist two increasing processes Aa;.C/ and

Aa;.�/ such that

.Xt � a/C D .X0 � a/C C
Z t

0

1fXs>ag dXs C A
a;.C/
t ;

and

.Xt � a/� D .X0 � a/� �
Z t

0

1fXs�ag dXs C A
a;.�/
t :

By considering the difference between the last two displays, we immediately

get that Aa;.C/ D Aa;.�/. On the other hand, if we add these two displays and

compare with (9.5), we get A
a;.C/
t C A

a;.�/
t D La

t .X/. Hence A
a;.C/
t D A

a;.�/
t D

1
2
La

t .X/.

The last assertion immediately follows from (9.5) since
R t^T

0 sgn.Xs � a/ dXs DR t

0
sgn.XT

s � a/ dXT
s by properties of the stochastic integral. ut

Let us state the key property of local times. We use the notation dsL
a
s .X/ for

the random measure associated with the increasing function s 7! La
s .X/ (i.e.R

Œ0;t�
dsL

a
s .X/ D La

t .X/).

Proposition 9.3 Let X be a continuous semimartingale and let a 2 R. Then a.s. the

random measure dsL
a
s .X/ is supported on fs � 0 W Xs D ag.

Proof Set Wt D jXt � aj and note that (9.5) gives hW;Wit D hX;Xit since

jsgn.x/j D 1 for every x 2 R. By applying Itô’s formula to .Wt/
2, we get

.Xt � a/2 D W2
t D .X0 � a/2 C 2

Z t

0

.Xs � a/ dXs C 2

Z t

0

jXs � aj dsL
a
s .X/C hX;Xit:



9.2 Continuity of Local Times and the Generalized Itô Formula 239

Comparing with the result of a direct application of Itô’s formula to .Xt � a/2, we

get

Z t

0

jXs � aj dsL
a
s .X/ D 0;

which gives the desired result. ut
Proposition 9.3 shows that the function t 7! La

t .X/ may only increase when

Xt D a. So in some sense, La
t .X/ measures the “number of visits” of the process X

at level a before time t (the results of Sect. 9.3 give rigorous versions of this intuitive

statement). This also justifies the name “local time”.

9.2 Continuity of Local Times and the Generalized
Itô Formula

We consider a continuous semimartingale X and write X D M C V for its canonical

decomposition. Our first goal is to study the continuity of the local times of X with

respect to the space variable a.

It is convenient to write La.X/ for the random continuous function .La
t .X//t�0,

which we view as a random variable with values in the space C.RC;RC/. As usual,

the latter space is equipped with the topology of uniform convergence on every

compact set.

Theorem 9.4 The process .La.X/; a 2 R/ with values in C.RC;RC/ has a càdlàg

modification, which we consider from now on and for which we keep the same

notation .La.X/; a 2 R/. Furthermore, if La�.X/ D .La�
t .X//t�0 denotes the left

limit of b �! Lb.X/ at a, we have for every t � 0,

La
t .X/ � La�

t .X/ D 2

Z t

0

1fXsDag dVs: (9.8)

In particular, if X is a continuous local martingale, the process .La
t .X//a2R;t�0 has

jointly continuous sample paths.

The proof of the theorem relies on Tanaka’s formula and the following technical

lemma.

Lemma 9.5 Let p � 1. There exists a constant Cp, which only depends on p, such

that for every a; b 2 R with a < b, we have

E
h� Z t

0

1fa<Xs�bgdhM;Mis

�pi
� Cp.b � a/p

�
EŒ.hM;Mit/

p=2�C E
h� Z t

0

jdVsj
�pi�

:



240 9 Local Times

For every a 2 R, write Ya D .Ya
t /t�0 for the random variable with values in

C.RC;R/ defined by

Ya
t D

Z t

0

1fXs>agdMs:

The process .Ya; a 2 R/ has a continuous modification.

Proof Let us start with the first assertion. It is enough to prove that the stated bound

holds when a D �u and b D u for some u > 0 (then take u D .b �a/=2 and replace

X by X � .b C a/=2). Let f be the unique twice continuously differentiable function

such that

f 00.x/ D .2 � jxj
u
/C;

and f .0/ D f 0.0/ D 0. Note that we then have jf 0.x/j � 2u for every x 2 R. Since

f 00 � 0 and f 00.x/ � 1 if �u � x � u, we have

Z t

0

1f�u<Xs�ugdhM;Mis �
Z t

0

f 00.Xs/dhM;Mis: (9.9)

However, by Itô’s formula,

1

2

Z t

0

f 00.Xs/dhM;Mis D f .Xt/� f .X0/ �
Z t

0

f 0.Xs/ dXs: (9.10)

Recalling that jf 0j � 2u, we have

EŒjf .Xt/ � f .X0/jp� � .2u/p EŒjXt � X0jp�

� .2u/p E
h�

jMt � M0j C
Z t

0

jdVsj
�pi

� Cp.2u/p
�

EŒ.hM;Mit/
p=2�C E

h� Z t

0

jdVsj
�pi�

;

using the Burkholder–Davis–Gundy inequalities (Theorem 5.16). Here and below,

Cp stands for a constant that depends only on p, which may vary from line to line.

Then,

Z t

0

f 0.Xs/ dXs D
Z t

0

f 0.Xs/ dMs C
Z t

0

f 0.Xs/ dVs:
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We have

E
hˇ̌
ˇ
Z t

0

f 0.Xs/ dVs

ˇ̌
ˇ
pi

� .2u/p E
h� Z t

0

jdVsj
�pi

and, using the Burkholder–Davis–Gundy inequalities once again,

E
hˇ̌
ˇ
Z t

0

f 0.Xs/ dMs

ˇ̌
ˇ
pi

� Cp E
h� Z t

0

f 0.Xs/
2 dhM;Mis

�p=2i

� Cp.2u/p EŒ.hM;Mit/
p=2�:

The first assertion of the lemma follows by combining the previous bounds,

using (9.9) and (9.10).

Let us turn to the second assertion. We fix p > 2. By the Burkholder–Davis–

Gundy inequalities, we have for every a < b and every t � 0,

E
h

sup
s�t

jYb
s � Ya

s jp
i

� Cp E
h� Z t

0

1fa<Xs�bgdhM;Mis

�p=2i
; (9.11)

and the right-hand side can be estimated from the first assertion of the lemma. More

precisely, for every integer n � 1, introduce the stopping time

Tn WD infft � 0 W hM;Mit C
Z t

0

jdVsj � ng:

From the first assertion of the lemma with X replaced by the stopped process XTn ,

we have, for every t � 0,

E
h� Z t^Tn

0

1fa<Xs�bgdhM;Mis

�p=2i
� Cp.n

p=4 C np=2/ .b � a/p=2:

Using (9.11), again with X replaced by XTn , and letting t ! 1, we obtain

E
h

sup
s�0

jYb
s^Tn

� Ya
s^Tn

jp
i

� Cp.n
p=4 C np=2/ .b � a/p=2:

Since p > 2, we see that we can apply Kolmogorov’s lemma (Theorem 2.9) to

get the existence of a continuous modification of the process a ! .Ya
s^Tn

/s�0, with

values in C.RC;R/. Write .Y
.n/;a
s /s�0 for this continuous modification.

Then, if 1 � n < m, for every fixed a, we have Y
.n/;a
s D Y

.m/;a
s^Tn

for every s � 0,

a.s. By a continuity argument, the latter equality holds simultaneously for every

a 2 R and every s � 0, outside a single set of probability zero. It follows that we
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can define a process . QYa; a 2 R/ with values in C.RC;R/, with continuous sample

paths, such that, for every n � 1, Y
.n/;a
s D QYa

s^Tn
for every a 2 R and every s � 0,

a.s. The process . QYa; a 2 R/ is the desired continuous modification. ut
Remark By applying the bound of Lemma 9.5 to XTn (with Tn as in the previous

proof) and letting a tend to b, we get that, for every b 2 R,

Z t

0

1fXsDbg dhM;Mis D 0

for every t � 0, a.s. Consequently, using Proposition 4.12, we also have

Z t

0

1fXsDbgdMs D 0; (9.12)

for every t � 0, a.s.

Proof of Theorem 9.4 With a slight abuse of notation, we still write .Ya; a 2 R/

for the continuous modification obtained in the second assertion of Lemma 9.5. We

also let .Za; a 2 R/ be the process with values in C.RC;R/ defined by

Za
t D

Z t

0

1fXs>ag dVs:

By Tanaka’s formula, we have for every fixed a 2 R,

La
t D 2

�
.Xt � a/C � .X0 � a/C � Ya

t � Za
t

�
; for every t � 0; a.s.

The right-hand side of the last display provides the desired càdlàg modification.

Indeed, the process

a 7!
�
.Xt � a/C � .X0 � a/C � Ya

t

�
t�0

has continuous sample paths, and on the other hand the process a 7! Za has càdlàg

sample paths: For every a0 2 R, the dominated convergence theorem shows that

Z t

0

1fXs>ag dVs �!
a#a0

Z t

0

1fXs>a0g dVs;

Z t

0

1fXs>ag dVs �!
a"a0;a<a0

Z t

0

1fXs�a0g dVs;
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uniformly on every compact time interval. The previous display also shows that the

jump Za0 � Za0� is given by

Za0
t � Za0�

t D �
Z t

0

1fXsDa0g dVs;

and this completes the proof of the theorem. ut
From now on, we only deal with the càdlàg modification of local times obtained

in Theorem 9.4.

Remark To illustrate Theorem 9.4, set Wt D jXtj, which is also a semimartingale

by Tanaka’s formula (9.5). By (9.6) applied to Wt, we have

Wt D .Wt/
C D jX0j C

Z t

0

1fjXsj>0g.sgn.Xs/dXs C dL0s .X//C 1

2
L0t .W/

D jX0j C
Z t

0

sgn.Xs/dXs C
Z t

0

1fXsD0gdXs C 1

2
L0t .W/;

noting that
R t

0 1fjXsj>0gdL0s .X/ D 0 by the support property of local time (Proposi-

tion 9.3). Comparing the resulting formula with (9.5) written with a D 0, we get

L0t .W/ D 2L0t .X/� 2

Z t

0

1fXsD0gdXs D L0t .X/C L0�t .X/;

using (9.8). The formula L0t .W/ D L0t .X/ C L0�t .X/ is a special case of the more

general formula La
t .W/ D La

t .X/ C L
.�a/�
t .X/, for every a � 0, which is easily

deduced from Corollary 9.7 below. We note that the support property of local time

implies La
t .W/ D 0 for every a < 0, and in particular L0�t .W/ D 0. We leave it as

an exercise for the reader to verify that formula (9.8) applied to L0t .W/ � L0�t .W/

gives a result which is consistent with the preceding expression for L0t .W/.

We will now give an extension of Itô’s formula (in the case where it is applied

to a function of a single semimartingale). If f is a convex function on R, the left

derivative f 0
� is a left-continuous monotone nondecreasing function, and there exists

a unique Radon measure f 00.dy/ on RC such that f 00.Œa; b// D f 0
�.b/ � f 0

�.a/, for

every a < b. One can also interpret f 00 as the second derivative of f in the sense of

distributions. Note that f 00.da/ D f 00.a/da if f is twice continuously differentiable. If

f is now a difference of convex functions, that is, f D f1� f2 where both f1 and f2 are

convex, we can still make sense of
R

f 00.dy/ '.y/ D
R

f 00
1 .dy/ '.y/ �

R
f 00
2 .dy/ '.y/

for any bounded measurable function ' supported on a compact interval of R.

The next theorem identifies the increasing process A
f
t that appeared in Proposi-

tion 9.1.
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Theorem 9.6 (Generalized Itô formula) Let f be a difference of convex functions

on R. Then, for every t � 0,

f .Xt/ D f .X0/C
Z t

0

f 0
�.Xs/ dXs C 1

2

Z

R

La
t .X/ f 00.da/:

Remark By Proposition 9.2 and a continuity argument, we have

La
t .X/ D 0 for every a …

h
min
0�s�t

Xs; max
0�s�t

Xs

i
; a.s.

and furthermore the function a 7! La
t .X/ is bounded. Together with the observations

preceding the statement of the theorem, this shows that the integral
R
R

La
t .X/ f 00.da/

makes sense.

Proof By linearity, it suffices to treat the case when f is convex. Furthermore, by

simple “localization” arguments, we can assume that f 00 is a finite measure supported

on the interval Œ�K;K� for some K > 0. By adding an affine function to f , we can

also assume that f D 0 on .�1;�K�. Then, it is elementary to verify that, for every

x 2 R,

f .x/ D
Z

R

.x � a/C f 00.da/;

and

f 0
�.x/ D

Z
1fa<xg f 00.da/: (9.13)

Tanaka’s formula gives, for every a 2 R,

.Xt � a/C D .X0 � a/C C Ya
t C Za

t C 1

2
La

t .X/;

where we use the notation of the proof of Theorem 9.4 (and we recall that .Ya; a 2
R/ stands for the continuous modification obtained in Lemma 9.5). We can integrate

the latter equality with respect to the finite measure f 00.da/ and we get

f .Xt/ D f .X0/C
Z

Ya
t f 00.da/C

Z
Za

t f 00.da/C 1

2

Z
La

t .X/ f 00.da/:

By Fubini’s theorem,

Z
Za

t f 00.da/ D
Z � Z t

0

1fXs>agdVs

�
f 00.da/ D

Z t

0

� Z
1fXs>agf

00.da/
�

dVs

D
Z t

0

f 0
�.Xs/ dVs:
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So the proof will be complete if we can also verify that

Z
Ya

t f 00.da/ D
Z t

0

f 0
�.Xs/ dMs: (9.14)

This identity should be viewed as a kind of Fubini theorem involving a stochastic

integral. To provide a rigorous justification, it is convenient to introduce the stopping

times Tn WD inffs � 0 W hM;Mis � ng, for every n � 1. Recalling (9.13), we see

that our claim (9.14) will follow if we can verify that, for every n � 1, we have a.s.

Z � Z t^Tn

0

1fXs>agdMs

�
f 00.da/ D

Z t^Tn

0

� Z
1fXs>agf

00.da/
�

dMs; (9.15)

where in the left-hand side we agree that we consider the continuous modification

of a 7!
R t^Tn

0 1fXs>agdMs provided by Lemma 9.5. It is straightforward to verify that

the left-hand side of (9.15) defines a martingale M
f
t in H2, and furthermore, for any

other martingale N in H2,

EŒhMf ;Ni1� D EŒMf
1N1� D E

h Z � Z Tn

0

1fXs>agdhM;Nis

�
f 00.da/

i

D E
h Z Tn

0

� Z
1fXs>agf

00.da/
�

dhM;Nis

i

D E
h� Z Tn

0

� Z
1fXs>agf

00.da/
�

dMs

�
N1

i
:

By a duality argument in H2, this suffices to verify that M
f
t coincides with the

martingale of H2 in the right-hand side of (9.15). This completes the proof. ut
The following corollary is even more important than the preceding theorem.

Corollary 9.7 (Density of occupation time formula) We have almost surely, for

every t � 0 and every nonnegative measurable function ' on R,

Z t

0

'.Xs/ dhX;Xis D
Z

R

'.a/ La
t .X/ da:

More generally, we have a.s. for any nonnegative measurable function F on RC �R,

Z 1

0

F.s;Xs/ dhX;Xis D
Z

R

da

Z 1

0

F.s; a/ dsL
a
s .X/:

Proof Fix t � 0 and consider a nonnegative continuous function ' on R with

compact support. Let f be a twice continuously differentiable function on R such

that f 00 D '. Note that f is convex since ' � 0. By comparing Itô’s formula applied
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to f .Xt/ and the formula of Theorem 9.6, we immediately get that a.s.

Z t

0

'.Xs/ dhX;Xis D
Z

R

'.a/ La
t .X/ da:

This formula holds simultaneously (outside a set of probability zero) for every t � 0

(by a continuity argument) and for every function ' belonging to a countable dense

subset of the set of all nonnegative continuous functions on R with compact support.

This suffices to conclude that a.s. for every t � 0, the random measure

A 7!
Z t

0

1A.Xs/ dhX;Xis

has density .La
t .X//a2R with respect to Lebesgue measure on R. This gives the first

assertion of the corollary. It follows that the formula in the second assertion holds

when F is of the type

F.s; a/ D 1Œu;v�.s/ 1A.a/

where 0 � u � v and A is a Borel subset of R. Hence, a.s. the �-finite measures

B �!
Z 1

0

1B.s;Xs/ dhX;Xis

and

B �!
Z

R

da

Z 1

0

1B.s; a/ dsL
a
s .X/

take the same value for B of the form B D Œu; v� � A, and this implies that the two

measures coincide. ut
If X D M C V is a continuous semimartingale, then an immediate application of

the density of occupation time formula gives, for every b 2 R,

Z t

0

1fXsDbgdhM;Mis D
Z

R

1fbg.a/ La
t .X/ da D 0:

This property has already been derived after the proof of Lemma 9.5. On the other

hand, there may exist values of b such that

Z t

0

1fXsDbgdVs 6D 0;

and these values of b correspond to discontinuities of the local time with respect to

the space variable, as shown by Theorem 9.4.
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Corollary 9.8 If X is of the form Xt D X0CVt, where V is a finite variation process,

then La
t .X/ D 0 for all a 2 R and t � 0.

Proof From the density of occupation time formula and the fact that hX;Xi D 0,

we get
R
R
'.a/ La

t .X/ da D 0 for any nonnegative measurable function ', and the

desired result follows. ut
Remark We could have derived the last corollary directly from Tanaka’s formula.

9.3 Approximations of Local Times

Our first approximation result is an easy consequence of the density of occupation

time formula.

Proposition 9.9 Let X be a continuous semimartingale. Then a.s. for every a 2 R

and t � 0,

La
t .X/ D lim

"!0

1

"

Z t

0

1fa�Xs�aC"g dhX;Xis:

Proof By the density of occupation time formula,

1

"

Z t

0

1fa�Xs�aC"g dhX;Xis D 1

"

Z aC"

a

Lb
t .X/ db;

and the result follows from the right-continuity of b 7! Lb
t .X/ at a (Theorem 9.4).

ut
Remark The same argument gives

lim
"!0

1

2"

Z t

0

1fa�"�Xs�aC"g dhX;Xis D 1

2
.La

t .X/C La�
t .X//:

The quantity QLa
t .X/ WD 1

2
.La

t .X/ C La�
t .X// is sometimes called the symmetric

local time of the semimartingale X. Note that the density of occupation time

formula remains true if La
t .X/ is replaced by QLa

t .X/ (indeed, QLa
t .X/ and La

t .X/

may differ in at most countably many values of a). The generalized Itô formula

(Theorem 9.6) also remains true if La
t .X/ is replaced by QLa

t .X/, provided the left-

derivative f 0
� is replaced by 1

2
.f 0

C C f 0
�/. Similar observations apply to Tanaka’s

formulas.

As a consequence of the preceding proposition and Lemma 9.5, we derive a

useful bound on moments of local times.
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Corollary 9.10 Let p � 1. There exists a constant Cp such that, for any continuous

semimartingale X with canonical decomposition X D M C V, we have for every

a 2 R and t � 0,

EŒ.La
t .X//

p� � Cp

�
EŒ.hM;Mit/

p=2�C E
h� Z t

0

jdVsj
�pi�

:

Proof This readily follows from the bound of Lemma 9.5, using the approximation

of La
t .X/ in Proposition 9.9 and Fatou’s lemma. ut

We next turn to the upcrossing approximation of local time. We first need to

introduce some notation. We let X be a continuous semimartingale, and " > 0.

We then introduce two sequences .�"n /n�1 and .� "n /n�1 of stopping times, which are

defined inductively by

�"1 WD infft � 0 W Xt D 0g ; � "1 WD infft � �"1 W Xt D "g ;

and, for every n � 1,

�"nC1 WD infft � � "n W Xt D 0g ; � "nC1 WD infft > �"n W Xt D "g :

We then define the upcrossing number of X along Œ0; "� before time t by

NX
" .t/ D Cardfn � 1 W � "n � tg:

This notion has already been introduced in Sect. 3.3 with a slightly different

presentation.

Proposition 9.11 We have, for every t � 0,

"NX
" .t/ �!

"!0

1

2
L0t .X/

in probability.

Proof To simplify notation, we write L0s instead of L0s .X/ in this proof. We first use

Tanaka’s formula to get, for every n � 1,

.X�"n ^t/
C � .X�"n ^t/

C D
Z �"n ^t

�"n ^t

1fXs>0gdXs C 1

2
.L0�"n ^t � L0�"n ^t/:

We sum the last identity over all n � 1 to get

1X

nD1

�
.X�"n ^t/

C � .X�"n ^t/
C� D

Z t

0

� 1X

nD1
1.�"n ;�"n �.s/

�
1fXs>0gdXsC

1

2

1X

nD1
.L0�"n ^t�L0�"n ^t/:

(9.16)
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Note that there are only finitely many values of n such that �n
" � t, and that the

interversion of the series and the stochastic integral is justified by approximating

the series with finite sums and using Proposition 5.8 (the required domination is

obvious since the integrands are bounded by 1).

Consider the different terms in (9.16). Since the local time L0 does not increase

on intervals of the type Œ� "n ; �
"
nC1/ (nor on Œ0; �"1 /), we have

1X

nD1
.L0�"n ^t � L0�"n ^t/ D

1X

nD1
.L0�"

nC1^t � L0�"n ^t/ D L0t :

Then, noting that .X�"n ^t/
C � .X�"n ^t/

C D " if � "n � t, we have

1X

nD1

�
.X�"n ^t/

C � .X�"n ^t/
C� D "NX

" .t/C u."/;

where 0 � u."/ � ".

From (9.16) and the last two displays, the result of the proposition will follow if

we can verify that

Z t

0

� 1X

nD1
1.�"n ;�"n �.s/

�
1fXs>0gdXs �!

"!0
0

in probability. This is again a consequence of Proposition 5.8, since

0 �
� 1X

nD1
1.�"n ;�"n �.s/

�
1fXs>0g � 1f0<Xs�"g

and 1f0<Xs�"g �! 0 as " ! 0. ut

9.4 The Local Time of Linear Brownian Motion

Throughout this section, .Bt/t�0 is a real Brownian motion started from 0 and .Ft/

is the (completed) canonical filtration of B.

The following theorem, which is known as Trotter’s theorem, is essentially

a restatement of the results of the previous sections in the special case of real

Brownian motion. Still the importance of the result justifies this repetition. We write

supp.�/ for the topological support of a finite measure � on RC.

Theorem 9.12 (Trotter) There exists a (unique) process .La
t .B//a2R;t�0, whose

sample paths are continuous functions of the pair .a; t/, such that, for every fixed

a 2 R, .La
t .B//t�0 is an increasing process, and, a.s. for every t � 0, for every
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nonnegative measurable function ' on R,

Z t

0

'.Bs/ ds D
Z

R

'.a/ La
t .B/ da:

Furthermore, a.s. for every a 2 R,

supp.dsL
a
s .B// � fs � 0 W Bs D ag; (9.17)

and this inclusion is an equality with probability one if a is fixed.

Proof The first assertion follows by applying Theorem 9.4 and Corollary 9.7 to

X D B, noting that hB;Bit D t. We have already seen that the inclusion (9.17)

holds with probability one if a is fixed, hence simultaneously for all rationals, a.s. A

continuity argument allows us to get that (9.17) holds simultaneously for all a 2 R

outside a single set of probability zero. Indeed, suppose that for some a 2 R and

0 � s < t we have La
t .B/ > La

s .B/ and Br 6D a for every r 2 Œs; t�. Then we can find

a rational b 2 R sufficiently close to a such that the same properties hold when a is

replaced by b, giving a contradiction.

Finally, let us verify that (9.17) is an a.s. equality if a 2 R is fixed. So let us fix

a 2 R, and for every rational q � 0, set

Hq WD infft � q W Bt D ag:

Our claim will follow if we can verify that a.s. for every " > 0, La
HqC".B/ > La

Hq
.B/.

Using the strong Markov property at time Hq, it suffices to prove that, if B0 is a real

Brownian motion started from a, we have La
".B

0/ > 0, for every " > 0, a.s. Clearly

we can take a D 0. We then observe that we have

L0".B/
.d/D

p
"L01.B/;

by an easy scaling argument (use for instance the approximations of the previous

section). Also P.L01.B/ > 0/ > 0 since EŒL01.B/� D EŒjB1j� by Tanaka’s formula. An

application of Blumenthal’s zero-one law (Theorem 2.13) to the event

A WD
1\

nD1
fL02�n.B/ > 0g D lim

n"1
" fL02�n.B/ > 0g

completes the proof. ut
Remark Theorem 9.12 remains true with a similar proof for an arbitrary (possibly

random) initial value B0.

We now turn to distributional properties of local times of Brownian motion.



9.4 The Local Time of Linear Brownian Motion 251

Proposition 9.13 (i) Let a 2 Rnf0g and Ta WD infft � 0 W Bt D ag. Then L0Ta
.B/

has an exponential distribution with mean 2jaj.
(ii) Let a > 0 and Ua WD infft � 0 W jBtj D ag. Then L0Ua

.B/ has an exponential

distribution with mean a.

Proof

(i) By simple scaling and symmetry arguments, it is enough to take a D 1. We then

observe that L01.B/ D 1 a.s. Indeed, the scaling argument of the preceding

proof shows that L01.B/ has the same distribution as �L01.B/, for any � > 0,

and we have also seen that L01.B/ > 0 a.s. Fix s > 0 and set

� WD infft � 0 W L0t .B/ � sg;

so that � is a stopping time of the filtration .Ft/. Furthermore, B� D 0 by the

support property of local time. By the strong Markov property,

B0
t WD B�Ct

is a Brownian motion started from 0, which is also independent of F� .

Proposition 9.9 gives, for every t � 0,

L0t .B
0/ D L0�Ct.B/ � s:

On the event fL0T1.B/ � sg D f� � T1g, we thus have

L0T1.B/ � s D L0T1�� .B
0/ D L0

T0
1
.B0/;

where T 0
1 WD infft � 0 W B0

t D 1g. Since the event f� � T1g is F� -measurable

and B0 is independent of F� , we get that the conditional distribution of L0T1.B/�
s knowing that L0T1.B/ � s is the same as the unconditional distribution of

L0T1.B/. This implies that the distribution of L0T1.B/ is exponential.

Finally, Tanaka’s formula (9.6) shows that 1
2
EŒL0t^T1

� D EŒ.Bt^T1/
C�. As t !

1, EŒL0t^T1
� converges to EŒL0T1 � by monotone convergence and EŒ.Bt^T1/

C�
converges to EŒ.BT1/

C� by dominated convergence, since 0 � .Bt^T1/
C � 1.

This shows that EŒL0t^T1
� D 2, as desired.

(ii) The argument is exactly similar. We now use Tanaka’s formula (9.5) to verify

that EŒL0Ua
.B/� D a. ut

Remark One can give an alternative proof of the proposition using stochastic

calculus. To get (ii), for instance, use Itô’s formula to verify that, for every � > 0,

.1C �jBtj/ exp.��L0t .B//

is a continuous local martingale, which is bounded on Œ0;Ua�. An application of

the optional stopping theorem then shows that EŒexp.��L0Ua
.B//� D .1 C �a/�1.
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The previous proof has the advantage of explaining the appearance of the exponen-

tial distribution.

For every t � 0, we set

St WD sup
0�s�t

Bs ; It WD inf
0�s�t

Bs :

Theorem 9.14 (Lévy) The two processes .St; St � Bt/t�0 and .L0t .B/; jBtj/t�0 have

the same distribution.

Remark By an obvious symmetry argument, the pair .�It;Bt � It/t�0 also has the

same distribution as .St; St � Bt/t�0.

Proof By Tanaka’s formula, for every t � 0,

jBtj D �ˇt C L0t .B/; (9.18)

where

ˇt D �
Z t

0

sgn.Bs/ dBs:

Since hˇ; ˇit D t, Theorem 5.12 ensures that ˇ is a real Brownian motion started

from 0. We then claim that, for every t � 0,

L0t .B/ D supfˇs W s � tg:

The fact that L0t .B/ � supfˇs W s � tg is immediate since (9.18) shows that L0t .B/ �
L0s .B/ � ˇs for every s 2 Œ0; t�. To get the reverse inequality, write t for the last

zero of B before time t. By the support property of local time, L0t .B/ D L0t
.B/, and

using (9.18), L0t
.B/ D ˇt

� supfˇs W s � tg.

We have thus proved a.s.

.L0t .B/; jBtj/t�0 D .supfˇs W s � tg; supfˇs W s � tg � ˇt/t�0;

and since .ˇs/s�0 and .Bs/s�0 have the same distribution, the pair in the right-hand

side has the same distribution as .St; St � Bt/t�0. ut
Theorem 9.14 has several interesting consequences. For every t � 0, St has the

same law as jBtj (Theorem 2.21), and thus the same holds for L0t .B/. From the

explicit formula (2.2) for the density of .St;Bt/, we also get the density of the pair

.L0t .B/;Bt/.

For every s � 0, set

�s WD infft � 0 W L0t .B/ > sg:
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The process .�s/s�0 is called the inverse local time (at 0) of the Brownian motion

B. By construction, .�s/s�0 has càdlàg increasing sample paths. From Lévy’s

Theorem 9.14, one gets that

.�s/s�0
.d/D . QTs/s�0;

where, for every s � 0, QTs WD infft � 0 W Bt > sg (it is easy to verify that, for every

s � 0, QTs D Ts a.s., but . QTs/s�0 has càdlàg sample paths, which is not the case for

.Ts/s�0).
The same application of the strong Markov property as in the proof of Proposi-

tion 9.13 shows that .�s/s�0 has stationary independent increments – compare with

Exercise 2.26. Furthermore, using the invariance of Brownian motion under scaling,

we have for every � > 0,

.��s/s�0
.d/D .�2�s/s�0:

The preceding properties can be summarized by saying that .�s/s�0 is a stable

subordinator with index 1=2 (a subordinator is a Lévy process with nondecreasing

sample paths).

The interest of considering the process .�s/s�0 comes in part from the following

proposition.

Proposition 9.15 We have a.s.

ft � 0 W Bt D 0g D f�s W s � 0g [ f�s� W s 2 Dg

where D is the countable set of jump times of .�s/s�0.

Proof We know from (9.17) that a.s.

supp.dtL
0
t .B// � ft � 0 W Bt D 0g:

It follows that any time t of the form t D �s or t D �s� must belong to the zero set

of B. Conversely, recalling that (9.17) is an a.s. equality for a D 0, we also get that,

a.s. for every t such that Bt D 0, we have either L0tC".B/ > L0t .B/ for every " > 0,

or, if t > 0, L0t .B/ > L0t�".B/ for every " > 0 with " � t (or both simultaneously),

which implies that we have t D �L0t .B/
or t D �L0t .B/�. ut

As a consequence of Proposition 9.15, the connected components of the comple-

ment of the zero set ft � 0 W Bt D 0g are exactly the intervals .�s�; �s/ for s 2 D.

These connected components are called the excursion intervals (away from 0). For

every s 2 D, the associated excursion is defined by

es.t/ WD B.�s�Ct/^�s
; t � 0:
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The goal of excursion theory is to describe the distribution of the excursion process,

that is, of the collection .es/s2D. This study, however, goes beyond the scope of the

present book, see in particular [4, 70, 72].

9.5 The Kallianpur–Robbins Law

In this section, we use local times to give a short proof of the Kallianpur–Robbins

law for planar Brownian motion, which was stated at the end of Chap. 7 as

Theorem 7.23. Let us recall the notation we need. We let B stand for a complex

Brownian motion, and for simplicity we assume that B0 D 1 (the general case will

then follow, for instance by applying the strong Markov property at the first hitting

time of the unit circle). According to Theorem 7.19, we can write jBtj D exp.ˇHt
/,

where ˇ is a real Brownian motion started from 0, and

Ht D
Z t

0

ds

jBsj2
D inffs � 0 W

Z s

0

exp.2ˇu/ du > tg:

For every � > 0, we also consider the scaled Brownian motion ˇ
.�/
t D 1

�
ˇ�2t, and

for t > 1 we use the notation �t D .log t/=2.

We aim at proving that, for every R > 0,

2

log t

Z t

0

1fjBsj<Rg ds

converges in distribution as t ! 1 to an exponential distribution with mean R2. To

this end, we write, for every fixed t > 1,

2

log t

Z t

0

1fjBsj<Rg ds D 1

�t

Z t

0

1fˇHs<log Rg ds

D 1

�t

Z Ht

0

1fˇu<log Rg exp.2ˇu/ du

D �t

Z .�t/
�2Ht

0

1fˇ.�t/
u <.�t/�1 log Rg exp.2�t ˇ

.�t/
u / du

D �t

Z .�t/
�1 log R

�1
exp.2�t a/ La

.�t/�2Ht
.ˇ.�t// da

D
Z R

0

L
.�t/

�1 log r

.�t/�2Ht
.ˇ.�t// r dr:
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In the second last equality, we applied the density of occupation time formula

(Corollary 9.7) to the Brownian motion ˇ.�t/, and in the last one we used the change

of variables r D e�ta. As t ! 1, .�t/
�1 log r �! 0, for every r > 0, and

Lemma 7.21 also tells us that .�t/
�2Ht � T

.�t/
1 converges in probability to 0, with

the notation T
.�/
1 D inffs � 0 W ˇ.�/s D 1g. From the joint continuity of Brownian

local times (Theorem 9.12), we then get that, for every " 2 .0;R/,

sup
"�r�R

ˇ̌
ˇL.�t/

�1 log r

.�t/�2Ht
.ˇ.�t// � L0

T
.�t /
1

.ˇ.�t//
ˇ̌
ˇ �!

t!1
0;

in probability. By combining this with the previous display, we obtain that

ˇ̌
ˇ
2

log t

Z t

0

1fjBsj<Rg ds � R2

2
L0

T
.�t /
1

.ˇ.�t//
ˇ̌
ˇ �!

t!1
0;

in probability. To complete the proof, we just note that the law of L0
T
.�/
1

.ˇ.�// does

not depend on � > 0, and is exponential with mean 2, by Proposition 9.13.

Remark The preceding proof shows that the limiting exponential variable in

Theorem 7.23 does not depend on the choice of R, in the sense that we can obtain a

joint convergence by taking several values of R, with the same exponential variable

in the limit, up to multiplicative constants. This can also be deduced from the

Chacon–Ornstein ergodic theorem, which implies that the same limit in distribution

holds more generally for the occupation time of an arbitrary compact subset K of

C, the constant R2 then being replaced by ��1 times the Lebesgue measure of K.

Our method of proof also shows that the convergence in the Kallianpur–Robbins

theorem holds jointly with that of windings in Spitzer’s theorem (Theorem 7.20)

and the limiting joint distribution is the law of .R2

2
L0T1.ˇ/; T1/, where ˇ and  are

independent real Brownian motions started from 0, and T1 D infft � 0 W ˇt D 1g.

Exercises

Exercise 9.16 Let f W R �! R be a monotone increasing function, and assume that

f is a difference of convex functions. Let X be a semimartingale and consider the

semimartingale Yt D f .Xt/. Prove that, for every a 2 R,

La
t .Y/ D f 0

C.a/ La
t .X/; La�

t .Y/ D f 0
�.a/ La�

t .X/:

In particular, if X is a Brownian motion, the local times of f .X/ are continuous in

the space variable if and only if f is continuously differentiable.
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Exercise 9.17 Let M be a continuous local martingale such that hM;Mi1 D 1
a.s., and let B be the Brownian motion associated with M via the Dambis–Dubins–

Schwarz theorem (Theorem 5.13). Prove that, a.s. for every a � 0 and t � 0,

La
t .M/ D La

hM;Mit
.B/:

Exercise 9.18 Let X be a continuous semimartingale, and assume that X can be

written in the form

Xt D X0 C
Z t

0

�.!; s/ dBs C
Z t

0

b.!; s/ ds;

where B is a Brownian motion and � and b are progressive and locally bounded.

Assume that �.!; s/ 6D 0 for Lebesgue a.e. s � 0, a.s. Show that the local times

La
t .X/ are jointly continuous in the pair .a; t/.

Exercise 9.19 Let X be a continuous semimartingale. Show that the property

supp.dsL
a
s .X// � fs � 0 W Xs D ag

holds simultaneously for all a 2 R, outside a single set of probability zero.

Exercise 9.20 Let B be a Brownian motion started from 0. Show that a.s. there

exists an a 2 R such that the inclusion supp.dsL
a
s .B// � fs � 0 W Bs D ag is not an

equality. (Hint: Consider the maximal value of B over Œ0; 1�.)

Exercise 9.21 Let B be a Brownian motion started from 0. Note that

Z 1

0

1fBs>0gds D 1

a.s. and set, for every t � 0,

At D
Z t

0

1fBs>0gds ; �t D inffs � 0 W As > tg:

1. Verify that the process

t D
Z �t

0

1fBs>0gdBs

is a Brownian motion in an appropriate filtration.

2. Show that the process �t D L0�t
.B/ has nondecreasing and continuous sample

paths, and that the support of the measure ds�s is contained in fs W B�s
D 0g.

3. Show that the process .B�t
/t�0 has the same distribution as .jBtj/t�0.
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Exercise 9.22 (Skew Brownian motion) Let ˛; ˇ > 0 and consider the function

g.x/ D ˛1fx�0g � ˇ1fx<0g. Let X be a continuous semimartingale such that

Xt D
Z t

0

g.Xs/ dBs; (9.19)

where B is a Brownian motion.

1. Set '.x/ D 1
˛

x 1fx�0g � 1
ˇ

x 1fx<0g, and Yt D '.Xt/. Prove that Yt D '.Xt/ solves

the equation

Yt D Bt C 1

2
.1 � ˛

ˇ
/ L0t .Y/

(use the result of Exercise 9.16).

2. Compute L0t .Y/ � L0�t .Y/ in terms of L0t .Y/, in two different ways.

3. Starting from a Brownian motion ˇ with ˇ0 D 0, set

At D
Z t

0

ds

g.ˇs/2
; �t D inffs � 0 W As > tg:

Verify that the process Xt D ˇ�t
satisfies the equation (9.19) in an appropriate

filtration and with an appropriate Brownian motion B.

Exercise 9.23 Let g W R �! R be a real integrable function (
R
R

jg.x/jdx < 1).

Let B be a Brownian motion started from 0, and set

At D
Z t

0

g.Bs/ ds:

1. Justify the fact that the integral defining At makes sense, and verify that, for every

c > 0 and every u � 0, Ac2u has the same distribution as

c2
Z u

0

g.c Bs/ ds:

2. Prove that

1p
t

At

.d/�!
t!1

� Z
g.x/ dx

�
jNj;

where N is N .0; 1/.

Exercise 9.24 Let � and b be two locally bounded measurable functions on RC�R,

and consider the stochastic differential equation

E.�; b/ dXt D �.t;Xt/ dBt C b.t;Xt/ dt:
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Let X and X0 be two solutions of E.�; b/, on the same filtered probability space and

with the same Brownian motion B.

1. Suppose that L0t .X � X0/ D 0 for every t � 0. Show that both Xt _ X0
t and Xt ^ X0

t

are also solutions of E.�; b/. (Hint: Write Xt _ X0
t D Xt C .X0

t � Xt/
C, and use

Tanaka’s formula.)

2. Suppose that �.t; x/ D 1 for every t; x. Show that the assumption in question 1.

holds automatically. Suppose in addition that weak uniqueness holds for E.�; b/.

Show that, if X0 D X0
0 D x 2 R, the two processes X and X0 are indistinguishable.

Exercise 9.25 (Another look at the Yamada–Watanabe criterion) Let � be a nonde-

creasing function from Œ0;1/ into Œ0;1/ such that, for every " > 0,

Z "

0

du

�.u/
D 1:

Consider then the one-dimensional stochastic differential equation

E.�; b/ dXt D �.Xt/dBt C b.Xt/dt

where one assumes that the functions � and b satisfy the conditions

.�.x/ � �.y//2 � �.jx � yj/ ; jb.x/� b.y/j � K jx � yj ;

for every x; y 2 R, with a constant K < 1. Our goal is use local times to give

a short proof of pathwise uniqueness for E.�; b/ (this is slightly stronger than the

result of Exercise 8.14).

1. Let Y be a continuous semimartingale such that, for every t > 0,

Z t

0

dhY;Yis

�.jYsj/
< 1; a.s.

Prove that L0t .Y/ D 0 for every t � 0, a.s.

2. Let X and X0 be two solutions of E.�; b/ on the same filtered probability space

and with the same Brownian motion B. By applying question 1. to Y D X � X0,
prove that L0t .X � X0/ D 0 for every t � 0, a.s., and therefore,

jXt � X0
t j D jX0 � X0

0j C
Z t

0

.�.Xs/ � �.X0
s// sgn.Xs � X0

s/ dBs

C
Z t

0

.b.Xs/ � b.X0
s// sgn.Xs � X0

s/ ds:

3. Using Gromwall’s lemma, prove that if X0 D X0
0 then Xt D X0

t for every t � 0,

a.s.
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Notes and Comments

The local time of Brownian motion was first discussed by Lévy [54] under the

name “mesure du voisinage”. In 1958, Trotter [80] established the joint continuity

of Brownian local times viewed as densities of the occupation measure. Tanaka [79]

obtained the formulas of Proposition 9.2 in the Brownian case. The local time of

semimartingales was discussed by Meyer [61], who derived Theorem 9.6 in this

general setting (after the earlier work of Tanaka [79] in the Brownian setting).

Yor [84] then developed the powerful approach that leads to Theorem 9.4. The

upcrossing approximation of local time (Proposition 9.11) is due to Itô and McKean

[42, Chapter 2] for Brownian motion, and was extended to semimartingales by El

Karoui [22]. Other approximation results for the Brownian local time were obtained

by Lévy [54] (see [42] and [70]). Theorem 9.14 is essentially due to Lévy [54], but

our proof is based on an argument from Skorokhod [74] (see [23] for a related study

of the so-called “reflection problem” in the semimartingale setting). For further

properties of local times, the reader may consult Chapter V of [70] or Chapter 6

of [49], as well as the classical book [42] of Itô and McKean. Local times are

also a key ingredient of excursion theory, which is treated in the general setting of

Markov processes in Blumenthal’s book [4]. Exercise 9.22 deals with the singular

stochastic equation first studied by Harrison and Shepp [31], whose solution is the

so-called skew Brownian motion. Exercise 9.23 gives the one-dimensional version

of the Kallianpur–Robbins law, which can also be found in [48]. Exercise 9.25 is

from [51].



Erratum to: Brownian Motion, Martingales,
and Stochastic Calculus

Jean-François Le Gall

Erratum to:
J.-F. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus,

Graduate Texts in Mathematics 274, DOI 10.1007/978-3-319-31089-3

© Springer International Publishing Switzerland 2016

The following information about the original edition was missing in the front-

matter:

Translated from the French language edition:

‘Mouvement brownien, martingales et calcul stochastique’ by Jean-François Le Gall

Copyright © Springer-Verlag Berlin Heidelberg 2013

Springer International Publishing is part of Springer Science+Business Media

All Rights Reserved.

The online version of the updated book can be found under

DOI 10.1007/978-3-319-31089-3

Jean-François Le Gall

Département de Mathématiques

Université Paris-Sud

Orsay Cedex, France

© Springer International Publishing Switzerland 2016
J.-F. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus,
Graduate Texts in Mathematics 274, DOI 10.1007/978-3-319-31089-3_10

E1



Appendix A1

The Monotone Class Lemma

The monotone class lemma is a tool of measure theory which is very useful in

several arguments of probability theory. We give here the version of this lemma that

is used in several places in this volume.

Let E be an arbitrary set, and let P.E/ denote the set of all subsets of E. If

C � P.E/, �.C / stands for the smallest �-field on E containing C (it is also the

intersection of all �-fields containing C ).

Definition A subset M of P.E/ is called a monotone class if the following

properties hold:

(i) E 2 M .

(ii) If A;B 2 M and A � B, then BnA 2 M .

(iii) If .An/n�0 is an increasing sequence of subsets of E such that An 2 M for

every n � 0, then
[

n�0
An 2 M .

A �-field is a monotone class. As in the case of �-fields, one immediately

checks that the intersection of an arbitrary collection of monotone classes is again a

monotone class. If C is an arbitrary subset of P.E/, the monotone class generated

by C , which is denoted by M .C /, is defined by setting

M .C / D
\

M monotone class; C �M

M :

Monotone class lemma If C � P.E/ is stable under finite intersections, then

M .C / D �.C /.

Proof Since any �-field is a monotone class, it is clear that M .C / � �.C /. To

prove the reverse inclusion, it is enough to verify that M .C / is a �-field. However,

a monotone class is a �-field if and only if it is stable under finite intersections

(indeed, considering the complementary sets shows that it is then stable under finite

© Springer International Publishing Switzerland 2016
J.-F. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus,
Graduate Texts in Mathematics 274, DOI 10.1007/978-3-319-31089-3
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unions, and via an increasing passage to the limit one gets that it is also stable under

countable unions). Let us show that M .C / is stable under finite intersections.

For every A 2 P.E/, set

MA D fB 2 M .C / W A \ B 2 M .C /g:

Fix A 2 C . Since C is stable under finite intersections, we have C � MA. Let us

verify that MA is a monotone class:

• E 2 MA is trivial.

• If B;B0 2 MA and B � B0, we have A \ .B0nB/ D .A \ B0/n.A \ B/ 2 M .C /

and thus B0nB 2 MA.

• If Bn 2 MA for every n � 0 and the sequence .Bn/n�0 is increasing, we have

A \ .[Bn/ D [.A \ Bn/ 2 M .C / and therefore [Bn 2 MA.

Since MA is a monotone class that contains C , MA also contains M .C /. We have

thus obtained that

8A 2 C ; 8B 2 M .C /; A \ B 2 M .C /:

This is not yet the desired result, but we can use the same idea another time.

Precisely, we now fix A 2 M .C /. According to the first part of the proof, C � MA.

By exactly the same arguments as in the first part of the proof, we get that MA is

a monotone class. It follows that M .C / � MA, which shows that M .C / is stable

under finite intersections, and completes the proof. ut
Here are a few consequences of the monotone class lemma that are used above.

1. Let A be a �-field on E, and let � and � be two probability measures on

.E;A /. Assume that there exists a class C � A , which is stable under finite

intersections, such that �.C / D A and �.A/ D �.A/ for every A 2 C . Then

� D �. (Use the fact that G WD fA 2 A W �.A/ D �.A/g is a monotone class.)

2. Let .Xi/i2I be an arbitrary collection of random variables, and let G be a �-field

on the same probability space. In order to show that the �-fields �.Xi; i 2 I/ and

G are independent, it is enough to verify that .Xi1 ; : : : ;Xip/ is independent of G ,

for any choice of the finite set fi1; : : : ; ipg � I. (Observe that the class of all

events that depend on a finite number of the variables Xi; i 2 I, is stable under

finite intersections and generates �.Xi; i 2 I/.)

3. Let .Xi/i2I be an arbitrary collection of random variables, and let Z be a bounded

real variable. Let i0 2 I. In order to verify that EŒZ j Xi; i 2 I� D EŒZ j Xi0 �, it

is enough to show that EŒZ j Xi0 ;Xi1 ; : : : ;Xip � D EŒZ j Xi0 � for any choice of the

finite collection fi1; : : : ; ipg � I. (Observe that the class of all events A such that

EŒ1AZ� D EŒ1A EŒZ j Yi0 �� is a monotone class.)

This last consequence of the monotone class lemma is useful in the theory of

Markov processes.



Appendix A2

Discrete Martingales

In this appendix, we recall without proof the results about discrete time martingales

and supermartingales that are used in Chap. 3. The proof of the subsequent

statements can be found in Neveu’s book [65], and in many other books dealing

with discrete time martingales (see in particular Williams [82] and Chapter XII in

Grimmett and Stirzaker [30]).

We use the notation N D f0; 1; 2; : : :g. Let us start by recalling the basing

definitions. We consider a probability space .˝;F ;P/, and we fix a discrete

filtration, that is, an increasing sequence .Gn/n2N of sub-�-fields of F . We also let

G1 D
1_

nD0
Gn

be the smallest �-field that contains all the �-fields Gn.

Definition A sequence .Yn/n2N of integrable random variables, such that Yn is

Gn-measurable for every n 2 N, is called

• a martingale if, whenever 0 � m < n, EŒYn j Gm� D Ym;

• a supermartingale if, whenever 0 � m < n, EŒYn j Gm� � Ym;

• a submartingale if, whenever 0 � m < n, EŒYn j Gm� � Ym.

All these notions obviously depend on the choice of the filtration .Gn/n2N, which

is fixed in what follows.

Maximal inequality If .Yn/n2N is a supermartingale, then, for every � > 0 and

every k 2 N,

�P
�

sup
n�k

jYnj > �
�

� EŒjY0j�C 2EŒjYkj�:
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Doob’s inequality in Lp If .Yn/n2N is a martingale, then, for every k 2 N and every

p > 1,

E
h

sup
0�n�k

jYnjp
i

�
� p

p � 1
�p

EŒjYkjp�:

Remark This inequality is interesting only if EŒjYkjp� < 1, since otherwise both

sides are infinite.

If y D .yn/n2N is a sequence of real numbers, and a < b, the upcrossing number

of this sequence along Œa; b� before time n, denoted by M
y

ab.n/, is the largest integer

k such that there exists a strictly increasing finite sequence

m1 < n1 < m2 < n2 < � � � < mk < nk

of nonnegative integers smaller than or equal to n with the properties ymi
� a and

yni
� b, for every i 2 f1; : : : ; kg. In what follows we consider a sequence Y D

.Yn/n2N of real random variables, and the associated upcrossing number MY
ab.n/ is

then an integer-valued random variable.

Doob’s upcrossing inequality If .Yn/n2N is a supermartingale, then, for every n 2
N and every a < b,

EŒMY
ab.n/� � 1

b � a
EŒ.Yn � a/��:

This inequality is a crucial tool for proving the convergence theorems for

discrete-time martingales and supermartingales. Let us recall two important

instances of these theorems.

Convergence theorem for discrete-time supermartingales If .Yn/n2N is a super-

martingale, and if the sequence .Yn/n2N is bounded in L1, then there exists a random

variable Y1 2 L1 such that

Yn

a:s:�!
n!1

Y1:

Convergence theorem for uniformly integrable discrete-time martingales Let

.Yn/n2N be a martingale. The following are equivalent:

(i) The martingale .Yn/n2N is closed, in the sense that there exists a random

variable Z 2 L1.˝;F ;P/ such that Yn D EŒZ j Gn� for every n 2 N.

(ii) The sequence .Yn/n2N converges a.s. and in L1.

(iii) The sequence .Yn/n2N is uniformly integrable.

If these properties hold, the a.s. limit of the sequence .Yn/n2N is Y1 D EŒZ j G1�.
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We now recall two versions of the optional stopping theorem in discrete time.

A (discrete) stopping time is a random variable T with values in N [ f1g, such

that fT D ng 2 Gn for every n 2 N. The �-field of the past before T is then

GT D fA 2 G1 W A \ fT D ng 2 Gn; for every n 2 Ng.

Optional stopping theorem for uniformly integrable discrete-time martingales

Let .Yn/n2N be a uniformly integrable martingale, and let Y1 be the a.s. limit of Yn

when n ! 1. Then, for every choice of the stopping times S and T such that S � T,

we have YT 2 L1 and

YS D EŒYT j GS�

with the convention that YT D Y1 on the event fT D 1g, and similarly for YS.

Optional stopping theorem for discrete-time supermartingales (bounded case)

If .Yn/n2N is a supermartingale, then, for every choice of the bounded stopping times

S and T such that S � T, we have

YS � EŒYT j GS�:

We conclude with a variant of the convergence theorem for supermartingales in

the backward case. We consider a backward filtration, that is, an increasing sequence

of filtrations .Hn/n2�N indexed by negative integers (in such a way that the �-field

Hn is “smaller and smaller” when n ! �1). A sequence .Yn/n2�N of integrable

random variables indexed by negative integers is called a backward supermartingale

if, for every n 2 �N, Yn is Hn-measurable and, for every m � n � 0,

EŒYn j Hm� � Ym.

Convergence theorem forbackwarddiscrete-time supermartingales If .Yn/n2�N

is a backward supermartingale, and if the sequence .Yn/n2�N is bounded in L1, then

the sequence .Yn/n2�N converges a.s. and in L1 when n ! �1.

It is crucial for the applications developed in Chap. 3 that the convergence also

holds in L1 in the backward case (compare with the analogous result in the “forward”

case).
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Brownian motion, 27
.Ft/-Brownian motion, 116
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Burkholder–Davis–Gundy inequalities, 124

càdlàg function, 54
càdlàg sample paths

for a Feller process, 164
for a supermartingale, 55
for semimartingale local times, 239

Cameron–Martin formula, 139
canonical decomposition of a semimartingale,

90
canonical process, 29
complex Brownian motion, 198

conditioning of Gaussian variables, 9
conformal invariance of Brownian motion,

198
constancy intervals of a martingale, 121
continuity of sample paths, 24

for Brownian local times, 249
for Brownian martingales, 130
for Brownian motion, 27

continuity of the Brownian filtration, 129
continuous semimartingale, 90
continuous-state branching process, 177
convergence theorem for stochastic integrals,

111
covariance function, 10
cylinder set, 28

Dambis–Dubins–Schwarz theorem, 121
density of occupation time formula, 245
diffusion process, 224
Dirichlet problem, 189
domain of the generator, 159
Doob’s inequality in Lp , 53

in discrete time, 264
Doob’s upcrossing inequality, 264
Dynkin’s formula, 182

excursions of Brownian motion, 253
exit distribution from a ball, 195
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Feller process, 158
solution of an SDE, 222

Feller semigroup, 158
Feller’s branching diffusion, 179, 227
Feynman–Kac formula, 181, 187, 206
filtered probability space, 41
filtration, 41

complete, 42
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finite variation process, 73
finite-dimensional marginal distributions

for a Gaussian process, 10
for a Markov process, 153
for Brownian motion, 21

formula of integration by parts, 116
function with finite variation, 69

total variation, 70

Gaussian process, 7
Gaussian space, 7
Gaussian variable, 1
Gaussian vector, 4
Gaussian white noise, 11
generator of a Feller semigroup, 159

case of a jump process, 172
case of Brownian motion, 161
case of the solution of an SDE, 222

geometric Brownian motion, 226
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Gronwall’s lemma, 213
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heat equation, 185
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independence of Gaussian variables, 8
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process, 74
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transition rate, 173

Kallianpur–Robbins law, 205
Kalman filtering, 15
Kazamaki’s criterion, 136
Kolmogorov’s extension theorem, 10, 154
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Kunita–Watanabe inequality, 88
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Lévy process, 175
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Lévy’s theorem, 119
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local time
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definition, 237
of Brownian motion, 249
support property, 238
upcrossing approximation, 248

Markov process, 152
canonical construction, 155
solution of an SDE, 221

martingale, 49
closed, 59
convergence theorem, 59
discrete-time, 263
regularity of sample paths, 55
stopped at a stopping time, 61
uniformly integrable, 59

maximal inequality, 53
in discrete time, 263

mean value property, 188
modification, 23
moments of stochastic integrals, 105, 108
monotone class lemma, 261

non-differentiability of Brownian paths, 39
Novikov’s criterion, 136

optional stopping theorem, 59
discrete case, 265
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associated martingales, 50
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quadratic variation
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of a semimartingale, 90
of a stopped local martingale, 85
of Brownian motion, 32, 79

quasi left-continuity of a Feller process, 181

random process, 7
recurrence of planar Brownian motion, 197
reflected Brownian motion, 179
reflection principle, 35
representation of Brownian martingales, 127
resolvent of a transition semigroup, 156

sample paths of a random process, 23
simple Markov property, 168

case of Brownian motion, 22
skew-product decomposition, 199
Spitzer’s theorem on Brownian windings, 201
stationary Gaussian process, 11
stochastic calculus with the supremum, 142
stochastic differential equation, 210

Lipschitz case, 212

stochastic integral
case of a continuous local martingale, 106
case of a finite variation process, 74
case of a martingale bounded in L2, 101
case of a semimartingale, 109

stopped process, 75
stopping time, 44

case of Brownian motion, 33
reducing a continuous local martingale, 76

strong Markov property
of a Feller process, 169
of Brownian motion, 34
of the solution of an SDE, 224

strong solution of an SDE, 211
submartingale, 49

discrete-time, 263
supermartingale, 49

discrete-time, 263

Tanaka’s formula, 237
time change, 121, 198

for constructing solutions of an SDE, 228
time inversion, 38
time reversal property of Brownian motion, 39

transience of Brownian motion, 197
transition kernel, 152
transition semigroup, 152
Trotter’s theorem, 249

upcrossing number, 54

weak existence for an SDE, 211
weak uniqueness for an SDE, 211
Wiener integral, 22, 108
Wiener measure, 27

quasi-invariance property, 140

Yamada–Watanabe theorem, 212
Yamada–Watanabe uniqueness criterion, 231

zero set of Brownian motion, 39, 253
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