
Springer Texts in Statistics

Richard A. Berk

Statistical
Learning from
a Regression
Perspective
 Second Edition

Springer Texts in Statistics

Series editors

R. DeVeaux
S. Fienberg
I. Olkin

More information about this series at http://www.springer.com/series/417

Richard A. Berk

Statistical Learning
from a Regression
Perspective
Second Edition

123

Richard A. Berk
Department of Statistics
The Wharton School
University of Pennsylvania
Philadelphia, PA
USA

and

Department of Criminology
Schools of Arts and Sciences
University of Pennsylvania
Philadelphia, PA
USA

ISSN 1431-875X ISSN 2197-4136 (electronic)
Springer Texts in Statistics
ISBN 978-3-319-44047-7 ISBN 978-3-319-44048-4 (eBook)
DOI 10.1007/978-3-319-44048-4

Library of Congress Control Number: 2016948105

© Springer International Publishing Switzerland 2008, 2016, corrected publication 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

In God we trust. All others
must have data.

W. Edwards Deming

In memory of Peter H. Rossi,
a mentor, colleague, and friend

Preface to the Second Edition

Over the past 8 years, the topics associated with statistical learning have been
expanded and consolidated. They have been expanded because new problems have
been tackled, new tools have been developed, and older tools have been refined.
They have been consolidated because many unifying concepts and themes have
been identified. It has also become more clear from practice which statistical
learning tools will be widely applied and which are likely to see limited service. In
short, it seems this is the time to revisit the material and make it more current.

There are currently several excellent textbook treatments of statistical learning
and its very close cousin, machine learning. The second edition of Elements of
Statistical Learning by Hastie, Tibshirani, and Friedman (2009) is in my view still
the gold standard, but there are other treatments that in their own way can be
excellent. Examples include Machine Learning: A Probabilistic Perspective by
Kevin Murphy (2012), Principles and Theory for Data Mining and Machine
Learning by Clarke, Fokoué, and Zhang (2009), and Applied Predictive Modeling
by Kuhn and Johnson (2013).

Yet, it is sometimes difficult to appreciate from these treatments that a proper
application of statistical learning is comprised of (1) data collection, (2) data
management, (3) data analysis, and (4) interpretation of results. The first entails
finding and acquiring the data to be analyzed. The second requires putting the data
into an accessible form. The third depends on extracting instructive patterns from
the data. The fourth calls for making sense of those patterns. For example, a
statistical learning data analysis might begin by collecting information from “rap
sheets” and other kinds of official records about prison inmates who have been
released on parole. The information obtained might be organized so that arrests
were nested within individuals. At that point, support vector machines could be
used to classify offenders into those who re-offend after release on parole and those
who do not. Finally, the classes obtained might be employed to forecast subsequent
re-offending when the actual outcome is not known. Although there is a chrono-
logical sequence to these activities, one must anticipate later steps as earlier steps
are undertaken. Will the offender classes, for instance, include or exclude juvenile
offenses or vehicular offenses? How this is decided will affect the choice of

ix

statistical learning tools, how they are implemented, and how they are interpreted.
Moreover, the preferred statistical learning procedures anticipated place constraints
on how the offenses are coded, while the ways in which the results are likely to be
used affect how the procedures are tuned. In short, no single activity should be
considered in isolation from the other three.

Nevertheless, textbook treatments of statistical learning (and statistics textbooks
more generally) focus on the third step: the statistical procedures. This can make
good sense if the treatments are to be of manageable length and within the authors’
expertise, but risks the misleading impression that once the key statistical theory is
understood, one is ready to proceed with data. The result can be a fancy statistical
analysis as a bridge to nowhere. To reprise an aphorism attributed to Albert
Einstein: “In theory, theory and practice are the same. In practice they are not.”

The commitment to practice as well as theory will sometimes engender con-
siderable frustration. There are times when the theory is not readily translated into
practice. And there are times when practice, even practice that seems intuitively
sound, will have no formal justification. There are also important open questions
leaving large holes in procedures one would like to apply. A particular problem is
statistical inference, especially for procedures that proceed in an inductive manner.
In effect, they capitalize on “data snooping,” which can invalidate estimation,
confidence intervals, and statistical tests.

In the first edition, statistical tools characterized as supervised learning were the
main focus. But a serious effort was made to establish links to data collection, data
management, and proper interpretation of results. That effort is redoubled in this
edition. At the same time, there is a price. No claims are made for anything like an
encyclopedic coverage of supervised learning, let alone of the underlying statistical
theory. There are books available that take the encyclopedic approach, which can
have the feel of a trip through Europe spending 24 hours in each of the major cities.

Here, the coverage is highly selective. Over the past decade, the wide range of
real applications has begun to sort the enormous variety of statistical learning tools
into those primarily of theoretical interest or in early stages of development, the
niche players, and procedures that have been successfully and widely applied
(Jordan and Mitchell, 2015). Here, the third group is emphasized.

Even among the third group, choices need to be made. The statistical learning
material addressed reflects the subject-matter fields with which I am more familiar.
As a result, applications in the social and policy sciences are emphasized. This is a
pity because there are truly fascinating applications in the natural sciences and
engineering. But in the words of Dirty Harry: “A man’s got to know his limitations”
(from the movie Magnum Force, 1973).1 My several forays into natural science
applications do not qualify as real expertise.

1“Dirty” Harry Callahan was a police detective played by Clint Eastwood in five movies filmed
during the 1970s and 1980s. Dirty Harry was known for his strong-armed methods and blunt
catch-phrases, many of which are now ingrained in American popular culture.

x Preface to the Second Edition

The second edition retains it commitment to the statistical programming lan-
guage R. If anything the commitment is stronger. R provides access to
state-of-the-art statistics, including those needed for statistical learning. It is also
now a standard training component in top departments of statistics so for many
readers, applications of the statistical procedures discussed will come quite natu-
rally. Where it could be useful, I now include the R-code needed when the usual R
documentation may be insufficient. That code is written to be accessible. Often
there will be more elegant, or at least more efficient, ways to proceed. When
practical, I develop examples using data that can be downloaded from one of the R
libraries. But, R is a moving target. Code that runs now may not run in the future. In
the year it took to complete this edition, many key procedures were updated several
times, and there were three updates of R itself. Caveat emptor. Readers will also
notice that the graphical output from the many procedures used do not have
common format or color scheme. In some cases, it would have been very difficult to
force a common set of graphing conventions, and it is probably important to show a
good approximation of the default output in any case. Aesthetics and common
formats can be a casualty.

In summary, the second edition retains its emphasis on supervised learning that
can be treated as a form of regression analysis. Social science and policy appli-
cations are prominent. Where practical, substantial links are made to data collection,
data management, and proper interpretation of results, some of which can raise
ethical concerns (Dwork et al., 2011; Zemel et al., 2013). I hope it works.

The first chapter has been rewritten almost from scratch in part from experience I
have had trying to teach the material. It much better reflects new views about
unifying concepts and themes. I think the chapter also gets to punch lines more
quickly and coherently. But readers who are looking for simple recipes will be
disappointed. The exposition is by design not “point-and-click.” There is as well
some time spent on what some statisticians call “meta-issues.” A good data analyst
must know what to compute and what to make of the computed results. How to
compute is important, but by itself is nearly purposeless.

All of the other chapters have also been revised and updated with an eye toward
far greater clarity. In many places greater clarity was sorely needed. I now appre-
ciate much better how difficult it can be to translate statistical concepts and notation
into plain English. Where I have still failed, please accept my apology.

I have also tried to take into account that often a particular chapter is down-
loaded and read in isolation. Because much of the material is cumulative, working
through a single chapter can on occasion create special challenges. I have tried to
include text to help, but for readers working cover to cover, there are necessarily
some redundancies, and annoying pointers to material in other chapters. I hope such
readers will be patient with me.

I continue to be favored with remarkable colleagues and graduate students. My
professional life is one ongoing tutorial in statistics, thanks to Larry Brown,
Andreas Buja, Linda Zhao, and Ed George. All four are as collegial as they are
smart. I have learned a great deal as well from former students Adam Kapelner,
Justin Bleich, Emil Pitkin, Kai Zhang, Dan McCarthy, and Kory Johnson. Arjun

Preface to the Second Edition xi

Gupta checked the exercises at the end of each chapter. Finally, there are the many
students who took my statistics classes and whose questions got me to think a lot
harder about the material. Thanks to them as well.

But I would probably not have benefited nearly so much from all the talent
around me were it not for my earlier relationship with David Freedman. He was my
bridge from routine calculations within standard statistical packages to a far better
appreciation of the underlying foundations of modern statistics. He also reinforced
my skepticism about many statistical applications in the social and biomedical
sciences. Shortly before he died, David asked his friends to “keep after the rascals.”
I certainly have tried.

Philadelphia, PA, USA Richard A. Berk

xii Preface to the Second Edition

Preface to the First Edition

As I was writing my recent book on regression analysis (Berk, 2003), I was struck
by how few alternatives to conventional regression there were. In the social sci-
ences, for example, one either did causal modeling econometric style or largely
gave up quantitative work. The life sciences did not seem quite so driven by causal
modeling, but causal modeling was a popular tool. As I argued at length in my
book, causal modeling as commonly undertaken is a loser.

There also seemed to be a more general problem. Across a range of scientific
disciplines there was too often little interest in statistical tools emphasizing
induction and description. With the primary goal of getting the “right” model and
its associated p-values, the older and interesting tradition of exploratory data
analysis had largely become an under-the-table activity; the approach was in fact
commonly used, but rarely discussed in polite company. How could one be a real
scientist, guided by “theory” and engaged in deductive model testing, while at the
same time snooping around in the data to determine which models to test? In the
battle for prestige, model testing had won.

Around the same time, I became aware of some new developments in applied
mathematics, computer science, and statistics making data exploration a virtue. And
with the virtue came a variety of new ideas and concepts, coupled with the very
latest in statistical computing. These new approaches, variously identified as “data
mining,” “statistical learning,” “machine learning,” and other names, were being
tried in a number of the natural and biomedical sciences, and the initial experience
looked promising.

As I started to read more deeply, however, I was struck by how difficult it was to
work across writings from such disparate disciplines. Even when the material was
essentially the same, it was very difficult to tell if it was. Each discipline brought it
own goals, concepts, naming conventions, and (maybe worst of all) notation to the
table.

In the midst of trying to impose some of my own order on the material, I came
upon The Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani, and
Jerome Friedman (Springer-Verlag, 2001). I saw in the book a heroic effort to

xiii

integrate a very wide variety of data analysis tools. I learned from the book and was
then able to approach more primary material within a useful framework.

This book is my attempt to integrate some of the same material and some new
developments of the past six years. Its intended audience is practitioners in the
social, biomedical, and ecological sciences. Applications to real data addressing real
empirical questions are emphasized. Although considerable effort has gone into
providing explanations of why the statistical procedures work the way they do, the
required mathematical background is modest. A solid course or two in regression
analysis and some familiarity with resampling procedures should suffice. A good
benchmark for regression is Freedman’s Statistical Models: Theory and Practice
(2005). A good benchmark for resampling is Manly’s Randomization, Bootstrap,
and Monte Carlo Methods in Biology (1997). Matrix algebra and calculus are used
only as languages of exposition, and only as needed. There are no proofs to be
followed.

The procedures discussed are limited to those that can be viewed as a form of
regression analysis. As explained more completely in the first chapter, this means
concentrating on statistical tools for which the conditional distribution of a response
variable is the defining interest and for which characterizing the relationships
between predictors and the response is undertaken in a serious and accessible
manner.

Regression analysis provides a unifying theme that will ease translations across
disciplines. It will also increase the comfort level for many scientists and policy
analysts for whom regression analysis is a key data analysis tool. At the same time,
a regression framework will highlight how the approaches discussed can be seen as
alternatives to conventional causal modeling.

Because the goal is to convey how these procedures can be (and are being) used
in practice, the material requires relatively in-depth illustrations and rather detailed
information on the context in which the data analysis is being undertaken. The book
draws heavily, therefore, on datasets with which I am very familiar. The same point
applies to the software used and described.

The regression framework comes at a price. A 2005 announcement for a con-
ference on data mining sponsored by the Society for Industrial and Applied
Mathematics (SIAM) listed the following topics: query/constraint-based data
mining, trend and periodicity analysis, mining data streams, data reduction/
preprocessing, feature extraction and selection, post-processing, collaborative
filtering/personalization, cost-based decision making, visual data mining,
privacy-sensitive data mining, and lots more. Many of these topics cannot be
considered a form of regression analysis. For example, procedures used for edge
detection (e.g., determining the boundaries of different kinds of land use from
remote sensing data) are basically a filtering process to remove noise from the
signal.

Another class of problems makes no distinction between predictors and
responses. The relevant techniques can be closely related, at least in spirit, to
procedures such as factor analysis and cluster analysis. One might explore, for

xiv Preface to the First Edition

example, the interaction patterns among children at school: who plays with whom.
These too are not discussed.

Other topics can be considered regression analysis only as a formality. For
example, a common data mining application in marketing is to extract from the
purchasing behavior of individual shoppers patterns that can be used to forecast
future purchases. But there are no predictors in the usual regression sense. The
conditioning is on each individual shopper. The question is not what features of
shoppers predict what they will purchase, but what a given shopper is likely to
purchase.

Finally, there are a large number of procedures that focus on the conditional
distribution of the response, much as with any regression analysis, but with little
attention to how the predictors are related to the response (Horváth and Yamamoto,
2006; Camacho et al., 2006). Such procedures neglect a key feature of regression
analysis, at least as discussed in this book, and are not considered. That said, there
is no principled reason in many cases why the role of each predictor could not be
better represented, and perhaps in the near future that shortcoming will be remedied.

In short, although using a regression framework implies a big-tent approach to
the topics included, it is not an exhaustive tent. Many interesting and powerful tools
are not discussed. Where appropriate, however, references to that material are
provided.

I may have gone a bit overboard with the number of citations I provide. The
relevant literatures are changing and growing rapidly. Today’s breakthrough can be
tomorrow’s bust, and work that by current thinking is uninteresting can be the spark
for dramatic advances in the future. At any given moment, it can be difficult to
determine which is which. In response, I have attempted to provide a rich mix of
background material, even at the risk of not being sufficiently selective. (And I have
probably missed some useful papers nevertheless.)

In the material that follows, I have tried to use consistent notation. This has
proved to be very difficult because of important differences in the conceptual tra-
ditions represented and the complexity of statistical tools discussed. For example, it
is common to see the use of the expected value operator even when the data cannot
be characterized as a collection of random variables and when the sole goal is
description.

I draw where I can from the notation used in The Elements of Statistical
Learning (Hastie et al., 2001). Thus, the symbol X is used for an input variable, or
predictor in statistical parlance. When X is a set of inputs to be treated as a vector,
each component is indexed by a subscript (e.g., Xj). Quantitative outputs, also
called response variables, are represented by Y , and categorical outputs, another
kind of response variable, are represented by G with K categories. Upper case
letters are used to refer to variables in a general way, with details to follow as
needed. Sometimes these variables are treated as random variables, and sometimes
not. I try to make that clear in context.

Observed values are shown in lower case, usually with a subscript. Thus xi is the
ith observed value for the variable X. Sometimes these observed values are nothing

Preface to the First Edition xv

more than the data on hand. Sometimes they are realizations of random variables.
Again, I try to make this clear in context.

Matrices are represented in bold uppercase. For example, in matrix form the
usual set of p predictors, each with N observations, is an N � p matrix X. The
subscript i is generally used for observations and the subscript j for variables. Bold
lowercase letters are used for vectors with N elements, commonly columns of X.
Other vectors are generally not represented in boldface fonts, but again, I try to
make this clear in context.

If one treats Y as a random variable, its observed values y are either a random
sample from a population or a realization of a stochastic process. The conditional
means of the random variable Y for various configurations of X-values are com-
monly referred to as “expected values,” and are either the conditional means of Y
for different configurations of X-values in the population or for the stochastic
process by which the data were generated. A common notation is EðY jXÞ. The
EðY jXÞ is also often called a “parameter.” The conditional means computed from
the data are often called “sample statistics,” or in this case, “sample means.” In the
regression context, the sample means are commonly referred to as the fitted values,
often written as ŷjX. Subscripting can follow as already described.

Unfortunately, after that it gets messier. First, I often have to decipher the intent
in the notation used by others. No doubt I sometimes get it wrong. For example, it is
often unclear if a computer algorithm is formally meant to be an estimator or a
descriptor.

Second, there are some complications in representing nested realizations of the
same variable (as in the bootstrap), or model output that is subject to several
different chance processes. There is a practical limit to the number and types of
bars, asterisks, hats, and tildes one can effectively use. I try to provide warnings
(and apologies) when things get cluttered.

There are also some labeling issues. When I am referring to the general linear
model (i.e., linear regression, analysis of variance, and analysis of covariance), I use
the terms classical linear regression, or conventional linear regression. All regres-
sions in which the functional forms are determined before the fitting process begins,
I call parametric. All regressions in which the functional forms are determined as
part of the fitting process, I call nonparametric. When there is some of both, I call
the regressions semiparametric. Sometimes the lines among parametric, nonpara-
metric, and semiparametric are fuzzy, but I try to make clear what I mean in
context. Although these naming conventions are roughly consistent with much
common practice, they are not universal.

All of the computing done for this book was undertaken in R. R is a pro-
gramming language designed for statistical computing and graphics. It has become
a major vehicle for developmental work in statistics and is increasingly being used
by practitioners. A key reason for relying on R for this book is that most of the
newest developments in statistical learning and related fields can be found in R.
Another reason is that it is free.

Readers familiar with S or S-plus will immediately feel at home; R is basically a
“dialect” of S. For others, there are several excellent books providing a good

xvi Preface to the First Edition

introduction to data analysis using R. Dalgaard (2002), Crawley (2007), and
Maindonald and Braun (2007) are all very accessible. Readers who are especially
interested in graphics should consult Murrell (2006). The most useful R website can
be found at http://www.r-project.org/.

The use of R raises the question of how much R-code to include. The R-code
used to construct all of the applications in the book could be made available.
However, detailed code is largely not shown. Many of the procedures used are
somewhat in flux. Code that works one day may need some tweaking the next. As
an alternative, the procedures discussed are identified as needed so that detailed
information about how to proceed in R can be easily obtained from R help com-
mands or supporting documentation. When the data used in this book are propri-
etary or otherwise not publicly available, similar data and appropriate R-code are
substituted.

There are exercises at the end of each chapter. They are meant to be hands-on
data analyses built around R. As such, they require some facility with R. However,
the goals of each problem are reasonably clear so that other software and datasets
can be used. Often the exercises can be usefully repeated with different datasets.

The book has been written so that later chapters depend substantially on earlier
chapters. For example, because classification and regression trees (CART) can be
an important component of boosting, it may be difficult to follow the discussion of
boosting without having read the earlier chapter on CART. However, readers who
already have a solid background in material covered earlier should have little
trouble skipping ahead. The notation and terms used are reasonably standard or can
be easily figured out. In addition, the final chapter can be read at almost any time.
One reviewer suggested that much of the material could be usefully brought for-
ward to Chap. 1.

Finally, there is the matter of tone. The past several decades have seen the
development of a dizzying array of new statistical procedures, sometimes intro-
duced with the hype of a big-budget movie. Advertising from major statistical
software providers has typically made things worse. Although there have been
genuine and useful advances, none of the techniques have ever lived up to their
most optimistic billing. Widespread misuse has further increased the gap between
promised performance and actual performance. In this book, therefore, the tone will
be cautious, some might even say dark. I hope this will not discourage readers from
engaging seriously with the material. The intent is to provide a balanced discussion
of the limitations as well as the strengths of the statistical learning procedures.

While working on this book, I was able to rely on support from several sources.
Much of the work was funded by a grant from the National Science Foundation:
SES-0437169, “Ensemble Methods for Data Analysis in the Behavioral, Social and
Economic Sciences.” The first draft was completed while I was on sabbatical at the
Department of Earth, Atmosphere, and Oceans, at the Ecole Normale Supérieur in
Paris. The second draft was completed after I moved from UCLA to the University
of Pennsylvania. All three locations provided congenial working environments.
Most important, I benefited enormously from discussions about statistical learning
with colleagues at UCLA, Penn and elsewhere: Larry Brown, Andreas Buja, Jan de

Preface to the First Edition xvii

Leeuw, David Freedman, Mark Hansen, Andy Liaw, Greg Ridgeway, Bob Stine,
Mikhail Traskin and Adi Wyner. Each is knowledgeable, smart and constructive.
I also learned a great deal from several very helpful, anonymous reviews. Dick
Koch was enormously helpful and patient when I had problems making TeXShop
perform properly. Finally, I have benefited over the past several years from inter-
acting with talented graduate students: Yan He, Weihua Huang, Brian Kriegler, and
Jie Shen. Brian Kriegler deserves a special thanks for working through the exercises
at the end of each chapter.

Certain datasets and analyses were funded as part of research projects under-
taken for the California Policy Research Center, The Inter-America Tropical Tuna
Commission, the National Institute of Justice, the County of Los Angeles, the
California Department of Correction and Rehabilitation, the Los Angeles Sheriff’s
Department, and the Philadelphia Department of Adult Probation and Parole.
Support from all of these sources is gratefully acknowledged.

Philadelphia, PA Richard A. Berk
2006

xviii Preface to the First Edition

The original version of the book was revised:
Belated corrections have been incorporated.
The erratum to the book is available at https://
doi.org/10.1007/978-3-319-44048-4_10

xix

Contents

1 Statistical Learning as a Regression Problem 1
1.1 Getting Started . 2
1.2 Setting the Regression Context . 2
1.3 Revisiting the Ubiquitous Linear Regression Model 8

1.3.1 Problems in Practice . 9
1.4 Working with Statistical Models that Are Wrong 11

1.4.1 An Alternative Approach to Regression 15
1.5 The Transition to Statistical Learning . 23

1.5.1 Models Versus Algorithms . 24
1.6 Some Initial Concepts. 28

1.6.1 Overall Goals of Statistical Learning 29
1.6.2 Data Requirements: Training Data, Evaluation Data

and Test Data . 31
1.6.3 Loss Functions and Related Concepts 35
1.6.4 The Bias-Variance Tradeoff. 38
1.6.5 Linear Estimators. 39
1.6.6 Degrees of Freedom . 40
1.6.7 Basis Functions . 42
1.6.8 The Curse of Dimensionality. 46

1.7 Statistical Learning in Context . 48

2 Splines, Smoothers, and Kernels . 55
2.1 Introduction . 55
2.2 Regression Splines . 55

2.2.1 Applying a Piecewise Linear Basis 56
2.2.2 Polynomial Regression Splines . 61
2.2.3 Natural Cubic Splines . 63
2.2.4 B-Splines . 66

2.3 Penalized Smoothing . 69
2.3.1 Shrinkage and Regularization . 70

xxi

2.4 Smoothing Splines . 81
2.4.1 A Smoothing Splines Illustration 84

2.5 Locally Weighted Regression as a Smoother 86
2.5.1 Nearest Neighbor Methods . 87
2.5.2 Locally Weighted Regression . 88

2.6 Smoothers for Multiple Predictors . 92
2.6.1 Smoothing in Two Dimensions . 93
2.6.2 The Generalized Additive Model. 96

2.7 Smoothers with Categorical Variables . 103
2.7.1 An Illustration Using the Generalized Additive Model

with a Binary Outcome . 103
2.8 An Illustration of Statistical Inference After Model Selection 106
2.9 Kernelized Regression . 114

2.9.1 Radial Basis Kernel . 118
2.9.2 ANOVA Radial Basis Kernel . 120
2.9.3 A Kernel Regression Application 120

2.10 Summary and Conclusions . 124

3 Classification and Regression Trees (CART). 129
3.1 Introduction . 129
3.2 The Basic Ideas . 131

3.2.1 Tree Diagrams for Understanding Conditional
Relationships . 132

3.2.2 Classification and Forecasting with CART 136
3.2.3 Confusion Tables. 137
3.2.4 CART as an Adaptive Nearest Neighbor Method 139

3.3 Splitting a Node . 140
3.4 Fitted Values . 144

3.4.1 Fitted Values in Classification . 144
3.4.2 An Illustrative Prison Inmate Risk Assessment

Using CART . 145
3.5 Classification Errors and Costs . 148

3.5.1 Default Costs in CART . 149
3.5.2 Prior Probabilities and Relative Misclassification

Costs . 151
3.6 Pruning . 157

3.6.1 Impurity Versus RaðTÞ . 159
3.7 Missing Data . 159

3.7.1 Missing Data with CART . 161
3.8 Statistical Inference with CART . 163
3.9 From Classification to Forecasting . 165
3.10 Varying the Prior and the Complexity Parameter 166
3.11 An Example with Three Response Categories 170
3.12 Some Further Cautions in Interpreting CART Results 173

3.12.1 Model Bias . 173

xxii Contents

3.12.2 Model Variance . 173
3.13 Regression Trees. 175

3.13.1 A CART Application for the Correlates
of a Student’s GPA in High School 177

3.14 Multivariate Adaptive Regression Splines (MARS) 179
3.15 Summary and Conclusions . 181

4 Bagging . 187
4.1 Introduction . 187
4.2 The Bagging Algorithm . 188
4.3 Some Bagging Details . 189

4.3.1 Revisiting the CART Instability Problem 189
4.3.2 Some Background on Resampling. 190
4.3.3 Votes and Probabilities . 193
4.3.4 Imputation and Forecasting . 193
4.3.5 Margins . 193
4.3.6 Using Out-Of-Bag Observations as Test Data 195
4.3.7 Bagging and Bias . 195
4.3.8 Level I and Level II Analyses with Bagging 196

4.4 Some Limitations of Bagging . 197
4.4.1 Sometimes Bagging Cannot Help 197
4.4.2 Sometimes Bagging Can Make the Bias Worse 197
4.4.3 Sometimes Bagging Can Make the Variance Worse 198

4.5 A Bagging Illustration . 199
4.6 Bagging a Quantitative Response Variable 200
4.7 Summary and Conclusions . 201

5 Random Forests. 205
5.1 Introduction and Overview . 205

5.1.1 Unpacking How Random Forests Works. 206
5.2 An Initial Random Forests Illustration . 208
5.3 A Few Technical Formalities . 210

5.3.1 What Is a Random Forest? . 211
5.3.2 Margins and Generalization Error for Classifiers

in General . 211
5.3.3 Generalization Error for Random Forests 212
5.3.4 The Strength of a Random Forest 214
5.3.5 Dependence . 214
5.3.6 Implications . 214
5.3.7 Putting It All Together . 215

5.4 Random Forests and Adaptive Nearest Neighbor Methods 217
5.5 Introducing Misclassification Costs. 221

5.5.1 A Brief Illustration Using Asymmetric Costs 222
5.6 Determining the Importance of the Predictors. 224

5.6.1 Contributions to the Fit . 224

Contents xxiii

5.6.2 Contributions to Prediction . 225
5.7 Input Response Functions . 230

5.7.1 Partial Dependence Plot Examples 234
5.8 Classification and the Proximity Matrix . 237

5.8.1 Clustering by Proximity Values. 238
5.9 Empirical Margins . 242
5.10 Quantitative Response Variables. 243
5.11 A Random Forest Illustration Using a Quantitative

Response Variable . 245
5.12 Statistical Inference with Random Forests 250
5.13 Software and Tuning Parameters . 252
5.14 Summary and Conclusions . 255

5.14.1 Problem Set 2 . 256
5.14.2 Problem Set 3 . 257

6 Boosting . 259
6.1 Introduction . 259
6.2 Adaboost . 260

6.2.1 A Toy Numerical Example of Adaboost.M1 261
6.2.2 Why Does Boosting Work so Well

for Classification? . 263
6.3 Stochastic Gradient Boosting . 266

6.3.1 Tuning Parameters. 271
6.3.2 Output . 273

6.4 Asymmetric Costs. 274
6.5 Boosting, Estimation, and Consistency . 276
6.6 A Binomial Example . 276
6.7 A Quantile Regression Example . 281
6.8 Summary and Conclusions . 286

7 Support Vector Machines . 291
7.1 Support Vector Machines in Pictures . 292

7.1.1 The Support Vector Classifier . 292
7.1.2 Support Vector Machines . 295

7.2 Support Vector Machines More Formally. 295
7.2.1 The Support Vector Classifier Again:

The Separable Case . 296
7.2.2 The Nonseparable Case . 297
7.2.3 Support Vector Machines . 299
7.2.4 SVM for Regression . 301
7.2.5 Statistical Inference for Support Vector Machines 301

7.3 A Classification Example . 302
7.4 Summary and Conclusions . 308

xxiv Contents

8 Some Other Procedures Briefly . 311
8.1 Neural Networks. 311
8.2 Bayesian Additive Regression Trees (BART) 316
8.3 Reinforcement Learning and Genetic Algorithms 320

8.3.1 Genetic Algorithms . 320

9 Broader Implications and a Bit of Craft Lore 325
9.1 Some Integrating Themes . 325
9.2 Some Practical Suggestions . 326

9.2.1 Choose the Right Procedure . 326
9.2.2 Get to Know Your Software . 328
9.2.3 Do Not Forget the Basics . 329
9.2.4 Getting Good Data . 330
9.2.5 Match Your Goals to What You Can Credibly Do 331

9.3 Some Concluding Observations . 331

Erratum to: Statistical Learning from a Regression Perspective E1

References . 333

Index . 343

Contents xxv

Chapter 1
Statistical Learning as a Regression Problem

Before getting into the material, it may be important to reprise and expand a bit on
three pointsmade in the first and second prefaces—most people do not read prefaces.
First, any credible statistical analysis combines sound data collection, intelligent data
management, an appropriate application of statistical procedures, and an accessible
interpretation of results. This is sometimes what is meant by “analytics.” More is
involved than applied statistics. Most statistical textbooks focus on the statistical
procedures alone, which can lead some readers to assume that if the technical back-
ground for a particular set of statistical tools is well understood, a sensible data
analysis automatically follows. But as some would say, “That dog won’t hunt.”

Second, the coverage is highly selective. There are many excellent encyclopedic,
textbook treatments of machine/statistical learning. Topics that some of them cover
in several pages, are covered here in an entire chapter. Data collection, data man-
agement, formal statistics, and interpretation are woven into the discussion where
feasible. But there is a price. The range of statistical procedures covered is limited.
Space constraints alone dictate hard choices. The procedures emphasized are those
that can be framed as a form of regression analysis, have already proved to be popular,
and have been throughly battle tested. Some readers may disagree with the choices
made. For those readers, there are ample references in which other materials are well
addressed.

Third, the ocean liner is slowly starting to turn. Over the past decade, the 50years
of largely unrebutted criticisms of conventional regression models and extensions
have started to take. One reason is that statisticians have been providing useful
alternatives. Another reason is the growing impact of computer science on how data
are analyzed. Models are less salient in computer science than in statistics, and

The original version of this chapter was revised: See the “Chapter Note” section at the end of
this chapter for details. The erratum to this chapter is available at https://doi.org/10.1007/978-
3-319-44048-4_10.

© Springer International Publishing Switzerland 2016
R.A. Berk, Statistical Learning from a Regression Perspective,
Springer Texts in Statistics, DOI 10.1007/978-3-319-44048-4_1

1

http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10
http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10

2 1 Statistical Learning as a Regression Problem

far less salient than in popular forms of data analysis. Yet another reason is the
growing and successful use of randomized controlled trials, which is implicitly an
admission that far toomuchwas expected from causal modeling. Finally, many of the
most active and visible econometricians have been turning to various forms of quasi-
experimental designs andmethods of analysis in part because conventional modeling
often has been unsatisfactory. The pages ahead will draw heavily on these important
trends.

1.1 Getting Started

As a first approximation, one can think of statistical learning as the “muscle car” ver-
sion of Exploratory Data Analysis (EDA). Just as in EDA, the data can be approached
with relatively little prior information and examined in a highly inductive manner.
Knowledge discovery can be a key goal. But thanks to the enormous developments
in computing power and computer algorithms over the past two decades, it is possi-
ble to extract information that would have previously been inaccessible. In addition,
because statistical learning has evolved in a number of different disciplines, its goals
and approaches are far more varied than conventional EDA.

In this book, the focus is on statistical learning procedures that can be understood
within a regression framework. For a wide variety of applications, this will not pose
a significant constraint and will greatly facilitate the exposition. The researchers in
statistics, applied mathematics and computer science responsible for most statistical
learning techniques often employ their own distinct jargon and have a penchant for
attaching cute, but somewhat obscure, labels to their products: bagging, boosting,
bundling, random forests, and others. There is also widespread use of acronyms:
CART, LOESS, MARS, MART, LARS, LASSO, and many more. A regression
framework provides a convenient and instructive structure in which these procedures
can be more easily understood.

After a discussion of how statisticians think about regression analysis, this chapter
introduces a number of key concepts and raises broader issues that reappear in later
chapters. It may be a little difficult for some readers to follow parts of the discussion,
or its motivation, the first time around. However, later chapters will flow far better
with some of this preliminary material on the table, and readers are encouraged to
return to the chapter as needed.

1.2 Setting the Regression Context

We begin by defining regression analysis. A common conception in many academic
disciplines and policy applications equates regression analysiswith some special case
of the generalized Linear model: normal (linear) regression, binomial regression,
Poisson regression, or other less common forms. Sometimes, there is more than
one such equation, as in hierarchical models when the regression coefficients in one
equation can be expressed as responses within other equations, or when a set of

1.2 Setting the Regression Context 3

Fig. 1.1 Birthweight by
mother’s weight (Open
circles are the data, filled
circles are the conditional
means, the solid line is a
linear regression fit, the
dashed line is a fit by a
smoother. N = 189.)

100 150 200 250

10
00

20
00

30
00

40
00

50
00

Birthweight by Mother's Weight
(Conditional Means, Linear fit, and Loess Smooth Overlaid)

Mother's Weight in Pounds

B
ab

y'
s

B
irt

hw
ei

gh
t i

n
G

ra
m

s

equations is linked though their response variables. For any of these formulations,
inferences are often made beyond the data to some larger finite population or a data
generation process. Commonly these inferences are combined with statistical tests
and confidence intervals. It is also popular to overlay causal interpretations meant to
convey how the response distribution would change if one or more of the predictors
were independently manipulated.

But statisticians and computer scientists typically start farther back. Regression
is “just” about conditional distributions. The goal is to understand “as far as possible
with the available data how the conditional distribution of some response y varies
across subpopulations determined by the possible values of the predictor or predic-
tors” (Cook andWeisberg 1999: 27). That is, interest centers on the distribution of the
response variable Y conditioning on one or more predictors X . Regression analysis
fundamentally is the about conditional distributions: Y |X .

For example, Fig. 1.1 is a conventional scatter plot for an infant’s birth weight in
grams and themother’s weight in pounds.1 Birthweight can be an important indicator
of a newborn’s viability, and there is reason to believe that birthweight depends in
part on the health of the mother. A mother’s weight can be an indicator of her health.

In Fig. 1.1, the open circles are the observations. The filled circles are the con-
ditional means and the likely summary statistics of interest. An inspection of the
pattern of observations is by itself a legitimate regression analysis. Does the con-
ditional distribution of birthweight vary depending on the mother’s weight? If the
conditional mean is chosen as the key summary statistic, one can consider whether
the conditional means for infant birthweight vary with the mother’s weight. This too

1The data, birthwt, are from the MASS package in R.

4 1 Statistical Learning as a Regression Problem

is a legitimate regression analysis. In both cases, however, it is difficult to conclude
much from inspection alone. The solid blue line is a linear least squares fit of the
data. On the average, birthweight increases with the mother’s weight, but the slope
is modest (about 44g for every 10 pounds), especially given the spread of the birth-
weight values. For many, this is a familiar kind of regression analysis. The dashed red
line shows the fitted values for a smoother (i.e., lowess) that will be discussed in the
next chapter. One can see that the linear relationship breaks down when the mother
weighs less than about 100 pounds. There is then a much stronger relationship with
the result that average birthweight can be under 2000g (i.e., around 4 pounds). This
regression analysis suggests that on the average, the relationship between birthweight
and mother’s weights is nonlinear.

None of the regression analyses just undertaken depend on a “generative” model;
no claims are made about how the data were generated. There are also no causal
claims about how mean birthweight would change if a mother’s weight is altered
(e.g., through better nutrition). And, there is no statistical inference whatsoever. The
regression analyses apply solely to the data on hand and are not generalized to some
large set of observations. A regression analysis may be enhanced by such extensions,
although they do not go to the core of how regression analysis is defined. In practice, a
richer story would likely be obtained were additional predictors introduced, perhaps
as “controls,” but that too is not a formal requirement of regression analysis. Finally,
visualizations of various kinds can be instructive and by themselves can constitute a
regression analysis.

The same reasoning applies should the response be categorical. Figure1.2 is a
spine plot that dichotomizes birth weight into two categories: low and not low. For
each decile ofmothers’weights, the conditional proportions are plotted. For example,
if a mother’s weight is between 150 and 170 pounds, a little under 20% of the

80 99.6 107 112.4 120 130134.6 150 170 250

N
o

Y
es

0

0.2

0.4

0.6

0.8

1

Mother's Weight Broken by Deciles

Lo
w

 B
irt

h
W

ei
gh

t

Low Birth Weight by Monther's Birth Weigh

Fig. 1.2 Low birth weight by mother’s weight with birth weight dichotomized (Mother’s weight
is binned by deciles. N = 189.)

1.2 Setting the Regression Context 5

1.1

0.0

1.1

1.4

Pearson
residuals:

p
1.2

value =
0.032

Smoking by Low Birth Weight

Low
S

m
o

ke
Y

es
N

o
No Yes

Fig. 1.3 Whether the mother smokes by low birth weight with Pearson residuals assuming inde-
pendence (Red indicates fewer cases than expected under independence. Blue indicates more cases
than expected under independence. N = 189.)

newborns have low birth weights. But if a mother’s weight is less than 107 pounds,
around 40% of the newborns have low birth weights.

The reasoning applies as well if both the response and the predictor are categor-
ical. Figure1.3 shows a mosaic plot for whether or not a newborn is underweight
and whether or not the newborn’s mother smoked. The area of each rectangle is
proportional to the number of cases in the respective cell of the corresponding 2 × 2
table. One can see that the majority of mothers do not smoke and a majority of the
newborns are not underweight. The red cell contains fewer observations than would
be expected under independence, and the blue cell contains more observations than
would be expected under independence. The metric is the Pearson residual for that
cell (i.e., the contribution to the χ2 statistic). Mothers who smoke are more likely to
have low birth weight babies. If one is prepared to articulate a credible generative
model consistent with a conventional test of independence, independence is rejected
at the .03 level. But even without such a test, the mosaic represents a legitimate
regression analysis.2

2The spine plot and the mosaic plot were produced using the R package vcd, which stands for
“visualizing categorical data.” Its authors are D. Meyer et al. (2007).

6 1 Statistical Learning as a Regression Problem

There are several lessons highlighted by these brief illustrations.

• As discussed in more depth shortly, the regression analyses just conducted made
no direct use of models. Each is best seen as a procedure. Onemight well have pre-
ferred greater use of numerical summaries and algebraic formulations, but regres-
sion analyses were undertaken nevertheless. In the pages ahead, it will be impor-
tant to dispense with the view that a regression analysis automatically requires
arithmetic summaries or algebraic models. Once again, regression is just about
conditional distributions.

• Visualizations of various kinds can be a key feature of a regression analysis. Indeed,
they can be the defining feature.

• A regression analysis does not have to make conditional means the key distrib-
utional feature of interest, although conditional means or proportions dominate
current practice. With the increasing availability of powerful visualization proce-
dures, for example, entire conditional distributions can be examined.

• Whether it is the predictors of interest or the covariates to “hold constant,” the
choice of conditioning variables is a subject-matter or policy decision. There is
nothing in data by itself indicating what role, if any, the available variables should
play.3

• There is nothing in regression analysis that requires statistical inference: inferences
beyond the data on hand, formal tests of null hypotheses, or confidence intervals.
And when statistical inference is employed, its validity will depend fundamentally
on how the data were generated.Muchmorewill said about this in the pages ahead.

• If there is to be cause-and-effect overlay, that too is a subject-matter or policy call
unless one has conducted an experiment.When the data result from an experiment,
the causal variables are determined by the research design.

• A regression analysis can serve a variety of purposes.

1. For a “level I” regression analysis, the goal is solely description of the data
on hand. Level I regression is effectively assumption-free and should always
be on the table. Too often, description is undervalued as a data analysis tool
perhaps because it does not employ much of the apparatus of conventional
statistics. How can a data analysis without statistical inference be good? The
view taken here is that p-values and all other products of statistical inference can
certainly be useful, but are worse than useless when a credible rationale cannot
be provided (Berk and Freedman 2003). Assume-and-proceed statistics is not
likely to advance science or policy. Yet, important progress frequently can be
made from statistically informed description alone.

2. For a “level II” regression analysis, statistical inference is the defining activ-
ity. Estimation is undertaken using the results from a level I regression, often in

3Although there are certainly no universal naming conventions, “predictors” can be seen as vari-
ables that are of subject-matter interest, and “covariates” can be seen as variables that improve the
performance of the statistical procedure being applied. Then, covariates are not of subject-matter
interest. Whatever the naming conventions, the distinction between variables that matter substan-
tively and variables that matter procedurally is important. An example of the latter is a covariate
included in an analysis of randomized experiments to improve statistical precision.

1.2 Setting the Regression Context 7

concert with statistical tests and confidence intervals. Statistical inference forms
the core of conventional statistics, but proper use with real data can be very chal-
lenging; real data may not correspond well to what the inferential tools require.
For the statistical procedures emphasized here, statistical inference will often be
overmatched. There can be a substantial disconnect between the requirements
of proper statistical inference and adaptive statistical procedures such as those
central to statistical learning. Forecasting, which will play an important role in
the pages ahead, is also a level II activity because projections are made from
data on hand to the values of certain variables that are unobserved.

3. For a “level III” regression analysis, causal inference is overlaid on the results
of a level I regression analysis, sometimes coupled with level II results. There
can be demanding conceptual issues such as specifying a sensible “counter-
factual.” For example, one might consider the impact of the death penalty on
crime; states that have the death penalty are compared to states that do not. But
what is the counterfactual to which the death penalty is being compared? Is
it life imprisonment without any chance of parole, a long prison term of, say,
20years, or probation? In many states the counterfactual is life in prison with
no chance of parole. Also, great care is needed to adjust for the possible impact
of confounders. In the death penalty example, one might want to control for
average clearance rate in each of the state’s police departments. Clearance rates
for some kinds of homicides are very low, which means that it is pretty easy
to get away with murder, and the death penalty is largely irrelevant.4 Level III
regression analysis will not figure significantly in the pages ahead because of
a reliance on algorithmic methods rather than model-based methods (Breimen
2001b).

In summary, a focus on conditional distributions will be a central feature in all
that follows. One does not require generative models, statistical inference, or causal
inference. On the one hand, a concentration on conditional distribution may seem
limiting. On the other hand, a concentration on conditional distributions may seem
liberating. In practice, both can be true and be driven substantially by the limitations
of conventional modeling to which we now briefly turn.

Of necessity, the next several sections are more technical and more conceptually
demanding. Readers with a substantial statistical background should have no prob-
lems, although some conventional ways of thinking will need to be revised. There
may also need to be an attitude adjustment. Readers without a substantial statistical
background may be best served by skimming the material primarily to see the topics
addressed, and then returning to the material as needed when in subsequent chapters
those topics arise.

4A crime is “cleared” when the perpetrator is arrested. In some jurisdictions, a crime is cleared
when the perpetrator has been identified, even if there has been no arrest.

8 1 Statistical Learning as a Regression Problem

1.3 Revisiting the Ubiquitous Linear Regression Model

Although conditional distributions are the foundation for all that follows, linear
regression is its most common manifestation in practice and needs to be explicitly
addressed. For many, linear regression is the canonical procedure for examining
conditional relationship, or at least the default. Therefore, a brief reviewof its features
and requirements can be a useful didactic device to highlight similarities to and
differences from statistical learning.

When a linear regression analysis is formulated, conventional practice combines
a level I and level II perspective. Important features of the data are conceptually
embedded in how the datawere generated.Y is an N × 1numerical response variable,
where N is the number of observations. There is an N × (p + 1) “design matrix”X,
where p is the number of predictors (sometimes called regressors). A leading column
of 1s is usually included inX for reasons that will clear momentarily. Y is treated as a
random variable. The p predictors in X are taken to be fixed. Whether predictors are
fixed or random is not a technical detail, but figures centrally in subsequent material.

The process by which the values of Y are realized then takes the form

yi = β0 + β1x1i + β2x2i + · · · + βpxpi + εi , (1.1)

where
εi ∼ NIID(0, σ 2). (1.2)

β0 is the y-intercept associated with the leading column 1s. There are p regression
coefficients, and a random perturbation εi . One might say that for each case i , nature
sets the values of the predictors, multiplies each predictor value by its corresponding
regression coefficient, sums these products, adds the value of the constant, and then
adds a random perturbation. Each perturbation, εi , is a random variable realized as if
drawn at random and independently from a single distribution, often assumed to be
normal, with a mean of 0.0. In short, nature behaves as if she adopts a linear model.

There are several important implications. To begin, the values of Y can be realized
repeatedly for a given case because its values will vary solely because of ε. The
predictor values do not change. Thus, for a given high school student, one imagines
that there could be a limitless number of scores on the mathematics SAT, solely
because of the “noise” represented by εi . All else in nature’s linear combination is
fixed: the number of hours spent in an SAT preparation course, motivation to perform
well, the amount of sleep the night before, the presence of distractions while the test
is being taken, and so on. This is more than an academic formality. It is a substantive
theory about how SAT scores come to be. For a given student, nature requires that
an observed SAT score could have been different by chance alone, but not because
any of variation in the predictors.5

5If on substantive grounds one allows for nature to set more than one value for any given predictor
and student, a temporal process is implied, and there is systematic temporal variation to build
into the regression formulation. This can certainly be done, but the formulation is more complicated,

1.3 Revisiting the Ubiquitous Linear Regression Model 9

From Eqs. 1.1 and 1.2, it can be conceptually helpful to distinguish between the
mean function and the disturbance function (also called the variance function). The
mean function is the expectation of Eq.1.1. When in practice a data analyst specifies
a conventional linear regression model, it will be “first-order correct” when the data
analyst (a) knows what nature is using as predictors, (b) knows what transformations,
if any, nature applies to those predictors, (c) knows that the predictors are combined
in a linear fashion, and (d) has those predictors in the dataset to be analyzed. For con-
ventional linear regression, these are the first-order conditions. The only unknowns
in the mean function are the values of the y-intercept and the regression coefficients.
Clearly, these are daunting hurdles.

The disturbance function is Eq. 1.2. When in practice the data analyst specifies
a conventional linear regression model, it will be “second-order correct” when the
data analyst knows that each perturbation is realized independently of all other per-
turbations and that each is realized from a single distribution that has an expectation
of 0.0. Because there is a single disturbance distribution, one can say that the vari-
ance of that distribution is “constant.” These are the usual second-order conditions.
Sometimes the data analyst also knows the functional form of the distribution. If that
distribution is the normal, the only distribution unknown whose value needs to be
estimated is its variance σ 2.

When the first-order conditions are met and ordinary least squares is applied
to the data, estimates of the slope and y-intercept are unbiased estimates of the
corresponding values that nature uses. When in addition to the first-order conditions,
the second-order conditions are met, and ordinary least squares is applied to the data,
the disturbance variance can be estimated in an unbiased fashion using the residuals
from the realized data. Also, conventional confidence intervals and statistical tests are
valid, and by the Gauss–Markov theorem, each estimated β has the smallest possible
sampling variation of any other linear estimator of nature’s regression parameters.
In short, one has the ideal textbook results for a level II regression analysis. Similar
reasoning properly can be applied to the entire generalized linear model and its
multi-equation extensions, although usually that reasoning depends on asymptotics.

Finally, even for a conventional regression analysis, there is no need to move
to level III. Causal interpretations are surely important when they can be justified,
but they are an add-on, not an essential element. With observational data, moreover,
causal inference can be in principle very controversial (Freedman 1987, 2004).

1.3.1 Problems in Practice

There are a wide variety of practical problems with the conventional linear model,
many recognized well over a generation ago (e.g., Leamer 1978; Rubin 1986, 2008;
Freedman 1987, 2004; Berk 2003). This is not the venue for an extensive review, and

(Footnote 5 continued)
requires that nature be even more cooperative, and for the points to be made here, adds unnecessary
complexity.

10 1 Statistical Learning as a Regression Problem

David Freedman’s excellent text on statistical models (2009a) can be consulted for
an unusually cogent discussion. Nevertheless, it will prove useful later to mention
now a few of the most common and vexing difficulties.

There is effectively no way to know whether the model specified by the analyst is
the means by which nature actually generated the data. And there is also no way to
know how close to the “truth” a specified model really is. One would need to know
that truth to quantify amodel’s disparities from the truth, and if the truth were known,
there would be no need to analyze any data to begin with. Consequently, all concerns
about model specification are translated into whether the model is good enough.

There are two popular strategies addressing the “good enough” requirement. First,
there exist a large number of regression diagnostics taking a variety of forms and
using a variety of techniques including graphical procedures, statistical tests, and the
comparative performance of alternativemodel specifications (Weisberg 2014). These
tools can be useful in identifying problems with the linear model, but they can miss
serious problems as well. Most are designed to detect single difficulties in isolation
when in practice, there can be many difficulties at once. Is evidence of nonconstant
variance a result of mean function misspecification, disturbances generated from
different distributions, or both? In addition, diagnostic tools derived from formal
statistical tests typically have weak statistical power (Freedman 2009b), and when
the null hypothesis is not rejected, analysts commonly “accept” the null hypothesis
that all iswell. In fact, there are effectively a limitless number of other null hypotheses
that would also not be rejected.6 Finally, even if some error in the model is properly
identified, there may be little or no guidance on how to fix it, especially within the
limitation of the data available.

Second, claims are made on subject-matter grounds that the results make sense
and are consistent with – or at least not contradicted by – existing theory and past
research. This line of reasoning can be a source of good science and good policy,
but also misses the point. One might learn useful things from a data analysis even
if the model specified is dramatically different from how nature generated the data.
Indeed, this perspective is emphasized many times in the pages ahead. But advancing
a scientific or policy discourse does not imply that the model used is right, or even
close.

If a model’s results are sufficiently useful, why should this matter? It matters
because one cannot use the correctness of the model to justify the subject-matter
claims made. For example, interesting findings said to be the direct product of an
elaborate model specification might have surfaced just as powerfully from several
scatter plots. The findings rest on a very few strong associations easily revealed by
simple statistical tools. The rest is pretense.

Itmatters because certain features of the analysis used to bolster substantive claims
may be fundamentally wrong and misleading. For example, if a model is not first-
order correct, the probabilities associated with statistical tests are almost certainly
incorrect. Even if asymptotically valid standard errors are obtained with such tools
as the sandwich estimator (White 1980a, b), the relevant estimate from the data will

6This is sometimes called “the fallacy of accepting the null” (Rozeboom 1960).

1.3 Revisiting the Ubiquitous Linear Regression Model 11

on the average be offset by its bias. If the bias moves the estimate away from the
null hypothesis, the estimated p-values will be on the average too small. If the bias
moves the estimate toward the null hypothesis, the estimated p-values will on the
average be too large. In a similar fashion, confidence intervals will be offset in one
of the two directions.

It matters because efforts to diagnose and fix model specification problems can
lead to new and sometime worse difficulties. For example, one response to a model
that does not pass muster is to re-specify the model and re-estimate the model’s
parameters. But it is now well known that model selection and model estimation
undertaken on the same data (e.g., statistical tests for a set of nested models) lead
to biased estimates even if by some good fortune the correct model happens to be
found (Leeb and Pötscher 2005; 2006; 2008; Berk et al. 2010; 2014).7 The model
specification itself is a product of the realized data and a source of additional uncer-
tainty — with a different realized dataset, one may arrive at a different model. As a
formal matter, statistical tests assume that the model has been specified before the
data are examined.8 This is no longer true. The result is not just more uncertainty
overall, but a particular form of uncertainty that can result in badly biased estimates
of the regression coefficients and pathological sampling distributions.

And finally, it matters because it undermines the credibility of statistical proce-
dures. There will be times when an elaborate statistical procedure is really needed
that performs as advertised. But why should the results be believed when word on
the street is that data analysts routinely make claims that are not justified by the
statistical tools employed?

1.4 Working with Statistical Models that Are Wrong

Is there an alternative way to proceed that can be more satisfactory? The answer
requires a little deeper look at conventional practice. Emphasis properly is placed
on the word “practice.” There are no fundamental quarrels with the mathematical
statistics on which conventional practice rests.

Model misspecification is hardly a new topic, and some very smart statisticians
and econometricians have been working on it for decades. One tradition concentrates
on patching up models that are misspecified. The other tradition tries to work con-
structively with misspecified models. We will work within the second tradition. For
many statisticians and practitioners, this can require a major attitude adjustment.

Figure1.4 is a stylized representation of the sort of practical problems that can
follow for a level II analysis when for a linear model one assumes that the first-

7Model selection in some disciplines is called variable selection, feature selection, or dimension
reduction.
8 Actually, it can be more complicated. For example, if the predictors are taken to be fixed, one
is free to examine the predictors. Model selection problems surface when the response variable is
examined as well. If the predictors are taken to be random, the issues are even more subtle.

12 1 Statistical Learning as a Regression Problem

Fig. 1.4 Estimation of a
nonlinear response surface
under the true linear model
perspective (The broken line
is an estimate from a given
dataset, solid line is the
expectation of such
estimates, the vertical dotted
lines represent conditional
distributions of Y with the
red bars as each
distribution’s mean.)

X

Y

Regression Expectation

Estimate

Estimation Using a Linear Function

Mean
Function

Error

O

Estimation
Error

Irreducible
Error

and second-order conditions are met. The Figure is not a scatterplot but an effort
to illustrate some key ideas from the relevant statistical theory. For simplicity, but
with no important loss of generality for the issues to be addressed, there is a single
predictor on the horizontal axis. For now, that predictor is assumed to be fixed.9 The
response variable is on the vertical axis.

The red, horizontal lines in Fig. 1.4 are the true conditional means that constitute
nature’s response surface. The vertical, black, dotted lines are meant to show the
distribution of y-values around each conditional mean. Those distributions are also
nature’s work. No assumptions are made about what form the distributions take, but
for didactic convenience each conditional distribution is assumed to have the same
variance.

An eyeball interpolation of the true conditional means reveals an approximate U-
shaped relationship but with substantial departures from that simple pattern. Nature
provides a data analyst with realized values of Y by making independent draws from
the distribution associated with each conditional mean. The red circle is one such
y-value; the red circle is one output from nature’s data generation process.

A data analyst assumes the usual linear model yi = β0 + β1xi + εi . With a set
of realized y values and their corresponding x values (not shown), estimates β̂0, β̂1

and σ̂ 2 are obtained. The broken blue line shows the estimated mean function. One
can imagine nature generating many (formally, a limitless number) such datasets
so that there are many mean function estimates that will naturally vary because the
realized values y will change from dataset to dataset. The solid blue line represents
the expectation of those many estimates.

9If one prefers to think about the issues in a multiple regression context, the single predictor can be
replaced by the predictor adjusted, as usual, for its linear relationships with the other predictors.

1.4 Working with Statistical Models that Are Wrong 13

Clearly, the assumed linearmean function is incorrect because the true conditional
means do not fall on a straight line. The blue, two-headed arrow shows the bias at
one value of x . The size and direction of the biases differ over the values of x because
the disparities between regression expectation and the true conditional means differ.

The data analyst does not get to work with the expectation of the estimated regres-
sion lines. Usually, the data analyst gets to work with one such line. The random
variation captured by one such line is shown with the magenta, double-headed error.
Even if the broken blue line fell right on top of the solid blue line, and if both went
exactly through the true conditional mean being used as an illustration, there would
still be a gap between the observed value of Y (the red circle) and that conditional
mean (the short red horizontal line). In Fig. 1.4, that gap is represented by the green,
double-headed arrow. It is sometimes called “irreducible error” because it exists even
if nature’s response surface is known.

Summarizing the implications for the conventional linear regression formulation,
the blue double-headed arrow shows the bias in the estimated regression line, the
magenta double-headed arrow shows the impact of the variability of that estimate, and
the green double-headed arrow shows the irreducible error. For any given estimated
mean function, the distance between the estimated regression line and a realized
y-value is a combination of mean function error (also called mean function misspec-
ification), random variation in the estimated regression line caused by εi , and the
variability in εi itself. Sometimes these can cancel each other out, at least in part, but
all three will always be in play.

Some might claim that instrumental variables provide a way out. It is true that
instrumental variable procedures can correct for some forms of bias if (a) a valid
instrument can be found and if (b) the sample size is large enough to capitalize on
asymptotics. But the issues are tricky (Bound et al. 1995). A successful instrument
does not address allmean function problems. For example, it cannot correct forwrong
functional forms. Also, it can be very difficult to find a credible instrumental variable.
Even if one succeeds, an instrumental variable may remove most of the regression
coefficient bias and simultaneously cause a very large increase in the variance of the
regression coefficient estimate. On the average, the regression line is actually farther
away from the true conditional means even through the bias is largely eliminated.
One is arguably worse off.

It is a simple matter to alter the mean function. Perhaps something other than
a straight line can be used to accurately represent nature’s true conditional means.
However, one is still required to get the first-order conditions right. That is, the mean
functionmust be correct. Figure1.5 presents the same kinds of difficulties as Fig. 1.4.
All three sources of error remain: model misspecification, sampling variability in the
function estimated, and the irreducible error. Comparing the two figures, the second
seems to have on the average a less biased regression expectation, but in practice it
is difficult know whether that is true or not. Perhaps more important, it is impossible
to know how much bias remains.10

10We will see later that by increasing the complexity of the mean function estimated, one has
the potential to reduce bias. But an improved fit in the data on hand is no guarantee that one is

14 1 Statistical Learning as a Regression Problem

Fig. 1.5 Estimation of a
nonlinear response surface
under the true nonlinear
model perspective (The
broken line is an estimate
from a given dataset, solid
line is the expectation of
such estimates, the vertical
dotted lines represent
conditional distributions of
Y with the red bars as each
distribution’s mean.)

X

Y

 Regression Expectation

Estimate

Estimation Using a Nonlinear Function

Mean
Function

Error

Irreducible
Error

Estimation
Error

O

One important implication of both Figs. 1.4 and 1.5 is that the variation in the
realized observations around the fitted values will not be constant. The bias, which
varies across x-values, is captured by the least squares residuals. To the data analyst,
this will look like heteroscedasticity even if the variation in εi is actually constant.
Conventional estimates of σ 2 will likely be incorrect. Incorrect standard errors for the
intercept and slope follow, which jeopardize statistical tests and confidence intervals.

When faced with non-constant variance, the “sandwich” estimator
(White 1980b) can provide asymptotically valid standard errors. But the mean func-
tion must be correctly specified. The requirement of proper mean function specifi-
cation too commonly is overlooked.

It seems that we are at a dead end. But we are not. All of the estimation difficulties
are level II regression problems. If one can be satisfied with a level I regression
analysis, these difficulties disappear. Another option is to reformulate conventional
linear regression so that the estimation task is more modest. We turn to that next. Yet
another option considered in later chapters requires living with, and even reveling
in, at least some bias. Unbiased estimates of the nature’s response surface are not
a prerequisite if one can be satisfied with estimates that are as close as possible on
the average to nature’s response surface over realizations of the data. There can be
bias if in trade, there is a substantial reduction in the variance; on the average, the
regression line is then closer to nature’s response surface.Wewill see that in practice,
it is difficult to decrease both the bias and the variance, but often there will be ways
which arrive at a beneficial balance in what is called the “bias–variance tradeoff.”
Still, as long as any bias remains, statistical tests and confidence intervals need to be
reconsidered. As for the irreducible variance, it is still irreducible.

(Footnote 10 continued)
more accurately representing the mean function. One complication is that greater mean function
complexity can foster overfitting.

1.4 Working with Statistical Models that Are Wrong 15

1.4.1 An Alternative Approach to Regression

The material in this section can be conceptually demanding and has layers. There
are also lots of details. It may be helpful, therefore, to make two introductory obser-
vations. First, in the words of George Box, “All models are wrong...” (Box 1976). It
follows that one must learn to work with wrong models and not proceed as if they
are right. This is a large component of what follows. Second, if one is to work with
wrong models, the estimation target is also a wrong model. Standard practice has the
“true” model as the estimation target. In other words, one should be making correct
inferences to an incorrect model and not be making incorrect inferences to a correct
model. Let’s see how these two observations play out.

If a data analyst wants to employ a level II regression analysis, inferences from the
data must be made to something. Within conventional conceptions, that something is
the parameter of a linear model used by nature to generate the data. The parameters
are the estimation targets.Given the values of those parameters and the fixed-x values,
each yi is realized by the linear model shown in Eqs. 1.1 and 1.2.11

Consider as an alternative what one might call the “joint probability distribution
model.” It has much the same look and feel as the “correlation model” formulated
by Freedman (1981), and is very similar to a “linear approximation” perspective
proposed by White (1980a). Both have important roots in the work of Huber (1967)
and Eicker (1963, 1967). Angrist and Pischke (2008: Sect. 3.1.2) provide a very
accessible introduction.

For the substantive or policy issues at hand, one imagines that there exists a
materially relevant, joint probability distribution composed of variables represented
byZ. The joint probability distribution has familiar parameters such themean (i.e., the
expected value) and variance for each variable and the covariances between variables.
No distinctions are made between predictors and responses. Nature can “realize”
independently any number of observations from the joint probability distribution.
This is how the data are generated. One might call the process by which observations
are realized from the joint probability distribution the “true generative model.” This
is the “what” to which inferences are to be made in a level II analysis.

A conceptually equivalent “what” is to consider a population of limitless size that
represents all possible realizations from the joint probability distribution. Inferences
are made from the realized data to this “infinite population.” In some circles, this
is called a “superpopulation.” Closely related ideas can work for finite populations
(Cochran 1977: Chap.7). For example, the data are a simple random sample from a
well-defined population that is in principle observable. This is the way one usually
thinks about sample surveys, such as well-done political polls. The population is all
registered voters and a probability sample is drawn for analysis. In finite populations,
the population variables are fixed. There is a joint distribution of all the variables in
the population that is just a multivariate histogram.

11 The next several pages draw heavily on Berk et al. (2014) and Buja et al. (2016).

16 1 Statistical Learning as a Regression Problem

Switching to matrix notation for clarity, from Z, data analysts will typically dis-
tinguish between predictors X and the response y. Some of Z may be substantively
irrelevant and ignored. These distinctions have nothing to do with how the data are
generated. They derive from the preferences of the individuals who will be analyzing
the data.

For any particular regression analysis, attention then turns to a conditional distri-
bution of y given some X = x. For example, X could be predictors of longevity, and
x is the predictor values for a given individual. The distribution of y is thought to
vary from one x to another x. Variation in the mean of y, μ(x), is usually the primary
concern. But now, because the number of observations in the population is limitless,
one must work with the E[μ(x)].

The values for E[μ(x)] constitute the “true response surface.” The true response
surface is the way the expected values of Y are actually related to X within the
joint probability distribution. It is unknown. Disparities between the E[μ(x)] and the
potential values of Y are the “true disturbances” and necessarily have an expectation
of 0.0 (because they are deviations around a mean – or more properly, an expected
value)

The data analyst specifies a working regressionmodel using a conventional, linear
mean function meant to characterize another response surface within the same joint
probability distribution. Its conditional expectations are equal toXβ. The response y
is then taken to beXβ + ε, where β is an array of least squares coefficients. Because
ε also is a product of least squares, it has by construction an expectation of 0.0 and
is uncorrelated with X. For reasons that will be clear later, there is no requirement
that ε have constant variance. Nevertheless, thanks to least squares, one can view the
conditional expectations from the working model as the best linear approximation of
the true response surface. We will see below that it is the best linear approximation
of the true response surface that we seek to estimate, not the true response surface
itself.

This is a major reformulation of conventional, fixed-x linear regression. For the
working model, there is no a priori determination of how the response is related to
the predictors and no commitment to linearity as the truth. In addition, the chosen
predictors share no special cachet. Among the random variables Z, a data analyst
determines which random variables are predictors and which random variables are
responses. Hence, there can be no such thing as an omitted variable that can turn
a correct model into an incorrect model. If important predictors are overlooked,
the regression results are just incomplete; the results are substantively insufficient
but still potentially very informative. Finally, causality need not be overlaid on the
analysis. Although causal thinkingmaywell have a role in an analyst’s determination
of the response and the predictors, a serious consideration of cause and effect is not
required at this point. For example, one need not ponder whether any given predictor
is actually manipulable holding all other predictors constant.

Still to come is a discussion of estimation, statistical tests and confidence intervals.
But it may be important to pause and give potential critics some air time. They might
well object that we have just traded one fictional account for another.

1.4 Working with Statistical Models that Are Wrong 17

From an epistemological point of view, there is real merit in such concerns. How-
ever, in science and policy settings, it can be essential to make empirically based
claims that go beyond the data on hand. For example, when a college admissions
office uses data frompast applicants to examine howperformance in college is related
to the information available when admission decisions need to be made, whatever
is learned will presumably be used to help inform future admission decisions. Data
from past applicants are taken to be realizations from the social processes responsi-
ble for academic success in college. Insofar as those social processes are reasonably
consistent over several years, the strategy can have merit. A science fiction story?
Perhaps. But if better admissions decisions are made as a result, there are meaningful
and demonstrable benefits. To rephrase George Box’s famous aphorism, all models
are fiction, but some stories are better than others. And there is much more to this
story.

1.4.1.1 Statistical Inference with Wrong Models

Figure1.6 can be used to help understand estimation within the “wrong model”
framework. It is a stylized rendering of the joint probability distribution. There is
a single predictor treated as a random variable. There is a single response, also
treated as a random variable. Some realized values of Y are shown as red circles. The
solid back line represents nature’s unknown, true response surface, the “path” of the
conditional means, or more accurately, the path of the conditional expectations.

The true response surface is allowed to be nonlinear, although for ease of expo-
sition, the nonlinearity in Fig. 1.6 is rather well behaved. For each location along
the response surface, there is a conditional distribution represented in Fig. 1.6 by the
dotted, vertical lines. Were one working with a conventional regression perspective,
the curved black line would be the estimation target.

Under the wrongmodel perspective, the straight blue line in Fig. 1.6 represents the
mean function implied by the data analyst’s working linear model. Clearly, the linear
mean function ismisspecified. It is as if one had fitted a linear least squares regression
within the joint probability distribution. The blue line is the new estimation target that
can be interpreted as the best linear approximation of the true response surface. It can
be called “best” because it is conceptualized as a product of ordinary least squares;
it is best by the least square criterion. Although the best linear approximation is the
estimation target, one also gets estimates of the regression coefficients responsible.
These may be of interest for least squares regression applications and procedures
that are a lot like them. By the middle of the next chapter, however, most of the
connections to least squares regression will be gone.

Consider the shaded vertical slice of the conditional distribution toward the center
of Fig. 1.6. The disparity between the true response surface and the red circle near
the top of the conditional distribution results solely from the irreducible error. But
when the best linear approximation is used as a reference, the apparent irreducible
error is much smaller. Likewise, the disparity between the true response surface and
the red circle near the bottom of the conditional distribution results solely from the

18 1 Statistical Learning as a Regression Problem

x

y

True Response Surface

Approximate Response Surface

Potential Realizations of Y:

Realized Y:

Apparent Irreducible Error:

The Best Linear Approximation
Response Surface

Fig. 1.6 Within the joint probability distribution, mean function error as a cause of nonconstant
variance (The black curved line is the true response surface, and the straight blue line is the best
linear approximation of that response surface.)

irreducible error. But when the best linear approximation is used as a reference,
the apparent irreducible error is much larger. Both distortions result from the gap
between the true response surface and the best linear approximation response surface.
Because X is a random variable, mean functionmisspecification is a random variable
captured as a component of the apparent irreducible error. Similar issues arise for
the full range of x-values in the figure.

Suppose a data analyst wanted to estimate from data the best linear approximation
of nature’s true response surface. The estimation task can be usefully partitioned into
five steps. The first requires making the case that each observation in the dataset was
independently realized from a relevant joint probability distribution. Much more is
required than hand waving. Required is usually subject-matter expertise and knowl-
edge about how the data were collected. There will be examples in the pages ahead.
Often a credible case cannot be made, which takes estimation off the table. Then,
there will probably be no need to worry about step two.

The second step is to define the target of estimation. For linear regression of the
sort just discussed, an estimation target is easy to specify. Should the estimation
target be the true response surface, estimates will likely be of poor statistical quality.
Should the estimation target be the best linear approximation of the true response
surface, the estimates can be of good statistical quality, at least asymptotically. We
will see in later chapters that defining the estimation target often will be far more
difficult because there will commonly be no model in the conventional regression

1.4 Working with Statistical Models that Are Wrong 19

sense. One cannot sensibly proceed to step three unless there is clarity about what is
to be estimated.

The third step is to select an estimator. Sometimes the best estimator will be
apparent. The least squares estimator used in conventional regression is a good exam-
ple. There are other relatively straightforward examples when the mean function is
determined without any formal model selection or data snooping. But most of the
procedures considered in later chapters capitalize on model selection, even if not
quite in plain sight, and informal data snooping is a common practice. Getting the
estimator right can then be challenging. The risk is that an inappropriate estimator
is used by default, justified by performance claims that are incorrect.

Fourth, the estimator needs to be applied to the data. This is usually the easiest
step because the requisite software is often easily found and easily deployed. But
there are exceptions when the data have unusual properties or the questions being
asked of the data are unusual. One hopes that appropriate software can be easily
written, but sometimes the underlying statistical problems are unsolved.

In the final step, the estimates and any associated confidence intervals and tests
are interpreted. The major risk is that the results of earlier steps are not properly
taken into account. A common example is asserting asymptotic properties with far
too few observations in the data.

Let us play this through for estimates of the best linear approximation. In the
absence of real data not much can be said here about the first step. It will figure large

x

y

True Response Surface

Approximate Response Surface

Potential Realizations of Y:

.

.

Realized Y:

Estimate

Estimate

Estimating the Best Linear
Approximation Response Surface

Fig. 1.7 Bias in the estimates of the best linear approximation (The black curved line is the true
response surface, and the straight blue line is the best linear approximation of that response surface,
and estimates are shown as broken lines.)

20 1 Statistical Learning as a Regression Problem

in real applications later. The second step has already been addressed. The estimation
target is the best linear approximation of the true response surface.

Important technical complications materialize for steps three, four, and five. Con-
sider Fig. 1.7. Suppose that in the data, the realized values of X tend to be concentrated
at the smaller values. This is illustrated by the red filled circles in Fig. 1.7. Because
the nonlinear true response surface is sloping downward where the red observations
are more likely to be concentrated, estimated least squares lines tend to have a nega-
tive slope. In contrast, suppose that the realized values of X tend to be concentrated
at the larger values. This is illustrated by the green filled circles in Fig. 1.7. Because
the nonlinear true response surface is sloping upward where the green observations
are more likely to be concentrated, estimated least squares lines will tend to have a
positive slope. For a conventional fixed X regression, this leads to based estimates
of the best linear approximation.

However, under the joint probability distribution approach, all observations are
realized by the equivalent of random sampling, and all the predictors are random
variables. One can show, therefore, that conventional estimates of the best linear
approximation are asymptotically unbiased (Buja et al. 2016). And there is more
good news. Despite the nonconstant variance described earlier, asymptotically valid
standard errors may be obtained using a sandwich procedure or a nonparametric
bootstrap. Asymptotically valid statistical tests and confidence intervals follow (Buja
et al. 2016).

These conclusions apply to nonlinear parametric approximations as well. For
example, one might choose to approximate the true response surface with a cubic
polynomial function of X . One would have the best cubic approximation of the true
response surface. The conclusions also apply to the entire generalized linear model
(White 1980a). For example, the response might be binary and a form of binomial
regression might be the estimation procedure. In short, the standard estimators can
work well in large samples, and in those large samples, the sandwich or a boot-
strap estimator of the regression coefficient standard errors can work well too. And
there is readily available software for both. Asymptotically, valid statistical tests and
confidence intervals follow.

Itmay seem that in the second step, the selection of the best linear approximation as
the estimation target comes perilously close to a resurrection of conventional model-
based procedures. But there is absolutely no reason to be limited to a linear model,
and subject-matter knowledge may suggest a better mean function. There remains
a very important role for subject-matter theory and the results from past research.
One is still trying to learn about the true response surface, but that knowledge will
come from working models that are, in conventional terms, misspecified. The way
one learns from models that are wrong is not to pretend they are right. The way one
learns from wrong models is to acknowledge their imperfections and exploit their
instructive features nevertheless. There can be important complications to be sure,
but they will be constructively addressed in the chapters ahead.

Given the goal of learning about the true response surface with a misspecified
model, one can imagine using that model to forecast the response. That is, for a
new vector of x-values realized from the same joint probability distribution, the

1.4 Working with Statistical Models that Are Wrong 21

misspecified model is used to produce a good guess about the response when the
response value is not known. Ideally, that forecast will fall right on the true response
surface, but in practice this will not happen very often. (And how would you know?)
One hopes, therefore, to be close most of the time. But, if the forecasting target is
the true response surface, one has reintroduced all of the estimation problems faced
when working with wrong models assumed to be specified correctly. We seem to be
back where we started.

Actually, we are not. In principle, one can obtain estimates of the best linear
approximation that have good asymptotic properties. The approximation can provide
useful information about how the response is related to the predictors, informed
by asymptotically valid statistical tests and confidence intervals. None of this is
available within the conventional approach to linear regression when the model’s
mean function is misspecified. Then, as an additional step, one can try to forecast
accurately values of true response surface. This step necessarily reintroduces the
problems just discussed. But, we will see that there are ways to make good progress
here too. In the spirit of the approximation approach to estimation, one gives up the
goal of unbiased forecasts and settles for trying to get forecasts that are close. How
this can be done depends on the fitting procedure used and will be discussed in some
detail in the pages ahead.

For many readers, the wrong model formulation addressed in the past few pages
may seem odd and perhaps even heretical. But from a sampling perspective, our
wrong model formulation was anticipated in the work of Willian Cochran over
50years ago (1977: Chap.7). One has a finite population, such as all students at
a university. A simple random sample is drawn, and a conventional linear regression
applied. The predictors are random variables because in new random samples, the
students and their x-values will change. The estimation target is the response surface
of the same regression specification were it applied in the population. It does not
matter whether the mean function for population regression is specified properly;
wrong models are fine. Estimates of the wrong model’s response surface are biased.
When the number of observations in the sample approaches the number of obser-
vations in the finite population, the bias disappears. Valid statistical inference can
follow (Thompson 2002: Sect. 8.1).

1.4.1.2 Wrong Regression Models with Binary Response Variables

Up to this point, analyses with quantitative response variables have dominated the
discussion, in part because of a desire to make connections to conventional linear
regression. The majority of subsequent chapters will introduce procedures for the
analysis of categorical response variables in part because that is where some of the
most interesting and useful work on statistical learning can be found.

To help set the stage, in Fig. 1.8, there is a binary response coded as 1 or 0, and
as before, a single numerical X . Dropping out of high school might be coded as 1,
and graduating might be coded as 0. The fuzzy lines at y-values of 1 and 0 are the
potential realized values of Y . There is, as before, a true response surface and an

22 1 Statistical Learning as a Regression Problem

approximation. The latter is the estimation target although there can be interest in
the regression coefficients responsible. Fitted values can range from 0 to 1. For a
level I analysis, the fitted values often can be interpreted as proportions. For a level
II analysis, the fitted values often can be interpreted as probabilities.

Typically, the fitted values are used to determine class membership. In Fig. 1.8,
there are two classes: A and B. A might be dropping out of high school and B might
be graduating. There is also a threshold shown at an illustrative value of .30. Fitted
values at or above the threshold imply membership in class A. Fitted values below
that threshold imply membership in class B. Notice that the true response surface
and its approximation classify many cases differently. For the value of X at the gray
vertical rectangle, the true response surface would classify a case as an A, and the
approximation would classify a case as a B. The use of .30 as a threshold might seem
strange, but we will see later that there can principled reasons for choosing threshold
values other than .50.

Within a parametric perspective, one might apply logistic regression to the data.
Typically, fitted values of .50 or larger imply membership in one class (“50–50 or
better”). Fitted values smaller than .50 imply membership in the other class (“less
than 50–50”). Hence, the threshold is .50. Within statistical learning traditions, there
are several effectiveways to estimate the nonlinear approximation in a nonparametric
fashion. These will be discussed in later chapters.

1.4.1.3 Wrong Models in Practice

We are adopting a perspective for level II regression in which the data are gener-
ated as independent realizations from a joint probability distribution. All the realized

x

y

0

1

Potential Values of Y

Potential values of Y

True Conditional
Expectations

Nonlinear

Conditional
Approximation’s

Expectations

Threshold

Class A

Class B

.30

Approximating the True Response Surface
for a Binary Response Variable

Fig. 1.8 Estimation with the best linear approximation for a binary response Class A or B

1.4 Working with Statistical Models that Are Wrong 23

variables are random variables. Responses and predictors are determined by the data
analyst, not by nature. There is a true response surface of conditional expectations
of a response that is unknown. The true response surface is not the estimation target.
The estimation target is an approximation of that response surface whose relation to
the true response surface is undetermined. No restrictions are placed on the approxi-
mation’s functional form, and it can be specified before looking at the data or, as we
will see later, arrived at inductively. When specified in advance, the approximation
can be estimated in an asymptotically unbiased fashion with valid standard errors,
confidence intervals, and statistical tests. When the specification is determined as
part of the data analysis, the issues are more complicated, and we will address them
subsequently. With an estimate of the approximation in hand, one can compute fit-
ted values that may be used as estimates of the true response surface. One should
proceed assuming that these estimates are biased, even asymptotically. The goal is
to get close to the true response surface on the average. Getting the response surface
right on the average usually is too hard.

A superficial reading of the last several pages might suggest that in practice one
could proceed with linear or logistic regression as usual by simply providing a more
cautious interpretations of the results. This typically will not be a good idea. Because
the estimation target is still the true response surface, estimates of the regression
coefficients and fitted values will be biased, even asymptotically. It follows that even
if valid asymptotic standard errors could be computed, statistical tests and confidence
intervals will not be correct. There is also the likely prospect of substantial additional
work trying to diagnose model misspecifications and their consequences. And in the
end, justification of results will often look like just so much hand waving.

So, what should be done in practice? For each of the special cases of the general-
ized linear model, one computes as one ordinarily would, but uses either sandwich or
nonparametric bootstrap standard error estimates. Then, proper asymptotic statisti-
cal tests and confidence intervals can be constructed. The regression coefficients can
be interpreted as usual with one critical caveat: they are the product of an incorrect
model. That is, they are covariance adjusted measures of association as usual, but
the adjustments differ from those of a correct model. For example, one can obtain
an estimate of the how the probability of a fatal car accident differs for 18year olds
compared to 25year olds, which could be useful for insurance companies to know.
But that estimate might well differ if covariance adjustments were made for average
miles driven per month, the kind of vehicle driven, and use of alcohol. Amore formal
and complete discussion can be found in the paper by Buja and his colleagues (2016),
but moving to a level III analysis will likely be ill advised.

1.5 The Transition to Statistical Learning

As a first approximation, statistical learning can be seen as a form of nonparametric
regression in which the search for an effective mean function is especially data
intensive. For example, one might want to capture how longevity is related to genetic

24 1 Statistical Learning as a Regression Problem

and lifestyle factors. A statistical learning algorithm could be turned loose on a large
dataset with no preconceptions about what the nature of the relationships might be.
Fitted values from the exercise could then be used to anticipatewhich kinds of patients
are more likely to face life-threatening chronic diseases. Such information would
be of interest to physicians or actuaries. Likewise, a statistical learning algorithm
could be applied to credit card data to determine which features of transactions are
associatedwith fraudulent use. Again, there would be no need for any preconceptions
about the relationships involved. With the key relationships determined, banks that
issue credit cards would be able to alert their customers when their cards were likely
being misused.

So far, this sounds little different from conventional regression analyses. And
in fact, there has been considerable confusion in the applications literature about
the nature of statistical learning and which procedures qualify (Baca-García et al.
2006; Kessler et al. 2015). In truth, the boundaries are fuzzy. The difference between
models and algorithms is a good place to start clarifying the issues.

1.5.1 Models Versus Algorithms

Consider again the pair of equations for the conventional linear model.

yi = β0 + β1x1i + β2x2i + · · · + βpxpi + εi , (1.3)

where
εi ∼ NIID(0, σ 2). (1.4)

Equations1.3 and 1.4 are a theory of how each case i came to be. They are gen-
erative models because they represent the data generation mechanisms. When a data
analyst works with these equations, a substantial amount of thought goes into model
specification. What predictors should be used? What, if any, transformations are
needed? What might be done about possible dependence among the disturbances or
about nonconstant disturbance variances?But once these decisions aremade, the nec-
essary computing follows almost automatically. Usually, the intent is to minimize the
sum of the squared residuals, and there is a convenient closed-form solution routinely
implemented. On occasion, amore robust fitting criterion is used, such asminimizing
the sum of the absolute value of the residuals, and although there is no closed form
solution, the estimation problem is easily solved with linear programming.

Statistical learning allocates a data analysts’ effort differently. Equations1.3 and
1.4 often can be replaced by

yi = f (Xi) + εi , (1.5)

1.5 The Transition to Statistical Learning 25

where f (Xi) is some unknown function of one ormore predictors, and εi is a residual
if the analysis is level I. In a level II analysis, εi is a random disturbance whose
assumed properties can depend on the data and statistical procedure used.

There can be two level II interpretations of Eq.1.5. Consistent with conventional
practice in regression, Eq.1.5 may be interpreted as how nature generated the data,
and then εi has its usual properties. It is just that the form of the mean function is
not specified. However, that interpretation is inconsistent with the joint probability
distribution framework used in statistical learning and raises again all of the problems
with conventional linear regression.

The second interpretation builds on the mean function approximation approach
used above for working with incorrect models. The f (Xi) is the estimation target
taken to be some approximation of the true response surface, and εi is an additive
disturbance whose properties we will consider shortly. But Eq.1.5 is not a model of
the data generation process.

Very little is asked of the data analyst because no commitment to any particular
mean function is required. Indeed, the only decisionmay be to introduce εi additively.
There is effectively no concern about whether the mean function is right or wrong
because for all practical purposes there is no model responsible for the data. In
practice, the objective is to arrive at fitted values from a computed f̂ (Xi) that make
subject-matter sense and that correspond as closely as possible to realized values of
Y . What form the f̂ (Xi) takes to get the job done can be of little concern.

In contrast, there needs to be serious thought given to the algorithm throughwhich
the fitted values are computed. Hence, the methods often are called “algorithmic.” A
simple and somewhat stylized outline of one kind of algorithmic method proceeds
as follows.

1. Specify a linear mean function of the form of Eq.1.3 and apply least squares as
usual.

2. Compute the fitted values.
3. Compute the residuals.
4. Compute a measure of fit.
5. Apply least squares again, but weight the data so that observations with larger

residuals are given more weight.
6. Update the fitted values obtained from the immediately preceding regression with

the new fitted values weighted by their measure of fit.
7. Repeat steps 2–6 until the quality of the fit does not improve (e.g., 1000 times).
8. Output the fitted values.

In a process that has some of the same look and feel as boosting, a regression
analysis is repeated over and over, each time with altered data so that hard-to-fit
values of the Y are given more weight. In that sense, the hard-to-fit observations
are counted more heavily when the sum of squared residuals is computed. The final
result is a single set of fitted values that is a weighted sum of the many sets of fitted
values. Hard thought must be given to whether this algorithm is an effective way to
link predictors to a response and whether other algorithms might do the job better.

26 1 Statistical Learning as a Regression Problem

Fig. 1.9 Inputs W, X, and Z
linked to the output Y
through a black box
algorithm

Z

X

W

Y

A Black Box Algorithm

ε

Y = f(W, X,Z) + ε

There are also interpretative issues. In this algorithm, there can be a very large
number of regressions and an even larger number of regression coefficients. For
example, if there are 1000 regressions and 10 predictors, there are 10,000 regression
coefficients. It is effectively impossible tomake subjectmatter sense of 10,000 regres-
sion coefficients. Moreover, each set is computed for data with different weights so
that the fitting task is continually changing.

In the end, one has a “black box” algorithmof the form shown in Fig. 1.9. There are
in Fig. 1.9 three inputs {W, X, Z}, and a single output Y , connected by complicated
computations that provide no information of substantive importance.12 One can get
from the inputs to the final set of fitted values. But, there is no model. The many
regressions are just a computational device. In other terms, one has a procedure not
a model.

Thinking back to the college admissions example, one can use the results of the
algorithm to forecast a college applicant’s freshman GPA even though one does not
know exactly how the predictors are being used to make that forecast. In a similar
fashion, one can use such methods to determine the dollar value of insurance claims
a given driver is likely to make over the course of a year or the total precipitation
a city will receive in a particular month. When Y is binary, one can project which
parolees are likely to be rearrested or which high school students are likely to drop
out of school.

There can be more interpretative information when one is able to change what
inputs are used and re-run the algorithm. One could determine, for example, how the
fitted values for college GPA change whether or not gender is included as an input.
One could determine how much any measures of fit change as well. We will see later
that there are special algorithms operating in much the same spirit that allow one to
at least peep into the black box.

But one must be clear about exactly what might be learned. Suppose the associa-
tion between gender and GPA operates in concert with age. The association between
gender and college GPA is stronger for younger students perhaps because male stu-

12Some academic disciplines like to call the columns ofX “inputs,” and Y an “output” or a “target.”
Statisticians typically prefer to call the columns ofX “predictors” and Y a “response.” By and large,
the terms predictor (or occasionally, regressor) and response will be used here except when there
are links to computer science to be made. In context, there should be no confusion.

1.5 The Transition to Statistical Learning 27

dents do not mature as rapidly as female students. As a result, should the quality of
the fit improve when gender is included, the improvement results from a main effect
and an interaction effect. Moreover, the algorithm might have transformed age in
a manner that is unknown to the data analyst. A claim that on the average gender
improves the quality of the fit is technically correct, but how gender is related to
college GPA remains obscure.

A metaphor may help fix these ideas. Suppose one wants to bake some bread. The
recipe calls for the following:

1. 2 packages of yeast
2. 2 cups of warm water
3. 2 tablespoons of melted butter
4. 2 tablespoons of sugar
5. 1 tablespoon of salt
6. 4 cups of all-purpose flour.

These ingredients are mixed and stirred until the batter is stiff, adding more flour
if needed. The stiff batter is then kneaded until it is smooth and elastic, put into a
greased bowl and allowed to rise for about an hour. The dough is then punched down
and divided in half, placed into two greased loaf pans and again allowed to rise for
about 30min. Finally, the two loaves are baked at 400 ◦ for about 25min.

The bread baking begins with known ingredients in specified amounts. From
that point onward — the knead and baking — complicated physical and chemical
processes begin that change the molecular structure of the ingredients as they are
combined so that a blandwatery batter can be turned into a delicious solid punctuated
by air holes. The baker knows little about such details, and there is no way for the
baker to document exactly how the ingredients are turned into bread. But if bread
is tasty, the recipe will be repeated in the future. Looking again at Fig. 1.9, the
ingredients are {W, X, Z}. The bread is Y . The black box is all of the physics and
chemistry in-between.

It is possible to alter the bread recipe. For example, one might use 1 teaspoon of
sugar rather than 2. That would likely lead to changes in the bread that comes out of
the oven. It might bemore preferable or less. Or onemight choose to substitute whole
wheat flour for the all-purpose flour. It is possible therefore, to see how changing the
ingredients and/or their proportions affects the quality of the bread. But the baker
does not learn much about the processes by which those ingredients are transformed
into bread.13

Why might one prefer black box algorithmic methods rather than a traditional
parametric regression? If the primary goal of the data analysis is to understand how
the predictors are related to the response, one would not. But if the primary goal of
the data analysis is to make decisions based at least in part on information provided
by fitted values, statistical learning really has no downside. It should perform at least
as well as model-based methods, and often substantially better. The reasons will

13In later chapters, several procedures will be discussed that can help one consider the “importance”
of each input and how inputs are related to outputs.

28 1 Statistical Learning as a Regression Problem

be considered in later chapters when particular statistical learning procedures are
discussed.

What roles do estimation, statistical tests and confidence intervals play?As before,
they are effectively irrelevant for a level I analysis. For a level II analysis, the broader
issues are the same as those already discussed. Inferences are being made to an
approximation of the unknown response surface using the fitted values constructed
from the data.However, that approximation is notmodel-based and is derived directly
from the data. In the algorithm just summarized, for instance, each new weighted
regression is altered because of the results of the earlier regressions. The algorithm
is engaged in a very extensive form of data snooping. The resulting problems are
similar to those produced by model selection, but with additional complications.
One important complication is that there are tuning parameters whose values need
to be determined by the data, and the number of observations can make an important
difference. For example, if the sample size is 1000, the algorithmmight well be tuned
differently fromwhen the sample size is 10,000, and the joint probability distribution
to which inferences are being made has a limitless number of observations. What
does tuningmean in that setting? In later chapters, when particular statistical learning
procedure is discussed, the conceptual issues will be revisited and potential solutions
provided.

Forecasting remains a level II activity. The approximation is used to compute
forecasts and consequently, the forecasts will contain bias. One hopes that the fore-
casts are close to the truth, but there is no way to know for sure. As before, we will
see that real progress can be made nevertheless.

Finally, we need to briefly address what to call an algorithmic approach for link-
ing inputs to outputs. Suppose again that we have a set of fitted values constructed
from 1000 linear, residual-weighted regressions. Do we call the computed relation-
ships between the inputs and the outputs a model? In statistics, the term “model” is
often reserved for the “generative model.” The model conveys how the data were
generated. But we are proceeding, at least for level II applications, assuming the data
are generated as realizations from a joint probability distribution. That is not what
is represented by each of the 1000 regressions. So, calling those 1000 regressions a
model can be confusing.

Unfortunately, there seems to be no commonly accepted alternative term.We will
proceed from here on with one of four terms: “algorithmic model,” “algorithmic pro-
cedure,” “statistical learning procedure,” or most simply, “procedure.” There should
be no confusion in context.

1.6 Some Initial Concepts

Within a regression analysis framework, a wide variety of statistical learning pro-
cedures are examined in subsequent chapters. But, before going much farther down
that road, a few key concepts need to be briefly introduced. They play central roles in
the chapters ahead and, at this point, would benefit from some initial exposure. We

1.6 Some Initial Concepts 29

return to these ideas many times, so nothing like mastery is required now. And that is
a good thing. Important details can only be addressed later in the context of particular
statistical learning procedures. For now, we consider what statistical learning looks
like from 30,000 ft up.

1.6.1 Overall Goals of Statistical Learning

The range of procedures we examine have been described in several different
ways (Christianini and Shawe-Taylor 2000; Witten and Frank 2000; Hand et al.
2001; Breiman 2001b; Dasu and Johnson, 2003; Bishop 2006; Hastie et al. 2009;
Barber 2012; Marsland 2014; Sutton and Barto 2016), and associated with them are
a variety of names: statistical learning, machine learning, supervised learning, rein-
forcement learning, algorithmicmodeling, and others. The term “Statistical learning”
as emphasized in the pages that follow, is based on the following notions.

The definition of regression analysis still applies, but as already noted, some
statisticians like a function estimation framework. Thus,

Y = f (X) + ε (1.6)

or
G = f (X) + ε. (1.7)

For a quantitative response variable, the goal is to examine Y |X for a response
Y and one or more predictors X . If the response variable is categorical, the goal is
to examine G|X for a response G and a set of predictors X . X may be categorical,
quantitative, or a mix of the two. Consistent with a data generated from a joint
probability distribution, X is a random variable, although it is sometimes convenient
to condition on the values of X that happen to be realized in the sample.

In conventional level II regression models, ε is assumed to be IID, with a mean
of 0 and a constant variance. Drawing on the best linear approximation perspective,
ε now conflates, as before, irreducible error, estimation (sampling) error, and bias.
The new wrinkle is that at this point, no structure is imposed on the mean function.
For a level I analysis, ε is just a residual.

Many different features of Y |X andG|X can be examined with statistical learning
procedures. Usually conditional means or proportions, respectively, are of primary
interest. For a level I analysis, fitted values suffice with no additional conceptual
scaffolding. For a level II analysis, the fitted values are taken to be estimates of the
conditional expectations of the response surface approximation discussed earlier.
But there are several different flavors of this undertaking depending on the statistical
procedure and the nature of the data.

When the response is categorical, the conditional expectations are usually inter-
preted as probabilities. The categories of G are often called “classes,” and the data

30 1 Statistical Learning as a Regression Problem

analysis exercise is often called “classification.” There are also some issues that are
unique to classification.

As anticipated in our earlier discussion of linear regression, it is very important
to distinguish between fitted values computed when the response values are known
and fitted values computed when the response values are unknown. Suppose for the
moment that the response values are known. One then hopes that a statistical learning
procedure succeeds in finding substantial associations between a set of predictors and
a response.But,what is the taskwhen a newset of predictor values is providedwithout
known response values? This motivates a very different, but related, enterprise. The
goals differ, but one cannot undertake the second unless the first has been reasonably
well accomplished.14

When the response is known, the usual intent is to characterize how well the
procedure is performing and for some statistical learning approaches, to describe
how the inputs are related to the outputs. The aims may be substantive, but how the
procedure performs will often lead to tuning. In our illustrative algorithm shown
earlier, one might decide to slow down the speed at which the fitted values are
updated even if that means re-running the regressions many more times.15 There can
sometimes be additional analysis steps making the statistical learning results more
understandable.

When the response is unknown, there are two different analysis activities that
depend onwhy the response is not known. Thefirst kind of analysis is imputation. The
response values exist but are not in the data. For example, can the carbon emissions
from a coal-powered energy plant be approximated from information about the kind
of technology the plant uses and amount of coal burned over a day? Can a student’s
true score in a standardized test be inferred from a pattern of answers that suggests
cheating? Can the fish biomass of a tropical reef be estimated from information
about the kinds of coral of which the reef is composed, the size of the reef, water
temperature, and the amount of fishing allowed?

The second kind of analysis is forecasting: an outcome of interest is not just
unknown, it has not occurred yet. What is the likely return from a given investment?
What will be the top wind speed when a particular hurricane makes shore? For
a certain county in Iowa, how many bushels of corn per acre can be expected in
September from information available in June?

For categorical responses, onemight try to impute an unknown class. For example,
does a pattern of expenditures indicate that a credit card is being used fraudulently?
Does a DNA test place a given suspect at the crime scene? Do the injuries from
a car crash indicate that the driver was not wearing a seat belt? But just as with
quantitative responses, forecasts are commonly undertaken as well. Will a particular

14 When there is no interest whatsoever in a response Y , and attention is limited exclusively to
X , supervised learning is no longer on the table, but unsupervised learning can be. Some kinds of
cluster analysis can be seen as examples of unsupervised learning. Supervised learning becomes
unsupervised learning when there is no response variable. In computer science terms, there is no
“labeled” response.
15For instance, onemight divide the updating set of fitted values by 10making their updating impact
10 times weaker.

1.6 Some Initial Concepts 31

prison inmate be rearrested within two years when later released on parole? Will a
certain earthquake fault rupture in the next decade?Will a givenpresidential candidate
win the overall popular vote when a year later the election is held?

Why does the difference between imputation and forecasting matter? There are
usually operational matters such as for imputation trying to understand why the data
are missing? The answers help determine what remedies might be appropriate. The
deeper difference is that in contrast to imputation, forecasting involves the realization
of new cases from a joint probability distribution. One has to consider whether the
same joint probability distribution is the source andwhether the newcases are random
realizations.

In short, statistical learning focuses on fitted values as the primary algorithmic
product. Theymay be used for description, especially when associations with predic-
tors can be calculated or displayed. As important in practice, associations between
predictors and a response are used to compute fitted values when the response values
are unknown. The enterprise can be imputation or forecasting.

1.6.2 Data Requirements: Training Data, Evaluation Data
and Test Data

It is well known that all statistical procedures are vulnerable to overfitting. The
fitting procedure capitalizes on the noise in the dataset as well as the signal. This is
an especially important problem for statistical learning because there can be many
ways to conflate noise with signal.

For a statistical learning level I analysis, the result can be an unnecessarily com-
plicated summary of relationships and the risk of misleading interpretations. For a
level II analysis, the problems are more complex and troubling. An important con-
sequence of overfitting is that when performance of the procedure is examined with
new data, even if realized from the same joint probability distribution, predictive
accuracy will often degrade substantially. If out-of-sample performance is meaning-
fully worse than in-sample performance, generalizing the results from original data
is compromised.

Overfitting can be exacerbated when the statistical learning procedure is allowed
to seek a complex f (X). Recall that in conventional linear regression, the greater the
number of non-redundant regression coefficients whose values are to be estimated,
the better the in-sample fit, other things equal. There have been, therefore, many
attempts to develop measures of fit that adjust for this source of overfitting, typically
by taking the degrees of freedom used by the procedure into account. Mallows’
Cp is an example (Mallows 1973). Adjusting for the degrees of freedom used can
counteract an important contributor to overfitting. Unfortunately, that does not solve
the problem because the adjustments are all in-sample.

32 1 Statistical Learning as a Regression Problem

Probably the most important challenge to out-of-sample performance stems from
various kinds of data snooping. It is common for data analysts to fit a regression
model, look at the results and revise the regression model in response. This has
become a widely promoted practice over the past several decades as various forms
of regression diagnostic techniques have been developed. Thus, if evidence of non-
constant variance is found in the residuals, a transformation of the response variable
may be undertaken and the regression run again. Sometimes there is automated data
snooping. Stepwise regression is a popular example.Many different models are com-
pared in-sample, and the “best” one is chosen. Statistical learning procedures also
data snoop because typically they are tuned. Sometimes the tuning is automated, and
sometimes tuning is done by the data analyst. For example, tuning can be used to
determine how complex the f̂ (X) should be.

Data snooping can have especially pernicious effects because the problems caused
go far beyond overly optimistic measure of performance. Data snooping introduces
model uncertainty that is not included in standard formulations of statistical infer-
ence. That is, with different realizations of the data, there can be different models
chosen. Canonical frequentist statistical inference assumes a known, fixed model
before the data analysis begins. When data snooping leads to revising a mean func-
tion specification, the new mean function will typically lead to biased estimates,
even asymptotically, and all statistical tests and confidence intervals can be invalid
(Leeb and Pötscher 2005, 2006, 2008; Berk et al. 2010).16 For level II analyses, these
problems apply to statistical learning as well as conventional modeling.

Several in-sample solutions have been proposed (Berk et al. 2014; Lockhart et al.
2014), but they are not fully satisfactory, especially for statistical learning (Dwork
et al. 2015).When a sufficient amount of data is available, the problems of overfitting
and model selection sometimes can be effectively addressed with an out-of-sample
approach. The realized data to which the statistical learning procedure is initially
applied are usually called “training data.” Training data provide the information
through which the algorithm learns. There is then a second dataset, sometimes called
“evaluation data,” realized from the same joint probability distribution, used in the
tuning process. The statistical learning procedure is tuned not by its performance
in the training data, but by its performance in the evaluation data. One uses the
results from the training data to predict the response in the evaluation data. How
well the predicted values correspond to the actual evaluation data outcomes provides
feedback on performance. Finally, there is a third dataset, commonly called “test
data,” also realized from the same joint probability distribution, used to obtain an
“honest” assessment of the procedure’s performance. Once a statistical learning pro-
cedure has been satisfactorily tuned, there can be a proper measure of out-of-sample
performance. Much as was done with the evaluation data, a fitting and/or prediction

16Data snooping can also begin before an initial model is specified, and the implications are much
the same. For example, all bivariate correlations between predictors and a response can be used to
determine which predictors are selected for use in a regression analysis (Fan and Lv 2008).

1.6 Some Initial Concepts 33

exercise can be undertaken with the test data. The new set of fitted values can then
be compared to the actual outcomes. In practice, there may be extensions of this
process and interpretative complications, both of which will be addressed in subse-
quent chapters. For example, a lot depends on exactly what one is trying to estimate.
Also, it can be useful to represent the uncertainty in the test sample results .

Arguably the most defensible approach is to have three datasets of sufficient size:
a training dataset, an evaluation dataset, and a test dataset. “Sufficient” depends
on the setting, but a minimum of about 500 cases each can be effective. All three
should be realizations from the same joint probability distribution. If there is only one
dataset on hand that is at least relatively large (e.g., 1500 cases), a training dataset,
an evaluation dataset, and a test dataset can be constructed as three random, disjoint
subsets. Then, there can important details to consider, such as the relative sizes of
the three splits (Faraway 2014).

In addition, the split-sample approach is only justified asymptotically, and it is
not clear how large a sample has to be before one is close enough. For example, if
one or more of the key variables are highly skewed, no observations from the tails
may have been included in the data overall, or in each of the data splits. Thus, in
a study of sexually transmitted diseases (STDs), the very few individuals who have
unprotected sex with a very large number of different individuals, may not be in the
data. Yet these are the individuals who are most responsible for STD transmission.
The chances that such a problem will materialize get smaller as the sample size gets
bigger. But how big is big enough is not clear, at least in the abstract.

Finally, randomly splitting the data introduces a new source of uncertainty. Were
the data split again, the fitted valueswould be at least somewhat different. In principle,
this could be addressed with resampling. A large number of different splits could be
used, and the fitted values in the test data across the different splits averaged. The
main obstacle would be an additional computational burden.

When only training data are available, and the dataset on hand has too fewobserva-
tions for data splitting, there are several procedures one can use to try to approximate
the out-of-sample ideal. Perhaps the most common is cross-validation. Consider a
training data set with, say, 500 training observations and no evaluation or test data.
Suppose the most pressing need is to document a procedure’s performance condi-
tional on the values of tuning parameters.

One can divide the data into five random, disjoint subsamples of 100 each, perhaps
denoted by one of five letters A through E. The fitting procedure is applied to the 400
cases in subsets A–D and evaluated using remaining 100 “hold-out” cases in E. The
fitting process is repeated for the 400 cases in subsets A, C, D, and E, and evaluated
with the 100 hold-out cases in B. One proceeds in the same fashion until each of the
five splits is used once as the holdout subset, and each split has four opportunities
to be included with three other splits as training data. There are then five measures
of performance that can be averaged to obtain an approximation of true evaluation

34 1 Statistical Learning as a Regression Problem

data performance. For example, onemight compute the average of five AICs (Akaike
1973). The tuning parameter values that lead to the best performance in the evaluation
samples are selected. One has tuned using a fivefold cross-validation.

Cross-validation is no doubt a clever technique for level II analyses that might
seem straightforward. It is not straightforward, and its use depends heavily on how
the data were generated and the kind of statistical procedures undertaken. To begin,
splitting the data five ways is somewhat arbitrary. Occasionally, there are as few as
three splits and often as many as ten. Also, one can treat the jackknife as “leave-
one-out” cross validation, in which case there are N splits. A larger number of
splits means that the size of the training data relative to the test data is greater. This
improves performance in the data training splits, but makes performance in the hold-
out data less stable. The converse follows from a smaller number of splits. But, there
is no formal justification for any particular number of splits which will typically
depend on the setting. Common practice seems to favor either fivefold or tenfold
cross-validation.

Much as with a split sample approach, there is a more fundamental issue: because
there are no evaluations or test data, the results of cross-validation are conditional on
the training data alone. Suppose one is trying to study the correlates of blindness for
individuals under 50years of age and has training data with 1000 observations. By
the luck of the draw, 100 of those observations have macular degeneration whereas
in the generative joint probability distribution, such cases are very rare. (Macular
degeneration is usually found in substantially older people.) Moreover, that 10%
has a significant impact on any regression analyses. In all of those random splits of
the data, about 10% of the cases will be suffering from macular degeneration and
the cross-validated regression results will be shaped accordingly. Again, defensible
results depend on asymptotics.

In short, a lot can depend on having training data for which its distributional
features are much like those of the generative joint probability distribution. And
there is no way of knowing if this is true from the training data alone. Put another
way, cross-validation is more likely to provide generalizable results from training
data with a large number of observations. The empirical joint distribution in the data
is more likely to correspond well to the joint probability distribution from which the
data were realized. Formally, one needs to capitalize on asymptotics.

Finally, cross-validation is a popular procedure in part because single datasets
that are too small to subdivide are common. But cross-validation shares with data
splitting reductions in sample size. We will see later that many statistical learning
procedures are sample size dependent. Smaller training datasets can increase bias in
estimates of the true response surface. In addition, if the statistical learning results
are sample size dependent, what does it mean to estimate features of a joint probably
distribution for which the number of observations can be seen as limitless? We will
address this matter in the next chapter.

In summary, for level II analyses one should try to avoid in-sample determination
of tuning parameters and assessments of procedure performance. Having legitimate

1.6 Some Initial Concepts 35

training data, evaluation data, and test data is probably the best option. Split sam-
ples are one fallback position, and cross-validation is another. They provide some-
what different challenges. Split samples provide separately for tuning and for honest
performance assessments. Cross-validation forces a choice between proper tuning
and honest performance assessments. Split samples do not immediately allow for
representations of uncertainty, although there are extensions that can provide that
information. Cross-validation can provide measures of uncertainty for many appli-
cations. There are also tradeoffs in how observations are allocated. Cross-validation
uses most of the cases as training data. Split samples allow for a wide range of differ-
ent data allocations. Sometimes, it effectively will not matter which one is used, and
when it does matter, the choice will often be determined by the application. Later
chapters have examples of both situations.

1.6.3 Loss Functions and Related Concepts

Loss functions can be used to quantify how well the output of a statistical procedure
corresponds to certain features of the data. As the name implies, one should favor
small loss function values.Avery general expression for a loss function can bewritten
as L(Y, f̂ (X)), where Y represents some feature of the data, and f̂ (X) represents
some empirical approximation of it. Often, Y is a response variable, and f̂ (X) is the
fitted values from some statistical procedure.17

In conventional treatments of estimation, there are loss functions that the estima-
tors minimize with respect to the data on hand. Least squares regression, for exam-
ple, minimizes the sum of the squared residuals. Least absolute residual regression,
minimizes the sum of the absolute values of the residuals. For a level I analysis, these
loss functions can be sensible ways to justify the summary statistics computed. Thus,
least squares regression leads to fitted values for conditional means. Least absolute
residual regression leads to fitted values for conditional medians. For a level II analy-
sis, the resulting estimates have well-known and desirable formal properties as long
as the requisite statistical assumptions are met. An absence of bias is a popular
instance. But a key conceptual point is that when a loss function is minimized for
the data on hand, performance is being addressed solely in-sample.

As already noted, there is a rich tradition of in-sample measures of fitting error
that attempt to correct for the degrees of freedom used by the procedure. Recall
that other things equal, a regression model that uses more degrees of freedom will
automatically fit the data better. This is undesirable because a good fit should result
from predictors that are strongly related to the response, not just because there are a
lot of them. Measures that try to correct for the degrees of freedom used include the
adjusted R2, AIC, BIC, andMallows Cp. The adjusted R2 is popular because it seems
easy to interpret, but it lacks a rigorous formal rationale. The other three measures
each have good, but different, formal justifications (Hastie et al. 2009: Sect. 7.5).

17Loss functions are also called “objective functions” or “cost functions.”

36 1 Statistical Learning as a Regression Problem

Unfortunately, they can still provide a falsely optimistic assessment of performance.
The fitting is undertaken in-sample and capitalizes on idiosyncratic features of the
data that undermine generalization. We need a better way.

For statistical learning, a better way can be especially important inasmuch as
attention typically is directed to fitted values. A natural level II question, therefore,
is how well the f̂ (X) performs out-of-sample. One better way is to use generaliza-
tion error, also called test error, as a performance metric (Hastie et al. 2009: 228).
Suppose one has a test data observation denoted by (X∗,Y ∗), where X∗ can be a set of
predictors. For the random variable Y , random variables X , and a statistical learning
result constructed from the training data T , generalization error is defined as

ErrT = E(X∗,Y ∗)[L(Y ∗, f̂ (X∗))|T)]. (1.8)

The training data are treated as fixed once they are realized. A statistical procedure
is applied to the training data in an effort minimize some loss function in-sample.
The result is a set of parameter estimates. For example, in conventional regression,
one obtains estimates of the regression coefficients and the intercept. At that point,
the results of the minimization become fixed as well. Just as in many real forecasting
settings, the training data and the parameters estimates are in the past and now do
not change. Then, one may want to know how well the procedure performs with
a test data observation. One can compare Y ∗ to f̂ (X∗) within a loss function such
as squared error.18 But, E(X∗,Y ∗) means that generalization error is the average loss
over a limitless number of realized test observations, not a single observation. The
result is an average loss in the test data. If one actually has test data, this is easy
to operationalize. Cross-validation can be a fallback approach (Hastie et al. 2009:
Sect. 7.12)

There can also be interest in the average generalization error, if in theory the
training data T can also be realized over and over. With each realization of T , the
entire procedure represented in Eq.1.8 is repeated. Then, expected prediction error
(EPE) is defined as

Err = ET E(X∗,Y ∗)[L(Y ∗, f̂ (X∗))|T)]. (1.9)

If one has test data, the entire procedure can be wrapped in a resampling procedure
such as a bootstrap. More will be said about the bootstrap in later chapters. Cross-
validation once again can be a fallback position.

Whether one uses generalization error or expected prediction error depends on
howmuch theXdistributionmatters.BecauseXandYare treated as randomvariables
and a response surface approximation is the estimation target, it can make sense to
consider how the distribution of X can affect the results. Recall the earlier discussion
of estimation with misspecified mean functions. But a lot depends on how the results
of the estimation procedure will be used. With forecasting applications, for instance,

18In R, many estimation procedures have a predict() function that can easily be used with test data
to arrive at test data fitted values.

1.6 Some Initial Concepts 37

generalization error may be more relevant than expected prediction error. Examples
are provided in later chapters.

For categorical responses, generalization error can be written as

ErrT = E(X∗,G∗)[L(G∗, Ĝ(X∗))|T)]. (1.10)

As before, E[ErrT] is expected prediction error, and both ErrT and E[ErrT] can be
of interest.

A look back at Fig. 1.8 will provide a sense of what generalization error and
expected prediction error are trying to capture with Ĝ|X∗. Suppose there are two
actual response categories coded as 1 or 0. There are fitted values in the metric of
proportions. A natural in-sample measure of fit is the deviance. There are also fitted
classes depending on where a given proportion falls with respect to the classification
threshold. A natural in-sample measure of fit is the proportion of cases for which the
fitted value is the same as the actual class. Some very powerful statistical learning
procedures classify without the intermediate step of computing proportions, but the
correspondence between the actual class and the fitted class is still central.

The rationale for choosing generalization error or expected prediction error does
not change for categorical response variables. The estimation options are also much
the same. There will be examples later.

The loss functions considered so far are symmetric. For a numerical Y , a fitted
value that is too large by some specific amountmakes the same contribution to the loss
function as a fitted value that is too small by that same amount. Consider, for example,
the number of homeless in a census tract as the response variable, and predictors that
are features of census tracts. Overestimating the number of homeless individuals
in a census tract can have very different policy implications from underestimating
the number of homeless individuals in a census tract (Berk et al. 2008). In the first
instance, costly social services may be unnecessarily allocated to certain census
tracts. In the second instance, those services may not be provided in census tracts
that really need them. Yet, a symmetric loss function would assume that in the metric
of costs, their consequences are exactly the same. One needs a loss function that
properly takes the asymmetric costs into account so that the homeless estimates are
responsive to how they will be used in practice.

Symmetric loss functions also dominate when the response variable is categorical.
Suppose there are K exhaustive andmutually exclusive classes.Anymisclassification
— thefitted class is thewrong class— is given the sameweight of 1.0. In a forecasting
application, for instance, the error of predicting that a high school studentwill dropout
when that student will not is given the same weight as predicting that a high school
student will not dropout when that student will. (Correct classifications are given a
value of 0.0.)

Once again, one must ask if symmetric costs are reasonable. Are the costs really
the same, or even close? In the case of the potential high school dropout, are the

38 1 Statistical Learning as a Regression Problem

costs of interventions for a student who needs no interventions the same as failing
to provide interventions for a student who needs them? A lot depends on the content
of those interventions (e.g., academic tutoring, counseling). Especially in policy
settingswhere decisionmakerswill be using the statistical learning results, symmetric
costs may not be reasonable. Some mistakes are much worse than others, and the
asymmetric costs must be allowed to affect how the statistical learning procedure
performs. In later chapters, this will be a central concern.

1.6.4 The Bias-Variance Tradeoff

Before we move into more of the nuts and bolts of estimation, we need to revisit a
bit more the bias–variance tradeoff. Recall that the bias–variance tradeoff is a level
II problem that arises when the true response surface is explicitly the estimation
target. The goal is to produce an estimate of the true response surface that is as close
as possible to the truth. In principle, this can be achieved by a judicious tradeoff
between the bias of the estimates and the variance in those estimates.

If the estimation target is the approximate response surface, there is no bias, at
least asymptotically, but a closely related tradeoff can be in play. When the focus is
on generalization error, for example, the goal is to impute or forecast as accurately
as possible even though one explicitly is using an approximation of the true response
surface. That is, the actual estimation target is the potential y-values in the joint
probability distribution responsible for the data.

To illustrate, using an asymptotically unbiased estimate of the mean function
approximation linking daily ozone concentrations in a city and emergency room vis-
its for respiratory distress, one might want to forecast a day or two in advance how
many such visits there might be. Many factors affect emergency room visits, so one
is clearly working with a mean function approximation. Bias in the projected number
of emergency room visits might be reduced by using a different approximation; the
approximation could be made more complex. Thinking in parametric terms for the
moment, a 4th degree polynomial might be used instead of a second-degree polyno-
mial. But with a more complex parametric approximation, the effective degrees of
freedom will be larger (more on that shortly). Other things equal, an increase in the
effective degrees of freedom will increase the variance in fitted values as estimates.
Hence, there is a potential tradeoff.

The tradeoff can be especially dicey with statistical learning because of the induc-
tive nature of the procedures and the routine use of tuning. One problem is that the
meaning and calculation of the effective degrees of freedom can be a challenge
(Janson et al. 2015; Kauffman and Rosset 2014). Nevertheless, the split sample
approach can work satisfactorily, and there are fallback positions that can also lead
to useful results.

1.6 Some Initial Concepts 39

1.6.5 Linear Estimators

Level II statistical learning can capitalize on a wide variety of estimators. Linear
estimators are often preferred because they can be seen as variants of conventional
linear regression and are easily shown to have good statistical properties. Recall the
hat matrix from conventional, fixed-x linear regression:

ŷ = Xβ = X(XTX)−1XT y = Hy. (1.11)

The hat matrix H transforms the yi in a linear fashion into ŷi .
A smoother matrix is a generalization of the hat matrix. Suppose there is a training

dataset with N observations, a single fixed predictor X , and a single value of X , x0.
Generalizations to more than one predictor are provided in a later chapter. The fitted
value for ŷ0 at x0 can be written as

ŷ0 =
N∑

j=1

S0 j y j . (1.12)

S is an N by N matrix of fixed weights and is sometimes called a “smoother matrix.”
S can be a product of a statistical learning procedure. The subscript 0 denotes the row
corresponding to the case whose fitted value of y is to be computed. The subscript j
denotes the column in which the weight is found. In other words, the fitted value ŷ0 at
x0 is a linear combination of all N values of yi , with the weights determined by S0 j .
In many applications, the weights decline with the distance from x0. Sometimes the
declines are abrupt, as in a step function. In practice, therefore, a substantial number
of the values in S0 j can be zero.

Consider the following cartoon illustration in matrix format. There are five obser-
vations constituting a time series. The goal is to compute a moving average of three
observations going from the first observation to the last. In this case, the middle value
is given twice the weight of values on either side. Endpoints are often a complication
in such circumstances and here, the first and last observations are simply taken as is.

⎛

⎜⎜⎜⎜⎝

1.0 0 0 0 0
.25 .50 .25 0 0
0 .25 .50 .25 0
0 0 .25 .50 .25
0 0 0 0 1.0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

3.0
5.0
6.0
9.0
10.0

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

3.00
4.75
6.50
8.50
10.00

⎞

⎟⎟⎟⎟⎠
. (1.13)

The leftmost matrix is S. It is post multiplied by the vector y to yield the fitted
values ŷ. But from where do the values in S0 j come? If there are predictors, it only
makes sense to try to use them. Consequently, S0 j is usually constructed from X .

For a level II analysis, one has a linear estimator of the conditional means of Y. It
is a linear estimator because with S fixed, each value of yi is multiplied by a constant
before the yi are added together; ŷ0 is a linear combination of the yi . Linearity can

40 1 Statistical Learning as a Regression Problem

make it easier to determine the formal properties of an estimator, which are often
highly desirable. Unbiasedness is a primary example.19

When one views the data as generated from a joint probability distribution, X is no
longer fixed.20 Linear estimators with fixed values of X become nonlinear estimators
with random values of X . The use of turning parameters also can lead to nonlinear
estimators. One has to rely on asymptotics to derive an estimator’s formal statistical
properties. Asymptotic unbiasedness can sometimes be demonstrated depending on
precisely what features of the joint probability distribution are being estimated. One
also will need to rely on asymptotics to arrive at, when appropriate, proper standard
errors, statistical tests, and confidence intervals.

1.6.6 Degrees of Freedom

Woven throughmuch of the discussion of level II analyses has been the term “degrees
of freedom.” It will prove useful to expand just a bit on the several related conceptual
issues. Recall that, loosely speaking, the degrees of freedom associated with an
estimate is the number of observations that are free to vary, given how the estimate
is computed. In the case of the mean, if one knows the values of N − 1 of those
observations, and one knows the value of the mean, the value of the remaining
observation can be easily obtained. Given the mean, N − 1 observations are free
to vary. The remaining observation is not. So, there are N − 1 degrees of freedom
associated with the estimator of the mean.

This sort of reasoning carries over to many common statistics including those
associated with linear regression analysis. The number of degrees of freedom used
when the fitted values are computed is the number of regression parameters whose
values need to be obtained (i.e., the intercept plus the regression coefficients). The
degrees of freedom remaining, often called the “residual degrees of freedom,” is
the number of observations minus the number of these parameters to be estimated
(Weisberg 2014: 26).

One of the interesting properties of the hat matrix is that the sum of its main diag-
onal elements (i.e., the trace) equals the number of regression parameters estimated.
This is of little practical use with parametric regression because one can arrive at the
same number by simply counting all of the regression coefficients and the intercept.
However, the similarities between H and S (Hastie et al. 2009: Sect. 5.4.1) imply
that for linear estimators, the trace of S can be interpreted as the degrees of free-
dom used. Its value is sometimes called the “effective degrees of freedom” and can

19 “Linear” in regression can be used in two different ways. An estimator may or may not be linear.
The relationship between Y and X may or may not be linear. For example, an estimator may be
linear, and the relationship between Y and X may be highly nonlinear. In short, a linear estimator
does not necessarily imply a linear relationship.
20Although as before, one can treat the random x-values as fixed once they are realized in the data,
and as before, one is then limited to generalizing only to joint probability distributions with the
exact same x-values.

1.6 Some Initial Concepts 41

roughly be interpreted as the “equivalent number of parameters” (Ruppert et al. 2003:
Sect. 3.13). That is, the trace of S can be thought of as capturing how much less the
data are free to vary given the calculations represented in S. One can also think of
the trace as qualifying “optimism of the residual sum of squares as an estimate of
the out-of-sample prediction error” (Janson et al. 2015: 3)21 As already noted sev-
eral times, when more degrees of freedom are used (other things equal), in-sample
fit will provide an increasingly unjustified, optimistic impression of out-of-sample
performance.22

There are other definitions of the degrees of freedom associated with a smoother
matrix. In particular, Ruppert and his colleagues (2003: Sect. 3.14) favor

d fS = 2tr(S) − tr(SST). (1.14)

In practice, the two definitions of the smoother degrees of freedom will not often
vary by a great deal, but whether the two definitions lead to different conclusions
depends in part on how they are used. If used to compute an estimate of the residual
variance, their difference can sometimes matter. If used to characterize the complex-
ity of the fitting function, their differences are usually less important because one
smoother is compared to another applying the same yardstick. The latter application
is far more salient in subsequent discussions. Beyond its relative simplicity, there
seem to be interpretive reasons for favoring the first definition (Hastie et al. 2009:
Sect. 5.4.1). Consequently, for linear estimators we use the trace of S as the smoother
degrees of freedom.

Unfortunately, there are complications. When there is model selection, more
degrees of freedom are being used than the number of non-redundant regression
parameters in the final model chosen. This is no less true when tuning parameters
are employed. It makes intuitive sense that tuning requires data snooping, even if
automated, and degrees of freedom are spent in the process.

Efron’s early work on prediction errors (1986) allows us to takes a step back to
reformulate the issues. Effective degrees of freedom used boils down to howwell the
data are fit in training data compared to how well the data are fit in test data. Other
things equal, the larger the gap, the larger the effective degrees of freedom used.
Drawing from Efron (1986), Kaufman and Rosset (2014) and Janson and colleagues
(2015), the effective degrees of freedom can be defined as

EDF = E

[
N∑

i=1

(y∗
i − ŷi)

2

]
, (1.15)

where y∗
i is a realized y-value in test data, and ŷi is a fitted value computed from

the training data. The vector of x-values for case i does not change from realization
to realization. Thus, one imagines two, fixed-x realizations of the response for each

21Emphasis in the original.
22The residual degrees of freedom can then be computed by subtraction (see also Green and
Silverman 1994: Sect. 3.3.4).

42 1 Statistical Learning as a Regression Problem

case.One is included in the training data and used to construct a fitted value. The other
is included in the test data. The effective degrees of freedom is the expectation of
the summed (over N), squared disparities between the two. The greater the average
squared disparities between the fitted values from the training data and the new,
realized values of Y, the greater the EDF. The EDF captures how much the degrees
of freedom used by the fitting procedure by itself inflates the quality of the fit.

When the fitted values are constructed from a procedure with IID finite variance
disturbances, as discussed in Sect. 1.6.1, Eq.1.15 becomes

EDF = 1

σ 2

N∑

i=1

Cov(yi , ŷi). (1.16)

The covariance for each case i is defined over realizations of Y with the predictor
values fixed, and σ 2 is the variance of the disturbances as usual. Equation1.16 is a
standardized representation of similarity between the realized values of Y and the
fitted values of Y. The greater the standardized linear association between the two,
the larger the effective degrees of freedom.

In practice, neither definition is operational. But there are important special cases
for which estimates of the EDF can be obtained. One of the most useful is when
the estimator for the fitted values is linear (e.g., for a smoother matrix S). However,
current thinking about the EDF appears to be limited to the fixed-x case, whereas
statistical learning usually conceives both Y and X as random variables. How to
formulate theEDFwith randomX is apparently unsolved. Indeed, the concept of EDF
might usefully be abandoned and replaced by formulations for unjustified optimism.
In a very wide set of circumstance, this could be addressed with training and test
data, as suggested above.

1.6.7 Basis Functions

Another consideration in thinking about the effective degrees of freedom is that the
procedures discussed in subsequent chapters commonly do not work directly with
the given set of predictors. Rather, the design matrix in a level I or level II analysis
can be comprised of linear basis expansions of X. Linear basis expansions allow
for a more flexible fitting function, typically by increasing the dimensionality of the
design matrix. A set of p predictors becomes a set of predictors much greater than
p. This can make the fitted values more responsive to the data.

Consider first the casewhen there is but a single predictor. X contains twocolumns,
one columnwith the values of that single predictor and one column solely of 1s for the
intercept. The N × 2 matrix is sometimes called the “basis” of a bivariate regression
model. This basis can be expanded in a linear fashion as follows:

1.6 Some Initial Concepts 43

f (X) =
M∑

m=1

βmhm(X). (1.17)

There are M transformations of X , which can include the untransformed predictor,
and typically a leading column of 1s is included (allowing for a y-intercept). βm is
the weight given to the mth transformation, and hm(X) is the mth transformation of
X . Consequently, f (X) is a linear combination of transformed values of X .

One common transformation employs polynomial terms such as 1, x , x2, x3. Each
term does not have to be a linear transformation of x , but the transformations are
combined in a linear fashion. Then, Eq.1.17 takes the form

f (X) = β0 + β1x + β2x
2 + β3x

3. (1.18)

When least squares is applied, a conventional hat matrix follows, from which fitted
values may be constructed.

Another popular option is to construct a set of indicator variables. For example,
one might have predictor z, transformed in the following manner.

f (Z) = β0 + β1(I [z > 5]) + β2(I [z > 8|z > 5]) + β3(I [z < 2]). (1.19)

As before, fitting by least squares leads to a conventional hat matrix from which the
fitted values may be constructed.23

Equation1.17 can be generalized so that p > 1 predictors may be included:

f (X) =
p∑

j=1

Mj∑

m=1

β jmh jm(X). (1.20)

There are p predictors, each denoted by j , and each with its ownMj transformations.
All of the transformations for all predictors, each with its weight β jm , are combined
in a linear fashion. For example, one could combine Eqs. 1.18 and 1.19 with both
X and Z as predictors. It is also possible, and even common in some forms of
machine learning, to define each basis function as a complicated function of two or
more predictors. For example, recall that the usual cross-product matrix so central
to linear regression is XTX. As we will see later, “kernels” broadly based on XXT

can be constructed that serve is very effective linear basis expansions.
Linear basis expansions are no less central to many forms of classification.

Figure1.10 provides a visual sense of how. Decisions boundaries are essentially
fitted values from some procedure that separate one class from another, and can then
be used to decide inwhich class a new case belongs. In Fig. 1.10, there are two classes

23 The symbol I denotes an indicator function. The result is equal to 1 if the argument in brackets
is true and equal to 0 if the argument in brackets is false. The 1s and 0s constitute an indicator
variable. Sometimes indicator variables are called a dummy variables.

44 1 Statistical Learning as a Regression Problem

represented by either a red circle or a blue circle. There are two predictors, X1 and
X2. Figure1.10 is a 3-dimensional scatterplot.

The upper plot shows in 2-D predictor space a linear decision boundary. All cases
falling above the linear boundary are classified as red circles, because red circles
are the majority. All cases falling below the linear boundary are classified as blue
circles because blue circles are the majority. The linear decision boundary produces
three classification errors. There is one blue circle above the decision boundary and
two red circles below the decision boundary. Separation between the two classes is
imperfect, and in this illustration, no linear decision boundary can separate the two
classes perfectly. However, also shown is a nonlinear decision boundary that can.
The trick would be to find transformations of the two predictors from which such a
decision boundary could be constructed.

Sometimes there is an effective way to proceed. The lower plot in Fig. 1.10 shows
the same binary outcomes in 3-D space. A third dimension has been added. The
two curved arrows show how the locations for two illustrative points are moved. As
just noted, new dimensions can result from transformations when there is a basis
expansion. Here, the three transformation functions are shown as h1, h2 and h3.
Within this 3-D predictor space, all of the blue circles are toward the front of the
figure, and all of the red circles are toward the back of the figure. The plane shown is
a linear decision boundary that leads to perfect separation. By adding a dimension,
perfect separation can be obtained, and one can work in a more congenial linear
world. In 3-D, one has in principle an easier classification problem. Then if one
wishes, the 3-D predictor space can be projected back to the 2-D predictor space to
view the results as a function of the two original predictors. Back in 2-D predictor
space, the decision boundary can then be nonlinear, often very nonlinear.

But if Eq. 1.20 is essentially multiple regression, where does statistical learn-
ing come in? The answer is that statistical learning procedures often “invent” their
own linear basis expansions. That is, the linear basis expansions are inductively

Fig. 1.10 Reductions in
classification errors under
linear basis expansions (The
red filled circles and the blue
filled circles represent
different classes. The top
figure shows how
classification errors can be
reduced with a nonlinear
decision boundary. The
bottom figure shows how
classification errors can be
reduced by including a third
predictor dimension.)

3-D

Benefits of A Nonlinear Decision Boundary
Or Different Dimensional Space

Planar Decision Boundary

2-D

x
1

x
2

Linear Decision
Boundary

h
1
(X)

h
2
(X)

h
3
(X)

Nonlinear Decision
Boundary

1.6 Some Initial Concepts 45

constructed as a product of how the algorithmic procedure “learns.” Alternatively, a
data analyst may provide the algorithm with far too many basis expansions terms,
sometimes more terms than there are observations, and the algorithm decides induc-
tively which are really needed.

Figure1.11 provides an illustration. The observational units are all 50 states each
year from 1978 to 1998, for a total of 1000 observations. For each state each year,
the homicide rate and the number of executions for capital crimes were recorded.
Data such as these have been central in debates about the deterrent value of the death
penalty (Nagin and Pepper 2012).

Executions lagged by one year is on the horizontal axis. It is the only predictor and
is included as a single vector of values. No position is taken by the data analyst about
the nature of its relationship with the response; the values “as is” are input to the
algorithm. The homicide rate per 1000 people is on the vertical axis. The blue, dashed
line shows fitted values centered at zero. They are arrived at inductively though a
linear basis expansion of the number of executions. The residuals around the fitted
values are shownwith small blue dots. Error bands around the fitted values are shown
light blue. For reasons that will be discussed in the next chapter, the error bands only
capture the variability in the fitted values; they are not confidence intervals. Still, if
the error bands are used, one has a level II regression analysis.

Within a level I perspective, in most years, most states execute no one. Over
80% of the observations have zero executions. A very few states in a very few years
execute more than five individuals. Years in which more than five individuals in a
state are executed represent about 1% of the data (i.e., 11 observations out of 1000)
and in this region of the figure, the data are very sparse.

Fig. 1.11 The homicide rate
per 1,000 as a function of the
number of executions (The
homicide rate is on vertical
axis, and the number of
executions one year earlier is
on the horizontal axis. The
broken line represents the
fitted values, and the light
blue region shows the error
bands.)

0 5 10 15

0.
05

0.
00

0.
05

0.
10

Homicide Rate by Executions

Number of Executions Lagged by One Year

H
om

ic
id

e
R

at
e

46 1 Statistical Learning as a Regression Problem

When there are five executions or less, the relationship between the number of
executions and the homicide rate one year later is positive. More executions are
followed one year later by more homicides. Thus, there is a positive association for
99% of the data. When a given state in a given year executes six or more individuals,
the relationship appears to turn negative. With more executions, there are fewer
homicides one year later. But there are almost no data supporting the change in sign,
and from a level II perspective, the error bands around that portion of the curve show
that the relationship could easily be flat and even positive.24 In short, for 99% of the
data, the relationship is positive and for the atypical 1%, one really cannot tell. (For
more details, see Berk 2005.)

Figure1.11 provides a visualization of how a response of great policy interest
and a single predictor of great policy interest are related. There is no model in the
conventional regression sense. The fitted values shown were arrived at inductively
by a statistical learning algorithm. Had a linear mean function been imposed, the
few influential points to the far right of the figure would have produced a negative
regression coefficient. One might incorrectly conclude that on the average, there is
evidence for the deterrent effect of executions. In practice, of course, the potential
role of confounders would need to be considered.

In summary, linear basis expansions can be an important, and even essential, fea-
ture of statistical learning. Statistical learning algorithms can be seen as instruments
in service of finding linear basis expansions that facilitate prediction. Where the
algorithms differ is in exactly how they do that.

1.6.8 The Curse of Dimensionality

Linear basis expansions increase the dimensionality of a dataset. As just described,
this is often a good thing. In this era of “Big Data” it is also increasingly common
to have access to data not just with a very large number of observations, but with a
very large number of variables. For example, the IRS might merge its own records
with records from Health and Human Services and the Department of Labor. Both
the number of observations (N) and number of dimensions (p) could be enormous.
Except for data management concerns, one might assume that bigger data are always
better than smaller data. But it is not that simple.

One common and vexing complication is called “the curse of dimensionality.”
The number of variables exceeds the number of observations that can be effectively
exploited. Figure1.12 shows two especially common difficulties that can arise in
practice. The cube at the top illustrates that as the number of dimensions increases
linearly, the volume of the resulting space increases as a power function of the number
of dimensions. Hence, the 3 by 3 square has 9 units of space to fill with data, whereas

24To properly employ a level II framework, lots of hard thought would be necessary. For example,
are the observations realized independently as the joint probability distribution approach requires?
And if not, then what?

1.6 Some Initial Concepts 47

Fig. 1.12 Two
consequences of the curse of
dimensionality (The top
figure shows how volume
increases as a power
function, the bottom figure
shows how observations
move farther away from the
center.)

3

3
3

Volume = (Length)
Dimensions

X

W

3

4.2

Curse of Dimensionality

the 3 by 3 by 3 cube has 27 units of space to fill with data. The result for a dataset
with a certain number of observations is that the distribution of the observations can
become very sparse. The space is less adequately covered, so that the sample size per
unit of space decreases. A data analysis one might like to do can become impractical.
In particular, key regions of a nonlinear f (X) may be very poorly estimated for lack
of sufficient data.

Unless more observations can be obtained, some simplifications need to be
imposed by the data analyst. A popular approach is to make the function some linear
combination of the predictors. Sometimes that can improve the quality of the fitted
values, and sometimes that can make the quality worse. This is another manifesta-
tion of the bias–variance tradeoff. Alternatively, one can try to reduce the dimen-
sionality of the data using model selection procedures, shrinkage, an incomplete
Cholesky decomposition, or principle components. But each of these comes with
their own challenges. For example, if principle components analysis is used, onemust
determine howmany of the principle components to include, which introduces a form
of model selection.

The bottom figure illustrates a second complication. With an increase in the num-
ber of dimensions, the data move farther from the center of the space. For a very large
p, the data can be concentrated toward the edges of the space. In the figure, a distance
of 3 units in one dimension can become a distance of 4.2 in two dimensions. Thus,
a hypercube with 5 sides of 3 units each has a maximum Euclidian distance of 6.7
units, whereas a hypercube with 10 sides of 3 units each has a maximum Euclidian
distance of 22.3 units. The problem for a data analysis is that the region toward the
center of the space becomes especially sparse. In that region, it will be very diffi-
cult to estimate effectively a response surface, especially if it is complicated. Once
again, the data analyst has to simplify how the estimation is undertaken or reduce
the number of dimensions.

48 1 Statistical Learning as a Regression Problem

In short, higher dimensional data can be very useful when there are more associ-
ations in the data that can be exploited. But at least ideally, a large p comes with a
large N . If not, what may look like a blessing can actually be a curse.

1.7 Statistical Learning in Context

Data analysis, whatever the tools, takes place in a professional setting that can influ-
ence how the analysis is undertaken. Far more is involved than formal technique.
Although we cannot consider these matters at any length, a few brief observations
are probably worth mention.

• It is Important to Keep Humans in the Loop — With the increasing process-
ing power of computers, petabytes of storage, efficient algorithms, and a rapidly
expanding statistical toolbox, there are strong incentives to delegate data analyses
tomachines. At least in themedium term, this is a hugemistake. Humans introduce
a host of critical value judgements, intuitions and context that computers cannot.
Worse than a statistical bridge to nowhere is a statistical bridge to the wrong place.
A better formulation is a structured computer–human partnership on which there
is already interesting work in progress (Michelucci and Dickinson 2016).

• Sometimes There is No Good Solution—The moment one leaves textbook exam-
ples behind, there is a risk that problems with the data and/or the statistical pro-
cedures available will be insurmountable. That risk is to be expected in the real
world of empirical research. There is no shame in answering an empirical question
with “I can’t tell.” There is shame in manufacturing results for appearance’s sake.
Assume-and-proceed statistical practice can be a telling example. In later chapters,
wewill come upon unsolved problems in statistical learning where, in the words of
Shakespeare’s Falstaff, “The better part of valor is discretion” (Henry the Fourth,
Part 1, Act 5, Scene 4).

• The Audience Matters — Results that are difficult to interpret in subject matter
terms, no matter how good the statistical performance, are often of little use.
This will sometimes lead to another kind of tradeoff. Algorithmic procedures that
perform very well by various technical criteria may stumble when the time comes
to conveywhat the resultsmean. Important features of the data analysismay be lost.
It will sometimes be useful, therefore, to relax the technical performance criteria a
bit in order to get results that effectively inform substantive or policy matters. One
implication is that an effective data analysis is best done with an understanding of
who will want to use the results and the technical background they bring. It can
also be important to anticipate preconceptions that that might make it difficult to
“hear” what the data analysis has to say. For example, it can be very difficult to
get certain academic disciplines to accept the results from algorithmic procedures
because those disciplines are so steeped in models.

• Decisions ThatCanBeAffected—Knowing your audience can alsomean knowing
what decisions might be influenced by the results of a data analysis. Simply put,

1.7 Statistical Learning in Context 49

if one’s goal is to bring information from a data analysis to bear on real decisions,
the data analysis must be situated within the decision-making setting. This can
mean making sure that the inputs and outputs are those that decision-makers deem
relevant and that the details of the algorithmic procedures comport well with
decision-maker needs. For example, if forecasting errors lead to asymmetric losses,
asymmetric costs should be built into the algorithmic procedure.

• Differences That Make No Difference — In almost every issue of journals that
publish work on statistical learning and related procedures, there will be articles
offering some new wrinkle on existing techniques, or even new procedures, often
with strong claims about superior performance compared to some number of other
approaches. Such claims are often data-specific but even if broadly true, rarely
translate into important implications for practice. Often the claims of improved
performance are small by any standard. Some claims of improved performance
are unimportant for the subject matter problem being tackled. But even when the
improvements seem to be legitimately substantial, they often address secondary
concerns. In short, although it is important to keepupwith important developments,
the newest are not necessarily important.

• Software That Makes No Difference (or is actually worse)—The hype can apply
to software as well. While this edition is being written, the world is buzzing with
talk of “data mining,” “big data” and “analytics.” Not surprisingly, there are in
response a substantial number of software purveyors claiming to offer the very
latest and very best tools, which perform substantially better than the competition.
Caveat Emptor. Often, information on how the software runs is proprietary and no
real competitive benchmarks are provided. Much like for the Wizard of Oz, there
may be little behind a slick user interface. That is one reason why in this book
we exclusively use the programming language R. It is free, so there are no sales
incentives. The source code can be downloaded. If one wants to make the effort, it
is possible to determine if anyone is hiding the ball. And with access to the source
code, changes and enhancements in particular procedures can be written.

• Data Quality Really Matters — Just as in any form of regression analysis, good
data are a necessary prerequisite. If there are no useful predictors, if the data are
sparse, if key variables are highly skewed or unbalanced, or if the key variables are
poorly measured, it is very unlikely that the choice of one among several statistical
learning procedures will be very important. The problems are bigger than that. It
is rare indeed when even the most sophisticated and powerful statistical learning
procedures can overcome the liabilities of bad data. A closely related point is that
a substantial fraction of the time invested in a given data analysis will be spent
cleaning up the data and getting it into the requisite format. These tasks can require
substantial skill only tangentially related to conventional statistical expertise.

• The Role of Subject-Matter Expertise — Subject-matter expertise can be very
important in the following:

1. Framing the empirical questions to be addressed;
2. Defining a data generation mechanism;
3. Designing and implementing the data collection;

50 1 Statistical Learning as a Regression Problem

4. Determining which variables in the dataset are to be inputs and which are to be
outputs;

5. Settling on the values of tuning parameters; and
6. Deciding which results make sense.

But none of these activities is necessarily formal or deductive, and they leave lots
of room for interpretation. If the truth be told, subject-matter theory plays much
the same role in statistical learning as it does in most conventional analyses. But
in statistical learning, there is often far less posturing.

Demonstrations and Exercises

The demonstrations and exercises in the book emphasize data analysis, not the for-
malities of mathematical statistics. The goal is to provide practice in learning from
data. The demonstrations and exercises for this chapter provide a bit of practice
doing regression analyses by examining conditional distributions without the aid of
conventional linear regression. It is an effort to get back to first principles unfiltered
by least squares regression. Another goal is to show how data snooping can lead to
misleading results. Commands in R are shown in italics. However, as already noted
several times, R and the procedures in R are moving targets. What runs now may
not run later, although there will almost certainly be procedures available that can
serve as adequate substitutes. Often, examples of relevant code in R be found in the
empirical applications provided in each chapter.

Set 1

Load the R dataset “airquality” using data(airquality). Learn about the data set using
help(airquality). Attach the dataset “airquality” using attach(airquality). If you do
not have access to R, or choose to work with other software, exercises in the same
spirit can be easily undertaken. Likewise, exercises in the same spirit can be easily
undertaken with other data sets.

1. Using summary() take a look at some summary statistics for the data frame. Note
that there are some missing data and that all of the variables are numeric.

2. Using pairs(), construct of a scatterplot matrix including all of the variables in the
dataset. These will all be joint (bivarate) distributions. Describe the relationships
between each pair of variables. Are there associations? Do they look linear? Are
there outliers?

3. Using boxplot(), construct separate side-by-side boxplots for ozone concentra-
tions conditioning on month and ozone concentrations conditioning on day. Does
the ozone distribution vary by month of the year? In what way?

4. Construct a three-dimensional scatterplot with ozone concentrations as the
response and temperature and wind speed as predictors. This will be a joint
distribution. Try using cloud() from the lattice package. There are lots of slick
options. What patterns can you make out? Now repeat the graphing but condition
on month. What patterns do you see now? (For ease of readability, you can make
the variable month a factor with each level named. For really fancy plotting, have
a look at the library ggplot2.)

1.7 Statistical Learning in Context 51

5. From the graphics library, construct a conditioning plot using coplot()with ozone
concentrations as the response, temperature as a predictor, and wind speed as a
conditioning variable. How does the conditioning plot attempt to hold wind speed
constant?

(a) Consider all the conditioning scatterplots. What common patterns do you
see? What does this tell you about how ozone concentrations are related to
temperature with wind speed held constant?

(b) How do the patterns differ across the conditioning scatter plots? What does
that tell you about interaction effects: how do the relationship between ozone
concentrations and temperature differ for different wind speeds?

6. Construct an indicator variable for missing data for the variable Ozone. (Using
is.na() is a good way.) Applying table(), cross-tabulate the indicator against
month.What do you learn about the pattern of missing data? Howmight your ear-
lier analyses using the conditioning plot be affected? (If you want to percentage
the table, prop.table() is a good way.)

7. Write out the conventional parametric regression model that seems to be most
consistent with what you have learned from the conditioning plot. Try to justify
all of the assumptions you are imposing.

8. Implement your regressionmodel in R using lm() and examine the results. Look at
the regression diagnostics using plot(). What do the four plots tell you about your
model? How do your conclusions about the correlates of ozone concentrations
learned from the regressionmodel compare to the conclusions about the correlates
of ozone concentrations learned from the conditioning plot?

Set 2

The purpose of this exercise is to give you some understanding about how the com-
plexity of a fitting function affects the results of a regression analysis and how test
data can help.

1. Construct the trainingdata as follows. For your predictor: x= rep(1:30, times=5).
This will give you 150 observations with values 1 through 30. For your response:
y = rnorm(150). This will give you 150 random draws from the standard normal
distribution. As such, they are on the average independent of x. This is the same
as letting y = 0 + 0x + ε, which is nature’s data generation process.

2. Plot the response against the predictor and describe what you see. Is what you
see consistent with how the data were generated?

3. Apply a bivariate regression using lm() Describe what overall conclusions you
draw from the output. The linear functional form is the “smoothest” possible
relationship between a response and a predictor.

4. Repeat the linear regression with the predictor as a factor. Apply the same R code
as before but use as.factor(x) instead of x. This is a linear basis expansion of
x. The set of indicator variables for x (one for each value of x) when used as
predictors, leads to the “roughest” possible relationship between a response and
a predictor. (Technically, you are now doing a multiple regression.) Each value

52 1 Statistical Learning as a Regression Problem

Fig. 1.13 For predictors X
and Z, and a binary response
coded as blue or red, an
overlaid decision boundary
derived from a logistic
regression (N = 100: 45 reds
and 55 blues.)

2 1 0 1 2

2
1

0
1

2

Decision Boundary for Binary Outcome Red or Blue

X

Z

of the predictor can have its own estimate of the conditional mean. (In this case,
you know that those conditional means are 0.0 in nature’s “generative process.”)
Compare the R2 and the adjusted R2 from the lm() output and to the output from
#3. What can you say about overfitting. Is there evidence of it here?

5. Construct 1/0 indicator variables for x-indicator variables whose t-values are
greater than 1.64. (The ifelse() command is a good way to do this.) Apply lm()
again including only these indicator variables as predictors. What do you find?
(By chance, it is possible — but unlikely — that there is still nothing that is
“statistically significant.” If so, go back to step #1 and regenerate the data. Then
pick up at step #3.)

6. Construct test data by repeating step #1. Because x is treated as fixed, you only
need to regenerate y. Regress the new y on the subset of indicator variables you
used in the previous step. What do you find? The results illustrate the important
role of test data.

Set 3

The purpose of this exercise is to get you thinking about decision boundaries for
classification problems. Figure1.13 shows a decision boundary for a binary response
coded as red or blue. The predictors are X and Z . The overlaid straight line is a
decision boundary based on a logistic regression and values of X and Z for which
response odds are .5/(1 − .5) = 1.0.

1. Should the observations above the decision be classified as blue or red? Why?
2. Should the observations below the decision be classified as blue or red? Why?
3. Suppose there were an observation with a z-value of 1 and an x-value of −1, but

with an unknown response. What would be your best guess: red or blue? Why?

1.7 Statistical Learning in Context 53

4. Suppose there were an observation with a z-value of −1.5 and an x-value of .5,
but with an unknown response. What would be your best guess: red or blue?
Why?

5. Why do you think the decision boundary was located at odds of 1.0?
6. How many red observations are misclassified? (For purposes of this exercise,

points that seem to fall right on the decision boundary should not be considered
classification errors. They are a little above or a little below, but you cannot really
tell from the plot.)

7. How many blue observations are misclassified? (For purposes of this exercise,
points that seem to fall right on the decision boundary should not be considered
classification errors. They are a little above or a little below, but you cannot really
tell from the plot.)

8. What fraction of the blue observations is classified correctly?
9. What fraction of the red observations is classified correctly?
10. Which outcome is classified more accurately?
11. What fraction of all of the observations is classified correctly?

Chapter 2
Splines, Smoothers, and Kernels

2.1 Introduction

This chapter launches a more detailed examination of statistical learning within a
regression framework. Once again, the focus is on conditional distributions. But for
now, the mean function for a response variable is central. How does the mean vary
with different predictor values? The intent is to begin with procedures that havemuch
the same look and feel as conventional linear regression and gradually move toward
procedures that do not.

2.2 Regression Splines

A “spline” is a thin strip of wood that can be easily bent to follow a curved line
(Green and Silverman 1994: 4). Historically, it was used in drafting for drawing
smooth curves. Regression splines, a statistical translation of this idea, are a way to
represent nonlinear, but unknown, mean functions.

Regression splines are not used a great deal in empirical work. As we show later,
there are usually better ways to proceed. Nevertheless, it is important to consider
them, at least briefly. They provide an instructive transition between conventional
parametric regression and the kinds of smoothers commonly seen in statistical learn-
ing settings. They also introduce concepts and concerns that will be relevant through-
out this chapter and in subsequent chapters.

Recall the general expression for function estimation with a quantitative response
variable Y.

Y = f (X) + ε, (2.1)

The original version of this chapter was revised: See the “Chapter Note” section at the end of
this chapter for details. The erratum to this chapter is available at https://doi.org/10.1007/978-
3-319-44048-4_10.

© Springer International Publishing Switzerland 2016
R.A. Berk, Statistical Learning from a Regression Perspective,
Springer Texts in Statistics, DOI 10.1007/978-3-319-44048-4_2

55

http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10
http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10

56 2 Splines, Smoothers, and Kernels

where X is a set of predictors, f (X) is not specified, and ε can be nothing more than
a residual or nothing less than a traditional disturbance term depending, respectively,
on whether a level I or level II regression is being undertaken.

Regression splines are an algorithmic way to empirically arrive at a f (X). For a
level I analysis, one tries to show how X is related to Y. For a conventional level II
analysis, one tries to estimate nature’s true response surface. For the kind of level II
analysis we are using, one estimates an approximation of that true response surface.
That is, the estimation target is acknowledged to be an approximation the f (X), not
the true f (X), but one attempts to get close to the true response surface. The most
common estimator is ordinary least squares. That estimator is linear, and the loss
function is quadratic.

For a piecewise linear basis, the goal is to fit the data with a broken line (or
hyperplane) such that at each break point the left-hand edge meets the right-hand
edge. When there is a single predictor, for instance, the fit is a set of straight line
segments, connected end to end, sometimes called “piecewise linear.”

2.2.1 Applying a Piecewise Linear Basis

Consider as an example a wonderfully entertaining paper in which Zelterman (2014)
documents associations by state in theU.S. between the number of internet references
to zombies and census features for those states. The number of zombie references
was determined through a “Google search” state by state. Like Zelterman, we let y
be the number of zombie references by state per 100,000 people. We let x be the
average in each state of minutes per day spent watching cable TV. The values used
here for both variables are total fabrications constructed for didactic purposes.

Figure2.1 shows an example of a piecewise linear function constructed in three
steps.1 The first step is to decide where the break points on x will be. Based on prior
market research, suppose there are known tipping points at 90 and 180min of TV
watching a day. At 90min a day, viewers often become fans of zombies on TV and
shows with related content. At 180min a day, zombie saturation is reached. Break
points are defined at x = a and x = b (with b > a) so that in Fig. 2.1, a = 90 and
b = 180. Such break points are often called “knots.”

The next step is to define two indicator variables to represent the break points. The
first, Ia , is equal to 1 if x is greater than 90 and equal to 0 otherwise. The second, Ib,
is equal to 1 if x is greater than 180 and equal to 0 otherwise. Both are step functions.
We let xa be the value of x at the first break point, and xb be the value of x at the
second break point (i.e. 90 and 180 respectively).

The final step is to define the mean function that allows for changes in the slope
and the intercept:

f (xi) = β0 + β1xi + β2(xi − xa)Ia + β3(xi − xb)Ib. (2.2)

1Using conventional multiple regression, Zelterman (2014: 40–41) finds more internet references
to zombies in states with fewer Miss America winners and fewer shopping centers per capita. Who
knew?

2.2 Regression Splines 57

Fig. 2.1 A piecewise linear
function with two knots for
the number of zombie
references on the internet as
a function of minutes per day
watching cable TV

0 50 100 150 200

0
50

10
0

15
0

20
0

A Linear Piecewise Function

Minutes Per Day Watching Cable TV

In
te

rn
et

 Z
om

bi
e

R
ef

er
en

ce
s

pe
r

10
0,

00
0

P
eo

pl
e

Looking back how linear basis expansions are defined in Eq.1.17, it is apparent that
there are four transformations of X (m = 1, 2, . . . , 4), each denoted by hm(X), in
which the first function of x is a constant. One has a set of predictors constructed
as a linear basis expansion of X . Equation2.2 is, therefore, the mean function for a
conventional multiple regression with coefficient values that can be obtained from
ordinary least squares.

What exactly is the point of Eq.2.2? Equation2.2 is not a model representing how
the data were generated. But, it can be used as a mean function in a least squares
regression to help find fitted values that summarize associations in the data. Going
no farther, this can result in a level I analysis through which relationships in the data
are described.

For a level II analysis, Eq. 2.2 can play two related roles. First, it can represent
the mean function to be estimated. The approach taken here is that Eq.2.2 is the
expression for the piecewise linear function that is a feature of a joint probability
distribution, but with no claims made about its correspondence to the truth. It is
the estimation target. When embedded in the population least squares framework
discussed in the last chapter, it can be viewed as the best (i.e., by least squares),
piecewise linear approximation of the true response surface and an appropriate esti-
mation target. Second, used as the mean function in a least squares procedure applied
to training data, it is the mean function for the least squares estimator.

http://dx.doi.org/10.1007/978-3-319-44048-4_1

58 2 Splines, Smoothers, and Kernels

Whether for a level I or level II analysis, the piecewise linear function can be
decomposed into its constituent line segments. The mean function for x less than a is

f (xi) = β0 + β1xi . (2.3)

In Fig. 2.1, β0 is zero, and β1 is positive.
For values of x greater than a but smaller than b, the mean function becomes

f (xi) = (β0 − β2xa) + (β1 + β2)xi . (2.4)

For a positive β1 and β2, the line beyond x = a is steeper because the slope is
(β1 + β2). The intercept is lower because of the second term in (β0 − β2xa). This
too is consistent with Fig. 2.1. If β2 were negative, the reverse would apply.

For values of x greater than b, the mean function becomes,

f (xi) = (β0 − β2xa − β3xb) + (β1 + β2 + β3)xi . (2.5)

For these values of x , the slope is altered by adding β3 to the slope of the previous
line segment. The intercept is altered by subtracting β3xb. The sign and magnitude
of β3 determine by whether the slope of the new line segment is positive or negative
and how steep it is. The intercept will shift accordingly. In Fig. 2.1, β3 is negative and
large enough to make the slope negative. The intercept is increased substantially.

Expressions like Eq.2.2 are all one needs for a level I regression analysis. For
a level II regression analysis, a credible data generating process also must be artic-
ulated. As before, we will generally employ a joint probability distribution as the
“population” fromwhich each observation is realized as a random, independent draw.
Very often this approach is reasonable. But each level II regression analysis must be
considered on a case by case basis. For example, if time is a predictor (e.g., month
or year), there can be important conceptual complications as we will now see.

Figure2.2 shows a three-piece linear regression spline applied to water use data
from Tokyo over a period of 27 years.2 The data were collected as part of a larger
research project motivated by concerns about the provision of potable water to large
metropolitan areas as human-induced climate change proceeds. Residential water
use in 1000s of cubic feet is on the vertical axis. Year is on the horizontal axis.
The locations of the break points were chosen using subject matter expertise about
residential water use in Japan. The R code is shown in Fig. 2.3.

For a level I analysis, it is clear that water use was flat until about 1980, increased
linearly until about 1996, and then flattened out again. The first break point may
correspond to a transition toward much faster economic and population growth.
The second break point may correspond to the introduction of more water-efficient
technology. But why the transitions are so sharp is mysterious. One possibility is

2The data were provided by the Tokyo Municipal Water Works as part of a project funded by The
Asian-Pacific Network for Global Change Research.

2.2 Regression Splines 59

1975 1980 1985 1990 1995 2000

62
00

00
64

00
00

66
00

00
68

00
00

70
00

00
72

00
00

Linear Piecewise Fit for Residential Water Use by Year

Year

R
es

id
en

tia
l W

at
er

 u
se

 in
 1

00
0

C
ub

ic
 F

ee
t

Fig. 2.2 A piecewise linear basis applied to water use in Tokyo by year

xa<-ifelse(year>1980,1,0)
xb<-ifelse(year>1992,1,0)
x1<-(year-1980)*xa
x2<-(year-1992)*xb
working<-data.frame(hhwater,year,xa,xb,x1,x2)
out1<-lm(hhwater~year+x1+x2,data=working)
plot(year,hhwater,xlab="Year",ylab="Residential

Water use in 1000 Cubic Feet", main="Linear
Piecewise Fit for Residential Water Use by Year",
col="blue",pch=19)

lines(year,out1$fitted.values, lty="dashed",col="blue",lwd=3)

Fig. 2.3 R code for piecewise linear fit

that the break points correspond in part to changes in how the water use data were
collected or reported.

In Fig. 2.2, the end-to-end connections between line segments work well with
processes that unfold over time. But there is nothing about linear regression splines
requiring that time be a predictor. For example, the response could be crop production
per acre and the sole predictor could be the amount of phosphorus fertilizer applied
to the soil. Crop production might increase in approximately a linear fashion until
there is an excess of phosphorus causing of metabolic difficulties for the crops. At
that point, crop yields might decline in roughly a linear manner.

60 2 Splines, Smoothers, and Kernels

More generally, fitting line segments to data provides an example of “smoothing”
a scatterplot, or applying a “smoother.” The line segments are used to summarize how
x and y are related. The intent is to highlight key features of any association while
removing unimportant details. This can often be accomplished by constructing fitted
values in a manner that makes them more homogeneous than the set of conditional
means of y computed for each unique value of x or binned values of x .3

Imagine a scatterplot in which the number of observations is large enough so that
for each value of x there are at least several values of y. One could compute the mean
of y for each x-value. If one then drew straight lines between adjacent conditional
means, the resulting smootherwould be an interpolation of the conditionalmeans and
as “rough” as possible. At the other extreme, imposing a single linear fit on all of the
means at oncewould produce the “smoothest” fit possible. Figure2.2 falls somewhere
in between. How to think about the degree of smoothness more formally is addressed
later. Effective degrees of freedom and the bias-variance tradeoff discussed in the
last chapter are a start.

For a piecewise linear basis, one can simply compute mean functions such as
Eq.2.2 with ordinary least squares. With the regression coefficients in hand, fitted
values are easily constructed. Indeed, many software packages compute and store
fitted values on a routine basis. Also widely available are procedures to construct
the matrix of regressors, although it is not hard to do so one term at a time using
common transformation capabilities (See Fig. 2.3.). For example, the library spline
has a procedure bs() that constructs a B-spline basis (discussed later) that can be
easily used to represent the predictor matrix for piecewise linear regression.

In contrast to most applications of conventional linear regression, there would
typically be little interest in the regression coefficients themselves; they are but a
means to an end. The point of the exercise is to superimpose the fitted values on a
scatterplot so that the relationship between y and x can bemore effectively visualized.
The story is in the visualization not the regression coefficients.

As already noted, for a level II analysis the estimation target is the same mean
function in the population or joint probability distribution. But, with the longitudinal
data, the inferential issues can be tricky. In particular, treating the data as independent,
random realizations from a joint probability distribution does not work well. An
obvious difficulty is that allowing year to be a random variable means that for any
given dataset, some years might not be represented at all and some years might be
represented more than once. In fact, the data were assembled with these particular
years in mind; the data collection process took the specified years as given.

If in practice, year is treated as fixed, it probably makes sense to focus on a
data generating process that also treats year as fixed. Then, one can imagine nature
conditioning on year so that for each year, there is a probability distribution of water
consumption values that in principle could be realized. The data on hand are realized
from these conditional distributions. But after conditioning on year, are the water
use observations realized independently? For example, if in one year average water

3For these data, there is only one value of y for each unique values of x . They may be treated as if
they were means.

2.2 Regression Splines 61

consumption increases, does that by itself have implications for the realized values
of water consumption the next year? Without extensive subject-matter knowledge it
is hard to know. Alternatively, it might be possible to specify a mean function that
addressed possible dependence, but that would require a reconceptualization of how
the data were realized.

There are significant complications if the break points were chosen through data
snooping. For example, there is data snooping if the scatter plot for water consump-
tion by year was examined to choose the best break point locations. Those locations
become features of the regression specification itself so that the mean function spec-
ification could well be different with new realizations of the data (Leeb and Pötscher
2005, 2006, 2008). But, with the year treated as fixed, valid asymptotic inferences
can bemade to the same best, linear piecewise approximation, although conventional
confidence intervals and tests are no longer valid, even asymptotically. If one assumes
independence after conditioning on year, there can be valid asymptotic confidence
intervals and tests using other procedures (Berk et al. 2010, 2014; Lockhart et al.
2014). However, the sample size here is very small. There are only 27 observations,
and 4 degrees of freedom are used by the piecewise linear regression.4

The difficulties with a level II analysis may be even more fundamental. Nature’s
data generation process assumes, in effect, that history can repeat itself over and
over, but we only get to see one random set of realized water consumption values
from the joint probability distribution for the years in question. For Fig. 2.2, one
must be comfortable assuming that Tokyo’s water consumption values from 1970 to
1997 could have been different. Superficially, this may seem reasonable enough. But
to be convincing, one would need to describe the ways in which nature makes this
happen. In the absence of such an account, one has started down the slippery slope
of assume-and-proceed statistics. It may be wise here to remain at level I.

2.2.2 Polynomial Regression Splines

Smoothing a scatterplot using a piecewise linear basis has the great advantage of sim-
plicity in concept and execution. And by increasing the number of break points, very
complicated relationships can be approximated. However, in most applications there
are good reasons to believe that the underlying relationship is not well represented
with a set of straight line segments. Another kind of approximation is needed.

Greater continuity between line segments can be achieved by using polynomials
in x for each segment. Cubic functions of x are a popular choice because they strike a
nice balance between flexibility and complexity. When used to construct regression
splines, the fit is sometimes called “piecewise cubic.” The cubic polynomial serves
as a “truncated power series basis” in x .

4If there is dependence, one is in uncharted waters for post-model selection inference.

62 2 Splines, Smoothers, and Kernels

Unfortunately, simply joining polynomial segments end to end is unlikely to result
in a visually appealing fit where the polynomial segments meet. The slopes of the
two lines will often appear to change abruptly even when that is inconsistent with
the data. Far better visual continuity usually can be achieved by constraining the first
and second derivatives on either side of each break point to be the same.

One can generalize the piecewise linear approach and impose those continuity
requirements. Suppose there are K interior break points, usually called “interior
knots.” These are located at ξ1 < · · · < ξK with two boundary knots added at ξ0
and ξK+1. Then, one can use piecewise cubic polynomials in the following mean
function exploiting, as before, linear basis expansions of X :

f (xi) = β0 + β1xi + β2x
2
i + β3x

3
i +

K∑

j=1

θ j (xi − x j)
3
+, (2.6)

where the “+” indicates the positive values from the expression inside the parenthe-
ses, and there are K + 4 parameters whose values need to be computed. This leads
to a conventional regression formulation with a matrix of predictor terms having
K + 4 columns and N rows. Each row would have the corresponding values of the
piecewise cubic polynomial function evaluated at the single value of x for that case.
There is still only a single predictor, but now there are K + 4 basis functions.

The output for the far-right term in Eq.2.6 may not be apparent at first. Suppose
the values of the predictor are arranged in order from low to high. For example,
x = [1, 2, 4, 5, 7, 8]. Suppose also that x j is located at an x-value of 4. Then,
(x − x j)

3+ = [0, 0, 0, 1, 27, 64]. The knot-value of 4 is subtracted from each value of
x , the negative numbers set to 0, and the others cubed. All that changes from knot to
knot is the value of x j that is subtracted. There are K such knots and K such terms
in the regression model.

Figure2.4 shows the water use data again, but with a piecewise cubic polynomial
overlaid that imposes the two continuity constraints. The code is shown in Fig. 2.5.
Figure2.4 reveals a good eyeball fit, which captures about 95% of the variance in
water use. But, in all fairness, the scatterplot did not present a great challenge. The
point is to compare Fig. 2.2 to Fig. 2.4 and note the visual difference. The linear
piecewise fit also accounted for about 95% of the variance. Which plot would be
more instructive in practice would depend on the use to be made of the fitted values
and on prior information about what a sensible f (X) might be. This is a general
point to which we will return many times. It can be very risky to rely on statisti-
cal summaries alone, such as fit statistics, to select the most instructive response
surface approximation. Subject-matter knowledge, potential applications and good
judgments need to play an important role.5

5This also is a good example of the problems one faces trying to adjust for the degrees of freedom
used by the regression. There seems to be no way explicitly to introduce the constraints on the first
and second derivatives, although they are built into fitting process. More is involved than the K
estimates of θ j .

2.2 Regression Splines 63

1975 1980 1985 1990 1995 2000

62
00

00
64

00
00

66
00

00
68

00
00

70
00

00
72

00
00

Cubic Piecewise Fit for Residential Water Use by Year

Year

R
es

id
en

tia
l W

at
er

 u
se

 in
 1

00
0

C
ub

ic
 F

ee
t

Fig. 2.4 A piecewise cubic basis applied to water use in Tokyo by year

library(splines)
cubic<-bs(year,knots=c(1980,1992))
out2<-lm(hhwater~cubic)
plot(year,hhwater,xlab="Year",ylab="Residential Water use

in 1000 Cubic Feet", main="Cubic Piecewise Fit for
Residential Water Use by Year",col="blue",pch=19)

lines(year,out2$fitted.values,lty="dashed",col="blue",lwd=3)

Fig. 2.5 R code for piecewise cubic fit

The regression coefficients ranged widely and, as to be expected, did not by
themselves add any useful information. Any story was primarily in the fitted values.
The issues for a level I and level II analysis are essentially the same as for a piecewise
linear approach.

2.2.3 Natural Cubic Splines

Fitted values for piecewise cubic polynomials near the boundaries of x canbeunstable
because they fall at the ends of polynomial line segmentswhere there are no continuity
constraints, and where the data may be sparse. By “unstable” one means that a very
few observations, which might vary substantially over random realizations of the

64 2 Splines, Smoothers, and Kernels

Fig. 2.6 A natural cubic
piecewise basis applied to
water use in Tokyo by year

1975 1980 1985 1990 1995 2000

62
00

00
64

00
00

66
00

00
68

00
00

70
00

00
72

00
00

Natural Cubic Piecewise Fit for Residential
Water Use by Year

Year

R
es

id
en

tia
l W

at
er

 u
se

 in
 1

00
0

C
ub

ic
 F

ee
t

data, could produce rather different fitted values near the boundaries of x . As a result,
the plot of the fitted values near the boundaries might look somewhat different from
sample to sample.

Sometimes, constraints for behavior at the boundaries are added to increase sta-
bility. One common constraint imposes linearity on the fitted values beyond the
boundaries of x . This introduces a bit of bias because it is very unlikely that if data
beyond the current boundaries were available, the relationship would be linear. How-
ever, the added stability is often worth it. When these constraints are added, the result
is a “natural cubic spline.”

Figure2.6 shows again a plot of thewater use data on year, but nowwith a smoother
constructed from natural cubic splines. The code can be found in Fig. 2.7. One can
see that the fitted values near the boundaries of x are somewhat different from the
fitted values near the boundaries of x in Fig. 2.4. The fitted values in Fig. 2.6 are
smoother, which is the desired result. There is one less bend near both boundaries,
but the issues for a level I or level II analysis have not changed.6

The option of including extra constraints to help stabilize the fit provides an
example of the bias–variance tradeoff discussed in the previous chapter, but for
piecewise cubic polynomials and natural cubic splines, the degree of smoothness
is primarily a function of the number of interior knots. In practice, the smaller the
number of knots, the smoother are the fitted values. A smaller number of knots
means that there are more constraints on the pattern of fitted values because there

6More generally, how one can formulate the boundary constraints is discussed in Hastie et al. (2009:
Sect. 5.2.1).

2.2 Regression Splines 65

library(splines)
Ncubic<-ns(year,knots=c(1980,1992))
out3<-lm(hhwater~Ncubic)
plot(year,hhwater,xlab="Year",ylab="Residential Water use

in 1000 Cubic Feet", main="Natural Cubic Piecewise
Fit for Residential Water Use by Year",col="blue",pch=19)

lines(year,out3$fitted.values,lty="dashed",col="blue",lwd=3)

Fig. 2.7 R code for natural piecewise cubic fit

are fewer end-to-end, cubic line segments used in the fitting process. Consequently,
less provision is made for a complex response surface.

Knot placement matters too. Ideally, knots should be placed where one believes,
before looking at the data, the f (X) is changing most rapidly. But it will often be
very tempting to data snoop. In some cases, inspection of the data, coupled with
subject matter knowledge, can be used to determine the number and placement of
knots. Alternatively, the number and placement of knots can be approached as a
conventional model selection problem. But that means determining a candidate set
of models with different numbers of knots and different knot locations. That set
could be very large. Absent subject matter information, knot placement has been
long known to be a difficult technical problem, especially when there is more than
one predictor (de Boors 2001). The fitted values are related to where the knots are
placed in a very complicated manner. Fortunately, methods discussed later sidestep
the knot number and location problem.

Even if a good case for a small number of candidate models can be made, one
must be careful about taking any of their fit measures too literally. There will often
be several models with rather similar values, whatever the kind of fit statistic used.
Then, selecting a single model as “best” using the fit measure alone may amplify
a small numerical superiority into a large difference in the results, especially if the
goal is to interpret how the predictors are related to the response. Some call this
“specious specificity.” Also, one must be a very careful not to let small differences in
the fit statistics automatically trump subject matter knowledge. The risk is arriving
at a model that may be difficult to interpret, or effectively worthless. Finally, one
has introduced the demanding complications that come with model selection. All is
well for a level I analysis. But moving to a level II analysis can introduce difficult
problems already mentioned. Toward the end of the chapter, we will consider an
empirical example inwhich a split sample approach is very helpful for valid statistical
inference.

In summary, for level II regression splines of the sort just discussed, there is no
straightforward way to arrive at the best tradeoff between the bias and the variance
because there is no straightforwardway to determine knot location.A key implication
is that it is very difficult to arrive at a model that is demonstrably the “best.” Fortu-
nately, there are other approaches to smoothing that are more promising. A broader

66 2 Splines, Smoothers, and Kernels

point is that we have begun the transition from models to black box algorithms. As
the substantive role for fitted values has become more prominent, the substantive
role for regression coefficients has becomes less prominent.

2.2.4 B-Splines

In practice, data analyses using piecewise cubic polynomials and natural cubic splines
are rarely constructed directly from polynomials of x . They are commonly con-
structed using a B-spline basis, largely because of computational convenience.7 A
serious discussion of B-splines would take us far afield and accessible summaries
can be found in Gifi (1990: 366–370) andHastie et al. (2009: 186–189). Nevertheless
several observations are worth making even if they are a bit of a detour.

The goal is to construct a piecewise fit from linear basis expansions of x with
nice numerical properties. B-splines meet this test. They are computed in a recursive
manner from very simple functions to more complex ones.

For a set of knots, usually including some beyond the upper and lower boundaries
of x , the recursion begins with indicator variables for each neighborhood defined by
the knots. If a value of x falls within a given neighborhood, the indicator variable
for that neighborhood is coded 1, and coded 0 otherwise. For example, if there is a
knot at an x-value of 2 and the next knot is at an x-value of 3, the x-values between
them constitute a neighborhood with its own indicator variable coded 1 if the value
of x falls in that neighborhood (e.g., x = 2.3). Otherwise the coded value is 0. In
the end, there is a set of indicator variables, with values of 1 or 0, depending on the
neighborhood. These indicator variables define a set of degree zero B-splines.

Figure2.8 is an illustration with interior knots at −2, −1, 0, 1, and 2. With five
interior knots, there are four neighborhoods and four indicator variables. Using indi-
cator variables as regressors will produce a step function when y is regressed on x ;
they are the linear basis expansion for a step function fit. The steps will be located
at the knots and for this example, the mean function specification will allow for four
levels, one for each indicator variable. With a different set of knots, the indicator
variables will change.

Asusual, oneof the indicator variables is dropped fromany regression analysis that
includes an intercept. The deleted indicator becomes the baseline. In R, the procedure
lm() automatically drops one of the indicator variables in a set if an intercept is
included.

Next, a transformation can be applied to the degree zero B-splines (See Hastie
et al. 2009: 186–189). The result is a set of degree one B-splines. Figure2.9 shows
the set of degree one B-splines derived from the indicator variables shown in Fig. 2.8.

7But there can be lots of options, depending on the application. For example, there are special issues
when the intent is to smooth a 2-dimensional surface. An excellent discussion can be found inWood
(2006: Sect. 4.1).

2.2 Regression Splines 67

Fig. 2.8 Degree zero
B-splines

2 1 0 1 2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Indicator Variables for B Splines

X

B
S

pl
in

e
V

al
ue

Fig. 2.9 Degree one
B-splines

2 1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B Splines for Linear Piecewise Fit

X

B
S

pl
in

e
V

al
ue

The triangular shape is characteristic of degree one B-splines, and indicates that the
values for each spline are no longer just 0 or 1, but proportions in-between as well.

In Fig. 2.9, each new basis function is color coded. Starting from the left, the
blue line maps x onto a set of B-spline values. From x-values of −2 to −1, the
B-Spline values decline from 1 to 0 but are 0 for the rest of the x-values. These
B-spline values would be the first column in a new predictor matrix. For x-values
between −2 and 0, the green upside down V indicates that the B-spline values are
between 0 and 1, but equal to 0 otherwise. These B-spline values would be the second
column in a new predictor matrix. The same reasoning applies to the purple and red
upside down Vs and to the yellow line. In the end, there would be six columns of
B-spline valueswith the sixth columncoded tohaveno impact because it is redundant,

68 2 Splines, Smoothers, and Kernels

givenother five columns.That column is not shown inasmuch as it has B-spline values
that are 0 for all x-values.

Degree one B-splines are the basis for linear piecewise fits. In this example,
regressing a response on the B-spline matrix would produce a linear piecewise fit
with four slopes, one for each neighborhood defined by the indicator variables. For
different numbers and locations of knots, the piecewise fit would vary as well.

A transformation of the same form can now be applied to the degree one
B-splines. This leads to a set of degree two B-splines. A set of such B-splines is
shown in Fig. 2.10. As before, each new basis function is color coded, and the shapes
are characteristic. For this illustration, there is now a matrix having seven columns
with one redundant column coded as all 0s. Should the B-spline matrix be used in
a regression analysis, a piecewise quadratic fit would be produced. There would be
one quadratic function for each neighborhood defined by the indicator variables.

The same kind of transformation can then be applied to the degree two B-splines.
The result is a set of degree three B-splines. Figure2.11 shows the set of degree
three color-coded splines, whose shapes are, once again, characteristic. The regressor
matrix now contains eight columnswith one redundant column coded as all 0s.When
these are used as regressors, there will one cubic function for each neighborhood
defined by the original indicator variables.

All splines are linear combinations of B-splines; B-splines are a basis for the
space of all splines. They are also a well-conditioned basis because they are not
highly correlated, and they can be computed in a stable and efficient manner. For
our purposes, the main point is that B-splines are a computational device used to
construct cubic piecewise fitted values. No substantive use is made of the associated
regression coefficients because they too are just part of the computational machinery.
Our trek toward black box algorithms continues.

Fig. 2.10 Degree two
B-splines

2 1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B Splines for Quadratic Piecewise Fit

X

B
S

pl
in

e
V

al
ue

2.3 Penalized Smoothing 69

Fig. 2.11 Degree three
B-splines

2 1 0 1 2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

B Splines for Cubic Piecewise Fit

X
B

S
pl

in
e

V
al

ue

2.3 Penalized Smoothing

The placement of knots, the number of knots, and the degree of the polynomial
are subject to manipulation by a data analyst. For a level I regression analysis, the
goal is to arrive at an instructive fit of the data. Is one learning what one can about
associations in the data? For a level II regression analysis, the goal is to estimate a
useful approximation of the true response surface. Beyond documenting associations
of various kinds, do thefitted values provide helpful information thatmight help guide
future decisions?

Whether for a level I or level II analysis, the data analyst is engaged in “tuning.”
Therefore, the placement of knots, the number of knots, and the degree of the poly-
nomial can seen as “tuning parameters.” Unlike the usual parameters of a regression
model, they typically are of little substantive interest. More like dials on a piece of
machinery, they are set to promote good performance.

There are at least two problems with the tuning parameters for regression splines.
First, there are at least three of them so that the tuning process can be quite com-
plicated. For example, should one increase the number of knots or the degree of the
polynomial? Usually, the only guidance is sketchy craft lore. Second, there is little
or no formal theory to justify the tuning. To many, the tuning process feels like a
“hack.” The entire process is at least inelegant.

A useful alternative is to alter the fitting process itself so that the tuning is accom-
plished automatically, guided by clear statistical reasoning. One popular approach
is to combine a mathematical penalty with the loss function to be optimized. The
penalty imposes greater losses as a mean function becomes more complicated. For
greater complexity to be accepted, the fit must be improved by an amount that is

70 2 Splines, Smoothers, and Kernels

larger than the penalty. The greater complexity has to be “worth it.” This leads to a
very popular approach called “penalized regression.”8

2.3.1 Shrinkage and Regularization

Toget a feel for penalized regression, consider a conventional regression analysiswith
an indicator variable as the sole regressor. If its regression coefficient equals zero, the
fitted values will be a straight line, parallel to the x-axis, located at the unconditional
mean of the response. As the regression coefficient increases in absolute value, the
resulting step function will have a step of increasing size. The difference between the
conditional means of Y when the indicator is 0 compared to the conditional means of
Y when the indicator is 1 is larger. In language we have begun to use, the fit becomes
more rough. Or in still other language, the fit is more complex. In short, the larger
the regression coefficient the rougher the fitted values.

For a level I regression analysis, less complexity can mean that important features
of the fitted values are overlooked. More complexity can complicate unnecessarily
interpretations of the fitted values. For a level II regression analysis, less complexity
means that a smoother approximation of the true response surface is being estimated,
which can increase bias with respect to nature’s true response surface. More com-
plexity can increase the variance of estimates of that response surface. We have the
bias-variance tradeoff once again, and we are once again seeking a Goldilocks solu-
tion. The fitted values should not be too rough. The fitted values should not be too
smooth. They should be just right.

Popular Goldilocks strategies are sometimes called “shrinkage” (Hastie et al.
2009: Sect. 3.4) and sometimes called “regularization” (Hastie et al. 2009: Chap.5).
In the context of statistical learning, both are tools for trying to address the bias-
variance tradeoff. But it can be helpful to think of shrinkage as a special case of
regularization inwhich the loss function for a conventional linear regression is altered
to include a penalty for complexity. We will see in later chapters that regularization
can apply to a much wider range of procedures and take many different forms. For
now, we focus on shrinkage.

A number of proposals have been offered for how to control the complexity of the
fitted values by constraining the magnitude of regression coefficients (See Ruppert
et al. 2003: Sect. 3.5 for a very accessible discussion.). Two popular suggestions are:

1. constrain the sum of the absolute values of the regression coefficients to be less
than some constant C (sometimes called an L1-penalty); and

8Suppose the error sum of squares for a given amount of fitted value complexity is 1000. Ordinarily,
an increase in the complexity of the fitted values that reduces the error sum of squares to less than
1000 would accepted. But suppose there is a penalty of 100. Now the penalized error sum of squares
is 1100. Still, the error sum of squares threshold remains at 1000. Improvement in the fit has to
overcome the penalty of 100.

2.3 Penalized Smoothing 71

2. constrain the sum of the squared regression coefficients to be less than some
constant C (sometimes called an L2-penalty).

The smaller the value of C is, the smaller the sum. The smaller the sum, the
smaller is the typical magnitude of the regression coefficients. The smaller the typ-
ical magnitude of the regression coefficients, the smoother the fitted values. In part
because the units in which the regressors are measured will affect how much each
regression coefficient contributes to the sum, it can make sense to work with stan-
dardized regressors.9 Often, very little interpretive weight is carried by the regression
coefficients in any case if interest centers on the fitted values. The intercept does not
figure in either constraint and is usually addressed separately.

For a level I analysis, both constraints can impose different amounts of smoothness
in the fitted values. Description of the relationships between the response and the
predictors can be affected. For a level II analysis, both constraints lead to shrinkage
methods. The regression coefficients can be “shrunk” toward zero, making the fitted
values more homogeneous. The population approximation is altered in the same
fashion. When the intent is to represent the true response surface, one is prepared to
introduce a small amount of bias into the estimated regression coefficients in trade
for a substantial reduction in their variance so that the same is true of the fitted values.

One also can recast some measures of fit discussed in the last chapter within a
shrinkage framework. The total number of regression coefficients to be estimated
can serve as a constraint and is sometimes called an L0-penalty. Maximizing the
adjusted R2, for example, can be seen as minimizing the usual error sum of squares
subject to a penalty for the number of regression coefficients in the model (Fan and
Li 2006).

Shrinkage methods can be applied with the usual regressor matrix or with
smoother matrices of the sort we introduced earlier. For didactic purposes, we start
within a conventional multiple regression framework and p predictors.

2.3.1.1 Ridge Regression

Suppose that for a conventional fixed X regression, one adopts the constraint that
the sum of the p squared regression coefficients is less than C . This constraint leads
directly to ridge regression. The task is to obtain values for the regression coefficients
so that

β̂ = min
β

⎡

⎣
n∑

i=1

(yi − β0 −
p∑

j=1

xi jβ j)
2 + λ

p∑

j=1

β2
j

⎤

⎦ . (2.7)

In Eq.2.7, the usual expression for the error sum of squares has a new component.
That component is the sum of the squared regression coefficients multiplied by a

9For example, 3.2 additional years of age may count the same as smoking 11.4 additional cigarettes
a day. They may both be equal to one standard deviation of their respective predictors.

72 2 Splines, Smoothers, and Kernels

constant λ. When Eq.2.7 is minimized in order to obtain β̂, the sizes of the squared
regression coefficients are taken into account. This is an L2 penalty.

For a given value of λ, the larger the
∑p

j=1 β2
j is, the larger the increment to the

error sum of squares. The
∑p

j=1 β2
j can be thought of as the penalty function. For a

given value of
∑p

j=1 β2
j , the larger the value of λ is, the larger the increment to the

error sum of squares; λ determines howmuch weight is given to the penalty. In short,∑p
j=1 β2

j is what is being constrained, and λ imposes the constraint. C is inversely
related to λ. The smaller the value of C , the larger is the value of λ.

It follows that the ridge regression estimator is

β̂ = (XTX + λI)−1XT y, (2.8)

where I is a p × p identity matrix. The column of 1s for the intercept is dropped
from X. β0 is estimated separately.

In Eq.2.8, λ plays same role as in Eq.2.7, but can now be seen as a tuning
parameter. It is not a feature of a population or a stochastic process. Its role is to help
provide an appropriate fit to the data and can be altered directly by the data analyst.
As such, it has a different status from the regression coefficients, whose values are
determined through the minimization process itself, conditional upon the value of λ.

The value of λ is added to the main diagonal of the cross-product matrix XTX,
which determines how much the estimated regression coefficients are “shrunk”
toward zero (and hence, each other). A λ of zero produces the usual least squares
result. As λ increases in size, the regression coefficients approach zero, and the fitted
values are smoother. In effect, the variances of the predictors are being increased
with no change in the covariances between predictors and the response variable.
This is easy to appreciate in the case of a single predictor. For a single predictor, the
regression coefficient is the covariance of the predictor with the response divided by
the variance of the predictor. So, if the covariance is unchanged and the variance is
increased, the absolute value of the regression coefficient is smaller.

In ridge regression, the regression coefficients and fitted values obtained will
differ in a complicated manner depending on the units in which the predictors are
measured. It is common, therefore, to standardize the predictors before the estimation
begins. However, standardization is just a convention and does not solve the problem
of the scale dependent regression coefficients. There also can be some issues with
exactly how the standardization is done (Bing 1994). In practice, the standardized
regression coefficients are transformed back into their original unitswhen time comes
to interpret the results, but that obscures the impact of the standardization on Eq.2.7.
The penalty function has the standardized coefficients as its argument.

In whatever manner the value of λ is determined, a valid level I analysis may be
undertaken. What varies is the smoothness of the fitted values from which descrip-
tive summaries are constructed. For a level II analysis, if the value of λ is deter-
mined before the data analysis begins, one can resurrect a conventional “true model”
approach. For reasons already addressed, that seems like a bad idea. Moreover, the
shrinkage is a new source of bias. Using the “wrong model” perspective, one is esti-

2.3 Penalized Smoothing 73

mating in an asymptotically unbiased manner an approximation of the true response
surface determined by the value of λ.

If the value of λ is determined as part of the data analysis, there are significant
complications for level II analysis. A key issue is how the value of λ is chosen.
Ideally, there are training data, evaluation data, and test data as described in the last
chapter. Using the training data and the evaluation data, one option is trial and error.
Different values ofλ are triedwith the training data until there is a satisfactoryfit in the
evaluationdata by somemeasure such asmean squared error.Withmodern computing
power, a very large number of potential values can be searched very quickly. Once
a value for λ is determined, a level II analysis properly can be undertaken with the
test data, although if the degrees of freedom are used in the calculations, there are
complications (Dijkstra 2011). If all one cares about is a level I analysis, one can
simply search over all the data at once for a value of λ that leads to good results in
statistical and subject-matter terms. However, it will be useful to keep in mind how
much searching has been done. It is easy to get carried away by complex results that
are essentially a byproduct of noisy data. After a lot of searching, complex results
that come as a surprise need to be very cautiously interpreted.

If there are no evaluation and test data and the dataset is too small to partition,
there are the fallback options noted in the last chapter such as cross-validation. The
value of λ is chosen to maximize some cross-validation measure of fit. But no matter
what the method, search for the best values of λ can lead to overfitting, especially
if the searching is very extensive. In cross validation, for example, the training data
are reused many times.10

One must also be careful with how ridge regression results are interpreted. Even
within the wrong model perspective, the regression coefficient values are regularized
to achieve a desirable set of fitted values. Features of the fitted values are driving
the results, and regression coefficients are but a means to that end. For both level
I and level II analyses, it is not entirely clear why a better fit of the data implies
more instructive regression coefficients. For example, in a properly implemented
randomized experiment, average treatment effect estimates are unbiased and have
causal interpretations even though the overall fit may be poor. Also, there is nothing
especially compelling about the L2 ridge penalty. Other kinds of defensible penalties
exist that can produce very different results.

10Suppose in training data with 100 observations there are 15 observations that are by chance
anomalous and affect the regression results. About 15% of the observations in random splits of the
data will be composed of these observations. So, in split after split, the regression results will be
affected in a similar way. Yet, in real test data, that 15% might not be represented at all or at least
no nearly so commonly. In other words, one is held captive to whatever features characterize the
training data, even if those features are essentially noise. This is why cross-validation needs to be
justified asymptotically. In all fairness, split samples can have less extreme versions of the same
problems.

74 2 Splines, Smoothers, and Kernels

2.3.1.2 A Ridge Regression Illustration

Perhaps an example will help fix these ideas. The data come from a survey of 95
respondents in which a key question is how various kinds of social support may
be related to depression.11 There are 19 predictors and for this illustration, we will
work with three: (1) “emotional”— a “summary of 5 questions on emotional support
availability,” (2) “affect”— a “summary of 3 questions on availability of affectionate
support sources,” and (3) “psi” — a “summary of 3 questions on availability of
positive social interaction.” The response “BDI,” which stands for Beck depression
inventory, is a 21-item inventory based on self-reports of attitudes and symptoms
characteristic of depression (Beck et al. 1961). We are treating the data as random
realizations so that the predictors and the response are random variables. No doubt
the model is misspecified by conventional criteria.We adopt, therefore the best linear
approximation approach, and the usual output from lm() takes the following form.

Call:

lm(formula = BDI ˜ emotional + affect + psi, data =

socsupport)

Residuals:

Min 1Q Median 3Q Max

-14.141 -5.518 -0.764 3.342 32.667

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 31.5209 5.0111 6.290 1.09e-08 ***

emotional 0.2445 0.3458 0.707 0.48133

affect -0.4736 0.4151 -1.141 0.25693

psi -1.6801 0.5137 -3.270 0.00152 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 8.6 on 91 degrees of freedom

Multiple R-squared: 0.216, Adjusted R-squared: 0.1901

F-statistic: 8.355 on 3 and 91 DF, p-value: 5.761e-05

Consider first a level I analysis. The predictors “affect” and “psi” are negatively
related to depression, and “emotional” is positively related to depression. As is often
the case with constructed scales, it is difficult to know how substantively important
the regression coefficients are. How big is big, and how small is small? For example,
psi ranges from 5 to 15, and BDI ranges from 0 to 48. For each additional psi point,
the average of the depression scale is about 1.7 points smaller. Even over the range of
psi, the full range of BDI is not covered. Moreover, how does one translate variation

11The data, named socsupport, can be obtained as part of the DAAG library in R.

2.3 Penalized Smoothing 75

Fig. 2.12 Ridge regression
results as a function of the
log of the ridge penalty λ for
each of the three predictors

0 2 4 6 8

2.
0

1.
5

1.
0

0.
5

0.
0

Path of Regression Coefficients by Log of Lambda

log of Lambda

R
eg

re
ss

io
n

C
oe

ffi
ci

en
t

emotional

affect

psi

in any of the variables into clinical importance? How many points make a clinical
difference?

For level II analysis, one has in principle an estimate of a best linear approxima-
tion of the true response surface as a property of the joint probability distribution
responsible for the data. But, we know far too little about how the data were collected
to make such a case one way or another. What joint probability distribution are we
talking about? And were the data actually realized independently? If these problems
could be resolved, proper estimation, confidence tests, and statistical tests can fol-
low with sandwich estimates of the standard errors and an asymptotic justification.
In this case, one would again reject the null hypothesis of 0.0 for the psi regression
coefficient but not for the other regression coefficients. Still, with only 91 residual
degrees of freedom it is not clear if one can count on the asymptotics.12

The conventional least squares estimates provide a benchmark for ridge regression
results. Using the same mean function, Fig. 2.12 shows how the regression coeffi-
cients change as the ridge penalty is given more weight. When the ridge penalty is
ignored, one has the ordinary least squares estimates. But as the ridge penalty gets
larger, all three coefficients are shrunk toward zero in a proportional manner. The
larger the coefficient, the greater the shrinkage. For λ values greater than about 1100
(i.e., approximately e7), all three coefficients are effectively zero, and all three arrive
at zero together. This is a characteristic of ridge regression. The code is provided in
Fig. 2.13.

But what value of λ should be used? Figure2.13 shows with the red dotted line
how the average mean-squared error from a tenfold cross-validation changes with

12Several different forms of sandwich standard errors can be estimated with hccm() in the car
library. There is little formal guidance on which to use. One might as well work with the default.

76 2 Splines, Smoothers, and Kernels

Get Data and Ridge Software
library(DAAG)
library(glmnet)
data(socsupport)
attach(socsupport)

Least Squares
X<-as.matrix(data.frame(emotional,affect,psi)) # Needs a matrix
out1<-lm(BDI~emotional+affect+psi,data=socsupport) # OLS results

Ridge Regression
out2<-glmnet(X,BDI,family="gaussian",alpha=0) # Ridge results
plot(log(out2$lambda),out2$beta[2,],ylim=c(-2,.2),type="l",

col="blue",lwd=3,xlab="log of Lambda", ylab="Regression
Coefficient", main="Path of Regression Coefficients by
Log of Lambda")

lines(log(out2$lambda),out2$beta[1,],type="l",col="red",lwd=3)
lines(log(out2$lambda),out2$beta[3,],type="l",col="green",lwd=3)
text(0,0,"emotional",cex=1.5)
text(0,-.6,"affect",cex=1.5)
text(0,-1.3,"psi",cex=1.5)

Fig. 2.13 R code for a least squares analysis and a ridge regression plot of coefficients as a function
or λ

the log of λ.13 The band around the average mean squared error is constructed as plus
or minus two standard deviations computed from the 10 cross-validation folds. The
blue vertical line shows the value of the log of λ for which the average mean squared
error is the smallest. A logged value of λ equal to 1 does about as well as one can
do. Looking back at Fig. 2.12, the regression coefficient for psi is shrunk from about
−1.6 to about −1.0, affect is shrunk from about −.5 to about −.4, and the regression
coefficient for emotional support is shrunk from about .25 to near 0.0. The regression
coefficients and, consequently, the fitted values, have been regularized. But none of
the regression coefficients are shrunk to exactly 0.0. The sequence of 3s across the
top of the graph means that for each value of the log of λ, no predictors are dropped;
all three predictors are retained in the regression.14

13The “canned” code from glmnetwas usedmuch as in theRdocumentation.Note that the regression
coefficients are transformed back into their original units.
14In the output object from glmnet(), the 3 s are labeled “df”, presumably for degrees of freedom.
But the documentation makes clear that df is actually the number of predictors. In conventional
linear regression, the degrees of freedom is usually taken to be the number of predictors plus 1 for
the intercept. As noted in Chap.1, when the value of λ is determined empirically, more degrees of
freedom are used than the number of parameters to be estimated in the regression mean function.
Moreover, one can get degrees of freedom that is not in integers (Dijkstra 2011). In short, the number
of predictors should not be confused with the degrees of freedom used.

http://dx.doi.org/10.1007/978-3-319-44048-4_1

2.3 Penalized Smoothing 77

Fig. 2.14 Using
cross-validation to choose
the value of λ in ridge
regression

0 2 4 6 8

60
70

80
90

10
0

11
0

log(Lambda)

M
ea

n
S

qu
ar

ed
 E

rr
or

3 3

Nowwhat? Shrinkage is motivated by level II concerns, so the level I least squares
analysis stands. For a level II analysis, the estimation target is the exact same ridge
formulation with the selected value of λ as a feature of the joint probability distribu-
tion responsible for the data. It is not apparent why the ridge estimation target would
be of interest. And even it it were, any level II interpretationsmust confront themodel
selection complications produced by the large number of cross-validation exercises
undertaken (i.e., the default is 100). Estimates of the ridge regression approximation
will be biased, even asymptotically. Confidence intervals and statistical tests will be
invalid. It is with good reason that no statistical tests are provided by the software
(Fig. 2.14).

In summary, the greatest substantive payoff from this mental health application
probably comes from the level I analysis using ordinary least squares. The level
II analysis from the least squares results would have been more persuasive had
there been good reason to treat the data as random realizations from a substantively
meaningful joint probability distribution or finite population. A larger sample would
have helped too. Finally, there seems to be little that was gained applying the ridge
regression formulation. One has to buy the focus on regression coefficients, the use of
the L2 penalty, and a lambda selected by cross-validation. And why was shrinkage a
good idea to begin with in a very shaky level II setting? Perhaps the major take-home
message is that ridge regression showcases some importance concepts and tools, but
will not likely to be a useful data analysis procedure. We need to do better.

2.3.1.3 The Least Absolute Shrinkage and Selection Operator (LASSO)

Suppose that one proceeds as in ridge regression but now adopts the constraint
that the sum of the absolute values of the regression coefficients is less than some
constant. Just like for ridge regression, all of the predictors usually are standardized

78 2 Splines, Smoothers, and Kernels

Fig. 2.15 Lasso regression
results as a function of the
log of the ridge penalty λ for
each of the three predictors

4 3 2 1 0 1

2.
0

1.
5

1.
0

0.
5

0.
0

Path of Regression Coefficients by Log of Lambda

log of Lambda

R
eg

re
ss

io
n

C
oe

ffi
ci

en
t

emotional

affect

psi

for the calculations, but the regression coefficients are transformed back into their
original units when time comes to interpret the results. The L1 constraint leads
to a regression procedure known as the lasso15 (Tibshirani 1996) whose estimated
regression coefficients are defined by

β̂ = min
β

⎡

⎣
n∑

i=1

(yi − β0 −
p∑

j=1

xi jβ j)
2 + λ

p∑

j=1

|β j |
⎤

⎦ . (2.9)

Unlike the ridge penalty, the lasso penalty leads to a nonlinear estimator, and
a quadratic programming solution is needed. As before, the value of λ is a tuning
parameter, typically determined empirically, usually through some measure of fit
or prediction error. Just as with ridge regression, a λ of zero yields the usual least
squares results. As the value of λ increases, the regression coefficients are shrunk
toward zero.

2.3.1.4 A Lasso Regression Illustration

Using the same data as for the ridge regression analysis, Fig. 2.15 shows that in
contrast to ridge regression, the regression coefficients are not shrunkproportionately.
(The code is provided in Fig. 2.16.) The regression coefficients are shrunk by a

15LASSO is sometimes written as “lasso,” Lasso,” or “LASSO.”

2.3 Penalized Smoothing 79

lasso Results
out3<-glmnet(X,BDI,family="gaussian",alpha=1) # lasso
plot(log(out3$lambda),out3$beta[2,],ylim=c(-2,.2),type="l",

col="blue",lwd=3,xlab="log of Lambda", ylab="Regression
Coefficient", main="Path of Regression Coefficients by
Log of Lambda")

lines(log(out3$lambda),out3$beta[1,],type="l",col="red",lwd=3)
lines(log(out3$lambda),out3$beta[3,],type="l",col="green",lwd=3)
text(-4,.1,"emotional",cex=1.5)
text(-4,-.6,"affect",cex=1.5)
text(-4,-1.8,"psi",cex=1.5)

Fig. 2.16 R code for lasso regression plot of coefficients as a function or λ

Fig. 2.17 Using
cross-validiation to choose
the value of λ in lasso
regression

4 3 2 1 0 1

60
70

80
90

10
0

11
0

log(Lambda)

M
ea

n
S

qu
ar

ed
 E

rr
or

3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1

constant factor λ (Hastie it al. 2009: 69) so that some are shrunk relatively more than
others as λ increases. But for a sufficiently large λ, all are shrunk to 0.0. This is a
standard result that allows Hastie and his colleagues (2009: Sect. 3.4.5) to place ridge
regression and the lasso in a larger model selection context. The lasso performs in
a manner that has some important commonalities with model selection procedures
used to choose a subset of regressors. When a coefficient value of 0.0 is reached, that
predictor is no longer relevant and can be dropped.

Figure2.17 shows how. We learn that a logged value for λ of about −.4 leads
to the smallest average mean-squared error in the tenfold cross-validation. Looking
back at Fig. 2.15, the predictor emotional has been shrunk to 0.0 and plays no role

80 2 Splines, Smoothers, and Kernels

in the fitted values. On the top margin of the plot, one can see that the number of
predictors has been reduced from three to two. A form of model selection has been
implemented. The other two predictors remain active with psi still dominant. As the
value of λ reaches about 2.5, the affect predictor is dropped as well. In practice, one
would likely settle on the two predictors that are not shrunk to 0.0 and then use them
in an ordinary least squares analysis. That is, the lasso chooses the predictors, but
the analysis meant to inform subject-matter concerns is done with conventional least
squares regression. Once a preferred set of regressors is chosen, the motivation for a
fitting penalty is far less compelling.

Unfortunately, the lasso does not solve any of the level II difficulties that under-
mined the level II analysis with ridge regression. The main difference is in the use of
an L1 penalty rather than an L2 that can make the lasso a useful, variable selection
tool. But as before, this creates very difficult problems for estimation, confidence
intervals, and statistical tests.

Were one just going to make use of the fitted values, logged λ = −.4 would
produce the best performing results according to the cross-validation mean squared
error and ideally, by the true generalization error that it is meant to approximate.
There would be no need to revert to ordinary least squares. But all of the level II
problems remain.

Although the lasso is certainly a very slick technique, it is unlikely in practice to
find the “correct” mean function. At the very least, all of the regressors responsible
for nature’s true response function would have to be in the data set (how would you
know?) and in the real world, combined as the regression mean function specifies
(i.e., as a linear combination). In addition, there can be empirical obstacles such as
high correlations among the predictors and whether some predictors that should be
included contribute sufficiently to the fit after covariance adjustments to be retained.
In effect, the predictors that survive are just those having a sufficiently large partial
correlation with the response, given the set of predictors being empirically consid-
ered.

The lasso has generated an enormous amount of interest among statisticians.
Rosset and Zhu (2007) consider the path that the regression coefficients take as the
value of λ changes, place the lasso in a class of regularization processes in which the
solution path is piecewise linear, and then develop a robust version of the lasso.Wang
and colleagues (2007) combine quantile regression with the lasso to derive another
robust model selection approach. Zou (2006) has proposed an adaptive version of the
lasso when correlations between predictors are high so that unimportant coefficients
are shrunk more aggressively. Zou and Hastie (2005) combine the ridge and lasso
penalties and call the results “elastic net.” Thus,

β̂ = min
β

⎡

⎣
n∑

i=1

(yi − β0 −
p∑

j=1

xi jβ j)
2 + λ1

p∑

j=1

|β j | + λ2

p∑

j=1

β2
j

⎤

⎦ . (2.10)

Elastic net can earn its keep in settings where the lasso stumbles: when the number
of predictors is larger than the number of observations (which is common with

2.3 Penalized Smoothing 81

microarray data) and when there are high correlations between predictors. Elastic
net is a feature of glmnet() in R, and there are some promising extensions available
in the R procedure c060() (Sill et al. 2014).

But, much of the work on the lasso has been directed toward model selection as
an end in itself (Fan and Li 2006; Fan and Lv 2008; Meinshausen and Bühlmann
2006; Bühlmann and van de Geer 2011; Lockhart et al. 2014). There are a host
of complications associated with model selection briefly noted in the last chapter.
There are also many unsolved problems that can make real applications problematic.
But perhaps most important here, a discussion model selection as a freestanding
enterprise would take us far afield. Our emphasis will continue to be how to get good
fitted values.16

In summary, ridge regression and lasso regression introduce the very important
idea of penalized fitting and show some ways in which regularization can work. As
the value of λ is increases, the regression coefficients are shrunk toward 0.0, and the
fitted values become less rough. In the process, bias can be traded against variance
with the hope of reducing generalization error in the fitted values. But with our focus
on a set of inputs and their fitted values, the lasso is essentially a linear regression
and is not even as flexible as regression splines; the linear mean function is very
restrictive. We can do a lot better, and we will. The lasso can also be used as a model
selection tool, but that is peripheral to our discussion.17

However, one point about model selection may be worth making. Before pro-
ceeding with model/variable selection, there needs to be ample justification. The
dataset should have too many predictors for the number of observations available.
Collinearity between predictors should be no worse than modest. And, the coeffi-
cients associated with the predictors should be sparse. In practice, whether these
conditions are sufficiently met can be very difficult to ascertain.

2.4 Smoothing Splines

For the spline-based procedures considered earlier, the number and location of knots
had to be determined a priori or by some measure of fit. We now consider an alterna-
tive that does not require a priori knots. A key feature of this approach is to effectively
saturate the predictor space with knots and then protect against overfitting by con-
straining the impact the knots can have on the fitted values. The influence that knots

16Should one be interested in model selection per se, there are at least two other visible players
within the penalized regression perspective: The Danzig Selector (Candes and Tao 2007; Gareth
and Radchenko 2007; Liu et al. 2012) and the Regularization and Derivative Expectation Operator
—RODEO— (Lafferty andWasserman 2008). As mentioned earlier, model selection is sometimes
called variable selection or feature selection.
17Lasso regularization is an example of “soft thresholding” because the regression coefficients grad-
ually arrive at 0. Backward stepwise regression selects predictors by “hard thresholding” because
regression coefficients, or functions of regression coefficients, smaller than some value are abruptly
dropped from the analysis.

82 2 Splines, Smoothers, and Kernels

have can be diluted; the initial number of knots does not have to change but the
impact of some can be shrunk to zero. We are proceeding in the same spirit as ridge
regression and the lasso, but we are allowing for nonlinear associations between X
and Y and introducing a different kind of penalty function.

We begin by returning to the wrongmodel perspective in which the predictors and
the response are random variables. For a single predictor and a quantitative response
variable, there is a function f (X) with two derivatives over its entire surface. This
is a common assumption in the statistical learning literature and in practice does not
seem to be particularly restrictive. The goal is to minimize a penalized error sum of
squares of the form

RSS(f,λ) =
N∑

i=1

[yi − f (xi)]2 + λ

∫
[f ′′(t)]2dt, (2.11)

where λ is, as before, a tuning parameter. The first term on the right-hand side
captures how close the fitted values are to the actual values of y. It is just the usual
error sum of squares. The second imposes a cost for the complexity of the fit, much
in the tradition of penalized regression, where t is a placeholder for the unknown
function. The integral quantifies the roughness penalty, and λ once again determines
theweight given to that penalty in the fitting process.18 At one extreme, asλ increases
without limit, the fitted values approach the least squares line. Because no second
derivatives are allowed, the fitted values are as smooth as they can be. At the other
extreme, as λ decreases toward zero, the fitted values approach an interpolation of
the values of the response variable. For a level I analysis, the larger the value of λ,
the smoother the representation of the association between X and Y . For a level II
analysis, the estimation target is the smoothing splines function with the empirically
determined values of λ as a feature of the joint probability distribution. When for
a level II analysis one is trying to construct fitted values that usefully approximate
the true response surface, if λ is larger, the smoother fitted values will likely lead to
more bias and less variance. If λ is smaller, the rougher fitted values will likely lead
to less bias and more variance. The value of λ can be used in place of the number of
knots to tune the bias-variance tradeoff.

Equation2.11 can be minimized with respect to the f (x), given a value for λ.
Hastie et al. (2009: Sect. 5.4) explain that a unique solution results, based on a set of
natural cubic splines with N knots.19 In particular,

f (x) =
N∑

j=1

N j (x)θ j , (2.12)

18The second derivative at a given point will be larger the more rapidly the function is changing
at that location. The integral is, in effect, the sum of such second derivatives. When the integral is
larger, the function is rougher.
19There will be fewer knots if there are less than N distinct values of x .

2.4 Smoothing Splines 83

where θ j is a set of weights, N j (x) is an N -dimensional set of basis functions for
the natural cubic splines being used, and j stands for the number of knots, of which
there can be a maximum of N .

Consider the following toy example, in which x takes on values 0 to 1 in steps of
.20. In this case, suppose j = 6, and Eq.2.12, written as f (x) = Nθ, then takes the
form of

f (x) =

⎛

⎜⎜⎜⎜⎜⎜⎝

−.267 0 0 −.214 .652 −.429
.591 .167 0 −.061 .182 −.121
.158 .667 .167 −.006 .019 −.012
0 .167 0.667 .155 .036 −.024
0 0 .167 .596 .214 .024
0 0 0 −.143 .429 .714

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

θ1
θ2
θ2
θ4
θ5
θ6

⎞

⎟⎟⎟⎟⎟⎟⎠
. (2.13)

Equation2.11 can be rewritten using a natural cubic spline basis and then the
solution becomes

θ̂ = (NTN + λΩN)
−1NT y, (2.14)

with [ΩN]i j = ∫
N ′′

j (t)N
′′
k (t)dt , where the second derivatives are for the function

that transforms x into its natural cubic spline basis. ΩN has larger values where the
predictor is rougher, and given the linear estimator, this is where the fitted values can
be rougher as well. The penalty is the same as in Eq.2.11.

To arrive at fitted values,

ŷ = N(NTN + λΩN)
−1NT y = Sλy, (2.15)

where Sλ is a smoother matrix. For a given value of λ, we have a linear estimator of
the fitted values.

Equation2.14 can be seen as a generalized form of ridge regression. With ridge
regression, for instance, ΩN is an identity matrix. In practice, N is replaced by a
basis of B-splines that is used to compute the natural cubic splines.

The requirement of N knots may seem odd because it appears to imply that for
a linear estimator all N degrees of freedom are used up. However, for values of λ
greater than zero, the fitted values are shunk toward a linear fit, and the fitted values
are made more smooth. Less than N degrees of freedom are being used.

As with the number of knots, the value of λ can be determined a priori or through
model selection procedures. One common approach is based on N -fold (drop-one)
cross-validation, briefly discussed in the last chapter. The value of λ is chosen so that

CV(f̂λ) =
N∑

i=1

[yi − f̂ (−i)
i (xi)]2 (2.16)

is as small as possible. In standard notation, f̂ (−i)
i (xi) is the fitted value with case i

removed. Using CV to select λ can be automated to find a promising balance between

84 2 Splines, Smoothers, and Kernels

the bias and the variance in the fitted values. The same reasoning can be used with
an in-sample estimate of CV called the generalized cross-validation statistic (GCV),
which is computed as,

GCV = 1

N

N∑

i=1

[
yi − f̂ (xi)

1 − trace(S)/N

]2

, (2.17)

where S is the smoother (or hat) matrix as before. Whether, the CV or GCV is used,
all of the earlier caveats apply. For a level II analysis, we are back in the model
selection business with all of its complications. For example, the trace in Eq.2.17 is
not a proper expression for the degrees of freedom expended by the smoother.

2.4.1 A Smoothing Splines Illustration

To help fix all these ideas, we turn to an application of smoothing splines. Figure2.18
shows four smoothed scatterplots based on Eqs. 2.11 and 2.12. The R code can be
found in Fig. 2.19.

Each plot in Fig. 2.18 has the number of users of a particular server (centered)
over time.20 Time is measured in minutes. The penalty weight is spar, which can be
thought of as a monotonic and standardized function of λ that is ordinarily set at a
value from 0 to 1. The data, available in R— see Fig. 2.19— constitute a time series
of 100 observations. Because the documentation in R does not explain how the data
were collected, we proceed with a level I regression analysis.21

The number of users connected to the server varies dramatically over time in a
highly nonlinear manner. Because details of the nonlinearity probably would have
been unanticipated, an inductive approach available with smoothing splines is appro-
priate. For Fig. 2.18, there are four different plots with four different values of spar.
The quality of the fitted values changes dramatically. But there is no right answer.
For a level I analysis, the goal is description. The value of spar depends heavily on
subject-matter expertise and how the results might be used.

It could be very misleading to automatically choose the value of spar by some
overall measure of in-sample fit. The fitted values are responding to both signal and
noise. For example, is the dip around minute 40 to be taken seriously? It would seem
to be “real” when spar is .4 or .6, but not when spar is .8 or 1. Someone very familiar
with the setting in which the data were collected and more generally knowledgeable
about patterns of server use would need to make that call.

For a level II analysis, one might want to consider the bias-variance tradeoff and
in the absence of test data, set the value of spar using some approximation of out-
of-sample performance. For these data, the default leave-one-out cross-validation

20The plotted fitted values vary around the mean of the response. More will be said about this later.
21The procedure gam() in the library gam was used.

2.4 Smoothing Splines 85

0 20 40 60 80 100

50
0

50

Number of Users Connected to Server
 Each Minute (spar=.4)

Minute

N
um

be
r

of
 U

se
rs

 (
C

en
te

re
d)

0 20 40 60 80 100

50
0

50

Number of Users Connected to Server
 Each Minute (spar=.6)

Minute

N
um

be
r

of
 U

se
rs

 (
C

en
te

re
d)

0 20 40 60 80 100

50
0

50
10

0

Number of Users Connected to Server
Each Minute (spar=.8)

Minute

N
um

be
r

of
 U

se
rs

 (
C

en
te

re
d)

0 20 40 60 80 100

50
0

50

Number of Users Connected to Server
 Each Minute (spar=1.0)

Minute

N
um

be
r

of
 U

se
rs

 (
C

en
te

re
d)

Fig. 2.18 Penalized smoothing splines for use by minute with different penalty weights indexed
by the tuning parameter spar

selects a value of 8.5. But it is difficult to know what “out-of-sample” means. The
data on hand are a sample of exactly what? To what does “out-of-sample” refer?
Moreover, cross-validation is probably not a sensible procedure for time series data
because cross-validation breaks up the temporal sequence of the data.22

More generally, the issues surrounding a level II analysis are largely the same as
those addressed for ridge regression and the lasso. If the value of λ (or the equivalent)
is chosen before before the data analysis begins, one can proceed as described in
Chap.1 with the response surface approximation perspective. If the value of λ is
chosen as part of the data analysis, one is engaging in model selection. With true
test data or split samples, there may be a framework in which to proceed, but the
longitudinal nature of the data would have to be maintained.23

22When there is an empirical determination of spar, the gam procedure reports the degrees of
freedom used, not spar. With a little trial and error, however, one can figure out what the value of
spar is.
23For example, one might have another dataset for the same 100min at the same time the next day.
If day to day variation is essentially noise, one might well have valid test data.

http://dx.doi.org/10.1007/978-3-319-44048-4_1

86 2 Splines, Smoothers, and Kernels

Data
data(WWWusage)
Minute<-1:100
NumUsers<-WWWusage
internet<-data.frame(NumUsers,Minute)

Smoothing Splines
library(gam)
par(mfrow=c(2,2))
out<-gam(NumUsers~s(Minute, spar=.4),data=internet)
plot(out,xlab="Minute",ylab="Number of Users (Centered)",

main="Number of Users Connected to Server
Each Minute (spar=.4)", col="blue", pch=19,
residuals=T)

out<-gam(NumUsers~s(Minute, spar=.6),data=internet)
plot(out,xlab="Minute",ylab="Number of Users (Centered)",

main="Number of Users Connected to Server
Each Minute (spar=.6)",col="blue",pch=19,
residuals=T)

out<-gam(NumUsers~s(Minute, spar=.8),data=internet)
plot(out,xlab="Minute",ylab="Number of Users (Centered)",

main="Number of Users Connected to Server
Each Minute (spar=.8)",col="blue",pch=19,
residuals=T)

out<-gam(NumUsers~s(Minute, spar=1.0),data=internet)
plot(out,xlab="Minute",ylab="Number of Users (Centered)",

main="Number of Users Connected to Server
Each Minute (spar=1.0)",col="blue",pch=19,
residuals=T)

Fig. 2.19 R code for penalized smoothing splines

2.5 Locally Weighted Regression as a Smoother

Thus far, the discussion of smoothing has been built upon a foundation of conven-
tional linear regression. Another approach to smoothing also capitalizes on conven-
tional regression, but through nearest neighbor methods. We start with those.

2.5 Locally Weighted Regression as a Smoother 87

2.5.1 Nearest Neighbor Methods

Consider Fig. 2.20 inwhich the ellipse represents a scatter plot of points for values for
X and Y . There is a target value of X , labeled x0, for which a conditional mean ȳ0 is
to be computed. There may be only one such value of X or a relatively small number
of such values. As a result, a conditional mean computed from those values alone
risks being very unstable. One possible solution is to compute ȳ0 from observations
with values of X close to x0. The rectangle overlaid on the scatterplot illustrates a
region of “nearest neighbors” that might be used. Insofar as the conditional means
for Y are not changing systematically within that region, a useful value for ȳ0 can
be obtained. For a level I description, the conditional mean is a good summary for Y
derived from the x-values in that neighborhood. If that conditional mean is to be used
as an estimate in a level II analysis of the true response surface, it will be unbiased and
likely be more stable than the conditional mean estimated only for the observations
with X = x0. In practice, however, some bias is often introduced because Y actually
does vary systematically in the neighborhood. As before, one hopes that the increase
in the bias is small compared to the decrease in the variance.

A key issue is how the nearest neighbors are defined. One option is to take the k
closest observations using the metric of X . For example, if X is age, x0 is 24 years
old, and k is 10, the ten closest x-values might range from 23 to 27 years of age.
Another option is take some fixed fraction f of the observations that are closest to x0.
For example, if the closest 25% of the observations were taken, k might turn out to be
30, and the age-values might range between 21 and 29. Yet another option is to vary
either k or f depending on the variability in Y within a neighborhood. For example,
if there is more heterogeneity that is likely to be noise, larger values of k or f can be
desirable to improve stability. For any of these approaches, the neighborhoods will
likely overlap for different target values for X . For another target value near x0, some
near neighbors will likely be in both neighborhoods. There also is no requirement
that the neighborhood be symmetric around x0.

Fig. 2.20 A conditional
mean Ȳ0 for X0, a target
value of X

A Nearest Neighbor Conditional Mean

88 2 Splines, Smoothers, and Kernels

Fig. 2.21 Interpolated
conditional means

X

Y

A Nearest Neighbor Interpolation of
Conditional Means

Suppose now that for each unique value of x , a nearest neighbor conditional mean
for y is computed using one of the approaches just summarized. Figure2.21 shows
a set of such means connected by straight lines. The pattern provides a visualization
of how the means of y vary with x . As such, the nearest neighbor methods can been
seen as a smoother.

The values k or f are often referred to as the “bandwidth,” “window,” or “span” of a
neighborhood. The larger the values of k or f , the larger the size of the neighborhood,
and Fig. 2.21 will change in response. Larger neighborhoods will tend to make the
smoothed values less variable. If the smoothed values are to be treated as level II
estimates of the true response surface, they will likely be more biased and more
stable. Smaller neighborhoods will tend to make the smoothed values more variable.
If the smoothed values are to be treated as level II estimates of the true response
surface, they will likely be less biased and less stable.

2.5.2 Locally Weighted Regression

Nearest neighbor methods can be effective in practice and have been elaborated in
many ways (Ripley 1996; Shakhnarovich 2006). In particular, what if within each
neighborhood the conditional means of Y vary systematically? At the very least,
there is information being ignored that could improve the estimate of ȳ0.

Just as in conventional linear regression, ifY is related to X in a systematic fashion,
there can be less variation in the regression residuals than around the neighborhood
mean of Y.More stable estimates can follow. The idea of applying linear regression
within each neighborhood leads to a form of smoothing based on locally weighted
regressions. The smoother commonly is known as “lowess”.24

24Lowess is sometimes said to stand for locally weighted scatter plot smoothing. But Cleveland,
who invented the procedure (Cleveland 1979), seems to prefer the term “local regression” known
as “loess” (Cleveland 1993: 94).

2.5 Locally Weighted Regression as a Smoother 89

We stick with the one predictor case a bit longer. For any given value of the
predictor x0, a polynomial regression is constructed only from observations with
x-values that are nearest neighbors of x0. Among these, observations with x-values
closer to x0 areweightedmore heavily. Then, ŷ0 is computed from thefitted regression
and used as the smoothed value of the response y at x0. The process is repeated for
all other values of x .

Although the lowess polynomial is often of degree one (linear), quadratic and
cubic polynomials are also used. It is not clear that much is gained in practice using
the quadratic or cubic form. In some implementations, one can also employ a degree
zero polynomial, in which case no regression is computed, and the conditional mean
of y in the neighborhood is used as ŷ0. This is just the nearest neighbor approach
except for the use of distance weighting. Perhaps surprisingly, the lowess estimator
is linear for a given value of k or f (Hastie et al. 2009; Sect. 6.1.1).

The precise weight given to each observation depends on the weighting function
employed. The normal distribution is one option. That is, the weights form a bell-
shaped curve centered on x0 that declineswith distance from x0. The tricube is another
option. Differences between x0 and each value of x in the window are divided by the
length of the window along x . This standardizes the differences. Then the differences
are transformed as (1 − |z|3)3, where z is the standardized difference. Values of x
outside the window are given weights of 0.0. As an empirical matter, most of the
common weighting functions give about the same results, and there seems to be no
formal justification for any particular weighting function.

As discussed for nearest neighbor methods, the amount of smoothing depends
on the value of k or f. For f , proportions between .25 and .75 are common. The
larger the proportion of observations included, the smoother are the fitted values.
The span plays the same role as the number of knots in regression splines or λ in
smoothing splines. Some software also permits the span to be chosen in the units
of the regressor. For example, if the predictor is population size, the span might be
defined as 10,000 people wide.

More formally, each local regression at each x0 is constructed by minimizing the
weighted sum of squares with respect to the intercept and slope for the M ≤ N
observations included in the window. Thus,

RSS∗(β) = (y∗ − X∗β)TW∗(y∗ − X∗β). (2.18)

The asterisk indicates that only the observations in the window are included. The
regressor matrix X∗ can contain polynomial terms for the predictor, should that be
desired. W∗ is a diagonal matrix conforming to X∗, with diagonal elements w∗

i ,
which are a function of distance from x0. This is where the weighting-by-distance
gets done.

The overall algorithm then operates as follows.

1. Choose the smoothing parameter such as bandwidth, f , which is a proportion
between 0 and 1.

2. Choose a point x0 and from that the (f × N = M) nearest points on x .

90 2 Splines, Smoothers, and Kernels

3. For theseM nearest neighbor points, compute a weighted least squares regression
line for y on x .

4. Construct the fitted value ŷ0 for that single x0.
5. Repeat Steps 2 through 4 for each value of x . Near the boundary values of x ,

constraints are sometimes imposed much like those imposed on cubic splines and
for the same reasons.

6. To enhance visualization, connect adjacent ŷs with straight lines.

There is also a robust version of lowess. After the entire fitting process is com-
pleted, residuals are computed in the usual way. Weights are constructed from these
residuals. Larger residuals are given smaller weights and smaller residuals larger
weights. Using these weights, the fitting process is repeated. This, in turn, can be
iterated until the fitted values do not change much (Cleveland 1979) or until some
predetermined number of iterations is reached (e.g., three). The basic idea is to make
observations with very large residuals less important in the fitting.

0 20 40 60 80 100

10
0

15
0

20
0

Number of Users Connected to Server
 Each Minute (span=1/10)

Minute

N
um

be
r

of
 U

se
rs

0 20 40 60 80 100

10
0

15
0

20
0

Number of Users Connected to Server
 Each Minute (span=1/3)

Minute

N
um

be
r

of
 U

se
rs

0 20 40 60 80 100

10
0

15
0

20
0

Number of Users Connected to Server
 Each Minute (span = 1/2)

Minute

N
um

be
r

of
 U

se
rs

0 20 40 60 80 100

10
0

15
0

20
0

Number of Users Connected to Server
 Each Minute (span = 3/4)

Minute

N
um

be
r

of
 U

se
rs

Fig. 2.22 Lowess smoothing for use by minute for different spans

2.5 Locally Weighted Regression as a Smoother 91

Whether the “robustification” of lowess is useful will be application-specific and
depend heavily on the window size chosen. Larger windows will tend to smooth
the impact of outlier residuals. But because the scatterplot being smoothed is easily
plotted and examined, it is usually easy to spot the possible impact of outlier residuals
and, if necessary, remove themor take them into accountwhen the results are reported.
In short, there is no automatic need for the robust version of lowess when there seem
to be a few values of the response that perhaps distort the fit.

Just as with penalized smoothing splines, a level I analysis is descriptive. A level
II analysis can entail estimation of a response surface approximation of the same
form and with the same values of the tuning parameters as used for the training data.
That approximation can also be used to provide estimates of the true response surface
that are subject to the same sort of bias-variance tradeoffs discussed earlier.

2.5.2.1 A Lowess Illustration

Figure2.22 repeats the earlier analysis of server use, but applies lowess rather than
smoothing splines. The results are much the same over a set of different spans. The
fraction for each reported span is the proportion of observations that define a given
neighborhood. (See Fig. 2.23 for the R code.)

Data
data(WWWusage)
Minute<-1:100
NumUsers<-WWWusage

Lowess
par(mfrow=c(2,2))
scatter.smooth(Minute,NumUsers,xlab="Minute",ylab="Number of

Users", main="Number of Users Connected to Server
Each Minute (span=1/10)", span=1/10,pch=19,col="blue")

scatter.smooth(Minute,NumUsers,xlab="Minute",ylab="Number of
Users", main="Number of Users Connected to Server
Each Minute (span=1/3)", span=1/3, pch=19, col="blue")

scatter.smooth(Minute,NumUsers,xlab="Minute",ylab="Number of
Users", main="Number of Users Connected to Server
Each Minute (span = 1/2)", span=1/2, pch=19, col="blue")

scatter.smooth(Minute,NumUsers,xlab="Minute",ylab="Number of
Users", main="Number of Users Connected to Server
Each Minute (span = 3/4)", span=3/4, pch=19,col="blue")

Fig. 2.23 R code lowess smooth

92 2 Splines, Smoothers, and Kernels

Figure2.22 was produced in R by scatter.smooth().25 One can also proceed with
loess(), which has more options and separates the plotting from the fitting. Both
procedures require that the span (or an equivalent turning parameter) be hard coded
although there have been proposals to automate the tuning, much as done for smooth-
ing splines (Loader 2004: Sect. 4).

In summary, lowess provides a good, practical alternative to smoothing splines
except that the span is not determined automatically (at least in R). Otherwise, it has
pretty much the same strengths and weaknesses, and performance will be similar.
For example, the same issues arise about whether the dip in use at about minute 40
is “real.” Or even if it is, whether the dip is substantively or practically important.
The lower lefthand plot in Fig. 2.22 may be the most instructive rendering for these
data.

2.6 Smoothers for Multiple Predictors

The last set of figures is only the most recent example in which the limitations of a
single predictor are apparent. Many more things could be related to server use than
time alone. We need to consider smoothers when there is more than one predictor.

In principle, it is a simple matter to include many predictors and then smooth a
multidimensional space. However, there are three significant complications in prac-
tice. The first problem is the curse of dimensionality addressed in the last chapter.
As the number of predictors increases, the space the data need to populate increases
as a power function. Consequently, the demand for data increases very rapidly, and
one risks data that are far too sparse to produce a meaningful fit. There are too few
observations, or those observations are not spread around sufficiently to provide the
support needed. One must, in effect, extrapolate into regions where there is little or
no information. To be sensible, such extrapolations would depend on knowing the
f (X) quite well. But it is precisely because the f (X) is unknown that smoothing is
undertaken to begin with.

The second problem is that there are often conceptual complications associated
with multiple predictors. In the case of lowess, for example, how is the neighborhood
near x0 to be defined (Fan andGijbels 1996: 299–300)?One option is to use Euclidian
distance. But then the neighborhood will depend on the units in which predictors
happen to be measured. The common practice of transforming the variables into
standard deviation units solves the units problem, but introduces new problems.
When does it make substantive sense to claim that two observations that are close in
standard deviations are close in subject-matter units?

25The plots produced by scatter.smooth() are not centered around the mean of the response, but
whether the plot is centered or not should have no effect on an interpretation of the relationship
between Y and X unless variation relative to the mean of Y matters. It also might if the actual values
of the approximate response surface were important (e.g., in forecasting).

2.6 Smoothers for Multiple Predictors 93

Consider a simple case of two predictors. Suppose the standard deviation for one
predictor is five years of age, and the standard deviation for the other predictor is two
years of education. Now suppose one observation falls at x0’s value of education, but
is five years of age higher than x0. Suppose another observation falls at x0’s value for
age, but is two years higher in eduction than x0. Both are one standard deviation unit
away from x0 in Euclidian distance. But do we really want to say they are equally
close to x0?

Another approach to neighborhood definition is to use the same span (e.g., .20)
for both predictors, but apply it separately in each direction. Why this is a better
definition of a neighborhood is not clear. And one must still define a distance metric
by which the observation in the neighborhood will be weighted.

The third problem is that gaining meaningful access to the results is no longer
straightforward. When there are more than two predictors, one can no longer graph
the fitted surface in the usual way. How does one make sense of a surface in more
than three dimensions?

2.6.1 Smoothing in Two Dimensions

Given the problems just summarized, the step from a single predictor to two predic-
tors can be challenging. But there are extensions of the single-predictor setting that
can work well and that introduce some tools that will be important as we move to
applications with more than two predictors. We will proceed drawing heavily on an
empirical example.

A key issue in the study of climate is cyclical variation in rainfall for areas on
the Pacific rim. An important driver is measured by the Southern Oscillation Index
(SOI), which is the difference in sea level barometric pressure between Tahiti and
Darwin, Australia. Negative values are associated with a phenomenon called “El
Niño.” Positive values are associated with a phenomenon called “La Niña.” Both are
connected to patterns of rainfall in ways that are not well understood.

The illustrative data we will use has 101 observations. Predictors are year from
1900 to 2001 and the average yearly SOI. Average yearly rainfall in Australia is the
response. The data are shown in Fig. 2.24, and the code is shown in Fig. 2.25.26

Much as in the case of conventional multiple linear regression, the goal is to fit a
surface to the data. Rainfall is the response. Year and SOI are the predictors. Unlike
conventional linear regression, no model is imposed. In particular, the correct fit
is not assumed to be a plane produced by a linear combination of year and SOI.
A smoothing splines formulation for a single predictor is applied, but the single
predictor is the product of year and SOI, just as one might represent an interaction
effect between the two. The product variable is smoothed and then plotted in the
2-dimensional predictor space.

26The data can be obtained from the DAAG library under the name bomsoi.

94 2 Splines, Smoothers, and Kernels

Average Rainfall in Australia by Year
and Southern Oscillation Index

1900 1920 1940 1960 1980 2000 2020

30
0

40
0

50
0

60
0

70
0

80
0

30

20

10
 0

 10

 20

 30

Year

S
ou

th
er

n
 O

sc
ill

ia
tio

n
In

de
x

A
ve

ra
ge

 R
ai

nf
al

l i
n

M
ill

im
et

er
s

Fig. 2.24 A 3-dimensional scatter plot of rainfall in Australia as a function year and the southern
oscillation index

library(DAAG)
data(bomsoi)
attach(bomsoi)
library(scatterplot3d)
scatterplot3d(Year,SOI,avrain,xlab="Year", ylab="Southern

Oscilliation Index",zlab="Average Rainfall in
Millimeters", main="Average Rainfall in Australia
by Year and Southern Oscillation Index",pch=19,
color="blue")

Fig. 2.25 R code for the 3-D scatter plot

Figure2.26 shows the result for the Australian rainfall data from 1900 to 2001.27

Values of the tuning parameter range from .2 to 1.0. As before, larger values of spar
produce smoother surfaces. Any one of the values (or some other) could be preferred,

27The procedure used was gam in the gam library. There is an alternative implementation of gam
in the mgcv library, written by Simon Wood, that has a very large number of somewhat daunting
options. For example, there are several rather different ways to smooth a nonadditive function of
two predictors. Documentation is extensive, but challenging in spots. Fortunately, the defaults seem
to work well and yielded much the same results as shown in Fig. 2.26.

2.6 Smoothers for Multiple Predictors 95

Year

S
O

I

s(Y
ear * S

O
I, spar =

 0.2)

Rainfail by Year and SOI (spar=.2)

Year

S
O

I

s(Y
ear * S

O
I, spar =

 0.5)

Rainfail by Year and SOI (spar=.5)

Year

S
O

I

s(Y
ear * S

O
I, spar =

 0.8)

Rainfail by Year and SOI (spar=.8)

Year

S
O

I

s(Y
ear * S

O
I, spar =

 1)
Rainfail by Year and SOI (spar=1.0)

Fig. 2.26 3-Dimensional scatter plot of rainfall in Australia as a function of year and the southern
oscillation index

but a spar-value of 1.0 was chosen using leave-one-out cross-validation. The label on
the vertical axis shows the expression by which the fitted values were computed.28

Within a level I analysis, there is a modest increase in rainfall over the time period
with most of that increase occurring early. Rainfall increases when the SOI is larger,
but the relationship is highly nonlinear. The association is especially pronounced for
larger values of the SOI. For some smaller values of spar, the surface is “torqued.”
The relationship between SOI and rainfall is substantially stronger in some years than
others. For example,with spar= .2, the strongest association is in the 1980s.However,
with only 101 observations spread across the 2-dimensional predictor space, there
are relatively few observations behind such results. That may be reason enough to

28The use of the ∗ operator means multiplication. (See Fig. 2.27.) Year is multiplied by SOI. Cur-
rently, the plotting procedure “knows” when it sees ∗ that the plotting surface should be in 2-D
predictor space. If one does the multiplication in advance and uses the product as a predictor, gam
produces the same fit and summary statistics. But the plot treats the product as the vector it is. The
procedure does not “know” that the vector is the product of two predictors. Figure2.26 shows the
results as perspective plots. Contour plots would convey much the same information with more
numerical detail but in a less easily understood visual format. Computations in gam are undertaken
using cubic smoothing splines with B-splines the behind-the-scenes workhorse as usual.

96 2 Splines, Smoothers, and Kernels

library(DAAG)
data(bomsoi)
attach(bomsoi)
llbrary(gam)
library(akima)
par(mfrow=c(2,2))
out1<-gam(avrain~s(Year*SOI,spar=.2),data=bomsoi,

family=gaussian)
plot(out1,theta=30, main="Rainfail by Year and SOI (spar=.2)",

col="light blue")
out2<-gam(avrain~s(Year*SOI,spar=.5),data=bomsoi,

family=gaussian)
plot(out2, theta=30, main="Rainfail by Year and SOI (spar=.5)",

col="light blue")
out3<-gam(avrain~s(Year*SOI,spar=.8),data=bomsoi,

family=gaussian)
plot(out3, theta=30, main="Rainfail by Year and SOI (spar=.8)",

col="light blue")
out4<-gam(avrain~s(Year*SOI,spar=1),data=bomsoi,

family=gaussian)
plot(out4, theta=30, main="Rainfall by Year and SOI (spar=1.0)",

col="light blue")

Fig. 2.27 R code for 3-Dimensional smooth of Australian rainfall data as a function of year and
the southern oscillation index

prefer the fitted values with spar= 1.0 and provides a small-scale object lesson about
the curse of dimensionality.

Much as in several earlier analyses, a level II analysis would be very challenging.
The data are longitudinal with year as one of the predictors. In the same fashion as
the Tokyo water use data, the data collection conditions on year. As a result, the data
may be best considered as random realizations from a set of conditional distributions.
But then, we still have to rely on a theory of how nature is able to repeat the rainfall
patterns for a given set of years. Perhaps this could be worked out by researchers
steeped in climate science, but for now at least, no level II analysis will be attempted.

2.6.2 The Generalized Additive Model

Moving beyond two predictors usually requires a different strategy. A more practical
and accessible means needs to be found to approximate a response surface when
the predictor space is greater than two. One approach is to resurrect an additive
formulation that in practice can perform well.

2.6 Smoothers for Multiple Predictors 97

The Generalized Additive Model (GAM) is superficially an easy extension of the
Generalized Linear Model (GLM). GAM tries to circumvent the curse of dimension-
ality by assuming that the conditional mean of the response is a linear combination
of functions of the predictors. Thus, the generalized additive model with p predictors
can be written as

Y = α +
p∑

j=1

f j (X j) + ε, (2.19)

where α is fixed at the mean of Y . We once again minimize the penalized regression
sum of squares (PRSS) but with respect to all the p f j ’s (Hastie et al. 2009: 297):

PRSS(α, f1, f2, . . . , f p) =
N∑

i=2

⎛

⎝yi − α −
p∑

j=1

f j (xi j)

⎞

⎠
2

+
p∑

j=1

λ j

∫
f

′′
j (t j)

2dt j .

(2.20)

Equation2.20 is a generalization of single-predictor smoothing splines that allows for
a different value of λ j for each function in the linear combination of functions; there
are p values for λ that need to be specified in advance or more typically, determined
as part of the data analysis. The pth second derivatives correspond to the pth function
only.29

In the same manner as the generalized linear model, the generalized additive
model permits several different link functions and disturbance distributions. For
example, with a binary response, the link function can be the log of the odds (the
“logit”) of the response, and the disturbance distribution can be logistic. This is
analogous to logistic regression within the generalized linear model. But, there are
no regression coefficients associated with the predictors. Regression coefficients
would just scale up or scale down the functions of predictors. Whatever impact they
would have is absorbed in the function itself. In other words, the role of the regression
coefficients cannot be distinguished from the role of the transformation and therefore,
the regression coefficients are not identified.

Each predictor can have its own functional relationship to the response. Because
these functions are usually estimated using single-predictor smoothers of the sort
addressed earlier, the term nonparametric is commonly applied despite the a priori
commitment to an additive formulation. Alternatively, all of the functions may be
specified in advance with the usual linear model as a special case.

All of the common regression options are available, including the wide range of
transformations one sees in practice: logs, polynomials, roots, product variables (for
interaction effects), and indicator variables. As a result, GAM can be parametric
as well and in this form, is really no different from the generalized linear model.
The parametric and nonparametric specifications can be mixed so that some of the

29The notation t j is a placeholder for the unknown j th function.

98 2 Splines, Smoothers, and Kernels

functions are derived empirically from the data, and some are specified in advance.
Then the model is often called semiparametric.

One can use for GAM the same conception of “holding constant” that applies to
conventional linear regression. Suppose that for a conventional regression analysis
each of the predictors is transformed in a known manner. With least squares, each
transformed predictor is covariance adjusted; the relationship between a given trans-
formed predictor and the response is determined with the linear dependence between
that transformed predictor and all other transformed predictors removed. One would
like to do the same thing when each transformation is not known. But there can be
no covariance adjustments until the transformations are determined, and there can
be no transformations until each predictor is covariance adjusted. The backfitting
algorithm provides a solution.

2.6.2.1 A GAM Fitting Algorithm

The backfitting algorithm is a common way to estimate the functions and coefficient
α in Eq.2.20 (Hastie et al. 2009: Sect. 9.1.1) using the following steps.

1. Initialize with α̂ = 1
N

∑N
1 yi , f̂ j ≡ 0,∀i, j . Each function is given initial values

of 0.0, with α fixed at the mean of y.
2. Cycle: j = 1, . . . , p, 1, . . . , p, . . . ,

f̂ j ← Sj

⎡

⎣{y − α̂ −
∑

k �= j

f̂k(xik)}N1
⎤

⎦ .

f̂ j ← f̂ j − 1

N

N∑

i=1

f̂i j

Fitted values from all predictors but predictor j are linearly combined and sub-
tracted from the response. A smoother Sj is applied to the resulting “residuals.”
The result is a new set of fitted values for predictor j . These fitted values are then
centered. All of the other predictors are cycled through one at a time in the same
manner until each of the p predictors has a revised set of fitted values.

3. Repeat Step 2 until f̂ j changes less than some small, pre-determined amount. In
the process, adjustments are made for nonlinear dependence between predictors.

The backfitting algorithm is quite general and quite fast. A wide variety of
smoothers can be applied and in the past have been. For example, both lowess and
penalized smoother splines are available in R. A range of smoothing basis functions
can be employed as well (Wood 2006: Sect. 4.1). Some procedures also permit the
use of functions of two predictors at a time, so that the smoothed values represent a
surface rather than a line, just as in Fig. 2.26; one can work with a linear combination

2.6 Smoothers for Multiple Predictors 99

of bivariate smoothed values. Excellent implementations in R include the procedure
gam() in the gam library and the procedure gam() in the mgcv library.30

So what’s not to like? The linear combination of smooths is not as general as
a smooth of an entire surface, and sometimes that matters. Looking back at the El
Niño example, the response surface was “torqued.” The nonlinear function along
one predictor dimension varied by the values of the other predictor dimension. This
is a generalization of conventional interaction effects for linear regression in which
the slope for one predictor varies over values of another predictor. The generalized
additive model does not allow for interaction effects unless they are built into the
mean function as product variables; interaction effects are not arrived at inductively.
This is no different from conventional linear regression.

2.6.2.2 An Illustration Using the Generalized Additive Model

Although population counts from the U.S. census are highly accurate, they are cer-
tainly not perfect. In the absence of perfection, small differences between the actual
number of residents in an area and the counted number of residents in that area
can have very important consequences for definitions of voting districts, the number
of elected representatives a county or state can have, and the allocations of federal
funds. Beginning with the 1980 U.S. census, there were particular concerns about
population undercounts in less affluent, minority-dominated voting districts.

The data we will now use come for a study by Ericksen, Kadane and Tukey
(1989) that sought correlates of census undercounts. Sixty-six geographical areas
were included, 16 being large cities. The other geographical units were either the
remainder of the state in which the city was located or other states entirely. Sampling
was purposive.

We use the following variables:

1. Undercount — the undercount as a percentage of the total count;
2. Minority — the percentage of residents who are Black or Hispanic;
3. Language — the percentage of residents who have difficulty with English;
4. Housing — the percentage of residential buildings that is small and multi-unit;

and
5. Crime — reported crimes per 1000 residents.

The first variable is the response. The others are predictors thought to be related to
census undercounts. No doubt there are any number of other predictors that subject-
matter experts would claim should have been included. For example, we know noth-
ing about the census enumeration procedures or the race and gender of enumerators.

30There are some important differences in the computational details, output, plotting facility, and
ease of use, many of which boil down to personal taste. From Hastie et al. (2009), it is natural
to work with the gam library. From Wood (2006), it is natural work with the mgcv library. Both
references provide important background because the documentation in R is not meant to teach the
material and makes reference to terms and concepts that may be unfamiliar.

100 2 Splines, Smoothers, and Kernels

We also know nothing about any efforts by local authorities to encourage residents
to cooperate. By conventional criteria, the mean function is misspecified.

Using the procedure gam() in the library mgcv, we applied the generalized addi-
tive model to the data. An examination of the tabular output indicated that nearly
80% of the deviance was accounted for. There was also lots of other information,
much like that provided for conventional linear regression, and if there had been
predictors that were not smoothed (e.g., factors), their regression coefficients would
have been displayed. For each smoothed predictor, the effective degrees of freedom
was reported, although as noted earlier, an inductively determined value of λ makes
those values suspect. Still, large values for the effective degrees of freedom indicate
that a function is more complex.

Figure2.28 shows how the predictors are related to the response. (See Fig. 2.29
for the R code.) For each graph, the response is centered around α̂, and there are
rug plots just above the horizontal axes. Also shown are the response values after

0 10 20 30 40 50 60 70

6
4

2
0

2
4

Minority

s(
M

in
or

ity
,3

.8
5)

0 2 4 6 8 10 12

6
4

2
0

2
4

Language

s(
La

ng
ua

ge
,4

.7
6)

10 20 30 40 50

6
4

2
0

2
4

Housing

s(
H

ou
si

ng
,6

.1
6)

40 60 80 100 120 140

6
4

2
0

2
4

Crime

s(
C

rim
e,

1.
43

)

Fig. 2.28 Correlates of the estimated undercount percentage for theU.S. 1980 census (The predictor
is on each horizontal axis, the centered fitted values are on each vertical axis, the shaded areas are
error bands, rug plots are shown, and N = 66.)

2.6 Smoothers for Multiple Predictors 101

library(car)
data(Ericksen)
library(mgcv)

make better variable names plotting
attach(Ericksen)
City<-as.numeric(ifelse(city=="city",1,0))
Minority<-minority
Language<-language
Housing<-housing
Crime<-crime
Undercount<-undercount
temp<-data.frame(Undercount,Crime,Housing,Language,Minority,City)

GAM from mgcv
out<-gam(Undercount~s(Minority)+s(Language)+s(Housing)+

s(Crime)+City,data=temp,family=gaussian)
par(mfrow=c(2,2))
plot(out,residual=T,cex=1,pch=19,shade=T,

shade.col="light blue",col="blue")

Fig. 2.29 R code for undercount analysis

adjustments consistent with the earlier discussion of holding constant. The vertical
axis label includes the effective number of degrees of freedom used by the particular
smoothed function, determined by tuning the equivalent of λ j with the GCV statistic.
For example, there are a little more than six degrees of freedom used by the housing
variable and a little more than one degree of freedom used by the crime variable.
The former is highly nonlinear. The latter is very nearly linear. The four values for
effective degrees of freedom (or alternatively, spar) were determined by an automated
search over values of the generalized cross-validation statistic.

There are also shaded areas representing plus and minus two standard errors for
the fitted values. Were one doing a level II analysis, they are supposed to convey
uncertainty in the estimates. But it is difficult to know what to make of this rendering
of uncertainty. Constant disturbance variance is assumed, there is almost certainly
bias in the estimated fitted values (Wood 2006, Sect. 4.4.1), and model selection by
the GCV statistic makes any conventional level II analysis problematic. As discussed
in the first chapter, the consequences of model selection are far more weighty than
just some additional uncertainty to contend with. Perhaps the major take-away is that
the “error bands” widen dramatically where the data are most sparse. Fitted values
in those regions need very careful scrutiny and perhaps have no interpretive value.

In general, all four predictors showpositive relationshipswith the size of the under-
count in regions where the data are not sparse. For example, the relationship with
the percentage of residents having problems with English is positive until the value

102 2 Splines, Smoothers, and Kernels

exceeds about 2%. The relationship then becomes negative until a value of about
5% when the relationship turns positive again. But there is no apparent substantive
explanation for the changes in the slope, which are based on very few observations.
The twists and turns could be the result of noise or neglected predictors, but with
so little data, very little can be concluded. The changing width of the shaded area
makes the same point.

Do any of the estimated relationships matter much? The observed values for
the undercount can serve as an effective benchmark. They range from a low of
−2.3% to a high of 8.2%. Their mean is 1.9%, and their standard deviation is 2.5%.
Where the data are not sparse, each predictor has fitted values that vary by at least 1
percentage point. Whether changes variable by variable of a percentage point or two
matter would need to be determined by individuals with subject-matter expertise. But
perhaps more telling is what happens when the four fitted relationships are combined
in a linear fashion to arrive at fitted values. Fitted values range from little below−1%
to about 7.5%, and as Fig. 2.30 shows, there is a substantial number of areas with
fitted undercounts greater than 4%. Moreover, the distribution tends to decline over
positive values up to about 4%, after which there is an uncharacteristic increase.
One might have expected continuing declines in the right tail. At least from a policy
point of view, it might be instructive to know which geographical areas fall on the far
right of the histogram. In short, insofar as the observed variability in the undercount
matters, so does the variability in the fitted values.

Ignoring the data snooping for a moment, does one have the makings of a level II
analysis? One would need clarification on what the estimation target is. In addition,

Fig. 2.30 Histogram of the
undercount percentage fitted
values from the GAM
procedure (N = 66)

Distribution of
Undercount Fitted Values

Undercount Fitted Values

F
re

qu
en

cy

1 0 1 2 3 4 5 6 7 8

0
2

4
6

8
10

12

2.6 Smoothers for Multiple Predictors 103

the data are not a probability sample of anything, and one would be hard pressed
to provide some reasonable joint probability distribution responsible for the data.
These present significant challenges before one gets to the data analysis.

2.7 Smoothers with Categorical Variables

Smoothers can be used with categorical variables. When a predictor is categorical,
however, there is really nothing to smooth. A binary predictor can have only two
values. The “smoother” is then just a straight line connecting the two conditional
means of the response. For a predictor with more than two categories, there is no
way to order the categories along the predictor axis. Any imposed order would imply
assigning numbers to the categories. How the numbers were assigned could make an
enormous difference in the resulting fitting values, and the assigned numbers neces-
sarily would be arbitrary. Consequently, the categories are reconfigured as indicator
variables.

When the response is categorical and binary, smoothing can be a very useful
procedure. All of the earlier benefits apply. In addition, because it is very difficult to
see much in a scatterplot with a categorical response, a smoother may be the only
way to gain some visual leverage on what may be going on. However, the earlier
caveats apply too.

Within the generalized additive model (GAM), the analysis of binary response
variables can be seen as an extension of binomial regression from the generalized
linear model (GLM). The right hand side is a linear combination of predictor func-
tions. The left hand side is the response transformed by a link function to logit units
(i.e., the log of the odds). What is different is that the functions of each predictor are
unknown.

2.7.1 An Illustration Using the Generalized Additive Model
with a Binary Outcome

We consider again the low birthweight data, but now the response is binary: low
birthweight or not. A birthweight is low when it is less than 2.5 kg. The following
predictors are used:

1. Age — in years;
2. Mother’s weight — in pounds;
3. Uterine — presence of uterine irritability; and
4. Smoke — whether the mother smokes.

Using the defaults in gam (in the library mgcv), about 9% of the deviance can be
attributed to the four predictors. Consider first the role of the two binary predictors.
When the mother smokes, the odds of a low birthweight baby are multiplied by

104 2 Splines, Smoothers, and Kernels

15 20 25 30 35 40 45

10
5

0
5

Age

s(
A

ge
,3

.2
5)

100 150 200 250

10
5

0
5

Weight

s(
W

ei
gh

t,1
)

Fig. 2.31 A GAM analysis of a new born low birthweight as a function of background character-
istics of mothers (The mother’s age and weight are on the horizontal axes, the centered fitted logits
are on the vertical axes, and the shaded area represents error bars. N = 189)

library(mgcv)
library(MASS)
data(birthwt)
attach(birthwt)

Rename and Clean up variables
Low<-as.factor(low)
Age<-age
Weight<-(lwt)
Uterine<-as.factor(ifelse(ui==1,"Yes","No"))
Smokes<-as.factor(ifelse(smoke==1,"Yes","No"))
temp<-data.frame(Low,Age,Weight,Uterine,Smokes)

Apply GAM
out<-gam(Low~s(Age)+s(Weight)+Uterine+Smokes,family=binomial,

data=birthwt)
par(mfrow=c(1,2))
plot(out,se=T,residuals=T,pch=19,col="blue",shade=T,

shade.col="light blue")

Fig. 2.32 R code for low birthweight analysis

2.32. When the mother has uterine irritability, the odds of a low birthweight baby are
multipled by 2.05. Both are exponentiated regression coefficients like those that can
be obtained from a logisticmultiple regression.31 In practical terms, both associations
are likely to be seen as substantial.

31The regression coefficients are usually reported with the response in logit units. They are part of
the routine tabular output from gam().

2.7 Smoothers with Categorical Variables 105

Fig. 2.33 Histogram of the
fitted values in proportion
units for low birthweight
GAM analysis (N = 189)

Distribution of Fitted Values for Low Birthweight

Fitted Proportions

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10
20

30

Figure2.31 (code in Fig. 2.32) shows the smoothed plots for the mother’s age and
weight. The units on the vertical axis are logits centered on the mean of the response
in logit units. Weight has a linear relationship with the logit of low birth weight. The
relationship between age and the logit of birth weight is roughly negative overall,
but positive between about the age of 20 and 25. Yet, to the eye, both relationships
do not appear to be strong, and the impression of a negative relationship with age is
driven in part by one observation for a woman who is 45 years old. However, looks
can be deceiving. When the logit units are transformed into probability units,32 the
difference in the proportion of low birthweight babies can be about .30 greater when
a mother of 35 is compared to a mother of 25.A similar difference in the proportion
of low birthweight babies is found when women weighing around 100 pounds are
compared to women weighing around 200 pounds.33

GAM output can include two kinds of fitted values for binary response variables:
the linear combination of predictors in logit units and fitted proportions. The former
can be useful for diagnostic purposes because many of the conventional regression
diagnostics apply. One has an additive model in logit units. The latter are useful for
interpretation as approximate values of the response surface.

Figure2.33 is a histogram of the fitted values in proportion units. One can see that
substantial variation is found between different cases. Fitted proportion ranges from
a little above 0.0 to nearly .80. Some prefer to see the proportions as probabilities, but
such interpretations require a clear and credible explanation of the stochastic process
by which the fitted values are produced. In effect, one is moving from a level I to a
level II analysis.

The formulation we have favored that depends on a joint probability distribution
may work as a start, but we know so little about how the data were collected that

32How to transform logits into probabilities and interpret them properly will be discussed in later
chapters. There can be subtle issues.
33The relationship reported in Chap. 1 was rather different. In Fig. 1.2, the relationship between
birthweights andmothers’ weights was generally positive. But for that analysis, the mother’s weight
was the only predictor. Conditioning on other predictors makes a difference.

http://dx.doi.org/10.1007/978-3-319-44048-4_1
http://dx.doi.org/10.1007/978-3-319-44048-4_1

106 2 Splines, Smoothers, and Kernels

making a credible case would be very difficult. For example, perhaps these births
occurred in a medical facility for women with difficult pregnancies. If women there
are all served by the same medical staff, birthweights may not be independently
realized. How a given pregnancy proceeds may affect how subsequent pregnancies
are handled. The estimation process introduces further problems. Empirical deter-
mination of λ means that model selection is in play. There might be work-arounds
were there real test data or if the dataset is large enough to be split into three subsets.

The default output included the usual information in the standard format about the
statistical tests undertaken. The plots camewith error bands. The issues raised are the
same as just addressed. If the value of λ (or its equivalent) were determined before
the GAM analysis began, one could at least in principle proceed with the formulation
derived for response surface approximations, although a lot of hard thinkingwould be
required to pin down the reality to which the generating joint probability distribution
applies. However, the value of λ was determined empirically as part of the fitting
process. We are again put in harm’s way by model selection. It is difficult to know
what properties the regression coefficients and fitted values have as estimates. One
is probably best off sticking with a level I analysis unless there are real test data or
the dataset is large enough to subdivide.

2.8 An Illustration of Statistical Inference After Model
Selection

Significant parts of the discussion in this chapter have emphasized the risks in a
level II analysis when penalty weights are determined empirically as part of the
data analysis. For readers who rely on “statistical significance” to extract subject-
matter conclusions, the tone may be disappointing and even annoying. As a possible
corrective, consider now a level II analysis that perhaps can be properly be defended.

Figure2.34 in a rendering of the overall inferential strategy introduced in Chap.1.
Tuning is done working back and forth between training data and evaluation data.
Once the procedure is tuned, test data are used to get an honest performance assess-
ment. It can then be possible in an additional step to get a sense of the uncertainty in
any honest performance assessment. That process is based on bootstrap resampling
and is discussed in a bit more detail below, with more to follow in later chapters.

There are two kinds of honest assessments. If the goal is to estimate generalization
error, results determined with the help of evaluation data are fixed. Using GAM as
an example, the values of λ and the associated functions of the predictors are set.
Fitted values determined from the x-values for all cases in the test data are then
compared to the actual values of Y in the test data using a statistic such as MSE.
If the goal is to estimate expected prediction error, matters are more complicated
because tuning implies model selection. Perhaps the safest approach is to treat the
values of any tuning parameters as fixed once they are determined with the help of
evaluation data. Then the procedure is applied to the test data. Again using GAM as

http://dx.doi.org/10.1007/978-3-319-44048-4_1

2.8 An Illustration of Statistical Inference After Model Selection 107

Fig. 2.34 A split sample approach for a level II analysis that includes tuning with an evaluation
sample, assessment with a test sample, and uncertainty addressed with bootstrap resampling

an illustration, with the values of λ fixed, the response function for each predictor is
estimated again, and one or more measures of fit are computed. All results are then
honest with respect to data snooping for the given set tuning parameter values.

Uncertainty in test data performance assessment can be addressed with a non-
parametric bootstrap. A total of B samples with replacement are drawn from the test
data. Whether for generalization error or expected prediction error, a performance
assessment is undertaken in each bootstrap sample. The distribution of performance
assessments over samples from the test data can be used to characterize some forms
of uncertainty — details to follow.

Let’s see how this can play out. The data, available in R, are taken from the U.S.
Panel Study of Income Dynamics (PSID). Funded by the National Science Founda-
tion, the study began in 1968 and has been going for nearly 45 years. Households
are followed over time and as the children of those households leave and form their
own households, they are followed as well. New households are added when needed
and feasible. Topics addressed in the survey have expanded over the years to include
more than economic well-being: health, child development, time use and others
(McGonagle et al. 2012). The data available in R are on married women in 1975.
(See the code in Fig. 2.35.)

Given the sampling design, it may be reasonable to treat each observation in the
dataset as a random realization from a joint probability distribution. In this case, the
population is real and finite, but very large. The response is whether amarriedwoman
is in the labor force (even if unemployed). Predictors include (1) the wife’s age, (2)
family income excluding the wife’s income in thousands of dollars, (3) whether the
wife attended college, (4) whether the husband attended college, and (5) the number

108 2 Splines, Smoothers, and Kernels

of children in the household under 6 years of age. Clearly, there are other potentially
important predictors such as the wife’s health and the local availability of jobs. We
are working within the wrong model perspective once again.

The R code used is shown in Fig. 2.35. With a sample of 753 cases, it is practical
to construct a training sample, an evaluation sample, and a test sample. The code
starts by providing more accessible names for the variables and recoding some stray
observations — one cannot have negative family income. Then, three randomly
chosen, disjoint, data subsets of equal size are constructed. The training data are
analyzed using the generalized additive model as implemented in gam() from the
mgcv library. Several different values for the penalty parameters (i.e., sp) are tried
beginning the smallest at .01. For each, performance is then assessed using the
evaluation data.34

There is a wealth of information in the usual output, but it can be difficult to
arrive at an overall assessment of what the sp value for each regressor function
should be. For binary outcomes, a “confusion table” can be a very effective overall
assessment tool. A confusion table is nothing more than a cross-tabulation of the
actual binary outcome and the fitted binary outcome. The smaller the proportion of
cases misclassified, the better the fitted values perform.

Confusion tables will play a key role in later chapters, and there are a number of
complications and subtleties. For now, we simply will classify a case as in the labor
force if the fitted value in the response metric is greater than .50 and not in the labor
force if the fitted value in the response metric is equal to or smaller than .50. The
marginal distribution of labor force participation provides a baseline for the GAM
fitted values. Nearly 57% of the sample are in the labor force. Applying the Bayes
classifier to the marginal distribution, classification error is minimized if all cases are
classified as in the labor force. The proportion misclassified is then .43. How much
better can be done using the predictors and good values for sp?

Regardless of the sp values tried, performance was modest. In the training data,
about 10% of the deviance could be attributed to the five predictors with the mis-
classification proportion a little less than .33. Improvement over the baseline was
noticeable, but not dramatic.

For the sp values tried, out-of-sample performance did not vary much. Confusion
tables from the evaluation data were all rather similar. For each, the misclassification
proportion was about .36. Because the functions for both smoothed predictors were
essentially straight lines, smaller sp values did not improve the fit enough to overcome
the loss of degrees of freedom. Therefore, the values of sp for both quantitative
predictors were set to the relatively large value 1.0.35

34The evaluation data provide out-of-sample performance measures, but with each new sp value,
the out-of-sample benefits decline a bit. The model is being tuned to the evaluation data so that the
fitting responds to both its random and systematic variation. Nevertheless, the evaluation data are
very instructive. It was easy to see that with small values of sp, the overfitting in the training is
substantial.
35Effectively the same results were obtained when the default of fitting by the GCV statistic was
used.

2.8 An Illustration of Statistical Inference After Model Selection 109

Set Up Data
library(car)
data(Mroz)
Clean up labels and stray observations
Participates<-Mroz$lfp # in labor force
Age<-Mroz$age # age
FamIncome<-ifelse(Mroz$inc < 0,0,Mroz$inc) # family income
WifeColl<-Mroz$wc # Wife college degree
HusColl<-Mroz$hc # husband colleage degree
Kids5<-Mroz$k5 # Number of kinds under 6
temp1<-data.frame(Participates,Age,FamIncome,

WifeColl,HusColl,Kids5)

Construct 3 random disjoint splits
index<-sample(1:753,753,replace=F) # shuffle row numbers
temp2<-temp1[index,] # put in random order
Train<-temp2[1:251,] # training data
Eval<-temp2[252:502,] # evaluation data
Test<-temp2[503:753,] # test data

Determine Value of spar
library(mgcv)
Applications to Training Data
out1<-gam(Participates~s(Age,sp=.01)+s(FamIncome,sp=.01)+

WifeColl+HusColl+Kids5,data=Train,family=binomial)
Tab<-table(out1$fitted.values>.5,

Train$Participates) # Confusion table
Tab
(Tab[1,2]+Tab[2,1])/sum(Tab) # Proportion Misclassified

Apply to Evaluation Data
out2<-predict(out1,newdata=Eval,type="response") # Fitted values
Tab<-table(out2>.5,Eval$Participates) # Confusion table
Tab
(Tab[1,2]+Tab[2,1])/sum(Tab) # Proportion Misclassified

Get Honest Performance Estimate
With best values for sp, apply to test data
out3<-gam(Participates~s(Age,sp=1)+s(FamIncome,sp=1)+

WifeColl+HusColl+Kids5,data=Test,family=binomial)
Tab<-table(out3$fitted.values>.5,

Test$Participates) # Confusion table
Tab
(Tab[1,2]+Tab[2,1])/sum(Tab) # Proportion Misclassified

Fig. 2.35 R code for a level II analysis of the PSID data

110 2 Splines, Smoothers, and Kernels

30 35 40 45 50 55 60

4
2

0
2

4

Age

s(
A

ge
,1

.1
9)

20 40 60

4
2

0
2

4

FamIncome

s(
F

am
In

co
m

e,
1.

14
)

Fig. 2.36 Smoother estimates for age and family income in the test data (Fitted values in the units
of centered log odds are on the vertical axes, predictors age and family income are on the horizontal
axes, the shaded areas show error bands, and N = 251.)

The test data provide an antidote to model selection. Because the goal was to
represent how the predictors were related to labor force participation, and no fore-
casting was anticipated, an estimate of expected prediction error was used as the
performance yardstick. With the value of sp fixed at the “best” value, the generalized
additive model was applied using the test data. Again, about 33% of the cases were
misclassified, and a little more than 10% of the deviance could be attributed to the
predictors. There was no evidence of meaningful overfitting. Among the three linear
predictors, if a wife had attended college, the odds of labor force participation are
multiplied by a factor of 3.3.A husband’s college attendance hardly matter. For each
additional child under six, the odds of labor force participation are multiplied by a
factor of .20.36

Figure2.36 shows in the test data the relationships between labor force partic-
ipation and the two smoothed predictors. The near-linearity is apparent. Age has
virtually no relationship with labor force participation, although there is a hint of
decline for wives over 50. Family income (excluding the wife’s income) has a very
strong effect. The odds increase by a factor of about 3.9 when the lowest income
households are compared to the highest. Lower income can dramatically increase a
wife’s labor force participation. So much for the level I analysis.

Thanks to the test data, it is relatively easy tomove to level II. All of the results just
reported from the test data can be used as asymptotically unbiased estimates for the
population’s same generalized additive model with the same sp values. But, there is
considerable uncertainty to address. Although original sample had 753 observations,

36The number of children under 6 ranged from 0 to 2. With only 3 predictor values, smoothing was
not an option.

2.8 An Illustration of Statistical Inference After Model Selection 111

Fig. 2.37 Average bootstrap
fitted values and
Point-By-Point Error bands
for the labor force analysis
using 200 nonparametric
bootstrap samples
(N = 251)

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fitted Values with Bootstrap Point by
Point Confidence Intervals

Case

F
itt

ed
 V

al
ue

s

the test sample had only 251, and that is the relevant sample size. Still, some use can
be made of the nonparametric bootstrap with the test sample.

The bootstrap will be addressed in some depth in later chapters. For now, take
on faith that Fig. 2.37 shows the bootstrapped point-by-point error bands around the
average of the fitted values over 200 bootstrap samples. As such, they can be viewed
as legitimate asymptotic estimates of point-by-point 95% confidence intervals.

But confidence intervals around what? If the estimation target is the true response
surface, the error bands are not confidence intervals. Because the estimates include
bias, the error bands only capture the variance around the biased estimates. If the
estimation target is an approximation of the true response surface, one has asymp-
totically valid confidence intervals around estimates of that approximation surface.

The major message from Fig. 2.37 that the wiggle around the fitted values is very
large: approximately plus orminus .25. This is consistentwith the small improvement
in fit compared to the marginal Bayes classifier. It is also consistent with the small
fraction of the deviance that could be attributed to the predictors and with the modest
sample size.

A key implication is that the estimates of classification error can vary widely as
well. Figure2.38 shows a histogram of the proportion of cases misclassified over
the 200 bootstrap samples. Although of the estimates cluster between .35 and .40,
estimates range from about .28 to .45. Yet, the estimated probability of a misclassifi-
cation proportion of less than the marginal Bayes classifier of .43 is about .98. Even
the very weak model is likely to be an improvement. And there is more good news.
The stronger relationships reported — for the wife attending college, the number of

112 2 Splines, Smoothers, and Kernels

Fig. 2.38 Bootstrap
distribution of proportion
misclassified over 200
bootstrap samples
(N = 251)

Bootstap Distributon of Proportion Misclassified

Proportion Misclassified

F
re

qu
en

cy

0.30 0.35 0.40 0.45

0
5

10
15

20
25

30

children under 6 and family income — all have reported p-values far smaller than
.05 for a proper two-tailed test and a null hypothesis of no relationship.37

Still, there are at least three important caveats. First, the split sample approach
comes at a price.Working with fewer observations split by split means that all level II
results are less precise than had a full sample procedure been used (Faraway 2014). A
more subtle point is that for smoothers and statistical learning more generally, more
complex associations can be found with larger samples. In the case of smoothing
splines, a smaller value for λ may be justified in a substantially larger sample. For
a level I regression analysis, richer descriptions can follow. For a level II analysis,
there can be a reduction in bias if there is focus on the true response surface and true
conditional relationships.

Second, all of the statistical inference is asymptotic. A sample of 251 is probably
large enough so that the inference is not misleading, but there is no way to know
for sure. It is at least encouraging that the bootstrap distribution of the estimated
misclassification error when examined with normal QQ plot (qqnorm()), showed no
troubling departures from normality. The same can be said about the distributions of
fitted values from which each of the error bands were constructed.38 The sample of
251 may well be large enough for our purposes.

37These come from the standard gam() output. This is playing somewhat fast and loose. Ideally,
the test should use a standard error estimate taking into account that the predictors are random
variables. In principle, some version of the sandwich should apply. Alternatively, a nonparametric
bootstrap could be used. One would resample the test data and obtain empirical distributions for
each regression coefficient. Statistical tests or confidence intervals could follow. But with p-values
so small, it is very likely that the test results would be confirmed.
38A random subset of 25 were examined.

2.8 An Illustration of Statistical Inference After Model Selection 113

Third and more fundamentally, the thought experiment behind the nonparametric
bootstrap envisions random samples from a population, or realizations from a joint
probability distribution, with the model and value of sp already known. This is
consistent with conventional statistical inference. But, one might also wonder about
uncertainty caused by the random data splitting. A very different thought experiment
is implied, and its relevance can be argued. In principle, one could address that
uncertainty by wrapping the entire analysis, including the sample splitting, in a
nonparametric bootstrap.

There is also a need to briefly address again the role of all level II analyses.
This example works because the way the data were assembled comports well with
the joint probability distribution formulation. Other examples can work without real
random sampling when a credible case can be made from subject matter knowledge,
past research and an examination of the data on hand. For example, suppose as a
criminal justice researcher, one wanted to study probation failures, and suppose one
had access to data over several years on all individuals released on probation in a
large city. Such data could have well over 100,000 observations. One can certainly
imagine a joint probability distribution for the outcomes and predictors of interest
as a product of the social processes determining how individuals do on probation.
But, over time that joint probability distribution could well change as new laws are
passed, new administrative regulations are promulgated, and the mix of convicted
offenders varies. To what time interval does the data on hand apply?

There is no definitive way to address this question, but knowledge of the setting
and surrounding circumstances can be very helpful. For example, have there been
any important changes in the governing statutes? One can also make some headway
using the data. It would be a simple matter to look at subsets of the data for several
months at a time. Is there evidence that the joint probability distribution responsible
for the data is changing in ways that matter? For example, is the fraction of the
offenders being convicted for drug crimes increasing substantially? If key features
of the data appear to be stable over the period the data were collected, the data may
be seen as realized from a single joint probability distribution. One might also infer
that the joint probability distribution changes slowly so that forecasts made for new
cases in the not-too-distant future may be valid. As with all real data analyses, it is
difficult to know for sure, but one properly can capitalize on the balance of evidence.

More difficult would be making the case that the observations were realized inde-
pendently. Sometimes there are co-offenders for a given crime, and some crimes can
be serial in nature. One might want to use the data to see how common both were
for different kinds of crimes. For many crimes, both may be relatively rare. In addi-
tion, it may be possible to condition on certain predictors so that most dependence
is removed, although that may lead to a revision of the plain vanilla, joint probabil-
ity distribution approach. We will have a lot more to say about these issues in later
chapters. Level II analyses with statistical learning can be a challenge.

114 2 Splines, Smoothers, and Kernels

Fig. 2.39 2-Dimensional
vector spaces that change the
roles of variables and
observations (The left figure
has observations in variable
space, and the right figure
has variables in observation
space.)

x2

x1

o2

o1

o2
(-4,-4)

(1,5)

o1

x1
(1,-4)

(5,-4)

x2

Observations in
Predictor Space

Predictors in
Observation Space

2.9 Kernelized Regression

In this chapter,much has beenmade of linear basis expansions as away tomake better
use of the information a set of predictors contains.But each kind of expansion retained
a matrix structure in which rows were observations and columns were variables.
There is a very different and powerful way to transform the data from observations
located in variable space to variables located in observation space. The result can
be a kernel matrix that with some regularization can form a new kind of predictor
matrix for a wide range of regression applications.39

Figure2.39 illustrates how one can represent observations in variable space or
variables in observation space. O1 and O2 are observations, and X1 and X2 are
variables. The arrows represent vectors. Recall that vectors are lines with direction
and length. We use them here primarily as a visualization tool.

The left plot shows observations in variable space and is the way one normally
thinks about a scatter plot. There are two observations in a space defined by two
predictors. The right plot shows variables in observation space, and is one way to
think about kernels. There are two predictors in a space defined by two observations.
For example, in the plot on the left, O1 has a value of 1 for X1 and a value 5 for
X2. In the plot on the right, X1 has a value of 1 for O1 and a value of −4 for O2. In
practice, there would be many more predictors and many more observations.

But why bother with predictors in observation space? Thinking back to the discus-
sion of linear basis expansions in Chap. 1, kernels can alter the number of dimensions
in which the values of a response variable are located. By increasing the number of
dimensions, one may find good separation more easily. This is an important ratio-
nale for working with kernels. Kernels also have other desirable properties that can

39In statistics, there are other meanings of “kernel” such as when the term is used for localized
estimators (Hastie et al. 2009: Sect. 6.6.1). In computer science, “variables” are sometimes called
“feature vectors” that are located in “input space.”

http://dx.doi.org/10.1007/978-3-319-44048-4_1

2.9 Kernelized Regression 115

Fig. 2.40 R code inner
products of X X # The predictor matrix

V1 V2 V3
Ilene 1 2 3
Jim 4 2 0
Ken 1 0 0
Linda 5 3 5
Mary 3 2 4

Cross Product Matrix t(X)%*%X

V1 V2 V3
V1 52 31 40
V2 31 21 29
V3 40 29 50

Kernal Matrix X%*%t(X)

Ilene Jim Ken Linda Mary
Ilene 14 8 1 26 19
Jim 8 20 4 26 16
Ken 1 4 1 5 3
Linda 26 26 5 59 41
Mary 19 16 3 41 29

make them a very handy tool. These will be considered as the discussion of kernels
proceeds.40

Consider Eq.2.21, a very simple predictor matrix X with five rows and three
columns. Rows and columns are labeled. The rows are people and the columns are
variables that are features of those people. Linear basis expansions of the sort we
have considered so far could be applied to all three predictors or a subset.

X =

⎛

⎜⎜⎜⎜⎜⎜⎝

V 1 V 2 V 3
I lene 1 2 3
J im 4 2 0
Ken 1 0 0
Linda 5 3 5
Mary 3 2 4

⎞

⎟⎟⎟⎟⎟⎟⎠
. (2.21)

Figure2.40 shows theXmatrix, and the results from two different forms of matrix
multiplication. The first is XTX, which produces the usual sum of cross products,
a symmetric matrix that plays such an important role in the ordinary least squares

40AdamKapelner and Justin Bleich helped extensively with the exposition of kernels. They deserve
much of the credit for what clarity there is. Lack of clarity is my doing.

116 2 Splines, Smoothers, and Kernels

estimator. Its main diagonal contains for each variable the sum of its squared values.
For example, value of 21 in the second row and second column is the sum of the
squared values of V2. The off-diagonal elements contain for each pair of variables
their sum of element by element products, called inner products. The result is a scalar.
For example, the value of 40 in the first row and third column and also in the third
row and the first column results from (1 × 3) + (4 × 0) + · · · + (3 × 4).

The second matrix is derived from X by computing XXT . It too is symmetric.
There are again sums of squared values or sums of cross-products, but the roles of
variables and observations are switched. The main diagonal now contains for each
person the sum of that person’s squared values over the three variables. For example,
Linda’s diagonal value is 59: 52 + 32 + 52. The off-diagonal elements are the sums
of cross products for person pairs over the three variables. For example, the sum of
cross products for Jim and Ilene is (4× 1)+ (2× 2)+ (3× 0) = 8. As before, these
are sums of cross-products that result in a scalar.

Notice that this matrix has 5 columns rather than 3. Were one to use the matrix
columns as a set of predictors, there would be 5 regressors. The response variable
values would now reside in a 5-D predictor space, not a 3-D predictor space. The
number of dimensions has been increased by 2.

XXT is often called a “linear kernel” and can be viewed as a similarity matrix
(Murphy 2012: 479). The off-diagonal elements can be measures of the association
between the different rows of X. One can learn which observations are more alike
over the full set of variables. In this example, a close look atX indicates thatMary and
Linda have the most similar values for V1, V2, and V3, and from the kernel matrix,
the value of 41 is the largest off-diagonal element. A kernel matrix is conventionally
denoted by K.

There are many kinds of kernels constructed with different kernel functions
denoted in general by κ(x, x ′). The notation x and x ′ means one row and another
row, although it can also mean a row with itself in which case, each sum of cross
products is non-negative (i.e., κ(x, x ′) ≥ 0). Any kernel matrix, K, is symmetric
(i.e., κ(x, x ′) = κ(x ′, x)). For regression applications, it is common to work with
Mercer kernels for which K is positive semi-definite.

The preference for Mercer kernel begins with X. Imagine linear basis expansions
for the full set of predictors each represented by h(x). ForMercer kernels, κ(x, x ′) =
〈h(x), h(x ′)〉, which means the inner products of the expansions are contained in
Mercer kernels (Hastie et al. 2009: Sect. 12.3.1).41 There is no need the know the
actual expansions because for regression applications one can proceed directly with
the kernel. This is a very convenient computational shortcut, which means that in
practice, model specification is usually a choice between different kinds of kernels

41Imagine a predictor X expanded so that each original column can now be many columns defined
by some linear basis expansion (e.g., polynomials or indicator variables). In this context, the inner
product means multiplying two rows (i.e. vectors) of the expanded predictor so that a scalar is
produced. As before, it is just the sum of cross products. More generally, if there are two (column)
vectors v1 and v2, the inner product is vT1 v2. The outer product is v1v

T
2 , which results in a matrix.

The same reasoning applies when a vector is multiplied by itself.

2.9 Kernelized Regression 117

withoutmuch regard for the implied basis expansions.Morewill be said about kernels
in the chapter on support vector machines.42

However, there are several complications. Because the kernel function requires
that all elements in X be numeric, categorical predictors are a problem. At best, they
can be transformed into 1/0 indicator variables, but the gap between a 1 and a 0
is arbitrary. And actually, the problem is more general. K depends on the units in
which each column ofX is measured. With different units, there are different kernels
even when the kernel function is the same. Standardization of each column of X is,
therefore, a common practice. But the common units chosen are effectively arbitrary
and make it difficult to understand what the similarities mean. Two rows that are
the much alike in standard deviation units, may be very different in their original
units, which is how one normally thinks about those rows. One should always ask,
therefore, “similar with respect to what?”

A second complication is that a kernel matrix is necessarily N × N . Therefore,
some form of dimension reduction is required in a regression setting. Regularization
is required. Options include using a subset ofK’s principal components as regressors
or a form penalized regression. For example, the latter can lead to a ridge regression
approach. In the notation of Hastie et al. (2009: Sect. 12.3.7),

f̂ (x) = h(x)T β̂ =
N∑

i=1

α̂i K (x, xi), (2.22)

and
α̂ = (K (x, xi) + λI)−1y. (2.23)

Equation2.22 shows the fundamental equivalence between regressors as basis func-
tions and regressors as columns of K. Equation2.23 shows how the new regression
coefficients α̂ for K are computed. Equation2.23 is a close cousin of conventional
ridge regression.

With α̂ in hand, the fitted values can follow as usual as long as one remembers to
useK notX. For fitted values from new observations, the same reasoning carries over,
but the new observations Z need to be “kernelized” (Exterkate et al. 2011: Sect. 2.2).
A prediction kernel is constructed as κ(x, z′) = 〈h(x), h(z′)〉 not as κ(x, x ′) =
〈h(x), h(x ′)〉. That is, the inner products are undertaken with respect toX and Z, not
with respect to X itself. For the linear kernel one computes XZT rather than XXT .
That is,

f̂ (x, z) =
N∑

i=1

α̂i K (x, zi). (2.24)

42There is a lot of very nice math involved that is actually quite accessible if it is approached step
by step. For readers who want to pursue this, there are many lectures taught by excellent instructors
that can be viewed for free on the web. These are generally more helpful than formal textbook
treatments because the intuitions behind the math are often well explained. A good example is the
lecture by MIT professor Patrick Winston “Lecture 16 – Learning: Support Vector Machines.”

118 2 Splines, Smoothers, and Kernels

Also as before, λ in Eq.2.23 is a tuning parameter whose value needs to be
specified in advance or determined empirically. This leads to a third complication.
Often it is desirable for λ to be large because, in effect, one starts with N predictors
(much like for smoothing splines). But, empirically determining a sensible value
for λ can be challenging, as we will soon see. There are usually additional tuning
parameters.

A fourth complication is that kernel matrices produce a new kind of black box.
In Eq.2.22, for example, the regressors are columns of K not columns of X, and
the estimated regression coefficients in Eq.2.23 are α̂ not β̂. It is a bit like trying to
make sense of the regression coefficients associated with B-splines. Moreover, only
in very special cases is it practical to work backwards from K to h(x). The linear
expansions of X typically are not accessible. As before, therefore, the story will be
in the fitted values.

Finally, theremanydifferent kinds of kernels, and several different kinds ofMercer
kernels that can be used in practice (Murphy 2012: Sect. 14.2; Duvenaud et al. 2013).
Because of the black box, it is very difficult to knowwhich kernel to use. The decision
is usually based on experience with particular subject-matter applications and craft
lore. We turn to two kernels that are popular for regression analysis.

2.9.1 Radial Basis Kernel

The bottom matrix in Fig. 2.40 is an example of a linear basis kernel. Formally, it is
relatively easy to work with, but is not used much because there are other kernels that
usually perform better. A good example is the radial basis kernel that is sometimes
characterized as an “all purpose” kernel. Perhaps its most important departure from
the linear kernel is that row comparisons are made initially by subtraction not mul-
tiplication. With each variable standardized and ‖.‖ denoting the Euclidian distance
(i.e. the “norm”), the radial basis kernel is defined by the function

k(x, x
′
) = exp(−σ‖x − x ′‖2), (2.25)

where ‖x − x ′‖2 is the squared Euclidian distance between two rows.
The first step is to compute the sum of squared differences. For the second and

third row of our toy X, one has for the sum of squared differences: (4 − 1)2 + (2 −
0)2 + (0 − 0)2 = 13. The sum of squared differences is multiplied by −σ and then
exponentiated. For the radial basis kernel, otherwise known as the Gaussian radial
basis kernel (Murphy 2012: Sect. 14.2.1), σ is a scale parameter specifying the spread
in the kernel values. The kernel matrix K is always symmetric and N × N . If the
scale parameter σ happens to be 0.5, the value in K for the second and third row of

2.9 Kernelized Regression 119

library(kernlab)

Radial Basis Kernel

tune<-rbfdot(sigma=.5)
kernelMatrix(tune,X)
An object of class "kernelMatrix"

Ilene Jim Ken Linda Mary
Ilene 1.0000e+00 1.2341e-04 1.5034e-03 2.7536e-05 8.2085e-02
Jim 1.2341e-04 1.0000e+00 1.5034e-03 1.3710e-06 2.0347e-04
Ken 1.5034e-03 1.5034e-03 1.0000e+00 1.3888e-11 6.1442e-06
Linda 2.7536e-05 1.3710e-06 1.3888e-11 1.0000e+00 4.9787e-02
Mary 8.2085e-02 2.0347e-04 6.1442e-06 4.9787e-02 1.0000e+00

ANOVA Basis Kernel

tune<-anovadot(sigma=2.0,degree=2)
kernelMatrix(tune,X)
An object of class "kernelMatrix"

Ilene Jim Ken Linda Mary
Ilene 9.000000 1.000000 1.0007e+00 1.8407e-02 1.2898e+00
Jim 1.000000 9.000000 1.0007e+00 7.3263e-02 1.2810e+00
Ken 1.000671 1.000671 9.0000e+00 2.3195e-16 4.5014e-07
Linda 0.018407 0.073263 2.3195e-16 9.0000e+00 7.3444e-02
Mary 1.289748 1.288986 4.5014e-07 7.3444e-02 9.0000e+00

Fig. 2.41 R code for radial basis and ANOVA basis kernels

X is e(13×−.5) = .0015034. The top matrix in Fig. 2.41 follows in the same manner.43

The diagonal entries of the radial basis kernel are always 1 (e0 = 1), and the
off-diagonal entries are between 0 and 1. Because radial kernels build on Euclid-
ian distances, they can be viewed as similarity matrices. With a smaller distance
between a pair observations, there is greater similarity. Thanks to the negative sign
the associated with σ, a larger kernel value then conveys greater similarity.

When the value of σ is larger, the off-diagonal kernel values become smaller,
so their measured similarities are reduced. The rows become more heterogeneous,
which is consistent with the idea a larger scale value. In language we used earlier, the
bandwidth, span, or window has gotten smaller. A more complex set of fitted values
can be accommodated. Consequently, σ typically is treated as a tuning parameter.

43For consistency, the kernel expressions and notation are the same as in the documentation for
kernlab (Karatzoglou et al. 2004), the excellent library containing the kernel procedures used. In
some expositions, λ is used instead of σ and then λ = 1

2σ2 , where σ is another constant. In that
form, the radial basis kernel commonly is called the Gaussian radial basis kernel. Note that this λ
is not the same λ as in Eq.2.23.

120 2 Splines, Smoothers, and Kernels

Radial basis kernels have proved to be useful in a wide variety of applications but
for regression, there can be a better choice (Karazolou et al. 2004: Sect. 2.4).

2.9.2 ANOVA Radial Basis Kernel

The ANOVA radial basis kernel builds on the radial basis kernel. Using common
notation for the ANOVA kernel,

k(x, x ′) =
(

p∑

k=1

exp(−σ(xk − x ′k)2)

)d

, (2.26)

where xk and x ′k are the two values for predictor k, p is the number of predictors
in X, and σ is again a scale parameter typically used for tuning. As before, larger
values of σ allow for a more complex fit.44 The values for d are usually 1, 2, or 3.
Because the computations begin with differences that after being transformed are
added together, the calculations are linear when d = 1, and one has a linear, additive
effects expression. When d = 2, one has an expression with products that can be
seen as two-way interaction variables. By the same reasoning, when d = 3, one has
three-way interaction variables. In practice, d is treated as a tuning parameter along
with σ.45 Larger values for d allow for a more complex set of fitted values.

The lower matrix in Fig. 2.41 shows the results for the same predictor matrix X
when σ is set to 2.0 and d is set to 2. Because there are 3 predictors in X, the main
diagonal elements are all equal to 9 (i.e., (1 + 1 + 1)2). Off-diagonal elements no
longer have an upper bound of 1.0.

2.9.3 A Kernel Regression Application

In a regression context, the radial kernel and the anova kernel can be used as predic-
tor matrices that replace X in a regression analysis. Both kernels provide a very rich

44The computational translation is a little tricky. These are the steps for any given entry i, j in K.

(1) As before, one does an element by element subtraction of observations i and j over each of
the predictors. These are rows in X. (2) Square each of the differences. (3) Multiply each of these
squared differences by minus σ. (4) Exponentiate each of these products. (5) Sum the exponentiated
products. (6) Raise the sum to the power of d.
45To illustrate, consider X with three predictors. For the pair of observations from, say, the first and
second row of X and d = 1, the sum of differences is (x11 − x21)2 + (x12 − x22)2 + (x13 − x23)2.
This is linear and additive in the squared differences. For d = 2, the result is [(x11 − x21)2 + (x12 −
x22)2 + (x13 − x23)2]2. All of the terms are now products of two squared differences, which are
two-way interaction effects. For d = 3, the result is [(x11 − x21)2 + (x12 − x22)2 + (x13 − x23)2]3.
All of the terms are now products of three squared differences, which are three-way interaction
effects. Hence the name ANOVA kernel.

2.9 Kernelized Regression 121

menu of complicated transformations that are directly given to the fitting machinery.
One hopes that K can find relationships with the response that X cannot. Compli-
cated nonlinear relationships are in play through what is effectively a nonparametric
formulation.

As usual, “nonparametric” can be used in different ways. What one means for
kernelized regression is that the regression structure is not meant to be a model
of anything. The regression structure is just part of an algorithm linking input to
outputs. There are regression coefficients for the columns in K, but they have no
subject-matter interpretation. Just as for smoothing splines, the goal is to interpret
and use the relationship between inputs and outputs.

The heavy emphasis on fitted values has meant that for kernel regression, ways
to visualize how inputs are related to outputs are not as well developed. Some of the
visualization procedures discussed in later chapters could be applied, but at least in
R, they have not been applied yet. Where kernel regression method can shine is in
forecasting.

A natural question, therefore, is what kernel methods estimate. Kernel regression
methods can be used to estimate an approximation of the true response surface as
a feature of nature’s joint probability distribution. That approximation has the same
structure, and same values for the tuning parameters used with the training data. The
fitted values from the data can be taken as biased (even asymptotically) estimates of
the true response surface. In short, a level II analysis has the same features as a level
II analysis for smoothing splines. And as before, one has to make a credible case that
a level II analysis is justified.

Even if the choice of kernel is made before looking at the data, in practice the
kernel’s parameters will be tuned, and the regularization parameter will be tuned as
well. So, here too the data snooping issues have been addressed. One is usually in
the model selection business once again.

Consider Eqs. 2.22 and 2.23. What may look to be a simple application of ridge
regression is not so simple. There are three tuning parameters, two for the ANOVA
kernel and one for the regularization, that typically need to be determined empiri-
cally. A first impulse might be to use some in-sample fit measure such as the GCV
statistic. A search is undertaken over values of the tuning parameters. Their values
are determined by the best fit value. However, any credible in-sample fit statistics
should take the effective degrees of freedom (EDF) into account because the effective
degrees of freedom is changing as the values of the tuning parameters are varied. If
the effective degrees of freedom is ignored, a better fit may result simply from more
degrees of freedom being used in the fitting process. This matters even for a level
I analysis because the data analyst could be faced with unnecessarily complicated
fitted values that will be challenging to interpret.

Yet, as discussed in Chap.1, even the idea of an effective degrees of freedom (or
effective number of parameters) in such a setting is being questioned. What does
the effective degrees of freedom mean when there is tuning? In practice, therefore, a
sensible level I analysis requires a careful examination of the fitted values and plots
of the actual response values against the fitted values. Subject-matter knowledge can
be critical for determining which sets of fitted values are most instructive. In short,

http://dx.doi.org/10.1007/978-3-319-44048-4_1

122 2 Splines, Smoothers, and Kernels

the level I concerns for conventional ridge regression carry over but now with more
tuning parameters to specify.

For a level II analysis, we are again faced with model section implications that
can introduce challenging problems for statistical inference. Rather than using some
in-sample fit statistics, why not employ cross-validation? The issues are tricky. A
kernel matrix is N × N , and the tuning is done with respect to the full kernel matrix.
Yet, cross-validation necessarily fits subsets of the data, each with fewer than N
observations. Tuning could be quite different, and with respect to the full kernel
matrix, misleading. Probably the best cross-validation approach is N-fold because
for each pass through the data only one observation is lost.

Alternatively, onemight employ a split sample strategy.As before, the training and
evaluation samples are exploited to determine the values for the tuning parameters.
The kernel regression coefficients α̂ from the training sample are used to obtain
fitted values in the evaluation data, from which one or more performance measures
are computed. With the values of the tuning parameters determined, the test data can
be employed to obtain honest performance assessments. But one is still faced with a
smaller N than had the data not be split. If one is prepared to settle for working with
and tuning for a kernel fit based on a substantially smaller sample, a split sample
approach can work well. The new estimation target is test sample version.

There are apparently no fully satisfactory procedures currently inR that implement
the kind of penalized kernel regression shown Eqs. 2.22 and 2.23.46 But with split
samples and the kernelMatrix() procedure from the library kernlab to construct the
requisite kernels, it is relatively easy to write a “one-off” R-script that implements
a version of Eqs. 2.23 and 2.24 cycling through the training data many times using
different sets of values for σ, d, and λ.47 Each set of α̂ is then used to produce
fitted values in the evaluation data. Once acceptable tuning parameter values are
determined, they are used to compute a penalized kernel ridge regression in the test
data.

To see how this plays out, suppose one wanted to analyze variation in the gross
domestic earnings for movies made in the United States immediately after the movie
opens. There are data on 471 movies for which one has the following regressors: (1)
the budget for making each movie, (2) the number of theaters in which it opened, and
(3) opening day’s earnings. The response is gross domestic earnings over the next 24
months. These data were randomly split into a training sample, an evaluation sample,
and a test sample of equal sizes. The performance criterion was mean squared error.

From the search over the movie training data and evaluation data, σ was a chosen
to be 10, d was chosen to be 2.0, and λ was chosen to be 3. There were several sets

46There is in the CVST library a procedure with which to do penalized kernel ridge regression.
However, the documentation is very spare, and the references cited often do not seem germane. It
is, therefore, very difficult to know what the underlying code is really doing, and some of the output
is problematic.
47The library kernlab() was written by Alexandros Karatzoglou, Alex Smola, and Kurt Hornik. It
is has an excellent collection of functions for working with kernels in a wide variety of ways.

2.9 Kernelized Regression 123

Fig. 2.42 Domestic gross
sales in million of dollars by
the fitted values from a
penalized kernel regression
using the test data (N = 157)

2e+08 3e+08 4e+08 5e+08

1e
+

08
2e

+
08

3e
+

08
4e

+
08

5e
+

08
6e

+
08

Gross Domestic Sales in the Test Data (N=157)

Fitted Gross in Dollars

A
ct

ua
l G

ro
ss

 in
 D

ol
la

rs

of tuning parameters that performed approximately as well, and the among those,
the set with the smallest tuning parameter values for the kernel and the largest value
for penalty parameter was selected. There seemed to be no reason to unnecessarily
use up degrees of freedom.

A kernel regression with the same number of observations and tuning parameters
values was used with the test data. In the same spirit as expected prediction error,
a plot of the observed response values against the fitted response values for the test
data is shown in Fig. 2.42. Overlaid is the least squares line from which the R2 of
.92 was computed. Overall, the scatterplot has a sensible pattern although the fitted
values do not track some of the highest or lowest gross sales as well. This means that
if the goal is to represent very soon after a movie is released its gross domestic sales
over the next two years, the results look promising except for the few “flops” and
“blockbusters.” It is easy to capture those response values too with a more complex
set of fitted values (e.g. with a σ of 20, a d of 3, and a λ of 1), but that leads to
unrealistic measures of fit (e.g., an R2 of .99).

For a level II analysis, the estimation target is the kernel regression approximation
of the true response surface with the same values for the tuning parameters. If one
can define a substantively relevant joint probability distribution or finite population
from which each observation was independently realized, the test data results can
provide an asymptotically unbiased estimates. Andmuch as in the previous example,
one can then apply a nonparametric bootstrap to the test data and obtain information
on the uncertainty built into the R2 of .92.

124 2 Splines, Smoothers, and Kernels

2.10 Summary and Conclusions

Regression splines and regression smoothers can be very useful level I tools for
describing relationships between a response variable and one or more predictors. As
long as one is content to “merely” describe, these methods are consistent with the
goals of an exploratory data analysis.Moving to a level II analysis can be challenging
because there needs to be a credible data generation backstory consistent with the
formal requirements of statistical inference. In addition, whenmodel selection is part
of the data analysis, there are significant obstacles that in practice can be difficult
to overcome. In the absence of real experiments, a level III analysis will depend, as
usual, on a compelling interpretive overlay addressing why one should believe that
themanipulation of given predictorswill alter the distribution of the response. And all
three regression analysis levels are undertaken with estimates of an approximation
of the true response surface. In conventional terms, one is working misspecified
regression models.

Experience suggests that for most datasets, it does not make a great difference
which brand of smoother one uses. The dominant factor is usually the values of λ or
other tuning parameters that determine smoothness and the bias-variance tradeoff.
Less clear is how their values are best determined. Most methods emphasize some
measure of generalization error. This is certainly sensible given the empirical focus
on fitted values. But fitted values with low generalization error do not necessarily
make scientific or policy sense. Moreover, any overall measure of out-of-sample
performance can neglect that performance will usually be better for some predictors
than others. Often a subset of predictors are of special interest, and it is on their
performance that a useful evaluation should rest. These complications and others
suggest that it can be a mistake to automatically defer to default tuning values or
default tuning procedures. There is no substitute for subject-matter expertise and a
careful examination of a wide range of data analysis output. Judgment matters. It
is very important to avoid what a number of philosophers and social scientists call
“statisticism” (Finch 1976; Lamiell 2013).

Finally, there are other smoothers that have not been discussed either because they
performbest in a relatively narrow set of applications or because they are not yet ready
for widespread use. An example of the former is wavelet smoothing (Hastie et al.
2009: Sect. 5.9). “Wavelet bases are very popular in signal processing and compres-
sion, since they are able to represent both smooth and/or locally bumpy functions in
an efficient way — a phenomenon dubbed time and frequency localization” (Hasite
et al. 2009: 175). An example of the latter is very recent work that applies trend
filtering to nonparametric regression (Tibshirani 2015). The key idea is to define the
fitting penalty a novel way, not using second derivatives, by a discrete differencing
operator on the regression coefficients. The result is a smoother that adapts locally.
It will fit a rougher function where the data are more rough and a smoother function

2.10 Summary and Conclusions 125

where the data are more smooth.48 In short, the book is not closed on smoothers, and
readers interested in such procedure should at least skim the relevant journals from
time to time.

For awide range of problems, there are statistical learning techniques that arguably
perform better than the procedures discussed in this chapter. They can fit the data
better, are less subject to overfitting, and permit a wider range of information to
be brought to bear. One price, however, is that the links to conventional regression
analysis become even more tenuous. In the next chapter, we continue down this path.

Demonstrations and Exercises

Just as for the first chapter, these demonstrations and exercises emphasize the analysis
of data. What substantive insights can be properly extracted? You may need to install
some packages depending on what you have already installed. (Have you updated R
and the procedures you will be using lately?)

Set 1: Smoothers with a Single Predictor

1. Load the dataset called airquality using the command data(airquality). Attach the
data with the command attach(airquality). Use gam() from the gam library with
Ozone as the response and Temp as the sole predictor. Estimate the following
three specifications assigning the output of each to its own name (e.g., output1
for the first model).

gam(Ozone ˜ Temp)

gam(Ozone ˜ as.factor(Temp))

gam(Ozone ˜ s(Temp))

The first model is the smoothest model possible. Why is that? The second model
is the roughest model possible. Why is that? The third model is a compromise
between the two in which the degree of smoothing is determined by the GCV
statistic. (See the gam() documentation followed by the smoothing spline docu-
mentation.)

For each model, examine the numerical output and plot the fitted values against
the predictor. For example, if the results of the first model are assigned to the
name “output1,” use plot.gam (output1, residuals=TRUE). Also, take a look at
the output object for the variety of gam features and output that can be accessed.
Extractor functions are available.

Which model has the best fit judging by the residual deviance? Which model has
the best fit judging by the AIC? Why might the choice of the best model differ
depending on which measure of fit is used?Which model seems to be most useful

48The idea of allowing for locally varying complexity in fitted values is an old one. Fan and Gijbels
(1992, 1996), who have made important contributions to the topic, attribute the idea to Breiman,
Meisel and Purcell (1977).

126 2 Splines, Smoothers, and Kernels

judging by the plots? Why is that?

2. Using scatter.smooth(), overlay a lowess smooth on a scatterplot with the vari-
able Ozone on the vertical axis and the variable Temp on the horizontal axis. Vary
three tuning parameters: span: .25, .50, .75; degree: 0, 1, 2; family as Gaussian or
symmetric. How do the fitted values change as each tuning parameter is varied?
Which tuning parameter seems to matter most? (You can get the same job done
with loess(), but a few more steps are involved.)

3. The relationship between temperature and ozone concentrations should be posi-
tive and monotonic. From the question above, select a single set of tuning para-
meter values that produces a fit you like best. Why do you like that fit best? If
there are several sets of fitted values you like about equally, what it is about these
fitted values that you like also?

4. For the overlay of the fitted values you like best (or select a set from among those
you like best) describe how temperature is related to ozone concentrations.

Set 2: Smoothers with Two Predictors

1. From the library assist load the dataset TXtemp. Load the library gam. With
mmtemp as the response and longitude and latitude as the predictors, apply
gam(). Construct the fitted values using the sum of a 1-D smoothing spline of
longitude and a 1-D smoothing spline of latitude. Try several different values for
the degrees of freedom of each. You can learn how to vary these tuning parameters
with help(gam) and help(s). Use the summary() command to examine the output,
and plot.gam() to plot the two partial response functions. To get both plots on
the same page use par(mfrow=c(2,1)). How are longitude and latitude related to
temperature? (If you want to do this in gam() in the mgcv library, that works too.
But the tuning parameters are a little different.)

2. Repeat the analysis in 1, but now construct the fitted values using a single 2-D
smoother of longitude and latitude together. Again, try several different values
for the degrees of freedom. Examine the tabular output with summary() and the
plot using plot.gam(). You will need to load the library akima for the plotting.
How do these results compare to those using two 1-D predictor smooths? (For
2-D smoothing, the plotting at the moment is a little better using gam in themgcv
library.)

Set 3: Smoothers with More Than Two Predictors

1. Still working in gam(), build an additive model for mmtemp with the predictors
longitude, latitude, year, and month. Use a lowess smooth for each. Try different
spans and polynomial degrees. Again use the summary() and plot.gam() com-
mand. To get all four graphs on the same page use par(mfrow=c(2,2)). How is

2.10 Summary and Conclusions 127

temperature related to each of the four predictors?

2. Repeat the analysis just done using smoothing splines in gam(). See if you can
tune the model so that you get very close to same graphs. Does it matter which
kind of smoother you use? Why or why not? (Keep in mind that you tune s()
differently from lo().)

Set 4: Smoothers with a Binary Response Variable

1. From the car library, load the dataset Mroz. Using glm(), regress labor force
participation on age, income, and the log of wages. From the library gam, use
gam() to repeat the analysis, smoothing each of the predictors with the smoother
of your choice. Note that labor force participation is a binary variable. Compare
and contrast your conclusions from the two sets of results.Which procedure seems
more appropriate here? Why?

Chapter 3
Classification and Regression Trees (CART)

3.1 Introduction

Recall that in stagewise regression, the results of a stage are fixed no matter what
happens in subsequent stages. Earlier stages are not re-visited. Forward stepwise
regression is not a stagewise procedure because all of the included regression coef-
ficients are re-estimated as each new regressor is added to the model. In a similar
fashion for backwards stepwise regression, all of the remaining regression coeffi-
cients are re-estimated as each additional regressor is dropped from the model.

If you look under the hood, conventional classification and regression trees
(CART), also called decision trees in computer science, essentially a form of stage-
wise regression with predictors that are indicator variables. CART output is typically
displayed in a tree-like structure, which accounts for how the technique is named.
A defining feature of CART is the way in which predictors are transformed and
selected.

Suppose one has a single quantitative response variable and several predictors.
There is interest in Ŷ |X . The immediate task is to find the single best binary predictor
from among a set of predictors, all of which may be numerical. To do this, two kinds
of searches are undertaken. First, for each predictor, all possible binary splits of the
predictor values are considered. For example, if the predictor is age in years, and
there are age-values of 21 through 24, all possible splits maintaining order would be
21 versus 22–24, 21–22 versus 23–24, and 21–23 versus 24.

Ordinal predictors can be handled in the same fashion. For example, the possi-
ble answers to a questionnaire item might be “strongly agree,” “agree,” “can’t say,”
“disagree,” and “strongly disagree.” Then, all possible binary splits of the data are
considered with the order maintained i.e. in strength of agreement. Unlike conven-
tional regression, ordinal predictors pose no special problems.

The original version of this chapter was revised: See the “Chapter Note” section at the end of
this chapter for details. The erratum to this chapter is available at https://doi.org/10.1007/978-
3-319-44048-4_10.

© Springer International Publishing Switzerland 2016
R.A. Berk, Statistical Learning from a Regression Perspective,
Springer Texts in Statistics, DOI 10.1007/978-3-319-44048-4_3

129

http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10
http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10

130 3 Classification and Regression Trees (CART)

Closely related reasoning can be applied when a predictor is categorical. For
instance, if the predictor is marital status with categories never married, married, and
divorced, all possible splits would be never married versus married and divorced,
married versus never married and divorced, and divorced versus never married and
married. For categorical variables, there is no order to maintain.

How is the “best split” for each predictor defined? For quantitative response vari-
ables, the baseline is the response variable sum of squares. Each possible binary split
of each predictor implies a different two-way partitioning of the data. For example,
one partition might include all individuals under 25 years of age, and the other parti-
tion would then include all individuals 25 years of age or older. The response variable
sum of squares is computed separately within each partition and added together. That
sum will be equal to or less than the sum of squares for the response variable before
the partitioning. The “best” split for each predictor is defined as the split that reduces
the sum of squares the most.

With the best split of each predictor determined, the best split overall is deter-
mined as the second step. That is, the best split for each predictor is compared by
the reduction in the sum of squares. The predictor with the largest reduction wins
the competition. It is the predictor that when optimally split, leads to the greatest
reduction in the sum of squares.

With the two-step search completed, the winning split is used to subset the data.
In other words, the best split for the best predictor defines two subsets. For example,
if the best split were to be 21–22 versus 23–24 years of age, all individuals 21–22
would form one subset, and all individuals 23–24 would form the other subset.

There are now two partitions of the original data, defined by best split within and
between the predictors. Next, the same two-step procedure is applied to each partition
separately; the best split within and between predictors for each subset is found. This
leads to four partitions of the data, and once again, the two-step search procedure
is undertaken separately for each. The recursive process can continue until there is
no meaningful reduction in the sum of squares of the response variable. Then, the
results are conventionally displayed as an inverted tree: roots at the top and canopy
at the bottom.

As addressed shortly, the recursive partitioning results can be represented within a
linear basis expansion framework. The basis functions are indicator variables defined
by the best splits. With these determined, a regression of the response on the basis
functions yields regression coefficients and fit statistics as usual. In practice, there is
no need to translate the partitioning into a regression model; the partitioning results
stand on their own as a regression analysis. Because the partitions are determined
empirically from the data, the partitioning process introduces a form of model selec-
tion. This creates complications for any level II analysis.

The two-step search procedure is easily generalized to categorical response vari-
ables, but other performance measures are used rather than the sum of squares.
Among the options to be discussed later is the deviance. The upside down tree dis-
play of key output remains.

There is a remarkably large number of tree-based statistical methods (Loh 2014).
In this chapter, we consider Classification and Regression Trees (CART) introduced

3.1 Introduction 131

by Breiman, Friedman, Olshen, and Stone in 1984. CART has been in use for about
30 years (Breiman et al. 1984) and remains a popular data analysis tool. We will
focus on CART as it has traditionally been implemented. There are some interesting
refinements and extensions (Chaudhuri et al. 1995; Lee 2005; Chipman et al. 1998;
Loh 2014; Su et al. 2004; Choi et al. 2005; Hothorn et al. 2006; Zeileis et al. 2008),
and even some major reformulations (Grubinger et al. 2014). There are also CART-
like procedures such as CHAID (Kass 1980) and C5.0 (Quinlan 1993), which has
a computer science lineage. A discussion of these variants would take us some
distance from the approach emphasized in here in part because they treat CART
primarily as a stand-alone data analysis tool. CART sometimes can be an effective
stand-alone procedure as well, but more important for our purposes, it has become
an integral component of statistical learning algorithms discussed in subsequent
chapters. A discussion of CART provides an essential foundation for understanding
those algorithms.

Chapter 2 was devoted almost entirely to quantitative response variables. Equal
time and more is now given to categorical, and especially binary, response variables.
As noted earlier, procedures that assign observations to classes are sometimes called
“classifiers.”WhenCART is usedwith categorical responsevariables, it is an example
of a classifier. One grows a classification tree.

Categorical response variables introduce a number of issues that either do not
apply to quantitative response variables, or apply only at a high level of abstraction.
We now need to get this material on the table in part because it applies to classifiers in
addition to CART. We also emphasize again the differences between level I, level II
and level III regression analyses and remind readers of the critical difference between
explanation and forecasting.

This is a somewhat plodding, tedious chapter. An effort has been made to include
only the material that is really needed. But that’s a lot, and it is probably necessary
to slog through it all.

3.2 The Basic Ideas

We begin with conceptual overview of the CART computational machinery. Math-
ematical details are provided later. For a binary response variable coded “A” or “B,”
and predictors X and Z , Fig. 3.1 is the three-dimensional scatterplot illustrating a
simple classification problem as it might be attacked by CART. CART’s algorithm
is called “greedy” because it searches for the best outcome without looking back to
past splits or forward to future splits. The algorithm lives only in the present.

The vertical red line at, say, Z = 3 produces the first partition. It represents the
best split in a competition between all possible splits of X or Z . The A values tend
to be concentrated to the left, and the B values tend to be concentrated to the right.
The green horizontal line at X = 5 produces the subsequent partition of the left
subset. It represents the best split of the left partition. The upper left corner is now
homogeneous in A. This is an ideal outcome. The yellow horizontal line at X = −2

http://dx.doi.org/10.1007/978-3-319-44048-4_2

132 3 Classification and Regression Trees (CART)

Fig. 3.1 A recursive
partitioning for a binary
response variable and
predictors X and Z (The
response is coded A or B.
The red line shows the first
partition. The green and
yellow lines show the next
two partitions.)

produces the best subsequent split of the right partition. The lower right corner is
now homogeneous in B. This too is an ideal outcome. In principle, the lower left
partition and the upper right partition would be further subdivided.

Figure3.1 makes clear that CART constructs partitions with a series of straight-
line boundaries perpendicular to the axis of the predictor being used. Thesemay seem
like serious constraints on performance. Why linear? Why perpendicular? They are
simple to work with and can perform very well in practice.

The values at which the partitioning is done matter. For example, Fig. 3.1 reveals
that cases with Z ≤ 3 and X > 5 are always A. Likewise, cases with Z > 3 and
X ≤ −2 are always B. We are able describe all four conditional distributions of
the binary response variable conditioning on the four partitions of X and Z . Within
each partition, the proportion of A-values (or B-values) might be a useful summary
statistic for the binary outcome. How do these proportions vary over the different
partitions? We are still doing a regression analysis.

3.2.1 Tree Diagrams for Understanding Conditional
Relationships

CART partitioning is often shown as an inverted tree. A tree visualization allows the
data analyst to see how the data partitions were constructed and consider the condi-
tional relationships implied. Explanation can be in play within a level I regression
analysis.

Figure3.2 is a simple, schematic illustration of an inverted tree. The full dataset
is contained in the root node. The data are then broken into two mutually exclusive
pieces. Cases with X > C1 go to the right, and cases with X ≤ C1 go to the left.
The latter are then in terminal node 1, which is not subject to any more subsetting;
no meaningful improvements in fit can be made. The former are in an internal node
that can be usefully subdivided further, and the internal node is partitioned again.
Observationswith Z > C2 go to the right and into terminal node 3. Observationswith
Z ≤ C2 go to the left and into terminal node 2. Further subsetting is not productive.

3.2 The Basic Ideas 133

Fig. 3.2 A simple CART
tree structure Root

Node

x > c1

 Internal
Node

Yes

No

Terminal
 Node 2

Terminal
 Node 3

No Yes

z > c2

Terminal
 Node 1

In this case, all splits beyond the initial split of the root node imply, in regression
language, interaction effects. The right partition imposed at the internal node only
includes observations with X -values that are greater than C1. Consequently, the
impact of Z depends on observations with X > C1, which is an interaction effect.

When there is no natural order to a predictor’s values, the partitioning criterion
selected is usually represented by the name of the variable along with the values that
go to the right (or left, depending on the software) side. For example, if ethnicity is
a predictor and there are five ethnicities represented by the letters a though e, the
software might represent the partitioning criterion for a given split as ethnicity = ade.
All cases belonging to ethnic groups a, d, and e are being placed in the right-hand
partition.

Splits after the initial split do not have to represent interaction effects. If an imme-
diately subsequent partitioning of the data uses the same predictor (with a different
breakpoint), the result is an additional step in the step function for that predictor. A
more complicated nonlinear function results, but not an interaction effect. In practice,
however, most partitions of the data represent interaction effects.

It is easy to translate Fig. 3.2 into linear basis expansions. One just defines all of
the terminal nodes with indicator variables, each of which is a function of one or
more predictors (including the constant term). Thus,

f (X, Z) = β0 + β1[(I (x ≤ c1)]
+ β2[I (x > c1 & z ≤ c2)] + β3[I (x > c1 & z > c2)]. (3.1)

134 3 Classification and Regression Trees (CART)

One can see the importance of interaction effects whenever two ormore predictors
are needed to construct the indicator variable. Interaction effects need to be kept in
mind when CART tree diagrams are interpreted.

The application of CART is always an opportunity for a level I analysis. For
a level II analysis, we once again must treat the data as random realizations from
a nature’s joint probability distribution. The estimation target is a classification or
regression tree, having the same structure as the tree derived from the data, but as
a feature of the joint probability distribution. Consequently, CART fitted values can
be used as estimates of the corresponding, approximate response surface. The same
level II reasoning can be applied to regression equations for the terminal nodes, such
Eq.3.1. But because CART has built in data snooping, the level II opportunities are
somewhat limited.

To illustrate these initial ideas, consider passenger data from the sinking of the
Titanic.1 What predictors are associated with those who perished compared to those
who survived? Figure3.3 shows the CART results as an inverted tree. Survived is
coded as a 1, and perished is coded as a 0. In each terminal node, the left number
is the count of those who perished, and the right number is the count of those who
survived. If the majority perished, the node is colored red. If the majority survived,
the node is colored blue. Figure3.4 contains the code.2

For this analysis, predictors used include:

1. sex — the gender of the passenger;
2. age — age of the passenger in years;
3. pclass — the passenger’s class of passage;
4. sibsp — the number of siblings/spouses aboard; and
5. parch — the number of parents/children aboard.

The first split on sex. Males are sent down the left branch. Females are sent down
the right branch. The two subsequent splits for males are at ages of 9.5 years and 2.5
years. For males, there are three terminal nodes. For the older males, 136 survived
and 600 did not. Because the majority did not survive, the node is labeled with a
0 for not surviving. For males, only those 2.5 years old or younger were likely to
survive (i.e., 24 to 3). For females, the splits are much more complicated but can
be considered with the same sort of reasoning. For example, most of the females
traveling in first or second class survived, and the terminal node is given a label of 1
accordingly (i.e., 233 to 17). If one takes the cinematic account seriously, the results
broadly make sense, and a level I analysis of the data has been undertaken.

It is challenging to make a credible case for a level II analysis. What is the joint
probability distribution responsible for the data? It could perhaps be the joint prob-
ability distribution for passengers on ocean liners using as a response of whether
or not each survived the passage. But much more specificity would be needed. For

1Thanks go to Thomas Cason who updated and improved the existing Titanic data frame using the
Encyclopedia Titanica.
2The procedure rpart() is authored byTerryTherneau andBethAtkinson. The procedure rpart.plot()
is authored by Stephen Milborrow. Both procedures are superb.

3.2 The Basic Ideas 135

Classification Tree for Titanic Survivors
sex = male

age >= 9.5

sibsp >= 2.5

pclass = 3rd

sibsp >= 2.5

age >= 16

parch >= 3.5

age >= 28

age < 22

0
660 136

0
19 1

1
3 24

0
18 3

0
8 1

0
27 17

0
17 11

1
31 50

1
9 24

1
17 233

yes no

Fig. 3.3 A classification tree for the Titanic data: 1 = Survived, 0 = Perished (In each terminal
node, the number who perished and the number who survived are shown, to the left and right
respectively. In red nodes, the majority perished. In blue nodes, the majority survived. N = 1309)

Fig. 3.4 R code for the CART analysis of the Titanic data

136 3 Classification and Regression Trees (CART)

example, it is likely that such a distribution would change with new ship technology
and better training of captains, crews, and navigators. The sinking of the Titanic itself
led to revisions of marine safety regulations governing such things as the number of
lifeboats required on board. And even if a reasonable joint probability distribution
could be defined, whether passengers perished or survived was not realized inde-
pendently, conditioning on the available predictors. Indeed, that is part of the reason
why the account of the Titanic sinking is so compelling. A much more complicated
data realization process is required.

In addition, the partitioning algorithm is clearly an example of concerted data
snooping. Therefore, in-sample performance is formally unjustified and potentially
very misleading. Test data are required. What would be proper test data for the
passengers on the Titanic? Unless there is a good answer, the fallback of cross-
validation is also badly compromised. What exactly does an out-of-sample estimate
mean?

3.2.2 Classification and Forecasting with CART

There is far more to the output from CART than a tree diagram. Indeed, perhaps
the most important output is found in the terminal nodes. Suppose the response
variable is binary, and the task is classification. Within each of the terminal nodes,
the proportion of “successes” and proportion of “failures” can be calculated. These
conditional proportions are often of significant descriptive interest as one kind of
fitted values. For example, in Fig. 3.2 if the proportion of successes in terminal node
3 is .70, one can say for cases with x > c1 and z > c2 that the proportion of
successes is .70. Analogous statements can be made about the other terminal nodes.
For example, the proportion of success for cases with x ≤ c (terminal node 1) might
be .25. Ideally, terminal node proportions will vary substantially, implying that the
partitioning is making important distinctions between different kinds of cases. If one
knows for any given case the value of x and the value of z, it really matters for the
proportion of successes.

In addition, the conditional proportions can be used to attach class labels to termi-
nal nodes that, in turn, can be assigned to observations. The class labels are a second
kind of fitted value. If the majority of observations in a terminal node are As, all
of the observations in that partition may be assigned to class A. If the majority of
observations in a terminal node are Bs, all of the observations in that partition may
be assigned to class B. These labels convey what is most typical in a terminal node
and, therefore, is most typical for cases with a particular configuration of indicator
variables. If all of the observations in a terminal node need to be placed into a single
category, the terminal node class label provides the means. When CART is used in
this manner, it is Bayes classifier, applied individually to each terminal node.

Think back to the discussion of logistic regression in Chap. 1. Recall that there
were fitted proportions and fitted classes. Cases with fitted proportions that exceeded
some threshold were assigned to one of the two classes. Cases with fitted proportions

http://dx.doi.org/10.1007/978-3-319-44048-4_1

3.2 The Basic Ideas 137

that did not exceed that threshold, or were equal to it, were assigned to the other class.
Much the same is going on within each of the terminal nodes of classification trees,
where by the Bayes classifier, the threshold is .50.

But why would anyone care about the class labels? The class labels can be critical
if new data are provided that contain the same predictors but with the binary outcome
unknown. The labels are a good guess for the unknown binary outcome for each case.
Often, this plays out as forecasting. Suppose one knows that observations with cer-
tain values for predictors fall in a particular terminal node, and that the majority of
observations in that partition have, say, the outcome category A. Then, new observa-
tions that fall in that terminal node, but for which the response is unknown, sensibly
might be predicted to be A as well. If a level II analysis is credible, the class label
can be thought of as a fitted value to be used for forecasting.

3.2.3 Confusion Tables

If CART assigns classes to observations, it is certainly fair to ask how good those
assigned classes actually are. Instructive assessments can be obtained from “con-
fusion tables,” briefly introduced earlier, which cross-tabulate the observed classes
against the classes that CART assigns. Ideally, the two will correspond much of the
time. But that will be a matter of degree, and confusion tables can provide useful
measures of fit. We will consider confusion tables many times in the pages ahead,
but a few details are important to introduce now. For ease of exposition at this point,
the categorical outcome variable is binary.

Table3.1 shows an idealized confusion table. There are two classes for the
response variable: success and failure. The letters in the cells of the table are cell
counts. For example, the letter “a” is the number of observations falling in the upper-
left cell. All of the observations in that cell are characterized by an observed class
of failure and a predicted class of failure. When the observations are from training
data used to build the tree,“predicted” means “assigned.” They are a product of the
CART fitting process. If the observations are from test data not used to build the
tree, “predicted” means “forecasted.” The difference between fitting and forecasting
is critical in the next several chapters.

In many situations, a split-sample strategy can be employed so that the values
of tuning parameters are determined by fitting performance in the evaluation data.

Table 3.1 A confusion table Failure
predicted

Success
predicted

Model error

Failure a b b/(a + b)

Success c d c/(c + d)

Use error c/(a + c) b/(b + d) Overall error
= (b+c)

(a+b+c+d)

138 3 Classification and Regression Trees (CART)

Once a satisfactory tree has been grown and honestly assessed with the test data, it
is ready for use when the outcome class is not known, but the predictor values are.

There are generally four kinds of performance assessments that are made from
confusion tables.

1. The overall proportion of cases incorrectly classified is an initial way to assess
performance quality. It is simply the number of observations in the off-diagonal
cells divided by the total number of observations. If all of the observations fall
on the main diagonal, CART has, by this measure, performed perfectly. None
of the observations have an actual class that does not correspond to the fitted
class. When no cases fall in the main diagonal, CART is a total failure. All of
the observations have an actual class that does not correspond to the fitted class.
Clearly, a low proportion for this “overall error” is desirable, but how good is
good depends on the baseline for fitting skill when no predictors are used. The
real issue is how much better one does once the information in the predictors is
exploited. A lot more is said about this shortly.

2. The overall error neglects that it will often be more important to be accurate for
one of the response variable classes than for another. For example, it may be
more important to correctly diagnose a fatal illness than to correctly diagnose
excellent perfect health. This is where the row proportions shown in the far right-
hand column become critical. One conditions on the actual class outcome. For
each actual class, the row proportion is the number of observations incorrectly
fitted divided by the total of observations of that class. Each row proportion
characterizes errors made by the statistical procedure. When the true outcome
class is known, how common is it for the procedure to fail to identify it?
The two kinds of model failures are often called “false positives” and “false neg-
atives.” Successes incorrectly called failures are false negatives. Failures incor-
rectly called successes are false positives.3 The row proportions representing
the relative frequency of procedure-generated false negatives and false positives
should, ideally, be small. Just as for overall error, the goal is to do better using the
information contained in the predictors than could be done ignoring that infor-
mation. But, the exercise now is done for each row separately. It is common for
the procedure to perform better for one outcome than the other.

3. The column proportions address a somewhat different question. One conditions
on the fitted class and computes the proportion of times a fitted class is wrong.
Whereas the row proportions help evaluate how well the CART algorithm has
performed, the column proportions help evaluate how useful the CART results
are likely to be if put to work. They convey what would happen if a practitioner

3Here, the use of the class labels “success” and “failure” is arbitrary, so which off-diagonal cells
contain “false positives” or “false negatives” is arbitrary as well. What is called a “success” in one
study may be called a “failure” in another study.

3.2 The Basic Ideas 139

used the CART results to impute or forecast. One conditions on either predicted
success or on predicted failure from which two different estimates of errors in
use can be obtained. Just as for model errors, it is common for the errors in use to
differ depending on the outcome. The goal is much the same as for model error:
for each column, to be wrong a smaller fraction of the time than if the predictors
are ignored.

4. The ratio of the number of false negatives to the number of false positives shows
how the results are trading one kind of error for the other. For example, if b is
5 times larger than c, there are five false positives for every false negative. This
means that the CART procedure produces results in which false negatives are five
times more important than false positives; one false negative is “worth” five false
positives. Ratios such as this play a key role in our discussion later about how to
place relative costs on false negatives and false positives.

In summary, confusion tables are an essential diagnostic tool. We rely on them in
this chapter and all subsequent ones. They also raise some important issues that are
very salient in the pages ahead.

3.2.4 CART as an Adaptive Nearest Neighbor Method

Not only is CART an essential component of many statistical learning procedures,
it has direct links to other methods that on the surface might seem to be totally
unrelated. In particular, it can be instructive to think about CART within an adap-
tive nearest neighbor framework. The partitions shown in Fig. 3.1 can be viewed as
neighborhoods defined by nearest neighbors. But unlike conventional nearest neigh-
bor methods, CART arrives at those neighborhoods adaptively. Like all stagewise
(and stepwise) procedures, CART data snoops.

Consider, for example, terminal node 3 in Fig. 3.2. Within that node, are all obser-
vations whose values of x are greater than c1, and whose values of z are greater than
c2. For these observations, a conditional mean or proportion can be computed. In
other words, the nearest neighbors for either of these summary statistics are defined
as all cases for which x > c1 and z > c2. All of the observations for which this
condition holds can be used to arrive at a single numerical summary for the response
variable.

The neighborhood represented by the terminal nodes is adaptive in three senses.
First, information from the response variable is used to determine the neighborhood.
A measure of fit is exploited to arrive recursively at the terminal node neighborhood.
Second, because a large number of predictors and break points are examined, a large
number of potential neighborhoods are evaluated before an actual neighborhood is
formed. Third, the terminal node neighborhoods that result can be defined by different
sets of predictors and different sets of break points. Both are arrived at inductively
by the CART algorithm. For example, a given predictor can help define one terminal
node, but not another. Even when a given predictor is used to define more than one

140 3 Classification and Regression Trees (CART)

terminal node, it may enter at different stages of the partitioning and use different
break points.

The terminal node neighborhoods can be constructed sequentially by where in the
predictor space some step function for the response leads to the greatest difference
in level. This follows from the desire to make the two resulting subsets as homoge-
neous as possible. Then, because for each split the single best predictor is chosen,
each terminal node, and its implied neighborhood, can be defined using a subset of
predictors. That is, one need not define nearest neighbors using the entire predictor
space. This is in contrast to the multivariate lowess smoother discussed in the last
chapter and is a way to fight back against the curse of dimensionality.

Within a level II analysis, there are also implications for the bias-variance tradeoff
it fitted values are used to estimate the true response surface.4 Suppose for a given
terminal node a goal is to estimate the proportion of 1s for all observations in the
terminal node neighborhood defined by a particular set of x-values. For example,
suppose the binary response is whether a high school student graduates; graduation
is coded as 1 and drop out is coded as 0. The terminal node neighborhood in question
contains high school students, self-identified as Asian, who have family incomes
in excess of $75,000. But suppose there is an omitted predictor variable. Even if it
happened to be in the dataset, it would not be selected (e.g., the labor market for
blue collar jobs). A more subtle error occurs when the correct predictor is chosen,
but at the wrong breakpoint. (e.g., a grade point average < 2.0 rather than < 1.5).
Because the neighborhood is not defined correctly, and there is a good chance that
the estimated proportion will be biased with respect to the true response surface. A
potential remedy is to further refine the terminal nodes by growing a larger tree. There
is an opportunity for more predictors to determine the terminal node neighborhoods
leading to a more homogeneous mixes of cases. But for a given sample size, a larger
tree implies that on the average, there will be fewer cases in each terminal node.
Although bias may be reduced, variance may be increased.

In summary, although smoothers, adaptive nearest neighbor methods, and CART
come from very different traditions, they have important similarities. Additional and
helpful connections between other statistical learning procedures will be addressed
in subsequent chapters. We turn now to the CART details.

3.3 Splitting a Node

The first problem that the CART algorithm needs to solve is how to split each node
using information contained in the set of predictors. For a quantitative predictor with
m distinct values, there arem−1 splits that maintain the existing ordering of values.
So, m − 1 splits on that variable need to be evaluated. For example, if there are 50

4Recall that the response surface approximation itself can often be estimated in an asymptotically
unbiased fashion.

3.3 Splitting a Node 141

distinct high school GPA scores possible, there are 49 possible splits that maintain
the existing order. However, there are often algorithmic shortcuts that can capitalize,
for instance, on ordering the splits by the size of the conditional mean or proportion.
The same logic holds for ordinal predictors.

Order does not matter for categorical predictors. Consequently, a categorical vari-
able with k categories has (2k−1 − 1) possible splits. For example, if there are five
ethnic group categories, there are 15 possible splits. Hence, although there are some-
times shortcuts here too, the computational burdens are generally much heavier for
categorical variables. There are no order restrictions on how a categorical predictor
is split.

Recall that starting at the root node, CART algorithm evaluates all possible splits
of all predictor variables and picks the “best” single split overall. The best split of
the variable selected is better than the best split of any other predictor. The data
are then partitioned according to that best split. The same process is applied to all
subsequent nodes until, at the extreme, all cases have been placed in a terminal node
all their own. Because the final partitions do not overlap, each case can only be in
one terminal node.

How is “best” to be formally defined? It is common to focus on the “impurity”
of a node. Impurity is essentially heterogeneity. The goal is to have as little impurity
(heterogeneity) overall as possible. Consequently, the best split is the one that reduces
impurity the most. To help simplify the exposition that follows, assume a binary
response variable coded 1 or 0. The term “success” is used to refer to outcomes
coded 1 and the term “failure” to refer to outcomes coded 0.

A discussion of impurity can work using the proportions of successes and failures
in a node or using the probabilities of a success or a failure for cases in that node.
Most expositions favor probabilities and assume that they are known. There is really
no didactic cost to this assumption.

Suppose that a dataset is realized from a joint probability distribution, so the
concept of a probability can apply. Consider a given node, designated as node A.
The impurity of node A is taken to be a nonnegative function of the probability that
y = 1, written as p(y = 1|A).

If A is a terminal node, ideally it should be composed of cases that are all equal
to 1 or all equal to 0. Then p(y = 1|A) would be 1.0 or 0.0. Intuitively, impurity is
the smallest it can be. If half the cases are equal to 1 and half the cases are equal to
0, the probability is equal to .50. A is the most impure it can be because a given case
is as likely to be a 1 as it is a 0.

One can more formally build on these intuitions. Let the impurity of node A be:

I (A) = φ[p(y = 1|A)], (3.2)

142 3 Classification and Regression Trees (CART)

with φ ≥ 0, φ(p) = φ(1 − p), and φ(0) = φ(1) < φ(p). In other words, impurity
is nonnegative, and symmetrical with a minimum when A contains all 0 s or all 1s,
and a maximum when A contains half of each.5

There remains a need to define the function φ. For classification, three definitions
have been used in the past: Bayes error, the cross-entropy function, and the Gini
index. In order they are:

φ(p) = min(p, 1 − p); (3.3)

φ(p) = −p log(p) − (1 − p) log(1 − p); (3.4)

and

φ(p) = p (1 − p). (3.5)

All three functions for impurity are concave, having minimums at p = 0 and
p = 1 and amaximum at p = .5. Entropy and the Gini index are the most commonly
used, and in CART generally give very similar results except when there are more
than two response categories. Then, there is some reason to favor the Gini index
(Breiman et al. 1984: 111). The Gini index is more likely to partition the data so
that there is one relatively homogeneous node having relatively few cases. The other
nodes are then relatively heterogeneous and have relativelymore cases. Formost data
analyses, this is a desirable result. Entropy tends to partition the data so that all of
the nodes for a given split are about equal in size and homogeneity. This is generally
less desirable. But the choice between the two impurity functions can depend on the
costs associated with classification errors, which is a topic addressed shortly.

One might legitimately wonder why CART does not directly minimize classifi-
cation error. Direct minimization of overall classification error is discussed in some
detail by Breiman and his colleagues (1984: Sect. 4.1). In part because classification
error is not continuous, there can be several splits for a given stageminimizing classi-
fication error. In addition,minimizing classification error at each stage has a tendency,
like entropy, to produce a tree structure that is often more difficult to interpret. For
now, we focus on node impurity as just defined. However, direct minimization of
classification error resurfaces as a useful consideration when boosting is considered
in Chap.6.

For real applications, the probabilities are not likely to be known. Suppose one
uses data to estimate the requisite probabilities. It should be apparent by now that
obtaining good estimates involves conceptual and technical complications, but for
didactic purposes, assume that the complications have been effectually addressed.

Building on Zhang and Singer (1999; Chaps. 2 and 4), for any internal node,
we focus on a potential left “daughter” node AL , and a right “daughter” node AR .
We wish to evaluate the usefulness of a potential partitioning of the data. Table3.2

5The use of I in Eq.3.2 for impurity should not be confused with the use of I to represent an
indicator variable. The different meanings should be clear in context.

http://dx.doi.org/10.1007/978-3-319-44048-4_6

3.3 Splitting a Node 143

Table 3.2 Counts used to
determine the usefulness of a
potential split (The cell
entries are counts, with the
first subscript for rows and the
second subscript for columns)

Failure Success Total

Left Node:
x ≤ c

n11 n12 n1.

Right Node:
x > c

n21 n22 n2.

n.1 n.2 n..

provides the information needed. The entries in each cell are counts, with rows as
the first subscript and columns as the second subscript.

As before, we let y = 1 if there is a success and 0 otherwise. The estimate of
p(y = 1|AL) is given by n12/n1.. Similarly, the estimate p(y = 1|AR) is given by
n22/n2..

Consider calculations for entropy as an example. Entropy impurity for the left
daughter is

I (AL) = −n11
n1.

log(
n11
n1.

) − n12
n1.

log(
n12
n1.

). (3.6)

Entropy impurity for the right daughter is

I (AR) = −n21
n2.

log(
n21
n2.

) − n22
n2.

log(
n22
n2.

). (3.7)

Imagine that for the left daughter there are 300 observations with 100 successes
and 200 failures. It follows that the impurity is −.67(−.40) − .33(−1.11) = .27 +
.37 = .64. Imagine now that for the right daughter there are 100 observations with
45 successes and 55 failures. The impurity is −.55(−.60) − .45(−.80) = .33 +
.36 = .69.

To put these numbers in context, it helps to consider the smallest and largest pos-
sible values for the impurity. The greatest impurity one could obtain would be for
50% successes and 50% for failures. The computed value for that level of impurity
would be .693. For proportions of 1.0 or 0.0, the value of entropy impurity is nec-
essarily 0. In short, the minimum value is 0, and the maximum is a little more than
.69. The closer one gets to 50–50, where the impurity is the greatest, the closer one
gets to .693. The impurity numbers computed are rather close to this upper bound
and reflect, therefore, substantial heterogeneity found in both daughter nodes. It is
likely that this split would not be considered to be a very good one.

Once all possible splits across all possible variables are evaluated in this manner,
a decision is made about which split to use. But the impact of a split is not just a
function of the impurity of a node. The importance of each node must also be taken
into account. A node in which few cases are likely to fall should be less important
than a node in which many cases are likely to fall. The former probably will not
matter much, but the latter probably will.

We define the improvement resulting from a split as the impurity of the parent
node minus the weighted left and right daughter impurities. If this is a large number,

144 3 Classification and Regression Trees (CART)

entropy impurity is reduced substantially. More formally, the benefits of the split s
for node A,

ΔI (s, A) = I (A) − p(AL)I (AL) − p(AR)I (AR), (3.8)

where I (A) is the value of the parent impurity, p(AR) is the probability of a case
falling in the right daughter node, p(AL) is the probability of a case falling in the
left daughter node, and the rest is defined as before. The two probabilities can be
estimated from information such as provided in Table3.2; they are just the marginal
proportions n1./n.. and n2./n... They serve as weights.

ΔI (s, A) can be essentially the reduction in the deviance and thus, there is a
clear link to the generalized linear model that can prove useful when different fitting
procedures are compared. CART finds the best ΔI (s, A) for each variable. The
variable and split with the largest value are then chosen to define the new partition.
The same approach is applied to all subsequent nodes.

The CART algorithm can keep partitioning until there is one case in each node.
There is then no impurity whatsoever. Such a tree is called “saturated.” However,
well before a tree is saturated, there will usually be far too many terminal nodes to
interpret, and the number of cases in each will be quite small. The very small node
sizes lead to very unstable results. Small changes in the data can produce trees with
rather different structures and interpretations. One option is to prohibit the CART
algorithm from constructing any terminal nodes with sample sizes smaller than some
specified value. A second option is considered shortly. And we show in later chapters
that there can be ways to work usefully with saturated trees, as long as there is a very
large number of them.

3.4 Fitted Values

CART is a method to construct, using a predictors, a conditional distribution. Inter-
est commonly centers on some measure of location. For classification problems, the
conditional proportion is usually the measure. For regression problems, the measure
is usually the conditional mean. Using linear basis expansions, explicit links to para-
metric regression can be made. It follows that most of the issues raised by parametric
regression, and most of the concepts associated with parametric regression, carry
over.

3.4.1 Fitted Values in Classification

As noted earlier, there are two kinds of classification fitted values for CART. First,
within each terminal node, the proportion of observations for each of the classes are
fitted values. They are conditional proportions that characterize the terminal node.
For example, if the response variable is binary and the proportion of successes is .55,
the fitted value for that terminal node is .55 (or .45 if one wants to focus on failures).

3.4 Fitted Values 145

It can be useful to compare such fitted values across terminal nodes as part of a level
I analysis.

If a level II analysis can be justified, the reasoning becomes more elaborate. One
envisions the same neighborhoods in the joint probability distribution as found with
the data. In each of those population neighborhoods, there are expectations for the
proportion of successes. Those expectations are the estimation targets, and the in-
sample proportions can be used as estimates. However, because the neighborhoods
are a product of extensive data snooping, the quality of those estimates is unknown
and possibly misleading. Having test data can really help. One “drops” the test data
down the tree, and the fitted proportions will be asymptotically unbiased estimates
of the tree-derived approximate response surface. Moreover, with the nonparametric
bootstrap applied to the test data, asymptotically valid confidence intervals can be
constructed around the estimates. An example using the bootstrap with CART is
provided as part of the last exercise in this chapter.

The second kind of fitted values require an additional step: a class is assigned
to each terminal node. As described above, the assigned class is determined by a
majority vote (or a plurality if there are more than two response categories). Then
within each terminal node, winning class is attached to each observation. The voting
threshold (e.g., .50) has some of the features of a decision boundary, but only for one
node at a time.

In-sample performancemeasures can followdirectly. For any given terminal node,
what proportion of the time is the assigned class the correct class? For example, if
the proportion of successes in a terminal node is .90, the assigned class is “success,”
and that assigned class will be incorrect for 10% of the observations in that node.
The ideal real result would 0.0%, which would follow if the terminal node were
perfectly homogeneous. The issues are much the same as for the column calculations
in confusion tables. How often is the assigned class wrong? One difference for
terminal nodes is that the error rate for a terminal node is only for a subset of
observations defined by a predictor neighborhood. Another difference is that a full
confusion table cannot be constructed because for a given terminal node, only one
class is assigned. The table would have one column and two rows.

But just as before, in-sample results can bemisleading. It is better toworkwith test
data with which the accuracy of assigned classes can be more honestly addressed.
Better estimates of generalization error may be obtained, and once again, a non-
parametric bootstrap can be applied to the test data to construct confidence intervals
around the estimates of generalization error.

3.4.2 An Illustrative Prison Inmate Risk Assessment
Using CART

A key issue for prison administrators is understanding which inmates are likely to
place themselves and others in harm’s way. Use of narcotics, assaults on prison

146 3 Classification and Regression Trees (CART)

Term >= 3.5

AgeArr = 0-17,18-21

Gang = Y

Term >= 14

56 45 108 125

256 494

66 333

513 2810

Misconduct No Misconduct

No Misconduct

No Misconduct

No Misconduct

yes no

Fig. 3.5 CART recursive partitioning of the prison data (N = 4806)

guards, and homicides are examples. Although such events are relatively rare, they
have very serious consequences. It follows that it would be very useful if such conduct
could be anticipated. Then, for the high-risk inmates, preventive measures might be
taken. For example, inmates from rival street gangs might be housed in different
prisons. Low-risk inmates might be given far greater freedom to participate in job
training and educational programs. A prerequisite, however, is a way to find effective
predictors of misconduct in prison.

Using data from the administrative records of a large state prison system, Fig. 3.5
shows a classification tree suggesting which kinds of inmates are reported for some
form ofmisconduct within 18months of intake.6 From Fig. 3.6, one can see that there
are two tuning parameters. A relatively large minimum node sample size of 100 was
imposed to stabilize the results and to keep the diagram very simple. More will be
said soon about the complexity parameter cp, but a small value allows splits that do
not reduce node impurity very much. According to the documentation of rpart(), cp
is a threshold on the proportional improvement in fit. Only splits improving the fit
by at least the value of cp will be permitted. A large value for the threshold means
that acceptable splits must improve the fit a lot.7

The three predictors in Fig. 3.5 were selected by the CART procedure from a
larger set of 12 predictors.

1. Term: Nominal sentence length in years. (The nominal sentence is the sentence
given by the trial judge. Inmates are often released before their nominal sentence
is fully served.)

6Because of confidentiality concerns, the data may not be shared.
7The tree diagram is formatted differently from the tree diagram used for the Titanic data to empha-
size the terminal nodes.

3.4 Fitted Values 147

library(rpart) # Load the CART library
library(rpart.plot) # Load the fancy plotting library

Partition the data
out<-rpart(Fail~AgeArr+Gang+CDC+Jail+Psych+Term,

data=temp, method="class",
minbucket=100,cp=.001)

Plot a tree
prp(out,extra=1,faclen=10,varlen=15,
box.col=c("red","lightblue")[out$frame$yval])

Fig. 3.6 R code for a CART analysis of prison misconduct

2. AgeArr: Age at arrival at the prison reception center in years using 16–20, 21–26,
27–35, and 36 or older.

3. Gang: gang membership with Y for “yes” and N for “no.”

Terminal nodes are labeled “No Misconduct” if the majority in that node do not
engage inmisconduct and “Misconduct” if themajority do. The numbers within each
terminal node show left to right the counts of misconduct cases and no misconduct
cases respectively.8 There are 4806 observations in the root node. Among these,
observations are sent left if the nominal prison term is equal to or greater than 3.5
years and to the right if the nominal prison term is less than 3.5 years. Likewise, at
each subsequent split, the observations meeting the condition specified are sent left.

The story is simple. Inmates with nominal prison terms over 14 years, who are
under 22 years of age, and who are gang members are more likely than not to be
reported for misconduct (i.e., 56 cases v. 45 cases). Inmates with nominal terms
of less than 3.5 years are relatively unlikely to be reported for prison misconduct
regardless of age, gang membership or any other 9 predictors in the data (i.e., 513
cases v. 2810 cases). In the other three terminal nodes, no-misconduct cases are the
majority. One might say that a very long nominal terms puts an observation over
the top but by itself is not associated with a preponderance of reported misconduct.
Each of the five terminal nodes but the one on the far right are defined by interaction
effects.

There are readily available (post hoc) explanations for these results. Judges impose
far longer prison terms on individuals who have committed very serious, usually
violent, crimes. The data suggest that the judges are on to something. And it is well
known that young gang members can be especially difficult especially when housed
with members of rival gangs.

At the same time, the partitions are arrived at inductively, and the regressionmodel
implied is no doubt badly misspecified. For example, there is no information on the

8In R, the character variable default order left to right is alphabetical.

148 3 Classification and Regression Trees (CART)

security level in which the inmate is placed, and higher security levels are thought
to reduce incidents of serious misconduct.9

Moreover, a conventional analysis using logistic regression would look very dif-
ferent. It is likely that most of the predictors would have been entered only as main
effects, and unlikely that the 4-way interactions on the left branches would have been
included. Neither approach is likely to be correct by conventional regression analysis
thinking.

Nevertheless, suppose at intake, prison administrators wanted to intervene in a
manner that could reduce prison misconduct. Absent other information, it might
make sense to distinguish young gang members with very long sentences from other
inmates. In effect, the prison administrators would be using the classification tree to
make forecasts that would help inform placement and supervision decisions.

Although such thinking can have real merit, there are complications.Wewill have
shifted into a level II analysis if the results are to be used for forecasting. One would
need to consider how the data were realized, the impact the CART’s extensive data
snooping, and out-of-sample performance. In addition, the consequences of failing
to identify a very dangerous inmate at intake can be enormously different from the
consequences of incorrectly labeling a low-risk inmate as dangerous. The different
consequences of can have very different costs. In the first instance, a homicide could
result. In the second instance, an inmate might be precluded from participating in
prison programs that could be beneficial. It stands to reason, therefore, that the
differential costs of forecasting errors should be introduced into the CART algorithm.
We turn to that now.

3.5 Classification Errors and Costs

Looking back at the earlier details on how splits are determined, there is little explicit
concern about classification errors, but it can be shown that all three impurity func-
tions treat classification errors symmetrically. Incorrectly classifying an A as a B, is
treated the same as incorrectly classifying a B as an A. Similar reasoning carries over
when the assigned classes are used for forecasting. The class assigned to a terminal
node is determined by a majority vote. All observations in a given terminal node get
a single vote that has the exact same weight for all. But is that always reasonable?

Consider the second terminal node from the left in Fig. 3.5. The vote is close,
but the no misconduct cases win. It follows that the 108 inmates who in fact had
reported misconduct are misclassified. But suppose each vote for no misconduct
inmates counted as half a vote. The misconduct vote would carry the day, and the
terminal node would be assigned to the misconduct class. There would then be 125
classification errors, but because each would count half as much as before, overall

9The issues are actually tricky and beyond the scope of this discussion. At intake, how an inmatewill
be placed and supervised are unknown and are, therefore, not relevant predictors. Yet, the training
data need to take placement and supervision into account.

3.5 Classification Errors and Costs 149

Table 3.3 CART confusion
table for classifying inmate
misconduct (N = 4816)

Classify as no
misconduct

Classify as
misconduct

Model error

No
misconduct

3762 45 .01

Misconduct 953 56 .95

Use error .20 .45 Overall error
= .21

error would be reduced from 108 to 125× .5 = 62.5 Whereas the original cost ratio
was 1 to 1, it is now 2 to 1. In concrete terms, a misclassified misconduct cases is
taken to be twice as costly as a misclassified no misconduct case.

As we examine in depth shortly, introducing “asymmetric” costs for classification
errors can be a game changer that actually begins with the criteria by which splits are
determined and involves far more than re-weighting the votes in terminal nodes. We
will see that by altering the prior, the measures of impurity in Eq.3.8 are replaced by
measures of the expected costs of classification errors when a split is determined.10

Whether there actually are asymmetric costs resulting from classification errors
depends on what is done with the classification tree. If the CART results are just
archived in some academic journal, there are probably no costs one way or the other.
If the results are used to guide future research, costs can be a real issue. In genomic
research, for example, follow-up research would be wasted if a genomic snip is
incorrectly identified as important. Conversely, a significant research lead might be
missed if an important genomic snip is incorrectly overlooked. These two costs are
probably not be the same. In applied research, costs can be very important, as the
prison example should make clear. A way is needed to build in the differential costs
classification errors.

3.5.1 Default Costs in CART

Without any apparent consideration of costs, the CART algorithm can make clas-
sification decisions about the misconduct of inmates. But in fact, costs are built in.
To see how, we need to examine Table3.3, which is constructed from the prison
misconduct analysis.

As noted earlier, tables of the form of Table3.3 are often called confusion tables.
They can summarize the classification performance (or as we see later, forecasting
performance) of a particular classifier. Here, that classifier is CART. There is a row

10But as Therneau and Atkinson (2015: Sect. 3.3.2) state,“When altered priors are used, they affect
only the choice of split. The ordinary losses and priors are used to compute the risk of the node. The
altered priors simply help the impurity rule choose splits that are likely to be good in terms of the
risk.” For example, the deviance or mean squared error are computed as usual to show how much
better the fit has become.

150 3 Classification and Regression Trees (CART)

for each actual outcome. There is a column for each classified outcome. Correct clas-
sifications are in the main diagonal. Misclassifications are the off-diagonal elements.
Thus, we learn that 998 out of 4806 cases were incorrectly classified. But, how good
this is depends on the baseline.

Had no predictors been used, classification could have been done from the mis-
conduct marginal distribution alone. Applying the Bayes classifier, all cases could
have been classified as having no reported misconduct. Then, 999 out of 4806 of
the cases would have been incorrectly classified. Clearly, there is no meaningful
improvement by this yardstick.

However, there is lots more going on in the table. The overall fit ignores how
well CART does when the two response variable categories separated. Consider first
what happens when one conditions on the actual class. In this case, the absence of
misconduct can be classified very well — 99% of the cases are classified correctly.
In contrast, instances of misconduct are misclassified about 95% of the time. The
overall error rate masks these important differences. CART performs very well when
there is no misconduct and very poorly when there is misconduct.

The columns in Table3.3 are also instructive. Now the conditioning is with respect
to the assigned class, not the actual class. If the no misconduct class is assigned, it
is wrong for about 20% of the observations. If the misconduct class is assigned, it is
wrong for about 45% of the observations. So, mistakes are relatively more common
when misconduct is assigned, but we do better with the misconduct class that one
might expect. If one is thinking ahead to possible forecasting applications, there may
be some hope.

Where are costs in all this? Key information about costs is contained in the two
off-diagonal cells. There are 45 no misconduct cases incorrectly classified and 953
misconduct cases incorrectly classified. The former onemight call false positives and
the latter onemight call false negatives. The ratio of the cell counts is 953/45 = 21.2.
There are about 21 false negatives for each false positive. Stated a little differently,
one false positive is “worth” about 21 false negatives, and it’s cost is, therefore,
about 21 times greater. According to the confusion table, it is 21 times more costly
to misclassify a case of no misconduct (i.e., a false positive) than to misclassify a
case of misconduct (i.e., a false negative).

All of the performance results in the table depend on the 21 to 1 cost ratio produced
by default, and one has to wonder if corrections administrators and other stakeholder
think that the 21 to 1 cost ratio makes sense. The analysis is shaped by treating false
positives as far more costly than false negatives. In practice, prison misconduct false
negatives are usually thought to bemore costly (Berk 2012), so this analysismaywell
have it upside down. And if that’s right, all of the various measures of classification
performance are highly suspect and potentially very misleading.

Important lessons follow. First, theCARTalgorithm (and every other classification
procedure for that matter) necessarily introduces the costs of classification errors at
least implicitly when classes are assigned. There is no way to circumvent this. Even
if the data analyst never considers such costs, they are built in. To not consider
the relative costs of misclassifications is to leave the relative cost determinations to
the data and the classification algorithm. Second, the way cases are classified will

3.5 Classification Errors and Costs 151

vary depending on the cost ratios. As a result, the entire confusion table can change
dramatically depending on the cost ratio. Finally, the classes assigned can serve as
forecasts when the predictor values are known and the outcome class is not. But if
the assigned classes depend on the false negative to false positive cost ratio, so do
the forecasts.

If costs are so important, there is a need to understand how they are incorporated
into the CART algorithm. This will set the stage for a data analyst to introduce costs
explicitly. In other words, it is desirable — some might say essential — to treat the
relative costs of classification/forecasting errors as an input to the algorithm. Unless
this is done, the results risk being unresponsive to the empirical questions being
asked.

3.5.2 Prior Probabilities and Relative Misclassification Costs

The marginal distribution of any categorical response variable will have a propor-
tion of the observations in each response category. In the prison example, .21 of
the inmates had a reported incident of misconduct, and .89 of the inmates had not.
However, before looking at the data, one might already hold strong beliefs from past
research or other information about what those marginal proportions should be. For
example, the design through which the data were collected may have over-sampled
inmates reported for misconduct in order to have a sufficient number of them in the
study. But for many uses of the results, it would make sense to weight the observa-
tions back to the actual proportion of inmates who engage in misconduct. For a level
II analysis, proportions can be conceptualized as the “prior probabilities” associated
with the response variable. The word “prior” comes from Bayesian statistical tradi-
tions in which the “prior” refers to the beliefs of the data analyst, before the data are
examined, about the probability density or distribution of some parameter.

There has been some work within Bayesian traditions capitalizing on several
different kinds of CART priors (Chipman et al. 1998; 1999), including a “pinball
prior” for tree size and some features of tree shape (Wu et al. 2007). That is, key
features of the tree itself are given a prior probability distribution. The ideas advanced
are truly interesting, and have led to some important statistical learning spinoffs
(Chipman et al. 2010). But in practice, the technical complications are considerable,
and it is not even clear that there will often be credible information available to
make such priors more than tuning parameters. Tuning parameters are important and
useful, but they are not a feature of probability distributions specified before the data
analysis begins. Consequently, for present purposes, we will use the term “prior”
only with reference to the marginal probability distribution of the response variable.
Consistent with most exposition of CART, we will proceed as if a level II analysis
is appropriate, but in broad brush strokes the lessons learned apply as well to level I
approaches.

Assume that a credible level II analysis has been undertaken with CART. Draw-
ing heavily on Therneau and Atkinson (2015), suppose the training data has N

152 3 Classification and Regression Trees (CART)

observations and C classes for the response variable. The CART algorithm produces
K terminal nodes. Define πi for i = 1, 2, . . . , as the prior probability of being in
class i . For the binary cases, i is here represented by 1 or 2. L(i, j) is the loss matrix.
The elements in the main diagonal (i.e., i = j) are the costs of a correct classifi-
cation, assumed to be 0.0. The off-diagonal elements (i.e. i �= j) are the costs of
classification errors, assumed to be positive.

A is a terminal node, and τ (x) is the true class for an observation, where x
represents the vector of predictor variable values for that observation. We let τ (A)

be the class assigned to node A. Ni and NA are the number of observations in the
sample that are in class i and in node A, respectively, with Ni A the number of
observations of class i in node A. The following relationships in each terminal node
hold.

1. P(A) is the probability of cases appearing in node A, which is equivalent to∑C
i=1 πi P[x ∈ A|τ (x) = i], where πi is a prior probability. For each class i, the

prior probability of a case being in class i is multiplied by the probability that
class i cases will be in node A. This product is summed over classes. P(A) can
be estimated by

∑C
i=1 πi (Ni A/Ni). Because prior probabilities figure directly in

these calculations, prior probabilities can affect the tree structure.
2. Then, p(i |A) is the conditional probability of class i given that a case is in node

A, or P[τ (x) = i |x ∈ A]. The value of p(i |A) can be estimated by the number
of cases of class i in node A, divided by the total number of cases in that node
and equals πi P[x ∈ A|τ (x) = i]/P[x ∈ A], which can also be estimated by
πi (Ni A/Ni)/

∑C
i=1 πi (Ni A/Ni). The conditional probability of a case with true

class i landing in A depends in part on the prior probability that a case is class i
to begin with.

3. R(A) is the “risk” associated with node A, such that
∑C

i=1 p(i |A)L(i, τ (A)).
In other words, the risk associated with node A is for a binary response the
conditional probability of a case of type i = 1 falling in that node times costs that
follow, plus the conditional probability of a case of type i = 2 falling in that node
times costs that follow. Risk is a function of both the conditional probabilities and
the costs. Because the conditional probabilities depend on the prior probabilities,
the prior probabilities affect risks.

4. R(T) is the risk of the entire tree T , which equals
∑K

j=1 P(A j)R(A j), where A j

is for each of the K terminal nodes of the tree.We are now just adding the total risk
associated with each terminal node, weighted by the probability of cases falling
in that node. This can also be seen as the “expected cost” of the entire tree.

To helpmake these concepts more concrete, Fig. 3.7 provides a numerical illustra-
tion constructed from fictional training data. There are 10,000 high school students in
the data. 2000 dropped out (D) and 8000 graduated (G). From these figures one can
estimate the “objective” prior as p(D) = .2, and p(G) = .8. It is called “objective”
because it is estimated empirically. We will see later that the objective prior can be
altered in useful ways. Shown is a confusion table for terminal node A in which the
actual outcome is tabulated by the classified outcome. For example, there are 50 false
negatives and 250 false positives. On the margins of the table are the row and column

3.5 Classification Errors and Costs 153

Fig. 3.7 Terminal node A calculations for Dropouts (D) and Graduates (G)

totals, not the usual error rates. With the table in place, one can illustrate how the
expressions just described are employed.

What is the estimated probability of a case falling in this terminal node? One
can immediately intuit that the probability is 1000/10,000 = .10. That result can be
unpacked as shown in line #1, consistent with the formal expressions above. The key
point is that the estimated prior distribution (in red) plays a role.

What is the estimated conditional probability that the case will be a high school
drop out, given that a case lands in terminal node A? One can immediately intuit
that the estimated conditional probability is 100/1000 = .10. Line #2 shows how
this probability can be unpacked and again the prior is a player, consistent with the
formal expression above. Likewise, what is the estimated conditional probability that
the case is a high school graduate, given that a case lands in terminal node A? The
intuitive answer is 900/1000 = .90 which is unpacked in line #3. As before, the
prior is involved.

Finally, in line #4 we get to the risk associated with terminal node A. The four
probabilities come from the four interior entries in the table. These probabilities are
affected by the prior through the conditional probabilities on the margins of the table.
For the risk calculations, we need to introduce costs. As before, there are no costs
associated with correct classifications. For incorrect classifications, we use for now
a cost of 1.0. The loss matrix L(i, j) has 0 s along the main diagonal and 1s in the
off-diagonal cells.

Again building on intuition, the risk for terminal nodeA is the sumof the estimated
conditional probabilities of a case falling in each cell of the table, each multiplied
by the cost of falling in that cell, given that the observation has landed in terminal

154 3 Classification and Regression Trees (CART)

node A to begin with. In effect, risk is an expected cost, and with a value of 1.0 for
the cost of misclassifications, the expected risk is nothing more than the proportion
of cases misclassified. That value for this example is .30.

For example, there are 1000 cases in the table. The estimated conditional prob-
ability of falling in the upper left cell is 50/1000 = .05. Because this cell only
contains correct classifications, the cost is 0.0. It makes no contribution to the risk.
For the lower left hand cell, the estimated conditional probability is 250/1000 = .25.
Because this cell contains misclassifications (i.e., false positives), the estimated con-
ditional probability is multiplied by a cost-value of 1.0. The same reasoning applies
to the two cells on the right side of the table. When all of the expected costs are
summed, the result is .30. When the cost of a false positive or a false negative is
equal to 1, it makes sense that the risk for terminal node A is simply the proportion
misclassified.

There are four general lessons.

1. The calculations just illustrated apply to each terminal node and, therefore, the
full tree. When all misclassifications are given a cost of 1.0, the risk for the tree
as a whole is the total number of cases misclassified.

2. The prior’s effects cascades down all the way to the final risk calculations. These
calculations depend on the estimated probabilities associated with each cell that
in turn are influenced by all of the row and column estimated conditional prob-
abilities. If the prior is different, what follows will be different as well. In short,
the expected number of classification errors in a terminal node is affected by the
priors. Where these are distributed within the confusion table is affected too.

3. Replacing L(i �= j) = 1 with L(i �= j) = m, where m is some constant, just
scales up or down the risk by some arbitrary amount and makes no difference to
the CART algorithm. It is a bit like measuring a person’s height in inches rather
than feet. Each misclassification has a cost of 12 rather than 1.

4. In this example, the costs of false positives and false negatives are taken to be
the same. That is the usual CART default. Therefore, if one just lets the data
determine everything, it is the same as (a) making the costs of all classification
errors the same and (b) taking the empirical distribution of the response as the
appropriate prior distribution. This is exactly what was done for the results in
Fig. 3.5.

But what does one do if as in Table3.3 the empirical balance of false negatives to
false positives is unsatisfactory? It would seem that the most direct response would
be to alter the costs in the loss matrix to make them asymmetric. The off-diagonal
elements in the loss matrix would not longer be the same. False negatives are then
made more (or less) costly relative to false positives. For example, instead of the loss

matrix

[
0 1
1 0

]

, one might use the loss matrix

[
0 10
1 0

]

.

Because false positives and false negatives are now being weighted differently,
onemight well expect CART output to be affected. Looking back at second righthand
side term in the expression in line #4, imagine that the 1 was replaced by a 10. False
negatives are made 10 times more costly. It makes sense that in an effort to minimize

3.5 Classification Errors and Costs 155

(or at least reduce) risk, the algorithm would aggressively seek ways to reduce the
number of false negatives, even if it meant increasing substantially the number of
false positives. That, in turn, would presumably impact the classification tree and the
confusion table.

One possible approach is to use the loss matrix as an argument in the Gini func-
tion (Therneau and Atkinson 2015: Sect. 3.2). As the “generalized” Gini function,
impurity is defined then as

G(p) = (1/2)
∑

i

∑

j

L(i, j)pi p j . (3.9)

Unfortunately, this approach does not work in practice (Therneau and Atkinson
2015: 7). G(p) is not necessarily concave, which was a key motivation for each of
the three impurity functions. In addition, calculation of the generalized Gini function
“symmetrizes” the loss matrix. It is as if the loss matrix were added to its transpose.
For the binary case, any cost asymmetry is lost. Both problems apply as well to
categorical response variables withmore than two categories, although consequences
for the content of the loss matrix are a bit more complicated.

However, one need notworkwith theGini index directly. Recall from the algebraic
treatment several pages back that the probability of class i in node A, p(i |A), can be
estimated by the expression πi (Ni A/Ni)/

∑C
i=1 πi (Ni A/Ni), and its associated risk

is p(i |A)L(i, τ (A)). Therefore, the risk associated with a class in a given node is
scaled by the product of the prior probabilities and the entries in the loss matrix. This
was implicit in expression #4 in Fig. 3.7. To see the consequences, suppose there
exist a new π̃ and a new L̃ so that

π̃i L̃(i, j) = πi L(i, j). (3.10)

The risks are identical, and it does not matter what the particular values of π̃ and L̃
happen to be as long as the equality holds. This opens the door for lots of possibilities.
If one just thinks of the righthand side as the weight given to the classification errors
for class i in a given node, and if more or less weight is desired, one can alter either
the prior, or the costs, or both. In practice, it is less work to alter one of them, and
the choice can depend on how the software is written. In the binary response case, if
one wanted to alter the weights by altering just the prior distribution to π∗

i from πi ,
one would use

π̃∗
i = πi L∗

i

πi L∗
i + π j L∗

j

. (3.11)

With index for each response class, the values of πi are the probabilities associated
with the empirical prior distribution. The values of L∗

i are the new costs. Because
of the normalization, all that matters in the loss matrix is relative costs. Thus, one
just has to know, for example, that the cost of one kind of classification error is three
times the cost of another kind of classification error, not their actual values.

156 3 Classification and Regression Trees (CART)

Let’s try an example of changing the prior so that the reasoning is clear. Suppose
for the prison data one were to let the data determine everything. Then, the empirical
prior distribution is about .8 for no misconduct and about .2 for misconduct. The cost
of a false negative or a false positive is taken to be 1.0.

Suppose wewant the cost of a false negative to be twice the cost of a false positive;
the 1 to 1 ratio would be 1 to 2. For nomisconduct, we let π1×1.0 = .80×1.0 = .80.
For misconduct, we let π2 × 2.0 = .20 × 2.0 = .40. These values need to be
normalized so that as probabilities they sum to 1.0. Normalizing π∗

1 , we compute
(4/5)/(4/5 + 2/5) = .67. Normalizing π∗

2 , we compute (2/5)/(4/5 + 2/5) = .33.
Thus, a 1 to 2 cost ratio for a false positive to a false negative can be imposed

using for the prior distribution .67 and .33. There is no need to change the values in
L(i, j), which in effect, still have off-diagonal cost elements L(i �= j) = 1. Finally,
the same results may be obtained by using Eq.3.11 with π1L∗

1 = .80 × 1.0 and
π2L∗

2 = .20 × 2.0.
It would also be handy if analogous procedures were available for categorical

response variables with more than two response categories. However, with more
than two response categories, there is more than one cost ratio and often, more
adjustments are needed than can be properly captured in a revised prior distribution.
We will return to this matter in subsequent chapters.

There still is more to the story. Adjusting the prior only affects one feature of
the fitting process, and as Fig. 3.7 shows, terminal nodes are also affected by various
conditional proportions in the data. If the goal is to have a certain cost ratio in the off-
diagonal cells of a confusion table for the entire tree, there is absolutely no guarantee
that altering the prior by Eq.3.8 will get the job done.

In practice, therefore, the prior is a tuning parameter used to arrive at desirable
off-diagonal cell counts in a confusion table for the entire tree. For example, if the
goal is to have in a confusion table a ratio of 5 to 1 for false negatives versus false
positives, the prior calculated by Eq.3.11 may have to be computed with values for
L∗
i and L∗

j that are very different from 5 to 1. Some trial and error will be required.
Examples are provided later.

Treating the prior (or loss matrix) as a means to arrive at an acceptable cost
ratio in a confusion table may seem a bit unprincipled. But this can be fully consis-
tent with Breiman’s algorithmic perspective introduced in Chap.1. As will become
more apparent in the pages ahead, statistical learning and machine learning are
procedures motivated by fitted values that perform well out-of-sample. Getting
a responsive cost ratio is part of that performance. Stated only a bit too cavalierly, in
this setting, the ends justify the means.

To summarize, when the CART solution is determined solely by the data, the prior
distribution is empirically defined, and the costs in the loss matrix are the same for
all classification errors. Equal costs are being assigned even if the data analyst makes
no conscious decision about them. Should the balance of false negatives to false
positives in a confusion table be unsatisfactory, that balance can be changed. The
prior distribution can be altered, and with some trial and error, a more satisfactory
cost ratio usually can be obtained. An example follows shortly.

http://dx.doi.org/10.1007/978-3-319-44048-4_1

3.6 Pruning 157

3.6 Pruning

With the discussion of costs behind us, we can now return to the problem of overly
complex trees and what can be done. Recall that setting a minimum sample size
for each terminal node is one strategy. In rpart(), the relevant tuning parameter is
minbucket. Another strategy is to require someminimum reduction in impurity before
a new partitioning of the data is undertaken. In rpart(), the relevant tuning parameter
is cp. Still another strategy to constrain the size of the tree is called “pruning.” The
pruningprocess removes undesirable branches by combiningnodes that do not reduce
heterogeneity sufficiently in trade for the extra complexity added. The process starts
at the terminal nodes and works back up the tree until all of the remaining nodes are
satisfactory. One can think of the tuning parameters minbucket and cp as serving to
“pre-prune” the tree. Thematerial on pruning that follows draws heavily on Therneau
and Atkinson (2015, Sect. 4).

Of late, pruning has not gotten a lot of attention. The problem that pruning
addresses is very real. But, as CART has become superseded, pruning has become
less salient. Consequently, the discussion of pruning here is relatively short. The
main objective is to highlight some important issues raised in the previous chapter
that figure significantly in the pages ahead.

For a tree T , recall that the overall risk over K terminal nodes is

R(T) =
K∑

j=1

P(A j)R(A j). (3.12)

This is the sum over all terminal nodes of the risk associated with each node, each
risk first multiplied by the probability of a case falling in that node. It might seem that
a reasonable pruning strategy would be to directly minimize Eq.3.12. What could be
better than that? Unfortunately, that would leave a saturated tree untouched. CART
would construct enough terminal nodes so that all were homogeneous, even if that
meant one node for each observation. With all terminal nodes homogeneous, the risk
associated with each would be zero. But, the result would be unstable nodes, serious
overfitting of the data, and far too much detail to usefully interpret.

The solution is much like what was seen in the previous chapter. A penalty is
introduced for complexity, and under the true model perspective in a level II context,
the bias–variance tradeoff reappears. For larger trees with a given sample size, there
will be fewer classification errors, implying less bias. But larger trees will have
terminal nodes with fewer cases in each, which implies greater instability and hence,
greater variance. The trick is to find a sensible balance.

To take complexity into account in CART, a popular solution has been to define
an objective function for pruning, called “cost complexity,” that includes an explicit
penalty for complexity. The penalty is not based on the number of parameters, as in
conventional regression, or a function of roughness, as in smoothing. For CART, the
penalty is a function of the number of terminal nodes. More precisely, one attempts
to minimize

158 3 Classification and Regression Trees (CART)

Rα(T) = R(T) + α|T |. (3.13)

Rα(T) has two parts: the total costs of the classification errors for the tree T , and
a penalty for complexity. For the latter, α ≥ 0 is the complexity parameter playing
much the same role asλ in smoothing splines. In place of somemeasure of roughness,
|T | is the number of terminal nodes in tree T .

The value ofα quantifies the penalty for each additional terminal node. The larger
the value of α, the heavier is the penalty for complexity. When α = 0, there is no
penalty and a saturated tree results. So, α is the means by which the size of the tree
can be determined.

Breiman et al. (1984: Sect. 3.3) prove that for any value of the complexity para-
meter α, there is a unique, smallest subtree of T that minimizes cost complexity.
Thus, there cannot be two subtrees of the same size with the same cost complexity.
Given α, there is a unique solution.

In many CART implementations, there are ways the software can select a reason-
able value for α, or for parameters that play the same role (Zhang and Singer 1999:
Sect. 4.2.3). These defaults are often a good place to start, but will commonly lead
to results that are unsatisfactory. The tree selected may make a tradeoff between the
variance and the bias that is undesirable for the particular analysis being undertaken.
For example, there may be far too much detail to be usefully interpreted.

Alternatively, one can specify by trial and error a value of α that leads to terminal
nodes, each with a sufficient number of cases, and that can be sensibly interpreted.
Interpretation will depend on both the number of terminal nodes and the kinds of
cases that fall in each, so a substantial number of different tree models may need to
be examined.

More recent thinking on pruning replaces α with cp. Thus,

Rcp(T) ≡ R(T) + cp ∗ |T | ∗ R(T1), (3.14)

where R(T1) is the tree with no splits, |T | is now the number of splits for a tree, and
R is the risk as before. The value of cp ranges from 0 to 1. When cp = 0, one has
a saturated tree. When cp = 1, there are no splits. A key advantage over α is that
cp is unit free and easier to work with. It can be used to pre-prune a tree, much like
the minimum bucket size, or can be tuned with procedures such as cross-validation.
Sometimes it can be used in both roles for single analysis.

In practice, whether one determines tree complexity by pre-pruning or pruning
(or both) seems to make little practical difference. The goal is to construct a useful
classification tree. How exactly that is accomplished is less important as long as the
steps undertaken and the various results evaluated are recorded so that the work can
be replicated.

Themajor difficulty is that for a level II analysis, a very aggressivemodel selection
exercise is being undertaken. Beyond the data snooping done by CART itself, there
is a search over trees. As already noted many times, all statistical inference can be
badly compromised. And the best solution, when feasible, is to have training data,

3.6 Pruning 159

evaluation data, and test data that can be used in much the same way they were used
for tuning smoothers. Absent such data, a level I analysis may well have to suffice.

3.6.1 Impurity Versus Rcp(T)

At this point, one might wonder again why CART does not use Eq.3.14 from the
start when a tree is grown instead of some measure of node impurity. Rcp(T) would
seem to have built in all of the end-user needs very directly.

As mentioned earlier, the rationale for not using a function of classification errors
as a fitting criterion is discussed in Breiman et al. (1984: Sect. 4.1). As a technical
matter, there can be at any given node, no single best split. But perhaps a more
important reason is that less satisfactory trees can result. Consider two splits. For the
first, there are two nodes that are about equally heterogeneous. For the second, one
node is far more heterogeneous than the other. Suppose the two splits reduce impurity
effectively the same amount. Yet, minimizing some function of classification errors
could lead to the first split being chosen even though the second split was preferable.
For the second split, the less heterogeneous node might serve as a terminal node,
or might readily lead to one. The more heterogeneous node would be more subject
to further partitioning. For the first split, both nodes would likely be partitioned
substantially further. In general, therefore, more complicated tree structures will
follow.

There can be good subject matter reasons as well. Thinking back to the prison
example, finding a single node that was filled almost completely with misconduct
cases would be a very useful result, even if the other terminal nodes were quite
heterogeneous. In contrast, having all of the terminal nodes with roughly the same
proportions of misconduct and no misconduct cases, would not be very useful. The
point of the exercise is find subsets of inmates with different proclivities for mis-
conduct. Using node impurity as a splitting criterion will largely prevent this kind of
problem.

3.7 Missing Data

Missing data are a common problem for statistical analyses, and CART is no excep-
tion. Broadly stated, missing data creates for CART the same kinds of difficulties
created for conventional linear regression. There is the loss of statistical power with
the reduction in sample size and a real likelihood of bias insofar as the observations
lost are not effectively a random sample of the total. That is, the data are now ran-
domly realized from a new joint probability distribution that does include cases like
those that are missing from the data on hand.

There is one and only one ironclad solution to missing data regardless of the form
of data analysis: don’t have any. The message is that it pays to invest heavily in the

160 3 Classification and Regression Trees (CART)

data collection so that missing data do not materialize or are very rare. A fallback
position is to try to correct the missing data after the data are collected. There are
other alternatives to be sure, but all are risky.

Three kinds of missing data mechanisms are commonly considered. For a given
variable or sets of variables, there may be no information about certain observations,
and that information is “missing completely at random.” By “missing completely
at random,” one means that the mechanism by which the data are lost is equivalent
to simple random sampling. A more complicated case is when the information is
missing “conditionally at random.” By that one means that after conditioning on
certain variables, the data are now missing completely at random. For example,
the subset of cases that are male may have information about age that is missing
completely at random. Finally, the information may be missing systematically. For
example, income levels above $100,000 a year may not be recorded regardless of the
values of other variables. In a given data set, any combination of these missing data
mechanisms may be operating, and the mix shapes what, if any, corrective measures
the data analyst employs.

The easiest response tomissing data in amultivariate setting is “listwise deletion.”
If for any case in the data any variable has a missing entry, that case is struck from the
data. If the data aremissing completely at random, the price is solely a smaller number
of observations. A related response in a multivariate setting is “pairwise” deletion.
The analysis proceeds with listwise deletion but only for each pair of variables. For
example, if for least squares regression some of the predictors have missing values,
the cross-productmatrix of predictors is assembled for all pairs of predictors based on
the number of complete observations for eachpair.Manyof the computed covariances
can be based on different numbers of observations.11 The most demanding response
to missing data is imputation. The basic idea is to replace each missing value with
a value that is a useful approximation of what the missing value would have been.
There are many different ways this can be done.

Imputation introduces important complications. To begin, one does not ordinarily
want to impute values for the response variable. The risk is that artificial relationships
between the response and the predictors will be built into the analysis. Consequently,
imputation is typically used with predictors only. If there are missing values for the
response variable, listwise deletion is usually the prudent choice.

Imputation for predictors alone is hardly problem free.Because the imputed values
are rarely the same as what the missing value would have been, measurement error
is introduced. Even random measurement error in predictors can bias estimation.12

11In a least squares regression setting, this is generally not a good idea because the covariance
matrix may no longer be positive definite.
12Consider a conventional regression with a single predictor. Random measurement error (i.e.,
IID mean 0), will increase the variance of the predictor, which sits in the denominator of slope
expression. Asymptotically, β̂ = β

1+σ2
ε /σ2

x
, where σ2

ε is the variance of the measurement error and

σ2
x is the variance of the predictor. The result is a bias toward 0.0. When there is more than one

predictor, each with random measurement error, the regression coefficients can be biased toward
0.0 or away from 0.0.

3.7 Missing Data 161

Another difficulty is that an imputed value is typically noisy and that noise should
be considered in how the data are analyzed. In practice this can mean imputing
missing data several times and taking any random variation into account. Finally,
imputed values for a given predictor will often be less variable than the natural
variation in that predictor. The reduction in variability can make estimates from the
data less precise and invalidate standard errors.

A detailed discussion of missing data is beyond the scope of this book, and excel-
lent treatments are easily found (Little andRubin 2015).But it is important to consider
howmissing data can affect CART in particular and what some of the more common
responses can be.

3.7.1 Missing Data with CART

Some of the missing data options for CART overlap with conventional practices, and
some are special to CART. For the latter, we emphasize the CART options within
rpart(). In either case, there are statistical and subject-matter issues that must be
considered in the context of why there are missing data to begin with. The “why”
helps determine what the best response to the missing data should be.

Just as in conventional practice, listwise deletion is always an option, especially
when one can make the case that the data are missing completely at random. If the
data are missing conditionally at random, and the requisite conditioning variables
are in the dataset, it is sometimes possible to build those conditioning variables into
the analysis. Then one is back to missing data by, in effect, simple random sampling.

A second set of options is to impute the data outside of CART itself. To take a
simple illustration, a predictor with the missing data is regressed on complete data
predictors with which it is likely to be related. The resulting regression equation can
then be used to impute what the missing values might be.

For example, suppose that for employed individuals there are some missing data
for income. But income is strongly related to education, age, and occupation. For
the subset of observations with no missing income data, income is regressed on
education, age, and occupation. Then, for the observations that have missing income
data, values for the three predictors can be inserted into the estimated regression
equation. Predicted values follow that can be used to fill in the holes for the income
variable. At that point, CART can be applied as usual.

A useful extension of this strategy is to sample randomly from the predictive
distribution to obtain several imputed values for each missing value. CART can then
be applied to the data several timeswith different imputations in place.One can at least
get a sense of whether the different imputed values make an important difference (He
2006). If they do, there are averaging strategies derived from procedures addressed
in the next chapter.

A third option is to address the missing data for predictors within CART itself.
There are a number of ways this might be done. We consider here one of the better

162 3 Classification and Regression Trees (CART)

approaches, and the one available with rpart() in R. As before, we only address
missing data for predictors.

The first place where missing data will matter is when a split is chosen. Recall
that

ΔI (s, A) = I (A) − p(AL)I (AL) − p(AR)I (AR), (3.15)

where I (A) is the value of the parent impurity, p(AR) is the probability of a case
falling in the right daughter node, p(AL) is the probability of a case falling in the
left daughter node, I (AR) is the impurity of the right daughter node, and I (AL) is
the impurity of the left daughter node. CART tries to find the predictor and the split
for which ΔI (s, A) is as large as possible.

Consider the leading term on the righthand side. One can calculate its value
without any predictors and so, there are nomissing values toworry about.However, to
construct the two daughter nodes, predictors are required. Each predictor is evaluated
as usual, but using only the predictor values that are not missing. That is, I (AR) and
I (AL) are computed for each optimal split for each predictor using only the data
available for the given predictor. The associated probabilities p(AR) and p(AL) are
re-estimated for each predictor based on the data actually present. This is essentially
pairwise deletion.

But determining the split is only half the story. Now, observations have to be
assigned to one of the two daughter nodes. How can this be done if the predictor
values needed are missing? CART employs a sort of “CART-lite” to impute those
missing values by exploiting “surrogate variables.”

Suppose there are ten other predictors x1−x10 that are to be included in the CART
analysis, and suppose there are missing observations for x1 only, which happens to
be the predictor chosen to define the split; the split defines two categories for x1.

The predictor x1 now becomes a binary response variable with the two classes
determined by the split. CART is applied with binary x1 as the response and x2 − x10
as potential splitting variables. As before pairwise deletion is employed. Only one
partitioning is allowed; a full tree is not constructed. The nine predictors are then
ranked by the proportion of cases in x1 that are misclassified. Predictors that do not
do substantially better than the marginal distribution of x1 are dropped from further
consideration.

The variable with the lowest classification error for x1 is used in place of x1
to assign cases to one of the two daughter nodes when the observations on x1 are
missing. That is, a predicted class for x1 is used when the actual classes for x1 are
missing. If there are missing data for the highest ranked predictor of x1, the second
highest predictor is used instead. If there are missing data for the second highest
ranked predictor of x1, the third highest ranked predictor is used instead, and so on.
If each of the variables x2 − x10 has missing data, the marginal distribution of the x1
split is used. For example, if the split is defined so that x1 < c sends observations
to the left and x1 ≥ c sends cases to the right, cases with data missing on x1, which
have no surrogate to use instead, are placed along with the majority of cases.

This is a reasonable, but ad hoc, response to missing data. One can think of
alternatives that might perform better. But the greatest risk is that if there are lots of

3.7 Missing Data 163

missing data and the surrogate variables are used, the correspondence between the
results and the data, had they been complete, can become very tenuous. In practice,
the data will rarely bemissing completely at random or even conditionally at random.
Then, if too many observations are manufactured, a new kind of generalization error
will be introduced. The irony is that imputation can fail just when it is needed the
most. Imputation can be most helpful when there are only a few instances of missing
data for single predictors, but the cases with missing data vary over those predictors.
Listwise deletion can then decimate the dataset. Imputation may then be a better
approach.

But perhaps the best advice is to avoid the use of surrogate variables. The tempta-
tions for misuse are great, and there is no clear missing data threshold beyond which
imputation is likely to produce misleading results. Imputation of the missing values
for the predictors will often be a software option, not a requirement. (But check what
the default is.)

Alternatively, one should at least look carefully at the results with and with-
out using surrogates. Results that are substantially different need to be reported to
whomever is going to use the findings. There may then be a way to choose on sub-
ject matter grounds which results are more sensible. Sometimes neither set will be
sensible, which takes us back to where we began. Great efforts should be made to
avoid missing data.

3.8 Statistical Inference with CART

As before, there is no statistical inference for a level I analysis. For a level II analysis,
one again must make the case that the data are realized from a joint probability
distribution of subject-matter interest. Both Y and X are random variables.

Consistent with the discussion in Chap. 1, one should probably give up on the idea
of trying to estimate the true tree structure or the true response surface as features of
the joint probability distribution responsible for the data. Even if all of the requisite
predictors are available in the data, there is no reason to think that the use of step
functions coupled with the stagewise fitting procedure will lead to a model that is at
least first order correct.

A potentially more viable approach is to estimate an explicit, tree-based, approx-
imation of the true response surface. For reasons already discussed and soon to be
elaborated, the partitions themselves, usually displayed as an inverted tree, should be
of little interest. Rather, the tree’s fitted values can be very important whether those
fitted values are the terminal node proportions or the assigned terminal node classes.
The estimation target is those fitted values derived from a tree with the same features
as the tree grown with the training data.

But there is a new wrinkle. All of the procedures discussed so far do not engage
in model selection once the tuning parameters are determined. The defining features
of the procedure are then fixed, and the procedure can simply be applied with test

http://dx.doi.org/10.1007/978-3-319-44048-4_1

164 3 Classification and Regression Trees (CART)

data. To take our earliest example, linear least squares with the selected predictors
can be used with the test data, and there are no model selection issues.

CART is fundamentally different. To apply CART to new data means that the
data partitioning begins again. Even if all tuning parameters are already determined,
extensive model selection is undertaken. Test data do not solve this problem because
the test data will be subject to the new partitioning.

Probably the best way to proceed is to reformulate the estimation problem. Interest
in the CART response surface approximation remains, but CART is not allowed to
partition the test data. Rather, the data partitions determined using the training data
and the evaluation data are fixed. Thismeans that the tree structure and terminal nodes
are fixed aswell. The test data are used solely for prediction. Test data predictor values
are dropped down the tree and fitted values computed. Those fitted values serve as
asymptotically unbiased estimates of the CART approximation of the true response
surface. An honest confusion table can follow. Here are the steps.

1. For a set of potential values for tuning parameters, fit classification trees in the
training data. Key tuning parameters are likely to be values for the prior and the
cp.

2. Drop the evaluation data down each tree, and compute the fitted values. For
classification trees, then construct an evaluation data confusion table. From those
tables, performance measures can be obtained.

3. Select a “best” classification tree.
4. Using the selected tree, drop the test data down the selected tree and compute the

fitted values.
5. Cross-tabulate the predicted outcome classes in the test data by the actual test

data response classes. Construct a confusion table from that cross-tabulation.
That confusion table provides an asymptotically unbiased estimate of the popu-
lation confusion table approximation if the population realizations were dropped
down the selected tree. The overall misclassification rate provides an estimate
of generalization error. If misclassification costs are asymmetric, the different
classification errors should be weighted by their relative costs should an overall
measure of performance be desired.

6. Apply a nonparametric bootstrap to the test data to obtain a family of confusion
tables and instructive summary statistics. The distribution of those summary sta-
tistics can be used to characterize uncertainty in the estimate of generalization
error. Consistent with the earlier discussion of generalization error, the training
data and tree structure are fixed. We will explain more about the bootstrap in the
next chapter. Also, the last exercise for this chapter addresses the bootstrap with
code provided.

Compared to the options offered in the last chapter, the level II formulation ismore
restricted. Results from the fitting procedure are fixed. They are not re-computedwith
the test data, so an important source of uncertainty has been neglected. We are back
within a generalization error framework discussed in Chap.1. The training data and
the results from the training data are a given. One still must make the case that the

http://dx.doi.org/10.1007/978-3-319-44048-4_1

3.8 Statistical Inference with CART 165

data are realized from a substantively relevant population, but with that credibly
accomplished, a level II analysis can proceed.

There have been some very interesting efforts to think about statistical inference
with CART when there is a single dataset. In particular, Horthorn and colleagues
(2006) provide a rationale and R library party for using permutation procedures to
help determine which splits are justified couple with tests of the null hypothesis
that there is actually no association between the response and the split selected.
However, it is not clear how the permutation tests properly take into account the
full set of tests undertaken, the dependence between tests undertaken for a given
split, and test results from earlier splits. The impact of tuning also seems to have
been overlooked. In addition, the realized values of the predictors are treated as fixed
(once realized). It is not apparent how one thinks about forecasting applications when
the realized x-values are treated as fixed. What does one do with a new realized case
having x-values not represented in the training data?

Options from a Bayesian perspective have also been proposed (Chipman et al.
1998, 1999). A key feature of the Bayesian approach is the use of several different
kinds of prior distributions. But, if Bayesian approaches are to be taken seriously
as inferential tools, the priors must be taken seriously as well. In practice, the prior
distributions typically are used to tune the results and are really not very different
from CART tuning parameters like cp or minbuckets. That’s fine, but undermines
Bayesian statistical inference.

A reasonable overall assessment is that there are many unsolved problems with
CART level II analyses. Lots of interesting work is in progress about post-model
selection inference more generally, but at the moment, no fully satisfactory solutions
exist. This may well explain why most CART applications are effectively level I
analyses.

3.9 From Classification to Forecasting

Forecasting with CART was covered in pieces earlier. Here is the material summa-
rized and in one place.

When a classification tree is used for forecasting, a level II analysis is being
undertaken, and the goal is usually to forecast a class. The training data and tree
grown from the training data are treated as fixed. There are new cases for which the
predictor values are known but the response class is not. New cases are “dropped
down” the tree. The class previously assigned to the terminal node in which a case
lands, is the forecasted class. Alternatively, the forecasting process can be understood
getting fitted values from the regression equation characterizing all of the terminal
nodes (e.g., Eq. 3.1).

A key assumption is that the new cases whose outcomes need to be forecasted are
realized from the same joint probability distribution as the training data. Unless the
joint probability distribution is for a well defined, finite population, and the new cases
have be selected by probability sampling, there is no way to know if the assumption

166 3 Classification and Regression Trees (CART)

is true. In practice, the validity of the assumption is usually a matter of degree that
needs to be argued on subject-matter grounds.13

In the prison example introduced earlier, the mix of new inmates who are recently
admitted must be effectively the same as the mix of inmates in the training data. The
prison setting, staffing, and regulations are also unchanged. These issues need to be
addressed by individuals who are very familiar with local scene. Sometimes, data
may be brought to bear. Is there evidence, for example, of temporal trends in gang
affiliations that inmates might bring into the prison? However, the data will usually
not have all of the relevant information and whatever the results, it is difficult to know
how large changes need to be before the forecasts become insufficiently accurate.

Probably the best strategy is to keep track of forecasting accuracy over time. For
each inmate, actual outcomes can be empirically determined for some reasonable
amount of elapsed time after intake (e.g., 2 years). Those outcomes can be compared
to the forecast at intake. With a sufficient number of inmates, a confusion table
can be constructed. Such analyses can be repeated with new inmates over time so
that changes in forecasting accuracy are documented. At some point, declines in
forecasting accuracy may be sufficient for stakeholders to ask for an update of the
classification tree.

In the past, forecasting was an important application for CART. There are now
better forecasting tools, for reasons that will soon be apparent. Nevertheless, CART
is often a foundation for these better methods and many of the issues resurface.

3.10 Varying the Prior and the Complexity Parameter

Figure3.8 shows again the tree diagram for the CART analysis of inmatemisconduct.
Recall that the empirical distribution of the response variable was used as the prior
distribution, the costs were assumed to be the same for false negatives and false
positives, and the number of terminal nodes was constrained by setting the minimum
terminal node sample size.

Recall also the confusion table. It is reproducedhere asTable3.4.Onequestionable
feature of the tablewas that therewere about 21 false negatives for each false positive,
implying that false positives were far more costly than false negatives.

Conversations with prison officials indicated that from their point of view, false
negatives were worse than false positives. Failing to anticipate inmate misconduct,
which could involve fatal violence, was of far greater concern than incorrectly label-
ing an inmate as high risk. When pushed, a prison official said that the cost of a false
negative was at least twice the cost of a false positive. Hence, the earlier analysis got
things upside down.

13If the population is finite, there technically is no joint probability distribution. There ismultivariate
histogram. This was discussed in Chap.1.

http://dx.doi.org/10.1007/978-3-319-44048-4_1

3.10 Varying the Prior and the Complexity Parameter 167

Term >= 3.5

AgeArr = 0-17,18-21

Gang = Y

Term >= 14

56 45 108 125

256 494

66 333

513 2810

Misconduct No Misconduct

No Misconduct

No Misconduct

No Misconduct

yes no

Fig. 3.8 CART recursive partitioning of the prison data with default costs (The red nodes represent
misconduct, the blue nodes represent no misconduct, N = 4806.)

Table 3.4 CART confusion table for classifying inmate misconduct with the default cost ratio
(Even with the same data, N’s can vary over different analyses because of missing data patterns,
N = 4816)

Classify as no
misconduct

Classify as misconduct Model error

No misconduct 3762 45 .01

Misconduct 953 56 .95

Use error .20 .45 Overall error = .21

Figure3.9 shows the tree diagram that results when the target cost ratio of false
negatives to false positives in the confusion table is 2 to 1. The code is shown in
Fig. 3.10.

Setting appropriate values for prior and cp is explicit tuning. The process can
involve some trial and error and in this illustration, the task was complicated by
a tree with relatively few terminal nodes. When there are few terminal nodes, the
distribution of fitted classes can be lumpy so that getting the empirical cost ratio right
in the confusion tablemay not be possible.With a specified prior of 52%misconducts
and 48% no misconducts, the confusion table cost ratio was approximately 2.5 false
positives for every false negative. False negatives are about 2.5 times more costly.
The results do not change materially with cost ratios between approximately 2 and
3.5.

At first, the terminal nodes in Fig. 3.9 may seem a little odd. There is not a single
terminal node in which there are more misconduct cases than no misconduct cases
and yet, there are three terminal models with misconduct as the fitted class. The
reason is that the counts shown in each terminal node are weighted by the new prior.

168 3 Classification and Regression Trees (CART)

Term >= 3.5

AgeArr = 0-17,18-21

Psych = Y

Gang = Y

AgeArr = 0-17,18-21
420 664

14 30 52 303 153 346 2 28

358 2436
Misconduct

Misconduct No Misconduct Misconduct No Misconduct

No Misconduct

yes no

Fig. 3.9 CART recursive partitioning of the prison data with 2 to 1 target cost ratio (N = 4797)

Partition the data
out<-rpart(Fail~AgeArr+Gang+CDC+Jail+Psych+Term,

data=temp, method="class",
parms = list(prior = c(.52,.48)),cp=.004)

Plot a Tree
prp(out,extra=1,faclen=10,varlen=15,under=T

box.col=c("red","lightblue")[out$frame$yval])

Fig. 3.10 R code for the CART analysis of prison misconduct with a 2 to 1 target cost ratio

Misconduct cases constitute about 21% of the observations but are now treated as if
they constitute a little over half. The number of misconduct cases in each terminal
node is multiplied by about 2.5 when the fitted class is determined. The ratio of the
new prior for misconduct of .52 to the old prior misconduct of .21 is about 2.5.

The partitioning in Fig. 3.9 returns a somewhat different story from the partition-
ing in Fig. 3.8. Misconduct is the fitted class for young inmates with long nominal
terms. Gang membership is not required. For older inmates with long nominal terms,
a diagnosed psychological problem leads to a misconduct fitted class. Inmates with
shorter nominal terms who are young and gang members are also classified as mis-
conduct cases. All of these results are produced by interaction effects. There are no
terminal nodes defined by main effects.

Table3.5 shows dramatic changes. Increasing relative the costs of false nega-
tives relative to false positives leads to more terminal nodes with misconduct as the
assigned class. This is precisely what was intended. As a result, there is a dramatic
increase in CART’s ability to accurately classify misconduct and in trade, a dramatic
reduction in CART’s ability to accurately classify nomisconduct cases. Overall error
is increased a bit, but as already explained, the overall error rate is misleading when
the costs of classification errors are asymmetric. The overall error rate treats all clas-

3.10 Varying the Prior and the Complexity Parameter 169

Table 3.5 CART confusion
table for classifying inmate
misconduct with 2 to 1 target
cost ratio (N = 4797)

Classify as no
misconduct

Classify as
misconduct

Model error

No
misconduct

2767 1040 .27

Misconduct 412 578 .42

Use error .13 .64 Overall error
= .30

sification errors the same. Finally, the use errors have changed as well. When no
misconduct is the fitted class, it is incorrect 13% of the time rather than 20% of the
time. In trade, the use error when misconduct is the fitted class increases from 45%
to 64%.

The confusion table is constructed from training data only and is no doubt subject
to overfitting. For a level I analysis, that comes with the territory. Nevertheless, the
changes in use error could have important implications for level II forecasting because
the fitted class becomes the forecasted class for new cases when that outcome is not
known. By making false negatives more costly, the CART algorithm is, in effect,
accepting weaker statistical evidence when misconduct is the fitted class or when
misconduct is forecasted; the algorithm is trying harder not to overlook potential
misconduct cases. The flip side is that for no misconduct to be the fitted or forecasted
class, the algorithm requires stronger statistical evidence. As result, classification and
forecasting accuracy (i.e., conditioning on the fitted class)will decline formisconduct
outcomes and improve for no misconduct outcomes.

There is nothingmandatory about these results. Onemight think that there is some
sensible way to define an optimal result and a way to produce it. But, even when one
has training data, evaluation data and test data, optimality is usually a pipe dream.
As a technical matter, several different configurations of tuning parameters values
often can lead to very similar results.

The preferred cost ratio complicates matters further. It should be determined by
stakeholders, not the data analyst, and depend on decisions that will be informed
by the CART tree and confusion table. Such decision-making responsibilities are
usually is not included in the job description of a data analyst.

But even with a given cost ratio, how well CART performs is not easily reduced
to a single number. For example, some observers might want the tree structure to
make subject matter sense. There is no single number bywhich that can bemeasured.
Other observers may just want a tree structure that is easily interpreted. Again, there
is no single number. Still other observers may care little about the tree structure and
focus instead on classification accuracy. However, there can be several measures of
classification accuracy extracted from a confusion table. In short, there will often be
a substantial disconnect between the goals of explanation, classification and fore-
casting. Even when one dominates, there may well be no single evaluation yardstick
to optimize.

170 3 Classification and Regression Trees (CART)

There also can be pragmatic complications. In this illustration, prison officials
might want to place all inmates forecasted to be problematic in high security set-
tings. But high security incarceration is very expensive (about like Harvard tuition),
and if too many misconduct cases are forecasted, the requisite resources will not be
available. In effect, there is some threshold above which the number of false positives
and true positives breaks the bank. There can be as well legal and political compli-
cations if too many false positives are forecasted. Prison officials can be criticized
for “over-incarceration.”

In short, a reasonable stance is that CART will sometimes provide useful infor-
mation but rarely definitive guidance. How helpful the information is will depend
on the information with which it competes. When decision-makers are operating in
an information vacuum, very weak CART results can be valuable. When a lot is
already known, strong CART results can be irrelevant. Fortunately, there are much
more powerful statistical learning procedures coming.

3.11 An Example with Three Response Categories

In broad brush strokes, there is no formal problem extending CART to three or more
response variable categories. But the bookkeeping is much more demanding and
getting the cost ratios right is sometimes quite difficult. To see how this happens,
we reanalyze the prison data with the three-category response variable: serious and
substantial misconduct, some less serious form of misconduct, and no misconduct.
About 78%of the cases haveno reportedmisconduct, about 20%haveminor reported
misconduct, and about 2%have serious and substantial reportedmisconduct. The 2%
represents very rare cases that ordinarily present a daunting classification challenge.
The available predictors are the same as before.

The first hurdle is arriving at sensible cost ratios for classification errors. Prison
administrator were concerned about even minor misconduct because it can be a test
of staff authority and lead to more serious problems. Still, reported cases of serious
and substantial misconduct were of somewhat greater concern. After some back
and forth, the following cost ratios were provisionally agreed upon, which can be
compared to the results in Table3.6. The agreement is about as good as one can get
without a large number of terminal nodes.

• Misclassifying a “substantial” as a “none” was taken to be about 5 times worse
than misclassifying a “none” as a “substantial.” In fact, cell 31/cell 13 = 188/31
= 6.1

• Misclassifying a “substantial” as a “some” was taken to be about about 2 times
worse than misclassifying a “some” as a “substantial.” In fact, cell 23/cell 32 =
117/70 = 1.7

• Misclassifying a “some” as a “none” was taken to be about 2 times worse than
misclassifying a “none” as a “some.” In fact, cell 12/cell21 = 1181/301 = 2.0

3.11 An Example with Three Response Categories 171

Table 3.6 CART confusion table for classifying inmate misconduct with three outcome classes
and target cost ratios (N = 4736)

Classify as none Classify as
some

Classify as
substantial

Model error

None 2438 1181 188 .36

Some 301 443 117 .49

Substantial 31 70 37 .73

Use error .11 .74 .89 Overall error = .39

AgeArr = 22-29,30-35,36+

Term < 2.5

Gang = N Term < 9.5

1273 132 12

1165 169 19 279 91 14 902 352 56 188 117 37

None

None Some Some Substantial

yes no

Fig. 3.11 CART recursive partitioning of the prison data with three outcome classes (Red terminal
nodes represent substantial misconduct, yellow terminal nodes represent some misconduct, and
green terminal nodes represent no misconduct. The order of the numbers below each terminal node
is alphabetical: none, some, substantial. N = 4806)

library(rpart) # Load the CART library
library(rpart.plot) # Load the fancy plotting library
Partition the data
out<-rpart(Fail3Way~AgeArr+Gang+CDC+Jail+Psych+Term,

data=temp, method="class",
parms = list(prior = c(.35,.35,.30)),cp=.01)

#Plot a tree
prp(out,extra=1,faclen=10,varlen=15,under=T

box.col=c("green","yellow","red")[out$frame$yval])

Fig. 3.12 R code for the analysis of prison misconduct

Given reasonable cost ratios in the confusion table (to which we will return),
Fig. 3.11 shows the associated classification tree. The R code is provided in Fig. 3.12.
With three outcome classes, one reads the classification tree much like before. The
main difference is that in each terminal node there is one count for each class arranged
in alphabetical order from left to right. As before, the outcome with the largest prior-

172 3 Classification and Regression Trees (CART)

weighted count determines the class assigned to a terminal node. But here is where
the bookkeeping starts to matter. Because the prior has three classes, the weighting
is more complicated. Tuning is more intricate. For example, 2% of the cases in
the empirical priors are reported for serious and substantial misconduct, but cost-
sensitive prior arrived at assigns a value of 30%. Such cases are upweighted by a
factor of about 15. At the other extreme, the no misconduct cases account for 78%
of the cases in the empirical prior but only 35% of the tuned cost-sensitive prior.
These cases are down weighted by a factor of about .45. In short, all of the votes in
each terminal node are given more or less weight than their raw counts indicate.

With the weighting, Fig. 3.11 has no substantive surprises. Young inmates with
longer nominal sentences land in the only terminal node assigned the class of sub-
stantial or seriousmisconduct. Older inmates and younger inmates with shorter terms
and no gang associations land in the two terminal nodes that have no misconduct
as the assigned class. But if the latter are gang members, they placed in the node
assigned some, less consequential misconduct. There is also an apparent break point
for nominal sentences less than 9.5. years. Inmates with terms of more than 2.5 years
but less than 9.5 years land in a terminal node with the “some” assigned class.

The performance measures in the confusion table are interpreted as before with
one important exception. With three outcome categories, there are always two ways
to misclassify. For example, when there is no misconduct, the classification is wrong
about a third of the time. But the vast majority of those errors are not for cases of
serious and substantial misconduct. Perhaps, the performance is better than it first
seems. When the class assigned is no misconduct, it is correct nearly 90% of the
time. As before, the cost ratios require that there be strong statistical evidence before
a case is classified as a no misconduct. Related reasoning can be applied to the other
two outcomes.

Outcomes with more than two classes are common and often very desirable. For
example, forecasting how an inmate will do on parole has historically been done
so that any form of recidivism counts as a failure. The absence of recidivism is a
success. Of late and in response to expressed needs to criminal justice stakeholders,
more than two outcome classes are increasingly being used (Berk 2012). One might
want to distinguish between new arrests for crimes of violence and new arrests for
crimes in which there is no violence. There are then three outcome classes: no arrest,
an arrest for a crime that is not violent, and an arrest for a violent crime.

Just as with the earlier, two-outcome analysis of prison misconduct, the results
are derived solely from training data. Ideally, one would work with training data,
evaluation data and test data. In a forecasting setting, the three data sets can be
essential because before forecasting with real consequences is undertaken, one must
have a classification tree that is tuned well and provides an honest assessment of
out-of-sample performance.

3.12 Some Further Cautions in Interpreting CART Results 173

3.12 Some Further Cautions in Interpreting CART Results

Just as for any data analysis procedure, the output from CART always demands
scrutiny before substantive conclusions are reached. There are commonly three kinds
of potential problems: inappropriate response functions, unstable tree structures, and
unstable classifications. All can produce results, which if taken at face value, risk
serious interpretive errors.

3.12.1 Model Bias

On this point, we can be brief. Should the goal of a CART analysis be to determine
the true response surface in the parent joint probability distribution, disappointment
will follow. Even if all of the required predictors are included in the data, there
is absolutely no guarantee that the correct function will be discovered. Why step
functions?Why various high-order interactions? And no claims can be made that the
stagewise partitioning will perform as well as a less constrained approach. In short,
it is likely that by the standard of truth, the f̂ (X) is substantially wrong.

For a level I analysis, these limitations are unfortunate, but useful insights may
still follow. For a level II analysis, estimates of an approximate response surface in
the joint probability distribution using the training data alone will also be biased
in unknown ways. Because of the predictor selection process, all statistical infer-
ence (including confidence intervals and statistical tests) is compromised. However,
asymptotically unbiased estimates of the tree approximation of the true response
surface can be constructed when there is sufficient test data, and one can accept a
perspective in which the training data and the CART partitioning are fixed.

3.12.2 Model Variance

Estimation variance is not an issue for a CART level I analysis because the enterprise
is descriptive. Estimation variance is a significant problem forCART level II analyses.
Indeed, one of the reasons why CART is no longer a popular data analysis procedure
is that it can be very unstable.

The most obvious difficulty is the stability in classes assigned to terminal nodes.
Each fitted class is determined by a vote within a single terminal node. No estimation
strength is borrowed from other nodes. Nor is there any smoothing over nodes.
Consequently, when the number of observations in a node is small, the results of
the within-node vote could come out very differently in a new realized dataset. The
instability can be especially troubling when the within-node votes are close. With
very small changes in the composition of node, the assigned class can change. If the
assigned classes are unstable, generalization error will be inflated. As noted earlier,

174 3 Classification and Regression Trees (CART)

however, if small samples within nodes is a concern, the problem can be addressed
at least in part with tuning. But as also noted, the risk is an increase in bias with
respect to the true response surface.

Instability is even a greater problem in the partitioning process. Just as with the
assignment of classes to terminal nodes, very small differences based on very few
observations can make a critical difference. Moreover, the stagewise process guar-
antees that when an unstable splitting decisions is made, its consequences cascade
down through all subsequent splits. Recall also that although the “best” split is cho-
sen at each stage, there may very little difference in fitting performance between the
best split and the second best split.

Just aswith conventional stepwise regression, instability in tree structure is exacer-
batedwith predictors that are strongly correlated. Figure3.13 provides an illustration.
We again have a binary outcome represented by A or B, and X and Z as predictors.
The tight ellipse in the figure means that the two predictors have a strong linear
relationship.

The first split is shown by the red vertical line. The B outcome dominates to
the left, and the A outcome dominates to the right. For the partition to the right, two
possible partitions are shown. One partition, shownwith the green vertical line, splits
on Z a second time. The result would be a more complex step function linking Z and
the outcome. The other partition, shown with the horizontal yellow line, splits on
X . The result would be an interaction effect between X and Z . The two alternatives
imply very different tree structures and subject-matter interpretations.

If the vertical green line is chosen, the partition at the upper left favors As 4 to 1.
If the horizontal yellow line is chosen, the partition at the upper left favors As 3 to
1. Clearly the difference in impurity is small, and the result of the single, circled A.
With a new data realization, a entirely different split will likely be chosen.

Figure3.14 addresses the same issues when the two predictors are not as strongly
related in a linear fashion. TheAs andBs aremore spread out on the X−Z plane.After
the initial split, the next split is determined by a larger number of observations. The
difference in impurity between the horizontal and vertical splits no longer depends

Fig. 3.13 Greater instability
in CART partitioning when
X and Z are highly correlated
(The red vertical line is the
first split. The yellow and
green lines represent two
possible choices for the
second split.)

3.12 Some Further Cautions in Interpreting CART Results 175

Fig. 3.14 Less instability in
CART partitioning when X
and Z are not highly
correlated

on a single observation. The horizontal split is more homogeneous in A than the
vertical split (i.e., 7 out of 10 v. 6 out of 13). Recall that in practice, there are other
statistical features of the competing splits to consider, but the point here is with less
dependence between X and Z , more stable partitions are likely.

In summary, CART classifications will likely be more stable than the structure of
the classification tree. Nevertheless, it is always important to study the distribution
of classes within each terminal node. When there are few cases or when the vote
is close, the class assigned can be unreliable. Instability in tree structure is more
difficult to deal with, but an examination of the sequence of splitting decision can
be helpful. (In rpart(), that information is easily accessed.) Much as for the terminal
nodes, one can consider how many observations determined the split and how much
better the winning split was compared to its competitors.

3.13 Regression Trees

The emphasis in this chapter has been on categorical response variables. For reasons
that were both pedagogical and practical, classification has been the primary topic.
By concentrating on categorical response variables, the full range of fundamental
issues surrounding CART are raised.

But CART is certainly not limited to categorical response variables. Quantitative
response variables are also fair game. Andwith the discussion of categorical response
variables largely behind us, a transition to quantitative response variables is relatively
straightforward. It is possible to be brief.

Perhaps the major operational complication is the kind of regression method
to be applied. For example, there are three options in rpart() labeled as “anova”,
“poisson,” and “exp.” The first is for conventional quantitative response variables
such as income. The second is for count response variables such as the number of
hurricanes in a given hurricane season. The third is for survival response variables

176 3 Classification and Regression Trees (CART)

such as the time from release from prison to a new arrest. Code to be written, options
available, and output differ a bit over the three. Beneath the hood, the algorithmic
details differ a bit too. The splitting criterion is now some variant on the deviance.

Consider a conventional regression application as an illustration. Node impurity
is represented by the response within-node sum of squares:

i(τ) =
∑

(yi − ȳ(τ))2, (3.16)

where the summation is over all cases in node τ , and ȳ(τ) is the mean of those cases.
Then, much as before, the split s is chosen to maximize

Δ(s, τ) = i(τ) − i(τL) − i(τR). (3.17)

Recall that for the split decision when the response is categorical, the Gini impu-
rities are weighted by the proportion of cases in each potential daughter node. For the
sum of squares impurities, there is no weighting. But because the sum of squares is
a sum over observations, the number of cases in each daughter node matters; there is
implicit weighting. One can be more direct by reformulating the problem in units of
variances. Impurity for the parent node is represented by the variance of its y-values.
Likewise, impurity in the derived nodes is represented by each of their variances.
Before they are added, the two variances are weighted by the proportion of cases in
their respective node. The proportion weights provide the opportunity to employ dif-
ferent weights. Ishwaran (2015) examined three kinds: no weighting, weighting by
the node proportions and weighting by the node proportions squared (called “heavy”
weighting). Conventional weighting is said to work best for regression trees when
predictors are very noisy.

No asymmetric cost weights can be used because there is no reasonable way to
consider false positives and false negatives without a categorical response variable.
Ideally, onewould alter theway impurity is computed. This is easily done for quantile
regression applications, but not for least squares applications. There is interesting
work in progress on quantile regression trees (Chaudhuri and Loh 2002; Bhat et al.
2011).

To get the impurity for the entire tree, one sums over all terminal nodes to arrive
at R(T). In rpart(), regression trees can be pruned using the cp tuning parameter.
Just as with categorical response variables, one can also “pre-prune” using the cp.

The summary statistic for each terminal node is usually the node’s mean. In
principle, a wide variety of summary statistics could be computed (e.g., the median).
And just like for conventional regression, one can compute overall measures of fit.
Unfortunately, with all of the searching over possible splits and predictors, it is not
clear how to adjust for the degrees of freedom used up. There is no summarymeasure
of fit that can account for this form of overfitting. As usual, the best course of action
is to use test data to get an honest assessment of fit but as discussed earlier, this is
has it own complications.

3.13 Regression Trees 177

Just as in parametric regression, the fitted values can be used for forecasting. Each
new observation for which the outcome is unknown is dropped down the tree. The
fitted value for the terminal node in which an observation lands become the forecast.
Typically, that is the conditional mean.

All of the earlier concerns about CART still apply, save for those linked to the
classes assigned. Potential bias and instability remain serious problems. Possible
remedies, insofar as they exist, are also effectively the same.

3.13.1 A CART Application for the Correlates of a Student’s
GPA in High School

Figure3.15 shows a regression tree for applicants to a large public university.
Figure3.16 shows the code. The response variable is a student’s GPA in high school.
Predictors include the verbal SAT score, the mathematics SAT score, gender, and
household income. Grade point average can be as high as 5.0 because the scoring
gives performance in advanced placement classes extra weight. The mean GPA in
each node is shown along with the number of cases in that node.14

Students with Math SAT scores above 695 and verbal SAT scores above 675 have
the highest mean grade point average. Their mean is 4.2. Students with verbal SAT
scores less than 565 andmath SAT scores below515 have the lowestmean grade point
average. Their mean is 3.4. The two terminal nodes are characterized by interaction
effects between the verbal and math SATs. All of the other branches suggest rather
complicated and not easily explained relationships. For example, studentswith verbal
SAT scores below 565 and math SAT scores above 515, get an extra boost if they
are from families with incomes over $77,000. That students from higher income
household do a bit better is no surprise. But why that boost only materializes within
a certain set of SAT score values is not apparent. The role of gender is even more
obscure. Claims are sometimes made that one of CART’s assets is the ease with
which a classification or regression tree can be interpreted. In practice, splits based
on reductions in impurity often do not lead to results with credible subject-matter
interpretations.

There are no confusion tables for quantitative response variables. But one can get
a sense of fit performance from Fig. 3.17 produced by rsq.rpart().15 Both plots show
the number of splits on the horizontal axis. On the vertical axis for the plot on the left
is the usual R2. The Apparent R2 (in blue) is computed from the data used to grow
the regression tree. The X relative R2 (in green) is computed using cross-validation
in an effort to get a more honest measure of fit. In this case, the two are almost
identical and approach .20 as the number of splits increases. The cross-validation R2

levels out a bit sooner. There is little improvement in the quality of the fit when the

14These data cannot be shared.
15The function defaults to only black and white. If you want color (or something else) you need to
get into the source code. It’s not a big deal.

178 3 Classification and Regression Trees (CART)

VerbalSAT < 565

MathSAT < 515

HHIncome >= 77e+3

MathSAT < 695

Gender = Male

MathSAT < 595

VerbalSAT < 675
n=1148

n=712 n=1249 n=1063

n=559 n=941

n=685 n=608

3.4

3.6 3.8 3.8

3.8 4

4 4.2

yes no

Fig. 3.15 CART recursive partitioning of high school GPA data (The number in each terminal node
is the conditional mean. N = 6965)

Construct CART Partitions
out<-rpart(GPA~VerbalSAT+MathSAT+HHIncome+Gender,

data=temp, method="anova", cp=.005)
Construct a CART tree
prp(out,extra=1,faclen=10,varlen=15,under=T)
Get Fit Plots
par(mfrow=c(1,1))
rsq.rpart(out)

Fig. 3.16 R code for the analysis of the high school GPA data

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Splits

R
-s

qu
ar

e

Apparent
X Relative

0 1 2 3 4 5 6 7

0.
7

0.
8

0.
9

1.
0

1.
1

Number of Splits

X
 R

el
at

iv
e

E
rr

or

Fig. 3.17 Plots of GPA regression fit. (The left figure shows the increase in R2 with increases in
the number of splits. The solid line is computed in-sample. The dashed line is computed through
cross-validation. The left figure shows the reduction in relative fitting error with increases in the
number of splits. The vertical lines are error bars.)

3.13 Regression Trees 179

number greater than 3. It is also apparent from the similarity of the two lines that the
CART search procedures do not seem to have produced problematic overfitting in
this instance. This follows from the large number of observations and small number
of predictors. Relative to the number of observations, the amount of data snooping
is modest. Relatively few degrees have been spent.

The plot on the right side shows the relative improvement in fit. On the vertical
axis is the proportional reduction in mean squared error. The vertical lines shows
plus and minus one standard error estimated by cross-validation. For this plot, we
see that there is little evidence of systematic improvement after the first split, and no
evidence of systematic improvement after the 3rd split. The first two errors bars do not
overlap at all. Subsequent error bars overlap to varying degrees. The availability of
these error bars is helpful, but given all of the problems with CART level II analyses,
they should not be taken literally. Moreover, there seems to be no formal justification
for using “the 1-SE rule” rather some some other rule (e.g., a 2-SE rule).

For this application, one could probably make a good case for a level II analysis.
A relevant joint probability distribution could probably be defined with each obser-
vation realized independently. Figure3.17 suggests that the consequences of data
snooping may not be serious. And the number of observations is large enough to
make good use of asymptotics. One might want to grow a new regression tree with
up to three splits and base any interpretations or applications on that single tree,
especially if this were done in test data. The estimation target would be the fitted
values from that tree as a feature of the joint probability distribution.

3.14 Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Splines (MARS) can be viewed as another kind
of smoother, in the traditions of the last chapter, or as a twist on classification and
regression trees. This brief discussionwill build on the latter and especially regression
trees because MARS assumes that the response variable is quantitative. An excellent
and far more extensive exposition of MARS can be found in Hastie et al. (2009:
Sect. 9.4).

A key difference between CART andMARS is in the nature of the basis functions
used. The MARS formulation is the broadly familiar

f (X) = β0 +
M∑

m=1

βmhm(X), (3.18)

where as before, there are M weighted basis functions hm(X). But each hm(X) is a
product variable composed of linear piecewise splines. This takes a little explaining.

Just as for CART, the basis functions are determined by searching over all pre-
dictors and breakpoints. In CART, this leads to a step function. In MARS, this leads
to a V-shaped function composed of two linear piecewise splines, with its minimum

180 3 Classification and Regression Trees (CART)

value of 0.0 at the breakpoint chosen. The two splines are mirror images of one
another; hence the V-shape. Hastie et al. (2009: 322) call the two splines a “reflected
pair.”

Figure3.18 is an illustration with a hypothetical breakpoint at 0.5. To the left of
breakpoint, the values of the basis function are the positive values of the predictor
X subtracted from the breakpoint value. To the right of breakpoint, the values of the
basis function are the positive values of the breakpoint subtracted from the predictor
X . For CART, the analog to Fig. 3.18 is a step function having a basis function value
of 0.0 to the left of the breakpoint and a basis function value of 1.0 to the right. The
linear splines formulation does not work for categorical predictors. When there are
categorical predictors, MARS goes back to indicator variables just like CART.

Another important difference from CART is that as various breakpoints and pre-
dictors are considered, they aremultiplied by the previous linear piecewise functions
already included. The linear basis expansion is undertaken with the sum of products
of linear piecewise splines. Exactly how this works need not concern us here. But
the use of linear piecewise splines combined with sums of products means that there
is no tree representation to inspect.

Like regression trees, each new product is evaluated by the reduction in the error
sum of squares. Substantial overfitting can result, so an analogue to pruning is avail-

Fig. 3.18 MARS linear
basis function with an
illustrative break point at 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Linear Piecewise Basis for MARS

Predictor X

B
as

is
 F

un
ct

io
n

V
al

ue
s

Positive values of (break x) Positive values of (x break)

break point

3.14 Multivariate Adaptive Regression Splines (MARS) 181

able. Various tuning parameters are also available to help determine how complex a
model is permitted.

MARS output can include the equation actually estimated, and an ANOVA-type
partitioning of the explained variance to represent predictor “importance.” There
are, therefore, parallels to conventional regression. A lot more is said about variable
“importance” in the next several chapters.

MARS can be extended to classification tasks. For both classification and regres-
sion, it can perform better than CART when step function approximations of f (X)

are unsatisfactory. But it has many of the same limitations. MARS has been largely
superseded by more recent statistical learning procedures and unlike CART, has not
been incorporated into any of these formulations.

3.15 Summary and Conclusions

CART can sometimes be an effective statistical learning tool. It is relatively easy
to use, builds directly on familiar regression procedures, does not demand great
computing power, and generates output that can be presented in an accessiblemanner.
CART also provides a useful way to introduce the costs of classification errors.
However, CART also has some important limitations.

First, if one wants an unbiased estimate of the true f (X), there is no reason to
believe that CART’s f̂ (X) will provide it or that it will even come close. Despite the
flexibleways inwhichCART can respond to data, substantial bias is a real possibility.
All fitting procedures are limited by the data available. Key predictors may not be
available. But even if the requisite data are available, the use of step functions and
the stagewise estimation procedure are significant complications. One can always
settle for a level I analysis. A fallback level II strategy is to work with approximate
population trees and test data. Asymptotically valid statistical inference, including
statistical tests and confidence intervals, can follow.

Second, the splitting decisions can be very unstable. A few observations can in
some situations dramatically affect which variables are selected and the precise val-
ues used for partitioning the data. Then, all subsequent partitions can be affected.
This instability is closely related to overfitting, which can substantially limit the gen-
eralizability of the results. The findings from the data examined may not generalize
well to other random realizations from the same population (let alone to data from
other populations).

Third, for classification, the classes assigned to terminal nodes can be unstable
too.When the computed proportions for the terminal node classes are about the same,
the movement of just a few cases from one side of a proportion threshold to the other
can change the assigned class. It is important to carefully inspect the distribution
of proportions in each terminal node to get a sense of how serious the instability
problem may be.

Fourth, even moderately elaborate tree diagrams will seriously tax substantive
understanding. The problem is not just complexity. CART is trying in a single-

182 3 Classification and Regression Trees (CART)

minded manner to use associations in the data to maximize the homogeneity of its
data partitions. How those associations come to be represented may have nothing
remotely to dowith subjectmatter understandings or how subjectmatter experts think
about those associations. High order interaction effects are dramatic illustration.

Exercises

Problem Set 1

The purpose of this exercise is to provide an initial sense of how CART compares to
conventional linear regression when the response variable is quantitative.

1. To begin, construct a regression dataset with known properties:

x1=rnorm(300)
x2=rnrom(300)
error=2*rnorm(300)
y1=1+(2*x1)+(3*x2)+error

Apply conventional linear regression using lm(). Then apply rpart(), and print
the tree using prp() from the library rpart.plot(). Compare the regression output
to the way in which the data were actually generated. Compare the tree diagram
to the way in which the data were actually generated. Compare how well linear
regression and CART fit the data. For CART, use rsq.rpart() from the library
library(rpart.plot) to consider the fit. What do you conclude about the relative
merits of linear regression and CART when the f (X) is actually linear and addi-
tive?

2. Now, redefine the two predictors as binary factors and reconstruct the response
variable.

x11=(x1 > 0)
x22=(x2 > 0)
y=1+(2*x11)+(3*x22)+error

Proceed as before comparing linear regression to CART. How do they compare?
What do you conclude about the relative merits of linear regression and CART
when the f (X) is actually a step function and additive?

3. Under what circumstances is CART likely to perform better than linear regres-
sion? Consider separately the matter of how well the fitted values correspond to
the observed values and the interpretation of how the predictors are related to the
response.

Problem Set 2

The goal of the following exercises is to give you some hands-on experience with
CART in comparison to some of the procedures covered in earlier chapters. An initial
hurdle is getting R to do what you want. There are lots of examples in the chapter.
Also, make generous use of help() and I have provided a number of hints along
the way. However, I have tried to guide you to results in the least complicated way

3.15 Summary and Conclusions 183

possible and as a consequence, some of the more subtle features of CART are not
explored. Feel free to play with these in addition. You can’t break anything.

Load the data set called “frogs” from the DAAG library. The data are from a
study of ecological factors that may affect the presence of certain frog populations.
The binary response variable is pres.abs. Use the help command to learn about the
data. For ease of interpretation, limit yourself to the following predictors: altitude,
distance, NoOfPools, NoOfSites, avrain, meanmin and meanmax.

1. Use logistic regression from glm() to consider how the predictors are related to
whether frogs are present.Which predictors seem tomatter? Do their signs make
sense?

2. Using the procedure stepAIC() from theMASS library with the default for step-
wise direction, find themodel that minimizes the AIC.Which predictors remain?
Do their signs make sense?

3. Using table(), construct a confusion table for themodel arrived at by the stepwise
procedure. The observed class is pres.abs. You will need to assign class labels
to cases to get the “predicted” class. The procedure glm() stores under the name
“fitted.values” the estimated conditional probabilities of the presence of frogs.
If the probability is greater than .5, assign a 1 to that case. If the probability
is equal to or less than .5, assign a 0 to that case. Now cross-tabulate the true
class by the assigned class.What fraction of the cases is classified incorrectly? Is
classification more accurate for the true presence of frogs or the true absence of
frogs?What is a rationale for using .5 as the threshold for class assignment?What
is the cost ratio in the table? What are its implications for an overall measure of
classification performance? (Hint: some classifications are likely to be relatively
more costly than others. This needs to be taken into account for all confusion
tables, not just those from CART.)

4. Using your best model from the stepwise procedure, apply the generalized addi-
tive model. You can use gam() in either the gam or mvcv library. Use smoothers
for each predictor. Let the procedure decide how many degrees of freedom to
use for each smooth. Look at the numerical output and the smoothed plots. How
do the results compare to those from logistic regression?

5. Construct a confusion table for the model arrived at through GAM. Once again,
the observed class is pres.abs.Use the same logic as applied previously toglm() to
determine the assigned class. What fraction of the cases is classified incorrectly?
Is classification more accurate for the true presence of frogs or the true absence
of frogs? How do these results compare to the GLM results? (Hint: don’t forget
to cost-weight the overall measure of classification accuracy.)

6. Going back to using all of the predictors you began with, apply CART to the
frog data via the procedure rpart() in the library rpart. For now, accept all of
the default settings. But it is usually a good idea to specify the method (here,
method=“class”) rather than let rpart() try to figure it out from your response
variable. Use the print() command to see some key numerical output. Try to
figure out what each piece of information means. Use rpart.plot() to construct
a tree diagram. What predictors does CART select as important? How do they

184 3 Classification and Regression Trees (CART)

compare with your results from GLM and GAM? How do the interpretations of
the results compare?

7. Use predict() to assign class labels to cases. You will need to use the help com-
mand for predict.rpart() to figure out how to do this. Then construct a confusion
table for the assigned class and the observed class. What fraction of the cases
is classified incorrectly? Is classification more accurate for the true presence of
frogs or the true absence of frogs? How do these results compare to the GLM
and GAM results? If the three differ substantially, explain why you think this has
happened. Alternatively, if the three are much the same explain why you think
this has happened.

8. Run the CART analysis again with different priors. Take a close look at the infor-
mation available for rpart() using the help command. For example, for a perfectly
balanced prior in rpart() you would include parms=list(prior= c(.50,.50)). Try a
prior of .5 for presence and then a prior of .30 for presence. (For this rpart() para-
meter, the prior probability of 0 comes first and the prior probability of 1 comes
second.) What happens to the ratio of false negatives to false positives? What
happens to the overall amount of cost-weighted classification error compared to
the default?

9. Using Eq.3.11 set the prior so that in the confusion table false negatives are ten
times more costly than false positives (with pres.abs = 1 called a “positive” and
pres.abs = 0 called a “negative”). Apply CART. Study the output from print(),
the tree diagram using rpart.plot(), and the confusion table. What has changed
enough to affect your interpretations of the results?What has not changed enough
to affect your interpretations of the results?

10. Construct two random samples with replacement of the same size as the dataset.
Use the sample() command to select at random the rows of data you need and
use those values to define a new sample with R’s indexing capability, x[r,c].
For the two new samples, apply CART with the default parameters. Construct a
tree diagram for each. How do the two trees compare to each other and to your
earlier results with default settings? What does this tell you about how stable
your CART results are and about potential problems with overfitting.

11. Repeat what you have just done, but now set the minimum terminal node size to
50. Youwill need the argument control = rpart.control (minbucket = 50)) in your
call to rpart(). How do the three trees compare now? What are the implications
for overfitting in CART?

Problem Set 3

Here is another opportunity to become familiar with CART, but this timewith a quan-
titative response variable. From the library car, load the data set “Freedman.” The
dataset contains for 100 American cities the crime rate, population size, population
density, and percent nonwhite of the population. The goal is to see what is associated
with the crime rate.

3.15 Summary and Conclusions 185

1. Using the gam() from the library gam, regress the crime rate on the smoothed val-
ues of the three predictors. Examine the numerical output and the plots. Describe
how the crime rate is related to the three predictors.

2. Repeat the analysis using rpart() and the default settings. Describe how the crime
rate is related to the three predictors. How do the conclusions differ from those
using the generalized additive model?

3. Plot the fitted values from the GAM analysis against the fitted values from the
CART analysis. The fitted values for gam() are stored automatically. You will
need to construct the fitted values for CART using predict.rpart(). What would
the plot look like if the two sets of fitted values corresponded perfectly? What
do you see instead? What does the scatterplot tell you about how the two sets of
fitted values are related?

4. Overlay on the scatterplot the least squares line for the two sets of fitted values
using abline(). If that regression line had a slope of 1.0 and an intercept of 0.0,
what would that indicate about the relationship between the two sets of fitted
values? What does that overlaid regression line indicate about how the two sets
of fitted values are related?

5. Using scatter.smooth(), apply a lowess smoother to the scatterplot of the two sets
of fitted values. Try several different spans. What do you conclude about the
functional form of the relationship between the two sets of fitted values?

6. For the GAM results and the CART results, use cor() to compute separately the
correlations between the fitted values and the observed values for the crime rate.
What procedure has fitted values that are more highly correlated with the crime
rate? Can you use this to determine which modeling approach fits the data better?
If yes, explain why. If no, explain why.

Problem Set 4

1. At a number of places, the bootstrap has been mentioned and applied. The basic
idea behind the bootstrap is easy enough in broad brushstrokes. But the details
can be challenging even for math-stat types because there are important subtleties
and many different bootstrap variants. Fortunately, for many of the applications
that have been discussed and that will be discussed, uncertainty in some important
features of the output can be usefully addressed with procedures available in R.
Currently, boot() is popular because of its great flexibility. But it has a relatively
steep learning curve, and some readers may prefer to write their own bootstrap
code.
The code below produces a bootstrap distribution of the proportion of correct
classifications in a CART confusion table using the Titanic data and the outcome
class of survival. From the empirical distribution, one can consider the sampling
distribution for the proportion correctly classified and construct a confidence
interval.
The code is meant to only be illustrative. As alreadymentioned, it probablymakes
little sense to consider a level II analysis for the Titanic data. However, code like
this will work for test data should a level II analysis be appropriate. The main
difference is that there would be no new CART fit for each bootstrap sample.

186 3 Classification and Regression Trees (CART)

The rpart step shown in the code would not be included. Rather, the rpart-object
would be computed outside of the function and called when predict() was used
with test data.
Run the code and consider the output. Then try it with another dataset and test
data. Interpret the CART confusion table and the distribution of the proportion of
cases correctly classified.

Application of nonparametric bootstrap for CART
library(PASWR)
library(boot)
library(rpart)
data("titanic3")
attach(titanic3)
temp<-data.frame(survived,pclass,sex,age) # Select variables
working<-na.omit(temp) # Remove NAs
detach(titanic3)

Define the function to be bootstraped
confusion<-function(data,i) # i is the index for the bootstrap sample
{

working2<-working[i,] # names the bootstrap sample for each i
out<-rpart(survived˜sex+age+pclass,data=working2,method="class")
preds<-predict(out,data=working2)
conf<-table(preds[,2]>.5,working2$survived) # Confusion table as usual
fit<-(conf[1,1]+conf[2,2])/dim(working2)[1] # Proportion correct
return(fit)

}

Apply the bootstrap and examine the output
fitting<-boot(working,confusion,R=300) # Look at the object
plot(fitting)
quantile(fitting$t,probs=c(.025,.975))

Chapter 4
Bagging

4.1 Introduction

In this chapter, we make a major transition. We have thus far focused on statistical
procedures that produce a single set of results: regression coefficients, measures of
fit, residuals, classifications, and others. There is but one regression equation, one set
of smoothed values, or one classification tree. Most statistical procedures operate in
a similar fashion.

The discussion now shifts to statistical learning that builds onmany sets of outputs
aggregated to produce results. Such algorithms make a number of passes over the
data. On each pass, inputs are linked to outputs just as before. But the ultimate results
of interest are the collection of all the results from all passes over the data.

Bayesian model averaging may be a familiar illustration from another statistical
tradition (Madigan et al. 1996; Hoeting et al. 1999). In Bayesian model averaging,
there is an assumed f (X); there is a “true model.” A number of potentially true
models, differing in the predictors selected, are evaluated. The model output is then
averaged with weights determined by model uncertainty. Output from models with
greater uncertainty are given less weight. From a statistical learning perspective,
Bayesian model averaging has a number of complications, including the dependence
that is necessarily built in across model results (Xu and Golay 2006). Also, it is
not clear why a model with less uncertainty is necessarily closer to the true model.
We address shortly how statistical learning procedures relying on multiple results
proceed rather differently.

Aggregate results from many passes over the data can have several important
benefits. For example, under the right circumstances, averaging over sets of fitted
values can increase their stability. The averaging tends to cancel out results shaped by
idiosyncratic features of the data. In turn, generalization error is reduced. An increase

The original version of this chapter was revised: See the “Chapter Note” section at the end of
this chapter for details. The erratum to this chapter is available at https://doi.org/10.1007/978-
3-319-44048-4_10.

© Springer International Publishing Switzerland 2016
R.A. Berk, Statistical Learning from a Regression Perspective,
Springer Texts in Statistics, DOI 10.1007/978-3-319-44048-4_4

187

http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10
http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10

188 4 Bagging

in stability permits the use of more complex functions of the predictors when they
are needed.

In this chapter, we focus on bagging, which capitalizes on a particular kind of
averaging process that can address complexity and stability. Inmore traditional terms,
bagging can have beneficial consequences for the bias-variance tradeoff. Sometimes
you can have your cake and eat it too.

Although bagging can be applied to a wide variety of statistical procedures, we
will again concentrate on classifiers. The rationale is largely the same: the exposition
is more effective and the step to quantitative responses is easy to make. We begin
with a return to the problem of overfitting. Although overfitting has been discussed
several times in earlier chapters, it needs to be linked more directly to CART to help
set the stage for a full exposition of bagging and subsequent procedures.

4.2 The Bagging Algorithm

The notion of combining fitted values from a number of fitting attempts has been
suggested by several authors (LeBlanc and Tibshirani 1996; Mojirsheibani 1997,
1999). In an important sense, the whole becomes more than the sum of its parts. It
is a bit like crowd sourcing.

“Bagging,” which stands for “Bootstrap Aggregation,” is perhaps the earliest pro-
cedure to exploit sets of fitted values over random samples of the data. Unlike model
averaging, bagging is not a way to arrive at a model. Bagging is an algorithm that
can help improve the performance of fitted values from a given statistical procedure.
Breiman’s remarkable 1996 paper on bagging is well worth a careful read.

For training data having N observations and a binary response variable, bagging
takes the following form.

1. Take a random sample of size N with replacement from the data. These are
sometimes called “bootstrap samples.”

2. Construct a classification tree as usual.
3. Assign a class to each terminal node as usual, and store the class attached to

each case and the predictor values that define the neighborhood in which in
each terminal node resides (e.g., males under 30 years of age with a high school
diploma).

4. Repeat Steps 1–3 a large number of times.
5. For each observation in the dataset, count the number of times over trees that it

is classified in one category and the number of times over trees it is classified in
the other category.

6. Assign each observation to a final class by a majority vote over the set of trees. If
the outcome has two classes, and more than 50% of the time over a large number
of trees a given observation is classified as a 1, that becomes its classification.
The same reasoning applies to the 0 class. The winning class is determined by a
majority vote.

4.2 The Bagging Algorithm 189

Although there remain important variations and details to consider, these are the
key steps to produce “bagged” classification trees. Averaging occurs in the votes over
classification trees. The voting results for each case are proportions that can be seen
as means for response variables coded as 1 or 0.

The assigned class for each case is used much as it was for CART. Confusion
tables are good place to start, especially if imputation or forecasting is in the offing.
But there is no longer a single tree to interpret because there are many trees and no
such thing as an average tree. Predictor values are linked to fitted classes, but not in
a manner that can be substantively interpreted. We have a true blackbox statistical
learning procedure. There will be more of them.

The idea of classifying by averaging over the results from a large number of
bootstrap samples generalizes easily to a wide variety of classifiers beyond CART.
Later we show that bagging can be usefully applied to quantitative responses as well.
Nothing fundamentally changes.

4.3 Some Bagging Details

The bagging algorithm may seem straightforward. Bagging is just as way to average
out unwanted noise. But there are a number of subtleties that we will need to carry
forward in this chapter and later chapters.

4.3.1 Revisiting the CART Instability Problem

One goodway tomotivate bagging is to consider again the instability of classification
trees. That instability can be readily apparent even across bootstrap samples that
necessarily share large fractions of the data.

Figure4.1 shows two such classification trees from the Titanic data. Although, as
before, the first split for both is on gender, the two trees subsequently part company.
The next two splits are the same for both trees, but the thresholds differ. Then, the
splits that follow on the right branch differ in some of the predictors selected as
well as thresholds. And the counts in all of the terminal nodes vary as well across
the two trees. All of these differences lead to somewhat different classifications. For
example, there are 10 boys between 9.5 and 13 years of age who are excluded from
the far left terminal node on the top tree but who are not excluded from the far left
terminal node on the bottom tree. Overall, about 10% of the cases common to both
trees were classified differently. The bottom tree was far more likely to assign the
class of “survived” than the top tree. Again, this is a best case scenario in the sense
that about 68% of the observations in the two analyses are shared, and the overall
sample size is relatively large.

A classification tree can be used for level I analyses when all one cares about is
characterizing the data on hand. Instability becomes relevant for level II analyses.

190 4 Bagging

sex = male

age >= 14

sibsp >= 2.5

pclass = 3rd

parch >= 1.5

sibsp >= 2.5

age >= 28

634 144

19 1 4 26 40 12

9 2

19 9 47 90

14 239
0

0 1 0

0

0 1

1

yes no

age >= 9.5

sibsp >= 2

pclass = 3rd

sibsp >= 2.5

age >= 7

age < 22

651 136

24 1 4 24 16 1

37 17 60 72

5 15

19 227
0

0 1 0

0 1

1

1

yes nosex = male

Fig. 4.1 Classification tree analysis of Titanic survival for two bootstrap samples of 1309 observa-
tions from the same training data (The red nodes are assigned the class of “perished,” and the blue
nodes are assigned the class of “survived”)

For example, instability is a concern for generalization error, which speaks to per-
formance in test data, not the data on hand. The same reasoning applies to bagging.
Because bagging addresses instability, a level II perspective is required.

4.3.2 Some Background on Resampling

The top bagging priority is to reduce instability, and it all begins with resampling.
Over the past two decades, many resampling procedures have been developed that
can provide information about the sampling distributions of data-derived estimates.
The bootstrap is perhaps the most well known. Other techniques include the jack-

4.3 Some Bagging Details 191

Fig. 4.2 A schematic for
bootstrap sampling

Joint
Probability
Distribution

Realized
Data

bB

b3

b2

b1

knife (Efron and Tibshirani 1993: Sect. 10.5) and permutation tests (Edgington and
Onghena 2007). Resampling procedures can provide asymptotically valid tests and
confidence intervals making fewer assumptions than conventional methods and can
sometimes be applied when there are no conventional methods at all.1 For a dis-
cussion of bagging, we only need a few ideas from the bootstrap, and in particular,
how one can generate a very large number of random sampling from training data.
There are very good and extensive treatments of the bootstrap provided by Efron and
Tibshirani (1993) and Hall (1997). Code in R to do a CART bootstrap is provided as
part of an exercise at the end of the chapter.

The bootstrap is essentially a simulation of the frequentist thought experiment
and as such, is automatically a level II formulation. For the frequentist, the data
on hand are realized independently from a joint probability distribution or a finite
population. In Fig. 4.2, the process is shown by the thick arrow toward the left side.
The data on hand are seen as a single set of independent realizations from a limitless
number of realized datasets that could be produced. Sample statistics in principle
can be computed from each these realized datasets leading to one or more sampling
distributions. From these, confidence intervals and statistical tests can follow. For
example, if the mean were computed from each of the realized datasets, the result
would be a sampling distribution for the mean. In practice, however, the data analyst
usually gets to see only one realized dataset, and that is what the figure shows.
Depending on the setting, the realized data could be training data, evaluation data,
or test data.

1Recall that the jackknife can be seen as N-fold cross validation. Permutation tests are essentially
the same as randomization tests and boil down to randomly shuffling some feature of the data
on hand. For example, consider a conventional regression with a single predictor. Under the null
hypothesis that the regression coefficient equals 0.0, one requires the sampling distribution of
the regression coefficient if the null hypothesis is true. It can be effective to simulate that null
distribution by randomly shuffling the response variable over and over, each time computing the
value of the regression coefficient. With this approximation of the null distribution in hand, it is
easy to calculate whether a regression coefficient as big or bigger than the one computed from the
training data appears less the 5% of the time. A statistical test has been performed with a critical
value of .05. Good (2004) provides a very accessible treatment.

192 4 Bagging

To approximate a limitless number of independently realized datasets, a large
number of probability samples are drawn with replacement from the single realized
dataset; hence the term “resampling.” These probability samples are denoted by
b1, b2 . . . , bB , where B is the total number of samples. If there are N observations
in the realized data, each sample has N observations.2

Should the sampling be done without replacement, each sample of the realized
data and the realized data itself will be identical and nothing has been gained. But
should the N observations in each sample be drawn with replacement, the samples
will almost certainly differ by chance from one another and from the realized data.
This follows because a given observation in the realized data may be selected more
than once. The set of samples drawn in this manner is meant to approximate the
canonical frequentist thought experiment.3

Bagging exploits this resampling strategy in the algorithm’s first step, but with an
interpretative twist. A total of N observations with replacement is drawn. Sampling
with replacement on the average causes about 37% of cases to be excluded from a
given sample. It follows that a substantial number of cases are selected more than
once. Froma frequentist perspective, one has the formal samplingproperties required,
but there is less information in such samples than had all of the observations appeared
only once. Some statistical power can be lost, and procedures that are sample-size
dependent can suffer.4

But, the resampling is not being used to construct an empirical sampling distribu-
tion. The resampling is an algorithmic device that allows one to draw a large number
of random samples from the training data. Each sample is used to grow a tree whose
fitted values are then averaged over trees. There is no estimation. There are also no
confidence intervals or statistical tests.

At the same time, the sampling with replacement means that for each tree, a
random sample of about 37% of the observations are excluded from the tree-growing
calculations. Each tree, therefore, automatically has “hold-out” observations, often
called “out-of-bag” (OOB) observations. OOB observations are an immediate source
of test data. Having valid test data as a byproduct of sampling with replacement is
huge. Up to this point, test data had to be obtained as part of the data collection
process or constructed from split samples.

2In more complete treatments, there can be more than or less than N observations in each bootstrap
sample. Sampling without replacement is also an option as long as the sample size is less than
N . However, some statistical procedures such as CART, are sample-size dependent. With more
observation one can grow larger trees. It can make good sense, therefore to start with bootstrap
samples having the same number of observations as the training data.
3There are many different kinds of bootstrap procedures, and it remains an important research area.
The resampling just described is sometimes called a “pairs” bootstrap because both Y and X are
sampled, or a “nonparametric” bootstrap because there is no model specified through which the
realized data were generated.
4If one draws random samples without replacement with .50 × N observations, one has on the
average a dataset with about the same information content as N observations drawn at random with
replacement (Buja and Stuetzle 2006). Still, sampling with replacement is the usual approach.

4.3 Some Bagging Details 193

4.3.3 Votes and Probabilities

For each case in the bootstrap sample, there is a vote over trees. For a binary outcome,
the class with the majority vote is the class assigned to that case. For outcomes
with more than two classes, the class with a plurality is the class assigned to that
case. Because each classifier is grown with a random sample of the training data, the
proportion of votes each classmusters has the look and feel of probabilities. However,
the samples drawn in bagging are not fully independent, which undermines the usual
assumption of independent trials, and compromises treating vote proportions are
probabilities. But it’s worse.

One must be clear about what such probabilities could represent (Breiman 1996:
Sect. 4.2). Suppose for a particular set of predictor values the true outcomeprobability
of a 1 is .80. Suppose also that each classification tree votes for 1, given those x-
values. Although the true probability of a 1 is .80, the vote “probability” over trees
is 1.0. Clearly, two different kinds of outcomes are in play: how a tree votes and the
outcome class for a given case. They must not be confused. More will be said about
this in the next chapter.

4.3.4 Imputation and Forecasting

Obtaining fitted classes for imputation or forecasting follows directly from the way
fitted values from the training data are computed. Recall that for a single classifi-
cation tree, a new set of predictor values with an unknown outcome are “dropped
down” the tree. The assigned class of the terminal node in which the case lands is
the imputed or forecasted class. Also recall that this process can be represented in
a conventional regression structure where the task is prediction. There is nothing
mysterious going on.

When there are K classification trees, the set of predictor values is dropped down
each of the K trees. Then as before, a vote is taken. The winning class is the forecast
for those x-values. But as just noted, the winning proportion is not an estimate of
the probability that the imputation or forecast is correct. This seems to be an all too
common error.

4.3.5 Margins

The meaning of “margin” in bagging is somewhat different from the meaning of
“margin” in margin maximizing forms of statistical learning (e.g., adaboost, support
vector machines). But the statistical goals are the same: to arrive at stable classifica-
tions. From a bagging perspective, Bremen (2001a: 7) defines the margin as

mg(X,Y) = avk I (hk(X) = Y) − max
j �=Y

avk I (hk(X) = j), (4.1)

194 4 Bagging

where for randomly realized data and a given case, there is an ensemble of K clas-
sifiers denoted by hk(X), Y is the correct class, j is some other class, and I (.) is
the indicator function as before. The K classifiers might be K classification trees.
In words, over the K classifiers, there is a proportion of times the case is classified
correctly, and a maximum proportion of times the case is classified incorrectly. The
difference in the two proportions is the margin for that case.5 “The larger the margin,
the more confidence in the classification” (Breimen 2001: 7).

Suppose that over all of the bagged trees, an observation is correctly classified75%
of the time and incorrectly classified 25%of the time. Themargin is .75 − .25 = .50.
A negative margin implies misclassification. If an observation is correctly classified
30%of the time and incorrectly classified 70%of the time, themargin is .30 − .70 =
−.40.

A lopsided vote in favor of the correct class conveys that despite noise introduced
by the resampling, most of the time the case is classified correctly. One can say that
the correct classification for that case is highly reliable. A lopsided vote in favor of
the incorrect class is also highly reliable; reliable and wrong. If the vote is very close,
the case is just about as likely to be misclassified as classified correctly. Systematic
relationships between the response and the predictors cannot meaningfully overcome
the algorithm-generated noise. One can say that the classification, whether correct
or incorrect, is unreliable.

One can only know when a classification is correct, if the actual class is known.
That will be true in training data, evaluation data, and test data. In that context,
margins can be used as diagnostic tools. How reliable are the correct classifications?
How reliable are the incorrect classifications? Ideally, the former are very reliable
and the latter are not. In new realizations of the data, there is then a good chance
that many of the incorrect classifications will be overturned. One might also be able
to identify particular types of cases for which misclassifications are likely and/or
unreliable.

Forecasting applications differ because the actual outcome is not known.The votes
over classifiers still represent reliability, but whether the classification is correct or
incorrect is not known. Nevertheless, reliability is important. Suppose for a given
case, the vote is close. Because vote is close, bagging the very same data again could
easily result in a close vote the other way. The initial forecasted class is not reliable;
the forecast could have easily been different. It is usually important for stakeholders
who will use the forecast to know the forecast’s reliability, even if they do not know
whether the forecast is correct. Should the vote be lopsided, the forecasted class is
reliable, and even though the true class is not known, the forecast may be given more
credibility.

Whatever the level of confidence, it is with respect to the performance of the
bagged classifier itself. Was it able to classify particular cases with sufficient relia-
bility? It is not confidence about any larger issues such as whether the fitted values

5The average of an indicator variable is a proportion. The “max” allows for more than two outcome
classes with the proper comparison a worse case scenario.

4.3 Some Bagging Details 195

are good approximations of the true response surface. It is nothing like a model
diagnostic or model misspecification test. There is often confusion on this point.

In summary, large margins can be a major asset. For each case, the margin can be
a measure of reliability for the class assigned. Larger margins imply greater bagging
reliability. Forecasting is different. In the earlier prison inmate instance, housing
decisions at intake were based on an inmate’s forecasted misconduct class. If the
vote for a given inmate is equivocal, prison staff properly might decide to base the
housing decision on other information. If the vote is decisive, prison staff properly
might base the housing decision primarily on the class assigned.

4.3.6 Using Out-Of-Bag Observations as Test Data

In conventional CART software, a tree is grown with training data, and the training
data used to grow the tree are used again to compute the number of classification
errors. The training data are dropped down the tree to determine how well the tree
performs. The training data are said to be “resubstituted” when tree performance is
evaluated.

In some implementations of bagging, out-of-bag observations from each tree can
be treated as a test dataset and dropped down the tree. There need be no resubstitution.
A record is kept of the class with which each out-of-bag observation is labeled, as
well as its values on all of the predictors. Then in the averaging process, only those
class labels are used. In other words, the averaging for a given case over trees is
done only using the trees for which that case was not used to grow the tree. This
leads to still more honest fitted values and more honest confusion tables than with
conventional bagging.

4.3.7 Bagging and Bias

Although the major target of bagging is the variance of fitted values, there can be in
certain situations a reduction in the bias as well. Figure4.3 illustrates how bagging
can affect the bias. To keep the graph simple, there is a smooth nonlinear f (X)
linking a single predictor to a quantitative response Y. The true response function is
shown.

Imagine that a regression tree is applied one time to each of three different boot-
strap samples of the data. Each time, only one break in the predictor is allowed.
(Such trees are sometimes called “stumps.”) Three step functions that could result
are overlaid as open rectangles. One has a very rough approximation of the f (X). If
that function is the estimation target, there is substantial bias.

Suppose now that there are eleven bootstrap samples and eleven stumps. Eleven
step functions that could result are shown with the light blue rectangles. Clearly,
the approximation is better and bias is reduced. Because in bagging there are often
hundreds of trees, there is the possibility of approximating complex functions rather

196 4 Bagging

Fig. 4.3 How bagging
smooths using a set of step
functions to approximate the
true response surface

x

y

Rougher

Smoother

True Response Surface

well. The same reasoning applies to categorical outcomes. In short, bagging can
reduce bias by what is, in effect, smoothing (Bühlmann and Yu 2002).

In addition, noted earlier was an indirect impact that bagging can have on bias.
Because of the averaging in bagging, one can employ more complex functions of
the data with less worry about the impact of overfitting on generalization error. For
example, bagging gives more license to grow very large trees with few observations
in terminal nodes. The larger trees can lead to less bias while bagging increases the
stability of fitted values.

4.3.8 Level I and Level II Analyses with Bagging

As always, a level I analysis is justified. For bagging that may mean little more than
studying a histogram of the fitted values or examining a confusion table derived from
resubstituted data. There might also be interest in the margins. But such analyses go
primarily to how well the bagging procedure performs. Because there is no longer a
tree to interpret, there is little that can be easily done to describe how the predictors
are related to response. In the next chapter, some tools will be introduced that can
help.

However, the usual motivation for bagging and the usual interest in margins imply
concerns about generalization error. Generalization error is a level II matter. More-
over, bagged output can then be seen as estimates. Assuming that the training data
plausibly can be treated as independent random realizations from a relevant joint
probability distribution, the level II issues are much the same as discussed for CART.
There is an estimation target, which is the population approximation of the true
response surface. The details of that approximation depend on the classifier being
used. If the classifier is adaptive (i.e., inductive), model selection can be a serious
estimation complication. As before, the best hope is to have test data. The training
data and bagging results are taken to be fixed. If test data are used to construct fitted
values, the observed class and the fitted classes can be tabulated in a confusion table
fromwhich various kind of generalization error can be estimated. For example, there

4.3 Some Bagging Details 197

can be an overall misclassification proportion weighted by the asymmetric costs of
classification errors. There can also be misclassification proportions for either of the
two (or more) outcome classes. One can also use the fitted classes from the test data
as asymptotically unbiased estimates of the bagging approximation response surface.
Imputation and forecasting directly follow.

4.4 Some Limitations of Bagging

In general, bagging is a reasonably safe procedure. But it is hardly a panacea. Some-
times it does not help and on occasion it can make things worse.

4.4.1 Sometimes Bagging Cannot Help

Bagging only returns an average of fitted values that is different from those that could
be obtained from one pass over the original data if the fitting procedure is a nonlinear
or an adaptive function of the data (Hastie et al. 2009: 282). For example, there is no
reason to apply bagging to conventional linear regression. The average of the fitted
values over a large number of bootstrap samples would be effectively the same as
the fitted values obtained from conventional linear regression applied once to the
training data. In contrast, there can be useful differences for smoothing splines when
the value of λ is determined empirically. This point helps to underscore an earlier
discussion about the bootstrap samples used in bagging: in bagging, the goal is not
to approximate a sampling distribution but to allow for many passes over the data.

4.4.2 Sometimes Bagging Can Make the Bias Worse

Look again at Fig. 4.3. Suppose f (X) is really very jagged, much like a step func-
tion. Then, the smoothing that bagging accomplishes can increase bias because the
smoothing on the average moves the fitted values away from the true response sur-
face. One does not want the sharp corners of the CART estimates “sanded off”.
Classification can also be adversely affected.

Weak classifiers can also create problems, especially when the distribution of
the response is highly unbalanced. Weak classifiers are sometimes defined as those
that do not do materially better than the marginal distribution. Suppose the marginal
distribution of the response is unbalanced so that it is very difficult for a fitting
procedure using the predictors to perform better than themarginal distribution. Under

198 4 Bagging

Fig. 4.4 Good and bad
influence in bagging

X

Y

1

0

those circumstances the rare classwill likely bemisclassifiedmost of the timebecause
votes will be typically won by the class that is far more common.6

To illustrate this point, suppose there is a binary response variable, and for the
moment, we are interested in a single observation that actually happens to be a
“success.” Over K classification trees, that observation is classified as a success
about two times out of ten. So, the classification for that observation will be wrong
about 80%of the time. But if one classifies bymajority vote, the class assignedwould
be a failure and that would be wrong 100% of the time. Because the K classifiers
do a poor job, the majority vote makes things worse. Stronger classifiers typically
would place that observation in terminal nodes where the major of the cases were
successes. Then the vote over trees would help.

In practice, such problems will be rare if the data analyst pays attention to how
the classifier performs before bagging is applied. If it performs very poorly, bagging
risks making things worse. We show in later chapters that if one has a set of weak
classifiers, alternative procedures may be called for that can help.

4.4.3 Sometimes Bagging Can Make the Variance Worse

Bagging sometimes can also perform poorly with respect to the variance (Grandvalet
2004). Figure4.4 shows a scatterplot with a binary outcome. The observations are
represented by filled circles. The light blue circles represent the mass of the data.
The dark blue circle and the red circle are high leverage observations because they
are outliers in the x-direction. Consider now their role for the fitted values.

To keep the exposition simple, suppose that within the range of X , true response
surface is a linear function of the X . The solid black line shows the fitted values with
both the blue circle and the red circle excluded from the dataset. Suppose that the blue

6Moreover, sometimes the procedure will fail because none of the rare cases are included in a given
bootstrap sample.

4.4 Some Limitations of Bagging 199

outlier is not included in the data. The broken red line shows the fitted values with
the lower-right outlier included. The lines are rather different, implying that whether
that red outlier is included in the analysis alters the response function substantially.
Therefore, the outlier is influential. In a bagging application, the fitted values will
vary widely depending on whether the red observation happens to be included. Then,
averaging over classifiers reduces the variance of the fitted values. Bagging works
as it should.

In contrast, suppose that the red outlier is excluded from the data. Whether the
blue outlier is included makes a small difference in the fitted values. It happens to
fall near the line generated by the other fitted values. The broken blue line shows the
result. Deleting the blue outlier does not change the fit a great deal. Therefore, it is not
influential. Rather, it helps to stabilize the fitted values. When it is excluded because
of bootstrap sampling that added stability is lost. Bagging may increase the variance.
In practice, however, such situations are very rare, and the increase in variance is
likely to be small.

The problems with bagging just described have their analogues for quantitative
responses. Bagging is at its best when the problem to overcome is instability. Bagging
when the fitted values are already very stable can make things worse. In practice, it
can be useful to inspect several of the K classifiers derived from different bootstrap
samples to see how serious the instability may be.

4.5 A Bagging Illustration

In practice, bagging is not used much as a stand-alone procedure. There are far
better statistical learning tools. But like classification and regression trees, it can be
a key component of more effective approaches and many of the details need to be
understood.

Consider now bagging applied to the Titanic data largely to show some R-code.
The library in R is ipred and bagging procedure itself is bagging().7 We use the
same classification tree specification as before, which assumes symmetric costs for
classification errors. Table4.1 is the confusion table constructed solely from the
training data and Fig. 4.5 shows the code responsible. By all of the performance
measures shown in the table, the fit is quite good, but the table is constructed from
in-sample data. Also, there is no tree to interpret.

7The package ipred() is written byA. Peters, T. Hothorn, B.D. Ripley, T. Therneau, and B. Atkinson.
There are number of bagging-related procedures in ipred().

200 4 Bagging

Table 4.1 Bagged
classification tree confusion
table for survival on the
Titanic (N=1309)

Classify
perished

Classify
survived

Model error

Perished 759 50 .05

Survived 100 400 .21

Use error .12 .10 Overall
error= .12

Bagging
library(PASWR) # Where the data are
data("titanic3") # Load data
library(ipred) # Load library

Bag Classification trees
out1<-bagging(as.factor(survived)~sex+age+pclass+sibsp+parch,

data=titanic3,coob=T, keepX=T, nbagg=50,
minsplit=10, cp=.05, xval=0)

fitted<-predict(out1, newdata=titanic3,
type="class") # fitted class

tab<-table(titanic3$survived,fitted) # confusion table
prop.table(tab,1) # use error
prop.table(tab,2) # model error

Fig. 4.5 R code for bagging Titanic data

4.6 Bagging a Quantitative Response Variable

Bagging works by the same principles when the response variable is quantitative.
Recall that CART constructs a regression tree by maximizing the reduction in the
error sum of squares at each split. Each case is placed in a terminal node with a
conditional mean. That mean is the fitted value for all cases of that terminal node.

All of the concerns about CART instability apply, especially given the potential
impact that outliers can have on the fitting process when the response variable is
quantitative. Because of the sum of squares loss function, a few cases that fall a
substantial distance from the mass of the data can produce results that can vary
substantially over samples, do not characterize well the mass of the data, and do not
generalize well either.

With a numerical response variable, bagging averages over trees inmuch the same
way it averages over trees when the response variable is categorical. For each tree,
each observation is placed in a terminal node and assigned the mean of that terminal
node. Then, the average of these assigned means over trees is computed for each
observation. This average value for each case is the bagged fitted value used. The
averaging process will tend to moderate instability. If for each tree, the OOB data

4.6 Bagging a Quantitative Response Variable 201

that are placed in terminal nodes is used in the averaging, stability can be improved
more effectively.

4.7 Summary and Conclusions

Bagging is an important conceptual advance and a useful tool in practice. The concep-
tual advance is to aggregate fitted values from a large number of bootstrap samples.
Ideally, many sets of fitted values, each with low bias but high variance, may be aver-
aged in a manner than can effectively reduce the bite in the bias–variance tradeoff.
Thanks to bagging, there can be away to usefully address this long-standing dilemma
in statistics. Moreover, the ways in which bagging aggregates the fitted values is the
basis for other statistical learning developments.

In practice, bagging can generate fitted values that often reproduce the data well
and forecast with considerable accuracy. Both masters are served without making
unrealistic demands on available computing power. Bagging can also be usefully
applied to a wide variety of fitting procedures. However, bagging is not much used
as a stand-alone procedure because there are statistical learning procedures readily
available that import the best features of bagging, add some new wrinkles, and then
perform better.

In addition, bagging also suffers from several problems. Perhaps most important,
there is no way within the procedure itself to depict how the predictors are related to
the response. With test data or OOB data, one can obtain a more honest set of fitted
values and a more honest evaluation of how good the fitted values really are. But as
an explanatory device, bagging is pretty much a bust. Other tools are needed, which
are considered in the next chapter.

A second problem is that because so much of the data are shared from tree to tree,
the fitted values are not independent. The common set of available predictors can
build in additional dependence. Consequently, the averaging is not as effective as it
could be. This too is addressed shortly.

Third, bagging may not help much if the fitting function is consistently and sub-
stantially inappropriate. Large and systematic errors in the fitted values are just
reproduced a large number of times and do not, therefore, cancel out in the averag-
ing process. For categorical response variables, bagging a very weak classifier can
sometimes make things worse.

Fourth, the bootstrap sampling can lead to problems when categorical predictors
or outcomes are highly unbalanced. For any given bootstrap sample, the unbalanced
variable can become a constant. Depending on the fitting function being bagged, the
entire procedure may abort.

Finally, bagging can actually increase instability if there are outliers that help
to anchor the fit. Such outliers will be lost to some of the bootstrap samples. It is
difficult in practice to know whether this is a problem or not.

Bagging can be extended so that many of these problems are usefully addressed,
even if full solutions are not available. We turn to some of these potential solutions

202 4 Bagging

in the next chapter. They are found in another form of statistical learning, still farther
away from conventional regression analysis.

Exercises

Problem Set 1

The sampling done in bagging must be with replacement. Run the following code
and compare the tables. How many duplicate observations are there in s1 compared
to s2?Write code to find out. Run the code a second time. Again, howmany duplicate
observations are there in s1 compared to s2? Write code to find out. What have you
learned about the differences between the samples drawn by the two methods?

x<-1:100

s1<-sample(x,replace=T)

table(s1)

s2<-sample(x,replace=F)

table(s2)

Problem Set 2

The goal of this exercise is to compare the performance of linear regression, CART,
and bagging applied to CART. Construct the following data set in which the response
is a quadratic function of a single predictor.

x1=rnorm(500)

x12=x1ˆ2

y=1+(2*(x12))+(2*rnorm(500))

1. Plot the 1 + (2 × x12) against x1. This is the “true” relationship between the
response and the predictor without the complication of the disturbances. This is
the f (X) you hope to recover from the data.

2. Proceed as if you know that the f (X) is quadratic. Fit a linear model with x12 as
the predictor. Then plot the fitted values against x1. You can see how well linear
regression does when the functional form is known.

3. Now suppose that you do not know that the f (X) is quadratic. Apply linear
regression to the same response variable using x1 (not x12) as the sole predictor.
Construct the predicted values and plot the fitted values against x1. How do the
fitted values compare to what you know to be the correct f (X)? (It is common
to assume the functional form is linear when the functional form is unknown.)

4. Apply CART to the same response variable using rpart() and x1 (not x12) as
the sole predictor. Use the default settings. Construct the predicted values, using
predict(). Then plot the fitted values against x1. How do the CART fitted values
compare to what you know to be the correct f (X)? How do the CART fitted
values compare to the fitted values from the linear regression with x1 as the sole
predictor?

4.7 Summary and Conclusions 203

5. Apply bagging to the same response variable using bagging() from the ipred()
library, and x1 as the sole predictor. Use the default settings. Construct the pre-
dicted values using predict(). Then plot the fitted values against x1. How do the
bagged fitted values compare to the linear regression fitted values?

6. You know that the relationship between the response and x1 should be a smooth
parabola. How do the fitted values from CART compare to the fitted values from
bagging? What feature of bagging is highlighted?

Problem Set 3

Load the dataset “Freedman” from the car library. For 100 American cities, there
are four variables: the crime rate, the population, population density, and propor-
tion nonwhite. As before, the crime rate is the response and the other variables are
predictors.

1. Use rpart() and its default values to fit a CART model. Compute the root mean
square error for the model. One way to do this is to use predict.rpart() to obtain
the fitted values and with the observed values for the variable “crime,” compute
the root mean square error in R. Then use bagging() from the library ipred and
the out-of-bag observations to obtain a bagged value for the root mean square
error for the same CART model. Compare the two estimates of fit and explain
what you see. Keep in mind that at least two things are going on: (1) in-sample
v. out-of-sample comparisons, and (2) the averaging that bagging provides.

2. Using sd(), compute the standard deviation for the CART fitted values and the
bagged fitted values. Compare the two standard deviations and explain what you
see.

Problem Set 4

Load the dataset “frogs” from the library DAAG. Using “pres.abs” as the response,
build a CART model under the default settings.

1. Construct a confusion table with “pres.abs” and the predicted classes from the
model. Now, using bagging() from the library ipred, bag the CART model using
the out-of-bag observations. Construct a confusion table with “pres.abs” and the
bagged predicted classes from the model. Compare the two confusion tables and
explain why they differ. Keep in mind that at least two things are going on:
(1) in-sample v. out-of-sample comparisons, and (2) the averaging that bagging
provides.

Chapter 5
Random Forests

5.1 Introduction and Overview

Just as in bagging, imagine growing a large number of classification or regression
trees with bootstrap samples from training data. But now, as each tree is grown, take
a random sample of predictors before each node is split. For example, if there are 20
predictors, choose a random five as candidates for defining the split. Then construct
the best split, as usual, but selecting only from the five chosen. Repeat this process
for each prospective split. Do not prune. Thus, each tree is produced from a random
sample of cases, and at each split a random sample of predictors. Compute the mean
or proportion for each tree’s terminal nodes just as in bagging. Finally, for each case,
average over trees as in bagging, but only when that case is out-of-bag. Breiman calls
such as procedure a “random forest” (Breiman 2001a).

The random forest algorithm is very much like the bagging algorithm. Again let
N be the number of observations in the training data and assume for now that the
response variable is binary.

1. Take a random sample of size N with replacement from the data.
2. Take a random sample without replacement of the predictors.
3. Construct the first recursive partition of the data as usual.
4. Repeat Step 2 for each subsequent split until the tree is as large as desired. Often

this leads to one observation in each terminal node. Do not prune. Compute each
terminal node proportion as usual.

5. Drop the out-of-bag (OOB) data down the tree. Store the class assigned to each
observation along with each observation’s predictor values.

6. Repeat Steps 1–5 a large number of times (e.g., 500).

The original version of this chapter was revised: See the “Chapter Note” section at the end of
this chapter for details. The erratum to this chapter is available at https://doi.org/10.1007/978-
3-319-44048-4_10.

© Springer International Publishing Switzerland 2016
R.A. Berk, Statistical Learning from a Regression Perspective,
Springer Texts in Statistics, DOI 10.1007/978-3-319-44048-4_5

205

http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10
http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10

206 5 Random Forests

7. Using only the class assigned to each observation when that observation is OOB,
count the number of times over trees that the observation is classified in one
category and the number of times over trees it is classified in the other category.

8. Assign each case to a category by a majority vote over the set of trees when that
case is OOB. Thus, if 51% of the time over a large number of trees a given case
is classified as a 1, that becomes its assigned classification.

The major differences between the bagging algorithm and the random forests
algorithm are the sampling of predictors at each potential split of the training data,
and using only the out-of-bag data when fitted values or classes are assigned to each
case. Both are in the service of making the output from each tree in the random forest
more independent, but there are additional benefits addressed below.

The key output from random forests is the fitted values, which if classes, are dis-
played in a confusion table. Because the fitted values are for out-of-bag observations,
the confusion table effectively is constructed from test data. Still, the black box pro-
duced is every bit as opaque as the bagging black box. There are other algorithms
that can be used in concert with random forests to provide a peek at what may be
going on inside the box.

Finally, even when random forests is being used solely to describe associations
in the data, there is more going on than a level I analysis. The use of OOB data
to obtain honest fitted values implies level II concerns broadly and concerns about
generalization error in particular.Most discussions of random forests consider results
from a dataset as estimates so that, for example, fitted proportions from a sample are
called probabilities even if it is unclear exactly what is being estimated and where
that estimand resides. We will return to these issues toward the end of this chapter
but many of the level II perspectives from bagging carry over.

5.1.1 Unpacking How Random Forests Works

Just like for CART and bagging, beneath a simple algorithm are a host of important
details and subtleties. To begin, random forests uses CART as a key building block
but in this new setting, CART can bemade farmore effective. Large trees can produce
fitted values less biased with respect to the true response surface. With large trees
necessarily comes a more complex f̂ (X). Ordinarily, however, an increase in the
number of terminal nodes leads to a smaller number of observations in each. The
fitted values are more vulnerable to instability. From a level II perspective, the bias–
variance tradeoff remains a serious problem. But by averaging over trees, the fitted
values case-by-case are made more stable. Ideally, both the bias and the variance can
be reduced.1

1One might think weighting trees by some measure of generalization error would help. Better
performing trees would be given more weight in the averaging. So far at least, the gains are at
best small (Winham et al. 2013). Because better performing trees tend to have more variation over
terminal node fitted values, a form of self-weighting is in play.

5.1 Introduction and Overview 207

Another way to make CART more effective is to sample predictors. One benefit
is that the fitted values across trees are more independent. Consequently, the gains
from averaging over a large number of trees can be more dramatic. Another benefit
is that because only a few predictors are considered for each potential partitioning,
there can be overall more predictors than observations; p can be very large and even
larger than N . This is a major asset in the era of big data. In principle, having access
to a very large number of predictors can help legitimately to improve the fit and any
forecasting that might follow.

A third benefit can be understood by revisiting the rationale used by CART to
determine whether a particular split is to be made for a given tree. Different sets of
predictors are evaluated for different splits so that awide variety ofmean functions are
evaluated, each potentially constructed from rather different basis functions. Recall
the CART splitting criterion for binary response variables:

ΔI (s, A) = I (A) − p(AL)I (AL) − p(AR)I (AR), (5.1)

where I (A) is the value of the parent impurity, p(AR) is the probability of a case
falling in the right daughter node, p(AL) is the probability of a case falling in the left
daughter node, I (AR) is the impurity of the right daughter node, and I (AL) is the
impurity of the left daughter node. The CART algorithm tries to find the predictor
and the split for which ΔI (s, A) is as large as possible.2

The usefulness of a potential split is a function of the two new impurities and the
probability of cases falling into either of the prospective daughter nodes. Suppose
there is a predictor that could produce splits in which one of the daughter nodes is
very homogeneous but has relatively few observations, whereas the other node is
quite heterogeneous but has relatively many observations. Suppose there is another
predictor that could generate two nodes of about the same size, each of which is
only moderately homogeneous. If these two predictors were competing against each
other, the second predictor might well be chosen, and the small, relatively homoge-
neous, region that the first predictor would exploit be ignored. However, if the second
predictor were not in the pool of competitors, the first might be selected instead.

Similar issues arise with predictors that are substantially correlated. There may
be little difference empirically between the two so that when they compete to be
a splitting variable, one might be chosen almost as readily as the other. But they
would not partition the data in exactly the same way. The two partitions that could
be defined would largely overlap with each partition having unique content as well.
The unique content defined by the predictor not chosen would be excluded.

2Geurts and his colleagues (2006) have proposed another method for selecting predictors that can
decrease dependence across trees and further open up the predictor competition. They do not build
each tree from a bootstrap sample of the data. Rather, for each random sample of predictors, they
select splits for each predictor at random (with equal probability), subject to someminimum number
of observations in the smaller of the two partitions. Then, as in random forests, the predictor that
reduces heterogeneity the most is chosen to define the two subsets of observations. They claim that
this approach will reduce the overall heterogeneity at least as much as other ensemble procedures
without a substantial increase in bias. However, this conclusion would seem to depend on how good
the predictors really are.

208 5 Random Forests

Moreover, with the shared area now removed from consideration, the chances that
the neglected predictor would be selected later for that tree are significantly reduced
because its relationship with the response variable has been eroded. But all is not
lost. There will be other trees in the forest and other chances to compete. For one
or more subsequent trees, the slighted variable will be competing against others, but
not the one with which it is strongly correlated.

In practice, the opportunity for weak predictors to contribute is huge. One by
one, they may not help much but in the aggregate, their impact can be substantial.
Conventional regression models typically exclude such variables by design. The
associations with the response one by one are too small to be interesting in subject
matter terms. In practice, weak predictors are treated as noise and swept into the
disturbance term. But a large number of small associations, when considered as a
group, can lead to much better fitted values and much more accurate imputations and
forecasts.

5.2 An Initial Random Forests Illustration

Random forests has its roots in CART and bagging. One might expect, therefore, that
when random forests is used for classification, a confusion table will be a key output.
But for random forests, the confusion table is constructed from theOOBobservations
so that out-of-sample performance is represented. Such confusion tables can be called
“honest.”

We revisit the domestic violence example described earlier with an analysis that
shows some of the complexities of working with very challenging data. The data
are so challenging that some readers may be underwhelmed with how well random
forests performs.3 More definitive performance is illustrated later. The primary goal
for the moment is to raise important application issues. The secondary goal is to
undercut some of the hype that many associate with the procedures covered in this
and the next three chapters. The procedures are very good to be sure. But, compelling
results are never guaranteed.

There are a little over 500 observations, and even if just double interactions are
considered, there are well over 100 predictors. This time, the goal is not to forecast
new calls for service to the police department that likely involve domestic violence,
but only those calls in which there is evidence that felony domestic violence has
actually occurred. Such incidents represent about 6% of the cases. They are very
small as a fraction of all domestic violence calls for service. As such, they would
normally be extremely difficult to forecast with better skill than could be obtained
using the marginal distribution of the response alone. One would make only six mis-
takes in 100 households if one classified all households as not having new incidents
of serious domestic violence.

3All of the other procedures tried performed even more poorly.

5.2 An Initial Random Forests Illustration 209

Table 5.1 Confusion table
for a serious domestic
violence incidents using a 10
to 1 target cost ratio
(N = 516)

No serious DV
forecasted

Serious DV
forecasted

Model
error

No serious DV 341 146 .30

Serious DV 15 14 .52

Use error .04 .91 Total error
= .31

Using the response variable as the only source of information would in this case
mean never correctly identifying any serious domestic violence households. The pol-
icy recommendation might be for the police to assume that the domestic violence
incident to which they had been called would be the last serious one for that house-
hold. This would almost certainly be an unsatisfactory result, which implies that
there are significant costs from false negatives. The default cost ratio of 1 to 1 is not
responsive to the policy setting.

With a target cost ratio of 10 to 1 for false negatives to false positives favored by
the police department, one obtains the results in Table5.1.4 The empirical cost ratio
of false positives to false negatives is 146/15. The cost ratio value of 9.7 to 1 means
that each false negative is worth nearly 10 times more than each false positive. This
is effectively the 10 to 1 cost ratio sought and in practice, it is very difficult to hit the
target cost ratio exactly. In practice, moreover, the differences between a confusion
table with a 10 to 1 cost ratio and a confusion table with a 9.7 to 1 cost ratio will
usually not matter.

Table5.1 shows that random forests incorrectly classifies households 31 times out
of 100 overall. The value of 31 can be interpreted as the overall average cost of a
classification error. But noted earlier, the usual overall error gives all errors equal
weight. Having decided from policy considerations that the proper cost ratio is 10 to
1, the proper average cost .57 (i.e., [(10× 15)+ 146]/516). But, the overall measure
of cost-weighted generalization error neglects some very important features of the
table more relevant to real decision-making.

From the model error, one can see that about 30% of the of the cases with no
subsequent DV are classified incorrectly and about 52% of the cases with subse-
quent DV are classified incorrectly. That this application of random forests correctly
classifies only about half the DV cases may be disappointing, but without using any
of the predictors, no DV cases whatsoever would be correctly classified.5

If the results from Table5.1 are to be used to inform real decisions, use error is
especially instructive. When a forecast is for no subsequent DV, the assigned class
is incorrect only about 4% of the time. When a forecast is for subsequent DV, the
assigned class is incorrect about 91% of the time. The large difference in forecasting
skill results substantially from the 10 to 1 cost ratio. Implicit is a policy preference

4R code is not provided because it is too early in the exposition. Lots of R code is provided later.
5Itmight seemstrange that the classification accuracyof oneoutcome is not 1minus the classification
accuracy of the other. If a case is not classified as DV, it must be classified as a DV case. But one
is conditioning on the actual outcome, and the denominators of the model errors differ. Accuracy
depends in part on the base.

210 5 Random Forests

to accept a relatively large number of false positives (i.e., 146) so that the number
of false negatives is relatively low (i.e., 15). The 146 false positives lead to poor
accuracy with the DV class that is predicted.

At the same time, the policy preference means that classification accuracy when
no DV is the assigned class is improved compared to the baseline. Recall, that if
the marginal distribution of the response is used, all 515 cases are predicted to be
arrest-free, and 6% of the cases are not arrest-free. From Table5.1, 69% percent of
the cases are predicted to be arrest-free, and 4% of those cases are not arrest-free.
Because the base of 6% is very small, it is impossible to obtain large improvements
in percentage units; even perfect forecasting would only reduce the forecasting errors
by 6 percentage points. In such circumstances, it is common to report ratios, and then
the forecasting errors is reduced by one-third (2%/6%).

In short, the procedure accepts much weaker evidence to assign the serious DV
class than to assign the no serious DV class. In this illustration, it takes very strong
statistical evidence for a case to be classified as no serious DV. High accuracy follows
for forecasts of no serious DV.

Although confusion tables using OOB data are an essential feature of random
forests output, there are other kinds of output that can be very helpful. These are
derived from additional algorithms that will be discussed shortly. In preparation and
to help provide readers with better access to the technical literature, we turn to a few
formalities.

5.3 A Few Technical Formalities

With some initialmaterial on random forests behind us, it is useful to take a somewhat
more formal look at the procedure. We build on an exposition by Breiman (2001a).
The concepts considered make more rigorous some ideas that we have used in the
past two chapters, and provide important groundwork for material to come. We also
considerwhether random forests overfits as the number of trees in the forest increases.
As before, we emphasize categorical, and especially binary, response variables.

It will be important to keep straight randomness introduced by the algorithm and
randomness introduced by the data. One can undertake a level I analysis despite
randomness from algorithm because it has nothing to do with how the data were
generated. The moment interest includes generalizing beyond the data on hand,
randomness in the data are in play, and a level II analysis must follow. Most formal
expositions of random forests emphasize level II issues.

In order to help readers who may wish to read Breiman’s treatment of random
forests or subsequent work that draws directly from it, Breiman’s notation is adopted.
Bold type is used for vectors and matrices. Capital letters are used for random vari-
ables. The terms “predictor” and “input” are used interchangeably.

5.3 A Few Technical Formalities 211

5.3.1 What Is a Random Forest?

With categorical response variables, a random forest is an ensemble of classifiers.
The classifiers are K classification trees, each based in part on chance mechanisms.
Like CART, these classifiers can work with more than two response categories. The
goal is to exploit the ensemble of K trees to assign classes to observations using
information contained in a set of predictors.

We formally represent a random forest as a collection of K tree-structured clas-
sifiers { f (x,Θk), k = 1, . . . }, where x is an input vector of p input values used to
assign a class, and k is an index for a given tree. “Each tree casts a unit vote for the
most popular class at input x” (Breiman 2001a: 6). As an ensemble of classifiers, a
random forest is also a classifier.

Θk is a random vector constructed for the kth tree so that it is independent of
past random vectors Θ1, . . . , Θk−1, and is generated from the same distribution.
For bagging, it is the means by which observations are selected at random with
replacement from the training data. For random forests, it is also the means by which
subsets of predictors are sampledwithout replacement for each potential split. In both
cases, Θk is a collection of integers. The integers serve as indices determining which
cases and which predictors, respectively, are selected. Integers for both sampling
procedures can be denoted by Θk .

The paramount output from a random forest is an assigned class for each obser-
vation determined at its input values xi . In CART, for example, the class assigned to
an observation is the class associated with the terminal node in which an observation
falls. With random forests, the class assigned to each observation is determined by a
vote over the set of tree classifiers when OOB data are used. Classes are assigned to
observations much as they are in bagging. It is important conceptually to distinguish
between the class assigned by the kth tree and the class assigned by a forest. It is
also important to appreciate that when used as a classifier, random forests does not
produce probabilities for the response variable classes. There is not even an analogy
to the fitted values from logistic regression.

5.3.2 Margins and Generalization Error for Classifiers
in General

For ease of exposition, consider first any ensemble classifier, not random forests
in particular. Suppose there is a training dataset with input values and associated
values for a categorical response. As before, each observation in the training dataset
is realized at random and independently. The set of inputs and a response are random
variables.

There is an ensemble of K classifiers, f1(x), f2(x), . . . , fK (x). For the moment,
we do not consider how these different classifiers are constructed. The margin func-
tion at the data point X,Y is then defined as

212 5 Random Forests

mg(X,Y) = avk I (fk(X) = Y) − max
j �=Y

avk I (fk(X) = j), (5.2)

where I (.) is an indicator function, j is an incorrect class, avk denotes averaging
over the set of classifiers for a single realized data point, and max denotes the largest
value. For a given set of x-values and the associated observed class, the margin is
the average number of votes over classifiers for the correct observed class minus
the maximum average number of votes over classifiers for any other class. The term
“data point” for this discussion is for the same a row in the dataset. Because Eq.5.2
applies to any row, it applies to all rows.

From the definition of the margin function, generalization error is then,

g = PX,Y (mg(X,Y) < 0), (5.3)

where P means probability. In words, Breiman’s generalization error is the probabil-
ity over realizations of a given row of the data that the votewill bewon by an incorrect
class: the probability that the margin will be negative. Because Eq.5.3 applies to any
row, it applies to realizations for all rows. There are no test data in this formulation of
generalization error, and the training data are not fixed. Recall that when Hastie et al.
(2009: 220) define generalization error, the training data are fixed and performance
is evaluated over realizations of test data. One is, of course, free to define concepts
as one wants, but for both definitions, generalization error should be small.

5.3.3 Generalization Error for Random Forests

Now, suppose for the kth classifier fk(X) = f (X,Θk). There are K tree classifiers
that comprise a random forest. Breiman proves (2001a) that as the number of trees
increases, the estimated generalization error converges to the true generalization
error, which is

PX,y(PΘ(f (X,Θ) = Y) − max
j �=Y

PΘ(f (X, θ) = j) < 0). (5.4)

PΘ(f (X,Θ) = Y) is the probability of a correct classification over trees that differ
randomly because of the sampling of the training data with replacement and the
sampling of predictors. One can think of this as the proportion of times a classification
is correct over a limitless number of trees grown from the same dataset. Parallel
reasoning for an incorrect classification applies to PΘ(f (X, θ) = j). Note that the
data are fixed.6 Then, we are essentially back to Eq.5.3. As before, PX,Y is the
probability of an incorrect classification over realizations of the data themselves. We

6The concept of training data gets fuzzy at this point. The training data for a given tree is the
random sample drawn with replacement from the dataset on hand. But for the random forest that
entire dataset is the training data.

5.3 A Few Technical Formalities 213

address the uncertainty that is a product of random forests and then the uncertainty
that is a product of the random variables. Breiman proves that as the number of trees
increase without limit, all of these sources of randomness cancel out leaving the true
generalization error shown in Eq.5.4.

What does one mean in this context by “true” generalization error? No claims are
made that the classes assigned by a given forest are “correct.” In function estimation
language, no claims aremade that the true f (X) has been found. Rather, one has once
again some approximation of the true response surface, and it is the generalization
error of that approximation to which an estimated generalization error converges. It
is the “true” generalization error of the approximation.7

The importance of the convergence is that demonstrably random forests does not
overfit as more trees are grown. One might think that with more trees, one would get
an increasingly false sense of how well the results generalize. Breiman proves that
this is not true. Given all of the concern about overfitting, this is an important result.

There is some work addressing random forests statistical consistency for what
appears to be the true response surface. Even if all of the needed predictors are
available, there can be situations in which random forests is not consistent (Biau et
al. 2008; Biau and Devroye 2010). However, because this work is somewhat stylized,
it is not clear what the implications for practice may be. Work that is more recent
and somewhat less stylized proves consistency but among other things, requires
sparsity (Biau 2012). This means that only a “very few” of the large set of potential
predictors are related to the response (Biau 2012: 1067). We are apparently back
to the conventional linear regression formulation in which there are two kinds of
predictors: those that matter a lot and those that do not matter at all. A look at the
variable importance plots reported later in this chapter shows no evidence of sparsity.
There may well be other kinds of data for which sparsity can be plausibly defended
(e.g., for genomics research).

Another assumption that all of the recent theoretical work seems to share is that the
trees in a random forest are “honest” (Wager 2014: 7). By “honest,” one means that
the data used to determine the fitted value for each terminal node are not the data used
to determined the data partitions. By this definition, the trees in Breiman’s random
forests are not honest so the theoretical work does not directly apply. Moreover,
“…the bias of CART trees seems to be subtle enough that it does not affect the
performance of random forests in most situations” (Wager 2014: 8). It is probably
fair to say that the jury is still out on the formal properties of random forests, but that
in practice, there is a consensus that it performs well.

7Because of random forests’ chance components and random forests’ dependence on sample size,
the approximation response surface in the joint probability distribution is the expected random
forest grown with the same number of observations as available in the data.

214 5 Random Forests

5.3.4 The Strength of a Random Forest

The margin function for a given realized data point in a random forest (not just any
classifier) is defined as

mr(X,Y) = PΘ(f (X,Θ) = Y) − max
j �=Y

PΘ(f (X,Θ) = j), (5.5)

where f (X,Θ) denotes random forest classifications for a given row that can vary
because of the chance mechanisms represented by Θ . Because of the randomness
build into the random forest algorithm, the margin function is defined using the
probability of a correct vote and an incorrect vote over forests grown from the same
dataset. It appropriates a piece of the definition of random forests generalization
error.

It is a short step from a random forest margin function to a definition of the
“strength” of a random forest. We take the expectation over realizations of the data.
That is, the expected value of Eq.5.5 is:

s = EX,ymr(X,Y). (5.6)

The strength of a random forest is an expected margin over all possible realizations
of the data. And no surprise, strong is good.

5.3.5 Dependence

As previously noted, the effectiveness of averaging over trees using votes depends on
the independence of the trees. But, howdoes one think about that independence in this
setting? There is apparently some confusion in the literature (to which I plead guilty).
Hastie et al. (2009: 598) stress correctly that “… ρ(x) is the theoretical correlation
between a pair of random forest trees evaluated at x, induced by repeatedly making
training sample draws Z from the population, and then drawing randomly a pair
of random forest trees.” That is, it is the expected value of the correlation between
the fitted values from randomly selected pairs of trees over realizations of the data.
Ideally, that expected correlation is zero.

5.3.6 Implications

Dependence is important because Breiman shows (Breiman 2001a: 6) that the upper
bound for the generalization error is

g∗ = ρ̄(1 − s2)

s2
, (5.7)

5.3 A Few Technical Formalities 215

where ρ̄ is the expected correlation over pairs of trees as just described, and s is the
strength of the random forest. Ideally, the former is small and the latter is large.

Equation5.7 implies that both the sizes of margins and that ways in which the
random forest algorithm introduces randomness are critical. The random forest algo-
rithm already does a pretty good job reducing the expected correlation. But in prac-
tice, random forest sometimes can be tuned to help. For example, sampling fewer
inputs at each splitting opportunity can in some situations improve performance, and
the random forest software in R emphasized here (i.e., randomForest()) has a default
function for determining the number of predictors that seems to work quite well.8

5.3.7 Putting It All Together

Why does random forests work so well as a classifier? Although there are not yet any
formal proofs, recent work by Wyner and colleagues (2015) provides a conceptual
framework coupled with simulations that support some very instructive intuitions.
We will see later that their thinking applies to boosting as well.

It has become common practice, and often the default practice, to grow trees as
large as the data will allow. Terminal nodes are often perfectly homogeneous. Indeed,
sometimes tuning parameters are set so that each terminal node can contain a single
observation. Consequently, in the bootstrap sample used to grow each tree, the fit to
the data can be perfect; for each observation, the tree assigns the correct class. When
this happens, one has an interpolating classifier (Wyner et al. 2015: 9).

Figure5.1 provides a very simple illustration. We again have a 3-dimensional
scatter plot for a realized training dataset. There are two numerical predictors X
and Z , and a binary outcome represented as red, blue, or purple. The red and blue
outcome classes are noiseless in the sense that no matter what the realization of the
data, observations in those locations are always red or blue respectively. In contrast,
the purple circles can be either red or blue depending on the realization.

The box in the upper left-hand corner results from a single classification tree
terminal node with X < 2 and Z > 12. The node has one observation and, therefore,
is necessarily classified correctly.With sufficiently fine-grained partitioning of X and
Z using a sufficiently large tree, each circle in Fig. 5.1 can reside in its own terminal
node. Each would be classified correctly, and its terminal nodes would be perfectly
homogeneous. One would have what Wyner and his colleagues call an interpolation
of the data.

Things are more complicated in the lower right-hand box. For observations with
X > 7 and Z < −4, the outcome class can vary over realizations. It could be a
blue outcome for one data realization and a red outcome for another data realization.
Suppose in one realization of the training data, it is red and is classified as red. One
still has an interpolation of the realized data. But for test data that classification could

8There are other implementations for random forests in R that are briefly discussed later.

216 5 Random Forests

Fig. 5.1 Visualization of
interpolation for a single
classification tree with blue
and red outcomes having no
noise and purple outcomes
having some noise

be wrong because the realized value in that location is blue. Generalization error has
been introduced because of overfitting.

However, because of the interpolation, one has “local robustness” (Wyner et al.
2015: 9–10). Whatever the error in the fit caused by the purple circle, it is confined to
its own terminal node. That is, all of the classifications for the other circles are made
separately from the noisy circle, so that the damage is very limited. In an important
sense, overfitting has some demonstrable benefits.

But there is still overfitting for a given tree. Enter random forests. Each tree is
grown with a random sample of the training data (with replacement). Whatever the
expected value is for the outcome, sometimes the lower right-hand box will contain
a red outcome and sometimes it will contain a blue outcome. By the Bayes decision
rule, a vote taken over trees for terminal nodes defined just like the lower right-hand
box will classify observations that land in that region as red or blue, depending on
the majority vote. This is the best one can do with respect to generalization error.

Voting is an averaging process that improves on the generalization error from
a single tree. Although each tree will overfit, averaging over trees compensates.
Because for real data most points will be purple, the averaging is essential as a form
of regularization.

There is even more going on. First, the striving to interpolate is helped by the
sampling of predictors. Imagine that in Fig. 5.1 one location has a red circle right on
top of a blue circle. There is no way with X and Z alone to arrive at an interpolation
point at that location.9 One solution is to comeupon a variable,W , that in combination
with X and Z could define two terminal nodes, one with the blue circle and one with
the red circle. But, looking back to Eq.5.1, suppose that for a given prospective
partitioning of the data, W does not make a sufficient contribution to homogeneity
to be selected as the next partitioning variable. Even if it is strongly related to the

9As discussed in Chap. 1, there might be a solution is some linear basis expansion of X and Z .

http://dx.doi.org/10.1007/978-3-319-44048-4_1

5.3 A Few Technical Formalities 217

response, it is also too strongly related to X . An opportunity to distinguish between a
red circle and a blue circle is lost. This problem can be solved by sampling predictors.
Suppose, there is a predictor U that, like X , is strongly related to the response, but
unlike X is only moderately related to Z . If for some split, X is not available as a
potential partitioning variable but U is, U , W , and Z can participate sequentially in
the partitioning process.10

Second, the random sampling helps in the situation just described. Over trees, the
covariances among the variables will vary. Consequently, there will be variation in
how strongly X andW are related to the response and to each other. This provides an
opportunity in some samples for W to be less competitive with X. For example, in
some samples, there can be prospective partitions for whichW reduces heterogeneity
sufficiently, even if X is an earlier partitioning variable. The result will be some
different terminal nodes that, in turn, will affect the vote over trees.

Finally, a larger number of training observations can really help. With larger sam-
ples, one can grow larger trees. With larger trees, interpolation can better approx-
imated. With a better approximation of interpolation, coupled with averaging over
trees, generalization error can be reduced.

Although all of the mechanisms just described are always in play, challenges
from real data are substantial. In practice, all of the class labels are noisy so that
the circles in Fig. 5.1 would all be purple. A perfect fit in the training data will not
lead to a perfect fit in the test data. Moreover, a perfect fit is certainly no guarantee
of obtaining unbiased estimates of the true response surface. There will typically be
omitted predictors, and the classification trees are still limited by the ways splits are
determined and the greedy nature of the tree algorithm. It remains true, however,
that “Random forests has gained tremendous popularity due to robust performance
across a wide range of data sets. The algorithm is often capable of achieving best-in-
class performance with respect to generalization error and is not highly sensitive to
choice of tuning parameters, making it an ideal off-the-shelf tool of choice for many
applications” (Wyner et al. 2015: 9).

5.4 Random Forests and Adaptive Nearest
Neighbor Methods

A conceptual link was made earlier between CART and adaptive nearest neighbor
methods. Not surprisingly, similar links can be made between random forests and
adaptive nearest neighbor methods. But for random forests, there are a number of
more subtle issues (Meinshausen 2006; Lin and Jeon 2006). These are important not
just for a deeper understanding of random forests, but for recent theoretical treatments
(Biau 2013; Wager 2014; Wager et al. 2014; Wager and Walther 2015).

10Also, W might be selected farther down in the tree even if it is chosen along with X , depending
on the other predictors chosen. They are both in a competition with several other candidate splitting
variables.

218 5 Random Forests

Recall that inCART, each terminal node represented a region of nearest neighbors.
The boundaries of the neighborhood were constructed adaptively when the best
predictors and their best splits were determined. With the neighborhood defined, all
of the observations inside were used to compute a mean or proportion. This value
became themeasure of central tendency for the responsewithin that neighborhood. In
short, each terminal node and the neighborhood represented had its own conditional
mean or conditional proportion.

Consider the case in which equal costs are assumed. This makes for a much easier
exposition, and no key points are lost. The calculations that take place within each
terminal node implicitly rely on aweight given to each value of the response variable.
For a given terminal node, all observations not in that node play no role when the
mean or proportion is computed. Consequently, each such observation has a weight
of zero. For a given terminal node, all of its observations are used when the mean
or proportion is computed. Consequently, each value of the response variable in that
node has a weight equal to 1/nτ , where n is the number of observations in terminal
node τ . Once the mean or proportion for a terminal node is computed, that mean or
proportion can serve as a fitted value for all cases that fall in that terminal node.

Figure5.2 shows a toy rendering. The tree has a single partitioning of the data.
There happen to be three values of the response variable in each terminal node.
Consider terminal node A. The mean for terminal node A is 2.33, computed with
weights of 1/3 for the values in that node and weights of 0 otherwise; the values of
the response variable in terminal node B play no role when the mean of node A is
computed. Each of the three observations landing in terminal node A are assigned
a value of 2.33 as their fitted value. If the response variable had been binary, the
numbers in the two terminal nodes would have been replaced by 1s and 0s. Then a
conditional proportion for terminal node A would be the outcome of the weighted

Fig. 5.2 CART weighting used to assign a mean or proportion to a terminal node A or B

5.4 Random Forests and Adaptive Nearest Neighbor Methods 219

averaging. And from this, an assigned class could be determined as usual. The same
reasoning applies to terminal node B.

A bit more formally, a conditional mean or proportion for any terminal node τ is

ȳτ |x =
N∑

i=1

w(i,τ)yi , (5.8)

where the sum is taken over the entire training dataset, and wi is the weight for
each yi . The sum of the weights over all observations is 1.0. In practice, most of
the weights for the calculations in any terminal will be zero because they are not
associated with the terminal node τ . This is no different from the manner in which
nearest neighbor methods can work when summary measures of a response variable
are computed.

There are two important features of the weighting terminal node by terminal node.
First, each terminal node defines a neighborhood. The x-values for each observation
determine in which neighborhood the observation belongs. It will often turn out that
observationswith somewhat different sets of x-values land in the same neighborhood.
For example, a partition may be defined by a threshold of 25 years of age. All ages
less than 25 sent to one neighborhood and all ages 25 and above are sent to another.

Second, for any given tree, each of the N observations will have a single, nonzero
weight because each observation must land in one (and only one) of the terminal
nodes. It is in that node that the single weight is determined as the reciprocal of the
number of observations. In our toy example, each of the six observations happen to
have a weight of 1/3 because both terminal nodes have three observations.

Now imagine that the tree is grown as an element of a random forest. The form of
the calculations shown for terminal nodes A and B still apply with the fitted values,
in this instance, a conditional mean. However, there are now a large number of such
trees. For each observation, random forests average the weights obtained from each
tree (Lin and Jeon 2006: 579–580). Consequently, the i th fitted value from a random
forest is a weighted average of N values of the response, much like in Fig. 5.2, but
using average weights.11 That is,

ŷi =
N∑

i=1

w̄i yi , (5.9)

where w̄i is the average weight.
The weights can serve another important purpose. Suppose for a given neigh-

borhood defined by x0, there are 10 observations and, therefore, 10 values for
a quantitative response. There are also 10 average weights as just described. If
one orders the response values from low to high, the weights conceptualized as

11For example, if there is a tiny random forest of 3 trees (more like very small stand), and the i th
observation has 3 weights of .2, .3, and .1, the average weight over the 3 trees is .2.

220 5 Random Forests

Table 5.2 Weights and
cumulative weights for a
target value x0

Average weight Response value Cumulative weight

.10 66 .10

.11 71 .21

.12 74 .33

.08 78 .41

.09 82 .50

.10 85 .60

.13 87 .73

.07 90 .80

.11 98 .91

.09 99 1.0

probabilities can be used to compute other summary measures than the mean.
Table5.2 can be used to illustrate.

From left to right, there are ten average weights that sum to 1.0, ten response
values available for x0, listed in order, and then cumulative weights. The mean is
computed by multiplying each response value by its average weight and adding the
products. In this case, themean is 83. Quantiles are also available. The 10th percentile
is 66. The 50th percentile (the median) is 82. The 90th percentile is a little less than
98. In short, one is not limited to the mean of each x0.

Suppose one has a random forest and a variety of predictor profiles of x-values.
When the response is quantitative, there routinely is interest in determining the fitted
conditional mean for each profile. But sometimes, there will be interest in fitted
conditional medians to “robustify” random forest results or to consider a central
tendency measure unaffected by the tails of the distribution. Sometimes, there is
subject matter interest in learning about a conditional quantile such as the 25th
percentile or the 90th percentile.

For example, in today’sworld of school accountability based on standardized tests,
perhaps students who score especially poorly on standardized tests respond better
to smaller classroom sizes than students who excel on standardized tests. The per-
formance distribution on standardized tests, conditioning on classroom size, differs
for good versus poor performers. Building on work of Lin and Jeon just discussed,
Meinshausen (2006) alters the random forests algorithm so that conditional quantiles
can be provided as fitted values. An application is provided later in this chapter using
quantregForest() in R.12

But there are caveats. In particular, each tree is still grown with a conventional
impurity measure, which for a quantitative response is the error sum of squares
(Meinshausen 2006: Sect. 3). If one is worried about the impact of a highly skewed
response variable distribution, there may well be good reason to worry about the
splitting criterion too. For example, one might prefer to minimize the sum of the

12The package quantregForest() is authored by Nicolai Meinshausen and Lukas Schiesser.

5.4 Random Forests and Adaptive Nearest Neighbor Methods 221

absolute values of the residuals (i.e., L1 loss) rather than the sum of squared residuals
(i.e., L2 loss) as an impurity measure. This was originally proposed by Breiman and
his colleagues in 1984 (Chap.8), and there have been interesting efforts to build on
their ideas (Chaudhuri and Loh 2002; Loh 2014). But L1 loss does not seem to have
yet been incorporated into random forests. We will see later that L1 loss has been
implemented in stochastic gradient boosting.

5.5 Introducing Misclassification Costs

Just as in CART, there is a needwhen random forests is used as a classifier to consider
the relative costs of false negatives and false positives. Otherwise, for each tree, one
again has to live with results that depend on the default of equal costs and a prior
distribution for the response variable that is the same as its marginal distribution in
the data.

Perhaps the most conceptually direct method would be to allow for a cost matrix
just as CART does. To date, this option is not available in random forest software,
and there is evidence that it might not work effectively if it were.

There are four approaches that have been seriously considered for the binary class
case. They differ by whether costs are imposed on the data before each tree is grown,
as each tree is grown, or at the end when classes are assigned. Although binary
outcomes will be emphasized, the lessons for response variables with more than two
categories will be covered as well.

1. Just as in CART, one can use a prior distribution to capture costs as each tree is
grown. This has the clear advantages of being based on the mechanics of CART
and capitalizing on a straightforward way to translate costs into an appropriate
prior.

2. After all of the trees are grown, one can differentially weight the classification
votes over trees. For example, one vote for classification in the less common
categorymight count the same as two votes for classification in the more common
category. This has the advantage of being easily understood.

3. After all of the trees are grown, one can abandon the majority vote rule and use
thresholds that reflect the relative costs of false negatives and false positives. For
instance, rather than classifying as 1 all observations when the vote is larger than
50%, one might classify all observations as 1 when the vote is larger than 33%.
This too is easy to understand.

3. When each bootstrap sample is drawn before a tree is grown, one can oversample
cases from one class relative to cases from the other class, in much the same spirit
as disproportional stratified sampling used for data collection (Thompson 2002:
Chap.11). Before a tree is grown, one oversamples the cases for which forecasting
errors are relatively more costly. Conceptually, this is a lot like altering the prior
distribution.

http://dx.doi.org/10.1007/978-3-319-44048-4_8

222 5 Random Forests

All four approaches share the problem that the actual ratio of false negatives to
false positives in the confusion table probably will not sufficiently correspond to the
target cost ratio. In practice, this means that whatever method is used to introduce
relative costs, that method is simply considered a way to “tune” the results. With
some trial and error, an appropriate ratio of false negatives to false positives can
usually be achieved. All four also share the problem mentioned earlier that when
there are more than two response categories, none of the methods introduce enough
new information to directly control all of the relevant cost ratios. But also as before,
with some trial and error it is usually possible to approximate well enough the target
cost in the confusion table.

Although experience suggests that in general all four methods can tune the results
as needed, there may be some preference for tuning by the prior or by stratified
bootstrap sampling. Both of these methods will affect the confusion table through
the trees themselves. The structure of the trees themselves responds to the costs
introduced. Changing the way votes are counted or the thresholds used only affects
the classes assigned, and leaves the trees unchanged. The defaults of equal costs and
the empirical prior remain in effect. By allowing the trees to respond directly to cost
considerations, more responsive forecasts should be produced. Moreover, any output
beyond a confusion table will reflect properly the desired costs. More is said about
such output shortly.

There is one very important situation in which the stratified sampling approach
is likely to be demonstrably superior to the other three approaches. If the response
variable is highly unbalanced (e.g., a 95–5 split), any given bootstrap samplemay fail
to include enough observations for the rare category. Then, a useful tree will be diffi-
cult to grow. As observed earlier, it will often be difficult under these circumstances
for CART to move beyond the marginal distribution of the response. Oversampling
rare cases when the bootstrap sample is drawn will generally eliminate this problem.
Using a prior that makes the rare observations less rare can also help, but that help
applies in general and will not be sufficient if a given bootstrap sample makes the
rare cases even more rare.

We consider some applications in depth shortly. But a very brief illustration is
provided now to prime the pump.

5.5.1 A Brief Illustration Using Asymmetric Costs

Table5.3 was constructed using data from the prison misconduct study described
earlier. In this example, the response is incidents of very serious misconduct, not
the garden variety kind. As noted previously, such misconduct is relatively rare.
Less than about 3% of the inmates had such reported incidents. So, just as for the
domestic violence data shown in Table5.1, it is extremely difficult to do better than
the marginal distribution under the usual CART defaults. In addition, there is simply
not a lot of misconduct cases from which the algorithm can learn. Trees in the forest
will be unable to partition the rare cases as often as might be desirable; tree depth

5.5 Introducing Misclassification Costs 223

Table 5.3 Confusion table
for forecasts of serious prison
misconduct with a 20 to 1
target cost ratio (N = 4806)

Forecast no
misconduct

Forecast
misconduct

Model error

No
misconduct

3311 1357 .29

Misconduct 58 80 .42

Use error .02 .94 Overall error
= .29

may be insufficient. In short, when a response distribution is highly unbalanced, very
large samples can sometimes help too.

Suppose that the costs of forecasting errors for the rare cases were substantially
higher than the costs of forecasting errors for the common cases. These relative costs
can be introduced effectively by drawing a stratified bootstrap sample, oversampling
the rare cases. And by making the rare cases less rare, problems that might follow
from the highly unbalanced response variable can sometimes be overcome.

For Table5.3, the bootstrap samples for each of the two response categories was
set to equal 100.13 The “50–50” bootstrap distribution was selected by trial and error
to produce an empirical cost ratio of false negatives to false positives of about 20 to
1 (actually 23 to 1 here). The cost ratio may be too high for real policy purposes, but
it is still within the range considered reasonable by prison officials.

Why100 cases each?Experience suggests that the sample size for the less common
response category should equal about two-thirds of the number of cases in that class.
If a larger fraction of the less common cases is sampled, the out-of-bag sample size
for that class may be too small. The OOB observations may not be able to provide
the quality of test data needed.

With the number of bootstrap observations for the less common category deter-
mined to be 100, the 50–50 constraint leads to 100 cases being sampled for the more
common response category. In practice, one determines the sample size for the less
common outcome and then adjusts the sample size of the more common outcome as
needed.

Table5.3 can be interpreted just as any of the earlier confusion tables. For example,
the overall proportion of cases incorrectly identified is 0.29, but that fails to take the
target costs of false negatives to false positives (i.e., 20 to 1) into account. Random
forests classify 42% of the incidents of misconduct incorrectly and 29% of the no
misconduct cases incorrectly. Should prison officials use these results for forecasting,

13Using the procedure randomForest() in R written by Leo Breiman and Ann Culter, and later
ported to R by Andy Liaw and Matthew Wiener, the stratified sampling argument was samp-
size=c(100,100). The order of the two sample sizes depends on the order of the response variable
categories. They are ordered alphabetical or numerically low to high depending on how the variable
is coded. For classification procedures inR, it is a good idea to always construct the outcome variable
as a factor. The procedure randomForest() will automatically know that the task is classification. If
a binary response variable is defined as numeric with a value of 0 and a value of 1, and if the type
of procedure within randomForest() is not identified as classification, randomForest() will proceed
with regression. This is a common error.

224 5 Random Forests

a forecast of no serious misconduct would be wrong only 2 times out of 100, and a
forecast of serious misconduct would be wrong 94 times out of 100. The very large
number of false positives results substantially from the target 20 to 1 cost ratio. But,
for very serious inmate misconduct, having about 1 true positive for about 17 false
positives (1357/80) may be an acceptable trade-off. The misconduct represented can
include homicide, assault, sexual assault, and narcotics trafficking. If not, the cost
ratio could be made more symmetric.

To summarize, random forests provides several ways to take the costs of false
negatives and false positives into account. Introducing stratified bootstrap sampling
seems to work well in practice. Ignoring the relative costs of classification errors
does not mean that costs are not affecting the results. The default is equal costs and
using the marginal distribution of the response variable as the empirical prior.

5.6 Determining the Importance of the Predictors

Just as for bagging, random forests leaves behind so many trees that collectively they
are useless for interpretation. Yet, a goal of statistical learning can be to explore how
inputs are related to outputs. Exactly how best to do this is currently unresolved, but
there are several useful options available. We begin with a discussion of “variable
importance.”

5.6.1 Contributions to the Fit

One approach to predictor importance is to record the decrease in the fitting measure
(e.g., Gini index, mean square error) each time a given variable is used to define a
split. The sum of these reductions for a given tree is a measure of importance for that
variable when that tree is grown. For random forests, one can average this measure
of importance over the set of trees.

As with conventional variance partitions, however, reductions in the fitting crite-
rion ignore the prediction skill of a model, which many statisticians treat as the gold
standard. Fit measures are computed with the data used to build the classifier (i.e.,
in-sample). They are not computed from test data (i.e., out-of-sample).

Moreover, it can be difficult to translate contributions to a fit statistic into practical
terms. Simply asserting that a percentage contribution to a fit statistic is a measure
of importance is circular. Importance must be defined outside of the procedure used
to measure it. And what is it about contributions to a measure of fit that makes a
predictor more or less important? Even if an external definition is provided, is a
predictor important if it can account for, say, 10% of the reduction in impurity?

One alsomust be fully clear that contributions to the fit by themselves are silent on
what would happen if in the real world a predictor is manipulated. Causality can only
be established by how the data were generated, and causal interpretations depend on
there being a real intervention altering one or more predictors (Berk 2003).

5.6 Determining the Importance of the Predictors 225

5.6.2 Contributions to Prediction

Breiman (2001a) has suggested another form of randomization to assess the role of
each predictor. This method is implemented in randomForest(). It is based on the
reduction in what Breiman calls prediction accuracy when a predictor is shuffled
so that the predictor cannot make a systematic contribution to a prediction. For
categorical response variables, it is the reduction in classification accuracywithOOB
data. One conditions on the actual outcome to determine the proportion of times the
wrong class is assigned. As such it has a very grounded interpretation that can be
directly linked to the rows of a confusion table. For numeric response variables, the
standard approach is to use the increase in mean squared error for the OOB data.
One is again conditioning on the actual value of Y. The term “prediction”, can be a
little misleading, but to be consistent with Breiman, we will stick with it here.

Breiman’s approach has much in common with the concept of Granger causality
(Granger and Newbold 1986: Sect. 7.3). Imagine two times series, Yt and Xt . If the
future conditional distribution of Y given current and past values of Y is the same as
the future conditional distribution of Y given current and past values of Y and X , X
does not Granger-cause Y .14 If the two future conditional distributions differ, X is a
Granger-cause of Y .

These ideas generalize so that for the baseline conditional distribution, one can
condition not just on current and past values of Y but on current and past values
of other predictors (but not X). Then X Granger-causes Y , conditional on the other
predictors, if including X as a predictor changes the future conditional distribution
of Y . In short, the idea of using forecasting performance as a way to characterize the
performance of predictors has been advanced in both the statistical and econometrics
literature.

Breiman’s importance measure of prediction accuracy differs perhaps most sig-
nificantly from Granger cause in that Breiman does not require time series data and
randomly shuffles the values of predictors rather than dropping (or adding) predictors
from a procedure. The latter has some important implications discussed shortly.

For Breiman’s approach with a categorical response variable, the following algo-
rithm is used to compute each predictor’s importance.

1. Construct a measure prediction error ν for each tree as usual by dropping the
out-of-bag (OOB) data down the tree. Note that this is out-of-sample because
data not used to grow the tree are used to evaluate its predictive skill.

2. If there are p predictors, repeat Step 1 p times, but each time with the values
of a given predictor randomly shuffled. The shuffling makes that predictor on
the average unrelated to the response and all other predictors. For each shuffled
predictor j , compute new measure of prediction error, ν j .

3. For each of the p predictors, average over trees the difference between the pre-
diction error with no shuffling and the prediction error with the j th predictor
shuffled.

14Sometimes Granger-cause is called predictive cause.

226 5 Random Forests

The average increase in prediction error when a given predictor j is shuffled
represents the importance of that predictor. That is,

I j =
K∑

k=i

[
1

K
(ν j − ν)

]
, j = 1, . . . , p, (5.10)

where there are K trees, ν j is the prediction error with predictor j shuffled, and ν
is the prediction error with none of the predictors shuffled. It is sometimes possible
for prediction accuracy to improve slightly when a variable is shuffled because of
the randomness introduced. A negative measure of predictor importance follows.
Negative predictor importance can be treated as no decline in accuracy or simply can
be ignored.

As written, Eq.5.10 is somewhat open-ended. The measures of prediction error
(ν and ν j) are not defined. As just noted, for a quantitative response variable, the
MSE is an obvious choice. There are more options for categorical response variables:
the deviance, percentage of cases classified incorrectly, average change in the mar-
gins, or some other measure. Currently, the preferred measure is the proportion (or
percentage) of cases misclassified. This has the advantage of allowing direct com-
parisons between the increases in misclassification and all of the row summaries in
a confusion table. In addition, all of the other measures considered to date have been
found less satisfactory for one reason or another. For example, some measures are
misleadingly sensitive; small changes in the number of classification errors can lead
to large changes in the importance measure.

When used with categorical response variables, a significant complication is that
Eq.5.10 will almost always produce different importance measures for given pre-
dictors for different categories of the response. That is, there will be for any given
predictor a measure of importance for each response class, and the measures will not
generally be the same. For example, if there are three response classes, there will be
three measures of importance for each predictor that will generally differ. Moreover,
this can lead to different rankings of predictors depending on which response cate-
gory is being considered. Although this may seem odd, it follows directly from the
fact that the number of observations in each response class and the margins for each
class will typically differ. Consequently, a given increase in the number of misclas-
sifications can have different percentage impacts. A detailed illustration is presented
shortly.

Partly in response to such complications, one can standardize the declines in
performance. The standard deviation of (ν j − ν) over trees can be computed. In
effect, one has a bootstrap estimate over trees of the standard error associated with
the increase in classification error, which can be used as a descriptive measure of
stability. Larger values imply less stability.

Then, one can divide Eq.5.10 by this value. The result can be interpreted as a
z-score so that importance measures are now all on the same scale. And with a
bit of a stretch, confidence intervals can be computed and conventional hypothesis
tests performed. It is a stretch because the sampling distribution of the predictor

5.6 Determining the Importance of the Predictors 227

importance measure is usually not known. Perhaps more important, the descriptive
gains from standardization are modest at best, as the illustrations that follow make
clear.

One of the drawbacks of the shuffling approach to variable importance is that
only one variable is shuffled at a time. There is no role for joint importance over
several predictors. This can be an issue when predictors are correlated. There will
be a contribution to prediction accuracy that is uniquely linked to each predictor and
joint contributions shared between two or more predictors. This can also be an issue
when a single categorical predictor is represented by a set of indicator variables. The
importance of the set is not captured.

There is currently no option in the random forest software to shufflemore than one
variable at a time. However, it is relatively easy to apply the prediction procedure in
random forests using as input the original dataset with two or more of the predictors
shuffled. Then, Eq.5.10 can be employed as before, where j would now be joined
by other predictor subscripts. The main problem is that the number of potential joint
contributions can be very large. In practice, some subset selection procedure is likely
to be needed, perhaps based on substantive considerations.

It might seem that Granger’s approach of examining forecasting skill with and
without a given predictor included is effectively the same as Breiman’s shuffling
approach. And if so, one might consider, for instance, dropping sets of predictors
to document their joint contribution. But actually, the two strategies are somewhat
different. In Granger’s approach, dropping or adding predictors to the model means
that the model itself will be reestimated each time. So, the comparisons Granger
favors are the result of different predictors being included and different models. The
impact of neutralizing a predictor and changing the model are confounded. Under
Breiman’s approach, the model is not reconstructed. The shuffling is undertaken as
an additional procedure with the model fixed.

In summary, formany scientists the ability to predict accurately inBrieman’s sense
is an essential measure of a model’s worth. If one cannot predict well, it means that
themodel cannot usefully reproduce the empirical world. It follows that such amodel
has little value. And as now stressed a number of times, a model that fits the data well
will not necessarily predict well. Put another way, out-of-sample performance is far
more compelling than in-sample performance. The take-home message is simple:
if prediction skill is the gold standard (or even just a very important criterion by
which to evaluate a model), then a predictor’s contribution to that skill is surely one
reasonable measure of that predictor’s importance.

5.6.2.1 Some Examples of Importance Plots with Extensions

Consider now a random forests analysis of data from an educational and job training
program for homeless individuals. Because providing such services to homeless indi-
viduals was expensive, administrators wanted to know in advance which individuals

228 5 Random Forests

referred to the program would not likely be helped. For example, they may have had
more fundamental needs such as treatment for drug dependence. At the same time,
they wanted to make a special effort to identify individuals with promise and were
prepared to accept a substantial number of individuals who would not find a steady
job when predicted to do so. A provisional cost ratio of 4 to 1 was determined. It was
4 times worse to overlook a promising individual than to mistakenly decide that an
individual was promising.

Random forests was applied to training data on a little less than 7000 individuals
who had gone through their program. One of the primary outcomes was whether
after finishing the program steady employment followed. It did for about 27% of the
graduates of the program. The response variable is still unbalanced, not nearly so
seriously as in the past two examples.

Table5.4 shows the confusion table that resulted. Consistent with stakeholder
preferences, there are about 4 false positives for every false negative (i.e., 2626/606).
68% of those who would find employment were accurately identified in advance.
However, because of the imposed 4 to 1 cost ratio, a prediction of success on the job
market would be wrong 67% of the time.

However, we are focusing now on the variable importance plots shown in Fig. 5.3.
Reduction in prediction accuracy is shown on the horizontal axis. The code for the
random forest analysis and the subsequent importance plots is shown in Fig. 5.4.
Keep in mind that although we are using Breiman’s term “prediction accuracy,” we
are actually considering classification accuracy in OOB data.

The upper left figure shows unstandardized reductions in prediction accuracy for
employment when each predictor is in turn randomly shuffled. The age at which
an individual enters the program is the most important input. When that variable is
shuffled, prediction accuracy declines about 2.5 percentage points (i.e., from 68% to
65.5%). The importance of all of the other predictors can be interpreted in the same
fashion. The bottom four predictors make no contribution to predictive accuracy.
Recall that contributions less than 0.0 result from the noise built into the random
forests algorithm and in practice are taken to be equal to 0.0.

Predictor importance does not show how an input is related to the response. The
functional form is not revealed, nor are any of the likely interaction effects with other
inputs. Going back to our bread baking metaphor, each input is but an ingredient in
a recipe. We can learn how important an input is for prediction, but nothing more.

Table 5.4 Confusion table
for employment after training
with a 4 to 1 target cost ratio
(N = 6723)

Forecast not
employed

Forecast
employed

Model error

Not
employed

2213 2626 .54

Employed 606 1278 .32

Use error .21 .67 Overall error
= .48

5.6 Determining the Importance of the Predictors 229

militaryServed
convictedFelonyProperty
wasEverHomeless
married
educationLevel
convictedOfCrime
convictedFelonyViolent
numChildren
hasChildren
convictedFelonyDrug
parole
wasIncarcerated
ageAtAdmission

0.005 0.005 0.015 0.025

Predictor Importance Plot for
Employment (Unstandardized)

Employed

militaryServed
convictedFelonyProperty
married
wasEverHomeless
convictedOfCrime
numChildren
educationLevel
hasChildren
convictedFelonyViolent
convictedFelonyDrug
parole
wasIncarcerated
ageAtAdmission

10 0 10 20 30

Predictor Importance Plot for
Employment (Standardized)

Employed

wasIncarcerated
hasChildren
convictedFelonyViolent
numChildren
convictedOfCrime
convictedFelonyDrug
parole
married
convictedFelonyProperty
wasEverHomeless
educationLevel
militaryServed
ageAtAdmission

0.010 0.000 0.010

Predictor Importance Plot for
Unemployment (Unstandardized)

Unemployed

wasIncarcerated
convictedFelonyViolent
hasChildren
numChildren
convictedFelonyDrug
convictedOfCrime
parole
wasEverHomeless
convictedFelonyProperty
married
educationLevel
militaryServed
ageAtAdmission

10 0-5 5 10 15 20 25

Predictor Importance Plot for
Unemployment (Standardized)

Unemployed

Fig. 5.3 Variable importance plots for employment outcome with a 4 to 1 target cost ratio (N =
6723)

Also not shown is prediction accuracy that is shared among inputs. Consequently,
the sum of the individual contributions can be substantially less than 68%.

The upper right figure shows the standardized contributions to employment pre-
diction accuracy in standard deviation units.

The ordering of the inputs in the upper right figure has changed a bit because
of the standardization, and as a descriptive summary, it is not clear what has been
gained. It may be tempting to use each input’s standard deviation, which can be
easily extracted from the output, to construct confidence intervals. But, for a variety
of technical reasons, this is not a good idea (Wager et al. 2014).

The bottom two figures repeat the same analyses, but using unemployment as the
outcome. One might think that the figures in the bottom rowwould be very similar to
the figures in the top row. Somewhat counterintuitively, they are not. But, recall how
classification is accomplished in random forests. For a binary outcome, the class is
assigned by majority vote. Two important features of those votes are in play here:
the voting margin and the number of actual class members.

Consider a simple example in which there are 500 trees in the random forest.
Suppose a given individual receives a vote of 251 to 249 to be assigned to the
employment class category. The margin of victory is very small. Suppose that in fact
that individual does find a job; the forecast is correct. Now a predictor is shuffled.

230 5 Random Forests

The vote might be very different. But suppose it is now just 249 to 251. Only two
votes over tress have changed. Yet, the individual is now placed incorrectly in the
unemployed class. This increases the prediction error by one individual.

Is that one individual increase in misclassifications enough to matter? Probably
not given the usual sample sizes. But if a substantial number of the votes over trees is
close, a substantial increase in the number of classification errors could result. And if
the sample size is relatively small, the accuracy decline in units of percentage points
could be relatively large. Such results are potentiated if the votes in terminal nodes
within trees are close as well. Perhaps the key point is that these processes can differ
depending on the outcome class, which explains why predictor importance can vary
by the outcome class.

In Fig. 5.3, the prediction contributions are generally larger for the upper two
figures than for the lower two figures. This is substantially a consequence of the
marginal distribution of the response. There are more than twice as many individuals
who do not find work compared to individuals who do. As a result, it would take
many more classification changes after shuffling for the smaller prediction accuracy
declines shown in the lower figures to approximate the larger predictor accuracy
declines shown in the upper figures.

5.7 Input Response Functions

Predictor importance is only part of the story. In addition to knowing the importance
of each input, it can be very useful to have a description of how each predictor is
related to the response. The set of response functions needs to be described.

One useful solution based on an earlier suggestion by Breiman and his col-
leagues (1984) is “partial dependence plots” (Friedman 2001; Hastie et al. 2009:
Sect. 10.13.2). For tree-based approaches, one proceeds as follows.

1. Grow a forest.
2. Suppose x1 is the initial predictor of interest, and it has v distinct values in the

training data. Construct v datasets as follows.

a. For each of the v distinct values of x1, make up a new dataset where x1 only
takes on that value, leaving all other variables untouched.

b. For each of the v datasets, predict the response for each tree in the random
forest. There will be for each tree a single value averaged over all observations.
For numeric response variables, the predicted value is a mean. For categorical
response variables, the predicted value is a proportion.

5.7 Input Response Functions 231

c. Average each of these predictions over the trees. The result is either an average
mean or an average proportion over trees.

d. Plot the average prediction for each value for each of the v datasets against
the v values of x1

3. Go back to Step 2 and repeat for each predictor.

There is a lot going on in this algorithm that may not be immediately apparent.
Partial dependence plots show the average relationship between a given input and
the response within the fixed, joint distribution of the other inputs. For each of the
v values, the values of all other inputs are always the same. Therefore, variation in
these other inputs cannot explain away an empirically determined response function
for those v values.

Perhaps here is a way to think about it. Suppose the selected input is age. One asks
what would the average outcome be if everyone were 21 and nothing else changed?
Then one asks, what would the average outcome be if everyone were 22 and nothing
else changed? The same question is asked for age 23, age 24 and so on. All that
changes is the single age assigned to each case: 21, 22, 23, 24

Now in more detail, suppose the response is binary and initially everyone is
assigned the age of 20.Much as onewould do in conventional regression, the outcome
for each case is predicted using all of the other inputs as well. Those fitted values can
then be averaged. For a binary outcome, an average class is computed. That average
is a proportion.15 Next, everyone is assigned the age of 21, and the same operations
are undertaken. For each age in turn, the identical procedure is applied. One can
then see how the outcome class proportions change with age alone because as age
changes, none of the other variables do. Should the response be quantitative, each
fitted average is a conditional mean. One can then see how the conditional mean
changes with age alone.

Commonly, the partial dependence is plotted. Unlike the plots of fitted values con-
structed from smoothers (e.g., from the generalized additive model), partial depen-
dence plots usually impose no smoothness constraints, and the underlying tree struc-
ture tends to produce somewhat bumpy results. In practice, one usually overlays an
“eyeball” smoother when the plot is interpreted. Alternatively, it is often possible to
overlay a smoother if the software stores the requisite output. In R, randomForest()
does.

For quantitative response variables, the units on the vertical axis usually are the
natural units of the response, whatever they happen to be. For categorical response
variables, the units of the response on the vertical axis are centered logits. Consider
first the binary case.

Recall that logistic regression equation commonly is written as

log

(
p

1 − p

)
= Xβ, (5.11)

15For example, if getting a job is coded 1 and not getting a job is coded 0, the mean of the 1s and
0s is the proportion who got a job.

232 5 Random Forests

where p is the probability of a success. The term on the left-hand side is the log of
the odds of a success, often called the “logit”. The change in the response for a unit
change in a predictor, all other predictors held constant, is in “logits”.

For the multinomial case, the most common approach is to build up from the
familiar binary formulation. If there are K response categories, there are K − 1
equations, each of the same general form as Eq.5.11. One equation of the K possible
equations is redundant because the response categories are exhaustive and mutually
exclusive. Thus, if an observation does not fall in categories 1, . . . , K − 1, it must
fall in the K th category. This implies that a single category can be chosen as the
reference category, just as in the binomial case (i.e., there are two possible outcomes
and one equation). Then, for each of the K − 1 equations, the logit is the log of the
odds for a given category compared to the reference category.

Suppose there are four response categories, and the fourth is chosen as the refer-
ence category. There would then be three equations with three different responses,
one for log(p1/p4), one for log(p2/p4), and one for log(p3/p4). The predictors
would be the same for each equation, but each equation would have its own set of
regression coefficients differing in values across equations.

One might think that partial dependence plots would follow a similar convention.
But they do not. The choice of the reference category determines which logits will be
used, and the logits used affect the regression coefficients that result. Although the
overall fit is the same no matter what the reference category, and although one can
compute from the set of estimated regression coefficients what the regression coef-
ficients would be were another reference category used, the regression coefficients
reported are still different when different reference categories are used.

There is usually no statistical justification for choosing one reference category or
another. The choice is usuallymade on subjectmatter grounds tomake interpretations
easier, and the choice can easily vary from data analyst to data analyst. So, the need
for a reference category can complicate interpretations of the results and means that
a user of the results has to undertake additional work if regression coefficients using
another reference category are desired.

Partly in response to these complications, partial dependence plots are based on
a somewhat different approach. There are K , rather than K − 1, response functions,
one for each response variable class. For the logistic model and class k, these take
the form of

pk(X) = e fk (X)

∑K
k=1 e

fk (X)
. (5.12)

There is still a redundancy problem to solve. The solution employed by partial
dependence plots is the constraint

∑K
k=1 fk(X) = 0. This leads to the multinomial

deviance loss function and the use of a rather different kind of baseline.
Instead of using a given category as the reference, the unweighted mean of the

proportions in the K categories is used as the reference. In much the same spirit as
analysis of variance, the response variable units are then in deviations from a mean.
More specifically, we let

5.7 Input Response Functions 233

fk(X) = log[pk(X)] − 1

K

K∑

k=1

log[pk(X)]. (5.13)

Thus, the response is the difference between the logged proportion for category
k and the average of the logged proportions for all K categories. The units are
essentially logits butwith themean over the K classes as the reference. Consequently,
each response category can have its own equation and, therefore, its own partial
dependence plot. This approach is applied even when there are only two response
categories, and the conventional logit formulation might not present interpretive
problems.

To illustrate, consider once again the employment data. Suppose age in years is
the predictor whose relationship with the binary employment response variable is
of interest. And suppose for an age of say, 25 years, the proportion of individuals
finding a job is .20 (computed using the partial dependence algorithm). The logit
is log(.2) − [log(.2) + log(.8)]/2 = −0.693 (using natural logarithms). This is the
value that would be plotted on the vertical axis corresponding to 25 years of age
on the horizontal axis. It is the log of the odds with mean proportion over the K
categories as the reference.

The same approach can be used for the proportion of 25 year old individuals
who do not find a job. That proportion is necessarily .80, so that value plotted is
log(.8) − [log(.2) + log(.8)]/2 = 0.693. In the binary case, essentially the same
information is obtained no matter which response class is examined.

As required, 0.693 − 0.693 = 0. This implies that one response function is the
mirror image of the other. Thus, one partial dependence plot is themirror image of the
other partial dependence plot, and only one of the two is required for interpretation.

It is easy to get from the centered log odds to more familiar units. The values
produced by Eq.5.13 are half the usual log of the odds. From that, one can easily
compute the corresponding proportions. For example, multiplying −.693 by 2 and
exponentiating yields an odds of .25. Then, solving for the numerator proportion
results in a value of .20. We are back where we started.16

Equation5.13 would be applied for each year of age. Thus, for 26 years, the
proportion of individuals finding a job might be .25. Then the value plotted on the
horizontal axis would be 26, and the value on the vertical axis would be log(.25) −
[log(.25) + log(.75)]/2 = −.549.

The value of−.549 is in a region where the response function has been increasing.
With one additional year of age, the proportion who find work increases from 0.20 to
0.25, which becomes log odds of −0.693 and −0.549 respectively. All other values
produced for different ages can be interpreted in a similar way. Consequently, one can
get a sense of how the response variable changes with variation in a given predictor,
all other predictors held constant.

16e[2(−.693)]/(1 + (e[2(−.693)]) = .20.

234 5 Random Forests

5.7.1 Partial Dependence Plot Examples

Figure5.5 shows two partial dependence plots constructed from the employment
data with code that can be found toward the bottom of Fig. 5.4. The upper plot shows
the relationship between the input age and the centered log odds of employment.17

Age is quantitative. Employment prospects increase nearly linearly with age until
about age 50 at which time they begin to gradually decline. The lower plot shows the
relationship between the input education and the centered log odds of employment.
Education is a factor. The employment prospects are best for individuals who have
a high school or GED certificate. They are worst for individuals who have no high
school degree or GED. Individuals with at least some college fall in between.18

Program administrators explained the outcome for those with at least some college
as a result of the job market in which they were seeking work. The jobs were for
largely unskilled labor. There were not many appealing jobs for individuals with
college credits.

In order to get a practical sense of whether employment varies with either input,
it can be useful to transform the logits back to proportions. Suppose that one were
interested in the largest gap in the prospects for employment. From the upper plot,
the largest logit is about 0.39, and the smallest logit is about −0.42. These become
proportions of 0.69 and 0.30 respectively. The proportion who find work nearly
doubles. Age seems to be strongly associated with employment.

It is important not to forget that the response functions displayed in partial depen-
dence plots reflect the relationship between a given predictor and the response, con-
ditioning on all other predictors. All other predictors are being “held constant” in
the manner discussed above. The code in Fig. 5.4 shows that there are a substantial
number of such predictors.

When the response hasmore than three outcome categories, there are no longer the
symmetries across plots that are found for binary outcomes. For a binary response
variable, it does not matter which of the two categories is used when the partial
dependence plot is constructed. One plot is the mirror image of the other. Figure5.6
shows what can happen with three outcome categories.

The three employment outcomes in Fig. 5.6 are “no salary,” “hourly salary,”
“yearly salary.” The first category means that no job was found. For those who
found a job, a yearly salary is for these individuals associated with higher status
positions compared to positions offering an hourly salary. The plot at the top, for
the yearly salary outcome, looks rather like the plot for finding any job. Prospects
are bleak for those under 20, peak around 50 and then gradually taper off. The plot
in the middle, for the hourly salary outcome, has the same general shape, but peaks
around 40 and then falls of far more abruptly. The plot at the bottom, for no salary,
looks much like the top plot, but with a sign reversal. No plot is the mirror image
of another because if the outcome in question is does not occur, one of two other

17The term “centered” is used because mean of the K proportions is the reference.
18The bars use the value of zero as the base and move away from 0.0 upwards or downwards.

5.7 Input Response Functions 235

library(randomForest)
random forests
rf1<-randomForest(Employed~ageAtAdmission+
convictedOfCrime+convictedFelonyViolent+
convictedFelonyProperty+convictedFelonyDrug+
wasIncarcerated+numChildren+parole
married+hasChildren+educationLevel+
wasEverHomeless+militaryServed,
data=TestData,importance=T,sampsize=c(1200,1100))

par(mfrow=c(2,2))

Variable Importance Plots
varImpPlot(rf1,type=1,scale=F,class="Employed",
main="Forecasting Importance Plot for Employment
(Unstandardized)",col="blue",cex=1,pch=19)

varImpPlot(rf1,type=1,scale=T,class="Employed",
main="Forecasting Importance Plot for Employment
(Standardized)", col="blue",cex=1,pch=19)

varImpPlot(rf1,type=1,scale=F,class="Unemployed",
main="Forecasting Importance Plot for Unemployment
(Unstandardized)", col="blue",cex=1,pch=19)

varImpPlot(rf1,type=1,scale=T,class="Unemployed",
main="Forecasting Importance Plot for Unemployment
(Standardized)", col="blue",cex=1,pch=19)

Partial Dependence Plots
part1<-partialPlot(rf1,pred.data=TestData,x.var=ageAtAdmission,
rug=T,which.class="Employed")

par(mfrow=c(2,1))

scatter.smooth(part1$x,part1$y,span=1/3,xlab="Age at Admission",
ylab="Centered Log Odds of Employment", main="Partial
Dependence Plot for Employment on Age",col="blue",pch=19)

part2<-partialPlot(rf1,pred.data=TestData,x.var=educationLevel,
rug=T,which.class="Employed", main="Partial Dependence
Plot for Employment on Education", xlab="Educational Level,
ylab="Centered Log Odds of Employment"),ylim=c(-.05,.25))

Fig. 5.4 R code for random forests analysis of an employment outcome

236 5 Random Forests

20 30 40 50 60 70 80

0.
4

0.
2

0.
0

0.
2

0.
4

Partial Dependence Plot for Employment on Age

Age at Admission

C
en

te
re

d
Lo

g
O

dd
s

of
 E

m
pl

oy
m

en
t

GED/HS Higher Ed No GED

Partial Dependence Plot for Employment on Education

Educational level

C
en

te
re

d
Lo

g
O

dd
s

of
 E

m
pl

oy
m

en
t

0.
05

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Fig. 5.5 Partial response plots for employment on age and education (N = 6723)

categories will. Moreover, the two other categories change depending on the single
outcome whose centered logits are plotted.

In practice, each plot can have a story to tell. For example, comparing the top
two plots, being over 50 years old is associated with a small decline in prospects for
higher status jobs, In contrast, being over 50 years old is associated with a dramatic
decline in prospects for lower status jobs. Part of the explanation can probably be
found in the nature of the job. Hourly jobs will often require more physical capacity,
which can decrease dramatically starting around age 50.

When there aremore than two classes, workingwith units other than logits is more
limited. Suppose the respective proportions at age 30 for the three classes represented
in Fig. 5.5 are 0.15, 0.35, and 0.50 respectively. The three centered logits computed
for the three response categories are respectively −0.68, 0.16, .52. As before, the
sum of the values is 0.0. But there is no mirror image, and one cannot easily get from
a single partial dependence plot back to underlying proportions. But one can work
with odds.

For example, the largest logit in the top figure is about 0.19. The odds are 1.21.
The smallest logit in the top figure is about −.61. The odds are 0.54. For individuals
around 50 years old, their odds of getting a job with a yearly salary are about 1.2

5.7 Input Response Functions 237

20 30 40 50 60 70 80

0.
6

0.
4

0.
2

0.
0

0.
2

Partial Dependence Plot for Salary on Age

Age at Admission

C
en

te
re

d
Lo

g
O

dd
s

of

 A

 Y
ea

rly
 S

al
ar

y

20 30 40 50 60 70 80

0.
05

0.
00

0.
05

0.
10

0.
15

0.
20

Partial Dependence Plot for Salary on Age

Age at Admission

C
en

te
re

d
Lo

g
O

dd
s

of

A
 H

ou
rly

 S
al

ar
y

20 30 40 50 60 70 80

0.
2

0.
0

0.
2

0.
4

0.
6

Partial Dependence Plot for Salary on Age

Age at Admission

C
en

te
re

d
Lo

g
O

dd
s

of
 N

o
S

al
ar

y

Fig. 5.6 Partial response plots for employment of yearly salary, weekly salary, or no salary on age
(N = 6723)

odds units better than average. For individuals around 20 years of age, the odds of
getting a job with a yearly salary are about 1.85 odds units worse than average (i.e.,
1/.54). Once again, age at the extremes seems to matter substantially.

Finally, just as with variable importance plots, one does not really know how
each input is linked to the outcome. In particular, variation in an input may well be
partitioned between a large number of interaction effects. In econometric language,
something akin to reduced form relationships are being represented.19

5.8 Classification and the Proximity Matrix

It can be interesting to determine the degree to which individual observations tend to
be classified alike. In random forests, this information is contained in the “proximity
matrix.” The proximity matrix is constructed as follows.

19They are not literally reduced forms results because there is no structural model.

238 5 Random Forests

1. Grow tree as usual.
2. Drop all the training data (in-bag and out-of-bag) down the tree.
3. For all possible pairs of cases, if a pair lands in the same terminal node, increase

their proximity by one.
4. Repeat Steps 1–4 until the designated number of trees has been grown.
5. Normalize by dividing by the number of trees.

The result is an N × N matrix with each cell showing the proportion of trees for
which each pair of observations lands in the same terminal node. The higher that
proportion, the more alike those observations are in how the trees place them, and
the more “proximate” they are.

As noted earlier, working with a very large number observation can improve how
well random forests performs because large trees can be grown. Large trees can
reduce bias. For example, working with 100,000 observations rather than 10,000 can
improve classification accuracy by as much as 50%. However, because a proximity
matrix is N ×N , storage can be a serious bottleneck. Storage problems can be partly
addressed by only storing the upper or lower triangle, and there are other storage-
saving procedures that have been developed. But large datasets still pose a significant
problem.

Little subject matter sense can be made of an N × N matrix of even modest
size. Consequently, additional procedures usually need to be applied. We turn to one
popular option: multidimensional scaling.

5.8.1 Clustering by Proximity Values

The proportions in a proximity matrix can be seen as measures of similarly, and the
matrix is symmetric with 1s along the main diagonal. Consequently, a proximity
matrix can be treated as a similarity matrix in much the same spirit as some kernel
matrices discussed earlier. As such, it is subject to a variety of clustering proce-
dures with multidimensional scaling (MDS) the one offered by randomForests().
The results can be shown in a 2-dimensional plot. The two axes are the first and sec-
ond principal components (i.e., with the two largest eigenvalues) derived from the
proximity matrix. Observations closer in their Euclidian distances are more alike.20

Figure5.7 shows an MDS plot from the proximity matrix constructed for the
employment analysis. The results for the first two principle components of the prox-
imity matrix are shown and clearly, there are discernible pattens. The red dots are for
individuals who found employment, and the blue dots are for individuals who did

20The calculations are done by cmdscale(), and the plotting is done by MDSplot(). The latter
automatically calls the former. However, with more than several hundred observations, there is so
much overplotting that making sense of the results is very difficult. Labeling the points could help,
but not with so much overplotting. Finally, the computational challenges are substantial. For the
employment data (N = 6723), doing the MDS using cmdscale() on an iMac with an 3.4GHz intel
Core i7 and 32 GB of memory using took about 30min.

5.8 Classification and the Proximity Matrix 239

Fig. 5.7 Multidimensional
scaling plot of the proximity
matrix from the employment
analysis: red dots for
employed and blue dots for
unemployed

0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.
2

0.
1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Multidimensional Scaling Plot for Employment

Dimension 1

D
im

en
si

on
 2

not. Ideally, the individuals who found employment would tend to be alike, and the
individuals who did not find employment would tend to be alike. That is, there would
be lots of terminal nodes dominated by either employed individuals or unemployed
individuals so that they would tend to fall in similar neighborhoods. However, it is
difficult to extract much from the figure because of the overplotting. Working with
a small random sample of cases would allow for a plot that could be more easily
understood, but there would be a substantial risk that important patterns might be
overlooked.

In short, better ways need to be found to visualize the proximity matrix. Mul-
tidimensional scale has promise, but can be very difficult to interpret with current
graphical procedures and large Ns.21

5.8.1.1 Using Proximity Values to Impute Missing Data

There are two ways in which random forests can impute missing data. The first
and quick method relies on a measure of location. If a predictor is quantitative, the
median of the available values is used. If the predictor is categorical, the modal
category from the available data is used. Should there be small amounts of missing
data, this method may be satisfactory, especially given the computational demands
of the second method.

21This is not to say that MDS is inappropriate in principle or that it will not work well for other
kinds of applications.

240 5 Random Forests

The second method capitalizes on the proximity matrix in the following manner.

1. The “quick and dirty” method of imputation is first applied to the training data, a
random forest is grown, and the proximity values computed.

2. If a missing value is from a quantitative variable, a weighted average of the values
for the non-missing cases is used. The proximity values between the case with a
missing value and all cases with non-missing values are used as the weights. So,
cases that are more like the case with the missing value are given greater weight.
All missing values for that variable are imputed in the same fashion.

3. If a missing value is from a categorical value, the imputed value is the most
common non-missing value for the variable, with the category counts weighted,
as before, by proximity. Again, cases more like the case with the missing value
are given greater weight. All missing values for that variable are imputed in the
same fashion.

The step using proximity values is then iterated several times. Experience to date
suggests that four to six iterations is sufficient. But the use of imputed values tends
to make the OOB measures of fit too optimistic. There is really less information
being brought to bear in the analysis than the random forest algorithm knows about.
The computational demands are also quite daunting and may be impractical for
many datasets until more efficient ways to handle the proximities are found. Finally,
imputing a single weighted value for each missing observation papers over chance
variation in the imputation. How much this matters depends on whether a level II
analysis is being undertaken. More will be said about that later.22

5.8.1.2 Using Proximities to Detect Outliers

The proximity matrix can be used to spot outliers in the space defined by the predic-
tors. The basic idea is that outliers are observations whose proximities to all other
observations in the data are small. The procedures in randomForest() to detect out-
liers are not implemented for quantitative response variables. For categorical response
variables, outliers are defined within categories of the response variable. Within each
observed outcome class, each observation is given a value for its “outlyingness” com-
puted as follows.

1. For a given observation, compute the sum of the squares of the proximities with
all of the other observations in the same outcome class. Then take the inverse.
A large value will indicate that on the average the proximities are small for
that observation; the observation is not much like other observations. Do the
same for all other observations in that class. One can think of these values as
unstandardized.

2. Within each class, compute the median and mean absolute deviation around the
median of the unstandardized values.

22The assumed missing data mechanism is much like missing conditionally at random because of
the proximity weighting.

5.8 Classification and the Proximity Matrix 241

3. Subtract the median from each of the unstandardized values and divide by the
mean absolute deviation. In this fashion, the unstandardized values are standard-
ized.

4. Values less than zero are set to 0.0.

These steps are then repeated for each class of the response variable. Observations
with values larger than 10 can be considered outliers. Note that an observation does
not become suspect because of a single atypical x-value. An outlier is defined by how
it is classified, which is a function of all of its x-values. It typically lands in terminal
nodes where it has little company.

Figure5.8 is an index plot of outlier values for the employment data, with
employed cases represented by red spikes and unemployed cases represented as
blue spikes. The R code is shown in Fig. 5.9.

For this analysis, there are perhaps 4 to 6 observations of possible concern, but
the outlier measures are close to 10 and with over 9000 observations overall, they
would make no material difference in the results if dropped. It might be different
if the outlier measures were in the high teens, and there were only a few hundred
observations in total.

0 2000 4000 6000 8000

0
2

4
6

8
10

12

Outlier Analysis for Employment Data

Index

O
ut

lie
r

M
ea

su
re

Fig. 5.8 Index plot of outlier measures for employment data with values greater than 10 candidates
for deletion (Red spike are for employed and blue spikes are for unemployed)

plot(outlier(rf1),type="h", ylab="Outlier Measure",
main="Outlier Analysis for Employment Data",
col=c("red","blue")[as.numeric(TestData$Employed)])

Fig. 5.9 R code for index plot of outlier measures

242 5 Random Forests

When the data analyst considers dropping one or more outlying cases, a useful
diagnostic tool can be a cross tabulation of the classes assigned for the set of obser-
vations that two random forest analyses have in common: one with all of the data
and one with the outliers removed. If the common observations are, by and large,
classified in the same way in both analyses, the outliers do not make an important
difference to the classification process.

5.9 Empirical Margins

Recall Breiman’s definition of a margin: the difference between the proportion of
times over trees that an observation is correctly classifiedminus the largest proportion
of times over trees that an observation is incorrectly classified. That definition can be
used for eachobservation in adataset. Positive values represent correct classifications,
and negative values represent incorrect classifications.

Figure5.10 showshistograms for two empiricalmargins. Theupper plot is for indi-
viduals who were employed. The lower plot is for individuals who are not employed.
We are conditioning on the actual response class much as we do for rows of a con-
fusion table. For both histograms, the red, vertical line is located at a margin value
of 0.0.

For employed individuals, themedianmargin is .18 (i.e., .59–.41),which translates
into a solid majority vote or more for half of the correctly classified cases. Moreover,
68% of the employed individuals are correctly classified. For unemployed individ-
uals, the median margin is −.07. About 55% of the unemployed individuals are
incorrectly classified, although many by close votes.

Margins For Those Employed

Margin

F
re

qu
en

cy

0.6 0.2 0.2 0.6

0
50

10
0

20
0

30
0

Margins For Those Unemployed

Margin

F
re

qu
en

cy

1.0 0.6 0.2 0.2 0.6

0
10

0
30

0
50

0
70

0

Fig. 5.10 Distribution of margins for employed and unemployed individuals (The red vertical line
is located at a margin value of 0.0)

5.9 Empirical Margins 243

The margins can serve an additional performance diagnostic to supplement the
rows of a confusion table. In addition to classification accuracy computed from each
row, one can learn how definitive both the correct and incorrect classifications are.
Ideally, the votes are decisive for the correctly classified cases and razor thin for the
incorrectly classified cases. The results in Fig. 5.10 have some of this pattern, but
only weakly so. Perhaps themajor use ofmargins is to compare the stability of results
from different datasets. One might have results from two datasets that classify with
about the same accuracy, but for one of those, the classifications are more stable.
The results from that dataset should be preferred because they are less likely to be a
result of a random forest luck of the draw.

The stability is with respect to the random forest algorithm itself because margins
are derived from votes over trees. The data are fixed. If a new random forest were
grown with the same data, the classes assigned to all cases would not likely be the
same. The uncertainty captured is created by the random forest algorithm itself. As
such, it represents the in-sample reliability of the algorithm and says nothing about
accuracy. Indeed, it is possible to have results that are reliably wrong.

There can be no margins in forecasting settings because the outcomes are not
yet known. But the votes are easily retrieved by randomForest(), and can be very
instructive. More decisive votes imply more reliable forecasts. For example, a school
administrator may be trying to project whether a particular student will drop out of
high school. If so, there may be good reason to intervene with services such as
tutoring. The case for intervening should be seen as more credible if the drop out
forecast is coupled with high reliability.

There is no clear threshold beyond which reliability is automatically high enough.
That will be a judgment call for decision-makers. Moreover, that line may be espe-
cially hard to draw when there are more than two outcome classes. Suppose the vote
proportions are 0.25, 0.30, and 0.45. The class with 45% of the votes wins by a
substantial plurality. But the majority of votes is cast against that class.

For real world settings in which forecasts from a random forest are made, the
best advice may be to use the votes to help determine how much weight should
be given to the forecast compared to the weight given to other information. In the
school drop out example, an overwhelming vote projecting a drop out may mean
discounting a student’s apparent show of contrition and promises to do better. If the
vote is effectively too close to call, the show of contrition and promises to do better
may quite properly carry the day.

5.10 Quantitative Response Variables

There is not verymuch new that needs to be said about quantitative response variables
once one appreciates that random forests handles quantitative response variables
much as CART does. Even through for each tree there are still binary partitions of
the data, there are no response variable classes and no response class proportions
from which to define impurity. Traditionally, impurity is defined as the within-node

244 5 Random Forests

error sum of squares. A new partition of the data is determined by the split that would
most reduce the sum, over the two prospective subsets, of the within-partition error
sums of squares. Predicted values are the mean of the response variable in each of
the terminal nodes. For each OOB observation, the mean of its terminal node is the
fitted value assigned.

For regression trees, therefore, there are no classification errors, only residuals.
Concerns about false negatives and positives and their costs are no longer relevant.
There are no confusion tables and no measures of importance based on classification
errors. To turn a regression tree into a fully operational random forest, the following
steps are required.

1. Just as in the classification case, each tree is grown from a random sample (with
replacement) of the training data.

2. Just as in the classification case, for each potential partitioning of the data, a
random sample (without replacement) of predictors is used.

3. The value assigned to each terminal node is the mean of the response variable
values that land in that terminal node.

4. For each tree in the random forest, the fitted value for each OOB case is the mean
previously assigned to the terminal node in which it lands.

5. As before, random forest averages over trees. For a given observation, the average
of the tree-by-tree fitted values is computed using only the fitted values from trees
in which that observation was not used to grow the tree. This is the fitted value
that random forest returns.

6. Deviations between these averaged, fitted values and the response variable
observed values are used to construct the mean square error reported for the
collection of trees that constitutes a random forest. The value of the mean square
error can be used to compute a “pseudo” R2 as (1 − MSE)/Var(Y).

7. Construction of partial dependence plots is done in the same manner as for clas-
sification trees, but now the fitted response is the set of conditional means for
different predictor values, not a set of transformed fitted proportions.

8. Input variable importance is computed using the shuffling approach as before.
And as before there is a “resubstitution” (in-sample) measure and a OOB (out-
of-sample) measure. For the resubstitution measure, each time a given variable
is used to define a partitioning of the data for a given tree, the reduction in the
within-node error sum of squares is recorded. When the tree is complete, the
reductions are summed. The result is a reduction in the error sum of squares that
can be attributed to each predictor. These totals, one for each predictor, are then
averaged over trees.
The out-of sample importance measure is also an average over trees. For a given
tree, the OOB observations are used to compute each terminal node’s error sum
of squares. From these, the mean squared error for that tree is computed. Then a
designated predictor is shuffled, and mean square error for that tree is computed
again. An increase in this mean square error is a decrease in accuracy. The same
steps are applied to each tree, and the accuracy decreases are averaged over trees
to get an average decrease in accuracy for that predictor. The standard deviation

5.10 Quantitative Response Variables 245

of these decreases over trees can be used to standardize the average decrease, if
that is desirable. The same process is employed for each predictor.

Despite the tight connection between regression trees and random forests, there
are features found in some implementations of regression trees that have yet to be
introduced into random forests, at least within R. But change is underway. Extensions
to Poisson regression seem imminent (Mathlourthi et al. 2015), and Ishwaran and
colleagues (2008) provide in R a procedure to do survival analysis (and lots more)
with random forests using randomForestSRC(). Both alter the way splits within
each tree are determined so that the reformulation is fundamental. For example,
randomForestSRC() can pick the predictor and split that maximizes the survival
difference in the two offspring nodes. There is also the option to do the analysis with
competing risks (Ishwaran et al. 2014) and various weighting options that can be
applied to the splitting rule (Ishwaran 2015).

Alternatively, quantregForest() only changes how values in each terminal node
are used. The intent is to compute quantiles. Instead of storing only the mean of
each terminal node as trees are grown, the entire distribution is stored. Recall the
earlier discussion surrounding Table5.2. Once the user decides which quantiles are
of interest, they can be easily computed.

If one is worried about the impact of within-node outliers on the conditional mean,
the conditional median can be used instead. If for substantive reasons there is interest
in, say, the first or third quartile, those can be used. Perhaps most importantly, the
quantile option provides a way to take the costs of forecasting errors into account.
For example, if the 75th quantile is chosen, the consequences of underestimates are
three times more costly than the consequences of overestimates (i.e., 75/25 = 3).

However, such calculations only affect what is done with the information con-
tained in the terminal nodes across trees. They do not require that the trees themselves
be grown again with a linear loss function, let alone a loss function with asymmetric
costs. In other words, the trees grown under quadratic loss are not changed. If there
are concerns about quadratic loss, they do not apply to each of the splits. Moreover,
all of the usual random forests outputs (e.g., variable importance plots) are still a
product of a quadratic loss function.

5.11 A Random Forest Illustration Using a Quantitative
Response Variable

Several years ago, an effort was made to count the number of homeless in Los
Angeles County (Berk et al. 2008). There are over 2000 census tracts in the county,
and enumerators were sent to a sample of a little over 500. Their job was to count
“unsheltered” homeless who were not to be found in shelters or other temporary
housing. Shelter counts were readily available. The details of the sampling need not
trouble us here, and in the end, the overall county total was estimated to be about
90,000. We focus here on the street counts only.

246 5 Random Forests

Fig. 5.11 For Los Angeles
county census tracts a plot of
actual homeless street counts
against the random forest
fitted homeless street counts
(Least squares line is in red,
the 1-to-1 line in green, N =
504)

0 100 200 300

0
20

0
40

0
60

0
80

0

Actual Homeless Counts by Fitted Homeless Counts

Fitted Street Totals

A
ct

ua
l S

tr
ee

t T
ot

al
s

Least Squares Line1 to 1 Line

In addition to countywide totals, there was a need to have estimated counts for
tracts not visited. Various stakeholders might wish to have estimates at the tract level
for areas to which enumerators were not sent. Random forests was used with tract-
level predictors to impute the homeless street counts for these tracts. Here, we focus
on the random forests procedure itself, not the imputation. About 21%of the variance
in the homeless street counts was accounted for by the random forests application
with the follow inputs.23

1. MedianInc – median household income
2. PropVacant – proportion of vacant dwellings
3. PropMinority – proportion minority
4. PerCommercial – percentage of land used for commercial purposes
5. PerIndustrial – percentage of the land used for industrial purposes
6. PerResidential – percentage of the land used for residential purposes.

Figure5.11 is a plot of the actual street totals against the fitted street totals in the
data. One can see that there are a number of outliers that make any fitting exercise
challenging. In Los Angeles county, the homeless are sprinkled over most census
tracts, but a few tracts have very large homeless populations. The green 1-to-1 line
summarizes what a good fit would look like. Ideally the fitted street counts and the
actual street counts should be much the same. The red line summarizes with a least
squares line the quality of the fit actually obtained.Were the horizontal axis extended
to allow for fitted counts with the same large values as the actual counts, the two
lines would diverge dramatically.

The counts in the highly populated census tracts are often badly underestimated.
For example, the largest fitted count is around 400. There are 5 census tracts with

23As is often the case with quantitative response variables, the defaults in randomForest() worked
well.

5.11 A Random Forest Illustration Using a Quantitative Response Variable 247

actual street counts over 400, one of those with a count of approximately 900. From
a policy point of view this really matters. The census tracts most in need of services
are not accurately characterized by random forests.

Figure5.12 shows two variable importance plots. On the left, the percentage
increase in average OOB mean squared error for each predictor is plotted. On the
right, the increase in the average in-sample node impurity for each predictor is plot-
ted. For example, when the percentage of land that is commercial is shuffled, the
OOB mean squared error increases by about 7%, and the proportion of the residen-
tial population that is minority has no predictive impact whatsoever.When household
median income is shuffled, average node impurity increases by 7e+05, and all of
the predictors have some impact on the fit. The ranking of the variables changes
depending on the importance measure, but for the reasons discussed earlier, the
out-of-sample measures is preferable, especially if forecasting is an important goal.

Figure5.13 is a partial dependence plot showing a positive association between the
percentage of the residential dwellings that are vacant and the number of homeless
counted. When vacancy is near zero, the average number of homeless is about 20
per tract. When the vacancy percent is above approximately 10%, the average count
increases to between 60 and 70 (with a spike right around 10%). The change is very
rapid. Beyond 10% the relationship is essentially flat. At that point, perhaps the
needs of squatters are met.

In response to the poor fit for the few census tracts with a very large number of
homeless individuals, it is worth giving quantregForest() a try. As already noted, a
random forest is grown as usual, but the distributions in the terminal nodes of each

PropMinority

PropVacant

PerResidential

MedianInc

PerIndustrial

PerCommercial

-2 0 2 4 6

%IncMSE

PerResidential

PropMinority

PerIndustrial

PerCommercial

PropVacant

MedianInc

0e+00 2e+05 4e+05 6e+05
IncNodePurity

Variable Importance Plot for Homeless Data

Fig. 5.12 Variable importance plots for street counts (On the left is the percent increase in the OOB
mean squared error, and on the right is the in-sample increase in node impurity. N = 504)

248 5 Random Forests

Fig. 5.13 The partial
response plot for street
counts on the proportion of
vacant dwellings in a census
tract (N = 504)

0.0 0.1 0.2 0.3 0.4

20
30

40
50

60
70

Partial Dependence Plot for Street Count on
 Vacant Dwellings

Proportion Dwellings Vacant

S
tr

ee
t C

ou
nt

tree are retained for analysis. We will consider the impact of using three different
quantiles: 0.10, 0.50, and 0.90. For these data, quantiles substantially larger than .50
would in practice usually be the focus. The code used in the analyses to follow is
shown in Fig. 5.16.24

Figure5.14 shows three plots laid out just like Fig. 5.11, for the conditional quan-
tiles of 0.10, 0.50 and 0.90. All three fit the data about equally well if the adjusted R2

is the measure because the outliers are very few. But should there be special concerns
about the half dozen or so census tracts with very large homeless counts, it maymake
sense to fit the 90th percentile. For example, the largest fitted value for conditional
10th percentile is about 37. The largest fitted value for conditional 50th percentile
is about 220. The largest fitted value for conditional 90th percentile is nearly 700.
Several tracts with large homeless counts are still badly underestimated, but clearly,
the small number of tracts with substantial number of homeless is better approxi-
mated. Whether this is appropriate depends on the relative costs of underestimates
to overestimates. We are again faced with the prospect of asymmetric costs, but for
quantitative response variables.

When for the homeless data the 90th percentile is used, the cost of underestimating
the number of homeless in a census tract is 9 timesmore costly thanoverestimating the
number of homeless in a census tract (i.e., 0.90/0.10 = 9). Whether the 9-to-1 cost
ratio makes sense is a policy decision. What are the relative costs of underestimating
the number of homeless compared to overestimating the number of homeless? More
will be said about these issueswhen quantile boosting is discussed in the next chapter.
But just as for classification, there is no reason to automatically impose symmetric
costs.

24The authors are Nicolai Meinshausen and Lukas Schiesser. The version used for these analyses
(version 1.1) seems to have some bugs in the plotting routines, which is why the code shown in
Fig. 5.16 is so lengthy and inelegant. The plots had to be constructed from more basic procedures.

5.11 A Random Forest Illustration Using a Quantitative Response Variable 249

0 5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0

Street Count on Fitted Value of 10th Percentile

Fitted 10th Percentile

S
tre

et
 C

ou
nt

Least Squares Line

1-to-1 Line

0 50 100 150 200

0
20

0
40

0
60

0
80

0

Street Count on Fitted Value of 50th Percentile

Fitted 50th Percentile

S
tre

et
 C

ou
nt

Least Squares Line

1-to-1 Line

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Street Count on Fitted Value of 90th Percentile

Fitted 90th Percentile

S
tre

et
 C

ou
nt

Least Squares Line

1-to-1 Line

Fig. 5.14 Plot of quantile random forest fitted values against the actual values (Least squares line
in red and 1-to-1 line in green. Quantiles = 0.05, 0.50, 0.90. N = 504)

Figure5.15 shows three variable importance plots, one for each of the three quan-
tiles being used: 0.10, 0.50, 0.90. The percentage point increase in quantile (linear)
out-of-sample loss is the measure of importance. For example, for the conditional
90th percentile, themost important input is the proportion of vacant dwellings, which
when shuffled increased the out-of-sample L1 loss by about 16 percentage points.
As before, negative values are treated as 0.0.

Perhaps the most important message is that by this measure of importance, the
order of the variables can vary by the conditional quantile estimated. Inputs that
are most important for out-of-sample performance when the 90th percentile is the
fitted value may not be the most important for out-of-sample performance when the
10th percentile is the fitted value. That is, predictors that help to distinguish between

250 5 Random Forests

PerResidential
PerCommercial
PerIndustrial
PropMinority
MedianInc
PropVacant

-1 0 1 2 3

Importance Plot for Street Counts -- Quantile .10

% Increase in Quantile Loss

PerCommercial
PerResidential
PerIndustrial
PropMinority
MedianInc
PropVacant

-2 0 2 4 6

Importance Plot for Street Counts -- Quantile .50

% Increase in Quantile Loss

PerResidential
PropMinority
PerIndustrial
PerCommercial
MedianInc
PropVacant

0 5 10 15

Importance Plot for Street Counts -- Quantile .90

% Increase in Quantile Loss

Fig. 5.15 Street count variable importance plots for quantiles of 0.10, 0.50, and 0.90 (Importance
is measured by the OOB percentage point increase in the quantile loss after shuffling. N = 504)

census tracts with large numbers of homeless may be of no help distinguishing
between census tracts with small numbers of homeless. Different processes may be
involved.

There are apparently no partial dependence plots of quantile regression forests.
It seems that relatively modest changes in the partial dependence plot algorithm
could accommodate conditional quantiles. However, the computation burdens may
be substantially increased.

Quantile random forests has some nice features and in particular, the ability to
introduce asymmetric costs when the response variable is quantitative. However, the
random forest is grown as usual with each split based on quadratic loss. Were one
truly committed to linear loss, it would make sense to revise the splitting criterion
accordingly. An R library called yarp(), by Adam Kapelner, is under development
that among other featureswill allow for awide variety of split loss functions. Quantile
random forests is a strange hybrid and so far at least, does not seem to be widely used.

5.12 Statistical Inference with Random Forests

As long as users of random forests are content to describe relationships in the data
on hand, random forests is a level I procedure. But the use of OOB data to get honest
performance assessments and measures of predictor performance speaks to level II

5.12 Statistical Inference with Random Forests 251

library(quantregForest)
X<-as.matrix(HData[,2:7]) # predictors as matrix
Y<-as.numeric(as.matrix(HData[,1])) # response as vector

Quantile Random Forests
out2<-quantregForest(x=X,y=Y,nodesize=10,importance=T,

quantiles = c(.10))
preds<-predict(out2) # Fitted OOB values

Fitted value plots
par(mfrow=c(3,1))
plot(preds[,1],Y,col="blue",pch=19,

xlab="Fitted 10th Percentile",
ylab="Street Count",
main="Street Count on Fitted Value of 10th Percentile")

abline(lsfit(preds[,1],Y),col="red",lwd=2)
abline(0.0,1.0,lwd=2,col="green")
text(22,220,"Least Squares Line",cex=1)
text(30,90,"1-to-1 Line",cex=1)

plot(preds[,2],Y,col="blue",pch=19,
xlab="Fitted 50th Percentile",
ylab="Street Count",
main="Street Count on Fitted Value of 50th Percentile")

abline(lsfit(preds[,2],Y),col="red",lwd=2)
abline(0.0,1.0,lwd=2,col="green")
text(130,300,"Least Squares Line",cex=1)
text(170,110,"1-to-1 Line",cex=1)

plot(preds[,3],Y,col="blue",pch=19,
xlab="Fitted 90th Percentile",
ylab="Street Count",
main="Street Count on Fitted Value of 90th Percentile")

abline(lsfit(preds[,3],Y),col="red",lwd=2)
abline(0.0,1.0,lwd=2,col="green")
text(500,370,"Least Squares Line",cex=1)
text(550,110,"1-to-1 Line",cex=1)

Importance Plots
par(mfrow=c(3,1))
imp10<-sort(out2$importance[,1])
dotchart(imp10,col="blue",pch=19,xlab="% Increase

in Quantile Loss",
main="Importance Plot for Street Counts -- Quantile .10")

imp50<-sort(out2$importance[,2])
dotchart(imp50,col="blue",pch=19,xlab="% Increase

in Quantile Loss",
main="Importance Plot for Street Counts -- Quantile .50")

imp90<-sort(out2$importance[,3])
dotchart(imp90,col="blue",pch=19,xlab="% Increase

in Quantile Loss",
main="Importance Plot for Street Counts -- Quantile .90")

Fig. 5.16 R code for quantile random forests

252 5 Random Forests

concerns and generalization error in particular. If the forecasting is an explicit goal,
a level II analysis is being undertaken.

Taking level II analyses a step farther, there have been some recent efforts to pro-
vide a rationale and computational procedures for random forests statistical inference
(Wager 2014;Wager et al. 2014;Wager andWalther 2015;Mentch andHooker 2015).
The issues are beyond the scope of our discussion in part because the work is at this
point still very much in progress. Key complications are the inductive nature of ran-
dom forests, tree depth dependence on sample size, the sampling of predictors, and
summary values for terminal nodes computed from the same data used to grow the
trees.

However, if one has test data, one can proceed in the same spirit as in CART.
The estimation target is the fitted values from the very same random forest grown
with the training data. The test data can be used to estimate generalization error or
other features of a confusion table. One can then apply the pairwise (nonparametric)
bootstrap to the test data in the fashion discussed in earlier chapters.

5.13 Software and Tuning Parameters

In this chapter, all empirical work has been done with the R procedure randomFor-
est(), which works well even for large datasets. But there are some disciplines in
which the datasets are extremely large (e.g., 1,000,000 observations, and 5000 pre-
dictors) and working with subsets of the data can be counterproductive. For example,
in genomics research there may be thousands of predictors.

Over the past few years, new implementations of random forests have beenwritten
for R, and some are remarkably fast (Ziegler and König 2014). A recent review by
Wright and Ziegler (2015:1) confirms that randomForest() is “feature rich andwidely
used.” But the code has not been optimized for high dimensional data.

Wright and Ziegler describe their own random forests implementation, ranger(),
in some depth. It is indeed very fast, but lacks a number of features that can be very
important in practice. All of the other implementations considered are either no more
optimized than randomForest(), or run faster but lack important features (e.g., partial
dependence plots). No doubt, at least some of these packages will add useful features
over time. One possible candidate in R is Rborist() (Seligman 2015). The programs
rforest() (Zhang et al. 2009) and rjungle() (Schwartz et al. 2010) are also candidates,
but neither is currently available in R.25 There are, in addition, efforts to reconsider
random forests more fundamentally for very high dimensional data. For example,
Xu and colleagues (2012) try to reduce the number of input dimensions by taking
into account information much like that assembled in the randomForest() proximity
matrix. Readers intending to use random forests should try to stay informed about
these developments. Here, we will continue with randomForest().

25Rborist wins the award for the most clever name.

5.13 Software and Tuning Parameters 253

Despite the complexity of the random forest algorithm and the large number
of potential tuning parameters, most of the usual defaults work well in practice.
However, if one tunes from information contained in the OOB confusion table, the
OOB data will slowly become tainted. For example, if for policy or subject matter
reasons one needs to tune to approximate a target asymmetric cost ratio in a confusion
table, model selection is in play once again. Still, when compared to the results from
true test data, the OOB results usually hold up well if the number of cost ratios
estimated is modest (e.g., <10) and the sample size is not too small (e.g., >1000).
The same holds if on occasion some of the following tuning parameters have to be
tweaked.

1. Node Size—Unlike in CART, the number of observations in the terminal nodes
of each tree can be very small. The goal is to grow trees with as little bias as
possible. The high variance that would result can be tolerated because of the
averaging over a large number of trees. In theR implementation of random forests,
the default sample sizes for the terminal nodes are one for classification and five
for regression. These seem to work well. But, if one is interested in estimating a
quantile, such as in quantile random forests, then terminal node sizes at least twice
as large will often be necessary for regression. If there are only five observations
in a terminal node, for instance, it will be difficult to get a good read on, say, the
90th percentile.

2. Number of Trees — The number of trees used to constitute a forest needs to be
at least several hundred and probably no more that several thousand. In practice,
500 trees is often a good compromise. It sometimes makes sense to do most of
the initial development (see below) with about 500 trees and then confirm the
results with a run using about 3000 trees. But, the cost is primarily computational
time and only if the number of inputs and number of observations are large, do
computational burdens become an issue. For example, if there are 100 inputs and
100,000 observations, the number of trees grown becomes an important tuning
parameter.

3. Number of Predictors Sampled—The number of predictors sampled at each split
would seem to be a key tuning parameter that should affect how well random
forests performs. Although it may be somewhat surprising, very few predictors
need to be randomly sampled at each split, and within sensible bounds on the
number sampled, it does not seem to matter much for the OOB error estimates.
With a large number of trees, each predictor will have an ample opportunity to
contribute, even if very few are drawn for each split. For example, if the average
tree in a random forest has ten terminal splits, and if there are 500 trees in the
random forest, there will be 5000 chances for predictors to weigh in. Sampling
two or three each time should then be adequate unless the number of predictors
is quite large (e.g., > 100).
But a lot depends on the number of predictors and how strongly they are related.
If the correlations are substantial, it can be useful to reduce the number of pre-
dictors sampled for each partitioning decision. In the original manual for the
FORTRAN version of random forests, Breiman recommends starting with the

254 5 Random Forests

number of predictors sampled equal to the square root of the number of predic-
tors available. Then, trying a few more or a few less as well can be instructive.

The feature of random forests that will usually make the biggest difference in
the results is how the costs of false negatives and false positives are handled, or
for quantile random forests, the quantile used. Even through asymmetric costs are
introduced by altering one or more of the arguments in randomForest(), one should
not think of the target cost ratio as a tuning parameter. It is a key factor in the fitting
process determined in advance from substantive and policy considerations. However,
to arrive at a good approximation of the target cost ratio, some tuning of one or more
arguments will usually be necessary (e.g., sampsize()).

Computational burdens can be an issue when the training data have a very larger
number of observations (e.g., >100,000), when the number of inputs is large (e.g.,
>100), and when a substantial number of inputs are categorical with many classes.26

It is difficult to tune one’s way out of letting the algorithm grind for hours in part
becausewith each new set of tuning values, the algorithmhas to run again. Sometimes
a better strategy is to work with a random, modest sized subset of training data for
tuning, saving the bulk of the data for results that will be used. Doing some initial
screening of the predictors to be used can also help, as long as one is aware of the
risks. Combining some of the categories for factors with many levels is worth a try.
Finally, many of the computational steps in random forests are easily parallelized
and will run well on computers with multiple processors. Soon, software with these
capabilities and others that increase processing speed will be routinely available and
be richly endowed with desirable features.

Also, a cautionary note. Random forests is not designed to be a variable selection
procedure. Nevertheless, it can be temping to use the variable importance plots to
discard weak predictors. There are at least four problems with this approach. First,
there is rarely any need to reduce the number of predictors. The way in which
splits are determined for each tree in the forest is a kind of provisional, variable
selection method that performs well. In other words, there is almost never a need
to drop the unimportant variables and rerun random forests. Second, some argue
that if multicolinearity is a serious problem, random forests results can be unstable.
But that concern refers primarily to estimates of variable importance. Should that
form of instability become an issue, any dimension reduction in the set of predictors
is probably best done before the random forests analysis begins. However, one is
back in the model selection game. Third, if the goal is to use variable importance to
determine the predictors to be introduced into some other procedure, performance
in prediction may not be what is needed. For example, prediction importance may
be unrelated to causal importance. Finally, as discussed earlier, there are lots of
worthy procedures designed for variable/model selection as long as one is prepared
to address the damage usually done to level II analyses.

26Currently, up to 53 classes are allowed for any given categorical input in randomForest().

5.14 Summary and Conclusions 255

5.14 Summary and Conclusions

There is substantial evidence that random forests is a very powerful statistical learn-
ing tool. If forecasting accuracy is one’s main performance criterion, there are no
other general purpose tools that have been shown to consistently perform any better.
Moreover, random forests comes with a rich menu of post-processing procedures
and simple means with which to introduce asymmetric costs. We consider a chief
competitor in the next chapter.

But a lot depends on the data analysis task. We will later briefly address deep
learning, which for specialized applications has enormous promise with very high
dimensional data when great precision in the fitted values is needed. But one must be
prepared to invest substantial time (e.g., weeks) in tuning, even when there is access
to a very large number of CPUs and GPUs. As some advertisements warn,“don’t try
this at home.” The most powerful desktop and laptop computers can be overmatched
by deep learning.

Random forests seems to get its leverage from five features of the algorithm:

1. growing large, low bias trees;
2. using bootstrap samples as training data when each tree is grown;
3. using random samples of predictors for each partitioning of the data;
4. constructing fitted values and output summary statistics from the out-of-bag data;

and
5. averaging over trees.

At the same time, very few of random forests’ formal properties have been proven.
At a deeper level, the precise reasons why random forests performs so well are not
understood. There is some hardwork ahead for theoretical statisticians. Nevertheless,
random forests is gaining in popularity because it seems to work well in practice,
provides lots of flexibility, and in R at least, comes packaged with a number of
supplementary algorithms that provide a range of useful output.

Exercises

Problem Set 1

The goal of this first exercise is to compare the performance of linear regression,
CART, and random forests. Construct the following dataset in which the response is
a quadratic function of a single predictor.

x1=rnorm(500)

x12=x1ˆ2

y=1+(-5*x12)+(5*rnorm(500))

1. Plot the 1 + (−5 × x12) against x1. This is the “true” relationship between the
response and the predictor without the complication of the disturbances. This is
the f (X) you hope to recover from the data.

2. Proceed as if youknow that the relationship between the response and the predictor
is quadratic. Fit a linearmodelwith x12 as the predictor. Then plot the fitted values

256 5 Random Forests

against x1. The results show how the linear model can perform when you know
the correct function form.

3. Now suppose you do not know that the relationship between the response and the
predictor is quadratic. Apply CART to the same response variable using rpart()
and x1 as the sole predictor. Use the default settings. Construct the predicted
values, using predict(). Then plot the fitted values against x1. How do the CART
fitted values compare to the linear regression fitted values? How well does CART
seem to capture the true f (X)?

4. Apply random forests to the same response variable using randomForests() and
x1 as the sole predictor. Use the default settings. Construct the predicted values
using predict(). Then plot the fitted values against x1. How do the random forest
fitted values compare to the linear regression fitted values?Howwell does random
forests seem to capture the true f (X)?

5. How do the fitted values from CART compare to the fitted values from random
forests? What feature of random forests is highlighted?

6. Construct a partial dependence plot with x1 as the predictor. How well does the
plot seem to capture the true f (X)?

7. Why in this case does the plot of the random forest fitted values and the partial
dependence plot look so similar?

5.14.1 Problem Set 2

Load the dataset SLID from the car library. Learn about the data set using the help()
command. Treat the variable “wages” as the response and all other variables as
predictors. The data have some missing values you will want to remove. Try using
na.omit().

1. Using the default settings, apply random forests and examine the fit quality.
2. Set the argument mtry at 4. Apply random forests again and examine fit quality.

What if anything of importance has changed?
3. Now set ntrees at 100 and then at 1000 applying random forests both times. What

if anything of importance has changed?
4. Going back to the default settings, apply random forests and examine the variable

importance plots with no scaling for each predictor’s standard deviation. Explain
what is being measured on the horizontal axis on both plots when no scaling for
the standard deviation is being used. Interpret both plots. If they do not rank the
variables in the same way, why might that be? Now scale the permutation-based
measure and reconstruct that plot. Interpret the results. If the ranks of the variables
differ from the unscaled plot, why might that be? Focusing on the permutation-
based measures (scaled and unscaled) when might it be better to use one rather
than the other?

5. Construct partial dependence plots for each predictor and interpret them.

5.14 Summary and Conclusions 257

5.14.2 Problem Set 3

Load the MASS library and the dataset called Pima.tr. Read about the data using
help().

1. Apply random forests to the data using the diagnosis of diabetes as the response.
Use all of the predictors and random forest default settings. Study the confusion
table.

a. How accurately does the random forests procedure forecast overall?
b. How accurately does the random forests procedure forecast each of the two

outcomes separately (i.e., given each outcome)? (Hint: you get this from the
rows of the confusion table.)

c. If the results were used to forecast either outcome (i.e., given the forecast),
what proportions of the time would each of the forecasts be incorrect? (Hint:
you get this from the columns of the confusion table.)

2. Construct variable importance plots for each of the two outcomes. Use the
unscaled plots of forecasting accuracy. Compare the two plots.

a. Which predictors are the three most important in forecasts of the presence of
diabetes compared to forecasts of the absence of diabetes? Why might they
not be the same?

3. Construct and interpret partial dependence plots of each predictor.
4. Suppose now that medical experts believe that the costs of failing to identify

future cases of diabetes are four times larger than the costs of falsely identifying
future cases of diabetes. For example, if themedical treatment is to get overweight
individuals to lose weight, that would likely be beneficial even if the individuals
were not at high risk for diabetes. But failing to prescribe a weight loss program
for an overweight individual might be an error with very serious consequences.
Repeat the analysis just completed but now taking the costs into account by using
the stratified bootstrap sampling option in random forests.

a. How has the confusion table changed?
b. How have the two variable importance plots changed?
c. How have the partial dependence plots changed?

5. Plot the margins to consider the reliability of the random forests classifications.
Youwill need at leastmargin() followedby theplot(). Are the two classes correctly
classified with about the same reliability? If so, why might a physician want to
know that? If not, why might a physician want to know that?

6. The votes are stored as part of the random forests object. Construct a histogram
of the votes separately for each of the two outcome classes. How do votes differ
from margins?

258 5 Random Forests

7. Now imagine that a physician did not have the results of the diabetes test but
wanted to start treatment immediately, if appropriate. Each of the predictors are
known for that patient but not the diagnosis. Using the predictor values for that
patient, a random forests forecast is made. What should the physician use to
measure the reliability of that forecast? Given some examples of high and low
reliability.

Chapter 6
Boosting

6.1 Introduction

As already discussed, one of the reasons why random forests is so effective for a
complex f (X) is that it capitalizes interpolation. As a result, it can respond to highly
local features of the data in a robust manner. Such flexibility is desirable because it
can substantially reduce the bias in fitted values. But the flexibility usually comes
at a price: the risk of overfitting. Random forests consciously addresses overfitting
using OOB observations to construct the fitted values and measures of fit, and by
averaging over trees. The former provides ready-made test data while the latter is a
form of regularization. Experience to date suggests that this two-part strategy can be
highly effective.

But the two-part strategy, broadly conceived, can be implemented in other ways.
Some argue that an alternative method to accommodate highly local features of the
data is to give the observations responsible for the local variation more weight in
the fitting process. If in the binary case, for example, a fitting function misclassifies
those observations, that function can be applied again, but with extra weight given
to the observations misclassified. Then, after a large number of fitting attempts, each
with difficult-to-classify observations given relativelymoreweight, overfitting can be
reduced if the fitted values from the different fitting attempts are averaged in a sensible
fashion. Ideas such as these lead to very powerful statistical learning procedures that
can compete with random forests. These procedures are called “boosting.”

Boosting as originally conceivedgets its name from its ability to take a “weak learn-
ing algorithm,”which performs just a bit better than randomguessing, and “boosting”
it into an arbitrarily “strong” learning algorithm (Schapire 1999: 1). It “combines the
outputs from many “weak” classifiers to produce a powerful “committee” (Hastie et
al. 2009: 337). So, boosting has some of the same look and feel as random forests.

The original version of this chapter was revised: See the “Chapter Note” section at the end of
this chapter for details. The erratum to this chapter is available at https://doi.org/10.1007/978-
3-319-44048-4_10.

© Springer International Publishing Switzerland 2016
R.A. Berk, Statistical Learning from a Regression Perspective,
Springer Texts in Statistics, DOI 10.1007/978-3-319-44048-4_6

259

http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10
http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10

260 6 Boosting

But, boosting as initially formulated differs from random forests in at least five
important ways. First, in traditional boosting, there are no chance elements built
in. At each iteration, boosting works with the full training sample and all of the
predictors. Somemore recent developments in boosting exploit random samples from
the training data, but these developments are enhancements that are not fundamental
to the usual boosting algorithms. Second, with each iteration, the observations that
are misclassified, or otherwise poorly fitted, are given more relative weight. No such
weighting is used in random forests. Third, the ultimate fitted values are a linear
combination over a large set of earlier fitting attempts. But the combination is not a
simple average as in random forests. The fitted values are weighted in a manner to
be described shortly. Fourth, the fitted values and measures of fit quality are usually
constructed from the data in-sample. There are no out-of-bag observations, although
some recent developments make that an option. Finally, although small trees can be
used as weak learners, boosting is not limited to an ensemble of classification and
regression trees.

To appreciate how these pieces can fit together, we turn to Adaboost.M1 (Freund
and Schapire 1996; 1997), which is perhaps the earliest and the most widely known
boosting procedure. For reasons we soon examine, the “ada” in Adaboost stands for
“adaptive” (Schapire 1999: 2). Adaboost illustrates well boosting’s key features and
despite a host of more recent boosting procedures, is still among the best classifiers
available (Mease and Wyner 2008).

6.2 Adaboost

Wewill treat Adaboost.M1 as the poster child for boosting in part because it provides
such a useful introduction to the method. It was designed originally for classification
problems, which once again are discussed first.

Consider a binary response coded as 1 or−1. Adaboost.M1 then has the following
general structure. The pseudocode that follows is basically a reproduction of what
Hastie et al. (2009) show on their page 339.

1. Initialize the observation weights wi = 1/N , i = 1, 2, . . . , N observations.
2. For m = 1 to M passes over the data:

(a) Fit a classifier Gm(x) to the training data using the weights wi .

(b) Compute: errm =
∑N

i=1 wi I (yi �=Gm (xi))∑n
i=1 wi

.

(c) Compute αm = log[(1 − errm)/errm].
(d) Set wi ← wi · exp[αm · I (yi �= Gm(xi))], i = 1, 2, . . . , N .

3. Output G(x) = sign
[∑M

m=1 αmGm(x)
]
.

There are N cases and M iterations. Gm(x) is a classifier for pass m over the data
x . It is the source of the fitted values used in the algorithm. Any number of procedures
might be used to build a classifier, but highly truncated trees (called “stumps”) are
common. The operator I is an indicator variable equal to 1 if the logical relationship

6.2 Adaboost 261

is true, and 0 otherwise. The binary response is coded 1 and −1 so that the sign
defines the outcome.

Classification error for pass m over the data is denoted by errm ; it is essentially
the proportion of cases misclassified. In the next step, errm is in the denominator and
(1− errm) is in the numerator before the log is taken. A larger value of αm means a
better fit.

The new weights, one for each case, are then computed, The value of wi is
unchanged if the i th case is correctly classified. If the i th case is incorrectly classified,
it is “up-weighted” by eαm . Adaboost.M1 will pay relatively more attention in the
next iteration to the cases that were misclassified. In some expositions of Adaboost
(Freund and Schapire 1999),αm is defined as 1

2 log(1−errm/errm). Then, incorrectly
classified cases are up-weighted by eαm and correctly classified cases are down-
weighted by e−αm .

In the final step, classification is determined by a sum of fitted values over the
M classifiers Gm , with each set of fitted values weighted by αm . This is in much
the same spirit as the last step in the random forest algorithm, but for adaboost, the
contributions from classifiers that fit the data are better and are given more weight,
and the class assigned depends on the sign of the sum.

To summarize, Adaboost combines a large number of fitting attempts of the data.
Each fitting attempt is undertaken by a classifier using weighted observations. The
observation weights are a function of how poorly an observation was fitted in the
previous iteration. The fitted values from each iteration are then combined as a
weighted sum. There is one weight for each fitting attempt, applied to all of the
fitted values, which is a function of the overall classification error of that fitting
attempt. The observation weights and the iteration weights both are a function of the
classification error, but their forms and purposes are quite different.

6.2.1 A Toy Numerical Example of Adaboost.M1

Tohelp fix these ideas, it is useful to go through a numerical illustrationwith very sim-
ple data. There are five observationswith response variable values for i = 1, 2, 3, 4, 5
of 1, 1, 1,−1,−1, respectively.

1. Initialize the observations with each weight wi = 1/5.
2. For the first iteration using the equal weights, suppose the fitted values from some

classifier for observations i = 1, 2, 3, 4, 5 are 1, 1, 1, 1, 1. The first three are
correct and the last two are incorrect. Therefore, the error for this first iteration is

err1 = (.20 × 0) + (.20 × 0) + (.20 × 0) + (.20 × 1) + (.20 × 1)

1
= .40.

3. The weight to be given to this iteration is then

α1 = log
(1 − .40)

.40
= log(.60/.40) = log(1.5) = .41.

262 6 Boosting

4. The new weights are
w1 = .20 × e(.41×0) = .20

w2 = .20 × e(.41×0) = .20

w3 = .20 × e(.41×0) = .20

w4 = .20 × e(.41×1) = .30

w5 = .20 × e(.41×1) = .30

5. Now we begin the second iteration. We fit the classifier again and for i =
1, 2, 3, 4, 5 get 1, 1, 1, 1,−1. The first three and the fifth are correct. The fourth
is incorrect. The error for the second iteration is

err2 = [(.20 × 0) + (.20 × 0) + (.20 × 0) + (.30 × 1) + (.30 × 0)]
1.2

= .25

6. The weight to be given to this iteration is

α2 = log
(1 − 25)

.25
= log(.75/.25) = 1.1.

7. We would normally keep iterating, beginning with the calculation of a third set
of weights. But suppose we are done. The classes assigned are

ŷ1 = sign[(1 × .41) + (1 × 1.1)] > 0 ⇒ 1

ŷ2 = sign[(1 × .41) + (1 × 1.1)] > 0 ⇒ 1

ŷ3 = sign[(1 × .41) + (1 × 1.1)] > 0 ⇒ 1

ŷ4 = sign[(1 × .41) + (1 × 1.1)] > 0 ⇒ 1

ŷ5 = sign[(1 × .41) + (−1 × 1.1)] < 0 ⇒ −1.

One can see in this toy example how in the second iteration, the misclassified
observations are given relativelymoreweight. One can also see that the class assigned
(i.e., +1 or −1) is just a weighted sum of the classes assigned at each iteration. The
second iteration had fewer wrong (one out of five rather than two out of five) and
so was given more weight in the ultimate averaging. These principles would apply
even for very large datasets and thousands of iterations. The key point, however, is
that operationally, there is nothing very mysterious going on.

6.2 Adaboost 263

6.2.2 Why Does Boosting Work so Well for Classification?

Despite the operational simplicity of boosting, there is no consensus on why it works
so well. At present, there seem to be three complementary perspectives. All three are
truly interesting, and each has some useful implications for practice.

6.2.2.1 Boosting as a Margin Maximizer

The first perspective comes from computer science and the boosting pioneers. The
basic idea is that boosting is a margin maximizer (Schapire et al. 1998; Schapire and
Freund 2012). From AdaBoost, the margin for any given case i is defined as

mg∗ =
∑

y=Gm

αm −
∑

y �=Gm

αm, (6.1)

where the sums are over the number of passes through the data for correct classi-
fications or incorrect classifications respectively. This expression is different from
Breiman’s margin (mr) but in the same spirit. In words, for any given case i , the mar-
gin is the difference between the sum of the iteration weights when the classification
is correct and the sum of the iteration weights when the classification is incorrect.1

Looking back at the toy example, the classifier is two for two for the first three
observations, one for two for the last observation, and zero for two for the fourth
observation. In practice, there would be hundreds of passes (or more) over the data,
but one can nevertheless appreciate that the classifications are most convincing for
the first three observations and least convincing for the fourth observation. The fifth
observation is in between. Equation6.1 is just an extension of this idea. The sum
of the correct or incorrect classifications becomes the sum of the weights when the
classification is correct or the sum of the weights when the classification is incorrect,
with the weights equal to αm . For the first three cases in the toy example, the margin
(.41+ 1.1) − 0 = 1.51. The margin for the fourth case is 0− (.41+ 1.1) = −1.51.
The margin for the fifth case is 1.1− .41 = .69. The evidence for the first three cases
is the highest. The evidence for the fourth case is the lowest, and the evidence for
the fifth case is in between.

And now the punch line. “Boosting is particularly good at finding classifiers with
large margins in that it concentrates on those examples whose margins are small
(or negative) and forces the base learning algorithm to generate good classifications
for those examples” (Schapire et al. 1998: 1656).2 Indeed, as the number of passes
through the data increase, the margins over observations generally increase, although

1Amore general definition is provided by Schapire and his colleagues (2008: 1697). A wonderfully
rich and more recent discussion about the central role of margins in boosting can be found in
Schapire and Freund (2012). The book is a remarkable mix from a computer science perspective of
the formal mathematics and very accessible discussions of what the mathematics means.
2In computer science parlance, an “example” is an observation or case.

264 6 Boosting

whether they are maximized depends on the base classifier. For instance, the margins
are generally not maximized for stump classification trees but are maximized for
large classification trees. This should sound familiar. A closely related point was
made for random forests.

Improvements in the margin over passes through the data reformulates the over-
fitting problem. It is possible in principle to fit the training data perfectly. One would
ordinarily halt the boosting well before that point because of concerns about over-
fitting. But with a perfect fit of the data, generalization error in test data can be
surprisingly good because the weighed averaging works in a manner much like
the averaging in bagging or random forests. (Look again at the final step in the
Adaboost.M1 algorithm.) Moreover, boosting past a perfect fit of the data can fur-
ther reduce generalization error because the margins are getting larger. In short,
concerns about overfitting for boosting seem to have been overstated.

There is one exception in which overfitting has actually been understated. When a
classifier is also used to compute the probabilities associatedwith each class, boosting
to minimize generalization error pushes the conditional proportions/probabilities for
each observation toward 0.0 or 1.0 (Mease et al. 2007; Buja et al. 2008). This follows
from the margin maximizing property of boosting. We will have more to say about
this shortly.

In summary, one reason why boosting works so well as a classifier is that it pro-
ceeds as a margin maximizer. An important implication for using classifiers such as
Adaboost.M1 is that overfitting can in practice not be a serious problem.One can even
boost past the point at which the fit in the training data is perfect. Another important
implication for practice is that if classification trees are used as the classifier, large
trees are desirable. And if large trees are desirable, so are large samples.

6.2.2.2 Boosting as a Statistical Optimizer

The second perspective sees Adaboost as a stagewise additive model using basis
functions in much the same spirit as CART and random forests. Consider again the
final step in the algorithm for Adaboost.M1

G(x) = sign

[
M∑

m=1

αmGm(x)

]

. (6.2)

Each pass through the data involves the application of a classifier Gm(x), the cul-
mination of which is a stage. The results of M stages are combined in an additive
fashion with the M values of αm as the computed weights. This means that each
Gm(x) relies on a linear basis expansion of X, much as discussed in Chap.1.

If boosting can be formulated as a stagewise additive model, an important ques-
tion is what loss function is being used. From Friedman and his colleagues (2000),
Adaboost.M1 iterations are implicitly targeting

http://dx.doi.org/10.1007/978-3-319-44048-4_1

6.2 Adaboost 265

f (X) = 1

2
log

P(Y = 1|X)

P(Y = −1|X)
. (6.3)

This is just one-half of the usual log-odds (logit) function for P(Y = 1|X). The 1/2
results from using the sign to determine the class. This is the “population minimizer”
for an exponential loss function e−y f (x). More formally,

argmin
f (x)

EY |x (e−Y f (x)) = 1

2
(log)

P(Y = 1|x)
P(Y = −1|x) (6.4)

Adaboost.M1 is attempting to minimize exponential loss with the observed class
and the predicted class as its arguments. The focus on exponential loss raises at least
two important issues for practice.

First, emphasizing the mathematical relationship between the exponential loss
function and conditional probabilities can paper over a key point in practice.Although
at each stage, the true conditional probability is indeed the minimizer, over stages
there can be gross overfitting of the estimated probabilities. In otherwords, themargin
maximizing feature of boosting can trump the loss function optimizing feature of
boosting.

Second, a focus on the exponential loss function naturally raises the question of
whether there are other loss functions that might perform better. Hastie and his col-
leagues (2009: 345–346) show that minimizing the negative binomial log likelihood
(i.e., the deviance) is also (as in Adaboost) in service of finding the true conditional
probabilities, or the within-sample conditional proportions (i.e., a level II or level
I analysis respectively). Might this loss function, implemented as “Logitboost,” be
preferred? On the matter of overfitting conditional probabilities, the answer is no.
The same overfitting problems surface (Mease et al. 2007).

With respect to estimating class membership, the answer is maybe. Hastie et al.
(2009: 346–349) show that the Logitboost loss function is somewhat more robust to
outliers than the Adaboost loss function. They argue that, therefore, Logitboost may
be preferred if a significant number of the observed classes of the response variable
are likely to be systematically wrong or noisy. There are other boosting options as
well (Friedman et al. 2000). But, it is not clear how the various competitors fare
in practice and for our purposes at the moment, that is beside the point. The loss
function optimization explanation, whatever the proposed loss function, is at best a
partial explanation for the success of boosting.

6.2.2.3 Boosting as an Interpolator

The third perspective has already been introduced. One key to the success of random
forests is that it is an interpolator that is then locally robust. Another key is the
averaging over a large number of trees. Although the details certainly differ, these
attributes also apply to boosting (Wyner et al. 2015). As the margins are increased,
the fitted values better approximate an interpolation of the data. Then, the weighted

266 6 Boosting

average of fitted values provides much the same stability as the vote over trees
provides for random forests; “…the additional iterations in boosting way beyond
the point at which perfect classification in the training data (i.e., interpolation) has
occurred has the effect of smoothing out the effects of noise rather than leading to
more and more overfitting” (Wyner et al. 2105: 24).

All three perspectives help explain why boosting performs so well as a classifier.
From a statistical perspective, boosting is a stagewise optimizer targeting the same
kinds of conditional probabilities that are the target for logistic regression. One of
several different loss functions can be used depending on the details of the data. This
framework places boosting squarely within statistical traditions. But boosting is far
more than a round-about way to do logistic regression. The margin maximization
perspective helps to explainwhy and dramatically reduces concerns about overfitting,
at least for classification. When the classifiers are trees, large trees perform better,
which suggests that in general, complex base classifiers are to be preferred. Finally,
the interpolation perspective links boosting to random forests and shows that boosting
classifiers have many of the same beneficial properties. In so doing, there is a deeper
understanding about why maximizing margins can be so helpful, although it is not
nearly the whole story. In the end, interpolation may be the key.

The implications for classification in practice are fourfold

1. complex base learners (e.g., large classification trees) help;
2. boosting beyond a perfect fit in the training data can help;
3. a large number of observations can help; and
4. a rich set of predictors can help (subject to the usual caveats such as very high

multicollinearity).

6.3 Stochastic Gradient Boosting

At present, there are many different kinds of boosting that all but boosting mavens
will find overwhelming. Moreover, there is very little guidance about which form
of boosting should be used in which circumstances. For practitioners, therefore,
stochastic gradient boosting is a major advance (Friedman 2001; 2002). It is not
quite a one-size-fits-all boosting procedure, but within a single statistical framework
provides a rich menu of options. As such, it follows directly from the statistical
perspective on boosting.

Here is a rough summary of the procedure for classification. Suppose that the
response variable in the training data is binary and coded as 1 or 0. The procedure
is initialized with some constant such as the overall proportion of 1s. This constant
serves as thefitted values fromwhich residuals are obtainedby subtraction in the usual
way. The residuals are then appended to the training data as a new variable. Next, a
random sample of the data is drawn without replacement. One might, for example,
sample half the data. A regression tree, not a classification tree, is applied to the
sample with the residuals as the response. Another set of fitted values is obtained.

6.3 Stochastic Gradient Boosting 267

From these, a new set of residuals is obtained and appended. Another random sample
is taken from the training data and the fitting process is repeated. The entire cycle is
repeated many times: (1) fitted values, (2) residuals, (3) sampling, (4) a regression
tree. In the end, the fitted values from each pass through the data are combined
in a linear fashion. For classification, these can be interpreted as proportions or
probabilities depending on whether the analysis is at level I or level II respectively.
Commonly, observations with ŷi > 0.5 are assigned a 1, and observations with
ŷi ≤ 0.5 are assigned a 0.

The weighting so central to boosting occurs implicitly through the residuals from
each pass. Larger positive or negative residuals imply that for those observations,
the fitted values are less successful. As the regression tree attempts to maximize the
quality of the fit overall, it responds more to the observations with larger positive or
negative residuals.

Consider now somewhat more formally the sources of the term “gradient” in
stochastic gradient boosting. Either numerical or categorical response variables are
allowed along with a variety of loss functions. As with random forests, trees are a
key component of the algorithm. The discussion that follows on boosting trees draws
heavily on Ridgeway (1999) and on Hastie et al. (2009: Sects. 10.9–4.10).

A given tree can be represented as

T (x;Θ) =
J∑

j=1

γ j I (x ∈ R j), (6.5)

with, as before, the tree parametersΘ = {R j , γ j }, where j is an index of the terminal
node, j, . . . , J , R j a predictor-space region defined by the j th terminal node, and
γ j is the value assigned to each observation in the j th terminal node. The goal is to
construct values for the unknownparametersΘ so that the loss function isminimized.
At this point, no particular loss L is specified, and we seek

Θ̂ = argmin
Θ

J∑

j=1

∑

xi∈R j

L(yi , γ j). (6.6)

As noted earlier, minimizing the loss function for a single tree is challenging.
For stochastic gradient boosting, the challenge is even greater because we seek to
minimize the loss over a set of trees. As a rough-and-ready approximation, we once
again proceed in a stagewise fashion so that at iteration m, we need to find

Θ̂m = argmin
Θm

N∑

i=1

L(yi , fm−1(xi) + T (xi ;Θm)), (6.7)

where fm−1(xi) are the results of the previous tree.Given the results from the previous
tree, the intent is to reduce the loss as much as possible using the fitted values
from the next tree. This can be accomplished through an astute determination of

268 6 Boosting

Θ̂m = [R jm, γ jm] for j = 1, 2, . . . , Jm . Thus, Eq.6.7 expresses the aspiration of
updating the fitted values in an optimal manner.

Equation6.7 can be reformulated as a numerical optimization task. In this frame-
work, gim is the gradient for the i th observation on iteration m, defined as the partial
derivative of the loss with respect to the fitting function. Thus,

gim = −
[
∂L(yi , f (xi))

∂ f (xi)

]

f (xi)= fm−1(xi)

. (6.8)

Equation6.8 represents for each observation i the potential reduction in the loss as
the fitting function f (xi) is altered. The larger the absolute value of gim , the greater
is the change in the loss as f (xi) changes. So, an effective fitting function would
respond more to the larger absolute values of gim than small ones.

The gim will generally vary across observations. A way must be found to exploit
the gim so that over all of the observations, the loss is reduced the most it can be. One
approach is to use a numerical method called “steepest descent,” in which a “step
length” ρm is found so that

ρm = argmin
ρ

L(fm−1 − ρgm). (6.9)

In other words, a scalar ρm is determined for iteration m so that when it multiplies
the vector of gradients, the loss function from the previous iteration is reduced the
most it can be.

Figure6.1 illustrates the basics of the process when there are two predictors, X1

and X2. There is a single location, represented by the red filled circle, where the
smallest loss can be found. The algorithm starts at some arbitrary point and proceeds
in steps determined by the direction and step length for which the loss is reduced
the most, subject to a constraint on the length of the step. Often the step lengths
are reduced in flatter regions of the function so that the minimum is not overshot.
Typically there will be many more predictors, but the ideas represented in Fig. 6.1
generalize.

The link between the method of steepest descent and gradient boosting is gim .
Consider the disparities between tree-generated fitted values and the actual values
of the response. Those disparities are a critical input to the loss function. The size
of the loss depends on all of the N disparities, but larger disparities make greater
contributions to the loss than smaller disparities. Thus, a fitting function will reduce
the loss more substantially if it does an especially good job at reducing the larger
disparities between its fitted values and the actual values. There is a greater payoff in
concentrating on the larger disparities. Disparities resulting from the fitting process
play much the same role as the gradients in the method of steepest descent.

And now the payoff. Friedman (2002) shows that if one uses certain transforma-
tions of the disparities as the gradients (details soon), there is a least squares solution
to finding effective parameter values for the fitting function. That is,

6.3 Stochastic Gradient Boosting 269

Fig. 6.1 An illustration of
steepest descent looking
down into a convex loss
function (The predictors are
X1 and X2. Loss is
represented on the vertical
axis.)

Loss

Convex Loss Function

Start

Minimum

Θ̃m = argmin
Θ

N∑

i=1

(−gim − T (xi ;Θ))2. (6.10)

What this means in practice is that if one fits successive regression trees by least
squares, each time using as the “response variable” a certain transformation of the
disparities produced by the previous regression tree, one can obtain a useful approx-
imation of the required parameters. For a binary outcome, the classifier that results,
based on a large number of combined regression trees, can be much like Adaboost or
Adaboost itself. Moreover, by recasting the boosting process in gradient terms, many
useful variants follow including the boosting of fitting procedures for quantitative
response variables.

We turn, then, to stochastic gradient boosting, implemented in R as gbm(), that
is a generalization of Friedman’s original gradient boosting. Among the differences
are the use of sampling in the spirit of bagging and a form of shrinkage.3

Consider a training dataset with N observations and p variables, including the
response y and the predictors x .

3For very large datasets, there is a scalable version of tree boosting called XGBoost() (Chen and
Guestrin 2016) that can provide remarkable speed improvements but has yet to include the range
of useful loss functions found in gbm(). More will be said about XGBoost() when “deep learning”
is briefly considered in Chap.8.

http://dx.doi.org/10.1007/978-3-319-44048-4_8

270 6 Boosting

1. Initialize f0(x) so that the constant κ minimizes the loss function: f0(x) =
argminκ

∑N
i=1 L(yi ,κ).4

2. For m in 1, . . . , M , do steps a–e.

(a) For i = 1, 2, . . . , N compute the negative gradient as the working response

rim = −
[
∂L(yi , f (xi))

∂ f (xi)

]

f = fm−1

.

(b) Randomly select without replacementW cases from the data set, whereW is
less than the total number of observations. This is a simple random sample,
not a bootstrap sample, which seems to improve performance. How large W
should be is discussed shortly.

(c) Using the randomly selected observations, each with their own rim , fit a
regression tree with Jm terminal nodes to the rim , giving regions R jm for
each terminal node j = 1, 2, . . . , Jm .

(d) For j = 1, 2, . . . , Jm , compute the optimal terminal node prediction as

γ jm = argmin
γ

∑

xi∈R jm

L(yi , fm−1(xi) + γ),

where region R jm denotes the set of x-values that define the terminal node j
for iteration m.

(e) Drop all of the cases down the tree grown from the sample and, update fm(x)
as

fm(x) = fm−1(x) + ν ·
Jm∑

j=1

γ jm I (x ∈ R jm).

where ν is a “shrinkage” parameter that determines the learning rate. The
importance of ν is discussed shortly.

3. Output f̂ (x) = fM(x).

Ridgeway (1999) has shown that using this algorithmic structure, all of the proce-
dures within the generalized linear model, plus several extensions of it, can properly
be boosted by the stochastic gradient method. Stochastic gradient boosting relies
on an empirical approximation of the true gradient (Hastie et al. 2001: Sect. 10.10).
The trick is determining the right ri for each special case; the “residuals” need to be
defined. Among the current definitions of rim are the following, each associated with
a particular kind of regression mean function: linear regression, logistic regression,
robust regression, Poisson regression, quantile regression, and others.

4Other initializations such as least squares regression could be used, depending on loss function
(e.g., for a quantitative response variable).

6.3 Stochastic Gradient Boosting 271

1. Gaussian: yi − f (xi): the usual regression residual.
2. Bernoulli: yi − 1

1+e− f (xi)
: the difference between the binary outcome coded 1 or

0 and the fitted (“predicted”) proportion for the conventional logit link function
for logistic regression.

3. Poisson: yi −e f (xi): the difference between the observed count and the fitted count
for the conventional log link function as in Poisson regression

4. Laplace: sign[yi − f (xi)]: the sign of the difference between the values of the
response variable and the fitted medians, a form of robust regression.

5. Adaboost: −(2yi −1)e−(2yi−1) f (xi): based on exponential loss and closely related
to logistic regression.

6. Quantile: α(I (y > f (xi)) − (1 − α)I (yi ≤ f (xi)): for quantile regression the
weighted difference between two indicator variables equal to 1 or 0 depending
on whether residual is positive or negative with the weights α or (1 − α), and α
as the percentile target.

There are several other options built into gbm(). Hastie and his colleagues (2001:
321) derive the gradient for a Huber robust regression. Ridgeway (2012) offers
boosted proportional hazard regression. Other less well-documented options include
multinomial logistic regression, and regression based on a t-distribution. No doubt
there will additional distributions added in the future.

Stochastic gradient boosting also can be linked to various kinds of penalized
regression of the general form discussed in earlier chapters. One insight is that the
sequence of results that is produced with each pass over the data can be seen as a
regularization process akin to shrinkage (Bühlmann and Yu 2004; Friedman et al.
2004).

In short, with stochastic gradient boosting, each tree is constructed much as a con-
ventional regression tree. The difference is how the “target” for the fitting is defined.
Using disparities defined in particular ways, a wide range of fitting procedures can be
boosted. It is with good reason that “gbm” stands for “generalized boosted regression
models.”

6.3.1 Tuning Parameters

Stochastic gradient boosting has a substantial number of tuning parameters, many
of which affect the results in similar ways. There is no analytical way to arrive at an
optimal tuning parameter values in part because how they perform is so dependent
on the data (Buja et al. 2008). An algorithmic search over values might be helpful in
principle, but would be computationally demanding, and there would likely be many
sets of tuning parameter values leading to nearly the same performance. Fortunately,
the results from stochastic gradient boosting are often relatively robust with respect
to sensible variation in the tuning parameters, and common defaults usually work
quite well.

272 6 Boosting

The most important tuning parameters provided by gbm() are as follows:

1. Number of Iterations — The number of passes through the data is typically
the most important tuning parameter and is in practice empirically determined.
Because there is no convergence and no clear stopping rule, the usual proce-
dure is to run a large number of iterations and inspect a graph of the fitting error
(e.g., residual deviance) plotted against the number of iterations. The error should
decline rapidly at first and then level off. If after leveling, there is an inflection
point at which the fitting error begins to increase, the number of iterations can
be stopped shortly before that point. If there is no inflection point, the number
of iterations can be determined by when reductions in the error effectively cease.
There is a relatively largemargin for error because plus orminus 50–100 iterations
rarely lead to meaningful performance differences.

2. Subsample Size—Apage is taken from baggingwith the use of random sampling
in step 2b to help control overfitting. The sampling is done without replacement,
but as noted earlier, there can be an effective equivalence between sampling with
and without replacement, at least for conventional bagging (Buja and Stuetzle
2006).When samplingwithout replacement, the sample size is a tuning parameter,
and the issues are rather like those that arise when one works with split samples.
How large should the training sample, evaluation sample, and test sample be?
There seems to be no formal or general answer. Practice seems to favor a sample
size of N/2. But it can make sense for any given data analysis to try sample sizes
that also are about 25% smaller and larger.

3. Learning Rate — A slow rate at which the updating occurs can be very useful.
Setting the tuning parameter ν to be less than 1.0 is standard practice. A value of
.001 often seems to work reasonably well, but values larger and smaller by up to
a factor of 10 are sometimes worth trying as well. By slowing down the rate at
which the algorithm “learns,” a larger number of basis functions can be computed.
Flexibility in the fitting process is increased, and the small steps increase shrink-
age, which improves stability. A cost is a larger number of passes through the
data. Fortunately, one can usually slow the learning process down substantially
without a prohibitive increase in computing.

4. Interaction Depth — Another tuning parameter that affects the flexibility of the
fitting function is the “depth” of the interaction. This name is a little misleading
because it does not directly control the order of the interactions allowed. Rather
it controls the number of splits allowed. If the interaction depth is 1, there is
only a split of the root node data. If the interaction depth is 2, the two resulting
data partitions of the root node data are split. If the interaction depth is 3, the
four resulting partitions are split. And on it goes. Interaction depth is a way
to limit the size of the regression trees, and values from 1 to 10 are used in
practice. As such, the interaction depth determines the maximum order of any
interactions, but the order of the interactions can be less than the interaction
depth. For example, an interaction depth of 2 may result in four partitions defined

6.3 Stochastic Gradient Boosting 273

by a single predictor at different break points. There are no interactions effects
because interaction effects are commonly defined as the product of two or more
predictors. If interaction depth is set to 2, the largest possible interaction effect is
2 (i.e., a two-way interaction involving two predictors).

5. Terminal Node Size — Yet another tuning parameter that affects fitting function
flexibility is theminimumnumber of observations in each tree’s terminal node. For
a given sample size, smaller node sizes imply larger trees and amoreflexible fitting
function. But smaller nodes also lead to less stability for whatever is computed
in each terminal node. Minimum terminal node sizes of between 5 and 15 seem
to work reasonably well in many settings, but a lot depends on the loss function
that is being used.

In practice, the tuning parameters can interact. For example, terminal node size
may be set too high for the interaction depth specified to be fully implemented. Also,
more than one tuning parameter can be set in service of the same goal. The growth
of larger trees, for instance, can be encouraged by small terminal node sizes and by
greater interaction depth. In short, sometimes tuning parameters compete with one
another and sometimes tuning parameters complement one another.

How one tunes depends heavily on the kind of stochastic gradient boosting being
undertaken. The advice available typically depends on craft lore, but the interpolation
perspective discussed earlier has more formal implications for classification. It can
be useful to set tuning parameters to better approximate an interpolation of the
data. Perhaps most important, a minimum size of 1 for terminal nodes is often very
effective, at least for classification. In the same spirit, deep trees and a very large
number of iterations should be considered. Examples will be provided later.

A major obstacle to effective tuning is the need for test data. Even with the
sampling built into stochastic gradient boosting, there is no provision for retaining
the unsampled data for performance evaluation. The out-of-bag data may be used
only to help determine the number of iterations.5 Common tuning advice, therefore,
is limited to in-sample performance. But recall that for classification, one can have
a perfect fit to the data and still reduce generalization error with more iterations. For
classification and regression, using the test data for performance evaluation seems
like a good idea.

6.3.2 Output

The key output from stochastic gradient boosting is much the same as the key output
from random forests. However, unlike random forests, there are not the usual out-of-
bag observations that can be used as test data. Consequently, confusion tables depend
on resubstituted data; the data used to grow the trees are also used to evaluate their

5For gbm(), the data not selected for each tree are called “out-of-bag” data although that is not fully
consistent with the usual definition because in gbm(), the sampling is without replacement.

274 6 Boosting

performance. The same applies to fitted values for numerical response variables.
Consequently, overfitting can be a complication although the updating over lots of
trees helps a lot. Ideally, this problem should be addressed with real test data.

Just as for random forests, the use of multiple trees means that it is impractical
to examine tree diagrams to learn how individual predictors perform. The solutions
currently available are much like those implemented for random forests. There are
variable importance measures and partial dependence plots that are similar to those
used in random forests.

The partial dependence plots must be treated cautiously when the outcome vari-
able is binary. Recall that in an effort to classify well, boosting can push the fitted
probabilities away from .50 toward 0.0 and 1.0. For gbm(), partial dependence plots
with binary response variables use either a probability or logit scale (i.e., pi/(1− pi))
on the vertical axis. Both are vulnerable if measures of classification performance are
being used to tune. If tuning is done through measures of fit such as the deviance, one
has no more than the usual concerns about overfitting. But, in that case, classification
accuracy (should one care) will perhaps be sacrificed.

The exact form taken by the variable importance measures depends on options
in the software. One common choice is reductions of the loss function that can be
attributed to each predictor. The software sums for each tree how much the loss
decreases when any predictor defines a data partition. For example, if for a given tree
a particular predictor is chosen 3 times to define data partitions, the three reductions
in the loss function are summed as a measure of that predictor’s contribution to
the fit for that tree. Such sums are averaged over trees to provide the contribution
that each predictor makes to the overall fit. The contributions can be reported in
raw form or as percentages of the overall reduction in loss. In gbm(), there is on
a somewhat experimental basis a random shuffling approach to importance based
on predictive accuracy. To date, however, out-of-bag observations are not used so
that true forecasting accuracy is not represented. Recall that for random forests,
importance is defined by contributions to prediction accuracy in the out-of-bag data.

6.4 Asymmetric Costs

All of the available loss functions for categorical outcomes use symmetric costs. False
positives count the same as false negatives. For stochastic gradient boosting, there
are two ways to easily introduce asymmetric costs. The first is to place a threshold on
the fitted values that differs from .5 (or on the logit scale that differs from 0.0). This
option was discussed earlier for several other procedures. For example, if a positive is
coded 1 and a negative is coded 0, placing the threshold at .25 means false negatives
are 3 times most costly than false positives. The problems with this approach were
also discussed. All other boosting output is still based on symmetric costs. Moreover,
there can be complications if the distribution of the fitted values is either very dense
or very sparse in the neighborhood of the threshold. If very dense, small changes in
the threshold that make no material difference can alter classification performance

6.4 Asymmetric Costs 275

dramatically. If very sparse, it can be difficult set the threshold so that the desired
cost ratio in a confusion tables is produced.

The second alternative is to use weights. This is much like altering the prior for
CART. And like with CART, some trial and error is involved before the classification
table with the desired cost ratio is produced. But the intent is to upweight the outcome
for which classifications errors are more costly relative to the outcome for which
classification error is less costly. An example is provided below.

For numerical response variables, the options are more limited. The only loss
function for which asymmetric costs are naturally available is the quantile regres-
sion loss function. By choosing the appropriate quantile, underestimates can be given
different costs from overestimates. For example, if one estimates the 75th percentile,
underestimates are 3 timesmore costly than overestimates. Looking back at the quan-
tile regression residual expression shown earlier when the algorithm for stochastic
gradient boosting was introduced, the value of α is set to the target percentile and is
the weight given to all positive residuals. The value of (1− α) is the weight given to
all negative residuals. Positive residuals are underestimates, and negative residuals
are overestimates.

Figure6.2 shows the shape of the loss function when the quantile is greater than
.50. As illustrated by the red line, the loss grows more rapidly for underestimates
(i.e., positive residuals) than overestimates (i.e., negative residuals). For quantiles
less than .50, the reverse is true. For a quantile of .50, the red and blue line have the
same rate of growth.

An Asymmetric Linear Loss Function for A
Quantile Greater Than .50

Fig. 6.2 Asymmetric loss function for the quantile loss function with the quantile set at .75

276 6 Boosting

6.5 Boosting, Estimation, and Consistency

The most important output from boosting is the fitted values. For a level I analysis,
these are just statistics computed for the data on hand. But, often there is an interest in
using the values as estimates of the fitted values in the joint probability distribution
responsible for the data. This is a level II analysis. Just as for random forests, no
claims are made that boosting will provide accurate estimates of the true response
surface. At best, one can get a consistent estimate of generalization error for a given
sample size,6 boosting specification and set of tuning parameters values (Jiang, 2004,
Zhang and Yu 2005, Bartlett and Traskin 2007). But existing proofs either impose
artificial conditions or are limited to a few of the “easier” loss functions such as
exponential loss and quadratic loss. And even then, the implications for practice
are not clear. There can be a Goldilocks stopping strategy for a given number of
observations at which the number of iterations is neither too few nor too many. But
how to find that sweet spot for a given analysis is not explained.

The best one can do in practice is apply some empirical heuristic and hope for the
best. As already noted, that heuristic can be the point at which the decrease in the
loss function levels off. Some measure of fit between the observed response values
and the fitted values can then be used as a rough proxy for generalization error for
that sample size, stopping decision, specification, and associated tuning parameter
settings. Conventionally, this is an in-sample estimate. A more honest estimate of
generalization error can be obtained from a test sample and as described earlier, one
can use the nonparametric bootstrap to approximate the variance in that estimate.

6.6 A Binomial Example

We return to the Titanic data for some applications of stochastic boosting as imple-
mented in gbm(). Recall that the response is whether or not a passenger survived. The
predictors we use are gender (“sex”), age, class of cabin (“pclass”), number of sib-
lings/spouses aboard(“sibsp”), and the number of parents/children aboard (“parch”).
The code used for the analysis with Bernoulli loss is provided in Fig. 6.3. At the
top, the data are loaded, and a new data set is constructed. A weighting variable
is constructed for later use. All NA entries removed. Removing NAs in advance is
required when a procedure does not discard them automatically.

Consistent with our earlier discussion, the minimum terminal node size is set to 1,
and the interaction depth set to 3. Setting interaction depth to a larger value (e.g., 8) led
to fewer iterations but essentially the same results. Setting it to a smaller value (e.g.,
1) led to more iterations, but also essentially same results. The number of iterations
was set to 4000 anticipating that 4000 should be plenty. If not, the number could be

6Even with the minimum number of observations allowed in terminal nodes specified, with more
observations there can be larger trees. There can be more splits before the minimum is reached.

6.6 A Binomial Example 277

Load and Clean Up Data
library(PASWR)
data("titanic3")
attach(titanic3)
wts<-ifelse(survived==1,1,3) # for asymmetric costs
Titanic3<-na.omit(data.frame(fare,survived,pclass,

sex,age,sibsp,parch,wts))

Boosted Binomial Regression
library(gbm)
out2<-gbm(survived~pclass+sex+age+sibsp+parch,

data=Titanic3,n.trees=4000,interaction.depth=3,
n.minobsinnode = 1,shrinkage=.001,bag.fraction=0.5,
n.cores=1,distribution = "bernoulli")

Output
gbm.perf(out2,oobag.curve=T,method="OOB",overlay=F) # 3245
summary(out2,n.trees=3245,method=permutation.test.gbm,

normalize=T)
plot(out2,"sex",3245,type="response")
plot(out2,"pclass",3245,type="response")
plot(out2,"age",3245,type="response")
plot(out2,"sibsp",3245,type="response")
plot(out2,"parch",3245,type="response")
plot(out2,c("subsp","parch"),3245,type="response") # Interaction

Fitted Values
preds2<-predict(out2,newdata=Titanic3,n.trees=3245,

type="response")
table(Titanic3$survived,preds2>.5)

Fig. 6.3 R code for Bernoulli regression boosting

increased. All else were the defaults, except that the number of cores available was
one. Even with only one core, the fitting took about a second in real time.7

Figure6.4 shows standard gbm() performance output. On the horizontal axis is the
number of iterations.On the vertical axis is the change in theBernoulli deviance based
on the OOB observations. The OOB observations provide a more honest assessment
than could be obtained in-sample. However, they introduce sampling error so that
the changes in the loss bounce around a bit. The reductions in the deviance decline
as the number of iterations grows and become effectively 0.0 shortly after the 3000th
pass through the data. Any of the iterations between 3000 and 4000 lead to about

7 For these analyses, the work was done on an iMac with a single core. The processor was a 3.4Ghz
Intel Core i7.

278 6 Boosting

Fig. 6.4 Changes in
Bernoulli deviance in OOB
data with iteration 3245 as
the stopping point
(N= 1045)

0 1000 2000 3000 4000
0e

+
00

1e
04

2e
04

3e
04

4e
04

Iteration

O
O

B
 c

ha
ng

e
in

 B
er

no
ul

li
de

vi
an

ce

Fig. 6.5 Titanic data
variable importance plot for
survival using binomial
regression boosting
(N= 1045)

pa
rc

h
si

bs
p

ag
e

pc
la

ss
se

x

Relative influence
0 10 20 30 40 50 60

the same fit of the data, but the software selects iteration 3245 as the stopping point.
Consequently, the first 3245 trees are used in all subsequent calculations.8

Figure6.5 is a variable importance plot shown in the standard gbm() format for
the predictor shuffling approach. Recall that unlike in random forests, the reductions
are for predictions into the full dataset, not the subset of OOB observations. Also the
contribution of each input is standardized differently. All contributions are given as
percentages of the summed contributions. For example, gender is the most important
predictorwith a relative performance of 60 (i.e., 60%). The class of passage is the next
most important input with a score of about 25, followed by age with a score of about
12. If you believe the accounts of the Titanic’s sinking, these contributions make
sense. But just as with random forests, each contribution includes any interaction
effects with other variables unless the tree depth is equal to 1 (i.e., interaction.depth
= 1). So, the contributions in Fig. 6.5 cannot be attributed to each input by itself.
Equally important, contributions to the fit are not regression coefficients and or

8 If forecasting were on the table, it might have been useful to try a much larger number of iterations
to reduce generalization error.

6.6 A Binomial Example 279

1st 2nd 3rd

0.
30

0.
40

0.
50

0.
60

pclass

P
re

di
ct

ed
 p

ro
ba

bi
lit

y

0 20 40 60 80

0.
3

0.
4

0.
5

0.
6

0.
7

age

P
re

di
ct

ed
 p

ro
ba

bi
lit

y

Fig. 6.6 Titanic data partial dependence plots showing survival proportions for class of passage
and age using binomial regression boosting (N= 1045)

contributions to forecasting accuracy. It may not be clear, therefore, how to use them
when real decisions have to be made.

Figure6.6 presents twopartial dependenceplotswith thefittedprobability/proportion
on the vertical axis. One has the option of reporting the results as probabili-
ties/proportions or logits. One can see that class of passage really matters. The
probability of survival drops from a little over 60 to a little under .30 from first
class to second class to third class. Survival is also strongly related to age. The prob-
ability of survival drops from about .70 to about .40 as age increases from about 1
year to about 18. There is another substantial drop around age 55 and an increase
around age 75. But there are very few passengers older than 65, so the apparent
increase could be the result of instability.9

Figure6.7 is a partial plot designed to show two-way interaction effects. The two
inputs are the number of siblings/spouses aboard and the number of parents/children
aboard, which are displayed as a generalization of a mosaic plot. The inputs are
shown on the vertical and horizontal axes. The color scale is shown on the far right.
A combination of sibsp >5 and parch >4 has the smallest chances survival; about
a quarter survived. A combination of sibsp <2 and parch <3 has the largest chance
of survival; a little less than half survived.10 In this instance, there does not seem
to be important interaction effects. The differences in the colors from top to bottom
are about the same regardless of the value for sibsp. For example, when sibsp is 6,
the proportion surviving changes top to bottom from about .25 to about .30. The

9 The plots are shown just as gbm() builds them, and there are very few options provided. But just
as with random forests, the underling data can be stored and then used to construct new plots more
responsive to the preferences of data analysts.
10Because both inputs are integers, the transition from one value to the next is the midpoint between
the two.

280 6 Boosting

sibsp

pa
rc

h

1

2

3

4

5

2 4 6

0.25

0.30

0.35

0.40

Fig. 6.7 Interaction partial dependence plot: survival proportions for the number of siblings/spouses
aboard and the number of parents/children aboard using binomial regression boosting (N= 1045)

Table 6.1 Confusion table for Titanic survivors with default 1 to 1 weights (N= 1045)

Forecast perished Forecast survived Model error

Perished 561 57 .09

Survived 126 301 .29

Use error .18 .16 Overall error = .18

difference is −.05. When sibsp is 1, the proportion surviving changes from top to
bottom from about .35 to about .40. The difference is again around −.05. Hence, the
association between sibsp and survival is approximately the same for both values of
sibsp.

It is difficult to read the color scale for Fig. 6.7 at the necessary level of precision.
One might reach different conclusions if numerical values are examined. But the
principle just illustrated is valid for how interaction effects are represented. And it
is still true for these two predictors that a combination of many siblings/spouses and
many parents/children is the worst combination of these two predictors whether or
not their effects are only additive.

Table6.1 is the confusion table that results when each case is given the same
weight. In effect, this is the default. The empirical cost ratio that results is about 2.2
to 1 with misclassification errors for those who perished about twice as costly as
misclassification errors for those who survived. Whether that is acceptable depends
on how the results would be used. In this instance, there are probably no decisions
to be made based on the classes assigned, so the cost ratio is probably of not much
interest.

Stochastic gradient boosting does a good job distinguishing those who perished
from those who survived. Only 9% of those who perished were misclassified, and

6.6 A Binomial Example 281

Table 6.2 Confusion table for Titanic survivors with 3–1 weights (N= 1045)

Forecast perished Forecast survived Model error

Perished 601 17 .03

Survived 195 232 .46

Use error .24 .08 Overall error = .21

only 29% of those who survived were misclassified. The forecasting errors of 18%
and 16% are also quite good although it is hard to imagine how these results would
be used for forecasting.

Table6.2 repeats the prior analysis but with survivor observations weighted as
3 times more than the observations for those who perished. Because there are no
decisions to be made based on the analysis, there is no grounded way to set the
weights. The point is just to illustrate that weighting can make a big difference in
the results that, in turn, affect the empirical cost ratio in a confusion table. That cost
ratio is now 11.5 so that misclassifications of those who perished are now over 11
times more costly than misclassifications of those who survived. Consequently, the
proportion misclassified for those who perished drops to 3%, and the proportion
misclassified for those who survived increases to 46%. Whether these are more
useful results than the results shown in Table6.1 depend on how the results would
be used.11

Should one report the results in proportions or probabilities? For these data, pro-
portions seem more appropriate. As already noted, the Titanic sinking is probably
best viewed as a one-time event that has already happened, which implies there may
be no good answer to the question “probability of what?” Passengers either perished
or survived, and treating such an historically specific event as one of many identical,
independent trials seems a stretch. This is best seen as a level I analysis.

6.7 A Quantile Regression Example

For the Titanic data, the fare paid in dollars becomes the response variable, and the
other predictors just as before. Because there are a few very large fares, there might
be concerns about how well boosted normal regression would perform. Recall that
boosted quantile regression is robust with respect to response variable outliers or
a highly skewed distribution and also provides a way to build in relative costs for
fitting errors. Figure6.8 shows the code for a boosted quantile regression fitting the
conditional 75th percentile.

There are two significant changes in the tuning parameters. First, the distribu-
tion is now “quantile” with alpha as the conditional quantile to be estimated. We

11It is not appropriate to compare the overall error rate in the two tables (.18–.21) because the errors
are not weighted by costs. In Table6.2, classification errors for those who perished are about 5 times
more costly.

282 6 Boosting

Load Data and Clean Up Data
library(PASWR)
data("titanic3")
attach(titanic3)
Titanic3<-na.omit(data.frame(fare,pclass,

sex,age,sibsp,parch))

Boosted Quantile Regression
library(gbm)
out1<-gbm(fare~pclass+sex+age+sibsp+parch,data=Titanic3,

n.trees=12000,interaction.depth=3,
n.minobsinnode = 10,shrinkage=.001,bag.fraction=0.5,
n.cores=1, distribution = list(name="quantile",
alpha=0.75))

#Output
gbm.perf(out1,oobag.curve=T) # 4387
summary(out1,n.trees=4387,method=relative.influence)
par(mfrow=c(2,1))
plot(out1,"sex",4387,type="link")
plot(out1,"age",4387,type="link")
plot(out1,"sibsp",4387,type="link")
plot(out1,"parch",4387,type="link")
plot(out1,c("pclass","age"),4448,type="link") # Interaction

Fitted Values
preds1<-predict(out1,newdata=Titanic3,n.trees=4387,type="link")
plot(preds1,Titanic3$fare,col="blue",pch=19,

xlab="Predicted Fare", ylab="Actual Fare",
main="Results from Boosted Quantile Regression
with 1 to 1 line Overlaid: (alpha=.75)")
abline(0,1,col="red",lwd=2)

Fig. 6.8 R code for quantile regression boosting

begin by estimating the conditional 75th percentile. Underestimates are taken to be 3
times more costly than overestimates. Second, a much larger number of iterations is
specified than for boosted binomial regression. For the conditional 75th percentile,
only a little over 4000 iterations are needed. But we will see shortly that for other
conditional percentiles, at least 12,000 iterations are needed. There is a very small
computational penalty for 12,000 iterations for these data (Fig. 6.9).

Figure6.10 is the same kind of importance plot as earlier except that importance
is now represented by the average improvement over trees in fit for the quantile loss

6.7 A Quantile Regression Example 283

Fig. 6.9 Changes in the
quantile loss function for the
fare paid with OOB Titanic
data and with iteration 4387
as the stopping point
(N= 1045)

0 2000 4000 6000 8000 10000 12000
0.

00
0

0.
00

5
0.

01
0

0.
01

5
Iteration

O
O

B
 c

ha
ng

e
in

 Q
ua

nt
ile

 lo
ss

Fig. 6.10 Variable
importance plot for the fare
paid using quantile
regression boosting with the
75th percentile (N= 1045)

se
x

ag
e

pa
rc

h
si

bs
p

pc
la

ss

Relative influence

0 10 20 30 40 50 60

function as each tree is grown. This is an in-sample measure.12 Nevertheless, the plot
is interpreted essentially in the same fashion. Fare is substantially associated with
the class of passage, just as one would expect. The number of siblings/spouses is the
second most important predictor, which also makes sense. With so few predictors,
and such clear differences in their contributions, theOOBapproach and the in-sample
approach will lead to about the same relative contributions.

Figure6.11 shows for illustrative purposes two partial response plots. The upper
plot reveals that the fitted 75th percentile is about $46 for females and a little less
than $36 for males with the other predictors held constant. It is difficult to knowwhat
this means, because class of passage is being held constant and performs just as one
would expect (graph not shown). One possible explanation is that there is variation
in amenities within class of passage, and females are prepared to pay more for them.
The lower plot shows that variation in fare with respect to age is at most around $3
and is probably mostly noise, given all else that is being held constant.

Figure6.12 is another example of an interaction partial plot. The format now
shows a categorical predictor (i.e., class of passage) and a numerical predictor

12The out-of-bag approach was not available in gbm() for boosted quantile regression.

284 6 Boosting

female male

38
40

42
44

46

sex

f(
se

x)

0 20 40 60 80

40
.0

41
.0

42
.0

43
.0

age

f(
ag

e)

Fig. 6.11 Partial dependence plot for the Titanic data showing the fare paid for class of passage
and age using quantile regression boosting fitting the 75th percentile (N= 1045)

age

f(
pc

la
ss

,a
ge

)

20

40

60

80

100

0 20 40 60 80

1st

0 20 40 60 80

2nd

0 20 40 60 80

3rd

Fig. 6.12 Titanic data interaction partial dependence plot showing the fare paid for the number
of siblings/spouses aboard and the number of parents/children aboard using quantile regression
boosting fitting the 75th percentile (N= 1045)

(i.e., age). There are apparently interaction effects. Fare declines with age for a
first class passage but not for a second or third class passage. Perhaps older first class
passengers are better able to pay for additional amenities. Perhaps, there is only one
fare available for second and third class passage.

6.7 A Quantile Regression Example 285

Fig. 6.13 Actual fare
against fitted fare for a
boosted quantile regression
analysis of the Titanic data
with a 1-to-1 line overlaid
(alpha = .75, N= 1045)

50 100 150 200

0
10

0
20

0
30

0
40

0
50

0

Results from Boosted Quantile Regression with 1 to 1
 line Overlaid: (alpha=.75)

Predicted Fare

A
ct

ua
l F

ar
e

Fig. 6.14 Actual fare
against fitted fare for a
boosted quantile regression
analysis of the Titanic data
with a 1-to-1 line overlaid
(alpha = .25, N= 1045)

10 20 30 40 50 60 70

0
10

0
20

0
30

0
40

0
50

0

Results from Boosted Quantile Regression with 1 to 1
 line Overlaid: (alpha=.25)

Predicted Fare

A
ct

ua
l F

ar
e

Figure6.13 is a plot of the actual fare against the fitted fare for the 75th percentile.
Underestimates are 3 times more costly than overestimates. Overlaid is a 1-to-1
line that provides a point of reference. Most of the fitted values fall below the 1-
to-1 line, as they should. Still, four very large fares are grossly underestimated.
They are few and even with the expanded basis functions used in stochastic gradient
boosting, could not be fit well. The fitted values range from near $0 to over $200, and
roughly speaking, the fitted 75th percentile increases linearly with the actual fares.
The correlation between the two is over .70.

Figure6.14 is a plot of the actual fare against the fitted fare for the 25th percentile.
Overestimates now are taken to be 3 times more costly than underestimates. Overlaid
again is a 1-to-1 line that provides a point of reference. Most of the actual fares fall
above the 1-to-1 line. This too is just as it should be. The fitted values range from

286 6 Boosting

a little over $0 to about $75. Overall the fit still looks to be roughly linear, and the
correlation is little changed.13

Without knowing how the results from a boosted quantile regression are to be
used, it is difficult to decide which quantiles should be fitted. If robustness is the
major concern, using the 50th percentile is a sensible default. But there are many
applications where for subject-matter or policy reasons, other percentiles can be
desirable. As discussed earlier, for example, if one were estimating the number of
homeless in a census tract (Berk et al. 2008), stakeholders might be very unhappy
with underestimates because social services would not be made available where
they were most needed. Fitting the 90th percentile could be a better choice. Or,
stakeholders might on policy grounds be interested in the 10th percentile if in a
classroom setting, there are special concerns about students who are performing
poorly. It is the performance of kids who struggle that needs to be anticipated.

6.8 Summary and Conclusions

Boosting is a very rich approach to statistical learning. The underlying concepts are
interesting and their use to date creative. Boosting has also stimulated very produc-
tive interactions among researchers in statistics, applied mathematics, and computer
science. Perhaps most important, boosting has been shown to be very effective for
many kinds of data analysis.

However, there are important limitations to keep in mind. First, boosting is
designed to improve the performance of weak learners. Trying to boost learners
that are already strong is not likely to be productive. Whether a set of learners is
weak or strong is a judgement call that will vary over academic disciplines and pol-
icy areas. If the list of variables includes all the predictors known to be important,
if these predictors are well measured, and if the functional forms with the response
variables are largely understood, conventional regression will then perform well and
provide output that is much easier to interpret.

Second, if the goal is to fit conditional probabilities, boosting can be a risky
way to go. There is an inherent tension between reasonable estimates of conditional
probabilities and classification accuracy. Classification with the greatest margins is
likely to be coupled with estimated conditional probabilities that are pushed toward
the bounds of 0 or 1.

Third, boosting is not alchemy. Boosting can improve the performance of many
weak learners, but the improvements may fall far short of the performance needed.
Boosting cannot overcome variables that are measured poorly or important predic-
tors that have been overlooked. The moral is that (even) boosting cannot overcome
seriously flawed measurement and badly executed data collection. The same applies
to all of the statistical learning procedures discussed in this book.

13The size of the correlation is being substantially determined by actual fares over $200. They are
still being fit badly, but not a great deal worse.

6.8 Summary and Conclusions 287

Finally,when compared to other statistical learning procedures, especially random
forests, boosting will include a much wider range of applications, and for the same
kinds of applications, perform competitively. In addition, its clear links to common
and well-understood statistical procedures can help make boosting understandable.

Exercises

Problem Set 1

Generate the following data. The systematic component of the response variable is
quadratic.

x1=rnorm(1000)

x12=x1ˆ2 ysys=1+(-5*x12)

y=ysys+(5*rnorm(1000))

dta=data.frame(y,x1,x12)

1. Plot the systematic part of y against the predictor x1. Smooth it using scat-
ter.smooth().The smooth can be a useful approximation of the f (x) you are trying
to recover. Plot y against x1. This represents the data to be analyzed. Why do
they look different?

2. Apply gbm() to the data. There are a lot of tuning parameters and parameters that
need to be set for later output so here is some bare-bones code to get you started.
But feel free to experiment. For example,

out<-gbm(y˜x1,distribution="gaussian",n.trees=10000,

data=dta)

gbm.perf(out,method="OOB")

Construct the partial dependence plot using

plot(out,n.trees=???),

where the ??? is the number of trees, which is the same as the number of itera-
tions. Make five plots, one each of the following number of iterations: 100, 500,
1000, 5000, 10000 and the number recommended by the out-of-bagmethod in the
second step above. Study the sequence of plots and compare them to the plot of
the true f (X). What happens to the plots as the number of iterations approaches
the recommended number and beyond? Why does this happen?

3. Repeat the analysis with the interaction.depth = 3 (or larger). What in the per-
formance of the procedure has changed? What has not changed (or at least not
changed much)? Explain what you think is going on. (Along with n.trees, inter-
action.depth can make an important difference in performance. Otherwise, the
defaults usually seem adequate.)

288 6 Boosting

Problem Set 2

From the car library load the data “Leinhardt.” Analyze the data using gbm(). The
response variable is infant mortality.

1. Plot the performance of gbm(). What is the recommended number of iterations?

2. Construct a graph of the importance of the predictors. Which variables seem to
affect the fit substantially and which do not? Make sure your interpretations take
the units of importance into account.

3. Construct the partial dependence plot for each predictor. Interpret each plot.

4. Construct all of the two-variable plots. Interpret each plot. Look for interaction
effects. (There are examples in the gbm documentation that can be accessed with
help().)

5. Construct the three-variable plot. (There are examples in the gbm() documentation
that can be accessed with help().) Interpret the plot.

6. Consider the quality of the fit. How large is the improvement compared to when
no predictors are used? You will need to compute measures of fit. There are none
in gbm.object.

7. Write a paragraph or so on what the analysis of these data has revealed about
correlates of infant mortality at a national level.

8. Repeat the analysis using random forests. How do the results compare to the
results from stochastic gradient boosting?Would you have arrived at substantially
different conclusions depending onwhether you used random forests or stochastic
gradient boosting?

9. Repeat the analysis using the quantile loss function. Try values for α of .25,
.50, and .75, which represent different relative costs for underestimates compared
to overestimates. How do the results differ in the number of iterations, variable
importance, partial dependence plots, and fit? How do the results compare to your
early analysis using stochastic gradient boosting?

Problem Set 3

The point of this problem set is to compare the performance of several different
procedures when the outcome is binary and decide which work better and which
work worse for the data being analyzed. You also need to think about why the
performance can differ and what general lessons there may be.

From theMASS library, analyze the dataset called Pima.tr. The outcome is binary:
diabetes or not (coded as “Yes” and “No” for the variable “type.”). Assume that the
costs of failing to identify someone who has diabetes are 3 times higher than the
costs of falsely identifying someone who has diabetes. The predictors are all of the
other variables in the dataset.

6.8 Summary and Conclusions 289

The statistical procedures to compare are logistic regression, the generalized addi-
tive model, random forests, and stochastic gradient boosting. For each, you will need
to determine how to introduce asymmetric costs. (Hint: for some you will need to
weight the data by outcome class.) Youwill also need to take into account the data for-
mat each procedure is expecting (e.g., can missing data be tolerated?). Also feel free
to try several different versions of each procedure (e.g., “Adaboost” v. “bernoulli”
for stochastic gradient boosting). The intent is to work across material from several
earlier chapters.

1. Construct confusion tables for each model. Be alert to whether the fitted values
are for “resubstituted” data or not. Do some procedures fit the data better than
others? Why or why not?

2. Cross-tabulate the fitted values for each model against the fitted values for each
other model. How do the sets of fitted values compare?

3. Compare the “importance” assigned to each predictor. This is tricky. The units
and computational methods differ. For example, how can sensible comparisons
be made between the output of a logistic regression and the output of random
forests?

4. Compare partial response functions. This too is tricky. For example, what can
you do with logistic regression?

5. If you had to make a choice to use one of these procedures, which would you
select? Why?

Chapter 7
Support Vector Machines

Support vector machines (SVM) was developed as a type of classifiers, largely in
computer science, with its own set of research questions, conceptual frameworks,
technical language, and culture. A substantial amount of the initial interest in sup-
port vector machines stemmed from the important theoretical work surrounding it
(Vapnick 1996). For many, that remains very attractive.

The early applications of SVM were not especially compelling. But, over the
past decade, the applications to which support vector machines have been applied
have broadened (Christianini and Shawe-Taylor 2000; Moguerza and Munõz 2006;
Ma and Gao 2014), available software has responded (Joachims 1998; Chen et al.
2004; Hsu et al. 2010; Karatzoglou et al. 2015), and relationships between support
vector machines and other forms of machine learning have become better understood
(Bishop 2006: Chaps. 6 and 7; Hastie et al. 2009: 417–437). SVM has joined a
mainstream of many machine/statistical learning procedures. It incorporates some
unique features to be sure, but many familiar features as well. In practice, SVM can
be seen as a worthy competitor to random forests and boosting.

This chapterwill drawheavily onmaterial covered in earlier chapters. In particular,
regression kernels, discussed in Chap.2, will make an important encore appearance.
Much of the earlier material addressing why boosting works so well also will carry
over, at least in broad brush strokes. Support vector machines can be understood in
part as a special kind of margin maximizer and in part as a loss function optimizer
with an unusual loss function.

Different expositions of support vector machines often use rather different nota-
tion. In particular, the notational practices of computer science and statistics will
rarely correspond. For example, the excellent treatment of support vector machines
by Bishop (2006: Chap.7) and the equally excellent treatment of support vector
machines by Hastie and his colleagues (2009: Chap.12) are difficult to compare
without first being able to map one notional scheme on to the other. In this chapter,

The original version of this chapter was revised: See the “Chapter Note” section at the end of this
chapter for details. The erratum to this chapter is available at https://doi.org/10.1007/978-3-
319-44048-4_10.

© Springer International Publishing Switzerland 2016
R.A. Berk, Statistical Learning from a Regression Perspective,
Springer Texts in Statistics, DOI 10.1007/978-3-319-44048-4_7

291

http://dx.doi.org/10.1007/978-3-319-44048-4_2
http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_ 10
http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_ 10

292 7 Support Vector Machines

the notation of Hastie and colleagues will be used by and large because it corresponds
better to the notation used in earlier chapters.

7.1 Support Vector Machines in Pictures

Support vector machines has more demanding mathematical underpinnings than
boosting or random forests. In some ways, it is another form of penalized regression.
But before we get to a technical discussion, let’s take a look at several figures that
will make the key ideas accessible.

7.1.1 The Support Vector Classifier

Suppose there is a binary response variable coded, as is often done in boosting, as
1 and −1. There is also a f (x), where x is a vector of one or more predictors. The
function can be written in a familiar linear manner as

f (x) = β0 + xTβ. (7.1)

Equation7.1 is essentially a linear regressionwith a binary outcome of 1 or−1 and no
restrictions in practice on what numeric values the function yields. The f (x) might
be .6 for one observation,−1.2 for another observations, 2.1 for another observation,
and so on. More is needed for classification. If f (x) is a positive number, the label 1
is assigned to an observation. If f (x) is a negative number, the label −1 is assigned
to an observation. One can then compare the 1s and −1s from the function to the 1s
and −1s of the response variable. The problem to be tackled in the pages ahead is
how to make the two sets of 1s and −1s correspond as much as possible, not just in
the data on hand, but in new realizations of the data. The task is to produce accurate
classifications, which has been a major theme of past chapters. But the way SVM
goes about this is novel. We begin with the support vector classifier.1

Figure7.1 shows a three-dimensional scatter plot much like those used in earlier
chapters. As before, there are two predictors (X and Z) and a binary response Y ,
that can take on values of red or blue. Red might represent dropping out of school,
and blue might represent graduating. (Blue could be coded as 1, and red could be
coded as −1.) The two predictors might be reading grade level and the number of
truancies per semester. In this figure, the blue circles and red circles are each located
in quite different areas of the two-dimensional space defined by the predictors. In
fact, there is lots of daylight between the two groups, and a linear decision boundary
easily could be drawn to produce perfect homogeneity. In SVM language, a linear

1In the SVM literature, the response variable is often called the “target variable,” and the intercept
in Eq.7.1 is often called the “bias.” Each observation is sometimes called an “example.”

7.1 Support Vector Machines in Pictures 293

Fig. 7.1 A support vector
classifier with two predictors
X and Z and two linearly
separable classes shown as
Red or Blue

X

Z

margin

margin

Decis
ion Boundary

Separable Binary Outcomes

separating hyperplane could be drawn to produce separation between the two classes.
More such SVM language will be introduced as we proceed.

In Fig. 7.1, there is a limitless number of linear decision boundaries producing
separation. These are represented by the dashed lines in Fig. 7.1. Ideally, there is a
way to find the best linear decision boundary.

Enter the support vector classifier. When there is separation, the support vector
classifier solves the problem of which line to overlay by constructing two parallel
lines on either side of, and the same distance from, the decision boundary. The two
lines are placed as far apart as possible without including any observations within
the space between them. One can think of the two lines as fences defining a buffer
zone. In other words, the support vector classifier seeks two parallel fences that
maximize their perpendicular distance from the decision boundary. There can be
only one straight line parallel to the fences and midway between them. That decision
boundary is shown with the solid black line.

Observations can fall right on either fence but not on their wrong sides. Here, there
are no blue circles below the upper fence and no red circles above the lower fence.
Observations that fall on top of the fences are called “support vectors” because they
directly determine where the fences will be located and hence, the optimal decision
boundary. In Fig. 7.1, there are two blue support vectors and three red support vectors.

In Fig. 7.1, the total width of the buffer zone is shown with the two double-headed
arrows. The distance between the decision boundary and either fence is called the
“margin,” although some define the margin as the distance between the two fences
(which amounts to the same thing). The wider the margin, the greater the separation
between the two classes. Although formally the margin for a support vector classifier
differs from the margins used by boosting and random forests, larger margins remain
desirable because generalization error will usually be smaller.

294 7 Support Vector Machines

Classification follows directly. Cases that fall on one side of the decision bound-
ary are labeled as one class, and cases that fall on the other side of the decision
boundary are labeled as the other class. Subsequently, any new cases for which the
outcome class is not known will be assigned the class determined by the side of the
decision boundary on which they fall. And that location will be a function of X and
Z . The classification rule that follows from the decision boundary is called “hard
thresholding,” and the decision boundary is often called the “separating hyperplane.”
Sometimes the two fences are called the “margin boundary.”

The data shown in Fig. 7.1 are very cooperative, and such cooperation is in practice
rare. Figure7.2 shows a plot that is much like Fig. 7.1, but the two sets of values
are no longer linearly separable. Three blue circles and the two red circles violate
their margin boundaries. They are on the wrong side of their respective buffer zone
fences with each distance represented by an arrow. Moreover, there is no way to
relocate and/or narrow the buffer zone so that there is a separating hyperplane able
to partition the space into two perfectly homogeneous regions. There is no longer
any linear solution to the classification problem.

One possible response is to permit violations of the buffer zone. One can specify
some number of the observations that would be allowed to fall on the wrong side of
their margin boundary. These are called “slack variables.” One can try to live with a
result that looks a lot like Fig. 7.2. The idea might be to maximize the width of the
buffer zone conditional on the slack variables.

But that is not quite enough. Some slack variables fall just across their margin
boundary, and some fall far away. In response, the distance between the relevant
fence and the location of the slack variable can be taken into account. The sum of
such distances can be viewed as a measure of how permissive one has been when

Fig. 7.2 A support vector
classifier with predictors X
and Z when there are two
classes that are not linearly
separable

X

Z

margin

margin

Separatin
g H

yp
erplane

Nonseparable Binary Outcomes

7.1 Support Vector Machines in Pictures 295

the margin is maximized. If one is more permissive by allowing for a larger sum,
it may be possible to locate a separating hyperplane within a larger margin. Again,
larger margins are good. More stable classifications can follow. But more permissive
solutions imply more bias because misclassifications will be introduced. A form of
the bias-variance tradeoff reappears. It follows that the sum of the distances can
be a tuning parameter when a support vector classifier is applied to data. Fitting the
support vector classifier with slack variables is sometimes called “soft thresholding.”

7.1.2 Support Vector Machines

There is a complementary solution to classification problemswhen the classes are not
linearly separable. One can allow for a nonlinear decision boundary in the existing
predictor space by fitting a separating hyperplane in higher dimensions. We intro-
duced this idea in Chap.1 when linear basis expansions were discussed, and we
elaborated on it in Chap.2 when regression kernels were considered in some depth.
Support vector classifiers become support vector machines when a kernel replaces
a conventional set of predictors. However, the use of kernels is not straightforward.
As already noted, there can be several kernel candidates with no formal guidance on
which one to choose. In addition, kernels come with tuning parameters whose values
usually have to be determined empirically. Finally, recall that kernel results are scale
dependent (and normalizing papers over the problem) with categorical predictors a
major complication.

In summary, support vectormachines estimate the coefficients inEq.7.1 byfinding
a separating hyperplane producing the maximum margin, subject to a constraint on
the sum of the slack variable distances.With those estimates in hand, fitted values are
produced. Positive fitted values are assigned a class of 1, and negative fitted values
are assigned a class of −1.

7.2 Support Vector Machines More Formally

With themain conceptual foundations of support vector machines addressed, we turn
briefly to a somewhat more formal approach. To read the literature about support
vector machines, some familiarity for the underlying mathematics and notation is
essential. What follows draws heavily on Hastie and his colleagues (2009: 417–438)
and on Bishop (2007: Chaps. 6 and 7).

http://dx.doi.org/10.1007/978-3-319-44048-4_1
http://dx.doi.org/10.1007/978-3-319-44048-4_2

296 7 Support Vector Machines

7.2.1 The Support Vector Classifier Again: The
Separable Case

There are N observations in the training data. Each observation has a value for each
of p predictors and a value for the response. A response is coded 1 or −1. The
separating hyperplane is defined by a conventional linear combination of predictors
as

f (x) = β0 + xTβ = 0. (7.2)

Notice that the value of 0 is half way between −1 and 1. If you know the sign of
f (x), you know the class assigned. That is, classification is then undertaken by the
following rule,

G(x) = sign(β0 + xTβ). (7.3)

A lot of information can be extracted from the two equations. One can determine
for any i whether yi f (xi) > 0 and, therefore, whether it is correctly classified.2

β0 + xTβ can be used to compute the signed distance of any fitted point in the
predictor space from the separating hyperplane. Hence, one can determine whether
a fitted point is on the wrong side of its fence and if so, how far.

Putting all this information together, we are ready to take on the margin maxi-
mization task. For the separable case, the trick is to find values β and β0, to maximize
the margin.

Let M be the distance from the separating hyperplane to the margin boundary.
Then the goal is

max
β,β0,‖β‖=1

M, (7.4)

subject to
yi (β0 + xTi β) ≥ M, i = 1, . . . , N , (7.5)

where for mathematical convenience the regression coefficients are standardized to
have a unit length.3 In words, our job is to find values for β and β0 so that M is as
large as possible for observations that are correctly classified. Notice that 2M is the
margin.

The left-hand side of Eq.7.5 in parentheses is the distance between the separating
hyperplane and a fitted point. Because M is a distance centered on the separating
hyperplane, Eq.7.5 identifies correctly classified observations on or beyond their
margin boundary. No cases are inside their fences. Thus, M is sometimes charac-
terized as producing a “hard boundary” because it is statistically impermeable. That
is basically the whole story for the support vector classifier when the outcomes are
linearly separable.

2Because y is coded as 1 and −1, products that are positive represent correctly classified cases.
3Because there is no intention to interpret the regression coefficients, nothing important is lost.

7.2 Support Vector Machines More Formally 297

It can be mathematically easier, if less intuitive, to work with an equivalent for-
mulation:4

min
β,β0

‖β‖ (7.6)

subject to
yi (β0 + xTi β) ≥ 1, i = 1, . . . , N . (7.7)

Because M = 1/‖β‖, Eq. 7.6 now seeks to minimize the norm of the coefficients
through a proper choice of the coefficient values. (Hastie et al. 2009: Sect. 4.5.2).
Equation7.7 defines a linear constraint and requires that the points closest to the
separating hyperplane are at a distance of 1.0, and that all other observations are
farther away (i.e., distance > 1). Equations7.6 and 7.7 do not change the underlying
optimization problem and lead to a more direct, easily understood solution (Bishop
2007: 327–328).

7.2.2 The Nonseparable Case

We return for the moment to Eqs. 7.4 and 7.5, but for the nonseparable case, some
encroachments of the buffer zone have to be tolerated. Suppose one defines a set of
“slack” variables ξ = (ξ1, ξ2, . . . , ξN), ξi ≥ 0, that measure how far observations
are on the wrong side of their fence. We let ξi = 0 for observations that are on the
proper side of their fence or right on top of it; they are correctly classified and not
in the buffer zone. The farther an observation moves across its fence into or through
the buffer zone, the larger is the value of the slack variable.

The slack variables lead to a revision of Eq. 7.5 so that

yi (β0 + xTi β) ≥ M(1 − ξi) (7.8)

for all ξi ≥ 0, and
∑N

i=1 ξi ≤ W , with W as some constant quantifying how tolerant
of misclassifications one is prepared to be.

The right-hand side of Eq.7.8 equals M when an observation falls on top of its
margin. For observations that fall on the wrong side of their margin, ξi is positive.
As the value of ξi becomes larger, the margin-based threshold becomes smaller and
more lenient as long as the sum of the ξi is less than W (Bishop 2007: 331–332).
Equation7.8, changes a hard thresholding as a function M into a soft thresholding
as a function of M(1 − ξi). The fence is no longer statistically impermeable.

There is again an equivalent and more mathematically convenient formulation,
much like the one provided earlier as Eqs. 7.6 and 7.7 (Hastie et al. 2001: 373):

4The mathematics behind this is not deep, but there are several steps that require familiarity with
vector algebra. Interested readers should be able to find excellent treatments on the web. See, for
example, lectures on support vector machines by Patrick H. Winston of MIT or by Yaser Abu-
Mostafa of Caltech.

298 7 Support Vector Machines

min
β,β0

‖β‖ (7.9)

subject to
yi (β0 + xTi β) ≥ 1 − ξi , i = 1, . . . , N , (7.10)

for all ξi ≥ 0, and
∑N

i=1 ξi ≤ W , with W as some constant. As before the goal
is to minimize the norm of the coefficients but with special allowances for slack
variables. For larger ξi ’s, the linear constraint is more lenient. Once again, there is
soft thresholding. In expositions coming from computer science traditions, Eqs. 7.9
and 7.10 are considered “canonical.”

Figure7.3 is a small revision of Fig. 7.2 showing some important mathematical
expressions. Observations for which ξi > 1 lie on the wrong side of the separating
hyperplane and are misclassified. Observations for which 0 < ξi ≤ 1 lie in the buffer
zone but on the correct side of the separating hyperplane. Observations for which
ξi = 0 are correctly classified and on the margin boundary. The circles with borders
are support vectors that will be discussed momentarily.

Equations7.9 and 7.10 constitute a quadratic function with linear constraints
whose quadratic programming solution can be found using Lagrange multipliers
(Hastie et al. 2009: Sect. 12.2.1). Figure7.4 shows a toy example in which there is
single variable (i.e., x), a quadratic function of that variable in blue, and a linear
constraint in red. The minimum when the constraint is imposed is larger than the
minimum when the linear constraint is not imposed. The quadratic programming
challenge presented by the support vector classifier is that the single x is replaced
by the coefficients in Eq.7.9, and the simple linear constraint is replaced by the N
linear constraints in Eq.7.10.

In the notation of Hastie et al. (2009: 421), the solution has

Fig. 7.3 A support vector
classifier with some
important mathematical
expressions for predictors X
and Z when there are two
classes that are not separable
(Support vectors are circled.)

x
T β

+
β 0

= 0

M = 1
β

M = 1
β

y=0

y=-1

y=1

Nonseparable Binary Outcomes

X

Z

7.2 Support Vector Machines More Formally 299

Fig. 7.4 Finding the
minimum of a quadratic
function with a linear
constraint

40 20 0 20 40

0
50

0
10

00
15

00
20

00
25

00

Minimization of Quadratic Function
with a Linear Constraint

X

X
 S

qu
ar

ed

o

Minumum

β̂ =
N∑

i=1

α̂i yi xi , (7.11)

where α̂i represents a new coefficient for each i whose value needs to be estimated
from the data. All of the N values for α̂i are equal to 0 except for the support vectors
that locate the separating hyperplane. The value of β̂0 is estimated separately. With
all of the coefficients in hand, classification is undertaken with Eq.7.3: Ĝ(x) =
sign(β̂0 + xT β̂).

7.2.3 Support Vector Machines

We now turn from the support vector classifier to the support vector machine. The
transition is relatively simple because support vectormachines are essentially support
vector classifiers that use kernels as predictors. Kernels were considered at some
length in Chap.2 and will not be reconsidered here. But as we proceed, it is important
to recall that (1) the choice of kernel is largely a matter of craft lore and can make a
big difference, (2) factors are formally not appropriate when kernels are constructed,
and (3) there can be several important tuning parameters.

TheLagrangian is defined as before except that in place of the predictors contained
inX, support vectormachinesworkwith their linear basis expansions�(X) contained
in K. The result is

f̂ (x) = β̂0 +
N∑

i=1

α̂i yi K (x, xi), (7.12)

http://dx.doi.org/10.1007/978-3-319-44048-4_2

300 7 Support Vector Machines

where K (x, xi) is the kernel (Hastie et al. 2009: 424; Bishop 2007: 329). All else
follows in the same manner as for support vector classifiers.

For f (x) = h(x)Tβ + β0, the optimization undertaken for support vector
machines can be written in regularized regression-like form (Hastie et al. 2009:
426; Bishop 2007: 293):

min
β0,β

N∑

i=1

[1 − yi f (xi)]+ + λ

2
‖β‖2, (7.13)

where the + next to the right bracket indicates that only the positive values are used.
The product yi f (xi) is negative when there is a misclassification. Therefore, the term
in brackets is positive unless a case is classified correctly and is on the correct side
of its fence.5 The term in brackets is also linear in yi f (xi) before becoming 0.0 for
values that are not positive. ‖β‖2 is the squared norm of the regression coefficients,
and λ determines how much weight is given to the sum of the slack variables. This
is much like the way ridge regression penalizes a fit. A smaller value of λ makes
the sum of slack variables less important and moves the optimization closer to the
separable case. There will be a smaller margin, but the separating hyperplane can be
more complex (Bishop 2007: 332).6

Equation7.13 naturally raises questions about the loss function for support vector
machines (Hastie et al. 2001: Sect. 12.3.2; Bishop 2007: 337–338). Figure7.5 shows
with a blue line the “hinge” SVM loss function. The brokenmagenta line is a binomial
deviance loss of the sort used for logistic regression. The binomial deviance has been
rescaled to facilitate a comparison.

Some refer to the support vector loss function as a “hockey stick.” The thick
vertical line in red represents the separating hyperplane. Values of y f (x) to the left
indicate observations that are misclassified. Values of y f (x) to the right indicate
observations that are properly classified. The product of y and f (x) will be ≥1 if a
correctly classified observation is on the proper side of its fence.

Consider the region defined by y f (x) < 1. Moving from left to right, both loss
functions decline. At y f (x) = 0, the hinge loss is equal to 1.0, and an observation is
a support vector. Moving toward y f (x) = 1, both loss functions continue to decline.
The hinge loss is equal to 0 at y f (x) = 1. The binomial deviance is greater than
0. For y f (x) > 1, the hinge loss remains 0, but the binomial deviance continues to
decline, with values greater than 0.

One can argue that the two loss functions are not dramatically different. Both can
be seen as an approximation of misclassification error. The misclassification loss
function would be a step function equal to 1.0 to the left y f (x) = 0 and equal to 0.0
at or to the right of y f (x) = 0. It is not clear in general when the hinge loss or the

5An example of a correct classification on the wrong side of its fence: 1 − (.9) = .1. An example
of a correct classification on the right side of its fence: 1− (1.1) = −.1. For a case that is a support
vector: 1 − (1) = 0.
6λ is equal to the reciprocal of the weight given to the sum of the slack variables in the usual
Lagrange expression (Hastie et al. 2009: 420, 426).

7.2 Support Vector Machines More Formally 301

Fig. 7.5 Binomial and hinge
loss as a function of the
product of the true values
and the fitted values

yf(x)

Lo
ss

0 1 2 3-1-2-3

0.5

1.5

2.0

2.5

3.0

1.0

0.0

Binomial
Deviance

Hinge
Loss

Hinge Loss Compared to
 Binomial Deviance

binomial deviance should be preferred although it would seem that the hinge loss
would be somewhat less affected by outliers.

7.2.4 SVM for Regression

Support vector machines can be altered to apply to quantitative response variables.
One common approach is to ignore in the fitting process residuals smaller in absolute
value than some constant (called ε-insensitive regression). For the other residuals, a
linear loss function is applied. Figure7.6 provides an illustration.

The result is a robustified kind of regression. Any relative advantage in practice
from support vector machine regression compared to any of several forms of robust
regression is not clear, especially with what we have called kernelized regression in
the mix. But readers interested in regression applications will find what they need
in the kernlab or e1071 libraries. For example, kernlab has a form of kernelized
quantile regression.

7.2.5 Statistical Inference for Support Vector Machines

To this point, the discussion of support vector machines has been presented as a
level I problem. But a level II analysis can be on the table. Equation7.13 makes

302 7 Support Vector Machines

Fig. 7.6 An example of an
ε-insensitive loss function
that ignores small residuals
and applies symmetric linear
loss to the rest

An -insensitive Loss Function

+ +--

clear that support vector machines is a form of penalized regression. In particular, it
is essentially kernelized ridge regression with a hinge loss function. Therefore, the
discussion of statistical inference undertaken in Chap.2 applies. A clear and credible
account of an appropriate data generation process is essential. A proper estimation
targetmust be articulated.And then, having legitimate test data can be very important,
or at least an ability to construct sufficiently large split samples. As before, however,
the results of support vector machines are sample size dependent because a kernel
matrix is N × N . This affects how the estimation target is defined. For example,
kernels from split samples will necessarily be smaller than N × N , which alters the
estimation target. The estimation target is now a support vector machine for a kernel
matrix based on fewer than N observations. In effect, the number of predictors in K
is reduced.

7.3 A Classification Example

Support vector machines perform much like random forests and stochastic gradient
boosting. However, there can be much more to tune. We undertake here a relatively
simple analysis using theMroz dataset from the car library in R. Getting fitted values
with amore extensive set of inputs is not a problem. The problem is linking the inputs
to outputs with graphical methods, as we will see soon.

The data come from a sample survey of 753 husband-wife households. The
response variable is whether the wife is in the labor force. None of the categori-
cal predictors can be used, which leaves household income exclusive of the wife’s
income, the age of the wife, and the log of the wife’s expected wage. For now,
two predictors are selected: age and the log of expected wage. About 60% of the

http://dx.doi.org/10.1007/978-3-319-44048-4_2

7.3 A Classification Example 303

wives are employed, so the response variable is reasonably well balanced, and there
seems to be nothing else in the data to make an analysis of labor force participation
problematic.

Figure7.7 shows the code to be used. The recoding is undertaken to allow for
more understandable variables and to code the response as a factor with values of

SVM With Mroz Employment Data
library(car)
data(Mroz)
attach(Mroz)

Recodes
Participate<-as.factor(ifelse(lfp=="yes",1,-1)) # For clarity
Age<-age
LogWage<-lwg
Income<-inc
mroz<-data.frame(Participate,Age,LogWage,Income)

Radial kernel with defaults: kpar="automatic",type="C-svc"
library(kernlab)
svm1<-ksvm(Participate~Age+LogWage,data=mroz,kernel="rbfdot",

cross=5)
preds1<-predict(svm1,newdata=mroz) # Fitted values
summary(preds1) # Standard output
table(mroz$Participate,preds1) # Confusion table
prop.table(table(mroz$Participate,preds1),1) # Percentage
plot(svm1,data=mroz) # Plot separating hyperplane

ANOVA kernel
#Define Weights
wts<-table(Participate) #Connects levels to Counts
wts[1]=.47 # Replace count for -1 class
wts[2]=.53 # Replace count for 1 class

library(kernlab)
svm2<-ksvm(Participate~Age+LogWage+Income,data=mroz,

kernel="anovadot",kpar=list(sigma=1,degree=1),
C=5,cross=3,type="C-svc",class.weights=wts)

svm2 # Standard output
preds2<-predict(svm2,newdata=mroz) # Fitted classes
table(mroz$Participate,preds2) # Confusion table
prop.table(table(mroz$Participate,preds2),1) # Percentage
plot(svm2,data=mroz,slice=list(Income=17)) # At median income

Fig. 7.7 R code for support vector machine analyses of labor force participation

304 7 Support Vector Machines

1 and −1. The numerical values make the graphical output examined later easier to
interpret.

The first analysis is undertaken with a radial kernel, which has a reputation of
working well in a variety of settings. There are two tuning parameters. C is the
penalty parameter determining the importance of the sum of the slack variables
in the Lagrangian formulation. A larger value forces the fit toward the separable
solution. We use the default value of 1. The other tuning parameter is σ, which
sits in the denominator of the radial kernel. We let its value be determined by an
empirical procedure that “estimates the range of values for the sigmaparameterwhich
would return good results when used with a Support Vector Machine (ksvm()). The
estimation is based upon the 0.1 and 0.9 quantile of ‖x − x ′‖2. Basically any value
in between those two bounds will produce good results” (online documentation for
ksvm() in the library kernlab). A single measure of spread is being provided for the
entire set of predictors. The squared norm is larger when cases are more dissimilar
over the full set of predictors. Finally, a cross-validation measure of classification
error is included to get a more honest measure of performance.

Table7.1 shows an in-sample confusion table. There are no out-of-bag obser-
vations or test data; the table is constructed in-sample. But C was set before the
analysis began, and σ was determined with very little data snooping. The proportion
misclassified in the training data was .28, and the fivefold cross-validation figure was
.29.7 Because the two proportions are very similar, overfitting apparently is not an
important problem for this analysis.

Table7.1 is interpreted like all of the earlier confusion tables, although the sign
of the fitted values determines the class assigned. The empirical cost ratio is little
less than two (i.e., 139/72). Incorrectly classifying a wife as in the labor force is
about two times more costly than incorrectly classifying a wife as not in the labor
force. That cost ratio would need to be adjusted should it be inconsistent with the
preferences of stakeholders.

The results look quite good. Overall, the proportion misclassified is .28, although
it should be cost weighted to be used properly as a performance measure. When a
logistic regression was run on the same data with the same predictors, the proportion
misclassified was .45. The large gap is an excellent example of the power of support
vector machines compared to more conventional regression approaches. Model error

Table 7.1 SVM confusion
table for forecasting labor
force participation (radial
kernel, default settings)

Predict not
labor force

Predict labor
force

Model error

Not labor
force

253 72 .22

Labor force 139 289 .32

Use error .35 .20 Overall error
= .28

7Both are included as part of the regular ksvm() output.

7.3 A Classification Example 305

1.0

0.5

0.0

0.5

1.0

1.5

2 1 0 1 2 3
30

35

40

45

50

55

60
SVM classification plot

LogWage

A
ge

Fig. 7.8 Contour plot of SVM fitted values for labor force participation showing the separating
hyperplane, observed values of the response, and support vectors (The circles are wives in the labor
force. The triangles are wives not in the labor force. Filled circles or triangles are support vectors.
A radial kernel with default settings was used.)

and use error also look good. For example, when a wife is predicted to be in the labor
force, that classification is correct about 80% of the time.

There are no variable importance plots or partial dependence plots available in
kernlab().8 However, one can plot the separating hyperplane for two predictors in
the units of those predictors. Figure7.8 is a contour plot showing the separating
hyperplane for labor force participation in units of the fitted values. Positive fitted
values in shades of bluemean that a wife was classified as in the labor force. Negative
fitted values in shades of red mean that a wife was not classified as in the labor force.
Age in years is on the vertical axis, and the log of expected wage is on the horizontal
axis. Individuals in the labor force are shownwith circles. Individuals not in the labor
force are shown with triangles. Filled circles or triangles are support vectors.

The colors gradually shift from red to blue as the fitted values gradually shift from
less than −1.0 to more than 1.5. The deeper the blue, the larger the positive fitted
values. The deeper the red, the smaller the negative (i.e., more negative) fitted values.
Deeper blues and deeper reds mean that an observation is farther from the separating
hyperplane and more definitively classified. Consequently, the fitted values play a

8The other popular support vector machines library in R is e1071. It works well, but has fewer
kernel options than kernlab and many fewer features for working with kernels. It also lacks variable
importance plots and partial dependence plots.

306 7 Support Vector Machines

Table 7.2 SVM confusion
table for forecasting labor
force participation (ANOVA
kernel, cost weighted, σ = 1,
degree=1, C=5)

Predict not
labor force

Predict labor
force

Model error

Not labor
force

225 100 .30

Labor force 113 315 .26

Use error .33 .24 Overall
error= .29

similar role to the vote proportions in random forests. Bigger is better because bigger
implies more stability. If one were doing forecasting, the fitted value for each case
could be used as a measure of the assigned class reliability.

The margin around the separating hyperplane is shown in white. Its shape and
the location of the support vectors may seem strange. But recall that the separating
hyperplane is estimated in a predictor space defined by a kernel. When the results
are projected back into a space defined by the predictors, complicated nonlinear
transformations have been applied.

But perhaps the story in Fig. 7.8 broadly makes sense. The middle pink area gets
wider starting around age 50. At about that age, the number of wives not in the
labor force increases over a wider range of expected wages. The larger blue areas on
either side indicate that either a low expected or a high expected wage is associated
with greater labor force participation. The former may be an indicator of economic
need. The latter may be an indicator of good job prospects. There is little evidence of
interaction effects because the pink area is effectively perpendicular to the horizontal
axis.

For illustrative purposes, the same data can be reanalyzed changing the kernel
and empirical cost ratio. An ANOVA kernel is used because in practice, it is often
recommended for regression applications. Also, just as in stochastic gradient boost-
ing, one can apply case weights to alter the empirical cost ratio. Here, a weight of
.53 is applied to the 1s and a weight of .47 is applied to the −1s so that cases with
wives in the labor force are given more relative weight. Finally, a third predictor is
added to the mean function to illustrate later an interesting graphics option.

Table7.2 shows the confusion table that results with the value for σ set to 1.0, the
value for degree set to 1, the value for C set to 5.0, and household income as a third
predictor. All three tuning values were determined after some trial and error using
performance in confusion tables to judge.

The empirical cost ratio is now about 1 to 1 (i.e., 113/100), and classification error
for being in the labor force has declined from .32 to .26. In trade, classification error
for not being in the labor force has increased from .22 to .30. The overall proportion
misclassified when not weighted by costs is effectively unchanged (i.e., .28) With so
many alterations compared to the previous analysis, it is difficult to isolate the impact
of each new feature of the analysis. However, it seems that including household
income does not make a large difference.

7.3 A Classification Example 307

0

1

2

2 1

1

0 1 2 3
30

35

40

45

50

55

60
SVM classification plot

LogWage

A
ge

Fig. 7.9 Contour plot of SVM fitted values for labor force participation showing the separating
hyperplane, observed values of the response, and support vectors (The circles are wives in the labor
force. The triangles are wives not in the labor force. Filled circles or triangles are support vectors.
An ANOVA kernel was used, cost weighted, with σ = 1, Degree=1, C=5, and household income
values set to its median.)

Figure7.9 shows the corresponding plot for the separating hyperplane. The layout
is the same, but the content is different. Plots with two predictor dimensions means
that the roles of only two predictors can be displayed. Here, there are three predictors.
In response, the plotting function (ksvm.plot()) requires the predictors not displayed
in the plot be set to some value. They are, in effect, held constant at that value. If
any such predictors are not explicitly fixed at some value, the default has them fixed
at 0.0. One can see from the last line of Fig. 7.7 that for all observations, the median
of $17,000 is the assigned, fixed value.

This approach is less than ideal. It assumes that there are no interaction effects
with the predictors whose values are fixed. An absence of interaction effects seems
unlikely, so the issue is whether those interaction effects are large enough to matter.
Perhaps the only practical way to get some sense is to examine a substantial number
of plots like Fig. 7.9with fixed values at other than themedian. But even an exhaustive
set of two-variable plots cannot be definitive unless there are only three predictors
overall. That way, there are no interaction effects involving two or more of the fixed
predictors.

The substantive message in Fig. 7.9 has not changed much. Because the 1s have
been given more weight, more of them are forecast. As a result, the blue area is

308 7 Support Vector Machines

larger, and the red area is smaller. But the substantive conclusions about the roles of
age and expected wage are about the same. Holding household income constant at
its median does not seem to matter much.

All of the results so far have been a form of level I analysis. But for these data,
a level II analysis should be seriously considered. The data are from a sample sur-
vey with a well-defined, finite population. The data generation process is clear. A
reasonable estimation target is the population SVM regression with the same loss
function and values for the tuning parameters as specified in the data analysis. The
main obstacle is the lack of test data. A split sample approach could be applied if
one is prepared to redefine the estimation target so that it has a smaller sample size.

A split sample reanalysis was undertaken in which the sample of 753 observa-
tions was randomly split into nearly equal halves (i.e., there is an odd number of
observations). The code for the radial kernel analysis was applied to one half of the
data. The confusion table code and the code for a separating hyperplane plot were
applied to the other half. The results were very similar (within sampling error). An
important implication is that in this instance, the results are not affected by cutting
the number of observations in half. As in earlier chapters, a nonparametric bootstrap
could be applied to the output from the second split of the data to provide useful
information on the uncertainty of that output.

7.4 Summary and Conclusions

Support vector machines have some real strengths. SVM was developed initially for
classification problems and performs well in a variety of real classification applica-
tions. As a form of robust regression, it may also prove to be useful when less weight
needs to be given to more extreme residuals. And, the underlying fundamentals of
support vector machines rest on well-considered and sensible principles.

Among academics, the adjective “interesting” is to damnwith faint praise. But the
recent applications discussed in Ma and Guo (2014) are genuinely interesting. They
illustrate the rich set of data analysis problems to which support vector machines are
being applied. They also document that a large number of talented researchers are
working with and extending support vector machines. Its future looks bright.

In general, however, the comparative advantage of support vector machines com-
pared to random forests and stochastic gradient boosting is not apparent. To begin,
there is no evidence that it typically leads to smaller generalization error. Problems
working with indicator predictor variables will often be a serious constraint. And
choosing an appropriate kernel coupled with the required tuning can be a challenge.
Finally, SVM may be overmatched by “big data.”

Where support vectormachines seem to shine iswhen thenumber of predictors and
number of observations are modest. Then, kernels can have genuine assets that other
machine learning procedures may not be able to match. The analysis immediately
above is perhaps an example.

7.4 Summary and Conclusions 309

Exercises

Problem Set 1

Support vectormachines beginwith kernels. Review the section on kernels in Chap.2
looking especially at the material on radial kernels. Load the R dataset trees and have
a look at the three variables in the file. The code below will allow you to explore how
the matrix derived from the radial kernel changes depending on the values assigned
to σ. Try values of .01, .05, .1, and 1. Consider how the standard deviation changes,
excluding matrix elements equal to 1.0. Also have a look at the three-dimensional
histograms depending on the value of σ. Describe what you see. How do the changes
you see affect the complexity of the function that can be estimated?

library(kernlab) # you may need to install this

library(plot3D) # you may need to install this

X<-as.matrix(trees)

rfb<-rbfdot(sigma=.01) # radial kernel

K<-kernelMatrix(rfb,X)

sd(K[K<1]) # standard deviation with 1’s excluded.

hist3D(z=K,ltheta=45,lphi=50,alpha=0.5,opaque.top=T,scale=F)

Problem Set 2

Construct a dataset as follows.

w<-rnorm(500)

z<-rnorm(500)

w2<-wˆ2 x<-(-1+3*w2-1*z)

p<-exp(x)/(1 + exp(x))

y<-as.factor(rbinom(500,1,p))

1. Regress y onw and z using logistic regression and construct a confusion tablewith
the resubstituted data. You know that the model has been misspecified. Examine
the regression output and the confusion table. Now regress y on w2 and z using
logistic regression and construct a confusion table with the resubstituted data. You
know that the model is correct. Compare the two sets of regression coefficients,
their hypothesis tests, and two confusion tables. How does the output from the
two models differ? Why?

2. Can you do as well with SVMusingw and z as when logistic regression is applied
to the correct model? With w and z as predictors (not w2), use an ANOVA kernel
in ksvm() from the library kernlab. You will need to tune the ANOVA kernel
using some trial and error. (Have a look at the material on the ANOVA kernel in
Chap.2.) Start with sigma = .01 and degree = 1. Increase both in several steps
until sigma = 10 and degree = 3. Chose the values that give you the fewest
classification errors. How does this confusion table from the well-tuned SVM

http://dx.doi.org/10.1007/978-3-319-44048-4_2
http://dx.doi.org/10.1007/978-3-319-44048-4_2

310 7 Support Vector Machines

compare to the confusion tables from the correct logistic regression? What is the
general lesson?

3. Construct and interpret the SVM classification plot for the best SVM confusion
table.

4. Repeat theSVManalysis, butwith classweights. To construct the nominalweights
with a ratio of, say 3 to 1, use

wts<-c(3,1) # specify weights

names(wts)<-c("0","1") #assign weights to classes

Insert these two lines of code before the call to ksvm() and then include the
argument class.weights=wts in ksvm(). Try several different pairs of nominal
weights until you get a cost ratio in the confusion table such that the 1s are three
times as costly as the 0 s. How do the results differ?

Problem Set 3

1. From the MASS library, load the Pima.tr dataset. The variable “type” is the
response. All other variables are predictors. Apply ksvm() from the kernlab
library and again use the ANOVA kernel and weights to address asymmetric
costs. The doctor wants to be able to start treatment before the test results are in
and thinks it is twice as costly to withhold treatment from a patient who needs it
compared to giving treatment to a patient who does not need it. Apply SVM to
the data so that the confusion table has a good approximation of the desired cost
ratio and about as good performance as can be produced with these data. This
will take some tuning of the ANOVA kernel and the tuning parameter C , which
determines the weight given to the penalty in the penalized fit. (In Problem Set 2,
C was fixed at the default value of 1.0.) A good strategy is to first set C = 1 and
tune the ANOVA kernel. Then, see if you can do better altering the value of C .

2. Choose two predictors in which you think the doctor might be particularly inter-
ested and construct an SVM classification plot. Fix all other predictors at their
means. Interpret the plot. Do you think there is any useful information in the plot
to aid the physician. Why?

Chapter 8
Some Other Procedures Briefly

There are statistical learning procedures not discussed earlier that can be framed
as regression analysis and deserve at least conceptual overviews. Perhaps the most
widely known is neural networks. Although neural networks was the poster child for
early work in machine learning, it is now an important niche player, primarily within
some forms of “deep learning.” Neural networks will be discussed briefly to give a
general sense of its structure, associated concepts, and performance in practice.

A second procedure, squarely in statistical learning traditions, is Bayesian additive
regression trees (BART). It has some of the look and feel of random forests, but tuning
is done by placing prior distributions on decision tree parameters. Perhaps its primary
strength is that uncertainty is explicitly and defensibly addressed within Bayesian
perspectives. But so far at least, it too is a niche player. Nevertheless, there is a lot
of interest in BART. It is certainly worth a brief overview.

A third approach is reinforcement learning, which some view as the conceptual
paradigm for artificial intelligence. We will use genetic algorithms as an illustration.
Reinforcement learning shares many features with boosting, but it is less a stand-
alone procedure and more a key component in some forms of deep learning or in
guidance and control systems used in robotics. Reinforcement learning is briefly
discussed because it is considered by many to be a form of machine learning.

8.1 Neural Networks

Neural networks, neural nets for short, was an early attempt within computer science
to develop software that approximated the way collections of neurons function. We
now know that the neural network algorithms are a vastly oversimplified rendering of

The original version of this chapter was revised: See the “Chapter Note” section at the end of
this chapter for details. The erratum to this chapter is available at https://doi.org/10.1007/978-
3-319-44048-4_10.

© Springer International Publishing Switzerland 2016
R.A. Berk, Statistical Learning from a Regression Perspective,
Springer Texts in Statistics, DOI 10.1007/978-3-319-44048-4_8

311

http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10
http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10

312 8 Some Other Procedures Briefly

Fig. 8.1 A neural net with
one response, one hidden
layer, and no feedback

X1 X2 X3 X4 XP

ZMZ2Z1

Y

T = β0 + βTZ

f(x) = g(T)

A Simple Neural Net

Zm = σ(α0m + αT
mX)

neural activity, but viewed as another machine learning procedure, they can perform
well.1 From a statistical learning perspective, neural nets are a way to combine inputs
in a nonlinear manner to arrive at outputs. Put another way, a complicated f (X) is
approximated by a composition of many, far more simple functions. By now, this
should have a familiar ring.

For notational consistency, we build on Hastie et al. (2009: Sect. 11.3). Figure8.1
is a schematic of a very simple neural network. The inputs are represented by
x1, x2, . . . , xp. These are just the usual set of predictors. There is a single output,
Y , although more complicated networks can have several different outputs. Y can
be numerical or categorical and is just the usual response variable. There is also a
single “hidden layer” z1, z2, . . . , zM that can be seen as a set of M unobserved, latent
variables. All three components (i.e., inputs, output, and latent variables) are linked
by associations that would be causal if one were trying to represent the actions of a
collection of neurons (with no feedback).

It all starts with the inputs that are combined in a linear fashion for each latent
variable. That is, each latent variable is a function of its own linear combination of
the predictors. For the mth latent variable, one has

Zm = σ(α0m + αT
m X), (8.1)

whereαs are coefficients (also called “weights”) that vary over theM latent variables,
X is the set of p inputs, and σ is commonly a sigmoid “activation function.” A key
idea behind the S-shape is that a linear combination of inputs will be more likely
to trigger an impulse as that linear combination of the inputs increases in value, but

1An excellent introductory lecture on neural nets by Patrick Winston of MIT can be
found at http://teachingexcellence.mit.edu/inspiring-teachers/patrick-winston-6-034-lecture-12-
learning-neural-nets-back-propagation. If one is willing to learn a somewhat different notational
scheme, Christopher Bishop’s treatment is superb (2006: Chap.5).

http://teachingexcellence.mit.edu/inspiring-teachers/patrick-winston-6-034-lecture-12-learning-neural-nets-back-propagation
http://teachingexcellence.mit.edu/inspiring-teachers/patrick-winston-6-034-lecture-12-learning-neural-nets-back-propagation

8.1 Neural Networks 313

variation in the linear combination towards the middle of its range alters Zm the
most.2

In the next step, a linear combination of the latent variable values is constructed
as

T = β0 + βT Z , (8.2)

where now the βs are the coefficients (also called “weights”) and Z is the set of latent
variables. One has a linear combination of the M latent variables. Finally, the linear
combination can be subject to a transformation

f (x) = g(T), (8.3)

where g is the transformation function. When Y is numerical, the transformation
simplymay be an identity.When Y is categorical, the transformationmay be logistic,
much as in logistic regression.

There is no explicit representation of any disturbances, either for Z or Y, which is
consistentwith earlymachine learning traditions. The need to fit datawith a neural net
implies the existence of residuals, but they are not imbued with any formal statistical
properties. It is not apparent, therefore, how to get from a level I analysis to a level
II analysis. There is also no generative model, let alone a causal model. Despite its
name, a neural network is algorithmic (Breiman 2001b).

If one substituted the M versions of Eq.8.1 into 8.2, each version of Eq.8.1
would be multiplied by its corresponding value of β. Consequently, the impact of
the inputs would be re-weighted as a product of its βm ; a nonlinear, multiplicative
transformation has been applied to the inputs. When those results are inserted into
Eq.8.3, there is the option of applying another nonlinear transformation. In short,
one has built a set of sequential, nonlinear transformations of the inputs to arrive at
the output; a series of simple nonlinear transformations are used to approximate a
complicated f (X). In the process, there is a new blackbox algorithm from which the
associations between inputs and outputs are no longer apparent. Neural nets succeeds
or fails by how well its fitted values for Y correspond to the actual values of Y .

Estimating the values of both sets of weights would be relatively straightforward
if Z were observable. One would have somethingmuch like a conventional structural
equation model in econometrics. But with Z unobservable, estimation is undertaken
in amore complicated fashion that capitalizes on the sequential structure of the neural
net: from X to Z to Y .

As usual, a loss function associated with the response must be specified. For
example, if the response is quantitative, quadratic losswould be a likely choice. Then,
because of the sequential nature of Eqs. 8.1–8.3, the inputs are used to construct the
values of the latent variables that in turn are combined to arrive at Ŷ . But one still
needs values for both sets of the weights. Consistent with many statistical leaning

2The color coding of the arrows in Fig. 8.1 is meant to indicate that each hidden layer has its own
set of weights. These weights will typically differ from one another; the set of αm will typically
differ. Their common color is not meant to convey that the weights are the same.

314 8 Some Other Procedures Briefly

algorithms discussed in earlier chapters, these first need to be initialized. Values
randomly chosen close to 0.0 are often a good choice because one starts out with
something very close to a linear model; products of the weights do not matter much.

Given the known values of X and an initialized weight for each α, fitted values
for each Zm follow directly. The set of initialized weights for the βs then determine
the fitted values for Y . From these, the loss is computed.

One hopes that by revising the weights, it is possible to reduce the loss overall.
Recall from the earlier discussion of stochastic gradient boosting, that a gradient is
a partial derivative. Consider first the βs. The gradient expression for each β is the
partial derivative of the loss with respect to that β. Things are little more complicated
for the αs because their impact on the loss is altered by the βs. But by the chain rule
in calculus, one can arrive at the gradient expression for each α, which is the partial
derivative of the loss with respect to that α (Hastie et al. 2009: Sect. 11.4).

The expressions for the gradients are evaluated using the fitting disparities
employed as arguments in the loss function. One proceeds by working backwards
from the disparities to arrive the gradients’ numerical values for the βs and then, the
αs. This process is called backpropagation. With these values in hand, one can apply
gradient descent to update the weights. At that point, the fitting and backpropagations
begin again and repeat until the loss cannot be further reduced.

The backpropagation approach comes with several complications. First, start val-
ues can really matter because the loss functions are not convex. One can get stuck in
a local minimum. A common approach is to repeat the estimation several times with
different sets of start values and then choose the result with the smallest value of the
loss. Also, there is some reason to think that for very high dimensional data, the local
minimums will not be all that different from the global minimum. Second, with so
many weights, overfitting can be a serious problem. Some form of regularization can
help. Penalizing the fit in the spirit of ridge regression is one option. Test data can
also be very important. Third, the different units in which the inputs are measured
can make a big difference. Standardizing the inputs is usually helpful. Fourth, in
Fig. 8.1, each input is connected to each latent variable, and each latent variable is
connected to the response. The network is saturated. No inputs are directly linked to
the response, although that can be an option. In short, there can be a large number of
different network structures, which implies that inductively some weights can be set
to 0.0. A form of model selection has been introduced. Finally, the number of latent
variables and hidden layers are tuning parameters typically arrived at through some
combination of subject-matter knowledge and performance in cross-validation. In
effect, they are tuning parameters. Sometimes as many as 100 latent variables will
be required.

There have been some recent enhancements in neural networks that are beyond
the scope of this discussion, but two examples are worth brief mention. First, with
so many parameters, a form of regularization can be introduced by imposing a prior
distributions on each. The result is “Bayesian neural nets” that for estimation relies
on extensive preprocessing of the data and very sophisticated Markov Chain Monte
Carlo (MCMC) methods (Neal and Zhang 2006). In practice, Bayesian neural nets

8.1 Neural Networks 315

seems to perform very well and can be competitive with the other statistical learning
procedures discussed earlier.

Second, one of the problems with traditional neural networks is that by today’s
standards, its fitting procedure is insufficiently adaptive and flexible. Deep learning
can be seen as an effort to overcome these liabilities. It is common in deep learning to
employ a very large number of latent variables and latent variable (“hidden”) layers
that are used to fit highly complex and highly nonlinear relationships (Deng and Yu
2014). This has led to considerable success in pattern recognition with very high
dimensional image or speech datasets. One example is identifying small tumors on
x-rays of lung tissue. In addition, one can introduce feedback loops and ensembles
of neural networks, both of which can make deep learning deeper (Schmidthuber
2014).

It is also possible to deploy a neural network in a manner that reduces compu-
tational burdens apparently with no appreciable decline in accuracy. For example,
one can fit the network by moving through hidden layers in a stagewise fashion.
That is, the weights for the latent variables within one hidden layer are determined
over many iterations before moving on to the weights for latent variables within
the next hidden layer. Another strategy is to partition the x-values into subsets that
can be learned separately before being combined. For example, different parts of an
image can be learned separately. An important variant of this idea is to capitalize on
spatial autocorrelation in an image and treat contiguous pixels that are much alike
as a single observational unit by applying a transformation called “convolution”.
For example, 36 pixels can be treated as a single spatial neighborhood. The set of
such spatial neighborhoods can comprise an image of reduced dimensionality that
is further processed. In the end, one has a “convolution neural network” (Bishop
2006: Sect. 5.5.6). Much more is going on than can be considered here, and there are
excellent treatments on the web (e.g., https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/).

Deep learning seems to dominate when extremely precise fits are required, and
very small improvements canmake a large practical difference. For example, a reduc-
tion in a loss function of 1% can be a big deal. There are, however, at least three
significant obstacles to widespread use. First, the computational burdens are enor-
mous and growing. Despite innovations in hardware and software, the appetite for
more computing power will not soon (or ever) be satisfied. Second, time consum-
ing and complicated tuning is required. There is virtually no formal guidance, and
the available craft lore is too rarely definitive. It can take weeks to tune a single
application. Finally, there are now many flavors of deep learning with the number
expanding rapidly. New claims of superior performance are routinely made even
when the improvements seem to be data dependent. It will take a while for the field
of deep learning to become better consolidated.

Formally, deep learning seems to be solely a level I enterprise. The data are treated
as a very large finite population. There is no scaffolding on which to build inferences
beyond the data. But in practice, inferences are often drawn to realizations that have
not yet materialized. One might argue that with so many observations, there is no
sampling error to worry about. This view only addresses the variance in fitted values.

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

316 8 Some Other Procedures Briefly

Should the new realizations come from a different joint probability distribution,
there can be substantial bias. One can get very reliable estimates of values that are
systematically wrong. In response, some might claim that because very large neural
networks can fit complicated functions, bias must be very small. Yet, this overlooks
that complex neural networks can only fit the data they have. If the new realizations
come from a different joint probability distribution, it is possible that fitting the data
on hand better can make generalization error worse. In short, deep learning has the
same inferential problems that all machine learning procedures share.

Deep learning procedures in R currently are a bit behind the curve, but they are
catching up rapidly. For example, the library h20() (Candel et al. 2016) is a platform
for a wide variety of machine learning procedures including random forests, gradient
boosting, and “deep” neural nets as well as several unsupervised machine learning
procedures such as principal components. There are claims that h20() can handle
billions of observations in memory. An essential requirement for such impressive
overall performance is that the data analyst has access to multiple cores, usually in
a computer cluster. Other promising implementations of deep learning in R include
the packages mxnet, darch, deeplearning, and deepnet.

8.2 Bayesian Additive Regression Trees (BART)

Bayesian additive regression trees (Chipman et al. 2010) is a procedure that capi-
talizes on an ensemble of classification or regression trees in the spirit of random
forests and stochastic gradient boosting. Random forests generates an ensemble of
random trees by treating the tree parameters as fixed while sampling the training
data and predictors. Stochastic gradient boosting also capitalizes on sampling. Both
operate with frequentist statistical traditions. Parameters such as the terminal node
proportions are treated as fixed, and the data are treated as a collection of random real-
izations from a joint probability distribution of random variables. Bayesian additive
regression trees turn this upside-down. Just as in Bayesian traditions more generally,
the data are treated as fixed, and parameters characterizing the ensemble of trees are
treated as random.

Each tree in the BART ensemble is realized at random in a manner that is deter-
mined by three kinds of hyperparameters:

1. Two hyperparameters for determining the probability that a node will to be split;
2. A hyperparameter determining the probability that any given predictor will be

selected for the split; and
3. A hyperparameter determining the probability that a particular split value for the

selected predictor will be used.

From the first two hyperparameters, the probability of a split is determined by

p(split) = α(1 + d)−β, (8.4)

8.2 Bayesian Additive Regression Trees (BART) 317

where d is the tree “depth”, defined as the number of stages beyond the root node;
0 for the root node (i.e., d = 0), 1 for the first split (i.e., d = 1), 2 for two splits
beyond the root node (i.e., d = 2), and so on. The values of α and β affect how large
a given tree will be. For a given value of β, smaller values for α make a split less
likely. For a given value of α, smaller values of β make the penalty for tree depth
more binding so that a split for a given value of d is less likely. The probability of a
split also declines as the value of d increases. Possible values of α range from 0 to 1
with .95 a common choice. Possible values for β are nonnegative, but small values
such 2 often work well and can be treated as sensible defaults (Kapelner and Bleich
2014).

If there is to be a split, a predictor is chosen at random by the value of the second
hyperparameter. For example, if there are p predictors, each predictor can have a
probability of 1/p of being selected. In a similar manner for the third hyperparame-
ter, the split value for the selected predictor can be chosen with equal probability.
It is possible to alter either random selection strategy if the situation warrants it.
For example, if on subject-matter grounds some predictors are thought to be more
important than others, they may be chosen with a higher probability than the rest.
The relevant hyperparameter value would be altered accordingly.

The hyperparameters define very large Bayesian forests composed of potential
trees that can be realized at random. Each tree is grown as usual with indicator
variables for linear basis expansions of the predictors. Over trees, one has a very rich
menu of possible expansions, a subset of which is realized for any given data analysis.
In otherwords, the role of the hyperparameters is to produce a rich dictionary of linear
basis expansions.

Figure8.2 is meant to provide a sense of how this works in practice. Imagine a
ball rolling down an inclined plane. In Fig. 8.2, the ball is shown in red at the top.
The ball hits the first nail, and its path is displaced to the left or to the right in a
manner that cannot be predicted in advance. The first nail is analogous to the first

Fig. 8.2 Cartoon illustration
of a pinball process (The ball
is at the top, the nails are the
splits, and the cups at the
bottom are the terminal
nodes.)

Pinball Metaphor

318 8 Some Other Procedures Briefly

random split. Each subsequent nail is a subsequent potential split that can shift the
path of the ball to the left or to the right in the same unpredictable fashion. After the
third set of nails, the ball drops into the closest canister. The canisters at the bottom
represent terminal nodes.

Imagine now that 25 balls are sequentially rolled down the plane. The 25 balls
represent the cases constituting a dataset. Some of the balls are red and some are
blue. The balls will follow a variety of paths to the canisters, and the proportions of
red and blue balls in each canister will likely vary. The exercise can be repeated over
and over with the same 25 balls. With each replication, the proportion of red balls
and blue balls in each canister will likely change.

In Fig. 8.2, there are two sets of nails after the first nail at the top. To be more
consistent with BART, the number of nail rows can vary with each replication. In
addition, the rows can vary in the number nails and where they are placed. For
example, the two left most nails in the bottom row of Fig. 8.2 might not be included.
The result is a large number of inclined planes, with varying numbers of nail rows,
nail placements and proportions of red and blue balls in each canister. One has a fixed
collection of red and blue balls that does not change from replication to replication,
but what happens to it does.3

Unlike random forests, the realized trees are not designed to be independent, and
the trees are used in a linear model (Chipman et al. 2010):

Y =
m∑

j=1

g(x; Tj , Mj) + ε, (8.5)

and as usual,
ε ∼ N(0,σ2). (8.6)

Y is numerical, and there are m trees. Each tree is defined by the predictors x , Tj ,
which represents the splits made at each interior node, and Mj , which represents the
set of means over terminal nodes. The trees are combined in a manner something
like conventional backfitting such that each tree’s set of conditional means is related
to the response by a function that has been adjusted for the sets of conditional means
of all other trees.

But, we are not done. First, we need a prior for the distribution of the means
of Y over terminal nodes conditional on a given tree. That distribution is taken
to be normal. Also, Y is rescaled in part to make the prior’s parameters easier to
specify and in part because the rescaling shrinks the conditional means toward 0.0.
The impact of individual trees is damped down, which slows the learning process.
Details are provided by Chipman and colleagues (2010: 271). Second, we need a
prior distribution for σ2 in Eq.8.6. An inverse χ2 distribution is imposed that has two
hyperparameters. Here too, details are provided by Chipman and colleagues (2010:
272).

3Wu, Tjelmeland andWest (2007) define a “pinball prior” for tree generation. The pinball prior and
Fig. 8.2 have broadly similar intent, but the details are vastly different.

8.2 Bayesian Additive Regression Trees (BART) 319

The algorithms used for estimation involve a complicated combination of Gibbs
sampling andMarkovChainMonteCarlomethods that canvary somewhat depending
on the software (Kapelner and Bleich 2014). In R, there is bartMachine written
by Adam Kapelner and Justin Bleich, and BayesTree written by Hugh Chipman
and Robert McCulloch. Currently, bartMachine is the faster in part because it is
parallelized, and it also has a richer set of options and outputs. For example, there is
a very clever way to handle missing data.

A discussion of the estimation machinery is beyond the scope of this short
overview and requires considerable background in Bayesian estimation. Fortunately,
both procedures can be run effectively without that background and are actually
quite easy to use. In the end, one obtains the posterior distributions for the condi-
tional means fromwhich one can construct fitted values. These represent the primary
output of interest. One also gets “credibility intervals” for the fitted values.

BART is readily applied when the response is binary. Formally,

p(Y = 1|x) = Φ[G(x)], (8.7)

where

G(x) ≡
m∑

j=1

g(x; Tj , Mj), (8.8)

and Φ[G(x)] is the probit link function used in probit regression. When used as a
classifier, the classes are assigned inmuch the sameway they are for probit regression.
A threshold is applied to the fitted values (Chipman et al. 2010: 278). Otherwise,
very little changes compared to BART applications with a numerical response.

It is difficult to compare the performance of BART to the performance of random
forests, stochastic gradient boosting, and support vector machines. The first three
procedures have frequentist roots and make generalization error and expected pre-
diction error the performance gold standard. Because within a Bayesian perspective
the data are fixed, it is not clear what sense out-of-sample performance makes. If
the data are fixed, where do test data come from? If the test data are seen as random
realizations of some data generation process, uncertainty in the data should be taken
into account, and one is back to a frequentist point of view. Nevertheless, if one slides
over these and other conceptual difficulties, BART seems to perform about as well as
random forests, stochastic gradient boosting, and support vector machines. Broadly
conceived, this makes sense. BART is “just” another way to construct a rich menu
of linear basis expansions to be combined in a linear fashion.

BART’s main advantage is that statistical inference is an inherent feature of the
output; a level II analysis falls out automatically. But one has to believe the model.
Are there omitted variables, for example? Does one really want to commit to a linear
combination of trees with an additive error term?One also has tomake peace with the
priors. Most important, one has to be comfortable with Bayesian inference. But, even
for skeptics, Bayesian inference might be considered a reasonable option given all
of the problems discussed earlier when frequentist inference is applied to statistical

320 8 Some Other Procedures Briefly

learning procedures. It is also possible to use BART legitimately as a level I tool.
The hyperparameters and priors distributions can be seen as tuning parameters and
given no Bayesian interpretations. BART becomes solely a data fitting exercise.

BART has some limitations in practice. At the moment, only binary categorical
response variables can be used. There is also no way to build in asymmetric costs
of classification or fitting errors. And if one wants to explore the consequences of
changing the hyperparameters (e.g., α and β), it not clear that conventional resam-
pling procedures such as cross-validation make sense with fixed data.

In summary, BART is a legitimate competitor to the random forests, stochastic
gradient boosting, and support vector machines. If one wants to do a level II analysis
within a Bayesian perspective, BART is the only choice. Otherwise, it is difficult to
see why one would pick BART over the alternatives. On the other hand, BART is
rich in interesting ideas and for the more academically inclined, can be great fun.

8.3 Reinforcement Learning and Genetic Algorithms

Recall how boosting algorithms work. Observations that are fit less well in one
pass through the data are given more weight in the next pass through the data. The
algorithm learns with each pass how to better target problematic observations and
is rewarded with an improved set of fitted values. One can say that the reweighting
strategy is reinforcedwith each iteration, and the algorithm alters how it proceeds in a
manner that responds to its performance. A fitting task can bemore challengingwhen
the training data are sampled because the data to be fit change with each iteration.
But the same reinforcement process applies. In the end, the sets of fitted values are
linearly combined.

Reinforcement learning can be seen as variants on, and extensions of, the foun-
dations of boosting. Sutton and Barto (2016) provide an excellent introduction. For
reinforcement learning, there are rules by which algorithms operate and an envi-
ronment in which the algorithm is applied. The algorithm receives feedback on its
performance in that environment and alters its actions in response. The environment
may or may not change as well. Then, the process is repeated. The entire process is
repeated many times until some satisfactory outcome is achieved. And like boosting,
it never looks back; there are no do-overs.

Reinforcement learning is sometimes includedwithin the tent ofmachine learning.
Of late, it has gotten lots of attention as a component of deep learning. To provide
a grounded sense of reinforcement learning, we briefly consider genetic algorithms
(Mitchell 1998: 95–96).

8.3.1 Genetic Algorithms

Sometimes computer code written to simulate some natural phenomenon turns out
to be a potential data analysis tool. Neural networks seems to have morphed in

8.3 Reinforcement Learning and Genetic Algorithms 321

this fashion. Genetic algorithms appear to be experiencing a similar transformation.
Whereas neural networks were initially grounded in how neurons interact, genetic
algorithms share the common framework of natural selection. When used to study
evolution, they are not tasked with data analysis, either as a data summary tool or as
a data generation model. Applied to optimization problems, they can proceed in the
same spirit as gradient descent or Newton-Raphson when as a practical matter, the
loss function cannot be optimized. This came up earlier in a different context when
for CART, a greedy algorithm was employed because evaluating all possible trees
was untenable.

Here’s the basic idea. There is an optimization problem and an initial population
of candidate solutions, each evaluated for their fitness. Based on that fitness, an initial
culling of the population follows. The survivors “reproduce,” but in the process, the
algorithm introduces “genetic”mutations, crossovers and sometimesother alterations
to some of the progeny. Crossovers, for example, produce offspring whose makeup
is a combination of the features of two members of the population. Fitness is again
evaluated, and the population is culled a second time. The process continues until
population fitness attains a target level of fitness (Affenseller 2009: Sect. 1.2). Thus,
genetic algorithms are not “algorithmic” in Breiman’s sense. They do not link inputs
to outputs but can be a key components of how the linking gets done.

To illustrate how this can work, we revisit neural nets and the problem of which
links should be included between inputs, latent variables and outputs. In a somewhat
artificial fashion, we lift out one part of the fitting challenge: what should be the struc-
ture of the neural network? The discussion that follows draws heavily fromMitchell’s
introductory application of genetic algorithms to neural network architecture (1998:
70–71).

Fig. 8.3 A matrix
representation of simple
neural network (A 1 denotes
a link, and a 0 denotes no
link. The red entries can be
varied between 1 and 0. The
black entries are fixed. Two
solution candidates are
shown below the matrix.)

Network #1: 111100100100000111000000001111

A Neural Network in Matrix Format

0

0 0

0 0 0

0 0 0

0 0 0 0

1 1 1 1 0 0

1 0 0 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 1 1 1 1

X1 X2 X3 X4 X5 X6 Z1 Z2 Z3 Y

X1

X2

X3

X4

X5

X6

Z1

Z2

Z3

Y

Network #2: 110101100100001011000000100111

322 8 Some Other Procedures Briefly

Figure8.3 is a matrix representation of a simple neural network with 6 inputs
(X1 . . . X6), 3 latent variables (Z1 . . . Z3), and 1 numerical response (Y). There is no
feedback. The 1s denote links, and the 0s denote the absence of links. Consistent with
usual practice, there are no links between inputs. But there are potential links between
inputs, latent variables, and the response that need to be specified. For example, X5
is connected to Z3, but not to the other latent variables. X6 is connected to none of
the latent variables but is connected directly to Y .

Network #1 is a vector of binary indicators consistent with the figure. The indi-
cators are entered by row as one would read words in an English sentence. Network
#2 is another vector of binary indicators that represents another structure for the 6
inputs, 3 latent variables, and 1 response. Both representations can be seen as can-
didate solutions for which fitness is measured by a loss function with Y and Ŷ as
arguments. The algorithm would begin with a substantial number of such candidate
solutions. A neural network would be fit with each. The task is to find the neural
net specification that minimizes the loss, and that loss will depend in part on the
architecture of the network.

One might think that there is a brute-force solution. Just try all possible network
specifications and find the one with the best fit. However, for all but relatively simple
networks, the task may not be computationally feasible. Each possible network spec-
ification would require its own set of fitted values. We faced a similar problem earlier
when we considered all possible classification trees for a given dataset. Much as a
greedy algorithm can provide a method to arrive at a good tree, a genetic algorithm
can provide a method to arrive at a good network specification. “Good” should not
be read as “best.”

One might proceed as follows (Mitchell 1998: 10–11).

1. Generate a randompopulation of N network specifications, two ofwhich are illus-
trated by network #1 and network #2 in Fig. 8.3. There would be some constraints
such as not allowing links between inputs and requiring at least one path from an
input to the response. The population of specifications would not be exhaustive.

2. Suppose Y is numeric. Compute the mean squared error for each candidate spec-
ification as a measure of fitness. This means fitting a neural net for each.

3. Sample with replacement a pair of candidate specifications with the probability
proportional to fitness.

4. With a specified probability (a tuning parameter) cross the pair of candidate
specifications at a randomly chosen point. That point would be selected with
equal probability. For example, suppose for network #1 and #2, the equivalent of
a coin flip comes up heads. A crossover is required. There are 28 possible break
points, and suppose the 5th possible break point (going left to right) is selected
at random. The values of 1, 1, 0, 0, 1 from the network solution #1 would be
swapped with values 1, 1, 0, 1, 0 from the network #2 solution.

5. Mutate locations in each pair with some small probability (another tuning para-
meter). This means on occasion changing a 0 to a 1 and a 1 to a 0 where such
changes are allowed (e.g., not between inputs).

6. Compute the mean squared error for each of the two progeny.

8.3 Reinforcement Learning and Genetic Algorithms 323

7. Repeat steps 3–6 until N offspring have been produced and replace the old pop-
ulation with the new population.

8. Repeat steps 2–7 and repeat until there have been a sufficient number of genera-
tions (e.g., 100).

9. Select the network structure from the population of network structures that is
most fit (i.e., has the smallest mean squared error).4

One can now see why genetic algorithms are said to “learn”, and why they can be
a form of reinforcement learning. The algorithms discover what works. With steps
that have parallels to natural selection, solutions that are more fit survive. In contrast,
to conventional optimization methods like gradient descent, there is no overall loss
function being minimized. Still, a solution is likely to be good in part because of
built-in random components that help prevent a genetic algorithm from getting mired
in less desirable, local results. For these and other more technical reasons, genetic
algorithms can be folded into discussions of machine learning. They can also be a
key feature of recent developments in deep learning when conventional numerical
methods may be overmatched, and local solutions can be a serious pitfall.

4Readers interested in running genetic algorithms in R should consider using the libraryGAwritten
by Luca Scrucca (Scrucca 2013).

Chapter 9
Broader Implications and a Bit of Craft Lore

9.1 Some Integrating Themes

Over the past decade, the number of statistical learning procedures that can be viewed
as a form of regression has grown. By and large, they are variants on, or extensions
of, the procedures discussed in earlier chapters. The major advances are to be found
in deeper understandings of the underlyingmechanisms and increasingly, some com-
mon themes.

The major players, random forests, boosting, and support vector machines, share
with niche players like neural networks andBayesian additive regression trees the use
of linear basis expansions to provide a rich collection of predictors. How this is done
can vary. Random forests arrives at its basis expansions by building inductively over
a large number of regression or classification trees, sampling the training data and
predictors. Stochastic gradient boosting proceeds by sampling and reweighting the
data with each iteration. Support vector machines get the job done by constructing
rich predictor kernels in advance of the data analysis. Neural networks imposes
nonlinear transformations of the predictors through its hidden layers.BARTgenerates
an ensemble of trees by stochastic decision rules while treating the data as fixed. It
should not be surprising that when properly implemented, one can often get similar
performance across these statistical learning methods.

The reliance on complicated linear basis expansions usually leads to blackbox
procedures. One can get fitted values that perform very well, but the role of the
predictors responsible is typically obscure. There have been recent efforts to develop
auxiliary algorithms that can help, and more such advances are in the offing. But
the blackbox problem underscores that statistical learning procedures depend on
algorithms notmodels inwhich ends can justifymeans. If one’s primary data analysis

The original version of this chapter was revised: See the “Chapter Note” section at the end of
this chapter for details. The erratum to this chapter is available at https://doi.org/10.1007/978-
3-319-44048-4_10.

© Springer International Publishing Switzerland 2016
R.A. Berk, Statistical Learning from a Regression Perspective,
Springer Texts in Statistics, DOI 10.1007/978-3-319-44048-4_9

325

http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10
http://dx.doi.org/https://doi.org/10.1007/978-3-319-44048-4_10

326 9 Broader Implications and a Bit of Craft Lore

goal is to explain, statistical learning is not likely to be helpful, and formal causal
inference is typically off the table.When feasible, one is better off doing experiments.

Each of the procedures discussed can be represented as Y = f (X) + ε, where
f̂ (X) is arrived at by minimizing some loss function. The introduction of ε and
loss function optimization can be seen as recasting machine learning as statistical
learning. In practice, however, any of the procedures we have discussed properly can
sail under either flag.

The formulation relying on Y = f (X) + ε does not imply that f (X) is the true
response surface. It is called an approximation for good reason. When there is esti-
mation, the target is an acknowledged approximation. The goal is to arrive at an
effective approximation with the understanding that there will be bias and variance
separating the estimate from the “truth.” In the end, statistical learning earns its keep
by explicitly constructing approximations of the true response surface that by several
criteria are usually better than the unacknowledged approximations constructed by
conventional models.

There remains hard work to be done understanding why statistical learning pro-
cedures work so well. Margin maximization, loss function optimization, and inter-
polation all play some role. But the accounts are at best incomplete. For example,
there is somewhat limited understanding of why certain kernels work well in certain
settings but not others.

All of the statistical learning procedures we have discussed are conceptually and
operationally challenged by statistical inference, statistical tests, and confidence
intervals. Bayesian additive regression trees tackles the problem head on, but in
a manner that many find unsatisfactory. All of the other methods have their greatest
success when the training data can be seen credibly as IID realizations from a joint
probability distribution and when there are test data to provide honest performance
assessments.

9.2 Some Practical Suggestions

Just as for any other set of statistical procedures, practice is guided significantly
by craft lore. In that spirit, we turn to a bit of craft lore about the use of statistical
learning. It is important to keep in mind, however, craft lore can change dramatically
with experience, and the experience with statistical learning to date is somewhat
spotty.

9.2.1 Choose the Right Procedure

Recall Breiman’s distinction between two cultures: a “data modeling culture” and
an “algorithmic modeling culture” (2001b). The data modeling culture favors the
generalized linear model and its various extensions. A data analysis begins with a

9.2 Some Practical Suggestions 327

mathematical expression meant to represent the mechanisms by which nature works.
Estimation serves to fill in the details. The algorithmic modeling culture is concerned
solely with linking inputs to outputs. The subject-matter mechanisms connecting the
two are not represented and there is, therefore, no a priori vehicle by which inputs
are transformed into outputs. A data analysis is undertaken to invent such a vehicle
so that a good fit results. There is no requirement whatsoever that the vehicle reveals
nature’s machinery.

But, there is in practice no clear distinction between procedures that belong in the
datamodeling culture andprocedures that belong in the algorithmicmodeling culture.
In both cultures, information extracted from data is essential. Even for a correct
regression model, parameter estimates are obtained from data. Rather, there is a
continuum characterized by how much the results depend on substantively informed
constraints imposed on the analysis. For conventional regression, at one extreme,
there are extensive constraints meant to represent the machinery by which nature
proceeds. At the other extreme, random forests and stochastic gradient boostingmine
associations in the data with virtually no substantively informed restrictions. Many
procedures, such as those within the generalized additive model, fall in between.

How then should a data analysis tool be selected? As a first cut, the importance
of explicitly representing nature’s machinery should be determined. If explanation is
the dominant data analysis motive, procedures from the data modeling culture should
be favored. If prediction is the dominant data analysis motive, procedures from the
algorithmic modeling culture should be favored. If neither is dominant, procedures
should be used that are a compromise between the two extremes.

If one is working within the data modeling culture, the choice of procedures is
determined primarily by the correspondence between subjective-matter information
available and features of a candidate modeling approach. The correspondence should
be substantial. For example, if nature is known to proceed through a linear combina-
tion of causal variables, a form of conventional regression may well be appropriate.

Working within the algorithmic modeling culture, the choice of procedures ide-
ally is primarily determined by out-of-sample performance. One might hope that
through formal mathematics and forecasting contests, clear winners and losers could
be identified. Unfortunately, the results are rarely definitive. One major problem is
that forecasting performance is typically dataset specific; accuracy depends on par-
ticular features of data that can differ across datasets. A winner on one forecasting
task will often be a loser on another forecasting task. Another major problem is
how to tune the procedures so that each is performing as well as it can on a given
dataset. Because the kinds and numbers of tuning parameters vary across algorithmic
methods, there is usually no way to ensure that fair comparisons are being made.
Still another problem is that a lot depends on exactly how forecasting performance
is measured. For example, the area under an ROC curve will often pick different
winners from those evaluated by cost-weighted classification error.

However, all of the algorithmic methods emphasized in earlier chapters can per-
form well in a wide range of applications. In practice, perhaps the best strategy is
for a data analyst to select a method that he or she adequately understands, that has
features responding best to the application at hand, and that has the most instruc-

328 9 Broader Implications and a Bit of Craft Lore

tive output. For example, only some of the procedures discussed can easily adapt
to forecasting errors that have asymmetric costs, and some can handle very large
datasets better than others. The procedures can also differ by whether there are, for
example, partial dependence plots and how variable importance is measured. Fore-
casting accuracy is but one of several criteria by which algorithmic procedures can
be compared. Among these other criteria are:

1. ease of use—A combination of the procedure itself and the software with which
it is implemented;

2. readily available software — R usually a good place to start in part because
commercial packages are often several years behind;

3. good documentation — for both the procedure and the software (be wary of
commercial products that hide the details for their procedures by calling them
proprietary);

4. adaptability — the procedure and its software should be easily adapted to unan-
ticipated circumstances such as the need for test data;

5. processing speed — a function of the nature of the procedure, the number of
observations, the number of variables, and the quality of the code (e.g., paral-
lelization);

6. ease of dissemination— some procedures and some kinds of output are easier to
explain to users of the results;

7. special features of the procedure — examples include the ability to handle clas-
sification with more than two classes, ways to introduce asymmetric costs from
fitting errors, and tools for peering into the blackbox; and

8. cost — some commercial products can be quite pricey.

If there is no clear winner, it can always be useful to apply more than one procedure
and report more than one set of results.

9.2.2 Get to Know Your Software

There is not yet, and not likely to be in the near future, a consensus on how any of
the various statistical learning procedures should be implemented in software. For
example, a recent check on software available for support vector machines found
working code for over a half dozen procedures. There is, as well, near anarchy in
naming conventions, and notation. Thus, the term “cost,” for instance, can mean
several different things, and a symbol such as γ can be a tuning parameter in one
derivation and a key argument in another derivation.

One cannot assume that a description of a procedure in a textbook (including this
one) or journal article corresponds fully to software using the very same name, even
by the same authors. Consequently, it is very important to work with software for
which there is good technical documentation on the procedure and algorithms being
used. There also needs to be clear information on how to introduce inputs, obtain
outputs, and tune the procedure. Descriptions of two computer programs can use the

9.2 Some Practical Suggestions 329

same name for different items, or use very different names for the same item. And in
either case, the naming conventions may not correspond to the naming conventions
in the technical literature.

Even when the documentation looks to be clear and complete, a healthy dose
of skepticism is useful. There are sometimes errors in the documentation, or in the
software, or in both. So, it is usually important to “shake down” any new software
with data that have previously been analyzed properly to determine if the new results
come out as expected. In addition, it is usually helpful to experiment with various
tuning parameters to see if the results make sense. In short, caveat emptor.

It is also very important keep abreast of software updates, which can come as
often as five or six times a year. As a routine matter, new features are added, existing
features are deleted, bugs fixed, and documentation rewritten. These changes are
often far more than cosmetic. Working with an older version of statistical learning
software can lead to unnecessary problems.

Finally, a key software decision is whether to work primarily with shareware
such as found in R or Python, or with commercial products. The tradeoffs have
been discussed earlier at various points. Cost is certainly an issue, but perhaps more
important is the tension between having the most current software and having the
most stable software and documentation. Shareware is more likely to be on the
leading edge, but often lacks the convenience and stability of commercial products.
One possible strategy for individuals who are unfamiliar with a certain class of
procedures is to begin with a good commercial product, and then once some hands-
on skill has been developed, migrate to shareware.

9.2.3 Do Not Forget the Basics

It is very easy to get caught up in the razzle-dazzle of statistical learning and for any
given data analysis, neglect simple fundamentals. All data analyses must start with
an effort to get “close” to the data. This requires a careful inspection of elementary
descriptive statistics:means, standard deviations, histograms, cross-tabulations, scat-
terplots, and the like. It also means understanding how the data were generated and
how the variables were measured. Moving into a statistical learning procedure with-
out this groundwork can lead to substantial grief. For example, sometimes numeric
values are given to missing data. Treating these values as legitimate values can seri-
ously distort any data analysis, including ones undertaken with statistical learning.

It will often be helpful to apply one or more forms of conventional regression
analysis before moving to statistical learning. One then obtains an initial sense of
how good the fit is likely to be, of the likely signs of key relationships between
predictors and the response, and of problems that might be more difficult to spot
later (e.g., does one really have a weak learner?). An important implication is that it
will often be handy to undertake statistical learning within a software environment
in which a variety of statistical tools can be applied to the same data. This can weigh
against single-purpose, statistical learning software.

330 9 Broader Implications and a Bit of Craft Lore

To take one simple example, a tuning parameter in random forests may require
a distinct value for each response class. But the order in which those arguments are
entered into the expression for the tuning parameter may be unclear. In the binary
case, for example, which category comes first? Is it ω = c(1, 0) or ω = c(0, 1)?
A wrong choice is easily made. Random forests runs just the same and generates
sensible-looking output. But the analysis has not been tuned as it should have been.
It can be difficult to spot such an error unless one knows the marginal distribution
of the response variable and the likely sign of relationships between each predictor
and the response. A few cross-tabulations and a preliminary regression analysis can
help enormously.

Finally, one must not forget that preliminary analyses of the data can introduce
data snooping, especially if relationships between potential predictors and potential
responses are examined. This does not mean that one should avoid these analyses.
What it means is that often, test data are essential.

9.2.4 Getting Good Data

As noted many times, there is no substitute for good data. The fact that boosting, for
example, can make weak classifiers stronger, does not mean that boosting can make
weak data stronger. There are no surprises in what properties good data should have:
a large number of observations, little measurement error, a rich set of predictors,
and a reasonably well-balanced response variable distribution. The clear message is
that it is very important to invest time and resources in data collection. One cannot
count on statistical learning successfully coming to the rescue. Indeed, some forms
of statistical learning can be quite fussy and easily pulled off course by noisy data,
let alone data that have systematic measurement error.

The case for having legitimate test data can be quite strong. Statistical learning
procedures that use out-of-bag data or the equivalent may not formally need a test
dataset. The out-of-bag observations can serve that purpose. But most statistical
learning procedures currently are not designed to work with random samples of the
data, even when that might make a lot of sense. Therefore, having access to test data
is usually very important.

Even for random forests, test data beyond the out-of-bag observations can come
in handy. Comparisons between how random forests performs and how other
approaches (including conventional regression) perform are often very instructive.
For example, one might learn that the key relationships are linear and that it is not
worth losing degrees of freedom fitting more complex functions. Yet such compar-
isons cannot be undertaken unless there are test data shared by all of the statistical
procedures in play. Finally, having a true test dataset can help a great deal if random
forests is applied repeatedly to the same training data after changes in the tuning
parameters. At the very end of the tuning process, there is still the opportunity to get
a more honest measure of performance from data that until that moment have not
been used.

9.2 Some Practical Suggestions 331

9.2.5 Match Your Goals to What You Can Credibly Do

Much of the literature on statisticalmodeling is formulated around some f (X). There
is a real mechanism by which the data were generated. An essential goal of a data
analysis is to recover the data-generation function from a dataset. It can be very
tempting, therefore, to frame all data analyses in a similar manner.

But, one of the themes of this book has been that in reality, more modest goals
are likely to be appropriate. Perhaps most important, statistical learning is not built
around a regression model of the data generation process. The data are realized from
a joint probability distribution and analyzed by algorithmicmethods. In addition, one
will usually not have access to all of the requisite predictors, let alone predictors that
are all wellmeasured. Finally, various kinds of data snoopingwill often be impossible
to avoid. For these and other reasons, a level I analysis will be the primary enterprise.

But there also will be circumstances when a level II analysis can be justified and
properly undertaken. These circumstances are addressed in various sections of the
book. Perhaps themajor take-homemessage is that level II analyses are never routine.
They require clear and careful thought. For example, the vote proportions produced
by random forests are not probabilities and do not represent the chances that a given
observation falls into a particular outcome class. They are a measure of the internal
reliability of the random forest algorithm.

Although causal thinking can be important as the research task is being formulated
and the data are being collected, statistical learning procedures are not designed for
Level III analyses. It can be very tempting to use some forms of statistical learning
output, such as variable importance plots, to make causal statements. But the various
definitions of importance do not comport well with the canonical definition of a
causal effect, and the output is not derived from a causal model.

An important implication is that using a statistical learning procedure to do vari-
able selection can lead to a conceptual swamp. If the purpose is to screen for important
causal variables, it is not apparent how the statistical learning output is properly used
for that purpose. This does not preclude dimension reduction in service of other
ends. For example, regularization is an essential tool when the intent is to improve
the stability of statistical learning output.

9.3 Some Concluding Observations

Over the past decade, statistical learning has become one of the more important
tools available to applied statisticians and data analysts. But, the hype in which
some procedures are wrapped can obscure important limitations and lead to analyses
undertaken without sufficient care.

Statistical learning properly done will often require a major attitude adjustment.
One of most difficult obstacles to effective applications is letting go of premises
from conventional modeling. This will be especially difficult for experienced data

332 9 Broader Implications and a Bit of Craft Lore

analysts trained in traditional methods. One of the most common errors is to overlay
statistical learning on top of model-based conceptions. Statistical learning is not just
more of the same.

Finally, users of results from statistical learning must proceed with care. There
is lots of money to be made and professional reputations to be built with statistical
razzle-dazzle that is actually voodoo statistics. It can be very important to have access
to technical advice from knowledgeable individuals who have no skin in the game.

Erratum to: Statistical Learning
from a Regression Perspective

Erratum to:
R.A. Berk, Statistical Learning
from a Regression Perspective, Springer Texts in Statistics,
https://doi.org/10.1007/978-3-319-44048-4

The book was incorrectly published with errors in Chapters 1 to 9. The erratum
book has now been updated with the changes.

The updated original online version of this book can be found at
https://doi.org/10.1007/978-3-319-44048-4

© Springer International Publishing Switzerland 2017
R.A. Berk, Statistical Learning from a Regression Perspective,
Springer Texts in Statistics, https://doi.org/10.1007/978-3-319-44048-4_10

E1

https://doi.org/10.1007/978-3-319-44048-4
https://doi.org/10.1007/978-3-319-44048-4

References

Affenseller, M., Winkler, S., Wagner, S., & Beham, A. (2009). Genetic algorithms and genetic
programming: Modern concepts and practical applications. New York: Chapman & Hall.

Akaike, H. (1973). Information theory and an extension to the maximum likelihood principle. In
B. N. Petrov & F. Casaki (Eds.), International Symposium on Information Theory (pp. 267–281).
Budapest: Akademia Kiado.

Angrist, J. D., & Pischke, J. (2009).Mostly harmless econometrics. Princeton: Princeton University
Press.

Baca-García, E., Perez-Rodriguez, M. M., Basurte-Villamor, I., Saiz-Ruiz, J., Leiva-Murillo, J. M.,
de Prado-Cumplido, M., et al. (2006). Using data mining to explore complex clinical decisions: A
study of hospitalization after a suicide attempt. Jounal of Clinical Psychiatry, 67(7), 1124–1132.

Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge: Cambridge University
Press.

Bartlett, P. L.,&Traskin,M. (2007).Adaboost isConsistent. Journal ofMachine LearningResearch,
8(2347–2368), 2007.

Beck,A.T.,Ward,C.H.,Mendelson,M.,Mock, J.,&Erbaugh, J. (1961).An inventory formeasuring
depression. Archives of General Psychiatry, 4(6), 561–571.

Berk, R. A. (2003). Regression analysis: A constructive critique. Newbury Park: Sage.
Berk, R. A. (2005). New claims about executions and general deterrence: Déjà vu all over again?
Journal of Empirical Legal Studies, 2(2), 303–330.

Berk, R. A. (2012). Criminal justice forecasts of risk: A machine learning approach. New York:
Springer.

Berk, R. A., & Freedman, D. A. (2003). Statistical assumptions as empirical commitments. In T.
Blomberg & S. Cohen (Eds.), Law, punishment, and social control: Essays in honor of Sheldon
Messinger, Part V (pp. 235–254). Berlin: Aldine de Gruyter (November 1995, revised in second
edition).

Berk, R. A., & Rothenberg, S. (2004). Water Resource Dynamics in Asian Pacific Cities. Statistics
Department Preprint Series, UCLA.

Berk, R. A., Kriegler, B., & Ylvisaker, D. (2008). Counting the Homeless in Los Angeles County.
In D. Nolan & S. Speed (Eds.), Probability and statistics: Essays in Honor of David A. Freedman
Monograph Series for the Institute of Mathematical Statistics.

Berk, R. A., Brown, L., & Zhao, L. (2010). Statistical inference after model selection. Journal of
Quantitative Criminology, 26, 217–236.

Berk., R. A., Brown, L., Buja, A., Zhang, K., & Zhao, L. (2014). Valid post-selection inference.
Annals of Statistics, 41(2), 802–837

© Springer International Publishing Switzerland 2016
R.A. Berk, Statistical Learning from a Regression Perspective,
Springer Texts in Statistics, DOI 10.1007/978-3-319-44048-4

333

334 References

Berk, R. A., Brown, L., Buja, A., George, E., Pitkin, E., Zhang, K., et al. (2014). Misspecified mean
function regression: Making good use of regression models that are wrong. Sociological Methods
and Research, 43, 422–451.

Berk, R. A., & Bleich, J. (2013). Statistical procedures for forecasting criminal behavior: A com-
parative assessment. Journal of Criminology and Public Policy, 12(3), 515–544.

Berk, R. A., & Bleich, J. (2014). Forecast violence to inform sentencing decisions. Journal of
Quantitative Criminology, 30, 79–96.

Berk, R. A., & Hyatt, J. (2015). Machine learning forecasts of risk to inform sentencing decisions.
Federal Sentencing Reporter, 27(4), 222–228.

Bhat, H. S., Kumer, N., & Vaz, G. (2011). Quantile regression trees. Working Paper, School of
Natural Sciences, University of California, Merced.

Biau, G. (2012). Analysis of a random forests model. Journal of Machine Learning Research, 13,
1063–1095.

Biau, G., Devroye, L., & Lugosi, G. (2008). Consistency of random forests and other averaging
classifiers. Journal of Machine Learning Research, 9, 2015–2033.

Biau, G., &Devroye, L. (2010). On the layered nearest neighbor estimate, the bagged nearest neigh-
bour estimate and the random forest method in regression and classification. Journal Multivariate
Analysis, 101, 2499–2518.

Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.
Box,G. E. P. (1976). Science and statistics. Journal of the American Statistical Association, 71(356),
791–799.

Bound, J., Jaeger, D. A., & Baker, R. M. (1995). Problems with instrumental variables estimation
when the correlation between the instruments and the endogenous explanatory variable is weak.
Journal of the American Statistical Association, 90(430), 443–450.

Breiman, L. (1996). Bagging predictors. Machine Learning, 26, 123–140.
Breiman, L. (2001a). Random forests. Machine Learning, 45, 5–32.
Breiman, L. (2001b). Statistical modeling: Two cultures (with discussion). Statistical Science, 16,
199–231.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression
trees. Monterey: Wadsworth Press.

Breiman, L., Meisel, W., & Purcell, E. (1977). Variable kernel estimates of multivariate densities.
Technometrics, 19, 135–144.

Bring, J. (1994). How to standardize regression coefficients. The American Statistician, 48(3),
209–213.

Bühlmann, P. (2006). Boosting for high dimensional linear models. The Annals of Statistics, 34(2),
559–583.

Bühlmann, P., & Yu, B. (2002). Analyzing bagging. The Annals of Statistics, 30, 927–961.
Bühlmann, P., & Yu, B. (2004). Discussion. The Annals of Statistics, 32, 96–107.
Bühlmann, P., & Yu, B. (2006). Sparse boosting. Journal of Machine Learning Research, 7, 1001–
1024.

Bühlmann, P., & van de Geer, S. (2011). Statistics for high dimensional data. New York: Springer.
Buja, A., &Rolke,W. (2007). Calibration for simultaneity: (Re) samplingmethods for simultaneous
inference with application to function estimation and functional data. Working Paper. https://
www-stat.wharton.upenn.edu/~buja/.

Buja, A., & Stuetzle, W. (2000). Smoothing effects of bagging. Working Paper. http://www-stat.
wharton.upenn.edu/~buja/.

Buja, A., & Stuetzle, W. (2006). Observations on bagging. Statistica Sinica, 16(2), 323–352.
Buja, A., Mease, D., & Wyner, A. J. (2008). Discussion of Bühlmann and Hothorn. Statistical
Science, forthcoming.

Buja, A., Stuetzle, W., & Shen, Y. (2005). Loss functions for binary class probability estimation
and classification: Structure and applications. Unpublished manuscript, Department of Statistics,
The Wharton School, University of Pennsylvania.

https://www-stat.wharton.upenn.edu/~buja/
https://www-stat.wharton.upenn.edu/~buja/
http://www-stat.wharton.upenn.edu/~buja/
http://www-stat.wharton.upenn.edu/~buja/

References 335

Buja, A., Berk, R. A., Brown, L., George, E., Pitkin, E., Traskin, M. et al. (2015). Models as
approximations — a conspiracy of random regressors and model violations against classical
inference in regression. imsart − stsver.2015/07/30 : Bu ja_et_al_Conspiracy-v2.tex date:
July 23, 2015.

Camacho, R., King, R., & Srinivasan, A. (2006). 14th International conference on inductive logic
programming. Machine Learning, 64, 145–287.

Candel, A., Parmar, V., LeDell, E., & Arora, A. (2016). Deep learning with H2O. Mountain View:
H2O.ai Inc.

Candes, E., & Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger
than n (with discussion). Annals of Statistics, 35(6), 2313–2351.

Chaudhuri, P., Lo, W.-D., Loh, W.-Y., & Yang, C.-C. (1995). Generalized regression trees. Statistic
Sinica, 5, 641–666.

Chaudhuri, P., & Loh,W.-Y. (2002). Nonparametric estimation of conditional quantiles using quan-
tile regression trees. Bernoulli, 8(5), 561–576.

Chen, P., Lin, C., & Schölkopf, B. (2004). A tutorial on ν-support vector machines. Department of
Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.

Chen, T., & Guestrin, C. (2016). XGBoost: a scalable tree boosting system. arXiv:1603.02754v1
[cs.LG].

Chipman, H. A., George, E. I., & McCulloch, R. E. (1998). Bayesian CART model search. Journal
of the American Statistical Association, 93(443), 935–948.

Chipman, H. A., George, E. I., & McCulloch, R. E. (1999). Hierarchical priors for Bayesian CART
shrinkage. Statistics and Computing, 10(1), 17–24.

Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression
trees. Annals for Applied Statistics, 4(1), 266–298.

Christianini, N., & Shawe-Taylor, J. (2000). Support vector machines (Vol. 93(443), pp. 935–948).
Cambridge, UK: Cambridge University Press.

Choi, Y., Ahn, H., & Chen, J. J. (2005). Regression trees for analysis of count data with extra
Poisson variation. Computational Statistics & Data Analysis, 49, 893–915.

Clarke, B., Fokoué, E, & Zhang, H. H. (2009). Principles and theory of data mining and machine
learning New York: Springer.

Cleveland, W. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of
the American Statistical Association, 78, 829–836.

Cleveland, W. (1993). Visualizing data. Summit, New Jersey: Hobart Press.
Cochran, W. G. (1977). Sampling techniques (3rd ed.). New York: Wiley.
Cook, D. R., & Weisberg, S. (1999). Applied regression including computing and graphics. New
York: Wiley.

Crawley, M. J. (2007). The R book. New York: Wiley.
Dalgaard, P. (2002). Introductory statistics with R. New York: Springer.
Dasu, T., & Johnson, T. (2003). Exploratory data mining and data cleaning. New York: Wiley.
de Boors, C. (2001). A practical guide to splines (revised ed.). New York: Springer.
Deng, L., & Yu, D. (2014).Deep learning: Methods and applications. Boston: Now Publishers Inc.
Dijkstra, T. K. (2011). Ridge regression and its degrees of freedom. Working Paper, Department
Economics & Business, University of Gronigen, The Netherlands.

Duvenaud, D., Lloyd, J. R., Grosse, R., Tenenbaum, J. B., & Ghahramani, Z. (2013). Structure
discovery in nonparametric regression through compositional kernel search. Journal of Machine
Learning Research W&CP, 28(3), 1166–1174.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2011). Fairness through awareness.
Retrieved November 29, 2011, from arXiv:1104.3913v2 [cs.CC]

Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., & Roth, A. (2015). The reusable
holdout: Preserving validity in adaptive data analysis. Science, 349(6248), 636–638.

Edgington, E. S., & Ongehena, P. (2007). Randomization tests (4th ed.). New York: Chapman &
Hall.

http://arxiv.org/abs/1603.02754v1
http://arxiv.org/abs/1104.3913v2

336 References

Eicker, F. (1963). Asymptotic normality and consistency of the least squares estimators for families
of linear regressions. Annals of Mathematical Statistics, 34, 447–456.

Eicker, F. (1967). Limit theorems for regressions with unequal and dependent errors. Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 59–82.

Efron, B. (1986). How biased is the apparent error rate of prediction rule? Journal of the American
Statistical Association, 81(394), 461–470.

Efron, B., & Tibshirani, R. (1993). Introduction to the bootstrap. New York: Chapman & Hall.
Ericksen, E. P., Kadane, J. B., & Tukey, J. W. (1989). Adjusting the 1980 census of population and
housing. Journal of the American Statistical Association, 84, 927–944.

Exterkate, P., Groenen, P. J. K., Heij, C., & Van Dijk, D. J. C. (2011). Nonlinear forecasting with
many predictors using kernel ridge regression. Tinbergen Institute Discussion Paper 11-007/4.

Fan, J., & Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers. The Annals
of Statistics, 20(4), 2008–2036.

Fan, J., & Gijbels, I. (1996). Local polynomial modeling and its applications. New York: Chapman
& Hall.

Fan, G., & Gray, B. (2005). Regression tree analysis using TARGET. Journal of Computational
and Graphical Statistics, 14, 206–218.

Fan, J., & Li, R. (2006). Statistical challenges with dimensionality: Feature selection in knowl-
edge discovery. In M. Sanz-Sole, J. Soria, J.L. Varona & J. Verdera (Eds.), Proceedings of the
International Congress of Mathematicians (Vol. III, pp. 595–622).

Fan, J., & Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space (with
discussion). Journal of the Royal Statistical Society, B70, 849–911.

Fan, J., & Gijbels, I. (1996). Variable bandwidth and local linear regression smoothers. The Annals
of Statistics, 20(4), 2008–2036.

Faraway, J. (2004). Human animation using nonparametric regression. Journal of Computational
and Graphical Statistics, 13, 537–553.

Faraway, J. J. (2014). Does data splitting improve prediction? Statistics and computing. Berlin:
Springer

Finch, P. D. (1976). The poverty of statisticism. Foundations of Probability Theory, Statistical
Inference, and Statistical Theories of Science, 6b, 1–46.

Freedman, D. A. (1981). Bootstrapping regression models. Annals of Statistics, 9(6), 1218–1228.
Freedman, D. A. (1987). As others see us: A case study in path analysis (with discussion). Journal
of Educational Statistics, 12, 101–223.

Freedman, D. A. (2004). Graphical models for causation and the identification problem. Evaluation
Review, 28, 267–293.

Freedman, D. A. (2009a). Statistical models cambridge. UK: Cambridge University Press.
Freedman, D. A. (2009b). Diagnostics cannot have much power against general alternatives. Inter-
national Journal of Forecasting, 25, 833–839.

Freund,Y.,&Schapire, R. (1996). Experimentswith a newboosting algorithm. InMacine Learning:
Proceedings for the Thirteenth International Conference (pp. 148–156). San Francisco: Morgan
Kaufmann.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of online learning and an
application to boosting. Journal of Computer and System Sciences, 55, 119–139.

Freund, Y., & Schapire, R. E. (1999). A short introduction to boosting. Journal of the Japanese
Society for Artificial Intelligence, 14, 771–780.

Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). The Annals of
Statistics, 19, 1–82.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals
of Statistics, 29, 1189–1232.

Friedman, J. H. (2002). Computational statistics and data analysis. Stochastic Gradient Boosting,
38, 367–378.

Friedman, J. H., & Hall, P. (2000). On bagging and nonlinear estimation. Technical Report. Depart-
ment of Statistics, Stanford University.

References 337

Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view
of boosting (with discussion). Annals of Statistics, 28, 337–407.

Friedman, J. H., Hastie, T., Rosset, S., Tibshirani, R., & Zhu, J. (2004). Discussion of boosting
papers. Annals of Statistics, 32, 102–107.

Gareth, M., & Radchenko, P. (2007). Sparse generalized linear models. Working Paper, Department
of Statistics, Marshall School of Business, University of California.

Gareth, M., & Zhu, J. (2007). Functional linear regression that’s interpretable. Working Paper,
Department of Statistics, Marshall School of Business, University of California.

Geurts, P., Ernst, D.,&Wehenkel, L. (2006). Extremely randomized trees.Machine Learning, 63(1),
3–42.

Ghosh, M., Reid, N., & Fraser, D. A. S. (2010). Ancillary statistics: A review. Statistica Sinica, 20,
1309–1332.

Gifi, A. (1990). Nonlinear multivariate analysis. New York: Wiley.
Good, P. I. (2004). Permutation, parametric and bootstrap tests of hypotheses. New York: Springer.
Grandvalet, Y. (2004). Bagging equalizes influence. Machine Learning, 55, 251–270.
Granger, C. W. J., & Newbold, P. (1986). Forecasting economic time series. New York: Academic
Press.

Green, P. J., & Silverman, B. W. (1994). Nonparametric regression and generalized linear models.
New York: Chapman & Hall.

Grubinger, T., Zeileis, A., &Pfeiffer, K.-P. (2014). Evtree: Evolutionary learning of globally optimal
classification and regression trees inR. Journal of Statistical Software, 61(1). http://www.jstatsoft.
org/.

Hall, P. (1997). The bootstrap and Edgeworth expansion New York: Springer.
Hand, D., Manilla, H., & Smyth, P. (2001). Principles of data mining. Cambridge, MA: MIT Press.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). New
York: Springer.

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models. New York: Chapman & Hall.
Hastie, T. J., & Tibshirani, R. J. (1996). Discriminant adaptive nearest neighbor classification. IEEE
Pattern Recognition and Machine Intelligence, 18, 607–616.

He, Y. (2006). Missing data imputation for tree-basedmodels. Ph.D. dissertation for the Department
of Statistics, UCLA.

Hoeting, J., Madigan, D., Raftery, A., &Volinsky, C. (1999). Bayesianmodel averaging: A practical
tutorial. Statistical Science, 14, 382–401.

Horváth, T., & Yamamoto, A. (2006). International conference on inductive logic programming.
Journal of Machine Learning, 64, 3–144.

Hothorn, T., &Lausen, B. (2003). Double-bagging: Combining classifiers by bootstrap aggregation.
Pattern Recognition, 36, 1303–1309.

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional infer-
ence framework. Journal of Computational and Graphical Statistics, 15(3), 651–674.

Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions.
Proceedings of the Fifth Symposium on Mathematical Statistics and Probability, I, 221–233.

Hurvich, C. M., & Tsai, C. (1989). Regression and time series model selection in small samples.
Biometrika, 76(2), 297–307.

Hsu, C., Chung, C., & Lin, C. (2010). A practical guide to support vector classification. Department
of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan.
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Ishwaran, H. (2015). The effect of splitting on random forests.Machine Learning, 99, 75–118.
Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, T. S. (2008). Random survival forests.
The Annals of Applied Statistics, 2(3), 841–860.

Ishwaran, H., Gerds, T. A., Kogalur, U. B.,Moore, R. D., Gange, S. J., & Lau, B.M. (2014). Random
survival forests for competing risks. Biostatistics, 15(4), 757–773.

Janson, L., Fithian, W., & Hastie, T. (2015). Effective degrees of freedom: A flawed metaphor.
Biometrika, 102(2), 479–485.

http://www.jstatsoft.org/
http://www.jstatsoft.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm

338 References

Jiang, W. (2004). Process consistency for adaboost. Annals of Statistics, 32, 13–29.
Jiu, J., Zhang, J., Jiang, X., & Liu, J. (2010). The group dantzig selector. Journal of Machine
Learning Research, 9, 461–468.

Joachims, T. (1998). Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges,
& A. J. Smola (Eds.), Advances in kernel methods - support vector learning. Cambridge, MA:
MIT Press.

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.
Science, 349(6234), 255–260.

Karatzoglou, A., Smola, A., & Hornik, K. (2015). kernlab – An S4 Package for Kernel Methods in
R. https://cran.r-project.org/web/packages/kernlab/vignettes/kernlab.pdf.

Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data.
Applied Statistics, 29(2), 119–127.

Katatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). Kernlab – An S4 package for Kernel
methods in R. Journal of Statistical Software, 11(9). http://www.jstatsoft.org.

Kaufman, S., & Rosset, S. (2014). When does more regularization imply fewer degrees of freedom?
Sufficient conditions and counter examples from the lasso and ridge regression. Biometrica,
101(4), 771–784.

Kapelner, A., & Bleich, J. (2014). BartMachine: Machine learning for bayesian additive regression
trees. arXiv:1312.2171v3 [stat.ML].

Kessler, R. C., Warner, C. H., & Ursine, R. J. (2015). Predicting suicides after psychiatric hospi-
talization in US army soldiers: The army study to assess risk and resilience in service members
(Army STARRS). JAMA Psychiatry, 72(1), 49–57.

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York: Springer.
Krieger, A., Long, C., &Wyner, A. (2001). Boosting noisy data. In Proceedings of the International
Conference on Machine Learning. Amsterdam: Mogan Kauffman.

Kriegler, B. (2007)Boosting the quantile distribution:A cost-sensitive statistical learning procedure.
Department of Statistics, UCLA, working paper.

Lafferty, J., & Wasserman, L. (2008). Rodeo: sparse greedy nonparametric regression. Annals of
Statistics, 36(1), 28–63.

Lamiell, J. T. (2013). Statisticism in personality psychologists’ use of trait constructs: What is it?
How was it contracted? Is there a cure? New Ideas in Psychology, 31(1), 65–71.

Leamer, E. E. (1978). Specification searches: Ad hoc inference with non-experimental data. New
York: Wiley.

LeBlanc,M.,&Tibshirani, R. (1996). Combining estimates on regression and classification. Journal
of the American Statistical Association, 91, 1641–1650.

Lee, S. K. (2005). On generalizedmultivariate decision tree by using GEE.Computational Statistics
& Data Analysis, 49, 1105–1119.

Lee, S. K., & Jin, S. (2006). Decision tree approaches for zero-inflated cont data. Journal of Applied
Statistics, 33, 853–865.

Leeb, H., & Pötscher, B. M. (2005). Model selection and inference: Facts and fiction. Econometric
Theory, 21, 21–59.

Leeb, H., & Pötscher, B. M. (2006). Can one estimate the conditional distribution of post-model-
selection estimators? The Annals of Statistics, 34(5), 2554–2591.

Leeb, H., & Pötscher, B. M. (2008). Model selection. In T. G. Anderson, R. A. Davis, J.-P. Kreib
& T. Mikosch (Eds.), The handbook of financial time series (pp. 785–821). New York: Springer.

Lin, Y., & Jeon, Y. (2006). Random forests and adaptive nearest neighbors. Journal of the American
Statistical Association, 101, 578–590.

Lipton, P. (2005). Testing hypotheses: Prediction and prejudice. Science, 307, 219–221.
Little, R., & Rubin, D. (2015). Statistical analysis with missing data (3rd ed.). New York: Wiley.
Liu, J., Wonka, P., & Ye, J. (2012). Multi-stage Dantzig selector. Journal of Machine Learning
Research, 13, 1189–1219.

Loh, W.-L. (2014). Fifty years of classification and regression trees (with discussion). International
Statistical Review, 82(3), 329–348.

https://cran.r-project.org/web/packages/kernlab/vignettes/kernlab.pdf
http://www.jstatsoft.org
http://arxiv.org/abs/1312.2171v3

References 339

Loader, C. (2004). Smoothing: Local regression techniques. In J. Gentle, W. Hardle, & Y. Mori
(Eds.), Handbook of computational statistics. New York: Springer.

Lockhart, R., Taylor, J., Tibshirani, R. J., & Tibshirani, R. (2014). A significance test for the lasso
(with discussion). Annals of Statistics, 42(2), 413–468.

Loh, W.-Y. (2002). Regression trees with unbiased variable selection and interaction detection.
Statistica Sinica, 12, 361–386.

Ma, Y., & Gao, G. (2014). Support vector machines applications. New York: Springer.
Maindonald, J., & Braun, J. (2007).Data analysis and graphics using R (2nd ed.). Cambridge, UK:
Cambridge University Press.

Madigan, D., Raftery, A. E., Volinsky, C., & Hoeting, J. (1996). Bayesian model averaging. In AAA
Workshop on Integrating Multiple Learned Models (pp. 77–83). Portland: AAAI Press.

Mallows, C. L. (1973). Some comments on CP. Technometrics, 15(4), 661–675.
Manly, B. F. J. (1997). Randomization, bootstrap and Monte Carlo methods in biology. New York:
Chapman & Hall.

Mammen, E., & van deGeer, S. (1997). Locally adaptive regression splines. The Annals of Statistics,
25(1), 387–413.

Mannor, S., Meir, R., & Zhang, T. (2002). The consistency of greedy algorithms for classification.
In J. Kivensen & R. H. Sloan (Eds.), COLT 2002. LNAI (Vol. 2375, pp. 319–333).

Maronna, R., Martin, D., & Yohai, V. (2006). Robust statistics: Theory and methods. New York:
Wiley.

Marsland, S. (2014).Machine learning: An algorithmic perspective (2nd ed.). NewYork: Chapman
& Hall.

Mathlourthi, W., Fredette, M. & Larocque, D. (2015). Regression trees and forests for non-
homogeneous poisson processes. Statistics and Probability Letters, 96, 204–211.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). New York: Chapman
& Hall.

McGonagle, K. A., Schoeni, R. F., Sastry, N., & Freedman, V. A. (2012). The panel study of income
dynamics: Overview, recent innovations, and potential for life course research. Longitudinal and
Life Course Studies, 3(2), 268–284.

Mease, D., & Wyner, A. J. (2008). Evidence contrary to the statistical view of boosting (with
discussion). Journal of Machine Learning, 9, 1–26.

Mease, D., Wyner, A. J., & Buja, A. (2007). Boosted classification trees and class probabil-
ity/quantile estimation. Journal of Machine Learning, 8, 409–439.

Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7,
983–999.

Meinshausen, N., & Bühlmann, P. (2006). High dimensional graphs and variable selection with the
lasso. The Annals of Statistics, 34(3), 1436–1462.

Mentch, L.,&Hooker, G. (2015). Quantifying uncertainty in random forests via confidence intervals
and hypothesis tests. Cornell University Library. arXiv:1404.6473v2 [stat.ML].

Meyer, D., Zeileis, A., & Hornik, K. (2007). The strucplot framework: Visualizing multiway con-
tingency tables with vcd. Journal of Statistical Software, 17(3), 1–48.

Michelucci, P., & Dickinson, J. L. (2016). The power of crowds: Combining human and machines
to help tackle increasingly hard problems. Science, 351(6268), 32–33.

Milborrow, S. (2001). rpart.plot: Plot rpart models. An enhanced version of plot.rpart. R Package.
Mitchell, M. (1998). An introduction to genetic algorithms. Cambridge: MIT Press.
Moguerza, J. M., & Munõz, A. (2006). Support vector machines with applications. Statistical
Science, 21(3), 322–336.

Mojirsheibani,M. (1997).A consistent combined classification rule.Statistics&Probability Letters,
36, 411–419.

Mojirsheibani, M. (1999). Combining classifiers vis discretization. Journal of the American Statis-
tical Association, 94, 600–609.

Mroz, T. A. (1987). The sensitivity of an empirical model of married women’s hours of work to
economic and statistical assumptions. Econometrica, 55, 765–799.

http://arxiv.org/abs/1404.6473v2

340 References

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge: MIT Press.
Murrell, P. (2006). R graphics. New York: Chapman & Hall/CRC.
Nagin, D. S., & Pepper, J. V. (2012). Deterrence and the death penalty. Washington, DC: National
Research Council.

Neal, R., & Zhang, J. (2006). High dimensional classification with bayesian neural networks and
dirichlet diffusion trees). In I. Guyon, S. Gunn, M. Nikravesh & L. Zadeh (Eds.), Feature extrac-
tion, foundations and applications. New York: Springer.

Peña, D. (2005). A new statistic for influence in linear regression. Technometrics, 47, 1–12.
Quinlan, R. (1993). Programs in machine learning. San Mateo, CA: Morgan Kaufman.
Raftery, A. D. (1995). Bayesian model selection in social research. Sociological Methodology, 25,
111–163.

Ridgeway, G. (1999). The state of boosting. Computing Science and Statistics, 31, 172–181.
Ridgeway, G. (2012). Generalized boosted models: A guide to the gbm package. Available at from
gbm() documentation in R.

Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge, UK: Cambridge Uni-
versity Press.

Rosset, S., & Zhu, J. (2007). Piecewise linear regularized solution paths. The Annals of Statistics,
35(3), 1012–1030.

Rozeboom, W. W. (1960). The fallacy of null-hypothesis significance tests. Psychological Bulletin,
57(5), 416–428.

Rubin, D. B. (1986).Which ifs have causal answers. Journal of the American Statistical Association,
81, 961–962.

Rubin, D. B. (2008). For objective causal inference, design trumps analysis. Annals of Applied
Statistics, 2(3), 808–840.

Ruppert, D. (1997). Empirical-bias bandwidths for local polynomial nonparametric regression and
density estimation. Journal of the American Statistical Association, 92, 1049–1062.

Ruppert, D., & Wand, M. P. (1994). Multivariate locally weighted least squares regression. Annals
of Statistics, 22, 1346–1370.

Ruppert, D., Wand, M. P., & Carroll, R. J. (2003). Semiparametric regression. Cambridge, UK:
Cambridge University Press.

Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
Shakhnarovich, G. (Ed.). (2006). Nearest-neighbor methods in learning and vision: Theory and
practice. Cambridge, MA: MIT Press.

Schapire, R. E., Freund,Y., Bartlett, P.,&Lee,W.-S. (1998).Boosting themargin:Anewexplanation
for the effectiveness of voting methods. The Annals of Statistics, 26(5), 1651–1686.

Schapire,R.E. (1999).Abrief introduction to boosting. InProceedings of the Sixteenth International
Joint Conference on Artificial Intelligence.

Schapire, R. E., & Freund, Y. (2012). Boosting Cambridge: MIT Press.
Schmidhuber, J. (2014). Deep learning in neural networks: An overview. arXiv:1404.7828v4
[cs.NE].

Schwarz, D. F., König, I. R., &Ziegler, A. (2010). On safari to random jungle: A fast implementation
of random forests for high-dimensional data. Bioinformatics, 26(14), 1752–1758.

Scrucca, L. (2014). GA: A package for genetic algorithms in R. Journal of Statistical Software,
53(4), 1–37.

Seligman, M. (2015). Rborist: Extensible, parallelizable implementation of the random forest al-
gorithm. R package version 0.1-0. http://CRAN.R-project.org/package=Rborist.

Sill, M., Heilschher, T., Becker, N., & Zucknick, M. (2014). c060: Extended Inference with lasso
and elastic-net regularized cox and generalized linear models. Journal of Statistical Software,
62(5), 1–22

Sutton, R. S., &Barto, A. G. (2016).Reinforcement learning (2nd ed.). Cambridge,MA:MIT Press.
Therneau, T. M., & Atkinson, E. J. (2015). An introduction to recursive partitioning using the
RPART routines. Technical Report, Mayo Foundation.

Thompson, S. K. (2002). Sampling (2nd ed.). New York: Wiley.

http://arxiv.org/abs/1404.7828v4
http://CRAN.R-project.org/package=Rborist

References 341

Tibshirani, R. J. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 25, 267–288.

Tibshirani, R. J. (2015). Adaptive piecewise polynomial estimation via trend filtering. Annals of
Statistics, 42(1), 285–323.

Vapnick, V. (1996). The nature of statistical learning theory. New York: Springer.
Wager, S. (2014). Asymptotic theory for random forests. Working Paper. arXiv:1405.0352v1.
Wager, E., Hastie, T., & Efron, B. (2014). Confidence intervals for random forests: The jackknife
and infinitesimal jackknife. Journal of Machine Learning Research, 15, 1625–1651.

Wager, S.,&Walther, G. (2015). Uniform convergence of random forests via adaptive concentration.
Working Paper. arXiv:1503.06388v1.

Wahba, G. (2006). Comment. Statistical Science, 21(3), 347–351.
Wang, H., Li, G., & Jiang, F. (2007). Robust regression shrinkage and consistent variable selection
through the LAD-lasso. Journal of Business and Economic Statistics, 25(3), 347–355.

White, H. (1980a). Using least squares to approximate unknown regression functions. International
Economic Review, 21(1), 149–170.

White, H. (1980b). A heteroskedasticity-consistent covariance matix estimator and a direct test for
heteroskedasticity. Econometrica, 48(4), 817–838.

Weisberg, S. (2014). Applied linear regression (4th ed.). New York: Wiley.
Winham, S. J., Freimuth, R. R., & Beirnacka, J. M. (2103) A weighted random forests approach to
improve predictive performance. Statitical Analysis and Data Mining, 6(6), 496–505.

Witten, I. H., & Frank, E. (2000). Data mining. New York: Morgan and Kaufmann.
Wood, S. N. (2000). Modeling and smoothing parameter estimation with multiple quadratic penal-
ties. Journal of the Royal Statistical Society, B, 62(2), 413–428.

Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society B, 65(1),
95–114.

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized
additive models. Journal of the American Statistical Association, 99, 673–686.

Wood, S. N. (2006). Generalized additive models New York: Chapman & Hall.
Wright, M. N. & Ziegler, A. (2015). Ranger: A fast implementation of random forests for high
dimensional data in C++ and R. arXiv:1508.04409v1 [stat.ML].

Wu, Y., Tjelmeland, H., & West, M. (2007). Bayesian CART: Prior specification and posterior
simulation. Journal of Computational and Graphical Statistics, 16(1), 44–66.

Wyner, A. J. (2003). Boosting and exponential loss. In C.M.Bishop&B. J. Frey (Eds.),Proceedings
of the Ninth Annual Conference on AI and Statistics Jan (pp. 3–6). Florida: Key West.

Wyner, A. J., Olson,M., Bleich, J., &Mease, D. (2015). Explaining the success of adaboost and ran-
dom forests as interpolating classifiers. Working Paper. University of Pennsylvania, Department
of Statistics.

Xu, B., Huang, J. Z., Williams, G., Wang, Q., & Ye, Y. (2012). Classifying very high dimensional
data with random forests build from small subspaces. International Journal of Data Warehousing
and Mining, 8(2), 44–63.

Xu,M.,&Golay,M.W. (2006).Data-guidedmodel combination by decomposition and aggregation.
Machine Learning, 63(1), 43–67.

Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Com-
putational and Graphical Statistics, 17(2), 492–514.

Zelterman, D. (2014). A groaning demographic. Significance, 11(5), 38–43.
Zemel, R., Wu, Y., Swersky, K., Pitassi, T., & Dwork, C. (2013). Learning fair representations.
Journal of Machine Learning Research, W & CP, 28(3), 325–333.

Zhang, C. (2005). General empirical bayes wavelet methods and exactly adaptive minimax estima-
tion. The Annals of Statistics, 33(1), 54–100.

Zhang, H., & Singer, B. (1999). Recursive partitioning in the health sciences. New York: Springer.
Zhang, H., Wang, M., & Chen, X. (2009). Willows: A memory efficient tree and forest construction
package. BMC Bioinformatics, 10(1), 130–136.

http://arxiv.org/abs/1405.0352v1
http://arxiv.org/abs/1503.06388v1
http://arxiv.org/abs/1508.04409v1

342 References

Ziegler, A., & König, I. R. (2014). Mining data with random forests: Current options for real
world applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
4(1), 55–63.

Zhang, T., & Yu, B. (2005). Boosting with early stopping: Convergence and consistency. Annals of
Statistics, 33(4), 1538–1579.

Zou, H. (2006). The adaptive lasso and its oracle properties. The Journal of the American Statistical
Association, 101(467), 1418–1429.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via elastic net. Journal of the
Royal Statistical Association, Series B, 67(2), 301–320.

Zou, H., Hastie, T., & Tibshirani, R. (2005). Space principal component analysis. Journal of Com-
putational and Graphical Statistics, 15, 265–286.

Index

A
Abline(), 185
Adaboost, 260–262, 269, 271
AIC, 36
ANOVA radial basis kernel, 120

B
Backfitting, 98–99
Bagging, 205, 206, 217, 224, 271, 273, 274

bias, 195–199
bias-variance tradeoff, 201
boostrap, 189–192
forecasting, 193
margin, 193–195
probabilities, 193
quantitative response, 199–201
variance, 198–199

Bandwidth, 88, 89
Basis functions, 62, 83, 207, 266, 272, 292
Bayes error, 142
Bayesian Additive Regression Trees

backfitting, 318
Gibbs sampling, 318
hyperparameters, 316
level I, 320
level II, 320
linear basis expansions, 319
MCMC, 318

Bayesian model averaging, 187
Bias-variance tradeoff, 14, 38, 70, 82, 84, 87,

88, 91, 187
BIC, 36
Blackbox algorithms, 25–28
Boosting

interpolation, 265–266, 273
weak learners, 259

Boot(), 185
Bootstrap, 107, 111, 185, 188
Boxplot(), 50
Bs(), 60
B-splines, 60, 66–68, 83

degree one, 66
degree three, 68
degree two, 68
degree zero, 66

C
C060(), 81
Classification, 30
Classification and regression trees, 146, 195,

199, 205–207, 217, 221, 238, 242,
253, 266, 267, 272–273

Bayes error, 142
bias, 173, 181
bias-variance tradeoff, 140, 157
categorical predictors, 129
classification, 136, 165–166
classifiers, 131
colinearity, 174
confusion tables, 137–139
cost complexity, 157–158, 166–170
cost ratio, 139
costs of misclassification, 148–156
cp, 158, 176
cross-entropy, 142
data snooping, 148, 158
deviance, 144
false negatives, 138
false positives, 138
fitted values, 144–145
forecasting, 136, 165–166
Gini index, 142

© Springer International Publishing Switzerland 2016
R.A. Berk, Statistical Learning from a Regression Perspective,
Springer Texts in Statistics, DOI 10.1007/978-3-319-44048-4

343

344 Index

impurity, 141–144
impurity function, 141
interaction effects, 133
level I, 134
level II, 134
linear basis expansions, 130, 133, 144
misclassification costs, 166–170
missing data, 161–163
nearest neighbor methods, 139–140
numerical predictors, 129
ordinal predictors, 129
overfitting, 158
prior probability, 151–156, 166–170
pruning, 176
recursive partitioning, 130–132
stagewise regression, 129
statistical inference, 163–165
step functions, 133
surrogate variables, 162–163
tree diagrams, 132–134
variance, 173–175, 181
weighted splitting rules, 144

Classifier, 30, 211
Cloud(), 50
Cmdscale(), 238
Coplot(), 50, 51
Cost functions, 35
Cross-validation, 33, 35, 73, 75, 304
Curse of dimensionality, 46–48, 92, 96

D
Data-generation process, 331
Data snooping, 19, 28, 32, 41, 50, 61, 179,

304, 329, 331
Data splitting, 33
Decision boundaries, 43
Deep learning, 269, 323
Degrees of freedom, 40–42, 77
Deviance, 125, 232
Dummy variable, 43

E
E1071(), 305
Effective degrees of freedom, 40–42
Elastic net, 81
Entropy, 142
Equivalent degrees of freedom, 40
Euclidian distance, 92
Evaluation data, 33
Expected prediction error, 36, 106
Exploratory data analysis (EDA), 2

F
Function estimation, 24

G
GAM, see generalized additive model
Gam(), 84, 98, 100, 103, 108, 112, 125–127,

183, 185
Gbm, 271
Gbm(), 269, 271, 273, 274, 276, 279, 283
Generalization error, 36, 106
Generalized additive model, 96–103

binary outcome, 103
Generalized cross-validation statistic, 84,

101
Generalized linear model, 96, 97
Genetic algorithms, 320–323
Gentle Adaboost, 264
Gini index, 142
GLM, see generalized linear model
Glm(), 52, 127, 183
Glmnet(), 77, 81
Goldilocks strategy, 70
Granger causality, 225, 227
Graphics, 51

H
H2o(), 316
Hard thresholding, 81
Hat matrix, 39, 40
Hccm(), 75

I
Impurity, 159, 176, 207, 224
Imputation, 160
Index(), 186
Indicator variable, 43, 51, 52, 56, 66, 68, 70
Interpolation, 60, 82
Ipred(), 199

K
Kernel functions, 43
Kernelized regression, 113–123

black box, 118
data snooping, 121
linear basis expansions, 114, 116
linear kernel, 116
Mercer kernel, 116
regularization, 117
similarity matrix, 116
vectors, 114

Index 345

KernelMatrix(), 122
Kernlab(), 122, 301, 305
Knots, 56, 62, 64–66, 81–84, 89
Ksvm(), 304

L
L0-penalty, 71
L1-penalty, 70, 77
L2-penalty, 71
Lasso, 77–81
Lattice, 50
Level I, 15, 28, 42, 45, 55, 57, 58, 63, 65, 69–

71, 73, 75, 84, 87, 91, 95, 105, 106,
110, 112, 122, 145, 163, 169, 173,
189, 206, 210, 252, 276, 281, 301,
308, 313, 315

Level II, 15, 23, 25, 28, 29, 31, 32, 34, 35,
38, 39, 42, 45, 55, 57, 58, 60, 61, 63,
65, 69–71, 73, 75, 77, 80, 82, 84, 87,
88, 91, 95, 101, 105, 107, 110, 112,
122, 145, 157, 158, 163, 165, 169,
173, 179, 189, 206, 210, 252, 276,
301, 308, 313

Linear basis expansions, 42–46, 57, 62, 66,
299, 317

Linear estimators, 39–40
Linear loss, 36
Listwise deletion, 160
Lm(), 52, 182
Locally weighted regression, 86–92
Loess, 88
Logistic regression, 97
Logitboost, 265
Loss functions, 35–38

asymmetric, 37
symmetric, 37

Lowess, 4, 88, 98
robust, 90–91

M
Mallows Cp, 36
MDSplot(), 238
Missing data, 159–161
Model selection, 31–35
Mosaic plot, 4
Multivariate adaptive regression splines,

179–181
linear basis expansions, 179, 181
variable importance, 181

Multivariate histogram, 15, 165
Multivariate smoothers, 92–103

N
Natural cubic splines, 63–66, 82–84
Nearest neighbor methods, 86–89
Neural networks, 311–316

backpropagation, 314
deep learning, 314–316
gradient descent, 314
hidden layer, 312

N -fold cross-validation, 83

O
Objective functions, 35
Out-of-bag observations, 195
Overfitting, 31–35, 213

P
Pairs(), 50
Pairwise deletion, 160, 162
Penalized smoothing, 98
Piecewise cubic polynomial, 62
Piecewise cubic spline, 62
Piecewise linear basis, 56–61
Plot(), 51
Plot.gam(), 126, 127
Plot3D(), 309
Polynomial regression splines, 61–63
Predict.rpart(), 185
Prop.table(), 51
Pruning, 156–159

Q
Qqnorm(), 112
Quadratic loss, 36
QuantregForest(), 220, 245, 247

R
Radial basis kernel, 118–120
Random forests, 259, 266, 274, 276, 329,

330
clustering, 238–239
costs, 221–222
dependence, 214
generalization error, 211–213, 217
impurity, 247
interpolation, 215–217, 259
margins, 211–243
mean squared error, 244, 247
missing data, 239–240
model selection, 254
multidimensional scaling, 238

346 Index

nearest neighbor methods, 217–221
outliers, 240–242
partial dependence plots, 230–233
Poisson regression, 245
predictor importance, 224–230
proximity matrix, 237–242
quantile, 253
quantile regression, 245, 247–250
quantitative response, 243–250
strength, 213–214
survival analysis, 245
tuning, 222, 253–254
votes, 243

RandomForest(), 223, 231, 238, 245, 253,
254, 256

RandomForestSRC(), 245
Ranger(), 252
Rborist(), 253
Real Adaboost, 264
Regression analysis, 6

accepting the null hypothesis, 10
asymptotics, 9
best linear approximation, 16, 17
binomial regression, 21–22
causal inference, 6
conventional, 2
definition, 3
disturbance function, 8
estimation target, 17, 18
first-order conditions, 9
fixed predictors, 8
generative model, 24, 28
heteroscedasticity, 18
instrumental variables, 13
irreducible error, 13
joint probability distribution, 15
joint probability distribution model, 15–
17

level I, 6, 22
level II, 6, 9, 15, 22
level III, 6
linear regression model, 7–11
mean function, 8, 9
model selection, 11
model specification, 10
nonconstant variance, 14
sandwich estimator, 11
second-order conditions, 9
statistical inference, 6, 17–21
true response surface, 16, 17
wrong model framework, 17

Regression splines, 55–68
Regression trees, 175–179

Regularization, 70–71, 78
Reinforcement learning, 320, 323
Resampling, 35
Residual degrees of freedom, 40
Resubstitution, 195
Ridge regression, 71–78, 81, 83
Rpart(), 134, 146, 156, 161, 162, 175, 176,

182, 184, 256
Rpart.plot(), 134, 182
Rsq.rpart(), 177

S
Sample(), 184
Scatter.smooth(), 92, 185
Shrinkage, 70–71
Smoother, 60
Smoother matrix, 39, 41
Smoothing, 60
Smoothing splines, 81–86, 93
Soft thresholding, 81
Span, 88, 89, 92, 93
Spine plot, 4
Stagewise algorithms, 266, 267
Statistical inference, 81
Statistical learning

definition, 29–30
forecasting, 30
function estimation, 29
imputation, 30

StepAIC(), 183
Step functions, 56
Stochastic gradient boosting, 266–276

asymmetric costs, 274–275
partial dependence plots, 274
predictor importance, 274
tuning, 271–273

Superpopulation, 15
Support vector classifier, 292–299

bias-variance tradeoff, 295
hard threshold, 296
hard thresholding, 293
separating hyperplane, 293
slack variables, 293, 294
soft threshold, 297
soft thresholding, 295
support vectors, 293

Support vector machines, 295, 299–301
hinge loss function, 300
kernels, 299
quantitative response, 301
separating hyperplane, 300
statistical inference, 301

Index 347

T
Table(), 51, 183
Test data, 33, 330
Test error, 36
Thin plate splines, 93
Training data, 33
Truncated power series basis, 62
Tuning, 72, 82, 329
Tuning parameters, 69

W
Window, 88

X
XGBoost(), 269

Z
Zombies, 56

	Preface to the Second Edition
	Preface to the First Edition
	Contents
	1 Statistical Learning as a Regression Problem
	1.1 Getting Started
	1.2 Setting the Regression Context
	1.3 Revisiting the Ubiquitous Linear Regression Model
	1.3.1 Problems in Practice

	1.4 Working with Statistical Models that Are Wrong
	1.4.1 An Alternative Approach to Regression

	1.5 The Transition to Statistical Learning
	1.5.1 Models Versus Algorithms

	1.6 Some Initial Concepts
	1.6.1 Overall Goals of Statistical Learning
	1.6.2 Data Requirements: Training Data, Evaluation Data and Test Data
	1.6.3 Loss Functions and Related Concepts
	1.6.4 The Bias-Variance Tradeoff
	1.6.5 Linear Estimators
	1.6.6 Degrees of Freedom
	1.6.7 Basis Functions
	1.6.8 The Curse of Dimensionality

	1.7 Statistical Learning in Context

	2 Splines, Smoothers, and Kernels
	2.1 Introduction
	2.2 Regression Splines
	2.2.1 Applying a Piecewise Linear Basis
	2.2.2 Polynomial Regression Splines
	2.2.3 Natural Cubic Splines
	2.2.4 B-Splines

	2.3 Penalized Smoothing
	2.3.1 Shrinkage and Regularization

	2.4 Smoothing Splines
	2.4.1 A Smoothing Splines Illustration

	2.5 Locally Weighted Regression as a Smoother
	2.5.1 Nearest Neighbor Methods
	2.5.2 Locally Weighted Regression

	2.6 Smoothers for Multiple Predictors
	2.6.1 Smoothing in Two Dimensions
	2.6.2 The Generalized Additive Model

	2.7 Smoothers with Categorical Variables
	2.7.1 An Illustration Using the Generalized Additive Model with a Binary Outcome

	2.8 An Illustration of Statistical Inference After Model Selection
	2.9 Kernelized Regression
	2.9.1 Radial Basis Kernel
	2.9.2 ANOVA Radial Basis Kernel
	2.9.3 A Kernel Regression Application

	2.10 Summary and Conclusions

	3 Classification and Regression Trees (CART)
	3.1 Introduction
	3.2 The Basic Ideas
	3.2.1 Tree Diagrams for Understanding Conditional Relationships
	3.2.2 Classification and Forecasting with CART
	3.2.3 Confusion Tables
	3.2.4 CART as an Adaptive Nearest Neighbor Method

	3.3 Splitting a Node
	3.4 Fitted Values
	3.4.1 Fitted Values in Classification
	3.4.2 An Illustrative Prison Inmate Risk Assessment Using CART

	3.5 Classification Errors and Costs
	3.5.1 Default Costs in CART
	3.5.2 Prior Probabilities and Relative Misclassification Costs

	3.6 Pruning
	3.6.1 Impurity Versus Rcp(T)

	3.7 Missing Data
	3.7.1 Missing Data with CART

	3.8 Statistical Inference with CART
	3.9 From Classification to Forecasting
	3.10 Varying the Prior and the Complexity Parameter
	3.11 An Example with Three Response Categories
	3.12 Some Further Cautions in Interpreting CART Results
	3.12.1 Model Bias
	3.12.2 Model Variance

	3.13 Regression Trees
	3.13.1 A CART Application for the Correlates of a Student's GPA in High School

	3.14 Multivariate Adaptive Regression Splines (MARS)
	3.15 Summary and Conclusions

	4 Bagging
	4.1 Introduction
	4.2 The Bagging Algorithm
	4.3 Some Bagging Details
	4.3.1 Revisiting the CART Instability Problem
	4.3.2 Some Background on Resampling
	4.3.3 Votes and Probabilities
	4.3.4 Imputation and Forecasting
	4.3.5 Margins
	4.3.6 Using Out-Of-Bag Observations as Test Data
	4.3.7 Bagging and Bias
	4.3.8 Level I and Level II Analyses with Bagging

	4.4 Some Limitations of Bagging
	4.4.1 Sometimes Bagging Cannot Help
	4.4.2 Sometimes Bagging Can Make the Bias Worse
	4.4.3 Sometimes Bagging Can Make the Variance Worse

	4.5 A Bagging Illustration
	4.6 Bagging a Quantitative Response Variable
	4.7 Summary and Conclusions

	5 Random Forests
	5.1 Introduction and Overview
	5.1.1 Unpacking How Random Forests Works

	5.2 An Initial Random Forests Illustration
	5.3 A Few Technical Formalities
	5.3.1 What Is a Random Forest?
	5.3.2 Margins and Generalization Error for Classifiers in General
	5.3.3 Generalization Error for Random Forests
	5.3.4 The Strength of a Random Forest
	5.3.5 Dependence
	5.3.6 Implications
	5.3.7 Putting It All Together

	5.4 Random Forests and Adaptive Nearest Neighbor Methods
	5.5 Introducing Misclassification Costs
	5.5.1 A Brief Illustration Using Asymmetric Costs

	5.6 Determining the Importance of the Predictors
	5.6.1 Contributions to the Fit
	5.6.2 Contributions to Prediction

	5.7 Input Response Functions
	5.7.1 Partial Dependence Plot Examples

	5.8 Classification and the Proximity Matrix
	5.8.1 Clustering by Proximity Values

	5.9 Empirical Margins
	5.10 Quantitative Response Variables
	5.11 A Random Forest Illustration Using a Quantitative Response Variable
	5.12 Statistical Inference with Random Forests
	5.13 Software and Tuning Parameters
	5.14 Summary and Conclusions
	5.14.1 Problem Set 2
	5.14.2 Problem Set 3

	6 Boosting
	6.1 Introduction
	6.2 Adaboost
	6.2.1 A Toy Numerical Example of Adaboost.M1
	6.2.2 Why Does Boosting Work so Well for Classification?

	6.3 Stochastic Gradient Boosting
	6.3.1 Tuning Parameters
	6.3.2 Output

	6.4 Asymmetric Costs
	6.5 Boosting, Estimation, and Consistency
	6.6 A Binomial Example
	6.7 A Quantile Regression Example
	6.8 Summary and Conclusions

	7 Support Vector Machines
	7.1 Support Vector Machines in Pictures
	7.1.1 The Support Vector Classifier
	7.1.2 Support Vector Machines

	7.2 Support Vector Machines More Formally
	7.2.1 The Support Vector Classifier Again: The Separable Case
	7.2.2 The Nonseparable Case
	7.2.3 Support Vector Machines
	7.2.4 SVM for Regression
	7.2.5 Statistical Inference for Support Vector Machines

	7.3 A Classification Example
	7.4 Summary and Conclusions

	8 Some Other Procedures Briefly
	8.1 Neural Networks
	8.2 Bayesian Additive Regression Trees (BART)
	8.3 Reinforcement Learning and Genetic Algorithms
	8.3.1 Genetic Algorithms

	9 Broader Implications and a Bit of Craft Lore
	9.1 Some Integrating Themes
	9.2 Some Practical Suggestions
	9.2.1 Choose the Right Procedure
	9.2.2 Get to Know Your Software
	9.2.3 Do Not Forget the Basics
	9.2.4 Getting Good Data
	9.2.5 Match Your Goals to What You Can Credibly Do

	9.3 Some Concluding Observations

	10 Erratum to: Statistical Learning from a Regression Perspective
	Erratum to: R.A. Berk, Statistical Learning from a Regression Perspective, Springer Texts in Statistics, https://doi.org/10.1007/978-3-319-44048-4

	References
	Index

