

4/22/2020

2

INTRODUCTION

- Urine is a liquid by-product of different metabolism undertaken in the body of organisms
- The cellular metabolism generates many by-products such as urea, uric acid, creatinine and the like....which are rich in nitrogen and must be cleared from the bloodstream
- These by-products are expelled from the body by micturation, which is the primary method for excreting water-soluble chemicals from the body.

Clinical pathology II

4/22/2020

Urine Formation

- Urine is formed by the combination processes of filtration, tubular reabsorption and secretion.
- Glomerular filtration: a process of ultrafiltration regulated mainly by arterial hydrostatic pressure.
- Substances with molecular weights >68,000 g/mol (e.g. cells, lipoproteins, and most proteins) cannot pass through the glomerulus.

Clinical pathology II

Urine Formation

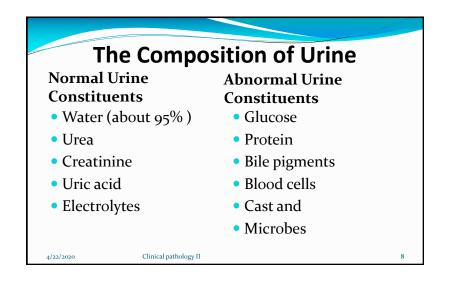
- Tubular Reabsorption: the return back of essential substance to the systemic circulation.
 - Useful compounds (e.g. glucose, water, electrolytes, amino acids, and vitamins) are efficiently reabsorbed from the glomerular filtrate by the renal tubules.
- Tubular Secretion: the addition of substances to the renal tubules.
 - Important to maintained body homeostasis by the secretion of water, electrolytes and other substances to the renal tubules.

Urine Quantity

- Regarding to the quantity, the average urine production may vary according to the species of animals
- Studies indicated that the volume of urine may range from 16-50 ml/kg/day in large animals and 10-40ml/kg/day in small animals.
- Urinations per day depending on state of hydration, activity level, environmental factors, weight and the health status
- Producing too much or too little urine need medical attention.

Clinical pathology II

4/22/2020


Why Urinalysis?

Clinical pathology II

4/22/2020

4/22/2020

- Whenever an evaluation of renal function is needed, the first step to be considered is a routine analysis.
- The urinalysis affords this routine test and valuable aids to diagnose renal pathology.
- It is also one of the most helpful indicators of health and disease status related to various endocrine or metabolic abnormalities linked to kidneys function.
- It is also an important method for monitoring the course of a disease as well as the efficacy of treatment.

Factors Affecting The composition of Urine

- Diet and nutritional status
- Condition of body metabolism
- Status of kidney function
- Level of contamination with pathogenic microorganisms (bacteria) or even non-pathogenic

microflora

4/22/2020 Clinical pathology II

Collection of Urine Specimen

- In order to make urinalysis reliable, the urine must be collected properly.
- Improper collection may invalidate the results of the laboratory, no matter how carefully and skillfully the tests are performed.
- Animal urine may be collected in four ways:

Clinical pathology II

- Metabolism cage: best method for collecting serial urine samples for diagnosing polyuria.
- Free-flow sample during urination, preferably mid-stream.
- Catheterization: this procedure is prone to contamination of blood and tissue.
- Cystocentesis: also prone to contamination of blood and tissue.

Types of Urine Specimen Types of.... Random Specimen - a specimen taken at any time First Morning Specimen during examination. Random Specimen Most convenient Postprandial Most common Mid- stream Specimen • Good for chemical screen and microscopic examination • Postprandial : a specimen obtained 2 hours after meal. • First Morning Specimen- a specimen obtained Good for glucose test. during the first urination of the day. • Mid- stream Specimen - a specimen obtained from the Most concentrated middle part of the first urine. Bladder incubated • It is commonly used for routine urinalysis. • It is also important for bacteriological urine culture. • Best for nitrite and protein tests and microscopic examination Clinical pathology II 4/22/2020 Clinical pathology II 1/22/202 12

4/22/2020

Preservation of Urine Specimen Urine should be examined immediately soon after collection

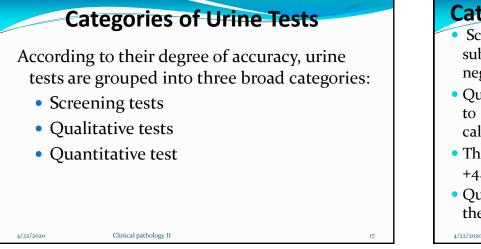
- Urine should be examined immediately soon after collection because some urinary components are unstable.
- If urine specimen can not be examined immediately, it must be refrigerated or preserved by using different chemical preservatives.
- Long standing of urine at room temperature can cause :
 - Growth of bacteria
 - Break down of urea to ammonia leading to an increase pH of the urine and cause of calcium and phosphate precipitation
 - Oxidation of urobilingen to urobilin.
 - Destruction of glucose by bacteria.
 - Lyses of RBCs, WBCs and casts.

Preservation of.....

Method of Preservation of Urine Specimen

- Physical Method
 - Refrigeration
- Chemical Method : Use of chemical preservatives such as
 - Thymol
 - Toluene
 - Formaldehyde
 - Hydrochloric acid (HCl)
 - Chloroform
 - Boric acid

13


Sodium carbonate

4/22/2020 Clinical pathology II

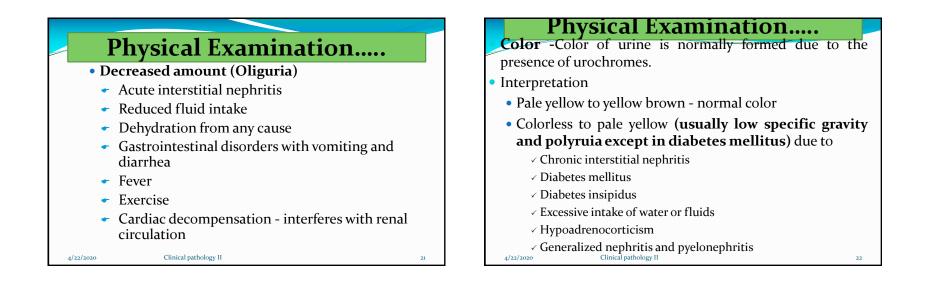
Methods	Advantages	Disadvantages
Refregeration (2-6 ^o C)	No chemical Interferences	Use for a short period of time (3-6 hours).
Freezing	For specimen transport	May destroy formed elements
Toluene (Till it forms thin layer over the Urine)	Preserves acetone, Reducing Substances like protein	Flammable
Thymole (small crystal 5 mm diametre/100ml urine)	Preserves most constituents	Can cause false positives for proteins

Aethods	Advantages	Disadvantages
Chloroform (1 tablet/60 nl urine)	Preserves urine aldosterone level	Settles to the bottom
Formaldehyde (1 drop/30 ml urine)	Preserves formed elements	Interferes with glucose evaluation
HCL (1 drop/15 ml urine)	Stabilizes steroids, catecholamine's	Formed elements are destroyed
Boric acid (75mg/10ml of urine	Preserves chemicals and formed element	Precipitate uric acid
Sodium Carbonate (few amount)	Preserves poryphrines and urobilinogen	Interferes with other urine constituents

20

Categories of Urine Tests

- Screening tests tell us the presence or absence of substances, and the results are reported as positive or negative.
- Qualitative tests are test which give rough estimate to the amount of substance present. They are also called semi-quantitative tests.
- The results are graded as negative, trace, +1, +2, +3 or +4.
- Quantitative tests are tests that determine accurately the amount of substances to be tested.


Type of Examination in Routine Urinalysis Chemical Microscopic Physical **Examinations Examinations** Examinations Volume RBCs Glucose • WBCs Color Protein • Epithelial cells • Odor Ketones Casts • Foam Bilirubin Urobilinogen Bacteria • pH • Specific gravity Blood Yeasts Nitrite Parasites Leukocyte Crystals Esterase Artifacts Clinical pathology II 1/22/2020 19

PHYSICAL EXAMINATION

Quantity of Urine (Volume)

- Normally varies with food and water intake, climate and exercise
- Abnormal (Increased amount (polyuria))

- Chronic interstitial nephritis the kidney cannot reabsorb urine
- Diabetes mellitus due to strong osmotic activity of glucose in the distal tubules of kidney
- ✓ Diabetes insipidus influence of ADH
- Diuretics cause rapid formation of urine
- ✓ Excessive fluid intake
- 4/22/2020 Clinical pathology II

Physical Examination.....

 Dark yellow to yellow brown (concentrated urine with a high specific gravity and oliguria)

- Acute nephritis
- Decreased fluid intake
- Dehydration
- Fever

4/22/2020

• Prolonged vomiting or diarrhea

Clinical pathology II

- Yellow brown to greenish yellow
 - Bile pigments and urobilinogen usually produce a greenish foam when shaken

Physical Examination.....

- Red, wine or brown
 - Cloudy hematuria
 - Translucent hemoglobinuria
- Brown to brownish black
 - Normal in horse as urine is yellow when voided, but turns a deep brown color upon standing due to oxidation
 - Azoturia myoglobinuria
 - Methemoglobinuria
 - Melanin in standing urine

Clinical pathology II

• Green/ Blue

4/22/2020

23

Methylene blue

28

Physical Examination....

Transparency

- Recorded as: Clear, Cloudy and Flocculent
- Interpretation
 - Normal urine is clear on being voided, except in the horse which is normally thick and cloudy due to calcium carbonate crystals and mucus.
- Substance which cause turbidity of the urine are:
 - Bacteria
- MucusFat
- Epithelial cells
- Erythrocytes
- Crystals
- Leukocytes
- Clinical pathology II

Physical Examination.....

Foam

- When normal urine is shaken after collection, a small amount of white foam is produced.
- If foam is abundant and slow to disappear, it is an indication of high concentration of protein (proteinuria)
- Bile salts produce a green or yellow foam.
- Hemoglobin is formed red to brown foam.

Clinical pathology II

Physical Examination.....

Odor

1/22/2020

4/22/2020

- Urine from feline, porcine and canine species normally has a strong odor.
- A strong ammonia odor may indicate the presence of bacteria, as bacteria convert urea to ammonia.
- A sweet fruity odor is produced by ketone bodies from conditions such as:
 - Diabetes mellitus
 - Pregnancy ketosis

Clinical pathology II

Acetonemia

Physical Examination.....

Specific Gravity

4/22/2020

25

27

- The specific gravity of urine is a measurement of the relative amount of solids in the solution (Urine).
- It is an indication of the degree of tubular re-absorption or concentration by the kidney.
- Under normal renal function and metabolism, the specific gravity varies inversely with the volume of urine excreted.
- If large volumes of urine are excreted, the specific gravity is usually low, and vice versa.

Methods of Determination

- Urinometer requires large volume of urine
- Refractometer only one drop of urine is needed

	ll Examina rine specific gravity		Interpre Decreased specific gravity • Chronic interstitial nephritis:	 Lation Increased specific gravity Acute interstitial nephritis - due to defect in infiltration and inability
Species	Range	Average	due to inability to reabsorb water • Uremia - if advanced	to concentrate urine
Horse	1.020-1.050	1.035	Hypoadrenocorticism	 Cystitis – due to products of inflammatory reaction
Cow	1.025-1.045	1.035	Renal amyloidosis	Diabetes mellitus
Sheep and Goat	1.015-1.045	1.030	 Generalized nephritis and pyelonephritis 	Reduced fluid intakeDehydration
Pig	1.010-1.030	1.015	 Mobilization of effusions or 	 Vomiting and diarrhea - if
Dog	1.015-1.045	1.025	edema fluids • Fluid therapy	prolongedHypovolemic Shock
Cat	1.020-1.040	1.030	 Treatment with diuretics 	Fever
Man	1.010-1.030	1.020		 High temperature

CHEMICAL EXAMINATION

- Chemical evaluation of urine commonly done through reagent strip and sometimes by variety of specific techniques.
- In reagent strip the required reagents are coated on strip pads.
- Urine is placed on the strip or the strip is immersed in the urine and allowed to react with the reagents.
- The results are compared to the color chart located on the outside of the container. 4/22/2020 Clinical pathology II 32

Chemical Examination

- All test results are usually reported in a semiquantitative manner (i.e., negative, trace, 1+ to 4+).
- The urine test strips are marketed under different names like Multistix, Combistix, BiliLabstix and Uristix.
- They usually measure pH, protein, glucose, ketones, bilirubin, blood/hemoglobin, and urobilinogen and etc....

Chemical Examn.....

pH

4/22/2020

33

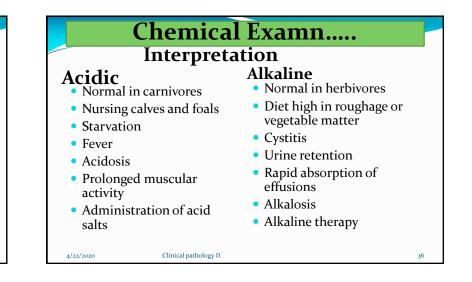
35

- The pH of urine can range from 4 (strongly acidic) to 7 (neutral) to 9 (strongly basic).
- Standing urine will become basic due to loss of CO₂ and bacterial production of ammonia from urea.
- The kidneys regulate blood pH by excreting bicarbonate, ammonium ion, and phosphates.
- Urine pH reveals more about metabolic status and systemic health than about the kidneys.

Clinical pathology II

Chemical Examn.....

- The normal range of pH varies with species, diet and metabolism.
- Carnivores have a neutral to acid urine, while herbivores have a neutral to alkaline urine.
- Could be measured using lithmus paper


Clinical pathology II

4/22/2020

DH

• Normal Values of pH for different species

Species	Range	рН
Horse	alkaline	7-9
Cow	alkaline	7-9
Sheep and Goat	alkaline	7-9
Pig	alkaline to acid	5-9
Dog	acid	6-7
Cat	acid	6-7
Man	alkaline to acid	4.8-7.5

Chemical Examn.....

Protein

4/22/2020

1/22/2020

- Test for urinary protein is one of the most important and valuable parts of the routine urinalysis.
- Albumin is one of the commonest proteins, which appears in urine during a pathological condition.
- It often occurs as a symptom of renal disease.
- Globulins are excreted less frequently.

Clinical pathology II

- Bence Jones protein is a specific type of globulin excreted in multiple myeloma.
- Normal urine does not contain any protein

Chemical Examn.....

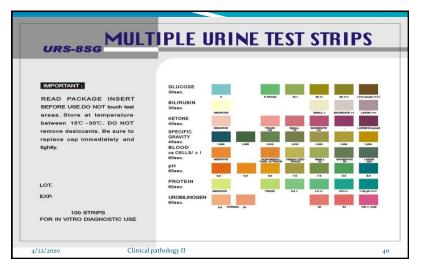
Methods of test for proteinuria

Clinical pathology II

- Strip test
- Robert's test
- Heller's test

4/22/2020

37


39

- Sulfosalicylic acid test
- The general principle of the last three tests is that protein can be precipitated or become turbid by means of a chemical, usually a strong (concentrated) acid.

Chemical Examn.....

Procedure for all reagent strip test

- Dip the reagent strip briefly into the specimen.
- Remove excess urine by tapping the edge of the strip against the rim of the urine Container.
- Compare the color of the test area after 60 seconds with the color chart supplied by the manufacturer.

44

Chemical Examn.....

Robert's Test

Principle

• The principle of this test is based on the precipitation of protein and formation of white compact ring using conc Nitric acid (HNO₃).

Procedure

- Place 3-5 ml of clear urine in a test tube.
- Add 3 ml Robert's reagent (mixture of MgSO4 and HNO3)to the side of the tube and allow to lay beneath the urine.
- A white ring at the zone of contact indicates a positive test.
- The ring must be read within 3 minutes after adding the reagent
 4/22/2020 Clinical pathology II 41

Chemical Examn.....

Heller's test

- Principle : same as Robert's Test
- Procedure :
 - Perform the test as Robert's test using concentrated nitric acid instead of Rober's Reagent.
 - This is very commonly used.
 - At the junction of the two liquids a white ring is formed, if urine contains protein.

Clinical pathology II

Chemical Examn.....

Sulphosalicylic Acid Test Principle

• This test is based on the precipitation of protein (particularly albumin) by sulphosalicylic acid.

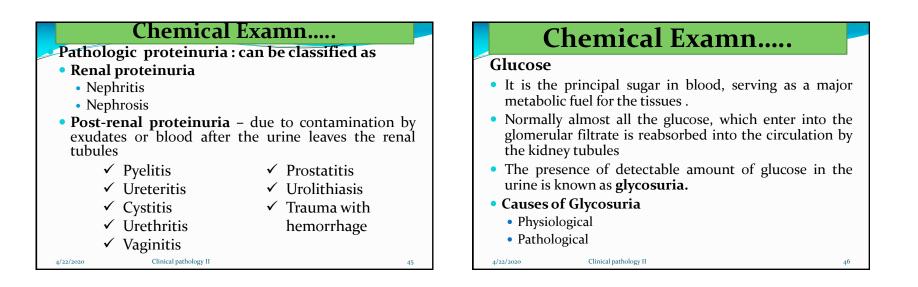
Procedure

4/22/2020

- Place 3ml centrifuged urine in a test tube.
- Add 3 ml of 20 % sulphosalicylic acid.

Clinical pathology II

- Mix thoroughly and estimate the amount of turbidity 10 minutes later.
- Appreciate the presence of turbidity in the solution for positive test.


Chemical Examn.....

Interpretation

4/22/2020

- Protein is normally absent or present in trace amount due to physiological stresses.
- Physiological or functional proteinuria is transient due to a temporary increase in glomerular permeability as a result of congestion in the capillaries.
- Examples are:

- Excessive ingestion of proteins
- Emotional stress
- Excessive muscular exertion
- Convulsions
 Clinical pathology II

Chemical	Examn	Chemical Examn
 Physiological Excessive carbohydrates Anything that stimulates sympathetic nervous system (Excitement, stress) Pregnancy 	 Pathological DM Hyperthyroidism Hyperadrenalism Hyperpitutarism Some diseases of pancreas 	 Types of Urinary Sugar (Glucose) Tests Test for urine sugar is used to detect diabetes mellitus and to monitor the effectiveness of diabetic control. There are various tests for glucose which may be applied to urine. The most frequently used are : Non specific reduction test (Benedict test) Enzymatic tests based on the action of glucose oxidase (Strip or colorimetric methods).
4/22/2020 Clinical pathology II	47	4/22/2020 Clinical pathology II

Chemical Examn.....

Benedict test

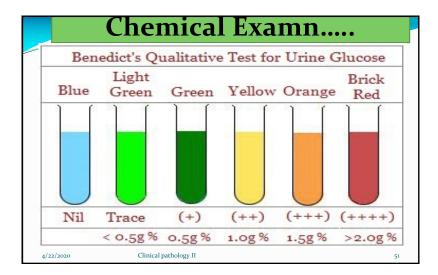
• This test is based on the ability of glucose to act as reducing substances.

Principle

4/22/2020

- In boiled benedict solution, glucose can reduce (convert) the blue copper (II) in Benedict solution to copper (I) oxide, which is orange to red in color.
- A positive reaction is graded as a change in color ranging from blue to green, yellow, orange and finally red.

Clinical pathology II


Chemical Examn.....

Procedure:

4/22/2020

49

- Measure 8 to 10 drops or 0.5 ml of well-mixed urine in a test tube.
- Add 5 ml of Benedict's qualitative reagent. Mix well.
- Place in boiling-water bath for exactly 5 minutes (or boil in naked flame for exactly 2 minutes.)
- Remove from the boiling-water bath and immediately cool to room temperature in a cold water bath (about 10 minutes).
- Observe the color change.
- A positive reaction depends on the presence of a fine yellow, orange, or brick red precipitate.
- The test is then graded on the basis of the color of the mixed solution.

Chemical Examn.....

Determination of Ketone Bodies

Clinical pathology II

- Ketone bodies are a group of three related substances such as, acetone, acetoacetate (acetoacetic acid or diacetic acid), and β -hydroxybutyrate (β hydroxybutyric acid).
- Ketone bodies are normal products of fat metabolism.
- They are normally not detectable in the blood or urine.
- Under normal metabolism, fat is broken down in the tissues to glycerol and fatty acids.

56

Chemical Examn.....

- Whenever there is inadequate carbohydrate in the diet or a defect in carbohydrate metabolism or absorption, the body metabolizes increasing amounts of fatty acids which is converted into excessive ketone bodies.
- When the rate of formation of ketone bodies is greater than the rate of their use, their levels begin to rise in the blood (ketonemia) and in the urine (ketonuria).
- The excessive production and accumulation of ketone bodies may lead to ketosis.

Chemical Examn.....

Tests for Ketone Bodies

- Some of the commonly used tests for ketone bodies are the following:-
 - Reagent strip tests (Ex. Ketostix),

Clinical pathology II

• Lang's test,

4/22/2020

4/22/2020

53

55

• Rothera's test.

Principle of the Tests

• The general principle for the tests mentioned above is both ketone bodies give a purple color when react with alkaline sodium nitroprusside.

Chemical Examn.....

Procedure for Rothera's Test

4/22/2020

4/22/2020

Clinical pathology II

- To 5 ml of fresh urine, add ammonium sulphate crystals until saturated (about 1 g).
- Add 2 drops of sodium nitroprusside reagent and mix thoroughly.
- Overlay with ammonium hydroxide solution (28% full strength).
- If ketone bodies are present, a red to purple color will develop. The color may not appear for 10-15 minutes.
- Report the test as positive or negative. Clinical pathology II

Chemical Examn.....

Lang's Test Procedure

- Pour about 5 ml of fresh urine into a test tube.
- Add 5 drops of glacial acetic acid and a few drops of saturated solution of sodium nitroprusside and mix.
- Slowly overlay with ammonium hydroxide (28%, full strength)
- If ketone bodies are present, a purple or reddish purple colour will appear
- Report the test as positive or negative. Clinical pathology II

	Examn etosis include:	Chemical Examn Determination of Bilirubin
 Late pregnancy and lactation, especially in dairy cows Pregnancy toxemia in sheep and goats Diabetes mellitus Acidosis Mild fever (if prolonged) Impaired liver function 	 Infectious diseases causing a caloric imbalance Starvation or fasting Vomiting and diarrhea (if prolonged) A high fat diet Hyperadrenocorticism Hyperpituitarism Excessive female sex hormones 	 Bilirubin is a waste product that must be eliminated from the body. It is formed by the breakdown of hemoglobin The water insoluble form of bilirubin is often referred to as free bilirubin or unconjugated bilirubin or indirect bilirubin. In the liver bilirubin is converted to a water soluble product by conjugation with glucuronic acid to form bilirubin glucuronide.
4/22/2020 Clinical pathology II	57	4/22/2020 Clinical pathology II 58

Chemical Examn.....

- The water-soluble form is called conjugated bilirubin. It is also called direct bilirubin.
- The liver cells that form the conjugated bilirubin excrete it into the bile and then transported into the intestinal tract through the bile duct.
- In the small intestine this conjugated bilirubin is converted by intestinal bacteria to urobilinogen or stercobilinogen.
- In the urine, this water soluble bilirubin can often be excreted by the kidneys.

Clinical pathology II

4/22/2020

Chemical Examn.....

Tests for Bilirubin

- Tests for bilirubin are based on the oxidation of bilirubin to biliverdin.
- Specimen: Freshly passed urine is required.
- Urine containing bilirubin should be analyzed immediately after collection (with in 2 hrs of voiding).
- The following tests are used to detect bilirubin in the urine.
 - Harrison's (Fouchet's) Test
 - Gmelin Test 4/22/2020 Clinical pathology II

64

Chemical Examn.....

Procedure for Harrison's (Fouchet's) Test

- Add 5 ml of a 10% solution of barium chloride to 10 ml of urine.
- Mix, and let stand for a few minutes.
- Filter through with a small filter paper.
- Let the filter paper to dry
- Add one or two drops of Fouchet's reagent.

• Fouchet's Reagent

- Trichloroacetic acid ----- 25gm
- Distilled H2O -----100ml
- 10% Ferric chloride (FeCl) -----10ml
- Mix well.
- A blue to green color indicates a positive reaction.

4/22/2020

Clinical pathology II

61

63

4/22/2020

4/22/2020

Chemical Examn.....

Procedure for Gmelin Test

- Bile pigments are oxidized by acids to coloured derivatives.
- Take 2 ml of concentrated nitric acid in a test tube
- Add 2 ml of urine along the side of the test tube
- At the junction of the two fluids, a play of colour
 – green, blue, violet etc. will be observed if bile
 pigment is present

Chemical Examn.....

Causes of bilirubinuria include:

- Biliary obstruction
 - Complete bilirubinuria without urobilinogen
 - Partial bilirubinuria with urobilinogen

Clinical pathology II

- Liver disease bilirubinuria may precede clinical jaundice and is therefore an early indication of liver disease
 - Hepatitis
 - Hepatic necrosis
- Hemolysis

4/22/2020

- Acute enteritis
- Intestinal obstruction

Chemical Examn.....

Determination of Urobilinogen

Clinical pathology II

- A very small amount of urobilinogen about 1 percent is excreted in the urine which gives the urine its characteristic color with the other color pigments
- Urobilinogen is normally present in urine. But, it will not be present in the case of obstructive jaundice.
- An increases in urobilinogen is detected on hemolytic jaundice or liver disorder in which liver function is impaired.

Chemical Examn.....

Test for Urobilinogen

- Qualitative Ehrlich's Test for Urobilinogen
- Reagent strip methods

Clinical pathology II

Principle

4/22/2020

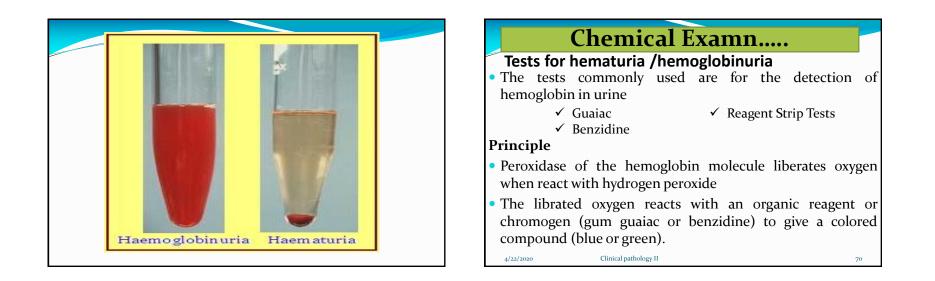
• The test depends upon the reaction between urobilinogen and paradimethylaminobenzaldhyde to form a cherry (deep) red.

Chemical Examn.....

Procedure:

4/22/2020

65


- Place 10 ml urine in a test tube. Allow warming to room temperature.
- Add 1 ml Ehrlich's reagent and mix.
 - para-dimethylaminobenzaldehyde ------ 2 gm
 - HCl concentrated ------ 20 ml
 - Distilled H2O ----- 8oml
- Let stand 3 to 5 minutes
- Normal amounts of urobilinogen in the urine sample will change the solution to pink.
- Abnormally high amounts of urobilinogen will change the solution to a Cherry red color.

Chemical Examn..... Decreased or Increased amount of absence of urine urine urobilinogen urobilinogen • Obstruction of biliary • Hepatitis passages Cirrhosis of liver Decreased destruction of erythrocytes Haemolytic jaundice Impaired intestinal absorption • Nephritis Clinical pathology II 1/22/2020 67

Chemical Examn.....

Dtermination of Blood in the urine

- The presence of free Hemoglobin in the urine is referred to as hemoglobinuria.
- Hemoglobinuria is usually related to hematuria- a condition when intact red blood cells are present in the urine.
- Hematuria is used to indicate bleeding somewhere in the urinary tract.
- Hematuria can also be distinguished from hemoglobinuria by centrifugation and microscopic examination of the sediment from a fresh urine specimen.
 4/22/3020 Clinical pathology II 68

Chemical Examn.....

Procedure for Guaiac

- Pour 4 drops of urine and a few drops of conc acetic acid in one test tube.
- Pour the following into a second test tube

Clinical pathology II

- A few drop of Guaiac (C6H4(OH)OCH3)
- 2 ml ethanol (95%)
- 2 ml fresh 3% H2O2
- Mix the above slowly

4/22/2020

• Pour the same amount into the side of the urine tube.

Chemical Examn.....

Procedure for Benzidine

- In a test tube, dissolve a small quantity of benzidine in glacial acetic acid
- Add 2 ml of urine to this

Clinical pathology II

4/22/2020

- · Add one ml of fresh hydrogen peroxide and mix
- Development of green to blue colour is positive for blood

Chemical	Examn	Chem
 Haemoglobinuria Bacillary haemoglobinuria (Clostridium haemolyticum) Leptospirosis Babesiosis Babesiosis Photosensitization Severe burns Incompatible blood transfusion Plant poisoning Myoglobinuria 		 Bile Salts Bile salts occur is especially in jaundi But the small quadifficult to detect b The presence of surface tension of tension of tension of tension of the tube.

Chemical Examn.....

- Bile salts occur in the urine in certain diseases, especially in jaundice,
- But the small quantities which appear in urine are difficult to detect by chemical tests.
- The presence of bile salt in the urine reduce the surface tension of the fluid.
- Bile salts in the urine lower the surface tension of urine that allow the sulphur particles to sink to the bottom of the tube.

Chemical Examn.....

Procedure

4/22/2020

• Place about 10 ml of urine in a test tube

- Sprinkle a little dry sulphur powder on to the surface of urine.
- Observe sulphur particles: If the sulphur powder sink immediately, the urine is positive for bile salts

80

Microscopic Examn.....

- Microscopic examination of urine is also called as the "liquid biopsy of the urinary tract"
- Urine consists of various microscopic, insoluble and solid elements in suspension.
- Since they settle down on standing and centrifugation they are known as urinary deposits or sediments.
- Examination of urinary deposit is helpful for diagnosis and management of urinary tract diseases

77

79

4/22/2020

4/22/2020

Microscopic Examn.....

- These elements are mostly found in acid and hypertonic urine
- They deteriorate rapidly in alkaline and hypotonic solution
- A mid-stream, freshly voided, first morning specimen is preferred since it is the most concentrated
- The specimen should be examined within 2 hours of voiding because cells and casts degenerate upon standing at room temperature.
- If preservative is required, then crystal of thymol or drops of formalin (40%) is added to urine specimen

Clinical pathology II

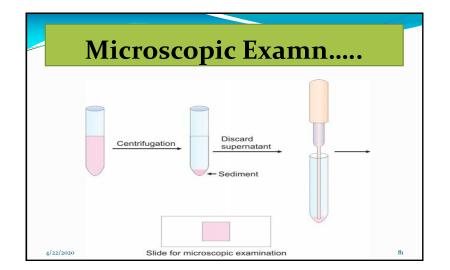
Microscopic Examn.....

Centrifugation and Examination of the urine specimen

• Mix the specimen well, as casts tend to settle out.

Clinical pathology II

4/22/2020


4/22/2020

- Pour 10-12ml of the sample into a conical tube or test tube and centrifuge at 1500-2000rpm for 5-10 minutes.
- Remove supernatant, leaving a small amount of urine in the tube (1ml).
- Suspend the sediment and take one or two drops of the unstained sediment to examined along with the stained sediment
- Place one to two drops of "UriStain" (mostly composed of Crystal Violet, Ethyl Alcohol, Safranin and Water & Stabilizers, Ammonium Oxalate) in the remaining sediment and mix.

Clinical pathology II

Microscopic Examn.....

- On a clean slide, place one drop from stained and one drop from unstained sediment and cover each drop with a coverslip by avoiding bubbles.
- Examine with low power and subdued light, and examine the entire area.
- Casts mostly found along the edges of the coverslip and they are counted under low power and differentiated under high power.
- Red blood cells, leukocytes, and epithelial cells and others are counted at least in ten fields to make a report

Microscopic Examn.....

Classification of Sediment

- Urine sediments can be categorized into organized and nonorganized sediments based on the substances they are composed of.
- Of the organized fraction having clinical importance the followings are included:
 - Epithelial cells
 - Leukocytes
 - Erythrocytes
 - Casts
 - Microbes (Bacteria, yeast, fungi, protozoa, parasite ova)
- From the unorganized elements : crystals, pigments and fat droplets are primarily concern.

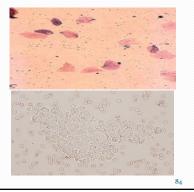
Microscopic Examn.....

Epithelial Cells

4/22/2020

- Few epithelial cells (o-2 / LPF) are normally seen in the urine
- Their number could be increased where there is renal pathology elsewhere in the system.
- Are of three types: Squamous, Transitional and Renal tubular epithelial cells
- Large squamous cells are derived from the lower urethra and vagina.
- Transitional epithelial cells are from the urethra, bladder, ureters or renal pelvis.
- The smaller round to polyhedral cells come from the renal tubules.

Clinical pathology II


Microscopic Examn.....

Squamous Epithelial Cells

Clinical pathology II

- These are large cells, rectangular in shape, flat with abundant cytoplasm and a small central nucleus
- They are best seen under low power objective (×10).
- Presence of large numbers indicated contamination of urine with vaginal fluid.

4/22/2020

Microscopic Examn..... Microscopic Examn..... **Renal Tubular Epithelial (RTE) Cells Transitional Cells** • These cells are small (about the same • These cells are large, and size or slightly larger than white oval, or (caudate cells) pear-shaped blood cell) polyhedral, or oval with granular cytoplasm • Generally much larger than Has a single, large, refractile, WBC with abundant eccentric nucleus is often seen cytoplasm Increased numbers are found in • Has distinct nucleus located conditions causing tubular damage centrally like acute tubular necrosis, • Large numbers in urine pyelonephritis, viral infection, occur after catheterization allograft rejection, and salicylate or and in transitional cell heavy metal poisoning. carcinoma. Clinical pathology II 4/22/2020

Microscopic Examn.....

Leukocytes

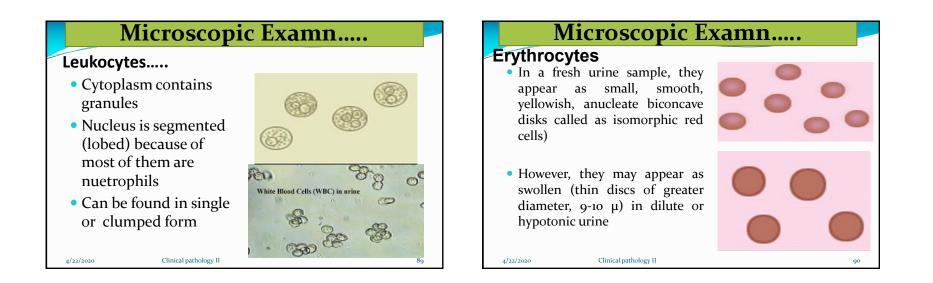
4/22/2020

- Under normal conditions, only a few white blood cells are present. Normal range: 0-2 WBC/HPF.
- Appearance: normally, clear granular disc shaped
- Measure 10-15 µm, with visible nuclei

Clinical pathology II

- In hypotonic urine they are swollen and show Brownian movement; are called as glitter cells
- Predominantly, they are polymorphonuclear (neutrophils)
- Clumps of numerous white cells are indicators of infections and injury to urinary tract.

Microscopic Examn.....


Leukocytes.....

- Increased numbers of white cells occur in fever, pyelonephritis, lower urinary tract infection, tubule-interstitial nephritis, and renal transplant rejection.
- In urinary tract infection, following are usually observed in combination:
 - Clumps of pus cells or pus cells >10/HPF
 - Bacteria

87

- Albuminuria
- Positive nitrite test

4/22/2020 Clinical pathology II

01

Microscopic Examn.....

Erythrocytes.....

- They may appear crenated (smaller diameter with spikey surface) in hypertonic urine.
- In glomerulonephritis, red cells are typically described as of dysmorphic (i.e. markedly variable in size and shape)
- > 80% of dysmorphic red cells is suggestive of glomerular pathology 4/22/2020
 Clinical pathology II

Microscopic Examn.....

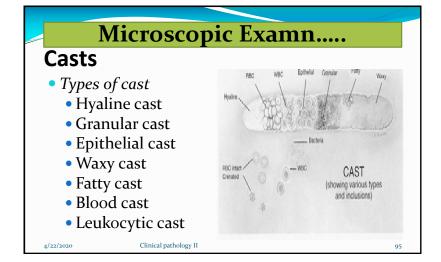
Casts

4/22/2020

- Casts are cylindrical bodies formed either in the distal convoluted tubules or the collecting ducts of the kidney
- Since the walls of the tubule act as a mold for cast formation, the width of the tubule determines the width of the cast
- Thus, narrow casts are formed in the distal tubules while broad casts are formed in the collecting ducts.

Microscopic Examn.....

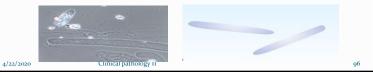
Casts.....


- The matrix of all casts is Tamm-Horsfall protein, a glycoprotein secreted by the distal loop of Henle and the distal tubule
- Although there are several types of casts, all urine casts are basically hyaline.
- But various types of casts are formed when different elements get deposited on the hyaline material
- They are of two main types:
 - Non-cellular: Hyaline, granular, waxy, fatty
 - Cellular: Red blood cell, white blood cell and epithelial cell 4/22/2020

Clinical pathology II

Microscopic Examn.....

Casts.....


- Its formation is enhanced by:
 - Acidity of urine
 - Increased solute conc
 - Decreased urine flow rate (urine stasis)
 - Presence excess amount of plasma proteins
- A significant number of urinary casts may indicate the presence of renal disease.
- Casts are best seen under low power objective (×10) with condenser lowered down to reduce the illumination. Clinical nathology II

Microscopic Examn.....

Hyaline Cast

- These are the most common type of casts in urine and are homogenous, colorless, transparent, and refractile
- They are cylindrical with parallel sides and blunt rounded ends and low refractive index.
- It needs phase microscopy • to enhance visualization
- Increased amounts seen with dehydration, fever. emotional stress, strenuous exercise

Microscopic Examn..... Granular Cast

- It is an aged cellular cast
- Characterized by degenerated cellular debris that makes it granular in appearance.

97

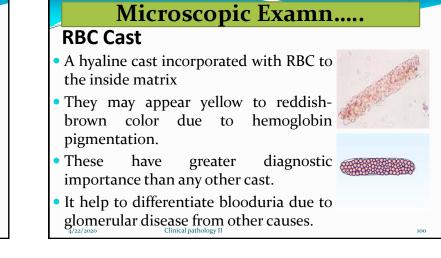
- These are cylindrical structures with coarse or fine granules embedded in Tamm-Horsfall protein matrix
- They are seen in strenuous exercise and in fever, acute glomerulo-nephritis, and pyelonephritis Clinical pathology II

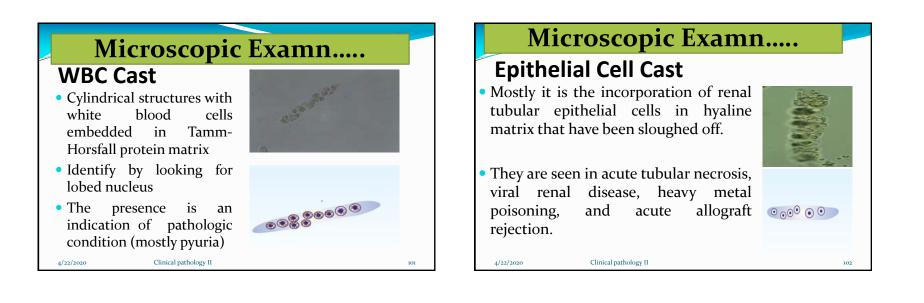
Microscopic Examn.....

Waxy Cast

• They form when hyaline casts remain in renal tubules for long time (prolonged stasis).

- They have homogenous, smooth glassy, cracked or serrated margins and irregular broken-off ends.
- The ends are straight and sharp and light yellow in color.
- They are most commonly seen in end-stage renal failure


Microscopic Examn.....


Fatty Cast

• These are cylindrical structures filled with highly refractile fat globules (triglycerides and cholesterol esters) in protein matrix.

- Highly refractile due to fat content
- Easily identify using polarized microscopy:
- It is the pathologic finding, often seen in nephrotic Syndrome

Microscopic Examn.....

Crystals and Amorphous

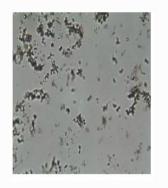
- Crystals are refractile structures with a definite geometric shape due to 3-dimensional arrangement of its atoms and molecules.
- Amorphous material (or deposit) has no definite shape and is commonly seen in the form of granular aggregates or clumps
- Crystals in urine can be divided into two main types:
 - Normal (seen in normal urinary sediment) and
 - Abnormal (seen in diseased states).

Microscopic Examn..... **Crystals and Amorphous** Normal crystals Abnormal crystals Calcium oxalate Cysteine Cholesterol • Triple phosphates • Uric acid Bilirubin • Amorphous phosphates Tyrosine Amorphous urates Sulfonamide and Ammonium urate Leucine 4/22/2020 Clinical pathology II 104

Microscopic Examn.....

Crystals.....

4/22/2020


4/22/2020

- The presence of crystals in urine depends on pH, solubility and concentration of crystalloid.
- Amorphous urates and uric acid, calcium oxalate and hippuric acid found in acid urine
- Alkaline urine may contain triple phosphates, amorphous phosphate, calcium carbonate (especially in the horse) and rarely ammonium biurate crystals
- Pathologic crystals found in acid or neutral urine include cystine, tyrosine, leucine and bilirubin

Microscopic Examn.....

Amorphous Urates

- These crystals have no distinct form and appear as sand-like granules
- Macroscopically appear as a pink/ yellow sediment after urine centrifugation
- Found in acid pH urine 4/22/2020 Clinical pathology II

Microscopic Examn.....

Clinical pathology II

Uric Acid Crystals

- Found in acid pH urine
- Appear in several forms (diamond, round, plates)
- But diamond shape is the most common form
- Having multicolored when polarized
- Increased numbers are found in gout and leukemia

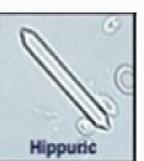
Clinical pathology II

107

105

Microscopic Examn..... Calcium Oxalate Crystals

- Appear in acid pH urine
- It is the most frequently observed crystal in urine
- Has octahedral shape, often referred as an "envelope" shape
- Multicolored when polarized
- Their increased number in fresh urine (oxaluria) may also suggest oxalate stones /ethylene glycol poisoning.


Ca Oxalate

Microscopic Examn..... Hippuric

- It is found in acid, neutral or slightly alkaline urine
- Having colorless appearance
- Most commonly appear in the form needle
- It presence indicated a toluene intoxication

4/22/2020

4/22/2020

Microscopic Examn..... Amorphous Phosphates

- Like Amorphous urate has no distinct form and appear as sand-like granules microscopically
- Macroscopically appear as a white sediment just after centrifugation
- It is a crystal found in alkaline pH urine Clinical pathology II

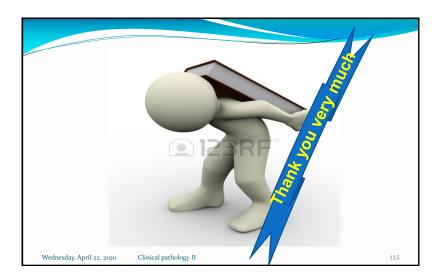
Microscopic Examn.....

Triple Phosphate Crystals

Clinical pathology II

- The most frequently observed crystal in alkaline urine
- Characterized by Colorless with 4-6 sided prisms
- Referred as 'coffin lid crystals'

Clinical pathology II



m

<section-header><section-header><u<section-header>

Microscopic Examn Abnormal crystal					
Crystal	Urine rxn	Color	Forms	Dissolved by	Appearance
Bilirubin	Acid	Yellow or dark red	Have various aggregation of tiny amorphous needle shape or thorny shape.	-	Bilirubin
	Acid	Yellow Clinical pathology	striations	NaOH	Leucine

Microscopic Examn					
Abnormal crystal					
Crystal	Urine rxn	Color	Forms	Dissolved by	Appearance
Tyrosine	Acid	Color- less	Fine needles usually arranged in sheaves (bound) with a constriction at middle	NH4OH HCI	Tyrosine
Cystine	Acid	Color- less	Haxagonal plates	HCI	Cystine
4/22/2020		Clinical patho	logy II		114

