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Preface to the Sixth Edition

The basic structure of the five previous editions is still maintained in this

Sixth Edition. After the release of the Fifth Edition in 2004, academic and

industrial environments have been changed, although the fundamentals have

not changed over 15 years. When the author started to teach structural

dynamics since 2011, the most challenging part as an instructor has been to

present how students can solve and simulate the structural dynamics using

the computer program. There is a limited information available to show how

we can solve structural dynamics in finite element method–based commer-

cial software. When understanding the background of undergraduate and

graduate students who are first exposed to structural dynamics, the

fundamentals are mainly considered as core content. The author believes

that a line-by-line computer language is a helpful learning and teaching tool

for its application of fundamentals. This is the major motivation of the

revision of this textbook.

This revised textbook intends to provide enhanced learning materials for

students to learn structural dynamics, ranging from basics to advanced topics,

including their application. When a line-by-line programming language is

included with solved problems, students can learn course materials easily and

visualize the solved problems using a program. Among several programming

languages, MATLAB® has been adopted by many academic institutions

across several disciplines. Many educators and students in the USA and

many international institutions can readily access MATLAB®, which has

an appropriate programming language to solve and simulate problems in the

textbook. It effectively allows matrix manipulations and plotting of data.

Therefore, multi-degree-of-freedom problems can be solved in conjunction

with the finite element method using MATLAB®. As of 2018, SAP2000

presented in the Fifth Edition is currently outdated, at least regarding user

interface procedure. The revision author Young Hoon Kim still believes that

SAP2000 includes routines for the analysis and design of structures with

linear or nonlinear behavior subjected to static or dynamics loads. However,

in this edition exclusion of SAP2000 is necessary to minimize the learner’s

confusion to link between contents and solving with the aid of computer

programming language. The author still believes that SAP2000 can be one of

the best tools to solve structural analysis and structural dynamics in complex

systems. Practical engineers who are eager to use commercial software can

learn frommany other textbooks available in the market. Generously, authors
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offer the alternative option to navigate other textbooks related to finite

element methods. In short, the Sixth Edition mainly targets readers such as

senior or master students in structural engineering and earthquake engineer-

ing in civil engineering.

This revised edition includes 34 solved examples in Chaps. 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22 with basics: inputs

and outputs. The solved problems enhance learners’ understanding, as well

as effective teaching resources: line-by-line programing language. Addi-

tional figures printed out from MATLAB® codes illustrate time-variant

structural behavior and dynamic characteristics (e.g., time versus displace-

ment and spectral chart). This textbook updates basics of earthquake design

with current design codes (ASCE 7-16 and IBC 2018). Finally, the Sixth

Edition uses (1) basic MATLAB® codes for structural dynamics: more than

30 examples in most chapters covering basics and advanced topics,

(2) contents to educate undergraduate students and Master of Science/Engi-

neering students who are first exposed to structural dynamics. Graduate and

undergraduate students can easily use a contemporary computer program

(MATLAB) that is widely used in the USA and other countries.

• Printed code language helps students to understand the application of

structural dynamics.

• Graduate students are able to apply the fundamentals to real design

problems using current version and practices.

• Enhanced illustrations will enhance the readability of expected readers.

I also like to take this opportunity to thank my colleagues in my home

department at Speed School of Engineering at the University of Louisville,

KY, especially, Dr. J.P. Mohsen, who continuously encouraged me to revise

this book in a timely manner. He recommended the Fifth Edition which also

originated from the Third Edition, which I first read in my undergraduate

structural dynamics study in South Korea. I also wish to recognize and thank

my current PhD student, Jice Zeng. He did diligent work redrawing most

figures from the previous edition of this textbook. Especially, I want to thank

Dr. Yeesock Kim at California Baptist University. He introduced the appli-

cation of programming language in my first course of structural dynamics at

the University of Louisville which enabled me to proficiently apply structural

dynamics using MATLAB®. Finally, I was able to transform my course

materials into part of the revision of this version. In addition, I wish to

thank Paul Drougas and Flanagan Caroline who patiently waited for my

final manuscript.
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I am very grateful to serve as the coauthor for original author Mario Paz

for enabling my contribution in reviewing and editing this volume, especially

those sections which used the computer programs. Finally, I thank my wife,

Hye-Jin Baek. Without her support, this revision would be incomplete. Also,

my two sons, Edward and William, always provide me all the energy.

For from him and through him and to him are all things. To him be glory

forever. Amen. (Romans 11:36)

Louisville, KY, USA Young Hoon Kim

May, 2018

Preface to the Sixth Edition vii



Preface to the First Edition

Natural phenomena and human activities impose forces of time-dependent

variability on structures as simple as a concrete beam or a steel pile, or as

complex as a multistory building or a nuclear power plant constructed from

different materials. Analysis and design of such structures subjected to

dynamic loads involve consideration of time-dependent inertial forces. The

resistance to displacement exhibited by a structure may include forces which

are functions of the displacement and the velocity. As a consequence; the

governing equations of motion of the dynamic system are generally nonlinear

partial differential equations which are extremely difficult to solve in mathe-

matical terms. Nevertheless, recent developments in the field of structural

dynamics enable such analysis and design to be accomplished in a practical

and efficient manner. This work is facilitated through the use of simplifying

assumptions and mathematical models, and of matrix methods and modem

computational techniques.

In the process of teaching courses on the subject of structural dynamics,

the author came to the realization that there was a definite need for a text

which would be suitable for the advanced undergraduate or the beginning

graduate engineering student being introduced to this subject. The author is

familiar with the existence of several excellent texts of an advanced nature

but generally these texts are, in his view, beyond the expected comprehen-

sion of the student. Consequently, it was his principal aim in writing this

book to incorporate modern methods of analysis and techniques adaptable to

computer programming in a manner as clear and easy as the subject permits.

He felt that computer programs should be included in the book in order to

assist the student in the application of modern methods associated with

computer usage. In addition, the author hopes that this text will serve the

practicing engineer for purposes of self-study and as a reference source.

In writing this text, the author also had in mind the use of the book as a

possible source for research topics in structural dynamics for students work-

ing toward an advanced degree in engineering who are required to write a

thesis. At Speed Scientific School, University of Louisville, most engineer-

ing students complete a fifth year of study with a thesis requirement leading

to a Master in Engineering degree. The author’s experience as a thesis

advisor leads him to believe that this book may well serve the students in

ix



their search and selection of topics in subjects currently under investigation

in structural dynamics.

Should the text fulfill the expectations of the author in some measure,

particularly the elucidation of this subject, he will then feel rewarded for his

efforts in the preparation and development of the material in this book.

Louisville, KY, USA Mario Paz

December, 1979
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Part I

Structures Modeled as a Single-Degree-of-Freedom
System



Undamped Single Degree-of-Freedom
System 1

The analysis and design of structures to resist the effect produced by time dependent forces or

motions requires conceptual idealizations and simplifying assumptions through which the physical

system is represented by an idealized system known as the analytical or mathematical model. These

idealizations or simplifying assumptions may be classified in the following three groups:

1. Material assumptions. These assumptions or simplifications include material properties such as

homogeneity or isotrophy and material behaviors such as linearity or elasticity.

2. Loading assumptions. Some common loading assumptions are to consider concentrated forces to

be applied at a geometric point, to assume forces suddenly applied, or to assume external forces to

be constant or periodic.

3. Geometric Assumptions. A general assumption for beams, frames and trusses is to consider these

structures to be formed by unidirectional elements. Another common assumption is to assume that

some structures such as plates are two-dimensional systems with relatively small thicknesses. Of

greater importance is to assume that continuous structures may be analyzed as discrete systems by

specifying locations (nodes) and directions for displacements (nodal coordinates) in the structures

as described in the following section.

1.1 Degrees of Freedom

In structural dynamics the number of independent coordinates necessary to specify the configuration

or position of a system at any time is referred to as the number of degrees of freedom. In general, a

continuous structure has an infinite number of degrees of freedom. Nevertheless, the process of

idealization or selection of an appropriate mathematical model permits the reduction to a discrete

number of degrees of freedom. Figure 1.1 shows some examples of structures that may be represented

for dynamic analysis as one-degree-of-freedom-systems, that is, structures modeled as systems with a

single displacement coordinate.
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These one-degree-of-freedom systems may be conveniently described by the analytical model

shown in Fig. 1.2 which has the following elements:

1. A mass element m representing the mass and inertial characteristic of the structure.

2. A spring element k representing the elastic restoring force and potential energy storage of the

structure.

3. A damping element c representing the frictional characteristics and energy dissipation of the

structure.

4. An excitation force F(t) representing the external forces acting on the structural system.

The force F(t) is written this way to indicate that it is a function of time. In adopting the analytical

model shown in Fig. 1.2, it is assumed that each element in the system represents a single property;

that is, the mass m represents only the property of inertia and not elasticity or energy dissipation,

whereas the spring k represents exclusively elasticity and not inertia or energy dissipation. Finally, the

damper c only dissipates energy. The reader certainly realizes that such “pure” elements do not exist

in our physical world and that analytical models are only conceptual idealizations of real structures.

As such, analytical models may provide complete and accurate knowledge of the behavior of the

model itself, but only limited or approximate information on the behavior of the real physical system.

Nevertheless, from a practical point of view, the information acquired from the analysis of the

analytical model may very well be sufficient for an adequate understanding of the dynamic behavior

of the physical system, including design and safety requirements.

Fig. 1.1 Examples of structures modeled as one-degree-of-freedom systems

Fig. 1.2 Analytical model for one-degree-of-freedom systems
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1.2 Undamped System

We start the study of structural dynamics with the analysis of a fundamental and simple system, the

one-degree-of-freedom system in which we disregard or “neglect” frictional forces or damping. In

addition, we consider the system, during its motion or vibration, to be free from external actions or

forces. Under these conditions, the system is said to be in free vibration and it is in motion governed

only by the influence of the so-called initial conditions, that is, the given displacement and velocity at

time t¼ 0 when the study of the system is initiated. This undamped, one-degree-of-freedom system is

often referred to as the simple undamped oscillator. It is usually represented as shown in Fig. 1.3a or

Fig. 1.3b or any other similar arrangement. These two figures represent analytical models that are

dynamically equivalent. It is only a matter of preference to adopt one or the other. In these models the

mass m is restrained by the spring k and is limited to rectilinear motion along one coordinate axis,

designated in these figures by the letter u.

The mechanical characteristic of a spring is described by the relationship between the magnitude

of the force Fs applied to its free end and the resulting end displacement u as shown graphically in

Fig. 1.4 for three different springs.

The curve labeled (a) in Fig. 1.4 represents the behavior of a hard spring in which the force

required to produce a given displacement becomes increasingly greater as the spring is deformed. The

second spring (b) is designated a linear spring because the deformation is directly proportional to the

Fig. 1.3 Alternate representations of analytical models for one-degree-of-freedom systems

Fig. 1.4 Force-displacement relationship: (a) Hard spring, (b) Linear spring, (c) Soft spring

1.2 Undamped System 5



force and the graphical representation of its characteristic is a straight line. The constant of

proportionality between the force and displacement [slope of the line (b)] of a linear spring is referred

to as the stiffness or the spring constant, usually designated by the letter k. Consequently, we may

write the relationship between force and displacement for a linear spring as

Fs ¼ ku ð1:1Þ

A spring with characteristics shown by curve (c) in Fig. 1.4 is known as a soft spring. For such a

spring the incremental force required to produce additional deformation decreases as the spring

deformation increases. Undoubtedly, the reader is aware from his or her previous exposure to

analytical modeling of physical systems that the linear spring is the simplest type to manage

mathematically. It should not come as a surprise to learn that most of the technical literature on

structural dynamics deals with models using linear springs. In other words, either because the elastic

characteristics of the structural system are, in fact, essentially linear, or simply because of analytical

expediency, it is usually assumed that the force-deformation properties of the system are linear. In

support of this practice, it should be noted that in many cases the displacements produced in the

structure by the action of external forces or disturbances are small in magnitude (Zone E in Fig. 1.4),

thus rendering the linear approximation close to the actual structural behavior.

1.3 Springs in Parallel or in Series

Sometimes it is necessary to determine the equivalent spring constant for a system in which two or

more springs are arranged in parallel as shown in Fig. 1.5a or in series as in Fig. 1.5b.

For two springs in parallel the total force required to produce a relative displacement of their ends

of one unit is equal to the sum of their spring constants. This total force is by definition the equivalent

spring constant ke and is given by

ke ¼ k1 þ k2 ð1:2Þ

In general for n springs in parallel

ke ¼
X

n

i¼1

ki ð1:3Þ

For two springs assembled in series as shown in Fig. 1.5b, the force P produces the relative

displacements in the springs

Fig. 1.5 Combination of springs: (a) Springs in parallel (b) Springs in series
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Δu1 ¼
P

k1

and

Δu2 ¼
P

k2

Then, the total displacement u of the free end of the spring assembly is equal to u ¼ Δu1 + Δu2, or

substituting Δu1 and Δu2

u ¼
P

k1
þ

P

k2
ð1:4Þ

Consequently, the force ke necessary to produce one unit displacement (equivalent spring constant) is

given by

ke ¼
P

u

Substituting u from this last relation into Eq. (1.4), we may conveniently express the reciprocal value

of the equivalent spring constant as

1

ke
¼

1

k1
þ

1

k2
ð1:5Þ

In general for n springs in series the equivalent spring constant may be obtained from

1

ke
¼

X

n

i¼1

1

ki
ð1:6Þ

1.4 Newton’s Law of Motion

We continue with the study of the simple oscillator depicted in Fig. 1.3. The objective is to describe

its motion, that is, to predict the displacement or velocity of the mass m at any tine t, for a given set

of initial conditions at time t ¼ 0. The analytical relation between the displacement u, and time t, is

given by Newton’s Second Law of Motion, which in modern notation may be expressed as

F ¼ ma ð1:7Þ

Where F is the resultant force acting on a particle of mass m and a its resultant acceleration. The

reader should recognize that Eq. (1.7) is a vector relation and as such it can be written in equivalent

form in terms of its components along the coordinate axes x, y, and z, namely,

X

Fx ¼ max ð1:8aÞ

X

Fy ¼ may ð1:8bÞ

X

Fz ¼ maz ð1:8cÞ

The acceleration is defined as the second derivative of the position vector with respect to time; it

follows that Eqs. (1.8) are indeed differential equations. The reader should also be reminded that these

equations as stated by Newton are directly applicable only to bodies idealized as particles, that is,

bodies assumed to possess mass but no volume. However, as is proved in elementary mechanics,

1.4 Newton’s Law of Motion 7



Newton’s Law of Motion is also directly applicable to bodies of finite dimensions undergoing

translatory motion.

For plane motion of a rigid body that is symmetric with respect to the reference plane of motion

(x-y plane), Newton’s Law of Motion yields the following equations:

X

Fx ¼ m aGð Þx ð1:9aÞ

X

Fy ¼ m aGð Þy ð1:9bÞ

X

MG ¼ IGα ð1:9cÞ

In the above equations (aG)x and (aG)y are the acceleration components, along the x and y axes, of

the center of mass G of the body; α is the angular acceleration; IG is the mass moment of inertia of the

body with respect to an axis through G, the center of mass; and ∑MG is the sum with respect to an axis

through G, perpendicular to the x-y plane of the moments of all the forces acting on the body.

Equations (1.9) are certainly also applicable to the motion of a rigid body in pure rotation about a

fixed axis, alternatively, for this particular type of plane motion, Eq. (1.9c) may be replaced by

X

M0 ¼ I0α ð1:9dÞ

in which the mass moment of inertia I0 and the moment of the forcesM0 are determined with respect

to the fixed axis of rotation. The general motion of a rigid body is described by two vector equations,

one expressing the relation between the forces and the acceleration of the mass center, and another

relating the moments of the forces and the angular motion of the body. This last equation expressed in

its scalar components is rather complicated, but seldom needed in structural dynamics.

1.5 Free Body Diagram

At this point, it is advisable to follow a method conducive to an organized and systematic analysis in

the solution of dynamics problems. The first and probably the most important practice to follow in

any dynamic analysis is to draw a free body diagram of the system, prior to writing a mathematical

description of the system.

The free body diagram (FBD), as the reader may recall, is a sketch of the body isolated from all

other bodies, in which all the forces external to the body are shown. For the case at hand, Fig. 1.6b

depicts the FBD of the mass m of the oscillator, displaced in the positive direction with reference to

coordinate u and acted upon by the spring force Fs ¼ ku (assuming a linear spring). The weight of the

bodymg and the normal reaction N of the supporting surface are also shown for completeness, though

these forces, acting in the vertical direction, do not enter into the equation of motion written for the

u direction. The application of Newton’s Law of Motion gives

�ku ¼ m€u ð1:10Þ

where the spring force acting in the negative direction has a minus sign, and where the acceleration

has been indicated by €u. In this notation, double overdots denote the second derivative with respect

to time and obviously a single overdot denotes the first derivative with respect to time, that is, the

velocity.

8 1 Undamped Single Degree-of-Freedom System



1.6 D’Alembert’s Principle

An alternative approach to obtain Eq. (1.10) is to make use of D’Alembert’s Principle which states

that a system may be set in a state of dynamic equilibrium by adding to the external forces a fictitious

force that is commonly known as the inertial force.

Figure 1.6c shows the FBD with inclusion of the inertial force m€u. This force is equal to the mass

multiplied by the acceleration, and should always be directed negatively with respect to the corres-

ponding coordinate. The application of D’Alembert’s Principle allows us to use equations of

equilibrium in obtaining the equation of motion. For example, in Fig. 1.6c, the summation of forces

in the u direction gives directly

m€uþ ku ¼ 0 ð1:11Þ

which obviously is equivalent to Eq. (1.10).

The use of D’Alembert’s Principle in this case appears to be trivial. This will not be the case for a

more complex problem, in which the application of D’Alembert’s Principle, in conjunction with

the Principle of Virtual Work, constitutes a powerful tool of analysis. As will be explained later, the

Principle of Virtual Work is directly applicable to any system in equilibrium. If follows then that

this principle may also be applied to the solution of dynamic problems, provided that D’Alembert’s

Principle is used to establish the dynamic equilibrium of the system.

Illustrative Example 1.1

Show that the same differential equation is obtained for a body vibrating along a horizontal axis or for

the same body moving vertically, as shown in Fig. 1.7a, b.

Solution:

The FBDs for these two representations of the simple oscillator are shown in Fig. 1.7c, e, in which the

inertial forces have been included. Equating to zero in Fig. 1.7c the sum of the forces along the

direction u, we obtain

m€uþ ku ¼ 0 ðaÞ

When the body in Fig. 1.7d is in the static equilibrium position, the spring is stretched u0 units and

exerts a force ku0 ¼ W upward on the body, where W is the weight of the body. When the body is

displaced a distance u downward from this position of equilibrium the magnitude of the spring force

Fig. 1.6 Alternate free body diagrams: (a) Single degree-of-freedom system. (b) Showing only external forces, (c)

Showing external and inertial forces
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is given by Fs ¼ k(u0 + u) or Fs ¼W+ ku since ku0 ¼W. Using this result and applying it to the body

in Fig. 1.7e, we obtain from Newton’s Second Law of Motion

� W þ kuð Þ þW � m€u ¼ 0 ðbÞ

or

m€uþ ku ¼ 0

which is identical to Eq. (a).

1.7 Solution of the Differential Equation of Motion

The next step toward our objective is to find the solution of the differential Eq. (1.11). We should

again adopt a systematic approach and proceed first to classify this differential equation. Since the

dependent variable u and second derivative €u appear in the first degree in Eq. (1.11), this equation is

classified as linear and of second order. The fact that the coefficients of u and of €u (k and m,

respectively) are constants and that the second member (right-hand side) of the equation is zero

further classifies this equation as homogenous with constant coefficients. We should recall, probably

with a certain degree of satisfaction, that a general procedure exists for the solution of linear

Fig. 1.7 Two representations of the simple oscillator and corresponding free body diagrams. (a) Idealized single

degree of freedom system, (b) Alternative idealized single degree of freedom system, (c) dynamic equilibrium with

inertial force, (d) static displacement due to gravity load, (e) dynamic equilibrium with inertial force of alternative

model
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differential equations (homogenous or non-homogenous) of any order. For this simple, second-order

differential equation we may proceed directly by assuming a trial solution given by

u ¼ A cosωt ð1:12Þ

or by

u ¼ B sinωt ð1:13Þ

where A and B are constants depending on the initiation of the motion while ω is a quantity denoting a

physical characteristic of the system as it will be shown next. The substitution of Eq. (1.12) into

Eq. (1.11) gives

�mω2 þ k
� �

A cosωt ¼ 0 ð1:14Þ

If this equation is to be satisfied at any time, the factor in parentheses must be equal to zero, or

ω2 ¼
k

m
ð1:15Þ

The reader should verify that Eq. (1.13) is also a solution of the differential Eq. (1.11), with ω also

satisfying Eq. (1.15).

The positive root of Eq. (1.15),

ω ¼

ffiffiffiffi

k

m

r

ð1:16aÞ

is known as the natural frequency of the system for reasons that will soon be apparent.

The quantity ω in Eq. (1.16a) may be expressed in terms of the static displacement resulting from

the weight W ¼ mg applied to the spring. The substitution into Eq. (1.16a) of m ¼ W/g results in

ω ¼

ffiffiffiffiffi

kg

W

r

ð1:16bÞ

Hence

ω ¼

ffiffiffiffiffi

g

ust

r

ð1:16cÞ

where ust ¼ W/k is the static displacement of the spring due to the weight W.

Since either Eq. (1.12) or Eq. (1.13) is a solution of Eq. (1.11), and since this differential equation

is linear, the superposition of these two solutions, indicated by Eq. (1.17) below, is also a solution.

Furthermore, Eq. (1.17), having two constants of integration, A and B, is, in fact, the general solution

for this linear second-order differential equation.

u ¼ A cosωtþ B sinωt ð1:17Þ

The expression for velocity, _u , is simply found by differentiating Eq. (1.17) with respect to time,

that is,

_u ¼ �Aω sinωtþ Bω cosωt ð1:18Þ

Next, we should determine the constants of integration A and B. These constants are determined

from known values for the motion of the system which almost invariably are the displacement u0 and
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the velocity υ0 at the initiation of the motion, that is, at time t¼ 0. These two conditions are referred to

as initial conditions, and the problem of solving the differential equation for the initial conditions is

called an initial value problem.

After substituting, for t ¼ 0, u ¼ u0, and _u ¼ υ0 into Eqs. (1.17) and (1.18) we find that

u0 ¼ A ð1:19aÞ

υ0 ¼ Bω ð1:19bÞ

Finally, the substitution of A and B from Eq. (1.19) into Eq. (1.17) gives

u ¼ u0 cosωtþ
υ0

ω
sinωt ð1:20Þ

which is the expression of the displacement u of the simple oscillator as a function of the time

variable t. Thus, we have accomplished our objective of describing the motion of the simple

undamped oscillator modeling structures with a single degree of freedom.

1.8 Frequency and Period

An examination of Eq. (1.20) shows that the motion described by this equation is harmonic and

therefore periodic, that is, it can be expressed by a sine or cosine function of the same frequency ω.

The period may easily be found since the functions sine and cosine both have a period of 2π. The

period T of the motion is determined from

ωT ¼ 2π

or

T ¼
2π

ω
ð1:21Þ

The period is usually expressed in seconds per cycle or simply in seconds, with the tacit

understanding that it is “per cycle”. The reciprocal value of the period is the natural frequency f.

From Eq. (1.21)

f ¼
1

T
¼

ω

2π
ð1:22Þ

The natural frequency f is usually expressed in hertz or cycles per second (cps). Because the

quantity ω differs from the natural frequency f only by the constant factor 2π, ω also is sometimes

referred to as the natural frequency. To distinguish between these two expressions for natural

frequency, ω may be called the circular or angular natural frequency. Most often, the distinction is

understood form the context or from the units. The natural frequency f is measured in cps as indicated,

while the circular frequency ω should be given in radians per second (rad/sec).

Illustrative Example 1.2

Determine the natural frequency of the beam-spring system shown in Fig. 1.8 consisting of a weight

of W ¼ 50.0 lb attached to a horizontal cantilever beam through the coil spring k2. The cantilever

beam has a thickness h ¼ ¼ in, a width b ¼ 1 in. modulus of elasticity E ¼ 30 � 106 psi, and length

L ¼ 12.5 in. The coil spring has a stiffness k2 ¼ 100 (lb/in).
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Solution:

The deflection Δ at the free end of a uniform cantilever beam acted upon by a static force P at the free

end is given by

Δ ¼
PL3

3EI

The corresponding spring constant k1 is then

k1 ¼
P

Δ
¼

3EI

L3

where the cross-section moment of inertia I ¼ 1
12
bh3 (for a rectangular section). Now, the cantilever

and the coil spring of this system are connected as springs in series. Consequently, the equivalent

spring constant as given from Eq. (1.5) is

1

ke
¼

1

k1
þ

1

k2
repeatedð Þ ð1:5Þ

Substituting corresponding numerical values, we obtain

I ¼
1

12
� 1�

1

4

� �3

¼
1

768
inð Þ4

k1 ¼
3� 30� 106

12:5ð Þ3 � 768
¼ 60 lb=in

and

1

ke
¼

1

60
þ

1

100

ke ¼ 37:5 lb=in

The natural frequency for this system is then given by Eq. (1.16a) as

ω ¼
ffiffiffiffiffiffiffiffiffiffi

ke=m
p

m ¼ W=g and g ¼ 386 in= sec 2ð Þ

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

37:5� 386=50:0
p

ω ¼ 17:01rad= sec

or using Eq. (1.22)

f ¼ 2:71cps ðAnsÞ

Fig. 1.8 System for Illustrative Example 1.2
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1.9 Amplitude of Motion

Let us now examine in more detail Eq. (1.20), the solution describing the free vibratory motion of the

undamped oscillator. A simple trigonometric transformation may show us that we can rewrite this

equation in the equivalent forms, namely

u ¼ C sin ωtþ αð Þ ð1:23Þ

or

u ¼ C cos ωt� βð Þ ð1:24Þ

where

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u20 þ υ0=ωð Þ2
q

ð1:25Þ

tan α ¼
u0

υ0=ω
ð1:26Þ

and

tan β ¼
υ0=ω

u0
ð1:27Þ

The simplest way to obtain Eq. (1.23) or Eq. (1.24) is to multiply and divide Eq. (1.20) by the factor

C defined in Eq. (1.25) and to define α (or β) by Eq. (1.26) [or Eq. (1.27)]. Thus

u ¼ C
u0

C
cosωtþ

υ0=ω

C
sinωt

� �

ð1:28Þ

With the assistance of Fig. 1.9, we recognize that

sin α ¼
u0

C
ð1:29Þ

and

cos α ¼
υ0=ω

C
ð1:30Þ

The substitution of Eqs. (1.29) and (1.30) into Eq. (1.28) gives

u ¼ C sin α cosωtþ cos α sinωtð Þ ð1:31Þ

Fig. 1.9 Definition of angle α or angle β
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The expression within the parentheses of Eq. (1.31) is identical to sin(ωt + α), which yields

Eq. (1.23). Similarly, the reader should verify without difficulty, the form of solution given by

Eq. (1.24).

The value of C in Eq. (1.23) (or Eq. (1.24)) is referred to as the amplitude of motion and the angle α

(or β) as the phase angle. The solution for the motion of the simple oscillator is shown graphically in

Fig. 1.10.

Illustrative Example 1.3

Consider the steel frame shown in Fig. 1.11a having a rigid horizontal member to which a horizontal

dynamic force is applied. As part of the overall structural design it is required to determine the natural

frequency of this structure. Two assumptions are made:

1. The masses of the columns are neglected.

2. The horizontal members are sufficiently rigid to prevent rotation at the tops of the columns.

These assumptions are not mandatory for the solution of the problem, but they serve to simplify the

analysis. Under these conditions, the frame may be modeled by the spring-mass system shown in

Fig. 1.11b.

Fig. 1.10 Undamped free-vibration response

Fig. 1.11 One-degree-of-freedom frame and corresponding analytical model for Illustrative Example 1.3
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Solution:

The parameters of this model may be computed as follows:

W ¼ 200� 25 ¼ 5000 lb

I¼ 82:5 in4

E¼ 30� 106 psi

k¼
12E 2Ið Þ

L3
¼

12� 30� 106 � 165

15� 12ð Þ3

k ¼ 10, 185 lb=in ðAnsÞ

Note: A unit displacement of the top of a fixed column requires a force equal to 12EI/L3.

Therefore, the natural frequency from Eqs. (1.16b) and (1.22) is

f ¼
1

2π

ffiffiffiffiffi

kg

W

r

¼
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10, 185� 386

5000

r

f ¼ 4:46cps ðAnsÞ

Illustrative Example 1.4

The elevated water tower tank with a capacity for 5000 gallons of water shown in Fig. 1.12a has a

natural period in lateral vibration of 1.0 sec when empty. When the tank is full of water, its period

lengthens to 2.2 sec. Determine the lateral stiffness k of the tower and the weight W of the tank.

Neglect the mass of the supporting columns (one gallon of water weighs approximately 8.34 lb).

Solution:

In its lateral motion, the water tower is modeled by the simple oscillator shown in Fig. 1.12b in which

k is the lateral stiffness of the tower and m is the vibrating mass of the tank.

(a) Natural frequency ωE (tank empty):

Fig. 1.12 (a) Water tower tank of Illustrative Example 1.4. (b) Analytical model
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ωE ¼
2π

TE

¼
2π

1:0
¼

ffiffiffiffiffi

kg

W

r

ðaÞ

(b) Natural frequency ωF (tank full of water)

Weight of water Ww:

Ww ¼ 5000� 8:34 ¼ 41, 700 lb

ωF ¼
2π

TF

¼
2π

1:0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kg

W þ 41, 700

r

ðbÞ

Squaring Eqs. (a) and (b) and dividing correspondingly the left and right sides of these equations,

results in

2:2ð Þ2

1:0ð Þ2
¼

W þ 41, 700

W

and solving for W

W ¼ 10, 860 lb ðAnsÞ

Substituting in Eq. (a), W ¼ 10,860 lb and g ¼ 386 in/sec2, yields

2π

1:00
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k386

10, 860

r

and

k ¼ 1110 lb=in ðAnsÞ

Illustrative Example 1.5

The steel frame shown in Fig. 1.13a is fixed at the base and has a rigid top W that weighs 1000 lb.

Experimentally, it has been found that its natural period in lateral vibration is equal to 1/10 of a

second. It is required to shorten or lengthen its period by 20% by adding weight or strengthening the

columns. Determine needed additional weight or additional stiffness (neglect the weight of the

columns).

Fig. 1.13 (a) Frame of Illustrative Example 1.5. (b) Analytical model
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Solution:

The frame is modeled by the spring-mass system shown in Fig. 1.13b. Its stiffness is calculated from

ω ¼
2π

T
¼

ffiffiffiffiffi

kg

W

r

as

2π

0:1
¼

ffiffiffiffiffiffiffiffiffiffi

kg

1000

r

g ¼ 386 in= sec 2
� �

or

k ¼ 10, 228 lb=in

(a) Lengthen the period to TL ¼ 1.2 � 0.10 ¼ 0.12 sec by adding weight ΔW:

ω ¼
2π

0:12
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10, 228� 386

1000þ ΔW

r

Solve for ΔW:

ΔW ¼ 440 lb ðAnsÞ

(b) Shorten the period to Ts ¼ 0.8 � 0.1 ¼ 0.08 sec by strengthening columns in Δk:

ω ¼
2π

0:08
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10; 228þ ΔKð Þ 386ð Þ

1000

r

Solve for Δk:

Δk ¼ 5753 lb=in ðAnsÞ

1.10 Response of SDF Using MATLAB Program

Plot the displacement as a function of time, u(t) ranging from 0 to 5 sec.

Given:

• Initial conditions: u0 ¼ 1 in. and _u 0 ¼ 0:2 in:= sec

• Natural period: T ¼ 0.5 sec (Fig. 1.14).
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clear all

clc

%%%%-GIVEN VALUES-%%%%

%%% Set Initial Conditions

u0=1;                                       %Initial Displacement

v0=2;                                       %Initial Velocity

%%%Define period and frequency

T=0.5;                                      %Natural Period

omega=2*pi/T;                               %Natural Frequency

%%%%-ESTIMATION-%%%%

%%% Generate time stamp equally between 0 to 5 sec with a total of 500 %%% data

t=linspace(0,5,500);

%%%Calculate the displacement response

A = u0;
B = v0/omega;

u= A*cos(omega*t)+B*sin(omega*t);

C= sqrt(A^2+B^2);                                   %Maximum amplitude (Eq. 1.25)

udot = -A*omega*sin(omega*t)+B*omega*cos(omega*t);  %Velocity

% Eq. 19a
% Eq. 19b

% Eq. 20

%%%Plot the response curve 

plot(t, u);

title ('Response');

xlabel ('Time (sec)');                              
);                              

%Label the x-axis of the plot
%Label the y-axis of the plotylabel ('Displacement (in.)'
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Fig. 1.14 Response of SDF using MATLAB
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1.11 Summary

Several basic concepts were introduced in this chapter:

1. The analytical or mathematical model of a structure is an idealized representation for its analysis.

2. The number of degrees of freedom of a structural system is equal to the number of independent

coordinates necessary to describe its position.

3. The free body diagram (FBD) for dynamic equilibrium (to allow application of D’Alembert’s

Principle) is a diagram of the system isolated from all other bodies, showing all the external forces

on the system, including the inertial force.

4. The stiffness or spring constant of a linear system is the force necessary to produce a unit

displacement.

5. The differential equation of the undamped simple oscillator in free motion is

m€uþ ku ¼ 0

and its general solution is

u ¼ A cosωtþ B sinωt

where A and B are constants of integration determined from initial conditions of the displacement

u0 and of the velocity υ0:

A ¼ u0

B ¼ υ0=ω

ω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

is the natural frequency in rad= sec

f ¼
ω

2π
is the natural frequency in cps

T ¼
1

f
is the natural period in seconds

6. The equation of motion may be written in the alternate forms:

u ¼ C sin ωtþ αð Þ

or

u ¼ C cos ωt� βð Þ

where

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u20 þ υ0=ωð Þ2
q

and

tan α ¼
u0

υ0=ω

tan β ¼
υ0=ω

u0
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1.12 Problems

Problem 1.1

Determine the natural period for the system in Fig. P1.1. Assume that the beam and springs

supporting the weight W are massless.

Problem 1.2

The following numerical values are given in Problem 1.1: L¼ 100 in. EI¼ 108 (lb.in2),W¼ 3000 lb,

k ¼ 2000 lb/in. If the weight W has an initial displacement of u0 ¼ 1.0 in and an initial velocity of

u0 ¼ 20 in/sec, determine the displacement and the velocity 1 sec later.

Problem 1.3

Determine the natural frequency for horizontal motion of the steel frame in Fig. P1.3. Assume the

horizontal girder to be infinitely rigid and neglect the mass of the columns.

Problem 1.4

Calculate the natural frequency in the horizontal mode of the steel frame in Fig. P1.4 for the following

cases:

Fig. P1.1

Fig. P1.3
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(a) The horizontal member is assumed to be rigid.

(b) The horizontal member is flexible and made of steel sections-- W 8 � 24.

Hint:When the girder stiffness needs to be considered to determine the effective stiffness of column

fixed on the ground, the following formula is useful.

ke ¼ kc leftð Þ þ kc rightð Þ

¼
24EcIc

h3
1þ 6γð Þ

4þ 6γð Þ

where,

γ ¼
Ig=L

Ic=h

Ig and L are the moment of inertia and span length for girder:

Ic and h are the moment of inertia and height of column:

Problem 1.5

Determine the natural frequency of the fixed beam in Fig. P1.5 carrying a concentrated weightW at its

center. Neglect the mass of the beam.

Problem 1.6

The numerical values for Problem 1.5 are given as: L ¼ 120 in. EI ¼ 109 (lb.in2), W ¼ 5000 lb, with

initial conditions u0 ¼ 0.5 in and υ0 ¼ 15 in/sec. Determine the displacement, velocity, and

acceleration ofW at t ¼ 2 sec later. Plot the responses (i.e., displacement, velocity, and acceleration)

using MATLAB and determine the maximum amplitude.

Fig. P1.4

Fig. P1.5
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Problem 1.7

Consider the simple pendulum of weight W illustrated in Fig. P1.7. If the cord length is L, determine

the motion of the pendulum. The initial angular displacement and initial angular velocity are θ0 and

_θ 0, respectively (Assume the angle θ is small).

Note: A simple pendulum is a particle of concentrated weight that oscillates in a vertical arc and is

supported by a weightless cord. The only forces acting are those of gravity and the cord tension (i.e.,

frictional resistance is neglected).

Problem 1.8

A diver standing at the end of a diving board that cantilevers 2 ft oscillates at a frequency 2 cps.

Determine the flexural rigidity EI of the diving board. The weight of the diver is 180 lb. (Neglect the

mass of the diving board).

Problem 1.9

A bullet weighing 0.2 lb is fired at a speed of 100 ft/sec into a wooden block weighing W ¼ 50 lb

and supported by a spring of stiffness 300 lb/in (Fig. P1.9). Determine the displacement u(t) and

velocity u(t) of the block after t sec.

Problem 1.10

An elevator weighing 500 lb is suspended from a spring having a stiffness of k ¼ 600 lb/in. A weight

of 300 lb is suspended through a cable to the elevator as shown schematically in Fig. P1.10.

Determine the equation of motion of the elevator if the cable of the suspended weight suddenly

breaks.

Fig. P1.7

Fig. P1.9
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Problem 1.11

Write the differential equation of motion for the inverted pendulum shown in Fig. P1.11 and

determine its natural frequency. Assume small oscillations, and neglect the mass of the rod.

Problem 1.12

Show that the natural frequency for the system of Problem 1.11 may be expressed as

f ¼ f 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
W

Wcr

r

whereW¼mg, Wcr is the critical buckling weight, and f0 is the natural frequency neglecting the effect

of gravity.

Problem 1.13

A vertical pole of length L and flexural rigidity EI carries a mass m at its top, as shown in Fig. P1.13.

Neglecting the weight of the pole, derive the differential equation for small horizontal vibrations of

the mass, and find the natural frequency. Assume that the effect of gravity is small and neglect

nonlinear effects.

Fig. P1.10

Fig. P1.11
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Problem 1.14

Show that the natural frequency for the system in Problem 1.13 may be expressed as

f ¼ f 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
W

Wcr

r

where f0 is the natural frequency calculated neglecting the effect of gravity and Wcr is the critical

buckling weight.

Problem 1.15

Determine an expression for the natural frequency of the weight W in each of the cases shown in

Fig. P1.15. The beams are uniform of cross-sectional moment of inertia I and modulus of elasticity

E. Neglect the mass of the beams.

Fig. P1.13

Fig. P1.15
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Problem 1.16

A system is modeled by two freely vibrating masses m1 and m2 interconnected by a spring having a

constant k as shown in Fig. P1.16. Determine for this system the differential equation of motion for

the relative displacement ur ¼ u2 – u1 between the two masses. Also determine the corresponding

natural frequency of the system.

Problem 1.17

Calculate the natural frequency for the vibration of the mass m shown in Fig. P1.17. Member AE is

rigid with a hinge at C and a supporting spring of stiffness k at D. (Problem contributed by Professors

Vladimir N. Alekhin and Alesksey A. Antipin of the Urals State Technical University, Russia.)

Problem 1.18

Determine the natural frequency of vibration in the vertical direction for the rigid foundation

(Fig. P1.18) transmitting a uniformly distributed pressure on the soil having a resultant force

Q ¼ 2000 kN. The area of the foot of the foundation is A ¼ 10 m2. The coefficient of elastic

compression of the soil is k¼ 25,000 kN/m3. (Problem contributed by Professors Vladimir N. Alekhin

and Alesksey A. Antipin of the Urals State Technical University, Russia.)

Fig. P1.16

Fig. P1.17

Fig. P1.18
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Problem 1.19

Calculate the natural frequency of free vibration of the chimney on elastic foundation (Fig. P1.19),

permitting the rotation of the structure as a rigid body about the horizontal axis x-x. The total weight

of the structure isW with its center of gravity at a height h from the base of the foundation. The mass

moment of inertia of the structure about the axis x-x is I and the rotational stiffness of the soil is

k (resisting moment of the soil per unit rotation). (Problem contributed by Professors Vladimir

N. Alekhin and Alesksey A. Antipin of the Urals State Technical University, Russia.)

Fig. P1.19
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Damped Single Degree-of-Freedom
System 2

We have seen in the preceding chapter that the simple oscillator under idealized conditions of no

damping, once excited, will oscillate indefinitely with a constant amplitude at its natural frequency.

However, experience shows that it is not possible to have a device that vibrates under these ideal

conditions. Forces designated as frictional or damping forces are always present in any physical

system undergoing motion. These forces dissipate energy; more precisely, the unavoidable presence

of these frictional forces constitute a mechanism through which the mechanical energy of the system,

kinetic or potential energy, is transformed to other forms of energy such as heat. The mechanism of

this energy transformation or dissipation is quite complex and is not completely understood at this

time. In order to account for these dissipative forces in the analysis of dynamic systems, it is

necessary to make some assumptions about these forces, on the basis of experience.

2.1 Viscous Damping

In considering damping forces in the dynamic analysis of structures, it is usually assumed that these

forces are proportional to the magnitude of the velocity, and opposite to the direction of motion. This

type of damping is know as viscous damping; it is the type of damping force that could be developed

in a body restrained in its motion by a surrounding viscous fluid.

There are situations in which the assumption of viscous damping is realistic and in which the

dissipative mechanism is approximately viscous. Nevertheless, the assumption of viscous damping is

often made regardless of the actual dissipative characteristics of the system. The primary reason for

such wide use of this assumed type of damping is that it leads to a relatively simple mathematical

analysis.

2.2 Equation of Motion

Let us assume that we have modeled a structural system as a simple oscillator with viscous damping,

as shown in Fig. 2.1a. In this figure m and k are, respectively, the mass and spring constant of the

oscillator and c is the viscous damping coefficient.
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We proceed, as in the case of the undamped oscillator, to draw the free body diagram (FBD) and

apply Newton’s Law to obtain the differential equation of motion. Figure 2.1b shows the FBD of the

damped oscillator in which the inertial force m€u is also shown, so that we can use D’Alembert’s

Principle. The summation of forces in the u direction gives the differential equation of motion

m€uþ c _u þ ku ¼ 0 ð2:1Þ
The reader may verify that a trial solution u ¼ A sin ω t or u ¼ B cos ω t will not satisfy Eq. (2.1).

However, the exponential function u ¼ Cept does satisfy this equation. Substitution of this function

into Eq. (2.1) results in the equation

mCp2ept þ cCpept þ kCept ¼ 0

which, after cancellation of the common factors, reduces to an equation called the characteristic

equation for the system, namely

mp2 þ cpþ k ¼ 0 ð2:2Þ

The roots of this quadratic equation are

P1

P2
¼ � c

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c

2m

� �2

� k

m

r

ð2:3Þ

thus the general solution of Eq. (2.1) is given by the superposition of the two possible solutions,

namely

u tð Þ ¼ C1e
p1t þ C2e

p2t ð2:4Þ

where C1 and C2 are constant of integration to be determined from the initial conditions.

The final form of Eq. (2.4) depends on the sign of the expression under the radical in Eq. (2.3).

Three distinct cases may occur; the quantity under the radical may either be zero, positive or negative.

The limiting case in which the quantity under the radical is zero is treated first. The damping present

in this case is called critical damping.

2.3 Critically Damped System

For a system oscillating with critical damping (c¼ ccr), the expression under the radical in Eq. (2.3) is

equal to zero, that is

ccr

2m

� �2

� k

m
¼ 0 ð2:5Þ

or

Fig. 2.1 (a) Viscous damped oscillator. (b) Free body diagram
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ccr ¼ 2
ffiffiffiffiffiffi

km
p

ð2:6Þ

where ccr designates the critical damping value. Since the natural frequency of the undamped system

is given by ω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

, the critical damping coefficient given by Eq. (2.6) may also be expressed in

alternative expressions as

ccr ¼ 2mω or ccr ¼
2k

ω
ð2:7Þ

In a critically damped system the roots of the characteristic equation are equal, and from Eq. (2.3),

they are

p1 ¼ p2 ¼ �ccr

2m
ð2:8Þ

Since the two roots are equal, the general solution given by Eq. (2.4) would provide only one

independent constant of integration, hence, one independent solution, namely

u1 tð Þ ¼ C1e
� ccr=2mð Þt ð2:9Þ

Another independent solution may be found by using the function

u2 tð Þ ¼ C2tu1 tð Þ ¼ C2te
� ccr=2mð Þt ð2:10Þ

u2(t), as the reader may verify, also satisfies the differential Eq. (2.1). The general solution for a

critically damped system is then given by the superposition of these two solutions,

u tð Þ ¼ C1 þ C2tð Þe� ccr=2mð Þt ð2:11Þ

2.4 Overdamped System

In an overdamped system, the damping coefficient is greater that the value for critical damping, namely

c > ccr ð2:12Þ

Therefore, the expression under the radical of Eq. (2.3) is positive; thus the two roots of the

characteristic equation are real and distinct, and consequently the solution is given directly by

Eq. (2.4). It should be noted that for the overdamped or the critically damped system, the resulting

motion is not oscillatory; the magnitude of the oscillations decays exponentially with time to zero.

Figure 2.2 depicts graphically the response for the simple oscillator with critical damping. The

response of the overdamped system is similar to the motion of the critically damped system of

Fig. 2.2, but in the return toward the neutral position requires more time as the damping is increased.

Fig. 2.2 Free-vibration response with critical damping
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2.5 Underdamped System

When the value of the damping coefficient is less than the critical value (c < ccr), which occurs when

the expression under the radical is negative, the roots of the characteristic Eq. (2.3) are complex

conjugates, so that

P1

P2
¼ � c

2m
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k

m
� c

2m

� �2
r

ð2:13Þ

where i ¼
ffiffiffiffiffiffiffi

�1
p

is the imaginary unit.

For this case, it is convenient to make use of Euler’s equations which relate exponential and

trigonometric functions, namely,

eix ¼ cos xþ i sin x

e�ix ¼ cos x� i sin x
ð2:14Þ

The substitution of the roots p1 and p2 from Eq. (2.13) into Eq. (2.4) together with the use of Eq. (2.14)

gives the following convenient form for the general solution of the underdamped system:

u tð Þ ¼ e� c=2mð Þt A cosωDtþ B sinωDtð Þ ð2:15Þ

where A and B are redefined constants of integration and ωD, the damping frequency of the system, is

given by

ωD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k

m
� c

2m

� �2
r

ð2:16Þ

or

ωD ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
q

ð2:17Þ

This last result is obtained after substituting, in Eq. (2.16), the expression for the undamped natural

frequency

ω ¼
ffiffiffiffi

k

m

r

ð2:18Þ

and defining the damping ratio of the system as

ξ ¼ c

ccr
ð2:19Þ

where the critical camping coefficient ccr is given by Eq. (2.6).

Finally, when the initial conditions of displacement and velocity, u0 and υ0, are introduced, the

constants of integration can be evaluated and substituted into Eq. (2.15), giving

u tð Þ ¼ e�ξωt u0 cosωDtþ
υ0 þ u0ξω

ωD

sinωDt

� �

ð2:20Þ

Alternatively, this expression can be written as

u tð Þ ¼ Ce�ξωt cos ωDt� αð Þ ð2:21Þ
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where

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u20 þ
υ0 þ u0ξωð Þ2

ω2
D

s

ð2:22Þ

and

tan α ¼ υ0 þ u0ξωð Þ
ωDu0

ð2:23Þ

A graphical record of the response of an underdamped system with initial displacement u0 but starting

with zero velocity (υ0 ¼ 0) is shown in Fig. 2.3. It may be seen in this figure that the motion is

oscillatory, but not periodic. The amplitude of vibration is not constant during the motion but

decreases for successive cycles; nevertheless, the oscillations occur at equal intervals of time. This

time interval is designated as the damped period of vibration and is given from Eq. (2.17) by

TD ¼ 2π

ωD

¼ 2π

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
p ð2:24Þ

The value of the damping coefficient for real structures is much less than the critical damping

coefficient and usually ranges between 2 and 10% of the critical damping value. Substituting for the

extreme value ξ ¼ 0.10 into Eq. (2.17),

ωD ¼ 0:995ω ð2:25Þ

It can be seen that the frequency of vibration for a system with as much as a 10% damping ratio is

essentially equal to the undamped natural frequency. Thus in practice, the natural frequency for a

damped system may be taken to be equal to the undamped natural frequency.

2.6 Logarithmic Decrement

A practical method for determining experimentally the damping coefficient of a system is to initiate

free vibration, obtain a record of the oscillatory motion, such as the one shown in Fig. 2.4, and

measure the rate of decay of the amplitude of motion. The decay may be conveniently expressed by

the logarithmic decrement δ which is defined as the natural logarithm of the ratio of any two

successive peak amplitudes, u1 and u2, in the free vibration, that is

Fig. 2.3 Free-vibration response for undamped system
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δ ¼ ln
u1

u2
ð2:26Þ

The evaluation of damping from the logarithmic decrement follows. Consider the damped vibration

motion represented graphically in Fig. 2.4 and given analytically by Eq. (2.21) as

u tð Þ ¼ Ce�ξωt cos ωDt� αð Þ ð(2.21) repeatedÞ

We note from this equation that when the cosine factor is unity, the displacement is on points of the

exponential curve u(t) ¼ Ce–ξωt as shown in Fig. 2.4. However, these points are near but not equal to

the positions of maximum displacement. The points on the exponential curve appear slightly to the

right of the points of peak or maximum amplitude. For most practical problems, the discrepancy is

negligible and the displacement curve at points where the cosine is equal to one may be assumed to

coincide at the peak amplitude with the curve u(t)¼ Ce–ξωt, so that we may write for two consecutive

peaks u1 at time t1 and u2 at time TD seconds later.

u1 ¼ Ce�ξωt1

and

u2 ¼ Ce�ξω t1þTDð Þ

Dividing these two peak amplitudes and taking the natural logarithm, we obtain

δ ¼ ln
u1

u2
¼ ξωTD ð2:27Þ

or by substituting TD, the damped period, from Eq. (2.24),

δ ¼ 2πξ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
p ð2:28Þ

As we can see, the damping ratio ξ can be calculated from Eq. (2.28) after determining experimentally

the amplitudes of two successive peaks of the system in free vibration. For small values of the

damping ratio, Eq. (2.28) can be approximated by

δ ¼ 2πξ ð2:29Þ

Fig. 2.4 Curve showing peak displacements and displacements at the points of tangency
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Alternatively, the logarithmic decrement may be calculated as the ratio of two consecutive peak

accelerations, which are easier to measure experimentally than displacements. In this case, taking the

first and the second derivatives in Eq. (2.21), we obtain

_u tð Þ ¼ Ce�ξωt �ξω cos ωDt� αð Þ � ωD sin ωDt� αð Þ½ �
€u tð Þ ¼ Ce�ξωt

�

�ξω cos ωDt� αð Þ � ωD sin ωDt� αð Þ½ � �ξωð Þ
þ ξωωD sin ωDt� αð Þ � ω2

D cos ωDt� αð Þ
� 	


At a time t1, when cos(ωDt1 – α) ¼ 1 and sin(ωDt1 – α) ¼ 0

€u1 ¼ Ce�ξωt1 ξ2ω2 � ω2
D

� 


and at time t2¼ t1 + TD, corresponding to a period later, when again the cosine function is equal to one

and the sine function is equal to zero,

€u2 ¼ Ce�ξω t1þTDð Þ ξ2ω2 � ω2
D

� 


The ratio of the acceleration at times t1 and t2 is then

€u1

€u2
¼ eξωTD

and taking natural logarithmic results in the logarithmic decrement in terms of the accelerations as

δ ¼ ln
€u1

€u2
¼ ξωTD

which is identical to the expression for the logarithmic decrement given by Eq. (2.27) in terms of

displacement.

Illustrative Example 2.1

A vibrating system consisting of a weight of W ¼ 10 lb and a spring with stiffness k ¼ 20 lb/in is

viscously damped so that the ratio of two consecutive amplitudes is 1.00 to 0.85. Determine:

1. The natural frequency of the undamped system.

2. The logarithmic decrement.

3. The damping ratio.

4. The damping coefficient.

5. The damped natural frequency.

Solution:

1. The undamped natural frequency of the system in radians per second is

ω ¼
ffiffiffiffi

k

m

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20 lb=in� 386 in=sec 2

10 lb
Þ ¼ 27:78 rad=sec

�

s

or in cycles per second
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f ¼ ω

2π
¼ 4:42 cps

2. The logarithmic decrement is given by Eq. (2.26) as

δ ¼ ln
u1

u2
¼ ln

1:00

0:85
¼ 0:163

3. The damping ratio from Eq. (2.29) is approximately equal to

ξ ¼ δ

2π
¼ 0:163

2π
¼ 0:026

4. The damping coefficient is obtained from Eqs. (2.6 and 2.19) as

c ¼ ξccr ¼ 2� 0:026
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10� 20ð Þ=386
p

¼ 0:037
lb: sec

in

5. The natural frequency of the damped system is given by Eq. (2.17), so that

ωD ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
p

ωD ¼ 27:78
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:026ð Þ2
q

¼ 27:77 rad=sec

Ilustrative Example 2.2

A platform of weight W ¼ 4000 lb is being supported by four equal columns that are clamped to the

foundation as well as to the platform. Experimentally it has been determined that a static force of

F ¼ 1000 lb appliled horizontally to the platform produces a displacement of Δ ¼ 0.10 in. It is

estimated that damping in the structures is of the order of 5% of the critical damping. Determine for

this structure the following:

1. Undamped natural frequency.

2. Absolute damping coefficient

3. Logarithmic decrement.

4. The number of cycles and the time required for the amplitude of motion to be reduced from an

initial value of 0.1 to 0.01 in.

Solution:

1. The stiffness coefficient (force per unit displacement) is computed as

k ¼ F

Δ
¼ 1000

0:1
¼ 10, 000 lb=in

and the undamped natural frequency

ω ¼
ffiffiffiffiffi

kg

W

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10, 000� 386

4000

r

¼ 31:06 rad=sec
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2. The critical damping is

ccr ¼ 2
ffiffiffiffiffiffi

km
p

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10, 000� 4000=386
p

¼ 643:8
lb: sec

in

and the absolute damping

c ¼ ξccr ¼ 0:05� 643:8 ¼ 32:19
lb: sec

in

3. Approximately, the logarithmic decrement is

δ ¼ ln
u0

u1

� �

¼ 2πξ ¼ 2π 0:05ð Þ ¼ 0:314

and the ratio of two consecutive amplitudes

u0

u1
¼ 1:37

4. The ratio between the first amplitude u0 and the amplitude uk after k cycles may be expressed as

u0

uk
¼ u0

u1
� u1
u2

� � �uk�1

uk

Then taking the natural logarithm, we obtain

ln
u0

uk
¼ δþ δþ . . .þ δ ¼ kδ

ln
0:1

0:01
¼ 0:314k

k ¼ ln 10

0:314
¼ 7:73 ! 8 cycles

The damped frequency ωD is given by

ωD ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
q

¼ 31:06

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:05ð Þ2
q

¼ 31:02 rad=sec

and the damped period TD by

TD ¼ 2π

ωD

¼ 2π

31:02
¼ 0:2025 sec

Then the time for eight cycles is

t 8 cyclesð Þ ¼ 8TD ¼ 1:62 sec

Illustrative Example 2.3

A machine weighing 1000 lb is mounted through springs having a total stiffness k ¼ 2000 lb/in to a

simple supported beam as shown in Fig. 2.5a. Determine using the analytical model shown in

Fig. 2.5b the equivalent mass mE, the equivalent spring constant kE, and the equivalent damping

coefficient cE for the system assumed to have 10% of the critical damping. Neglect the mass of the

beam.
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Solution:

The spring constant kb for a uniform simple supported beam is obtained from the deflection δ resulting

for a force P applied at the center of the beam:

δ ¼ PL3

48EI

Hence,

kb ¼
P

δ
¼ 48EI

L3

¼ 48� 107

403
¼ 7500 lb=in

The equivalent spring constant is then calculated using Eq. (1.5) for two springs in a series:

1

kE
¼ 1

k
þ 1

kb

¼ 1

2000
þ 1

7500
kE ¼ 1579 lb=in

ðAnsÞ

The equivalent mass is:

mE ¼ W

g
¼ 1000

386
¼ 2:59

lb: sec 2

in

� �

The critical damping is calculated from Eq. (2.6):

ccr ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi

kEmE

p

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1579� 2:59
p

¼ 127:92
lb: sec

in

� � ðAnsÞ

The damping coefficient cE is then calculated from Eq. (2.19):

ξ ¼ cE

ccr

cE ¼ ξccr ¼ 0:10� 127:92 ¼ 12:79
lb: sec

in

� � ðAnsÞ

Fig. 2.5 (a) System for Ilustrative Example 2.3. (b) Analytical model
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2.7 Response of SDF Using MATLAB Program

Using finding values in illustrative Example 2.1, plot the responses with following damping ratios:

0.01, 0.03, 0.5, and 0.9. The initial conditions are the displacement of 1 in. and the velocity of 0 in./

sec.
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2.8 Summary

Real structures dissipate energy while undergoing vibratory motion. The most common and practical

method for considering this dissipation of energy is to assume that it is due to viscous damping forces.

These forces are assumed to be proportional to the magnitude of the velocity but acting in the

direction opposite to the motion. The factor of proportionality is called the viscous damping coeffi-

cient. It is expedient to express this coefficient as a fraction of the critical damping in the system

(ξ ¼ c/ccr). The critical damping may be defined as the least value of the damping coefficient for

which the system will not oscillate when disturbed initially, but it will simply return to the equilib-

rium position.

The differential equation of motion for the free vibration of a damped single degree-of-freedom

system is given by

m€uþ c _u þ ku ¼ 0 ðEq. (2.1) repeatedÞ

The analytical expression for the solution of this equation depends on the magnitude of the damping

ratio. Three cases are possible:

1. Critically damped system (ξ ¼ 1).

2. Overdamped system (ξ > 1).

3. Underdamped system (ξ < 1).

For the underdamped system (ξ < 1), the solution of the differential equation of motion may be

written as

Fig. 2.6 Responses of damped SDF with varied damping ratios damping ratios: (a) 0.01, (b) 0.03, (c) 0.5, (d) 0.9
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u tð Þ ¼ e�ξωt u0 cosωDtþ
v0 þ u0ξω

ωD

sinωDt

� �

ðEq. (2.20) repeatedÞ

in which

ω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

is the undamped frequency

ωD ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
p

is the damped frequency

ξ ¼ c
ccr

is the damping ratio

ccr ¼ 2
ffiffiffiffiffiffi

km
p

is the critical damping

and u0 and v0 are, respectively, the initial displacement and velocity.

A common method of determining the damping present in a system is to evaluate experimentally

the logarithmic decrement, which is defined as the natural logarithm of the ratio of two consecutive

peaks for the displacement or acceleration, in free vibration, that is,

δ ¼ ln
u1

u2
or δ ¼ ln

€u1

€u2
ðEq. (2.26) repeatedÞ

The damping ratio in structural systems is usually less than 10% of the critical damping (ξ < 0.1).

For such systems, the damped frequency is approximately equal to the undamped frequency.

2.9 Problems

Problem 2.1

Repeat Problem 1.2 assuming that the system has 15% of critical damping.

Problem 2.2

Repeat Problem 1.6 assuming that the system has 10% of critical damping.

Problem 2.3

The amplitude of vibration of the system shown in Fig. P2.3 is observed to decrease 5% on each

consecutive cycle of motion. Determine the damping coefficient c of the system k ¼ 200 lb/in and

m ¼ 10 lb.sec2/in.

Fig. P2.3
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Problem 2.4

It is observed experimentally that the amplitude of free vibration of a certain structure, modeled as a

single degree-of-freedom system, decreases in 10 cycles from 1 in to 0.4 in. What is the percentage of

critical damping?

Problem 2.5

Show that the displacement for critical and overcritical damped systems with initial displacement u0
and velocity v0 may be written as

u ¼ e�ωt u0 1þ ωtð Þ þ v0t½ � for ξ ¼ 1

u ¼ e�ξωt u0coshω
0
D tþ

v0 þ u0ξω

ω
0
D

sinhω
0

Dt

� �

for ξ > 1

where ω
0

D ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 � 1

q

.

a) Write the MATLAB coding for these two cases.

b) Run the MATLAB file with the same cases in Problem 2.1 with damping ratios of 1 and 2.

Problem 2.6

A structure is modeled as a damped oscillator having a spring constant k ¼ 30 kip/in and undamped

natural frequency ω ¼ 25 rad/sec. Experimentally it was found that a force of 1 kip produced a

relative velocity of 1.0 in/sec in the damping element. Determine:

a) The damping ratio ξ.

b) The damped period TD.

c) The logarithmic decrement δ.

d) The ratio between two consecutive amplitudes.

Problem 2.7

In Fig. 2.4 it is indicated that the tangent points to the displacement curve corresponds to

cos(ωDt – α) ¼ 1. Therefore the difference in ωDt between any two consecutive tangent points is

2π. Show that the difference in ωDt between any two consecutive peaks is also 2π.

Problem 2.8

Show that for a damped system in free vibration the logarithmic decrement may be written as

δ ¼ 1

k
ln

ui

uiþk

where k is the number of cycles separating the two measured peak amplitudes ui and ui+k.

Problem 2.9

It has been estimated that damping in the system of Problem 1.11 is 10% of the critical value.

Determine the damped frequency fD of the system and the absolute value of the damped coefficient c.

42 2 Damped Single Degree-of-Freedom System



Problem 2.10

A single degree-of-freedom system consists of a mass with a weight of 386 lb and a spring of stiffness

k¼ 3000 lb/in. By testing the system it was found that a force of 100 lb produces a relative velocity of

12 in/sec. Find:

a) The damping ratio, ξ.

b) The damped frequency of vibration, fD.

c) Logarithmic decrement, δ.

d) The ratio of two consecutive amplitudes.

Problem 2.11

Solve Problem 2.10 when the damping coefficient is c ¼ 2 lb.sec/in.

Problem 2.12

For each of the systems considered in Problem 1.15, determine the equivalent spring constant kE and

the equivalent damping coefficient cE in the analytical model shown in Fig. P2.12. Assume that the

damping in these systems is equal to 10% of critical damping.

Problem 2.13

A vibration generator with two weights each of 30 lb with an eccentricity of 10 in rotating about

vertical axis in opposite directions is mounted on the roof of a one – story builsing with a roof that

weighs 300 kips. It is observed that the maximum lateral acceleration of 0.05 g occurs when the

vibrator generator is rotating at 400 rpm. Determine the equivalent viscous damping in the structure.

Problem 2.14

A system modeled by two freely vibrating masses m1 and m2 is interconnected by a spring and a

damper element as shown in Fig. P2.14. Determine for this system the differential equation of motion

in terms of relative motion of the masses ur ¼ u2 – u1.

Fig. P2.12

Fig. P2.14
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Problem 2.15

Determine the relative motion ur ¼ u2 – u1 for the system shown in Fig. P2.14 in terms of the natural

frequency ω, damped frequency, ωD and relative damping, ξ. Hint: Define the equivalent mass as

M ¼ m1 m2 /(m1 + m2).
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Response of One-Degree-of-Freedom
System to Harmonic Loading 3

In this chapter, we will study the motion of structures idealized as single-degree-of-freedom systems

excited harmonically, that is, structures subjected to forces or displacements whose magnitudes may

be represented by a sine or cosine function of time. This type of excitation results in one of the most

important motions in the study of mechanical vibrations as well as in applications to structural

dynamics. Structures are very often subjected to the dynamic action of rotating machinery which

produces harmonic excitations due to the unavoidable presence of mass eccentricities in the rotating

parts of such machinery. Furthermore, even in those cases when the excitation is not a harmonic

function, the response of the structure may be obtained using the Fourier Method, as the superposition

of individual responses to the harmonic components of external excitation. This approach will be

dealt with in Chap. 20 as a special topic.

3.1 Harmonic Excitation: Undamped System

The impressed force F(t) acting on the simple oscillator in Fig. 3.1 is assumed to be harmonic and

equal to F0 sinω t where F0 is the peak amplitude and ω is the frequency of the force in radians per

second.

The differential equation obtained by summing all the forces in the free body diagram of

Fig. 3.1b is

m€uþ ku ¼ F0 sinω t ð3:1Þ

The solution of Eq. (3.1) can be expressed as

u tð Þ ¼ uc tð Þ þ uP tð Þ ð3:2Þ

where uc(t) is the complementary solution satisfying the homogeneous equation, that is, Eq. (3.1) with

the left hand-side set equal to zero; and up(t) is the particular solution based on the solution satisfying

the nonhomogeneous differential Eq. (3.1). The complementary solution, uc(t), is given byEq. (1.17) as

uc tð Þ ¼ A cosω tþ B sinω t ð3:3Þ

where
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ω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

The nature of the forcing function in Eq. (3.1) suggests that the particular solution be taken as

up tð Þ ¼ U sinω t ð3:4Þ

where U is the amplitude of the particular solution. The substitution of Eq. (3.4) into Eq. (3.1)

followed by cancellation of common factors gives

�mω2U þ kU ¼ F0

or

U ¼ F0

k � mω2
¼ F0=k

1� r2
ð3:5Þ

in which r represents the ratio (frequency ratio) of the applied forced frequency to the natural

frequency of vibration of the system, that is,

r ¼ ω

ω
ð3:6Þ

Combining Eqs. (3.3) through (3.5) with Eq. (3.2) yields

U tð Þ ¼ A cosω tþ B sinω tþ F0=k

1� r2
sinω t ð3:7Þ

If the initial conditions for the displacement and for the velocity at time t ¼ 0 are taken as zero

(u0 ¼ 0, υ0 ¼ 0), the constants of integration determined from Eq. (3.7) are:

A ¼ 0 and B ¼ �r
F0=k

1� r2

which, upon substitution in Eq. (3.7), results in

Fig. 3.1 (a) Undamped oscillator harmonically excited, (b) Free body diagram
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u tð Þ ¼ F0=k

1� r2

�
sinω t� r sinωt

�
ð3:8Þ

As we can see from Eq. (3.8), the response is given by the superposition of two harmonic terms of

different frequencies. The resulting motion is not harmonic; however, in the practical case, damping

forces will always be present in the system and will cause the last term, i.e., the free frequency term in

Eq. (3.8), to eventually vanish. For this reason, this term is said to represent the transient response.

The forcing frequency term in Eq. (3.8), namely

u tð Þ ¼ F0=k

1� r2
sinω t ð3:9Þ

is referred to as the steady-state response. It is clear from Eq. (3.8) that in the case of no damping in

the system, the transient will not vanish and the response is then given by Eq. (3.8). It can also be seen

from Eq. (3.8) or Eq. (3.9) that when the forcing frequency is equal to natural frequency (r¼ 1.0), the

amplitude of the motion becomes infinitely large. A system acted upon by an external excitation of

frequency coinciding with the natural frequency is said to be at resonance. In this circumstance, the

amplitude will increase gradually to infinite. However, materials that are commonly used in practice

are subjected to strength limitations and in actual structures failures occur long before extremely large

amplitudes can be attained.

3.2 Harmonic Excitation: Damped System

Now consider the case of the one-degree-of-freedom system in Fig. 3.2a vibrating under the influence

of viscous damping. The differential equation of motion is obtained by equating to zero the sum of the

forces in the free body diagram of Fig. 3.2b. Hence

m€uþ c _u þ ku ¼ F0 sinω t ð3:10Þ

The complete solution of this equation again consists of the complementary solution uc(t) and the

particular solution up(t).The complementary solution is given for the underdamped case (c < ccr) by

Eqs. (2.15) after using (2.19) as

uc tð Þ ¼ e�ξωt A cosωDtþ B sinωDtð Þ ð3:11Þ

The particular solution may be found by substituting up in this case assumed to be of the form

up tð Þ ¼ C1 sinω tþ C2 cosω t ð3:12Þ

into Eq. (3.10) and equating the coefficients of the sine and cosine functions. The unknowns C1 and

C2 are found with plugging up(t) into m€up þ c _u p þ kup ¼ F0 sinω t.

C1 ¼
F0

k

1� r2

1� r2ð Þ2 þ 2ξrð Þ2

 !

and C2 ¼
F0

k

�2ξr

1� r2ð Þ2 þ 2ξrð Þ2

 !

ð3:13Þ

In addition, here we follow a more elegant approach using Euler’s relation, namely

eiω t ¼ cosω tþ i sinω t
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For this purpose, the reader should realize that we can write Eq. (3.10) as

m€uþ c _u þ ku ¼ F0e
iω t ð3:14Þ

with the understanding that only the imaginary component of F0e
iωt, i.e., the force component of

F0 sinω t, is acting and, consequently, the response will then consist only of the imaginary part of the

total solution of Eq. (3.14). In other words, we obtain the solution of Eq. (3.14) which has real and

imaginary components, and disregard the real component.

It is reasonable to expect that the particular solution of Eq. (3.14) will be of the form

up ¼ Ceiω t ð3:15Þ

Substitution of Eq. (3.14) into Eq. (3.13) and cancellation of the factor eiω t gives

�mω2Cþ icωCþ kC ¼ F0

or

C ¼ F0

k � mω2 þ icω

and

up ¼
F0e

iωt

k � mω2 þ icω
ð3:16Þ

By using polar coordinate form, the complex denominator in Eq. (3.16) may be written as

up ¼
F0e

iωt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
k � mω2

�2 þ
�
cω
�2

q

eiθ

or

Fig. 3.2 (a) Damped oscillator harmonically excited, (b) Free body diagram
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up ¼
F0e

i

�
ω t�θ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
k � mω2

�2 þ
�
cω
�2

q ð3:17Þ

where

tan θ ¼ cω

k � mω2
ð3:18Þ

The response to the force in F0 sinω t (the imaginary component of F0e
iω t ) is then the imaginary

component of Eq. (3.17), namely

uP ¼ F0 sin
�
ω t� θ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
k � mω

�2 þ
�
cω
�2

q ð3:19Þ

or

up ¼ U sin
�
ω t� θ

�
ð3:20Þ

where

U ¼ F0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
k � mω

�2 þ
�
cω
�2

q

is the amplitude of the steady-state motion. Equations (3.19) and (3.18) may conveniently be written

in terms of dimensionless ratios as

u tð Þ ¼ ust sin
�
ω t� θ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2ξ rð Þ2
q ð3:21Þ

and

tan θ ¼ 2ξ r

1� r2
ð3:22Þ

where ust ¼ F0/k is seen to be the static deflection of the spring acted upon by the force F0, ξ ¼ c / ccr
the damping ratio, and r ¼ ω=ω the frequency ratio. The total response is then obtained by combining

the complementary solution (transient response) from Eq. (3.11) and the particular solution (steady-

state response) from Eq. (3.21), that is,

u tð Þ ¼ e�ξω t A cosωDtþ B sinωDtð Þ þ ust sin
�
ω t� θ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2r ξð Þ2
q ð3:23Þ

The reader should be warned that the constants of integration A and B must be evaluated from initial

conditions using the total response given by Eq. (3.23) and not from just the transient component of

the response given in Eq. (3.11). By examining the transient component of response, it may be seen

that the presence of the exponential factor e�ξωt will cause this component to vanish, leaving only the

steady-state motion which is given by Eq. (3.21).
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The ratio of the steady-state amplitude of up(t) to the static deflection ust defined above is known as

the dynamic magnification factor D, and is given from Eqs. (3.20) and (3.21) by

D ¼ U

ust
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2r ξð Þ2
q ð3:24Þ

It may be seen from Eq. (3.24) that the dynamic magnification factor varies with the frequency ratio

r and the damping ratio ξ. Parametric plots of the dynamic magnification factor are shown in Fig. 3.3.

The phase angle θ, given in Eq. (3.22), also varies with the same quantities as it is shown in the plots

of Fig. 3.4. We note in Fig. 3.3 that for a lightly damped system, the peak amplitude occurs at a

frequency ratio very close to r ¼ 1; that is, the dynamic magnification factor has its maximum value

virtually at resonance (r ¼ 1). It can also be seen from Eq. (3.24) that at resonance the dynamic

magnification factor is inversely proportional to the damping ratio, that is,

D r ¼ 1ð Þ ¼ 1

2ξ
ð3:25Þ

Although the dynamic magnification factor evaluated at resonance is close to its maximum value, it is

not exactly the maximum response for a damped system. However, for moderate amounts of

damping, the difference between the approximate value of Eq. (3.25) and the exact maximum is

negligible.
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Fig. 3.3 Dynamic magnification factor as a function of the frequency ratio for various amounts of damping
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Illustrative Example 3.1

A simple beam supports at its center a machine having a weightW ¼ 16,000 lb. The beam is made of

two standard S8 � 23 sections with a clear span L ¼ 12 ft and total cross-sectional moment of inertia

I ¼ 2 � 64.2 ¼ 128.4 in4. The motor runs at 300 rpm, and its rotor is out of balance to the extent of

W0 ¼ 40 lb at an eccentricity of e0 ¼ 10 in. What will be the amplitude of the steady-state response if

the equivalent viscous damping for the system is assumed 10% of the critical?

Solution:

This dynamic system may be modeled by the damped oscillator. The distributed mass of the beam

will be neglected in comparison with the large mass of the machine. Figs. 3.5 and 3.6 show,

respectively, the schematic diagram of the beam-machine system and the adapted model.
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Fig. 3.4 Phase angle θ as a function of frequency ratio for various damping values

Fig. 3.5 Diagram for beam-machine system of Illustrative Example 3.1
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The force at the center of a simply supported beam necessary to deflect this point one unit (i.e., the

stiffness coefficient) is given by the formula

k ¼ 48EI

L3
¼ 48� 30� 106 � 128:4

144ð Þ3
¼ 61, 920 lb=in

The natural frequency of the system (neglecting the mass of the beam) is

ω ¼
ffiffiffiffi

k

m

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

61, 920

16, 000=386

s

¼ 38:65 rad= sec ,

The forced frequency is

ω ¼ 300� 2π

60
¼ 31:41 rad= sec

and the frequency ratio

r ¼ ω

ω
¼ 31:41

38:65
¼ 0:813

Referring the Fig. 3.6, letm be the total mass of the motor andm’ the unbalanced rotating mass. Then,

if u is the vertical displacement from the equilibrium position of the non-rotating mass (m - m’), the

displacement u1 of the eccentric mass m’ as shown in Fig. 3.6 is

u1 ¼ uþ e0 sinω t ðaÞ

The equation of motion in then obtained by summing forces along the vertical direction in the free

body diagram of Fig. 3.6b, where the inertial forces of both the nonrotating mass and of the eccentric

mass are also shown. This summation yields

Fig. 3.6 (a) Analytical model for Illustrative Example 3.1; (b) Free body diagram
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m� m0ð Þ€uþ m0€u1 þ c _u þ ku ¼ 0 ðbÞ

in which m’ ¼ W0/g is the eccentric mass.

Substitution of €u1 obtained from Eq. (a) gives

m� m0ð Þ€uþ m0�€u� e0ω
2 sinω t

�
þ c _u þ ku ¼ 0 ðbÞ

and with a rearrangement of terms

m€uþ c _u þ ku ¼ m0e0ω
2 sinω t ðcÞ

This last equation is of the same form as the equation of motion (3.10) for the damped oscillator

excited harmonically by a force of amplitude

F0 ¼ m0e0ω
2 ðdÞ

Substituting in Eq. (d) the numerical values for this example, we obtain

F0 ¼ 40ð Þ 10ð Þ 31:41ð Þ2=386 ¼ 1022 lb

From Eq. (3.20), the amplitude of the steady-state resulting motion is then

U ¼ 1022=61, 920
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:8132
� �2 þ 2� 0:813� 0:1ð Þ2

q

U ¼ 0:044 in ðAnsÞ

Illustrative Example 3.2

The steel frame shown in Fig. 3.7 supports a rotating machine that exerts a horizontal force at the

girder level F(t) ¼ 200 sin 5.3t lb. Assuming 5% of critical damping, determine: (a) the steady-state

amplitude of vibration and (b) the maximum dynamic stress in the columns. Assume the girder is

rigid.

Solution:

Fig. 3.7 (a) Diagram of the frame for Illustrative Example 3.2 (b) Analytical model
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This structure may be modeled for dynamic analysis as the damped oscillator shown in Fig. 3.7b. The

parameters in this model are computed as follows1:

k ¼ 3E 2Ið Þ
L3

¼ 3� 30� 106 � 2� 69:2

12� 15ð Þ3
¼ 2136 lb=in

ξ ¼ 0:05

ust ¼
F0

k
¼ 200

2136
¼ 0:0936 in

ω ¼
ffiffiffiffi

k

m

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2136� 386

15, 000

r

¼ 7:41 rad= sec

r ¼ ω

ω
¼ 5:3

7:41
¼ 0:715

The steady-state amplitude from Eqs. (3.19) and (3.20) is

U ¼ ust
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2r ξð Þ2
q ¼ 0:189 in

Then, the maximum shear force is the columns is

Vmax ¼
3EIU

L3
¼ 201:8 lb

The maximum bending moment

Mmax ¼ VmaxL ¼ 36, 324 lb � in

and the maximum stress

σmax ¼
Mmax

I=c
¼ 36, 324

17
¼ 2136 psi ðAnsÞ

in which I / c is the section modulus.

3.3 Evaluation of Damping at Resonance

We have seen in Chap. 2 that the free-vibration decay curve permits the evaluation of damping of a

single-degree-of freedom system by simply calculating the logarithm decrement and using Eq. (2.28)

or Eq. (2.29). Another technique for determining damping is based on observations of steady-state

harmonic response, which requires harmonic excitations of the structure in a range of frequencies in

the neighborhood of resonance. With the application of a harmonic force F0 sinω t at closely spaced

values of frequencies, the response curve for the structure can be plotted, resulting in displacement

amplitudes as a function of the applied frequencies. A typical response curve for such a moderately

1 *A unit displacement at the top of pinned supported columns requires a force equal to 3 EI/L3.
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damped structure is shown in Fig. 3.8. It is seen from Eq. (3.24) that, at resonance, the damping ratio

is given by

ξ ¼ 1

2D r ¼ 1ð Þ ð3:25Þ

where D(r ¼ 1) is the dynamic magnification factor evaluated at resonance. In practice, the damping

ratio ξ is determined from the dynamic magnification factor evaluated at the maximum amplitude,

namely

ξ ¼ 1

2Dm

ð3:26Þ

where

Dm ¼ Um

ust

and Um is the maximum amplitude. The error involved in evaluating the damping ratio ξ using the

approximate Eq. (3.26) is not significant in ordinary structures. This method of determining the

damping ratio requires only some simple equipment to vibrate the structure in a range of frequencies

that span the resonance frequency and a transducer for measuring amplitudes; nevertheless, the

evaluation of the static displacement ust ¼ F0 / k may present a problem since, frequently, it is

difficult to apply a static lateral load to the structure.

3.4 Bandwidth Method (Half-Power) to Evaluate Damping

An examination of the response curves in Fig. 3.3 shows that the shape of these curves is controlled

by the amount of damping present in the system; in particular, the bandwidth, that is, the difference

between two frequencies corresponding to the same response amplitude, is related to the damping in

the system. A typical frequency amplitude curve obtained experimentally for a moderately damped

structure is shown in Fig. 3.8. In the evaluation of damping it is convenient to measure the bandwidth

at 1=
ffiffiffi

2
p

of the peak amplitude as shown in this figure. The frequencies corresponding in this

bandwidth f1 and f2 are also referred to as half-power points and are shown in Fig. 3.8. The values

of the frequencies for this bandwidth can be determined by setting the response amplitude in

Eq. (3.20) equal to 1=
ffiffiffi

2
p

times the resonant amplitude given by Eq. (3.24), that is

ust
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2r ξð Þ2
q ¼ 1

ffiffiffi

2
p ust

2ξ

Squaring both sides and solving for the frequency ratio results in

r2 ¼ 1� 2ξ2 � 2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
q

or by neglecting ξ2 in the square root term
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r21 ffi 1� 2ξ2 � 2ξ

r22 ffi 1� 2ξ2 þ 2ξ

r1 ffi 1� ξ� ξ2

r2 ffi 1þ ξ� ξ2

Finally, the damping ratio is given approximately by half the difference between these half-power

frequency ratios, namely

ξ ¼ 1

2
r2 � r1ð Þ

or

ξ ¼ 1

2

ω2 � ω1

ω
¼ f 2 � f 1

f 2 þ f 1
ð3:27Þ

since

ω2 � ω1

2ω
¼ f 2 � f 1

2f
and f � f 1 þ f 2

2

Illustrative Example 3.3

Experimental data for the frequency response of a single degree-of-freedom system are plotted in

Fig. 3.9. Determine the damping ratio of this system.

Fig. 3.8 Frequency response curve for moderately damped system
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Solution:

From Fig. 3.9, the peak amplitude is 0.1134 in. hence the amplitude at half-power is equal to

0:1134=
ffiffiffi

2
p

¼ 0:0802 in

The frequencies at this amplitude obtained from Fig. 3.9 are

f 1 ¼ 17:05 cps

f 2 ¼ 18:92

the damping ratio is then calculated from Eq. (3.27) as

ξ ffi f 2 � f 1
f 2 þ f 1

ξ ffi 18:92� 17:05

18:92þ 17:05
¼ 5:2%

ðAnsÞ

3.5 Energy Dissipated by Viscous Damping

The energy ED dissipated by viscous damping during one cycle of harmonic vibration of frequencyω

is equal to the work done by the damping force c _u during a differential displacement du integrated

over one period of vibration T ¼ 2π=ω.

Hence,

ED ¼
ð2π=ω

0

�
c _u
�
du ¼

ð2π=ω

0

�
c _u
�du

dt
dt ¼

ð2π=ω

0

c _u 2 dt ð3:28Þ

The velocity _u ¼ _u tð Þ for the damped oscillator acted upon by the harmonic force, F ¼ F0 sinω t, is

given by the derivative of Eq. (3.19) as

Fig. 3.9 Experimental frequency response curve of Illustrative Example 3.3
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_u tð Þ ¼ Uω cos
�
ω t� θ

�
ð3:29Þ

which substituted in Eq. (3.28) gives

ED ¼ cU2ω2

ð2π=ω

0

cos 2
�
ω t� θ

�
dt ¼ πcωU2

ED ¼ 2π ξ rkU2 ð3:30Þ

where as previously defined

ξ ¼ c

ccr
, r ¼ ω

ω
, ω ¼

ffiffiffiffiffiffiffi

k

m
,

r

and ccr ¼ 2
ffiffiffiffiffiffi

km
p

ð3:31Þ

Equation (3.30) shows that the energy dissipated by viscous damping is proportional to the square of

the amplitude of the motion U. It can be shown (see Problem 3.1) that during one cycle, the workWF

of the external force F ¼ F0 sinω t is precisely the equal to the energy ED dissipated by the damping

force as expressed by Eq. (3.30).

3.6 Equivalent Viscous Damping

As mentioned in the introductory sections of Chap. 2, the mechanism by which structures dissipate

energy during vibratory motion is usually assumed to be viscous. This assumption provides the

enormous advantage that the differential equation of motion remains linear for damped dynamic

systems vibrating in the elastic range. Only for some exceptionally situations such as the use of

frictional devices installed in buildings to ameliorate damage resulting from strong motion

earthquakes, viscous damping is usually assumed to account for frictional or damping forces in

structural dynamics. The numerical value assigned to the damping coefficient is based on values

obtained experimentally and the determination of an equivalent viscous damping.

The concept of equivalent viscous damping is based on test results obtained using harmonic forces.

Thus, in reference to the experimental frequency response plot in Fig. 3.9, the equivalent damping ξeq
may be based on the maximum relative amplitude of motion, Dm ¼ Um/ust, or on the bandwidth

corresponding to frequencies f1 to f2 at amplitude equal to Dm=
ffiffiffi

2
p

. Thus, the equivalent viscous

damping ξeq may be calculated from Eq. (3.26) as

ξeq ¼
ust

2Um

ð3:32Þ

or from Eq. (3.27) as

ξeq ¼
f 2 � f 1
f 2 þ f 1

ð3:33Þ

Alternatively, the equivalent viscous damping ξeq may also be evaluated experimentally using the

expression for the logarithmic decrement, δ, from Eq. (2.28) or approximately from Eq. (2.29) as

ξeq ¼
δ

2π
ð3:34Þ

However, the most common definition of equivalent viscous damping is based on equating the energy

dissipated, in a vibratory cycle of the actual structure, to the energy dissipated in an equivalent
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viscous system. Hence, equating the energy, E*, dissipated in a cycle of harmonic vibration deter-

mined from experiment to the energy ED, dissipated by an equivalent viscous system given by

Eq. (3.30) we have

E∗ ¼ 2π ξeqrkU
2

and

ξeq ¼
E∗

2πrkU2

or

ξeq ¼
1

4πr

E∗

Es

ð3:35Þ

in which Es, the strain energy stored at maximum displacement if the system were elastic, which is

given by

Es ¼
1

2
kU2 ð3:36Þ

In the determination of the energy, E* dissipated per cycle and the elastic energy, Es stored at the

maximum displacement, an experiment is conducted by vibrating the structure at the resonant

frequency for which r ¼ ω=ω ¼ 1. At this frequency, damping in the system has a maximum effect.

With appropriate test equipment and measuring instrumentation, the restoring force and displacement

during a cycle of vibration are measured to obtain a plot of the type shown in Fig. 3.10. The area

enclosed in the loop during one cycle of vibration is equal to the energy dissipated, E* and the

triangular area corresponding to the amplitude U is equal to the strain energy, Es. Consequently, the

equivalent viscous damping is evaluated by Eq. (3.35) from the experimental results E* and Es, with

r ¼ 1, obtained from resisting force-displacement plot.

Illustrative Example 3.4

Laboratory tests on a structure modeled by the damped spring-mass system [Fig. 3.11a], are

conducted to evaluate equivalent viscous damping using (a) peak amplitude and (b) energy

dissipated. The experimental restoring force-displacement plot at resonance is shown in Fig. 3.11b.

Fig. 3.10 Restoring force vs. displacement during a cycle of vibration showing the energy dissipated E* (area within

the loop) and the maximum energy stored (triangular area under maximum displacement)
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Solution:

The static deflection, the mass, and the natural frequency are:

ust ¼
F0

k
¼ 1:5

100
¼ 0:015 in m ¼ W

g
¼ 38:6

386
¼ 0:1 lb � sec 2=in

� �

ω ¼
ffiffiffiffi

k

m

r

¼
ffiffiffiffiffiffiffiffi

100

0:1

r

¼ 31:62 rad= sec

(a) Equivalent viscous damping calculated from peak amplitude:

ξeq ¼
ust

2Um

¼ 0:015

2ð ÞÞ 0:13ð Þ ¼ 0:0576 ¼ 5:7% by Eq. (3.32)

(b) Equivalent viscous damping calculated from energy dissipatedE*¼ 0.66 (lb.in) and elastic energy

at maximum displacement, Es ¼ 0.845 (lb.in), as shown in Fig. 3.11: (at resonance, r ¼ 1.0)

ξeq ¼
1

4π r

E∗

Es

¼ 0:66

4π 1:0ð Þ0:845 ¼ 0:0621 ¼ 6:21% by Eq. (3.35)

3.7 Response to Support Motion

3.7.1 Absolute Motion

There are many actual cases where the foundation or support of a structure is subjected to time varying

motion. Structures subjected to ground motion by earthquakes or other excitations such as explosions

Fig. 3.11 (a) Analytical model for Illustrative Example 3.4; (b) Force-displacement plot
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or dynamic action of machinery are examples in which support motions may have to be considered in

the analysis of dynamic response. Let us consider in Fig. 3.12 the case where the support of the simple

oscillator modeling the structure is subjected to a harmonic motion given by the expression

us tð Þ ¼ u0 sinω t ð3:37Þ

where u0 is the maximum amplitude and ω is the frequency of the support motion. The differential

equation of motion is obtained by setting equal to zero the sum of the forces (including the inertial

force) in the corresponding free body diagram shown in Fig. 3.12b. The summation of the forces in

the horizontal direction gives

m€uþ c
�
_u � _u s

�
þ k u� usð Þ ¼ 0 ð3:38Þ

The substitution of Eq. (3.37) into Eq. (3.38) and the rearrangement of terms result in

m€uþ c _u þ ku ¼ ku0 sinω tþ cωu0 cosω t ð3:39Þ

The two harmonic terms of frequency ω in the right-hand side of this equation may be combined and

Eq. (3.39) rewritten [similarly to Eqs. (1.20) and (1.23)] as

m€uþ c _u þ ku ¼ F0 sin
�
ω tþ β

�
ð3:40Þ

where

F0 ¼ u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ
�
cω
�2

q

¼ u0k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rξð Þ2
q

ð3:41Þ

and

Fig. 3.12 (a) Damped simple oscillator harmonically excited through its support, (b) Free body diagram including

inertial force
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tan β ¼ cω=k ¼ 2rξ ð3:42Þ

It is apparent that the differential Eq. (3.40) is of the same form as Eq. (3.10) for the oscillator excited

by the harmonic force F0 sin
�
ω tþ β

�
. Consequently, the steady-state solution of Eq. (3.40) is given

as before by Eqs. (3.19) and (3.20), except for the addition of the angle β in the argument of the sine

function, that is

u tð Þ ¼ F0=k sin
�
ω tþ β � θ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q ð3:43Þ

or substituting F0 from Eq. (3.41)

u tð Þ
u0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rξð Þ
p 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q sin

�
ω tþ β � θ

�
ð3:44Þ

Equation (3.44) is the expression for the relative transmission of the support motion to the

oscillator. This is an important problem in vibration isolation in which equipment must be protected

from harmful vibrations of the supporting structure. The degree of relative isolation is known

as transmissibility and is defined as the ratio of the amplitude of motion U of the oscillator

to the amplitude u0, the motion of the support. From Eq. (3.44), the transmissibility Tr is then

given by

Tr ¼
U

u0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rξð Þ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q ð3:45Þ

Analogously to the motion transmitted, we may find the acceleration transmitted from the

foundation to the mass. The acceleration transmitted to the mass is given by the second derivative

of u(t) in Eq. (3.44) as

€u tð Þ ¼
�ω2 u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rξð Þ2
q

sin
�
ω tþ β � θ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q ð3:46Þ

while the acceleration €us (t) of the foundation is obtained from Eq. (3.37)

€us tð Þ ¼ �u0ω
2 sinωt ð3:47Þ

The acceleration transmissibility, Tr, is then given by the ratio of the amplitudes of the acceleration in

Eqs. (3.46) and (3.47). Hence,

Tr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rξð Þ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ
q ð3:48Þ

It may be seen that the transmissibility of acceleration given by Eq. (3.48) is identical to Eq. (3.45),

the transmissibility of displacements. Hence, the same expression will give either displacement or

acceleration transmissibility.
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A plot of transmissibility as a function of the frequency ratio and damping ratio is shown in

Fig. 3.13. The curves in this figure are similar to the curves in Fig. 3.3, representing the frequency

response of the damped oscillator. The major difference between these two sets of curves is that all of

the curves in Fig. 3.13 pass through the same point at a frequency ratio r ¼
ffiffiffi

2
p

. It can be seen in

Fig. 3.13 that damping tends to reduce the effectiveness of vibration isolation for frequencies greater

than this ratio, that is, for r greater than
ffiffiffi

2
p

.

Plot Figs. 3.3, 3.4 and 3.13

clear all

clc

%%%%-GIVEN VALUES-%%%%

r = 0:0.01:3.0;                     %Frequency ratio ranging 0 to 3 with 0.01 intervals

xi = [0.001, 0.1, 0.2, 0.7, 1.0];   %Damping ratios of 0.001, 0.01, 0.02, 0.7, and 1.0

%%%-ESTIMATION-%%%

for i = 1:5

z = xi(i);

denom1 = (1-r.*r).^2;

denom2 = (2*z*r).^2;

denom = sqrt(denom1+denom2);

D(i,:) = 1./denom;                %Dynamic amplification factor (Eq. 3.24)

denom3 = 2*xi(i).*r;

denom4 = (1-r.^2);

theta(i,:) = atand(denom3./denom4);   %Phase angle (Eq. 3.22)

denom5 = sqrt(1+denom3.^2);

T(i,:) =  denom5./denom;              %Transmissibility (Eq. 3.45)

end

%%%Create figures (Figs. 3.3, 3.4, and 3.13) 

figure1 = figure;
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Fig. 3.13 Transmissibility versus frequency ratio for vibration isolation
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%%%Fig. 3.3

axes1= axes('Parent', figure1);

xlim(axes1, [0 3]); %set x limits for the plot

ylim(axes1, [0 6]); %set y limits for the plot

box (axes1,'on');

grid (axes1,'on');

hold (axes1, 'all');

plot1 = plot(r, D, 'Parent', axes1, 'LineWidth', 2, 'Color', [0 0 0]);

set(plot1(1),'LineStyle','-','DisplayName','\xi = 0.001');

set(plot1(2),'LineStyle',':','DisplayName','\xi = 0.01');

set(plot1(3),'LineStyle','--','DisplayName','\xi = 0.02');

set(plot1(4),'DisplayName','\zeta = 0.7');

set(plot1(5),'LineWidth',4,'DisplayName','\xi = 1.0');

xlabel ('Frequency Ratio, r');

ylabel ('Dynamic Magnification Factor, D');

legend (axes1, 'show');

grid on

figure2 = figure;

%%%Fig. 3.4

axes1= axes('Parent', figure2);

xlim(axes1, [0 3]);                     %set x limits for the plot

ylim(axes1, [0 180]);                   %set y limits for the plot

box (axes1,'on');

grid (axes1,'on');

hold (axes1, 'all');

theta(theta<0)=theta(theta<0)+180;

plot2 = plot(r, theta, 'Parent', axes1, 'LineWidth', 2, 'Color', [0 0 0]);

set(plot2(1),'LineStyle','-','DisplayName','\xi = 0.001');

set(plot2(2),'LineStyle',':','DisplayName','\xi = 0.01');

set(plot2(3),'LineStyle','--','DisplayName','\xi = 0.02');

set(plot2(4),'DisplayName','\zeta = 0.7');

set(plot2(5),'LineWidth',4,'DisplayName','\xi = 1.0');

xlabel ('Frequency Ratio, r');

ylabel ('Phase angle, \theta');

legend (axes1, 'show');

grid on

figure3 = figure;

%%%Fig. 3.13

axes1= axes('Parent', figure3);

xlim(axes1, [0 3]);                     %set x limits for the plot

ylim(axes1, [0 3]);                     %set y limits for the plot

box (axes1,'on');

grid (axes1,'on');

hold (axes1, 'all');

plot2 = plot(r, T, 'Parent', axes1, 'LineWidth', 2, 'Color', [0 0 0]);

set(plot2(1),'LineStyle','-','DisplayName','\xi = 0.001');

set(plot2(2),'LineStyle',':','DisplayName','\xi = 0.01');

set(plot2(3),'LineStyle','--','DisplayName','\xi = 0.02');

set(plot2(4),'DisplayName','\zeta = 0.7');

set(plot2(5),'LineWidth',4,'DisplayName','\xi = 1.0');

xlabel ('Frequency Ratio, r');

ylabel ('Transmissibility');

legend (axes1, 'show');

grid on
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Illustrative Example 3.5

A delicate instrument weighing 100 lb is to be mounted on a rubber pad to the floor of a test laboratory

where the vertical acceleration is 0.1 g at a frequency of f ¼ 10 cps. It has been determined

experimentally that the ratio of the stiffness, k, to the damping coefficient, c, is equal to 100 (1/sec)

for the type of rubber pad material used in the isolation. What is the stiffness of the isolation required

to reduce to 0.01 g the acceleration transmitted to the instrument?

Solution:

Setting the acceleration transmissibility given by Eq. (3.48) equal to 0.01g / 0.1g ¼ 0.1, we have

Tr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rξð Þ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rð Þ2 þ 2rξð Þ2
q ¼ 0:1 ðaÞ

Beginning with an assumed value ξ ¼ 0.10 for the damping ratio and squaring both sides of Eq. (a):

1þ 0:04r2

1� r2ð Þ2 þ 0:04r2
¼ 0:01

Then solving this resulting quadratic equation yields

r2 ¼ 13:346

r ¼ ω=ω ¼ 3:653

ω ¼ 2πf ¼ 2π 10 ¼ 62:83 rad= sec

ω ¼ ω=r ¼ 17:20 rad= sec

m ¼ 100=386 ¼ 0:259 lb � sec 2=in

k ¼ mω2 ¼ 0:259� 17:202 ¼ 76:64 lb=in

Now, we check the value of damping contained in the rubber spring:

k=c ¼ 100

or

c ¼ k=100 ¼ 76:22=100 ¼ 0:766 lb � sec =inð Þ

Critical damping:

ccr ¼ 2
ffiffiffiffiffiffi

km
p

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

76:64� 0:259
p

¼ 8:91 lb � sec =inð Þ

Then, the calculated damping ratio is

ξ ¼ c=ccr ¼ 0:766=8:91 ¼ 0:086

which is somewhat less that the assumed value ξ ¼ 0.10. If desired, an iterative cycle could be

performed introducing ξ ¼ 0.086 in Eq. (a) and repeating the calculations.

3.7.2 Relative Motion

Equation (3.43) provides the absolute response of the damped oscillator to a harmonic motion of its

base. Alternatively, we can solve the differential Eq. (3.38) in terms of the relative motion between

the mass m and the support given by
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ur ¼ u� us ð3:49Þ

which substituted into Eq. (3.38) results in

m€ur þ c _u r þ kur ¼ Feff sinω t ð3:50Þ

where Feff ¼ � m€us may be interpreted as the amplitude of the effective force acting on the mass of

the oscillator with the displacement indicated by coordinate ur. Using Eq. (3.37) to obtain €us and

substituting in Eq. (3.50) results in

m€ur þ c _u r þ kur ¼ mu0ω
2 sinω t ð3:51Þ

Again, Eq. (3.51) is of the same form as Eq. (3.10) with F0 ¼ mu0ω
2. Then, from Eqs. (3.19) and

(3.20), the steady-state response in terms of relative motion is given by

ur tð Þ
u0

¼ r2 sin
�
ω t� θ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q ð3:52Þ

where θ is given in Eq. (3.21),

r2 ¼ ω2

ω2
and ω2 ¼ k

m
:

The maximum relative amplitude of the displacement Ur,

Ur ¼
u0r

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q ð3:53Þ

Illustrative Example 3.6

If the frame of Illustrative Example 3.2 (Fig. 3.7) is subjected to a sinusoidal ground motion

us(t) ¼ 0.2 sin 5.3t, determine: (a) the transmissibility of motion to the girder, (b) the maximum

shearing force in the supporting columns, and (c) maximum stresses in the columns.

Solution:

(a) The parameters for this system are calculated in Illustrative Example 3.2 as

k ¼ 2136 lb=in

ξ ¼ 0:05

u0 ¼ 0:2 in

ust ¼ 0:0936 in

ω ¼ 7:41 rad= sec

ω ¼ 5:3 rad= sec

r ¼ 0:715

The transmissibility from Eq. (3.45) is

Tr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rξð Þ2

1� r2ð Þ2 þ 2rξð Þ2

s

¼ 2:1 ðAnsÞ
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(b) The maximum relative amplitude of the displacement Ur is from Eq. (3.53)

Ur ¼
u0r

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q ¼ 0:206 in

Then the maximum shear force in each column is

Vmax ¼
kUr

2
¼ 219:8 lb ðAnsÞ

(c) The maximum bending moment

Mmax ¼ VmaxL ¼ 39, 507 lb � in

and the corresponding stress

σmax ¼
Mmax

I=c
¼ 39, 567

17
¼ 2327 psi ðAnsÞ

in which I / c is the section modulus.

Illustrative Example 3.7

A machine having a total weight of 1800 lb, including its foundation, is to be isolated from the

vibration of the ground, which is f¼ 22.8 cps, due to other machines operating nearby. Determine the

stiffness of a rubber isolation spring to limit the transmitted vibration to 1/10: (a) neglect damping

and (b) consider damping given by the expression c ¼ k/170 obtained experimentally [units of

c (lb.sec/in) and of k (lb/in)].

Solution:

(a) ξ ¼ 0

By Eq. (3.45) with ξ ¼ 0

Tr ¼
U

u0
¼ 1

� 1� r2ð Þ ¼ 0:1

�1þ r2 ¼ 10 r2 ¼ 11

r ¼ 3:3166 ¼ ω

ω

ω ¼ 2πf ¼ 143:24 rad= sec

m ¼ 1800

386
¼ 4:663 lb � sec 2=in

ω ¼ ω

r
¼ 143:24

3:3166
¼ 43:188 rad= sec

Then,

k ¼ ω2m ¼ 43:188ð Þ2 4:663ð Þ ¼ 8698 lb=in Ans:ð Þ
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(b) Assume ξ ¼ 0.10

(c) Squaring Eq. (3.45) and substituting ξ ¼ 0.10 gives

T2
r ¼

1þ 0:2rð Þ2

1� r2ð Þ2 þ 0:2rð Þ2
¼ 1

10

� �2

which results in the following quadratic equation in r2:

r4 � 5:96r2 � 99 ¼ 0

r2 ¼ 13:366 r ¼ ω

ω
¼ 3:65

and

ω ¼ ω

r
¼ 143:24

3:65
¼ 39:244 rad= secð Þ

ω ¼
ffiffiffiffi

k

m

r

¼
ffiffiffiffiffiffiffiffiffiffiffi

k

4:663

r

¼ 39:244 rad= secð Þ

giving

k ¼ 7181:3 lb=in

The damping is then determined from

c ¼ k=170 ¼ 7181:3=170

as

c ¼ 42:24 lb � sec =in

and the damping ratio as

ccr ¼ 2
ffiffiffiffiffiffi

km
p

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7181:3ð Þ 4:663ð Þ
p

¼ 348:34 lb � sec =inð Þ

ξ ¼ 42:24

384:34
¼ 0:1212 ¼ 12%

which is slightly higher than the value ξ¼ 0.10, initially assumed. Now, repeating the calculations for

ξ ¼ 0.11 gives

r4 �6:7916� 99 ¼ 0

r2 ¼ 13:909 r ¼ ω

ω
¼ 3:73

ω¼ 143:24

3:73
¼ 38:40 ¼

ffiffiffiffi

k

m

r

k ¼ 6876 lb=in and c ¼ k

170
¼ 40:45 lb � sec =in ðAnsÞ

ccr ¼ 2
ffiffiffiffiffiffi

km
p

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6876� 4:663
p

¼ 358:14 lb � sec =in

and
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ξ ¼ 40:45

358:14
¼ 0:113 ¼ 11%

This calculated value, ξ ¼ 11% for the damping ratio, agrees with the last value tried. Therefore, the

required spring constant for the damped isolation is k ¼ 6876 lb/in as calculated above.

3.8 Force Transmitted to the Foundation

In the preceding section, we determined the response of the structure to a harmonic motion of its

foundation. In this section we shall consider a similar problem of vibration isolation; the problem

now, however, is to find the force transmitted to the foundation. Consider again the damped oscillator

with a harmonic force F tð Þ ¼ F0 sinω t acting on its mass as shown in Fig. 3.2. the differential

equation of motion is

m€uþ c _u þ ku ¼ F0 sinω t

with the steady-state solution, Eq. (3.19),

u ¼ U sin
�
ω t� θ

�

where U and θ, are given, respectively, by Eqs. (3.20) and (3.21) as

U ¼ F0=k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q ð3:53Þ

and

tan θ ¼ 2ξr

1� r2

The force transmitted to the support through the spring is ku and through the damping element is c _u .

Hence the total force transmitted FT is

FT ¼ kuþ c _u ð3:54Þ

Differentiating Eq. (3.19) and substituting in Eq. (3.54) yields

FT ¼ U k sin
�
ω t� θ

�
þ cω cos

�
ω t� θ

�� �

or

FT ¼ U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ c2ω2
p

sin
�
ω t� θ þ β

�
ð3:55Þ

FT ¼ Uk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rξð Þ2
q

sin
�
ω t� ϕ

�
ð3:56Þ

in which

tan β ¼ cω

k
¼ 2ξr ð3:57Þ

and
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ϕ ¼ θ � β ð3:58Þ

Then, from Eqs. (3.53) and (3.56), the maximum force AT transmitted to the foundation is

AT ¼ F0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ξrð Þ2

1� r2ð Þ2 þ 2rξð Þ2

s

ð3:59Þ

In this case, the transmissibility Tr is defined as the ratio between the amplitude of the force

transmitted to the foundation and the amplitude of the applied force. Hence from Eq. (3.59)

Tr ¼
AT

F0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ξrð Þ2

1� r2ð Þ2 þ 2rξð Þ2

s

ð3:60Þ

It is interesting to note that, both, the transmissibility of motion from the foundation to the structure,

Eq. (3.45), and the transmissibility of the force from the structure to the foundation, Eq. (3.60), are

given by exactly the same function. Hence the curves of transmissibility in Fig. 3.13 represent either

type of transmissibility. An expression for the total phase angle ϕ in Eq. (3.56) may be determined by

taking the tangent function to both members of Eq. (3.58), so that

tanϕ ¼ tan θ � tan β

1þ tan θ tan β

Then, the substitution of tan θ and tan β, respectively, from Eqs. (3.21) and (3.57) results in

tanϕ ¼ 2ξr3

1� r2 þ 4ξ2r2
ð3:61Þ

Illustrative Example 3.8

A machine of weight W ¼ 3860 lb is mounted on a simple supported steel beam as shown in

Fig. 3.15a. A piston that moves up and down in the machine produces a harmonic force of magnitude

F0 ¼ 7000 lb at a frequency of ω ¼ 60 rad= sec . Neglecting the weight of the beam and assuming

10% of the critical damping, determine: (a) the amplitude of the motion of the machine, (b) the force

transmitted to the beam supports, and (c) the corresponding phase angle.

Fig. 3.14 (a) Beam-machine system for Illustrative Example 3.8. (b) Analytical Model
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Solution:

The damped oscillator in Fig. 3.14b is used to model the system. The following parameters are

calculated:

k¼ 48EI

L3
¼ 105 lb=in

ω¼
ffiffiffiffi

k

m

r

¼ 100 rad= sec

ξ¼ 0:1

r ¼ ω

ω
¼ 0:6

ust ¼
F0

k
¼ 0:07 in

(a) From Eq. (3.20), the amplitude of motion is

U ¼ ust
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q ¼ 0:1075 in ðAnsÞ

with a phase angle from Eq. (3.21)

θ ¼ tan �1 2rξ

1� r2
¼ 10:60

(b) From Eq. (3.60), the transmissibility is

Tr ¼
AT

F0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rξð Þ2

1� r2ð Þ2 þ 2rξð Þ2

s

¼ 1:547

Hence the amplitude of the force transmitted to the foundation is

AT ¼ F0Tr ¼ 10, 827 lb ðAnsÞ

(c) The corresponding phase angle from Eq. (3.61) is

ϕ ¼ tan �1 2ξr3

1� r2 þ 2rξð Þ2
¼ 3:78

� ðAnsÞ

3.9 Seismic Instruments

When a system of the type shown in Fig. 3.15 is used for the purpose of vibration measurement, the

relative displacement between the mass and the base is recorded. Such an instrument is called a
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seismograph and it can be designed to measure either the displacement or the acceleration of the base.

The peak relative response U/u0 of the seismograph depicted in Fig. 3.15, for harmonic motion of the

base, is given from Eq. (3.52) by

Ur

u0
¼ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q ð3:62Þ

A plot of this equation as a function of the frequency ratio and damping ratio is shown in Fig. 3.16. It

may be seen from this figure that the response is essentially constant for frequency ratios r > 1 and

damping ratio ξ ¼ 0.5. Consequently, the response of a properly damped instrument of this type is

essentially proportional to the base-displacement amplitude for high frequencies of motion of the

base. The instrument will thus serve as a displacement meter for measuring such motions. The range

of applicability of the instrument is increased by reducing the natural frequency, i.e., by reducing the

spring stiffness or increasing the mass.

Now consider the response of the same instrument to a harmonic acceleration of the base

€us ¼ €u0 sinω t. The equation of motion of this system is obtained from Eq. (3.50) as

m€uþ c _u þ ku ¼ �m€u0 sinω t ð3:63Þ

The steady-state response of this system expressed as the dynamic magnification factor is then given

from Eq. (3.23) by

D ¼ U

m€u0=k
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q ð3:64Þ

This equation is represented graphically in Fig. 3.3. In this case, it can be seen from this figure that for a

damping ratio ξ¼ 0.7, the value of the response is nearly constant in the frequency range 0< r<0.6.Thus,

it is clear fromEq. (3.64) that the response indicated by this instrumentwill be directly proportional to the

base-acceleration amplitude for frequencies up to about six-tenths of the natural frequency. Its range of

applicability will be increased by increasing the natural frequency, that is, by increasing the stiffness of

the spring or by decreasing the mass of the oscillator. Such an instrument is an accelerometer.

Fig. 3.15 Model of a seismograph
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3.10 Response of One-Degree-of-Freedom System to Harmonic Loading
Using MATLAB

Illustrative Example 3.9

The steel frame shown in Fig. 3.17 supports a rotating machine that exerts a horizontal force at the

girder level F(t) ¼ 200 sin 2.3t (lb). The frequency of force is equal to 2.3 rad/sec. Assume 5% of

critical damping and determine: (a) The maximum displacement of a total vibration between 0 to

10 sec, and (b) The maximum dynamic stress in the columns. Assume the girder is rigid. (This is the

same structure in Illustrative Example 3.2) (Fig. 3.18).
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Fig. 3.16 Response of seismograph to harmonic motion of the base

Fig. 3.17 Diagram of the

frame of Illustrative

Example 3.9
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Solution:

The parameters for this structure were previously calculated in Illustrative Example 3.2 as:

Mass: m ¼ 15 � 1000/386 (lb.sec2/in)
Stiffness:

k ¼ 3E 2Ið Þ
L3

¼ 3� 30� 106 � 2� 69:2

12� 15ð Þ3
¼ 2136 lb=in

Damping ratio: ξ ¼ 0.05
Amplitude Harmonic Force: F0 ¼ 200 (lb)
Force time function: F(t) ¼ sin 2.3t
Period (of the force) 2.3T ¼ 2π. Therefore, T ¼ 2.73 sec
Time Step (Select 20 steps): 0.01 sec.

For running the files, two files are needed to save in the same folder and run main file. Ex3_9.m file

will use SDOF.m file to solve partial differential equation to calculate the response. The original

framework of MATLAB code is well presented in Anderson and Naeim (2012).

The approach is transform one “second order differential equation” to two “first order differential

equations.”

d _u

dt
¼ �2ξω _u � ω2u

u ¼ u1;

_u 1 ¼ u2 ¼
du1

dt
du2

dt
¼ �2ξωu2 � ω2u1

!
u2 ¼

du1

dt
! u 2ð Þ MATLAB½ 	

du2

dt
¼ �2ξωu2 � ω2u1 ! �2ξωu 2ð Þ � ω2u 1ð Þ MATLAB½ 	

Two first order differential equations are solved simultaneously in SDPF.m file.

Matlab file: Ex3_9.m
close all

clear

clc

%%%%-GIVEN VALUES-%%%%

%%% Initial Conditions

tspan = 0:0.01:50;               %0 to 5 secs with the interval of 0.01 sec

IC = [0 0]';                     %Initial conditions (u0=0, v0=0)

%%%Plot the displacement using ODE45

%%%Estimate response using ODE45 funtion embedded in MATALB

[t, u] = ode45(@SDOF, tspan, IC);  

plot (t, u(:,1));                 

%%%Create xlabel

xlabel ('t(sec)');

ylabel ('u(in.)');

%%%Display maximum value of displacement response

umax=max(u(:,1))

MATLAB file Name: SDOF.m
function u = SDOF(t, u)

%%%%-GIVEN VALUES-%%%%

m =15*1000/386;                     %Mass (lb.sec^2/in.)

k= 3*30*10^6*2*69.2/(12*15)^3;      %Stiffness (lb/in.)  

xi = 0.05;                          %Damping ratio. 

%%%Define the forcing function 

F = 200*sin(2.3*t);                 %Force as a function of time, t

omega =sqrt(k/m);                   %Natural Frequency

%%%%-ESTIMATION-%%%%

u = [u(2); -omega^2*u(1)-2*xi*omega*u(2)+F/m];
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Illustrative Example 3.10

The steel frame In Illustrative Example 3.9 is supports a rotating machine that exerts a horizontal

force at the girder level F(t) ¼ 200 sin 7.41t (lb). Use MATLAB to determine the response. The

solution is found using the MATLAB function based ODE 4 (A fourth-order Runge-Kutta method.).

Other functions of MATLAB codes are also introduced in Anderson and Naeim (2012). More

information on the numerical method can be explained in Chap. 4. In this example, the solution

can be easily obtained from changes of two files (Fig. 3.19).

Note: The frequency of force is equal to the natural frequency.

Matlab file: Ex3_10.m
close all
clear
clc

%%%%-GIVEN VALUES-%%%%
%%% Initial Conditions
tspan = 0:0.01:50;               %0 to 5 secs with the interval of 0.01 sec
IC = [0 0]';                     %Initial conditions (u0=0, v0=0)

%%% Plot the displacement using ODE45
%%%Estimate response using ODE45 funtion embedded in MATALB
[t, u] = ode45(@SDOF1, tspan, IC);
figure (1)
plot (t, u(:,1));

% Create xlabel
xlabel ('t(sec)');
ylabel ('u(in.)');

k= 3*30*10^6*2*69.2/(12*15)^3;
F_0 = 200;

% Display maximum value of displacement response
umax=max(u(:,1))
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MATLAB file Name: SDOF1.m
function u = SDOF1(t, u)

%%%%-GIVEN VALUES-%%%%
m =15*1000/386;                 %Mass (lb.sec^2/in.)
k= 3*30*10^6*2*69.2/(12*15)^3;  %Stiffness (lb/in.)  
xi = 0.05;                      %Damping coefficient. (lb.sec/in.)

%%%Define the forcing function
F_0 = 200;
F = F_0*sin(7.41*t);            %Force as a function of time, t

omega =sqrt(k/m)         %Natural frequency

u_st = F_0/k;                   %Static displacement

%%%%-ESTIMATION-%%%% 
u = [u(2); -omega^2*u(1)-2*xi*omega*u(2)+F/m];

Illustrative Example 3.11

The steel frame in Illustrative Example 3.9 is now subjected to an acceleration at its base given by the

function F(t) ¼ 0.3 sin 5.3t in/sec2. Use MATLAB to determine the response.

3.11 Summary

In this chapter, we have determined the response of a single-degree-of-freedom system subjected to

harmonic loading. This type of loading is expressed as a sine, cosine, or as an exponential function
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Fig. 3.19 Response of Illustrative Example 3.10
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and can be easily handled mathematically for the undamped or damped structure. The differential

equation of motion for a linear single-degree-of-freedom system is the second-order differential

equation

m€yþ c _u þ ku ¼ F0 sinω t ð3:10Þ repeated

or

€uþ 2ξω _u þ ω2u ¼ F0

m
sinω t

in which ω is the forced frequency,

ξ ¼ c

ccr
isthedampingratio

and

ω ¼
ffiffiffiffi

k

m

r

is the natural frequency

The general solution of Eq. (3.10) is obtained as the combination of the complementary (transient)

and the particular (steady-state) solutions, namely

u ¼ e�ξωt A cosωDtþ B sinωDtð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

transient solution

þ F0=k sin
�
ω t� θ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

steady state solution

in which

r¼ ω

ω
is the frequcency ration,

ωD ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
p

is the damped natural frequency,

θ¼ tan �1
2rξ

1� r2

� �

is the phase angle

and

A and B are constants of integration which can be determined from the initial conditions.

The transient part of the solution vanishes rapidly to zero because of the negative exponential

factor, thus leaving only the steady-state solution. Of particular significance is the condition of

resonance
�
r ¼ ω=ω ¼ 1

�
for which the amplitude of motion become very large for the damped

system and tend to become infinity for the undamped system.

The response of the structure to support or foundation motion can be obtained in terms of the

absolute motion of the mass or of its relative motion with respect to the support. In this latter case, the

equation assumes a simpler and more convenient form, namely

m€ur þ c _u r þ kur ¼ Feff tð Þ ð3:50Þ repeated

in which
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ur ¼ u� us is the relative displcaement

and

Feff tð Þ ¼ �m€us tð Þ is the effective force

For harmonic excitation of the foundation, the solution of Eq. (3.50) in terms of the relative motion is

of the same form as the solution if Eq. (3.10) in which the force is acting on the mass.

In this chapter, we have also shown that the equivalent damping in the system may be evaluated

experimentally either from the peak amplitude or from the bandwidth obtained from a plot of the

amplitude-frequency curve when the system is forced to harmonic vibration. Most commonly,

equivalent viscous damping is evaluated by equating the experimentally measured energy dissipated

in the system during a vibratory cycle at the resonant frequency to the theoretically calculated energy

that the system, assumed viscously damped, would dissipate in a cycle. This approach leads to the

following expression for the equivalent viscous damping:

ξeq ¼
1

4πr

E∗

Es

ð3:35Þ repeated

in which

E* ¼ energy dissipated in the system during a cycle of harmonic vibration at resonance

Es ¼ strain energy stored at maximum displacement if the system were elastic

r ¼ ratio of forced vibration frequency to the natural frequency of the system

Two related problems of vibrating isolation were discussed in this chapter: (1) the motion transmis-

sibility, that is, the relative motion transmitted from the foundation to the structure; and (2) the force

transmissibility which is the relative magnitude of the force transmitted from the structure to the

foundation. For both of these problems, the transmissibility is given by

Tr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rξð Þ2

1� r2ð Þ2 þ 2rξð Þ2

s

3.12 Analytical Problem

Problem 3.1

Demonstrate that during one cycle in harmonic vibration, the work WF of the external force F ¼ F0

sinω t is equal to the energy ED dissipated by the damping force as expressed by Eq. (3.30).

ED ¼ 2π ξ rkU2 ð3:30Þ repeated

Solution:

During one cycle, the work of the external force F ¼ F0 sinω t is

WF ¼
ð2π=ω

0

F0 sinωt d y ¼
ð2π=ω

0

F0 sinω t
du

dt
dt

¼
ð2π=ω

0

F0 sinω t _u tð Þdt
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in which _u tð Þ is given by Eq. (3.29). Hence,

WF ¼
Ð �

F0 sinω t
�
ωU cosω t� θð Þdt½ 	

¼ πF0U sin θ
ðaÞ

To demonstrate that work, WF, of the exciting force given by Eq. (a) is equal to the energy

dissipated, ED, by the viscous force in Eq. (3.30), we need to substitute the sine of the phase angle θ

into Eq. (a).

Thus from Eq. (3.21), we have:

tan θ ¼ 2ξr

1� r2

sin θ

cos θ
¼ 2ξr

1� r2

sin 2θ

sin 2θ þ cos 2θ
¼ 2ξrð Þ2

1� r2ð Þ2 þ 2rξð Þ2

ð3:21Þ repeated

Therefore

sin θ ¼ 2ξr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q

Then using Eq. (3.20),

U ¼ ust
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q ð3:20Þ repeated

sin θ ¼ 2ξU

ust

which substituted in Eq. (a) yields

WF ¼ πF0U
2 2ξr

F0=k

WF ¼ 2πξ r kU2 ðbÞ

Thus, the work of external force, WF, expressed by Eq. (b), is equal to the energy, ED, dissipated per

cycle by the viscous damping force as given by Eq. (3.30).

3.13 Problems

Problem 3.2

An electric motor of total weightW¼ 1000 lb is mounted at the center of a simply supported beam as

shown in Fig. P3.2). The unbalance in the rotor isW’e¼ 1 lb.in. Determine the steady-state amplitude

of vertical motion of the motor for a speed of 900 rpm. Assume that the damping in the system is 10%

of the critical damping. Neglect the mass of the supporting beam.
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Problem 3.3

Determine the maximum force transmitted to the supports of the beam in Problem 3.2.

Problem 3.4

Determine the steady-state amplitude for the horizontal motion of the steel frame in Fig. P3.4.

Assume the horizontal girder to be infinitely rigid and neglect both the mass of the columns and

damping. Using MATLAB program, determine the response of frame structure from 0 to 20 s.

Problem 3.5

Solve for Problem 3.4 assuming that the damping in the system is 8% of the critical damping.

Problem 3.6

For Problem 3.5 determine: (a) the maximum force transmitted to the foundation and (b) the

transmissibility.

Problem 3.7

A delicate instrument is to be spring mounted to the floor of a test laboratory where it has been

determined that the floor vibrates vertically with harmonic motion of amplitude 0.1 at 10 cps. If the

instrument weighs 100 lb, determine the stiffness of the isolation springs required to reduce the

vertical motion amplitude of the instrument to 0.01 in. Neglect damping.

Fig. P3.2

F(t) = 5 sin 12t
k W = 2k/ft

W10 X 33

15′

20′

Fig. P3.4
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Problem 3.8

Consider the water tower shown in Fig. P3.8 which is subjected to ground motion produced by a

passing train in the vicinity of the tower. The ground motion is idealized as a harmonic acceleration of

the foundation of the tower with an amplitude of 0.1 g at a frequency of 10cps. Determine the motion

of the tower relative to the motion of its foundation. Assume an effective damping coefficient of 10%

of the critical damping in the system.

Problem 3.9

Determine the transmissibility in Problem 3.8.

Problem 3.10

An electric motor of total weightW ¼ 3330 lb is mounted on a simple supported beam with overhang

as shown in Fig. P3.10. The unbalance of the rotor is W’e ¼ 50 lb.�in. (a) Find the amplitudes of

forced vertical vibration of the motor for speeds 800, 1000, and 1200 rpm. (b) Draw a plot of the

amplitude versus rpm Assume damping equal to 10% of critical damping using MATLAB.

Fig. P3.8

Fig. P3.10
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Problem 3.11

Estimate the damping in a single-degree-of-freedom system that is excited by a harmonic force. The

peak displacement amplitude at resonance was measured equal to 3 in and equal to 0.2 in at one-tenth

of the natural frequency of the system.

Problem 3.12

Determine the damping in a system in which during a vibration test under a harmonic force it was

observed that at a frequency 10% higher than the resonant frequency, the displacement amplitude was

exactly one-half of the resonant amplitude.

Problem 3.13

Determine the natural frequency, amplitude of vibration, and maximum normal stress in the simple

supported beam carrying an engine of weightW¼ 30 KN (Fig. P3.13). The engine rotates at 400 rpm

and induces a vertical force F tð Þ ¼ 8 sinω t. (E ¼ 210 � 109 N/m2, I ¼ 8950 � 10�8 m4,

S ¼ 597 � 106 m3)

(Problem contributed by Vladimir N. Alekhin and Aleksey A. Antipin of the Urals State University,

Russia)

Problem 3.14

A machine of mass m rests on an elastic floor as shown in Fig. P3.14. In order to find the natural

frequency of the vertical motion, a mechanical shaker of mass ms is bolted to the machine and run at

various speeds until the resonant frequency fr is found. Determine the natural frequency fn of the floor-

machine system in terms of fr and the given data.

Problem 3.15

Determine the frequency at which the peak amplitude of a damped oscillator will occur. Also,

determine the peak amplitude and corresponding phase angle.

Fig. P3.13

Fig. P3.14
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Problem 3.16

A structure modeled as a damped spring-mass system (Fig. P3.16) with mg ¼ 2520 lb, k¼ 89,000 lb/

in, and c ¼ 112 lb. in/sec is subjected to a harmonic exciting force. Determine: (a) the natural

frequency, (b) the damping ratio, (c) the amplitude of the exciting force when the peak amplitude of

the vibrating mass is measured to be 0.37 in. and (d) the amplitude of the exciting force when the

amplitude measured is at the peak frequency assumed to be the resonant frequency.

Problem 3.17

A structural system modeled as a damped oscillator is subjected to the harmonic excitation produced

by an eccentric rotor. The spring constant k and the mass m are known but not the damping and the

amount of unbalance in the rotor, From measured amplitudes Ur at resonance and U1 at a frequency

ratio r1 6¼ 1, determine expressions to calculate the damping ratio ξ and the amplitude of the exciting

force Fr at resonance.

Problem 3.18

A system is modeled by two vibrating masses m1 and m2 interconnected by a spring k and damper

element c (Fig. P3.18). For harmonic forceF ¼ F0 sinω tacting on massm2 determine: (a) equation of

motion in terms of the relative motion of the two masses, ur ¼ u2 – u1; (b) the steady-state solution of

the relative motion.

Fig. P3.16
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Fig. P3.18
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Response to General Dynamic Loading 4

In the preceding chapter we studied the response of a single degree-of-freedom system with harmonic

loading. Through this type of loading is important, real structures are often subjected to loads that are

not harmonic. In this chapter we shall study the response of the single degree-of-freedom system to a

general type of force. We shall see that the response can be obtained in terms of an integral that for

some simple load functions can be evaluated analytically. For the general case, however, it will be

necessary to resort to a numerical integration procedure.

4.1 Duhamel’s Integral – Undamped System

An impulsive loading is a load which is applied during a short duration of time. The corresponding

impulse of this type of load is defined as the product of the force and the time of its duration.

For example, the impulse of the force F(τ) depicted in Fig. 4.1 at time τ during the time interval dτ

is represented by the shaded area and it is equal to F(τ)dτ. This impulse acting on a body of mass

m produces a change in velocity that can be determined from Newton’s Law of Motion, namely

Fig. 4.1 General load function as impulsive loading
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m
dυ

dτ
¼ F τð Þ

Rearrangement yields

dυ ¼ F τð Þdτ
m

ð4:1Þ

where F(τ)dτ is the impulse and dυ is the incremental velocity. This incremental velocity may be

considered to be an initial velocity of the mass at time τ. Let us now consider this impulse F(τ)dτ

acting on the structure represented by the undamped oscillator. At time τ the oscillator will experience

a change in velocity given by Eq. (4.1). This change in velocity is then introduced in Eq. (1.20) as the

initial velocity υ0 together with the initial displacement u0 ¼ 0 at time τ producing a displacement

du(t) at a later time t given by

du tð Þ ¼ F τð Þdτ
mω

sinω t� τð Þ ð4:2Þ

The loading function may then be regarded as a series of short impulses at successive incremental

times dτ, each producing its own differential response at time t of the form given by Eq. (4.2).

Therefore, we conclude that the total displacement at time t due to the continuous action of the force

F(τ) is given by the summation or integral of the differential displacements du(t) from time t ¼ 0 to

time t, that is,

u tð Þ ¼ 1

mω

ð t

0

F τð Þ sinω t� τð Þdτ ð4:3Þ

The integral in this equation is known as Duhamel’s integral. Equation (4.3) represents the total

displacement produced by the exciting force F(τ) acting on the undamped oscillator; it includes both

the steady-state and the transient components of the motion corresponding to zero initial conditions,

u0 ¼ 0 and υ0 ¼ 0. If the function F(τ) cannot be expressed analytically, the integral of Eq. (4.3) can

always be evaluated approximately by suitable numerical methods. To include the effect of initial

displacement u0 and initial velocity υ0 at time t¼ 0, it is only necessary to add to Eq. (4.3) the solution

given by Eq. (1.20) for the effects due to the initial conditions. Thus the total displacement of an

undamped single degree-of-freedom system with an arbitrary load is given by

u tð Þ ¼ u0 cosω tþ υ0

ω
sinω tþ 1

mω

ð t

0

F τð Þ sinω t� τð Þdτ ð4:4Þ

Applications of Eq. (4.4) for some simple forcing functions for which it is simple to obtain the explicit

integration of Eq. (4.4) are presented below.

4.1.1 Constant Force

Consider the case of a constant force of magnitude F0 applied suddenly to the undamped oscillator at

time t ¼ 0 as shown in Fig. 4.2.
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For both initial displacement and initial velocity equal to zero, the application of Eq. (4.4) to this

case gives

u tð Þ ¼ 1

mω

ð t

0

F0 sinω t� τð Þdτ

and the integration yields

u tð Þ ¼ F0

mω2
cosω t� τð Þj j t0

u tð Þ ¼ F0

k
1� cosωtð Þ ¼ ust 1� cosωtð Þ

ð4:5Þ

where ust ¼ F0

k
is the static displacement due to a force of magnitude F0. The response for such a

suddenly applied constant load is shown in Fig. 4.3. It will be observed that this solution is very

similar to the solution for the free vibration of the undamped oscillator. The major difference is that

the coordinate axis t has been shifted by an amount equal to ust ¼ F0

k
. Also, it should be noted that the

maximum displacement 2ust is exactly twice the displacement that the force F0 would produce if it

were applied statically. We have found an elementary but important result; the maximum displace-

ment of a linear elastic system for a constant force applied suddenly is twice the displacement caused

by the same force applied statically (slowly). This result for displacement is also true for the internal

forces and stresses in the structure.

Fig. 4.2 Undamped oscillator acted upon by constant force

Fig. 4.3 Response of an undamped single degree-of-freedom system to a suddenly applied constant force
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4.1.2 Rectangular Load

Let us consider a second case, that of a constant force F0 suddenly applied but only during a limited

time duration, td as shown in Fig. 4.4:

Up to the time td, the solution given by Eq. (4.5) applies and at that time the displacement and

velocity are

ud ¼
F0

k
1� cosω tdð Þ

and

υd ¼
F0

k
ω sinω td

For the response after time tdwe apply Eq. (1.20) for free vibration, taking as the initial conditions the

displacement and velocity at td. After replacing t by t � td and u0 and υ0 for ud and vd, respectively,

we obtain

u tð Þ ¼ F0

k
1� cosω tdð Þ cosω t� tdð Þ þ F0

k
sinω td sinω t� tdð Þ

which can be reduced to
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Fig. 4.4 Maximum dynamic load factor for the undamped oscillator acted on by a rectangular force
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u tð Þ ¼ F0

k
cosω t� tdð Þ � cosω tf g ð4:6Þ

If the dynamic load factor (DLF) is defined as the displacement at any time t divided by the static

displacement ust ¼ F0

k
, we may write Eqs. (4.5 and 4.6) as

DLF ¼ 1� cosω t, t � td

and

DLF ¼ cosω t� tdð Þ � cosω t, t � td ð4:7Þ

It is often convenient to express time as a dimensionless parameter by simply using the natural period

instead of the natural frequency ω ¼ 2π
Τ

� �

. Hence, Eqs. (4.7) may be written as

DLF ¼ 1� cos 2π
t

T
, t � td

and

DLF ¼ cos 2π
t

T
� td

T

� �

� cos 2π
t

T
, t � td ð4:8aÞ

or using the trigonometric identity

cos α� cos β ¼ �2 sin
αþ β

2
sin

α� β

2

as

DLF ¼ 2 sin
πtd

T

� �

sin 2π
t

T
� td

2T

� �h i

, t � td ð4:8bÞ

The use of dimensionless parameters in Eq. (4.8a) serves to emphasize the fact that the ratio of

duration of the time, that the constant force is applied, to the natural period rather than the actual value

of either quantity is the important parameter. The maximum dynamic load factor (DLF)max obtained

by maximizing Eq. (4.8b), is plotted in Fig. 4.4. It is observed from this figure that the maximum

dynamic load factor for loads of duration td
T
> 0:5

� �

is the same as if the load duration had been

infinite.

In general, the maximum response occurs during the application of the load, except for loadings of

very short duration td
T
< 0:4

� �

. In such cases, the maximum response may occur during the free

vibration after the cessation of the load; it is then necessary to extend the loading time for a duration

of about one period, in which the magnitude of the load is set equal to zero.

Charts, as shown in Fig. 4.4, which give the maximum response of a single degree-of-freedom

system for a given loading function, are called response spectral charts. Response spectral charts for

impulsive loads of short duration are often presented for the undamped system. For the short duration

of the load, damping does not have a significant effect on the response of the system. The maximum

dynamic load factor usually corresponds to the first peak of response and the amount of damping

normally found in structures is not sufficient to appreciably decrease this value.
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4.1.3 Triangular Load

We consider now a system represented by the undamped oscillator, initially at rest and subjected to a

force F(t) that has an initial value F0 and that decreases linearly to zero at time td (Fig. 4.5).

The response may be computed by Eq. (4.4) in two intervals. For the first interval, τ � td the force

is given by

F τð Þ ¼ F0 1� τ

td

� �

and the initial conditions by

u0 ¼ 0, υ0 ¼ 0

The substitution of these values in Eq. (4.4) and integration gives

u ¼ F0

k
1� cosω tð Þ þ F0

ktd

sinω t

ω
� t

� �

ð4:9Þ

or in terms of the dynamic load factor and dimensionless parameters

DLF ¼ u

ust
¼ 1� cos

2πt

T

� �

þ sin 2πt
T

� �

2πtd
T

� � � t

td
0 � t � td ð4:10Þ

which defines the response before time td.
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Fig. 4.5 Maximum dynamic load factor for the undamped oscillator acted upon by a triangular force
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For the second interval (t� td), we obtain from Eq. (4.9) the displacement and velocity at time td as

ud ¼
F0

k

sinω td

ω td
� cosω td

� �

and

υd ¼
F0

k
ω sinω td þ

cosω td

td
� 1

td

� �

ð4:11Þ

These values may be considered as the initial conditions at time t ¼ td for this second interval.

Replacing in Eq. (1.20) t by t – td and u0 and v0 respectively, by ud and vd and noting that F(τ) ¼ 0 in

this interval we obtain the response as

u ¼ F0

kω td
sinω t� sinω t� tdð Þf g � F0

k
cosω t

and upon dividing by ust ¼ F0

k
gives

DLF ¼ 1

ω tD
sinω t� sinω t� tdð Þf g � cosω t ð4:12Þ

In terms of the dimensionless time parameter, this last equation may be written as

DLF ¼ 1

ωTD

sin 2π
t

T
� sin 2π

t

T
� td

T

� �n o

� cos 2π
t

T
t � td ð4:13Þ

The plot of the maximum dynamic load factor as a function of the relative time duration td/T for the

undamped oscillator is shown in Fig. 4.5. As would be expected, the maximum value of the dynamic

load factor approaches 2 as td/T becomes large; that is, the effect of the decay of the force is negligible

for the time required for the system to reach the maximum peak.

We have studied the response of the undamped oscillator for two simple impulse loadings; the

rectangular pulse and the triangular pulse. Extensive charts have been prepared by the U. S. Army

Corps of Engineers,1 and are available for a variety of loading pulses. As already mentioned, the

evaluation of Duhamel’s Integral Method for a general forcing requires the use of numerical methods

(See Problems 4.1).

Illustrative Example 4.1

A one-story building, shown in Fig. 4.6, is modeled as a 15-ft high frame with two steel columns fixed

at the base and a rigid beam supporting a total weight ofW ¼ 5000 lb. Each column has a moment of

inertia I ¼ 69.2 in2 and a section modulus S ¼ I
c
¼ 17 in3 E ¼ 30� 106 psi

� �

.

Determine the maximum response of the frame to a rectangular impulse of amplitude 3000 lb and

duration td ¼ 0.1 s applied horizontally to the top member of the frame. The response of interest is the

horizontal displacement at the top of the frame and the bending stress in the columns.

1U. S. Army Corps of Engineers, Design of Structures to Resist the Effects of Atomic Weapons, Manuals 415, 415, 3rd

416, March 15, 1957; Manuals 417 and 419, January 15, 1958; Manuals 418, 420, 421, January 15, 1960.
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Solution:

1. Natural period.

k ¼ 12E 2Ið Þ
L3

¼ 12� 30� 106 � 2� 69:2

15� 12ð Þ3
¼ 8544 lb=in

m ¼ 5000

386
¼ 12:9534 lb: sec 2=in

T ¼ 2π

ffiffiffiffi

m

k

r

¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12:9534

8544

r

¼ 0:2446 sec

2. Maximum displacement.

td

T
¼ 0:1

0:2446
¼ 0:408

DLFmax ¼
umax

ust
¼ 1:9 fromFig:4:4ð Þ

ust ¼
F0

k
¼ 3000

8544
¼ 0:3511 in

umax ¼ 1:9ð Þ 0:3511ð Þ ¼ 0:667 in ðAnsÞ

3. Maximum bending stress.

The bending moment M in the columns is given by

M¼ Vmax

L

2
¼ kumax

L

2

¼ 6EI

L2
umax ¼

6� 30� 106 � 69:2

15� 12ð Þ2
0:667 ¼ 256, 424 lb:inð Þ

Fig. 4.6 Idealized frame for Illustrative Example 4.1
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and the maximum stress σmax by

σmax ¼
M

S
¼ 256, 424

17
¼ 15, 083psi ðAnsÞ

Alternatively, the maximum response can be estimated using MATLAB file.

clear all
close all
clc

%%%%-GIVEN VALUES-%%%%
T = 0.2446;             %Natural period
omega = 2*pi/T;         %Natural frequency
F_0=3000;               %Maximum force
k=8544;                 %Stiffness

t = 0:0.001:3;          %0 to 3 secs with the interval of 0.001 sec
td_T = 0.408;           %td/T ratio

%%%-ESTIMATION-%%%
td = td_T*T;            %Duration of force
u_st = F_0/k;           %Static displacement

%%%Estimate response with two functions (t<td and t>td)
for i=1:length(t)

if t(i) <=td
u(i) = u_st*(1-cos(omega*t(i)));

else
arg1=(1-cos(omega*td))*cos(omega*(t(i)-td));
arg2=sin(omega*td)*sin(omega*(t(i)-td));

u(i)= u_st*(arg1+arg2);

end
end

%%%Response and DLF estimation
figure (1)
plot (t, u);
xlabel ('Time (sec)');
ylabel ('Displacement'); 
grid on

u_max =abs(max(u))     %u_max
D = u_max/u_st         %DLF factor

MATLAB yields the maximum response of 0.673 in. This value is comparable to the value using

Fig. 4.4. DLF can be also calculated fromMATLAB. The value using MATLAB yield the same value

from the spectra chart. Using MATLAB, the response can be varied depending on td Fig. 4.7.
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Illustrative Example 4.2

Plot Fig. 4.4 using MATLAB (Response Spectral Chart). The MATLAB code is presented below.

close all
clc

%%%%-GIVEN VALUES-%%%%
T = 0.2446;                 %Natural period
omega = 2*pi/T;             %Natural frequency
F_0=3000;                   %Maximum force
k=8544;                     %Stiffness

t = 0:0.01:3;               %0 to 3 secs with the interval of 0.01 sec
td_T = 0:0.01:10;           %td/T ratio

%%%-ESTIMATION-%%%
td = td_T*T;                %Duration of force
u_st = F_0/k;               %Static displacement

%%%Estimate response spectral chart
for j =1:length(td)

for i=1:length(t)
if t(i) <=td(j)

u(i,j) = u_st*(1-cos(omega*t(i)));
else
arg1=(1-cos(omega*td(j)))*cos(omega*(t(i)-td(j)));
arg2=sin(omega*td(j))*sin(omega*(t(i)-td(j)));

u(i,j)= u_st*(arg1+arg2);
end

end

end
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Fig. 4.7 Response of Illustrative Example 4.1
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%%%DLF estimation
u_max = max(u,[],1);        %u_max
D = u_max/u_st;             %DLF factor

figure (1)
semilogx(td_T, D);
xlabel ('t_d/T');
ylabel ('DLF'); 
grid on

4.2 Duhamel’s Integral-Damped System

The response of a damped system expressed by the Duhamel’s integral is obtained in a manner

entirely equivalent to the undamped analysis except that the impulse F(τ)dτ producing an initial

velocity dv ¼ F τð Þdτ
m
is substituted into the corresponding damped free-vibration Eq. (2.20). Setting

u0 ¼ 0, v0 ¼ F τð Þdτ
m
, and substituting t for (t – τ) in Eq. (2.20), we obtain the differential displacement

du(t) at a time t as

du tð Þ ¼ e�ξω t�τð Þ F τð Þdτ
mωD

sinωD t� τð Þ ð4:14Þ

Summing or integrating these differential response terms over the entire loading interval results in

u tð Þ ¼ 1

mωD

ð t

0

F τð Þe�ξω t�τð Þ sinωD t� τð Þdτ ð4:15Þ

which is the response for a damped system in terms of the Duhamel’s integral. For numerical

evaluation Eq. (4.15), we proceed as in the undamped case (See Problem 4.2).

4.3 Response by Direct Integration

The differential equation of motion for a one degree-of-freedom system represented by the damped

simple oscillator, shown in Fig. 4.8a, is obtained by establishing the dynamic equilibrium of the

forces in the free body diagram, Fig. 4.8b:

m€uþ c _u þ ku ¼ F tð Þ ð4:16Þ

in which the function F(t) represents the force applied to the mass of the oscillator.

When the structure, modeled by the simple oscillator, is excited by a motion at its support, as is

shown in Fig. 4.9a, the equation of motion obtained using the free body diagram in Fig. 4.9b is

m€uþ c
�

_u � _u s

�

þ k u� usð Þ ¼ 0 ð4:17Þ

In this case, it is convenient to express the displacement ur of the mass relative to the displacement

us of the support, namely

ur ¼ u� us ð4:18Þ
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The substitution of ur and its derivative from Eq.(4.18) into Eq. (4.17) results in

m€ur þ c _u r þ kur ¼ �mus tð Þ ð4:19Þ
Comparison of Eqs. (4.16 and 4.19) reveals that both equations are mathematically equivalent if the

right-hand side of Eq. (4.19) is interpreted as the effective force

Feff tð Þ ¼ �m€us tð Þ ð4:20Þ

Equation (4.19) may then be written as

m€ur þ c _u r þ kur ¼ Feff tð Þ ð4:21Þ
Consequently, the solution of the second order differential Eq. (4.16) or Eq. (4.21) gives the response

in terms of the absolute motion u for the case in which the mass is excited by a force, or in terms of the

relative motion ur ¼ u – us, for the structure excited at the base.

Fig. 4.9 (a) Damped Simple oscillator excited by the displacement us(t) at its support. (b) Free body diagram

Fig. 4.8 (a) Damped simple oscillator excited by the force F(t). (b) Free body diagram
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4.4 Solution of the Equation of Motion

The method of solution for the differential equation of motion presented in this Section is exact for an

excitation function described by linear segments. The process of solution requires for convenience

that the excitation function be calculated at equal time intervals Δt. This result is accomplished by a

linear interpolation between points defining the excitation. Thus, the time duration of the excitation,

including a suitable extension of time after cessation of the excitation, is divided into N equal time

intervals of duration Δt, For each interval Δt, the response is calculated by considering the initial

conditions at the beginning of that time interval and the linear excitation during the interval. The

initial conditions are, in this case, the displacement and velocity at the end of the preceding time

interval. Assuming that the excitation function F(t) is approximated by a piecewise linear function as

shown in Fig. 4.10, we may express this function by

F tð Þ ¼ 1� t� ti

Δt

� �

Fi þ
t� ti

Δt

� �

Fiþ1, ti � t � tiþ1 ð4:22Þ

in which ti ¼ i�Δt for equal intervals of duration Δt and i ¼ 1,2,3,. . .,N. The differential equation of

motion, Eq. (4.16), is then given by

m€uþ c _u þ ku ¼ 1� t� ti

Δt

� �

Fi þ
t� ti

Δt

� �

Fiþ1, ti � t � tiþ1 ð4:23Þ

The solution of Eq. (4.23) may be expressed as the sum of the complementary solution uc for

which the second member of Eq. (4.23) is set equal to zero, and the particular solution up, that is

u ¼ uc þ up ð4:24Þ

Fig. 4.10 Segmental linear loading function
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The complementary solution is given in general by Eq. (2.15), which for the interval ti � t� ti + Δt is

uc ¼ eξω t�tið Þ Ci cosωD t� tið Þ þ Di sinωD t� tið Þ½ � ð4:25Þ

On the other hand, the particular solution of Eq. (4.23) takes the form

up ¼ Bi þ Ai t� tið Þ ð4:26Þ

which upon its substitution into Eq. (4.23) gives

cAi þ k Bi þ Ai t� tið Þ½ � ¼ 1� t� ti

Δt

� �

Fi þ
t� ti

Δt

� �

Fiþ1

where Ai and Bi are constants for the interval ti � t � ti, + Δt and where we use the notation Fi ¼ F(ti)

and Fi + 1 ¼ F(t + Δt). Establishing the identity of terms between the left-hand and right-hand sides,

that is, between the constant terms and the terms with a factor (t - ti) and then solving the resulting

equations, we obtain

Ai ¼
Fiþ1 � Fi

kΔt

Bi ¼
Fi � cAi

k

ð4:27Þ

The substitution into Eq. (4.24) of the complementary solution uc from Eq. (4.25) and of the particular

solution up from Eq. (4.26) gives the total solution as

u ¼ e�ξω t�tið Þ Ci cosωD t� tið Þ þ Di sinωD t� tið Þ½ � þ Bi þ Ai t� tið Þ ð4:28Þ

The velocity _u is then given by the derivative of Eq. (4.28) as

_u ¼ eξω t�tið Þ ωDDi � ξωCið Þ cosωD t� tið Þ � ωDCi þ ξωDið Þ sinωD t� tið Þ½ � þ Ai ð4:29Þ

The constants of integration Ci and Di are obtained from Eqs. (4.28 and 4.29) introducing the initial

conditions for the displacement ui and for the velocity _u i, at the beginning of the interval Δt, that is, at

time ti. Thus, introducing into Eqs. (4.28 and 4.29) these initial conditions and solving for the

constants Ci and Di in the resulting relations yields

Ci ¼ ui � Bi

Di ¼
_u i � Ai � ξωCi

ωD

ð4:30Þ

The evaluation of Eqs. (4.28 and 4.29) at time ti + Δt results in the displacement ui + 1 and the velocity

_u iþ1 at time ti + 1. Namely,

uiþ1 ¼ e�ξωΔt Ci cosωDΔtþ Di sinωDΔt½ � þ Bi þ AiΔt ð4:31Þ

and

_u iþ1 ¼ e�ξωΔt
	

Di ωD cosωDΔt� ξω sinωDΔtð Þ � Ci

�

ξω cosωDΔtþ ωD sinωDΔt



� Ai ð4:32Þ

Finally, the acceleration at time ti + 1 ¼ ti + Δt is directly obtained after substituting ui + 1 and _u iþ1

from Eqs. (4.31 and 4.32) into the differential Eq. (4.16) and letting ti + 1 ¼ ti + Δt. Specifically,
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€uiþ1 ¼
1

m

�

Fiþ1 � c _u iþ1 � kuiþ1

�

ð4:33Þ

The substitution of the coefficient Ai, Bi, Ci and Di from Eqs. (4.27 and 4.30), together with ε ¼ 2ξk
ω

into Eqs. (4.31 and 4.32), results in the following formulas to calculate the displacement, velocity and

acceleration at the time step ti + 1 ¼ ti + Δt:

uiþ1 ¼ A
0
ui þ B

0
_u i þ C

0
Fi þ D

0

iFiþ1 ð4:34Þ

_u iþ1 ¼ A00ui þ B00
_u i þ C00Fi þ D00Fiþ1 _u iþ1 ¼ A00ui þ B00

_u i þ C00Fi þ D00Fiþ1 ð4:35Þ

€uiþ1 ¼ �ω2uiþ1 � 2ξω€uiþ1 þ
Fiþ1

m
ð4:36Þ

Equations (4.34, 4.35 and 4.36) are recurrence formulas to calculate, respectively, the displacement,

velocity, and acceleration at the next time step ti + 1 ¼ ti + Δt from the previously calculated values for

these quantities at the preceding time step ti. Because these recurrence formulas are exact, the only

restriction in selecting the length of the time step, Δt, is that it allows a close approximation to the

excitation function and that equally spaced time intervals do not miss the peaks of this function. This

numerical procedure is highly efficient because the coefficients in Eqs. (4.34, 4.35 and 4.36) need to be

calculated only once. The final expressions to calculate the coefficientsA0,B0, . . .D” are given in Box 4.1.

Illustrative Example 4.3

Determine the dynamic response of a tower subjected to a blast loading. The idealization of the

structure and the blast loading are shown, respectively, in Fig. 4.11a, b. Assume damping equal to

20% of the critical damping.

Fig. 4.11 (a) Idealized structure (b) idealized loading for Illustrative Example 4.4
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Box 4.1 Coefficients in Eqs. (4.34, 4.35 and 4.36).

A
0 ¼ e�ξωΔt ξω

ωD

sinωDΔtþ cosωDΔt

� �

B
0 ¼ e�ξωΔt 1

ωD

sinωDΔt

� �

C
0 ¼ 1

k
e�ξωΔt 1� 2ξ2

ωDΔt
� ξω

ωD

� �

sinωDΔt� 1þ 2ξ

ωΔt

� �

cosωDΔt

� �

þ 2ξ

ωΔt


 �

D
0 ¼ 1

k
e�ξωΔt 2ξ� 1

ωDΔt
sinωDΔtþ

2ξ

ωΔt
cosωDΔt

� �� �

þ 1� 2ξ

ωΔt

� �
 �

A00 ¼ �e�ξωΔt
ω2

ωD

sinωDΔt

� �

B00 ¼ e�ξωΔt cosωDΔtð Þ � ξω

ωD

sinωDΔt

C00 ¼ 1

k
�e�ξωΔt ω2

ωD

þ ωξ

ΔtωD

� �

sinωDΔtþ
1

Δt
cosωDΔt

� �

� 1

Δt


 �

D00 ¼ 1

kΔt
�e�ξωΔt ωξ

ωD

sinωDΔtþ cosωDΔt

� �

þ 1


 �

Solution:

Since the loading is given as a segmental linear function, the response obtained using the direct

method will be exact. The necessary calculations are presented in a convenient tabular format in

Table 4.1. For this system, the natural frequency is

ω ¼
ffiffiffiffi

k

m

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

100, 000

100

r

¼ 31:623 rad= sec

and damped natural frequency

ωD ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
q

¼ 31:623
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:22
p

¼ 30:984 rad= sec

Hence, the natural period is

T ¼ 2π

ω
¼ 2π

31:623
¼ 0:20 sec

Recommended practice is to selectΔt � T
10
. Specifically, we select Δt ¼ 0.02 s. We then calculate the

coefficients of Eqs. (4.34 and 4.35):

A
0 ¼ 0:82180 B

0 ¼ 0:16517 C
0 ¼ 1:16755� 10�6 D

0 ¼ 6:1439� 10�7

A00 ¼ �16:5170 B00 ¼ 0:61286 C00 ¼ 7:60730� 10�5 D00 ¼ 8:9097� 10�5

with initial conditions u0 ¼ 0 and v0 ¼ 0, we obtain from Eqs. (4.34, 4.35, and 4.36).
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u1 ¼ 6:1439� 10�7 � 1:2� 105 ¼ 0:074 in

_u 1 ¼ 8:9124� 10�5 � 1:2� 105 ¼ 10:692 in= sec

€u 1 ¼ 31:6232 � 0:074� 2� 0:2� 31:623� 10:692þ 1:2� 105=100 ¼ 990:754 in= sec 2

Thus, completing the first cycle of calculations in the direct method of solution. Introducing the

calculated values u1, _u 1, and €u1, into the recurrence formulas Eqs. (4.34, 4.35, and 4.36), we obtain

the response at time t2 ¼ 0.04 s. The continuation of this process results in the response of this system

as shown in Table 4.1 up to 0.10 s.

Illustrative Example 4.4

Consider the tower shown in Fig. 4.11, but now subjected to a constant impulsive acceleration of

magnitude €us ¼ 0.5 g during 0.5 s applied at the foundation of the tower. Determine the response of

the tower in terms of the displacement and velocity of the mass relative to the motion of the

foundation. Also, determine the maximum acceleration of the mass.

Solution:

The following data are obtained from Fig. 4.12:

Mass: m ¼ 100 (lb � sec2/in)

Table 4.1 Calculation of the response for Illustrative Example 4.4

T(s) ui in. _u i in./sec €ui in./sec
2 F(τ)

0.000 0 0 0 0

0.020 0.074 10,692 990.754 120,000

0.040 0.451 25.155 430.768 120,000

0.060 0.926 17.096 �1142.511 0

0.080 1.044 �4.821 �982.581 0

0.100 0.778 �20.191 �522.555 0
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Fig. 4.12 Displacement, velocity, and acceleration (relative) for Illustrative Example 4.4
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Spring constant: k ¼ 100,000 (lb/in)

Damping coefficient: c ¼ 1265 (lb � sec/in)
Acceleration of gravity: g ¼ 386 (in/sec2)

Select time step: Δt ¼ 0.002 s

Excitation function:

Time (s) Support acceleration (g)

0 0.5

0.5 0.5

Using ODE45 function in the MATLAB, two files can be used to create plots and determine

maximum displacement, velocity, and acceleration.

Matlab file: Ex4_4.m
close all
clear
clc

%%%%-GIVEN VALUES-%%%%
deltat = 0.02;              %Time step
tspan=0:deltat:1.5;         %0 to 1.5 secs with the interval of 0.02 sec
IC = [0 0]';                %Initial conditions (u0=0, v0=0)

%%%Plot the displacement using ODE45
%%%-ESTIMATION-%%%
[t, u] = ode45(@SDOF2, tspan, IC);

%Display responses(displacement,velocity,acceleration)
umax= max(abs(u(:,1)))

%Velocity 
udot = u(:,2);
udotmax = max(udot)

%Acceleration
udotdot = gradient(u(:,2), deltat);
udotdotmax = max(udotdot)

figure

subplot(3,1,1); 
plot(t, u(:,1));
%Create x&y labels
xlabel ('t(sec)');
ylabel ('Displacement(in.)');

subplot(3,1,2); 
plot(t, u(:,2));

%Create x&y labels
xlabel ('t(sec)');
ylabel ('Velocity(in./sec)');

subplot(3,1,3); 
plot(t, udotdot);

%Create x&y labels
xlabel ('t(sec)');
ylabel ('Accleration(in./sec^2)');
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Matlab file: SDOF2.m
function u = SDOF2(t, u)

%%%%-GIVEN VALUES-%%%%

m=100;              %Mass (lb.sec^2/in.)
k =100000;          %Stiffness (lb/in.)  
omega = sqrt(k/m);  %Natural Frequency
c=1265;             %Damping coefficient (lb.sec/in.)
g =386;             %Acceleration of gravity (in./sec^2)
c_cr=2*m*omega;     %Critical damping coefficient
xi = c/c_cr;        %Damping ratio

%%%Define the forcing function     
if t<=0.5

F = -0.5*g*m/m;
else

F =0;
end

%%%%-ESTIMATION-%%%%
u = [u(2); -omega*omega*u(1)-2*xi*omega*u(2)+F];

Maximum displacement and velocity are 0.2945 in. and velocity is 4.748 in./sec, respectively.

The maximum acceleration is 120.07 in./sec2. For excitation at the support: Displacement, velocity,

and acceleration are relative to the support. The absolute acceleration is equal to be

120.07 + 0.5 g in./sec2 using the relationship of €u ¼ €ur + €us.

Illustrative Example 4.5.

A structural system modeled in Fig. 4.13a by the simple oscillator with 10% (ξ ¼ 0.10) of critical

damping is subjected to the impulsive load as shown in Fig. 4.13b. Polt the response (Displacement,

velocity, and acceleration) using ODE45 method in MATLAB.

Solution:

The following data are obtained from Fig. 4.14:

Mass: m ¼ 10 lb � sec2/in
Spring constant: k ¼ 10,000 lb/in

Damping coefficient: c ¼ ξccr ¼ 2ξ
ffiffiffiffiffiffi

km
p

¼ 63:25 lb � sec =in
Natural period: T ¼ 2π

ffiffiffiffiffiffiffiffiffi

m=k
p

¼ 0:20 sec

Fig. 4.13 Illustrative of Example 4.5 (a) Mathematical model, (b) Load function
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Select time step for integration: Δt ¼ 0.02 s

Excitation function: F tð Þ ¼ 50, 000t lb, 0 � t � 0:1 sec :

¼ 0 t > 0:1 sec :

Maximum time: tmax ¼ 0.2 s

4.5 Summary

In this chapter, we have shown that the differential equation of motion for a single-degree-of-freedom

linear system can be solved for any forcing function F(τ) in terms of Duhamel’s integral which for the

undamped system is given by

u tð Þ ¼ 1

mω

ð t

0

F τð Þ sinω t� τð Þdτ ð4:3Þ repeated

and for a damped system by

u tð Þ ¼ 1

mωD

ð t

0

F τð Þe�ξω t�τð Þ sinωD t� τð Þdτ ð4:15Þ repeated

where

ω ¼
ffiffiffi

k
m

q

is the (undamped) natural frequency

ωD ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
p

is the damped frequency

ξ ¼ c
cc1

is the damping ratio
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Fig. 4.14 Displacement, velocity, and acceleration for Illustrative Example 4.5 (Δt ¼ 0.02 s)
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The solution of the differential equation of motion may also be obtained by application of the

Direct Method. In this method, it is assumed that the forcing function is given by a segmental linear

function between defining points. Based on this assumption, the solution obtained is exact. The

response is calculated at each time increment for the conditions existent at the end of the preceding

time interval (initial conditions for the new time interval) and the action of the excitation applied

during the time interval, which is assumed to be linear.

4.6 Analytical Problems

Problem 4.1

Develop a numerical method to evaluate Duhamel’s Integral which gives the response of an

undamped elastic one-degree-of-freedom structure modeled by the simple oscillation shown in

Fig. P4.1a. Assume that the forcing function F(t) may be represented by a segmental linear function

as shown in Fig. P4.1b.

Solution:

Assuming zero initial conditions, we obtain Duhamel’s integral from Eq. (4.4) as

Fig. P4.1 (a) Structure modeled by the undamped simple oscillator. (b) Segmental linear forcing function
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u tð Þ ¼ 1

mω

ð t

0

F τð Þ sinω t� τð Þdτ

Then, using the trigonometric identity

sinω t� τð Þ ¼ sinωt cosωτ � cosωt sinωτ

we obtain

u tð Þ ¼ sinωt
1

mω

ð t

0

F τð Þ cosωτ � cosωt
1

mω

ð t

0

F τð Þ sinωτdτ

or

u tð Þ ¼ A tð Þ sinωt� B tð Þ cosωtf g=mω ðaÞ

where

A tð Þ ¼
ð t

0

F τð Þ cosωτdτ ðbÞ

B tð Þ ¼
ð t

0

F τð Þ sinωτdτ ðcÞ

The calculation of Duhamel’s integral thus requires the numerical evaluation of the integrals A(t)

and B(t). It is more convenient to express the integrations in Eqs. (b and c) in incremental form,

namely

A tið Þ ¼ A ti�1ð Þ þ
ðti

ti�1

F τð Þ cosωτdτ ðdÞ

B tið Þ ¼ B ti�1ð Þ þ
ðti

ti�1

F τð Þ sinωτdτ ðeÞ

where A(ti) and B(ti) represent the values of the integrals in Eq. (a) at time ti. Assuming that the

forcing function F(τ)is approximated by a piecewise linear function as shown in Fig. P4.1b, we may

write

F τð Þ ¼ F ti�1ð Þ þ ΔFi

Δti
τ � ti�1ð Þ, ti�1 � τ � ti ðfÞ

where

ΔFi ¼ F tið Þ � F ti�1ð Þ

and

Δti ¼ ti � ti�1

The substitution of Eq. (4.20) into Eq. (4.18) and integration yield
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A tið Þ ¼ A ti�1ð Þ þ F ti�1ð Þ � ti�1

ΔFi

Δti

� �

sinω ti � sinω ti�1ð Þ=ω

þ ΔFi

ω2Δti
sinω ti � sinω ti�1 þ ω ti cosω ti � ω ti�1 cosω ti�1ð Þf g

ð4:21Þ

Analogously from Eq. (4.19),

B tið Þ ¼ B ti�1ð Þ þ F ti�1ð Þ � ti�1

ΔFi

Δti

� �

cosω ti�1 � cosω tið Þ=ω

þ ΔFi

ω2Δti
sinω ti � sinω ti�1 � ω ti cosω ti � ti�1 cosω ti�1ð Þf g

ð4:22Þ

Equations (4.21 and 4.22) are recurrent formulas for the evaluation of the integrals in Eq. (4.15) at any

time t ¼ ti.

Problem 4.2

Develop a numerical method to evaluate Duhamel’s integral including damping in the system.

Solution:

The response of a damped single-degree-of-freedom system in terms of Duhamel’s integral is given

by Eq.(4.15) as

u tð Þ ¼ 1

mωD

ð t

0

F τð Þe�ξω t�τð Þ sinωD t� τð Þdτ repeatedð Þ ð4:15Þ

For numerical evaluation, we proceed as in the undamped case and obtain from Eq. (4.15)

u tð Þ ¼ AD tð Þ sinωDt� BD tð Þ cosωDtf ge
�ξωt

mωD

ðgÞ

where

AD tið Þ ¼ AD ti�1ð Þ þ
ðti

ti�1

F τð Þeξωτ cosωDτdτ ðhÞ

BD tið Þ ¼ BD ti�1ð Þ þ
ðti

ti�1

F τð Þe�ξωτ sinωDτdτ ðiÞ

For a linear piecewise loading function, F(τ) given by Eq. (f) of Problem 4.1, is substituted into

Eqs. (h and i) which require the evaluation of the following integrals:

I1 ¼
ðti

ti�1

eξωτ cosωDτdτ ¼
eξωτ

ξωð Þ2 þ ω2
D

�

ξω cosωDτ þ ωD sinωdτ
�

�

ti

ti�1
ðjÞ

I2 ¼
ðti

ti�1

eξωτ sinωDτdτ ¼
eξωτ

ξωð Þ2 þ ω2
D

�

ξω sinωDτ � ωD cosωdτ
�

�

ti

ti�1
ðkÞ
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I3 ¼
ðti

ti�1

τeξωτ sinωDτdτ ¼ τ � ξω

ξωð Þ2 þ ω2
D

 !

I
0

2 þ
ωD

ξωð Þ2 þ ω2
D

I
0

1

�

�

t1

ti�1
ðlÞ

I4 ¼
ðti

ti�1

τeξωτ cosωDτdτ ¼ τ � ξω

ξωð Þ2 þ ω2
D

 !

I
0

1 �
ωD

ξωð Þ2 þ ω2
D

I
0

2

�

�

t1

ti�1
ðmÞ

where I
0

1 and I
0

2 are the integrals indicated in Eqs. (j and k) before their evaluation at the limits. In terms

of these integrals, AD(ti) and BD(ti) may be evaluated after substituting Eq. (f) of Problem 4.1 into

Eqs. (h and i) as

AD tið Þ ¼ AD ti�1ð Þ þ F ti�1ð Þ � ti�1

ΔFi

Δti

� �

I1 þ
ΔFi

Δti
I4 ðnÞ

BD tið Þ ¼ BD ti�1ð Þ þ F ti�1ð Þ � ti�1

ΔFi

Δti

� �

I2 þ
ΔFi

Δti
I3 ðoÞ

Finally, the substitution of Eqs. (n and o) into Eq. (g) gives the displacement at time ti as

ui tið Þ ¼ e�ξωti

mωD

AD tið Þ sinωDti � BD tið Þ cosωDtif g ðpÞ

4.7 Problems

Problem 4.3

Fig. P4.3
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The steel frame shown in Fig. P4.3 is subjected to a horizontal force F(t) applied at the girder level.

The force decreases linearly from 5 kip at time t¼ 0 to zero at t¼ 0.6 s. Determine: (a) the horizontal

deflection at t ¼ 0.5 s and (b) the maximum horizontal deflection. Assume the columns massless and

the girder rigid. Neglect damping.

Problem 4.4

Repeat Problem 4.3 for 10% of critical damping.

Problem 4.5

For the load-time function in Fig. P4.5, derive the expression for the dynamic load factor for the

undamped simple oscillator as a function of t, ω, and td.

Problem 4.6

The frame shown in Fig. P4.3 is subjected to a sudden acceleration of 0.5 g applied to its foundation.

Determine the maximum shear force in the columns. Neglect damping.

Problem 4.7

Repeat Problem 4.6 for 10% of critical damping.

Problem 4.8

Use Duhamel’s integral to obtain the response of a damped simple oscillator of stiffness k, mass m,

and damping ratio ξ, subjected to a suddenly applied force of magnitude F0. Assume initial

displacement and initial velocity equal zero.

Problem 4.9

F(t)

F0

td
t

Fig. P4.5

F(�)

F0

Td
�

Fig. P4.11
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Establish the equation of motion for the system in Problem 4.8 and solve it by superposition of

complementary and [particular solutions with initial conditions for displacement and velocity equal

to zero.

Problem 4.10

A trailer being pulled by a truck moving at constant speed v is idealized as a mass m connected to the

truck by a spring of stiffness k. Determine the governing equation and its solution if the truck starts

from rest.

Problem 4.11

Determine the response of an undamped system to a ramp force (Fig. P4.11) of maximum magnitude

F0 and duration td starting with zero initial conditions of displacement and velocity.

Problem 4.12

Determine the maximum displacement at the top of the columns and maximum bending stress in the

frame of Fig. P4.3 assuming that the columns are pinned at the base. Discuss the effect of base fixity.

Problem 4.13

Fig. P4.14

Fig. P4.16
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Determine the maximum response (displacement and bending stress) for the frame of Illustrative

Example 4.1 subjected to a triangular load of initial force F0 ¼ 6000 lb linearly decreasing to zero at

time td ¼ 0.1 s.

Problem 4.14.

For the dynamic system shown in Fig. P4.14, determine and plot the displacement as a function of

time for the interval 0 � t � 0.5 s. Neglect damping.

Problem 4.15

Repeat problem 4.14 for 10% critical damping.

Problem 4.16

The tower of Fig. P4.16a is subjected to horizontal ground acceleration a(t) shown in Fig. P4.16b.

Determine the relative displacement at the top of the tower at time t ¼ 1.0 s. Neglect damping.

Problem 4.17

Repeat Problem 4.16 for 20% of critical damping.

Fig. P4.19

k = 10000 lb/in.

m = 10
lb sec2

in

u

F(t)

F(t)

t(sec)
0 0.1

5000lb

� = 10%

Fig. P4.21
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Problem 4.18

Determine for the tower of Problem 4.17, the maximum displacement at the top of the tower relative

to the ground displacement.

Problem 4.19

The frame of Fig. P4.19a is subjected to horizontal support motion shown in Fig. P4.19b. Determine

the maximum absolute deflection of top of the frame. Assume no damping.

Problem 4.20

Repeat Problem 4.19 for 10% of critical damping.

Fig. P4.22

Fig. P4.24
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Problem 4.21

A structural system modeled by the simple oscillator with 10% (ξ ¼ 0.10) of critical damping is

subjected to the impulsive load as shown in Fig. P4.21. Determine the response.

Problem 4.22

A water tower modeled as shown in Fig. P4.22a is subjected to ground shock given by the function

depicted in Fig. P4.22b. Determine: (a) the maximum displacement at the top of the tower and (b) the

maximum shear force at the base of the tower. Neglect damping. Use time step for integration

Δt ¼ 0.005 s.

Problem 4.23

Repeat Problem 4.22 for 20% of critical damping.

Problem 4.24

Determine the maximum response of the tower of Problem 4.22 when subjected to the impulsive

ground acceleration depicted in Fig. P4.24.

Problem 4.25

The steel frame in Fig. P4.25 is subjected to the ground motion produced by a passing train in its

vicinity. The ground motion is idealized as a harmonic acceleration of the foundation of the frame

with amplitude 0.1 g at frequency 10 cps. Determine the maximum response in terms of the relative

displacement of the girder of the frame and the motion of the foundation. Assume 10% of the critical

damping.

Problem 4.26

Fig. P4.25
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Determine the maximum stresses in the columns of the frame in Problem 4.25 using the maximum

response in terms of relative motion. Also check that the same results may be obtained using the

response in terms of the maximum absolute acceleration.

Problem 4.27

A machine having a weight W ¼ 3000 lb is mounted through coil springs to a steel beam of

rectangular cross-section as shown in Fig. P4.27a. Due to malfunctioning, the machine produces a

shock force represented in Fig. P4.27b. Neglecting the mass of the beam and damping in the system,

determine the maximum displacement of the machine.

Problem 4.28

For Problem 4.27 determine: (a) the maximum tensile and compressive stresses in the beam and

(b) the maximum force experienced by the coil springs during the shock.

Fig. P4.27
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Response Spectra 5

In this chapter, we introduce the concept of response spectrum, which in recent years has gained wide

acceptance in structural dynamic practice, particularly in earthquake engineering design. Stated brief,

the response spectrum is a plot of the maximum response (maximum displacement, velocity, accelera-

tion, or any other quantity of interest) to a specified load function for all possible single-degree-of-

freedom systems. The abscissa of the spectrum is the natural frequency (or period) of the system, and

the ordinate the maximum response. A plot of this type is shown in Fig. 5.1, in which a one-story

building is subject to a ground displacement indicated by the function us (t). The response spectral curve

shown in Fig. 5.1a gives, for any single-degree-of-freedom system, the maximum displacement of the

response from an available spectral chart, for a specified excitation, we need only to know the natural

frequency of the system.

5.1 Construction of Response Spectrum

To illustrate the construction of a response spectral chart, consider in Fig. 5.2a the undamped

oscillator subject to one-half period of the sinusoidal exciting force shown in Fig. 5.2b.

Fig. 5.1 (a) Typical response spectrum. (b) Single-degree-of-freedom system subject to ground excitation
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The system is assumed to be initially at rest. The duration of the sinusoidal impulse is denoted by

td. The differential equation of motion is obtained by equating to zero the sum of the forces in the

corresponding free body diagram shown in Fig. 5.2c, that is,

m€uþ ku ¼ F tð Þ ð5:1Þ

in which

F tð Þ ¼
F0 sinϖt for 0 � t � td

0 for t > td

(

ð5:2Þ

and

ϖ ¼ π

td
ð5:3Þ

The solution of Eq. (5.1) may be found by any of the methods studied in the preceding Chap. 4

such as the use of Duhamel’s integral or the direct method. However, for this example, owing to the

simplicity of the exciting force, we can obtain the solution of Eq. (5.1) by the general method of

integration of a linear differential equation, that is, the superposition of the complementary solution

uc and the particular solution up;

u ¼ uc þ up ð5:4Þ

The complementary solution of Eq. (5.1) (right-hand side equals zero) is given by Eq. (1.17) as

uc ¼ A cosωtþ B sinωt ð5:5Þ

in which ω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

is the natural frequency. The particular solution for the time interval 0 � t � td
is suggested by the right-hand side of Eq. (5.1) to be of the form

up ¼ C sinϖt ð5:6Þ

Fig. 5.2 (a) Undamped simple oscillator subjected to load F (t). (b) Loading function F (t) ¼ F0 sin ϖ t (0 � t � td),

(c) Free body diagram
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The substitution of Eq. (5.6) into Eq. (5.1) and solution of the resulting identity gives

C ¼ F0

k � mϖ2
ð5:7Þ

Combining (5.4) through (5.7), we obtain the response for 0 � t � td as

u ¼ A cosωtþ B sinωtþ F0 sinϖt

k � mϖ2
ð5:8Þ

Introducing the initial conditions u (0)¼ 0 and _u (0)¼ 0 into Eq. (5.8) and calculating the constants of

integration A and B, we obtain

u ¼ F0=k

1� ϖ=ωð Þ2
sinϖt� ϖ=ωð Þ sinωt½ � ð5:9Þ

It is convenient to introduce the following notation:

ust ¼
F0

k
, ϖ ¼ π

td
, ω ¼ 2π

T

Then Eq. (5.9) becomes

u

ust
¼ 1

1� T
2td

� �2
sin π

t

td
� T

2td
sin 2π

t

T

� �

for 0 � t � td ð5:10aÞ

After a time td the external force becomes zero and the system is then in free vibration. Therefore, the

response for t > td is of the form given by Eq. (5.5) with the constants of integration determined from

known values of displacement and velocity calculated from Eq. (5.10a) at time t ¼ td. The expression

obtained for the response is then given by

u

ust
¼ T=td

T
2td

� �2

� 1

cos π
t

td
sin 2π

t

T
� td

2T

� �

for t � td ð5:10bÞ

It may be seen from Eq. (5.10a) that the response in terms of u/ust, is a function of the ratio of the pulse

duration to the natural period of system (td/T) and of time expressed as t/T. Hence for any fixed value

of the parameter td/T, we can obtain the maximum response from Eq. (5.10b). The plot in Fig. 5.3 of

these maximum values as a function of td/T is the response spectrum for the half-sinusoidal force

duration considered in this case. It can be seen from the response spectrum in Fig. 5.3 that the

maximum value of the response (amplification factor) u/ust ¼ 1.76 occurs for this particular pulse

when td/T ¼ 0.8.

Owing to the simplicity of the input force, it was possible in this case to obtain a closed solution

and to plot the response spectrum in terms of dimensionless ratios, thus making this plot valid for any

impulsive force described by one-half of the sine cycle. However, in general, for an
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5.2 Response Spectrum for Support Excitation

An important problem in structural dynamic is the analysis of a system subjected to excitation applied

to the base or foundation of the structure. An example of such input excitation of the base acting on a

damped oscillator which serves to model certain structures is shown in Fig. 5.4. The excitation in this

case is given as an acceleration function which is represented in Fig. 5.5. The equation of motion that

is obtained by equation to zero the sum of the forces in the corresponding free body diagram in

Fig. 5.4b is

m€uþ c
�

_u � _u s

�

þ k u� usð Þ ¼ 0 ð5:11Þ

or, with the usual substitution ω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

andξ ¼ c=ccr ccr ¼ 2
ffiffiffiffiffiffi

km
p� �

,

€uþ 2ξω _u þ ω2u ¼ ω2us tð Þ þ 2ξω _u s tð Þ ð5:12Þ

Fig. 5.3 Response spectrum for half-sinusoidal force of duration td

Fig. 5.4 (a) Damped simple oscillator subjected to support excitation. (b) Free body diagram.
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Equation (5.12) is the differential equation of motion for the damped oscillator in terms of its

absolute motion. A more useful formulation of this problem is to express Eq. (5.12) in terms of the

relative motion of the mass with respect to the motion of the support, that is, in terms of the spring

deformation. The relative displacement ur is then defined as

ur ¼ u� us ð5:13Þ

Substitution into Eq. (5.12) yields

€ur þ 2ξω _u r þ ω2ur ¼ �€us tð Þ ð5:14Þ

The formulation of the equation of motion in Eq. (5.14) as a function of the relative motion between

the mass and the support is particularly important since in design it is the deformation or stress in the

“spring element” that is required. Besides, the input motion at the base is usually specified by means

of an acceleration function (e.g., earthquake accelerograph record); thus Eq. (5.14) containing in the

right-hand side the acceleration of the excitation is a more convenient form than Eq. (5.12) which in

the right–hand side has the support displacement and the velocity.

The solution of the differential equation, Eq. (5.14), may be obtained by any of the methods

presented in previous chapters for the solution of one-degree-of-freedom systems. In particular, the

solution is readily expressed using Duhamel’s integral as

u tð Þ ¼ �1

ω

ð t

0

€us τð Þe�ξω t�τð Þ sinω t� τð Þdτ ð5:15Þ

5.3 Tripartite Response Spectra

It is possible to plot in a single chart using logarithmic scales the maximum response in terms of the

acceleration, the relative displacement, and a third quantity known as the relative pseudovelocity. The

pseudovelocity is not exactly the same as the actual velocity, but it is closely related and provides for

a convenient substitute for the true velocity. These three quantities the maximum absolute accelera-

tion, the maximum relative displacement, and the maximum relative pseudovelocity are known,

respectively, as the spectral acceleration, spectral displacement, and spectral velocity.

u
S
 (t ) 

t

Fig. 5.5 Acceleration function exciting the support of the oscillator in Fig. 5.4
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It is significant that the spectral displacement SD, that is, the maximum relative displacement, is

proportional to the spectral acceleration Sa the maximum absolute acceleration. To demonstrate this

fact, consider the equation of motion, Eq. (5.11), which, after using Eq. (5.13), becomes for the

damped system

m€uþ c _u r þ kur ¼ 0 ð5:16Þ

and for the undamped system

m€uþ kur ¼ 0 ð5:17Þ

We observe from Eq. (5.17) that the absolute acceleration is at all times proportional to the relative

displacement. In particular, at maximum values, the spectral acceleration is proportional to the

spectral displacement, that is, form Eq. (5.17)

Sa ¼ �ω2SD ð5:18Þ

where ω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

is the natural frequency of the system, Sa ¼ €umax, and SD ¼ ur,max.

When damping is considered in the system, it may be rationalized that the maximum relative

displacement occurs when the relative velocity is zero ( _u ¼ 0). Hence we again obtain Eq. (5.18)

relating spectral acceleration and spectral displacement. However, for a damped system, the spectral

acceleration Sa is not exactly equal to the maximum acceleration, although in general, it provides a

good approximation. Equation (5.18) is by mere coincidence the same as the relationship between

acceleration and displacement for a simple harmonic motion. The fictitious velocity associated with

the apparent harmonic motion is the pseudovelocity and, its maximum value Sv is defined as the

spectral velocity, that is

Sv ¼ ωSD ¼ Sa

ω
ð5:19Þ

Dynamic response spectra for a single-degree-of-freedom elastic systems have been computed for

a number of input motions. A typical example of response spectrum for a single-degree-of freedom

system subjected to support motion is shown in Fig. 5.6. This plot is the response for the input motion

given by the recorded ground acceleration of the North-south component of the 1940 El Centro

earthquake. The acceleration record of this earthquake has been used extensively in earthquake

engineering investigations. A plot of the acceleration record for this earthquake is show in Fig. 5.7.

Until the time of the San Fernando, California earthquake of 1971, the El Centro record was one of the

few records available for long and strong earthquake motions. In Fig. 5.8, the same type of data that

were used to obtain the displacement response spectrum in Fig. 5.6 are plotted in terms of the spectral

velocity, for several values of the damping coefficient, with the difference that the abscissa as well as

the ordinate are in these cases plotted on a logarithmic scale. In this type of plot, because of Eqs. (5.18

and 5.19), it is possible to draw diagonal scales for the displacement sloping 135 � with the abscissa,

and for the acceleration 45 �, so that we can from a single plot read values of spectral acceleration,

spectral velocity, and spectral displacements.
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To demonstrate the construction of a tripartite diagram such as the one of Fig. 5.8, we write

Eq. (5.19) in terms of the natural frequency f in cycles per second (cps) and take the logarithm of the

terms, so that

Sv ¼ ωSD ¼ 2πfSD

logSv ¼ logf þ log 2πSDð Þ
ð5:20Þ

For constant values of SD, Eq. (5.20) is the equation of a straight line of log Sv versus log fwith a slope

of 45 �. Analogously, from Eq. (5.19)

Fig. 5.6 Acceleration spectra for elastic system (from Design of Multistory Reinforced Building for Earthquake

Motions by J. A. Blum, N. M. Newmark, and L. H. Corning, Portland Cement Association 1961)
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Sv ¼
Sa

ω
¼ Sa

2πf

logSv ¼ �logf þ log
Sa

2π

ð5:21Þ

For a constant value of Sa, Eq. (5.21) is the equation of a straight line of log Sv versus log fwith a slope of

135 �.
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Fig. 5.7 Ground acceleration record for El Centro, California earthquake of May 18, 1940 north–south component

Fig. 5.8 Response spectra for elastic system for the 1940 El Centro earthquake (from Blume et al. 1961)

122 5 Response Spectra



5.4 Response Spectra for Elastic Design

In general, response spectral charts are prepared by calculating the response to a specified excitation of

single-degree-of-freedom systems with various amounts of damping. Numerical integration with short

time intervals are applied to calculate the response of the system. The step-by-step process is continued

until the total earthquake record has been completed. The greatest value of the function of interest is

recorded and becomes the maximum response of the system to that excitation. Changing the parameters

of the system to change the natural frequency, the process is continued and a new maximum response is

recorded. This process is continued until all frequencies of interest have been covered and the results

plotted. Since no two earthquakes are alike, this process must be repeated for all earthquakes of interest.

As already stated, until the San Fernando, California earthquake of 1971, there were few recorded

strong earthquake motions because there were few accelerometers emplaced to measure them. The El

Centro, California earthquake of 1940 was the most severe earthquake recorded and was used as the

basis for much analytical work. Since that year, however, many other strong earthquakes have been

recorded. Maximum values of ground motion of about 0.32 g for the El Centro earthquake to values of

more than 0.5 g for other earthquakes have been recorded. It can be expected that even larger values

will be recorded as more instruments are placed closer to the epicenters of earthquakes.

Earthquakes consist of a series of essentially random ground motions. Usually the north-south,

east-west, and vertical components of the ground acceleration are measured. Currently, no accurate

method is available to predict the particular motion that a site can be expected to experience in future

earthquakes. Thus it is reasonable to use a design response spectrum which incorporates the spectra

for several earthquakes and which represents a kind of “average” response spectrum for design. Such

a design response spectrum is shown in Fig. 5.9 normalized for a maximum ground acceleration of

Fig. 5.9 Basic design spectra normalized to peak ground acceleration of 1.0 g. (From Newark and Hall 1973)
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1.0 g. This figure shows the design maximum ground motion and a series of response spectral plots

corresponding to various values of the damping ratio in the system.

Details for the construction of the basic spectrum for design purposes are given by Newmark and

Hall (1973), who have shown that smooth response spectra of idealized ground motion may be

obtained by amplifying the ground motion by factors depending on the damping in the system . In

general, for any given site, estimates might be made of the expected maximum ground acceleration,

maximum ground velocity, and maximum ground displacement. The lines representing these maxi-

mum values are drawn on a tripartite logarithmic paper of which Fig. 5.10 is an example. The lines in

this figure are shown for a maximum ground acceleration of 1.0 g, a velocity of 48 in/sec, and a

displacement of 36 in. These values correspond to motions that are more intense than those generally

expected in seismic design. They are, however, of proportional magnitudes that are generally

acceptable in practice.
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These maximum values normalized for a ground acceleration of the ground of 1 g are simply

scaled down for other than 1 g maximum acceleration of the ground. Recommended amplification

factors to obtain the response spectra from maximum values of the ground motion are given in

Table 5.1. For each value of the damping coefficient, the amplified displacement lines are drawn at

the left, the amplified velocities at the top, and the amplified acceleration at the right of the chart. At a

frequency of approximately 6 cps (Fig. 5.9), the amplified acceleration region line intersects a line

sloping down toward the maximum ground acceleration value at a frequency of about 30 cps for a

system with 2% damping. The lines corresponding to other values of damping are drawn parallel to

the 2% damping line as shown in Fig. 5.9.

The amplification factors in Table 5.1 were developed on the basis of earthquake records available

at the time. As new records of more recent earthquakes become available, these amplification factors

have been recalculated. Table 5.2 shows the results of a statistical study based on a selection of

10 strong motion earthquakes. The table gives recommended amplification factors as well as the

corresponding standard deviation values obtained in the study. The relatively large values shown in

Table 5.2 for the standard deviation of the amplification factors provides further evidence on the

uncertainties surrounding earthquake prediction for structural analysis. The response spectra for

designs presented in Fig. 5.9 has been constructed using the amplification factors shown in Table 5.1.

Illustrative Example 5.1

A structure modeled as a single-degree-of-freedom system has a natural period, T ¼ 1 sec. Use the

response spectral method to determine the maximum absolute acceleration, the maximum relative

displacement, and the maximum relative pseudovelocity for: (a) a foundation motion equal to the N-S

component of the El Centro earthquake of 1940, and (b) the design spectra earthquake with a

maximum ground acceleration equal to 0.32 g. Assume 10% of the critical damping.

Solution:

(a) From the response spectra in Fig. 5.8 with f ¼ 1/T ¼ 1.0 cps, corresponding to the curve labeled

ξ ¼ 0.10, we read on the three scales the following values:

Table 5.1 Design spectrum amplification factors (Newmark and Hall, 1973)

Amplification factors

Percent damping Displacement Velocity Acceleration

0 2.5 4.0 6.4

0.5 2.2 3.6 5.8

1 2.0 3.2 5.2

2 1.8 2.8 4.3

5 1.4 1.9 2.6

7 1.2 1.5 1.9

10 1.1 1.3 1.5

20 1.0 1.1 1.2

Table 5.2 Spectral amplification factors and standard deviation valuesa

Displacement Velocity Acceleration

Percent damping Factor Standard deviation Factor Standard deviation Factor Standard deviation

2 1.691 0.828 2.032 0.853 3.075 0.738

5 1.465 0.630 1.552 0.605 2.281 0.502

10 1.234 0.481 1.201 0.432 1.784 0.321
aNewmark, N. M., and Riddell, R., Inelastic Spectra for Seismic Design: Seventh World Earthquake Conference,

Istanbul, Turkey. Vol. 4, pp. 129–136, 1980
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SD ¼ 3:3 in:

Sv ¼ 18:5 in= sec

Sa ¼ 0:30g

(b) From the basic design spectra in Fig. 5.9 with frequency f ¼ 1 cps and 10% critical damping, we

obtain after scaling for 0.32 g maximum ground acceleration, the following results:

SD ¼ 9:5� 0:32 ¼ 3:04 in

Sv ¼ 60� 0:32 ¼ 19:2 in= sec

Sa ¼ 0:95� 0:32 ¼ 0:304 g

5.5 Influence of Local Soil Conditions

Before the San Fernando earthquake of 1971, earthquake accelerograms were limited in number, and

the majority had been recorded on alluvium. Therefore, it is only natural that the design spectra based

on those data, such as those suggested by Housner (1959) and Newmark-Hall (1973), mainly

represent alluvial sites. Since 1971, the wealth of information obtained from earthquakes worldwide

and from subsequent studies have shown the very significant effect that the local site conditions have

on spectral shapes.

An example of a conservative design spectrum is shown in Fig. 5.11. This figure shows four

spectral acceleration curves representing the average of normalized spectral values corresponding to

several sets of earthquake records registered on four types of soils. The dashed line through the

points A, B, C, and D defines a possible conservative design spectrum for rock and stiff soil sites.

Normalized design spectral shapes, as those includes in the recent edition of the Uniform Building

Code (ICBO, 1994) (Fig. 5.12) are based on such simplifications. The UBC spectral shapes become

Fig. 5.11 Average acceleration spectra for different soil conditions (After Seed et al. 1976; from Seed and Idriss 1982)
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trilinear, when drawn on a tripartite logarithmic chart, similar in shape to a Newmark-Hall spectrum.

UBC spectral shapes (ICBO, 1994) can be expressed1 by the following rather simple formulas:

Soil Type I (Rock and Stiff Soils):

SA ¼ 1þ 10T for 0 < T � 0:15 sec

SA ¼ 2:5 for 0:15 < T � 0:39 sec

SA ¼ 0:975=T for T > 0:39 sec

ð5:22Þ

Soil Type II (Deep Cohesionless or Stiff Clay Soils);

SA ¼ 1þ 10T for 0 < T � 0:15 sec

SA ¼ 2:5 for 0:15 < T � 0:585 sec

SA ¼ 1:463=T for T > 0:585 sec

ð5:23Þ

Soil Type III (Soft to Medium Clays and Sands):

SA ¼ 1þ 75T for 0 < T � 0:2 sec

SA ¼ 2:5 for 0:2 < T � 0:915 sec

SA ¼ 2:288=T for T > 0:915 sec

ð5:24Þ

where SA in the spectral acceleration for 5% damping normalized to a peak ground acceleration of

one g, and T is the fundamental period of the building. It should be noted that values obtained from the

UBC spectral chart of Fig. 5.12, or alternatively, calculated with Eqs. (5.22, 5.23, and 5.24) are too

conservative. In actual design practice, these values are scaled down by the structural factor R

(Chap. 24) having values between 4 and 12, depending on the type of structural resisting system.
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Fig. 5.12 Normalized design spectra shapes contained in uniform building code. (ICBO 1994)

1 From Recommended Lateral Force Requirement and Tentative Commentary SEAOL-90, P. 36-C.
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5.6 Response Spectra for Inelastic Systems

For certain types of extreme events such as nuclear blast explosions or very strong motion

earthquakes, it is sometimes necessary to design structures to withstand strains beyond the elastic

limit For example, in seismic design for an earthquake of moderate intensity, it is reasonable to

assume elastic behavior for a well-designed and well-constructed structure. However, for very

strong motions, this is not a realistic assumption even for a well-designed structure. Although

structures can be designed to resist severe earthquakes, it is not feasible economically to design

buildings to elastically withstand earthquakes of the greatest foreseeable intensity. In order to

design structures for strain levels beyond the linear range, the response spectrum has been extended

to include the inelastic range (Newmark and Hall 1973). Generally, the elastoplastic relation

between force and displacement is assumed in structural dynamics. Such a force-displacement

relationship is shown in Fig. 5.13b. Because of the assumption of elastoplastic behavior, if the force

is removed prior to the occurrence of yielding, the material will return along its loading line to the

origin. However, when yielding occurs at displacement ut, the restoring force remains constant at a

magnitude Rt. If the displacement is not reversed, the displacement may reach a maximum value

umax. If, however, the displacement is reversed, the elastic recovery follows along a line parallel to

the initial line and the recovery proceeds elastically until a negative yield value Rc is reached in the

opposite direction.

Fig. 5.13 Force-displacement relationship for an elastoplastic single-degree-of-freedom system
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The preparation of response spectra for such an inelastic system is more complex than that for

elastic systems. However, response spectra have been prepared for several different earthquake

motions. These spectra are usually plotted as a series of curves corresponding to definite values of

the ductility ratio μ. The ductility ratio μ is defined as the ratio of the maximum displacement umax of

the structure in the inelastic range to the displacement corresponding to the yield point uy, that is

μ ¼ umax

uy
ð5:25Þ

The response spectra for an undamped single-degree-of-freedom system subjected to a support

motion equal to the El Centro 1940 earthquake is shown in Fig. 5.14 for several values of the ductility

ratio. The tripartite logarithmic scales used to plot these spectra give simultaneously for any single-

degree-of-freedom system of natural period T and specified ductility ratio μ, the spectral values of

displacement, velocity, and acceleration. Similarly, in Fig. 5.15 are shown the response spectra for an

elastoplastic system with 10% of critical damping. The spectral velocity and the spectral acceleration

are read directly from the plots in Figs. 5.14 and 5.15, whereas the values obtained for the spectral

displacement must be multiplied by the ductility ratio in order to obtain the correct value for the

spectral displacement.

Fig. 5.14 Response spectra for undamped elastoplastic system for the 1940 El Centro earthquake. (From Blume et al.

1961)
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The concept of ductility ratio has been associated mainly with steel structures. These structures

have a load-deflection curve that is often approximated as the elastoplastic curve shown in Fig. 5.13b.

For other types of structures, such as reinforced concrete structures or masonry shear walls, still,

conveniently, the load-deflection curve is modeled as the elastoplastic curve. Although for steel

structures, ductility factors as high as 6 are often used in collapse-level earthquake design, lower

values for the ductility ratio are applicable to reinforced concrete or masonry shear walls. The

selection of ductility values for seismic design must also be based on the design objectives and the

loading criteria as well as the risk level acceptable for the structure as it relates to its use.

For reinforced concrete structures or masonry walls, a ductility factor of 1.0–1.5 seems appropriate

for earthquake design where the objective is to limit damage. In other words, the objective of limit

damage requires that structural members should be designed to undergo little if any yielding. When

the design objective is to prevent collapse of the structure, ductilities of 2–3 are appropriate in

this case.

Fig. 5.15 Response spectra for elastoplastic system with 10% critical damping for the 1940 El Centro earthquake.

(From Blume et al. 1961)
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5.7 Response Spectra for Inelastic Design

In the preceding section of this chapter, we discussed the procedure for calculating the seismic

response spectra for elastic design. Figure 5.9 shows the elastic design spectra for several values of

the damping ratio. The same procedure of constructing of a basic response spectrum that consolidates

the “average” effect of several earthquake records may also be applied to design in the inelastic range.

The spectra for elastoplastic systems have the same appearance as the spectra for elastic systems, but

the curves are displaced downward by an amount that is related to the ductility ratio μ. Figure 5.16

shows the construction of a typical design spectrum currently recommended (Newmark and Hall

1973) for use when inelastic action is anticipated.

The elastic spectrum for design from Fig. 5.9 corresponding to the desired damping ratio is copied

in a tripartite logarithmic paper as shown in Fig. 5.16 for the spectra corresponding to 5% damping.

Then lines reduced by the specified ductility ratio are drawn parallel to elastic spectral lines in the

displacement region (the left region) and in the velocity region (the central region). However, in the

acceleration region (the right region) the recommended reducing factor is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ� 1
p

. This last line is

extended up to a frequency of about 6 cps (point P0 in Fig. 5.16). Then the inelastic design spectrum is

Fig. 5.16 Inelastic design spectrum normalized to peak ground acceleration of 1.0 g for 5% damping and ductility ratio

μ ¼ 2.0. (NOTE: Chart gives directly Sv and Sa; however, displacement values obtained from the chart should be

multiplied by μ to obtain SD)
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completed by drawing a line from this last point P0 to point Q, where the descending line from point

P of the elastic spectrum intersects the line of constant acceleration as shown in Fig. 5.16.

The development of the reduction factors in the displacement and velocity regions is explained

with the aid of Fig. 5.17a. This figure shows the force-displacement curves for elastic and for

elastoplastic behavior. At equal maximum displacement umax for the two curves, we obtain from

Fig. 5.17a the following relationship:

μ ¼ umax

uy
¼ FE

Fy

or

Fy ¼
FE

μ
ð5:26Þ

where FE is the force corresponding to the maximum displacement umax in the elastic curve and Fy is

the force at the yield condition Eq. (5.26) then shows that the force and consequently the acceleration

in the elastoplastic system is equal to the corresponding value in the elastic system reduced by the

ductility ratio. Therefore, the spectral acceleration Sa for elastoplastic behavior is related to the elastic

spectral acceleration SaE by

Sa ¼
SaE

μ
ð5:27Þ

However, in the acceleration region of the response spectrum, a ductility reduction factor μ does not

result in close agreement with experimental data as does the recommended reduction factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ� 1
p

.

This factor may be rationally obtained by establishing the equivalence of the energy between the

elastic and the inelastic system. In reference to Fig. 5.17b this equivalence is established by equating

the area under elastic curve “Oab” with the area under the inelastic curve “Ocde.” Namely,

FEuE

2
¼ Fyuy

2
þ Fy uμ � uy

� �

ð5:28Þ

where FE and Fy are the elastic and inelastic forces corresponding respectively to the maximum

elastic displacement uE and to the maximum inelastic displacement uμ and where uy is the yield

displacement.

The substitution of uE ¼ FE/k, uy ¼ Fy/k, and uμ ¼ μ uy into Eq. 5.28 gives

Fig. 5.17 Elastic and inelastic force-displacement curves. (a) Displacement and velocity regions. (b) Acceleration

region
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F2
E

2k
¼

F2
y

2k
2μ� 1ð Þ

or

FE

Fy

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ� 1
p

Thus,

Fy ¼
FE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ� 1
p

and, consequently

Sa ¼
SaE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ� 1
p

Thus, the inelastic spectral acceleration in the acceleration region is obtained by reducing the elastic

spectral by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ� 1
p

.

The inelastic response spectrum thus constructed and shown in Fig. 5.16 gives directly the values

for the spectral acceleration Sa and spectral velocity Sv. However, the values read from this chart in a

displacement scale must be multiplied by the ductility ratio μ to obtain the spectral displacement SD.

Inelastic response spectral charts for design developed by the procedure explained are presented in
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Fig. 5.18 Undamped inelastic design spectra normalized to peak ground acceleration of 1.0 g. (Spectral values Sa for

acceleration and Sv for velocity are obtained directly from the graph; however, values of SD for spectral displacement

should be amplified by the ductility ratio μ)
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Figs. 5.18, 5.19, and 5.20 correspondingly to damping factors ξ ¼ 0, 5%, and 10% and for ductility

ratios μ ¼ 1, 2, 5, and 10.

Illustrative Example 5.2

Calculate the response of the single-degree-of-freedom system of Example 5.1, assuming that the

structure is designed to withstand seismic motions with an elastoplastic behavior having a ductility

ratio μ. ¼ 4.0. Assume damping equal to 10% of the critical damping. (a) Use the response spectra of

the El Centro earthquake and (b) Use the design response spectra.

Solution:

(a) From the response spectrum corresponding to 10% of the critical damping (Fig. 5.15), we read

for T ¼ 1 sec and the curve labeled μ ¼ 4.0

SD ¼ 1:0� 4:0 ¼ 4:0 in, Sv ¼ 6:2 in= sec and Sa ¼ 0:1 g:

The factor 4.0 is required in the calculation of SD since as previously noted the spectra plotted in

Fig. 5.15 are correct for acceleration and for pseudovelocity, but for displacements it is

necessary to amplify the values read from the chart by the ductility ratio.
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(b) Using the inelastic design spectra with 10% damping for design in Fig. 5.20, corresponding to

1 cps, we obtain the following maximum values for the response:

SD ¼ 3:0� 0:32� 4:0 ¼ 3:84 in

Sv ¼ 15:6� 0:32 ¼ 5:00 in= sec
Sa ¼ 0:3� 0:32 ¼ 0:096 g

As it can be seen, these spectral values based on the design spectrumare somewhat different than those

obtained from the response spectrum of the El Centro earthquake of 1940. Also, if we compare these

results for the elastoplastic behavior with the results in Example 5.1 for the elastic structure, we observe

that themaximum relative displacement has essentially the samemagnitudewhereas the acceleration and

the relative pseudovelocity are appreciably less. This observation is in general true for any structurewhen

inelastic response is compared with the response based on elastic behavior.

5.8 Seismic Response Spectra Using MATLAB

The computer program described in this chapter serves to calculate elastic response spectra in terms

of spectral displacement (maximum relative displacement), spectral velocity (maximum relative

pseudovelocity), and spectral acceleration (maximum absolute acceleration) for any prescribed

1000

10
00

50
0

20
0

10
0

50

20

5

2

1

0.
5

0.
2

0.
1

0.
05

0.
02

0.
01

0.
00

5

1000

500

200

100

50

20

1010

5

2

1

0.5

0.2

0.1

0.05

0.02
0.01

0.005

500

200

100

50

V
e
lo

c
it
y
, 
in

./
s
e
c

D
isplacem

ent, in. Acc
el
er

at
io
n,

g

20

10

5

2

1

0.1 0.2 0.5 1 2 5

Frequency, cps

10 20 50 100

μ = 1

μ = 2

μ = 5

μ = 10

Fig. 5.20 Inelastic design spectra normalized to peak ground acceleration of 1.0 g’ for 10% damping. (Spectral values

Sa for acceleration and Sv for velocity are directly obtained from the graph; however, values of SD for spectral

displacement should be amplified by the ductility ratio μ)
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time-acceleration-seismic excitation. The response is calculated in the specified range of frequencies

or period using the Newmark beta’s method in Chap. 6.

clear
close all
clc

%%%%-GIVEN VALUES-%%%%
load elcentro_NS.dat.txt %elcentro_NS.dat_Table5_3.txt % ;
t = elcentro_NS_dat(:,1);   %elcentro_NS_dat_Table5_3(:,1);
Ag = elcentro_NS_dat(:,2);  %elcentro_NS_dat_Table5_3(:,2);
g = 386;                    %Acceleration of gravity
Dt = t(2)-t(1);           %Time interval
m=1;                        %Mass (unitless)

T(1,1)=0.00;                %T=0
tt= length(t);              %Number of row @ t

xi = 0.1;                   %Damping ratio
endp =25;                   %Last value of T in x axes

%%%-ESTIMATION-%%%

for j=1:round(endp/Dt)  

omega(j,1)=2*pi/T(j);
k =omega(j)^2*m;            %Stiffness
c=2*m*omega(j)*xi;          %Damping coefficient

%%%%Linear acceleration method (Newmark beta method[Ch.6])
gamma =1/2;                 %Parameter gamma
beta = 1/6;                 %Parameter beta  

u(1)=0;                     %initial condition; Displ.
v(1)=0;                     %initial condition; Velocity
a(1)=0;                     %initial condition; Acceleration      

kbar = k +gamma*c/(beta*Dt)+m/(beta*Dt*Dt);     %Eq.6.45 
A = m/(beta*Dt)+gamma*c/beta;                   %A in DFbar = DF + A*v0+B*a0 (Eq. 6.46) 
B = m/(2*beta)+Dt*c*((0.5*gamma/beta)-1);       %B in DFbar = DF + A*v0+B*a0 (Eq. 6.46) 

u0=u;                       %setting initial values for loop(u)
v0=v;                       %setting initial values for loop(v)
a0=a;                       %setting initial values for loop(a)

%%%% Loop over each time step

for i = 1:(tt-1)
DF =-g.*(Ag(i+1)-Ag(i));

[t,u,v,a] = Newmark(t, A, B, DF, Dt, kbar, u0, v0, a0, gamma, beta);

u_t1(:,i) = u(:,1)';
v_t1(:,i) = v(:,1)';
a_t1(:,i) = a(:,1)';

%%%Setting initial values for next loop (displacement, velopcity,
%%%acceleration and time)
u0 = u;                     
v0 = v;                     
a0 = a;                     
t=t;                        
end

%%%Estimation maximum values at the given period
umax = max(abs(u_t1));      %Maximum displacement
vmax = max(abs(v_t1));      %Maximum velocity
amax = max(abs(a_t1));      %Maximum acceleration 

136 5 Response Spectra



Spv(j,1)=Sd(j)*omega(j);            %Spectral velocity  
Spa(j,1)=Sd(j)*(omega(j))^2/g*g;    %Spectral acceleration 
T(j+1,1)=T(j,1)+Dt;
end

Sd(1:2,1)=0; Spv(1:2,1)=0;Spa(1:2,1)=max(abs(Ag))/g*g;
Ag(end)=[];
T(end)=[];

f = 1./T;

figure(1)
subplot(3,1,1),
plot (T,Spa');
title('(a) Spectral acceleration (\xi=0.1)')
%Create xlabel
xlabel ('Period(sec)');
%Create ylabel
ylabel ('S_a');

subplot(3,1,2),
plot (T, Spv');
title('(b) Spectral velocity (\xi=0.1)')
%Create xlabel
xlabel ('Period(sec)');
%Create ylabel
ylabel ('S_v');

subplot(3,1,3),
plot (T, Sd');
title('(c) Spectral displacement (\xi=0.1)')
%Create xlabel
xlabel ('Period(sec)');
%Create ylabel
ylabel ('S_d');

%%%Estimation  
Sd(j,1)=umax;                       %Spectral displacement            

The function of Newmark beta method in MATLAB is presented below.

function [t,u,v,a] = Newmark(t, A, B, DF, Dt, kbar, u0, v0, a0, gamma, beta)

DFbar = DF + A*v0+B*a0;                                             %Eq.6.46 

Du = DFbar/kbar;                                                    %Eq.6.44

Dudot = gamma*Du/(beta*Dt)-gamma*v0/beta+ Dt*a0*(1-0.5*gamma/beta); %Eq.6.43

Dudotdot = Du/(beta*Dt*Dt)-v0/(beta*Dt)-a0/(2*beta);                %Eq.6.42

u=u0+Du;

v=v0+Dudot;

a=a0+Dudotdot;

t=t+Dt;

Illustrative Example 5.3

Use MATLAB program to develop the response spectra for elastic systems subjected to the first

10 sec of the 1940 El Centro earthquake. Assume 10% damping.

The digitized values corresponding to the accelerations recorded for the first 10 sec of the El

Centro earthquake are given in Table 5.3.
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Table 5.3 Digitized Values of the Acceleration Recorded for the First 10 sec of the N-S component for the El Centro

Earthquake of 1940

Time (sec) Acc. (acc. g’) Time (sec)

Acc.

(acc. g’) Time (sec)

Acc.

(acc. g’) Time (sec)

Acc.

(acc. g’)

0.0000 0.0108 0.0420 0.0020 0.0970 0.0159 0.1610 �0.0001

0.2210 0.0189 0.2630 0.0001 0.2910 0.0059 0.3320 �0.0012

0.3740 0.0200 0.4290 �0.0237 0.4710 0.0076 0.5810 0.0425

0.6230 0.0094 0.6650 0.0138 0.7200 �0.0088 0.7400 �0.0256

0.7890 �0.0387 0.8290 �0.0568 0.8720 �0.0232 0.9020 �0.0343

0.9410 �0.0402 0.9610 �0.0603 0.9970 �0.0789 1.0660 �0.0666

1.0760 �0.0381 1.0940 �0.0429 1.1680 0.0897 1.3150 �0.1696

1.3840 �0.0828 1.4120 �0.0828 1.4400 �0.0945 1.4810 �0.0885

1.5090 �0.1080 1.5370 �0.1280 1.6280 0.1144 1.7030 0.2355

1.8550 0.1428 1.8800 0.1777 1.9240 �0.2610 2.0070 �0.3194

2.2150 0.2952 2.2700 0.2634 2.3200 �0.2984 2.3950 0.0054

2.4500 0.2865 2.5190 �0.0469 2.5750 0.1516 2.6520 0.2077

2.7080 0.1087 2.7690 �0.0325 2.8930 0.1033 2.9760 �0.0803

3.0680 0.0520 3.1290 �0.1547 3.2120 0.0065 3.2530 �0.2060

3.3860 0.1927 3.4190 �0.0937 3.5300 0.1708 3.5990 �0.0359

3.6680 0.0365 3.7380 �0.0736 3.8350 0.0311 3.9040 �0.1833

4.0140 0.0227 4.0560 �0.0435 4.1060 0.0216 4.2220 �0.1972

4.3140 �0.1762 4.4160 0.1460 4.4710 �0.0047 4.6180 0.2572

4.6650 �0.2045 4.7560 0.0608 4.8310 �0.2733 4.9700 0.1779

5.0390 0.0301 5.1080 0.2183 5.1990 0.0267 5.2330 0.1252

5.3020 0.1290 5.3300 0.1089 5.3430 �0.0239 5.4540 0.1723

5.5100 �0.1021 5.6060 0.0141 5.6900 �0.1949 5.7730 �0.2420

5.8000 �0.0050 5.8090 �0.0275 5.8690 �0.0573 5.8830 �0.0327

5.9250 0.0216 5.9800 0.0108 6.0130 0.0235 6.0850 �0.0665

6.1320 0.0014 6.1740 0.0493 6.1880 0.0149 6.1980 �0.0200

6.2290 �0.0381 6.2790 0.0207 6.3260 �0.0058 6.3680 �0.0603

6.3820 �0.0162 6.4090 0.0200 6.4590 �0.1760 6.4780 �0.0033

6.5200 0.0043 6.5340 �0.0040 6.5620 �0.0099 6.5750 �0.0017

6.6030 �0.0170 6.6450 0.0373 6.6860 0.0457 6.7140 0.0385

6.7280 0.0009 6.7490 �0.0288 6.7690 0.0016 6.8110 0.0113

6.8520 0.0022 6.9080 0.0092 6.9910 �0.0996 7.0740 0.0360

7.1210 0.0078 7.1430 �0.0277 7.1490 0.0026 7.1710 0.0272

7.2260 0.0576 7.2950 �0.0492 7.3700 0.0297 7.4060 0.0109

7.4250 0.0186 7.4610 �0.2530 7.5250 �0.0347 7.5720 0.0036

7.6000 �0.0628 7.6410 �0.0280 7.6690 �0.0196 7.6910 0.0068

7.7520 �0.0054 7.7940 �0.0603 7.8350 �0.0357 7.8770 �0.0716

7.9600 �0.0140 7.9870 �0.0056 8.0010 0.0222 8.0700 0.0468

8.1260 0.0260 8.1660 �0.0335 8.1950 �0.0128 8.2230 0.0661

8.2780 0.0305 8.3340 0.0246 8.4030 0.0347 8.4580 �0.0369

8.5330 �0.0344 8.5960 �0.0104 8.6380 �0.0260 8.7350 0.1534

8.8180 �0.0028 8.8600 0.0233 8.8820 �0.0261 8.9150 �0.0022

8.9560 �0.1849 9.0530 0.1260 9.0950 0.0320 9.1230 0.0955

9.1500 0.1246 9.2530 �0.0328 9.2890 �0.0451 9.4270 0.1301

9.4410 �0.1657 9.5100 0.0419 9.6350 �0.0936 9.7040 0.0816

9.8150 �0.0881 9.8980 0.0064 9.9390 �0.0006 9.9950 0.0586

10.0200 �0.0713 10.0500 �0.0448 10.0800 �0.0221 10.1000 0.0093

10.1500 0.0024 10.1900 0.0510
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5.9 Summary

Response spectra are plots that give the maximum response for a single-degree-of-freedom system

subjected to a specified excitation. The construction of these plots requires the solution of single-

degree-of-freedom systems for a sequence of values of the natural frequency and of the damping ratio

in the range of interest. Every solution provides only one point (the maximum value) of the response

spectrum. In solving the single-degree-of-freedom systems, use is made of Duhamel’s integral or of

the direct method (Chap. 4) for elastic systems and of the step-by-step linear acceleration method for

inelastic behavior (Chap. 6). Since a large number of systems must be analyzed to fully plot each

response spectrum, the task is lengthy and time consuming even with the use of a computer. However,

once these curves are constructed and are available for the excitation of interest, the analysis for the

design of structures subjected to dynamic loading is reduced to a simple calculation of the natural

frequency of the system and the use of the response spectrum.

In the chapters of Part II dealing with structures that are modeled as systems with many degrees of

freedom, it will be shown that the dynamic analysis of a system with n degrees of freedom can be

transformed to the problem of solving n systems in which each one is a single-degree-of-freedom

system. Consequently, this transformation extends the usefulness of response spectra for single-

degree-of-freedom systems to the solution of systems of any number of degrees of freedom.

0 5 10 15 20 25
0

100

200

300
(a) Spectral acceleration (=0.1)

Period(sec)

S
a

0 5 10 15 20 25
0

10

20

30
(b) Spectral velocity (=0.1)

Period(sec)

S
v

0 5 10 15 20 25
0

10

20

30
(c) Spectral displacement (=0.1)

Period(sec)

S
d

Fig. 5.21 Spectrum chart (a) Sa, (b) Sv, (c) Sd
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The reader should thus realize the full importance of a thorough understanding and mastery of the

concepts and methods of solutions for single-degree-of-freedom systems, since these same methods

are also applicable to systems of many degrees of freedom after the problem has been transformed to

independent single-degree-of-freedom systems.

5.10 Problems

Problem 5.1

The steel frame shown in Fig. P5.1 is subjected to horizontal force at the girder level of (1000 sin

10t lb) for a time duration of half a cycle of the forcing sine function. Use the appropriate response

spectral chart to obtain the maximum displacement. Neglect damping.

Problem 5.2

Determine the maximum stresses in the columns of the frame of Problem 5.1.

Problem 5.3

Consider the frame shown in Fig. P5.3a subjected to a foundation excitation produced by a half cycle

of the function ag ¼ 200 sin 10t in/sec2 as shown in Fig. P5.3b. Determine the maximum horizontal

displacement of the girder relative to the motion of the foundation. Neglect damping.

F = 1000 sin 10t (t < �/10)
0

12 Kips

W6 × 20

10′

(t > �/10)

Fig. P5.1

Fig. P5.3
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Problem 5.4

Determine the maximum stress in the columns of the frame of Problem 5.3.

Problem 5.5

The frame shown in Fig. P5.1 is subjected to the excitation produced by the El Centro earthquake of

1940. Assume 10% damping and from the appropriate chart determine the spectral values for

displacement, velocity, and acceleration. Assume elastic behavior.

Problem 5.6

Repeat Problem 5.5 using the basic design spectra given in Fig. 5.9 to determine the spectral values

for acceleration, velocity, and displacement. (Scale down spectral values by factor 0.32, the estimated

peak ground acceleration).

Problem 5.7

A structure modeled as the spring-mass system shown in Fig. P5.7 is assumed to be subjected to a

support motion produced by the El Centro earthquake of 1940. Assuming elastic behavior and using

the appropriate response spectral chart find the maximum relative displacement between the mass and

the support. Also compute the maximum force acting on the spring. Neglect damping.

Problem 5.8

Repeat Problem 5.7 assuming that the system has 10% of the critical damping.

Problem 5.9

Determine the force transmitted to the foundation for the system analyzed in Problem 5.8.

Problem 5.10

Consider the spring-mass system of Problem 5.7 and assume that the spring element follows, an

elastoplastic behavior with a maximum value for the restoring force in tension or in compression is

equal to half the value of the elastic maximum force in the spring calculated in Problem 5.7.

Determine the spectral value for the displacement. Neglect damping. (Hint: Start by assuming

μ ¼ 2, find spectral value SD, calculate μ and and use this calculated value of μ to determine new

spectral values, etc.)

Problem 5.11

Repeat Problem 5.10 for 10% damping.

Fig. P5.7
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Problem 5.12

A structure modeled as a single-degree-of-freedom system has a natural period T ¼ 0.5 sec. Use the

response spectral method to determine in the elastic range the maximum absolute acceleration, the

maximum relative displacement, and the maximum pseudovelocity for: (a) a foundation motion equal

to the El Centro earthquake of 1940 and (b) the design spectrum with a maximum ground acceleration

equal to 0.3 g. Neglect damping.

Problem 5.13

Solve Problem 5.12 assuming elastoplastic behavior of the system with ductility ratio μ ¼ 4.

Problem 5.14

Use Program 6 to develop a table having the spectral values for displacements, velocities, and

accelerations in the range of frequency from 0.10 cps to 1.0 cps. The excitation is a constant

acceleration of magnitude 0.01 g applied for 10 sec. Neglect damping.

Problem 5.15

Use Program 6 to develop the response spectra for elastic systems subjected to the first 10 s of the

1940 El Centro earthquake. Neglect damping. The digitized values corresponding to the accelerations

recorded for the first 10 sec of the El Centro earthquake are given in Table 5.3.

Problem 5.16

Repeat Problem 5.15 corresponding to a system with 10% of the critical damping.
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Nonlinear Structural Response 6

In discussing the dynamic behavior of single-degree-of-freedom systems, we assumed that in the

model representing the structure, the restoring force was proportional to the displacement. We also

assumed the dissipation of energy through a viscous damping mechanism in which the damping force

was proportional to the velocity. In addition, the mass in the model was always considered to be

unchanging with time. As a consequence of these assumptions, the equation of motion for such a

system resulted in a linear, second order ordinary differential equation with constant coefficients,

namely,

m€uþ c _u þ ku ¼ F tð Þ ð6:1Þ

In the previous chapters it was illustrated that for particular forcing functions such as harmonic

functions, it was relatively simple to solve this Eq. (6.1) and that a general solution always existed in

terms of Duhamel’s integral. Equation (6.1) thus represents the dynamic behavior of many structures

modeled as a single-degree-of-freedom system. There are, however, physical situations for which this

linear model does not adequately represent the dynamic characteristics of the structure. The analysis

in such cases requires the introduction of a model in which the spring force or the damping force may

not remain proportional, respectively, to the displacement or to the velocity. Consequently, the

resulting equation of motion will no longer be linear and its mathematical solution, in general, will

have a much greater complexity, often requiring a numerical procedure for its integration.

6.1 Nonlinear Single-Degree-of-Freedom Model

Figure 6.1a shows the model for a single-degree-of-freedom system and in Fig. 6.1b the

corresponding free body diagram. The dynamic equilibrium in the system is established by equating

to zero the sum of the inertial force FI(t), the damping force FD(t) the spring force Fs(t), and the

external force F(t). Hence, at time t, the equilibrium of these forces is expressed as

FI tð Þ þ FD tð Þ þ Fs tð Þ ¼ F tð Þ ð6:2Þ

Considering the case that in this equation, the mass is constant,FI tð Þ ¼ m€u; that the damping force

is proportional to the velocity with the damping coefficient also constant,FD tð Þ ¼ c _u;and the resisting

force or spring force is a function of the displacement, Fs(t)¼ Fs(u), we may then express Eq. (6.2) as
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m€uþ c _u þ Fs uð Þ ¼ F tð Þ ð6:3Þ

Hence, at time ti, using the notation ui ¼ u(ti), _u i ¼ _u tið Þ and €ui ¼ €u tið Þ,

m€ui þ c _u i þ Fs uið Þ ¼ F tið Þ ð6:4Þ

and at shoet time later, ti + 1 ¼ ti + Δt

m€uiþ1 þ c _u iþ1 þ Fs uiþ1ð Þ ¼ F tiþ1ð Þ ð6:5Þ

Subtracting Eq. (6.4) from Eq. (6.5) results in the difference equation of motion in terms of

increments, namely

mΔ€ui þ cΔ _u i þ ΔFs uið Þ ¼ ΔFi ð6:6Þ

Furthermore, we assume that the incremental resisting or spring force is proportional to the incre-

mental displacement, that is ΔFs (ui) ¼ kiΔui,

mΔ€ui þ cΔ _u i þ kiΔui ¼ ΔFi ð6:7Þ

The coefficient ki, is defined as the current evaluation for the resisting force per unit displacement

(stiffness coefficient) which may be taken as the slope of the tangent of the force-displacement

function, at the initiation of the time step Δt for the interval Δt or as the slope of the secant line as

shown in Fig. 6.2 for the plot of the resisting force Fs (u). The value of the coefficient ki, is calculated

at a displacement corresponding to time t, and assumed to remain constant during the increment of

time Δt. Since, in general, this coefficient does not remain constant during that time increment,

Eq. (6.7) is an approximate equation.

The incremental displacement Δui incremental velocity Δ _u i and incremental acceleration Δ€u are

given by

Δui ¼ u ti þ Δtð Þ � u tið Þ ð6:8Þ

Δ _u i ¼ _u ti þ Δtð Þ � _u tið Þ ð6:9Þ

Δ€ui ¼ €u ti þ Δtð Þ � €u tið Þ ð6:10Þ

Fig. 6.1 (a) Model for a single-degree-of-freedom system. (b) Free body diagram showing the inertial force, the

damping force, the spring force, and the external force
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6.2 Integration of the Nonlinear Equation of Motion

Among the many methods available for the solution of the nonlinear equation of motion, probably

one of the most effective is the step-by-step integration method. In this method, the response is

evaluated at successive increments Δt of time, usually taken of equal lengths of time for computa-

tional convenience. At the beginning of each interval, the condition of dynamic equilibrium is

established. Then, the response for a time increment Δt is evaluated approximately on the basis

that the coefficients k(u) and c
�

_u
�

remain constant during the interval Δt. The nonlinear

characteristics of these coefficients are considered in the analysis by reevaluating these coefficients

at the beginning of each time increment. The response is then obtained using the displacement and

velocity calculated at the end of the time interval as the initial conditions for the next time step.

As we have said for each time interval, the stiffness coefficient k(u) and the damping coefficient

c
�

_u
�

are evaluated at the initiation of the interval but are assumed to remain constant until the next

step; thus the nonlinear behavior of the system is approximated by a sequence of successively

changing linear systems. It should also be obvious that the assumption of constant mass is unneces-

sary; it could just as well also be represented by a variable coefficient.

There are many procedures available for performing the step-by-step integration of Eq. (6.12).

Two of the most popular methods are the constant acceleration method and the linear acceleration

method. As the names of these methods imply, in the first method the acceleration is assumed to

remain constant during the time interval Δt, while in the second method, the acceleration is assumed

to vary linearly during the interval. As may be expected, the constant acceleration method is simpler

but less accurate when compared with the linear acceleration method for the same value of the time

increment. We shall present here in detail both methods.

Fig. 6.2 Nonlinear stiffness function, spring force v.s. displacement
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6.3 Constant Acceleration Method

In the constant acceleration method, it is assumes that acceleration remains constant for the time step

between times ti and ti+1 ¼ ti + Δt as shown in Fig. 6.3. The value of the constant acceleration during

the interval Δt is taken as the average of the values of the acceleration €ui at the initiation of the time

step and €uiþ1, the acceleration at the end of the time step. Thus, the acceleration €u tð Þ at any

time t during the time interval Δt is given by

€u tð Þ ¼ 1

2

�

€ui þ €uiþ1

�

ð6:11Þ

Integrating this equation twice with respect to the time between the limits ti and t results in

_u tð Þ ¼ _u i þ
1

2

�

€ui þ €uiþ1

�

t� tið Þ ð6:12Þ

and

u tð Þ ¼ ui þ _u i t� tið Þ þ 1

4

�

€ui þ €uiþ1

�

t� tið Þ2 ð6:13Þ

The evaluation of Eqs. (6.12) and (6.13) at time ti + 1 ¼ ti + Δt gives

Δ _u i ¼
Δt

2

�

€ui þ €uiþ1

�

ð6:14Þ

and

Δui ¼ _u iΔtþ
Δt2

2

�

€ui þ €uiþ1

�

ð6:15Þ

where, Δui and, Δ _u i are respectively the incremental displacement and incremental velocity defined

by Eqs. (6.8) and (6.9).

Fig. 6.3 Constant acceleration assumed during time interval Δt
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To use the incremental displacement in the analysis, Eq. (6.15) is solved for €uiþ1 and substituted

into Eq. (6.14) to obtain:

€uiþ1 ¼
4

Δt2
Δui �

4

Δt
_u i � €ui ð6:16Þ

and

Δ _u i ¼
2

Δt
Δui � 2 _u i ð6:17Þ

Now subtracting €ui on both sides of Eq. (6.16) results in

Δ€ui ¼
4

Δt2
Δu� 4

Δt
_u i � 2€ui ð6:18Þ

The substitution into Eq. (6.7) of Δ _u i and Δ€ui, respectively, from Eqs. (6.17) and (6.18) gives

m
4

Δt2
Δui �

4

Δt
_u i � 2€ui

� �

þ c
2

Δt
Δu� 2 _u i

� �

þ kiΔui ¼ ΔFi ð6:19Þ

Equation (6.19) is then solved for the incremental displacement Δui to obtainin

Δui ¼
Δ�Fi

�ki
ð6:20Þ

in which the effective stiffness �ki is

�ki ¼
4m

Δt2
þ 2c

Δt
þ ki ð6:21Þ

and the effective incremental force Δ�Fi is

Δ�Fi ¼ ΔFi þ
4m

Δt
_u i þ 2mΔ€ui þ 2c _u i ð6:22Þ

The displacement ui+1 ¼ u (ti + Δt) at time ti+1 ¼ ti + Δt is obtained from Eq. (6.8) after solving for

incremental displacement Δui in Eq. (6.20). The incremental velocity is calculated by Eq. (6.17) and

the velocity at time ti+1 ¼ ti + Δt from Eq. (6.9) as

_u iþ1 ¼ _u i þ Δ _u i ð6:23Þ

Finally, the acceleration €uiþ1 at the end of the time step, ti+1 ¼ ti + Δt, is obtained directly from the

differential equation of motion, Eq. (6.3), rather than using Eq. (6.16), Hence, from Eq. (6.3):

€uiþ1 ¼
1

m
F tiþ1ð Þ � c _u iþ1 � Fs uiþ1ð Þ½ � ð6:24Þ

in which Fs(ui+1) is the restoring force evaluated at time ti+1 ¼ ti + Δt

After the displacement, velocity, and acceleration have been determined at time ti+1 ¼ ti + Δt, the

outlined procedure is repeated to calculate these quantities at the following time step ti+2 ¼ ti+1 + Δt,

and the process is continued to any desired final value of time.
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6.4 Linear Acceleration Step-by-Step Method

In the linear acceleration method, it is assumed that the acceleration may be expressed by a linear

function of time during the time interval Δt. Let ti and ti+1 ¼ ti + Δt be, respectively, the designation

for the time at the beginning and at the end of the time interval Δt. In this type of analysis, the material

properties of the system ci and kimay include any form of nonlinearity. Thus it is not necessary for the

spring force to be only a function of displacement or for the damping force to be specified only as a

function of velocity. The only restriction in the analysis is that we evaluate these coefficients at an

instant of time ti and then assume that they remain constant during the increment of timeΔt. When the

acceleration is assumed to be a linear function of time for the interval of time ti or ti+1 ¼ ti + Δt as

depicted in Fig. 6.4, we may express the acceleration as

€u tð Þ ¼ €ui þ
Δ€ui

Δt
t� tið Þ ð6:25Þ

whereΔ€ui is given by Eq. (6.10). Integrating Eq. (6.25) twice with respect to time between the limits ti
and t yields

_u tð Þ ¼ _u i þ €ui t� tið Þ þ 1

2

Δ€ui

Δt
t� tið Þ2 ð6:26Þ

and

u tð Þ ¼ ui þ _u i t� tið Þ þ 1

2
€ui t� tið Þ2 þ 1

6

Δ€ui

Δt
t� tið Þ3 ð6:27Þ

The evaluation of Eqs. (6.26) and (6.27) at time t ¼ ti + Δt gives

Δ _u i ¼ €uiΔtþ
1

2
Δ€uiΔt ð6:28Þ

and

Δui ¼ _u iΔtþ
1

2
€uiΔt

2 þ 1

6
Δ€ui þ Δt3 ð6:29Þ

Fig. 6.4 Assumed linear variation of the acceleration during a time interval
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where Δui and Δ _u i are defined in Eqs. (6.8) and (6.9), respectively. Now, to use the incremental

displacement Δu as the basic variable in the analysis, Eq. (6.29) is solved for the incremental

acceleration Δ€ui and then substituted into Eq. (6.28) to obtain

Δ€ui ¼
6

Δt2
Δui �

6

Δt
_u i � 3€ui ð6:30Þ

and

Δ _u i ¼
3

Δt
Δui � 3 _u i �

Δt

2
€ui ð6:31Þ

The substitution of Eqs. (6.30) and (6.31) into Eq. (6.7) leads to the following form of the equation of

motion:

m
6

Δt2
Δui �

6

Δt
_u i � 3€ui

� �

þ ci
3

Δt
Δui � 3 _u i �

Δt

2
€ui

� �

þ kiΔu ¼ ΔFi ð6:32Þ

Finally, transferring in Eq. (6.32) all the terms containing the unknown incremental displacement Δui
to the left-hand side gives

�kiΔui ¼ Δ�Fi ð6:33Þ

in which �ki is the effective spring constant, given by

�ki ¼ ki þ
6m

Δt2
þ 3ci

Δt
ð6:34Þ

and Δ�Fi is the effective incremental force, expressed by

Δ�Fi ¼ ΔFi þ m
6

Δt
_u 1 þ 3€ui

� �

þ ci 3 _u i þ
Δt

2
€ui

� �

ð6:35Þ

It should be noted that Eq. (6.33) is equivalent to the static incremental equilibrium equation, and may

be solved for the incremental displacement by simply dividing the effective incremental forceΔ�Fi by

the effective spring constant �ki, that is,

Δui ¼
Δ�Fi

�ki
ð6:36Þ

To obtain the displacement ui+1¼ u (ti + Δt) at time ti+1¼ ti + Δt, this value ofΔui is substituted into

Eq. (6.8) yielding

uiþ1 ¼ ui þ Δui ð6:37Þ

Then the incremental velocity Δ _u i is obtained from Eq. (6.31) and the velocity at time ti+1 ¼ ti Δ + t

from Eq. (6.9) as

_u iþ1 ¼ _u i þ Δ _u i ð6:38Þ

Finally, the acceleration _u iþ1 at the end of the time step is obtained directly from the differential

equation of motion, Eq. (6.2), where the equation is written for time ti+1¼ ti +Δt. Hence, after setting

F1 ¼ m€uiþ1 in Eq. (6.2), it follows that
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€uiþ1 ¼
1

m
F tiþ1ð Þ � FD tiþ1ð Þ � Fs tiþ1ð Þf g ð6:39Þ

where that damping force FD (ti + 1).and the spring force FS (ti + 1) are now evaluated at time

ti + 1 ¼ ti + Δt.

After the displacement, velocity, and acceleration have been determined at time ti + 1¼ ti +Δt, the

outlined procedure is repeated to calculate these quantities at the following time step ti + 2¼ ti + 1+Δt,

and the process is continued to any desired final value of time. The reader should, however, realize

that this numerical procedure involves two significant approximations: (1) the acceleration is

assumed to vary linearly during the time increment Δt; and (2) the damping and stiffness properties

of the system are evaluated at the initiation of each time increment and assumed to remain constant

during the time interval. In general, these two assumptions introduce errors that are small if the time

step is short. However, these errors generally might tend to accumulate from step to step. This

accumulation of errors should be avoided by imposing a total dynamic equilibrium condition at each

step in the analysis. This is accomplished by expressing the acceleration at each step using the

differential equation of motion in which the displacement and velocity as well as the stiffness and

damping forces are evaluated at that time step.

There still remains the problem of the selection of the proper time increment Δt. As in any

numerical method, the accuracy of the step-by-step integration method depends upon the magnitude

of the time increment selected. The following factors should be considered in the selection of Δt:

(1) the natural period of the structure; (2) the rate of variation of the loading function; and (3) the

complexity of the stiffness and damping functions.

In general, it has been found that sufficiently accurate results can be obtained if the time interval is

taken to be no longer than one-tenth of the natural period of the structure. The second consideration is

that the interval should be small enough to represent properly the variation of the load with respect to

time. The third point that should be considered is any abrupt variation in the rate of change of the

stiffness or damping function. For example, in the usual assumption of elastoplastic materials, the

stiffness suddenly changes from linear elastic to a yielding plastic phase. In this case, to obtain the

best accuracy, it would be desirable to select smaller time steps in the neighborhood of such drastic

changes.

6.5 The Newmark: β Method

The Newmark-β Method includes, in its formulation, several time-step methods used for the solution

of linear or nonlinear equations. It uses a numerical parameter designated as β. The method, as

originally proposed by Newmark (1959), contained in addition to β, a second parameter γ. Particular

numerical values for these parameters leads to well-known methods for the solution of the differential

equation of motion, the constant acceleration method, and the linear acceleration method.

The Newmark equation can be written in incremental quantities for a constant time step Δt, as

Δ _u i ¼ €uiΔtþ γΔ€uiΔt ð6:40Þ

and

Δui ¼ _u iΔtþ
1

2
€uiΔt

2 þ βΔ€uiΔt
2 ð6:41Þ

in which the incremental displacement Δui and incremental velocityΔ _u i are defined, respectively, by

Eqs. (6.8) and (6.9).
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It has been found that for values of γ different than 1/2, the method introduced a superfluous

damping in this system. For this reason, this parameter is generally set as γ ¼ 1/2. The solution of

Eq. (6.41) for Δ€ui and its subsequent substitution into Eq. (6.40) after setting γ ¼ 1/2 yield

Δ€ui ¼
1

βΔt2
Δui �

1

βΔt
_u i �

1

2β
€ui ð6:42Þ

and

Δ _u i ¼
1

2βΔt
Δui �

1

2β
_u i þ 1� 1

4β

� �

Δt � €ui ð6:43Þ

Now, the substitution of Eqs. (6.42) and (6.43) into the incremental equation of motion, Eq. (6.7),

results in an equation to calculate the incremental displacement Δui, namely,

�kiΔui ¼ Δ�Fi ð6:44Þ

where the effective stiffness �ki, and the effective incremental force Δ �Fi are given respectively by

�ki ¼ ki þ
m

βΔt2
þ ci

2βΔt
ð6:45Þ

and

Δ�Fi ¼ ΔFi þ
m

βΔt
_u i þ

ci

2β
€ui þ

m

2β
€ui � ciΔt 1� 1

4β

� �

€ui ð6:46Þ

In these equations, ci and ki are respectively the damping and stiffness coefficients evaluated at the

initial time ti of the time step Δt ¼ ti + 1 – ti
In the implementation of the Newmark Beta Method, a numerical value for the parameter β is

selected. Newmark suggested a value in the range 1/6� β�1 /2. For β¼ 1/4, the method corresponds

to the constant acceleration method and for β ¼ 1/6 to the linear acceleration method.

Illustrative Example 6.1: Response by Newmark-β Method Using MATLAB

There are two methods to obtain solution depending on the selection of gamma and beta in the

equation.

Using the linear variation method of Newmark-β approach, solve the Problem 4.2

Solution:

From Fig. 4.11, we have the following data:

Mass m ¼ W/g ¼ (38.6 � 1000)/386 ¼ 100 (lb � sec2/in)
Spring constant k ¼ 100 � 1000 ¼ 100,000 (lb � /in)
Damping coefficient c ¼ 2ξ

ffiffiffiffiffiffi

km
p

¼ 1265 (lb � sec/in)
Natural period T ¼ 2π

ffiffiffiffiffiffiffiffiffi

m=k
p

¼ 0.20 sec

Select time step for integration Δt ¼ T/10 ¼ 0.02 sec
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close all
clear all
clc

%%%%-GIVEN VALUES-%%%% 

t=0:0.02:0.1;
Dt = t(2)-t(1);                 %Time interval

m=38.6/386;                     %Mass
k =100;                         %Stiffness
xi =0.2;                        %Damping ratio
omega = sqrt(k/m);              %Natural frequency
c=2*m*omega*xi;                 %Damping coefficient

%%%%Linear acceleration method (Newmark beta method[Ch.6])

gamma =1/2;                     %Parameter gamma
beta = 1/6;                     %Parameter beta  
tt= length(t);

%%%%Define the Forcing Function, F, and using Matlab function diff, an
%%%%array containing changes in F during each time step

for  i= 1:tt
if t(i)<=0.02

F(i) = 120*t(i)/0.02;
elseif t(i) <=0.04

F(i) =120;
else

F(i)=max(0, -120*(t(i)-0.06)/0.02);
end

end
DF1 =diff(F)                             %Delta F 

%%%Initial calculation

u(1)=0;                                  %Initial condition; Displ.
v(1)=0;                                  %Initial condition; Velocity
a(1)=(F(1)-c*v(1)-k*u(1))/m;       
kbar = k +gamma*c/(beta*Dt)+m/(beta*Dt*Dt);     %Eq.6.45 
A = m/(beta*Dt)+gamma*c/beta;                   %A in DFbar = DF + A*v0+B*a0 (Eq. 6.46) 
B = m/(2*beta)+Dt*c*((0.5*gamma/beta)-1);       %B in DFbar = DF + A*v0+B*a0 (Eq. 6.46) 

%%%Setting up for initial value of Loop over

v0=v;
u0=u;

a0=a;
t =t(1);

%%%%Iteration for each time step using Newmark beta method

fori = 1:(tt-1)
DF=DF1(i);

[t,u,v,a] = Newmark( t, A, B, DF, Dt, kbar, u0, v0, a0, gamma, beta);

ti(:,i)=t(:,1)';
u_t1(i,:) = u(1,:)';
v_t1(:,i) = v(1,:)';
a_t1(:,i) = a(1,:)';

u0 = u;
v0 = v;
a0 = a;
t = t;
end

%%%Maximum values

umax = max(u_t1)
vmax = max(v_t1)
amax = max(a_t1)

%%%Plot response

plot (ti, u_t1);
xlabel ('t(sec)');
ylabel ('Displacement(in.)');
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The function of Newmark-β method in MATLAB is presented below (Fig. 6.5 and 6.6).

function [t,u,v,a] = Newmark(t, A, B, DF, Dt, kbar, u0, v0, a0, gamma, beta)

DFbar = DF + A*v0+B*a0;                                             %Eq.6.46 
Du = DFbar/kbar;                                                    %Eq.6.44
Dudot = gamma*Du/(beta*Dt)-gamma*v0/beta+ Dt*a0*(1-0.5*gamma/beta); %Eq.6.43
Dudotdot = Du/(beta*Dt*Dt)-v0/(beta*Dt)-a0/(2*beta);                %Eq.6.42

u=u0+Du;
v=v0+Dudot;
a=a0+Dudotdot;
t=t+Dt;

The following table records the results provided by the MATLAB and their comparison with the

Table 4.1 in Example 4.4:

Time

(sec)

Direct integration

(Table 4.1)

Δt ¼ 0.02 sec Δt ¼ 0.01 sec Δt ¼ 0.005 sec

Displ. Displ. Displ.

u(t) (in.) % error u(t) (in.) % error u(t) (in.) % error

0.000 0 0 0 0 0 0 0

0.020 0.074 0.067 �9.5 0.072 �2.7 0.073 �1.4

0.040 0.451 0.433 �4.0 0.446 �1.1 0.45 �0.2

0.060 0.926 0.911 �1.6 0.922 �0.4 0.925 �0.1

0.080 1.044 1.049 0.5 1.045 0.1 1.044 0.0

0.100 0.778 0.807 3.7 0.785 0.9 0.78 0.3

Fig. 6.5 Calculation of the response for Illustrative Example 6.1 (Δt ¼ 0.02 sec)
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Illustrative Example 6.2

(a) Determine the dynamic response of the tower shown in Fig. 6.7 subjected to the sinusoidal force

F (t)¼ F0 sin ϖ t applied at its top for 0.30 sec. (b) Check results using the exact solution which in this

case is available in closed form. Neglect damping.

Solution:

(a) The following data is obtained from Fig. 6.7:

Mass m ¼ w/g ¼ (38.6 � 1000)/386 ¼ 100 (lb � sec2/in)
Spring constant k ¼ 100 � 1000 ¼ 100,000 (lb/in)

Natural frequency ω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

¼ 31.623 rad/sec

Natural period T ¼ 2π/ω ¼ 0.20 sec

Select time step ΔT ¼ 0.01 sec

Fig. 6.6 Calculation of the response for Illustrative Example 6.1 (Δt ¼ 0.005 sec)

F(t) = F0

F0

W

W

k

k

sin ωt

ω

= 100 K

= 30 rad/sec

= mg = 38.6 K
= 100 K/in.

k

Fig. 6.7 Tower for Illustrative Example 6.2
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(b) The exact solution for the response of a simple oscillator to the sinusoidal force F0 ¼ sin ϖ t, with

zero initial displacement and velocity, from Eq. (3.8) is

u tð Þ ¼ F0

k � mω2
sinωt� ω

ω
sinωt

� �

where ω is the natural frequency in rad/sec, ϖ the forced frequency also in rad/sec, and F0 the

amplitude of the sinusoidal force.

Substituting corresponding numerical values for this example yields

u tð Þ ¼ 100, 000

100, 000� 100 30ð Þ2
sin 30t� 30

31:623t
sin 31:623t

� �

¼ 10 sin 30t� 0:94868 sin 31:623tð Þ

The velocity and acceleration functions are then given by

_u tð Þ ¼ 300 cos 30t� 300 cos 31:623t

and

€u tð Þ ¼ �9000 sin 30tþ 948:7 sin 31:623t

The evaluation of the response at specific values of time results in the following table:

t (sec) u(t) (in) _u (t) (in/sec) ü(t) (in/sec2)

0.1 1.6076 2.9379 �1466.51

0.2 �3.1865 �11.6917 2907.53

0.3 4.7420 26.0822 �4298.04

Illustrative Example 6.3

Solve Example 4.5 selecting the time step Δt equal to 0.02 and 0.005. Then compare the

displacements at time t ¼ 0.1, 0.2, and 0.3 sec with the response obtained in Example 4.5 using the

exact solution of the differential equation.

Solution:

In solving the problem using MATLAB, the results from Newmark’s method and ODE 45 are

compared. The following table presented the summary of results:

Time

(sec)

Exact displ.

(in.)

Newmark’s method

(Linear variation method) ODE 45 method

Δt ¼ 0.02 sec Δt ¼ 0.005 sec Δt ¼ 0.02 sec Δt ¼ 0.005 sec

Displ. Displ. Displ. Displ.

(in.)

%

error (in.)

%

error (in.)

%

error (in.)

%

error

0.1 1.6076 1.547 �3.8 1.604 �0.2 1.608 0.0 1.608 0.0

0.2 �3.1865 �3.055 �4.1 �3.178 �0.3 �3.187 0.0 �3.188 0.0

0.3 4.742 4.487 �5.4 4.696 �1.0 4.71 �0.7 4.71 �0.7

Results shown in the above table are sufficiently close to corresponding values given by the MATLAB

in part (a) of this problem (Fig. 6.8).
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6.6 Elastoplastic Behavior

If any structure modeled as a single-degree-of-freedom system (spring-mass system) is allowed to

yield plastically, then the restoring force exerted is likely to be of the form shown in Fig. 6.5a. There

is a portion of the curve in which linear elastic behavior occurs, whereupon, for any further

deformation, plastic yielding takes place. When the structure is unloaded, the behavior is again

elastic until further reverse loading produces compressive plastic yielding. The structure may be

subjected to cyclic loading and unloading in this manner. Energy is dissipated during each cycle by an

amount that is proportional to the area under the curve (hysteresis loop) as indicated in Fig. 6.5a. This

behavior is often simplified by assuming a definite yield point beyond which additional displacement

takes place at a constant value for the restoring force without any further increase in the load. Such

behavior is known as elastoplastic behavior; the corresponding force-displacement curve is shown in

Fig. 6.5b.

For the structure modeled as a spring-mass system, expressions of the restoring force for a system

with elastoplastic behavior are easily written (Fig. 6.9).

These expressions depend on the magnitude of the restoring force as well as upon whether the

motion is such that the displacement is increasing
�

_u > 0
�

or decreasing
�

_u < 0
�

. Referring to

Fig. 6.5b in which a general elastoplastic cycle is represented, we assume that the initial conditions

are zero (u0 ¼ 0, _u ¼ 0) for the unloaded structure. Hence, initially, as the load is applied, the system

behaves elastically along curve E0. The displacement ut at which plastic behavior in tension may be

initiated, and the displacement uc, at which plastic behavior in compression may be initiated, are

calculated, respectively, from

ut ¼ Rt=k ð6:47Þ

and
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Fig. 6.8 Displacement, velocity, and acceleration for Illustrative Example 4.4 (Δt ¼ 0.02 sec)
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uc ¼ Rc=k

where Rt and Rc are the respective values of the forces that produce yielding in tension and

compression and k is the elastic stiffness of the structure. The system will remain on curve E0 as

long as the displacement u satisfies

uc < u < ut ð6:48Þ

If the displacement u increases to ut the system begins to behave plastically in tension along curve

T on Fig. 6.5b; it remains on curve T as long as the velocity _u > 0.When _u < 0, the system reverses

to elastic behavior on a curve such as E1 with new yielding points given by

ut ¼ umax

uc ¼ umax � Rt � Rcð Þ=k ð6:49Þ

in which umax is the maximum displacement along curve T, which occurs when _u ¼ 0:
Conversely, if u decreases to uc the system begins a plastic behavior in compression along curve

C and it remains on this curve as long as _u < 0: The system returns to an elastic behavior when the

velocity again changes direction and _u > 0: In this case, the new yielding limits are given by

uc ¼ umin

ut ¼ umin þ Rt � Rcð Þ=k ð6:50Þ

in which umin is the minimum displacement along curve C, which occurs when _u ¼ 0: The same

condition given by Eq. (6.48) is valid for the system to remain operating along any elastic segment

such as E0, E1, E2,. . .as shown in Fig. 6.5b.

We are now interested in calculating the restoring force at each of the possible segments of the

elastoplastic cycle. The restoring force on an elastic phase of the cycle (E0. E1. E2,. . .) may be

calculated as.

Fig. 6.9 Elastic-plastic structural models. (a) General plastic behavior. (b) Elastoplastic behavoir

6.6 Elastoplastic Behavior 157



R ¼ Rt � ut � uð Þk ð6:51Þ

on a plastic phase in tension as

R ¼ Rt ð6:52Þ

and on the plastic compressive phase as

R ¼ Rc ð6:53Þ

The algorithm for the step-by-step linear acceleration method of a single degree-of-freedom system

assuming an elastoplastic behavior is outlined in the following section.

6.7 Algorithm for Step-by-Step Solution for Elastoplastic
Single-Degree-of-Freedom System

Initialize and input data:

1. Input values for k, m, c, R1, Rc, and a table giving the time ti and magnitude of the excitation Fj.

2. Set u0 ¼ 0 and _u 0 ¼ 0:

3. Calculate initial acceleration:

€u0 ¼
F t ¼ 0ð Þ

m
ð6:54Þ

4. Select time step Δt and calculate constants:

a1 ¼ 3=Δt, a2 ¼ 6=Δt, a3 ¼ Δt=2, a4 ¼ 6=Δt2

5. Calculate initial yield points:

ut ¼ Rt=k

uc ¼ Rc=k ð6:55Þ

For each time step:

1. Use the following code to establish the elastic or plastic state of the system:

KEY ¼ 0 elastic behaviorð Þ
KEY ¼ �1 plastic behavior in compressionð Þ
KEY ¼ 1 plastic behavior in tensionð Þ

ð6:56Þ

2. Calculate the displacement _u and velocity u at the end of the time step and set the value of KEY

according to the following conditions:

(a) When the system is behaving elastically at the beginning of the time step and
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uc < u < ut

u > ut

u < uc

KEY ¼ 0

KEY ¼ 1

KEY ¼ �1

(b) When the system is behaving plastically in tension at the beginning of the time step and

_u > 0 KEY ¼ 1

_u < 0 KEY ¼ 0

(c) When the system is behaving plastically in compression at the beginning of the time step and

_u < 0 KEY ¼ �1

_u > 0 KEY ¼ 0

3. Calculate the effective stiffness:

�ki ¼ kp þ a4mþ a1ci ð6:57Þ

where

kp ¼ k forelasticbehavior KEY ¼ 0ð Þ
kp ¼ 0 forplasticbehavior KEY ¼ 1or� 1ð Þ

ð6:58Þ

4. Calculate the incremental effective force:

Δ�Fi ¼ ΔFi þ a2mþ 3cið Þ þ 3mþ a3cið Þ€ui ð6:59Þ

5. Solve for the incremental displacement:

Δui ¼ Δ�Fi=�ki ð6:60Þ

6. Calculate the incremental velocity:

Δ _u i ¼ a1Δui � 3 _u i � a3€ui ð6:61Þ

7. Calculate displacement and velocity at the end of time interval:

uiþ1 ¼ ui þ Δui ð6:62Þ

_u iþ1 ¼ _u i þ Δui ð6:63Þ

8. Calculate acceleration €uiþ1 at the end of time interval using the dynamic equation of equilibrium:

€uiþ1 ¼
1

m
F tiþ1ð Þ � ciþ1 _u iþ1 � R½ � ð6:64Þ

in which

R ¼ Rt � ui � uiþ1ð Þk if KEY ¼ 0

R ¼ Rt if KEY ¼ 1
ð6:65Þ
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or

R ¼ Rc if KEY ¼ �1

Illustrative Example 6.4

To illustrate the hand calculations in applying the step-by-step integration method described above,

consider the single-degree-of-freedom system in Fig. 6.6 with elastoplastic behavior subjected to the

loading history as shown. For this example, we assume that the damping coefficient remains constant

(ξ¼ 0.087). Hence the only nonlinearities in the system arise from the changes in stiffness as yielding

occurs (Fig. 6.10).

Solution:

The stiffness of the system during elastic behavior is

k ¼ 12E 2Ið Þ
L3

¼ 12x30x103x2x100

15x12ð Þ3
¼ 12:35 kip=in

and the damping coefficient

c ¼ ξccr ¼ 0:087ð Þ 2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:2� 12:35
p

¼ 0:274 kip � sec =in

Initial displacement and initial velocity are u0 ¼ _u 0 ¼ 0.

Fig. 6.10 Frame with elastoplastic behavior subjected to dynamic loading. (a) Frame. (b) Loading. (c) Elastoplastic

behavior
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The initial acceleration is

€u0 ¼
F 0ð Þ
k

¼ 0

Yield displacements are

ut ¼
Rt

k
¼ 15

12:35
¼ 1:215 in

and

uc ¼ �1:215 in

The natural period is T ¼ 2π
ffiffiffiffiffiffiffiffiffi

m=k
p

¼ 0:8 (for the elastic system). For numerical convenience, we

select Δt ¼ 0.1 sec. The effective stiffness from Eq. (6.57) is

�k ¼ kp þ
6

0:12
0:2þ 3

0:1
0:274

or

�k ¼ kp þ 128:22

where

kp ¼ k ¼ 12:35 elasticbehaviorð Þ
kp ¼ 0 plasticbehaviorð Þ

The effective incremental loading from Eq. (6.59) is

Δ�Fi ¼ ΔFi þ
6

Δt
mþ 3c

� �

_u i þ 3mþ Δt

2

� �

€ui

Δ�Fi ¼ ΔFi þ 12:822 _u i þ 0:613€ui

The velocity increment given by Eq. (6.61) becomes

Δ _u i ¼ 30Δui � 3 _u i � 0:05ui

The necessary calculations may be conveniently arranged as illustrated in Table 6.1. In this

example with elastoplastic behavior, the response changes abruptly as the yielding starts and

stops. To obtain better accuracy, it would be desirable to subdivide the time step in the neighbor-

hood of the change of state; however, an iterative procedure would be required to establish the

length of the subintervals. This refinement has not been used in the present analysis or in the

computer program described in the next section. The stiffness computed at the initiation of the time

step has been assumed to remain constant during the entire time increment. The reader is again

cautioned that a significant error may arise during phase transitions unless the time step is selected

relatively small.
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6.8 Response for Elastoplastic Behavior Using MATLAB

The same as for the other programs presented in this book, MATLAB program can be used. After the

user has selected one of these options, the program requests the name of the file and the necessary

input data. The program continues by setting the initial values to the various constants and variables

in the equations. Then by linear interpolation, values of the forcing function are computed at time

increments equal to the selected time step Δt for the integration process. Results are presented in

Table 6.1. Using values of force and time step, the displacement, velocity, and acceleration are

computed at each time step. The nonlinear behavior of the restoring force is appropriately considered

in the calculation by the variable KEY which is tested through a series of conditional statements in

order to determine the correct expressions for the yield points and the magnitude of the restoring force

in the system.

The output consists of a table giving the displacement, velocity, and acceleration at time

increments Δt. The last column of the table shows the value of the index KEY which provides

information about the state of the elastoplastic system. As indicated before, KEY ¼ 0 for elastic

behavior and KEY ¼ 1 or KEY ¼�1 for plastic behavior, respectively, in tension or in compression.

Illustrative Example 6.5

Using the MATLAB, find the response of the structure in Example 6.4. Then repeat the calculation

assuming elastic behavior. Plot and compare results for the elastoplastic behavior with the elastic

response.

Solution:

Problem Data (from Illustrative Example 6.4)

Spring constant k ¼ 12.35 kip/in

Damping coefficient c ¼ 0.274 kip. sec/in

Mass m ¼ 0.2 (kip. sec2/in)

Max. restoring force (tension) Rt ¼ 15 kip

Max. restoring force (compression) Rc ¼ �15 kip

Natural period T ¼ 2π
ffiffiffiffiffiffiffiffiffi

m=k
p

¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:2=12:35
p

¼ 0:8 sec

Select time step Δt ¼ 0.1 sec

k =12.35;               %Stiffness
c =0.274;               %Damping coefficient
xi =c/(2*sqrt(m*k));    %Damping ratio
omega = sqrt(k/m);      %Natural frequency (rad/sec)
Rt = 15;                %Forces yielding in tension       
Rc = -15;               %Forces yielding in compression 

close all
clear all
clc

%%%%-GIVEN VALUES-%%%%

load ForceData.txt
t = ForceData(:,1);     %Time
F = ForceData(:,2);     %Force

Dt = t(2)-t(1);         %Time interval
m=0.2;                  %Mass
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ut = ut;                            
uc = uc;                            
end

%%%Setting up parameters for next iteration  
u0 = u;
v0 = v;
a0 = a;
t = t;
R = R;

end
result = [ta,F1i',ua,keypi',keyi',va,Ri',aa,k_pi'];

%%%New yielding point-Increasing displacement (Eq.6.49)
if v < 0 && v0 >0
ut = max(ua);
uc = ut-(Rt-Rc)/k;                  
else
ut = ut;
uc = uc;
end

%%%New yielding point-Decreasing displacement (Eq.6.50)
if v > 0 && v0 <0
uc = min(ua);
ut = uc+(Rt-Rc)/k;                  
else

%%%%Linear acceleration method (Newmark beta method[Ch.6])

gamma =1/2;
beta = 1/6;
tt= length(t);

%%%Initial calculation

u(1)=0;                                  %Initial condition; Displ.
v(1)=0;                                  %Initial condition; Velocity
a(1)=(F(1)-c*v(1)-k*u(1))/m;       

A = m/(beta*Dt)+gamma*c/beta;               %A in DFbar = DF + A*v0+B*a0 (Eq. 6.46)
B = m/(2*beta)+Dt*c*((0.5*gamma/beta)-1);   %B in DFbar = DF + A*v0+B*a0 (Eq. 6.46)
kbar = k +gamma*c/(beta*Dt)+m/(beta*Dt*Dt); %Eq.6.45 
key = 0;                                    %Initial key=0 before Loop over
k_p = k;                                    %Initial stiffness before iteration

%%%Setting up for initial value of Loop over

u0=u;
v0=v;
a0=a;
t =t(1);

%%%% Calculate initial yield points %%%%
ut = Rt/k;
uc = Rc/k;
R(1)=0;

%%%%Iteration for each time step using Newmark beta method

ua =[]; va =[]; aa=[]; ta=[];
fori = 1:(tt-1)
DF=F(i+1)-F(i);
F1 = F(i+1);

[t,u,v,a, kbar, R, keyp, key, Du, k_p] =  NewmarkNon( t, DF, Dt, u0, v0, ut, uc, a0, F1, k, 
c, m, Rt, Rc, R, gamma, beta, key, k_p);

keyi(:,i)=key(:,1)'; keypi(:,i)=keyp(:,1)'; F1i(:,i)=F1(:,1)'; Ri(:,i)= R(:,1)';k_pi(:,i)= 
k_p(1,:)';

%%%Creating column of time,displ,velocity and acceleration
ta = [ta; t];
ua = [ua; u];
va = [va; v];
aa = [aa; a];
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%%%Plot response

figure (1)

plot (ta, ua);
grid on
xlabel ('t(sec)');
ylabel ('Displacement(in.)');

The function of Newmark-beta method of MATLAB is presented for considering elastoplastic

behavior. The main program is the same as Newmark-beta method (Fig. 6.11).

function [t,u,v,a, kbar, R, keyp, key, Du, k_p] = NewmarkNon( t, DF, Dt, u0, v0, ut, uc, 

a0, F1, k, c, m, Rt, Rc, R, gamma, beta, key, k_p)

%%%Algorithm-For each time step:(3),(4),(5),(6),(7)
kbar = k_p +gamma*c/(beta*Dt)+m/(beta*Dt*Dt);        %Eq.6.57 
A = m/(beta*Dt)+gamma*c/beta;                        %A in DFbar (Eq. 6.46) 
B = m/(2*beta)+Dt*c*((0.5*gamma/beta)-1);            %B in DFbar (Eq. 6.46)

DFbar = DF + A*v0+B*a0;                          %Incremental effective force (Eq.6.59)
Du = DFbar/kbar;                                 %Incremental displacement (Eq.6.60)   

Dudot = gamma*Du/(beta*Dt)-gamma*v0/beta+ Dt*a0*(1-0.5*gamma/beta);  %Incremental velocity 
(Eq.6.61)

u=u0+Du ;               %Displacement at the end of time interval (Eq.6.62)
v=v0+Dudot;             %Velocity at the end of time interval (Eq.6.63)

%%%Algorithm-For each time step:(2)-(a)
if u<ut && u>uc

keyp = 0;            
elseif u > ut

keyp = 1;            
else

keyp = -1;           
end

%%%Algorithm-For each time step:(2)-(b) and (2)-(c)
if keyp == 1 && v > 0     

key = 1;            

elseifkeyp == -1 && v < 0 
key = -1;           

else
key = 0;            

end

%%%Algorithm-For each time step:(8) (Eq. 6.65)

if key ==0     

if (R+(Du)*k)>=0

R = min(R+(Du)*k, Rt);
else

R = max(R+(Du)*k, Rc); 
end

elseif key ==1
R = Rt;
else
R = Rc;

end
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%%%Algorithm-For each time step:(3) (Eq.6.58)       
if key == 0

k_p = k;
else

k_p = 0;

end

%%%Algorithm-For each time step:(8) (Eq.6.64)    
a=1/m*(F1-c*v-R);

t=t+Dt;

6.9 Summary

Structures are usually designed on the assumption that the structure is linearly elastic and that it

remains linearly elastic when subjected to an expected dynamic excitation. However, there are

situations in which the structure has to be designed for an eventual excitation of large magnitude

such as the strong motion of an earthquake or the effects of nuclear explosion. In these cases, it is not

realistic to assume that the structure will remain linearly elastic and it is then necessary to design the

structure to withstand deformation beyond the elastic limit. The simplest and most accepted assump-

tion for the design beyond the elastic limit is to assume an elastoplastic behavior. In this type of

behavior, the structure is elastic until the restoring force reaches a maximum value (tension or

compression) at which it remains constant until the motion reverses its direction and returns to an

elastic behavior.

There are many methods to solve numerically the differential equation of this type of motion. The

step-by-step linear acceleration presented in this chapter provides satisfactory results with relatively

simple calculations. However, these calculations are tedious and time consuming when performed by

hand. The use of a computer and the availability of a computer program, such as the one described in

this chapter, reduce the effort to a simple routine of data preparation.

Fig. 6.11 Comparison of elastoplastic behavior with elastic response for Illustrative Example 6.2 (a) Nonlinear

behavior; (b) Linear behavior
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6.10 Problems

Problem 6.1

The single-degree-of-freedom of Fig. P6.1a is subjected to the foundation acceleration history in

Fig. P6.1b Determine the maximum relative displacement of the columns. Assume elastoplastic

behavior of Fig. P6.1c.

Problem 6.2

Determine the displacement history for the structure in Fig. P6.1 when it is subjected to the impulse

loading of Fig. P6.2 applied horizontally at the mass.

Fig. P6.1

F(t)

t (sec)
0.20.10

200K

Fig. P6.2
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Problem 6.3

Repeat Problem 6.2 for the impulse loading shown in Fig. P6.3 applied horizontally at the mass.

Problem 6.4

Repeat Problem 6.2 for the acceleration history shown in Fig. P6.4 applied horizontally to the

foundation.

Problem 6.5

Solve Problem 6.1 assuming elastic behavior of the structure. (Hint: Use computer Program 5 with

Rt ¼ 200 Kip and Rc ¼ �200 Kip.)

Problem 6.6

Solve Problem 6.2 for elastic behavior of the structure. Plot the time-displacement response and

compare with results from Problem 6.2.

Problem 6.7

Determine the ductility ratio from the results of Problem 6.2 (Ductility ratio is defined as the ratio of

the maximum displacement to the displacement at the yield point).

Problem 6.8

A structure modeled as spring-mass shown in Fig. P6.8b is subjected to the loading force depicted in

Fig. P6.8a. Assume elastoplastic behavior of Fig. P6.8c. Determine the response.

F(t)

t (sec)
0.40.30.20.10

200K

Fig. P6.3

Fig. P6.4
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Problem 6.9

Repeat Problem 6.8 assuming damping in the system equal to 20% of the critical damping.

Problem 6.10

Solve Problem 6.8 assuming elastic behavior of the system. (Hint: Use Program 5 with RT¼ 1000 Kip

and RC ¼ �1000 Kip.)

Problem 6.11

Solve Problem 6.9 assuming elastic behavior of the system.

Problem 6.12

A structure modeled as the damped spring-mass system shown in Fig. P6.12a is subjected to the

time-acceleration excitation acting at its support. The excitation function is expressed as a(t) ¼ a0
f(t), where f(t) is depicted in Fig. P6.12b. Determine the maximum value that the factor a0 may have

for the structure to remain elastic. Assume that the structure has an elastoplastic behavior of

Fig. P6.12c.

Fig. P6.8
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a(t) = a0 f(t)

k = 200 K/in.

� = 15% W = 100K

1.0

f (t) in/sec2

RT = 10.0k

Rc = –10.0k

1

ut

R

k = 200k /in.

5.

–5.

–10.

0

0.1 0.2 0.3

0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.45

(a)

(b) (c)

10 8 5

6

Fig. P6.12
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Part II

Structures Modeled as Shear Buildings



Free Vibration of a Shear Building 7

In Part I we analyzed and obtained the dynamic response for structures modeled as a single-degree-of-

freedom system. Only if the structure can assume a unique shape during its motion will the

single-degree model provide the exact dynamic response. Otherwise, when the structure takes more

than one possible shape during motion, the solution obtained from a single-degree model will be at

best, only an approximation to the true dynamic behavior.

Structures cannot always be described by a single-degree-of-freedom model and, in general, have

to be represented by multiple-degree models. In fact, structures are continuous systems and as such

possess an infinite number of degrees of freedom. There are analytical methods to describe the

dynamic behavior of continuous structures that have uniform material properties and regular geome-

try. These methods of analysis, though interesting in revealing information for the discrete modeling

of structures, are rather complex and are applicable only to relatively simple actual structures. They

require considerable mathematical analysis, including the solution of partial differential equations

which will be presented in Part IV. For the present, we shall consider one of the most instructive and

practical types of structure which involve many degrees of freedom, the multistory shear building.

7.1 Stiffness Equations for the Shear Building

A shear building may be defined as a structure in which there is no rotation of a horizontal section at

the level of the floors. In this respect, the deflected building will have many of the features of a

cantilever beam that is deflected by shear forces only, hence the name shear building. To accomplish

such deflection in a building, we must assume that: (1) the total mass of the structure is concentrated

at the levels of the floors; (2) the slabs or girders on the floors are infinitely rigid as compared to the

columns; and (3) the deformation of the structure is independent of the axial forces present in the

columns. These assumptions transform the problem from a structure with an infinite number of

degrees of freedom (due to the distributed mass) to a structure that has only as many degrees as it has

lumped masses at the floor levels. A three-story structure modeled as a shear building (Fig. 7.1a) will

have three degrees of freedom, that is, the three horizontal displacements at the floor levels. The

second assumption introduces the requirement that the joints between girders and columns are fixed

against rotation. The third assumption leads to the condition that the rigid girders will remain

horizontal during motion.
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It should be noted that the building may have any number of bays and that it is only a matter of

convenience that we represent the shear building solely in terms of a single bay. Actually, we can

further idealize the shear building as a single column (Fig. 7.2a), having concentrated masses at the

floor levels with the understanding that only horizontal displacements of these masses are possible.

Another alternative is to adopt a multimass-spring system shown in Fig. 7.3a to represent the shear

building. In any of the three representations depicted in these figures, the stiffness coefficient, or

spring constant ki, shown between any two consecutive masses is the force required to produce a

relative unit displacement of the two adjacent floor levels

Fig. 7.1 (a) Single-bay model representation of a shear building. (b) Free body diagram

Fig. 7.2 (a) Single-column model representation of a shear building. (b) Free body diagram
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For a uniform column with the two ends fixed against rotation, the stiffness or spring constant, k, is

given by

k ¼ 12EI

L3
ð7:1aÞ

and for a column with one end fixed and the other pinned by

k ¼ 3EI

L3
ð7:1bÞ

where E is the material modulus of elasticity, I the cross-sectional moment of inertia, and L the length

of the column.

It should be clear that all of the three representations shown in Figs. 7.1, 7.2 and 7.3 for the shear

building are equivalent. Consequently, the following equations of motion for the thee-story shear

building are obtained from any of the corresponding free body diagrams shown in these figures by

equating to zero the sum of the forces acting on each mass. Hence

m1€u1 þ k1u1 � k2 u2 � u1ð Þ � F1 tð Þ ¼ 0

m2€u2 þ k2 u2 � u1ð Þ � k3 u3 � u2ð Þ � F2 tð Þ ¼ 0

m3€u3 þ k3 u3 � u2ð Þ � F3 tð Þ ¼ 0

ð7:2Þ

This system of equations constitutes the stiffness formulation of the equations of motion for a three-

story shear building. It may conveniently be written in matrix notation as

M½ � €uf g þ K½ � uf g ¼ Ff g ð7:3Þ

where [M] and [K] are the mass and stiffness matrices given, respectively, by

Fig. 7.3 (a) Multimass-spring model representation of a shear. (b) Free body diagram
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M½ � ¼
m1 0 0

0 m2 0

0 0 m3

2

4

3

5 ð7:4Þ

K½ � ¼
k1 þ k2 �k2 0

�k2 k2 þ k3 �k3
0 �k3 k3

2

4

3

5 ð7:5Þ

and {u}, €uf g and {F} are, respectively, the displacement, acceleration and force vectors given by

uf g ¼
u1
u2
u3

8

<

:

9

=

;

, €uf g ¼
€u1
€u2
€u3

8

<

:

9

=

;

, Ff g ¼
F1 tð Þ
F2 tð Þ
F3 tð Þ

8

<

:

9

=

;

ð7:6Þ

It should be noted that the mass matrix, Eq. (7.4), corresponding to the shear building is a diagonal

matrix (the non-zero elements are only in the main diagonal). The elements of the stiffness matrix,

Eq. (7.5), are designated stiffness coefficients. In general, the stiffness coefficient, kij, is defined as the

force at coordinate i when a unit displacement is given at j, all other coordinates being fixed. For

example, the coefficient in the second row and second column of Eq. (7.5), k22 ¼ k2 + k3, is the force

required at the second floor when a unit displacement is given to this floor.

7.2 Natural Frequencies and Normal Modes

The problem of free vibration requires that the force vector {F} be equal to zero in Eq. (7.3). Namely,

M½ � €uf g þ K½ � uf g ¼ 0 ð7:7Þ

For free vibrations of the undamped structure, we seek solutions of Eq. (7.7) in the form

ui ¼ ai sin ωt� αð Þ, i ¼ 1, 2, . . . , n

or in vector notation

uf g ¼ af g sin ωt� αð Þ ð7:8Þ

where ai is the amplitude of motion of the ith coordinate and n is the number of degrees of freedom.

The substitution of Eq. (7.8) into Eq. (7.7) gives

�ω2 M½ � af g sin ωt� αð Þ þ K½ � af g sin ωt� αð Þ ¼ 0

or factoring out sin(ωt–α) and rearranging terms

K½ � � ω2 M½ �
� �

af g ¼ 0f g ð7:9Þ

which for the general case, is set for n homogenous (right-hand side equal to zero) algebraic system of

linear equations with n unknown displacements ai and an unknown parameter ω2. The formulation of

Eq. (7.9) is an important mathematical problem known as an eigenproblem. Its nontrivial solution,

that is, the solution for which not all ai¼ 0, requires that the determinant of the matrix factor of {a} be

equal to zero; in this case
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K½ � � ω2 M½ �
�

�

�

� ¼ 0 ð7:10Þ

In general, the expansion of the determinant in Eq. (7.10) results in a polynomial equation of degree

n in ω
2 which should be satisfied for n values of ω2. This polynomial is known as the characteristic

equation of the system. For each of these values of ω2 satisfying the characteristic Eq. (7.10) we can

solve Eq. (7.9) for a1, a2, . . ., an in terms of an arbitrary constant. The necessary calculations are better

explained through a numerical example.

Illustrative Example 7.1

The structure to be analyzed is the two-story steel rigid frame shown in Fig. 7.4. The weights of the

floors and walls are indicated in the figure and are assumed to include the structural weight as well.

The building consists of a series of frames spaced 15 ft. apart. It is further assumed that the structural

properties are uniform along the length of the building and, therefore, the analysis to be made of an

Fig. 7.4 Two-story shear building for Illustrative Example 7.1

Fig. 7.5 Multimass-spring model for a two-story shear building of Illustrative Example 7.1. (a) Model, (b) Free body

diagram
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interior frame yields the response of the entire building. Determine (a) the natural frequencies and

corresponding modal shapes, (b) the equations of motion with initial conditions for displacements

u01, u02, and for velocities _u 01, and _u 02, respectively, for the first and second stories of the building.

Solution:

(a) Natural Frequencies and Modal Shapes

The building is modeled as a shear building and, under the assumptions stated, the entire

building may be represented by the spring –mass system shown in Fig. 7.5. The concentrated

weights, which are each taken as the total floor weight plus that of the tributary walls, are

computed as follows:

W1 ¼ 100� 30� 15þ 20� 12:5� 15� 2 ¼ 52, 500 lb

m1 ¼ 136 lb: sec 2=in

W2 ¼ 50� 30� 15þ 20� 5� 15� 2 ¼ 25, 500 lb

m2 ¼ 66 lb: sec 2=in

Since the girders are assumed to be rigid and fixed at the two ends, the stiffness (spring constant)

of each story is given by Eq. (7.1a) as

k ¼ 12E 2Ið Þ
L3

and the individual values for the steel column sections indicated are thus

k1 ¼
12� 30� 106 � 248� 2

15� 12ð Þ3
¼ 30, 700 lb=in

k2 ¼
12� 30� 106 � 118� 2

10� 12ð Þ3
¼ 44, 300 lb=in

The equations of motion for the system, which are obtained by considering in Fig. 7.5b the

dynamic equilibrium of each mass in free vibration, are

m1€u1 þ k1u1 � k2 u2 � u1ð Þ ¼ 0

m2€u2 þ k2 u2 � u1ð Þ ¼ 0

In the usual manner, these equations of motion are solved for free vibration by substituting

u1 ¼ a1 sin ωt� αð Þ
u2 ¼ a2 sin ωt� αð Þ

ðaÞ

for the displacements and

€u1 ¼ �a1ω
2 sin ωt� αð Þ

€u2 ¼ �a2ω
2 sin ωt� αð Þ

for the accelerations. In matrix notation, we obtain

k1 þ k2 � m1ω
2 �k2

�k2 k2 � m2ω
2

� �

a1
a2

� �

¼ 0

0

� �

ðbÞ

For a nontrivial solution, we require that the determinant of the coefficients be equal to zero, that is,
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k1 þ k2 � m1ω
2 �k2

�k2 k2 � m2ω
2

�

�

�

�

�

�

�

�

¼ 0 ðcÞ

The expansion of this determinant gives a quadratic equation in ω2, namely

m1m2ω
4 � k1 � k2ð Þm2 þ m1k2½ �ω2 þ k1k2 ¼ 0 ðdÞ

or by introducing the numerical values for this example, we obtain

8976ω4 � 10, 974, 800ω2 þ 1:36� 106 ¼ 0 ðeÞ

The roots of this quadratic are

ω2
1 ¼ 140

ω2
2 ¼ 1082

Therefore, the natural frequencies of the structure are

ω1 ¼ 11:83 rad= sec

ω2 ¼ 32:89 rad= sec

or in cycles per second (cps)

f 1 ¼ ω1=2π ¼ 1:88 cps

f 2 ¼ ω2=2π ¼ 5:24 cps

and the corresponding natural periods:

T1 ¼
1

f 1
¼ 0:532 sec

T2 ¼
1

f 2
¼ 0:191 sec

To solve Eq. (b) for the amplitudes a1 and a2, we note that by equating the determinant to zero in

Eq. (c), the number of independent equations is one less. Thus in the present case, the system of

two equations is reduced to one independent equation. Considering the first equation in Eq. (b)

and substituting the first natural frequency, ω1 ¼ 11.8 rad/sec, we obtain

55, 960a11 � 44, 300a21 ¼ 0 ðfÞ

We have introduced a second sub-index in a1 and a2 to indicate that the value ω1 has been

used in this equation. Since in the present case there are two unknowns and only one equation,

we can solve Eq. (f) only for the relative value of a21 to a11. This relative value is known as the

normal mode or modal shape corresponding to the first frequency. For this example, Eq. (f) gives

a21

a11
¼ 1:263

It is customary to describe the normal modes by assigning a unit value to one of the amplitudes;

thus, for the first mode we set a11 equal to unity so that
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a11 ¼ 1:000
a21 ¼ 1:263

ðgÞ

Similarly, substituting the second natural frequency, ω2¼ 32.9 rad/sec into Eq. (b) we obtain the

second normal mode as

a12 ¼ 1:000
a22 ¼ �1:629

ðhÞ

It should be noted that although we obtained only ratios, the amplitudes of motion could, of

course, be found from initial conditions.

We have now arrived at two possible simple harmonic motions of the structure which can

take place in such a way that all the masses move in phase in the same frequency, either ω1 or ω2.

Such a motion of an undamped system is called a normal or natural mode of vibration. The

shapes for these modes (a21/a11 and a22/a12) for this example are called normal mode shapes of

simply modal shapes for the corresponding natural frequencies ω1 and ω2. These two modes for

this example are depicted in Fig. 7.6.

We often use the designation first mode or fundamental mode to refer to the mode associated

with the lowest frequency. The other modes are sometimes called harmonics or higher

harmonics. It is evident that the modes of vibration, each having its own frequency, behave

essentially as single-degree-of-freedom systems.

(b) Equations of Motion

The total motion of the system, that is, the total solution of the equations of motion, Eq. (7.7),

is given by the superposition of the modal harmonic vibrations which in terms of arbitrary

constants of integration may be written as

u1 tð Þ ¼ C
0

1a11 sin ω1t� α1ð Þ þ C
0

2a12 sin ω2t� α2ð Þ
u1 tð Þ ¼ C

0

1a21 sin ω1t� α1ð Þ þ C
0

2a22 sin ω2t� α2ð Þ
ðiÞ

Fig. 7.6 Normal modes for Illustrative Example 7.1 (a) First mode (b) Second mode
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Here C
0

1 and C
0

2 as well as α1 and α2 are four constants of integration to be determined from four

initial conditions which are the initial displacement and velocity for each mass in the system. For a

two-degree-of-freedom system, these initial conditions are

u1 0ð Þ ¼ u01, _u 1 0ð Þ ¼ _u 01

u2 0ð Þ ¼ u02, _u 2 0ð Þ ¼ _u 02

ðjÞ

For computational purposes, it is convenient to eliminate the phase angles [α1 and α2 in

Eq. (i)] in favor of other constants. Expanding the trigonometric functions in Eq. (i) and

renaming the constants, we obtain

u1 tð Þ ¼ C1a11 sinω1tþ C2a11 cosω1tþ C3a12 sinω2tþ C4a12 cosω2t

u2 tð Þ ¼ C1a21 sinω1tþ C2a21 cosω1tþ C3a22 sinω2tþ C4a22 cosω2t
ðkÞ

in which C1, C2, C3 and C4 are the new renamed constants of integration. From the first two

initial conditions in Eq. (j), we obtain the following two equations:

u01 ¼ C2a11 þ C4a12

u02 ¼ C2a21 þ C4a22
ðlÞ

Since the modes are independent, these equations can always be solved for C2 and C4.

Similarly, by expressing in Eq. (k) the velocities at time equal to zero, we find

_u 01 ¼ ω1C1a11 þ ω2C3a12

_u 02 ¼ ω1C1a21 þ ω2C3a22
ðmÞ

The solution of these two sets of Eqs. (l) and (m), allows us to express the motion of the

system in terms of the two modal vibrations, each proceeding at its own frequency, completely

independent of the other, the amplitudes and phases being determined by the initial conditions.

7.3 Orthogonality Property of the Normal Modes

We shall now introduce an important property of the normal modes, the orthogonality property. This

property constitutes the basis of the most important method for solving dynamic problems, the Modal

Superposition Method of multi-degree-of-freedom systems. We begin by rewriting the equations of

motion in free vibration, Eq. (7.7) as

K½ � af g ¼ ω2 M½ � af g ð7:11Þ

For the two-degree-of-freedom system, we obtain from Eq. (b) of Illustrative Example 7.1

k1 þ k2ð Þa1 � k2a2 ¼ ω2m1a1

�k2a1 þ k2a2 ¼ ω2m2a2
ð7:12Þ

These equations are exactly the same as Eq. (b) of Illustrative Example 7.1 but written in this form

they may be given a static interpretation as the equilibrium equations for the system acted on by

forces of magnitude ω2m1a1 and ω
2m2a2 applied to massesm1 andm2, respectively. The modal shapes
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may then be considered as the static deflections resulting from the forces on the right-hand side of

Eq. (7.12) for any of the two modes. This interpretation, as a static problem, allows us to use the

results of the general static theory of linear structures. In particular, we may use of Betti’s theorem

which states: For a structure acted upon by two systems of loads and corresponding displacements,

the work done by the first system of loads moving through the displacements of the second system is

equal to the work done by this second system of loads undergoing the displacements produced by the

first load system. The two systems of loading and corresponding displacements which we shall

consider are as follows:

System I:

Forces ω2
1m1a11, ω2

1m2a21

Displacements a11, a21

System II:

Forces ω2
2m1a12 ω2

2m2a22

Displacements a12, a22

The application of Betti’s theorem for these two systems yields

ω2
1m1a11a12 þ ω2

1m2a21a22 ¼ ω2
2m1a12a11 þ ω2

2m2a22a21

or

ω2
1 � ω2

2

� �

m1a11a12 þ m2a21a22ð Þ ¼ 0

If the natural frequencies are different (ω1 6¼ ω2), it follows that

m1a11a12 þ m2a21a22 ¼ 0

which is the so-called orthogonality relationship between modal shapes of a two degree-of-freedom

system. For an n-degree-of-freedom system in which the mass matrix is diagonal, the orthogonality

condition between any two modes i and j may be expressed as

X

n

k¼1

mkakiakj ¼ 0, for i 6¼ j ð7:13Þ

and in general for any n-degree-of-freedom system as

af gT
i M½ � af gj ¼ 0 for i 6¼ j ð7:14Þ

in which {ai} and {aj} are any two modal vectors and [M] is the mass matrix of the system.

As mentioned before, the amplitudes of vibration in a normal mode are only relative values which

may be scaled or normalized to some extent as a matter of choice. The following is an especially

convenient normalization for a general system:
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ϕij ¼
aij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

af gT
i M½ � af gj

q ð7:15Þ

which, for a system having a diagonal mass matrix, may be written as

ϕij ¼
aij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

k¼1

mka
2
kj

s ð7:16Þ

in which ϕij is the normalized i component of the j modal vector. For normalized eigenvectors, the

orthogonality condition is given by

ϕf gT
i M½ � ϕf gj ¼ 0 for i 6¼ j

¼ 1 for i ¼ j
ð7:17Þ

Another orthogonality condition is obtained by writing Eq. (7.9) for the normalized j mode as

K½ � ϕf gj ¼ ω2
j M½ � ϕf gj ð7:18Þ

Then pre-multiplying Eq. (7.18) by ϕf gT
i we obtain, in view of Eq. (7.17), the following orthogonality

condition between eigenvectors:

ϕf gT
i K½ � ϕf gj ¼ 0 for i 6¼ j

¼ω2
j for i ¼ j

ð7:19Þ

Illustrative Example 7.2

For the two-story shear building of Illustrative Example 7.1 determine (a) the normalized modal

shapes of vibration, and (b) verify the orthogonality condition between the modes.

Solution:

The substitution of Eqs. (g) and (h) from Illustrative Example 7.1 together with the values of the

masses from Illustrative Example 7.1 into the normalization factor required in Eq. (7.16) gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

136ð Þ 1:00ð Þ2 þ 66ð Þ 1:263ð Þ2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

241:31
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

136ð Þ 1:00ð Þ2 þ 66ð Þ �1:629ð Þ2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

311:08
p

Consequently, the normalized modes are

ϕ11 ¼
1:00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

241:31
p ¼ 0:06437, ϕ12 ¼

1:00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

311:08
p ¼ 0:0567

ϕ21 ¼
1:263
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

241:31
p ¼ 0:0813, ϕ22 ¼

�1:629
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

311:08
p ¼ �0:0924

The normal modes may be conveniently arranged in the columns of a matrix known as the modal

matrix of the system. For the general case of n degrees of freedom, the modal matrix is written as

7.3 Orthogonality Property of the Normal Modes 183



Φ½ � ¼
ϕ11 ϕ12� � � ϕ1n

ϕ21 ϕ22� � � ϕ2n

ϕn1 ϕn2� � � ϕnn

2

6

6

4

3

7

7

5

ð7:20Þ

The orthogonality condition may then be expressed in general as

Φ½ �T M½ � Φ½ � ¼ I½ � ð7:21Þ

where [Φ]T is the matrix transpose of [Φ], and [M] the mass matrix of the system. For this example of

two degrees of freedom, the modal matrix is

Φ½ � ¼
0:06437 0:0567

0:0813 �0:0924

" #

ðaÞ

To check the orthogonality condition, we simply substitute the normal modes from Eq. (a) into

Eq. (7.21) and obtain

0:06437 0:0813

0:0567 �0:0924

" #

136 0

0 66

" #

0:06437 0:0567

0:0813 �0:0924

" #

¼
1 0

0 1

" #

We have seen that to determine the natural frequencies and normal modes of vibration of a

structural system, we have to solve an eigenvalue problem. The direct method of solution based

on the expansion of the determinant and the solution of the resulting characteristic equation is

limited in practice to systems having only a few degrees of freedom. For a system of many

degrees of freedom, the algebraic and numerical work required for the solution of an

eigenproblem becomes so immense as to make the direct method impossible. However, there

are many numerical methods available for the calculation of eigenvalues and eigenvectors of an

eigenproblem. The discussion of these methods belongs in a mathematical text on numerical

methods rather than in a text such as this on structural dynamics. One of the most popular methods

for the numerical solution of an eigenproblem is the Jacobi Method, which is an iterative method

to calculate the eigenvalues and eigenvectors of the system. The basic Jacobi solution method has

been developed for the solution of standard eigenproblems (i.e., [M] being the identity matrix).

The method was proposed over a century ago and has been used extensively. This method can be

applied to all symmetric matrices [K] with no restriction on the eigenvalues. It is possible to

transform the generalized eigenproblem, [[K] – ω2[M]] ¼ {Φ} ¼ {0} into the standard form and

still maintain the symmetry required for the Jacobi Method. However, this transformation can be

dispensed with by using a generalized Jacobi solution method (Bathe, K. J. 1982) which operates

directly on [K] and [M].

Examples 7.1 and 7.2 can be solved using MATLAB program. The function of MATLAB are used

to solve eigenproblem using built-in function, eig(K, M). The natural frequencies and normal modes

are estimated using the following MATLAB codes. The outcomes are the natural frequencies (natural

periods) and normalized modal matrix. This MATLAB code adopts the framework proposed by

Anderson and Naeim (2012).
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clear all
close all

%%%%-GIVEN VALUES-%%%%

%%%Define Mass Matrix
M = [136 0; 0 66]

%%%Define Stiffness Matrix
K = [30700+44300 -44300;-44300 44300]

%%%Solve for eigenvalues (D) and eigenvectors (a)
[a, D] = eig(K, M)

[omegas,k] = sort(sqrt(diag(D)));

%%%Natural frequencies
omegas =sqrt(D)

%%%Natural periods
T =2*pi./omegas;

T1 = 2*pi./omegas(1,1);
T2 = 2*pi./omegas(2,2);

%%%{a}1before changing the unity in the first DOF.
a1 = a(:,1);

%%%{a}2before changing the unity in the first DOF.
a2 = a(:,2);

%%%Change the {a} w.r.t. the unity in the first DOF.
a11 = 1;
a21 = a1(2,1)./a1(1,1);
a12 = 1;
a22 = a2(2,1)./a2(1,1);

a =[];

%%%Calculate the {a}
a(:,1) = [a11, a21]                 %[a11,a21]
a(:,2) = [a12, a22]                 %[a12,a22]

%%%aMa = {a}'*[M]*(a}
aMa = a'*M*a;                       %Eq.7.14

%%%Normalization factor
norm_1 = sqrt(aMa(1,1));                      
norm_2 = sqrt(aMa(2,2));

%%%Normalized eigenvectors
nom_phi(:,1) = 1./norm_1.*a(:,1);   %Eq.7.16 for the first mode
nom_phi(:,2)= 1./norm_2.*a(:,2);    %Eq.7.16 for the 2nd mode
nom_phi

%Check the orthogonality condition for Mass Matrix 
orth_M = nom_phi'*M*nom_phi;        %Eq.7.17

%Check the orthogonality condition for Stiffness Matrix 
orth_K = nom_phi'*K*nom_phi;        %Eq.7.19   
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7.4 Rayleigh’s Quotient

Several iterative methods for the solution of an eigenproblem make use of the Rayleigh’s quotient.

The Rayleigh’s quotient may be obtained by pre-multiplying Eq. (7.18) by the transpose of the modal

vector ϕf gT
j . Hence,

ϕf gT
j K½ � ϕf gj ¼ ω2

j ϕf gT
j M½ � ϕf gj

The property of the mass matrix [M] being positive definite1 renders the product ϕf gT
j M½ � ϕf gj 6¼ 0,

thus, it is permissible to solve for ω2
j:

ω2 ¼ ϕf gT K½ � ϕf g
ϕf gT M½ � ϕf g

ð7:22Þ

in which for convenience the sub-index j has been omitted.

The ratio given by Eq. (7.22) is known as the Rayleigh’s quotient. This quotient has the following

properties: (1) It provides the eigenvalueω2
j when the corresponding eigenvector {ϕ}j is introduced in

Eq. (7.22). (2) When a vector {ϕ} different from an eigenvector is used, then Eq. (7.22) provides a

value ω2 that lies between the smallest eigenvalue, ω2
1 and the largest eigenvalue ω2

N . (3) Finally, if a

vector {ϕ} that is an approximation to eigenvector {ϕ}j, correct to d decimals is used, then the value

of ω2 obtained from Eq. (7.22) is accurate to 2d number of decimals as an approximation to ω2
j .

Illustrative Example 7.3

Use Rayleigh’s quotient to calculate an approximate value for the first eigenvalue of the structure in

Illustrative Example 7.1 beginning with the approximate eigenvector for the first mode {ϕ}T ¼ {1.00

1.50}, then iterate using Eqs. (7.12) and (7.22) to converge to the eigenvalue and eigenvector for the

first mode.

Solution:

The substitution of the given vector {ϕ}T ¼ {1.00 1.50} and the matrices [K] and [M] into the

numerator of Eq. (7.22) results in

1:00 1:50f g 75, 000 �44, 300

�44, 300 44, 300

� �

1:00
1:50


 �

¼ 42, 025

and also into the denominator

1:00 1:50f g 136 0

0 66

� �

1:00
1:50


 �

¼ 284:5

which substituted into Eq. (7.22) yields

ω2 ¼ 42, 025

284:5
¼ 147:9

1Matrix [A] is defined as positive definite if it satisfies the condition that for any arbitrary nonzero vector {υ}, the

product {υ)T [A]{υ} > 0.
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The use of the calculated value ω2 ¼ 147.9 together with a1 ¼ 1.00 into the first Eq. (7.12) yields

a1 ¼ 1:00 and a2 ¼ 1:24

A second iteration of Eq. (7.22) with {Φ}T ¼ {1.00 1.24} yields

ω2 ¼ 140:02

This value of ω2 is virtually equal to the solution ω1 ¼ 140.02 obtained for the first mode in

Illustrative Example 7.1

Another popular iterative method to solve an eigenproblem, that is, for structural dynamics, to

calculate natural frequencies and modal shapes, is the Subspace Iteration Method.

7.5 Summary

The motion of an undamped dynamic system in free vibration is governed by a homogenous system

of differential equations which in matrix notation is

M½ � €uf g þ K½ � uf g ¼ 0

The process of solving this system of equations leads to a homogenous system of linear algebraic

equations of the form

K½ � � ω2 M½ �
� �

af g ¼ 0f g

which mathematically is known as an eigenproblem.

For a nontrivial solution of this problem, it is required that the determinant of the coefficients of the

unknown {a} be equal to zero, that is,

K½ � � ω2 M½ �
�

�

�

� ¼ 0

The roots of this equation provide the natural frequencies ωi, (i ¼ 1, 2, . . . n). It is then possible to

solve for the unknowns {a}i, in terms of relative values. The vectors {a}i corresponding to the roots

ω2
i are the modal shapes (eigenvectors) of the dynamic system. The arrangement in matrix format of

the modal shapes constitutes the modal matrix [Ф] of the system. It is particularly convenient to

normalize the eigenvectors to satisfy the following condition:

ϕf gT
i M½ � ϕf gi ¼ I½ � i ¼ 1, 2, . . . , n

where the normalized modal vectors {ϕ}i are obtained by dividing the components of the vector {a}ij

by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

af gT
i M½ � af gj

q

.

The normalized modal vectors satisfy the following important conditions of orthogonality:

ϕf gT
i M½ � ϕf gj ¼ 0 for i 6¼ j

ϕf gi M½ � ϕf gj ¼ 1 for i ¼ j

and

ϕf gT
i K½ � ϕf gj ¼ 0 for i 6¼ j

ϕf gi K½ � ϕf gj ¼ ω2
i for i ¼ j
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The above relations are equivalent to

Φ½ �T M½ � Φ½ � ¼ I½ �

and

Φ½ �T K½ � Φ½ � ¼ Ω½ �

in which [Ф] is the modal matrix of the system and [Ω] is a diagonal matrix containing the

eigenvalues ω2
i in the main diagonal.

For a dynamic system with only a few degrees of freedom, the natural frequencies and modal

shapes may be determined by expanding the determinant and calculating the roots of the resulting

characteristic equation. However, for a system with a large number of degrees of freedom, this direct

method of solution becomes impractical. It is then necessary to resort to other numerical methods

which usually require an iteration process.

7.6 Problems

Problem 7.1 Determine the natural frequencies and normal modes for the two-story shear building

shown in Fig. P7.1.

Problem 7.2

A certain structure has been modeled as a three-degree-of-freedom system having the numerical

values indicated in Fig. P7.2. Determine the natural frequencies of the structure and the

corresponding normal modes. Check your answer using MATLAB.

Fig. P7.1
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Problem 7.3

Assume a shear building model for the frame shown in Fig. P7.3 and determine the natural

frequencies and normal modes.

Problem 7.4

Assume a shear building model for the frame shown in Fig. P7.4 and determine the natural

frequencies and normal modes.

Fig. P7.2

For all columns

2 K/ft 2 K/ft

u1

u2

3 K/ft

20´

10´

12´

20´
EI = 106 (K-in.2)

Fig. P7.3

Fig. P7.4
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Problem 7.5

Consider the uniform shear building in which the mass of each floor is m and the stiffness of each

story is k. Determine the general form of the system of differential equations for a uniform shear

building of N stories.

Problem 7.6

Find the natural frequencies and modal shapes for the three-degree-of-freedom shear building in

Fig. P7.6.

Problem 7.7

Use the results of Problem 7.6 to write the expressions for the free vibration displacements u1, u2, and

u3 of the shear building in Fig. P7.6 in terms of constants of integration.

Problem 7.8

Use MATLAB to determine the natural frequencies for the six-story uniform shear building modeled

as a column shown in Fig. P7.8.

12 ft W10 X

W12 X

W14 X82

12 ft

12 ft

15 ft

u1

u2

u3
m3 = 50 Ib . sec2/in/in

m2 = 100 Ib . sec2/in/in

m1 = 50 Ib . sec3/in/in

Fig. P7.6
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m = 12 kip.sec2/in

E = 29,000 ksi

I = 3200 in4

u6

u5

u4

u3

u2

u1

6
 ×

 1
2
 f
t 
=

 7
2
 f
t

Fig. P7.8
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Forced Motion of Shear Buildings 8

In the preceding chapter, we have shown that the free motion of a dynamic system may be expressed

in terms of the normal modes of vibration. Our present interest is to demonstrate that the forced

motion of such a system may also be expressed in terms of the normal modes of vibration and that the

total response may be obtained as the superposition of the solution of independent modal equations.

In other words, our aim in this chapter is to show that the normal modes may be used to transform the

system of coupled differential equations into a set of uncoupled differential equations in which each

equation contains only one dependent variable. Thus the modal superposition method reduced the

problem of finding the response of a multi-degree-of-freedom system to the determination of the

response of single-degree-of-freedom systems.

8.1 Modal Superposition Method

In Chap. 6, we have shown that any free motion of a multi-degree-of-freedom system may be

expressed in terms of normal modes of vibration. It will now be demonstrated that the forced motion

of such a system may also be expressed in terms of the normal modes of vibration. We return to the

equations of motion, Eq. (3.40), which for the particular case of a two-degree-of-freedom shear

building are

m€u1 þ k1 þ k2ð Þ � k2u2 ¼ F1 tð Þ

m2€u2 � k2u1 þ k2u2 ¼ F2 tð Þ
ð8:1Þ

We seek to transform this coupled system of differential equations into a system of independent or

uncoupled equations in which each equation contains only one unknown function of time. It is first

necessary to express the solution in terms of the normal modes multiplied by some factors determin-

ing the contributions of each mode. In the case of free motion, these factors were sinusoidal functions

of time; in the present case, for forced motion they are general functions of time which we designate

as qi(t). Hence, the solution of Eq. (8.1) is assumed to be of the form

u1 tð Þ ¼ a11q1 tð Þ þ a12q2 tð Þ

u2 tð Þ ¼ a21q1 tð Þ þ a22q2 tð Þ
ð8:2Þ
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Upon substitution into Eq. (8.1), we obtain

m1a11€q1 þ k1 þ k2ð Þa11q1 � k2a21q1 þ m1a12€q2 þ k1 þ k2ð Þa12q2 � k2a22q2 ¼ F1 tð Þ

m2a21€q1 � k2a11q1 þ k2a21q1 þ m2a22€q2 � k2a12q2 þ k2a22q2 ¼ F2 tð Þ
ð8:3Þ

To determine the appropriate functions q1(t) and q2(t) that will uncouple Eq. (8.3), it is necessary to

make use of the orthogonality relations to separate the modes. The orthogonality relations are used by

multiplying the first of Eq. (8.3) by a11 and the second by a21. Addition of these equations after

multiplication and simplification by using Eqs. (6.3) and (6.5) yields

m1a
2
11 þ m2a

2
21

� �

€z1 þ ω2
1 m1a

2
11 þ m2a

2
21

� �

z1 ¼ a11F1 tð Þ þ a21F2 tð Þ ð8:4aÞ

Similarly, multiplying the first of Eq. (8.3) by a12 and the second by a22, we obtain

m1a
2
12 þ m2a

2
22

� �

€z2 þ ω2
2 m1a

2
12 þ m2a

2
22

� �

z2 ¼ a12F1 tð Þ þ a22F2 tð Þ ð8:4bÞ

The results obtained in Eq. (8.4) permit a simple physical interpretation. The force that is effective in

exciting a mode is equal to the work done by the external force displaced by the modal shape in

question. From the mathematical point of view, what we have accomplished is to separate or

uncouple, by a change of variables, the original system of differential equations. Consequently,

each of these equations, Eqs. (8.4a) and (8.4b), corresponds to a single-degree-of-freedom system

which may be written as

M1€q1 þ K1q1 ¼ P1 tð Þ

M2€q2 þ K2q2 ¼ P2 tð Þ
ð8:5Þ

where M1 ¼ m1a
2
11 þ m2a

2
21 and M2 ¼ m2a

2
12 þ m2a

2
22 are the modal masses; K1 ¼ ω2

1M1 and

K2 ¼ ω2
2M2, the modal spring constants; P1(t) ¼ a11F1(t) + a21F2(t) and P2(t) ¼ a12F1(t) + a22F2(t)

the modal forces. Alternatively, if we make use of the previous normalization in Eq. (7.15) or (7.16),

these equation may be written simply as

€q1 þ ω2
1q1 ¼ P1 tð Þ

€q2 þ ω2
2q2 ¼ P2 tð Þ

ð8:6Þ

where P1 and P2 are now given by

P1 ¼ ϕ11F1 tð Þ þ ϕ21F2 tð Þ

P2 ¼ ϕ12F1 tð Þ þ ϕ22F2 tð Þ
ð8:7Þ

The solution for the uncoupled differential equations, Eq. (8.5) or Eq. (8.6), may now be found by any

of the methods presented in the previous chapters for the solution of a single degree of freedom

system. In particular, Duhamel’s integral provides a general solution for these equations regardless of

the functions describing the forces acting on the structure. Also, maximum values of the response for

each modal equation may readily be obtained using available response spectra. However, the

superposition of modal maximum responses presents a problem. The fact is that these modal

maximum values will in general not occur simultaneously as the transformation of coordinates,

Eq. (8.2), requires. To obviate the difficulty, it is necessary to use an approximate method. An upper

limit for the maximum response may be obtained by adding the absolute values of the maximum
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modal contributions, that is, by substituting q1 and q2 in Eq. (8.2) for the maximum modal responses,

q1max and q2max, and adding the absolute values of the terms in these equations, so that

u1max ¼ ϕ11q1maxj j þ ϕ12q2maxj j

u2max ¼ ϕ21q1maxj j þ ϕ22q2maxj j
ð8:8Þ

The results obtained by this method will generally overestimate the maximum response. Another

method, which is widely accepted and which generally gives a reasonable estimate of the maximum

response from these spectral values, is the Square Root of the Sums of Squares of the modal

contributions (SRSS method). Thus the maximum displacements may be approximated by

u1max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ11q1maxð Þ2 þ ϕ12q2maxð Þ2
q

and

u2max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ21q1maxð Þ2 þ ϕ22q2maxð Þ2
q

ð8:9Þ

The results obtained by application of the SRSS method (Square Root of the Sum of the Squares of

modal contributions) may substantially underestimate or overestimate the total response when two or

more modes are closely spaced. In this case, another method known as the Complete Quadratic

Combination (CQC) for combining modal responses to obtain the total response is recommended.

The discussion of such a method is presented in this chapter in Sect. 8.6

The transformation from a system of two coupled differential equations, Eq. (8.1), to a set of two

uncoupled differential equations, Eq. (8.6), may be extended to a general and system of N degrees of

freedom. For such a system, it is particularly convenient to use matrix notation. With such notation,

the equation of motion for a linear system of N degrees of freedom is given by Eq. (7.3) as

M½ � €uf g þ K½ � uf g ¼ F tð Þf g ð8:10Þ

where [M] and [K] are respectively the mass and the stiffness matrices of the system, {F(t)} the vector

of external forces, and {u} the vector of unknown displacements at the nodal coordinates.

Introducing into Eq. (8.10) the linear transformation of coordinates

uf g ¼ Φ½ � qf g ð8:11Þ

in which [Φ] is the modal matrix of the system, yields

M½ � Φ½ � €qf g þ K½ � Φ½ � qf g ¼ F tð Þ½ g ð8:12Þ

The pre-multiplication of Eq. (8.12) by the transpose of the ith modal vector, ϕf gT
i , results in

ϕf gT
i M½ � Φ½ � €qf g þ ϕf gT

i K½ � Φ½ � qf g ¼ ϕf gT
i F tð Þf g ð8:13Þ

The orthogonality conditions between normalized modes, Eqs. (7.17) and (7.19), imply that

ϕf gT
i M½ � Φ½ � ¼ 1 ð8:14Þ

and
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ϕf gT
i K½ � Φ½ � ¼ ω2

i ð8:15Þ

Consequently, Eq. (8.13) may be written as

€qi þ ω2
i qi ¼ Pi tð Þ i ¼ 1, 2, 3, . . . ,N ð8:16Þ

where the modal force Pi(t) is given by

Pi tð Þ ¼ ϕ1iF1 tð Þ þ ϕ2iF2 tð Þ þ . . .þ ϕNiFN tð Þ ð8:17Þ

Equation (8.16) constitutes a set of N uncoupled or independent equations of motion in terms of the

modal coordinates qi. These uncoupled equations, as may be observed, may readily be written after

the natural frequencies ωi and the modal vectors, {ϕ}i have been determined in the solution of the

corresponding eigenproblem as presented in Chap. 7.

Illustrative Example 8.1

The two-story frame of Illustrative Example 7.1 is acted upon at the floor levels by horizontal

triangular impulsive forces as shown in Fig. 8.1. For this frame, determine the maximum floor

displacements and the maximum shear forces in the columns.

Solution:

The results obtained in Illustrative Examples 7.1 and 7.2 for the free vibration of this frame gave the

following values for the natural frequencies and normalized modes:

ω1 ¼ 11:83rad= sec, ω2 ¼ 32:89rad= sec

ϕ11 ¼ 0:06437, ϕ12 ¼ 0:0567

ϕ21 ¼ 0:08130, ϕ22 ¼ �0:0924

The forces acting on the frame which are shown in Fig. 8.1b may be expressed by

F1 tð Þ ¼ 10, 000 1� t=tdð Þ lb

F2 tð Þ ¼ 20, 000 1� t=tdð Þ lb for t � 0:1 sec

in which td ¼ 0.1 sec and

F1 tð Þ ¼ F2 tð Þ ¼ 0, for t > 0:1 sec

The substitution of these values into the uncoupled equations of motion, Eqs. (8.6) and (8.7) gives

€q1 þ 140q1 ¼ 2270f tð Þ

€q2 þ 1082:41q2 ¼ �1281f tð Þ
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in which f(t) ¼ 1 – t/td for t � 0.1 and f(t) ¼ 0 for t > 0.1. The maximum values for q1 and q2 are then

obtained from available spectral charts such as the one shown in Fig. 4.5. For this example,

td

T1

¼
0:1

0:532
¼ 0:188

and

td

T2

¼
0:1

0:191
¼ 0:524

in which the modal natural periods are calculated as

T1 ¼
2π

ω1

¼ 0:532 sec and T2 ¼
2π

ω2

¼ 0:191 sec

From Fig. 4.5, we obtain:

DLFð Þ1max ¼
q1max

q1st
¼ 0:590

DLFð Þ2max ¼
q2max

q2st
¼ 1:22

where the static deflections, q1st, and q2st, are calculated as

q1st ¼
F01

ω2
1

¼
2270

140
¼ 16:3, q2st ¼

F02

ω2
2

¼
�1281

1082:41
¼ �1:18

Then the maximum values of the modal response are:

q1max ¼ 0:590� 16:3 ¼ 9:62, q2max ¼ 1:22� 1:18 ¼ 1:44

Fig. 8.1 Shear building with impulsive loadings. (a) Two-story shear building. (b) Impulsive loadings
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As indicated above these maximum modal values do not occur simultaneously and therefore cannot

simply be superimposed to obtain the maximum response of the system. However, an upper limit for

the absolute maximum displacement may be calculated with Eq. (8.8) as

u1max ¼ 0:06437� 9:62j j þ 0:0567� 1:44j j ¼ 0:70 in

u2max ¼ 0:08130� 9:62j j þ �0:0924� 1:44j j ¼ 0:92 in

A second acceptable estimate of the maximum response is obtained by taking the square root of the

sum of the squared modal contributions as indicated by Eq. (8.9). For this example, we have

u1max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:06437� 9:62ð Þ2 þ 0:0567� 1:44ð Þ2
q

¼ 0:62 in

u2max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:08130� 9:62ð Þ2 þ �0:0924� 1:44ð Þ2
q

¼ 0:79 in

ðaÞ

The maximum shear force Vmax in the columns is given by

Vmax ¼ kΔu ð8:18Þ

in which k is the stiffness of the story andΔu the difference between the displacements at the two ends

of the column. Since the maximum displacements calculated as in Eq. (a) may have positive or

negative values, the relative displacement Δu cannot be determined as the difference of the absolute

displacements of the two ends of the column. The maximum positive value for Δu could be estimated

as the sum of the absolute maximum displacements at the ends of the columns. However, this

procedure will in most cases greatly overestimate the actual forces in the columns. The recommended

procedure is to calculate first the shear force in the columns for each mode, separately, and then

combine these modal forces by a suitable method, such as the square root of the sum of the squares of

modal contributions. This procedure is based on the fact that modal displacements are known with

their correct relative sign and not as absolute values.

The maximum shear force Vij at story i corresponding to mode j is given by

Vij ¼ q jmax ϕij � ϕi�1j

� �

ki ð8:19Þ

where qjmax is the maximum modal response, (ϕij – ϕi–1j) the relative modal displacement of story

i (with ϕ0j ¼ 0), and ki the stiffness of the story. For this example we have for the first story

k1 ¼
12EI1

L31
¼

12� 30� 106 � 248:6

15� 12ð Þ3
¼ 15, 345 lb=in

V11 ¼ 9:62� 0:06437� 15, 345 ¼ 9502 lb

V12 ¼ 1:44� 0:0567� 15, 345 ¼ 1253 lb

V1max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

95022 þ 12532
p

¼ 9584 lb

and for a column in the second story
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k2 ¼
12EI2

L32
¼

12� 30� 106 � 106:3

10� 12ð Þ3
¼ 22, 146 lb

V21 ¼ 9:62� 0:08130� 0:06437ð Þ � 22, 146 ¼ 3607 lb

V22 ¼ 1:44� �0:0924� 0:0567ð Þ � 22, 146 ¼ �4755 lb

V2max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

36072 þ 47552
p

¼ 5968 lb

8.2 Response of a Shear Building to Base Motion

The response of a shear building to the base or foundation motion is conveniently obtained in terms of

floor displacements relative to the base motion. For the two-story shear building of Fig. 8.2a, which is

modeled as shown in Fig.8.2b, the equations of motion obtained by equating to zero the sum of forces

in the free body diagrams of Fig. 8.2c are the following:

m1€u1 þ k1 u1 � usð Þ � k2 u2 � u1ð Þ ¼ 0

m2€u2 þ k2 u2 � u1ð Þ ¼ 0
ð8:20Þ

where us ¼ us(t) is the displacement imposed at the foundation of the structure. Expressing the floor

displacements relative to the base motion, we have

ur1 ¼ u1 � us

ur2 ¼ u2 � us
ð8:21Þ

The differentiation yields

€u1 ¼ €ur1 þ €us

€u2 ¼ €ur2 þ €us
ð8:22Þ

Fig. 8.2 Shear building with base motion. (a) Two-story shear building. (b) Mathematical model. (c) Free-body

diagrams
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Substitution of Eqs. (8.21) and (8.22) into Eq. (8.20) results in

m1€ur1 þ k1 þ k2ð Þur1 � k2ur2 ¼ �m1€us

m2€ur2 � k2ur1 þ k2ur2 ¼ m2€us
ð8:23Þ

We note that the right-hand sides of Eq. (8.23) are proportional to the same function of time, €us tð Þ.

This fact leads to a somewhat simpler solution compared to the solution of Eq. (8.6), which may

contain different functions of time in each equation. For the base motion of the shear building,

Eq. (8.4) may be written as

€q1 þ ω2
1q1 ¼ �

m1a11 þ m2a211

m1a
2
11 þ m2a

2
21

€us tð Þ

€q2 þ ω2
2q2 ¼ �

m1a12 þ m2a22

m1a
2
12 þ m2a

2
22

€us tð Þ

ð8:24Þ

or

€q1 þ ω2
1q2 ¼ Γ1€us tð Þ

€q2 þ ω2
2q2 ¼ Γ2€us tð Þ

ð8:25Þ

where Γ1 and Γ2 are called participation factors and are given by

Γ1 ¼ �
m1a11 þ m2a21

m1a
2
11 þ m2a

2
21

Γ2 ¼ �
m1a12 þ m2a22

m1a
2
12 þ m2a

2
22

ð8:26Þ

The relation between the modal displacements q1, q2 and the relative displacement ur1, ur2 is given

from Eq. (8.2) as

ur1 ¼ a11q1 þ a12q2

ur2 ¼ a21q1 þ a22q2
ð8:27Þ

In practice, it is convenient to introduce a change of variables in Eq. (8.25) such that the second

members of these equations equal €us(t). The required change of variables to accomplish this

simplification is

q1 ¼ Γ1g1

q2 ¼ Γ2g2
ð8:28Þ

which when introduced into Eq. (8.25) gives

€g1 þ ω2
1g1 ¼ €us tð Þ

€g2 þ ω2
2g2 ¼ €us tð Þ

ð8:29Þ

Finally, solving for g1(t) and g2(t) in the uncoupled Eq. (8.29) and substituting the solution into

Eqs. (8.27) and (8.28) give the response as
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ur1 tð Þ ¼ Γ1a11g1 tð Þ þ Γ2a12g2 tð Þ

ur2 tð Þ ¼ Γ1a21g1 tð Þ þ Γ2a22g2 tð Þ
ð8:30Þ

When the maximum modal response g1max and g2max are obtained from spectral charts, we may

estimate the maximum values ur1max and ur2max by the SRSS combination method as

ur1max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ1a11g1maxð Þ2 þ Γ2a12g2maxð Þ2
q

ur2max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ1a21g1maxð Þ2 þ Γ2a22g2maxð Þ2
q

ð8:31Þ

The equations of motion for an N-story shear building (Fig. 8.3a) subjected to excitation motion at its

base are obtained by equating to zero the sum of forces shown in the free body diagrams of Fig. 8.3b,

namely

Fig. 8.3 Multistory shear building excited at the foundation (a) Structural Model. (b) Free body diagrams
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m1€u1 þ k1 u1 � usð Þ � k2 u2 � u1ð Þ ¼ 0

m2€u2 þ k2 u2 � u1ð Þ � k3 u3 � u2ð Þ ¼ 0

� � �

mN�1€uN�1 þ kN�1 uN�1 � uN�2ð Þ � kN uN � uN�1ð Þ ¼ 0

mN€uN þ kN uN � uN�1ð Þ ¼ 0

ð8:32Þ

Introducing into Eq. (8.32)

uri ¼ ui � us i ¼ 1; 2; . . . ;Nð Þ ð8:33Þ

results in

m1€ur1 þ k1ur1 � k2 ur2 � ur1ð Þ ¼ �m1€us

m2€ur2 þ k2ur2 � k3 ur3 � ur2ð Þ ¼ �m2€us

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

mN�1€ur N�1 þ kN�1 urN�1 � urN�2ð Þ � kN urN � urN�1ð Þ ¼ �mN�1€us

mN€urN þ kN urN � urN�1ð Þ ¼ �mN€us

ð8:34Þ

where €us ¼ €us(t) is the acceleration function exciting the base of the structure.

Equations (8.34) may be conveniently be written in matrix notation as

M½ � €urf g þ K½ � urf g ¼ � M½ � 1f g€us tð Þ ð8:35Þ

in which [M], the mass matrix, is a symmetric matrix, {1} is a vector with all its elements equal to

1, €us ¼ €us(t) is the applied acceleration at the foundation of the building, and {ur} and {€ur} are,

respectively, the displacement and acceleration vectors relative to the motion of the foundation.

As has been demonstrated, the system of differential equations (8.35) can be uncoupled through

the transformation given by Eq. (8.11) as

urf g ¼ Φ½ � qf g ð8:36Þ

where [Φ] is the modal matrix obtained in the solution of corresponding eigenproblem [[K] � ω2[M]

{ϕ} ¼ {0}.

The substitution of Eq. (8.36) into Eq. (8.35) followed by premultiplication by the transpose of the

ith eigenvector, ϕf gT
i (the ith modal shape), results in

ϕf gT
i M½ � Φ½ � €qf g þ ϕf gT

i K½ � Φ½ � qf g ¼ � ϕf gT
i M½ � 1f g€us tð Þ ð8:37Þ

which upon introduction of orthogonality property of the normalized eigenvectors [Eqs. (8.14) and

(8.15)] results in the modal equations

€zi þ ω2
1zi ¼ Γ€us tð Þ i ¼ 1; 2; . . . ;Nð Þ ð8:38Þ

Where the modal participation factor Γi is given in general by
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Γi ¼

P

N

j¼1

m jϕ ji

P

N

j¼1

m jϕ
2
ji

ð8:39Þ

and for normalized eigenvectors by

Γi ¼
X

N

j¼1

m jϕ ji i ¼ 1; 2; . . . ;Nð Þ ð8:40Þ

The maximum response in terms of maximum values for displacements (ur i max) or for acceleration

(€ui max) at the modal coordinates calculated by the SRSS method, is then given, respectively, by

urimax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

j¼1

Γ jϕijSDj
� �2

v

u

u

t ð8:41Þ

and

€uimax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

j¼1

Γ jϕijSAj
� �2

v

u

u

t ð8:42Þ

where SDj and SAj are, respectively, the spectral displacement and spectral acceleration for the

jth mode.

The participation factors Γj indicated in Eqs. (8.39) and (8.40) are the coefficients of the excitation

function €us(t) in Eq. (8.38). As presented in Chap. 5, response spectral charts are prepared as the

solution of Eq. (8.38) (with Γi ¼ 1). Therefore, the spectral values obtained from these charts SDj or

SAj should be multiplied as indicated in Eqs. (8.41) and (8.42) by the participation factor Tj, which was

omitted in the calculation of spectral values.

Illustrative Example 8.2

Determine the response of the frame of Illustrative Example 8.1 shown in Fig. 8.2 when it is subjected

to a suddenly applied constant acceleration €us ¼ 0.28 g at its base.

Solution:

The natural frequencies and corresponding normal modes from calculations in Examples 7.1

and 7.2 are

ω1 ¼ 11:83 rad= sec , ω2 ¼ 32:89 rad= sec

ϕ11 ¼ 0:06437, ϕ12 ¼ 0:0567

ϕ21 ¼ 0:08130, ϕ22 ¼ �0:0924

The acceleration acting at the base of this structure is
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€us ¼ 0:28� 386 ¼ 108:47 in= sec 2

The participation factors are calculated from Eq. (8.39) with the denominators set equal to unity since

the modes are normalized. These factors are then

Γ1 ¼ � 136� 0:06437þ 66� 0:08130ð Þ ¼ �14:120

Γ2 ¼ � 136� 0:0567� 66� 0:0924ð Þ ¼ �1:613
ðaÞ

The modal equations (8.29) are

€g1 þ 140g1 ¼ 108:47

€g2 þ 1082g2 ¼ 108:47
ðbÞ

and their solution, assuming zero initial conditions for velocity and displacement, is given by

Eq. (4.5) as

g1 tð Þ ¼
108:47

140
1� cos 11:83tð Þ

g2 tð Þ ¼
108:47

1082
1� cos 32:89tð Þ

ðcÞ

The response in terms of the relative motion of the stories at the floor levels with respect to the

displacement of the base is given as a function of time by Eqs. (8.27) and (8.28), as

ur1 tð Þ ¼ �14:120� 0:06437� 0:775 1� cos 11:83tð Þ � 1:613� 0:0567� 0:100 1� cos 32:89tð Þ

ur2 tð Þ ¼ �14:120� 0:08130� 0:775 1� cos 11:83tð Þ þ 1:613� 0:0924� 0:100 1� cos 32:89tð Þ

or, upon simplification, as

ur1 ¼ �0:7135þ 0:704 cos 11:83tþ 0:009 cos 32:89t

ur2 ¼ �0:874þ 0:900 cos 11:83t� 0:015 cos 32:89t
ðdÞ

In this example, due to the simple excitation function (a constant acceleration), it was possible to

obtain a closed solution of the problem as a function of time. For a complex excitation function such

as the one produced by an actual earthquake, it would be necessary to resort to numerical integration

to obtain the response or to use response spectra if available. The maximum modal response is

obtained for the present example when the cosine functions in Eq. (c) are set equal to �1. In this case

the maximum modal response is then

g1max ¼ 1:55

g2max ¼ 0:20
ðeÞ

and the maximum response, calculated from the approximate formulas (8.31), is

ur1max ¼ 1:409 in

ur2max ¼ 1:800 in
ðfÞ

The possible maximum values for the response calculated from Eq. (d) by setting the cosines function

to their maximum value results in
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u1max ¼ 1:426 in

u2max ¼ 1:789 in
ðgÞ

which for this particular example certainly compares very well with the approximate results obtained

in Eq. (f) above.

8.3 Response by Modal Superposition Using MATLAB

MATLAB calculates the response of a linear system by superposition of the solutions of the modal

equations. Before one can use this program, it is necessary to solve an eigenproblem to determine the

natural frequencies and modal shapes of the structure. The program determines the response of the

structure excited either by time-dependent forces applied at nodal coordinates or a time-dependent

acceleration at the support of the structure.

Illustrative Example 8.3

uf g ¼ Φ½ � qf g

€qi þ ωi
2qi ¼ ϕf gi

T
Ff g ¼ Pi

Γi

0

¼
ϕf gi

T
Ff g

ϕf gi
T
M½ � ϕf gi

¼ ϕf gi
T
Ff g i ¼ 1; 2; . . .Nð Þ

m1 ¼ 136 #-sec2/in., m2 ¼ 66 #-sec2/in., k1 ¼ 30,700 #/in., k2 ¼ 44,300 #/in.

F2 ¼ 5000 #, F1 ¼ 0

Use computer MATLAB to determine natural frequencies and normalized mode shapes, and the

participation factors.

Solution:

The natural frequencies and the modal matrix for this structure as calculated in Example 10.1 are

ω1 ¼ 11:83 rad= sec

ω2 ¼ 32:89 rad= sec

and

Φ½ � ¼
0:0644 0:0567
0:0813 �0:0924

� �

The mass matrix is

M½ � ¼
136 0

0 66

� �
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clc
clear all
close all

%%%%-GIVEN VALUES-%%%%

%%%Define Mass Matrix
M = [136 0; 0 66]

%%%Define Stiffness Matrix
K = [30700+44300 -44300;-44300 44300]

%%%Define Force Matrix
F =[0; 5000];

%_______________________________________________________
% Solve the eignevalue problem and normalized eigenvectors
%_____________________________________________________________________

%%%Solve for eigenvalues (D) and eigenvectors (a)
[a, D] = eig(K, M)

[omegas,k] = sort(sqrt(diag(D)));

%%%Natural frequencies
omegas =sqrt(D)

%%%{a}1 before changing the unity in the first DOF.
a1 = a(:,1);

%%%{a}2 before changing the unity in the first DOF.
a2 = a(:,2);

%%%Change the {a} wrt the unity in the first DOF.
a11 = 1;
a21 = a1(2,1)./a1(1,1);
a12 = 1;
a22 = a2(2,1)./a2(1,1);

a =[];

%%%Calculate the {a}
a(:,1) = [a11, a21];                 %[a11,a21]
a(:,2) = [a12, a22];                 %[a12,a22]

%%%aMa = {a}'*[M]*(a}
aMa = a'*M*a;                        %Eq.7.14

%%%Normalization factor
norm_1 = sqrt(aMa(1,1));                      
norm_2 = sqrt(aMa(2,2));

%%%Normalized eigenvectors
nom_phi(:,1) = 1./norm_1.*a(:,1);   %Eq.7.16 for the first mode
nom_phi(:,2)= 1./norm_2.*a(:,2);    %Eq.7.16 for the 2nd mode
nom_phi

%fMf = {f}'*[M}*{f}
fMf=nom_phi'*M*nom_phi

%Omega: [Omega]
Omega = D'*fMf;
%P
P = nom_phi'*F

%q_st
q_st = inv(Omega)*P
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8.4 Harmonic Force Excitation

When the excitation, that is, the external forces or base motion, is harmonic (sine or cosine function),

the analysis is quite simple and the response can readily be found without the use of modal analysis.

Let us consider the two-story shear building as shown in Fig. 8.4 subjected to a single harmonic force

F ¼ F0 sinωt which is applied at the level of the second floor. In this case, Eq. (8.1) with F1 (t) ¼ 0

and F2 ¼ F0 sinωt become

m1€u1 þ k1 þ k2ð Þu1 � k2u2 ¼ 0

m2€u2 � k2u1 þ k2u2 ¼ F0 sinωt
ð8:43Þ

For the steady-state response we seek a solution of the form

u1 ¼ U1 sinωt

u2 ¼ U2 sinωt
ð8:44Þ

After substitution of Eq. (8.44) into Eq. (8.43) and cancellation of the common factor sinωt, we

obtain

�

k1 þ k2 � m1ω
2
�

U1 � k2U2 ¼ 0

�k2U1 þ
�

k2 � m2ω
2
�

U2 ¼ F0

ð8:45Þ

which is a system of two equation in two unknowns, U1, and U2. This system always has a unique

solution except in the case when the determinant formed by the coefficients of the unknowns is equal

to zero. The reader should remember that in this case the forced frequency ω would equal one of the

natural frequencies, since this determinant when equated to zero is precisely the condition used for

determining the natural frequencies. In other words, unless the structure is forced to vibrate at one of

the resonant frequencies, the algebraic system of Eq. (8.43) has a unique solution for U1, and U2.

Illustrative Example 8.4

Determine the steady-state response of the two-story shear building of Illustrative Example 7.1 when

a force F2(t) ¼ 10,000 sin 20t is applied to the second story as shown in Fig. 8.4.

Fig. 8.4 Shear building with harmonic load
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Solution:

The natural frequencies for this frame were determined in Illustrative Example 7.1 to be

ω1 ¼ 11:83 rad= sec

ω2 ¼ 32:89 rad= sec

Since the forcing frequency is 20 rad/sec, the system is not at resonance. The steady-state response is

then given by solving Eq. (8.45) for U1 and U2. substituting numerical values in this system or

equations, we have

75; 000� 136� 202
� �

U1 � 44, 300U2 ¼ 0

�44, 300U1 þ 44; 300� 66� 202
� �

U2 ¼ 10, 000

Solving these equations simultaneously results in

U1 ¼ �0:28 in, U2 ¼ �0:13 in

Therefore, according to Eq. (8.44), the steady-state response is

u1 ¼ �0:28 sin 20t in

u2 ¼ �0:13 sin 20t in
ðAnsÞ

Damping may be considered in the analysis by simply including damping elements in the model as it

is shown in Fig. 8.5 for a two-story shear building. The equations of motion which are obtained by

equating to zero the sum of the forces in the free body diagram shown in Fig. 8.5c are

m1€u1 þ c1 þ c2ð Þ _u 1 þ k1 þ k2ð Þu1 � c2 _u 2 � k2u2 ¼ F1 tð Þ

m2€u2 � c2 _u 1 � k2u1 þ c2 _u 2 þ k2u2 ¼ F2 tð Þ
ð8:46Þ

Now, considering the general case of applied forces of the form given by

F tð Þ ¼ Fc cosωtþ Fs sinωt ð8:47Þ

we, conveniently, express such force in complex form as

F tð Þ ¼ Fc � iFsð Þeiωt ð8:48Þ

with the tacit understanding that only the real part of the Eq. (8.48) is the applied force. We show that

the real part of the complex force in Eq. (8.48) is precisely the force in Eq. (8.47). Using Euler’s

formula eiωt ¼ cosωtþ i sinωt, we obtain
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Real Fc � iFsð Þeiωt
� �

¼ Real Fc � iFsð Þ
�

cosω tþ i sin ωt
�� �

¼ Fc cos ωtþ Fs sin ωt
ð8:49Þ

which is equal to the expression in Eq. (8.47).

Assuming that the forces F1(t) and F2(t) in Eq. (8.46) are in the form given by Eq. (8.47), we

substitute Eq. (8.48) into Eq. (8.46) to obtain

m1€u1 þ c1 þ c2ð Þ _u 1 þ k1 þ k2ð Þu1 � c2 _u 2 � k2u2 ¼ Fc1 � iFs1ð Þeiωt

m2€u2 � c2 _u 1 � k2u1 þ c2 _u 2 þ k2u2 ¼ Fc2 � iFs2ð Þeiωt
ð8:50Þ

The solution of the complex system of Eq. (8.50) will, in general, be of the form of

u1 tð Þ ¼ Uc1 þ iUs1ð Þ:eiωt

u2 tð Þ ¼ Uc2 þ iUs2ð Þeiωt
ð8:51Þ

The substitution of Eq. (8.51) together with the first and second derivatives of u1 and u2 into Eq. (8.50)

results in the following system of complex algebraic equations:

Fig. 8.5 (a) Damped shear building with harmonic load. (b) Multi-degree mass-spring model. (c) Free body diagrams
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��

k1 þ k2 � mω2
�

þ iω
�

c1 þ c
2

�

�

Uci þ iUsið Þ �
��

k2 þ iωc2
�

Uc2 þ iUs2ð Þ ¼ Fc1 � Fs1

�
�

k2 þ iωc2
�

Uci þ iUsið Þ þ
�

k2 � m2ω
2
�

þ iωc2
� ��

Uc2 þ iUs2ð Þ ¼ Fc2 � Fs2

ð8:52Þ

As already stated, the response is then found by solving the complex system of equations (11.54)

and retaining only the real part of the solution. Hence, analogously to Eq. (8.49),

u1 tð Þ ¼ Uc1 cos ω t� Us1 sin ω t

u2 tð Þ ¼ Uc2 cos ω t� Us2 sin ω t
ð8:53Þ

in which Uc1, Us2, Uc2, Us2, is the solution of the complex equations (8.52). The necessary

calculations are better explained through the use of a numerical example.

Illustrative Example 8.5

Determine the steady state response for the two-story shear building of Illustrative Example 8.4 in

which damping is considered in the analysis (Fig. 8.5). Assume for this example that the damping

constants c1 and c2 are, respectively, proportional to the magnitude of spring constants k1 and k2 in

which the factor of proportionality, a1 ¼ 0.01.

Solution:

The damping constants are calculated as

c1 ¼ a1k1 ¼ 307 lb: sec =in

c2 ¼ a1k2 ¼ 443 lb: sec =in
ðaÞ

The substitution of numerical values for this example into Eq. (8.54) results in the following system

of equations:

20; 600þ 15; 000ið ÞU1 � 44; 300þ 8860ið ÞU2 ¼ 0

� 44; 300þ 8860ið ÞU1 þ 17; 900þ 8860ið ÞU2 ¼ �10, 000i
ðbÞ

The solution of this system of equations is

U1 ¼ 0:000681þ i 0:26865

U2 ¼ �0:06390þ i 0:13777

The, it follows from Eq. (8.55),

u1 tð Þ ¼ 0:0006814 cos 20t� 0:26865 sin 20t

u2 tð Þ ¼ �0:0639 cos 20t� 0:137775 sin 20t
ð8:54Þ

which may also be written as

u1 ¼ 0:2686 sin 20tþ 3:144ð Þ in

u2 ¼ 0:1516 sin 20tþ 3:571ð Þ in
ðAnsÞ

When the results are compared with those obtained for the undamped structure in Illustrative

Example 8.4, we note only a small change in the amplitude of motion. This is always the case for

systems lightly damped and subjected to harmonic excitation of a frequency that is not close to one of

the natural frequencies of the system. For this example, the forced frequency ω ¼ 20 rad/sec is

relatively far from the natural frequencies, ω1 ¼ 11.83 rad/sec or ω2 ¼ 32.89 rad/sec which were

calculated in Illustrative Example 5.1.
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8.5 Harmonic Response: MATLAB Program

MATLAB calculates the response to harmonic excitations of a structural system having the stiffness

and mass matrices.

Damping in the system is assumed to be proportional to the stiffness and/or mass coefficients, that

is, the damping matrix is calculated as

C½ � ¼ a0 M½ � þ a1 K½ � ð8:55Þ

in which a0 and a1 are constants specified in the input data. The program calculates the steady-state

response for structures subjected to harmonic forces applied at the nodal coordinates or a harmonic

acceleration applied at the base of the structure.

Illustrative Example 8.6

Obtain the response of the damped two-degree-of-freedom shear building of Illustrative Example 8.5

using MATLAB.

Solution:

clc
clear all
close all

%______________________________________________________________________
% Inputs: 

%   M, K 
%   F = forcing function
%   t = Time period
%   u0 = initial displacement
%   v0 = initial velocity
%______________________________________________________________________ 

%%%%-GIVEN VALUES-%%%%

%%%Time for Response
t = 0:0.01:10; 

%%%Define Mass Matrix
M = [136 0; 0 66]

%%%Define Stiffness Matrix
k1=30700;
k2=44300;

K = [k1+k2 -k2;
-k2 k2];

%%%Determine #s of DOFs
[n,n]= size(M); 

%%%Define Force Matrix
F = zeros(n,1); F(2)=10000; 

nstep = size(t');

%_____________________________________________________________________
% Initial conditions
%_____________________________________________________________________

u0 = zeros(n,1); u0(1) =0;
v0 = zeros(n,1); v0(1) =0;
[n,n]= size(M); 
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%_____________________________________________________________________
% Solve the eignevalue problem and normalized eigenvectors
%_____________________________________________________________________

%%%Solve for eigenvalues (D) and eigenvectors (a)
[a, D] = eig(K, M)      

%%%Natural Frequencies
[omegas,k] = sort(sqrt(diag(D)));  

%%%Eigenvectors
a = a(:,k)

%%%Natural Periods
T = 2*pi./omegas;                  

%%%aMa = {a}'*[M]*(a}
aMa = diag(a'*M*a)                 

%%%Normalized modal matrix
nom_phi = (a)*inv(sqrt(diag(aMa))) 

%%%Normalized force, P = nom_F
P = nom_phi'*F;                    
q0 = nom_phi'*M*u0
dq0 = nom_phi'*M*v0

%_____________________________________________________________________
% Damping matrix using the proportional damping matrix
% [C] = a0[M]+a1[K] (Eq. 8.55)
% zetas = damping ratios
%_____________________________________________________________________
a0 = 0;

a1 = 0.01;
nom_C = nom_phi'*(a0*M+a1*K)*nom_phi;
zetas = diag((1/2)*nom_C*inv(diag(omegas)));

save ('temp1.mat', 'omegas', 'P' ,'zetas');
q = [];
r = [];

%_____________________________________________________________________
% Solve uncoupled equations of motions
%_____________________________________________________________________

%%%Iteration for uncoupled equations of motion (Eq. 8.6)
fori=1:n
q0_i = q0(i,:);
dq0_i = dq0(i,:);

load temp1.mat
omega = omegas(i,:);
P = P(i,:);
m = M(i,i);
zeta = zetas(i,:);

save ('temp2.mat', 'omega', 'P', 'm', 'zeta');

[t,q] = ode45(@MDOFP, t, [q0_i dq0_i]',[]);

r(:,i) = q(:,1);
save ('temp3.mat', 'r') 

end

load ('temp3.mat', 'r');

%%%Response using Modal Superposition Method 
yim = nom_phi*[r'];                 %Eq.8.11

%%%Response 
figure 
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subplot(2,1,1);
plot(t, yim(1,:))                   %Response @ 1DOF
title('(a) u_1') 
xlabel ('Time (sec)');
ylabel ('u_1(in.)'); 
grid on

subplot(2,1,2);
plot(t, yim(2,:))                   %Response @ 2DOF
title('(b) u_2') 
xlabel ('Time (sec)');
ylabel ('u_2(in.)'); 
grid on

%%%Maximum response
umax_1=max(abs(yim(1,:)))           %u_max @ 1DOF
umax_2=max(abs(yim(2,:)))           %u_max @ 2DOF    

This function of MATLAB is similar to the function defined in Chap. 3 (MATLAB function file:

SDPF.m). This function is used to solve the partial differential equations for solving uncoupled

equations of motions. The function of force is defined here except for participation factors which is

found in the main MATLAB program.

function q = MDOFP(t, q)
load ('temp2.mat', 'omega', 'P', 'm' ,'zeta') 

%______________________________________
%illustrative Example 8.4
%______________________________________
P = P*sin(20*t);

%zeta =0 ;
q = [q(2); -omega*omega*q(1)-2*zeta*omega*q(2)+P];
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0.5
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u
1
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n
.)

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

(b) u
2

Time (sec)

u
2
(i
n
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Fig. 8.6 (a) Response of 1st degree-of-freedom. (b) Response of 2nd degree-of-freedom
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The results given by the MATLAB, as expected, are the same as the values calculated in

Example 8.6. The steady-state maximum displacement is the same (Fig. 8.6).

8.6 Combining Maximum Values of Modal Response

The square root of the sum of squared contributions (SRSS), to estimate the total response from

calculated maximum modal values, may be expressed, in general, from Eq. (11.41) or Eq. (11.42), as

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

R2
i

v

u

u

t ð8:56Þ

where R is the estimated response (force, displacement, etc.) at a specified coordinate and R1 is the

corresponding maximum response of the ith mode at that coordinate.

Application of the SRSS method for combining modal response generally provides an acceptable

estimation of the total maximum response. However, when some of the modes are closely spaced, the

use of the SRSS method may result in grossly underestimating or overestimating the maximum

response. In particular, large errors have been found in the analysis of three-dimensional structures in

which torsional effects are significant. The term “closely spaced” referring to modes, may be

arbitrarily define the case when the difference between two natural frequencies is within 10% of

the smallest of the two frequencies.

A formulation known as theCompleteQuadratic Combinations (CQC),which is based on the theory of

random vibrations, has been proposed by Kiureghian (1980) and by Wilson, et al. (1981). The CQC

method,whichmay be considered as an extension of the SRSSmethod, is given by the following equation:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

X

N

j¼1

R jρijR j

v

u

u

t ð8:57Þ

in which the cross-modal coefficient ρij, may be approximated by

ρij ¼
8 ξi ξ j

� �1=2
ξi þ rξ j

� �

r3=2

1� r2ð Þ2 þ 4ξi ξ jr 1� r2ð Þ þ 4 ξ2i þ ξ2j

	 


r2
ð8:58Þ

where r ¼ ωj/ωi is the ratio of the natural frequencies or order i and j and ξi and ξj the corresponding

damping ratios for modes i and j. For constant modal damping ξ, Eq. (11.58) reduces to

ρij ¼
8ξ2 1� rð Þr3=2

1� r2ð Þ2 þ 4ξ2r 1þ rð Þ2
�

ð8:59Þ

It is important to note that, for i ¼ j, Eq. (11.58) or Eq. (11.59) yields ρij ¼ 0 for any value of the

damping ratio, including.ξ ¼ 0 Thus, for an undamped structure, the CQC method (Eq. 11.57) is

identical to the SRSS method (Eq. 11.56).

8.7 Summary

For the solution of linear equations of motion, we may employ either the modal superposition method

of dynamic analysis or a step-by-step numerical integration procedure. The modal superposition

method is restricted to the analysis of structures governed by linear systems of equations whereas the
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step-by-step methods of numerical integration are equally applicable to systems with linear or

nonlinear behavior. We have deferred the presentation of the multi-degree-of-freedom systems.

In the present chapter, we have introduced the modal superposition method in obtaining the

responses of the shear building subjected to either force excitation or to base motion and have

demonstrated that the use of normal modes of free vibration for transforming the coordinates leads

to a set of uncoupled differential equations. The solution of these equations may then be obtained by

any of the methods presented in Part 1 for the single-degree-of-freedom system.

When use is made of response spectra to determine maximum values for modal responses, these

values are usually combined by the square root of the sum of squares (SRSS) method. However, the

SRSS method could seriously overestimate or underestimate the total response when some of the

natural frequencies are closely spaced. A more precise method of combining maximum values of the

modal response is the Complete Quadratic Combination (CQC). This method has been strongly

recommended in lieu of the SRSS method.

In the particular case of harmonic excitation, the response may be obtained in closed form by

simply solving a system of algebraic equations in which the unknowns are the amplitudes of the

response at the various coordinates.

8.8 Problems

Problem 8.1

Determine the response as a function of time for the two-story shear building of Problem 7.1 when a

constant force of 500 lb is suddenly applied at the level of the second floor as shown in Fig. P8.1.

Bays are 15 ft. apart.

Problem 8.2

Repeat Problem 8.1 if the excitation is applied to the base of the structure in the form of a suddenly

applies acceleration of magnitude 0.5 g.

W2 = 26,500 Ib

W11 X 45

W10 X 21
W1 = 52,500 Ib

5000 Ib

10´

15´

30´

20 psf

20 psf

Fig. P8.1
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Problem 8.3

Determine the maximum displacement a the floor levels of the three-story shear building (Fig P8.3a)

subjected to impulsive triangular loads as shown in Fig. P8.3b. The total stiffness of the columns of

each story is k ¼ 1500 lb/in and the mass at each floor is m ¼ 0.386 lb. sec2/in.

Problem 8.4

Determine the maximum shear force in the columns of the second story of Problem 8.3. (Hint:

Calculate modal shear forces and combine contributions using method of square root sum of squares.)

Problem 8.5

Use SAP 2000 to obtain the time history response of the three-story building in Fig. P8.5a subjected to

the support acceleration plotted in Fig. P8.5b. Determine the response for a total time of 1.0 sec using

time step) t ¼ 0.05 sec, and modal damping coefficient of 10% for all the modes (E ¼ 30 � 106 psi).

F2

F3

F3 = 3000 Ib

F

F2 = 2000 Ib

F1 = 1000 Ib

0.2
Time (sec)

k

m

k

m

k

mF3 u3

(a) (b)

u2

u1

Fig. P8.3

10 Acceleration

0.5

0.4

0.2

0.3

0.5 0.6

0.2 0.2

0.70.40.30.20.1 0.8

–0.1

–0.2

0.9 1.0

Time

t(sec)

a1

g

12

15

(a) (b)

Itotal = 500 in.4

ltotal = 400 in.4

ltotal = 300 in.4

m1 = 20

m2 = 15

m3 = 10 (Ib sec2/in.)

Fig. P8.5
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Problem 8.6

Find the steady-state response of the shear building shown in Fig. P8.6 subjected to the harmonic

forces indicated in the figure. Neglect damping.

Problem 8.7

Solve Problem 8.6 assuming damping coefficients proportional to the story stiffness, ci ¼ 0.05 Ki.

Problem 8.8

For the structure (shear building) shown in Fig. P8.8 determine the steady-state motion for the

following load systems (loads in pounds):

að Þ F1 tð Þ ¼ 1000 sin t, F2 tð Þ ¼ 2000 sin t,F3 tð Þ ¼ 1500 sin t

bð Þ F1 tð Þ ¼ 2000 cos t, F2 tð Þ ¼ 3000 cos t,F3 tð Þ ¼ 4000 cos t

Also load the structure simultaneously with load systems (a) and (b) and verify the superposition

of results.

Fig. P8.6

F3 (t)

F2 (t)

F1 (t)

Eltotal = 10 × 108 Ib in.2

Eltotal = 5 × 108 Ib in.2

W1 = 3860 Ib

W2 = 1930 Ib

W3 = 1930 Ib

10´

12´

15´

Eltotal = 5 × 108 Ib in.2

Fig. P8.8
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Problem 8.9

For the structure modeled as a four-story shear building shown in Fig. P8.9 determine the steady-state

response when it is subjected to a force F¼ 10,000 sin 20 t (lb) applied at the top floor of the building.

The modulus of elasticity is E ¼ 2.0 � 106 psi. Assume damping in the system is proportional to the

stiffness coefficient (co ¼ 0.01)

F(t)(Ib)

F(t) m = 1

m = 1

m = 1

m = 1

I = 79.55 in.4

I = 79.55 in.4

I = 79.55 in.4

I = 79.55 in.4

180 in.

180 in.

180 in.

180 in.

u4

u3

u2

u1

1000

0 0.25 0.5
t(sec)

(b)(a)

Fig. P8.9
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Reduction of Dynamic Matrices 9

In the discretization process it is sometimes necessary to divide a structure into a large number of

elements because of changes in geometry, loading, or material properties. When the elements are

assembled for the entire structure, the number of unknown displacements, that is, the number of

degrees of freedom, may be quite large. As a consequence, the stiffness, mass, and damping matrices

will be of large dimensions. The solution of the corresponding eigenproblem to determine natural

frequencies and modal shapes will be difficult and, in addition, expensive. In such cases it is desirable

to reduce the size of these matrices in order to make the solution of the eigenproblem more

manageable and economical. Such reduction is referred to as condensation.

A popular method of reduction is the Static Condensation Method This method, though simple to

apply, is only approximate and may produce relatively large errors in the results when applied to

dynamic problems. An improved method for condensation of dynamic problems, which gives

virtually exact results, has recently been proposed. This method, called the Dynamic Condensation

Method, will be presented in this chapter after the introduction of the Static Condensation Method.

9.1 Static Condensation

A practical method of accomplishing the reduction of the stiffness matrix is to identify those degrees

of freedom to be condensed as dependent or secondary degrees of freedom, and express them in the

term of the remaining independent or primary degrees of freedom. The relationship between the

secondary or primary degrees of freedom is found by establishing the static relation between them,

hence the name Static Condensation Method (Guyan 1965). This relationship provides the means to

reduce the stiffness matrix. This method is also used in the static problems to eliminate unwanted

degrees of freedom such as the internal degrees of freedom of an element used with the Finite

Element Method. In order to describe the Static Condensation Method, let us assume that those

(secondary) degrees of freedom to be reduced or condensed are arranged as the first s coordinates, and

the remaining (primary) degrees of freedom are the last ρ coordinates. With this arrangement, the

stiffness equation for the structure may be written using partition matrices as
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Kss½ � ⋮ Ksp

� �

� � � ⋮ � � �
Kps

� �

⋮ Kpp

� �

2

6

6

4

3

7

7

5

usf g
� � �
up

8

>

<

>

:

9

>

=

>

;

¼
0f g
� � �
Fp

� �

8

>

<

>

:

9

>

=

>

;

ð9:1Þ

where {us} is the displacement vector corresponding to the s degrees of freedom to be reduced and

{up} is the vector corresponding to the reining p independent degrees of freedom. In Eq. (8.1), it is

assumed that the external forces were zero at the dependent (i.e., secondary) degrees of freedom; this

assumption is not mandatory (Gallagher 1975), but serves to simplify explanations without affecting

the final results. A simple multiplication of the matrices on the left side of Eq. (9.1) expands this

equation into two matrix equations, namely,

Kss½ � usf g þ Ksp up
� �

¼ 0f g ð9:2Þ

Kps usf g þ Kpp up
� �

¼ Fp

� �

ð9:3Þ

Equation (9.2) is equivalent to

usf g ¼
�

�T
�

up
� �

ð9:4Þ

where
�

�T
�

is the transformation matrix given by

�

�T
�

¼ � Kss½ ��1
Ksp

� �

ð9:5Þ

Substituting Eq. (9.4) and using Eq. (9.5) in Eq. (9.3) results in the reduced stiffness equation relating

forces and displacements at the primary coordinates, that is,

�

�K
�

up
� �

¼ Fp

� �

ð9:6Þ

where
�

�K
�

is the reduced stiffness matrix given by

�

�K
�

¼ Kpp

� �

� Kps

� �

Kss½ ��1
Ksp

� �

ð9:7Þ

Equation (9.4), which expresses that static relationship between the secondary coordinates {us} and

primary coordinates {up}, may also be written using the identity {up} ¼ [I]{up} as

usf g
� � �
up

� �

8

>

<

>

:

9

>

=

>

;

¼

�

�T
�

� � �
I½ �

2

6

4

3

7

5
up

� �

or

uf g ¼ T½ � up
� �

ð9:8Þ

where

uf g ¼ usf g
up

� �

� �

and T½ � ¼ T½ �
I½ �

� 	

ð9:9Þ

Substituting Eqs. (9.8) and (9.9) into Eq. (9.1) and pre-multiplying by the transpose of [T] results in
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T½ �T K½ � T½ � up
� �

¼ T½ �T I½ �
h i

0f g
Fp

� �

� �

or

T½ �T K½ � T½ � up
� �

¼ Fp

� �

and using Eq. (9.6)

�

�K
�

¼ T½ �T K½ � T½ � ð9:10Þ

thus showing that the reduced stiffness matrix
�

�K
�

can be expressed as a transformation of the system

stiffness matrix [K].

It may appear that the calculation of the reduced stiffness matrix
�

�K
�

given by Eq. (9.7) requires the

inconvenient calculation of the inverse matrix [Kss]
�1. However, the practical application of the

Static Condensation Method does not require a matrix inversion. Instead, the standard Gauss-Jordan

elimination process, as it used in the solution of a system of linear equations, is applied systematically

on the system’s stiffness matrix [K] up to the elimination of the secondary coordinates {us}. At this

stage of the elimination process the stillness Eq. (9.1) has been reduced to

I½ � �
�

�T
�

0½ �
�

�K
�

" #

usf g
up

� �

( )

¼
0f g
Fp

� �

( )

ð9:11Þ

It may be seen by expanding Eq. (9.11) that the partition matrices
�

�T
�

and
�

�K
�

are precisely the

transformation matrix and the reduced stiffness matrix defined by Eqs. (9.4) and (9.6), respectively. In

this way, the Gauss-Jordan elimination process yields both the transformation matrix
�

�T
�

and the

reduced stiffness matrix
�

�K
�

. There is thus no need to calculate [Kss]
�1 in order to reduce the

secondary coordinates of the system.

Illustrative Example 9.1

Consider the two-degree-of-freedom system represented by the model shown in Fig. 9.1 and use static

condensation to reduce the first coordinate.

Solution:

For this system the equations of equilibrium are readily obtained as

2k �k

�k k

" #

u1

u2

( )

¼
0

F2

( )

ð9:12Þ

The reduction of u1 using Gauss elimination leads to

1 �1=2

0 k=2

" #

u1

u2

( )

¼
0

F2

( )

ð9:13Þ

Comparing Eq. (9.13) with Eq. (9.11), we identify in this example

�

�T
�

¼ 1

2
�

�K
�

¼ k=2

ð9:14Þ
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Consequently, from Eq. (9.9) the transformation matrix is

T½ � ¼ 1=2
1

� 	

ð9:15Þ

We can now check Eq. (9.10) by simple performing the indicated multiplications, namely

�

�K
�

¼ 1=2 1½ � 2k �k

�k k

� 	

1=2
1

� 	

¼ k

2
ð9:16Þ

which agrees with the result given in Eq. (9.14).

9.2 Static Condensation Applied to Dynamic Problems

In order to reduce the mass and the damping matrices, it is assumed that the same static relationship

between the secondary and primary degrees of freedom remains valid in the dynamic problem. Hence

the same transformation based on static condensation for the reduction of the stiffness matrix is also

used in reducing the mass and damping matrices. In general this method of reducing the dynamic

problem is not exact and introduces errors in the results. The magnitude of these errors depends on the

relative number of degrees of freedom reduced as well as on the specific selection of these degrees of

freedom for a given structure.

Weconsider first the case inwhich the discretization of themass results in a numberofmassless degrees

of freedom selected to be condensed. In this case it is only necessary to carry out the static condensation of

the stiffnessmatrix and to delete from themassmatrix the rows andcolumns corresponding to themassless

degrees of freedom. The Static CondensationMethod in this case does not alter the original problem, and

thus results in an equivalent eigenproblem without introducing any error.

In the general case, that is, the case involving the condensation of degrees of freedom to which the

discretization process has allocated mass, the reduced mass and damping matrices are obtained using

transformations analogous to Eq. (9.10). Specifically, if [M] is the mass matrix of the system, then the

reduced mass matrix is given by

�

�M
�

¼ T½ �T M½ � T½ � ð9:17Þ

where [T] is the transformation matrix defined by Eq. (9.9).

Analogously, for a damped system, the reduced damping matrix is given by

�

�C
�

¼ T½ �T C½ � T½ � ð9:18Þ

where [C] is the damping matrix of the system.

Fig. 9.1 Mathematical model for a two-degree-of-freedom system
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This method of reducing the mass and damping matrices may be justified as follows: The potential

elastic energy V and the kinetic energy KE of the structure may be written, respectively, as

V ¼ 1

2
uf gT K½ � uf g ð9:19Þ

KE ¼ 1

2
_uf gT M½ � _uf g ð9:20Þ

Analogously, the virtual work of δWd done by the damping forces Fd ¼ C½ � _uf g corresponding to the
virtual displacement {δu} may be expressed as

δWd ¼ duf gT C½ � _uf g ð9:21Þ

Introduction of the transformation Eq. (9.8) in the above equation results in

V ¼ 1

2
up

� �T
T½ �T K½ � T½ � up

� �

ð9:22Þ

KE ¼ 1

2
_u p

� �T
T½ �T M½ � T½ � _u p

� �

ð9:23Þ

δWd ¼ δup
� �T

T½ �T C½ � T½ � _u p

� �

ð9:24Þ

The respective substitution of
�

�K
� �

�M
�

and
�

�C
�

from Eqs. (9.10), (9.17), and (9.18) for the product of

the three central matrices in the Eqs. (9.22), (9.23), and (9.24) yields

V ¼ 1

2
up

� �T�
�K
�

T½ � up
� �

ð9:25Þ

KE ¼ 1

2
_u p

� �T�
�M
�

_u p

� �

ð9:26Þ

δWd ¼ δup
� �T� �C

�

_u p

� �

ð9:27Þ

These last three equations express the potential energy, the kinetic energy, and the virtual work of the

damping forces in terms of the primary coordinates {up}. Hence the matrices
�

�K
�

,
�

�M
�

and
�

�C
�

may be

interpreted, respectively, as the stiffness, mass, and damping matrices of the structure corresponding

to the primary degrees of freedom {up} resulting in the same potential energy, kinetic energy and

virtual work calculated with all the original nodal coordinate.

Illustrative Example 9.2

Determine the natural frequencies and modal shapes for the three-degree-of-freedom shear building

shown in Fig. 9.2; then condense the first degree of freedom and compare the resulting values

obtained for natural frequencies and modal shapes. The stiffness of each story and the mass at each

floor level are indicated in the figure. MATALB program is used to demonstrate the natural

frequencies using static condensation method.

Solution:

1. Calculation of Natural Frequencies and Modal Shapes:
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The equation of motion in free vibration for this structure is given by Eq. (8.3) with the force vector

{F} ¼ {0}, namely,

M½ � €uf g þ K½ � uf g ¼ 0 ðaÞ

where the matrices [M] and [K] are given, respectively, by Eqs. (7.4) and (7.5). Substituting the

corresponding numerical value in Eq. (a) yields

25 0 0

0 50 0

0 0 100

2

4

3

5

€u1

€u2

€u3

8

<

:

9

=

;

þ
40, 000 �10, 000 0

�10, 000 20, 000 �10, 000

0 �10, 000 10, 000

2

4

3

5

u1

u2

u3

8

<

:

9

=

;

¼
0

0

0

8

<

:

9

=

;

Upon substitution ui ¼ Ui sin ωt and cancellation of the factor sin ωt, we obtain the following system

of equations:

40, 000� 25ω2 �10, 000 0

�10, 000 20, 000� 50ω2 �10, 000

0 �10, 000 10, 000� 100ω2

2

6

4

3

7

5

U1

U2

U3

8

<

:

9

=

;

0

0

0

8

<

:

9

=

;

ðbÞ

which for a nontrivial solution requires that the determinant of the coefficients of the unknowns be

equal to zero, that is,

40, 000� 25ω2 �10, 000 0

�10, 000 20, 000� 50ω2 �10, 000

0 �10, 000 10, 000� 100ω2











































¼ 0

Fig. 9.2 Shear building for Illustrative Example 9.2
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The expansion of this determinant results in a third degree equation in terms of ω
2 having the

following roots:

ω2
1 ¼ 36:1 ω2

2 ¼ 400:0 ω2
3 ¼ 1664:0 ðcÞ

The natural frequencies are calculated as f ¼ ω/2π, so that

f 1 ¼ 0:96cps f 2 ¼ 3:18cps f 3 ¼ 264:8cps

The modal shapes are then determined by substituting in turn each of the values for the natural

frequencies into Eq. (b), deleting a redundant equation, and solving the remaining two equations for

two of the unknowns in terms of the third. As we mentioned previously, in solving for these

unknowns it is expedient to set the first nonzero unknown equal to one. Performing these operations,

we obtain from Eqs. (b) and (c) the following values for the modal shapes:

U11 ¼ 1:00, U12 ¼ 1:00, U13 ¼ 1:00

U21 ¼ 3:91, U22 ¼ 3:00, U23 ¼ 3:338

U31 ¼ 6:11, U32 ¼ �1:00, U33 ¼ �2:025

in which the second sub-index in U refers to the modal order.

2. Condensation of Coordinate u1:

The stiffness matrix for this structure is

40, 000 �10, 000 0

�10, 000 20, 000 �10, 000

0 �10, 000 10, 000

2

6

4

3

7

5

Gauss elimination applied to the first row gives

ðdÞ

A comparison of Eq. (d) with Eq. (9.11) indicates that

�

�T
�

¼ 0:25 0½ �
�

�K
�

¼
17, 500 �10, 000

�10, 000 10, 000

" #

ðeÞ

Then from Eq. (9.9)

T½ � ¼
0:25 0

1 0

0 1

2

6

4

3

7

5
ðfÞ
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To check results, we use Eq. (9.10) to compute
�

�K
�

. Hence

�

�K
�

¼
0:25 1 0

0 0 1

" # 40, 000 �10, 000 0

�10, 000 20, 000 �10, 000

0 �10, 000 10, 000

2

6

4

3

7

5

0:25 0

1 0

0 1

2

6

4

3

7

5

�

�K
�

¼
17, 500 �10, 000

�10, 000 10, 000

" #

which checks with Eqs. (e).

The reduced mass matrix is calculated by substituting matrix [T] and its transpose from Eq. (f) into

Eq. (9.17), so that

�

�M
�

¼ 0:25 1 0

0 0 1

� 	 25 0 0

0 50 0

0 0 100

2

4

3

5

0:25 0

1 0

0 1

2

4

3

5

which results in

�

�M
�

¼ 51:6 0

0 100

� 	

The condensed dynamic problem is then

51:6 0

0 100

" #

€u2

€u3

( )

þ
17, 500 �10, 000

�10, 000 10, 000

" #

u2

u3

( )

¼
0

0

( )

The natural frequencies and modal shapes are determined from the solution of the following reduced

eigenproblem:

17, 500� 51:6ω2 �10, 000

�10, 000 10, 000� 1002

" #

U2

U3

( )

¼
0

0

( )

ðgÞ

Equating to zero the determinant of the coefficient matrix in Eq. (g) and solving the resulting

quadratic equation in ω2 gives

ω2
1 ¼ 36:1 ω2

2 ¼ 403:3 ðhÞ

from which

f 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

36:1=2π
p

¼ 0:95cps

f 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

403:3=2π
p

¼ 3:20cps

Corresponding modal shapes are obtained from Eq. (g) after substituting in turn the numerical values

for ω2
1 or ω

2
2 and solving the first equation for U3 with U2 ¼ 1,. We then obtain

U21 ¼ 1:00, U22 ¼ 1:00

U31 ¼ 1:56, U32 ¼ �0:33

in which the second subindexes in U serve to indicate the mode 1 or 2.
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Application of Eq. (9.8) for the first mode gives

U11

U21

U31

8

<

:

9

=

;

¼
0:25 0

1 0

0 1

2

4

3

5

1:00
1:56

� �

¼
0:25
1:00
1:56

8

<

:

9

=

;

or, after normalizing so that the first component is 1,

U11 ¼ 1:00, U21 ¼ 4:00, U31 ¼ 6:24

and analogously for the second mode

U12 ¼ 1:00, U22 ¼ 4:00, U32 ¼ �1:32

For this systemof only three degrees of freedom, the reduction of one coordinate gives natural frequencies

that compare rather well for the first two modes [Eqs. (h) and (c)]. However, experience shows that static

condensation may produce large errors in the calculation of eigenvalues and eigenvectors obtained from

the reduced system. A general recommendation given by users of this method is to assume that the static

condensation process results in an eigenproblem that provides acceptable approximations of only about a

third of the calculated eigenvalues (natural frequencies) and eigenvectors (modal shapes).

The MATLAB program is used to obtain the natural frequencies in Eq. (h).

clc

clear all

close all

%__________________________________________________________________________

% Inputs: 

%   M, K 

%   m =  Number of row to apply the elimination process

%___________________________________________________________________________

%%%%-GIVEN VALUES-%%%%

%%%Mass Matrix

M = [25 0 0; 0 50 0; 0 0 100]

%%%Stiffness Matrix

K = [40000, -10000,0; -10000, 20000, -10000; 0, -10000, 10000]

%%%Elimination of the first row: m=1

m = 1;      

N= length(K);   %Total number of row

K_full = K;     %[K] before the elimination

%%%Partition Matrix for Static Condensation (Eq.9.1)

K_pp_full = K_full(m+1:N,m+1:N);

K_ps_full = K_full(m+1:N,1:m);

K_ss_full = K_full(1:m,1:m);

K_sp_full = K_full(1:m,m+1:N);        

K_bar_full = K_pp_full-K_ps_full*inv(K_ss_full)*K_sp_full;  %Eq.9.7

T_bar_full = -inv(K_ss_full)*K_sp_full;                     %Eq.9.5
T = [T_bar_full; eye(N-m,N-m)];

K_bar = T'*K_full*T                                         %Eq.9.10 

M_bar_full = T'*M*T                                         %Eq.9.17

%_____________________________________________________________________

% Solve the eignevalue problem and normalized eigenvectors

%_____________________________________________________________________

%%%Solve for eigenvalues (D) and eigenvectors (a) 

[a, D] = eig(K_bar, M_bar_full) 
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Illustrative Example 9.3

Figure 9.3 shows a uniform four-story shear building. For this structure, determine the following:

(a) the natural frequencies and corresponding modal shapes as a four-degree-of-freedom system,

(b) the natural frequencies and modal shapes after static condensation of coordinates u1 and u3.

Solution:

(a) Natural Frequencies and Modal Shapes as a Four-Degree-of Freedom System:

The stiffness and the mass matrices for this structure are respectively

K½ � ¼ 327:35

2 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 1

2

6

6

6

6

4

3

7

7

7

7

5

ðaÞ

and

M½ � ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

6

4

3

7

7

7

7

5

ðbÞ

Substituting Eqs. (a) and (b) into Eq. (9.3) and solving the corresponding eigenvalue problem (using

Program 8) yields

Fig. 9.3 Uniform four-story shear building for Illustrative Example 9.3
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ω2
1 ¼ 39:48, ω2

2 ¼ 327:35, ω2
3 ¼ 768:3, and ω2

4 ¼ 1156:00

corresponding to the natural frequencies

f1 ¼
ω1

2π
¼ 1:00cps f2 ¼

ω2

2π
¼ 2:88cps

f3 ¼
ω3

2π
¼ 4:41cps f4 ¼

ω4

2π
¼ 5:41cps

ðcÞ

and the normalized modal matrix (see Sect. 7.2)

Φ½ � ¼

0:2280 0:5774 �0:6565 0:4285

0:4285 0:5774 0:2280 �0:6565

0:5774 0 0:5774 0:5774

0:6565 �0:5774 0:4285 �0:2280

2

6

6

6

6

4

3

7

7

7

7

5

ðdÞ

(b) Natural Frequencies and Modal Shapes after Reduction to Two-Degree-of Freedom System:

To reduce coordinates u1 and u3, for convenience, we first rearrange the stiffness matrix in Eq. (a)

to have the coordinates in order u1, u3, u2, u4

K½ � ¼ 327:35

2 0 �1 0

0 2 �1 �1

�1 �1 2 0

0 �1 0 1

2

6

6

6

6

4

3

7

7

7

7

5

ðeÞ

Applying Gauss-Jordan elimination to the first two rows of the matrix in Eq. (e) result in

ðfÞ

A comparison of Eq. (f) with Eq. (9.11) reveals that

�

�T
�

¼
0:5 0

0:5 0:5

" #

ðgÞ

and

�

�K
�

¼
327:35 �163:70

�163:70 163:70

" #

ðhÞ

Use of Eq. (9.9) gives
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T½ � ¼
0:5 0

0:5 0:5
1 0

0 1

2

6

6

4

3

7

7

5

The reduced mass matrix can now be calculated by Eq. (9.17) as

�

�M
�

¼ T½ �T M½ � T½ � ¼ 1:5 0:25
0:25 1:25

� 	

ðiÞ

The condensed eigenproblem is then

327:35� 1:5ω2 �163:70� 0:25ω2

�163:70� 0:25ω2 163:70� 1:25ω2

" #

U2

U4

( )

¼
0

0

( )

ðjÞ

and its solution is

ω2
1 ¼ 40:39, ω2

2 ¼ 365:98 ðkÞ

U½ �p ¼
0:4380 0:7056

0:6723 �0:6128

" #

ðlÞ

where [U]p is the modal matrix corresponding to the primary degrees of freedom.

The eigenvectors for the four-degree-of-freedom system are calculated for the first mode using

Eq. (9.8) as

U1

U3

U2

U4

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

1

¼

0:5 0

0:5 0:5

1 0

0 1

2

6

6

6

6

4

3

7

7

7

7

5

0:4380

0:6723

( )

¼

0:2190

0:5552

0:4380

0:6723

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

1

or rearranging the component of the first modal shape:

U1

U2

U3

U4

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

1

¼

0:2190

0:4380

0:5552

0:6723

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

1

ðmÞ

and for the second mode

U1

U3

U2

U4

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

2

¼
0:5 0

0:5 0:5
1 0

0 1

2

6

6

4

3

7

7

5

0:7056
�0:6128

� �

¼
0:3528
0:0464
0:7056
�0:6128

8

>

>

<

>

>

:

9

>

>

=

>

>

;

2
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or

U1

U2

U3

U4

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

2

¼
0:3528
0:7056
0:0464
�0:6128

8

>

>

<

>

>

:

9

>

>

=

>

>

;

2

The MATLAB program is used to obtain the natural frequencies in Eq. (k).

clc

clear all

close all

%__________________________________________________________________________

% Inputs: 

%   M, K 

%   m =  Number of row to apply the static elimination process

%___________________________________________________________________________

%%%%-GIVEN VALUES-%%%%

%%%Mass Matrix

M = [1, 0 0 0; 0, 1, 0, 0; 0, 0, 1,0; 0,0,0, 1];

%%%Stiffness Matrix

K = 327.35*[2,0,-1,0; 0,2,-1,-1; -1,-1,2,0; 0,-1,0,1];

%%%Elimination of the first and second rows: m=2

m = 2;

N= length(K);       %Total number of row

K_full = K;         %[K] before the elimination

%%%Partition Matrix for Static Condensation (Eq.9.1)

K_pp_full = K_full(m+1:N,m+1:N);

K_ps_full = K_full(m+1:N,1:m);

K_ss_full = K_full(1:m,1:m);

K_sp_full = K_full(1:m,m+1:N);        

K_bar_full = K_pp_full-K_ps_full*inv(K_ss_full)*K_sp_full;      %Eq.9.7

T_bar_full = -inv(K_ss_full)*K_sp_full;                         %Eq.9.5

T = [T_bar_full; eye(N-m,N-m)];

K_bar = T'*K_full*T;                                            %Eq.9.10

M_bar_full = T'*M*T;             %Eq.9.17

%_____________________________________________________________________

% Solve the eignevalue problem and normalized eigenvectors

%_____________________________________________________________________

%%%Solve for eigenvalues (D) and eigenvectors (a) 

[a, D] = eig(K_bar, M_bar_full) 

Illustrative Example 9.4

The shear building of Illustrative Example 9.3 is subjected to an earthquake motion at its foundation.

For design purposes, use the response spectrum of Fig. 5.10 Sect. (5.4) and determine the maximum

horizontal displacements of the structure at the level of the floors.
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Solution:

The participation factor for the ith mode of a shear building with N stories is given by Eq. (8.40) as

Γi ¼ -
X

N

j¼1

m jϕ ji

� 


ðaÞ

where mj is the mass at the jth floor and the ϕji the jth element of the normalized ith eigenvector of the

mode.

(a) Response Considering Four Degrees of Freedom:

The substitution into Eq. (a) of the corresponding numerical results from Illustrative Example 9.3

gives

Γ1 ¼ �1:890, Γ2 ¼ �0:5775, Γ3 ¼ �0:2797, and Γ4 ¼ �0:1213 ðbÞ

The spectral displacements corresponding to the values of the natural frequencies of this building

[Eq. (c) of Illustrative Example 9.3] are obtained from the response spectrum, Fig. 5.10, as

SD1 ¼ 14:32, SD2 ¼ 3:240, SD3 ¼ 1:433, and SD4 ¼ 0:969 ðcÞ

The maximum displacements at the floor levels relative to the displacement at the base of the building

are calculated using Eq. (8.41), namely,

uimax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

j¼1

T jSDjϕij

� 
2

v

u

u

t ðdÞ

to obtain

u1max ¼ 6:274 in, u2max ¼ 11:65 in, u3max ¼ 15:64 in, and u4max ¼ 17:81 in

(b) Response Considering the System Reduce to Two Degrees of Freedom:

The natural frequencies, calculated from Eq. (k) in Illustrative Example 9.3, are

f 1 ¼
ffiffiffiffiffiffiffiffiffiffiffi

40:39
p

=2π ¼ 1:011cps

f 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

365:98
p

=2π ¼ 3:044cps
ðeÞ

Upon introducing, into Eq. (a), the corresponding eigenvectors give in Eqs. (m) and (n) of Illustrative

Example 9.3, we obtain the participation factors

Γ1 ¼ �1:884 Γ2 ¼ �0:492

The values of spectral displacements corresponding to the frequencies in Eq. (e) can be read from

Fig. 5.10:
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SD1 ¼ 14:16 SD4 ¼ 2:913

Use of Eq. (d) gives the relative maximum displacements at the level of the floors as

u1max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:884� 14:16� 0:2190ð Þ2 þ 0:4920� 2:913� 0:3528ð Þ2
q

¼ 5:864 in

u2max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:884� 14:16� 0:4380ð Þ2 þ 0:4920� 2:913� 0:7056ð Þ2
q

¼ 11:73 in

u3max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:884� 14:16� 0:5552ð Þ2 þ 0:4920� 2:913� 0:0464ð Þ2
q

¼ 14:81 in

u4max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:884� 14:16� 0:6723ð Þ2 þ 0:4920� 2:913� 0:6128ð Þ2
q

¼ 17:97 in

9.3 Dynamic Condensation

A method of reduction that may be considered an extension of the Static Condensation Method has

been proposed (Paz 1984). The algorithm for this method starts by assigning an approximate value

(e.g., zero) to the first eigenvalue ω2
1, applying dynamic condensation to the dynamic matrix of the

system D1½ � ¼ K½ � � ω2
1 M½ � and then solving the reduced eigenproblem to determine the first and

second eigenvalues, ω2
1 and ω2

2. The process continues in this manner, with one virtually exact

eigenvalue and an approximate value for the next order eigenvalue calculated at each step.

The Dynamic Condensation Method requires neither matrix inversion nor series expansion. To

demonstrate this fact, consider the eigenvalues problem of a discrete structural system for which it is

desired to reduce the secondary degrees of freedom {uo} and retain the primary degrees of freedom

{up}. In this case, the equations of free motion may be written in partitioned matrix form as

ð9:28Þ

The substitution of {u} ¼ {U}sinωit in Eq. (9.28) results in the generalized eigenproblem

ð9:29Þ

whereω2
i is the approximation of the ith eigenvalues which was calculated in the preceding step of the

process. To start the process one takes an approximate or zero value for the first eigenvalue ω2
1.

The following three steps are executed to calculate the ith eigenvalue ω2
i and the corresponding

eigenvector {U}i as well as an approximation of the eigenvalue of the next order ω2
i¼1:Step 1: The

approximation of ω2
i is introduced in Eq. (9.29). Gauss-Jordan elimination of the secondary

coordinates {Us} is then used to reduce Eq. (9.29) to
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ð9:30Þ

The first equation in Eq. (9.30) can be written as

Usf g ¼
�

�Ti

�

Up

� �

ð9:31Þ

Consequently, the ith modal shape {U}i can be expressed as

Uf gi ¼ T½ � Up

� �

ð9:32Þ

where

ð9:33Þ

Step 2: The reduces mass matrix
�

�Mi

�

and the reduced stiffness matrix
�

�Ki

�

are calculated as

�

�Mi

�

¼ Ti½ �T M½ � Ti½ � ð9:34Þ

and

�

�Ki

�

¼
�

�Di

�

þ ω2
i

�

�Mi

�

ð9:35Þ

where the transformation matrix [Ti] is given by Eq. (9.33) and the reduced dynamic matrix [Di] is

defined Eq. (9.30).Step 3: The reduced eigenproblem

�

�Ki

�

� ω2
�

�Mi

�� �

Up

� �

¼ 0f g ð9:36Þ

is then solved to obtain improved eigenvalues ω2
i , its corresponding eigenvector {Up}i, and also an

approximation for the next order eigenvalue ω2
iþ1.

These three-step process may be applied iteratively; that is, the value ofω2
i obtained in step 3 may

be used as an improved approximate value in step 1 to obtain a further improved value of ω2
i , in step

3. Experience has shown that one or two such iterations will produce virtually exact eigensolutions.

Illustrative Example 9.5

Repeat Example 9.3 of Sect. 9.2 using the Dynamic Condensation Method.

Solution:

The stiffness matrix and the mass matrix with the coordinates in the order u1 u3, u2, u4 are given,

respectively, by Eqs. (e) and (b) of Illustrative Example 9.3. Substitution of these matrices into

Eq. (9.29) results in the dynamic matrix for the system:
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ðaÞ

Step 1: Assuming we have no initial approximation of ω2
1, we start step 1 by setting ω2

1 ¼ 0 and

substituting this value into Eq. (a):

ðbÞ

Application of the Gauss-Jordan elimination process to the first two rows gives

from which, by Eqs. (9.30) and (9.33)

T1½ � ¼

0:5 0:0

0:5 0:5

1 0

0 1

2

6

6

6

6

4

3

7

7

7

7

5

and

�

�D1

�

¼
327:35 �163:67

�163:67 163:67

" #

Step 2: The reduced mass and stiffness matrices by Eqs. (9.34) and (9.35), are

�

�M1

�

¼ T1½ �T M½ � T1½ � ¼
1:5 0:25

0:25 1:25

" #

and

�

�K1

�

¼
�

�D1

�

þ ω2
1

�

�M1

�

¼
327:35 �163:67

�163:67 163:67

" #

Step 3: The solution of the reduced eigenproblem
�

�K1

�

� ω2
�

�M1

�� �

Up

� �

1
¼ 0f g yields
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ω2
1 ¼ 40:39 and ω2

2 ¼ 365:98

These values for ω2
1 and ω2

2 may be improved by iterating the calculations, that is, by introducing

ω2
1 ¼ 40:39 into Eq. (9.29). This substitution results in

Applications of Gauss-Jordan elimination to the first two rows gives

from which

T1½ � ¼

0:533 0:0

0:533 0:533

1 0

0 1

2

6

6

6

6

4

3

7

7

7

7

5

and

�

�D1

�

¼
265:44 �174:44

�174:44 112:53

" #

The reduced mass and stiffness matrices are then

�

�M1

�

¼ T1½ �T M½ � T1½ � ¼
1:568 0:284

0:284 1:284

" #

and

�

�K1

�

¼ �D1 þ ω2
1

�

�M1

�

¼
328:76 �162:97

�162:67 164:39

" #

The solution of the reduced eigenproblem,

�

�K1

�

� ω2
�

�M1

�� �

Up

� �

¼ 0f g

yields the eigenvalues
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ω2
1 ¼ 39:48, ω2

2 ¼ 360:21 ðcÞ

and corresponding eigenvectors

Up

� �

1
¼

0:4283

0:6562

" #

Up

� �

2
¼

0:6935

�0:6171

" #

ðdÞ

The same process is now applied to the second mode, starting by substituting into Eq. (9.29) the

approximate eigenvalues ω2
2 ¼ 360:21 calculated for the second mode in Eq. (c). In this case we

obtain

Gauss-Jordan elimination of the first two rows yields

from which

T2½ � ¼

1:112 0:0

1:112 1:112

1 0

0 1

2

6

6

6

6

4

3

7

7

7

7

5

and
�

�D2

�

¼
�433:27 �363:88

�363:88 �396:74

" #

The reduced mass and stiffness matrices are

�

�M2

�

¼ T2½ �T M½ � T2½ � ¼
3:471 1:236

1:236 2:236

" #

�

�K2

�

¼
�

�D2

�

þ ω2
2

�

�M2

�

¼
817:12 81:21

81:21 408:56

" #

The solution of the reduced eigenproblem
�

�K2

�

� ω2
�

�M2
2

�� �

Up

� �

2
¼ 0f g yields for the second mode

ω2
2 ¼ 328:61

An iteration is performed by introducing ω2
2 ¼ 328:61 into Eq. (9.29) to obtain the following:
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Applying Gauss-Jordan elimination to the first two rows yields

from which

T2½ � ¼

1:004 0:0

1:004 1:004

1 0

0 1

2

6

6

6

6

4

3

7

7

7

7

5

and

�

�D2

�

¼
�331:14 �328:62

�328:62 �329:88

" #

The reduced mass and stiffness matrices are:

�

�M2

�

¼ T2½ �T M½ � T2½ � ¼
3:015 1:008

1:008 2:008

" #

and

�

�K2

�

¼
�

�D2

�

þ ω2
2

�

�M2

�

¼
659:78 2:54

2:54 329:89

" #

The solution of the reduced eigenproblem
�

�K2

�

� ω2
�

�M2

�� �

Up

� �

2
¼ 0f g now gives for the second

mode

Up

� �

2
¼

0:5766

�0:5766

( )

ω2
2 ¼ 327:35 ðeÞ

Therefore, from Eqs. (c), (d), and (e) we have obtained for the first two eigenvalues
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ω2
1 ¼ 39:48 and ω2

2 ¼ 327:35 ðfÞ

and corresponding eigenvectors

Up

� �

1
¼

0:4283

0:6562

( )

, Up

� �

2
¼

0:5766

�0:5766

( )

The eigenvectors of the system are then computed using Eq. (9.32) as follows:

U1

U3

U2

U4

2

6

6

6

6

4

3

7

7

7

7

5

¼

0:533 0:0

0:533 0:533

1 0

0 1

2

6

6

6

6

4

3

7

7

7

7

5

0:4283

0:6562

( )

¼

0:2283

0:5780

0:4283

0:6562

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

1

ðgÞ

Hence ordering the elements of the modal vector:

U1

U2

U3

U4

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

1

¼
0:2283
0:4283
0:5780
0:6562

8

>

>

<

>

>

:

9

>

>

=

>

>

;

1

ðhÞ

and

U1

U3

U2

U4

8

>

>

<

>

>

:

9

>

>

=

>

>

;

2

¼
1:004 0:0
1:004 1:004
1 0

0 1

2

6

6

4

3

7

7

5

0:5766
�0:5766

� �

¼
0:5789
0:0

0:5766
�0:5766

8

>

>

<

>

>

:

9

>

>

=

>

>

;

2

Hence ordering the modal vector:

U1

U2

U3

U4

8

>

>

<

>

>

:

9

>

>

=

>

>

;

2

¼
0:5789
0:5766

0:0
�0:5766

8

>

>

<

>

>

:

9

>

>

=

>

>

;

2

ðiÞ

The eigenvalues and eigenvectors [Eqs. (f), (h), and (i)] calculated for the first two modes in this

example using dynamic condensation are virtually identical to the exact solution determined in

Eqs. (c) and (d) of Illustrative Example 9.3.

It should be noted that normalization of the eigenvectors is not needed in Eqs. (h) and (i) if the

reduced vectors are normalized with respect to the reduced mass of the system, that is, if a reduced

eigenvector {Up} satisfies the normalizing equation

Up

� �T�
�M
�

Up

� �

¼ 1

then by Eq. (9.34)

Up

� �T
T½ �T M½ � T½ � Up

� �

¼ 1 ð9:37Þ

and since by Eq. (9.32)
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Uf gi ¼ T½ � Up

� �

and

U T
i ¼ Uf gT

p T½ �T
n

Upon substitution of {U}I and Uf gT
i into Eq. (9.37) results in

Uf gT
i M½ � Uf gi ¼ 1

thus demonstrating that the eigenvector {U}i is normalized with respect to the mass matrix [M] of the

system, if {Up} has been normalized with respect to the reduced mass matrix
�

�M
�

.

The MATLAB program is used to obtain the natural frequencies in Eq. (e).

clear all
close all

%__________________________________________________________________________
% Inputs: 
%   M, K 
%   m =  Number of row to apply the dynamic elimination process
%___________________________________________________________________________

%%%%-GIVEN VALUES-%%%%

%%%Mass Matrix
M = [1, 0 0 0; 0, 1, 0, 0; 0, 0, 1,0; 0,0,0, 1];

%%%Stiffness Matrix
K = 327.35*[2,0,-1,0; 0,2,-1,-1; -1,-1,2,0; 0,-1,0,1];
% m = 0;        %Exact Solution; 

%%%Elimination of the first and second rows: m=2 
m = 2;          %Dynamic Condensation

N= length(K);   %Total number of row

s=0;
for i=1:2
W =[];
w(i)= sqrt(s(1,1));
W = diag(w(i)^2);

D = K - W.*M;

%%%Partition Matrix for Dynamic Condensation (Eq.9.28)
D_pp = D(m+1:N,m+1:N);
D_ps = D(m+1:N,1:m);
D_ss = D(1:m,1:m);
D_sp = D(1:m,m+1:N); 

D_bar = D_pp-D_ps*inv(D_ss)*D_sp;
T_bar = -inv(D_ss)*D_sp;
T = [T_bar; eye(N-m,N-m)];
M_bar = T'*M*T;
K_bar = D_bar+W.*M_bar;

%%%% Solve the eigneproblem (Eq.9.36)
[a, s] = eig(K_bar, M_bar); 

s;

a;
end
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s1 = s(1,1)          % Eigenvalue, w1 in Eq.(c)
s2 = s(2,2)          % Eigenvalue, w2 in Eq.(c)
a1 = a(:,1)          % Eigenvector, {U_p}_1 in Eq.(d)

% Use s(2,2) in Eq.(c) for the following iterations

for i=1:2
w(i)= sqrt(s(2,2));
W = diag(w(i)^2);

D = K - W.*M;

%%%Partition Matrix for Dynamic Condensation (Eq.9.28)
D_pp = D(m+1:N,m+1:N);
D_ps = D(m+1:N,1:m);
D_ss = D(1:m,1:m);
D_sp = D(1:m,m+1:N); 

D_bar = D_pp-D_ps*inv(D_ss)*D_sp;
T_bar = -inv(D_ss)*D_sp;
T = [T_bar; eye(N-m,N-m)];
M_bar = T'*M*T;
K_bar = D_bar+W.*M_bar;

%%%% Solve the eigenproblem (Eq.9.36)
[a, s] = eig(K_bar, M_bar); 

s;
a;

end

s2 = s(2,2);           % Eigenvalue, w2 in Eq.(f) 
a2 = a(:,2);           % Eigenvalue, w2 in Eq.(c)

aa = [a1,a2]           % Eigenvalues in Eq.(f)
ss = [s1,s2]           % Eigenvectors in Eq.(f)

9.4 Modified Dynamic Condensation

The dynamic condensation method requires the application of elementary operations, as it is routinely

done to solve a linear system of algebraic equations, using the Gauss-Jordan elimination process. The

elementary operations are required to transform Eq. (9.29) to the form given by Eq. (9.30). However,

the method also requires the calculation of the reduced mass matrix by Eq. (9.34). This last

calculation involves the multiplication of three matrices of dimensions equal to the total number of

coordinates in the system. Thus, for a system defined with many degrees of freedom, the calculation

of the reduced mass matrix [M] requires a large number of numerical operations. A modification (Paz

1989), recently proposed, obviates such large number of numerical operations. This modification

consists of calculating the reduced stiffness matrix
�

�K
�

only once by simple elimination of

s displacements in Eq. (9.29) after setting ω2 ¼ 0, thus making unnecessary the repeated calculation

of
�

�K
�

for each mode using Eq. (9.35). Furthermore, it also eliminates the time consumed in

calculating the reduced mass matrix
�

�M
�

using Eq. (9.34). In the modified method, the reduced

mass matrix for any mode i is calculated from Eq. (9.35) as

�

�Mi

�

¼ 1

ω2
i

�

�K
�

�
�

�Di

�� �

ð9:38Þ

Where
�

�K
�

is the reduced stiffness matrix, already calculated, and
�

�Di

�

is the dynamic matrix given in

the partitioned matrix of Eq. (9.30).
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As can be seen, the modified algorithm essentially requires, for each eigenvalues calculated, only

the application of the Gauss-Jordan process to eliminate s unknowns in a linear system of equations

such as the system in Eq. (9.29).

Illustrative Example 9.6

Repeat Illustrative Example 9.5 using the modified dynamic condensation method.

Solution:

The initial calculations of the modified method are the same as those in Illustrative Example 9.5.

Thus, from Illustrative Example 9.5 we have

�

�K1

�

¼
327:35 �163:67

�163:67 163:67

" #

ðaÞ

�

�M1

�

¼
1:5 0:25

0:25 1:25

" #

ðbÞ

ω2
1 ¼ 40:39 ω2

2 ¼ 365:98, ðcÞ

�

�Di

�

¼
265:44 �174:44

�174:44 112:53

" #

ðdÞ

and

�

�T1

�

¼
0:533 0

0:533 0:533

" #

ðeÞ

Now, the reduced mass matrix
�

�M1

�

is calculated from Eq. (9.38), after substitution in this equation of
�

�K1

�

from Eq. (a) and
�

�D1

�

from Eq. (d), as

�

�M1

�

¼ 1

ω2
1

�

�K1

�

�
�

�D1

�� �

¼
1:530 0:267

0:267 1:266

" #

ðfÞ

Then the reduced stiffness and mass matrix given by Eqs. (a) and (f) are used to solve the reduced

eigenproblem:

�

�K1

�

� ω2
�

�M1

�

Up

� �

1

�

¼ 0f g

to obtain the eigenvalues

ω2
1 ¼ 39:46 ω2

2 ¼ 363:67 ðgÞ

and the eigenvector for the first mode

U2

U4

( )

1

¼
0:43359

0:66424

( )

1

ðhÞ

The eigenvector for the first mode, in terms of the original four coordinate, is then obtained from

Eq. (9.31) as
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U1

U3

� �

¼ 0:533 0

0:533 0:533

� 	

0:43359
0:66424

� �

¼ 0:23110
0:58514

� �

ðiÞ

The combination of Eqs. (h) and (i) give the eigenvector for the first mode as

U1

U2

U3

U4

8

>

>

<

>

>

:

9

>

>

=

>

>

;

1

¼
0:23110
0:43359
0:58514
0:66424

8

>

>

<

>

>

:

9

>

>

=

>

>

;

1

ðjÞ

Analogously, for the second mode, we substitute ω2
2 ¼ 363:67 from Eqs. (g) into (a) of Illustrative

Example 9.5, to obtain the following matrices after reducing the first two coordinates:

�

�T2

�

¼ 1:1248 0

1:1248 1:1248

� 	

ðkÞ

�

�D2

�

¼ �445:43 �368:20
�368:20 �404:54

� 	

ðlÞ

The reduced mass matrix
�

�M2

�

is the calculated from Eq. (9.37) as

�

�M2

�

¼ 1

363:67

327:35 �163:67
�163:67 163:67

� 	

� �445:43 �368:20
�368:20 �404:54

� 	� �

�

�M2

�

¼ 2:1250 0:5624
0:5624 1:5624

� 	 ðmÞ

Then, for the second mode, the solution of the corresponding reduced eigenproblem gives

ω2
2 ¼ 319:41,

U2

U4

� �

2

¼ 0:61894
�0:63352

� �

ðnÞ

U1

U3

� �

2

¼ 1:1248 0

1:1248 1:1248

� 	

0:61894
�0:63352

� �

¼ 0:69618
�0:01640

� �

ðoÞ

and

U1

U2

U3

U4

8

>

>

<

>

>

:

9

>

>

=

>

>

;

2

¼
0:69618
0:61894
�0:01640
�0:63352

8

>

>

<

>

>

:

9

>

>

=

>

>

;

2

ðpÞ

The results obtained for this example using the modified method, although sufficiently approximate,

are not as close to the exact solution as those obtained in Example 9.5 by the direct application of the

dynamic condensation method. Table 9.1 shows and compares eigenvalues calculated in Illustrative

Examples 9.5 and 9.6 with the exact solution obtained previously in Illustrative Example 9.3.

Table 9.1 Comparison of results in Illustrative Examples 9.5 and 9.6 using dynamic condensation and modified

dynamic condensation

Eigenvalue

Mode Exact solution Dynamic condensation Error % Modified method Error %

1 39.48 39.48 0.00 39.46 0.05

2 327.35 327.35 0.00 319.41 2.42
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The following MATLAB program is to reproduce the solution of Example 6.5 using the modified

dynamic condensation method.

clc
clear all
close all

%__________________________________________________________________________
% Inputs: 
%   M, K 
%   m =  Number of row to apply the dynamic elimination process
%___________________________________________________________________________

%%%%-GIVEN VALUES-%%%%

%%%Mass Matrix 
M = [1, 0 0 0; 0, 1, 0, 0; 0, 0, 1,0; 0,0,0, 1];

%%%Stiffness Matrix
K = 327.35*[2,0,-1,0; 0,2,-1,-1; -1,-1,2,0; 0,-1,0,1]; %u1,u3,u2,u4
% m = 0;        % Exact Solution; 

%%%Elimination of the first and second rows: m=2 
m = 2;          % Dynamic Condensation

N= length(K);   %Total number of row

s=0;
for i=1:1
W =[];
w(i)= sqrt(s(1,1));
W = diag(w(i)^2);

D = K - W.*M;

%%%Partition Matrix for Dynamic Condensation (Eq.9.28)
D_pp = D(m+1:N,m+1:N);
D_ps = D(m+1:N,1:m);
D_ss = D(1:m,1:m);
D_sp = D(1:m,m+1:N); 

D_bar = D_pp-D_ps*inv(D_ss)*D_sp;
T_bar = -inv(D_ss)*D_sp;
T = [T_bar; eye(N-m,N-m)];
M_bar = T'*M*T;
K_bar = D_bar+W.*M_bar;

%%%% Solve the eigneproblem (Eq.9.36)
[a, s] = eig(K_bar, M_bar); 

a;

s;

end

w = sqrt(s(1,1));
M_bar = M_bar;
K_bar = K_bar;

for i=1:1
W = diag(w^2);

D = K - W.*M;

%%%Partition Matrix for Dynamic Condensation (Eq.9.28)
D_pp = D(m+1:N,m+1:N);
D_ps = D(m+1:N,1:m);
D_ss = D(1:m,1:m);
D_sp = D(1:m,m+1:N); 

D_bar = D_pp-D_ps*inv(D_ss)*D_sp;
T_bar = -inv(D_ss)*D_sp;

end
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%%%Modified Dynamic Condensation (Eq.9.38)  
M_bar = 1/W.*(K_bar-D_bar);         % Eq.(f)

[a_1, s_1] = eig(K_bar, M_bar);     

s_11 = s(1,1)                       % Eq.(g)
a_11 = (a_1(:,1));                  % Eq.(h) for u2, u4
a_12 = T_bar*(a_11);                % Eq.(i) for u1, u3

a_1 = [a_11; a_12]                  % Eq.(j) u2,u4,u1,u3

%%%Analogously, for the second mode

w = sqrt(s_1(2,2));
M_bar = M_bar;
K_bar = K_bar;

for i=1:1
W = diag(w^2);

D = K - W.*M;

D_pp = D(m+1:N,m+1:N);
D_ps = D(m+1:N,1:m);
D_ss = D(1:m,1:m);
D_sp = D(1:m,m+1:N); 

D_bar = D_pp-D_ps*inv(D_ss)*D_sp;
T_bar = -inv(D_ss)*D_sp;

end

D_bar = D_bar;                      % Eq.(l)             for mode 2
T_bar = T_bar;                      % Eq.(k)   for mode 2

M_bar = 1/W.*(K_bar-D_bar);         % Eq.(m)             for mode 2

[a_2, s_2] = eig(K_bar, M_bar);      

s_22 = s_2(2,2)                     % Eq.(n)             for mode 2

a_21 = (a_2(:,2));                  % Eq.(n) for u2, u4  for mode 2
a_22 = T_bar*(a_21);                % Eq.(o) for u1, u3  for mode 2

a_2 = [a_21; a_22]                  % Eq.(p) u2,u4,u1,u3 for mode 2

D_bar = D_bar;                      % Eq.(d)
T_bar = T_bar;                      % Eq.(e)

9.5 Summary

The reduction of secondary or dependent degrees of freedom is usually accomplished in practice by

the Static Condensation Method. This method consists of determining, by a partial Gauss-Jordan

elimination, the reduced stiffness matrix corresponding to the primary degrees of freedom and the

transformation matrix relating the secondary and primary degrees of freedom. The same transforma-

tion matrix is used in an orthogonal transformation to reduce the mass and damping matrices of the

system. Static condensation introduces errors when applied to the solution structural dynamics

problems. However, as is shown in this chapter, the application of the Dynamic Condensation Method
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substantially reduces or eliminates these errors. Furthermore, the Dynamic Condensation Method

converges rapidly to the exact solution when iteration is applied.

9.6 Problems

Problem 9.1

The stiffness and mass matrices of a certain structure are given by

K½ � ¼

10 �2 �1 0

�2 6 �3 �2

�1 �3 12 �1

0 �2 �1 8

2

6

6

6

6

4

3

7

7

7

7

5

, M½ � ¼

0 0 0 0

0 0 0 0

0 0 3 0

0 0 0 2

2

6

6

6

6

4

3

7

7

7

7

5

(a) Use the Static Condensation Method to determine the transformation matrix and the reduced

stiffness and mass matrices corresponding to the elimination of the first two degrees of freedom

(the massless degrees of freedom).

(b) Determine the natural frequencies and corresponding normal modes for reduced system.

Problem 9.2

Repeat (a) and (b) of Problem 9.1 for a structure having stiffness matrix as indicated in that problem,

but mass matrix given by

M½ � ¼

1 0 0 0

0 1 0 0

0 0 3 0

0 0 0 2

2

6

6

6

6

4

3

7

7

7

7

5

Problem 9.3

Determine the natural frequencies and modal shape of the system in Problem 9.2 in terms of its four

original coordinates; find the errors in the two modes obtained in Part (b) of Problem 9.2.

Problem 9.4

Consider the shear building shown in Fig. P9.4.

(a) Determine the transformation matrix and the reduced stiffness and mass matrices corresponding

to the static condensation of the coordinates u1 u3, and u4 as indicated in the figure.

(b) Determine the natural frequencies and normal modes for the reduced system obtained in (a).

(c) Use the results of (b) to determine the modal shapes, described by the five original coordinates,

corresponding to the two lowest frequencies.
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Problem 9.5

Use the results obtained in Problem 9.4 to determine the maximum shear forces in the stories of the

building in Fig. P9.4 when subjected to an earthquake for which the response spectrum is given in

Fig. 5.10 of Sect. 5.4.

Problem 9.6

Use the results in Problem 9.4 to determine the maximum shear forces in the stories of the building in

Fig. P9.4 when subjected to an earthquake the response spectrum is given in Fig. 5.10 of Sect. 5.4.

Problem 9.7

Repeat Problem 9.2 using the Dynamic Condensation Method.

Problem 9.8

Repeat Problem 9.4 using the Dynamic Condensation Method and compare results with the exact

solution.

Problem 9.9

Consider the five-story shear building of Fig. P9.4 subjected at its foundation to the time-acceleration

excitation depicted in Fig. P9.9. Use static condensation of the coordinates u1, u3, and u4 and

determine:

(a) The two natural frequencies and corresponding modal shapes of the reduced system.

(b) The displacements at the floor levels considering two modes.

(c) The shear forces in the columns of the structure also considering two modes.

Fig. P9.4
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Problem 9.10

Solve Problem 9.9 using the Dynamic Condensation Method. Problem 9.11.

Problem 9.11

The stiffness and mass matrices for a certain structure are

K½ � ¼ 106

0:906 0:294 0:424

0:294 0:318 0:176

0:424 0:176 80:000

2

6

4

3

7

5

M½ � ¼
288 �8 1566

�8 304 644

1566 644 80, 000

2

6

4

3

7

5

Calculate the fundamental natural frequency of the system after reduction of the first coordinate by

the following methods: (a) Static condensation; and (b) Dynamic condensation. Also obtain the

natural frequencies as a three-degrees-of-freedom system and compare results for the fundamental

frequency.

Problem 9.12

Repeat Problem 9.11 using the Modified Dynamic Condensation Method and compare results with

the solution obtained with no condensation.

.

Fig. P9.9

248 9 Reduction of Dynamic Matrices



Part III

Framed Structures Modeled as Discrete Multi-Degree-of-
Freedom Systems



Dynamic Analysis of Beams 10

In this chapter, we shall study the dynamic behavior of structures designated as beams, that is,

structures that carry loads that are mainly transverse to the longitudinal direction, thus producing

flexural stresses and lateral displacements. We begin by establishing the static characteristics for a

beam segment; and then introduce the dynamic effects produced by the inertial forces. Two approxi-

mate methods are presented to take into account the inertial effect in the structure: (1) the lumped

mass method in which the distributed mass is assigned to point masses, and (2) the consistent mass

method in which the assignment to point masses includes rotational effects. The latter method is

consistent with the static deflections of the beam. In Part IV on Special Topics the exact theory for

dynamics of beams considering the elastic and inertial distributed properties will be presented.

10.1 Shape Functions for a Beam Segment

Consider a uniform beam element of cross-sectional moment of inertia I, length L, and material

modulus of elasticity E as shown in Fig. 10.1. We shall establish the relation between static forces and

moments designated as P1, P2, P3 and P4 and the corresponding linear and angular displacements δ1,

δ2, δ3 and δ4 at the ends of the beam element as indicated in Fig. 10.1. The relationship thus obtained

is known as the stiffness matrix equation for a beam element. The forces Pt and the displacements δi
are said to be at the nodal coordinates defined at the ends for the beam element.

The differential equation for small transverse displacements of a beam, which bis well known from

elementary studies of strength and materials, is given by

EI
d2u

dx2
¼ M xð Þ ð10:1Þ

in whichM(x) is the bending moment at a section x of the beam and u is the transverse displacement.
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The differential Eq. (10.1) for a uniform beam element is equivalent to

EI
d4u

dx4
¼ p xð Þ ð10:2Þ

since

dM xð Þ

dx
¼ V xð Þ ð10:3Þ

and

dV xð Þ

dx
¼ p xð Þ

Where p(x) is the beam load per unit length and V(x) is the shear force.

We state first the general definition of the stiffness coefficient which is designated by kij, that is, kij
is the force at nodal coordinate i due to a unit displacement at nodal coordinate j while all other nodal

coordinates are maintained at zero displacement. Figure 10.2 shows the displacement curves and the

corresponding stiffness coefficients due to a unit displacement at each one of the four nodal

coordinates of the beam element. To determine the expressions for the stiffness coefficients kij, we

begin by finding the equations for displaced curves shown in Fig. 10.2. We first consider the beam

element in Fig. 10.1 free of loads [p(x) ¼ 0], except for the forces P1, P2, P3 and P4 applied at the

nodal coordinates. In this case, Eq. (10.2) is reduced to

d4u

dx4
¼ 0 ð10:4Þ

Successive integrations of Eq. (10.4) yields

d3u

dx3
¼ C1

d2u

dx2
¼ C1xþ C2

Fig. 10.1 Bean segment showing forces and displacement at the nodal coordinates
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du

dx
¼

1

2
C1x

2 þ C2xþ C3 ð10:5Þ

u ¼
1

6
C1x

3 þ
1

2
C2x

2 þ C3xþ C4 ð10:6Þ

in which C1, C2, C3 and C4 are constants of integration to be evaluated using boundary conditions. For

example, to determine the function N1(x) for the curve shown in Fig. 10.2a, we make use of the

following boundary conditions:

at x ¼ 0 u 0ð Þ ¼ 1 and
du 0ð Þ

dx
¼ 0 ð10:7Þ

at x ¼ L u Lð Þ ¼ 0 and
du Lð Þ

dx
¼ 0 ð10:8Þ

Use of these conditions in Eqs. (10.5) and (10.6), results in an algebraic system of four equations to

determine the constants C1, C2, C3 and C4.

Then the subsequent substitution of these constants into Eq. (10.6) results in the equation of the

deflected curve for the beam element in Fig. (10.2a) as

N1 xð Þ ¼ 1� 3
x

L

� �2

þ 2
x

L

� �3

ð10:9aÞ

in which N1(x) is used instead of u(x) to correspond to the condition δ1 ¼ 1 imposed on the beam

element. Proceeding in analogous fashion, we obtain for the equations of the deflected curves in the

other cases depicted in Fig. 10.2 the following equations:

Fig. 10.2 Beam element showing static deflection curves due to a unit displacement at one of the nodal coordinates
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N2 xð Þ ¼ x 1�
x

L

� �2

ð10:9bÞ

N3 xð Þ ¼ 3
x

L

� �2

� 2
x

L

� �3

ð10:9cÞ

N4 xð Þ ¼
x2

L

x

L
� 1

� �

ð10:9dÞ

Since N1(x) is the deflection corresponding to a unit displacement δ1 ¼ l, the displacement resulting

from an arbitrary displacement δ1, is N1(x) δ1. Analogously, the deflection resulting from nodal

displacements δ2, δ3 and δ4 are, respectively N2(x) δ2, N3(x)δ3 and N4(x)δ4. Therefore, the total

deflection u(x) at coordinate x due to arbitrary displacements at the nodal coordinates of the beam

element is given by superposition as

u xð Þ ¼ N1 xð Þδ1 þ N2 xð Þδ2 þ N3 xð Þδ3 þ N4 xð Þδ4 ð10:10Þ

The shape equations which are given by Eqs. (10.9a, b, c and d) and which correspond to unit

displacements at the nodal coordinates of a beam element may be used to determine expressions for

the stiffness coefficients. For example, consider the beam in Fig. 10.2b which is in equilibrium with

the forces producing the displacement δ2 ¼ 1.0. For this beam in the equilibrium position, we assume

that a virtual displacement equal to the deflection curve shown in Fig. 10.2a takes place. We then

apply the principle of virtual work, which states that, for an elastic system in equilibrium, the work

done by the external forces is equal to the work of the internal forces during the virtual displacement.

In order to apply this principle, we note that the external work WE is just equal to the product of the

force k12 displaced by δ1 ¼ 1, that is

WE ¼ k12δ1 ð10:11Þ

This work, as stated above, is equal to the work performed by the elastic forces during the virtual

displacement. Considering the work performed by the bending moment, we obtain for the internal

work

W1 ¼

ð L

0

M xð Þdθ ð10:12Þ

in which M(x) is the bending moment at section x of the beam and dθ is the incremental angular

displacement of this section of the element.

For the virtual displacement under consideration, the transverse deflection of the beam is given by

Eq. (10.9b), which is related to the bending moment through the differential Eq. (10.1). Substitution

of the second derivative N
00

2 xð Þ of Eq. (10.9b) into Eq. (10.1) results in

EI N
00

2 xð Þ ¼ M xð Þ ð10:13Þ

The angular deflections dθ produced during this virtual displacement is related to the resulting

transverse deflection of the beam N1(x) by

dθ

dx
¼

d2N1 xð Þ

dx2
¼ N

00

1 xð Þ
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or

dθ ¼ N
00

1 xð Þdx ð10:14Þ

Equating the external virtual work WE from Eq. (10.11) with the internal virtual work W1 from

Eq. (10.12) after using M(x) and dθ, respectively, from Eqs. (10.13) and (10.14) finally gives the

stiffness coefficient as

k12 ¼

ð L

0

EI N
00

1 xð ÞN
00

2 xð Þdx ð10:15Þ

In general, any stiffness coefficient kij associated with beam flexure, therefore, may be expressed as

kij ¼

ð L

0

EIN
00

i xð ÞN
00

j xð Þdx ð10:16Þ

It may be seen from Eq. (10.16) that kij ¼ kji since the interchange of indices requires only an

interchange of the two factors, N
00

i xð Þ and N
00

j xð Þ in Eq. (10.16). This equivalence of kij ¼ kji is a

particular case of Betti’s theorem, but it is better known as Maxwell’s reciprocal theorem.

It should be pointed out that although the shape functions, Eqs. (10.9a, b, c and d), were obtained

for a uniform beam, in practice they are nevertheless also used in determining the stiffness

coefficients for non-uniform beams.

Considering the case of a uniform beam element of length L and cross-sectional moment of inertia

I, we may calculate any stiffness coefficient from Eqs. (10.16) and the use of Eqs. (10.9a, b, c and d).

In particular, the stiffness coefficient k12 is calculated as follows:

From Eq.(10.9a), we obtain

N
00

1 xð Þ ¼ �
6

L2
þ
12x

L3

and from Eq. (10.9b)

N
00

2 xð Þ ¼ �
4

L
þ
6x

L2

Substitution in Eq. (10.15 gives)

k12 ¼ EI

ð L

0

�6

L2
þ
12x

L3

� �

�4

L
þ
6x

L2

� �

dx

and performing the integration results in

k12 ¼
6EI

L2

Since the stiffness coefficient k1j is defined as the force at the nodal coordinate 1 due to unit

displacement at the coordinate j, the forces at coordinate 1 due to successive displacement δ1, δ2,

δ3 and δ4 at the four nodal coordinates of the beam element are given, respectively, by k11 δ1, k12 δ2,

k13 δ3 and k14 δ4. Therefore, the total force P1 at coordinate 1 resulting from these nodal

displacements is obtained by the superposition of the resulting forces, that is,
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P1 ¼ k11δ1 þ k12δ2 þ k13δ3 þ k14δ4

Analogously, the forces at the other nodal coordinates resulting from the nodal displacement δ1, δ2,

δ3, δ4 are

P2 ¼ k12δ1 þ k22δ2 þ k23δ3 þ k24δ4

P3 ¼ k31δ1 þ k32δ2 þ k33δ3 þ k34δ4

P4 ¼ k41δ1 þ k42δ2 þ k43δ3 þ k44δ4

ð10:17Þ

The above equations are written conveniently in matrix notation as

P1

P2

P3

P4

2

6

6

6

6

4

3

7

7

7

7

5

¼

¼

¼

¼

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

δ1

δ2

δ3

δ4

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð10:18Þ

or in condensed notation as

Pf g ¼ k½ � δf g ð10:19Þ

in which {P} and {δ} are, respectively, the force and the displacement vectors at the four nodal

coordinates of the beam element and [k] is the beam element stiffness matrix.

The use of Eq. (10.16) in the manner shown above to determine the coefficient k12will result in the

evaluation of all the coefficients of the stiffness matrix. This result for a uniform beam element is

P1

P2

P3

P4

2

6

6

6

6

4

3

7

7

7

7

5

¼
EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2

6

6

6

6

4

3

7

7

7

7

5

δ1

δ2

δ3

δ4

2

6

6

6

6

4

3

7

7

7

7

5

ð10:20Þ

or in condensed notation

Pf g ¼ k½ � δf g ð10:21Þ

10.2 System Stiffness Matrix

Thus far we have established in Eq. (10.20) the stiffness equation for a uniform beam element, that is,

we have obtained the relationship between nodal displacements (linear and angular) and nodal forces

(forces and moments). Our next objective is to obtain the same type of relationship between the nodal

displacements and the nodal forces, but now for the entire structure (system stiffness equation).

Furthermore, our aim is to obtain the system stiffness matrix from the stiffness matrix of each element

of the system. The procedure is perhaps better explained through a specific example such as the

cantilever beam shown in Fig. 10.3.

The first step in obtaining the system stiffness matrix is to divide the structure into elements. The

beam in Fig. 10.3 has been divided into three elements which are numbered sequentially for
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identification. The second step is to identify the nodes or joints between elements and to number

consecutively those nodal coordinates that are not constrained.

The constrained or fixed nodal coordinates are the last to be labeled. For beams, we consider only

two possible displacements at each node, a vertical deflection and an angular displacement. The

cantilever beam in Fig. 10.3 with its three elements results in a total of six free nodal coordinates and

two fixed nodal coordinates. The third step is to obtain systematically the stiffness matrix for each

element in the system and to add the element stiffness coefficients appropriately to obtain the system

stiffness matrix. This method of assembling the system stiffness matrix is called the direct method. In

effect, any stiffness coefficient kij of the system may be obtained by adding together the

corresponding stiffness coefficients associated with those nodal coordinates. Thus, for example, to

obtain the system stiffness coefficient k33, it is necessary to add the stiffness coefficients of beam

elements 2 and 3 corresponding to node three. These coefficients are designated k
2ð Þ
33 and k

3ð Þ
11 ,

respectively. The upper indices serve to identify the beam element, and the lower indices to locate

the appropriate stiffness coefficients in the corresponding element stiffness matrices.

Proceeding with the example in Fig. 10.3 and using Eq. (10.20), we obtain the following

expression for the stiffness matrix of beam element 2, namely

ð10:22Þ

For the beam element 2, the nodal coordinates numbered one to four coincide with the assignment of

system nodal coordinates also numbered 1–4, as may be seen in Fig. 10.3. However, for the beam

elements 1 and 3 of this beam, the assignment of element nodal coordinates numbered 1–4 does not

coincide with the assigned system coordinates. For example, for element 1 the assigned system

coordinates as seen in Fig. 10.3 are 7, 8, 1, 2; for element 3 , 3, 4, 5, 6. In the process of assembling

the system stiffness, coefficients for element 2 will be correctly allocated to coordinates 1, 2, 3, 4;

for element 1 to coordinates 7, 8, 1, 2; and for element 3 to coordinates 3, 4, 5, 6. A simple way

to indicate this allocation of coordinates, when working by hand, is to write at the top and on the right

of the element stiffness matrix the coordinate numbers corresponding to the system nodal coordinates

Fig. 10.3 Cantilever beam divided into three beam segments with numbered system nodal coordinates
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for the element as it is indicated in Eq. (10.22) for element 2 . The stiffness matrices for elements

1 and 3 with the corresponding indication of system nodal coordinates are, respectively,

ð10:23Þ

and

ð10:24Þ

Proceeding systematically to assemble the system stiffness matrix, we transfer each entry in the

element stiffness matrices, Eqs. (10.22, 10.23, and 10.24), to the appropriate location in the system

stiffness matrix. For instance, the stiffness coefficient for element, 3 , k(3)13¼�12� 107 should be

transferred to location at row 3 and column 5 since these are the nodal coordinates indicated at right

and top of matrix Eq. (10.24) for this entry. Every element stiffness coefficient transferred to its

appropriate location in the system stiffness matrix is added to the other coefficients accumulated at

that location. The stiffness coefficients corresponding to columns or rows carrying a label of a fixed

system nodal coordinate (seven and eight in the present example) are simply disregarded since the

constrained nodal coordinates are not unknown quantities. The assemblage of the system matrix in

the manner described results for this example in a 6 � 6 matrix, namely

k½ � ¼ 107

24 0 �12 6 0 0

0 8 �6 2 0 0

�12 �6 24 0 �12 6

6 2 0 8 �6 2

0 0 �12 �6 12 �6

0 0 6 2 �6 4

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð10:25Þ

Equation (10.25) is thus the system stiffness matrix for the cantilever beam shown in Fig. 10.3 which

has been segmented into three elements. As such, the system stiffness matrix relates the forces and the

displacements at the nodal system coordinates in the same manner as the element stiffness matrix

relates forces and displacements at the element nodal coordinates.
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10.3 Inertial Properties-Lumped Mass

The simplest method for considering the inertial properties for a dynamic system is to assume that the

mass of the structure is lumped at the nodal coordinates where translational displacements are

defined, hence the name lumped mass method. The usual procedure is to distribute the mass of

each element to the nodes of the element. This distribution of the mass is determined by statics.

Figure 10.4 shows, for beam segments of length L and distributed mass �m (x) per unit of length, the

nodal allocation for uniform, triangular, and general mass distribution along the beam segment. The

assemblage of the mass matrix for the entire structure will be a simple matter of adding the

contributions of lumped masses at the nodal coordinates defined as translations.

In this method, the inertial effect associated with any rotational degree of freedom is usually

assumed to be zero, although a finite value may be associated with rotational degrees of freedom by

calculating the mass moment of inertia of a fraction of the beam segment about the nodal points.

For example, for a uniform beam, this calculation would result in determining the mass moment of

inertia of half of the beam segment about each node, that is

IA ¼ IB ¼
1

3

�mL

2

� �

L

2

� �2

where �m is the mass per unit length along the beam. For the cantilever beam shown in Fig. 10.3 in

which only translation mass effects are considered, the mass matrix of the system would be the

diagonal matrix, namely

Fig. 10.4 Lumped masses for beam segments with distributed mass
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ð10:26Þ

in which

m1 ¼
�mL1

2
þ

�mL2

2

m3 ¼
�mL2

2
þ

�mL3

2

m5 ¼
�mL3

2

Using a special symbol d c for diagonal matrices, we may write Eq. (10.26) as

M½ � ¼ dm1 0 m3 0 m5c ð10:27Þ

10.4 Inertial Properties—Consistent Mass

It is possible to evaluate the mass coefficients corresponding to the nodal coordinates of a beam

element by a procedure similar to the determination of element stiffness coefficients. First, we define

the mass coefficient mij as the force at nodal coordinate i due to a unit acceleration at nodal coordinate

j while all other nodal coordinates are maintained at zero acceleration.

Consider the beam segment shown in Fig. 10.5a which has distributed mass �m (x) per unit of length.

In the consistent mass method, it is assumed that the deflections resulting from unit dynamic

displacements at the nodal coordinates of the beam element are given by the same functions N1(x),

N2(x), N3(x), and N4(x) of Eqs. (10.9a, b, c and d) which were obtained from static considerations. If

the beam segment is subjected to a unit nodal acceleration at one of the nodal coordinates, say €δ2, the

transverse acceleration developed along the length of the beam is given by the second derivative with

respect to time of Eq. (10.10). In this case, with €δ1 ¼ €δ3 ¼ €δ4 ¼ 0, we obtain

€u2 xð Þ ¼ N2 xð Þ€δ2 ð10:28Þ
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The inertial force f1(x) per unit of length along the beam due to this acceleration is then given by

f 1 xð Þ ¼ �m xð Þ€u2 xð Þ

or using Eq. (10.28) by

f 1 xð Þ ¼ �m xð ÞN2 xð Þ€δ2

or, since €δ2 ¼ 1, gb

f 1 xð Þ ¼ �m xð ÞN2 xð Þ ð10:29Þ

Now to determine the mass coefficient m12, we give to the beam in Fig. 10.5b, which is in equilibrium

with the forces resulting from a unit acceleration
:::
δ 2 ¼ 1, a virtual displacement corresponding to a

unit displacement at coordinate 1, δ1 ¼ 1, and proceed to apply the Principle of Virtual Work for an

elastic system (external work equal to internal virtual work). The virtual work of the external force is

simply

WE ¼ m12δ1 ¼ m12 ð10:30Þ

since the only external force undergoing virtual displacement is the inertial force reaction m12δ1 with

δ1 ¼ 1. The virtual work of the internal forces per unit of length along the beam segment is

δWI ¼ f 1 xð ÞN1 xð Þ

or by Eq. (10.29)

δWI ¼ �m xð ÞN2 xð ÞN1 xð Þ

Fig. 10.5 (a) Beam element with distributed mass showing nodal coordinates. (b) element supporting inertial load

due to acceleration €δ2 ¼ 1, undergoing virtual displacement δ1 ¼ 1
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and for the entire beam

WI ¼

ð L

0

�m xð ÞN2 xð ÞN1 xð Þdx ð10:31Þ

Equating the external and internal virtual work given, respectively, by Eqs. (10.30) and (10.31)

results in

m12 ¼

ð L

0

�m xð ÞN2 xð ÞN1 xð Þdx ð10:32Þ

which is the expression for the consistent mass coefficient m12. In general, a consistent mass

coefficient may be calculated from

mij ¼

ð L

0

�m xð ÞNi xð ÞN j xð Þdx ð10:33Þ

It may be seen from Eq. (10.33) thatmij¼mji since the interchange of the subindices only results in an

interchange of the order of the factors Ni (x) and Nj (x) under the integral.

In practice, the cubic Eqs. (10.9a, b, c and d) are used in calculating the mass coefficients of any

straight beam element. For the special case of the beam with uniformly distributed mass, the use of

Eq. (10.33) gives the following relation between inertial forces and acceleration at the nodal

coordinates:

P1

P2

P3

P4

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

¼
�mL

420

156 22L 54 �13L

22L 4L2 13L �3L2

54 13L 156 �22L

�13L �3L2 �22L 4L2

2

6

6

6

6

4

3

7

7

7

7

5

€δ1

€δ2

€δ3

€δ4

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

ð10:34Þ

When the mass matrix, Eq. (10.34), has been evaluated for each beam element of the structure, the

mass matrix for the entire system is assembled by exactly the same procedure (direct method) as

described in developing the stiffness matrix for the system. The resulting mass matrix will in general

have the same arrangement of nonzero terms as the stiffness matrix.

The dynamic analysis using the lumped mass matrix requires considerably less computational

effort than the analysis using the consistent mass method for the following reasons. The lumped mass

matrix for the system results in a diagonal mass matrix whereas the consistent mass matrix has many

off diagonal terms which are called mass coupling. Also, the lumped mass matrix contains zeros in its

main diagonal due to assumed zero rotational inertial forces. This fact permits the elimination by

static condensation (Chap. 9) of the rotational degrees of freedom, thus reducing the dimension of the

dynamic problem. Nevertheless, the dynamic analysis using the consistent mass matrix gives results

that are better approximations to the exact solution compared to the lumped mass method for the same

element discretization.

Illustrative Example 10.1

Determine the lumped mass and the consistent mass matrices for the cantilever beam in Fig. 10.6.

Assume uniform mass, �m ¼ 420 kg/m.
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Solution:

(a) Lumped Mass Matrix.

The lumped mass at each node of any of the three beam segments, into which the cantilever

beam has been divided, is simply half of the mass of the segment. In the present case, the lumped

mass at each node is 210 kg as shown in Fig. 10.6. The lumped mass matrix [ML] for this

structure is a diagonal matrix of dimension 6 � 6, namely,

ML½ � ¼ d420 0 420 0 210 0c

(b) Consistent Mass Matrix.

The consistent mass matrix for a uniform beam segment is given by Eq. (10.34). The substitution

of numerical values for this example L ¼ 1 m,

�m ¼ 420 kg/m into Eq. (10.34) gives the consistent mass matrix [m]c for any of the three beam

segments as

ðaÞ

The assemblage of the system mass matrix from the element mass matrices is carried out in exactly

the same manner as the assemblage of the system stiffness matrix from the element stiffness matrices,

that is, the element mass matrices are allocated to appropriate entries in the system mass matrix. For

the second beam segment, this allocation corresponds to the first four coordinates as indicated above

and on the right of Eq. (a). For the beam segment 3 , the appropriate allocation is 3, 4, 5, 6 and for

the beam segment 1 , 7, 8, 1, 2 since these are the system nodal coordinates for these beam

Fig. 10.6 Lumped masses for Illustrative Example 10.1
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segments as indicated in Fig. 10.6. The consistent mass matrix [M]c for this example obtained in this

manner is given by

ðbÞ

We note that the mass matrix [M]c is symmetric and also banded as in the case of the stiffness matrix

for this system. These facts are of great importance in developing computer programs for structural

analysis, since it is possible to perform the necessary calculations storing in the computer only the

diagonal elements and the elements to one of the sides of the main diagonal. The maximum number of

nonzero elements in any row which are required to be stored is referred to as the bandwidth of the

matrix. For the matrix Eq. (b) the bandwidth is equal to four (NBW¼ 4). In this case, it is necessary to

store a total of 6� 4¼ 24 coefficients, whereas if the square matrix were to be stored, it would require

6� 6¼ 36 storage spaces. This economy in storing spaces becomes more dramatic for structures with

a large number of nodal coordinates. The dimension of the bandwidth is directly related to the largest

difference of the nodal coordinate labels assigned to any of the elements of the structure. Therefore, it

is important to number the system nodal coordinates so as to minimize this difference.

10.5 Damping Properties

Damping coefficients are defined in a manner entirely parallel to the definition of the stiffness

coefficient or the mass coefficient. Specifically, the damping coefficient cij is defined as the force

developed at coordinate i due to a unit velocity at j. If the damping forces distributed in the structure

could be determined, the damping coefficients of the various structural elements would then be used

in obtaining the damping coefficient corresponding to the system. For example, the damping coeffi-

cient cij for an element might be of the form

cij ¼

ð L

0

c xð ÞNi xð ÞN j xð Þdx ð10:35Þ

where c(x) represents the distributed damping coefficient per unit length. If the element damping

matrix could be calculated, the damping matrix for the entire structure could be assembled by a

superposition process equivalent to the direct stiffness matrix. In practice, the evaluation of the

damping property c(x) is impracticable. For this reason, the damping is generally expressed in terms

of damping ratios obtained experimentally rather than by a direct evaluation of the damping matrix

using Eq. (10.35). These damping ratios are evaluated or estimated for each natural mode of

vibration. If the explicit expression of the damping matrix [C] is needed, it may be computed from

the specified relative damping coefficients by any of the methods described in Chap. 22.
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10.6 External Loads

When the dynamic loads acting on the structure consist of concentrated forces and moments applied

at defined nodal coordinates, the load vector can be written directly.

In general, however, loads are applied at points other than nodal coordinates. In addition, the

external load may include the action of distributed forces. In this case, the load vector corresponding

to the nodal coordinates consists of the equivalent nodal forces. The procedure to determine the

equivalent nodal forces which is consistent with the derivation of the stiffness matrix and the

consistent mass matrix is to assume the validity of the static deflection functions, Eqs. (10.9a, b, c

and d), for the dynamic problem and to use the principle of virtual work.

Consider the beam element in Fig. 10.7 when subjected to an arbitrary distributed force p (x, t)

which is a function of position along the beam as well as a function of time. The equivalent force P1 at

the nodal coordinate 1 may be found by giving a virtual displacement δ1 ¼ 1 at this coordinate and

equating the resulting external work and internal work during this virtual displacement. In this case,

the external work is

WE ¼ P1δ1 ¼ P1 ð10:36Þ

since δ1 ¼ 1. The internal work per unit of length along the beam is p(x,t) times N1 (x). Then the total

internal work is

WI ¼

ð L

0

p x; tð ÞN1 xð Þdx ð10:37Þ

Equating external work, Eq. (10.36), and internal work, Eq. (10.37), gives the equivalent nodal force as

P1 tð Þ ¼

ð L

0

p x; tð ÞN1 xð Þdx ð10:38Þ

Thus the element equivalent nodal forces can be expressed in general as

Pi tð Þ ¼

ð L

0

p x; tð ÞN1 xð Þdx ð10:39Þ

Fig. 10.7 Beam element supporting arbitrary distributed load undergoing virtual displacement δ1 ¼ 1
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Illustrative Example 10.2

Consider the beam segment in Fig. 10.8 and determine the equivalent nodal forces for a uniform

distributed force along the length of the beam given by

p x; tð Þ ¼ 200 sin 10t N=m

Solution:

Introduction of numerical values into the displacements functions, Eqs. (10.9a, b, c and d), and

substitution in Eq. (10.39) yield

P1 tð Þ ¼ 200
Ð 1

0
1� 3x2 þ 2x3ð Þ sin 10tdx ¼ 100 sin 10t

P2 tð Þ ¼ 200
Ð 1

0
x 1� xð Þ2 sin 10tdx ¼ 16:67 sin 10t

P3 tð Þ ¼ 200
Ð 1

0
3x2 � 2x3ð Þ sin 10tdx ¼ 100 sin 10t

P4 tð Þ ¼ 200
Ð 1

0
x2 x� 1ð Þ sin 10tdx ¼ �16:67 sin 10t

10.7 Geometric Stiffness

When a beam element is subjected to an axial force in addition to flexural loading, the stiffness

coefficients are modified by the presence of the axial force. The modification corresponding to the

stiffness coefficient kij is known as the geometric stiffness coefficient kGij, which is defined as the

force corresponding to the nodal coordinate i due to a unit displacement at coordinate j and resulting

from the axial forces in the structure. These coefficients may be evaluated by application of the

principle of virtual work. Consider a beam element as used previously but now subjected to a

distributed axial force per unit of length N (x), as depicted in Fig. 10.9a. In the sketch in

Fig. 10.9b, the beam segment is subjected to a unit rotation of the left end, δ2 ¼ 1. By definition,

the nodal forces due to this displacement are the corresponding geometric stiffness coefficients; for

example, kG12 is the vertical force at the left end. If we now give to this deformed beam a unit

displacement δ1 ¼ 1, the resulting external work is

Fig. 10.8 Beam segment with uniformly distributed load, showing the equivalent nodal forces
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We ¼ kG12δ1

or

We ¼ kG12 ð10:40Þ

since δ1 ¼ 1.

The internal work during this virtual displacement is found by considering a differential element of

length dx taken from the beam in Fig. 10.9b and shown enlarged in Fig. 10.10. The work done by the

axial force N(x) during the virtual displacement is

dWI ¼ N xð Þδe ð10:41Þ

where δe represents the relative displacement experienced by the normal force N(x) acting on the

differential element during the virtual displacement. From Fig. 10.10, by similar triangles (triangles I

and II), we have

δe

dN1 xð Þ
¼

dN2 xð Þ

dx

or

Fig. 10.9 (a) Beam element loaded with arbitrary distributed axial force, (b) Beam element acted on by nodal forces

resulting form displacement δ2 ¼ 1 undergoing a virtual displacement δ1 ¼ 1
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δe ¼
dN1 xð Þ

dx
�
dN2 xð Þ

dx
dx

δe ¼ N
0

1 xð ÞN
0

2 xð Þdx

in which N
0

1 xð Þ and N
0

2 xð Þ are the derivatives with respect to x of the corresponding displacement

functions defined in Eqs. (10.9a, b, c and d).

Now, substituting δe into Eq. (10.41), results in

dWI ¼ N xð ÞN
0

1 xð ÞN
0

2 xð Þdx ð10:42Þ

Then integrating this expression and equating the result to the external work, Eq. (10.40), finally give

kG12 ¼

ð L

0

N xð ÞN
0

1 xð ÞN
0

2 xð Þdx ð10:43Þ

In general, any geometric stiffness coefficient may be expressed as

kGij ¼

ð L

0

N xð ÞN
0

i xð ÞN
0

j xð Þdx ð10:44Þ

In the derivation of Eq. (10.44), it is assumed that the normal force N(x) is independent of time. When

the displacement functions, Eqs. (10.9a, b, c and d), are used in Eq. (10.44) to calculate the geometric

stiffness coefficients, the result is called the consistent geometric stiffness matrix. In the special case

where the axial force is constant along the length of the beam, use of Eqs. (10.44) and (10.9a, b, c and

d) gives the geometric stiffness matrix equation as

Fig. 10.10 Differential segment of deflected beam in Fig. 10.9
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ð10:45Þ

The assemblage of the system geometric stiffness matrix can be carried out exactly in the same

manner as for the assemblage of the elastic stiffness matrix. The resulting geometric stiffness matrix

will have the same configuration as the elastic stiffness matrix. It is customary to define the geometric

stiffness matrix for a compressive axial force. In this case, the combined stiffness matrix [Kc] for the

structure is given by

Kc½ � ¼ K½ � � KG½ � ð10:46Þ

in which [K] is the assembled elastic stiffness matrix for the structure and [KG] the corresponding

geometric stiffness matrix.

Illustrative Example 10.3

For the cantilever beam in Fig. 10.11, determine the system geometric matrix when an axial force of

magnitude 30 Newtons is applied at the free end as shown in this figure.

Solution:

The substitution of numerical values into Eq. (10.45) for any of the three beam segments in which the

cantilever beam has been divided gives the element geometric matrix

KG½ � ¼

36 3 �36 3

3 4 �3 �1

�36 �3 36 �3

3 �1 �3 4

2

6

6

6

6

4

3

7

7

7

7

5

since in this example L ¼ 1 m and N ¼ 30 Newtons. Use of the direct method gives the assembled

system geometric matrix as

KG½ � ¼

72 0 �36 3 0 0

0 8 �3 �1 0 0

�36 �3 72 0 �36 3

3 �1 0 8 �3 �1

0 0 �36 �3 36 �3

0 0 3 �1 �3 4

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

Fig. 10.11 Cantilever beam subjected to constant axial force (Illustrative Example 10.3)
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10.8 Equations of Motion

In the previous sections of this chapter, the distributed properties of a beam and its load were

expressed in terms of discrete quantities at the nodal coordinates. The equations of motion as

functions of these coordinates may then be established by imposing conditions of dynamic equilib-

rium between the inertial forces {FI(t)}, damping forces {FD(t)}, elastic forces {Fs(t)}, and the

external forces {F(t)}, that is,

FI tð Þf g þ Fd tð Þf g þ Fs tð Þf g ¼ F tð Þf g ð10:47Þ

For a linear system the forces on the left-hand side of Eq. (10.47) are expressed in terms of the system

mass matrix, the system damping matrix, and the system stiffness matrix as

FI tð Þf g ¼ M½ � €uf g ð10:48Þ

Fd tð Þf g ¼ C½ � _uf g ð10:49Þ

Fs tð Þf g ¼ K½ � uf g ð10:50Þ

Substitution of these equations into Eq. (10.47) gives the differential equation of motion for a linear

system as

M½ � €uf g þ C½ � _uf g þ K½ � uf g ¼ F tð Þf g ð10:51Þ

In addition, if the effect of axial forces is considered in the analysis, Eq. (10.51) is modified so that

M½ � €uf g þ C½ � _uf g þ Kc½ � uf g ¼ F tð Þf g ð10:52Þ

in which

Kc½ � ¼ K½ � � KG½ � ð10:53Þ

In practice, the solution of Eq. (10.51) or (10.52) is accomplished by standard methods of analysis and

the assistance of appropriate computer programs as those described in this and the following chapters.

We illustrate these methods by presenting here some simple problems for hand calculation.

Illustrative Example 10.4

Consider in Fig. 10.12 a uniform beam with the ends fixed against translation or rotation. In

preparation for analysis, the beam has been divided into four equal segments. Determine the first

three natural frequencies and corresponding modal shapes. Use the lumped mass method in order to

simplify the numerical calculations.

Solution:

We begin by numbering sequentially the nodal coordinates starting with the rotational coordinates

which have to be condensed in the lumped mass method (no inertial effect associated with rotational

coordinates), continuing to number the coordinates associated with translation, and assigning the last

numbers 7 through 10 to the fixed nodal coordinates as shown in Fig. 10.12. The stiffness matrix for

any of the beam segments for this example is obtained from Eq. (10.20) as
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ð10:54Þ

With the aid of the system nodal coordinates for each beam segment written at the top and on the right

of the stiffness matrix, Eq. (10.54), we proceed to assemble the system stiffness matrix using the

direct method. For the beam segment 1 , the corresponding labels are 7, 8, 4, 1, we need to transfer

only the lowest 2 � 2 sub-matrix that correspond to labels of rows and columns with indices 4, 1. For

the beam segment 2 , we translate the 4 � 4 elements of matrix Eq. (10.54) to the system stiffness

matrix to rows and columns designated by combination of indices 4, 1, 5, 2 as labeled for this element

and so forth for the other two beam segments. The assembled system stiffness matrix obtained in this

manner results in the following system stiffness matrix:

K½ � ¼ EI

8 2 0 0 �6 0

2 8 2 6 0 �6

0 2 8 0 6 0

0 6 0 24 �12 0

�6 0 6 �12 24 �12

0 �6 0 0 �12 24

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð10:55Þ

The reduction or condensation of Eq. (10.55) is accomplished as explained in Chap. 9 by simply

performing the Gauss-Jordan elimination of the first three rows since, in this case, we should

condense these first three coordinates. This elimination reduces Eq. (10.55) to the following matrix:

7 4 5 6 9

8

1 2 3 4

321

1m 1m 1m 1m

El ,m

1 2 3 10

Fig. 10.12 Fixed beam divided in four element with indication of system nodal coordinates (Illustrative Example

10.4)
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ð10:56Þ

Comparison of Eq. (10.56) in partition form with Eq. (9.11) permits the identification of the reduced

stiffness matrix [�k] and the transformation matrix [�T], so that

�

�K
�

¼ EI

18:86 �12:00 5:14

�12:00 15:00 �12:00

5:14 �12:00 18:86

2

6

4

3

7

5
ð10:57Þ

and

�

�T
�

¼ EI

0:214 0:750 �0:214

�0:858 0 0:858

0:214 �0:750 �0:214

2

6

4

3

7

5
ð10:58Þ

The general transformation matrix, Eq. (9.9), is then

T½ � ¼

0:214 0:750 �0:214

�0:858 0 0:858

0:214 �0:750 �0:214

1 0 0

0 1 0

0 0 1

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð10:59Þ

As an exercise, the reader may check Eq. (9.10) for this example by simply performing the matrix

multiplications

�

�K
�

¼ T½ �T K½ � T½ � ð10:60aÞ

The lumped mass method applied to this example gives three equal masses of magnitude m at each of

the three translatory coordinates as indicated in Fig. 10.13. Therefore, the reduced lumped mass

matrix is

�

�M
�

¼ �m

1 0 0

0 1 0

0 0 1

2

6

4

3

7

5
ð10:60bÞ

The natural frequencies and modal shapes are found by solving the undamped free vibration problem,

that is,
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�

�M
�

€uf g þ
�

�K
�

uf g ¼ 0f g ð10:61Þ

Assuming the harmonic solution ({u} ¼ {a} sin ω t), we obtain

�

�K
�

� ω2
�

�M
�� 	

af g ¼ 0f g ð10:62Þ

requiring for a nontrivial solution that the determinant

�

�K
�

� ω2
�

�M
�









 ¼ 0 ð10:63Þ

Substitution in this last equation [�k] and [ �M], respectively, from Eqs. (10.57) and (10.60a and b) yields

18:86� λ �12:00 5:14

�12:00 15:00� λ �12:00

5:14 �12:00 18:86� λ











































¼ 0 ð10:64Þ

in which

λ ¼
�mω2

EI
ð10:65Þ

The roots of the cubic equation resulting from the expansion of the determinant in Eq. (10.64) are

found to be

λ1 ¼ 1:943, λ2 ¼ 13:720, λ3 ¼ 37:057 ð10:66Þ

Then from Eq. (10.65)

ω1 ¼ 1:393
ffiffiffiffiffiffiffiffiffiffiffi

EI= �m
p

ω2 ¼ 3:704
ffiffiffiffiffiffiffiffiffiffiffi

EI= �m
p

ω3 ¼ 6:087
ffiffiffiffiffiffiffiffiffiffiffi

EI= �m
p

ð10:67Þ

The first three natural frequencies for a uniform fixed beam of length L¼ 4m determined by the exact

analysis (Chap. 17) are

m/2

m/2 m/2 m/2 m/2 m/2 m/2 m/2 m/2

m/2
m m

(a)

(b)
m

Fig. 10.13 (a) Lumped masses for uniform beam segment, (b) Lumped masses at system nodal coordinates
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ω1 exactð Þ ¼ 1:398
ffiffiffiffiffiffiffiffiffiffiffi

EI= �m
p

ω2 exactð Þ ¼ 3:854
ffiffiffiffiffiffiffiffiffiffiffi

EI= �m
p

ω3 exactð Þ ¼ 7:556
ffiffiffiffiffiffiffiffiffiffiffi

EI= �m
p

ð10:68Þ

The first two natural frequencies determined using the three-degrees-of-freedom reduced system

compare very well with the exact values. A practical rule in condensing degrees of freedom is to

condense those nodal coordinates which have the least inertial effect; in this problem these are the

rotational coordinates.

The modal shapes are determined by solving two of the equations in Eq. (10.62) after substituting

successively values of ω1, ω2, ω3 from Eq. (10.67) and conveniently setting the first coordinate for

each modal shape be equal to one. The resulting modal shapes are

af g1 ¼

1:00

1:84

1:00

2

6

4

3

7

5
, af g2

1:00

0

�1:00

2

6

4

3

7

5
, af g3 ¼

1:00

�1:08

1:00

2

6

4

3

7

5
ð10:69Þ

The normalized modal shapes which are obtained by division of the elements of Eq. (10.69) by

corresponding values of

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Σmia
2
ij

q

(mi ¼ 100 kg for this example) are arranged in the columns of the

modal matrix are

Φ½ �p ¼

0:0431 0:0707 0:0562

0:0793 0 �0:0607

0:0431 �0:0707 0:0562

2

6

4

3

7

5
ð10:70aÞ

The modal shapes in terms of the six original coordinates are then obtained by Eq. (9.8) as

Φ½ � ¼ T½ � Φ½ �p

Φ½ � ¼

0:0594 0:0301 �0:0457

0 �0:1212 0

�0:0594 0:0301 0:0457

0:0431 0:0707 0:0562

0:0793 0 �0:0607

0:0431 0:0707 0:0562

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð10:70bÞ

Illustrative Example 10.5

Determine the steady-state response for the beam of Illustrative Example 10.4 when subjected to the

harmonic forces

F1 ¼ F01 sinϖt

F2 ¼ F02 sinϖt

F3 ¼ F03 sinϖt

applied, respectively, at joints, 1, 2 and 3 of the beam in Fig. 10.12. Neglect damping and let EI¼ 108

(N.m2), �m ¼ 100 kg/m, ϖ ¼ 3000 rad/sec, F01 ¼ 2000 N, F02 ¼ 3000 N, and F03 ¼ 1000 N.

274 10 Dynamic Analysis of Beams



Solution:

The modal equations (uncoupled equations) can readily be written using the results of Illustrative

Example 10.4. In general the nth normal equation is given by

€zn þ ω2
nzn ¼ Pn sinϖt ð10:71Þ

in which

Pn ¼
X

N

i¼1

ϕinF0i

The steady-state solution of Eq. (10.71) is given by Eq. (3.4) as

zn ¼ Zn sinϖt ¼
Pn sinϖt

ω2
n �ϖ

2
ð10:72Þ

The calculations required in Eq. (10.72) are conveniently arranged in Table 10.1. The deflections at

the modal coordinates are found from the transformation

uf g ¼ Φ½ � zf g

Uf g ¼ Φ½ � Zf g
ð10:73Þ

in which [Ф] is the modal matrix and

uf g ¼ Uf g sinϖt

zf g ¼ Zf g sinϖt

The substitution into Eq. (10.73) of the modal matrix from Eq. (10.70b) and the values of {Z} from

the last column of Table 10.1 gives the amplitudes at nodal coordinates as

U1

U2

U3

U4

U5

U6

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

¼

0:0594 0:0301 �0:0457

0 �0:1212 0

�0:0594 0:0301 0:0457

0:0431 0:0707 0:0562

0:0793 0 �0:0607

0:0431 �0:0707 0:0562

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

�5:200

1:500

�0:048

8

>

<

>

:

9

>

=

>

;

10�5

or

U1 ¼ �2:616� 10�6rad

U2 ¼ �1:818� 10�6rad

U3 ¼ 3:524� 10�6rad

U4 ¼ �1:207� 10�6m

U5 ¼ �4:094� 10�6m

U6 ¼ �3:329� 10�6m
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Therefore, the motion at these nodal coordinates is given by

u1 tð Þ: ¼ �2:616� 10�6 sin 3000t rad

u2 tð Þ: ¼ �1:818� 10�6 sin 3000t rad

u3 tð Þ: ¼ �3:524� 10�6 sin 3000t rad

u4 tð Þ: ¼ �1:207� 10�6 sin 3000tm

u5 tð Þ: ¼ �4:094� 10�6 sin 3000tm

u6 tð Þ: ¼ �3:329� 10�6 sin 3000tm

ð10:74Þ

The minus sign in the resulting amplitudes of motion simply indicates that the motion is 180� out of

phase with the applied harmonic forces.

10.9 Element Forces At Nodal Coordinates

The central problem to be solved using the dynamic stiffness method is to determine the

displacements at the nodal coordinates. Once these displacements have been determined, it is a

simple matter of substituting the appropriate displacements in the condition of dynamic equilibrium

for each element to calculate the forces at the nodal coordinates. The nodal element forces {P} may

be obtained by adding the inertial force {PI}, the damping force {PD}, the elastic force {Ps}, and

subtracting the nodal equivalent forces {PE}.

Therefore, we may write:

Pf g ¼ PIf g þ PDf g þ PSf g � PEf g

or

Pf g ¼ m½ � €δ
� 


þ c½ � _δ
� 


þ k½ � δf g � PEf g ð10:75Þ

In Eq. (10.75) the inertial force, the damping force, and the elastic force are, respectively,

PIf g ¼ m½ � €δ
� 


PDf g ¼ c½ � _δ
� 


PSf g ¼ k½ � δf g

ð10:76Þ

where [m] is the element mass matrix; [c] the element damping matrix; [k] the element stiffness

matrix; and {€δ}, { _δ}, {δ} represents, respectively, the displacement, velocity, and acceleration vectors

at the nodal coordinates of the element.

Table 10.1 Modal Response for Illustrative Example 10.5

Mode (n) ω2
n

Pn ¼
P

i

ϕinFoi
Zn ¼

Pn

ω2
n �ϖ

2

1 1.943 � 106 367.2 �5.200 � 10�5

2 13.720 � 106 70.7 1.5000 � 10�5

3 37.057 � 106 �13.5 �0.048 � 10�5
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Although, the determination of element end-forces at nodal coordinates is given by Eq. (10.75),

commercial computer programs only use the forces due to the elastic displacements, that is, the

element end forces are calculated as

Pf g ¼ k½ � δf g

This simplified approach may be justified by the mathematical model in which the inertial forces,

damping forces, and external forces are assumed to be acting directly, at the nodes. Therefore, it is

important in the process of discretization to select beam elements relatively short as to approximate

the distributed properties with discrete concentrated values at the nodes between the elements. The

determination of the element nodal forces is illustrated in the following example.

Illustrative Example 10.6

Determine the element nodal forces and moments for the four beam elements of Illustrative

Example 10.5.

Solution:

Since in this example damping is neglected and there are no external forces applied on the beam

elements except those at the nodal coordinates, Eq. (10.75) reduces to

Pf g ¼ m½ � €δ
� 


þ k½ � δf g ð10:77Þ

The displacement functions for the six nodal coordinates of the beam in Fig. 10.12 are given by

Eq. (10.74). These displacements are certainly also the displacements of the element nodal

coordinates. The identification for this example of corresponding nodal coordinates between beam

segments and system nodal coordinates is

δf g1 ¼

0

0

u4

u1

2

6

6

6

6

4

3

7

7

7

7

5

, δf g2 ¼

u4

u1

u5

u2
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7

5

, δf g3 ¼

u5

u2

u6

u3
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3

7

7

7

7

5

, δf g4 ¼

u6

u3

0

0

2

6

6

6

6

4

3

7

7

7

7

5

ð10:78Þ

where {δ}i is the vector of nodal displacement for i beam segment. The substitution of appropriate

quantities into Eq. (10.77) for the first beam element results in

P1

P2

P3
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>

:
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>
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>

>

;

¼
�m

2

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0
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3
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<

>

>
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>
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>
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�ω2
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sin ϖt þ EI
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=

>

>
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>

;

sin ϖt

To complete this example, we substitute the numerical values of ϖ ¼ 3000 rad/sec, m ¼ 100 kg/m,

and EI ¼ 108 (N. m2) and obtain

P1

P2

P3

P4
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:
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;

¼

7:5 6 �12 6

6 4 �6 2

�12 �6 7:5 �6

6 2 �6 4
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0
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�261:6
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>
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9
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=

>
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;

sin 3000t

which then gives
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P1 ¼ �121:2 sin 3000t N

P2 ¼ 201:0 sin 3000t N:m

P3 ¼ 664:3 sin 3000tN

P4 ¼ �322:2 sin 3000t N:m

The nodal element forces found in this manner for all of the four beam segments in this example are

given in Table 10.2.

The results in Table 10.2 may be used to check that the dynamic conditions of equilibrium are

satisfied in each beam segment. The free body diagrams of the four elements of this beam are shown

in Fig. 10.14 with inclusion of nodal inertial forces. These forces are computed by multiplying the

nodal mass by the corresponding nodal acceleration.

10.10 Program 13—Modeling Structures as Beams

The computer program presented in this section calculates the stiffness and mass matrices for a beam

and stores the coefficients of these matrices in a file, for future use. Since the stiffness and mass

matrices are symmetric, only the upper triangular portion of these matrices needs to be stored. The

program also stores in another file, named by the user, the general information on the beam. The

information stored in these files is needed by programs which perform dynamic analysis such as

Table 10.2 Element Nodal Forces (Amplitudes) for Illustrative Example 10.6

Force

Beam segment

Units1 2 3 4

P1 �121.2 1347.2 1947.9 �382.3 N

P2 201.0 322.2 �481.4 �587.0 N.m

P3 664.3 1038.3 1392.4 1880.4 N

P4 �322.2 481.4 587.0 �1292.6 N.m

0 543 543 1842 1842 1498 1498 0

201

–121.2 664.3 1347 1038.3 1948 1392.4 –382.3 1880.4

–322.2 322.2 481.4 –481.4 587 –588 –1292.6

1 2 3 4

Fig. 10.14 Dynamic equilibrium for beam element of Illustrative Example 10.6
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calculation of natural frequencies or determination of the response of the structure subjected to

external excitation.

Illustrative Example 10.7

Determine the stiffness and mass matrices for the uniform fixed-ended beam shown in Fig. 10.15. The

following are the properties of the beam:

Length: L ¼ 200 in

Cross-section moment of inertia: I ¼ 100 in4

Modulus of elasticity: E ¼ 6.58 E6 lb/in2

Mass per unit length: m ¼ 0.10 (lb. s2/in/in)

Determine: (a) the stiffness and mass matrices, (b) the natural frequencies and modal shapes,

(c) the response to concentrated force of 10,000 lb suddenly applied at the center of the beam for 0.1 s

and removed linearly as shown in Fig. 10.16. Use time step of integration Δt ¼ 0.01 s.

Solution:

Step 1 print out the output of (a) stiffness and mass matrices and (b) natural frequencies and modal

shapes.

1 2 3 4

1 2 3 4 5

50´´50´´50´´50´´

Fig. 10.15 Fixed beam modeled for Illustrative Example 10.7

10,000

F(t) (Ib)

0 0.1 0.2 time (sec)

Fig. 10.16 Force applied to the beam of Illustrative Example 10.8
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The following MATLAB file is used to compute stiffness and mass matrices using the system matrix.

close all
clear all

%__________________________________________________________________________
% Determine System Matrices/Determine Force
%__________________________________________________________________________

%%%%-GIVEN VALUES-%%%%

E=6.58*10^6; L=50;               %E(psi), L(in.)
inertia = 100;                      %Second Moment of Inertia (in^4)
EI = E*inertia;                     %Beam stiffness

nodes =[0:L:4*L];                   %Coordinates of nodes
debc=[1,2,9,10];                    %Dofs are eliminated at supports

m_bar = 0.1;                        %Mass per unit length (lb-sec^2/in/in)

dof = 2*length(nodes);              %Total No. dofs

K= zeros(dof);
M= zeros(dof);

%%%Generate equations for each element and assemble them.
for i=1:4

lm=[2*(i-1)+1,2*(i-1)+2,2*(i-1)+3,2*(i-1)+4];
ke = BeamElement(EI, nodes([i:i+1]));
K(lm, lm) = K(lm, lm) + ke;

end

%%%Generate mass matrix for each element and assemble them.
for i=1:4

lm=[2*(i-1)+1,2*(i-1)+2,2*(i-1)+3,2*(i-1)+4];
m=BeamConsMass(m_bar, nodes([i:i+1]));
M(lm, lm) = M(lm, lm) + m;

end

K;

M;

%%%Define the load vector 
F = zeros(dof,1); F(5) = 10000;          %Applied force at specific dofs

%%%System Matrices
[Kf, Mf, Rf] = System(K, M, F, [1,2,9,10]);

Kf

Mf

Rf
%_____________________________________________________________________
% Solve the eigenvalue problem and normalized eigenvectors
%_____________________________________________________________________

%%%Solve for eigenvalues (D) and eigenvectors (a) 
[a, D] = eig(Kf, Mf); 

[omegas,ii] = sort(sqrt(diag(D)));         %Natural Frequencies

omegas

a = a(:,ii)                                %Mode Shapes

T = 2*pi./omegas;                          %Natural Periods

f = 1./T;                                  %Natural Frequency (cps)

save ('temp0.mat', 'Mf', 'Kf' ,'Rf');
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The function file of MATLAB is used to assemble the stiffness matrix of each beam element for

global stiffness matrix.

function ke = BeamElement(EI, coord)
% ke = BeamElement(EI, w, coord)
% Generates equations for a beam element
% EI = beam stiffness
% coord = coordinates at the element ends

L=coord(2)-coord(1);
ke = [(12*EI)/L^3, (6*EI)/L^2, -((12*EI)/L^3), (6*EI)/L^2;

(6*EI)/L^2, (4*EI)/L, -((6*EI)/L^2), (2*EI)/L;
-((12*EI)/L^3), -((6*EI)/L^2), (12*EI)/L^3, -((6*EI)/L^2);
(6*EI)/L^2, (2*EI)/L, -((6*EI)/L^2), (4*EI)/L];

The function file of MATLAB is used to assemble the mass matrix of each beam element for global

mass matrix.

function m = BeamConsMass(m_bar, coord)
% BeamConsMass(m_bar, nodes(con,:))
% Generates mass matrix for a beam element
% m = Mass per unit length (lb-sec^2/in/in)
% L = length
% coord = coordinates at the element ends

L=coord(2)-coord(1);

m = m_bar*L/420*[156   22*L  54     -13*L;
22*L  4*L^2 13*L   -3*L^2; 
54    13*L  156    -22*L;
-13*L -3*L^2 -22*L  4*L^2];

The function file of MATLAB is used to construct the system matrix of the given problem. This file

will be used for other element types including frame element (Chap. 11), grid frame element

(Chap. 12), three-dimensional frame element (Chap. 13), and truss element (Chap. 14).

function [Kf, Mf, Rf] = System(K, M, R, debc)
%%% Computes System Matrix
%%% K = global stiffness matrix
%%% M = global mass matrix
%%% R = global right hand side vector
%%% debc = list of degrees of freedom to delete rows and columns

dof = length(R);
df = setdiff(1:dof, debc);
Kf = K(df, df);
Mf = M(df, df);
Rf = R(df);
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The function file of MATLAB is used to determine the function of the applied force and solve the

uncoupled equation.

function q = MDOFP(t, q)
load ('temp2.mat', 'omega', 'P', 'm' ,'zeta')

%______________________________________
%illustrative Example 10.8
%______________________________________

if t <= 0.1               
P = P;

elseif t <0.2

P = 2*P*(1-5*t);

else
P = 0;

end

q = [q(2); -omega*omega*q(1)-2*zeta*omega*q(2)+P];  

Step2: The response can be plotted using MATLAB file after running the Step 1 (Fig. 10.17):

clc
clear all
close all

%___________________________________________________________________________
% Inputs: 
%   M, K 
%   F = forcing function
%   t = Time period
%   u0 = initial displacement
%   v0 = initial velocity
%___________________________________________________________________________  
t = 0:0.01:0.5; 

load ('temp0.mat', 'Mf', 'Kf', 'Rf')

M = Mf

% Deifne Stiffness Matrix

K = Kf

[n,n]= size(M); 

F = Rf; 

nstep = size(t');

u0 = zeros(n,1); u0(1) =0;
v0 = zeros(n,1); v0(1) =0;
[n,n]= size(M); 
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%___________________________________________________________________________
% Solve the eigenvalue problem and normalized the eigenvectors
%___________________________________________________________________________  

[a, D] = eig(K, M)                 % Solve for eigenvalues (D) and eigenvectors (a)

[omegas,k] = sort(sqrt(diag(D)));  % Natural Frequencies
a = a(:,k)

T = 2*pi./omegas;                  % Natural Periods

aMa = diag(a'*M*a)                 % aMa = {a}'*[M]*(a}

nom_phi = (a)*inv(sqrt(diag(aMa))) % Normalized modal matrix

orth_M = nom_phi'*M*nom_phi        % Check the orthogonality condition for Mass Matrix 

orth_K = nom_phi'*K*nom_phi        % Check the orthogonality condition for Stiffness 
Matrix 
%___________________________________________________________________________
% Initial conditions
%___________________________________________________________________________

P = nom_phi'*F;                    % Normalized force, P = nom_F
q0 = nom_phi'*M*u0
dq0 = nom_phi'*M*v0

%___________________________________________________________________________
% Damping matrix using the proportional damping matrix
% [C] = a[M]+b[K]
% zetas = damping ratios
%___________________________________________________________________________
a = 0;
b = 0;
nom_C = nom_phi'*(a*M+b*K)*nom_phi;
zetas = diag((1/2)*nom_C*inv(diag(omegas)));

save ('temp1.mat', 'omegas', 'P' ,'zetas');
q = [];
r = [];
for i=1:n
q0_i = q0(i,:);
dq0_i = dq0(i,:);

load temp1.mat
omega = omegas(i,:);
P = P(i,:);
m = M(i,i);
zeta = zetas(i,:);

save ('temp2.mat', 'omega', 'P', 'm', 'zeta');

[t,q] = ode45(@MDOFP, t, [q0_i dq0_i]',[]);

r(:,i) = q(:,1);
save ('temp3.mat', 'r')

end

load ('temp3.mat', 'r');

yim = nom_phi*[r'];

save ('response.mat','yim');

figure 
subplot(3,2,1);
plot(t, yim(1,:))       % Node 2: y dipl (in.).
title ('Node 2'); xlabel ('Time (sec)'); ylabel ('u_3(in.)'); grid on
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subplot(3,2,2);
plot(t, yim(2,:))       % Node 2: rotation (radian).
title ('Node 2'); xlabel ('Time (sec)'); ylabel ('u_4(radian)'); grid on

subplot(3,2,3);
plot(t, yim(3,:))       % Node 3: y displ (in.).
title ('Node 3'); xlabel ('Time (sec)'); ylabel ('u_5(in.)'); grid on

subplot(3,2,4);
plot(t, yim(4,:))       % Node 3: rotation (radian).
title ('Node 3'); xlabel ('Time (sec)'); ylabel ('u_6(radian)'); grid on

subplot(3,2,5);
plot(t, yim(5,:))       % Node 4: y displ (in.).
title ('Node 4'); xlabel ('Time (sec)'); ylabel ('u_7(in.)'); grid on

subplot(3,2,6);
plot(t, yim(6,:))       % Node 4: rotation (radian).
title ('Node 4'); xlabel ('Time (sec)'); ylabel ('u_8(radian)'); grid on

10.11 Summary

In this chapter, we have formulated the dynamic equations for beams in reference to a discrete

number of nodal coordinates. These coordinates are translation and rotational displacements defined

at joints between structural elements of the beam (beam segments). The dynamic equations for a

linear system are conveniently written in matrix notation as
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Fig. 10.17 Response of Illustrative Example 10.7
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Mj j €uf g þ Cj j _uf g þ Kj j uf g ¼ F tð Þf g

where F(t) is the force vector and [M], [C], and [K] are, respectively, the mass, damping, and stiffness

matrices of the structure. These matrices are assembled by the appropriate superposition (direct

method) of the matrices determined for each beam segment of the structure.

The solution of the dynamic equations {i.e., the response) of a linear system may be found by the

modal superposition method. This method requires the determination of the natural frequencies ωn

(n ¼ 1, 2, 3, . . ., N ) and the corresponding normal modes which are conveniently written as the

columns of the modal matrix [Ф]. The linear transformation {u} ¼ [Ф] {z} applied to the dynamic

equations reduces them to a set of independent equations (uncoupled equations) of the form

€zn þ 2ωnξn _z n þ ω2
nzn ¼ Pn tð Þ

where ξn is the modal damping ratio and Pn (t) ¼ ФinFi(t) is the modal force.

An alternate method for determining the response of linear systems (also valid for nonlinear

systems) is the numerical integration of the dynamic equations. Chapter 20 presents the step-by-step

linear acceleration method (with a modification introduced by Wilson) which is an efficient method

for solving the dynamic equations.

An instructional computer program is also described in this chapter for the dynamic analysis of

beams. This program performs the task of assembling and storing in a file the stiffness and mass

matrices of the system. These matrices are subsequently used by other programs to calculate natural

frequencies or the response of the beam to external excitation.

10.12 Problems

Problem 10.1

A uniform beam of flexural stiffness EI ¼ 109 (lb. in2) and length 300 in has one end fixed and the

other simply supported. Determine the system stiffness matrix considering three beam segments and

the free nodal coordinates indicated in Fig. P10.1.

100 in. 100 in. 100 in.

54

1 2 3

EI = 109 (lb in.2)

Y

X

Fig. P10.1
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Problem 10.2

Assuming that the beam shown in Fig. P10.1 carries a uniform weight per unit length q ¼ 3.86 lb/in,

determine the system mass matrix corresponding to the lumped mass formulation.

Problem 10.3

Determine the system mass matrix for Problem 10.2 using the consistent mass method.

Problem 10.4

For the beam in Problems 10.1 and 10.2, use static condensation to eliminate the massless degrees of

freedom and determine the transformation matrix and the reduced stiffness and mass matrices.

Problem 10.5

For the beam in Problems 10.1 and 10.3 use static condensation to eliminate the rotational degrees of

freedom. Find the transformation matrix and the reduced tiffness and mass matrices.

Problem 10.6

Determine the natural frequencies and corresponding normal modes using the reduced stiffness and

mass matrices obtained in Problem 10.4.

Problem 10.7

Determine the natural frequencies and corresponding normal modes using the reduced stiffness and

mass matrices obtained in Problem 10.3.

Problem 10.8

Determine the geometric stiffness matrix for the beam of Problem 10.1 when it is subjected to a

constant tensile force of 10,000 lb as shown in Fig. P10.8.

Problem 10.9

Perform static condensation to reduce the geometric stiffness matrix obtained in Problem 10.8.

Eliminate the rotational coordinates.

Problem 10.10

Use results from Problems 10.4 and 10.9 and determine the natural frequencies and corresponding

normal modes for the beam shown in Fig. P10.8.

100 in. 100 in. 100 in.

10,000 lb

54

1 2 3

EI = 109 (lb–in.2)

q = 3.86 (lb/in.)

Y

X

Fig. P10.8
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Problem 10.11

Use the results of Problems 10.5 and 10.9 and determine the natural frequencies and corresponding

normal modes for the beam shown in Fig. P10.8.

Problem 10.12

Determine the stiffness matrix for a beam segment in which the flexural stiffness has a linear variation

as shown in Fig. P10.12.

Problem 10.13

Determine the lumped mass matrix for a beam segment in which the mass has a linear distribution as

shown in Fig. P10.13.

Problem 10.14

Determine the consistent mass matrix for the beam segment shown in Fig. P10.13.

Problem 10.15

The uniform beam shown in Fig. P10.15 is subjected to a constant force of 5000 lb suddenly applied

along the nodal coordinate 4. Use the results obtained in Problem 10.6 to determine the response by

the modal superposition method. (Use only the two modes left by the static condensation.)

El

2El

2 4

31

L

Fig. P10.12

2m0(lb/in.)

m0(lb/in.)

2 4

31

L

Fig. P10.13
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Problem 10.16

Solve Problem 10.15 using the results obtained in Problem 10.7 which are based on the consistent

mass formulation.

Problem 10.17

Solve Problem 10.15 using the results obtained in Problem 10.9 which includes the effect of the axial

force in the stiffness of the system.

Problem 10.18

Determine the steady-state response for the beam shown in Fig. P10.18 which is acted upon by a

harmonic force F(t)¼ 5000 sin 30 t (lb) as shown in the figure. Eliminate the rotational coordinates by

static condensation (Problem 10.5).

Neglect damping in the system.

Problem 10.19

Determine the natural frequencies and corresponding normal modes for the beam shown in

Fig. P10.1: (a) condensing the three rotational nodal coordinates; (b) no condensing coordinates.

(Use the consistent mass method.)

Problem 10.20

Determine the response for the beam shown in Fig. P10.15. Neglect damping. Do not condense

coordinates; (b) condense the three rotational coordinates.

100 in. 100 in. 100 in.
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2 3
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q = 3.86(lb/in.)
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4 5

Fig. P10.15
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Fig. P10.18
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Problem 10.21

Repeat Problem 10.20 assuming 10% damping in all the modes.

Problem 10.22

Determine the steady-state response for the beam shown in Fig. P10.18 when subjected to a harmonic

force as shown in the figure. Do not condense coordinates, and neglect damping in the system.

Problem 10.23

Repeat Problem 10.22 assuming that the damping is proportional to stiffness of the system where the

constant of proportionality a0 ¼ 0.2.

Problem 10.24

Solve Problem 10.22 after condensing the three rotational coordinates.

Problem 10.25

Repeat Problem 10.24 assuming 15% damping in all the modes.

Problem 10.26

Determine the steady-state response for the beam shown in Fig. P10.15. Do not condense coordinates,

and neglect damping in the system.
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Dynamic Analysis of Plane Frames 11

The dynamic analysis using the stiffness matrix method for structures modeled as beams was

presented in Chap. 10. This method of analysis when applied to beams requires the calculation of

element matrices (stiffness, mass, and damping matrices), the assemblage from these matrices of the

corresponding system matrices, the formation of the force vector, and the solution of the resultant

equations of motion. These equations, as we have seen, may be solved in general by the modal

superposition method or by numerical integration of the differential equations of motion. In this

chapter and in the following chapters, the dynamic analysis of structures modeled as frames is

presented.

We begin in the present chapter with the analysis of structures modeled as plane frames and with

the loads acting in the plane of the frame. The dynamic analysis of such structures requires the

inclusion of the axial effects in the stiffness and mass matrices. It also requires a coordinate

transformation of the nodal coordinates from element or local coordinates to system or global

coordinates. Except for the consideration of axial effects and the need to transform these coordinates,

the dynamic analysis by the stiffness method when applied to frames is identical to the analysis of

beams as discussed in Chap. 10.

11.1 Element Stiffness Matrix for Axial Effects

The inclusion of axial forces in the stiffness matrix of a flexural beam element requires the determi-

nation of the stiffness coefficients for axial loads. To derive the stiffness matrix for an axially loaded

member, consider in Fig. 11.1 a beam segment acted on by the axial forces P1 and P2 producing axial

displacements δ1 and δ2 at the nodes of the element. For a prismatic and uniform beam segment of

length L and cross-sectional A, it is relatively simple to obtain the stiffness relation for axial effects by

the application of Hooke’s law. In relation to the beam shown in Fig. 11.1, the displacements δ1
produced by the force P1 acting at node 1 while node 2 is maintained fixed (δ2 ¼ 0) is given by

δ1 ¼
P1L

AE
ð11:1Þ

From Eq. (11.1) and the definition of the stiffness coefficient k11 (force at node 1 to produce a unit

displacement, δ1 ¼ 1), we obtain
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k11 ¼
P1

δ1
¼ AE

L
ð11:2aÞ

The equilibrium of the beam segment acted upon by the force k11 requires a force k21 at the other

end of equal magnitude but in opposite direction, namely

k21 ¼ �k11 ¼ �AE

L
ð11:2bÞ

Analogously, the other stiffness coefficients due to a unit displacement at node 2 (δ2 ¼ 1) are:

k22 ¼
AE

L
ð11:2cÞ

and

k12 ¼ �AE

L
ð11:2dÞ

The stiffness coefficients as given by Eq. (11.2a) are the elements of the stiffness matrix relating

axial forces and displacements for a prismatic beam segment, that is,

P1

P2

( )

¼ AE

L

1 �1

�1 1

" #

δ1

δ2

( )

ð11:3Þ

The stiffness matrix corresponding to the nodal coordinates for the beam segment shown in

Fig. 11.2 is obtained by combining in a single matrix the stiffness matrix for axial effects,

Eq. (11.3), and the stiffness matrix for flexural effects, Eq. (10.20). The matrix resulting from this

combination relates the forces Pi and the displacements δ1 at the coordinates indicated in Fig. 11.2 as

P1

P2

P3

P4

P5

P6
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>
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<
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>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

¼ EI

L3

AL2=I

0 12

0 6L 4L2

�AL2=I 0 0 AL2=I

0 �12 �6L 0 12

0 6L 2L2 0 �6L 4L2
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7
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7

7
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7
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δ1

δ2

δ3

δ4

δ5

δ6

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

ð11:4Þ

or, in concise notation,

Pf g ¼ K½ � δf g ð11:5Þ

Fig. 11.1 Beam element showing nodal axial loads P1, P2, and corresponding nodal displacements δ1, δ2
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11.2 Element Mass Matrix for Axial Effects

The determination of mass influence coefficients for axial effects of a beam element may be carried

out by any of two methods indicated previously for the flexural effects: (1) the lumped mass method

and (2) the consistent mass method. In the lumped mass method, the mass allocation to the nodes of

the beam element is found from static considerations, which for a uniform beam gives half of the total

mass of the beam segment allocated at each node. Then for a prismatic beam segment, the relation

between modal axial forces and modal accelerations is given by

P1

P2

( )

¼ �mL

2

1 0

0 1

" #

€δ1

€δ2

( )

ð11:6Þ

where �m is the mass per unit of length. The combination of the flexural lumped mass coefficient and

axial mass coefficients gives, in reference to the modal coordinates in Fig. 11.2, the following

diagonal matrix:

P1

P2

P3

P4

P5

P6
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<
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>
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;

ð11:7Þ

To calculate the coefficients for the consistent mass matrix, it is necessary first to determine the

displacement functions corresponding to a unit axial displacement at one of the modal coordinates.

Consider in Fig. 11.3 an axial unit displacement δ1 ¼ 1 of node 1 while the other node 2 is kept fixed

so that δ2 ¼ 0. If u ¼ u (x) is the displacement at section x, the displacement at section x + dx will be

u + du. It is evident then that the element dx in the new position has changed in length by an amount

du, and thus, the strain is du/dx. Since from Hooke’s law, the ratio of stress to strain is equal to the

modulus of elasticity E, we can write

du

dx
¼ P xð Þ

AE
ð11:8Þ

Fig. 11.2 Beam element showing flexural and axial nodal forces and displacements
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Integration with respect to x yields

u ¼ P xð Þ
AE

xþ C ð11:9Þ

in whichC is a constant of integration. Introducing the boundary conditions, u¼ 1 at x¼ 0 and u¼ 0 at

x ¼ L, we obtain the displacement function u1 (x) corresponding to a unit displacement δ1 ¼ 1 as

u1 xð Þ ¼ 1� x

L
ð11:10Þ

Analogously, the displacement function u2 (x) corresponding to a unit displacement δ2 ¼ 1 is

found to be:

u2 xð Þ ¼ x

L
ð11:11Þ

The application of the principle of virtual work results in a general expression for the calculation of

the stiffness coefficients. For example, consider the beam in Fig. 11.3, which is in equilibrium with

the forces P1 ¼ k11 and P2 ¼ k21 at its two ends.

Assume that a virtual displacement δ2 ¼ 1 takes place. Then, according to the principle of virtual

work, during this virtual displacement, the work of the external and internal forces are equal. The

external force k21 performs the work

or

WE ¼ k21 ð11:12Þ

since δ2 ¼ 1. The internal force P(x) at any section x is obtained from Eq. (11.8) as

P xð Þ ¼ AEu
0

1 xð Þ ð11:13Þ

in which u1
0 (x) ¼ du1/dx.

The incremental displacement δu2 of element dx during this virtual displacement may be

expressed as

du2 ¼
du2

dx
dx ð11:14Þ

Hence the internal work for element dx is obtained from Eqs. (11.13) and (11.14) as

Fig. 11.3 Displacement at node 1 (δ1 ¼ 1) of a beam element
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dWI ¼ AEu
0

1 xð Þu0

2 xð Þdx

and for the beam segment of length L

WI ¼
ð L

0

AEu
0

1 xð Þu0

2 xð Þdx ð11:15Þ

Finally, equating WE ¼ WI from Eqs. (11.12) and (11.15) gives the stiffness coefficient

k21 ¼
ð L

0

AEu
0

1 xð Þu0

2 xð Þdx ð11:16Þ

In general, the stiffness coefficient kij for axial effects may be obtained from

kij ¼
ð L

0

AEu
0

i xð Þu0

j xð Þdx ð11:17Þ

Using Eq. (11.17), the reader may check the results obtained in Eq. (11.3) for a uniform beam.

However, Eq. (11.17) could as well be used for nonuniform beams in which the cross-sectional area A

would in general be a function of x. In practice, the same displacement u1(x) and u2(x) obtained for a

uniform beam, are also used in Eq. (11.17) for a non uniform member. The displacement u(x, t) at any

section x of a beam element due to dynamic nodal displacements, δ1(t) and δ2(t) is obtained by

superposition. Hence

u x; tð Þ ¼ u1 xð Þδ1 tð Þ þ u2 xð Þδ2 tð Þ ð11:18Þ

in which u1(x) and u2(x) are given by Eqs. (11.10) and (11.11) (Fig. 11.4).

Now consider the beam of Fig. 11.5 while undergoing a unit acceleration, €δ1 tð Þ ¼ 1 which by

Eq. (11.18) results in an acceleration at x given by

Fig. 11.4 Displacement along of a beam element subjected to axial loading that give a unit displacement (δ2 ¼ 1)

Fig. 11.5 Beam element with unit displacement at node 2(δ2 ¼ 1) undergoing a unit axial acceleration at node

1 €δ1 tð Þ ¼ 1
� �
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€u1 x; tð Þ ¼ u1 xð Þ€δ1 tð Þ

or

€u1 x; tð Þ ¼ u1 xð Þ

since€δ1 tð Þ ¼ 1:The inertial force per unit length along the beam resulting from this unit acceleration is

f I ¼ �m xð Þu1 xð Þ ð11:19Þ

where �m xð Þ is the mass per unit length along the beam. Now, to determine the mass coefficient m21,

we give to the beam shown in Fig. 11.5 a virtual displacement δ2 ¼ 1. The only external force doing

work during this virtual displacement is the reaction m21. This work is then

WE ¼ m21δ2

or

WE ¼ m21 ð11:20Þ

since δ2 ¼ 1. The internal work per unit length along the beam performed by the inertial force fI
during this virtual displacement is

δWI ¼ f Iu2 xð Þ

or, from Eq. (11.19)

δWI ¼ �m xð Þu1 xð Þu2 xð Þ

Hence the total internal work is

WI ¼
ð L

0

�m xð Þu1 xð Þu2 xð Þdx ð11:21Þ

Finally, equating Eqs. (11.20) and (11.21) yields

m21 ¼
ð L

0

�m xð Þu1 xð Þu2 xð Þdx ð11:22Þ

or, in general,

mij ¼
ð L

0

�m xð Þui xð Þu j xð Þdx ð11:23Þ

The application of Eq. (11.23) to the special case of a uniform beam results in

m11 ¼
ð L

0

�m 1� x

L

� �2

dx ¼ �mL

3
ð11:24Þ

Similarly,
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m22 ¼
�mL

3

and

m12 ¼ m21 ¼
ð L

0

�m 1� x

L

� � x

L

� �

dx ¼ �mL

6
ð11:25Þ

In matrix form, the axial inertial force relationship for a uniform beam may be written as

P1

P2

( )

¼ �mL

6

2 1

1 2

" #

€δ1

€δ2

( )

ð11:26Þ

Finally, combining the mass matrix Eq. (10.34) for flexural effects with Eq. (11.26) for the axial

effects, we obtain the consistent mass matrix for a uniform element of a plane frame in reference to

the modal coordinates shown in Fig. 11.2 as
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ð11:27Þ

or, in condensed notation,

Pf g ¼ Mc½ � €δ
� �

in which [Mc] is the consistent mass matrix for an element of a plane frame.

11.3 Coordinate Transformation

The stiffness matrix for an element of a plane frame in Eq. (11.4) as well as the mass matrix in

Eq. (11.27) are in reference to nodal coordinates defined by coordinate axes fixed on the beam

element. These axes are called local or element coordinate axes while the coordinate axes for the

whole structure are known as global or system coordinate axes. Figure 11.6 shows a beam element

with nodal forces P1, P2, . . ., P6 referred to the local coordinate axes x, y, z, and �P1, �P2, . . . , �P6

referred to global coordinate set of axes X, Y, Z. The objective is to transform the element matrices

(stiffness, mass, etc.) from the reference of local coordinate axes to the global coordinate axes. This

transformation is required in order that the matrices for all the elements refer to the same set of

coordinates; hence, the matrices become compatible for assemblage into the system matrices for the

structure. We begin by expressing the forces (P1, P2, P3) in terms of the forces (�P1, �P2, �P3). Since these

two sets of forces are equivalent, we obtain from Fig. 11.6 the following relationships:

P1 ¼ �P1 cos θ þ �P2 sin θ

P2 ¼ ��P1 sin θ þ �P2 cos θ

P3 ¼ �P3

ð11:28Þ
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The equations of Eq. (11.28) may be written in matrix notation as

P1

P2

P3

8

>

<

>

:

9

>

=

>

;

¼
cos θ sin θ 0

�sin θ cos θ 0

0 0 1

2

4
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5

�P1

�P2

�P3

8

<

:

9

=

;

ð11:29Þ

Analogously, we obtain for the forces on the other node the relationships:

P4 ¼ �P4 cos θ þ �P5 sin θ

P5 ¼ ��P4 sin θ þ �P5 cos θ

P6 ¼ �P6

ð11:30Þ

Equations (11.28) and (11.30) may conveniently be arranged in matrix form as
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cos θ sin θ 0 0 0 0

�sin θ cos θ 0 0 0 0

0 0 1 0 0 0

0 0 0 cos θ sin θ 0

0 0 0 �sin θ cos θ 0

0 0 0 0 0 1

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

�P1

�P2

�P3

�P4

�P5

�P6

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

ð11:31Þ

or in condensed notation

Pf g ¼ T½ � �Pf g ð11:32Þ

in which {P} and �Pf g are, respectively, the vectors of the element nodal forces in local and global

coordinates and [T] is the transformation matrix given by the square matrix in Eq. (11.31).

Repeating the same procedure, we obtain the relation between nodal displacements (δ1, δ2, . . ., δ6) in

local coordinates and the components of the nodal displacements in global coordinates (δ1, δ2, . . . , δ6),

namely

Fig. 11.6 Beam element showing nodal forces Pi in local (x, y, z) and nodal forces �P1, in global coordinate axes

(X, Y, Z)
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δ1

δ2

δ3

δ4

δ5

δ6

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

¼

cos θ sin θ 0 0 0 0

� sin θ cos θ 0 0 0 0

0 0 1 0 0 0

0 0 0 cos θ sin θ 0

0 0 0 � sin θ cos θ 0

0 0 0 0 0 1

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

δ1

δ2

δ3

δ4

δ5

δ6

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

ð11:33Þ

or

δf g ¼ T½ � δ
� �

ð11:34Þ

Now, the substitution of {P} from Eq. (11.32) and {δ} from Eq. (11.34) into the stiffness equation

referred to local axes {P} ¼ [K] {δ} results in

T½ � �Pf g ¼ K½ � T½ � δ
� �

or

�Pf g ¼ T½ ��1
K½ � T½ � δ

� �

ð11:35Þ

where [T]�1 is the inverse of matrix [T]. However, as the reader may verify, the transformation matrix

[T] in Eq. (11.31) is an orthogonal matrix, that is, [T]�1 ¼ [T]T. Hence

�Pf g ¼ T½ �T K½ � T½ � δ
� �

ð11:36Þ

or, in a more convenient notation,

�Pf g ¼
�

�K
�

δ
� �

ð11:37Þ

in which

�Kf g ¼ T½ �T K½ � T½ � ð11:38Þ

is the stiffness matrix for an element of a plane frame in reference to the global system of coordinates.

Repeating the procedure of transformation as applied to the stiffness matrix for the lumped mass,

Eq. (11.7), or the consistent mass matrix, Eq. (11.27), we obtain in a similar manner

�Pf g ¼
�

�M
�

δ
� �

in which

�Mf g ¼ T½ �T K½ � T½ � ð11:39Þ

is the mass matrix for an element of a plane frame in reference to the global system of coordinates and

[T] is the transformation matrix given by the square matrix in Eq. (11.33).

Illustrative Example 11.1

Consider in Fig. 11.7 a plane frame having two prismatic beam elements and three degrees of freedom

as indicated in the figure. Using the consistent mass formulation, determine the three natural

frequencies and corresponding normal modes for this discrete model of the frame.
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Solution:

The stiffness matrix for element 1 or 2 in local coordinates by Eq. (11.4) is.

K1½ � ¼ K2½ � ¼

600 Symmetric

0 12

0 600 40, 000

�600 0 0 600

0 �12 �600 0 12

0 600 20, 000 0 �600 40, 000

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

The transformation matrix for element 1 by Eq. (11.31) with θ ¼ 45� is

T1½ �

1 1 0 0 0 0

�1 1 0 0 0 0

0 0
ffiffiffi

2
p

0 0 0

0 0 0 1 1 0

0 0 0 �1 1 0

0 0 0 0 0
ffiffiffi

2
p

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

and for element 2 ith θ ¼ 0� is the identity matrix:

T2½ � ¼ I½ �

The mass matrix in local coordinates for either of the two elements of this frame from Eq. (11.27) is

Fig. 11.7 Plane Frame of Illustrative Example 11.1
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M1½ � ¼ M2½ � ¼

140 Symmetric

0 156

0 2200 40, 000

70 0 0 140

0 54 1300 0 156

0 �1300 �30, 000 0 �2200 40, 000

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

The element stiffness and mass matrices in reference to the global system of coordinates, are,

respectively, calculated by Eqs. (11.38) and (11.39). For element 1 the stiffness matrix is

4 5 6 1 2 3

�

�K1

�

¼ 106

0:306 Symmetric

0:294 0:306

�0:424 0:424 40, 000

�0:306 �0:294 0:424 0:306

�0:294 �0:306 �0:424 0:294 0:306

�0:424 0:424 20, 000 0:424 �0:424 40, 000

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

4

5

6

1

2

3

and the mass matrix

4 5 6 1 2 3

�

�M1

�

¼

148 Symmetric

�8 148

�1556 1556 40, 000

62 8 �919 148

8 62 919 �8 148

919 �919 �30, 000 1556 �1556 40, 000

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

4

5

6

1

2

3

For element 2:

1 2 3 4 5 6

�

�K2

�

¼ 106

0:600 Symmetric

0 0:012

0 0:600 40, 000

�0:600 0 0 0:600

0 �0:012 �0:600 0 0:012

0 0:600 20, 000 0 �0:600 40, 000

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

1

2

3

4

5

6

and
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1 2 3 4 5 6

�

�M2

�

¼

140 Symmetric

0 156

0 2200 40, 000

70 0 0 140

0 54 1300 0 156

0 �1300 �30, 000 0 �2200 40, 000

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

1

2

3

4

5

6

The system stiffness and mass matrices are assembled by the direct method. As was mentioned

before, it is expedient for hand calculation of these matrices to indicate the corresponding system

nodal coordinates at the top and right of the element matrices. We thus obtain, considering only the

free coordinates, the system stiffness matrix:

�

�K
�

¼ 106

0:906 0:294 0:424

0:294 0:318 0:176

0:424 0:176 80:000

2

6

4

3

7

5

and the system mass matrix as

�

�M
�

¼
288 �8 1556

�8 304 644

1556 644 80, 000

2

6

4

3

7

5

The natural frequencies are found as the roots of the characteristic equation

K½ � � ω2 M½ �
	

	

	

	 ¼ 0

which, upon substituting the numerical values given for this example, yields

103

906� 0:288ω2 294þ 0:008ω2 424� 1:556ω2

294þ 0:008ω2 318� 0:304ω2 176� 0:644ω2

424� 1:556ω2 176� 0:644ω2 80, 000� 80ω2

	

	

	

	

	

	

	

	

	

	

	

	

	

	

¼ 0

The roots then are found to be:

ω1
2 ¼ 638:5,ω2

2 ¼ 976:6,ω3
2 ¼ 4211:6,

and the natural frequencies are

ω1 ¼ 25:26 rad=sec , ω2 ¼ 31:24 rad=sec , and ω3 ¼ 64:90rad=sec ,

or

f 1 ¼ 4:02 cps, f 2 ¼ 4:97 cps, and f 3 ¼ 10:33 cps,

The normal modes are given as the nontrivial solution of the eigenproblem

K½ � � ω2 M½ �

 �

af g ¼ 0f g

Substituting ω1
2 ¼ 638.5 and setting a11 ¼ 1.0, we obtain the first mode shape as
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a1f g ¼
a11

a21

a31

8

>

<

>

:

9

>

=

>

;

¼
1:00

�2:38

0

8

>

<

>

:

9

>

=

>

;

which is normalized with the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1f gT M½ � a1f g
q

¼ 45:81

The normalized eigenvector is then

ϕ1f g ¼
ϕ11

ϕ21

ϕ31

8

>

<

>

:

9

>

=

>

;

¼
0:0218

�0:0527

0

8

>

<

>

:

9

>

=

>

;

Analogously, for the other two modes, we obtain:

ϕ2f g ¼
ϕ12

ϕ22

ϕ32

8

>

<

>

:

9

>

=

>

;

¼
0:00498

0:00206

0:00341

8

>

<

>

:

9

>

=

>

;

and ϕ3f g ¼
ϕ13

ϕ23

ϕ33

8

>

<

>

:

9

>

=

>

;

¼
0:0583

0:0241

�0:0016

8

>

<

>

:

9

>

=

>

;

arranging these modal vectors into columns of the modal matrix, we obtain:

Φ½ � ¼
0:0218 0:00498 0:0583

�0:0527 0:00206 0:0241

0 0:00341 �0:0016

2

6

4

3

7

5

Illustrative Example 11.2

Determine the maximum displacement at the nodal coordinates of the frame in Fig. 11.7 when a force

of magnitude 100,000 lb. is suddenly applied at nodal coordinate 1. Neglect damping.

Solution:

From Illustrative Example 11.1, the natural frequencies are ω1 ¼ 25.26 rad/sec, ω2 ¼ 31.24 rad/sec,

and ω3 ¼ 64.90 rad/sec; and the modal matrix is.

Φ½ � ¼
0:0218 0:00498 0:0583

�0:0527 0:00206 0:0241

0 0:00341 �0:0016

2

6

4

3

7

5

The modal equations have the form of

€zi þ ω2
i zi ¼ Pi ðaÞ

where

Pi ¼
X

j

ϕ jiF j ðbÞ

In this example, the nodal applied forces are
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F1 ¼ 100, 000 lb, F2 ¼ 0, F3 ¼ 0

We thus obtain, after substituting numerical values into Eqs. (a) and (b), the modal equations as

€z1 þ 638:5z1 ¼ 2180

€z2 þ 976:6z2 ¼ 498

€z3 þ 4211:6z3 ¼ 5830

ðcÞ

The solutions of these equations by (4.5) are of the form

zi ¼
Pi

ω2
i

1� cosωitð Þ

Substitution for Pi and ωi yields

z1 ¼ 3:414 1� cos 25:2685tð Þ
z2 ¼ 0:510 1� cos 31:2506tð Þ
z3 ¼ 1:384 1� cos 64:8970tð Þ

ðdÞ

The nodal displacements are obtained from

uf g ¼ Φ½ � zf g

which results in

u1 ¼ 0:1577� 0:0744 cos 25:26t� 0:00254 cos 31:25t� 0:0807 cos 64:9t inð Þ
u2 ¼ �0:1455þ 0:1800 cos 25:26t� 0:00105 cos 31:25t� 0:0333 cos 64:9t inð Þ
u3 ¼ �0:000475þ 0 cos 25:26t� 0:00174 cos 31:25tþ 0:0022 cos 64:9t radianð Þ

ðeÞ

The maximum possible displacements at the nodal coordinates may then be estimated as the

summation of the absolute values of the coefficients in the above expressions. Hence

u1max ¼ 0:3177 in u2max ¼ 0:3589 in u3max ¼ 0:0044 radian

11.4 Modeling Structures as Plane Frames Using MATLAB

MATLAB program is used to determine the stiffness and the mass matrices for a plane frame.

Illustrative Example 11.3

Use MATLAB to determine the stiffness and mass matrices for the plane frame shown in Fig. 11.7.

Solution:

The following MATLAB file is used to compute stiffness and mass matrices using the system matrix.

Two function files, FrameElement.m and FrameConMass.m are needed. After assembling matrices,

the system matrix can be found using System.m file (Chap.10).
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clc
close all
clear all

%__________________________________________________________________________

%  Determine System Matrices/Determine Force 
%__________________________________________________________________________

%%%%-GIVEN VALUES-%%%%

E=10^7; A=6;                % E (psi), A (in.^2)
inertia = 100;              %Second Moment of Inertia (in^4)

%%%Create frame model (ith row of nodes is ith node)
nodes = [0, 0; 70.71,70.71; 170.71,70.71];      
%%%Element number (ith row = ith element with two nodes)
conn=[1,2; 2,3];                    
%%%Dofs for ith element (ith row)
lmm=[1:3,4:6; 4:6,7:9];
%%%Dofs are elimniated at supports for system matrix
debc=[1:3,7:9]; 

m_bar = 4.2;                %Mass per unit length (lb-sec^2/in/in)                          

dof = 3*length(nodes);      % Total No. dofs

K= zeros(dof);
M= zeros(dof);

%%%Generate equations for each element and assemble them.
for i=1:2

lm=lmm(i,:);
con=conn(i,:);
ke = PlaneFrameElement(E, inertia, A, nodes(con,:));
K(lm, lm) = K(lm, lm) + ke

end

%%%Generate mass matrix for each element and assemble them.
for i=1:2

lm=lmm(i,:);
con=conn(i,:);
m=FrameConsMass(m_bar, nodes(con,:));
M(lm, lm) = M(lm, lm) + m;

end

K;

M;

%%%Define the load vector 
F = zeros(dof,1);              %Applied force at specific dofs

%%%System Matrices
[Kf, Mf, Rf] = System(K, M, F, [1:3,7:9]);

Kf

Mf

Rf

save ('temp0.mat', 'Mf', 'Kf' ,'Rf');

The function file of MATLAB is used to assemble the stiffness matrix of each beam element for

global stiffness matrix.
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function ke = PlaneFrameElement(modulus, inertia, A, coord)
% ke = PlaneFrameElement(modulus, inertia, A, coord)
% Generates equations for a plane frame element
% modulus = modulus of elasticity
% inertia = moment of inertia
% A = area of cross-section
% coord = coordinates at the element ends

EI=modulus*inertia; EA = modulus*A;
x1=coord(1,1); y1=coord(1,2);
x2=coord(2,1); y2=coord(2,2);
L=sqrt((x2-x1)^2+(y2-y1)^2);
C=(x2-x1)/L; S=(y2-y1)/L;

ke = [(EA*L^2*C^2 + 12*EI*S^2)/L^3, ((-12*EI + EA*L^2)*C*S)/L^3, ...
(-6*EI*S)/L^2, -((EA*L^2*C^2 + 12*EI*S^2)/L^3), ...
((12*EI - EA*L^2)*C*S)/L^3, (-6*EI*S)/L^2;

((-12*EI + EA*L^2)*C*S)/L^3, (12*EI*C^2 + EA*L^2*S^2)/L^3, ...
(6*EI*C)/L^2, ((12*EI - EA*L^2)*C*S)/L^3, ...
-((12*EI*C^2 + EA*L^2*S^2)/L^3), (6*EI*C)/L^2;

(-6*EI*S)/L^2, (6*EI*C)/L^2, (4*EI)/L, ...
(6*EI*S)/L^2, (-6*EI*C)/L^2,(2*EI)/L;

-((EA*L^2*C^2 + 12*EI*S^2)/L^3), ((12*EI -EA*L^2)*C*S)/L^3, ...
(6*EI*S)/L^2, (EA*L^2*C^2 + 12*EI*S^2)/L^3, ...
((-12*EI + EA*L^2)*C*S)/L^3, (6*EI*S)/L^2;

((12*EI - EA*L^2)*C*S)/L^3, -((12*EI*C^2 + EA*L^2*S^2)/L^3),...
(-6*EI*C)/L^2, ((-12*EI + EA*L^2)*C*S)/L^3, ...
(12*EI*C^2 + EA*L^2*S^2)/L^3, (-6*EI*C)/L^2;

(-6*EI*S)/L^2, (6*EI*C)/L^2, (2*EI)/L, (6*EI*S)/L^2, ...
(-6*EI*C)/L^2, (4*EI)/L];

The function file of MATLAB is used to assemble the mass matrix of each beam element for

global mass matrix.

function m = FrameConsMass(m_bar, coord)
% FrameConsMass(m_bar, nodes(con,:))
% Generates mass matrix for a plane frame element
% m = mass (lb.sec^2/in.^2)
% L = length
% coord = coordinates at the element ends

x1=coord(1,1); y1=coord(1,2);
x2=coord(2,1); y2=coord(2,2);
L=sqrt((x2-x1)^2+(y2-y1)^2);
ls=(x2-x1)/L; ms=(y2-y1)/L;
T = [ls ms 0 0 0 0; 

-ms ls 0 0 0 0; 
0 0 1 0 0 0;

0 0 0 ls ms 0; 
0 0 0 -ms ls 0; 
0 0 0 0 0 1];

m = m_bar*L/420*T.'*[140  0   0    70   0      0  ;
0 156   22*L  0   54     -13*L;
0  22*L 4*L^2  0   13*L   -3*L^2; 
70  0     0   140   0      0  ;
0  54    13*L  0  156    -22*L;
0 -13*L -3*L^2 0  -22*L  4*L^2]*T;

We obtain:

Φ½ � ¼
0:0218 0:0050 �0:0583
�0:0527 0:0021 �0:0242

0 0:0034 0:0016

2

4

3

5

This is identical to modal matrix in Illustrative Example 11.2.
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11.5 Dynamic Analysis of Plane Frames Using MATLAB

Illustrative Example 11.4

For the structure shown in Fig. 11.7 which was modeled in Illustrative Example 11.3, determine:

(a) natural frequencies and modal shapes; (b) the response to a force of magnitude 100,000 lb.

suddenly applied at nodal coordinate 2.

Solution:

This MATLAB file is to yield the results of section (a). Two function files, FrameElement.m and

FrameConMass.m are needed. After assembling matrices, the system matrix can be found using

System.m file (Chap.10). Using systemmatrices, the natural frequencies andmode shapes will be found.

clc
close all
clear all

%__________________________________________________________________________
%  Determine System Matrices/Determine Force 
%__________________________________________________________________________

%%%%-GIVEN VALUES-%%%%

E=10^7; A=6;                % E (psi), A (in.^2)
inertia = 100;              %Second Moment of Inertia (in^4)

%%%Create frame model (ith row of nodes is ith node)
nodes = [0, 0; 70.71,70.71; 170.71,70.71];      
%%%Element number (ith row = ith element with two nodes)
conn=[1,2; 2,3];                    
%%%Dofs for ith element (ith row)
lmm=[1:3,4:6; 4:6,7:9];
%%%Dofs are elimniated at supports for system matrix
debc=[1:3,7:9]; 

m_bar = 4.2;                %Mass per unit length (lb-sec^2/in/in)

dof = 3*length(nodes);      % Total No. dofs

K= zeros(dof);
M= zeros(dof);

%%%Generate equations for each element and assemble them.
for i=1:2

lm=lmm(i,:);
con=conn(i,:);
ke = PlaneFrameElement(E, inertia, A, nodes(con,:));
K(lm, lm) = K(lm, lm) + ke

end

%%%Generate mass matrix for each element and assemble them.
for i=1:2

lm=lmm(i,:);
con=conn(i,:);
m=FrameConsMass(m_bar, nodes(con,:));
M(lm, lm) = M(lm, lm) + m;

end

K;

M;
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%%%Define the load vector 
F = zeros(dof,1); F(4) = 100000;             %Applied force at specific dofs

%%%System Matrices
[Kf, Mf, Rf] = System(K, M, F, [1:3,7:9]);

Kf

Mf

Rf
%_____________________________________________________________________
% Solve the eigenvalue problem and normalized eigenvectors
%_____________________________________________________________________

%%%Solve for eigenvalues (D) and eigenvectors (a) 
[a, D] = eig(Kf, Mf); 

[omegas,ii] = sort(sqrt(diag(D)));        %Natural Frequencies

omegas

a = a(:,ii)                               %Mode Shapes

T = 2*pi./omegas;                         %Natural Periods

save ('temp0.mat', 'Mf', 'Kf' ,'Rf');

This MATLAB file is to yield the results of section (b).

After running the program above, the following MATLAB program will yield the response. The

duration of response is from 0 to 5 seconds with the interval of 0.01 second.

clear all
close all

%___________________________________________________________________________
% Inputs: 
%   M, K 
%   F = forcing function
%   t = Time period
%   u0 = initial displacement
%   v0 = initial velocity
%___________________________________________________________________________  
t = 0:0.01:0.5; 

load ('temp0.mat', 'Mf', 'Kf', 'Rf') 

%%%Deifne Mass Matrix

M = Mf

%%%Deifne Stiffness Matrix

K = Kf

[n,n]= size(M); 

F = Rf; 

u0 = zeros(n,1); u0(1) =0;
v0 = zeros(n,1); v0(1) =0;
[n,n]= size(M); 
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save ('temp1.mat', 'omegas', 'P' ,'zetas');
q = [];
r = [];
for i=1:n
q0_i = q0(i,:);
dq0_i = dq0(i,:);

load temp1.mat
omega = omegas(i,:);
P = P(i,:);
m = M(i,i);
zeta = zetas(i,:);

save ('temp2.mat', 'omega', 'P', 'm', 'zeta');

[t,q] = ode45(@MDOFP, t, [q0_i dq0_i]',[]);

r(:,i) = q(:,1);
save ('temp3.mat', 'r') 

end

load ('temp3.mat', 'r');

yim = nom_phi*[r'];

save ('response.mat','yim');

figure 
subplot(3,1,1);         % Node 2: x displ (in.).

xlabel ('Time (sec)'); ylabel ('u_2(in.)'); grid on

subplot(3,1,2);         % Node 2: y displ (in.).
plot(t, yim(2,:))
xlabel ('Time (sec)'); ylabel ('v_2(in.)'); grid on

subplot(3,1,3);         % Node 2: rotation (radian).
plot(t, yim(3,:))
xlabel ('Time (sec)'); ylabel ('\phi_2(radian)'); grid on

umax_1=max(abs(yim(1,:)))
umax_2=max(abs(yim(2,:)))
umax_3=max(abs(yim(3,:)))

%___________________________________________________________________________
% Damping matrix using the proportional damping matrix
% [C] = a[M]+b[K]
% zetas = damping ratios
%___________________________________________________________________________
a = 0;
b = 0;
nom_C = nom_phi'*(a*M+b*K)*nom_phi;
zetas = diag((1/2)*nom_C*inv(diag(omegas)));

%___________________________________________________________________________
% Solve the eignevalue problem and normalized the eigenvectors
%___________________________________________________________________________  

[a, D] = eig(K, M)                 % Solve for eigenvalues (D) and eigenvectors (a)

[omegas,k] = sort(sqrt(diag(D)));  % Natrual Frequencies
a = a(:,k)

T = 2*pi./omegas;                  % Natural Periods

aMa = diag(a'*M*a)                 % aMa = {a}'*[M]*(a}

nom_phi = (a)*inv(sqrt(diag(aMa))) % Normalized modal matrix

%___________________________________________________________________________
% Initial conditions
%___________________________________________________________________________

P = nom_phi'*F;                    % Normalized force, P = nom_F
q0 = nom_phi'*M*u0
dq0 = nom_phi'*M*v0
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The function file of MATLAB is used to determine the function of the applied force and solve the

uncoupled equation (Fig. 11.8).

function q = MDOFP(t, q)
load ('temp2.mat', 'omega', 'P', 'm' ,'zeta') 

P = P;

q = [q(2); -omega*omega*q(1)-2*zeta*omega*q(2)+P];  

The maximum displacements at the nodal coordinates were estimated using MATLAB. These are

very close to the estimation of the summation of the absolute values obtained from Illustrative

Example 11.2.

u1max ¼ 0:3119 in u2max ¼ 0:3590 in u3max ¼ 0:0045 radian

Illustrative Example 11.5

Use MATLAB to model the plane frame shown in Fig. 11.7 using a total of two beam elements and to

calculate the response due to the force F(t) shown in Fig. 11.9.

Solution:

The same files will be used in illustrative example 11.3 and 11.4 with the change of MDOFP function

as bellow. The plot is generated from the range of t ¼ 0 to 0.5 seconds.
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Fig. 11.8 Response of Illustrative Example 11.4
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The function file of MATLAB is used to determine the function of the applied force and solve the

uncoupled equation (Fig. 11.10).

function q = MDOFP(t, q)
load ('temp2.mat', 'omega', 'P', 'm' ,'zeta') 

if t <= 0.25                
    P = P; 

elseif t <0.5 

   P = 2*P*(1-2*t); 

else
   P = 0; 

end

q = [q(2); -omega*omega*q(1)-2*zeta*omega*q(2)+P];   
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Fig. 11.9 Forcing function applied at joint 2 of the plane frame of Example 11.5
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Fig. 11.10 The maximum displacements at the nodal coordinates were estimated using MATLAB
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u1max ¼ 0.3037 in. u2max ¼ 0.3352 in. u3max ¼ 0.0040 radian

11.6 Summary

The dynamic analysis of plane frames by the stiffness method requires the inclusion of the axial

effects in the system matrices (stiffness, mass, etc.). It also requires a transformation of coordinates in

order to refer all the element matrices to the same coordinate system, so that the appropriate

superposition can be applied to assemble the system matrices.

The required matrices for consideration of axial effects as well as the matrix required for the

transformation of coordinates are developed in this chapter. A computer program for modeling

structures as plane frames is also presented. This program is organized following the pattern of the

BEAM program of the preceding chapter.

11.7 Problems

The following problems are intended for hand calculation, though it is recommended that whenever

possible solutions should also be obtained using Program 14 to model the structure as a plane frame,

Program 8 to determine natural frequencies and modal shapes, and Program 9 to calculate the

response using modal superposition method.

Problem 11.1

For the plane frame shown in Fig. P11.1 determine the system stiffness and mass matrices. Base the

analysis on the four free nodal coordinates indicated in the figure. Use consistent mass method.

Fig. P11.1
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Problem 11.2

Use the results obtained in Problem 11.1 in performing the static condensation to eliminate the

rotational degree of freedom at the support to determine the transformation matrix and the reduced

stiffness and mass matrices.

Problem 11.3

Determine the natural frequencies and corresponding normal modes for the reduced system in

Problem 11.2.

Problem 11.4

Determine the response of the frame shown in Fig. P11.1 when it is acted upon by a force F(t) ¼ 1.0

Kip suddenly applied at nodal coordinate 2 for 0.05 sec. Use results of Problem 11.3 to obtain the

modal equations. Neglect damping in the system.

Problem 11.5

Determine the maximum response of the frame shown in Fig. P11.1 when subjected to the triangular

impulsive load (Fig. P11.5) along the nodal coordinate 2. Use results of Problem 11.3 to obtain the

modal equations and use the appropriate response spectrum to find maximum modal response

(Fig. 4.5). Neglect damping in the system.

Pit).

Problem 11.6

Determine the steady-state response of the frame shown in Fig. P11.1 when subjected to harmonic

force F(t) ¼ 10 sin 30 t (Kip) along nodal coordinate 2. Neglect damping in the system.

F (t)

1.0K

0 0.1 0.2
Time (sec)

Fig. P11.5
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Problem 11.7

Repeat Problem 11.6 assuming that the damping is proportional to the stiffness matrix of the system,

[C] ¼ a0 [K], where a0 ¼ 0.2.

Problem 11.8

The frame shown in Fig. P11.8 is acted upon by the dynamic forces shown in he figure. Determine the

equivalent nodal forces corresponding to each member of the frame.

Problem 11.9

Assemble the system equivalent nodal forces {F e} from equivalent member nodal forces which were

calculated in Problem 11.8.
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Fig. P11.8

Fig. P11.11
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Problem 11.10

Determine the natural frequencies and corresponding normal modes for the frame shown in

Fig. P11.8.

Problem 11.11

Determine the response for the frame shown in Fig. P11.11 (a) when subjected to the force F3(t)

[Fig. 11.11(b)] acting along nodal coordinate 1. Assume 5% damping in all the modes.

Problem 11.12

Determine the steady-state response of the frame in Fig. P11.11 acted upon harmonic force

F1(t) ¼ 10cos 50 t (Kip) as indicated in the figure. Neglect damping in the system.

Problem 11.13

Solve Problem 11.11 using step-by-step linear acceleration method (Program 19). Neglect damping.

Problem 11.14

Determine the response of the frame shown in Fig. P11.1 when acted upon by the force F1(t) (depicted

in Fig. P11.14 applied at nodal coordinate 1. Assume 10% damping in all the modes. Use modal

superposition method.

Problem 11.15

Find the response in Problem 11.14 using step-by step linear acceleration method (Program 19).

Assume damping proportional to stiffness by a factor a0 ¼ 0.01.

F1 (t )

t (sec)

2K

3K

2K

0.1 0.2 0.3 0.4 0.5

Fig. P11.14
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Dynamic Analysis of Grid Frames 12

In Chap. 11 consideration was given to the dynamic analysis of the plane frame when subjected to

forces acting on the plane of the structure. When the planar structural system is subjected to loads

applied normally to its plane, the structure is referred to as a grid frame. This structure can also be

treated as a special case of the three-dimensional frame to be presented in Chap. 13. The reason for

considering the planar frame, whether loaded in its plane or normal to its plane, as a special case, is

the immediate reduction of unknown nodal coordinates for an element of these special structures,

hence a considerable reduction in the number of unknown displacements for the structural system.

When analyzing the planar frame under action of loads in the plane, the possible components of

joint displacements that had to be considered were translations in the X and Y directions and rotation

about the Z axis. However, if a plane frame is loaded normal to the plane of the structure, the

components of joint displacements required to describe the displacements of a joint are a translation

in the Z direction and rotations about the X and Y axes. Thus treating the planar grid structure as a

special case, it will be necessary to consider only three components of nodal displacements at each

end of a typical element of a grid frame.

12.1 Local and Global Coordinate Systems

For an element of a grid frame, the local orthogonal axes will be established such that the x defines the

longitudinal centroidal axis of the member and the x-y plane will coincide with the plane of the

structural system. In this case, the z axis will define the minorprincipal axis of the cross section while

the y axis will define the major axis of the cross section. It will be assumed that the shear center of the

cross section coincides with the centroid of the cross section. The grid member may have either a

variable or constant cross section along its length.

The possible nodal displacements with respect to the local or to the global systems of coordinates

are identified in Fig. 12.1. It can be seen that the linear displacements along the z direction for local

axes and along the Z direction for the global system are identical since the two axes coincide.

However, in general, rotational components at the nodal coordinates differ for these two coordinate

systems. Hence, a transformation of coordinates will be required to transform the element matrices

from the local to the global coordinates.
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12.2 Torsional Effects

The dynamic analysis by the stiffness method for grid frames, that is, for plane frames subjected to

normal loads, requires the determination of the torsional stiffness and mass coefficients for a typical

element of the grid frame. The derivation of these coefficients is essentially identical to the derivation

of the stiffness and mass coefficients for axial effects on a beam element. Similarity between these

two derivations occurs because the differential equations for both problems have the same mathe-

matical form. For the axial problem, the differential equation for the displacement function is given

by Eq. (11.8) as

du

dx
¼

P

AE
repeatedð Þ ð11:8Þ

Likewise, the differential equation for torsional displacement is

dθ

dx
¼

T

JG
ð12:1Þ

in which θ is the angular displacement, T is the torsional moment, G is the modulus of elasticity in

shear, and J is the torsional constant of the cross section (polar moment of inertia for circular

sections).

Fig. 12.1 Components of nodal displacements for a grid member. (a) Local coordinate system. (b) Global coordinate

system
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As a consequence of the analogy between Eqs. (11.8) and (12.1), we can write the following results

already obtained for axial effects. The displacement functions for the torsional effects are the same as

the corresponding functions giving the displacements for axial effects; hence by analogy to

Eqs. (11.10) and (11.11) and in reference to the nodal coordinates of Fig. 12.2, we obtain

θ1 xð Þ ¼ 1�
x

L

� �

ð12:2Þ

and

θ2 xð Þ ¼
x

L
ð12:3Þ

in which the angular displacement function θ1(x) corresponds to a unit angular displacement δ1¼ 1 at

nodal coordinate 1 and θ2 (x) corresponds to the displacement.

function resulting from a unit angular displacement δ2 ¼ 1 at nodal coordinate 2. Analogous to

Eq. (11.17), the stiffness coefficients for torsional effects may be calculated from

kij ¼

ð L

0

JGθ
0

i xð Þθ
0

j xð Þdx ð12:4Þ

in which θ
0

1(x) and θ
0

2(x) are the derivatives with respect to x of the displacement functions θ1(x) and

θ2(x). Also analogous to Eq. (11.23), the consistent mass matrix coefficients for torsional effects are

given by

mij ¼

ð L

0

I �mθi xð Þθ
0

j xð Þdx ð12:5Þ

in which I �m is the polar mass moment of inertia, per unit length along the beam element. This moment

of inertia may conveniently be expressed as the product of the mass �m per unit length times the radius

of gyration squared, k2. The radius of gyration may, in turn, be calculated as the ratio I0/A. Therefore,

the mass polar moment of inertia per unit length I �m is given by

I �m ¼ �m
I0

A
ð12:6Þ

in which I0 is the polar moment of inertia of the cross-sectional area and A the cross-sectional area.

The application of Eqs. (12.4) and (12.5) for a uniform beam yields the stiffness and mass matrices

for torsional effects as

Fig. 12.2 Nodal torsional coordinates for a beam element
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T1

T2

� �

¼
JG

L

1 �1

�1 1

� �

δ1
δ2

� �

ð12:7Þ

and

T1

T2

� �

¼ I �mL

6

2 1

1 2

� �

€δ1
€δ2

� �

ð12:8Þ

in which I �m is given by Eq. (12.6), and T1, T2 are torsional moments at the ends of the beam element

labeled in Fig. 12.2 as P1 and P2.

12.3 Stiffness Matrix for a Grid Element

The torsional stiffness matrix, Eq. (12.7), is combined with the flexural stiffness matrix, Eq. (10.20),

to obtain the stiffness matrix for a typical element of a grid frame. In reference to the local coordinate

system indicated in Fig. 12.1a, the stillness equation for a uniform element is then
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ð12:9Þ

or in condensed form

Pf g ¼ K½ � δf g ð12:10Þ

12.4 Consistent Mass Matrix for a Grid Element

The combination of the consistent mass matrix for flexural effects (10.34) with the consistent mass

matrix for torsional effects (12.8) results in the consistent mass matrix for a typical member of a grid,

namely
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ð12:11Þ

or in concise notation
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Pf g ¼ Mc½ � δf g ð12:12Þ

in which [Mc] is the mass matrix for a typical uniform member of a grid structure.

12.5 Lumped Mass Matrix for a Grid Element

The lumped mass allocation to the nodal coordinates of a typical grid member is obtained from static

considerations. For a uniform member having a uniform distributed mass along its length, the nodal

mass is simply one-half of the total rotational mass I �mL. The matrix equation for the lumped mass

matrix corresponding to the torsional effects is then

P1

P2

� �

¼ I �mL

2

1 0

0 1

� �

€δ1
€δ2

� �

ð12:13Þ

in which I �m is given by Eq. (12.6). The combination of the lumped torsional mass and the lumped

translatory mass results in the diagonal matrix which is the lumped mass matrix for the grid element.

This matrix, relating forces and accelerations at nodal coordinates, is given by the following equation:
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ð12:14Þ

or briefly

Pf g ¼ MLd c δf g ð12:15Þ

in which dMLc is, in this case, the diagonal lumped mass matrix for a grid element.

12.6 Transformation of Coordinates

The stiffness matrix, Eq. (12.9), as well as the consistent and the lumped mass matrices in

Eqs. (12.11) and (12.14), respectively, are in reference to the local system of coordinates. Therefore,

it is necessary to transform the reference of these matrices to the global system of coordinates before

their assemblage in the corresponding matrices for the structure. As has been indicated, the z axis for

the local coordinate system coincides with the Z axis for the global system. Therefore, the only step

left to perform is a rotation of the coordinates in the x-y plane. The corresponding matrix for this

transformation may be obtained by establishing the relationship between components of the moment

at the nodes expressed in these two systems of coordinates. In reference to Fig. 12.3, these relations

when written for node ① are
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P1 ¼ �P1 cos θ þ �P2 sin θ

P2 ¼ ��P1 sin θ þ �P2 sin θ

P3 ¼ �P3

ð12:16aÞ

and for node ②

P4 ¼ �P4 cos θ þ �P5 sin θ

P5 ¼ ��P4 sin θ þ �P5 sin θ

P6 ¼ �P6

ð12:16bÞ

The identical form of these equations with those derived for the transformation of coordinates for

nodal forces of an element of a plane frame, Eqs. (11.28) and (11.30), should be noted. Equations

(12.16) may be written in matrix notation as
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ð12:17Þ

or in short notation

Pf g ¼ T½ � �Pf g ð12:18Þ

in which {P} and { �P} are, respectively, the vectors of the nodal forces of a typical grid member in

local and global coordinates and [T] the transformation matrix. The same transformation matrix [T]

Fig. 12.3 Components of the nodal moments in local and global coordinates
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serves also to transform the nodal components of the displacements from a global to a local system of

coordinates. In condensed notation, this relation is given by

δf g ¼ T½ � δ
� 	

ð12:19Þ

where {δ} and {δ} are, respectively, the components of nodal displacements in local and global

coordinates. The substitution of Eqs. (12.18) and (12.19) in the stiffness relation Eq. (12.10) yields the

element stiffness matrix in reference to the global coordinate system, that is,

T½ � �Pf g ¼ K½ � T½ � δ
� 	

or, since [T] is an orthogonal matrix [(T)�1 ¼ (T )T], it follows that

�Pf g ¼ T½ �T K½ � T½ � δ
� 	

or

�Pf g ¼



�K
�

δ
� 	

ð12:20Þ

in which

�Kf g ¼ T½ �T K½ � T½ � ð12:21Þ

is the stiffness matrix of an element of a grid frame in reference to the global system of coordinates.

Analogously, for the mass matrix, we find

�Pf g ¼



�M
�

€δ
� 	

ð12:22Þ

in which

�Mf g ¼ T½ �T M½ � T½ � ð12:23Þ

is the transformed mass matrix.

Illustrative Example 12.1

Figure 12.4 shows a grid frame in a horizontal plane consisting of two prismatic beam elements with a

total of three degrees of freedom as indicated. Determine the natural frequencies and corresponding

mode shapes. Use the consistent mass formulation.

Solution:

The stiffness matrix for elements 1 or 2 of the grid frame in reference to the local system of

coordinates, by Eq. (12.9), is

6

1

1 2 3 4 5 6

40 0 0 40 0 0 1

0 200 5 0 100 5 2

0 5 0.167 0 5 0.167 3
[ ] 10

40 0 0 40 0 0 4

0 100 5 0 200 5 5

0 5 0.167 0 5 0.167 6

K

−

−

− − −
=

−

−

−
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The transformation matrix for element 1 with θ ¼ 00 is simply the unit matrix [T1] ¼ [I]. Hence




�K1

�

¼ T1½ �T K1½ � T1½ � ¼ K1½ �

and for element (2) with θ ¼ 90�.

T2½ � ¼

0 1 0 0 0 0

�1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 �1 0 0

0 0 0 0 0 1
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so that




�K2

�

¼ T2½ �T K2½ � T2½ �

6

2

1 2 3 4 5 6

200 0 5 100 0 5 1

0 40 0 0 -40 0 2

5 0 0.167 -5 0 0.167 3
[ ] 10

100 0 5 200 0 -5 4
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-5 0 -0.167 -5 0 0.167 6

K =

Fig. 12.4 Grid frame of Illustrative Example 12.1
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The system matrix [Ks] assembled from



�K1

�

and



�K2

�

is

Ks½ � ¼ 106
240 0 5

0 240 �5

5 �5 0:333

2

4

3

5

Analogously, for the mass, we have from Eq. (12.11)

1

1 2 3 4 5 6

2500 0 0 1250 0 0 1

0 20,570 1886 0 15,430 1114 2

0 1886 223 0 1114 77 3
[ ]

1250 0 0 2500 0 0 4

0 15,430 1114 0 20,570 1886 5

0 1114 77 0 1886 223 6

M

−

−
=

− − −

−

We then calculate using Eq. (12.23)



�M1

�

¼ M1½ �

since

T1½ � ¼ I½ �

and analogously

2

1 2 3 4 5 6

20,570 0 1886 15,430 0 1114 1

0 2500 0 0 1250 0 2

1886 0 223 1114 0 77 3
[ ]

15,430 0 1114 20,570 0 1886 4

0 1250 0 0 2500 0 5

1114 0 77 1886 0 223 6

M

−

−
=

From [ �M1] and [ �M2] we assemble the system mass matrix and obtain

Ms½ � ¼
23, 070 0 1886

0 23, 070 �1886

1886 �1886 446

2

4

3

5

The natural frequencies and mode shapes are obtained from the solution of the eigenproblem

Ks½ � � ω2 Ms½ �
� 


af g ¼ 0f g

which gives the eigenvalues (squares of the natural frequencies)

ω2
1 ¼ 198 ω2

2 ¼ 10, 402, and ω2
3 ¼ 47, 849
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Then

ω1 ¼ 14:06 rad= sec , ω2 ¼ 101:99 rad= sec , and ω3 ¼ 218:74 rad= sec

and the eigenvectors ordered in the column of the modal matrix:

a½ � ¼
�1:000 1:000 �1:000
1:000 1:000 1:000
43:82 0 9:072

2

4

3

5

The eigenvectors are conveniently normalized by dividing the columns of the modal matrix,

respectively, by the factors

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1f gT Ms½ � a1f g
q

¼ 1, 110
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2f gT Ms½ � a2f g
q

¼ 214:81
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a3f gT Ms½ � a31f g
q

¼ 119:99

The normalized eigenvectors are arranged in columns of the modal matrix, so that

Φ½ � ¼

�0:0009 0:0047 0:0083

0:0009 0:0047 �0:0083

0:0395 0 0:0756

2

6

4

3

7

5

Illustrative Example 12.2

Determine the response of the grid frame shown in Fig. 12.4 when subjected to a suddenly applied

force F3 ¼ 5000 lb. as shown in the figure.

Solution:

The natural frequencies and modal shapes for this structure were calculated in Example 12.1. The

modal equation is given in general as

€zn þ ω2
nzn ¼ Pn n ¼ 1; 2; 3ð Þ

where

Pn ¼
X

3

i¼1

ϕinFi

and Fi the external forces at the nodal coordinates which for this example are F1 ¼ F2 ¼ 0 and

F3 ¼ 5000 lb. Hence, we obtain

€z1 þ 198z1 ¼ 197:35

€z2 þ 10, 402z2 ¼ 0

€z3 þ 47, 849z3 ¼ 378:05
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The solution of these equations for zero initial conditions is

z1 ¼
197:35

198
1� cos 14:06tð Þ

z2 ¼ 0

z3 ¼
378:05

47, 849
1� cos 218:74tð Þ

The displacements at the nodal coordinates are calculated from

1

2

3

{ } [ ]{ }

0.0009 0.0047 0.0083 0.9967 (1 cos14.06 )

0.0009 0.0047 0.0083 0

0.0395 0 0.0756 0.0079 (1 cos 218.74 )

u z

u t

u

u t

Φ=

− −

= −

−

and finally

u1 ¼ 10-3 �0:8315þ 0:897 cos 14:06t� 0:0656 cos 218:74tð Þ in

u2 ¼ 10-3 0:9626� 0:897 cos 14:06t� 0:0656 cos 218:74tð Þ in

u3 ¼ 10-3 39:97� 39:37 cos 14:06t� 0:60 cos 154:49tð Þ radian

12.7 Modeling Structures as Grid Frames Using MATLAB

MATLAB calculates the stiffness and mass matrices for a grid frame and stores the coefficients of

these matrices in a file. After calculating system matrices, the natural frequencies and mode shapes

can be estimated. After solving modal equations, the MATLAB can plot the responses.

Illustrative Example 12.3

For the grid frame shown in Fig. 12.4 and analyzed in the previous examples, (a) model this structure,

(b) calculate the natural frequencies and mode shapes, and (c) determine the response to a constant

force of 5000 lb. suddenly applied for 0.1 s as indicated in the figure.

Solution:

This MATLAB file is to yield the results of sections (a) and (b). Two function files,

GridFrameElement.m and GridConMass.m are needed. After assembling matrices, the system matrix

can be found using System.m file. Using system matrices, the natural frequencies and mode shapes

will be found.
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clc
close all
clear all

%__________________________________________________________________________
%  Determine System Matrices/Determine Force 
%__________________________________________________________________________

%%%%-GIVEN VALUES-%%%%

E=30*10^6; A=10;            %E (psi), A (in.^2)
Iz = 100;                   %Second Moment of Inertia (in^4)
J = 200;                    %Torsional constant
G = 12*10^6;               %Modulus of rigidity (psi)
I0 = 125;                   %Polar moment of inertia of cross sectional area(in^4)

%%%Create frame model (ith row of nodes is ith node)
nodes = [0, 0; 60,0; 0,60];
%%%Element number (ith row = ith element with two nodes)
conn=[1,2; 1,3];
%%%Dofs for ith element (ith row)
lmm=[1:3,4:6; 1:3,7:9];

m_bar = 10;                %Mass per unit length (lb-sec^2/in/in)        

dof = 3*length(nodes);     % Total No. dofs

K= zeros(dof);
M= zeros(dof);

%%%Generate equations for each element and assemble them.
for i=1:2
lm=lmm(i,:);
con=conn(i,:);
ke = GridFrameElement(E, Iz, G, J, nodes(con,:));

K(lm, lm) = K(lm, lm) + ke;
end

%%%Generate mass matrix for each element and assemble them.
for i=1:2
lm=lmm(i,:);
con=conn(i,:);

m=GridConsMass(m_bar, I0, A, nodes(con,:));
M(lm, lm) = M(lm, lm) + m;

end

K;

M;

%%%Define the load vector size
F = zeros(dof,1); F(3) = 5000;               %Applied force at specific dofs

%%%System Matrices
[Kf, Mf, Rf] = System(K, M, F, [4:6,7:9]);

Kf

Mf

Rf

%_____________________________________________________________________
% Solve the eigenvalue problem and normalized eigenvectors
%_____________________________________________________________________

%%%Solve for eigenvalues (D) and eigenvectors (a) 
[a, D] = eig(Kf, Mf); 

[omegas,ii] = sort(sqrt(diag(D))); %Natural Frequencies

omegas 

a = a(:,ii)                        %Mode Shapes

T = 2*pi./omegas;                  %Natural Periods

save ('temp0.mat', 'Mf', 'Kf' ,'Rf');
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The function file of MATLAB is used to assemble the stiffness matrix of grid frame element for

global stiffness matrix.

functionke = GridFrameElement(E, Iz, G, J, coord)

% ke = GridFrameElement(e, Iz, J, coord)

% Generates equations for a space frame element

% E = modulus of elasticity

% G = Modulus of rigidity (psi)

% Iz = moment of inertia about element z axe

% J = torsional constant

% coord = coordinates at the element ends

EI=E*Iz;  GJ=G*J;

x1=coord(1,1); y1=coord(1,2);

x2=coord(2,1); y2=coord(2,2);

L=sqrt((x2-x1)^2+(y2-y1)^2);

C=(x2-x1)/L; S=(y2-y1)/L;

T = [C S 0 0 0 0; 

-S C 0 0 0 0; 

0 0 1 0 0 0;

0 0 0 C S 0; 

0 0 0 -S C 0; 

0 0 0 0 0 1];

ke = EI/L^3*T'*[GJ*L^2/EI, 0, 0, -GJ*L^2/EI, 0, 0;

0, 4*L^2, -6*L, 0, 2*L^2, 6*L;

0, -6*L, 12, 0, -6*L, -12;

-GJ*L^2/EI, 0, 0, GJ*L^2/EI, 0, 0;

0, 2*L^2, -6*L, 0, 4*L^2, 6*L;

0, 6*L, -12, 0, 6*L, 12]*T;

The function file of MATLAB is used to assemble the mass matrix of each grid frame element for

global mass matrix.

function m = GridConsMass(m_bar,I0, A, coord)
% FrameConsMass(m_bar, nodes(con,:))
% Generates mass matrix for a grid frame element
% m = mass (lb.sec^2/in.^2)
% L = length
% A = area of cross-section
% I0 = polar moment of inertia of cross sectional area(in^4)
% coord = coordinates at the element ends

x1=coord(1,1); y1=coord(1,2);
x2=coord(2,1); y2=coord(2,2);
L=sqrt((x2-x1)^2+(y2-y1)^2);

C=(x2-x1)/L; S=(y2-y1)/L;

T = [C S 0 0 0 0; 
-S C 0 0 0 0; 

0 0 1 0 0 0;
0 0 0 C S 0; 
0 0 0 -S C 0; 
0 0 0 0 0 1];

m = m_bar*L/420*T.'*[140*I0/A  0        0    70*I0/A     0           0  ;
0       4*L^2       22*L    0       -3*L^2      13*L;
0       22*L        156     0       -13*L       54;
70*I0/A     0       0       140*I0/A     0      0;
0         -3*L^2 -13*L        0       4*L^2     -22*L;
0       13*L        54        0         -22*L   156]*T;

This MATLAB file is to yield the results of section (c).
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After running the program above, the following MATLAB program will yield the response. The

duration of response is from 0 to 5 s with the interval of 0.01 s (Fig. 12.5).

function q = MDOFP(t, q)

load ('temp2.mat', 'omega', 'P', 'm' ,'zeta') 

if t > 0.1

P=0;

else

P=P;

end

q = [q(2); -omega*omega*q(1)-2*zeta*omega*q(2)+P];  

The maximum displacements at the nodal coordinates were estimated using MATLAB.

u1max ¼ 0:0013 in u2max ¼ 0:0013 in u3max ¼ 0:0517 radian

12.8 Summary

This chapter has presented the dynamic analysis of structures modeled as grid supporting loads

applied normally to its plane. The dynamic analysis of grids requires the inclusion of torsional effects

in the element stiffness and mass matrices. It also requires a transformation of coordinates of the

element matrices previous to the assembling of the system matrix. The required matrices for torsional
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Fig. 12.5 Response of Illustrative Example 12.3
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effects are developed and a computer program for the dynamic analysis of grids is presented.

This program is also organized along the same pattern of the programs in the two preceding chapters

for the dynamic analysis of beams and plane frames.

12.9 Problems

The following problems are intended for hand calculation, though it is recommended that whenever

possible solutions should also be obtained using MATLAB to model the structure and calculate

natural frequencies and to solve for the response.

Problem 12.1

Use MATLAB: (1) Model the plane grid frame shown in Fig. P12.1 using a total of four beam

elements, (2) Determine the first three natural frequencies and corresponding mode shapes, and

(3) Calculate the response due to the force F(t)¼ 5000 lb. applied in the Z direction at joint 1 suddenly

for 0.1 sec and then decreasing linearly to zero at time 0.5 s.

Problem 12.2

For the grid shown in Fig. P12.2 determine the system stiffness and mass matrices. Base the analysis

on the three nodal coordinates indicated in the figure. Use consistent mass method.

Problem 12.3

Fig. P12.1
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Use static condensation to eliminate the rotational degrees of freedom and determine the transforma-

tion matrix and the reduced stiffness and mass matrices in Problem 12.2.

Problem 12.4

Determine the natural frequency for the reduced system in Problem 12.3.

Problem 12.5

Determine the natural frequencies and corresponding normal modes for the grid analyzed in Problem

12.2.

Problem 12.6

Determine the response of the grid shown in Fig. P12.1 when acted upon by a force F(t) ¼ 10 Kip

suddenly applied for 1 s at the nodal coordinate 3 as shown in the figure. Use results of Problem 12.2

to obtain the equation of motion for the condensed system. Assume 10% modal damping.

Problem 12.7

Use results from Problem 12.4 to solve Problem 12.5 on the basis of the three nodal coordinates as

indicated in Fig. P12.2.

Problem 12.8

Determine the steady-state response of the grid shown in Fig. P12.2 when subjected to harmonic force

F(t) ¼ 10 sin 50 t (Kip) along nodal coordinate 3. Neglect damping in the system.

Problem 12.9

Repeat Problem 12.8 assuming that the damping is proportional to the stiffness of the system,

[C] ¼ a0 [K], where a0 ¼ 0.3.

F(t )

L = 100 in.

E = 30,000 ksi

G = 12,000 ksi

I = 1000 in.4

J = 10 in4

m = 0.01 K sec2/in2

I0 = 1200 in4

A = 20 in2

2

1

3

LL

Z
Y

X

L

L

Fig. P12.2
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Problem 12.10

Determine the equivalent nodal forces for a member of a grid loaded with a dynamic force, P(t)¼ P0f

(t), uniformly distributed along its length.

Problem 12.11

Determine the equivalent nodal forces for a member of a grid supporting a concentrated dynamic

force F( f ) as shown in Fig. P12.11.

The following problems are intended for computer solution using MATLAB, to model the

structure and to determine natural frequencies and nodal shapes and to calculate the response.

Problem 12.12

Determine the natural frequencies and corresponding normal modes for the grid shown in Fig. P12.2.

Problem 12.13

Determine the response of the grid shown in Fig. P12.2 when acted upon by the force depicted in

Fig. P12.2 acting along nodal coordinate 3. Neglect damping in the system.

Problem 12.14

Repeat Problem 12.13 for 15% damping in all the modes. Use modal super-position method.

Problem 12.15

Repeat Problem 12.13. Use step-by-step linear acceleration method. Neglect damping Fig. P12.15.

2 F(t) 5

6

41

3

a b

Fig. P12.11

F (t )

(K ips)

8

10
9

8

6

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t(sec)

Fig. P12.15
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Dynamic Analysis of Three-Dimensional
Frames 13

The stiffness method for dynamic analysis of frames presented in Chap. 11 for plane frames and in

Chap. 12 for grid frames can readily be expanded for the analysis of three-dimensional space frames.

Although for the plane frame or for the grid there were only three nodal coordinates at each joint, the

three-dimensional frame has a total of six possible nodal displacements at each unconstrained joint:

three translation components along the x, y, z axes and three rotational components about these axes.

Consequently, a beam element of a three-dimensional frame or a space frame has for its two joints a

total of 12 nodal coordinates; hence the resulting element matrices will be of dimension 12 � 12.

The dynamic analysis of three-dimensional frames resulting in a comparatively longer computer

program in general, requiring more input data as well as substantially more computational time.

However, except for size, the analysis of three-dimensional frames by the stiffness method of

dynamic analysis is basically identical to the analysis of plane frames or grid frames.

13.1 Element Stiffness Matrix

Figure 13.1 shows a beam segment of a space frame with its 12 nodal coordinates numbered

consecutively. The convention adopted is to label first the three translatory displacements of the

first joint followed by the three rotational displacements of the same joint, then to continue with the

three translatory displacements of the second joint and finally the three rotational displacements of

this second joint. The double arrows used in Fig. 13.1 serve to indicate rotational nodal coordinates;

thus, these are distinguished from translational nodal coordinates for which single arrows are used.

The stiffness matrix for a three-dimensional uniform beam segment is readily written by the

superposition of the axial stiffness matrix from Eq. (11.3), the torsional stiffness matrix from

Eq. (12.6), and the flexural stiffness matrix from Eq. (10.20). The flexural stiffness matrix is used

twice in forming the stiffness matrix of a three-dimensional beam segment to account for the flexural

effects in the two principal planes of the cross section. Proceeding to combine in an appropriate

manner these matrices, we obtain in Eq. (13.1) the stiffness equation for a uniform beam segment of a

three-dimensional frame, namely
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ð13:1Þ

or in condensed notation

Pf g ¼ K½ � ¼ δf g ð13:2Þ

in which Iy and Iz are, respectively, the cross-sectional moments of inertia with respect to the principal

axes labeled as y and z in Fig. 13.1, and L, A, and J are respectively the length, cross-sectional area,

and torsional constant of the beam element.

Fig. 13.1 Beam segment of a space frame showing forces and displacements at the nodal coordinates
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13.2 Element Mass Matrix

The lumped mass matrix for the uniform beam segment of a three-dimensional frame is simply a

diagonal matrix in which the coefficients corresponding to translatory and torsional displacements are

equal to one-half of the total inertia of the beam segment while the coefficients corresponding to

flexural rotations are assumed to be zero. The diagonal lumped mass matrix for the uniform beam of

distributed mass �m and polar mass moment I �m ¼ �mIo=A of inertia per unit of length may be written

conveniently as

ML½ � ¼
�mL

2
1 1 1 Io=A 0 0 1 1 1 Io=A 0 0d e ð13:3Þ

in which Io is the polar moment of inertia of the cross-sectional area A.

The consistent mass matrix for a uniform beam segment of a three-dimensional frame is readily

obtained combining the consistent mass matrices, Eq. (11.26) for axial effects, Eq. (12.8) for torsional

effects, and Eq. (10.34) for flexural effects. The appropriate combination of these matrices results in

the consistent mass matrix for the uniform beam segment of a three-dimensional frame, namely,

ð13:4Þ

or in condensed notation

Pf g ¼ M½ � €δ
� �

ð13:5Þ

13.3 Element Damping Matrix

The damping matrix for a uniform beam segment of a three-dimensional frame may be obtained in a

manner entirely similar to those of the stiffness, Eq. (13.1), and mass, Eq. (13.4), matrices. Neverthe-

less, as was discussed in Sect. 10.5, in practice, damping is generally expressed in terms of damping

ratios for each mode of vibration. Therefore, if the response is sought using the modal superposition
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method, these damping ratios are directly introduced in the modal equations. When the damping

matrix is required explicitly, it may be determined from given values of damping ratios by the

methods presented in Chap. 22.

13.4 Transformation of Coordinates

The stiffness and the mass matrices, respectively, given by Eqs. (13.1) and (13.4), are referred to local

coordinates axes fixed on the beam segment. Inasmuch as the elements of these matrices

corresponding to the same nodal coordinates of the structure should be added to obtain the system

stiffness and mass matrices, it is necessary first to transform these matrices to the same reference

system, the global system of coordinates. Figure 13.2 shows these two reference systems, the x, y,

z axes representing the local system of coordinates and the X, Y, Z axes representing the global system

of coordinates. Also shown in this figure is a general vector A with its components X, Y Z along the

global coordinates. This vector Amay represent any force or displacement at the nodal coordinates of

one of the joints of the structure. To obtain the components of vector A along one of the local axes x,

y, z, it is necessary to add the projections along that axis of the components X, Y, Z. For example, the

component x of vector A along the x coordinate is given by

x ¼ Xcos xX þ Y cos xY þ Z cos xZ ð13:6aÞ

in which cos xY is the cosine of the angle between axes x and Y and corresponding definitions for other

cosines. Similarly, the y and z components of A are

y ¼ Xcos yX þ Y cos yY þ Z cos yZ ð13:6bÞ

z ¼ Xcos zX þ Y cos zY þ Z cos zZ ð13:6cÞ

Equations (13.6a, 13.6b, and 13.6c) are conveniently written in matrix notation as

x

y

z

8
<

:

9
=

; ¼
cos xX cos xY cos xZ

cos yX cos yY cos yZ

cos zX cos zY cos zZ

8
<

:

9
=

;

X

Y

Z

8
<

:

9
=

; ð13:7Þ

or in short notation

Af g ¼ T1f g �Af g ð13:8Þ

in which {A}and �Af g are, respectively, the components in the local and global systems of the general

vector A and [T1] the transformation matrix given by

T1½ � ¼
cos xX

cos yX

cos zX

cos xY

cos yY

cos zY

cos xZ

cos yZ

cos zZ

2

4

3

5 ð13:9Þ

The cosines required in the transformation matrix [T1] are usually calculated in computer codes

from the global coordinates of three points. The two points defining the two ends of the beam element

along the local x axis and any third point located in x-y local plane in which y is one of the principal

axes of the cross-sectional area of the member. The input data containing the global coordinates of

these three points are sufficient for the evaluation of all the cosine terms in Eq. (13.9). To demonstrate
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this fact let us designate by xi, yi, zi, and xj, yj, zj the coordinates of pointⒾ andⒿ at the two ends of a

beam element and by xp, yp, zp, the coordinates of a point P placed on the local x-y plane. Then the

direction cosines of local axis x along the beam element are given by

cos xX ¼
x j � xi

L
, cos xY ¼

y j � yi

L
, cos xZ ¼

z j � zi

L
ð13:10Þ

where L is the length of the beam element given by

L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x j � xi
� �2

þ y j � yi

� �2

þ z j � zi
� �2

r
ð13:11Þ

The direction cosines of the z axis can be calculated from the condition that any vector Z along the

z axis must be perpendicular to the plane formed by any two vectors in the local x-y plane. These two

vectors could simply be the vector X from pointⒾ to pointⒿ along the x axis and the vector P from

point Ⓘ to point P. The orthogonality condition is then expressed by the cross product between

vectors X and P as

Z ¼ X� P ð13:12Þ

or substituting the components of these vectors as

zxbi þ zybj þ zzbk ¼

bi
x j � xi
xp � xi

bj
y j � yi
yp � yi

bk
z j � zi
zp � zi

						

						
ð13:13Þ

where bi, bj, and bk are unit vectors along the global coordinate axes X, Y, and Z, respectively.

Consequently the direction cosines of axis z are given by

cos zX ¼
zx

Zj j
, cos zY ¼

zy

Zj j
, cos zZ ¼

zx

Zj j
ð13:14Þ

Y

Y

y

0

Z

z

Z

X

x

X

A

Fig. 13.2 Components of a general vector A in local and global coordinates
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where

zx ¼ y j � yi

� �
zp � zi
� �

� z j � zi
� �

yp � yi
� �

zy ¼ z j � zi
� �

xp � xi
� �

� x j � xi
� �

zp � zi
� �

zz ¼ x j � xi
� �

yp � yi
� �

� y j � yi

� �
xp � xi
� �

ð13:15Þ

and

Zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2x þ z2y þ z2z

q
ð13:16Þ

Analogously, the direction cosines of the local axis y are calculated from the condition of

orthogonality between a vector Y along the y axis and the unit vectors X1 and Z1 along the x and

z aces, respectively. Hence,

Y ¼ X1 � Z1

or in expanded notation

yx
bi þ yy

bj þ yz
bk ¼

bi
cos xX

cos zX

bj
cos xY

cos zY

bk
cos xZ

cos zZ

						

						
ð13:17Þ

Therefore,

cos yX ¼
yx
Yj j

, cos yY ¼
yy

Yj j
, cos yZ ¼

yz
Yj j

where

yx ¼ cos xY cos zZ � cos xZ cos zY

yy ¼ cos zX cos zX � cos xX cos zZ

yz ¼ cos xX cos zY � cos xY cos zX

ð13:18Þ

and

Yj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2x þ y2y þ y2z

q

Wehave, therefore, shown that knowledge of the coordinates of points at the two ends of an element

of a point P on the local plane x-y suffices to calculate the direction cosines of the transformation

matrix [T1] in Eq. (13.9). The choice of point P is generally governed by the geometry of the structure

and the orientation of the principal directions of the cross section of the member. Quite often point P is

selected as a known point in the structure, which is placed on the local axis y, although, as it has been

shown, the point P could be any point in the plane formed by the local x-y axes.

Alternatively, the direction cosines in the transformation matrix, Eq. (13.9) may be calculated

from the nodal coordinates (xi, yi, zi,) and (xj, yj, zj) at the two ends of the beam element and the

knowledge of an angle known as the angle of rolling. This angle provides the rational information of

the principal axes of the cross-sectional area with respect to an orientation defined as the standard

orientation of these axes. The analytical development to implement the calculation of the direction

cosines using the angle of rolling is presented at the end of this chapter as Problems 13.1 and 13.2.

We have, therefore, shown that the knowledge of the coordinates at the two ends of an element,

together with the knowledge of either a third point located in the x-y local plane in which y is one of

340 13 Dynamic Analysis of Three-Dimensional Frames



the principal axes of the cross-sectional area of the member, or alternatively, the knowledge of the

angle of rolling, suffices to calculate the direction cosines of the transformation matrix [T1] in

Eq. (13.9).

For the beam segment of a three-dimensional frame, the transformation of the nodal displacement

vectors involve the transformation of linear and angular displacement vectors at each joint of the

segment. Therefore, a beam element of a space frame requires, for the two joints, the transformation

of a total of four displacement vectors. This transformation of the 12 nodal displacements δ
� �

global

coordinates to the displacement {δ} in local coordinates may be written in abbreviated form as

δf g ¼ T½ � δ
� �

ð13:19Þ

in which

T½ � ¼

T1½ �
T1½ �

T1½ �
T1½ �

2

664

3

775

Analogously, the transformation from nodal forces �Pf g in global coordinates to nodal forces {P} in

local coordinates is given by

Pf g ¼ T½ � �Pf g ð13:20Þ

Finally, to obtain the stiffness matrix


�K
�
and the mass matrix �Mb c in reference to the global system

of coordinates, we simply substitute, into Eq. (13.2), {δ} from Eq. (13.19) and [P] from Eq. (13.21) to

obtain

T½ � �Pf g ¼ K½ � T½ � δ
� �

or

�Pf g ¼ T½ �T K½ � T½ � δ
� �

ð13:21Þ

since [T] is an orthogonal matrix. From Eq. (13.21), we may write

�Pf g ¼


�K
�
δ

� �
ð13:22Þ

in which �Kb c is defined as



�K
�
¼ T½ �T K½ � T½ � ð13:23Þ

Analogously, the mass matrix in Eq. (13.5) is transformed from local to global coordinates by



�M
�
¼ T½ �T M½ � T½ � ð13:24Þ

and the damping matrix [C] by



�C
�
¼ T½ �T C½ � T½ � ð13:25Þ
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13.5 Differential Equation of Motion

The direct method which was explained in detail in Chap. 10 may also be used to assemble the

stiffness, mass, and damping matrices from the corresponding matrices for a three-dimensional beam

segment, Eqs. (13.23), (13.24) and (13.25), which are referred to the global system of coordinates.

The differential equations of motion referred to the global system of coordinates. The differential

equations of motion which are obtained by establishing the dynamic equilibrium among the inertial,

damping, and elastic forces with the external forces may be expressed in matrix notation as

M½ � €uf g þ C½ � _uf g þ K½ � uf g ¼ F tð Þf g ð13:26Þ

in which [M], [C], and [K] are, respectively, the system mass, damping, and stiffness matrices, €uf g,
_uf g, and {u} are the system acceleration, velocity, and displacement vectors, and {F(t)} is the force

vector which includes the forces applied directly to the joints of the structure and the equivalent nodal

forces for the forces not applied at the joints.

13.6 Dynamic Response

The integration of the differential equations of motion, Eq. (13.26), may be accomplished by any of

the methods presented in previous chapters to obtain the response of structures modeled as beams,

plane frames, or grids. The selection of the particular method of solution depends, as discussed

previously, on the linearity of the differential equation, that is, whether the stiffness matrix [K] or any

other coefficient matrix is constant, and also depends on the complexity of the excitation as a function

of time. When the differential equations of motion, Eq. (13.26), are linear, the modal superposition

method is applicable. This method, as we have seen in the preceding chapters, requires the solution of

an eigenproblem to uncouple the differential equations resulting in the modal equations of motion.

If the structure is assumed to follow an elastoplastic behavior or any other form of nonlinearity, it

is necessary to resort to some kind of numerical integration in order to solve the differential equations

of motion, Eq. (13.26). In Chap. 16, the linear acceleration method with a modification known as the

Wilson-θ method is presented for analysis of linear structures with an elastic behavior.

13.7 Modeling Structures as Space Frames Using MATLAB

MATLAB calculates the stiffness and mass matrices for a three-dimensional frame and stores the

coefficients of these matrices.

Illustrative Example 13.1

For the three-dimensional frame shown in Fig. 13.3, determine (a) the stiffness and mass matrices,

(b) the natural frequencies and corresponding modal shapes. Model the structure with four beam

elements and use consistent mass matrix formulation, and (c) determine the response to a constant

force of 5000 lb. suddenly applied for 0.1 s at node 1 in z axis.

Solution:
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As the first step in the analysis, the frame is divided in four elements, as indicated in Fig. 13.3. This

division of the structure results in five nodes with a total of 30 nodal coordinates, of which 24 are

fixed. The numerical values needed for analysis of this structure are given in Table 13.1.

This MATLAB file is to yield the results of sections (a) and (b). Two function files, SpaceFra-

meElement.m and SpaceConMass.m are needed. After assembling matrices, the system matrix can be

found using System.m file. Using system matrices, the natural frequencies and mode shapes will be

found.

Fig. 13.3 Space Frame of Example 13.1

Table 13.1 Input Data for Illustrative Example 13.1

Quantity Members 1,3 Members2,4

Modulus of elasticity (psi) 30 � 106 30 � 106

Modulus of rigidity (psi) 12 � 106 12 � 106

Distributed mass (lb � sec2 /in2) 0.2 0.1

Cross-sectional y moment of inertia (in4) 200 64

Cross-sectional z moment of inertia (in 4) 200 64

Torsional constant (in4) 40.0 12.8

Cross-sectional area (in2) 50 28

Cross-sectional moment of inertia (in4) 205 68
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clc
clear all
close all

%__________________________________________________________________________
%  Determine System Matrices/Determine Force 
%__________________________________________________________________________

%%%%-GIVEN VALUES-%%%%

E=30*10^6;                  %E (psi) 
G = 12*10^6;                %G, Modulus of rigidity (psi) 

% Members 1 & 3
A1 = 50;                    %Cross-sectional area A (in^2)
Iz1 = 200;                  %Second Moment of Inertia in z axes (in^4)
Iy1 = 200;                  %Second Moment of Inertia in y axes (in^4)
J1 = 40;                    %Torsional constant
m_bar1 = 0.2;               %Distributed mass (lb-sec^2/in/in)
I0_1 = 205;                 %Polar moment of inertia of cross sectional area (in^4)  

% Members 2 & 4
A2 = 28;                    %Cross-sectional area A (in^2)
Iz2 = 64;                   %Second Moment of Inertia in z axes (in^4)
Iy2 = 64;                   %Second Moment of Inertia in y axes (in^4)
J2 = 12.8;                  %Torsional constant
m_bar2 = 0.1;               %Distribution mass (lb-sec^2/in^2)
I0_2 =  68;                 %Polar moment of inertia of cross sectional area (in^4)     

%%%Create frame model (ith row of nodes is ith node)
nodes = [0, 0, 0; 0, 0, -200; 0, 200, 0; -200, 0, 0; 0, -200, 0];
%%%Element number (ith row = ith element with two nodes)
conn=[1,2,3; 1,3,2; 1,4,2; 1,5,2];
%%%Dofs for ith element (ith row)
lmm=[1:12; [1:6 13:18]; [1:6 19:24]; [1:6 25:30]];
dof=6*length(nodes);        % Total No. dofs

K= zeros(dof);
M= zeros(dof);

%%%Generate equations for each element and assemble them.
for i=1

lm=lmm(i,:);
con=conn(i,:);
ke = SpaceFrameElement(E, G, Iz1, Iy1, J1, A1, nodes(con,:));
K(lm, lm) = K(lm, lm) + ke;

end

for i=2
lm=lmm(i,:);
con=conn(i,:);
ke = SpaceFrameElement(E, G, Iz2, Iy2, J2, A2, nodes(con,:));
K(lm, lm) = K(lm, lm) + ke;

end

for i=3
lm=lmm(i,:);
con=conn(i,:);
ke = SpaceFrameElement(E, G, Iz1, Iy1, J1, A1, nodes(con,:));
K(lm, lm) = K(lm, lm) + ke;

end

for i=4
lm=lmm(i,:);
con=conn(i,:);
ke = SpaceFrameElement(E, G, Iz2, Iy2, J2, A2, nodes(con,:));
K(lm, lm) = K(lm, lm) + ke

end

344 13 Dynamic Analysis of Three-Dimensional Frames



K;

M;

%%%Define the load vector 
F = zeros(dof,1); F(3) = 5000;              %Applied force at specific dofs

%%%System Matrices
[Kf, Mf, Rf] = System(K, M, F,[7:30]);

Kf

Mf

Rf
%____________________________________________________________
% Solve the eigenvalue problem and normalized eigenvectors
%____________________________________________________________

%%%Solve for eigenvalues (D) and eigenvectors (a) 
[a, D] = eig(Kf, Mf); 

[omegas,ii] = sort(sqrt(diag(D))); %Natural Frequencies

omegas

a = a(:,ii)                        %Mode Shapes

T = 2*pi./omegas;                  %Natural Periods

save ('temp0.mat', 'Mf', 'Kf' ,'Rf');

The function file of MATLAB is used to assemble the stiffness matrix of space frame element for

global stiffness matrix.

function ke = SpaceFrameElement(E, G, Iz, Iy, J, A, coord)
% ke = SpaceFrameElement(E, G, Iz, Iy, J, A, wz, wy, coord)
% Generates equations for a space frame element
% E = modulus of elasticity (psi)
% G = Modulus of rigidity (psi)
% Iz, Iy = moment of inertias about element z and y axes (in^4)
% J = torsional rigity (in^4)
% A = area of cross-section (in^2)
% coord = coordinates at the element ends

EIz=E*Iz; EIy=E*Iy; GJ=G*J; EA = E*A;
n1=coord(1,1:3); n2=coord(2,1:3); n3=coord(3,1:3);
L=sqrt(dot((n2-n1),(n2-n1)));
ex = (n2 - n1)/L;
eyy = cross(n3 - n1, n2 - n1);
ey = eyy/sqrt(dot(eyy,eyy));
ez = cross(ex, ey);
H = [ex; ey; ez];
T = zeros(12);
T([1, 2, 3], [1, 2, 3]) = H; 
T([4,5,6], [4,5,6]) = H;
T([7,8,9], [7,8,9]) = H;
T([10,11,12], [10,11,12]) = H;
TT = T.';
ke = [EA/L, 0, 0, 0, 0, 0, -(EA/L), 0, 0, 0, 0, 0;

0, (12*EIz)/L^3, 0, 0, 0, (6*EIz)/L^2, 0, -((12*EIz)/L^3), ...
0,0, 0, (6*EIz)/L^2;

0, 0, (12*EIy)/L^3, 0, -((6*EIy)/L^2), 0, ...
0, 0, -((12*EIy)/L^3), 0, -((6*EIy)/L^2), 0;

0, 0, 0, GJ/L, 0, 0, 0, 0, 0, -(GJ/L), 0, 0;
0, 0, -((6*EIy)/L^2), 0, (4*EIy)/L, 0, 0, 0, (6*EIy)/L^2, ...

0,(2*EIy)/L, 0;
0, (6*EIz)/L^2, 0, 0, 0, (4*EIz)/L, 0, ...

-((6*EIz)/L^2), 0, 0, 0, (2*EIz)/L;
-(EA/L), 0, 0, 0, 0, 0, EA/L, 0, 0, 0, 0, 0;
0, -((12*EIz)/L^3), 0, 0, 0, -((6*EIz)/L^2), ...

0, (12*EIz)/L^3, 0, 0, 0, -((6*EIz)/L^2);
0, 0, -((12*EIy)/L^3), 0, (6*EIy)/L^2, 0, 0, 0, ...

(12*EIy)/L^3, 0, (6*EIy)/L^2, 0;
0, 0, 0, -(GJ/L), 0, 0, 0, 0, 0, GJ/L, 0, 0;
0, 0, -((6*EIy)/L^2), 0, (2*EIy)/L, 0, 0,0, (6*EIy)/L^2, ...

0, (4*EIy)/L, 0;
0, (6*EIz)/L^2, 0, 0, 0, (2*EIz)/L, 0, -((6*EIz)/L^2), 0, ...

0, 0, (4*EIz)/L];



The function file of MATLAB is used to assemble the mass matrix of each space frame element for

global mass matrix.

function m = SpaceFrameConsMass(m_bar,I0, A, coord)
% FrameConsMass(m_bar, nodes(con,:))
% Generates stiffness matrix for a space frame element
% m = distributed mass (lb.sec^2/in/in)
% L = length (in.)
% A = area of cross-section (in^2)
% I0 = Polar moment of inertia of cross sectional area (in^4) 
% coord = coordinates at the element ends

n1=coord(1,1:3); n2=coord(2,1:3); n3=coord(3,1:3);
L=sqrt(dot((n2-n1),(n2-n1)));
ex = (n2 - n1)/L;
eyy = cross(n3 - n1, n2 - n1);
ey = eyy/sqrt(dot(eyy,eyy));
ez = cross(ex, ey);
H = [ex; ey; ez];
T = zeros(12);
T([4,5,6], [4,5,6]) = H;
T([7,8,9], [7,8,9]) = H;
T([10,11,12], [10,11,12]) = H;

m = m_bar*L/420*T.'*[140  0   0   0   0   0   70*I0/A  0   0   0   0   0 ;
0  156   0   0   0   22*L   0     54  0   0   0 -13*L;
0   0  156   0  22*L  0   0  0  54    0  -13*L  0 ;
0   0   0  140*I0/A  0    0   0  0  0  70*I0/A 0 0;
0   0  22*L  0   4*L^2   0   0  0  13*L 0 -3*L^2  0;
0  22*L  0    0   0  4*L^2  0  13*L 0   0   0 -3*L^2;
70  0    0    0    0  0     140  0   0  0  0  0;
0  54    0    0    0  13*L  0    156  0  0 0 -22*L;
0  0    54   0    13*L    0   0   0 156  0 -22*L  0;
0  0    0  70*I0/A 0   0  0  0  0  140*I0/A  0  0;
0  0  -13*L  0 -3*L^2   0  0  0 -22*L   0  4*L^2  0;
0 -13*L 0  0   0  -3*L^2  0 -22*L  0 0 0 4*L^2]*T;

This MATLAB file is to yield the results of section (c).

The response can be obtained from the similar manner in the previous chapters. The force is the

same as the case of Example 12.3. The force is applied at node 1 in z axis with 5000 lb. for 0.1 s.

The maximum displacements at the nodal coordinates were estimated using MATLAB.

u1max ¼ 8:814� 10�5 in: u2max ¼ 2:6552� 10�7 in: u3max ¼ 0:9827 radian
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13.8 Summary

This chapter presented the formulation of the stiffness and mass matrices for an element of a space

frame, as well as the transformation of coordinates required to refer these matrices to the global

system of coordinates. Except for the larger dimensions of the matrices resulting from modeling a

space frame, the procedure is identical to the case of a beam, plane frame, or grid frame described in

the preceding chapters.

Problem 13.1

For the three-dimensional frame shown in Fig. 13.4a, determine: (a) The first 6 natural frequencies an

corresponding modal shapes and (b) The dynamic response when the frame is acted upon by the

impulsive force depicted in Fig. 13.4b applied at joint 8 of the frame along the Y- direction as shown

in the figure (Fig. 13.5).

Problem Data (for all members):

Modulus of elasticity: E ¼ 30 � 106 psi

Modulus of rigidity: G ¼ 12 � 106 psi

Distributed mass: m ¼ 0.2 lb. � sec2/in.

Concentrated masses: m ¼ 10 lb. � sec2/in.

Cross-sectional y moment of inertia: Iy ¼ 300 in.4

Cross-sectional z moment of inertia: Iz ¼ 400 in.4

Torsional constant: J ¼ 500 in.4

Cross-sectional area: A ¼ 20 in.2
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Fig. 13.4 Response of Illustrative Example 13.1
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Problem 13.2

Determine the dynamic response of the three dimensional frame of Problem 13.1 subjected to the

harmonic excitation of acceleration a(t) ¼ 0.3 sin 5.3 t applied at support 3 in the Y-direction.

Fig. 13.5 Space frame for Problem 13.1
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Dynamic Analysis of Trusses 14

The static analysis of trusses whose members are pin-connected reduces to the problem of determin-

ing the bar forces due to a set of loads applied at the joints. When the same trusses are subjected to the

action of dynamics forces, the simple situation of only axial stresses in the members is no longer

present. The inertial forces developed along the members of the truss will, in general, produce flexural

bending in addition to axial forces. The bending moments at the ends of the truss members will still

remain zero in the absence of external joint moments. The dynamic stiffness method for the analysis

of trusses is developed as in the case of framed structures by establishing the basic relations between

external forces, elastic forces, damping forces, inertial forces and the resulting displacements,

velocities, and accelerations at the nodal coordinates, that is, by determining the stiffness, damping,

and mass matrices for a member of the truss. The assemblage of system stiffness, damping, and mass

matrices of the truss as well as the solution for the displacements at the nodal coordinates follows

along the standard method presented in the preceding chapters for framed structures.

14.1 Stiffness and Mass Matrices for the Plane Truss

A member of a plane truss has two nodal coordinates at each joint, that is, a total of four nodal

coordinates (Fig. 14.1). For small deflections, it may be assumed that the force-displacement

relationship for the nodal coordinates along the axis of the member (coordinates 1 and 3 in

Fig. 14.1) are independent of the transverse displacements along nodal coordinates 2 and 4. This

assumption is equivalent to stating that a displacement along nodal coordinates 1 or 3 does not

produce forces along nodal coordinates 2 or 4 and vice versa.

The stiffness and mass coefficients corresponding to the axial nodal coordinates were derived in

Chap. 11 and are given, in general, by Eq. (11.17) for the stiffness coefficients and by Eq. (11.23) for

consistent mass coefficients. Applying these equations to a uniform beam element, we obtain, using

the notation of Fig. 14.1, the following coefficients:

k11 ¼ k33 ¼
AE

L
, k13 ¼ k31 ¼ �AE

L
ð14:1Þ

m11 ¼ m33 ¼
�mL

3
, m13 ¼ m31 ¼

�mL

6
ð14:2Þ

in which �m is the mass per unit length, A is the cross-sectional area, and L is the length of the element.
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The stiffness coefficients, for pin-ended elements, corresponding to the nodal coordinates 2 and

4 are all equal to zero, since a force is not required to produce displacements at these coordinates.

Therefore, arranging the coefficients given by Eq. (14.1), we obtain the stiffness equation for a

uniform member of a truss as
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ð14:3Þ

or in condensed notation

Pf g ¼ K½ � δf g ð14:4Þ

in which [K] is the element stiffness matrix.

The consistent mass matrix is obtained, as previously demonstrated, using expressions for static

displacement functions in the application of the principle of virtual work. The displacement functions

corresponding to a unit deflection at nodal coordinates 2 and 4 indicated in Fig. 14.2 are given by

u2 ¼ 1� x

L
ð14:5Þ

and

u4 ¼
x

L
ð14:6Þ

The consistent mass coefficients are given by the general expression. Eq. (11.23), which is

repeated here for convenience, namely,

mij ¼
ð L

0

�m xð Þui xð Þu j xð Þdx ð14:7Þ

For a uniform member of mass �m per unit length, the substitution of Eqs. (14.5) and (14.6) into

Eq. (14.7) yields

m22 ¼ m44 ¼
�mL

3

m24 ¼ m42 ¼
�mL

6

ð14:8Þ

Fig. 14.1 Member of a plane truss showing nodal displacements and forces
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Finally, the combination of the mass coefficients from Eqs. (14.2) and (14.8) forms the consistent

mass matrix relating forces to accelerations at the nodal coordinates for a uniform member of a plane

truss, namely,
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ð14:9Þ

or in concise notation

Pf g ¼ M½ � €δ
� �

ð14:10Þ

14.2 Transformation of Coordinates

The stiffness matrix, Eq. (14.3), and the mass matrix, Eq. (14.9), were derived in reference to nodal

coordinates associated with the local or element system of coordinates. As discussed before in the

chapters on framed structures, it is necessary to transform these matrices to a common system of

reference, the global coordinate system. The transformation of displacements and forces at the nodal

coordinates is accomplished, as was demonstrated in Chap. 11, performing a rotation of coordinates.

Deleting the angular coordinates in Eq. (11.31) and relabeling the remaining coordinates result in the

following transformation for the nodal forces:
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ð14:11Þ

or in condensed notation,

Pf g ¼ T½ � �Pf g ð14:12Þ

in which {P} and �Pf g are the nodal forces in reference to local and global coordinates, respectively,

and [T] the transformation matrix defined in Eq. (14.11). The same transformation matrix [T] also

serves to transform the nodal displacement vector δ
� �

in the global coordinate system to the nodal

displacement vector {δ} in local coordinates:

Fig. 14.2 Displacement functions. (a) For a unit displacement δ2 ¼ 1. (b) For a unit displacement δ4 ¼ 1
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δf g ¼ T½ � δ
� �

ð14:13Þ

The substitution of Eqs. (14.12) and (14.13) into the stiffness Eq. (14.4) gives

T½ �
�

�P
�

¼ K½ � T½ � δ
� �

Since [T] is an orthogonal matrix ([T]�1 ¼ [T]T), it follows that

�Pf g T½ �T K½ � T½ � δ
� �

or

�Pf g ¼
�

�K
�

δ
� �

ð14:14Þ

in which

�

�K
�

¼ T½ �T K½ � T½ � ð14:15Þ

is the element stiffness matrix in the global coordinate system. Analogously, substituting Eqs. (14.12)

and (14.13) into Eq. (14.10) results in

�Pf g ¼ T½ �T M½ � T½ � δ
� �

ð14:16Þ

or

�Pf g ¼
�

�M
�

δ
� �

ð14:17Þ
�

�M
�

¼ T½ �T M½ � T½ � ð14:18Þ

in which
�

�M
�

is the element mass matrix referred to the global system of coordinates. However, there

is no need to use Eq. (14.18) to calculate matrix
�

�M
�

. This matrix is equal to the mass matrix [M] in

reference to local axes of coordinates. To verify this fact, we substitute into Eq. (14.18) matrices [M]

and [T], respectively, from Eqs. (14.9) and (14.11) to obtain

�

�M
�

¼ �mL

6

c �s 0 0

s c 0 0

0 0 c �s

0 0 s c

2

6

6

6

6

4

3

7

7

7

7

5

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

2

6

6

6

6

4

3

7

7

7

7

5

c s 0 0

�s c 0 0

0 0 c s

0 c s c

2

6

6

6

6

4

3

7

7

7

7

5

�

�M
�

¼ �mL

6

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

2

6

6

6

6

4

3

7

7

7

7

5

¼ M½ �

ð14:19Þ

in which we use the notation c ¼ cos θ, s ¼ sin θ and the fact that cos2 θ + sin2 θ ¼ 1.

A similar relationship is also obtained for the element damping matrix, namely,

�

�C
�

¼ T½ �T C½ � T½ � ð14:20Þ

in which
�

�C
�

and [C] are the damping matrices referred, respectively, to the global and the local

systems of coordinates.
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Illustrative Example 14.1

The plane truss shown in Fig. 14.3 which has only three members is used to illustrate the application

of the stiffness method for trusses. For this truss determine the system stiffness and the system

consistent mass matrices.

Solution:

The stiffness matrix, Eq. (14.3), the mass matrix, Eq. (14.9), and the transformation matrix,

Eq. (14.11), are applied to the three members of this truss. For member 1, θ ¼ 90�,

K1½ � ¼ AE

L

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

2

6

6

6

6

4

3

7

7

7

7

5

,
�

M1

�

¼ M1½ � ¼ �mE

6

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

2

6

6

6

6

4

3

7

7

7

7

5

and

� T1½ � ¼
0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

2

6

6

4

3

7

7

5

Then from Eqs. (14.15)

�

�K1

�

¼ T1½ �T K1½ � T1½ � ¼ AE

L

0 0 0 1

0 1 0 �1

0 0 0 0

0 �1 0 1

2

6

6

6

6

4

3

7

7

7

7

5

Fig. 14.3 Plane truss for Illustrative Example 14.1
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For member 2, θ ¼ 135�,

K2½ � ¼ AE
ffiffiffi

2
p

L

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

2

6

6

6

6

4

3

7

7

7

7

5

,
�

M2

�

¼ M2½ � ¼ �m
ffiffiffi

2
p

L

6

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

2

6

6

6

6

4

3

7

7

7

7

5

and

T2½ � ¼ 1
ffiffiffi

2
p

�1 1 0 0

�1 �1 0 0

0 0 �1 1

0 0 �1 �1

2

6

6

6

6

4

3

7

7

7

7

5

Then from Eqs. (14.15)

�

�K2

�

¼ T2½ �T K2½ � T2½ � ¼ AE

2
ffiffiffi

2
p

L

1 �1 �1 1

�1 1 1 �1

�1 1 1 �1

1 �1 �1 1

2

6

6

6

6

4

3

7

7

7

7

5

For member 3, θ ¼ 0�,

�

�K3

�

¼ K3½ � ¼ AE

L

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

2

6

6

6

6

4

3

7

7

7

7

5

�

�M3

�

¼ M3½ � ¼ �mL

6

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

2

6

6

4

3

7

7

5

substituting the proper numerical values for this example; L¼ 60 in, A¼ 10 in2, �m¼ 0.1 lb. • sec2/in2,

E ¼ 30 � 106 lb./in2, and following the rules of the direct method of assembling the system stiffness

and mass matrix from the above element matrices, we obtain

Ks½ � ¼ 106

1:768 �1:768 �1:768

�1:768 6:768 1:768

�1:768 1:768 6:768

2

6

4

3

7

5

Ms½ � ¼
4:828 0 1:414

0 4:828 0

1:414 0 4:828

2

6

4

3

7

5

where [Ks] and [Ms] are, respectively, the system stiffness and mass matrices for the truss shown in

Fig. 14.3.
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Illustrative Example 14.2

Determine the natural frequencies and normal modes for the truss of Example 14.1.

Solution:

The differential equations of motion for this system are

MS½ � €uf g þ KS½ � uf g ¼ 0 ðaÞ

Substituting {u} ¼ {a} sin ωt, we obtain

KS½ � � ω2 MS½ �
� �

af g ¼ 0f g ðbÞ

For the nontrivial solution, we require

KS½ � � ω2 MS½ �
	

	

	

	 ¼ 0 ðcÞ

Substituting from Example 14.1 [KS] and [MS] and expanding the above determinant give a cubic

equation in λ ¼ ω2
�mL2=6AE which has the following roots

λ1 ¼ 0:00344 or ω1 ¼ 415 rad= sec

λ2 ¼ 0:0214 or ω2 ¼ 1034 rad= sec

λ3 ¼ 0:0466 or ω3 ¼ 1526 rad= sec

Substituting in turn ω1, ω2 and ω3 into Eq. (b), setting a1 ¼ 1, and solving for a2 and a3 give the

modal vectors.

a1f g ¼
1:000

0:216

0:274

8

>

<

>

:

9

>

=

>

;

, a2f g ¼
1:000

5:488

�4:000

8

>

<

>

:

9

>

=

>

;

, a3f g ¼
1:000

�1:000

�1:524

8

>

<

>

:

9

>

=

>

;

which may be normalized using the factors

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1f gT MS½ � a1f g
q

¼ 2:489,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2f gT MS½ � a2f g
q

¼ 14:695
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a3f gT MS½ � a3f g
q

¼ 4:066

This normalization results in

ϕ1f g ¼
0:402
0:087
0:110

8

<

:

9

=

;

, ϕ2f g ¼
0:068
0:373
�0:272

8

<

:

9

=

;

, ϕ3f g ¼
0:246
�0:246
�0:375

8

<

:

9

=

;

These normalized eigenvectors form the modal matrix:

Φ½ � ¼
0:402 0:068 0:246
0:087 0:373 �0:246
0:110 �0:272 �0:375

2

4

3

5

The MATLAB program is presented to demonstrate Illustrative Examples 14.1 and 14.2.
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clc
close all
clear all

%__________________________________________________________________________
%  Determine System Matrices/Determine Force 
%__________________________________________________________________________

%%%%-GIVEN VALUES-%%%%

E=30*10^6; A=10;                 %E (psi), A (in.^2)
P = 5000;                                       %P (lbs)

%%%Create frame model (ith row of nodes is ith node)
nodes = 60*[0, 0; 0, 1; 1, 0];                  % Unit: in.
%%%Element number (ith row = ith element with two nodes)
conn = [1,2; 2,3; 1,3];
%%%Dofs for ith element (ith row)
lmm = [1, 2, 3, 4; 3, 4, 5, 6; 1, 2, 5, 6];  
m_bar = 0.1;                                    %Distributed mass (lb-sec^2/in/in)

dof = 2*length(nodes);                          %Total No.dofs

K= zeros(dof);
M= zeros(dof);

%%%Generate equations for each element and assemble them.
for i=1:3

lm=lmm(i,:);
con=conn(i,:);
k=PlaneTrussElement(E, A, nodes(con,:));
K(lm, lm) = K(lm, lm) + k;

end

%%%Generate mass matrix for each element and assemble them.
for i=1:3

lm=lmm(i,:);
con=conn(i,:);
m=PlaneTrussMass(m_bar, nodes(con,:));
M(lm, lm) = M(lm, lm) + m;

end

K 

M 

%%%Define the load vector
F = zeros(dof,1); F(3) = 5000;              %Applied force at specific dofs

%%%System Matrices
[Kf, Mf, Rf] = System(K, M, F, [1,2,6]);

Kf

Mf

Rf
%_____________________________________________________________________
% Solve the eigenvalue problem and normalized eigenvectors
%_____________________________________________________________________

%%%Solve for eigenvalues (D) and eigenvectors (a) 
[a, D] = eig(Kf, Mf); 

[omegas,ii] = sort(sqrt(diag(D)));        %Natural Frequencies

omegas

a = a(:,ii)                               %Mode Shapes

T = 2*pi./omegas;                         %Natural Periods

save ('temp0.mat', 'Mf', 'Kf' ,'Rf');
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The function file of MATLAB is used to assemble the stiffness matrix of plane truss element for

global stiffness matrix.

function k = PlaneTrussElement(E, A, coord)
% PlaneTrussElement(e, A, coord)
% Generates stiffness matrix for a plane truss element
% E = modulus of elasticity (psi)
% A = area of cross-section (in^2)
% coord = coordinates at the element ends

x1=coord(1,1); y1=coord(1,2);
x2=coord(2,1); y2=coord(2,2);
L=sqrt((x2-x1)^2+(y2-y1)^2);
ls=(x2-x1)/L; ms=(y2-y1)/L;
T = [ls ms 0 0; -ms ls 0 0; 0 0 ls ms; 0 0 -ms ls];
k = E*A/L*T.'*[1 0 -1 0; 

0 0  0 0;
-1 0 1 0;
 0 0 0 0]*T;

The function file of MATLAB is used to assemble the mass matrix of each plane truss element for

global mass matrix.

function m = PlaneTrussMass(m_bar, coord)
% PlaneTrussMass(m_bar, coord)
% Generates mass matrix for a plane truss element
% m = distributed mass (lb.sec^2/in/in)
% L = length (in.)
% coord = coordinates at the element ends

x1=coord(1,1); y1=coord(1,2);
x2=coord(2,1); y2=coord(2,2);
L=sqrt((x2-x1)^2+(y2-y1)^2);
ls=(x2-x1)/L; ms=(y2-y1)/L;
T = [ls ms 0 0; -ms ls 0 0; 0 0 ls ms; 0 0 -ms ls];
m = m_bar*L/6*T.'*[2 0 1 0; 

0 2 0 1; 
1 0 2 0; 
0 1 0 2]*T;

Illustrative Example 14.3

Determine the response of the truss in Examples 14.1 and 14.2 when a constant force F1 ¼ 5000 lb. is

suddenly applied at node 2 in x axis as shown in Fig. 14.3.

Solution:

The modal equations are given in general [Eq. (8.6)] by

€zn þ ω2
nzn ¼ Pn

in which the modal force.

Pn ¼
X

l

ϕinFi

Hence using the results that were calculated in Example 18.2 we obtain.
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€z1 þ 415ð Þ2z1 ¼ 2010

€z2 þ 1034ð Þ2z2 ¼ 340

€z3 þ 1526ð Þ2z3 ¼ 1230

The solution of the above equations for zero initial conditions
�

zn ¼ 0; _zn ¼ 0
�

is given by

Eqs. (4.5) as.

z1 ¼
2010

415ð Þ2
1� cos 415tð Þ

z2 ¼
340

1034ð Þ2
1� cos 1034tð Þ

z3 ¼
1230

1526ð Þ2
1� cos 1526tð Þ

The response at the nodal coordinates is then calculated from

uf g ¼ Φ½ � zf g

u1

u2

u3

8

>

<

>

:

9

>

=

>

;

¼
0:402 0:068 0:246
0:087 0:373 �0:246
0:110 �0:272 �0:375

2

4

3

5

z1
z2
z3

8

<

:

9

=

;

or

u1 ¼ 10�3 4:843� 4:692 cos 415t� 0:022 cos 1034t� 0:130 cos 1526t½ �
u2 ¼ 10�3 1:004� 1:015 cos 415t� 0:119 cos 1034tþ 0:130 cos 1526t½ �
u3 ¼ 10�3 0:999� 1:284 cos 415tþ 0:087 cos 1034tþ 0:198 cos 1526t½ �

The system matrices in Example 14.2 are used to plot the responses over 5 s at 0.01 s interval. The

initial conditions are zeros for both displacement and velocity. The program prints out the maximum

responses and figure below.

clc
clear all
close all

%___________________________________________________________________________
% Inputs: 
%   M, K 
%   F = forcing function
%   t = Time period
%   u0 = initial displacement
%   v0 = initial velocity
%___________________________________________________________________________  
t = 0:0.01:5; 

load ('temp0.mat', 'Mf', 'Kf', 'Rf') 

%%%Deifne Mass Matrix
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K = Kf

[n,n]= size(M); 

F = Rf; 

nstep = size(t');

u0 = zeros(n,1); u0(1) =0;
v0 = zeros(n,1); v0(1) =0;
[n,n]= size(M); 

%___________________________________________________________________________
% Solve the eignevalue problem and normalized the eigenvectors
%___________________________________________________________________________  

[a, D] = eig(K, M)                 % Solve for eigenvalues (D) and eigenvectors (a)

[omegas,k] = sort(sqrt(diag(D)));  % Natural Frequencies
a = a(:,k)

T = 2*pi./omegas;                  % Natural Periods

aMa = diag(a'*M*a);                 % aMa = {a}'*[M]*(a}

nom_phi = (a)*inv(sqrt(diag(aMa))); % Normalized modal matrix

orth_M = nom_phi'*M*nom_phi        % Check the orthogonality condition for Mass Matrix 

orth_K = nom_phi'*K*nom_phi        % Check the orthogonality condition for Stiffness 
Matrix 
%___________________________________________________________________________
% Initial conditions
%___________________________________________________________________________

P = nom_phi'*F        % Normalized force, P = nom_F
q0 = nom_phi'*M*u0;
dq0 = nom_phi'*M*v0;

%______________________________________
% Damping matrix using the proportional damping matrix
% [C] = a[M]+b[K]
% zetas = damping ratios
%______________________________________
a = 0;

M = Mf

%%%Deifne Stiffness Matrix

b = 0;
nom_C = nom_phi'*(a*M+b*K)*nom_phi;
zetas = diag((1/2)*nom_C*inv(diag(omegas)));

save ('temp1.mat', 'omegas', 'P' ,'zetas');
q = [];
r = [];
for i=1:n
q0_i = q0(i,:);
dq0_i = dq0(i,:);

load temp1.mat
omega = omegas(i,:);
P = P(i,:);
m = M(i,i);
zeta = zetas(i,:);

save ('temp2.mat', 'omega', 'P', 'm', 'zeta');

[t,q] = ode45(@MDOFP, t, [q0_i dq0_i]',[]);

r(:,i) = q(:,1);
save ('temp3.mat', 'r') 

end
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load ('temp3.mat', 'r');

yim = nom_phi*[r'];

save ('response.mat','yim');

figure 
subplot(3,1,1);         % Node 2: x displ (in.).
plot(t, yim(1,:))
xlabel ('Time (sec)'); ylabel ('u_1(in.)'); grid on

subplot(3,1,2);         % Node 2: y displ (in.).
plot(t, yim(2,:))
xlabel ('Time (sec)'); ylabel ('u_2(in.)'); grid on

subplot(3,1,3); % Node 3: x displ (in.).
plot(t, yim(3,:))
xlabel ('Time (sec)'); ylabel ('u_3(in.)'); grid on

umax_1=max(abs(yim(1,:)))
umax_2=max(abs(yim(2,:)))
umax_3=max(abs(yim(3,:)))

The maximum displacements at the nodal coordinates were estimated using MATLAB.

u1max ¼ 0:0096 in u2max ¼ 0:0021 in u3max ¼ 0:0025 in

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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u
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n
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Fig. 14.4 Response of Illustrative Example 14.3
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14.3 Stiffness and Mass Matrices for Space Trusses

The stiffness matrix and the mass matrix for a space truss can be obtained as an extension of the

corresponding matrices for the plane truss. Figure 14.4 shows the nodal coordinates in the local

system (unbarred) and in the global system (barred) for a member of a space truss. The local x axis is

directed along the longitudinal axes of the member while the y and z axes are set to agree with the

principal directions of the cross section of the member. The following matrices may then be written

for a uniform member of a space truss as an extension of the stiffness, Eq. (14.3), and the mass,

Eq. (14.9), matrices for a member of a plane truss.

Stiffness matrix:

K½ � ¼ AE

L

1 0 0 �1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�1 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

ð14:21Þ

Fig. 14.5 Member of a space truss showing nodal coordinates. (a) In the local system (unbarred). (b) In the global

system (barred)
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Consistent mass matrix:

Mc½ � ¼ �mL

6

2 0 0 1 0 0

0 2 0 0 1 0

0 0 2 0 0 1

1 0 0 2 0 0

0 1 0 0 2 0

0 0 1 0 0 2

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

ð14:22Þ

Lumped mass matrix:

ML½ � ¼ �mL

2
1 1 1 1 1 1½ � ð14:23Þ

The transformation matrix [T1] corresponding to three nodal coordinates at a joint is given by

Eq. (13.9). It is repeated here for convenience.

T1½ � ¼
cos xX cos xY cos xZ

cos yX cos yY cos yZ

cos zX cos zY cos zZ

2

6

4

3

7

5
ð14:24Þ

The direction cosines in the first row of Eq. (14.24), c1¼ cos xX, c2¼ cos xY, and c3¼ cos xZ, may

be calculated from the coordinates of the two points P1 (X1, Y1, Z1) and P2 (X2, Y2, Z2) at the ends of

the truss element, that is

c1 ¼
X1 � X2

L
, c2 ¼

Y2 � Y1

L
andc3 ¼

Z2 � Z1

L
ð14:25Þ

with

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 � X1ð Þ2 þ Y2 � Y1ð Þ2 þ Z2 � Z1ð Þ2
q

ð14:26Þ

The transformationmatrix for the nodal coordinates at the two ends of a trussmember is then given by

T½ � ¼ T1½ � 0½ �
0½ � T1½ �


 �

ð14:27Þ

in which [T1] is given by Eq. (14.24). The following transformations are then required to obtain the

member stiffness matrix
�

�K
�

and the member mass matrix
�

�M
�

in reference to the global system of

coordinates:

�

�K
�

¼ T½ �T K½ � T½ � ð14:28Þ

and

�

�M
�

¼ T½ �T M½ � T½ � ð14:29Þ

In the case of an element of a space truss, it is only necessary to calculate the direction cosines of

the centroidal axis of the element which are given by Eq. (14.25). The other direction cosines in
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Eq. (14.24) do not appear in the final expression for the element stiffness matrix
�

�K
�

as may be

verified by substituting Eqs. (14.24) and (14.27) into Eq. (14.28) and proceeding to multiply the

matrices indicated in this last equation. The final result of this operation may be written as follows.

K½ � ¼ AE

L

c21 c1c2 c1c3 �c21 �c1c2 �c1c3

c2c1 c22 c2c3 �c2c1 �c22 �c2c3

c3c1 c3c2 c23 �c3c1 �c3c2 �c23

�c21 �c1c2 �c1c3 c21 c1c2 c1c3

�c2c1 �c22 �c2c3 c2c1 c22 c2c3

�c3c1 �c3c2 �c23 c3c1 c3c2 c23

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

ð14:30Þ

Consequently, the determination of the stiffness matrix for an element of a space truss, in reference

to the global system of coordinates by Eq. (14.30), requires the evaluation by Eq. (14.25) of only the

direction cosines of the local axis x along the element.

Also, analogously, to Eq. (14.19) for an element of a plane truss, the mass matrix
�

�M
�

for an

element of a space truss in reference to global coordinates is equal to the mass matrix of the element

[M] in local coordinates. Thus, there is no need to perform the operations indicated in Eq. (14.29). The

substitution into this equation of [M] from Eq. (14.22) and [T] from Eqs. (14.24) and (14.27) results,

after performing the multiplications established by Eq. (14.29), in the same matrix [M], that is,

�

�M
�

¼ M½ � ð14:31Þ

14.4 Equation of Motion for Space Trusses

The dynamic equilibrium conditions at the nodes of the space truss result in the differential equations

of motion which in matrix notation may be written as follows:

�

�M
�

€uf g þ
�

�C
�

_uf g þ
�

�K
�

uf g ¼ F tð Þf g ð14:32Þ

in which {u}, _uf g, and €uf g are, respectively, the displacement, velocity, and acceleration vectors at

the nodal coordinates, {F(t)} is the vector of external nodal forces, and
�

�M
�

,
�

�C
�

, and
�

�K
�

are the

system mass, damping, and stiffness matrices.

In the stiffness method of analysis, the system matrices in Eq. (14.32) are obtained by appropriate

superposition of the corresponding member matrices using the direct method as we have shown

previously for the framed structures. As was discussed in the preceding chapters, the practical way of

evaluating damping is to prescribe damping ratios relative to the critical damping for each mode:.

Consequently, when Eq. (14.32) is solved using the modal superposition method, the specified modal

damping ratios are introduced directly into the modal equations. In this case, there is no need for

explicitly obtaining the system damping matrix [C]. However, this matrix is required when the

solution of Eq. (14.32) is sought by other methods of solution, such as the step-by-step integration

method. In this case, the system damping matrix [C] can be obtained from the specified modal

damping ratios by any of the methods discussed in Chap. 22.
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14.5 Modeling Structures as Space Trusses Using MATLAB

The MATLAB calculates the stiffness and the mass matrices for the space truss. MATLAB can

determine natural frequencies or calculate the response of the structure subjected to external

excitation.

Illustrative Example 14.4

Determine the stiffness and mass matrices for the space truss shown in Fig. 14.5. The mass per unit

length of any member is �M ¼ 0.1 (lb � sec2/in2). Also determine the first three natural frequencies of

the truss. Plot the response of the strcture when F1 ¼ 5000 lb is suddenly applied at node 3 in z axis

(Fig. 14.6).

Solution:

The force is applied at node 3 in z axis (which is corresponding to 9th degree-of-freedom).

Fig. 14.6 Space truss for Example 14.4
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clc
close all
clear all

%__________________________________________________________________________
%  Determine System Matrices/Determine Force 
%__________________________________________________________________________

%%%%-GIVEN VALUES-%%%%

E=30*10^6; A=10;                 %E (psi), A (in^2)
P = 5000;                                       %P (lbs)

%%%Create frame model (ith row of nodes is ith node)
nodes =     [50, 0, 0; 

0,  100, 100; 
100,100, 100;
100,100, 0;
0, 100,  0];                        % Unit: in.

%%%Element number (ith row = ith element with two nodes)
conn = [2,1; 

3,1; 
2,3; 
2,5; 
3,4; 
2,4; 

5,3];

%%%Dofs for ith element (ith row)    
lmm = [4, 5, 6, 1, 2, 3; 

7, 8, 9, 1, 2, 3;
4, 5, 6, 7, 8, 9;
4, 5, 6, 13,14,15;
7, 8, 9, 10,11,12;
4, 5, 6, 10,11,12;
13,14,15, 7, 8, 9];

m_bar = 0.1;                          %Distributed mass (lb-sec^2/in/in)

dof = 3*length(nodes);                %Total No.dofs

K= zeros(dof);
M= zeros(dof);

%%%Generate equations for each element and assemble them.
for i=1:7

lm=lmm(i,:);
con=conn(i,:);
k=SpaceTrussElement(E, A, nodes(con,:));
K(lm, lm) = K(lm, lm) + k;

end

%%%Generate mass matrix for each element and assemble them.
for i=1:7

lm=lmm(i,:);
con=conn(i,:);
m=SpaceTrussMass(m_bar, nodes(con,:));
M(lm, lm) = M(lm, lm) + m;

end
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K 

M 

%%%Define the load vector 
F = zeros(dof,1); F(9) = 5000;              %Applied force at specific dofs

%%%System Matrices
[Kf, Mf, Rf] = System(K, M, F, [1:6,10:dof])

Kf

Mf

Rf
%_____________________________________________________________________
% Solve the eigenvalue problem and normalized eigenvectors
%_____________________________________________________________________

%%%Solve for eigenvalues (D) and eigenvectors (a) 
[a, D] = eig(Kf, Mf); 

[omegas,ii] = sort(sqrt(diag(D)));   %Natural Frequencies 

omegas

a = a(:,ii)   %Mode Shapes

T = 2*pi./omegas;                  %Natural Periods

save ('temp0.mat', 'Mf', 'Kf' ,'Rf');

The function file of MATLAB is used to assemble the stiffness matrix of space truss element for

global stiffness matrix.

function k = SpaceTrussElement(e, A, coord)
% k = SpaceTrussElement(e, A, coord)
% Generates stiffness matrix of a space truss element
% E = modulus of elasticity (psi)
% A = Area of cross-section (in^2)
% coord = coordinates at the element ends

x1=coord(1,1); y1=coord(1,2); z1=coord(1,3);
x2=coord(2,1); y2=coord(2,2); z2=coord(2,3);
L=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2);
C1=(x2-x1)/L; C2=(y2-y1)/L; C3=(z2-z1)/L;

k = e*A/L*[C1^2, C1*C2, C1*C3, -(C1^2), -(C1*C2), -(C1*C3);
C2*C1, C2^2, C2*C3, -(C2*C1), -(C2^2), -(C2*C3);
C3*C1, C3*C2, C3^2, -(C3*C1), -(C3*C2), -(C3^2);
-(C1^2), -(C1*C2), -(C1*C3), C1^2, C1*C2, C1*C3;
-(C2*C1), -(C2^2), -(C2*C3), C2*C1, C2^2, C2*C3;
-(C3*C1), -(C3*C2), -(C3^2), C3*C1, C3*C2, C3^2];

The function file of MATLAB is used to assemble the mass matrix of each space truss element for

global mass matrix.
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function m = SpaceTrussMass(m_bar, coord)
% SpaceTrussElement(e, A, coord)
% Generates mass matrix for a space truss element
% m = distributed mass (lb.sec^2/in/in)
% L = length (in.)
% coord = coordinates at the element ends

x1=coord(1,1); y1=coord(1,2); z1=coord(1,3);
x2=coord(2,1); y2=coord(2,2); z2=coord(2,3);
L=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2);

m = m_bar*L/6*[2 0 0 1 0 0; 
0 2 0 0 1 0; 
0 0 2 0 0 1; 
1 0 0 2 0 0; 
0 1 0 0 2 0; 
0 0 1 0 0 2];

The same MATLAB file can be used in Example 14.4 to plot the response of the space truss

structures (Fig. 14.7).

The maximum displacements at the nodal coordinates were estimated using MATLAB.

u1max ¼ 0:0014 in: u2max ¼ 0:0026 in: u3max ¼ 0:0026 in:
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Fig. 14.7 Response of Illustrative Example 14.4

14.5 Modeling Structures as Space Trusses Using MATLAB 367



14.6 Summary

The dynamic analysis of trusses by the stiffness matrix method was presented in this chapter. As in

the case of framed structures, discussed in the preceding chapters, the stiffness and mass matrices for

a member of a truss were developed. The system matrices for a truss are assembled as explained for

framed structures by the appropriate superposition of the coefficients in the matrices of the elements.

14.7 Problems

Problem 14.1

For the plane truss shown in Fig. P14.1 determine the system stiffness and mass matrices

corresponding to the two nodal coordinates indicated in the figure.

Problem 14.2

Determine the natural frequencies and corresponding normal modes for the truss shown in Fig. P14.1.

Problem 14.3

Determine the response of the truss shown in Fig. P14.1 when subjected to a force F (t) ¼ 10 Kip

suddenly applied for 2 s at nodal coordinate 1. Use the results of Problem 14.2 to obtain the modal

equations. Neglect damping in the system.

Problem 14.4

Solve Problem 14.3 assuming 10% damping in all the modes.

Determine the maximum response of the truss shown in Fig. P14.1 when subjected to a rectangular

pulse of magnitude F0 ¼ 10 Kip and duration td ¼ 0.1 sec. Use the appropriate response spectrum to

determine the maximum modal response (Fig. 4.4). Neglect damping in the system.

Problem 14.5

Determine the dynamic response of the frame shown in Fig. P14.1 when subjected to a harmonic

force F(t) ¼ 10 sin 10 t (Kips) along nodal coordinate 1. Neglect damping in the system.

Fig. P14.1
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Problem 14.6

Repeat Problem 14.6 assuming that the damping in the system is proportional to the stiffness,

[C] ¼ a0 [K] where a0 ¼ 0.1.

Problem 14.7

Determine the response of the truss shown in Fig. P14.8 when acted upon by the forces F1 (t) ¼ 10 t

and F2 (t) ¼ 5 t2 during 1 sec. Neglect damping.

Problem 14.8

Determine the response of the truss shown in Fig. P14.8 when acted upon by the forces F1(t) ¼ 10 t

and F2(t) ¼ 5 t2 during 1 s. Neglect damping.

Problem 14.9

Solve problem 14.8 assuming 10% modal damping in all the modes.

Concentrated mass =

10 K sec2 /in.

Concentrated mass =

10 K sec2 /in.

4

2 1

F2 (t )

F1 (t )

m = 0.5 K sec2/in.2

3

60 in.

E = 104 ksi

A = 10 in.2

Fig. P14.8
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Dynamic Analysis of Structures Using
the Finite Element Method 15

In the preceding chapters, we considered the dynamic analysis of structures modeled as beams,

frames, or trusses. The elements of all these types of structures are described by a single coordinate

along their longitudinal axis; that is, these are structures with unidirectional elements, called,

“skeletal structures.” They, in general, consist of individual members or elements connected at points

designated as “nodal points” or “joints.” For these types of structures, the behavior of each element is

first considered independently through the calculation of the element stiffness matrix and the element

mass matrix. These matrices are then assembled into the system stiffness matrix and the system mass

matrix in such a way that the equilibrium of forces and the compatibility of displacements are

satisfied at each nodal point. The analysis of such structures is commonly known as the Matrix

Structural Method and could be applied equally to static and dynamic problems.

The structures presented in this chapter are continuous structures which are conveniently idealized

as consisting of two-dimensional elements connected only at the selected nodal points. For example,

Fig. 15.1 shows a thin plate idealized with plane triangular elements. The static or dynamic analysis

of such idealized structures is known as the Finite Element Method (FEM). This is a powerful method

for the analysis of structures with complex geometrical configurations, material properties or loading

conditions. This method is entirely analogous to Matrix Structural Analysis for skeletal structures

(beams, frames, and trusses) presented in the preceding chapters. The Finite Element Method differs

from the Matrix Structural Method only in two respects: (1) the selection of elements and nodal points

Fig. 15.1 Finite element modeling of thin plate with triangular elements

© Springer Nature Switzerland AG 2019

M. Paz, Y. H. Kim, Structural Dynamics, https://doi.org/10.1007/978-3-319-94743-3_15

371

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94743-3_15&domain=pdf


are not naturally or clearly established by the geometry as it is for skeletal structures and (2) the

displacements at internal points of an element are expressed by approximate interpolating functions

and not by an exact analytical relationship as it is in the Matrix Structural Method. Furthermore, for

skeletal structures, the displacement of an interior point of an element is governed by an ordinary

differential equation, while for a continuous two-dimensional element it is governed by a partial

differential equation of much greater complexity.

15.1 Plane Elasticity Problems

Plane elasticity problems refer to plates that are loaded in their own planes. Out-of-plane

displacements are induced when plates are loaded by normal forces that are perpendicular to the

plane of the plate, such problems are generally referred to as plate bending. (Plate bending is

considered in Sect. 15.2.) There are two different types of plane elasticity problems: (1) plane stress

and (2) plane strain. In the plane stress problems, the plate is thin relative to the other dimensions and

the stresses normal to the plane of the plate are not considered. Figure 15.2 shows a perforated strip-

plate in tension as an example of a plane stress problem. For plane strain problems, the strain normal

to the plane of loading is suppressed and assumed to be zero. Figure 15.3 shows a transverse slice of a

retaining wall as an example of a plane strain problem.

In the analysis of plane elasticity problems, the continuous plate is idealized as finite elements

interconnected at their nodal points. The displacements at these nodal points are the basic unknowns

as are the displacements at the joints in the analysis of beams, frames or trusses. Consequently, the

first step in the application of the FEM is to model the continuous system into discrete elements. The

most common geometric elements used for plane elasticity problems are triangular, rectangular or

quadrilateral, although other geometrical shapes could be used as well.

Fig. 15.2 Perforated plate tension element as an example of a structural member load in plane stress

Fig. 15.3 Retaining wall showing a plate slice as an example of plane strain conditions
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15.1.1 Triangular Plate Element for Plane Elasticity Problems

The following steps are used in the application of the FEM for the analysis of structural problems:

Step I: Modeling the Structure

Figure 15.4 Shows a triangular plate element with nodal forces {P}e and corresponding nodal

displacements {q}e with components in the x and y directions at the three nodes of this element. In

dynamic analysis, the plate element is assumed to be loaded by external forces distributed in the plane

of the plate (Fig. 15.5). These external forces are: (1) body forces with components of forces per unit

of volume in the x and y directions, bx and by, conveniently arranged in the vector {b}e and 2) inertial

forces, ρ{€q}, per unit of volume in which ρ is the mass density of the plate and {€q} is the acceleration

of a point in the plate element with components €qx and €qy along the coordinates x and y. In addition to

these two types of forces, other external forces may also be considered in the analysis.

Fig. 15.4 Triangular plate element showing nodal forces Pi and corresponding nodal displacements qi at the three

nodes.

Fig. 15.5 Triangular plate element showing external forces
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In a plane elasticity problem, the triangular element with three nodes has two degrees of freedom

at each node, as shown in Fig. 15.5, resulting in a total of six degrees of freedom. Thus, the nodal

displacement vector {q}e and corresponding nodal force vector {P}e for the plane triangular element

have six terms. These vectors may be written as:

qf ge ¼
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ð15:1Þ

Therefore, for this plane triangular element, the element stiffness matrix [K]e relating nodal forces

and nodal displacements and the element mass matrix [M]e relating nodal forces and nodal

accelerations, are of dimension 6 � 6.

Step II: Selection of a Suitable Displacement Function

The displacements, u ¼ u (x, y) and v ¼ v (x, y), respectively in the x and y directions at any interior

point P (x, y) of the triangular element, are expressed approximately by polynomial functions with a

total of six coefficients equal to the number of possible nodal displacements. In this case, the simplest

expressions for the displacement functions, u (x, y) and v (x, y), at an interior point of the triangular

element are:

u x; yð Þ ¼ c1 þ c2xþ c3y

v x; yð Þ ¼ c4 þ c5xþ c6y
ð15:2Þ

or

q x; yð Þf g ¼ g x; yð Þ½ � cf g ð15:3Þ

where {c} is a vector containing the six coefficients ci, [g (x, y)] a matrix function of the position

coordinates (x, y) and {q (x, y)} a vector with the displacement components u(x, y) and v(x, y) at an

interior point along x and y directions, respectively.

Step III: Displacements {q (x, y)} at a Point in the Element Are Expressed in Terms of the Nodal

Displacements, {q}e
The evaluation of Eq. (15.3) for the displacements of the three nodal joints of the triangular element

followed by the solution of the coefficients ci (i ¼ 1, 2. . .6) results in

qf ge ¼ A½ � cf g ð15:4Þ

and

cf g ¼ A½ ��1
qf ge ð15:5Þ

The subsequent introduction of {c} from Eq. (15.5) into Eq. (15.3) gives the displacements at any

interior point of the element in terms of the nodal displacements {q}e as
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q x; yð Þf g ¼
u x; yð Þ

v x; yð Þ

( )

¼ g
�

x; y
� �

A½ ��1
qf ge ð15:6Þ

or

q x; yð Þf g ¼
u x; yð Þ

v x; yð Þ

( )

¼ f x; yð Þ½ � qf ge ð15:7Þ

where the matrix [ f(x, y)] ¼ [A]�l [g(x, y)] is only a function of the coordinates x, y of a point in the

triangular element. Because the displacement functions u (x, y) and v(x, y) in Eq. (15.7) are both linear

in x and y, displacement continuity is ensured along the interface adjoining elements for any value of

nodal displacements.

Step IV: Relation between Strain, ε{(x, y)} at any Point within the Element to the Displacements

{q (x, y)} and Hence to the Nodal Displacements {q}e.

In Theory of Elasticity (Timoshenko and Goodier, 1970), it is shown that the linear strain vector, {ε

(x, y)}, with axial strain components along the x, y directions, εx, εy and shearing strain γxy is given by

differentiation of the displacement functions u(x, y) and v(x, y) as follows:

ε x; yð Þf g ¼
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ð15:8Þ

The strain components may then be expressed in terms of the nodal displacements {q}e by

substituting from Eq. (15.7) the derivatives of u(x, y) and v (x, y) into Eq. (15.8):

ε x; yð Þf g ¼ B½ � qf ge ð15:9Þ

in which the matrix [B] is solely a function of the coordinates (x, y) at an interior point of the element.

Step V: Relationship between Internal Stresses {σ (x, y)} to Strains {ε (x, y)} and Hence

to the Nodal Displacements {q}e
For plane elasticity problems, the relationship between the normal stresses σx, σy and shearing stress

τxy to the corresponding strains εx, εy, and γxy may be expressed, in general as:
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ð15:10Þ

or in a short matrix notation as:
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σ x; yð Þf g ¼ D½ � ε x; yð Þf g ð15:11Þ

The substitution of {ε (x, y) from Eq. (15.9) into Eq.(15.11) gives the desired relationship between

stresses {σ (x, y)} at an interior point in the element and the displacements {q}e at the nodes as:

σ x; yð Þf g ¼ D½ � B½ � qf ge ð15:12Þ

The terms dij of the matrix D in Eq. (15.10) have different expressions for plane stress problem

than for plane strain problem. These expressions as given by the theory of elasticity are:

For plane stress problems:

d11 ¼ d22 ¼
E

1-v2

d12 ¼ d21 ¼
vE

1-v2

1

d33 ¼
E

2 1þ vð Þ

ð15:13Þ

For plane strain problems:

d11 ¼ d22 ¼
E

1� v2

d12 ¼ d21 ¼
vE

1� v2

d33 ¼
E

2 1þ vð Þ

ð15:14Þ

in which E is the modulus of elasticity and v is the Poisson’s ratio.

Step VI: Element Stiffness and Mass Matrices

Use is made of the Principle of Virtual Work to establish the expressions for the element stiffness

matrix [K]e and the element mass matrix [M]e This principle states that for structures in dynamic

equilibrium subjected to small, compatible virtual displacements, {δq}, the virtual work, δWE, of the

external forces is equal to the virtual work of internal stresses, δWI, that is.

δWI ¼ δWE ð15:15Þ

In applying this principle to a finite element, we assume a vector of virtual displacements δq{(x, y)}.

Hence, by Eq. (15.7).

δ q x; yð Þf g ¼ f x; yð Þ½ �δ qf ge ð15:16Þ

Using the strain-displacement relationships, Eq. (15.9), we obtain.

δ εf g ¼ B½ �δ qf ge ð15:17Þ

The internal work over the volume of the element during this virtual displacement is then given by

the product of the virtual strain and the stress integrated over the volume of the element:

δWI ¼

ð

v

δ εf gT σ x; yð Þf gdV ð15:18Þ
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The external virtual work WE includes the work of the applied body forces {b}e dV; the work of

inertial forces ρ{€q}dV; and the work of the nodal forces Pi (i¼ 1, 2. . . 6), shown in Fig. 15.5. The total

external virtual work is equal to the product of these forces times the corresponding virtual

displacements integrated over the volume of the element, namely.

δWe ¼

ð

v

δ qf gT bf gedV-

ð

v

δ qf gTρ €qf gdV þ δ qf gT
e Pf ge ð15:19Þ

The second term of Eq. (15.19) is negative because the inertial forces act in directions that are

opposite to the positive sense of the accelerations. The substitution of Eqs. (15.18) and (15.19) into

Eq. (15.15) results in

ð

v

δ εf gT σ x; yð Þf gdV ¼

ð

v

δ qf gT bf gedV �

ð

v

δ qf gTρ €qf gdV þ δ qf gT
e Pf ge ð15:20Þ

By substituting into Eq. (15.20) σ(x, y)¼ [D][B]{q}e from Eq. (15.12), and the transposes of δ{q}T

and δ{ε}T from Eqs. (15.16) and (15.17) respectively, we obtain, after cancellation of the common

factor δ{q}T, the equation of motion for the element:

M½ �e qf ge þ K½ �e qf ge ¼ Pf ge þ Pbf ge ð15:21Þ

where

K½ �e ¼

ð

v

B½ �T D½ � B½ �dV ð15:22Þ

M½ �e ¼

ð

v

ρ f x; yð Þ½ �T f x; yð Þ½ �dV ð15:23Þ

and

Pb tð Þf ge ¼

ð

v

f x; yð Þ½ � bf gedV
2 ð15:24Þ

Matrix, [K]e, in Eq. (15.22) is the element stiffness matrix with the terms expressing the force for

unit displacement at a nodal coordinate of the element. Eq. (15.23) gives the consistent mass matrix

for the element with components expressing forces due to a unit value of the acceleration at a nodal

coordinate. Finally, the vector {P}e contains the external forces applied to the nodes of the element

and the vector {Pb(t)}e is the consistent nodal forces vector due to the body forces {b}e on the

element.

The element stiffness matrix, [K]e, and the element mass matrix, [M]e, as well as the equivalent

vector of the applied body forces, {Pt}e, may be readily obtained explicitly from Eqs.(15.22), (15.23),

and (15.24) respectively, for the simple plane elasticity element. However, computer codes are

generally written to calculate these matrices by numerical methods, particularly when the structure

is modeled using more advanced elements developed from higher order polynomials.

Step VII: Assemblage of the System Stiffness Matrix [K], the System Mass Matrix [M],

and the System Equivalent Nodal Force Vector {Pb}s Due to the Body Forces.

The system stiffness matrix [K] and the system mass matrix [M] are assembled from the appropriate

summations of the corresponding element matrices, by exactly the same process used in the previous
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chapters to assemble these matrices for skeletal-type structures; the system force vector is assembled

from the element equivalent nodal forces. Hence, we may symbolically write

K½ � ¼ Σ K½ �e ð15:25Þ

M½ � ¼ Σ M½ �e ð15:26Þ

and

Pbf g ¼ Σ Pbf ge ð15:27Þ

The system of differential equations of motion is then given by

M½ � €uf g þ K½ g uf g ¼ Ff g ð15:28Þ

in which {F} is the vector of the external forces at the system nodal coordinates {u} which includes

the equivalent nodal forces for the body forces and for any other forces distributed over the structural

element.

Step VIII: Solution of the Differential Equations of Motion

The solution of the system of differential equations of motion in terms of the nodal displacements {u}

is usually obtained by the modal superposition method presented in Chap. 8. Damping in the system

can readily be included in the analysis by the simple addition of the modal damping term to the modal

equation. For systems with nonlinear behavior, the modal superposition is not valid and the solution

must be obtained using a numerical method such as the step-by-step integration method presented for

a single-degree-of-freedom system in Chap. 6 and for a multiple-degree-of freedom system in

Chap. 16.

Step IX: Determination of Nodal Stresses

The final step is the calculation of stresses at the nodal points. These stresses can be calculated from

the element nodal displacements {q}e selected from the system nodal displacements {u} already

determined. The element nodal stresses, {σ{xj, yj)}e, for node j of an element, are given from

Eq. (15.12) by.

σ x j; y j

� �n o

e
¼ D½ �j B½ �j qf ge ð15:29Þ

in which the matrices [D}j and [B]j are evaluated for the coordinates of the node j of the element.

15.2 Plate Bending

The application of the finite element method is now considered for the analysis of plate bending, that

is, plates loaded by forces that are perpendicular to the plane of the plate. The presentation that

follows is based on two assumptions: (1) the thickness of the plate is assumed to be small compared to

other dimensions of the plate and (2) the deflections of the loaded plate under the load are assumed to

be small relative to its thickness. These assumptions are not particular to the application of finite

element method; they are also made in the classical theory of elasticity for bending of thin plates.

These two assumptions are necessary because if the thickness of the plate is large, then the plate has to

be analyzed as a three-dimensional problem and if the deflections are also large, then in-plane

membrane forces are developed and should be accounted for in the analysis. The analysis of plates

can be undertaken by the finite element method without these two assumptions. The computer
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program such as SAP2000 used in this book is general and may be applied for the analysis of either

thin plates undergoing small deflections or to thick plates in which these two assumptions are not

required. However, the presentation in this section is limited to thin plates that undergo small

deflections.

15.2.1 Rectangular Element for Plate Bending

The derivation of the stiffness and mass matrices as well as the vector of equivalent nodal forces for

body forces, inertial forces or any other forces distributed on the plate elements is obtained following

the same steps used for derivation presented for a triangular element subjected to in-plane loads in the

preceding section.

Step I: Modeling the Structure

A suitable system of coordinates and node numbering is defined in Fig. 15.6a with x, y axes along the

continuous sides of the rectangular plate element, and the z axis normal to the plane of the plate,

completing a right-hand system of Cartesian coordinates. This rectangular element has three nodal

coordinates at each of its four nodes, a rotation about the x-axis (θx), a rotation about the y-axis (θy),

and a normal displacement (w) along the z-axis transverse to the plane of the plate. These nodal

displacements are shown in their positive sense and labeled qi (i ¼ 1, 2. . . 12) in Fig. 15.6b.

y

t

z

x

q1,P1

q2,P2

q3,P3

q4,P4

q5,P5

q6,P6

q7,P7

q8,P8

q9,P9

q10,P10

q11,P11

q12,P12

34

1

2

(a)

(b)

Fig. 15.6 Rectangular plate bending element. (a) Coordinate system and node numbering. (b) Nodal coordinates qi
and corresponding nodal forces pi
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Corresponding to the three nodal displacements at each node, two moments and a force which are

labeled Pi, are also shown in this figure. These 12 element nodal displacements and 12 nodal forces

are conveniently arranged in two vectors of 12 components, {q}e and {P}e. Therefore, the stiffness

matrix or the mass matrix, respectively, relating the nodal forces and the nodal displacements, or

nodal forces and nodal accelerations for this rectangular plate bending element with four nodes are of

dimension 12 � 12. The angular displacements θx and θy at any point (x, y) of the plate element are

related to the normal displacement w by the following expressions:

θx ¼ �
∂w

∂y
θy ¼

∂w

∂x
ð15:30Þ

The positive directions of θx and θy, are chosen to agree with the angular nodal displacement q1, q2,

q4 q5, etc. is selected in Fig. 15.6b. Therefore, after a function, w ¼ w (x, y), is chosen for the lateral

displacement w, the angular displacements are determined through the relations in Eq. (15.30).

Step II: Selection of a Suitable Displacement Function

Since the rectangular element in plate bending has twelve degrees of freedom, the polynomial

expression chosen for the normal displacements w, must contain 12 constants. A suitable polynomial

function is given by.

w ¼ c1 þ c2xþ c3yþ c4x
2 þ c5xyþ c6y

2 þ c7x
3 þ c8x

2yþ c9xy
2 þ c10y

3 þ c11x
3y

þ c12xy
3 ð15:31Þ

The displacement function for the rotations θx and θy are then obtained from Eqs. (15.30) and

(15.31) as

θx ¼ �
∂w

∂y
¼ � c3 þ c5xþ 2c6yþ c8x

2 þ 2c9xyþ 3c10y
2 þ c11x

3 þ 3c12xy
2

� �

ð15:32Þ

and

θy ¼
∂w

∂x
¼ c2 þ 2c4xþ c5yþ 3c7x

2 þ 2c8xyþ c9y
2 þ 3c11x

2yþ c12y
3 ð15:33Þ

By considering the displacements at the edge of one element, that is, in the boundary between

adjacent elements, it may be demonstrated that there is continuity of normal lateral displacements and

of the rotational displacement in the direction of the boundary line, but not in the direction transverse

to this line as it is shown graphically in Fig. 15.7. The displacement function in Eq. (15.31) is called “a

non-conforming function” because it does not satisfy the condition of continuity at the boundaries

between elements for all three displacements w, θx, and θy.

Step III: Displacements {q (x, y)} at a Point within the Element Are Expressed in Terms

of the Nodal Displacements {q}e
Writing Eq. (15.31), (15.32), and (15.33) in matrix notation, evaluating the displacements at the nodal

coordinates and solving for the unknown constants results in
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q x; yð Þf g ¼
θx
θy
w

8

<

:

9

=

;

¼ g x; yð Þ½ � cf g ð15:34Þ

qf ge ¼ A½ � cf g ð15:35Þ

and

cf g ¼ A½ �-1 qf ge ð15:36Þ

where [A]�1 is the inverse of the matrix [A] in Eq. (15.35), [g (x, y)] is a function of the coordinates x,

y at a point in the element, and {q}e is the vector of the 12 displacements at the nodal coordinates of

the element (Fig. 15.7).

The substitution of the vector of constants {c} from Eq. (15.36) into Eq. (15.34) provides the

required relationship for displacements {q(x, y)} at an interior point in the rectangular element and the

displacements {q}e at the nodes.

q x; yð Þf g ¼ g x; yð Þ½ � A½ �-1 qf ge ð15:37Þ

or using Eq. (15.30):

q x; yð Þf g ¼

�
∂w

∂y

∂w

∂x
w

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

¼ f x; yð Þ½ � qf ge ð15:38Þ

in which [f(x, y)] ¼ [g (x, y)][A]�1 is solely a function of the coordinates x, y at a point within the

element.

Step IV: Relationship between Strains (ε (x, y) at any Point within the Element to Displacements

{q (x, y)} and Hence to the Nodal Displacements {q}e.

For plate bending, the state of strain at any point of the element may be represented by three

components: the curvature in the x direction, the curvature in the y direction, and a component

representing torsion in the plate. The curvature in the x direction is equal to the rate of change of the

slope in that direction, that is, to the derivative of the slope,

�
∂

∂x

∂w

∂x

� 	

¼ �
∂
2
w

∂x2
ð15:39Þ

Similarly, the curvature in the y direction is

Deflected Elements

Slopes normal to

edge are discontinuous

Fig. 15.7 Deflected continuous rectangular elements
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�
∂

∂y

∂w

∂y

� 	

¼ �
∂
2
w

∂y2
ð15:40Þ

Finally, the torsional strain component is equal to the rate of change, with respect to y, of the slope

in the x direction, that is

∂

∂y

∂w

∂x

� 	

¼
∂
2
w

∂x∂y
ð15:41Þ

The bending moments Mx and My and the torsional moments Mxy and Myx each act on two

opposites sides of the element, but since Mxy is numerically equal to Myx, one of these torsional

moments, Mxy, can be considered to act in all four sides of the element, thus allowing for simply

doubling the torsional strain component. Hence, the “strain” vector, {ε (x, y)} for a plate bending

element can be expressed by

ε x; yð Þf g ¼

�
∂
2
w

∂x2

�
∂
2
w

∂y2

2
∂
2
w

∂x∂y

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

ð15:42Þ

The substitution in Eq. (15.42) of the second derivatives obtained by differentiation of Eq. (15.38)

yields

ε x; yð Þf g ¼ B½ � qf ge ð15:43Þ

in which [B] is a function of the coordinates (x, y) only.

Step V: Relationship between Internal {σ (x, y)} to Internal Strains {ε (x, y)} and Hence to Nodal

Displacements {q}e
In a plate bending, the internal “stresses” are expressed as bending and twisting moments, and the

“strains” are the curvatures and the twist. Thus, for plate bending, the state of internal “stresses” can

be represented by

σ x; yð Þf g ¼
Mx

My

Mxy

8

<

:

9

=

;

ð15:44Þ

where Mx and My are internal bending moments per unit of length and Mxy is the internal twisting

moment per unit of length. For a small rectangular element of the plate bending, these internal

moments are shown in Fig. 15.8 The moment-curvature relationships obtained from plate bending

theory (Timoshenko and Goodier, 1970) are:
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Mx ¼ � Dx

∂
2
w

∂x2
þ D1

∂
2
w

∂y2

 !

My ¼ � Dy

∂
2
w

∂y2
þ D1

∂
2
w

∂x2

 !

Mxy ¼ 2Dxy

∂
2
w

∂x∂y

ð15:45Þ

These relations are written in general for an orthotopic plate, i.e. a plate which has different elastic

properties in two perpendicular directions, in which Dx and Dy are flexural rigidities in the x and

y directions, respectively, D1 is a “coupling” rigidity coefficient representing the Poisson’s ratio type

of effect and Dxy is the torsional rigidity.

For an isotropic plate which has the same properties in all directions, the flexural and twisting

rigidities are given by

Dx ¼ Dy ¼ D ¼
Et3

12 1� v2ð Þ

D1 ¼ vD Dxy ¼
1� vð Þ

2

D ð15:46Þ

Equations (15.45) may be written in matrix form as

σ x; yð Þf g ¼

Mx

My

Mxy

8

>

<

>

:

9

>

=

>

;

¼

Dx D1 0

D1 Dy 0

0 0 Dxy

2

6

4

3

7

5

�
∂
2
w

∂x2

�
∂
2
w

∂y2

2
∂
2
w

∂x∂y

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

ð15:47Þ
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Fig. 15.8 Direction of force and moment per unit length as defined for thin shells
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or symbolically as

σ x; yð Þf g ¼ D½ � ε x; yð Þf g ð15:48Þ

where the matrix [D] is defined in Eq. (15.47). The substitution into Eq. (15.48) of {ε (x, y)} from

Eq. (15.43) results in the required relationship between element stresses and nodal displacements as

σ x; yð Þf g ¼ D½ � B½ � qf ge ð15:49Þ

Step VI: Element Stiffness and Mass Matrices

The stiffness matrix and the mass matrix for an element of plate bending obtained by applying the

Principle of Virtual Work results in Eqs. (15.22) and (15.23), and for the equivalent forces due to the

applied body forces on the element in Eq.(15.24). The matrices [f (x, y)], [B], and [D] required in these

equations are defined, respectively, in Eqs. (15.38), (15.43), and (15.47). The calculation of these

matrices and also of the integral indicated in Eqs.(15.22), (15.23), and (15.24), is usually undertaken

by numerical methods implemented in the coding of computer programs.

Step VII: Assemblage of the System Stiffness Matrix [K], the System Mass Matrix [M],

and the Vector of the External Forces {F} at the System Nodal Coordinates {y}, which Includes

the Equivalent Forces for the Body forces {Pb} and for any Other Forces Distributed over

the Structural Element.

The system stiffness and mass matrices, as well as the nodal force vector, due to applied body forces,

are assembled from the corresponding element matrices and vector as given in Eqs. (15.25), (15.26),

and (15.27).

Step VIII: Solution of the Differential Equations of Motion

The system differential equation of motion is given by Eq. (15.28) in which [M] and [K] are the

assembled mass and stiffness matrices, respectively and {F} is the equivalent vector of the external

forces. The solution of Eq. (15.28) thus provides the system vector of nodal displacements {y}.

Step IX: Determination of Nodal Stresses

The element nodal stresses, {σ (xj, yj)}e, for node j of an element are given from Eq. (15.49) as

σ x j; y j

� �n o

e
¼ D½ �j B½ �j qf ge ð15:50Þ

in which the matrices [D]j and [B]j are evaluated for the coordinates of node j of the element.

15.3 Summary

In this chapter we have presented an introduction to the Finite Element Method (FEM) for the

analysis of problems in Structural Dynamics. The theory of FEM in structural dynamics was

formulated through the following steps:

1. Modeling of the entire structure into one-dimensional, two-dimensional, or three-dimensional

beam, rod, triangular, quadrilateral, rectangular, or other types of structural elements.

2. Identifying nodes and nodal coordinates at joints between structural elements.
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3. Selecting an interpolating function, which usually is a polynomial to express the displacements at

an interior point in the element in terms of the

(a) displacements at its nodal coordinates.

4. Establishing the relationships at the nodal coordinates of a structural element between forces and

displacements (the element stiffness matrix) and between forces and accelerations (the element

mass matrix.)

5. Obtaining the vector of the equivalent nodal forces for the body or other external forces acting on

the element.

6. Assembling the system stiffness matrix, the system mass matrix, and the system vector of the

equivalent nodal forces, respectively, from the element stiffness matrices, element mass matrices,

and the element vectors of the equivalent nodal forces.

7. Establishing the dynamic equilibrium at the system nodal coordinates, among which [M] and [K]

are, respectively, the system mass matrix and the system stiffness matrix, {F(t)} is the system

vector of the equivalent nodal forces, and {u} and {€u} are, respectively, the displacement and the

acceleration vectors at the system nodal coordinates, the elastic forces, inertial forces and the

external forces to obtain the system differential equation of motion:

M½ � €uf g þ K½ g uf g ¼ F tð Þf g 15:28 repeatedð Þ

8. Introducing in the system differential equation the boundary conditions restricting displacements

at specified nodal coordinates.

9. Solving of the system differential equation of motion, Eq. (15.28), to obtain the system nodal

displacements {u}.

10. Determining the element nodal stresses {σ (xj, yj)} from the calculated element nodal

displacements {q}e.

In engineering practice, the solution of problems by the Finite Element Method is obtained with

the computer and appropriate software, such as the computer program such as SAP2000 used in this

text. In the implementation of the computer program such as SAP2000, items are selected from

menus presented by the program and data is supplied in response at the prompts in the program.

15.4 Problems

Problem 15.1

The steel plate shown in Fig. P15.1 of dimensions 20 in � 20 in and thickness 0.10 in with a circular

hole of radius r¼ 50 in is subjected to a suddenly applied in-plane lateral compressive pressure along

the edges AD and BC of magnitude p¼ 100 psi. Model the plate with elements PLANE2D on a 6� 6

mesh in each quarter section of the plate. Determine the first five natural frequencies and plots of the

response for displacements and stresses on the elements.

Problem 15.2

Solve Problem 15.1 taking advantage of the double symmetry of geometry and load introducing

appropriate boundary conditions and analyzing only a quarter of the structure.
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Problem 15.3

A simple supported deep steel beam (Modulus of Elasticity, E ¼ 29E06) shown in Fig. 15.6, with a

distributed mass of 0.03 (lb.sec2/in2) is loaded at its center by the impulsive force F(t) depicted in

Fig. 15.6b. Determine the first five natural periods and the time-displacement response at the center of

the beam. Use computer program with rectangular shell elements to model this structure.

Problem 15.4

A square steel plate 40 in. by 40 in. and thickness 0.10 in., assumed to be fixed at the supports on its

four sides (Fig. P15.4) is acted upon by a harmonic force F(t)¼ 0.1 sin 5.3 t (kip) applied normally at

its center. Determine: (a) the first five natural frequencies, (b) the time-displacement function at the

center of the plate, and (c) the time-stress function at the center of plate. Use time step Δt ¼ 0.01 s.

(E ¼ 29,500 ksi, υ ¼ 0.3).

Fig. P15.1
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Fig P15.4 Square plate of Illustrative Example 15.2 supporting a normal harmonic force at the center.
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Time History Response
of Multi-Degree-of-Freedom
Systems

16

The nonlinear analysis of a single-degree-of-freedom system using the step-by-step linear accelera-

tion method was presented in Chap. 6. The extension of this method with a modification known as the

Wilson-θ method, for the solution of structures modeled as multidegree-of-freedom systems is

developed in this chapter. The modification introduced in the method by Wilson et al. 1973 serves

to assure the numerical stability of the solution process regardless of the magnitude selected for the

time step; for this reason, such a method is said to be unconditionally stable. On the other hand,

without Wilson’s modification, the step-by-step linear acceleration method is only conditionally

stable and for numerical stability of the solution it may require such an extremely small time step as to

make the method impractical if not impossible. The development of the necessary algorithm for the

linear and nonlinear multidegree-of-freedom systems by the step-by-step linear acceleration method

parallels the presentation for the single-degree-of-freedom system in Chap. 6.

Another well-known method for step-by-step numerical integration of the equations of motion of a

discrete system is the Newmark beta method. This method which also may be considered a generali-

zation of the linear acceleration method is presented later in this chapter after discussing in detail the

Wilson-θ method.

16.1 Incremental Equations of Motion

The basic assumption of the Wilson-θ method is that the acceleration varies linearly over the time

interval from t to t þ θΔ t.Where θ � 1.0. The value of the factor θ is determined to obtain optimum

stability of the numerical process and accuracy of the solution. It has been shown by Wilson that, for

θ � 1.38, the method becomes unconditionally stable.

The equation of motion evaluated at time ti for a mutidegree-of-freedom system in matrix notation

is given by

M€uiþC
�
_u
�
_u iþK uð Þui¼Fi tð Þ ð16:1Þ

where M, C and K are, respectivly the mass, damping and stiffness matrices of the system; ui, _u i, €ui
the displacement, velocity and acceleration vectors; and Fi(t) the external force vector.
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Then the equations expressing the incremental equilibrium conditions for a multidegree-of-

freedom system can be derived as the matrix1 equivalent of the incremental equation of motion for

the single degree-of-freedom system, Eq. (6.6). Thus taking the difference between dynamic equilib-

rium conditions defined at time ti and at tiþ τ, where τ¼ θΔ t,we obtain the incremental equations of

motion:

MbΔ€uiþC
�
_u
�bΔ _u iþK uð ÞbΔui¼bΔFi ð16:2Þ

in which the circumflex over Δ indicates that the increments are associated with the extended time

step τ ¼ θΔ t. Thus

bΔui ¼ u ti þ τð Þ � u tið Þ ð16:3Þ

bΔ _u i ¼ _u ti þ τð Þ � _u tið Þ . . . ð16:4Þ

bΔ€ui ¼ €u ti þ τð Þ � €u tið Þ ð16:5Þ

and

bΔFi ¼ F ti þ τð Þ � F tið Þ ð16:6Þ

In writing Eq. (16.2), we assumed, as explained in Chap. 6 for single-degree-of-freedom systems, that

the stiffness and damping are obtained for each time step as the initial values of the tangent to the

corresponding curves as shown in Fig. 16.1 rather than the slope of the secant line which requires

iteration. Hence the stiffness coefficient is defined as

kij ¼
dFsi

du j

ð16:7Þ

and the damping coefficient as

1Matrices and vectors are denoted with boldface lettering throughout this chapter.

Fig. 16.1 Definition of influence coefficients, (a) Nonlinear viscous damping, cij. (b) Nonlinear stiffness, kij
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cij ¼
dFDi

d _u j

ð16:8Þ

in which Fsi, and FDi are, respectively, the elastic and damping forces at nodal coordinate i and uj and

uj are, respectively, the displacement and velocity at nodal coordinate j,.

16.2 The Wilson-θ Method

The integrationof the nonlinear equations ofmotionby the step-by-step linear accelerationmethodwith the

extended time step introduced byWilson is based, as has already been mentioned, on the assumption that

the accelerationmay be represented by a linear function during the time step τ¼ θΔ t as shown in Fig. 16.2.

From this figure we can write the linear expression for the acceleration during the extended time step as

€u tð Þ ¼ €ui þ
bΔ€ui

τ
t� tið Þ ð16:9Þ

in which bΔ€ui is given by Eq. (16.5). Integrating Eq. (16.9) twice between limits ti and t yields

_u tð Þ ¼ _u i þ €ui t� tið Þ þ
1

2

bΔ€ui

τ
t� tið Þ2 ð16:10Þ

and

u tð Þ ¼ ui þ _u i t� tið Þ þ
1

2
€ui t� tið Þ2 þ

1

6

bΔ€ui

τ
t� tið Þ3 ð16:11Þ

Evaluation of Eqs. (16.10) and (16.11) at the end of the extended interval t ¼ ti þ τ gives

bΔ _u i ¼ €uiτ þ
1

2
bΔ€uiτ ð16:12Þ

and

Fig. 16.2 Linear acceleration assumption in the extended time interval
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bΔui ¼ _u iτ þ
1

2
€uiτ

2 þ
1

6
bΔ€uiτ

2 ð16:13Þ

in which bΔui and bΔ _u i are defined by Eqs. (16.3) and (16.4), respectively.

Now Eq. (16.13) is solved for the incremental acceleration bΔ€ui and substituted in Eq. (11.12) to

obtain:

bΔ€ui ¼
6

τ2
bΔui �

6

τ
_u i � 3€ui ð16:14Þ

and

bΔ _u i ¼
3

τ
bΔui � 3 _u i �

τ

2
€ul ð16:15Þ

Finally, substituting Eqs. (16.14) and (16.15) into the incremental equation of motion, Eq. (16.2),

results in an equation for the incremental displacement bΔui, which may be conveniently written as

�Ki
bΔui ¼ bΔFi ð16:16Þ

where

�Ki ¼ Ki þ
6

τ2
M þ

3

τ
Ci ð16:17Þ

and

bΔFi ¼ bΔFi þM
6

τ
_u i þ 3€ui

� �
þ Ci 3 _u i þ

τ

2
€ui

� �
ð16:18Þ

the matrix equation (16.16) has the same form as the static incremental equilibrium equation and may

be solved for the incremental displacements bΔui by simply solving a system of linear equations.

To obtain the incremental accelerations bΔ€ui for the extended time interval, the value of bΔui
obtained from the solution of Eq. (16.16) is substituted into Eq. (16.14). The incremental acceleration

bΔ€ui for the normal time interval Δt is then obtained by a simple linear interpolation. Hence

Δ€u ¼
bΔ€u

θ
ð16:19Þ

To calculate the incremental velocity Δ _u i and incremental displacement Δui, corresponding to the

normal interval Δt, use is made of Eqs. (16.12) and (16.13) with the extended time interval parameter

τ substituted for Δt, that is,

Δ _u i ¼ €uiΔtþ
1

2
Δ€uiΔt ð16:20Þ

and

Δui ¼ _u iΔtþ
1

2
€uiΔt

2 þ
1

6
Δ€uiΔt

2 ð16:21Þ

Finally, the displacement ui+1 and velocity _u iþ1 at the end of the normal time interval are calculated by

uiþ1 ¼ ui þ Δui ð16:22Þ
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and

_u iþ1 ¼ _u i þ Δ _u i ð16:23Þ

As mentioned in Chap. 6 for the single degree-of-freedom system, the initial acceleration for the next

step is calculated from the condition of dynamic equilibrium at the time t þ Δt; thus

€uiþ1 ¼ M�1 Fiþ1 � FD

�
_u iþ1

�
� FS uiþ1ð Þ

� 	
ð16:24Þ

in which FD

�
_u iþ1

�
and FS(uiþ1) represent, respectively, the damping force and stiffness force vectors

evaluated at the end of the time step tiþ1 ¼ ti þΔt. Once the displacement, velocity, and acceleration

vectors have been determined at time tiþ1 ¼ ti þ Δt, the outlined procedure is repeated to calculate

these quantities at the next time step tiþ2 ¼ tiþ1 þ Δt and the process is continued to any desired

final time.

The step-by-step linear acceleration, as indicated in the discussion for the single degree-of-

freedom system, involves two basic approximations: (1) the acceleration is assumed to vary linearly

during the time step, and (2) the damping and stiffness characteristics of the structure are evaluated at

the initiation of the time step and are assumed to remain constant during this time interval. The

algorithm for the integration process of a linear system by the Wilson-8 method is outlined in the next

section. The application of this method to linear structures is then developed in the following section.

16.3 Algorithm for Step-by-Step Solution of a Linear System Using
the Wilson-θ Method

16.3.1 Initialization

1. Assemble the system stiffness matrix K, mass matrix M, and damping matrix C.

2. Set initial values for displacement u0, velocity _u 0, and forces F0.

3. Calculate initial acceleration €u0 from Eq. (16.1) as

M€u0 ¼ F0 � C _u 0 � Ku0

4. Select a time step Δt, the factor θ (usually Taken as 1.4), and calculate the constants τ, a1, a2, a3

and a4 from the relationships:

τ ¼ θΔt, a1 ¼
3

τ
, a2 ¼

6

τ
, a3 ¼

τ

2
, a4 ¼

6

τ2
,

5. Form the effective stiffness matrix K [Eq. (16.17)], namely,

�K ¼ K þ a4M þ a1C

16.3.2 For Each Time Step

1. Calculate by linear interpolation the incremental load bΔFi for the time interval ti to ti þ τ, from the

relationship
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bΔFi ¼ Fiþ1 þ Fiþ2 � Fiþ1ð Þ θ � 1ð Þ � Fi

2. Calculate the effective incremental load bΔFi; for the time interval ti to ti,+ τ, from Eq. (16.18) as

bΔFi ¼ bΔFi þ a2M þ 3Cð Þ _u i þ 3M þ a3Cð Þ€ui

3. Solve for the incremental displacement bΔui, from Eq. (16.16) as

�KbΔui ¼ bΔFi

4. Calculate the incremental acceleration for the extended time interval τ, from the relation

Eq. (16.14) as

bΔ€ui ¼ a4bΔui � a2 _u i � 3€ui

5. Calculate the incremental acceleration for the normal interval from Eq. (16.19) as

Δ€u ¼
bΔ€u

θ

6. Calculate the incremental velocity Δ _u i, and the incremental displacement Δui, from time ti to

ti þ Δt from Eqs. (16.20) and (16.21) as

Δ _u i ¼ €uiΔtþ
1

2
Δ€uiΔt

Δui ¼ _u iΔtþ
1

2
€uiΔt

2 þ
1

6
Δ€uiΔt

2

7. Calculate the displacement and velocity at time ti þ 1 ¼ ti þ Δt using

uiþ1 ¼ ui þ Δui

_u iþ1 ¼ _u i þ Δ _u i

8. Calculate the acceleration €uiþ1 at time ti þ 1 ¼ ti þ Δt directly from the equilibrium equation of

motion, namely,

M€uiþ1 ¼ Fiþ1 � C _u iþ1 � Kuiþ1

Illustrative Example 16.1

Calculate the displacement response for a two-story shear building of Fig. 16.3 subjected to a

suddenly applied force of 10 Kip at the level of the second floor. Neglect damping and assume elastic

behavior.

Solution

The equations of motion, in matrix notation, for this structure are:

0:136 0

0 0:066


 �
€u1
€u2

� 

þ

75:0 �44:3
�44:3 44:3


 �
u1
u2

� 

¼

0

10

� 
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which, for free vibration, become

0:136 0

0 0:066


 �
€u1
€u2

� 

þ

75:0 �44:3
�44:3 44:3


 �
u1
u2

� 

¼

0

10

� 


Substitution of yi ¼ ai sin ωt results in the eigenproblem:

75:0� 0:136ω2 �44:3
�44:3 44:3� 0:066ω2


 �
a1
a2

� 

¼

0

0

� 


which requires for a nontrivial solution that

75:0� 0:136ω2 �44:3
�44:3 44:3� 0:0666ω2

����

���� ¼ 0

Expansion of this determinant yields

ω4 � 1222:68ω2 þ 151516 ¼ 0

which has the roots

ω2
1 ¼ 139:94 and ω2

2 ¼ 1082:0

Hence, the natural frequencies are

ω1 ¼ 11:83 rad= sec , and ω2 ¼ 32:90 rad= sec ,

or

f 1 ¼ 1:883 cps, and f 2 ¼ 5:237 cps

and the natural periods

T1 ¼ 0:531 sec , and T2 ¼ 0:191 sec

The initial acceleration at the nodal coordinates is calculated from Eq. (16.1) after setting the initial

displacement and velocity equal to zero. Thus we obtain:

0:136 0

0 0:066


 �
€u10
€u20

� 

75:0 �44:3
�44:3 44:3


 �
0

0

� 

¼

0

10

� 


Fig. 16.3 Two-story shear building for Illustrative Examples 16.1 and 16.2
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giving

€u10 ¼ 0

€u20 ¼ 151:51 in= sec 2

Conveniently, we select Δt ¼ 0.02 sec and θ ¼ 1.4, so τ ¼ θΔt¼ 0.028, and calculate the constants to

obtain:

a1 ¼
3

τ
¼ 107:14, a2 ¼

6

τ
¼ 0:014

a3 ¼
τ

2
¼ 214:28, a4 ¼

6

τ2
¼ 7653

The effective stiffness is then

�K ¼ K þ a4M þ a1C C ¼ 0 foranundampedsysteemð Þ

�K ¼
75:0 �44:3
�44:3 44:3


 �
þ 7653

0:136 0

0 0:066


 �

�K ¼
1115:8 �44:3
�44:3 549:4


 �

and the effective force

bΔFi ¼ bΔFi þ a2M þ 3Cð Þ _u i þ 3M þ a3Cð Þ€ui

bΔFi ¼
0

0

� 

þ 21428

0:136 0

0 0:066


 �
0

0

� 

þ 3

0:136 0

0 0:066


 �
0

151:51

� 


bΔFi ¼
0

30

� 


Solving for bΔu from �KbΔu ¼ bΔF yields

1115:8 �44:3
�44:3 549:4


 �
bΔu1
bΔu2

� 

¼

0

30

� 

, bΔu ¼

0:002175
0:054780

� 


Solving for bΔ€u from Eq. (16.14) we obtain

bΔ€u ¼ 7656
0:002175
0:054780

� 

� 214:28

0

0

� 

� 3

0

151:51

� 

, bΔ€u ¼

16:645
�35:299

� 


Then

Δ€u ¼
bΔ€u

θ
¼

1

1:4

16:647
�35:299

� 

¼

18:891
�25:21

� 


From Eq. (16.20), it follows that

Δ _u ¼
0

151:51

� 

0:02ð Þ þ

0:02

2

11:891
�25:21

� 

¼

0:1189
2:7781

� 


From Eq. (16.21),
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Δu ¼
0

0

� 

0:02ð Þ þ

0:02ð Þ2

2

0

151:61

� 

þ

0:02ð Þ2

6

11:891
�25:21

� 

¼

0:0008
0:0286

� 


From Eqs. (16.21) and (16.23)

uf g1 ¼
0

0

� 

þ

0:0008
0:0286

� 

¼

0:0008
0:0286

� 

ðaÞ

and

_uf g1 ¼
0

0

� 

þ

0:1189
2:7781

� 

¼

0:1189
2:7781

� 

ðbÞ

From Eq. (16.23),

0:136 0

0 0:066


 �
€uf g1 ¼

0

10

� 

�

75:0 �44:3
�44:3 44:3


 �
0:0008
0:0286

� 


Which gives

€uf g1 ¼
8:875
132:85

� 

ðcÞ

The results given in Eqs. (a), (b), and (c) for the displacement, velocity, and acceleration, respec-

tively, at time t1 ¼ t0 + Δt complete a first cycle of the integration process. The continuation in

determining the response for this structure is given in Illustrative Example 16.2 with the use of the

computer program described in the next section.

16.4 Response by Step Integration Using MATLAB

MATLAB performs the step-by-step integration of the equations of motion for a linear system using

the linear acceleration method with the Wilson-θ modification. The program requires previous

modeling of the structure to determine the stiffness matrix and the mass matrix of the system.

The program performs a linear interpolation between the load data points, which result in the

magnitude of the applied forces at each nodal coordinate calculated at increments of time equal to the

time step Δt. The output consists of the response for each nodal coordinate in terms of displacement,

velocity, and acceleration at increments of time Δt up to the maximum time specified by the duration

of the forces including, if desired, an extension with forces set to zero.

Illustrative Example 16.2

Use MATLAB to determine the response of the two-story shear building shown in Fig. 16.3. The first

cycle of the integration process for this structure has been hand calculated in Illustrative Example

16.1. This is confirmed by the MATLAB program as follows:
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Solution:

clc
clear all
close all

%___________________________________________________________________________
% Inputs: 
%   M, K 
%   F = forcing function
%   t = Time period
%   u0 = initial displacement
%   v0 = initial velocity
%   w0 = initial acceleration    
%___________________________________________________________________________  

%%%%-GIVEN VALUES-%%%%

deltat = 0.02;  % ?t=0.02 

%%%Define Mass Matrix
M = [136 0; 

0 66];

%%%Define Stiffness Matrix
k1=30700;
k2=44300;

K = [k1+k2 -k2;
-k2 k2];

%%%Define Damping Matrix
C =0;

[n,n]= size(M); 

%%%Define the load vector 
F = zeros(n,1); F(2) =10000;
%__________________________________________________________________________
% Initial conditions
%__________________________________________________________________________

u0 = zeros(n,1); u0(1) =0;
v0 = zeros(n,1); v0(1) =0;
w0 = inv(M)*(F-K*u0-C*v0);  % acceleration at t = 0 

t = 0;   

u_t1(:,1)=u0(1,:)';
u_t2(:,1)=u0(1,:)';

v_t1(:,1)=v0(1,:)';
v_t2(:,1)=v0(2,:)';

w_t1(:,1)=w0(1,:)';
w_t2(:,1)=w0(2,:)';

%__________________________________________________________________________
% For each time step apply the Wilson-? Method to calculate u, v, and w 
%__________________________________________________________________________
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for i=2:100

[u,v,w,t] = STI(t, deltat, M, K, C, F, u0, v0, w0);

ti(:,i)=t(:,1)';

u_t1(:,i) = u(1,:)';
u_t2(:,i) = u(2,:)';

v_t1(:,i) = v(1,:)';
v_t2(:,i) = v(2,:)';

w_t1(:,i) = w(1,:)';
w_t2(:,i) = w(2,:)';

u0=u;                       %u_(i) for calculating u_(i+1)
v0=v;                       %v_(i) for calculating v_(i+1)
w0=w;                       %w_(i) for calculating w_(i+1)
F=F;                        %F(i) for calculating F(i+1)
t=t;                        %t(i) for calculating t(i+1)
end

figure(1)

subplot(3,2,1)
plot (ti, u_t1);           
title ('1DOF'); xlabel ('Time (sec)'); ylabel ('u_1(in.)'); grid on

subplot(3,2,2)
plot (ti, u_t2);
title ('2DOF'); xlabel ('Time (sec)'); ylabel ('u_2(in.)'); grid on

subplot(3,2,3)
plot (ti, v_t1);
title ('1DOF'); xlabel ('Time (sec)'); ylabel ('v_1(in./sec)'); grid on

subplot(3,2,4)
plot (ti, v_t2);
title ('2DOF'); xlabel ('Time (sec)'); ylabel ('v_2(in./sec)'); grid on

subplot(3,2,5)
plot (ti, w_t1);
title ('1DOF'); xlabel ('Time (sec)'); ylabel ('w_1(in./sec^2)'); grid on

subplot(3,2,6)
plot (ti, w_t2);
title ('2DOF'); xlabel ('Time (sec)'); ylabel ('w_2(in./sec^2)'); grid on

u_1max= max(abs(u_t1))          %Max. displacement @ 1DOF (or 1st story)
u_2max= max(abs(u_t2))          %Max. displacement @ 2DOF (or 2nd story)

v_1max= max(abs(v_t1))          %Max. velocity @ 1DOF (or 1st story)
v_2max= max(abs(v_t2))          %Max. velocity @ 2DOF (or 2nd story)

w_1max= max(abs(w_t1))          %Max. acceleration @ 1DOF (or 1st story)
w_2max= max(abs(w_t2))          %Max. acceleration @ 2DOF (or 2nd story)
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For each time step, the function file of STI.m is used to calculate the displacement, velocity, and

acceleration using the Wilson-θ Method (Sect. 16.3).

function [u,v,w,t]=STI(t, deltat, M, K, C, F,u0,v0,w0)

%__________________________________________________________________________
%  The Wilson-? Method 
%   t = Time period
%   u = displacement
%   v = velocity
%   w = acceleration
%__________________________________________________________________________

%%%Calculate the constants ?, a1, a2, a3 and a4 from the relationships 
theta = 1.4;
tau = theta*deltat;

a1 = 3/tau; a2 = 6/tau; a3 = tau/2; a4 = 6/tau^2;           %16.3.1 (4)                  

K_bar = K+a1.*C+a4.*M;                      %16.3.1.(5)

%%%For each time step (Ch 16.3.2)
F_eff0 = F+(F-F)*(theta-1)-F;                               %16.3.2.(1)
F_eff = F_eff0+(a2.*M+3*C)*v0+(3.*M+a3.*C)*w0;              %16.3.2.(2)

delta_u= inv(K_bar)*F_eff;                      %16.3.2.(3)

delta_w =1./theta*(a4.*delta_u-a2.*v0-3*w0);                %16.3.2.(4)&(5) 

delta_v = deltat.*w0+deltat./2.*delta_w;                    %16.3.2.(6) 
delta_u = deltat.*v0+deltat^2./2.*w0+deltat^2./6.*delta_w;  %16.3.2.(6)

u = u0+delta_u;                                             %16.3.2.(7)
v = v0+delta_v;
w = inv(M)*(F-K*u-C*v);
t = t+deltat;
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Fig. 16.4 Responses of displacement, velocity, and acceleration
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16.5 The Newmark Beta Method

The Newmark beta method may be considered a generalization of the linear acceleration method.

It uses a numerical parameter designated as β. The method, as originally proposed by Newmark

(1959), contained in addition to β, a second parameter γ. These parameters replace the numerical

coefficients 1
2
and 1

6
of the terms containing the incremental acceleration Δ€ui, in Eqs. (16.20) and

(16.21), respectively. Thus, replacing by γ the coefficient 1
2
of Δ€ui, in Eq. (16.20) and by β the

coefficient 1
6
also of Δ€ui, in Eq. (16.20), we have

Δ _u i ¼ €uiΔtþ γΔ€uiΔt ð16:25Þ

and

Δui ¼ _u iΔtþ
1

2
€uiΔt

2 þ βΔ€uiΔt
2 ð16:26Þ

It has been found that for values of γ different than 1
2
, the method introduces a superfluous damping in

the system. For this reason this parameter is generally set as γ ¼ 1
2
. The solution of Eq. (16.26) forΔ€ui,

and its substitution into Eq. (16.25) after setting γ ¼ 1
2
yield

Δ _u i ¼
1

βΔt2
Δui �

1

βΔt
_u i �

1

2β
€ui ð16:27Þ

Δ _u i ¼
1

2βΔt
Δui �

1

2β
_u i þ 1�

1

4β

� �
Δt€ui ð16:28Þ

Then the substitution of Eqs. (16.27) and (16.28) into the incremental equation of motion

MΔ€ui þ CiΔ _u i þ KiΔui ¼ ΔFi ð16:29Þ

results in an equation to calculate the incremental displacement Δui, namely

�KiΔui ¼ Δ�Fi ð16:30Þ

where the effective stiffness matrix �Ki, and the effective incremental force vector Δ�Fi are given

respectively by

�Ki ¼ Ki þ
M

βΔt2
þ

Ci

2βΔt
ð16:31Þ

and

Δ�Fi ¼ ΔFi þ
M

βΔt
_u i þ

Ci

2β
_u i þ

M

2β
ui � CiΔt 1�

1

4β

� �
€ui ð16:32Þ

In these equations Ci and Ki are respectively the damping and stiffness matrices with coefficients

evaluated at the initial time ti of the time step Δt ¼ tiþ1 � ti.
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In the implementation of the Newmark beta method, the process begins by selecting a numerical

value for the parameter β. Newmark suggested a value in the range 1
6
� β � 1

2
. For β ¼ 1

6
the method

is exactly equal to the linear acceleration method and is only conditionally stable.

For β ¼ 1
4
the method is equivalent to assuming that the velocity varied linearly during the time

step, which would require that the mean acceleration is maintained for the interval. In this last case,

that is, β ¼ 1
4
, the Newmark beta method is unconditionally stable and it provides the satisfactory

accuracy.

16.6 Elastoplastic Behavior of Framed-Structures

The dynamic analysis of beams and frames having linear elastic behavior was presented in the

preceding chapters. To extend this analysis to structures whose members may be strained beyond the

yield point of the material, it is necessary to develop the member stiffness matrix for the assumed

elastoplastic behavior. The analysis is then carried out by a step-by-step numerical integration of the

differential equations of motion. Within each short time interval Δt, the structure is assumed to

behave in a linear elastic manner, but the elastic properties of the structure are changed from one

interval to another as dictated by the response. Consequently, the nonlinear response is obtained as a

sequence of linear responses of different elastic systems. For each successive interval, the stiffness of

the structure is evaluated based on the moments in the members at the beginning of the time

increment.

The changes in displacements of the linear system are computed by integration of the differential

equations of motion over the finite interval and the total displacements by addition of the incremental

displacement to the displacements calculated in the previous time step. The incremental

displacements are also used to calculate the increment in member end forces and moments from

the member stiffness equation. The magnitude of these end moments relative to the yield conditions

(plastic moments) determines the characteristics of the stiffness and mass matrices to be used in the

next time step.

16.7 Member Stiffness Matrix

If only bending deformations are considered, the force-displacement relationship for a uniform beam

segment (Fig. 16.4) with elastic behavior (no hinges) is given by Eq. (10.20). This equation may be

written in incremental quantities as follows:

ΔP1

ΔP2

ΔP3

ΔP4

8
>>>><

>>>>:

9
>>>>=

>>>>;

¼
EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2

664

3

775

Δδ1
Δδ2
Δδ3
Δδ4

8
>><

>>:

9
>>=

>>;
ð16:33Þ

in which ΔPi and Δδi, are, respectively, the incremental forces and the incremental displacements at

the nodal coordinates of the beam segment. When the moment at one end of the beam reaches the

value of the plastic moment Mp, a hinge is formed at that end. Under the assumption of an
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elastoplastic relation-between the bending moment and the angular displacement as depicted in

Fig. 16.5, the section that has been transformed into a hinge cannot support a moment higher than

the plastic moment Mp but it may continue to deform plastically at a constant moment Mp. The

relationship reverses to an elastic behavior when the angular displacement begins to decrease as

shown in Fig. 16.5. We note the complete similarity for the behavior between an elastoplastic spring

(Fig. 6.5) in a single degree-of-freedom system and an elastoplastic section of a beam (Fig. 16.5).

The stiffness matrix for a beam segment with a hinge at one end (Fig. 16.6) may be obtained by

application of Eq. (10.16) which is repeated here for convenience, namely

kij ¼

ð L

0

EIN}

i xð ÞN}

j xð Þdx ð16:34Þ

Where ψ i(x) and ψ j(x) are displacement functions. For a uniform beam in which the formation of the

plastic hinge takes place at endΘ as shown in Fig. 16.6, the deflection functions corresponding to unit

displacement at one of the nodal coordinates δ1, δ2, δ3, or δ4 are given respectively by

N1 xð Þ ¼ 1�
3x

2L
þ

x3

2L3
ð16:35aÞ

Fig. 16.5 Beam segment indicating incremental end forces and corresponding incremental displacements

Fig. 16.6 Elastoplastic relationship between bending moment and angular displacement at a section of a beam
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N2 xð Þ ¼ 0 ð16:35bÞ

N3 xð Þ ¼
3x

2L
þ

x3

2L3
ð16:35cÞ

N4 xð Þ ¼ �
x

2
þ

x3

2L2
ð16:35dÞ

For example, to calculate k11, we substitute the second derivative N1
’’ (x) from Eq. (16.35a) into

Eq. (16.34) and obtain

k11 ¼ EI

ð L

0

3x

L3

� �2

dx ¼
3EI

L3
ð16:36Þ

Similarly, all the other stiffness coefficients for the case in which the formation of the plastic hinge

takes place at end Θ of a beam segment are determined using Eq. (16.34) and the deflection functions

given by Eqs. (16.35). The resulting stiffness equation in incremental form is

ΔP1

ΔP2

ΔP3

ΔP4

8
>><

>>:

9
>>=

>>;
¼

EI

L3

3 0 �3 3L

0 0 0 0

�3 0 3 �3L

3L 0 �3L 3L2

2

664

3

775

Δδ1
Δδ2
Δδ3
Δδ4

8
>><

>>:

9
>>=

>>;
ð16:37Þ

It should be pointed out that Δδ2 is the incremental rotation of joint Θ at the frame and not the

increase in rotation at end Θ of the beam under consideration. The incremental rotation of the plastic

hinge is given by the difference between Δδ2 and the increase in rotation of the end Θ of the member.

Hinge rotation may be calculated for the various cases with formulas developed in the next section.

Analogous to Eq. (16.37), the following equation gives the relationship between incremental forces

and incremental displacements for a uniform beam with a hinge at end Θ (Fig. 16.7), namely,

Fig. 16.7 Beam geometry with a plastic hinge at joint i
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ΔP3

ΔP4
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Finally, if hinges are formed at both ends of the beam, the stiffness matrix becomes null. Hence in

this case the stiffness equation is

ΔP1

ΔP2

ΔP3

ΔP4

8
>>>><

>>>>:

9
>>>>=

>>>>;

¼
EI

L3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2

66664

3

77775

Δδ1

Δδ2

Δδ3

Δδ4

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð16:39Þ

16.8 Member Mass Matrix

The relationship between forces and accelerations at the nodal coordinates of an elastic uniform

member considering flexural deformation is given by Eq. (10.34). This equation written in incremen-

tal quantities is

ΔP1

ΔP2

ΔP3

ΔP4

8
>>>><

>>>>:

9
>>>>=

>>>>;

¼
�mL

420

156 22L 54 �13L

22L 4L2 13L �3L2

54 13L 156 �22L

�13L �3L2 �22L 4L2

2

66664

3

77775

Δ€δ1

Δ€δ2

Δ€δ3

Δ€δ4

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð16:40Þ

Fig. 16.8 Beam geometry with a plastic hinge at joint Θ
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where ΔPi, and Δ€δi are, respectively, the incremental forces and the incremental accelerations at the

nodal coordinates, L is the length of the member, and �m is its mass per unit length. Assuming

elastoplastic behavior, when the moment at an end of the beam segment reaches the magnitude of the

plastic moment Mp and a hinge is formed, the consistent mass coefficients are determined from

Eq. (10.33) using the appropriate deflection curves. For a uniform beam in which the formation of the

plastic hinge develops at end I as shown in Fig. 16.6, the deflection functions corresponding to a unit

displacement of the nodal coordinates are given by Eqs. (16.35). Analogously, the deflection

functions of a beam segment with a plastic hinge at end J as shown in Fig. 16.8 for unit displacement

at nodal coordinates δ1, δ2, δ3, or δ4, are respectively given by

N1 xð Þ ¼ 1þ
x3

2L3
�

3x2

2L2

N2 xð Þ ¼
x3

2L2
�
3x2

2L
þ x

N3 xð Þ ¼ �
x3

2L3
�

3x2

2L2

N4 xð Þ ¼ 0 ð16:41Þ

The mass coefficients for a beam segment with a hinge at one end are then obtained by application of

Eq. (10.33) which is repeated here, namely,

mij ¼

ð L

0

�mNi xð ÞN j xð Þdx ð16:42Þ

where Ni (x) and Nj (x) are the corresponding displacement functions from Eqs. (16.35) or (16.41).

Application of Eq. (16.42) and the use of displacement functions (16.34) results in the mass matrix

for a beam segment with a hinge at the “j” end. The resulting mass matrix relates incremental forces

and accelerations at the nodal coordinates, namely,

ΔP1

ΔP2

ΔP3

ΔP4

8
>>>>><

>>>>>:
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>>>>>=

>>>>>;

¼
�mL

420

204 0 58:5 �16:5L
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>>:

9
>>=

>>;
ð16:43Þ

Analogously to Eq. (16.43), the following equation gives the relationship between incremental forces

and incremental accelerations for a uniform beam segment with a hinge at the “j” end:

ΔP1

ΔP2

ΔP3

ΔP4
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>>>>>;
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420
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9
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ð16:44Þ
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Finally, if hinges are formed at both ends of the beam segment, the deflection curves are given by

N1 xð Þ ¼ �
x

L
þ 1

N2 xð Þ ¼ 0

N3 xð Þ ¼
x

L

N4 xð Þ ¼ 0

ð16:45Þ

and the corresponding relationship in incremental form by
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9
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ð16:46Þ

16.9 Rotation of Plastic Hinges

In the solution process, at the end of each step interval it is necessary to calculate the end moments of

every beam segment to check whether or not a plastic hinge has been formed. The calculation is done

using the element incremental moment-displacement relationship. It is also necessary to check if the

plastic deformation associated with a hinge is compatible with the sign of the moment. The plastic

hinge is free to rotate in one direction only, and in the other direction the section returns to an elastic

behavior. The assumed moment rotation characteristics of the member are of the type illustrated in

Fig. 16.5. The conditions implied by this model are: (1) the moment cannot exceed the plastic

moment; (2) if the moment is less than the plastic moment, the hinge cannot rotate; (3) if the moment

is equal to the plastic moment, then the hinge may rotate in the direction consistent with the sign of

the moment; and (4) if the hinge starts to rotate in a direction inconsistent with the sign of the

moment, the hinge is removed.

The incremental rotation of a plastic hinge is given by the difference between the incremental joint

rotation of the frame and the increase in rotation of the end of the member at that joint. For example,

with a hinge at end “i” only (Fig. 20.6), the incremental joint rotation is Δδ2 and the increase in

rotation of this end due to rotation Δδ4 is�Δδ4/2 and that due to the displacements Δδ1 andΔδ3 is 1.5

Δδ3 � Δδ
� �

=L Hence the increment in rotation Δρi of a hinge formed at end i is given by

Δρi ¼ Δδ2 þ
1

2
Δδ4 � 1:5

Δδ3 � Δδ1

L
ð16:47Þ

Similarly, with a hinge formed at end “j” only (Fig. 16.7), the increment in rotation of this hinge is

given by
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Δρ j ¼ Δδ4 þ
1

2
Δδ2 � 1:5

Δδ3 � Δδ1

L
ð16:48Þ

Finally, with hinges formed at both ends of a beam segment (Fig. 16.8), the rotations of the hinges

are given by

Δρi ¼ Δδ1 �
Δδ3 � Δδ1

L
ð16:49Þ

Δρ j ¼ Δδ2 �
Δδ3 � Δδ1

L
ð16:50Þ

16.10 Calculation of Member Ductility Ratio

Nonlinear beam deformation are expressed in terms of the member ductility ratio, which is defined as

the maximum total end rotation of the member to the end rotation at the elastic limit. The elastic limit

rotation is the angle developed when the member is subjected to antisymmetric yield moments Mx as

shown in Fig. 16.9. In this case the relationship between the end rotation and end moment is given by

ϕy ¼
MyL

6EI
ð16:51Þ

The member ductility ratio μ is then defined as

μ ¼
ϕy þ ρmax

ϕy

ð16:52Þ

which from Eq. (16.50) becomes

μ ¼ 1þ
6EI

MyL
ρmax ð16:53Þ

where ρmax is the maximum rotation of the plastic hinge (Fig. 16.10).

Fig. 16.9 Beam geometry with plastic hinges at both ends
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16.11 Summary

The determination of the nonlinear response of multidegree-of-freedom structures requires the

numerical integration of the governing equations of motion. There are many methods available for

the solution of these equations. The step-by-step linear acceleration method with a modification

known as the Wilson-θ method was presented in this chapter. This method is unconditionally stable,

that is, numerical errors do not tend to accumulate during the integration process regardless of the

magnitude selected for the time step. The basic assumption of the Wilson-θ method is that the

acceleration varies linearly over the extended interval τ ¼ θΔt in which θ � 1.38 for unconditional

stability.

In the final sections of this chapter, stiffness and mass matrices for elastoplastic behavior of framed

structures are presented. Formulas to determine the plastic rotation of hinges and to calculate the

corresponding ductility ratios are also presented in this chapter.

16.12 Problems

Problem 16.1

The stiffness and the mass matrices for a certain structure modeled as a two-degree-of-freedom

system are

K½ � ¼
100 �50

�50 50


 �
Kip=inð Þ, M½ � ¼

2 0

0 1


 �
Kip � sec 2=in
� �

Use Program 19 to determine the response when the structure is acted upon by the forces.

F1 tð Þ
F2 tð Þ

� 

¼

772

386

� 

f tð Þ Kipð Þ

Where f(t) is given graphically in Fig. P16.1. Neglect damping in the system.

Fig. 16.10 Definition of yield rotation for beam segment

16.12 Problems 409



Problem 16.2

Solve Problem 16.1 considering that the damping present in the system results in the following

damping matrix:

C½ � ¼
10 �5

�5 5


 �
Kip � sec =inð Þ

Problem 16.3

Use Program 19 to determine the response of the three-story shear building subjected to the force F3

(t) as depicted in Fig. P16.3 applied at the third level of the building. Neglect damping in the system.

Fig. P16.3

f (t)

t (sec)0
0.2

0.37

0.6 0.8 1.00.4

0.27

Fig. P16.1
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Problem 16.4

Solve Problem 16.3 considering damping in the system of 10% in all the modes.

Problem 16.5

Use Program 19 to obtain the response in the elastic range for the structure of Problem 16.1 subjected

to an acceleration at its foundation given by the function f(t) shown in Fig. P16.1.

Problem 16.6

Solve Problem 16.5 considering damping in the system as indicated in Problem 16.2.

Problem 16.7

Use Program 19 to obtain the response in the elastic range of the shear building shown in Fig. P16.3

when subjected to an acceleration of its foundation given by the function f(t) depicted in Fig. P16.1.

Neglect damping in the system.
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Part IV

Structures Modeled with Distributed Properties



Dynamic Analysis of Systems
with Distributed Properties 17

The dynamic analysis of structures, modeled as lumped parameter systems with discrete coordinates,

was presented in Part I for single-degree-of-freedom systems and in Parts II and III for multidegree-

of-freedom systems. Modeling structures with discrete coordinates provides a practical approach for

the analysis of structures subjected to dynamic loads. However, the results obtained from these

discrete models can only give approximate solutions to the actual behavior of dynamic systems which

have continuous distributed properties and, consequently, an infinite number of degrees of freedom.

The present chapter considers the dynamic theory of beams and rods having distributed mass and

elasticity for which the governing equations of motion are partial differential equations. The integra-

tion of these equations is in general more complicated than the solution of ordinary differential

equations governing discrete dynamic systems. Due to this mathematical complexity, the dynamic

analysis of structures as continuous systems has limited use in practice. Nevertheless, the analysis, as

continuous systems, of some simple structures provides, without much effort, results which are of

great importance in assessing approximate methods based on discrete models.

17.1 Flexural Vibration of Uniform Beams

The treatment of beam flexure developed in this section is based on the simple bending theory as it is

commonly used for engineering purposes. The method of analysis is known as the Bernoulli-Euler

theory which assumes that a plane cross section of a beam remains a plane during flexure.

Consider in Fig. 17.1b the free body diagram of a short segment of a beam as shown in Fig 17.1a. It

is of length dx and is bounded by plane faces that are perpendicular to its axis. The forces and

moments which act on the element are also shown in the figure: they are the shear forces V and V +

(∂V/∂x) dx; the bending momentsM andM+ (∂M/∂x) dx; the lateral load pdx; and the inertia force (

�m dx) ∂2y/dt2. In this notation �m is the mass per unit length and p ¼ p (x, t) is the load per unit length.

Partial derivatives are used to express acceleration and variations of shear and moment because these

quantities are functions of two variables, position x along the beam and time t. If the deflection of the

beam is small, as the theory presupposes, the inclination of the beam segment from the unloaded

position is also small. Under these conditions, the equation of motion perpendicular to the x axis of

the deflected beam obtained by equating to zero the sum of the forces in the free body diagram of

Fig. 17.1b is
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V � V þ
∂V

∂x
dx

� �

þ p x; tð Þdx� �mdx
∂
2
y

∂t2
¼ 0

which, upon simplification, becomes

∂V

∂x
þ �m

∂
2
y

∂t2
¼ p x; tð Þ ð17:1Þ

From simple bending theory, we have the relationships

M ¼ EI
∂
2
y

∂x2
ð17:2Þ

and

V ¼
∂M

∂x
ð17:3Þ

where E is Young’s modulus of elasticity and I is the moment of inertia of the cross-sectional area

with respect to the neutral axis through the centroid. For a uniform beam, the combination of

Eqs. (17.1), (17.2), and (17.3) results in

V ¼ EI
∂
3
y

∂x3
ð17:4Þ

and

EI
∂
4
y

∂x4
þ �m

∂
2
y

∂t2
¼ p x; tð Þ ð17:5Þ

It is seen that Eq. (17.5) is a partial differential equation of fourth order. It is an approximate equation.

Only lateral flexural deflections were considered while the deflections due to shear forces and the

inertial forces caused by the rotation of the cross section (rotary inertia) were neglected. The inclusion

of shear deformations and rotary inertia in the differential equation of motion considerably increases

its complexity. The equation taking into consideration shear deformation and rotary inertia is known

as Timoshenko’s equation. The differential Eq. (17.5) also does not include the flexural effects due to

the presence of forces which may be applied axially to the beam. The axial effects will be discussed in

Chap. 22.

∂M

∂V

∂2y

∂t2
(mdx)

∂x

∂x

dx

dx

y
P (x,t)

dx
x

M

M

V +

+

V

pdx

dxL

(a) (b)

m,E,I

Fig. 17.1 Simple beam with distributed mass and load (a) simply supported beam, (b) free body diagram
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17.2 Solution of the Equation of Motion in Free Vibration

For free vibration [p (x, t) ¼ 0], Eq. (17.5) reduces to the homogeneous differential equation

EI
∂
4
y

∂x4
þ �m

∂
2
y

∂t2
¼ 0 ð17:6Þ

The solution of Eq. (17.6) can be found by the method of separation of variables. In this method, it is

assumed that the solution may be expressed as the product of a function of position Φ (x) and a

function of time f(t), that is,

y x; tð Þ ¼ Φ xð Þf tð Þ ð17:7Þ

The substitution of Eq. (17.7) in the differential Eq. (17.6) leads to

EIf tð Þ
d4Φ xð Þ

dx4
þ �mΦ xð Þ

d2f tð Þ

dt2
¼ 0 ð17:8Þ

This last equation may be written as

EI

�m

Φ
IV xð Þ

Φ xð Þ
¼ �

€f tð Þ

f tð Þ
ð17:9Þ

In this notation Roman indices indicate derivatives with respect to x and overdots indicate derivatives

with respect to time. Since the left-hand side of Eq. (17.9) is a function only of x while the right-hand

side is a function only of t, each side of the equation must equal the same constant value; otherwise,

the identity of Eq. (17.9) cannot exist. We designate the constant by ω
2 which equated separately to

each side of Eq. (17.9) results in the two following differential equations:

Φ
IV xð Þ � a4Φ xð Þ ¼ 0 ð17:10Þ

and

€f tð Þ þ ω2f tð Þ ¼ 0 ð17:11Þ

where

a4 ¼
�mω2

EI
ð17:12Þ

It is particularly convenient to solve Eq. (17.12) for ω and to use the following notation, namely,

ω ¼ C

ffiffiffiffiffiffiffiffiffi

EI

�mL4

r

ð17:13Þ

in which C ¼ (aL)2.

Equation (17.11) is the familiar free-vibration equation for the undamped single degree-of-

freedom system and its solution from Eq. (1.17) is

f tð Þ ¼ A cosωtþ B sin t ð17:14Þ

where A and B are constants of integration. Equation (17.10) can be solved by letting
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Φ xð Þ ¼ Cesx ð17:15Þ

The substitution of Eq. (17.15) into Eq. (17.10) results in

S4 � a4
� �

Cesx ¼ 0

which, for a nontrivial solution, requires that

S4 � a4 ¼ 0 ð17:16Þ

The roots of Eq. (17.16) are

S1 ¼ a, S3 ¼ ai

S2 ¼ �a, S4 ¼ �ai
ð17:17Þ

The substitution of each of these roots into Eq. (17.15) provides a solution of Eq. (17.10). The general

solution is then given by the superposition of these four possible solutions, namely,

Φ xð Þ ¼ C1e
ax þ C2e

�ax þ C3e
iax þ C4e

�iax ð17:18Þ

where C1, C2, C3, and C4 are constants of integration. The exponential functions in Eq. (17.18) may

be expressed in terms of trigonometric and hyperbolic functions by means of the relationships.

e�ax ¼ coshax� sinhax

e�iax ¼ cos ax� i sin ax
ð17:19Þ

Substitution of these relationships into Eq. (17.18) yields

Φ xð Þ ¼ A sin axþ B cos axþ Csinhaxþ Dcosh ax ð17:20Þ

where A, B, C, and D are new constants of integration. These four constants of integration define the

shape and the amplitude of the beam in free vibration; they are evaluated by considering the boundary

conditions at the ends of the beam as illustrated in the examples presented in the following section.

17.3 Natural Frequencies and Mode Shapes for Uniform Beams

17.3.1 Both Ends Simply Supported

In this case the displacements and bending moments must be zero at both ends of the beam; hence the

boundary conditions for the simply supported beams are

y 0; tð Þ ¼ 0, M 0; tð Þ ¼ 0

y L; tð Þ ¼ 0, M L; tð Þ ¼ 0

In view of Eqs. (17.2) and (17.7), these boundary conditions imply the following conditions on the

shape function Φ(x).

At x ¼ 0,

Φ 0ð Þ ¼ 0,Φ00 0ð Þ ¼ 0 ð17:21Þ

At x ¼ L,
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Φ Lð Þ ¼ 0,Φ00 Lð Þ ¼ 0 ð17:22Þ

The substitution of the first two of these boundary conditions into Eq. (17.20) yields

Φ 0ð Þ ¼ A0þ B1þ C0þ D1 ¼ 0

Φ
00 0ð Þ ¼ a2 �A0� B1þ C0þ D1ð Þ ¼ 0

which reduce to

Bþ D¼ 0

�Bþ D¼ 0

Hence

B ¼ D ¼ 0

Similarly, substituting the last two boundary conditions into Eq. (17.20) and setting B ¼ D ¼ 0 leads

to

Φ Lð Þ ¼ A sin alþ CsinhaL ¼ 0

Φ
00 Lð Þ ¼ a2 �A sin aLþ CsinhaLð Þ ¼ 0 ð17:23Þ

which, when added, give

2C sinh aL ¼ 0

From this last relation, C ¼ 0 since the hyperbolic sine function cannot vanish except for a zero

argument. Thus Eq. (17.23) reduce to

A sin aL ¼ 0 ð17:24Þ

Excluding the trivial solution (A ¼ 0), we obtain the frequency equation

sin aL ¼ 0 ð17:25Þ

which will be satisfied for

anL ¼ nπ, n ¼ 0, 1, 2 . . . ð17:26Þ

Substitution of the roots, Eq. (17.26), into Eq. (17.13) yields

ωn ¼ n2π2
ffiffiffiffiffiffiffiffiffi

EI

�mL4

r

ð17:27Þ

where the subscript n serves to indicate the order of the natural frequencies.

Since B ¼ C ¼ D ¼ 0, it follows that Eq. (17.20) reduces to

Φn xð Þ ¼ A sin
nπx

L

or simply

17.3 Natural Frequencies and Mode Shapes for Uniform Beams 419



Φn xð Þ ¼ sin
nπx

L
ð17:28Þ

We note that in Eq. (17.28) the constant A is absorbed by the other constants in the modal response

given below by Eq. (17.29).

From Eq. (17.7) a modal shape or normal mode of vibration is given by

yn x; tð Þ ¼ Φn xð Þf n tð Þ

or from Eqs. (17.14) and (17.28) by

yn x; tð Þ ¼ sin
nπx

L
An cosωntþ Bn sinωnt½ � ð17:29Þ

The general solution of the equation of motion in free vibration that satisfies the boundary conditions,

Eqs. (17.21) and (17.22), is the sum of all the normal modes of bvibration, Eq. (17.29), namely,

y x; tð Þ ¼
X

1

n¼1

sin
nπx

L
An cosωntþ Bn sinωnt½ � ð17:30Þ

The constants An and Bn are determined, as usual, from the initial conditions. If at t ¼ 0, the shape of

the beam is given by

y x; 0ð Þ ¼ ρ xð Þ

and the velocity by

∂y x; 0ð Þ

∂t
¼ ψ xð Þ

For 0 � x � L, it follows from Eq. (17.30) that

X

1

n¼1

An sin
nπx

L
¼ ρ xð Þ

and

X

1

n¼1

Bnωn sin
nπx

L
¼ ψ xð Þ

Therefore, as shown in Chap. 5, Fourier coefficients are expressed as

An ¼
2

L

ð L

0

ρ xð Þ sin
nπx

L
dx

Bn ¼
2

ωnL

ð L

0

ψ xð Þ sin
nπx

L
dx ð17:31Þ

The first five values for the natural frequencies and normal modes for the simply supported beam are

presented in Table 17.1.
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17.3.2 Both Ends Free (Free Beam)

The boundary conditions for a beam with both ends free are as follows.

At x ¼ 0.

0; tð Þ ¼ 0 or Φ
00 0ð Þ ¼ 0 M

V 0; tð Þ ¼ 0 or Φ
000

0ð Þ ¼ 0 ð17:32Þ

At x ¼ L,

M L; tð Þ ¼ 0 or Φ
00 Lð Þ ¼ 0

V L; tð Þ ¼ 0 or Φ
000

Lð Þ ¼ 0 ð17:33Þ

The substitutions of these conditions in Eq. (17.20) yield

Φ
00 0ð Þ ¼ a2 �Bþ Dð Þ ¼ 0

Φ
000

0ð Þ ¼ a3 �Aþ Cð Þ ¼ 0

and

Φ
00 Lð Þ ¼ a2 �A sin aL� B cos aLþ Csinh aLþ Dcosh aLð Þ ¼ 0

Φ
000

Lð Þ ¼ a3 �A cos aLþ B sin aLþ Ccosh aLþ Dsinh aLð Þ ¼ 0

From the first two equations we obtain

D ¼ B, C ¼ A ð17:34Þ

which, substituted into the last two equations, result in

Table 17.1 Natural frequencies and normal modes for simply supported beams

Natural frequencies

ωn ¼ Cn

ffiffiffiffiffiffiffiffiffi

EI

�mL4

r Normal modes

Φn ¼ sin
nπx

L

n Cn In
a Shape

1 π
2 4/π

L

2 4π2 0 0.500L

3 9π2 4/3π 0.333L

0.666L

4 16π2 0

0.500L

0.750L0.250L

5 25π2 4/5π 0.600L

0.800L0.400L

0.200L

aIn ¼

ð L

0

Φn xð Þdx=

ð L

0

Φ2 xð Þdx
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sinh Al� sin aLð Þ Aþ cosh aL� cos aLð Þ B ¼ 0

cosh aL� cos aLð Þ Aþ sinh aLþ sin aLð Þ B ¼ 0 ð17:35Þ

For nontrivial solution of Eq. (17.35), it is required that the determinant of the unknown coefficients

A and B be equal to zero; hence

sinh aL� sin aL coshaL� cos aL

cosh aL� cos aL sinhaLþ sin aL

�

�

�

�

�

�

�

�

�

�

¼ 0 ð17:36Þ

The expansion of this determinant provides the frequency equation for the free beam, namely

cos aL � coshaL� 1 ¼ 0 ð17:37Þ

The first five natural frequencies which are obtained by substituting the roots of Eq. (17.37) into

Eq. (17.13) are presented in Table 17.2. The corresponding normal modes are obtained by letting

A ¼ 1 (normal modes are determined only to a relative magnitude), substituting in Eq. (17.35) the

roots of an of Eq. (17.37), solving one of these equations for B, and finally introducing into Eq. (17.20)

the constants C, D from Eq. (17.34) together with B. performing these operations, we obtain

Φn xð Þ ¼ coshanxþ cos anx� σn sinhanxþ sin anxð Þ ð17:38Þ

where

σn ¼
coshanL� cos anL

sinhanL� sin anL
ð17:39Þ

17.3.3 Both Ends Fixed

The boundary conditions for a beam with both ends fixed are as follows:

At x ¼ 0,

y 0; tð Þ ¼ 0 or Φ 0ð Þ ¼ 0

y
0
0; tð Þ ¼ 0 or Φ

0

0ð Þ ¼ 0
ð17:40Þ

At x ¼ L,

y L; tð Þ ¼ 0 or Φ Lð Þ ¼ 0

y
0
L; tð Þ ¼ 0 or Φ

0

Lð Þ ¼ 0
ð17:41Þ
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The use of the boundary conditions, Eq. (17.40), into Eq. (17.20) gives

Bþ D ¼ 0 and A� C ¼ 0

while conditions, Eq. (17.41), yield the homogeneous system

cos Al� cosh aLð Þ Bþ sin aL� sinh aLð Þ A ¼ 0

� sin aLþ sinh aLð Þ Bþ cos aL� cosh aLð Þ A ¼ 0 ð17:42Þ

Equating to zero the determinant of the coefficients of this system results in the frequency equation

cos anL cosh anL� 1 ¼ 0 ð17:43Þ

From the first of Eq. (17.42), it follows that

A ¼ �
cos aL� cosh aL

sin aL� sinh aL
B ð17:44Þ

where B is arbitrary. To each value of the natural frequency

ωn ¼ anLð Þ2
ffiffiffiffiffiffiffiffiffi

EI

�mL4

r

ð17:45Þ

obtained by the substitution of the roots of Eq. (17.43) into Eq. (17.13), there corresponds a normal

mode

Φn xð Þ ¼ coshanx� cos anx� σn sinhanx� sin anxð Þ ð17:46Þ

σn ¼
cos anL� coshanL

sin anL� sinhanL
ð17:47Þ

The first five natural frequencies calculated from Eqs. (17.43) and (17.45) and the corresponding

normal modes obtained from Eq. (17.46) are presented in Table 17.3.

Table 17.2 Natural frequencies and normal modes for free beams

Natural frequencies Normal modes

Φn(x) ¼ cosh anx + cos anx � σn(sinhanx + sin anx)

ωn ¼ Cn

ffiffiffiffiffiffiffiffiffi

EI

�mL4

r

σn ¼
coshanL� cos anL

sinhanL� sin anL

n Cn ¼ (anL )
2 σn In

a Shape

1 22.3733 0.982502 0.8308 0.224L

0.776L

2 61.6728 1.000777 0 0.868L0.132L

0.500L

3 120.9034 0.999967 0.3640 0.094L

0.356L

0.644L

0.906L

4 199.8594 1.000001 0 0.073L 0.500L 0.927L

0.723L0.277L

5 298.5555 1.00000 0.2323
0.060L 0.409L 0.774L

0.940L0.591L0.226L

aIn ¼

ð L

0

Φn xð Þdx=

ð L

0

Φ2
n xð Þdx
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17.3.4 One End Fixed and the Other End Free (Cantilever Beam)

At the fixed end (x ¼ 0) of the cantilever beam, the deflection and the slope must be zero, and at the

free end (x¼ L) the bending moment and the shear force must be zero. Hence the boundary conditions

for this beam are as follows.

At x ¼ 0,

y 0; tð Þ ¼ 0 or Φ 0ð Þ ¼ 0

y0 0; tð Þ ¼ 0 or Φ
0 0ð Þ ¼ 0 ð17:48Þ

At x ¼ L,

M L; tð Þ ¼ 0 or Φ
00 Lð Þ ¼ 0

V L; tð Þ ¼ 0 or Φ
000 Lð Þ ¼ 0 ð17:49Þ

These boundary conditions when substituted into the shape equation (17.20) lead to the frequency

equation.

cos anL � coshanLþ 1 ¼ 0 ð17:50Þ

To each root of Eq. (17.50) corresponds a natural frequency

ωn ¼ anLð Þ2
ffiffiffiffiffiffiffi

EI

�mL

r

ð17:51Þ

and a normal shape

Φn xð Þ ¼ coshanx� cos anxð Þ � σn sinhanx� sin anxð Þ ð17:52Þ

where

Table 17.3 Natural frequencies and normal modes for fixed beams

Natural frequencies Normal modes

Φn(x) ¼ cosh anx � cos anx � σn(sinhanx � sin anx)

ωn ¼ Cn

ffiffiffiffiffiffiffiffiffi

EI

�mL4

r

σn ¼
cos anL� coshanL

sin anL� sinhanL

n Cn ¼ (anL )
2 σn In

a Shape

1 22.3733 0.982502 0.8308

L

2 61.6728 1.000777 0 0.500L

3 120.9034 0.999967 0.3640 0.359L
0.641L

4 199.8594 1.000001 0 0.278L
0.500L

0.722L

5 298.5555 1.00000 0.2323
0.773L

0.591L0.227L
0.409L

aIn ¼

ð L

0

Φn xð Þdx=

ð L

0

Φ2
n xð Þdx
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σn ¼
cos anLþ coshanL

sin anLþ sinhanL
ð17:53Þ

The first five natural frequencies and the corresponding mode shapes for cantilever beams are

presented in Table 17.4.

17.3.5 One End Fixed and the Other Simply Supported

The boundary conditions for a beam with one end fixed and the other simply supported are as follows.

At x ¼ 0,

y 0; tð Þ ¼ 0 or Φ 0ð Þ ¼ 0

y0 0; tð Þ ¼ 0 or Φ
0

0ð Þ ¼ 0 ð17:54Þ

At x ¼ L,

y L; tð Þ ¼ 0 or Φ Lð Þ ¼ 0

M L; tð Þ ¼ 0 or Φ
0
0

Lð Þ ¼ 0 ð17:55Þ

The substitution of these boundary conditions into the shape Eq. (17.20) results in the frequency

equation

tan anL-tanhanL ¼ 0 ð17:56Þ

Φn xð Þ ¼ cosh anx� cos anxð Þ þ σn sinhanx� sin anxð Þ ð17:58Þ

where

Table 17.4 Natural frequencies and normal modes for cantilever beams

Natural frequencies Normal modes

Φn ¼ (cosh anx � cos anx) � σn(sinh anx � sin anx)

ωn ¼ Cn

ffiffiffiffiffiffiffiffiffi

EI

�mL4

r

σ ¼
cos anLþ coshanL

sin anLþ sinhanL

n Cn ¼ (anL )
2 σn In

a Shape

1 3.5160 0.734096 0.7830
L

2 22.0345 1.018466 0.4340 0.774L

3 61.6972 0.999225 0.2589 0.501L

0.868L

4 120.0902 1.000033 0.0017 0.356L 0.906L
0.644L

5 199.8600 1.000000 0.0707
0.926L0.500L

0.279L 0.723L

aIn ¼

ð L

0

Φn xð Þdx=

ð L

0

Φ2
n xð Þdx

17.3 Natural Frequencies and Mode Shapes for Uniform Beams 425



σn ¼
cos anL� coshanL

sin anL� sinhanL
ð17:59Þ

The first five natural frequencies for the fixed simply supported beam and corresponding mode shapes

are presented in Table 17.5.

17.4 Orthogonality Condition Between Normal Modes

The most important property of the normal modes is that of orthogonality. It is this property which

makes possible the uncoupling of the equations of motion as it has previously been shown for discrete

systems. The orthogonality property for continuous systems can be demonstrated in essentially the

same way as for discrete parameter systems.

Consider in Fig. 17.2 a beam subjected to the inertial forces resulting from the vibrations of two

different modes,Фm (x) andФn (x). The deflection curves for these two modes and the corresponding

inertial forces are depicted in the same figure. Betti’s law is applied to these two deflection patterns.

Accordingly, the work done by the inertial force. fIn, acting on the displacements of mode m is equal

to the work of the inertial forces, fIm, acting on the displacements of mode n, that is

ð L

0

Φm xð Þf In xð Þdx ¼

ð L

0

Φn xð Þf Im xð Þdx ð17:60Þ

The inertial force fIn per unit length along the beam is equal to the mass per unit length times the

acceleration. Inasmuch as the vibratory motion in a normal mode is harmonic, the amplitude of the

acceleration is given by ω2
nФn(x). Hence the inertial force per unit length along the beam for the nth

mode is

f In ¼ ω2
n �m xð ÞΦn xð Þ

and for the mth mode

Table 17.5 Natural frequencies and normal modes for fixed simply supported beams

Natural frequencies Normal modes

Φ(x) ¼ cosh anx � cos anx + σn(sinh anx � sin anx)

ωn ¼ Cn

ffiffiffiffiffiffiffiffiffi

EI

�mL4

r

σn ¼
cos anL� coshanL

sin anL� sinhanL

n Cn ¼ (anL )
2 σn In

a Shape

1 15.4118 1.000777 0.8600

L

2 49.9648 1.000001 0.0826 0.560L

3 104.2477 1.000000 0.3345 0.384L

0.692L

4 178.2697 1.000000 0.0435 0.765L0.294L
0.529L

5 272.0309 1.000000 0.2076 0.238L
0.429L

0.619L

0.810L

aIn ¼

ð L

0

Φn xð Þdx=

ð L

0

Φ2
n xð Þdx
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f Im ¼ ω2
m �m xð ÞΦm xð Þ ð17:61Þ

Substituting these expressions in Eq. (17.60), we obtain

ω2
n

ð L

0

Φm xð Þ �m xð ÞΦn xð Þdx ¼ ω2
m

ð L

0

Φn xð Þ �m xð ÞΦm xð Þdx

which may be written as

ω2
n � ω2

m

� �

ð L

0

Φm xð ÞΦn xð Þ �m xð Þdx ¼ 0 ð17:62Þ

It follows that, for two different frequencies ωn 6¼ ωm, the normal modes must satisfy the relationship

ð L

0

Φm xð ÞΦn xð Þ �m xð Þdx ¼ 0 ð17:63Þ

which is equivalent to the orthogonal condition between normal modes for discrete parameter

systems, Eq. (10.27).

17.5 Forced Vibration of Beams

For a uniform beam acted on by lateral forces p (x, t), the equation of motion, Eq. (17.5), may be

written as

EI
∂
4
y

∂x4
¼ p x; tð Þ � �m

∂
2
y

∂t2
ð17:64Þ

in which p (x, t) is the external load per unit length along the beam. We assume that the general

solution of this equation may be expressed by the summation of the products of the normal modesФn

(x) multiplied by factors zn (t) which are to be determined. Hence

m(x)

m(x)

n(x)

fIm

fIm = ωm
2 m(x)

m (x)

fIn

x

x x

x

n(x)

fIn = ωm
2 m(x)

n (x)

(a)

(b)

Fig. 17.2 Beam showing two modes of vibration and inertial forces. (a) Displacements. (b) Inertial forces
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y x; tð Þ ¼
X

1

n¼1

Φn xð Þzn tð Þ ð17:65Þ

The normal modes Фn (x) satisfy the differential Eq. (17.10), which by Eq. (17.12) may be written as

EIΦ IV
n xð Þ ¼ �mω2

nΦn xð Þ, n ¼ 1, 2, 3 . . . ð17:66Þ

The normal modes should also satisfy the specific force boundary conditions at the ends of the beam.

Substitution of Eq. (17.65) in Eq. (17.64) gives

EI
X

n

Φ
IV
n xð Þzn tð Þ ¼ p x; tð Þ � �m

X

n

Φn xð Þ€zn tð Þ ð17:67Þ

In view of Eq. (17.66), we can write Eq. (17.67) as

X

n

�mω2
nϕn xð Þzn tð Þ ¼ p x; tð Þ � �m

X

n

Φn xð Þ€zn tð Þ ð17:68Þ

Multiplying both sides of Eq. (17.68) by Фn (x) and integrating between 0 and L result in

ω2
mzm tð Þ

ð L

0

�mΦ2
m xð Þdx ¼

ð L

0

ϕm xð Þp x; tð Þ � €zm tð Þ

ð L

0

�mΦ2
m xð Þdx ð17:69Þ

We note that all the terms that contain products of different indices (n 6¼ m) vanish from the

summations in Eq. (17.68) in view of the orthogonality conditions, Eq. (17.63), between normal

modes. Equation (17.69) may conveniently be written as

Mn€zn tð Þ þ ω2
nMnzn tð Þ ¼ Fn tð Þ, n ¼ 1, 2, 3 . . . , m, . . . ð17:70Þ

where

Mn ¼

ð L

0

�mΦ2
n xð Þdx ð17:71Þ

is the modal mass, and

Fn tð Þ ¼

ð L

0

Φn xð Þp x; tð Þdx ð17:72Þ

is the modal force.

The equation of motion for the nth normal mode, Eq. (17.70), is completely analogous to the

modal equation, Eq. (12.9), for discrete systems. Modal damping could certainly be introduced by

simply adding the damping term in Eq. (17.70); hence we would obtain

Mn€zn tð Þ þ Cn _z n tð Þ þ Knzn tð Þ ¼ Fn tð Þ ð17:73Þ

which, upon dividing by Mn, gives

€zn tð Þ þ 2ξnωn _z n tð Þ þ ω2
nzn tð Þ ¼

Fn tð Þ

Mn

ð17:74Þ

where ξn ¼ cn/cn,cr is the modal damping ratio and Kn ¼ Mnω
2
n is the modal stiff- ness. The total

response is then obtained from Eq. (17.65) as the superposition of the solution of the modal
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Eq. (17.74) for as many modes as desired. Though the summation in Eq. (17.65) is over an infinite

number of terms, in most structural problems only the first few modes have any significant contribu-

tion to the total response and in some cases the response is given essentially by the contribution of the

first mode alone.

The modal Eq. (17.74) is completely general and applies to beams with any type of load

distribution If the loads are concentrated rather than distributed, the integral in Eq. (17.72) merely

becomes a summation having one term for each load. The computation of the integral in Eqs. (17.71)

and (17.72) becomes tedious except for the simply supported beam because the normal shapes are

rather complicated functions. Values of the ratios of these integrals needed for problems with uniform

distributed load are presented in the last columns of Tables 17.1, 17.2, 17.3, 17.4, and 17.5 for some

common types of beams.

Illustrative Example 17.1

Consider in Fig. 17.3 a simply supported uniform beam subjected to a concentrated constant force

suddenly applied at a section XI units from the left support. Determine the response using modal

analysis. Neglect damping.

Solution:

The modal shapes of a simply supported beam by Eq. (17.28) are

Φn ¼ sin
nπx

L
, n ¼ 1, 2, 3 . . . ðaÞ

and the modal force by Eq. (17.72)

Fn tð Þ ¼

ð L

0

Φn xð Þp x; tð Þdx

In this problem p (x, t) ¼ P0 at x ¼ x1; otherwise, p (x, t) ¼ 0. Hence

Fn tð Þ ¼ P0Φn x1ð Þ

or using Eq. (a), we obtain

Fn tð Þ ¼ P0 sin
nπx1

L
ðbÞ

The modal mass by Eq. (17.71) is

Fig. 17.3 Simply support beam subjected to a suddenly applied force
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Mn ¼
Ð L

0
�mΦ

2 xð Þdx

¼
Ð L

0
�m sin 2

nπx

L
dx ¼

�mL

2

ðcÞ

Substituting the modal force, Eq. (b), and the modal mass, Eq. (c), into the modal Eq. (17.70) results in

€zn tð Þ þ ω2
nzn tð Þ ¼

P0 sin nπx1=Lð Þ

�mL=2
ðdÞ

For initial conditions of zero displacement and zero velocity, the solution of Eq. (d) from Eq. (4.5) is

zn ¼ zstð Þn 1� cosωntð Þ ðeÞ

in which

zstð Þn ¼
2P0 sin nπx1=Lð Þ

ω2
n �mL

ðfÞ

so that

zn ¼
2P0 sin nπx1=Lð Þ

ω2
n �mL

1� cosωntð Þ ðgÞ

The modal deflection at any section of the beam is

yn x; tð Þ ¼ Φn xð Þzn tð Þ ðhÞ

which, upon substitution of Eqs. (a) and (g), becomes

yn x; tð Þ ¼
2P0 sin nπx1=Lð Þ

ω2
n �mL

1� cosωntð Þ sin
nπx

L
ðiÞ

By Eq. (17.65), the total deflection is then

y x; tð Þ ¼
2P0

�mL

X

n

1

ω2
n

sin
nπx1

L
1� cosωntð Þ sin

nπx

L

� 	

ðjÞ

As a special case, let us consider the force applied at midspan, i.e.,. x1¼ L/2Hence Eq. (j) becomes in

this case

y x; tð Þ ¼
2P0

�mL

X

n

1

ω2
n

sin
nπ

2
1� cosωntð Þ sin

nπx

L

� 	

ð17:75Þ

From the latter (due to the presence of the factor sin nπ/2) it is apparent that all the even modes do not

contribute to the deflection at any point. This is true because such modes are antisymmetrical (shapes

in Table 17.1) and are not excited by a symmetrical load.

It is also of interest to compare the contribution of the various modes to the deflection at midspan.

This comparison will be done on the basis of maximum modal displacement disregarding the manner

in which these displacements combine. The amplitudes will indicate the relative importance of the

modes. The dynamic load factor (1 � cos ωnt) in Eq. (17.75) has a maximum value of 2 for all the

modes. Furthermore, since all sines are unity for odd modes and zero for even modes, the modal

contributions are simply in proportion to 1/ω2n. Hence, from Table 17.1 the maximum modal

deflections are in proportion to 1, 1/81, and 1/625 for the first, third, and fifth modes, respectively.

It is apparent, in this example, that the higher modes contribute very little to the midspan deflection.
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Illustrative Example 17.2

Determine the maximum deflection at the midpoint of the fixed beam shown in Fig. 17.4 subjected to

a harmonic load p(x, t) ¼ p0 sin 300 t lb/in uniformly distributed along the span. Consider in the

analysis the first three modes contributing to the response.

Solution:

The natural frequencies for uniform beams are given by Eq. (17.13) as

ωn ¼ Cn

ffiffiffiffiffiffiffiffiffi

EI

�mL4

r

or, substituting numerical values for this example, we get

ωn ¼ Cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

30� 108

0:1 240ð Þ4

s

ðaÞ

where the values of Cn are given for the first five modes in Table 17.3. The deflection of the beam is

given by Eq. (17.65) as

y x; tð Þ ¼
X

1

n¼1

Φn xð Þzn tð Þ ðbÞ

in which Фn(x) is the modal shape defined for a fixed beam by Eq. (17.46) and zn(t) is the modal

response.

The modal equation by Eq. (17.70) (neglecting damping) may be written as

€zn tð Þ þ ω2
nzn tð Þ ¼

Ð L

0
p x; tð Þϕn xð Þdx
Ð L

0
�mϕ2

n xð Þdx

Then, substituting numerical values to this example, we obtain

€zn tð Þ þ ω2
nzn tð Þ ¼

200
Ð L

0
ϕn xð Þdx

0:1
Ð L

0
ϕ2
n xð Þdx

or

€zn tð Þ þ ω2
nzn tð Þ ¼ 2000In sin 300t ðcÞ

Fig. 17.4 Fixed beam with uniform harmonic load
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in which

In ¼

Ð L

0
ϕn xð Þdx

Ð L

0
ϕ2
n xð Þdx

is given for the first five modes in Table 17.3. The modal steady-state response is

zn tð Þ ¼
2000In

ω2
n � 300ð Þ2

sin 300t ðdÞ

The numerical calculations are conveniently presented in Table 17.6.

The deflections at midspan of the beam are then calculated from Eq. (b) and values in Table 17.6 as

y
L

2
0 t

� �

¼ 1:588ð Þ �0:0194ð Þ þ �1:410ð Þ 0:0173ð Þ þ 1:414ð Þ 0:00065ð Þ½ � sin 300t

y
L

2
0 t

� �

¼ �0:0541 sin 300t inð Þ

17.6 Dynamic Stresses in Beams

To determine stresses in beams, we apply the following well-known relationships for bending

moment M and shear force V. namely

M ¼ EI
∂
2
y

∂x2

V ¼
∂M

∂x
¼ EI

∂
3
y

∂x3

Therefore, the calculation of the bending moment or the shear force requires only differentiation of

the deflection function y ¼ y (x, t) with respect to x. For example, in the case of the simple supported

beam with a concentrated load suddenly applied at its center, differentiation of the deflection

function, Eq. (17.75), gives

M ¼ �
2π2P0EI

�mL3

X

n

n2

ω2
n

sin
nπ

2
1� cosωntð Þ sin

nπx

L

� 	

ð17:76Þ

Table 17.6 Modal response at midspan for the beam in Fig. 17.4

Mode ωn
rad
sec

� �

anL In
zn ¼

2000In

ω2
n � ω2

inð Þ
Φn x ¼ L

2

� �

1 67.28 4.730 0.8380 �0.0194 1.588

2 185.45 7.853 0 0 0

3 363.56 10.996 0.3640 0.0173 �1.410

4 600.98 14.137 0 0 0

5 897.76 17.279 0.2323 0.00065 1.414
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V ¼ �
2π2P0EI

�mL4

X

n

n3

ω2
n

sin
nπ

2
1� cosωntð Þ sin

nπx

L

� 	

ð17:77Þ

We note that the higher modes are increasingly more important for moments than for deflections and

even more so for shear force, as indicated by the factors 1, n2, and n3, respectively, in Eqs. (17.75),

(17.76), and (17.77).

To illustrate, we compare the amplitudes for the first and third modes at their maximum values.

Noting that ω2
n is proportional to n4 [Eq. (17.27)], we obtain from Eqs. (17.75), (17.76), and (17.77)

the following ratios:

y1
y3

¼ 34 ¼ 81

M1

M3

¼ 32 ¼ 9

V1

V3

¼ 3

This tendency in which higher modes have increasing importance in moment and shear calculation is

generally true of beam response.

In those cases in which the first mode dominates the response, it is possible to obtain approximate

deflections and stresses from static values of these quantities amplified by the dynamic load factor.

For example, the maximum deflection of a simple supported beam with a concentrated force at

midspan may be closely approximated by

y x ¼
L

2

� �

¼
P0L

3

48EI
1� cosω1tð Þ

If we consider only the first mode, the corresponding value given by Eq. (17.75) is

y x ¼
L

2

� �

¼
2P0

�mLω2
1

1� cosω1tð Þb

Since, by Eq. (17.12). ω2
1 ¼ πEI= �mL4. It follows that

y x ¼
L

2

� �

¼
2P0L

3

π4EI
1� cosω1tð Þb

¼
P0L

3

48:7EI
1� cosω1tð Þ

The close agreement between these two computations is due to the fact that static deflections can also

be expressed in terms of modal components, and for a beam supporting a concentrated load at

mid-span the first mode dominates both static and dynamic response.

17.7 Summary

The dynamic analysis of single-span beams with distributed properties (mass and elasticity) and

subjected to flexural loading was presented in this chapter. The extension of this analysis to multi-

span or continuous beams and other structures, though possible, becomes increasingly complex and

17.7 Summary 433



impractical. The results obtained from these single-span beams are particularly important in

evaluating approximate methods based on discrete models, as those presented in preceding chapters.

From such evaluation, it has been found that the stiffness method of dynamic analysis in conjunction

with the consistent mass formulation provides in general satisfactory results even with a rather coarse

discretization of the structure.

The natural frequencies and corresponding normal modes of single-span beams with different

supports are determined by solving the differential equation of motion and imposing the

corresponding boundary conditions. The normal modes satisfy the orthogonality condition between

any two modes m and n, namely,

ð L

0

ϕm xð Þϕn xð Þ �mdx ¼ 0 m 6¼ nð Þ

The response of a continuous system may be determined as the superposition of modal contributions,

that is

y x; tð Þ ¼
X

n

ϕn xð Þzn tð Þ

where zn (t) is the solution of n modal equation

Illustrative Example 17.2

in which

Fn tð Þ ¼

ð L

0

ϕn xð Þp x; tð Þdx

and

Mn ¼

ð L

0

�mϕ2
n xð Þdx

The bending moment M and the shear for V at any section of a beam are calculated from the well-

known relations

M ¼ EI
∂
2
y

∂x2

V ¼ EI
∂
3
y

∂x3

17.8 Problems

Problem 17.1

Determine the first three natural frequencies and corresponding nodal shapes of a simply supported

reinforced concrete beam having a cross section 10 in wide by 24 in deep with a span of 36 ft. Assume

the flexural stiffness of the beam, EI ¼ 3.5 � 109 lb*in2 and weight per unit volume W ¼ 150 lb/ft3.

(Neglect shear distortion and rotary inertia.)
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Problem 17.2

Solve Problem 17.1 for the beam with its two ends fixed.

Problem 17.3

Solve Problem 17.1 for the beam with one end fixed and the other simply supported.

Problem 17.4

Determine the maximum deflection at the center of the simply supported beam of Problem 17.1 when

a constant force of 2000 lb is suddenly applied at 9 f. from the left support.

Problem 17.5

A simply supported beam is prismatic and has the following properties: �m ¼ 0:3 lb∗ sec 2 /in per inch

of span, El ¼ 106 lb*in2, and L¼ 150 in. The beam is subjected to a uniform distributed static load p0
which is suddenly removed. Write the series expression for the resulting free vibration and deternline

the amplitude of the first mode in terms of p0.

Problem 17.6

The beam of Problem 17.5 is acted upon by a concentrated force given by P(t) ¼ 1000 sin 500 t lb

applied at its midspan. Determine the amplitude of the steady-state motion at a quarter point from the

left support in each of the first two modes. Neglect dampin.

Problem 17.7

Solve Problem 17.6 assuming 10% of critical damping in each mode. Also determine the steady-state

motion at the quarter point considering the first t modes.

Problem 17.8

The cantilever beam shown in Fig. P17.8 is prismatic and has the following properties: �m ¼ 0.5

lb*sec2 /in per inch of span, E ¼ 30 � 106 psi, L ¼ 100 in. and I ¼ 120 in4. Considering only the first

mode, compute the maximum deflection and the maximum dynamic bending moment in the beam

due to the load time function of Fig. P17.8b. (Chart in Fig. 4.5 may be used.)

Problem 17.9

A prismatic simply supported beam of the following properties: L¼ 120 in. EI¼ 107 lb*in2, and �m¼
0.5 lb*sec2/in per inch of span is loaded as shown in Fig. P17.9. Write the series expression for the

deflection at the midsection of the beam.

P(t ) P(t )

5000 Ib.

L

0.05
t sec

(a) (b)

Fig. P17.8
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Problem 17.10

Assuming that the forces on the beam of Problem 17.9 are applied for only a ime duration td¼ 0.1 sec.

and considering only the first mode, determine the maximum deflection at each of the load points of

the beam. (Chart in Fig. 4.4 may be used.)

Problem 17.11

A prismatic beam with its two ends fixed has the following properties: L ¼ 180 in. EI ¼ 30 � 108

lb*in2, �m ¼ 1 lb*sec2/in per inch of span. The beam is acted upon by a uniformly distributed

impulsive force p(x, t) ¼ 2000 sin 400 t lb during a time interval equal to half of the period of the

sinusoidal load function (td ¼ π/400 sec). Considering only the first mode, determine the maximum

deflection at the midsection. (Chart in Fig. 5.3 may be used.)

Problem 17.12

Solve Problem 17.11 considering the first two modes.

P(t ) P(t ) P(t )

60 in. 15 in.

(a) (b)

15 in.

3000 Ib

t sec

Fig. P17.9
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Discretization of Continuous Systems 18

The modal superposition method of analysis was applied in the preceding chapter to some simple

structures having distributed properties. The determination of the response by this method requires

the evaluation of several natural frequencies and corresponding mode shapes. The calculation of these

dynamic properties is rather laborious, as we have seen, even for simple structures such as one-span

uniform beams. The problem becomes increasingly more complicated and unmanageable as this

method of solution is applied to more complex structures. However, the analysis of such structures

becomes relatively simple if for each segment or element of the structure the properties are expressed

in terms of dynamic coefficients much in the same manner as done previously when static deflection

functions were used as an approximation to dynamic deflections in determining stiffness, mass, and

other coefficients.

In this chapter the dynamic coefficients relating harmonic forces and displacements at the nodal

coordinates of a beam segment are obtained from dynamic deflection functions. These coefficients

can then be used to assemble the dynamic matrix for the whole structure by the direct method as

shown in the preceding chapters for assembling the system stiffness and mass matrices. Also, in the

present chapter, the mathematical relationship between the dynamic coefficients based on dynamic

displacement functions and the coefficients of the stiffness and consistent mass matrices derived from

static displacement functions is established.

18.1 Dynamic Matrix for Flexural Effects

As in the case of static influence coefficients (stiffness coefficients, for example), the dynamic

influence coefficients also relate forces and displacements at the nodal coordinates of a beam element.

The difference between the dynamic and static coefficients is that the dynamic coefficients refer to

nodal forces and displacements that vary harmonically while the static coefficients relate static forces

and displacements at the nodal coordinates. The dynamic influence coefficient Sij is then defined as

the harmonic force of frequency ϖ at nodal coordinates i, due to a harmonic displacement of unit

amplitude and of the same frequency at nodal coordinate j.

To determine the expressions for the various dynamic coefficients for a uniform beam element as

shown in Fig. 18.1, we refer to the differential equation of motion, Eq. (17.5), which in the absence of

external loads in the span, that is, p (x, t) ¼ 0, is
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EI
∂
4
y

∂x4
þ �m

∂
2
y

∂ t2
¼ 0 ð18:1Þ

For harmonic boundary displacements of frequency ϖ, we introduce in Eq. (18.1) the trial solution

y x; tð Þ ¼ Φ xð Þ sinω t ð18:2Þ

Substitution of Eq. (18.2) into Eq. (18.1) yields

Φ
IV xð Þ � �a4Φ xð Þ ¼ 0 ð18:3Þ

where

�a4 ¼
�mω2

EI
ð18:4Þ

We note that Eq. (18.3) is equivalent to Eq. (17.10), which is the differential equation for the shape

function of a beam segment in free vibration. The difference between these two equations is that

Eq. (18.3) is a function of the parameter �awhich, in turn, is a function of the forcing frequency ϖwhile

“a” in (17.10) depends on the natural frequency ω. The solution of Eq. (18.3) is of the same form as

the solution of Eq. (17.10). Thus by analogy with Eq. (17.20), we can write.

Φ xð Þ ¼ C1 sin �axþ C2 cos �axþ C3sinh�axþ C4cosh�ax ð18:5Þ

Now, to obtain the dynamic coefficient for the beam segment, boundary conditions indicated by

Eqs. (18.6) and (18.7) are imposed:

Φ 0ð Þ ¼ δ1, Φ Lð Þ ¼ δ3
Φ

0

0ð Þ ¼ δ2, Φ
0

Lð Þ ¼ δ4
ð18:6Þ

Also

Φ
000

0ð Þ ¼
P1

EI
, Φ

000

Lð Þ ¼ �
P3

EI

Φ
00

0ð Þ ¼ �
P2

EI
, Φ

00

Lð Þ ¼
P4

EI

ð18:7Þ

In Eqs. (18.6), δ1, δ2, δ3, and δ4 are amplitudes of linear and angular harmonic displacements at the

nodal coordinates while in Eqs. (18.7) P1, P2, P3, and P4 are the corresponding harmonic forces and

moments as shown in Fig. 18.1. The substitution of the boundary conditions, Eqs. (18.6) and (18.7),

into Eq. (18.5) results in

Fig. 18.1 Nodal coordinates of a flexural beam segment
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δ1
δ2
δ3
δ4

2

6

6

4

3

7

7

5

¼

0 1 0 1

�a 0 �a 0

s c S C

�ac ��as �aC �aS

2

6

6

4

3

7

7

5

C1

C2

C3

C4

2

6

6

4

3

7

7

5

ð18:8Þ

and

P1

P2

P3

P4

2

6

6

4

3

7

7

5

¼ EI

��a3 0 �a3 0

0 �a2 0 ��a2

�a3c ��a3s ��a3C ��a3S

�a2s ��a2c �a2S �a2C

2

6

6

4

3

7

7

5

C1

C2

C3

C4

2

6

6

4

3

7

7

5

ð18:9Þ

in which

s ¼ sin �aL, S ¼ sinh�aL

c ¼ cos �aL, C ¼ cosh�aL
ð18:10Þ

Next, Eq. (18.8) is solved for the constants of integration C1, C2, C3, and C4, which are subsequently

substituted into Eq. (18.9). We thus obtain the dynamic matrix relating harmonic displacements and

harmonic forces at the nodal coordinate of the beam element, namely.

P1

P2

P3

P4

2

6

6

6

6

4

3

7

7

7

7

5

¼ B

�a2 cSþ sCð Þ Symmetric

�asS sC� cS

��a2 sþ Sð Þ �a c� Cð Þ �a2 cSþ sCð Þ

�a C� cð Þ S� s ��asS sC� cS

2

6

6

6

6

4

3

7

7

7

7

5

δ1

δ2

δ3

δ4

2

6

6

6

6

4

3

7

7

7

7

5

ð18:11Þ

where

B ¼
�aEI

1� cC
ð18:12Þ

We require the denominator to be different from zero, that is,

1� cos �aLcosh�aL 6¼ 0 ð18:13Þ

The element dynamic matrix in Eq. (18.11) can then be used to assemble the system dynamic matrix

for a continuous beam or a plane frame in a manner entirely analogous to the assemblage of the

system stiffness matrix from element stiffness matrices.

18.2 Dynamic Matrix for Axial Effects

The governing equation for axial vibration of a beam element is obtained by establishing the dynamic

equilibrium of a differential element dx of the beam, as shown in Fig. 18.2. Thus

Pþ
∂P

∂x
dx

� �

� P�
�

�mdx
�∂

2
u

∂ t2
¼ 0

∂P

∂x
¼ �m

∂
2
u

∂ t2

ð18:14Þ
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where u is the displacement at x. The displacement at x + dx will then be u + (∂u/∂x) dx. It is evident

that the element dx in the new position has changed length by an amount (∂u/∂x) dx, and thus the

strain is ∂u/∂x. Since from Hooke’s law the ratio of stress to strain is equal to the modulus of

elasticity E, we can write

∂u

∂x
¼

P

AE
ð18:15Þ

where A is the cross-sectional area of the beam. Differentiating with respect to x results in

AE
∂
2
u

∂x2
¼
∂P

∂x
ð18:16Þ

and combining Eqs. (18.14) and (18.16) yields the differential equation for axial vibration of a beam

segment, namely,

∂
2
u

∂x2
�

�m

AE

∂
2
u

∂ t2
¼ 0 ð18:17Þ

A solution of Eq. (18.17) of the fond

u x; tð Þ ¼ U xð Þ sinω t ð18:18Þ

will result in a harmonic motion of amplitude

U xð Þ ¼ C1 sin bxþ C2 cos bx ð18:19Þ

where

b ¼

ffiffiffiffiffiffiffiffiffiffi

�mω2

AE

r

ð18:20Þ

and C1 and C2 are constants of integration.

To obtain the dynamic matrix for the axially vibrating beam segment, boundary conditions

indicated by Eqs. (18.21) and (18.22) are imposed, namely.

U 0ð Þ ¼ δ1, U Lð Þ ¼ δ2 ð18:21Þ

U
0

0ð Þ ¼ �
P1

AE
, U

0

Lð Þ ¼
P2

AE
ð18:22Þ

where δ1 and δ2 are the displacements and P1 and P2 are the forces at the nodal coordinates of the

beam segment as shown in Fig. 18.2.

Fig. 18.2 Axial effects on a beam. (a) Nodal axial coordinates. (b) Forces acting on a differential element
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Substitution of the boundary conditions, Eqs. (18.21) and (18.22), into Eq. (18.19) results in

δ1
δ2

� �

¼
0 1

sin bL cos bL

� �

C1

C2

� �

ð18:23Þ

and

P1

P2

� �

¼ AEb
�1 0

cos bL � sin bL

� �

C1

C2

� �

ð18:24Þ

Then, solving Eq. (18.23) for the constants of integration, we obtain

C1

C2

� �

¼
� cot bL cosec bL

1 0

� �

δ1
δ2

� �

ð18:25Þ

subject to the condition

sin bL 6¼ 0 ð18:26Þ

Finally, the substitution of Eq. (18.25) into Eq. (18.24) results in Eq. (18.27) relating harmonic forces

and displacement at the nodal coordinates through the dynamic matrix for an axially vibrating beam

segment. Thus we have.

P1

P2

� �

¼ EAb
cot bL � cosec bL

� cosec bL cot bL

� �

δ1
δ2

� �

ð18:27Þ

18.3 Dynamic Matrix for Torsional Effects

The equation of motion of a beam segment in torsional vibration is similar to that of the axial

vibration of beams discussed in the preceding section. Let x (Fig. 18.3) be measured along the length

of the beam. Then the angle of twist for any element of length dx of the beam due to a torque T is

dθ ¼
T dx

JTG
ð18:28Þ

where JTG is the torsional stiffness given by the product of the torsional constant JT (JT is the polar

moment of inertial for circular sections) and the shear modulus of elasticity G. The torque applied on

the faces of the element are T and T + (∂T/∂x) dx as shown in Fig. 18.3. From Eq. (18.28), the net

torque is then

∂T

∂x
dx ¼ JTG

∂
2
θ

∂x2
dx ð18:29Þ

Equating this torque to the product of the mass moment of inertia I �m of the element dx and the angular

acceleration ∂2
θ/∂t2, we obtain the differential equation of motion

JTG
∂
2
θ

∂x2
dx ¼ I �m

∂
2
θ

∂ t2
dx

or
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∂
2
θ

∂x2
�

I �m

JTG

∂
2
θ

∂ t2
¼ 0 ð18:30Þ

where I �m is the mass moment of inertia per unit length about the longitudinal axis x given by

I �m ¼ �m
I0

A
ð18:31Þ

in which I0 is the polar moment of inertia of the cross-sectional area A.

We seek a solution of Eq. (18.30) in the form

θ x; tð Þ ¼ θ xð Þ sinω t

which, upon substitution into Eq. (18.30), results in a harmonic torsional motion of amplitude

θ xð Þ ¼ C1 sin cxþ C2 cos cx ð18:32Þ

in which

c ¼

ffiffiffiffiffiffiffiffiffiffi

I �mω2

JTG

s

ð18:33Þ

For a circular section, the torsional constant JT is equal to the polar moment of inertia I0. Thus

Eq. (18.33) reduces to

c ¼

ffiffiffiffiffiffiffiffiffiffi

�mω2

AG

r

ð18:34Þ

Since I �m ¼ I0 �m=A as indicated by Eq. (18.31).

We note that Eq. (18.30) for torsional vibration is analogous to Eq. (18.17) for axial vibration of

beam segments. It follows that by analogy to Eq. (18.27) we can write the dynamic relation between

torsional moments and rotations in a beam segment. Hence

T1

T2

� �

¼ JTGc
cot cL � cos eccL

� cos eccL cot cL

� �

θ1
θ2

� �

ð18:35Þ

T1,q1 T2,q2

x dx

T

T +

¶2q

¶T

¶x
dx

dx

dt2
dxIm

(a)

(b)

Fig. 18.3 Torsional effects on a beam. (a) Nodal torsional coordinates. (b) Moments acting on a differential element
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18.4 Beam Flexure Including Axial-Force Effect

When a beam is subjected to a force along its longitudinal axis in addition to lateral loading, the

dynamic equilibrium equation for a differential element of the beam is affected by the presence of this

force. Consider the beam shown in Fig. 18.4 in which the axial force is assumed to remain constant

during flexure with respect to both magnitude and direction. The dynamic equilibrium for a differen-

tial element dx of the beam (Fig. 18.4b) is established by equating to zero both the sum of the forces

and the sum of the moments.

Summing forces in the y direction, we obtain

V þ p x; tð Þdx� V þ
∂V

∂x
dx

� �

�
�

�m dx
�∂

2
y

∂ t2
¼ 0 ð18:36Þ

which, upon reduction, yields

∂V

∂x
þ �m

∂
2
y

∂ t2
¼ p x; tð Þ ð18:37Þ

The summation of moments about point 0 gives

M þ Vdx� M þ
∂M

∂x

� �

þ
1

2
p x; tð Þ � �m

∂
2
y

∂ t2

 !

dx2 � N
∂y

∂x
dx ¼ 0 ð18:38Þ

Discarding higher order terms, we obtain for the shear force the expression

V ¼ N
∂y

∂x
þ
∂M

∂x
ð18:39Þ

Then using the familiar relationship from bending theory,

M ¼ EI
∂
2
y

∂x2
ð18:40Þ

and combining Eqs. (18.37), (18.39), and (18.40), we obtain the equation of motion of a beam

segment including the effect of the axial forces, that is,

EI
∂
4
y

∂x4
þ N

∂
2
y

∂x2
þ �m

∂
2
y

∂ t2
¼ p x; tð Þ ð18:41Þ

A comparison of Eqs. (18.41) and (17.5) reveals that the presence of the axial force gives rise to an

additional transverse force acting on the beam. As indicated previously in Sect. 17.1, in the derivation

of Eq. (18.41) it has been assumed that the deflections are small and that the deflections due to shear

forces or rotary inertia are negligible.

In the absence of external loads applied to the span of the beam, Eq. (18.41) reduces to

EI
∂
4
y

∂x4
þ N

∂
2
y

∂x2
þ �m

∂
2
y

∂ t2
¼ 0 ð18:42Þ

The solution of Eq. (18.42) is found as before by substituting

y x; tð Þ ¼ Φ xð Þ sinω t ð18:43Þ
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We thereby obtain the ordinary differential equation

d4Φ

d x4
þ

N

EI

d2Φ

d x2
�

�mω2

EI
Φ ¼ 0 ð18:44Þ

The solution of Eq. (18.44) is

Φ xð Þ ¼ A sin p2xþ B cos p2xþ Csinhp1xþ Dcoshp1x ð18:45Þ

Where A, B, C, and D are constants of integration and

p1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�α

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α

2

	 
2

þ β

r

s

p2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α

2

	 
2

þ β

r

s

ð18:46Þ

α ¼
N

EI
ð18:47Þ

β ¼
�mω2

EI
ð18:48Þ

To obtain the dynamic matrix (which in this case includes the effect of axial forces) for the transverse

vibration of the beam element, the boundary conditions, Eqs. (18.49), are imposed, namely

Φ 0ð Þ ¼ δ1, Φ Lð Þ ¼ δ3

dΦ 0ð Þ

dx
¼ δ2,

dΦ Lð Þ

dx
¼ δ4

N

(a)

(b)

y (x1t )

P (x1t )

P(x, t)dx

M
N

N

(mdx)

V +

M +

V

0

dx

dx

dx

dx

¶2y

¶V

¶M

¶x

¶x

dt 2

N x

x

Fig. 18.4 Beam supporting constant axial force and lateral dynamic load. (a) Loaded beam. (b) Forces acting on a

differential element
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d3Φ 0ð Þ

dx3
¼

P1

EI
�

N

EI
δ2,

d3Φ Lð Þ

dx3
¼ �

P3

EI
�

N

EI
δ4

d3Φ 0ð Þ

dx3
¼ �

P2

EI
,

d2Φ Lð Þ

dx2
P4

EI

ð18:49Þ

In Eqs. (18.49) δ1, δ3 and δ2, δ4 are, respectively, the transverse and angular displacements at the ends

of the beam, while P1, P3 and P2, P4 are corresponding forces and moments at these nodal

coordinates. The substitution into Eq. (18.45) of the boundary conditions given by Eqs. (18.49)

results in a system of eight algebraic equations which upon elimination of the four constants of

integration A, B, C, and D yields the dynamic matrix (including the effect of axial forces) relating

harmonic forces and displacements at the nodal coordinates of a beam segment. The final result is

P1

P2

P3

P4

2

6

6

6

6

4

3

7

7

7

7

5

¼

S11 Symmetric

S21 S22

S31 S32 S33

S41 S42 S43 S44

2

6

6

6

6

4

3

7

7

7

7

5

δ1

δ2

δ3

δ4

2

6

6

6

6

4

3

7

7

7

7

5

ð18:50Þ

where

S11 ¼ S33 ¼ B p21p
3
2 þ p41p2

� �

cSþ p1p
4
2 þ p31p

2
2

� �

sC
� �

S21 ¼ �S43 ¼ B p1p
3
2 � p31p2

� �

þ p31p2 � p1p
3
2

� �

cCþ 2p22p
2
2sS

� �

S22 ¼ S44 ¼ B p22p1 þ p31
� �

sC� p32 þ p21p2
� �

cS
� �

S41 ¼ �S32 ¼ B p1p
3
2 þ p31p2

� �

C� cð Þ
� �

S31 ¼ B �p21p
3
2 � p41p2

� �

S� p31p
2
2 þ p1p

4
2

� �

s
� �

S42 ¼ B p21p2 þ p32
� �

S� p1p
2
2 þ p31

� �

s
� �

ð18:51Þ

In the above, the letters s, c, S, and C denote

s ¼ sin p2L, S ¼ sinhp1L

c ¼ cos p2L, C ¼ coshp1L

and the letter B denotes

B ¼
EI

2p1p2 � 2p1p2cCþ p21 � p22
� �

sS
ð18:52Þ

Furthermore, Eq. (18.50) is subject to the condition

2p1p2 � 2p1p2cCþ p21 � p22
� �

sS 6¼ 0 ð18:53Þ

18.5 Power Series Expansion of the Dynamic Matrix for Flexural Effects

It is of interest to demonstrate that the influence coefficients of the stiffness matrix, Eq. (10.20), and of

the consistent mass matrix, Eq. (10.34), may be obtained by expanding the influence coefficients of

the dynamic matrix in a Taylor’s series (Paz 1973). For the sake of the discussion, we consider the

dynamic coefficient from the second row and first column of the dynamic matrix, Eq. (18.11),
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S21 ¼
a2EI sin �aLsinh�aL

1� cos �aLcosh�aL
ð18:54Þ

In the following derivation, operations with power series, including addition, subtraction, multiplica-

tion, and division, are employed. The validity of these operations and convergence of the resulting

series is proved in Knopp.1 In general, convergent power series may be added, subtracted, or

multiplied and the resulting series will converge at least in the common interval of convergence of

the two original series. The operation of division of two power series may be carried out formally;

however, the determination of the radius of convergence of the resulting series is more complicated. It

requires the use of theorems in the field of complex variables and it is related to analytical continua-

tion. Very briefly, it can be said that the power series obtained by division of two convergent power

series about a complex point Z0will be convergent in a circle with center Z0 and of radius given by the

closest singularity to Z0 of the functions represented by the series in the numerator and denominator.

The known expansions in power series about the origin of trigonometric and hyperbolic functions

are used in the intermediate steps in expanding the function in Eq. (18.54), namely,

cos x coshx ¼ 1�
x4

6
þ

x8

2520
�

x12

7, 484, 400
þ . . .

1� cos x cosh xð Þ�1 ¼
6

x4
þ

1

70
þ

85x4

2, 910, 600
þ . . .

sin x sinh x ¼ x2 �
x6

90
þ

x10

113, 400
� . . .

where x ¼ �aL. Substitution of these series equations in the dynamic coefficient, Eq. (18.54), yields

S21 ¼
�a2EI sin �aL sinh �aL

1� cos �aLcosh �aL
¼

6EI

L2
�
11 �mL2ω2

210
�

223 �m2L6ω4

2, 910, 600EI
ð18:55Þ

The first term on the right-hand side of Eq. (18.55) is the stiffness coefficient k21 in the stiffness

matrix, Eq. (10.20), and the second term, the consistent mass coefficient m21 in the mass matrix,

Eq. (10.34). The series expansion, Eq. (18.55), is convergent in the positive real field for

0 < �aL < 4:73 ð18:56Þ

or from Eq. (18.4)

0 < ω < 4:73ð Þ2
ffiffiffiffiffiffiffiffiffi

EI

�mL4

r

ð18:57Þ

In Eq. (18.56) the numerical value 4.73 is an approximation of the closest singularity to the origin of

the functions in the quotient expanded in Eq. (18.54).

The series expansions for all the coefficients in the dynamic matrix, Eq. (18.11), are obtained by

the method explained in obtaining the expansion of the coefficient S21. These series expansions are:

1Knopp, K., Theory and Application of Infinite Series, Blackie, London, 1963.
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S33 ¼ S11 ¼
12EI

L3
�
13L �mω2

35
�

59L5 �m2ω4

161, 700EI
� . . .

S21 ¼ �S43 ¼
6EI

L2
�
11L2 �mω2

210
�

223L6 �m2ω4

2, 910, 600EI
� . . .

S41 ¼ �S32 ¼
6EI

L2
�
13L2 �mω2

420
þ

1681L6 �m2ω4

23, 284, 800EI
� . . .

S22 ¼ �S44 ¼
4EI

L
�
L3 �mω2

105
�

71L7 �m2ω4

4, 365, 800EI
� . . .

S31 ¼ �
12EI

L3
�
9L �mω2

70
�

1279L5 �m2ω4

3, 880, 800EI
� . . .

S42 ¼
2EI

L
�
L3 �mω2

140
�

1097L7 �m2ω4

69, 854, 400EI
� . . .

ð18:58Þ

18.6 Power Series Expansion of the Dynamic Matrix for Axial
and for Torsional Effects

Proceeding in amanner entirely analogous to expansion of the dynamic coefficients for flexural effects,

we can also expand the dynamic coefficients for axial and for torsional effects. The Taylor’s series

expansions, up to three terms, of the coefficients of the dynamicmatrix in Eq. (18.27) (axial effects) are.

AEb cot bL ¼
AE

L
�

�mω2L

3
�
L3 �m2ω4

45AE
� . . .

�AEb cos ecbL ¼ �
AE

L
�

�mω2L

6
�
7L3 �m2ω4

300AE
� . . .

ð18:59Þ

It may be seen that the first term in each series of Eq. (18.59) is equal to the corresponding stiffness

coefficient of the matrix in Eq. (11.3), and the second term to the consistent mass coefficient of the

matrix in (11.26). Similarly, the Taylor’s series expansions of the coefficients of the dynamic matrix

for torsional effects, Eq. (18.35), are

JTGc cot cL ¼
JTG

L
�
LI �mω

2

3
�
L3I m¯

2
ω4

45GJT
� . . .

�JTGc cos eccL ¼ �
JTG

L
�
LI �mω

2

6
�
7L3I �m

2
ω4

300GJT
� . . .

ð18:60Þ

Comparing the first two terms of the above series with the stiffness and mass influence coefficients of

the matrices in Eqs. (12.7) and (12.8), we find that for torsional effects the first term is also equal to

the stiffness coefficient, and the second term to the consistent mass coefficient.

18.7 Power Series Expansion of the Dynamic Matrix Including the Effects
of Axial Forces

The series expansions of the coefficients of the dynamic matrix, Eq. (18.50) (with axial effects), are

obtained by the method described in the last two sections. Detailed derivation of these expansions are

given by Paz and Dung (1975). The series expansion of the dynamic matrix, Eq. (18.50), is
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S½ � ¼ K½ � � G0½ �N � M0½ �ω2 � G1½ �N2 � M1½ �ω4 � . . . ð18:61Þ

where the first three matrices in this expansion [K], [G0], and [M0] are, respectively, the stiffness,

geometric, and mass matrices which were obtained in previous chapters on the basis of static

displacement functions. These matrices are given, respectively, by Eqs. (10.20), (10.45), and

(10.34). The other matrices in Eq. (18.61) corresponding to higher order terms are represented as

follows. The second-order mass-geometrical matrix

A1½ � ¼
�mL3

EI

1

3150
Symmetric

L

1360

L2

3150

�
1

3150

L

1680

1

3150

�
L

1680

L2

3600
�

L

1260

L2

3150

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

The second-order geometrical matrix:

G1½ � ¼
1

EI

L

700
Symmetric

L2

1400

11L2

6300

�
L

700
�

L2

1400

L

700

L2

1400
�

13L2

12600
�

L2

1400

11L3

6300

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

The second-order mass matrix:

M1½ � ¼
�m2L3

1000EI

59

161:7
Symmetric

223L

2910:6

71L2

4365:9

1279

3880:8

1681L

23284:8

59

161:7

�
1681L

23284:8
�

1097L2

69854:4
�

223L

2910:6

71L2

4365:9

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

18.8 Summary

The dynamic coefficients relating harmonic forces and displacements at the nodal coordinates of a

beam segment were obtained from dynamic deflection equations. These coefficients can then be used

in assembling the dynamic matrix for the entire structure by the same procedure (direct method)

employed in assembling the stiffness and mass matrices for discrete systems.
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In this chapter it has been demonstrated that the stiffness, consistent mass, and other influence

coefficients may be obtained by expanding the dynamic influence coefficients in Taylor’s series. This

mathematical approach also provides higher order influence coefficients and the determination of the

radius of convergence of the series expansion.
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Special Topics: Fourier Analysis, Evaluation of Absolute
Damping, Generalized Coordinates



Fourier Analysis and Response
in the Frequency Domain 19

This chapter presents the application of Fourier series to determine: (1) the response of a system to

periodic forces, and (2) the response of a system to nonperiodic forces in the frequency domain as an

alternate approach to the usual analysis in the time domain. In either case, the calculations require the

evaluation of integrals that, except for some relatively simple loading functions, employ numerical

methods for their computation. Thus, in general, to make practical use of the Fourier method, it is

necessary to replace the integrations with finite sums.

19.1 Fourier Analysis

The subject of Fourier series and Fourier analysis has extensive ramifications in its application to

many fields of science and mathematics. We begin by considering a single-degree-of-freedom system

under the action of a periodic loading, that is, a forcing function that repeats itself at equal intervals of

time, T (the period of the function). Fourier has shown that a periodic function may be expressed as

the summation of an infinite number of sine and cosine terms. Such a sum is known as a Fourier

series.

F(t )

T T T

t

Fig. 19.1 Arbitrary periodic function
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For a periodic function, such as the one shown in Fig. 19.1, the Fourier series may be written as

F tð Þ ¼ a0 þ a1 cos ϖ tþ a2 cos 2ϖ tþ a3 cos 3ϖ tþ a4 cos 4ϖ tþ . . . an cos nϖ tþ . . .

þb1 sinϖ tþ b2 sin 2ϖ tþ b3 sin 3ϖ tþ . . . bn sin nϖ tþ . . .
ð19:1Þ

or

F tð Þ ¼ þa0 þ
X

1

n¼1

an cos nϖ tþ bn sin nϖ tf g ð19:2Þ

where ϖ ¼ 2π/T is the frequency and T the period of the function. The evaluation of the coefficients

ao, an, and bn for a given function F(t) is determined from the following expressions:

ao ¼
1

T

ðt1þT

t1

F tð Þdt

an ¼
2

T

ðt1þT

t1

F tð Þ cos nϖtdt

bn ¼
2

T

ðt1þT

t1

F tð Þ sin nϖtdt ð19:3Þ

where t1 in the limits of the integrals may be any value of time, but is usually equal to either –T/2 or

zero. The constant a0 equals the average of the periodic function F(t).

19.2 Response to a Loading Represented by Fourier Series

The response of a single-degree-of-freedom system to a periodic force represented by its Fourier

series is found as the superposition of the response to each component of the series. When the

transient is omitted, the response of an undamped system to any term of the series is given by Eq. (3.9)

as

un tð Þ ¼ bn=k

1� r2n
sin nϖ t ð19:4Þ

where rn ¼ nϖ/ω and ω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

Similarly, the response to any cosine term is

un tð Þ ¼ an=k

1� r2n
cos nϖ t ð19:5Þ

The total response of an undamped, single-degree-of-freedom system may then be expressed as the

superposition of the responses to all the force terms of the series, including the response a0/k (steady-

state response) to the constant force a0. Hence we have

u tð Þ ¼ a0

k
þ
X 1

1� r2n

a0

k
cos nϖ tþ bn

k
sin nϖ t

� �

ð19:6Þ

When the damping in the system is considered, the steady-state response for the general sine term of

the series is given from Eq. (3.20) as
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un tð Þ ¼ bn=k sin nϖ t� θð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2n
� �2 þ 2rnξð Þ2

q ð19:7Þ

or

un tð Þ ¼ bn

k
� sin nϖ t cos θ � cos nϖ t sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2n
� �2 þ 2rnξð Þ2

q

The substitution of sinθ and cosθ from Eq. (3.21) gives

us tð Þ ¼
bn

k

1� r2n
� �

sin nϖ t þ 2rnξ cos nϖ t

1� r2ð Þ2 þ 2rnξð Þ2
ð19:8Þ

Similarly, for a cosine term of the series, we obtain

us tð Þ ¼
an

k

1� r2n
� �

sin nϖ t þ 2rnξ sin nϖ t

1� r2ð Þ2 þ 2rnξð Þ2
ð19:9Þ

Finally, the total response is then given by the superposition of the terms expressed by Eqs. (19.8)

and (19.9) in addition to the response to the constant term of the series. Therefore, the total response

of a damped single-degree-of freedom system may be expressed as

u tð Þ ¼ a0

k
þ 1

k

X

1

n¼1

an2rnξþ bn 1� r2n
� �

1� r2n
� �2 þ 2rnξð Þ2

sin nϖtþ an 1� r2nð Þ � bn2rnξ

1� r2n
� �2 þ 2rnξð Þ2

cos nϖt

( )

ð19:10Þ

Illustrative Example 19.1

As an application of the use of Fourier series in determining the response of a system to a periodic

loading, consider the undamped simple oscillator in Fig. 19.2a which is acted upon by the periodic

force shown in Fig. 19.2b.

Solution:

The first step is to determine the Fourier series expansion of F(t). The corresponding coefficients are

determined from Eqs. (19.3) as follows:

Fig. 19.2 Undamped oscillator acted upon by a periodic force
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a0 ¼
1

T

ð T

0

F0

T
t dt ¼ F0

2

an ¼
2

T

ð T

0

F0

T
t cos nϖt dt ¼ 0

bn ¼
2

T

ð T

0

F0

T
t sin nϖt dt ¼ �F0

nπ

The response of the undamped system is then given from Eq. (19.6) as

U tð Þ ¼ F0

2k
�
X

1

n¼1

F0 sin nϖt

nπk 1� r2n
� �

or in expanded form as

U tð Þ ¼ F0

2k
� F0 sinϖt

πk 1� r21
� �� F0 sin 2ϖt

πk 1� 4r21
� �� F0 sin 3ϖt

πk 1� 9r21
� �� . . .

where

r1 ¼ ϖ=ω,ω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

, and ϖ ¼ 2π=T

19.3 Fourier Coefficients for Piecewise Linear Functions

Proceeding as before in the evaluation of Duhamel’s integral, we can represent the forcing function

by piecewise linear function as shown in Fig. 19.3.The calculation of Fourier coefficients, Eq. (19.3),

is then obtained as a summation of the integrals evaluated for each linear segment of the forcing

function, that is, as

Fig. 19.3 Piecewise linear forcing function
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a0 ¼
1

T

X

N

i¼1

ð ti

ti�1

F tð Þdt ð19:11Þ

an ¼
2

T

X

N

i¼1

ð ti

ti�1

F tð Þ cos nϖtdt ð19:12Þ

bn ¼
2

T

X

N

i¼1

ð ti

ti�1

F tð Þ sin nϖtdt ð19:13Þ

where N is the number of segments of the piecewise forcing function. The forcing function in any

interval ti � 1 � t � ti is expressed by Eq. (4.20) as

F tð Þ ¼ F ti�1ð Þ þ ΔFi

Δti
t� ti�1ð Þ ð19:14Þ

in which ΔFi ¼ F (ti) � F(ti�1) and Δti ¼ ti � ti�1. The integrals required in the expressions of an and

bn have been evaluated in Eqs. (4.21) and (4.22) and designated as A (ti) and B (ti) in the recurrent

expressions (4.18) and (4.19). The use of Eqs. (4.18) through (4.22) to evaluate the coefficients an and

bn yields

an ¼
2

T

X

N

i¼1

� 1

nω
F ti�1ð Þ � ti�1

ΔFi

Δti

� �

sin nϖti � sin nϖti�1ð Þ

þ ΔFi

n2ϖ2Δti
cos nϖti � cos nϖti�1 þ nϖ ti sin nϖti � ti�1 sin nϖti�1ð Þð Þð g

ð19:15Þ

bn ¼
2

T

X

N

i¼1

� 1

nω
F ti�1ð Þ � ti�1

ΔFi

Δti

� �

�

cos nϖti�1 � cos nϖti

þ ΔFi

n2ϖ2Δti
sin nϖti � sin nϖti�1ð Þ � nϖ ti cos nϖti � ti�1 cos nϖti�1ð Þð Þ

�

ð19:16Þ

The integral appearing in the coefficient ao of Eq. (19.3) is readily evaluated after substituting F

(t) from Eq. (19.14) into Eq. (19.11). This evaluation yields

a0 ¼
1

T

X

N

i¼1

Δti Fi þ Fi�1ð Þ=2f g ð19:17Þ

19.4 Exponential Form of Fourier Series

The Fourier series expression given by Eq. (19.2) may also be written in exponential form by

substituting the trigonometric functions using Euler’s relationships:

sin nϖt ¼ einϖt � e�inϖt

2i
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cos nϖt ¼ einϖt þ e�inϖt

2
ð19:18Þ

The result of this substitution may be written as

F tð Þ ¼
X

1

n¼�1
Cne

inϖt ð19:19Þ

where

Cn ¼
1

T

ð T

0

F tð Þe�inϖt dt ð19:20Þ

The interval of integration in Eq. (19.20) has been selected from zero to T for the periodic function. It

should be noted that the exponential form for the Fourier series in Eq. (19.19) has the advantage of

simplicity when compared to the equivalent trigonometric series, Eq. (19.2). The exponential form of

the Fourier series can be used as before to determine the dynamic response of structural systems.

However, a more efficient method is available for the determination of the coefficients Cn as well as

for the calculation of the response for the single degree of freedom excited by the force expanded as in

Eq. (19.19). This method, which is based on Fourier analysis for the discrete case, is presented in the

next sections.

19.5 Discrete Fourier Analysis

When the periodic function F(t) is supplied only at N equally spaced time intervals (Δ t¼ T/N) to., t1,

t2, . . . tN�1, where tj ¼ j Δ t, the integrals in Eq. (19.3) may be replaced approximately by the

summations

an ¼
1

T

X

N�1

j¼0

F t j
� �

cos nϖt jΔt

bn ¼
1

T

X

N�1

j¼0

F t j
� �

sin nϖt jΔt, n ¼ 0, 1, 2, . . .

ð19:21Þ

where ϖ ¼ 2π/T. The above definitions for the Fourier coefficients have been slightly altered by

omitting the factor 2 in the expressions for an and bn. In this case Eq. (19.2) is then written as

F tið Þ ¼ 2
X

1

n¼1

an cos nϖtþ bn sin nϖtf g ð19:22Þ

If we use complex notation, Eq. (19.21) can be combined into a single form by defining

Cn ¼ an � ibn ð19:23Þ

and using Euler’s relationship

e�inϖt j ¼ cos nϖt j � i sin nϖt j ð19:24Þ

to obtain after substituting Eq. (19.21) into Eq. (19.23)
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Cn ¼
1

T

X

N�1

j¼0

F t j
� �

e�inϖt jΔt ð19:25Þ

Substituting tj ¼ j Δ t, T ¼ N Δ t, and ϖ ¼ 2π/T into Eq. (19.25), we obtain

Cn ¼
1

N

X

N�1

j¼0

F t j
� �

e�2πi nj=Nð Þ, n ¼ 0, 1, 2, . . . ð19:26Þ

Equation (19.26) may be considered as an approximate formula for calculating he complex Fourier

coefficients in Eq. (19.20). The discrete coefficients given by Eq. (19.26) do not provide sufficient

information to obtain a continuous function for F(t); however, it is a most important fact that it does

allow to obtain all the discrete values of the series {F(tj)} exactly (Newland 1984). This fact leads to

the formal definition of the discrete Fourier transform of the series {F(tj)}, j ¼ 0, 1,. 2, . . . . N�I,

given by

Cn ¼
1

N

X

N�1

j¼0

F t j
� �

e�2πi nj=Nð Þ, n ¼ 0, 1, 2, . . . , N� 1ð Þ ð19:27Þ

and its inverse discrete Fourier transform by

F t j
� �

¼
X

N�1

n¼0

Cne
2πi nj=Nð Þ, j ¼ 0, 1, 2, . . . , N� 1ð Þ ð19:28Þ

The range of the summation in Eq. (19.28) has been limited from 0 to (N�1) in order to maintain the

symmetry of transform pair Eqs. (19.27) and (19.28). It is important to realize that in the calculation

of the summation indicated in Eq. (19.28), the frequencies increase with increasing index n up to

n¼ N/2. It will be shown very shortly that, for n > N/2, the corresponding frequencies are equal to the

negative of frequencies of order N�n. This fact restricts the harmonic components that may be

represented in the series to a maximum of N/2. The frequency corresponding to this maximum order

ωN/2 ¼ (N/2)ϖ is known as the Nyquist frequency or sometimes as the folding frequency. Moreover,

if there are harmonic components above ωN/2 in the original function, these higher components will

introduce distortions in the lower harmonic components of the series. This phenomenon is called

aliasing (Newland 1984, p. 118). In view of this fact, it is recommended that the number of intervals

or sampled points N should be at least twice the highest harmonic component present in the function.

The Nyquist frequency ωu is given in radians per second by

ωu ¼
2πN=2

T
¼ 2πN=2

NΔt
¼ π

Δt

rad

sec

� �

ð19:29Þ

and in cycles per second by

f u ¼
ωu

2π
¼ 1

2Δt
cpsð Þ ð19:30Þ

As a matter of interest, Example 19.4 is presented later in this chapter to illustrate the importance of

choosing the number of sampling points N for the excitation function sufficiently large to avoid

spurious results due to aliasing.

Having represented an arbitrary discrete function by a finite sum, we may hen also obtain as a

discrete function the response of a simple oscillator excited by the harmonic components of the
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loading function. Again, only the steady-state response will be considered. The introduction of the

unit exponential forcing function En ¼ eiωnt into the equation of motion, Eq. (3.13), leads to

m€uþ c _u þ ku ¼ eiωnt ð19:31Þ

which has a steady-state solution of the form

u tð Þ ¼ H ωnð Þeiωnt ð19:32Þ

When Eq. (19.32) is introduced into Eq. (19.31), it is found that the function H(ωn), which will be

designated as the complex frequency response function, takes the form

H ωnð Þ ¼ 1

k � mω2
n þ icωn

ð19:33Þ

Upon introducing the frequency ratio

rn ¼
ωn

ω

and the damping ratio

ξ ¼ c

ccr
¼ c

2
ffiffiffiffiffiffi

km
p

Eq. (19.33) becomes

H ωnð Þ ¼ 1

k 1þ r2n þ 2irnξ
� �

Therefore, the response yn(tj) at time tj ¼ j Δ t to a harmonic force component of amplitude Cn

indicated in Eq. (19.28) is given by

un t j
� �

¼ Cne
2 πi nj=Nð Þ

k 1� r2n þ 2irnξ
� � ð19:34Þ

and the total response due to the N harmonic force components by

un t j
� �

¼
X

N�1

n¼0

Cne
2 πi nj=Nð Þ

k 1� r2n þ 2irnξ
� � ð19:35Þ

where Cn is expressed in discrete form by Eq. (19.27). In the determination of the response y (ti) using

Eq. (19.35), it is necessary to bear in mind that in Eq. (19.28) the force component of the frequency of

order n is equal to the negative of the component of the frequency of order N�n. This fact may be

verified by substituting �(N�n) for n in the exponential factor of Eq. (19.28). In this case we obtain,

e�2πi N�nð Þj=N½ � ¼ e�2πije2πi nj=Nð Þ ¼ e2πi nj=Nð Þ ð19:36Þ

since e�2πij ¼ cos 2 π j � sin 2πj ¼ 1 for all integer values of j. Equation (19.36) together with

Eq. (19.28) shows that harmonic components of the force corresponding to frequencies of orders n

and�(N�n) have the same value. As a consequence of this fact, rn¼ ωn/ω, whereω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

should

be evaluated (selecting N as an even number) as
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ωn ¼ nϖ for n � N=2

and

ωn ¼ � N � nð Þϖ for n > N=2

where the frequency corresponding to n ¼ N/2, as already mentioned, is the highest frequency that

can be considered in the discrete Fourier series.

The evaluation of the sums necessary to determine the response using the discrete Fourier

transform is greatly simplified by the fact that the exponential functions involved are harmonic and

extend over a range of N2 as demonstrated in the next section.

19.6 Fast Fourier Transform

A numerical technique is available that is efficient for computer determination f the response in the

frequency domain. This method is known as the fast Fourier transform (FFT) (Cooley et al. 1965).

The corresponding computer program is reproduced as a subroutine of computer Program 4. The

response in frequency domain of a single-degree-of-freedom system to a general force is given by

Eq. (19.35) and the coefficients required are computed from Eq. (19.27). It can be seen that either

Eq. (19.35) or Eq. (19.27) may be represented, except for sign in the exponent by the exponential

function as

A jð Þ ¼
X

N�1

n¼0

A 0ð Þ nð ÞW jn
N ð19:37Þ

where

Wn ¼ e2πi=N ð19:38Þ

The evaluation of the sum in Eq. (19.37) will be most efficient if the number of time increments N into

which the period T is divided is a power of 2, that is,

N ¼ 2M ð19:39Þ

where M is an integer. In this case, the integers j and n can be expressed in binary form. For the

purpose of illustration, we will consider a very simple case where the load period is divided into only

eight time increments, that is, N ¼ 8, M ¼ 3. In this case, the indices in Eqs. (19.27) and (19.35) will

have the binary representation

j ¼ j0 þ 2j1 þ 4j2

n ¼ n0 þ 2n1 þ 4n2
ð19:40Þ

and Eq. (19.37) may be written as

A jð Þ ¼
X

1

n2¼0

X

1

n1¼0

X

1

n0m¼0

A 0ð Þ nð ÞW j0þ2j1þ4j2ð Þ n0þ2n1þ4n2ð Þ
8 ð19:41Þ
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The exponential factor can be written as

W
jn
8 ¼ W

8 j1n2þ2j2nþj2n1ð Þ
8 W

4n2j0
8 W

2n1 2j1þj0ð Þ
8 W

n0 4j2þ2j1þj0ð Þ
8

We note that the first factor on the right-hand side is unity since from Eq. (19.38)

W8I
8 ¼ e2πi 8=8ð ÞI ¼ cos 2πiþ sin 2πi ¼ 1

where I ¼ j1n2 + 2j2n2 + j2n1 is an integer. Therefore, only the remaining three factors need to be

considered in the summations. These summations may be performed conveniently in sequence by

introducing a new notation to indicate the successive steps in the summation process. Thus the first

step can be indicated by

A 1ð Þ j0; n1; n0ð Þ ¼
X

1

n2¼0

A 0ð Þ n2; n1; n0ð ÞW4n2j0
8

where A(0)(n2,n1,n0) ¼ A(0)(n) in Eq. (19.37). Similarly, the second step is

A 2ð Þ j0; j1; n0ð Þ ¼
X

1

n1¼0

A 1ð Þ j2; n1; n0ð ÞW2n1 2j1þj0ð Þ
8

and the third step (final step for M ¼ 3) is

A 3ð Þ j0; j1; j2ð Þ ¼
X

1

n0¼0

A 2ð Þ j0; j1; n0ð ÞWn0 4j2þ2j1þj0ð Þ
8

The final result A(3) (j0,j1,j2) is equal to A(j) in Eq. (19.37) or (19.41). This process, indicated for

N ¼ 8, can readily be extended to any integer N ¼ 2M. The method is particularly efficient because

the results of one step are immediately used in the next step, thus reducing storage requirements and

also because the exponential takes the value of unity in the first factor of the summation. The

reduction in computational time that results from this formulation is significant when the time interval

is divided into a large number of increments. The comparative times required for computing the

Fourier series by a conventional program and by the fast Fourier transform algorithm are illustrated in

Fig. 19.4. It is seen here how, for large values of N, one can rapidly consume so much computer time

as to make the conventional method unfeasible.

Fig. 19.4 Time required for Fourier transform using conventional and fast method. (From Cooley, J. W., Lewis, P. A.

W., and Welch, P. D. (1969), IEEE Trans. Education, E-12 (1))
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19.7 Response in the Frequency Domain Using MATLAB

The MATLAB program presented in this chapter calculates the response in the frequency domain for

a damped single-degree-of-freedom system. The excitation is input as a discrete function of time. The

program output prints the displacement history of the steady-state motion of the response. The main

body of this program performs the tasks of calculating, using the FFT algorithm, the coefficients Cn in

Eq. (19.27), and the function F(tj) in Eq. (19.28), and the response u(tj) in Eq. (19.35).

Illustrative Example 19.2

Determine the response of the tower shown in Fig. 19.5a subjected to the impulsive load of duration

0.64 sec as shown in Fig. 19.5b.

Assume damping equal to 10% of the critical damping.

Solution:

Problem Data:

Mass: m ¼ 38,600/386 ¼ 100 (lb.sec2/in.)

Spring constant: k ¼ 100,000 (lb/in.)

Damping coefficient: c ¼ 2 ξ
ffiffiffiffiffiffi

km
p

¼ 632 lb: sec =in:ð Þ

Select M such that 2M ¼ 8; M ¼ 3

Excitation function:

Time (sec) Force (lb)

0.00 0

0.16 120,000

0.48 120,000

0.64 0

F(t)

P(t)

W = 38.6k

120K

–120K

0

0.16 0.32 0.48 0.64
t(sec)

k = 100 K/in.

Y

(a) (b)

Fig. 19.5 Idealized structure and loading for Illustrative Example 19.2
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The MATLAB file to calculate total response is presented below (Fig. 19.6).

close all
clear all
clc

%%%%-GIVEN VALUES-%%%%
m=100;                  %Mass (lb.sec^2/in.)         
k =100000;              %Stiffness (lb/in.)  
xi =0.1;                %Damping ratio
omega = sqrt(k/m);      %Natural frequency
c=2*m*omega*xi;         %Damping coefficient. (lb.sec/in.)

T = 0.64;               %Time period, T(sec)
omega_bar = 2*pi/T;     %Excitation frequency (rad/sec)
M= 3;                   %Select M, M=3
N = 2^M;                %The number of time increments N

t=0:0.08:0.64;          %Time ranging from 0 to 0.64 sec with deltat = 0.08 sec 
Dt = t(2)-t(1);         %Deltat = 0.08
tt= length(t);          %Total number of calculation

for i= 1:tt-1

%%%Define the function of N harmonic force   
if t(i)<=0.16

F(i) = 120000*t(i)/0.16;
elseif t(i) <=0.48

F(i) =-750000*(t(i)-0.16)+120000;
else

F(i)=min(0, 750000*(t(i)-0.64)) ;
end

%%%Define the discrete Fourier transform of the series  

Cn=fft(F/N);                                %Eq.19.27

%%%Calculate frequency ratio, r_n
if i<=N/2

omega_n(i) = (i-1)*omega_bar;
else

omega_n(i) = -(N-(i-1))*omega_bar;
end

rn(i)=omega_n(i)/omega;                 %Frequency ratio, r_n    

end

%%%Total response due to the N harmonic force
uu=Cn./(k*(1-rn.^2+2*xi.*sqrt(-1)*rn));         %Eq.19.35

%%%FFT Discrete Fourier transform (Built-in-MATLAB function)
u=fft(uu')

%%%Reponse
figure(1)
t = 0:Dt:(0.64-Dt);
plot(t',real(u))
xlabel ('Time (sec)'); ylabel ('Displacement(in.)'); grid on
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Illustrative Example 19.3

Determine the response of the simple oscillator shown in Fig. 19.7a when subjected to the forcing

function depicted in Fig. 19.7b. Use M ¼ 4 for the exponent in N ¼ 2M. Assume 15% of the critical

damping.

Solution:

Problem Data:

Mass: m ¼ 100/386 ¼ 0.259 (Kip. sec2/in)

Spring constant: k ¼ 200 Kip/in.

Damping coefficient: c ¼ 2ξ
ffiffiffiffiffiffi

km
p

c ¼ 2� 0:15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

200� 0:259
p

¼ 2:159 Kip: sec =inð g
Exponent of N ¼ 2M M ¼ 4

Gravitational index G ¼ 0 (force on the mass)

Excitation function:

Time (sec) Force (Kip)

0.00 0

0.10 –10

0.20 –8

0.40 0

0.45 6

0.60 0

1.00 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

D
is

p
la

c
e
m

e
n
t(

in
.)

Fig. 19.6 Response of Illustrative Example 19.2
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The MATLAB file to calculate total response is presented below (Fig. 19.8).

close all
clear all
clc

%%%%-GIVEN VALUES-%%%%
m=0.259;                %Mass (lb.sec^2/in.)
k =200;                 %Stiffness (lb/in.) 
xi =0.15;               %Damping ratio
omega = sqrt(k/m);      %Natural frequency
c=2*m*omega*xi;         %Damping coefficient. (lb.sec/in.)

T = 1;                  %Time period, T(sec)
omega_bar = 2*pi/T;    %Excitation frequency (rad/sec)
M= 4;                   %Select M, M=4
N = 2^M;                %The number of time increments N     

Dt = T/N;               %Deltat 
t=0:Dt:T;               %Time ranging from 0 to T sec with deltat 
tt= length(t);      %Total number of calculation
F = zeros(1,N);        %Setting up N harmonic force  

for i= 1:tt-1
%%%Define the function of N harmonic force  
F(2)=-6.25; F(3)=-9.5; F(4)=-8.25; F(5)=-6;
F(6)=-3.5; F(7)=-1; F(8)=4.5; F(9)=4.0;
F(10)=1.5; 

%%%Define the discrete Fourier transform of the series   
Cn=fft(F/N);                                %Eq.19.27

%%%Calculate frequency ratio, r_n
if i<=N/2

omega_n(i) = (i-1)*omega_bar;
else

omega_n(i) = -(N-(i-1))*omega_bar;
end

rn(i)=omega_n(i)/omega;                 %Frequency ratio, r_n 

end

Fig. 19.7 Simple oscillator and loading for Illustrative Example 19.3
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%%%Total response due to the N harmonic force
uu=Cn./(k*(1-rn.^2+2*xi.*sqrt(-1)*rn))      %Eq.19.35

%%%FFT Discrete Fourier transform (Built-in-MATLAB function)
u=fft(uu')

%%%Reponse
figure(1)
t = 0:Dt:(1-Dt);
plot(t',real(u))
xlabel ('Time (sec)'); ylabel ('Displacement(in.)'); grid on

Illustrative Example 19.4

Consider a single-degree-of-freedom undamped system in which k ¼ 200 lb/in, m ¼ 100 lb.sec2/in

subjected to a force expressed as

P tð Þ ¼
X

16

n¼1

100 cos 2πnt ðaÞ

Determine the steady-state response of the system using MATLAB with M ¼ 3, 4, 5, and

6 corresponding to N ¼ 8, 16, 32, and 64 sampled points. Then discuss the results in relation to the

limitations imposed by the Nyquist frequency.

Solution:

The fundamental frequency of the excitation function, Eq. (a), is ω1 ¼ 2 π and its period T ¼ ω1/

2 π ¼ l sec. Since the highest component in Eq. (a) is of order ω16 ¼ 16 ω1, to avoid aliasing, the

number of sampled points should be at least twice that order, that is, the minimum number of sampled

points should be N ¼ 32.

The applied force is calculated in the MATLAB program. The results given by the MATLAB for

this example are conveniently arranged in two tables: Table 19.1, giving the displacement response to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.08

-0.06

-0.04

-0.02

0

0.02
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0.06
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p
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e
n
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Fig. 19.8 Response of Illustrative Example 19.3
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the excitation having all 16 harmonic components as prescribed for this problem; and Table 19.2,

showing the displacement response to a reduced number of harmonic terms in the excitation function.

For this example, in which the exciting force is supplied in 16 harmonic components, the response

given in Table 19.1 corresponding to N ¼ 32 or N ¼ 64 may be considered the exact solution. A

comparison of the response shown for sample points N ¼ 8 or N ¼ 16 with the exact solution

(N ¼ 32) dramatically demonstrates the risk of not choosing N sufficiently large enough so that none

of the frequencies of the components in the exciting force exceed the Nyquist frequency. The

response obtained for N ¼ 8 or N ¼ 16 gives spurious numerical results.

As the demonstration purpose, this MATLAB program is presented for the response for the N

value of 8 and 16 harmonic force. To produce the Table 19.1, you need to update the line for the

M ¼ 3 and the iteration from j ¼ 1:16.

clear all
close all
clc

%%%%-GIVEN VALUES-%%%%
m=100;                  %Mass (lb.sec^2/in.)
k=200;                  %Stiffness (lb/in.) 
omega = sqrt(k/m);      %Natural frequency
c=0;                    %Damping coefficient. (lb.sec/in.)
xi =c/(2*m*omega);      %Damping ratio

T = 1.0;                %Time period, T(sec)
omega_bar = 2*pi/T;     %Excitation frequency (rad/sec)
M= 3;                   %Select M, M=3
N = 2^M;                %The number of time increments N   

Dt=T/N;                 %Deltat
t=0:Dt:1.0;             %Time ranging from 0 to T sec with deltat 
tt= length(t);          %Total number of calculation

for i= 1:tt-1
%%%Define the function of 16 harmonic force  
for j=1:16

F3(j,i)=100*cos((2*pi()*j)*t(i));
end

F3s= sum(F3);

%%%Calculate frequency ratio, r_n 
if i<=N/2

omega_n(i) = (i-1)*omega_bar;
else

omega_n(i) = -(N-(i-1))*omega_bar;
end

rn(i)=omega_n(i)/omega;                 %Frequency ratio, r_n 

end

%%%Define the discrete Fourier transform of the series
Cn3 =fft(F3s/N);

%%%Total response due to the N harmonic force
uu=Cn3./(k*(1-rn.^2+2*xi.*sqrt(-1)*rn));   %Eq.19.35

%%%FFT Discrete Fourier transform (Built-in-MATLAB function)
u=fft(uu')

%%%Reponse
figure(1)
t = 0:Dt:(1-Dt);
plot(t',real(u))
xlabel ('Time (sec)'); ylabel ('Displacement(in.)'); grid on
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Results in Table 19.2, which were obtained using N ¼ 8 sampled points, also verify that when the

exciting force contains harmonic components higher than the Nyquist frequency which corresponds,

in this case, to Ny ¼ 4, the results are again spurious.

A final comment is in order. The example presented, having equal amplitude for all the

components of the exciting force, serves to emphasize the importance of choosing the number of

sampling points N sufficiently large to avoid aliasing. In practical situations normally the higher

harmonics have much smaller amplitude than that of the fundamental or lower frequencies. Conse-

quently, the distortion in the response might not be as dramatic as shown in Tables 19.1 and 19.2.

19.8 Summary

In general, any periodic function may be expanded into a Fourier series, Eq. (19.1), whose terms are

sine and cosine functions of successive multiples of the fundamental frequency. The coefficients of

these functions may be calculated by integrating over a period the product of the periodic function

multiplied by a sine or cosine function, Eq. (19.3). The response of the dynamic system is then

obtained as the superposition of the response for each term of the Fourier series expansion of the

excitation function. The extension of the Fourier series to non-periodic functions results in integrals

Table 19.1 Displacement Response for Example 19.4 (Excitation Having 16 Harmonics)

Time(sec)

Number of Sampling Points for the Excitation

N ¼ 8 N ¼ 16 N ¼ 32 N ¼ 64

0 0.8531 0.4201 �0.0416 �0.041.6

0.125 0.9357 0.4698 �0.0153 �0.0153

0.250 1.022 0.5107 0.0052 0.0052

0.375 1.071 0.5358 0.0178 0.0178

0.500 1.089 0.5443 0.0221 0.0221

0.625 1.071 0.5358 0.0178 0.0178

0.750 1.022 0.5107 0.0052 0.0052

0.875 0.9357 0.4698 �0.0153 �0.0153

1.000 0.8531 0.4201 �0.0416 �0.0416

Table 19.2 Displacement Response for Example 19.4 (Excitation Force Sampled at N ¼ 8 Points)

Number of Sampling Points for the Excitation

Time(sec) N ¼ 16 N ¼ 8 N ¼ 4

0 �0.0375 0.4246 0.8531

0.125 �0.0153 0.4679 0.9357

0.250 0.0048 0.5112 1.0220

0.375 0.0184 0.5353 1.0710

0.500 0.0215 0.5446 1.0890

0.625 0.0184 0.5353 1.0710

0.750 0.0048 0.5112 1.0220

0.875 �0.0153 0.4679 0.9357

1.000 �0.0375 0.4246 0.8531
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which are known as Fourier transforms. The discrete form of these transforms, Eqs. (19.27) and

(19.28), permits their use in numerical applications. An extremely efficient algorithm known as the

Fast Fourier Transform (FFT) can save as much as 99% of the computer time otherwise consumed in

the evaluation of Fourier complex coefficients for the excitation function and for the response of a

dynamic system.

19.9 Problems

Problem 19.1

Determine the first three terms of the Fourier series expansion for the time varying force shown in

Fig. P19.1.

Problem 19.2

Determine the steady-state response for the damped spring-mass system shown in Fig. P19.2 that is

acted upon by the forcing function of Problem 19.1.

Problem 19.3

The spring-mass system of Fig. P19.2 is acted upon by the time-varying force shown in Fig.P19.3.

Assume that the force is periodic of period T ¼ 1 sec. Determine the steady-state response of the

system by applying Fourier series expansion of F(t).

30K

–30K

F(t )

0
0.5 1.0 1.5 2.0

t (sec)

T/2 T/2

Fig. P19.1

k = 120 K/in.

ξ = 0.10 W = 128.66K F(t )

Fig. P19.2
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Problem 19.4

The cantilever beam shown in Fig. P19.4a carries a concentrated weight at its free end and it is

subjected to a periodic acceleration at its support which is the rectified sine function of period

T ¼ 0.4 sec and amplitude €u0 ¼ 180 in= sec 2 as shown in Fig. P19.4b. Determine: (a) the Fourier

series expansion of the forcing function and (b) the steady-state response considering only three terms

of the series. Neglect damping in the system and assume the beam massless.

Problem 19.5

Solve Problem 19.4 using Program 4. Take 16 Fourier terms. Input the values of the excitation

functions at intervals of 0.025 sec.

Problem 19.6

Solve Problem 19.4 in the frequency domain using Program 4. Take the exponent of N ¼ 2M, M ¼ 4.

Input the effective force, Feff ¼ �m€us tð Þ calculated for every 0.025 sec.

Problem 19.7

Repeat Problem 19.6 assuming 20% of critical damping.

Problem 19.8

The forcing function shown in Fig. P19.8a is assumed to be periodic in the extended interval

T ¼ 1.4 sec. Use Program 4 to determine the first eight Fourier coefficients and the steady-state

response of a structure modeled by the undamped oscillator shown in Fig. P19.8b.

Fig. P19.4

F(t)

40K

0 .5

T T T

1.0 1.5 2.0 2.5 3.0
t (sec)

Fig. P19.3
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Problem 19.9

Solve Problem 19.8 in the frequency domain using Program 4. Take M ¼ 4 for the exponent in

N ¼ 2 M.

Problem 19.10

Use Program 4 to determine: (I) the Fourier series expansion of the forcing function shown in

Fig. P19.10a and (2) the steady-state response calculated in the frequency domain for the spring-

mass system shown in Fig. P19.10b. Assume 15% of the critical damping. Take M ¼ 3 for the

exponent in N ¼ 2M and compare results with those obtained in the solution of Illustrative

Example 19.3.

Problem 19.11

Solve Problem 19.10 in the frequency domain using Program 4. Take M ¼ 5 for the exponent in

N ¼ 2M.Compare results with those in the solution of Example 19.3.

Problem 19.12

Consider the system shown in Fig. P19.12 and its loading with assumed period T¼ 2 sec. Determine:

(a) the first four terms of the Fourier series expansion for the forcing fonction in terms of Po; (b) the

first four terms of the Fourier series expansion for the response.

10K

12K
12.5K

100 K/in.
10K

6K

3K

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t(sec)

F(t)

F(t)

W = 386K

T = 1.4 sec

(a) (b)

Fig. P19.8

F(t)

F(t)

(a) (b)

T = 1.0 sec

t sec

k = 200 K/in.

ξ = 15% W = 100K
0

0.1

–10K -8K

0.2

0.45 0.60 0.8 1.0

0.4 6K

Fig. P19.10
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Problem 19.13

Using Program 4, determine the response of the system ande its load in Problem 19.12. Take 32 terms

of Fourier series and input the force at intervals of 0.10 sec.

Problem 19.14

Repeat Problem 19.13 assuming that the system has 20% of the critical damping.

Problem 19.15

Obtain the close solution for the system in Problem 19.12 by considering the half-circle sinusoidal

excitation as the superposition of two sinusoidal functions: P1 ¼ P0sinπt starting at ¼ 0 and P2 and P0
sinπ(t�1) starting at t ¼ l sec as shown in Fig. P19.15.

Problem 19.16

A single-degree-of-freedom system having a natural period of 0.8 sec and stiffness of 5000 lb fin

subjected to an impulse of duration 0.5 sec which varies as shown in Fig. P19.16. Compute the

response with an extension of 1.1 sec for which the value of force is zero. Use Program 4 to obtain:

(a) the discrete transform of the forcing function and of the response, (b) the displacement response,

and (c) the applied force calculated using the inverse discrete transform. Neglect damping and

discretize the forcing function using a time step Δ t ¼ 0.1 sec.

Fig. P19.12

p p

p0 p0

–p0

p1(t) = p0 sin
p

0 sin 

=

ωt
ωt p2(t) = p0 sin ω (t - td)

td 

t t

Fig. P19.15
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Problem 19.17

Solve Problem 19.16 assuming a 10% of the critical damping in the system.

Problem 19.18

The water tower shown in Fig. P19.8a is subjected to impulsive acceleration of its base that varies as

half the sine function shown in Fig. P19.18b. Use Program 4 to determine: (a) the discrete Fourier

coefficients for the excitation and for the response, (b) the relative displacement of the tower with

respect to the ground displacement, and (c) the excitation obtained by the inverse discrete transform.

Use an extended excitation of total duration 1.6 sec and time step Δ t ¼ 0.1 sec. Neglect damping.

Problem 19.19

Repeat Problem 19.18 assuming that the damping in the system is 5% of the critical.

F(t )

1000 Ib

0.1 0.2 0.3 0.4 0.5 1.0 1.5 1.6 t sec

Fig. P19.16

Fig. P19.18
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Problem 19.20

Solve Problem 19.18 for an acceleration at the base of tower that varies as a symmetrical triangular

load as shown in Fig. P19.20.

A(t)

0.3g

0.4 0.8 1.2 1.6 t sec

Fig. P19.20
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Evaluation of Absolute Damping from
Modal Damping Ratios 20

In the previous chapters, we determined the natural frequencies and modal shapes for undamped

structures when modeled as shear buildings. We also determined the response of these structures

using the modal superposition method. In this method, as we have seen, the differential equations of

motion are uncoupled by means of a transformation of coordinates that incorporates the orthogonality

property of the modal shapes.

The consideration of damping in the dynamic analysis of structures complicates the problem. Not

only will the differential equations of motion have additional terms due to damping forces, but the

uncoupling of the equations will be possible only by imposing some restrictions or conditions on the

functional expression for the damping coefficients.

The damping normally present in structures is relatively small and practically does not affect “the

calculation of natural frequencies and modal shapes of the system. Hence, the effect of damping is

neglected in determining the natural frequencies and” modal shapes of the structural systems.

Therefore, in practice, the eigenproblem for the damped structure is solved by using the same

methods employed for undamped structures.

20.1 Equations for Damped Shear Building

For a viscously damped shear building, such as the three-story building shown in Fig. 20.1, the

equations of motion obtained by summing forces in the corresponding free body diagrams are

m1€u1 þ c1 _u 1 þ k1u1 � c2
�

_u 2 � _u 1

�

� k2 u2 � u1ð Þ ¼ F1 tð Þ

m2€u2 þ c2
�

_u 2 � _u 1

�

þ k2 u2 � u1ð Þ � c3
�

_u 3 � _u 2

�

� k3 u3 � u2ð Þ ¼ F2 tð Þ

m3€u3 þ c3
�

_u 3 � _u 2

�

þ k3 u3 � u2ð Þ ¼ F3 tð Þ

ð20:1Þ

These equations may be conveniently written in matrix notation as

M½ � €uf g þ C½ � _uf g þ K½ � uf g ¼ F tð Þf g ð20:2Þ

where the matrices and vectors are as previously defined, except for the damping matrix [C], which is

given by
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C½ � ¼

c1 þ c2 �c2 0

�c2 c2 þ c3 �c3

0 �c3 c3

2

6

4

3

7

5
ð20:3Þ

In the next section, we shall establish the conditions under the damped equations of motion may be

transformed to an uncoupled set of independent equations.

20.2 Uncoupled Damped Equations

To solve the differential equations of motion, Eq. (20.2), we seek to uncouple these equations. We,

therefore, introduce the transformation of coordinates

uf g ¼ Φ½ � zf g ð20:4Þ

where [Φ] is the modal matrix obtained in the solution of the undamped free-vibration system. The

substitution of Eq. (20.4) and its derivatives into Eq. (20.2) leads to

M½ � Φ½ � €zf g þ C½ � Φ½ � _zf g þ K½ � Φ½ � zf g ¼ F tð Þf g ð20:5Þ

Premultiplying Eq. (20.5) by the transpose of the nth modal vector ϕf gT
n yield

ϕf gT
n M½ � Φ½ � €zf g þ ϕf gT

n C½ � Φ½ � _zf g þ ϕf gT
n K½ � Φ½ � zf g ¼ ϕf gT

n F tð Þf g ð20:6Þ

It is noted that the orthogonality property of the modal shapes,

Fig. 20.1 (a) Damped shear building. (b) Mathematical model. (c) Free body diagram
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ϕf gT
n M½ � ϕf gm ¼ 0,m 6¼ n

ϕf gT
n K½ � ϕf gm ¼ 0

ð20:7Þ

causes all components except the nth mode in the first and third terms of Eq. (20.6) to vanish.

A similar reduction is assumed to apply to the damping term in Eq. (20.6), that is, if it is assumed that

ϕf gT
n C½ � ϕf gm ¼ 0, n 6¼ m ð20:8Þ

then the coefficient of the damping term in Eq. (20.6) will reduce to

ϕf gT
n C½ � ϕf gn

In this case Eq. (20.6) may be written as

Mn€zn þ Cn _z n þ Knzn ¼ Fn tð Þ

or alternatively as

€zn þ 2ξnωn _z n þ ω2
nzn ¼ Fn tð Þ=Mn ð20:9Þ

in which case

Mn ¼ ϕf gT
n M½ � ϕf gn ð20:10aÞ

Kn ¼ ϕf gT
n K½ � ϕf gn ¼ ω2

nMn ð20:10bÞ

Cn ¼ ϕf gT
n C½ � ϕf gn ¼ 2ξωnMn ð20:10cÞ

Fn tð Þ ¼ ϕf gT
n F tð Þf g ð20:10dÞ

The normalization discussed previously (Sect. 7.2)

ϕf gT
n M½ � ϕf gn ¼ 1 ð20:11Þ

will result in

Mn ¼ 1

so that Eq. (20.9) reduces to

€zn þ 2ξnωn _z n þ ω2
nzn ¼ Fn tð Þ ð20:12Þ

which is a set of N uncoupled differential equations (n ¼ 1,2, . . ., N ).

20.3 Conditions for Damping Uncoupling

In the derivation of the uncoupled damped Eq. (20.12), it has been assumed that the normal

coordinate transformation, Eq. (20.4), that serves to uncouple the inertial and elastic forces also

uncouples the damping forces. It is of interest to consider the conditions under which this uncoupling

will occur, that is, the form of the damping matrix [C] to which Eq. (20.8) applies.
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When the damping matrix is of the form

C½ � ¼ a0 M½ � þ a1 K½ � ð20:13Þ

in which a0 and a1 are arbitrary proportionality factors, the orthogonality condition will be satisfied.

This may be demonstrated by applying the orthogonality condition to Eq. (20.13), that is,

premultiplying both sides of this equation by the transpose of the nth mode ϕf gT
n and postmultiplying

by the modal matrix [Φ]. We obtain

ϕf gT
n C½ � Φ½ � ¼ a0 ϕf gT

n M½ � Φ½ � þ a1 ϕf gT
n K½ � Φ½ � ð20:14Þ

The orthogonality conditions, Eq. (20.7), then reduce Eq. (20.14) to

ϕf gT
n C½ � Φ½ � ¼ a0 ϕf gT

n M½ � ϕf gn þ a1 ϕf gT
n K½ � ϕf gn

or, by Eqs. (20.10), to

ϕf gT
n C½ � Φ½ �n ¼ a0Mn þ a1Mnω

2
n

ϕf gT
n C½ � Φ½ �n ¼ a0 þ a1ω

2
n

� �

Mn

which shows that, when the damping matrix is of the form of Eq. (20.13), the damping forces are also

uncoupled with the transformation Eq. (20.4). However, it can be shown that there are other matrices

formed from the mass and stiffness matrices which also satisfy the orthogonality condition. In

general, damping matrix may be of the form

C½ � ¼ M½ �
X

i

ai M½ �ð Þ�1
K½ �
�

i ð20:15Þ

where i can be anywhere in the range�1 < i <1 and the summation may include as many terms as

desired. The damping matrix, Eq. (20.13), can obviously be obtained as a special case of Eq. (20.15).

By taking two terms corresponding to i ¼ 0 and i ¼ 1 in Eq. (20.15), we obtain the damping matrix

expressed by Eq. (20.13). With this form of the damping matrix it is possible to compute the damping

coefficients necessary to provide uncoupling of a system having any desired damping ratios in any

specified number of modes. For any mode n, the modal damping is given by Eq. (20.10c), that is

Cn ¼ ϕf gT
n C½ � ϕf gn ¼ 2ξnωnMn

If [C] as given by Eq. (20.15) is substituted in the expression for Cn, we obtain

Cn ¼ ϕf gT
n M½ �

X

i

ai M½ ��1
K½ �

� �i

ϕf gn ð20:16Þ

Now, using Eq. (7.24) K ϕf gn ¼ ω2
nM ϕf gn

� �

and performing several algebraic operations, we can

show (Clough and Penzien 1975, p. 195) that the damping coefficient associated with any mode

n may be written as

Cn ¼
X

i

aiω
2i
n Mn ¼ 2ξωnMn ð20:17Þ

from which
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ξn ¼
1

2ωn

X

i

aiω
2i
n ð20:18Þ

Equation (20.18) may be used to determine the constants ai, for any desired values of modal damping

ratios corresponding to any specified numbers of modes. For example, to evaluate these constants

specifying the first four modal damping ratios ξ1, ξ2, ξ3, ξ4 we may choose i ¼ 1, 2, 3, 4. In this case

Eq. (20.18) gives the following system of equations:

ξ1

ξ2

ξ3

ξ4

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

¼
1

2

ω1 ω3
1 ω5

1 ω7
1

ω2 ω3
2 ω5

2 ω7
2

ω3 ω3
3 ω5

3 ω7
3

ω4 ω3
4 ω5

4 ω7
4

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

a1

a2

a3

a4

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

ð20:19Þ

In general, Eq. (20.19) may be written symbolically as

ξf g ¼
1

2
Q½ � af g ð20:20Þ

where [Q] is a square matrix having different powers of the natural frequencies. The solution of

Eq. (20.20) gives the constants {a} as

af g ¼ 2 Q½ ��1
ξf g ð20:21Þ

Finally the damping matrix is obtained after the substitution of Eqs. (20.21) into (20.15).

It is interesting to observe from Eq. (20.18) that in the special case when the damping matrix is

proportional to the mass {C} ¼ a0 [M] (i ¼ 0), the damping ratios are inversely proportional to the

natural frequencies; thus the higher modes of the structures will be given very little damping.

Analogously, when the damping is proportional to the stiffness matrix ([C] ¼ a1 [K]), the damping

ratios are directly proportional to the corresponding natural frequencies, as can be seen from

Eq. (20.18) evaluated for i ¼ 1; and in this case the higher modes of the structure will be very

heavily damped.

Illustrative Example 20.1

Determine the absolute damping coefficients for the structure presented in Example 7.1. Assume 10%

of the critical damping for each mode.

Solution:

From Example 7.1, we have the following information.

Natural frequencies:

ω1 ¼ 11:83rad= sec

ω2 ¼ 32:89rad= sec
ðaÞ

Modal matrix:

Φ½ � ¼
1:00 1:00

1:26 �1:63

" #

ðbÞ
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Mass matrix:

M½ � ¼
136 0

0 66

" #

Stiffness matrix:

K½ � ¼
75, 000 �44, 300

�44, 300 44, 300

" #

Using Eqs. (20.18) and (20.19) with i ¼ 0, 1 to calculate the constants ai needed in Eq. (20.15), we

obtain the following system of equations:

0:1

0:1

( )

¼
1

2

11:83 11:83ð Þ3

32:89 32:89ð Þ3

" #

a1

a2

( )

Solving this system of equations gives

a1 ¼ 0:01851

a2 ¼ �0:00001146

We also calculate

M½ ��1 ¼
0:007353 0

0 0:01515

" #

and

M½ ��1
K½ � ¼

551475 �325738

�671145 671145

" #

Then

X

2

i¼1

ai M½ ��1
K½ �

� �i

¼ 0:0185 1
551475 �325738

�671145 671145

" #

� 0:00001146
551:475 �325:738

�671:145 671:145

" #2

¼
4:2172 �1:4654

�3:0193 4:7556

" #

Finally, substituting this matrix into Eq. (20.15) yields the damping matrix as

C½ � ¼
136 0

0 66

" #

4:2172 �1:4654

�3:0193 4:7556

" #

¼
573:5 �199:3

�199:3 313:9

" #
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There is yet a second method for evaluating the damping matrix corresponding to any set of specified

modal damping ratio. The method may be explained starting with the relationship

A½ � ¼ Φ½ �T C½ � Φ½ � ð20:22Þ

where the matrix [A] is defined as

A½ � ¼

2ξ1ω1M1 0 0 �

0 2ξ2ω2M2 0 �

0 0 2ξ3ω3M3 �

� � � �

2

6

6

6

6

4

3

7

7

7

7

5

ð20:23Þ

in which the modal masses M1, M2, M3, . . . are equal to one if the modal matrix {Φ} has been

normalized. It is evident that the damping matrix [C] may be evaluated by postmultiplying and

premultiplying Eq. (20.22) by the inverse of the modal matrix [Φ]�1 and its inverse transpose [Φ]�T,

such that

C½ � ¼ Φ½ ��T
A½ � Φ½ ��1 ð20:24Þ

Therefore, for any specified set of modal damping ratios {ξ}, matrix [A] can be evaluated from

Eq. (20.23) and the damping matrix [C] from Eq. (20.24). However, in practice, the inversion of the

modal matrix is a large computational effort. Instead, taking advantage of orthogonality properties of

the mode shapes, we can deduce the following expression for the system damping matrix:

C½ � ¼ M½ �
X

N

n¼1

2ξnωn

Mn

Φf gn Φf gT
n

 !

M½ � ð20:25Þ

Equation (20.25) may be obtained from the condition of orthogonality of the normal modes given by

Eq. (7.35) as

I½ � ¼ Φ½ ��T
M½ � Φ½ � ð20:26Þ

Postmultiplying Eq. (20.26) by [Φ]�1 we obtain

Φ½ ��1 ¼ Φ½ ��T
M½ � ð20:27Þ

Applying the transpose operation to Eq. (20.27) results in

Φ½ ��T ¼ M½ � Φ½ � ð20:28Þ

in which [M] ¼ [M]T since the mass matrix [M] is a symmetric matrix.

Finally, the substitution into Eq. (20.24) of Eqs. (20.27) and (20.28) gives

C½ � ¼ M½ � Φ½ � A½ � Φ½ �T M½ �

which results in Eq. (20.25) after substituting matrix [A] from Eq. (20.23). The damping matrix [C]

obtained from Eq. (20.25) will satisfy the orthogonality property and, therefore, the damping term in

the differential Eq. (20.2) will be uncoupled with the same transformation, Eq. (20.4), which serves to

uncouple the inertial and elastic forces.
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It is of interest to note in Eq. (20.25) that the contribution to the damping matrix of each mode is

proportional to the modal damping ratio; thus any undamped mode will contribute nothing to the

damping matrix.

We should mention at this point the circumstances under which it will be desirable to evaluate the

elements of the damping matrix, as Eq. (20.15) or Eq. (20.25). It has been stated that absolute

structural damping is a rather difficult quantity to determine or even to estimate. However, modal

damping ratios may be estimated on the basis of past experience. This past experience includes

laboratory determination of damping in different materials, as well as damping values obtained from

vibration tests in existing buildings and other structures. Numerical values for damping ratios in

structures are generally in the range of 1–10%. These values depend on the type of structure, materials

utilized, nonstructural elements, etc. They also depend on the period and the magnitude of vibration.

It has also been observed that damping ratios corresponding to higher modes have increasing values.

Figure 20.2 shows the values of damping ratios measured in existing buildings as reported by

H. Aoyama (1980) [in Wakabayashi (1986)]. It may be observed from this figure that experimental

values for damping scatter over a wide range, and that it is difficult to give definite recommendations.

The scatter observed in Fig. 20.2 is typical for experiments conducted to determine damping. On this

basis, the obvious conclusion should be that the assumption of viscous damping to represent damping

does not describe the real mechanism of energy dissipation in structural dynamics. However, for

analytical expediency and also because of the uncertainties involved in attempting other formulation

of damping, we still accept the assumption of viscous damping. At this time, the best recommendation

that can be given in regard to damping is to use conservative values, 1–2% for steel buildings and

3–5% for reinforced concrete buildings for the fundamental frequency, and to assume damping ratios

for the higher modes to increase in proportion to the natural frequencies. Thus, on the basis of giving

some consideration to the type of structure, we assign numerical values to the damping ratios in all the

modes of interest These values are then used directly in the modal equations or they are used to

determine the damping matrix that is needed when the dynamic response is obtained by some

analytical method other than modal superposition, e.g., the time history response of a linear or

nonlinear system.
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Fig. 20.2 Damping ratios measured in existing buildings. [H. Aoyama in Wakabayashi (1986)]
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Illustrative Example 20.2

Determine the damping matrix of Example 20.1 using the method based on Eq. (20.22).

Solution:

From Example 7.2 we have the natural frequencies

ω1 ¼ 11:83 rad= sec

ω2 ¼ 32:89 rad= sec

and the mass matrix

M½ � ¼
136 0

0 66

" #

To determine [C], we could use either Eq. (20.24) or (20.25). From Example 7.2, the normalized

modal matrix is

Φ½ � ¼
0:06437 0:567

0:0813 �0:0924

" #

and its inverse by Eq. (20.27) is

Φ½ ��1 ¼
8:752 5:370

7:700 �6:097

" #

Substituting into Eq. (20.23), we obtain

2ξ1ω1M1 ¼ 2ð Þ 0:1ð Þ 11:83ð Þ 1ð Þ ¼ 2:366

2ξ2ω2M2 ¼ 2ð Þ 0:1ð Þ 32:89ð Þ 1ð Þ ¼ 6:578

Then by Eq. (20.24)

C½ � ¼
8:752 7:700

5:370 �6:097

" #

2:366 0

0 6:578

" #

8:752 7:700

5:370 �6:097

" #

C½ � ¼
572 �198

�198 313

" #

which in this case of equal damping ratios in all the models checks with the damping matrix obtained

in Example 20.1 for the same structure using Eq. (20.15).
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The MATLAB program can be used to determine damping matrix.

clc
clear all
close all

%______________________________________________________________________
% Inputs: 
%   M, K 
%   F = forcing function
%   t = Time period
%   u0 = initial displacement
%   v0 = initial velocity
%______________________________________________________________________ 

%%%%-GIVEN VALUES-%%%%

%%%Time for Response
t = 0:0.01:10; 

%%%Define Mass Matrix
M = [136 0; 0 66]

%%%Define Stiffness Matrix
k1=30700;
k2=44300;

K = [k1+k2 -k2;
-k2 k2];

%%%Determine #s of DOFs
[n,n]= size(M); 

%_____________________________________________________________________
% Solve the eignevalue problem and normalized eigenvectors
%_____________________________________________________________________

%%%Solve for eigenvalues (D) and eigenvectors (a)
[a, D] = eig(K, M)                 

%%%Natural Frequencies
[omegas,k] = sort(sqrt(diag(D))); 

%%%Eigenvectors
a = a(:,k)

%%%Natural Periods
T = 2*pi./omegas;                  

%%%aMa = {a}'*[M]*(a}
aMa = diag(a'*M*a)                 

%%%Normalized modal matrix
nom_phi = (a)*inv(sqrt(diag(aMa))) 

%_____________________________________________________________________
% Damping matrix using the proportional damping matrix
% [C] = a0[M]+a1[K] (Eq. 8.55)
% zetas = damping ratios
%_____________________________________________________________________

%%%Define damping ratio for each mode
zetas = zeros(n,1); 
zetas(1)=0.1; 
zetas(2)=0.1;

Q= [omegas(1) omegas(1)^3;
omegas(2) omegas(2)^3];                     %Eq.20.20

a =2*inv(Q)*zetas;                              %Eq.20.21

aMK = a(1)*(inv(M)*K)+a(2)*(inv(M)*K)^2;        %Sum(a(M^-1)(K))^i)

C = M*aMK                                       %Eq.20.15                          

nom_C = nom_phi'*(C)*nom_phi;                   %Eq.20.25
zetas = diag((1/2)*nom_C*inv(diag(omegas)));
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The MATLAB program prints out the damping matrix of the illustrative Example 20.2.

C½ � ¼
573:5 �199:3

�199:3 313:9

" #

20.4 Summary

The most common method of taking into account the dissipation of energy in structural dynamics is to

assume in the mathematical model the presence of damping forces of magnitudes that are propor-

tional to the relative velocity and of directions opposite to the motion. This type of damping is known

as viscous damping because it is the kind of damping that will be developed by motion in an ideal

viscous fluid. The inclusion of this type of damping in the equations does not alter the linearity of the

differential equations of motion. Since the amount of damping commonly present in structural

systems is relatively small, its effect is neglected in the calculation of natural frequencies and

mode shapes. However, to uncouple the damped differential equations of motion, it is necessary to

impose some restrictions on the values of damping coefficients in the system. These restrictions are of

no consequence owing to the fact that in practice it is easier to determine or to estimate modal

damping ratios rather than absolute damping coefficients. In addition, when solving the equations of

motion by the modal superposition method, only damping ratios are required. When the solution is

sought by other methods, the absolute value of the damping coefficients may be calculated from

modal damping ratios by one of the two methods presented in this chapter.

20.5 Problems

Problem 20.1

The stiffness and mass matrices for a certain two-degree-of-freedom structure are

K½ � ¼
400 �200

�200 200

" #

, M½ � ¼
2 0

0 1

" #

Determine the damping matrix for this system corresponding to 20% of the critical damping for the

first mode and 10% for the second mode. Use the method based on Eqs. (20.16) and (20.17).

Problem 20.2

Repeat Problem 20.1 using the method based on Eqs. (20.22) and (20.25).

Problem 20.3

The natural frequencies and corresponding normal modes (arranged in the modal matrix) for the

three-story shear building shown in Fig. P20.3 are ω1 ¼ 9.31 rad/sec, ω2 ¼ 20.94 rad/sec,

ω3 ¼ 29.00 rad/sec, and
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Φ½ � ¼

0:1114 �0:1968 �0:1245

0:2117 �0:0277 0:2333

0:2703 0:2868 �0:2114

2

6

4

3

7

5

Determine the damping matrix for the system corresponding to damping ratios of 10% for all the

modes.

Problem 20.4

Repeat Problem 20.3 for damping ratios of 20% for all the modes.

Problem 20.5

Repeat Problem 20.3 for the following value of modal damping ratios:

ξ1 ¼ 0:2, ξ2 ¼ 0:1, ξ3 ¼ 0:0

Problem 20.6

Use Program 7 and 8 to model and determine the natural frequencies and normal modes for the five-

story shear building shown in Fig. P20.6; then use Program 11 to determine the damping matrix

corresponding to an 8% damping ratio in all the modes.

Fig. P20.3
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Problem 20.7

Repeat Problem 20.6 for the following values of the modal damping ratios:

ξ1 ¼ 0:20, ξ2 ¼ 0:15, ξ3 ¼ 0:10, ξ4 ¼ 0:05, ξ5 ¼ 0,

Fig. P20.6
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Generalized Coordinates and Rayleigh’s
Method 21

In the preceding chapters we concentrated our efforts in obtaining the response to dynamic loads of

structures modeled by the simple oscillator, that is, structures that may be analyzed as a damped or

undamped spring-mass system. Our plan in the present chapter is to discuss the conditions under

which a structural system consisting of multiple interconnected rigid bodies or having distributed

mass and elasticity can still be modeled as a one-degree of-freedom system. We begin by presenting

an alternative method to the direct application of Newton’s Law of Motion, the principle of virtual

work.

21.1 Principle of Virtual Work

An alternative approach to the direct method employed thus far for the formulation of the equations of

motion is the use of the principle of virtual work. This principle is particularly useful for relatively

complex structural systems which contain many interconnected parts. The principle of virtual work

was I originally stated for a system in equilibrium. Nevertheless, the principle can readily be applied

to dynamic systems by the simple recourse to D’Alembert’s Principle, which establishes dynamic

equilibrium by the inclusion of the inertial forces in the system.

The principle of virtual work may be stated as follows: For a system that is in equilibrium, the

work done by all the forces during an assumed displacement (virtual displacement) that is compatible

with the system constraints is equal to zero. In general the equations of motion are obtained by

introducing virtual displacements corresponding to each degree of freedom and equating the resulting

work done to zero.

To illustrate the application of the principle of virtual work to obtain the equation of motion for a

single-degree-of-freedom system, let us consider the damped oscillator shown in Fig. 21.1a and its

corresponding free body diagram in Fig. 21.1b. Since the inertial force has been included among the

external forces, the system is in “equilibrium” (dynamic equilibrium). Consequently, the principle of

virtual work is applicable. If a virtual displacement δ u is assumed to have taken place, the total work

done by the forces shown in Fig. 21.1b is equal to zero, that is,

m€uδuþ c _u δuþ kuδu� F tð Þδu ¼ 0
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or

m€uþ c _u þ ku� F tð Þf gδu ¼ 0 ð21:1Þ

Since δu is arbitrarily selected as not equal to zero, the other factor in Eq. (21.1) must equal zero.

Hence,

m€uþ c _u þ ku� F tð Þ ¼ 0 ð21:2Þ

Thus we obtained in Eq. (21.2) the differential equation for the motion of the damped oscillator.

21.2 Generalized Single-Degree-of-Freedom System–Rigid Body

Most frequently the configuration of a dynamic system is specified by coordinates indicating the

linear or angular positions of elements of the system. However, coordinates do not necessarily have to

correspond directly to displacements; they may in general be any independent quantities that are

sufficient in number to specify the position of all parts of the system. These coordinates are usually

called generalized coordinates and their number is equal to the number of degrees of freedom of the

system.

The example of the rigid-body system shown in Fig. 21.2 consists of a rigid bar with distributed

mass supporting a circular plate at one end. The bar is supported by springs and dampers in addition to

a single frictionless support. Dynamic excitation is provided by a transverse load F(x, t) varying

linearly on the portion AB of the bar. Our purpose is to obtain the differential equation of motion and

to identify the corresponding expressions for the parameters of the simple oscillator representing this

system.

Fig. 21.1 Damped simple oscillator undergoing virtual displacement δ u

492 21 Generalized Coordinates and Rayleigh’s Method



Since the bar is rigid, the system in Fig. 21.2 has only one degree of freedom, and, therefore, its

dynamic response can be expressed with one equation of motion. The generalized coordinate could be

selected as the vertical displacement of any point such as A, B, or C along the bar, or may be taken as

the angular position of the bar. This last coordinate designated θ (t) is selected as the generalized

coordinate of the system. The corresponding free body diagram showing all the forces including the

inertial forces and the inertial moments is shown in Fig. 21.3. In evaluating the displacements of the

different forces, it is assumed that the displacements of the system are small and, therefore, vertical

displacements are simply equal to the product of the distance to support D multiplied by the angular

displacement θ ¼ θ(t).

The displacements resulting at the points of application of the forces in Fig. 21.3 due to a virtual

displacement δθ are indicated in this figure. By the principle of virtual work, the total work done by

the forces during this virtual displacement is equal to zero. Hence

δθ I0€θ þ I1€θ þ 4L3 �m€θ þ mL2€θ þ cL2 _θ þ 4kL2θ � 7

6
L2f tð Þ

� �

¼ 0

or, since δθ is arbitrarily set not equal to zero, it follows that

�

I0 þ I1 þ 4L3 �mþ mL2
�

€θ þ cL2 _θ þ 4kL2 _θ � 7

6
L2f tð Þ ¼ 0, ð21:3Þ

Fig. 21.2 Example of single-degree-of-freedom rigid system

Fig. 21.3 Displacements and resultant forces for system in Fig. 21.2
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where

I0 ¼
1

12

�

4 �mL
�

4Lð Þ2 ¼ mass moment of inertia of the rod

I0 ¼
1

2
m

L

2

� �2

¼ mass moment of inertia of the circular plate

The differential Eq. (21.3) governing the motion of this system may conveniently be written as

I∗€θ þ C∗ _θ þ K∗θ ¼ F∗ tð Þ ð21:4Þ

where I*, C*, K*, and F*(t) are, respectively, the generalized inertia, generalized damping,

generalized stiffness, and generalized force for this system. These quantities are given in Eq. (21.3)

by the factors corresponding to the acceleration, velocity, displacement, and force terms, namely,

I∗ ¼ I0 þ I1 þ 4 �mL3 þ mL2

C∗ ¼ cL2

K∗ ¼ 4kL2

F∗ tð Þ ¼ 7

6
L2f tð Þ

Illustrative Example 21.1

For the system shown in Fig. 21.4. determine the generalized physical properties M*. C*. K* and

generalized loading F*(t). Let U(t) at the point A2 in Fig. 1.4 be the generalized coordinate of the

system.

Solution:

The free body diagram for the system is depicted in Fig. 21.5 which shows all the forces on the two

bars of the system including the inertial force and the inertial moment. The generalized coordinate is

U(t) and the displacement of my point in the system should be expressed in terms of this coordinate;

nevertheless, for convenience, we select also the auxiliary coordinate U1(t) as indicated in Fig. 21.5.

The summation of the moments about point A1 of all the forces acting on bar A1 -B1. and the

summation of moments about B2 of the forces on bar A2 -B2. Give the following equations:

Fig. 21.4 System for Illustrative Example 21.1
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k1
2

3
U � U1

� �

3a ¼ 2aF0 sinωt ð21:5Þ

I0

3a
€U þ 3

4
ma€U þ a

3
c _U þ k1

2

3
U � U1

� �

2aþ 3ak2U ¼ 0 ð21:6Þ

Substituting U1 from Eq. (21.5) into Eq. (21.6), we obtain the differential equation for the motion

of the system in terms of the generalized coordinate U(t), namely

M∗ €U tð Þ þ C∗ _U tð Þ þ K∗U tð Þ ¼ F∗ tð Þ

where the generalized quantities are given by

M∗ ¼ I0

3a2
þ 3m

4

C∗ ¼ c

3
K∗ ¼ 3k2

and

F∗ tð Þ ¼ �4

3
F0 sinϖ t

21.3 Generalized Single-Degree-of-Freedom System–Distributed Elasticity

The example presented in the preceding section had only one degree of freedom in spite of the

complexity of the various parts of the system because the two bars were interconnected through a

spring and one of the bars was massless so that only one coordinate sufficed to completely specify the

motion. If the bars were not rigid, but could deform in flexure, the system would have an infinite

Fig. 21.5 Displacements and resultant forces for Example 21.1
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number of degrees of freedom. However, a single-degree-of-freedom analysis could still be made,

provided that only a single shape could be developed during motion, that is, provided that the

knowledge of the displacement of a single point in the system determines the displacement of the

entire system.

As an illustration of this method for approximating the analysis of a system with an infinite number

of degrees of freedom with a single degree of freedom, consider the cantilever beam shown in

Fig. 21.6. In this illustration, the physical properties of the beam are the flexural stiffness EI(x) and its

mass per unit of length m(x). It is assumed that the beam is subjected to an arbitrary distributed

forcing function p(x, t) and to an axial compressive force N.

In order to approximate the motion of this system with a single coordinate, it is necessary to

assume that the beam deflects during its motion in a prescribed shape. Let ϕ (x) be the function

describing this shape and, as a generalized coordinate, U(t) the function describing the displacement

of the motion corresponding to the free end of the beam. Therefore, the displacement at any point x

along the beam is

u x; tð Þ ¼ ϕ xð ÞU tð Þ ð21:7Þ

where ϕ (L ) ¼ 1.

The equivalent one-degree-of-freedom system (Fig. 21.6b) may be defined simply as the system

for which the kinetic energy, potential energy (strain energy), and work done by the external forces

have at all times the same values in the two systems.

The kinetic energy T of the beam in Fig. 21.6 vibrating in the pattern indicated by Eq. (21.7) is

T ¼
ð L

0

1

2
m xð Þ ϕ xð ÞU tð Þf g2dx ð21:8Þ

Equating this expression for the kinetic energy of the continuous system to the kinetic energy of

the equivalent single-degree-of-freedom system 1
2
M∗U2 tð Þ and solving the resulting equation for the

generalized mass, we obtain

M∗ ¼
ð L

0

m xð Þ ϕ2 xð Þdx ð21:9Þ

Fig. 21.6 Single-degree-of-freedom continuous system
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The flexural strain energy V of a prismatic beam may be determined as the work done by the

bending momentM(x) undergoing an angular displacement dθ. This angular displacement is obtained

from the well-known formula for the flexural curvature of a beam, namely

d2u

dx2
¼ dθ

dx
¼ M xð Þ

EI
ð21:10Þ

or

dθ ¼ M xð Þ
EI

dx ð21:11Þ

since du/dx ¼ θ, where θ, being assumed small, is taken as the slope of the elastic curve. Conse-

quently, the strain energy is given by

V ¼
ð L

0

1

2
M xð Þdθ ð21:12Þ

The factor 1
2
is required for the correct evaluation of the work done by the flexural moment

increasing from zero to its final value M(x) [average value M(x)/2]. Now, utilizing Eqs. (21.10 and

21.11) in Eq. (21.12), we obtain

V ¼
ð L

0

1

2
EI xð Þ d2u

dx2

� �2

dx ð21:13Þ

Finally, equating the potential energy, Eq. (21.13), for the continuous system to the potential

energy of the equivalent system and using Eq. (21.7) results in

1

2
K∗U tð Þ2 ¼

ð L

0

1

2
EI xð Þ ϕ00 xð ÞU tð Þf g2dx

or

K∗ ¼
ð L

0

EI xð Þ ϕ00 xð Þf g2dx ð21:14Þ

where

ϕ00 xð Þ ¼ d2u

dx2

The generalized force F*(t) may be found from the virtual displacement δU(t) of the generalized

coordinate U(t) upon equating the work performed by the external forces in the structure to the work

done by the generalized force: in the equivalent single-degree-of-freedom system. The work of the

distributed external force p(x, t) due to this virtual displacement is given by

W ¼
ð L

0

p x; tð Þδudx

Substituting δu ¼ ϕ(x) δU from Eq. (21.7) gives

W ¼
ð L

0

p x; tð Þϕ xð ÞδUdx ð21:15Þ
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The work of the generalized force F*(t) in the equivalent system corresponding to the virtual

displacement δU of the generalized coordinate is

W∗ ¼ F∗ tð ÞδU ð21:16Þ

Equating Eq. (21.15) with Eq. (21.16) and canceling the factor δ u, which is taken to be different

from zero, we obtain the generalized force as

F∗ tð Þ ¼
ð L

0

p x; tð Þϕ xð Þdx ð21:17Þ

Similarly, to determine the generalized damping coefficient, assume a virtual displacement and

equate the work of the damping forces in the physical system with the work of the damping force in

the equivalent single-degree of-freedom system. Hence

C∗ _U δU ¼
ð L

0

c xð Þu δudx

where c(x) is the distributed damping coefficient per unit length along the beam. Substituting

δu ¼ ϕ(x)δu and _u ¼ ϕ xð Þ _U from Eq. (21.7) and canceling the common factors, we obtain

C∗ ¼
ð L

0

c xð Þ ϕ xð Þ½ �2dx ð21:18Þ

which is the expression for the generalized damping coefficient.

To calculate the potential energy of the axial force N which is unchanged during the vibration of

the beam and consequently is a conservative force, it is necessary to evaluate the horizontal

component of the motion δ(t) of the free end of the beam as indicated in Fig. 21.6. For this purpose,

we consider a differential element of length dL along the beam as shown in Fig. 21.6a. The length of

this element may be expressed as

dL ¼ dx2 þ du2
� �1=2

or

dL ¼ 1þ du=dxð Þ2
� 	

1=2

dx ð21:19Þ

Now, integrating over the horizontal projection of the length of beam (L0) and expanding in series
the binomial expression, we obtain

L¼
Ð L

0

0
1þ du

dx

� �2
� 	1=2

dx

¼
Ð L

0

0
1þ 1

2

du

dx

� �2

� 1

8

du

dx

� �4

þ . . .

( )

dx

Retaining only the first two terms of the series results in
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L ¼ L0 þ
ð L

0

1

2

du

dx

� �2

dx ð21:20Þ

or

δ tð Þ ¼ L� L0 ¼
ð L

0

1

2

du

dx

� �2

dx ð21:21Þ

The reader should realize that Eqs. (21.20 and 21.21) involve approximations since the series was

truncated and the upper limit of the integral in the final expression was conveniently set equal to the

initial length of the beam L instead of to its horizontal component L0.
Now we define a new stiffness coefficient to be called the generalized geometric stiffness K*

G as

the stiffness of the equivalent system required to store the same potential energy as the potential

energy stored by the normal force N, that is,

1

2
K∗

GU tð Þ2 ¼ Nδ tð Þ

Substituting δ(t) from Eq. (21.21) and the derivative du/dx from Eq. (21.7), we have

1

2
K∗

GU tð Þ2 ¼ 1

2
N

ð L

0

U tð Þdϕ
dx


 �2

dx

or

K∗
G ¼ N

ð L

0

dϕ

dx

� �2

dx ð21:22Þ

Equations (21.9, 21.14, 21.17, 21.18 and 21.22) give, respectively, the generalized expression for

the mass, stiffness, force, damping, and geometric stiffness for a beam with distributed properties and

load, modeling it as a simple oscillator.

For the case of an axial compressive force, the potential energy in the beam decreases with a loss of

stiffness in the beam. The opposite is true for a tensile axial force, which results in an increase of the

flexural stiffness of the beam. Customarily, the geometric stiffness is determined for a compressive

axial force. Consequently, the combined generalized stiffness K*
G is then given by

K∗
c ¼ K∗ � K∗

G ð21:23Þ

Finally, the differential equation for the equivalent system may be written as

M∗ €U tð Þ þ C∗U tð Þ þ K∗
CU tð Þ ¼ F∗ tð Þ ð21:24Þ

The critical buckling load Ncr is defined as the axial compressive load that reduces the combined

stiffness to zero, that is,

K∗
c ¼ K∗�K∗

G ¼ 0

The substitutian of K* and K*
G from Eqs. (21.14 and 21.22) gives
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ð L

0

EI
d2ϕ

dx2

� �2

dx� Ncr

ð

dϕ

dx

� �2

dx ¼ 0

and solving for the critical buckling load, we obtain

Ncr ¼
Ð L

0
EI d2ϕ=dx2
� �2

dx
Ð L

0
dϕ=dxð Þ2dx

ð21:25Þ

Once the generalized stiffness K* and generalized mass M* have been determined, the system can

be analyzed by any of the methods presented in the preceding chapters for single-degree-of-freedom

systems. In particular, the square of the natural frequency, ω2, is given from Eqs. (21.9 and 21.14) by

ω2 ¼ K∗

M∗
¼

Ð L

0
EI xð Þϕ00 xð Þ2dx

Ð L

0
m xð Þϕ2 xð Þdx

ð21:26Þ

The displacement U(t) of the generalized single-degree-of-freedom system is found as the solution

of the differential equation

M∗U 1ð Þ þ C∗U 1ð Þ þ K∗U 1ð Þ ¼ F∗ 1ð Þ ð21:27Þ

and the displacement u(x, t) at location x and time t is then calculated by Eq. (21.7).

21.4 Shear Forces and Bending Moments

The internal forces-shear forces and bending moments-associated with the displacements u(x, t) may

be obtained by loading the structure with the equivalent forces that would produce the dynamic

displacements calculated. From elementary beam theory, the rate of loading p(x, t) per unit of length

along abeam is related to the lateral displacement u ¼ u(x, t) by the differential equation

p x; tð Þ ¼ ∂

∂x2
EI xð Þ∂

2
u

∂x2

" #

ð21:28Þ

or substituting u(x, t) ¼ ϕ(x)�U(t) from Eq. (21.7) by

p x; tð Þ ¼ ∂
2

∂x2
EI xð Þ∂

2
Φ

∂x2

" #

U tð Þ ð21:29Þ

The equivalent force p(x, i), calculated using Eq. (21.29), depending on derivatives of the shape

function, will in general, give internal forces that are less accurate than the displacements, because the

derivatives of approximate shape functions tends to increase errors in the shape function.

A better approach to estimate the equivalent forces is to compute the inertial forces that resulted in

the calculated displacements. These inertial forces are given by

p x; tð Þ ¼ m xð Þ€u x; tð Þ ð21:30Þ

or substituting €U(x, t) from Eq. (21.7) by
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p x; tð Þ ¼ m xð Þϕ xð Þ€U tð Þ ð21:31Þ

At any time t the equivalent load p(x, t) given by Eq. (21.31) is applied to the structure as a static

load and the internal forces (shear forces and bending moments), as well as the stresses resulting from

these internal forces, are determined.

To provide an example of the determination of the equivalent one degree of freedom for a system

with distributed mass and stiffness, consider the water tower in Fig. 21.7 to have uniformly

distributed mass iii and stiffness EI along its length with a concentrated mass M ¼ �mL at the top.

The tower is subjected to an earthquake ground motion excitation of acceleration ag(t) and to an axial

compressive load due to the weight of its distributed mass and concentrated mass at the top. Neglect

damping in the system. Assume that during the motion the shape of the tower is given by

ϕ xð Þ ¼ 1� cos
πx

2L
ð21:32Þ

Selecting the lateral displacement u(t) at the top of the tower as the generalized coordinate as

shown in Fig. 21.7, we obtain for the displacement at any point

U x; tð Þ ¼ U tð Þϕ xð Þ ¼ U tð Þ 1� cos
πx

2L

� 	

ð21:33Þ

The generalized mass and the generalized stiffness of the tower are computed, respectively, from

Eqs. (21.9 and 21.14) as

M∗ ¼ �mLþ �m

ð L

0

1� cos
πx

2L

� 	2

dx

M∗ ¼ �mL

2π
5π � 8ð Þ ð21:34Þ

Fig. 21.7 Water tower with distributed properties for Illustrative Example 21.2
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and

K∗ ¼
ð L

0

EI
π

2L

� 	4

cos 2
πx

2L
dx

K∗ ¼ π4EI

32L3
ð21:35Þ

The axial force is due to the weight of the tower above a particular section, including the

concentrated weight at the top, and may be expressed as

N xð Þ ¼ �m Lg 2� x

L

� 	

ð21:36Þ

where g is the gravitational acceleration. Since the normal force in this case is a function of x, it is

necessary in using Eq. (21.22) to include N(x) under the integral sign. The geometric stiffness

coefficient K*
G is then given by

K∗
G ¼

ð L

0

�mLg 2� x

L

� 	 π

2L

� 	2

sin 2πx

2L
dx

which upon integration yields

K∗
G ¼ �mg

16
3π2 � 4
� �

ð21:37Þ

Consequently, the combined stiffness from Eqs. (21.35 and 21.37) is

K∗
c ¼ K∗ � K∗

G ¼ π4EI

32L3
� �mg

16
3π2 � 4
� �

ð21:38Þ

By setting K*
c ¼ 0, we obtain

π4EI

32L3
� �mg

16
3π2 � 4
� �

¼ 0

which gives the critical load

�

�mg
�

cr
¼ π4EI

2 3π3 � 4ð ÞL3 ð21:39Þ

The equation of motion in terms of the relative motion u¼ u(t) – ug(t) is given by Eq. (3.50) for the

undamped system as

M∗
€ur þ K∗

cur ¼ F∗
eff tð Þ ð21:40Þ

where M* is given by Eq. (21.34), K*
c by Eq. (21.38), and the effective force by Eq. (21.17) for the

effective distributed force and by � �m Lag tð Þ for the effective concentrated force at the top of the

tower. Hence

F∗
eff tð Þ ¼

ð L

0

peff x; tð Þϕ xð Þdx� �mLag tð Þ

where peff x; tð Þ ¼ � �m ag tð Þ is the effective distributed force. Then

502 21 Generalized Coordinates and Rayleigh’s Method



F∗
eff tð Þ ¼

ð L

0

� �mag tð Þϕ xð Þdx� �mLag tð Þ

Substitution of ϕ(x) from Eq. (21.32) into the last equation yields upon integration

F∗
eff tð Þ ¼ � 2 �mag tð ÞL

π
π � 1ð Þ ð21:41Þ

Illustrative Example 21.2

As a numerical example of calculating the response of a system with distributed properties, consider

the water tower shown in Fig. 21.7 excited by a sinusoidal ground acceleration ag(t) ¼ 20sin 6.36 t

(in/sec2).

Model the structure by assuming the shape given by Eq. (21.32) and determine the response.

Solution:

The numerical values for this example are:

�m¼ 0:1 Kip � sec 2=in per unit of length

EI ¼ 1:2 1013 Kip � in2

L¼ 100 ft ¼ 1200 in

ϖ ¼ 6:36 rad= sec

From Eq. (21.34) the generalized mass is

M∗ ¼ 0:1� 1200

2π
5π � 8ð Þ ¼ 147:21 Kip � sec 2=in

and from Eq. (21.38) the generalized combined stiffness is

K∗
c ¼

π41:21013

32� 1200ð Þ3
� 0:1� 386

16
3π2 � 4
� �

¼ 21, 077 Kip=in

The natural frequency is

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K∗
c =M

∗

q

¼ 11:96 rad= sec

and the frequency ratio

r ¼ ϖ

ω
¼ 6:36

11:96
¼ 0:532

From Eq. (21.41) the effective force is

F∗
eff ¼ � 2 0:1ð Þ 1200ð Þ π � 1ð Þ

π
20:0 sin 6:36t

or

F∗
eff ¼ �3272 sin 6:36t Kipð Þ

Hence the steady-state response (neglecting damping) in terms of relative motion is given from

Eq. (3.9) as
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ur ¼
F∗
eff =k

∗

1� r2
sinϖt

¼ � 3272=21, 077

1� 0:532ð Þ2
sin 6:36t

¼ �0:217 sin 6:36t in ðAnsÞ

21.5 Generalized Equation of Motion for a Multistory Building

Consider a multistory building such as the model for the four-story building shown in Fig. 21.8a

subjected to lateral dynamic forces Fi(t) at the different levels of the building. The mass of the

building is assumed to be concentrated at the various levels (floors and roof) which are assumed to be

rigid in their own planes; thus only horizontal displacements are possible in such a building.

To model this structure as a single degree of freedom (Fig. 21.8c), the lateral displacement shape u

(x, t) is defined in terms of a single generalized coordinate U(t) as

Fig. 21.8 (a) Multistory building subjected to lateral forces Fi(t). (b) Column modeling the building showing

assumed lateral displacement function u(x,t) ¼ ϕ(x)U(t). (c) Equivalent single-degree-of-freedom system. (d) Free

body diagram

504 21 Generalized Coordinates and Rayleigh’s Method



u x; tð Þ ¼ ϕ xð ÞU tð Þ ð21:42Þ

The generalized coordinate f(t) in Eq. (21.42) is selected as the lateral displacement at the top level

of the building which requires that shape function be assigned a unit value at that level; that is,

ϕ(H ) ¼ 1.0 where H is the height of the building.

The equation of motion for the generalized single-degree-of-freedom system in Fig. 21.8c is

obtained by equating to zero the sum of forces in the corresponding free-body diagram (Fig. 21.8d),

that is

M∗ €U þ C∗ _U þ K∗U ¼ F∗ tð Þ ð21:43Þ

where M*, C*, K*, and F*(t) are, respectively, the generalized mass, generalized damping,

generalized stiffness, and generalized force, and are given for a discrete system, modeled in

Fig. 21.8b, by

M∗ ¼
X

N

i¼1

miΦ
2
i ð21:44aÞ

C∗ ¼
X

N

i¼1

ciΔΦ
2
i ð21:44bÞ

K∗ ¼
X

N

i¼1

kiΔΦ
2
i ð21:44cÞ

F∗ tð Þ ¼
X

N

i¼1

Fi tð ÞΦi ð21:44dÞ

where the upper index N in the summations is equal to the number of stories or levels in the building.

The various expressions for the equivalent parameters in Eq. (21.44) are obtained by equating the

kinetic energy, potential energy, and the virtual work done by the damping forces and by external

forces in the actual structure with the corresponding expressions for the generalized single-degree-of-

freedom system.

In Eq. (21.44), the relative displacement Δϕi between two consecutive levels of the building is

given by

Δϕi ¼ ϕi � ϕi�1 ð21:45Þ

with ϕ0 ¼ 0 at the ground level.

As shown in Fig. 21.8b, mi and Fi(t) are, respectively, the mass and the external force at level i of

the building, while ki and ci are the stiffness and damping coefficients corresponding to the ith story.

It is convenient to express the generalized damping coefficient C* of Eq. (21.44b) in terms of

generalized damping ratio ξ*; thus by Eq. (2.7)

C∗ ¼
X

N

i¼1

ciΔΦ
2
i ¼ ξ∗C∗

cr ¼ 2ξ∗ M∗ω ð21:46Þ

in which w is the natural frequency calculated for the generalized system as
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ω ¼
ffiffiffiffiffiffiffi

K∗

M∗

r

ð21:47Þ

The substitution of the generalized damping coefficient, ξ*, from Eq. (21.46) and of K* ¼ ω2 M*

from Eq. (21.47) into the differential equation of motion, Eq. (21.43), results in

€U þ 2ξ∗ω _U þ ω2U ¼ F∗ tð Þ
M∗

ð21:48Þ

When the excitation of the building is due to an acceleration function, a(t) ¼ U0(t), acting at the

base of the building, the displacements ui(t) are conveniently measured relative to the motion of the

base u0(t), that is,

uri tð Þ ¼ ui tð Þ � u0 tð Þ ð21:49Þ

Also, in this case, the effective forces Feff,i at the various levels of the building are given from

Eq. (4.39) as

Feff , i ¼ �mi€u0 tð Þ ð21:50Þ

The differential equation for the generalized single-degree-of-freedom system excited at its base is

then written as

M∗
€U∗
r
tð Þ þ C∗

_U r
tð Þ þ K∗Ur tð Þ ¼ F∗

eff tð Þ ð21:51Þ

where the generalized coordinate for the relative displacement, Ur(t) is

Ur tð Þ ¼ U tð Þ � Ur0 tð Þ ð21:52Þ

The generalized effective force F*
eff(t) is calculated by Eqs. (21.44d and 21.50) as

F∗
eff ¼ �€U0 tð Þ

X

N

i¼1

miΦi ð21:53Þ

The generalized equation of motion may then be expressed as

€Ur tð Þ þ 2ξ∗ω _U r tð Þ þ ω2Ur tð Þ ¼ Γ
∗ €Ur0 tð Þ ð21:54Þ

in which the coefficient Γ* is the generalized participation factor given by

Γ
∗ ¼ �

P

N

i¼1

miΦi

P

N

i¼1

miΦ
2
i

ð21:55Þ

21.6 Shape Function

The use of generalized coordinates transforms a multidegree-of-freedom system into an equivalent

single-degree-of-freedom system. The shape function describing the deformed structure could be any

arbitrary function that satisfies the boundary conditions. However, in practical applications, the

success of this approach will depend on how close the assumed shape function approximates the
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actual displacements of the dynamic system. For structural buildings, selection of the shape function

is most appropriate by considering the aspect ratio of the structure, which is defined as the ratio of the

building height to the dimension of the base. The recommended shape functions for high-rise,

mid-rise, and low-rise buildings are summarized in Fig. 21.9. Most seismic building codes use the

straight-line shape which is shown for the mid-rise building. The displacements in the structure are

calculated using Eq. (21.7) after the dynamic response is obtained in terms of the generalized

coordinate.

Illustrative Example 21.3

A four-story reinforced concrete framed building has the dimensions shown in Fig. 6.10. The sizes of

the exterior columns (nine each on lines A and C) are 12 in � 20 in. and the interior columns (nine on

line B) are 12 in � 24 in for the bottom two stories, and, respectively, 12 in � 16 in and 12 in � 20 in

for the highest two stories. The height between floors is 12 ft. The dead load per unit area of the floor

(floor slab, beam, half the weight of columns above and below the floor, partition walls, etc.) is

estimated to be 140 psf. The design live load is taken as 25% of an assumed live load of 125 psf.

Determine the generalized mass, generalized stiffness, generalized damping (for damping ratio

ξ* ¼ 0.1), and the fundamental period for lateral vibration perpendicular to the long axis of the

building. Assume the following shape functions: (a) ϕ (x) ¼ x/H and (b) ϕ (x) sin (πx/2H) where H is

the height of the building (Fig. 21.10).

Solution:

1. Effective weight at various floors:

No live load needs to be considered on the roof. Hence, the effective weight at all floors, except at the

roof, will be 140 + 0.25� 125¼ 171.25 psf, and the effective weight for the roof will be 140 psf. The

plan area is 48 ft. � 96 ft. ¼4608 ft2. Hence, the weights of various levels are:

W1 ¼ W2 ¼ W3 ¼ 4608 � 0.17125 ¼ 789.1 Kips.

W4 ¼ 4608 � 0.140 ¼ 645.1 Kips.

The total seismic design weight of the building is then

W ¼ 789.1 � 3 + 645.1 ¼ 3012.4 Kips

Fig. 21.9 Possible shape functions based on aspect ratio (Naeim 1989, p. 100)
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2. Story lateral stiffness:

It will be assumed that horizontal beam-and-floor diaphragms are rigid compared to the columns of

the building in order to simplify the hand calculation. In this case, the stiffness between two

consecutive levels is given by

k ¼ 12EI

L3

where

L ¼ 12 ft. (distance between two floors)

E ¼ 3 � 103 ksi (modulus of elasticity of concrete)

I ¼ 1
12
12� 203 ¼ 8000 in4 (moment of inertia for the concrete section for columns 12 in � 20 in)

Therefore, for these columns,

k ¼ 12� 3� 103 � 8000

1443
¼ 96:450 Kip=in

Similarly, for columns 12 in � 24 in,

I ¼ 13,824 in4 and k ¼ 166.667 Kip/in

The total stiffness for the first and second stories is then

K1 ¼ K2 ¼ 18 � 96.45 + 9 � 166.67 ¼ 3236 Kip/in

Fig. 21.10 Plan and elevation for a four-story building for Example 21.3; (a) Plan. (b) Elevation
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Similarly, for the columns 12 in � 16 in. of the top and third stories,

I ¼ 1

12
12� 163 ¼ 4096 in4, k ¼ 12� 3� 103 � 4096

1443
¼ 49:4 Kip=in

and for the columns 12 in � 20 in,

I ¼ 1

12
12� 203 ¼ 8000 in4, k ¼ 12� 3� 103 � 8000

1443
¼ 96:5 Kip=in

Hence, total stiffness for the third or fourth stories is

K3 ¼ K4 ¼ 18� 49:4þ 9� 96:5 ¼ 1757:7 Kip=in

3. Generalized mass and stiffness:

(a) Assuming ϕ (x) ¼ x/H,

Table 21.1 shows the necessary calculations to obtain using Eqs. (21.44a and 21.44c) the

generalized mass M* and the generalized stiffness K* for this example assuming ϕ(x) ¼ x/H.

The natural frequency is then calculated from Eq. (21.47) as

ω ¼
ffiffiffiffiffiffiffi

K∗

M∗

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

625:250

3:559

r

¼ 13:25rad= sec , then Ta ¼
2π

ω
¼ 0:47 sec

and the generalized critical damping C*
cr and the absolute generalized damping C*, respectivaly, by

Eqs. (2.6 and 2.19) as

C∗cr ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K∗M∗
p

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

625:250ð Þ 3:559ð Þ
p

¼ 94:345 lb � sec=inð Þ

and

C∗ ¼ ξ∗C∗
cr ¼ 0:1ð Þ 94:345ð Þ ¼ 9:43 lb � sec=inð Þ

(b) Assuming ϕ (x) ¼ sin(π x/2H ).

Table 21.2 shows the necessary calculations to obtain using Eqs. (21.44a and 21.44c) the

generalized massM* and the generalized stiffness K* for this example assuming ϕ (x)¼ sin(π x/2H ).

Table 21.1 Calculation of M* and K* Assuming f (x) ¼ x/H

Level ki(Kip/in) mi(Kip � sec2/in) ϕi Δϕi miϕ
2
i (Kip sec2/in)

kiΔϕ
2
i

(Kip/in)

4 1.671 1.000 1.671

1758 0.250 109.875

3 2.044 0.750 1.150

1758 0.250 109.875

2 2.044 0.500 0.610

3236 0.250 202.250

1 2.044 0.250 0.128

3236 0.250 202.250

M* ¼ 3.559 K* ¼ 625.250
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The natural frequency is then calculated from Eq. (21.47) as

ω ¼
ffiffiffiffiffiffiffi

K∗

M∗

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

909:324

4:738

r

¼ 13:85rad= sec then Tb ¼
2π

ω
¼ 0:45 sec

and the generalized critical damping C*cr and the absolute generalized damping C*, respectively, by

Eqs. (21.48 and 21.49) as

C∗
cr ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K∗M∗
p

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

909:324ð Þ 4:738ð Þ
p

¼ 131:276 lb � sec=inð Þ

and

C∗ ¼ ξ∗C∗
cr ¼ 0:1ð Þ 131:276ð Þ ¼ 13:13 lb � sec=inð Þ

For this example, either of the two assumed shape functions results in essentially the same value

for the fundamental period. However, assuming ϕ (x) ¼ x/H is a slightly better approximation1 to the

true deflected shape than is ϕ (x) ¼ sin (πx/2H ) because Ta > Tb.

21.7 Rayleigh’s Method

In the preceding sections of this chapter the differential equation for a vibrating system was obtained

by application of the principle of virtual work as an alternative method of considering the dynamic

equilibrium of the system. However, the differential equation of motion for an undamped system in

free vibration may also be obtained with the application of the Principle of Conservation of Energy.

This principle may be stated as follows: If no external forces are acting on the system and there is no

dissipation of energy due to damping, then the total energy of the system must remain constant during

motion and consequently its derivative with respect to time must be equal to zero.

To illustrate the application of the Principle of Conservation of Energy in obtaining the differential

equation of motion, consider the spring-mass system shown in Fig. 21.11. The total energy in this

Table 21.2 Calculation of M* and K* Assuming f (x) ¼ sin (p x/2H )

Level ki(Kip/in) mi(Kip�sec2/in) ϕi Δϕi miϕ
2
i (Kip�sec2/in) kiΔϕ

2
i (Kip/in)

4 1.671 1.000 1.671

1758 0.076 10.154

3 2.040 0.924 1.745

1758 0.217 82.782

2.040 0.707 1.022

3236 0.324 339.702

1 2.040 0.383 0.300

3236 0.383 476.686

M* ¼ 4.738 K* ¼ 909.324

1 For an assumed displacement shape closer to the actual displacement shape, the structure will vibrate closer to free

condition with less imposed constrains, thus with the stiffness reduced and a longer period.
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case consists of the sum of the kinetic energy of the mass and the potential energy of the spring. In this

case the kinetic energy T is given by.

T ¼ 1

2
my _u 2 ð21:56Þ

where _u is the instantaneous velocity of the mass.

The force in the spring, when displaced y units from the equilibrium position, is ku and the work

done by this force on the mass for an additional displacement du is –ku du. This work is negative

because the force ku acting on the mass is opposite to the incremental displacement du given in the

positive direction of coordinate u. However, by definition, the potential energy is the value of this

work but with opposite sign. It follows then that the total potential energy (PE) in the spring for a final

displacement u will be

PEð Þ ¼
ð y

0

kudu ¼ 1

2
ku2 ð21:57Þ

Adding Eqs. (21.56 and 21.57), and setting this sum equal to a constant, will give

1

2
my _u 2 þ 1

2
ku2 ¼ C0 ð21:58Þ

Differentiation with respect to time yields

my _u €uþ ku _u ¼ 0

Since _y cannot be zero for all values of t, it follows that

m€uþ ku ¼ 0 ð21:59Þ

This equation is identical with Eq. (1.11) of Chap. 1 obtained by application of Newton’s Law of

Motion. Used in this manner, the energy method has no particular advantage over the equilibrium

method. However, in many practical problems it is only the natural frequency that is desired.

Consider again the simple oscillator of Fig. 21.11, and assume that the motion is harmonic. This

assumption leads to the equation of motion of the form

u ¼ C sin ωtþ αð Þ ð21:60Þ

and velocity

Fig. 21.11 Spring-mass system in free vibration
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_u ¼ ω C cos ωtþ αð Þ ð21:61Þ

where C is the maximum displacement and ω C the maximum velocity. Then, at the neutral position

(u ¼ 0), there will be no force in the spring and the potential energy is zero. Consequently, the entire

energy is then kinetic energy and

Tmax ¼
1

2
m ωCð Þ2 ð21:62Þ

At the maximum displacement the velocity of the mass is zero and all the energy is then potential

energy, thus

PEð Þmax ¼
1

2
kC2 ð21:63Þ

The energy in the system changes gradually over one-quarter of the cycle from purely kinetic

energy, as given by Eq. (21.62), to purely potential energy, as given by Eq. (21.63). If no energy has

been added or lost during the quarter cycle, the two expressions for this energy must be equal. Thus

1

2
mω2C2 ¼ 1

2
kC2 ð21:64Þ

Canceling common factors and solving Eq. (21.64) will give

ω ¼
ffiffiffiffi

k

m

r

ð21:65Þ

which is the natural frequency for the simple oscillator obtained previously from the differential

equation of motion. This method, in which the natural frequency is obtained by equating maximum

kinetic energy with maximum potential energy, is known as Rayleigh’s Method.

Illustrative Example 21.4

In the previous calculations on the spring-mass system, the mass of the spring was assumed to be so

small that its effect on the natural frequency could be neglected. A better approximation to the true

value of the natural frequency may be obtained using Rayleigh’s Method. The distributed mass of the

spring could easily be considered in the calculation by simply assuming that the deflection of the

spring along its length is linear. In this case, consider in Fig. 21.12 the spring-mass system for which

the spring has a length L and a total mass ms. Use Rayleigh’s Method to determine the fraction of the

spring mass that should be added to the vibrating mass.

Fig. 21.12 Spring-mass system with heavy spring
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Solution:

The displacement of an arbitrary section of the spring at a distance s from the support will now be

assumed to be ur ¼ su/L. Assuming that the motion of the mass m is harmonic and given by

Eq. (21.60), we obtain

ur ¼
s

L
u ¼ s

L
C sin ωtþ αð Þ ð21:66Þ

The potential energy of the uniformly stretched spring is given by Eq. (21.57) and its maximum

value is

PEð Þmax ¼
1

2
kC2 ð21:67Þ

A differential element of the spring of length ds has mass equal to msds/L and maximum velocity

_u rmax ¼ ωurmax ¼ ωs C=L.Consequently the total kinetic energy in the system at itsmaximumvalue is

Tmax ¼
ð L

0

1

2

ms

L
ds ω

s

L
C

� 	2

þ 1

2
mω2C2 ð21:68Þ

After integrating Eq. (21.68) and equating it with Eq. (21.67), we obtain

1

2
kC2 ¼ 1

2
ω2C2 mþ ms

3

� 	

ð21:69Þ

Solving for the natural frequency yields

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

k

mþ ms

3

s

ð21:70Þ

or in cycles per second (cps),

f ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi

k

mþ ms

3

s

ð21:71Þ

The application of Rayleigh’s Method shows that a better value for the natural frequency may be

obtained by adding one-third of the mass of the spring to that of the main vibrating mass.

Rayleigh’s Method may also be used to determine the natural frequency of a continuous system

provided that the deformed shape of the structure is described as a generalized coordinate. The

deformed shape of continuous structures and also of discrete structures of multiple degrees of

freedom could in general be assumed arbitrarily. However, in practical applications, the success of

the method depends on how close the assumed deformed shape will come to match the actual shape of

the structure during vibration. Once the deformed shape has been specified, the maximum kinetic

energy and the maximum potential energy may be determined by application of pertinent equations

such as Eqs. (21.8 and 21.13). However, if the deformed shape has been defined as the shape resulting

from statically applied forces, it would be simpler to calculate the work done by the external forces,

instead of directly determining the potential energy. Consequently, in this case, the maximum kinetic

energy is equated to the work of the forces applied statically. The following examples illustrate the

application of Rayleigh’s Method to systems with distributed properties.

21.7 Rayleigh’s Method 513



Illustrative Example 21.5

Determine the natural frequency of vibration of a cantilever beam with a concentrated mass at its end

when the distributed mass of the beam is taken into account. The beam has a total mass mb and length

L. The flexural rigidity of the beam is EI and the concentrated mass at its end is m, as shown in

Fig. 21.13.

Solution:

It will be assumed that the shape of deflection curve of the beam is that of the beam acted upon by a

concentrated force F applied at the free end as shown in Fig. 21.13b. For this static load the deflection

at a distance x from the support is

v xð Þ ¼ 3u

L

Lx2

2
� x3

6

� �

ð21:72Þ

where u ¼ deflection at the free end of the beam. Upon substitution into Eq. (21.72) of v(x) ¼ C sin

(ωt + α), which is the harmonic deflection of the free end, we obtain

v xð Þ ¼ 3x2L� x3

2L
C sin ωtþ αð Þ ð21:73Þ

The potential energy (PE) is equated to the work done by the force F as it gradually increases from

zero to the final value F. This work is equal to 1
2
Fv, and its maximum value (PE)max which is equal to

the maximum potential energy is then

PEð Þmax ¼
1

2
FC ¼ 3EI

2L3
C2 ð21:74Þ

since the force F is related to the maximum deflection by the formula from elementary strength of

materials,

PEð Þmax ¼ u ¼ C ¼ FL3

3EI
ð21:75Þ

The kinetic energy due to the distributed mass of the beam is given by

T ¼
ð L

0

1

2

mb

L

� 	

_u 2
rdx ð21:76Þ

and using Eq. (21.73) the maximum value for total kinetic energy will then be

Fig. 21.13 (a) Cantilever beam of uniform mass with a mass concentrated at its tip. (b) Assumed deflection curve
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Tmax ¼
mb

2L

ð L

0

3x2L� x3

2L3
ωC

� �2

dxþ m

2
ω2C2 ð21:77Þ

After integrating Eq. (21.77) and equating it with Eq. (21.74), we obtain

3EI

2L3
C2 ¼ 1

2
ω2C2 mþ 33

140
mb

� �

ð21:78Þ

and the natural frequency becomes

f ¼ ω

2π
¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3EI

L3 mþ 33
140

mb

� �

s

ð21:79Þ

It is seen, then, that by concentrating a mass equal to (33/140) mb at the end of the beam, a more

accurate value for the natural frequency of the cantilever beam is obtained compared to the result

obtained by simply neglecting its distributed mass. In practice the fraction 33/140 is rounded to 1/4,

thus approximating the natural frequency of a cantilever beam by

f ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3EI

L3 mþ 33
140

mb

� �

s

ð21:80Þ

The approximation given by either Eq. (21.79) or Eq. (21.80) is a good one even for the case in

which m ¼ 0. For this case the error given by these formulas is about 1.5% compared to the exact

solution which will be presented in Chap. 21.

Illustrative Example 21.6

Consider in Fig. 21.14 the case of a simple beam carrying several concentrated masses. Neglect the

mass of the beam and determine an expression for the natural frequency by application of Rayleigh’s

Method.

Solution:

In the application of Rayleigh’s Method, it is necessary to choose a suitable curve to represent the

deformed shape that the beam will have during vibration. A choice of a shape that gives consistently

good results is the curve produced by forces proportional to the magnitude of the masses acting on the

structure. For the simple beam, these forces could be assumed to be the weights W1 ¼ m1 g,

W2 ¼ m2 g, . . ., WN ¼ mNg due to gravitational action on the concentrated masses. The static

Fig. 21.14 Simple beam carrying concentrated masses
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deflections under these weights may then be designated by U1, U2, . . ., UN. The potential energy is

then equal to work done during the loading of the beam, thus,

PEð Þmax ¼
1

2
W1u1 þ

1

2
W2u2 þ . . . þ 1

2
WNuN ð21:81Þ

For harmonic motion in free vibration, the maximum velocities under the weights would be ωu1,

ωu2, . . ., ωuN, and therefore the maximum kinetic energy would be

Tmax ¼
1

2

W1

g
ωu1ð Þ2 þ 1

2

W2

g
ωu2ð Þ2 þ . . .þWN

g
ωuNð Þ2 ð21:82Þ

When the maximum potential energy, Eq. (21.81), is equated with the maximum kinetic energy,

Eq. (21.82), the natural frequency is found to be

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g W1u1 þW2u2 þ . . .þWNuNð Þ
W1u

2
1 þW2u

2
2 þ . . .þ :WNu

2
N

s

or

ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
P

N

i¼1

Wiui

P

N

i¼1

Wiu
2
i

v

u

u

u

u

u

u

t

ð21:83Þ

Where ui is the deflection at coordinate i and Wi the weight at this coordinate.

This method is directly applicable to any beam, but in applying the method, it must be remembered

that these are not gravity forces at all but substituted forces for the inertial forces. For example, in the

case of a simple beam with overhang (Fig. 21.15) the force at the free end should be proportional to

m3 (F3 ¼ m3 g) but directed upward in order to obtain the proper shape for the deformed beam.

In the application of Rayleigh’s Method, the forces producing the deflected shape do not neces-

sarily have to be produced by gravitational forces. The only requirement is that these forces produce

the expected deflection shape for the fundamental mode. For example, if the deflected shape for the

beam shown in Fig. 21.14 is produced by forces designated by f1, f2 . . . fN instead of the gravitation

forces W1, W2, . . ., WN, we will obtain, as in Eq. (21.81), the maximum potential energy

Fig. 21.15 Overhanging massless beam carrying concentrated masses
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PEð Þmax ¼
1

2
f 1u1 þ

1

2
f 2u2 þ . . .þ 1

2
f NuN ð21:84Þ

which equated to the maximum kinetic energy, Eq. (21.82), will result in the following formula for

the fundamental frequency:

ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
P

N

i¼1

f iui

P

N

i¼1

Wiu
2
i

v

u

u

u

u

u

u

t

ð21:85Þ

Consequently, the fundamental period could be calculated as

T ¼ 2π

ω
¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N

i¼1

Wiu
2
i

g
P

N

i¼1

f iui

v

u

u

u

u

u

u

t

ð21:86Þ

21.8 Improved Rayleigh’s Method

The concept of applying inertial forces as static loads in determining the deformed shape for

Rayleigh’s Method may be used in developing an improved scheme for the method. In the application

of the improved Rayleigh’s Method, one would start from an assumed deformation curve followed by

the calculation of the maximum values for the kinetic energy and for the potential energy of the

system. An approximate value for natural frequency is calculated by equating maximum kinetic

energy with the maximum potential energy. Then an improved value for the natural frequency may be

obtained by loading the structure with the inertial loads associated with the assumed deflection. This

load results in a new deformed shape which is used in calculating the maximum potential energy. The

method is better explained with the aid of numerical examples.

Fig. 21.16 Two-story frame for Example 21.7
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Illustrative Example 21.7

By Rayleigh’s Method, determine the natural frequency (lower or fundamental frequency) of the

two-story frame shown in Fig. 21.16. Assume that the horizontal members are very rigid compared to

the columns of the frame. This assumption reduces the system to only two degrees of freedom,

indicated by coordinates u1 and u2 in the figure. The mass of the structure, which is lumped at the floor

levels, has values m1 ¼ 136 lb�sec2/in and m2 ¼ 66 lb�sec2/in. The total stiffness of the first story is

k1 ¼ 30,700 lb/in and of the second story k2 ¼ 44,300 lb/in, as indicated in Fig. 21.16.

Solution:

This structure may be modeled by the two mass systems shown in Fig. 21.17. In applying Rayleigh’s

Method, let us assume a deformed shape for which u1¼ 1 and u2¼ 2. The maximum potential energy

is then

PEð Þmax ¼
1

2
K1u

2
1 þ

1

2
K2 u2 � u1ð Þ2

¼ 1

2
30; 700ð Þ 1ð Þ2 þ 1

2
44; 300ð Þ 1ð Þ2

¼ 37, 500 lb:in

ðaÞ

and the maximum kinetic energy

Tmax ¼
1

2
m1 ωu1ð Þ2 þ 1

2
m2 ωu2ð Þ2

¼ 1

2
136ð Þω2 þ 1

2
66ð Þ 2ωð Þ2

¼ 200ω2

ðbÞ

Equating maximum potential energy with maximum kinetic energy and solving for the natural

frequency gives

ω ¼ 13:69 rad= sec

Fig. 21.17 Mathematical model for structure of Example 21.7

518 21 Generalized Coordinates and Rayleigh’s Method



or

f ¼ ω

2π
¼ 2:18 cps

The natural frequency calculated as f¼ 2.18 cps is only an approximation to the exact value, since

the deformed shape was assumed for the purpose of applying Rayleigh’s Method. To improve this

calculated value of the natural frequency, let us load the mathematical model in Fig. 21.17a with the

inertial load calculated as

F1 ¼ m1ω
2u1 ¼ 136ð Þ 13:69ð Þ2 1ð Þ ¼ 25, 489

F2 ¼ m2ω
2u2 ¼ 66ð Þ 13:69ð Þ2 2ð Þ ¼ 24, 739

The equilibrium equations obtained by equating to zero the sum of the forces in the free body

diagram shown in Fig. 21.17b gives

30, 700 u1 � 44, 300 u2 � u1ð Þ ¼ 25, 489

44, 300 u2 � u1ð Þ ¼ 24, 739

and solving

u1 ¼ 1:64

u2 ¼ 2:19

or in the ratio

u1 ¼ 1:00

u2 ¼ 1:34 ðcÞ

Introducing these improved values for the displacements u1 and u2 into Eqs. (a) and (b) to

recalculate the maximum potential energy and maximum kinetic energy results in

PEð Þmax ¼ 25 ðdÞ

Tmax ¼ 160:03ω2 ðeÞ

and upon equating (PE)max and Tmax, we obtain

ω ¼ 12:57 rad= sec

or

f ¼ 2:00 cps

This last calculated value for the natural frequency f ¼ 2.00 cps could be further improved by

applying a new inertial load in the system based on the last value of the natural ‘frequency and

repeating anew cycle of calculations. Table 21.3 shows results obtained for four cycles.

The exact natural frequency and deformed shape, which are calculated for this system in Chap. 7,

Example 7.1, as a two-degrees-of-freedom system, checks with the values obtained in the last cycle of

the calculations s shown in Table 21.3.
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21.9 Shear Walls

Horizontal forces in buildings, such as those produced by earthquake motion or wind action, are often

resisted by structural elements called shear walls. These structural elements are generally designed as

reinforced concrete walls fixed at the foundation. A single cantilever shear wall can be expected to

behave as an ordinary flexural member if its length-to-depth ratio (L/D) is greater than about 2. For

short shear walls (L/D < 2), the shear strength assumes preeminence and both flexural and shear

deformations should be considered in the analysis.

When the floor system of a multistory building is rigid, the structure’s weights or masses at each

floor may be treated as concentrated loads, as shown in Fig. 21.18 for a three-story building. The

response of the structure is then a function of these masses and of the stiffness of the shear wall. In

practice a mathematical model is developed in which the mass as well as the stiffness of the structure

are combined at each floor level. The fundamental frequency (lowest natural frequency) for such a

structure can then be obtained using Rayleigh’s Method, as shown in the following illustrative

example.

Table 21.3 Improved Rayleigh’s Method Applied to Example 21.7

Cycle Deformed Shape

Inertial Load

Natural FrequencyF1 F2

1 1:2.00 2.18 cps

2 1:1.34 25,489 24,739 2.00

3 1:1.32 21,489 18,725 1.88

4 1:1.27 19,091 12,230 1.88

Fig. 21.18 Mathematical model for shear wall and rigid floors
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Illustrative Example 21.8

Determine, using Rayleigh’s Method, the natural period of the three-story building shown in

Fig. 21.18. All the floors have equal weight W. Assume the mass of the wall negligible compared

to the floor masses and consider only flexural deformations (L/D > 2).

Solution:

The natural frequency can be calculated using Eq. (21.83), which is repeated here for convenience:

ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
P

N

i¼1

Wiui

P

N

i¼1

Wiu
2
i

v

u

u

u

u

u

u

t

The deformed shape equation is assumed as the deflection curve produced on a cantilever beam

supporting three concentrated weightsW, as shown in Fig. 21.19. The static deflections u1, u2, and u3
calculated by using basic knowledge of strength of materials are

u1 ¼
15

162

WL3

EI
¼ 0:0926

WL3

EI

u2 ¼
15

162

WL3

EI
¼ 0:3025

WL3

EI

u3 ¼
92

162

WL3

EI
¼ 0:5679

WL3

EI

The natural frequency by Eq. (a) is then calculated as

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

386 0:0926þ 0:3025þ 0:5679ð Þ
0:09262 þ 0:30252 þ 0:56792
� � � EI

WL3
¼ 29:66

ffiffiffiffiffiffiffiffiffi

EI

WL3

r

rad= sec

s

or

f ¼ ω
2πW

¼ 4:72
ffiffiffiffiffiffiffi

EI
WL3

q

cps

Illustrative Example 21.9

For the mathematical model of a three-story building shown in Fig. 21.18, determine the total

deflections at the floor levels considering both flexural and shear deformations.

Fig. 21.19 Assumed deflection curve for Example 21.8
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Solution:

The lateral deflection Δus, considering only shear deformation for a beam segment of length Δx, is

given by

Δus ¼
VΔx

αAG
ðaÞ

where

V ¼ shear force

A ¼ cross-sectional area

α ¼ shear constant (α ¼ 1.2 for rectangular sections)

G ¼ shear modulus of elasticity

At the first story, v ¼ 3 W. Therefore, by Eq. (a) the shear deflection at the first story is

us1 ¼
3W L=3ð Þ
αAG

¼ WL

αAG
ðbÞ

At the second floor the shear deflection is equal to the first floor deflection plus the relative

deflection between floors, that is

us2 ¼ us1 þ
2W L=3ð Þ
αAG

¼ 5WL

3αAG
ðcÞ

since the shear force of the second story is V ¼ 2 W, and at the third floor

us3 ¼ us2 þ
W L=3ð Þ
αAG

¼ 6WL

3αAG
ðdÞ

The total deflection is then obtained by adding the flexural deflection determined in Example 21.8

to the above shear deflections. Hence,

u1 ¼
15

162

WL3

EI
þ WL

αAG

u2 ¼
49

162

WL3

EI
þ 5WL

3αAG

u3 ¼
92

162

WL3

EI
þ 6WL

3αAG
ðeÞ

We can see better the relative importance of the shear contribution to the total deflection by

factoring the first terms in Eq. (e). Considering a rectangular wall for which A ¼ D � t, E/G ¼ 2.5,

I ¼ tD3/12, α ¼ 1.2 (t ¼ thickness of the wall), we obtain

u1 ¼
15

162

WL3

EI
1þ 1:875

D

L

� �2
" #

u2 ¼
49

162

WL3

EI
1þ 0:957

D

L

� �2
" #

u3 ¼
92

162

WL3

EI
1þ 0:611

D

L

� �2
" #

ðfÞ
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The next illustrative example presents a table showing the relative importance that shear defor-

mation has in calculating the natural frequency for a series of values of the ratio D/L.

Illustrative Example 21.10

For the structure modeled as shown in Fig. 21.18, study the relative importance of shear deformation

in calculating the natural frequency. Solution: In this study we will consider, for the wall, a range of

values from 0 to 3.0 for the ratio D/L (depth-to-length ratio). The deflections u1, u2, u3 at the floor

levels are given by Example 21.9 and the natural frequency by Eq. (21.83). The necessary

calculations are conveniently shown in Table 21.4. It may be seen from the last column of

Table 21.4, that for this example the natural frequency neglecting shear deformation (D/L ¼ 0) is

f ¼ 4:72
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EI=WL3
p

cps. For short walls (D/L > 0.5) the effect of shear deformation becomes

increasingly important.

21.10 Summary

The concept of generalized coordinate presented in this chapter permits the analysis of multiple

interconnected rigid or elastic bodies with distributed properties as single-degree-of-freedom

systems. The analysis as one-degree-of freedom systems can be made provided that by the specifica-

tion of a single coordinate (the generalized coordinate) the configuration of the whole system is

determined. Such a system may then be modeled as the simple oscillator with its various parameters

of mass, stiffness, damping, and load, calculated to be dynamically equivalent to the actual system to

be analyzed. The solution of this model provides the response in terms of the generalized coordinate.

The principle of virtual work which is applicable to systems in static or dynamic equilibrium is a

powerful method for obtaining the equations of motion as an alternative to the direct application of

Newton’s law. The principle of virtual work states that for a system in equilibrium the summation of

the work done by all its forces during any displacement compatible with the constraints of the system

is equal to zero.

Rayleigh’s Method for determining the natural frequency of a vibrating system is based on the

principle of conservation of energy. In practice, it is applied by equating the maximum potential

energy with the maximum kinetic energy of the system. To use Rayleigh’s Method for the determin-

ing of the natural frequency of a discrete or a continuous system, it is necessary to assume a deformed

shape. Often, this shape is selected as the one produced by gravitational loads acting in the direction

of the expected displacements. This approach leads to the following formula for calculating the

natural frequency:

Table 21.4 Calculation of the Natural Frequency for the Shear Wall Modeled s Shown in Fig. 21.18

D/La u1
b(in) u2

b(in) u3
b(in) ω

c(rad/sec) fc(cps)

0.00 0.09259 0.30247 0.56790 29.66 4.72

0.50 0.13600 0.37483 0.65465 27.67 4.40

1.00 0.26620 0.59193 0.91489 23.30 3.71

1.50 0.48322 0.95376 1.34862 19.05 3.03

2.00 0.78704 1.46032 1.95585 15.71 2.50

2.50 1.17765 2.11161 2.73658 13.21 2.10

3.00 1.65509 2.90764 3.69079 11.33 1.80

aD/L ¼ 0 is equivalent, to neglect shear deformations
bFactor of WL3/EI
cFactor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EI=WL3
p
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ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
P

i

Wiui

P

i

Wiu
2
i

v

u

u

u

t ð21:83Þ repeated

where ui is the deflection at coordinate i andWi concentrated weight at this coordinate. Shear walls are

structural walls designed to resist lateral forces in buildings. For short walls (L/D � 2) shear

deformations are important and should be considered in the analysis in addition to the flexural

deformations.

21.11 Problems

Problem 21.1

For the system shown in Fig. P21.1 determine the generalized massM*, damping C*, stiffness K*, and

the generalized load F* (t). Select U(t) as the generalized coordinate.

Problem 21.2

Determine the generalized quantities M*, C*, K*, and F*(t) for the structure shown in Fig. P21.2.

Select U(t) as the generalized coordinate.

U (t )

c = 1000 k = 5000 Ib/in.

3´3´2´

p (x, t ) = 500f (t ) Ib/ft
Rigid beam

Total weight = 800 Ib.

in.
Ib–sec

Fig. P21.1

Uniform disk

Total mass = m

Inextensible cable

Rigid beam

U (t )

K

M(t )
Total mass = 200

L

c

Fig. P21.2
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Problem 21.3

Determine the generalized quantities M*, C*, K*, and F*(t) for the structure shown in Fig. P21.3.

Select θ(t) as the generalized coordinate.

Problem 21.4

For the elastic cantilever beam shown in Fig. P21.4, determine the generalized quantitiesM*, K*, and

F*(t).Neglect damping. Assume that the deflected shape is given by ϕ (x)¼ 1 – cos(πx/2 L ) and select

U(t) as the generalized coordinate as shown in Fig. P21.4. The beam is excited by a concentrated force

F(t) ¼ F0f(t) at midspan.

Problem 21.5

Determine the generalized geometric stiffness K*
G for the system in Fig. P21.4 if an axial tensile force

N is applied at the free end of the beam along the x direction. What is the combined generalized

stiffness K*
c?

Uniform rigid members of
mass m per unit of length

x

c

x

L

L

k

L

f (t )

θ (t )

p (x, t ) = p0

¯

Fig. P21.3

Uniform beam

Total mass = m

Assumed shape

Concentrated

mass = m

F (t )

U (t )

x

(x ) = 1 – cos

Flexural

rigidity = EI

L
2L

x

y

Fig. P21.4
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Problem 21.6

A concrete conical post of diameter d at the base and height L is shown in Fig. P21.6. It is assumed

that the wind produces a dynamic pressure p0(t) per unit of projected area along a vertical plane.

Determine the generalized quantitiesM*, K*, and F*(t) (Take modulus of elasticity Ec ¼ 3 � 106 psi;

specific weight γ ¼ 150 lb./ft3 for concrete.)

Problem 21.7

A simply supported beam of total uniformly distributed mass mb, flexural rigidity EI, and length L,

carries a concentrated mass m at its center. Assume the deflection curve to be the deflection curve due

to a concentrated force at the center of the beam and determine the natural frequency using Rayleigh’s

Method.

Problem 21.8

Determine the natural frequency of a simply supported beam with overhang which has a total

uniformly distributed mass mb, flexural rigidity EI, and dimensions shown in Fig. P21.8. Assume

that during vibration the beam deflected curve is of the shape produced by a concentrated force

applied at the free end of the beam.

L

d

x

L
xd

U (t )

p (t ) = P0 (t )

Fig. P21.6

P

L

EI, mb

L
2

Fig. P21.8
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Problem 21.9

Determine the natural frequency of the simply supported beam shown in Fig. P21.9 using Rayleigh’s

Method. Assume the deflection curve given by ϕ (x) ¼ Usin πx/L. The total mass of the beam is

mb ¼ 10 lb. sec2/in, flexural rigidity EI ¼ 108 lb.�in2, and length L ¼ 100 in. The beam carries a

concentrated mass at the center m ¼ 5 lb.�sec2/in.

Problem 21.10

A two-story building is modeled as the frame shown in Fig. P21.10. Use Rayleigh’s Method to

determine the natural frequency of vibration for the case in which only flexural deformation needs to

be considered. Neglect the mass of the columns and assume rigid floors. (Hint: Use Eq. (21.83)).

Problem 21.11

Solve Problem 21.10 for the case in which the columns are short and only shear deformation needs to

be considered. (The lateral force V for a fixed column of length L, cross-sectional area A, is

approximately given by V ¼ AGΔ/L, where G is the shear modulus of elasticity and Δ the lateral

deflection.)

W

W

L

L

u2

u1

I (Total)

I (Total)

Fig. P21.10

EI, mb

m

L

Fig. P21.9
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Problem 21.12

Calculate the natural frequency of the shear wall carrying concentrated masses at the floor levels of a

three-story building as shown in Fig. P21.12. Assume that the deflection shape of the shear wall is that

resulting from a concentrated lateral force applied at its tip. Take flexural rigidity, EI¼ 3.0� 1011 lb.�
in2; length L ¼ 36 ft.; concentrated masses, m ¼ 100 lb.�sec2/in and mass per unit of length along the

wall, �m ¼ 10 lb � sec 2=in2:

Problem 21.13

Solve Problem 21.12 on the assumption that the deflection shape of the shear wall is that resulting

from a lateral uniform load applied along its length.

y

m

L /3

L /3

L /3

x

P

umax

m

m

Fig. P21.12
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Part VI

Random Vibration



Random Vibration 22

The previous chapters of this book have dealt with the dynamic analysis of structures subjected to

excitations which were known as a function of time. Such an analysis is said to be deterministic.

When an excitation function applied to a structure has an irregular shape that is described indirectly

by statistical means, we speak of a random vibration. Such a function is usually described as a

continuous or discrete function of the exciting frequencies, in a manner similar to the description of a

function by Fourier series. In structural dynamics, the random excitations most often encountered are

either motion transmitted through the foundation or acoustic pressure. Both of these types of loading

are usually generated by explosions occurring in the vicinity of the structure. Common sources of

these explosions are construction work and mining. Other types of loading, such as earthquake

excitation, may also be considered a random function of time. In these cases the structural response

is obtained in probabilistic terms using random vibration theory.

A record of random vibration is a time function such as shown in Fig. 22.1. The main characteristic

of such a random function is that its instantaneous value cannot be predicted in a deterministic sense.

The description and analysis or random processes are established in a probabilistic sense for which it

is necessary to use tools provided by the theory of statistics.

x(t)

t

T

Fig. 22.1 Record of a random function of time
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22.1 Statistical Description of Random Functions

In any statistical method a large number of responses is needed to describe a random function. For

example, to establish the statistics of the foundation excitation due to explosions in the vicinity of a

structure, many records of the type shown in Fig. 22.2 may be needed. Each record is called a sample,

and the total collection of samples an ensemble. To describe an ensemble statistically, we can compute

at any time ti the average value of the instantaneous displacements xi. If such averages do not differ as

we select different values of ti, then the random process is said to be stationary. In addition, if the

average obtainedwith respect to time for anymember of the ensemble is equal to the average across the

ensemble at an arbitrary time ti, the random process is called ergodic. Thus in a stationary, ergodic

process, a single record may be used to obtain the statistical description of a random function.We shall

assume that all random process considered are stationary and ergodic. The random function of time

shown in Fig.22.1 has been recorded during an interval of time T. Several averages are useful in

describing such a random function. The most common are the mean value �x which is defined as

�x ¼ 1

T

ð T

0

x tð Þdt ð22:1Þ

and the mean-square value x2 defined as

x2 ¼ 1

T

ð T

0

x2 tð Þdt ð22:2Þ

Both the mean and the mean-square values provide measurements for the average value of the

random function x(t). The measure of how widely the function x(t) differs from the average is

given by its variance, σ2x , defined as

σ2x ¼
1

T

ð T

0

x tð Þ � �x½ �2dt ð22:3Þ

x2

x3

x1

t1

t

t

t

Fig. 22.2 An ensemble of random functions of time
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When the expression under the integral is expanded and then integrated, we find that

σ2x ¼ x2 �
�

�x
�2 ð22:4Þ

which means that the variance can be calculated as the mean-square minus the square of the mean.

Quite often the mean value is zero, in which case variance is equal to the mean square value. The root

mean-square RMSx of the random function x(t) is defined as

RMSs ¼
ffiffiffiffiffi

x2
p

ð22:5Þ

The standard deviation σx of the random function x(t) is the square root of the variance; hence from

Eq. (22.4)

σx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 �
�

�x
�2

q

ð22:6Þ

Illustrative Example 22.1

Determine the mean value �F, the mean-square value F2 , the variance σ2F and the root mean square

values RMSF of the forcing function F(t) shown in Fig. 22.3.

Solution; Since the force F(t) is periodic with period T, we can take the duration of the force equal

to T; hence by Eq. (22.1) we have

�F ¼ 1

T

ð t

0

F tð Þdt ¼ Fmax

2

and noting that

F tð Þ ¼ 2Fmax

T
t for 0 < t <

T

2

we obtain by Eq. (22.2)

F2 ¼ 2

T

ð T

0

2Fmax

T

� �2

t2dt ¼ F2
max

3

The variance may now be calculated from Eq. (22.4) as

Fig. 22.3 Forcing function for Illustrative Example 22.1
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σ2F ¼ F2 �
�

�F
�2

σ2F ¼ F2
max

3
� F2

max

4
¼ F2

max

12

Finally the root mean square value of F(t) is

RMSF ¼
ffiffiffiffiffiffi

F2

q

¼ Fmax
ffiffiffi

3
p

22.2 Probability Density Function

Figure 22.4 shows a portion of a record of a random function x(t). If we wish to determine the

probability of x having a value in the range (x1, x2), we may draw horizontal lines through the values

x1 and x2, and then measure the corresponding time intervals Δt1. The ratio given by

P x1 � x � x2ð Þ ¼ Δt1 þ Δt2 þ . . .þ Δtn

T
ð22:7Þ

and calculated for the entire record length T, is the probability of x having a value between x1 and x2 at

any selected time ti during the random process.

Similarly, the probability of x(t) being smaller than a value x can be expressed as

P xð Þ ¼ P x tð Þ < x½ � ¼ lim
T�x

1

T

X

i

Δti ð22:8Þ

where the time intervals Δti are now those for which the function x(t) has a value smaller than the

specified x.

The function P(x) in Eq. (22.8) is known as the cumulative distribution function of the random

function x(t). This function is plotted in Fig. 22.5a as a function of x. The cumulative distribution

function is a monotonically increasing function for which

P �1ð Þ ¼ 0, 0 � P xð Þ � 1, P 1ð Þ ¼ 1

X(t)

(∆t)
1

(∆t)
2

(∆t)
3

(∆t)
4

t

xm

–xm

x2

x1

Fig. 22.4 Portion of random record showing determination of probabilities
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Now, the probability that the value of the random variable is smaller than the value x + Δx is

denoted by P(x +Δx) and that x(t) takes a value between x and x +Δx is P(x +Δx) – P(x). This allows

us to define the probability density function as

p xð Þ ¼ lim
Δx!0

P x� Δxð Þ � P xð Þ
Δx

¼ dP xð Þ
dx

ð22:9Þ

Thus, the probability density function p(x) is represented geometrically by the slope of the cumulative

probability function P(x). The functions P(x) and p(x) are shown in Figs. 22.5a, b, respectively. From

Eq. (22.9) we conclude that the probability that a random variable x(t) has a value between x and

x + dx is given by p(x) dx, where p(x) is the probability density junction. Having prescribed p(x), for

example, as the function plotted in Fig. 22.5b, the probability of x being in the range (x1, x2) at any

selected time is given by

P x1 � x � x2ð Þ ¼
ðx2

x1

p xð Þdx ð22:10Þ

and is equal to the shaded area shown between x1 and x2 in Fig. 22.5b. Similarly, the probability of

x being greater than xm, that is, P (|x| > xm) can be represented as the two shaded “tail” areas in

Fig. 22.5b. Since every real x lies in the interval (�1,1), the area under the entire probability density

function is equal to 1, that is,

ð1

�1
p xð Þdx ¼ 1 ð22:11Þ

Thus as x tends to infinity in either direction, p(x) must asymptotically diminish to zero.

Fig. 22.5 (a) Cumulative probability function P(x) and (b) Probability density function p(x) of the random variable

x ¼ x(t)
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22.3 The Normal Distribution

The most commonly used probability density function is the normal distribution, also referred to as

the Gaussian distribution, expressed by

p xð Þ ¼ 1
ffiffiffiffiffi

2π
p

σ
e�

1
2

�

x��x
�2

=σ2 ð22:12Þ

Figure 22.6 shows the shape of this function. It may be observed that the normal distribution function

is symmetric about the mean value �x. In Fig. 22.7 the standard normal distribution is plotted

non-dimensionally in terms of (x – �x)/σ. Values of P(�1, x2) [x1 ¼ �1 in Eq. (22.10)] are tabulated

in many sources including mathematical handbook.1 The probability of x being between x – λσ and

x + λσ, where λ is any positive number, is given by the equation.

P
�

�x� λσ < x < �xþ λσ
�

¼ 1
ffiffiffiffiffi

2π
p

σ

ð�xþλσ

�x�λσ

e�
1
2

�

x��x
�2=σ2

dx ð22:13Þ

Equation (22.13) represents the probability that x lies within λ standard deviations from �x. The

probability of x lying more than λ standard deviations from �x is the probability of |x – �x| exceeding λσ,

which is 1.0 minus the value given by Eq. (22.13). The following table presents numerical values for

the normal distribution associated with λ ¼ 1, 2, and 3:

λ P[�x – λ σ < x < �x + λ σ] P[x – �x] > λ σ]

1 68.3% 31.7%

2 95.4% 4.6%

3 99.7% 0.3%

P (x)

x

x2x1 xm–xm

¯

0
x

Fig. 22.6 Normal probability density function

1 Standard mathematical Tables, The Chemical Rubber Co. (CRC) 20th Ed. 1972, pp. 566–575.
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22.4 The Rayleigh Distribution

Variables that are positive, such as the absolute value A of the peaks of vibration of a random function

x(t), often tend to follow the Rayleigh distribution, which is defined by the equation

p Að Þ ¼ A

σ2
e�A2=2σ2 , A > 0 ð22:14Þ

where σ is a parameter that may be interpreted as the standard deviation of a function x(t).

The probability density p(A) is zero for A < 0 and has the shape shown in Fig. 22.8 for positive

values A.

The mean and mean square values for the Rayleigh distribution function are given by Eqs. (22.1)

and (22.2)as

�A ¼
Ð χ

0
Ap Að ÞdA ¼

Ð χ

0

A2

σ2
e�A2=2σ2dA ¼

ffiffiffi

π

2

r

σ

A2 ¼
Ð χ

0
A2p Að ÞdA ¼

Ð χ

0

A3

σ2
e�A2=2σ2dA ¼ 2σ2

Therefore, the Root Mean Square value of the random variable A (RMSA) is

RMSA ¼ σ
ffiffiffi

2
p

ð22:15Þ

The variance associated with the Rayleigh distribution function is, by Eq. (22.4),

σ2A ¼ A2 �
�

�A
�2 ¼ 4� π

2
σ2 ¼ 0:429σ2 ð22:16Þ

The probability of A exceeding a specified value λσ, P (A > λσ) is defined as

P A > λσð Þ ¼
ð1

λσ

p Að ÞdA

Which after substituting p(A) from Eq. (22.14) result in

x – x

p (x)

3210

0.393

–1–2–3 σ

Fig. 22.7 Standard normal probability density function
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P A > λσð Þ ¼
ð1

λσ

A

σ2
e�A2=2σ2dA

which may be written as

P A > λσð Þ ¼ �
ð1

λσ

e �A2=2σ2ð Þd �A2=2σ2
� �

Thus,

P A > λσð Þ ¼ e�A2=2 ð22:17Þ

Also, the probability of A exceeding a specified value λσ, P (A > λσ) is given by

P A > λσAð Þ ¼
ð1

λσA

A

σ2
e�A2=2σ2dA

Substituting from Eq. (22.16) σ2 ¼ σ2A/0.429 and integrating results in

P A > λσAð Þ ¼ e�0:429A2=2 ð22:18Þ

The following table presents values for the probability of A, calculated from Eqs. (22.17) and

(22.18), of exceeding λσ, or λσA for λ ¼ 1,2, 3, and 4.

λ P[A > λσ]% P[A > λσA]%

1 60.65 80.69

2 13.53 42.40

3 1.11 14.51

4 0.03 3.23

22.5 Correlation

Correlation is a measure of the dependence between two random processes. Consider the two records

shown in Fig. 22.9. The correlation between them is calculated by multiplying the coordinates of

these two records at each time ti and computing the average over all values of t. It is evident that the

P(A)

0.6

0.5

0.4

0.3

0.2

0.1

0
1σ 2σ 3σ 4σ

A

Fig. 22.8 Rayleigh probability density function
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correlation so found will be larger when the two records are similar. For dissimilar records with mean

zero, some products will be positive and others negative. Hence their average product will approach

zero.

We consider now the two records shown in Fig. 22.10 in which x1(t) is identical to x(t) but shifted

to the left in the amount τ, that is, x1(t) ¼ x(t + τ). The correlation between x(t) and x1(t) ¼ x(t + T) is

known as the autocorrelation R(τ) and is given by

R τð Þ lim
T!1

1

T

ð T

0

x tð Þx tþ τð Þdt ð22:19Þ

When τ ¼ 0, the autocorrelation reduces to the mean square value, that is,

R 0ð Þ ¼ lim
T!1

1

T

ð T

0

x tð Þ½ �2dt ¼ x2 ð22:20Þ

t

t

t

x2 (t )

x1 (t )

Fig. 22.9 Correlation between x1 (t) and x2 (t)

t

t

x(t1) = x(t + )



x (t1)

x (t )

x (t )

Fig. 22.10 Autocorrelation between x (t) and x (t + τ)
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Since the second record of Fig. 22.10 can be considered to be delayed with respect to the first

record, or the first record advanced with respect to the second record, it is evident that R(τ)¼ R(�τ) is

symmetric about the R axis and that R(τ) is always less than R(0).

Highly random or wide-band functions such as the one shown in Fig. 22.11a lose their similarity

within a short time shift. The autocorrelation of such a function, therefore, is a sharp spike at τ ¼ 0

that drops off rapidly as τ moves away from zero, as shown in Fig. 22.11b. For the narrow-band

record containing a dominant frequency as shown in Fig. 22.12a, the autocorrelation has the

characteristics indicated in Fig. 22.12b in that it is a symmetric function with a maximum at τ ¼ 0

and frequency ω0 corresponding to the dominant frequency of x(t).

Illustrative Example 22.2

For the function depicted in Fig. 22.13, determine: (a) the mean, (b) the mean square value, and (c) the

autocorrelation function. Also, plot the autocorrelation function.

Solution: because the function x(t) is periodic, averages calculated over a long time approach those

calculated over a single period. Considering the period between 0 and T, the function is described

analytically by

x tð Þ ¼ x0 0 < x < T=2

¼ 0 T=2 < x < T
ðaÞ

(a) Mean value: by Eq. (22.1)

�x ¼ 1

T

ðT
2

0

x0dt ¼
x0

2
ðbÞ

(b) Mean square value: by Eq. (22.2)

x2 ¼ 1

T

ðT
2

0

x20dt ¼
x20
2

ðcÞ

(c) Autocorrelation function:

(a) (b)

0
t

 

x (t ) R ( )

Fig. 22.11 Wide-band random process x (t) and its autocorrelation function R(τ)
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To calculate the autocorrelation function, it is necessary to distinguish between the time shift

0 < τ < T/2 and T/2 < τ < T as shown, respectively, in Fig. 22.14a, b.

(d) Using Eq. (22.19) and considering Fig. 22.14a, we obtain for 0 < τ < T/2

R τð Þ ¼ 1

T

ð T

0

x tð Þ � x tþ τð Þdt ¼
ð
T
2
� τ

0

x0 � x0dt

¼ x20
T

T

2
� τ

� �

¼ x20
1

2
� τ

T

� �

for 0 > τ >
T

2

ðdÞ

in which the limits of integration are given by the overlapping portions of x(t) and x(t + T ) as indicated

by the shaded area in Fig.22.14a.

When T/2 < τ < T, we obtain from Fig. 22.14b.

R τð Þ ¼ 1

T

ð
T
2

T�τ

x0:x0dt ¼
x20
T

T

2
� T þ τ

	 


¼ x20 �1

2
þ τ

T

� �

for
T

2
< τ < T

ðeÞ

From examination of Fig. 22.14, it can be concluded that the autocorrelation function R(τ) for the

function x(t) must be periodic in t with period T. Therefore, from Eq. (d), (e), and the fact that R(τ) is

periodic, we can plot the autocorrelation function as shown in Fig. 22.15.

(a) (b)

0
t  

x (t )
R ( )

Fig. 22.12 Narrow-band random process x(t) and its autocorrelation function R(T )

Fig. 22.13 Periodic function x(t) of Illustrative Example 22.2.
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22.6 The Fourier Transform

In Chap. 19, we used Fourier series to obtain the frequency components of periodic functions of time.

In general, random vibrations are not periodic, and the frequency analysis requires the extension of

Fourier series to the Fourier integral for non-periodic functions. Fourier transforms, which result from

Fourier integrals, enable a more extensive treatment of the random vibration problem.

We begin by showing that the Fourier integral can be viewed as a limiting case of the Fourier series

as the period goes to infinity. Toward this objective we consider the Fourier series in exponential form

and substitute the coefficient Cn given by Eq. (19.20) into Eq. (19.19) to obtain:

F tð Þ ¼
X

χ

n¼�χ

1

T

ðT=2

�T=2

F τð Þ � e�inϖτ � einϖtdτ ð22:21Þ

In Eq. (22.21) we have selected the integration period from �T/2 to T/2 and substituted the symbol τ

for t as the dummy variable of integration. The frequency ω¼ nϖ is specified here at discrete, equally

spaced values separated by the increment

Fig. 22.14 Plot of x(t) and x(t + τ); (a) for 0 < τ < T/2. (b) for T/2 < τ < T

Fig. 22.15 Autocorrelation function R(τ) for the function of Illustrative Example 22.2
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Δω ¼ nþ 1ð Þϖ� nϖ ¼ ϖ ¼ 2π

T

We substitute in Eq. (22.21) ω for nϖ and Δω/2π for 1/T) and notice that as T!1,Δω! dω. Thus,

in the limit, Eq. (22.21) becomes

F tð Þ ¼ 1

2π

ð1

�1

ð1

�1
F τð Þe�iωτdτ

� �

eiωtdω ð22:22Þ

which is the Fourier integral of F(t).

Since the function within the inner braces is a function of only ω,we can write this equation in two

parts as

C ωð Þ ¼ 1

2π

ð1

�1
F tð Þe�iωtdt ð22:23Þ

and

F tð Þ ¼
ð1

�1
C ωð Þeiωtdω ð22:24Þ

The validity of these relations, according to classical Fourier transform theory, is subject to the

condition that

ð1

�1
F tð Þj jdt < 1 ð22:25Þ

The function C(ω) in Eq. (22.23) is the Fourier transform of F(t) and the function F(t) in Eq. (22.24) is

the inverse Fourier transform of C(ω). The pair of functions F(t) and C(ω) is referred to as a Fourier

transform pair. Equation (22.23) resolves the function F(t) into harmonic components C(ω), whereas

Eq. (22.24) synthesizes F(t) from these harmonic components. In practice it is more convenient to use

frequency f in cps rather than the angular frequency ω in rad/sec. Mathematically, since ω ¼ 2πf and

dω ¼ 2πdf, this also has the advantage of reducing the Fourier transform pair into a more symmetric

form, namely,

F tð Þ ¼
ð1

�1
C fð Þei2πftdf ð22:26Þ

and

C fð Þ ¼
ð1

�1
F tð Þei2πftdt ð22:27Þ

22.7 Spectral Analysis

We have seen in Chap. 19 that the application of Fourier analysis to a periodic function yields the

frequency components of the function given by either trigonometric terms [Eq. (19.2)] or exponential

terms [Eq. (19.19)]. When the periodic function is known at N discrete, equally spaced times, the

frequency components are then given by the terms in Eq. (19.28). Our purpose in this section is to

relate the Fourier analysis for a given function x(t) to its mean square value x2 .
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The contributions of the frequency components of x(t) to the value x2 are referred to as the spectral

function of x(t). Hence spectral analysis consists in expressing x2 in terms of either the coefficients of

the Fourier series (i.e., an and bn. or equivalently Cn) when x(t) is periodic, or in terms of the Fourier

transform [i.e., C(ω)] when x (t) is not a periodic function.

We begin by performing the spectral analysis of a periodic function x(t) expressed in Fourier

series, Eq. (19.2), which is

x tð Þ ¼ a0 þ
X

1

n�1

an cos nϖtþ bn sin nϖtf g ð22:28Þ

where the coefficients are given by Eq. (19.3) as

a0 ¼
1

T

ð T

0

x tð Þdt

an ¼
2

T

ð T

0

x tð Þ cos nϖdt

bn ¼
2

T

ð T

0

x tð Þ sin nϖdt

ð22:29Þ

In Eq. (22.29), T is the period of the function and ϖ ¼ 2π/T its frequency. The substitution of x(t)

from Eq. (22.28) for one of the factors in the definition of mean square value gives

x2 ¼ 1

T

ð T

0

x2 tð Þdt

¼ 1

T

ð T

0

x tð Þ a0 þ
X

1

n¼1

an cos nϖtþ bn sin nϖtð Þ
( )

dt

¼ a0

T

ð T

0

x tð Þdtþ
X

1

n¼1

an

T

ð T

0

x tð Þ cos nϖtdtþ bn

T

ð T

0

x tð Þ sin nϖtdt

	 


Finally substituting the integral expressions from Eqs. (22.29) we get the desired result

x2 ¼ a20 þ
X

1

n¼1

a2n
2
þ b2n

2

	 


ð22:30Þ

The spectrum of the function x(t) is then given by the terms of the series in Eq. (22.30). Each term of

this series is the contribution of the corresponding frequency to the mean square value of x(t).

We now consider a discrete time function F(tj) expressed as a discrete Fourier transform

[Eq. (19.28)], that is, as

F t j
� �

¼
X

N�1

n¼0

Cne
2πi nj=Nð Þ ð22:31Þ

where Cn is given by Eq. (19.27) as
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Cn ¼
1

N

X

N�1

j¼0

F t j
� �

e�2πi nj=Nð Þ ð22:32Þ

As indicated in Chap. 19 [Eq. (19.29) or (19.30)], harmonic components of the function F(tj) higher

than the Nyquist frequency, ωN 2 ¼ π/Δt rad/sec or f N 2 ¼ 1/Δt cps, are not included in the discrete

Fourier transform [Eq. (22.31)]. Also as noted in Chap. 19, if there are harmonic components in F(tj)

higher than this limiting value, these higher frequencies introduce distorting contributions to the

lower harmonic frequencies. Hence it is imperative that the value of N be selected sufficiently large to

include the frequencies that contribute significantly to the original function. To be certain that this

condition is satisfied, one may filter the signal of the function electronically to remove all frequencies

higher than the Nyquist frequency.

The mean square value of a discrete function F(tj) ( j ¼ 0, 1, 2, . . ., N–1) is obtained from

Eq. (22.2) as

F2 ¼ 1

T

X

N�1

j¼0

F2 t j
� �

Δt ð22:33Þ

Substituting Δt/T for 1/N and using Eqs. (22.31) and (22.32) for one factor F(tj) in Eq. (22.33), we

obtain

F2 ¼ 1

N

X

N�1

j¼0

F t j
� �

X

N�1

n¼0

Cne
2πi nj=Nð Þ

¼
X

N�1

n¼0

Cn

1

N

X

N�1

j¼0

F t j
� �

e2πi nj=Nð Þ
" #

¼
X

N�1

j¼0

CnC
∗

n

ð22:34Þ

where C∗n is the complex conjugate2 of Cn. Hence

F2 ¼
X

N�1

n¼0

Cnj j2 ¼ C0j j2 þ C1j j2 þ C2j j2 þ . . .þ CN�1j j2 ð22:35Þ

The terms of the summation in Eq. (22.35) are the required spectrum of the discrete function F(tj);

that is, these terms are the frequency contributions to the mean square value F2 . As we can see in

Eq. (22.35), the contribution of each frequency is equal to the square of the modulus of the

corresponding complex coefficient Cn which is given by Eq. (22.32).

Illustrative Example 22.3

2 Since F(tj) is a real function, its conjugate F(tj)* ¼ F(tj) and also [e–2π(nj/N )]* ¼ e2π(nj/N ),it follows that

1=N
X

N�1

j¼0

F t j
� �

e2π nj=Nð Þ ¼ C∗n
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Determine the spectrum of the forcing function F(t) shown in Fig. 22.16. Assume that the function is

defined at eight equally spaced time intervals. Use the spectrum to estimate the mean square valueF2

and compare this result with the mean square calculated directly from the definition of F2 .

Solution: We use computer Program 4 with N¼ 8 to determine the discrete Fourier coefficients Cn.

The values thus obtained are shown in Table 22.1 together with the calculation needed to obtain the

spectrum using Eq. (22.35). The summation of the spectral values for F(t) shown in the last column of

Table 22.1 is F2 ¼ 0.5400 E10. We check this value by calculating the mean square value of F(t)

directly from the definition Eq. (22.2), namely,

F2 ¼ 1

T

ð T

0

F2 tð Þdt

in which we substitute

F tð Þ ¼ 120, 000

0:16
t

F2 ¼ 4

0:64

ð0:16

0:

120,000

0:16
� t

	 
2

dt ¼ 0:4800E10

Fig. 22.16 Forcing function for Illustrative Example 22.3

Table 22.1 Spectral analysis for the function F(t) in Fig. 22.16

N

Fourier Coefficients Cn

Re(Cn) Im(Cn) |Cn|

Spectrum of F(t)

|Cn|
2

0 0 0 0

1 0 �51,210 51,210 0.2623 E10

2 0 0 0

3 0 8787 8787 0.7721E8

4 0 0 0

5 0 8787 8787 0.7721E8

6 0 0 0

7 0 51,210 51,210 0.2623E10

F2 ¼ 0.5400 E10
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Considering that we have used in this example a relatively small number of intervals or sampled

points (N ¼ 8), the value of F2 ¼ 0.5400 E10 obtained from the spectrum of F (t) in Table 22.1

compares fairly well with the exact mean square value F2 ¼ 0.4800 E10. As discussed before, errors

are introduced in the calculations when the number of time intervals N is not large enough to include

the higher frequency components of F(t). In order to improve the calculation of the spectrum, it is

necessary to use more time intervals in the discrete Fourier Series. Table 22.2 shows results obtained

using Program 4 withM¼ 3, 4, 5, 6, 7, corresponding toN¼ 2M¼ 8, 16, 32, 64, 128 time intervals for

the function F(t) shown in Fig. 22.16. It may be observed that values displayed in the last column of

the table are converging to the exact value F2 ¼ 0.4800 E10 as the number of time intervals, N, is

increased.

22.8 Spectral Density Function

If a random process x(t) is normalized (or adjusted) so that the mean value of the process is zero, then,

provided that x(t) has no periodic components, the autocorrelation function Rx (τ) approaches zero as

τ increases, that is.

lim
τ!1

Rx τð Þ ¼ 0

We therefore expect that Rx(τ) should satisfy the condition in Eq. (22.25). We can then use

Eqs. (22.23) and (22.24) to obtain the Fourier transform Sx(ω) of the autocorrelation function Rx(τ)

and its inverse as

Sx ωð Þ ¼ 1

2π

ð1

�1
Rx τð Þe�iωτdτ ð22:36aÞ

and

Rx τð Þ ¼
ð1

�1
sx ωð Þeiωτdω ð22:36bÞ

In Eq. (22.36a), Sx(ω) is called the spectral density function of x(t). The most important property of

Sx(ω) becomes apparent by letting τ ¼ 0 in Eq. (22.36b). In this case

Rx 0ð Þ ¼
ð1

�1
Sx ωð Þdω

�

ð22:37Þ

which by Eq. (22.20) is equal to mean square value of the function x(t), that is,

Table 22.2 Mean square value for function F(t) in Fig. 22.16

Exponent M

Time intervals

N ¼ 2M
Mean square value

F2

3 8 0.5400 E 10

4 16 0.4900 E 10

5 32 0.4838 E 10

6 64 0.4809 E 10

7 128 0.4802 E 10

Exact F2 ¼ 0.4800 E10
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x2 ¼
ð1

�1
Sx ωð Þdω ð22:38Þ

The mean square value of a random process is therefore given by the area under the graph of the

spectral density function as shown in Fig. 22.17. Consequently, the contribution of an incremental

frequency Δω to the mean square value is

Δx2 ¼ Sx ωð ÞΔω ð22:39Þ

The Fourier transform pair for the discrete autocorrelation function Rj ¼ R(τ) and for the discrete

spectral density function Sn ¼ S(ωn) of a time function x ¼ x(t), is defined from Eqs. (19.27) and

(19.28) as

R j ¼
X

N�1

n¼0

Sne
πi nj=Nð Þ ð22:40aÞ

and

Sn ¼
1

N

X

N�1

j¼0

R je
�2πj nj=Nð Þ ð22:40bÞ

It may be seen then, that the terms in Eq. (22.40b) provide the contributions, Δx2 , to mean square

value x2 , at the frequency as

Δx2 ¼ Sn ð22:41Þ

The contribution to the mean square value may also be expressed, in terms of the Fourier transform

coefficient Cn and its conjugate C∗n , using Eq. (22.34) as

Δx2 ¼ CnC
∗

n ð22:42Þ

Therefore, it follows from Eqs. (22.41) and (22.42) that.

Sn ¼ CnC
∗

n ð22:43Þ

The spectral density of a given record can be obtained electronically by an instrument called a

frequency analyzer or spectral density analyzer. The output of an accelerometer or other vibration

transducer is fed into the instrument, which is essentially a variable frequency narrow-band filter with

a spectral meter to display the filtered output. With this instrument the experimenter searches for the

predominant frequencies present in a vibration signal. The output of the spectral density analyzer is

the contribution to the mean square valuex2 of the input signal x(t) for a small rangeΔω around the set

frequency.

When dealing with theory, the natural unit for the frequency is rad /sec. However, in most practical

problems the frequency is expressed in cycles per second or Hertz (abbreviated Hz). In the latter case,

we rewrite Eq. (22.39) as

Δx2 ¼ Sx fð ÞΔf ð22:44Þ

where f is the frequency in Hertz. Since Δω ¼ 2πΔf, it follows from Eqs. (22.39) and (22.44) that
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Sx fð Þ ¼ 2πSx ωð Þ ð22:45Þ

When the spectral density function for the excitation is known, its mean-square value may be

determined from Eq. (22.44) as

x2 ¼
ð1

�1
Sx fð Þdf ð22:46Þ

The spectral density function Sx( f ) is expressed in square units of x per Hertz. Since the autocorrela-

tion function Rx(τ) is real and even, the use of Euler’s relationship

eiπτ ¼ cos ωτ þ i sin ωτ

in Eq. (22.36a) yields the cosine transform:

Sx ωð Þ ¼ 1

2π

ð x

�x

Rx τð Þ cos ωτdτ ð22:47Þ

It is clear from Eq. (22.47) that Sx(ω) is also an even function of ω; hence Eq. (22.36b) may be written

as

Rx τð Þ ¼
ð1

�1
Sx ωð Þ cos ω τð Þdω ð22:48Þ

Alternatively, Eqs. (22.47) and (22.48) may be written as

Sx ωð Þ ¼ 1

π

ð1

0

Rx τð Þ cos ωτdτ ð22:49Þ

and

Rx τð Þ ¼ 2

ð1

0

Sx ωð Þ cos ωτdω ð22:50Þ

These are the celebrated Wiener-Kinchin equations, which describe how the spectral density function

can be determined from the autocorrelation function and vice versa.

0

Total area = X 
2

Sx ()

X 
2 = Sx () 





¯

¯

Fig. 22.17 Spectral density function showing area equal to mean-square value
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22.9 Narrow-Band and Wide-Band Random Processes

A process whose spectral density function has nonzero values only in a narrow frequency range as

shown in Fig. 22.18 is called a narrow band process. In contrast, a wide-band process is one whose

spectral density function is nonzero over a broad range of frequencies. The time history of such a

process is then made up of the superposition of the whole band of frequencies as shown in Fig. 22.19a.

In the limit, when the frequency band extends from ω1 ¼ 0 to ω2 ¼ 1, this spectrum is called white

noise. From Eq. (22.38) the mean square value of a white noise process must be infinite; therefore, the

white noise process is only a theoretical concept. In practice a process is called white noise when the

bandwidth of its frequencies extends well beyond all the frequencies of interest.

Illustrative Example 22.4

Determine the mean square value and the autocorrelation function for the narrow-band random

process x (t) whose spectral density function is shown in Fig. 22.18.

Solution: From Eq. (22.38)

x2 ¼
ð1

�1
Sx ωð Þdω ¼ 2S0Δω

and from Eq. (22.50)

Sx (ω)

–ω1–Δω–ω
1 ω1+Δωω1

ω
0

S0

Fig. 22.18 Spectral density function for a narrow-band random process

x (t)

(a) (b)

Sx (ω)

t
–ω2 –ω1 ω1 ω2

ω

S0

Fig. 22.19 Wide-band process. (a) Time history. (b) Spectral density function
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Rx τð Þ ¼ 2

ð1

0

Sx ωð Þ cosωτdω

¼ 2

ðω1þΔω

ω1

S0 cosωτdω

¼ 2S0

τ
sinωτj jω1þΔω

ω1

ðaÞ

¼ 2S0

τ
sin ω1 þ Δωð Þτ � sinω1τ½ �

Rx τð Þ ¼ 4S0

τ
cos ω1 þ

Δω

2

� �

τ � sin Δω

2
τ

ðbÞ

The autocorrelation function for a narrow-band random process given by Eq. (b) has the form shown

in Fig. 22.20, where the predominant frequency of Rx(τ) is the average value (ω1 + Δω/2). The

autocorrelation for such a process has a maximum of 2S0 Δω when τ ¼ 0 and decreases like a cosine

graph as τ moves away from τ ¼ 0.

The autocorrelation function Rx(τ) for a wide-band random process whose spectral density

function extends in the range ω1 to ω2 as shown in Fig. 22.19b can be obtained from the result of

Illustrative Example 22.4. In this case, letting the lower frequency ω1 ¼ 0 and the upper frequency

Δω ¼ ω2 we obtain from Eq. (b) of Illustrative Example 22.4

Rx τð Þ ¼ 4S0

τ
cos

ω2τ

2


 �

sin
ω2τ

2


 �

¼ 2S0

τ
sinω2τ ð22:51Þ

which has the form shown in Fig. 22.22a.

Rx (τ)

2S0 Δω

τ

Fig. 22.20 Autocorrelation for a narrow-band random process

S(�)

S0

�

Fig. 22.21 Spectral density function for Illustrative Example 22.5
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Illustrative Example 22.5

Determine the autocorrelation function for constant spectral density function S(ω) ¼ S0 (white noise)

for all value of the frequency ω as shown graphically in Fig. 22.21.

The autocorrelation function for white noise may be obtained from Eq. (22.51) by letting ω2!1.

In this case adjacent cycles come closer together, resulting in a high peak at τ ¼ 0 and zero value

elsewhere as shown in Fig. 22.22b.

This high peak will be of infinite height, zero width, but of a finite area. Such behavior may be

described mathematically using Dirac’s delta function δ(τ). The delta function δ (τ) is defined as

having zero value everywhere except at τ ¼ 0 in such a way that

ð1

�1
δ τð Þ f τð Þdτ ¼ f 0ð Þ ð22:52Þ

for any function of time f (τ) defined at τ ¼ 0.

Using the delta function δ(τ) we can express the autocorrelation function for white noise as

Rx τð Þ ¼ Cδ τð Þ ð22:53Þ

where C must be determined from Eq. (22.36a) using the fact that Sx (ω) must be the constant S0.

Substituting Eq. (22.53) into the Eq. (22.36a) gives

Sx ωð Þ ¼ 1

2π

ð1

�1
Cδ τð Þe�jωτdτ

and using Eq. (22.52) yields

Sx ωð Þ ¼ 1

2π
Ce�iω0 ¼ C

2π
ð22:54Þ

Fig. 22.22 Autocorrelation for a wide-band random process becomes a delta function for white noise
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Hence

S0 ¼
C

2π
ð22:55Þ

Finally, solving for C and substituting into Eq. (22.53), we obtain the autocorrelation function for

white noise shown in Fig. 22.22b, as

R τð Þ ¼ 2πS0δ τð Þ ð22:56Þ

22.10 Response to Random Excitation: Single-Degree-of-Freedom System

To determine the response of a structural system subjected to a random excitation, we need to

examine the frequency content of the excitation function. We are mostly interested in estimating

the spectral function or the spectral density function of the excitation.

Until recently, the procedure for estimating the spectrum of a discrete time series has been to first

determine the autocorrelation function [Eq. (22.19)] and then apply the Fourier transform to this

function to obtain the required spectrum [Eq. (22.36a) or Eq. (22.49)]. However, the method of

calculation has changed since the development of Fast Fourier Transform (usually abbreviated FFT).

As has been indicated in Chap. 19, the FFT is a remarkably efficient method for calculating the

Fourier transform of a time series. Rather than estimate the spectrum by first determining the

autocorrelation function and then calculating the Fourier transform, it is now more efficient and

more accurate to calculate spectra directly from the original time series.

Consider the damped, single-degree-of-freedom system shown in Fig.22.23a subjected to a

random force F(t), a sample of which is shown in Fig. 22.23b. We will assume that this force is

known at N discrete equally spaced time tj ¼ jΔt ( j ¼ 0, 1, 2, . . ., N- 1). Fourier analysis of F(t)

results in the frequency component as given by Eqs. (22.31) and (22.32). By superposition the

response of the single degree-of-freedom system to the harmonic components of F (t) is given by

Eq. (19.35) as

Fig. 22.23 Single-degree-of-freedom system subject to a random force sampled at regular time intervals
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u t j
� �

¼
X

N�1

n¼0

Cne
2π nj=Nð Þ

k 1� r2n þ 2irnξn
� � ð22:57Þ

in which, as discussed in Sect. 19.6,

ωn ¼ nϖ forn � N=2

ωn ¼ � N � nð Þϖ forn > N=2
ð22:58Þ

rn ¼
ωn

ω
, ϖ ¼ 2π

T
, ω ¼

ffiffiffiffi

k

m

r

ð22:59Þ

In these formulas, T is the time duration of the excitation, N the number of equal intervals of the

excitation, and ξn the damping ratio corresponding to the frequency ωn.

Equation (22.57) may conveniently be written as

u t j
� �

¼
X

N�1

n¼0

HijCne
2π nj=Nð Þ ð22:60Þ

where the frequency response fonction, Hn is given by

Hn ¼
1

k
� 1

1� r2n þ 2irnξn
ð22:61Þ

The mean square value u2 of the response can then be obtained from Eq. (22.35) as

u2 ¼
X

N�1

n¼0

Hnj j2 Cnj j2 ð22:62Þ

Alternatively, Eq. (22.62) may be expressed in terms of the spectral density function. The frequency

contributions ΔF2 to the mean square value F2 are given by Eq. (22.35) as

ΔF2 ¼ Cnj j2 ð22:63Þ

which by Eq. (22.39), may be expressed as

ΔF2 ¼ SF ωnð ÞΔω ð22:64Þ

Now, using Eqs. (22.63) and (22.64), we may write Eq. (22.62) as

u2 ¼
X

N�1

n¼0

Hnj j2SF ωnð ÞΔω ð22:65Þ

or as

u2 ¼
X

N�1

n¼0

Su ωnð ÞΔω ð22:66Þ
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where

Su ωnð Þ ¼ Hnj j2SF ωnð Þ ð22:67Þ

When the frequency is expressed in cps, we may write Eq. (22.66) as

u2 ¼
X

N�1

n¼0

Su f nð ÞΔf ð22:68Þ

where

Su f nð Þ ¼ Hnj j2SF f nð Þ ð22:69Þ

Equation (22.69) states the important result that, when the frequency response function, Hn is known,

the spectral density Su ( fn) for the response can be calculated from the spectral density, SF( fn), of the

excitation.

Illustrative Example 22.6

Determine the mean square value of the response for the single-degree-of-freedom system in which

k ¼ 100,000 lb/in, m ¼ 100 lb � sec2/in, c ¼ 632 lb � sec/in subjected to the F(t) shown in Fig. 22.16.

Choose N ¼ 8 for the number of intervals.

Solution: The mean square value u2 of the response is given by Eq. (22.62) as

u2 ¼
X

N�1

n¼0

Hnj j2 Cnj j2

From Eq. (22.61)

Hnj j2 ¼ 1

k2
� 1

1� r2n
� �2 þ 2rnξnð Þ2

where ωn/ω is is the frequency ratio and ξn ¼ cn/ccr is the damping ratio.

The natural frequency is calculated as ω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

¼ 31:62 rad= sec and the frequency

components are given by Eq. (22.58) as

ωn ¼ nω1, n � N=2

ωn ¼ � N � nð Þωn, n > N=2

in which ω1 ¼ 2π/T ¼ 2π/0.64 ¼ 9.8175 rad/sec, since the duration of the applied force is

T ¼ 0.64 sec.

Values of |Cn|, for the function F(t) shown in Fig. 22.16, have been determined in Illustrative

Example 22.3 and are shown in Table 22.1. The necessary computations to determine u2 are

conveniently shown in Table 22.3. From this table the mean square value of the response is u2 ¼
0.9352.
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The MATLAB program can be used to obtain the response of 0.9352.

m=100;                  %Mass (lb.sec^2/in.)
k =100000;              %Stiffness (lb/in.)  

omega = sqrt(k/m);      %Natural frequency
c=632;                  %Damping coefficient. (lb.sec/in.)
xi =c/(2*m*omega);      %Damping ratio

T = 0.64;               %Time period, T(sec)
omega_bar = 2*pi/T;     %Excitation frequency (rad/sec)
M= 3;        %Select M, M=3
N = 2^M;                %The number of time increments N

t=0:0.08:0.64;          %Time ranging from 0 to 0.64 sec with deltat = 0.08 sec 
Dt = t(2)-t(1);         %Deltat = 0.08
tt= length(t);          %Total number of calculation

for i= 1:tt-1 
%%%Define the function of N harmonic force   
if t(i)<=0.16

F(i) = 120000*t(i)/0.16;
elseif t(i) <=0.48

F(i) =-750000*(t(i)-0.16)+120000;
else

F(i)=min(0, 750000*(t(i)-0.64)) ;
end

%%%Define the discrete Fourier transform of the series  
Cn=fft(F/N);                                            %Eq.19.27

%%%Calculate frequency ratio, r_n
ifi<=N/2
omega_n(i) = (i-1)*omega_bar;                   %Eq.22.58
else
omega_n(i) = -(N-(i-1))*omega_bar;              %Eq.22.58
end

rn(i)=omega_n(i)/omega;                             %Eq.22.59

H(i)=sqrt(1/k^2/((1-rn(i)^2)^2+(2*rn(i)*xi)^2));    %Eq.22.61 

Cn2=abs(Cn);

uu = H.^2.*Cn2.^2;                                  %Eq.22.62 (ith)

end
uu_sum = sum(uu)                                        %Eq.18.62

clear all
close all
clc

%%%%-GIVEN VALUES-

Analogous to Eq. (22.65), when the excitation is a random acceleration applied to the support of

the structure, the mean-square acceleration response a2p at a point P of the structure is given by

a2p ¼
X

S ωnð Þ Hnj j2Δω ð22:70Þ

where Hn is now the frequency response in terms of the acceleration at point P resulting from a unit

harmonic acceleration at the support of the structure.

The response of a single-degree-of-freedom structure subjected to a single point random excitation

can be determined by a simple numerical calculation provided that the spectral function or the

spectral density function of the excitation and the frequency response of the structure are known.
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The frequency response Hn may be obtained experimentally by applying a sinusoidal excitation of

varying frequency at the foundation and measuring the response at the desired point in the structure.

The necessary calculations are explained in the following numerical example.

Illustrative Example 22.7

Determine the response at a point P of the structure modeled as a shear building shown schematically

in Fig. 22.24a when subjected to a random acceleration at its foundation. The spectral density

function of the excitation is known and shown in Fig. 22.24b. The frequency response ap/a0 of the

structure at point P, obtained experimentally, when the foundation is excited by a sinusoidal

acceleration of amplitude a0 and varying frequency fn, is shown in Fig. 22.24c.

Solution: The mean square value a2p of the response at the point P is calculated from Eq. (22.70) as

a2p ¼
X

S f nð Þ Hnj j2Δf ðaÞ

where

j Hn j¼ ap=a0

Table 22.4 summarizes the computational procedure. By Eq. (a) we obtain from the sum in the last

column of this table the mean square value of the response �a2¼ 1.8100g2 and by Eq. (22.3) (assuming

mean value �a ¼ 0)

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:8100
p

g ¼ 1:345g

The probability of exceeding specified accelerations (see Table in Sect. 22.3) can now be found

assuming the normal distribution for |ap| > σ ¼ 1.345 g and for |ap| > 3σ ¼ 4.041 g, respectively, as

P ap
�

�

�

� > 1:345g
� �

¼ 31:7%

and

P aPj j > 4:041g½ � ¼ 0:3%

Table 22.3 Calculation of u2 for Illustrative Example 22.6

n

ωn

(rad/sec) r ¼ ωn / ω

|Hn|

(in/lb)

|Cn|

(lb)

Δu2 ¼ Hnj j2 Cnj j2
(in2)

0 0 0 1.000 E-5 0 0

1 9.8175 0.3105 1.104 E-5 0.5121 E 5 0.3197

2 19.6350 0.6209 1.595 E-5 0 0

3 29.4524 0.9314 4.376 E-5 0.8787 E 4 0.1479

4 39.2699 1.2418 1.677 E-5 0 0

5 �29.4524 �0.9314 4.376 E-5 0.8787 E4 0.1479

6 �19.6350 �0.6209 1.595 E-5 0 0

7 �9.8175 �0.3105 1.104 E-5 0.5121 E 5 0.3197

u2 ¼ 0.9352

22.10 Response to Random Excitation: Single-Degree-of-Freedom System 557



Similarly, the probability that the peak acceleration Ap at point P will exceed a specified value (1 σ

or 3 σ) is found using the Rayleigh distribution (see Table in Sect. 22.4) as

P Ap > 1:345g
� �

¼ 60:65%

P Ap > 4:041g
� �

¼ 1:11%

Fig. 22.24 (a) Structure subjected to random acceleration at the base. (b) Spectral density function of the excitation.

(c) Relative frequency response at point P
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22.11 Response to Random Excitation: Multiple-Degree-of-Freedom System

The extension for determining the response to random vibration from a single-degree-of-freedom

system to a multiple-degree-of-freedom system can readily be accomplished using the modal

superposition method. This method, as we have seen in previous chapters, transforms a system of

coupled differential equations into a set of independent or uncoupled differential equations of only

one dependent variable in each equation. Thus, each equation of this set is equivalent to the

differential equation for a single-degree-of-freedom system and consequently can be solved by the

method presented in the preceding section for a single-degree-of-freedom system.

We present first, the relationship between the complex frequency response and the unit impulse

response followed by the development of random vibration for a system of two degrees of freedom

and the generalization to multiple-degree-of-freedom systems.

22.11.1 Relationship Between Complex Frequency Response and Unit
Impulse Response

Consider a linear dynamic system of a single-degree-of-freedom represented by the damped simple

oscillator shown in Fig. 22.25.

The random force F(t) acting on this system may be expressed in terms of its frequency content by

means of the inverse Fourier transform given by Eq. (22.24) as

F tð Þ ¼
ð1

�1
C ωð Þeiωt dω repeatedð Þ ð22:24Þ

where the coefficient C(ω) is given by Fourier transform, Eq. (22.23) as

Table 22.4 Calculations of the response for Illustrative Example 22.7

fn (cps) Δf (cps) S( fn)(g
2/cps) |Hn| (in/lb) |Hn|

2 S( fn)Δf (g
2 units)

0 1.0 0 0.5 0

1.0 1.0 0.010.0 1.0 0.100

2.0 1.0 0.020 1.8 0.0648

3.0 1.0 0.015 1.3 0.0253

4.0 1.0 0.030 1.4 0.0588

5.0 1.0 0.050 2.2 0.2420

6.0 1.0 0.040 5.2 1.0816

7.0 1.0 0.020 3.0 0.1800

8.0 1.0 0.015 1.8 0.0486

9.0 1.0 0.020 1.7 0.0578

10.0 1.0 0.010 1.9 0.0361

11.0 1.0 0.005 1.0 0.0050

12.0 1.0 0 0.4 0

13.0 1.0 0 0 0

14.0 1.0 0 0 0

Sum ¼ 1.8100
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C ωð Þ ¼ 1

2π

ð1

�1
F tð Þe�iωt dω repeatedð Þ ð22:23Þ

The differential equation of motion for the system shown in Fig. 22.25 is

m€uþ c€uþ ky ¼ F tð Þ ð22:71Þ

which for an excitation of a unit exponential function, F(t) ¼ ei ωt, as presented in Chap. 3, has a

steady-state solution, u1(t) of the form

u1 tð Þ ¼ H ωð Þeiωt ð22:72Þ

in which

H ωð Þ ¼ 1

k � mω2 þ icω

Consequently, the response u(t) due to the force expressed by the inverse of Fourier transform in

Eq. (22.24) is given by

u tð Þ ¼
ð1

�1
C ωð ÞH ωð Þeiωt dt ð22:73Þ

Consider now the special case where the total excitation consists of a single impulse of magnitude

1 applied at time t ¼ 0.

In this case, C(ω) in Eq. (22.23) becomes

C ωð Þ ¼ 1

2π

ð1

�1
F tð Þe�iωt dt ¼ 1

2π
ð22:74Þ

because e-iωt ¼ 1 at t ¼ 0 and

ð1

�1
F tð Þdt ¼ 1 ð22:75Þ

for a unit impulse.

The expression given by Eq. (22.75) is known as the Dirac’s δ function. Thus, from Eqs. (22.73)

and (22.74), the response, h(t), to unit impulse is given by

Fig. 22.25 Model of a damped single-degree-of-freedom system
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h tð Þ ¼ 1

2π

ð1

�1
H ωð Þeiωt dt ð22:76Þ

which is recognized as the inverse Fourier transform of

H ωð Þ ¼
ð1

�1
h tð Þe�iωt dω ð22:77Þ

We observe that the unit impulse response h(t) of Eq. (22.76) and the complex frequency response H

(ω) of Eq. (22.77) form a Fourier transform pair.

22.11.2 Response to Random Excitation: Two-Degree-of-Freedom System

The concepts and methodology for determining the response of multiple-degree-of-freedom systems

can be adequately presented through the treatment of a two-degree-of-freedom system. We begin by

presenting a two-degree-of-freedom system subjected to a single random excitation. This case is then

extended by subjecting this two-degree-of-freedom system to a second excitation, in addition to the

first random excitation. Finally, we present the general case of a multiple-degree-of-freedom system

subjected to multiple random excitations.

We consider in Fig. 22.26a the structural model of a two-degree-of-freedom system subjected to a

random stationary force F2(t) applied at coordinate u2. The equations obtained by establishing the

dynamic equilibrium in the free-body-diagram in Fig. 22.26b are:

m1€u1 þ k1 þ k2ð Þu1 � k2u1 ¼ 0

m2€u2 � k1u1 þ k2u2 ¼ F2 tð Þ
ð22:78Þ

The natural frequencies and modal shapes are then found, as presented in Chap. 11, by setting

F2(t) ¼ 0 in Eq. (22.78) and substituting a trial solution u1 ¼ a1 sin ωt and u2 ¼ a2 sin ωt. Hence, we

obtain

k1 þ k2 � m1ω
2ð Þa1 � k2a2 ¼ 0

� k2a1 þ k2m2ω2ð Þa2 ¼ 0
ð22:79Þ

For a nontrivial solution of Eq. (22.79), we set equal to zero the determinant of the coefficients:

k1 þ k2 � m1ω
2 �k2

�k2 k2 � m1ω
2

�

�

�

�

�

�

�

�

�

�

ð22:80Þ

The expansion of the determinant in Eq. (22.80) results in the following quadratic equation in ω2:

m1m2ω
4 � k1 þ k2ð Þm2 þ k2m1½ �ω2 þ k1k2 ¼ 0 ð22:81Þ

Equation (22.81) provides the roots ω2
1 and ω2

2 which are the square values of the natural

frequencies for this two-degree-of-freedom system. The substitution of ω2
1 into one of the equations

in Eq. (22.79) results in the first mode a11, a21, and the subsequent substitution of ω2
2, in the second

mode a12, a22. These modal shapes are conveniently normalized by dividing the components a11 and

a21 of the first mode by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1a
2
11 þ m2a

2
21

q

and the components, a12 and a22, of the second mode by j
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1a
2
12 þ m2a

2
22

q

to obtain the modal matrix given by Eq. (22.82) in which the normalized modes are

arranged in the columns of this matrix.

ϕ½ � ¼
ϕ11 ϕ12

ϕ21 ϕ22

" #

ð22:82Þ

The uncoupled modal equation, as presented in Chap. 6, is obtained by introducing in Eq. (22.78) the

linear transformation

u1 tð Þ ¼ ϕ11z1 tð Þ þ ϕ12z2 tð Þ
u2 tð Þ ¼ ϕ21z1 tð Þ þ ϕ22z2 tð Þ

ð22:83Þ

resulting in

€z1 þ ω2
1z1 ¼ ϕ21F2 tð Þ

€z2 þ ω2
2z2 ¼ ϕ22F2 tð Þ

ð22:84Þ

in which z1 and z2 are the modal displacement functions.

Damping in the system may readily be included by adding in Eqs. (22.84) damping terms

expressed in function of the modal damping ratios ξ1 and ξ2. Hence,

€z1 þ 2ξ2ω1 _z 1 þ ω2
1z1 ¼ ϕ21F2 tð Þ

€z2 þ 2ξ2ω2 _z 2 þ ω2
2z2 ¼ ϕ22F2 tð Þ

ð22:85Þ

The solution of Eqs. (22.85) may be expressed by Duhamel’s integral which for a damped system is

given from Eq. (4.24) as

z1 tð Þ ¼
ð1

�1
ϕ21F2 t� λ1ð Þh1 λ1ð Þdλ1 ð22:86Þ

and

Fig. 22.26 Two-degree-of-freedom system. (a) Mathematical model. (b) Free-body-diagrams
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z2 tð Þ ¼
ð1

�1
ϕ22F2 t� λ2ð Þh2 λ2ð Þdλ2

in which the unit impulse functions h1(t) and h2(t) are given for t � 0 by

h1 tð Þ ¼ e�ξ1ω1t

ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ21

q sin ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ21

q

t

	 


ð22:87Þ

and

h2 tð Þ ¼ e�ξ2ω2t

ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ22

q sin ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ22

q

t

	 


ð22:88Þ

and for t < 0 by

h1 tð Þ ¼ h2 tð Þ ¼ 0

The response is then obtained in terms of the displacements u1(t) and u2(t) by substituting the solution

of the modal equations, z1(t) and z2(t), into Eq. (22.83).

We proceed now to the determination of the mean square value of the response, u1(t) in order to

estimate its standard deviation and its confidence interval, due to random excitation. The mean square

value of the response may be calculated from the autocorrelation function Ru1 using Eqs. (22.19) and

(22.20) as

Ru1 τð Þ ¼ lim
T!1

1

T

ð

�T
2

T
2u1 tð Þu1 tþτð Þ dt

or using a more convenient notation as

Ru1 τð Þ ¼ E u1 tð Þu1 tþ τð Þ½ � ð22:89Þ

in which the letter E denotes expected or mean value of the function in the bracket. The substitution

into (22.89) of u1(t) and u1(t + τ) from Eq. (22.83) results in

Ru1 τð Þ ¼ E ϕ11z1 tð Þ þ ϕ12z2 tð Þ½ � ϕ11z1 tþ τð Þ þ ϕ12z2 tþ τð Þ½ �

or

Ru1 τð Þ ¼ E ϕ2
11z1 tð Þz1 tþ τð Þ þ ϕ11ϕ12z1 tð Þz2 tþ τð Þ þ ϕ12ϕ11z2 tð Þz1 tþ τð Þ þ ϕ2

12z2 tð Þz2 tþ τð Þ
� �

ð22:90Þ

The substitution of Eq. (22.86) into the expected value for the product of z1(t) z1(t + τ) in Eq. (22.90)

results in

E z1 tð Þz1 tþ τð Þ½ � ¼ E

ð1

�1
ϕ21F2 t� λ1ð Þh1 λ1ð Þdλ1

ð1

�1
ϕ21F2 tþ τ � λ2ð Þh1 λ2ð Þdλ2

	 


Interchanging the symbols for expected value and integration, we obtain
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E z1 tð Þz1 tþ τð Þ½ � ¼
ð1

�1

ð1

�1
E F2 t� λ1ð ÞF2 tþ τ � λ2ð Þ½ �h1 λ1ð Þh1 λ2ð Þϕ2

21dλ1dλ2

or

E z1 tð Þz1 tþ τð Þ½ � ¼
ð1

�1

ð1

�1
R2 τ � λ2 þ λ1ð Þh1 λ1ð Þh1

�

λ2ϕ
2
21dλ1λ2

since the expected value, E [F2(t – λ1)F2(t + τ – λ2)] is equal to the autocorrelation of the function

F2 (t – λ2 + λ1).

Analogously, for the other terms in Eq. (22.88), we obtain

E z1 tð Þz2 tþ τð Þ½ � ¼
Ð1
�1

Ð1
�1 R2 τ � λ2 þ λ1ð Þh1 λ1ð Þh2 λ2ð Þϕ21ϕ22dλ1dλ2

E z2 tð Þz1 tþ τð Þ½ � ¼
Ð1
�1

Ð1
�1 R2 τ � λ2 þ λ1ð Þh1 λ2ð Þh2 λ1ð Þϕ22ϕ21dλ1dλ2

E z2 tð Þz2 tþ τð Þ½ � ¼
Ð1
�1

Ð1
�1 R2 τ � λ2 þ λ1ð Þh2 λ1ð Þh2 λ2ð Þϕ2

22dλ1dλ2

which substituted into Eq. (22.90) yields

Ru1 τð Þ ¼
Ð1
�1

Ð1
�1 R2 τ � λ2 þ λ1ð Þ

�

ϕ2
11ϕ

2
21h1 λ1ð Þh2 λ2ð Þ þ ϕ11ϕ12ϕ21ϕ22h1 λ1ð Þh2 λ2ð Þ

þ ϕ12ϕ11ϕ22ϕ21h1 λ2ð Þh2 λ1ð Þ þ ϕ2
12ϕ

2
22h2 λ1ð Þh2 λ2ð Þ

�

dκ1 dλ2
ð22:91Þ

The spectral density function Su1(ω) for the response is then given by Eq. (22.36a) as

Su1 ωð Þ ¼ 1

2π

ð1

�1
Ru1 ωð Þe�iωt dτ ð22:92Þ

The multiplication of Eq. (22.91) by

1

2π
e�iωtdτ ¼ 1

2π
eiω τ�λ2þλ1ð Þeiω λ2�λ1ð Þ dτ

followed by integration yields

Su1 ωð Þ ¼
Ð1
�1

Ð1
�1

Ð1
�1

1

2π
R2 τ � λ2 þ λ1ð Þeiω τ�λ2þλ1ð Þ�ϕ2

11ϕ
2
21h1 λ1ð Þh2 λ1ð Þ

þ ϕ11ϕ12ϕ21ϕ22h1 λ1ð Þh2 λ2ð Þ
�

þ ϕ12ϕ11ϕ22ϕ21h1 λ2ð Þh2 λ1ð Þ

þ ϕ2
12ϕ

2
22h2 λ1ð Þh2 λ2ð Þ

�

eiω
�

λ2�λ1ð Þ dτdλ1dλ2

After using Eq. (22.77), Su1(ω) may be expressed as

Su1 ωð Þ ¼
X

2

j¼1

X

2

k¼1

ϕ1 jϕ1kϕ2 jϕ2k�S2 ωð ÞH j ωð ÞH∗k ωð Þ ð22:93Þ

ð22:93Þ

in which H∗k ωð Þ is the complex conjugate of Hk(ω) and
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S2 ωð Þ ¼ 1

2π

ð

R2 τ � λ2 þ λ1ð Þeiω τ�λ2þλ1ð Þ dτ

Equation (22.93) provides the spectral density function, Su1(ω), for the response at coordinate 1 of a

two-degree-of-freedom system excited by a random force at coordinate 2 expressed by the spectral

density function Su2(ω). Now we use Eq. (22.43) to obtain the discrete spectral function, Su1(ωn),

evaluated at frequency ωn as

Su1 ωð Þ ¼
X

2

j¼1

X

2

k¼1

ϕ1 jϕ1kϕ2 jϕ2kC2 ωnð ÞC∗2 ωnð ÞH j ωnð ÞH∗k ωnð Þ ð22:94Þ

where C2(ωn) is the discrete Fourier transform coefficient of the random force at coordinate 2 and

C2
*(ωn) its complex conjugate.

If the single excitation is the random force F1(t) at coordinate 1 instead of F2(t) at coordinate 2, the

expression for the spectral density function for the response at coordinate 1 will be

Su1 ωnð Þ ¼
X

2

j¼1

X

2

k¼1

ϕ2
1 jϕ

2
1kC1 ωnð ÞC∗1 ωnð ÞH j ωnð ÞH∗k ωnð Þ ð22:95Þ

Then, the generalization to a system of N degrees of freedom subjected to multiple random

excitations leads to the following equation:

Su1 ωnð Þ ¼
X

2

j¼1

X

2

k¼1

ϕijϕik

X

2

L¼1

X

2

m¼1

ϕLjϕmkCL ωnð ÞC∗m ωmð ÞH j ωnð ÞH∗k ωnð Þ ð22:96Þ

where

Sui (ωn) is the discrete spectral density function of the response at coordinate i

CL(ωn) is the Discrete Fourier Transform coefficient for the force at coordinate L

C∗m ωnð Þ is the complex conjugate of the coefficient Cm (ωn)

22.11.3 Response to Random Excitation: N Degree of Freedom System

A program written in MATLAB has been developed to evaluate using Eq. (22.96) the spectral density

function of the response Sui (ω) at coordinate i of a multidegree-of-freedom system subjected to

multiple random stationary excitations.

Illustrative Example 22.8

Determine the response for a two-degree-of-freedom structure modeled by system shown in

Fig. 22.26 for which the natural frequencies have bee determined as ω1 ¼ 10.10 rad/sec and

ω2 ¼ 12.32 rad/sec with corresponding modal shapes {Φ} ¼ {0.707, 0.707}1 and {Φ}2 ¼ {0.707,

�0.707}2, respectively. Samples of the applied random forces, F1(t) and F2(t) are depicted in

Fig. 22.27.

Use MATLAB to determine the spectral functions of the response at the two coordinates of this

system.
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Solution:

clear all
close all
clc

w1 = 10;                    %Natural frequency @ 1 mode
w2 = 12.32;                 %Natural frequency @ 2 mode
xi = 0;

omega = [w1 w2];
phi1 = [0.707; 0.707];      %Mode shape @ mode 1
phi2 = [0.707; -0.707];     %Mode shape @ mode 2

T = 1.0;                    %Time period, T(sec)
omega_bar = 2*pi/T;         %Excitation frequency (rad/sec)
M= 3;                       %Select M, M=3
N = 2^M;                    %The number of time increments N

Dt = T/N;                %Deltat
t=0:Dt:T;                   %Time ranging from 0 to 0.64 sec with deltat

tt= length(t);              %Total number of calculation

for i= 1:tt-1
%%%Define the function of force F1 
if t(i)<=0.125

F1(i) = 100000*t(i)/0.125;
elseif t(i) <=0.3125

F1(i) =-800000*(t(i)-0.125)+100000;
else

F1(i)=min(0, 800000*(t(i)-0.50)) ;
end

0.125 0.375 0.5 t (sec)

F1(t)

50

(kip)

-50

0.125 0.375 t (sec)

F2(t)

50

(kip)

-50

0.0625 0.250 0.3125

Fig. 22.27
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for j=1:2
rn(i,j)=omega_n(i)/omega(j);          %Eq.22.59

H(i,j)=1/(1-rn(i,j)^2);
end

H1 = 1/omega(:,1)^2*H(:,1);            %Eqs.22.93 and 22.94 for H1
H2 = 1/omega(:,2)^2*H(:,2);            %Eqs.22.93 and 22.94 for H2

Su1 = 
(Cn1.*conj(Cn1)).*(phi1(1,1)^2*phi1(1,1)^2*H1.*conj(H1)+phi2(1,1)^2*phi1(1,1)^2*H1.*conj(
H2)+...

phi1(1,1)^2*phi2(1,1)^2* 
H2.*conj(H1)+phi2(1,1)^2*phi2(1,1)^2*H2.*conj(H2))            %Eq.22.93

Su2 = 
(Cn2.*conj(Cn2)).*(phi1(2,1)^2*phi1(2,1)^2*H1.*conj(H1)+phi2(2,1)^2*phi1(2,1)^2*H1.*conj(
H2)+...

phi1(2,1)^2*phi2(2,1)^2* 
H2.*conj(H1)+phi2(2,1)^2*phi2(2,1)^2*H2.*conj(H2))            %Eq.22.94

end

%%%Discrete spectral density function of the response at coordinate i

Su1f = [omega_n',Su1];                      %Eq.22.96 (i=1)   
Su2f = [omega_n',Su2];                      %Eq.22.96 (i=2)

elseif t(i)<=0.125 && t(i)>= 0.0625
F2(i) = 50000;

elseif t(i)<=0.250 && t(i) > 0.125
F2(i) = -800000*(t(i)-0.250)-50000;

elseif t(i)>0.250 && t(i) <0.3125
F2(i) = -50000;    

elseif t(i)>=0.3125 && t(i) <0.375
F2(i) = 800000*(t(i)-0.3125)-50000;

else
F2(i) = 0;

end

%%%Define the discrete Fourier transform of the series 
Cn1 = fft(F1'/N)/1000;
Cn2 = fft(F2'/N)/1000;  

%%%Calculate frequency ratio, r_n
ifi<=N/2
omega_n(i) = (i-1)*omega_bar;       %Eq.22.58
else
omega_n(i) = -(N-(i-1))*omega_bar;  %Eq.22.58
end

%%%Define the function of force F2 
if t(i)<0.0625

F2(i) = 100000*t(i)/0.125;

22.12 Summary

The objective of this chapter was to introduce the fundamentals of the theory of random vibrations for

application in structural dynamics. In structural dynamics the most common source of random

vibration is due to explosions occurring in the vicinity of the structure. The response of a structure

to earthquakes may also be predicted using random vibration theory.

A random process is described by a function of time whose value at any time is known only as a set

of sample records known as an ensemble. Such a function can only be described in probabilistic terms
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using the tools of statistics. The most important statistics of a random process x(t) are its mean value �x,

its mean square value x2 , and its variance σx
2 given, respectively, by Eqs. (22.1), (22.2), and (22.3).

The most commonly used probability distribution for a random process is the normal distribution.

However, when the random variable can only assume positive values (e.g., the absolute values of the

peaks of vibration), the process tends to follow the Rayleigh distribution.

The autocorrelation Rx(τ) of a random variable x(t) is defined by Eq. (22.19). The spectral density

function Sx(ω) is defined as the Fourier transform of the autocorrelation function R(τ) [Eq. (22.36a)].

Although the spectrum of x(t) can be obtained from Rx(τ), it is now more efficient to determine the

spectrum of a random function from its discrete Fourier series [Eq. (22.35)] using the fast Fourier

transform (FFT).

If the spectrum of the excitation function and the frequency response of a dynamic system are

known, it is a simple matter to calculate the mean-square value of the response using Eq. (22.62).

Knowing the mean-square value of the response and using standard probability functions (such as the

Normal or the Rayleigh distributions), we can predict the response in probabilistic terms.

In this introductory chapter on random vibration, the presentation has been given in detail for

single-degree-of-freedom systems and extended to multidegree-of-freedom systems using the

modal superposition method. This method, as we have seen in previous chapters, transforms a

system of differential equations into a set of independent or uncoupled differential equations. Each

equation of this set is equivalent to the differential equation for a single degree-of-freedom system

and consequently can be solved for random vibration excitation by the methods presented in this

chapter.

22.13 Problems

Problems 22.1–22.5

Determine the mean and mean square values for the functions shown in Figs. P22.1, P22.2, P22.3,

P22.4 and P22.5.

–2π/ω –π/ω π/ω 2π/ω
t

X(t )

1

0

–1

Fig. P22.1
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–2π

π

π

–π

–π

X(t)

t

Fig. P22.2

2π

2π–2π 4π–4π 0

X(t)

t

Fig. P22.3

X(t) = sin ωt

π / ω

t

–π / ω 2π / ω0–2π / ω

Fig. P22.4

X(t)

t

x(t) = 0 x(t) = e–at

for t < 0 for t > 0

Fig. P22.5
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Problems 22.6–22.10

Determine the Fourier series expansions for the periodic functions shown in Figs. P22.1, P22.2,

P22.3, P22.4 and P22.5.

Problems 22.11–22.15

Determine and plot the spectral functions for the functions shown in Figs. P22.1, P22.2, P22.3, P22.4

and P22.5.

Problem 22.16

A sine wave with a steady-state component is given by

x tð Þ ¼ A0 þ A1 sinϖt

Determine the mean value j and the mean-square value x2 .

Problem 22.17

Determine the Fourier coefficients Cn and the spectral function for the periodic function shown in

Fig. P22.17.

Problem 22.18

A random force has a mean value F ¼ 2 Kips and spectral density function shown in Fig. P22.18.

Determine its standard deviation σF and its root mean square RMSF.

Problem 22.19

Calculate the autocorrelation function for a stationary ergodic random process x (t), for which each

sample function is a square wave of.

Each sample function is a square wave of amplitude a and period T.

F(t)

F0

–1.5 –1.0 –0.50 0.5 1.0 1.5 2.0 2.5 3.0 3.50
t(sec)

T = 2 sec

Fig. P22.17

0.004 Kip2/cps

0 20 1200
t cps.

SF (t)

Fig. P22.18
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Problem 22.20

Determine Fourier transform and Fourier integral representation for the function shown in

Fig. P22.20.

Problem 22.21

A single degree-of freedom system with mass 1.0 lb sec2/in, stiffness 100 lb/in, and damping ξ¼ 0.20

is excited by the force

F tð Þ ¼ 1000 cos 5tþ 1000 cos 10tþ 1000 cos 15t lbð Þ

1. Determine the spectral function and the mean square value of the response.

2. Also plot the spectra for the input force and the output response displacement.

Fig. P22.20
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Dynamic Method 23

In Chap. 5, we introduced the concept of response spectrum as a plot of the maximum response

(spectral displacement, spectral velocity, or spectral acceleration) versus the natural frequency or

natural period of a single degree-of-freedom system subjected to a specific excitation. In the present

chapter, we will use seismic response spectra for earthquake resistant design of buildings modeled as

discrete systems with concentrated masses at each level of the building.

Since response spectral charts are prepared for single degree-of-freedom system, it is necessary to

perform a transformation of coordinates to obtain the modal equations of motion, and then combine

their spectral responses to obtain the maximum response of the structure. In earthquake resistant

design of buildings, the maximum responses include displacements, accelerations, shear forces,

overturning moments, and torsional moments.

23.1 Modal Seismic Response of Building

The equations of motion of a shear building modeled with lateral displacement coordinates at the

N levels and subjected to seismic excitation at the base in the same direction of the lateral displace-

ment, may be written, neglecting damping, from Eq. (8.35) as

M½ � €urf g þ K½ � urf g ¼ � M½ � 1f g€us tð Þ ð23:1Þ

In Eq. (23.1), [M] and [K] are respectively the mass and the stiffness matrices of the system, {ur}

and {€ur} are respectively the displacement and acceleration vectors (relative to the base), €us(t) is the

function of the seismic acceleration at the base of the building, and {1} a vector with all its elements

equal to 1.

23.1.1 Modal Equation and Participation Factor

As presented in Chap. 8, the solution of Eq. (23.1) may be found by solving the corresponding

eigenproblem
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K½ �½ � � ω2 M½ �
�

Φf g ¼ 0f g ð23:2Þ

to determine the natural frequencies ω1, ω2, . . ., ωN (or natural periods T1, T2,. . ., TN) and the modal

matrix [Φ] with its columns containing the normalized modal shapes. Then the linear transformation

urf g ¼ Φ½ � zf g ð23:3Þ

introduced in Eq. (23.1) yields the modal equations;

€zm þ ω2
mzm ¼ �Γm€us tð Þ m ¼ 1; 2; . . . ;Nð Þ ð23:4Þ

in which Γm is the participation factor given by Eq. (8.39) as

Γm ¼

P

N

i¼1

Wiϕim

P

N

i¼1

Wiϕ
2
im

ð23:5Þ

For normalized eigenvectors, the participation factor reduces to

Γm ¼
1

g

X

N

i¼1

ϕimWi ð23:6Þ

because for normalized eigenvectors,

X

N

i¼1

Wi

g
ϕ2
im ¼ 1

where g is the acceleration due to gravity. Damping may be introduced in the modal Eq. (23.4) by

simply adding the damping term to this equation, namely,

€zm þ 2ξmωm _z m þ ω2
mzm ¼ �Γm€us tð Þ ð23:7Þ

where ξm is the modal damping ratio. For convenience Eq. (23.7), can be written with omission of the

participation factor as

€qm þ 2ξmωm _q m þ ω2
mqm ¼ €us tð Þ ð23:8Þ

with the substitution

zm ¼ �Γmqm ð23:9Þ

23.1.2 Modal Shear Force

The value of the maximum response in Eq. (23.8) for the modal spectral acceleration, Sam ¼
�

€qm
�

max
,

is found from an appropriate response spectral chart.

From Eqs. (23.3) and (23.9), the maximum acceleration axm of the mth mode at the level x of the

building is given by
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axm ¼ ΓmϕxmSam ð23:10Þ

in which Sam and axm are usually expressed in units of the gravitational acceleration g.

As stated in Chap. 5, the modal values of the spectral acceleration Sam, the spectral velocity Svm,

and the spectral displacement Sdm are related by an apparent harmonic relationship:

Sam ¼ ωmSvm ¼ ω2
mSdm

or in terms of the modal period Tm ¼ 2π/ωm by

Sam ¼
2π

Tm

Svm ¼
2π

Tm

� �2

Sdm

On the basis of these relations, the modal spectral acceleration Sam in Eq. (23.10) may be replaced by

the spectral displacement Sdm times ω2
m or by the spectral velocity Svm times ωm.

The modal lateral force Fxm at the level x of the building is then given by Newton’s Law as

Fxm ¼ axmWx

or by Eq. (23.10) as

Fxm ¼ ΓmϕxmSamWx ð23:11Þ

in which Sam is the modal spectral acceleration in g units (Note: ASCE 7-16 requires to scale S_am

multiplied by the importance factor, I_e (Table 23.1) and divided by response modifications coeffi-

cient, R (Table 23.2)) and Wx is the weight attributed to the level x of the building.

The modal shear force Vxm at the level x of the building is equal to the sum of the seismic forces

Fxm above that level, namely,

Table 23.1 Modal seismic force Fxm (Kip)

Level Model 1 Model 2 Model 3 Model 4 Design Fx Values

4 46 �29 11 �6 56

3 47 5 �20 10 52

2 30 36 4 �19 51

1 12 24 14 23 38

Table 23.2 Modal torsional moment Mtxm (Kip-ft)

Level x Model 1 Model 2 Model 3 Model 4 Design Mtx values

4 221 �139 53 �31 268

3 448 �113 �41 14 464

2 590 62 �20 �77 598

1 649 178 46 31 675
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Vxm ¼
X

N

i¼x

Fim ð23:12Þ

The total modal shear force Vm at the base of the building is then calculated as

Vm ¼
X

N

i¼1

Fim ð23:13Þ

or using Eq. (23.11)

Vm ¼
X

N

i¼1

ΓmϕimWiSam ð23:14Þ

23.1.3 Effective Modal Weight

The effective modal weight Wm is defined by the equation

Vm ¼ WmSam ð23:15Þ

Then, from Eq. (23.14), the modal weight is

Wm ¼ Γm

X

N

i¼1

ϕimWi ð23:16Þ

Combining Eqs. (23.5) and (23.16) results in the following important expression for the effective

modal weight:

Wm ¼

P

N

i¼1

ϕimWi

� �2

P

N

i¼1

ϕ2
imWi

ð23:17Þ

It can be proven (Clough and Penzien 1975, pp. 559–560) analytically that the sum of the effective

modal weights for all themodes of the building is equal to the total designweight of the building, that is,

X

N

m¼1

Wm ¼
X

N

i¼1

Wi ð23:18Þ

Equation (23.18) is most convenient in assessing the number of significant modes of vibration to

consider in the design. Specifically, the ASCE 7-16 (12.9.1.1) requires that, in applying the dynamic

method of analysis, a sufficient number of modes are needed to estimate a combined modal mass

participation of 100% of the structure’s mass. Alternatively, this requirement can be satisfied by

including a sufficient number of modes such that their total effective modal weight is at least 90% of

the total design weight of the building. Thus, this requirement can be satisfied by simply adding a

sufficient number of effective modal weights [Eq. (23.17)] until their total weight is 90% or more of

the seismic design weight of the building.
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23.1.4 Modal Lateral Forces

By combining Eq. (23.11) with Eqs. (23.15) and (23.16), we may express the modal lateral force Fxm

as

Fxm ¼ CxmVm ð23:19Þ

where the modal seismic coefficient Cxm at level x is given by

Cxm ¼
ϕxmWx

P

N

i¼1

ϕimWi

ð23:20Þ

23.1.5 Modal Displacements

The modal displacement δxm at the level x of the building may be expressed, in view of Eqs. (23.3) and

(23.9), as

δxm ¼ ΓmϕxmSdm ð23:21Þ

where Γm is the participation factor for the mth mode, ϕxm is the component of the modal shape at

level x of the building, and Sdm is the spectral displacement for that mode.

Alternatively, the modal displacement δxm may be calculated from Newton’s Law of Motion in the

form

Fxm ¼
Wx

g
ω2
mδxm ð23:22Þ

because the magnitude of the modal acceleration corresponding to the modal displacement δxm is ω2
m

δxm. Hence, from Eq. (23.22)

δxm ¼
g

ω2
m

�
Fxm

Wx

ð23:23Þ

or substituting ωm ¼ 2π/Tm

δxm ¼
g

4π2
�
T2
mFxm

Wx

ð23:24Þ

where Tm is the mth natural period. In accordance with ASCE 7-16, the value for displacement and

drift quantities shall be multiplied by the quantity of Cd/Ie. The importance factor, Ie and the

deflection amplification factor, Cd can be determined by Table 23.1 and 23.2, respectively.

23.1.6 Modal Drift

The modal drift Δxm for the xth story of the building, defined as the relative displacement of two

consecutive levels, is given by
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Δxm ¼ δxm � δ x�1ð Þm ¼ <Δa ð23:25Þ

with δ0m ¼ 0.

Allowable story drift is presented in Table 23.3 (ASCE 7-16: Table 12.12-1).

23.1.7 Modal Overturning Moment

The modal overturning momentMxm at the level x of the building which is calculated as the sum of the

moments of the seismic forces Fxm above that level is given by

Mxm ¼
X

N

xþ1

Fim hi � hxð Þ ð23:26Þ

where hi and hx are, respectively, the height of levels i and x.

The modal overturning moment Mm at the base of the building then is given by

Mm ¼
X

N

i¼1

Fimhi ð23:27Þ

23.1.8 Modal Torsional Moment

The modal torsional momentMtmx at level x, which is due to eccentricity ex between the center of the

above mass and the center of stiffness at that level (measured normal to the direction considered), is

calculated as

Mtmx ¼ exVxm ð23:28Þ

where Vxm is the modal shear force at level x.

As mentioned in Chap. 23, the ASCE 7-16 requires that an accidental torsional moment be added

to the torsional moment existent at each level. The recommended way to add the accidental torsion is

to offset the center of mass at each level by 5% of the dimension of the building normal to the

direction under consideration.

23.2 Total Design Values

The design values for the base shear, story shear, lateral deflection, story drift, overturning moment

and torsional moment are obtained by combining corresponding modal responses. Such combination

Table 23.3 Calculation of ratio of secondary to primary moment

Level

x

Story weight

Wx(Kip)

Above weight

Px (Kip)

Story drift

Δx (in.)

Story shear

Vx (Kip)

Story height

Hx (in.)

Ms/Mp¼ PxΔx/

VxHx

4 645.1 645.1 0.362 56 144 0.005

3 789.1 1434.2 0.625 97 144 0.012

2 789.1 2223.3 0.605 125 144 0.014

1 789.1 3012.4 0.441 141 144 0.012
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has been performed by application of the technique SRSS. This technique, as mentioned in Chap. 8,

estimates the maximum modal response by calculating the square root of the sum of the squared

values of the modal contributions. However, as discussed in Sect. 8.6 of Chap. 8, the SRSS technique

may result in relatively large errors when some of the natural frequencies are closely spaced. This

situation generally occurs in the analysis of three-dimensional structures. At the present, the more

refined technique described in that section, CQC (complete quadratic contribution), and the complete

quadratic combination method as modified by ASCE 4 (CQC-4), or an approved equivalent approach

(ASCE 7-18 Sect. 12.9.1.3), is becoming the technique of choice for implementation in computer

programs. For preliminary or hand calculation, however, the simpler technique SRSS is commonly

used. The following formulas may be used to estimate maximum design values by application of the

SRSS technique:

1. Design Base Shear:

V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

m¼1

V2
m

v

u

u

t ð23:29Þ

where the modal base shear Vm is given by Eq. (23.15).

2. Design Lateral Seismic Force at Level x:

Fx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

m¼1

F2
xm

v

u

u

t ð23:30Þ

where the seismic modal force Fxm is given by Eq. (23.19).

3. Design Shear Force at Story x:

Vx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

m¼1

V2
xm

v

u

u

t ð23:31Þ

where the modal shear force Vxm at level x is given by Eq. (23.12).

4. Design Lateral Deflection at Level x:

δx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

m¼1

δ2xm

v

u

u

t ð23:32Þ

where the modal displacement δxm at level x is given by Eq. (23.23) or Eq. (23.24).

5. Design Drift for Story x:
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Δx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

m¼1

Δ
2
xm

v

u

u

t ð23:33Þ

where the modal drift Δxm at story x is given by Eq. (23.25).

6. Design Overturning Moment at Level x:

Mx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

m¼1

M2
xm

v

u

u

t ð23:34Þ

where the modal overturning moment Mxm at level x is given by Eq. (23.26).

7. Design Torsional Moment at Level x:

Mtx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

m¼1

M2
txm

v

u

u

t ð23:35Þ

where the modal torsional moment Mtum at level x is given by Eq. (23.28).

23.3 Scaling of Results

When the base shear force calculated by the dynamic method is less than that determined by the

equivalent lateral force method, then for irregular buildings, the base shear calculated by dynamic

analysis shall be scaled up to match 100% of the base shear determined by the static lateral force

procedure. All corresponding response parameters, including member forces and moments, shall be

adjusted proportionally.

The code also stipulates that the base shear for a given direction, determined using dynamic

analysis, need not exceed the value obtained by the equivalent lateral force method. In this case, all

corresponding response parameters are adjusted proportionately.

Illustrative Example 23.1

Model as a plane orthogonal frame the four-story reinforced building.

Solution:

The stiffness method and static condensation method to determine the reduce stiffness matrix that

correponds to the lateral coordinate at the various levels of the building. This problem requires

numbering the joints of the frame consecutively excluding the fixed joint at the foundation (labeled

zero) as shown in Fig. 23.1. In this model each vertical or horizontal member represents all nine

elements or members along the building. The flexural stiffness values EI for this model are calculated

as follows:
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Horizontal Members:

EI¼ 9� 3000� 12� 243=12
¼ 0:37325� 109 kip-in2

� �

Exterior Columns:

First and Second stories:

EI ¼ 9� 3000� 8000

¼ 0:216� 109 kip� in2
� �

Third and Fourth stories:

EI ¼ 9� 3000� 4096

¼ 0:111� 109 kip� in2
� �

Interior Columns:

First and Second stories:

EI ¼ 9� 3000� 13, 824

¼ 0:373� 109 kip� in2
� �

Third and Fourth stories:

EI ¼ 9� 3000� 8000

¼ 0:216� 109 kip� in2
� �

Illustrative Example 23.2

Consider again the four-story reinforced concrete building. Model this building as a plane orthogonal

frame and perform the seismic analysis: dynamic method.

Fig. 23.1 Normalized

response spectra shapes.

(Reproduced from 1997

Uniform Building Code.

© 1997, with permission of

the publishers, the

International Conference of

Building Officials.)

23.3 Scaling of Results 583



Solution:

Seismic weights:

W1 ¼ W2 ¼ W3 ¼ 789:1 Kip,W4 ¼ 645:1 Kip

1. Modeling the Structure: This structure has been modeled as a plane orthogonal frame (using

Program in Chaps. 13 and 9) in the solution of Illustrative Example 23.1. The reduced stiffness

matrix in reference to the four lateral displacement coordinates of the building, from Example

23.1, is given by

K½ � ¼

5611 �2916 458 �45

�2916 3863 �1885 269

458 �1885 2893 �1398

�45 269 �1398 1168

2

6

6

4

3

7

7

5

Kip=inð Þ

and the mass matrix (Wi/g) by

M½ � ¼

2:036 0 0 0

0 2:036 0 0

0 0 2:036 0

0 0 0 1:671

2

6

6

6

6

4

3

7

7

7

7

5

Kip � sec 2=in
� �

2. Natural Periods and Modal Shapes: The natural frequencies and the normalized modal shapes are

obtained by solving the eigenproblem

K½ � � ω2 M½ �

 �

ϕf g ¼ 0f g ðeÞ

The roots of the corresponding characteristic equation

K½ � � ω2 M½ �
��

�

�

� ¼ 0f g ðfÞ

are

ω2
1 ¼ 77:22,ω2

3 ¼ 1939:75

ω2
2 ¼ 678:60,ω2

4 ¼ 4052:78
ðgÞ

resulting in the natural frequencies ( f ¼ ω/2π)

f 1 ¼ 1:40cps, f 3 ¼ 7:01cps

f 2 ¼ 4:14cps, f 4 ¼ 10:13cps
ðhÞ

or natural periods (T ¼ 1/f )

T1 ¼ 0:715 sec , T3 ¼ 0:143 sec

T2 ¼ 0:241 sec , T4 ¼ 0:099 sec
ðiÞ

and the corresponding modal shapes arranged in the columns of the modal matrix are
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Φ½ � ¼

0:11277 �0:31074 �0:35308 0:50518

0:27075 �0:46790 �0:11497 �0:42860

0:43123 �0:06907 0:50310 0:21286

0:51540 0:45452 �0:34652 �0:17766

2

6

6

6

4

3

7

7

7

5

ðjÞ

3. Spectral Accelerations: The spectral accelerations (multiplied by the importance factor, Ie

(Table 23.1) and divided by Response modifications coefficient, R (Table 23.2)) for the natural

periods in Eq. (i) obtained from the spectral chart (Note: the procedure of estimations is not

presented in this example. More detailed procedure is presented in the illustrative example 23.1)

Sa1 ¼ 0:034 g, Sa3 ¼ 0:061 g

Sa2 ¼ 0:063 g, Sa4 ¼ 0:050 g
ðkÞ

4. Effective Modal Weights: The effective modal weight is given by Eq. (23.17) as

Wm ¼

P

N

i¼1

ϕimWi

� �2

P

N

i¼1

ϕ2
imWi

Values obtained for Wm (m ¼ 1, 2, 3, 4) are shown in Table 23.4. This table also shows the

effective modal weight as a percentage of the total seismic weight of the building.

5. Modal Base Shear: The modal base shear is given by Eq. (23.15) as

Vm ¼ WmSam

Numerical values of Vm also are given in Table 23.4. The total base shear force given by

Eq. (23.29) then is calculated from values in the last column of Table 23.4 as

V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

84ð Þ2 þ 23ð Þ2 þ 6ð Þ2 þ 4ð Þ2
q

¼ 87:4 Kipð Þ

Table 23.4 Modal effective weight and modal base shear

Mode

m

Modal effective

Wm (Kip)

Weight

(%)

Modal base shear

Vm (Kip)

1 2465 82 84

2 366 12 23

3 99 3 6

4 82 3 4

Total Weight ¼ 3012 Kips
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6. Scaling Modal Effective Weight and Modal Base Shear: The modal values for the effective

weight and for the base shear force in Table 23.4 are scaled up by the ratio r equal to 100% of the

base shear determined by the equivalent lateral force method and the value for the base shear

force calculated by the dynamic method. The base shear determined in Illustrative Example 23.2

using the equivalent lateral force method was equal to 140.75 Kip, while the value calculated for

this example using the dynamic method is equal to 87.4 Kip. Therefore, the scaling ratio is

r ¼
1:0� 140:75

87:4
¼ 1:61

Table 23.5 shows the result of scaling (by the factor r ¼ 1.61) the values in Table 23.4 for the

modal effective weight Wm and the modal base shear Vm.

7. Modal Seismic Force: The numerical values for the seismic coefficients Cxm and for the seismic

lateral forces Fxm calculated from Eqs. (23.20) and (23.19) are shown respectively in Tables 23.1

and 23.6. The design seismic forces calculated by Eq. (23.30) are shown in the last column of

Table 23.1.

8. Model Shear Force: Values for the model shear force Vxm at level x calculated using Eq. (23.12)

and results from Table 23.1 are given in Table 23.7. Design values for the story shear forces Vx

calculated by Eq. (23.31) are given in the last column of Table 23.7. It should be noticed that the

values shown in Table 23.7 for the modal shear force at level x¼ 1 are precisely the values for the

base shear force calculated by Eq. (23.15) and shown in Table 23.5.

Table 23.5 Scaled values for modal effective weight and modal base shear

Mode

m

Modal effective

Wm (Kip)

Weight

(%)

Modal base shear

Vm (Kip)

1 3969 82 135

2 589 12 37

3 159 3 10

4 132 3 6

Σ ¼ 4849 Kips

Table 23.6 Modal seismic coefficient Cxm

Level Model 1 Model 2 Model 3 Model 4

4 0.341 �0.780 1.141 �1.007

3 0.349 0.145 �2.027 1.476

2 0.219 0.983 0.463 �2.972

1 0.091 0.653 1.422 3.503

Table 23.7 Modal shear force Vxm (Kip)

Level x Model 1 Model 2 Model 3 Model 4 Design Vx values

4 46 �29 11 �6 56

3 93 �24 �9 3 97

2 123 13 �4 �16 125

1 135 37 10 6 141
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9. Modal Lateral Displacement: Values for the modal lateral displacement δxm at level x calculated

from Eq. (23.24) are shown in Table 23.8. This table also shows in the last column design values

for lateral displacements δx calculated by Eq. (23.32). In accordance with ASCE 7-16, the value

for displacement and drift quantities shall be multiplied by the quantity of Cd/Ie. For this

problem, the importance factor, Ie= 1 and the deflection amplification factor, Cd = 5.5.

10. Modal Story Drift: Table 23.9 shows the values for modal story drift Δxm calculated by

Eq. (23.25). Design values for story drift obtained from Eq. (23.33) are given in the last column

of this table. The maximum story drift permitted by the ASCE 7-16 (Table 23.3) should not

exceed 3.6 in. (0.025 Hx), where Hx is the story height. The design values Δx calculated in

Table 23.9 for this example are well below these limits for story drift. It should be noted that the

scaling of drifts are not included in this problem. If the modal base shear (Vt) is less than CsW,

where Cs is determined in accordance with Eq. 23.16, the deflection shall be adjusted by the

factor of CsW/Vt.

11. Modal Overturning Moments: Table 23.10 shows the values for modal overturning moment

calculated using Eq. (23.26). The last column of this table gives the design values for overturning

moments Mx calculated by Eq. (23.34).

12. Modal Torsional Moments: Table 23.2 shows the values calculated from Eq. (23.28) for the

modal torsional moments assuming only accidental eccentricity ex of 5% at each level x of the

building (for this example ex ¼ 0.05 � 96 ft ¼ 4.8 ft). Design values for torsional moments Mtx

calculated from Eq. (23.35) are shown in the last column of Table 23.2.

Table 23.8 Modal lateral displacement dxm (in.)

Level Model 1 Model 2 Model 3 Model 4 Design δx values

4 1.965 �0.140 0.019 �0.005 1.970

3 1.644 0.021 �0.027 0.006 1.644

2 1.032 0.144 0.006 �0.013 1.042

1 0.430 0.096 0.019 0.015 0.441

Note: In accordance with ASCE 7-16 Section 12.8.6, the deflection shall be adjusted by the deflection amplifica-

tion factor and the importance factor. Herein, Cd =5.5 and Ie =1 are used in the calculation of design dx values.

Table 23.9 Modal story drift Dxm (in.)

Story Model 1 Model 2 Model 3 Model 4 Design Δx values

4 0.321 �0.161 0.046 �0.012 0.362

3 0.612 �0.123 �0.033 0.019 0.625

2 0.602 0.048 �0.013 �0.028 0.605

1 0.430 0.096 0.019 0.015 0.441

Table 23.10 Modal overturning moment Mxm (Kip-ft)

Level x Model 1 Model 2 Model 3 Model 4 Design Mx values

4 – – – – –

3 553 �347 132 �78 671

2 1673 �629 30 �42 1788

1 3147 �475 �19 �235 3192

Base 4770 �30 97 �158 4774
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13. The P-Δ Effect: The ASCE 7-16 specifies that the P-Δ effect does not need to be considered

when the ratio of the secondary momentMs ¼ Px Δx to the overturning or primary momentMp is

less than 0.10 calculated for each level x of the building. If the modal lateral displacement in

Table 23.8 is adjusted by the deflection amplification factor and the importance factor, the

adjustment should be canceled out in this calculation. Therefore, the quantities shall be

multiplied by the quantity of Ie/Cd. The results of the necessary calculations to evaluate this

ratio are shown in Table 23.3. The largest moment ratio in Table 23.3 is 0.014, which is well

below the code limit of 0.1. Consequently, there is no need to account for the P-Δ effect. In

addition, the ratio shall not exceed the maximum value defined in ASCE 7-16 Sect. 12.8.7 (Eq.

12.8-17). This is not necessary in this problem. It is permitted to be conservatively 1.0.

23.4 Summary

The provisions of the ASCE 7-16 for earthquake-resistant design by the dynamic method require the

modeling of the building as a discrete system with one coordinate (horizontal displacement) at each

level of the building. Possible models include: (1) the shear building in which the horizontal

diaphragms are assumed absolutely rigid. (2) the cantilever building in which the horizontal

diaphragms are considered absolutely flexible, and (3) the plane orthogonal frame in which the

stiffness of horizontal diaphragms is considered as part of the effect of horizontal members of the

frame. The implementation of the dynamic method also requires the solution of the corresponding

eigenproblem for the modeled structure to determine its natural periods and modal shapes.

The maximum response of the modal equations is then obtained from a spectral chart such as the

one provided by the code. Modal seismic forces and modal response in terms of shear forces,

overturning moments, torsional moments, lateral displacements, and story drifts are determined at

each level of the building. The final design values are calculated using the SRSS technique or the

CQC technique to combine the modal contributions, and the complete quadratic combination method

as modified by ASCE 4 (CQC-4), or an approved equivalent approach.

The modal method in which the modal responses are combined is valid while the structure remains

in linear elastic behavior as expected when subjected to an earthquake of moderate intensity. When

subjected to a strong earthquake, the structure will deform in the inelastic range producing plastic

deformations and structural damage. However, its ductility will provide a mechanism to absorb

energy and structural stability will be maintained, although the structure may continue to undergo

large deflections which may create further damage.

23.5 Problems

Problem 23.1

Perform the seismic resistant design of the 10-story building of Problem 23.1 using the dynamic

method.

Problem 23.2

Solve Problem 23.2 using the dynamic method of the ASCE 7-16. The total length of the building is

120 ft and its width 24 ft. Consider only the accidental torsional eccentricity.
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IBC-2018 and ASCE 7-16 24

The IBC-2018 is based on the design requirements of every structures, and portion including

nonstructural components attached to structures and their supports in accordance with ASCE 7-16

Chaps. 11, 12, 13, 15, 17 and 18. In 2000, the UBC is replaced by the IBC published by the

international Code Council (ICC). Current IBC-2018 adopts Risk Category instead of Seismic Use

Group. In addition, the latest IBC-2018 classifies every building in a Seismic Design Category which

determines the analysis procedure to be used, the maximum allowed height and drift limitations.

24.1 Response Spectral Acceleration: SS, S1

The reader may recall that the response spectral acceleration is defined as the maximum acceleration

of a structural system, modeled as a linear single-degree-of-freedom system of mass m and stiffness

k subjected to a specific time- history excitation at its base. For such a system, the maximum

response (maximum displacement or maximum acceleration) is only a function of its natural period

T ¼ 2π
ffiffiffiffiffiffiffiffiffi

m=k
p

� �

and of damping c expressed as a fraction of the critical damping

ξ ¼ c=ccr with ccr ¼ 2
ffiffiffiffiffiffi

km
p� �

. In the IBC-2000 and current IBC-2018, the earthquake time-history

excitation assumed at a given geographic location is designated as “Maximum Considered Earth-

quake” (MCE). The response spectral acceleration of a structural system with a natural period,

Ts¼ 0.2 sec (short period) and with a natural period T1¼ 1 sec is obtained from response acceleration

of two sets of maps prepared for various the regions of the United States. These maps are available

from the Federal Emergency Management Agency (FEMA). They provide contour lines for the

values of the response spectral acceleration SS for the short period (Ts ¼ 0.2 sec) and for the response

spectral acceleration S1 for period T1¼ 1 sec. Interpolation or the value of the next higher contour line

may be used for sites located between contour lines. Because these two values, SS and S1 are obtained

from maps, they are usually referred to as mapped response spectral accelerations. These maps

provide the response spectral acceleration for an assumed damping in the structure equal to 5% of the

critical damping and for a type of soil classified as Site Class B (rock). For a different type of soil

other than rock, the mapped spectral response accelerations must be modified by factors that depend

on the Site Class as described in the Sect. 24.2.

The Spectral Acceleration Maps are provided in two sets of eight maps each; a set of maps for the

short period (T ¼ 0.2 sec) a set for the long period (T ¼ 1.0 sec).

© Springer Nature Switzerland AG 2019
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Eectronic values of mapped acceleration parameters, and other seismic design parameters, are

provided at the USGS Web site at http://earthquake.usgs.gov/designmaps, or through the SEI Web

site at http://content.seinstitute.org.

24.2 Soil Modified Response Spectral Acceleration: SMS, SM1

To obtain the soil modified response spectral acceleration SMS for the short period and SM1 for the

period T1 ¼ 1 sec the values of the mapped response spectral accelerations SS and S1, for the short

period (Ts ¼ 0.2 sec) and for the period T1 ¼ 1 sec must be modified by Site Class Coefficients

designated, respectively, as Fa and Fυ, namely,

SMS ¼ FaSS ð24:1Þ

and

SM1 ¼ FυS1 ð24:2Þ

where Fa is the Site Class Coefficient for the short period and Fυ is the Site Class Coefficient for

period T1 ¼ 1 sec. Numerical value for the coefficients Fa and Fυ are given, respectively, in

Tables 24.1 and 24.2 as functions of the Site Class and the values for SS and S1. In Tables 24.1 and

24.2, straight-light interpolation for intermediate values of mapped spectral response acceleration can

be used for both short and long periods. Site Class classification and definition are described in Sect.

24.5.

24.3 Design Response Spectral Acceleration: SDS, SD1

The Design Response Spectral Accelerations (for 5% damping), SDS for the short period and SD1 for

the period T ¼ 1 sec are calculated by

SDS ¼
2

3
SMS ð24:3Þ

and

SD1 ¼
2

3
SM1 ð24:4Þ

where SMS is the Soil Modified Response Spectral Acceleration for the short period given by

Eq. (24.1) and SM1 is the Soil Modified Earthquake Response Spectral Acceleration for the period

T ¼ 1 sec given by Eq. (24.2).
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24.4 Site Class Definition: A, B . . .F

The classification of the Site Class (A, B, C, D, E or F) where the structure is located is based on the

average properties in the top 100 ft of the soil profile according to the description given in Table 24.3.

The Site Class is to be estimated or measured at the building site by a geotechnical engineer or by a

geologist/seismologist.

Table 24.1 Site coefficient (Fa) [IBC-2018: Table 1613.2.3 (1)]

Site class

Mapped risk targeted maximum considered earthquake (MCER)

Spectral response acceleration at short periods

SS � 0.25 SS ¼ 0.50 SS ¼ 0.75 SS ¼ 1.00 SS ¼ 1.25 SS � 1.25

A 0.8 0.8 0.8 0.8 0.8 0.8

B 0.9 0.9 0.9 0.9 0.9 0.9

C 1.3 1.3 1.2 1.2 1.2 1.2

D 1.6 1.4 1.2 1.1 1.0 1.0

E 2.4 1.7 1.3 a a a

F a a a a a a

aValues shall be determined in accordance with Section 11.4.8 of ASCE 7

Table 24.2 Site coefficient (F
u
) [IBC-2018: Table 1613.2.3(2)]

Site class

Mapped risk targeted maximum considered earthquake (MCER)

Spectral response acceleration at 1-Second period

S1 � 0.1 S1 ¼ 0.2 S1 ¼ 0.3 S1 ¼ 0.4 S1 ¼ 0.5 S1 � 0.6

A 0.8 0.8 0.8 0.8 0.8 0.8

B 0.8 0.8 0.8 0.8 0.8 0.8

C 1.5 1.5 1.5 1.5 1.5 1.4

D 2.4 2.2a 2.0a 1.9a 1.8a 1.7a

E 4.2 3.3a 2.8a 2.4a 2.2a 2.0a

F b b b b b b

aSee requirements for site-specific ground motions in Section 11.4.8 of ASCE 7
bValues shall be determined in accordance with Section 11.4.8 of ASCE 7

Table 24.3 Site class definitions [ASCE 7-16: Table 20.3-1]

Site class

Shear wave

velocity, �vs

Standard penetration

blow/ft, �N or �Nch

Undrained shear

strength, �su

A. Hard rock >5000 ft/s NA NA

B. Rock 2500 –

5000 ft/s

NA NA

C.Very dense soil and soft rock 1200 –

2500 ft/s

>50 >2000 psf

D. Stiff soil 600 – 1200 ft/

s

15 to 50 1000 – 2000 psf

E. Soft clay soil <600 ft/s <15 <1000 psf

Any profile with more than 10 ft of soil having the following

characteristics:

Plasticity index PI > 20

Moisture content w � 40%

Undrained shear strength, �su < 500 psf

F. Soil requiring site response analysis in

accordance with ASCE 7-16 Section 21.1

ASCE 7-16 Section 20.3.1
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24.5 Risk Category and Seismic Importance Factor (Ie)

Each Structure is assigned a Seismic Risk Category based on the use of the building. An Importance

Factor (Ie) is then assigned to each Risk Category. Four category designations (I, II, III and IV

[defined in IBC-2018 Table 1604.5 and ASCE-16 Table 1.5-1]) and corresponding values of the

Importance Factor (Ie) are defined and assigned as described in Table 24.4.

24.6 Seismic Design Category (A, B, C, D, E and F)

The IBC-2018 stipulates that every structure must be designed and constructed to resist the effects of

earthquake ground motions as required for the assigned Seismic Design Category. This assignment is

based on the Risk Category described in Sect. 24.5 and the design response spectral acceleration

coefficients SDS and SD1, determined in accordance with Sect. 24.3. Each building and structure

should be assigned to the most severe seismic design category obtained from Table 24.5 or from

Table 24.6, irrespective of the actual fundamental period, T, of the structure.

Where S1 is less than or equal to 0.04 and SS is less than or equal to 0.15, the structure is permitted

to be assigned to Seismic Design Category A.

Table 24.4 Importance factor (Ie) by risk category of buildings and other structures for earthquake loads [IBC-2018:

Table 1604.5 and ASCE 7-16: Table 1.5-2]

Brief description of occupancy or functions of structure (More

detail in IBC 2018: Table 1604.5) Risk category Seismic importance factor, Ie

Miscellaneous structures I 1.0

Standard occupancy II 1.0

Hazardous structure III 1.25

Essential structures IV 1.50

Table 24.5 Seismic design category for short period response acceleration [IBC-2018: 1613.2.5(1)]

Risk category

VALUE OF SDS I or II III IV

SDS < 0.167 g A A A

0.167 g � SDS < 0.33 g B B C

0.33 g � SDS < 0.50 g C C D

0.50 g � SDS D D D

Table 24.6 Seismic design category for T ¼ 1 sec period response acceleration [IBC-2018: 1613.2.5(2)]

Risk category

VALUE OF SD1 I or II III IV

SD1 < 0.067 g A A A

0.067 g � SD1 < 0.133 g B B C

0.133 g � SD1 < 0.20 g C C D

0.20 g � SD1 D D D

Note: Seismic Risk Category I, II, and III structures located on sites with mapped maximum considered earthquake

spectral response acceleration at 1-sec period, S1, equal to or greater than 0.75 g, shall be assigned to Seismic Design

Category E, and Risk Category IV structures located on such sites shall be assigned to Seismic Design Category F
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The ASCE 7-16 provides for an exception in the determination of the Response Spectral Acceler-

ation, which in turn affects the value for the Design Response Spectral Acceleration and the final

Seismic Design Category for the structure.

Exception: For regular structures having five or fewer number of stories and having a fundamental

period T � 0.5 sec (see Section 24.8 for estimation of T), the value for the mapped short period needs not

exceed SS ¼ 1.5g (ASCE 7-16 Section 12.8.1.3).

The MCER response can be determined by multiplying the design response spectrum by 1.5 in

accordance with ASCE 7-16 (Section 11.4.6).

24.7 Design Response Spectral Curve: Sa Vs. T

The general procedure to plot the Design Response Spectrum Curve for a given geographical location

results in a plot as the one shown in Fig. 24.1. This plot provides the Response Spectral Acceleration

Sa as a function of the fundamental period T of the structure. The construction of the Design Response

Spectral Curve requires the calculation of the following parameters:

T0 ¼ 0:2
SD1

SDS
and Ts ¼

SD1

SDS
ð24:5Þ

where SDS and SD1 are, respectively, the Design Response Spectral Acceleration for the short period

[Eq. (24.3)] and the Design Response Spectral Acceleration for the period T¼ 1 sec [Eq. (24.4)]. TL is

the long-period transition period(s).

The construction of the Design Response Spectrum Plot for a given geographical location such as

the plot shown in Fig. 24.1, can be obtained by entering the values of T0, Ts, as defined in Eq. (24.5)

and 1.0 in the abscissa and the values of the Design Spectral Acceleration, SD1 and SDs, in the ordinate

axis Then, on the left, two straight lines are drawn through established points, (0, SD1), (T0, SDs) and

(Ts, SDs). For the period of 0 < T < T0, the straight line can be expressed as, Sa ¼ SDS 0:4þ 0:6 T
T0

� �

.

Fig. 24.1 Design response spectrum plot
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Finally, a hyperbolic curve defined by the function Sa ¼ SD1/T is drawn on the right portion of the

plot from TS < T < TL as shown in Fig. 24.1. Where T > TL, Sa ¼ SD1TL

T2 (Fig. 24.2).

Illustrative Example 24.1

Use the USGS Seismic Design tool to determine Seismic Design Category at a location with Zip Code

10001 corresponding to Central Latitude ¼ 40.750 and Central Longitude ¼ �73.997. Assume Risk

Category ¼ I or II and Soil Class ¼ D (Stiff Soil). Using the Tables 24.5 and 24.6, Fa ¼ 1.576 and

Fυ ¼ 2.40.

Results: The following results are as follows:

For Ts ¼ 0.2 sec: SS ¼ 0.280 g, SMS ¼ FaSs ¼ 0.441 g,

SDS ¼ 2
3
SMS ¼ 0.294 g, Seismic Design Category ¼ B

For T1 ¼ 1.0 sec: S1 ¼ 0.072 g, SM1 ¼ FVS1 ¼ 0.172 g,

SD1 ¼ 2
3
SM1 ¼ 0.115 g, Seismic Design Category ¼ B

If two categories are different, the most severe category must be used. Therefore, the Seismic Design

Category is B.

Fig. 24.2 Screen caption for the inputs for Illustrative Example 24.1. (Source: USGS Web site)

594 24 IBC-2018 and ASCE 7-16



24.8 Determination of the Fundamental Period

The ASCE 7-16 allows the determination of the fundamental period of the building using: (1) approx-

imate empirical formulas, or (2) calculations by rational analysis using structural properties of the

resisting elements in a properly substantiated analysis. In this relation, the Code provides the

following information:

1. Natural Period determined using approximate formulas

The fundamental period of the building may be taken as the approximate value Ta calculated by the

following formula:

Ta ¼ Cth
x
n ð24:6Þ

where

hn ¼ total height of the building in feet, Ct and x are determined from Table 12.8-2 (ASCE 7-16).

These values are depending on structural types (Table 24.7).

Alternatively, the fundamental natural period of moment-resisting frames (steel or concrete) not

exceeding 12 stories in height and having a minimum story height of 10 ft may be approximately

determined as

Ta ¼ 0:1N ð24:7Þ

where N is the number of stories.

2. Natural Period calculated by rational analysis.

The fundamental period of the building, T, in the direction under consideration may be calculated

using the structural properties of resisting elements in a properly substantiated analysis. However,

the ASCE 7-16 requires that the calculated fundamental period T be less or equal to the coefficient

Cu times the value of the period obtained by an approximate formula, that is

T � CuTa ð24:8Þ

where the upper limit coefficient Cu is given in Table 24.8 as a function of the design response

spectral acceleration SD1 corresponding to the period T ¼ 1 sec.

Table 24.7 Values of approximate period parameters Ct and x[ASCE 7-16: Table 12.8-2]

Structure type Ct x

Moment-resisting frame system in which the frames resist 100% of the required seismic force and

are not enclosed or adjoined by components that are more rigid and will prevent the frames from

deflecting where subjected to seismic forces:

Steel moment-resisting frames 0.028 0.8

Concrete moment-resisting frames 0.016 0.9

Steel eccentrically braced frames in accordance with Table 12.2-1 lines B1 or D1 (ASCE 7-16) 0.03 0.75

Steel buckling-restrained braced frames 0.03 0.75

All other structural systems 0.02 0.75
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24.9 Minimum Lateral Force Procedure [ASCE 7-16: Section 1.4.3]

The Minimum Lateral Force Procedure is applicable to regular and irregular structures assigned to

Seismic Design Category A in accordance with ASCE 7-16 Section 11.7. This procedure requires a

complete lateral-force-resistant system designed to resist minimum forces, Fx, simultaneously

applied at the various levels of the building as shown in Fig. 24.3. These minimum forces are

calculated by

Fx ¼ 0:01 wx ð24:9Þ

in which wx is the seismic weight allocated to level x of the building.

In the Minimum Lateral Force Procedure, the design seismic forces may be applied independently

in two orthogonal directions (orthogonal combined effects are permitted to be neglected).

24.10 Simplified Lateral Force Analysis Procedure [ASCE 7-16: Section 12.14.8
and IBC 2018 Section 1613.2.5.2]

The use of the Simplified Analysis Procedure is permitted for one- or two- story bearing wall

structures with limited irregularity (e.g, light-frame wood structural bearing wall). The simplified

lateral-force procedure is only applicable to structures a permitted by Table ASCE 7-16:

Table 24.8 Upper limit coefficient Cu [ASCE 7-16: Table 12.8-1]

Design response spectral acceleration SD1 Upper limit coefficient Cu

<0.4 1.4

0.3 1.4

0.2 1.5

0.15 1.6

>0.1 1.7

Note: Upper limit calculated for T does not apply for interstory drift determination

Fig. 24.3 Force distribution for Minimum Lateral Force Procedure
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Table 12.6-1. Generally, this is not intended to use for routine practice. Also, the estimated base shear

is generally conservative compared to other IBC/ASCE lateral load procedure.

24.10.1 Seismic Base Shear

The seismic base shear, V, in a given direction shall be determined with the following equation:

V ¼ 1:2SDS
R

W ð24:10Þ

where

SDS ¼ The Design Response Spectral Acceleration for the Short Period. (Eq. 24.3).

R ¼ The Response Modification Factor from Table 24.9.

W ¼ Seismic weight of the structure that includes the dead weight and any permanent weight on the

building. It also includes (1) a minimum of 25% of the live load, (2) partition load or a minimum

of 10 pounds per square foot where partition load is included in the floor load design, (3) total

operating weight of permanent equipment, and (4) twenty percent of flat roof snow load where

the design flat roof snow load exceeds 30 pounds per square foot.

Note: The design story drift (Δ) may be taken as 1% of story height.

24.10.2 Response Modification Factor R

The Response Modification Factor R used in the calculation of base shear force V and of the lateral

forces Fx, respectively, given by Eqs. (24.10) and (24.11) serve to reduce the design loads to account

for the ductility in the structural system as well as for increase damping as the structure is subjected to

large deformations beyond the elastic range. Table 24.9 contains an abbreviated set of values for

R obtained from a much more detailed table provided by ASCE 7-16.

Table 24.9 Response modification factors R and deflection amplification factor Cd [ASCE 7-16: Abbreviated

Table 12.2-11]

Basis seismic force resisting system

Response modifications

coefficient, R

Deflection amplification factor,

Cd

Bearing Wall Systems

Special reinforced concrete shear walls 5 1/2 5

Ordinary reinforced concrete shear walls 4 1/2 4

Special reinforced masonry shear walls 5 3 1/2

Ordinary reinforced masonry shear walls 2 1/2 1 3/4

Building Frame Systems

Special steel concentrically braced

frames

6 5

Special reinforced concrete shear walls 6 5

Moment Resisting Frame Systems

Special steel moment frames 8 5 1/2

(continued)
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24.10.3 Vertical Distribution of Lateral Forces

Lateral equivalent forces, Fx, applied at each level of the building shall be calculated by the following

equation:

Fx ¼
FSDS

R
wx ð24:11Þ

where

wx is the portion of the Seismic Weight, W allocated at level x of the building, and F is 1.0 for

one-story building, 1.1 for two-story building, and 1.2 for three-story building.

24.11 Equivalent Lateral Force Procedure [ASCE 7-16: Section 12.8]

The earthquake resistant design provisions in the International Building Code (IBC-2018) refers to

mainly on the ASCE 7-16. Originally, 1997 NEHRP publication (National Earthquake Hazard

Reduction Program) that is distributed by FEMA (Federal Emergency Management Agency) are

used to develop IBC-2000. The key provisions of the ASCE 7-16 for the Equivalent Seismic Lateral

Force Method are presented and in this section.

The ASCE 7-16 stipulates that the structure should be designed for a total base shear force

calculated by the formula:

V ¼ CSW ð24:12Þ

in whichW is seismic weight of the structure that includes the dead weight and any permanent weight

Table 24.9 (continued)

Basis seismic force resisting system

Response modifications

coefficient, R

Deflection amplification factor,

Cd

Intermediate steel moment frames 6 �5

Special steel truss moment frames 7 5 1/2

Ordinary steel moment frames 4 3 1/2

Special reinforced concrete moment

frames

8 5 1/2

Dual Systems with Intermediate Moment Frames

Special steel concentrically braced

framesa
6 5

Ordinary steel concentrically braced

framesa
5 4 1/2

Special reinforced concrete shear walls 6 5

Ordinary reinforced concrete shear walls 5 1/2 4 1/2

Inverted Pendulum Systems and Cantilevered Column Systems

Special steel moment frames 2 1/2 2 1/2

Ordinary steel moment frames 1 1/4 2 1/2
aOrdinary moment frame is permitted to be used in lieu of intermediate moment frame in Seismic Design Categories B

and C
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on the building. It also includes (1) a minimum of 25% of the reduced live load, (2) partition load or a

minimum of 10 pounds per square foot where partition load is included in the floor load design,

(3) total operating weight of permanent equipment, and (4) twenty percent of flat roof snow load

where the design flat roof snow load exceeds 30 pounds per square foot.

The coefficient CS is the Seismic Response Coefficient given by

CS ¼
SDS

R=Ie
ð24:13Þ

in which

SDS is the Design Spectral Acceleration for short period defined by Eq. (24.3).

R is the response modification factor from Table 24.9.

Ie is the Occupancy Importance Factor described in Sect. 24.8.

The value of the seismic response coefficient, CS, calculated by Eq. (24.13) cannot be less than

0.01, nor can it exceed the following:

When T � TL,

CS �
SD1

R=Ieð ÞT ð24:14aÞ

When T > TL,

CS �
SDSTL

T2 R=Ieð Þ ð24:14aÞ

but shall not be less than

CS � 0:044SDSIe � 0:01 ð24:15Þ

and for buildings in categories E and F and buildings for which S1� 0.6 g, the value of CS shall not be

less than

CS �
0:5S1
R=Ie

ð24:16Þ

where

R is the Response Modification Factor from Table 24.9.

Ie is the Importance Factor given in Table 24.4.

SDI is the Design Response Spectral Acceleration defined by Eq. (24.4).

S1 is the mapped earthquake response spectral; acceleration at T ¼ 1-sec period determined in

accordance with Sect. 24.1.

TL is the long-period transition period in ASCE 7-16 Section 11.4.5.
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24.11.1 Distribution of Lateral Forces [ASCE 7-16: Section 12.8.3]

The total base shear force V calculated from Eq. (24.12) is distributed over the height of the structure

as a lateral force, Fx at each level calculated by

Fx ¼
wxh

k
x

P

N

i¼1

wih
k
i

V ð24:17Þ

where

V ¼ total base shear

N ¼ total number of stories above the base of the building

hx ¼ height of level x

wx ¼ seismic weight assigned to 5 the x level of the building

k ¼ 1.0 for buildings having a period T � 0.5 sec

k ¼ 2.0 for buildings having a period T � 2.5 sec

k is determined by linear interpolation for buildings having a period 0.5 < T < 2.5 sec

The distribution of the lateral forces Fx is shown in Fig. 24.4 for a multistory building. The ASCE

7-16 stipulate that the force Fx at level x, be applied over the area of the building according to the

mass distribution at that level.

The story shear, Vx, is the sum of the force Fx above that story. The seismic design story shear in

any story shall be determined from the following equation:

Vx ¼
X

n

i¼x

Fi ð24:18Þ

where Fi ¼ the protion of the seismic base shear (V ) induced at level, i.

FN

N

X

V

Wx

Fx

hx

hN

Fig. 24.4 Vertical distribution of the base shear force
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24.11.2 Overturning Moments [ASCE 7-16: Section 12.8.5]

The ASCE 7-16 requires that overturning moments be determined at each level of the building. The

overturning moment is calculated by static from the equivalent lateral forces Fx [Eq. (24.17)] applied

at the levels of the building above the level under consideration. However, the code allows for a

reduction in the design overturning moment. Hence, the overturning moment Mx at level x of the

building is given by

Mx ¼
X

N

i¼xþi

Fi hi � hxð Þ ð24:19Þ

In accordance with ASCE 7-16 Section 2.13.4, overturning effects at the soil–foundation interface are

permitted to be taken as at least 75% for foundations of structures that satisfy both of the following

conditions. This 25% reduction is permitted when higher mode are unlikely to occur simultaneously

with mode 1.

24.11.3 Horizontal Torsional Moment

The ASCE 7-16 states that consideration should be given for the increased shear force resulting from

horizontal torsion where diaphragms are not flexible. Diaphragms are considered flexible when the

maximum lateral deformation of the diaphragm is more than twice the average story drift of the

associated stories. The torsional moment at a given story results from the difference in location of the

center of the mass between the applied seismic lateral forces at the levels above that story and the

center of stiffness of the resisting elements of the story. The code also requires that when diaphragms

are not flexible an accidental eccentricity be added by displacing the center of mass in five percent of

the building dimension at that level perpendicular to the direction of the applied forces.

Further provisions in the code account for torsional irregularities in buildings in Seismic Design

Categories C through F by increasing the accidental torsion by an amplification factor A, determined as

A ¼ δmax

1:2δavg

� �2

� 3:0 ð24:20Þ

Where

δmax ¼ The maximum displacement at level x

δavg ¼ The average displacement at the extreme points of the structure at level x

24.11.4 P-Delta Effect (P–D) [ASCE 7-16: Section 12.8.7]

The P – Δ effect was presented and discussed in Sect. 24.10 of Chap. 24. The ASCE 7-16 treats the

P – Δ effects in exactly the same manner as in the UBC-97, except that the calculation of the ratio θx,

at level x, between the secondary overturning moment,M
0

x, and the primary moment Mx includes the

Deflection Amplification Factor Cd. That is, in the ASCE 7-16 the ratio θx is calculated by
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θx ¼
M

0
x

Mx

¼ PxΔxIe

VxhsxCd

ð24:20Þ

where:

Px ¼ total weight at level x and above, no individual load factor need exceed 1.0.

Δx ¼ Drift of story x

Vx ¼ shear force of story x

hsx ¼ height of story x

Cd ¼ Deflection Amplitude Factor (Table 24.9)

Ie ¼ Importance Factor determined in accordance to Sect. 24.5

24.11.5 Story Drift [ASCE 7-16: Sect. 12.8.6]

The ASCE 7-16 (Sect. 12.8.6) specifies that the design deflection δx, at level x, be determined in

accordance with the following equation:

δx ¼
Cdδxe

Ie
ð24:21Þ

where

Cd ¼ Deflection Amplification Factor (Table 24.9)

δxe ¼ Deflection determined by an elastic analysis of the seismic-force-resisting system

Ie ¼ Importance Factor determined in accordance to Sect. 24.5

The design story drift, Δ, is computed as the difference of the lateral deflections of the center of

mass at the top and bottom levels of the story under consideration. However, for structures assigned to

Seismic Design Categories C, D, E or F (see Sect. 24.6) with plan irregularities, the design story drift

Δ shall be computed as the largest difference of the deflection along any of the edges of the structure

at the top and bottom levels of the story under consideration.

The ASCE 7-16 specified a maximum allowable story drift Δa which depends on the type of

building and on the Risk Category. Table 24.10 provides values for Δa, the allowable story drift.

Therefore, the limitation on the story drift, Δx may be expressed as:

Δx ¼ δx � δx�1ð Þ � Δa ð24:22Þ

where

δx is the lateral displacement at level x calculated by Eq. (24.21).

Δa is the allowable story drift from Table 24.10.
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24.12 Redundancy [ASCE 7-16: Section 12.3.4]

Redundancy is an important characteristic of a structure to provide multiple paths of resistance.

Higher redundancy indicates better reliability. When the redundancy is low, inelastic behavior during

major seismic event can cause the collapse of the structure. When the structures are potentially

exposed to severe inelastic demand, the structure should be designed with high redundancy to

increase the numbers of load paths. Loads can be redirected to be distributed to other lateral-force-

resisting elements. The redundancy factor is applied to increase the horizontal forces (ASCE 7-16:

Section 12.3.4). The redundancy factor value varies between 1.0 and 1.3.

The value of ρ is 1.0 for the following type of calculation:

• Structures assigned to Seismic Design Category B or C.

• Drift calculation and P-delta effects.

• Design of nonstructural components.

• Design of nonbuilding structures that are not similar to buildings.

• Design of systems and members such as collector elements, splices, and their connections where

overstrength factor are used.

• Diaphragm loads and structures with damping systems

• Design of structural walls for out-of-plane forces, including their anchorage.

For structures assigned to Seismic Design Category D, E, or F, ρ is 1.3 unless one of the following

two conditions is met, whereby ρ is permitted to be taken as 1.0:

1. Each story resisting more than 35% of the base shear in the direction of interest shall comply with

Table 24.11 (ASCE 7-16 Section Table 12.3-3).

2. Structures are regular in plan at all levels, provided that the seismic force-resisting systems consist

of at least two bays of seismic force-resisting perimeter framing on each side of the structure in

each orthogonal direction at each story resisting more than 35% of the base shear.

Table 24.10 Allowable story drift (Da) [ASCE 7-16: Table 12.12-1]a, b

Building

Risk category

I or II III IV

Buildings 4 stories in height (other than masonry) 0.025 hsx
c 0.020 hsx 0.015 hsx

Masonry cantilever shear wall bldgs. 0.010 hsx 0.010 hsx 0.010 hsx

Other masonry shear wall buildingsd 0.007 hsx 0.007 hsx 0.007 hsx

All other buildings 0.020 hsx 0.015 hsx 0.010 hsx
ahsx ¼ story height below level x
bFor seismic force-resisting systems comprised solely of moment frames in Seismic Design Categories D, E, and F, the

allowable story drift shall comply with the requirements of Section 12.12.1.1
cThere shall be no drift limit for single-story structures with interior walls, partitions, ceilings, and exterior wall systems

that have been designed to accommodate the story drifts. The structure separation requirement of ASCE 7-16

Section 12.12.3 is not waived
dStructures in which the basic structural system consists of masonry shear walls designed as vertical elements

cantilevered from their base or foundation support which are so constructed that moment transfer between shear

walls (coupling) is negligible
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24.13 Earthquake Load Effect [ASCE 7-16 Section 12.4.2]

The ASCE 7-16 specifies that the Earthquake Load, E, on a structural element be calculated as the

sum of the effects due to the lateral seismic forces amplified by the redundancy factor ρ plus the effect

of the vertical component of the earthquake ground motion. Namely,

E ¼ ρQE þ 0:2SDSD ð24:24Þ

where

QE ¼ the effect of horizontal seismic forces

ρ ¼ Redundancy Factor to be taken as the largest of the values for ρi obtained in accordance to Sect.

24.1

SDS ¼ Design Spectral Response Acceleration for short periods calculated by Eq. (24.4)

D ¼ vertical seismic load on an element

24.14 Building Irregularities [ASCE 7-16 Section 12.3.2.1]

The Equivalent Lateral Force Procedure is based on the assumptions and characteristics of regular

structures. Building irregularities are the cause of stress concentrations leading to structural damage

and poor performance. If the structure has irregularities, it must comply with additional code

requirements and assignment of seismic design categories listed in Table 12.3-1. Figures 24.5 and

24.8 show, respectively, examples of plan irregularities and of vertical irregularities (Fig. 24.6).

Table 24.11 Requirements for each story resisting more than 35% of the base shear [ASCE 7-16: Table 12.3-3]

Lateral force-resisting element Requirement

Braced frames Removal of an individual brace, or connection thereto, would not result

in more than a 33% reduction in story strength, nor does the resulting

system have an extreme torsional irregularity (horizontal structural

irregularity type 1b)

Moment frames Loss of moment resistance at the beam-to-column connections at both

ends of a single beam would not result in more than a 33% reduction in

story strength, nor does the resulting system have an extreme torsional

irregularity (horizontal structural irregularity type 1b).

Shear walls or wall pier with a height-to-

length ratio of greater than 1.0

Removal of a shear wall or wall pier with a height-to-length ratio

greater than 1.0 within any story, or collector connections thereto,

would not result in more than a 33% reduction in story strength, nor

does the resulting system have an extreme torsional irregularity

(horizontal structural irregularity type 1b).

Cantilever columns Loss of moment resistance at the base connections of any single

cantilever column would not result in more than a 33% reduction in

story strength, nor does the resulting system have an extreme torsional

irregularity (horizontal structural irregularity type 1b).

Other No requirements
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1. Torsional irregularity 1. Re-entrant corners

3. Diaphragm Discontinuity 4. Out-of-Plane Offsets

Discontinuity in vertical elements of lateral

force-resisting system

Re-entrant corner

opening

Fig. 24.5 Examples of structural plan irregularities

1. Stiffness – Soft Story

3. Vertical Geometric 

2. Weight (Mass)

4. In-Plane Discontinuity in Vertical

Lateral Force-resisting Elements

5. Discontinuity in Strength – Weak Story

Heavy MassStiff

resisting

elements

Stiff Resisting

Elements

Weak Story

Fig. 24.6 Examples of vertical structural irregularities
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Illustrative Example 24.2 Using the Equivalent Lateral Force Method of the IBC-2018 and ASCE

7-16, perform the seismic analysis of four-story concrete building of Illustrative Example 23.1

presented in Chap. 23. The building site is in Seattle, Washington with Zip Code 94704.

Solution:

The following values are obtained from Illustrative Example 24.1:

Seismic weights:

w1 ¼ w2 ¼ w3 ¼ 781:1 kip

w4 ¼ 645:1 kip

Total weight of the building:

W ¼ 781:1� 3� 645:1 ¼ 3012:4 kip

Fundamental period:

Ta ¼ Ct h x
N Eq. (24.6)

repeated

where

Ct ¼ 0.016 (for reinforced concrete moment-resisting frame)

x ¼ 0.9

hN ¼ 48 ft (total height of the building)

Then

T ¼ 0.016 � 480.9 ¼ 0.52 sec

Importance Factor (Warehouse)

I ¼ 1.0 (Table 24.4)

Mapped Response Spectral Acceleration:

(Use USGS Web site at http://earthquake.usgs.gov/designmaps)

Results:

Short Period: (T ¼ 0.2 sec): SS ¼ 1.360 g

Long Period (T ¼ 1.0 sec):: S1 ¼ 0.527 g

The response spectra are obtained for Illustrative Example 24.2.

Site Class ¼ B for rock (Table 24.3)

Site coefficient Fa ¼ 1.0 (Table 24.1)

Site Coefficient FB ¼ 1.0 (Table 24.2)
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Soil Modified Response Spectral Acceleration:

SMS ¼ FaSS ¼ 1.360 by Eq. (24.1)

SM1 ¼ FυS1 ¼ 0.527 by Eq. (24.2)

Design Response Spectral Acceleration:

SDS ¼ 2
3
SMS ¼ 0:907 by Eq. (24.3)

SD1 ¼ 2
3
SM1 ¼ 0:351 by Eq. (24.4)

Response Modification Factor: (Table 24.9)

R ¼ 8 (Special Reinforced Concrete Moment Frame).

Seismic Design Category ¼ D (Tables 24.5 and 24.6)

Seismic Coefficient

CS ¼ SDS
R=Ie

¼ 0:907
8=1:0 ¼ 0:113 by Eq. (24.13)

Check maximum value for CS:

Since T � TL ¼ 6sec

CS � SD1
R=Ieð ÞT ¼ 0:351

8=1ð Þ0:52 ¼ 0:084 by Eq. (24.14a)

Check minimum value for CS:

CS � 0:044SD1Ie
¼ 0:044� 0:351� 1:0 ¼ 0:0154 � 0:01

OK by

Eq. (24.15)

Then

CS ¼ 0.084

Base Shear Force:

V ¼ CSW Eq. (24.12) repeated

V ¼ 0:084� 3012:4 ¼ 253:04 kips

Vertical Force Distribution:

Fx ¼
wxh

k
x

P

N

i¼1

wih
k
i

V
Eq. (24.17) repeated

T ¼ 0:52 sec > 0:5 sec

k ¼ 1.01 (by interpolation) (Sect. 24.13)
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Table 24.12 contains the necessary calculations to determine Fx at the various levels of the

building in Illustrative Example 24.2.

Overturning Moments:

Mx ¼
X

N

i¼xþ1

Fi hi � hxð Þ Eq. (24.18) repeated

Calculated values for the overturning moments at the various levels of the building are shown in

the last column of Table 24.12.

Story Drift and Lateral Displacement:

For a structure modeled as a shear building the drifts, Δx, or relative displacement between

consecutive levels is given by

Δx ¼
Vx

Kx

where

Vx is the story shear force calculated in Table 24.12.

Kx is the stiffness of the story calculated in the solution of Illustrative Example 24.1, now listed in

Table 24.13.

Lateral Displacement and Story Drift:

The elastic lateral displacement δex may be calculated at each level of the building by adding story

drifts for the story at that level and those below as shown calculated in Table 24.13.

The design lateral displacement, δx, is then determined by

δx ¼ Cdδxe
I

Eq. (24.21) repeated

Cd ¼ 5.5 (Deflection Amplification

Factor)

(Table 24.9)

Ie ¼ 1.0 (Importance Factor) (Table 24.4)

Calculated values for the design lateral displacements, δx at the various levels of the building are

shown in Table 24.13.

Table 24.12 Calculation of seismic lateral forces for Illustrative Example 24.2

Level hx (ft) Wx (kip) h k
x (ft) wxh

k
x (kip-ft) Fx (kip) Vx (kip) Mx (kip-ft)

4 48 645.1 49.89 32,187 90.20 90.20

3 36 781.1 37.31 29,146 81.68 171.88 1082

2 24 781.1 24.77 19,352 54.23 226.11 3145

1 12 781.1 12.30 9609 26.93 253.04 5858

90,293 10,086
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The inelastic story drift is then given by

ΔMx ¼ δx � δx � 1 � Δa Eq. (24.22) repeated

where the allowable story drift Δa is given by

Δa ¼ 0.025hx ¼ 0.025 � 144 ¼ 3.6 in (Table 24.10)

Values calculated for the inelastic story drift ΔMx shown in the last column of Table 24.13 are well

below the allowable limit Δa ¼ 3.6 in.

Redundancy Factor:

The Seismic Design Category is assigned to be D, ρ is determined to be 1.3 without satisfying one

of the two conditions presented in Sect. 24.12 is met.

ρ ¼ 1:3

24.15 Summary

The International Building Code was prepared by the International Code Council (ICC), whose

members are representatives of BOCA (Building Officials and Code Administrators), ICBO (Inter-

national Conference of Building Officials) and SBCCI (Southern Building Code Congress Interna-

tional). The unified effort of all three agencies resulted in the International Building Code, which

contains provisions for earthquake resistant design specified in the latest versions of several building

codes. These codes are in current use in different regions of the country. This chapter shows the

application of USGS Seismic Design tool to determine Seismic Design Category. This chapter is

updated with current IBC-2018 and ASCE 7-16 using Equivalent Lateral Force Procedure. The modal

response spectrum analysis is presented in Chap. 23.

Table 24.13 Lateral displacement and story drift for Illustrative Example 24.2

Level

x

Story

shear

Vx (kip)

Story

stiffness Kx

(kip/in.)

Story drift

(Elastic) Δx

(in.)

Lateral

displ.

(Elastic)

δxe (in.)

Lateral displ.

(Inelastic) δx
(in.)

Story drift

(Inelastic)

ΔMx (in.)

Allowable story

drift (Inelastic)

Δa (in.)

4 90.20 1757.7 0.0513 0.2972 1.63 0.28 3.6

3 171.88 1757.7 0.0978 0.2459 1.35 0.54 3.6

2 226.11 3236.0 0.0699 0.1481 0.81 0.38 3.6

1 253.04 3236.0 0.0782 0.0782 0.43 0.43 3.6
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Appendices

Appendix I: Answers to Problems in Selected Chapters

Chapter 1

1.1 T ¼ 2πL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W

g
� L

3EI þ 2kL3

r

1.2 u t ¼ 1ð Þ ¼ �0:89 in
_u t ¼ 1ð Þ ¼ 22:66 in=sec

1.3 f ¼ 2.24 cps

1.4 að Þ f ¼ 2:87 cps
bð Þ f ¼ 2:74 cps

1.5 f ¼ 4

π

ffiffiffiffiffiffiffiffiffiffi

3EIg

L3W

r

1.6 u t ¼ 2ð Þ ¼ �0:474 in
_u t ¼ 2ð Þ ¼ �21:05 in=sec
€u t ¼ 2ð Þ ¼ 4065 in=sec 2

1.7 θ ¼ θ0 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g

L
tþ

_θ 0

ω
sin

ffiffiffiffiffi

2

L
t

r

s

1.8 k ¼ 73:64 lb=in
EI ¼ 3:39� 105 lb � in2ð Þ

1.9 u tð Þ ¼ 0:0995 sin 48:03t inð Þ
_u tð Þ ¼ 4:78 cos 48:03t in=secð Þ

1.10 u(t) ¼ 0.5 cos 27.78t

1.11 f ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ka2 � mgL

mL2

s

1.13 f ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3EI

mL3
� 3g

2L

r

1.14 f � f 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w

wer

r
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1.15 að Þ f ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3EIkg

3EI þ kL3
� �

W

s

bð Þ f ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

48EIkg

48EI þ kL3
� �

W

s

cð Þ f ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi

3EILg

a2b2W

r

dð Þ f ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3EILkg

3EILþ a2b2k
� �

W

s

1.16 f ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
1

m1

þ 1

m2

� �

s

1.17 ω ¼
ffiffiffi

k
m

q

1.18 ω ¼ 35.018 (rad/sec)

1.19 ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k �Wh

I0

r

unstablefork � Wh

Chapter 2

2.1 u t ¼ 1ð Þ ¼ �0:037 in
_u t ¼ 1ð Þ ¼ �0:570 in=sec

2.2 u t ¼ 2ð Þ ¼ �4:65� 10�9 in

_u t ¼ 2ð Þ ¼ �4:083� 10�8 in=sec
€u t ¼ 2ð Þ ¼ 4:18� 10�5 in=sec 2

2.3.1 c ¼ 0.73 lb � sec/in
2.3.2 ξ ¼ 1.5%

2.5 að Þ for ξ ¼ 1, u ¼ u0 1þ wtð Þ þ v0t½ �e�wt

bð Þ for ξ > 1, u ¼ e�ξωt u0coshω
0
Dtþ

v0 þ u0ξω

ω
0
D

sinhω
0

Dt

� �

where ω
0
D ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 � 1
p

2.6 að Þ ξ ¼ 0:4167
bð Þ TD ¼ 0:2765 sec

cð Þ δ ¼ 2:8801

dð Þ u1
u2

¼ 17:8161

2.9 f D ¼ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ka2 � mgL

mL2

s

2.10 að Þ ξ ¼ 0:076
bð Þ fD ¼ 8:69 cps
cð Þ δ ¼ 0:48

dð Þ u1
u2

¼ 1:61
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2.11 að Þ ξ ¼ 0:018
bð ÞωD ¼ 57:76 rad=sec
cð Þ δ ¼ 0:113

dð Þ u1

u2
¼ 1:12

2.12 að Þ Ke ¼
3EIk

3EI þ kL3

CE ¼ 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3EIkw

g 3EI þ kL3
� �

s

bð Þ KE ¼ 48EIk

48EI þ kL3

CE ¼ 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

48EIkm

48EI þ kL3

r

cð Þ KE ¼ 3EIL

a2b2

CE ¼ 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

3EILw

a2b2g

s

dð Þ KE ¼ 3EIkL

3EILþ ka2b2

CE ¼ 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3EIkLw

3EILþ ka2b2
� �

g

s

2.13 ξ ¼ 6.7%

2.14 m1m2€uþ m1 þ m2ð Þc _u þ m1 þ m2ð Þku ¼ 0

2.15 €uþ 2ξω _u þ ω2u ¼ 0

where: ω ¼
ffiffiffiffiffi

k

M

r

, M ¼ m1m2

m1 þ m2

, ωD ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
q

, ξ ¼ c

ccr
, ccr ¼ 2

ffiffiffiffiffiffiffi

kM
p

Chapter 3

3.1 Y ¼ 0.0037 in

3.2 AT ¼ 51.2 lb

3.3 Y ¼ 0.823 in

3.4 Y ¼ 0.746 in

3.5 að ÞAT ¼ 15, 803 lb

bð ÞTR ¼ 3:16

3.6 k ¼ 93 lb/in

3.7 u ¼ 0.013 in

3.8 TR ¼ 0.34

3.9 að ÞY1 ¼ 0:064 infor f 1 ¼ 800 RPM

Y2 ¼ 0:0446 infor f 2 ¼ 1000 RPM

Y3 ¼ 0:0302 infor f 3 ¼ 1200 RPM

bð ÞY r ¼ 1ð Þ ¼ 0:076 in

3.10 ξ ¼ 3.3%
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3.11 ξ ¼ 6.3%

3.12

ω ¼ 49:2 rad=secð Þ
Y ¼ 0:387 cmð Þ
σmax ¼ 110:7 Mpað Þ

3.13 f ¼ f r
ffiffiffiffiffiffi

1ms

m

p

3.14 ωp ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2ξ2
p

for ξ <
1
ffiffiffi

2
p

Up ¼
ust

2ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
p

3.15 að Þ f ¼ 18:58 cps
bð Þ ξ ¼ 0:0735
cð Þ F0 ¼ 4825 lb

dð Þ F0 ¼ 4840 lb

3.16 ξ ¼ U1 1� r21
� �

2r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
r r

2
1 � U2

1

q

Fr ¼
UrU1 1� r21

� �

k

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
r r

2
1 � U2

1

q

3.17 að ÞM€uþ c _u þ ku ¼ m1F0

m1 þ m2

sin t

where M ¼ m1m2

m1 þ m2

bð Þ u ¼ m1F0 sin t� θð Þ

k m1 þ m2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2rξð Þ2
q

Chapter 4

4.1 að Þu t ¼ 0:5ð Þ ¼ �0:407 in
bð Þumax ¼ 1:37 in

4.2 að Þu t ¼ 0:5ð Þ ¼ �0:102 in
bð Þumax ¼ 1:17 in

4.3 DLF ¼ t

td
� sinωt

ωtd
for t � td

DLF ¼ 1þ 1

ωtd
sinωt� sinω tþ tdð Þð Þ for t � td

4.4 Vmax ¼ 18, 093 lb for left column

Vmax ¼ 1908 lb for right column

4.5 Vmax ¼ 15, 640 lb for left column

Vmax ¼ 1649 lb for right column

4.8 u1 tð Þ ¼ �v
ω
cosωtþ vt

614 Appendices



4.9 u tð Þ ¼ ust

td
t� sinωt

ω

� �

for t � td

¼ ust

td
td �

sinωt

ω

	 �

cosω 1� tdð Þ þ 1

ω
sinω t� tdð Þ




for t � td

4.10 umax ¼ 1:348 inð Þ
σmax ¼ 11, 906 psið Þ

4.11 umax ¼ 0:72 inð Þ
σmax ¼ 16, 282 psið Þ

4.12 u(t ¼ 0.5) ¼ �1.903 in

4.13 u(t ¼ 0.5) ¼ �0.060 in

4.14 u(t ¼ 1) ¼ �2.809 in

4.15 u(t ¼ 1) ¼ �2.397 in

4.16 umax ¼ 6:03 in undamped systemð Þ
umax ¼ 4:59 in with 20% damingð Þ

4.17 umax ¼ 1.51 in

4.18 umax ¼ 1.42 in

4.19 umax ¼ 0.58 in

4.20 umax ¼ 1.00 in

4.21 umax ¼ 0.79 in

4.22 umax ¼ 0.66 in

4.23 umax ¼ 0.34 in

4.24 σ1max ¼ 3842 psi

σ2max ¼ 6831 psi

4.25 umax ¼ 0.71 in

4.26 að Þσ ¼ �6193 psi

bð ÞFmax ¼ 11, 376 lb

Chapter 5

5.1 umax ¼ 0.374 in

5.2 σmax ¼ 7.246 ksi

5.3 umax ¼ 0.418 in

5.4 σmax ¼ 12.788 ksi

5.5 SD ¼ 1:9 in
Sv ¼ 22:4 in=sec
Sa ¼ 0:68 g

5.6 SD ¼ 1:28 in
Sv ¼ 15:36 in=sec
Sa ¼ 0:48g

5.7 SD ¼ 11:0 in
Fsð Þmax ¼ 88:0 Kip5.8

(Fs)max ¼ 36.0 Kip5.9

(FT)max ¼ 44.0 Kip

Appendices 615



5.10 SD ¼ 8.0 in

5.11 μ ¼ 1.8

5.12 að Þ SD ¼ 40 in

Sv ¼ 50:3 in=sec

Sa ¼ 1:63g

bð Þ SD ¼ 4:8 in

Sv ¼ 60:0 in=sec

Sa ¼ 1:96g
5.13 að Þ SD ¼ 0:46 in

Sv ¼ 5:8 in=sec
Sa ¼ 0:19g

bð Þ SD ¼ 6:0 in
Sv ¼ 18 in=sec
Sa ¼ 0:6g

5.14 SD ¼ 0:78 in at f ¼ 0:5 cpsð Þ
Sv ¼ 2:46 in=sec
Sa ¼ 7:72 in=sec 2

5.15 SD ¼ 8:03 in at f ¼ 1:00 cpsð Þ
Sv ¼ 50:45 in=sec
Sa ¼ 317:00 in=sec 2

5.16 SD ¼ 3:26 in at f ¼ 1:00 cpsð Þ
Sv ¼ 20:38 in=sec
Sa ¼ 127:40 in=sec 2

Chapter 6

6.1 umax ¼ �10.27 in

6.2 umax ¼ 2.56 in

6.3 umax ¼ 6.47 in

6.4 umax ¼ 1.03 in

6.5 umax ¼ 5.19 in

6.6 umax ¼ 2.38 in

6.7 μ ¼ 1.7

6.8 u(t ¼ 0.5) ¼ 0.4477 in

6.9 u(t ¼ 0.5) ¼ 0.2654 in

6.10 u(t ¼ 0.5) ¼ 0.1423 in

6.11 u(t ¼ 0.5) ¼ 0.1340 in

6.12 a0 ¼ 2.78

Chapter 19

19.1 F tð Þ ¼ 120
π

sin 2πtþ 1
3
sin 6πtþ 1

5
sin 10πt . . .

� �

19.2 F(t) ¼ 10�6[357 sin 2πt � 26 cos 2πt + 36 sin 6πt � 532 cos 6πt � 35

sin 10πt � 7 cos 10πt + . . .]

19.3 u(t ¼ 0.5) ¼ 0.3518 in
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19.4 að Þan ¼
720

π 1� n2ð Þ, n ¼ 2, 4, 6, . . .

an ¼ 0, n ¼ 1, 3, 5, . . .

bn ¼ 0, n ¼ 1, 2, 3, . . .

19.5 u(t ¼ 0.05) ¼ �0.2065 in

19.6 u(t ¼ 0.05) ¼ �0.2064 in

19.7 u(t ¼ 0.05) ¼ 0.1295 in

19.8 að Þa0 ¼ 0:0350
a1 ¼ 0:0069 b1 ¼ �0:0361
a2 ¼ �0:0724 b2 ¼ �0:0402

bð Þu t ¼ 0:35ð Þ ¼ 0:2570 in

19.9 u(t ¼ 0.35) ¼ 0.2327 in

19.10 u
�

_t ¼ 0:5
�

¼ 0:027 in

19.11 u(t ¼ 0.5) ¼ (0.02842 � 0.00011i) in

19.12

að Þ a0 ¼
P0

π

an ¼ 0, n ¼ 1, 3, 5, . . . ; b1 ¼
P0

2

an ¼
P0

π
� 2

1� n2
, n ¼ 2, 4, 6, . . . ; bn ¼ 0, n > 1

19.13 u(t ¼ 0.5) ¼ 0.0731 in

19.14 u(t ¼ 0.5) ¼ 0.0543 in

19.15 u1 tð Þ ¼ 0:229 sin πt� 0:75 sin 4:19tð Þ
u2 tð Þ ¼ 0:229 sin π t� 1ð Þ � 0:75 sin 4:19 t� 1ð Þ½ �
u tð Þ ¼ u1 tð Þ for 0 � t � 1:0 sec

u tð Þ ¼ u1 tð Þ þ u2 tð Þ for t � 1:0 sec

19.16 u(t ¼ 1 sec) ¼ 0.2419(in)

19.17 u(t ¼ 1 sec) ¼ 0.0532(in)

19.18 u(t ¼ 1 sec) ¼ 0.0035(in)

19.19 u(t ¼ 1 sec) ¼ 0.0034(in)

19.20 u(t ¼ 1 sec) ¼ 0.0028(in)

Chapter 21

21.1 M∗ ¼ 4:48 lb � sec 2=in
C∗ ¼ 2250 lb � sec =in
K∗ ¼ 45, 000 lb=in
F∗ tð Þ ¼ 625 � f tð Þlb

21.2 M∗ ¼ 5

6
m

C∗ ¼ c

K∗ ¼ k

F∗ tð Þ ¼ M tð Þ
L
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21.3 M∗ ¼ 2

3
�mL2

C∗ ¼ cL

K∗ ¼ kL

F∗ ¼ P0L

6
f tð Þ

21.4 M∗ ¼ m

2π
5π � 8ð Þ

K∗ ¼ EIπ4

32L3

F∗ tð Þ ¼ 0:2929F0f tð Þ

21.5 K∗G ¼ �Nπ4

8L

21.6 M∗ ¼ 0:1237
γd

g

K∗ ¼ �Ecπd
4

128L3

F∗ tð Þ ¼ �0:1807P0 tð ÞLd

21.7 ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

48EI

L3 mþ 17
35
mb

� �

s

rad=sec

21.8 ω ¼ 7:825

ffiffiffiffiffiffiffiffiffiffi

EI

mbL
3

r

rad=sec

21.9 f ¼ 3.51 cps

21.10 ω ¼ 2:15

ffiffiffiffiffiffiffiffiffi

gEI

WL3

r

rad=sec

21.11 ω ¼ 0:62

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gAG

WL
rad=sec

r

21.12 f ¼ 0.496 cps

21.13 f ¼ 0.492 cps

Appendix II: Glossary

Accelerometer An instrument for measuring ground acceleration as a function

of time.

Aliasing The phenomenon in which higher harmonies introduce spurious

low frequency components. This occurs when the number of

sampled points of a function is insufficient to describe the func-

tion. (See Nyquist Frequency.)

Amplitude Maximum value of a function as it varies with time. If the varia-

tion with time can be described by either a sine or cosine function,

it is said to vary harmonically.

Angular Frequency/Circular

Frequency

The frequency of periodic function in cycles per second (Hertz)

multiplied by 2π; expressed in rad/sec.
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Autocorrelation of a

Random Function x(t)

Correlation between the function x(t) and the out-of-phase func-

tion x(t + τ) as defined by Eq. (22.19).

Base Shear Force The total lateral force on the structure equivalent to the earthquake

excitation at the base of the structure.

Basic Design Spectra Smooth or average plots of maximum response of single degree-

of-freedom systems used in seismic design of structures.

Boundary Condition A constraint applied to the structure independent of time.

Braced Frame An essentially vertical truss system of the concentric or eccentric

type which is provided to resist lateral forces.

Building Frame System An essentially complete space frame which provides support for

gravity loads.

Characteristic Equation An equation whose roots are the natural frequencies.

Circular Frequency See Angular Frequency.

Complementary Solution The solution of a homogeneous differential equation (no external

excitation).

Complete Quadratic

Combination (CQC)

A method of combining maximum values of modal contributions

which is based on random vibration theory and includes cross

correlation terms.

Concentric Braced Frame A brace frame in which the members are subjected primarily to

axial forces.

Consistent Mass Mass influence coefficients determined by assuming that the

dynamic displacement functions are equal to the static displace-

ment functions.

Correlation between

Random Variables

x1(t) and x2(t)

The time average of the product of the functions x1(t) and x2(t).

Coupled Equations A system of differential equations in which the equations are not

independent from each other.

Critical Damping Minimum amount of viscous damping for which the system will

not vibrate.

D’ Alembert Principle This principle states that a dynamic system may be assumed to be

in equilibrium provided that the inertial forces are considered as

external forces.

Damped Frequency The frequency at which a viscously damped system oscillates in

free vibration.

Damping The property of the structure to absorb vibrating energy.

Damping Ratio The ratio of the viscous damping coefficient to the critical

damping.

Degrees of Freedom The number of independent coordinates required to completely

define the position of the system at any time.

Deterministic Vibration A process which can be predicted by an exact mathematical

expression.

Dirac’s Delta Function A generalized function having the properties described in

Eq. (22.52).

Direct Stiffness Method The method of assembling the system stiffuess matrix by proper

summation of the stiffness coefficients of the elements in the

system.
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Discrete Fourier Transform A summation of harmonic terms to express the Fourier transform

for a function defmed by a finite number of points.

Dual System A combination of a special or intermediate moment-resisting

space frame and shear walls or braced frames.

Ductility Ratio The ratio between the maximum displacement for elastoplastic

behavior and the displacement corresponding to yield point.

Dynamic Condensation A method of reducing the dimension of the eigenproblem by

establishing the dynamic relationship between primary and sec-

ondary coordinates.

Dynamic Magnification

Factor

The ratio of the maximum displacement of a single degree of

freedom excited by a harmonic force to the deflection that would

result if a force of that magnitude were applied statically.

Earthquake The vibrations of the Earth caused by the passage of seismic

waves radiating from some source of elastic energy.

Eigenproblem The problem of solving a homogeneous system of equation:

containing a parameter which should be determined to provide

nontrivial solutions.

Elastic Rebound Theory The theory of earthquake generation proposing that faults remain

locked while strain energy slowly accumulates in the surrounding

rock, and then suddenly slip, releasing this energy.

Elastoplastic A system which behaves elastically for a force that does not

exceed a maximum value and plastically above this maximum.

Ensemble A set of samples or records of a random process.

Epicenter The point on the Earth’s surface directly above the focus.

Ergodic Process A stationary random process for which the time average of any

record is equal to the average across the ensemble.

Fast Fourier Transform (FFT) A very efficient algorithm implemented in a computer program

for the calculation of the response in the frequency domain.

Flexibility Coefficient fij is the displacement at coordinate i due to a unit force (or unit

moment) applied at coordinate j.

Forced Vibration Vibration in which the response is due to external excitation of the

system.

Fourier Analysis Method of determining the response by superposition of the

responses to the harmonic components of the excitation.

Fourier Transform The Fourier transform C(ω) of a function F(t) is defined by

Eq. (22.23).

Fourier Transform Pair In reference to the function F(t), the Fourier transform pair is

given by Eqs. (22.23) and (22.24).

Free Body Diagram A sketch of the system, isolated from all other bodies, in which all

the forces external to the body are shown.

Free Vibration The vibration of a system in absence of external excitation.

Frequency Analyzer or

Spectral Density Analyzer

An instrument that measures electronically the spectral density

function of a signal.

Frequency Ratio The ratio between the forcing frequency to the natural frequency

for a system excited by a harmonic load.

Fundamental Frequency The lowest natural frequency of a multidegree-of freedom vibrat-

ing system.
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Gauss-Jordan Reduction

or Elimination

A computational technique in which elementary row operations

are applied systematically to solve a linear system of equations.

Generalized Coordinates A set of independent quantities which describe the dynamic sys-

tem at any time. These quantities are generally functions of the

geometric Coordinates.

Geometric Stiffness

Coefficient

kGij is the force at coordinate i due to a unit displacement at

coordinate j and resulting from the axial forces in the structure.

Harmonic A sinusoidal function having a frequency that is an integral

multiple of the fundamental frequency.

Harmonic Force A force expressed by a sine, cosine (or equivalent exponential)

function.

Hypocenter or Focus The Point in the interior of the earth at which rupture is initiated

during an earthquake.

Impulsive Load A load that is applied during a relatively short time interval

producing an instantaneous change in velocity.

Initial Conditions The initial values of specific functions such as displacement,

velocity, or acceleration evaluated at time t ¼ 0.

Intensity (of Earthquakes) A measure of ground shaking obtained from the damage done to

man-made structures, changes in the Earth’s surface, and witness

reports.

Intermediate Moment-Resisting

Space Frame (IMRSF)

A concrete space frame designed in conformance with

Section 1921.8 (k) of UBC-97.

Isolation The reduction of severity of the response, usually attained by

proper use of a resilient support.

Lateral Force Method A method of analysis in which lateral horizontal forces at various

levels of the structure are considered equivalent to seismic excita-

tion at the base of the structure.

Lateral Force-Resisting System That part of the structural system assigned to resist lateral forces.

Linear Acceleration Method A step-by-step method for the integration of the differential

equations of motion in which the acceleration is assumed to be a

linear function during each time step.

Linear System A system of differential equations in which no term contains

products (or exponents) of the dependent variables or their

derivatives.

Logarithmic Decrement The natural logarithm of the ratio of any two successive

amplitudes of the same sign obtained in the decay curve in a

free vibration test.

Lumped Mass A method of discretization in which the distributed mass of the

elements is lumped at the nodes or joints.

Mathematical Model The idealization of a system including all the assumptions

imposed on the physical problem.

Mean-Square Value The time average of the square of a random function as defined by

Eq. (22.2).

Mean Value The time average of a random function defined by Eq. (23.l).

Modal Shapes (also

Normal Modes)

The relative amplitude of the displacements at the coordinates of a

multidegree-of-freedom system vibrating at one of the natural

frequencies.
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Modal Superposition

Method

A method of solution of multidegree-of-freedom systems in which

the response is determined from the solution of independent

modal (or normal) equations.

Modified Mercalli

Intensity (MMI)

A measure of the effect of an earthquake at a particular location.

Moment-Resisting

Space Frame

A space frame in which the members and joints are capable of

resisting forces primarily by flexure.

Narrow-Band Process A random process whose spectral density function has nonzero

values only in a narrow frequency range.

Natural Frequency The number of cycles per second at which a single degree

of-freedom system vibrates freely or a multidegree-of-freedom

system vibrates in one of the normal modes.

Natural Period The time interval for a vibrating system in free vibration to do one

oscillation.

Newmark Beta Method A numerical method to calculate the response of a structure

subjected to external excitation (force or motion).

Node or Joint A point joining elements of the structure and at which

displacements are known or to be determined.

Normal Distribution or

Gaussian Distribution

A function whose probability density function is given by

Eq. (22.12).

Normal Modes See modal Shapes.

Nyquist Frequency The maximum frequency component that can be detected from a

function sampled at time spacing Δt [Ny ¼ 1 /2Δt (Hz)].

Occupancy Factor A numerical factor in the calculation of the base shear force that

depends on the intended use of the structure.

Ordinary Moment-Resisting

Space Frame (OMRSF)

A moment-resisting not meeting special detailing requirements

for ductile behavior.

P-Delta Effect The secondary effect on shears, axial forces, and moments of

frame members induced by the vertical loads on the laterally

displaced building frame.

Periodic Function A function that repeats itself at a fixed time interval known as the

period of the function.

Power Spectral Density A term used to describe the intensity of random vibration at a

given frequency, measured in g2/Hz.

Principle of Virtual Work The work done by all the forces acting on a system in static or

dynamic equilibrium, which occurs during a virtual displacement

compatible with the constraints of the system equal to zero, for a

rigid system and for an elastic frame, equal to the work of the

internal forces during the virtual displacement.

Probability Density

Function

A function p(x) such that the probability of x(t) of being in the

range (x, x + dx) is p(x) dx.

Pseudo-Velocity The velocity calculated by analogy with the apparent harmonic

motion for a system seismically excited.

Random Function A function (as opposed to a deterministic function) whose value at

any time cannot be determined exactly, but can only be predicted

in probabilistic terms by statistical methods.
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Random Vibration or

Random Process

A process which cannot be predicted in a deterministic sense, but

only probabilistically using the theory of statistics.

Rayleigh Distribution A function whose probability density function is given by

Eq. (22.14).

Rayleigh’s Formula A formula to estimate the fundamental period of the structure.

Resonance The condition in which the frequency of the excitation equals the

natural frequency of the vibrating system.

Response The force or motion that results from external excitation on the

structure.

Response Spectrum A plot of maximum response (displacement, velocity, or acceler-

ation) for a single degree-of-freedom system defined by its natural

frequency (or period) subjected to a specific excitation.

Richter Magnitude (M) A measure related to total energy released during an earthquake.

Root Mean Square (RMS) The square root of the mean-square value of a random function

[Eq. (22.5)].

Sample A record of random process.

Seismic Zone Factor A numerical factor in the calculation of the base shear force at a

given geographic location.

Seismograph An instrument for recording, as a function of time, the motions of

the Earth’s surface that are caused by seismic waves.

Shear Wall A wall designed to resist lateral forces parallel to the plane of the

wall (sometimes referred to as a vertical diaphragm or

structural wall).

Shock Spectrum See Response Spectrum.

Simple Harmonic Motion The motion of a system which may be expressed by a sine or

cosine function of time.

Site-Structure Resonance

Coefficient

A numerical factor in the calculation of the base shear force that

depends on the condition of the soil.

Space Frame A three-dimensional structural system, without bearing walls,

composed of members interconnected so as to function as a

complete self-contained unit with or without the aid of horizontal

diaphragms or floor-bracing systems.

Special Moment-Resisting

Space Frame (SMRSF)

A moment-resisting space frame specially detailed to provide

ductile behavior and comply with the requirements given in

Chap. 19 or 22 of UBC-97 (International, Conference of Building

Officials 1997).

Spectral Analysis or Spectrum A description of contributions of the frequency components to the

mean-square value of a random function.

Spectral Density Function A function that describes the intensity of random vibration in

terms of the mean-square value per unit of frequency.

Square Root Sum of

Squares (SRSS)

A method of combining maximum values of modal contributions

by taking the square root of the sum of the squared modal

contributions.

Standard Deviation The square root of the variance. It may be calculated by

Eq. (22.6).
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Static Condensation A method of reducing the dimensions of the stiffness and of the

mass matrices by establishing the static relation between primary

and secondary coordinates.

Stationary Process A random process for which the average across the ensemble has

the same value at any selected time.

Steady-State Vibration The motion of the system that remains after the transient motion

existing at the initiation of the motion has vanished.

Stiffness Coefficient kij is the force at coordinate i due to a unit displacement at

coordinate j.

Story Drift The relative lateral displacements of consecutive levels of a

building.

Spring Constant The change in load on a linear elastic structure required to produce

a unit increment of deflection.

Strong Motion

Accelerograph

An instrument to register seismic motions higher than a specified

amplitude.

Structure An assemblage of framing members designed to support gravity

loads and resist lateral forces. Structures may be categorized as

building structures or non-building structures.

Structural Factor A numerical factor in the calculation of the base shear force that

depends on the type of structural system.

Tectonic Earthquakes Earthquakes resulting from the sudden release of energy stored by

a major deformation of the earth.

Time History Response The response (motion or force) of the structure evaluated as a

function of time.

Transient Vibration The initial portion of the motion which vanishes due to the

presence of damping forces in the system.

Transmissibility The non-dimensional ratio, in the steady-state condition, of the

response motion to the input motion. Or the non-dimension the

amplitude of the force transmitted to the foundation to the ampli-

tude of the force exciting the system.

Variance of x(t) The average of the squares of the deviations of x(t) values from the

mean value x.

Viscous Damping Dissipation of energy such that the motion is resisted by a force

proportional to the velocity but in the opposite direction.

White Noise A wide-band random process for which the spectral density func-

tion is constant over the whole frequency range.

Wide-band Process A random process whose spectral function has nonzero value over

a large range of frequencies.

Wiener-Kinchin Equations These are equations that relate the autocorrelation function and

the spectral density function [Eqs. (22.49) and (22.50)].

Wilson’s θ Method A modification of the step-by-step linear acceleration method in

which the time step is multiplied by a factor necessary to render

the method unconditionally stable.

Wood-Anderson

Seismograph

An instrument used to register seismic motions.
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