Immune Responses to Infectious Disease Dr. Capers IMMUNOLOGY

Kindt • Goldsby • Osborne

Kuby IMMUNOLOGY Sixth Edition

Immune Response to Infectious Diseases

Copyright © 2007 by W. H. Freeman and Company

Chapter 18 Opener Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company

Pathogens use
 variety of strategies
 to escape immune
 system

Figure 18-1 Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H.Freeman and Company

Infectious diseases	Annual deaths
Respiratory infections	3.96
HIV/AIDS	2.77
Diarrheal diseases	1.80
Tuberculosis	1.56
Vaccine-preventable	
childhood diseases	1.12
Malaria	1.27
STDs (other than HIV)	0.18
Meningitis	0.17
Hepatitis B and C	0.16
Tropical parasitic	
diseases	0.13
Dengue	0.02
Other infectious diseases	1.76

Viral Infections

 Long latency period before severe illness

• HIV

 Efficient transmission during short illness

• Influenza

Life cycle in other host, vectors
 West nile

Viral Infections

Activation of NK cells 2-5(A) synthetase ATP 2-5(A) Inactive Active Induction of interferons **RNAse** L **RNAse** L Degradation of eIF2-GDP poly(A)mRNA (nonfunctional) • Bind to IFN receptor INHIBITION OF PROTEIN Figure 18-2 Activate JAK-STAT pathway (uby IMMUNOLOGY, Sixth Edition Induces transcription of genes of host cell Enzyme that degrades viral RNA Can be neutralized by antibodies If viral DNA is integrated into host, cell must be killed

IFN-a/B

-IFN-α/β receptor

PKR (inactive)

PKR (activated

of elF-2

Phosphorylation

+ ATP and dsRNA

TABLE 18-1	Mechanisms of humoral and cell-mediated immune responses to viruses		
Response type	Effector molecule or cell	Activity	
Humoral	Antibody (especially secretory IgA)	Blocks binding of virus to host cells, thus preventing infection or reinfection	
	IgG, IgM, and IgA antibody	Blocks fusion of viral envelope with host cell's plasma membrane	
	IgG and IgM antibody	Enhances phagocytosis of viral particles (opsonization)	
	IgM antibody	Agglutinates viral particles	
	Complement activated by IgG or IgM antibody	Mediates opsonization by C3b and lysis of enveloped viral particles by membrane- attack complex	
Cell mediated	IFN-γ secreted by T _H or T _C cells Cytotoxic T lymphocytes (CTLs) NK cells and macrophages	Has direct antiviral activity Kill virus-infected self cells Kill virus-infected cells by antibody- dependent cell-mediated cytotoxicity (ADCC)	

Table 18-1Kuby IMMUNOLOGY, Sixth Edition© 2007 W. H. Freeman and Company

Viral Infections

Evading host defenses

- Block or inhibit production of interferons
- Inhibition of antigen presentation
- Evade complement
- Cause general immunosuppression

Influenza – "Flu"

- Respiratory illness
- Responsible for some of the worse pandemics in history
- Spherical virion surrounded by lipid bilayer acquired from host
 - 2 glycoproteins hemagglutin (HA) and neuraminidase (NA)
 - Antigenic variation in these (mutations leading to new strains) cause problems in developing sustained immunity in the population

Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Figure 18-3 Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H.Freeman and Company

Figure 18-6b Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Bacterial Infections

- Immunity mainly achieved by antibodies
 - Unless bacteria is capable of intracellular growth
- Depending on # of organisms entering and virulence, different levels of host defense enlisted
 - If inoculum size and virulence is low, phagocytes may be able to eliminate the bacteria

Figure 18-8 Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company

Bacterial Infections

• 4 steps:

- Attachment to host cells
- Proliferation
- Invasion of host tissue
- Toxin-induced damage to host cells
- Host defenses act at each of these sites, some bacteria have developed ways to avoid

TABLE 18-3Host immune responses to bacterial infection and bacterial evasion mechanisms		
Infection process	Host defense	Bacterial evasion mechanisms
Attachment to host cells	Blockage of attachment by secretory IgA antibodies	Secretion of proteases that cleave secretory IgA dimers (<i>Neisseria meningitidis, N. gonorrhoeae, Haemophilus influenzae</i>) Antigenic variation in attachment structures (pili of <i>N. gonorrhoeae</i>)
Proliferation	Phagocytosis (Ab- and C3b-mediated opsonization)	Production of surface structures (polysaccharide capsule, M protein, fibrin coat) that inhibit phagocytic cells Mechanisms for surviving within phagocytic cells Induction of apoptosis in macrophages (<i>Shigella flexneri</i>)
	Complement-mediated lysis and localized inflammatory response	Generalized resistance of gram-positive bacteria to complement- mediated lysis Insertion of membrane-attack complex prevented by long side chain in cell-wall LPS (some gram-negative bacteria)
Invasion of host tissue	s Ab-mediated agglutination	Secretion of elastase that inactivates C3a and C5a (Pseudomonas)
Toxin-induced damage to host cells	e Neutralization of toxin by antibody	Secretion of hyaluronidase, which enhances bacterial invasiveness

Table 18-3Kuby IMMUNOLOGY, Sixth Edition© 2007 W. H. Freeman and Company

Immune responses can contribute to bacterial pathogenesis

Overproduction of cytokines

 Septic shock, food poisoning, toxic shock

 Intracellular bacteria

 Chronic antigenic activation of CD4+ T cells
 Leads to tissue destruction

- Characteristics of delayed-type hypersensitivity
- Leads to development of granuloma and necrosis

Tuberculosis

- Intracellular bacillus
- CD4+ T cell
 - response
 - Responsible for most of the tissue damage
 - This necrosis can be seen when tested for TB

 Tubercle formed in pulmonary tuberculosis

Parasitic Disease

- Protozoan and helminthic organsims
- Malaria Plasmodium, protozoan
 - Complex life cycle

Parasitic Infections

HelminthesIgE plays big role

Fungal Infections

- Most fungal infections of healthy individuals resolve rapidly
- Barriers of innate immunity control most fungi
- Mannose-binding protein recognizes some major fungal pathogens

TABLE 18-4	Classification of fungal of	ssification of fungal diseases	
Site of infection	Superficial	Epidermis, no inflammation	
	Cutaneous	Skin, hair, nails	
	Subcutaneous	Wounds, usually inflammatory	
	Deep or systemic	Lungs, abdominal viscera, bones, CNS	
Route of acquis neous	tion Exogenous	Environmental, airborne, cutaneous or percuta-	
	Endogenous	Latent reactivation, commensal organism	
Virulence	Primary Opportunistic	Inherently virulent, infects healthy host Low virulence, infects immunocompromised host	

Table 18-4 Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Kuby IMMUNOLOGY, Sixth Edition

© 2007 W. H. Freeman and Company

Bioterrorism

Something to be concerned with....

