
Theoretical Chemistry and Computational Modelling

Magnetic Interactions 
in Molecules 
and Solids 

Coen de Graaf
Ria Broer

ERASMUS

MUNDUS



Theoretical Chemistry and Computational

Modelling



Modern Chemistry is unthinkable without the achievements of Theoretical and Computational

Chemistry. As a matter of fact, these disciplines are now a mandatory tool for the molecular

sciences and they will undoubtedly mark the new era that lies ahead of us. To this end, in 2005,

experts from several European universities joined forces under the coordination of the Universidad

Autónoma de Madrid, to launch the European Masters Course on Theoretical Chemistry and

Computational Modeling (TCCM). The aim of this course is to develop scientists who are able to

address a wide range of problems in modern chemical, physical, and biological sciences via a

combination of theoretical and computational tools. The book series, Theoretical Chemistry and

Computational Modeling, has been designed by the editorial board to further facilitate the training

and formation of new generations of computational and theoretical chemists.

More information about this series at http://www.springer.com/series/10635

Prof. Manuel Alcami

Departamento de Química

Facultad de Ciencias, Módulo 13

Universidad Autónoma de Madrid

28049 Madrid, Spain

Prof. Ria Broer

Theoretical Chemistry

Zernike Institute for Advanced Materials

Rijksuniversiteit Groningen

Nijenborgh 4

9747 AG Groningen, The Netherlands

Dr. Monica Calatayud

Laboratoire de Chimie Théorique

Université Pierre et Marie Curie, Paris 06

4 place Jussieu

75252 Paris Cedex 05, France

Prof. Arnout Ceulemans

Departement Scheikunde

Katholieke Universiteit Leuven

Celestijnenlaan 200F

3001 Leuven, Belgium

Prof. Antonio Laganà

Dipartimento di Chimica

Università degli Studi di Perugia

via Elce di Sotto 8

06123 Perugia, Italy

Prof. Colin Marsden

Laboratoire de Chimie

et Physique Quantiques

Université Paul Sabatier, Toulouse 3

118 route de Narbonne

31062 Toulouse Cedex 09, France

Prof. Otilia Mo

Departamento de Química

Facultad de Ciencias, Módulo 13

Universidad Autónoma de Madrid

28049 Madrid, Spain

Prof. Ignacio Nebot

Institut de Ciència Molecular

Parc Científic de la Universitat de València

Catedrático José Beltrán Martínez, no. 2

46980 Paterna (Valencia), Spain

Prof. Minh Tho Nguyen

Departement Scheikunde

Katholieke Universiteit Leuven

Celestijnenlaan 200F

3001 Leuven, Belgium

Prof. Maurizio Persico

Dipartimento di Chimica e Chimica

Industriale

Università di Pisa

Via Risorgimento 35

56126 Pisa, Italy

Prof. Maria Joao Ramos

Chemistry Department

Universidade do Porto

Rua do Campo Alegre, 687

4169-007 Porto, Portugal

Prof. Manuel Yáñez

Departamento de Química

Facultad de Ciencias, Módulo 13

Universidad Autónoma de Madrid

28049 Madrid, Spain

http://www.springer.com/series/10635


Coen de Graaf • Ria Broer

Magnetic Interactions
in Molecules and Solids

123



Coen de Graaf
Department of Physical and Inorganic
Chemistry

Universitat Rovira i Virgili / ICREA
Tarragona
Spain

Ria Broer
Zernike Institute for Advanced Materials
University of Groningen
Groningen
The Netherlands

ISSN 2214-4714 ISSN 2214-4722 (electronic)
Theoretical Chemistry and Computational Modelling
ISBN 978-3-319-22950-8 ISBN 978-3-319-22951-5 (eBook)
DOI 10.1007/978-3-319-22951-5

Library of Congress Control Number: 2015947103

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the

authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media

(www.springer.com)



To W.C. Nieuwpoort



Preface

Magnetic interactions are not only fascinating from an academic viewpoint, they

also play an increasingly important role in chemistry, especially in the chemistry

that is aimed at designing materials with predefined properties. Many of these

materials are magnetic, either in their ground states or by external perturbation and

have found their way into real-world applications as molecular switches, sensors or

memories. Although magnetic interactions are commonly orders of magnitude

weaker than other interactions like covalent bonding, due to these interactions small

changes in composition or external conditions may have huge consequences for the

properties. Think for example of perovskite-type manganese oxides, where chem-

ical doping affects the interplay between magnetic and electric properties, leading to

giant or collossal magnetic resistance. An obvious example dealing with molecular

(non-bulk) moieties can be found in the design of single-molecule magnets.

Obtaining systems with tailor-made properties heavily depends on our knowledge

of the interactions between local magnetic sites.

This textbook aims to explain the theoretical basis of magnetic interactions at a

level that will be useful for master’s students in chemistry. Although it has been

written as a volume in the series “Theoretical and Computational Chemistry”, the

book is intended to be also helpful for students of physical, inorganic and organic

chemistry. Most chemistry textbooks give only a brief general introduction, whereas

textbooks treating magnetic interactions at a more advanced level are mostly written

from the perspective of solid-state physics, aiming at physics students.

This volume gives a treatment of magnetic interactions in terms of the phe-

nomenological spin Hamiltonians that have been such powerful tools in chemistry

and physics in the past half century. On the other hand, it also explains the magnetic

properties using many-electron quantum mechanical models, first at a simple level

and then working towards more and more advanced and accurate treatments.

Connecting the two perspectives is an essential aspect of the book. It makes clear

that in many cases one can derive magnetic coupling parameters not only from

experiment, but also, independently, from accurate ab initio calculations.

Combining the two approaches leads, in addition, to a deeper understanding of the
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relation between physical phenomena and basic properties and how we can influ-

ence these. Think for example of magnetic anisotropy and spin-orbit coupling.

Throughout the book the text is interlarded with exercises, stimulating the stu-

dents to not only read but also verify the assertions and perform (parts of) deri-

vations by themselves. In addition, each chapter ends with a number of problems

that can be used to check whether the material has been understood.

The first chapter of this volume introduces a number of basic concepts and tools

necessary for the development of the theories and methods treated in the following

chapters. It explains various ways to generate many-electron spin-adapted func-

tions, gives an introduction to perturbation theories and to effective Hamiltonian

theory. Chapter 2 treats atoms with and without an external magnetic field. This is

followed by a chapter on systems containing more than one magnetic center. In this

chapter the phenomenological Hamiltonians are introduced, beginning with the

Heisenberg and the Ising Hamiltonian and ending with Hamiltonians that include

biquadratic, cyclic or anisotropic exchange. Chapter 4 explains how quantum

chemical methods, reaching from simple mean field methods to accurate models,

can help to understand the magnetic properties. The simple models can give a

qualitative understanding of the phenomena. The more accurate models, such as

post Hartree-Fock models like DDCI, CASPT2 and NEVPT2 or broken symmetry

models based on density functional theory, are able to produce accurate predictions

of the energies and wave functions of the relevant states. Making accurate com-

putations is one thing, mapping the results back onto the intuitive models yielding

parameters that can be compared with the ones deduced from experiments is

another. Effective Hamiltonian theory is a powerful tool to make these connections,

as shown in Chap. 5. The last chapter explains how the magnetic interactions in

solid-state compounds can be treated, with embedded cluster models and with

periodic approaches. It gives an account of the double exchange mechanism in

mixed valence systems, explaining the Goodenough-Kanamori rules. Finally, an

account is given of spin wave theory for (anti-)ferromagnets.

The book covers a full Master’s course, but a shorter course can be distilled from

it in many ways. One of them includes Chap. 2, the first two sections of Chap. 3 and

optionally one of the subsections of 3.4 to get acquainted with the spin Hamiltonian

formalism. After that, Sects. 4.1.1 and 4.1.2 combined with Sects. 4.3.1, 4.3.2 and

4.3.4 can be studied to connect the quantitative and qualitative computational

viewpoints of magnetic interactions. From Chap. 5, we recommend to include

Sects. 5.1.1 and 5.3, which provide us with the basic tools for analysis. If time

permits, one can close the short course with a brief account on some issues related

to the solid state: Sects. 6.3 and 6.5 provide some basic notions on this topic.

We end by noting that the outstanding book by the late Prof. Olivier Kahn,

O. Kahn, Molecular Magnetism, VCH Publishers, 1993, has been an inspiration for

the entire book.

Tarragona Coen de Graaf

Groningen Ria Broer

July 2015
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Appendix B: Effect of the Ŝ Operator and the Matrix Elements

for 1
2
≤ S ≤

5
2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Appendix C: Matrix Representation of the ZFS Model

Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Appendix D: Analytical Expressions for χðTÞ . . . . . . . . . . . . . . . . . . . 219

Appendix E: Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Contents xiii

http://dx.doi.org/10.1007/978-3-319-22951-5_6
http://dx.doi.org/10.1007/978-3-319-22951-5_6
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec1
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec1
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec2
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec2
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec3
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec3
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec3
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec4
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec4
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec5
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec5
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec6
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec6
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec7
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Sec7
http://dx.doi.org/10.1007/978-3-319-22951-5_1#Sec12
http://dx.doi.org/10.1007/978-3-319-22951-5_6#Bib1


Acronyms

AF Antiferromagnetic

BS Broken Symmetry

CAS (n, m) Complete Active Space with n electrons and m orbitals

CASPT2 Complete Active Space second-order Perturbation Theory

CASSCF Complete Active Space Self-Consistent Field

CI Configuration Interaction

CISD Configuration Interaction of Singles and Doubles

CSF Configuration State Function

DDCI Difference Dedicated Configuration Interaction

DFT Density Functional Theory

F Ferromagnetic

GK Goodenough-Kanamori

HS High Spin

HTH Hay-Thibeault-Hoffmann

IR Irreducible representation

KS Kohn-Sham

LDA Local Density Approximation

LMCT Ligand-to-Metal Charge Transfer

LS Low Spin

MLCT Metal-to-Ligand Charge Transfer

MO Molecular Orbital

MR Multideterminantal/Multiconfigurational reference;

Multireference

NEVPT2 N-Electron Valence state second-order Perturbation Theory

NH Non Hund

QDPT Quasi Degenerate Perturbation Theory

REKS Restricted Ensemble Kohn-Sham

RHF Restricted Hartree Fock

ROKS Restricted Open-shell Kohn-Sham

VB Valence Bond

WF Wave function

xv



ZFS Zero-field splitting

ψ, φ, ϕ one-electron functions, orbitals

Ψ N-electron wave function

Φ Slater determinant

eΨ Projection of Ψ on a model space

eΨ
0 Normalized projection of Ψ on a model space

eΨ
? Orthonormalized projection of Ψ on a model space

eΨ
y Biorthogonal projection of Ψ on a model space

eΨ
0y Normalized biorthogonal projection of Ψ on a model space

E(n) n-th order correction to the energy

Ψ(n) n-th order correction to the wave function

xvi Acronyms



Chapter 1

Basic Concepts

Abstract In this chapter we examine some basic concepts of quantum chemistry to

give a solid foundation for the other chapters. We do not pretend to review all the

basics of quantum mechanics but rather focus on some specific topics that are central

in the theoretical description of magnetic phenomena in molecules and extended

systems. First, we will shortly review the Slater–Condon rules for the matrix elements

between Slater determinants, then we will extensively discuss the generation of spin

functions. Perturbation theory and effective Hamiltonians are fundamental tools for

understanding and to capture the complex physics of open shell systems in simpler

concepts. Therefore, the last three sections of this introductory chapter are dedicated

to standard Rayleigh–Schrödinger perturbation theory, quasi-degenerate perturbation

theory and the construction of effective Hamiltonians.

1.1 Slater Determinants and Slater–Condon Rules

The Slater determinant is the central entity in molecular orbital theory. The exact

N -electron wave function of a stationary molecule in the Born-Oppenheimer approx-

imation is a 4N -dimensional object that depends on the three spatial coordinates and

a spin coordinate of the N electrons in the system. This object is of course too

complicated for any practical application and is, in first approximation, replaced

by a product of N orthonormal 4-dimensional functions that each depend on the

coordinates of only one of the electrons in the system.

Ψ (x1, y1, z1, σ1, x2, y2, z2, σ2, . . . , xN , yN , zN , σN )

= φa(x1, y1, z1, σ1)φb(x2, y2, z2, σ2) . . . φω(xN , yN , zN , σN ) (1.1)

These one-electron functions are commonly referred to as spin orbitals and the prod-

uct is known as the Hartree product Π . Obviously, the product suffers from important

deficiencies with respect to the foundations of Quantum Mechanics. The wave func-

tion is not antisymmetric with respect to the permutation of any two electrons, and
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2 1 Basic Concepts

hence, does not fulfill the Pauli principle. However, by replacing the product by a

determinant

Ψ (1, 2, . . . N ) = 1√
N !

∣∣∣∣∣∣∣∣∣

φa(1) φb(1) · · · φω(1)

φa(2) φb(2) · · · φω(2)
...

...

φa(N ) φb(N ) · · · φω(N )

∣∣∣∣∣∣∣∣∣
(1.2)

this requirement is automatically fulfilled. Shorthand notations for this Slater deter-

minant are

Ψ (1, 2, . . . N ) = |φa(1)φb(2) . . . φω(N )| = |φaφb . . . φω| (1.3)

where only the diagonal elements of the determinant are shown, the four coordinates

are compacted in one index, and the normalization factor is implicit. The one-electron

functions are ordered by columns (from left to right) and the electrons by rows (from

top to bottom). An alternative, more explicit way of writing the wave function is

obtained by defining an operator that antisymmetrizes the Hartree product Π

Ψ = ÂΠ = Â[φa(1)φb(2) . . . φω(N )] (1.4)

with

Â = 1√
N !

N−1∑

γ=0

(−1)γ P̂γ = 1√
N !

⎛
⎝1 −

∑

i< j

P̂i j +
∑

i< j<k

P̂i jk − . . .

⎞
⎠ (1.5)

where P̂i j permutes the electron labels i and j in the Hartree product, P̂i jk replaces

the electron labels ijk by jki and kij.

1.1 Write out explicitly the wave function Ψ (1, 2, 3) = |φa(1)φb(2)φc(3)|
and show that Ψ (2, 1, 3) = −Ψ (1, 2, 3). What happens to the wave function

when two electrons are described by the same one-electron function?

A serious deficiency is that neither a Hartree product nor a Slater determinant can

be an eigenfunction of the N -electron Hamilton operator. Therefore Ψ cannot be a

solution of the time-independent electronic Schrödinger equation. The reason is that

the N -electron Hamiltonian cannot be written as a sum of N one-electron Hamiltoni-

ans, due to the repulsive Coulomb interactions between the electrons. Nevertheless,

in practice it turns out that we can work rather well with an approximate wave func-

tion consisting of only one Slater determinant if we choose that particular Slater

determinant Ψ that yields the lowest energy expectation value 〈Ψ |Ĥ |Ψ 〉. In other

words, we must vary the spin orbitals in Ψ until we have reached the lowest value
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of 〈Ψ |Ĥ |Ψ 〉. The variation theorem tells us that this lowest value is still above the

exact ground state energy E .

This variational procedure leads to a set of equations

f̂ φi = εiφi (1.6)

called the Hartree–Fock equations, which determine the spin orbitals in Ψ . The set of

equations (1.6) can be seen as effective one-electron Schrödinger equations, whose

eigenvalues ε are called one-electron energies or orbital energies. There is an operator

f̂ , called Fock operator, for each electron in the molecule, and they are all identical.

Much can be said about the Hartree–Fock equations, their eigenvalues ε and their

eigenfunctions, the spin orbitals φ but here we restrict ourselves to a few aspects

that are relevant later in this chapter. Firstly, f̂ depends on the spin orbitals to be

found, which has the consequence that the equations have to be solved iteratively

and secondly, the energy expectation value E is not equal to the sum of the one

electron energies. Summing the N individual Fock operators for the electrons of

the molecule gives an N -electron Hamiltonian, Ĥ (0), that is not equal to the true

N -electron Hamiltonian, but that we will use later as zeroth order Hamiltonian in a

perturbation expansion. All Slater determinants Φk , k = 1, 2, . . . that can be built

from the spin orbitals of Eq. 1.6 are eigenfunctions of Ĥ (0), with eigenvalues E
(0)
k

equal to the sum of the orbital energies of the spin orbitals used in Ψk .

The calculation of the energy of a Slater determinant and the interaction between

two different Slater determinants may seem a rather complicated task given the large

number of terms (N !) when the determinant is written in its explicit form. However,

the Slater–Condon rules given in Table 1.1 establish a few simple relations to calculate

matrix elements between two Slater determinants.

Table 1.1 Slater–Condon rules for the matrix elements between two Slater determinants

Matrix element Differences One-electron term Two-electron term

〈ΦK |Ĥ |ΦK 〉 0
N∑
m

〈φm |ĥ|φm〉
N∑

m<n

〈φmφn | 1−P̂12
r12

|φmφn〉

〈ΦK |Ĥ |ΦL 〉 1 〈φm |ĥ|φp〉
N∑
n

〈φmφn | 1−P̂12
r12

|φpφn〉

〈ΦK |Ĥ |ΦM 〉 2 0 〈φmφn | 1−P̂12
r12

|φpφq 〉
〈ΦK |Ĥ |ΦN 〉 3 or more 0 0

The entry ‘differences’ indicates the number of different spin orbitals in the determinants of the bra

and ket

ΦK = |φaφb . . . φmφnφo . . . φω|
ΦL = |φaφb . . . φpφnφo . . . φω|
ΦM = |φaφb . . . φpφqφo . . . φω|
ΦN = |φaφb . . . φpφqφr . . . φω|
P̂12 is the permutation operator that interchanges the coordinates of electron 1 and 2
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To derive these rules it is convenient to introduce two formal properties of the

antisymmetrizer Â

Â Â =
√

N ! Â ÂĤ = Ĥ Â (1.7)

where Ĥ is the many-electron Hamiltonian.

1.2 Write down the anti-symmetrization operator Â for a two-particle wave

function. Show that Â Â applied on the Hartree product ϕ1ϕ2 gives the same

result as applying
√

N ! Â.

Then the energy of the determinant ΦK can be written as

E = 〈ΦK |Ĥ |ΦK 〉 = 〈 ÂΠ |Ĥ | ÂΠ〉 =
√

N !〈Π |Ĥ | ÂΠ〉 =
N−1∑

γ=0

(−1)γ 〈Π |Ĥ |P̂γ Π〉

(1.8)

and instead of working with determinants, the energy can be calculated from the

Hartree products. In the first place, we take a closer look on the one-electron part of

the Hamiltonian. For γ = 0 and ĥ(1) we obtain

〈φa(1)φb(2) . . . φω(N )|ĥ(1)|φa(1)φb(2) . . . φω(N )〉
= 〈φa(1)|ĥ(1)|φa(1)〉〈φb(2) . . . φω(N )|φb(2) . . . φω(N )〉 = 〈φa |ĥ|φa〉 = ha

(1.9)

Using ĥ(2) leads to hb and all other electron coordinates give similar results. On the

contrary, the evaluation of the matrix elements with γ = 1, that is one permutation

in Π , leads to zero due to the orthogonality of the orbitals. For example, the action

of P̂12 gives

− 〈φa(1)φb(2) . . . φω(N )|ĥ(1)|φb(1)φa(2) . . . φω(N )〉
= −〈φa(1)|ĥ(1)|φb(1)〉〈φb(2) . . . φω(N )|φa(2) . . . φω(N )〉 = 0 (1.10)

where the minus sign arises from the (−1)γ factor in the energy expression. The

two-electron part can be determined with a similar reasoning. First we focus on the

γ = 0 case with the coordinates of electron 1 and 2.

〈φa(1)φb(2)φc(3) . . . φω(N )| 1

r12
|φa(1)φb(2)φc(3) . . . φω(N )〉

= 〈φa(1)φb(2)| 1

r12
|φa(1)φb(2)〉〈φc(3) . . . φω(N )|φc(3) . . . φω(N )〉

= 〈φaφb|
1

r12
|φaφb〉 = Jab (1.11)
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Similar Coulomb integrals J are obtained for other combinations of electron coor-

dinates. The next step is to see what integrals are obtained for γ = 1 interchanging

electrons 1 and 2:

− 〈φa(1)φb(2)φc(3) . . . φω(N )| 1

r12
|φb(1)φa(2)φc(3) . . . φω(N )〉

= −〈φa(1)φb(2)| 1

r12
|φb(1)φa(2)〉〈φc(3) . . . φω(N )|φc(3) . . . φω(N )〉

= −〈φaφb|
1

r12
|φbφa〉 = −Kab (1.12)

This integral is known as the exchange integral and usually written as Kab. Other

combinations of permutations and electron coordinates lead to similar K ′s but higher-

order permutations will always result in zero contributions due to the orthogonality.

Hence, the terms can be collected and the expression given in the top row of Table 1.1

emerges.

The evaluation of the interaction matrix elements between Slater determinants

with different occupations follows the same mechanics and can be derived as a

useful exercise by the reader.

1.2 Generation of Many Electron Spin Functions

In a non-relativistic setting the N -electron wave function Ψ can be chosen to be also

an eigenfunction of Ŝ2 and one of its components, we denote this component Ŝz .

Ŝ2ΨS,MS
= S(S + 1)ΨS,MS

(1.13a)

ŜzΨS,MS
= MSΨS,MS

(1.13b)

with S the total spin quantum number and the magnetic spin quantum number MS

running from −S to S in steps of 1.

1.3 Give the degeneracy of ΨS,MS
in terms of S assuming that spin-orbit

coupling (see Sect. 2.1) can be neglected.

Before looking in more detail to the N -electron wave functions, we will first shortly

summarize the most important aspects of the spin part of a one-electron wave

function. We will follow the common practice to use lower case symbols when

dealing with one-particle wave functions and uppercase for many-particle systems.

http://dx.doi.org/10.1007/978-3-319-22951-5_2
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The one-electron spin functions to be considered have the quantum numbers s = 1
2

and ms = ± 1
2

and can be written in different formats:

|s, ms〉 = [|1/2 , 1/2 〉, |1/2 ,−1/2 〉] = [α, β] = [↑,↓] (1.14)

where [. . .] denotes the set of functions. When the spatial part of the wave function

is explicitly written, a similar notation can be used for spin orbitals:

|s, ms〉 =
[
ϕ1, ϕ2

]
(1.15)

where the barred orbital carries the electron with ms = −1/2 . The notations by α, β

and ϕ1, ϕ2 are most frequently used and will also be followed here. The corresponding

eigenvalues of the total spin operator ŝ2 and the z-component of it (ŝz) are

ŝ2α = 1/2 (1/2 + 1) α = 3/4 α ŝzα = 1/2 α (1.16a)

ŝ2β = −1/2 (−1/2 + 1) β = 3/4 β ŝzβ = −1/2 β (1.16b)

The ladder operators ŝ± = ŝx ± i ŝy change the ms quantum number of the spin

functions by the following action

ŝ+|s, ms〉 =
√

s(s + 1) − ms(ms + 1)|s, ms + 1〉 (1.17)

ŝ−|s, ms〉 =
√

s(s + 1) − ms(ms − 1)|s, ms − 1〉

This leads to the following simple relations when applied to the one-electron spin

functions α and β:

ŝ+α = 0 ŝ−α = β (1.18a)

ŝ+β = α ŝ−β = 0 (1.18b)

The substitution of ŝx = 1
2
(ŝ+ + ŝ−) and ŝy = 1

2i
(ŝ+ − ŝ−) in the expression of the

total spin operator ŝ2 = ŝ2
x + ŝ2

y + ŝ2
z gives a simple working equation to evaluate

the expectation value of ŝ2 for spin functions:

ŝ2 = ŝ+ŝ− − ŝz + ŝ2
z (1.19)

For completeness, we also give the results of operating with ŝx and ŝy on α and β

ŝxα = 1

2
β ŝyα = − 1

2i
β (1.20a)

ŝxβ = 1

2
α ŝyβ = 1

2i
α (1.20b)
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1.4 (a) Demonstrate that the normalization factor is one for the application

of ŝ+ to β and zero for α. (b) Derive the expression of the total spin operator

ŝ2 in terms of ŝ+, ŝ− and ŝz . Remember that [ŝ+, ŝ−] = 2ŝz . (c) Calculate the

expectation value of ŝ2 of α and β using Eq. 1.19.

In the case of N -electron systems, the spin operators have to be applied on Slater

determinants or linear combinations of these. The action of the N -electron operator

Ŝ2 is most conveniently evaluated in the N -electron version of Eq. 1.19 with Ŝz , Ŝ+

and Ŝ− defined as the sum of the corresponding one-electron operators.

Ŝ2 = Ŝ+ Ŝ− − Ŝz + Ŝ2
z (1.21)

with

Ŝz =
N∑

i=1

ŝz(i) Ŝ+ =
N∑

i=1

ŝ+(i) Ŝ− =
N∑

i=1

ŝ−(i) (1.22)

The multi-electron version of Eq. 1.17 is

Ŝ+|S, MS〉 =
√

S(S + 1) − MS(MS + 1)|S, MS + 1〉
Ŝ−|S, MS〉 =

√
S(S + 1) − MS(MS − 1)|S, MS − 1〉 (1.23)

whereas many-electron functions consisting of one Slater determinant are always

eigenfunctions of Ŝz with an eigenvalue given by the difference of the number of

α and β electrons multiplied by one half, this is in general not the case for Ŝ2. To

illustrate this, we apply the two operators on the Slater determinants |ϕ1ϕ2| and

|ϕ1ϕ2|.

Ŝz |ϕ1ϕ2| = Ŝz

(ϕ1ϕ2 − ϕ2ϕ1)√
2

= ϕ1ϕ2 − ϕ2ϕ1√
2

(ŝz(1) + ŝz(2))αα

= ϕ1ϕ2 − ϕ2ϕ1√
2

(
1

2
αα + 1

2
αα

)
= 1 · ϕ1ϕ2 − ϕ2ϕ1√

2
= 1 · |ϕ1ϕ2|

(1.24)

Ŝz |ϕ1ϕ2| = Ŝz

(ϕ1ϕ2 − ϕ2ϕ1)√
2

= ϕ1ϕ2(ŝz(1) + ŝz(2))αβ − ϕ2ϕ1(ŝz(1) + ŝz(2))βα√
2

= ϕ1ϕ2(1/2 αβ − 1/2 αβ) − ϕ2ϕ1(−1/2 βα + 1/2 βα)√
2

= 0 · ϕ1ϕ2 − ϕ2ϕ1√
2

= 0 · |ϕ1ϕ2| (1.25)
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This shows that the Slater determinants are eigenfunctions of Ŝz and the correspond-

ing eigenvalues MS are equal to 1 and 0, respectively. The result of applying Ŝ2 is

rather straightforward using Eq. 1.21 with the notion that (−Ŝz + Ŝ2
z ) gives zero when

applied on the spin functions αα, αβ and βα. Only remains to determine the action

of the two ladder operators to check whether the determinants are eigenfunctions

of Ŝ2

Ŝ+ Ŝ−|ϕ1ϕ2| = ϕ1ϕ2 − ϕ2ϕ1√
2

(ŝ+(1) + ŝ+(2))(ŝ−(1) + ŝ−(2))(αα)

= ϕ1ϕ2 − ϕ2ϕ1√
2

(ŝ+(1) + ŝ+(2))(βα + αβ)

= ϕ1ϕ2 − ϕ2ϕ1√
2

(αα + αα) = 2 · ϕ1ϕ2 − ϕ2ϕ1√
2

= 2|ϕ1ϕ2| (1.26)

Ŝ+ Ŝ−|ϕ1ϕ2| = ϕ1ϕ2√
2

(ŝ+(1) + ŝ+(2))(ŝ−(1) + ŝ−(2))(αβ)

− ϕ2ϕ1√
2

(ŝ+(1) + ŝ+(2))(ŝ−(1) + ŝ−(2))(βα)

= ϕ1ϕ2√
2

(ŝ+(1) + ŝ+(2))(ββ) − ϕ2ϕ1√
2

(ŝ+(1) + ŝ+(2))(ββ)

= ϕ1ϕ2√
2

(αβ + βα) − ϕ2ϕ1√
2

(αβ + βα) = |ϕ1ϕ2| + |ϕ1ϕ2|

�= S(S + 1)|ϕ1ϕ2| (1.27)

Hence, the single Slater determinant |ϕ1ϕ2| is a proper spin eigenfunction, while

|ϕ1ϕ2| is not. In general, linear combinations of Slater determinants are necessary to

ensure that the wave function is an eigenfunction of Ŝ2.

In the following, three strategies will be illustrated to construct spin eigenfunctions

from scratch based on (i) projection techniques to eliminate the contributions of

unwanted spin eigenfunctions, (ii) diagonalization of the matrix representation of

Ŝ2, and (iii) the genealogical construction of spin functions in which spins are added

one-by-one.

In the above demonstrations we have first developed the Slater determinants and

then applied the spin operators. This strategy becomes of course very laborious for

functions with more than two electrons. It should however be noted that it is not

necessary to work with the fully expanded determinants, one gets the same results

when working with the product of the diagonal elements.

1.5 Apply the total spin operator on Φ1 = |ϕ1ϕ1| and Φ2 = {|ϕ1ϕ2| +
|ϕ1ϕ2|}/

√
2 and check that the same result is obtained when the determinants

are fully expanded.
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1.2.1 Many Electron Spin Functions by Projection

In general the spin eigenfunction of a 2S + 1 spin multiplet is a linear combination

of N -electron Slater determinants that all have the same MS quantum number

2S+1Ψ =
∑

L

cLΦL (1.28)

with ŜzΦL = MSΦL for all L . If {Ψi } is a complete set of M eigenfunctions of

Ŝ2 with the same MS , i.e. Ŝ2Ψi = Si (Si + 1)Ψi and ŜzΨi = MSΨi for i = 1, M ,

then any of the determinants ΦL can be written as a linear combination of these

spin eigenfunctions. In other words, any determinant ΦL can be seen as a linear

combination of different spin eigenfunctions Ψi and to obtain the expression of a

proper spin eigenfunction one should eliminate all the undesired terms from the

sum. A natural way to proceed is to apply projection techniques. Since the spin

eigenvalue of Ψi is equal to Si (Si + 1), the operator

P̂e
L =

[
Ŝ2 − SL(SL + 1)

]
(1.29)

eliminates the L-component from the determinant Φ. Hence the subsequent applica-

tion of P̂e
i , P̂e

j , . . . P̂e
M (except P̂e

k ) preserves the k-component and leads to 2Sk+1Ψk .

This procedure is illustrated in Fig. 1.1 for a trivial example of a vector with two

components. After projecting the vector on the x-axis, one subtracts this projection

from the total vector to obtain the y-component.

The general expression of the operator to obtain spin eigenfunction Ψk from a

determinant ΦL is

P̂k =
M∏

l �=k

P̂e
l =

M∏

l �=k

[
Ŝ2 − Sl(Sl + 1)

]
(1.30)

Fig. 1.1 Illustration of the projection method to eliminate undesired components of a vector. Left

a is projected on the x-axis; Middle the projection (P̂x a) is subtracted from a; Right The result of

the operation is the y-component of a
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These expressions produce projections that are not necessarily normalized to one, but

this can easily be done at the end of the process. The procedure is most conveniently

illustrated by deriving the singlet and triplet open-shell spin eigenfunctions with

MS = 0 for a two-electron in two-orbitals case. In the notation of Eq. 1.15 the two

determinants are

Φ1 = |ϕ1ϕ1ϕ2ϕ2 . . . ϕaϕb| = |ab|
Φ2 = |ϕ1ϕ1ϕ2ϕ2 . . . ϕaϕb| = |ab| (1.31)

There are two possible spin eigenfunctions, singlet and triplet, with S equal to 0 and

1, respectively. The projection operators are directly obtained from Eq. 1.30

P̂0 = Ŝ2 − 2 P̂1 = Ŝ2 − 0 (1.32)

The result of applying Ŝ2 on Φ1 is given in Eq. 1.27, and hence, the projection

operators give

P̂0|ab| = (Ŝ2 − 2)|ab| = |ab| + |ab| − 2|ab| = |ab| − |ab| (1.33a)

P̂1|ab| = (Ŝ2 − 0)|ab| = |ab| + |ab| (1.33b)

The functions have to be multiplied by 1√
2

to obtain the properly normalized expres-

sions.

1.6 (a) Find the other two components of the triplet spin eigenfunctions by

applying the ladder operators on the MS = 0 component of the triplet function.

(b) Derive the singlet and triplet spin eigenfunctions by projection using Φ2

of Eq. 1.31.

1.2.2 Spin Functions by Diagonalization

One way to find the eigenvalues and eigenvectors of an operator is to diagonalize

the matrix representation of the operator in a complete basis. Therefore, a natural

alternative to the projection method is the process of diagonalizing the matrix rep-

resentation of the Ŝ2 operator. The basis of the matrix representation is formed by

the individual determinants. The resulting eigenvectors are the spin eigenfunctions

(linear combinations of these basis functions, the determinants) and the correspond-

ing eigenvalues indicate the spin of the eigenfunction. The method is straightforward

in its application but can require a substantial amount of analytical work since all

matrix elements of Ŝ2 are needed, which can become rather cumbersome for systems

with an elevated number of unpaired electrons. The method is illustrated for a system
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with three electrons in three distinct orbitals. The basis set spanned in the MS = 1
2

space contains three determinants

Φ1 = |abc| Φ2 = |abc| Φ3 = |abc| (1.34)

The matrix representation of Ŝ2 can be constructed by analyzing the effect of Ŝ+ Ŝ−,

Ŝz and Ŝ2
z (cf. Eq. 1.21) on the three basis functions.

Ŝ+ Ŝ−|abc| = Ŝ+ (
|abc| + |abc| + 0

)
= |abc| + |abc| + |abc| + |abc| (1.35a)

Ŝz |abc| =
(

1

2
+ 1

2
− 1

2

)
|abc| = 1

2
|abc| (1.35b)

Ŝ2
z |abc| = 1

4
|abc| (1.35c)

The other two determinants give analogous results and from this we evaluate the

action of Ŝ2 on the three basis functions:

Ŝ2|abc| = 7/4 |abc| + |abc| + |abc| (1.36a)

Ŝ2|abc| = |abc| + 7/4 |abc| + |abc| (1.36b)

Ŝ2|abc| = |abc| + |abc| + 7/4 |abc| (1.36c)

which leads to the following matrix representation of Ŝ2

|abc〉 |abc〉 |abc〉

〈abc| 7
4

1 1

〈abc| 1 7
4

1

〈abc| 1 1 7
4

(1.37)

As can be seen, the matrix has non-zero off diagonal matrix elements showing that

the basis set of determinants is not a basis of eigenfunctions of the Ŝ2 operator. From

here, the search for spin eigenfunctions follows standard diagonalization schemes.

First, the eigenvalues are determined by finding the x-values for which the secular

determinant is zero ∣∣∣∣∣∣

7
4

− x 1 1

1 7
4

− x 1

1 1 7
4

− x

∣∣∣∣∣∣
= 0 (1.38)

This gives x1, x2 = 3
4

and x3 = 15
4

, corresponding to two doublet functions

( 1
2
( 1

2
+ 1) = 3

4
) and one quartet function ( 3

2
( 3

2
+ 1) = 15

4
). The corresponding

eigenvectors are determined by substituting the respective x-values in the secular

equations.



12 1 Basic Concepts

⎛
⎝

7
4

1 1

1 7
4

1

1 1 7
4

⎞
⎠

⎛
⎝

c1

c2

c3

⎞
⎠ = x

⎛
⎝

c1

c2

c3

⎞
⎠ (1.39)

This gives c1 = c2 = c3 = 1√
3

for x = 15
4

, where the normalization condition is

used to determine the numerical value. The quartet spin function with MS = 1
2

is

given by

4Ψ = 1√
3

(
|abc| + |abc| + |abc|

)
(1.40)

1.7 Find the MS = − 1
2
,± 3

2
components of the quartet function with the

ladder operators.

The situation for the doublet functions is more complicated. The resulting equa-

tions for the coefficients are linear dependent (c2 + c3 = −c1; c1 + c3 = −c2;

c1 +c2 = −c3) and no unique solution can be determined. This is expected since the

two functions have the same eigenvalues of Ŝ2 and any linear combination of the two

doublet functions is also an eigenfunction. In some cases the spatial symmetry of

the system imposes extra restrictions on the coefficients such that a unique solution

emerges. For instance, in a system with inversion symmetry and center b located on

the inversion center, c1 must be equal to ±c3 and the following two doublet functions

fulfil spatial and spin symmetry conditions.

2ΨA = 1√
2

(|abc| − |abc|) (1.41a)

2ΨB = 1√
6

(
2|abc| − |abc| − |abc|

)
(1.41b)

1.8 (a) Check that the two doublets are orthogonal. (b) Check that the expec-

tation value of Ŝ2 for 2ΨA is 3/4.

1.2.3 Genealogical Approach

The third method to obtain spin eigenfunctions is based on a stepwise generation

of the N -electron spin eigenfunction through a one-by-one addition of one-electron

spin functions to a known spin eigenfunction. This genealogical way of constructing



1.2 Generation of Many Electron Spin Functions 13

Fig. 1.2 Model system with four unpaired electrons on three centers (top). The two electrons on

center 1 are coupled to a triplet state as stated by Hund’s rule. Singlet coupling on center 1 leads

to states that are much higher in energy and not directly relevant for the magnetic interactions. The

lower part shows the system with four electrons on two centers

spin eigenfunctions is described in great detail by Pauncz [1, 2] and we refer to

these books for further reading. Here, we will describe the main characteristics of

the method and illustrate it with a system with four unpaired electrons localized on

two or three magnetic centers as shown in Fig. 1.2.

The starting point of the method is the one electron spin function α with S = 1
2

to which a second electron spin can be added to give an S = 1 spin function

or subtracted, resulting in an S = 0 function. Subsequently more electron spins

can be added or subtracted until the desired number of spins are described in the

spin eigenfunctions. The use of Clebsch–Gordon coefficients ensures that linear

combinations of determinants are produced that are eigenfunctions of Ŝ2 at each stage

of the procedure. An advantage of this method is that one can specifically construct

a certain spin eigenfunction among all possible with the required spin couplings

between the electrons. This is best illustrated in the branching diagram shown in

Fig. 1.3, which represents the different routes that can be taken to construct a spin

function with a given S-value (on the y-axis) for a certain number of electrons (on

the x-axis). The way up along the branching diagram represents adding an electron

spin (increasing S by 1
2

) and going downwards indicates that an electron spin is

subtracted, that is, S is diminished from S to S − 1
2

. The number in the circles

gives the number of different routes that can be taken to arrive at that point. For

instance, there are two ways to construct a singlet spin function with four electrons,

three different triplet functions and one quintet. The branching diagrams allows us to

choose one specific path to reach the desired spin function. This can be very useful,

for example, to impose high spin coupling between unpaired electrons on the same

magnetic center to fulfill Hund’s rule.

The formulas for adding and subtracting an electron spin look somewhat awkward

but are rather simple in their application. Moreover, the method is very well suited

for translation into a computer program. Adding a spin is done with
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Fig. 1.3 Branching diagram
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Ψ (N , S, MS) =
[
(S + MS)

1
2 Ψ (N − 1, S − 1

2
, MS − 1

2
)α(N )

+ (S − MS)
1
2 Ψ (N − 1, S − 1

2
, MS + 1

2
)β(N )

]

× (2S)−
1
2 (1.42)

and the subtraction of a spin requires

Ψ (N , S, MS) =
[
−(S − MS + 1)

1
2 Ψ (N − 1, S + 1

2
, MS − 1

2
)α(N )

+ (S + MS + 1)
1
2 Ψ (N − 1, S + 1

2
, MS + 1

2
)β(N )

]

× (2S + 2)−
1
2 (1.43)

The first example that will be discussed concerns the generation of the spin eigen-

functions relevant for the magnetic interactions in a system with three magnetic

centers and four unpaired electrons, see Fig. 1.2 (top). Two of these four electrons

are localized on the same center and coupled to a local triplet state. Hund’s rule tells

us that the singlet coupling of these two electrons gives rise to an electronic con-

figuration that is much higher in energy and not directly relevant for the magnetic

interactions as will be discussed in Chap. 2. Starting by assigning α to electron 1, the

pathway marked in the first diagram of Fig. 1.4 shows that adding a second electron

spin provides us the required triplet spin eigenfunction for the two electrons on the

http://dx.doi.org/10.1007/978-3-319-22951-5_2
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Fig. 1.4 Paths to generate spin eigenfunctions with 2 (left), 3 (middle) and 4 (right) electrons under

the restriction of triplet coupling of electrons 1 and 2

same magnetic center. The downwards path leads to singlet coupling and is ruled out

for this example. Equation 1.42 is applied with N = 2, S = 1 and MS = 1.

Ψ (2, 1, 1) =
[
(1 + 1)

1
2 α(1)α(2) + (1 − 1)

1
2 · 0 · β(2)

]
(2 · 1)−

1
2 = αα (1.44)

The third electron spin, localized on the second magnetic center can be coupled

parallel or anti-parallel to this triplet, giving a quartet (S = 3
2

) or doublet (S = 1
2

)

function, as shown in the middle diagram of Fig. 1.4. The quartet function is obtained

from Eq. 1.42 with N = 3, S = 3
2

and MS = 3
2

.

Ψ (3, 3/2 , 3/2 ) =
[
(3/2 + 3/2 )

1/2 α(1)α(2)α(3) + (3/2 − 3/2 )
1/2 · 0 · β(3)

]

× (2 · 3/2 )−
1
2 = ααα (1.45)

On the other hand, the doublet spin function is generated with Eq. 1.43 with N = 3,

S = 1
2

and MS = 1
2

; and Ψ (N − 1, S + 1/2 , MS − 1/2 ) is obtained by applying the

Ŝ− operator to Ψ (2, 1, 1) given in Eq. 1.44:

Ψ (3, 1/2 , 1/2 ) =
[
− (1/2 − 1/2 + 1)

1/2
1√
2
[α(1)β(2) + β(1)α(2)]α(3)

+ (1/2 + 1/2 + 1)
1/2 α(1)α(2)β(3)

]
(2 · 1/2 + 2)−

1/2

= 1√
6
(2ααβ − αβα − βαα) (1.46)

The incorporation of the fourth electron spin can be done in four different ways.

Ψ (3, 3/2 , 3/2 ) creates a quintet and a triplet state, while Ψ (3, 1/2 , 1/2 ) leads to a

second triplet and a singlet state, as illustrated in the right diagram of Fig. 1.4.
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Ψ (4, 2, 2) =
[
(2 + 2)

1
2 α(1)α(2)α(3)α(4) + (2 − 2)

1
2 · 0 · β(4)

]
(2 · 2)−

1
2

= αααα (1.47)

To generate the triplet function by subtraction, we need the expression of

Ψ (3, 3/2 , 1/2 ), which can be obtained by operating on Ψ (3, 3/2 , 3/2 ) with the Ŝ−

operator.

Ψ (4, 1, 1) =
[
−(2 − 2 + 1)

1
2

1√
3

[β(1)α(2)α(3) + α(1)β(2)α(3)

+ α(1)α(2)β(3)] α(4) + (1 + 1 + 1)
1
2 α(1)α(2)α(3)β(4)

]
(2 · 1 + 2)−

1
2

= 1

2
√

3
(3αααβ − βααα − αβαα − ααβα) (1.48)

The generation of the second triplet function from the doublet state by addition gives

Ψ ′(4, 1, 1) =
[
(1 + 1)

1
2

1√
6
[2α(1)α(2)β(3) − α(1)β(2)α(3)

− β(1)α(2)α(3)]α(4) + (1 − 1)
1
2 · 0 · β(4)

]
(2 · 1)−

1
2

= 1√
6
(2ααβα − αβαα − βααα) (1.49)

Note that Ψ (4, 1, 1) and Ψ ′(4, 1, 1) are degenerate with respect to the Ŝ2 opera-

tor, and therefore any linear combination of these two functions is equally valid.

In analogy to the discussion for the doublet states in the previous section, the spa-

tial symmetry can impose extra conditions on the values of the coefficients of the

determinants. If the second and third magnetic center are symmetry equivalent, the

interchange of the coordinates of electron 3 and 4 should leave the wave function

unaltered, except for a possible sign change. This is obviously not the case for the here

generated spin functions, but the linear combinations Ψ (4, 1, 1) + 2√
2
Ψ ′(4, 1, 1)

and Ψ (4, 1, 1) − 1√
2
Ψ ′(4, 1, 1) give

Ψ̃ (4, 1, 1) = 1√
2
(αααβ − ααβα)

= 1√
2

[αα(αβ − βα)] (1.50a)

Ψ̃ ′(4, 1, 1) = 1

2
(αααβ + ααβα − αβαα − βααα)

= 1

2
[αα(αβ + βα) − (αβ + βα)αα] (1.50b)
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which are (anti-)symmetric under the permutation of electron 3 and 4. Furthermore,

these two linear combinations clearly reveal the triplet coupling of electron 1 and 2,

and the singlet (Ψ̃ ) or triplet coupling (Ψ̃ ′) for electron 3 and 4.

Remains to evaluate the function generated by the incorporation of the fourth

electron spin by subtraction from the three-electron doublet function. This gives

a singlet spin function characterized by the triplet coupling of electron 1 and 2

(following Hund’s rule) and of electron 3 and 4. To apply Eq. 1.43, the Ψ (3, 1
2
,− 1

2
)

function has to be generated by acting with Ŝ− on Ψ (3, 1
2
, 1

2
).

Ψ (4, 0, 0) =
[

− (0 − 0 + 1)
1
2

1√
6
[−2β(1)β(2)α(3) + β(1)α(2)β(3)

+ α(1)β(2)β(3)]α(4) + (0 + 0 + 1)
1
2

1√
6
[2α(1)α(2)β(3)

− α(1)β(2)α(3) − β(1)α(2)α(3)]β(4)

]
(2 · 0 + 2)−

1
2

= 1

2
√

3
[2(ααββ + ββαα) − αβαβ − αββα − βααβ − βαβα]

= 1

2
√

3
[2(ααββ + ββαα) − (αβ + βα)(αβ + βα)] (1.51)

1.9 (a) Construct a branching diagram and mark the path to generate the

N = 4 triplet and singlet spin states with singlet coupling for electron 1 and

2. (b) Construct Ψ (2, 0, 0) with the genealogical approach.

Two-by-two additions: The process of generating spin functions by the genealogical

approach can be made a little less tedious by considering the incorporation of two

electrons at the same time. An additional advantage of doing so is that one better

controls the spin coupling of electron pairs. The triplet functions with four electrons,

Ψ (4, 1, 1) and Ψ ′(4, 1, 1) Eqs. 1.48 and 1.49 do have triplet coupling among electron

1 and 2, but turn out to be mixtures of singlet and triplet coupling for electrons 3 and 4.

Only after taking the correct linear combination, spin functions could be constructed

with clear-cut spin couplings of both electron pairs. This can be achieved directly

with the Serber variant of the genealogical approach [3, 4] illustrated in the branching

diagram of Fig. 1.5.

Starting with an N − 2-electron spin function of spin S′, singlet or triplet coupled

two-electron functions are added to obtain Ψ (N , S) with S = S′+1, S′ or S′−1. The

branching diagram shows that four different cases can be distinguished, for which

the following formulas need to be considered:

• case 1: Singlet incorporation (gray solid lines); S = S′

Ψ (N , S, MS) = Ψ (N − 2, S, MS)Φa (1.52)
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Fig. 1.5 Branching diagram

for two-by-two electron

incorporations. Gray solid

lines represent singlet

coupled additions. The other

lines represent triplet

additions with S = S′ − 1

(black dashed), S = S′ (gray

dashed) and S = S′ + 1

(black solid)
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• case 2: Triplet incorporation (black solid lines); S = S′ + 1

Ψ (N , S, MS) =
[
{(S + MS)(S + MS − 1)} 1

2 Ψ (N − 2, S − 1, MS − 1)Φb

+ {2(S + MS)(S − MS)} 1
2 Ψ (N − 2, S − 1, MS)Φc

+ {(S − MS)(S − MS − 1)} 1
2 Ψ (N − 2, S − 1, MS + 1)Φd

]

× [2S(2S − 1)]− 1
2 (1.53)

• case 3: Triplet incorporation (gray dashed lines); S = S′

Ψ (N , S, MS) =
[
−{(S + MS)(S − MS + 1)} 1

2 Ψ (N − 2, S, MS − 1)Φb

+
√

2MSΨ (N − 2, S, MS)Φc

+ {(S − MS)(S + MS + 1)} 1
2 Ψ (N − 2, S, MS + 1)Φd

]

× [2S(S + 1)]− 1
2 (1.54)
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• case 4: Triplet incorporation (black dashed lines): S = S′ − 1

Ψ (N , S, MS) =
[
{(S − MS + 2)(S − MS + 1)} 1

2 Ψ (N − 2, S + 1, MS − 1)Φb

− {2(S − MS + 1)(S + MS + 1)} 1
2 Ψ (N − 2, S + 1, MS)Φc

+ {(S + MS + 1)(S + MS + 2)} 1
2 Ψ (N − 2, S + 1, MS + 1)Φd

]

× [(2S + 2)(2S + 3)]− 1
2 (1.55)

with

Φa = 1√
2
[α(N − 1)β(N ) − β(N − 1)α(N )] (1.56a)

Φb =α(N − 1)α(N ) (1.56b)

Φc = 1√
2
[α(N − 1)β(N ) + β(N − 1)α(N )] (1.56c)

Φd =β(N − 1)β(N ) (1.56d)

The method is nicely illustrated for a system with two magnetic centers, both with

two unpaired electrons as shown in Fig. 1.2 (bottom). Hund’s rule dictates that the

electrons on each magnetic center are preferably coupled to a local triplet. Hence,

the starting point in the Serber diagram is Ψ (2, 1, 1) = α(1)α(2) and depending

on the route taken one obtains a quintet (black), a triplet (gray dashed) or a singlet

(black dashed) state. Equations 1.53 and 1.55 lead to the same expressions for the

quintet as singlet state as with the standard genealogical approach. In contrast, the

triplet state obtained from Eq. 1.54 is directly the correct expression and not a linear

combination of singlet and triplet coupling among electron 3 and 4 as before (see

Eqs. 1.48–1.50).

Ψ (4, 1, 0) =
[
−{(1 + 0)(1 − 0 + 1)} 1

2 β(1)β(2)α(3)α(4)

+
√

2 · 0 · 1√
2
[α(1)β(2) + β(1)α(2)] 1√

2
[α(3)β(4) + β(3)α(4)]

+ {(1 + 0)(1 + 0 + 1)} 1
2 α(1)α(2)β(3)β(4)

]
{2 · 1(1 + 1)}− 1

2

= 1√
2
[ααββ − ββαα] (1.57)

1.10 (a) Check that the expressions in Eqs. 1.50b and 1.57 are two different MS

components of the same triplet. (b) Construct Ψ (4, 1, 0) with singlet coupling

of electron 1 and 2 and triplet coupling for 3 and 4. Use the Serber variant of

the genealogical approach.
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1.2.4 Final Remarks

The examples given in the precedent paragraphs cover many real-world cases. The

two-electrons in two-orbitals case discussed in Sect. 1.2.1 is representative of all types

of CuII binuclear complexes or organic biradicals. It is important to remind that the

intuitive representation with an up and down spin often used to indicate the open-

shell singlet state in these cases (see Fig. 1.6) is not the most rigorous representation

of this quantum state and may lead to confusion. It corresponds to the |α(1)β(2)|
determinant and is actually a mixture of the MS = 0 components of singlet and

triplet functions.

Similar considerations hold for the three unpaired electrons case of Sect. 1.2.2.

While the three parallel electrons on the transition metal centers on the left side of

Fig. 1.7 give a satisfactory representation of the high-spin situation, i.e. the quartet

Fig. 1.6 Ball and stick representation of a Cu2(µ-N3)2 complex. The arrows on the CuII ions

(green) are indications of the spin moment of the unpaired electron in the Cu-3d orbitals

Fig. 1.7 Ball and stick representation of a Cu3(OH)3 complex (left) and an extended metal atom

chain (EMAC) made of three Cr2+ ions hold together by four tridentate organic ligands
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state, the up-down-up situation depicted on the right is not the doublet state but rather

a superposition of the doublet and quartet spin functions given in Eqs. 1.40 and 1.41.

1.11 Calculate the overlap of the quartet and doublet spin functions given in

Eqs. 1.40 and 1.41 with the |αβα| determinant.

1.3 Perturbation Theory

Many body perturbation theory is one of the fundamental tools in Quantum Chem-

istry. It takes a central place both in the calculation of accurate energies and wave

functions, and in the analysis of results for reaching a better understanding of the

sometimes complicated physics contained in the system. There are basically two

flavors of many-body perturbation theory. The first is what one calls the diagonalize-

and-then-perturb method, and the second one inverts this order, it follows a perturb-

and-then-diagonalize approach.

When one is only interested in a single state that is well separated from all the

others, for example a non-degenerate ground state, the distinction is not very rel-

evant. Using a proper zeroth-order wave function such as the one provided by the

Hartree–Fock approach, the effect of electron correlation can be estimated with any

standard perturbation scheme, being the Møller–Plesset implementation the most

common one.

However, it becomes a little more subtle when one wants to describe a collec-

tion of states of a quantum system that are close in energy, or when states with a

marked multiconfigurational character have to be described. The reference space is

now spanned by several Slater determinants that define a collection of electronic

states. Most approaches first diagonalize the reference space and then introduce

the effect of the external determinants with perturbation theory. In contrast, quasi-

degenerate perturbation theory (QDPT), first addresses the external determinants for

all the matrix elements among the reference determinants and then diagonalizes the

reference space to obtain the energies and wave functions of the states of interest.

1.3.1 Rayleigh–Schrödinger Perturbation Theory

There are only few systems for which the Schrödinger equation can be solved exactly.

Therefore, many schemes have been developed to obtain as accurate as possible

approximate solutions. The perturbative treatment is based on the partition of the

full Hamiltonian of the system in two parts.

Ĥ = Ĥ (0) + λV̂ (1.58)



22 1 Basic Concepts

The first term is the Hamiltonian of a model system with a complete set of known

(normalized) solutions

Ĥ (0)ψ
(0)
i = E

(0)
i ψ

(0)
i (1.59)

and V̂ is the perturbation operator, which perturbs the model system. The parameter λ

can be varied from zero (no perturbation) to one (complete Hamiltonian). In addition

to this splitting of the Hamiltonian, the energy and the wave function are expanded

in Taylor series writing the exact solutions as the sum of the model system solutions

and corrections in the first, second, third, and higher order of the perturbation

ψ0 = ψ
(0)
0 + λψ

(1)
0 + λ2ψ

(2)
0 + λ3ψ

(3)
0 + · · ·

E0 = E
(0)
0 + λE

(1)
0 + λ2 E

(2)
0 + λ3 E

(3)
0 + · · · (1.60)

where the subscript “0” makes reference to the ground state. The substitution of

Eqs. 1.58 and 1.60 in the Schrödinger equation of the full system leads to

(Ĥ (0) + λV̂ )

(
ψ

(0)
0 + λψ

(1)
0 + λ2ψ

(2)
0 + · · ·

)

=
(

E
(0)
0 + λE

(1)
0 + λ2 E

(2)
0 + · · ·

) (
ψ

(0)
0 + λψ

(1)
0 + λ2ψ

(2)
0 + · · ·

)
(1.61)

Since λ can in principle take any value between 0 and 1, this equation only has a

solution when the sum of the left-hand terms of a certain power of λ are equal to

the sum of the right-hand terms of the same power of λ. This permits us to split the

equation and group the terms by the power of λ

λ0 : Ĥ (0)ψ
(0)
0 = E

(0)
0 ψ

(0)
0 (1.62a)

λ1 : Ĥ (0)ψ
(1)
0 + V̂ ψ

(0)
0 = E

(0)
0 ψ

(1)
0 + E

(1)
0 ψ

(0)
0 (1.62b)

λ2 : Ĥ (0)ψ
(2)
0 + V̂ ψ

(1)
0 = E

(0)
0 ψ

(2)
0 + E

(1)
0 ψ

(1)
0 + E

(2)
0 ψ

(0)
0 (1.62c)

1.12 Write down the equation for the terms that are cubic in λ.

These equations can now be solved one-by-one to determine the different cor-

rections to E (0)and ψ (0) in order to approximate the solutions of the full system.

The equation that stems from the terms that are independent of λ defines the model

system and does not provide new information. The first-order correction to the energy

(E
(1)
0 ) can be determined from the equation with the linear λ terms. For that purpose
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we first multiply all terms with ψ
(0)
0

∗ and then integrate over the electron coordinates.

〈ψ (0)
0 |Ĥ (0)|ψ (1)

0 〉 + 〈ψ (0)
0 |V̂ |ψ (0)

0 〉 = E
(0)
0 〈ψ (0)

0 |ψ (1)
0 〉 + E

(1)
0 〈ψ (0)

0 |ψ (0)
0 〉 (1.63)

Since the zeroth-order wave function of the ground state is normalized, this equation

can be rewritten to

E
(1)
0 = 〈ψ (0)

0 |Ĥ (0)|ψ (1)
0 〉 + 〈ψ (0)

0 |V̂ |ψ (0)
0 〉 − E

(0)
0 〈ψ (0)

0 |ψ (1)
0 〉 (1.64)

The only unknown quantity on the right-hand-side of this equation is ψ
(1)
0 . There-

fore it is expanded as a linear combination of excited state wave functions of the

unperturbed system.

ψ
(1)
0 =

∑

i �=0

aiψ
(0)
i (1.65)

These wave functions of the excited states of the model system are all known and

together with ψ
(0)
0 they form a complete set of functions. The orthogonality to ψ

(0)
0

is ensured by excluding this term from the linear combination. The substitution of

the expansion in Eq. 1.64 leads to

E
(1)
0 =

∑

i �=0

〈ψ (0)
0 |Ĥ (0)|ψ (0)

i 〉 + 〈ψ (0)
0 |V̂ |ψ (0)

0 〉 −
∑

i �=0

E
(0)
0 〈ψ (0)

0 |ψ (0)
i 〉 (1.66)

By realizing that Ĥ (0)|ψ (0)
i 〉 = E

(0)
i |ψ (0)

i 〉, the orthogonality of the different eigen-

functions of the zeroth-order model makes that all right-hand-side terms are zero,

except the second one. Hence, the first-order correction to the energy is

E
(1)
0 = 〈ψ (0)

0 |V̂ |ψ (0)
0 〉, (1.67)

which corresponds to the expectation value of the perturbation operator for the unper-

turbed wave function. To determine the first-order corrected wave function, we need

to find the values of the expansion coefficients ai of Eq. 1.65. This can be done by

substituting the expansion in the equation linear in λ Eq. 1.62b and after multiplying

by ψ
(0)
k

∗ we integrate over the electron coordinates

∑

i �=0

ai 〈ψ (0)
k |Ĥ (0)|ψ (0)

i 〉 + 〈ψ (0)
k |V̂ |ψ (0)

0 〉

=
∑

i �=0

ai 〈ψ (0)
k |ψ (0)

i 〉E
(0)
0 + 〈ψ (0)

k |ψ (0)
0 〉E

(1)
0 (1.68)
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Taking into account the orthogonality of the zeroth-order eigenvectors, the only

non-zero terms in the summation are those when i = k and the equation simplifies to

ak E
(0)
k + 〈ψ (0)

k |V̂ |ψ (0)
0 〉 = ak E

(0)
0 + 0 (1.69)

from which ak and ψ (1) follow immediately

ak =
〈ψ (0)

k |V̂ |ψ (0)
0 〉

E
(0)
0 − E

(0)
k

ψ (1) =
∑

i �=0

〈ψ (0)
i |V̂ |ψ (0)

0 〉
E

(0)
0 − E

(0)
i

ψ
(0)
i (1.70)

The second-order correction to the energy is obtained from the quadratic equation

in λ Eq. 1.62c in a similar fashion as the first-order correction. First, we multiply the

equation by ψ
(0)
0

∗ and then we integrate over the electron coordinates

〈ψ (0)
0 |Ĥ (0)|ψ (2)

0 〉 + 〈ψ (0)
0 |V̂ |ψ (1)

0 〉
= E

(0)
0 〈ψ (0)

0 |ψ (2)
0 〉 + E

(1)
0 〈ψ (0)

0 |ψ (1)
0 〉 + E

(2)
0 〈ψ (0)

0 |ψ (0)
0 〉 (1.71)

Orthogonality causes the first and second term on the right-hand-side to be zero and

the substitution of ψ
(2)
0 by a linear combination of zeroth-order eigenfunctions leads

to the following equation

∑

j �=0

b j 〈ψ (0)
0 |Ĥ (0)|ψ (0)

j 〉 + 〈ψ (0)
0 |V̂ |ψ (1)

0 〉 = E
(2)
0 (1.72)

The first left-hand-side term is zero and after substituting Eq. 1.70, the second order

correction to the energy is obtained

E
(2)
0 =

∑

i �=0

〈ψ (0)
0 |V̂ |ψ (0)

i 〉〈ψ (0)
i |V̂ |ψ (0)

0 〉
E

(0)
0 − E

(0)
i

(1.73)

Higher order corrections can be derived in a similar way, but the expressions get

more complicated rapidly.

When excited state energies of the model system (E
(0)
i ) are close to E

(0)
0 , the

corresponding terms in the summations of ψ (1)and E (2)diverge, unless the matrix

elements of these terms are zero. In case of a degenerate ground state of the model

system, say E
(0)
0 = E

(0)
i = · · · = E

(0)
k , we can solve this problem by first diagonal-

izing the full Ĥ in the basis of ψ
(0)
0 , ψ

(0)
i , . . . , ψ

(0)
k . This yields linear combinations

of ψ
(0)
0 , ψ

(0)
i , . . . , ψ

(0)
k that are equally valid as zeroth-order wave functions while

the divergence problem is avoided since the diagonalization process made all non-

diagonal matrix elements equal to zero. Note that in case of near, but not strict
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degeneracy, this diagonalize-and-then-perturb procedure yields model wave func-

tions that are no longer eigenfunctions of Ĥ (0).

1.3.2 Møller–Plesset Perturbation Theory

As mentioned above, a common implementation of many-body perturbation theory

in quantum chemistry is based on the zeroth-order Hamiltonian proposed by Møller

and Plesset. When the Hartree–Fock wave function ΦHF is known, the zeroth-order

Hamiltonian can be defined as the sum of the Fock operators

Ĥ (0) =
N∑

i

f̂ (i) (1.74)

with N is the number of electrons and

f̂ (i) = ĥ(i) +
∑

k

(
Ĵk(i) − K̂k(i)

)
= ĥ(i) + ĝ(i) (1.75)

The perturbation operator corresponds to the difference of the instantaneous electron–

electron interaction operator and the mean-field electron–electron interaction of the

Hartree–Fock description

V̂ = Ĥ−Ĥ (0) =
∑

i

ĥ(i)+
∑

i

∑

j>i

1

ri j

−
∑

i

(
ĥ(i) + ĝ(i)

)
=

∑

i

∑

j>i

1

ri j

−
∑

i

ĝ(i)

(1.76)

The zeroth-order (known) solutions are defined by

Ĥ (0)Ψ
(0)
k = E

(0)
k Ψ

(0)
k (1.77)

with

Ψ
(0)
0 = ΦHF = |φ1φ2 . . . φ jφk . . . φN | E

(0)
0 =

∑

m

εm (1.78a)

Ψ
(0)
j = |φ1φ2 . . . φk . . . φN φa | = Φa

j E
(0)
j = E

(0)
0 − ε j + εa (1.78b)

Ψ
(0)
jk = |φ1φ2 . . . . . . φN φaφb| = Φab

jk E
(0)
jk = E

(0)
0 − ε j − εk + εa + εb

(1.78c)

The first order correction to the energy can be calculated with Eq. 1.67 and using the

Slater–Condon rules one arrives at the following expression
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E
(1)
0 = 〈Ψ (0)|V̂ |Ψ (0)〉 = 〈ΦHF|

∑

i

∑

i> j

1

ri j

|ΦHF〉 − 〈ΦHF| −
∑

i

ĝ(i)|ΦHF〉

= 1

2

∑

i

〈φi |
∑

j

Ĵ j − K̂ j |φi 〉 −
∑

i

〈φi |
∑

j

Ĵ j − K̂ j |φi 〉

= − 1

2

∑

i

〈φi |
∑

j

Ĵ j − K̂ j |φi 〉 (1.79)

This leads the following expression for the energy at first-order

E0 = E
(0)
0 + E

(1)
0 =

∑

i

εi − 1

2

∑

i

〈φi |
∑

j

Ĵ j − K̂ j |φi 〉 = EHF (1.80)

The first order correction to the wave function is

Ψ
(1)
0 =

∑

i �=0

〈Ψ (0)
i |V̂ |Ψ (0)

0 〉
E

(0)
0 − E

(0)
i

|Ψ (0)
i 〉 (1.81)

The numerator can be simplified by replacing V̂ by Ĥ − Ĥ (0)

〈Ψ (0)
i |V̂ |Ψ (0)

0 〉 = 〈Ψ (0)
i |Ĥ |Ψ (0)

0 〉 − 〈Ψ (0)
i |Ĥ (0)|Ψ (0)

0 〉
= 〈Ψ (0)

i |Ĥ |Ψ (0)
0 〉 − E

(0)
0 〈Ψ (0)

i |Ψ (0)
0 〉 = 〈Ψ (0)

i |Ĥ |Ψ (0)
0 〉 (1.82)

This last term is zero for determinants that arise from single excitations Eq. 1.78b

because of Brillouin’s theorem. It is also zero for determinants with more than two

electron replacements, and hence, only the double excitations Eq. 1.78c need to be

considered. This observation also serves to simplify the second-order correction to

the energy

E
(2)
0 =

∑

i �=0

〈Ψ (0)
0 |Ĥ |Ψ (0)

i 〉〈Ψ (0)
i |Ĥ |Ψ (0)

0 〉
E

(0)
0 − E

(0)
i

=
∑

a<b
i< j

〈Ψ (0)
0 |Ĥ |Φab

i j 〉〈Φab
i j |Ĥ |Ψ (0)

0 〉
εi + ε j − εa − εb

(1.83)

Again, only the doubly excited determinants have to be considered to calculate the

second-order correction to the energy. The expression for the third-order correction

to the energy is slightly more complicated but as most salient feature introduces the

effect of the interaction between excited determinants.
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E
(3)
0 =

∑

a<b
i< j

∑

c<d
k<l

〈Ψ (0)
0 |Ĥ |Φab

i j 〉〈Φab
i j |Ĥ |Φcd

kl 〉〈Φcd
kl |Ĥ |Ψ (0)

0 〉
(εi + ε j − εa − εb)(εk + εl − εc − εd)

− E
(1)
0

∑

a<b
i< j

|〈Ψ (0)
0 |Ĥ |Φab

i j 〉|2

(εi + ε j − εa − εb)2
(1.84)

1.3.3 Quasi-Degenerate Perturbation Theory

The second-order correction to the energy given in Eq. 1.83 diverges when the denom-

inator goes to zero, that is when the zeroth-order energy of excited Slater determinants

becomes close to E (0). Moreover, in such situations one is usually interested not only

in the lowest state, but in a number of low-lying nearly-degenerate states. In such

cases one should go beyond the single determinant description of the zeroth-order

problem and extend the reference with other low-energy determinants.

Let S be the collection of Slater determinants that span the Hilbert space of the

full Hamiltonian of a system. The complete space is divided in a model space S0 and

an external space S
′.

S = S0 + S
′ (1.85)

with S0 = {ΦI , ΦJ , . . .} and S
′ = {ΦR, ΦS, . . .}. The model space contains all the

determinants that significantly contribute to the (multiconfigurational) wave func-

tions of the lowest, nearly degenerate electronic states. In ordinary many-body per-

turbation theory, one would first diagonalize the full Hamiltonian in the subspace

S0 to construct the reference wave functions Ψ (0) and then include the effect of the

determinants of S
′ through the expressions of the second- (or higher-) order perturba-

tion theory in a state-by-state manner as schematically illustrated in Fig. 1.8. This is

the diagonalize-and-then-perturb approach. On the contrary, quasi-degenerate per-

turbation theory first takes into account the effect of the external determinants on the

interactions among the determinants of S0 and then diagonalizes the resulting matrix

to obtain the N -electron wave functions and energies of the states of interest. This

modification of the matrix elements of S0 is often called dressing or screening and

leads to an effective Hamiltonian that not only describes the bare coupling between

the determinants of the model space, but also the effects of electron correlation. The

expression for the effective Hamiltonian at the second-order of perturbation is

〈ΦI |Ĥ eff |ΦJ 〉 = 〈ΦI |Ĥ |ΦJ 〉 +
∑

R∈S′

〈ΦI |Ĥ |ΦR〉〈ΦR |Ĥ |ΦJ 〉
E

(0)
J − E

(0)
R

(1.86)
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Fig. 1.8 Schematic representation of the diagonalize-then-perturb approach (top) and perturb-then-

diagonalize (bottom) approaches. In the upper scheme, the model space is diagonalized and then

the effect of the external determinants is included state-by-state. In the lower scheme, all matrix

elements of the model space are perturbed and subsequently the model space is diagonalized

It is obvious from the denominator in the second term that the matrix will become

non-Hermitian when the zeroth-order energies of the determinants in S0 are not the

same. Therefore, this recipe only works for (nearly-)degenerate states. One advan-

tage of this ‘perturb-and-then-diagonalize’ approach is that the length of the wave

function expansion remains of the dimension of the model space, and hence, espe-

cially suitable for analysis purposes. Multideterminantal perturbation schemes that

follow the ‘diagonalize-and-then-perturb’ approach are described in Sect. 4.3.3.

1.4 Effective Hamiltonian Theory

The exact N -electron wave function can be thought of to be an infinite linear combi-

nation of Slater determinants built from an infinitely large orbital set. While such a

wave function is only a hypothetical object, lengthy wave function expansions can be

considered to be good approximations to the exact solution. Hence, they will provide

us with accurate energies and other observables of the system that can be extracted

from the wave function by calculating the expectation value of the corresponding

operator. However, such lengthy wave functions are often not easily understood

and the extraction of simple models with predictive and interpretative power is not

straightforward. Ideally, one would like to have a compact wave function with only

a small number of Slater determinants, without loosing the accuracy of the nearly

exact wave function.

Effective Hamiltonian theory establishes a connection between accuracy and inter-

pretation. It is used in many fields of chemistry and physics in different variants and

sometimes confused with model Hamiltonians. In the scope of this monograph, the

latter term is used for simple Hamiltonians that find their origin in physical/chemical

intuition, and hence, are phenomenological in nature. These model Hamiltonians

http://dx.doi.org/10.1007/978-3-319-22951-5_4
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have been put forward to interpret experimental measurements and capture the com-

plex physics of a system in simpler concepts. The parameters of the model are usually

determined by fitting the experimental data to analytical expressions derived from

the model Hamiltonian.

In the significance used here the effective Hamiltonian maps a lengthy, highly-

accurate wave function onto a much smaller subspace in such a way that the diagonal-

ization of the subspace gives exactly the same eigenvalues as those of the nearly exact

wave functions and the corresponding eigenvectors are projections of the original

wave functions. The dimension of the subspace is typically the same as the dimen-

sion of the space spanned by some widely used model Hamiltonian. In this way, a

one-to-one correspondence can be established between the ab initio calculations and

the model Hamiltonian. Hence, the effective Hamiltonian theory provides a rigorous

procedure to extract model parameters from accurate calculations.

Similar to what is done in QDPT, a model space S0 of dimension N is defined as a

subspace of the full Hilbert space S of dimension M . Remember that QDPT is used

to determine accurate wave functions and energies starting from a limited description

of the system based on the model space. However, in the present case, the accurate

energies and wave functions are already known and the action goes in the opposite

direction; the lengthy wave function of length M is mapped on the smaller subspace

S0 ensuring a minimum loss of the information contained in the full solution.

In the first place, the eigenfunctions of S (Ψk) have to be projected onto the model

space by applying the projection operator

P̂S0
=

N∑

i=1

|Φi 〉〈Φi | (1.87)

where Φi is the basis of the model space. Among the projected vectors Ψ̃k = P̂S0
Ψk ,

the N projections are selected that have the largest norm. These vectors are often

defined as the basis of the so-called target space ST and are used to construct the

effective Hamiltonian. However, the vectors Ψ̃k are in general not orthogonal. In the

original formulation of Bloch [5] the projections are transformed to their biorthogonal

form by

Ψ̃
†
k = S−1Ψ̃k (1.88)

with

〈Ψ̃k |Ψ̃ †
l 〉 = 〈Ψ̃ †

k |Ψ̃l〉 = δkl 〈Ψ̃k |Ψ̃l〉 = 〈Ψ̃ †
k |Ψ̃ †

l 〉 = Skl (1.89)

The effective Hamiltonian can now be expressed in its spectral decomposition

Ĥ eff =
∑

k∈ST

|Ψ̃k〉Ek〈Ψ̃ †
k | (1.90)

However, this definition leads to a non-Hermitian Hamiltonian, which may not be

the most optimal representation for interpretation. Therefore, one often adopts the
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orthogonalization of the projections proposed by des Cloizeaux, which involves the

S−1/2 overlap matrix [6]:

Ψ̃ ⊥
k = S−1/2 Ψ̃k (1.91)

This procedure produces orthogonal vectors and all elements of the target space are

affected in a similar degree. The effective Hamiltonian constructed with these vectors

is hermitian and reads

Ĥ eff =
∑

k∈ST

|Ψ̃ ⊥
k 〉Ek〈Ψ̃ ⊥

k | (1.92)

The third possibility for processing the projected vectors is the Gram-Schmidt orthog-

onalization, in which the projections are sequentially orthogonalized. Starting with

the normalization of Ψ̃1, the second vector is orthogonalized by projecting out the

component of vector 1. Then Ψ̃3 is orthogonalized on Ψ̃1 and Ψ̃2, and so on. This

means that the first vectors in the process are only slightly affected by the orthogonal-

ization, while the last one is completely determined by the orthogonality condition.

This loss of information—the coefficients of the projection of the last vector are not

used—may be advantageous when some roots, i.e. computed (approximate) wave-

functions, in the target space are (nearly) degenerate with other roots in the external

space. In such cases, the norm of the projection may be rather small and the informa-

tion hold in the projections is not always well-founded, since strong mixing may have

occurred with the states that are in the external space. The energy of these states can

be considered as reliable, mixing among (nearly) degenerate states does not affect

the energy.

In short, an effective Hamiltonian can be constructed from the following recipe.

• Choose a relevant model space of dimension N and write down the Slater deter-

minants that constitute the basis of this space. It may be handy to work out all the

matrix elements of the model Hamiltonian.

• Select the N eigenfunctions of the full Hilbert space (e.g. obtained in an ab initio

calculation) with the largest projection onto the model space. (Bi-)orthonormalize

the projections of these vectors and take the total energy of one of the roots as zero

of energy.

• Calculate the matrix elements 〈ΦI | Ĥ eff |ΦJ 〉 of the effective Hamiltonian using

the definition given in Eq. 1.90 or Eq. 1.92. One can check the procedure by diag-

onalizing the resulting matrix. This should give the same energies as found in the

ab initio calculation and the corresponding eigenvectors have to be identical to the

projections of these roots.

When the effective Hamiltonian is constructed from ab initio wave functions the

resulting matrix is numerical in nature. This matrix can be used to determine the val-

ues of the parameters of a phenomenological model Hamiltonian, but also to check

the validity of the model. In most cases the structure of the effective Hamiltonian

matrix coincides with the structure of the model Hamiltonian, but when significant

deviations are observed, it should not be discarded that important interactions are

missing in the model. For instance, when non-zero matrix elements appear in the
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effective Hamiltonian at places where the model Hamiltonian is zero, one should

revise the expression of the model Hamiltonian. This brings us to the second type

of effective Hamiltonians that falls under the scope of this monograph; the ana-

lytical effective Hamiltonian. The above sketched procedure to derive a numerical

Hamiltonian can also be used to map the analytical expressions of a precise, but com-

plicated model Hamiltonian onto a simpler one. In this way one can rigorously derive

new model Hamiltonians, for example when the comparison between a numerical

effective Hamiltonian and a simple model Hamiltonian fails.

Problems

1.1 Ordering by spatial or spin part. In the notation of multideterminantal wave

functions, one can either respect as much as possible the order of the spatial part in

the different determinants, or strictly maintain the order of the spin part. Construct

singlet and triplet functions for a two-electrons in two-orbitals case respecting (i) the

order of the spatial part and (ii) the order of the spin part of the total wave function.

1.2 Coulomb, exchange or other. Classify the following two-electron integrals as

Coulomb, exchange or other integral and assign a relative size (large, medium, or

small to the integrals:

(a) 〈φa(1)φb(2)| 1

r12
|φa(1)φb(2)〉 (b)

∫
φa(1)φb(1)φa(2)φb(2)

r12
dτ1dτ2

(c) 〈φa(1)φc(2)|1 − P̂12

r12
|φc(1)φa(2)〉 (d) 〈φb(1)φc(2)| 1

r12
|φc(1)φd(2)〉

(e)

∫
φa(1)φc(2)

1

r12
φc(1)φa(2)dτ1dτ2 (f)〈φb(1)φd(2)| P̂12

r12
|φd(1)φb(2)〉

φa and φb are centered on site A, φc and φd on site B.

1.3 Perturbation theory. The prototype particle in a box problem is perturbed by

a finite potential V0 of width γ centered at x = 1
2

L . Calculate the first-order energy

correction for the ground state, and the first and second excited states.

Reminder: ψ
(0)
n (x) =

√
2
L

sin nπx
L

and E
(0)
n = hn2

8mL2 , Assume that γ is small enough

to consider ψ (0)constant in the 1
2

L − 1
2
γ . . . 1

2
L + 1

2
γ interval.
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1.4 Effective Hamiltonians: The following (hypothetical) model Hamiltonian is

used to analyze a certain experimental observation

|Φ1〉 |Φ2〉 |Φ3〉
〈Φ1| 0

〈Φ2| µ ∆1

〈Φ3| γ (γ − 4µ)/2 ∆2

To get insight in the parameters of the model Hamiltonian an ab initio calculation

was performed giving the following multideterminantal wave functions Ψk and ener-

gies Ek .

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

Φ1 0.4804 0.8486 −0.0381 −0.2147 0.0387

Φ2 0.3203 0.3990 −0.1391 −0.7732 0.3480

Φ3 0.1601 0.0495 0.9468 0.0437 0.2714

Φ4 0.8006 0.3397 −0.1109 0.4293 −0.2167

Φ5 0.0000 0.0526 −0.2656 0.4122 0.8699

E −0.50 −0.38 −0.40 −0.36 −0.20

a. Determine the norm of the projections of Ψk on the model space.

b. Select the three roots with the largest norm and orthogonalize the projections Ψ̃k

c. Construct the 3 × 3 effective Hamiltonian and diagonalize the resulting matrix.

Are the eigenvalues of Ĥ eff equal to the eigenvalues of Ψk?

d. Determine the value of the model parameters. Is the model Hamiltonian consistent

with the ab initio result?
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Chapter 2

One Magnetic Center

Abstract This chapter discusses some of the magnetic phenomena that can be

observed in systems with a single paramagnetic center. After shortly reviewing the

basics of the magnetic moments of a free atom, we analyze the effect of spin-orbit

coupling and an external magnetic field on the MS levels of the ground state of larger

systems. In a step-by-step procedure, we will first derive the model Hamiltonian

to describe the magnetic anisotropy without external field, the so-called zero-field

splitting. Secondly, the role of the external field is explored and a relation is estab-

lished with the magnetic susceptibility, a macroscopic quantity. The chapter is closed

by discussing the model Hamiltonian that combines the zero-field splitting and the

anisotropy of the g-tensor to complete the description of the splitting of the MS levels

in systems with one, anisotropic, magnetic center.

2.1 Atomic Magnetic Moments

The two main sources for the magnetic moment of a free atom or molecule are the

electronic spin moment and the angular moment. The motion of electrons relative

to the nucleus in atoms with filled shells and in closed shell molecules leads to zero

spin moment and zero angular moment. Therefore, such atoms and molecules can

only have an induced magnetic moment when placed in an external magnetic field.

The simplest system with an intrinsic non-zero magnetic moment is an isolated

one-electron atom or ion, treating both particles as point charges and neglecting the

possible nuclear spin. The motion of the electron around the charged nucleus induces

a microscopic current that produces a microscopic magnetic field. This leads to a

so-called orbital magnetic moment which is proportional to the angular moment of

the electron. Taking z as our quantization axis, its z-component equals

mz = −μBml (2.1)

where ml is the magnetic quantum number of the electron: ml = −l,−l+1 . . . l−1, l.

The quantity μB = eh/4πme (1/2 in atomic units) is the elementary unit of magnetic

moment, called the Bohr magneton. Its value is 9.27 × 10−24 JT−1.
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34 2 One Magnetic Center

There is another contribution to the total magnetic moment of the electron in a

hydrogenic atom, this is due to the electron spin. From a classical viewpoint, this

contribution (the spin magnetic moment) is due to the rotation of the charged electron

around its axis. Its magnitude is given by

msz = −geμBms (2.2)

with ms = 1
2
,− 1

2
. The factor ge turns out to be equal to 2.002319314. This value

is slightly different from the value of 2 that might at first sight be expected from

the analogy with the orbital magnetic moment, showing that this classical approach

may be misleading. The difference with the value of 2 can be accounted for by

the theory of quantum electron dynamics. The spin-orbit interaction is a relativistic

effect, which appears in a natural way if we use Dirac’s instead of Schrödinger’s

equation of motion. We can also describe it in an approximate sense by adding to

the non-relativistic one-electron Hamiltonian a term that is proportional to the inner

product of the vector operators l̂ and ŝ

Ĥso = ξ(r)l̂ · ŝ (2.3)

The average of ξ(r) over r is written hcζ and ζ is called the spin-orbit constant. The

spin-orbit constant of a hydrogenic atom turns out to be strongly dependent on Z and

on the quantum numbers n and l of the electronic wave function

ζn,l = α2RZ4

n3l
(
l + 1

2

)
(l + 1)

(2.4)

where α is the fine-structure constant (∼1/137) and R is the Rydberg constant. The

non-relativistic one-electron Hamiltonian commutes with l̂2, ŝ2 and (taking z as the

quantization axes) with l̂z and ŝz. Clearly, when we add Ĥso to the Hamiltonian, the

Hamiltonian no longer commutes with these four operators and l, s, ml and ms are no

longer “good” quantum numbers. The only remaining quantum numbers are j (with

values l + 1
2

and l − 1
2

) and mj = ml + ms (with values j, j − 1, . . . − j).

2.1 Calculate ζn,l for the hydrogenic atoms H-2p1, Ca19+-3p1, Ca19+-3d1,

U91+-2p1, U91+-6d1 and U91+-5f 1.

2.2 The Eigenstates of Many-Electron Atoms

In many-electron atoms we have an analogous situation, be it that the electron-

electron interactions have to be included from the very beginning. We focus first on

free many-electron atoms or ions, i.e. atoms or ions in a zero or uniform external
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field, for the time being neglecting any spin-orbit coupling. The total orbital angular

moment operators L̂2, L̂z and the total spin angular moment operators Ŝ2 and Ŝz com-

mute with the Hamilton operator Ĥ where each electron moves in a field of spherical

symmetry due to the nucleus and the field due the other electrons. Therefore, the

eigenfunctions of Ĥ are in general also eigenfunctions of the other four operators.

Only in the case of degenerate eigenstates of Ĥ one may choose (or find) eigenfunc-

tions that are not simultaneously eigenfunctions of the other four operators. In that

case, however, the eigenfunctions of Ĥ may always be rotated within the degenerate

set to become also eigenfunctions of the other operators.

This implies that these eigenfunctions of Ĥ can be labelled using the quantum

numbers S, MS , L and ML . The energy eigenvalues only depend on the eigenvalues

of L̂2 and Ŝ2, and not on MS and ML . Therefore, the degenerate set of eigenfunctions

of the free-atom Hamiltonian corresponding to one eigenvalue of L̂2 and Ŝ2 can be

labelled by their values for L and S. It has become customary to use as labels not the

spin moment S and orbital moment L but rather the spin multiplicity 2S + 1 and L,

in the notation 2S+1L, where a spectroscopic notation S, P, D, F, G, . . . is used for

L = 0, 1, 2, 3, 4, . . . The degenerate set of (2S + 1) × (2L + 1) eigenfunctions of
2S+1L is commonly called an LS term. Examples of free atom (ion) LS terms are 1S,
2P, 4F, . . .

Since there is a one-to-one correspondence of the different L eigenvalues with the

irreducible representations (IR) of the spherical symmetry group SO(3), the labels

of the LS terms are simultaneously symmetry labels. Note that the angular moment

operators L̂x , L̂y, L̂z transform as the rotation operators R̂x , R̂y, R̂z, i.e. as P [1]. The

behavior of atoms and ions, free and in compounds, depends for a large part on the

ground term and the lowest excited terms. The symmetry of these lowest LS terms

and the ordering of their energies can in general be well deduced using a simple one

configuration model.

So far we have not considered any relativistic effects for the atoms. In particu-

lar, spin appears in the wave function but not in the non-relativistic Hamiltonian.

Traditionally, spin is introduced ad hoc to explain the splitting of a beam of silver

atoms into two parts in the famous experiment of Stern and Gerlach in 1922. A sim-

ilar splitting was observed for a beam of hydrogen atoms in a later experiment. The

splitting indicates the presence of an angular moment, but it cannot be an orbital

angular moment since both atoms have an L = 0 ground state. Therefore, the spin

property introduced to explain the splitting is considered to reflect an intrinsic angu-

lar moment s, which for electrons must be 1/2, and hence it is concluded that each

electron has an additional quantum number s = 1/2, with a z-component sz of either

+1/2 or −1/2. The individual spin angular moments of the electrons in an atom can

be coupled together to give a total spin angular moment S, analogous to the coupling

of the individual orbital angular moments l to a total angular moment L. Since there

is no spin operator in the Hamiltonian, there is also no coupling between spin and

orbital angular moment.
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The relativistic Hamilton operator for an electron can be derived, using the cor-

respondence principle, from its relativistic classical Hamiltonian and this leads to

the one-electron Dirac equation, which does contain spin operators. From the one-

electron Dirac equation it seems trivial to define a many-electron relativistic equa-

tion, but the generalization to more electrons is less straightforward than in the

non-relativistic case, because the electron-electron interaction is not unambiguously

defined. The non-relativistic Coulomb interaction is often used as a reasonable first

approximation. The relativistic treatment of atoms and molecules based on the many-

electron Dirac equation leads to so-called four-component methods. The name stems

from the fact that the electronic wave functions consist of four instead of two compo-

nents. When the couplings between spin and orbital angular moment are comparable

to the electron-electron interactions this is the preferred way to explain the electronic

structure of the lowest states.

In most cases, however, the relativistic effects are rather weak and may be sepa-

rated into spin-orbit coupling effects and scalar effects. The latter lead to compression

and/or expansion of electron shells and can rather accurately be treated by modify-

ing the one-electron part of the non-relativistic many-electron Hamiltonian. With this

scalar-relativistic Hamiltonian the (modified) energies and wave functions are com-

puted and subsequently an effective spin-orbit part ĤSO is added to the Hamiltonian.

The effects of the spin-orbit term on the energies and wave functions are commonly

estimated using second-order perturbation theory. More information for the inter-

ested reader can be found in excellent textbooks on relativistic quantum chemistry

[2, 3].

The standard way to include relativistic angular moment couplings in the notation

of eigenvalues and eigenfunctions of the thus obtained energies and wave functions is

the so-called Russell–Saunders coupling scheme. It is adequate if the spin-orbit cou-

pling is considered to be weak compared to the electron-electron interactions. For a

free atom or ion the Russell–Saunders scheme implies that the one-electron moments

l and s are first coupled to a many-electron angular moment L and spin moment S,

which are subsequently coupled to a total angular moment J . Due to the spin-orbit

coupling the wave functions are no longer eigenfunctions of the L̂ and Ŝ operators

(L and S are no longer “good quantum numbers”) but only of the Ĵ operator and the

degeneracy of the states belonging to one LS term is partly removed. Only the states

corresponding to a particular J eigenvalue are degenerate, but nevertheless the states

of one LS term are close in energy. Such a set of nearly-degenerate states originating

from one LS term is called a Russell–Saunders (RS) term and commonly denoted

by a Russell-Saunders term symbol 2S+1LJ . For example, the lowest energy RS term

of an atom with a single valence p-electron is 2P1/2, with the RS term 2P3/2 having

a slightly higher energy. The 2P1/2 term is two-fold degenerate (MJ = 1/2,−1/2)

while the 2P3/2 term is four-fold degenerate (MJ = 3/2, 1/2,−1/2,−3/2).
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2.2 Give the Rusell–Saunders term symbol for the ground state of an atom

with three electrons in the 2p orbitals.

In cases where the spin-orbit coupling is strong compared to the electron-electron

interactions it is more reasonable to account for the spin-orbit coupling by using

the so-called j-j coupling scheme. Here the orbital moment l and the spin s of each

electron are coupled to give an individual angular moment for each electron. The

individual j for each electron are then coupled to give a total angular moment J .

Modern relativistic many-electron quantum mechanical computational treatments

are able to treat the entire range of angular moment couplings, from negligible to

dominant spin-orbit coupling. The results can be expressed in either terms of Russell-

Saunders states or in j-j coupled states, whatever representation gives better insight.

For core-excited states where the core spin-orbit coupling is much larger than the

valence spin-orbit coupling, a mixed notation is sometimes used, in which the open

core shell is j-j coupled and the open valence shell is Russell–Saunders coupled.

The many-electron states of an atom in a crystal field or a molecule can obviously

not be labelled by the IRs of SO(3), since the Hamilton operator, the angular moment

operator and therefore also the many-electron wave functions transform according

to the IRs of a less symmetric point group. The lower symmetry may also remove

the degeneracies of the LS terms. For example, the 2P ground term of a boron atom

becomes 2T1u in an octahedral crystal field so that the three fold degeneracy is

retained, but splits into two LS terms of 2E and 2A1 symmetry when the crystal field

symmetry is lowered to C3v.

Orbital moment quenching: The eigenfunctions of the angular moment operator

l̂2 are the spherical harmonics, characterized by the quantum numbers l and m.

l̂2Yl,m = l(l + 1)Yl,m (2.5)

where � is put to 1. On the other hand, these functions cannot be eigenfunctions simul-

taneously of the three components l̂x,y,z, because these operators do not commute.

Choosing z to be the quantization axis gives

l̂zYl,m = mYl,m

l̂xYl,m = 1

2

√
(l − m)(l + m + 1)Yl,m+1 + 1

2

√
(l − m + 1)(l + m)Yl,m−1

l̂yYl,m = 1

2i

√
(l − m)(l + m + 1)Yl,m+1 − 1

2i

√
(l − m + 1)(l + m)Yl,m−1

(2.6)

In general the spherical harmonics Yl,m are complex functions, but linear combination

can be made such that the eigenfunctions of l̂2 become real. For example for the

spherical harmonics with l = 1 of a p1 electronic configuration:
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px = 1√
2

[
−Y1,1 + Y1,−1

]
py = +i√

2

[
Y1,1 + Y1,−1

]
pz = Y1,0 (2.7)

The first two functions are no longer eigenfunctions of l̂z , because linear combinations

are made of functions with different m quantum number. The action of the l̂x,y,z on

these functions is worked out for one case and then summarized in Eq. 2.9.

l̂zpx = 1√
2

l̂z
[
−Y1,1 + Y1,−1

]
= 1√

2

[
−Y1,1 − Y1,−1

]
= ipy (2.8)

ψ l̂x|ψ〉 l̂y|ψ〉 l̂z|ψ〉

px 0 −ipz ipy

py ipz 0 −ipx

pz −ipy ipx 0

(2.9)

The matrix elements of l̂ = l̂x + l̂y + l̂z in the basis of the px,y,z functions are easily

obtained
〈l̂〉 px py pz

px 0 −i i

py i 0 −i

pz −i i 0

(2.10)

and the subsequent diagonalization results in two non-zero expectation values of

〈l̂〉. In analogy to the spin operators the N-electron angular moment operators

L̂ are obtained by summing over the corresponding one-electron operators. The

N-electron eigenfunctions are products of the one-electron spherical harmonics Yl,m.

Notice that the orbital moment of the p5 electron configuration can be treated as if it

were a one-electron system because of the hole-electron analogy.

2.3 Confirm that 〈px|l̂z|py〉 = −〈py|l̂z|px〉 = −i.

The situation changes drastically when an external potential removes the degener-

acy of the three functions. This can be caused by the crystal field exerted by the ions

in an extended lattice for solid state compounds or by the ligands in the coordination

sphere of an ion in a coordination complex. Although magnetic phenomena are more

common for systems with incomplete d-shells, we will continue with our example

concerning the p1 configuration for simplicity. Imagine an external potential that

makes, for example, the state with one electron in the px orbital lowest in energy

and places the other two orbitals at slightly higher energy. Then, the orbital angular

moment of the ground state is defined from the matrix element 〈px|l̂|px〉 only, which

is zero as can be seen in the matrix 2.10. In many physics textbooks, this effect is
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called orbital angular moment quenching. On the other hand, if the external potential

destabilizes px with respect to py,z, the orbital angular moment of the p1 electronic

configuration is defined by the lower-right 2×2 sub-block of matrix 2.10 and results

in non-zero expectation values. Now, the orbital angular moment is not quenched.

The general condition for non-zero orbital angular moment for a given Russell-

Saunders term 2S+1Γ is that the direct product Γ ×Γ contains irreducible represen-

tations of the orbital moment operators L̂x,y,z. Since these operators have identical

transformation properties as the rotation operator R̂x,y,z (which is usually listed in

the character tables of the symmetry point groups), it is easier to work with the rota-

tion operator. For example, the ground state of the d1 electronic configuration in an

octahedral surrounding is 2T2g. The rotation operator transforms as T1g in the Oh

point group. Since the direct product T2g × T2g = A1g + Eg + T1g + T2g contains

the irreducible representation of the rotation operator, one expects a non-zero orbital

angular moment for this system. Note, however, that the d1 electronic configuration

is Jahn-Teller active and the geometry spontaneously distorts to a lower symmetry

group accompanied by a (partial) quenching of the orbital angular moment.

2.4 Predict the (non-)existence of a net orbital angular moment for the high-

spin d2 electronic configuration in complexes with tetrahedral, octahedral and

C2v symmetry.

2.3 Further Removal of the Degeneracy of the N-electron

States

The first two columns of Fig. 2.1 show how the free atom levels of a d7 configuration

are split by a distorted tetrahedral ligand-field. In this example, the states are labeled

by the IR’s of the D2d subgroup of Td and the 4F (with a degeneracy of (2S + 1) ×
(2L + 1) = 4 × 7 = 28) is split in five energy levels. Based on the discussion in

the previous section, one only expects a non-zero orbital moment for the 4E states.

The inset of the figure zooms in on the levels of the 4B1 state and shows how the

degeneracy is removed under the influence of spin-orbit coupling and when the

system is placed in an external magnetic field. In the following two subsections we

will discuss these two effects.

2.3.1 Zero Field Splitting

In 3d transition metal complexes, the splitting of the Russell–Saunders terms due to

spin-orbit coupling is in general more important than the one caused by the external

magnetic field typically used in EPR experiments. Therefore, the description of the
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Fig. 2.1 Removal of the degeneracy of the energy levels of the d7 manifold (first column) in a

distorted tetrahedral ligand-field (second column), under the influence of spin-orbit coupling (first

column of the inset) and in an external magnetic field (inset, second column). Only the lower states

are shown in the figure. The labelling in the first two columns is 2S+1Γ , where Γ is the irreducible

representation of the many-electron wave function. The labelling in the inset is |J, MJ 〉

energy levels in these systems starts in general by addressing the zero field situation.

In the absence of an external field and assuming a quenched orbital angular moment,

the effect of spin-orbit coupling on the levels of the ground state can be qualitatively

analysed with second-order perturbation theory. The perturbation operator takes the

following form

V̂ = ζ L̂ · Ŝ (2.11)

with ζ a tabulated atomic spin-orbit parameter, determined either by calculation or

extracted from experimental data. For those cases that the orbital angular moment of

the ground state is zero, it is convenient to derive a model Hamiltonian to describe

the sub-levels of the ground state that only depends on the spin variables. Therefore,

we write the unperturbed vectors as the product of the |L, ML〉 spatial and |S, MS〉
spin parts. The spatial part of the ground state is represented with |0〉, and |κ〉 denotes

the spatial part of the excited states. The spin-only Hamiltonian that describes the

zero-field splitting (no external magnetic field) of the levels is derived as the sum

of first and second-order corrections. In first-order perturbation theory the energy

correction equals

〈0|V |0〉 = 〈S, MS|ζ Ŝ|S, MS〉〈0|L̂|0〉 (2.12)

Independent of the value of S or MS , this product is strictly zero since we assumed

that the ground state has no orbital angular moment. This is often referred to in the
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literature as the absence of a first-order angular moment. At second-order perturbation

theory, the correction becomes slightly more involved

∑

κ �=0

〈0|V̂ |κ〉〈κ|V̂ |0〉
E0 − Eκ

= 〈S, MS|ζ Ŝ
∑

κ �=0

〈0|L̂|κ〉〈κ|L̂|0〉
E0 − Eκ

ζ Ŝ|S, MS〉

= 〈S, MS|Ŝ D Ŝ|S, MS〉 (2.13)

where the operator now only contains spin operators and the spin-anisotropy tensor

D contains all the information about the spatial anisotropy of the system

D = ζ 2
∑

κ �=0

〈0|L̂|κ〉〈κ|L̂|0〉
E0 − Eκ

(2.14)

In the most general case, the D-tensor has nine non-zero elements but one can always

find an orientation in space such that the tensor becomes diagonal (as will be shown

below in a numerical example) and only three parameters remain. Furthermore, the

tensor may be written in a traceless form (sum of the diagonal elements equal to zero)

and then the spin Hamiltonian takes the following form with only two parameters

ĤZFS = D

(
Ŝ2

z − 1

3
Ŝ2

)
+ E(Ŝ2

x − Ŝ2
y ) (2.15)

where D and E are defined as the axial and rhombic anisotropy parameter, respectively.

D = Dzz − 1

2
(Dxx + Dyy) E = 1

2
(Dxx − Dyy) (2.16)

with |D| � 3E � 0.

2.5 Write out the Ŝ D Ŝ operator. The only non-zero elements of the D-tensor

are Dxx, Dyy, and Dzz on the diagonal. Determine the trace of the tensor and

construct a traceless tensor 	. Write out the product Ŝ 	 Ŝ and check that the

outcome coincides with Eq. 2.15.

The next step is to calculate the matrix elements of this zero-field splitting Hamil-

tonian with the |S, MS〉 spin-functions of the ground state. The diagonalization of

the resulting matrix gives the energies of the sub-levels under the influence of the

spin-orbit coupling with the sub-levels of higher lying electronic states. The matrix

elements for the different dn configurations are well-documented in textbooks and

articles and can be found in Appendix C. To illustrate the procedure we will derive

the 〈1, 1| ĤZFS |1, 1〉 matrix element. To determine the effect of ĤZFS on |1, 1〉 we

need to know how Ŝ2
x,y,z act on this function. Whereas |S, MS〉 are eigenfunctions of
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Ŝ2
z , the effect of Ŝ2

x,y is most easily determined via the ladder operators S±. From the

definitions Ŝx = 1
2
(Ŝ+ + Ŝ−) and Ŝy = − 1

2i
(Ŝ+ − Ŝ−) one arrives at

Ŝ2
x = 1

4

(
Ŝ+Ŝ+ + Ŝ−Ŝ− + Ŝ+Ŝ− + Ŝ−Ŝ+

)

Ŝ2
y = −1

4

(
Ŝ+Ŝ+ + Ŝ−Ŝ− − Ŝ+Ŝ− − Ŝ−Ŝ+

) (2.17)

Using Eq. 1.23, it is easily seen that the first and the last term give zero when applied

on |1, 1〉 and that the other terms result in

Ŝ−Ŝ−|1, 1〉 = 2|1,−1〉 Ŝ+Ŝ−|1, 1〉 = 2|1, 1〉 (2.18)

which defines the action of Ŝ2 and Ŝ2
x,y,z on |1, 1〉 as follows

Ŝ2|1, 1〉 = S(S + 1)|1, 1〉 = 2|1, 1〉 Ŝ2
z |1, 1〉 = |1, 1〉

Ŝ2
x |1, 1〉 = 1

2
|1,−1〉 + 1

2
|1, 1〉 Ŝ2

y |1, 1〉 = −1

2
|1,−1〉 + 1

2
|1, 1〉 (2.19)

Using the definition of Eq. 2.15 the matrix element becomes

〈1, 1|ĤZFS|1, 1〉 = D

(
1 − 1

3
· 2

)
+ 1

2
E − 1

2
E = 1

3
D (2.20)

The other matrix elements can be calculated following the same procedure and the

final matrix representation of ĤZFS is

|1, 1〉 |1, 0〉 |1,−1〉

〈1, 1| 1
3
D 0 E

〈1, 0| 0 − 2
3

D 0

〈1,−1| E 0 1
3
D

(2.21)

The eigenvalues are E1 = − 2
3

D; E2,3 = 1
3
D±E and the corresponding eigenvectors


1 = |1, 0〉; 
2,3 = (|1, 1〉±|1,−1〉)/
√

2, which shows that the spin-orbit coupling

between the |S, MS〉 levels of the ground state with those of the excited states removes

the degeneracy in the ground state spin manifold in the absence of an external field.

D and E are related to the energy differences by

D = 1

2
(E2 + E3) − E1 E = 1

2
(E2 − E3) (2.22)

http://dx.doi.org/10.1007/978-3-319-22951-5_1
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In systems with an even number of electrons and both D and E different from

zero, the zero-field splitting completely removes the degeneracy of the ground state

manifold. On the contrary, the levels in systems with an odd number of electrons

remain doubly degenerate at zero-field, often referred to as Kramers doublets. For

systems with integer spin moment, the wave function of the lowest level is dominated

by the MS = 0 determinant when D is positive. This means that the projection of

the spin moment on the magnetic z-axis is (practically) zero, while the projection

on the x–y plane is maximal; the system has easy plane magnetism. When D is

negative, the largest contributions to the lowest level arise from the determinants

with MS = ±MSmax , and hence, maximal projection of the spin moment on the z

axis. This is known as easy-axis magnetism. The same applies for half-integer spin

moment systems.

2.6 Demonstrate that the degeneracy of the MS = ±1/2 sub-levels of the

S = 1/2 manifold cannot be removed without an external magnetic field.

Hint: Calculate the 〈1/2,±1/2|ĤZFS|1/2,±1/2〉 matrix elements.

2.3.2 Splitting in an External Magnetic Field

The last column in Fig. 2.1 shows how an external magnetic field H affects the

energies of the MS sublevels of the electronic manifolds of a paramagnetic material.

This effect is described by the Zeeman Hamiltonian

ĤZE = μBH · (L̂ + geŜ) (2.23)

When spin-orbit coupling is neglected and the ground state has no orbital moment,

the expression reduces to its isotropic spin-only form

ĤZE = μBgeH · Ŝ (2.24)

Defining the field direction as the z-axis, the Hamiltonian reduces to μBgeHŜz and

the energies of the MS sublevels vary linearly with the field strength as

En = MSμBgeH (2.25)

Typical examples of such paramagnetic systems are organic radicals where spin-orbit

coupling plays a minor role, but Eq. 2.25 can also be used to describe the evolution of

the energy of the MS sublevels of the ground state in 3d transition metal complexes

when the zero-field splitting is absent (S = 1/2) or significantly larger than the effect

of the external field and the spin-orbit interaction with excited states is small. This

splitting of the energy levels with the external field is not only at the very origin
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of electron paramagnetic resonance [4] techniques, but also manifests itself in the

magnetic susceptibility of paramagnetic materials.

When a material is placed in a magnetic field, the sample becomes magnetized

and the magnetization M is related to the field strength H by

∂M

∂H
= χ (2.26)

The magnetic susceptibility χ is material dependent. It is a tensor, although the

sample can be oriented with respect to the external field such that it becomes diagonal.

In most cases, χ can be written as the sum of a diamagnetic (χD) and a paramagnetic

contribution (χP). The latter contribution is temperature dependent and normally

dominates in systems with unpaired electrons, i.e. in paramagnetic materials. The

diamagnetic contribution does not depend on the temperature and can be estimated

rather accurately from tabulated data for atoms and groups of atoms present in the

material or by empirical formula [5]. Therefore, it is commonly assumed that the

magnetic susceptibility data have been corrected for this contribution and one only

has to analyze the paramagnetic part. For weak magnetic fields (and not too low

temperatures), χ is independent of H and the magnetization can be related to the

field as

M = χH (2.27)

The link with the variation of the microscopic energy levels is given by statistical

mechanics through the Boltzmann distribution

M = − ∂E

∂H
= NA

∑
n

−∂En

∂H
e−En/kT

∑
n

e−En/kT
(2.28)

where T is the temperature, NA Avogadro’s number and k represents Boltzmann’s

constant. This expression can be significantly simplified by two assumptions orig-

inally proposed by van Vleck. In the first place, it is assumed that the energy of a

given sublevel can be approximated by a Taylor series in the magnetic field strength

En = E(0)
n + E(1)

n H + E(2)
n H2 + · · · − ∂En

∂H
= −E(1)

n − 2E(2)
n H + · · · (2.29)

The substitution of this expansion in the exponent of Eq. 2.28 leads to the second

simplification when the series are limited to the first two terms

e−En/kT = e(−E
(0)
n −E

(1)
n H)/kT = eE

(0)
n /kT eE

(1)
n H/kT ≈ e−E

(0)
n /kT

(
1 − E

(1)
n H

kT

)

(2.30)
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Applying these two simplifications transforms Eq. 2.28 to

M =
NA

∑
n

(E
(1)
n − 2E

(2)
n H)(1 − E

(1)
n H/kT)e−E

(0)
n /kT

∑
n

(1 − E
(1)
n H/kT)e−E

(0)
n /kT

(2.31)

If we limit ourselves to materials without spontaneous macroscopic magnetiza-

tion, that is M = 0 at zero field, it is easily shown by substituting H = 0 that∑
n

E
(1)
n e−E

(0)
n /kT = 0 and we arrive at

M =
NAH

∑
n

(E
(1)
n

2
/kT − 2E

(2)
n )e−E

(0)
n /kT

∑
n

e−E
(0)
n /kT

(2.32)

Realizing that in the present case of negligible spin-orbit coupling the energies vary

linearly with the field, the E(2)-term can be neglected and the van Vleck equation for

the magnetic susceptibility emerges from Eq. 2.27

χ =
NA

∑
n

E
(1)
n

2
e−E

(0)
n /kT

kT
∑
n

e−E
(0)
n /kT

(2.33)

Under the assumption that the excited states are sufficiently far away from the ground

state that their effect can be neglected, E(0)can be taken as reference point and put

to zero. Then, Eqs. 2.25 and 2.29 can be used to obtain an analytical expression of

E
(1)
n . The substitution of E(0) = 0 and E(1) = μBgeMS leads to

χ = NA(μBge)
2

kT

S∑
MS=−S

M2
S

2S + 1
(2.34)

The summation over M2
S can be simplified using

S∑

MS=−S

M2
S = S(S + 1)(2S + 1)

3
(2.35)

and the final expression emerges

χ = NA(μBge)
2

3kT
S(S + 1) (2.36)
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This expression shows that the magnetic susceptibility is inversely proportional to

the temperature and is known as the Curie law:

χ = C

T
(2.37)

where C is a constant that only depends on the spin quantum number of the ground

state.

2.7 (a) Show that the denominator in Eq. 2.33 is equal to 2S + 1 when E(0) = 0

and verify the expression for the summation over MS of M2
S for singlet, triplet

and quintet states. (b) Many researchers in the field of molecular magnetism use

the cgsemu (centimeter-gram-second electromagnetic units) system instead of

the standard units defined by the international systems of units SI. In this

alternative unit system, the value of NAμ2
B/3k is equal to 0.12505 (nearly

1/8). Calculate C for the S-values that can be found for the TM ions and the

lanthanides.

Virtually always deviations to the Curie law are observed at low enough temper-

atures, because the magnetic centers in any real system are never truly isolated but

interact with their environment. Moreover, spin-orbit coupling can also introduce

extra interactions not covered by the Curie law. The interactions with other magnetic

centers will be addressed in more detail in Chap. 3, but we describe here a mean-field

approach to include their effect. In this rather crude approximation, each magnetic

center experiences an internal field due to the average interaction with the other

centers in addition to the uniform external field. This internal field depends on the

average magnetization (M) of the material and is known as the Weiss field

H = Hext + Hint = Hext + λM (2.38)

Combining this expression with the Eqs. 2.27 and 2.37 and assuming that H is aligned

along z, one obtains

χ = M

H
= M

Hext + λM
= C

T
(2.39)

Then, with Hext = M
(
(T − Cλ)/C

)
, the measured susceptibility χext can be written

as

χext = M

Hext

= C

T − λC
(2.40)

known as the Curie-Weiss law. λC is the Weiss constant and often written as �.

Positive values of � are indicative of ferromagnetic interactions and a material with

dominating antiferromagnetic interactions will show a negative �.

http://dx.doi.org/10.1007/978-3-319-22951-5_3
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A more specific expression of � can be derived by extending the spin Hamiltonian

of Eq. 2.24 with the Weiss field.

Ĥ = μBH · (L̂ + geŜz) − nJ〈Sz〉Ŝz (2.41)

where n is the number of magnetic centers interacting with the center under con-

sideration, J parametrizes the strength of the interactions and 〈Sz〉 is the average Sz

value given by the Boltzmann distribution

〈Sz〉 =

S∑
MS=−S

MSe−E(S,MS)

S∑
MS=−S

e−E(S,MS)

(2.42)

Taking the external field along the z-axis, the eigenvalues of this mean-field Hamil-

tonian are

En = MSμBgeH − nJ〈Sz〉MS (2.43)

After expanding the exponents in Eq. 2.42 in a Taylor series and only maintaining

the first two terms, the energy eigenvalues are inserted to arrive at

〈Sz〉 =

S∑
MS=−S

MS

(
1 − MS(μBgeH − nJ〈Sz〉)/kT

)

S∑
MS=−S

(
1 − MS(μBgeH − nJ〈Sz〉)/kT

)

= −(S(S + 1)(2S + 1)/3)(μBgeH − nJ〈Sz〉)/kT

2S + 1
(2.44)

using the simplification of the sum over M2
S used before (Eq. 2.35). This equation

requires some rewriting but finally the average Sz value reduces to

〈Sz〉 = − S(S + 1)μbgeH

3kT − nJS(S + 1)
(2.45)

which can be used to express the magnetization and the magnetic susceptibility

M = NAμBge〈Sz〉 (2.46)

χ = M

H
= NAμ2

Bg2
e

S(S + 1)

3kT − nJS(S + 1)
= C

T − �
(2.47)

to obtain the Curie–Weiss law with an explicit expression for � = nJS(S + 1)/3k.
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2.8 Derive Eq. 2.45 from Eq. 2.44.

Anisotropy of the g-tensor: Before combining the effect of the zero-field splitting

and the external magnetic field, we have to establish how spin-orbit coupling affects

the Zeeman effect. This is most easily done for a system with S = 1
2

and a quenched

orbital moment. As an example, we will consider one unpaired electron. The g-factor

in the Zeeman Hamiltonian of Eq. 2.24 is now replaced by a tensor

ĤZE = μBgH · Ŝ (2.48)

g can be transformed to a diagonal form when the coordinate axis frames of the

field and the g-tensor coincide. The axis frame that diagonalizes the g-tensor is not

necessarily the same as the frame that diagonalizes the D-tensor introduced in the

previous section, although this is often assumed to be the case. Furthermore, it should

be noted that, strictly speaking S is not a good quantum number anymore when spin-

orbit coupling is considered. Therefore, the spin operator in Eq. 2.48 is often replaced

by an effective spin operator S̃ with the same formal properties.

To evaluate the effect of spin-orbit coupling we will start writing down the first-

order corrected wave functions of the MS = ± 1
2

sublevels, then calculate the matrix

elements of the Zeeman Hamiltonian (Eq. 2.23) and compare these to the matrix

elements of the (effective) spin-only Zeeman Hamiltonian given in Eq. 2.48 to find

analytical expressions for the diagonal elements of g. With ζ L̂ · Ŝ as perturbation

operator, the wave functions that describe the lowest two levels become

ψ (1) = ψ (0) + ζ
∑

i �=0

〈ψ (0)
i |L̂ · Ŝ|ψ (0)

0 〉
E0 − Ei

ψ
(0)
i (2.49)

where ψ
(0)
i represent the different MS components of excited states. The spin part of

the wave function is not written explicitly and can either be α or β. Replacing L̂ · Ŝ

by L̂zŜz + 1
2
(L̂+Ŝ− + L̂−Ŝ+) the expressions for the two wave functions can easily

be derived

ψ (1) = ψ
(0)
0 + 1

2
ζ

∑

i �=0

〈ψ (0)
i |L̂z|ψ (0)

0 〉
E0 − Ei

ψ
(0)
i + 1

2
ζ

∑

i �=0

〈ψ (0)
i |L̂+|ψ (0)

0 〉
E0 − Ei

ψ
(0)

i

ψ
(1) = ψ

(0)

0 − 1

2
ζ

∑

i �=0

〈ψ (0)
i |L̂z|ψ (0)

0 〉
E0 − Ei

ψ
(0)

i + 1

2
ζ

∑

i �=0

〈ψ (0)
i |L̂−|ψ (0)

0 〉
E0 − Ei

ψ
(0)
i (2.50)

and show that the first-order corrected wave functions are no longer spin eigenfunc-

tions, but rather a mixture of α and β contributions.
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2.9 Show that the L̂ · Ŝ matrix elements of ψ
(0)
0 and an excited state ψ

(0)
i are

equal to 1
2
〈ψ (0)

i |L̂z|ψ (0)
0 〉 when the spin part of ψ

(0)
0 and ψ

(0)
i is identical and

equal to 1
2
〈ψ (0)

i |L̂+|ψ (0)
0 〉 when ψ

(0)
0 has α- and ψ

(0)
i has β-spin.

For a magnetic field along the z-axis (the quantization axis of the system),

H can be replaced by a scalar and the two expressions of the Zeeman Hamiltonian

(Eqs. 2.23 and 2.48) reduce to μBH(L̂z + geŜz) and μBHgzzŜz. The corresponding

matrix elements are

μBHgzz〈ψ (1)|Ŝz|ψ (1)〉 = 1

2
μBHgzz = μBB〈ψ (1)|L̂z + geŜz|ψ (1)〉 (2.51)

μBHgzz〈ψ
(1)|Ŝz|ψ

(1)〉 = −1

2
μBHgzz = μBH〈ψ (1)|L̂z + geŜz|ψ

(1)〉 (2.52)

The off-diagonal elements are zero in both Hamiltonians due to the spin-orthogonality.

Now an expression for gzz emerges from either equation as

gzz = 2
[
ge〈ψ (1)|Ŝz|ψ (1)〉 + 〈ψ (1)|L̂z|ψ (1)〉

]
= ge + 2〈ψ (1)|L̂z|ψ (1)〉 (2.53)

The last term can be specified by substitution of the definitions given in Eq. 2.50

〈ψ (1)|L̂z|ψ (1)〉 = 〈ψ (0)|L̂z|ψ (0)〉 + 1

2
ζ

∑

i �=0

〈ψ (0)
i |L̂z|ψ (0)

0 〉〈ψ (0)
0 |L̂z|ψ (0)

i 〉
E0 − Ei

+ 1

2
ζ

∑

i �=0

〈ψ (0)
i |L̂x + iL̂y|ψ (0)

0 〉〈ψ (0)
0 |L̂z|ψ

(0)

i 〉
E0 − Ei

+ 1

4
ζ 2 . . .

+ 〈ψ (0)|L̂z|ψ (0)〉 + 1

2
ζ

∑

i �=0

〈ψ (0)
i |L̂z|ψ (0)

0 〉〈ψ (0)
0 |L̂z|ψ (0)

i 〉
E0 − Ei

+ 1

2
ζ

∑

i �=0

〈ψ (0)
i |L̂x − iL̂y|ψ (0)

0 〉〈ψ (0)
0 |L̂z|ψ

(0)

i 〉
E0 − Ei

+ 1

4
ζ 2 . . .

(2.54)

Here, L̂± is replaced by the expression in terms of L̂x,y and the minus sign in front of

iL̂y in the seventh term on the right arises from the fact that the complex conjugated

function Ψ
†(1)
1 was written. Moreover, the third and seventh terms are zero because of

the spin-orthogonality. The terms that are quadratic in ζ are neglected. This somewhat

awkward expression can be further simplified by taking into account that the zeroth-

order wave function of the ground state has no orbital moment, 〈ψ (0)|L̂z|ψ (0)〉 = 0.
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Hence, we can write

gzz = ge + 2ζ
∑

i �=0

〈ψ (0)
i |L̂z|ψ (0)

0 〉〈ψ (0)
0 |L̂z|ψ (0)

i 〉
E0 − Ei

(2.55)

Next, we consider the case for a field along x, from which gxx can be determined.

The Hamiltonians can be written as μBH(L̂x + geŜx) and μBHgxx Ŝx in this case and

the matrix elements with ψ (1)and ψ
(1)

are

μBHgxx〈ψ (1)|Ŝx|ψ (1)〉 = 1

2
μBHgxx〈ψ (1)|Ŝ+ + Ŝ−|ψ (1)〉 = 0 (2.56)

μBHgxx〈ψ (1)|Ŝx|ψ
(1)〉 = 1

2
μBHgxx〈ψ (1)|Ŝ+ + Ŝ−|ψ (1)〉 = 1

2
μBHgxx

= μBH〈ψ (1)|L̂x + geŜx|ψ
(1)〉 (2.57)

and analogous for the other two matrix elements. Working out the expression for the

off-diagonal matrix element gives

gxx = 2〈ψ (1)|L̂x|ψ
(1)〉 + 2ge〈ψ (1)|Ŝx|ψ

(1)〉 = ge + 2〈ψ (1)|L̂x|ψ
(1)〉 (2.58)

and one obtains the explicit equation for gxx by substituting the definition of the

first-order wave functions given in Eq. 2.50. Taking into account only the non-zero

terms that are at most linear in ζ , we arrive at

gxx = ge + 2

⎛
⎝1

2
ζ

∑

i �=0

〈ψ (0)
i |L̂x − iL̂y|ψ (0)

0 〉〈ψ (0)
0 |L̂x|ψ (0)

i 〉
E0 − Ei

+1

2
ζ

∑

i �=0

〈ψ (0)
i |L̂x + iL̂y|ψ (0)

0 〉〈ψ (0)
0 |L̂x|ψ (0)

i 〉
E0 − Ei

⎞
⎠

= ge + 2ζ
∑

i �=0

〈ψ (0)
i |L̂x|ψ (0)

0 〉〈ψ (0)
0 |L̂x|ψ (0)

i 〉
E0 − Ei

(2.59)

The expression for gyy is obtained by replacing L̂x with L̂y. Even the off-diagonal

elements of the g-tensor, in case of a non-aligned sample, can be calculated with

analogous equations combining the proper angular moment operators.

The procedure is best illustrated with a simple example. For this purpose, we fall

back on the p1 model system used before in the discussion of the orbital moment

quenching. The external potential stabilizes the pz orbital with respect to the degen-

erate px and py orbitals by an amount of 	E as shown in Fig. 2.2. Using the explicit

notation for spatial and spin part, the zeroth-order wave functions are
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Fig. 2.2 stabilization of the

pz orbital by 	E with respect

to the degenerate px and py

orbitals due to an external

potential

ψ
(0)
0 = pzα = p0α ψ

(0)

0 = pzβ = p0β (2.60)

ψ
(0)
i = {pxα, pxβ, pyα, pyβ} = {p+α, p+β, p−α, p−β} (2.61)

Now we apply Eq. 2.50 to obtain the expression of the first-order corrected wave

functions for the lowest two levels

ψ
(1)
0 = p0α + 1

2
ζ

[
〈p+|L̂z|p0〉

	E
p+α + 〈p−|L̂z|p0〉

	E
p−α

]

+ 1

2
ζ

[
〈p+|L̂+|p0〉

	E
p+β + 〈p−|L̂+|p0〉

	E
p−β

]
= p0α + 1

2

√
2ζp+β

(2.62)

ψ
(1)

0 = p0β − 1

2
ζ

[
〈p+|L̂z|p0〉

	E
p+β + 〈p−|L̂z|p0〉

	E
p−β

]

+ 1

2
ζ

[
〈p+|L̂−|p0〉

	E
p+α + 〈p−|L̂−|p0〉

	E
p−α

]
= p0β + 1

2

√
2ζp−α

(2.63)

The values of gzz and gxx = gyy are determined from Eqs. 2.55 and 2.59 and lead to

gzz = ge + 2ζ

[
〈p+|L̂z|p0〉〈p0|L̂z|p+〉

	E
+ 〈p−|L̂z|p0〉〈p0|L̂z|p−〉

	E

]
= ge (2.64)

gxx = ge + 2ζ

[
〈p+|L̂x|p0〉〈p0|L̂x|p+〉

	E
+ 〈p−|L̂x|p0〉〈p0|L̂x|p−〉

	E

]

= ge + 2ζ

[
1
2

√
2 · 1

2

√
2

	E
+

1
2

√
2 · 1

2

√
2

	E

]
= ge + 2ζ

	E
(2.65)
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2.10 Demonstrate that the matrix element 〈p−|L̂x|p0〉 and all other matrix

elements in Eq. 2.65 are equal to 1
2

√
2. Hint: substitute L̂x by (L̂+ + L̂−)/2

2.3.3 Combining ZFS and the External Magnetic Field

The separate descriptions of the zero-field splitting and the effect of an external

magnetic field on the atomic sublevels can now be combined into a unified description

using the following spin Hamiltonian

Ĥ = μBg · HŜ + Ŝ · D · Ŝ (2.66)

In the coordinate frame that diagonalizes g and D, which is assumed to be the same

for both, the spin Hamiltonian simplifies to

Ĥ = μB(gxHx Ŝx + gyHyŜy + gzHzSz) + D

(
Ŝ2

z − 1

3
Ŝ2

)
+ E(Ŝ2

x − Ŝ2
y ) (2.67)

In the first place we write down the explicit matrix representation of this Hamiltonian

when the external field is aligned along the z-axis and assuming that the complex

only presents axial anisotropy, that is E = 0. This means that both Hx and Hy are

zero.

|1, 1〉 |1, 0〉 |1,−1〉

〈1, 1| 1
3

D + μBgzH 0 0

〈1, 0| 0 − 2
3

D 0

〈1,−1| 0 0 1
3
D − μBgzH

(2.68)

After shifting the diagonal by 2
3

D to let the zero of energy coincide with the energy

of the |1, 0〉 state, the resulting energies are

E1 = 0 ; E23 = D ± μBgzHz (2.69)

The energies of the |1,±1〉 states evolve linearly with H as shown on the left in

Fig. 2.3.

The situation is slightly more complicated when the magnetic field is applied

perpendicular to the principal magnetic axis. We will work out the matrix element

between |1, 1〉 and |1, 0〉 and then give the full Hamiltonian for the field along the

x-axis. The part of the Hamiltonian that accounts for the zero-field splitting does
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Fig. 2.3 Energies of the three components of a triplet state in an external field along the z-axis

(left) and perpendicular to it (right)

not change, and hence, we can concentrate on the Zeeman interaction. The action of

Ŝx on |1, 0〉 is easiest obtained by using the expression of Ŝx in terms of the ladder

operators Ŝ+ and Ŝ−.

〈1, 1|μBgxHx

1

2
(Ŝ+ + Ŝ−)|1, 0〉

= μBgxHx

1

2

(
〈1, 1|

√
2|1, 1〉 + 〈1, 1|

√
2|1 − 1〉

)
= μBgxHx√

2
(2.70)

The other off-diagonal elements are the same except the interaction between |1, 1〉
and |1 − 1〉, which is zero. The full Hamiltonian takes this form

|1, 1〉 |1, 0〉 |1,−1〉

〈1, 1| 1
3
D 1√

2
μBgxHx 0

〈1, 0| 1√
2
μBgxHx − 2

3
D 1√

2
μBgxHx

〈1,−1| 0 1√
2
μBgxHx

1
3

D

(2.71)

After shifting the diagonal by 2
3

D, the energy eigenvalues can be determined as

E1 = D ; E2,3 = 1

2

(
D ±

√
D2 + 4μ2

Bg2
xH2

x

)
(2.72)

2.11 Confirm that the only effect of uniformly shifting the diagonal elements

is the same shift of the energy eigenvalues.

The expressions for E2,3 can be simplified by the Taylor expansion
√

p + q =√
p+ 1

2
q/

√
p+· · · . Assuming that D2 is (much) larger than 4μ2

Bg2
xH2

x , the expansion
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can be restricted to the first two terms only and the energies become

E2 = D + μ2
Bg2

xH2
x /D ; E3 = −μ2

bg2
xH2

x /D (2.73)

The evolution of the energies with increasing Hx is no longer linear and is depicted

in the right part of Fig. 2.3. Applying the external field perpendicular to the z-axis

implies of course not automatically that the field is oriented along the x-axis. It is

therefore necessary to confront the above result to what is obtained when the field

is applied along the y-axis. The Hamiltonian has the same general shape but the

off-diagonal elements are slightly different now.

|1, 1〉 |1, 0〉 |1,−1〉

〈1, 1| 1
3
D − i√

2
μBgyHy 0

〈1, 0| i√
2
μBgyHy − 2

3
D − i√

2
μBgyHy

〈1,−1| 0 i√
2
μBgyHy

1
3

D

(2.74)

However, this has no consequences for the eigenvalues of the matrix. Diagonalization

of the (shifted) matrix gives exactly the same energies as derived from the Hamil-

tonian with the field along the x-axis as long as the system has no rhombic anisotropy;

gx = gy = g⊥ and E = 0. In the general case of axial and rhombic anisotropy, no

analytical expressions for the energies can be derived and one commonly resorts to

numerical approaches [6].

Problems

2.1 Extracting D and E for a NiII complex. The triplet ground state T0 of a NiII

complex has three MS sublevels, which are degenerate in the absence of an external

magnetic field and neglecting spin-orbit coupling. However, the interaction with

the MS sublevels of excited states (T1, T2, S1, etc.) through the spin-orbit operator

removes the degeneracy. Since the molecule is oriented in an arbitrary axes frame, the

cartesian z-axis does not coincide with the magnetic z-axis and the wave functions of

the three sublevels are complex functions, mixtures of the MS = 0,±1 components.

a. Construct the matrix representation of the Ŝ · D · Ŝ spin Hamiltonian for an

arbitrary axes frame, i.e., D is not diagonal:

Ĥ =
(

Ŝx Ŝy Ŝz

)
⎛
⎝

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞
⎠

⎛
⎝

Ŝx

Ŝy

Ŝz

⎞
⎠

Use |S, MS〉 = {|1, 1〉, |1, 0〉, |1,−1〉} as basis.
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b. The ab initio wave functions of the three states with the largest projection on the
model space are

Ψ1 = (0.686 − 0.024i)|1, −1〉 + (−0.175 + 0.009i)|1, 0〉 + (−0.685 + 0.046i)|1, 1〉
Ψ2 = (−0.664 + 0.197i)|1, −1〉 + (0.036 + 0.123i)|1, 0〉 + (−0.667 + 0.187i)|1, 1〉
Ψ3 = (0.110 − 01.08i)|1, −1〉 + (0.957 − 0.147i)|1, 0〉 + (−0.137 − 0.070i)|1, 1〉

Calculate the overlap matrix of Ψ̃i, the projections of Ψ on the model space.

c. The orthonormalized projections are given by

|1,−1〉 |1, 0〉 |1, 1〉

Ψ̃ ′
1 0.695504 −

0.023842i

−0.177003 +
0.008987i

−0.694343 +
0.046723i

Ψ̃ ′
2 −0.672287 +

0.199091i

0.035909 +
0.124483i

−0.675035 +
0.189566i

Ψ̃ ′
3 +0.110493 −

0.109038i

0.964328 −
0.147901i

−0.138092 −
0.070912i

E1 = 0.00; E2 = 11.54 cm−1; E3 = 37.55 cm−1. Construct the effective Hamil-

tonian and check the consistency of the model Hamiltonian by comparing the

numerical matrix elements of the effective Hamiltonian with the symbolic matrix

elements of the model Hamiltonian.

d. Diagonalize the D-tensor, determine the axial (D) and rhombic (E) anisotropy

parameters from Eq. 2.16 and compare the values with those obtained by extract-

ing D and E from the energies differences (Eq. 2.22).

2.2 Extracting D and E for a CoII complex. The ground state of a slightly distorted

tetrahedral CoII complex has quartet spin multiplicity. The fitting of the magnetic

susceptibility shows that the complex has a rather large magnetic anisotropy, but it

remains unclear whether the complex has an easy plane (D > 0) or an easy axis

(D < 0) of magnetization.

1. Draw a level diagram showing the removal of the degeneracy of the MS sublevels

of the quartet state under the influence of (i) spin-orbit coupling and (ii) spin-orbit

coupling and a small external magnetic field along the z-axis.

2. Can the anisotropy parameters D and E be determined from the energy differences

at zero field? And the sign of D?

3. Construct the matrix representation of Ŝ · D · Ŝ in an arbitrary frame in the

{| 3
2
, 3

2
〉, | 3

2
, 1

2
〉, | 3

2
,− 1

2
〉, | 3

2
,− 3

2
〉} basis.

4. Use the following data to construct the numerical effective Hamiltonian and
extract D and E. Decide if this complex has easy-axis or easy-plane magnetism.
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E(cm−1) | 3
2 , − 3

2 〉 | 3
2 , − 1

2 〉 | 3
2 , 1

2 〉 | 3
2 , 3

2 〉

Ψ̃ ′
1 0.00 0.007808 +

0.008516i

0.058561 +
−0.068873i

−0.207583 +
−0.246313i

−0.709453 +
0.620169i

Ψ̃ ′
2 0.00 0.942302 +

0.000087i

0.005791 +
0.322067i

−0.089417 +
−0.013321i

0.000274 +
−0.011550i

Ψ̃ ′
3 32.47 0.090185 +

−0.002021i

−0.000628 +
0.012098i

0.934946 +
0.117457i

−0.034599 +
0.320311i

Ψ̃ ′
4 32.47 0.255568 +

−0.196167i

−0.586647 +
−0.737404i

0.010006 +
−0.006830i

−0.045185 +
−0.078075i

2.3 Anisotropic g values. EPR measurement on a TiIII complex reveals a relatively

large axial magnetic anisotropy by the application of a small magnetic external field.

1. What is the electronic configuration of the TiIII ion? Assuming that the ligands

have a closed-shell configuration, can the complex display a splitting of the MS

levels of the ground state at zero field?

2. Use Eqs. 2.55 and 2.59 to calculate the deviations of gx and gz from the free-

electron value ge based on the following computational results.

E(cm−1) |hhφa| |hhφb| |hhφc| |hhφd | |hhφe|

Ψ̃ ′
1 0 0.6441 −0.7504 0.0179 0.1444 0.0304

Ψ̃ ′
2 1005 −0.7562 −0.6105 0.1406 0.1875 −0.0215

Ψ̃ ′
3 6662 −0.0772 −0.1649 −0.1597 −0.6456 0.7243

Ψ̃ ′
4 11060 0.0293 −0.1168 0.4849 −0.6864 −0.5284

Ψ̃ ′
5 13358 0.0805 0.1528 0.8481 0.2368 0.4414

φa φb φc φd φe

3dz2 −0.0593 −0.1176 −0.6905 −0.0964 −0.7046

3dx2−y2 0.1174 −0.3047 0.6775 −0.295 −0.5841

3dxy 0.3816 0.182 0.1216 0.8439 −0.2986

3dyz 0.8647 0.2572 −0.1397 −0.4 0.0825

3dxz −0.2916 0.8897 0.1583 −0.1724 −0.2576

Although the normalized projections Ψ̃ ′
i are not strictly orthogonal, the deviation

is small enough to be neglected. ζTi = 123 cm−1. Matrix elements of l̂ can be

found in Appendix A.

3. Are the calculated g-values in line with the observed anisotropy? What is the

effect of increasing/decreasing the gap between the ground state and the first

excited state on gz and gx .

2.4 Barrier for spin reversal: Given a system with a total spin moment of S = 5

and easy-axis anisotropy, calculate the energies of the different MS components of

the ground state wave function.
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6. R. Boča, Theoretical Foundations of Molecular Magnetism (Elsevier, Amsterdam, 1999)



Chapter 3

Two (or More) Magnetic Centers

Abstract The description of the magnetic interactions is now extended to more

than one magnetic center. First it is shown that the two-electron/two-orbital system

can be approached from different viewpoints using (de-)localized, (non-)orthogonal

orbitals. After this quantum chemical description of the magnetic interaction we dis-

cuss the more phenomenological approach based on spin operators. Starting with

the standard Heisenberg Hamiltonian for isotropic bilinear interactions, the chapter

discusses how biquadratic, anisotropic and four-center interactions can be accounted

for within this spin formalism. Furthermore, it is shown how the microscopic elec-

tronic interaction parameters can be used to describe macroscopic properties by

diagonalization of model Hamiltonians, Monte Carlo simulations and some other

techniques.

3.1 Localized Versus Delocalized Description

of the Two-Electron/Two-Orbital Problem

The most simple magnetic systems have only two magnetic sites, each with spin
1
2

. Examples are doubly bridged binuclear CuII complexes. The energy splitting

between the lowest singlet and triplet spin states in such complexes turns out to

depend strongly on the geometry of the bridging Cu–L2–Cu units (R1, R2, α, β, etc.)

depicted in Fig. 3.1 and this magneto-structural correlation can be well explained by

using simple quantum theoretical models that can be developed “on the back of an

envelope”. The basis for such models is provided in this section, they are further

elaborated in Chap. 4. We consider a many-electron system, which, in addition to

closed shells of electrons, has two magnetic electrons which are mainly localized

on two magnetic sites A and B. We assume that the orbitals of the complex, i.e. its

molecular orbitals (MOs), have been determined by a self-consistent field procedure.

Configuration Interaction using delocalized orbitals: We first consider the case

where the two magnetic electrons are coupled to a spin triplet, S = 1. The simplest

description of the MS = 1 component of the lowest lying triplet state is one single

Slater determinant

© Springer International Publishing Switzerland 2016
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Fig. 3.1 Schematic

representation of a complex

with a bridging CuL2Cu unit

and four external ligands Le

Φ12(S, MS) = Φ12(1, 1) = |. . . φ1φ2| (3.1)

where the MOs φ1 and φ2 are bonding and antibonding combinations of atomic

orbitals localized at/around the magnetic centers A and B. In other words: φ1 and

φ2 are molecular orbitals that are delocalized over the two magnetic centers. In

the case of two CuII centers they will mainly be built from bonding and antibonding

combinations of Cu-3d orbitals. The dots in the determinant denote the other electrons

of the system, in doubly occupied MOs. In the following these closed shell, inactive,

electrons will be omitted from the notation for the Slater determinants:

Φ12(1, 1) = |φ1φ2| (3.2a)

The orbitals φ1 and φ2 are occupied with one electron and are often referred to as

the magnetic orbitals. The Slater determinant shown in Eq. 3.2a has the correct spin

symmetry for the MS = 1 component of an S = 1 manifold, the corresponding wave

function of the MS = −1 component is given by

Φ12(1,−1) = |φ1φ2| (3.2b)

and for the MS = 0 component we need two Slater determinants:

Φ12(1, 0) =
(
|φ1φ2| − |φ2φ1|

)
/
√

2 (3.2c)

These three S = 1 wave functions belong to the electronic configuration . . . φ1
1φ1

2 ,

which in addition gives rise to a spin-singlet wave function,

Φ12(0, 0) =
(
|φ1φ2| + |φ2φ1|

)
/
√

2 (3.3)

In addition to the . . . φ1
1φ1

2 electronic configuration, two more configurations can be

defined using the two MOs φ1 and φ2. Both are of closed-shell character and can be

written as . . . φ2
1 and . . . φ2

2 . They give rise to two more Slater determinants

Φ11(0, 0) = |φ1φ1| (3.4)

and

Φ22(0, 0) = |φ2φ2| (3.5)
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Fig. 3.2 Schematic

representation of the four

MS = 0 CSFs that can be

generated with two electrons

in two orbitals

As we have seen in Eq. 3.2, the configuration . . . φ1
1φ1

2 leads also to three S = 1 wave

functions, with MS = 1, 0 and −1. It is customary to call the simplest wave functions

built from one electronic configuration that obey the spin (and spatial) symmetry

requirements a Configuration State Function, CSF. Hence the approximate wave

functions of Eqs. 3.2a–3.5 constitute the six CSFs that can be formed by distributing

two electrons over the two MOs φ1 and φ2. Summarizing: the two electrons in two

orbitals model, i.e. distributing two electrons over two orbitals in all possible ways

yields three electronic configurations, which give rise to six CSFs. Three of them

form the MS = 1, 0,−1 components of an S = 1 state, the other three represent each

a separate S = 0 CSF. Figure 3.2 represents the four MS = 0 CSFs. From left to right,

we have Ψ 11(0, 0), Ψ 12(0, 0) (plus combination), Ψ 12(1, 0) (minus combination),

and Ψ 22(0, 0).

The relative energies of the four states can of course be computed by performing a

complete active space configuration interaction (CASCI) calculation with the active

orbitals being φ1 and φ2, but here we are going to analyze the relative energies by

considering the physics of the system.

If the splitting between the bonding φ1 and the antibonding φ2 is large, the ground

state is expected to be a spin singlet state, which is rather well described by Φ11(0, 0).

This is the situation that we would encounter, for example, if the ions A and B would

be two Li atoms without any environment forming a Li2 molecule, or, even simpler,

two H atoms forming H2. In these cases the stabilization of φ1 is so large that the two

electrons pair to occupy jointly this strongly bonding orbital. However, in magnetic

systems the interaction between the magnetic ions A and B is quite weak. Moreover,

in most complexes they are separated by bridging ligands. Then, the splitting between

φ1 and φ2 is small and the three configurations . . . φ2
1 , . . . φ1

1φ1
2 and . . . φ2

2 are close

in energy. The fact that we have three distinct low lying singlet CSFs suggests that we

can use variation theory to generate improved descriptions of these three states, by

forming linear combinations of Φ11(0, 0), Φ12(0, 0) and Φ22(0, 0). On the contrary,

in order to improve the description of the S = 1 state we would have to go beyond

the two electrons in two orbitals model, but doing this only for the triplet and not

for the singlet states would destroy the balance between them, preventing us from

determining whether the ground state is magnetic (S �= 0) or not (S = 0).

In many cases the A–B system is centrosymmetric, i.e. there is at least one sym-

metry operation that transforms A into B and vice versa. Then φ1 and φ2 belong

to different irreducible symmetry representations, and consequently the wave func-
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tions corresponding to . . . φ1
1φ1

2 belong also to a different representation compared to

those of . . . φ2
1 and . . . φ2

2 . As a result, in those cases there is no Hamiltonian matrix

element of Φ11(0, 0) and Φ22(0, 0) with Φ12(0, 0):

〈Φ11(0, 0)|Ĥ |Φ12(0, 0)〉 = 〈Φ22(0, 0)|Ĥ |Φ12(0, 0)〉 = 0 (3.6)

Then, improved singlet variational wave functions can be formed by making linear

combinations of only Φ11(0, 0) and Φ22(0, 0), whereas the singlet wave function cor-

responding to . . . φ1
1φ1

2 cannot be improved within this two electrons in two orbitals

scheme. In other magnetic systems there is no strict but only approximate symmetry,

giving rise to non-zero but still quite small matrix elements 〈Φ11(0, 0)|Ĥ |Φ12(0, 0)〉
and 〈Φ11(0, 0)|Ĥ |Φ12(0, 0)〉. In the following we will assume symmetry, hence

assume that these matrix elements are zero and turn our attention to the Hamil-

tonian matrix element 〈Φ11(0, 0)|Ĥ |Φ22(0, 0)〉 that leads to an improved singlet

wave function

Ψ (0, 0) = c1Φ
11(0, 0) + c2Φ

22(0, 0) (3.7)

where c1 and c2 are chosen to minimize the energy of Ψ (0, 0). Using the Slater–

Condon rules we find for the Hamiltonian matrix element between the two closed

shell determinants

〈Φ11(0, 0)|Ĥ |Φ22(0, 0)〉 = 〈φ1(1)φ1(2)| 1

r12
|φ2(1)φ2(2)〉 (3.8)

By rearranging the (real) functions in this integral, it becomes clear that the matrix

element is equal to the exchange integral K12

〈φ1(1)φ1(2)| 1

r12
|φ2(1)φ2(2)〉 = 〈φ1(1)φ2(1)| 1

r12
|φ2(2)φ1(2)〉 = K12 (3.9)

3.1 Demonstrate that 〈Φ11(0, 0)|Ĥ |Φ22(0, 0)〉 = K12.

The exchange integral K12 does not vanish, not even in case of weakly interacting

A and B centers. This becomes clear if we introduce the localized orthogonal orbitals

ψa and ψb that can be constructed from the delocalized molecular orbitals φ1 and φ2:

ψa = 1√
2
(φ1 + φ2) ψb = 1√

2
(φ1 − φ2) (3.10a)

If A and B are strongly coupled, ψa will be mainly localized on A, but with important

orthogonalization tails on B and vice versa. Only if A and B are weakly coupled,

ψa and ψb are nearly completely localized on A and B, respectively.
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3.2 (a) Demonstrate that ψa and ψb are normalized and orthogonal (b) Con-

sider the example where the delocalized orbitals φ1 and φ2 are bonding and

antibonding combinations of atom centered basis functions χa and χb:

φ1 = χa + χb√
(2(1 + S)

φ2 = χa − χb√
(2(1 − S)

with S = 〈χa |χb〉. Compute the coefficient of the orthogonalization tail of ψa

on atom B, for S = 0.2 and for S = 0.003.

Using the inverse relations of Eq. 3.10a

φ1 = 1√
2
(ψa + ψb) φ2 = 1√

2
(ψa − ψb) (3.10b)

the exchange integral K12 can be rewritten as a sum of Coulomb integrals

K12 = 1

4
〈(ψa + ψb)(ψa − ψb)|Ĥ |(ψa − ψb)(ψa + ψb)〉

= 1

4
〈ψaψa |Ĥ |ψaψa〉 − 2〈ψaψb|Ĥ |ψaψb〉 + 〈ψbψb|Ĥ |ψbψb〉

= 1

4

(
Jaa − 2Jab + Jbb

)
(3.11)

Only the term Jab approaches zero for small coupling between A and B. The other

terms are local Coulomb integrals which are both positive and both occur with a

positive coefficient: these two terms do not cancel each other. Note, that since we

have assumed centrosymmetry, Jaa = Jbb. Figure 3.3 shows the localized orthogonal

orbitals ψa and ψb and the product of these as they appear in the Coulomb integrals of

the expression of K12. From this pictorial representation it is obvious that Jab—with

ψaψa × ψbψb in the numerator—is small for weak interaction between A and B,

while Jaa and Jbb do not strongly depend on the distance between A and B.

Hence, there is significant interaction between the configurations . . . φ2
1 and . . . φ2

2 .

Note that the smaller Jab, the larger is K12, and therefore, in the case of weak

coupling between A and B we need to use the two-configuration wave function

of Eq. 3.7 instead of simply Φ11(0, 0). Clearly, the best two-configuration wave

function is obtained by varying c1/c2 until the energy expectation value is minimal.

Only in case of strong coupling between A and B (remember the case of Li2 near

equilibrium distance) Jab may become so large that K12 and therewith c2 becomes

negligible so that the closed shell determinant Φ11(0, 0) is a reasonable ansatz for the

lowest singlet wave function. For intermediate and small couplings the lowest S = 0

and S = 1 states are competing, i.e. close in energy. An approximate yet balanced

treatment is obtained by describing the lowest S = 0 state using the expression of
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Fig. 3.3 Graphical representation of the localized orthogonal orbitals ψa (left) and ψb (right), and

the respective products (charge densities) as they appear in the numerator of the Coulomb integrals

Eq. 3.7 and the S = 1 state using Eq. 3.2. Which state is the ground state, singlet or

triplet, depends on the magnitudes of the two electron integrals Jaa , Jab and Kab.

Summarizing: A Full CI treatment of two electrons in two orbitals in a symmetric

system leads to Eq. 3.7 for S = 0 and to Eq. 3.2 for S = 1. This approach forms a

basis for the Hay–Thibeault–Hoffmann (HTH) model discussed in Chap. 4.

Valence Bond theory using localized orthogonal orbitals: For small couplings,

i.e. nearly degenerate S = 0 and S = 1 states, Valence Bond (VB) theory provides

a more intuitive starting point than the previous molecular orbital reasoning. For the

MS = 0 wave functions we make use of the local orthonormal orbitals ψa and ψb as

defined in Eq. 3.10a and use them to construct two neutral determinants |ψaψb| and

|ψbψa |, where neutral does not mean that the centers A and B are uncharged, but

maintain their oxidation state as in the ground configuration. Moreover, two ionic

determinants are defined: |ψaψa | and |ψbψb|. The simplest VB wave function for

the lowest singlet state has the form

Ψ cov(0, 0) = 1√
2

(
|ψaψb| + |ψbψa |

)
(3.12a)

which can also be written in terms of the symmetry-adapted, delocalized orbitals φ1

and φ2:

Ψ cov(0, 0) = 1√
2

(
|φ1φ1| − |φ2φ2|

)
(3.12b)

The latter corresponds to a two-configuration CI wave function analogous to Eq. 3.7,

be it with fixed coefficients c1 = −c2 = 1/
√

2. Note that it is tempting to charac-

terize 3.12a as an open shell wave function, while the same wave function in 3.12b

takes the form of a superposition of two closed shell determinants. The simplest VB

representation for the MS = 0 component of the lowest spin-triplet state is

Ψ cov(1, 0) = 1√
2

(
|ψaψb| − |ψbψa |

)
(3.13a)

http://dx.doi.org/10.1007/978-3-319-22951-5_4
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which in terms of φ1 and φ2 lead to Ψ 12(1, 0) of Eq. 3.2c. The other two S = 1

components are

Ψ cov(1, 1) = |ψaψb| (3.13b)

and

Ψ cov(1,−1) = |ψaψb| (3.13c)

which written in terms of φ1 and φ2 yield the familiar Slater determinants |φ1φ2|
(Eq. 3.2a) and |φ1φ2| (Eq. 3.2b).

3.3 Demonstrate the equivalence of the wave functions of Eqs. 3.12a and

3.12b, and those of Eqs. 3.2 and 3.13.

This simple Valence Bond ansatz with a common set of localized orthonormal

orbitals for both states leads to a separation of the energy expectation values for

singlet and triplet that reads

Ecov
S − Ecov

T = 2〈ψaψb|
1

r12
|ψbψa〉 = 2Kab (3.14)

which is positive because the exchange integral

Kab = 〈ψa(1)ψb(1)| 1

r12
|ψa(2)ψb(2)〉 � 0

3.4 Calculate the energy expectation values of the wave functions given in

Eqs. 3.12a and 3.13a to demonstrate that Ecov
S − Ecov

T = 2Kab.

2Kab is traditionally called the direct exchange. It favours high spin states. In this

two electron case, treated with only covalent VB determinants, it favours S = 1 over

S = 0. It is interesting to note that this positive energy difference between singlet

and triplet spin states can be seen as a manifestation of Hund’s rule for two electrons

in two orbitals, be it in this case not for two degenerate orbitals on one site, but for

two degenerate orbitals at two separate sites. In the single site case, i.e. for atoms,

this Hund rule is almost always correct, however, in the two site case the sign of

ES − ET is often wrong. The simple covalent VB model using localized orthogonal

orbitals is simply too crude.

The singlet VB wave function can be improved variationally by mixing in an ionic

term

Ψ ion(0, 0) = 1√
2

(
|ψaψa | + |ψbψb|

)
(3.15)
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leading to

Ψ (0, 0) = CcovΨ
cov(0, 0) + CionΨ

ion(0, 0) (3.16)

which is the same as the CI wave function in Eq. 3.7, but now written in terms of

the localized orthogonal orbitals ψa and ψb. Again, just as in the MO picture, there

is no way to improve the S = 1 wave functions. A balanced VB treatment uses the

wave functions of Eq. 3.16 for S = 0 and of Eq. 3.13 for S = 1, MS = 0.

We can now draw the following conclusions:

• If we limit ourselves to using (apart from the doubly occupied orbitals) only

two mutually orthogonal orbitals, either bonding and antibonding φa and φb, or

localized ψa and ψb, then the best wave function for the lowest triplet state is

the one given in Eq. 3.2 or, equivalently, 3.13a and the best wave function for the

lowest singlet state is given in Eq. 3.7 or, equivalently, 3.16.

• It makes no difference whether we use MO theory and optimize the ratio c1/c2 in

3.7 or use VB theory and optimize the ratio Ccov/Cion in 3.16, both procedures

lead to one and the same S = 0 wave function.

• For Ψ (0, 0) to become the ground state, the energy lowering due to mixing in of

the ionic terms has to exceed the direct exchange 2Kab. This energy lowering is

traditionally called the kinetic exchange. We will see in Chap. 4 that the kinetic

exchange equals, to good approximation,1 4t2
ab/(Jaa − Jab) with the transfer

integral tab defined by tab = 〈ψaψa |Ĥ |ψaψb〉.
Valence Bond theory using localized nonorthogonal orbitals: In the above we have

used orthogonal localized orbitals ψa and ψb. What if we remove the orthogonality

restriction? This nonorthogonal VB approach appeared for the first time in the work

of Heitler and London [1]. It forms also the basis of the Kahn–Briat model discussed

in the next chapter. We define normalized localized orbitals φa and φb with mutual

overlap Sab = 〈φa |φb〉. Then we write the covalent singlet wave function in terms of

normalized Slater determinants that are now built from the nonorthogonal φa and φb:

Ψ (0, 0) = 1√
2 + 2S2

ab

(
|φaφb| + |φbφa |

)
(3.17)

Of course, we can formally express φa and φb in terms of our orthogonal localized

orbitals ψa and ψb:

φa = N (ψa + νψb) φb = N (ψb + νψa)

with N = 1√
1 + ν2

and Sab = 2ν

1 + ν2
(3.18)

Once we have optimized ν or, equivalently, Sab, to obtain the lowest energy possible

for the singlet wave function in Eq. 3.18 we have retrieved once more our familiar

1This expression is reasonable for Jaa − Jab ≫ tab, see Chap. 4.

http://dx.doi.org/10.1007/978-3-319-22951-5_4
http://dx.doi.org/10.1007/978-3-319-22951-5_4
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singlet wave function shown earlier in Eqs. 3.7 and 3.16. Instead of introducing an

extra variational freedom by adding ionic contributions with optimized weight, the

extra freedom is now obtained by allowing the localized orbitals to be mutually

nonorthogonal and optimizing their overlap. Not surprisingly, we get no additional

improvement if we now include ionic terms, so this VB approach with nonorthogonal

orbitals gives no improvement as compared to the VB approach with orthogonal

orbitals and ionic terms, but the nonorthogonal VB approach does allow us to write

the singlet wave function Ψ (0, 0) in terms of a covalent contribution alone.

3.5 Show that the S = 1, MS = 0 functions

1√
2 + 2S2

(
|φaφb| + |φbφa |

)
and

1√
2

(
|ψaψb| + |ψbψa |

)

are identical. Hint: rewrite the first wave function in terms of orthogonal orbitals

using Eq. 3.18.

It is not difficult to show that in order to make the singlet state the ground state, the

magnetic orbitals have to overlap considerably. However, atomic magnetic orbitals

such as first row transition metal 3d orbitals are quite compact and their mutual over-

lap, especially in compounds where they are separated by bridging ions, is negligible.

This suggests that in such systems only the direct exchange, would play a role, lead-

ing to parallel or ferromagnetic spin coupling. But in reality we have many systems

whose nearest neighbour paramagnetic ions have antiferromagnetic spin coupling.

Already in 1934 Kramers attempted to explain the magnetic interaction in antifer-

romagnetic ionic solids, by noting that it is possible to have a two-center spin coupling

that is mediated by the bridging non-magnetic atoms. He called this bridge-mediated

spin coupling superexchange. In 1959 Anderson described the physical basis respon-

sible for the generation of this superexchange: It is simply that spin-paired elec-

trons can gain energy by spreading into nonorthogonal overlapping orbitals, whereas

unpaired electrons cannot. The model of Anderson is easiest illustrated by consid-

ering again a centrosymmetric system of two magnetic ions A and B, for example

Cu2+ ions, with (apart from electrons in double occupied orbitals) one unpaired elec-

tron in a 3d-orbital, which are separated by a closed shell anion such as Cl− or O2−

with (formally) three doubly occupied valence p orbitals. We denote the relevant

atomic 3d functions χa and χb. It turns out that for structural and symmetry reasons

commonly only one of the three valence p orbitals plays a role, so we consider only

one bridging atomic function χh . We now allow the localized magnetic orbitals to

have optimum admixture of the bridging ligand function:

φa = caχa + chχh φb = cbχb + c′
hχh (3.19)

as illustrated in Fig. 3.4.
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Fig. 3.4 In the left column:

The localized magnetic

orbitals (χa and χb) and the

bridging atomic function

(χh , which has small

orthogonalization tails on the

magnetic centers). On the

right: Localized magnetic

orbitals with optimally

admixed ligand

delocalization (φa and φb)

This gives the magnetic orbitals non-vanishing amplitudes also at the intermediate

ligands and the exchange effects therefore need no longer be small. In quantum the-

oretical studies the name Anderson model is commonly associated with a CASSCF

approach, in which the active electrons are the magnetic electrons, the active orbitals

are predominantly the magnetic functions, but they are optimized in the SCF process.

This guarantees that they contain the optimum amount of intermediate ligand char-

acter, so that the superexchange is accounted for.

3.2 Model Spin Hamiltonians for Isotropic Interactions

Under the assumption of a common spatial part of the wave function, the lowest

energy levels of the two-electron/two-orbital problem discussed in the previous

section can be described with a model Hamiltonian that only contains spin oper-

ators. Starting from a general expression of the interaction of two spatially separated

spin moments S1 and S2 of arbitrary strength (not limiting ourselves to the S = 1
2

case discussed before), the spin Hamiltonian can be written in terms of local spin

operators Ŝ1 and Ŝ2

Ĥ =
(

Ŝx,1 Ŝy,1 Ŝz,1

)
⎛
⎝

Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

⎞
⎠

⎛
⎝

Ŝx,2

Ŝy,2

Ŝz,2

⎞
⎠ (3.20)
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This expression is greatly simplified by orienting the system along the magnetic axis

frame making all non-diagonal elements of the A-tensor equal to zero.

Ĥ = Axx Ŝx,1 Ŝx,2 + Ayy Ŝy,1 Ŝy,2 + Azz Ŝz,1 Ŝz,2 (3.21)

It is common practice to divide the interaction in a part that does not depend on the

spatial orientation of spin—the isotropic part, parametrized by the scalar J—and

another part that models the anisotropy of the interaction parametrizing it with a

diagonal tensor D.

Ĥ = −J
(
Ŝx,1 Ŝx,2 + Ŝy,1 Ŝy,2 + Ŝz,1 Ŝz,2

)

+ Dxx Ŝx,1 Ŝx,2 + Dyy Ŝy,1 Ŝy,2 + Dzz Ŝz,1 Ŝz,2 (3.22)

The minus sign in front of J is by convention, but be aware that other definitions are

often used in the literature. Negative J -values indicate antiferromagnetic coupling

and positive values are characteristic of ferromagnetic interactions in the definition

that we use here.

3.2.1 Heisenberg Hamiltonian

For the moment, we leave aside the anisotropic part of the interaction and concentrate

on the isotropic part. The equation can then be written in the following from

Ĥ = −J Ŝ1 · Ŝ2 (3.23)

which is known as the Heisenberg or Heisenberg-Dirac-van Vleck Hamiltonian.

For systems with two magnetic sites, the eigenvalues of the Hamiltonian are easily

derived by rewriting the product of local operators using the relation

Ŝ2 = (Ŝ1 + Ŝ2)
2 = Ŝ2

1 + Ŝ2
2 + 2Ŝ1 · Ŝ2 (3.24)

from this follows

Ŝ1 · Ŝ2 = 1

2
(Ŝ2 − Ŝ2

1 − Ŝ2
2 ) (3.25)

which leads to an alternative formulation of the Heisenberg Hamiltonian

Ĥ = −1

2
J (Ŝ2 − Ŝ2

1 − Ŝ2
2 ) (3.26)

for which the eigenvalues can be written down directly
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E(S) = −1

2
J
(
S(S + 1) − S1(S1 + 1) − S2(S2 + 1)

)
(3.27)

3.6 Calculate the eigenvalues of the Heisenberg Hamiltonian of the spin eigen-

functions with maximum and minimum spin moment of a dimeric system with

S1 = S2.

Since the reference point of energy can be chosen arbitrarily, the expression for the

eigenvalues is usually simplified by adding a constant factor equal to − 1
2

J
(
S1(S1 +

1) + S2(S2 + 1)
)
, leading to

E(S) = −1

2
J S(S + 1) (3.28)

From this it is easily derived that the difference between two subsequent eigenvalues

is given by

E(S − 1) − E(S) = J S (3.29)

where S runs from S1 + S2 to |S1 − S2|. This regular Landé pattern gives the exact

energy differences as long as the interaction with excited electronic configurations

is negligible and is the basis for extracting magnetic coupling parameters from elec-

tronic structure calculations. The generalization of the Heisenberg Hamiltonian to

multiple sites is straightforward

Ĥ =
∑

i> j

−Ji j Ŝi Ŝ j (3.30)

In systems with multiple magnetic sites, the number of energy differences between

the different spin functions is not always enough to determine all the J -values. An

obvious example is the three-center/three-electron case as depicted in Fig. 3.5. The

Hamiltonian has three different J -values while the quartet and the two doublet states

only define two energy differences. The effective Hamiltonian theory described in

Chap. 1 is a more general approach to extract J -values, because it not only uses

the energies but also information contained in the wave function. To illustrate the

procedure we first treat a simple biradical model with two S = 1
2

spins and after that

focus on the three center problem.

The following results for the singlet and triplet states were obtained from an ab

initio calculation on a dimer with two S = 1
2

centers:

http://dx.doi.org/10.1007/978-3-319-22951-5_1
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Fig. 3.5 Three center

S = 1/2 system with a

quartet (Q) and two doublets

(D1, D2). The three J -values

cannot be determined from

the two energy differences

ΨS = 0.6776|φ1φ̄2| − 0.6776|φ̄1φ2| + 0.1287|φ1φ̄1| + 0.1287|φ2φ̄2| + . . .

ΨT = 0.7029|φ1φ̄2| + 0.7029|φ̄1φ2| + . . .

ES = −29.441750 Eh

ET = −29.438299 Eh

Here, φ1 and φ2 are basis functions localized on site 1 and 2, respectively. The

model space of the Heisenberg Hamiltonian is spanned by the MS = 0 determinants

|φ1φ̄2| and |φ̄1φ2| and the matrix representation of the Hamiltonian can be obtained

by calculating the matrix elements 〈φ1φ̄2|Ĥ |φ1φ̄2〉 and 〈φ1φ̄2|Ĥ |φ̄1φ2〉. For this

purpose, we first substitute the Ŝx and Ŝy operators by the ladder operators Ŝ±

Ĥ = −J

(
1

2

{
Ŝ+

1 Ŝ−
2 + Ŝ−

1 Ŝ+
2

}
+ Ŝz,1 Ŝz,2

)
(3.31)

The action of the different operators on the model space determinants gives:

Ŝ+
1 Ŝ−

2 |φ1φ̄2| = 0 Ŝ+
1 Ŝ−

2 |φ̄1φ2| = |φ1φ̄2|
Ŝ−

1 Ŝ+
2 |φ1φ̄2| = |φ̄1φ2| Ŝ−

1 Ŝ+
2 |φ̄1φ2| = 0

Ŝz,1 Ŝz,2|φ1φ̄2| = −1

4
|φ1φ̄2| Ŝz,1 Ŝz,2|φ̄1φ2| = −1

4
|φ̄1φ2|

(3.32)

and from this the matrix elements can directly be written down:

〈φ1φ̄2|Ĥ |φ1φ̄2〉 = −J 〈φ1φ̄2|
(

0 + 1

2
|φ̄1φ2〉 − 1

4
|φ1φ̄2〉

)
= 1

4
J

〈φ1φ̄2|Ĥ |φ̄1φ2〉 = −J 〈φ1φ̄2|
(

0 + 1

2
|φ1φ̄2〉 + 0

)
= −1

2
J (3.33)

In matrix form:
|φ1φ2〉 |φ1φ2〉

〈φ1φ2| 1
4

J − 1
2

J

〈φ1φ2| − 1
2

J 1
4

J

(3.34)
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The diagonalization of this matrix gives E1 = 3
4

J and E2 = − 1
4

J and the cor-

responding eigenvectors are Ψ1 = 1√
2

{
|φ1φ̄2| − |φ̄1φ2|

}
and Ψ2 = 1√

2

{
|φ1φ̄2|+

|φ̄1φ2|
}
. Note that the eigenfunctions of the Heisenberg Hamiltonian are multideter-

minantal functions; linear combinations of the basis determinants |φ1φ̄2| and |φ̄1φ2|.
In the next step, we build an effective Hamiltonian that connects the ab initio results

with the model Hamiltonian. In the first place the wave functions are projected on

the model space and orthonormalized:

Projections: Ψ̃T = 0.7029|φ1φ̄2| + 0.7029|φ̄1φ2|
Ψ̃S = 0.6776|φ1φ̄2| − 0.6776|φ̄1φ2|

Norms: 〈Ψ̃T |Ψ̃T 〉 = 0.70292 + 0.70292 = 0.9881

〈Ψ̃S|Ψ̃S〉 = 0.67762 + 0.67762 = 0.9183

Normalized projections: Ψ̃ N
T = 0.707107|φ1φ̄2| + 0.707107|φ̄1φ2|

Ψ̃ N
S = 0.707107|φ1φ̄2| − 0.707107|φ̄1φ2|

〈Ψ̃ N
T |Ψ̃ N

S 〉 = 0

In the next step, the effective Hamiltonian is constructed by substituting these normal-

ized projections and the corresponding energies in the Bloch equation as discussed

in Sect. 1.4.

Ĥ eff =
∑

i

|Ψ̃ N
i 〉Ei 〈Ψ̃ N

i | (3.35)

The basis of the effective Hamiltonian is the same as for the Heisenberg Hamil-
tonian. The use of orthonormal projections ensures that the effective Hamiltonian is

hermitian with 〈φ1φ̄2|Ĥ eff |φ̄1φ2〉 = 〈φ̄1φ2|Ĥ eff |φ1φ̄2〉.

〈φ1φ̄2|Ĥeff |φ1φ̄2〉 = 〈φ1φ̄2|
{
0.707107|φ1φ̄2〉 + 0.707107|φ̄1φ2〉

}
· −29.438299

·
{
0.707107〈φ1φ̄2| + 0.707107〈φ̄1φ2|

}
|φ1φ̄2〉

+ 〈φ1φ̄2|
{
0.707107|φ1φ̄2〉 − 0.707107|φ̄1φ2〉

}
· −29.441751

·
{
0.707107〈φ1φ̄2| − 0.707107〈φ̄1φ2|

}
|φ1φ̄2〉

= 0.7071072〈φ1φ̄2|φ1φ̄2〉 · −29.438299 + 0.7071072〈φ1φ̄2|φ1φ̄2〉·
− 29.441751 = 0.5 {−29.438299 − 29.441751} = −29.440025 Eh

(3.36)

The other diagonal matrix element, 〈φ̄1φ2|Ĥ eff |φ̄1φ2〉, has the same numerical value.

The off-diagonal matrix element is calculated by the same procedure:

〈φ1φ̄2|Ĥ eff |φ̄1φ2〉 = 0.707107〈φ1φ̄2|φ1φ̄2〉 · −29.438299 · 0.707107〈φ̄1φ2|φ̄1φ2〉
+0.707107〈φ1φ̄2|φ1φ̄2〉 · −29.438299 · −0.707107〈φ̄1φ2|φ̄1φ2〉

= 0.5(−29.438299 + 29.441751) = 0.001726 Eh (3.37)

http://dx.doi.org/10.1007/978-3-319-22951-5_1
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Finally, the numerical effective Hamiltonian becomes:

|φ1φ2〉 |φ1φ2〉

〈φ1φ2| −29.440025 0.001726

〈φ1φ2| 0.001726 −29.440025

(3.38)

The two Hamiltonians (Eqs. 3.34 and 3.38) can only be compared when they have

the same zero of energy. Therefore the diagonal matrix elements of the Heisen-

berg Hamiltonian are shifted by − 1
4

J and those of the effective Hamiltonian

by −29.440025 Eh. The comparison shows that there is a one-to-one correspon-

dence between both matrices and that the magnetic coupling parameter is equal to

−2 × 0.001726 Eh = −757.6 cm−1. In this simple case, the eigenfunctions of the

Heisenberg Hamiltonian are the same as those of Ŝ2; Ψ1 and Ψ2 are directly the

singlet and triplet functions, respectively. Hence J is also given by the difference

of the singlet and triplet energies: J = ES − ET = −29.441751 − −29.43830 =
−0.003452 Eh = −757.6 cm−1.

However, the extraction strategy based on effective Hamiltonians is generally

applicable and in cases where the energies of the different spin states do not provide

enough information to determine all the magnetic coupling parameters one necessar-

ily has to rely on the effective Hamiltonian procedure. The three different magnetic

coupling strengths J12, J13 and J23 of the three center/three electron case of Fig. 3.5

cannot be extracted from the two energy differences defined by the quartet and the

two doublets states. Instead an effective Hamiltonian has to be constructed from the

ab initio wave functions and compared to the matrix representation of the Heisenberg

Hamiltonian

Ĥ = −J12 Ŝ1 · Ŝ2 − J13 Ŝ1 · Ŝ3 − J23 Ŝ2 · Ŝ3 (3.39)

|φ1φ2φ3〉 |φ1φ2φ3〉 |φ1φ2φ3〉
〈φ1φ2φ3| 1

4
(J12 + J13 − J23) − 1

2
J12 − 1

2
J13

〈φ1φ2φ3| − 1
2

J12
1
4
(J12 − J13 + J23) − 1

2
J23

〈φ1φ2φ3| − 1
2

J13 − 1
2

J23
1
4
(−J12+ J13+ J23)

(3.40)

The quartet spin function Q = |ααα〉 is an eigenfunction of the Heisenberg

Hamiltonian of Eq. 3.39 with eigenvalue − 1
4
(J12 + J13 + J23). However, the doublet

functions D1 and D2 defined in Eq. 1.41 are not:

Ĥ
{
|ααβ〉 − |βαα〉

}
= −1

4
(J12 − J23)

(
|ααβ〉 + |βαα〉

)

+ 3

4
J13

(
|ααβ〉 − |βαα〉

)
+ 1

2
(J12 − J23)|αβα〉 (3.41)

http://dx.doi.org/10.1007/978-3-319-22951-5_1
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Ĥ
{
2|αβα〉 − |ααβ〉 − |βαα〉

}
=

(
J12 + J23 − 1

2
J13

)
|αβα〉

+
(1

4
J12 − 5

4
J23 + 1

4
J13

)
|ααβ〉 +

(
− 5

4
J12 + 1

4
J23 + 1

4
J13

)
|βαα〉

(3.42)

In the special case of J12 = J23 = J1; J13 = J2, these two expression reduce to

Ĥ D1 = 3

4
J2 D1 (3.43a)

Ĥ D2 =
(
J1 − 1

4
J2

)
D2 (3.43b)

and the two J -values can be directly extracted from the energy differences of the

quartet and doublet states using the relations

J1 = 2

3

(
E(D2) − E(Q)

)
(3.44a)

J2 = J1 −
(
E(D2) − E(D1)

)
(3.44b)

3.2.2 Ising Hamiltonian

The elimination of the anisotropic part in Eq. 3.22 leads to the Heisenberg Hamil-

tonian for isotropic magnetic interactions. The spins are considered as co-linear

vectors whose principal quantization axis has no spatially preferred orientation. An

even simpler model Hamiltonian can be obtained by putting Axx and Ayy to zero in

Eq. 3.21. Then, the spin reduces to a classical vector whose orientation in space is

not defined and the resulting model Hamiltonian describes the isotropic coupling of

two (anti-)parallel spins. Replacing Azz by −J, the following expression is obtained

Ĥ = −J Ŝz,1 Ŝz,2 (3.45)

which is known as the Ising Hamiltonian. The big advantage of this simpler Hamil-

tonian is the fact that the eigenfunctions correspond to monodeterminantal functions,

and therefore, this Hamiltonian can be used to determine the magnetic coupling

strength from density functional theory (DFT) calculations and in extended systems

treated in the periodic approximation. This is further discussed in the next chapters

in Sects. 4.3.4 and 6.3. For now, we will restrict ourselves to some formal properties

of the Ising Hamiltonian and a comparison with the Heisenberg Hamiltonian. To

determine the magnetic coupling of the two-electron/two-orbital problem, two func-

tions are needed describing parallel and anti-parallel coupling, |φ1φ2| and |φ1φ̄2|.
By acting with the Ising Hamiltonian on these two function we get

http://dx.doi.org/10.1007/978-3-319-22951-5_4
http://dx.doi.org/10.1007/978-3-319-22951-5_6
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−J Ŝz,1 Ŝz,2|φ1φ2| = −1

4
J |φ1φ2| (3.46)

−J Ŝz,1 Ŝz,2|φ1φ̄2| = 1

4
J |φ1φ̄2| (3.47)

Assuming that the spatial part is identical in both functions (only spin degrees of

freedom are taken into account for the moment), the energy difference between the

two determinants gives an estimate of the magnetic coupling through EL S − EH S =
1
2

J . Here LS refers to the determinant with antiparallel alignment of the spins and HS

to the parallel alignment. This expression is easily generalized to a pair of arbitrary

spins

EL S − EH S = 2S1S2 J (3.48)

In any real case, the orbital part plays an important role and the influence of this on the

extraction of the J -value from calculations will be discussed in the next chapter. The

dimeric system S1 = S2 = 1
2

only has HS and LS states, but for systems with higher

spins there are several intermediate states. Remembering that the eigenfunctions

of the Ising Hamiltonian are not necessarily spin eigenfunctions, we use a label to

characterize the eigenfunctions that consists of the MS-value of the two magnetic

centers. Then the HS determinant is |± 1
2
,± 1

2
〉 and the LS state is represented as

|± 1
2
,∓ 1

2
〉. For a system with two S = 1 spins, nine different determinants can

be defined. The HS and LS states are separated by 2J as follows from the above

equation, but in between these two, there is a set of five determinants with MS = 0

functions on one or both magnetic centers with an expectation value equal to zero.

Fig. 3.6 Comparison of the Heisenberg and Ising eigenvalues for a dimeric system with S1 = S2 =
1
2

(left) and 1 (right). The levels in gray are eigenfunctions of the Ising hamiltonian, but lie at much

higher energy when the spatial part of the wave function is also considered
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In the general case of S1 �= S2, the gap between the lowest state and the group of

degenerate first excited states of the Ising Hamiltonian is given by the value of the

smallest spin. Figure 3.6 summarizes the energy levels of the Heisenberg and Ising

Hamiltonians for the two systems.

3.2.3 Comparing the Heisenberg and Ising Hamiltonians

Table 3.1 compares some formal properties of the Ising and the Heisenberg Hamil-

tonian for symmetric dimeric systems with different spin moments. The spectral

width W—defined as the difference between the lowest and highest eigenvalue—

increases with the spin moment for both Hamiltonians. In absolute values the dif-

ference between Ising and Heisenberg grows larger, but it should be noted that the

relative difference is significantly smaller for the system with S = 5/2 (16.7 %) than

for the S = 1/2 case (50 %). For antiferromagnetic coupling (negative J ), the first

excited state of the Heisenberg Hamiltonian is always a threefold degenerate triplet

state with a relative energy equal to J . In the Ising model, the gap depends linearly on

the spin moment. For S = 1/2, the gap is smaller than in the Heisenberg model, but

for the S = 5/2 system the separation of the ground state and the first excited state is

much larger in the Ising model. In the case of ferromagnetic interaction, the spectrum

of the Ising Hamiltonian is simply inverted, being symmetric around E = 0. This

is not the case for the Heisenberg Hamiltonian. Except for the S = 1/2 system, the

gap between ground and first excited state is larger, as is the degeneracy of the latter.

3.7 Complete the Table for atoms with six and seven unpaired electrons as

can be found in the rare earth metal ions.

Before closing this section, a word of warning is needed concerning all the eigen-

states of the Ising Hamiltonian between the ones with the highest and lowest energy.

Table 3.1 Spectral width (W), gap (∆) and degeneracy of the first excited state of the Heisenberg

and Ising Hamiltonian for a dimeric system with S1 = S2 = 1/2 . . . 5/2 and J = ±1 K

Spin Heisenberg Ising

W ∆ Degen. W ∆ Degen.

AF F AF F

1/2 1 1 1 3 1 1/2 1/2 2

1 3 1 2 3 3 2 1 5

3/2 6 1 3 3 5 9/4 3/2 4

2 10 1 4 3 7 4 2 4

5/2 15 1 5 3 9 25/2 5/2 4
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These eigenstates share the common feature that at least one of the local MS values

is not equal to ±Mmax
S . For example the Ising eigenstates in Fig. 3.6 with energy J

have either on the left or the right (or both) centers an αβ determinant. As soon as

one adds the spatial part to the wave function, these determinants are raised in energy

since they lack the stabilization by the exchange integral K present in the energy

expression of the |αα| and |ββ| determinants. Consequently, in any practical appli-

cation focused on magnetic interactions one should only consider the eigenstates of

the Ising Hamiltonian with MS = 0 or Mmax
S .

3.3 From Micro to Macro: The Bottom-Up Approach

In Sect. 2.3.2, we have shown how the temperature dependence of the magnetic

susceptibility can be calculated based on the knowledge of the energy levels of

the ion in a magnetic field. Substituting an analytical expression in the van Vleck

equation, we derived the Curie law for paramagnetic systems without interaction

between the magnetic centers. The same strategy can be followed for systems in

which the interaction between the magnetic centers cannot be neglected, such as

those discussed in this chapter so far. At difference with the derivation of Curie’s

law for isolated magnetic ions, we no longer can ignore the excited states and have

to substitute E (0) by Eq. 3.28 in the van Vleck equation (Eq. 2.33). Using the same

expression as before for E (1) we obtain

χ =
NAµ2

B g2
e

kT

Smax∑
S=Smin

S∑
MS=−S

M2
S exp(J S(S + 1)/2kT )

Smax∑
S=Smin

S∑
MS=−S

exp(J S(S + 1)/2kT )

(3.49)

which reduces to

χ =
NAµ2

B g2
e

3kT

Smax∑
S=Smin

S(S + 1)(2S + 1) exp(J S(S + 1)/2kT )

Smax∑
S=Smin

(2S + 1) exp(J S(S + 1)/2kT )

(3.50)

by using Eq. 2.35. This so-called Bleaney–Bowers equation [2], which is normally

used to fit experimental data to extract numerical values for J and ge. The other way

around is of course also possible; the equation can also be used to generate the χ(T )

from an ab initio calculation of the microscopic parameters, J and sometimes ge.

http://dx.doi.org/10.1007/978-3-319-22951-5_2
http://dx.doi.org/10.1007/978-3-319-22951-5_2
http://dx.doi.org/10.1007/978-3-319-22951-5_2
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3.8 Confirm that the Bleaney–Bowers expression for a dimer with S1 = S2 =
1
2

equals

χ =
2NAµ2

B g2
e

kT
(
3 + exp(−J/kT )

) .

This is rather trivial as long as dimeric systems are concerned, because there is

actually only one parameter in the analytical expression of χ and no new information

is obtained by calculating χ(T ) from the theoretical estimates of the J -value. The

situation is different when polynuclear systems are considered. Most importantly,

there are not many systems for which an exact expression of χ has been derived. In

addition to the above stated expression for binuclear complexes, Boča derived expres-

sion for tri- and tetra-nuclear systems [3], which turn out to be rather lengthy. The

situation is even more complicated for extended systems, which have (in principle)

an infinite number of interacting magnetic centers.

In fact, the one-dimensional uniform Heisenberg chain is the only extended sys-

tem for which an exact solution has been derived making use of the Bethe Ansatz [4].

Bonner and Fisher extended this T = 0 solution to finite temperatures by extrap-

olating the results obtained for small chains to chains of infinite length [5]. The

Bonner-Fisher expression is still widely used to fit magnetic susceptibility data to

determine the magnetic coupling strength in systems with a magnetic chain-like

topology.

χ(T ) =
NAµ2

B g2
e

kT

A + Bx + Cx2

1 + Dx + Ex2 + Fx3
(3.51)

where the values of A–F are given in Appendix D and x = |J |/2kT . Similar

strategies were used to derive expressions for χ(T ) in magnetic chains in which the

magnetic centers alternately interact through J1 and J2 [6]. Defining the Hamiltonian

as

Ĥ = −J
∑

i=1

(
Ŝ2i · Ŝ2i+1 + α Ŝ2i · Ŝ2i−1

)
(3.52)

with the same quadratic/cubic equation as for the uniform Heisenberg chain for which

A-F are also listed in the Appendix. Note that the Bonner-Fisher expression is only

valid for 2kT/|J | > 0.5 and hence the low-temperature data should not be included

in the fitting procedure. Improvements upon the Bonner-Fisher expression for low

temperatures have been published [7] and many more expressions for the magnetic

susceptibility can be found in Ref. [8].

Magnetic susceptibility data in two-dimensional extended systems are often inter-

preted based on the work of Rushbrooke and Wood [9], who derived an expression

for χ(T ) valid for high temperatures. The discovery of the high Tc superconductors

renewed the interest in the 2D Heisenberg lattices and the original work was extended

to lower temperatures. A workable expression for a uniform lattice—characterized
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Fig. 3.7 Some examples of two-dimensional magnetic lattices for which analytical expressions

have been derived to fit J from the temperature dependence of the magnetic susceptibility

by one single J , see Fig. 3.7 left—was given by Woodward and co-workers and reads

χ(T ) =
NAµ2

B g2
e

kT

5∑

n=1

an J/kT

bn J/kT
(3.53)

More general expressions were derived by Curély for S �= 1/2, for 2D lattices with

different magnetic interaction paths (Fig. 3.7 middle) and to hexagonal (or honey-

comb) lattices (Fig. 3.7 right) [10, 11].

When no analytical expression can be used to fit χ(T ), the experimental data

are interpreted by defining a magnetic model with the magnetic interactions that are

considered a priori to be the most important ones. The corresponding Heisenberg

Hamiltonian is then diagonalized and the resulting eigenvalues are substituted in

the van Vleck equation. The J -values of the magnetic model are adjusted to give

an optimal fit of the experimental data. However, one has to be aware that a multi-

parameter fit can have several solutions of equal quality and that this way of deriving

experimental J -values can be subject to uncertainties. Actually, this is where com-

putations can be helpful to discern the important interactions from less important

ones and determine the sign and order of magnitude of the interactions. This would

in principle lead to a well-founded magnetic model that will lead to reliable J -values

from the fitting procedure.

A closely related procedure allows theoreticians to take the full journey from

microscopic to macroscopic in a three-step strategy [12]. In the first stage, one calcu-

lates as exhaustive as possible the interactions among the different magnetic centers.

This should not be restricted to nearest neighbors and preferably also include three- or

four-body interactions, see Sect. 3.4. Secondly, a magnetic model is defined by writ-

ing down the Heisenberg Hamiltonian with the most important interactions. When

dealing with an extended system, periodic boundary conditions can be applied. This is

best illustrated taking the 1D Heisenberg chain as example. As illustrated in Fig. 3.8,

the first center in the chain not only interacts with center 2 on the right, but also with

the last center in the chain. In this way, there is no open end in the chain, exactly as in

an infinite 1D chain. The topology of the model is actually a ring, but this turns out
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Fig. 3.8 Periodic boundaries in a one-dimensional chain. The central unit of five magnetic centers

is repeated on the left and the right by introducing the interaction between center 1 and 5. The

actual model is a closed ring of five centers

to be a very accurate representation of the 1D chain provided a large enough number

of centers is considered. Finally, the Hamiltonian is diagonalized and the resulting

eigenvalues are substituted in the van Vleck equation to obtain the magnetic sus-

ceptibility as function of the temperature from a rigorous ab initio treatment. The

eigenvalues can of course also be used to derive any other macroscopic property such

as the specific heat at constant magnetic field (CB) by using the appropriate equation

from standard statistical mechanics.

Inter- and intramolecular interactions: Generally speaking, transition metal based

magnetic materials have large intramolecular interactions and weaker intermolecular

interactions. Nevertheless, the control and understanding of the macroscopic prop-

erties depends critically on the knowledge of both types of interactions. Imagine a

building block with two antiferromagnetically coupled spin moments as schemati-

cally depicted in the upper panel of Fig. 3.9. The interaction of the spin moments

on the transition metals proceeds through the bridging ligand as will be profoundly

analyzed in Chap. 5 and is also known as a through-bond interaction. Using transi-

tion metals with different spins (S1 �= S2) causes that the unit has a net magnetic

moment, despite the antiferromagnetic nature of the interaction. This is known as

ferrimagnetism. The middle panel shows that a proper choice of the external ligands

can link these building blocks into an infinite chain of antiferromagnetically cou-

pled magnetic centers. Such entity is of course a very interesting object due to the

net magnetic moment, however to take profit of this, one has to stick these chains

together in a three-dimensional structure such that the chains are ferromagnetically

coupled to each other as shown in the lower panel. This interchain coupling is typ-

ically much weaker as it does not involve magnetic centers that are connected by

(covalent) bonds, and is usually referred to as through-space interaction. By carefully

choosing the magnetic centers and the coordinating ligands, Kahn and co-workers

were able to design and synthesize molecular-based magnets, initially with rather

low critical temperatures for long-range order [13], but later many compounds have

been reported with long-range order at much higher temperatures.

A different situation is encountered in most magnetic materials containing organic

radicals. Typically, the building units are moieties with one unpaired electron, either

http://dx.doi.org/10.1007/978-3-319-22951-5_5
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Fig. 3.9 Upper

Antiferromagnetic coupling

of two spins intermediated

by a diamagnetic bridge

(through-bond interactions).

Middle After linking the

units, a one-dimensional

ferrimagnetic chain is

obtained. Lower The 1D

chains are linked together

through weaker

intramolecular

(through-space) interactions,

indicated by dotted lines (for

simplicity only two

dimensions are shown)

localized on a few atoms of the radical (N and O in nitroxides, central C in triaryl-

methyl, for example) or delocalized over a large part of the molecule (conjugated

π -systems such as phenalenyl). The magnetic properties of these radical-based mate-

rials are determined by the through-space interactions between the units.

3.3.1 Monte Carlo Simulations, Renormalization

Group Theory

There are powerful techniques to determine a few selected eigenvalues and eigenvec-

tors of matrices of huge dimensions with millions or even billions of columns. This

can be very efficiently exploited to calculate the electron correlation effects in the

energy and wave function in electronic structure calculations where normally only

the ground state and a few excited states are of interest. However, the accurate calcu-

lation of macroscopic properties such as the temperature dependence of the magnetic

susceptibility cannot be done using only a few low lying eigenstates, but requires

a much larger set. The eigenvalue spectrum of the Heisenberg Hamiltonian is very
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Table 3.2 Dimension of the Heisenberg Hamiltonian for a system with N magnetic sites with

S = 1
2

and 1

S N = 2 3 4 5 6 7 8 9 10 11 12

1
2

2 3 6 10 20 35 70 126 252 462 924

1 3 7 19 51 141 393 1107 3139 8953 25648 73764

dense and many levels are thermally occupied. Since selecting a balanced subset of

states is nearly impossible, it is preferable to perform a full diagonalization of the

Heisenberg Hamiltonian and include all states in the calculation of the macroscopic

properties of the material under study.

However, the dimension g of the Heisenberg Hamiltonian grows rapidly with the

number of magnetic sites N and the spin moment of these sites. For a model with all

spin moments equal to S = 1
2

the dimension is given by (Table 3.2)

g = (2N S)!
(
(N S)!

)2
if N is even

g =
(
2(N S + 1/2)

)
!

2
(
(N S + 1/2)!

)2
if N is odd (3.54)

and for lattices with S = 1 spin moments the dimension is given by

g = 1 +
k<N/2∑

k=1

(
n

2k

)(
2k

k

)
(3.55)

for higher spin moments the increase is even steeper. Brute force diagonalization

techniques can handle models with up to 16 S = 1
2

magnetic sites. Using more

powerful techniques such as those based on the Lanczos algorithm can push the limit

up to 40 centers, which for most practical applications seems to be large enough.

However, for larger models and for larger spin moment, it can be useful to consider

more approximate techniques to obtain information on the macroscopic properties

from the electronic structure parameters in a bottom-up approach. A good example

is the family of polynuclear complexes intensively investigated for the possibility

of single molecule magnet behaviour. Complexes with 19 FeIII ions can hardly be

expected to be treated via a full diagonalization of the Heisenberg Hamiltonian,

but still has been studied in a bottom-up approach [14]. Among the many different

approaches to have access to macroscopic properties starting at the microscopic

description but without going through the full diagonalization of the Heisenberg

Hamiltonian we will shortly mention two techniques, namely the renormalization

group (RG) theory and classical Monte Carlo simulations.
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Renormalization Group theory: The partition function Q is the central quantity

of statistical mechanics and many thermodynamic functions can be derived from it.

The partition function of the one-dimensional Ising chain is

Q =
∑

MS= 1
2 ,− 1

2

exp[J (MS(1)MS(2) + MS(2)MS(3) + MS(3)MS(4) + . . .)/kB T ]

(3.56)

with K = J/2kB T and MS = 1
2
σ (σ = ±1), this can be rewritten to

Q =
∑

σi =±1

eK (σ1σ2+σ2σ3)eK (σ3σ4+σ4σ5) . . . (3.57)

After summing over σ2 = ±1, we arrive at

Q =
∑

σi =±1
i �=2

[eK (σ1+σ3) + e−K (σ1+σ3)]eK (σ3σ4+σ4σ5) . . . (3.58)

and when the summation is made over σ4, σ6, . . ., the partition function becomes

Q =
∑

σi =±1
i= odd

. . . [eK (σ1+σ3) + e−K (σ1+σ3)][eK (σ3+σ5) + e−K (σ3+σ5)] . . . (3.59)

If we can find a way to rewrite

[eK (σ1+σ3) + e−K (σ1+σ3)] as f (K )eK ′σ1σ3 (3.60)

we can return to the original expression of the partition function but now with half

the number of centers and replacing K , the interaction between magnetic centers

by K ′, the effective interaction parameters between blocks containing two magnetic

centers, as illustrated in Fig. 3.10. Substituting σ1 = σ3 = ±1 and σ1 = −σ3 = ±1,

we obtain two equations from which f (K ) and K ′ can be determined

σ1 = σ3 = ±1 e2K + e−2K = f eK ′

σ1 = −σ3 = ±1 2 = f eK ′

}
⇒ K ′ = 1

2
ln cosh(2K )

f (K ) = 2 cosh
1
2 (2K )

(3.61)

and

Q =
∑

σi =±1
i= odd

f (K )eK ′σ1σ3 f (K )eK ′σ3σ5 . . . = f (K )N/2
∑

σi =±1
i= odd

eK ′σ1σ3 eK ′σ3σ5 . . .

(3.62)
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Fig. 3.10 Illustration of the renormalization procedure. In the upper part N particles are considered

with an interaction K , while in the lower part the interaction K between sites is replaced by a larger-

scale effective interaction K ′

Hence, we have shown that the partition function of the whole system can be

written in terms of properties that only depend on half the number of centers

Q(N , K ) = f (K )N/2 Q(N/2, K ′) (3.63)

and the recursive application of this formula connects the microscopic description

with the thermodynamic large-scale properties. To elaborate the procedure a little

more we use the relation of the free energy A and the partition function as given by

statistical mechanics

ln Q(N , K ) = A

−kT
= Nξ(K ) (3.64)

The free energy can be used to determine the specific heat and the temperature depen-

dence of the specific heat can tell us something about the possible order-disorder

phase transitions in magnetic systems. A is an extensive property and hence depends

on the system size. It is here conveniently written as a product of the system size

(N ) and a system-size independent parameter ξ, which can be considered as the free

energy per site.

ξ(K ) = ln Q

N
= 1

2
ln f (K ) + 1

2
ξ(K ′) (3.65)

where we have used ln xa y = a ln x + ln y and ln Q(N/2, K ′) = (N/2)ξ(K ′), cf.

Eq. 3.63. This brings us to the recursion relations to go from a description with N indi-

vidual magnetic centers interacting through K to a description with ever increasing

block size interacting through K ′

K ′ =1

2
ln cosh(2K )

ξ(K ′) =2ξ(K ) − ln(2 cosh
1
2 (2K )) (3.66)

The inverse relation can also be of use, especially in those cases where the property

under study (here the free energy per site) is known in the thermodynamic limit, that

is K ′ ≈ 0
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K =1

2
cosh−1(e2K ′

)

ξ(k) =1

2
ln 2 + 1

2
K ′ + 1

2
ξ(K ′) (3.67)

The one-dimensional Ising chain is not the most interesting magnetic system to

study with renormalization theory, since it is known from the exact solution that

there is no phase transition, the chain is disordered at any finite temperature. The

two-dimensional Ising lattice does have an order/disorder phase transition, nicely

reproduced with the renormalization procedure as discussed in Refs. [15, 16]. Such

phase transition does not exist in a two-dimensional lattice described with the Heisen-

berg Hamiltonian. For this model, a non-zero interaction along the third dimension is

needed to have an ordered (anti-)ferromagnetic system at finite temperature as stated

by the Mermin-Wagner theorem.

Monte Carlo simulations: An alternative strategy to calculate thermodynamic prop-

erties is to explicitly follow the trajectory of a magnetic system by a computer simula-

tion of the system. Along such trajectory, the system will adopt many conformations

with different energy, magnetization and other microscopic observables. If the sam-

pling of the conformational space is done correctly, a good estimate of the partition

function can be made and with this all type of thermodynamic functions can be

calculated.

There are basically two types of simulations to sample the conformational space.

The first one is known as Molecular Dynamics and propagates a system in time by

integrating the Newton’s equations of motion. In its most rudimentary form the pro-

cedure can be described as follows. For a given set of atomic positions r(t = t0),

one calculates the forces and from these the velocities v(t0), accelerations a(t0) and

usually some higher derivatives. The atoms are then moved from r(t0) to r(t0 + ∆t)

by the formula r(t0 + ∆t) = r(t0) + v(t0)∆t + (1/2)a(t0)∆t2 + . . . and the time is

updated from t0 to t0 + ∆t . Then the cycle is repeated as long as one wants to fol-

low the trajectory. The second method, the so-called Monte Carlo method, does not

propagate the system in time but rather performs a random walk through the confor-

mational space to calculate the partition function. Whereas numerical integration on

a regular grid is much more efficient for low-dimensional functions, such approach

is absolutely out of the question for extremely high dimensional functions, such as

the partition function for any interesting N -particle system. In these cases a smart

random walk is more effective and can be used to extract macroscopic properties as

function of microscopic interactions.

To illustrate the procedure, we come back to the Ising model, but now focusing on

the two-dimensional lattice with nearest neighbour interactions only. The sampling of

the conformational space is usually done with the Metropolis algorithm, which starts

by creating the initial spin conformation S0. This can be done in many ways, one of

them is assigning a random spin direction MS = ± 1
2

to each lattice point as shown

in the left part of Fig. 3.11. After calculating the energy of this spin distribution, a

trial step in conformational space is taken by inverting the spin at one of the lattice
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Fig. 3.11 Left Initial spin distribution S0 on a small part of the N × N spin lattice. Right Trial spin

distribution St after inverting the MS value of the black spin. Depending on the energy change, the

new distribution can be accepted or rejected

sites to generate St . The step is accepted when exp(−∆E/kB T ) is larger than a

uniformly chosen random number between 0 and 1 and rejected otherwise (∆E is

the energy difference of St and S0). This means that trial spin distributions with

lower energy are always accepted, while trial conformations with higher energies

are accepted through an exponential weighting function. The closer the value of the

exponential to 1 (that is, for small ∆E), the larger the chance for accepting the new

conformation. Figure 3.12 shows how the ratio between accepted and rejected steps

(γ ) smoothly converges to an exponential function of the energy difference with an

increasing number of steps in the conformational space.

In the trial distribution shown in the right panel of Fig. 3.11, the black spin was

changed from MS = 1
2

to − 1
2

. The energy difference between St and S0 can easily

be calculated by realizing that the only contributions to the energy difference arise

Fig. 3.12 Acceptance rate γ

as function of the energy

difference ∆E between the

initial and trial spin

conformation for three

different simulation lengths

N . The black line represents

the weighting function

exp(−0.5∆E)
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from the interaction involving the black spin. The differential part of the energy of

S0 and St is

E ′(S0) = −J · 1

2

(
1

2
− 1

2
− 1

2
− 1

2

)
= 1

2
J

E ′(St ) = −J · −1

2

(
1

2
− 1

2
− 1

2
− 1

2

)
= −1

2
J (3.68)

and from here the energy difference ∆E = −J . When J > 0, that is for ferromag-

netic interactions, the step is accepted because the energy of the system is lowered by

the spin flip. Instead for antiferromagnetic interactions, J < 0, the energy difference

is positive and the step will only be accepted when the exp(−∆E/kB T ) is larger than

a random number between 0 and 1. Subsequently, the neighbouring spin is flipped

and the accept/reject algorithm is repeated for all sites on the lattice. Then the total

energy and magnetization (or other properties) are calculated and accumulated to

determine the average properties after a certain amount of sweeps over the lattice.

In addition to the very basic application to the two-dimensional lattice with nearest

neighbour interactions, this rather simple and intuitive approach to calculate ther-

modynamic properties can of course also be used to study magnetic systems with

more complex magnetic structures. However, it fails badly when it comes to mag-

netic interactions between centers with spin moments different from S = 1
2

. In the

basic form described above each lattice site can only adopt two states: up or down;

α or β; positive or negative MS . No distinction can be made between a lattice of

magnetic sites with S = 1
2

and any higher spin moment. For this purpose, the model

Hamiltonian needs to be improved and a natural thing to do is to replace the Ising

Hamiltonian with the Heisenberg Hamiltonian. An important drawback of using this

more accurate model Hamiltonian is that the total energy of the lattice is no longer

a simple sum of individual contributions as in the Ising case, and hence, the energy

of a spin configuration cannot be calculated directly. Instead one can introduce two

levels of accuracy in the Metropolis algorithm [17]. To decide on the acceptance of

a spin flip the energy of a small cluster around the active lattice site is calculated

with the Heisenberg Hamiltonian, while the rest of the lattice is considered as an

Ising system. Keeping the cluster small enough, sweeping the lattice can be done

rather efficiently in this half classic/half quantum treatment of the spin interactions.

To study magnetic phenomena at low temperatures, one should definitely consider a

full Quantum Monte Carlo approach [18].

3.4 Complex Interactions

The isotropic bilinear operator discussed so far is the most widely considered inter-

action in polynuclear magnetic systems since it accounts for an important part of the

physics. However, it is not the whole story. In the very beginning of this chapter, we
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have set aside the spatial anisotropy in the interaction between two spin moments.

Furthermore we have assumed that the interaction can be described with a simple

vector product of linear operators and that more-than-two particle interactions are

irrelevant. In this section, we will discuss refinements of the standard Hamiltonian

and see how more complex interactions can be incorporated in the description of the

magnetic couplings.

3.4.1 Biquadratic Exchange

The spin eigenfunctions for a binuclear complex with S = 1 magnetic centers are

Q = αααα

T = 1√
2
(ααββ − ββαα) (3.69)

S = 1

2
√

3

(
2(ααββ + ββαα) − αβαβ − αββα − βααβ − βαβα

)

which are also eigenfunctions of the Heisenberg Hamiltonian, with eigenvalues of

−J , J and 2J , respectively.

ĤΨ = −J Ŝ1 · Ŝ2Ψ = −J

[
1

2
(Ŝ+

1 Ŝ−
2 + Ŝ−

1 Ŝ+
2 ) + Ŝz,1 Ŝz,2

]
Ψ (3.70)

with Ŝ1 = ŝ(1) + ŝ(2) and Ŝ2 = ŝ(3) + ŝ(4) (see Eq. 1.22), the eigenvalue of the
quintet function arises from

ĤQ = −J

[
1

2

{
(ŝ+(1) + ŝ+(2))(ŝ−(3) + ŝ−(4)) + (ŝ−(1) + ŝ−(2))(ŝ+(3) + ŝ+(4))

}

+(ŝz(1) + ŝz(2))(ŝz(3) + ŝz(4))

]
α(1)α(2)α(3)α(4)

= −J

[
1

2

{
(ŝ+(1) + ŝ+(2))ααββ + (ŝ−(1) + ŝ−(2)) · 0

}

+ (ŝz(1) + ŝz(2))

(
1

2
+1

2

)
αααα

]
= −J Q (3.71)

The calculation of the eigenvalues of the triplet and singlet functions is slightly more

involved but follows exactly the same mechanics and can be derived as a useful

exercise.

http://dx.doi.org/10.1007/978-3-319-22951-5_1
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3.9 Calculate the outcome of (ŝ+(1) + ŝ+(2))(ŝ−(3) + ŝ−(4)), (ŝ−(1) +
ŝ−(2))(ŝ+(3) + ŝ+(4)) and (ŝz(1) + ŝz(2))(ŝz(3) + ŝz(4)) acting on ααββ,

ββαα, αβαβ, αββα, βαβα and βααβ. Use the results to verify the Heisenberg

Hamiltonian eigenvalues of the singlet and triplet spin functions.

As long as magnetic anisotropy can be neglected, the regular spacing between

the energy levels, the Landé pattern of Eq. 3.29 gives a very accurate representation

of the experimental situation. However, sometimes deviations have been observed,

which are usually ascribed to biquadratic interactions and subsequently incorporated

in the model by adding an extra term to the Heisenberg Hamiltonian

Ĥ = −J Ŝ1 · Ŝ2 + λ(Ŝ1 · Ŝ2)
2 (3.72)

Before calculating the eigenvalues of this new spin Hamiltonian, the second term

has to be worked out a little more

(Ŝ1 · Ŝ2)
2 =

[
1

2
(Ŝ+

1 Ŝ−
2 + Ŝ−

1 Ŝ+
2 ) + Ŝz,1 Ŝz,2

] [
1

2
(Ŝ+

1 Ŝ−
2 + Ŝ−

1 Ŝ+
2 ) + Ŝz,1 Ŝz,2

]

= 1

4

[
Ŝ+

1 Ŝ−
2 Ŝ+

1 Ŝ−
2 + Ŝ+

1 Ŝ−
2 Ŝ−

1 Ŝ+
2 + Ŝ−

1 Ŝ+
2 Ŝ+

1 Ŝ−
2 + Ŝ−

1 Ŝ+
2 Ŝ−

1 Ŝ+
2

]

+ 1

2

[
Ŝ+

1 Ŝ−
2 Ŝz,1 Ŝz,2 + Ŝ−

1 Ŝ+
2 Ŝz,1 Ŝz,2 + Ŝz,1 Ŝz,2 Ŝ+

1 Ŝ−
2 + Ŝz,1 Ŝz,2 Ŝ−

1 Ŝ+
2

]

+ Ŝz,1 Ŝz,2 Ŝz,1 Ŝz,2 (3.73)

The different Ŝ1 and Ŝ2 operators are again replaced by the sum of the one-electron

operators ŝ(1)+ ŝ(2) and ŝ(3)+ ŝ(4) and the effect of the nine operators on the seven

different determinants can be evaluated. Using the results summarized in Table 3.3,

the effect of the biquadratic exchange operator on the spin functions listed in Eq. 3.69

is easily established:

λ(Ŝ1 Ŝ2)
2αααα = λαααα = λQ (3.74a)

λ(Ŝ1 Ŝ2)
2 (ααββ − ββαα)√

2
= λ√

2

[
1

4
(4ααββ + 4ββαα) − 1

2
κ + ααββ

− 1

4
(4ααββ + 4ββαα) + 1

2
κ − ββαα

]
= λ√

2
(ααββ − ββαα) = λT

(3.74b)
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Table 3.3 Effect of (Ŝ1 · Ŝ2)
2 on the determinants that form the quintet, triplet and singlet spin

functions of a binuclear system with S = 1

Operator αααα ααββ ββαα αβαβ αββα βαβα βααβ

Ŝ+
1 Ŝ−

2 Ŝ+
1 Ŝ−

2 0 0 4ααββ 0 0 0 0

Ŝ+
1 Ŝ−

2 Ŝ−
1 Ŝ+

2 0 4ααββ 0 κ κ κ κ

Ŝ−
1 Ŝ+

2 Ŝ+
1 Ŝ−

2 0 0 4ββαα κ κ κ κ

Ŝ−
1 Ŝ+

2 Ŝ−
1 Ŝ+

2 0 4ββαα 0 0 0 0 0

Ŝ+
1 Ŝ−

2 Ŝz,1 Ŝz,2 0 0 −κ 0 0 0 0

Ŝ−
1 Ŝ+

2 Ŝz,1 Ŝz,2 0 −κ 0 0 0 0 0

Ŝz,1 Ŝz,2 Ŝ+
1 Ŝ−

2 0 0 0 −ααββ −ααββ −ααββ −ααββ

Ŝz,1 Ŝz,2 Ŝ−
1 Ŝ+

2 0 0 0 −ββαα −ββαα −ββαα −ββαα

Ŝz,1 Ŝz,2 Ŝz,1 Ŝz,2 αααα ααββ ββαα 0 0 0 0

κ = αβαβ + αββα + βαβα + βααβ

λ(Ŝ1 Ŝ2)
2 1

2
√

3

(
2(ααββ + ββαα) − αβαβ − αββα − βααβ − βαβα

)

= λ

2
√

3

[
1

4
(8ααββ + 8ββαα) − 1

2
2κ + 2ααββ + 1

4
(8ααββ + 8ββαα)

− 1

2
2κ + 2ββαα − 4(

1

4
2κ − 1

2
ααββ −1

2
ββαα)

]

= λ

2
√

3

[
8(ααββ + ββαα) + 4(−αβαβ − αββα − βααβ − βαβα)

]
= 4λS

(3.74c)

and the eigenvalues of the Heisenberg Hamiltonian extended with a term for the

biquadratic exchange are

(
− J Ŝ1 · Ŝ2 + λ(Ŝ1 · Ŝ2)

2
)
Q = (−J + λ)Q (3.75a)

(
− J Ŝ1 · Ŝ2 + λ(Ŝ1 · Ŝ2)

2
)
T = (J + λ)T (3.75b)

(
− J Ŝ1 · Ŝ2 + λ(Ŝ1 · Ŝ2)

2
)
S = (2J + 4λ)S (3.75c)

3.4.2 Four-Center Interactions

Magnetic interactions are not restricted to the exchange of the spin moments on two

magnetic centers, but can be extended to the simultaneous interaction of three or

four magnetic centers. These interactions are in general smaller than the two-body

interactions but can not always be neglected. A clear example is given by the magnetic
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Fig. 3.13 Ladder-like

structure formed by the

Cu2+ ions in SrCu2O3.

Oxygens on the grey lines

between the copper ions are

not shown. Jleg , Jrung and

Jdiag are the standard

two-body interactions, Jring

is a four-body interaction

that cyclically interchanges

the four spins

interactions in the solid state compound SrCu2O3. This copper oxide has a layered

structure, in which Cu2O3 layers are separated by Sr2+ ions. The Cu ions form a

ladder-like structure as shown in Fig. 3.13 with oxygen ions between the magnetic

centers. A straightforward fitting of the magnetic susceptibility with just the two-

body interactions leads to the conclusion that the magnetic interaction along the legs

is twice as large as the interactions along the rungs of the ladder. However, the local

geometry does not support such a large difference; distances, angles, coordination

are all very similar in both cases. Extending the model Hamiltonian used to fit

experimental data with four-body interactions provides a more consistent picture: the

interactions along leg and rung are similar and the four-body interaction is sizeable.

To get a hand on the four-body interactions, the four-center cluster ABCD shown in

Fig. 3.13 is studied. The four magnetic centers, A . . . D, have one unpaired electron,

and therefore, a magnetic moment of S = 1/2. The Hamiltonian of this system is

a sum of the standard two-body interactions plus P̂1234, a four-body operator that

cyclically permutes the four spin functions.

Ĥ =
∑

i< j

−Ji j Ŝi · Ŝ j + Jr P̂1234 (3.76)

To stay within a spin Hamiltonian formalism, the permutation operator has to be

replaced by spin operators, which can be done in the following way [19]:

P̂1234 = κ
(
(ŜA · ŜB)(ŜC · ŜD) + (ŜA · ŜD)(ŜB · ŜC ) − (ŜA · ŜC )(ŜB · ŜD)

)

(3.77)

To check that this sum indeed cyclically permutes the spin functions, we compare

the outcome of acting with P̂1234 and acting with the sum of bilinear operators on

the wave function Ψ = αβαβ − βαβα.
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P̂1234(αβαβ − βαβα) = βαβα − αβαβ (3.78)

Note that the wave function with only one of the terms is not an eigenfunction of the

permutation operator P̂1234. To determine the result of the sum of four-spin operators,

we will develop step-by-step the action of (ŜA · ŜD)(ŜB · ŜC ). The other two terms

can be done by the reader as an exercise. In the first place, we need to establish the

result of acting with Ŝi · Ŝ j on the different two-electron determinants. By writing Ŝ

as Ŝx + Ŝy + Ŝz and using Eq. 1.20a, the following relations are easily derived:

Ŝ1 · Ŝ2αα = 1

4
αα Ŝ1 · Ŝ2αβ = 1

2
βα − 1

4
αβ

Ŝ1 · Ŝ2ββ = 1

4
ββ Ŝ1 · Ŝ2βα = 1

2
αβ − 1

4
βα (3.79)

Next, we use these results to determine how ŜB · ŜC and ŜA · ŜD act on αβαβ

ŜB · ŜCα(1)β(2)α(3)β(4) =
[

ŜB · ŜCβ(2)α(3)
]
α(1)β(4)

=
(

1

2
α(2)β(3) − 1

4
β(2)α(3)

)
α(1)β(4) = 1

2
ααββ − 1

4
αβαβ (3.80)

with ŜA · ŜDαβαβ = 1
2
ββαα − 1

4
αβαβ and ŜA · ŜDααββ = 1

2
βαβα − 1

4
ααββ the

product (ŜA · ŜD)(ŜB · ŜC ) acting on αβαβ gives

(ŜA · ŜD)(ŜB · ŜC )αβαβ = (ŜA · ŜD)

(
1

2
ααββ − 1

4
αβαβ

)

= 1

4
βαβα − 1

8
ααββ − 1

8
ββαα + 1

16
αβαβ (3.81)

Repeating this for the other two products of bilinear operators and summing the

results of acting on βαβα as well, we obtain

1

4
βαβα − 1

8
αββα − 1

8
βααβ + 1

16
αβαβ − 1

4
αβαβ + 1

8
βααβ

+ 1

8
αββα − 1

16
βαβα + 1

4
βαβα − 1

8
ααββ − 1

8
ββαα + 1

16
αβαβ

− 1

4
αβαβ + 1

8
ββαα + 1

8
ααββ − 1

16
βαβα − 1

16
αβαβ + 1

16
βαβα

= 7

16
(βαβα − αβαβ) (3.82)

This shows that, except for a constant that can be absorbed in the interaction constant

Jr , the action of the cyclic permutation operator is identical to the linear combina-

http://dx.doi.org/10.1007/978-3-319-22951-5_1
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Fig. 3.14 The three

different possibilities of the

cyclic permutations of the

spins on a square of four

magnetic centers

tion of products of bilinear operators. Therefore, we define the Hamiltonian for the

rectangle ABCD in Fig. 3.13 as

Ĥ = −J1(ŜA · ŜB + ŜC · ŜD) − J2(ŜA · ŜD + ŜB · ŜC ) − J3(ŜA · ŜC + ŜB · ŜD)

+ Jr

[
(ŜA · ŜB)(ŜC · ŜD) + (ŜA · ŜD)(ŜB · ŜC ) − (ŜA · ŜC )(ŜB · ŜD)

]

(3.83)

where the subscripts 1, 2, 3, and r stand for leg, rung, diag and ring, respectively.

Before looking at the eigenvalues of this Hamiltonian, it should be mentioned that

P̂1234 is not the only way to cyclically permute the four spin functions. Alternatively,

one can apply the P̂1324 and P̂1423 operators to shift them around the rectangle as

illustrated in Fig. 3.14. These possibilities are carefully worked out in Ref. [20],

where the corresponding interaction parameters were shown to be so small that they

will be neglected here for simplicity.

The four unpaired electrons on the rectangle occupy the magnetic orbitals a, b, c

and d, respectively. They can be coupled to a quintet, three different triplets and two

singlets. A common basis for these six states is given by the six MS = 0 determinants

|abcd|, |abcd|, |abcd|, |abcd|, |abcd| and |abcd|. In the following, we will omit

the spatial part and return to a spin-only notation, |αβαβ|, |βαβα|, etc.
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3.10 Couple the spins of the four centers in a sequential fashion in all possible

ways to check the existence of one quintet, three different triplets and two

singlets for a system with four S = 1/2 magnetic moments.

The matrix representation of Ĥ is

|αβαβ〉 |βαβα〉 |ααββ〉 |ββαα〉 |αββα〉 |βααβ〉
〈αβαβ| H11

〈βαβα| − 1
2

Jr H22

〈ααββ| − 1
2

J1 + 1
8

Jr − 1
2

J1 + 1
8

Jr H33

〈ββαα| − 1
2

J1 + 1
8

Jr − 1
2

J1 + 1
8

Jr 0 H44

〈αββα| − 1
2

J2 + 1
8

Jr − 1
2

J2 + 1
8

Jr − 1
2

J3 + 1
8

Jr − 1
2

J3 + 1
8

Jr H55

〈βααβ| − 1
2

J2 + 1
8

Jr − 1
2

J2 + 1
8

Jr − 1
2

J3 + 1
8

Jr − 1
2

J3 + 1
8

Jr 0 H66

with

H11 = H22 = 1

2
(J1 + J2 − J3) + 1

16
Jr

H33 = H44 = 1

2
(J1 − J2 + J3) + 1

16
Jr

H55 = H66 = 1

2
(−J1 + J2 + J3) + 1

16
Jr (3.84)

The diagonalization of this matrix should in principle give the necessary relations to

extract the bilinear exchange parameters and the strength of the four-center interac-

tion. There are five energy differences and only four parameters to be determined.

However, the resulting equations are rather awkward and it is easier to extract the para-

meters by constructing a numerical effective Hamiltonian with the extra advantage

that the assumption of very small contribution from the other type of permutations

can be checked. For a square complex with J1 = J2 = J , the equations for the

energies of the spin states are significantly more simple, giving

E(Q) = 0 (3.85)

E(T 2) = E(T 3) = J + J3 (3.86)

E(S2) = J + 2J3 − 1

4
Jr (3.87)

E(T 1) = 2J − 1

2
Jr (3.88)

E(S1) = 3J + 3

4
Jr (3.89)
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3.11 Extract the magnetic coupling parameters for a four-center Cu2+ com-

plex with a square geometry. (i) Under the assumption of equal coupling along

the edges of the square, zero coupling along the diagonal and no four-center

interactions; (ii) with a non-negligible ring exchange (J1 = J2; Jr �= 0 and

J3 = 0); (iii) considering the three different interactions. The following total

energies for the spin states were calculated: E(Q) = −3953.38577312 Eh;

E(T2) = E(T3) = −3953.39054141 Eh; E(S2) = −3953.39100763 Eh;

E(T1) = −3953.39533075 Eh; E(S1) = −3953.39867933 Eh. Are the esti-

mates of J the same in the first case when extracted from different ∆E’s?

3.4.3 Anisotropic Exchange

In Sect. 3.2 we have introduced the general expression (Eq. 3.20) to describe the

interaction between two spin moments on different magnetic centers. So far, only

the isotropic interactions have been considered in this chapter; the total spin moment

(and the single-ion spin) in itself has no preferred orientation in space, only the relative

orientation—parallel or antiparallel—of the local spins has been looked at. This is

of course only part of the story. Due to relativistic effects, in many systems the spin

moment is anisotropic as seen in the previous chapter for mononuclear complexes.

The magnetic anisotropy is in some compounds accompanied by ferroelectricity.

These so-called multiferroic compounds, often perovskite transition metal oxides,

have potential applications as switches, sensors or memory devices. Coming back to

Eq. 3.20, we will separate isotropic and anisotropic interactions before orienting the

molecule in such a way that the magnetic frame coincides with the cartesian axes

frame. Then, the Hamiltonian becomes

Ĥ = −J Ŝ1 · Ŝ2 + Ŝ1 AŜ2 (3.90)

As long as we are concerned with binuclear S = 1/2 complexes, no single-ion

anisotropy has to be added and this Hamiltonian describes the lowest energy levels

in the absence of an external magnetic field.

Symmetric anisotropy: The basis of this Hamiltonian can no longer be restricted to

determinants with the same MS value as was done for the isotropic interactions. The

inclusion of magnetic anisotropy in the model causes the removal of the degeneracy

of the different MS levels and eventually mixing of the wave functions with different

spin moment. Here, we have to consider four CSFs; the three components of the triplet

plus the singlet. To facilitate the determination of the matrix elements of the model
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Hamiltonian, it is common practice to consider the basis of uncoupled determinants

and then transform to the basis of spin-adapted CSFs.

3.12 Perform the matrix multiplication of the anisotropic term in the model

Hamiltonian.

The uncoupled basis is formed by the determinants |αα|, |αβ|, |βα| and |ββ|.
The result of acting with the isotropic part of Hamiltonian on these determinants can

directly be written down with the help of Eqs. 3.79, but the anisotropic part requires a

little more work. Based on the relations given in Eqs. 1.16a and 1.20a, the following

is easily derived for the products of one-electron operators

• Ŝ1 AŜ2|αα|

Axx Ŝx Ŝxαα = 1

4
Axxββ Axy Ŝx Ŝyαα = − 1

4i
Axyββ Axz Ŝx Ŝzαα = 1

4
Axzβα

Ayx Ŝy Ŝxαα = − 1

4i
Ayxββ Ayy Ŝy Ŝyαα = −1

4
Ayyββ Ayz Ŝy Ŝzαα = − 1

4i
Ayzβα

Azx Ŝz Ŝxαα = 1

4
Azxαβ Azy Ŝz Ŝyαα = − 1

4i
Azyαβ Azz Ŝz Ŝzαα = 1

4
Azzαα

(3.91a)

• Ŝ1 AŜ2|ββ|

Axx Ŝx Ŝxββ = 1

4
Axxαα Axy Ŝx Ŝyββ = 1

4i
Axyαα Axz Ŝx Ŝzββ = −1

4
Axzαβ

Ayx Ŝy Ŝxββ = 1

4i
Ayxαα Ayy Ŝy Ŝyββ = −1

4
Ayyαα Ayz Ŝy Ŝzββ = − 1

4i
Ayzαβ

Azx Ŝz Ŝxββ = −1

4
Azxβα Azy Ŝz Ŝyββ = − 1

4i
Azyβα Azz Ŝz Ŝzββ = 1

4
Azzββ

(3.91b)

• Ŝ1 AŜ2|αβ|

Axx Ŝx Ŝxαβ = 1

4
Axxβα Axy Ŝx Ŝyαβ = 1

4i
Axyβα Axz Ŝx Ŝzαβ = −1

4
Axzββ

Ayx Ŝy Ŝxαβ = − 1

4i
Ayxβα Ayy Ŝy Ŝyαβ = 1

4
Ayyβα Ayz Ŝy Ŝzαβ = 1

4i
Ayzββ

Azx Ŝz Ŝxαβ = 1

4
Azxαα Azy Ŝz Ŝyαβ = 1

4i
Azyαα Azz Ŝz Ŝzαβ = −1

4
Azzαβ

(3.91c)

http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_1


3.4 Complex Interactions 97

• Ŝ1 AŜ2|βα|

Axx Ŝx Ŝxβα = 1

4
Axxαβ Axy Ŝx Ŝyβα = − 1

4i
Axyαβ Axz Ŝx Ŝzβα = 1

4
Axzαα

Ayx Ŝy Ŝxβα = 1

4i
Ayxαβ Ayy Ŝy Ŝyβα = 1

4
Ayyαβ Ayz Ŝy Ŝzβα = 1

4i
Ayzαα

Azx Ŝz Ŝxβα = −1

4
Azxββ Azy Ŝz Ŝyβα = 1

4i
Azyββ Azz Ŝz Ŝzβα = −1

4
Azzβα

(3.91d)

Following common practice, we write the anisotropic interaction as the sum of sym-

metric

Di j = D j i = 1

2
(Ai j + A j i ) (3.92a)

and antisymmetric contributions

di j = −d j i = 1

2
(Ai j − A j i ) (3.92b)

For the moment we neglect the antisymmetric interaction and write down the matrix

representation of the Hamiltonian as sum of isotropic and symmetric anisotropic

interactions.

|αα〉 |αβ〉 |βα〉 |ββ〉

〈αα| − 1
4
(J + Dzz)

1
4
(Dxz − i Dyz)

1
4
(Dxz − i Dyz)

1
4
(Dxx − Dyy − 2i Dxy)

〈αβ| 1
4
(Dxz + i Dyz)

1
4
(J + Dzz) − 1

2
J + 1

4
(Dxx + Dyy) − 1

4
(Dxz − i Dyz)

〈βα| 1
4
(Dxz + i Dyz) − 1

2
J + 1

4
(Dxx + Dyy)

1
4
(J + Dzz) − 1

4
(Dxz − i Dyz)

〈ββ| 1
4
(Dxx − Dyy + 2i Dxy) − 1

4
(Dxz + i Dyz) − 1

4
(Dxz + i Dyz) − 1

4
(J + Dzz)

The next step is the transformation from the uncoupled basis to a basis in which

the two spin moments are coupled, i.e. a basis of the singlet and the three components

of the triplet.

|T +〉 |T 0〉 |T −〉 |S〉

〈T +| − 1
4
(J − Dzz)

1

2
√

2
(Dxz − i Dyz)

1
4
(Dxx − Dyy − 2i Dyz) 0

〈T 0| 1

2
√

2
(Dxz + i Dyz) − 1

4
(J + 2Dzz) − 1

2
√

2
(Dxz − i Dyz) 0

〈T −| 1
4
(Dxx − Dyy + 2i Dyz) − 1

2
√

2
(Dxz + i Dyz) − 1

4
(J − Dzz) 0

〈S| 0 0 0 3
4

J
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where the diagonal elements are simplified by the notion that D can be written as a

traceless tensor, that is Dxx + Dyy + Dzz = 0. For example,

〈αβ + βα|Ĥ |αβ + βα〉 = − 1

4
(J + Dzz) + 2

(1

2
J + 1

4
(Dxx + Dyy)

)

− 1

4
(J + Dzz) = 1

4
J − 1

4
Dzz + 1

4
Dxx + 1

4
Dyy

(3.93)

which is simplified to 1
4
(J − 2Dzz) by subtracting 1

4
(Dxx + Dyy + Dzz), which

equals zero.

3.13 (a) Show that transformation of the matrix representation in the

uncoupled basis into the coupled basis can be done by applying the

unitary transformation ŨĤU , where Ũ is the transpose of U =(
1, 0, 0, 0 ; 0, 1/

√
2, 0, 1/

√
2 ; 0, 1/

√
2, 0, −1/

√
2 ; 0, 0, 1, 0

)
(b)

Show that the Hamiltonian of Eq. 3.90 is hermitian. Assume a diagonal D-

tensor and show that the triplet part of the matrix is related to the D-tensor of

an S = 1 mononuclear complex (Eq. 2.21) by a factor of 1
2

. Hint: the trace of

the two matrices can be adjusted to simplify the comparison.

The construction of a numerical effective Hamiltonian from accurate electronic

structure calculations permits us to determine the complete D-tensor and therewith

the orientation of the magnetic axes frame of the system with its easy axis or easy

plane, depending on the relative energies of the different MS components of the

triplet. When the magnetic axes frame coincides with the cartesian axes frame, D is

diagonal and the energy levels of the triplet can be described with two parameters; the

axial anisotropy D and the rhombic anisotropy E as defined in Eq. 2.16. Hence, the

symmetric anisotropic interaction of the S = 1/2 spin moments, which by themselves

are isotropic by definition, makes that the total spin moment of the system is no longer

fully isotropic.

Anti-symmetric anisotropy: The second ingredient of the anisotropic interaction is

the asymmetric part, also known as the Dzyaloshinskii–Moriya (DM) interaction. It is

held responsible for the appearance of ferromagnetism in antiferromagnetically cou-

pled Cu2+ systems. Whereas the isotropic and symmetric anisotropic interactions do

not affect the collinearity of the two local magnetic axes frames, the anti-symmetric

interaction makes that the principal axis of the local moments are no longer paral-

lel. In a pictorial description of the effect, shown in Fig. 3.15, the cancellation of

antiferromagnetically coupled spin moments is no longer complete and a (small)

ferromagnetic moment appears.

A rigorous description of the anti-symmetric interaction is obtained by including

the di j in the matrix elements among the four determinants that span the model space.

http://dx.doi.org/10.1007/978-3-319-22951-5_2
http://dx.doi.org/10.1007/978-3-319-22951-5_2
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Fig. 3.15 Schematic

representation of the net

ferromagnetic interaction

due to non-collinear

antiferromagnetically

coupled spin moments

As example we construct two matrix elements to illustrate the difference with the

matrix elements when only the symmetric interaction is considered.

〈αα|Ĥ |αβ〉 = 1

4
Azx + 1

4i
Azy = 1

4

(
Dxz + dzx

)
+ 1

4i

(
Dyz + dzy

)

= 1

4

(
Dxz − dxz

)
− 1

4
i
(
Dyz − dyz

)
(3.94a)

〈αα|Ĥ |βα〉 = 1

4
Axz + 1

4i
Ayz = 1

4

(
Dxz + dxz

)
− 1

4
i
(
Dyz + dyz

)
(3.94b)

3.14 Use Eq. 3.92 to express Ai j and A j i in terms of Di j and di j .

The complete matrix representation of the Hamiltonian with isotropic and (anti-)

symmetric anisotropic interactions in the uncoupled basis is directly obtained from

the operations listed in Eq. 3.91 and using the definitions of Di j in di j in Eq. 3.92

|αα〉 |αβ〉 |βα〉 |ββ〉
〈αα| − 1

4
(J − Dzz)

1
4

(
Dxz − dxz

1
4

(
Dxz + dxz

1
4

(
Dxx − Dyy

−i(Dyz − dyz)
)

−i(Dyz + dyz)
)

−2i Dxy

)

〈αβ| 1
4

(
Dxz − dxz

1
4
(J − Dzz) − 1

2
J + 1

4

(
Dxx − 1

4

(
Dxz + dxz

+i(Dyz − dyz)
)

+Dyy + 2idxy

)
−i(Dyz + dyz)

)

〈βα| 1
4

(
Dxz + dxz − 1

2
J + 1

4

(
Dxx

1
4
(J − Dzz) − 1

4

(
Dxz − dxz

+i(Dyz + dyz)
)

+Dyy − 2idxy

)
−i(Dyz − dyz)

)

〈ββ| 1
4

(
Dxx − Dyy − 1

4

(
Dxz + dxz − 1

4

(
Dxz − dxz − 1

4
(J − Dzz)

+2i Dxy

)
+i(Dyz + dyz)

)
+i(Dyz − dyz)

)

and transformed to the coupled basis, the following Hamiltonian is obtained.
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|T +〉 |T 0〉 |T −〉 |S〉
〈T +| − 1

4
(J − Dzz)

1

2
√

2
(Dxz − i Dyz)

1
4
(Dxx − Dyy − 1

2
√

2
(dxz − idyz)

+2i Dyz)

〈T 0| 1

2
√

2
(Dxz + i Dyz) − 1

4
(J − Dxx − 1

2
√

2
(Dxz − i Dyz) − 1

2
idxy

−Dyy + Dzz)

〈T −| 1
4
(Dxx − Dyy − 1

2
√

2
(Dxz + i Dyz) − 1

4
(J − Dzz) − 1

2
√

2
(dxz + idyz)

+2i Dyz)

〈S| − 1

2
√

2
(dxz + idyz)

1
2

idxy − 1

2
√

2
(dxz − idyz)

3
4

J − 1
4
(Dxx

+Dyy + Dzz)

The triplet block and the diagonal elements are exactly the same as in the Hamil-

tonian that only considers the symmetric part of the anisotropic interaction. The

anti-symmetric interaction introduces non-zero matrix elements for the coupling

between singlet and triplet and causes a mixing between both spin states. The total

spin quantum number is (at least formally) no longer a good quantum number. The

number of parameters is now larger than the number of energy differences, even when

the system is oriented in the coordinate frame that diagonalizes D. Therefore, a com-

plete determination of the six parameters—J , D, E , dxy , dxz and dyz—necessarily

goes through the construction of a numerical effective Hamiltonian.

To close this section, we rewrite the Hamiltonian in the form that is most often

used in the literature. The A-tensor in Eq. 3.90 is separated in a symmetric and anti-

symmetric part.

Ĥ = −J Ŝ1 · Ŝ2 + Ŝ1 DŜ2 + Ŝ1d Ŝ2 (3.95)

where D is diagonal if the orientation is chosen conveniently, and d always has the

following structure

d =

⎛
⎝

0 d12 −d13

−d12 0 d23

d13 −d23 0

⎞
⎠ (3.96)

This suggest that a shorter notation can be used by writing d as a pseudovector

d = (dx , dy, dz) with dx = d23; dy = −d13 and dz = d12. The Hamiltonian then

reads

Ĥ = −J Ŝ1 · Ŝ2 + Ŝ1 DŜ2 + dŜ1 × Ŝ2 (3.97)

Now, it also becomes clear that the DM interaction can only be non-zero when the

local principal magnetic axis are not parallel. The situation becomes slightly more
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complicated when magnetic centers are considered with more than one unpaired

electron. Then the single-ion anisotropy discussed in Chap. 2 has to be included in

the model

Ĥ = −J Ŝ1 · Ŝ2 + Ŝ1 D1 Ŝ1 + Ŝ2 D2 Ŝ2 + Ŝ1 D12 Ŝ2 + dŜ1 × Ŝ2 (3.98)

and it has been shown that even biquadratic anisotropic interactions can play an

important role in the description of the low-energy physics of the complex [21]. The

corresponding operator is

κ̂ = (Ŝ1 Ŝ1)Daabb(Ŝ2 Ŝ2) (3.99)

where Daabb is tensor of rank 4 with 81 (34) parameters. However by choosing the

proper magnetic axes frame this number is strongly reduced and when the system has

a certain degree of symmetry one can eventually characterize the tensor with not more

than nine parameters. Again one can resort to the numerical effective Hamiltonian

to determine these parameters.

Problems

3.1 Overlap: Demonstrate that c1/c2 in Eq. 3.7 is equal to 1 − Sab/1 + Sab, where

Sab = 〈φa |φb〉 and φa and φb are the orbitals of Eq. 3.17.

3.2 From delocalized to localized: Transform the following determinants and CSFs

from a delocalized to a localized orbital basis. Determine the percentage of ionic and

neutral character of the wave function. Are the wave functions eigenfunctions of Ŝ2?

a. Φ1 = |g1g1|; Φ2 = |g1g2|; Φ3 = |g1u1|
b. Ψ1 = (|g1g1| + |u1u1|)/

√
2; Ψ2 = (|g1g1| − |u1u1|)/

√
2

c. Φ4 = |g1u1|; Φ5 = |g1u1v1|
d. Ψ3 = (2|g1u1v1| − |g1u1v1| − |g1u1v1|)/

√
6

with gi = 1√
2
(ai +bi ); ui = 1√

2
(ai −bi ); vi = ci . ai , bi and ci are orbitals localized

on centers A, B and C, respectively.

3.3 Singlet and triplet eigenvalues: Calculate the eigenvalues of the Heisenberg

Hamiltonian given in Eq. 3.31 of Φ(T ) = |αα| and Φ(S) = (|αβ| − |βα|)/
√

2.

3.4 Extracting J -values for a three-center system: The following wave functions

Ψk were obtained from an ab initio calculation on a system with three S = 1/2

magnetic centers. Each magnetic orbital φi is localized on center i and has the same

spatial part in all five wave functions.

http://dx.doi.org/10.1007/978-3-319-22951-5_2
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Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

|φ1φ2φ3| −0.4426 −0.6583 0.5774 −0.1465 0.1135

|φ1φ2φ3| 0.7706 −0.0661 0.5774 0.0367 −0.2476

|φ1φ2φ3| −0.3280 0.7243 0.5774 0.1098 0.1341

|φ1φ1φ2| 0.0102 0.0234 0.0000 −0.0440 0.0017

|φ1φ1φ3| −0.0725 −0.0495 0.0000 0.1244 0.0341

|φ1φ2φ2| 0.2243 −0.1120 0.0000 0.7653 −0.5685

|φ2φ2φ3| 0.2017 0.1336 0.0000 −0.5805 −0.7636

|φ1φ3φ3| −0.0789 0.0407 0.0000 −0.1472 0.0147

|φ2φ3φ3| 0.0076 0.0508 0.0000 0.0579 0.0127

The energies (in Eh) are E1 = −27.9611962, E2 = −27.9601927, E3 =
−27.9596947, E4 = −27.8326257, E5 = −27.83169141.

a. Determine the MS quantum numbers of the determinants and identify Ψ3 as a

spin eigenfunction with S = 3/2.

b. Extract the J -values from the energies of the lowest three states under the assump-

tion that J12 = J23 �= J13 (see Eq. 3.44).

c. Write down the determinants that span the model space of the Heisenberg Hamil-

tonian and determine the norm of the projections of Ψk on this model space.

d. Select the three roots with the largest norm and orthogonalize the projections Ψ̃k

e. Construct the 3 × 3 effective Hamiltonian and extract the different J -values by

comparing with the matrix elements of the Heisenberg Hamiltonian given in

Eq. 3.39.

3.5 Heisenberg twice. (a) Use the eigenvalues of Q, T and S for Ĥ = −J Ŝ1 · Ŝ2

to compute the eigenvalues of Q, T and S for the operator Ŝ1 · Ŝ2. (b) From this,

compute the eigenvalues of Q, T and S for the biquadratic operator (Ŝ1 · Ŝ2)
2 and

check the validity of Eq. 3.75.

3.6 Biquadratic interactions: Do the following total energies follow the regular

spacing predicted by the Heisenberg Hamiltonian? EQ = −139.48992180 Eh, ET =
−139.49305142 Eh and ES = −139.49443101 Eh. Calculate J and λ (in meV) from

the energy differences.
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Chapter 4

From Orbital Models to Accurate Predictions

Abstract Basic understanding and qualitative prediction of the isotropic magnetic
coupling between two magnetic centers can be obtained with two well-established
valence-only models. This chapter discusses the Kahn–Briat and Hay–Thibeault–
Hoffmann models, which have been (and still are) of fundamental importance for
understanding the basics of magnetism in polynuclear transition metal complexes.
After shortly presenting the basic model for magnetism in organic radicals, we review
the most evident magnetostructural relations and then move to the accurate prediction
of the magnetic coupling. An overview of the most widely used quantum chemical
methods is given, including wave function based methods and approaches within the
spin-unrestricted setting such as density functional theory. The last part of the chapter
is dedicated to the calculation of the interactions beyond the isotropic magnetic
coupling.

4.1 Qualitative Valence-Only Models

The simplest electronic structure models for magnetic interactions only consider the
unpaired electrons and their orbitals. All other electrons are taken as inactive and not
included in the description. This leads to very simple wave functions, especially in
the case of two identical S = 1

2 magnetic centers. Such valence-only models, where
valence is not used in its usual chemical context, are numerically not competitive with
large-scale all-electron calculations, but have provided chemists and other scientists
working in the field with important insights to control the magnetic interactions in
transition metal complexes and materials with organic radicals.

4.1.1 The Kahn–Briat Model

Based on valence bond reasoning with nonorthogonal atomic-like orbitals, Kahn and
Briat derived an elegant model that is capable of explaining and predicting magnetic
behavior of transition metal complexes based on the shape of the localized magnetic

© Springer International Publishing Switzerland 2016
C. Graaf and R. Broer, Magnetic Interactions in Molecules and Solids,
Theoretical Chemistry and Computational Modelling,
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orbitals [1]. Let φa and φb be the optimal local orbitals for the unpaired electrons on
site A and B. These orbitals are normalized but not orthogonal

〈φa|φb〉 = S 〈φa|φa〉 = 〈φb|φb〉 = 1 (4.1)

Multiplying the spatial part of the wave function |φaφb| = |ab| with the singlet
and triplet (MS = 0) spin functions, the following normalized wave functions are
obtained

ΨS = |ab| + |ba|√
2 + 2S2

ΨT = |ab| − |ba|√
2 − 2S2

(4.2)

4.1 Confirm that the norms of ΨS and ΨT are equal to 1.

As shown in the previous chapter, the energy difference between singlet and triplet
is proportional to the magnetic coupling strength. The energy expectation values of
ΨS and ΨT are

ES,T = 〈ab ± ba|Ĥ|ab ± ba〉
〈ab ± ba|ab ± ba〉

= 〈ab ± ba|Ĥ|ab ± ba〉
2 ± 2S

(4.3)

with

Ĥ = ĥ1(1) + ĥ1(2) + 1 − P̂12

r12
(4.4)

where P̂12 is the permutation operator. To avoid lengthy equations, some parameters
will be introduced to facilitate the derivation.

ε = 〈a|ĥ1|a〉 = 〈b|ĥ1|b〉 (4.5a)

β = 〈a|ĥ1|b〉 = 〈b|ĥ1|a〉 (4.5b)

JC = 〈ab| 1

r12
|ab〉 (4.5c)

K = 〈ab| 1

r12
|ba〉 (4.5d)

This results in the following expressions for the energy of the singlet and triplet
states.
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ES = 4ε + 4βS + 2JC + 2K

2 + 2S2 = 2ε + 2βS + JC + K

1 + S2 (4.6a)

ET = 4ε − 4βS + 2JC − 2K

2 − 2S2 = 2ε − 2βS + JC − K

1 − S2 (4.6b)

The energy difference is

ES − ET = (2ε + 2βS + JC + K)(1 − S2)

(1 + S2)(1 − S2)
− (2ε − 2βS + JC − K)(1 + S2)

(1 − S2)(1 + S2)

= 4βS + 2K − 4εS2 − 2JCS2

1 − S4 (4.7)

In general the overlap between the orbitals a and b is rather small given the fact
that the magnetic centers are separated in space. Hence, the S4 term can safely be
discarded, and often the terms that are quadratic in the overlap are also neglected.

ES − ET ≈ 2K − 4εS2 + 4βS − 2JCS2 (4.8)

≈ 2K + 4βS (4.9)

The second equation is the basis of the Kahn–Briat model. Given that K is positive
and S opposite in sign to β, the energy difference between singlet and triplet can be
interpreted as the sum of two opposite contributions. The direct exchange interaction
between the electrons on both magnetic sites is dominant in case of negligible or
zero overlap, for example due to different symmetries of the orbitals a and b. This
favors a ferromagnetic alignment of the spin moments, while a large overlap between
the magnetic orbitals favors the singlet, and hence, enhances the antiferromagnetic
character of the coupling.

The generalization to two magnetic centers with more than one unpaired electron
can be made by the introduction of exchange pathways. The total magnetic coupling
parameter J of the Heisenberg Hamiltonian is decomposed as a sum of all the possible
pairwise interactions weighted by the product of the number of unpaired electrons

J = 1

nanb

∑

i∈A

∑

j∈B

Jij (4.10)

where each Jij is evaluated with the equation derived for two unpaired electrons
(Eq. 4.9) and na and nb make reference to the number of the unpaired electrons on
the magnetic centers A and B.
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4.1.2 The Hay–Thibeault–Hoffmann Model

The second valence-only model starts from a molecular orbital viewpoint and was
derived in the mid 1970s by Hay, Thibeault and Hoffmann (HTH) [2], approximately
at the same time as the Kahn–Briat model. The magnetic orbitals are defined as linear
combinations of orthogonal atomic-like orbitals

φ1 = 1√
2

(ψa + ψb) φ2 = 1√
2

(ψa − ψb) (4.11)

Similar to φa and φb of the Kahn–Briat model, the atomic-like orbitals of the HTH
model have the largest amplitudes on the magnetic centers, but in contrast ψa and ψb

show delocalization tails on the ligands to ensure the orthogonality between them.
Therefore, in general ψa and ψb are slightly more delocalized than the nonorthogonal
φa and φb.

In the original derivation, three determinants were constructed with the molecular
orbitals φ1 and φ2

T = |φ1φ2| S1 = |φ1φ1| S2 = |φ2φ2| (4.12)

with the following energy expectation values

ET = 〈φ1|ĥ1|φ1〉 + 〈φ2|ĥ1|φ2〉 + 〈φ1φ2|
1

r12
|φ1φ2〉 − 〈φ1φ2|

1

r12
|φ2φ1〉

= h1 + h2 + J12 − K12 (4.13)

ES1 = 2〈φ1|ĥ1|φ1〉 + 〈φ1φ1|
1

r12
|φ1φ1〉 = 2h1 + J11

ES2 = 2〈φ2|ĥ1|φ2〉 + 〈φ2φ2|
1

r12
|φ2φ2〉 = 2h2 + J22

S1 and S2 have the same spin and spatial symmetry and to obtain the energy of the
lowest singlet a 2×2 matrix has to be diagonalized with ES1 and ES2 on the diagonal
and the interaction between the two determinants as off-diagonal element

〈S1|Ĥ|S2〉 = 〈φ1φ1|
1

r12
|φ2φ2〉 = 〈φ1φ2|

1

r12
|φ2φ1〉 = K12 (4.14)

The second-order equation that arises from the condition that the secular determinant
is equal to zero can be solved straightforwardly and gives the energy of the singlet

ES = h1 + h2 + 1

2
(J11 + J22) − 1

2

√

(2h1 − 2h2 + J11 − J22)
2 + 4K2

12 (4.15)
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and the energy difference between singlet and triplet becomes

ES−ET = 1

2
(J11 + J22)−

1

2

√

(2h1 − 2h2 + J11 − J22)
2 + 4K2

12−J12+K12 (4.16)

The square root term in the difference can be simplified by assuming that J11 −J22 is
small and that 4K2

12 is significantly larger than (h1 − h2)
2. The term then reduces to

√

(2h1 − 2h2 + J11 − J22)
2 + 4K2

12 ≈
√

(2h1 − 2h2)2 + 4K2
12

≈ 2K12 + (h1 − h2)
2

K12
(4.17)

using the Taylor series
√

p + q = √
p + 1

2 q/
√

p + . . . with p ≫ q. The expression
for the energy difference now reads

ES − ET = 1

2
(J11 + J22) − (h1 − h2)

2

2K12
− J12 (4.18)

which is further simplified by introducing the orbital energies of the magnetic orbitals,
which for the triplet state are defined as

ε1 = h1 + J12 − K12 ε2 = h2 + J12 − K12 (4.19)

and makes that h1 − h2 can be replaced by ε1 − ε2, which is a much easier quantity
to work with. The expression shows that in the HTH model the magnetic coupling
can be obtained from the outcomes of one single restricted Hartree–Fock (RHF)
calculation for the triplet state. Furthermore, by expressing the integrals using the
local orbitals ψa and ψb instead of the molecular orbitals φ1 and φ2, the expression
can be written even more compact. Through a somewhat tedious but straightforward
derivation it can be shown that

J11 = 1

2
(Jaa + Jab) + Kab + 2〈aa| 1

r12
|ab〉

J22 = 1

2
(Jaa + Jab) + Kab − 2〈aa| 1

r12
|ab〉 (4.20)

J12 = 1

2
(Jaa + Jab) − Kab

K12 = 1

2
(Jaa − Jab)
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4.2 Use the definitions of φ1 and φ2 given in Eq. 4.11 to express the
integral J11 in terms of local orbitals. Remember that

∫

φa(1)φa(2)(1/r12)

φb(1)φb(2)dτ =
∫

φa(1)φb(1)(1/r12)φa(2)φb(2)dτ = Kab.

This brings us to the final expression of the HTH model for the singlet-triplet
splitting

ES − ET = 2Kab − (ε1 − ε2)
2

Jaa − Jab

(4.21)

where immediately the two opposite contributions to the magnetic coupling can
be recognized. The direct exchange Kab favors the triplet, and hence, the parallel
alignment of the spin moments. On the other hand, a large splitting between the
orbital energies of φ1 and φ2 favors the antiferromagnetic component of the coupling
Jaa > Jab.

The magnetic coupling in systems with m unpaired electrons per magnetic center
can also be studied with the HTH model. The direct exchange is written as the sum
of exchange integrals between orbitals on center A and center B

K =
∑

i∈A

∑

j∈B

Kij (4.22)

To evaluate the antiferromagnetic part of the coupling, the magnetic orbitals are
grouped in pairs of bonding and antibonding orbitals and the total contribution is
defined as the sum of the individual couplings divided by m2

JAF = − 1

m2

m/2
∑

i=1

(εi − ε2i)
2

Jaiai
− Jaibi

(4.23)

where εi is the orbital energy of the binding combination of ψa and ψb, and ε2i the
orbital energy of the antibonding combination.

4.1.3 McConnell’s Model

The valence-only models discussed so far have been developed in the field of tran-
sition metal compounds, either molecular based or in extended systems. The domi-
nant magnetic interactions in these systems typically involve atoms that are bonded
through bridging diamagnetic ligands, the so-called through-bond interactions. In
magnetic materials based on organic radicals the mechanism is fundamentally dif-
ferent; there is no diamagnetic bridge between the magnetic centers and the descrip-
tion of the interaction given in Sect. 3.1 (and further analyzed in Chap. 5) does not

http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_5
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directly apply. Traditionally the magnetism caused by through-space interactions in
such organic materials is rationalized with the McConnell I model [3]. To describe
the interaction between two radicals, the model takes an atomic viewpoint and starts
with the Heisenberg Hamiltonian in the following form

Ĥ = −
∑

i<j

JijŜiŜj (4.24)

where the sum runs over all the atoms in the two radicals. The Jij parameters can be
interpreted as the parameter for the coupling of an electron in atomic orbital φi on site
i and another electron in φj on site j. In a valence bond setting with non-orthogonal
orbitals, the interaction can be written as the sum of a positive two-electron exchange
integral and a one-electron integral

Jij = 〈φiφj|
1

r12
|φjφi〉 + 〈φi|φj〉〈φi|ĥ(1)|φj〉 (4.25)

The one-electron integral is dominated by the electron-nucleus attraction in most
cases, and hence, negative in sign. From this it is concluded that, unless the overlap
between the orbitals φi and φj is very small, the Jij parameter is negative, favoring
singlet coupling of the electrons. This expression is not very easy to handle and in
all practical applications to rationalize the magnetic properties of radicals a series of
simplifications is introduced. In the first place the summation is restricted to pairs of
electrons on different units

Ĥ = −
∑

i∈A

∑

j∈B

JijŜiŜj (4.26)

assuming that the interactions within a unit do not depend on the coupling of the total
spin moment of the two radicals. The second and most fundamental approximation
of McConnell’s model is made by replacing the spin operators by a product of the
total spin operator for each unit and the atomic spin populations ρi

Ĥ = −ŜA · ŜB

∑

i∈A

∑

j∈B

Jijρiρj (4.27)

The third simplification lies in the restriction of the sum over i and j to the shortest
contacts only. Thus, second nearest neighbour interactions (and beyond) between the
units, which in many cases oppose the nearest neighbour interactions, are neglected.
These simplifications lead to a very simple model to rationalize or predict magnetic
properties of molecular crystals based on organic radicals. When regions of opposite
spin densities overlap, ρiρj < 0 one can expect ferromagnetic interactions and when
close contacts have spin populations with the same sign, ρiρj > 0, antiferromag-
netism prevails. To illustrate its application, we consider two stacked benzyl radicals
with the CH2 groups in para and meta as illustrated in Fig. 4.1. The spin populations
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Fig. 4.1 Left Benzyl radical with the spin populations of the carbon atoms. Two benzyl radicals
stacked with the CH2 group in para (middle) and meta position (right)

shown in the left part of the figure have been calculated with a simple CASSCF
calculation on the doublet spin state of the monomer, although in this case the alter-
nation of the sign of the spin population can be anticipated. The closest contacts
in the stacked dimers are formed by the aligned carbon atoms of the benzene ring.
The ρiρj products for these atoms are all negative in the case of the para conformer
(middle of Fig. 4.1) and therefore this dimer is expected to have a triplet ground state.
The aligned carbon atoms of the meta conformer (right) have spin populations of
the same sign, the ρiρj product is therefore positive, predicting an antiferromagnetic
(singlet) ground state.

The conclusions on the nature of the ground state in the benzyl dimer extracted
from the model of McConnell are in line with those of accurate ab initio calculations.
Also in many organic magnetic materials, the model has proven its ability to correctly
reproduce the dominant magnetic interactions. However, the careful step-by-step
analysis of the model by Novoa and co-workers [4, 5] showed that the success of
the model is at least partially due to a fortunate cancellation of errors. The analysis
shows that there is no firm theoretical foundation for replacing the spin operators
by atomic spin densities. Moreover, the model was shown to fail to predict the
dominant magnetic interactions in several crystals with nitronyl nitroxide radicals
and cannot reproduce the angle dependence of the magnetic interaction in the model
system containing two H2NO radicals. Hence, despite its numerous successes and
versatility, the McConnell model should be applied with caution.

4.3 Use the reasoning of McConnell’s model (Eq. 4.27) to predict the ground
state of the benzyl dimer with the CH2 groups in ortho and for the conformer
where the two units are perfectly aligned.
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4.2 Magnetostructural Correlations

From the very beginning of the study of the magnetic interactions in transition metal
complexes a large part of the effort has been dedicated to derive relations between the
geometrical structure of the complex and the nature and magnitude of the coupling of
the localized spin moments. These magnetostructural correlations can be extremely
useful to rationalize the variations in the magnetic behaviour of a family of similar
complexes or to design new complexes with the desired properties. Magnetostructural
relations can be extracted from experimental studies by comparing a large group of
compounds and relate geometric parameters with the observed magnetic behaviour.
This requires a large set of data, but it is often difficult to separate different (opposing)
effects. On the other hand, theoretical studies can take a (model) complex and modify
the geometry at will to establish the influence of a certain geometric parameter on the
magnetic interaction. Combined with the qualitative valence-only models discussed
in the previous sections one can boil down the complicated magnetic behaviour
to very simple concepts and straightforward magnetostructural correlations. These
concepts and correlations can yield design rules that can be utilized in the synthesis
of materials with pre-defined magnetic properties.

M–L–M angle: One of the most famous magnetostructural correlations concerns
the dependence of J on the M–L–M angle in transition metal complexes with a
double bridge as depicted in Fig. 3.1. For angles close to 90◦ the coupling of the spin
moments on the metal ions is ferromagnetic and for larger (and smaller) angles the
coupling becomes antiferromagnetic. The curve shown in Fig. 4.2 is a typical example
of this correlation and was obtained by calculating J from the singlet-triplet energy
difference (see Eq. 3.29) using the wave functions discussed in Sect. 3.1, Eqs. 3.2a
and 3.7. The change from ferromagnetic to antiferromagnetic interaction can be
explained with the Hay–Thibeault–Hoffmann model. The largest contributions to

Fig. 4.2 Magnetic coupling
strength of the copper dimer
shown in the inset versus the
angle α

http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_3
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Fig. 4.3 Molecular orbital
diagram showing the
interaction of the plus and
minus combinations of the
3dxy orbitals on the metal
centers with the px and py

orbitals on the ligands

the magnetic orbitals arise from the plus and minus combinations of the Cu-3dxy

orbitals, shown on the left in Fig. 4.3. The plus and minus combinations of the px and
py orbitals on the bridge in the right column of the MO diagram interact with the 3dxy

orbitals to form bonding and antibonding combinations as shown in the middle of the
figure. The bonding orbitals are doubly occupied and not relevant for the magnetic
properties, but the antibonding combinations correspond to the magnetic orbitals,
in which we readily recognize the large contribution from the 3dxy orbitals with
non-negligible tails on the ligand. In the reasoning of the HTH model, the difference
in orbital energy ε of the two magnetic orbitals is directly related to the magnetic
coupling strength, cf. Eq. 4.21 and numerically proven by Ruiz and co-workers in
Ref. [6]. For (nearly) degenerate magnetic orbitals (ε1 ≈ ε2) the antiferromagnetic
term is small and the direct exchange Kab dominates. However, when the orbital
energies are sufficiently different, the antiferromagnetic term is the largest term and
J will become negative.

The upper part of Fig. 4.4 shows that the interaction of the px and py bridge
orbitals with the 3dxy orbitals on the metal is approximately equal around α = 90◦.
Therefore, the near degeneracy of the plus and minus combination of the 3d orbitals
is maintained and one can expect a small ferromagnetic interaction of the spins. On
the contrary, for larger angles, the interaction along the x-direction becomes stronger
than for the y orbitals. This is reflected in a larger delocalization onto the ligand
in the gerade orbital than in the ungerade orbital,1 see the lower part of Fig. 4.4.
The energies of the two magnetic orbitals are no longer similar and a considerable
antiferromagnetic contribution exists, which for large enough angles overcomes the
ferromagnetic contribution and turns the net coupling in an antiferromagnetic one.

Out-of plane angle: A second interesting magnetostructural relation that can easily
be explained with the HTH model is the increase in ferromagnetic coupling when the
side group of the bridging atoms is rotated out of the M–(L)2–M plane. This relation
was described in detail in Ref. [6] and it was found that ferromagnetic coupling can
be obtained even in those molecules that have a rather large M–L–M angle. Figure 4.5

1Gerade and ungerade (odd and even in German) make reference to the effect of the sign of the
orbital under the action of the inversion operator. The gerade orbital does not change sign, while
the ungerade orbital is converted to its opposite.
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Fig. 4.4 Upper part gerade

and ungerade magnetic
molecular orbitals for a
M–L–M angle of 90◦. The
dxy orbitals on the metal
centers have an equal overlap
with the px and py orbitals on
the ligand. Lower part In a
system with a larger M–L–M
angle, the overlap is larger
for px than for py

Fig. 4.5 Magnetic coupling
strength J = ES − ET as
function of the out-of-plane
angle τ for two different
Cu–O–Cu angles

shows how the magnetic coupling varies when the hydrogen atom of the bridging OH
groups is moved out of the plane formed by the Cu and O ions. In the case of the 103◦

Cu–O–Cu angle (squares), the magnetic coupling is diminished by approximately
4.5 meV but the ferromagnetic regime is not reached. Considering a slightly smaller
M–L–M angle (circles), a similar change in the coupling is observed but now the
behaviour is changed from antiferromagnetic to ferromagnetic near τ = 30◦.

The increased ferromagnetic character of the coupling upon the out-of-plane
movement of the side group of the bridging ligand (in this simple case a hydro-
gen atom, but the same tendency is observed for bigger residues) is easily explained
with the MO diagram represented in Fig. 4.3. In the case of a completely flat magnetic
core, that is τ = 0◦, the ligand orbital in the xy-plane oriented along the y-axis (φ1) is
typically composed of sp hybrids, mixtures of s and py orbitals. When τ is different
from zero, the xy-plane is no longer a symmetry plane of the complex and the pz

orbitals can also contribute to φ1. This means that the hybridization is no longer
purely sp, but has also some sp2 character. The increased p-character of the hybrid
increases the ligand orbital energy and reduces the gap with the 3dxy orbitals in the
left of Fig. 4.3. Consequently, the interaction becomes stronger and the antibonding
combination, the magnetic orbital with energy ε2, will be higher in energy. This
reduces (ε1 − ε2)

2 and weakens the antiferromagnetic contribution to the coupling.
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Fig. 4.6 Schematic representation of the Cu/V binuclear complex with a double alkoxo bridge.
Left and right Magnetic orbitals for the Cu site and the V site, respectively. Middle superposition
of the two magnetic orbitals

Exchange pathways: We will now further expand the relation between geometry
and magnetic coupling strength by exploiting the concept of the exchange pathway,
which was already briefly mentioned at the end of Sect. 4.1.1. For systems with more
than one unpaired electron per magnetic center the Kahn–Briat model decomposes
the total coupling in pairwise contributions as given in Eq. 4.10. These exchange
pathways provide a very powerful tool to predict the nature of the magnetic coupling
(ferro- or antiferromagnetic; weak, strong) in nearly all combinations of dn magnetic
ions. Many examples were discussed in the book by Kahn [7] and the concept has
recently been reviewed by Launay and Verdaguer [8]. Here we will shortly discuss
two examples to clarify the way of reasoning to rationalize or predict the nature of the
coupling between two transition metals bridged by one or more diamagnetic ligands.
For a full account on this subject we refer to the books of Kahn, and Launay and
Verdaguer.

The first step in the procedure consist of an inspection of the coordination sphere
of the magnetic centers to determine the shape and symmetry of the optimal local
magnetic orbitals. This can either be done through calculation or by ligand field
reasoning. Our first example is a binuclear complex of Cu2+ and V4+ with a double
alkoxo-bridge. The copper ion has a d9 electronic configuration. This means that all
3d-orbitals are doubly occupied except the 3dxy orbital, which is highest in energy
because it directly points to the atoms of the first coordination sphere. The vanadium
ion is covalently bound to the apex oxygen and the resulting vanadyl group has a
formal oxidation state of VO(II) with one unpaired electron in the orbital of lowest
energy, the largely non-bonding V-3dx2−y2 orbital. Figure 4.6 shows the two magnetic
orbitals of the two magnetic centers, the left panel corresponds to the magnetic orbital
on Cu and the right panel to the VO site. The superposition of these two pictures in
the middle defines the exchange pathway and can help us to decide upon the overlap
between the two orbitals as they appear in the main equation of the Kahn–Briat
model, see Eq. 4.9. Note, that this does not define a molecular orbital, it is merely
a construction by superimposing the two magnetic orbitals. The product of the two
functions is an odd function with respect to the xz-plane, and hence, integrating over
the cartesian coordinates gives a zero overlap integral S of these two magnetic orbitals.
When S is equal or close to zero, the first term in the Kahn–Briat equation determines
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Fig. 4.7 Trinuclear model complex with C2v symmetry. TM is one of the transition metals with
an incomplete dn electronic configuration with high spin coupling. The orbitals in the lower part
are 3dz2 (a1), 3dyz (b2), 3dxz (b1), 3dx2−y2 (a1) and 3dxy (a2) and are ordered from left to right by
increasing orbital energy

the nature of the coupling. Therefore, the magnetic coupling in this Cu/V dimer is
expected to be ferromagnetic, in line with the triplet ground state and singlet-triplet
gap of approximately 100 cm−1 observed experimentally [9].

In complexes with more than one unpaired electron on at least one of the magnetic
sites, the overall magnetic coupling is the sum of the couplings along all exchange
paths weighted by the product of the number of unpaired electrons on each magnetic
center (the number of paths). To illustrate the potential of the Kahn–Briat model for
predicting the nature of the magnetic coupling, we will focus on the trinuclear CuII

complex schematically depicted in the upper part of Fig. 4.7 and discuss the effect of
replacing the copper ion in the middle by other transition metals. The complex has
approximate C2v symmetry and the five 3d orbitals belong to the a1 (2x), a2, b1 and
b2 irreducible representations as shown in the lower part of the figure. The copper
ions on the left and right sides of the complex with their 3d9 electronic configuration
have only one unpaired electron, which resides in the 3dxy orbital of a2 symmetry.
When the magnetic center in the middle is also occupied by a Cu2+ ion, the three
magnetic orbitals are all of the same symmetry and hence there is a non-zero overlap
leading to an antiferromagnetic coupling between the TM ions in the complex, in
line with experiment [10].

Keeping track of the relative energy of the five 3d orbitals (see Fig. 4.7), we now
consider the complexes that contain transition metals with other electronic configu-
rations. Starting with the 3d1 configuration (for example, Ti3+), the natural magnetic
orbital in the middle is 3dz2 with a1 symmetry and the Cu orbitals on the outside are
3dxy of a2 symmetry. Hence, the exchange path includes orthogonal orbitals and fer-
romagnetic interactions are expected. Putting a transition metal with two d-electrons
in the middle leads to an electronic configuration with the unpaired electrons in the
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3dz2 and 3dyz orbitals belonging to the a1 and b2 irreducible representations, respec-
tively. The total coupling is a sum of four exchange paths, which appear in two pairs
because of the left–right symmetry of the complex. Exchange path type 1 goes from
the 3dz2 orbital in the middle to the 3dxy orbital on the Cu. Since they transform
differently under the symmetry operations of the C2v group, the overlap integral of
the two orbitals is zero and this path contributes in a ferromagnetic way to the cou-
pling. The same holds for the second pair of exchange paths involving the 3dyz and
3dxy orbitals. Hence, again a ferromagnetic coupling can be anticipated. The situ-
ation changes when the middle position is occupied by an ion with a d5 electronic
configuration. Five different exchange paths are now active; four of them involve
orthogonal orbitals, but the fifth connects the 3dxy natural magnetic orbitals of the
centers. The latter gives an antiferromagnetic contribution and counterbalances the
four weaker ferromagnetic exchange paths. When TM ions are placed in the cen-
ter with more than 5 d-electrons, the ferromagnetic exchange paths disappear, the
coupling gets gradually more antiferromagnetic until we arrive again at the strong
antiferromagnetic coupling in the case of three ions with d9 electronic configurations.

4.4 Consider the complex sketched in this box and predict the nature of the
coupling when site A is occupied by Ni2+ and site B by Cr3+. The out of plane
TM-ligand distances are larger than the in-plane distances.

What is the number of exchange paths when Cr3+ is replaced by Mn2+? What
coupling can be expeced?

Counter-complementarity: Another relation between structure and magnetic cou-
pling strength is covered by the concept of counter-complementarity. In systems
with two magnetic centers connected by two different ligands the total magnetic
coupling is in general not equal to the sum of the magnetic coupling via the two indi-
vidual bridges but often significantly smaller. This anti-synergistic effect can most
efficiently be explained for a system with two S = 1/2 spin moments based on two
molecular orbital diagrams using the HTH model. Figure 4.8 shows the interaction
of the atomic-like orbitals on the magnetic centers A and B with those of the bridge
(L1) that is expected to give the largest contribution to the coupling. The molecule is
in the xy-plane and the A–B ‘bond’ is along the x-axis. The interaction of the L1 − px

orbital with the gerade combination of dxy orbitals is stronger than the interaction
of the L1 − 2py with the ungerade dxy orbitals. Therefore a gap is opened between
the magnetic orbitals ϕ1 and ϕ2 with the antibonding combination of gerade dxy

and L1 − 2px at higher energy. Equation 4.21 shows that this gap (∆1) is directly
proportional to the magnetic coupling through L1.
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Fig. 4.8 Molecular orbital
diagram of the interaction of
the atomic-like orbitals on
the magnetic centers A and B

and the orbitals on the lower
bridge parallel and
perpendicular to the A–B

‘bond’

Fig. 4.9 Molecular orbital
diagram of the interaction of
the magnetic orbitals ϕ1 and
ϕ2 (obtained by the
interaction of the magnetic
centers with the lower
bridge) and those of the
upper ligand. ∆1 > ∆2

The next step takes into account the interaction with the second bridge (L2) and is
schematically depicted in Fig. 4.9. For symmetry reasons, ϕ1 interacts with ϕ3, and
ϕ2 with ϕ4. If we take a perturbational point of view, the interaction strength is deter-
mined not only by the energy separation of the levels but also by the interaction matrix
elements. The shape of the orbitals on the left and the right of the figure strongly
suggest that the matrix elements can be assumed to be nearly the same, and hence,
the final result of the interaction is solely determined by the differences in the orbital
energies. ϕ3 and ϕ4 lie at lower energy than ϕ1 and ϕ2, but the separation between
these two is much smaller than ∆1. From this directly follows that ε(ϕ1) − ε(ϕ3)

is smaller than ε(ϕ2) − ε(ϕ4). Consequently, the destabilization in the antibond-
ing combination of ϕ1 and ϕ3 is larger than for ϕ2 and ϕ4 and leads to a smaller
gap between the magnetic orbitals than after the considering only L1: ∆1 > ∆2.
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According to the HTH model this gives a reduction of the antiferromagnetic con-
tribution to the magnetic coupling (see Eq. 4.21) and illustrates the anti-synergistic
effect or counter-complementarity of the two ligands.

4.3 Accurate Computational Models

Although the qualitative models discussed so far are very useful for a basic under-
standing of the magnetic interactions between two spin moments, more quantitative
predictions can only be obtained by going beyond the valence-only description con-
sidered so far. As shown in the previous chapter, the magnetic interaction parameter J

of the Heisenberg Hamiltonian can in many cases be related to the energy difference
of electronic states with different spin couplings. Hence, precise theoretical estimates
of the magnetic coupling strengths are intimately related to the correct application
of high-level computational schemes.

As shown in Sect. 3.1, the basic description of the magnetic coupling problem is
intrinsically multideterminantal and in most cases one needs a multiconfigurational
description for minimally accurate results. Before discussing the different compu-
tational schemes that can be used for quantitative estimates, we want to stress that
a multideterminantal wave function is not necessarily a multiconfigurational wave
function. This is best illustrated for the 2-electrons/2-orbitals case discussed before.
The simplest representation of the triplet state is obtained with a single Slater deter-
minant

ΦT = |φaφb| (4.28)

where all the doubly occupied orbitals have been omitted. On the other hand, the
most basic description of the open-shell singlet requires a wave function with two
Slater determinants to fulfill the requirements of the spin symmetry.

ΦS = |φaφb| − |φaφb|√
2

(4.29)

This multideterminantal wave function only describes one electronic configuration
since the occupation of the orbitals is the same in both determinants and is in general
known as a configuration state function. In this simple monoconfigurational descrip-
tion, the energy of the triplet is lower than the singlet by twice the exchange integral
Kab. A more satisfactory description is obtained with a multiconfigurational singlet
wave function by adding the Slater determinants with two electrons in the same
orbital

Φ ′
S = c1

{

|φaφb| − |φaφb|
}

+ c2
{

|φaφa| + |φbφb|
}

(4.30)

where c1 is much larger than c2 for biradicalar systems, and their precise value has
to be determined in a configuration interaction calculation. Wave functions of this

http://dx.doi.org/10.1007/978-3-319-22951-5_3
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type are often used as multideterminantal-multiconfigurational reference—mostly
multireference (MR), for short—wave function.

MR-CISD is one of the most accurate ab initio computational schemes that can
be used to describe the electronic structure of systems with a markedly multirefer-
ence character. Although the ever increasing computing power constantly pushes the
frontiers forward, the applicability of MR-CISD remains limited to small (model)
systems. Moreover, the method suffers from the size-extensivety problem inherent
to any truncated CI method. For these reasons, MR-CISD is hardly ever used in com-
putational studies of molecules with unpaired electrons. There are, however, several
alternative wave function based schemes that can provide very useful information
about the magnetic interactions. In the following sections we will first discuss the ins-
and-outs of a good reference wave function and introduce the difference dedicated
CI (DDCI) method. Thereafter a short account will be given of two implementa-
tions of MR perturbation theory, and the chapter will be closed with a discussion of
the consequences of lifting the restrictions of the spin symmetry as done in density
functional theory (DFT).

4.3.1 The Reference Wave Function and Excited Determinants

An important factor in the accurate prediction of magnetic coupling (and other elec-
tronic structure) parameters is the proper choice of the reference wave function. There
are many possible ways to construct the reference, but the complete active space
(CAS) approach has emerged as one of the most versatile methods. The molecular
orbitals are divided in three groups: the inactive, the active and the virtual orbitals.
The orbitals in the first group are doubly occupied in all the Slater determinants of
the multireference wave function, while the orbitals in the last group remain always
unoccupied. The orbitals in the second class span the active space. The multiconfigu-
rational wave function is generated by distributing Nact electrons—where Nact is the
total number of electrons minus two times the number of inactive orbitals—over the
Mact active orbitals. This is schematically outlined in Fig. 4.10. The doubly occupied
or empty Hartree Fock orbitals shown on the left are divided in inactive, active and
virtual orbitals. The multiconfigurational wave function is constructed by making a
linear combination of Slater determinants Φ1, Φ2, etc. that differ by the occupation
of the active orbitals. The CAS procedure generates a MR wave function in which
all possible distributions of the active electrons over the active orbitals are consid-
ered. Although this approach often generates many determinants that are very high
in energy and are not specially important in the final wave function, it has several
important practical and conceptual advantages like the good convergence proper-
ties, size extensivity, orbital invariance, etc. [11]. Moreover, it has the advantage that
selecting the active orbital space (although far from being trivial) is in most cases
easier than making an unbiased selection of the most important configurations.
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Fig. 4.10 Complete Active Space procedure to generate a multireference wave function. The occu-
pied and virtual orbitals from a Hartree–Fock calculation (left) are divided in three groups (right):
Inactive, active and virtual orbitals. A linear combination of Slater determinants is formed in which
the inactive orbitals are always doubly occupied, the virtual orbitals are always empty and the active
orbitals can be doubly occupied, singly occupied or unoccupied

4.5 How many determinants with MS = 0 can be generated for the active
space with 4 active orbitals and 4 electrons as shown in Fig. 4.10.

In virtually all calculations of magnetic interactions or related electronic structure
parameters, the wave function expansion is restricted to singly and doubly excited
determinants with respect to the reference. These determinants are often classified
in eight different groups depending on how many holes/particles are created in the
inactive/virtual orbitals. This can be very useful to decompose the wave function in
smaller contributions and in this way facilitate the analysis of the results. Table 4.1
overviews the different classes and lists the labels used in some post Hartree–Fock
methods that will be described in the remainder of this chapter. In the Table we have
used Êrs to define the excitation operator â

†
s âr , eliminating an electron in orbital r

and creating one in orbital s.
It is rather complicated to give generally applicable formulas for the number of

determinants in each class, but rough estimates are rather easily calculated. Consider
a system with k inactive orbitals, l virtual orbitals and n determinants in the reference
wave function, the number of electrons is even and we restrict ourselves to the MS = 0
subspace without any further spin or spatial symmetry. The approximate number of
2h-2p replacements is given by the product of the number of ways in which 2 holes
can be created in the inactive orbitals (k2) and the ways in which two particles can be
placed in the virtual orbitals (l2) multiplied with the number of determinants in the
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Table 4.1 Classification of the singly and doubly excited determinants by the number of
holes/particles created in the inactive (h, h′)/virtual (p, p′) orbitals

Excitation operator(s) CASPT2 DDCI NEVPT2

Êha; ÊhaÊbc Internal 1h V̂+1
h

ÊhaÊh′b 2h V̂+2
hh′

Êap; ÊapÊbc Semi-internal 1p V̂−1
p

Êhp; ÊhpÊab 1h-1p V̂0
h,p

ÊhpÊh′a 2h-1p V̂+1
hh′,p

ÊapÊbp′ External 2p V̂−2
pp′

ÊhpÊap′ 1h-2p V̂−1
h,pp′

ÊhpÊh′p′ 2h-2p V̂0
hh′,pp′

a, b and c are active orbitals. The nomenclature used in some post Hartree–Fock methods is also
listed

reference wave function, that is n×k2l2. A similar reasoning can be used to estimate
the number of excitations with 2h-1p (n × k2l), 1h-2p (n × kl2) and so forth.

4.6 Compute the number of 1h-1p determinants in the case of k inactive
orbitals, l virtual orbitals and a (2,2) CAS space for MS = 0.

4.3.2 Difference Dedicated Configuration Interaction

The majority of the excited determinants belong to the class of the 2h-2p excitations.
This class easily constitutes 90 % of the determinants in medium-sized molecules
using basis sets of reasonable quality, and hence, the contribution to the correlation
energy is extremely large. However, including this class of excitations in the con-
figuration interaction expansions has only a small effect on the vertical excitation
energies (that is, the relative energies of the different electronic states at a fixed
geometry). Hence, this differential effect can be neglected in the calculation of the
relative energies of the spin states needed to extract J , the magnetic coupling parame-
ter of the Heisenberg Hamiltonian, and various other electronic structure parameters.
The elimination of the 2h-2p determinants leads to a drastic shortening of the con-
figuration interaction expansion and widens the field of applicability of variational
wave function based methods. The resulting variant of MRCI is generally known
as the difference dedicated configuration interaction (DDCI) [12], which provides
accurate vertical energy differences but cannot be used to compare total energies at
different geometries.
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4.7 Make a rough estimate of the total number of determinants in the MR-
CISD wave function for a system with 74 electrons, 154 orbitals and a
CAS(2,2)CI reference wave function. Calculate the percentage of 2h-2p exci-
tations in the MR-CISD wave function (neglect the 1h, 1p, 1h-1p, 2h and 2p

excitations, they give rise to a very small number of determinants).

The justification for eliminating the 2h-2p determinants relies on second-order
perturbation theory in its quasi-degenerate formulation as exposed in Chap. 1.
Although it can be done for an arbitrary number of unpaired electrons, we will
elaborate the 2-electrons/2-orbitals case for simplicity. The model space is spanned
by the neutral and ionic determinants

ΦI = {|hhab|, |hhba|, |hhaa|, |hhbb|} (4.31)

where h is one of the inactive orbitals, doubly occupied in all determinants of the
model space. The lowest two eigenstates of the model space are the singlet and triplet
spin functions whose energy difference is related to J . However, before diagonalizing
we will first evaluate the effect of the 2h-2p external determinants on the matrix
elements between the determinants of the model space with QDPT. First, we take
a look at the off-diagonal elements and calculate the second-order contributions of
ΦR = |ppab| and ΦS = |ppba| to the dressed matrix element of ΦI = |hhab| and
ΦJ = |hhba| according to the expression given in Eq. 1.86. The 2h-2p determinant
ΦR is obtained by making a double replacement in ΦI , exciting the electrons in
h to the unoccupied orbitals p and ΦS arises from ΦJ in an analogous way. The
contributions to the effective matrix element are

ΦR:
〈hhab|V̂ |ppab〉〈ppab|V̂ |hhba〉

EJ − ER

(4.32a)

ΦS:
〈hhab|V̂ |ppba〉〈ppba|V̂ |hhba〉

EJ − ES

(4.32b)

For the contribution of ΦR, the second matrix element in the numerator is zero
because the determinants on the left and the right of the operator have more than
two different columns, and the same occurs for the first matrix element in the ΦS

contribution. This eliminates any second-order perturbation contribution from the
2h-2p determinants to the off-diagonal elements of the model space.

4.8 Write down the second-order contribution of ΦQ to 〈ΦI |Ĥeff |ΦL〉, where
ΦQ arises from a double excitation from orbital h to orbital p acting on the
ionic determinant ΦL = |hhbb|. Argue that this contribution is equal to zero.

http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_1
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On the contrary, the diagonal elements do have a contribution from the 2h-2p

excitations. Continuing with the external determinants ΦR and ΦS , it is easily shown
that the former only contributes to 〈ΦI |Ĥeff |ΦI 〉 and the latter to 〈ΦJ |Ĥeff |ΦJ〉

ΦR:
|〈hhab|V̂ |ppab〉|2

EI − ER


= 0
|〈hhba|V̂ |ppab〉|2

EJ − ER

= 0 (4.33a)

ΦS:
|〈hhab|V̂ |ppba〉|2

EI − ES

= 0
|〈hhba|V̂ |ppba〉|2

EJ − ES


= 0 (4.33b)

Both non-zero integrals are identical and through the Slater–Condon rules we arrive
at the following second-order contribution of ΦR and ΦS to the diagonal elements
〈ΦI |Ĥeff |ΦI 〉 and 〈ΦJ |Ĥeff |ΦJ〉

|〈pp| 1−P̂12
r12

|hh〉|2

2εh − 2εp

(4.34)

where the denominator is obtained by assuming the Møller–Plesset division for Ĥ =
Ĥ(0) + V̂ . In the general case the contribution of all the 2h-2p determinants to the
diagonal elements is given by

∑

h,h′

∑

p,p′

|〈pp′| 1−P̂12
r12

|hh′〉|2

εh + εh′ − εp − εp′
(4.35)

The summation only involves integrals that depend on the inactive (h, h′) and virtual
(p, p′) orbitals, and hence, is exactly the same for all the diagonal elements in the
model space. This uniform shift of the diagonal elements does not affect the energy
differences of the eigenstates of the model space and in combination with the zero
contribution to the off-diagonal elements, this shows that the 2h-2p determinants can
be skipped in the CI expansion of the wave function. Note that this argument is based
on second-order perturbation theory, the inclusion of higher-order interactions gives
rise to small contributions and strictly speaking the mutual interaction between the
2h-2p determinants could affect the energy differences.

4.9 Consider a (non-degenerate) model space with neutral and ionic determi-
nants. (a) Show that the 2h-1p determinant ΦR = |aapb| introduces non-zero
off-diagonal elements between the ionic and neutral determinants of the model
space. (b) Are the diagonal elements of the model space shifted uniformly by
ΦR?

The number of external determinants can even be more reduced when the model
space is reduced to the neutral determinants ΦI = {|hhab|, |hhba|}. Under these
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circumstances, the list of determinants that do not affect the energy difference of the
two states contained by the model space can be extended with the 2h-1p and 1h-2p

classes. Taking as an example ΦR = |aapb| and ΦS = |bbpa| (2h-1p determinant
generated from ΦI and ΦJ , respectively), the same reasoning will be followed as
above. In the first place it is easily seen that the second-order contribution to the
off-diagonal elements is zero

ΦR:
〈hhab|V̂ |aapb〉〈aapb|V̂ |hhba〉

EJ − ER

= 0 (4.36a)

ΦS:
〈hhab|V̂ |bbpa〉〈bbpa|V̂ |hhba〉

EJ − ES

= 0 (4.36b)

The first integral in the numerator of the ΦR contribution is non-zero because the
determinants in the bra and the ket only differ by two columns, but |aapb| differs at
three places from |hhba|, and hence, leads to a zero contribution. The same holds for
ΦS . At first sight, the contribution to the diagonal elements of the model space may
seem non-uniform:

ΦR:
|〈hhab|V̂ |aapb〉|2

EI − ER


= 0
|〈hhba|V̂ |aapb〉|2

EJ − ER

= 0 (4.37a)

ΦS:
|〈hhab|V̂ |bbpa〉|2

EI − ES

= 0
|〈hhba|V̂ |bbpa〉|2

EJ − ES


= 0 (4.37b)

At difference with the 2h-2p determinants discussed above, the two non-zero integrals
are not necessarily equal in this case. However, the effect of Φ ′

R = |aabp| and
Φ ′

S = |bbap| exactly compensates this disequilibrium:

Φ ′
R:

|〈hhab|V̂ |aabp〉|2
EI − E′

R

= 0
|〈hhba|V̂ |aabp〉|2

EJ − E′
R


= 0 (4.38a)

Φ ′
S:

|〈hhab|V̂ |bbap〉|2
EI − E′

S


= 0
|〈hhba|V̂ |bbap〉|2

EJ − E′
S

= 0 (4.38b)

The denominators in the non-zero contributions of ΦR and Φ ′
R are equal since

ER = E′
R, and EI = EJ in a degenerate model space. Furthermore, the integral

〈hhab|V̂ |aapb〉 in Eq. 4.37a is exactly the same as the integral 〈hhba|V̂ |aabp〉 of
Eq. 4.38a

〈hhab|V̂ |aapb〉 = 〈hhab|Ĥ|aapb〉 = −〈hhab|Ĥ|paab〉 =

− 〈hh|1 − P̂12

r12
|pa〉 =

∫

h(1)h(2)p(1)a(2)

r12
dτ1dτ2 (4.39a)
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〈hhba|V̂ |aabp〉 = 〈hhba|Ĥ|aabp〉 = −〈hhba|Ĥ|apba〉 =

− 〈hh|1 − P̂12

r12
|ap〉 =

∫

h(1)h(2)a(1)p(2)

r12
dτ1dτ2 (4.39b)

The same reasoning holds for ΦS and Φ ′
S showing that taking into account the 2h-1p

and 1h-2p excitations only causes a uniform shift of the diagonal matrix elements,
and hence, they can be left out of the calculation of the energy difference between
the states of the model space.

This variant of the difference dedicated CI is commonly known as DDCI2 and
gives reasonable energy differences for systems with a moderate importance of the
ionic determinants. This is specially interesting for the treatment of organic biradicals
or TM complexes with weakly coupled spin moments. However, the DDCI2 energy
difference becomes increasingly more approximate when the CAS reference wave
function contains non-negligible contributions from non-degenerate determinants.
In these cases, one necessarily has to rely on the more expensive DDCI procedure.
Finally, the external space is sometimes even further reduced by eliminating also
the 2h and 2p determinants from the CI. The resulting CAS+S or DDCI1 method
can be used to obtain a first impression of the relative size of the parameters, but
does normally not provide accurate answers. Moreover, one should be aware of
the practical problem that the implementations of this variant in different computer
programs do not consider exactly the same list of determinants.

4.3.3 Multireference Perturbation Theory

As an alternative for the variational methods, one can also apply multireference
perturbation theory (MRPT) to calculate magnetic interactions. In principle, this
type of calculations makes it possible to treat larger systems with more unpaired
electrons. Among the many different implementations, two schemes are especially
popular in the field of magnetic interactions: CASPT2 [13] and NEVPT2 [14, 15],
which will be shortly overviewed here.

The standard Møller–Plesset perturbation theory uses a single determinant refer-
ence wave function and defines the zeroth-order Hamiltonian as the sum of the Fock
operators

Ĥ
(0)
MP =

∑

F̂i (4.40)

By Koopmans’ theorem, the eigenvalues of the Fock operator applied on occupied
orbitals are proportional to ionization potentials and the eigenvalues corresponding
to unoccupied orbitals are related to the electron affinities. CASPT2 extends the
applicability to multireference cases by defining an effective one-electron Fock-type
operator as zeroth order Hamiltonian in the following way
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Fig. 4.11 Structure of the
f -matrix of Ĥ(0)in CASPT2.
The dark grey blocks have
non-zero values, the white

blocks are zero and the light

grey blocks are zero when
the orbitals are optimized for
the state under study. For
zero active orbitals only the
diagonal elements survive
and the Møller–Plesset
definition of Ĥ(0)emerges

Ĥ(0) =
∑

rsσ

frsσ Êrs; with frsσ = −〈0|[[Ĥ, â†
sσ ], ârσ ]+|0〉 (4.41)

where |0〉 is the CASSCF reference wave function and σ a general index for the spin
coordinates. This definition may appear complicated at first sight, but a closer look
on the f -matrix learns that it is in fact a rather straightforward expression that reduces
to the Møller–Plesset zeroth-order Hamiltonian in the limit of zero active orbitals.

frs = 〈0|ârĤâ†
s |0〉 − 〈0|â†

s Ĥâr |0〉 − 〈0|âr â†
s Ĥ|0〉 + 〈0|Ĥâ†

s âr |0〉 (4.42)

The structure of the matrix is schematically presented in Fig. 4.11. The inactive-
virtual block of the matrix is given by

fhp = 〈0|âhĤâ†
p|0〉 − 〈0|â†

pĤâh|0〉 − 〈0|âhâ†
pĤ|0〉 + 〈0|Ĥâ†

pâh|0〉 = 0 (4.43)

where the first term is zero by 〈0|âh = â
†
h
|0〉 = 0, since no particle can be created

in an occupied orbital. The second and third term can be shown to be zero with an
equivalent reasoning, while the fourth term is zero by the extended Brillouin theorem.
The operator â

†
pâh generates a singly excited configuration, which does not interact

with the CASSCF wave function provided optimized orbitals are used. The diagonal
elements of the inactive-inactive block are

fhh = 〈0|âhĤâ
†
h
|0〉 − 〈0|â†

h
Ĥâh|0〉 − 〈0|âhâ

†
h
Ĥ|0〉 + 〈0|Ĥâ

†
h
âh|0〉 = −IPh (4.44)

In this case, the first and third term are again zero for the same reason as exposed
above. However, the operators in the second term annihilate an electron in the bra
and the ket, which result in 〈N − 1|Ĥ|N − 1〉, the energy of the ionized system.
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The operator â
†
h
âh in the fourth term first annihilates an electron in orbital h and

subsequently creates it again in the same orbital. This leads to 〈0|Ĥ|0〉, the CASSCF
energy of the N-electron system. The off-diagonal terms fhh′ are all zero. Finally, we
consider the virtual-virtual diagonal elements of f :

fpp = 〈0|âpĤâ†
p|0〉 − 〈0|â†

pĤâp|0〉 − 〈0|âpâ†
pĤ|0〉 + 〈0|Ĥâ†

pâp|0〉 = −EAp (4.45)

The action of âp on |0〉 (annihilation of an electron in an empty orbital) results in
zeros for the second and fourth terms. 〈0|âp and â

†
p|0〉 generate an electron in orbital

p making the first term equal to the energy of the corresponding (N+1)-electron state.
The third term is the energy of the CASSCF reference, and hence, the diagonal terms
of the virtual-virtual block of f are electron affinities. The off-diagonal elements fpp′

are zero. Then it is readily seen that the CASPT2 Ĥ(0)reduces to the Møller–Plesset
Hamiltonian in the limit of zero active orbitals.

It is important to realize that the one-electron nature of Ĥ(0) makes that the expec-
tation values of the excited configurations E

(0)
R appearing in the denominator of the

corrections to the energy and wave function do not coincide with the expectation
values of the real Hamiltonian Ĥ. In some specific cases, it can happen that E

(0)
R is

very close to (or even smaller than) the expectation value of the ground state. Such
intruder states may cause a break-down of the perturbation theory. CASPT2 imple-
mentations provide a pragmatic solution to this problem by the so-called level-shift
technique, in which near-degeneracies are removed by adding an extra term to the
denominator.

Although this approach often resolves the intruder state problem very efficiently,
a methodologically more satisfying route is taken in the n-electron valence state
second-order perturbation theory (NEVPT2). By including two-electron interactions
in Ĥ(0), this perturbative scheme does not suffer from the intruder state problem,
except in some pathological cases. The zeroth-order Hamiltonian proposed by Dyall
[16] reads

Ĥ
(0)
D = Ĥi + Ĥν + C (4.46)

where Ĥi is of one-electron nature and acts on the inactive and virtual orbitals

Ĥi =
∑

h

εhÊhh +
∑

p

εpÊpp (4.47)

Ĥν is a two-electron operator but is restricted to the active space

Ĥν =
∑

a,b

h
eff

ab
Êab + 1

2

∑

a,b,c,d

〈ab|1 − P̂12

r12
|cd〉

(

ÊacÊbd − δbcÊad

)

(4.48)
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and C is an appropriate constant shift to ensure that Ĥ
(0)
D is equivalent to the full

Hamiltonian in the active part.

Contracted versus uncontracted: The simplest way to define the first-order wave
function is to apply single and double excitation operators on all the determinants
(or CSFs) of the reference wave function.

ψ (1) =
∑

I

∑

rstu

cI,rstuÊrsÊtuΦI (4.49)

The second-order correction to the energy is relatively straightforward to evaluate,
but the number of terms in the summation rapidly becomes very large, especially for
large reference wave functions. A second approach is to apply excitation operators
not on the individual determinants of CSFs of the reference space, but on the reference
wave function as a whole.

ψ (1) =
∑

rstu

crstuÊrsÊtuψ
(0) (4.50)

This approach generates much less terms since the external determinants appear
as contracted sums in the first-order wave function. Moreover, the dimension of the
external space does not grow as fast with the size of ψ (1) as in the uncontracted way of
generating ψ (1). On the other hand, the calculation of the second-order correction to
the energy relies on significantly more complicated expressions but once programmed
this is just a minor issue compared to the limited length of ψ (1).

The differences between the contracted and uncontracted procedure are best
illustrated by giving two examples with a very simple reference wave function:
ψ (0) = λ|hhaab| + µ|hhabb|. In the first place, we will apply the single excitation
operator involving the occupied orbital h and the unoccupied orbitals p and p′. The
uncontracted wave function reads

ψ (1) = c1|haabp| + c2|haabp| + c3|haabp′| + c4|haabp′|
+ c5|habbp| + c6|habbp| + c7|habbp′| + c8|habbp′| (4.51)

and in the contracted formalism, the following function is generated

ψ (1) = c1{λ|haabp| + µ|habbp|} + c2{λ|haabp| + µ|habbp|}
+ c3{λ|haabp′| + µ|habbp′|} + c4{λ|haabp′| + µ|habbp′|} (4.52)

The uncontracted first-order correction has eight different coefficients to be deter-
mined, while the contracted variant generates the same determinants with only four
different coefficients. The fact that the external determinants are weighted by the
coefficients of the reference wave function does only slightly influence the final
result. The second example applies the single excitation operator involving the active
orbitals a and b, and the virtual orbital p. Again, the uncontracted algorithm generates
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a list of all five possible excited determinants

ψ (1) = c1|abp| + c2|abp| + c3|aap| + c4|bbp| + c5|abp| (4.53)

where the hh-part has been omitted for simplicity. The contracted wave function is
shorter:

ψ (1) = c1{λ|abp| + µ|bbp|} + c2λ|abp| + c3{λ|aap| + µ|abp|} + c4µ|abp| (4.54)

Since the determinants of the second and fourth term are the same, the wave function
presents a linear dependence, which should be removed and further reduces the
number of coefficients.

The contraction written in Eq. 4.50 is used in CASPT2 and in the partially-

contracted variant of NEVPT2. The latter method is also available in a strongly-

contracted variant of NEVPT2, in which the contracted external functions are
grouped together depending on the number of electrons added or removed from the
active space. In this way a reduced set of orthogonal external functions is generated.

4.3.4 Spin Unrestricted Methods

The observation that except for the state of maximum multiplicity, spin states cannot
be rigorously represented with a single determinant makes it very interesting to look
at the possibility to study magnetic interactions in a spin unrestricted setting using
a single determinant description of the spin states. We will start with the spatially
symmetric 2-electron/2-orbital case and afterwards generalize for systems with more
unpaired electrons.

The most widely applied approximation to extract J within a single determinant
description of the spin states is the so-called Broken Symmetry approach which uses
two determinants:

ΦBS = |φ1φ2| ΦHS = |φ1φ2| (4.55)

where the closed-shell orbitals have been omitted for convenience. The Ŝ2 expectation
value of ΦHS is not exactly equal to 2 since the closed shell spin orbitals appear in
pairs with slightly different spatial orbitals. However in most cases it is close to 2
and is generally considered as a good approximation to the triplet state obtained in
a spin-restricted setting.

ΦHS ≈ ΦT (4.56)

EHS = 〈ΦHS|Ĥ|ΦHS〉 ≈ ET (4.57)

〈Ŝ2〉HS = 〈ΦHS|Ŝ2|ΦHS〉 ≈ 2 (4.58)
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One the other hand, the Ŝ2 expectation value of ΦBS is neither close to zero (singlet)
nor to two (triplet), but rather somewhere in between. It is therefore a logical step
to approximate the broken symmetry determinant as a linear combination of the
spin-restricted singlet and triplet states [17]:

|ΦBS〉 = λ|ΦS〉 + µ|ΦT 〉 with λ2 + µ2 = 1 (4.59)

with the following energy and Ŝ2 expectation value

EBS = 〈λΦS + µΦT |Ĥ|λΦS + µΦT 〉 = λ2ES + µ2ET (4.60)

〈Ŝ2〉BS = λ2〈ΦS|Ŝ2|ΦS〉 + µ2〈ΦT |Ŝ2|ΦT 〉 = 2µ2 (4.61)

After substituting µ2 = 1 − λ2 from the normalization condition in Eq. 4.61, we
obtain

λ2 = 1 − 〈Ŝ2〉BS

2
and µ2 = 〈Ŝ2〉BS

2
(4.62)

which can be substituted in the energy expression of the BS determinant given in
Eq. 4.60

EBS =
(

1 − 〈Ŝ2〉BS

2

)

ES + 〈Ŝ2〉BS

2
ET (4.63)

The energy difference of the BS and HS determinants now reads

EBS − EHS = ES − 〈Ŝ2〉BS

2
(ES − ET ) − ET

=
(

1 − 〈Ŝ2〉BS

2

)

(ES − ET )

= 2 − 〈Ŝ2〉BS

2
(ES − ET ) (4.64)

which leads to the final expression of the magnetic coupling parameter J as function
of the energies of the spin-unrestricted HS and BS determinants

J = ES − ET = 2(EBS − EHS)

2 − 〈Ŝ2〉BS

(4.65)

This is not the only expression used to relate the energy of the two determinants
with the singlet-triplet energy difference. Under the assumption that the spin polar-
ization in the closed shell orbitals is small enough to ensure their orthogonality, one
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can express the energy difference as function of the overlap of the magnetic orbitals.
From Eq. 1.27 we can calculate 〈Ŝ2〉BS

〈φ1φ2|Ŝ2|φ1φ2〉 = 〈φ1φ2|φ1φ2 + φ1φ2〉 = 〈φ1φ2|φ1φ2 − φ2φ1〉
= 1 − 〈φ1|φ2〉2 (4.66)

The substitution of this expression in Eq. 4.65 leads to

J = ES − ET = 2(EBS − EHS)

1 + 〈φ1|φ2〉2 (4.67)

which in the weak overlap limit evolves to

J = 2(EBS − EHS) (4.68)

and in the strong overlap limit to

J = EBS − EHS (4.69)

Note that in the latter case the overlap 〈φ1|φ2〉 tends to one, which means that φ1
becomes equal to φ2 and ΦBS = |φ1φ1| represents a closed shell singlet state.

Expression 4.67 can be rewritten in terms of spin densities to avoid the less
generally available overlap of the magnetic orbitals [18]. The simplest way to do this
is to express the non-orthogonal magnetic orbitals φ1 and φ2 in the local orthogonal
orbitals ψ1 and ψ2:

|ΦBS〉 = |φ1φ2〉 = |(λψ1 + µψ2)(µψ1 + λψ2)〉 (4.70)

with 〈φ1|φ1〉 = 〈φ2|φ2〉 = λ2 + µ2 = 1 and 〈φ1|φ2〉 = 2λµ. The α and β spin
densities arise from φ1 and φ2, respectively, and are equal to λ2 and µ2 for site 1.
From this the total spin density can be obtained

ρα
1 = λ2

ρ
β
1 = µ2

}

⇒ ρ
α−β
1 = λ2 − µ2λ2+µ2=1=⇒

{

2λ2 = 1 + ρ
α−β
1

2µ2 = 1 − ρ
α−β

1

(4.71)

Now the relation with 〈φ1|φ2〉 in Eq. 4.67 is easily made

〈φ1|φ2〉2 = 4λ2µ2 = (1 + ρ
α−β
1 )(1 − ρ

α−β
1 ) = 1 − (ρ

α−β
1 )2 = 1 − (ρBS

1 )2 (4.72)

Note that this equation assumes that all the spin density is localized on the magnetic
centers.

With a slightly more elaborate derivation one can also handle cases with an impor-
tant delocalization of the spin density onto the ligands [19]. The magnetic orbitals
are written as a linear combination of three nonorthogonal basis functions

http://dx.doi.org/10.1007/978-3-319-22951-5_1


134 4 From Orbital Models to Accurate Predictions

φ1 = λχ1 + µχ2 + νχ3 φ2 = µχ1 + λχ2 + νχ4 (4.73)

with 〈χi|χj〉 
= 0, 〈χi|χi〉 = 1 and λ ≫ µ, ν. The basis functions χ1 and χ2 are
centered on the magnetic site 1 and 2, respectively. The other two functions are
ligand orbitals around site 1 (χ3) and site 2 (χ4). Furthermore, it holds that 〈χ1|χ4〉 =
〈χ2|χ3〉 ≪ 〈χ1|χ3〉 = 〈χ2|χ4〉 in a centro-symmetric system. The overlap of the two
magnetic orbitals is

〈φ1|φ2〉 = 2λµ + ν2〈χ3|χ4〉 + (λ2 + µ2)〈χ1|χ2〉
+ 2λν〈χ1|χ4〉 + 2µν〈χ1|χ3〉 (4.74)

Many terms can be neglected in this expression. The terms with µ2, ν2 or µν are small
because these coefficients are much smaller than λ. Being located in different parts of
the complex, the overlap integrals 〈χ1|χ4〉 and 〈χ1|χ2〉 are also expected to be small.
This makes that the overlap of the magnetic orbitals can be roughly approximated
by 2λµ. The spin density on site 1 can be determined using the Mulliken population
reasoning. The contribution due to φ1 and φ2 are

φ1 contribution: λ2 + 1

2
(2λµ〈χ1|χ2〉 + 2λν〈χ1|χ3〉) (4.75)

φ2 contribution: µ2 + 1

2
(2λµ〈χ1|χ2〉 + 2µν〈χ1|χ4〉) (4.76)

which reduce to λ2 and µ2 if we apply the same approximations as for the overlap
of the magnetic orbitals. The spin density at the magnetic sites for ΦHS and ΦBS are
given by

ρHS
1 = λ2 + µ2 ρBS

1 = λ2 − µ2 (4.77)

Now it is easily derived that

(ρHS
1 )2 − (ρBS

1 )2 = 4λ2µ2 = 〈φ1|φ2〉2 (4.78)

which can be used to replace the overlap integral in Eq. 4.67 with the more generally
available spin populations. This expression is valid for centro-symmetric systems
but improves the previous one by the fact that it is no longer implicit that the spin
density in the HS state is entirely located on the magnetic center.

The extension of Eq. 4.65 to the general case of magnetic coupling between two
centers with more than one unpaired electron is straightforward and follows the same
logics. The spin-unrestricted HS determinant ΦHS is assumed to be a good approxi-
mation to the spin eigenfunction of maximum multiplicity ΦSmax , and therefore,

〈Ŝ2〉HS = Smax(Smax + 1) EHS = ESmax (4.79)
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The broken symmetry determinant is written as a linear combination of the singlet
ΦS and the Smax spin eigenfunctions.2

|ΦBS〉 = λ|ΦS〉 + µ|ΦSmax 〉 = λ|ΦS〉 + µ|ΦHS〉 (4.80)

From the Ŝ2 expectation value

〈Ŝ2〉BS = λ2〈ΦS|Ŝ2|ΦS〉 + µ2〈ΦHS|Ŝ2|ΦHS〉 = 〈Ŝ2〉HSµ
2 (4.81)

one arrives at

EBS = λ2ES + µ2EHS =
(

1 − 〈Ŝ2〉BS

〈Ŝ2〉HS

)

ES + 〈Ŝ2〉BS

〈Ŝ2〉HS

EHS (4.82)

Then, the energy difference between ΦBS and ΦHS is given by

EBS − EHS = ES − 〈Ŝ2〉BS

〈Ŝ2〉HS

(ES − EHS) − EHS

= 〈Ŝ2〉HS − 〈Ŝ2〉BS

〈Ŝ2〉HS

(ES − EHS) (4.83)

⇒ ES − EHS = 〈Ŝ2〉HS(EBS − EHS)

〈Ŝ2〉HS − 〈Ŝ2〉BS

(4.84)

from which the expression for J is directly derived

J = 2(ES − EHS)

Smax(Smax + 1)
= 2(ES − EHS)

〈Ŝ2〉HS

= 2(EBS − EHS)

〈Ŝ2〉HS − 〈Ŝ2〉BS

(4.85)

This is the famous Yamaguchi relation originally derived in the framework of unre-
stricted Hartree–Fock calculations [20], but later also widely applied in DFT calcu-
lations. In the limit of zero overlap of the magnetic orbitals, 〈Ŝ2〉BS becomes equal
to Smax and the following expression emerges

J = 2(EBS − EHS)

Smax(Smax + 1) − Smax

= 2(EBS − EHS)

S2
max

(4.86)

derived earlier by Noodleman [21] and which reduces to Eq. 4.68 for two magnetic
centers with S=1/2. On the other hand, 〈Ŝ2〉BS is zero in the strong overlap limit and
J relates to the energies of the HS and BS determinants as

2This is of course an approximation. There is no obvious reason to exclude the intermediate spin
states from the linear combination.
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J = 2(EBS − EHS)

Smax(Smax + 1)
(4.87)

which is the generalized form of Eq. 4.69. This expression is also used in DFT when
the BS determinant is considered to be a good representation of the singlet (or lowest
spin) state as proposed by Ruiz and co-workers [6, 19, 22]. These authors often
replace the denominator by 2(2S1S2 + S2) with S2 � S1 and S1 + S2 = Smax to
reflect situations with unequal spin moments on the two magnetic centers.

4.10 Calculate the expectation value of Ŝ2 for Φ1 = |φ1φ2φ3φ4| in the zero
overlap limit: 〈φi|φj〉 = δij.

4.3.5 Alternatives to the Broken Symmetry Approach

The introduction of the broken symmetry determinant as representation of the low-
spin coupled spin state not only provides (computational) chemists with a tool to
calculate magnetic interactions with single determinant methods, it also makes a
connection with the intuitive representations of spins with up- and downwards point-
ing arrows at each magnetic center. However, this representation does not lead to
spin functions that are eigenfunctions of the total spin operator Ŝ2, as expected in a
non-relativistic setting and explained in Chap. 1. From this point of view the broken
symmetry approach is less satisfactory and there have been many attempts to design
alternative approaches to calculate magnetic interactions with DFT to improve upon
the shortcomings of the standard approach.

A natural starting point is to combine a multiconfigurational SCF approach to
treat the static electron correlation3 and DFT for the remaining (mainly dynamic)
electron correlation. It is, however, not easy to design functionals that only take into
account this latter part of the electron correlation and do not consider (part of) the
static correlation. Despite many efforts, there seems no definitive solution to the
double counting problem.

Restricted ensemble Kohn–Sham DFT Alternatively one can perform standard
KS-DFT calculations on a collection of determinants with different occupations and
take a weighted average of the individual energies to obtain an estimate of the mul-
tideterminantal situation. To avoid the independent calculation of several KS deter-
minants, a generalization of this approach was proposed by Filatov and Shaik based
on the coupling operator technique developed by Roothaan for restricted open-shell
Hartree–Fock. This restricted open-shell Kohn–Sham (ROKS) approach was later
extended to situations where fractional occupation numbers are not imposed by the

3In the case of magnetic interactions, the multideterminantal character of the N-electron states with
S < Smax .

http://dx.doi.org/10.1007/978-3-319-22951-5_1
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symmetry (as in atomic multiplets or ligand-field states in coordination complexes)
but due to accidental (near-)degeneracies. This extended approach was named the
restricted ensemble Kohn–Sham (REKS) method [23, 24]. An optimal set of Kohn–
Sham orbitals and occupation numbers is obtained by a minimization procedure that
always maintains the spin and spatial symmetry of the N-electron state under study.

The approach has been used to calculate the coupling of two localized spin
moments in binuclear transition metal complexes and the singlet-triplet splitting in
biradical systems, such as twisted ethylene. Rather reasonable values of the magnetic
coupling parameters were obtained. In general, the couplings are slightly too small,
which may be attributed to the lack of spin polarization. An important advantage of
the method is the fact that geometries can be optimized for open-shell singlet states
within the DFT framework.

Spin-flip time-dependent DFT The energy differences of the spin states involved
in the magnetic interaction of two (or more) spin moments can be seen to some
extent as vertical excitation energies, and hence, time-dependent DFT (or other lin-
ear response methods as equation of motions coupled cluster [25]) could in principle
be used to determine the magnetic interaction between two spin moments. However,
the standard implementation of TD-DFT only considers single, spin-conserving exci-
tations, which prevents accounting for the multideterminantal character of the states
with low-spin coupling [26]. Figure 4.12 shows the five determinants that are essen-
tial to describe the magnetic coupling in a two-electron/two-orbital problem. Using
determinant Φ1, Φ2 or Φ3 as reference will not generate all five determinants in stan-
dard TD-DFT, while Φ4 and Φ5 lead to the same spin contamination problems as
in the BS approach discussed above. The spin-flip formalism (originally developed
in the framework of Hartree–Fock and coupled cluster, and later implemented for
TD-DFT) offers an interesting solution to this shortcoming. The determinant with
maximum MS-value is taken as reference (Φ1 in Fig. 4.12) and all single excited deter-
minants involving one spin-flip are generated from this. Within the space of the two-
electron/two-orbital problem, this procedure generates the determinants Φ2 . . . Φ5
of Fig. 4.12, and hence, gives access to the energy of the open-shell singlet within
the TD-DFT framework without spin-contamination problems.

Constrained DFT The basic shortcomings of the BS approach can be summarized
in two points. In the first place, the spin contamination, or the impossibility to rep-
resent the low-spin states with a single Kohn–Sham determinant. The second point
is the fact that nearly all todays functionals tend to overestimate the delocalization
of the spin density and overestimate the antiferromagnetic character of the coupling.

1 2 3 4 5

Fig. 4.12 The reference determinant Φ1 and the four spin-flip determinants (Φ2 . . . Φ5) generated
in SF-TDDFT with a two-electron/two-orbital target space
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Constrained DFT (C-DFT) remedies, at least partially, the latter by putting restric-
tions on the spatial distributions of the α and β electrons [27]. Two fragments p and
q are defined such that both include one magnetic center and the atoms around it.
Subsequently, the density is optimized under the restrictions that N

p
α − N

p
β = M

p

S

and N
q
α − N

q
β = M

q

S , where N
p,q
α,β are the summed spin populations of the atoms in

the fragments and M
p,q

S the prefixed excess of α or β electrons in each fragment.
C-DFT results in less delocalized spin densities and therefore, in general, to smaller
interaction parameters.

Problems

4.1 A master student wants to study the energy splitting ES − ET in a planar
[Cu2F6]2− model system, since experimental studies of similar di Cl-bridged CuII

dimers suggested that ES − ET depends strongly on the Cu–Cl–Cu angle θ . She
performs RHF calculations on the triplet state in order to predict ES − ET with the
HTH model. She produces a Table of results, where the gerade and ungerade open
shell orbitals are denoted 1 and 2, respectively.

θ J11+J22
2 − J12 [K] K12 [Eh] ε1 − ε2 [Eh]

85◦ 24 0.4324 −0.0078
90◦ 20 0.4376 −0.0025
95◦ 22 0.4419 0.0034
100◦ 26 0.4456 0.0094
105◦ 32 0.4483 0.0150

Compute J (in K) for θ = 85◦ . . . 105◦ using the HTH model. Do you observe a
strong dependence of the coupling on the angle? Can the same conclusions be drawn
when only considering the orbital energies?

4.2 Quantifying the counter-complementarity effect. Standard optimization of
the molecular orbitals of a magnetic complex with two magnetic centers bridged
by two different ligands normally leads to magnetic orbitals with contributions on
both ligands (as ϕ5 and ϕ6 in Fig. 4.9). This makes it very hard to quantify the
counter-complementary effect of the two ligands. Design a computational strategy
to determine quantitatively the reduction of the magnetic coupling through ligand
1 by the counter-complementary effect of ligand 2. Hint: Many quantum chemical
programs can divide the whole system into fragments.

4.3 Broken symmetry approach. The magnetic coupling of three binuclear TM
complexes has been studied with DFT. The following results were obtained for the
HS and BS determinants. (a) Calculate the magnetic coupling parameter J with the
Yamaguchi equation (Eq. 4.85) and compare the outcomes to the alternative relations
of Noodleman (Eq. 4.86) and Ruiz (Eq. 4.87).
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TM Energy [Eh] 〈Ŝ2〉
ΦHS ΦBS ΦHS ΦBS

Cu2+ −4061.7435920 −4061.7442381 2.0035 0.9957
Ni2+ −3797.4742498 −3797.4767694 6.0083 1.9931
Mn2+ −3082.7586297 −3082.7630415 30.0086 4.9936

(b) Calculate J in the Cu complex combining Eqs. 4.67 and 4.78 using ρα−β is 0.6864
and 0.6757 for HS and BS, respectively.
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Chapter 5

Towards a Quantitative Understanding

Abstract Taking a binuclear copper complex as model system, the isotropic mag-

netic coupling is decomposed into different contributions. Perturbative expressions

of the main contributions are derived and illustrated with numerical examples. An

effective Hamiltonian is constructed that incorporates all important electron corre-

lation effects and establishes a connection between the complex N -electron wave

functions and the simpler qualitative methods discussed in the previous chapter.

Subsequently an outline is given of the analysis of the coupling with a single deter-

minant approach and the biquadratic and four-center interactions are decomposed.

The chapter closes with the recently proposed method to extract DFT estimates for

these complex interactions.

5.1 Decomposition of the Magnetic Coupling

The production of accurate electronic structure parameters is of course an important

result for computational chemistry. However, it should not be the final goal and one

has to go one step further on the road towards understanding. The qualitative valence

methods described in the first sections of the previous chapter of this book are mainly

focused on this understanding of the coupling, but here we discuss three approaches to

analyse the results of the computational schemes that aim at a quantitative agreement

with experiment. In this way quantitative accuracy can be combined with qualitative

understanding.

The binuclear complex [L2Cu2(µ-1,3-N3)2]2+ (L=N,N’,N”-trimethyl-1,4,7-

triaza-cyclononane) shows a large antiferromagnetic coupling with J = −800 cm,

nicely reproduced with a DDCI calculation using a CAS(2,2)SCF reference wave

function on the model complex [(NH3)6Cu2(µ-1,3-N3)2]2+ [1]. In this section, we

will closely follow the work of Calzado and co-workers, decompose this 800 cm−1

into small pieces and ascribe each individual contribution to well defined physical

mechanisms [2, 3].
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5.1.1 Valence Mechanisms

First we focus on the mechanisms that arise from interactions among the configu-

rations in the active space, restricting ourselves to the role played by the two Cu2+

ions. For this centro-symmetric system, the active orbitals g = (a + b)/
√

2 and

u = (a − b)/
√

2 shown in Fig. 5.1 define four different determinants

CAS = {|gg|, |uu|, |gu|, |ug|} (5.1)

The diagonalization of the corresponding 4 × 4 matrix produces four eigenstates,

three singlets and one triplet

Sg = λ|gg| − µ|uu|
S′

g = µ|gg| + λ|uu|
Tu =

(
|gu| − |ug|

)
/
√

2

Su =
(
|gu| + |ug|

)
/
√

2 (5.2)

5.1 Demonstrate by substitution that Sg is dominated by the neutral determi-

nants when λ ≈ µ. What situation is described for λ ≫ µ?

The energy difference of Sg and Tu defines J but the analysis is much easier in a

representation with localized orbitals. Therefore, we rewrite the CAS in terms of the

orthogonal localized Cu orbitals a and b, shown in Fig. 5.2. By defining the following

electronic structure parameters

Eref = 〈ab|Ĥ |ab〉 = 0

Kab = 〈ab|Ĥ |ba〉
tab = 〈ab|Ĥ |aa〉
U = 〈aa|Ĥ |aa〉 − 〈ab|Ĥ |ab〉 (5.3)

Fig. 5.1 Delocalized magnetic orbitals of gerade (left) and ungerade (right) symmetry
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Fig. 5.2 Left and right localized magnetic orbitals

the CAS Hamiltonian matrix can be written as

|ab〉 |ba〉 |aa〉 |bb〉

〈ab| 0 Kab tab tab

〈ba| Kab 0 tab tab

〈aa| tab tab U Kab

〈bb| tab tab Kab U

(5.4)

Here Eref = haa + hbb + Jab is the reference energy and has been subtracted from

all diagonal matrix elements. Kab is the direct exchange, U is the on-site repulsion

parameter and tab is the hopping integral and gives a measure of the probability for

the electron hopping from site a to b and vice-versa.

5.2 Express the energy of the ionic determinants |aa| and |bb| in terms of

the one-electron integrals h and the Coulomb and exchange integrals J and

K . What assumption has been made to reduce the diagonal element of these

determinants to U?

The diagonalization of the 4 × 4 matrix gives four eigenvectors, equivalent to

those listed above but expressed in local orbitals

Sg = λ
(
|ab| + |ba|

)
/
√

2 − µ
(
|aa| + |bb|

)
/
√

2

S′
g = µ

(
|ab| + |ba|

)
/
√

2 + λ
(
|aa| + |bb|

)
/
√

2

Tu =
(
|ab| − |ba|

)
/
√

2

Su =
(
|aa| − |bb|

)
/
√

2 (5.5)

with energy eigenvalues

E(Sg) = Kab +
U −

√
U 2 + 16t2

ab

2
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E(S′
g) = Kab +

U +
√

U 2 + 16t2
ab

2
(5.6)

E(Tu) = −Kab

E(Su) = U − Kab

This gives direct access to an analytical expression of J in terms of the previously

defined electronic structure parameters

J = E(Sg) − ET = 2Kab +
U −

√
U 2 + 16t2

ab

2
(5.7)

To simplify this expression we use the Taylor expansion
√

p + q = √
p+ 1

2
q/

√
p+

· · · with p ≫ q.

J = 2Kab −
4t2

ab

U
(5.8)

in which one can easily recognize the ferromagnetic (2Kab) and antiferromagnetic

(4t2
ab/U ) contributions of the qualitative Kahn–Briat and Hay–Thibeault–Hoffmann

models.

5.3 Use the Taylor expansion
√

p + q = √
p + 1

2
q/

√
p + · · · with p = U 2

and q = 16t2
ab to derive the simplified expression for J .

A pictorial understanding of this expression can be obtained within a QDPT

reasoning using a model space limited to neutral determinants only. Figure 5.3 shows

the two determinants ΦI = |ab| (left) and ΦJ = |ab| on the right. The Heisenberg

Hamiltonan matrix element of these two determinants is equal to − 1
2

J , see Eq. 3.34.

The arrow connecting the determinants indicates the direct interaction between the

determinants parametrized by the direct exchange Kab.

〈ΦI |Ĥ |ΦJ 〉 = −〈ab|Ĥ |ba〉 = −Kab (5.9)

Fig. 5.3 Schematic

representation of the

interaction between the

neutral determinants ΦI and

ΦJ by direct exchange and

indirect interaction via ionic

determinants

http://dx.doi.org/10.1007/978-3-319-22951-5_3
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There is, however, also an indirect interaction between the two determinants via the

ionic determinants |aa| and |bb| as shown in the lower part of the figure. Going

from left to right, in the first step an electron is transferred from orbital a to orbital

b to produce an ionic determinant at energy U with respect to the initial neutral

determinant, and in the subsequent step the spin-down electron hops to orbital a

to produce |ba|. The interaction along this path is described with the second-order

QDPT expression

〈ΦI |Ĥ |Φα〉〈Φα|Ĥ |ΦJ 〉
E J − Eα

= 〈ab|Ĥ |bb〉〈bb|Ĥ |ab〉
0 − U

= −〈ab|Ĥ |bb〉〈bb|Ĥ |ba〉
−U

= tab · tba

U
=

t2
ab

U
(5.10)

where ΦI , Φα and ΦJ are defined in Fig. 5.3. Realizing that there is another indirect

path connecting the neutral determinants and adding the direct interaction, we arrive

at the following expression

〈ΦI |Ĥ eff|ΦJ 〉 = −Kab + 2
t2
ab

U
(5.11)

If we compare this to the matrix element of |ab| and |ab| of the Heisenberg Hamil-

tonian in Eq. 3.34, we obtain the same expression for J as derived from the diago-

nalization of the CAS given in Eq. 5.8.

5.4 The above described path can be denoted as |ab| tab−→ |bb| tba−→ |ba|.
Find the other path that connects the two neutral determinants via an ionic

determinant.

As long as the variational space is restricted to the metal basis functions, the hop-

ping parameter tab is extremely small due to the fact that orbitals a and b are strongly

localized in different regions of space. Therefore, the antiferromagnetic contribution

to J remains small and new mechanisms have to be introduced to describe the cou-

pling. An important improvement is obtained when the role of the bridging ligand is

taken into account as schematically represented in Fig. 5.4. Orbitals a and b are again

the strongly localized metal orbitals and orbital h is localized on the bridge. In the

first step, an electron is transferred from the ligand orbital h to site b, immediately

followed by the movement of the electron on site a to the ligand, which creates the

ionic determinant |bb|. To arrive at the neutral determinant with inverted spins with

respect to the initial determinant, a beta spin electron is transferred from the ligand

to site a and the resulting hole is filled by the beta spin electron that resides on cen-

ter b. This indirect interaction between the two neutral determinants involves three

determinants outside the model space and hence the importance cannot be estimated

by second-order QDPT. Instead, one has to apply fourth-order perturbation theory.

http://dx.doi.org/10.1007/978-3-319-22951-5_3
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Fig. 5.4 Schematic

representation of the

interaction between the

neutral determinants ΦI and

ΦJ through the bridging

ligand

The full expression for the correction at fourth order is rather lengthy, but there is

one term that exactly fits on the scheme of Fig. 5.4.

E (4) = · · · +
∑

α/∈S

∑

β /∈S

∑

γ /∈S

〈ΦI |Ĥ |Φα〉〈Φα|Ĥ |Φβ〉〈Φβ |Ĥ |Φγ 〉〈Φγ |Ĥ |ΦJ 〉
(E

(0)
J − E

(0)
α )(E

(0)
J − E

(0)
β )(E

(0)
J − E

(0)
γ )

+ . . .

(5.12)

After replacing the matrix elements in the numerator by the corresponding hopping

parameters1 and the relative energies of the external determinants in the denominator,

we obtain a contribution that reads

thb · tah · tha · −tbh

(0 − ∆ECT )(0 − U )(0 − ∆ECT )
=

t2
ah t2

bh

∆E2
CT U

(5.13)

An identical expression if obtained for the pathway that starts with the electron

hopping from h to a, and hence, the perturbative estimate has to be multiplied by

two to obtain the QDPT expression of the matrix element between ΦI and ΦJ with

fourth-order corrections

〈ΦI |Ĥ |ΦJ 〉 = −Kab + 2
t2
ab

U
+

2t2
ah t2

bh

∆E2
CT U

(5.14)

1ΦI = |hhab| thb−→ |bhab| tah−→ |bhhb| tha−→ |bahb| tbh−→ |bahh|. A minus sign appears in the last

step when the determinant is written as it appears in the model Hamiltonian |hhab| = ΦJ .
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Now we replace the bare hopping matrix elements tha and thb by an effective para-

meter through
tha thb

∆ECT

= t
eff

ab (5.15)

and arrive at an analytical expression for J using Eq. 3.34

J = 2Kab −
4(t

eff

ab)2

U
(5.16)

where the effect of the bare hopping parameter tab has been neglected being much

smaller than t
eff

ab , which involves the bridging ligand(s). Note the similarity with the

second-order expression of Eq. 5.11. The second, antiferromagnetic term is generally

known as the kinetic exchange and is conceptually closely related to the superex-

change of Anderson discussed at the end of Sect. 3.1.

5.5 Make a perturbative estimate of the contribution to J of the double LMCT

configuration with an energy of ∆E2CT

Putting these concepts to the numerical proof can be done by performing a CASCI

calculation with triplet optimized orbitals. Instead of the strongly localized orbitals

used in the conceptual reasoning, the optimal orbitals have important delocalization

tails on the ligands, as shown in Fig. 5.5. These delocalization tails are just another

representation of the through-ligand interaction discussed above, which is easily

demonstrated by substituting the definition of the active orbitals with tails on the

ligand

g = c1(a + b) + c2h and u = c3(a − b) + c4h′ (5.17)

into the expression of the lowest singlet state given in Eq. 5.2.

Sg = λ|(c1(a + b) + c2h)(c1(a + b) + c2h)|
+ µ|(c3(a − b) + c4h′)(c3(a − b) + c4h′)| (5.18)

Fig. 5.5 Magnetic orbitals of gerade (left) and ungerade (right) symmetry with important delo-

calization tails on the ligands

http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_3
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Table 5.1 Decomposition of the CAS(2,2) magnetic coupling in the binuclear Cu2+ complex with

a double azido bridge

Direct exchange 12

t
eff

ab −2218

U 20.8 × 104 (=25.8 eV)

Kinetic exchange −94

J
(
CAS(2, 2)

)
−82 cm−1

Numbers are given in cm−1

Apart from the previously seen neutral and ionic determinants |ab|, |ba|,|aa|,|bb|,
other determinants such as such as |ha|, |bh|, etc. appear in the wave function in-

volving ligand-to-metal charge transfer (LMCT) excitations that were shown to play

an important role in the QDPT analysis of the coupling.

The results of the CAS calculation are listed in Table 5.1 and show how the kinetic

exchange strongly dominates over the direct exchange, which is rather small as

expected from the large distance between the Cu ions. The parameters are directly

extracted by comparing the numerical values of the CASCI matrix with the symbolic

representation given in Eq. 5.4. The choice for cm−1 as energy unit leads to big

numbers for U , which is therefore often expressed in eV. The kinetic exchange

contribution is calculated from t
eff

ab and U applying Eq. 5.16: (−4 ·(−2218)2/20800).

5.1.2 Beyond the Valence Space

It is obvious that this cannot be the whole story. The calculated magnetic coupling

of the Cu2+ complex is just 10 % of the experimental and DDCI values. Hence,

it is unavoidable to go beyond this valence-only description and incorporate more

physical mechanisms in the description.

The 1h, 1p, 1h-1p excitations: In the first step towards the full DDCI result, we

analyze the role of the 1h, 1p and 1h-1p determinants as illustrated in Fig. 5.6. The

determinants on the left are pure single excitations and those on the right are single

excitations combined with an excitation within the CAS. Because of the Brillouin

theorem the contributions of the pure single excitations are strictly zero for the spin

state for which the orbitals have been optimized and tiny contributions are observed

for the other spin states given that the optimal orbitals for the different spin states

are in principle very similar.

The situation is quite different for the single excitations that are combined with

electron replacements in the CAS. The 1h-1p excitation in the determinants marked

as spin polarization not only excites one of the electrons from orbital h to orbital p

but also changes the spin of the excited electron. These so-called triplet excitations

have to be compensated by a simultaneous spin change in the active space to maintain

the spin of the electronic state under consideration. This gives rise to a triplet coupled
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Fig. 5.6 Schematic representation of the 1h, 1p and 1h-1p determinants. The left column shows the

pure single excitations, and the right the single excitations combined with a change in the occupation

of the active orbitals. h and p are assumed to be ligand orbitals, LMCT = ligand-to-metal charge

transfer, MLCT = metal-to-ligand charge transfer

electron pair a-b in the active space, from which triplet and singlet spin polarization

determinants can be formed through the coupling with the h-p triplet coupled electron

pair. The resulting determinants strongly interact both with Sg and Tu (see Eq. 5.5) via

the neutral determinants of the reference wave functions, but the matrix element with

the ionic determinants is zero since there are more than two differences in the orbital

occupancies. The spin polarization introduces spin density on the ligand, which is

opposite to the spin density on the metal centers. It can contribute both ferro- and

antiferromagnetically depending on the structure of the complex, but it is general

more important when the 1h-1p triplet excitation on the ligand is low in energy, as

in conjugated bridges.

5.6 The h-p and the a-b electron pairs are triplet coupled (S = 1) in the de-

terminants that cause spin polarization in the ligands. Which values can be

assigned to the total spin by coupling the two S = 1 electron pairs? Are all spin

states relevant to the binuclear Cu2+ system under study?

The second type of important 1h-1p determinants combines a spin-conserving h

to p excitation with an electron replacement from a to b (or vice versa) in the

active space. The resulting determinants can be considered as single excitations with

respect to the ionic determinants, but Brillouin’s theorem does not apply because
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the orbitals are not optimized for this ionic charge distribution but rather for the

neutral situation. Hence, there is a strong interaction of these determinants with the

|aa| and |bb| determinants, while the interaction with the neutral determinants is

much weaker. Since, the ionic determinants are only present in the reference wave

function of the Sg state, the addition to the wave function of these 1h-1p excitations

leads to a significant stabilization of the singlet with respect to the triplet state, and

consequently, an increase of the antiferromagnetic character of the coupling. Adding

single excitations to a determinant that is not expressed in its optimal orbitals is a

very efficient way to improve the orbitals. Therefore, this class of 1h-1p excitations

is often interpreted as relaxing the ionic determinants in the wave function, lowering

their energy with respect to the neutral determinants, that is, a decrease of U . In line

with the expression for J given in Eq. 5.16, a smaller U makes the kinetic exchange

more effective and J more antiferromagnetic.

The total effect of the single excitations is a large step in the right direction, both

spin polarization and the relaxation of the ionic determinants cause antiferromagnetic

contributions, but still the value of the coupling is only ∼50 % of the final value and

other mechanisms have to be included.

5.7 Assuming that the 1h-1p excitations do not affect the hopping parameter

t
eff

ab , calculate the energy lowering effect on U of the inclusion of the 1h-1p

excitations combined with the electron replacement in the active space using

the numerical data from Tables 5.1 and 5.2.

The last step: 2h, 2p, 2h-1p and 1h-2p excitations. The double excitations of the

2h and 2p class (shown in the left column of Fig. 5.7) only contribute very little to the

magnetic coupling of the two Cu ions. They correspond to double ligand-to-metal

or metal-to-ligand charge transfer excitations, respectively. The weak interaction

is largely explained by the high energy of these determinants with respect to the

neutral determinants. This energy difference enters the denominator of the pertur-

bative expression of the effect of the external determinants, and hence, higher-lying

determinants contribute less to J .

Table 5.2 Decomposition of the DDCI magnetic coupling in the binuclear Cu2+ complex with a

double azido bridge

Direct exchange 12

Kinetic exchange −94

Spin polarization −59

Relaxation of the ionic determinants −221

Double CT −13

Relaxation of the CT determinants −427

J −802 cm−1

Numbers are given in cm−1
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Fig. 5.7 Schematic representation of the 2h, 2p, 2h-1p and 1h-2p determinants. DLMCT = double

ligand-to-metal charge transfer, DMLCT = double metal-to-ligand charge transfer

The single excitation connected to the ligand-to-metal charge transfer process does

not interact with the reference wave function by Brillouin’s theorem. However, the

combination of a LMCT excitation with a single excitation from occupied to virtual

orbitals (1h + 1h-1p = 2h-1p) gives rise to a relaxation process similar to the one

described before for the ionic determinants, right column of Fig. 5.7. The addition

of the relaxed LMCT determinants to the CI wave function has a large impact on the

singlet-triplet splitting and virtually always favors the antiferromagnetic character

of the coupling. Analogously, the 1h-2p excitations can be considered to introduce

the relaxation of the metal-to-ligand charge transfer excitations. The addition of

these determinants is ferromagnetic in most cases, but usually smaller than the effect

of the 2h-1p determinants. Hence the net effect of these double excitations is a

significant increase of the singlet-triplet gap as can be seen in Table 5.2. The 2h and

2p determinants give a tiny contribution to J , but the inclusion of the 2h-1p and

1h-2p determinants brings the computational estimate of J in close agreement with

the experimental value.

Remember that inclusion of the largest group of determinants that can interact

with the neutral determinants, the 2h-2p determinants, has a negligible effect on the

energy difference and is not included in the DDCI wave function and not considered

in the analysis of the mechanism of the coupling. This will be numerically shown

for our example compound in the next section.

5.1.3 Decomposition with MRPT2

A similar exercise can be performed based on the results of a MRPT2 calculation with

a CAS(2,2) reference wave function. Both NEVPT2 and CASPT2 distinguish the

contributions to the second-order energy correction of the different excitation classes
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Table 5.3 Decomposition of the CASPT2 contribution to the magnetic coupling in the binuclear

Cu2+ complex with a double azido bridge

Excitation class E (2)(singlet) E (2)(triplet) Difference

1h 0.000000 0.000000 0.0

1p 0.000000 0.000000 0.0

1h-1p −0.017278 −0.018653 −301.8

2h −0.000010 −0.000027 −3.9

2p −0.000011 −0.000031 −4.4

2h-1p −0.095270 −0.095938 −144.6

1h-2p −0.213555 −0.213649 −20.8

2h-2p −3.654102 −3.653976 27.5

CASPT2 −3.980233 −3.982275 −448.1a

Energies are given in Hartree, the difference in cm−1

aThe total magnetic coupling J = J [CAS(2,2)] + CASPT2 = −101.4 + −448.1= −549.5 cm−1

as exemplified in Table 4.1. The analysis is completely straightforward, one just has

to subtract the energy contributions of the different spin states in a class-by-class

manner to decompose the magnetic coupling. Table 5.3 shows the contribution of the

different excitation classes in the example compound studied above with DDCI.

There are two major contributions to the energy difference of singlet and triplet.

In the first place, the 1h-1p excitations, which cause spin polarization and relaxation

of the ionic determinants. Unfortunately, it is not possible to separate the two contri-

butions as in DDCI. The second large contribution arises from the 2h-1p excitations,

which also enhances the singlet stability, as expected. The 2h and 2p excitations are

nearly zero and the 1h-2p class also gives a rather small contribution for the present

system. The total contribution of the 2h-2p class is by far the largest, it constitutes

approximately 92 % of E (2), but the differential effect is very small. The non-zero

contribution to the difference may seem surprising given the fact that the justification

of DDCI is based on the zero contribution of these excitations at second-order per-

turbation theory. However, this reasoning is based on a common orbital basis for the

spin states, which is not used in the CASPT2 calculation. It is common practice to

optimize the orbitals for each spin state separately, contrary to MRCI where normally

one set of orbitals is used. The use of state-specific orbitals also explains the strictly

zero contribution of the 1h and 1p excitations for both states.

5.2 Mapping Back on a Valence-Only Model

The preceding section shows that a valence-only description of the coupling leads to

rather poor predictions. Although the sign of the coupling is often (but not always)

correctly reproduced, it can be stated that the strength of the coupling is underesti-

mated by at least one order of magnitude. This is in sharp contrast with the success of

http://dx.doi.org/10.1007/978-3-319-22951-5_4
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the qualitative valence models discussed in Chap. 4, which are capable of explaining

many magnetostructural correlations and rationalize the relative size of J in large

families of compounds. These models seem to contain all the essential physics but

their parametrization with ab initio calculations is deficient. Hence, it may be ad-

vantageous to construct a simple valence-only picture in which the values of the

parameters tab, U and Kab are replaced by effective values that absorb all the effects

discussed above that go beyond the valence-only description. In fact, we have al-

ready seen how the bare hopping parameter tab was replaced by an effective tab due

to the partial delocalization of the magnetic orbitals onto the ligands upon the change

from strongly localized orbitals to self-consistently optimized molecular orbitals as

schematically illustrated in Fig. 5.8.

A rigorous way to construct a valence-only model with ab initio methods is to

make use of the effective Hamiltonian theory presented in Chap. 1. First, we define

the basis of the model space as {|ab|, |ba|, |aa|, |bb|} and use the matrix of Eq. 5.4 to

represent the effective Hamiltonian. Then we replace the bare parameters obtained

in a valence-only ab initio calculation with effective parameters that include all the

effects that have been discussed in the previous section. This is done by selecting

those four roots from the ab initio calculation that have the largest projection on the

model space. After orthogonalization and normalization, Eq. 1.90 or 1.92 is used to

construct a numerical Hamiltonian from which the new, effective parameters can be

extracted by the comparison with Eq. 5.4.

To numerically illustrate the procedure, we will treat the magnetic coupling of

two Cu2+ ions in the previously introduced SrCu2O3 compound with Cu2O3 layers

separated by Sr2+ ions (see Sect. 3.4.2). We recall that the copper ions form a regular

pattern that can best be described as a ladder structure as depicted in Fig. 5.9. Among

Fig. 5.8 Top direct (through

space) hopping between two

magnetic centers by tab with

strongly localized atomic

orbitals; Bottom effective

(through ligand) hopping by

t
eff

ab with self-consistently

optimized magnetic orbitals,

which have delocalization

tails on the (bridging)

ligands

http://dx.doi.org/10.1007/978-3-319-22951-5_4
http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_3
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Fig. 5.9 Ladder-like

structure of SrCu2O3. The

open circles represent Cu2+

ions, the small grey circles

are oxygens, only the

oxygens belonging to the

Cu2O7 cluster are shown.

The Sr ions are below and

above this plane

the sixteen lowest roots of a DDCI calculation on an embedded Cu2O7 cluster (see

Sect. 6.3.1), the roots 1, 2, 7 and 8

Ψ1 = −0.9224
(
|ab| + |ba|

)
− 0.1223

(
|aa| + |bb|

)
+ · · ·

Ψ2 = −0.6626
(
|ab| − |ba|

)
+ · · · (5.19)

Ψ7 = 0.4159
(
|aa| − |bb|

)
+ · · ·

Ψ8 = 0.1704
(
|ab| + |ba|

)
− 0.5324

(
|aa| + |bb|

)

have the largest norm after projection on the model space. The normalized projec-

tions, denoted Ψ̃ ′
1 . . . Ψ̃ ′

4, will be used for the construction of the effective Hamil-

tonian. The relative energies are 0.000, 0.158, 6.489 and 6.547 eV, respectively. The

Bloch effective Hamiltonian uses biorthogonal vectors, which are obtained from

Eq. 5.19 by

Ψ̃
′†
1 = 1√

1 − s2

(
Ψ̃ ′

1 − sΨ̃ ′
4

)
= −0.9524

(
|ab| + |ba|

)
− 0.3048

(
|aa| + |bb|

)

Ψ̃
′†
2 = Ψ̃ ′

2 =
(
|ab| − |ba|

)
/
√

2 (5.20)

Ψ̃
′†
3 = Ψ̃ ′

3 =
(
|aa| − |bb|

)
/
√

2

Ψ̃
′†
4 = 1√

1 − s2

(
− sΨ̃ ′

1 + Ψ̃ ′
4

)
= 0.1315

(
|ab| + |ba|

)
− 0.9913

(
|aa| + |bb|

)

where s = 〈Ψ̃ ′
1|Ψ̃ ′

4〉.

http://dx.doi.org/10.1007/978-3-319-22951-5_6
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Table 5.4 Electronic structure parameters of a valence-only model for the magnetic interactions

between two Cu2+ ions in SrCu2O3

Ĥ eff K
eff

ab U eff t
eff

ab Jpert

Valence-only CASCI 16 24.6 −617 −30

Dressed

model

Bloch 55 6.0 −1005/−417 −227

Gram-

Schmidt

−22 6.3 −427 −160

U is given in eV, the other parameters in meV. Jpert is calculated using Eq. 5.8. The magnetic

coupling extracted from the DDCI energies of the lowest singlet and triplet states is −158 meV.

The dressed models are extracted from DDCI calculations using triplet orbitals

5.8 Calculate the norm of the projections of Ψi on the model space and give the

expressions of Ψ̃ ′
1,4. Are all Ψ̃ ′

i mutually orthogonal? Check that the biorthog-

onal vectors Ψ̃
†
i fulfill the orthogonality properties of Eq. 1.89.

Now we apply the Bloch formula (Eq. 1.90) to construct the effective Hamiltonian.

The resulting parameters are given in the second line of Table 5.4 together with an

estimate of J from the sum of the direct and kinetic exchange given in Eq. 5.8. As most

particular results, we see that U is strongly reduced in comparison to the valence-only

value (CASCI) and that the non-hermiticity is manifest in the two different values

of the hopping parameter: t1 = 〈ab|Ĥ eff|aa〉 and t2 = 〈aa|Ĥ eff|ab〉.
The Gram–Schmidt procedure provides a simpler orthogonalization scheme that

leads to a hermitian effective Hamiltonian. Since Ψ̃ ′
2 and Ψ̃ ′

3 are already orthogonal

to the other projections, we only have to worry about Ψ̃ ′
1 and Ψ̃ ′

4. This means that the

coefficients of Ψ̃ ⊥
4 are defined by Ψ̃ ′

1, that is, if Ψ̃ ′
1 = α

(
|ab|+|ba|

)
+β

(
|aa|+|bb|

)

then the orthogonal counterpart Ψ̃ ⊥
4 = −β

(
|ab| + |ba|

)
+α

(
|aa| + |bb|

)
, indepen-

dent of the shape of Ψ4 and only the energy of this state is used in the construction of

Ĥ eff. The parameters extracted with the Gram-Schmidt orthogonalized vectors are

listed in the third row of the table and reveal besides the expected large decrease of

U , a negative effective direct exchange and, by construction, a hermitian form with

only one estimate for t . The estimate of J based on Eq. 5.8 is in excellent agreement

with the result of the full DDCI calculation.

The observed changes suffered by the parameters upon dressing them with the ef-

fects that go beyond the valence space can at least partially be rationalized by looking

at the interaction of the model space determinants with those in the external space.

The interaction of the spin-conserving 1h-1p excitations with the neutral determi-

nants is (nearly) zero due to Brillouin’s theorem. On the contrary, the interaction with

the ionic determinants is strong (see the right part of Fig. 5.10). Hence, this class of

external determinants largely decreases the on-site repulsion U as previously seen

in Exercise 6.7 and confirmed here in the example.

http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_6
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Fig. 5.10 Effect of the spin-conserving (right) and non spin-conserving (left) 1h-1p determinants

on the on-site repulsion U and the direct exchange parameter Kab. The interactions in a valence-only

treatment are marked with dashed lines

The non spin-conserving excitations (the spin polarization) simultaneously inter-

act with both neutral determinants:

〈hhab|Ĥ |ha pb〉〈ha pb|Ĥ |hhba〉 �= 0 (5.21)

and hence, turns the direct exchange parameter Kab = 〈ab|Ĥ |ba〉 into an effec-

tive parameter that parametrizes the direct exchange dressed with spin polarization

effects. Since this latter effect can be antiferromagnetic in nature, the apparent coun-

terintuitive situation may arise that K
eff

ab turns out to be negative, whereas the bare

Kab is positive by definition.

Finally, tab is expected to be influenced by the 2h-1p excitations, which can be

seen as a LMCT excitation (1h) coupled to a single excitation from an occupied to

a virtual orbital (1h-1p) that relaxes the LMCT configuration. This should lead to

an increase of the hopping between the magnetic centers. It is, however, difficult

to isolate the effect of the 2h-1p excitations [4] due to the occurrence of interac-

tions with other excited determinants and the interference of the 1h-2p excitations.

Therefore, the hopping parameter t
eff

ab turns out to be somewhat smaller than the bare

value. Experience has shown that t does not suffer dramatic changes when electron

correlation is included in the valence-only models.
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5.3 Analysis with Single Determinant Methods

The multiconfigurational wave function is a natural starting point for a decompo-

sition of the magnetic coupling in polynuclear complexes. The relative magnitude

of the coefficients of the determinants gives a straightforward strategy to analyze

the importance of the different mechanisms. The disadvantage of this approach is

of course the rather heavy computational burden, which limits the applicability to

medium-sized systems. Alternatively, DFT can be used for larger systems but the

analysis of the results cannot be made in the same way as discussed above, since

there is only one Slater determinant that contains all the physics. Instead, one can

decompose the coupling by a series of partial orbital optimizations of the high-spin

and broken symmetry determinants [5]. The intermediate energy differences can be

related to the direct and kinetic exchange, and the spin polarization as will be shown

below.

The analysis starts with a restricted open-shell Kohn-Sham (ROKS) calculation on

the HS state. If necessary, the magnetic orbitals are transformed to the representation

with local orthogonal orbitals a and b, as shown in the first column of Fig. 5.11.

Staying within the spin-restricted formalism makes that for each α orbital a β orbital

can be found which has the same spatial part. In the first step, the direct exchange

is estimated from the energy difference of the HS(ROKS) and a BS determinant in

which only the spin of one of the unpaired electrons is inverted, but neither the core

nor the magnetic orbitals are optimized.

E(BS-ROKS) = E(HS-ROKS) + Kab (5.22)

With the help of Yamaguchi’s expression (Eq. 4.65), one can define the direct ex-

change contribution (JDE ) to the total magnetic coupling as

Fig. 5.11 Schematic representation of the decomposition of the magnetic coupling for computa-

tional schemes based on a single determinant. The orbitals and electrons marked in red are subject

to changes with respect to the previous step, the rest is kept frozen

http://dx.doi.org/10.1007/978-3-319-22951-5_4
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JDE =
2
(
E(BS-ROKS) − E(HS-ROKS)

)

〈Ŝ2〉HS-ROKS − 〈Ŝ2〉BS-ROKS

= 2Kab

2 − 1
= 2Kab (5.23)

Step 2 consists in the optimization of the magnetic orbitals of the BS determinant

in the fixed field of the doubly occupied orbitals, a so-called frozen core (FC). The

magnetic orbitals become more delocalized and, more specifically, gain some am-

plitude on the other magnetic center. This means that the unpaired electrons can

move from one center to the other and activate the kinetic exchange mechanism. The

contribution to J is

JK E =
2
(
E(BS-FC) − E(HS-ROKS)

)

2 − 〈Ŝ2〉BS-FC

− JDE (5.24)

To a very good approximation, the spatial part of the new magnetic BS orbitals a′

and b′ can be written as a weighted sum of the ROKS orbitals

a′ = (cos α)a + (sin α)b b′ = (sin α)a + (cos α)b (5.25)

5.9 Calculate the overlap of the spatial part of the relaxed magnetic orbitals

for α = 0, π/60, π/20, π/4, π/2.

The interaction with the virtual orbitals is very small and can be neglected for the

present analysis purposes. Substituting these expressions in the BS determinant

ΦBS = (cos α)2|ab| + (sin α)2|ba| + (sin α cos α)
(
|aa| + |bb|

)
(5.26)

shows immediately that the relaxation activates the kinetic exchange by introducing

the ionic determinants |aa| and |bb| in the BS determinant. The optimization of a

and b makes that the Ŝ2 expectation value of the BS determinant is not exactly one

as for the BS-ROKS determinant (see Problems).

The last step relaxes the core orbitals for the HS and BS determinants, keeping

the magnetic orbitals fixed to what was obtained in step 2 (frozen magnetic orbitals:

FM). Lifting the restrictions on the spin symmetry in the core orbitals introduces

different α and β spin orbitals, and hence, accounts for the spin polarization of the

core electrons in response to the parallel (HS) or antiparallel (BS) unpaired electrons.

The energy difference between the BS-FM and HS-FM determinants gives access to

the spin polarization contribution to J via

JS P =
2
(
E(BS-FM) − E(HS-FM)

)

〈Ŝ2〉HS-FM − 〈Ŝ2〉BS-FM

− JDE − JK E (5.27)
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The sum of the three contributions is close to the magnetic coupling constant that

is obtained in a standard calculation when the Kohn-Sham orbitals are optimized

without imposing any restriction on the variational process.

J ≈ JDE + JK E + JS P (5.28)

There is no a priori reason to determine the different contributions in this order.

Alternatively, the spin polarization can be calculated before relaxing the magnetic

orbitals (inverting step 2 and 3) or independently, both taking the orbitals of step 1 as

starting point. However, the examples given in Ref. [5] show that the order chosen

here gives the smallest deviation from the fully relaxed energy difference, and hence,

includes the largest part of the physics.

5.4 Analysis of Complex Interactions

The analysis of the interaction between magnetic moments is not restricted to the

isotropic bilinear exchange of two S = 1/2 centers but can also be applied to systems

with higher spins and more magnetic centers. In this section, we will first decompose

the magnetic coupling between two Ni2+ (S = 1) ions with a sizeable biquadratic

exchange to pinpoint the origin of the deviations to the standard Heisenberg Hamil-

tonian. Secondly, we will focus attention on the four-spin cyclic exchange, and finally,

we will describe how these interactions can be estimated within the DFT framework.

5.4.1 Decomposition of the Biquadratic Exchange

One of the central assumptions of the Heisenberg model Hamiltonian is that the local

spin states are well separated in energy from excited spin states. We will demon-

strate that non-Heisenberg behavior emerges as soon as this is no longer true. The

biquadratic exchange is in general a rather small term in the total interaction of the

spins in polynuclear TM-3d complexes. There are only a few examples where it

is important to include them for obtaining an accurate description of the lowest-

energy levels. Returning to the binuclear complexes with a double azido bridge,

we will here analyze the magnetic coupling of the Ni2+ model complex shown in

Fig. 5.12. The interaction of the spins strongly depends on the δ-angle and ranges from

approximately 100 cm−1 for δ = 0◦ to nearly zero for δ = 45◦, which is accurately

reproduced with DDCI [6]. More interestingly, the singlet, triplet and quintet DDCI

energies do not strictly follow the expected Landé pattern, especially for small δ.

Deviations up to 3 % are observed and we will use the corresponding wave functions

to analyze the origin of the deviations to the standard Heisenberg spacing.

The magnetic orbitals are expressed again in orthogonal atomic-like orbitals,

denoted ϕ1, ϕ2 for the two magnetic orbitals on site A and ϕ3, ϕ4 for the orbitals on
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Fig. 5.12 (NH3)3–Ni–(µ-

N3)2–Ni–NH3)3 model

complex and definition of the

angle δ

center B. The local ground state is a triplet denoted as T
1,0,−1
A for the three degenerate

MS components on center A and T
1,0,−1
B for the components of the triplet on center B.

T +
A = |ϕ1ϕ2| T +

B = |ϕ3ϕ4|
T −

A = |ϕ1ϕ2| T −
B = |ϕ3ϕ4| (5.29)

T 0
A = (|ϕ1ϕ2| − |ϕ2ϕ1|)/

√
2 T 0

B = (|ϕ3ϕ4| − |ϕ4ϕ3|)/
√

2

Note that the superscript indicates the MS-value of the function. In addition we also

define a local singlet with the same orbital occupancy but a different spin coupling.

This CSF dominates the lowest excited singlet state in octahedral Ni2+ complexes

and will be named here a non-Hund state

S0
A = (|ϕ1ϕ2| + |ϕ2ϕ1|)/

√
2 S0

B = (|ϕ3ϕ4| + |ϕ4ϕ3|)/
√

2 (5.30)

The total wave functions of the binuclear complex can be constructed from the

products of these local functions. In order to find any possible interactions between

the lowest singlet, triplet and quintet states and the newly introduced non-Hund

singlet, all products are written in their MS = 0 variant.

T +
A T −

B = |ϕ1ϕ2ϕ3ϕ4| = T +T − (5.31)

T −
A T +

B = |ϕ1ϕ2ϕ3ϕ4| = T −T + (5.32)

T 0
AT 0

B = 1

2

(
|ϕ1ϕ2| − |ϕ2ϕ1|

)(
|ϕ3ϕ4| − |ϕ4ϕ3|

)
= 1

2

(
|ϕ1ϕ2ϕ3ϕ4|

− |ϕ1ϕ2ϕ4ϕ3| − |ϕ2ϕ1ϕ3ϕ4| + |ϕ2ϕ1ϕ4ϕ3|
)

= T 0T 0 (5.33)

T 0
A S0

B = 1

2

(
|ϕ1ϕ2| + |ϕ2ϕ1|

)(
|ϕ3ϕ4| − |ϕ4ϕ3|

)
= 1

2

(
|ϕ1ϕ2ϕ3ϕ4|

+ |ϕ1ϕ2ϕ4ϕ3| − |ϕ2ϕ1ϕ3ϕ4| − |ϕ2ϕ1ϕ4ϕ3|
)

= T 0S0 (5.34)
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S0
AT 0

B = 1

2

(
|ϕ1ϕ2| + |ϕ2ϕ1|

)(
|ϕ3ϕ4| − |ϕ4ϕ3|

)
= 1

2

(
|ϕ1ϕ2ϕ3ϕ4|

− |ϕ1ϕ2ϕ4ϕ3| + |ϕ2ϕ1ϕ3ϕ4| − |ϕ2ϕ1ϕ4ϕ3|
)

= S0T 0 (5.35)

S0
A S0

B = 1

2

(
|ϕ1ϕ2| + |ϕ2ϕ1|

)(
|ϕ3ϕ4| + |ϕ4ϕ3|

)
= 1

2

(
|ϕ1ϕ2ϕ3ϕ4|

+ |ϕ1ϕ2ϕ4ϕ3| + |ϕ2ϕ1ϕ3ϕ4| + |ϕ2ϕ1ϕ4ϕ3|
)

= S0S0 (5.36)

These six CSFs can be combined to form spin eigenstates; three states with local

triplet coupling on both magnetic centers and three more with at least one magnetic

center in a locally excited (non-Hund) state.

Q =
√

2

3

(
T 0T 0 + 1

2
(T +T −)

)
(5.37a)

T = 1√
2

(
T +T − − T −T +)

(5.37b)

S = 1√
3

(
T 0T 0 − T +T − − T −T +

)
(5.37c)

N H1 = 1√
2

(
T 0S0 + S0T 0

)
(5.38a)

N H2 = 1√
2

(
T 0S0 − S0T 0

)
(5.38b)

N H3 = S0S0 (5.38c)

These six CSFs are the basis of the model space of the determinants of the four-

electron/four-orbital CAS calculation with the restriction of one electron per orbital.

The matrix representation of the model space is

|Q〉 |T 〉 |S〉 |N H1〉 |N H2〉 |N H3〉
〈Q| E0 − 2K − 2K ′

〈T | 0 E0 − 2K

〈S| 0 0 E0 − 2K + K ′

〈N H1| 0 0 0 E0 + 2K ′

〈N H2| 0 K24 − K13 0 0 E0 + 2K "

〈N H3| 0 0
√

3(K ′′ − K ′) 0 0 E0 + 2K − K ′

where E0 contains all the one-electron terms and the Coulomb integrals. K is the

average of the on-site exchange integrals 2K = K12 + K34. K ′ and K ′′ are sums

of two-center exchange integrals, and hence, much smaller. 2K ′ = K13 + K24;

2K ′′ = K14 + K23. The different exchange integrals Ki j = 〈ϕiϕ j |1/ri j |ϕ jϕi 〉 are

defined in Fig. 5.13.
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Fig. 5.13 Definition of the exchange integrals that appear in the matrix representation of the model

space formed by the neutral determinants of the four-electron/four-orbital case. For the centro-

symmetric case here considered K12 = K34 ≫ K13 ≈ K24 > K14 = K23

In the first place, we recognize that without considering the non-Hund states, there

is a strict regular order of the singlet, triplet and quintet states. The triplet-quintet

splitting (2K ′) is twice as large as the energy difference between triplet and singlet.

Since this model space only considers the neutral determinants, it is not unexpected

that the quintet spin coupling leads to the lowest energy. The non-Hund states with

one local singlet (NH1 and NH2) lie at relative energies of approximately 2K and

the double non-Hund state is found around 4K with respect to the Q, T, and S states.

The only non-zero off-diagonal terms in the matrix reveal small interactions be-

tween T and N H2 and between S and N H3. However, these matrix elements are

usually very small. The exchange integrals involved are all two-center integrals and

therefore rather small. Moreover, the different two-center integrals are similar in

magnitude and tend to cancel each other. Obviously, the quintet state cannot have

additional contributions from the non-Hund states, since singlet coupling on one of

the magnetic centers cannot lead to a state with overall quintet coupling. Although

these interactions are at the very origin of the deviations to the regular Landé spacing

of the energies, a second ingredient is necessary to activate the contribution of the

non-Hund states. The key to a sizeable non-Heisenberg behaviour lies in the inter-

action of the non-Hund states with the ionic determinants, which in turn interact

with the singlet and triplet functions of Eq. 5.37. To illustrate this effect, the model

space is enlarged with the eight ionic determinants that interact with the neutral ones

defined in Eq. 5.31. The plus and minus combinations of the ionic determinants give

rise to four singlet and four triplet CSFs with three electrons on one center and one

electron on the other.

I1,2 =
(
|ϕ1ϕ1ϕ2ϕ4| ± |ϕ1ϕ1ϕ4ϕ2|

)
/
√

2 (5.39a)

I3,4 =
(
|ϕ3ϕ3ϕ4ϕ2| ± |ϕ3ϕ3ϕ2ϕ4|

)
/
√

2 (5.39b)

I5,6 =
(
|ϕ2ϕ2ϕ1ϕ3| ± |ϕ2ϕ2ϕ3ϕ1|

)
/
√

2 (5.39c)

I7,8 =
(
|ϕ4ϕ4ϕ1ϕ3| ± |ϕ4ϕ4ϕ2ϕ1|

)
/
√

2 (5.39d)
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There are more ionic determinants, e.g. |φ1φ1φ2φ3|, but these do not interact with T

or S when φ1 and φ3 belong to a different irreducible representation than φ2 and φ4.

The use of spin symmetry adapted configurations allows us to write the full 15 × 15

matrix representation of the model space in three separate blocks. The first one is

one-dimensional and only contains the neutral quintet CSF, the second one contains

all the triplet CSFs: T , NH2 and the even-numbered Ii CSFs. The third sub-block

of the total reference space is formed by the singlets: S, NH3 and the odd-numbered

Ii CSFs. NH1 does not interact with any of the other CSFs due to symmetry. The

triplet and singlet interaction matrices are

|T 〉 |N H2〉 |I 2〉 |I 4〉 |I 6〉 |I 8〉
〈T | −2K

〈N H2| K24 − K13 2K ′′

〈I 2| t13 −t13 U − K24

〈I 4| t13 −t13 K13 U − K24

〈I 6| −t24 −t24 α − β β − γ U ′ − K13

〈I 8| −t24 −t24 β − γ α − β K24 U ′ − K13

|S〉 |N H3〉 |I 1〉 |I 3〉 |I 5〉 |I 7〉
〈S| −2K + K ′

〈N H3|
√

3(K ′′ − K ′) 2K − K ′

〈I 1| −3t13/
√

6 t13/
√

2 U + K24

〈I 3| −3t13/
√

6 t13/
√

2 K13 U + K24

〈I 5| 3t24/
√

6 −t24/
√

2 α + β β + γ U ′ + K13

〈I 7| 3t24/
√

6 −t24/
√

2 β + γ α + β K24 U ′ + K13

with α = 〈ϕ1ϕ4|1/r12|ϕ2ϕ3〉 − 〈ϕ1ϕ4|1/r12|ϕ3ϕ2〉; β = 〈ϕ1ϕ4|1/r12|ϕ2ϕ3〉 and

γ = 〈ϕ1ϕ2|1/r12|ϕ4ϕ3〉 − 〈ϕ1ϕ2|1/r12|ϕ3ϕ4〉. E0 is omitted and the difference

between the on-site repulsion integrals U and U ′ arises from the double occupancy

of ϕ1 or ϕ3 in I1−4 versus ϕ2 or ϕ4 in I5−8.

The interaction between the ionic states and the neutral states with Hund coupling

cannot break the Landé pattern. This is very easily demonstrated by considering the

effect of I1,2 on S and T . The diagonalization of the two 2 × 2 matrices gives

E(T ) = 1

2

(
U ±

√
U 2 + 4t2

13

)

E(S) = 1

2

(
U ±

√
U 2 + 6t2

13

)
(5.40)

To make it easier to see that these energies perfectly fit the energy differences de-

scribed with the Heisenberg Hamiltonian, we simplify the expressions with the Taylor

expansion used before in Eq. 5.8. The energies of the lowest two states are

E(T ) = − t2
13

U
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E(S) = −3

2

t2
13

U
(5.41)

It is now trivial to see that E(T ) − E(Q) = 2
(
E(S) − E(T )

)
. Note that taking into

account the interaction of all the CSFs with ionic character leads to more elaborate

expressions for the energies of S and T , but the principle is the same.

The simultaneous interaction of the ionic CSFs with S/T and N H3/N H2 makes

that the non-Hund states gain some weight in the wave function of the lowest triplet

and singlet states. This is exactly the same mechanism as in the configuration in-

teraction of singles and doubles. The singles have no direct interaction with the

Hartree-Fock determinant due the Brillouin theorem, but they appear in the CI wave

function due to an indirect interaction via the doubles.

5.10 Rationalize the relative size for the estimates of J extracted from the

singlet-triplet and from the triplet-quintet energy difference. Hint: compare

the matrix elements of the ionic determinants with the non-Hund states and

take into consideration the relative energy of the non-Hund states involved in

the coupling.

To illustrate the above-discussed concepts, we first decompose the magnetic cou-

pling of the Ni-azido complex with angle δ = 0 in Table 5.5. The first column marked

with K results from the diagonalization of the model space with only neutral determi-

nants. The effect of the different exchange interactions makes the quintet the lowest

state and no (measurable) deviations from the Heisenberg behaviour are observed.

The inclusion of the spin polarization introduces important antiferromagnetic con-

tributions but does not break the Landé pattern. By adding the ionic determinants to

the CI wave functions of the three lowest spin states, the magnetic coupling further

increases as expected. But, more interestingly, we observe a small difference in the

estimates of J calculated from the singlet-triplet and the triplet-quintet energy dif-

ference. This non-Heisenberg behaviour becomes more pronounced in the CAS+S

calculation when the ionic determinants are relaxed, leading to a stronger interac-

tion with the Hund and non-Hund states. When all electron correlation effects are

included, the calculated coupling is close to experiment and the deviations are yet a

little larger.

It remains to establish which state, singlet or triplet, is most strongly affected

by the interaction with the non-Hund states. For this purpose, we have decomposed

the DDCI wave functions of the different spin states and listed the coefficients of

Table 5.5 Decomposition of the magnetic coupling of the binuclear Ni-azido complex with δ = 0

K K + SP CAS(4,4) CAS(4,4)+S DDCI

(ET − EQ)/2 2.41 −9.05 −12.62 −55.57 −104.48

ET − ES 2.41 −9.04 −12.58 −54.92 −101.47
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Table 5.6 Decomposition of the DDCI wave function for the singlet, triplet and quintet state of

the binuclear Ni-azido complex with three different values of δ

δ = 0◦ Quintet Triplet Singlet

Hund 0.97227 0.96552 0.94652

Non-Hund – 0.00110 0.00002

Ionic – 0.00163 0.00233

(ET − EQ)/2 −104.48

ES − ET −101.47

δ = 22◦

Hund 0.97028 0.96565 0.96545

Non-Hund – 0.00079 <10−5

Ionic – 0.00117 0.00169

(ET − EQ)/2 −65.92

ES − ET −64.65

δ = 45◦

Hund 0.96578 0.96482 0.96633

Non-Hund – 0.00026 <10−5

Ionic – 0.00037 0.00057

(ET − EQ)/2 −3.69

ES − ET −3.67

the Hund, non-Hund and ionic CSFs in Table 5.6. If we first focus on the above-

discussed case of δ = 0, we see that the largest non-Hund contribution appears in

the triplet function. This is in line with the larger matrix element of NH2 with the

even-numbered ionic states Ii and the lower relative energy of NH2 (one atomic

non-Hund state) with respect to NH3 (atomic non-Hund coupling on both magnetic

centers). Hence, it is expected that the non-Hund states stabilize the triplet state more

than the singlet, and hence, ES − ET < (ET − EQ)/2 as observed in the Ni-azido

complexes.

Table 5.6 also shows that with increasing angle δ the magnetic coupling is strongly

reduced, caused by the loss of efficiency of the kinetic exchange mechanism ev-

idenced by the decrease of the coefficient of the ionic determinants in the wave

function of the singlet and the triplet wave functions. At the same time, the devia-

tions to the regular Heisenberg spacing are strongly suppressed as are the coefficients

of the non-Hund states. This illustrates the role of the indirect coupling of the non-

Hund states with the neutral determinants via the ionic ones; without significant

contribution of the ionic determinants, i. e. no efficient kinetic exchange, all possi-

ble deviations from the Landé pattern of the energies of the lowest spin states are

eliminated.
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In summary, biquadratic exchange interactions are only expected in complexes

with sizeable magnetic interaction, small on-site repulsion U , not too large on-site

exchange interaction K and different inter-site interactions for the pairs of electrons

on the different magnetic centers: K13 �= K24; t13 �= t24.

5.4.2 Decomposition of the Four-Center Interactions

The four-spin interaction as discussed in Chap. 3 (Sect. 3.4.2) is the effective matrix

element between the determinants ΦI = |abcd| and ΦJ = |abcd|. Since the direct

matrix element of the electronic Hamiltonian between them is zero (there are more

than two different columns in the determinants), there must be other, indirect interac-

tions that account for the non-zero value of this interaction. In analogy to the normal

two-center magnetic interaction, we will review the role of the ionic determinants in

the effective matrix elements. Figure 5.14 shows one of the pathways that connects

ΦI with ΦJ through three different ionic states. In the first step an electron hops

from site A to B to form the ionic determinant Φα . The matrix element is

〈ΦI |Ĥ |Φα〉 = 〈abcd|Ĥ |bbcd〉 = 〈a|ĥ|b〉 + smaller

two-electron integrals = tab = t (5.42)

The two-electron integrals will be detailed in Chap. 6 but are here absorbed into the

effective hopping parameter tab. The relative energy of Φα is U , the same parameter

as in the analysis of the two-center interaction. The next step transfers an electron

with β spin to center C to generate Φβ with energy U . Assuming a square lattice, the

matrix element with Φα equals t . The third and fourth step are similar and in total

one gets the fourth-order perturbation contribution of this path to the effective matrix

element between ΦI and ΦJ by applying Eq. 5.12.

〈ΦI |Ĥ |Φα〉〈Φα|Ĥ |Φβ〉〈Φβ |Ĥ |Φγ 〉〈Φγ |Ĥ |ΦJ 〉
(Eα − E J )(Eβ − E J )(Eγ − E J )

= t4

U 3
(5.43)

Fig. 5.14 Basic pathway to connect ΦI = |abcd| with ΦJ = |abcd| via electron hopping among

neighboring sites parametrized by t = ti j . The relative energies of the intermediate determinants

Φα,β,γ is U

http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_6
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Fig. 5.15 The six pathways that connect ΦI = |abcd| with ΦJ = |abcd| in a clockwise fashion.

The relative energy of all intermediate determinants is U , expect the di-ionic determinant (third

column in the middle), whose energy can be approximated by 2U

5.11 Equation 5.43 assumes that the energies of Φα and Φβ are strictly the

same. Is this correct? Hint: Assume that A, B, C and D are uncharged in ΦI

and calculate the Coulomb interaction along the path in a simple point charge

model.

The path in Fig. 5.14 is not the only possibility to go from ΦI to ΦJ . In fact,

there are 48 different pathways. Twelve of these start with an electron hopping from

center A, six with a clockwise circulation and six go in an anti-clockwise fashion.

Figure 5.15 shows the six clockwise electron circulations starting at center A, the

upper path corresponds to the one that was discussed before. Putting the energy

of the di-ionic state—third column in the middle of the figure—at 2U , the total

contribution of the six paths is

4 × t4

U 3
+ 2 × t4

U · 2U · U
= 5

t4

U 3
(5.44)

The contribution of the anti-clockwise pathways is the same, increasing the prefactor

to 10. By accounting for the pathways that start at the other magnetic centers, we

can derive the total effective matrix element and a perturbative estimate of Jr

〈ΦI |Ĥ eff|ΦJ 〉 = 40
t4

U 3
⇒ J

pt
r = 80

t4

U 3
(5.45)

5.12 Write down an anti-clockwise path from ΦI to ΦJ starting at center A

that goes through a di-ionic determinant.
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The comparison of this expression with the one derived for the ordinary two-

center coupling (4t2/U ) shows that Jr is expected to be significantly smaller than

the interactions described in the standard Heisenberg Hamiltonian, dividing by U 3

instead of U makes the interaction much smaller. However, the very large prefactor

in the perturbative estimate makes that the ring exchange is not necessarily negligible

in all cases. As long as U is not too large and t sizeable, one can expect significant

four-center interactions when the geometry of the system is square-like.

5.4.3 Complex Interactions with Single Determinant

Approaches

Biquadratic exchange: The isotropic linear magnetic exchange can be calculated

in a rather straightforward way with single determinant spin unrestricted methods.

Assuming that the BS determinant is a linear combination of the spin states with low-

est and highest possible spin moment, the Yamaguchi equation (Eq. 4.85) relates the

energies of the BS and HS determinants with J in a straightforward way, independent

of the number of unpaired electrons on the magnetic sites involved in the coupling.

The biquadratic exchange can however not be addressed from energy differences

only, simply because we have only access to one energy difference, obviously too

few to determine two parameters.

Instead one can estimate the strength of the biquadratic exchange in an indirect way

via the electronic structure parameters U , t and K . To derive the relevant equations

we need to compare the expressions of the singlet and triplet states in terms of

J and λ given in Eq. 3.75 with their fourth-order perturbation estimates using the

matrix elements derived in Sect. 5.4.1. In the first place, we need a common zero of

energy. This is easily achieved by putting the energy of the quintet state to zero. The

expressions of singlet, triplet and quintet states in terms of J and λ then become

E(Q) = 0

E(T ) = 2J

E(S) = 3J + 3λ (5.46)

The fourth-order perturbation estimates give us expressions in terms of t , U and

K , and hence, we can relate λ to these electronic structure parameters, which can

be calculated with spin-unrestricted single determinant methods. To simplify the

perturbation estimates we neglect α, β and γ , and all intersite exchange integrals

in the interaction matrices derived in Sect. 5.4.1. The interaction matrices for triplet

and singlet states then become

http://dx.doi.org/10.1007/978-3-319-22951-5_4
http://dx.doi.org/10.1007/978-3-319-22951-5_3
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|T 〉 |N H2〉 |I 2〉 |I 4〉 |I 6〉 |I 8〉
〈T | 0

〈N H2| 0 2K

〈I 2| t13 −t13 U

〈I 4| t13 −t13 0 U

〈I 6| −t24 −t24 0 0 U ′

〈I 8| −t24 −t24 0 0 0 U ′

|S〉 |N H3〉 |I 1〉 |I 3〉 |I 5〉 |I 7〉
〈S| 0

〈N H3| 0 4K

〈I 1| −3t13/
√

6 t13/
√

2 U

〈I 3| −3t13/
√

6 t13/
√

2 0 U

〈I 5| 3t24/
√

6 −t24/
√

2 0 0 U ′

〈I 7| 3t24/
√

6 −t24/
√

2 0 0 0 U ′

The second-order correction to the energy is obtained from the expression

E (2) = 〈ΦI |Ĥ |Φα〉〈Φα|Ĥ |ΦI 〉
E I − Eα

(5.47)

which becomes

E
(2)
T =

∑

i=2,4,6,8

〈T |Ĥ |I i〉〈I i |Ĥ |T 〉
−Ui

= −2t2
13

U
− 2t2

24

U ′ (5.48)

for the triplet and

E
(2)
S =

∑

i=1,3,5,7

〈S|Ĥ |I i〉〈I i |Ĥ |S〉
−Ui

= −3t2
13

U
− 3t2

24

U ′ (5.49)

for the singlet. From these equations we can define J (2), the second-order estimate

of J , as − t2
13
U

− t2
24

U ′ . The fourth-order contribution is determined with Eq. 5.12 and

counts with much more terms, which are summarized below and illustrated for one

of the cases in Fig. 5.16.
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Fig. 5.16 Schematic

representation of one of the

fourth-order interactions

contributing to the energy of

the triplet state. The total

contribution of this path

equals −t2
13t2

24/UU ′2K

ΦI Φα Φβ Φγ ΦI ΦI Φα Φβ Φγ ΦI

S I 1 N H3 I 1 S − 3
4

t4
13/U 24K T I 2 N H2 I 2 T −t4

13/U 22K

I 3 − 3
4

t4
13/U 24K I 4 −t4

13/U 22K

I 5 − 3
4

t2
13t2

24/UU ′4K I 6 t2
13t2

24/UU ′2K

I 7 − 3
4

t2
13t2

24/UU ′4K I 8 t2
13t2

24/UU ′2K

I 3 I 3 − 3
4

t4
13/U 24K I 4 I 4 −t4

13/U 22K

I 5 − 3
4

t2
13t2

24/UU ′4K I 6 t2
13t2

24/UU ′2K

I 7 − 3
4

t2
13t2

24/UU ′4K I 8 t2
13t2

24/UU ′2K

I 5 I 5 − 3
4

t4
24/U ′24K I 6 I 6 −t4

24/U ′22K

I 7 − 3
4

t4
24/U ′24K I 8 t2

24/U ′22K

I 7 I 7 − 3
4

t4
24/U ′24K I 6 I 6 −t4

24/U ′22K

The terms with the ionic states interchanged (Φα = I 3, Φγ = I 1, etc.) should also

be added to the perturbational estimate. This is easily done by multiplying all the

terms by two, except the ones with Φα = Φγ . Now the following corrections arise

E
(4)
T = 2t4

13

U 2 K
+ 2t4

24

U ′2 K
− 4t2

13t2
24

UU ′K
= 2B

K
(5.50)

E
(4)
S = −3

4

t4
13

U 2 K
− 3

4

t4
24

U ′2 K
− 3

2

t2
13t2

24

UU ′K
= −3J (2)2

4K
(5.51)

with B = t2
13/U − t2

24/U ′. Then the total perturbative estimate for the singlet and

triplet energies are
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ET = E
(2)
T + E

(4)
T = −2t2

13

U
− 2t2

24

U ′ − 2B2

K
= 2J (2) − 2B2

K
(5.52)

ES = E
(2)
S + E

(4)
S = −3t2

13

U
− 3t2

24

U ′ − 3J 2

4K
= 3J (2) − 3J (2)2

4K
(5.53)

The comparison with the expression for the singlet and triplet energy eigenvalues of

the Heisenberg Hamiltonian with biquadratic terms leads to a fourth-order estimate

of J as

J = J (2) − B2

K
(5.54)

Then from the singlet energy we get

ES = 3J + 3λ = 3

(
J (2) − B2

K

)
+ 3λ = 3J (2) − 3J (2)2

4K
(5.55)

from which the perturbative expression for λ in terms of t , U and K can be extracted

λ = B2

3K
− J (2)2

4K
(5.56)

The next step concerns the calculation of the energy of a collection of spin unrestricted

determinants with different occupations and relate their energies to the electronic

structure parameters in order to calculate the λ parameter and in this way obtain a

measure for the biquadratic interaction strength from methods like DFT (Fig. 5.17).

Assuming that U = U ′, the energies of the following five determinants define

the parameters that appear in the perturbative expressions of B and J , which in turn

lead to an estimate of λ, the biquadratic exchange parameter.

Fig. 5.17 The five

determinants that are needed

to calculate the electronic

structure parameters that

define B and J in the

perturbative expression of

the biquadratic exchange

strength
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Fig. 5.18 One of the second-order contributions to the energy of Φ2. This path contributes t2
13/−U

MS = 2 : Φ1 = |ϕ1ϕ2ϕ3ϕ4| E
(2)
1 = 0 (5.57)

MS = 0 : Φ2 = |ϕ1ϕ2ϕ3ϕ4| E
(2)
2 = −2(t2

13 + t2
24)

U
(5.58)

Φ3 = |ϕ1ϕ2ϕ3ϕ4| E
(2)
3 = 2K − 2(t2

13 + t2
24)

U
(5.59)

MS = 1 : Φ4 = |ϕ1ϕ2ϕ3ϕ4| E
(2)
4 = K − 2t2

24

U
(5.60)

Φ5 = |ϕ1ϕ2ϕ3ϕ4| E
(2)
5 = K − 2t2

13

U
(5.61)

The listed energies are the sum of the zeroth-order energies and second-order cor-

rections. The latter are calculated by taking into account all possible interactions of

these determinants with the ionic determinants, which are assumed to be degenerate

with energy U relative to Φ1. One example is given in Fig. 5.18, the rest is completely

analogous. The zeroth-order energies 〈ΦI |Ĥ |ΦI 〉 only count the number of on-site

exchange interactions K , all other terms are neglected or the same as in the reference

energy E
(0)
1 .

5.13 Write down the two ionic determinants that interact with Φ4 and calculate

the interaction matrix elements.

Four-center interactions: In Chap. 3, we have seen how the four-center interac-

tions can be extracted using an effective Hamiltonian spanned by the six MS = 0

determinants. To address the ring exchange within a spin unrestricted setting, this

model space is no longer sufficient, but has to be extended with the MS = 2 and the

four MS = 1 determinants. In any standard implementation of density functional

theory, the main area of spin unrestricted methods, one has only access to the diago-

nal elements of this 11 × 11 model Hamiltonian; matrix elements between different

determinants are not routinely calculated in most quantum chemistry packages. In

addition, it should be realized that the four MS = 1 determinants are all degenerate

and as was shown in Eq. 3.84, the six MS = 0 determinants are degenerate in pairs.

Hence, one can count with at most five energies, i.e. four energy differences that can

be used to determine four independent parameters. It is therefore intrinsically impos-

sible to determine the interaction strength of the three cyclic permutations defined in

Fig. 3.14, as can in principle be done with wave function based methods through the

construction of a numerical effective Hamiltonian. However, in any practical case

http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_3


5.4 Analysis of Complex Interactions 173

there is only one sizeable four-center interaction, namely the one with the P̂1234

operator associated to it.

The expectation values of the MS = 0 determinants can be found in Eq. 3.84, but

for the MS = 1 and MS = 2 determinants we will derive them here. Among the four

degenerate MS = 1 determinants we will focus on |abcd|, or |αααβ| in a spin-only

notation. With the following ingredients for the two-center interactions:

−J1(ŜA ŜB + ŜC ŜD)αααβ = −J1

(
1

4
αααβ + 1

2
ααβα − 1

4
αααβ

)

−J2(ŜA ŜD + ŜB ŜC )αααβ = −J2

(
1

2
βααα − 1

4
αααβ + 1

4
αααβ

)
(5.62)

−J3(ŜA ŜD + ŜB ŜC )αααβ = −J3

(
1

4
αααβ + 1

2
αβαβ − 1

4
αααβ

)

and for the four-center interaction:

Jr (ŜA ŜB)(ŜC ŜD)αααβ = Jr (ŜA ŜB)

(
1

2
ααβα − 1

4
αααβ

)

= Jr

(
1

8
ααβα − 1

16
αααβ

)

Jr (ŜA ŜD)(ŜB ŜC )αααβ = Jr (ŜA ŜD)

(
1

4
αααβ

)
(5.63)

= Jr

(
1

8
βααα − 1

16
αααβ

)

−Jr (ŜA ŜC )(ŜB ŜD)αααβ = −Jr (ŜA ŜC )

(
1

2
αβαα − 1

4
αααβ

)

= −Jr

(
1

8
αβαα − 1

16
αααβ

)

the matrix element becomes

〈αααβ|Ĥ |αααβ〉 = − 1

16
Jr (5.64)

Applying the same procedure to |αααα| leads to

〈αααα|Ĥ |αααα〉 = −1

2
(J1 + J2 + J3) + 1

16
Jr (5.65)

5.14 Check the matrix element of the MS = 2 determinant of the spin Hamil-

tonian given in Eq. 3.83.

http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_3
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Taking the expectation value of the MS = 2 determinant as zero of energy, the

following relations emerge to determine the four parameters

E(|abcd|) − E(|abcd|) = J1 + J2

E(|abcd|) − E(|abcd|) = J1 + J3 (5.66)

E(|abcd|) − E(|abcd|) = J2 + J3

E(|abcd|) − E(|abcd|) = 1

2
(J1 + J2 + J3) − 1

8
Jr

Hence, the extraction of the four-spin cyclic exchange parameter within the spin-

unrestricted setting of the DFT approach relies on obtaining converged solutions for

the determinants with the required spin distributions, which is not always a trivial

task.

Problems

5.1 Zeroth-order description. Write down the matrix of the model space that only

considers neutral determinants expressed in local orbitals. Diagonalize the matrix and

calculate the singlet-triplet energy difference. What is the state of lowest energy?

5.2 Construction of the CAS(2,2)CI matrix in the symmetry adapted CSF basis.

The CASCI matrix given in Eq. 5.4 uses the four MS = 0 determinants as basis. The

matrix can be greatly simplified by a basis set change using symmetry adapted CSFs.

a. Write down the four symmetry adapted CSFs that arise from the linear combi-

nations of the four MS = 0 determinants. The expressions of the states after

configuration interaction given in Eq. 5.5 may give a hint on the CSFs.

b. Calculate the energy expectation values of the four CSFs and place them on the

diagonal of the matrix.

c. Identify the CSFs as singlet or triplet spin eigenfunctions and label them by

gerade/ungerade spatial symmetry, assuming that the system has an inversion

center. How many off-diagonal elements have non-zero value?

d. Calculate the remaining matrix elements to complete the CAS(2,2)CI matrix.

5.3 Spin contamination of the BS state. The relaxation of the magnetic orbitals

of the BS determinant in the field of the frozen ROKS core orbitals introduces spin

contamination. The amount of spin contamination can be determined analytically

by rewriting Eq. 5.26 in terms of spin adapted CSFs instead of the neutral and ionic

valence bond structures.

1. Which term in Eq. 5.26 is an eigenfunction of Ŝ2. Give the eigenvalue of this term.

2. The two other terms have to be written in the form of the singlet
(
|ab|+ |ba|

)
and

triplet
(
|ab|−|ba|

)
CSFs. Use the trigonometric relations sin2 φ + cos2 φ = 1 and
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sin2 φ − cos2 φ = cos(2φ). Hint: Add and subtract 1
2

cos2 α|ba| + 1
2

sin2 α|ab|
and split the first two terms of Eq. 5.26 in halfs. Then, order the terms to form the

given trigonometric relations.

3. Calculate 〈ΦBS|Ŝ2|ΦBS〉 using the above derived expression ΦBS = (|ab| +
|ba|)/2 + (|ab| − |ba|) cos(2α)/2 + (|aa| + |bb|) sin α cos α.

5.4 Kinetic exchange by second-order perturbation theory. Make a second-

order estimate of the singlet energy taking into account the interaction between

S = 1√
2

(
|ab| + |ba|

)
and the ionic states I1 = 1√

2

(
|aa| + |bb|

)
and I2 =

1√
2

(
|aa| − |bb|

)
. The energy of the triplet, T = 1√

2

(
|ab| − |ba|

)
, equals Eref − Kab

and should be taken as reference.

5.5 Biquadratic exchange versus t13/t24. Express the perturbative estimate of λ

(Eq. 5.56) in terms of t13 and t24 with a common denominator for the two terms.

Determine for which values of t13 and t24 the biquadratic exchange vanishes and for

which values it can be expected to be maximal.

5.6 Estimating Jr. Accurate calculations on a polynuclear paramagnetic compound

with four S = 1
2

magnetic centers indicate that the only significant interactions

are the following bilinear isotropic interactions: J12 = J34 = −25.1 meV, and

J23 = J14 = −39.5 meV. Nevertheless, the experimental temperature dependence

of the magnetic susceptibility could not be fitted satisfactorily with these values.

Provide a perturbational estimate for the four-center cyclic exchange to improve the

fitting (extra data: U = 5.3 eV).
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Chapter 6

Magnetism and Conduction

Abstract After the description of the electron hopping in systems where not all

the magnetic centers have the same number of unpaired electrons, a short account

is given of the double exchange mechanism in mixed-valence systems. Although

this phenomenon can certainly be found in transition metal complexes, it is more

common to happen in doped systems in the solid state. Therefore, the second part

of this chapter introduces the basics of the quantum chemical approach to magnetic

interactions in extended systems. The embedded cluster approach will be contrasted

against band structure calculations. Thereafter, some concepts will be introduced that

are widely used in the condensed matter physics community. We do not give a full

description of all the magnetic phenomena in solid state compounds but rather help

the reader with a quantum chemical background to find its way in the rich literature

on this topic.

6.1 Electron Hopping

In all the magnetic systems described so far the number of magnetic orbitals was equal

to the number of unpaired electrons. These systems are generally known as half-filled

systems and the price (in terms of energy) to move an electron from one site to another

is proportional to the on-site repulsion parameter U. Since this parameter is in general

huge in comparison to the magnetic interactions, the electrons are considered to be

immobile or in other words, trapped on the magnetic sites. The situation changes

drastically when the number of electrons in the magnetic orbitals is no longer equal

to the number of magnetic orbitals, that is when the system is doped with electrons

(more electrons than magnetic orbitals) or doped with holes (less electrons than

magnetic orbitals). In these systems, the electron is no longer necessarily trapped and

can move from site to site under certain circumstances that will be described below.

A commonly used classification of magnetic compounds by the degree of electron

mobility was given by Robin and Day [1], who divided the so-called mixed valence

compounds into three groups. Class I contains all the compounds where the magnetic

centers have different oxidation states but the electrons are nevertheless trapped. Class

III is quite the opposite; the magnetic centers have formally a distinct oxidation state
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Fig. 6.1 Initial and final

states of electron hopping

processes in hole-doped,

neutral and electron-doped

magnetic systems

but the electrons are completely delocalized and in practice all magnetic centers share

the same average oxidation, often a non-integer number. In between, one finds the

probably most interesting case of Class II compounds. There is a certain degree of

localization but the hopping of an electron from one site to a neighbouring one has

a low energy barrier and occurs frequently.

In the background of a collection of inactive doubly occupied orbitals h, three dif-

ferent scenarios can be envisaged to describe electron hopping processes. Figure 6.1

illustrates these scenarios and from top to bottom we recognize the hopping process

from a singly occupied orbital to an empty orbital; from a singly occupied to another

singly occupied orbital; and from a doubly occupied (filled) to a singly occupied

orbital. Taking the system in the middle as reference neutral system, the upper part

of the figure is indicative for electron hopping in a hole-doped (or electron-ionized)

system, while the bottom illustrates the hopping in an electron-doped system. In

this case the process is often interpreted in terms of hole mobility, where the figure

illustrates how a hole on site B moves to site A.
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The probability for these hopping processes is normally condensed into a single

parameter referred to as tab, but Vab and β (Hückel theory) are also used. Intuitively

one would say that the hopping parameter is the same for all three processes, since

one electron moves from a to b, while the rest of the occupations stay the same in

all cases. But the calculation of the 〈ΦI |Ĥ|ΦF〉 matrix element shows that this is not

exactly the case. The interaction matrix elements of the initial and final states are

easily determined with the Slater–Condon rules. In the first case, the hopping of an

electron to an empty orbital is defined by

ΦI = |hha| ΦF = |hhb|

t+ab = 〈ΦI |Ĥ|ΦF〉 =
∑

h

〈ah| 1

r12
|bh〉 + 〈a|ĥ|b〉 (6.1a)

where a and b are (orthogonal) atomic-like orbitals centered on the centers A and

B and h is one of the inactive doubly occupied orbitals. The sum runs over all the

inactive orbitals. In the second scenario, the initial and final states and their matrix

element are

ΦI = |hhab| ΦF = |hhbb|

t0
ab = 〈ΦI |Ĥ|ΦF〉 =

∑

h

〈ah| 1

r12
|bh〉 + 〈a|ĥ|b〉 + 〈ab| 1

r12
|bb〉 (6.1b)

and finally, the process on the bottom of the figure from doubly to singly occupied

is described by

ΦI = |hhaab| ΦF = |hhabb|

t−ab = 〈ΦI |Ĥ|ΦF〉 =
∑

h

〈ah| 1

r12
|bh〉 + 〈a|ĥ|b〉 + 〈ab| 1

r12
|bb〉 + 〈aa| 1

r12
|ba〉

(6.1c)

The contribution of the inactive doubly occupied orbitals is the same in the three cases

as is the one-electron term hab. However, the appearance of two-electron integrals

for those cases with more than one electron in the magnetic orbitals introduces

differences in the interaction matrix elements.

Numerical estimates of the hopping parameter are relatively easy to obtain with

the different computational schemes discussed in Chap. 4. Starting with t+ab in a

centrosymmetric two-site system, two electronic states can be defined with doublet

spin coupling

D1 = |hhg| D2 = |hhu| (6.2)

http://dx.doi.org/10.1007/978-3-319-22951-5_4
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with g and u the bonding and anti-bonding combinations of the local orbitals a and

b. The energy of the two doublets is

E(D1) = 〈hhg|Ĥ|hhg〉 = 1

2
〈hh(a + b)|Ĥ|hh(a + b)〉

= 1

2

(

〈hha|Ĥ|hha〉 + 2〈hha|Ĥ|hhb〉 + 〈hhb|Ĥ|hhb〉
)

(6.3)

E(D2) = 〈hhu|Ĥ|hhu〉 = 1

2
〈hh(a − b)|Ĥ|hh(a − b)〉

= 1

2

(

〈hha|Ĥ|hha〉 − 2〈hha|Ĥ|hhb〉 + 〈hhb|Ĥ|hhb〉
)

(6.4)

Combining the energy difference of the two doublets

∆E12 = E(D1) − E(D2) = 2〈hha|Ĥ|hhb〉 (6.5)

with the definition given in Eq. 6.1a, the hopping parameter can be calculated by

t+ab = 1

2
∆E12 (6.6)

In practice, an effective hopping parameter can be obtained from accurate ab initio

energies for the two doublets. For non-centrosymmetric systems, the calculation is

slightly more involved. The two doublets are now defined as

D1 = c1|hha| + c2|hhb| D2 = c2|hha| − c1|hhb| (6.7)

and the energy difference is

∆E12 = (c2
1 − c2

2)(Haa − Hbb) + 4c1c2Hab (6.8)

with Hij = 〈hhi|Ĥ|hhj〉. This leads to the following expression for t+ab

t+ab = ∆E12 − (c2
1 − c2

2)(Haa − Hbb)

4c1c2
(6.9)

To determine t, the energy difference is no longer sufficient and information is

required from the wave function. The magnetic orbitals have to be expressed in

orthogonal atomic-like orbitals and the wave functions projected on the model space

{|hha|, |hhb|}. After orthonormalization, a numerical 2 × 2 effective Hamiltonian

can be constructed

Ĥeff |hha〉 |hhb〉
〈hha| Haa t+ab

〈hhb| t+ab Hbb
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and the hopping parameter can be directly determined from the off-diagonal matrix

element.

6.1 Show that the expression of t+ab for the non-centrosymmetric case reduces

to ∆E12/2 for a centrosymmetric system.

The determination of t0
ab has already been discussed in Sect. 5.2. It requires the

construction of a 4 × 4 effective Hamiltonian with a basis of two neutral and two

ionic determinants. The hopping integral is defined as the matrix element between

neutral and ionic determinants. The calculation of t−ab is analogous to the procedure

for estimating t+ab. The two doublets that can be defined in a centrosymmetric complex

with three electrons in the two magnetic orbitals g and u (omitting hh for simplicity)

D1 = |guu| D2 = |ggu| (6.10)

are re-expressed in the orthogonal atomic-like orbitals a and b

D1 = 1

2
√

2
|(a + b)(a − b)(a − b)| = 1

2
√

2
|−aba + abb + baa − bab|

= 1√
2
(|abb| + |aab|) (6.11a)

D2 = 1

2
√

2
|(a + b)(a + b)(a − b)| = 1

2
√

2
|−aab − abb + baa + bba|

= 1√
2
(|abb| − |aab|) (6.11b)

The energies of the two states are

E1 = 1

2
〈abb + aab|Ĥ|abb + aab〉

= 1

2

[

〈abb|Ĥ|abb〉 + 2〈abb|Ĥ|aab〉 + 〈aab|Ĥ|aab〉
]

(6.12a)

E2 = 1

2
〈abb − aab|Ĥ|abb − aab〉

= 1

2

[

〈abb|Ĥ|abb〉 − 2〈abb|Ĥ|aab〉 + 〈aab|Ĥ|aab〉
]

(6.12b)

http://dx.doi.org/10.1007/978-3-319-22951-5_5
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and t−ab can again be calculated from the energy difference of the two doublets, see

Eq. 6.10:

t−ab = 1

2
∆E12 = 〈abb|Ĥ|aab〉 (6.13)

6.2 Double Exchange

The concept of double exchange was introduced by Zener in the 1950s to explain the

sudden drop in the resistance of certain manganites when an external magnetic field

was applied [2]. The manganese ions in these compounds have either three or four

unpaired electrons in the 3d-shell; three electrons in t2g-like orbitals and the fourth

electron in an eg-like orbital. Electron hopping in such compounds takes place in the

presence of other unpaired electrons and depending on the inter-site spin coupling of

the t2g electrons, the eg electron has more or less probability to hop to a neighboring

site. Assume that the antiferromagnetic coupling dominates in the absence of an

external magnetic field. As shown in the upper part of Fig. 6.2, the electron hopping

leads to a state that does not have the maximum spin on the center that receives

the electron, whereas maximum spin coupling at one site is preferred as stated by

Hund’s rule. By applying a sufficiently large external magnetic field, the spins on all

centers can be forced in a ferromagnetic alignment. In such a case, see the lower part

of the figure, the electron hopping creates a high-spin state on the receiving center,

which corresponds to the local ground state and this is more favorable for electron

mobility, i.e. an external magnetic field can drastically lower the resistance to electric

conductance.

The effectiveness of the electron hopping between two metal centers separated by

a closed-shell ion, typically O2−, inspired Zener to introduce the concept of double

exchange illustrated in Fig. 6.3. The simultaneous hopping process of an electron with

α-spin from the first metal center to the O2− ion and from this O2− ion to the second

metal center was held responsible for the hopping. Contrary to the superexchange

described in Fig. 5.4, the double exchange only involves electrons of the same spin.

Therefore, the intuitive picture is that since the electron transfers can take place

simultaneously, in contrast to the superexchange, the double exchange hopping is

very efficient.

This simple electron hopping explanation has later been revised to incorporate

the strong electron-phonon coupling caused by the Jahn-Teller splitting of the Mn3+

ions. The conduction is due to the hopping of a magnetic polaron rather than a bare

electron [3].

http://dx.doi.org/10.1007/978-3-319-22951-5_5
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Fig. 6.2 Schematic explanation for the spin dependence of the hopping probability of the extra

electron in a background of unpaired electrons

Fig. 6.3 Double exchange mechanism proposed by Zener consisting in the simultaneous hopping

of an electron from center 1 to the bridge and from the bridge to metal 2

Fig. 6.4 Simple model to

describe electron hopping in

the background of unpaired

electrons, the orbitals are

mutually orthogonal

A rigorous description of electron hopping in the presence of other unpaired

electrons can be written down for the simple model system defined in Fig. 6.4. The

two electrons in the a1 and b1 orbitals provide a static background of unpaired

electrons for the mobile electron in the a2 b2 channel. Choosing MS = 1
2

, there are

24 ways to distribute the three electrons over the four orbitals, but only six of them
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are essential to the basic description of the hopping process of the electron between

the a2 and b2 orbitals. The six determinants are

Φ1 = |a1b1a2| Φ4 = |a1b1b2|
Φ2 = |a1b1a2| Φ5 = |a1b1b2| (6.14)

Φ3 = |a1b1a2| Φ6 = |a1b1b2|

6.2 Find the four determinants (or linear combinations of determinants) that

represent a triplet spin coupling of the electrons on center a or b. What is the

spin coupling of the other two (linear combinations) of determinants? What

do you expect for the relative energies of the two groups?

The interaction matrix elements are readily written down using the Slater–Condon

rules given in Chap. 1. We will work out three examples and leave the others as

exercise to the reader.

〈Φ1|Ĥ|Φ1〉 = 〈a1b1a2|Ĥ|a1b1a2〉 = 〈a1|ĥ|a1〉 + 〈b1|ĥ|b1〉 + 〈a2|ĥ|a2〉

+ 〈a1b1|
1 − P̂12

r12
|a1b1〉 + 〈a1a2|

1 − P̂12

r12
|a1a2〉 + 〈b1a2|

1 − P̂12

r12
|b1a2〉
(6.15)

The two-electron part becomes

〈a1b1|
1

r12
|a1b1〉 − 〈a1b1|

1

r12
|b1a1〉 + 〈a1a2|

1

r12
|a1a2〉 + 〈b1a2|

1

r12
|b1a2〉

= Ja1b1
+ Ja1a2 + Jb1a2

− Ka1b1
(6.16)

The one-electron part and the Coulomb integrals Jxy are common to all diagonal

matrix elements and the sum of these terms can be taken as the zero of energy. Then,

the matrix element 〈Φ1|Ĥ|Φ1〉 reduces to the exchange integral −Ka1b1
. Likewise,

the diagonal elements involving Φ2 and Φ3 reduce to Ka1a2 and to 0, respectively.

The off-diagonal matrix element between Φ2 and Φ3 is relatively simple

〈Φ2|Ĥ|Φ3〉 = 〈a1b1a2|Ĥ|a1b1a2〉 = 〈a1b1|
1 − P̂12

r12
|a1b1〉

= −〈a1b1|
1

r12
|b1a1〉 = −Ka1b1

(6.17)

http://dx.doi.org/10.1007/978-3-319-22951-5_1
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but the matrix element between Φ1 and Φ4 is slightly more involved

〈Φ1|Ĥ|Φ4〉 = 〈a1b1a2|Ĥ|a1b1b2〉 = 〈a2|ĥ|b2〉 + 〈a1a2|
1 − P̂12

r12
|a1b2〉

+ 〈b1a2|
1 − P̂12

r12
|b1b2〉 = 〈a2|ĥ|b2〉 + 〈a1a2|

1

r12
|a1b2〉 + 〈b1a2|

1

r12
|b1b2〉

(6.18)

where the two-electron integrals cannot be written as Coulomb or exchange integrals.

The sum of the three terms can be considered as the hopping parameter t, similar to

the expressions given in Eqs. 6.1b and 6.1c. The complete interaction matrix is

Ĥ |Φ1〉 |Φ2〉 |Φ3〉 |Φ4〉 |Φ5〉 |Φ6〉
〈Φ1| −K ′ 0 −K t 0 0

〈Φ2| 0 −K −K ′ 0 0 t

〈Φ3| −K −K ′ 0 0 t 0

〈Φ4| t 0 0 −K ′ 0 −K

〈Φ5| 0 0 t 0 −K −K ′

〈Φ6| 0 t 0 −K −K ′ 0

K = Ka1a2 = Kb1b2
is the on-site exchange interaction and K ′ = Ka1b1

is the

intersite exchange. Two approximations have been made to obtain this matrix. In the

first place, it is assumed that Kaibj
with i �= j can be neglected. Furthermore, we

assume that the effect of the so-called singlet displacement operator is small enough

to be omitted. The action of this operator is illustrated in Fig. 6.5 and transforms Φ1

into Φ5 or Φ6, and Φ4 into Φ2 or Φ3.

6.3 Show that the other zeros in the matrix are real zeros and not due to any

additional approximation. Explain why in the Hamiltonian matrix H11 = H44,

H22 = H55, H33 = H66, and H13 = H46.

The diagonalization of the matrix yields six eigenstates, two quartets and four

doublets with the following energies after shifting all states with K + K ′ to let the

zero of energy coincide with the average energy of the quartet states

Fig. 6.5 Action of the

singlet displacement

operator
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E(Q1,2) = ±t (6.19)

E(D1,2) = K + K ′ −
√

K2 + t(t ± K) + K ′2 − K ′(K ± 2t) (6.20)

E(D3,4) = K + K ′ +
√

K2 + t(t ± K) + K ′2 − K ′(K ± 2t) (6.21)

The first two doublets are dominated by the CSFs with triplet coupling on center a

or b, and hence, much lower in energy than the third and fourth doublets with local

singlet coupling. The latter states are similar to the non-Hund states invoked to explain

the deviations to the regular Heisenberg pattern in Sect. 5.4. The quartet states are

in-phase and out-of-phase linear combinations of the high spin coupled determinants

with the extra electron on center a or center b, which is most conveniently seen in

the MS = 3/2 components of these states.

Q1(MS = 3/2) = 1√
2

(

a1b1a2 + a1b1b2

)

(6.22)

Q2(MS = 3/2) = 1√
2

(

a1b1a2 − a1b1b2

)

(6.23)

In the simplest description of the hopping, the on-site exchange integral is assumed

to be so large in comparison to the other parameters that the doublet states dominated

by the non-Hund determinants are not relevant and the energy of the lower doublet

states can be simplified to

E(D1,2) = K −
√

K2 + 1

2

t(t ± K) + K ′2 − K ′(K ± 2t)√
K2

= ±1

2
t + 3

2
K ′ (6.24)

using the Taylor expansion
√

p + q = √
p + 1

2
q/

√
p + . . . and neglecting all terms

proportional to K−1 because K is very large in comparison to t and K ′. A general

expression for any number of unpaired electrons within this approximation is

E(S) = ±t
S + 1/2

Smax + 1/2
+ 1

2

(

Smax(Smax + 1) − S(S + 1)
)

K ′ (6.25)

Recalling that the exchange parameters Ka1b2
and Ka2b1

have been neglected, the

K ′ parameter plays exactly the same role as the Heisenberg J in the description of

Girerd, who included the magnetic coupling between the two sites with SA and SB

spin moments in the description of the double exchange. Then the equation can also

be written in a more familiar form [4].

E(S) = ±t
S + 1/2

Smax + 1/2
+ 1

2
J
(

Smax(Smax + 1) − S(S + 1)
)

(6.26)

http://dx.doi.org/10.1007/978-3-319-22951-5_5
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It is interesting to see that even when the intersite interaction is completely neglected

by putting J (or K ′) to zero, the hopping process forces the system into the ferromag-

netic state. Only when J is very strongly antiferromagnetic and t relatively small,

one may expect a low-spin ground state. In the more common case that t dominates,

we see that the transfer integral is reduced by the factor (S + 1/2)/(Smax + 1/2).

An important aspect of the physics of double exchange compounds is the inter-

action between the electron distribution and the movement of the nuclei by vibronic

coupling in complexes or electron-phonon interaction in extended systems. This goes

beyond the scope of this book and we refer the interested reader to Ref. [5] for further

reading.

Semi-classical description of the double exchange: The first description of the

double exchange by Zener [2] gave a simple (yet convincing) explanation of the

strong dependence of the electric resistivity on the strength of the external magnetic

field. The model only considers the hopping parameter t and assumes that the intra-

atomic exchange integral is infinitely large, which makes that the electron can only

move through the material when all spins at the magnetic sites are ferromagnetically

aligned. A more detailed description was given by Anderson and Hasegawa [6],

who derived the first right-hand-side term of Eq. 6.26. Here, we will review the

semi-classical description of these authors to illustrate the concept of spin dependent

hopping which is the basis of the Goodenough–Kanamori rules treated in the Sect. 6.4.

The Anderson–Hasegawa model describes the electron transfer from site A to B in

the field of the spin moments SA and SB, which are described as classical vectors. The

spin moments are not necessarily co-linear but have an angle θ . The justification for

this semi-classical description is that for large spin moments the quantum mechanical

description converges with the classical one. Being applied to describe the electron

hopping in manganites, this approximation is not as severe due to the relatively large

spin moment on the manganese ions. Since the magnetic axes frames on site A and

B do not have the same orientation, the basis of spin functions of site A (α and β)

has to be expressed in terms of the basis of spin functions of site B (α′ and β ′).

α = cos(θ/2)α′ + sin(θ/2)β ′ (6.27a)

β = − sin(θ/2)α′ + cos(θ/2)β ′ (6.27b)

The basis functions of this semi-classical model are φ1 = aα, φ2 = aβ, φ3 = bα′

and φ4 = bβ ′, where a and b define the spatial part of the orbitals that carry the

mobile electron. The following definition of the interaction for θ = 0 is used

〈aα|Ĥ|bα〉 = τ (6.28a)

〈aα|Ĥ|bβ〉 = 0 (6.28b)
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and for θ �= 0, slightly more elaborated expressions are obtained

〈aα|Ĥ|bα′〉 = 〈a
(

cos(θ/2)α′ + sin(θ/2)β ′)|Ĥ|bα′〉 = τ cos(θ/2) (6.28c)

〈aα|Ĥ|bβ ′〉 = τ sin(θ/2) (6.28d)

〈aβ|Ĥ|bα′〉 = −τ sin(θ/2) (6.28e)

〈aβ|Ĥ|bβ ′〉 = τ cos(θ/2) (6.28f)

The spin moment of aα and bα′ is parallel to SA and SB, respectively. In the simplest

description, the energy of these states with respect to the ones with antiparallel

alignment (aβ and bβ ′) is given by the number of exchange interactions between the

extra electron and the electrons that give rise to the background spin moments SA

and SB.

E1,3 = −K · 2SA,B E2,4 = 0 (6.29)

However, in a formalism with correct spin eigenfunctions the energies become

E1,3 = −K(SA,B + 1) E2,4 = +KSA,B (6.30)

6.4 Consider a magnetic site with a S = 1 background spin moment (triplet

coupled electrons in ϕ1 and ϕ2) and an electron in ϕ3 that can hop to neighboring

centers. Calculate the energies of |ϕ1ϕ2ϕ3|, |ϕ1ϕ2ϕ3| and the CSF for the

doublet with triplet coupling for ϕ1 and ϕ2 and compare to the Eqs. 6.29 and

6.30.

With these ingredients the matrix representation of the model Hamiltonian can be

constructed

|aα〉 |aβ〉 |bα′〉 |bβ ′〉
〈aα| −K(SA + 1) 0 τ cos(θ/2) τ sin(θ/2)

〈bβ| 0 KSA −τ sin(θ/2) τ cos(θ/2)

〈aα′| τ cos(θ/2) −τ sin(θ/2) −K(SB + 1) 0

〈bβ ′| τ sin(θ/2) τ cos(θ/2) 0 KSB

(6.31)

In the case of SA = SB = S, the diagonalization of the matrix leads to four eigenvalues

which read as follows:

E = 1

2
K ±

√

(

K(S + 1/2 ) ± τ cos(θ/2)
)2 + τ 2 sin2(θ/2) (6.32)

Figure 6.6 gives a clue on how to simplify this expression. In the first place, we see

that cos(θ/2) can be written as S0/2S with S0 = |SA +SB|. In a classical description,

that is in the limit of infinitely large S0, the alignment of the spin moment of the

extra electron to S0 is irrelevant and the total spin moment of the system ST is
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Fig. 6.6 Definition of S0 as

|SA + SB| and cos(θ/2) as

S0/2S

directly equal to S0. Applying the same correction for the quantum nature of the spin

moments as done in Eq. 6.30, we obtain cos(θ/2) = (S0 + 1/2)(2Smax + 1), where

Smax = |SA + SB| + 1
2

, corresponding to the maximum spin moment that can be

realized by all the unpaired electrons. The second simplification arises from the fact

that τ ≪ K and justifies the neglect of the term quadratic in τ in the square root. The

expression for the energy now becomes

E = 1

2
K ±

(

K(S+ 1/2 )±τ cos(θ/2)
)

= 1

2
K ±

(

KS + 1

2
K

)

± τ
S0 + 1/2

2Smax + 1
(6.33)

By choosing the reference energy equal to −KS, the expression reduces to

E− = ±τ
S0 + 1/2

2Smax + 1
(6.34)

E+ = K + 2KS ± τ
S0 + 1/2

2Smax + 1
(6.35)

Considering the quantum correction due to the use of spin eigenfunctions, τ can

be replaced by 2t, which turns the expression for E− into the first term of Eq. 6.26

and describes the energies of the low-lying states with the spin moment of the extra

electron parallel aligned with SA or SB. E+ applies to the states with anti-parallel

alignment, and hence, lie at much higher energy.

6.3 A Quantum Chemical Approach to Magnetic

Interactions in the Solid State

Many of the macroscopic manifestations of the interaction between localized, delo-

calized or itinerant unpaired electrons in solid state compounds require a description

that goes far beyond the possibilities of the computational schemes that are rou-

tinely applied in molecular quantum chemistry. The theoretical treatment of the
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long-range magnetic ordering, Kondo effect, domain formation, superconductivity,

metal-insulator transitions, etc. belongs typically to the field of condensed matter

physics and several excellent books have been published on this topic, see for exam-

ple Refs. [7–10]. This does however not mean that quantum chemistry cannot con-

tribute to the understanding of magnetic phenomena in solid state compounds. We

have already seen in Sect. 3.3 how the calculation of the magnetic interaction para-

meters can serve as the basis for the calculation of the magnetic susceptibility and

the determination of the magnetic structure, or more precise the magnetic unit cell.

In fact, a large part of the parameters that typically appear in the model Hamiltonians

of condensed matter physics can be calculated accurately through quantum chemical

calculations provided that one can establish an accurate finite representation of the

relevant part of the crystal. In the case of molecular crystals, this issue is nearly triv-

ially answered: taking one or several discrete units as model often suffices to calculate

the desired microscopic electronic structure parameters. The situation becomes more

complicated when dealing with ionic lattices (oxides, pnictides among others) and is

even worse for crystals with only covalently bonded atoms (e.g. silicon or graphene

doped with holes). There are however several well-established approaches to extract

reliable information at least for the ionic crystals. Also in the more difficult case of

(partly) covalent lattices quantum chemical strategies can offer interesting insights

in the electronic structure related to magnetic interactions.

6.3.1 Embedded Cluster Approach

The intrinsic local nature of the interaction between two localized spin moments sug-

gests the possibility to study the magnetic interactions in solids with a cluster model.

In this approach, a small yet relevant piece is cut from the crystal and treated like a

molecule. These bare clusters are only a reasonable choice in the case of molecular

crystals, but otherwise nearly always too crude a representation. Therefore it is nec-

essary to account for the effect of the rest of the crystal especially when dealing with

ionic or covalent lattices. Here, we will shortly review a few representative examples

of the different approaches for improving the bare cluster model that find their basis

in the theory of electron separability of McWeeny, the subsystem formulation of DFT

of Cartona or the incremental scheme of Fulde and Stoll.

Electrostatic embedding: In the case of ionic compounds, the largest contribution

to the potential exerted by the rest of the crystal on the (central region of the) cluster

is due to long-range electrostatic interactions. These are accurately represented by

the point charge approximation, that is, the Madelung potential:

VM(κ ∈ K) =
∑

λ∈L

qκqλ

rκλ

(6.36)

http://dx.doi.org/10.1007/978-3-319-22951-5_3
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where K is the set of ions that belong to the cluster and L contains all other ions,

q corresponds to the formal ionic charge of each center. This interaction is easily

included in the calculation by placing an array of point charges around the cluster at

the lattice sites. Their value is either taken as the formal ionic charge (with fractional

charges on the edge of the array to ensure charge neutrality) or fitted in such a way

that a relatively small set of point charges reproduces the electrostatic effect of the

whole crystal.

The presence of point charges at lattice sites in the immediate neighbourhood of the

cluster often artificially polarizes the electron density of the cluster. This polarization

is especially large when the cluster has anions on the outside and the first shell

of charges contains positive charges. Actually, this is the common situation when

magnetic interactions in ionic transition metal compounds are studied. The usual

cluster has two (or sometimes more) transition metals and the anions (O2−, F−, etc.)

of the first coordination sphere. The first shell around this cluster is formed by either

the transition metal ions, ternary cations or a combination of these, depending on the

crystal structure. In any case, positive point charges are located directly around the

highly polarizable anions causing important distortions of the electronic structure

not only in the border regions of the cluster, but also in the central part. To improve

the description a border region is created between the point charges and the cluster.

In this intermediate region the lattice sites are occupied by potentials that model the

Coulomb and exchange interactions between the electron density of the cluster and

the ions in the intermediate region [11]. Figure 6.7 shows how the potentials separate

the cluster from the bare point charges and avoid the artificial polarization of the

cluster electron density.

Density-based embeddings: This approach starts with a calculation on the whole

system to construct an approximate yet accurate representation of the total density

ρtot by performing a periodic DFT calculation. Then, a guess density of the cluster is

constructed from a calculation on the isolated unit or using some simple embedding

scheme as described above. The total density is now divided in two parts ρtot =
ρ1 +ρ2 and the one-electron embedding potential is constructed from the functional

derivative of interaction energy with respect to the cluster density ρ1.

Eint = T int
s + Eint

ne + Eint
xc + Eint

H + Eint
nn

νemb(r) = ∂Eint

∂ρ1
(6.37)

where the interaction energy is written as a sum of the kinetic, electron-nuclear,

exchange correlation, Coulomb repulsion, and nuclear repulsion energy. This embed-

ding potential is added to the standard Kohn-Sham equation for the cluster and a new

energy and density ρ1 are calculated. Since the embedding potential depends on the

density of the cluster, νemb is updated and the Kohn-Sham equations of the cluster are

solved again. This process is repeated until a self-consistent description is obtained.

In addition to the here sketched DFT in DFT (cluster in embedding) procedure, the

variants with wave function (WF) based methods have also been described. The
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Fig. 6.7 Two-dimensional

impression of a typical

embedded cluster model to

calculate the interaction

strength between two spin

moments. The atoms in the

shaded area constitute the

cluster, the small spheres on

the outside constitute the first

shell of positive and negative

bare point charges (the rest is

not shown), and the spheres

with the dotted outline in the

intermediate region are

model potentials that

separate the cluster from the

point charges

WF in DFT approach is especially interesting for the application to systems with

unpaired electrons because the multideterminental nature of the wave function can

be rigorously treated while the embedding can be generated with DFT.

Induced dipoles: There are also embedding schemes that go beyond the static rep-

resentation of the cluster environment and model the polarization of the electron

density in response to changes in the electronic structure of the cluster, for example

ionizations or electron excitation processes. In the so-called shell model, the bare

point charges are split in a positive point charge (the nucleus) and a negative shell

(the electron cloud of the ion) connected through a harmonic potential. The shells

interact with a Buckingham potential and the total energy of the system (cluster +

shell environment) is minimized not only with respect to the electron distribution in

the cluster region but also with respect to the position of the shells. Another scheme

places a set of polarizable dipoles in the environment and the values of the induced

dipoles are optimized in a self-consistent procedure along with the electron density

of the cluster.

Once, a convenient embedded cluster model is constructed, one can apply all

the regular methods from molecular quantum chemistry to evaluate the electronic

structure parameters of interest, hopping parameters, magnetic coupling strength,

local anisotropy, biquadratic exchange, etc. The validity of the embedded cluster

model has been established in many applications either by comparing the results to

periodic calculations or by checking the stability of the results against the size of the

cluster.
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6.3.2 Periodic Calculations

Magnetic interactions in extended systems can also be studied without creating the

more or less approximate representation of the material with an embedded cluster.

The approach based on the translational symmetry in the crystal naturally leads to the

well-known band structures of the Bloch functions, periodic one-electron functions.

ψk(r) =
∑

r′
eik·r′

φ(r′) (6.38)

The difficulty of constructing spin eigenfunctions with S < Smax for extended sys-

tems with unpaired electrons makes that most of the periodic calculations are per-

formed within a single determinant method and no restrictions on the spatial part of

the spin orbitals. The results are then necessarily interpreted with the Ising model

Hamiltonian described in Sect. 3.2.2. In practice, the total energy of the magnetic

unit cell (not necessarily of the same size as the structural unit cell) is calculated for

different spin orientations (that is, different MS values) and the relative energies are

compared to the matrix elements of the Ising Hamiltonian to determine the magnetic

coupling strength between the ions in the crystal. This is not necessarily limited to

isotropic bilinear coupling but can also be used to extract estimates for biquadratic

and four-center interactions.

To illustrate the procedure of extracting magnetic coupling parameters by peri-

odic calculations, we will focus on the perovskite structure Sr2CuO3, related to the

previously used spin ladder compound SrCu2O3, although the structural motif here

is formed by CuO4 units arranged in linear chains along the b-axis of the unit cell.

Figure 6.8 illustrates the structure of this oxide and indicates the unit cell with a

dashed box. The unit cell has two symmetry inequivalent Cu2+ ions with an S = 1
2

spin moment each.

In the first place, we calculate the energy per unit cell with all spins aligned ferro-

magnetically as schematically depicted in the left panel of Fig. 6.9. This calculation

can be done within any spin unrestricted periodic computationally scheme, either

HF or DFT and it gives us EF(a, b, c). Subsequently, this energy has to be expressed

as an Ising energy. The Ising Hamiltonian for this compound is defined as

Ĥ = −Ja

∑

i,j

Ŝz,iŜz,j − Jb

∑

k,l

Ŝz,k Ŝz,l − Jd

∑

m,n

Ŝz,mŜz,n (6.39)

where the interaction along the c-direction is neglected and Jd is the interaction along

the body diagonal of the unit cell. As can be seen in the left panel of Fig. 6.9, the unit

cell contains 8 times the interaction along the body diagonal. The four vertices along

a and b represent the Ja and Jb interactions, but each of these have to be counted

only for 1/4 since the vertices are shared by four unit cells. Furthermore, the copper

ion in the center of the unit cell interact with the copper ions in the adjacent unit

cells and this contributes two times 1/2Ja and two times 1/2Jb to the Ising energy.

In total the energy expression becomes

http://dx.doi.org/10.1007/978-3-319-22951-5_3
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Fig. 6.8 Graphical

representation of the

perovskite Sr2CuO3. The

unit cell is given as a dashed

box. Cu ions are represented

as large white spheres and

oxygen as smaller gray

spheres, Sr ions are not

depicted for clarity

Fig. 6.9 Ferromagnetic

(left) and antiferromagnetic

(right) spin settings in the

unit cell of Sr2CuO3. The

spin on symmetry equivalent

copper ions are marked with

the same gray scale

EF(a, b, c) = −Ja

(

4 · 1

2
· 1

2
/4 + 2 · 1

2
· 1

2
/2

)

− Jb

(

4 · 1

2
· 1

2
/4 + 2 · 1

2
· 1

2
/2

)

− Jd · 8 · 1

2
· 1

2
= −2Jd − 1

2
Ja − 1

2
Jb (6.40)

The second step consists of the calculation of the energy per unit cell after flip-

ping the spin on the central copper (right panel of Fig. 6.9) and relating it to the

energy expression obtained with the Ising Hamiltonian. As far as the interactions

along a and b are concerned, the situation remains unchanged with respect to the

ferromagnetic alignment. The expression only changes for the interaction along the
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diagonal, since Ŝz,m and Ŝz,n result now in 1
2

and − 1
2

. With this, the expression is

readily written down as

EAF(a, b, c) = 2Jd − 1

2
Ja − 1

2
Jb (6.41)

and from the energy difference of the two calculations, we can determine Jd

EAF(a, b, c) − EF(a, b, c) = 4Jd (6.42)

The calculation of Jb (and Ja) cannot be done with the simple unit cell, no other spin

flips can be made. Therefore, we double the unit cell in the b direction to obtain a

new magnetic unit cell, the super cell (a, 2b, c), represented in Fig. 6.10. The energy

of the fully ferromagnetic supercell is in principle exactly twice EF(a, b, c), but it

is highly recommendable to repeat the HF or DFT calculation for this double unit

cell due to numerical precision issues. Subsequently, we flip the spins on the copper

ions in the middle of the cell to obtain a spin arrangement with antiferromagnetic

ordering along the b-axis. A careful analysis of the interactions contained in these

two magnetic unit cells gives the energy expressions of the Ising Hamiltonian

EF(a, 2b, c) = 2EF(a, b, c) = −4Jd − Ja − Jb (6.43)

EAF(a, 2b, c) = −Ja + Jb (6.44)

Fig. 6.10 Magnetic unit cell

obtained by doubling the

simple unit cell along the b

direction. Symmetry

equivalent copper ions have

spins with the same gray

scale. The antiferromagnetic

unit cell is obtained by

flipping the dark gray spins

at the lattice positions (0,1,0)

and ( 1
2
, 3

2
, 1

2
)
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and the energy difference of the two spin arrangements becomes

EAF(a, 2b, c) − EF(a, 2b, c) = 4Jd + 2Jb (6.45)

which allows us to extract Jb, given that Jd is already determined in the simple unit

cell calculations. To calculate Ja one should double the unit cell along the a direction

and follow the same strategy as for the (a, 2b, c) super cell.

Method of increments: By taking the appropriate linear combinations of the delo-

calized Bloch functions one can construct orbitals that are localized on an atom or a

small group of atoms of the crystal. These so called Wannier orbitals form the basis

of the method of increments for calculating the cohesive energy of an extended solid

[12, 13] and other related properties such as lattice constants, bulk modulus, absorp-

tion energies, among others. Excited state properties can also be studied and from

there one has access to the band structure. The method was originally formulated for

closed shell systems, but recently variants have been developed to treat compounds

with unpaired electrons. Hence, the method can in principle also be used for the

study of magnetic interactions in solids.

In its most basic formulation, the procedure starts with a periodic Hartree-Fock

calculation. The correlation energy is calculated by increments. The unit cell is

divided in m subunits Ai, either individual atoms or small clusters of atoms. The

Bloch functions optimized in the periodic HF calculation are transformed to Wan-

nier functions that are localized on the different subunits and the local correla-

tion energy Ecorr
i = Etot

i − EHF
i is calculated for each subunit Ai with a stan-

dard (size-extensive) post-HF method. This is not the final estimate because all

non-additive terms in the correlation energy are still missing. Therefore one sub-

sequently calculates the two-center corrections through calculations on subunits

Ai–Aj: Ecorr
ij = Etot

ij − EHF
ij − Ecorr

i − Ecorr
j . The index i runs over all groups in

the unit cell, but j can in principle be any atom (group of atoms) in the system.

Fortunately, the size of the increment decays rapidly with the distance between the

groups and hence the number of terms to be calculated remains relatively small. This

can be repeated with three-center corrections and higher order increments. The total

correlation energy is then determined

Ecorr =
∑

i

Ecorr
i + 1

2

∑

i �=j

Ecorr
ij + 1

6

∑

i �=j �=k

Ecorr
ijk + . . . (6.46)

and added to the Hartree-Fock energy of the periodic calculation.

Correlated band structures: Periodic single determinant approaches are well suited

to give qualitative answers or to serve as benchmark for checking the validity of

embedded cluster results. On the other hand, the accurate treatment of (strong) elec-

tron correlation effects in crystalline materials, for example to predict the subtle

interplay of magnetism and electrical conductance, requires an accurate, balanced

description of all states involved, and this is still a challenge.
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Examples of strongly correlated systems are transition metal and rare-earth metal

compounds. In these materials on-site Coulomb repulsion between the metal valence

electrons dominates the width of the corresponding one-electron energy bands.

Widely used independent electron methods such as DFT in the local density approxi-

mation (LDA) are not suited to study the magnetic properties of such systems. There-

fore, a correction term U to the LD functional has been introduced that accounts for

the strong on-site Coulomb interactions between d (or f ) electrons on the metal

ions, giving rise to the LDA+U method [14]. Although LDA+U was introduced as

a method without adjustable parameters, the values used for U vary significantly in

different studies on the same compound.

Within Green function theory, many-electron effects can be introduced through a

non-local and energy-dependent self-energy operator [15]. Since the self-energy is

hard to calculate, various approximations are introduced and among the simplest ones

is the so-called GW approximation, which is derived from many-body perturbation

theory. Although the GW approximation offers in principle a sophisticated account

of the electron correlation effects, practical realizations are commonly also based on

the LDA method.

Finally, algorithms have been developed which incorporate electron correlation

effects explicitly in wave function based band theory for crystalline solids [16, 17].

These algorithms construct the many-electron Hamiltonian matrix for a periodic sys-

tem by extracting the matrix elements from calculations on finite embedded clusters.

In this way the incorporation of correlation effects leads to many-electron energy

bands, not only associated with hole states and added-electron states but also with

excited states. More recently, Pisani and co-workers [18] introduced a post-Hartree-

Fock program based on periodic local second order Møller-Plesset perturbation

theory.

A word of warning is in place when these techniques are employed for the study

of magnetic interactions. The tiny energy differences associated with these interac-

tions demand that the procedure is capable to deliver not only an accurate but also

a balanced treatment of the various states involved. This means that approximate

computation and cut-offs of integrals etc. have to be exactly the same for all states.

6.4 Goodenough–Kanamori Rules

The Goodenough–Kanamori (GK) rules have evolved from the studies to explain the

magnetism in manganese oxides in the 1950s and have been applied ever since mostly

in the field of ionic insulators; often oxides of one or several third-row transition metal

ions. Studies of the magnetic interactions in these compounds commonly reduce to

a three center problem with two metals that carry a spin moment and a non-magnetic

anion in between. Before explaining the rules, which are sometimes (incorrectly)

referred to as the Goodenough–Kanamori–Anderson rules, we need to introduce

some concepts related with the electron hopping involving the magnetic sites and the

ligand that connects them. Goodenough defined superexchange as the virtual electron
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transfer between two atoms with a net spin moment and semi covalent exchange as

the virtual electron transfer between the anion and the two magnetic centers. Note that

Goodenough’s definition of superexchange differs from the one given by Kramers

(see Sect. 3.1).

To understand the use of the term virtual in these definitions it is best to contrast

it against the electron hopping discussed in the previous section for doped or mixed-

valence systems. These processes represent a real electron movement in which the

formal oxidation state of the metals changes by ±1. There are three different cases

as defined in Eq. 6.1, which correspond to electron movement from half-filled to an

empty orbitals, from half-filled to half-filled and from filled to half-filled orbitals. On

the contrary a virtual electron transfer process does not cause changes in oxidation

state and the initial electron count per atom is always restored. It can very much

be compared to the perturbative interaction paths introduced in Chap. 5, the super-

exchange is comparable to the mechanism shown in Fig. 5.3 and the semi covalent

exchange is strongly related to the one depicted in Fig. 5.4. The direct exchange Kab

is normally not considered in the GK reasonings to explain magnetic interactions in

solid state compounds.

The Goodenough–Kanamori rules state that superexchange and semi covalent

exchange give an antiferromagnetic contribution to the coupling of the spin moments

on site A and B when the virtual electron transfer is between overlapping orbitals

that are half-filled. A ferromagnetic contribution arises when the virtual transfer is

from half-filled to empty orbitals or from filled to half-filled orbitals. Moreover it is

taken for granted that the electron transfer can only take place between overlapping

orbitals. For orthogonal orbitals, the hopping is zero and Hund’s rule prevails leading

to a ferromagnetic contribution (Fig. 6.11).

Figure 6.12 illustrates the prototypical case of the magnetic interactions in the

CuO2 layers of the parent compounds of the high Tc superconductors. The Cu2+ ions

have a 3d9 electronic configuration with one unpaired electron in the 3dx2−y2 orbital.

Fig. 6.11 Representation of the two virtual electron exchange mechanisms that are the basis of

the Goodenough–Kanamori rules. Above the virtual exchange between two atoms (A and B) with

non-zero spin moment, known as superexchange and below the virtual exchange between two atoms

and a shared anion, the so-called semi covalent exchange

http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_5
http://dx.doi.org/10.1007/978-3-319-22951-5_5
http://dx.doi.org/10.1007/978-3-319-22951-5_5
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Fig. 6.12 Virtual electron

superexchange between two

overlapping half-filled

orbitals leading to

antiferromagnetic coupling

The virtual electron transfer between these two copper atoms, i.e. the superexchange,

involves half-filled orbitals and hence contributes in an antiferromagnetic manner to

the coupling. The semi covalent exchange contributes in the same direction, since

it also involves the half-filled orbitals on the metals. Together the two effects give

a qualitative explanation of the strong antiferromagnetic interactions between the

Cu2+ ions.

The second example concerns LaMnO3, which upon hole-doping shows a spec-

tacular drop in the electrical resistivity when an external magnetic field is applied,

the so-called colossal magnetoresistance effect. The electronic configuration of the

Mn3+ ions is 3d4, with three unpaired electrons in the t2g and one in the eg orbitals

assuming an octahedral coordination of the Mn cations. However, this configuration

is Jahn-Teller active and induces displacements of the oxygen anions as indicated by

the arrows in the left part of Fig. 6.13. In consequence, the occupied 3d-orbitals of eg

symmetry are rotated by 90◦ at each magnetic center. This is called orbital ordering

in the literature. Now, the superexchange between half-filled eg orbitals cannot take

place because they are orthogonal as shown in the left panel of Fig. 6.13. The only

overlapping eg orbitals are the half-filled on the left and the empty orbital on the

right, see the right side of Fig. 6.13. The GK rules state that this superexchange (and

the semi covalent exchange as well) is ferromagnetic in nature. The total interaction

between the two magnetic centers is therefore expected to be ferromagnetic, although

attenuated by the superexchange interactions in the weakly overlapping half-filled

3d(t2g) orbitals.

In previous chapters we have considered the magnetic interactions in the spin

ladder compound SrCu2O3. There we focused on the interactions along the legs and

the rungs, which share the common feature of a linear Cu–O–Cu linkage. However,

taking a closer look at the structure (see Fig. 5.9) it becomes immediately clear that

these copper ions are not nearest neighbours. Instead, the distance to the copper ion

on the next ladder is shorter and one could naively think that the interactions of

such pairs are also important. We have already seen in Sect. 4.2 that the interaction

between two magnetic centers connected by a (double) bridge making an angle of

around 90◦ is in general ferromagnetic and rather weak. A qualitative picture of the

weak ferromagnetic interaction can also be obtained by applying the GK rules. The

http://dx.doi.org/10.1007/978-3-319-22951-5_5
http://dx.doi.org/10.1007/978-3-319-22951-5_4
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Fig. 6.13 The virtual hopping on the left is not permitted due to the orthogonality of the (occupied)

orbitals on the two centers. The superexchange on the right is due to a virtual electron hopping

from a half-filled to an empty orbital and hence ferromagnetic in character

Fig. 6.14 Left the superexchange between a and b gives a small antiferromagnetic contribution.

The semi covalent exchange with a and b is inoperative. Right Ferromagnetic contribution to the

coupling by semi covalent exchange with a half-filled and a filled orbital

half-filled orbitals a and b shown on the left side of Fig. 6.14 overlap, and hence, the

superexchange mechanism gives a antiferromagnetic contribution, albeit rather small

since the overlap is not very strong. The semi covalent exchange involving a and b is

inoperative because these two half-filled orbitals do not overlap with the same orbital

on the anion. To activate the semi covalent exchange we have to consider one of the

filled 3d orbitals that overlaps with one of the ligand orbitals, which in turn has a

non-zero overlap with the half-filled 3d orbital on the other cation. Such situation is

outlined in the right panel of Fig. 6.14, where a′ is one of the doubly occupied 3d(t2g)

orbitals (to be more precise the 3dxy in this case) and b the half-filled 3dx2−y2 orbital.

Whereas the overlap of a′ and b is zero (no superexchange) both orbitals overlap

with the O-2py orbital and the semi covalent exchange becomes active. Since the

virtual electron transfer is between a filled and a half-filled orbital, the contribution

is ferromagnetic.

A pictorial explanation for the ferromagnetic nature of the semicovalent exchange

between filled and half-filled orbitals is given in Fig. 6.15. In the upper part, we can

see how the subsequent electron transfer from py to b and from a′ to py leads to a
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Fig. 6.15 Semi covalent exchange between filled and half-filled orbitals as operative in the magnetic

coupling between two copper ions with an oxygen bridge forming an angle of 90◦. Upper part for

antiferromagnetic coupling, and below for ferromagnetic interaction

non-Hund determinant with two anti-parallel electrons on center A. This unfavorable

electronic configuration is avoided in the case of a ferromagnetically coupled initial

state shown in the lower part of the figure.

Estimation with perturbation theory: The ferromagnetic nature of the interaction

between two magnetic centers with S = 1
2

through a ligand under an angle of 90◦

can also be rationalized with perturbation theory in the same way as discussed in

Sect. 5.1.1 for the magnetic interactions in a linear geometry or in Sect. 5.4.3 to derive

the equations to estimate the magnitude of the four-center interactions with single

determinant methods. The derivation is similar to the one presented by Koch in Ref.

[19] with this difference that we here work within a spin restricted formalism.

There are four orbitals involved in the coupling as can be seen in Fig. 6.14. The

six electrons can be distributed in sixteen different ways over the orbitals under the

restriction of MS = 0:

Φ1 = |a1pxpxpypyb2| Φ2 = |a1pxpxpypyb2| Φ3 = |a1pxpypyb2b2|
Φ4 = |a1pxpypyb2b2| Φ5 = |a1a1pxpxpyb2| Φ6 = |a1a1pxpxpyb2|
Φ7 = |a1a1pxpypyb2| Φ8 = |a1a1pxpypyb1| Φ9 = |a1pxpxpyb2b2|
Φ10 = |a1pxpxpyb2b2| Φ11 = |a1a1pxpyb2b2| Φ12 = |a1a1pxpyb2b2|
Φ13 = |a1a1pxpxpypy| Φ14 = |pxpxpypyb2b2| Φ15 = |a1a1pxpxb2b2|
Φ16 = |a1a1pypyb2b2|

Taking the energy of Φ1 and Φ2 as reference, the other determinants lie at ∆ECT

(Φ3 . . . Φ6), ∆E′
CT (Φ7 . . . Φ10), ∆E2CT (Φ11 and Φ12), Ud (Φ13 and Φ14) and

∆E2CT + Up (Φ15 and Φ16). The last two determinants are high in energy and

will be neglected. The subscript p refers to the O-2px or 2py orbital and the subscript

d to the a or b Cu-3d orbital.

http://dx.doi.org/10.1007/978-3-319-22951-5_5
http://dx.doi.org/10.1007/978-3-319-22951-5_5
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To simplify the derivation of the singlet and triplet energy, we first construct

spin-symmetry adapted CSFs by forming linear combination of the above-listed

determinants with unpaired electrons:

Ψ1,2 = 1√
2
(Φ1 ± Φ2) Ψ3,4 = 1√

2
(Φ1 ± Φ2) Ψ5,6 = 1√

2
(Φ5 ± Φ6)

Ψ7,8 = 1√
2
(Φ7 ± Φ8) Ψ9,10 = 1√

2
(Φ9 ± Φ10) Ψ11,12 = 1√

2
(Φ11 ± Φ12)

Ψ13,14 = 1√
2
(Φ13 ± Φ14)

The plus (minus) combinations are triplet (singlet) functions, except for the combi-

nation of closed-shell determinants Ψ13 and Ψ14, which are both singlets. Now we

can construct the 6 × 6 configuration interaction matrix for the triplet functions and

an 8 × 8 matrix for the singlet and then determine the energy either by diagonalizing

the matrices or (simpler) with perturbation theory.

S = 1 |Ψ1〉 |Ψ3〉 |Ψ5〉 |Ψ7〉 |Ψ9〉 |Ψ11〉
〈Ψ1| 0 0 0 −tpd −tpd 0

〈Ψ3| 0 ∆ECT 0 tab 0 0

〈Ψ5| 0 0 ∆ECT 0 tab 0

〈Ψ7| −tpd tab 0 ∆E′
CT 0 −tpd

〈Ψ9| −tpd 0 tab 0 ∆E′
CT −tpd

〈Ψ11| 0 0 0 −tpd −tpd ∆E2CT − Kxy

S = 0 |Ψ2〉 |Ψ4〉 |Ψ6〉 |Ψ8〉 |Ψ10〉 |Ψ12〉 |Ψ13〉 |Ψ14〉
〈Ψ2| 0 0 0 −tpd −tpd 0 2tab 0

〈Ψ4| 0 ∆ECT 0 −tab 0 0 tpd −tpd

〈Ψ6| 0 0 ∆ECT 0 −tab 0 tpd tpd

〈Ψ8| −tpd −tab 0 ∆E′
CT 0 −tpd 0 0

〈Ψ10| −tpd 0 −tab 0 ∆E′
CT −tpd 0 0

〈Ψ12| 0 0 0 −tpd −tpd ∆E2CT + Kxy 0 0

〈Ψ13| 2tab tpd tpd 0 0 0 Ud 0

〈Ψ14| 0 −tpd tpd 0 0 0 0 Ud

In these matrices we have neglected the intersite exchange integrals Kab and Kpd.

The hopping parameter tab parametrizes the electron transfer from cation to cation

and tpd the transfer from O-2px to a and from py to b, which are strictly the same.

The hopping from py to a is zero by symmetry. This is most easily seen in Fig. 6.14

(left). The symmetry behavior under 180◦ rotation around the x-axis is different for

py (changes sign) and for a (no sign change). Because the Hamiltonian is totally

symmetric, the integral 〈py|ĥ|a〉 is zero. A similar reasoning shows that the hopping

from px to b is zero.
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In an order-by-order perturbational approach we will derive the singlet-triplet

energy gap to estimate the character and size of the magnetic coupling of the two

Cu2+ ions bridged by an oxygen anion under 90◦. Up to first order, the energies

are zero for the lowest singlet and triplet functions: 〈Ψ1|Ĥ|Ψ1〉 = 〈Ψ2|Ĥ|Ψ2〉 = 0.

Remember that the intersite exchange interactions have been neglected, otherwise

the zeroth-order triplet-singlet gap would be 2Kab. The second-order correction to

the energy of the triplet and singlet are

Triplet: E
(2)
T = |〈Ψ1|Ĥ|Ψ7〉|2

E0 − E7
+ |〈Ψ1|Ĥ|Ψ9〉|2

E0 − E9
=

−2t2
pd

∆E′
CT

(6.47a)

Singlet: E
(2)
S =

−2t2
pd

∆E′
CT

−
4t2

ab

Ud

(6.47b)

The singlet is lower in energy by 4t2
ab/Ud , which corresponds to the antiferromagnetic

superexchange by the direct electron transfer between the half-filled orbitals. The

energy lowering is however small since tab is in general very small as long as there

is no delocalization onto the ligand, conform the discussion of the valence mecha-

nisms in Sect. 5.1.1. Note that the electron transfer from ligand to metal does give a

significant energy lowering but that the differential effect is zero, the contribution to

both states is the same.

6.5 Demonstrate that the energies up to second-order are given by the expres-

sions in Eq. 6.47.

At fourth-order perturbation, there are many more contributions, but a large part

is again identical for singlet and triplet. Only the contributions that involve Ψ11, Ψ12

and Ψ13 have a differential effect. These can be separated in two contributions. First,

the singlet-only contribution involving Ψ13 and second with either Ψ11 (singlet) or

Ψ12 (triplet). The singlet-only contribution is given by

∑

i=4,6

〈Ψ2|Ĥ|Ψ13〉〈Ψ13|Ĥ|Ψi〉〈Ψi|Ĥ|Ψ13〉〈Ψ13|Ĥ|Ψ2〉
−Ei · E2

13

= −
8t2

abt2
pd

∆ECTU2
d

(6.48)

The fourth-order differential contribution to the triplet is

∑

i,j=7,9

〈Ψ1|Ĥ|Ψi〉〈Ψi|Ĥ|Ψ11〉〈Ψ11|Ĥ|Ψj〉〈Ψj|Ĥ|Ψ1〉
−Ei · Ej · E11

= −
16t4

pd

(∆E′
CT)2(∆E2CT − Kxy)

(6.49a)

http://dx.doi.org/10.1007/978-3-319-22951-5_5
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and the analogous contribution to the singlet is

∑

i,j=8,10

〈Ψ2|Ĥ|Ψi〉〈Ψi|Ĥ|Ψ12〉〈Ψ12|Ĥ|Ψj〉〈Ψj|Ĥ|Ψ2〉
−Ei · Ej · E12

= −
16t4

pd

(∆E′
CT)2(∆E2CT + Kxy)

(6.49b)

The singlet-only term is small because of the presence of tab in the numerator, and

hence, the other contribution is expected to be the dominant one. This second contri-

bution is identical for both states except for the energy of the intermediate state with

two unpaired electrons on the oxygen: Ψ11 and Ψ12 for triplet and singlet, respec-

tively. Recalling Hund’s rule for the tendency towards maximum spin multiplicity

of unpaired electrons on one atom makes clear that the energy of Ψ11 will be signifi-

cantly lower than the intermediate state on the singlet path (by 2Kxy to be precise), and

hence, the fourth-order correction to the energies favors the ferromagnetic alignment

of the spin moments on the cations.

6.5 Spin Waves for Ferromagnets

The last part of this chapter leaves behind the local viewpoint of the electronic struc-

ture and explores the description of magnetic interactions from a periodic perspective.

Let us consider a lattice with N sites. Each site has a spin angular moment of S and

all spins are aligned along the principal magnetization axis (MS = S), corresponding

to the ground state of a set of ferromagnetically coupled centers. The Heisenberg

Hamiltonian for such a lattice reads

Ĥ = −
∑

i<j

Jij

[

1

2

(

Ŝ+(i)Ŝ−(j) + Ŝ−(i)Ŝ+(j)
)

+ Ŝz(i)Ŝz(j)

]

(6.50)

and the wave function is characterized by the MS value at each lattice site

Φ0 = |S1, S2, . . . , Si, Sj, . . . , SN 〉 (6.51)

To calculate the energy of Φ0 we evaluate the effect of the different terms of the

Hamiltonian separately and then add them up to obtain the energy.

Ŝ+(i)Ŝ−(j)|S1, S2, . . . , Si, Sj, . . . , SN 〉 = 0

Ŝ−(i)Ŝ+(j)|S1, S2, . . . , Si, Sj, . . . , SN 〉 = 0 (6.52)

Ŝz(i)Ŝz(j)|S1, S2, . . . , Si, Sj, . . . , SN 〉 = S2|S1, S2, . . . , Si, Sj, . . . , SN 〉 (6.53)
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The zero’s in the first two contributions are due to the fact that a spin with maximum

MS-value cannot climb further on the ladder by Ŝ+. From this, we confirm that Φ0

is an eigenfunction with eigenvalue

E0 = −S2
∑

i<j

Jij (6.54)

Next, we study the low-lying excitations of the ferromagnet, following Kaxiras [20].

To generate an excited state, the MS value at one of the sites is lowered from MS = S

to S − 1 by applying Ŝ−(i) on Φ0, the smallest change that can be imagined. To

ensure that the excited state is also an eigenfunction of the Heisenberg Hamiltonian

two determinants are needed

Φ1 = |S1, S2, . . . , Si − 1, Sj, . . . , SN 〉
Φ2 = |S1, S2, . . . , Si, Sj − 1, . . . , SN 〉 (6.55)

The action of the ladder operators on such functions is defined in Eq. 1.23 and
results in

Ŝ+(i)Ŝ−(j)Φ1 = Ŝ+(i)
√

(S + S)(S + 1 − S)|S1, S2, . . . , Si − 1, Sj − 1, . . . , SN 〉
=

√
2S

√

(S − S + 1)(S + 1 + S − 1)|S1, S2, . . . , Si, Sj − 1, . . . , SN 〉 = 2SΦ2 (6.56)

and, similarly,

Ŝ−(i)Ŝ+(j)Φ1 = 0

Ŝ+(i)Ŝ−(j)Φ2 = 0

Ŝ−(i)Ŝ+(j)Φ2 = 2SΦ1 (6.57)

Ŝz(i)Ŝz(j)Φ1 = (S − 1)SΦ1

Ŝz(i)Ŝz(j)Φ2 = S(S − 1)Φ2

By defining Ψ± = (Φ1 ± Φ2)/
√

2, eigenfunctions of the Heisenberg Hamiltonian

are obtained with the following eigenvalues

Ψ+ : Ĥ(Φ1 + Φ2)/
√

2 = −
∑

i<j

Jij

(

SΦ1 + SΦ2 + (S − 1)S(Φ1 + Φ2)
)

/
√

2

= −
∑

i<j

Jij(S + S(S − 1))(Φ1 + Φ2)/
√

2 = −
∑

i<j

JijS
2Ψ+ (6.58)

http://dx.doi.org/10.1007/978-3-319-22951-5_1
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Ψ− : Ĥ(Φ1 − Φ2)/
√

2 = −
∑

i<j

Jij

(

− SΦ1 + SΦ2 + (S − 1)S(Φ1 − Φ2)
)

/
√

2

= −
∑

i<j

Jij(−S + S2 − S)(Φ1 − Φ2)/
√

2 = −
∑

i<j

Jij(S
2 − 2S)Ψ−

(6.59)

E+ is identical to the ground state value and the corresponding wave function has the

same spin multiplicity as Φ0 but the total MS value is lowered by one. The second

energy, E−, is higher than E0 (remember that the Jij are positive for a ferromagnetic

system) and describes a state where the total spin moment is no longer equal to the

maximum value.

6.6 Consider a system with two S = 1 magnetic sites. The ferromagnetic

solution is Φ0 = αααα. Check that Ψ± = (MS,max, MS,max−1)± (MS,max−1,

MS,max) are indeed eigenfunctions of the Heisenberg Hamiltonian and that the

plus combination corresponds to a quintet and the minus combination to a

triplet.

This description of the excited state does however not respect the translational

symmetry of the crystal and an extra step has to be taken to obtain a more complete

description. First, we change from discrete point indexation (1, 2, . . . i, j, . . . , N) to

a more convenient representation based on the distance between two lattice sites.

Figure 6.16 shows how the discrete labeling of lattice sites can be replaced by a

representation based on the distance r between these through the vectors r. Although

slightly more abstract, this choice is more versatile for an extended system with, in

principle, infinite lattice sites and translational symmetry.

The Heisenberg Hamiltonian of Eq. 6.50 remains the same except that the indices

i and j are replaced by r′ and r′′.

Fig. 6.16 Definition of r, r′

and r′′ used in the derivation

of the spin wave

representation of the excited

states of an Heisenberg

ferromagnetic extended

system
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Ĥ = −
∑

r′<r′′

J(r′ − r′′)

[

1

2

(

Ŝ+(r′) · Ŝ−(r′′) + Ŝ−(r′) · Ŝ+(r′′)
)

+ Ŝz(r
′)Ŝz(r

′′)

]

(6.60)

The general expression for the excited state that respects the translational symmetry

is obtained by applying the same procedure that is followed to construct the well-

known Bloch functions to represent the single-particle wave functions in a crystal.

|Φk〉 =
∑

r

eik·rŜ−(r)|Φ0〉 (6.61)

where Φ0 is the ferromagnetic ground state with maximum MS-value (all spin

moments aligned along the principal magnetic axis) and Φk a state with MS =
MS,max − 1. We will follow the same strategy as above to determine the energy of

this extended wave function by letting the Hamiltonian act on it. First, the action of

Ŝz(r
′)Ŝz(r

′′) on the spin dependent part of |Φk〉:

Ŝz(r
′)Ŝz(r

′′)Ŝ−(r)|Φ0〉 = [S(S − 1)(δr′r + δr′′r) + S2(1 − δr′r − δr′′r)]Ŝ−(r)|Φ0〉
= (S2 − Sδr′r − Sδr′′r)Ŝ

−(r)|Φ0〉 (6.62)

This expression shows that the product of two Ŝz operators results nearly always in

S2, except when r coincides with r′ or r′′ where it acts on a spin function with an

MS-value lowered by 1, resulting in S(S − 1). This is conveniently represented with

the Kronecker delta functions in the expression. This results leads us directly to the

expression that reflects the action of the last term of the Hamiltonian on Φk

−
∑

r′<r′′

J(r′ − r′′)(S2 − Sδr′r − Sδr′′r)
∑

r

eik·rŜ−(r)|Φ0〉

=

⎡

⎣−S2
∑

r′<r′′

J(r′ − r′′) + 2S
∑

r �=0

J(r)

⎤

⎦ |Φk〉 =
∑

r �=0

(

−1

2
S2 + 2S

)

J(r)|Φk〉

(6.63)

The first two terms of the Hamiltonian concern the products of step-up and step-down

operators

Ŝ−(r′)Ŝ+(r′′)Ŝ−(r)|Φ0〉 = 2Sδrr′′ Ŝ−(r′)|Φ0〉
Ŝ+(r′)Ŝ−(r′′)Ŝ−(r)|Φ0〉 = 2Sδrr′ Ŝ−(r′′)|Φ0〉 (6.64)

Half the sum of these two terms gives

1

2

[

Ŝ−(r′)Ŝ+(r′′)Ŝ−(r) + Ŝ+(r′)Ŝ−(r′′)Ŝ−(r)
]

|Φ0〉 = 2Sδrr′ Ŝ−(r′)|Φ0〉 (6.65)
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Fig. 6.17 Propagating along x of a spin wave in a one-dimensional model. The projection on the

z-axis is constant (MS,max − 1), 〈Ŝx〉 and 〈Ŝy〉 change from site to site

which allows us to evaluate the first terms of the Heisenberg Hamiltonian

−
∑

r′<r′′

J(r′ − r′′)
∑

r

eik·r2Sδrr′′ Ŝ−(r′)|Φ0〉

= −2S
∑

r �=0

J(r)eik·r ∑

r′

eik·r′

Ŝ−(r′)|Φ0〉 = −2S
∑

r �=0

J(r)eik·r|Φk〉 (6.66)

Finally, the sum of all three terms gives the eigenvalue of |Φk〉

Ek =
∑

r �=0

(

−1

2
S2 + 2S − 2Seik·r

)

J(r) = E0 + 2S
∑

r �=0

(1 − eik·r)J(r) (6.67)

which is always higher than the ground state energy, except for |Φk=0〉, which is

degenerate with |Φ0〉. Figure 6.17 represents how the spin moment of |Φk〉 prop-

agates along the x-axis in a one-dimensional model. The total spin moment on

each site is equal to S and the projection on the z-axis (the principal magnetic

axis) is also constant, MS,max − 1. The variation lies in the projection on the other

two magnetic axes, which is easily demonstrated by calculating the expectation

value of Ŝx(r)Ŝx(r
′) + Ŝy(r)Ŝy(r

′) of |Φk〉, which measures the correlation of the

non-z-components of the spin moments separated by r and r′.

After the usual substitution of Ŝx and Ŝy by the appropriate linear combinations

of Ŝ− and Ŝ+

〈Φk |Ŝx(r)Ŝx(r
′) + Ŝy(r)Ŝy(r

′)|Φk〉 = 〈Φk |
1

2

[

Ŝ+(r′)Ŝ−(r′′) + Ŝ−(r′)Ŝ+(r′′)
]

|Φk〉
(6.68)

we evaluate the correlation function term by term

1

2
Ŝ−(r′)Ŝ+(r′′)|Φk〉 = 1

2

∑

r

eik·rŜ−(r′)Ŝ+(r′′)Ŝ−(r)|Φ0〉

= S
∑

r

eik·rδrr′′ Ŝ−(r)|Φ0〉 = Seik·r′′

Ŝ−(r′)|Φ0〉 (6.69)
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〈Φk|
1

2
Ŝ+(r′)Ŝ−(r′′) = 1

2
Ŝ−(r′′)Ŝ+(r′)

∑

r

e−ik·rŜ−|Φ0〉

= S
∑

r

e−ik·rδrr′ Ŝ−(r′′)|Φ0〉 = Se−ik·r′

Ŝ−(r′′)|Φ0〉 (6.70)

The sum of these two terms gives

〈Φk|Ŝx(r)Ŝx(r
′) + Ŝy(r)Ŝy(r

′)|Φk〉 = S(e−ik·r′ + eik·r′′

) = 2S cos
(

(r′ − r′′) · k
)

(6.71)

showing that the orientation of the projection of the spin moment on the plane perpen-

dicular to the principal magnetic axis varies as a cosine that depends on the separation

of the spins and the lattice vector k, exactly as the spin wave shown in Fig. 6.17.

Antiferromagnetic lattices: The description of an ‘infinite’ lattice with antiferro-

magnetic interactions is much more complicated and in fact there is no exact ground

state solution for such case. The first necessary simplification towards an (approxi-

mate) description is to limit the interactions to nearest neighbours. Imagine a two-

dimensional regular lattice of magnetic centers. Taking into account only nearest

neighbour interactions all spins align in an anti-parallel manner. However, consider-

ing antiferromagnetic next-nearest neighbour interactions as well, the spins cannot

follow the preferred alignment for centers beyond the nearest neighbours as illus-

trated in Fig. 6.18. This is sometimes denoted spin frustration. In fact, competing

interactions can give rise to very interesting magnetic phenomena, and Problem 6.4

describes one of these. In the simplest case of an isolated 1D chain with only nearest

neighbour antiferromagnetic interactions, an exact solution can be obtained using

the Bethe ansatz.

The main problem to rigorously describe the antiferromagnetic lattice—even

with the restriction of nearest neighbour interactions only—lies in the fact that

the hypothetical ground state eigenfunction of the Heisenberg Hamiltonian is

intrinsically multideterminantal. With increasing number of magnetic centers the

Fig. 6.18 Two-dimensional

lattice of magnetic centers

with antiferromagnetic

nearest neighbour

interactions. Next nearest

neighbour antiferromagnetic

interactions cannot be

sustained. Note that the

representation of alternating

up and down spins is a

simplification that is only

valid for the Ising

Hamiltonian
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number of determinants needed to describe the antiferromagnetic state also grows.

For N = 2, we have ΦAF = (|φ1φ2|−|φ1φ2|)/
√

2; for N = 3, the eigenfunction is a

sum of three determinants: ΦAF = (|2φ1φ2φ3|− |φ1φ2φ3|− |φ1φ2φ3|)/
√

6; and for

N = 4, we already need a linear combination of six determinants (see Eq. 1.51). It is

easy to imagine that when we consider a crystal with in principle an infinite number

of magnetic sites, the wave function cannot be written down anymore.

Intuitively one could consider the state with alternating α and β spins, as drawn

in Fig. 6.18, as a good representation of the ground state in an antiferromagnetic

lattice. However, it is quite easy to show that this so-called Neél state is not an

eigenfunction of the Heisenberg Hamiltonian and that its energy expectation value is

only an upper bound to the ground state energy. Using the definition of the Heisenberg

Hamiltonian given in Eq. 6.50 with j = i + 1 and applying periodic boundaries as

mentioned in Sect. 3.3, we calculate the energy expectation value of the Neél state

Φ0 = |S1,−S2, S3, . . . , Si,−Sj, . . . − SN |. The action of the different products of

spin operators on this function is

Ŝ+(i)Ŝ−(j)Φ0 = 0

Ŝ−(i)Ŝ+(j)Φ0 = |S1,−S2, S3, . . . , Si − 1,−Sj + 1, . . . ,−SN | (6.72)

Ŝz(i)Ŝz(j)Φ0 = S2Φ

This shows that Φ0 is not an eigenfunction of the Heisenberg Hamiltonian and that

the products of spin-up and spin-down operators give both zero contribution to the

energy expectation value, which becomes

E(Φ0) = 1

2
NzS2J (6.73)

where N is the number of sites and z is the number of nearest neighbours of each

magnetic center. To show that this is not the state with the lowest energy, we now

generate a new spin configuration with the same total MS value by applying the

Ŝ+(k)Ŝ−(l)+ Ŝ−(k)Ŝ+(l) operator to the Neél state. States with different MS values

do not interact with Φ0 and cannot lower the energy of Φ0.

Φ1 = (Ŝ+(k)Ŝ−(l) + Ŝ−(k)Ŝ+(l))|S1,−S2, S3, . . . Si,−Sj, . . . − SN |
= |S1,−S2, . . . , Sk − 1,−Sl + 1, . . . ,−SN | (6.74)

Again, we have a state that is not an eigenfunction of the Heisenberg Hamiltonian,

which is easily seen by applying the products of spin-up and spin-down operators.

The energy expectation value is

E(Φ1) = J

(

1

2
zNS2 − z + 1

)

(6.75)

http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_3
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More importantly, the interaction matrix element of Φ0 and Φ1 is not equal to zero.
Going term by term:

〈. . . Si,−Sj, Sk,−Sl . . .|−J
∑

〈i,j〉

1

2
Ŝ+(i)Ŝ−(j)|. . . , Si,−Sj, Sk − 1,−Sl + 1, . . .〉 = −1

2
J

〈. . . Si,−Sj, Sk,−Sl . . .|−J
∑

〈i,j〉

1

2
Ŝ−(i)Ŝ+(j)|. . . , Si,−Sj, Sk − 1,−Sl + 1, . . .〉 = 0

〈. . . Si,−Sj, Sk,−Sl . . .|−J
∑

〈i,j〉
Ŝz(i)Ŝz(j)|. . . , Si,−Sj, Sk − 1,−Sl + 1, . . .〉 = 0 (6.76)

where 〈i, j〉 symbolizes the sum over i > j restricted to nearest neighbours. This

non-zero matrix element means that the diagonalization of the 2 × 2 matrix spanned

by Φ0 and Φ1 results in two new states, one of them with lower energy than Φ0,

showing that the Neél state is not the ground state of the antiferromagnetic lattice.

6.7 (a) Write down the wave function of the Neél state (Φ0) for a system

with 8 magnetic sites with S = 1/2 in its explicit form using the α(i) and

β(i) spin functions. (b) Calculate the energy expectation value of the Heisen-

berg Hamiltonian and compare to the outcome of Eq. 6.73. (c) Apply the

Ŝ+(3)Ŝ−(4)+ Ŝ−(3)Ŝ+(4) operator on Φ0 and calculate the expectation value

of the so obtained wave function (Φ1). (d) Calculate 〈Φ0|Ĥ|Φ1〉.

Spin wave theory of antiferromagnets is a powerful method to study the ground

state in these cases but goes beyond the scope of the book, the interested reader is

referred to the monographs of Yosida [7] and Blundell [8].

Problems

6.1 Doublet ground state for mixed valence: Determine the magnitude of J in

terms of t for which the model system defined in Fig. 6.4 has a doublet ground state.

6.2 Exchange interaction with s-orbital on the bridge: Consider the system

depicted in Fig. 6.14 with a bridging ligand that has a s-orbital as outermost occupied

valence orbital. Rationalize the antiferromagnetic coupling for this system.

6.3 Expectation value of a non-Neél state: Calculate the expectation value of

Φ1 = Ŝ+(i)Ŝ−(i + 1)Φ0 of the Heisenberg Hamiltonian with nearest neighbour

interactions only for the following two cases: (a) Φ0 is the Neél state of a one-

dimensional chain with N = 8; (b) Φ0 is the Neél state of a 4 × 4 lattice. Both

systems have periodic boundaries and S > 1
2

.
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6.4 Helical spin order: Consider a one dimensional spin chain with sizeable first

(J1) and second (J2) neighbour interactions. In the mean-field approximation, the

energy of the system is given by

E = −NS2
(

J1 cos(θ) + J2 cos(2θ)
)

In most cases the spins will align either parallel or anti-parallel, depending on the

sign of J1, but for certain ratios of J1/J2 spin arrangements can be observed with non-

collinear spin moments. Such spin configurations are supposed to play an important

role in the ferroelectric properties of magnetic materials. (a) Check that the energy

expression is identical to the energy of the Neél state (Eq. 6.73) when J2 = 0 and

J1 < 0. (b) Is there any possibility for a non-collinear alignment when J2 > 0?

(c) Find the three values of θ for which the energy is minimized and classify them as

antiferromagnetic, ferromagnetic or non-collinear solutions. (d) Calculate the angle

between two neighbouring sites with J2 = −0.3|J1| and J1 = ±1.
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Appendix A

Effect of the l̂ Operator and the Matrix

Elements of the p and d Orbitals

ψ l̂x|ψ〉 l̂y|ψ〉 l̂z|ψ〉

px 0 −ipz ipy

py ipz 0 −ipx

pz −ipy ipx 0

dz2 −i
√

3dyz i
√

3dxz 0

dx2−y2 −idyz −idxz 2idxy

dxy idxz −idyz −2idx2−y2

dyz idx2−y2 + i
√

3dz2 idxy −idxz

dxz −idxy −i
√

3dz2 + idx2−y2 idyz

〈l̂〉 px py pz

px 0 −i 1

py i 0 1

pz 1 1 0

〈l̂〉 dz2 dx2−y2 dxy dyz dxz

dz2 0 0 0 i
√

3 −i
√

3

dx2−y2 0 0 −2i i i

dxy 0 2i 0 i −i

dyz −i
√

3 −i −i 0 i

dxz i
√

3 −i i −i 0
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Appendix B

Effect of the Ŝ Operator and the Matrix
Elements for 1

2
≤ S ≤ 5

2

|S, MS〉 Ŝx |S, MS〉 Ŝy|S, MS〉 Ŝz|S, MS〉

| 1
2 , 1

2 〉 1
2 | 1

2 , − 1
2 〉 i

2 | 1
2 , − 1

2 〉 1
2 | 1

2 , 1
2 〉

| 1
2 , − 1

2 〉 1
2 | 1

2 , 1
2 〉 −i

2 | 1
2 , 1

2 〉 − 1
2 | 1

2 , − 1
2 〉

|1, 1〉
√

2
2 |1, 0〉 −i

√
2

2 |1, 0〉 |1, 1〉

|1, 0〉
√

2
2

(
|1, 1〉 + |1, −1〉

)
i
√

2
2

(
|1, 1〉 − |1,−1〉

)
0

|1, −1〉
√

2
2 |1, 0〉 i

√
2

2 |1, 0〉 −|1,−1〉

| 3
2 , 3

2 〉
√

3
2 | 3

2 , 1
2 〉 −i

√
3

2 | 3
2 , 1

2 〉 3
2 | 3

2 , 3
2 〉

| 3
2 , 1

2 〉
√

3
2 | 3

2 , 3
2 〉 + | 3

2 , − 1
2 〉 i

√
3

2 | 3
2 , 3

2 〉 − i| 3
2 , − 1

2 〉 1
2 | 3

2 , 1
2 〉

| 3
2 , − 1

2 〉 | 3
2 , 1

2 〉 +
√

3
2 | 3

2 , − 3
2 〉 i| 3

2 , 1
2 〉 − i

√
3

2 | 3
2 , − 3

2 〉 − 1
2 | 3

2 , − 1
2 〉

| 3
2 , − 3

2 〉
√

3
2 | 3

2 , − 1
2 〉 i

√
3

2 | 3
2 , − 1

2 〉 − 3
2 | 3

2 , − 3
2 〉

|2, 2〉 |2, 1〉 −i|2, 1〉 2|2, 2〉

|2, 1〉 |2, 2〉 +
√

6
2 |2, 0〉 i|2, 2〉 − i

√
6

2 |2, 0〉 |2, 1〉

|2, 0〉
√

6
2

(
|2, 1〉 + |2, −1〉

)
i
√

6
2

(
|2, 1〉 − |2, −1〉

)
0

|2, −1〉
√

6
2 |2, 0〉 + |2, −2〉 i

√
6

2 |2, 0〉 − i|2, −2〉 −|2, −1〉
|2, −2〉 |2, −1〉 −i|2, −1〉 −2|2, −2〉
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|S, MS〉 Ŝx|S, MS〉 Ŝy|S, MS〉 Ŝz|S, MS〉

| 5
2
, 5

2
〉

√
5

2
| 5

2
, 3

2
〉 −i

√
5

2
| 5

2
, 3

2
〉 5

2
| 5

2
, 5

2
〉

| 5
2
, 3

2
〉

√
5

2
| 5

2
, 5

2
〉 + | 5

2
, 1

2
〉 i

√
5

2
| 5

2
, 5

2
〉 − i| 5

2
, 1

2
〉 3

2
| 5

2
, 3

2
〉

| 5
2
, 1

2
〉

√
2| 5

2
, 3

2
〉 + 3

2
| 5

2
,− 1

2
〉 i

√
2| 5

2
, 3

2
〉 − 3i

2
| 5

2
,− 1

2
〉 1

2
| 5

2
, 1

2
〉

| 5
2
,− 1

2
〉 3

2
| 5

2
, 1

2
〉 +

√
2| 5

2
,− 3

2
〉 3i

2
| 5

2
, 1

2
〉 − i

√
2| 5

2
,− 3

2
〉 − 1

2
| 5

2
,− 1

2
〉

| 5
2
,− 2

2
〉 | 5

2
,− 1

2
〉 +

√
5

2
| 5

2
, − 5

2
〉 i| 5

2
,− 1

2
〉 − i

√
5

2
| 5

2
,− 5

2
〉 − 3

2
| 5

2
,− 3

2
〉

| 5
2
,− 5

2
〉

√
5

2
| 5

2
, − 3

2
〉 i

√
5

2
| 5

2
,− 3

2
〉 − 5

2
| 5

2
,− 5

2
〉



Appendix C

Matrix Representation of the ZFS Model

Hamiltonian

ŜDŜ in an arbitrary axis frame. The simpler form of the Hamiltonian that applies

when the system is oriented along the magnetic axis frame is easily derived by

putting all Dij to zero for i �= j, making the trace equal to zero and substituting

D33 − 1
2
(D11 + D22) by D and 1

2
(D11 − D22) by E.

S = 1 |1, 1〉 |1, 0〉 |1, −1〉

〈1, 1| 1
2
(D11 + D22 + D33) −

√
2

2
(D13 + iD23) 1

2
(D11 − D22 + 2iD

12
)

〈1, 0| −
√

2
2

(D13 − iD23) D11 + D22

√
2

2
(D13 + iD

23
)

〈1, −1| 1
2
(D11 − D22 − 2iD12)

√
2

2
(D13 − iD23) 1

2
(D11 + D22 + D33)

S = 3
2

| 3
2

, 3
2

〉 | 3
2

, 1
2

〉 | 3
2

, − 1
2

〉 | 3
2

, − 3
2

〉

〈 3
2

, 3
2

| 3
4

(D11 + D22+3D33) −
√

3(D13 + iD23)

√
3

2
(D11 − D22 + 2iD12) 0

〈 3
2

, 1
2

| −
√

3(D13 − iD23) 1
4

[
7(D11 + D22) + D33

]
0

√
3

2
(D11 − D22 + 2iD12)

〈 3
2

, − 1
2

|
√

3
2

(D11 − D22 − 2iD12) 0 1
4

[
7(D11 + D22) + D33

] √
3(D13 + iD23)

〈 3
2

, − 3
2

| 0

√
3

2
(D11 − D22 − 2iD12)

√
3(D13 − iD23) 3

4
(D11 + D22 + 3D33)

S = 2 |2, 2〉 |2, 1〉 |2, 0〉

〈2, 2| D11 + D22 + 4D33 3(D13 + iD23)

√
6

2 (D11 − D22 + 2iD
12

)

〈2, 1| 3(D13 − iD23) 5
2 (D11 + D22) + D33 −

√
6

2 (D13 + iD
23

)

〈2, 0|
√

6
2 (D11 − D22 − 2iD12) −

√
6

2 (D13 − iD23) 3(D11 + D
22

)

〈2, −1| 0 3
2 (D11 − D22 − 2iD12)

√
6

2 (D13 − iD
23

)

〈2,−2| 0 0
√

6
2 (D11 − D22 − 2iD12)
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cont. |2,−1〉 |2,−2〉

〈2, 2| 0 0

〈2, 1| 3
2
(D11 − D22 + 2iD12) 0

〈2, 0|
√

6
2

(D13 + iD23)
√

6
2

(D11 − D22 + 2iD12)

〈2,−1| 5/2(D11 + D22) + D33 −3(D13 + iD23)

〈2,−2| −3(D13 − iD23) D11 + D22 + 4D33

S = 5
2 | 5

2 , 5
2 〉 | 5

2 , 3
2 〉 | 5

2 , 1
2 〉

〈 5
2 , 5

2 | 5
4 (D11 + D22) + 25

4 D33 2
√

5(D13 − iD23)

√
10
2 (D11 − D22 − 2iD12)

〈 5
2 , 3

2 | 2
√

5(D13 + iD23) 13
4 (D11 + D22) + 9

4 D33 2
√

2(D13 − iD23)

〈 5
2 , 1

2 |
√

10
2 (D11 − D22 + 2iD12) 2

√
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4 (D11 + D22) + 1
4 D33
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2 | 0 0 0
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√
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2(D11 − D22 − 2iD13) 0

〈 5
2 , − 1
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Appendix D

Analytical Expressions for χ(T)

1. The Bonner-Fisher expression for a S = 1/2 uniform Heisenberg chain:

χ(T) = NAµ2
Bg2

e

kT

A + Bx + Cx2

1 + Dx + Ex2 + Fx3

with x = J/2kT and A = 0.25; B = 0.14995; C = 0.30094; D = 1.9862;

E = 0.68854; F = 6.0626 [1].

2. The alternate S = 1
2

Heisenberg chain with J = J1 = αJ2:

χ(T) = NAµ2
Bg2

e

kT

A + Bx + Cx2

1 + Dx + Ex2 + Fx3

for 0 < α < 0.4 the values of A–F are [2]

A = 0.25

B = − 0.12587 + 0.22752α

C = 0.019111 − 0.13307α + 0.509α2 − 1.3167α3 + 1.0081α4

D = 0.100772 + 1.4192α

E = − 0.0028521 − 0.42346α + 2.1953α2 − 0.82412α3

F = 0.37754 − 0.067022α + 5.9805α2 − 2.1678α3 + 15.838α4

and for 0.4 < α < 1 the values of A–F are

A = 0.25

B = − 0.13695 + 0.26387α

C = 0.017025 − 0.12668α + 0.49113α2 − 1.1977α3 + 0.87257α4

D = 0.070509 + 1.3042α
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E = − 0.0035767 − 0.40837α + 3.4862α2 − 0.73888α3

F = 0.36184 − 0.065528α + 6.65875α2 − 20.945α3 + 15.425α4

3. The uniform two-dimensional S = 1/2 Heisenberg lattice [3]

χ(T) = NAµ2
Bg2

e

kT

5∑

n=1

anJ/kT

bnJ/kT

n An Bn

1 0.998586 −1.84279

2 1.28534 1.14141

3 0.656313 −0.704192

4 0.235862 −0.189044

5 0.277527 −0.277545

4. The generalized expression for a Heisenberg 2D lattice [4]

χ(T) = NAg2
eµB

3kT

Y1 + Y2

(1 − u1v1)(1 − u2v2)

with

Y1 = (1 + u1v1)(1 + u2v2) + (u1 + v1)(u2 + v2)

Y2 = (u1 + v1)(1 + u2v2) + (u2 + v2)(1 + u1v1)

ui = coth

(
S(S + 1)Ji−

kT
− kT

S(S + 1)Ji−

)

vi = coth

(
S(S + 1)Ji+

kT
− kT

S(S + 1)Ji+

)

5. Hexagonal 2D lattice [5, 6] (Fig. D.1)

χ(T) = NAg2
eµB

3kT

(1 + u1u2)
2
(
1 + u2

2

)
+ 2u2 (1 + u1u2)

2 + u1

(
1 − u2

2

)2

(
1 − u2

1u2
2

) (
1 − u2

2

)

with

ui = coth

(
S(S + 1)Ji

kT

)
− kT

S(S + 1)Ji
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Fig. D.1 Definition of Ji± = Ji ± α used in the generalized expression for the Heisenberg 2D

lattice
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Appendix E

Solutions

Exercises and Problems of Chap. 1

Exercise 1.1 Ψ (1, 2, 3) = |φa(1)φb(2)φc(3)|= 1√
6

(
φa(1)φb(2)φc(3) − φa(1)φc(2)

φb(3)−φb(1)φa(2)φc(3)+φb(1)φc(2)φa(3)+φc(1)φa(2)φb(3)−φc(1)φb(2)φa(3)
)

Ψ (2, 1, 3) = 1√
6

(
φb(1)φa(2)φc(3)−φc(1)φa(2)φb(3)− φa(1)φb(2)φc(3)+φc(1)φb

(2)φa(3)+φa(1)φc(2)φb(3)−φb(1)φc(2)φa(3)
)

= 1√
6
(−φa(1)φb(2)φc(3)+φa(1)φc

(2)φb(3) + φb(1)φa(2)φc(3) − φb(1)φc(2)φa(3)−φc(1)φa(2)φb(3) + φc(1)φb

(2)φa(3)) = −Ψ (1, 2, 3) Assume φa = φb, then Ψ (1, 2, 3) = 1√
6

(
φa(1)φa(2)φc

(3)−φa(1)φc(2)φa(3)−φa(1)φa(2)φc(3)+φa(1)φc(2)φa(3)+φc(1)φa(2)φa(3)−
φc(1)φa(2)φa(3)

)
= 0.

Exercise 1.2 Â(1, 2) = 1√
2
(1− P̂12); Âϕ1ϕ2 = 1√

2
(ϕ1ϕ2 −ϕ2ϕ1) ⇒

√
N !Âϕ1ϕ2 =

ϕ1ϕ2 −ϕ2ϕ1; ÂÂϕ1ϕ2 = 1√
2
(1− P̂12)

1√
2
(ϕ1ϕ2 −ϕ2ϕ1) = 1

2
(ϕ1ϕ2 −ϕ2ϕ1 −ϕ2ϕ1 +

ϕ1ϕ2) = ϕ1ϕ2 − ϕ2ϕ1.

Exercise 1.3 For a given S, MS runs from S to−S in steps of 1. Hence, the degeneracy

is 2S + 1.

Exercise 1.4 Substituting s = 1/2 and ms = ±1/2 in the normalization factor of ŝ+

gives
√

1/2(1/2 + 1) − 1/2(1/2 + 1) = 0 for α and
√

1/2(1/2 + 1) − −1/2(−1/2 + 1)

= √
3/4 + 1/4 = 1 for β. (b) ŝ2 = 1/4(ŝ+ + ŝ−)(ŝ+ + ŝ−) − 1/4(ŝ+ + ŝ−)(ŝ+ +

ŝ−)+ŝ2
z = 1/4(ŝ+ŝ++ŝ+ŝ−+ŝ−ŝ++ŝ−ŝ−)−1/4(ŝ+ŝ+−ŝ+ŝ−−ŝ−ŝ++ŝ−ŝ−)+ŝ2

z

(remember ŝ+ and ŝ− do no commute) = 1/2(ŝ+ŝ− + ŝ−ŝ+) + ŝ2
z = 1/2(ŝ+ŝ− +

ŝ−ŝ+)+ (1/2)ŝ+ŝ− − (1/2)ŝ+ŝ− + ŝ2
z = ŝ+ŝ− −1/2[ŝ+, ŝ−]+ ŝ2

z = ŝ+ŝ− − ŝz + ŝ2
z .

(c) ŝ+ŝ−α = α, −ŝzα = −1/2α, ŝ2
z α = 1/4α. Combining the three terms gives

(1−1/2+1/4)α; the expectation value is 3/4. ŝ+ ŝ−β = 0,−ŝzβ = 1/2, ŝ2
z β = 1/4β.

Combining the terms, gives the expectation value (0 + 1/2 + 1/4) = 3/4 for β.
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Exercise 1.5 Ŝ2|ϕ1ϕ2| = |ϕ1ϕ2|(Ŝ+Ŝ− − Ŝz + Ŝ2
z )αβ = |ϕ1ϕ2|

(
Ŝ+Ŝ−αβ − Ŝzαβ +

Ŝ2
z αβ

)
. With Ŝ = ŝ(1) + ŝ(2) we arrive at |ϕ1ϕ2|

(
(αβ + βα) − ( 1

2
αβ − 1

2
αβ) +

ŝz(
1
2
αβ − 1

2
αβ)

)
. Since the last two terms are zero, we get |ϕ1ϕ2|(αβ + βα) =

|ϕ1ϕ2|+|ϕ1ϕ2|, which is the same result as obtained in Eq. 1.27 where the determinant

was fully expanded; Ŝ2
(
|ϕ1ϕ2| + |ϕ1ϕ2|

)
/
√

2 = (1/
√

2)|ϕ1ϕ2|Ŝ2(αβ + βα) =
(1/

√
2)|ϕ1ϕ2|

(
(αβ+βα)+(βα+αβ)

)
= (2/

√
2)

(
|ϕ1ϕ2|+|ϕ1ϕ2|

)
; The expansion

of Φ2 leads to (1/2)(ϕ1ϕ2 −ϕ2ϕ1 +ϕ1ϕ2 −ϕ2ϕ1) = (1/2)(ϕ1ϕ2 −ϕ2ϕ1)(αβ+βα).

Ŝ2Φ2 = (1/2)(ϕ1ϕ2 − ϕ2ϕ1)Ŝ
2(αβ + βα) = (1/2)(ϕ1ϕ2 − ϕ2ϕ1) · 2(αβ + βα) =

ϕ1ϕ2 − ϕ2ϕ1 + ϕ1ϕ2 − ϕ2ϕ1 =
√

2
(
|ϕ1ϕ2| + |ϕ2ϕ1|).

Exercise 1.6 (a) Rewriting Eq. 1.23 gives |S, MS + 1〉 = Ŝ+|S, MS〉/√
S(S + 1) − MS(MS + 1) = Ŝ+(

|ab| + |ab|
)
/(

√
2(1(1 + 1) − 0(0 + 1)) =(

|ab|+|ab|
)
/2 = |ab|. Similar for the MS−1 component: Ŝ−(

|ab|+|ab|
)
/
(√

2(1(1+
1) − 0(0 − 1))

)
=

(
|ab| + |ab|

)
/2 = |ab|. (b) |S〉 = P̂0|ab| = (Ŝ2 − 2)|ab| =

|ab| + |ab| − 2|ab| = |ab| − |ab|; |T〉 = P̂1|ab| = (Ŝ2 − 0)|ab| = |ab| + |ab|.

Exercise 1.7 |3/2, 3/2〉 = Ŝ+(
|abc| + |abc| + |abc|

)
/(

√
3N) with N =√

3/2(3/2 + 1) − 1(2(1/2 + 1) =
√

3 ⇒ |3/2, 3/2〉 = (|abc| + |abc| +
|abc|)/3 = |abc|; |3/2,−1/2〉 =

(
|abc| + |abc| + |abc|

)
/(

√
3N) with N =√

3/2(3/2 + 1) − 1/2(1/2 − 1) = 2 ⇒ |3/2,−1/2〉 = (|abc| + |abc| + |abc| +
|abc| + |abc| + |abc|)/2

√
3 = (|abc| + |abc| + |abc|)/

√
3; |3/2,−3/2〉 =

Ŝ−(|abc|+ |abc|+ |abc|)/(
√

3N) with N =
√

3/2(3/2 + 1) − −1/2(−1/2 − 1) =√
3 ⇒ |3/2,−3/2〉 = (|abc| + |abc| + |abc|)/3 = |abc|.

Exercise 1.8 (a) 〈ΨA|ΨB〉 = (1/
√

12)〈abc − abc|2abc − abc − abc〉 = (1/
√

12)

(−〈abc|abc〉+〈abc|abc〉) = 0. (b) Ŝ+Ŝ−|abc| = Ŝ+(|abc|+|abc|) = |abc|+|abc|+
|abc| + |abc|; Ŝ+Ŝ−|abc| = Ŝ+(|abc| + |abc|) = |abc| + |abc| + |abc| + |abc|;
Ŝz(|abc|−|abc|) = (1/2+1/2−1/2)|abc|−(−1/2+1/2+1/2)|abc| ⇒ Ŝ2

z (|abc|−
|abc|) = (1/4)(|abc|−|abc|). Collecting all the terms gives Ŝ2(|abc|−|abc|)/

√
2 =

(1 − 1/2 + 1/4)(|abc| − |abc|)/
√

2, and hence, S(S + 1) = 3/4, S = 1/2.

Exercise 1.9 (a)

(b) Starting with Ψ (1, 1/2,±1/2), the application of the formula in Eq. 1.43 gives

Ψ (2, 0, 0) = (−
√

0 − 0 + 1βα +
√

0 + 0 + 1αβ)/
√

2 · 0 + 2 = (αβ − βα)/
√

2.

Exercise 1.10 (a) Ŝ+(ααββ −ββαα) = (αααβ +ααβα −αβαα −βααα), which

is equivalent to the function of Eq. 1.50b, except for the normalization factor. (b)

Starting with (αβ − βα)/
√

2, the singlet coupling for electron 1 and 2, Eq. 1.53

http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_1
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has to be applied. The only term with a non-zero prefactor is the second one ⇒
Ψ (4, 1, 0) =

(√
2(1 + 0)(1 − 0)((αβ − βα)/

√
2)((αβ + βα)/

√
2)

)
/
√

2(2 − 1) =
(1/2)(αβαβ + αββα − βααβ − βαβα).

Exercise 1.11 〈(ααβ + αβα + βαα)/
√

3|αβα〉 = 1/
√

3 = 0.577 . . .; 〈(ααβ−
βαα)

√
2|αβα〉 = 0; 〈(2αβα − ααβ − βαα)/

√
6|αβα〉 = 0.816 . . .

Exercise 1.12 Ĥ(0)ψ
(3)
0 + V̂ ψ

(2)
0 = E

(0)
0 ψ

(3)
0 + E

(1)
0 ψ

(2)
0 + E

(2)
0 ψ

(1)
0 + E

(3)
0 ψ

(0)
0 .

Problem 1.1 Singlet: (|ab| − |ab|)/
√

2 or (|ab| + |ba|)/
√

2 maintaining the spatial

or spin part, respectively. Triplet: (|ab| + |ab|)/
√

2 or (|ab| − |ba|)/
√

2 maintaining

the spatial or spin part, respectively.

Problem 1.2 (a) Coulomb integral between the charge distributions φaφa and φbφb,

both on the same atom, and hence, relatively large integral. (b) Exchange integral,

relatively large. (c) Exchange integral of medium size. The permutation leads to a

zero integral because of the orthogonality of the spin part. (d) Neither Coulomb,

nor exchange. Other small integral. (e) Exchange integral, equal to c. (f) Coulomb

integral, medium.

Problem 1.3 E(1) =
∞∫

−∞
ψ (0)V̂ ψ (0) =

0∫
−∞

ψ (0)V̂ ψ (0)dx +
a∫

0

ψ (0)V̂ ψ (0)dx +
b∫

a

ψ (0)V̂ ψ (0)dx +
L∫
b

ψ (0)V̂ ψ (0)dx +
∞∫
L

ψ (0)V̂ ψ (0)dx, with a = 1
2

L − 1
2
γ and

b = 1
2

L + 1
2
γ . The first and last integrals are zero because ψ (0) is zero outside

the box (V = ∞), the second and fourth integral are zero because V = 0 in these

intervals. Remains the third integral. With V̂ = V0, the correction for the ground

state (n = 1) reads E
(1)
0 = 2V0

L

b∫
a

sin2 πx
L

dx. Making use of the assumption that ψ (0)

is constant in this interval, the integrand reduces to sin2 πL
2L

= 1 and the integral

equals γ . Then, E
(1)
0 = 2V0γ

L
. For the first excited state (n = 2), the integral is equal

zero (ψ
(0)
1 = 0 for x = 1

2
L), and hence, E

(1)
1 = 0. The second excited state (n = 3)

has the same correction as the ground state.

Problem 1.4 (a) 〈Φi|Φj〉 = δij ⇒ Nk (the norm of the projections on the model

space) =
∑

i c2
i (k) with i = 2, 3, 4. N1 = 0.769, N2 = 0.277, N3 = 0.928,

N4 = 0.784, N5 = 0.242. (b) Ψ1, Ψ3 and Ψ4 have to be used to construct Ĥeff .

Normalized projections Ψ̃k =
∑

i c̃i(k) with c̃(1) = {0.3651, 0.1826, 0.9129},
c̃(3) = {−0.1444, 0.9828,−0.1151}, c̃(4) = {−0.8732, 0.0493, 0.4849}. Orthog-

onalization of Ψ̃3 by c̃′
i(3) = c̃i(3) − 〈Ψ̃1|Ψ̃3〉c̃i(3) and subsequent normaliza-

tion gives c̃⊥
i (3) = {−0.1523, 0.9791,−0.1349}. Orthogonalization of Ψ̃4 by

c̃′
i(4) = c̃′

i(4) − 〈Ψ̃1|Ψ̃4〉c̃i(1) − 〈Ψ̃3|Ψ̃4〉c̃i(3). After normalization, we get c̃⊥
i (4) =
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{−0.9184,−0.0898, 0.3853}. (c) 〈Φk|Ĥeff |Φl〉 =
∑

i c̃⊥
i (k)c̃⊥

i (l)Ei

Ĥeff =
Φ2 Φ3 Φ4

−0.379595

−0.003368 −0.403011

−0.047489 −0.018051 −0.477394

Diagonalization gives−0.5,−0.4 and−0.36 as eigenvalues. (d)µ = 〈Φ1|Ĥeff |Φ2〉=
−0.003368, γ = 〈Φ1|Ĥeff |Φ3〉 = −0.047489. (γ − 4µ)/2 = −0.017009 ≈
〈Φ2|Ĥeff |Φ3〉.

Exercises and Problems of Chap. 2

Exercise 2.1 R = 13.6056925 eV

H-2p1 Ca19+−3p1 Ca19+−3d1 U91+−2p1 U91+−6d1 U91+−5f 1

0.03 meV 1.43 eV 0.29 eV 2163.81 eV 16.03 eV 9.89 eV

Exercise 2.2 The ground state has S = 3
2

(Hund’s rule) and the electrons in the three

different p orbitals (p−1, p0, p1), hence L = 0. J = L + S = 3
2

. The term symbol is
4S 3

2
.

Exercise 2.3 py = (+i/
√

2)
(
Y1,1+Y1,−1

)
; l̂zpy = (+i/

√
2)

(
Y1,1−Y1,−1

)
= −ipx .

From this follows that 〈px|l̂z|py〉 = −i. l̂zpx = ipy ⇒ 〈py|l̂z|px〉 = i = −〈px|l̂z|py〉.

Exercise 2.4 tetrahedral: ground state 3A2. The direct product A2 × A2 does not

contain the irreducible representation that describes the transformation of the rotation

operator, hence no orbital momentum is expected. octahedral: ground state 3T1g, the

rotation operator transforms as T1, which is contained in the T1g ×T1g product, hence

non-zero orbital momentum. C2v: 1A1, the direct product (A1) does not contain the

irrep of the rotation operator, no orbital momentum.

Exercise 2.5

(
Ŝx Ŝy Ŝz

)
⎛
⎝

Dxx 0 0

0 Dyy 0

0 0 Dzz

⎞
⎠

⎛
⎝

Ŝx

Ŝy

Ŝz

⎞
⎠ = Dxx Ŝ2

x + Dyy + Ŝ2
y DzzŜ2

z

Trace of the matrix: λ = Dxx + Dyy + Dzz. Then the traceless tensor becomes

http://dx.doi.org/10.1007/978-3-319-22951-5_2
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∆ =

⎛
⎝

Dxx − 1
3
λ 0 0

0 Dyy − 1
3
λ 0

0 0 Dzz − 1
3
λ

⎞
⎠

Ŝ∆Ŝ = Dxx Ŝ2
x + DyyŜ2

y + DzzŜ2
z − 1

3
λŜ2 = DxxŜ2

x + DyyŜ2
y + DzzŜ2

z − 1
3
Dxx Ŝ2

x −
1
3
DxxŜ2

y − 1
3
Dxx Ŝ2

z − 1
3
DyyŜ2

x − 1
3

DyyŜ2
y − 1

3
DyyŜ2

z − 1
3

DzzŜ2
x − 1

3
DzzŜ2

y − 1
3

DzzŜ2
z =

2
3

Dxx Ŝ2
x − 1

3
Dxx Ŝ2

y − 1
3
Dxx Ŝ2

z − 1
3
DyyŜ2

x + 2
3

DyyŜ2
y − 1

3
DyyŜ2

z − 1
3

DzzŜ2
x − 1

3
DzzŜ2

y +
2
3

DzzŜ2
z to be compared with D(Ŝ2

z − 1
3
Ŝ2) + E(Ŝ2

x − Ŝ2
y ) = DŜ2

z − 1
3
DŜ2

x − 1
3
DŜ2

y −
1
3
DŜ2

z +EŜ2
x −EŜ2

y . After substituting the definitions of D and E: DzzŜ2
z − 1

2
DxxŜ2

z −
1
2

Dxx Ŝ2
z − 1

3
DzzŜ2

x − 1
3

DzzŜ2
y − 1

3
DzzŜ2

z + 1
6

DxxŜ2
x + 1

6
Dxx Ŝ2

y + 1
6

DxxŜ2
z + 1

6
DyyŜ2

x +
1
6
DyyŜ2

y + 1
6

DyyŜ2
z + 1

2
DxxŜ2

x − 1
2

DyyŜ2
x − 1

2
Dxx Ŝ2

y + 1
2

DyyŜ2
y = 2

3
Dxx Ŝ2

x − 1
3

DxxŜ2
y −

1
3
DxxŜ2

z − 1
3

DyyŜ2
x + 2

3
DyyŜ2

y − 1
3
DyyŜ2

z − 1
3
DzzŜ2

x − 1
3
DzzŜ2

y + 2
3

DzzŜ2
z , equal to what

is obtained from Ŝ∆Ŝ.

Exercise 2.6 Ŝ2
z | 1

2
, 1

2
〉 = 1

4
| 1

2
, 1

2
〉; Ŝ2

z | 1
2
,− 1

2
〉 = 1

4
| 1

2
,− 1

2
〉 ⇒ D(Ŝ2

z − 1
3
Ŝ2)| 1

2
,± 1

2
〉

= D[ 1
4
| 1

2
,± 1

2
〉 − 1

3
( 1

2
( 1

2
+ 1))| 1

2
,± 1

2
〉] = D( 1

4
− 1

4
)| 1

2
,± 1

2
〉 = 0; Ŝ2

x | 1
2
,± 1

2
〉 =

1
4
(Ŝ+Ŝ+ + Ŝ−Ŝ− + Ŝ+Ŝ− + Ŝ−Ŝ+)| 1

2
,± 1

2
〉 = | 1

2
,± 1

2
〉, Ŝ2

y | 1
2
,± 1

2
〉 = − 1

4
(Ŝ+Ŝ+ +

Ŝ−Ŝ− − Ŝ+Ŝ− − Ŝ−Ŝ+) = | 1
2
,± 1

2
〉 ⇒ E(Ŝ2

x − Ŝ2
y )| 1

2
,± 1

2
〉 = E( 1

4
− 1

4
)| 1

2
,± 1

2
〉 = 0.

This shows that both diagonal and off-diagonal matrix elements are zero. This means

that the ZFS model Hamiltonian cannot remove the degeneracy.

Exercise 2.7 (a) Taking E(0) as zero of energy, the exponent in the denominator

becomes 1, limiting the sum over the 2S + 1 MS-sublevels of the ground state, the

denominator simplifies to 2S + 1. Quintet:
∑

MS
M2

S = [(−2)2 + (−1)2 + 0 +
12 + 22] = 10; S(S + 1)(2S + 1)/3 = 2(2 + 1)(2 · 2 + 1)/3 = 10. (b) C =
NA(µBge)

2S(S+1)/3k with NAµ2
B/3k ≈ 1/8 ⇒ C = g2

eS(S+1)/8. Taking ge = 2,

C = S(S + 1)/2; 3/8 (0.375), 1, 15/8 (1.875), 3, 35/8 (4.375), 6, 63/8 (7.875).

Exercise 2.8 Equation 2.44 gives 〈Sz〉 = (−S(S +1)/3kBT) · (µBgeH −nJ〈Sz〉) ⇒
〈Sz〉−(−S(S+1)/3kBT)nJ〈Sz〉 = (−S(S+1)/3kBT)µBgeH ⇒ 〈Sz〉(3kBT −S(S+
1)nJ) = −S(S + 1)µBgeH, which directly leads to Eq. 2.45.

Exercise 2.9 First for α: 〈ψ (0)
i |L̂ · Ŝ|ψ (0)

0 〉 = 〈ψ (0)
i |L̂z · Ŝz|ψ (0)

0 〉+ 1
2
〈ψ (0)

i |L̂+ · Ŝ−|
ψ

(0)
0 〉 + 1

2
〈ψ (0)

i |L̂+ · Ŝ−|ψ (0)
0 〉 = 〈ψ (0)

i |L̂z|ψ (0)
0 〉〈α|Ŝz|α〉 + 1

2
〈ψ (0)

i |L̂+|ψ (0)
0 〉

〈α|Ŝ−|α〉 + 1
2
〈ψ (0)

i |L̂−|ψ (0)
0 〉〈α|Ŝ+|α〉 = 1

2
〈ψ (0)

i |L̂z|ψ (0)
0 〉. Now for β: 〈ψ (0)

i |L̂ · Ŝ|
ψ

(0)
0 〉 = 〈ψ (0)

i |L̂z · Ŝz|ψ (0)
0 〉 + 1

2
〈ψ (0)

i |L̂+ · Ŝ−|ψ (0)
0 〉 + 1

2
〈ψ (0)

i |L̂+ · Ŝ−|ψ (0)
0 〉 =

〈ψ (0)
i |L̂z|ψ (0)

0 〉〈β|Ŝz|α〉+ 1
2
〈ψ (0)

i |L̂+|ψ (0)
0 〉〈β|Ŝ−|α〉+ 1

2
〈ψ (0)

i |L̂−|ψ (0)
0 〉〈β|Ŝ+|α〉 =

1
2
〈ψ (0)

i |L̂+|ψ (0)
0 〉.

Exercise 2.10 l̂+|l, ml〉 =
√

l(l + 1) − ml(ml + 1)|l, ml + 1〉; l̂+p0 =
√

2p+ and

l̂−p0 =
√

2p− From this l̂x|p0〉 = 1
2

√
2(p+ + p−. Then 〈p−|l̂x|p0〉 =

√
2

2
and

http://dx.doi.org/10.1007/978-3-319-22951-5_2
http://dx.doi.org/10.1007/978-3-319-22951-5_2
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〈p+|l̂x|p0〉 =
√

2
2

. l̂xp+ = 1
2
(l̂+ + l̂−)p+ = 1

2
(0 +

√
2p0) =

√
2

2
p0 and analogous for

l̂xp− =
√

2
2

p0. Then 〈p0|l̂x|p+〉 = 〈p0|l̂x|p−〉 =
√

2
2

.

Exercise 2.11 The eigenvalues of the matrix

⎛
⎝

a b 0

b −2a b

0 b a

⎞
⎠ are E1 = a and E2,3 =

− 1
2

a ±
√

9a2 + 8b2/2. Shifting the diagonal elements by +2a, the matrix becomes⎛
⎝

3a b 0

b 0 b

0 b 3a

⎞
⎠ with eigenvalues E′

1 = 3a and E′
2,3 = (3a/2) ±

√
9a2 + 8b2/2. The

constant difference of 2a between Ei and E′
i is the same quantity by which the

diagonal matrix elements have been shifted.

Problem 2.1 (1) see Appendix C. (2) 〈Ψ̃ ′
1|Ψ̃ ′

1〉 = 0.97211913; 〈Ψ̃ ′
1|Ψ̃ ′

2〉 = 0.0000

0457 + 0.00001946i = 〈Ψ̃ ′
2|Ψ̃ ′

1〉∗; 〈Ψ̃ ′
1|Ψ̃ ′

3〉 = 0.00004069 − 0.00000414i

= 〈Ψ̃ ′
3|Ψ̃ ′

1〉∗; 〈Ψ̃ ′
2|Ψ̃ ′

2〉 = 0.97480639; 〈Ψ̃ ′
2|Ψ̃ ′

3〉 = 0.00010103 − 0.00078090i =
〈Ψ̃ ′

3|Ψ̃ ′
2〉∗; 〈Ψ̃ ′

2|Ψ̃ ′
2〉 = 0.98401064. (3) 〈1, 1|Ĥeff |1, 1〉 = 6.5359; 〈1, 1|Ĥeff |1, 0〉 =

〈1, 0|Ĥeff |1, 1〉∗ = −4.6142 − 2.2944i; 〈1, 1|Ĥeff |1,−1〉 = 〈1,−1|Ĥeff |1, 1〉∗ =
5.3478−0.7801i; 〈1, 0|Ĥeff |1, 0〉=35.9344; 〈1, 0|Ĥeff |1,−1〉=〈1,−1|Ĥeff |1, 0〉∗
= 4.6142 + 2.2944i; 〈1,−1|Ĥeff |1,−1〉 = 6.5359. (4) D11 = 23.315016; D12 =
D21 = 0.780050; D13 = D31 = −6.525412; D22 = 12.619358; D23 = D32 =
3.244771; D33 = −11.431250. After diagonalization: D11 = 24.503124; D22 =
13.048843; D33 = −13.048843. Using Eq. 2.16, D = −31.8 cm−1 and E = 5.8

cm−1. Using the energies (Eq. 2.22): D = 1
2
(11.54+0)−37.55 = −31.8 cm−1 and

E = 1
2
(11.54 − 0) = 5.8 cm−1.

Problem 2.2 (1) see inset Fig. 2.1 (2) Since there is only one energy difference, only

one effective anisotropy parameter can be derived, under the assumption E = 0,

this parameter can be considered to be D. Unless the orientation of the magnetic

axes frame is known, the sign of D cannot be determined. (3) see Appendix C. (4)

〈 3
2
, 3

2
|Ĥeff | 3

2
, 3

2
〉 = 〈 3

2
,− 3

2
|Ĥeff | 3

2
,− 3

2
〉=3.634038; 〈 3

2
, 3

2
|Ĥeff | 3

2
, 1

2
〉= 〈 3

2
, 1

2
|Ĥeff |

3
2
, 3

2
〉∗ = 0.173864 + 9.819256i; 〈 3

2
, 3

2
|Ĥeff | 3

2
,− 1

2
〉 = 〈 3

2
,− 1

2
|Ĥeff | 3

2
, 3

2
〉∗ =

2.856287 + 0.412321i; 〈 3
2
, 3

2
|Ĥeff | 3

2
,− 3

2
〉 = 〈 3

2
,− 3

2
|Ĥeff | 3

2
, 3

2
〉 = 0; 〈 3

2
, 1

2
|Ĥeff |

3
2
, 1

2
〉 = 〈 3

2
,− 1

2
|Ĥeff | 3

2
,− 1

2
〉 = 28.831949; 〈 3

2
, 1

2
|Ĥeff | 3

2
,− 1

2
〉 = 〈 3

2
,− 1

2
|Ĥeff | 3

2
,

1
2
〉 = 0; 〈 3

2
, 1

2
|Ĥeff | 3

2
,− 3

2
〉=〈 3

2
,− 3

2
|Ĥeff | 3

2
, 1

2
〉∗ =2.856287 + 0.412321i; 〈 3

2
,− 1

2
|

Ĥeff | 3
2
,− 3

2
〉 = 〈 3

2
,− 3

2
|Ĥeff | 3

2
,− 1

2
〉∗ = −0.173864−9.819255i. D11 =10.177529;

D12 = D21 = −0.238054; D13 = D31 = 0.100381; D22 = 6.879372; D23 =
D32 = −5.669150; D33 = −4.070506. Diagonalization leads to D11 = 10.246963;
D22 = 9.216256; D33 = −6.476824. From this D = −16.21 cm−1 and E = 0.51

cm−1. Negative D indicates that the wave function of the lowest level is dominated

by MS = ± 3
2

contributions (see Ψ̃ ′
1,2), hence, the molecule exhibits easy-axis mag-

netism.

http://dx.doi.org/10.1007/978-3-319-22951-5_2
http://dx.doi.org/10.1007/978-3-319-22951-5_2
http://dx.doi.org/10.1007/978-3-319-22951-5_2


Appendix E: Solutions 229

Problem 2.3 (1) TiIII: [1s2 2s2 2p6 3s2 3p6 3d1], there is no ZFS for S = 1
2

. (2)

In the first place, the projected wave functions have to be expressed in terms of

the 3d orbitals by substituting the expressions of φi in the multideterminantal wave

functions Ψ̃ ′
i . This gives

Ψ̃ ′
1 Ψ̃ ′

2 Ψ̃ ′
3 Ψ̃ ′

4 Ψ̃ ′
5

3dz2 0.0024 0.0166 −0.3142 0.1158 −0.9433

3dx2−y2 0.2569 0.1497 −0.2999 0.8799 0.2101

3dxy 0.2249 −0.2178 −0.8409 −0.3731 0.2300

3dyz 0.3072 −0.9071 0.2313 0.1587 −0.0679

3dxz −0.8883 −0.3271 −0.2250 0.2190 0.0923

The next step (cf. Eqs. 2.55 and 2.59) is the calculation of 〈Ψ̃ ′
i |L̂z|Ψ̃ ′

1〉 and 〈Ψ̃ ′
1|L̂z|Ψ̃ ′

i 〉
with i = 2, 3, 4, 5, i = 1 is the ground state. The same has to be done for L̂x .

Ψ̃ ′
2 Ψ̃ ′

3 Ψ̃ ′
4 Ψ̃ ′

5

〈i|L̂z|1〉 0.7270184 −0.4334652 −0.7957402 0.0556362

〈1|L̂z|i〉 −0.7270184 0.4334652 0.7957402 −0.0556362

〈i|L̂x|1〉 0.3192372 0.5594345 0.1304799 −0.7317820

〈1|L̂x|i〉 −0.3192372 −0.5594345 −0.1304799 0.7317820

From this, gzz = ge −0.150 and gxx = ge +0.088. The deviation in z is significantly

larger than in x confirming the axial anisotropy.

Exercises and Problems of Chap. 3

Exercise 3.1 〈Φ11(0, 0)|Ĥ|Φ22(0, 0)〉 = 〈φ1φ1|Ĥ|φ2φ2〉 = 〈φ1φ1|1/r12|φ2φ2〉 −
〈φ1φ1|1/r12|φ2φ2〉 = 〈φ1φ1|1/r12|φ2φ2〉 − 0 = K12

Exercise 3.2 ψa = (φa + φb)/
√

2 = (1/
√

2)
(
(χa + χb)/

√
2(1 + S) + (χa −

χb)/
√

2(1 − S)
)

= (1/
√

2)
(
χa[1/

√
2(1 + S)+1/

√
2(1 − S)]+χb[1/

√
2(1 + S)−

1/
√

2(1 − S)]
)
. For S = 0.2, the coefficient of χb is −0.1026 and for S = 0.003,

the coefficient reduces to −0.0015.

Exercise 3.3
(
|ψaψb| + |ψbψa|

) ?=
(
|φ1φ1| − |φ2φ2|

)
: Substitute ψa,b = (φ1 ±

φ2)/
√

2: 1
2
{|(φ1 + φ2)(φ1 − φ2)| + |(φ1 − φ2)(φ1 + φ2)|} = 1

2
{|φ1φ1| − |φ1φ2| +

|φ2φ1| − |φ2φ2| + |φ1φ1| + |φ1φ2| − |φ2φ1| − |φ2φ2|} =
(
|φ1φ1| − |φ2φ2|

)
.

(
|ψaψb| − |ψbψa|

) ?=
(
|φ1φ2| − |φ2φ1|

)
: Substitute ψa,b = (φ1 ± φ2)/

√
2:

1
2
{|(φ1 + φ2)(φ1 − φ2)| − |(φ1 − φ2)(φ1 + φ2)|} = 1

2
{|φ1φ1| − |φ2φ2| − |φ1φ2| +

|φ2φ1|− |φ1φ1|+ |φ2φ2|− |φ1φ2|+ |φ2φ1|} = −
(
|φ1φ2|− |φ2φ1|

)
(the sign is not

relevant)

http://dx.doi.org/10.1007/978-3-319-22951-5_2
http://dx.doi.org/10.1007/978-3-319-22951-5_2
http://dx.doi.org/10.1007/978-3-319-22951-5_3
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Exercise 3.4 Using a and b as shorthand notation for ψa and ψb,

〈Ψ cov(0, 0)|Ĥ|Ψ cov(0, 0)〉 = 1
2
(〈ab|Ĥ|ab〉+〈ab|Ĥ|ba〉+〈ba|Ĥ|ab〉+〈ba|Ĥ|ba〉) =

1
2
(2〈a|ĥ|a〉 + 2〈b|ĥ|b〉 + 〈ab| 1−P̂12

r12
|ab〉 + 〈ab| 1−P̂12

r12
|ba〉 + 〈ba| 1−P̂12

r12
|ab〉 +

〈ba| 1−P̂12
r12

|ba〉) = haa+hbb+Jab+Kab; 〈Ψ cov(1, 0)|Ĥ|Ψ cov(1, 0)〉 = 1
2
(〈ab|Ĥ|ab〉−

〈ab|Ĥ|ba〉 − 〈ba|Ĥ|ab〉 + 〈ba|Ĥ|ba〉) = 1
2
(2〈a|ĥ|a〉 + 2〈b|ĥ|b〉 + 〈ab| 1−P̂12

r12
|ab〉 −

〈ab| 1−P̂12
r12

|ba〉 − 〈ba| 1−P̂12
r12

|ab〉 + 〈ba| 1−P̂12
r12

|ba〉) = haa + hbb + Jab − Kab. The

energy difference is 2Kab.

Exercise 3.5 |φaφb| = ψa+νψb√
1+ν2

· ψb+νψa√
1+ν2

= (ψaψb +νψbψb +νψaψa +ν2ψbψa)/

(1+ν2); |φbφa| = ψb+νψa√
1+ν2

· ψa+νψb√
1+ν2

= (ψbψa +νψbψb +νψaψa +ν2ψaψb)/(1+
ν2). |φaφb| + |φbφa| = 1

1+ν2 ((1 + ν2)(ψaψb + ψbψa) + 2ν(ψaψa + ψbψb)) =
ψaψb+ψbψa+Sab(ψaψa+ψbψb). Multiplying with 1/

√
2 + 2S2 leads to (ψaψb+

ψbψa)/
√

2 for Sab = 0.

Exercise 3.6 Maximum spin Smax = S1 + S2 = 2S; E(Smax) = − 1
2

J
(
2S(2S + 1)−

2S(S + 1)
)

= −JS2; Minimum spin Smin = S1 − S2 = 0; E(Smin) = − 1
2

J
(
0 −

2S(S + 1)
)

= JS(S + 1).

Exercise 3.7
3 21 1 6 3 11 18 3 4
7/2 28 1 7 3 13 49/2

7/2 4

Exercise 3.8 Smin � S � Smax , S = 0, 1 ⇒ 1(1 + 1)(2 · 1 + 1) exp(J · 1(1 +
1)/2kT)/(1 + 3 exp(J · 1(1 + 1)/2kT)) = (6 exp(J/kT))(1 + 3 exp(J/kT)) =
6/(3 + exp(−J/kT)). Multiplying with NAµ2

Bg2
e/3kT one arrives at 2NAµ2

Bg2
e/kT

(3 + exp(−J/kT)).

Exercise 3.9 (ŝ+
1 + ŝ+

2 )(ŝ−
3 + ŝ−

4 )ααββ = (ŝ+
1 + ŝ+

2 )(0 + 0) = 0; (ŝ+
1 + ŝ+

2 )(ŝ−
3 +

ŝ−
4 )ββαα = (ŝ+

1 + ŝ+
2 )(βββα + ββαβ) = αββα + αβαβ + βαβα + βααβ; (ŝ+

1 +
ŝ+

2 )(ŝ−
3 + ŝ−

4 )αβαβ = (ŝ+
1 + ŝ+

2 )(αβββ + 0) = ααββ; (ŝ+
1 + ŝ+

2 )(ŝ−
3 + ŝ−

4 )αββα =
(ŝ+

1 + ŝ+
2 )(0 + αβββ) = ααββ; (ŝ+

1 + ŝ+
2 )(ŝ−

3 + ŝ−
4 )βαβα = (ŝ+

1 + ŝ+
2 )(0 +

βαββ) = ααββ; (ŝ+
1 + ŝ+

2 )(ŝ−
3 + ŝ−

4 )βααβ = (ŝ+
1 + ŝ+

2 )(βαββ + 0) = ααββ;

(ŝ−
1 + ŝ−

2 )(ŝ+
3 + ŝ+

4 )ααββ = (ŝ−
1 + ŝ−

2 )(αααβ +ααβα) = βααβ +βαβα+αβαβ +
αββα; (ŝ−

1 + ŝ−
2 )(ŝ+

3 + ŝ+
4 )ββαα = 0; (ŝ−

1 + ŝ−
2 )(ŝ+

3 + ŝ+
4 )αβαβ = (ŝ−

1 + ŝ−
2 )(0 +

αβαα) = ββαα; (ŝ−
1 + ŝ−

2 )(ŝ+
3 + ŝ+

4 )αββα = (ŝ−
1 + ŝ−

2 )(αβαα + 0) = ββαα;

(ŝ−
1 + ŝ−

2 )(ŝ+
3 + ŝ+

4 )βαβα = (ŝ−
1 + ŝ−

2 )(βααα + 0) = ββαα; (ŝ−
1 + ŝ−

2 )(ŝ+
3 +

ŝ+
4 )βααβ = (ŝ−

1 + ŝ−
2 )(0 + βααα) = ββαα; (ŝz,1 + ŝz,2)(ŝz,3 + ŝz,4)ααββ =

(ŝz,1 + ŝz,2)(− 1
2
− 1

2
)ααββ = ( 1

2
+ 1

2
)(− 1

2
− 1

2
)ααββ = −ααββ; (ŝz,1 + ŝz,2)(ŝz,3 +

ŝz,4)ββαα = (− 1
2
− 1

2
)( 1

2
+ 1

2
)ββαα = −ββαα. The action of (ŝz,1+ŝz,2)(ŝz,3+ŝz,4)

on all other determinants gives zero. Triplet: Ĥ(ααββ − ββαα)/
√

2 = −J(0 −
1
2
(αββα+αβαβ+βαβα+βααβ)+ 1

2
(βααβ+βαβα+αβαβ+αββα)−0−ααββ+

ββαα)/
√

2 = −J(−ααββ + ββαα)/
√

2 ⇒ eigenvalues of the triplet is J . Singlet:
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Ĥ(2ααββ +2ββαα−αβαβ −αββα−βααβ −βαβα)/2
√

3 = −J · (1/2
√

3)[ 1
2
(2 ·

0+2αββα+2αβαβ+2βαβα+2βααβ−ααββ−ααββ−ααββ−ααββ+2αββα+
2αβαβ + 2βαβα + 2βααβ + 2 · 0 − ββαα − ββαα − ββαα − ββαα) − 2ααββ −
2ββαα] = −J ·(1/2

√
3)[2αββα+2αβαβ+2βαβα+2βααβ−4ααββ−4ββαα] ⇒

eigenvalue of singlet is 2J .

Exercise 3.10 Two-electrons: s1 = 1
2
, s2 = 1

2
, Sa = 0, 1. Three electrons:

Sa = 0, 1, s3 = 1
2
, Sb = 1

2
, 1

2
, 3

2
. Four electrons: Sb = 1

2
, 1

2
, 3

2
, s4 = 1

2
, Stot =

0, 1, 0, 1, 1, 2.

Exercise 3.11 (i) E(T2,3) − E(Q) = J = −129.7 meV; E(S2) − E(Q) = J =
−142.4 meV; [E(T1)−E(Q)]/2 = −130.0 meV; [E(S1)−E(Q)]/3 = J = −117.1

meV. (ii) [E(T2,3) − E(S2)] × 4 = Jr = 50.7 meV; E(T2,3) − E(Q) = J = −129.7

meV; E(T1) − EQ = 2J − 1
2

Jr ⇒ J = 1
2
∆E + 1

4
Jr = −117.4 meV; E(S1) − EQ =

3J + 3
4

Jr ⇒ J = 1
3
∆E − 1

4
Jr = −129.7 meV. (iii) E(S1) − 3

2
(E(T1) − EQ) =

3
2

Jr ⇒ Jr = 25.9 meV; E(T1) − EQ = 2J − 1
2

Jr ⇒ J = 1
2
(∆E + 1

2
Jr = −123.5

meV; E(T2,3)−EQ = J +J3 ⇒ J3 = ∆E −J = −6.2 meV. These three parameters

exactly fit the energy difference E(S2) − E(Q) = −142.4 meV = J + 2J3 − 1
4

Jr =
−123.5 − 2 × 6.2 − 1

4
× 25.9.

Exercise 3.12

Ĥ =
(

Ŝx(1) Ŝy(1) Ŝz(1)
)
⎛
⎝

Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

⎞
⎠

⎛
⎝

Ŝx(2)

Ŝy(2)

Ŝz(2)

⎞
⎠

=
(
Axx Ŝx(1) + AyxŜy(1) + Azx Ŝz(1), AxyŜx(1) + AyyŜy(1) + AzyŜz(1), AxzŜx(1) +

AyzŜy(1) + AzzŜz(1)
)
⎛
⎝

Ŝx(2)

Ŝy(2)

Ŝz(2)

⎞
⎠ = AxxŜx(1)Ŝx(2) + Ayx Ŝy(1)Ŝx(2) +

Azx Ŝz(1)Ŝx(2) + AxyŜx(1)Ŝy(2) + AyyŜy(1)Ŝy(2) + AzyŜz(1)Ŝy(2) + AxzŜx(1)Ŝz(2)

+ AyzŜy(1)Ŝz(2) + AzzŜz(1)Ŝz(2).

Exercise 3.13

⎛
⎜⎜⎜⎝

1 0 0 0

0 1√
2

1√
2

0

0 0 0 1

0 1√
2

− 1√
2

0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0

0 1√
2

0 1√
2

0 1√
2

0 − 1√
2

0 0 1 0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

H11 H12 H13 H14
H21+H31√

2

H22+H32√
2

H23+H33√
2

H24+H34√
2

H41 H42 H43 H44
H21−H31√

2

H22−H32√
2

H23−H33√
2

H24−H34√
2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0

0 1√
2

0 − 1√
2

0 1√
2

0 1√
2

0 0 1 0

⎞
⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎝

H11
H12+H13√

2
H14

H12−H13√
2

H21+H31√
2

H22+H32+H23+H33
2

H24+H34√
2

H22+H32−H23−H33
2

H41
H42+H43√

2
H44

H42−H43√
2

H21−H31√
2

H22−H32+H23−H33
2

H24−H34√
2

H22−H32−H23+H33
2

⎞
⎟⎟⎟⎟⎠

Substituting the definition of Hij of the matrix in the uncoupled basis gives the

representation in the coupled basis. As example: H12+H13√
2

= 1√
2
( 1

4
Dxz − 1

4
iDyz +

1
4

Dxz − 1
4

iDyz) = 1

2
√

2
(Dxz − iDyz) = 〈T+|Ĥ|T0〉.

Exercise 3.14 From 1
2

Aij = Dij − 1
2

Aji and − 1
2

Aji = dij − 1
2

Aij follows 1
2

Aij =
Dij + dij − 1

2
Aij ⇒ Aij = Dij + dij. Substituting this in the expression for Aji gives

− 1
2

Aji = dij − 1
2

Dij − 1
2

dij ⇒ Aji = Dij − dij = Dji + dji.

Problem 3.1 Ψ (0, 0) = N ′(|φaφb| + |φbφa|
)

with φa = N(ψa + νψb), φb =
N(ψb + νψa), N = 1/

√
1 + ν2 and 〈ψa|ψb〉 = 0. So Sab = 2ν/(1 + ν2),

see also Eq. 3.18. Substitution gives Ψ (0, 0) = N ′[|ψaψb| + |ψbψa| + (2ν/(1 +
ν2))

(
|ψaψa|+ |ψbψb|

)]
. Since ψa = (1/

√
2)(φ1 +φ2) and ψb = (1/

√
2)(φ1 −φ2)

(see Eq. 3.10a), we get |ψaψb|+|ψbψa| = |φ1φ1|−|φ2φ2| and |ψaψa|+|ψbψb| =
|φ1φ1| + |φ2φ2|. Now, Ψ (0, 0) = N ′[|φ1φ1| − |φ2φ2| + Sab

(
|φ1φ1| + |φ2φ2|

)]
=

N ′[(Sab + 1)|φ1φ1| + (Sab − 1)|φ2φ2|
]
. Hence, c2/c1 = (Sab − 1)/(Sab + 1).

Problem 3.2 (a) |g1g1| = 1
2
|(a1 + b1)(a1 + b2)| = 1

2

(
|a1a1| + |a1b1| + |b1a1| +

|b1b1|
)
, 50 % neutral, 50 % ionic, eigenfunction of Ŝ2 (singlet); |g1g2| =

1
2
|(a1 + b1)(a2 + b2)| = 1

2

(
|a1a2| + |a1b2| + |b1a2| + |b1b2|

)
, 50 % neutral, 50 %

ionic, eigenfunction of Ŝ2 (triplet); |g1u1| = 1
2
|(a1 + b1)(a1 − b1)| = 1

2

(
|a1a1| −

|a1b1| − |b1a1| + |b1b1|
)
, 50 % neutral, 50 % ionic, not an eigenfunction of Ŝ2. (b)

1√
2
(|g1g1|+|u1u1|) = 1

2

(
|(a1 + b1)(a1 + b1)|+|(a1 − b1)(a1 − b1|

)
= 1

2
√

2

(
|a1a1|+

|a1b1|+ |b1a1|+ |b1b1|+ |a1a1|− |a1b1|− |b1a1|+ |b1b1|
)

= 1√
2

(
|a1a1|+ |b1b1|

)
,

100 % ionic, eigenfunction of Ŝ2 (singlet); 1√
2
(|g1g1|− |u1u1|) = 1

2

(
|(a1 +b1)(a1 +

b1)| − |(a1 − b1)(a1 − b1|
)

= 1

2
√

2

(
|a1a1| + |a1b1| + |b1a1| + |b1b1| − |a1a1| +

|a1b1| + |b1a1| − |b1b1|
)

= 1√
2

(
|a1b1| + |b1a1|

)
, 100 % covalent, eigenfunction

of Ŝ2 (singlet). (c) |g1u1| = 1
2
|(a1 + b1)(a1 − b1)| = 1

2
(−|a1b1| + |b1a1|) =

1
2
(|b1aa|+|b1a1|) = |b1a1|, 100 % covalent, eigenfunction of Ŝ2 (triplet). |g1u1v1| =

1
2
|(a1 + b1)(a1 − b1)c1| = 1

2

(
−|a1b1c1|+|b1a1c1|

)
= 1

2

(
−|a1b1c1|−|a1b1c1|

)
=

−|a1b1c1|, 100 % covalent, eigenfunction of Ŝ2 (quartet). (d) For simplicity, we drop

the subscript and multiply with the normalization constant at the end. 2|guv|−|guv|−
|guv| = |(a + b)(a − b)c| − 1

2
|(a + b)(a − b)c| − 1

2
|(a + b)(a − b)c| = −|abc| +

|bac|− 1
2

(
|aac|−|abc|+|bac|−|bbc|

)
− 1

2

(
|aac|−|abc|+|bac|−|bbc|

)
= −2|abc|+

|abc| + |abc|. After multiplying with 1/
√

6, the doublet spin eigenfunction appears,

with 100 % covalent character.

http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_3
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Problem 3.3 Ŝ+(1)Ŝ−(2)αα = 0; Ŝ−(1)Ŝ+(2)αα = 0; Ŝz(1)Ŝz(2)αα = 1
4
αα ⇒

−JŜ(1) · Ŝ(2)Φ(T) = − 1
4

JΦ(T). Ŝ+(1)Ŝ−(2)(αβ − βα) = 0 − αβ;

Ŝ−(1)Ŝ+(2)(αβ − βα) = βα − 0; Ŝz(1)Ŝz(2)(αβ − βα) = − 1
4
αβ + 1

4
βα ⇒ Ŝ(1) ·

Ŝ(2)(αβ − βα) = − 1
2
(αβ − βα) − 1

4
(αβ − βα) ⇒ −JŜ(1) · Ŝ(2)Φ(S) = 3

4
JΦ(S).

Problem 3.4 (a) All determinants have two electrons with α spin and one with β

spin, hence MS of all determinants is 1
2

. Ψ3 = 1√
3

(
|φ1φ2φ3|+|φ1φ2φ3|+|φ1φ2φ3|

)
.

Separating the spatial and spin part: Ψ3 = 1√
3
|φ1φ2φ3|(ααβ+αβα+βαα). The spin

part is the MS = 1
2

component of the quartet spin eigenfunction, the application of Ŝ+

gives ααα. (b) Ψ1 corresponds to D2, then J12 = J23 = 2
3
(E(Ψ1)−E(Ψ3)) = −27.24

meV and J13 = −27.24−(E(D2)−E(D1)) = 0.07 meV. (c) Model space: |φ1φ2φ3|,
|φ1φ2φ3|, |φ1φ2φ3|, |Ψ̃i|2 = 0.8973, 0.9623, 1.0002, 0.0349, 0.0922 (the third is

due to round-off errors). (d) Ψ1, Ψ2 and Ψ3. Only 〈Ψ1|Ψ2〉 �= 0, Gram-Schmidt

orthogonalization gives c1 = −0.4672, c2 = 0.8135, c3 = −0.3463 for Ψ1 and

c′
1 = −0.6696, c′

2 = −0.0699, c′
3 = 0.7394 for Ψ2. (e) Ĥ

eff
11 = −27.9615094,

Ĥ
eff
21 = −0.0001464, Ĥ

eff
22 = −27.9608149, Ĥ

eff
13 = 0.0000786, Ĥ

eff
23 = 0.0010935,

Ĥ
eff
33 = −27.9587333. J12 = 7.97 meV, J13 = −4.28 meV, J23 = −59.51 meV.

Problem 3.5 (a) Dividing the eigenvalues given in Fig. 3.6 by −J , we obtain

Ŝ1Ŝ2Q = 1 · Q; Ŝ1Ŝ2T = −1 · T; Ŝ1Ŝ2S = −2 · S. Applying the operator for the

second time leads to Ŝ1Ŝ2(1 · Q) = 1 · Q; Ŝ1Ŝ2(−1 · T) = 1 · T; Ŝ1Ŝ2(−2 · S) = 4 · S.

Multiplying with λ gives exactly the same eigenvalues as listed in Eq. 3.75.

Problem 3.6 (E(T) − E(Q))/2 = −42.58 meV, E(S) − E(T) = −37.54 meV, no

regular spacing. From Eq. 3.75 follows E(T)−E(Q) = 2J and E(S)−E(T) = J+3λ.

This gives J = −42.58 meV and λ = [−37.54 − (−42.58)]/3 = 1.68 meV.

Exercises and Problems of Chap. 4

Exercise 4.1 〈ΨS|ΨS〉 = (1/(2 + 2S))〈ab + ba|ab + ba〉 = (1/(2 + 2S))
(
〈ab|ab〉

+ 〈ab|ba〉 + 〈ba|ab〉 + 〈ba|ba〉
)

= (1/(2 + 2S))(1 + S + S + 1) = 1; 〈ΨT |ΨT 〉 =
(1/(2 − 2S))〈ab − ba|ab − ba〉 = (1/(2 − 2S))

(
〈ab|ab〉 − 〈ab|ba〉 − 〈ba|ab〉 +

〈ba|ba〉
)

= (1/(2 − 2S))(1 − S − S + 1) = 1.

Exercise 4.2 J11 = 〈φ1φ1|1/r12|φ1φ1〉 = (1/4)〈(φa + φb)(φa + φb)1/r12(φa +
φb)(φa+φb)〉 = (1/4)

(
〈φaφa|1/r12|φaφa〉+〈φaφa|1/r12|φaφb〉+〈φaφa|1/r12|φbφa〉

+〈φaφa|1/r12|φbφb〉+〈φaφb|1/r12|φaφa〉+. . . (eleven more terms)
)

= (1/4)(2Jaa+
2Jab + 4Kab + 8〈φaφa|1/r12|φaφb〉), where we have used that the system is cen-

trosymmetric: Jaa = Jbb, etc. This is equal to the expression given in Eq. 4.20.

Exercise 4.3 Meta: the shortest contacts are formed by the aligned carbon atoms of

the benzene ring. These have opposite spin density, and hence, ρiρj < 0, indicating

http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_3
http://dx.doi.org/10.1007/978-3-319-22951-5_4
http://dx.doi.org/10.1007/978-3-319-22951-5_4
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a ferromagnetic interaction between the two units. fully aligned: All carbon atoms

form shortest contacts and the product of atomic spin populations is positive in all

cases, hence an antiferromagnetic coupling can be expected.

Exercise 4.4 The symmetry of the complex is D2h and the five d-orbitals by increas-

ing orbital energy are 3dxz (b2g), 3dyz (b3g), 3dxy (b1g), 3dz2 (ag), 3dx2−y2 (ag), with

the irreducible representation in parentheses. CrIII has a d3 electronic configura-

tion, occupying the b1g, b2g and b3g orbitals. NiII has a d8 electronic configuration

and the orbitals with unpaired electrons are the two ag’s. All exchange paths that

connect Cr with Ni involve orbitals of different symmetries, implying zero overlap

between the magnetic orbitals, and hence, ferromagnetic coupling. Replacing CrIII

with MnII introduces two extra unpaired electrons on site A, and hence, 5 × 2 = 10

exchange paths. Among the ten exchange paths, the four involving the ag orbitals will

give a (strong) antiferromagnetic contribution, which counterbalances the (weaker)

ferromagnetic contribution of the other six paths. The net coupling will be antifer-

romagnetic.

Exercise 4.5 There are six determinants with two doubly occupied orbitals, six

MS = 0 determinants can be constructed with all orbitals singly occupied and the

distribution with one doubly occupied orbital, two singly occupied and one empty

orbital can be realized in 24 different ways. The total CAS wave function is a linear

combination of 36 different determinants. Note that the use of spin symmetry reduces

the expansion to 20 CSFs for S = 0, 15 CSFs for S = 1 and 1 CSF for S = 2.

Exercise 4.6 We have four reference determinants |. . . aa|, |. . . ba|, |. . . ab| and

|. . . ba|. There are 2k occupied spin orbitals which can be replaced by one of the 2l

unoccupied spinorbitals: 2k × l×4. In addition there are also replacements involving

a spin-flip, i.e. α → β and β → α. This has to be compensated by spin-flip in the

CAS space, which can only be done for |. . . ab| and |. . . ba|: 2k × l × 2. In total:

12 × k × l.

Exercise 4.7 The CAS(2, 2) reference contains 4 MS = 0 determinants; n = 4.

There are 72 electrons in the inactive orbitals, k = 36. The system has 154 − 36 − 2

virtual orbitals, l = 116. This results in 362 ×116×4 = 601344 2h-1p determinants,

36×1162 ×4 = 1937664 1h-2p determinants, and 362 ×1162 ×4 = 69755904 2h-

2p determinants. The total number of determinants in the MR-CISD wave function

is ≈72294912, from which the 2h-2p determinants constitute more than 96 %.

Exercise 4.8 ΦQ = |ppbb|. The contribution to 〈ΦI |Ĥeff |ΦL〉 equals:
〈hhab|V̂ |ppbb〉〈ppbb|V̂ |hhbb〉

EL−EQ
. The first matrix element is zero since the determinants ΦI

and ΦQ differ by more than two columns.

Exercise 4.9 (a) Neutral determinant ΦI = |hhab|; ionic determinant ΦJ =
|hhaa|. Because both ΦI and ΦJ have two different columns with respect to ΦR,

〈ΦI |Ĥ|ΦR〉〈ΦR|Ĥ|ΦJ〉 is non-zero and in consequence the effective matrix element

between ΦI and ΦJ will be different from zero (see Eq. 1.86). (b) Since the matrix

http://dx.doi.org/10.1007/978-3-319-22951-5_1
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element 〈hhab|Ĥ|aapb〉 is not equal to 〈hhaa|Ĥ|aapb〉 the diagonal matrix elements

of ΦI and ΦJ are shifted non-uniformly.

Exercise 4.10 First, Ŝ2ααββ = 2ααββ+αβαβ+βααβ+αββα+βαβα. With this

〈φ1φ2φ3φ4|Ŝ2|φ1φ2φ3φ4〉 = 〈φ1φ2φ3φ4|2φ1φ2φ3φ4 − φ1φ3φ2φ4 − φ3φ2φ1φ4 −
φ1φ4φ3φ2 − φ4φ2φ3φ1〉 = 2 − 〈φ2|φ3〉2 − 〈φ1|φ3〉2 − 〈φ2|φ4〉2 − 〈φ1|φ4〉2 = 2,

taking into account that 〈φi|φj〉 = δij.

Problem 4.1 In the first place, columns three and four have to be converted to

Kelvins by multiplying with 315647.5. Next the values have to substituted in Eq. 4.18.

Then, J is 1.8, 17.7, 17.9 −5.3 −47.2 K for θ = 85◦ . . . 105◦. As expected, J is max-

imally ferromagnetic around 90◦ and becomes antiferromagnetic for larger angles.

Practically the same tendency is observed when the entries in the second and third

column are replaced by the average value: J to 3.0, 22.6, 20.7, −6.8 and −55.7 K.

Problem 4.2 To calculate the contribution to the total coupling of the two ligands

one has to perform two separate calculations in which only one bridge is active.

This can be achieved by dividing the molecule in three fragments: bridging ligand

A, bridging ligand B, and the rest of the molecule with the two magnetic centers

and the external ligands. Orbitals are optimized for the three fragments. In the first

calculation one superposes the charge distributions of the three fragments and relaxes

the orbitals in the field of the frozen charge distribution of the ligand B. JA is calculated

by calculating the energy difference of the relevant spin states. Subsequently, the

orbitals are optimized in the field of the frozen charge distribution of the ligand

A and JB is calculated. Finally, Jtot from the calculation of the relevant spin states

without restrictions on the orbital optimizations and the counter-complementarity is

quantified by comparing Jtot to the sum of JA and JB.

Problem 4.3 (a) Yamaguchi: −281, −275 and −77 cm−1 for Cu, Ni and Mn.

Noodleman: −284, −276, −77 cm−1. Ruiz: −142, −184, −65 cm−1. The differ-

ence between the different expressions becomes smaller for larger spin moment

and will be irrelevant for polynuclear complexes typically used in single-molecule

magnets. (b) Using the spin densities gives J = −280 cm−1 for Cu.

Exercises and Problems of Chap. 5

Exercise 5.1 The substitution of g = (a + b)/
√

2 and u = (a − b)/
√

2 in the

expression of Sg gives

Sg = 1

2

(
λ|(a + b)(a + b)| − µ|(a − b)(a − b)|

)

= 1

2

(
λ(|aa| + |ab| + |ba| + |bb|) − µ(|aa| − |ab| − |ba| + |bb|)

)

=
(
(λ − µ)(|aa| + |bb|) + (λ + µ)(|ab| + |ba|)

)

http://dx.doi.org/10.1007/978-3-319-22951-5_4
http://dx.doi.org/10.1007/978-3-319-22951-5_5
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When λ ≈ µ, the term with the ionic determinants tends to zero, demonstrating that

Sg is dominated by neutral determinants. In case of λ ≫ µ, an approximately 50 %

mixture of neutral (or covalent) and ionic determinants appears, typical of a covalent

bond in closed shell molecules such as H2.

Exercise 5.2 〈aa|Ĥ|aa〉 = 〈a|ĥ|a〉 + 〈a|ĥ|a〉 + 〈aa| 1−P̂12
r12

|aa〉 = haa + haa +
Jaa.〈bb|Ĥ|bb〉 = hbb + hbb + Jbb. Only under the assumption that haa = hbb and

Jaa = Jbb one can write the relative energy of the ionic determinants as U = Jaa−Jab.

This is the case for centro-symmetric systems.

Exercise 5.3 Substitution of

√
U2 + 16t2

ab
≈

√
U2 + 1

2
16t2

ab
/U = U + 8t2

ab
/U in

Eq. 5.7 gives (U − U + 8t2
ab

/U)/2 = 4t2
ab

/U.

Exercise 5.4 |ab| tba−→ |aa| tab−→ |ba|.

Exercise 5.5 |hhab| tha−→ |haab| thb−→ |aabb| tbh−→ |ahba| tah−→ |hhba|, with the inter-

mediate determinants at∆ECT ,∆E2CT , and∆ECT , respectively. Using the expression

in Eq. 5.12, we arrive at (tha · thb · tbh · tah)/(∆ECT · ∆E2CT · ∆ECT ). Since there are

four different pathways, the final perturbative estimate of the contribution to J reads

−8(t
eff

ab
)2/(2∆ECT ∆E2CT ), introducing an effective hopping parameter between the

magnetic centers t
eff

ab
= thathb.

Exercise 5.6 The two electron pairs have S1 = 1 and S2 = 1. The total spin of

these two electron pairs can in principle take the values S1 + S2 = 2 (quintet),

S1 + S2 − 1 = 1 (triplet), and S1 − S2 = 0 (singlet). For a binuclear Cu2+ complex

(and all other systems with two S = 1/2 spin moments), only the triplet and singlet

couplings are relevant.

Exercise 5.7 Substituting teff = −2218 cm−1 and ∆EST = −362 cm−1 in Ueff =
4teff /∆EST gives a value of 13590 cm−1 (6.74 eV) for the effective on-site repulsion,

a lowering of ∼19 eV with respect to the bare valence-only value.

Exercise 5.8 Ψ̃i are the projections of Ψ on the model space, Ψ̃ ′
i are the normal-

ized projections, and Ψ̃
′†
i the biorthonormal projections. |Ψ̃1|2 = (−0.9224)2 +

(−0.1223)2 = 0.8658, |Ψ̃2|2 = (−0.6626)2 = 0.4390, |Ψ̃7|2 = 0.41592 =
0.1730, |Ψ̃8|2 = 0.17042 + (−0.5324)2 = 0.3125; Ψ̃ ′

1 = −0.9913
(
|ab| +

|ba|
)

− 0.1315
(
|aa| + |bb|

)
; Ψ̃ ′

2 =
(
|ab| − |ba|

)
/
√

2; Ψ̃ ′
7 =

(
|aa| − |bb|

)
/
√

2;

Ψ̃ ′
8 = 0.3048

(
|ab| + |ba|

)
− 0.9524

(
|aa| + |bb|

)
. 〈Ψ̃ ′

1|Ψ̃ ′
8〉 = (−0.9913 × 0.3048 +

−0.1315 × −0.9524) = −0.1769, the other overlaps are zero. 〈Ψ̃ ′
1|Ψ̃

′†
1 〉 =

−0.9913 × −0.9524 + −0.1315 × −0.3048 = 0.9842 = 〈Ψ̃ ′
2|Ψ̃

′†
2 〉; 〈Ψ̃ ′

1|Ψ̃
′†
2 〉 =

−0.9913 × 0.1315 + −0.1315 × −0.9913 = 0 = 〈Ψ̃ ′
2|Ψ̃

′†
1 〉; 〈Ψ̃ ′

1†|Ψ̃ ′†
2 〉 =

−0.9524 × 0.1315 + −0.3048 × −0.9913 = 0.1769 =〈Ψ̃ ′
1|Ψ̃ ′

2〉.
Exercise 5.9 Remember that a and b are normalized, orthogonal orbitals: 〈a′|b′〉 =
2 sin α cos α = sin(2α)/2. Overlaps for the listed values of α are 0, 0.052, 0.155,

0.5 and 0.

http://dx.doi.org/10.1007/978-3-319-22951-5_5
http://dx.doi.org/10.1007/978-3-319-22951-5_5
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Exercise 5.10 Since both the interaction elements 〈NH|Ĥ|I〉 are larger (t versus

t/
√

2 for triplet and singlet) and the denominators smaller (2 and 4K), one expects a

stronger energy lowering for the triplet energy than for the singlet. This means that

JTQ = (ET − EQ)/2 will be larger (in absolute value) than EST = ET − ES .

Exercise 5.11 Assuming a square geometry with distance r1 between neighboring

magnetic sites, the hole-particle contribution to the total energy of Φα is q1 ·q2/r1 =
−1/r. For Φγ , the same contribution arises. In the case of Φβ the hole (+1 charge)

and particle (−1 charge) are at r2 =
√

2r1 and the contribution becomes q1 ·q2/r2 =
−1/

√
2r1, and hence, the energies of the ionic determinants are not strictly the same.

Exercise 5.12 |abcd| tad−→ |bcdd| tcb−→ |bbdd| tba−→ |abdd| tdc−→ |abcd| or

|abcd| tad−→ |bcdd| tcb−→ |bbdd| tdc−→ |bbcd| tba−→ |abcd|.

Exercise 5.13 Iα = |ϕ1ϕ2ϕ2ϕ3|, Iβ = |ϕ1ϕ3ϕ4ϕ4|. 〈Φ4|Ĥ|Iα〉 =
〈ϕ1ϕ2ϕ3ϕ4|Ĥ|ϕ1ϕ2ϕ2ϕ3〉 = −〈ϕ1ϕ2ϕ3ϕ4|Ĥ|ϕ1ϕ2ϕ3ϕ2〉 = −t24, 〈Φ4|Ĥ|Iβ〉 =
−t24.

Exercise 5.14 −J1(ŜAŜB + ŜC ŜD)αααα =−J1(
1
4
αααα + 1

4
αααα) =− 1

2
J1αααα;

−J2(ŜAŜD + ŜBŜC)αααα = −J2(
1
4
αααα + 1

4
αααα) = − 1

2
J2αααα; −J3(ŜAŜC +

ŜBŜD)αααα = −J3(
1
4
αααα + 1

4
αααα) = − 1

2
J3αααα; Jr(ŜAŜB)(ŜC ŜD)αααα =

Jr ŜAŜB
1
4
αααα = 1

16
Jrαααα; Jr(ŜAŜD)(ŜBŜC)αααα = Jr ŜAŜD

1
4
αααα = 1

16
Jrαα

αα; −Jr(ŜAŜC)(ŜBŜD)αααα = −Jr ŜAŜC
1
4
αααα = − 1

16
Jrαααα ⇒ 〈αααα|Ĥ|αα

αα〉 = − 1
2
(J1 + J2 + J3) + 1

16
Jr .

Problem 5.1 The model space is reduced to a 2×2 matrix spanned by |ab| and |ba|.
The matrix representation is

|ab〉 |ba〉
〈ab| 0 Kab

〈ba| Kab 0

The corresponding secular determinant leads to the equation E2 − K2
ab

= 0, which

gives the eigenvalues E1,2 = ±Kab and the eigenfunctions Ψ1,2 = |ab| ± |ba|. The

energy difference is 2Kab and the ground state is the triplet, because Kab is positive.

Problem 5.2 (a) Ψ1 = (|ab| + |ba|)/
√

2; Ψ2 = (|ab| − |ba|)/
√

2; Ψ3 = (|aa| +
|bb|)/

√
2; Ψ4 = (|aa| − |bb|)/

√
2. (b) 〈Ψ1|Ĥ|Ψ1〉 = 1

2
(〈ab|Ĥ|ab〉 + 〈ab|Ĥ|ba〉 +

〈ba|Ĥ|ab〉 + 〈ba|Ĥ|ba〉) = haa + hbb + Jab + Kab; 〈Ψ2|Ĥ|Ψ2〉 = 1
2
(〈ab|Ĥ|ab〉 −

〈ab|Ĥ|ba〉 − 〈ba|Ĥ|ab〉 + 〈ba|Ĥ|ba〉) = haa + hbb + Jab − Kab; 〈Ψ3|Ĥ|Ψ3〉 =
1
2
(〈aa|Ĥ|aa〉+〈aa|Ĥ|bb〉+〈bb|Ĥ|aa〉+〈bb|Ĥ|bb〉) = haa+hbb+ 1

2
(Jaa+Jbb)+Kab;

〈Ψ4|Ĥ|Ψ4〉 = 1
2
(〈aa|Ĥ|aa〉 − 〈aa|Ĥ|bb〉 − 〈bb|Ĥ|aa〉 + 〈bb|Ĥ|bb〉) = haa + hbb +

1
2
(Jaa + Jbb) − Kab. (c) Ψ1 = Sg; Ψ2 = Tu; Ψ3 = Sg; Ψ4 = Su; only 〈Ψ1|Ĥ|Ψ3〉 is

non-zero. (d) 〈Ψ1|Ĥ|Ψ3〉 = 1
2
(〈ab|Ĥ|aa〉+ 〈ab|Ĥ|bb〉+ 〈ba|Ĥ|aa〉+ 〈ba|Ĥ|bb〉) =
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2hab +〈ab|1/r12|aa〉+〈ab|1/r12|bb〉 = 2tab. Taking 〈Tu|Ĥ|Tu〉 as reference energy,

the CAS(2, 2) matrix becomes

|Ψ1〉 |Ψ2〉 |Ψ3〉 |Ψ4〉
〈Ψ1| 2Kab 0 2tab 0

〈Ψ2| 0 0 0 0

〈Ψ3| 2tab 0 2Kab + U 0

〈Ψ4| 0 0 0 U

Problem 5.3 (a) The third term (sin α cos α)
(
|aa| + |bb|

)
is singlet spin eigen-

function with eigenvalue S(S + 1) = 0. (b) ΦBS = 1
2

cos2 α|ab| + 1
2

cos2 α|ab| +
1
2

sin2 α|ba|+ 1
2

sin2 α|ba|+ 1
2

cos2 α|ba|− 1
2

cos2α|ba|+ 1
2

sin2 α|ab|− 1
2

sin2 α|ab|+
(sin α cos α)(|aa|+|bb|) = 1

2
(cos2 α+sin2 α)(|ab|+|ba|)+ 1

2
(cos2 α−sin2 α)(|ab|−

|ba|) + (sin α cos α)(|aa| + |bb|) = 1
2

√
2|S1〉 + 1

2
cos 2α ·

√
2|T〉 + (sin α cos α) ·√

2|S2〉. (c) 〈ΦBS|Ŝ2|ΦBS〉 = 1
4
·2·〈S1|Ŝ2|S1〉+ 1

4
cos2(2α)·2〈T |Ŝ2|T〉+(sin α cos α)2·

2〈S2|Ŝ2|S2〉 = 0 + 1
2

cos2(2α) · 1(1 + 1) + 0 = cos2(2α).

Problem 5.4 Energies relative to ET : 〈S|Ĥ|S〉 = 2Kab; 〈I1|Ĥ|I1〉 = U + 2Kab;

〈I2|Ĥ|I2〉 = U−2Kab (all the Coulomb interactions are absorbed in Eref ). Interaction

matrix elements: 〈S|Ĥ|I〉 = 1
2
[〈ab|Ĥ|aa〉+ 〈ab|Ĥ|bb〉+ 〈ba|Ĥ|aa〉+ 〈ba|Ĥ|bb〉] =

2t. 〈S|Ĥ|I2〉 = 0. Second-order energy of S : 〈S|Ĥ|S〉 + 〈S|Ĥ|I1〉〈I1|Ĥ|S〉/(ES −
EI1) = 2Kab + (2t2 · 2t2)(2Kab − (U + 2Kab)) = 2Kab − 4t2/U.

Problem 5.5 λ = B2/3K − J(2)2/4K = [(4B2 − 3J(2)2)/12K = (4t4
13 + 4t4

24 −
8t2

13t2
24)− (3t4

13 + 3t4
24 + 6t2

13t2
24)]/12KU2 = (t4

13 + t4
24 − 2t2

13t2
24)/12KU2 =

(
(t2

13 −
t2
24)

2
)
/12KU2. Biquadratic exchange is maximum for maximal difference between

the two t-values and approaches zero when they become equal.

Problem 5.6 Neglecting the direct exchange contribution, the perturbative estimate

of Jr = 80t4/U3; for Jij = 4t2/U ⇒ Jr/(J12J23) = (80t4 × U2)/(U3 × 16t4) =
5/U. From this immediately follows that Jr = (5J12J23)/U = 5 × −25.1 ×
−39.5)/3100 = 1.6 meV.

Exercises and Problems of Chap. 6

Exercise 6.1 For a centrosymmetric system c1 = c2 = 1/
√

2. Substitution in

Eq. 6.9 leads to t+
ab

=
(
∆E12 − (1/2 − 1/2)(Haa − Hbb)

)
/4 · 1/2 = ∆E/2.

Exercise 6.2 Φ2 and Φ5 have two α electrons on A and B, respectively. Φ1 +Φ3 and

Φ4 +Φ6 are the MS = 0 components of the on-site triplets. The minus combinations

of these correspond to singlet coupling on the magnetic centers. Note that these

functions are not directly spin eigenfunctions of the whole complex.

http://dx.doi.org/10.1007/978-3-319-22951-5_6
http://dx.doi.org/10.1007/978-3-319-22951-5_6
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Exercise 6.3 The remaining zeros correspond to 〈Φ1|Ĥ|Φ2〉, 〈Φ2|Ĥ|Φ5〉,
〈Φ3|Ĥ|Φ6〉 and 〈Φ4|Ĥ|Φ5〉. In all cases the number of different columns of the

bra-determinant and the ket-determinant is larger than two. These matrix elements

are zero always as reflected in the Slater-Condon rules. Because of the centrosym-

metric nature of the model, a2 can be replaced by b2 (and vice versa) in the integrals

of the Hamiltonian.

Exercise 6.4 Contributions from the one-electron integrals and Coulomb integrals

are the same in the three cases (h11 + h22 + h33 + J12 + J13 + J23) and will

be omitted. 〈ϕ1ϕ2ϕ3|Ĥ|ϕ1ϕ2ϕ3〉 = −K12 − K13 − K23. 〈ϕ1ϕ2ϕ3|Ĥ|ϕ1ϕ2ϕ3〉 =
−K12. With K13 = K23 = K , the energy difference becomes 2K , in line with

Eq. 6.29. The doublet function with triplet coupling for ϕ1 and ϕ2 is given in

Eq. 1.46. (1/6)〈2ϕ1ϕ2ϕ3 − ϕ1ϕ2ϕ3 − ϕ1ϕ2ϕ3|Ĥ|2ϕ1ϕ2ϕ3 − ϕ1ϕ2ϕ3 − ϕ1ϕ2ϕ3〉 =
(1/6)[−4K12 + 2K23 + 2K13 + 2K23 − K13 − K12 + 2K13 − K12 − K23] =
−K12 + (1/2)(K23 + K23). The energy difference with |ϕ1ϕ2ϕ3| is 3K as expected

from Eq. 6.30.

Exercise 6.5 The expression for the second-order correction is
∑

a〈ΦI |Ĥ|
Φa〉〈Φa|Ĥ|ΦI 〉/(EI − Ea), where I = S, T and a is one of the determinants other

than Ψ1 or Ψ2 in the matrices. Only Ψ7 and Ψ9 have non-zero matrix elements with

Ψ1 leading to the expression given in Eq. 6.47 for the triplet. Ψ2 interacts directly

with Ψ8 (−tpd), Ψ10 (−tpd) and Ψ13 (2tab). The application of the formula gives the

second order corrected energy for the singlet.

Exercise 6.6 Ψ± = 1
2

(
αα(αβ±βα) + (αβ±βα)αα

)
.− 1

2
J(ŝ+(1) + ŝ+(2))(ŝ−(3) +

ŝ−(4))(αααβ±ααβα) = 0; − 1
2
(ŝ+(1) + ŝ+(2))(ŝ−(3)+ ŝ−(4))(αβαα±βααα) =

− 1
2

J((ŝ+(1) + ŝ+(2))(αββα + βαβα ± (αβαβ + βααβ)) = ∓J(αααβ + ααβα);

− 1
2

J(ŝ−(1) + ŝ−(2))(ŝ+(3)+ŝ+(4))(αααβ±ααβα) = ∓J(ŝ−(1)+ŝ−(2))αααα =
∓J(αααβ + ααβα); − 1

2
(ŝ−(1) + ŝ−(2))(ŝ+(3) + ŝ+(4))(αβαα ± βααα) = 0;

(ŝz(1) + ŝz(2))(ŝz(3) + ŝz(4))(αααβ ± ααβα) = ( 1
2

+ 1
2
)( 1

2
− 1

2
) + ( 1

2
+ 1

2
)(− 1

2
+

1
2
)(αααβ ± ααβα) = 0 and similar for the other term of Ψ±. From this: ĤΨ± =

∓JΨ±. The eigenvalues of Ŝ2 can be determined in a similar way: (ŝ+(1) +
ŝ+(2)+ ŝ+(3)+ ŝ+(4))(ŝ−(1)+ ŝ−(2)+ ŝ−(3)+ ŝ−(4))ααβα = (ŝ+(1)+ ŝ+(2)+
ŝ+(3) + ŝ+(4))(βαβα + αββα + 0 + ααββ) = 3ααβα + βααα + αβαα + αααβ;

(ŝ+(1)+ ŝ+(2)+ ŝ+(3)+ ŝ+(4))(ŝ−(1)+ ŝ−(2)+ ŝ−(3)+ ŝ−(4))αααβ = 3αααβ +
βααα +αβαα +ααβα; (ŝ+(1)+ ŝ+(2)+ ŝ+(3)+ ŝ+(4))(ŝ−(1)+ ŝ−(2)+ ŝ−(3)+
ŝ−(4))αβαα = 3αβαα + βααα + ααβα + αααβ; (ŝ+(1) + ŝ+(2) + ŝ+(3) +
ŝ+(4))(ŝ−(1)+ ŝ−(2)+ ŝ−(3)+ ŝ−(4))βααα = 3βααα +αβαα +ααβα +αααβ;

(ŝz(1) + ŝz(2) + ŝz(3) + ŝz(4))ααβα = ( 1
2

+ 1
2

− 1
2

+ 1
2
)ααβα = ααβα and similar

for the other terms. The Ŝ2
z operator has the same eigenvalues and cancels the effect

of Ŝz because they appear with opposite signs in the expression of Ŝ2. From this

Ŝ2Ψ+ = 6Ψ+ (quintet) and Ŝ2Ψ− = 2Ψ− (triplet).

Exercise 6.7 (a) α(1)β(2)α(3)β(4)α(5)β(6)α(7)β(8) (b) In a step-by-step proce-

dure, the expectation value of Φ0 is determined. The products of spin-up and spin-

down operators change the wave function and hence give a zero contribution to

http://dx.doi.org/10.1007/978-3-319-22951-5_6
http://dx.doi.org/10.1007/978-3-319-22951-5_1
http://dx.doi.org/10.1007/978-3-319-22951-5_6
http://dx.doi.org/10.1007/978-3-319-22951-5_6
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the expectation value due to orthogonality. −J
∑8

i=1,j=i+1 Ŝz(i)Ŝz(j)αβαβαβαβ =
−J · 8 · 1

2
· − 1

2
αβαβαβαβ and the expectation value = 2J . From Eq. 6.73 one

gets 1
2

· 8 · 2( 1
2
)2J = 2J . (c) αββααβαβ. The energy expectation value has

again only contributions from the product of Ŝz operators and reads: −J(−1/4 +
1/4 − 1/4 + 1/4 − 1/4 − 1/4 − 1/4 − 1/4) = J . (d) − 1

2
JŜ+(3)Ŝ−(4) is the

only terms that can contribute to the interaction matrix element of Φ0 and Φ1.

− 1
2

JŜ+(3)Ŝ−(4)αββααβαβ = − 1
2
αβαβαβαβ. The matrix element is − 1

2
J .

Problem 6.1 E(D) = − 1
2

t + 3
2

J; E(Q) = −t. The doublet is the ground state when

J < − 1
3

t. That is, when it becomes more “antiferromagnetic” than 1/3 t.

Problem 6.2 Replacing the px and py orbitals on the bridge by an orbital of s symme-

try activates the superexchange and semi covalent exchange between the half-filled

orbitals, both favoring antiferromagnetic interaction. The semi covalent exchange

between filled d-orbitals of t2g character and the half-filled orbitals can no longer

take place because there is zero overlap with the s function. The semi covalent

exchange involving the filled d(eg) orbital gives a small ferromagnetic contribution.

Problem 6.3 (a) Only Ŝz(i)Ŝz(i + 1) gives non-zero contributions to the energy:

E(Φ0) = −J ·8( 1
2
·− 1

2
) = 2J; E(Φ1) = −J ·

(
6( 1

2
·− 1

2
)+ 1

2
· 1

2
+(− 1

2
·− 1

2
)
)

= J . Both

in agreement with Eqs. 6.73 and 6.75. (b) E(Φ0) = −J ·16 · ( 1
2
·− 1

2
+ 1

2
·− 1

2
)J = 8J

(each center has four neighbours, to avoid double counting only the ones with higher

index (two centers) are taken into account). The eleven centers outside the shaded

area contribute in the same way to the energy as in the ground state: −J · 11( 1
2

·
− 1

2
+ 1

2
· − 1

2
) = 11

2
J . From the remaining five centers, four centers contribute with

one parallel and one anti-parallel connection: −J · 4( 1
2

· − 1
2

+ 1
2

· 1
2
) = 0, and one

centers with two ferromagnetic connections: −J( 1
2

· 1
2

+ 1
2

· 1
2
) = − 1

2
J . In total, the

energy becomes 5J . Again in agreement with the general equations.

Problem 6.4 (a) When J2 = 0 and J1 < 0, the system corresponds to an antifer-

romagnetic one-dimensional chain with θ = 180◦, then E = −NS2J , equal to the

energy expression of Eq. 6.73 with z = 2. (b) When J1 > 0, the spins on all centers

tend to align ferromagnetically, which is reinforced by a positive J2. When J1 > 0,

the antiparallel alignment of the nearest neighbours results in a parallel alignment

of the next-nearest neighbours (–up-down-up-down–), in line with a positive (ferro-

magnetic) J2. (c) Using the trigonometric relation cos(2θ) = 2 cos2 θ +1, the energy

http://dx.doi.org/10.1007/978-3-319-22951-5_6
http://dx.doi.org/10.1007/978-3-319-22951-5_6
http://dx.doi.org/10.1007/978-3-319-22951-5_6
http://dx.doi.org/10.1007/978-3-319-22951-5_6
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expression is first rewritten to E = −NS2J1 cos θ −NS2J22 cos2 θ −NS2J2. Then the

energy is minimized with respect to θ : ∂E/∂θ = NS2J1 sin θ +4NS2J2 cos θ sin θ =
0 ⇒ sin θ(J1 + 4J2 cos θ) = 0. The solutions are θ = 0 (ferromagnetic), 180

(antiferromagnetic) and cos θ = −J1/4J2 (helical). (d) J1 = 1, J2 = −0.3; θ =
arccos(1/1.2) = 0.586 rad = 33.56◦; J1 = −1, J2 = −0.3; θ = arccos(−1/1.2) =
2.556 rad = 146.44◦.
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Dirac equation, 36
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Dzyaloshinskii-Moriya interaction, see

anisotropic exchange

E

Easy axis magnetism, 43

Easy plane magnetism, 43

Effective Hamiltonian, 27, 28, 32, 70, 72, 73,

94, 101, 153, 166, 172, 181

Embedded cluster, 190

Embedding

ab initio model potential, 191

frozen density, 191

imethod of increments, 196

point charges, 191

polarization, 192

Exchange-correlation, 191

Exchange integral, 5, 31, 62, 63, 65, 77, 120,

162, 184

on-site, 161, 166, 168, 172, 185–187

two-center, 161, 185, 202

Exchange interaction, 164, 188, 191

Exchange pathways, 107

F

Ferrimagnetism, 80

Ferroelectricity, 212

Fock operator, 25

Four-component methods, 36

Four-spin cyclic exchange, see ring

exchange

G

Goodenough-Kanamori rules, 197, 211

Gram-Schmidt orthogonalization, 30, 155

G tensor, 48, 52, 56

H

Hartree-Fock, 21, 25, 137, 164

Hartree product, 1, 4

post HF, 122

restricted open–shell, 136

unrestricted, 135

Hay-Thibeault-Hoffmann (HTH), 64, 108,

110, 113, 144

Heisenberg Hamiltonian, 69, 71, 73, 76, 82,

89, 101, 120, 204, 206, 210

Helical spin order, 212

Hopping integral (t), 143, 145, 156, 166, 168,

175, 179, 202

Hund’s rule, 14, 65, 182, 198

I

Intermolecular interactions, 80

Intramolecular interactions, 80

Intruder states, 129

Ionic crystals, 190

Ionic determinant, 124, 143, 145, 149, 162,

164–166, 181

relaxation, 150

Ionic determinants, 64

Irreducible representation, 35, 37, 39, 61

Ising Hamiltonian, 74, 76, 193

Isotropic interactions, 69

J

Jahn-Teller distortion, 39, 199

K

Kahn-Briat, 66, 105, 107, 144

Kinetic exchange, 66, 147, 148, 150, 155,

157, 158, 165, 175

Koopmans’ theorem, 127

Kramers doublet, 43, 55

L

Ladder operators, 6, 8, 42, 205, 210

Landé pattern, 70, 89, 159, 164, 165

Ligand-to-metal charge transfer (LMCT),

148, 151

LS term, 35

M

Madelung potential, 190

Magnetic susceptibility, 44, 77

Magnetoresistance, 182

Many center interactions, see ring exchange

McConnell’s model, 110

Mermin-Wagner theorem, 85

Metal-to-ligand charge transfer (MLCT),

151

Metropolis algorithm, 85

Mixed valence systems, 177

Model Hamiltonian, 29, 41, 43, 52, 68, 74,

95, 100, 185, 188

Molecular crystals, 190

Molecular dynamics, 85

Molecular orbital diagram, 118, 119

Monte Carlo simulation, 82, 85

MR-CISD, 121

Multiconfigurational, 120

Multideterminantal, 120, 209
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Multiferroic, 95

Multireference, 121, 127

N

Neél state, 210, 211

Neutral determinant, 64, 124, 144, 145, 149,

162, 165, 174, 181

Non-Hund state, 77, 160, 162, 164, 165, 186

Noodleman equation, 135

O

On-site repulsion (U), 143, 145, 156, 166,

168, 177

Open-shell singlet, 60, 120

Orbital ordering, 199

Orbitals, 1

active, 61, 68, 121, 142, 147

antibonding, 60, 63, 66, 110, 180

barred, 6

bonding, 60, 61, 63, 66, 110, 180

degenerate, 65

delocalized, 60, 62–64, 101

empty, 129, 178, 179, 198–200

energies, 26, 109, 110, 119

filled, 178, 198, 200, 201

gerade/ungerade, 114, 118, 142, 147,

174, 180

half-filled, 198–201, 203

inactive, 121, 124, 125, 178, 179

localized, 62–66, 101, 108, 109, 111, 142

magnetic, 60, 67, 68, 106, 107, 119, 158,

159, 177, 180

molecular, 59, 62, 108, 109, 121

molecular orbital theory, 1

nonorthogonal, 66, 67, 105, 108, 133,

134

orbital moment, 33–35, 37–40, 43, 48, 49

orbital moment quenching, 39

spin orbital, 6, 131, 158, 193

state-specific, 152

virtual, 121, 124, 125

P

Partition function, 83

Periodic boundaries, 79, 210

Periodic calculation, 193

Permutation operator, 3, 91, 106

Perturbation operator, 22, 25, 40, 127

Perturbation theory, 21, 36, 40, 48

(un)contracted first order wave function,

130

CASPT2, 123, 127, 131, 151

Møller-Plesset, 21, 25, 127, 197

NEVPT2, 127, 129, 131, 151

quasi-degenerate, 21, 27, 124, 144–146,

148, 166, 168, 201

Rayleigh-Schrödinger, 21, 31

zeroth order Hamiltonian, 22, 25, 127,

129

Post HF, 196

Projection operator, 9, 10, 29

R

Renormalization group theory, 82

Restricted ensemble Kohn–Sham (REKS)

DFT, 136

Restricted open-shell Kohn–Sham (ROKS)

DFT, 136, 157

Rhombic magnetic anisotropy (E), 41, 54, 98

Ring exchange, 90, 91, 95, 159, 166, 168,

172, 175, 193

Robin and Day classification, 177

Russell-Saunders, 36, 39

S

Scalar relativistic effects, 36

Semi covalent exchange, 198–201

Shift operators, see ladder operators

Slater determinant, 1, 3, 7, 8, 21, 59, 65, 66,

120, 121

Slater-Condon rules, 3, 25, 62, 125, 179, 184

Spectral decomposition, 29

Spin contamination, 20, 132, 137, 174

Spin density, 111

Spin eigenfunction, 8

by diagonalization, 10

by projection, 9

genealogical approach, 12

Spin-flip DFT, 137

Spin multiplicity, 35

Spin-orbit coupling, 34, 36, 40, 41, 48

Spin polarization, 132, 148, 156–158

Spin wave, 209, 211

Step-up/step-down operators, see ladder

operators

Strong overlap limit, 133, 136

Superexchange, 67, 68, 147, 182, 197–200,

203

T

Through-bond interaction, 80

Through-space interaction, 80
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Two-electron/two-orbital, 10, 31, 59, 61, 68,

74, 120, 124, 131, 137

V

Valence bond theory, 64, 66, 105

Van Vleck equation, 45, 77

W

Wannier orbital, 196

Weak overlap limit, 133

Y

Yamaguchi’s relation, 132, 134, 157

Z

Z-component of the spin operator, Ŝz , 5–7,

9, 11, 34, 35, 41–43, 47, 49, 52, 74,

207

Zeeman effect, 43, 49, 52

Zero field splitting, 39, 52
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