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Preface for the Instructor

You are about to teach a course that will probably give students their second

exposure to linear algebra. During their first brush with the subject, your

students probably worked with Euclidean spaces and matrices. In contrast,

this course will emphasize abstract vector spaces and linear maps.

The audacious title of this book deserves an explanation. Almost all

linear algebra books use determinants to prove that every linear operator on

a finite-dimensional complex vector space has an eigenvalue. Determinants

are difficult, nonintuitive, and often defined without motivation. To prove the

theorem about existence of eigenvalues on complex vector spaces, most books

must define determinants, prove that a linear map is not invertible if and only

if its determinant equals 0, and then define the characteristic polynomial. This

tortuous (torturous?) path gives students little feeling for why eigenvalues

exist.

In contrast, the simple determinant-free proofs presented here (for example,

see 5.21) offer more insight. Once determinants have been banished to the

end of the book, a new route opens to the main goal of linear algebra—

understanding the structure of linear operators.

This book starts at the beginning of the subject, with no prerequisites

other than the usual demand for suitable mathematical maturity. Even if your

students have already seen some of the material in the first few chapters, they

may be unaccustomed to working exercises of the type presented here, most

of which require an understanding of proofs.

Here is a chapter-by-chapter summary of the highlights of the book:

� Chapter 1: Vector spaces are defined in this chapter, and their basic proper-

ties are developed.

� Chapter 2: Linear independence, span, basis, and dimension are defined in

this chapter, which presents the basic theory of finite-dimensional vector

spaces.

xi



xii Preface for the Instructor

� Chapter 3: Linear maps are introduced in this chapter. The key result here

is the Fundamental Theorem of Linear Maps (3.22): if T is a linear map

on V, then dimV D dim nullT C dim rangeT. Quotient spaces and duality

are topics in this chapter at a higher level of abstraction than other parts

of the book; these topics can be skipped without running into problems

elsewhere in the book.

� Chapter 4: The part of the theory of polynomials that will be needed

to understand linear operators is presented in this chapter. This chapter

contains no linear algebra. It can be covered quickly, especially if your

students are already familiar with these results.

� Chapter 5: The idea of studying a linear operator by restricting it to small

subspaces leads to eigenvectors in the early part of this chapter. The

highlight of this chapter is a simple proof that on complex vector spaces,

eigenvalues always exist. This result is then used to show that each linear

operator on a complex vector space has an upper-triangular matrix with

respect to some basis. All this is done without defining determinants or

characteristic polynomials!

� Chapter 6: Inner product spaces are defined in this chapter, and their basic

properties are developed along with standard tools such as orthonormal

bases and the Gram–Schmidt Procedure. This chapter also shows how

orthogonal projections can be used to solve certain minimization problems.

� Chapter 7: The Spectral Theorem, which characterizes the linear operators

for which there exists an orthonormal basis consisting of eigenvectors,

is the highlight of this chapter. The work in earlier chapters pays off

here with especially simple proofs. This chapter also deals with positive

operators, isometries, the Polar Decomposition, and the Singular Value

Decomposition.

� Chapter 8: Minimal polynomials, characteristic polynomials, and gener-

alized eigenvectors are introduced in this chapter. The main achievement

of this chapter is the description of a linear operator on a complex vector

space in terms of its generalized eigenvectors. This description enables

one to prove many of the results usually proved using Jordan Form. For

example, these tools are used to prove that every invertible linear operator

on a complex vector space has a square root. The chapter concludes with a

proof that every linear operator on a complex vector space can be put into

Jordan Form.
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� Chapter 9: Linear operators on real vector spaces occupy center stage in

this chapter. Here the main technique is complexification, which is a natural

extension of an operator on a real vector space to an operator on a complex

vector space. Complexification allows our results about complex vector

spaces to be transferred easily to real vector spaces. For example, this

technique is used to show that every linear operator on a real vector space

has an invariant subspace of dimension 1 or 2. As another example, we

show that that every linear operator on an odd-dimensional real vector space

has an eigenvalue.

� Chapter 10: The trace and determinant (on complex vector spaces) are

defined in this chapter as the sum of the eigenvalues and the product of the

eigenvalues, both counting multiplicity. These easy-to-remember defini-

tions would not be possible with the traditional approach to eigenvalues,

because the traditional method uses determinants to prove that sufficient

eigenvalues exist. The standard theorems about determinants now become

much clearer. The Polar Decomposition and the Real Spectral Theorem are

used to derive the change of variables formula for multivariable integrals in

a fashion that makes the appearance of the determinant there seem natural.

This book usually develops linear algebra simultaneously for real and

complex vector spaces by letting F denote either the real or the complex

numbers. If you and your students prefer to think of F as an arbitrary field,

then see the comments at the end of Section 1.A. I prefer avoiding arbitrary

fields at this level because they introduce extra abstraction without leading

to any new linear algebra. Also, students are more comfortable thinking

of polynomials as functions instead of the more formal objects needed for

polynomials with coefficients in finite fields. Finally, even if the beginning

part of the theory were developed with arbitrary fields, inner product spaces

would push consideration back to just real and complex vector spaces.

You probably cannot cover everything in this book in one semester. Going

through the first eight chapters is a good goal for a one-semester course. If

you must reach Chapter 10, then consider covering Chapters 4 and 9 in fifteen

minutes each, as well as skipping the material on quotient spaces and duality

in Chapter 3.

A goal more important than teaching any particular theorem is to develop in

students the ability to understand and manipulate the objects of linear algebra.

Mathematics can be learned only by doing. Fortunately, linear algebra has

many good homework exercises. When teaching this course, during each

class I usually assign as homework several of the exercises, due the next class.

Going over the homework might take up a third or even half of a typical class.
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Major changes from the previous edition:

� This edition contains 561 exercises, including 337 new exercises that were

not in the previous edition. Exercises now appear at the end of each section,

rather than at the end of each chapter.

� Many new examples have been added to illustrate the key ideas of linear

algebra.

� Beautiful new formatting, including the use of color, creates pages with an

unusually pleasant appearance in both print and electronic versions. As a

visual aid, definitions are in beige boxes and theorems are in blue boxes (in

color versions of the book).

� Each theorem now has a descriptive name.

� New topics covered in the book include product spaces, quotient spaces,

and duality.

� Chapter 9 (Operators on Real Vector Spaces) has been completely rewritten

to take advantage of simplifications via complexification. This approach

allows for more streamlined presentations in Chapters 5 and 7 because

those chapters now focus mostly on complex vector spaces.

� Hundreds of improvements have been made throughout the book. For

example, the proof of Jordan Form (Section 8.D) has been simplified.

Please check the website below for additional information about the book. I

may occasionally write new sections on additional topics. These new sections

will be posted on the website. Your suggestions, comments, and corrections

are most welcome.

Best wishes for teaching a successful linear algebra class!

Sheldon Axler

Mathematics Department

San Francisco State University

San Francisco, CA 94132, USA

website: linear.axler.net

e-mail: linear@axler.net

Twitter: @AxlerLinear



Preface for the Student

You are probably about to begin your second exposure to linear algebra. Unlike

your first brush with the subject, which probably emphasized Euclidean spaces

and matrices, this encounter will focus on abstract vector spaces and linear

maps. These terms will be defined later, so don’t worry if you do not know

what they mean. This book starts from the beginning of the subject, assuming

no knowledge of linear algebra. The key point is that you are about to

immerse yourself in serious mathematics, with an emphasis on attaining a

deep understanding of the definitions, theorems, and proofs.

You cannot read mathematics the way you read a novel. If you zip through a

page in less than an hour, you are probably going too fast. When you encounter

the phrase “as you should verify”, you should indeed do the verification, which

will usually require some writing on your part. When steps are left out, you

need to supply the missing pieces. You should ponder and internalize each

definition. For each theorem, you should seek examples to show why each

hypothesis is necessary. Discussions with other students should help.

As a visual aid, definitions are in beige boxes and theorems are in blue

boxes (in color versions of the book). Each theorem has a descriptive name.

Please check the website below for additional information about the book. I

may occasionally write new sections on additional topics. These new sections

will be posted on the website. Your suggestions, comments, and corrections

are most welcome.

Best wishes for success and enjoyment in learning linear algebra!

Sheldon Axler

Mathematics Department

San Francisco State University

San Francisco, CA 94132, USA

website: linear.axler.net

e-mail: linear@axler.net

Twitter: @AxlerLinear
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CHAPTER

1
René Descartes explaining his

work to Queen Christina of

Sweden. Vector spaces are a

generalization of the

description of a plane using

two coordinates, as published

by Descartes in 1637.

Vector Spaces

Linear algebra is the study of linear maps on finite-dimensional vector spaces.

Eventually we will learn what all these terms mean. In this chapter we will

define vector spaces and discuss their elementary properties.

In linear algebra, better theorems and more insight emerge if complex

numbers are investigated along with real numbers. Thus we will begin by

introducing the complex numbers and their basic properties.

We will generalize the examples of a plane and ordinary space to Rn

and Cn, which we then will generalize to the notion of a vector space. The

elementary properties of a vector space will already seem familiar to you.

Then our next topic will be subspaces, which play a role for vector spaces

analogous to the role played by subsets for sets. Finally, we will look at sums

of subspaces (analogous to unions of subsets) and direct sums of subspaces

(analogous to unions of disjoint sets).

LEARNING OBJECTIVES FOR THIS CHAPTER

basic properties of the complex numbers

Rn and Cn

vector spaces

subspaces

sums and direct sums of subspaces

© Springer International Publishing 2015

S. Axler, Linear Algebra Done Right, Undergraduate Texts in Mathematics,

DOI 10.1007/978-3-319-11080-6__1
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2 CHAPTER 1 Vector Spaces

1.A Rn and Cn

Complex Numbers

You should already be familiar with basic properties of the set R of real

numbers. Complex numbers were invented so that we can take square roots of

negative numbers. The idea is to assume we have a square root of �1, denoted

i , that obeys the usual rules of arithmetic. Here are the formal definitions:

1.1 Definition complex numbers

� A complex number is an ordered pair .a; b/, where a; b 2 R, but

we will write this as aC bi .

� The set of all complex numbers is denoted by C:

C D faC bi W a; b 2 Rg:

� Addition and multiplication on C are defined by

.aC bi/C .c C di/ D .aC c/C .b C d/i;

.aC bi/.c C di/ D .ac � bd/C .ad C bc/i I

here a; b; c; d 2 R.

If a 2 R, we identify aC 0i with the real number a. Thus we can think

of R as a subset of C. We also usually write 0C bi as just bi , and we usually

write 0C 1i as just i .

The symbol i was first used to de-

note
p

�1 by Swiss mathematician

Leonhard Euler in 1777.

Using multiplication as defined

above, you should verify that i2 D �1.

Do not memorize the formula for the

product of two complex numbers; you

can always rederive it by recalling that

i2 D �1 and then using the usual rules

of arithmetic (as given by 1.3).

1.2 Example Evaluate .2C 3i/.4C 5i/.

Solution .2C 3i/.4C 5i/ D 2 � 4C 2 � .5i/C .3i/ � 4C .3i/.5i/

D 8C 10i C 12i � 15
D �7C 22i
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1.3 Properties of complex arithmetic

commutativity

˛ C ˇ D ˇ C ˛ and ˛ˇ D ˇ˛ for all ˛; ˇ 2 C;

associativity

.˛Cˇ/C� D ˛C.ˇC�/ and .˛ˇ/� D ˛.ˇ�/ for all ˛; ˇ; � 2 C;

identities

�C 0 D � and �1 D � for all � 2 C;

additive inverse

for every ˛ 2 C, there exists a unique ˇ 2 C such that ˛ C ˇ D 0;

multiplicative inverse

for every ˛ 2 C with ˛ ¤ 0, there exists a unique ˇ 2 C such that

˛ˇ D 1;

distributive property

�.˛ C ˇ/ D �˛ C �ˇ for all �; ˛; ˇ 2 C.

The properties above are proved using the familiar properties of real

numbers and the definitions of complex addition and multiplication. The

next example shows how commutativity of complex multiplication is proved.

Proofs of the other properties above are left as exercises.

1.4 Example Show that ˛ˇ D ˇ˛ for all ˛; ˇ; � 2 C.

Solution Suppose ˛ D aC bi and ˇ D c C di , where a; b; c; d 2 R. Then

the definition of multiplication of complex numbers shows that

˛ˇ D .aC bi/.c C di/

D .ac � bd/C .ad C bc/i

and

ˇ˛ D .c C di/.aC bi/

D .ca � db/C .cb C da/i:

The equations above and the commutativity of multiplication and addition of

real numbers show that ˛ˇ D ˇ˛.
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1.5 Definition �˛, subtraction, 1=˛, division

Let ˛; ˇ 2 C.

� Let �˛ denote the additive inverse of ˛. Thus �˛ is the unique

complex number such that

˛ C .�˛/ D 0:

� Subtraction on C is defined by

ˇ � ˛ D ˇ C .�˛/:

� For ˛ ¤ 0, let 1=˛ denote the multiplicative inverse of ˛. Thus 1=˛

is the unique complex number such that

˛.1=˛/ D 1:

� Division on C is defined by

ˇ=˛ D ˇ.1=˛/:

So that we can conveniently make definitions and prove theorems that

apply to both real and complex numbers, we adopt the following notation:

1.6 Notation F

Throughout this book, F stands for either R or C.

The letter F is used because R and

C are examples of what are called

fields.

Thus if we prove a theorem involving

F, we will know that it holds when F is

replaced with R and when F is replaced

with C.

Elements of F are called scalars. The word “scalar”, a fancy word for

“number”, is often used when we want to emphasize that an object is a number,

as opposed to a vector (vectors will be defined soon).

For ˛ 2 F and m a positive integer, we define ˛m to denote the product of

˛ with itself m times:

˛m D ˛ � � �˛„ƒ‚…
m times

:

Clearly .˛m/n D ˛mn and .˛ˇ/m D ˛mˇm for all ˛; ˇ 2 F and all positive

integers m; n.
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Lists

Before defining Rn and Cn, we look at two important examples.

1.7 Example R2 and R3

� The set R2, which you can think of as a plane, is the set of all ordered

pairs of real numbers:

R2 D f.x; y/ W x; y 2 Rg:

� The set R3, which you can think of as ordinary space, is the set of all

ordered triples of real numbers:

R3 D f.x; y; z/ W x; y; z 2 Rg:

To generalize R2 and R3 to higher dimensions, we first need to discuss the

concept of lists.

1.8 Definition list, length

Suppose n is a nonnegative integer. A list of length n is an ordered

collection of n elements (which might be numbers, other lists, or more

abstract entities) separated by commas and surrounded by parentheses. A

list of length n looks like this:

.x1; : : : ; xn/:

Two lists are equal if and only if they have the same length and the same

elements in the same order.

Many mathematicians call a list of

length n an n-tuple.

Thus a list of length 2 is an ordered

pair, and a list of length 3 is an ordered

triple.

Sometimes we will use the word list without specifying its length. Re-

member, however, that by definition each list has a finite length that is a

nonnegative integer. Thus an object that looks like

.x1; x2; : : : /;

which might be said to have infinite length, is not a list.

A list of length 0 looks like this: . /. We consider such an object to be a

list so that some of our theorems will not have trivial exceptions.

Lists differ from sets in two ways: in lists, order matters and repetitions

have meaning; in sets, order and repetitions are irrelevant.
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1.9 Example lists versus sets

� The lists .3; 5/ and .5; 3/ are not equal, but the sets f3; 5g and f5; 3g are

equal.

� The lists .4; 4/ and .4; 4; 4/ are not equal (they do not have the same

length), although the sets f4; 4g and f4; 4; 4g both equal the set f4g.

Fn

To define the higher-dimensional analogues of R2 and R3, we will simply

replace R with F (which equals R or C) and replace theFana 2 or 3 with an

arbitrary positive integer. Specifically, fix a positive integer n for the rest of

this section.

1.10 Definition Fn

Fn is the set of all lists of length n of elements of F:

Fn D f.x1; : : : ; xn/ W xj 2 F for j D 1; : : : ; ng:

For .x1; : : : ; xn/ 2 Fn and j 2 f1; : : : ; ng, we say that xj is the j th

coordinate of .x1; : : : ; xn/.

If F D R and n equals 2 or 3, then this definition of Fn agrees with our

previous notions of R2 and R3.

1.11 Example C4 is the set of all lists of four complex numbers:

C4 D f.z1; z2; z3; z4/ W z1; z2; z3; z4 2 Cg:

For an amusing account of how

R3 would be perceived by crea-

tures living in R2, read Flatland:

A Romance of Many Dimensions,

by Edwin A. Abbott. This novel,

published in 1884, may help you

imagine a physical space of four or

more dimensions.

If n � 4, we cannot visualize Rn

as a physical object. Similarly, C1 can

be thought of as a plane, but for n � 2,

the human brain cannot provide a full

image of Cn. However, even if n is

large, we can perform algebraic manip-

ulations in Fn as easily as in R2 or R3.

For example, addition in Fn is defined

as follows:
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1.12 Definition addition in Fn

Addition in Fn is defined by adding corresponding coordinates:

.x1; : : : ; xn/C .y1; : : : ; yn/ D .x1 C y1; : : : ; xn C yn/:

Often the mathematics of Fn becomes cleaner if we use a single letter to

denote a list of n numbers, without explicitly writing the coordinates. For

example, the result below is stated with x and y in Fn even though the proof

requires the more cumbersome notation of .x1; : : : ; xn/ and .y1; : : : ; yn/.

1.13 Commutativity of addition in Fn

If x; y 2 Fn, then x C y D y C x.

Proof Suppose x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/. Then

x C y D .x1; : : : ; xn/C .y1; : : : ; yn/

D .x1 C y1; : : : ; xn C yn/

D .y1 C x1; : : : ; yn C xn/

D .y1; : : : ; yn/C .x1; : : : ; xn/

D y C x;

where the second and fourth equalities above hold because of the definition of

addition in Fn and the third equality holds because of the usual commutativity

of addition in F.

The symbol means “end of the

proof”.

If a single letter is used to denote

an element of Fn, then the same letter

with appropriate subscripts is often used

when coordinates must be displayed. For example, if x 2 Fn, then letting x

equal .x1; : : : ; xn/ is good notation, as shown in the proof above. Even better,

work with just x and avoid explicit coordinates when possible.

1.14 Definition 0

Let 0 denote the list of length n whose coordinates are all 0:

0 D .0; : : : ; 0/:
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Here we are using the symbol 0 in two different ways—on the left side of the

equation in 1.14, the symbol 0 denotes a list of length n, whereas on the right

side, each 0 denotes a number. This potentially confusing practice actually

causes no problems because the context always makes clear what is intended.

1.15 Example Consider the statement that 0 is an additive identity for Fn:

x C 0 D x for all x 2 Fn:

Is the 0 above the number 0 or the list 0?

Solution Here 0 is a list, because we have not defined the sum of an element

of Fn (namely, x) and the number 0.

x

�x , x �1 2

Elements of R2 can be

thought of as points

or as vectors.

A picture can aid our intuition. We

will draw pictures in R2 because we

can sketch this space on 2-dimensional

surfaces such as paper and blackboards.

A typical element of R2 is a point x D
.x1; x2/. Sometimes we think of x not

as a point but as an arrow starting at the

origin and ending at .x1; x2/, as shown

here. When we think of x as an arrow,

we refer to it as a vector.

x

x

A vector.

When we think of vectors in R2 as

arrows, we can move an arrow parallel

to itself (not changing its length or di-

rection) and still think of it as the same

vector. With that viewpoint, you will

often gain better understanding by dis-

pensing with the coordinate axes and

the explicit coordinates and just think-

ing of the vector, as shown here.

Mathematical models of the econ-

omy can have thousands of vari-

ables, say x1; : : : ; x5000, which

means that we must operate in

R5000. Such a space cannot be

dealt with geometrically. However,

the algebraic approach works well.

Thus our subject is called linear

algebra.

Whenever we use pictures in R2

or use the somewhat vague language

of points and vectors, remember that

these are just aids to our understand-

ing, not substitutes for the actual math-

ematics that we will develop. Although

we cannot draw good pictures in high-

dimensional spaces, the elements of

these spaces are as rigorously defined

as elements of R2.
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For example, .2;�3; 17; �;
p
2/ is an element of R5, and we may casually

refer to it as a point in R5 or a vector in R5 without worrying about whether

the geometry of R5 has any physical meaning.

Recall that we defined the sum of two elements of Fn to be the element of

Fn obtained by adding corresponding coordinates; see 1.12. As we will now

see, addition has a simple geometric interpretation in the special case of R2.

x

y

x � y

The sum of two vectors.

Suppose we have two vectors x and

y in R2 that we want to add. Move

the vector y parallel to itself so that its

initial point coincides with the end point

of the vector x, as shown here. The

sum xCy then equals the vector whose

initial point equals the initial point of

x and whose end point equals the end

point of the vector y, as shown here.

In the next definition, the 0 on the right side of the displayed equation

below is the list 0 2 Fn.

1.16 Definition additive inverse in Fn

For x 2 Fn, the additive inverse of x, denoted �x, is the vector �x 2 Fn

such that

x C .�x/ D 0:

In other words, if x D .x1; : : : ; xn/, then �x D .�x1; : : : ;�xn/.

x

�x

A vector and its additive inverse.

For a vector x 2 R2, the additive in-

verse �x is the vector parallel to x and

with the same length as x but pointing in

the opposite direction. The figure here

illustrates this way of thinking about the

additive inverse in R2.

Having dealt with addition in Fn, we

now turn to multiplication. We could

define a multiplication in Fn in a similar fashion, starting with two elements

of Fn and getting another element of Fn by multiplying corresponding coor-

dinates. Experience shows that this definition is not useful for our purposes.

Another type of multiplication, called scalar multiplication, will be central

to our subject. Specifically, we need to define what it means to multiply an

element of Fn by an element of F.
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1.17 Definition scalar multiplication in Fn

The product of a number � and a vector in Fn is computed by multiplying

each coordinate of the vector by �:

�.x1; : : : ; xn/ D .�x1; : : : ; �xn/I

here � 2 F and .x1; : : : ; xn/ 2 Fn.

In scalar multiplication, we multi-

ply together a scalar and a vector,

getting a vector. You may be famil-

iar with the dot product in R2 or

R3, in which we multiply together

two vectors and get a scalar. Gen-

eralizations of the dot product will

become important when we study

inner products in Chapter 6.

Scalar multiplication has a nice ge-

ometric interpretation in R2. If � is a

positive number and x is a vector in

R2, then �x is the vector that points

in the same direction as x and whose

length is � times the length of x. In

other words, to get �x, we shrink or

stretch x by a factor of �, depending on

whether � < 1 or � > 1.

x
x�1�2�

x��3�2�

Scalar multiplication.

If � is a negative number and x is a

vector in R2, then �x is the vector that

points in the direction opposite to that

of x and whose length is j�j times the

length of x, as shown here.

Digression on Fields

A field is a set containing at least two distinct elements called 0 and 1, along

with operations of addition and multiplication satisfying all the properties

listed in 1.3. Thus R and C are fields, as is the set of rational numbers along

with the usual operations of addition and multiplication. Another example of

a field is the set f0; 1g with the usual operations of addition and multiplication

except that 1C 1 is defined to equal 0.

In this book we will not need to deal with fields other than R and C.

However, many of the definitions, theorems, and proofs in linear algebra that

work for both R and C also work without change for arbitrary fields. If you

prefer to do so, throughout Chapters 1, 2, and 3 you can think of F as denoting

an arbitrary field instead of R or C, except that some of the examples and

exercises require that for each positive integer n we have 1C 1C � � � C 1„ ƒ‚ …
n times

¤ 0.
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EXERCISES 1.A

1 Suppose a and b are real numbers, not both 0. Find real numbers c and

d such that

1=.aC bi/ D c C di:

2 Show that
�1C

p
3i

2

is a cube root of 1 (meaning that its cube equals 1).

3 Find two distinct square roots of i .

4 Show that ˛ C ˇ D ˇ C ˛ for all ˛; ˇ 2 C.

5 Show that .˛ C ˇ/C � D ˛ C .ˇ C �/ for all ˛; ˇ; � 2 C.

6 Show that .˛ˇ/� D ˛.ˇ�/ for all ˛; ˇ; � 2 C.

7 Show that for every ˛ 2 C, there exists a unique ˇ 2 C such that

˛ C ˇ D 0.

8 Show that for every ˛ 2 C with ˛ ¤ 0, there exists a unique ˇ 2 C such

that ˛ˇ D 1.

9 Show that �.˛ C ˇ/ D �˛ C �ˇ for all �; ˛; ˇ 2 C.

10 Find x 2 R4 such that

.4;�3; 1; 7/C 2x D .5; 9;�6; 8/:

11 Explain why there does not exist � 2 C such that

�.2 � 3i; 5C 4i;�6C 7i/ D .12 � 5i; 7C 22i;�32 � 9i/:

12 Show that .x C y/C z D x C .y C z/ for all x; y; z 2 Fn.

13 Show that .ab/x D a.bx/ for all x 2 Fn and all a; b 2 F.

14 Show that 1x D x for all x 2 Fn.

15 Show that �.x C y/ D �x C �y for all � 2 F and all x; y 2 Fn.

16 Show that .aC b/x D ax C bx for all a; b 2 F and all x 2 Fn.
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1.B Definition of Vector Space

The motivation for the definition of a vector space comes from properties of

addition and scalar multiplication in Fn: Addition is commutative, associative,

and has an identity. Every element has an additive inverse. Scalar multiplica-

tion is associative. Scalar multiplication by 1 acts as expected. Addition and

scalar multiplication are connected by distributive properties.

We will define a vector space to be a set V with an addition and a scalar

multiplication on V that satisfy the properties in the paragraph above.

1.18 Definition addition, scalar multiplication

� An addition on a set V is a function that assigns an element uCv 2 V
to each pair of elements u; v 2 V.

� A scalar multiplication on a set V is a function that assigns an ele-

ment �v 2 V to each � 2 F and each v 2 V.

Now we are ready to give the formal definition of a vector space.

1.19 Definition vector space

A vector space is a set V along with an addition on V and a scalar multi-

plication on V such that the following properties hold:

commutativity

uC v D v C u for all u; v 2 V ;

associativity

.uC v/C w D uC .v C w/ and .ab/v D a.bv/ for all u; v;w 2 V
and all a; b 2 F;

additive identity

there exists an element 0 2 V such that v C 0 D v for all v 2 V ;

additive inverse

for every v 2 V, there exists w 2 V such that v C w D 0;

multiplicative identity

1v D v for all v 2 V ;

distributive properties

a.uC v/ D auC av and .aC b/v D av C bv for all a; b 2 F and

all u; v 2 V.



SECTION 1.B Definition of Vector Space 13

The following geometric language sometimes aids our intuition.

1.20 Definition vector, point

Elements of a vector space are called vectors or points.

The scalar multiplication in a vector space depends on F. Thus when we

need to be precise, we will say that V is a vector space over F instead of

saying simply that V is a vector space. For example, Rn is a vector space over

R, and Cn is a vector space over C.

1.21 Definition real vector space, complex vector space

� A vector space over R is called a real vector space.

� A vector space over C is called a complex vector space.

Usually the choice of F is either obvious from the context or irrelevant.

Thus we often assume that F is lurking in the background without specifically

mentioning it.

The simplest vector space contains

only one point. In other words, f0g
is a vector space.

With the usual operations of addition

and scalar multiplication, Fn is a vector

space over F, as you should verify. The

example of Fn motivated our definition

of vector space.

1.22 Example F1 is defined to be the set of all sequences of elements

of F:

F1 D f.x1; x2; : : : / W xj 2 F for j D 1; 2; : : : g:
Addition and scalar multiplication on F1 are defined as expected:

.x1; x2; : : : /C .y1; y2; : : : / D .x1 C y1; x2 C y2; : : : /;

�.x1; x2; : : : / D .�x1; �x2; : : : /:

With these definitions, F1 becomes a vector space over F, as you should

verify. The additive identity in this vector space is the sequence of all 0’s.

Our next example of a vector space involves a set of functions.
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1.23 Notation FS

� If S is a set, then FS denotes the set of functions from S to F.

� For f; g 2 FS , the sum f C g 2 FS is the function defined by

.f C g/.x/ D f .x/C g.x/

for all x 2 S .

� For � 2 F and f 2 FS , the product �f 2 FS is the function

defined by

.�f /.x/ D �f .x/

for all x 2 S .

As an example of the notation above, if S is the interval Œ0; 1� and F D R,

then RŒ0;1� is the set of real-valued functions on the interval Œ0; 1�.

You should verify all three bullet points in the next example.

1.24 Example FS is a vector space

� If S is a nonempty set, then FS (with the operations of addition and

scalar multiplication as defined above) is a vector space over F.

� The additive identity of FS is the function 0 W S ! F defined by

0.x/ D 0

for all x 2 S .

� For f 2 FS , the additive inverse of f is the function �f W S ! F

defined by

.�f /.x/ D �f .x/
for all x 2 S .

The elements of the vector space

RŒ0;1� are real-valued functions on

Œ0; 1�, not lists. In general, a vector

space is an abstract entity whose

elements might be lists, functions,

or weird objects.

Our previous examples of vector

spaces, Fn and F1, are special cases

of the vector space FS because a list of

length n of numbers in F can be thought

of as a function from f1; 2; : : : ; ng to F

and a sequence of numbers in F can be

thought of as a function from the set of

positive integers to F. In other words, we can think of Fn as Ff1;2;:::;ng and

we can think of F1 as Ff1;2;::: g.
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Soon we will see further examples of vector spaces, but first we need to

develop some of the elementary properties of vector spaces.

The definition of a vector space requires that it have an additive identity.

The result below states that this identity is unique.

1.25 Unique additive identity

A vector space has a unique additive identity.

Proof Suppose 0 and 00 are both additive identities for some vector space V.

Then

00 D 00 C 0 D 0C 00 D 0;

where the first equality holds because 0 is an additive identity, the second

equality comes from commutativity, and the third equality holds because 00

is an additive identity. Thus 00 D 0, proving that V has only one additive

identity.

Each element v in a vector space has an additive inverse, an element w in

the vector space such that v C w D 0. The next result shows that each element

in a vector space has only one additive inverse.

1.26 Unique additive inverse

Every element in a vector space has a unique additive inverse.

Proof Suppose V is a vector space. Let v 2 V. Suppose w and w0 are additive

inverses of v. Then

w D w C 0 D w C .v C w0/ D .w C v/C w0 D 0C w0 D w0:

Thus w D w0, as desired.

Because additive inverses are unique, the following notation now makes

sense.

1.27 Notation �v, w � v

Let v;w 2 V. Then

� �v denotes the additive inverse of v;

� w � v is defined to be w C .�v/.
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Almost all the results in this book involve some vector space. To avoid

having to restate frequently that V is a vector space, we now make the

necessary declaration once and for all:

1.28 Notation V

For the rest of the book, V denotes a vector space over F.

In the next result, 0 denotes a scalar (the number 0 2 F) on the left side of

the equation and a vector (the additive identity of V ) on the right side of the

equation.

1.29 The number 0 times a vector

0v D 0 for every v 2 V.

Note that 1.29 asserts something

about scalar multiplication and the

additive identity of V. The only

part of the definition of a vector

space that connects scalar multi-

plication and vector addition is the

distributive property. Thus the dis-

tributive property must be used in

the proof of 1.29.

Proof For v 2 V, we have

0v D .0C 0/v D 0v C 0v:

Adding the additive inverse of 0v to both

sides of the equation above gives 0 D
0v, as desired.

In the next result, 0 denotes the addi-

tive identity of V. Although their proofs

are similar, 1.29 and 1.30 are not identical. More precisely, 1.29 states that

the product of the scalar 0 and any vector equals the vector 0, whereas 1.30

states that the product of any scalar and the vector 0 equals the vector 0.

1.30 A number times the vector 0

a0 D 0 for every a 2 F.

Proof For a 2 F, we have

a0 D a.0C 0/ D a0C a0:

Adding the additive inverse of a0 to both sides of the equation above gives

0 D a0, as desired.

Now we show that if an element of V is multiplied by the scalar �1, then

the result is the additive inverse of the element of V.
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1.31 The number �1 times a vector

.�1/v D �v for every v 2 V.

Proof For v 2 V, we have

v C .�1/v D 1v C .�1/v D
�
1C .�1/

�
v D 0v D 0:

This equation says that .�1/v, when added to v, gives 0. Thus .�1/v is the

additive inverse of v, as desired.

EXERCISES 1.B

1 Prove that �.�v/ D v for every v 2 V.

2 Suppose a 2 F, v 2 V, and av D 0. Prove that a D 0 or v D 0.

3 Suppose v;w 2 V. Explain why there exists a unique x 2 V such that

v C 3x D w.

4 The empty set is not a vector space. The empty set fails to satisfy only

one of the requirements listed in 1.19. Which one?

5 Show that in the definition of a vector space (1.19), the additive inverse

condition can be replaced with the condition that

0v D 0 for all v 2 V:
Here the 0 on the left side is the number 0, and the 0 on the right side is

the additive identity of V. (The phrase “a condition can be replaced” in a

definition means that the collection of objects satisfying the definition is

unchanged if the original condition is replaced with the new condition.)

6 Let 1 and �1 denote two distinct objects, neither of which is in R.

Define an addition and scalar multiplication on R [ f1g [ f�1g as you

could guess from the notation. Specifically, the sum and product of two

real numbers is as usual, and for t 2 R define

t1 D

8
<̂

:̂

�1 if t < 0;

0 if t D 0;

1 if t > 0;

t.�1/ D

8
<̂

:̂

1 if t < 0;

0 if t D 0;

�1 if t > 0;

t C 1 D 1 C t D 1; t C .�1/ D .�1/C t D �1;

1 C 1 D 1; .�1/C .�1/ D �1; 1 C .�1/ D 0:

Is R [ f1g [ f�1g a vector space over R? Explain.
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1.C Subspaces

By considering subspaces, we can greatly expand our examples of vector

spaces.

1.32 Definition subspace

A subset U of V is called a subspace of V if U is also a vector space

(using the same addition and scalar multiplication as on V ).

1.33 Example f.x1; x2; 0/ W x1; x2 2 Fg is a subspace of F3.

Some mathematicians use the term

linear subspace, which means the

same as subspace.

The next result gives the easiest way

to check whether a subset of a vector

space is a subspace.

1.34 Conditions for a subspace

A subset U of V is a subspace of V if and only if U satisfies the following

three conditions:

additive identity

0 2 U

closed under addition

u;w 2 U implies uC w 2 U ;

closed under scalar multiplication

a 2 F and u 2 U implies au 2 U.

The additive identity condition

above could be replaced with the

condition that U is nonempty (then

taking u 2 U, multiplying it by 0,

and using the condition that U is

closed under scalar multiplication

would imply that 0 2 U ). However,

if U is indeed a subspace of V,

then the easiest way to show that U

is nonempty is to show that 0 2 U.

Proof If U is a subspace of V, then U

satisfies the three conditions above by

the definition of vector space.

Conversely, suppose U satisfies the

three conditions above. The first con-

dition above ensures that the additive

identity of V is in U.

The second condition above ensures

that addition makes sense on U. The

third condition ensures that scalar mul-

tiplication makes sense on U.
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If u 2 U, then �u [which equals .�1/u by 1.31] is also in U by the third

condition above. Hence every element of U has an additive inverse in U.

The other parts of the definition of a vector space, such as associativity

and commutativity, are automatically satisfied for U because they hold on the

larger space V. Thus U is a vector space and hence is a subspace of V.

The three conditions in the result above usually enable us to determine

quickly whether a given subset of V is a subspace of V. You should verify all

the assertions in the next example.

1.35 Example subspaces

(a) If b 2 F, then

f.x1; x2; x3; x4/ 2 F4 W x3 D 5x4 C bg
is a subspace of F4 if and only if b D 0.

(b) The set of continuous real-valued functions on the interval Œ0; 1� is a

subspace of RŒ0;1�.

(c) The set of differentiable real-valued functions on R is a subspace of RR .

(d) The set of differentiable real-valued functions f on the interval .0; 3/

such that f 0.2/ D b is a subspace of R.0;3/ if and only if b D 0.

(e) The set of all sequences of complex numbers with limit 0 is a subspace

of C1.

Clearly f0g is the smallest sub-

space of V and V itself is the

largest subspace of V. The empty

set is not a subspace of V because

a subspace must be a vector space

and hence must contain at least

one element, namely, an additive

identity.

Verifying some of the items above

shows the linear structure underlying

parts of calculus. For example, the sec-

ond item above requires the result that

the sum of two continuous functions is

continuous. As another example, the

fourth item above requires the result

that for a constant c, the derivative of

cf equals c times the derivative of f .

The subspaces of R2 are precisely f0g, R2, and all lines in R2 through the

origin. The subspaces of R3 are precisely f0g, R3, all lines in R3 through the

origin, and all planes in R3 through the origin. To prove that all these objects

are indeed subspaces is easy—the hard part is to show that they are the only

subspaces of R2 and R3. That task will be easier after we introduce some

additional tools in the next chapter.
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Sums of Subspaces

The union of subspaces is rarely a

subspace (see Exercise 12), which

is why we usually work with sums

rather than unions.

When dealing with vector spaces, we

are usually interested only in subspaces,

as opposed to arbitrary subsets. The

notion of the sum of subspaces will be

useful.

1.36 Definition sum of subsets

Suppose U1; : : : ; Um are subsets of V. The sum of U1; : : : ; Um, denoted

U1 C � � � C Um, is the set of all possible sums of elements of U1; : : : ; Um.

More precisely,

U1 C � � � C Um D fu1 C � � � C um W u1 2 U1; : : : ; um 2 Umg:

Let’s look at some examples of sums of subspaces.

1.37 Example Suppose U is the set of all elements of F3 whose second

and third coordinates equal 0, and W is the set of all elements of F3 whose

first and third coordinates equal 0:

U D f.x; 0; 0/ 2 F3 W x 2 Fg and W D f.0; y; 0/ 2 F3 W y 2 Fg:

Then

U CW D f.x; y; 0/ W x; y 2 Fg;
as you should verify.

1.38 Example Suppose that U D f.x; x; y; y/ 2 F4 W x; y 2 Fg and

W D f.x; x; x; y/ 2 F4 W x; y 2 Fg. Then

U CW D f.x; x; y; z/ 2 F4 W x; y; z 2 Fg;

as you should verify.

The next result states that the sum of subspaces is a subspace, and is in

fact the smallest subspace containing all the summands.

1.39 Sum of subspaces is the smallest containing subspace

Suppose U1; : : : ; Um are subspaces of V. Then U1 C � � � C Um is the

smallest subspace of V containing U1; : : : ; Um.
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Proof It is easy to see that 0 2 U1 C � � � C Um and that U1 C � � � C Um

is closed under addition and scalar multiplication. Thus 1.34 implies that

U1 C � � � C Um is a subspace of V.

Sums of subspaces in the theory

of vector spaces are analogous

to unions of subsets in set theory.

Given two subspaces of a vector

space, the smallest subspace con-

taining them is their sum. Analo-

gously, given two subsets of a set,

the smallest subset containing them

is their union.

Clearly U1; : : : ; Um are all con-

tained in U1 C � � � C Um (to see this,

consider sums u1 C � � � C um where

all except one of the u’s are 0). Con-

versely, every subspace of V contain-

ing U1; : : : ; Um contains U1 C� � �CUm

(because subspaces must contain all fi-

nite sums of their elements). Thus

U1 C � � � CUm is the smallest subspace

of V containing U1; : : : ; Um.

Direct Sums

Suppose U1; : : : ; Um are subspaces of V. Every element of U1 C � � � C Um

can be written in the form

u1 C � � � C um;

where each uj is in Uj . We will be especially interested in cases where each

vector in U1 C � � � C Um can be represented in the form above in only one

way. This situation is so important that we give it a special name: direct sum.

1.40 Definition direct sum

Suppose U1; : : : ; Um are subspaces of V.

� The sum U1 C � � � C Um is called a direct sum if each element

of U1 C � � � C Um can be written in only one way as a sum

u1 C � � � C um, where each uj is in Uj .

� If U1 C � � � C Um is a direct sum, then U1 ˚ � � � ˚ Um denotes

U1 C � � � C Um, with the ˚ notation serving as an indication that

this is a direct sum.

1.41 Example Suppose U is the subspace of F3 of those vectors whose

last coordinate equals 0, and W is the subspace of F3 of those vectors whose

first two coordinates equal 0:

U D f.x; y; 0/ 2 F3 W x; y 2 Fg and W D f.0; 0; z/ 2 F3 W z 2 Fg:
Then F3 D U ˚W, as you should verify.



1.42 Example Suppose Uj is the subspace of Fn of those vectors whose

coordinates are all 0, except possibly in the j th slot (thus, for example,

U2 D f.0; x; 0; : : : ; 0/ 2 Fn W x 2 Fg). Then

Fn D U1 ˚ � � � ˚ Un;

as you should verify.

Sometimes nonexamples add to our understanding as much as examples.

1.43 Example Let

U1 D f.x; y; 0/ 2 F3 W x; y 2 Fg;
U2 D f.0; 0; z/ 2 F3 W z 2 Fg;
U3 D f.0; y; y/ 2 F3 W y 2 Fg:

Show that U1 C U2 C U3 is not a direct sum.

Solution Clearly F3 D U1 C U2 C U3, because every vector .x; y; z/ 2 F3

can be written as

.x; y; z/ D .x; y; 0/C .0; 0; z/C .0; 0; 0/;

where the first vector on the right side is in U1, the second vector is in U2,

and the third vector is in U3.

However, F3 does not equal the direct sum of U1; U2; U3, because the

vector .0; 0; 0/ can be written in two different ways as a sum u1 C u2 C u3,

with each uj in Uj . Specifically, we have

.0; 0; 0/ D .0; 1; 0/C .0; 0; 1/C .0;�1;�1/
and, of course,

.0; 0; 0/ D .0; 0; 0/C .0; 0; 0/C .0; 0; 0/;

where the first vector on the right side of each equation above is in U1, the

second vector is in U2, and the third vector is in U3.

The symbol ˚, which is a plus

sign inside a circle, serves as a re-

minder that we are dealing with a

special type of sum of subspaces—

each element in the direct sum can

be represented only one way as a

sum of elements from the specified

subspaces.

The definition of direct sum requires

that every vector in the sum have a

unique representation as an appropriate

sum. The next result shows that when

deciding whether a sum of subspaces

is a direct sum, we need only consider

whether 0 can be uniquely written as an

appropriate sum.

� 7� CHAPTER 1 Vector Spaces
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1.44 Condition for a direct sum

Suppose U1; : : : ; Um are subspaces of V. Then U1 C � � � C Um is a direct

sum if and only if the only way to write 0 as a sum u1 C � � � C um, where

each uj is in Uj , is by taking each uj equal to 0.

Proof First suppose U1 C � � � C Um is a direct sum. Then the definition of

direct sum implies that the only way to write 0 as a sum u1 C � � � Cum, where

each uj is in Uj , is by taking each uj equal to 0.

Now suppose that the only way to write 0 as a sum u1 C � � � C um, where

each uj is in Uj , is by taking each uj equal to 0. To show that U1 C � � � CUm

is a direct sum, let v 2 U1 C � � � C Um. We can write

v D u1 C � � � C um

for some u1 2 U1; : : : ; um 2 Um. To show that this representation is unique,

suppose we also have

v D v1 C � � � C vm;

where v1 2 U1; : : : ; vm 2 Um. Subtracting these two equations, we have

0 D .u1 � v1/C � � � C .um � vm/:

Because u1 � v1 2 U1; : : : ; um � vm 2 Um, the equation above implies that

each uj � vj equals 0. Thus u1 D v1; : : : ; um D vm, as desired.

The next result gives a simple condition for testing which pairs of sub-

spaces give a direct sum.

1.45 Direct sum of two subspaces

Suppose U and W are subspaces of V. Then U CW is a direct sum if

and only if U \W D f0g.

Proof First suppose that U C W is a direct sum. If v 2 U \ W, then

0 D v C .�v/, where v 2 U and �v 2 W. By the unique representation

of 0 as the sum of a vector in U and a vector in W, we have v D 0. Thus

U \W D f0g, completing the proof in one direction.

To prove the other direction, now suppose U \W D f0g. To prove that

U CW is a direct sum, suppose u 2 U, w 2 W, and

0 D uC w:

To complete the proof, we need only show that u D w D 0 (by 1.44). The

equation above implies that u D �w 2 W. Thus u 2 U \W. Hence u D 0,

which by the equation above implies that w D 0, completing the proof.
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Sums of subspaces are analogous

to unions of subsets. Similarly, di-

rect sums of subspaces are analo-

gous to disjoint unions of subsets.

No two subspaces of a vector space

can be disjoint, because both con-

tain 0. So disjointness is replaced,

at least in the case of two sub-

spaces, with the requirement that

the intersection equals f0g.

The result above deals only with

the case of two subspaces. When ask-

ing about a possible direct sum with

more than two subspaces, it is not

enough to test that each pair of the

subspaces intersect only at 0. To see

this, consider Example 1.43. In that

nonexample of a direct sum, we have

U1 \U2 D U1 \U3 D U2 \U3 D f0g.

EXERCISES 1.C

1 For each of the following subsets of F3, determine whether it is a sub-

space of F3:

(a) f.x1; x2; x3/ 2 F3 W x1 C 2x2 C 3x3 D 0g;

(b) f.x1; x2; x3/ 2 F3 W x1 C 2x2 C 3x3 D 4g;

(c) f.x1; x2; x3/ 2 F3 W x1x2x3 D 0g;

(d) f.x1; x2; x3/ 2 F3 W x1 D 5x3g.

2 Verify all the assertions in Example 1.35.

3 Show that the set of differentiable real-valued functions f on the interval

.�4; 4/ such that f 0.�1/ D 3f .2/ is a subspace of R.�4;4/.

4 Suppose b 2 R. Show that the set of continuous real-valued functions f

on the interval Œ0; 1� such that
R 1

0 f D b is a subspace of RŒ0;1� if and

only if b D 0.

5 Is R2 a subspace of the complex vector space C2?

6 (a) Is f.a; b; c/ 2 R3 W a3 D b3g a subspace of R3?

(b) Is f.a; b; c/ 2 C3 W a3 D b3g a subspace of C3?

7 Give an example of a nonempty subset U of R2 such that U is closed

under addition and under taking additive inverses (meaning �u 2 U

whenever u 2 U ), but U is not a subspace of R2.

8 Give an example of a nonempty subset U of R2 such that U is closed

under scalar multiplication, but U is not a subspace of R2.
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9 A function f W R ! R is called periodic if there exists a positive number

p such that f .x/ D f .x C p/ for all x 2 R. Is the set of periodic

functions from R to R a subspace of RR? Explain.

10 Suppose U1 and U2 are subspaces of V. Prove that the intersection

U1 \ U2 is a subspace of V.

11 Prove that the intersection of every collection of subspaces of V is a

subspace of V.

12 Prove that the union of two subspaces of V is a subspace of V if and

only if one of the subspaces is contained in the other.

13 Prove that the union of three subspaces of V is a subspace of V if and

only if one of the subspaces contains the other two.

[This exercise is surprisingly harder than the previous exercise, possibly

because this exercise is not true if we replace F with a field containing

only two elements.]

14 Verify the assertion in Example 1.38.

15 Suppose U is a subspace of V. What is U C U ?

16 Is the operation of addition on the subspaces of V commutative? In other

words, if U and W are subspaces of V, is U CW D W C U ?

17 Is the operation of addition on the subspaces of V associative? In other

words, if U1; U2; U3 are subspaces of V, is

.U1 C U2/C U3 D U1 C .U2 C U3/‹

18 Does the operation of addition on the subspaces of V have an additive

identity? Which subspaces have additive inverses?

19 Prove or give a counterexample: if U1; U2; W are subspaces of V such

that

U1 CW D U2 CW;

then U1 D U2.

20 Suppose

U D f.x; x; y; y/ 2 F4 W x; y 2 Fg:
Find a subspace W of F4 such that F4 D U ˚W.
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21 Suppose

U D f.x; y; x C y; x � y; 2x/ 2 F5 W x; y 2 Fg:

Find a subspace W of F5 such that F5 D U ˚W.

22 Suppose

U D f.x; y; x C y; x � y; 2x/ 2 F5 W x; y 2 Fg:

Find three subspaces W1; W2; W3 of F5, none of which equals f0g, such

that F5 D U ˚W1 ˚W2 ˚W3.

23 Prove or give a counterexample: if U1; U2; W are subspaces of V such

that

V D U1 ˚W and V D U2 ˚W;

then U1 D U2.

24 A function f W R ! R is called even if

f .�x/ D f .x/

for all x 2 R. A function f W R ! R is called odd if

f .�x/ D �f .x/

for all x 2 R. Let Ue denote the set of real-valued even functions on R

and let Uo denote the set of real-valued odd functions on R. Show that

RR D Ue ˚ Uo.
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2.A Span and Linear Independence

We have been writing lists of numbers surrounded by parentheses, and we will

continue to do so for elements of Fn; for example, .2;�7; 8/ 2 F3. However,

now we need to consider lists of vectors (which may be elements of Fn or of

other vector spaces). To avoid confusion, we will usually write lists of vectors

without surrounding parentheses. For example, .4; 1; 6/; .9; 5; 7/ is a list of

length 2 of vectors in R3.

2.2 Notation list of vectors

We will usually write lists of vectors without surrounding parentheses.

Linear Combinations and Span

Adding up scalar multiples of vectors in a list gives what is called a linear

combination of the list. Here is the formal definition:

2.3 Definition linear combination

A linear combination of a list v1; : : : ; vm of vectors in V is a vector of

the form

a1v1 C � � � C amvm;

where a1; : : : ; am 2 F.

2.4 Example In F3,

� .17;�4; 2/ is a linear combination of .2; 1;�3/; .1;�2; 4/ because

.17;�4; 2/ D 6.2; 1;�3/C 5.1;�2; 4/:

� .17;�4; 5/ is not a linear combination of .2; 1;�3/; .1;�2; 4/ because

there do not exist numbers a1; a2 2 F such that

.17;�4; 5/ D a1.2; 1;�3/C a2.1;�2; 4/:
In other words, the system of equations

17 D 2a1 C a2

�4 D a1 � 2a2

5 D �3a1 C 4a2

has no solutions (as you should verify).
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2.5 Definition span

The set of all linear combinations of a list of vectors v1; : : : ; vm in V is

called the span of v1; : : : ; vm, denoted span.v1; : : : ; vm/. In other words,

span.v1; : : : ; vm/ D fa1v1 C � � � C amvm W a1; : : : ; am 2 Fg:

The span of the empty list . / is defined to be f0g.

2.6 Example The previous example shows that in F3,

� .17;�4; 2/ 2 span
�
.2; 1;�3/; .1;�2; 4/

�
;

� .17;�4; 5/ … span
�
.2; 1;�3/; .1;�2; 4/

�
.

Some mathematicians use the term linear span, which means the same as

span.

2.7 Span is the smallest containing subspace

The span of a list of vectors in V is the smallest subspace of V containing

all the vectors in the list.

Proof Suppose v1; : : : ; vm is a list of vectors in V.

First we show that span.v1; : : : ; vm/ is a subspace of V. The additive

identity is in span.v1; : : : ; vm/, because

0 D 0v1 C � � � C 0vm:

Also, span.v1; : : : ; vm/ is closed under addition, because

.a1v1C� � �Camvm/C.c1v1C� � �Ccmvm/ D .a1Cc1/v1C� � �C.amCcm/vm:

Furthermore, span.v1; : : : ; vm/ is closed under scalar multiplication, because

�.a1v1 C � � � C amvm/ D �a1v1 C � � � C �amvm:

Thus span.v1; : : : ; vm/ is a subspace of V (by 1.34).

Each vj is a linear combination of v1; : : : ; vm (to show this, set aj D 1

and let the other a’s in 2.3 equal 0). Thus span.v1; : : : ; vm/ contains each vj .

Conversely, because subspaces are closed under scalar multiplication and

addition, every subspace of V containing each vj contains span.v1; : : : ; vm/.

Thus span.v1; : : : ; vm/ is the smallest subspace of V containing all the vectors

v1; : : : ; vm.
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2.8 Definition spans

If span.v1; : : : ; vm/ equals V, we say that v1; : : : ; vm spans V.

2.9 Example Suppose n is a positive integer. Show that

.1; 0; : : : ; 0/; .0; 1; 0; : : : ; 0/; : : : ; .0; : : : ; 0; 1/

spans Fn. Here the j th vector in the list above is the n-tuple with 1 in the j th

slot and 0 in all other slots.

Solution Suppose .x1; : : : ; xn/ 2 Fn. Then

.x1; : : : ; xn/ D x1.1; 0; : : : ; 0/C x2.0; 1; 0; : : : ; 0/C � � � C xn.0; : : : ; 0; 1/:

Thus .x1; : : : ; xn/ 2 span
�
.1; 0; : : : ; 0/; .0; 1; 0; : : : ; 0/; : : : ; .0; : : : ; 0; 1/

�
, as

desired.

Now we can make one of the key definitions in linear algebra.

2.10 Definition finite-dimensional vector space

A vector space is called finite-dimensional if some list of vectors in it

spans the space.

Recall that by definition every list

has finite length.

Example 2.9 above shows that Fn

is a finite-dimensional vector space for

every positive integer n.

The definition of a polynomial is no doubt already familiar to you.

2.11 Definition polynomial, P.F/

� A function p W F ! F is called a polynomial with coefficients in F

if there exist a0; : : : ; am 2 F such that

p.z/ D a0 C a1z C a2z
2 C � � � C amz

m

for all z 2 F.

� P.F/ is the set of all polynomials with coefficients in F.
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With the usual operations of addition and scalar multiplication, P.F/ is a

vector space over F, as you should verify. In other words, P.F/ is a subspace

of FF , the vector space of functions from F to F.

If a polynomial (thought of as a function from F to F) is represented by

two sets of coefficients, then subtracting one representation of the polynomial

from the other produces a polynomial that is identically zero as a function

on F and hence has all zero coefficients (if you are unfamiliar with this fact,

just believe it for now; we will prove it later—see 4.7). Conclusion: the

coefficients of a polynomial are uniquely determined by the polynomial. Thus

the next definition uniquely defines the degree of a polynomial.

2.12 Definition degree of a polynomial, degp

� A polynomial p 2 P.F/ is said to have degree m if there exist

scalars a0; a1; : : : ; am 2 F with am ¤ 0 such that

p.z/ D a0 C a1z C � � � C amz
m

for all z 2 F. If p has degree m, we write degp D m.

� The polynomial that is identically 0 is said to have degree �1.

In the next definition, we use the convention that �1 < m, which means

that the polynomial 0 is in Pm.F/.

2.13 Definition Pm.F/

For m a nonnegative integer, Pm.F/ denotes the set of all polynomials

with coefficients in F and degree at most m.

To verify the next example, note that Pm.F/ D span.1; z; : : : ; zm/; here

we are slightly abusing notation by letting zk denote a function.

2.14 Example Pm.F/ is a finite-dimensional vector space for each non-

negative integer m.

2.15 Definition infinite-dimensional vector space

A vector space is called infinite-dimensional if it is not finite-dimensional.
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2.16 Example Show that P.F/ is infinite-dimensional.

Solution Consider any list of elements of P.F/. Let m denote the highest

degree of the polynomials in this list. Then every polynomial in the span of

this list has degree at most m. Thus zmC1 is not in the span of our list. Hence

no list spans P.F/. Thus P.F/ is infinite-dimensional.

Linear Independence

Suppose v1; : : : ; vm 2 V and v 2 span.v1; : : : ; vm/. By the definition of span,

there exist a1; : : : ; am 2 F such that

v D a1v1 C � � � C amvm:

Consider the question of whether the choice of scalars in the equation above

is unique. Suppose c1; : : : ; cm is another set of scalars such that

v D c1v1 C � � � C cmvm:

Subtracting the last two equations, we have

0 D .a1 � c1/v1 C � � � C .am � cm/vm:

Thus we have written 0 as a linear combination of .v1; : : : ; vm/. If the only

way to do this is the obvious way (using 0 for all scalars), then each aj � cj

equals 0, which means that each aj equals cj (and thus the choice of scalars

was indeed unique). This situation is so important that we give it a special

name—linear independence—which we now define.

2.17 Definition linearly independent

� A list v1; : : : ; vm of vectors in V is called linearly independent if

the only choice of a1; : : : ; am 2 F that makes a1v1 C � � � C amvm

equal 0 is a1 D � � � D am D 0.

� The empty list . / is also declared to be linearly independent.

The reasoning above shows that v1; : : : ; vm is linearly independent if and

only if each vector in span.v1; : : : ; vm/ has only one representation as a linear

combination of v1; : : : ; vm.
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2.18 Example linearly independent lists

(a) A list v of one vector v 2 V is linearly independent if and only if v ¤ 0.

(b) A list of two vectors in V is linearly independent if and only if neither

vector is a scalar multiple of the other.

(c) .1; 0; 0; 0/; .0; 1; 0; 0/; .0; 0; 1; 0/ is linearly independent in F4.

(d) The list 1; z; : : : ; zm is linearly independent in P.F/ for each nonnega-

tive integer m.

If some vectors are removed from a linearly independent list, the remaining

list is also linearly independent, as you should verify.

2.19 Definition linearly dependent

� A list of vectors in V is called linearly dependent if it is not linearly

independent.

� In other words, a list v1; : : : ; vm of vectors in V is linearly de-

pendent if there exist a1; : : : ; am 2 F, not all 0, such that

a1v1 C � � � C amvm D 0.

2.20 Example linearly dependent lists

� .2; 3; 1/; .1;�1; 2/; .7; 3; 8/ is linearly dependent in F3 because

2.2; 3; 1/C 3.1;�1; 2/C .�1/.7; 3; 8/ D .0; 0; 0/:

� The list .2; 3; 1/; .1;�1; 2/; .7; 3; c/ is linearly dependent in F3 if and

only if c D 8, as you should verify.

� If some vector in a list of vectors in V is a linear combination of the

other vectors, then the list is linearly dependent. (Proof: After writing

one vector in the list as equal to a linear combination of the other

vectors, move that vector to the other side of the equation, where it will

be multiplied by �1.)

� Every list of vectors in V containing the 0 vector is linearly dependent.

(This is a special case of the previous bullet point.)



34 CHAPTER 2 Finite-Dimensional Vector Spaces

The lemma below will often be useful. It states that given a linearly

dependent list of vectors, one of the vectors is in the span of the previous ones

and furthermore we can throw out that vector without changing the span of

the original list.

2.21 Linear Dependence Lemma

Suppose v1; : : : ; vm is a linearly dependent list in V. Then there exists

j 2 f1; 2; : : : ; mg such that the following hold:

(a) vj 2 span.v1; : : : ; vj �1/;

(b) if the j th term is removed from v1; : : : ; vm, the span of the remain-

ing list equals span.v1; : : : ; vm/.

Proof Because the list v1; : : : ; vm is linearly dependent, there exist numbers

a1; : : : ; am 2 F, not all 0, such that

a1v1 C � � � C amvm D 0:

Let j be the largest element of f1; : : : ; mg such that aj ¤ 0. Then

2.22 vj D �a1

aj
v1 � � � � � aj �1

aj
vj �1;

proving (a).

To prove (b), suppose u 2 span.v1; : : : ; vm/. Then there exist numbers

c1; : : : ; cm 2 F such that

u D c1v1 C � � � C cmvm:

In the equation above, we can replace vj with the right side of 2.22, which

shows that u is in the span of the list obtained by removing the j th term from

v1; : : : ; vm. Thus (b) holds.

Choosing j D 1 in the Linear Dependence Lemma above means that

v1 D 0, because if j D 1 then condition (a) above is interpreted to mean that

v1 2 span. /; recall that span. / D f0g. Note also that the proof of part (b)

above needs to be modified in an obvious way if v1 D 0 and j D 1.

In general, the proofs in the rest of the book will not call attention to

special cases that must be considered involving empty lists, lists of length 1,

the subspace f0g, or other trivial cases for which the result is clearly true but

needs a slightly different proof. Be sure to check these special cases yourself.

Now we come to a key result. It says that no linearly independent list in V

is longer than a spanning list in V.
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2.23 Length of linearly independent list � length of spanning list

In a finite-dimensional vector space, the length of every linearly indepen-

dent list of vectors is less than or equal to the length of every spanning list

of vectors.

Proof Suppose u1; : : : ; um is linearly independent in V. Suppose also that

w1; : : : ;wn spans V. We need to prove that m � n. We do so through the

multi-step process described below; note that in each step we add one of the

u’s and remove one of the w’s.

Step 1

Let B be the list w1; : : : ;wn, which spans V. Thus adjoining any vector

in V to this list produces a linearly dependent list (because the newly

adjoined vector can be written as a linear combination of the other

vectors). In particular, the list

u1;w1; : : : ;wn

is linearly dependent. Thus by the Linear Dependence Lemma (2.21),

we can remove one of the w’s so that the new list B (of length n)

consisting of u1 and the remaining w’s spans V.

Step j

The list B (of length n) from step j � 1 spans V. Thus adjoining any

vector to this list produces a linearly dependent list. In particular, the

list of length .nC 1/ obtained by adjoining uj to B , placing it just after

u1; : : : ; uj �1, is linearly dependent. By the Linear Dependence Lemma

(2.21), one of the vectors in this list is in the span of the previous ones,

and because u1; : : : ; uj is linearly independent, this vector is one of

the w’s, not one of the u’s. We can remove that w from B so that the

new list B (of length n) consisting of u1; : : : ; uj and the remaining w’s

spans V.

After step m, we have added all the u’s and the process stops. At each step as

we add a u to B , the Linear Dependence Lemma implies that there is some w

to remove. Thus there are at least as many w’s as u’s.

The next two examples show how the result above can be used to show,

without any computations, that certain lists are not linearly independent and

that certain lists do not span a given vector space.
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2.24 Example Show that the list .1; 2; 3/; .4; 5; 8/; .9; 6; 7/; .�3; 2; 8/ is

not linearly independent in R3.

Solution The list .1; 0; 0/; .0; 1; 0/; .0; 0; 1/ spans R3. Thus no list of length

larger than 3 is linearly independent in R3.

2.25 Example Show that the list .1; 2; 3;�5/; .4; 5; 8; 3/; .9; 6; 7;�1/
does not span R4.

Solution The list .1; 0; 0; 0/; .0; 1; 0; 0/; .0; 0; 1; 0/; .0; 0; 0; 1/ is linearly in-

dependent in R4. Thus no list of length less than 4 spans R4.

Our intuition suggests that every subspace of a finite-dimensional vector

space should also be finite-dimensional. We now prove that this intuition is

correct.

2.26 Finite-dimensional subspaces

Every subspace of a finite-dimensional vector space is finite-dimensional.

Proof Suppose V is finite-dimensional and U is a subspace of V. We need to

prove thatU is finite-dimensional. We do this through the following multi-step

construction.

Step 1

If U D f0g, then U is finite-dimensional and we are done. If U ¤ f0g,

then choose a nonzero vector v1 2 U.

Step j

If U D span.v1; : : : ; vj �1/, then U is finite-dimensional and we are

done. If U ¤ span.v1; : : : ; vj �1/, then choose a vector vj 2 U such

that

vj … span.v1; : : : ; vj �1/:

After each step, as long as the process continues, we have constructed a list of

vectors such that no vector in this list is in the span of the previous vectors.

Thus after each step we have constructed a linearly independent list, by the

Linear Dependence Lemma (2.21). This linearly independent list cannot be

longer than any spanning list of V (by 2.23). Thus the process eventually

terminates, which means that U is finite-dimensional.
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EXERCISES 2.A

1 Suppose v1; v2; v3; v4 spans V. Prove that the list

v1 � v2; v2 � v3; v3 � v4; v4

also spans V.

2 Verify the assertions in Example 2.18.

3 Find a number t such that

.3; 1; 4/; .2;�3; 5/; .5; 9; t/

is not linearly independent in R3.

4 Verify the assertion in the second bullet point in Example 2.20.

5 (a) Show that if we think of C as a vector space over R, then the list

.1C i; 1 � i/ is linearly independent.

(b) Show that if we think of C as a vector space over C, then the list

.1C i; 1 � i/ is linearly dependent.

6 Suppose v1; v2; v3; v4 is linearly independent in V. Prove that the list

v1 � v2; v2 � v3; v3 � v4; v4

is also linearly independent.

7 Prove or give a counterexample: If v1; v2; : : : ; vm is a linearly indepen-

dent list of vectors in V, then

5v1 � 4v2; v2; v3; : : : ; vm

is linearly independent.

8 Prove or give a counterexample: If v1; v2; : : : ; vm is a linearly indepen-

dent list of vectors in V and � 2 F with � ¤ 0, then �v1; �v2; : : : ; �vm

is linearly independent.

9 Prove or give a counterexample: If v1; : : : ; vm and w1; : : : ;wm are lin-

early independent lists of vectors in V, then v1 C w1; : : : ; vm C wm is

linearly independent.

10 Suppose v1; : : : ; vm is linearly independent in V and w 2 V. Prove that

if v1 C w; : : : ; vm C w is linearly dependent, then w 2 span.v1; : : : ; vm/.
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11 Suppose v1; : : : ; vm is linearly independent in V and w 2 V. Show that

v1; : : : ; vm;w is linearly independent if and only if

w … span.v1; : : : ; vm/:

12 Explain why there does not exist a list of six polynomials that is linearly

independent in P4.F/.

13 Explain why no list of four polynomials spans P4.F/.

14 Prove that V is infinite-dimensional if and only if there is a sequence

v1; v2; : : : of vectors in V such that v1; : : : ; vm is linearly independent

for every positive integer m.

15 Prove that F1 is infinite-dimensional.

16 Prove that the real vector space of all continuous real-valued functions

on the interval Œ0; 1� is infinite-dimensional.

17 Suppose p0; p1; : : : ; pm are polynomials in Pm.F/ such that pj .2/ D 0

for each j . Prove that p0; p1; : : : ; pm is not linearly independent in

Pm.F/.
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2.B Bases

In the last section, we discussed linearly independent lists and spanning lists.

Now we bring these concepts together.

2.27 Definition basis

A basis of V is a list of vectors in V that is linearly independent and

spans V.

2.28 Example bases

(a) The list .1; 0; : : : ; 0/; .0; 1; 0; : : : ; 0/; : : : ; .0; : : : ; 0; 1/ is a basis of Fn,

called the standard basis of Fn.

(b) The list .1; 2/; .3; 5/ is a basis of F2.

(c) The list .1; 2;�4/; .7;�5; 6/ is linearly independent in F3 but is not a

basis of F3 because it does not span F3.

(d) The list .1; 2/; .3; 5/; .4; 13/ spans F2 but is not a basis of F2 because

it is not linearly independent.

(e) The list .1; 1; 0/; .0; 0; 1/ is a basis of f.x; x; y/ 2 F3 W x; y 2 Fg.

(f) The list .1;�1; 0/; .1; 0;�1/ is a basis of

f.x; y; z/ 2 F3 W x C y C z D 0g:

(g) The list 1; z; : : : ; zm is a basis of Pm.F/.

In addition to the standard basis, Fn has many other bases. For example,

.7; 5/; .�4; 9/ and .1; 2/; .3; 5/ are both bases of F2.

The next result helps explain why bases are useful. Recall that “uniquely”

means “in only one way”.

2.29 Criterion for basis

A list v1; : : : ; vn of vectors in V is a basis of V if and only if every v 2 V
can be written uniquely in the form

2.30 v D a1v1 C � � � C anvn;

where a1; : : : ; an 2 F.
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Proof First suppose that v1; : : : ; vn is a basis of V. Let v 2 V. Because

v1; : : : ; vn spans V, there exist a1; : : : ; an 2 F such that 2.30 holds. To

This proof is essentially a repeti-

tion of the ideas that led us to the

definition of linear independence.

show that the representation in 2.30 is

unique, suppose c1; : : : ; cn are scalars

such that we also have

v D c1v1 C � � � C cnvn:

Subtracting the last equation from 2.30, we get

0 D .a1 � c1/v1 C � � � C .an � cn/vn:

This implies that each aj � cj equals 0 (because v1; : : : ; vn is linearly inde-

pendent). Hence a1 D c1; : : : ; an D cn. We have the desired uniqueness,

completing the proof in one direction.

For the other direction, suppose every v 2 V can be written uniquely in

the form given by 2.30. Clearly this implies that v1; : : : ; vn spans V. To show

that v1; : : : ; vn is linearly independent, suppose a1; : : : ; an 2 F are such that

0 D a1v1 C � � � C anvn:

The uniqueness of the representation 2.30 (taking v D 0) now implies that

a1 D � � � D an D 0. Thus v1; : : : ; vn is linearly independent and hence is a

basis of V.

A spanning list in a vector space may not be a basis because it is not

linearly independent. Our next result says that given any spanning list, some

(possibly none) of the vectors in it can be discarded so that the remaining list

is linearly independent and still spans the vector space.

As an example in the vector space F2, if the procedure in the proof below

is applied to the list .1; 2/; .3; 6/; .4; 7/; .5; 9/, then the second and fourth

vectors will be removed. This leaves .1; 2/; .4; 7/, which is a basis of F2.

2.31 Spanning list contains a basis

Every spanning list in a vector space can be reduced to a basis of the

vector space.

Proof Suppose v1; : : : ; vn spans V. We want to remove some of the vectors

from v1; : : : ; vn so that the remaining vectors form a basis of V. We do this

through the multi-step process described below.

Start with B equal to the list v1; : : : ; vn.
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Step 1

If v1 D 0, delete v1 from B . If v1 ¤ 0, leave B unchanged.

Step j

If vj is in span.v1; : : : ; vj �1/, delete vj from B . If vj is not in

span.v1; : : : ; vj �1/, leave B unchanged.

Stop the process after step n, getting a list B . This list B spans V because our

original list spanned V and we have discarded only vectors that were already

in the span of the previous vectors. The process ensures that no vector in B

is in the span of the previous ones. Thus B is linearly independent, by the

Linear Dependence Lemma (2.21). Hence B is a basis of V.

Our next result, an easy corollary of the previous result, tells us that every

finite-dimensional vector space has a basis.

2.32 Basis of finite-dimensional vector space

Every finite-dimensional vector space has a basis.

Proof By definition, a finite-dimensional vector space has a spanning list.

The previous result tells us that each spanning list can be reduced to a basis.

Our next result is in some sense a dual of 2.31, which said that every

spanning list can be reduced to a basis. Now we show that given any linearly

independent list, we can adjoin some additional vectors (this includes the

possibility of adjoining no additional vectors) so that the extended list is still

linearly independent but also spans the space.

2.33 Linearly independent list extends to a basis

Every linearly independent list of vectors in a finite-dimensional vector

space can be extended to a basis of the vector space.

Proof Suppose u1; : : : ; um is linearly independent in a finite-dimensional

vector space V. Let w1; : : : ;wn be a basis of V. Thus the list

u1; : : : ; um;w1; : : : ;wn

spans V. Applying the procedure of the proof of 2.31 to reduce this list to a

basis of V produces a basis consisting of the vectors u1; : : : ; um (none of the

u’s get deleted in this procedure because u1; : : : ; um is linearly independent)

and some of the w’s.
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As an example in F3, suppose we start with the linearly independent

list .2; 3; 4/; .9; 6; 8/. If we take w1;w2;w3 in the proof above to be the

standard basis of F3, then the procedure in the proof above produces the list

.2; 3; 4/; .9; 6; 8/; .0; 1; 0/, which is a basis of F3.

Using the same basic ideas but

considerably more advanced tools,

the next result can be proved with-

out the hypothesis that V is finite-

dimensional.

As an application of the result above,

we now show that every subspace of a

finite-dimensional vector space can be

paired with another subspace to form a

direct sum of the whole space.

2.34 Every subspace of V is part of a direct sum equal to V

Suppose V is finite-dimensional and U is a subspace of V. Then there is a

subspace W of V such that V D U ˚W.

Proof Because V is finite-dimensional, so is U (see 2.26). Thus there is

a basis u1; : : : ; um of U (see 2.32). Of course u1; : : : ; um is a linearly in-

dependent list of vectors in V. Hence this list can be extended to a basis

u1; : : : ; um;w1; : : : ;wn of V (see 2.33). Let W D span.w1; : : : ;wn/.

To prove that V D U ˚W, by 1.45 we need only show that

V D U CW and U \W D f0g:

To prove the first equation above, suppose v 2 V. Then, because the list

u1; : : : ; um;w1; : : : ;wn spans V, there exist a1; : : : ; am; b1; : : : ; bn 2 F such

that
v D a1u1 C � � � C amum„ ƒ‚ …

u

C b1w1 C � � � C bnwn„ ƒ‚ …
w

:

In other words, we have v D uC w, where u 2 U and w 2 W are defined as

above. Thus v 2 U CW, completing the proof that V D U CW.

To show that U \W D f0g, suppose v 2 U \W. Then there exist scalars

a1; : : : ; am; b1; : : : ; bn 2 F such that

v D a1u1 C � � � C amum D b1w1 C � � � C bnwn:

Thus

a1u1 C � � � C amum � b1w1 � � � � � bnwn D 0:

Because u1; : : : ; um;w1; : : : ;wn is linearly independent, this implies that

a1 D � � � D am D b1 D � � � D bn D 0. Thus v D 0, completing the proof

that U \W D f0g.
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EXERCISES 2.B

1 Find all vector spaces that have exactly one basis.

2 Verify all the assertions in Example 2.28.

3 (a) Let U be the subspace of R5 defined by

U D f.x1; x2; x3; x4; x5/ 2 R5 W x1 D 3x2 and x3 D 7x4g:

Find a basis of U.

(b) Extend the basis in part (a) to a basis of R5.

(c) Find a subspace W of R5 such that R5 D U ˚W.

4 (a) Let U be the subspace of C5 defined by

U D f.z1; z2; z3; z4; z5/ 2 C5 W 6z1 D z2 and z3 C2z4 C3z5 D 0g:

Find a basis of U.

(b) Extend the basis in part (a) to a basis of C5.

(c) Find a subspace W of C5 such that C5 D U ˚W.

5 Prove or disprove: there exists a basis p0; p1; p2; p3 of P3.F/ such that

none of the polynomials p0; p1; p2; p3 has degree 2.

6 Suppose v1; v2; v3; v4 is a basis of V. Prove that

v1 C v2; v2 C v3; v3 C v4; v4

is also a basis of V.

7 Prove or give a counterexample: If v1; v2; v3; v4 is a basis of V and U

is a subspace of V such that v1; v2 2 U and v3 … U and v4 … U, then

v1; v2 is a basis of U.

8 Suppose U and W are subspaces of V such that V D U ˚W. Suppose

also that u1; : : : ; um is a basis of U and w1; : : : ;wn is a basis of W.

Prove that

u1; : : : ; um;w1; : : : ;wn

is a basis of V.
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2.C Dimension

Although we have been discussing finite-dimensional vector spaces, we have

not yet defined the dimension of such an object. How should dimension be

defined? A reasonable definition should force the dimension of Fn to equal n.

Notice that the standard basis

.1; 0; : : : ; 0/; .0; 1; 0; : : : ; 0/; : : : ; .0; : : : ; 0; 1/

of Fn has length n. Thus we are tempted to define the dimension as the length

of a basis. However, a finite-dimensional vector space in general has many

different bases, and our attempted definition makes sense only if all bases in a

given vector space have the same length. Fortunately that turns out to be the

case, as we now show.

2.35 Basis length does not depend on basis

Any two bases of a finite-dimensional vector space have the same length.

Proof Suppose V is finite-dimensional. Let B1 and B2 be two bases of V.

Then B1 is linearly independent in V and B2 spans V, so the length of B1 is

at most the length of B2 (by 2.23). Interchanging the roles of B1 and B2, we

also see that the length of B2 is at most the length of B1. Thus the length of

B1 equals the length of B2, as desired.

Now that we know that any two bases of a finite-dimensional vector space

have the same length, we can formally define the dimension of such spaces.

2.36 Definition dimension, dimV

� The dimension of a finite-dimensional vector space is the length of

any basis of the vector space.

� The dimension of V (if V is finite-dimensional) is denoted by dimV.

2.37 Example dimensions

� dim Fn D n because the standard basis of Fn has length n.

� dimPm.F/ D m C 1 because the basis 1; z; : : : ; zm of Pm.F/ has

length mC 1.
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Every subspace of a finite-dimensional vector space is finite-dimensional

(by 2.26) and so has a dimension. The next result gives the expected inequality

about the dimension of a subspace.

2.38 Dimension of a subspace

If V is finite-dimensional and U is a subspace of V, then dimU � dimV.

Proof Suppose V is finite-dimensional and U is a subspace of V. Think of a

basis of U as a linearly independent list in V, and think of a basis of V as a

spanning list in V. Now use 2.23 to conclude that dimU � dimV.

The real vector space R2 has di-

mension 2; the complex vector

space C has dimension 1. As

sets, R2 can be identified with C

(and addition is the same on both

spaces, as is scalar multiplication

by real numbers). Thus when we

talk about the dimension of a vec-

tor space, the role played by the

choice of F cannot be neglected.

To check that a list of vectors in V

is a basis of V, we must, according to

the definition, show that the list in ques-

tion satisfies two properties: it must be

linearly independent and it must span

V. The next two results show that if the

list in question has the right length, then

we need only check that it satisfies one

of the two required properties. First we

prove that every linearly independent

list with the right length is a basis.

2.39 Linearly independent list of the right length is a basis

Suppose V is finite-dimensional. Then every linearly independent list of

vectors in V with length dimV is a basis of V.

Proof Suppose dimV D n and v1; : : : ; vn is linearly independent in V. The

list v1; : : : ; vn can be extended to a basis of V (by 2.33). However, every basis

of V has length n, so in this case the extension is the trivial one, meaning that

no elements are adjoined to v1; : : : ; vn. In other words, v1; : : : ; vn is a basis

of V, as desired.

2.40 Example Show that the list .5; 7/; .4; 3/ is a basis of F2.

Solution This list of two vectors in F2 is obviously linearly independent

(because neither vector is a scalar multiple of the other). Note that F2 has

dimension 2. Thus 2.39 implies that the linearly independent list .5; 7/; .4; 3/

of length 2 is a basis of F2 (we do not need to bother checking that it spans F2).



46 CHAPTER 2 Finite-Dimensional Vector Spaces

2.41 Example Show that 1; .x � 5/2; .x � 5/3 is a basis of the subspace

U of P3.R/ defined by

U D fp 2 P3.R/ W p0.5/ D 0g:

Solution Clearly each of the polynomials 1, .x � 5/2, and .x � 5/3 is in U.

Suppose a; b; c 2 R and

aC b.x � 5/2 C c.x � 5/3 D 0

for every x 2 R. Without explicitly expanding the left side of the equation

above, we can see that the left side has a cx3 term. Because the right side has

no x3 term, this implies that c D 0. Because c D 0, we see that the left side

has a bx2 term, which implies that b D 0. Because b D c D 0, we can also

conclude that a D 0.

Thus the equation above implies that a D b D c D 0. Hence the list

1; .x � 5/2; .x � 5/3 is linearly independent in U.

Thus dimU � 3. Because U is a subspace of P3.R/, we know that

dimU � dimP3.R/ D 4 (by 2.38). However, dimU cannot equal 4, because

otherwise when we extend a basis of U to a basis of P3.R/ we would get a

list with length greater than 4. Hence dimU D 3. Thus 2.39 implies that the

linearly independent list 1; .x � 5/2; .x � 5/3 is a basis of U.

Now we prove that a spanning list with the right length is a basis.

2.42 Spanning list of the right length is a basis

Suppose V is finite-dimensional. Then every spanning list of vectors in V

with length dimV is a basis of V.

Proof Suppose dimV D n and v1; : : : ; vn spans V. The list v1; : : : ; vn can

be reduced to a basis of V (by 2.31). However, every basis of V has length

n, so in this case the reduction is the trivial one, meaning that no elements

are deleted from v1; : : : ; vn. In other words, v1; : : : ; vn is a basis of V, as

desired.

The next result gives a formula for the dimension of the sum of two

subspaces of a finite-dimensional vector space. This formula is analogous

to a familiar counting formula: the number of elements in the union of two

finite sets equals the number of elements in the first set, plus the number of

elements in the second set, minus the number of elements in the intersection

of the two sets.
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2.43 Dimension of a sum

If U1 and U2 are subspaces of a finite-dimensional vector space, then

dim.U1 C U2/ D dimU1 C dimU2 � dim.U1 \ U2/:

Proof Let u1; : : : ; um be a basis of U1 \ U2; thus dim.U1 \ U2/ D m. Be-

cause u1; : : : ; um is a basis of U1 \ U2, it is linearly independent in U1.

Hence this list can be extended to a basis u1; : : : ; um; v1; : : : ; vj of U1

(by 2.33). Thus dimU1 D m C j . Also extend u1; : : : ; um to a basis

u1; : : : ; um;w1; : : : ;wk of U2; thus dimU2 D mC k.

We will show that

u1; : : : ; um; v1; : : : ; vj ;w1; : : : ;wk

is a basis of U1 CU2. This will complete the proof, because then we will have

dim.U1 C U2/ D mC j C k

D .mC j /C .mC k/ �m
D dimU1 C dimU2 � dim.U1 \ U2/:

Clearly span.u1; : : : ; um; v1; : : : ; vj ;w1; : : : ;wk/ contains U1 and U2 and

hence equals U1 CU2. So to show that this list is a basis of U1 CU2 we need

only show that it is linearly independent. To prove this, suppose

a1u1 C � � � C amum C b1v1 C � � � C bj vj C c1w1 C � � � C ckwk D 0;

where all the a’s, b’s, and c’s are scalars. We need to prove that all the a’s,

b’s, and c’s equal 0. The equation above can be rewritten as

c1w1 C � � � C ckwk D �a1u1 � � � � � amum � b1v1 � � � � � bj vj ;

which shows that c1w1 C � � � C ckwk 2 U1. All the w’s are in U2, so this

implies that c1w1 C � � � C ckwk 2 U1 \ U2. Because u1; : : : ; um is a basis

of U1 \ U2, we can write

c1w1 C � � � C ckwk D d1u1 C � � � C dmum

for some choice of scalars d1; : : : ; dm. But u1; : : : ; um;w1; : : : ;wk is linearly

independent, so the last equation implies that all the c’s (and d ’s) equal 0.

Thus our original equation involving the a’s, b’s, and c’s becomes

a1u1 C � � � C amum C b1v1 C � � � C bj vj D 0:

Because the list u1; : : : ; um; v1; : : : ; vj is linearly independent, this equation

implies that all the a’s and b’s are 0. We now know that all the a’s, b’s, and

c’s equal 0, as desired.
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EXERCISES 2.C

1 Suppose V is finite-dimensional and U is a subspace of V such that

dimU D dimV. Prove that U D V.

2 Show that the subspaces of R2 are precisely f0g, R2, and all lines in R2

through the origin.

3 Show that the subspaces of R3 are precisely f0g, R3, all lines in R3

through the origin, and all planes in R3 through the origin.

4 (a) Let U D fp 2 P4.F/ W p.6/ D 0g. Find a basis of U.

(b) Extend the basis in part (a) to a basis of P4.F/.

(c) Find a subspace W of P4.F/ such that P4.F/ D U ˚W.

5 (a) Let U D fp 2 P4.R/ W p00.6/ D 0g. Find a basis of U.

(b) Extend the basis in part (a) to a basis of P4.R/.

(c) Find a subspace W of P4.R/ such that P4.R/ D U ˚W.

6 (a) Let U D fp 2 P4.F/ W p.2/ D p.5/g. Find a basis of U.

(b) Extend the basis in part (a) to a basis of P4.F/.

(c) Find a subspace W of P4.F/ such that P4.F/ D U ˚W.

7 (a) Let U D fp 2 P4.F/ W p.2/ D p.5/ D p.6/g. Find a basis of U.

(b) Extend the basis in part (a) to a basis of P4.F/.

(c) Find a subspace W of P4.F/ such that P4.F/ D U ˚W.

8 (a) Let U D fp 2 P4.R/ W
R 1

�1 p D 0g. Find a basis of U.

(b) Extend the basis in part (a) to a basis of P4.R/.

(c) Find a subspace W of P4.R/ such that P4.R/ D U ˚W.

9 Suppose v1; : : : ; vm is linearly independent in V and w 2 V. Prove that

dim span.v1 C w; : : : ; vm C w/ � m � 1:

10 Suppose p0; p1; : : : ; pm 2 P.F/ are such that each pj has degree j .

Prove that p0; p1; : : : ; pm is a basis of Pm.F/.

11 Suppose that U and W are subspaces of R8 such that dimU D 3,

dimW D 5, and U CW D R8. Prove that R8 D U ˚W.
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12 Suppose U and W are both five-dimensional subspaces of R9. Prove

that U \W ¤ f0g.

13 Suppose U and W are both 4-dimensional subspaces of C6. Prove that

there exist two vectors in U \W such that neither of these vectors is a

scalar multiple of the other.

14 Suppose U1; : : : ; Um are finite-dimensional subspaces of V. Prove that

U1 C � � � C Um is finite-dimensional and

dim.U1 C � � � C Um/ � dimU1 C � � � C dimUm:

15 Suppose V is finite-dimensional, with dimV D n � 1. Prove that there

exist 1-dimensional subspaces U1; : : : ; Un of V such that

V D U1 ˚ � � � ˚ Un:

16 Suppose U1; : : : ; Um are finite-dimensional subspaces of V such that

U1 C � � � C Um is a direct sum. Prove that U1 ˚ � � � ˚ Um is finite-

dimensional and

dimU1 ˚ � � � ˚ Um D dimU1 C � � � C dimUm:

[The exercise above deepens the analogy between direct sums of sub-

spaces and disjoint unions of subsets. Specifically, compare this exercise

to the following obvious statement: if a set is written as a disjoint union

of finite subsets, then the number of elements in the set equals the sum of

the numbers of elements in the disjoint subsets.]

17 You might guess, by analogy with the formula for the number of ele-

ments in the union of three subsets of a finite set, that if U1; U2; U3 are

subspaces of a finite-dimensional vector space, then

dim.U1 C U2 C U3/

D dimU1 C dimU2 C dimU3

� dim.U1 \ U2/ � dim.U1 \ U3/ � dim.U2 \ U3/

C dim.U1 \ U2 \ U3/:

Prove this or give a counterexample.
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German mathematician Carl

Friedrich Gauss (1777–1855), who

in 1809 published a method for

solving systems of linear equations.

This method, now called Gaussian

elimination, was also used in a

Chinese book published over 1600

years earlier.

Linear Maps

So far our attention has focused on vector spaces. No one gets excited about

vector spaces. The interesting part of linear algebra is the subject to which we

now turn—linear maps.

In this chapter we will frequently need another vector space, which we will

call W, in addition to V. Thus our standing assumptions are now as follows:

3.1 Notation F, V, W

� F denotes R or C.

� V and W denote vector spaces over F.
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3.A The Vector Space of Linear Maps

Definition and Examples of Linear Maps

Now we are ready for one of the key definitions in linear algebra.

3.2 Definition linear map

A linear map from V to W is a function T W V ! W with the following

properties:

additivity

T .uC v/ D T uC T v for all u; v 2 V ;

homogeneity

T .�v/ D �.T v/ for all � 2 F and all v 2 V.

Some mathematicians use the

term linear transformation, which

means the same as linear map.

Note that for linear maps we often

use the notation T v as well as the more

standard functional notation T .v/.

3.3 Notation L.V;W /

The set of all linear maps from V to W is denoted L.V;W /.

Let’s look at some examples of linear maps. Make sure you verify that

each of the functions defined below is indeed a linear map:

3.4 Example linear maps

zero

In addition to its other uses, we let the symbol 0 denote the function that takes

each element of some vector space to the additive identity of another vector

space. To be specific, 0 2 L.V;W / is defined by

0v D 0:

The 0 on the left side of the equation above is a function from V toW, whereas

the 0 on the right side is the additive identity in W. As usual, the context

should allow you to distinguish between the many uses of the symbol 0.

identity

The identity map, denoted I, is the function on some vector space that takes

each element to itself. To be specific, I 2 L.V; V / is defined by

I v D v:
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differentiation

Define D 2 L
�
P.R/;P.R/

�
by

Dp D p0:

The assertion that this function is a linear map is another way of stating a basic

result about differentiation: .f C g/0 D f 0 C g0 and .�f /0 D �f 0 whenever

f; g are differentiable and � is a constant.

integration

Define T 2 L
�
P.R/;R

�
by

Tp D
Z 1

0

p.x/ dx:

The assertion that this function is linear is another way of stating a basic result

about integration: the integral of the sum of two functions equals the sum

of the integrals, and the integral of a constant times a function equals the

constant times the integral of the function.

multiplication by x2

Define T 2 L
�
P.R/;P.R/

�
by

.Tp/.x/ D x2p.x/

for x 2 R.

backward shift

Recall that F1 denotes the vector space of all sequences of elements of F.

Define T 2 L.F1;F1/ by

T .x1; x2; x3; : : : / D .x2; x3; : : : /:

from R3 to R2

Define T 2 L.R3;R2/ by

T .x; y; z/ D .2x � y C 3z; 7x C 5y � 6z/:

from Fn to Fm

Generalizing the previous example, let m and n be positive integers, let

Aj;k 2 F for j D 1; : : : ; m and k D 1; : : : ; n, and define T 2 L.Fn;Fm/ by

T .x1; : : : ; xn/ D .A1;1x1 C � � � C A1;nxn; : : : ; Am;1x1 C � � � C Am;nxn/:

Actually every linear map from Fn to Fm is of this form.

The existence part of the next result means that we can find a linear map

that takes on whatever values we wish on the vectors in a basis. The uniqueness

part of the next result means that a linear map is completely determined by its

values on a basis.



54 CHAPTER 3 Linear Maps

3.5 Linear maps and basis of domain

Suppose v1; : : : ; vn is a basis of V and w1; : : : ;wn 2 W. Then there exists

a unique linear map T W V ! W such that

T vj D wj

for each j D 1; : : : ; n.

Proof First we show the existence of a linear map T with the desired property.

Define T W V ! W by

T .c1v1 C � � � C cnvn/ D c1w1 C � � � C cnwn;

where c1; : : : ; cn are arbitrary elements of F. The list v1; : : : ; vn is a basis

of V, and thus the equation above does indeed define a function T from

V to W (because each element of V can be uniquely written in the form

c1v1 C � � � C cnvn).

For each j , taking cj D 1 and the other c’s equal to 0 in the equation

above shows that T vj D wj .

If u; v 2 V with u D a1v1 C � � � C anvn and v D c1v1 C � � � C cnvn, then

T .uC v/ D T
�
.a1 C c1/v1 C � � � C .an C cn/vn

�

D .a1 C c1/w1 C � � � C .an C cn/wn

D .a1w1 C � � � C anwn/C .c1w1 C � � � C cnwn/

D T uC T v:

Similarly, if � 2 F and v D c1v1 C � � � C cnvn, then

T .�v/ D T .�c1v1 C � � � C �cnvn/

D �c1w1 C � � � C �cnwn

D �.c1w1 C � � � C cnwn/

D �T v:

Thus T is a linear map from V to W.

To prove uniqueness, now suppose that T 2 L.V;W / and that T vj D wj

for j D 1; : : : ; n. Let c1; : : : ; cn 2 F. The homogeneity of T implies that

T .cj vj / D cj wj for j D 1; : : : ; n. The additivity of T now implies that

T .c1v1 C � � � C cnvn/ D c1w1 C � � � C cnwn:

Thus T is uniquely determined on span.v1; : : : ; vn/ by the equation above.

Because v1; : : : ; vn is a basis of V, this implies that T is uniquely determined

on V.
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Algebraic Operations on L.V; W /

We begin by defining addition and scalar multiplication on L.V;W /.

3.6 Definition addition and scalar multiplication on L.V;W /

Suppose S; T 2 L.V;W / and � 2 F. The sum S C T and the product

�T are the linear maps from V to W defined by

.S C T /.v/ D Sv C T v and .�T /.v/ D �.T v/

for all v 2 V.

Although linear maps are perva-

sive throughout mathematics, they

are not as ubiquitous as imagined

by some confused students who

seem to think that cos is a linear

map from R to R when they write

that cos 2x equals 2 cos x and that

cos.x C y/ equals cos x C cosy.

You should verify that SCT and �T

as defined above are indeed linear maps.

In other words, if S; T 2 L.V;W / and

� 2 F, then S C T 2 L.V;W / and

�T 2 L.V;W /.

Because we took the trouble to de-

fine addition and scalar multiplication

on L.V;W /, the next result should not

be a surprise.

3.7 L.V;W / is a vector space

With the operations of addition and scalar multiplication as defined above,

L.V;W / is a vector space.

The routine proof of the result above is left to the reader. Note that the

additive identity of L.V;W / is the zero linear map defined earlier in this

section.

Usually it makes no sense to multiply together two elements of a vector

space, but for some pairs of linear maps a useful product exists. We will need

a third vector space, so for the rest of this section suppose U is a vector space

over F.

3.8 Definition Product of Linear Maps

If T 2 L.U; V / and S 2 L.V;W /, then the product ST 2 L.U;W / is

defined by

.ST /.u/ D S.T u/

for u 2 U.
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In other words, ST is just the usual composition S ı T of two functions,

but when both functions are linear, most mathematicians write ST instead

of S ı T. You should verify that ST is indeed a linear map from U to W

whenever T 2 L.U; V / and S 2 L.V;W /.

Note that ST is defined only when T maps into the domain of S .

3.9 Algebraic properties of products of linear maps

associativity

.T1T2/T3 D T1.T2T3/

whenever T1, T2, and T3 are linear maps such that the products make

sense (meaning that T3 maps into the domain of T2, and T2 maps into the

domain of T1).

identity

TI D IT D T

whenever T 2 L.V;W / (the first I is the identity map on V, and the

second I is the identity map on W ).

distributive properties

.S1 C S2/T D S1T C S2T and S.T1 C T2/ D ST1 C ST2

whenever T; T1; T2 2 L.U; V / and S; S1; S2 2 L.V;W /.

The routine proof of the result above is left to the reader.

Multiplication of linear maps is not commutative. In other words, it is not

necessarily true that ST D TS , even if both sides of the equation make sense.

3.10 Example Suppose D 2 L
�
P.R/;P.R/

�
is the differentiation map

defined in Example 3.4 and T 2 L
�
P.R/;P.R/

�
is the multiplication by x2

map defined earlier in this section. Show that TD ¤ DT.

Solution We have

�
.TD/p

�
.x/ D x2p0.x/ but

�
.DT /p

�
.x/ D x2p0.x/C 2xp.x/:

In other words, differentiating and then multiplying by x2 is not the same as

multiplying by x2 and then differentiating.
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3.11 Linear maps take 0 to 0

Suppose T is a linear map from V to W. Then T .0/ D 0.

Proof By additivity, we have

T .0/ D T .0C 0/ D T .0/C T .0/:

Add the additive inverse of T .0/ to each side of the equation above to conclude

that T .0/ D 0.

EXERCISES 3.A

1 Suppose b; c 2 R. Define T W R3 ! R2 by

T .x; y; z/ D .2x � 4y C 3z C b; 6x C cxyz/:

Show that T is linear if and only if b D c D 0.

2 Suppose b; c 2 R. Define T W P.R/ ! R2 by

Tp D
�
3p.4/C 5p0.6/C bp.1/p.2/;

Z 2

�1

x3p.x/ dx C c sinp.0/
�
:

Show that T is linear if and only if b D c D 0.

3 Suppose T 2 L.Fn;Fm/. Show that there exist scalars Aj;k 2 F for

j D 1; : : : ; m and k D 1; : : : ; n such that

T .x1; : : : ; xn/ D .A1;1x1 C� � �CA1;nxn; : : : ; Am;1x1 C� � �CAm;nxn/

for every .x1; : : : ; xn/ 2 Fn.

[The exercise above shows that T has the form promised in the last item

of Example 3.4.]

4 Suppose T 2 L.V;W / and v1; : : : ; vm is a list of vectors in V such that

T v1; : : : ; T vm is a linearly independent list in W. Prove that v1; : : : ; vm

is linearly independent.

5 Prove the assertion in 3.7.

6 Prove the assertions in 3.9.
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7 Show that every linear map from a 1-dimensional vector space to itself is

multiplication by some scalar. More precisely, prove that if dimV D 1

and T 2 L.V; V /, then there exists � 2 F such that T v D �v for all

v 2 V.

8 Give an example of a function ' W R2 ! R such that

'.av/ D a'.v/

for all a 2 R and all v 2 R2 but ' is not linear.

[The exercise above and the next exercise show that neither homogeneity

nor additivity alone is enough to imply that a function is a linear map.]

9 Give an example of a function ' W C ! C such that

'.w C z/ D '.w/C '.z/

for all w; z 2 C but ' is not linear. (Here C is thought of as a complex

vector space.)

[There also exists a function ' W R ! R such that ' satisfies the additiv-

ity condition above but ' is not linear. However, showing the existence

of such a function involves considerably more advanced tools.]

10 Suppose U is a subspace of V with U ¤ V. Suppose S 2 L.U;W / and

S ¤ 0 (which means that Su ¤ 0 for some u 2 U ). Define T W V ! W

by

T v D
(
Sv if v 2 U;
0 if v 2 V and v … U:

Prove that T is not a linear map on V.

11 Suppose V is finite-dimensional. Prove that every linear map on a

subspace of V can be extended to a linear map on V. In other words,

show that if U is a subspace of V and S 2 L.U;W /, then there exists

T 2 L.V;W / such that T u D Su for all u 2 U.

12 Suppose V is finite-dimensional with dimV > 0, and suppose W is

infinite-dimensional. Prove that L.V;W / is infinite-dimensional.

13 Suppose v1; : : : ; vm is a linearly dependent list of vectors in V. Suppose

also that W ¤ f0g. Prove that there exist w1; : : : ;wm 2 W such that no

T 2 L.V;W / satisfies T vk D wk for each k D 1; : : : ; m.

14 Suppose V is finite-dimensional with dimV � 2. Prove that there exist

S; T 2 L.V; V / such that ST ¤ TS .
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3.B Null Spaces and Ranges

Null Space and Injectivity

In this section we will learn about two subspaces that are intimately connected

with each linear map. We begin with the set of vectors that get mapped to 0.

3.12 Definition null space, nullT

For T 2 L.V;W /, the null space of T, denoted nullT, is the subset of V

consisting of those vectors that T maps to 0:

nullT D fv 2 V W T v D 0g:

3.13 Example null space

� If T is the zero map from V to W, in other words if T v D 0 for every

v 2 V, then nullT D V.

� Suppose ' 2 L.C3;F/ is defined by '.z1; z2; z3/ D z1 C 2z2 C 3z3.

Then null' D f.z1; z2; z3/ 2 C3 W z1 C 2z2 C 3z3 D 0g. A basis of

null' is .�2; 1; 0/; .�3; 0; 1/.

� Suppose D 2 L
�
P.R/;P.R/

�
is the differentiation map defined by

Dp D p0. The only functions whose derivative equals the zero function

are the constant functions. Thus the null space of D equals the set of

constant functions.

� Suppose T 2 L
�
P.R/;P.R/

�
is the multiplication by x2 map defined

by .Tp/.x/ D x2p.x/. The only polynomial p such that x2p.x/ D 0

for all x 2 R is the 0 polynomial. Thus nullT D f0g.

� Suppose T 2 L.F1;F1/ is the backward shift defined by

T .x1; x2; x3; : : : / D .x2; x3; : : : /:

Clearly T .x1; x2; x3; : : : / equals 0 if and only if x2; x3; : : : are all 0.

Thus in this case we have nullT D f.a; 0; 0; : : : / W a 2 Fg.

Some mathematicians use the term

kernel instead of null space. The

word “null” means zero. Thus the

term “null space”should remind

you of the connection to 0.

The next result shows that the null

space of each linear map is a subspace

of the domain. In particular, 0 is in the

null space of every linear map.
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3.14 The null space is a subspace

Suppose T 2 L.V;W /. Then nullT is a subspace of V.

Proof Because T is a linear map, we know that T .0/ D 0 (by 3.11). Thus

0 2 nullT.

Suppose u; v 2 nullT. Then

T .uC v/ D T uC T v D 0C 0 D 0:

Hence uC v 2 nullT. Thus nullT is closed under addition.

Suppose u 2 nullT and � 2 F. Then

T .�u/ D �T u D �0 D 0:

Hence �u 2 nullT. Thus nullT is closed under scalar multiplication.

Take another look at the null spaces

that were computed in Example

3.13 and note that all of them are

subspaces.

We have shown that nullT contains

0 and is closed under addition and scalar

multiplication. Thus nullT is a sub-

space of V (by 1.34).

As we will soon see, for a linear map

the next definition is closely connected to the null space.

3.15 Definition injective

A function T W V ! W is called injective if T u D T v implies u D v.

Many mathematicians use the term

one-to-one, which means the same

as injective.

The definition above could be

rephrased to say that T is injective if

u ¤ v implies that T u ¤ T v. In other

words, T is injective if it maps distinct

inputs to distinct outputs.

The next result says that we can check whether a linear map is injective

by checking whether 0 is the only vector that gets mapped to 0. As a simple

application of this result, we see that of the linear maps whose null spaces we

computed in 3.13, only multiplication by x2 is injective (except that the zero

map is injective in the special case V D f0g).
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3.16 Injectivity is equivalent to null space equals f0g
Let T 2 L.V;W /. Then T is injective if and only if nullT D f0g.

Proof First suppose T is injective. We want to prove that nullT D f0g. We

already know that f0g � nullT (by 3.11). To prove the inclusion in the other

direction, suppose v 2 nullT. Then

T .v/ D 0 D T .0/:

Because T is injective, the equation above implies that v D 0. Thus we can

conclude that nullT D f0g, as desired.

To prove the implication in the other direction, now suppose nullT D f0g.

We want to prove that T is injective. To do this, suppose u; v 2 V and

T u D T v. Then

0 D T u � T v D T .u � v/:

Thus u � v is in nullT, which equals f0g. Hence u � v D 0, which implies

that u D v. Hence T is injective, as desired.

Range and Surjectivity

Now we give a name to the set of outputs of a function.

3.17 Definition range

For T a function from V toW, the range of T is the subset ofW consisting

of those vectors that are of the form T v for some v 2 V :

rangeT D fT v W v 2 V g:

3.18 Example range

� If T is the zero map from V to W, in other words if T v D 0 for every

v 2 V, then rangeT D f0g.

� Suppose T 2 L.R2;R3/ is defined by T .x; y/ D .2x; 5y; x C y/,

then rangeT D f.2x; 5y; x C y/ W x; y 2 Rg. A basis of rangeT is

.2; 0; 1/; .0; 5; 1/.

� Suppose D 2 L
�
P.R/;P.R/

�
is the differentiation map defined by

Dp D p0. Because for every polynomial q 2 P.R/ there exists a

polynomial p 2 P.R/ such that p0 D q, the range of D is P.R/.
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Some mathematicians use the word

image, which means the same as

range.

The next result shows that the range

of each linear map is a subspace of

the vector space into which it is being

mapped.

3.19 The range is a subspace

If T 2 L.V;W /, then rangeT is a subspace of W.

Proof Suppose T 2 L.V;W /. Then T .0/ D 0 (by 3.11), which implies that

0 2 rangeT.

If w1;w2 2 rangeT, then there exist v1; v2 2 V such that T v1 D w1 and

T v2 D w2. Thus

T .v1 C v2/ D T v1 C T v2 D w1 C w2:

Hence w1 C w2 2 rangeT. Thus rangeT is closed under addition.

If w 2 rangeT and � 2 F, then there exists v 2 V such that T v D w.

Thus

T .�v/ D �T v D �w:

Hence �w 2 rangeT. Thus rangeT is closed under scalar multiplication.

We have shown that rangeT contains 0 and is closed under addition and

scalar multiplication. Thus rangeT is a subspace of W (by 1.34).

3.20 Definition surjective

A function T W V ! W is called surjective if its range equals W.

To illustrate the definition above, note that of the ranges we computed in

3.18, only the differentiation map is surjective (except that the zero map is

surjective in the special case W D f0g.

Many mathematicians use the term

onto, which means the same as sur-

jective.

Whether a linear map is surjective

depends on what we are thinking of as

the vector space into which it maps.

3.21 Example The differentiation map D 2 L
�
P5.R/;P5.R/

�
defined

by Dp D p0 is not surjective, because the polynomial x5 is not in the range

of D. However, the differentiation map S 2 L
�
P5.R/;P4.R/

�
defined by

Sp D p0 is surjective, because its range equals P4.R/, which is now the

vector space into which S maps.
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Fundamental Theorem of Linear Maps

The next result is so important that it gets a dramatic name.

3.22 Fundamental Theorem of Linear Maps

Suppose V is finite-dimensional and T 2 L.V;W /. Then rangeT is

finite-dimensional and

dimV D dim nullT C dim rangeT:

Proof Let u1; : : : ; um be a basis of nullT ; thus dim nullT D m. The linearly

independent list u1; : : : ; um can be extended to a basis

u1; : : : ; um; v1; : : : ; vn

of V (by 2.33). Thus dimV D mC n. To complete the proof, we need only

show that rangeT is finite-dimensional and dim rangeT D n. We will do this

by proving that T v1; : : : ; T vn is a basis of rangeT.

Let v 2 V. Because u1; : : : ; um; v1; : : : ; vn spans V, we can write

v D a1u1 C � � � C amum C b1v1 C � � � C bnvn;

where the a’s and b’s are in F. Applying T to both sides of this equation, we

get

T v D b1T v1 C � � � C bnT vn;

where the terms of the form T uj disappeared because each uj is in nullT.

The last equation implies that T v1; : : : ; T vn spans rangeT. In particular,

rangeT is finite-dimensional.

To show T v1; : : : ; T vn is linearly independent, suppose c1; : : : ; cn 2 F

and

c1T v1 C � � � C cnT vn D 0:

Then

T .c1v1 C � � � C cnvn/ D 0:

Hence

c1v1 C � � � C cnvn 2 nullT:

Because u1; : : : ; um spans nullT, we can write

c1v1 C � � � C cnvn D d1u1 C � � � C dmum;

where the d ’s are in F. This equation implies that all the c’s (and d ’s) are 0

(because u1; : : : ; um; v1; : : : ; vn is linearly independent). Thus T v1; : : : ; T vn

is linearly independent and hence is a basis of rangeT, as desired.
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Now we can show that no linear map from a finite-dimensional vector

space to a “smaller” vector space can be injective, where “smaller” is measured

by dimension.

3.23 A map to a smaller dimensional space is not injective

Suppose V and W are finite-dimensional vector spaces such that

dimV > dimW. Then no linear map from V to W is injective.

Proof Let T 2 L.V;W /. Then

dim nullT D dimV � dim rangeT

� dimV � dimW

> 0;

where the equality above comes from the Fundamental Theorem of Linear

Maps (3.22). The inequality above states that dim nullT > 0. This means

that nullT contains vectors other than 0. Thus T is not injective (by 3.16).

The next result shows that no linear map from a finite-dimensional vector

space to a “bigger” vector space can be surjective, where “bigger” is measured

by dimension.

3.24 A map to a larger dimensional space is not surjective

Suppose V and W are finite-dimensional vector spaces such that

dimV < dimW. Then no linear map from V to W is surjective.

Proof Let T 2 L.V;W /. Then

dim rangeT D dimV � dim nullT

� dimV

< dimW;

where the equality above comes from the Fundamental Theorem of Linear

Maps (3.22). The inequality above states that dim rangeT < dimW. This

means that rangeT cannot equal W. Thus T is not surjective.

As we will now see, 3.23 and 3.24 have important consequences in the

theory of linear equations. The idea here is to express questions about systems

of linear equations in terms of linear maps.
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3.25 Example Rephrase in terms of a linear map the question of whether

a homogeneous system of linear equations has a nonzero solution.

Solution

Homogeneous, in this context,

means that the constant term on the

right side of each equation below

is 0.

Fix positive integers m and n, and let

Aj;k 2 F for j D 1; : : : ; m and

k D 1; : : : ; n. Consider the homoge-

neous system of linear equations

nX

kD1

A1;kxk D 0

:::
nX

kD1

Am;kxk D 0:

Obviously x1 D � � � D xn D 0 is a solution of the system of equations above;

the question here is whether any other solutions exist.

Define T W Fn ! Fm by

T .x1; : : : ; xn/ D
� nX

kD1

A1;kxk; : : : ;

nX

kD1

Am;kxk

�
:

The equation T .x1; : : : ; xn/ D 0 (the 0 here is the additive identity in Fm,

namely, the list of length m of all 0’s) is the same as the homogeneous system

of linear equations above.

Thus we want to know if nullT is strictly bigger than f0g. In other words,

we can rephrase our question about nonzero solutions as follows (by 3.16):

What condition ensures that T is not injective?

3.26 Homogeneous system of linear equations

A homogeneous system of linear equations with more variables than

equations has nonzero solutions.

Proof Use the notation and result from the example above. Thus T is a

linear map from Fn to Fm, and we have a homogeneous system of m linear

equations with n variables x1; : : : ; xn. From 3.23 we see that T is not injective

if n > m.

Example of the result above: a homogeneous system of four linear equa-

tions with five variables has nonzero solutions.
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3.27 Example Consider the question of whether an inhomogeneous sys-

tem of linear equations has no solutions for some choice of the constant terms.

Rephrase this question in terms of a linear map.

Solution Fix positive integers m and n, and let Aj;k 2 F for j D 1; : : : ; m

and k D 1; : : : ; n. For c1; : : : ; cm 2 F, consider the system of linear equations

nX

kD1

A1;kxk D c1

:::3.28
nX

kD1

Am;kxk D cm:

The question here is whether there is some choice of c1; : : : ; cm 2 F such that

no solution exists to the system above.

Define T W Fn ! Fm by

T .x1; : : : ; xn/ D
� nX

kD1

A1;kxk; : : : ;

nX

kD1

Am;kxk

�
:

The equation T .x1; : : : ; xn/ D .c1; : : : ; cm/ is the same as the system of equa-

tions 3.28. Thus we want to know if rangeT ¤ Fm. Hence we can rephrase

our question about not having a solution for some choice of c1; : : : ; cm 2 F

as follows: What condition ensures that T is not surjective?

3.29 Inhomogeneous system of linear equations

An inhomogeneous system of linear equations with more equations than

variables has no solution for some choice of the constant terms.

Our results about homogeneous

systems with more variables than

equations and inhomogeneous sys-

tems with more equations than vari-

ables (3.26 and 3.29) are often

proved using Gaussian elimination.

The abstract approach taken here

leads to cleaner proofs.

Proof Use the notation and result from

the example above. Thus T is a lin-

ear map from Fn to Fm, and we have a

system of m equations with n variables

x1; : : : ; xn. From 3.24 we see that T is

not surjective if n < m.

Example of the result above: an

inhomogeneous system of five linear

equations with four variables has no solution for some choice of the con-

stant terms.
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EXERCISES 3.B

1 Give an example of a linear map T such that dim nullT D 3 and

dim rangeT D 2.

2 Suppose V is a vector space and S; T 2 L.V; V / are such that

rangeS � nullT:

Prove that .ST /2 D 0.

3 Suppose v1; : : : ; vm is a list of vectors in V. Define T 2 L.Fm; V / by

T .z1; : : : ; zm/ D z1v1 C � � � C zmvm:

(a) What property of T corresponds to v1; : : : ; vm spanning V ?

(b) What property of T corresponds to v1; : : : ; vm being linearly

independent?

4 Show that

fT 2 L.R5;R4/ W dim nullT > 2g
is not a subspace of L.R5;R4/.

5 Give an example of a linear map T W R4 ! R4 such that

rangeT D nullT:

6 Prove that there does not exist a linear map T W R5 ! R5 such that

rangeT D nullT:

7 Suppose V and W are finite-dimensional with 2 � dimV � dimW.

Show that fT 2 L.V;W / W T is not injectiveg is not a subspace of

L.V;W /.

8 Suppose V and W are finite-dimensional with dimV � dimW � 2.

Show that fT 2 L.V;W / W T is not surjectiveg is not a subspace of

L.V;W /.

9 Suppose T 2 L.V;W / is injective and v1; : : : ; vn is linearly independent

in V. Prove that T v1; : : : ; T vn is linearly independent in W.
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10 Suppose v1; : : : ; vn spans V and T 2 L.V;W /. Prove that the list

T v1; : : : ; T vn spans rangeT.

11 Suppose S1; : : : ; Sn are injective linear maps such that S1S2 � � �Sn

makes sense. Prove that S1S2 � � �Sn is injective.

12 Suppose that V is finite-dimensional and that T 2 L.V;W /. Prove

that there exists a subspace U of V such that U \ nullT D f0g and

rangeT D fT u W u 2 U g.

13 Suppose T is a linear map from F4 to F2 such that

nullT D f.x1; x2; x3; x4/ 2 F4 W x1 D 5x2 and x3 D 7x4g:

Prove that T is surjective.

14 Suppose U is a 3-dimensional subspace of R8 and that T is a linear map

from R8 to R5 such that nullT D U. Prove that T is surjective.

15 Prove that there does not exist a linear map from F5 to F2 whose null

space equals

f.x1; x2; x3; x4; x5/ 2 F5 W x1 D 3x2 and x3 D x4 D x5g:

16 Suppose there exists a linear map on V whose null space and range are

both finite-dimensional. Prove that V is finite-dimensional.

17 Suppose V and W are both finite-dimensional. Prove that there exists an

injective linear map from V to W if and only if dimV � dimW.

18 Suppose V and W are both finite-dimensional. Prove that there exists a

surjective linear map from V onto W if and only if dimV � dimW.

19 Suppose V and W are finite-dimensional and that U is a subspace of V.

Prove that there exists T 2 L.V;W / such that nullT D U if and only if

dimU � dimV � dimW.

20 Suppose W is finite-dimensional and T 2 L.V;W /. Prove that T is

injective if and only if there exists S 2 L.W; V / such that ST is the

identity map on V.

21 Suppose V is finite-dimensional and T 2 L.V;W /. Prove that T is

surjective if and only if there exists S 2 L.W; V / such that TS is the

identity map on W.
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22 Suppose U and V are finite-dimensional vector spaces and S 2 L.V;W /

and T 2 L.U; V /. Prove that

dim nullST � dim nullS C dim nullT:

23 Suppose U and V are finite-dimensional vector spaces and S 2 L.V;W /

and T 2 L.U; V /. Prove that

dim rangeST � minfdim rangeS; dim rangeT g:

24 Suppose W is finite-dimensional and T1; T2 2 L.V;W /. Prove that

nullT1 � nullT2 if and only if there exists S 2 L.W;W / such that

T2 D ST1.

25 Suppose V is finite-dimensional and T1; T2 2 L.V;W /. Prove that

rangeT1 � rangeT2 if and only if there exists S 2 L.V; V / such that

T1 D T2S .

26 Suppose D 2 L
�
P.R/;P.R/

�
is such that degDp D .degp/ � 1 for

every nonconstant polynomial p 2 P.R/. Prove that D is surjective.

[The notation D is used above to remind you of the differentiation map

that sends a polynomial p to p0. Without knowing the formula for the

derivative of a polynomial (except that it reduces the degree by 1), you

can use the exercise above to show that for every polynomial q 2 P.R/,

there exists a polynomial p 2 P.R/ such that p0 D q.]

27 Suppose p 2 P.R/. Prove that there exists a polynomial q 2 P.R/ such

that 5q00 C 3q0 D p.

[This exercise can be done without linear algebra, but it’s more fun to do

it using linear algebra.]

28 Suppose T 2 L.V;W /, and w1; : : : ;wm is a basis of rangeT. Prove that

there exist '1; : : : ; 'm 2 L.V;F/ such that

T v D '1.v/w1 C � � � C 'm.v/wm

for every v 2 V.

29 Suppose ' 2 L.V;F/. Suppose u 2 V is not in null'. Prove that

V D null' ˚ fau W a 2 Fg:

30 Suppose '1 and '2 are linear maps from V to F that have the same null

space. Show that there exists a constant c 2 F such that '1 D c'2.

31 Give an example of two linear maps T1 and T2 from R5 to R2 that have

the same null space but are such that T1 is not a scalar multiple of T2.
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3.C Matrices

Representing a Linear Map by a Matrix

We know that if v1; : : : ; vn is a basis of V and T W V ! W is linear, then the

values of T v1; : : : ; T vn determine the values of T on arbitrary vectors in V

(see 3.5). As we will soon see, matrices are used as an efficient method of

recording the values of the T vj ’s in terms of a basis of W.

3.30 Definition matrix, Aj;k

Letm and n denote positive integers. Anm-by-nmatrixA is a rectangular

array of elements of F with m rows and n columns:

A D

0
B@
A1;1 : : : A1;n
:::

:::

Am;1 : : : Am;n

1
CA :

The notation Aj;k denotes the entry in row j , column k of A. In other

words, the first index refers to the row number and the second index refers

to the column number.

Thus A2;3 refers to the entry in the second row, third column of a matrix A.

3.31 Example If A D
�
8 4 5 � 3i
1 9 7

�
, then A2;3 D 7.

Now we come to the key definition in this section.

3.32 Definition matrix of a linear map, M.T /

Suppose T 2 L.V;W / and v1; : : : ; vn is a basis of V and w1; : : : ;wm is

a basis of W. The matrix of T with respect to these bases is the m-by-n

matrix M.T / whose entries Aj;k are defined by

T vk D A1;kw1 C � � � C Am;kwm:

If the bases are not clear from the context, then the notation

M
�
T; .v1; : : : ; vn/; .w1; : : : ;wm/

�
is used.

The matrix M.T / of a linear map T 2 L.V;W / depends on the basis

v1; : : : ; vn of V and the basis w1; : : : ;wm ofW, as well as on T. However, the

bases should be clear from the context, and thus they are often not included in

the notation.
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To remember how M.T / is constructed from T, you might write across

the top of the matrix the basis vectors v1; : : : ; vn for the domain and along the

left the basis vectors w1; : : : ;wm for the vector space into which T maps, as

follows:

v1 : : : vk : : : vn

w1

M.T / D :::

wm

0
B@

A1;k
:::

Am;k

1
CA :

The kth column of M.T / con-

sists of the scalars needed to write

T vk as a linear combination of

.w1; : : : ;wm/:

T vk D
mX

j D1

Aj;kwj .

In the matrix above only the kth col-

umn is shown. Thus the second index

of each displayed entry of the matrix

above is k. The picture above should

remind you that T vk can be computed

from M.T / by multiplying each entry

in the kth column by the correspond-

ing wj from the left column, and then

adding up the resulting vectors.

If T maps an n-dimensional vector

space to an m-dimensional vector

space, then M.T / is an m-by-n

matrix.

If T is a linear map from Fn to Fm,

then unless stated otherwise, assume the

bases in question are the standard ones

(where the kth basis vector is 1 in the

kth slot and 0 in all the other slots). If

you think of elements of Fm as columns

ofm numbers, then you can think of the

kth column of M.T / as T applied to

the kth standard basis vector.

3.33 Example Suppose T 2 L.F2;F3/ is defined by

T .x; y/ D .x C 3y; 2x C 5y; 7x C 9y/:

Find the matrix of T with respect to the standard bases of F2 and F3.

Solution Because T .1; 0/ D .1; 2; 7/ and T .0; 1/ D .3; 5; 9/, the matrix of

T with respect to the standard bases is the 3-by-2 matrix below:

M.T / D

0
@
1 3

2 5

7 9

1
A :
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When working with Pm.F/, use the standard basis 1; x; x2; : : : ; xm unless

the context indicates otherwise.

3.34 Example SupposeD 2 L
�
P3.R/;P2.R/

�
is the differentiation map

defined by Dp D p0. Find the matrix of D with respect to the standard bases

of P3.R/ and P2.R/.

Solution Because .xn/0 D nxn�1, the matrix of T with respect to the

standard bases is the 3-by-4 matrix below:

M.D/ D

0
@
0 1 0 0

0 0 2 0

0 0 0 3

1
A :

Addition and Scalar Multiplication of Matrices

For the rest of this section, assume that V and W are finite-dimensional and

that a basis has been chosen for each of these vector spaces. Thus for each

linear map from V to W, we can talk about its matrix (with respect to the

chosen bases, of course). Is the matrix of the sum of two linear maps equal to

the sum of the matrices of the two maps?

Right now this question does not make sense, because although we have

defined the sum of two linear maps, we have not defined the sum of two

matrices. Fortunately, the obvious definition of the sum of two matrices has

the right properties. Specifically, we make the following definition.

3.35 Definition matrix addition

The sum of two matrices of the same size is the matrix obtained by adding

corresponding entries in the matrices:

0
B@
A1;1 : : : A1;n
:::

:::

Am;1 : : : Am;n

1
CAC

0
B@
C1;1 : : : C1;n
:::

:::

Cm;1 : : : Cm;n

1
CA

D

0
B@

A1;1 C C1;1 : : : A1;n C C1;n
:::

:::

Am;1 C Cm;1 : : : Am;n C Cm;n

1
CA :

In other words, .AC C/j;k D Aj;k C Cj;k .
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In the following result, the assumption is that the same bases are used for

all three linear maps S C T, S , and T.

3.36 The matrix of the sum of linear maps

Suppose S; T 2 L.V;W /. Then M.S C T / D M.S/C M.T /.

The verification of the result above is left to the reader.

Still assuming that we have some bases in mind, is the matrix of a scalar

times a linear map equal to the scalar times the matrix of the linear map?

Again the question does not make sense, because we have not defined scalar

multiplication on matrices. Fortunately, the obvious definition again has the

right properties.

3.37 Definition scalar multiplication of a matrix

The product of a scalar and a matrix is the matrix obtained by multiplying

each entry in the matrix by the scalar:

�

0
B@
A1;1 : : : A1;n
:::

:::

Am;1 : : : Am;n

1
CA D

0
B@
�A1;1 : : : �A1;n
:::

:::

�Am;1 : : : �Am;n

1
CA :

In other words, .�A/j;k D �Aj;k .

In the following result, the assumption is that the same bases are used for

both linear maps �T and T.

3.38 The matrix of a scalar times a linear map

Suppose � 2 F and T 2 L.V;W /. Then M.�T / D �M.T /.

The verification of the result above is also left to the reader.

Because addition and scalar multiplication have now been defined for

matrices, you should not be surprised that a vector space is about to appear.

We need only a bit of notation so that this new vector space has a name.

3.39 Notation Fm;n

For m and n positive integers, the set of all m-by-n matrices with entries

in F is denoted by Fm;n.
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3.40 dim Fm;n D mn

Suppose m and n are positive integers. With addition and scalar multipli-

cation defined as above, Fm;n is a vector space with dimension mn.

Proof The verification that Fm;n is a vector space is left to the reader. Note

that the additive identity of Fm;n is the m-by-n matrix whose entries all

equal 0.

The reader should also verify that the list of m-by-n matrices that have 0

in all entries except for a 1 in one entry is a basis of Fm;n. There are mn such

matrices, so the dimension of Fm;n equals mn.

Matrix Multiplication

Suppose, as previously, that v1; : : : ; vn is a basis of V and w1; : : : ;wm is

a basis of W. Suppose also that we have another vector space U and that

u1; : : : ; up is a basis of U.

Consider linear maps T W U ! V and S W V ! W. The composition

ST is a linear map from U to W. Does M.ST / equal M.S/M.T /? This

question does not yet make sense, because we have not defined the product of

two matrices. We will choose a definition of matrix multiplication that forces

this question to have a positive answer. Let’s see how to do this.

Suppose M.S/ D A and M.T / D C . For 1 � k � p, we have

.ST /uk D S
� nX

rD1

Cr;kvr

�

D
nX

rD1

Cr;kSvr

D
nX

rD1

Cr;k

mX

j D1

Aj;rwj

D
mX

j D1

� nX

rD1

Aj;rCr;k

�
wj :

Thus M.ST / is the m-by-p matrix whose entry in row j , column k, equals

nX

rD1

Aj;rCr;k :
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Now we see how to define matrix multiplication so that the desired equation

M.ST / D M.S/M.T / holds.

3.41 Definition matrix multiplication

Suppose A is an m-by-n matrix and C is an n-by-p matrix. Then AC is

defined to be the m-by-p matrix whose entry in row j , column k, is given

by the following equation:

.AC/j;k D
nX

rD1

Aj;rCr;k :

In other words, the entry in row j , column k, of AC is computed by

taking row j of A and column k of C , multiplying together corresponding

entries, and then summing.

You may have learned this defini-

tion of matrix multiplication in an

earlier course, although you may

not have seen the motivation for it.

Note that we define the product of

two matrices only when the number of

columns of the first matrix equals the

number of rows of the second matrix.

3.42 Example Here we multiply together a 3-by-2 matrix and a 2-by-4

matrix, obtaining a 3-by-4 matrix:
0
@
1 2

3 4

5 6

1
A
�
6 5 4 3

2 1 0 �1

�
D

0
@
10 7 4 1

26 19 12 5

42 31 20 9

1
A :

Matrix multiplication is not commutative. In other words, AC is not

necessarily equal to CA even if both products are defined (see Exercise 12).

Matrix multiplication is distributive and associative (see Exercises 13 and 14).

In the following result, the assumption is that the same basis of V is used

in considering T 2 L.U; V / and S 2 L.V;W /, the same basis of W is used

in considering S 2 L.V;W / and ST 2 L.U;W /, and the same basis of U is

used in considering T 2 L.U; V / and ST 2 L.U;W /.

3.43 The matrix of the product of linear maps

If T 2 L.U; V / and S 2 L.V;W /, then M.ST / D M.S/M.T /.

The proof of the result above is the calculation that was done as motivation

before the definition of matrix multiplication.
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In the next piece of notation, note that as usual the first index refers to a

row and the second index refers to a column, with a vertically centered dot

used as a placeholder.

3.44 Notation Aj;� , A�;k

Suppose A is an m-by-n matrix.

� If 1 � j � m, then Aj;� denotes the 1-by-n matrix consisting of

row j of A.

� If 1 � k � n, then A�;k denotes the m-by-1 matrix consisting of

column k of A.

3.45 Example If A D
�
8 4 5

1 9 7

�
, then A2;� is row 2 of A and A�;2 is

column 2 of A. In other words,

A2;� D
�
1 9 7

�
and A�;2 D

�
4

9

�
:

The product of a 1-by-n matrix and an n-by-1 matrix is a 1-by-1 matrix.

However, we will frequently identify a 1-by-1 matrix with its entry.

3.46 Example
�
3 4

� � 6

2

�
D
�
26

�
because 3 � 6 C 4 � 2 D 26.

However, we can identify
�
26

�
with 26, writing

�
3 4

� � 6

2

�
D 26.

Our next result gives another way to think of matrix multiplication: the

entry in row j , column k, of AC equals (row j of A) times (column k of C ).

3.47 Entry of matrix product equals row times column

Suppose A is an m-by-n matrix and C is an n-by-p matrix. Then

.AC/j;k D Aj;� C�;k

for 1 � j � m and 1 � k � p.

The proof of the result above follows immediately from the definitions.

3.48 Example The result above and Example 3.46 show why the entry

in row 2, column 1, of the product in Example 3.42 equals 26.
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The next result gives yet another way to think of matrix multiplication. It

states that column k of AC equals A times column k of C .

3.49 Column of matrix product equals matrix times column

Suppose A is an m-by-n matrix and C is an n-by-p matrix. Then

.AC/�;k D AC�;k
for 1 � k � p.

Again, the proof of the result above follows immediately from the defini-

tions and is left to the reader.

3.50 Example From the result above and the equation0
@
1 2

3 4

5 6

1
A
�
5

1

�
D

0
@

7

19

31

1
A ;

we see why column 2 in the matrix product in Example 3.42 is the right side

of the equation above.

We give one more way of thinking about the product of an m-by-n matrix

and an n-by-1 matrix. The following example illustrates this approach.

3.51 Example In the example above, the product of a 3-by-2 matrix and

a 2-by-1 matrix is a linear combination of the columns of the 3-by-2 matrix,

with the scalars that multiply the columns coming from the 2-by-1 matrix.

Specifically, 0
@

7

19

31

1
A D 5

0
@
1

3

5

1
AC 1

0
@
2

4

6

1
A :

The next result generalizes the example above. Again, the proof follows

easily from the definitions and is left to the reader.

3.52 Linear combination of columns

Suppose A is an m-by-n matrix and c D

0
B@
c1
:::

cn

1
CA is an n-by-1 matrix.

Then

Ac D c1A�;1 C � � � C cnA�;n:

In other words, Ac is a linear combination of the columns of A, with the

scalars that multiply the columns coming from c.
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Two more ways to think about matrix multiplication are given by Exercises

10 and 11.

EXERCISES 3.C

1 Suppose V and W are finite-dimensional and T 2 L.V;W /. Show that

with respect to each choice of bases of V and W, the matrix of T has at

least dim rangeT nonzero entries.

2 Suppose D 2 L
�
P3.R/;P2.R/

�
is the differentiation map defined by

Dp D p0. Find a basis of P3.R/ and a basis of P2.R/ such that the

matrix of D with respect to these bases is

0
@
1 0 0 0

0 1 0 0

0 0 1 0

1
A :

[Compare the exercise above to Example 3.34.

The next exercise generalizes the exercise above.]

3 Suppose V and W are finite-dimensional and T 2 L.V;W /. Prove

that there exist a basis of V and a basis of W such that with respect to

these bases, all entries of M.T / are 0 except that the entries in row j ,

column j , equal 1 for 1 � j � dim rangeT.

4 Suppose v1; : : : ; vm is a basis of V andW is finite-dimensional. Suppose

T 2 L.V;W /. Prove that there exists a basis w1; : : : ;wn of W such that

all the entries in the first column of M.T / (with respect to the bases

v1; : : : ; vm and w1; : : : ;wn) are 0 except for possibly a 1 in the first row,

first column.

[In this exercise, unlike Exercise 3, you are given the basis of V instead

of being able to choose a basis of V.]

5 Suppose w1; : : : ;wn is a basis ofW and V is finite-dimensional. Suppose

T 2 L.V;W /. Prove that there exists a basis v1; : : : ; vm of V such

that all the entries in the first row of M.T / (with respect to the bases

v1; : : : ; vm and w1; : : : ;wn) are 0 except for possibly a 1 in the first row,

first column.

[In this exercise, unlike Exercise 3, you are given the basis of W instead

of being able to choose a basis of W.]
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6 Suppose V and W are finite-dimensional and T 2 L.V;W /. Prove that

dim rangeT D 1 if and only if there exist a basis of V and a basis of W

such that with respect to these bases, all entries of M.T / equal 1.

7 Verify 3.36.

8 Verify 3.38.

9 Prove 3.52.

10 Suppose A is an m-by-n matrix and C is an n-by-p matrix. Prove that

.AC/j;� D Aj;� C

for 1 � j � m. In other words, show that row j of AC equals

(row j of A) times C .

11 Suppose a D
�
a1 � � � an

�
is a 1-by-n matrix and C is an n-by-p

matrix. Prove that

aC D a1C1;� C � � � C anCn;� :

In other words, show that aC is a linear combination of the rows of C ,

with the scalars that multiply the rows coming from a.

12 Give an example with 2-by-2 matrices to show that matrix multiplication

is not commutative. In other words, find 2-by-2 matrices A and C such

that AC ¤ CA.

13 Prove that the distributive property holds for matrix addition and matrix

multiplication. In other words, suppose A, B , C , D, E, and F are

matrices whose sizes are such that A.B C C/ and .D C E/F make

sense. Prove that AB C AC and DF C EF both make sense and that

A.B C C/ D AB C AC and .D CE/F D DF CEF .

14 Prove that matrix multiplication is associative. In other words, suppose

A, B , and C are matrices whose sizes are such that .AB/C makes sense.

Prove that A.BC/ makes sense and that .AB/C D A.BC/.

15 Suppose A is an n-by-n matrix and 1 � j; k � n. Show that the entry in

row j , column k, of A3 (which is defined to mean AAA) is

nX

pD1

nX

rD1

Aj;pAp;rAr;k :
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3.D Invertibility and Isomorphic Vector

Spaces

Invertible Linear Maps

We begin this section by defining the notions of invertible and inverse in the

context of linear maps.

3.53 Definition invertible, inverse

� A linear map T 2 L.V;W / is called invertible if there exists a

linear map S 2 L.W; V / such that ST equals the identity map on

V and TS equals the identity map on W.

� A linear map S 2 L.W; V / satisfying ST D I and TS D I is

called an inverse of T (note that the first I is the identity map on V

and the second I is the identity map on W ).

3.54 Inverse is unique

An invertible linear map has a unique inverse.

Proof Suppose T 2 L.V;W / is invertible and S1 and S2 are inverses of T.

Then

S1 D S1I D S1.TS2/ D .S1T /S2 D IS2 D S2:

Thus S1 D S2.

Now that we know that the inverse is unique, we can give it a notation.

3.55 Notation T �1

If T is invertible, then its inverse is denoted by T �1. In other words, if

T 2 L.V;W / is invertible, then T �1 is the unique element of L.W; V /

such that T �1T D I and T T �1 D I.

The following result characterizes the invertible linear maps.

3.56 Invertibility is equivalent to injectivity and surjectivity

A linear map is invertible if and only if it is injective and surjective.
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Proof Suppose T 2 L.V;W /. We need to show that T is invertible if and

only if it is injective and surjective.

First suppose T is invertible. To show that T is injective, suppose u; v 2 V
and T u D T v. Then

u D T �1.T u/ D T �1.T v/ D v;

so u D v. Hence T is injective.

We are still assuming that T is invertible. Now we want to prove that T is

surjective. To do this, let w 2 W. Then w D T .T �1w/, which shows that w is

in the range of T. Thus rangeT D W. Hence T is surjective, completing this

direction of the proof.

Now suppose T is injective and surjective. We want to prove that T is

invertible. For each w 2 W, define Sw to be the unique element of V such

that T .Sw/ D w (the existence and uniqueness of such an element follow

from the surjectivity and injectivity of T ). Clearly T ı S equals the identity

map on W.

To prove that S ı T equals the identity map on V, let v 2 V. Then

T
�
.S ı T /v

�
D .T ı S/.T v/ D I.T v/ D T v:

This equation implies that .S ı T /v D v (because T is injective). Thus S ı T
equals the identity map on V.

To complete the proof, we need to show that S is linear. To do this, suppose

w1, w2 2 W. Then

T .Sw1 C Sw2/ D T .Sw1/C T .Sw2/ D w1 C w2:

Thus Sw1 C Sw2 is the unique element of V that T maps to w1 C w2. By

the definition of S , this implies that S.w1 C w2/ D Sw1 C Sw2. Hence S

satisfies the additive property required for linearity.

The proof of homogeneity is similar. Specifically, if w 2 W and � 2 F,

then

T .�Sw/ D �T .Sw/ D �w:

Thus �Sw is the unique element of V that T maps to �w. By the definition of

S , this implies that S.�w/ D �Sw. Hence S is linear, as desired.

3.57 Example linear maps that are not invertible

� The multiplication by x2 linear map from P.R/ to P.R/ (see 3.4) is

not invertible because it is not surjective (1 is not in the range).

� The backward shift linear map from F1 to F1 (see 3.4) is not invertible

because it is not injective [.1; 0; 0; 0; : : : / is in the null space].



82 CHAPTER 3 Linear Maps

Isomorphic Vector Spaces

The next definition captures the idea of two vector spaces that are essentially

the same, except for the names of the elements of the vector spaces.

3.58 Definition isomorphism, isomorphic

� An isomorphism is an invertible linear map.

� Two vector spaces are called isomorphic if there is an isomorphism

from one vector space onto the other one.

Think of an isomorphism T W V ! W as relabeling v 2 V as T v 2 W. This

viewpoint explains why two isomorphic vector spaces have the same vector

space properties. The terms “isomorphism” and “invertible linear map” mean

The Greek word isos means equal;

the Greek word morph means

shape. Thus isomorphic literally

means equal shape.

the same thing. Use “isomorphism"

when you want to emphasize that the

two spaces are essentially the same.

3.59 Dimension shows whether vector spaces are isomorphic

Two finite-dimensional vector spaces over F are isomorphic if and only if

they have the same dimension.

Proof First suppose V and W are isomorphic finite-dimensional vector

spaces. Thus there exists an isomorphism T from V onto W. Because T is

invertible, we have nullT D f0g and rangeT D W. Thus dim nullT D 0

and dim rangeT D dimW. The formula

dimV D dim nullT C dim rangeT

(the Fundamental Theorem of Linear Maps, which is 3.22) thus becomes the

equation dimV D dimW, completing the proof in one direction.

To prove the other direction, suppose V and W are finite-dimensional

vector spaces with the same dimension. Let v1; : : : ; vn be a basis of V and

w1; : : : ;wn be a basis of W. Let T 2 L.V;W / be defined by

T .c1v1 C � � � C cnvn/ D c1w1 C � � � C cnwn:

Then T is a well-defined linear map because v1; : : : ; vn is a basis of V

(see 3.5). Also, T is surjective because w1; : : : ;wn spans W. Furthermore,

nullT D f0g because w1; : : : ;wn is linearly independent; thus T is injective.

Because T is injective and surjective, it is an isomorphism (see 3.56). Hence

V and W are isomorphic, as desired.
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Because every finite-dimensional

vector space is isomorphic to some

Fn, why not just study Fn instead of

more general vector spaces? To an-

swer this question, note that an in-

vestigation of Fn would soon lead

to other vector spaces. For exam-

ple, we would encounter the null

space and range of linear maps. Al-

though each of these vector spaces

is isomorphic to some Fn, thinking

of them that way often adds com-

plexity but no new insight.

The previous result implies that each

finite-dimensional vector space V is iso-

morphic to Fn, where n D dimV.

If v1; : : : ; vn is a basis of V and

w1; : : : ;wm is a basis of W, then for

each T 2 L.V;W /, we have a matrix

M.T / 2 Fm;n. In other words, once

bases have been fixed for V and W,

M becomes a function from L.V;W /

to Fm;n. Notice that 3.36 and 3.38 show

that M is a linear map. This linear map

is actually invertible, as we now show.

3.60 L.V;W / and Fm;n are isomorphic

Suppose v1; : : : ; vn is a basis of V and w1; : : : ;wm is a basis of W.

Then M is an isomorphism between L.V;W / and Fm;n.

Proof We already noted that M is linear. We need to prove that M is injec-

tive and surjective. Both are easy. We begin with injectivity. If T 2 L.V;W /

and M.T / D 0, then T vk D 0 for k D 1; : : : ; n. Because v1; : : : ; vn is a

basis of V, this implies T D 0. Thus M is injective (by 3.16).

To prove that M is surjective, suppose A 2 Fm;n. Let T be the linear map

from V to W such that

T vk D
mX

j D1

Aj;kwj

for k D 1; : : : ; n (see 3.5). Obviously M.T / equals A, and thus the range of

M equals Fm;n, as desired.

Now we can determine the dimension of the vector space of linear maps

from one finite-dimensional vector space to another.

3.61 dimL.V;W / D .dimV /.dimW /

Suppose V and W are finite-dimensional. Then L.V;W / is finite-

dimensional and

dimL.V;W / D .dimV /.dimW /:

Proof This follows from 3.60, 3.59, and 3.40.
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Linear Maps Thought of as Matrix Multiplication

Previously we defined the matrix of a linear map. Now we define the matrix

of a vector.

3.62 Definition matrix of a vector, M.v/

Suppose v 2 V and v1; : : : ; vn is a basis of V. The matrix of v with

respect to this basis is the n-by-1 matrix

M.v/ D

0
B@
c1
:::

cn

1
CA ;

where c1; : : : ; cn are the scalars such that

v D c1v1 C � � � C cnvn:

The matrix M.v/ of a vector v 2 V depends on the basis v1; : : : ; vn of V,

as well as on v. However, the basis should be clear from the context and thus

it is not included in the notation.

3.63 Example matrix of a vector

� The matrix of 2� 7xC 5x3 with respect to the standard basis of P3.R/

is 0
BB@

2

�7
0

5

1
CCA :

� The matrix of a vector x 2 Fn with respect to the standard basis is

obtained by writing the coordinates of x as the entries in an n-by-1

matrix. In other words, if x D .x1; : : : ; xn/ 2 Fn, then

M.x/ D

0
B@
x1
:::

xn

1
CA :

Occasionally we want to think of elements of V as relabeled to be n-by-1

matrices. Once a basis v1; : : : ; vn is chosen, the function M that takes v 2 V
to M.v/ is an isomorphism of V onto Fn;1 that implements this relabeling.
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Recall that if A is an m-by-n matrix, then A�;k denotes the kth column of

A, thought of as an m-by-1 matrix. In the next result, M.vk/ is computed

with respect to the basis w1; : : : ;wm of W.

3.64 M.T /�;k D M.vk/.

Suppose T 2 L.V;W / and v1; : : : ; vn is a basis of V and w1; : : : ;wm is

a basis of W. Let 1 � k � n. Then the kth column of M.T /, which is

denoted by M.T /�;k , equals M.vk/.

Proof The desired result follows immediately from the definitions of M.T /

and M.vk/.

The next result shows how the notions of the matrix of a linear map, the

matrix of a vector, and matrix multiplication fit together.

3.65 Linear maps act like matrix multiplication

Suppose T 2 L.V;W / and v 2 V. Suppose v1; : : : ; vn is a basis of V and

w1; : : : ;wm is a basis of W. Then

M.T v/ D M.T /M.v/:

Proof Suppose v D c1v1 C � � � C cnvn, where c1; : : : ; cn 2 F. Thus

3.66 T v D c1T v1 C � � � C cnT vn:

Hence

M.T v/ D c1M.T v1/C � � � C cnM.T vn/

D c1M.T /�;1 C � � � C cnM.T /�;n
D M.T /M.v/;

where the first equality follows from 3.66 and the linearity of M, the second

equality comes from 3.64, and the last equality comes from 3.52.

Eachm-by-nmatrixA induces a linear map from Fn;1 to Fm;1, namely the

matrix multiplication function that takes x 2 Fn;1 to Ax 2 Fm;1. The result

above can be used to think of every linear map (from one finite-dimensional

vector space to another finite-dimensional vector space) as a matrix multi-

plication map after suitable relabeling via the isomorphisms given by M.

Specifically, if T 2 L.V;W / and we identify v 2 V with M.v/ 2 Fn;1, then

the result above says that we can identify T v with M.T /M.v/.
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Because the result above allows us to think (via isomorphisms) of each

linear map as multiplication on Fn;1 by some matrix A, keep in mind that the

specific matrix A depends not only on the linear map but also on the choice

of bases. One of the themes of many of the most important results in later

chapters will be the choice of a basis that makes the matrix A as simple as

possible.

In this book, we concentrate on linear maps rather than on matrices. How-

ever, sometimes thinking of linear maps as matrices (or thinking of matrices

as linear maps) gives important insights that we will find useful.

Operators

Linear maps from a vector space to itself are so important that they get a

special name and special notation.

3.67 Definition operator, L.V /

� A linear map from a vector space to itself is called an operator.

� The notation L.V / denotes the set of all operators on V. In other

words, L.V / D L.V; V /.

The deepest and most important

parts of linear algebra, as well as

most of the rest of this book, deal

with operators.

A linear map is invertible if it is

injective and surjective. For an op-

erator, you might wonder whether in-

jectivity alone, or surjectivity alone,

is enough to imply invertibility. On

infinite-dimensional vector spaces, neither condition alone implies invert-

ibility, as illustrated by the next example, which uses two familiar operators

from Example 3.4.

3.68 Example neither injectivity nor surjectivity implies invertibility

� The multiplication by x2 operator on P.R/ is injective but not surjective.

� The backward shift operator on F1 is surjective but not injective.

In view of the example above, the next result is remarkable—it states

that for operators on a finite-dimensional vector space, either injectivity or

surjectivity alone implies the other condition. Often it is easier to check that

an operator on a finite-dimensional vector space is injective, and then we get

surjectivity for free.
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3.69 Injectivity is equivalent to surjectivity in finite dimensions

Suppose V is finite-dimensional and T 2 L.V /. Then the following are

equivalent:

(a) T is invertible;

(b) T is injective;

(c) T is surjective.

Proof Clearly (a) implies (b).

Now suppose (b) holds, so that T is injective. Thus nullT D f0g (by 3.16).

From the Fundamental Theorem of Linear Maps (3.22) we have

dim rangeT D dimV � dim nullT

D dimV:

Thus rangeT equals V. Thus T is surjective. Hence (b) implies (c).

Now suppose (c) holds, so that T is surjective. Thus rangeT D V. From

the Fundamental Theorem of Linear Maps (3.22) we have

dim nullT D dimV � dim rangeT

D 0:

Thus nullT equals f0g. Thus T is injective (by 3.16), and so T is invertible

(we already knew that T was surjective). Hence (c) implies (a), completing

the proof.

The next example illustrates the power of the previous result. Although

it is possible to prove the result in the example below without using linear

algebra, the proof using linear algebra is cleaner and easier.

3.70 Example Show that for each polynomial q 2 P.R/, there exists a

polynomial p 2 P.R/ with
�
.x2 C 5x C 7/p

�00 D q.

Solution Example 3.68 shows that the magic of 3.69 does not apply to the

infinite-dimensional vector space P.R/. However, each nonzero polynomial

q has some degree m. By restricting attention to Pm.R/, we can work with a

finite-dimensional vector space.

Suppose q 2 Pm.R/. Define T W Pm.R/ ! Pm.R/ by

Tp D
�
.x2 C 5x C 7/p

�00
:
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Multiplying a nonzero polynomial by .x2 C 5x C 7/ increases the degree

by 2, and then differentiating twice reduces the degree by 2. Thus T is indeed

an operator on Pm.R/.

Every polynomial whose second derivative equals 0 is of the form ax C b,

where a; b 2 R. Thus nullT D f0g. Hence T is injective.

Now 3.69 implies that T is surjective. Thus there exists a polynomial

p 2 Pm.R/ such that
�
.x2 C 5x C 7/p

�00 D q, as desired.

Exercise 30 in Section 6.A gives a similar but more spectacular application

of 3.69. The result in that exercise is quite difficult to prove without using

linear algebra.

EXERCISES 3.D

1 Suppose T 2 L.U; V / and S 2 L.V;W / are both invertible linear maps.

Prove that ST 2 L.U;W / is invertible and that .ST /�1 D T �1S�1.

2 Suppose V is finite-dimensional and dimV > 1. Prove that the set of

noninvertible operators on V is not a subspace of L.V /.

3 Suppose V is finite-dimensional, U is a subspace of V, and S 2 L.U; V /.

Prove there exists an invertible operator T 2 L.V / such that T u D Su

for every u 2 U if and only if S is injective.

4 Suppose W is finite-dimensional and T1; T2 2 L.V;W /. Prove that

nullT1 D nullT2 if and only if there exists an invertible operator

S 2 L.W / such that T1 D ST2.

5 Suppose V is finite-dimensional and T1; T2 2 L.V;W /. Prove that

rangeT1 D rangeT2 if and only if there exists an invertible operator

S 2 L.V / such that T1 D T2S .

6 Suppose V and W are finite-dimensional and T1; T2 2 L.V;W /. Prove

that there exist invertible operators R 2 L.V / and S 2 L.W / such that

T1 D ST2R if and only if dim nullT1 D dim nullT2.

7 Suppose V and W are finite-dimensional. Let v 2 V. Let

E D fT 2 L.V;W / W T v D 0g:

(a) Show that E is a subspace of L.V;W /.

(b) Suppose v ¤ 0. What is dimE?
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8 Suppose V is finite-dimensional and T W V ! W is a surjective linear

map of V onto W. Prove that there is a subspace U of V such that

T jU is an isomorphism of U onto W. (Here T jU means the function T

restricted to U. In other words, T jU is the function whose domain is U,

with T jU defined by T jU .u/ D T u for every u 2 U.)

9 Suppose V is finite-dimensional and S; T 2 L.V /. Prove that ST is

invertible if and only if both S and T are invertible.

10 Suppose V is finite-dimensional and S; T 2 L.V /. Prove that ST D I

if and only if TS D I.

11 Suppose V is finite-dimensional and S; T; U 2 L.V / and ST U D I.

Show that T is invertible and that T �1 D US .

12 Show that the result in the previous exercise can fail without the hypoth-

esis that V is finite-dimensional.

13 Suppose V is a finite-dimensional vector space and R; S; T 2 L.V / are

such that RST is surjective. Prove that S is injective.

14 Suppose v1; : : : ; vn is a basis of V. Prove that the map T W V ! Fn;1

defined by

T v D M.v/

is an isomorphism of V onto Fn;1; here M.v/ is the matrix of v 2 V

with respect to the basis v1; : : : ; vn.

15 Prove that every linear map from Fn;1 to Fm;1 is given by a matrix

multiplication. In other words, prove that if T 2 L.Fn;1;Fm;1/, then

there exists an m-by-n matrix A such that T x D Ax for every x 2 Fn;1.

16 Suppose V is finite-dimensional and T 2 L.V /. Prove that T is a scalar

multiple of the identity if and only if ST D TS for every S 2 L.V /.

17 Suppose V is finite-dimensional and E is a subspace of L.V / such that

ST 2 E and TS 2 E for all S 2 L.V / and all T 2 E . Prove that

E D f0g or E D L.V /.

18 Show that V and L.F; V / are isomorphic vector spaces.

19 Suppose T 2 L
�
P.R/

�
is such that T is injective and degTp � degp

for every nonzero polynomial p 2 P.R/.

(a) Prove that T is surjective.

(b) Prove that degTp D degp for every nonzero p 2 P.R/.
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20 Suppose n is a positive integer and Ai;j 2 F for i; j D 1; : : : ; n. Prove

that the following are equivalent (note that in both parts below, the

number of equations equals the number of variables):

(a) The trivial solution x1 D � � � D xn D 0 is the only solution to the

homogeneous system of equations

nX

kD1

A1;kxk D 0

:::

nX

kD1

An;kxk D 0:

(b) For every c1; : : : ; cn 2 F, there exists a solution to the system of

equations

nX

kD1

A1;kxk D c1

:::

nX

kD1

An;kxk D cn:
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3.E Products and Quotients of Vector Spaces

Products of Vector Spaces

As usual when dealing with more than one vector space, all the vector spaces

in use should be over the same field.

3.71 Definition product of vector spaces

Suppose V1; : : : ; Vm are vector spaces over F.

� The product V1 � � � � � Vm is defined by

V1 � � � � � Vm D f.v1; : : : ; vm/ W v1 2 V1; : : : ; vm 2 Vmg:

� Addition on V1 � � � � � Vm is defined by

.u1; : : : ; um/C .v1; : : : ; vm/ D .u1 C v1; : : : ; um C vm/:

� Scalar multiplication on V1 � � � � � Vm is defined by

�.v1; : : : ; vm/ D .�v1; : : : ; �vm/:

3.72 Example Elements of P2.R/ � R3 are lists of length 2, with the

first item in the list an element of P2.R/ and the second item in the list an

element of R3.

For example,
�
5 � 6x C 4x2; .3; 8; 7/

�
2 P2.R/ � R3.

The next result should be interpreted to mean that the product of vector

spaces is a vector space with the operations of addition and scalar multiplica-

tion as defined above.

3.73 Product of vector spaces is a vector space

Suppose V1; : : : ; Vm are vector spaces over F. Then V1 � � � � � Vm is a

vector space over F.

The proof of the result above is left to the reader. Note that the additive

identity of V1 � � � � � Vm is .0; : : : ; 0/, where the 0 in the j th slot is the

additive identity of Vj . The additive inverse of .v1; : : : ; vm/ 2 V1 � � � � � Vm

is .�v1; : : : ;�vm/.
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3.74 Example Is R2 � R3 equal to R5? Is R2 � R3 isomorphic to R5?

Solution Elements of R2 � R3 are lists
�
.x1; x2/; .x3; x4; x5/

�
, where

x1; x2; x3; x4; x5 2 R.

Elements of R5 are lists .x1; x2; x3; x4; x5/, where x1; x2; x3; x4; x5 2 R.

Although these look almost the same, they are not the same kind of object.

Elements of R2 � R3 are lists of length 2 (with the first item itself a list of

length 2 and the second item a list of length 3), and elements of R5 are lists

of length 5. Thus R2 � R3 does not equal R5.

The linear map that takes a vector
�
.x1; x2/; .x3; x4; x5/

�
2 R2 � R3 to

.x1; x2; x3; x4; x5/ 2 R5 is clearly an isomorphism of R2 � R3 onto R5.

Thus these two vector spaces are isomorphic.

In this case, the isomorphism is so natural that we should think of it as a

relabeling. Some people would even informally say that R2 � R3 equals R5,

which is not technically correct but which captures the spirit of identification

via relabeling.

The next example illustrates the idea of the proof of 3.76.

3.75 Example Find a basis of P2.R/ � R2.

Solution Consider this list of length 5 of elements of P2.R/ � R2:

�
1; .0; 0/

�
;
�
x; .0; 0/

�
;
�
x2; .0; 0/

�
;
�
0; .1; 0/

�
;
�
0; .0; 1/

�
:

The list above is linearly independent and it spans P2.R/ � R2. Thus it is a

basis of P2.R/ � R2.

3.76 Dimension of a product is the sum of dimensions

Suppose V1; : : : ; Vm are finite-dimensional vector spaces. Then

V1 � � � � � Vm is finite-dimensional and

dim.V1 � � � � � Vm/ D dimV1 C � � � C dimVm:

Proof Choose a basis of each Vj . For each basis vector of each Vj , consider

the element of V1 � � � � � Vm that equals the basis vector in the j th slot and

0 in the other slots. The list of all such vectors is linearly independent and

spans V1 � � � � � Vm. Thus it is a basis of V1 � � � � � Vm. The length of this

basis is dimV1 C � � � C dimVm, as desired.
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Products and Direct Sums

In the next result, the map � is surjective by the definition of U1 C � � � C Um.

Thus the last word in the result below could be changed from “injective” to

“invertible”.

3.77 Products and direct sums

Suppose that U1; : : : ; Um are subspaces of V. Define a linear map

� W U1 � � � � � Um ! U1 C � � � C Um by

�.u1; : : : ; um/ D u1 C � � � C um:

Then U1 C � � � C Um is a direct sum if and only if � is injective.

Proof The linear map � is injective if and only if the only way to write 0 as a

sum u1 C � � � C um, where each uj is in Uj , is by taking each uj equal to 0.

Thus 1.44 shows that � is injective if and only if U1 C � � � C Um is a direct

sum, as desired.

3.78 A sum is a direct sum if and only if dimensions add up

Suppose V is finite-dimensional andU1; : : : ; Um are subspaces of V. Then

U1 C � � � C Um is a direct sum if and only if

dim.U1 C � � � C Um/ D dimU1 C � � � C dimUm:

Proof The map � in 3.77 is surjective. Thus by the Fundamental Theorem

of Linear Maps (3.22), � is injective if and only if

dim.U1 C � � � C Um/ D dim.U1 � � � � � Um/:

Combining 3.77 and 3.76 now shows that U1 C � � � C Um is a direct sum if

and only if

dim.U1 C � � � C Um/ D dimU1 C � � � C dimUm;

as desired.

In the special case m D 2, an alternative proof that U1 C U2 is a direct

sum if and only if dim.U1 C U2/ D dimU1 C dimU2 can be obtained by

combining 1.45 and 2.43.
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Quotients of Vector Spaces

We begin our approach to quotient spaces by defining the sum of a vector and

a subspace.

3.79 Definition v C U

Suppose v 2 V and U is a subspace of V. Then v C U is the subset of V

defined by

v C U D fv C u W u 2 U g:

3.80 Example Suppose

U D f.x; 2x/ 2 R2 W x 2 Rg:
ThenU is the line in R2 through the origin

with slope 2. Thus

.17; 20/C U

is the line in R2 that contains the point

.17; 20/ and has slope 2.

U �17, 20� � U

�17, 20��10, 20�

10 17

20

3.81 Definition affine subset, parallel

� An affine subset of V is a subset of V of the form v C U for some

v 2 V and some subspace U of V.

� For v 2 V and U a subspace of V, the affine subset v C U is said to

be parallel to U.

3.82 Example parallel affine subsets

� In Example 3.80 above, all the lines in R2 with slope 2 are parallel to U.

� If U D f.x; y; 0/ 2 R3 W x; y 2 Rg, then the affine subsets of R3

parallel to U are the planes in R3 that are parallel to the xy-plane U in

the usual sense.

Important: With the definition of parallel given in 3.81, no line in R3

is considered to be an affine subset that is parallel to the plane U.
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3.83 Definition quotient space, V=U

Suppose U is a subspace of V. Then the quotient space V=U is the set of

all affine subsets of V parallel to U. In other words,

V=U D fv C U W v 2 V g:

3.84 Example quotient spaces

� If U D f.x; 2x/ 2 R2 W x 2 Rg, then R2=U is the set of all lines in

R2 that have slope 2.

� If U is a line in R3 containing the origin, then R3=U is the set of all

lines in R3 parallel to U.

� If U is a plane in R3 containing the origin, then R3=U is the set of all

planes in R3 parallel to U.

Our next goal is to make V=U into a vector space. To do this, we will

need the following result.

3.85 Two affine subsets parallel to U are equal or disjoint

Suppose U is a subspace of V and v;w 2 V. Then the following are

equivalent:

(a) v � w 2 U ;

(b) v C U D w C U ;

(c) .v C U/ \ .w C U/ ¤ ¿.

Proof First suppose (a) holds, so v � w 2 U. If u 2 U, then

v C u D w C
�
.v � w/C u

�
2 w C U:

Thus v C U � w C U. Similarly, w C U � v C U. Thus v C U D w C U,

completing the proof that (a) implies (b).

Obviously (b) implies (c).

Now suppose (c) holds, so .v C U/ \ .w C U/ ¤ ¿. Thus there exist

u1; u2 2 U such that

v C u1 D w C u2:

Thus v � w D u2 � u1. Hence v � w 2 U, showing that (c) implies (a) and

completing the proof.



96 CHAPTER 3 Linear Maps

Now we can define addition and scalar multiplication on V=U.

3.86 Definition addition and scalar multiplication on V=U

Suppose U is a subspace of V. Then addition and scalar multiplication

are defined on V=U by

.v C U/C .w C U/ D .v C w/C U

�.v C U/ D .�v/C U

for v;w 2 V and � 2 F.

As part of the proof of the next result, we will show that the definitions

above make sense.

3.87 Quotient space is a vector space

Suppose U is a subspace of V. Then V=U, with the operations of addition

and scalar multiplication as defined above, is a vector space.

Proof The potential problem with the definitions above of addition and scalar

multiplication on V=U is that the representation of an affine subset parallel to

U is not unique. Specifically, suppose v;w 2 V. Suppose also that Ov; Ow 2 V
are such that v C U D Ov C U and w C U D Ow C U. To show that the

definition of addition on V=U given above makes sense, we must show that

.v C w/C U D .Ov C Ow/C U.

By 3.85, we have

v � Ov 2 U and w � Ow 2 U:

Because U is a subspace of V and thus is closed under addition, this implies

that .v � Ov/C .w � Ow/ 2 U. Thus .v C w/ � .Ov C Ow/ 2 U. Using 3.85 again,

we see that

.v C w/C U D .Ov C Ow/C U;

as desired. Thus the definition of addition on V=U makes sense.

Similarly, suppose � 2 F. Because U is a subspace of V and thus is

closed under scalar multiplication, we have �.v � Ov/ 2 U. Thus �v � �Ov 2 U.

Hence 3.85 implies that .�v/C U D .�Ov/C U. Thus the definition of scalar

multiplication on V=U makes sense.

Now that addition and scalar multiplication have been defined on V=U, the

verification that these operations make V=U into a vector space is straightfor-

ward and is left to the reader. Note that the additive identity of V=U is 0CU

(which equals U ) and that the additive inverse of v C U is .�v/C U.
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The next concept will give us an easy way to compute the dimension

of V=U.

3.88 Definition quotient map, �

Suppose U is a subspace of V. The quotient map � is the linear map

� W V ! V=U defined by

�.v/ D v C U

for v 2 V.

The reader should verify that � is indeed a linear map. Although �

depends on U as well as V, these spaces are left out of the notation because

they should be clear from the context.

3.89 Dimension of a quotient space

Suppose V is finite-dimensional and U is a subspace of V. Then

dimV=U D dimV � dimU:

Proof Let � be the quotient map from V to V=U. From 3.85, we see that

null� D U. Clearly range� D V=U. The Fundamental Theorem of Linear

Maps (3.22) thus tells us that

dimV D dimU C dimV=U;

which gives the desired result.

Each linear map T on V induces a linear map QT on V=.nullT /, which we

now define.

3.90 Definition QT
Suppose T 2 L.V;W /. Define QT W V=.nullT / ! W by

QT .v C nullT / D T v:

To show that the definition of QT makes sense, suppose u; v 2 V are such

that u C nullT D v C nullT. By 3.85, we have u � v 2 nullT. Thus

T .u � v/ D 0. Hence T u D T v. Thus the definition of QT indeed makes

sense.
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3.91 Null space and range of QT
Suppose T 2 L.V;W /. Then

(a) QT is a linear map from V=.nullT / to W ;

(b) QT is injective;

(c) range QT D rangeT ;

(d) V=.nullT / is isomorphic to rangeT.

Proof

(a) The routine verification that QT is linear is left to the reader.

(b) Suppose v 2 V and QT .v C nullT / D 0. Then T v D 0. Thus v 2 nullT.

Hence 3.85 implies that v C nullT D 0 C nullT. This implies that

null QT D 0, and hence QT is injective, as desired.

(c) The definition of QT shows that range QT D rangeT.

(d) Parts (b) and (c) imply that if we think of QT as mapping into rangeT,

then QT is an isomorphism from V=.nullT / onto rangeT.

EXERCISES 3.E

1 Suppose T is a function from V to W. The graph of T is the subset of

V �W defined by

graph of T D f.v; T v/ 2 V �W W v 2 V g:

Prove that T is a linear map if and only if the graph of T is a subspace

of V �W.

[Formally, a function T from V to W is a subset T of V �W such that

for each v 2 V, there exists exactly one element .v;w/ 2 T. In other

words, formally a function is what is called above its graph. We do

not usually think of functions in this formal manner. However, if we do

become formal, then the exercise above could be rephrased as follows:

Prove that a function T from V to W is a linear map if and only if T is

a subspace of V �W.]
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2 Suppose V1; : : : ; Vm are vector spaces such that V1 � � � � � Vm is finite-

dimensional. Prove that Vj is finite-dimensional for each j D 1; : : : ; m.

3 Give an example of a vector space V and subspaces U1; U2 of V such

that U1 �U2 is isomorphic to U1 CU2 but U1 CU2 is not a direct sum.

Hint: The vector space V must be infinite-dimensional.

4 Suppose V1; : : : ; Vm are vector spaces. Prove that L.V1 � � � � � Vm; W /

and L.V1; W / � � � � � L.Vm; W / are isomorphic vector spaces.

5 SupposeW1; : : : ; Wm are vector spaces. Prove that L.V;W1 �� � ��Wm/

and L.V;W1/ � � � � � L.V;Wm/ are isomorphic vector spaces.

6 For n a positive integer, define V n by

V n D V � � � � � V„ ƒ‚ …
n times

:

Prove that V n and L.Fn; V / are isomorphic vector spaces.

7 Suppose v; x are vectors in V and U;W are subspaces of V such that

v C U D x CW. Prove that U D W.

8 Prove that a nonempty subset A of V is an affine subset of V if and only

if �v C .1 � �/w 2 A for all v;w 2 A and all � 2 F.

9 Suppose A1 and A2 are affine subsets of V. Prove that the intersection

A1 \ A2 is either an affine subset of V or the empty set.

10 Prove that the intersection of every collection of affine subsets of V is

either an affine subset of V or the empty set.

11 Suppose v1; : : : ; vm 2 V. Let

A D f�1v1 C � � � C �mvm W �1; : : : ; �m 2 F and �1 C � � � C �m D 1g:

(a) Prove that A is an affine subset of V.

(b) Prove that every affine subset of V that contains v1; : : : ; vm also

contains A.

(c) Prove that A D v C U for some v 2 V and some subspace U of

V with dimU � m � 1.

12 Suppose U is a subspace of V such that V=U is finite-dimensional.

Prove that V is isomorphic to U � .V=U /.
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13 Suppose U is a subspace of V and v1 C U; : : : ; vm C U is a basis of

V=U and u1; : : : ; un is a basis of U. Prove that v1; : : : ; vm; u1; : : : ; un

is a basis of V.

14 Suppose U D f.x1; x2; : : : / 2 F1 W xj ¤ 0 for only finitely many j g.

(a) Show that U is a subspace of F1.

(b) Prove that F1=U is infinite-dimensional.

15 Suppose ' 2 L.V;F/ and ' ¤ 0. Prove that dimV=.null'/ D 1.

16 Suppose U is a subspace of V such that dimV=U D 1. Prove that there

exists ' 2 L.V;F/ such that null' D U.

17 Suppose U is a subspace of V such that V=U is finite-dimensional.

Prove that there exists a subspace W of V such that dimW D dimV=U

and V D U ˚W.

18 Suppose T 2 L.V;W / and U is a subspace of V. Let � denote the

quotient map from V onto V=U. Prove that there exists S 2 L.V=U;W /

such that T D S ı � if and only if U � nullT.

19 Find a correct statement analogous to 3.78 that is applicable to finite

sets, with unions analogous to sums of subspaces and disjoint unions

analogous to direct sums.

20 Suppose U is a subspace of V. Define � W L.V=U;W / ! L.V;W / by

�.S/ D S ı �:

(a) Show that � is a linear map.

(b) Show that � is injective.

(c) Show that range� D fT 2 L.V;W / W T u D 0 for every u 2 U g.
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3.F Duality

The Dual Space and the Dual Map

Linear maps into the scalar field F play a special role in linear algebra, and

thus they get a special name:

3.92 Definition linear functional

A linear functional on V is a linear map from V to F. In other words, a

linear functional is an element of L.V;F/.

3.93 Example linear functionals

� Define ' W R3 ! R by '.x; y; z/ D 4x � 5y C 2z. Then ' is a linear

functional on R3.

� Fix .c1; : : : ; cn/ 2 Fn. Define ' W Fn ! F by

'.x1; : : : ; xn/ D c1x1 C � � � C cnxn:

Then ' is a linear functional on Fn.

� Define ' W P.R/ ! R by '.p/ D 3p00.5/C 7p.4/. Then ' is a linear

functional on P.R/.

� Define ' W P.R/ ! R by '.p/ D
R 1

0 p.x/ dx. Then ' is a linear

functional on P.R/.

The vector space L.V;F/ also gets a special name and special notation:

3.94 Definition dual space, V 0

The dual space of V, denoted V 0, is the vector space of all linear

functionals on V. In other words, V 0 D L.V;F/.

3.95 dimV 0 D dimV

Suppose V is finite-dimensional. Then V 0 is also finite-dimensional and

dimV 0 D dimV.

Proof This result follows from 3.61.
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In the following definition, 3.5 implies that each 'j is well defined.

3.96 Definition dual basis

If v1; : : : ; vn is a basis of V, then the dual basis of v1; : : : ; vn is the list

'1; : : : ; 'n of elements of V 0, where each 'j is the linear functional on V

such that

'j .vk/ D
(
1 if k D j;

0 if k ¤ j:

3.97 Example What is the dual basis of the standard basis e1; : : : ; en

of Fn?

Solution For 1 � j � n, define 'j to be the linear functional on Fn that

selects the j th coordinate of a vector in Fn. In other words,

'j .x1; : : : ; xn/ D xj

for .x1; : : : ; xn/ 2 Fn. Clearly

'j .ek/ D
(
1 if k D j;

0 if k ¤ j:

Thus '1; : : : ; 'n is the dual basis of the standard basis e1; : : : ; en of Fn.

The next result shows that the dual basis is indeed a basis. Thus the

terminology “dual basis” is justified.

3.98 Dual basis is a basis of the dual space

Suppose V is finite-dimensional. Then the dual basis of a basis of V is a

basis of V 0.

Proof Suppose v1; : : : ; vn is a basis of V. Let '1; : : : ; 'n denote the dual

basis.

To show that '1; : : : ; 'n is a linearly independent list of elements of V 0,
suppose a1; : : : ; an 2 F are such that

a1'1 C � � � C an'n D 0:

Now .a1'1 C � � � C an'n/.vj / D aj for j D 1; : : : ; n. The equation

above thus shows that a1 D � � � D an D 0. Hence '1; : : : ; 'n is linearly

independent.

Now 2.39 and 3.95 imply that '1; : : : ; 'n is a basis of V 0.
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In the definition below, note that if T is a linear map from V to W then T 0

is a linear map from W 0 to V 0.

3.99 Definition dual map, T 0

If T 2 L.V;W /, then the dual map of T is the linear map T 0 2 L.W 0; V 0/
defined by T 0.'/ D ' ı T for ' 2 W 0.

If T 2 L.V;W / and ' 2 W 0, then T 0.'/ is defined above to be the

composition of the linear maps ' and T. Thus T 0.'/ is indeed a linear map

from V to F; in other words, T 0.'/ 2 V 0.
The verification that T 0 is a linear map from W 0 to V 0 is easy:

� If '; 2 W 0, then

T 0.' C  / D .' C  / ı T D ' ı T C  ı T D T 0.'/C T 0. /:

� If � 2 F and ' 2 W 0, then

T 0.�'/ D .�'/ ı T D �.' ı T / D �T 0.'/:

In the next example, the prime notation is used with two unrelated mean-

ings: D0 denotes the dual of a linear map D, and p0 denotes the derivative of

a polynomial p.

3.100 Example Define D W P.R/ ! P.R/ by Dp D p0.

� Suppose ' is the linear functional on P.R/ defined by '.p/ D p.3/.

Then D0.'/ is the linear functional on P.R/ given by
�
D0.'/

�
.p/ D .' ıD/.p/ D '.Dp/ D '.p0/ D p0.3/:

In other words, D0.'/ is the linear functional on P.R/ that takes p to

p0.3/.

� Suppose ' is the linear functional on P.R/ defined by '.p/ D
R 1

0 p.

Then D0.'/ is the linear functional on P.R/ given by

�
D0.'/

�
.p/ D .'ıD/.p/ D '.Dp/ D '.p0/ D

Z 1

0

p0 D p.1/�p.0/:

In other words, D0.'/ is the linear functional on P.R/ that takes p to

p.1/ � p.0/.
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The first two bullet points in the result below imply that the function that

takes T to T 0 is a linear map from L.V;W / to L.W 0; V 0/.
In the third bullet point below, note the reversal of order from ST on the

left to T 0S 0 on the right (here we assume that U is a vector space over F).

3.101 Algebraic properties of dual maps

� .S C T /0 D S 0 C T 0 for all S; T 2 L.V;W /.

� .�T /0 D �T 0 for all � 2 F and all T 2 L.V;W /.

� .ST /0 D T 0S 0 for all T 2 L.U; V / and all S 2 L.V;W /.

Proof The proofs of the first two bullet points above are left to the reader.

To prove the third bullet point, suppose ' 2 W 0. Then

.ST /0.'/ D 'ı.ST / D .'ıS/ıT D T 0.'ıS/ D T 0�S 0.'/
�

D .T 0S 0/.'/;

Some books use the notation V �

and T � for duality instead of V 0

and T 0. However, here we reserve

the notation T � for the adjoint,

which will be introduced when we

study linear maps on inner product

spaces in Chapter 7.

where the first, third, and fourth equal-

ities above hold because of the defini-

tion of the dual map, the second equality

holds because composition of functions

is associative, and the last equality fol-

lows from the definition of composition.

The equality of the first and last

terms above for all ' 2 W 0 means that

.ST /0 D T 0S 0.

The Null Space and Range of the Dual of a Linear Map

Our goal in this subsection is to describe nullT 0 and rangeT 0 in terms of

rangeT and nullT. To do this, we will need the following definition.

3.102 Definition annihilator, U 0

For U � V, the annihilator of U, denoted U 0, is defined by

U 0 D f' 2 V 0 W '.u/ D 0 for all u 2 U g:

3.103 Example Suppose U is the subspace of P.R/ consisting of all

polynomial multiples of x2. If ' is the linear functional on P.R/ defined by

'.p/ D p0.0/, then ' 2 U 0.
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For U � V, the annihilator U 0 is a subset of the dual space V 0. Thus U 0

depends on the vector space containing U, so a notation such as U 0
V would be

more precise. However, the containing vector space will always be clear from

the context, so we will use the simpler notation U 0.

3.104 Example Let e1; e2; e3; e4; e5 denote the standard basis of R5, and

let '1; '2; '3; '4; '5 denote the dual basis of .R5/
0
. Suppose

U D span.e1; e2/ D f.x1; x2; 0; 0; 0/ 2 R5 W x1; x2 2 Rg:

Show that U 0 D span.'3; '4; '5/.

Solution Recall (see 3.97) that 'j is the linear functional on R5 that selects

that j th coordinate: 'j .x1; x2; x3; x4; x5/ D xj .

First suppose ' 2 span.'3; '4; '5/. Then there exist c3; c4; c5 2 R such

that ' D c3'3 C c4'4 C c5'5. If .x1; x2; 0; 0; 0/ 2 U, then

'.x1; x2; 0; 0; 0/ D .c3'3 C c4'4 C c5'5/.x1; x2; 0; 0; 0/ D 0:

Thus ' 2 U 0. In other words, we have shown that span.'3; '4; '5/ � U 0.

To show the inclusion in the other direction, suppose ' 2 U 0. Because

the dual basis is a basis of .R5/
0
, there exist c1; c2; c3; c4; c5 2 R such that

' D c1'1 C c2'2 C c3'3 C c4'4 C c5'5. Because e1 2 U and ' 2 U 0, we

have

0 D '.e1/ D .c1'1 C c2'2 C c3'3 C c4'4 C c5'5/.e1/ D c1:

Similarly, e2 2 U and thus c2 D 0. Hence ' D c3'3 C c4'4 C c5'5. Thus

' 2 span.'3; '4; '5/, which shows that U 0 � span.'3; '4; '5/.

3.105 The annihilator is a subspace

Suppose U � V. Then U 0 is a subspace of V 0.

Proof Clearly 0 2 U 0 (here 0 is the zero linear functional on V ), because

the zero linear functional applied to every vector in U is 0.

Suppose '; 2 U 0. Thus '; 2 V 0 and '.u/ D  .u/ D 0 for every

u 2 U. If u 2 U, then .' C  /.u/ D '.u/ C  .u/ D 0 C 0 D 0. Thus

' C  2 U 0.

Similarly, U 0 is closed under scalar multiplication. Thus 1.34 implies that

U 0 is a subspace of V 0.
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The next result shows that dimU 0 is the difference of dimV and dimU.

For example, this shows that if U is a 2-dimensional subspace of R5, then U 0

is a 3-dimensional subspace of .R5/
0
, as in Example 3.104.

The next result can be proved following the pattern of Example 3.104:

choose a basis u1; : : : ; um of U, extend to a basis u1; : : : ; um; : : : ; un of V,

let '1; : : : ; 'm; : : : ; 'n be the dual basis of V 0, and then show 'mC1; : : : ; 'n

is a basis of U 0, which implies the desired result.

You should construct the proof outlined in the paragraph above, even

though a slicker proof is presented here.

3.106 Dimension of the annihilator

Suppose V is finite-dimensional and U is a subspace of V. Then

dimU C dimU 0 D dimV:

Proof Let i 2 L.U; V / be the inclusion map defined by i.u/ D u for u 2 U.

Thus i 0 is a linear map from V 0 to U 0. The Fundamental Theorem of Linear

Maps (3.22) applied to i 0 shows that

dim range i 0 C dim null i 0 D dimV 0:

However, null i 0 D U 0 (as can be seen by thinking about the definitions) and

dimV 0 D dimV (by 3.95), so we can rewrite the equation above as

dim range i 0 C dimU 0 D dimV:

If ' 2 U 0, then ' can be extended to a linear functional  on V (see,

for example, Exercise 11 in Section 3.A). The definition of i 0 shows that

i 0. / D '. Thus ' 2 range i 0, which implies that range i 0 D U 0. Hence

dim range i 0 D dimU 0 D dimU, and the displayed equation above becomes

the desired result.

The proof of part (a) of the result below does not use the hypothesis that

V and W are finite-dimensional.

3.107 The null space of T 0

Suppose V and W are finite-dimensional and T 2 L.V;W /. Then

(a) nullT 0 D .rangeT /0;

(b) dim nullT 0 D dim nullT C dimW � dimV.
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Proof

(a) First suppose ' 2 nullT 0. Thus 0 D T 0.'/ D ' ı T. Hence

0 D .' ı T /.v/ D '.T v/ for every v 2 V:

Thus ' 2 .rangeT /0. This implies that nullT 0 � .rangeT /0.

To prove the inclusion in the opposite direction, now suppose that

' 2 .rangeT /0. Thus '.T v/ D 0 for every vector v 2 V. Hence

0 D ' ı T D T 0.'/. In other words, ' 2 nullT 0, which shows that

.rangeT /0 � nullT 0, completing the proof of (a).

(b) We have

dim nullT 0 D dim.rangeT /0

D dimW � dim rangeT

D dimW � .dimV � dim nullT /

D dim nullT C dimW � dimV;

where the first equality comes from (a), the second equality comes from

3.106, and the third equality comes from the Fundamental Theorem of

Linear Maps (3.22).

The next result can be useful because sometimes it is easier to verify that

T 0 is injective than to show directly that T is surjective.

3.108 T surjective is equivalent to T 0 injective

Suppose V and W are finite-dimensional and T 2 L.V;W /. Then T is

surjective if and only if T 0 is injective.

Proof The map T 2 L.V;W / is surjective if and only if rangeT D W,

which happens if and only if .rangeT /0 D f0g, which happens if and only if

nullT 0 D f0g [by 3.107(a)], which happens if and only if T 0 is injective.

3.109 The range of T 0

Suppose V and W are finite-dimensional and T 2 L.V;W /. Then

(a) dim rangeT 0 D dim rangeT ;

(b) rangeT 0 D .nullT /0.
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Proof

(a) We have

dim rangeT 0 D dimW 0 � dim nullT 0

D dimW � dim.rangeT /0

D dim rangeT;

where the first equality comes from the Fundamental Theorem of Linear

Maps (3.22), the second equality comes from 3.95 and 3.107(a), and

the third equality comes from 3.106.

(b) First suppose ' 2 rangeT 0. Thus there exists  2 W 0 such that

' D T 0. /. If v 2 nullT, then

'.v/ D
�
T 0. /

�
v D . ı T /.v/ D  .T v/ D  .0/ D 0:

Hence ' 2 .nullT /0. This implies that rangeT 0 � .nullT /0.

We will complete the proof by showing that rangeT 0 and .nullT /0

have the same dimension. To do this, note that

dim rangeT 0 D dim rangeT

D dimV � dim nullT

D dim.nullT /0;

where the first equality comes from (a), the second equality comes from

the Fundamental Theorem of Linear Maps (3.22), and the third equality

comes from 3.106.

The next result should be compared to 3.108.

3.110 T injective is equivalent to T 0 surjective

Suppose V and W are finite-dimensional and T 2 L.V;W /. Then T is

injective if and only if T 0 is surjective.

Proof The map T 2 L.V;W / is injective if and only if nullT D f0g,

which happens if and only if .nullT /0 D V 0, which happens if and only if

rangeT 0 D V 0 [by 3.109(b)], which happens if and only if T 0 is surjective.
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The Matrix of the Dual of a Linear Map

We now define the transpose of a matrix.

3.111 Definition transpose, At

The transpose of a matrix A, denoted At, is the matrix obtained from

A by interchanging the rows and columns. More specifically, if A is an

m-by-n matrix, then At is the n-by-m matrix whose entries are given by

the equation

.At/k;j D Aj;k :

3.112 Example If A D

0
@

5 �7
3 8

�4 2

1
A, then At D

�
5 3 �4

�7 8 2

�
.

Note that here A is a 3-by-2 matrix and At is a 2-by-3 matrix.

The transpose has nice algebraic properties: .A C C/t D At C C t and

.�A/t D �At for all m-by-n matrices A;C and all � 2 F (see Exercise 33).

The next result shows that the transpose of the product of two matrices is

the product of the transposes in the opposite order.

3.113 The transpose of the product of matrices

If A is an m-by-n matrix and C is an n-by-p matrix, then

.AC/t D C tAt:

Proof Suppose 1 � k � p and 1 � j � m. Then

�
.AC/t

�
k;j

D .AC/j;k

D
nX

rD1

Aj;rCr;k

D
nX

rD1

.C t/k;r.A
t/r;j

D .C tAt/k;j :

Thus .AC/t D C tAt, as desired.
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The setting for the next result is the assumption that we have a basis

v1; : : : ; vn of V, along with its dual basis '1; : : : ; 'n of V 0. We also have a

basis w1; : : : ;wm of W, along with its dual basis  1; : : : ;  m of W 0. Thus

M.T / is computed with respect to the bases just mentioned of V and W,

and M.T 0/ is computed with respect to the dual bases just mentioned of W 0

and V 0.

3.114 The matrix of T 0 is the transpose of the matrix of T

Suppose T 2 L.V;W /. Then M.T 0/ D
�
M.T /

�t
.

Proof Let A D M.T / and C D M.T 0/. Suppose 1 � j � m and

1 � k � n.

From the definition of M.T 0/ we have

T 0. j / D
nX

rD1

Cr;j'r :

The left side of the equation above equals  j ı T. Thus applying both sides

of the equation above to vk gives

. j ı T /.vk/ D
nX

rD1

Cr;j'r.vk/

D Ck;j :

We also have

. j ı T /.vk/ D  j .T vk/

D  j

� mX

rD1

Ar;kwr

�

D
mX

rD1

Ar;k j .wr/

D Aj;k :

Comparing the last line of the last two sets of equations, we have Ck;j D Aj;k .

Thus C D At. In other words, M.T 0/ D
�
M.T /

�t
, as desired.
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The Rank of a Matrix

We begin by defining two nonnegative integers that are associated with each

matrix.

3.115 Definition row rank, column rank

Suppose A is an m-by-n matrix with entries in F.

� The row rank of A is the dimension of the span of the rows of A in

F1;n.

� The column rank of A is the dimension of the span of the columns

of A in Fm;1.

3.116 Example Suppose A D
�
4 7 1 8

3 5 2 9

�
. Find the row rank of A

and the column rank of A.

Solution The row rank of A is the dimension of

span
��
4 7 1 8

�
;
�
3 5 2 9

��

in F1;4. Neither of the two vectors listed above in F1;4 is a scalar multiple

of the other. Thus the span of this list of length 2 has dimension 2. In other

words, the row rank of A is 2.

The column rank of A is the dimension of

span

 �
4

3

�
;

�
7

5

�
;

�
1

2

�
;

�
8

9

�!

in F2;1. Neither of the first two vectors listed above in F2;1 is a scalar multiple

of the other. Thus the span of this list of length 4 has dimension at least 2.

The span of this list of vectors in F2;1 cannot have dimension larger than 2

because dim F2;1 D 2. Thus the span of this list has dimension 2. In other

words, the column rank of A is 2.

Notice that no bases are in sight in the statement of the next result. Al-

though M.T / in the next result depends on a choice of bases of V and W,

the next result shows that the column rank of M.T / is the same for all such

choices (because rangeT does not depend on a choice of basis).
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3.117 Dimension of rangeT equals column rank of M.T /

Suppose V and W are finite-dimensional and T 2 L.V;W /. Then

dim rangeT equals the column rank of M.T /.

Proof Suppose v1; : : : ; vn is a basis of V and w1; : : : ;wm is a basis ofW. The

function that takes w 2 span.T v1; : : : ; T vn/ to M.w/ is easily seen to be an

isomorphism from span.T v1; : : : ; T vn/ onto span
�
M.T v1/; : : : ;M.T vn/

�
.

Thus dim span.T v1; : : : ; T vn/ D dim span
�
M.T v1/; : : : ;M.T vn/

�
, where

the last dimension equals the column rank of M.T /.

It is easy to see that rangeT D span.T v1; : : : ; T vn/. Thus we have

dim rangeT D dim span.T v1; : : : ; T vn/ D the column rank of M.T /, as

desired.

In Example 3.116, the row rank and column rank turned out to equal each

other. The next result shows that this always happens.

3.118 Row rank equals column rank

Suppose A 2 Fm;n. Then the row rank of A equals the column rank of A.

Proof Define T W Fn;1 ! Fm;1 by T x D Ax. Thus M.T / D A, where

M.T / is computed with respect to the standard bases of Fn;1 and Fm;1. Now

column rank of A D column rank of M.T /

D dim rangeT

D dim rangeT 0

D column rank of M.T 0/

D column rank of At

D row rank of A;

where the second equality above comes from 3.117, the third equality comes

from 3.109(a), the fourth equality comes from 3.117 (where M.T 0/ is com-

puted with respect to the dual bases of the standard bases), the fifth equality

comes from 3.114, and the last equality follows easily from the definitions.

The last result allows us to dispense with the terms “row rank” and “column

rank” and just use the simpler term “rank”.

3.119 Definition rank

The rank of a matrix A 2 Fm;n is the column rank of A.
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EXERCISES 3.F

1 Explain why every linear functional is either surjective or the zero map.

2 Give three distinct examples of linear functionals on RŒ0;1�.

3 Suppose V is finite-dimensional and v 2 V with v ¤ 0. Prove that there

exists ' 2 V 0 such that '.v/ D 1.

4 Suppose V is finite-dimensional and U is a subspace of V such that

U ¤ V. Prove that there exists ' 2 V 0 such that '.u/ D 0 for every

u 2 U but ' ¤ 0.

5 Suppose V1; : : : ; Vm are vector spaces. Prove that .V1 � � � � � Vm/
0 and

V1
0 � � � � � Vm

0 are isomorphic vector spaces.

6 Suppose V is finite-dimensional and v1; : : : ; vm 2 V. Define a linear

map � W V 0 ! Fm by

�.'/ D
�
'.v1/; : : : ; '.vm/

�
:

(a) Prove that v1; : : : ; vm spans V if and only if � is injective.

(b) Prove that v1; : : : ; vm is linearly independent if and only if � is

surjective.

7 Suppose m is a positive integer. Show that the dual basis of the basis

1; x; : : : ; xm of Pm.R/ is '0; '1; : : : ; 'm, where 'j .p/ D p.j /.0/
j Š

. Here

p.j / denotes the j th derivative of p, with the understanding that the 0th

derivative of p is p.

8 Suppose m is a positive integer.

(a) Show that 1; x � 5; : : : ; .x � 5/m is a basis of Pm.R/.

(b) What is the dual basis of the basis in part (a)?

9 Suppose v1; : : : ; vn is a basis of V and '1; : : : ; 'n is the corresponding

dual basis of V 0. Suppose  2 V 0. Prove that

 D  .v1/'1 C � � � C  .vn/'n:

10 Prove the first two bullet points in 3.101.
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11 Suppose A is an m-by-n matrix with A ¤ 0. Prove that the rank of A

is 1 if and only if there exist .c1; : : : ; cm/ 2 Fm and .d1; : : : ; dn/ 2 Fn

such that Aj;k D cjdk for every j D 1; : : : ; m and every k D 1; : : : ; n.

12 Show that the dual map of the identity map on V is the identity map

on V 0.

13 Define T W R3 ! R2 by T .x; y; z/ D .4x C 5y C 6z; 7x C 8y C 9z/.

Suppose '1; '2 denotes the dual basis of the standard basis of R2 and

 1;  2;  3 denotes the dual basis of the standard basis of R3.

(a) Describe the linear functionals T 0.'1/ and T 0.'2/.

(b) Write T 0.'1/ and T 0.'2/ as linear combinations of  1;  2;  3.

14 Define T W P.R/ ! P.R/ by .Tp/.x/ D x2p.x/C p00.x/ for x 2 R.

(a) Suppose ' 2 P.R/0 is defined by '.p/ D p0.4/. Describe the

linear functional T 0.'/ on P.R/.

(b) Suppose ' 2 P.R/0 is defined by '.p/ D
R 1

0 p.x/ dx. Evaluate�
T 0.'/

�
.x3/.

15 Suppose W is finite-dimensional and T 2 L.V;W /. Prove that T 0 D 0

if and only if T D 0.

16 Suppose V and W are finite-dimensional. Prove that the map that takes

T 2 L.V;W / to T 0 2 L.W 0; V 0/ is an isomorphism of L.V;W / onto

L.W 0; V 0/.

17 Suppose U � V. Explain why U 0 D f' 2 V 0 W U � null'g.

18 Suppose V is finite-dimensional and U � V. Show that U D f0g if and

only if U 0 D V 0.

19 Suppose V is finite-dimensional and U is a subspace of V. Show that

U D V if and only if U 0 D f0g.

20 Suppose U and W are subsets of V with U � W. Prove that W 0 � U 0.

21 Suppose V is finite-dimensional and U and W are subspaces of V with

W 0 � U 0. Prove that U � W.

22 Suppose U;W are subspaces of V. Show that .U CW /0 D U 0 \W 0.
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23 Suppose V is finite-dimensional and U andW are subspaces of V. Prove

that .U \W /0 D U 0 CW 0.

24 Prove 3.106 using the ideas sketched in the discussion before the state-

ment of 3.106.

25 Suppose V is finite-dimensional and U is a subspace of V. Show that

U D fv 2 V W '.v/ D 0 for every ' 2 U 0g:

26 Suppose V is finite-dimensional and � is a subspace of V 0. Show that

� D fv 2 V W '.v/ D 0 for every ' 2 �g0:

27 Suppose T 2 L
�
P5.R/;P5.R/

�
and nullT 0 D span.'/, where ' is

the linear functional on P5.R/ defined by '.p/ D p.8/. Prove that

rangeT D fp 2 P5.R/ W p.8/ D 0g.

28 Suppose V andW are finite-dimensional, T 2 L.V;W /, and there exists

' 2 W 0 such that nullT 0 D span.'/. Prove that rangeT D null'.

29 Suppose V andW are finite-dimensional, T 2 L.V;W /, and there exists

' 2 V 0 such that rangeT 0 D span.'/. Prove that nullT D null'.

30 Suppose V is finite-dimensional and '1; : : : ; 'm is a linearly independent

list in V 0. Prove that

dim
�
.null'1/ \ � � � \ .null'm/

�
D .dimV / �m:

31 Suppose V is finite-dimensional and '1; : : : ; 'n is a basis of V 0. Show

that there exists a basis of V whose dual basis is '1; : : : ; 'n.

32 Suppose T 2 L.V /, and u1; : : : ; un and v1; : : : ; vn are bases of V. Prove

that the following are equivalent:

(a) T is invertible.

(b) The columns of M.T / are linearly independent in Fn;1.

(c) The columns of M.T / span Fn;1.

(d) The rows of M.T / are linearly independent in F1;n.

(e) The rows of M.T / span F1;n.

Here M.T / means M
�
T; .u1; : : : ; un/; .v1; : : : ; un/

�
.
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33 Suppose m and n are positive integers. Prove that the function that takes

A to At is a linear map from Fm;n to Fn;m. Furthermore, prove that this

linear map is invertible.

34 The double dual space of V, denoted V 00, is defined to be the dual space

of V 0. In other words, V 00 D .V 0/0. Define ƒ W V ! V 00 by

.ƒv/.'/ D '.v/

for v 2 V and ' 2 V 0.

(a) Show that ƒ is a linear map from V to V 00.

(b) Show that if T 2 L.V /, then T 00 ıƒ D ƒ ı T, where T 00 D .T 0/0.

(c) Show that if V is finite-dimensional, then ƒ is an isomorphism

from V onto V 00.

[Suppose V is finite-dimensional. Then V and V 0 are isomorphic, but

finding an isomorphism from V onto V 0 generally requires choosing a

basis of V. In contrast, the isomorphism ƒ from V onto V 00 does not

require a choice of basis and thus is considered more natural.]

35 Show that
�
P.R/

�0
and R1 are isomorphic.

36 Suppose U is a subspace of V. Let i W U ! V be the inclusion map

defined by i.u/ D u. Thus i 0 2 L.V 0; U 0/.

(a) Show that null i 0 D U 0.

(b) Prove that if V is finite-dimensional, then range i 0 D U 0.

(c) Prove that if V is finite-dimensional, then ei 0 is an isomorphism

from V 0=U 0 onto U 0.

[The isomorphism in part (c) is natural in that it does not depend on a

choice of basis in either vector space.]

37 Suppose U is a subspace of V. Let � W V ! V=U be the usual quotient

map. Thus � 0 2 L
�
.V=U /0; V 0�.

(a) Show that � 0 is injective.

(b) Show that range� 0 D U 0.

(c) Conclude that � 0 is an isomorphism from .V=U /0 onto U 0.

[The isomorphism in part (c) is natural in that it does not depend on a

choice of basis in either vector space. In fact, there is no assumption

here that any of these vector spaces are finite-dimensional.]
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Complex Conjugate and Absolute Value

Before discussing polynomials with complex or real coefficients, we need to

learn a bit more about the complex numbers.

4.2 Definition Re z, Im z

Suppose z D aC bi , where a and b are real numbers.

� The real part of z, denoted Re z, is defined by Re z D a.

� The imaginary part of z, denoted Im z, is defined by Im z D b.

Thus for every complex number z, we have

z D Re z C .Im z/i:

4.3 Definition complex conjugate, Nz, absolute value, jzj
Suppose z 2 C.

� The complex conjugate of z 2 C, denoted Nz, is defined by

Nz D Re z � .Im z/i:

� The absolute value of a complex number z, denoted jzj, is defined

by

jzj D
q
.Re z/2 C .Im z/2:

4.4 Example Suppose z D 3C 2i . Then

� Re z D 3 and Im z D 2;

� Nz D 3 � 2i ;

� jzj D
p
32 C 22 D

p
13.

Note that jzj is a nonnegative number for every z 2 C.

You should verify that z D Nz if and

only if z is a real number.

The real and imaginary parts, com-

plex conjugate, and absolute value have

the following properties:
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4.5 Properties of complex numbers

Suppose w; z 2 C. Then

sum of z and Nz
z C Nz D 2Re z;

difference of z and Nz
z � Nz D 2.Im z/i ;

product of z and Nz
z Nz D jzj2;

additivity and multiplicativity of complex conjugate

w C z D Nw C Nz and wz D Nw Nz;

conjugate of conjugate

Nz D z;

real and imaginary parts are bounded by jzj
j Re zj � jzj and j Im zj � jzj

absolute value of the complex conjugate

j Nzj D jzj;

multiplicativity of absolute value

jwzj D jwj jzj;

Triangle Inequality
w � z

z

w

jw C zj � jwj C jzj.

Proof Except for the last item, the routine verifications of the assertions

above are left to the reader. To verify the last item, we have

jw C zj2 D .w C z/. Nw C Nz/
D w Nw C z Nz C w Nz C z Nw
D jwj2 C jzj2 C w Nz C w Nz
D jwj2 C jzj2 C 2Re.w Nz/
� jwj2 C jzj2 C 2jw Nzj
D jwj2 C jzj2 C 2jwj jzj
D .jwj C jzj/2:

Taking the square root of both sides of the inequality jw C zj2 � .jwj C jzj/2
now gives the desired inequality.
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Uniqueness of Coefficients for Polynomials

Recall that a function p W F ! F is called a polynomial with coefficients in F

if there exist a0; : : : ; am 2 F such that

4.6 p.z/ D a0 C a1z C a2z
2 C � � � C amz

m

for all z 2 F.

4.7 If a polynomial is the zero function, then all coefficients are 0

Suppose a0; : : : ; am 2 F. If

a0 C a1z C � � � C amz
m D 0

for every z 2 F, then a0 D � � � D am D 0.

Proof We will prove the contrapositive. If not all the coefficients are 0, then

by changing m we can assume am ¤ 0. Let

z D ja0j C ja1j C � � � C jam�1j
jamj C 1:

Note that z � 1, and thus zj � zm�1 for j D 0; 1; : : : ; m � 1. Using the

Triangle Inequality, we have

ja0 C a1z C � � � C am�1z
m�1j � .ja0j C ja1j C � � � C jam�1j/zm�1

< jamz
mj:

Thus a0 C a1z C � � � C am�1z
m�1 ¤ �amz

m. Hence we conclude that

a0 C a1z C � � � C am�1z
m�1 C amz

m ¤ 0.

The result above implies that the coefficients of a polynomial are uniquely

determined (because if a polynomial had two different sets of coefficients,

then subtracting the two representations of the polynomial would give a

contradiction to the result above).

Recall that if a polynomial p can be written in the form 4.6 with am ¤ 0,

then we say that p has degree m and we write degp D m.

The 0 polynomial is declared to

have degree �1 so that excep-

tions are not needed for various

reasonable results. For example,

deg.pq/ D degp C deg q even if

p D 0.

The degree of the 0 polynomial is

defined to be �1. When necessary, use

the obvious arithmetic with �1. For

example, �1 < m and �1 C m D
�1 for every integer m.
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The Division Algorithm for Polynomials

If p and s are nonnegative integers, with s ¤ 0, then there exist nonnegative

integers q and r such that

p D sq C r

and r < s. Think of dividing p by s, getting quotient q with remainder r . Our

next task is to prove an analogous result for polynomials.

Think of the Division Algorithm for

Polynomials as giving the remain-

der r when p is divided by s.

The result below is often called the

Division Algorithm for Polynomials, al-

though as stated here it is not really an

algorithm, just a useful result.

Recall that P.F/ denotes the vector space of all polynomials with co-

efficients in F and that Pm.F/ is the subspace of P.F/ consisting of the

polynomials with coefficients in F and degree at most m.

The next result can be proved without linear algebra, but the proof given

here using linear algebra is appropriate for a linear algebra textbook.

4.8 Division Algorithm for Polynomials

Suppose that p; s 2 P.F/, with s ¤ 0. Then there exist unique

polynomials q; r 2 P.F/ such that

p D sq C r

and deg r < deg s.

Proof Let n D degp and m D deg s. If n < m, then take q D 0 and r D p

to get the desired result. Thus we can assume that n � m.

Define T W Pn�m.F/ � Pm�1.F/ ! Pn.F/ by

T .q; r/ D sq C r:

The reader can easily verify that T is a linear map. If .q; r/ 2 nullT , then

sq C r D 0, which implies that q D 0 and r D 0 [because otherwise

deg sq � m and thus sq cannot equal �r]. Thus dim nullT D 0 (proving the

“unique” part of the result).

From 3.76 we have

dim
�
Pn�m.F/ � Pm�1.F/

�
D .n �mC 1/C .m � 1C 1/ D nC 1:

The Fundamental Theorem of Linear Maps (3.22) and the equation displayed

above now imply that dim rangeT D nC 1, which equals dimPn.F/. Thus

rangeT D Pn.F/, and hence there exist q 2 Pn�m.F/ and r 2 Pm�1.F/

such that p D T .q; r/ D sq C r .
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Zeros of Polynomials

The solutions to the equation p.z/ D 0 play a crucial role in the study of a

polynomial p 2 P.F/. Thus these solutions have a special name.

4.9 Definition zero of a polynomial

A number � 2 F is called a zero (or root) of a polynomial p 2 P.F/ if

p.�/ D 0:

4.10 Definition factor

A polynomial s 2 P.F/ is called a factor of p 2 P.F/ if there exists a

polynomial q 2 P.F/ such that p D sq.

We begin by showing that � is a zero of a polynomial p 2 P.F/ if and

only if z � � is a factor of p.

4.11 Each zero of a polynomial corresponds to a degree-1 factor

Suppose p 2 P.F/ and � 2 F. Then p.�/ D 0 if and only if there is a

polynomial q 2 P.F/ such that

p.z/ D .z � �/q.z/

for every z 2 F.

Proof One direction is obvious. Namely, suppose there is a polynomial

q 2 P.F/ such that p.z/ D .z � �/q.z/ for all z 2 F. Then

p.�/ D .� � �/q.�/ D 0;

as desired.

To prove the other direction, suppose p.�/ D 0. The polynomial z � �

has degree 1. Because a polynomial with degree less than 1 is a constant

function, the Division Algorithm for Polynomials (4.8) implies that there exist

a polynomial q 2 P.F/ and a number r 2 F such that

p.z/ D .z � �/q.z/C r

for every z 2 F. The equation above and the equation p.�/ D 0 imply that

r D 0. Thus p.z/ D .z � �/q.z/ for every z 2 F.

Now we can prove that polynomials do not have too many zeros.
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4.12 A polynomial has at most as many zeros as its degree

Suppose p 2 P.F/ is a polynomial with degree m � 0. Then p has at

most m distinct zeros in F.

Proof If m D 0, then p.z/ D a0 ¤ 0 and so p has no zeros.

If m D 1, then p.z/ D a0 C a1z, with a1 ¤ 0, and thus p has exactly

one zero, namely, �a0=a1.

Now suppose m > 1. We use induction on m, assuming that every

polynomial with degree m � 1 has at most m � 1 distinct zeros. If p has no

zeros in F, then we are done. If p has a zero � 2 F, then by 4.11 there is a

polynomial q such that

p.z/ D .z � �/q.z/

for all z 2 F. Clearly deg q D m � 1. The equation above shows that if

p.z/ D 0, then either z D � or q.z/ D 0. In other words, the zeros of p

consist of � and the zeros of q. By our induction hypothesis, q has at most

m � 1 distinct zeros in F. Thus p has at most m distinct zeros in F.

Factorization of Polynomials over C

So far we have been handling polynomials with complex coefficients and

polynomials with real coefficients simultaneously through our convention that

F denotes R or C. Now we will see some differences between these two cases.

First we treat polynomials with complex coefficients. Then we will use our

results about polynomials with complex coefficients to prove corresponding

results for polynomials with real coefficients.

The Fundamental Theorem of Al-

gebra is an existence theorem. Its

proof does not lead to a method for

finding zeros. The quadratic for-

mula gives the zeros explicitly for

polynomials of degree 2. Similar

but more complicated formulas ex-

ist for polynomials of degree 3 and

4. No such formulas exist for poly-

nomials of degree 5 and above.

The next result, although called the

Fundamental Theorem of Algebra, uses

analysis its proof. The short proof pre-

sented here uses tools from complex

analysis. If you have not had a course in

complex analysis, this proof will almost

certainly be meaningless to you. In that

case, just accept the Fundamental The-

orem of Algebra as something that we

need to use but whose proof requires

more advanced tools that you may learn

in later courses.
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4.13 Fundamental Theorem of Algebra

Every nonconstant polynomial with complex coefficients has a zero.

Proof Let p be a nonconstant polynomial with complex coefficients. Sup-

pose p has no zeros. Then 1=p is an analytic function on C. Furthermore,

jp.z/j ! 1 as jzj ! 1, which implies that 1=p ! 0 as jzj ! 1. Thus

1=p is a bounded analytic function on C. By Liouville’s theorem, every such

function is constant. But if 1=p is constant, then p is constant, contradicting

our assumption that p is nonconstant.

Although the proof given above is probably the shortest proof of the

Fundamental Theorem of Algebra, a web search can lead you to several other

proofs that use different techniques. All proofs of the Fundamental Theorem

of Algebra need to use some analysis, because the result is not true if C is

replaced, for example, with the set of numbers of the form c C di where c; d

are rational numbers.

The cubic formula, which was

discovered in the 16th century,

is presented below for your

amusement only. Do not memorize

it.

Suppose

p.x/ D ax3 C bx2 C cx C d;

where a ¤ 0. Set

u D 9abc � 2b3 � 27a2d

54a3

and then set

v D u2 C
�3ac � b2

9a2

�3

:

Suppose v � 0. Then

� b

3a
C 3

q
uC

p
v C 3

q
u �

p
v

is a zero of p.

Remarkably, mathematicians have

proved that no formula exists for the ze-

ros of polynomials of degree 5 or higher.

But computers and calculators can use

clever numerical methods to find good

approximations to the zeros of any poly-

nomial, even when exact zeros cannot

be found.

For example, no one will ever be

able to give an exact formula for a zero

of the polynomial p defined by

p.x/ D x5�5x4�6x3C17x2C4x�7:

However, a computer or symbolic cal-

culator can find approximate zeros of

this polynomial.

The Fundamental Theorem of Alge-

bra leads to the following factorization

result for polynomials with complex co-

efficients. Note that in this factorization,

the numbers �1; : : : ; �m are precisely

the zeros of p, for these are the only

values of z for which the right side of

the equation in the next result equals 0.
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4.14 Factorization of a polynomial over C

If p 2 P.C/ is a nonconstant polynomial, then p has a unique factoriza-

tion (except for the order of the factors) of the form

p.z/ D c.z � �1/ � � � .z � �m/;

where c; �1; : : : ; �m 2 C.

Proof Let p 2 P.C/ and let m D degp. We will use induction on m. If

m D 1, then clearly the desired factorization exists and is unique. So assume

that m > 1 and that the desired factorization exists and is unique for all

polynomials of degree m � 1.

First we will show that the desired factorization of p exists. By the

Fundamental Theorem of Algebra (4.13), p has a zero �. By 4.11, there is a

polynomial q such that

p.z/ D .z � �/q.z/

for all z 2 C. Because deg q D m � 1, our induction hypothesis implies that

q has the desired factorization, which when plugged into the equation above

gives the desired factorization of p.

Now we turn to the question of uniqueness. Clearly c is uniquely deter-

mined as the coefficient of zm in p. So we need only show that except for the

order, there is only one way to choose �1; : : : ; �m. If

.z � �1/ � � � .z � �m/ D .z � �1/ � � � .z � �m/

for all z 2 C, then because the left side of the equation above equals 0 when

z D �1, one of the � ’s on the right side equals �1. Relabeling, we can assume

that �1 D �1. Now for z ¤ �1, we can divide both sides of the equation

above by z � �1, getting

.z � �2/ � � � .z � �m/ D .z � �2/ � � � .z � �m/

for all z 2 C except possibly z D �1. Actually the equation above holds

for all z 2 C, because otherwise by subtracting the right side from the left

side we would get a nonzero polynomial that has infinitely many zeros. The

equation above and our induction hypothesis imply that except for the order,

the �’s are the same as the � ’s, completing the proof of uniqueness.
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Factorization of Polynomials over R

The failure of the Fundamental

Theorem of Algebra for R accounts

for the differences between oper-

ators on real and complex vector

spaces, as we will see in later

chapters.

A polynomial with real coefficients may

have no real zeros. For example, the

polynomial 1C x2 has no real zeros.

To obtain a factorization theorem

over R, we will use our factorization

theorem over C. We begin with the fol-

lowing result.

4.15 Polynomials with real coefficients have zeros in pairs

Suppose p 2 P.C/ is a polynomial with real coefficients. If � 2 C is a

zero of p, then so is N�.

Proof Let

p.z/ D a0 C a1z C � � � C amz
m;

where a0; : : : ; am are real numbers. Suppose � 2 C is a zero of p. Then

a0 C a1�C � � � C am�
m D 0:

Take the complex conjugate of both sides of this equation, obtaining

a0 C a1
N�C � � � C am

N�m D 0;

where we have used basic properties of complex conjugation (see 4.5). The

equation above shows that N� is a zero of p.

Think about the connection be-

tween the quadratic formula and

4.16.

We want a factorization theorem for

polynomials with real coefficients. First

we need to characterize the polynomi-

als of degree 2 with real coefficients

that can be written as the product of

two polynomials of degree 1 with real

coefficients.

4.16 Factorization of a quadratic polynomial

Suppose b; c 2 R. Then there is a polynomial factorization of the form

x2 C bx C c D .x � �1/.x � �2/

with �1; �2 2 R if and only if b2 � 4c.
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Proof Notice that

x2 C bx C c D
�
x C b

2

�2
C
�
c � b2

4

�
:

The equation above is the basis

of the technique called completing

the square.

First suppose b2 < 4c. Then clearly

the right side of the equation above is

positive for every x 2 R. Hence the

polynomial x2 C bx C c has no real

zeros and thus cannot be factored in the

form .x��1/.x��2/ with �1; �2 2 R.

Conversely, now suppose b2 � 4c. Then there is a real number d such

that d2 D b2

4
� c. From the displayed equation above, we have

x2 C bx C c D
�
x C b

2

�2
� d2

D
�
x C b

2
C d

��
x C b

2
� d

�
;

which gives the desired factorization.

The next result gives a factorization of a polynomial over R. The idea of

the proof is to use the factorization 4.14 of p as a polynomial with complex

coefficients. Complex but nonreal zeros of p come in pairs; see 4.15. Thus

if the factorization of p as an element of P.C/ includes terms of the form

.x � �/ with � a nonreal complex number, then .x � N�/ is also a term in the

factorization. Multiplying together these two terms, we get

�
x2 � 2.Re�/x C j�j2

�
;

which is a quadratic term of the required form.

The idea sketched in the paragraph above almost provides a proof of the

existence of our desired factorization. However, we need to be careful about

one point. Suppose � is a nonreal complex number and .x � �/ is a term in

the factorization of p as an element of P.C/. We are guaranteed by 4.15 that

.x � N�/ also appears as a term in the factorization, but 4.15 does not state that

these two factors appear the same number of times, as needed to make the

idea above work. However, the proof works around this point.

In the next result, either m or M may equal 0. The numbers �1; : : : ; �m

are precisely the real zeros of p, for these are the only real values of x for

which the right side of the equation in the next result equals 0.
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4.17 Factorization of a polynomial over R

Suppose p 2 P.R/ is a nonconstant polynomial. Then p has a unique

factorization (except for the order of the factors) of the form

p.x/ D c.x � �1/ � � � .x � �m/.x
2 C b1x C c1/ � � � .x2 C bMx C cM /;

where c; �1; : : : ; �m; b1; : : : ; bM ; c1; : : : ; cM 2 R, with bj
2 < 4cj for

each j .

Proof Think of p as an element of P.C/. If all the (complex) zeros of p are

real, then we are done by 4.14. Thus suppose p has a zero � 2 C with � … R.

By 4.15, N� is a zero of p. Thus we can write

p.x/ D .x � �/.x � N�/q.x/
D
�
x2 � 2.Re�/x C j�j2

�
q.x/

for some polynomial q 2 P.C/ with degree two less than the degree of p.

If we can prove that q has real coefficients, then by using induction on the

degree of p, we can conclude that .x � �/ appears in the factorization of p

exactly as many times as .x � N�/.
To prove that q has real coefficients, we solve the equation above for q,

getting

q.x/ D p.x/

x2 � 2.Re�/x C j�j2

for all x 2 R. The equation above implies that q.x/ 2 R for all x 2 R.

Writing

q.x/ D a0 C a1x C � � � C an�2x
n�2;

where n D degp and a0; : : : ; an�2 2 C, we thus have

0 D Im q.x/ D .Im a0/C .Im a1/x C � � � C .Im an�2/x
n�2

for all x 2 R. This implies that Im a0; : : : ; Im an�2 all equal 0 (by 4.7). Thus

all the coefficients of q are real, as desired. Hence the desired factorization

exists.

Now we turn to the question of uniqueness of our factorization. A factor

of p of the form x2 C bjx C cj with bj
2 < 4cj can be uniquely written

as .x � �j /.x � �j / with �j 2 C. A moment’s thought shows that two

different factorizations of p as an element of P.R/ would lead to two different

factorizations of p as an element of P.C/, contradicting 4.14.
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EXERCISES 4

1 Verify all the assertions in 4.5 except the last one.

2 Suppose m is a positive integer. Is the set

f0g [ fp 2 P.F/ W degp D mg

a subspace of P.F/?

3 Is the set

f0g [ fp 2 P.F/ W degp is eveng
a subspace of P.F/?

4 Suppose m and n are positive integers with m � n, and suppose

�1; : : : ; �m 2 F. Prove that there exists a polynomial p 2 P.F/ with

degp D n such that 0 D p.�1/ D � � � D p.�m/ and such that p has no

other zeros.

5 Suppose m is a nonnegative integer, z1; : : : ; zmC1 are distinct elements

of F, and w1; : : : ;wmC1 2 F. Prove that there exists a unique polynomial

p 2 Pm.F/ such that

p.zj / D wj

for j D 1; : : : ; mC 1.

[This result can be proved without using linear algebra. However, try to

find the clearer, shorter proof that uses some linear algebra.]

6 Suppose p 2 P.C/ has degree m. Prove that p has m distinct zeros if

and only if p and its derivative p0 have no zeros in common.

7 Prove that every polynomial of odd degree with real coefficients has a

real zero.

8 Define T W P.R/ ! RR by

Tp D

8
<̂

:̂

p � p.3/
x � 3 if x ¤ 3;

p0.3/ if x D 3:

Show that Tp 2 P.R/ for every polynomial p 2 P.R/ and that T is a

linear map.
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9 Suppose p 2 P.C/. Define q W C ! C by

q.z/ D p.z/p. Nz/:

Prove that q is a polynomial with real coefficients.

10 Suppose m is a nonnegative integer and p 2 Pm.C/ is such that there

exist distinct real numbers x0; x1; : : : ; xm such that p.xj / 2 R for

j D 0; 1; : : : ; m. Prove that all the coefficients of p are real.

11 Suppose p 2 P.F/ with p ¤ 0. Let U D fpq W q 2 P.F/g.

(a) Show that dimP.F/=U D degp.

(b) Find a basis of dimP.F/=U.
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Statue of Italian mathematician

Leonardo of Pisa (1170–1250,

approximate dates), also known as

Fibonacci. Exercise 16 in Section 5.C

shows how linear algebra can be used

to find an explicit formula for the

Fibonacci sequence.

Eigenvalues, Eigenvectors, and

Invariant Subspaces

Linear maps from one vector space to another vector space were the objects

of study in Chapter 3. Now we begin our investigation of linear maps from

a finite-dimensional vector space to itself. Their study constitutes the most

important part of linear algebra.

Our standing assumptions are as follows:

5.1 Notation F, V

� F denotes R or C.

� V denotes a vector space over F.

LEARNING OBJECTIVES FOR THIS CHAPTER

invariant subspaces

eigenvalues, eigenvectors, and eigenspaces

each operator on a finite-dimensional complex vector space has an

eigenvalue and an upper-triangular matrix with respect to some

basis
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5.A Invariant Subspaces

In this chapter we develop the tools that will help us understand the structure

of operators. Recall that an operator is a linear map from a vector space to

itself. Recall also that we denote the set of operators on V by L.V /; in other

words, L.V / D L.V; V /.

Let’s see how we might better understand what an operator looks like.

Suppose T 2 L.V /. If we have a direct sum decomposition

V D U1 ˚ � � � ˚ Um;

where each Uj is a proper subspace of V, then to understand the behavior of

T, we need only understand the behavior of each T jUj
; here T jUj

denotes

the restriction of T to the smaller domain Uj . Dealing with T jUj
should be

easier than dealing with T because Uj is a smaller vector space than V.

However, if we intend to apply tools useful in the study of operators (such

as taking powers), then we have a problem: T jUj
may not map Uj into itself;

in other words, T jUj
may not be an operator on Uj . Thus we are led to

consider only decompositions of V of the form above where T maps each Uj

into itself.

The notion of a subspace that gets mapped into itself is sufficiently impor-

tant to deserve a name.

5.2 Definition invariant subspace

Suppose T 2 L.V /. A subspace U of V is called invariant under T if

u 2 U implies T u 2 U.

In other words, U is invariant under T if T jU is an operator on U.

5.3 Example Suppose T 2 L.V /. Show that each of the following

subspaces of V is invariant under T :

(a) f0g;

(b) V ;

(c) nullT ;

(d) rangeT.

The most famous unsolved problem

in functional analysis is called the

invariant subspace problem. It

deals with invariant subspaces of

operators on infinite-dimensional

vector spaces.
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Solution

(a) If u 2 f0g, then u D 0 and hence T u D 0 2 f0g. Thus f0g is invariant

under T.

(b) If u 2 V, then T u 2 V. Thus V is invariant under T.

(c) If u 2 nullT, then T u D 0, and hence T u 2 nullT. Thus nullT is

invariant under T.

(d) If u 2 rangeT, then T u 2 rangeT. Thus rangeT is invariant under T.

Must an operator T 2 L.V / have any invariant subspaces other than f0g
and V ? Later we will see that this question has an affirmative answer if V is

finite-dimensional and dimV > 1 (for F D C) or dimV > 2 (for F D R/;

see 5.21 and 9.8.

Although nullT and rangeT are invariant under T, they do not necessarily

provide easy answers to the question about the existence of invariant subspaces

other than f0g and V , because nullT may equal f0g and rangeT may equal

V (this happens when T is invertible).

5.4 Example Suppose that T 2 L
�
P.R/

�
is defined by Tp D p0.

Then P4.R/, which is a subspace of P.R/, is invariant under T because

if p 2 P.R/ has degree at most 4, then p0 also has degree at most 4.

Eigenvalues and Eigenvectors

We will return later to a deeper study of invariant subspaces. Now we turn to an

investigation of the simplest possible nontrivial invariant subspaces—invariant

subspaces with dimension 1.

Take any v 2 V with v ¤ 0 and let U equal the set of all scalar multiples

of v:

U D f�v W � 2 Fg D span.v/:

Then U is a 1-dimensional subspace of V (and every 1-dimensional subspace

of V is of this form for an appropriate choice of v). If U is invariant under an

operator T 2 L.V /, then T v 2 U, and hence there is a scalar � 2 F such that

T v D �v:

Conversely, if T v D �v for some � 2 F, then span.v/ is a 1-dimensional

subspace of V invariant under T.
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The equation

T v D �v;

which we have just seen is intimately connected with 1-dimensional invariant

subspaces, is important enough that the vectors v and scalars � satisfying it

are given special names.

5.5 Definition eigenvalue

Suppose T 2 L.V /. A number � 2 F is called an eigenvalue of T if

there exists v 2 V such that v ¤ 0 and T v D �v.

The word eigenvalue is half-

German, half-English. The Ger-

man adjective eigen means “own”

in the sense of characterizing an in-

trinsic property. Some mathemati-

cians use the term characteristic

value instead of eigenvalue.

The comments above show that T

has a 1-dimensional invariant subspace

if and only if T has an eigenvalue.

In the definition above, we require

that v ¤ 0 because every scalar � 2 F

satisfies T 0 D �0.

5.6 Equivalent conditions to be an eigenvalue

Suppose V is finite-dimensional, T 2 L.V /, and � 2 F . Then the

following are equivalent:

(a) � is an eigenvalue of T ;

(b) T � �I is not injective;

(c) T � �I is not surjective;

Recall that I 2 L.V / is the iden-

tity operator defined by I v D v for

all v 2 V.

(d) T � �I is not invertible.

Proof Conditions (a) and (b) are equivalent because the equation T v D �v

is equivalent to the equation .T � �I/v D 0. Conditions (b), (c), and (d) are

equivalent by 3.69.

5.7 Definition eigenvector

Suppose T 2 L.V / and � 2 F is an eigenvalue of T. A vector v 2 V is

called an eigenvector of T corresponding to � if v ¤ 0 and T v D �v.
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Because T v D �v if and only if .T ��I/v D 0, a vector v 2 V with v ¤ 0

is an eigenvector of T corresponding to � if and only if v 2 null.T � �I/.

5.8 Example Suppose T 2 L.F2/ is defined by

T .w; z/ D .�z;w/:

(a) Find the eigenvalues and eigenvectors of T if F D R.

(b) Find the eigenvalues and eigenvectors of T if F D C.

Solution

(a) If F D R, then T is a counterclockwise rotation by 90ı about the

origin in R2. An operator has an eigenvalue if and only if there exists a

nonzero vector in its domain that gets sent by the operator to a scalar

multiple of itself. A 90ı counterclockwise rotation of a nonzero vector

in R2 obviously never equals a scalar multiple of itself. Conclusion: if

F D R, then T has no eigenvalues (and thus has no eigenvectors).

(b) To find eigenvalues of T, we must find the scalars � such that

T .w; z/ D �.w; z/

has some solution other than w D z D 0. The equation above is

equivalent to the simultaneous equations

5.9 �z D �w; w D �z:

Substituting the value for w given by the second equation into the first

equation gives

�z D �2z:

Now z cannot equal 0 [otherwise 5.9 implies that w D 0; we are

looking for solutions to 5.9 where .w; z/ is not the 0 vector], so the

equation above leads to the equation

�1 D �2:

The solutions to this equation are � D i and � D �i . You should

be able to verify easily that i and �i are eigenvalues of T. Indeed,

the eigenvectors corresponding to the eigenvalue i are the vectors of

the form .w;�wi/, with w 2 C and w ¤ 0, and the eigenvectors

corresponding to the eigenvalue �i are the vectors of the form .w;wi/,

with w 2 C and w ¤ 0.
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Now we show that eigenvectors corresponding to distinct eigenvalues are

linearly independent.

5.10 Linearly independent eigenvectors

Let T 2 L.V /. Suppose �1; : : : ; �m are distinct eigenvalues of T and

v1; : : : ; vm are corresponding eigenvectors. Then v1; : : : ; vm is linearly

independent.

Proof Suppose v1; : : : ; vm is linearly dependent. Let k be the smallest posi-

tive integer such that

5.11 vk 2 span.v1; : : : ; vk�1/I

the existence of k with this property follows from the Linear Dependence

Lemma (2.21). Thus there exist a1; : : : ; ak�1 2 F such that

5.12 vk D a1v1 C � � � C ak�1vk�1:

Apply T to both sides of this equation, getting

�kvk D a1�1v1 C � � � C ak�1�k�1vk�1:

Multiply both sides of 5.12 by �k and then subtract the equation above, getting

0 D a1.�k � �1/v1 C � � � C ak�1.�k � �k�1/vk�1:

Because we chose k to be the smallest positive integer satisfying 5.11,

v1; : : : ; vk�1 is linearly independent. Thus the equation above implies that all

the a’s are 0 (recall that �k is not equal to any of �1; : : : ; �k�1). However, this

means that vk equals 0 (see 5.12), contradicting our hypothesis that vk is an

eigenvector. Therefore our assumption that v1; : : : ; vm is linearly dependent

was false.

The corollary below states that an operator cannot have more distinct

eigenvalues than the dimension of the vector space on which it acts.

5.13 Number of eigenvalues

Suppose V is finite-dimensional. Then each operator on V has at most

dimV distinct eigenvalues.

Proof Let T 2 L.V /. Suppose �1; : : : ; �m are distinct eigenvalues of T.

Let v1; : : : ; vm be corresponding eigenvectors. Then 5.10 implies that the list

v1; : : : ; vm is linearly independent. Thus m � dimV (see 2.23), as desired.
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Restriction and Quotient Operators

If T 2 L.V / and U is a subspace of V invariant under T, then U determines

two other operators T jU 2 L.U / and T=U 2 L.V=U / in a natural way, as

defined below.

5.14 Definition T jU and T=U

Suppose T 2 L.V / and U is a subspace of V invariant under T.

� The restriction operator T jU 2 L.U / is defined by

T jU .u/ D T u

for u 2 U.

� The quotient operator T=U 2 L.V=U / is defined by

.T=U /.v C U/ D T v C U

for v 2 V.

For both the operators defined above, it is worthwhile to pay attention

to their domains and to spend a moment thinking about why they are well

defined as operators on their domains. First consider the restriction operator

T jU 2 L.U /, which is T with its domain restricted to U, thought of as

mapping into U instead of into V. The condition that U is invariant under T

is what allows us to think of T jU as an operator on U, meaning a linear map

into the same space as the domain, rather than as simply a linear map from

one vector space to another vector space.

To show that the definition above of the quotient operator makes sense,

we need to verify that if v C U D w C U, then T v C U D Tw C U. Hence

suppose v CU D w CU. Thus v � w 2 U (see 3.85). Because U is invariant

under T, we also have T .v � w/ 2 U, which implies that T v �Tw 2 U, which

implies that T v C U D Tw C U, as desired.

Suppose T is an operator on a finite-dimensional vector space V and U is

a subspace of V invariant under T, with U ¤ f0g and U ¤ V. In some sense,

we can learn about T by studying the operators T jU and T=U, each of which

is an operator on a vector space with smaller dimension than V. For example,

proof 2 of 5.27 makes nice use of T=U.

However, sometimes T jU and T=U do not provide enough information

about T. In the next example, both T jU and T=U are 0 even though T is not

the 0 operator.
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5.15 Example Define an operator T 2 L.F2/ by T .x; y/ D .y; 0/. Let

U D f.x; 0/ W x 2 Fg. Show that

(a) U is invariant under T and T jU is the 0 operator on U ;

(b) there does not exist a subspace W of F2 that is invariant under T and

such that F2 D U ˚W ;

(c) T=U is the 0 operator on F2=U.

Solution

(a) For .x; 0/ 2 U, we have T .x; 0/ D .0; 0/ 2 U. Thus U is invariant

under T and T jU is the 0 operator on U.

(b) Suppose W is a subspace of V such that F2 D U ˚ W. Because

dim F2 D 2 and dimU D 1, we have dimW D 1. IfW were invariant

under T, then each nonzero vector in W would be an eigenvector of T.

However, it is easy to see that 0 is the only eigenvalue of T and that all

eigenvectors of T are in U. Thus W is not invariant under T.

(c) For .x; y/ 2 F2, we have

.T=U /
�
.x; y/C U

�
D T .x; y/C U

D .y; 0/C U

D 0C U;

where the last equality holds because .y; 0/ 2 U. The equation above

shows that T=U is the 0 operator.

EXERCISES 5.A

1 Suppose T 2 L.V / and U is a subspace of V.

(a) Prove that if U � nullT, then U is invariant under T.

(b) Prove that if rangeT � U, then U is invariant under T.

2 Suppose S; T 2 L.V / are such that ST D TS . Prove that nullS is

invariant under T.
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3 Suppose S; T 2 L.V / are such that ST D TS . Prove that rangeS is

invariant under T.

4 Suppose that T 2 L.V / and U1; : : : ; Um are subspaces of V invariant

under T. Prove that U1 C � � � C Um is invariant under T.

5 Suppose T 2 L.V /. Prove that the intersection of every collection of

subspaces of V invariant under T is invariant under T.

6 Prove or give a counterexample: if V is finite-dimensional and U is a

subspace of V that is invariant under every operator on V, then U D f0g
or U D V.

7 Suppose T 2 L.R2/ is defined by T .x; y/ D .�3y; x/. Find the

eigenvalues of T.

8 Define T 2 L.F2/ by

T .w; z/ D .z;w/:

Find all eigenvalues and eigenvectors of T.

9 Define T 2 L.F3/ by

T .z1; z2; z3/ D .2z2; 0; 5z3/:

Find all eigenvalues and eigenvectors of T.

10 Define T 2 L.Fn/ by

T .x1; x2; x3; : : : ; xn/ D .x1; 2x2; 3x3; : : : ; nxn/:

(a) Find all eigenvalues and eigenvectors of T.

(b) Find all invariant subspaces of T.

11 Define T W P.R/ ! P.R/ by Tp D p0. Find all eigenvalues and

eigenvectors of T.

12 Define T 2 L
�
P4.R/

�
by

.Tp/.x/ D xp0.x/

for all x 2 R. Find all eigenvalues and eigenvectors of T.

13 Suppose V is finite-dimensional, T 2 L.V /, and � 2 F. Prove that there

exists ˛ 2 F such that j˛ � �j < 1
1000

and T � ˛I is invertible.
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14 Suppose V D U ˚ W, where U and W are nonzero subspaces of V.

Define P 2 L.V / by P.u C w/ D u for u 2 U and w 2 W. Find all

eigenvalues and eigenvectors of P .

15 Suppose T 2 L.V /. Suppose S 2 L.V / is invertible.

(a) Prove that T and S�1TS have the same eigenvalues.

(b) What is the relationship between the eigenvectors of T and the

eigenvectors of S�1TS?

16 Suppose V is a complex vector space, T 2 L.V /, and the matrix of T

with respect to some basis of V contains only real entries. Show that if

� is an eigenvalue of T, then so is N�.

17 Give an example of an operator T 2 L.R4/ such that T has no (real)

eigenvalues.

18 Show that the operator T 2 L.C1/ defined by

T .z1; z2; : : : / D .0; z1; z2; : : : /

has no eigenvalues.

19 Suppose n is a positive integer and T 2 L.Fn/ is defined by

T .x1; : : : ; xn/ D .x1 C � � � C xn; : : : ; x1 C � � � C xn/I

in other words, T is the operator whose matrix (with respect to the

standard basis) consists of all 1’s. Find all eigenvalues and eigenvectors

of T.

20 Find all eigenvalues and eigenvectors of the backward shift operator

T 2 L.F1/ defined by

T .z1; z2; z3; : : : / D .z2; z3; : : : /:

21 Suppose T 2 L.V / is invertible.

(a) Suppose � 2 F with � ¤ 0. Prove that � is an eigenvalue of T if

and only if 1
�

is an eigenvalue of T �1.

(b) Prove that T and T �1 have the same eigenvectors.
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that

T v D 3w and Tw D 3v:

Prove that 3 or �3 is an eigenvalue of T.

23 Suppose V is finite-dimensional and S; T 2 L.V /. Prove that ST and

TS have the same eigenvalues.

24 Suppose A is an n-by-n matrix with entries in F. Define T 2 L.Fn/

by T x D Ax, where elements of Fn are thought of as n-by-1 column

vectors.

(a) Suppose the sum of the entries in each row of A equals 1. Prove

that 1 is an eigenvalue of T.

(b) Suppose the sum of the entries in each column of A equals 1.

Prove that 1 is an eigenvalue of T.

25 Suppose T 2 L.V / and u; v are eigenvectors of T such that u C v

is also an eigenvector of T. Prove that u and v are eigenvectors of T

corresponding to the same eigenvalue.

26 Suppose T 2 L.V / is such that every nonzero vector in V is an eigen-

vector of T. Prove that T is a scalar multiple of the identity operator.

27 Suppose V is finite-dimensional and T 2 L.V / is such that every sub-

space of V with dimension dimV � 1 is invariant under T. Prove that T

is a scalar multiple of the identity operator.

28 Suppose V is finite-dimensional with dimV � 3 and T 2 L.V / is such

that every 2-dimensional subspace of V is invariant under T. Prove that

T is a scalar multiple of the identity operator.

29 Suppose T 2 L.V / and dim rangeT D k. Prove that T has at most

k C 1 distinct eigenvalues.

30 Suppose T 2 L.R3/ and �4, 5, and
p
7 are eigenvalues of T. Prove that

there exists x 2 R3 such that T x � 9x D .�4; 5;
p
7/.

31 Suppose V is finite-dimensional and v1; : : : ; vm is a list of vectors in V.

Prove that v1; : : : ; vm is linearly independent if and only if there exists

T 2 L.V / such that v1; : : : ; vm are eigenvectors of T corresponding to

distinct eigenvalues.

SECTION 5.A Invariant Subspaces � 100
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32 Suppose �1; : : : ; �n is a list of distinct real numbers. Prove that the list

e�1x; : : : ; e�nx is linearly independent in the vector space of real-valued

functions on R.

Hint: Let V D span
�
e�1x; : : : ; e�nx

�
, and define an operator T 2 L.V /

by Tf D f 0. Find eigenvalues and eigenvectors of T .

33 Suppose T 2 L.V /. Prove that T=.rangeT / D 0.

34 Suppose T 2 L.V /. Prove that T=.nullT / is injective if and only if

.nullT / \ .rangeT / D f0g.

35 Suppose V is finite-dimensional, T 2 L.V /, and U is invariant under T.

Prove that each eigenvalue of T=U is an eigenvalue of T.

[The exercise below asks you to verify that the hypothesis that V is

finite-dimensional is needed for the exercise above.]

36 Give an example of a vector space V, an operator T 2 L.V /, and

a subspace U of V that is invariant under T such that T=U has an

eigenvalue that is not an eigenvalue of T.
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5.B Eigenvectors and Upper-Triangular

Matrices

Polynomials Applied to Operators

The main reason that a richer theory exists for operators (which map a vector

space into itself) than for more general linear maps is that operators can be

raised to powers. We begin this section by defining that notion and the key

concept of applying a polynomial to an operator.

If T 2 L.V /, then T T makes sense and is also in L.V /. We usually write

T 2 instead of T T. More generally, we have the following definition.

5.16 Definition Tm

Suppose T 2 L.V / and m is a positive integer.

� Tm is defined by

Tm D T � � �T„ƒ‚…
m times

:

� T 0 is defined to be the identity operator I on V.

� If T is invertible with inverse T �1, then T �m is defined by

T �m D .T �1/
m
:

You should verify that if T is an operator, then

TmT n D TmCn and .Tm/
n D Tmn;

where m and n are allowed to be arbitrary integers if T is invertible and

nonnegative integers if T is not invertible.

5.17 Definition p.T /

Suppose T 2 L.V / and p 2 P.F/ is a polynomial given by

p.z/ D a0 C a1z C a2z
2 C � � � C amz

m

for z 2 F. Then p.T / is the operator defined by

p.T / D a0I C a1T C a2T
2 C � � � C amT

m:

This is a new use of the symbol p because we are applying it to operators,

not just elements of F.
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5.18 Example Suppose D 2 L
�
P.R/

�
is the differentiation operator

defined byDq D q0 and p is the polynomial defined by p.x/ D 7�3xC5x2.

Then p.D/ D 7I � 3D C 5D2; thus�
p.D/

�
q D 7q � 3q0 C 5q00

for every q 2 P.R/.

If we fix an operator T 2 L.V /, then the function from P.F/ to L.V /

given by p 7! p.T / is linear, as you should verify.

5.19 Definition product of polynomials

If p; q 2 P.F/, then pq 2 P.F/ is the polynomial defined by

.pq/.z/ D p.z/q.z/

for z 2 F.

Any two polynomials of an operator commute, as shown below.

5.20 Multiplicative properties

Suppose p; q 2 P.F/ and T 2 L.V /.

Then

(a) .pq/.T / D p.T /q.T /;

(b) p.T /q.T / D q.T /p.T /.

Part (a) holds because when ex-

panding a product of polynomials

using the distributive property, it

does not matter whether the sym-

bol is z or T.

Proof

(a) Suppose p.z/ D
Pm

j D0 aj z
j and q.z/ D

Pn
kD0 bkz

k for z 2 F.

Then

.pq/.z/ D
mX

j D0

nX

kD0

aj bkz
j Ck :

Thus

.pq/.T / D
mX

j D0

nX

kD0

aj bkT
j Ck

D
� mX

j D0

ajT
j
�� nX

kD0

bkT
k
�

D p.T /q.T /:

(b) Part (a) implies p.T /q.T / D .pq/.T / D .qp/.T / D q.T /p.T /.
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Existence of Eigenvalues

Now we come to one of the central results about operators on complex vector

spaces.

5.21 Operators on complex vector spaces have an eigenvalue

Every operator on a finite-dimensional, nonzero, complex vector space

has an eigenvalue.

Proof Suppose V is a complex vector space with dimension n > 0 and

T 2 L.V /. Choose v 2 V with v ¤ 0. Then

v; T v; T 2v; : : : ; T nv

is not linearly independent, because V has dimension n and we have nC 1

vectors. Thus there exist complex numbers a0; : : : ; an, not all 0, such that

0 D a0v C a1T v C � � � C anT
nv:

Note that a1; : : : ; an cannot all be 0, because otherwise the equation above

would become 0 D a0v, which would force a0 also to be 0.

Make the a’s the coefficients of a polynomial, which by the Fundamental

Theorem of Algebra (4.14) has a factorization

a0 C a1z C � � � C anz
n D c.z � �1/ � � � .z � �m/;

where c is a nonzero complex number, each �j is in C, and the equation holds

for all z 2 C (here m is not necessarily equal to n, because an may equal 0).

We then have

0 D a0v C a1T v C � � � C anT
nv

D .a0I C a1T C � � � C anT
n/v

D c.T � �1I / � � � .T � �mI /v:

Thus T � �j I is not injective for at least one j . In other words, T has an

eigenvalue.

The proof above depends on the Fundamental Theorem of Algebra, which

is typical of proofs of this result. See Exercises 16 and 17 for possible ways to

rewrite the proof above using the idea of the proof in a slightly different form.
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Upper-Triangular Matrices

In Chapter 3 we discussed the matrix of a linear map from one vector space

to another vector space. That matrix depended on a choice of a basis of each

of the two vector spaces. Now that we are studying operators, which map a

vector space to itself, the emphasis is on using only one basis.

5.22 Definition matrix of an operator, M.T /

Suppose T 2 L.V / and v1; : : : ; vn is a basis of V. The matrix of T with

respect to this basis is the n-by-n matrix

M.T / D

0
B@
A1;1 : : : A1;n
:::

:::

An;1 : : : An;n

1
CA

whose entries Aj;k are defined by

T vk D A1;kv1 C � � � C An;kvn:

If the basis is not clear from the context, then the notation

M
�
T; .v1; : : : ; vn/

�
is used.

Note that the matrices of operators are square arrays, rather than the more

general rectangular arrays that we considered earlier for linear maps.

The kth column of the matrix

M.T / is formed from the coeffi-

cients used to write T vk as a linear

combination of v1; : : : ; vn.

If T is an operator on Fn and no

basis is specified, assume that the basis

in question is the standard one (where

the j th basis vector is 1 in the j th slot

and 0 in all the other slots). You can

then think of the j th column of M.T / as T applied to the j th basis vector.

5.23 Example Define T 2 L.F3/ by T .x; y; z/ D .2xCy; 5yC3z; 8z/.
Then

M.T / D

0
@
2 1 0

0 5 3

0 0 8

1
A :

A central goal of linear algebra is to show that given an operator T 2 L.V /,

there exists a basis of V with respect to which T has a reasonably simple

matrix. To make this vague formulation a bit more precise, we might try to

choose a basis of V such that M.T / has many 0’s.



SECTION 5.B Eigenvectors and Upper-Triangular Matrices 147

If V is a finite-dimensional complex vector space, then we already know

enough to show that there is a basis of V with respect to which the matrix of

T has 0’s everywhere in the first column, except possibly the first entry. In

other words, there is a basis of V with respect to which the matrix of T looks

like 0
BBB@

�

0 �
:::

0

1
CCCA I

here the � denotes the entries in all the columns other than the first column.

To prove this, let � be an eigenvalue of T (one exists by 5.21) and let v be a

corresponding eigenvector. Extend v to a basis of V. Then the matrix of T

with respect to this basis has the form above.

Soon we will see that we can choose a basis of V with respect to which

the matrix of T has even more 0’s.

5.24 Definition diagonal of a matrix

The diagonal of a square matrix consists of the entries along the line from

the upper left corner to the bottom right corner.

For example, the diagonal of the matrix in 5.23 consists of the entries

2; 5; 8.

5.25 Definition upper-triangular matrix

A matrix is called upper triangular if all the entries below the diagonal

equal 0.

For example, the matrix in 5.23 is upper triangular.

Typically we represent an upper-triangular matrix in the form
0
B@
�1 �

: : :

0 �n

1
CA I

We often use � to denote matrix en-

tries that we do not know about or

that are irrelevant to the questions

being discussed.

the 0 in the matrix above indicates

that all entries below the diagonal in

this n-by-n matrix equal 0. Upper-

triangular matrices can be considered

reasonably simple—for n large, almost

half its entries in an n-by-n upper-

triangular matrix are 0.
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The following proposition demonstrates a useful connection between

upper-triangular matrices and invariant subspaces.

5.26 Conditions for upper-triangular matrix

Suppose T 2 L.V / and v1; : : : ; vn is a basis of V. Then the following are

equivalent:

(a) the matrix of T with respect to v1; : : : ; vn is upper triangular;

(b) T vj 2 span.v1; : : : ; vj / for each j D 1; : : : ; n;

(c) span.v1; : : : ; vj / is invariant under T for each j D 1; : : : ; n.

Proof The equivalence of (a) and (b) follows easily from the definitions and

a moment’s thought. Obviously (c) implies (b). Hence to complete the proof,

we need only prove that (b) implies (c).

Thus suppose (b) holds. Fix j 2 f1; : : : ; ng. From (b), we know that

T v1 2 span.v1/ � span.v1; : : : ; vj /I
T v2 2 span.v1; v2/ � span.v1; : : : ; vj /I

:::

T vj 2 span.v1; : : : ; vj /:

Thus if v is a linear combination of v1; : : : ; vj , then

T v 2 span.v1; : : : ; vj /:

In other words, span.v1; : : : ; vj / is invariant under T, completing the proof.

The next result does not hold on

real vector spaces, because the first

vector in a basis with respect to

which an operator has an upper-

triangular matrix is an eigenvector

of the operator. Thus if an opera-

tor on a real vector space has no

eigenvalues [see 5.8(a) for an ex-

ample], then there is no basis with

respect to which the operator has

an upper-triangular matrix.

Now we can prove that for each

operator on a finite-dimensional com-

plex vector space, there is a basis of the

vector space with respect to which the

matrix of the operator has only 0’s be-

low the diagonal. In Chapter 8 we will

improve even this result.

Sometimes more insight comes from

seeing more than one proof of a theo-

rem. Thus two proofs are presented of

the next result. Use whichever appeals

more to you.



SECTION 5.B Eigenvectors and Upper-Triangular Matrices 149

5.27 Over C, every operator has an upper-triangular matrix

Suppose V is a finite-dimensional complex vector space and T 2 L.V /.

Then T has an upper-triangular matrix with respect to some basis of V.

Proof 1 We will use induction on the dimension of V. Clearly the desired

result holds if dimV D 1.

Suppose now that dimV > 1 and the desired result holds for all complex

vector spaces whose dimension is less than the dimension of V. Let � be any

eigenvalue of T (5.21 guarantees that T has an eigenvalue). Let

U D range.T � �I/:

Because T � �I is not surjective (see 3.69), dimU < dimV. Furthermore,

U is invariant under T. To prove this, suppose u 2 U. Then

T u D .T � �I/uC �u:

Obviously .T � �I/u 2 U (because U equals the range of T � �I ) and

�u 2 U. Thus the equation above shows that T u 2 U. Hence U is invariant

under T, as claimed.

Thus T jU is an operator on U. By our induction hypothesis, there is a

basis u1; : : : ; um of U with respect to which T jU has an upper-triangular

matrix. Thus for each j we have (using 5.26)

5.28 T uj D .T jU /.uj / 2 span.u1; : : : ; uj /:

Extend u1; : : : ; um to a basis u1; : : : ; um; v1; : : : ; vn of V. For each k, we

have

T vk D .T � �I/vk C �vk :

The definition of U shows that .T � �I/vk 2 U D span.u1; : : : ; um/. Thus

the equation above shows that

5.29 T vk 2 span.u1; : : : ; um; v1; : : : ; vk/:

From 5.28 and 5.29, we conclude (using 5.26) that T has an upper-

triangular matrix with respect to the basis u1; : : : ; um; v1; : : : ; vn of V, as

desired.
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Proof 2 We will use induction on the dimension of V. Clearly the desired

result holds if dimV D 1.

Suppose now that dimV D n > 1 and the desired result holds for all

complex vector spaces whose dimension is n � 1. Let v1 be any eigenvector

of T (5.21 guarantees that T has an eigenvector). Let U D span.v1/. Then U

is an invariant subspace of T and dimU D 1.

Because dimV=U D n � 1 (see 3.89), we can apply our induction hy-

pothesis to T=U 2 L.V=U /. Thus there is a basis v2 C U; : : : ; vn C U of

V=U such that T=U has an upper-triangular matrix with respect to this basis.

Hence by 5.26,

.T=U /.vj C U/ 2 span.v2 C U; : : : ; vj C U/

for each j D 2; : : : ; n. Unraveling the meaning of the inclusion above, we

see that

T vj 2 span.v1; : : : ; vj /

for each j D 1; : : : ; n. Thus by 5.26, T has an upper-triangular matrix

with respect to the basis v1; : : : ; vn of V, as desired (it is easy to verify that

v1; : : : ; vn is a basis of V ; see Exercise 13 in Section 3.E for a more general

result).

How does one determine from looking at the matrix of an operator whether

the operator is invertible? If we are fortunate enough to have a basis with

respect to which the matrix of the operator is upper triangular, then this

problem becomes easy, as the following proposition shows.

5.30 Determination of invertibility from upper-triangular matrix

Suppose T 2 L.V / has an upper-triangular matrix with respect to some

basis of V. Then T is invertible if and only if all the entries on the diagonal

of that upper-triangular matrix are nonzero.

Proof Suppose v1; : : : ; vn is a basis of V with respect to which T has an

upper-triangular matrix

5.31 M.T / D

0
BBB@

�1 �
�2

: : :

0 �n

1
CCCA :

We need to prove that T is invertible if and only if all the �j ’s are nonzero.
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First suppose the diagonal entries �1; : : : ; �n are all nonzero. The upper-

triangular matrix in 5.31 implies that T v1 D �1v1. Because �1 ¤ 0, we have

T .v1=�1/ D v1; thus v1 2 rangeT.

Now

T .v2=�2/ D av1 C v2

for some a 2 F. The left side of the equation above and av1 are both in

rangeT ; thus v2 2 rangeT.

Similarly, we see that

T .v3=�3/ D bv1 C cv2 C v3

for some b; c 2 F. The left side of the equation above and bv1; cv2 are all in

rangeT ; thus v3 2 rangeT.

Continuing in this fashion, we conclude that v1; : : : ; vn 2 rangeT. Be-

cause v1; : : : ; vn is a basis of V, this implies that rangeT D V. In other words,

T is surjective. Hence T is invertible (by 3.69), as desired.

To prove the other direction, now suppose that T is invertible. This implies

that �1 ¤ 0, because otherwise we would have T v1 D 0.

Let 1 < j � n, and suppose �j D 0. Then 5.31 implies that T maps

span.v1; : : : ; vj / into span.v1; : : : ; vj �1/. Because

dim span.v1; : : : ; vj / D j and dim span.v1; : : : ; vj �1/ D j � 1;

this implies that T restricted to dim span.v1; : : : ; vj / is not injective (by 3.23).

Thus there exists v 2 span.v1; : : : ; vj / such that v ¤ 0 and T v D 0. Thus T

is not injective, which contradicts our hypothesis (for this direction) that T is

invertible. This contradiction means that our assumption that �j D 0 must be

false. Hence �j ¤ 0, as desired.

As an example of the result above, we see that the operator in Example 5.23

is invertible.

Powerful numeric techniques exist

for finding good approximations to

the eigenvalues of an operator from

its matrix.

Unfortunately no method exists for

exactly computing the eigenvalues of

an operator from its matrix. However,

if we are fortunate enough to find a ba-

sis with respect to which the matrix of

the operator is upper triangular, then the

problem of computing the eigenvalues

becomes trivial, as the following propo-

sition shows.
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5.32 Determination of eigenvalues from upper-triangular matrix

Suppose T 2 L.V / has an upper-triangular matrix with respect to some

basis of V. Then the eigenvalues of T are precisely the entries on the

diagonal of that upper-triangular matrix.

Proof Suppose v1; : : : ; vn is a basis of V with respect to which T has an

upper-triangular matrix

M.T / D

0
BBB@

�1 �
�2

: : :

0 �n

1
CCCA :

Let � 2 F. Then

M.T � �I/ D

0
BBB@

�1 � � �
�2 � �

: : :

0 �n � �

1
CCCA :

Hence T � �I is not invertible if and only if � equals one of the numbers

�1; : : : ; �n (by 5.30). Thus � is an eigenvalue of T if and only if � equals one

of the numbers �1; : : : ; �n.

5.33 Example Define T 2 L.F3/ by T .x; y; z/ D .2xCy; 5yC3z; 8z/.

What are the eigenvalues of T ?

Solution The matrix of T with respect to the standard basis is

M.T / D

0
@
2 1 0

0 5 3

0 0 8

1
A :

Thus M.T / is an upper-triangular matrix. Now 5.32 implies that the eigen-

values of T are 2, 5, and 8.

Once the eigenvalues of an operator on Fn are known, the eigenvectors

can be found easily using Gaussian elimination.
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EXERCISES 5.B

1 Suppose T 2 L.V / and there exists a positive integer n such that T n D 0.

(a) Prove that I � T is invertible and that

.I � T /�1 D I C T C � � � C T n�1:

(b) Explain how you would guess the formula above.

2 Suppose T 2 L.V / and .T � 2I /.T � 3I /.T � 4I / D 0. Suppose � is

an eigenvalue of T. Prove that � D 2 or � D 3 or � D 4.

3 Suppose T 2 L.V / and T 2 D I and �1 is not an eigenvalue of T. Prove

that T D I.

4 Suppose P 2 L.V / and P 2 D P . Prove that V D nullP ˚ rangeP .

5 Suppose S; T 2 L.V / and S is invertible. Suppose p 2 P.F/ is a

polynomial. Prove that

p.STS�1/ D Sp.T /S�1:

6 Suppose T 2 L.V / and U is a subspace of V invariant under T. Prove

that U is invariant under p.T / for every polynomial p 2 P.F/.

7 Suppose T 2 L.V /. Prove that 9 is an eigenvalue of T 2 if and only if 3

or �3 is an eigenvalue of T.

8 Give an example of T 2 L.R2/ such that T 4 D �1.

9 Suppose V is finite-dimensional, T 2 L.V /, and v 2 V with v ¤ 0.

Let p be a nonzero polynomial of smallest degree such that p.T /v D 0.

Prove that every zero of p is an eigenvalue of T.

10 Suppose T 2 L.V / and v is an eigenvector of T with eigenvalue �.

Suppose p 2 P.F/. Prove that p.T /v D p.�/v.

11 Suppose F D C, T 2 L.V /, p 2 P.C/ is a polynomial, and ˛ 2 C.

Prove that ˛ is an eigenvalue of p.T / if and only if ˛ D p.�/ for some

eigenvalue � of T.

12 Show that the result in the previous exercise does not hold if C is replaced

with R.
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13 SupposeW is a complex vector space and T 2 L.W / has no eigenvalues.

Prove that every subspace ofW invariant under T is either f0g or infinite-

dimensional.

14 Give an example of an operator whose matrix with respect to some basis

contains only 0’s on the diagonal, but the operator is invertible.

[The exercise above and the exercise below show that 5.30 fails without

the hypothesis that an upper-triangular matrix is under consideration.]

15 Give an example of an operator whose matrix with respect to some basis

contains only nonzero numbers on the diagonal, but the operator is not

invertible.

16 Rewrite the proof of 5.21 using the linear map that sends p 2 Pn.C/ to�
p.T /

�
v 2 V (and use 3.23).

17 Rewrite the proof of 5.21 using the linear map that sends p 2 Pn2.C/ to

p.T / 2 L.V / (and use 3.23).

18 Suppose V is a finite-dimensional complex vector space and T 2 L.V /.

Define a function f W C ! R by

f .�/ D dim range.T � �I/:

Prove that f is not a continuous function.

19 Suppose V is finite-dimensional with dimV > 1 and T 2 L.V /. Prove

that

fp.T / W p 2 P.F/g ¤ L.V /:

20 Suppose V is a finite-dimensional complex vector space and T 2 L.V /.

Prove that T has an invariant subspace of dimension k for each k D
1; : : : ; dimV.
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5.C Eigenspaces and Diagonal Matrices

5.34 Definition diagonal matrix

A diagonal matrix is a square matrix that is 0 everywhere except possibly

along the diagonal.

5.35 Example 0
@
8 0 0

0 5 0

0 0 5

1
A

is a diagonal matrix.

Obviously every diagonal matrix is upper triangular. In general, a diagonal

matrix has many more 0’s than an upper-triangular matrix.

If an operator has a diagonal matrix with respect to some basis, then the

entries along the diagonal are precisely the eigenvalues of the operator; this

follows from 5.32 (or find an easier proof for diagonal matrices).

5.36 Definition eigenspace, E.�; T /

Suppose T 2 L.V / and � 2 F. The eigenspace of T corresponding to �,

denoted E.�; T /, is defined by

E.�; T / D null.T � �I/:

In other words, E.�; T / is the set of all eigenvectors of T corresponding

to �, along with the 0 vector.

For T 2 L.V / and � 2 F, the eigenspace E.�; T / is a subspace of V

(because the null space of each linear map on V is a subspace of V ). The

definitions imply that � is an eigenvalue of T if and only if E.�; T / ¤ f0g.

5.37 Example Suppose the matrix of an operator T 2 L.V / with respect

to a basis v1; v2; v3 of V is the matrix in Example 5.35 above. Then

E.8; T / D span.v1/; E.5; T / D span.v2; v3/:

If � is an eigenvalue of an operator T 2 L.V /, then T restricted to

E.�; T / is just the operator of multiplication by �.
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5.38 Sum of eigenspaces is a direct sum

Suppose V is finite-dimensional and T 2 L.V /. Suppose also that

�1; : : : ; �m are distinct eigenvalues of T. Then

E.�1; T /C � � � CE.�m; T /

is a direct sum. Furthermore,

dimE.�1; T /C � � � C dimE.�m; T / � dimV:

Proof To show that E.�1; T /C � � � CE.�m; T / is a direct sum, suppose

u1 C � � � C um D 0;

where each uj is in E.�; T /. Because eigenvectors corresponding to distinct

eigenvalues are linearly independent (see 5.10), this implies that each uj

equals 0. This implies (using 1.44) that E.�1; T /C� � �CE.�m; T / is a direct

sum, as desired.

Now

dimE.�1; T /C � � � C dimE.�m; T / D dim
�
E.�1; T /˚ � � � ˚E.�m; T /

�

� dimV;

where the equality above follows from Exercise 16 in Section 2.C.

5.39 Definition diagonalizable

An operator T 2 L.V / is called diagonalizable if the operator has a

diagonal matrix with respect to some basis of V.

5.40 Example Define T 2 L.R2/ by

T .x; y/ D .41x C 7y;�20x C 74y/:

The matrix of T with respect to the standard basis of R2 is�
41 7

�20 74

�
;

which is not a diagonal matrix. However, T is diagonalizable, because the

matrix of T with respect to the basis .1; 4/; .7; 5/ is�
69 0

0 46

�
;

as you should verify.
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5.41 Conditions equivalent to diagonalizability

Suppose V is finite-dimensional and T 2 L.V /. Let �1; : : : ; �m denote

the distinct eigenvalues of T. Then the following are equivalent:

(a) T is diagonalizable;

(b) V has a basis consisting of eigenvectors of T ;

(c) there exist 1-dimensional subspacesU1; : : : ; Un of V, each invariant

under T, such that

V D U1 ˚ � � � ˚ UnI

(d) V D E.�1; T /˚ � � � ˚E.�m; T /;

(e) dimV D dimE.�1; T /C � � � C dimE.�m; T /.

Proof An operator T 2 L.V / has a diagonal matrix

0
B@
�1 0

: : :

0 �n

1
CA

with respect to a basis v1; : : : ; vn of V if and only if T vj D �j vj for each j .

Thus (a) and (b) are equivalent.

Suppose (b) holds; thus V has a basis v1; : : : ; vn consisting of eigenvectors

of T. For each j , let Uj D span.vj /. Obviously each Uj is a 1-dimensional

subspace of V that is invariant under T. Because v1; : : : ; vn is a basis of V,

each vector in V can be written uniquely as a linear combination of v1; : : : ; vn.

In other words, each vector in V can be written uniquely as a sum u1C� � �Cun,

where each uj is in Uj . Thus V D U1 ˚ � � � ˚ Un. Hence (b) implies (c).

Suppose now that (c) holds; thus there are 1-dimensional subspaces

U1; : : : ; Un of V, each invariant under T, such that V D U1 ˚ � � � ˚ Un.

For each j , let vj be a nonzero vector in Uj . Then each vj is an eigenvector

of T. Because each vector in V can be written uniquely as a sum u1 C� � �Cun,

where each uj is in Uj (so each uj is a scalar multiple of vj ), we see that

v1; : : : ; vn is a basis of V. Thus (c) implies (b).

At this stage of the proof we know that (a), (b), and (c) are all equivalent.

We will finish the proof by showing that (b) implies (d), that (d) implies (e),

and that (e) implies (b).
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Suppose (b) holds; thus V has a basis consisting of eigenvectors of T.

Hence every vector in V is a linear combination of eigenvectors of T, which

implies that

V D E.�1; T /C � � � CE.�m; T /:

Now 5.38 shows that (d) holds.

That (d) implies (e) follows immediately from Exercise 16 in Section 2.C.

Finally, suppose (e) holds; thus

5.42 dimV D dimE.�1; T /C � � � C dimE.�m; T /:

Choose a basis of each E.�j ; T /; put all these bases together to form a list

v1; : : : ; vn of eigenvectors of T, where n D dimV (by 5.42). To show that

this list is linearly independent, suppose

a1v1 C � � � C anvn D 0;

where a1; : : : ; an 2 F. For each j D 1; : : : ; m, let uj denote the sum of all

the terms akvk such that vk 2 E.�j ; T /. Thus each uj is in E.�j ; T /, and

u1 C � � � C um D 0:

Because eigenvectors corresponding to distinct eigenvalues are linearly inde-

pendent (see 5.10), this implies that each uj equals 0. Because each uj is a

sum of terms akvk , where the vk’s were chosen to be a basis of E.�j ; T /, this

implies that all the ak’s equal 0. Thus v1; : : : ; vn is linearly independent and

hence is a basis of V (by 2.39). Thus (e) implies (b), completing the proof.

Unfortunately not every operator is diagonalizable. This sad state of affairs

can arise even on complex vector spaces, as shown by the next example.

5.43 Example Show that the operator T 2 L.C2/ defined by

T .w; z/ D .z; 0/

is not diagonalizable.

Solution As you should verify, 0 is the only eigenvalue of T and furthermore

E.0; T / D f.w; 0/ 2 C2 W w 2 Cg.

Thus conditions (b), (c), (d), and (e) of 5.41 are easily seen to fail (of

course, because these conditions are equivalent, it is only necessary to check

that one of them fails). Thus condition (a) of 5.41 also fails, and hence T is

not diagonalizable.
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The next result shows that if an operator has as many distinct eigenvalues

as the dimension of its domain, then the operator is diagonalizable.

5.44 Enough eigenvalues implies diagonalizability

If T 2 L.V / has dimV distinct eigenvalues, then T is diagonalizable.

Proof Suppose T 2 L.V / has dimV distinct eigenvalues �1; : : : ; �dim V .

For each j , let vj 2 V be an eigenvector corresponding to the eigenvalue �j .

Because eigenvectors corresponding to distinct eigenvalues are linearly inde-

pendent (see 5.10), v1; : : : ; vdim V is linearly independent. A linearly indepen-

dent list of dimV vectors in V is a basis of V (see 2.39); thus v1; : : : ; vdim V

is a basis of V. With respect to this basis consisting of eigenvectors, T has a

diagonal matrix.

5.45 Example Define T 2 L.F3/ by T .x; y; z/ D .2xCy; 5yC3z; 8z/.

Find a basis of F3 with respect to which T has a diagonal matrix.

Solution With respect to the standard basis, the matrix of T is

0
@
2 1 0

0 5 3

0 0 8

1
A :

The matrix above is upper triangular. Thus by 5.32, the eigenvalues of T are

2, 5, and 8. Because T is an operator on a vector space with dimension 3 and

T has three distinct eigenvalues, 5.44 assures us that there exists a basis of F3

with respect to which T has a diagonal matrix.

To find this basis, we only have to find an eigenvector for each eigenvalue.

In other words, we have to find a nonzero solution to the equation

T .x; y; z/ D �.x; y; z/

for � D 2, then for � D 5, and then for � D 8. These simple equations are

easy to solve: for � D 2 we have the eigenvector .1; 0; 0/; for � D 5 we have

the eigenvector .1; 3; 0/; for � D 8 we have the eigenvector .1; 6; 6/.

Thus .1; 0; 0/; .1; 3; 0/; .1; 6; 6/ is a basis of F3, and with respect to this

basis the matrix of T is 0
@
2 0 0

0 5 0

0 0 8

1
A :
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The converse of 5.44 is not true. For example, the operator T defined on

the three-dimensional space F3 by

T .z1; z2; z3/ D .4z1; 4z2; 5z3/

has only two eigenvalues (4 and 5), but this operator has a diagonal matrix

with respect to the standard basis.

In later chapters we will find additional conditions that imply that certain

operators are diagonalizable.

EXERCISES 5.C

1 Suppose T 2 L.V / is diagonalizable. Prove that V D nullT ˚ rangeT.

2 Prove the converse of the statement in the exercise above or give a

counterexample to the converse.

3 Suppose V is finite-dimensional and T 2 L.V /. Prove that the following

are equivalent:

(a) V D nullT ˚ rangeT.

(b) V D nullT C rangeT.

(c) nullT \ rangeT D f0g.

4 Give an example to show that the exercise above is false without the

hypothesis that V is finite-dimensional.

5 Suppose V is a finite-dimensional complex vector space and T 2 L.V /.

Prove that T is diagonalizable if and only if

V D null.T � �I/˚ range.T � �I/

for every � 2 C.

6 Suppose V is finite-dimensional, T 2 L.V / has dimV distinct eigenval-

ues, and S 2 L.V / has the same eigenvectors as T (not necessarily with

the same eigenvalues). Prove that ST D TS .

7 Suppose T 2 L.V / has a diagonal matrix A with respect to some basis

of V and that � 2 F. Prove that � appears on the diagonal of A precisely

dimE.�; T / times.

8 Suppose T 2 L.F5/ and dimE.8; T / D 4. Prove that T �2I or T �6I
is invertible.
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9 Suppose T 2 L.V / is invertible. Prove that E.�; T / D E. 1
�
; T �1/ for

every � 2 F with � ¤ 0.

10 Suppose that V is finite-dimensional and T 2 L.V /. Let �1; : : : ; �m

denote the distinct nonzero eigenvalues of T. Prove that

dimE.�1; T /C � � � C dimE.�m; T / � dim rangeT:

11 Verify the assertion in Example 5.40.

12 Suppose R; T 2 L.F3/ each have 2, 6, 7 as eigenvalues. Prove that there

exists an invertible operator S 2 L.F3/ such that R D S�1TS .

13 Find R; T 2 L.F4/ such that R and T each have 2, 6, 7 as eigenvalues,

R and T have no other eigenvalues, and there does not exist an invertible

operator S 2 L.F4/ such that R D S�1TS .

14 Find T 2 L.C3/ such that 6 and 7 are eigenvalues of T and such that T

does not have a diagonal matrix with respect to any basis of C3.

15 Suppose T 2 L.C3/ is such that 6 and 7 are eigenvalues of T. Fur-

thermore, suppose T does not have a diagonal matrix with respect

to any basis of C3. Prove that there exists .x; y; z/ 2 F3 such that

T .x; y; z/ D .17C 8x;
p
5C 8y; 2� C 8z/.

16 The Fibonacci sequence F1; F2; : : : is defined by

F1 D 1; F2 D 1; and Fn D Fn�2 C Fn�1 for n � 3:

Define T 2 L.R2/ by T .x; y/ D .y; x C y/.

(a) Show that T n.0; 1/ D .Fn; FnC1/ for each positive integer n.

(b) Find the eigenvalues of T.

(c) Find a basis of R2 consisting of eigenvectors of T.

(d) Use the solution to part (c) to compute T n.0; 1/. Conclude that

Fn D 1p
5

��
1C

p
5

2

�n

�
�
1 �

p
5

2

�n�

for each positive integer n.

(e) Use part (d) to conclude that for each positive integer n, the

Fibonacci number Fn is the integer that is closest to

1p
5

�
1C

p
5

2

�n

:
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In making the definition of a vector space, we generalized the linear structure

(addition and scalar multiplication) of R2 and R3. We ignored other important
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6.A Inner Products and Norms

Inner Products

x

�x , x �1 2

The length of this vector x isp
x1

2 C x2
2.

To motivate the concept of inner prod-

uct, think of vectors in R2 and R3 as

arrows with initial point at the origin.

The length of a vector x in R2 or R3

is called the norm of x, denoted kxk.

Thus for x D .x1; x2/ 2 R2, we have

kxk D
p
x1

2 C x2
2.

Similarly, if x D .x1; x2; x3/ 2 R3,

then kxk D
p
x1

2 C x2
2 C x3

2.

Even though we cannot draw pictures in higher dimensions, the gener-

alization to Rn is obvious: we define the norm of x D .x1; : : : ; xn/ 2 Rn

by

kxk D
p
x1

2 C � � � C xn
2:

The norm is not linear on Rn. To inject linearity into the discussion, we

introduce the dot product.

6.2 Definition dot product

For x; y 2 Rn, the dot product of x and y, denoted x � y, is defined by

x � y D x1y1 C � � � C xnyn;

where x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/.

If we think of vectors as points in-

stead of arrows, then kxk should

be interpreted as the distance from

the origin to the point x.

Note that the dot product of two vec-

tors in Rn is a number, not a vector. Ob-

viously x � x D kxk2 for all x 2 Rn.

The dot product on Rn has the follow-

ing properties:

� x � x � 0 for all x 2 Rn;

� x � x D 0 if and only if x D 0;

� for y 2 Rn fixed, the map from Rn to R that sends x 2 Rn to x � y is

linear;

� x � y D y � x for all x; y 2 Rn.
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An inner product is a generalization of the dot product. At this point you

may be tempted to guess that an inner product is defined by abstracting the

properties of the dot product discussed in the last paragraph. For real vector

spaces, that guess is correct. However, so that we can make a definition that

will be useful for both real and complex vector spaces, we need to examine

the complex case before making the definition.

Recall that if � D aC bi , where a; b 2 R, then

� the absolute value of �, denoted j�j, is defined by j�j D
p
a2 C b2;

� the complex conjugate of �, denoted N�, is defined by N� D a � bi ;

� j�j2 D � N�.

See Chapter 4 for the definitions and the basic properties of the absolute value

and complex conjugate.

For z D .z1; : : : ; zn/ 2 Cn, we define the norm of z by

kzk D
q

jz1j2 C � � � C jznj2:

The absolute values are needed because we want kzk to be a nonnegative

number. Note that

kzk2 D z1z1 C � � � C znzn:

We want to think of kzk2 as the inner product of z with itself, as we

did in Rn. The equation above thus suggests that the inner product of

w D .w1; : : : ;wn/ 2 Cn with z should equal

w1z1 C � � � C wnzn:

If the roles of the w and z were interchanged, the expression above would

be replaced with its complex conjugate. In other words, we should expect

that the inner product of w with z equals the complex conjugate of the inner

product of z with w. With that motivation, we are now ready to define an

inner product on V, which may be a real or a complex vector space.

Two comments about the notation used in the next definition:

� If � is a complex number, then the notation � � 0 means that � is real

and nonnegative.

� We use the common notation hu; vi, with angle brackets denoting an

inner product. Some people use parentheses instead, but then .u; v/

becomes ambiguous because it could denote either an ordered pair or

an inner product.
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6.3 Definition inner product

An inner product on V is a function that takes each ordered pair .u; v/ of

elements of V to a number hu; vi 2 F and has the following properties:

positivity

hv; vi � 0 for all v 2 V ;

definiteness

hv; vi D 0 if and only if v D 0;

additivity in first slot

huC v;wi D hu;wi C hv;wi for all u; v;w 2 V ;

homogeneity in first slot

h�u; vi D �hu; vi for all � 2 F and all u; v 2 V ;

conjugate symmetry

hu; vi D hv; ui for all u; v 2 V.

Although most mathematicians de-

fine an inner product as above,

many physicists use a definition

that requires homogeneity in the

second slot instead of the first slot.

Every real number equals its com-

plex conjugate. Thus if we are dealing

with a real vector space, then in the last

condition above we can dispense with

the complex conjugate and simply state

that hu; vi D hv; ui for all v;w 2 V.

6.4 Example inner products

(a) The Euclidean inner product on Fnis defined by

h.w1; : : : ;wn/; .z1; : : : ; zn/i D w1z1 C � � � C wnzn:

(b) If c1; : : : ; cn are positive numbers, then an inner product can be defined

on Fn by

h.w1; : : : ;wn/; .z1; : : : ; zn/i D c1w1z1 C � � � C cnwnzn:

(c) An inner product can be defined on the vector space of continuous

real-valued functions on the interval Œ�1; 1� by

hf; gi D
Z 1

�1

f .x/g.x/ dx:

(d) An inner product can be defined on P.R/ by

hp; qi D
Z 1

0

p.x/q.x/e�x dx:
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6.5 Definition inner product space

An inner product space is a vector space V along with an inner product

on V.

The most important example of an inner product space is Fn with the

Euclidean inner product given by part (a) of the last example. When Fn is

referred to as an inner product space, you should assume that the inner product

is the Euclidean inner product unless explicitly told otherwise.

So that we do not have to keep repeating the hypothesis that V is an inner

product space, for the rest of this chapter we make the following assumption:

6.6 Notation V

For the rest of this chapter, V denotes an inner product space over F.

Note the slight abuse of language here. An inner product space is a vector

space along with an inner product on that vector space. When we say that

a vector space V is an inner product space, we are also thinking that an

inner product on V is lurking nearby or is obvious from the context (or is the

Euclidean inner product if the vector space is Fn).

6.7 Basic properties of an inner product

(a) For each fixed u 2 V, the function that takes v to hv; ui is a linear

map from V to F.

(b) h0; ui D 0 for every u 2 V.

(c) hu; 0i D 0 for every u 2 V.

(d) hu; v C wi D hu; vi C hu;wi for all u; v;w 2 V.

(e) hu; �vi D N�hu; vi for all � 2 F and u; v 2 V.

Proof

(a) Part (a) follows from the conditions of additivity in the first slot and

homogeneity in the first slot in the definition of an inner product.

(b) Part (b) follows from part (a) and the result that every linear map takes

0 to 0.
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(c) Part (c) follows from part (a) and the conjugate symmetry property in

the definition of an inner product.

(d) Suppose u; v;w 2 V. Then

hu; v C wi D hv C w; ui
D hv; ui C hw; ui
D hv; ui C hw; ui
D hu; vi C hu;wi:

(e) Suppose � 2 F and u; v 2 V. Then

hu; �vi D h�v; ui
D �hv; ui
D N�hv; ui
D N�hu; vi;

as desired.

Norms

Our motivation for defining inner products came initially from the norms of

vectors on R2 and R3. Now we see that each inner product determines a

norm.

6.8 Definition norm, kvk
For v 2 V, the norm of v, denoted kvk, is defined by

kvk D
p

hv; vi:

6.9 Example norms

(a) If .z1; : : : ; zn/ 2 Fn (with the Euclidean inner product), then

k.z1; : : : ; zn/k D
q

jz1j2 C � � � C jznj2:

(b) In the vector space of continuous real-valued functions on Œ�1; 1� [with

inner product given as in part (c) of 6.4], we have

kf k D

sZ 1

�1

�
f .x/

�2
dx:
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6.10 Basic properties of the norm

Suppose v 2 V.

(a) kvk D 0 if and only if v D 0.

(b) k�vk D j�j kvk for all � 2 F.

Proof

(a) The desired result holds because hv; vi D 0 if and only if v D 0.

(b) Suppose � 2 F. Then

k�vk2 D h�v; �vi
D �hv; �vi
D � N�hv; vi
D j�j2kvk2:

Taking square roots now gives the desired equality.

The proof above of part (b) illustrates a general principle: working with

norms squared is usually easier than working directly with norms.

Now we come to a crucial definition.

6.11 Definition orthogonal

Two vectors u; v 2 V are called orthogonal if hu; vi D 0.

In the definition above, the order of the vectors does not matter, because

hu; vi D 0 if and only if hv; ui D 0. Instead of saying that u and v are

orthogonal, sometimes we say that u is orthogonal to v.

Exercise 13 asks you to prove that if u; v are nonzero vectors in R2, then

hu; vi D kukkvk cos �;

where � is the angle between u and v (thinking of u and v as arrows with initial

point at the origin). Thus two vectors in R2 are orthogonal (with respect to the

usual Euclidean inner product) if and only if the cosine of the angle between

them is 0, which happens if and only if the vectors are perpendicular in the

usual sense of plane geometry. Thus you can think of the word orthogonal as

a fancy word meaning perpendicular.
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We begin our study of orthogonality with an easy result.

6.12 Orthogonality and 0

(a) 0 is orthogonal to every vector in V.

(b) 0 is the only vector in V that is orthogonal to itself.

Proof

(a) Part (b) of 6.7 states that h0; ui D 0 for every u 2 V.

(b) If v 2 V and hv; vi D 0, then v D 0 (by definition of inner product).

The word orthogonal comes from

the Greek word orthogonios,

which means right-angled.

For the special case V D R2, the

next theorem is over 2,500 years old.

Of course, the proof below is not the

original proof.

6.13 Pythagorean Theorem

Suppose u and v are orthogonal vectors in V. Then

kuC vk2 D kuk2 C kvk2:

Proof We have

kuC vk2 D huC v; uC vi
D hu; ui C hu; vi C hv; ui C hv; vi
D kuk2 C kvk2;

as desired.

The proof given above of the

Pythagorean Theorem shows that

the conclusion holds if and only

if hu; vi C hv; ui, which equals

2Rehu; vi, is 0. Thus the converse

of the Pythagorean Theorem holds

in real inner product spaces.

Suppose u; v 2 V, with v ¤ 0. We

would like to write u as a scalar multiple

of v plus a vector w orthogonal to v, as

suggested in the next picture.
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w

u

0

cv

v

An orthogonal decomposition.

To discover how to write u as a scalar multiple of v plus a vector orthogonal

to v, let c 2 F denote a scalar. Then

u D cv C .u � cv/:

Thus we need to choose c so that v is orthogonal to .u � cv/. In other words,

we want

0 D hu � cv; vi D hu; vi � ckvk2:

The equation above shows that we should choose c to be hu; vi=kvk2. Making

this choice of c, we can write

u D hu; vi
kvk2

v C
�
u � hu; vi

kvk2
v

�
:

As you should verify, the equation above writes u as a scalar multiple of v

plus a vector orthogonal to v. In other words, we have proved the following

result.

6.14 An orthogonal decomposition

Suppose u; v 2 V, with v ¤ 0. Set c D hu; vi
kvk2

and w D u� hu; vi
kvk2

v. Then

hw; vi D 0 and u D cv C w:

French mathematician Augustin-

Louis Cauchy (1789–1857) proved

6.17(a) in 1821. German mathe-

matician Hermann Schwarz (1843–

1921) proved 6.17(b) in 1886.

The orthogonal decomposition 6.14

will be used in the proof of the Cauchy–

Schwarz Inequality, which is our next

result and is one of the most important

inequalities in mathematics.
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6.15 Cauchy–Schwarz Inequality

Suppose u; v 2 V. Then

jhu; vij � kuk kvk:

This inequality is an equality if and only if one of u; v is a scalar multiple

of the other.

Proof If v D 0, then both sides of the desired inequality equal 0. Thus we

can assume that v ¤ 0. Consider the orthogonal decomposition

u D hu; vi
kvk2

v C w

given by 6.14, where w is orthogonal to v. By the Pythagorean Theorem,

kuk2 D


hu; vi
kvk2

v


2

C kwk2

D jhu; vij2
kvk2

C kwk2

� jhu; vij2
kvk2

:6.16

Multiplying both sides of this inequality by kvk2 and then taking square roots

gives the desired inequality.

Looking at the proof in the paragraph above, note that the Cauchy–Schwarz

Inequality is an equality if and only if 6.16 is an equality. Obviously this

happens if and only if w D 0. But w D 0 if and only if u is a multiple of v

(see 6.14). Thus the Cauchy–Schwarz Inequality is an equality if and only if

u is a scalar multiple of v or v is a scalar multiple of u (or both; the phrasing

has been chosen to cover cases in which either u or v equals 0).

6.17 Example examples of the Cauchy–Schwarz Inequality

(a) If x1; : : : ; xn; y1; : : : ; yn 2 R, then

jx1y1 C � � � C xnynj2 � .x1
2 C � � � C xn

2/.y1
2 C � � � C yn

2/:

(b) If f; g are continuous real-valued functions on Œ�1; 1�, then
ˇ̌
ˇ
Z 1

�1

f .x/g.x/ dx
ˇ̌
ˇ
2

�
�Z 1

�1

�
f .x/

�2
dx
��Z 1

�1

�
g.x/

�2
dx
�
:
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u � v

v

u

The next result, called the Triangle

Inequality, has the geometric interpreta-

tion that the length of each side of a tri-

angle is less than the sum of the lengths

of the other two sides.

Note that the Triangle Inequality im-

plies that the shortest path between two

points is a line segment.

6.18 Triangle Inequality

Suppose u; v 2 V. Then

kuC vk � kuk C kvk:

This inequality is an equality if and only if one of u; v is a nonnegative

multiple of the other.

Proof We have

kuC vk2 D huC v; uC vi
D hu; ui C hv; vi C hu; vi C hv; ui
D hu; ui C hv; vi C hu; vi C hu; vi
D kuk2 C kvk2 C 2Rehu; vi
� kuk2 C kvk2 C 2jhu; vij6.19

� kuk2 C kvk2 C 2kuk kvk6.20

D .kuk C kvk/2;

where 6.20 follows from the Cauchy–Schwarz Inequality (6.15). Taking

square roots of both sides of the inequality above gives the desired inequality.

The proof above shows that the Triangle Inequality is an equality if and

only if we have equality in 6.19 and 6.20. Thus we have equality in the

Triangle Inequality if and only if

6.21 hu; vi D kukkvk:

If one of u; v is a nonnegative multiple of the other, then 6.21 holds, as

you should verify. Conversely, suppose 6.21 holds. Then the condition for

equality in the Cauchy–Schwarz Inequality (6.15) implies that one of u; v is a

scalar multiple of the other. Clearly 6.21 forces the scalar in question to be

nonnegative, as desired.
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The next result is called the parallelogram equality because of its geometric

interpretation: in every parallelogram, the sum of the squares of the lengths

of the diagonals equals the sum of the squares of the lengths of the four sides.

u � v

u � v

u

u

v v

The parallelogram equality.

6.22 Parallelogram Equality

Suppose u; v 2 V. Then

kuC vk2 C ku � vk2 D 2.kuk2 C kvk2/:

Proof We have

kuC vk2 C ku � vk2 D huC v; uC vi C hu � v; u � vi
D kuk2 C kvk2 C hu; vi C hv; ui

C kuk2 C kvk2 � hu; vi � hv; ui
D 2.kuk2 C kvk2/;

as desired.

Law professor Richard Friedman presenting a case before the U.S.

Supreme Court in 2010:

Mr. Friedman: I think that issue is entirely orthogonal to the issue here

because the Commonwealth is acknowledging—

Chief Justice Roberts: I’m sorry. Entirely what?

Mr. Friedman: Orthogonal. Right angle. Unrelated. Irrelevant.

Chief Justice Roberts: Oh.

Justice Scalia: What was that adjective? I liked that.

Mr. Friedman: Orthogonal.

Chief Justice Roberts: Orthogonal.

Mr. Friedman: Right, right.

Justice Scalia: Orthogonal, ooh. (Laughter.)

Justice Kennedy: I knew this case presented us a problem. (Laughter.)
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EXERCISES 6.A

1 Show that the function that takes
�
.x1; x2/; .y1; y2/

�
2 R2 � R2 to

jx1y1j C jx2y2j is not an inner product on R2.

2 Show that the function that takes
�
.x1; x2; x3/; .y1; y2; y3/

�
2 R3 � R3

to x1y1 C x3y3 is not an inner product on R3.

3 Suppose F D R and V ¤ f0g. Replace the positivity condition (which

states that hv; vi � 0 for all v 2 V ) in the definition of an inner product

(6.3) with the condition that hv; vi > 0 for some v 2 V. Show that this

change in the definition does not change the set of functions from V � V
to R that are inner products on V.

4 Suppose V is a real inner product space.

(a) Show that huC v; u � vi D kuk2 � kvk2 for every u; v 2 V.

(b) Show that if u; v 2 V have the same norm, then uCv is orthogonal

to u � v.

(c) Use part (b) to show that the diagonals of a rhombus are perpen-

dicular to each other.

5 Suppose T 2 L.V / is such that kT vk � kvk for every v 2 V. Prove that

T �
p
2I is invertible.

6 Suppose u; v 2 V. Prove that hu; vi D 0 if and only if

kuk � kuC avk

for all a 2 F.

7 Suppose u; v 2 V. Prove that kauC bvk D kbuC avk for all a; b 2 R

if and only if kuk D kvk.

8 Suppose u; v 2 V and kuk D kvk D 1 and hu; vi D 1. Prove that u D v.

9 Suppose u; v 2 V and kuk � 1 and kvk � 1. Prove that

q
1 � kuk2

q
1 � kvk2 � 1 � jhu; vij:

10 Find vectors u; v 2 R2 such that u is a scalar multiple of .1; 3/, v is

orthogonal to .1; 3/, and .1; 2/ D uC v.
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11 Prove that

16 � .aC b C c C d/

�
1

a
C 1

b
C 1

c
C 1

d

�

for all positive numbers a; b; c; d .

12 Prove that

.x1 C � � � C xn/
2 � n.x1

2 C � � � C xn
2/

for all positive integers n and all real numbers x1; : : : ; xn.

13 Suppose u; v are nonzero vectors in R2. Prove that

hu; vi D kukkvk cos �;

where � is the angle between u and v (thinking of u and v as arrows with

initial point at the origin).

Hint: Draw the triangle formed by u, v, and u � v; then use the law of

cosines.

14 The angle between two vectors (thought of as arrows with initial point at

the origin) in R2 or R3 can be defined geometrically. However, geometry

is not as clear in Rn for n > 3. Thus the angle between two nonzero

vectors x; y 2 Rn is defined to be

arccos
hx; yi

kxkkyk ;

where the motivation for this definition comes from the previous exercise.

Explain why the Cauchy–Schwarz Inequality is needed to show that this

definition makes sense.

15 Prove that � nX

j D1

aj bj

�2
�
� nX

j D1

jaj
2
�� nX

j D1

bj
2

j

�

for all real numbers a1; : : : ; an and b1; : : : ; bn.

16 Suppose u; v 2 V are such that

kuk D 3; kuC vk D 4; ku � vk D 6:

What number does kvk equal?
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17 Prove or disprove: there is an inner product on R2 such that the associated

norm is given by

k.x; y/k D maxfx; yg
for all .x; y/ 2 R2.

18 Suppose p > 0. Prove that there is an inner product on R2 such that the

associated norm is given by

k.x; y/k D .xp C yp/1=p

for all .x; y/ 2 R2 if and only if p D 2.

19 Suppose V is a real inner product space. Prove that

hu; vi D kuC vk2 � ku � vk2

4

for all u; v 2 V.

20 Suppose V is a complex inner product space. Prove that

hu; vi D kuC vk2 � ku � vk2 C kuC ivk2i � ku � ivk2i

4

for all u; v 2 V.

21 A norm on a vector space U is a function k kW U ! Œ0;1/ such

that kuk D 0 if and only if u D 0, k˛uk D j˛jkuk for all ˛ 2 F

and all u 2 U, and ku C vk � kuk C kvk for all u; v 2 U. Prove

that a norm satisfying the parallelogram equality comes from an inner

product (in other words, show that if k k is a norm on U satisfying the

parallelogram equality, then there is an inner product h ; i on U such

that kuk D hu; ui1=2 for all u 2 U ).

22 Show that the square of an average is less than or equal to the average

of the squares. More precisely, show that if a1; : : : ; an 2 R, then the

square of the average of a1; : : : ; an is less than or equal to the average

of a1
2; : : : ; an

2.

23 Suppose V1; : : : ; Vm are inner product spaces. Show that the equation

h.u1; : : : ; um/; .v1; : : : ; vm/i D hu1; v1i C � � � C hum; vmi
defines an inner product on V1 � � � � � Vm.

[In the expression above on the right, hu1; v1i denotes the inner product

on V1, . . . , hum; vmi denotes the inner product on Vm. Each of the spaces

V1; : : : ; Vm may have a different inner product, even though the same

notation is used here.]
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24 Suppose S 2 L.V / is an injective operator on V. Define h�; �i1 by

hu; vi1 D hSu; Svi

for u; v 2 V. Show that h�; �i1 is an inner product on V.

25 Suppose S 2 L.V / is not injective. Define h�; �i1 as in the exercise above.

Explain why h�; �i1 is not an inner product on V.

26 Suppose f; g are differentiable functions from R to Rn.

(a) Show that

hf .t/; g.t/i0 D hf 0.t/; g.t/i C hf .t/; g0.t/i:

(b) Suppose c > 0 and kf .t/k D c for every t 2 R. Show that

hf 0.t/; f .t/i D 0 for every t 2 R.

(c) Interpret the result in part (b) geometrically in terms of the tangent

vector to a curve lying on a sphere in Rn centered at the origin.

[For the exercise above, a function f W R ! Rn is called differentiable

if there exist differentiable functions f1; : : : ; fn from R to R such that

f .t/ D
�
f1.t/; : : : ; fn.t/

�
for each t 2 R. Furthermore, for each t 2 R,

the derivative f 0.t/ 2 Rn is defined by f 0.t/ D
�
f1

0.t/; : : : ; fn
0.t/

�
.]

27 Suppose u; v;w 2 V. Prove that

kw � 1
2
.uC v/k2 D kw � uk2 C kw � vk2

2
� ku � vk2

4
:

28 Suppose C is a subset of V with the property that u; v 2 C implies
1
2
.u C v/ 2 C . Let w 2 V. Show that there is at most one point in C

that is closest to w. In other words, show that there is at most one u 2 C
such that

kw � uk � kw � vk for all v 2 C .

Hint: Use the previous exercise.

29 For u; v 2 V, define d.u; v/ D ku � vk.

(a) Show that d is a metric on V.

(b) Show that if V is finite-dimensional, then d is a complete metric

on V (meaning that every Cauchy sequence converges).

(c) Show that every finite-dimensional subspace of V is a closed

subset of V (with respect to the metric d ).
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30 Fix a positive integer n. The Laplacian �p of a twice differentiable

function p on Rn is the function on Rn defined by

�p D @2p

@x2
1

C � � � C @2p

@x2
n

:

The function p is called harmonic if �p D 0.

A polynomial on Rn is a linear combination of functions of the

form x1
m1 � � � xn

mn , where m1; : : : ; mn are nonnegative integers.

Suppose q is a polynomial on Rn. Prove that there exists a harmonic

polynomial p on Rn such that p.x/ D q.x/ for every x 2 Rn with

kxk D 1.

[The only fact about harmonic functions that you need for this exercise

is that if p is a harmonic function on Rn and p.x/ D 0 for all x 2 Rn

with kxk D 1, then p D 0.]

Hint: A reasonable guess is that the desired harmonic polynomial p is of

the form q C .1 � kxk2/r for some polynomial r . Prove that there is a

polynomial r on Rn such that q C .1 � kxk2/r is harmonic by defining

an operator T on a suitable vector space by

T r D �
�
.1 � kxk2/r

�

and then showing that T is injective and hence surjective.

31 Use inner products to prove Apollonius’s Identity: In a triangle with

sides of length a, b, and c, let d be the length of the line segment from

the midpoint of the side of length c to the opposite vertex. Then

a2 C b2 D 1
2
c2 C 2d2:

c

a bd
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6.B Orthonormal Bases

6.23 Definition orthonormal

� A list of vectors is called orthonormal if each vector in the list has

norm 1 and is orthogonal to all the other vectors in the list.

� In other words, a list e1; : : : ; em of vectors in V is orthonormal if

hej ; eki D
(
1 if j D k,

0 if j ¤ k.

6.24 Example orthonormal lists

(a) The standard basis in Fn is an orthonormal list.

(b)
�

1p
3
; 1p

3
; 1p

3

�
;
�
� 1p

2
; 1p

2
; 0
�

is an orthonormal list in F3.

(c)
�

1p
3
; 1p

3
; 1p

3

�
;
�
� 1p

2
; 1p

2
; 0
�
;
�

1p
6
; 1p

6
;� 2p

6

�
is an orthonormal list

in F3.

Orthonormal lists are particularly easy to work with, as illustrated by the

next result.

6.25 The norm of an orthonormal linear combination

If e1; : : : ; em is an orthonormal list of vectors in V, then

ka1e1 C � � � C amemk2 D ja1j2 C � � � C jamj2

for all a1; : : : ; am 2 F.

Proof Because each ej has norm 1, this follows easily from repeated appli-

cations of the Pythagorean Theorem (6.13).

The result above has the following important corollary.

6.26 An orthonormal list is linearly independent

Every orthonormal list of vectors is linearly independent.
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Proof Suppose e1; : : : ; em is an orthonormal list of vectors in V and

a1; : : : ; am 2 F are such that

a1e1 C � � � C amem D 0:

Then ja1j2 C � � � C jamj2 D 0 (by 6.25), which means that all the aj ’s are 0.

Thus e1; : : : ; em is linearly independent.

6.27 Definition orthonormal basis

An orthonormal basis of V is an orthonormal list of vectors in V that is

also a basis of V.

For example, the standard basis is an orthonormal basis of Fn.

6.28 An orthonormal list of the right length is an orthonormal basis

Every orthonormal list of vectors in V with length dimV is an orthonormal

basis of V.

Proof By 6.26, any such list must be linearly independent; because it has the

right length, it is a basis—see 2.39.

6.29 Example Show that

�
1
2
; 1

2
; 1

2
; 1

2

�
;
�

1
2
; 1

2
;�1

2
;�1

2

�
;
�

1
2
;�1

2
;�1

2
; 1

2

�
;
�
�1

2
; 1

2
;�1

2
; 1

2

�

is an orthonormal basis of F4.

Solution We have

�1
2
; 1

2
; 1

2
; 1

2

� D
q�

1
2

�2 C
�

1
2

�2 C
�

1
2

�2 C
�

1
2

�2 D 1:

Similarly, the other three vectors in the list above also have norm 1.

We have

˝�
1
2
; 1

2
; 1

2
; 1

2

�
;
�

1
2
; 1

2
;�1

2
;�1

2

�˛
D 1

2
� 1

2
C 1

2
� 1

2
C 1

2
�
�
�1

2

�
C 1

2
�
�
�1

2

�
D 0:

Similarly, the inner product of any two distinct vectors in the list above also

equals 0.

Thus the list above is orthonormal. Because we have an orthonormal list of

length four in the four-dimensional vector space F4, this list is an orthonormal

basis of F4 (by 6.28).
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In general, given a basis e1; : : : ; en of V and a vector v 2 V, we know that

there is some choice of scalars a1; : : : ; an 2 F such that

v D a1e1 C � � � C anen:

The importance of orthonormal

bases stems mainly from the next

result.

Computing the numbers a1; : : : ; an that

satisfy the equation above can be diffi-

cult for an arbitrary basis of V. The

next result shows, however, that this is

easy for an orthonormal basis—just take

aj D hv; ej i.

6.30 Writing a vector as linear combination of orthonormal basis

Suppose e1; : : : ; en is an orthonormal basis of V and v 2 V. Then

v D hv; e1ie1 C � � � C hv; enien

and

kvk2 D jhv; e1ij2 C � � � C jhv; enij2:

Proof Because e1; : : : ; en is a basis of V, there exist scalars a1; : : : ; an such

that

v D a1e1 C � � � C anen:

Because e1; : : : ; en is orthonormal, taking the inner product of both sides of

this equation with ej gives hv; ej i D aj . Thus the first equation in 6.30 holds.

The second equation in 6.30 follows immediately from the first equation

and 6.25.

Now that we understand the usefulness of orthonormal bases, how do we

go about finding them? For example, does Pm.R/, with inner product given

by integration on Œ�1; 1� [see 6.4(c)], have an orthonormal basis? The next

result will lead to answers to these questions.

Danish mathematician Jørgen

Gram (1850–1916) and German

mathematician Erhard Schmidt

(1876–1959) popularized this algo-

rithm that constructs orthonormal

lists.

The algorithm used in the next proof

is called the Gram–Schmidt Procedure.

It gives a method for turning a linearly

independent list into an orthonormal list

with the same span as the original list.
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6.31 Gram–Schmidt Procedure

Suppose v1; : : : ; vm is a linearly independent list of vectors in V. Let

e1 D v1=kv1k. For j D 2; : : : ; m, define ej inductively by

ej D vj � hvj ; e1ie1 � � � � � hvj ; ej �1iej �1

kvj � hvj ; e1ie1 � � � � � hvj ; ej �1iej �1k :

Then e1; : : : ; em is an orthonormal list of vectors in V such that

span.v1; : : : ; vj / D span.e1; : : : ; ej /

for j D 1; : : : ; m.

Proof We will show by induction on j that the desired conclusion holds. To

get started with j D 1, note that span.v1/ D span.e1/ because v1 is a positive

multiple of e1.

Suppose 1 < j < m and we have verified that

6.32 span.v1; : : : ; vj �1/ D span.e1; : : : ; ej �1/:

Note that vj … span.v1; : : : ; vj �1/ (because v1; : : : ; vm is linearly indepen-

dent). Thus vj … span.e1; : : : ; ej �1/. Hence we are not dividing by 0 in the

definition of ej given in 6.31. Dividing a vector by its norm produces a new

vector with norm 1; thus kej k D 1.

Let 1 � k < j . Then

hej ; eki D
�

vj � hvj ; e1ie1 � � � � � hvj ; ej �1iej �1

kvj � hvj ; e1ie1 � � � � � hvj ; ej �1iej �1k ; ek

�

D hvj ; eki � hvj ; eki
kvj � hvj ; e1ie1 � � � � � hvj ; ej �1iej �1k

D 0:

Thus e1; : : : ; ej is an orthonormal list.

From the definition of ej given in 6.31, we see that vj 2 span.e1; : : : ; ej /.

Combining this information with 6.32 shows that

span.v1; : : : ; vj / � span.e1; : : : ; ej /:

Both lists above are linearly independent (the v’s by hypothesis, the e’s by

orthonormality and 6.26). Thus both subspaces above have dimension j , and

hence they are equal, completing the proof.
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6.33 Example Find an orthonormal basis of P2.R/, where the inner prod-

uct is given by hp; qi D
R 1

�1 p.x/q.x/ dx.

Solution We will apply the Gram–Schmidt Procedure (6.31) to the basis

1; x; x2.

To get started, with this inner product we have

k1k2 D
Z 1

�1

12 dx D 2:

Thus k1k D
p
2, and hence e1 D

q
1
2

.

Now the numerator in the expression for e2 is

x � hx; e1ie1 D x �
�Z 1

�1

x

q
1
2
dx
�q

1
2

D x:

We have

kxk2 D
Z 1

�1

x2 dx D 2
3
:

Thus kxk D
q

2
3

, and hence e2 D
q

3
2
x.

Now the numerator in the expression for e3 is

x2 � hx2; e1ie1 � hx2; e2ie2

D x2 �
�Z 1

�1

x2
q

1
2
dx
�q

1
2

�
�Z 1

�1

x2
q

3
2
x dx

�q
3
2
x

D x2 � 1
3
:

We have

kx2 � 1
3
k2 D

Z 1

�1

�
x4 � 2

3
x2 C 1

9

�
dx D 8

45
:

Thus kx2 � 1
3
k D

q
8

45
, and hence e3 D

q
45
8

�
x2 � 1

3

�
.

Thus q
1
2
;

q
3
2
x;

q
45
8

�
x2 � 1

3

�

is an orthonormal list of length 3 in P2.R/. Hence this orthonormal list is an

orthonormal basis of P2.R/ by 6.28.
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Now we can answer the question about the existence of orthonormal bases.

6.34 Existence of orthonormal basis

Every finite-dimensional inner product space has an orthonormal basis.

Proof Suppose V is finite-dimensional. Choose a basis of V. Apply the

Gram–Schmidt Procedure (6.31) to it, producing an orthonormal list with

length dimV. By 6.28, this orthonormal list is an orthonormal basis of V.

Sometimes we need to know not only that an orthonormal basis exists, but

also that every orthonormal list can be extended to an orthonormal basis. In

the next corollary, the Gram–Schmidt Procedure shows that such an extension

is always possible.

6.35 Orthonormal list extends to orthonormal basis

Suppose V is finite-dimensional. Then every orthonormal list of vectors

in V can be extended to an orthonormal basis of V.

Proof Suppose e1; : : : ; em is an orthonormal list of vectors in V. Then

e1; : : : ; em is linearly independent (by 6.26). Hence this list can be extended to

a basis e1; : : : ; em; v1; : : : ; vn of V (see 2.33). Now apply the Gram–Schmidt

Procedure (6.31) to e1; : : : ; em; v1; : : : ; vn, producing an orthonormal list

6.36 e1; : : : ; em; f1; : : : ; fnI

here the formula given by the Gram–Schmidt Procedure leaves the first m

vectors unchanged because they are already orthonormal. The list above is an

orthonormal basis of V by 6.28.

Recall that a matrix is called upper triangular if all entries below the

diagonal equal 0. In other words, an upper-triangular matrix looks like this:

0
B@

� �
: : :

0 �

1
CA ;

where the 0 in the matrix above indicates that all entries below the diagonal

equal 0, and asterisks are used to denote entries on and above the diagonal.
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In the last chapter we showed that if V is a finite-dimensional complex

vector space, then for each operator on V there is a basis with respect to

which the matrix of the operator is upper triangular (see 5.27). Now that we

are dealing with inner product spaces, we would like to know whether there

exists an orthonormal basis with respect to which we have an upper-triangular

matrix.

The next result shows that the existence of a basis with respect to which

T has an upper-triangular matrix implies the existence of an orthonormal

basis with this property. This result is true on both real and complex vector

spaces (although on a real vector space, the hypothesis holds only for some

operators).

6.37 Upper-triangular matrix with respect to orthonormal basis

Suppose T 2 L.V /. If T has an upper-triangular matrix with respect to

some basis of V, then T has an upper-triangular matrix with respect to

some orthonormal basis of V.

Proof Suppose T has an upper-triangular matrix with respect to some basis

v1; : : : ; vn of V. Thus span.v1; : : : ; vj / is invariant under T for each j D
1; : : : ; n (see 5.26).

Apply the Gram–Schmidt Procedure to v1; : : : ; vn, producing an orthonor-

mal basis e1; : : : ; en of V. Because

span.e1; : : : ; ej / D span.v1; : : : ; vj /

for each j (see 6.31), we conclude that span.e1; : : : ; ej / is invariant under T

for each j D 1; : : : ; n. Thus, by 5.26, T has an upper-triangular matrix with

respect to the orthonormal basis e1; : : : ; en.

German mathematician Issai Schur

(1875–1941) published the first

proof of the next result in 1909.

The next result is an important appli-

cation of the result above.

6.38 Schur’s Theorem

Suppose V is a finite-dimensional complex vector space and T 2 L.V /.

Then T has an upper-triangular matrix with respect to some orthonormal

basis of V.

Proof Recall that T has an upper-triangular matrix with respect to some basis

of V (see 5.27). Now apply 6.37.
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Linear Functionals on Inner Product Spaces

Because linear maps into the scalar field F play a special role, we defined a

special name for them in Section 3.F. That definition is repeated below in

case you skipped Section 3.F.

6.39 Definition linear functional

A linear functional on V is a linear map from V to F. In other words, a

linear functional is an element of L.V;F/.

6.40 Example The function ' W F3 ! F defined by

'.z1; z2; z3/ D 2z1 � 5z2 C z3

is a linear functional on F3. We could write this linear functional in the form

'.z/ D hz; ui

for every z 2 F3, where u D .2;�5; 1/.

6.41 Example The function ' W P2.R/ ! R defined by

'.p/ D
Z 1

�1

p.t/
�
cos.�t/

�
dt

is a linear functional on P2.R/ (here the inner product on P2.R/ is multi-

plication followed by integration on Œ�1; 1�; see 6.33). It is not obvious that

there exists u 2 P2.R/ such that

'.p/ D hp; ui

for every p 2 P2.R/ [we cannot take u.t/ D cos.�t/ because that function

is not an element of P2.R/].

The next result is named in honor of

Hungarian mathematician Frigyes

Riesz (1880–1956), who proved

several results early in the twen-

tieth century that look very much

like the result below.

If u 2 V, then the map that sends

v to hv; ui is a linear functional on V.

The next result shows that every linear

functional on V is of this form. Ex-

ample 6.41 above illustrates the power

of the next result because for the linear

functional in that example, there is no

obvious candidate for u.
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6.42 Riesz Representation Theorem

Suppose V is finite-dimensional and ' is a linear functional on V. Then

there is a unique vector u 2 V such that

'.v/ D hv; ui

for every v 2 V.

Proof First we show there exists a vector u 2 V such that '.v/ D hv; ui for

every v 2 V. Let e1; : : : ; en be an orthonormal basis of V. Then

'.v/ D '.hv; e1ie1 C � � � C hv; enien/

D hv; e1i'.e1/C � � � C hv; eni'.en/

D hv; '.e1/e1 C � � � C '.en/eni

for every v 2 V, where the first equality comes from 6.30. Thus setting

6.43 u D '.e1/e1 C � � � C '.en/en;

we have '.v/ D hv; ui for every v 2 V, as desired.

Now we prove that only one vector u 2 V has the desired behavior.

Suppose u1; u2 2 V are such that

'.v/ D hv; u1i D hv; u2i

for every v 2 V. Then

0 D hv; u1i � hv; u2i D hv; u1 � u2i

for every v 2 V. Taking v D u1 �u2 shows that u1 �u2 D 0. In other words,

u1 D u2, completing the proof of the uniqueness part of the result.

6.44 Example Find u 2 P2.R/ such that

Z 1

�1

p.t/
�
cos.�t/

�
dt D

Z 1

�1

p.t/u.t/ dt

for every p 2 P2.R/.
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Solution Let '.p/ D
R 1

�1 p.t/
�
cos.�t/

�
dt . Applying formula 6.43 from

the proof above, and using the orthonormal basis from Example 6.33, we have

u.x/ D
�Z 1

�1

q
1
2

�
cos.�t/

�
dt
�q

1
2

C
�Z 1

�1

q
3
2
t
�
cos.�t/

�
dt
�q

3
2
x

C
�Z 1

�1

q
45
8

�
t2 � 1

3

��
cos.�t/

�
dt
�q

45
8

�
x2 � 1

3

�
:

A bit of calculus shows that

u.x/ D � 45
2�2

�
x2 � 1

3

�
:

Suppose V is finite-dimensional and ' a linear functional on V. Then 6.43

gives a formula for the vector u that satisfies '.v/ D hv; ui for all v 2 V.

Specifically, we have

u D '.e1/e1 C � � � C '.en/en:

The right side of the equation above seems to depend on the orthonormal

basis e1; : : : ; en as well as on '. However, 6.42 tells us that u is uniquely

determined by '. Thus the right side of the equation above is the same

regardless of which orthonormal basis e1; : : : ; en of V is chosen.

EXERCISES 6.B

1 (a) Suppose � 2 R. Show that .cos �; sin �/; .� sin �; cos �/ and

.cos �; sin �/; .sin �;� cos �/ are orthonormal bases of R2.

(b) Show that each orthonormal basis of R2 is of the form given by

one of the two possibilities of part (a).

2 Suppose e1; : : : ; em is an orthonormal list of vectors in V. Let v 2 V.

Prove that

kvk2 D jhv; e1ij2 C � � � C jhv; emij2

if and only if v 2 span.e1; : : : ; em/.

3 Suppose T 2 L.R3/ has an upper-triangular matrix with respect to

the basis .1; 0; 0/, (1, 1, 1), .1; 1; 2/. Find an orthonormal basis of R3

(use the usual inner product on R3) with respect to which T has an

upper-triangular matrix.
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4 Suppose n is a positive integer. Prove that

1p
2�
;

cos xp
�
;

cos 2xp
�
; : : : ;

cosnxp
�
;

sin xp
�
;

sin 2xp
�
; : : : ;

sinnxp
�

is an orthonormal list of vectors in C Œ��; ��, the vector space of contin-

uous real-valued functions on Œ��; �� with inner product

hf; gi D
Z �

��

f .x/g.x/ dx:

[The orthonormal list above is often used for modeling periodic phenom-

ena such as tides.]

5 On P2.R/, consider the inner product given by

hp; qi D
Z 1

0

p.x/q.x/ dx:

Apply the Gram–Schmidt Procedure to the basis 1; x; x2 to produce an

orthonormal basis of P2.R/.

6 Find an orthonormal basis of P2.R/ (with inner product as in Exercise 5)

such that the differentiation operator (the operator that takes p to p0)
on P2.R/ has an upper-triangular matrix with respect to this basis.

7 Find a polynomial q 2 P2.R/ such that

p
�

1
2

�
D
Z 1

0

p.x/q.x/ dx

for every p 2 P2.R/.

8 Find a polynomial q 2 P2.R/ such that

Z 1

0

p.x/.cos�x/ dx D
Z 1

0

p.x/q.x/ dx

for every p 2 P2.R/.

9 What happens if the Gram–Schmidt Procedure is applied to a list of

vectors that is not linearly independent?
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10 Suppose V is a real inner product space and v1; : : : ; vm is a linearly inde-

pendent list of vectors in V. Prove that there exist exactly 2m orthonormal

lists e1; : : : ; em of vectors in V such that

span.v1; : : : ; vj / D span.e1; : : : ; ej /

for all j 2 f1; : : : ; mg.

11 Suppose h�; �i1 and h�; �i2 are inner products on V such that hv;wi1 D 0

if and only if hv;wi2 D 0. Prove that there is a positive number c such

that hv;wi1 D chv;wi2 for every v;w 2 V.

12 Suppose V is finite-dimensional and h�; �i1, h�; �i2 are inner products on

V with corresponding norms k � k1 and k � k2. Prove that there exists a

positive number c such that

kvk1 � ckvk2

for every v 2 V.

13 Suppose v1; : : : ; vm is a linearly independent list in V. Show that there

exists w 2 V such that hw; vj i > 0 for all j 2 f1; : : : ; mg.

14 Suppose e1; : : : ; en is an orthonormal basis of V and v1; : : : ; vn are

vectors in V such that

kej � vj k < 1p
n

for each j . Prove that v1; : : : ; vn is a basis of V.

15 Suppose CR.Œ�1; 1�/ is the vector space of continuous real-valued func-

tions on the interval Œ�1; 1� with inner product given by

hf; gi D
Z 1

�1

f .x/g.x/ dx

for f; g 2 CR.Œ�1; 1�/. Let ' be the linear functional on CR.Œ�1; 1�/
defined by '.f / D f .0/. Show that there does not exist g 2 CR.Œ�1; 1�/
such that

'.f / D hf; gi
for every f 2 CR.Œ�1; 1�/.
[The exercise above shows that the Riesz Representation Theorem (6.42)

does not hold on infinite-dimensional vector spaces without additional

hypotheses on V and '.]
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16 Suppose F D C, V is finite-dimensional, T 2 L.V /, all the eigenvalues

of T have absolute value less than 1, and � > 0. Prove that there exists a

positive integer m such that kTmvk � �kvk for every v 2 V.

17 For u 2 V, let ˆu denote the linear functional on V defined by

.ˆu/.v/ D hv; ui

for v 2 V.

(a) Show that if F D R, then ˆ is a linear map from V to V 0. (Recall

from Section 3.F that V 0 D L.V;F/ and that V 0 is called the dual

space of V.)

(b) Show that if F D C and V ¤ f0g, then ˆ is not a linear map.

(c) Show that ˆ is injective.

(d) Suppose F D R and V is finite-dimensional. Use parts (a) and (c)

and a dimension-counting argument (but without using 6.42) to

show that ˆ is an isomorphism from V onto V 0.

[Part (d) gives an alternative proof of the Riesz Representation Theorem

(6.42) when F D R. Part (d) also gives a natural isomorphism (meaning

that it does not depend on a choice of basis) from a finite-dimensional

real inner product space onto its dual space.]
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6.C Orthogonal Complements and

Minimization Problems

Orthogonal Complements

6.45 Definition orthogonal complement, U?

If U is a subset of V, then the orthogonal complement of U, denoted U?,

is the set of all vectors in V that are orthogonal to every vector in U :

U? D fv 2 V W hv; ui D 0 for every u 2 U g:

For example, if U is a line in R3, then U? is the plane containing the

origin that is perpendicular to U. If U is a plane in R3, then U? is the line

containing the origin that is perpendicular to U.

6.46 Basic properties of orthogonal complement

(a) If U is a subset of V, then U? is a subspace of V.

(b) f0g? D V.

(c) V ? D f0g.

(d) If U is a subset of V, then U \ U? � f0g.

(e) If U and W are subsets of V and U � W, then W ? � U?.

Proof

(a) Suppose U is a subset of V. Then h0; ui D 0 for every u 2 U ; thus

0 2 U?.

Suppose v;w 2 U?. If u 2 U, then

hv C w; ui D hv; ui C hw; ui D 0C 0 D 0:

Thus v C w 2 U?. In other words, U? is closed under addition.

Similarly, suppose � 2 F and v 2 U?. If u 2 U, then

h�v; ui D �hv; ui D � � 0 D 0:

Thus �v 2 U?. In other words, U? is closed under scalar multiplica-

tion. Thus U? is a subspace of V.
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(b) Suppose v 2 V. Then hv; 0i D 0, which implies that v 2 f0g?. Thus

f0g? D V.

(c) Suppose v 2 V ?. Then hv; vi D 0, which implies that v D 0. Thus

V ? D f0g.

(d) Suppose U is a subset of V and v 2 U \ U?. Then hv; vi D 0, which

implies that v D 0. Thus U \ U? � f0g.

(e) Suppose U and W are subsets of V and U � W. Suppose v 2 W ?.

Then hv; ui D 0 for every u 2 W, which implies that hv; ui D 0 for

every u 2 U. Hence v 2 U?. Thus W ? � U?.

Recall that if U;W are subspaces of V, then V is the direct sum of U and

W (written V D U ˚W ) if each element of V can be written in exactly one

way as a vector in U plus a vector in W (see 1.40).

The next result shows that every finite-dimensional subspace of V leads to

a natural direct sum decomposition of V.

6.47 Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

V D U ˚ U?:

Proof First we will show that

6.48 V D U C U?:

To do this, suppose v 2 V. Let e1; : : : ; em be an orthonormal basis of U.

Obviously

6.49 v D hv; e1ie1 C � � � C hv; emiem„ ƒ‚ …
u

C v � hv; e1ie1 � � � � � hv; emiem„ ƒ‚ …
w

:

Let u and w be defined as in the equation above. Clearly u 2 U. Because

e1; : : : ; em is an orthonormal list, for each j D 1; : : : ; m we have

hw; ej i D hv; ej i � hv; ej i
D 0:

Thus w is orthogonal to every vector in span.e1; : : : ; em/. In other words,

w 2 U?. Thus we have written v D u C w, where u 2 U and w 2 U?,

completing the proof of 6.48.

From 6.46(d), we know that U \U? D f0g. Along with 6.48, this implies

that V D U ˚ U? (see 1.45).
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Now we can see how to compute dimU? from dimU.

6.50 Dimension of the orthogonal complement

Suppose V is finite-dimensional and U is a subspace of V. Then

dimU? D dimV � dimU:

Proof The formula for dimU? follows immediately from 6.47 and 3.78.

The next result is an important consequence of 6.47.

6.51 The orthogonal complement of the orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

U D .U?/?:

Proof First we will show that

6.52 U � .U?/?:

To do this, suppose u 2 U. Then hu; vi D 0 for every v 2 U? (by the

definition of U?). Because u is orthogonal to every vector in U?, we have

u 2 .U?/?, completing the proof of 6.52.

To prove the inclusion in the other direction, suppose v 2 .U?/?. By

6.47, we can write v D u C w, where u 2 U and w 2 U?. We have

v � u D w 2 U?. Because v 2 .U?/? and u 2 .U?/? (from 6.52), we

have v � u 2 .U?/?. Thus v � u 2 U? \ .U?/?, which implies that v � u
is orthogonal to itself, which implies that v � u D 0, which implies that

v D u, which implies that v 2 U. Thus .U?/? � U, which along with 6.52

completes the proof.

We now define an operator PU for each finite-dimensional subspace of V.

6.53 Definition orthogonal projection, PU

Suppose U is a finite-dimensional subspace of V. The orthogonal

projection of V onto U is the operator PU 2 L.V / defined as follows:

For v 2 V, write v D uC w, where u 2 U and w 2 U?. Then PU v D u.
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The direct sum decomposition V D U ˚ U? given by 6.47 shows that

each v 2 V can be uniquely written in the form v D uC w with u 2 U and

w 2 U?. Thus PU v is well defined.

6.54 Example Suppose x 2 V with x ¤ 0 and U D span.x/. Show that

PU v D hv; xi
kxk2

x

for every v 2 V.

Solution Suppose v 2 V. Then

v D hv; xi
kxk2

x C
�

v � hv; xi
kxk2

x
�
;

where the first term on the right is in span.x/ (and thus in U ) and the second

term on the right is orthogonal to x (and thus is in U?/. Thus PU v equals the

first term on the right, as desired.

6.55 Properties of the orthogonal projection PU

Suppose U is a finite-dimensional subspace of V and v 2 V. Then

(a) PU 2 L.V / ;

(b) PUu D u for every u 2 U ;

(c) PU w D 0 for every w 2 U?;

(d) rangePU D U ;

(e) nullPU D U?;

(f) v � PU v 2 U?;

(g) PU
2 D PU ;

(h) kPU vk � kvk;

(i) for every orthonormal basis e1; : : : ; em of U,

PU v D hv; e1ie1 C � � � C hv; emiem:
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Proof

(a) To show that PU is a linear map on V, suppose v1; v2 2 V. Write

v1 D u1 C w1 and v2 D u2 C w2

with u1; u2 2 U and w1;w2 2 U?. ThusPU v1 D u1 andPU v2 D u2.

Now

v1 C v2 D .u1 C u2/C .w1 C w2/;

where u1 C u2 2 U and w1 C w2 2 U?. Thus

PU .v1 C v2/ D u1 C u2 D PU v1 C PU v2:

Similarly, suppose � 2 F. The equation v D uC w with u 2 U and

w 2 U? implies that �v D �u C �w with �u 2 U and �w 2 U?.

Thus PU .�v/ D �u D �PU v.

Hence PU is a linear map from V to V.

(b) Suppose u 2 U. We can write u D uC 0, where u 2 U and 0 2 U?.

Thus PUu D u.

(c) Suppose w 2 U?. We can write w D 0Cw, where 0 2 U and w 2 U?.

Thus PU w D 0.

(d) The definition of PU implies that rangePU � U. Part (b) implies that

U � rangePU. Thus rangePU D U.

(e) Part (c) implies that U? � nullPU. To prove the inclusion in the other

direction, note that if v 2 nullPU then the decomposition given by 6.47

must be v D 0C v, where 0 2 U and v 2 U?. Thus nullPU � U?.

(f) If v D uC w with u 2 U and w 2 U?, then

v � PU v D v � u D w 2 U?:

(g) If v D uC w with u 2 U and w 2 U?, then

.PU
2/v D PU .PU v/ D PUu D u D PU v:

(h) If v D uC w with u 2 U and w 2 U?, then

kPU vk2 D kuk2 � kuk2 C kwk2 D kvk2;

where the last equality comes from the Pythagorean Theorem.

(i) The formula for PU v follows from equation 6.49 in the proof of 6.47.
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Minimization Problems

The remarkable simplicity of the so-

lution to this minimization problem

has led to many important applica-

tions of inner product spaces out-

side of pure mathematics.

The following problem often arises:

given a subspace U of V and a point

v 2 V, find a point u 2 U such that

kv � uk is as small as possible. The

next proposition shows that this mini-

mization problem is solved by taking

u D PU v.

6.56 Minimizing the distance to a subspace

Suppose U is a finite-dimensional subspace of V, v 2 V, and u 2 U. Then

kv � PU vk � kv � uk:

Furthermore, the inequality above is an equality if and only if u D PU v.

Proof We have

kv � PU vk2 � kv � PU vk2 C kPU v � uk26.57

D k.v � PU v/C .PU v � u/k2

D kv � uk2;

where the first line above holds because 0 � kPU v � uk2, the second

line above comes from the Pythagorean Theorem [which applies because

v � PU v 2 U? by 6.55(f), and PU v � u 2 U ], and the third line above holds

by simple algebra. Taking square roots gives the desired inequality.

Our inequality above is an equality if and only if 6.57 is an equality,

which happens if and only if kPU v � uk D 0, which happens if and only if

u D PU v.

0

v

P vU

U

PU v is the closest point in U to v.
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The last result is often combined with the formula 6.55(i) to compute

explicit solutions to minimization problems.

6.58 Example Find a polynomial u with real coefficients and degree at

most 5 that approximates sin x as well as possible on the interval Œ��; ��, in

the sense that Z �

��

j sin x � u.x/j2 dx

is as small as possible. Compare this result to the Taylor series approximation.

Solution Let CR Œ��; �� denote the real inner product space of continuous

real-valued functions on Œ��; �� with inner product

6.59 hf; gi D
Z �

��

f .x/g.x/ dx:

Let v 2 CR Œ��; �� be the function defined by v.x/ D sin x. Let U denote the

subspace of CR Œ��; �� consisting of the polynomials with real coefficients

and degree at most 5. Our problem can now be reformulated as follows:

Find u 2 U such that kv � uk is as small as possible.

A computer that can perform inte-

grations is useful here.

To compute the solution to our ap-

proximation problem, first apply the

Gram–Schmidt Procedure (using the in-

ner product given by 6.59) to the basis 1; x; x2; x3; x4; x5 of U, producing

an orthonormal basis e1; e2; e3; e4; e5; e6 of U. Then, again using the inner

product given by 6.59, compute PU v using 6.55(i) (with m D 6). Doing this

computation shows that PU v is the function u defined by

6.60 u.x/ D 0:987862x � 0:155271x3 C 0:00564312x5;

where the �’s that appear in the exact answer have been replaced with a good

decimal approximation.

By 6.56, the polynomial u above is the best approximation to sin x on

Œ��; �� using polynomials of degree at most 5 (here “best approximation”

means in the sense of minimizing
R �

�� j sin x � u.x/j2 dx). To see how good

this approximation is, the next figure shows the graphs of both sin x and our

approximation u.x/ given by 6.60 over the interval Œ��; ��.
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�3 3

�1

1

Graphs on Œ��; �� of sin x (blue) and

its approximation u.x/ (red) given by 6.60.

Our approximation 6.60 is so accurate that the two graphs are almost

identical—our eyes may see only one graph! Here the blue graph is placed

almost exactly over the red graph. If you are viewing this on an electronic

device, try enlarging the picture above, especially near 3 or �3, to see a small

gap between the two graphs.

Another well-known approximation to sin x by a polynomial of degree 5

is given by the Taylor polynomial

6.61 x � x3

3Š
C x5

5Š
:

To see how good this approximation is, the next picture shows the graphs of

both sin x and the Taylor polynomial 6.61 over the interval Œ��; ��.

�3 3

�1

1

Graphs on Œ��; �� of sin x (blue) and the Taylor polynomial 6.61 (red).

The Taylor polynomial is an excellent approximation to sin x for x near 0.

But the picture above shows that for jxj > 2, the Taylor polynomial is not

so accurate, especially compared to 6.60. For example, taking x D 3, our

approximation 6.60 estimates sin 3 with an error of about 0:001, but the Taylor

series 6.61 estimates sin 3 with an error of about 0:4. Thus at x D 3, the error

in the Taylor series is hundreds of times larger than the error given by 6.60.

Linear algebra has helped us discover an approximation to sin x that improves

upon what we learned in calculus!
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EXERCISES 6.C

1 Suppose v1; : : : ; vm 2 V. Prove that

fv1; : : : ; vmg? D
�
span.v1; : : : ; vm/

�?
:

2 Suppose U is a finite-dimensional subspace of V. Prove that U? D f0g
if and only if U D V.

[Exercise 14(a) shows that the result above is not true without the hy-

pothesis that U is finite-dimensional.]

3 Suppose U is a subspace of V with basis u1; : : : ; um and

u1; : : : ; um;w1; : : : ;wn

is a basis of V. Prove that if the Gram–Schmidt Procedure is applied

to the basis of V above, producing a list e1; : : : ; em; f1; : : : ; fn, then

e1; : : : ; em is an orthonormal basis of U and f1; : : : ; fn is an orthonor-

mal basis of U?.

4 Suppose U is the subspace of R4 defined by

U D span
�
.1; 2; 3;�4/; .�5; 4; 3; 2/

�
:

Find an orthonormal basis of U and an orthonormal basis of U?.

5 Suppose V is finite-dimensional and U is a subspace of V. Show that

PU ? D I � PU, where I is the identity operator on V.

6 Suppose U and W are finite-dimensional subspaces of V. Prove that

PUPW D 0 if and only if hu;wi D 0 for all u 2 U and all w 2 W.

7 Suppose V is finite-dimensional and P 2 L.V / is such that P 2 D P and

every vector in nullP is orthogonal to every vector in rangeP . Prove

that there exists a subspace U of V such that P D PU.

8 Suppose V is finite-dimensional and P 2 L.V / is such that P 2 D P

and

kP vk � kvk
for every v 2 V. Prove that there exists a subspace U of V such that

P D PU.

9 Suppose T 2 L.V / and U is a finite-dimensional subspace of V. Prove

that U is invariant under T if and only if PUTPU D TPU.
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10 Suppose V is finite-dimensional, T 2 L.V /, and U is a subspace

of V. Prove that U and U? are both invariant under T if and only

if PUT D TPU.

11 In R4, let

U D span
�
.1; 1; 0; 0/; .1; 1; 1; 2/

�
:

Find u 2 U such that ku � .1; 2; 3; 4/k is as small as possible.

12 Find p 2 P3.R/ such that p.0/ D 0, p0.0/ D 0, and

Z 1

0

j2C 3x � p.x/j2 dx

is as small as possible.

13 Find p 2 P5.R/ that makes

Z �

��

j sin x � p.x/j2 dx

as small as possible.

[The polynomial 6.60 is an excellent approximation to the answer to this

exercise, but here you are asked to find the exact solution, which involves

powers of � . A computer that can perform symbolic integration will be

useful.]

14 Suppose CR.Œ�1; 1�/ is the vector space of continuous real-valued func-

tions on the interval Œ�1; 1� with inner product given by

hf; gi D
Z 1

�1

f .x/g.x/ dx

for f; g 2 CR.Œ�1; 1�/. Let U be the subspace of CR.Œ�1; 1�/ defined

by

U D ff 2 CR.Œ�1; 1�/ W f .0/ D 0g:

(a) Show that U? D f0g.

(b) Show that 6.47 and 6.51 do not hold without the finite-dimensional

hypothesis.
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7.A Self-Adjoint and Normal Operators

Adjoints

7.2 Definition adjoint, T �

Suppose T 2 L.V;W /. The adjoint of T is the function T � W W ! V

such that

hT v;wi D hv; T �wi
for every v 2 V and every w 2 W.

The word adjoint has another

meaning in linear algebra. We do

not need the second meaning in

this book. In case you encounter

the second meaning for adjoint

elsewhere, be warned that the two

meanings for adjoint are unrelated

to each other.

To see why the definition above

makes sense, suppose T 2 L.V;W /.

Fix w 2 W. Consider the linear func-

tional on V that maps v 2 V to hT v;wi;

this linear functional depends on T and

w. By the Riesz Representation Theo-

rem (6.42), there exists a unique vector

in V such that this linear functional is

given by taking the inner product with it. We call this unique vector T �w. In

other words, T �w is the unique vector in V such that hT v;wi D hv; T �wi for

every v 2 V.

7.3 Example Define T W R3 ! R2 by

T .x1; x2; x3/ D .x2 C 3x3; 2x1/:

Find a formula for T �.

Solution Here T � will be a function from R2 to R3. To compute T �, fix a

point .y1; y2/ 2 R2. Then for every .x1; x2; x3/ 2 R3 we have

h.x1; x2; x3/; T
�.y1; y2/i D hT .x1; x2; x3/; .y1; y2/i

D h.x2 C 3x3; 2x1/; .y1; y2/i
D x2y1 C 3x3y1 C 2x1y2

D h.x1; x2; x3/; .2y2; y1; 3y1/i:

Thus

T �.y1; y2/ D .2y2; y1; 3y1/:
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7.4 Example Fix u 2 V and x 2 W. Define T 2 L.V;W / by

T v D hv; uix

for every v 2 V. Find a formula for T �.

Solution Fix w 2 W. Then for every v 2 V we have

hv; T �wi D hT v;wi
D
˝
hv; uix;w

˛

D hv; uihx;wi
D
˝
v; hw; xiu

˛
:

Thus

T �w D hw; xiu:

In the two examples above, T � turned out to be not just a function but a

linear map. This is true in general, as shown by the next result.

The proofs of the next two results use a common technique: flip T � from

one side of an inner product to become T on the other side.

7.5 The adjoint is a linear map

If T 2 L.V;W /, then T � 2 L.W; V /.

Proof Suppose T 2 L.V;W /. Fix w1;w2 2 W. If v 2 V, then

hv; T �.w1 C w2/i D hT v;w1 C w2i
D hT v;w1i C hT v;w2i
D hv; T �w1i C hv; T �w2i
D hv; T �w1 C T �w2i;

which shows that T �.w1 C w2/ D T �w1 C T �w2.

Fix w 2 W and � 2 F. If v 2 V, then

hv; T �.�w/i D hT v; �wi
D N�hT v;wi
D N�hv; T �wi
D hv; �T �wi;

which shows that T �.�w/ D �T �w.

Thus T � is a linear map, as desired.
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7.6 Properties of the adjoint

(a) .S C T /� D S� C T � for all S; T 2 L.V;W /;

(b) .�T /� D N�T � for all � 2 F and T 2 L.V;W /;

(c) .T �/� D T for all T 2 L.V;W /;

(d) I� D I, where I is the identity operator on V ;

(e) .ST /� D T �S� for all T 2 L.V;W / and S 2 L.W;U / (here U

is an inner product space over F).

Proof

(a) Suppose S; T 2 L.V;W /. If v 2 V and w 2 W, then

hv; .S C T /�wi D h.S C T /v;wi
D hSv;wi C hT v;wi
D hv; S�wi C hv; T �wi
D hv; S�w C T �wi:

Thus .S C T /�w D S�w C T �w, as desired.

(b) Suppose � 2 F and T 2 L.V;W /. If v 2 V and w 2 W, then

hv; .�T /�wi D h�T v;wi D �hT v;wi D �hv; T �wi D hv; N�T �wi:

Thus .�T /�w D N�T �w, as desired.

(c) Suppose T 2 L.V;W /. If v 2 V and w 2 W, then

hw; .T �/�vi D hT �w; vi D hv; T �wi D hT v;wi D hw; T vi:

Thus .T �/�v D T v, as desired.

(d) If v; u 2 V, then

hv; I�ui D hI v; ui D hv; ui:

Thus I�u D u, as desired.

(e) Suppose T 2 L.V;W / and S 2 L.W;U /. If v 2 V and u 2 U, then

hv; .ST /�ui D hST v; ui D hT v; S�ui D hv; T �.S�u/i:

Thus .ST /�u D T �.S�u/, as desired.
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The next result shows the relationship between the null space and the range

of a linear map and its adjoint. The symbol () used in the proof means “if

and only if”; this symbol could also be read to mean “is equivalent to”.

7.7 Null space and range of T �

Suppose T 2 L.V;W /. Then

(a) nullT � D .rangeT /?;

(b) rangeT � D .nullT /?;

(c) nullT D .rangeT �/?;

(d) rangeT D .nullT �/?.

Proof We begin by proving (a). Let w 2 W. Then

w 2 nullT � () T �w D 0

() hv; T �wi D 0 for all v 2 V
() hT v;wi D 0 for all v 2 V
() w 2 .rangeT /?:

Thus nullT � D .rangeT /?, proving (a).

If we take the orthogonal complement of both sides of (a), we get (d),

where we have used 6.51. Replacing T with T � in (a) gives (c), where we

have used 7.6(c). Finally, replacing T with T � in (d) gives (b).

7.8 Definition conjugate transpose

The conjugate transpose of an m-by-n matrix is the n-by-m matrix ob-

tained by interchanging the rows and columns and then taking the complex

conjugate of each entry.

7.9 Example

If F D R, then the conjugate trans-

pose of a matrix is the same as its

transpose, which is the matrix ob-

tained by interchanging the rows

and columns.

The conjugate transpose of the matrix�
2 3C 4i 7

6 5 8i

�
is the matrix

0
@

2 6

3 � 4i 5

7 �8i

1
A :
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The adjoint of a linear map does

not depend on a choice of basis.

This explains why this book em-

phasizes adjoints of linear maps

instead of conjugate transposes of

matrices.

The next result shows how to com-

pute the matrix of T � from the matrix

of T.

Caution: Remember that the result

below applies only when we are dealing

with orthonormal bases. With respect to

nonorthonormal bases, the matrix of T �

does not necessarily equal the conjugate

transpose of the matrix of T.

7.10 The matrix of T �

Let T 2 L.V;W /. Suppose e1; : : : ; en is an orthonormal basis of V and

f1; : : : ; fm is an orthonormal basis of W. Then

M
�
T �; .f1; : : : ; fm/; .e1; : : : ; en/

�

is the conjugate transpose of

M
�
T; .e1; : : : ; en/; .f1; : : : ; fm/

�
:

Proof In this proof, we will write M.T / instead of the longer expres-

sion M
�
T; .e1; : : : ; en/; .f1; : : : ; fm/

�
; we will also write M.T �/ instead

of M
�
T �; .f1; : : : ; fm/; .e1; : : : ; en/

�
.

Recall that we obtain the kth column of M.T / by writing Tek as a linear

combination of the fj ’s; the scalars used in this linear combination then

become the kth column of M.T /. Because f1; : : : ; fm is an orthonormal

basis of W, we know how to write Tek as a linear combination of the fj ’s

(see 6.30):

Tek D hTek; f1if1 C � � � C hTek; fmifm:

Thus the entry in row j , column k, of M.T / is hTek; fj i.
Replacing T with T � and interchanging the roles played by the e’s and

f ’s, we see that the entry in row j , column k, of M.T �/ is hT �fk; ej i,
which equals hfk; Tej i, which equals hTej ; fki, which equals the complex

conjugate of the entry in row k, column j , of M.T /. In other words, M.T �/
is the conjugate transpose of M.T /.
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Self-Adjoint Operators

Now we switch our attention to operators on inner product spaces. Thus

instead of considering linear maps from V toW, we will be focusing on linear

maps from V to V ; recall that such linear maps are called operators.

7.11 Definition self-adjoint

An operator T 2 L.V / is called self-adjoint if T D T �. In other words,

T 2 L.V / is self-adjoint if and only if

hT v;wi D hv; Twi

for all v;w 2 V.

7.12 Example Suppose T is the operator on F2 whose matrix (with re-

spect to the standard basis) is

�
2 b

3 7

�
:

Find all numbers b such that T is self-adjoint.

Solution The operator T is self-adjoint if and only if b D 3 (because

M.T / D M.T �/ if and only if b D 3; recall that M.T �/ is the conjugate

transpose of M.T /—see 7.10).

You should verify that the sum of two self-adjoint operators is self-adjoint

and that the product of a real scalar and a self-adjoint operator is self-adjoint.

Some mathematicians use the term

Hermitian instead of self-adjoint,

honoring French mathematician

Charles Hermite, who in 1873 pub-

lished the first proof that e is not a

zero of any polynomial with integer

coefficients.

A good analogy to keep in mind (es-

pecially when F D C) is that the adjoint

on L.V / plays a role similar to complex

conjugation on C. A complex number

z is real if and only if z D Nz; thus a self-

adjoint operator (T D T �) is analogous

to a real number.

We will see that the analogy discussed above is reflected in some important

properties of self-adjoint operators, beginning with eigenvalues in the next

result.

If F D R, then by definition every eigenvalue is real, so the next result is

interesting only when F D C.
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7.13 Eigenvalues of self-adjoint operators are real

Every eigenvalue of a self-adjoint operator is real.

Proof Suppose T is a self-adjoint operator on V. Let � be an eigenvalue of

T, and let v be a nonzero vector in V such that T v D �v. Then

�kvk2 D h�v; vi D hT v; vi D hv; T vi D hv; �vi D N�kvk2:

Thus � D N�, which means that � is real, as desired.

The next result is false for real inner product spaces. As an example,

consider the operator T 2 L.R2/ that is a counterclockwise rotation of 90ı

around the origin; thus T .x; y/ D .�y; x/. Obviously T v is orthogonal to v

for every v 2 R2, even though T ¤ 0.

7.14 Over C, T v is orthogonal to v for all v only for the 0 operator

Suppose V is a complex inner product space and T 2 L.V /. Suppose

hT v; vi D 0

for all v 2 V. Then T D 0.

Proof We have

hT u;wi D hT .uC w/; uC wi � hT .u � w/; u � wi
4

C hT .uC iw/; uC iwi � hT .u � iw/; u � iwi
4

i

for all u;w 2 V, as can be verified by computing the right side. Note that

each term on the right side is of the form hT v; vi for appropriate v 2 V. Thus

our hypothesis implies that hT u;wi D 0 for all u;w 2 V. This implies that

T D 0 (take w D T u).

The next result provides another ex-

ample of how self-adjoint opera-

tors behave like real numbers.

The next result is false for real inner

product spaces, as shown by consider-

ing any operator on a real inner product

space that is not self-adjoint.
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7.15 Over C, hT v; vi is real for all v only for self-adjoint operators

Suppose V is a complex inner product space and T 2 L.V /. Then T is

self-adjoint if and only if

hT v; vi 2 R

for every v 2 V.

Proof Let v 2 V. Then

hT v; vi�hT v; vi D hT v; vi�hv; T vi D hT v; vi�hT �v; vi D h.T �T �/v; vi:

If hT v; vi 2 R for every v 2 V, then the left side of the equation above equals

0, so h.T � T �/v; vi D 0 for every v 2 V. This implies that T � T � D 0 (by

7.14). Hence T is self-adjoint.

Conversely, if T is self-adjoint, then the right side of the equation above

equals 0, so hT v; vi D hT v; vi for every v 2 V. This implies that hT v; vi 2 R

for every v 2 V, as desired.

On a real inner product space V, a nonzero operator T might satisfy

hT v; vi D 0 for all v 2 V. However, the next result shows that this cannot

happen for a self-adjoint operator.

7.16 If T D T � and hT v; vi D 0 for all v, then T D 0

Suppose T is a self-adjoint operator on V such that

hT v; vi D 0

for all v 2 V. Then T D 0.

Proof We have already proved this (without the hypothesis that T is self-

adjoint) when V is a complex inner product space (see 7.14). Thus we can

assume that V is a real inner product space. If u;w 2 V, then

7.17 hT u;wi D hT .uC w/; uC wi � hT .u � w/; u � wi
4

I

this is proved by computing the right side using the equation

hTw; ui D hw; T ui D hT u;wi;

where the first equality holds because T is self-adjoint and the second equality

holds because we are working in a real inner product space.

Each term on the right side of 7.17 is of the form hT v; vi for appropriate v.

Thus hT u;wi D 0 for all u;w 2 V. This implies that T D 0 (take w D T u).
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Normal Operators

7.18 Definition normal

� An operator on an inner product space is called normal if it com-

mutes with its adjoint.

� In other words, T 2 L.V / is normal if

T T � D T �T:

Obviously every self-adjoint operator is normal, because if T is self-adjoint

then T � D T.

7.19 Example Let T be the operator on F2 whose matrix (with respect to

the standard basis) is �
2 �3
3 2

�
:

Show that T is not self-adjoint and that T is normal.

Solution This operator is not self-adjoint because the entry in row 2, column 1

(which equals 3) does not equal the complex conjugate of the entry in row 1,

column 2 (which equals �3).

The matrix of T T � equals

�
2 �3
3 2

��
2 3

�3 2

�
; which equals

�
13 0

0 13

�
:

Similarly, the matrix of T �T equals

�
2 3

�3 2

��
2 �3
3 2

�
; which equals

�
13 0

0 13

�
:

Because T T � and T �T have the same matrix, we see that T T � D T �T.

Thus T is normal.

The next result implies that

nullT D nullT � for every normal

operator T.

In the next section we will see why

normal operators are worthy of special

attention.

The next result provides a simple

characterization of normal operators.
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7.20 T is normal if and only if kT vk D kT �vk for all v

An operator T 2 L.V / is normal if and only if

kT vk D kT �vk

for all v 2 V.

Proof Let T 2 L.V /. We will prove both directions of this result at the same

time. Note that

T is normal () T �T � T T � D 0

() h.T �T � T T �/v; vi D 0 for all v 2 V
() hT �T v; vi D hT T �v; vi for all v 2 V
() kT vk2 D kT �vk2 for all v 2 V;

where we used 7.16 to establish the second equivalence (note that the operator

T �T � T T � is self-adjoint). The equivalence of the first and last conditions

above gives the desired result.

Compare the next corollary to Exercise 2. That exercise states that the

eigenvalues of the adjoint of each operator are equal (as a set) to the complex

conjugates of the eigenvalues of the operator. The exercise says nothing

about eigenvectors, because an operator and its adjoint may have different

eigenvectors. However, the next corollary implies that a normal operator and

its adjoint have the same eigenvectors.

7.21 For T normal, T and T � have the same eigenvectors

Suppose T 2 L.V / is normal and v 2 V is an eigenvector of T with

eigenvalue �. Then v is also an eigenvector of T � with eigenvalue N�.

Proof Because T is normal, so is T � �I, as you should verify. Using 7.20,

we have

0 D k.T � �I/vk D k.T � �I/�vk D k.T � � N�I/vk:

Hence v is an eigenvector of T � with eigenvalue N�, as desired.

Because every self-adjoint operator is normal, the next result applies in

particular to self-adjoint operators.
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7.22 Orthogonal eigenvectors for normal operators

Suppose T 2 L.V / is normal. Then eigenvectors of T corresponding to

distinct eigenvalues are orthogonal.

Proof Suppose ˛; ˇ are distinct eigenvalues of T, with corresponding eigen-

vectors u; v. Thus T u D ˛u and T v D ˇv. From 7.21 we have T �v D Ňv.

Thus

.˛ � ˇ/hu; vi D h˛u; vi � hu; Ňvi
D hT u; vi � hu; T �vi
D 0:

Because ˛ ¤ ˇ, the equation above implies that hu; vi D 0. Thus u and v are

orthogonal, as desired.

EXERCISES 7.A

1 Suppose n is a positive integer. Define T 2 L.Fn/ by

T .z1; : : : ; zn/ D .0; z1; : : : ; zn�1/:

Find a formula for T �.z1; : : : ; zn/.

2 Suppose T 2 L.V / and � 2 F. Prove that � is an eigenvalue of T if and

only if N� is an eigenvalue of T �.

3 Suppose T 2 L.V / and U is a subspace of V. Prove that U is invariant

under T if and only if U? is invariant under T �.

4 Suppose T 2 L.V;W /. Prove that

(a) T is injective if and only if T � is surjective;

(b) T is surjective if and only if T � is injective.

5 Prove that

dim nullT � D dim nullT C dimW � dimV

and

dim rangeT � D dim rangeT

for every T 2 L.V;W /.
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6 Make P2.R/ into an inner product space by defining

hp; qi D
Z 1

0

p.x/q.x/ dx:

Define T 2 L
�
P2.R/

�
by T .a0 C a1x C a2x

2/ D a1x.

(a) Show that T is not self-adjoint.

(b) The matrix of T with respect to the basis .1; x; x2/ is

0
@
0 0 0

0 1 0

0 0 0

1
A :

This matrix equals its conjugate transpose, even though T is not

self-adjoint. Explain why this is not a contradiction.

7 Suppose S; T 2 L.V / are self-adjoint. Prove that ST is self-adjoint if

and only if ST D TS .

8 Suppose V is a real inner product space. Show that the set of self-adjoint

operators on V is a subspace of L.V /.

9 Suppose V is a complex inner product space with V ¤ f0g. Show that

the set of self-adjoint operators on V is not a subspace of L.V /.

10 Suppose dimV � 2. Show that the set of normal operators on V is not a

subspace of L.V /.

11 Suppose P 2 L.V / is such that P 2 D P . Prove that there is a subspace

U of V such that P D PU if and only if P is self-adjoint.

12 Suppose that T is a normal operator on V and that 3 and 4 are eigenvalues

of T. Prove that there exists a vector v 2 V such that kvk D
p
2 and

kT vk D 5.

13 Give an example of an operator T 2 L.C4/ such that T is normal but

not self-adjoint.

14 Suppose T is a normal operator on V. Suppose also that v;w 2 V satisfy

the equations

kvk D kwk D 2; T v D 3v; Tw D 4w:

Show that kT .v C w/k D 10.
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15 Fix u; x 2 V. Define T 2 L.V / by

T v D hv; uix

for every v 2 V.

(a) Suppose F D R. Prove that T is self-adjoint if and only if u; x is

linearly dependent.

(b) Prove that T is normal if and only if u; x is linearly dependent.

16 Suppose T 2 L.V / is normal. Prove that

rangeT D rangeT �:

17 Suppose T 2 L.V / is normal. Prove that

nullT k D nullT and rangeT k D rangeT

for every positive integer k.

18 Prove or give a counterexample: If T 2 L.V / and there exists an ortho-

normal basis e1; : : : ; en of V such that kTej k D kT �ej k for each j ,

then T is normal.

19 Suppose T 2 L.C3/ is normal and T .1; 1; 1/ D .2; 2; 2/. Suppose

.z1; z2; z3/ 2 nullT. Prove that z1 C z2 C z3 D 0.

20 Suppose T 2 L.V;W / and F D R. Let ˆV be the isomorphism from V

onto the dual space V 0 given by Exercise 17 in Section 6.B, and let ˆW

be the corresponding isomorphism fromW ontoW 0. Show that ifˆV and

ˆW are used to identify V and W with V 0 and W 0, then T � is identified

with the dual map T 0. More precisely, show that ˆV ı T � D T 0 ıˆW.

21 Fix a positive integer n. In the inner product space of continuous real-

valued functions on Œ��; �� with inner product

hf; gi D
Z �

��

f .x/g.x/ dx;

let

V D span.1; cos x; cos 2x; : : : ; cosnx; sin x; sin 2x; : : : ; sinnx/:

(a) Define D 2 L.V / by Df D f 0. Show that D� D �D. Conclude

that D is normal but not self-adjoint.

(b) Define T 2 L.V / by Tf D f 00. Show that T is self-adjoint.
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7.B The Spectral Theorem

Recall that a diagonal matrix is a square matrix that is 0 everywhere except

possibly along the diagonal. Recall also that an operator on V has a diagonal

matrix with respect to a basis if and only if the basis consists of eigenvectors

of the operator (see 5.41).

The nicest operators on V are those for which there is an orthonormal

basis of V with respect to which the operator has a diagonal matrix. These

are precisely the operators T 2 L.V / such that there is an orthonormal basis

of V consisting of eigenvectors of T. Our goal in this section is to prove the

Spectral Theorem, which characterizes these operators as the normal operators

when F D C and as the self-adjoint operators when F D R. The Spectral

Theorem is probably the most useful tool in the study of operators on inner

product spaces.

Because the conclusion of the Spectral Theorem depends on F, we will

break the Spectral Theorem into two pieces, called the Complex Spectral

Theorem and the Real Spectral Theorem. As is often the case in linear algebra,

complex vector spaces are easier to deal with than real vector spaces. Thus

we present the Complex Spectral Theorem first.

The Complex Spectral Theorem

The key part of the Complex Spectral Theorem (7.24) states that if F D C

and T 2 L.V / is normal, then T has a diagonal matrix with respect to some

orthonormal basis of V. The next example illustrates this conclusion.

7.23 Example Consider the normal operator T 2 L.C2/ from Example

7.19, whose matrix (with respect to the standard basis) is
�
2 �3
3 2

�
:

As you can verify,
.i;1/p

2
; .�i;1/p

2
is an orthonormal basis of C2 consisting of

eigenvectors of T, and with respect to this basis the matrix of T is the diagonal

matrix �
2C 3i 0

0 2 � 3i

�
:

In the next result, the equivalence of (b) and (c) is easy (see 5.41). Thus

we prove only that (c) implies (a) and that (a) implies (c).
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7.24 Complex Spectral Theorem

Suppose F D C and T 2 L.V /. Then the following are equivalent:

(a) T is normal.

(b) V has an orthonormal basis consisting of eigenvectors of T.

(c) T has a diagonal matrix with respect to some orthonormal basis

of V.

Proof First suppose (c) holds, so T has a diagonal matrix with respect to

some orthonormal basis of V. The matrix of T � (with respect to the same

basis) is obtained by taking the conjugate transpose of the matrix of T ; hence

T � also has a diagonal matrix. Any two diagonal matrices commute; thus T

commutes with T �, which means that T is normal. In other words, (a) holds.

Now suppose (a) holds, so T is normal. By Schur’s Theorem (6.38),

there is an orthonormal basis e1; : : : ; en of V with respect to which T has an

upper-triangular matrix. Thus we can write

7.25 M
�
T; .e1; : : : ; en/

�
D

0
B@
a1;1 : : : a1;n

: : :
:::

0 an;n

1
CA :

We will show that this matrix is actually a diagonal matrix.

We see from the matrix above that

kTe1k2 D ja1;1j2

and

kT �e1k2 D ja1;1j2 C ja1;2j2 C � � � C ja1;nj2:
Because T is normal, kTe1k D kT �e1k (see 7.20). Thus the two equations

above imply that all entries in the first row of the matrix in 7.25, except

possibly the first entry a1;1, equal 0.

Now from 7.25 we see that

kTe2k2 D ja2;2j2

(because a1;2 D 0, as we showed in the paragraph above) and

kT �e2k2 D ja2;2j2 C ja2;3j2 C � � � C ja2;nj2:
Because T is normal, kTe2k D kT �e2k. Thus the two equations above imply

that all entries in the second row of the matrix in 7.25, except possibly the

diagonal entry a2;2, equal 0.

Continuing in this fashion, we see that all the nondiagonal entries in the

matrix 7.25 equal 0. Thus (c) holds.
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The Real Spectral Theorem

We will need a few preliminary results, which apply to both real and complex

inner product spaces, for our proof of the Real Spectral Theorem.

This technique of completing the

square can be used to derive the

quadratic formula.

You could guess that the next result

is true and even discover its proof by

thinking about quadratic polynomials

with real coefficients. Specifically, sup-

pose b; c 2 R and b2 < 4c. Let x be a

real number. Then

x2 C bx C c D
�
x C b

2

�2
C
�
c � b2

4

�
> 0:

In particular, x2 C bx C c is an invertible real number (a convoluted way

of saying that it is not 0). Replacing the real number x with a self-adjoint

operator (recall the analogy between real numbers and self-adjoint operators),

we are led to the result below.

7.26 Invertible quadratic expressions

Suppose T 2 L.V / is self-adjoint and b; c 2 R are such that b2 < 4c.

Then

T 2 C bT C cI

is invertible.

Proof Let v be a nonzero vector in V. Then

h.T 2 C bT C cI /v; vi D hT 2v; vi C bhT v; vi C chv; vi
D hT v; T vi C bhT v; vi C ckvk2

� kT vk2 � jbjkT vkkvk C ckvk2

D
�
kT vk � jbjkvk

2

�2
C
�
c � b2

4

�
kvk2

> 0;

where the third line above holds by the Cauchy–Schwarz Inequality (6.15).

The last inequality implies that .T 2 C bT C cI /v ¤ 0. Thus T 2 C bT C cI

is injective, which implies that it is invertible (see 3.69).

We know that every operator, self-adjoint or not, on a finite-dimensional

nonzero complex vector space has an eigenvalue (see 5.21). Thus the next

result tells us something new only for real inner product spaces.
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7.27 Self-adjoint operators have eigenvalues

Suppose V ¤ f0g and T 2 L.V / is a self-adjoint operator. Then T has

an eigenvalue.

Proof We can assume that V is a real inner product space, as we have already

noted. Let n D dimV and choose v 2 V with v ¤ 0. Then

v; T v; T 2v; : : : ; T nv

cannot be linearly independent, because V has dimension n and we have nC1
vectors. Thus there exist real numbers a0; : : : ; an, not all 0, such that

0 D a0v C a1T v C � � � C anT
nv:

Make the a’s the coefficients of a polynomial, which can be written in factored

form (see 4.17) as

a0 C a1x C � � � C anx
n

D c.x2 C b1x C c1/ � � � .x2 C bMx C cM /.x � �1/ � � � .x � �m/;

where c is a nonzero real number, each bj , cj , and �j is real, each bj
2 is less

than 4cj , mCM � 1, and the equation holds for all real x. We then have

0 D a0v C a1T v C � � � C anT
nv

D .a0I C a1T C � � � C anT
n/v

D c.T 2 C b1T C c1I / � � � .T 2 C bMT C cM I /.T � �1I / � � � .T � �mI /v:

By 7.26, each T 2 C bjT C cj I is invertible. Recall also that c ¤ 0. Thus

the equation above implies that m > 0 and

0 D .T � �1I / � � � .T � �mI /v:

Hence T � �j I is not injective for at least one j . In other words, T has an

eigenvalue.

The next result shows that if U is a subspace of V that is invariant under

a self-adjoint operator T, then U? is also invariant under T. Later we will

show that the hypothesis that T is self-adjoint can be replaced with the weaker

hypothesis that T is normal (see 9.30).
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7.28 Self-adjoint operators and invariant subspaces

Suppose T 2 L.V / is self-adjoint and U is a subspace of V that is

invariant under T. Then

(a) U? is invariant under T ;

(b) T jU 2 L.U / is self-adjoint;

(c) T jU ? 2 L.U?/ is self-adjoint.

Proof To prove (a), suppose v 2 U?. Let u 2 U. Then

hT v; ui D hv; T ui D 0;

where the first equality above holds because T is self-adjoint and the second

equality above holds because U is invariant under T (and hence T u 2 U )

and because v 2 U?. Because the equation above holds for each u 2 U, we

conclude that T v 2 U?. Thus U? is invariant under T, completing the proof

of (a).

To prove (b), note that if u; v 2 U, then

h.T jU /u; vi D hT u; vi D hu; T vi D hu; .T jU /vi:

Thus T jU is self-adjoint.

Now (c) follows from replacing U with U? in (b), which makes sense

by (a).

We can now prove the next result, which is one of the major theorems in

linear algebra.

7.29 Real Spectral Theorem

Suppose F D R and T 2 L.V /. Then the following are equivalent:

(a) T is self-adjoint.

(b) V has an orthonormal basis consisting of eigenvectors of T.

(c) T has a diagonal matrix with respect to some orthonormal basis

of V.
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Proof First suppose (c) holds, so T has a diagonal matrix with respect to

some orthonormal basis of V. A diagonal matrix equals its transpose. Hence

T D T �, and thus T is self-adjoint. In other words, (a) holds.

We will prove that (a) implies (b) by induction on dimV. To get started,

note that if dimV D 1, then (a) implies (b). Now assume that dimV > 1 and

that (a) implies (b) for all real inner product spaces of smaller dimension.

Suppose (a) holds, so T 2 L.V / is self-adjoint. Let u be an eigenvector

of T with kuk D 1 (7.27 guarantees that T has an eigenvector, which can

then be divided by its norm to produce an eigenvector with norm 1). Let

U D span.u/. Then U is a 1-dimensional subspace of V that is invariant

under T. By 7.28(c), the operator T jU ? 2 L.U?/ is self-adjoint.

By our induction hypothesis, there is an orthonormal basis of U? consist-

ing of eigenvectors of T jU ? . Adjoining u to this orthonormal basis of U?

gives an orthonormal basis of V consisting of eigenvectors of T, completing

the proof that (a) implies (b).

We have proved that (c) implies (a) and that (a) implies (b). Clearly (b)

implies (c), completing the proof.

7.30 Example Consider the self-adjoint operator T on R3 whose matrix

(with respect to the standard basis) is0
@

14 �13 8

�13 14 8

8 8 �7

1
A :

As you can verify,

.1;�1; 0/p
2

;
.1; 1; 1/p

3
;
.1; 1;�2/p

6

is an orthonormal basis of R3 consisting of eigenvectors of T, and with respect

to this basis, the matrix of T is the diagonal matrix0
@
27 0 0

0 9 0

0 0 �15

1
A :

If F D C, then the Complex Spectral Theorem gives a complete descrip-

tion of the normal operators on V. A complete description of the self-adjoint

operators on V then easily follows (they are the normal operators on V whose

eigenvalues all are real; see Exercise 6).

If F D R, then the Real Spectral Theorem gives a complete description

of the self-adjoint operators on V. In Chapter 9, we will give a complete

description of the normal operators on V (see 9.34).
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EXERCISES 7.B

1 True or false (and give a proof of your answer): There exists T 2 L.R3/

such that T is not self-adjoint (with respect to the usual inner product)

and such that there is a basis of R3 consisting of eigenvectors of T.

2 Suppose that T is a self-adjoint operator on a finite-dimensional inner

product space and that 2 and 3 are the only eigenvalues of T. Prove that

T 2 � 5T C 6I D 0.

3 Give an example of an operator T 2 L.C3/ such that 2 and 3 are the

only eigenvalues of T and T 2 � 5T C 6I ¤ 0.

4 Suppose F D C and T 2 L.V /. Prove that T is normal if and only if

all pairs of eigenvectors corresponding to distinct eigenvalues of T are

orthogonal and

V D E.�1; T /˚ � � � ˚E.�m; T /;

where �1; : : : ; �m denote the distinct eigenvalues of T.

5 Suppose F D R and T 2 L.V /. Prove that T is self-adjoint if and only

if all pairs of eigenvectors corresponding to distinct eigenvalues of T are

orthogonal and

V D E.�1; T /˚ � � � ˚E.�m; T /;

where �1; : : : ; �m denote the distinct eigenvalues of T.

6 Prove that a normal operator on a complex inner product space is self-

adjoint if and only if all its eigenvalues are real.

[The exercise above strengthens the analogy (for normal operators)

between self-adjoint operators and real numbers.]

7 Suppose V is a complex inner product space and T 2 L.V / is a normal

operator such that T 9 D T 8. Prove that T is self-adjoint and T 2 D T.

8 Give an example of an operator T on a complex vector space such that

T 9 D T 8 but T 2 ¤ T.

9 Suppose V is a complex inner product space. Prove that every normal

operator on V has a square root. (An operator S 2 L.V / is called a

square root of T 2 L.V / if S2 D T.)
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10 Give an example of a real inner product space V and T 2 L.V / and real

numbers b; c with b2 < 4c such that T 2 C bT C cI is not invertible.

[The exercise above shows that the hypothesis that T is self-adjoint is

needed in 7.26, even for real vector spaces.]

11 Prove or give a counterexample: every self-adjoint operator on V has a

cube root. (An operator S 2 L.V / is called a cube root of T 2 L.V / if

S3 D T.)

12 Suppose T 2 L.V / is self-adjoint, � 2 F, and � > 0. Suppose there

exists v 2 V such that kvk D 1 and

kT v � �vk < �:

Prove that T has an eigenvalue �0 such that j� � �0j < �.

13 Give an alternative proof of the Complex Spectral Theorem that avoids

Schur’s Theorem and instead follows the pattern of the proof of the Real

Spectral Theorem.

14 Suppose U is a finite-dimensional real vector space and T 2 L.U /.

Prove that U has a basis consisting of eigenvectors of T if and only if

there is an inner product on U that makes T into a self-adjoint operator.

15 Find the matrix entry below that is covered up.
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7.C Positive Operators and Isometries

Positive Operators

7.31 Definition positive operator

An operator T 2 L.V / is called positive if T is self-adjoint and

hT v; vi � 0

for all v 2 V.

If V is a complex vector space, then the requirement that T is self-adjoint

can be dropped from the definition above (by 7.15).

7.32 Example positive operators

(a) If U is a subspace of V, then the orthogonal projection PU is a positive

operator, as you should verify.

(b) If T 2 L.V / is self-adjoint and b; c 2 R are such that b2 < 4c, then

T 2 C bT C cI is a positive operator, as shown by the proof of 7.26.

7.33 Definition square root

An operator R is called a square root of an operator T if R2 D T.

7.34 Example If T 2 L.F3/ is defined by T .z1; z2; z3/ D .z3; 0; 0/,

then the operator R 2 L.F3/ defined by R.z1; z2; z3/ D .z2; z3; 0/ is a

square root of T.

The positive operators correspond

to the numbers Œ0;1/, so better

terminology would use the term

nonnegative instead of positive.

However, operator theorists consis-

tently call these the positive opera-

tors, so we will follow that custom.

The characterizations of the positive

operators in the next result correspond

to characterizations of the nonnegative

numbers among C. Specifically, a com-

plex number z is nonnegative if and

only if it has a nonnegative square root,

corresponding to condition (c). Also,

z is nonnegative if and only if it has a real square root, corresponding to

condition (d). Finally, z is nonnegative if and only if there exists a complex

number w such that z D Nww, corresponding to condition (e).
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7.35 Characterization of positive operators

Let T 2 L.V /. Then the following are equivalent:

(a) T is positive;

(b) T is self-adjoint and all the eigenvalues of T are nonnegative;

(c) T has a positive square root;

(d) T has a self-adjoint square root;

(e) there exists an operator R 2 L.V / such that T D R�R.

Proof We will prove that (a) ) (b) ) (c) ) (d) ) (e) ) (a).

First suppose (a) holds, so that T is positive. Obviously T is self-adjoint

(by the definition of a positive operator). To prove the other condition in (b),

suppose � is an eigenvalue of T. Let v be an eigenvector of T corresponding

to �. Then

0 � hT v; vi D h�v; vi D �hv; vi:
Thus � is a nonnegative number. Hence (b) holds.

Now suppose (b) holds, so that T is self-adjoint and all the eigenvalues

of T are nonnegative. By the Spectral Theorem (7.24 and 7.29), there is

an orthonormal basis e1; : : : ; en of V consisting of eigenvectors of T. Let

�1; : : : ; �n be the eigenvalues of T corresponding to e1; : : : ; en,; thus each

�j is a nonnegative number. Let R be the linear map from V to V such that

Rej D
q
�j ej

for j D 1; : : : ; n (see 3.5). Then R is a positive operator, as you should verify.

Furthermore, R2ej D �j ej D Tej for each j , which implies that R2 D T.

Thus R is a positive square root of T. Hence (c) holds.

Clearly (c) implies (d) (because, by definition, every positive operator is

self-adjoint).

Now suppose (d) holds, meaning that there exists a self-adjoint operator

R on V such that T D R2. Then T D R�R (because R� D R). Hence (e)

holds.

Finally, suppose (e) holds. Let R 2 L.V / be such that T D R�R. Then

T � D .R�R/� D R�.R�/� D R�R D T. Hence T is self-adjoint. To

complete the proof that (a) holds, note that

hT v; vi D hR�Rv; vi D hRv; Rvi � 0

for every v 2 V. Thus T is positive.
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Some mathematicians also use the

term positive semidefinite opera-

tor, which means the same as posi-

tive operator.

Each nonnegative number has a

unique nonnegative square root. The

next result shows that positive operators

enjoy a similar property.

7.36 Each positive operator has only one positive square root

Every positive operator on V has a unique positive square root.

A positive operator can have in-

finitely many square roots (al-

though only one of them can be

positive). For example, the identity

operator on V has infinitely many

square roots if dimV > 1.

Proof Suppose T 2 L.V / is positive.

Suppose v 2 V is an eigenvector of T.

Thus there exists � � 0 such that T v D
�v.

Let R be a positive square root of T.

We will prove that Rv D
p
�v. This

will imply that the behavior of R on the eigenvectors of T is uniquely deter-

mined. Because there is a basis of V consisting of eigenvectors of T (by the

Spectral Theorem), this will imply that R is uniquely determined.

To prove that Rv D
p
�v, note that the Spectral Theorem asserts that

there is an orthonormal basis e1; : : : ; en of V consisting of eigenvectors of R.

Because R is a positive operator, all its eigenvalues are nonnegative. Thus

there exist nonnegative numbers �1; : : : ; �n such that Rej D
p
�j ej for

j D 1; : : : ; n.

Because e1; : : : ; en is a basis of V, we can write

v D a1e1 C � � � C anen

for some numbers a1; : : : ; an 2 F. Thus

Rv D a1

p
�1e1 C � � � C an

p
�nen

and hence

R2v D a1�1e1 C � � � C an�nen:

But R2 D T, and T v D �v. Thus the equation above implies

a1�e1 C � � � C an�en D a1�1e1 C � � � C an�nen:

The equation above implies that aj .�� �j / D 0 for j D 1; : : : ; n. Hence

v D
X

fj W �j D�g
aj ej ;

and thus

Rv D
X

fj W �j D�g
aj

p
�ej D

p
�v;

as desired.
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Isometries

Operators that preserve norms are sufficiently important to deserve a name:

7.37 Definition isometry

� An operator S 2 L.V / is called an isometry if

kSvk D kvk

for all v 2 V.

� In other words, an operator is an isometry if it preserves norms.

The Greek word isos means equal;

the Greek word metron means

measure. Thus isometry literally

means equal measure.

For example, �I is an isometry

whenever � 2 F satisfies j�j D 1. We

will see soon that if F D C, then the

next example includes all isometries.

7.38 Example Suppose �1; : : : ; �n are scalars with absolute value 1 and

S 2 L.V / satisfies Sej D �j ej for some orthonormal basis e1; : : : ; en of V.

Show that S is an isometry.

Solution Suppose v 2 V. Then

7.39 v D hv; e1ie1 C � � � C hv; enien

and

7.40 kvk2 D jhv; e1ij2 C � � � C jhv; enij2;

where we have used 6.30. Applying S to both sides of 7.39 gives

Sv D hv; e1iSe1 C � � � C hv; eniSen

D �1hv; e1ie1 C � � � C �nhv; enien:

The last equation, along with the equation j�j j D 1, shows that

7.41 kSvk2 D jhv; e1ij2 C � � � C jhv; enij2:

Comparing 7.40 and 7.41 shows that kvk D kSvk. In other words, S is an

isometry.
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An isometry on a real inner product

space is often called an orthogonal

operator. An isometry on a com-

plex inner product space is often

called a unitary operator. We use

the term isometry so that our re-

sults can apply to both real and

complex inner product spaces.

The next result provides several con-

ditions that are equivalent to being an

isometry. The equivalence of (a) and (b)

shows that an operator is an isometry if

and only if it preserves inner products.

The equivalence of (a) and (c) [or (d)]

shows that an operator is an isometry

if and only if the list of columns of its

matrix with respect to every [or some] basis is orthonormal. Exercise 10

implies that in the previous sentence we can replace “columns” with “rows”.

7.42 Characterization of isometries

Suppose S 2 L.V /. Then the following are equivalent:

(a) S is an isometry;

(b) hSu; Svi D hu; vi for all u; v 2 V ;

(c) Se1; : : : ; Sen is orthonormal for every orthonormal list of vectors

e1; : : : ; en in V ;

(d) there exists an orthonormal basis e1; : : : ; en of V such that

Se1; : : : ; Sen is orthonormal;

(e) S�S D I ;

(f) SS� D I ;

(g) S� is an isometry;

(h) S is invertible and S�1 D S�.

Proof First suppose (a) holds, so S is an isometry. Exercises 19 and 20 in

Section 6.A show that inner products can be computed from norms. Because

S preserves norms, this implies that S preserves inner products, and hence

(b) holds. More precisely, if V is a real inner product space, then for every

u; v 2 V we have

hSu; Svi D .kSuC Svk2 � kSu � Svk2/=4

D .kS.uC v/k2 � kS.u � v/k2/=4

D .kuC vk2 � ku � vk2/=4

D hu; vi;
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where the first equality comes from Exercise 19 in Section 6.A, the second

equality comes from the linearity of S , the third equality holds because S is an

isometry, and the last equality again comes from Exercise 19 in Section 6.A.

If V is a complex inner product space, then use Exercise 20 in Section 6.A

instead of Exercise 19 to obtain the same conclusion. In either case, we see

that (b) holds.

Now suppose (b) holds, so S preserves inner products. Suppose that

e1; : : : ; en is an orthonormal list of vectors in V. Then we see that the list

Se1; : : : ; Sen is orthonormal because hSej ; Seki D hej ; eki. Thus (c) holds.

Clearly (c) implies (d).

Now suppose (d) holds. Let e1; : : : ; en be an orthonormal basis of V such

that Se1; : : : ; Sen is orthonormal. Thus

hS�Sej ; eki D hej ; eki

for j; k D 1; : : : ; n [because the term on the left equals hSej ; Seki and

.Se1; : : : ; Sen/ is orthonormal]. All vectors u; v 2 V can be written as

linear combinations of e1; : : : ; en, and thus the equation above implies that

hS�Su; vi D hu; vi. Hence S�S D I ; in other words, (e) holds.

Now suppose (e) holds, so that S�S D I. In general, an operator S need

not commute with S�. However, S�S D I if and only if SS� D I ; this is a

special case of Exercise 10 in Section 3.D. Thus SS� D I, showing that (f)

holds.

Now suppose (f) holds, so SS� D I. If v 2 V, then

kS�vk2 D hS�v; S�vi D hSS�v; vi D hv; vi D kvk2:

Thus S� is an isometry, showing that (g) holds.

Now suppose (g) holds, so S� is an isometry. We know that (a) ) (e) and

(a) ) (f) because we have shown (a) ) (b) ) (c) ) (d) ) (e) ) (f). Using

the implications (a) ) (e) and (a) ) (f) but with S replaced with S� [and

using the equation .S�/� D S], we conclude that SS� D I and S�S D I.

Thus S is invertible and S�1 D S�; in other words, (h) holds.

Now suppose (h) holds, so S is invertible and S�1 D S�. Thus S�S D I.

If v 2 V, then

kSvk2 D hSv; Svi D hS�Sv; vi D hv; vi D kvk2:

Thus S is an isometry, showing that (a) holds.

We have shown (a) ) (b) ) (c) ) (d) ) (e) ) (f) ) (g) ) (h) ) (a),

completing the proof.
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The previous result shows that every isometry is normal [see (a), (e), and

(f) of 7.42]. Thus characterizations of normal operators can be used to give

descriptions of isometries. We do this in the next result in the complex case

and in Chapter 9 in the real case (see 9.36).

7.43 Description of isometries when F D C

Suppose V is a complex inner product space and S 2 L.V /. Then the

following are equivalent:

(a) S is an isometry.

(b) There is an orthonormal basis of V consisting of eigenvectors of S

whose corresponding eigenvalues all have absolute value 1.

Proof We have already shown (see Example 7.38) that (b) implies (a).

To prove the other direction, suppose (a) holds, so S is an isometry. By the

Complex Spectral Theorem (7.24), there is an orthonormal basis e1; : : : ; en

of V consisting of eigenvectors of S . For j 2 f1; : : : ; ng, let �j be the

eigenvalue corresponding to ej . Then

j�j j D k�j ej k D kSej k D kej k D 1:

Thus each eigenvalue of S has absolute value 1, completing the proof.

EXERCISES 7.C

1 Prove or give a counterexample: If T 2 L.V / is self-adjoint and there

exists an orthonormal basis e1; : : : ; en of V such that hTej ; ej i � 0 for

each j , then T is a positive operator.

2 Suppose T is a positive operator on V. Suppose v;w 2 V are such that

T v D w and Tw D v:

Prove that v D w.

3 Suppose T is a positive operator on V and U is a subspace of V invariant

under T. Prove that T jU 2 L.U / is a positive operator on U.

4 Suppose T 2 L.V;W /. Prove that T �T is a positive operator on V and

T T � is a positive operator on W.
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5 Prove that the sum of two positive operators on V is positive.

6 Suppose T 2 L.V / is positive. Prove that T k is positive for every

positive integer k.

7 Suppose T is a positive operator on V. Prove that T is invertible if and

only if

hT v; vi > 0
for every v 2 V with v ¤ 0.

8 Suppose T 2 L.V /. For u; v 2 V, define hu; viT by

hu; viT D hT u; vi:
Prove that h�; �iT is an inner product on V if and only if T is an invertible

positive operator (with respect to the original inner product h�; �i).

9 Prove or disprove: the identity operator on F2 has infinitely many self-

adjoint square roots.

10 Suppose S 2 L.V /. Prove that the following are equivalent:

(a) S is an isometry;

(b) hS�u; S�vi D hu; vi for all u; v 2 V ;

(c) S�e1; : : : ; S
�em is an orthonormal list for every orthonormal list

of vectors e1; : : : ; em in V ;

(d) S�e1; : : : ; S
�en is an orthonormal basis for some orthonormal

basis e1; : : : ; en of V.

11 Suppose T1; T2 are normal operators on L.F3/ and both operators have

2; 5; 7 as eigenvalues. Prove that there exists an isometry S 2 L.F3/

such that T1 D S�T2S .

12 Give an example of two self-adjoint operators T1; T2 2 L.F4/ such that

the eigenvalues of both operators are 2; 5; 7 but there does not exist an

isometry S 2 L.F4/ such that T1 D S�T2S . Be sure to explain why

there is no isometry with the required property.

13 Prove or give a counterexample: if S 2 L.V / and there exists an ortho-

normal basis e1; : : : ; en of V such that kSej k D 1 for each ej , then S

is an isometry.

14 Let T be the second derivative operator in Exercise 21 in Section 7.A.

Show that �T is a positive operator.
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7.D Polar Decomposition and Singular

Value Decomposition

Polar Decomposition

Recall our analogy between C and L.V /. Under this analogy, a complex

number z corresponds to an operator T, and Nz corresponds to T �. The real

numbers (z D Nz) correspond to the self-adjoint operators (T D T �), and the

nonnegative numbers correspond to the (badly named) positive operators.

Another distinguished subset of C is the unit circle, which consists of the

complex numbers z such that jzj D 1. The condition jzj D 1 is equivalent

to the condition Nzz D 1. Under our analogy, this would correspond to the

condition T �T D I, which is equivalent to T being an isometry (see 7.42).

In other words, the unit circle in C corresponds to the isometries.

Continuing with our analogy, note that each complex number z except 0

can be written in the form

z D
� z

jzj
�
jzj D

� z
jzj
�p

Nzz;

where the first factor, namely, z=jzj, is an element of the unit circle. Our

analogy leads us to guess that each operator T 2 L.V / can be written as an

isometry times
p
T �T . That guess is indeed correct, as we now prove after

defining the obvious notation, which is justified by 7.36.

7.44 Notation
p
T

If T is a positive operator, then
p
T denotes the unique positive square

root of T.

Now we can state and prove the Polar Decomposition, which gives a

beautiful description of an arbitrary operator on V. Note that T �T is a

positive operator for every T 2 L.V /, and thus
p
T �T is well defined.

7.45 Polar Decomposition

Suppose T 2 L.V /. Then there exists an isometry S 2 L.V / such that

T D S
p
T �T :
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Proof If v 2 V, then

kT vk2 D hT v; T vi D hT �T v; vi
D h

p
T �T

p
T �T v; vi

D h
p
T �T v;

p
T �T vi

D k
p
T �T vk2:

Thus

7.46 kT vk D k
p
T �T vk

for all v 2 V.

Define a linear map S1 W range
p
T �T ! rangeT by

7.47 S1.
p
T �T v/ D T v:

The idea of the proof is to extend S1 to an isometry S 2 L.V / such that

T D S
p
T �T . Now for the details.

First we must check that S1 is well defined. To do this, suppose v1; v2 2 V
are such that

p
T �T v1 D

p
T �T v2. For the definition given by 7.47 to make

sense, we must show that T v1 D T v2. Note that

kT v1 � T v2k D kT .v1 � v2/k
D k

p
T �T .v1 � v2/k

D k
p
T �T v1 �

p
T �T v2k

D 0;

where the second equality holds by 7.46. The equation above shows that

T v1 D T v2, so S1 is indeed well defined. You should verify that S1 is a

linear map.

We see from 7.47 that S1 maps range
p
T �T onto rangeT. Clearly 7.46

and 7.47 imply that

kS1uk D kuk
for all u 2 range

p
T �T .

The rest of the proof extends S1 to

an isometry S on all of V.

In particular, S1 is injective. Thus

from the Fundamental Theorem of Lin-

ear Maps (3.22), applied to S1, we have

dim range
p
T �T D dim rangeT:
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This implies that dim.range
p
T �T /? D dim.rangeT /? (see 6.50).

Thus orthonormal bases e1; : : : ; em of .range
p
T �T /? and f1; : : : ; fm

of .rangeT /? can be chosen; the key point here is that these two ortho-

normal bases have the same length (denoted m). Now define a linear map

S2 W .range
p
T �T /? ! .rangeT /? by

S2.a1e1 C � � � C amem/ D a1f1 C � � � C amfm:

For all w 2 .range
p
T �T /?, we have kS2wk D kwk (from 6.25).

Now let S be the operator on V that equals S1 on range
p
T �T and equals

S2 on .range
p
T �T /?. More precisely, recall that each v 2 V can be written

uniquely in the form

7.48 v D uC w;

where u 2 range
p
T �T and w 2 .range

p
T �T /? (see 6.47). For v 2 V

with decomposition as above, define Sv by

Sv D S1uC S2w:

For each v 2 V we have

S.
p
T �T v/ D S1.

p
T �T v/ D T v;

so T D S
p
T �T , as desired. All that remains is to show that S is an isometry.

However, this follows easily from two uses of the Pythagorean Theorem: if

v 2 V has decomposition as in 7.48, then

kSvk2 D kS1uC S2wk2 D kS1uk2 C kS2wk2 D kuk2 C kwk2 D kvk2I
the second equality holds because S1u 2 rangeT and S2w 2 .rangeT /?.

The Polar Decomposition (7.45) states that each operator on V is the

product of an isometry and a positive operator. Thus we can write each

operator on V as the product of two operators, each of which comes from

a class that we can completely describe and that we understand reasonably

well. The isometries are described by 7.43 and 9.36; the positive operators

are described by the Spectral Theorem (7.24 and 7.29).

Specifically, consider the case F D C, and suppose T D S
p
T �T is a

Polar Decomposition of an operator T 2 L.V /, where S is an isometry. Then

there is an orthonormal basis of V with respect to which S has a diagonal

matrix, and there is an orthonormal basis of V with respect to which
p
T �T

has a diagonal matrix. Warning: there may not exist an orthonormal basis

that simultaneously puts the matrices of both S and
p
T �T into these nice

diagonal forms. In other words, S may require one orthonormal basis andp
T �T may require a different orthonormal basis.
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Singular Value Decomposition

The eigenvalues of an operator tell us something about the behavior of the

operator. Another collection of numbers, called the singular values, is also

useful. Recall that eigenspaces and the notation E are defined in 5.36.

7.49 Definition singular values

Suppose T 2 L.V /. The singular values of T are the eigenvalues

of
p
T �T , with each eigenvalue � repeated dimE.�;

p
T �T / times.

The singular values of T are all nonnegative, because they are the eigen-

values of the positive operator
p
T �T .

7.50 Example Define T 2 L.F4/ by

T .z1; z2; z3; z4/ D .0; 3z1; 2z2;�3z4/:

Find the singular values of T.

Solution A calculation shows T �T .z1; z2; z3; z4/ D .9z1; 4z2; 0; 9z4/, as

you should verify. Thus

p
T �T .z1; z2; z3; z4/ D .3z1; 2z2; 0; 3z4/;

and we see that the eigenvalues of
p
T �T are 3; 2; 0 and

dimE.3;
p
T �T / D 2; dimE.2;

p
T �T / D 1; dimE.0;

p
T �T / D 1:

Hence the singular values of T are 3; 3; 2; 0.

Note that �3 and 0 are the only eigenvalues of T. Thus in this case, the

collection of eigenvalues did not pick up the number 2 that appears in the

definition (and hence the behavior) of T, but the collection of singular values

does include 2.

Each T 2 L.V / has dimV singular values, as can be seen by applying

the Spectral Theorem and 5.41 [see especially part (e)] to the positive (hence

self-adjoint) operator
p
T �T . For example, the operator T defined in Exam-

ple 7.50 on the four-dimensional vector space F4 has four singular values

(they are 3; 3; 2; 0), as we saw above.

The next result shows that every operator on V has a clean description in

terms of its singular values and two orthonormal bases of V.
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7.51 Singular Value Decomposition

Suppose T 2 L.V / has singular values s1; : : : ; sn. Then there exist

orthonormal bases e1; : : : ; en and f1; : : : ; fn of V such that

T v D s1hv; e1if1 C � � � C snhv; enifn

for every v 2 V.

Proof By the Spectral Theorem applied to
p
T �T , there is an orthonormal

basis e1; : : : ; en of V such that
p
T �T ej D sj ej for j D 1; : : : ; n.

We have

v D hv; e1ie1 C � � � C hv; enien

for every v 2 V (see 6.30). Apply
p
T �T to both sides of this equation,

getting p
T �T v D s1hv; e1ie1 C � � � C snhv; enien

for every v 2 V. By the Polar Decomposition (see 7.45), there is an isometry

S 2 L.V / such that T D S
p
T �T . Apply S to both sides of the equation

above, getting

T v D s1hv; e1iSe1 C � � � C snhv; eniSen

for every v 2 V. For each j , let fj D Sej . Because S is an isometry,

f1; : : : ; fn is an orthonormal basis of V (see 7.42). The equation above now

becomes

T v D s1hv; e1if1 C � � � C snhv; enifn

for every v 2 V, completing the proof.

When we worked with linear maps from one vector space to a second

vector space, we considered the matrix of a linear map with respect to a basis

of the first vector space and a basis of the second vector space. When dealing

with operators, which are linear maps from a vector space to itself, we almost

always use only one basis, making it play both roles.

The Singular Value Decomposition allows us a rare opportunity to make

good use of two different bases for the matrix of an operator. To do this,

suppose T 2 L.V /. Let s1; : : : ; sn denote the singular values of T, and let

e1; : : : ; en and f1; : : : ; fn be orthonormal bases of V such that the Singular

Value Decomposition 7.51 holds. Because Tej D sjfj for each j , we have

M
�
T; .e1; : : : ; en/; .f1; : : : ; fn/

�
D

0
B@
s1 0

: : :

0 sn

1
CA :
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In other words, every operator on V has a diagonal matrix with respect

to some orthonormal bases of V, provided that we are permitted to use two

different bases rather than a single basis as customary when working with

operators.

Singular values and the Singular Value Decomposition have many applica-

tions (some are given in the exercises), including applications in computational

linear algebra. To compute numeric approximations to the singular values of

an operator T, first compute T �T and then compute approximations to the

eigenvalues of T �T (good techniques exist for approximating eigenvalues

of positive operators). The nonnegative square roots of these (approximate)

eigenvalues of T �T will be the (approximate) singular values of T. In other

words, the singular values of T can be approximated without computing the

square root of T �T. The next result helps justify working with T �T instead

of
p
T �T .

7.52 Singular values without taking square root of an operator

Suppose T 2 L.V /. Then the singular values of T are the nonnegative

square roots of the eigenvalues of T �T, with each eigenvalue � repeated

dimE.�; T �T / times.

Proof The Spectral Theorem implies that there are an orthonormal basis

e1; : : : ; en and nonnegative numbers �1; : : : ; �n such that T �Tej D �j ej

for j D 1; : : : ; n. It is easy to see that
p
T �T ej D

p
�j ej for j D 1; : : : ; n,

which implies the desired result.

EXERCISES 7.D

1 Fix u; x 2 V with u ¤ 0. Define T 2 L.V / by

T v D hv; uix

for every v 2 V. Prove that

p
T �T v D kxk

kukhv; uiu

for every v 2 V.

2 Give an example of T 2 L.C2/ such that 0 is the only eigenvalue of T

and the singular values of T are 5; 0.
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3 Suppose T 2 L.V /. Prove that there exists an isometry S 2 L.V / such

that

T D
p
T T � S:

4 Suppose T 2 L.V / and s is a singular value of T. Prove that there exists

a vector v 2 V such that kvk D 1 and kT vk D s.

5 Suppose T 2 L.C2/ is defined by T .x; y/ D .�4y; x/. Find the singu-

lar values of T.

6 Find the singular values of the differentiation operator D 2 P.R2/

defined byDp D p0, where the inner product on P.R2/ is as in Example

6.33.

7 Define T 2 L.F3/ by

T .z1; z2; z3/ D .z3; 2z1; 3z2/:

Find (explicitly) an isometry S 2 L.F3/ such that T D S
p
T �T .

8 Suppose T 2 L.V /, S 2 L.V / is an isometry, and R 2 L.V / is a

positive operator such that T D SR. Prove that R D
p
T �T .

[The exercise above shows that if we write T as the product of an isometry

and a positive operator (as in the Polar Decomposition 7.45), then the

positive operator equals
p
T �T .]

9 Suppose T 2 L.V /. Prove that T is invertible if and only if there exists

a unique isometry S 2 L.V / such that T D S
p
T �T .

10 Suppose T 2 L.V / is self-adjoint. Prove that the singular values of T

equal the absolute values of the eigenvalues of T, repeated appropriately.

11 Suppose T 2 L.V /. Prove that T and T � have the same singular values.

12 Prove or give a counterexample: if T 2 L.V /, then the singular values

of T 2 equal the squares of the singular values of T.

13 Suppose T 2 L.V /. Prove that T is invertible if and only if 0 is not a

singular value of T.

14 Suppose T 2 L.V /. Prove that dim rangeT equals the number of

nonzero singular values of T.

15 Suppose S 2 L.V /. Prove that S is an isometry if and only if all the

singular values of S equal 1.
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16 Suppose T1; T2 2 L.V /. Prove that T1 and T2 have the same singular

values if and only if there exist isometries S1; S2 2 L.V / such that

T1 D S1T2S2.

17 Suppose T 2 L.V / has singular value decomposition given by

T v D s1hv; e1if1 C � � � C snhv; enifn

for every v 2 V, where s1; : : : ; sn are the singular values of T and

e1; : : : ; en and f1; : : : ; fn are orthonormal bases of V.

(a) Prove that if v 2 V, then

T �v D s1hv; f1ie1 C � � � C snhv; fnien:

(b) Prove that if v 2 V, then

T �T v D s1
2hv; e1ie1 C � � � C sn

2hv; enien:

(c) Prove that if v 2 V, then

p
T �T v D s1hv; e1ie1 C � � � C snhv; enien:

(d) Suppose T is invertible. Prove that if v 2 V, then

T �1v D hv; f1ie1

s1
C � � � C hv; fnien

sn

for every v 2 V.

18 Suppose T 2 L.V /. Let Os denote the smallest singular value of T, and

let s denote the largest singular value of T.

(a) Prove that Oskvk � kT vk � skvk for every v 2 V.

(b) Suppose � is an eigenvalue of T. Prove that Os � j�j � s.

19 Suppose T 2 L.V /. Show that T is uniformly continuous with respect

to the metric d on V defined by d.u; v/ D ku � vk.

20 Suppose S; T 2 L.V /. Let s denote the largest singular value of S ,

let t denote the largest singular value of T, and let r denote the largest

singular value of S C T. Prove that r � s C t .
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8.A Generalized Eigenvectors and Nilpotent

Operators

Null Spaces of Powers of an Operator

We begin this chapter with a study of null spaces of powers of an operator.

8.2 Sequence of increasing null spaces

Suppose T 2 L.V /. Then

f0g D nullT 0 � nullT 1 � � � � � nullT k � nullT kC1 � � � � :

Proof Suppose k is a nonnegative integer and v 2 nullT k . Then T kv D 0,

and hence T kC1v D T .T kv/ D T .0/ D 0. Thus v 2 nullT kC1. Hence

nullT k � nullT kC1, as desired.

The next result says that if two consecutive terms in this sequence of

subspaces are equal, then all later terms in the sequence are equal.

8.3 Equality in the sequence of null spaces

Suppose T 2 L.V /. Suppose m is a nonnegative integer such that

nullTm D nullTmC1. Then

nullTm D nullTmC1 D nullTmC2 D nullTmC3 D � � � :

Proof Let k be a positive integer. We want to prove that

nullTmCk D nullTmCkC1:

We already know from 8.2 that nullTmCk � nullTmCkC1.

To prove the inclusion in the other direction, suppose v 2 nullTmCkC1.

Then

TmC1.T kv/ D TmCkC1v D 0:

Hence

T kv 2 nullTmC1 D nullTm:

Thus TmCkv D Tm.T kv/ D 0, which means that v 2 nullTmCk . This

implies that nullTmCkC1 � nullTmCk , completing the proof.
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The proposition above raises the question of whether there exists a non-

negative integer m such that nullTm D nullTmC1. The proposition below

shows that this equality holds at least when m equals the dimension of the

vector space on which T operates.

8.4 Null spaces stop growing

Suppose T 2 L.V /. Let n D dimV. Then

nullT n D nullT nC1 D nullT nC2 D � � � :

Proof We need only prove that nullT n D nullT nC1 (by 8.3). Suppose this

is not true. Then, by 8.2 and 8.3, we have

f0g D nullT 0 ¨ nullT 1 ¨ � � � ¨ nullT n ¨ nullT nC1;

where the symbol ¨ means “contained in but not equal to”. At each of the

strict inclusions in the chain above, the dimension increases by at least 1.

Thus dim nullT nC1 � nC 1, a contradiction because a subspace of V cannot

have a larger dimension than n.

Unfortunately, it is not true that V D nullT ˚ rangeT for each T 2 L.V /.

However, the following result is a useful substitute.

8.5 V is the direct sum of nullT dim V and rangeT dim V

Suppose T 2 L.V /. Let n D dimV. Then

V D nullT n ˚ rangeT n:

Proof First we show that

8.6 .nullT n/ \ .rangeT n/ D f0g:
Suppose v 2 .nullT n/ \ .rangeT n/. Then T nv D 0, and there exists u 2 V
such that v D T nu. Applying T n to both sides of the last equation shows that

T nv D T 2nu. Hence T 2nu D 0, which implies that T nu D 0 (by 8.4). Thus

v D T nu D 0, completing the proof of 8.6.

Now 8.6 implies that nullT n C rangeT n is a direct sum (by 1.45). Also,

dim.nullT n ˚ rangeT n/ D dim nullT n C dim rangeT n D dimV;

where the first equality above comes from 3.78 and the second equality comes

from the Fundamental Theorem of Linear Maps (3.22). The equation above

implies that nullT n ˚ rangeT n D V, as desired.
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8.7 Example Suppose T 2 L.F3/ is defined by

T .z1; z2; z3/ D .4z2; 0; 5z3/:

For this operator, nullT C rangeT is not a direct sum of subspaces, because

nullT D f.z1; 0; 0/ W z1 2 Fg and rangeT D f.z1; 0; z3/ W z1; z3 2 Fg.

Thus nullT \ rangeT ¤ f0g and hence nullT C rangeT is not a direct sum.

Also note that nullT C rangeT ¤ F3.

However, we have T 3.z1; z2; z3/ D .0; 0; 125z3/. Thus we see that

nullT 3 D f.z1; z2; 0/ W z1; z2 2 Fg and rangeT 3 D f.0; 0; z3/ W z3 2 Fg.

Hence F3 D nullT 3 ˚ rangeT 3.

Generalized Eigenvectors

Unfortunately, some operators do not have enough eigenvectors to lead to

a good description. Thus in this subsection we introduce the concept of

generalized eigenvectors, which will play a major role in our description of

the structure of an operator.

To understand why we need more than eigenvectors, let’s examine the

question of describing an operator by decomposing its domain into invariant

subspaces. Fix T 2 L.V /. We seek to describe T by finding a “nice” direct

sum decomposition

V D U1 ˚ � � � ˚ Um;

where each Uj is a subspace of V invariant under T. The simplest possible

nonzero invariant subspaces are 1-dimensional. A decomposition as above

where each Uj is a 1-dimensional subspace of V invariant under T is possible

if and only if V has a basis consisting of eigenvectors of T (see 5.41). This

happens if and only if V has an eigenspace decomposition

8.8 V D E.�1; T /˚ � � � ˚E.�m; T /;

where �1; : : : ; �m are the distinct eigenvalues of T (see 5.41).

The Spectral Theorem in the previous chapter shows that if V is an inner

product space, then a decomposition of the form 8.8 holds for every normal

operator if F D C and for every self-adjoint operator if F D R because

operators of those types have enough eigenvectors to form a basis of V (see

7.24 and 7.29).



SECTION 8.A Generalized Eigenvectors and Nilpotent Operators 245

Sadly, a decomposition of the form 8.8 may not hold for more general oper-

ators, even on a complex vector space. An example was given by the operator

in 5.43, which does not have enough eigenvectors for 8.8 to hold. General-

ized eigenvectors and generalized eigenspaces, which we now introduce, will

remedy this situation.

8.9 Definition generalized eigenvector

Suppose T 2 L.V / and � is an eigenvalue of T. A vector v 2 V is called

a generalized eigenvector of T corresponding to � if v ¤ 0 and

.T � �I/j v D 0

for some positive integer j .

Note that we do not define the con-

cept of a generalized eigenvalue,

because this would not lead to any-

thing new. Reason: if .T ��I/j is

not injective for some positive inte-

ger j , then T � �I is not injective,

and hence � is an eigenvalue of T.

Although j is allowed to be an arbi-

trary integer in the equation

.T � �I/j v D 0

in the definition of a generalized eigen-

vector, we will soon prove that every

generalized eigenvector satisfies this

equation with j D dimV.

8.10 Definition generalized eigenspace, G.�; T /

Suppose T 2 L.V / and � 2 F. The generalized eigenspace of T corre-

sponding to �, denoted G.�; T /, is defined to be the set of all generalized

eigenvectors of T corresponding to �, along with the 0 vector.

Because every eigenvector of T is a generalized eigenvector of T (take

j D 1 in the definition of generalized eigenvector), each eigenspace is

contained in the corresponding generalized eigenspace. In other words, if

T 2 L.V / and � 2 F, then

E.�; T / � G.�; T /:

The next result implies that if T 2 L.V / and � 2 F, then G.�; T / is a

subspace of V (because the null space of each linear map on V is a subspace

of V ).
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8.11 Description of generalized eigenspaces

Suppose T 2 L.V / and � 2 F. Then G.�; T / D null.T � �I/dim V .

Proof Suppose v 2 null.T � �I/dim V . The definitions imply v 2 G.�; T /.
Thus G.�; T / � null.T � �I/dim V .

Conversely, suppose v 2 G.�; T /. Thus there is a positive integer j such

that

v 2 null.T � �I/j :
From 8.2 and 8.4 (with T � �I replacing T ), we get v 2 null.T � �I/dim V .

Thus G.�; T / � null.T � �I/dim V , completing the proof.

8.12 Example Define T 2 L.C3/ by

T .z1; z2; z3/ D .4z2; 0; 5z3/:

(a) Find all eigenvalues of T, the corresponding eigenspaces, and the

corresponding generalized eigenspaces.

(b) Show that C3 is the direct sum of generalized eigenspaces correspond-

ing to the distinct eigenvalues of T.

Solution

(a) A routine use of the definition of eigenvalue shows that the eigenvalues

of T are 0 and 5. The corresponding eigenspaces are easily seen to be

E.0; T / D f.z1; 0; 0/ W z1 2 Cg and E.5; T / D f.0; 0; z3/ W z3 2 Cg.

Note that this operator T does not have enough eigenvectors to span its

domain C3.

We have T 3.z1; z2; z3/ D .0; 0; 125z3/ for all z1; z2; z3 2 C. Thus

8.11 implies that G.0; T / D f.z1; z2; 0/ W z1; z2 2 Cg.

We have .T �5I /3.z1; z2; z3/ D .�125z1 C300z2;�125z2; 0/. Thus

8.11 implies that G.5; T / D f.0; 0; z3/ W z3 2 Cg.

(b) The results in part (a) show that C3 D G.0; T /˚G.5; T /.
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One of our major goals in this chapter is to show that the result in part (b)

of the example above holds in general for operators on finite-dimensional

complex vector spaces; we will do this in 8.21.

We saw earlier (5.10) that eigenvectors corresponding to distinct eigenval-

ues are linearly independent. Now we prove a similar result for generalized

eigenvectors.

8.13 Linearly independent generalized eigenvectors

Let T 2 L.V /. Suppose �1; : : : ; �m are distinct eigenvalues of T and

v1; : : : ; vm are corresponding generalized eigenvectors. Then v1; : : : ; vm

is linearly independent.

Proof Suppose a1; : : : ; am are complex numbers such that

8.14 0 D a1v1 C � � � C amvm:

Let k be the largest nonnegative integer such that .T � �1I /
kv1 ¤ 0. Let

w D .T � �1I /
kv1:

Thus

.T � �1I /w D .T � �1I /
kC1w D 0;

and hence Tw D �1w. Thus .T � �I/w D .�1 � �/w for every � 2 F and

hence

8.15 .T � �I/nw D .�1 � �/nw

for every � 2 F, where n D dimV.

Apply the operator

.T � �1I /
k.T � �2I /

n � � � .T � �mI /
n

to both sides of 8.14, getting

0 D a1.T � �1I /
k.T � �2I /

n � � � .T � �mI /
nv1

D a1.T � �2I /
n � � � .T � �mI /

nw

D a1.�1 � �2/
n � � � .�1 � �m/

nw;

where we have used 8.11 to get the first equation above and 8.15 to get the

last equation above.

The equation above implies that a1 D 0. In a similar fashion, aj D 0 for

each j , which implies that v1; : : : ; vm is linearly independent.
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Nilpotent Operators

8.16 Definition nilpotent

An operator is called nilpotent if some power of it equals 0.

8.17 Example nilpotent operators

(a) The operator N 2 L.F4/ defined by

N.z1; z2; z3; z4/ D .z3; z4; 0; 0/

is nilpotent because N 2 D 0.

(b) The operator of differentiation on Pm.R/ is nilpotent because the

.mC 1/st derivative of every polynomial of degree at most m equals 0.

Note that on this space of dimension m C 1, we need to raise the

nilpotent operator to the power mC 1 to get the 0 operator.

The Latin word nil means noth-

ing or zero; the Latin word potent

means power. Thus nilpotent liter-

ally means zero power.

The next result shows that we never

need to use a power higher than the di-

mension of the space.

8.18 Nilpotent operator raised to dimension of domain is 0

Suppose N 2 L.V / is nilpotent. Then N dim V D 0.

Proof Because N is nilpotent, G.0;N / D V. Thus 8.11 implies that

nullN dim V D V, as desired.

Given an operator T on V, we want to find a basis of V such that the

matrix of T with respect to this basis is as simple as possible, meaning that

the matrix contains many 0’s.

If V is a complex vector space, a

proof of the next result follows eas-

ily from Exercise 7, 5.27, and 5.32.

But the proof given here uses sim-

pler ideas than needed to prove

5.27, and it works for both real and

complex vector spaces.

The next result shows that if N is

nilpotent, then we can choose a basis

of V such that the matrix of N with

respect to this basis has more than half

of its entries equal to 0. Later in this

chapter we will do even better.
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8.19 Matrix of a nilpotent operator

Suppose N is a nilpotent operator on V. Then there is a basis of V with

respect to which the matrix of N has the form

0
B@
0 �

: : :

0 0

1
CA I

here all entries on and below the diagonal are 0’s.

Proof First choose a basis of nullN. Then extend this to a basis of nullN 2.

Then extend to a basis of nullN 3. Continue in this fashion, eventually getting

a basis of V (because 8.18 states that nullN dim V D V ).

Now let’s think about the matrix of N with respect to this basis. The

first column, and perhaps additional columns at the beginning, consists of

all 0’s, because the corresponding basis vectors are in nullN. The next set

of columns comes from basis vectors in nullN 2. Applying N to any such

vector, we get a vector in nullN ; in other words, we get a vector that is a

linear combination of the previous basis vectors. Thus all nonzero entries in

these columns lie above the diagonal. The next set of columns comes from

basis vectors in nullN 3. Applying N to any such vector, we get a vector in

nullN 2; in other words, we get a vector that is a linear combination of the

previous basis vectors. Thus once again, all nonzero entries in these columns

lie above the diagonal. Continue in this fashion to complete the proof.

EXERCISES 8.A

1 Define T 2 L.C2/ by

T .w; z/ D .z; 0/:

Find all generalized eigenvectors of T.

2 Define T 2 L.C2/ by

T .w; z/ D .�z;w/:

Find the generalized eigenspaces corresponding to the distinct eigenval-

ues of T.
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3 Suppose T 2 L.V / is invertible. Prove that G.�; T / D G. 1
�
; T �1/ for

every � 2 F with � ¤ 0.

4 Suppose T 2 L.V / and ˛; ˇ 2 F with ˛ ¤ ˇ. Prove that

G.˛; T / \G.ˇ; T / D f0g:

5 Suppose T 2 L.V /, m is a positive integer, and v 2 V is such that

Tm�1v ¤ 0 but Tmv D 0. Prove that

v; T v; T 2v; : : : ; Tm�1v

is linearly independent.

6 Suppose T 2 L.C3/ is defined by T .z1; z2; z3/ D .z2; z3; 0/. Prove

that T has no square root. More precisely, prove that there does not exist

S 2 L.C3/ such that S2 D T.

7 Suppose N 2 L.V / is nilpotent. Prove that 0 is the only eigenvalue

of N.

8 Prove or give a counterexample: The set of nilpotent operators on V is a

subspace of L.V /.

9 Suppose S; T 2 L.V / and ST is nilpotent. Prove that TS is nilpotent.

10 Suppose that T 2 L.V / is not nilpotent. Let n D dimV. Show that

V D nullT n�1 ˚ rangeT n�1.

11 Prove or give a counterexample: If V is a complex vector space and

dimV D n and T 2 L.V /, then T n is diagonalizable.

12 Suppose N 2 L.V / and there exists a basis of V with respect to which

N has an upper-triangular matrix with only 0’s on the diagonal. Prove

that N is nilpotent.

13 Suppose V is an inner product space and N 2 L.V / is normal and

nilpotent. Prove that N D 0.

14 Suppose V is an inner product space and N 2 L.V / is nilpotent. Prove

that there exists an orthonormal basis of V with respect to which N has

an upper-triangular matrix.

[If F D C, then the result above follows from Schur’s Theorem (6.38)

without the hypothesis thatN is nilpotent. Thus the exercise above needs

to be proved only when F D R.]
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15 Suppose N 2 L.V / is such that nullN dim V �1 ¤ nullN dim V . Prove

that N is nilpotent and that

dim nullN j D j

for every integer j with 0 � j � dimV.

16 Suppose T 2 L.V /. Show that

V D rangeT 0 � rangeT 1 � � � � � rangeT k � rangeT kC1 � � � � :

17 Suppose T 2 L.V / and m is a nonnegative integer such that

rangeTm D rangeTmC1:

Prove that rangeT k D rangeTm for all k > m.

18 Suppose T 2 L.V /. Let n D dimV. Prove that

rangeT n D rangeT nC1 D rangeT nC2 D � � � :

19 Suppose T 2 L.V / and m is a nonnegative integer. Prove that

nullTm D nullTmC1 if and only if rangeTm D rangeTmC1:

20 Suppose T 2 L.C5/ is such that rangeT 4 ¤ rangeT 5. Prove that T is

nilpotent.

21 Find a vector space W and T 2 L.W / such that nullT k ¨ nullT kC1

and rangeT k © rangeT kC1 for every positive integer k.
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8.B Decomposition of an Operator

Description of Operators on Complex Vector Spaces

We saw earlier that the domain of an operator might not decompose into

eigenspaces, even on a finite-dimensional complex vector space. In this

section we will see that every operator on a finite-dimensional complex vector

space has enough generalized eigenvectors to provide a decomposition.

We observed earlier that if T 2 L.V /, then nullT and rangeT are invari-

ant under T [see 5.3, parts (c) and (d)]. Now we show that the null space and

the range of each polynomial of T is also invariant under T.

8.20 The null space and range of p.T / are invariant under T

Suppose T 2 L.V / and p 2 P.F/. Then nullp.T / and rangep.T / are

invariant under T.

Proof Suppose v 2 nullp.T /. Then p.T /v D 0. Thus
�
.p.T /

�
.T v/ D T

�
p.T /v

�
D T .0/ D 0:

Hence T v 2 nullp.T /. Thus nullp.T / is invariant under T, as desired.

Suppose v 2 rangep.T /. Then there exists u 2 V such that v D p.T /u.

Thus

T v D T
�
p.T /u

�
D p.T /.T u/:

Hence T v 2 rangep.T /. Thus rangep.T / is invariant under T, as desired.

The following major result shows that every operator on a complex vector

space can be thought of as composed of pieces, each of which is a nilpotent

operator plus a scalar multiple of the identity. Actually we have already done

the hard work in our discussion of the generalized eigenspaces G.�; T /, so at

this point the proof is easy.

8.21 Description of operators on complex vector spaces

Suppose V is a complex vector space and T 2 L.V /. Let �1; : : : ; �m be

the distinct eigenvalues of T. Then

(a) V D G.�1; T /˚ � � � ˚G.�m; T /;

(b) each G.�j ; T / is invariant under T ;

(c) each .T � �j I /jG.�j ;T / is nilpotent.
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Proof Let n D dimV. Recall that G.�j ; T / D null.T � �j I /
n for each j

(by 8.11). From 8.20 [with p.z/ D .z � �j /
n], we get (b). Obviously (c)

follows from the definitions.

We will prove (a) by induction on n. To get started, note that the desired

result holds if n D 1. Thus we can assume that n > 1 and that the desired

result holds on all vector spaces of smaller dimension.

Because V is a complex vector space, T has an eigenvalue (see 5.21); thus

m � 1. Applying 8.5 to T � �1I shows that

8.22 V D G.�1; T /˚ U;

where U D range.T � �1I /
n. Using 8.20 [with p.z/ D .z � �1/

n], we see

that U is invariant under T. Because G.�1; T / ¤ f0g, we have dimU < n.

Thus we can apply our induction hypothesis to T jU.

None of the generalized eigenvectors of T jU correspond to the eigenvalue

�1, because all generalized eigenvectors of T corresponding to �1 are in

G.�1; T /. Thus each eigenvalue of T jU is in f�2; : : : ; �mg.

By our induction hypothesis, U D G.�2; T jU / ˚ � � � ˚ G.�m; T jU /.
Combining this information with 8.22 will complete the proof if we can show

that G.�k; T jU / D G.�k; T / for k D 2; : : : ; m.

Thus fix k 2 f2; : : : ; mg. The inclusion G.�k; T jU / � G.�k; T / is clear.

To prove the inclusion in the other direction, suppose v 2 G.�k; T /. By

8.22, we can write v D v1 C u, where v1 2 G.�1; T / and u 2 U. Our

induction hypothesis implies that

u D v2 C � � � C vm;

where each vj is in G.�j ; T jU /, which is a subset of G.�j ; T /. Thus

v D v1 C v2 C � � � C vm;

Because generalized eigenvectors corresponding to distinct eigenvalues are

linearly independent (see 8.13), the equation above implies that each vj equals

0 except possibly when j D k. In particular, v1 D 0 and thus v D u 2 U.

Because v 2 U, we can conclude that v 2 G.�k; T jU /, completing the

proof.

As we know, an operator on a complex vector space may not have enough

eigenvectors to form a basis of the domain. The next result shows that on a

complex vector space there are enough generalized eigenvectors to do this.
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8.23 A basis of generalized eigenvectors

Suppose V is a complex vector space and T 2 L.V /. Then there is a basis

of V consisting of generalized eigenvectors of T.

Proof Choose a basis of each G.�j ; T / in 8.21. Put all these bases together

to form a basis of V consisting of generalized eigenvectors of T.

Multiplicity of an Eigenvalue

If V is a complex vector space and T 2 L.V /, then the decomposition of V

provided by 8.21 can be a powerful tool. The dimensions of the subspaces

involved in this decomposition are sufficiently important to get a name.

8.24 Definition multiplicity

� Suppose T 2 L.V /. The multiplicity of an eigenvalue � of T

is defined to be the dimension of the corresponding generalized

eigenspace G.�; T /.

� In other words, the multiplicity of an eigenvalue � of T equals

dim null.T � �I/dim V .

The second bullet point above is justified by 8.11.

8.25 Example Suppose T 2 L.C3/ is defined by

T .z1; z2; z3/ D .6z1 C 3z2 C 4z3; 6z2 C 2z3; 7z3/:

The matrix of T (with respect to the standard basis) is0
@
6 3 4

0 6 2

0 0 7

1
A :

The eigenvalues of T are 6 and 7, as follows from 5.32. You can verify that

the generalized eigenspaces of T are as follows:

G.6; T / D span
�
.1; 0; 0/; .0; 1; 0/

�
and G.7; T / D span

�
.10; 2; 1/

�
:

Thus the eigenvalue 6 has multiplicity 2 and the eigenvalue 7 has multiplicity 1.

The direct sum C3 D G.6; T /˚G.7; T / is the decomposition promised by

8.21. A basis of C3 consisting of generalized eigenvectors of T , as promised

by 8.23, is

.1; 0; 0/; .0; 1; 0/; .10; 2; 1/:
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In Example 8.25, the sum of the multiplicities of the eigenvalues of T

equals 3, which is the dimension of the domain of T. The next result shows

that this always happens on a complex vector space.

8.26 Sum of the multiplicities equals dimV

Suppose V is a complex vector space and T 2 L.V /. Then the sum of the

multiplicities of all the eigenvalues of T equals dimV.

Proof The desired result follows from 8.21 and the obvious formula for the

dimension of a direct sum (see 3.78 or Exercise 16 in Section 2.C).

The terms algebraic multiplicity and geometric multiplicity are used in

some books. In case you encounter this terminology, be aware that the

algebraic multiplicity is the same as the multiplicity defined here and the

geometric multiplicity is the dimension of the corresponding eigenspace. In

other words, if T 2 L.V / and � is an eigenvalue of T, then

algebraic multiplicity of � D dim null.T � �I/dim V D dimG.�; T /;

geometric multiplicity of � D dim null.T � �I/ D dimE.�; T /:

Note that as defined above, the algebraic multiplicity also has a geometric

meaning as the dimension of a certain null space. The definition of multiplicity

given here is cleaner than the traditional definition that involves determinants;

10.25 implies that these definitions are equivalent.

Block Diagonal Matrices

Often we can understand a matrix

better by thinking of it as composed

of smaller matrices.

To interpret our results in matrix form,

we make the following definition, gener-

alizing the notion of a diagonal matrix.

If each matrix Aj in the definition

below is a 1-by-1 matrix, then we actually have a diagonal matrix.

8.27 Definition block diagonal matrix

A block diagonal matrix is a square matrix of the form
0
B@
A1 0

: : :

0 Am

1
CA ;

where A1; : : : ; Am are square matrices lying along the diagonal and all

the other entries of the matrix equal 0.
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8.28 Example The 5-by-5 matrix

A D

0
BBBBBBB@

�
4
�

0 0 0 0

0

0

 
2 �3
0 2

!
0 0

0 0

0

0

0 0

0 0

 
1 7

0 1

!

1
CCCCCCCA

is a block diagonal matrix with

A D

0
B@
A1 0

A2

0 A3

1
CA ;

where

A1 D
�
4
�
; A2 D

 
2 �3
0 2

!
; A3 D

 
1 7

0 1

!
:

Here the inner matrices in the 5-by-5 matrix above are blocked off to show

how we can think of it as a block diagonal matrix.

Note that in the next result we get many more zeros in the matrix of T

than are needed to make it upper triangular.

8.29 Block diagonal matrix with upper-triangular blocks

Suppose V is a complex vector space and T 2 L.V /. Let �1; : : : ; �m be

the distinct eigenvalues of T, with multiplicities d1; : : : ; dm. Then there is

a basis of V with respect to which T has a block diagonal matrix of the

form 0
B@
A1 0

: : :

0 Am

1
CA ;

where each Aj is a dj -by-dj upper-triangular matrix of the form

Aj D

0
B@
�j �

: : :

0 �j

1
CA :
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Proof Each .T ��j I /jG.�j ;T / is nilpotent [see 8.21(c)]. For each j , choose

a basis of G.�j ; T /, which is a vector space with dimension dj , such that the

matrix of .T � �j I /jG.�j ;T / with respect to this basis is as in 8.19. Thus the

matrix of T jG.�j ;T /, which equals .T � �j I /jG.�j ;T / C �j I jG.�j ;T /, with

respect to this basis will look like the desired form shown above for Aj .

Putting the bases of theG.�j ; T /’s together gives a basis of V [by 8.21(a)].

The matrix of T with respect to this basis has the desired form.

The 5-by-5 matrix in 8.28 is of the form promised by 8.29, with each of

the blocks itself an upper-triangular matrix that is constant along the diagonal

of the block. If T is an operator on a 5-dimensional vector space whose matrix

is as in 8.28, then the eigenvalues of T are 4; 2; 1 (as follows from 5.32), with

multiplicities 1, 2, 2.

8.30 Example Suppose T 2 L.C3/ is defined by

T .z1; z2; z3/ D .6z1 C 3z2 C 4z3; 6z2 C 2z3; 7z3/:

The matrix of T (with respect to the standard basis) is
0
@
6 3 4

0 6 2

0 0 7

1
A ;

which is an upper-triangular matrix but is not of the form promised by 8.29.

As we saw in Example 8.25, the eigenvalues of T are 6 and 7 and the

corresponding generalized eigenspaces are

G.6; T / D span
�
.1; 0; 0/; .0; 1; 0/

�
and G.7; T / D span

�
.10; 2; 1/

�
:

We also saw that a basis of C3 consisting of generalized eigenvectors of T is

.1; 0; 0/; .0; 1; 0/; .10; 2; 1/:

The matrix of T with respect to this basis is
0
@
�
6 3

0 6

�
0

0

0 0
�
7
�

1
A ;

which is a matrix of the block diagonal form promised by 8.29.

When we discuss the Jordan Form in Section 8.D, we will see that we can

find a basis with respect to which an operator T has a matrix with even more

0’s than promised by 8.29. However, 8.29 and its equivalent companion 8.21

are already quite powerful. For example, in the next subsection we will use

8.21 to show that every invertible operator on a complex vector space has a

square root.
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Square Roots

Recall that a square root of an operator T 2 L.V / is an operator R 2 L.V /

such that R2 D T (see 7.33). Every complex number has a square root, but

not every operator on a complex vector space has a square root. For example,

the operator on C3 in Exercise 6 in Section 8.A has no square root. The

noninvertibility of that operator is no accident, as we will soon see. We begin

by showing that the identity plus any nilpotent operator has a square root.

8.31 Identity plus nilpotent has a square root

Suppose N 2 L.V / is nilpotent. Then I CN has a square root.

Proof Consider the Taylor series for the function
p
1C x:

8.32
p
1C x D 1C a1x C a2x

2 C � � � :

Because a1 D 1=2, the formula

above shows that 1 C x=2 is a

good estimate for
p
1C x when x

is small.

We will not find an explicit formula

for the coefficients or worry about

whether the infinite sum converges be-

cause we will use this equation only as

motivation.

Because N is nilpotent, Nm D 0 for some positive integer m. In 8.32,

suppose we replace x with N and 1 with I. Then the infinite sum on the right

side becomes a finite sum (because N j D 0 for all j � m). In other words,

we guess that there is a square root of I CN of the form

I C a1N C a2N
2 C � � � C am�1N

m�1:

Having made this guess, we can try to choose a1; a2; : : : ; am�1 such that the

operator above has its square equal to I CN. Now

.ICa1N C a2N
2 C a3N

3 C � � � C am�1N
m�1/2

D I C 2a1N C .2a2 C a1
2/N 2 C .2a3 C 2a1a2/N

3 C � � �
C .2am�1 C terms involving a1; : : : ; am�2/N

m�1:

We want the right side of the equation above to equal I CN. Hence choose a1

such that 2a1 D 1 (thus a1 D 1=2). Next, choose a2 such that 2a2 Ca1
2 D 0

(thus a2 D �1=8). Then choose a3 such that the coefficient of N 3 on the

right side of the equation above equals 0 (thus a3 D 1=16). Continue in

this fashion for j D 4; : : : ; m � 1, at each step solving for aj so that the

coefficient of N j on the right side of the equation above equals 0. Actually

we do not care about the explicit formula for the aj ’s. We need only know

that some choice of the aj ’s gives a square root of I CN.
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The previous lemma is valid on real and complex vector spaces. However,

the next result holds only on complex vector spaces. For example, the operator

of multiplication by �1 on the 1-dimensional real vector space R has no square

root.

8.33 Over C, invertible operators have square roots

Suppose V is a complex vector space and T 2 L.V / is invertible. Then

T has a square root.

Proof Let �1; : : : ; �m be the distinct eigenvalues of T. For each j , there ex-

ists a nilpotent operatorNj 2 L
�
G.�j ; T /

�
such that T jG.�j ;T / D �j ICNj

[see 8.21(c)]. Because T is invertible, none of the �j ’s equals 0, so we can

write

T jG.�j ;T / D �j

�
I C Nj

�j

�

for each j . Clearly Nj =�j is nilpotent, and so I CNj =�j has a square root

(by 8.31). Multiplying a square root of the complex number �j by a square

root of I CNj =�j , we obtain a square root Rj of T jG.�j ;T /.

A typical vector v 2 V can be written uniquely in the form

v D u1 C � � � C um;

where each uj is in G.�j ; T / (see 8.21). Using this decomposition, define an

operator R 2 L.V / by

Rv D R1u1 C � � � CRmum:

You should verify that this operator R is a square root of T, completing the

proof.

By imitating the techniques in this section, you should be able to prove

that if V is a complex vector space and T 2 L.V / is invertible, then T has a

kth root for every positive integer k.

EXERCISES 8.B

1 Suppose V is a complex vector space, N 2 L.V /, and 0 is the only

eigenvalue of N. Prove that N is nilpotent.

2 Give an example of an operator T on a finite-dimensional real vector

space such that 0 is the only eigenvalue of T but T is not nilpotent.
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3 Suppose T 2 L.V /. Suppose S 2 L.V / is invertible. Prove that T and

S�1TS have the same eigenvalues with the same multiplicities.

4 Suppose V is an n-dimensional complex vector space and T is an oper-

ator on V such that nullT n�2 ¤ nullT n�1. Prove that T has at most

two distinct eigenvalues.

5 Suppose V is a complex vector space and T 2 L.V /. Prove that V has

a basis consisting of eigenvectors of T if and only if every generalized

eigenvector of T is an eigenvector of T.

[For F D C, the exercise above adds an equivalence to the list in 5.41.]

6 Define N 2 L.F5/ by

N.x1; x2; x3; x4; x5/ D .2x2; 3x3;�x4; 4x5; 0/:

Find a square root of I CN.

7 Suppose V is a complex vector space. Prove that every invertible operator

on V has a cube root.

8 Suppose T 2 L.V / and 3 and 8 are eigenvalues of T. Let n D dimV.

Prove that V D .nullT n�2/˚ .rangeT n�2/.

9 Suppose A and B are block diagonal matrices of the form

A D

0
B@
A1 0

: : :

0 Am

1
CA ; B D

0
B@
B1 0

: : :

0 Bm

1
CA ;

where Aj has the same size as Bj for j D 1; : : : ; m. Show that AB is a

block diagonal matrix of the form

AB D

0
B@
A1B1 0

: : :

0 AmBm

1
CA :

10 Suppose F D C and T 2 L.V /. Prove that there exist D;N 2 L.V /

such that T D D CN, the operator D is diagonalizable, N is nilpotent,

and DN D ND.

11 Suppose T 2 L.V / and � 2 F. Prove that for every basis of V with

respect to which T has an upper-triangular matrix, the number of times

that � appears on the diagonal of the matrix of T equals the multiplicity

of � as an eigenvalue of T.
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8.C Characteristic and Minimal Polynomials

The Cayley–Hamilton Theorem

The next definition associates a polynomial with each operator on V if F D C.

For F D R, the corresponding definition will be given in the next chapter.

8.34 Definition characteristic polynomial

Suppose V is a complex vector space and T 2 L.V /. Let �1; : : : ; �m

denote the distinct eigenvalues of T, with multiplicities d1; : : : ; dm. The

polynomial

.z � �1/
d1 � � � .z � �m/

dm

is called the characteristic polynomial of T.

8.35 Example Suppose T 2 L.C3/ is defined as in Example 8.25. Be-

cause the eigenvalues of T are 6, with multiplicity 2, and 7, with multiplicity 1,

we see that the characteristic polynomial of T is .z � 6/2.z � 7/.

8.36 Degree and zeros of characteristic polynomial

Suppose V is a complex vector space and T 2 L.V /. Then

(a) the characteristic polynomial of T has degree dimV ;

(b) the zeros of the characteristic polynomial of T are the eigenvalues

of T.

Proof Clearly part (a) follows from 8.26 and part (b) follows from the defini-

tion of the characteristic polynomial.

Most texts define the characteristic polynomial using determinants (the

two definitions are equivalent by 10.25). The approach taken here, which

is considerably simpler, leads to the following easy proof of the Cayley–

Hamilton Theorem. In the next chapter, we will see that this result also holds

on real vector spaces (see 9.24).

8.37 Cayley–Hamilton Theorem

Suppose V is a complex vector space and T 2 L.V /. Let q denote the

characteristic polynomial of T. Then q.T / D 0.
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English mathematician Arthur

Cayley (1821–1895) published

three math papers before complet-

ing his undergraduate degree in

1842. Irish mathematician William

Rowan Hamilton (1805–1865) was

made a professor in 1827 when

he was 22 years old and still an

undergraduate!

Proof Let �1; : : : ; �m be the distinct

eigenvalues of the operator T, and let

d1; : : : ; dm be the dimensions of the

corresponding generalized eigenspaces

G.�1; T /; : : : ; G.�m; T /. For each

j 2 f1; : : : ; mg, we know that

.T � �j I /jG.�j ;T / is nilpotent. Thus

we have .T � �j I /
dj jG.�j ;T / D 0 (by

8.18).

Every vector in V is a sum of vectors inG.�1; T /; : : : ; G.�m; T / (by 8.21).

Thus to prove that q.T / D 0, we need only show that q.T /jG.�j ;T / D 0 for

each j .

Thus fix j 2 f1; : : : ; mg. We have

q.T / D .T � �1I /
d1 � � � .T � �mI /

dm :

The operators on the right side of the equation above all commute, so we can

move the factor .T � �j I /
dj to be the last term in the expression on the right.

Because .T � �j I /
dj jG.�j ;T / D 0, we conclude that q.T /jG.�j ;T / D 0, as

desired.

The Minimal Polynomial

In this subsection we introduce another important polynomial associated with

each operator. We begin with the following definition.

8.38 Definition monic polynomial

A monic polynomial is a polynomial whose highest-degree coefficient

equals 1.

8.39 Example The polynomial 2C 9z2 C z7 is a monic polynomial of

degree 7.

8.40 Minimal polynomial

Suppose T 2 L.V /. Then there is a unique monic polynomial p of

smallest degree such that p.T / D 0.
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Proof Let n D dimV. Then the list

I; T; T 2; : : : ; T n2

is not linearly independent in L.V /, because the vector space L.V / has

dimension n2 (see 3.61) and we have a list of length n2 C 1. Let m be the

smallest positive integer such that the list

8.41 I; T; T 2; : : : ; Tm

is linearly dependent. The Linear Dependence Lemma (2.21) implies that one

of the operators in the list above is a linear combination of the previous ones.

Because m was chosen to be the smallest positive integer such that the list

above is linearly dependent, we conclude that Tm is a linear combination of

I; T; T 2; : : : ; Tm�1. Thus there exist scalars a0; a1; a2; : : : ; am�1 2 F such

that

8.42 a0I C a1T C a2T
2 C � � � C am�1T

m�1 C Tm D 0:

Define a monic polynomial p 2 P.F/ by

p.z/ D a0 C a1z C a2z
2 C � � � C am�1z

m�1 C zm:

Then 8.42 implies that p.T / D 0.

To prove the uniqueness part of the result, note that the choice ofm implies

that no monic polynomial q 2 P.F/ with degree smaller than m can satisfy

q.T / D 0. Suppose q 2 P.F/ is a monic polynomial with degree m and

q.T / D 0. Then .p � q/.T / D 0 and deg.p � q/ < m. The choice of m now

implies that q D p, completing the proof.

The last result justifies the following definition.

8.43 Definition minimal polynomial

Suppose T 2 L.V /. Then the minimal polynomial of T is the unique

monic polynomial p of smallest degree such that p.T / D 0.

The proof of the last result shows that the degree of the minimal polynomial

of each operator on V is at most .dimV /2. The Cayley–Hamilton Theorem

(8.37) tells us that if V is a complex vector space, then the minimal polynomial

of each operator on V has degree at most dimV. This remarkable improvement

also holds on real vector spaces, as we will see in the next chapter.



264 CHAPTER 8 Operators on Complex Vector Spaces

Suppose you are given the matrix (with respect to some basis) of an

operator T 2 L.V /. You could program a computer to find the minimal

polynomial of T as follows: Consider the system of linear equations

8.44 a0M.I /C a1M.T /C � � � C am�1M.T /m�1 D �M.T /m

Think of this as a system of

.dimV /2 linear equations in m

variables a0; a1; : : : ; am�1.

for successive values of m D 1; 2; : : :

until this system of equations has a solu-

tion a0; a1; a2; : : : ; am�1. The scalars

a0; a1; a2; : : : ; am�1; 1 will then be the

coefficients of the minimal polynomial of T. All this can be computed using a

familiar and fast (for a computer) process such as Gaussian elimination.

8.45 Example Let T be the operator on C5 whose matrix (with respect

to the standard basis) is
0
BBBB@

0 0 0 0 �3
1 0 0 0 6

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1
CCCCA
:

Find the minimal polynomial of T.

Solution Because of the large number of 0’s in this matrix, Gaussian elim-

ination is not needed here. Simply compute powers of M.T /, and then

you will notice that there is clearly no solution to 8.44 until m D 5. Do

the computations and you will see that the minimal polynomial of T equals

z5 � 6z C 3.

The next result completely characterizes the polynomials that when applied

to an operator give the 0 operator.

8.46 q.T / D 0 implies q is a multiple of the minimal polynomial

Suppose T 2 L.V / and q 2 P.F/. Then q.T / D 0 if and only if q is a

polynomial multiple of the minimal polynomial of T.

Proof Let p denote the minimal polynomial of T.

First we prove the easy direction. Suppose q is a polynomial multiple of p.

Thus there exists a polynomial s 2 P.F/ such that q D ps. We have

q.T / D p.T /s.T / D 0 s.T / D 0;

as desired.
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To prove the other direction, now suppose q.T / D 0. By the Division

Algorithm for Polynomials (4.8), there exist polynomials s; r 2 P.F/ such

that

8.47 q D ps C r

and deg r < degp. We have

0 D q.T / D p.T /s.T /C r.T / D r.T /:

The equation above implies that r D 0 (otherwise, dividing r by its highest-

degree coefficient would produce a monic polynomial that when applied to

T gives 0; this polynomial would have a smaller degree than the minimal

polynomial, which would be a contradiction). Thus 8.47 becomes the equation

q D ps. Hence q is a polynomial multiple of p, as desired.

The next result is stated only for complex vector spaces, because we have

not yet defined the characteristic polynomial when F D R. However, the

result also holds for real vector spaces, as we will see in the next chapter.

8.48 Characteristic polynomial is a multiple of minimal polynomial

Suppose F D C and T 2 L.V /. Then the characteristic polynomial of T

is a polynomial multiple of the minimal polynomial of T.

Proof The desired result follows immediately from the Cayley–Hamilton

Theorem (8.37) and 8.46.

We know (at least when F D C) that the zeros of the characteristic

polynomial of T are the eigenvalues of T (see 8.36). Now we show that the

minimal polynomial has the same zeros (although the multiplicities of these

zeros may differ).

8.49 Eigenvalues are the zeros of the minimal polynomial

Let T 2 L.V /. Then the zeros of the minimal polynomial of T are

precisely the eigenvalues of T.

Proof Let

p.z/ D a0 C a1z C a2z
2 C � � � C am�1z

m�1 C zm

be the minimal polynomial of T.
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First suppose � 2 F is a zero of p. Then p can be written in the form

p.z/ D .z � �/q.z/;

where q is a monic polynomial with coefficients in F (see 4.11). Because

p.T / D 0, we have

0 D .T � �I/.q.T /v/
for all v 2 V. Because the degree of q is less than the degree of the minimal

polynomial p, there exists at least one vector v 2 V such that q.T /v ¤ 0.

The equation above thus implies that � is an eigenvalue of T, as desired.

To prove the other direction, now suppose � 2 F is an eigenvalue of T.

Thus there exists v 2 V with v ¤ 0 such that T v D �v. Repeated applications

of T to both sides of this equation show that T j v D �j v for every nonnegative

integer j . Thus

0 D p.T /v D .a0I C a1T C a2T
2 C � � � C am�1T

m�1 C Tm/v

D .a0 C a1�C a2�
2 C � � � C am�1�

m�1 C �m/v

D p.�/v:

Because v ¤ 0, the equation above implies that p.�/ D 0, as desired.

The next three examples show how our results can be useful in finding

minimal polynomials and in understanding why eigenvalues of some operators

cannot be exactly computed.

8.50 Example Find the minimal polynomial of the operator T 2 L.C3/

in Example 8.30.

Solution In Example 8.30 we noted that the eigenvalues of T are 6 and 7.

Thus by 8.49, the minimal polynomial of T is a polynomial multiple of

.z � 6/.z � 7/.
In Example 8.35, we saw that the characteristic polynomial of T is

.z � 6/2.z � 7/. Thus by 8.48 and the paragraph above, the minimal polyno-

mial of T is either .z � 6/.z � 7/ or .z � 6/2.z � 7/. A simple computation

shows that

.T � 6I /.T � 7I / ¤ 0:

Thus the minimal polynomial of T is .z � 6/2.z � 7/.
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8.51 Example Find the minimal polynomial of the operator T 2 L.C3/

defined by T .z1; z2; z3/ D .6z1; 6z2; 7z3/.

Solution It is easy to see that for this operator T, the eigenvalues of T are 6

and 7, and the characteristic polynomial of T is .z � 6/2.z � 7/.
Thus as in the previous example, the minimal polynomial of T is ei-

ther .z � 6/.z � 7/ or .z � 6/2.z � 7/. A simple computation shows that

.T � 6I /.T � 7I / D 0. Thus the minimal polynomial of T is .z � 6/.z � 7/.

8.52 Example What are the eigenvalues of the operator in Example 8.45?

Solution From 8.49 and the solution to Example 8.45, we see that the

eigenvalues of T equal the solutions to the equation

z5 � 6z C 3 D 0:

Unfortunately, no solution to this equation can be computed using rational

numbers, roots of rational numbers, and the usual rules of arithmetic (a proof

of this would take us considerably beyond linear algebra). Thus we cannot find

an exact expression for any eigenvalue of T in any familiar form, although

numeric techniques can give good approximations for the eigenvalues of

T. The numeric techniques, which we will not discuss here, show that the

eigenvalues for this particular operator are approximately

�1:67; 0:51; 1:40; �0:12C 1:59i; �0:12 � 1:59i:

The nonreal eigenvalues occur as a pair, with each the complex conjugate of

the other, as expected for a polynomial with real coefficients (see 4.15).

EXERCISES 8.C

1 Suppose T 2 L.C4/ is such that the eigenvalues of T are 3, 5, 8. Prove

that .T � 3I /2.T � 5I /2.T � 8I /2 D 0.

2 Suppose V is a complex vector space. Suppose T 2 L.V / is such that 5

and 6 are eigenvalues of T and that T has no other eigenvalues. Prove

that .T � 5I /n�1.T � 6I /n�1 D 0, where n D dimV.

3 Give an example of an operator on C4 whose characteristic polynomial

equals .z � 7/2.z � 8/2.
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4 Give an example of an operator on C4 whose characteristic polyno-

mial equals .z � 1/.z � 5/3 and whose minimal polynomial equals

.z � 1/.z � 5/2.

5 Give an example of an operator on C4 whose characteristic and minimal

polynomials both equal z.z � 1/2.z � 3/.

6 Give an example of an operator on C4 whose characteristic polyno-

mial equals z.z � 1/2.z � 3/ and whose minimal polynomial equals

z.z � 1/.z � 3/.

7 Suppose V is a complex vector space. Suppose T 2 L.V / is such that

P 2 D P . Prove that the characteristic polynomial of P is zm.z � 1/n,

where m D dim nullP and n D dim rangeP .

8 Suppose T 2 L.V /. Prove that T is invertible if and only if the constant

term in the minimal polynomial of T is nonzero.

9 Suppose T 2 L.V / has minimal polynomial 4C5z�6z2�7z3C2z4Cz5.

Find the minimal polynomial of T �1.

10 Suppose V is a complex vector space and T 2 L.V / is invertible.

Let p denote the characteristic polynomial of T and let q denote the

characteristic polynomial of T �1. Prove that

q.z/ D 1

p.0/
zdim V p

�1
z

�

for all nonzero z 2 C.

11 Suppose T 2 L.V / is invertible. Prove that there exists a polynomial

p 2 P.F/ such that T �1 D p.T /.

12 Suppose V is a complex vector space and T 2 L.V /. Prove that V

has a basis consisting of eigenvectors of T if and only if the minimal

polynomial of T has no repeated zeros.

[For complex vector spaces, the exercise above adds another equivalence

to the list given by 5.41.]

13 Suppose V is an inner product space and T 2 L.V / is normal. Prove

that the minimal polynomial of T has no repeated zeros.

14 Suppose V is a complex inner product space and S 2 L.V / is an

isometry. Prove that the constant term in the characteristic polynomial

of S has absolute value 1.
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15 Suppose T 2 L.V / and v 2 V.

(a) Prove that there exists a unique monic polynomial p of smallest

degree such that p.T /v D 0.

(b) Prove that p divides the minimal polynomial of T.

16 Suppose V is an inner product space and T 2 L.V /. Suppose

a0 C a1z C a2z
2 C � � � C am�1z

m�1 C zm

is the minimal polynomial of T. Prove that

a0 C a1z C a2z
2 C � � � C am�1z

m�1 C zm

is the minimal polynomial of T �.

17 Suppose F D C and T 2 L.V /. Suppose the minimal polynomial of T

has degree dimV. Prove that the characteristic polynomial of T equals

the minimal polynomial of T.

18 Suppose a0; : : : ; an�1 2 C. Find the minimal and characteristic polyno-

mials of the operator on Cn whose matrix (with respect to the standard

basis) is 0
BBBBBBBB@

0 �a0

1 0 �a1

1
: : : �a2

: : :
:::

0 �an�2

1 �an�1

1
CCCCCCCCA

:

[The exercise above shows that every monic polynomial is the character-

istic polynomial of some operator.]

19 Suppose V is a complex vector space and T 2 L.V /. Suppose that

with respect to some basis of V the matrix of T is upper triangular, with

�1; : : : ; �n on the diagonal of this matrix. Prove that the characteristic

polynomial of T is .z � �1/ � � � .z � �n/.

20 Suppose V is a complex vector space and V1; : : : ; Vm are nonzero sub-

spaces of V such that V D V1 ˚ � � � ˚ Vm. Suppose T 2 L.V / and

each Vj is invariant under T. For each j , let pj denote the characteristic

polynomial of T jVj
. Prove that the characteristic polynomial of T equals

p1 � � �pm.
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8.D Jordan Form

We know that if V is a complex vector space, then for every T 2 L.V / there

is a basis of V with respect to which T has a nice upper-triangular matrix (see

8.29). In this section we will see that we can do even better—there is a basis

of V with respect to which the matrix of T contains 0’s everywhere except

possibly on the diagonal and the line directly above the diagonal.

We begin by looking at two examples of nilpotent operators.

8.53 Example Let N 2 L.F4/ be the nilpotent operator defined by

N.z1; z2; z3; z4/ D .0; z1; z2; z3/:

If v D .1; 0; 0; 0/, then N 3v; N 2v; N v; v is a basis of F4. The matrix of N

with respect to this basis is 0
BB@

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

1
CCA

The next example of a nilpotent operator has more complicated behavior

than the example above.

8.54 Example Let N 2 L.F6/ be the nilpotent operator defined by

N.z1; z2; z3; z4; z5; z6/ D .0; z1; z2; 0; z4; 0/:

Unlike the nice behavior of the nilpotent operator of the previous exam-

ple, for this nilpotent operator there does not exist a vector v 2 F6 such

that N 5v; N 4v; N 3v; N 2v; N v; v is a basis of F6. However, if we take

v1 D .1; 0; 0; 0; 0; 0/, v2 D .0; 0; 0; 1; 0; 0/, and v3 D .0; 0; 0; 0; 0; 1/, then

N 2v1; N v1; v1; N v2; v2; v3 is a basis of F6. The matrix of N with respect to

this basis is 0
BBBBBB@

0
@
0 1 0

0 0 1

0 0 0

1
A

0 0

0 0

0 0

0

0

0

0 0 0

0 0 0

�
0 1

0 0

�
0

0

0 0 0 0 0
�
0
�

1
CCCCCCA
:

Here the inner matrices are blocked off to show that we can think of the 6-by-6

matrix above as a block diagonal matrix consisting of a 3-by-3 block with 1’s

on the line above the diagonal and 0’s elsewhere, a 2-by-2 block with 1 above

the diagonal and 0’s elsewhere, and a 1-by-1 block containing 0.
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Our next result shows that every nilpotent operator N 2 L.V / behaves

similarly to the previous example. Specifically, there is a finite collection of

vectors v1; : : : ; vn 2 V such that there is a basis of V consisting of the vectors

of the form N kvj , as j varies from 1 to n and k varies (in reverse order) from

0 to the largest nonnegative integer mj such that Nmj vj ¤ 0. For the matrix

interpretation of the next result, see the first part of the proof of 8.60.

8.55 Basis corresponding to a nilpotent operator

Suppose N 2 L.V / is nilpotent. Then there exist vectors v1; : : : ; vn 2 V
and nonnegative integers m1; : : : ; mn such that

(a) Nm1v1; : : : ; N v1; v1; : : : ; N
mnvn; : : : ; N vn; vn is a basis of V ;

(b) Nm1C1v1 D � � � D NmnC1vn D 0.

Proof We will prove this result by induction on dimV. To get started, note

that the desired result obviously holds if dimV D 1 (in that case, the only

nilpotent operator is the 0 operator, so take v1 to be any nonzero vector and

m1 D 0). Now assume that dimV > 1 and that the desired result holds on all

vector spaces of smaller dimension.

Because N is nilpotent, N is not injective. Thus N is not surjective (by

3.69) and hence rangeN is a subspace of V that has a smaller dimension

than V. Thus we can apply our induction hypothesis to the restriction operator

N jrange N 2 L.rangeN/. [We can ignore the trivial case rangeN D f0g,

because in that case N is the 0 operator and we can choose v1; : : : ; vn to be

any basis of V and m1 D � � � D mn D 0 to get the desired result.]

By our induction hypothesis applied to N jrange N , there exist vectors

v1; : : : ; vn 2 rangeN and nonnegative integers m1; : : : ; mn such that

8.56 Nm1v1; : : : ; N v1; v1; : : : ; N
mnvn; : : : ; N vn; vn

is a basis of rangeN and

Nm1C1v1 D � � � D NmnC1vn D 0:

Because each vj is in rangeN, for each j there exists uj 2 V such

that vj D Nuj . Thus N kC1uj D N kvj for each j and each nonnegative

integer k. We now claim that

8.57 Nm1C1u1; : : : ; Nu1; u1; : : : ; N
mnC1un; : : : ; Nun; un



is a linearly independent list of vectors in V. To verify this claim, suppose

that some linear combination of 8.57 equals 0. Applying N to that linear

combination, we get a linear combination of 8.56 equal to 0. However, the

list 8.56 is linearly independent, and hence all the coefficients in our original

linear combination of 8.57 equal 0 except possibly the coefficients of the

vectors

Nm1C1u1; : : : ; N
mnC1un;

which equal the vectors

Nm1v1; : : : ; N
mnvn:

Again using the linear independence of the list 8.56, we conclude that those

coefficients also equal 0, completing our proof that the list 8.57 is linearly

independent.

Now extend 8.57 to a basis

8.58 Nm1C1u1; : : : ; Nu1; u1; : : : ; N
mnC1un; : : : ; Nun; un;w1; : : : ;wp

of V (which is possible by 2.33). Each Nwj is in rangeN and hence is in the

span of 8.56. Each vector in the list 8.56 equals N applied to some vector in

the list 8.57. Thus there exists xj in the span of 8.57 such that Nwj D Nxj .

Now let

unCj D wj � xj :

Then NunCj D 0. Furthermore,

Nm1C1u1; : : : ; Nu1; u1; : : : ; N
mnC1un; : : : ; Nun; un; unC1; : : : ; unCp

spans V because its span contains each xj and each unCj and hence each wj

(and because 8.58 spans V ).

Thus the spanning list above is a basis of V because it has the same length

as the basis 8.58 (where we have used 2.42). This basis has the required form,

completing the proof.

French mathematician Camille Jor-

dan (1838–1922) first published a

proof of 8.60 in 1870.

In the next definition, the diagonal of

each Aj is filled with some eigenvalue

�j of T, the line directly above the di-

agonal of Aj is filled with 1’s, and all

other entries in Aj are 0 (to understand why each �j is an eigenvalue of T,

see 5.32). The �j ’s need not be distinct. Also, Aj may be a 1-by-1 matrix

.�j / containing just an eigenvalue of T.

� 100e CHAPTER 8 Operators on Complex Vector Spaces
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8.59 Definition Jordan basis

Suppose T 2 L.V /. A basis of V is called a Jordan basis for T if with

respect to this basis T has a block diagonal matrix
0
B@
A1 0

: : :

0 Ap

1
CA ;

where each Aj is an upper-triangular matrix of the form

Aj D

0
BBBB@

�j 1 0
: : :

: : :

: : : 1

0 �j

1
CCCCA
:

8.60 Jordan Form

Suppose V is a complex vector space. If T 2 L.V /, then there is a basis

of V that is a Jordan basis for T.

Proof First consider a nilpotent operator N 2 L.V / and the vectors

v1; : : : ; vn 2 V given by 8.55. For each j , note that N sends the first vector

in the list Nmj vj ; : : : ; N vj ; vj to 0 and that N sends each vector in this list

other than the first vector to the previous vector. In other words, 8.55 gives a

basis of V with respect to which N has a block diagonal matrix, where each

matrix on the diagonal has the form
0
BBBB@

0 1 0
: : :

: : :

: : : 1

0 0

1
CCCCA
:

Thus the desired result holds for nilpotent operators.

Now suppose T 2 L.V /. Let �1; : : : ; �m be the distinct eigenvalues of T.

We have the generalized eigenspace decomposition

V D G.�1; T /˚ � � � ˚G.�m; T /;

where each .T ��j I /jG.�j ;T / is nilpotent (see 8.21). Thus some basis of each

G.�j ; T / is a Jordan basis for .T � �j I /jG.�m;T / (see previous paragraph).

Put these bases together to get a basis of V that is a Jordan basis for T.
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EXERCISES 8.D

1 Find the characteristic polynomial and the minimal polynomial of the

operator N in Example 8.53.

2 Find the characteristic polynomial and the minimal polynomial of the

operator N in Example 8.54.

3 Suppose N 2 L.V / is nilpotent. Prove that the minimal polynomial of

N is zmC1, where m is the length of the longest consecutive string of

1’s that appears on the line directly above the diagonal in the matrix of

N with respect to any Jordan basis for N.

4 Suppose T 2 L.V / and v1; : : : ; vn is a basis of V that is a Jordan basis

for T. Describe the matrix of T with respect to the basis vn; : : : ; v1

obtained by reversing the order of the v’s.

5 Suppose T 2 L.V / and v1; : : : ; vn is a basis of V that is a Jordan basis

for T. Describe the matrix of T 2 with respect to this basis.

6 Suppose N 2 L.V / is nilpotent and v1; : : : ; vn and m1; : : : ; mn are as

in 8.55. Prove that Nm1v1; : : : ; N
mnvn is a basis of nullN.

[The exercise above implies that n, which equals dim nullN, depends

only on N and not on the specific Jordan basis chosen for N.]

7 Suppose p; q 2 P.C/ are monic polynomials with the same zeros and q

is a polynomial multiple of p. Prove that there exists T 2 L.C deg q/ such

that the characteristic polynomial of T is q and the minimal polynomial

of T is p.

8 Suppose V is a complex vector space and T 2 L.V /. Prove that there

does not exist a direct sum decomposition of V into two proper subspaces

invariant under T if and only if the minimal polynomial of T is of the

form .z � �/dim V for some � 2 C.
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In the last chapter we learned about the structure of an operator on a finite-

dimensional complex vector space. In this chapter, we will use our results
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Our assumptions for this chapter are as follows:

9.1 Notation F, V
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� V denotes a finite-dimensional nonzero vector space over F.

LEARNING OBJECTIVES FOR THIS CHAPTER

complexification of a real vector space

complexification of an operator on a real vector space

operators on finite-dimensional real vector spaces have an

eigenvalue or a 2-dimensional invariant subspace

characteristic polynomial and the Cayley–Hamilton Theorem

description of normal operators on a real inner product space

description of isometries on a real inner product space

© Springer International Publishing 2015

S. Axler, Linear Algebra Done Right, Undergraduate Texts in Mathematics,

DOI 10.1007/978-3-319-11080-6__9

275



276 CHAPTER 9 Operators on Real Vector Spaces

9.A Complexification

Complexification of a Vector Space

As we will soon see, a real vector space V can be embedded, in a natural way,

in a complex vector space called the complexification of V. Each operator

on V can be extended to an operator on the complexification of V. Our

results about operators on complex vector spaces can then be translated to

information about operators on real vector spaces.

We begin by defining the complexification of a real vector space.

9.2 Definition complexification of V, VC

Suppose V is a real vector space.

� The complexification of V, denoted VC , equals V � V. An element

of VC is an ordered pair .u; v/, where u; v 2 V, but we will write

this as uC iv.

� Addition on VC is defined by

.u1 C iv1/C .u2 C iv2/ D .u1 C u2/C i.v1 C v2/

for u1; v1; u2; v2 2 V.

� Complex scalar multiplication on VC is defined by

.aC bi/.uC iv/ D .au � bv/C i.av C bu/

for a; b 2 R and u; v 2 V.

Motivation for the definition above of complex scalar multiplication comes

from usual algebraic properties and the identity i2 D �1. If you remember

the motivation, then you do not need to memorize the definition above.

We think of V as a subset of VC by identifying u 2 V with u C i0.

The construction of VC from V can then be thought of as generalizing the

construction of Cn from Rn.

9.3 VC is a complex vector space.

Suppose V is a real vector space. Then with the definitions of addition

and scalar multiplication as above, VC is a complex vector space.

The proof of the result above is left as an exercise for the reader. Note that

the additive identity of VC is 0C i0, which we write as just 0.
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Probably everything that you think should work concerning complexifica-

tion does work, usually with a straightforward verification, as illustrated by

the next result.

9.4 Basis of V is basis of VC

Suppose V is a real vector space.

(a) If v1; : : : ; vn is a basis of V (as a real vector space), then v1; : : : ; vn

is a basis of VC (as a complex vector space).

(b) The dimension of VC (as a complex vector space) equals the dimen-

sion of V (as a real vector space).

Proof To prove (a), suppose v1; : : : ; vn is a basis of the real vector space V.

Then span.v1; : : : ; vn/ in the complex vector space VC contains all the vectors

v1; : : : ; vn; iv1; : : : ; ivn. Thus v1; : : : ; vn spans the complex vector space VC .

To show that v1; : : : ; vn is linearly independent in the complex vector

space VC , suppose �1; : : : ; �n 2 C and

�1v1 C � � � C �nvn D 0:

Then the equation above and our definitions imply that

.Re�1/v1 C � � � C .Re�n/vn D 0 and .Im�1/v1 C � � � C .Im�n/vn D 0:

Because v1; : : : ; vn is linearly independent in V, the equations above imply

Re�1 D � � � D Re�n D 0 and Im�1 D � � � D Imn D 0. Thus we have

�1 D � � � D �n D 0. Hence v1; : : : ; vn is linearly independent in VC ,

completing the proof of (a).

Clearly (b) follows immediately from (a).

Complexification of an Operator

Now we can define the complexification of an operator.

9.5 Definition complexification of T, TC

Suppose V is a real vector space and T 2 L.V /. The complexification of

T, denoted TC , is the operator TC 2 L.VC/ defined by

TC.uC iv/ D T uC iT v

for u; v 2 V.
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You should verify that if V is a real vector space and T 2 L.V /, then TC

is indeed in L.VC/. The key point here is that our definition of complex scalar

multiplication can be used to show that TC

�
�.uC iv/

�
D �TC.uC iv/ for

all u; v 2 V and all complex numbers �.

The next example gives a good way to think about the complexification of

a typical operator.

9.6 Example Suppose A is an n-by-n matrix of real numbers. Define

T 2 L.Rn/ by T x D Ax, where elements of Rn are thought of as n-by-1

column vectors. Identifying the complexification of Rn with Cn, we then

have TCz D Az for each z 2 Cn, where again elements of Cn are thought of

as n-by-1 column vectors.

In other words, if T is the operator of matrix multiplication by A on Rn,

then the complexification TC is also matrix multiplication byA but now acting

on the larger domain Cn.

The next result makes sense because 9.4 tells us that a basis of a real vector

space is also a basis of its complexification. The proof of the next result

follows immediately from the definitions.

9.7 Matrix of TC equals matrix of T

Suppose V is a real vector space with basis v1; : : : ; vn and T 2 L.V /.

Then M.T / D M.TC/, where both matrices are with respect to the basis

v1; : : : ; vn.

The result above and Example 9.6 provide complete insight into complexi-

fication, because once a basis is chosen, every operator essentially looks like

Example 9.6. Complexification of an operator could have been defined using

matrices, but the approach taken here is more natural because it does not

depend on the choice of a basis.

We know that every operator on a nonzero finite-dimensional complex

vector space has an eigenvalue (see 5.21) and thus has a 1-dimensional in-

variant subspace. We have seen an example [5.8(a)] of an operator on a

nonzero finite-dimensional real vector space with no eigenvalues and thus no

1-dimensional invariant subspaces. However, we now show that an invariant

subspace of dimension 1 or 2 always exists. Notice how complexification

leads to a simple proof of this result.
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9.8 Every operator has an invariant subspace of dimension 1 or 2

Every operator on a nonzero finite-dimensional vector space has an

invariant subspace of dimension 1 or 2.

Proof Every operator on a nonzero finite-dimensional complex vector space

has an eigenvalue (5.21) and thus has a 1-dimensional invariant subspace.

Hence assume V is a real vector space and T 2 L.V /. The complexifica-

tion TC has an eigenvalue aC bi (by 5.21), where a; b 2 R. Thus there exist

u; v 2 V, not both 0, such that TC.uC iv/ D .a C bi/.uC iv/. Using the

definition of TC , the last equation can be rewritten as

T uC iT v D .au � bv/C .av C bu/i:

Thus

T u D au � bv and T v D av C bu:

Let U equal the span in V of the list u; v. Then U is a subspace of V

with dimension 1 or 2. The equations above show that U is invariant under T,

completing the proof.

The Minimal Polynomial of the Complexification

Suppose V is a real vector space and T 2 L.V /. Repeated application of the

definition of TC shows that

9.9 .TC/
n.uC iv/ D T nuC iT nv

for every positive integer n and all u; v 2 V.

Notice that the next result implies that the minimal polynomial of TC has

real coefficients.

9.10 Minimal polynomial of TC equals minimal polynomial of T

Suppose V is a real vector space and T 2 L.V /. Then the minimal

polynomial of TC equals the minimal polynomial of T.

Proof Let p 2 P.R/ denote the minimal polynomial of T. From 9.9 it is

easy to see that p.TC/ D
�
p.T /

�
C

, and thus p.TC/ D 0.

Suppose q 2 P.C/ is a monic polynomial such that q.TC/ D 0. Then�
q.TC/

�
.u/ D 0 for every u 2 V. Letting r denote the polynomial whose j th

coefficient is the real part of the j th coefficient of q, we see that r is a monic

polynomial and r.T / D 0. Thus deg q D deg r � degp.

The conclusions of the two previous paragraphs imply that p is the minimal

polynomial of TC , as desired.
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Eigenvalues of the Complexification

Now we turn to questions about the eigenvalues of the complexification of an

operator. Again, everything that we expect to work indeed works easily.

We begin with a result showing that the real eigenvalues of TC are precisely

the eigenvalues of T. We give two different proofs of this result. The first

proof is more elementary, but the second proof is shorter and gives some

useful insight.

9.11 Real eigenvalues of TC

Suppose V is a real vector space, T 2 L.V /, and � 2 R. Then � is an

eigenvalue of TC if and only if � is an eigenvalue of T.

Proof 1 First suppose � is an eigenvalue of T. Then there exists v 2 V

with v ¤ 0 such that T v D �v. Thus TCv D �v, which shows that � is an

eigenvalue of TC , completing one direction of the proof.

To prove the other direction, suppose now that � is an eigenvalue of TC .

Then there exist u; v 2 V with uC iv ¤ 0 such that

TC.uC iv/ D �.uC iv/:

The equation above implies that T u D �u and T v D �v. Because u ¤ 0 or

v ¤ 0, this implies that � is an eigenvalue of T, completing the proof.

Proof 2 The (real) eigenvalues of T are the (real) zeros of the minimal

polynomial of T (by 8.49). The real eigenvalues of TC are the real zeros of the

minimal polynomial of TC (again by 8.49). These two minimal polynomials

are the same (by 9.10). Thus the eigenvalues of T are precisely the real

eigenvalues of TC , as desired.

Our next result shows that TC behaves symmetrically with respect to an

eigenvalue � and its complex conjugate N�.

9.12 TC � �I and TC � N�I
Suppose V is a real vector space, T 2 L.V /, � 2 C, j is a nonnegative

integer, and u; v 2 V. Then

.TC � �I/j .uC iv/ D 0 if and only if .TC � N�I/j .u � iv/ D 0:
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Proof We will prove this result by induction on j . To get started, note that

if j D 0 then (because an operator raised to the power 0 equals the identity

operator) the result claims that uC iv D 0 if and only if u� iv D 0, which is

clearly true.

Thus assume by induction that j � 1 and the desired result holds for j �1.

Suppose .TC � �I/j .uC iv/ D 0. Then

9.13 .TC � �I/j �1
�
.TC � �I/.uC iv/

�
D 0:

Writing � D aC bi , where a; b 2 R, we have

9.14 .TC � �I/.uC iv/ D .T u � auC bv/C i.T v � av � bu/

and

9.15 .TC � N�I/.u � iv/ D .T u � auC bv/ � i.T v � av � bu/:

Our induction hypothesis, 9.13, and 9.14 imply that

.TC � N�I/j �1
�
.T u � auC bv/ � i.T v � av � bu/

�
D 0:

Now the equation above and 9.15 imply that .TC � N�I/j .u � iv/ D 0,

completing the proof in one direction.

The other direction is proved by replacing � with N�, replacing v with �v,

and then using the first direction.

An important consequence of the result above is the next result, which

states that if a number is an eigenvalue of TC , then its complex conjugate is

also an eigenvalue of TC .

9.16 Nonreal eigenvalues of TC come in pairs

Suppose V is a real vector space, T 2 L.V /, and � 2 C. Then � is an

eigenvalue of TC if and only if N� is an eigenvalue of TC .

Proof Take j D 1 in 9.12.

By definition, the eigenvalues of an operator on a real vector space are

real numbers. Thus when mathematicians sometimes informally mention the

complex eigenvalues of an operator on a real vector space, what they have in

mind is the eigenvalues of the complexification of the operator.

Recall that the multiplicity of an eigenvalue is defined to be the dimension

of the generalized eigenspace corresponding to that eigenvalue (see 8.24). The

next result states that the multiplicity of an eigenvalue of a complexification

equals the multiplicity of its complex conjugate.
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9.17 Multiplicity of � equals multiplicity of N�
Suppose V is a real vector space, T 2 L.V /, and � 2 C is an eigenvalue

of TC . Then the multiplicity of � as an eigenvalue of TC equals the

multiplicity of N� as an eigenvalue of TC .

Proof Suppose u1 C iv1; : : : ; um C ivm is a basis of the generalized

eigenspace G.�; TC/, where u1; : : : ; um; v1; : : : ; vm 2 V. Then using 9.12,

routine arguments show that u1 � iv1; : : : ; um � ivm is a basis of the gen-

eralized eigenspace G. N�; TC/. Thus both � and N� have multiplicity m as

eigenvalues of TC .

9.18 Example Suppose T 2 L.R3/ is defined by

T .x1; x2; x3/ D .2x1; x2 � x3; x2 C x3/:

The matrix of T with respect to the standard basis of R3 is

0
@
2 0 0

0 1 �1
0 1 1

1
A :

As you can verify, 2 is an eigenvalue of T with multiplicity 1 and T has no

other eigenvalues.

If we identify the complexification of R3 with C3, then the matrix of TC

with respect to the standard basis of C3 is the matrix above. As you can

verify, the eigenvalues of TC are 2, 1C i , and 1 � i , each with multiplicity

1. Thus the nonreal eigenvalues of TC come as a pair, with each the complex

conjugate of the other and with the same multiplicity, as expected by 9.17.

We have seen an example [5.8(a)] of an operator on R2 with no eigenvalues.

The next result shows that no such example exists on R3.

9.19 Operator on odd-dimensional vector space has eigenvalue

Every operator on an odd-dimensional real vector space has an eigenvalue.

Proof Suppose V is a real vector space with odd dimension and T 2 L.V /.

Because the nonreal eigenvalues of TC come in pairs with equal multiplicity

(by 9.17), the sum of the multiplicities of all the nonreal eigenvalues of TC is

an even number.

Because the sum of the multiplicities of all the eigenvalues of TC equals

the (complex) dimension of VC (by Theorem 8.26), the conclusion of the

paragraph above implies that TC has a real eigenvalue. Every real eigenvalue

of TC is also an eigenvalue of T (by 9.11), giving the desired result.
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Characteristic Polynomial of the Complexification

In the previous chapter we defined the characteristic polynomial of an operator

on a finite-dimensional complex vector space (see 8.34). The next result is

a key step toward defining the characteristic polynomial for operators on

finite-dimensional real vector spaces.

9.20 Characteristic polynomial of TC

Suppose V is a real vector space and T 2 L.V /. Then the coefficients of

the characteristic polynomial of TC are all real.

Proof Suppose � is a nonreal eigenvalue of TC with multiplicitym. Then N� is

also an eigenvalue of TC with multiplicitym (by 9.17). Thus the characteristic

polynomial of TC includes factors of .z � �/m and .z � N�/m. Multiplying

together these two factors, we have

.z � �/m.z � N�/m D
�
z2 � 2.Re�/z C j�j2

�m
:

The polynomial above on the right has real coefficients.

The characteristic polynomial of TC is the product of terms of the form

above and terms of the form .z � t /d , where t is a real eigenvalue of TC with

multiplicity d . Thus the coefficients of the characteristic polynomial of TC

are all real.

Now we can define the characteristic polynomial of an operator on a

finite-dimensional real vector space to be the characteristic polynomial of its

complexification.

9.21 Definition Characteristic polynomial

Suppose V is a real vector space and T 2 L.V /. Then the characteristic

polynomial of T is defined to be the characteristic polynomial of TC .

9.22 Example Suppose T 2 L.R3/ is defined by

T .x1; x2; x3/ D .2x1; x2 � x3; x2 C x3/:

As we noted in 9.18, the eigenvalues of TC are 2, 1C i , and 1 � i , each with

multiplicity 1. Thus the characteristic polynomial of the complexification TC

is .z � 2/
�
z � .1C i/

��
z � .1� i/

�
, which equals z3 � 4z2 C 6z � 4. Hence

the characteristic polynomial of T is also z3 � 4z2 C 6z � 4.
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In the next result, the eigenvalues of T are all real (because T is an operator

on a real vector space).

9.23 Degree and zeros of characteristic polynomial

Suppose V is a real vector space and T 2 L.V /. Then

(a) the coefficients of the characteristic polynomial of T are all real;

(b) the characteristic polynomial of T has degree dimV ;

(c) the eigenvalues of T are precisely the real zeros of the characteristic

polynomial of T.

Proof Part (a) holds because of 9.20.

Part (b) follows from 8.36(a).

Part (c) holds because the real zeros of the characteristic polynomial of T

are the real eigenvalues of TC [by 8.36(a)], which are the eigenvalues of T

(by 9.11).

In the previous chapter, we proved the Cayley–Hamilton Theorem (8.37)

for complex vector spaces. Now we can also prove it for real vector spaces.

9.24 Cayley–Hamilton Theorem

Suppose T 2 L.V /. Let q denote the characteristic polynomial of T.

Then q.T / D 0.

Proof We have already proved this result when V is a complex vector space.

Thus assume that V is a real vector space.

The complex case of the Cayley–Hamilton Theorem (8.37) implies that

q.TC/ D 0. Thus we also have q.T / D 0, as desired.

9.25 Example Suppose T 2 L.R3/ is defined by

T .x1; x2; x3/ D .2x1; x2 � x3; x2 C x3/:

As we saw in 9.22, the characteristic polynomial of T is z3 � 4z2 C 6z � 4.

Thus the Cayley–Hamilton Theorem implies that T 3 � 4T 2 C 6T � 4I D 0,

which can also be verified by direct calculation.

We can now prove another result that we previously knew only in the

complex case.
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9.26 Characteristic polynomial is a multiple of minimal polynomial

Suppose T 2 L.V /. Then

(a) the degree of the minimal polynomial of T is at most dimV ;

(b) the characteristic polynomial of T is a polynomial multiple of the

minimal polynomial of T.

Proof Part (a) follows immediately from the Cayley–Hamilton Theorem.

Part (b) follows from the Cayley–Hamilton Theorem and 8.46.

EXERCISES 9.A

1 Prove 9.3.

2 Verify that if V is a real vector space and T 2 L.V /, then TC 2 L.VC/.

3 Suppose V is a real vector space and v1; : : : ; vm 2 V. Prove that

v1; : : : ; vm is linearly independent in VC if and only if v1; : : : ; vm is

linearly independent in V.

4 Suppose V is a real vector space and v1; : : : ; vm 2 V. Prove that

v1; : : : ; vm spans VC if and only if v1; : : : ; vm spans V.

5 Suppose that V is a real vector space and S; T 2 L.V /. Show that

.S C T /C D SC C TC and that .�T /C D �TC for every � 2 R.

6 Suppose V is a real vector space and T 2 L.V /. Prove that TC is

invertible if and only if T is invertible.

7 Suppose V is a real vector space and N 2 L.V /. Prove that NC is

nilpotent if and only if N is nilpotent.

8 Suppose T 2 L.R3/ and 5; 7 are eigenvalues of T. Prove that TC has no

nonreal eigenvalues.

9 Prove there does not exist an operator T 2 L.R7/ such that T 2 C T C I

is nilpotent.

10 Give an example of an operator T 2 L.C7/ such that T 2 C T C I

is nilpotent.
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11 Suppose V is a real vector space and T 2 L.V /. Suppose there exist

b; c 2 R such that T 2 C bT C cI D 0. Prove that T has an eigenvalue

if and only if b2 � 4c.

12 Suppose V is a real vector space and T 2 L.V /. Suppose there exist

b; c 2 R such that b2 < 4c and T 2 C bT C cI is nilpotent. Prove that

T has no eigenvalues.

13 Suppose V is a real vector space, T 2 L.V /, and b; c 2 R are such that

b2 < 4c. Prove that null.T 2 C bT C cI /j has even dimension for every

positive integer j .

14 Suppose V is a real vector space with dimV D 8. Suppose T 2 L.V /

is such that T 2 C T C I is nilpotent. Prove that .T 2 C T C I /4 D 0.

15 Suppose V is a real vector space and T 2 L.V / has no eigenvalues.

Prove that every subspace of V invariant under T has even dimension.

16 Suppose V is a real vector space. Prove that there exists T 2 L.V / such

that T 2 D �I if and only if V has even dimension.

17 Suppose V is a real vector space and T 2 L.V / satisfies T 2 D �I.
Define complex scalar multiplication on V as follows: if a; b 2 R, then

.aC bi/v D av C bT v:

(a) Show that the complex scalar multiplication on V defined above

and the addition on V makes V into a complex vector space.

(b) Show that the dimension of V as a complex vector space is half

the dimension of V as a real vector space.

18 Suppose V is a real vector space and T 2 L.V /. Prove that the following

are equivalent:

(a) All the eigenvalues of TC are real.

(b) There exists a basis of V with respect to which T has an upper-

triangular matrix.

(c) There exists a basis of V consisting of generalized eigenvectors

of T.

19 Suppose V is a real vector space with dimV D n and T 2 L.V / is

such that nullT n�2 ¤ nullT n�1. Prove that T has at most two distinct

eigenvalues and that TC has no nonreal eigenvalues.
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9.B Operators on Real Inner Product Spaces

We now switch our focus to the context of inner product spaces. We will give

a complete description of normal operators on real inner product spaces; a

key step in the proof of this result (9.34) requires the result from the previous

section that an operator on a finite-dimensional real vector space has an

invariant subspace of dimension 1 or 2 (9.8).

After describing the normal operators on real inner product spaces, we will

use that result to give a complete description of isometries on such spaces.

Normal Operators on Real Inner Product Spaces

The Complex Spectral Theorem (7.24) gives a complete description of normal

operators on complex inner product spaces. In this subsection we will give a

complete description of normal operators on real inner product spaces.

We begin with a description of the operators on 2-dimensional real inner

product spaces that are normal but not self-adjoint.

9.27 Normal but not self-adjoint operators

Suppose V is a 2-dimensional real inner product space and T 2 L.V /.

Then the following are equivalent:

(a) T is normal but not self-adjoint.

(b) The matrix of T with respect to every orthonormal basis of V has

the form �
a �b
b a

�
;

with b ¤ 0.

(c) The matrix of T with respect to some orthonormal basis of V has

the form �
a �b
b a

�
;

with b > 0.

Proof First suppose (a) holds, so that T is normal but not self-adjoint. Let

e1; e2 be an orthonormal basis of V. Suppose

9.28 M
�
T; .e1; e2/

�
D
�
a c

b d

�
:
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Then kTe1k2 D a2 C b2 and kT �e1k2 D a2 C c2. Because T is normal,

kTe1k D kT �e1k (see 7.20); thus these equations imply that b2 D c2. Thus

c D b or c D �b. But c ¤ b, because otherwise T would be self-adjoint, as

can be seen from the matrix in 9.28. Hence c D �b, so

9.29 M
�
T; .e1; e2/

�
D
�
a �b
b d

�
:

The matrix of T � is the transpose of the matrix above. Use matrix multipli-

cation to compute the matrices of T T � and T �T (do it now). Because T is

normal, these two matrices are equal. Equating the entries in the upper-right

corner of the two matrices you computed, you will discover that bd D ab.

Now b ¤ 0, because otherwise T would be self-adjoint, as can be seen from

the matrix in 9.29. Thus d D a, completing the proof that (a) implies (b).

Now suppose (b) holds. We want to prove that (c) holds. Choose an

orthonormal basis e1; e2 of V. We know that the matrix of T with respect to

this basis has the form given by (b), with b ¤ 0. If b > 0, then (c) holds

and we have proved that (b) implies (c). If b < 0, then, as you should verify,

the matrix of T with respect to the orthonormal basis e1;�e2 equals
�

a b
�b a

�
,

where �b > 0; thus in this case we also see that (b) implies (c).

Now suppose (c) holds, so that the matrix of T with respect to some

orthonormal basis has the form given in (c) with b > 0. Clearly the matrix

of T is not equal to its transpose (because b ¤ 0). Hence T is not self-adjoint.

Now use matrix multiplication to verify that the matrices of T T � and T �T
are equal. We conclude that T T � D T �T. Hence T is normal. Thus (c)

implies (a), completing the proof.

The next result tells us that a normal operator restricted to an invariant

subspace is normal. This will allow us to use induction on dimV when we

prove our description of normal operators (9.34).

9.30 Normal operators and invariant subspaces

Suppose V is an inner product space, T 2 L.V / is normal, and U is a

subspace of V that is invariant under T. Then

(a) U? is invariant under T ;

(b) U is invariant under T �;

(c) .T jU /� D .T �/jU ;

(d) T jU 2 L.U / and T jU ? 2 L.U?/ are normal operators.
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Proof First we will prove (a). Let e1; : : : ; em be an orthonormal basis

of U. Extend to an orthonormal basis e1; : : : ; em; f1; : : : ; fn of V (this is

possible by 6.35). Because U is invariant under T, each Tej is a linear

combination of e1; : : : ; em. Thus the matrix of T with respect to the basis

e1; : : : ; em; f1; : : : ; fn is of the form

e1 : : : em f1 : : : fn

M.T / D

e1
:::

em

f1
:::

fn

0
BBBBBBBB@

A B

0 C

1
CCCCCCCCA

I

here A denotes an m-by-m matrix, 0 denotes the n-by-m matrix of all 0’s, B

denotes an m-by-n matrix, C denotes an n-by-n matrix, and for convenience

the basis has been listed along the top and left sides of the matrix.

For each j 2 f1; : : : ; mg, kTej k2 equals the sum of the squares of the

absolute values of the entries in the j th column of A (see 6.25). Hence

9.31

mX

j D1

kTej k2 D the sum of the squares of the absolute

values of the entries of A.

For each j 2 f1; : : : ; mg, kT �ej k2 equals the sum of the squares of the

absolute values of the entries in the j th rows of A and B . Hence

9.32

mX

j D1

kT �ej k2 D the sum of the squares of the absolute

values of the entries of A and B .

Because T is normal, kTej k D kT �ej k for each j (see 7.20); thus

mX

j D1

kTej k2 D
mX

j D1

kT �ej k2:

This equation, along with 9.31 and 9.32, implies that the sum of the squares

of the absolute values of the entries of B equals 0. In other words, B is the

matrix of all 0’s. Thus
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e1 : : : em f1 : : : fn

M.T / D

e1
:::

em

f1
:::

fn

0
BBBBBBBB@

A 0

0 C

1
CCCCCCCCA

:9.33

This representation shows that Tfk is in the span of f1; : : : ; fn for each k.

Because f1; : : : ; fn is a basis of U?, this implies that T v 2 U? whenever

v 2 U?. In other words, U? is invariant under T, completing the proof of (a).

To prove (b), note that M.T �/, which is the conjugate transpose of M.T /,

has a block of 0’s in the lower left corner (because M.T /, as given above, has

a block of 0’s in the upper right corner). In other words, each T �ej can be

written as a linear combination of e1; : : : ; em. Thus U is invariant under T �,
completing the proof of (b).

To prove (c), let S D T jU 2 L.U /. Fix v 2 U. Then

hSu; vi D hT u; vi
D hu; T �vi

for all u 2 U. Because T �v 2 U [by (b)], the equation above shows that

S�v D T �v. In other words, .T jU /� D .T �/jU, completing the proof of (c).

To prove (d), note that T commutes with T � (because T is normal) and

that .T jU /� D .T �/jU [by (c)]. Thus T jU commutes with its adjoint and

hence is normal. Interchanging the roles of U and U?, which is justified by

(a), shows that T jU ? is also normal, completing the proof of (d).

Note that if an operator T has a

block diagonal matrix with respect

to some basis, then the entry in

each 1-by-1 block on the diagonal

of this matrix is an eigenvalue of T.

Our next result shows that normal

operators on real inner product spaces

come close to having diagonal matrices.

Specifically, we get block diagonal ma-

trices, with each block having size at

most 2-by-2.

We cannot expect to do better than the next result, because on a real inner

product space there exist normal operators that do not have a diagonal matrix

with respect to any basis. For example, the operator T 2 L.R2/ defined by

T .x; y/ D .�y; x/ is normal (as you should verify) but has no eigenvalues;

thus this particular T does not have even an upper-triangular matrix with

respect to any basis of R2.
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9.34 Characterization of normal operators when F D R

Suppose V is a real inner product space and T 2 L.V /. Then the follow-

ing are equivalent:

(a) T is normal.

(b) There is an orthonormal basis of V with respect to which T has a

block diagonal matrix such that each block is a 1-by-1 matrix or a

2-by-2 matrix of the form �
a �b
b a

�
;

with b > 0.

Proof First suppose (b) holds. With respect to the basis given by (b), the

matrix of T commutes with the matrix of T � (which is the transpose of the

matrix of T ), as you should verify (use Exercise 9 in Section 8.B for the

product of two block diagonal matrices). Thus T commutes with T �, which

means that T is normal, completing the proof that (b) implies (a).

Now suppose (a) holds, so T is normal. We will prove that (b) holds

by induction on dimV. To get started, note that our desired result holds if

dimV D 1 (trivially) or if dimV D 2 [if T is self-adjoint, use the Real

Spectral Theorem (7.29); if T is not self-adjoint, use 9.27].

Now assume that dimV > 2 and that the desired result holds on vector

spaces of smaller dimension. Let U be a subspace of V of dimension 1 that

is invariant under T if such a subspace exists (in other words, if T has an

eigenvector, let U be the span of this eigenvector). If no such subspace exists,

let U be a subspace of V of dimension 2 that is invariant under T (an invariant

subspace of dimension 1 or 2 always exists by 9.8).

If dimU D 1, choose a vector in U with norm 1; this vector will be

an orthonormal basis of U, and of course the matrix of T jU 2 L.U / is a

1-by-1 matrix. If dimU D 2, then T jU 2 L.U / is normal (by 9.30) but not

self-adjoint (otherwise T jU, and hence T, would have an eigenvector by 7.27).

Thus we can choose an orthonormal basis of U with respect to which the

matrix of T jU 2 L.U / has the required form (see 9.27).

Now U? is invariant under T and T jU ? is a normal operator on U?

(by 9.30). Thus by our induction hypothesis, there is an orthonormal basis

of U? with respect to which the matrix of T jU ? has the desired form. Adjoin-

ing this basis to the basis of U gives an orthonormal basis of V with respect

to which the matrix of T has the desired form. Thus (b) holds.
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Isometries on Real Inner Product Spaces

As we will see, the next example is a key building block for isometries on real

inner product spaces. Also, note that the next example shows that an isometry

on R2 may have no eigenvalues.

9.35 Example Let � 2 R. Then the operator on R2 of counterclockwise

rotation (centered at the origin) by an angle of � is an isometry, as is geomet-

rically obvious. The matrix of this operator with respect to the standard basis

is �
cos � � sin �

sin � cos �

�
:

If � is not an integer multiple of � , then no nonzero vector of R2 gets mapped

to a scalar multiple of itself, and hence the operator has no eigenvalues.

The next result shows that every isometry on a real inner product space is

composed of pieces that are rotations on 2-dimensional subspaces, pieces that

equal the identity operator, and pieces that equal multiplication by �1.

9.36 Description of isometries when F D R

Suppose V is a real inner product space and S 2 L.V /. Then the following

are equivalent:

(a) S is an isometry.

(b) There is an orthonormal basis of V with respect to which S has

a block diagonal matrix such that each block on the diagonal is a

1-by-1 matrix containing 1 or �1 or is a 2-by-2 matrix of the form

�
cos � � sin �

sin � cos �

�
;

with � 2 .0; �/.

Proof First suppose (a) holds, so S is an isometry. Because S is normal, there

is an orthonormal basis of V with respect to which S has a block diagonal

matrix such that each block is a 1-by-1 matrix or a 2-by-2 matrix of the form

9.37

�
a �b
b a

�
;

with b > 0 (by 9.34).
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If � is an entry in a 1-by-1 matrix along the diagonal of the matrix of S

(with respect to the basis mentioned above), then there is a basis vector ej

such that Sej D �ej . Because S is an isometry, this implies that j�j D 1.

Thus � D 1 or � D �1, because these are the only real numbers with absolute

value 1.

Now consider a 2-by-2 matrix of the form 9.37 along the diagonal of the

matrix of S . There are basis vectors ej ; ej C1 such that

Sej D aej C bej C1:

Thus

1 D kej k2 D kSej k2 D a2 C b2:

The equation above, along with the condition b > 0, implies that there exists

a number � 2 .0; �/ such that a D cos � and b D sin � . Thus the matrix 9.37

has the required form, completing the proof in this direction.

Conversely, now suppose (b) holds, so there is an orthonormal basis of V

with respect to which the matrix of S has the form required by the theorem.

Thus there is a direct sum decomposition

V D U1 ˚ � � � ˚ Um;

where each Uj is a subspace of V of dimension 1 or 2. Furthermore, any two

vectors belonging to distinct U ’s are orthogonal, and each S jUj
is an isometry

mapping Uj into Uj . If v 2 V, we can write

v D u1 C � � � C um;

where each uj is in Uj . Applying S to the equation above and then taking

norms gives

kSvk2 D kSu1 C � � � C Sumk2

D kSu1k2 C � � � C kSumk2

D ku1k2 C � � � C kumk2

D kvk2:

Thus S is an isometry, and hence (a) holds.
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EXERCISES 9.B

1 Suppose S 2 L.R3/ is an isometry. Prove that there exists a nonzero

vector x 2 R3 such that S2x D x.

2 Prove that every isometry on an odd-dimensional real inner product space

has 1 or �1 as an eigenvalue.

3 Suppose V is a real inner product space. Show that

huC iv; x C iyi D hu; xi C hv; yi C
�
hv; xi � hu; yi

�
i

for u; v; x; y 2 V defines a complex inner product on VC .

4 Suppose V is a real inner product space and T 2 L.V / is self-adjoint.

Show that TC is a self-adjoint operator on the inner product space VC

defined by the previous exercise.

5 Use the previous exercise to give a proof of the Real Spectral Theorem

(7.29) via complexification and the Complex Spectral Theorem (7.24).

6 Give an example of an operator T on an inner product space such that T

has an invariant subspace whose orthogonal complement is not invariant

under T.

[The exercise above shows that 9.30 can fail without the hypothesis that

T is normal.]

7 Suppose T 2 L.V / and T has a block diagonal matrix

0
B@
A1 0

: : :

0 Am

1
CA

with respect to some basis of V. For j D 1; : : : ; m, let Tj be the operator

on V whose matrix with respect to the same basis is a block diagonal

matrix with blocks the same size as in the matrix above, with Aj in the

j th block, and with all the other blocks on the diagonal equal to identity

matrices (of the appropriate size). Prove that T D T1 � � �Tm.

8 Suppose D is the differentiation operator on the vector space V in

Exercise 21 in Section 7.A. Find an orthonormal basis of V such that

the matrix of the normal operator D has the form promised by 9.34.
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10.A Trace

For our study of the trace and determinant, we will need to know how the

matrix of an operator changes with a change of basis. Thus we begin this

chapter by developing the necessary material about change of basis.

Change of Basis

With respect to every basis of V, the matrix of the identity operator I 2 L.V /

is the diagonal matrix with 1’s on the diagonal and 0’s elsewhere. We also use

the symbol I for the name of this matrix, as shown in the next definition.

10.2 Definition identity matrix, I

Suppose n is a positive integer. The n-by-n diagonal matrix
0
B@
1 0

: : :

0 1

1
CA

is called the identity matrix and is denoted I.

Note that we use the symbol I to denote the identity operator (on all vector

spaces) and the identity matrix (of all possible sizes). You should always be

able to tell from the context which particular meaning of I is intended. For

example, consider the equation M.I / D I I on the left side I denotes the

identity operator, and on the right side I denotes the identity matrix.

If A is a square matrix (with entries in F, as usual) with the same size as I,

then AI D IA D A, as you should verify.

10.3 Definition invertible, inverse, A�1

A square matrix A is called invertible if there is a square matrix B of

the same size such that AB D BA D I ; we call B the inverse of A and

denote it by A�1.

Some mathematicians use the

terms nonsingular, which means

the same as invertible, and

singular, which means the same

as noninvertible.

The same proof as used in 3.54

shows that if A is an invertible square

matrix, then there is a unique matrix B

such that AB D BA D I (and thus the

notation B D A�1 is justified).
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In Section 3.C we defined the matrix of a linear map from one vector space

to another with respect to two bases—one basis of the first vector space and

another basis of the second vector space. When we study operators, which are

linear maps from a vector space to itself, we almost always use the same basis

for both vector spaces (after all, the two vector spaces in question are equal).

Thus we usually refer to the matrix of an operator with respect to a basis and

display at most one basis because we are using one basis in two capacities.

The next result is one of the unusual cases in which we use two different

bases even though we have operators from a vector space to itself. It is just a

convenient restatement of 3.43 (with U and W both equal to V ), but now we

are being more careful to include the various bases explicitly in the notation.

The result below holds because we defined matrix multiplication to make it

true—see 3.43 and the material preceding it.

10.4 The matrix of the product of linear maps

Suppose u1; : : : ; un and v1; : : : ; vn and w1; : : : ;wn are all bases of V.

Suppose S; T 2 L.V /. Then

M
�
ST; .u1; : : : ; un/; .w1; : : : ;wn/

�
D

M
�
S; .v1; : : : ; vn/; .w1; : : : ;wn/

�
M
�
T; .u1; : : : ; un/; .v1; : : : ; vn/

�
:

The next result deals with the matrix of the identity operator I with

respect to two different bases. Note that the kth column of the matrix

M
�
I; .u1; : : : ; un/; .v1; : : : ; vn/

�
consists of the scalars needed to write uk

as a linear combination of v1; : : : ; vn.

10.5 Matrix of the identity with respect to two bases

Suppose u1; : : : ; un and v1; : : : ; vn are bases of V. Then the matrices

M
�
I; .u1; : : : ; un/; .v1; : : : ; vn/

�
and M

�
I; .v1; : : : ; vn/; .u1; : : : ; un/

�

are invertible, and each is the inverse of the other.

Proof In 10.4, replace wj with uj , and replace S and T with I, getting

I D M
�
I; .v1; : : : ; vn/; .u1; : : : ; un/

�
M
�
I; .u1; : : : ; un/; .v1; : : : ; vn/

�
:

Now interchange the roles of the u’s and v’s, getting

I D M
�
I; .u1; : : : ; un/; .v1; : : : ; vn/

�
M
�
I; .v1; : : : ; vn/; .u1; : : : ; un/

�
:

These two equations give the desired result.
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10.6 Example Consider the bases .4; 2/; .5; 3/ and .1; 0/; .0; 1/ of F2.

Obviously

M

�
I;
�
.4; 2/; .5; 3/

�
;
�
.1; 0/; .0; 1/

��
D
�
4 5

2 3

�
;

because I.4; 2/ D 4.1; 0/C 2.0; 1/ and I.5; 3/ D 5.1; 0/C 3.0; 1/.

The inverse of the matrix above is
 

3
2

�5
2

�1 2

!
;

as you should verify. Thus 10.5 implies that

M

�
I;
�
.1; 0/; .0; 1/

�
;
�
.4; 2/; .5; 3/

��
D
 

3
2

�5
2

�1 2

!
:

Now we can see how the matrix of T changes when we change bases. In

the result below, we have two different bases of V. Recall that the notation

M
�
T; .u1; : : : ; un/

�
is shorthand for M

�
T; .u1; : : : ; un/; .u1; : : : ; un/

�

10.7 Change of basis formula

Suppose T 2 L.V /. Let u1; : : : ; un and v1; : : : ; vn be bases of V. Let

A D M
�
I; .u1; : : : ; un/; .v1; : : : ; vn/

�
. Then

M
�
T; .u1; : : : ; un/

�
D A�1

M
�
T; .v1; : : : ; vn/

�
A:

Proof In 10.4, replace wj with uj and replace S with I, getting

10.8 M
�
T; .u1; : : : ; un/

�
D A�1

M
�
T; .u1; : : : ; un/; .v1; : : : ; vn/

�
;

where we have used 10.5.

Again use 10.4, this time replacing wj with vj . Also replace T with I and

replace S with T, getting

M
�
T; .u1; : : : ; un/; .v1; : : : ; vn/

�
D M

�
T; .v1; : : : ; vn/

�
A:

Substituting the equation above into 10.8 gives the desired result.
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Trace: A Connection Between Operators and Matrices

Suppose T 2 L.V / and � is an eigenvalue of T. Let n D dimV. Re-

call that we defined the multiplicity of � to be the dimension of the gen-

eralized eigenspace G.�; T / (see 8.24) and that this multiplicity equals

dim null.T � �I/n (see 8.11). Recall also that if V is a complex vector

space, then the sum of the multiplicities of all the eigenvalues of T equals n

(see 8.26).

In the definition below, the sum of the eigenvalues “with each eigenvalue

repeated according to its multiplicity” means that if �1; : : : ; �m are the distinct

eigenvalues of T (or of TC if V is a real vector space) with multiplicities

d1; : : : ; dm, then the sum is

d1�1 C � � � C dm�m:

Or if you prefer to list the eigenvalues with each repeated according to its

multiplicity, then the eigenvalues could be denoted �1; : : : ; �n (where the

index n equals dimV ) and the sum is

�1 C � � � C �n:

10.9 Definition trace of an operator

Suppose T 2 L.V /.

� If F D C, then the trace of T is the sum of the eigenvalues of T,

with each eigenvalue repeated according to its multiplicity.

� If F D R, then the trace of T is the sum of the eigenvalues of TC ,

with each eigenvalue repeated according to its multiplicity.

The trace of T is denoted by traceT.

10.10 Example Suppose T 2 L.C3/ is the operator whose matrix is
0
@
3 �1 �2
3 2 �3
1 2 0

1
A :

Then the eigenvalues of T are 1, 2C 3i , and 2 � 3i , each with multiplicity 1,

as you can verify. Computing the sum of the eigenvalues, we find that

traceT D 1C .2C 3i/C .2 � 3i/; in other words, traceT D 5.
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The trace has a close connection with the characteristic polynomial. Sup-

pose �1; : : : ; �n are the eigenvalues of T (or of TC if V is a real vector space)

with each eigenvalue repeated according to its multiplicity. Then by definition

(see 8.34 and 9.21), the characteristic polynomial of T equals

.z � �1/ � � � .z � �n/:

Expanding the polynomial above, we can write the characteristic polynomial

of T in the form

10.11 zn � .�1 C � � � C �n/z
n�1 C � � � C .�1/n.�1 � � ��n/:

The expression above immediately leads to the following result.

10.12 Trace and characteristic polynomial

Suppose T 2 L.V /. Let n D dimV. Then traceT equals the negative of

the coefficient of zn�1 in the characteristic polynomial of T.

Most of the rest of this section is devoted to discovering how to compute

traceT from the matrix of T (with respect to an arbitrary basis).

Let’s start with the easiest situation. Suppose V is a complex vector space,

T 2 L.V /, and we choose a basis of V as in 8.29. With respect to that basis,

T has an upper-triangular matrix with the diagonal of the matrix containing

precisely the eigenvalues of T, each repeated according to its multiplicity.

Thus traceT equals the sum of the diagonal entries of M.T / with respect to

that basis.

The same formula works for the operator T 2 L.C3/ in Example 10.10

whose trace equals 5. In that example, the matrix is not in upper-triangular

form. However, the sum of the diagonal entries of the matrix in that example

equals 5, which is the trace of the operator T.

At this point you should suspect that traceT equals the sum of the diagonal

entries of the matrix of T with respect to an arbitrary basis. Remarkably, this

suspicion turns out to be true. To prove it, we start by making the following

definition.

10.13 Definition trace of a matrix

The trace of a square matrix A, denoted traceA, is defined to be the sum

of the diagonal entries of A.
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Now we have defined the trace of an operator and the trace of a square

matrix, using the same word “trace” in two different contexts. This would be

bad terminology unless the two concepts turn out to be essentially the same.

As we will see, it is indeed true that traceT D traceM
�
T; .v1; : : : ; vn/

�
,

where v1; : : : ; vn is an arbitrary basis of V. We will need the following result

for the proof.

10.14 Trace of AB equals trace of BA

If A and B are square matrices of the same size, then

trace.AB/ D trace.BA/:

Proof Suppose

A D

0
B@
A1;1 : : : A1;n
:::

:::

An;1 : : : An;n

1
CA ; B D

0
B@
B1;1 : : : B1;n
:::

:::

Bn;1 : : : Bn;n

1
CA :

The j th term on the diagonal of AB equals

nX

kD1

Aj;kBk;j :

Thus

trace.AB/ D
nX

j D1

nX

kD1

Aj;kBk;j

D
nX

kD1

nX

j D1

Bk;jAj;k

D
nX

kD1

kth term on the diagonal of BA

D trace.BA/;

as desired.

Now we can prove that the sum of the diagonal entries of the matrix of

an operator is independent of the basis with respect to which the matrix is

computed.
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10.15 Trace of matrix of operator does not depend on basis

Let T 2 L.V /. Suppose u1; : : : ; un and v1; : : : ; vn are bases of V. Then

traceM
�
T; .u1; : : : ; un/

�
D traceM

�
T; .v1; : : : ; vn/

�
:

Proof Let A D M
�
I; .u1; : : : ; un/; .v1; : : : ; vn/

�
. Then

traceM
�
T; .u1; : : : ; un/

�
D trace

�
A�1

�
M
�
T; .v1; : : : ; vn/

�
A
��

D trace
��
M
�
T; .v1; : : : ; vn/

�
A
�
A�1

�

D traceM
�
T; .v1; : : : ; vn/

�
;

where the first equality comes from 10.7 and the second equality follows

from 10.14. The third equality completes the proof.

The result below, which is the most important result in this section, states

that the trace of an operator equals the sum of the diagonal entries of the

matrix of the operator. This theorem does not specify a basis because, by the

result above, the sum of the diagonal entries of the matrix of an operator is

the same for every choice of basis.

10.16 Trace of an operator equals trace of its matrix

Suppose T 2 L.V /. Then traceT D traceM.T /.

Proof As noted above, traceM.T / is independent of which basis of V we

choose (by 10.15). Thus to show that

traceT D traceM.T /

for every basis of V, we need only show that the equation above holds for

some basis of V.

As we have already discussed, if V is a complex vector space, then choos-

ing the basis as in 8.29 gives the desired result. If V is a real vector space,

then applying the complex case to the complexification TC (which is used to

define traceT ) gives the desired result.

If we know the matrix of an operator on a complex vector space, the result

above allows us to find the sum of all the eigenvalues without finding any of

the eigenvalues, as shown by the next example.
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10.17 Example Consider the operator on C5 whose matrix is
0
BBBB@

0 0 0 0 �3
1 0 0 0 6

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1
CCCCA
:

No one can find an exact formula for any of the eigenvalues of this operator.

However, we do know that the sum of the eigenvalues equals 0, because the

sum of the diagonal entries of the matrix above equals 0.

We can use 10.16 to give easy proofs of some useful properties about

traces of operators by shifting to the language of traces of matrices, where

certain properties have already been proved or are obvious. The proof of the

next result is an example of this technique. The eigenvalues of S C T are not,

in general, formed from adding together eigenvalues of S and eigenvalues of

T. Thus the next result would be difficult to prove without using 10.16.

10.18 Trace is additive

Suppose S; T 2 L.V /. Then trace.S C T / D traceS C traceT.

Proof Choose a basis of V. Then

trace.S C T / D traceM.S C T /

D trace
�
M.S/C M.T /

�

D traceM.S/C traceM.T /

D traceS C traceT;

where again the first and last equalities come from 10.16; the third equality is

obvious from the definition of the trace of a matrix.

The statement of the next result

does not involve traces, although

the short proof uses traces. When-

ever something like this happens in

mathematics, we can be sure that

a good definition lurks in the back-

ground.

The techniques we have developed

have the following curious consequence.

A generalization of this result to infinite-

dimensional vector spaces has impor-

tant consequences in modern physics,

particularly in quantum theory.
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10.19 The identity is not the difference of ST and TS

There do not exist operators S; T 2 L.V / such that ST � TS D I.

Proof Suppose S; T 2 L.V /. Choose a basis of V . Then

trace.ST � TS/ D trace.ST / � trace.TS/

D traceM.ST / � traceM.TS/

D trace
�
M.S/M.T /

�
� trace

�
M.T /M.S/

�

D 0;

where the first equality comes from 10.18, the second equality comes from

10.16, the third equality comes from 3.43, and the fourth equality comes from

10.14. Clearly the trace of I equals dimV, which is not 0. Because ST � TS
and I have different traces, they cannot be equal.

EXERCISES 10.A

1 Suppose T 2 L.V / and v1; : : : ; vn is a basis of V. Prove that the matrix

M
�
T; .v1; : : : ; vn/

�
is invertible if and only if T is invertible.

2 Suppose A and B are square matrices of the same size and AB D I.

Prove that BA D I.

3 Suppose T 2 L.V / has the same matrix with respect to every basis of V.

Prove that T is a scalar multiple of the identity operator.

4 Suppose u1; : : : ; un and v1; : : : ; vn are bases of V. Let T 2 L.V / be the

operator such that T vk D uk for k D 1; : : : ; n. Prove that

M
�
T; .v1; : : : ; vn/

�
D M

�
I; .u1; : : : ; un/; .v1; : : : ; vn/

�
:

5 Suppose B is a square matrix with complex entries. Prove that there

exists an invertible square matrix A with complex entries such that

A�1BA is an upper-triangular matrix.

6 Give an example of a real vector space V and T 2 L.V / such that

trace.T 2/ < 0.

7 Suppose V is a real vector space, T 2 L.V /, and V has a basis consisting

of eigenvectors of T. Prove that trace.T 2/ � 0.
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8 Suppose V is an inner product space and v;w 2 V. Define T 2 L.V / by

T u D hu; viw. Find a formula for traceT.

9 Suppose P 2 L.V / satisfies P 2 D P . Prove that

traceP D dim rangeP:

10 Suppose V is an inner product space and T 2 L.V /. Prove that

traceT � D traceT :

11 Suppose V is an inner product space. Suppose T 2 L.V / is a positive

operator and traceT D 0. Prove that T D 0.

12 Suppose V is an inner product space and P;Q 2 L.V / are orthogonal

projections. Prove that trace.PQ/ � 0.

13 Suppose T 2 L.C3/ is the operator whose matrix is

0
@
51 �12 �21
60 �40 �28
57 �68 1

1
A :

Someone tells you (accurately) that �48 and 24 are eigenvalues of T.

Without using a computer or writing anything down, find the third eigen-

value of T.

14 Suppose T 2 L.V / and c 2 F. Prove that trace.cT / D c traceT.

15 Suppose S; T 2 L.V /. Prove that trace.ST / D trace.TS/.

16 Prove or give a counterexample: if S; T 2 L.V /, then trace.ST / D
.traceS/.traceT /.

17 Suppose T 2 L.V / is such that trace.ST / D 0 for all S 2 L.V /. Prove

that T D 0.

18 Suppose V is an inner product space with orthonormal basis e1; : : : ; en

and T 2 L.V /. Prove that

trace.T �T / D kTe1k2 C � � � C kTenk2:

Conclude that the right side of the equation above is independent of

which orthonormal basis e1; : : : ; en is chosen for V.
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19 Suppose V is an inner product space. Prove that

hS; T i D trace.ST �/

defines an inner product on L.V /.

20 Suppose V is a complex inner product space and T 2 L.V /. Let

�1; : : : ; �n be the eigenvalues of T, repeated according to multiplicity.

Suppose 0
B@
A1;1 : : : A1;n
:::

:::

An;1 : : : An;n

1
CA

is the matrix of T with respect to some orthonormal basis of V. Prove

that

j�1j2 C � � � C j�nj2 �
nX

kD1

nX

j D1

jAj;kj2:

21 Suppose V is an inner product space. Suppose T 2 L.V / and

kT �vk � kT vk

for every v 2 V. Prove that T is normal.

[The exercise above fails on infinite-dimensional inner product spaces,

leading to what are called hyponormal operators, which have a well-

developed theory.]
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10.B Determinant

Determinant of an Operator

Now we are ready to define the determinant of an operator. Notice that the

definition below mimics the approach we took when defining the trace, with

the product of the eigenvalues replacing the sum of the eigenvalues.

10.20 Definition determinant of an operator, detT

Suppose T 2 L.V /.

� If F D C, then the determinant of T is the product of the eigenvalues

of T, with each eigenvalue repeated according to its multiplicity.

� If F D R, then the determinant of T is the product of the eigenvalues

of TC , with each eigenvalue repeated according to its multiplicity.

The determinant of T is denoted by detT.

If �1; : : : ; �m are the distinct eigenvalues of T (or of TC if V is a real

vector space) with multiplicities d1; : : : ; dm, then the definition above implies

detT D �
d1

1 � � ��dm
m :

Or if you prefer to list the eigenvalues with each repeated according to its

multiplicity, then the eigenvalues could be denoted �1; : : : ; �n (where the

index n equals dimV ) and the definition above implies

detT D �1 � � ��n:

10.21 Example Suppose T 2 L.C3/ is the operator whose matrix is
0
@
3 �1 �2
3 2 �3
1 2 0

1
A :

Then the eigenvalues of T are 1, 2C 3i , and 2 � 3i , each with multiplicity 1,

as you can verify. Computing the product of the eigenvalues, we find that

detT D 1 � .2C 3i/ � .2 � 3i/; in other words, detT D 13.
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The determinant has a close connection with the characteristic polynomial.

Suppose �1; : : : ; �n are the eigenvalues of T (or of TC if V is a real vector

space) with each eigenvalue repeated according to its multiplicity. Then the

expression for the characteristic polynomial of T given by 10.11 gives the

following result.

10.22 Determinant and characteristic polynomial

Suppose T 2 L.V /. Let n D dimV. Then detT equals .�1/n times the

constant term of the characteristic polynomial of T.

Combining the result above and 10.12, we have the following result.

10.23 Characteristic polynomial, trace, and determinant

Suppose T 2 L.V /. Then the characteristic polynomial of T can be

written as

zn � .traceT /zn�1 C � � � C .�1/n.detT /:

We turn now to some simple but important properties of determinants.

Later we will discover how to calculate detT from the matrix of T (with

respect to an arbitrary basis).

The crucial result below has an easy proof due to our definition.

10.24 Invertible is equivalent to nonzero determinant

An operator on V is invertible if and only if its determinant is nonzero.

Proof First suppose V is a complex vector space and T 2 L.V /. The

operator T is invertible if and only if 0 is not an eigenvalue of T. Clearly this

happens if and only if the product of the eigenvalues of T is not 0. Thus T is

invertible if and only if detT ¤ 0, as desired.

Now consider the case where V is a real vector space and T 2 L.V /.

Again, T is invertible if and only if 0 is not an eigenvalue of T, which happens

if and only if 0 is not an eigenvalue of TC (because TC and T have the same

real eigenvalues by 9.11). Thus again we see that T is invertible if and only if

detT ¤ 0.

Some textbooks take the result below as the definition of the characteristic

polynomial and then have our definition of the characteristic polynomial as a

consequence.
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10.25 Characteristic polynomial of T equals det.zI � T /
Suppose T 2 L.V /. Then the characteristic polynomial of T equals

det.zI � T /.

Proof First suppose V is a complex vector space. If �; z 2 C, then � is an

eigenvalue of T if and only if z � � is an eigenvalue of zI � T, as can be seen

from the equation

�.T � �I/ D .zI � T / � .z � �/I:

Raising both sides of this equation to the dimV power and then taking null

spaces of both sides shows that the multiplicity of � as an eigenvalue of T

equals the multiplicity of z � � as an eigenvalue of zI � T.

Let �1; : : : ; �n denote the eigenvalues of T, repeated according to mul-

tiplicity. Thus for z 2 C, the paragraph above shows that the eigenvalues

of zI � T are z � �1; : : : ; z � �n, repeated according to multiplicity. The

determinant of zI � T is the product of these eigenvalues. In other words,

det.zI � T / D .z � �1/ � � � .z � �n/:

The right side of the equation above is, by definition, the characteristic poly-

nomial of T, completing the proof when V is a complex vector space.

Now suppose V is a real vector space. Applying the complex case to TC

gives the desired result.

Determinant of a Matrix

Our next task is to discover how to compute detT from the matrix of T (with

respect to an arbitrary basis). Let’s start with the easiest situation. Suppose

V is a complex vector space, T 2 L.V /, and we choose a basis of V as in

8.29. With respect to that basis, T has an upper-triangular matrix with the

diagonal of the matrix containing precisely the eigenvalues of T, each repeated

according to its multiplicity. Thus detT equals the product of the diagonal

entries of M.T / with respect to that basis.

When dealing with the trace in the previous section, we discovered that the

formula (trace = sum of diagonal entries) that worked for the upper-triangular

matrix given by 8.29 also worked with respect to an arbitrary basis. Could that

also work for determinants? In other words, is the determinant of an operator

equal to the product of the diagonal entries of the matrix of the operator with

respect to an arbitrary basis?
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Unfortunately, the determinant is more complicated than the trace. In par-

ticular, detT need not equal the product of the diagonal entries of M.T / with

respect to an arbitrary basis. For example, the operator in Example 10.21 has

determinant 13 but the product of the diagonal entries of its matrix equals 0.

For each square matrix A, we want to define the determinant of A, denoted

detA, so that detT D detM.T / regardless of which basis is used to com-

pute M.T /. We begin our search for the correct definition of the determinant

of a matrix by calculating the determinants of some special operators.

10.26 Example Suppose a1; : : : ; an 2 F. Let

A D

0
BBBBB@

0 an

a1 0

a2 0
: : :

: : :

an�1 0

1
CCCCCA

I

here all entries of the matrix are 0 except for the upper-right corner and

along the line just below the diagonal. Suppose v1; : : : ; vn is a basis of V and

T 2 L.V / is such that M
�
T; .v1; : : : ; vn/

�
D A. Find the determinant of T.

Solution First assume aj ¤ 0 for each j D 1; : : : ; n � 1. Note that the list

v1; T v1; T
2v1; : : : ; T

n�1v1 equals v1; a1v2; a1a2v3; : : : ; a1 � � � an�1vn.

Computing the minimal polynomial

is often an efficient method of find-

ing the characteristic polynomial,

as is done in this example.

Thus v1; T v1; : : : ; T
n�1v1 is lin-

early independent (because the a’s are

all nonzero). Hence if p is a monic poly-

nomial with degree at most n � 1, then

p.T /v1 ¤ 0. Thus the minimal poly-

nomial of T cannot have degree less

than n.

As you should verify, T nvj D a1 � � � anvj for each j . Thus we have

T n D a1 � � � anI. Hence zn � a1 � � � an is the minimal polynomial of T. Be-

cause n D dimV and the characteristic polynomial is a polynomial multiple

of the minimal polynomial (9.26), this implies that zn � a1 � � � an is also the

characteristic polynomial of T.

Thus 10.22 implies that

detT D .�1/n�1a1 � � � an:

If some aj equals 0, then T vj D 0 for some j , which implies that 0 is an

eigenvalue of T and hence detT D 0. In other words, the formula above also

holds if some aj equals 0.
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Thus in order to have detT D detM.T /, we will have to make the deter-

minant of the matrix in Example 10.26 equal to .�1/n�1a1 � � � an. However,

we do not yet have enough evidence to make a reasonable guess about the

proper definition of the determinant of an arbitrary square matrix.

To compute the determinants of a more complicated class of operators, we

introduce the notion of permutation.

10.27 Definition permutation, permn

� A permutation of .1; : : : ; n/ is a list .m1; : : : ; mn/ that contains

each of the numbers 1; : : : ; n exactly once.

� The set of all permutations of .1; : : : ; n/ is denoted permn.

For example, .2; 3; 4; 5; 1/ 2 perm 5. You should think of an element of

permn as a rearrangement of the first n integers.

10.28 Example Suppose a1; : : : ; an 2 F and v1; : : : ; vn is a basis of V.

Consider a permutation .p1; : : : ; pn/ 2 permn that can be obtained as fol-

lows: break .1; : : : ; n/ into lists of consecutive integers and in each list move

the first term to the end of that list. For example, taking n D 9, the permutation

.2; 3; 1; 5; 6; 7; 4; 9; 8/

is obtained from .1; 2; 3/; .4; 5; 6; 7/; .8; 9/ by moving the first term of each of

these lists to the end, producing .2; 3; 1/; .5; 6; 7; 4/; .9; 8/, and then putting

these together to form the permutation displayed above.

Let T 2 L.V / be the operator such that

T vk D akvpk

for k D 1; : : : ; n. Find detT.

Solution This generalizes Example 10.26, because if .p1; : : : ; pn/ is the

permutation .2; 3; : : : ; n; 1/, then our operator T is the same as the operator

T in Example 10.26.

With respect to the basis v1; : : : ; vn, the matrix of the operator T is a block

diagonal matrix

A D

0
B@
A1 0

: : :

0 AM

1
CA ;

where each block is a square matrix of the form of the matrix in 10.26.
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Correspondingly, we can write V D V1 ˚ � � � ˚ VM , where each Vj is

invariant under T and each T jVj
is of the form of the operator in 10.26.

Because detT D .detT jV1
/ � � � .detT jVM

/ (because the dimensions of the

generalized eigenspaces in the Vj add up to dimV ), we have

detT D .�1/n1�1 � � � .�1/nM �1a1 � � � an;

where Vj has dimension nj (and correspondingly each Aj has size nj -by-nj )

and we have used the result from 10.26.

The number .�1/n1�1 � � � .�1/nM �1 that appears above is called the sign

of the corresponding permutation .p1; : : : ; pn/, denoted sign.p1; : : : ; pn/

[this is a temporary definition that we will change to an equivalent definition

later, when we define the sign of an arbitrary permutation].

To put this into a form that does not depend on the particular permutation

.p1; : : : ; pn/, let Aj;k denote the entry in row j , column k, of the matrix A

from Example 10.28. Thus

Aj;k D
�
0 if j ¤ pk;

ak if j D pk .

Example 10.28 shows that we want

10.29 detA D
X

.m1;:::;mn/2perm n

�
sign.m1; : : : ; mn/

�
Am1;1 � � �Amn;nI

note that each summand is 0 except the one corresponding to the permutation

.p1; : : : ; pn/ [which is why it does not matter that the sign of the other

permutations is not yet defined].

We can now guess that detA should be defined by 10.29 for an arbitrary

square matrix A. This will turn out to be correct. We will now dispense with

the motivation and begin the more formal approach. First we will need to

define the sign of an arbitrary permutation.

10.30 Definition sign of a permutation

� The sign of a permutation .m1; : : : ; mn/ is defined to be 1 if the

number of pairs of integers .j; k/ with 1 � j < k � n such that

j appears after k in the list .m1; : : : ; mn/ is even and �1 if the

number of such pairs is odd.

� In other words, the sign of a permutation equals 1 if the natural

order has been changed an even number of times and equals �1 if

the natural order has been changed an odd number of times.
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10.31 Example sign of permutation

� The only pair of integers .j; k/ with j < k such that j appears after

k in the list .2; 1; 3; 4/ is .1; 2/. Thus the permutation .2; 1; 3; 4/ has

sign �1.

� In the permutation .2; 3; : : : ; n; 1/, the only pairs .j; k/ with j < k

that appear with changed order are .1; 2/; .1; 3/; : : : ; .1; n/; because we

have n�1 such pairs, the sign of this permutation equals .�1/n�1 (note

that the same quantity appeared in Example 10.26).

The next result shows that interchanging two entries of a permutation

changes the sign of the permutation.

10.32 Interchanging two entries in a permutation

Interchanging two entries in a permutation multiplies the sign of the

permutation by �1.

Proof Suppose we have two permutations, where the second permutation is

obtained from the first by interchanging two entries. If the two interchanged

entries were in their natural order in the first permutation, then they no longer

are in the second permutation, and vice versa, for a net change (so far) of 1 or

�1 (both odd numbers) in the number of pairs not in their natural order.

Some texts use the term signum,

which means the same as sign.

Consider each entry between the two

interchanged entries. If an intermediate

entry was originally in the natural order

with respect to both interchanged entries, then it is now in the natural order

with respect to neither interchanged entry. Similarly, if an intermediate entry

was originally in the natural order with respect to neither of the interchanged

entries, then it is now in the natural order with respect to both interchanged

entries. If an intermediate entry was originally in the natural order with respect

to exactly one of the interchanged entries, then that is still true. Thus the net

change for each intermediate entry in the number of pairs not in their natural

order is 2, �2, or 0 (all even numbers).

For all the other entries, there is no change in the number of pairs not in

their natural order. Thus the total net change in the number of pairs not in

their natural order is an odd number. Thus the sign of the second permutation

equals �1 times the sign of the first permutation.

Our motivation for the next definition comes from 10.29.



10.33 Definition determinant of a matrix, detA

Suppose A is an n-by-n matrix

A D

0
B@
A1;1 : : : A1;n
:::

:::

An;1 : : : An;n

1
CA :

The determinant of A, denoted detA, is defined by

detA D
X

.m1;:::;mn/2perm n

�
sign.m1; : : : ; mn/

�
Am1;1 � � �Amn;n:

10.34 Example determinants

� If A is the 1-by-1 matrix ŒA1;1�, then detA D A1;1, because perm 1

has only one element, namely .1/, which has sign 1.

� Clearly perm 2 has only two elements, namely .1; 2/, which has sign 1,

and .2; 1/, which has sign �1. Thus

det

�
A1;1 A1;2

A2;1 A2;2

�
D A1;1A2;2 � A2;1A1;2:

The set perm 3 contains six ele-

ments. In general, permn contains

nŠ elements. Note that nŠ rapidly

grows large as n increases.

To make sure you understand this

process, you should now find the for-

mula for the determinant of an arbitrary

3-by-3 matrix using just the definition

given above.

10.35 Example Compute the determinant of an upper-triangular matrix

A D

0
B@
A1;1 �

: : :

0 An;n

1
CA :

Solution The permutation .1; 2; : : : ; n/ has sign 1 and thus contributes a term

of A1;1 � � �An;n to the sum defining detA in 10.33. Any other permutation

.m1; : : : ; mn/ 2 permn contains at least one entry mj with mj > j , which

means that Amj ;j D 0 (because A is upper triangular). Thus all the other

terms in the sum in 10.33 make no contribution.

Hence detA D A1;1 � � �An;n. In other words, the determinant of an upper-

triangular matrix equals the product of the diagonal entries.

� 100� CHAPTER 10 Trace and Determinant



SECTION 10.B Determinant 315

Suppose V is a complex vector space, T 2 L.V /, and we choose a basis

of V as in 8.29. With respect to that basis, T has an upper-triangular matrix

with the diagonal of the matrix containing precisely the eigenvalues of T,

each repeated according to its multiplicity. Thus Example 10.35 tells us that

detT D detM.T /, where the matrix is with respect to that basis.

Our goal is to prove that detT D detM.T / for every basis of V, not just

the basis from 8.29. To do this, we will need to develop some properties of

determinants of matrices. The result below is the first of the properties we

will need.

10.36 Interchanging two columns in a matrix

Suppose A is a square matrix and B is the matrix obtained from A by

interchanging two columns. Then

detA D � detB:

Proof Think of the sum defining detA in 10.33 and the corresponding sum

defining detB . The same products of Aj;k’s appear in both sums, although

they correspond to different permutations. The permutation corresponding to

a given product of Aj;k’s when computing detB is obtained by interchanging

two entries in the corresponding permutation when computing detA, thus

multiplying the sign of the permutation by �1 (see 10.32). Hence we see that

detA D � detB .

If T 2 L.V / and the matrix of T (with respect to some basis) has two

equal columns, then T is not injective and hence detT D 0. Although this

comment makes the next result plausible, it cannot be used in the proof,

because we do not yet know that detT D detM.T / for every choice of basis.

10.37 Matrices with two equal columns

If A is a square matrix that has two equal columns, then detA D 0.

Proof Suppose A is a square matrix that has two equal columns. Interchang-

ing the two equal columns of A gives the original matrix A. Thus from 10.36

(with B D A), we have

detA D � detA;

which implies that detA D 0.
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Recall from 3.44 that if A is an n-by-n matrix

A D

0
B@
A1;1 : : : A1;n
:::

:::

An;1 : : : An;n

1
CA ;

then we can think of the kth column of A as an n-by-1 matrix denoted A�;k:

A�;k D

0
B@
A1;k
:::

An;k

1
CA :

Some books define the determinant

to be the function defined on the

square matrices that is linear as

a function of each column sepa-

rately and that satisfies 10.38 and

det I D 1. To prove that such a

function exists and that it is unique

takes a nontrivial amount of work.

Note that Aj;k , with two subscripts, de-

notes an entry of A, whereas A�;k , with

a dot as a placeholder and one subscript,

denotes a column of A. This notation

allows us to write A in the form

. A�;1 : : : A�;n /;

which will be useful.

The next result shows that a permutation of the columns of a matrix

changes the determinant by a factor of the sign of the permutation.

10.38 Permuting the columns of a matrix

Suppose A D . A�;1 : : : A�;n / is an n-by-n matrix and .m1; : : : ; mn/

is a permutation. Then

det. A�;m1
: : : A�;mn

/ D
�
sign.m1; : : : ; mn/

�
detA:

Proof We can transform the matrix . A�;m1
: : : A�;mn

/ into A through a

series of steps. In each step, we interchange two columns and hence multiply

the determinant by �1 (see 10.36). The number of steps needed equals the

number of steps needed to transform the permutation .m1; : : : ; mn/ into the

permutation .1; : : : ; n/ by interchanging two entries in each step. The proof

is completed by noting that the number of such steps is even if .m1; : : : ; mn/

has sign 1, odd if .m1; : : : ; mn/ has sign �1 (this follows from 10.32, along

with the observation that the permutation .1; : : : ; n/ has sign 1).
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The next result about determinants will also be useful.

10.39 Determinant is a linear function of each column

Suppose k; n are positive integers with 1 � k � n. Fix n-by-1 matrices

A�;1; : : : ; A�;n except A�;k . Then the function that takes an n-by-1 column

vector A�;k to

det. A�;1 : : : A�;k : : : A�;n /

is a linear map from the vector space of n-by-1 matrices with entries in F

to F.

Proof The linearity follows easily from 10.33, where each term in the sum

contains precisely one entry from the kth column of A.

The result below was first proved

in 1812 by French mathematicians

Jacques Binet and Augustin-Louis

Cauchy.

Now we are ready to prove one of

the key properties about determinants

of square matrices. This property will

enable us to connect the determinant of

an operator with the determinant of its

matrix. Note that this proof is considerably more complicated than the proof

of the corresponding result about the trace (see 10.14).

10.40 Determinant is multiplicative

Suppose A and B are square matrices of the same size. Then

det.AB/ D det.BA/ D .detA/.detB/:

Proof Write A D . A�;1 : : : A�;n /, where each A�;k is an n-by-1 column

of A. Also write

B D

0
B@
B1;1 : : : B1;n
:::

:::

Bn;1 : : : Bn;n

1
CA D . B�;1 : : : B�;n /;

where each B�;k is an n-by-1 column of B . Let ek denote the n-by-1 matrix

that equals 1 in the kth row and 0 elsewhere. Note that Aek D A�;k and

Bek D B�;k . Furthermore, B�;k D
Pn

mD1Bm;kem.

First we will prove det.AB/ D .detA/.detB/. As we observed ear-

lier (see 3.49), the definition of matrix multiplication easily implies that

AB D . AB�;1 : : : AB�;n /. Thus
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det.AB/ D det. AB�;1 : : : AB�;n /

D det. A.
Pn

m1D1Bm1;1em1
/ : : : A.

Pn
mnD1Bmn;nemn

/ /

D det.
Pn

m1D1Bm1;1Aem1
: : :

Pn
mnD1Bmn;nAemn /

D
nX

m1D1

� � �
nX

mnD1

Bm1;1 � � �Bmn;n det. Aem1
: : : Aemn

/;

where the last equality comes from repeated applications of the linearity of det

as a function of one column at a time (10.39). In the last sum above, all terms

in which mj D mk for some j ¤ k can be ignored, because the determinant

of a matrix with two equal columns is 0 (by 10.37). Thus instead of summing

over all m1; : : : ; mn with each mj taking on values 1; : : : ; n, we can sum just

over the permutations, where the mj ’s have distinct values. In other words,

det.AB/ D
X

.m1;:::;mn/2perm n

Bm1;1 � � �Bmn;n det. Aem1
: : : Aemn

/

D
X

.m1;:::;mn/2perm n

Bm1;1 � � �Bmn;n

�
sign.m1; : : : ; mn/

�
detA

D .detA/
X

.m1;:::;mn/2perm n

�
sign.m1; : : : ; mn/

�
Bm1;1 � � �Bmn;n

D .detA/.detB/;

where the second equality comes from 10.38.

In the paragraph above, we proved that det.AB/ D .detA/.detB/. In-

terchanging the roles of A and B , we have det.BA/ D .detB/.detA/. The

last equation can be rewritten as det.BA/ D .detA/.detB/, completing the

proof.

Note the similarity of the proof of

the next result to the proof of the

analogous result about the trace

(see 10.15).

Now we can prove that the determi-

nant of the matrix of an operator is in-

dependent of the basis with respect to

which the matrix is computed.

10.41 Determinant of matrix of operator does not depend on basis

Let T 2 L.V /. Suppose u1; : : : ; un and v1; : : : ; vn are bases of V. Then

detM
�
T; .u1; : : : ; un/

�
D detM

�
T; .v1; : : : ; vn/

�
:
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Proof Let A D M
�
I; .u1; : : : ; un/; .v1; : : : ; vn/

�
. Then

detM
�
T; .u1; : : : ; un/

�
D det

�
A�1

�
M
�
T; .v1; : : : ; vn/

�
A
��

D det
��
M
�
T; .v1; : : : ; vn/

�
A
�
A�1

�

D detM
�
T; .v1; : : : ; vn/

�
;

where the first equality follows from 10.7 and the second equality follows

from 10.40. The third equality completes the proof.

The result below states that the determinant of an operator equals the

determinant of the matrix of the operator. This theorem does not specify a

basis because, by the result above, the determinant of the matrix of an operator

is the same for every choice of basis.

10.42 Determinant of an operator equals determinant of its matrix

Suppose T 2 L.V /. Then detT D detM.T /.

Proof As noted above, 10.41 implies that detM.T / is independent of which

basis of V we choose. Thus to show that detT D detM.T / for every basis

of V, we need only show that the result holds for some basis of V.

As we have already discussed, if V is a complex vector space, then choos-

ing a basis of V as in 8.29 gives the desired result. If V is a real vector space,

then applying the complex case to the complexification TC (which is used to

define detT ) gives the desired result.

If we know the matrix of an operator on a complex vector space, the result

above allows us to find the product of all the eigenvalues without finding any

of the eigenvalues.

10.43 Example Suppose T is the operator on C5 whose matrix is
0
BBBB@

0 0 0 0 �3
1 0 0 0 6

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1
CCCCA
:

No one knows an exact formula for any of the eigenvalues of this operator.

However, we do know that the product of the eigenvalues equals �3, because

the determinant of the matrix above equals �3.
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We can use 10.42 to give easy proofs of some useful properties about

determinants of operators by shifting to the language of determinants of

matrices, where certain properties have already been proved or are obvious.

We carry out this procedure in the next result.

10.44 Determinant is multiplicative

Suppose S; T 2 L.V /. Then

det.ST / D det.TS/ D .detS/.detT /:

Proof Choose a basis of V. Then

det.ST / D detM.ST /

D det
�
M.S/M.T /

�

D
�
detM.S/

��
detM.T /

�

D .detS/.detT /;

where the first and last equalities come from 10.42 and the third equality

comes from 10.40.

In the paragraph above, we proved that det.ST / D .detS/.detT /. Inter-

changing the roles of S and T, we have det.TS/ D .detT /.detS/. Because

multiplication of elements of F is commutative, the last equation can be

rewritten as det.TS/ D .detS/.detT /, completing the proof.

The Sign of the Determinant

We proved the basic results of linear algebra before introducing determinants

in this final chapter. Although determinants have value as a research tool in

more advanced subjects, they play little role in basic linear algebra (when the

subject is done right).

Most applied mathematicians

agree that determinants should

rarely be used in serious numeric

calculations.

Determinants do have one important

application in undergraduate mathemat-

ics, namely, in computing certain vol-

umes and integrals. In this subsection

we interpret the meaning of the sign of

the determinant on a real vector space. Then in the final subsection we will

use the linear algebra we have learned to make clear the connection between

determinants and these applications. Thus we will be dealing with a part of

analysis that uses linear algebra.
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We will begin with some purely linear algebra results that will also be

useful when investigating volumes. Our setting will be inner product spaces.

Recall that an isometry on an inner product space is an operator that preserves

norms. The next result shows that every isometry has determinant with

absolute value 1.

10.45 Isometries have determinant with absolute value 1

Suppose V is an inner product space and S 2 L.V / is an isometry. Then

jdetS j D 1.

Proof First consider the case where V is a complex inner product space.

Then all the eigenvalues of S have absolute value 1 (see the proof of 7.43).

Thus the product of the eigenvalues of S , counting multiplicity, has absolute

value one. In other words, jdetS j D 1, as desired.

Now suppose V is a real inner product space. We present two different

proofs in this case.

Proof 1: With respect to the inner product on the complexification VC given

by Exercise 3 in Section 9.B, it is easy to see that SC is an isometry on VC .

Thus by the complex case that we have already done, we have jdetSC j D 1.

By definition of the determinant on real vector spaces, we have detS D detSC

and thus jdetS j D 1, completing the proof.

Proof 2: By 9.36, there is an orthonormal basis of V with respect to which

M.S/ is a block diagonal matrix, where each block on the diagonal is a

1-by-1 matrix containing 1 or �1 or a 2-by-2 matrix of the form

�
cos � � sin �

sin � cos �

�
;

with � 2 .0; �/. Note that the determinant of each 2-by-2 matrix of the form

above equals 1 (because cos2 � C sin2 � D 1). Thus the determinant of S ,

which is the product of the determinants of the blocks (see Exercise 6), is the

product of 1’s and �1’s. Hence, jdetS j D 1, as desired.

The Real Spectral Theorem 7.29 states that a self-adjoint operator T on a

real inner product space has an orthonormal basis consisting of eigenvectors.

With respect to such a basis, the number of times each eigenvalue appears on

the diagonal of M.T / is its multiplicity. Thus detT equals the product of its

eigenvalues, counting multiplicity (of course, this holds for every operator,

self-adjoint or not, on a complex vector space).
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Recall that if V is an inner product space and T 2 L.V /, then T �T is a

positive operator and hence has a unique positive square root, denoted
p
T �T

(see 7.35 and 7.36). Because
p
T �T is positive, all its eigenvalues are non-

negative (again, see 7.35), and hence det
p
T �T � 0. These considerations

play a role in next example.

10.46 Example Suppose V is a real inner product space and T 2 L.V /

is invertible (and thus detT is either positive or negative). Attach a geometric

meaning to the sign of detT.

Solution First we consider an isometry S 2 L.V /. By 10.45, the determinant

of S equals 1 or �1. Note that

fv 2 V W Sv D �vg

We are not formally defining the

phrase “reverses direction” be-

cause these comments are meant

only as an intuitive aid to our un-

derstanding.

is the eigenspace E.�1; S/. Thinking

geometrically, we could say that this

is the subspace on which S reverses

direction. An examination of proof

2 of 10.45 shows that detS D 1 if

this subspace has even dimension and

detS D �1 if this subspace has odd

dimension.

Returning to our arbitrary invertible operator T 2 L.V /, by the Polar

Decomposition (7.45) there is an isometry S 2 L.V / such that

T D S
p
T �T :

Now 10.44 tells us that

detT D .detS/.det
p
T �T /:

The remarks just before this example pointed out that det
p
T �T � 0. Thus

whether detT is positive or negative depends on whether detS is positive or

negative. As we saw in the paragraph above, this depends on whether the

subspace on which S reverses direction has even or odd dimension.

Because T is the product of S and an operator that never reverses direction

(namely,
p
T �T ), we can reasonably say that whether detT is positive or

negative depends on whether T reverses vectors an even or an odd number of

times.
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Volume

The next result will be a key tool in our investigation of volume. Recall that

our remarks before Example 10.46 pointed out that det
p
T �T � 0.

10.47 jdetT j D det
p
T �T

Suppose V is an inner product space and T 2 L.V /. Then

jdetT j D det
p
T �T :

Proof

Another proof of this result is sug-

gested in Exercise 8.

By the Polar Decomposition (7.45),

there is an isometry S 2 L.V / such

that

T D S
p
T �T :

Thus

jdetT j D jdetS j det
p
T �T

D det
p
T �T ;

where the first equality follows from 10.44 and the second equality follows

from 10.45.

Now we turn to the question of volume in Rn. Fix a positive integer n for

the rest of this subsection. We will consider only the real inner product space

Rn, with its standard inner product.

We would like to assign to each subset � of Rn its n-dimensional volume

(when n D 2, this is usually called area instead of volume). We begin with

boxes, where we have a good intuitive notion of volume.

10.48 Definition box

A box in Rn is a set of the form

f.y1; : : : ; yn/ 2 Rn W xj < yj < xj C rj for j D 1; : : : ; ng;

where r1; : : : ; rn are positive numbers and .x1; : : : ; xn/ 2 Rn. The num-

bers r1; : : : ; rn are called the side lengths of the box.

You should verify that when n D 2, a box is a rectangle with sides parallel

to the coordinate axes, and that when n D 3, a box is a familiar 3-dimensional

box with sides parallel to the coordinate axes.
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The next definition fits with our intuitive notion of volume, because we

define the volume of a box to be the product of the side lengths of the box.

10.49 Definition volume of a box

The volume of a box B in Rn with side lengths r1; : : : ; rn is defined to

be r1 � � � rn and is denoted by volumeB .

Readers familiar with outer mea-

sure will recognize that concept

here.

To define the volume of an arbitrary

set � � Rn, the idea is to write � as a

subset of a union of many small boxes,

then add up the volumes of these small

boxes. As we approximate � more accurately by unions of small boxes, we

get a better estimate of volume�.

10.50 Definition volume

Suppose � � Rn. Then the volume of �, denoted volume�, is defined

to be the infimum of

volumeB1 C volumeB2 C � � � ;

where the infimum is taken over all sequences B1; B2; : : : of boxes in Rn

whose union contains �.

We will work only with an intuitive notion of volume. Our purpose in this

book is to understand linear algebra, whereas notions of volume belong to

analysis (although volume is intimately connected with determinants, as we

will soon see). Thus for the rest of this section we will rely on intuitive notions

of volume rather than on a rigorous development, although we shall maintain

our usual rigor in the linear algebra parts of what follows. Everything said

here about volume will be correct if appropriately interpreted—the intuitive

approach used here can be converted into appropriate correct definitions,

correct statements, and correct proofs using the machinery of analysis.

10.51 Notation T .�/

For T a function defined on a set �, define T .�/ by

T .�/ D fT x W x 2 �g:

For T 2 L.Rn/ and � � Rn, we seek a formula for volumeT .�/ in

terms of T and volume�. We begin by looking at positive operators.
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10.52 Positive operators change volume by factor of determinant

Suppose T 2 L.Rn/ is a positive operator and � � Rn. Then

volumeT .�/ D .detT /.volume�/:

Proof To get a feeling for why this result is true, first consider the special

case where �1; : : : ; �n are positive numbers and T 2 L.Rn/ is defined by

T .x1; : : : ; xn/ D .�1x1; : : : ; �nxn/:

This operator stretches the j th standard basis vector by a factor of �j . If B

is a box in Rn with side lengths r1; : : : ; rn, then T .B/ is a box in Rn with

side lengths �1r; : : : ; �nr . The box T .B/ thus has volume �1 � � ��nr1 � � � rn,

whereas the box � has volume r1 � � � rn. Note that detT D �1 � � ��n. Thus

volumeT .B/ D .detT /.volumeB/

for every box B in Rn. Because the volume of � is approximated by sums of

volumes of boxes, this implies that volumeT .�/ D .detT /.volume�/.

Now consider an arbitrary positive operator T 2 L.Rn/. By the Real

Spectral Theorem (7.29), there exist an orthonormal basis e1; : : : ; en of Rn

and nonnegative numbers �1; : : : ; �n such that Tej D �j ej for j D 1; : : : ; n.

In the special case where e1; : : : ; en is the standard basis of Rn, this operator

is the same one as defined in the paragraph above. For an arbitrary orthonor-

mal basis e1; : : : ; en, this operator has the same behavior as the one in the

paragraph above—it stretches the j th basis vector in an orthonormal basis by

a factor of �j . Your intuition about volume should convince you that volume

behaves the same with respect to each orthonormal basis. That intuition, and

the special case of the paragraph above, should convince you that T multiplies

volume by a factor of �1 � � ��n, which again equals detT.

Our next tool is the following result, which states that isometries do not

change volume.

10.53 An isometry does not change volume

Suppose S 2 L.Rn/ is an isometry and � � Rn. Then

volumeS.�/ D volume�:
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Proof For x; y 2 Rn, we have

kSx � Syk D kS.x � y/k
D kx � yk:

In other words, S does not change the distance between points. That property

alone may be enough to convince you that S does not change volume.

However, if you need stronger persuasion, consider the complete descrip-

tion of isometries on real inner product spaces provided by 9.36. According to

9.36, S can be decomposed into pieces, each of which is the identity on some

subspace (which clearly does not change volume) or multiplication by �1 on

some subspace (which again clearly does not change volume) or a rotation

on a 2-dimensional subspace (which again does not change volume). Or use

9.36 in conjunction with Exercise 7 in Section 9.B to write S as a product of

operators, each of which does not change volume. Either way, you should be

convinced that S does not change volume.

Now we can prove that an operator T 2 L.Rn/ changes volume by a factor

of jdetT j. Note the huge importance of the Polar Decomposition in the proof.

10.54 T changes volume by factor of jdetT j
Suppose T 2 L.Rn/ and � � Rn. Then

volumeT .�/ D jdetT j.volume�/:

Proof By the Polar Decomposition (7.45), there is an isometry S 2 L.V /

such that

T D S
p
T �T :

If � � Rn, then T .�/ D S
�p
T �T .�/

�
. Thus

volumeT .�/ D volumeS
�p
T �T .�/

�

D volume
p
T �T .�/

D .det
p
T �T /.volume�/

D jdetT j.volume�/;

where the second equality holds because volume is not changed by the isom-

etry S (by 10.53), the third equality holds by 10.52 (applied to the positive

operator
p
T �T ), and the fourth equality holds by 10.47.
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The result that we just proved leads to the appearance of determinants in

the formula for change of variables in multivariable integration. To describe

this, we will again be vague and intuitive.

Throughout this book, almost all the functions we have encountered have

been linear. Thus please be aware that the functions f and � in the material

below are not assumed to be linear.

The next definition aims at conveying the idea of the integral; it is not

intended as a rigorous definition.

10.55 Definition integral,
R

� f

If � � Rn and f is a real-valued function on �, then the integral of f

over�, denoted
R

� f or
R

� f .x/ dx, is defined by breaking� into pieces

small enough that f is almost constant on each piece. On each piece,

multiply the (almost constant) value of f by the volume of the piece, then

add up these numbers for all the pieces, getting an approximation to the

integral that becomes more accurate as � is divided into finer pieces.

Actually, � in the definition above needs to be a reasonable set (for

example, open or measurable) and f needs to be a reasonable function (for

example, continuous or measurable), but we will not worry about those

technicalities. Also, notice that the x in
R

� f .x/ dx is a dummy variable and

could be replaced with any other symbol.

Now we define the notions of differentiable and derivative. Notice that

in this context, the derivative is an operator, not a number as in one-variable

calculus. The uniqueness of T in the definition below is left as Exercise 9.

10.56 Definition differentiable, derivative, � 0.x/

Suppose � is an open subset of Rn and � is a function from � to Rn.

For x 2 �, the function � is called differentiable at x if there exists an

operator T 2 L.Rn/ such that

lim
y!0

k�.x C y/ � �.x/ � Tyk
kyk D 0:

If � is differentiable at x, then the unique operator T 2 L.Rn/ satisfying

the equation above is called the derivative of � at x and is denoted by

� 0.x/.
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If n D 1, then the derivative in the

sense of the definition above is the

operator on R of multiplication by

the derivative in the usual sense of

one-variable calculus.

The idea of the derivative is that

for x fixed and kyk small,

�.x C y/ � �.x/C
�
� 0.x/

�
.y/I

because � 0.x/ 2 L.Rn/, this makes

sense.

Suppose � is an open subset of Rn and � is a function from � to Rn. We

can write

�.x/ D
�
�1.x/; : : : ; �n.x/

�
;

where each �j is a function from � to R. The partial derivative of �j

with respect to the kth coordinate is denoted Dk�j . Evaluating this partial

derivative at a point x 2 � givesDk�j .x/. If � is differentiable at x, then the

matrix of � 0.x/ with respect to the standard basis of Rn contains Dk�j .x/ in

row j , column k (this is left as an exercise). In other words,

10.57 M
�
� 0.x/

�
D

0
B@
D1�1.x/ : : : Dn�1.x/

:::
:::

D1�n.x/ : : : Dn�n.x/

1
CA :

Now we can state the change of variables integration formula. Some

additional mild hypotheses are needed for f and � 0 (such as continuity or

measurability), but we will not worry about them because the proof below is

really a pseudoproof that is intended to convey the reason the result is true.

The result below is called a change of variables formula because you can

think of y D �.x/ as a change of variables, as illustrated by the two examples

that follow the proof.

10.58 Change of variables in an integral

Suppose � is an open subset of Rn and � W � ! Rn is differentiable at

every point of �. If f is a real-valued function defined on �.�/, then

Z

�.�/

f .y/ dy D
Z

�

f
�
�.x/

�
jdet � 0.x/j dx:

Proof Let x 2 � and let � be a small subset of � containing x such that f

is approximately equal to the constant f
�
�.x/

�
on the set �.�/.

Adding a fixed vector [such as �.x/] to each vector in a set produces

another set with the same volume. Thus our approximation for � near x using

the derivative shows that
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volume �.�/ � volume
��
� 0.x/

�
.�/

�
:

Using 10.54 applied to the operator � 0.x/, this becomes

volume �.�/ � jdet � 0.x/j.volume�/:

Let y D �.x/. Multiply the left side of the equation above by f .y/ and the

right side by f
�
�.x/

�
[because y D �.x/, these two quantities are equal],

getting

f .y/ volume �.�/ � f
�
�.x/

�
jdet � 0.x/j.volume�/:

Now break � into many small pieces and add the corresponding versions of

the equation above, getting the desired result.

The key point when making a change of variables is that the factor of

jdet � 0.x/j must be included when making a substitution y D f .x/, as in the

right side of 10.58. We finish up by illustrating this point with two important

examples.

10.59 Example polar coordinates

Define � W R2 ! R2 by

�.r; �/ D .r cos �; r sin �/;

where we have used r; � as the coordinates instead of x1; x2 for reasons

that will be obvious to everyone familiar with polar coordinates (and will

be a mystery to everyone else). For this choice of � , the matrix of partial

derivatives corresponding to 10.57 is
�

cos � �r sin �

sin � r cos �

�
;

as you should verify. The determinant of the matrix above equals r , thus

explaining why a factor of r is needed when computing an integral in polar

coordinates.

For example, note the extra factor of r in the following familiar formula

involving integrating a function f over a disk in R2:

Z 1

�1

Z p
1�x2

�
p

1�x2

f .x; y/ dy dx D
Z 2�

0

Z 1

0

f .r cos �; r sin �/r dr d�:
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10.60 Example spherical coordinates

Define � W R3 ! R3 by

�.�; '; �/ D .� sin' cos �; � sin' sin �; � cos'/;

where we have used �; �; ' as the coordinates instead of x1; x2; x3 for reasons

that will be obvious to everyone familiar with spherical coordinates (and will

be a mystery to everyone else). For this choice of � , the matrix of partial

derivatives corresponding to 10.57 is
0
@

sin' cos � � cos' cos � �� sin' sin �

sin' sin � � cos' sin � � sin' cos �

cos' �� sin' 0

1
A ;

as you should verify. The determinant of the matrix above equals �2 sin',

thus explaining why a factor of �2 sin' is needed when computing an integral

in spherical coordinates.

For example, note the extra factor of �2 sin' in the following familiar

formula involving integrating a function f over a ball in R3:

Z 1

�1

Z p
1�x2

�
p

1�x2

Z p
1�x2�y2

�
p

1�x2�y2

f .x; y; z/ dz dy dx

D
Z 2�

0

Z �

0

Z 1

0

f .� sin' cos �; � sin' sin �; � cos'/�2 sin' d� d' d�:

EXERCISES 10.B

1 Suppose V is a real vector space. Suppose T 2 L.V / has no eigenvalues.

Prove that detT > 0.

2 Suppose V is a real vector space with even dimension and T 2 L.V /.

Suppose detT < 0. Prove that T has at least two distinct eigenvalues.

3 Suppose T 2 L.V / and n D dimV > 2. Let �1; : : : ; �n denote the

eigenvalues of T (or of TC if V is a real vector space), repeated according

to multiplicity.

(a) Find a formula for the coefficient of zn�2 in the characteristic

polynomial of T in terms of �1; : : : ; �n.

(b) Find a formula for the coefficient of z in the characteristic polyno-

mial of T in terms of �1; : : : ; �n.
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4 Suppose T 2 L.V / and c 2 F. Prove that det.cT / D cdim V detT.

5 Prove or give a counterexample: if S; T 2 L.V /, then det.S C T / D
detS C detT.

6 Suppose A is a block upper-triangular matrix

A D

0
B@
A1 �

: : :

0 Am

1
CA ;

where each Aj along the diagonal is a square matrix. Prove that

detA D .detA1/ � � � .detAm/:

7 Suppose A is an n-by-n matrix with real entries. Let S 2 L.Cn/ denote

the operator on Cn whose matrix equals A, and let T 2 L.Rn/ denote

the operator on Rn whose matrix equals A. Prove that traceS D traceT

and detS D detT.

8 Suppose V is an inner product space and T 2 L.V /. Prove that

detT � D detT :

Use this to prove that jdetT j D det
p
T �T , giving a different proof than

was given in 10.47.

9 Suppose � is an open subset of Rn and � is a function from � to Rn.

Suppose x 2 � and � is differentiable at x. Prove that the operator

T 2 L.Rn/ satisfying the equation in 10.56 is unique.

[This exercise shows that the notation � 0.x/ is justified.]

10 Suppose T 2 L.Rn/ and x 2 Rn. Prove that T is differentiable at x and

T 0.x/ D T.

11 Find a suitable hypothesis on � and then prove 10.57.

12 Let a; b; c be positive numbers. Find the volume of the ellipsoid

n
.x; y; z/ 2 R3 W x

2

a2
C y2

b2
C z2

c2
< 1

o

by finding a set � � R3 whose volume you know and an operator

T 2 L.R3/ such that T .�/ equals the ellipsoid above.
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change of basis, 298
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conjugate transpose of a matrix,
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cube root of an operator, 224
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derivative, 327

Descartes, René, 1

determinant

of a matrix, 314

of an operator, 307

diagonal matrix, 155

diagonal of a square matrix, 147
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differentiable, 327

differentiation linear map, 53, 56,

59, 61, 62, 69, 72, 78,

144, 190, 248, 294

dimension, 44

of a sum of subspaces, 47

direct sum, 21, 42, 93

of a subspace and its

orthogonal complement,

194

of nullT n and rangeT n, 243

distributive property, 3, 12, 16, 56,

79

Division Algorithm for

Polynomials, 121

division of complex numbers, 4
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Halmos, Paul, 27

Hamilton, William, 262
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homogeneous system of linear

equations, 65, 90
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image, 62

imaginary part, 118

infinite-dimensional vector space,

31

inhomogeneous system of linear

equations, 66, 90

injective, 60

inner product, 166
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Jordan basis, 273

Jordan Form, 273
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