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Chapter one 

1. Vectors and Vector Spaces Unit objectiveUnit objectiveUnit objectiveUnit objective    
Define Scalars and Vectors in =>,  =@ and   =A 

Perform Addition and scalar multiplication Vectors in =>,  =@ and   =A 

Perform Scalar product of Vectors in =>,  =@ and   =A 

Perform Cross product of Vectors in =@  

Define Lines and planes 

Define the axioms of a vector space 

Define Subspaces, linear combinations and generators 

Differentiate Linear dependence and independence of vectors 

Define Bases and dimension of a vector space 

Define direct sum and direct product of subspaces 

1.1. Scalars and Vectors  

Definition: A physical quantity which has magnitude but not direction is called a scalar. 

                  Example: speed, distance, temperature, etc. 

Definition: A physical quantity which has both magnitude and direction is called a vector.  

                  Example: velocity, acceleration, force, etc. 

Notation: Vectors are mostly denoted by bold letters or arrow headed letters and in this chapter 

they are denoted by bold letters like u, v and w. 

1.1.1. Addition and Scalar Multiplication of Vectors  

Definition1.2.1 If u and v are vectors positioned so that the initial point of v is at the terminal 

point of u, then the sum u + v is the vector from the initial point of u to the terminal point of v.  

                                             

Graphically:                                             u + v            v             

 

Triangular law of addition of vectors 

                                      

 

 

Parallelogram law of addition of vectors 

U 
V 

U+V 
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                The difference of two vectors u and v graphically is shown as follows: 

 

 u-v u or          u     u - v    

 -v v v 

 

Note:  A zero vector is denoted by bold zero or 0. 

Definition 1.2.2 If C is a scalar and u is a vector, then the scalar multiple Cu is the vector 

                          whose length is DCD times the length of u and having the same direction as u 

                           if C > 0 and opposite in direction to u if C < 0.  

Note: If C = 0 or u = 0 then C u = 0 

1.1.1 Component form of vectors in ℝ 2
 , ℝ 3GHI ℝ n

 

1.1.2 Component form of a vector in ℝ 2
: A vector u in ℝ 2 

is given by u = (a1, a2) 

where the entries a1, a2 are called components of the vector u.  

Definition: Let a = (a1, a2) and b = (b1, b2) be vectors in ℝ2
. Then:  

1. a + b =  (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)  (addition of vectors) 

2. a– b = (a1, a2) – (b1, b2) = (a1 – b1, a2 – b2)    (subtraction of vectors) 

 

Figure (a) Figure (b) 

3. a=b if and only if a1 = b1 and a2 = b2    (equality of vectors) 

4. C a = C (a1, a2) = (C a1, C a2)     ( multiplying a vector a by scalar C) 

Theorem1.2.1 For any vectors u, v and w in ℝ 2
 and any scalars C and J the following relations 

hold true:  

a) u + v = u + v 

b) (u + v) + w = u + (v + w) 
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c) u + 0 = u 

d)  C (Ju) = (CJ)u = J (C u) 

e) C (u + v) = C u + C v 

f) (C +  J)u = C u + Ju 

g) u + (-u) = 0 

h) 1u = u 

Example: If u = (1, 2) and v = (4, 5), then find: 

a) u + v                        b) v – u                             c) 2 u + 3 v 

Solution:  

a) u + v = (1, 2) +  (4, 5) = (1 + 4, 2 + 5) = (5, 7) 

b) v – u =   (1, 2) - (4, 5) = (1 - 4, 2 - 5) = (-3, -3) 

c) 2 u + 3 v = 2(1, 2) + 3(4, 5) = (2, 4) + (12, 15) = (14, 19) 

Component form of vectors in ℝ 3
:  A vector u in ℝ 3

is given by u = (a1, a2, a3) where the 

entries a1, a2 and a3 are called components  

                                                         of the vector u. 

Definition1.2.4 Let u = (a1, a2, a3) and v = (b1, b2, b3) be vectors in ℝ 3
.  

Then: 

a) u + v = (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2 + a3 + b3)     (addition of vectors) 

b) u – v = (a1, a2, a3) – (b1, b2, b3) = (a1 – b1, a2 – b2 , a3 - b3) (subtraction of vectors) 

c) u = v if and only if a1 = b1,  a2 = b2, and a3 = b3    (equality of vectors) 

d) C u = C (a1, a2, a3) = (C a1, C a2, C a
3
)     (scalar multiplying a vector u by a scalar C) 

Definition 1.2.5 The magnitude, length or nor m of a vector u = (a1, a2, a3) is denoted by KLK, 

and defined by: KLK = NOP> + O>> + O@> 

It is similar for vectors in ℝ2.  
 

Example: If u = (3, 4, 5), then findKLK in 3-space. 

Solution: KLK = NOP> + O>> + O@> = Q3> + 4> + 5> = Q9 + 16 + 25 = Q50 = 5Q2 

Theorem1.2.3 For every vector u and any scalar C the following properties hold true: 

a) KLK ≥ T,  

b) KLK = T  if and only if u = 0 

c)   KCLK = DCDKLK 
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              Proof: left as an exercise for the students. 

Definition: A vector u is said to be a unit vector if KLK = U 

         For any vector u, the unit vector in the direction of u is given by: 

                                           
PKLK V = VKLK . 

Example: For a vector u = (2, 3, 5), find a unit vector in the direction of u. 

Solution: The unit vector in the direction of u is given by  
VKLK . 

                        KLK = Q2> + 3> + 5> = Q38 . 

                         Hence 
VKLK = PQ@W (2, 3, 5) = ( >Q@W , @Q@W , XQ@W) 

Exercise:  

1. Find the norm of u if u = (
Y>Z , @Z , [Z). 

2. Find the unit vector in the direction of v if v = (2, 3, 6). 

There are two especial unit vectors in ℝ 2
and three in ℝ3 

sometimes called standard unit 

vectors.
 

These are  i = (1, 0),   j = (0, 1) and i = (1, 0, 0)  j = (0, 1, 0)  k = (0, 0, 1) respectively. These 

unit vectors are used in simplifying the description and operations on vectors. We can write any 

vectors in ℝ 2
 and ℝ3

 as follows:  

a) u = (a1, a2)   = (a1, 0) + (0, a2) = a1 (1, 0) + a2 (0, 1)  = a1i+ a2j     

b) u = (a1, a2, a3)   = (a1, 0, 0) + (0, a2, 0) + (0, 0, a3)  = a1 (1, 0, 0) + a2 (0, 1, 0) + a3 (0, 0, 1)  

= a1i + a2j + a3 k 

Note: Vectors given in component form can be expressed by using the unit vectors i, j and k.  

Example: Describe the following vectors by using the appropriate unit vectors. 

a)  u = (4, 5)  

b) v = (1, -2, 9)  

Solution:   

               a)  u = (4, 5)                                    b) v = (1,-2,9) 

                  = 4(1, 0) + 5(0, 1)                           =1(1, 0, 0) - 2(0, 1, 0) +9(0, 0, 1) 

                  = 4i +5j                                           = i -2j +9k  

    The position vector of a point P(x1, y1, z1) in ℝ3
 is the vector \]^̂^̂^̂_ = ( `P, aP, bP) whose 

initial point is the origin O and whose terminal point is P. 
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1.2.  Dot (Scalar) Product 

In this and the following section, we shall consider two kinds of products between vectors that 

originate in the study of mechanics, electricity and magnetism. The first of these products is 

known as the dot or inner or scalar product, which yields a scalar. 

Definition: Let V = (OP, O>, … , OA) Ode f = (gP, g>, … , gA) be two vectors in n-

space ( ℝA). The dot product of u and v is given by u⋅v = OPgP + OPgP + ⋯ +OAgA. 

Example: Let u = (a1, a2, a3) and v = (b1, b2, b3) be two vectors in 3-space. The dot product of u  

and v is denoted by u⋅v and defined as:  

                                                u⋅v = a1b1 + a2b2 + a3b3  

Note: The dot product of a vector u with itself is given by:  

                u⋅u = a1a1 + a2a2 + a3a3  

                      = OP> + O>> + O@>   = KLK>  

                              Hence KLK = QL ⋅ L 

Example: For vectors u = (1, -2, 4) and v = (3, 0, 2) find u⋅v. 

             Solution:  u⋅v = (1, -2, 4)  ⋅(3, 0, 2)   = (1) (3) + (-2) (0) + (4) (2)  = 3 + 0 + 8   = 11 

Properties of dot product 

1. u⋅v = v⋅u (dot product is commutative) 

2. u⋅(v + w) = u⋅v + u⋅w (left distributive property of dot product over addition of 

vectors) 
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3. (w⋅u)⋅v = w⋅(u⋅v) = u⋅(w⋅v)(Associative property of dot product) 

4. (u + v) ⋅w = u⋅w +v⋅w(right  distributive property of dot product over addition of 

vectors) 

Definition1.3.2 Two vectors u and v are said to be : 

1. parallel if there exists a scalar j ≠ 0 such that u = j v 

2. in opposite direction if there exists a scalar j < 0 such that u = j v. 

Note: If two vectors u and v are parallel it is denoted by u ⁄ ⁄ v and related by u = j v for  

          some scalar j ≠ 0 .  

Example: Verify whether the following three given vectors are parallel or not. 

             u = (3, 2, -1)      v = (-6, -4, 2) and   w = (
@> , 1, YP> ). 

Solution:1)  u and w are parallel because u= 2(@> , 1, YP> ) =  2w or w= P>u. 

              2)  V and v are also parallel because u= YP> v or v= −2u but opposite in  direction.  

              3) v and w are also parallel because v= −4w mn o =  − Ppv but opposite in  direction. 

Exercise: Find a vector having the same direction as u = (-2, 4, 2) but has magnitude 6. 

Consider two vectors u and v.  The square of the norm of their sum is given as follows: 

                                          KV + fKq = (V + f) ⋅  (V + f)        =  V ⋅  (V + f) + f ⋅  (V + f) 
                                                                                                         =  V ∙ V + V ∙ f + f ∙ V + f ∙ f 
                                                                                =  KVKq + qV ⋅ f + KfKq 

And hence we see that KV + fKq = KVKq + KfK q  if and only if  V ⋅ f = T 

Definition1.3.3 Two vectors V and f are called orthogonal  

                         (Perpendicular) to each other if and only if V ⋅ f = T 
Example: Let u = (2, 2, -1) and v = (5, -4, 2) then show that u⋅v=0 

Solution: u⋅v=  (2, 2, −1) ⋅ (5, −4, 2) = 0  
Exercise  

a. Find the value of  b so that the vectors u = (-2, 4, 2) and v = (b, b
2
, b) are orthogonal. 

b. Find two vectors orthogonal to V = (1,2,3) and each of their components are non-zero. 

                 Angle Between Two Vectors 

Theorem1.3.1 If s is the angle between two vectors V and f then V ⋅ f = KVKKfKtuvw 
Proof: Applying the law of cosine to ∆yz{  in the figure below we get:  
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|z{^̂ ^̂ _̂|> = |y{^̂^̂^̂_|> + |yz^̂^̂ _̂|> − 2|y{^̂^̂^̂_||yz^̂ ^̂ _̂| cos s -------(1) 

But from the figure z{^̂ ^̂ ^̂ _ = V − f, yz^̂^̂ _̂ = f and y{^̂^̂^̂_=u and hence equation (1) becomes: 

 KL − }Kq = KLKq+K}Kq − qKLKK}Ktuvw ----------------------------------- (2)  

But KL − }Kq = KLKq − qu⋅v+K}Kq(~�n��a �ℎ��? ) and substituting this in (2) we get: 

u⋅⋅⋅⋅v=ǁuǁǁvǁtuvw 

 

Corollary 1.3.1 If s is the angle between the vectors u and v then:  cos s = (V⋅f)KLKK}K  
Example:  

a) Find the angle between u = (1, -2, 2) and v = (-3, 6, -6)  

b) If KLK = �, K}K = �  and the angle between them is 
�@ = 60° then find u⋅v 

Solution: a) u= (1,-2, 2) and v= (-3, 6,-6) 

                  KLK = K(1, −2,2)K   = N1> + (−2)> + 2>    = Q9 = 3 

          K}K = K(−3,6, −6)K  =  N(−3)> + (6)> + (−6)>   = Q81 = 9 

              u⋅v = (1)(-3)+(-2)(6)+(2)(-6) = -3-12-12 = -27          
And   cos s = (V⋅f)KLKK}K = Yq�q�        = −U  ⇒ w = tuvYU(−U)      = U�T° = � in radian measure 

Exercise  

1. Find the angle between the X- axis and v = (1, -2, -2)  

2. If the vertices of a triangle are z(1, −3,2), {(2,0, −4)Ode =(6, −2, −5) verify the type 

of the triangle. 

3. If u = (2,-3,4) and v = (-1,2.0), and w = (5,-1,2) find the angle between u-2v and u+2w  
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Definition: Two vectors u and v are said to be ortho-normal if KLK ⋅ K}K = U. 

1.3. Orthogonal projection 

For two vectors u and v such that v≠ 0, consider the following figure: 

 

 

       V V − Vf V� �� Orthogonal projection of vector u onto v 

       Vf  v 

Now Vfhave two properties: 

1. Vf is parallel to v denoted by Vf//f 

2. V − Vf is perpendicular to v denoted by(V − Vf) ⊥ f. 

From (1) since Vf//f then there exists � ∈ ℝ such that Vf = �f and from (2)  

since (V − Vf) ⊥ f, then we have  (V − Vf) ⋅ f = 0 that is : V ⋅ f − Vf ⋅ f = 0 ⇒  V ⋅ f = Vf ⋅ f ⇒  V ⋅ f = (�f) ⋅ f ⇒  V ⋅ f = �K}Kq ⇒   � = V⋅fK}Kq 

Then Vf = �f = V⋅fK}Kq f ----------------------------------------- (1) 

Definition: Let V and f be two vectors such that V ≠ T and f ≠ T then the projections of vector 

u on to vector v  Vf,   and vector f  

                     onto V,  fV   are given by:   

                                                                Vf = V⋅fK}Kq f  and similarly   fV = V⋅fKLKq V 

Example: Let u = (1, 2, -1) and v = (3, 0, -2) then find Vf and fV 

 Solution: u⋅v = 3+0+2  = 5         

      KVKq = 6  GHI K}Kq = 13 Vf = V⋅fK}Kq f            = �U/ (/, T, −q) Ode   fV = V⋅fKLKq V    = �U/ (U, q, −U) 
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Exercise:   

1. Let V =  (1,3, −4) Ode  f =  (5, −1,0). Find the projection of vector � onto f and f 

onto vector V. 

2. Find the angle between the following pairs of vectors: 

a. u=i + j + k, v=2i + j – k 

b. u= 2i − j + 3k, v= 2i + j + 3k 

c. u=3i − j + k, v = � − 2j + 3k 

d. u=i − 2j + k, v= 4i − 8j + 16k 

3.  Given u = 2i − 3j − 3k, v = i + j + 2k, and w = 3i −2j − k, find the angles between the 

following pairs of vectors: 

a. u + v and v – 2w 

b. 2u − w and, u + v – w 

c. v + 3w and u – 2w. 

4. Find the component of the force F = 4i + 3j + 2k in the direction of the vector i + j + k. 

5. Find the component of the force F = 2i + 5j − 3k in the direction of the vector 2i + j − 2k. 

6. Given that u = i + 2j + 2k and v = 2i − 3j + k, find 

a. the projection of u onto v, and 

b. the projection of v onto u. 

7. Given that a = 3i + 6j + 9k and b = i + 2j + 3k, 

a. Find the projection of a onto the line of b and 

b.  Compare the magnitude of a with the result found in (a) and comment on the result. 

1.4. Direction angles and Direction cosines 

Definition: The direction angles of a non-zero vector u are the angles j, �  Ode � in the interval 

[0, �] that u makes with the X-, Y- and Z-axes respectively as in the figure below:
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The cosine of these direction angles, �m� j,  �m� �  Ode �m� � are called direction cosines of the 

vector u.  

From the figure above we have: 

cos j = V ⋅ �KLKKiK = OPKLK               cos � = V ⋅ �KLKKjK = O>KLK   
                                                                                        cos � = V ⋅ �KLKKkK = O@KLK  

⇒        �OP = KLK cos jO> = KLK cos � O@ = KLK cos �� 
Exercise: 

1. Find the direction cosines and corresponding angles for the following vectors: 

a. i + j + k. 

b. i − 2j + 2k.  

c. 4i − 2j + 3k. 

2.  Find the direction cosines and corresponding angles for the following vectors: 

a. i − j − k.  

b.  2i + 2j − 5k.  

c.  −4j – k   

From the equations above we observe that:  V =  (OP, O>, O@) = (KLK cos j , KLK cos � , KLK cos �) = KLK(cos j , cos � , cos �)        ⇒  VKLK = (cos j , cos � , cos �) which indicates that the direction cosines of u are the 

components of the unit vector in the direction of u. 

Example: Find the direction angles of the vector u = (6, 2, 3). 

Solution: cos j = V⋅�KLKK�K = ��KLK  =   [�       
                 cos � = V ⋅ �KLKKjK = O>KLK  = 27       
                cos � = V ⋅ �KLKKkK = O@KLK = 37       
Exercise: If a vector has direction angles j = �p  Ode   � = �@ then find the third direction angle �. 
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1.5. Cross product of vectors 

For two non-parallel vectors u and v, how can we find a non-zero vector w which is orthogonal 

to both u and v? This problem has a standard solution called the cross product of u and v 

denoted by V × f. 

Definition: If V =  (OP, O>, O@) and f =  (gP, g>, g@) are two vectors, then the cross product of u 

and v is defined as: V × f = (O>g@ − O@g>, O@gP − OPg@, OPg> − O>gP) 

Remark:  

1. The cross product of two vectors is a vector.   

2. An easy way to remember the cross product is as follows: 

For  V =  (OP, O>, O@) = OP� + O>� + O@�  and  

       f =  (gP, g>, g@) = gP� + g>� + g@�            
Then by repeating the first and the second column we get:  

                                                  

� � �  �   �OP O> O@ OP O>gP g> g@ gP g> = V × f 

⇒   V × f = (O>g@ − O@g>)� + (O@gP − OPg@)� + (OPg> − O>gP)� 

3. In determinant form: 

V × f = ¡ � � �OP O> O@gP g> g@¡ = ¢O> O@g> g@¢ � − ¢OP O@gP g@¢ � + ¢OP O>gP g>¢ � 

= (O>g@ − O@g>)� − (OPg@ − O@gP)� + (OPg> − O>gP)� = (O>g@ − O@g>)� + (O@gP − OPg@)� + (OPg> − O>gP)� 

Example: Let V =  � − 2� + � and f = −� + 2� + 5� then find V × f. 

Solution: V × f = £(−2)(5) − (1)(2)¤� + £(1)(−1) − (1)(5)¤¥ + £(1)(2) − (−2)(−1)¤¦ 

                           = −12� − 6¥  

Theoerm1.4.1 Let V, f and  o be vectors in ℝ/ and � ∈ ℝ, then: 

1. V × f ⊥ V and V × f ⊥ f 

2. V × f = −f × V 

3. V × V = T 

4. (�V) × f = �(V × f) = V × (�f) 

5. KV × fKq = KVKqKfKq − (V ⋅ f)q 
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6. (V + f) × o = V × o + f × o 

7. V ⋅ (f × o) = f ⋅ (o × V) = o ⋅ (V × f) 

The proof is left for the students as an exercise. 

Theorem1.4.2 If s is the angle between the vectors u and v where 0 ≤ s ≤ � then: KV × fK = KVKKfK sin(s) 

Proof: From the definition of cross product and length of a vector we have:  KV × fK> = (O>g@ − O@g>)> +   (O@gP − OPg@)> +  ( OPg> − O>gP)>      = O>>g@> − 2O>g@O@g> + O@>g>> + O@>gP> − 2OPgPO@g@ + OP>g@> + OP>g>> − 2OPgPO>g> + O>>gP>
 = ¨O12 +  O22 + O32© ªg12 +  g22 + g3)2« − (O1g1 + O2g2 + O3g3)>    = KVK2KfK2 − (V ⋅ f)2  

= KVK2KfK2 − KVK2KfK2 cos2 s 

                     = KVK2KfK2(1 − cos2 s) 

                     = KVK2KfK2 sin2 s    ⇒ KV × fK> = KVK>KfK> sin> s 

Since sin s ≥ 0 �mn 0 ≤ s ≤ � ,we can take square root and hence we have KV × fK =KVKKfK sin s 

Corollary: Two non-zero vectors u and v are parallel if and only if KV × fK = 0.  

Proof: left as an exercise 

 

1.6.  Application of cross product  

1. Consider the triangle whose edges are the vectors u and v as in the figure below:         f                 � + ~                    KfKArea of ∆= P> gO�� × ℎ��¬ℎ� = P> KVKKfK sin s   since                     

     ℎ��¬ℎ� =  KfK sin s      = P> KV × fK 

 

 

 

2. Let u and v be vectors in ℝ/ and consider the figure below: sin s = ℎKVK ⇒ ℎ = KVK sin s 

      

      u       h                                Area=  gO�� × ℎ��¬ℎ� = KVKKfK sin s = KV × fK 

    s   

                v 

Thus  KV × fK is the area of the parallelogram spanned by the vectors u and v.  



 13 

3. For vectors u, v and w in ℝ/ as in the figure below; area of the parallelogram is given by                     ­® = Kf × oK              and         cos ∅ = °KVK  ⇒ ℎ = KVK cos ∅ 

 

                       

Volume = gO�� On�O × ℎ��¬ℎ�  = Kf × oKKVK cos ∅  = ±KVKKf × oK cos ∅  = ±V ∙ (f ×o) = DL ∙ (} × ²)D 
Hence volume of the parallelepiped spanned by the vectors u, v and w is  ³ = DV ∙ (f × o)D 
Note: The expression V ∙ (f × o) is called triple scalar product of u, v and w. 

Example: Find the volume of the parallelepiped spanned by V = (2, −1, −1),  f = (1, 1, 3) and o = (−1, 1, 5) 

Solution: � × ~ = ¡ �        ¥            ¦2     − 1    − 1 1         1       3  ¡  =  −2� –  7¥ + 3¦ 

Therefore, volume µ = Do. (V × f)D = D(−U)(−q) + U(−�) + �(/)D = UU unit cube 

Exercise:  

1. Determine the area of a triangle with vertices ¶P(1,5,2),   ¶>(−1,3,0)and ¶@(0,1,4) 

2. For vectors u, v and w in ℝ@ show that: 
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a) V × (f × o) = (V ∙ o)f − (V ∙ f)o 

b) (V × f) × o = (V ∙ o)f − (f ∙ o)V 

1.7.  Lines and planes in ℝ/. 
Equations of lines in space 

Let ℓ be a line in ℝ/ and ¶· = (`·, a·, b·) be a point on ℓ and v be a vector which is parallel to ℓ 

as in the figure below:  

 

 

 

Let z be arbitrary point on ℓ so u is the vector  z·z, then by triangular method we have: = = =· + V 

Since vector u is parallel to vector v we have V = �f and hence the above equation becomes = = =· + �f … … … … … … … … … … … … … … … … (1) 

This equation is called vector equation of the line ℓ.  

If f =  (O, g, �) then �f = (�O, �g, ��) and = = (`, a, b), =· = (`·, a·, b·) and hence equation 

(1) becomes: (`, a, b) = (`·, a·, b·) + �(O, g, �) (`, a, b) = (`· + �O, a· + ��, b· + ��) 

⇒ ¸¹ = ¹T + ºG» = »T + º¼½ = ½T + ºt � … … … … … … … … … (2) is called the parametric equation of ℓ. 

Example: Find vector equation and parametric equation of a line passing through (5,1,3) and 

                 parallel to the vector � + 4� − 2�. 



 15 

Another way of describing ℓ is to eliminate the parameter t from equation (2) above;  

                              that is: 

` = `· + �O ⇒ � =  ` − `·O ,     O ≠ 0
a = a· + �g ⇒ � = a − a·g ,     g ≠ 0
b = b· + �� ⇒ � = b − b·� ,      � ≠ 0

 

Then for O, g, � ≠ 0 we have: ¹Y¹TG = »Y»T¼ = ½Y½Tt … … … … … … … … … … … … … . (3) is called symmetric 

equation of ℓ 

Exercise:  

a) Find the parametric equation of the line that passes through the point  z· = (2,4, −3) and  zP = (3, −1,1). 

b) At what point does this line intersect the ¾¿ − ¶ÀOd�?  Properties of a line inProperties of a line inProperties of a line inProperties of a line in ℝ/     
Let ℓP: =(j) = =· + jf and ℓ>: =′(�) = =·′ + �f′  be two distinct lines, then: 

1. ℓPand ℓ> will intersect if and only if there are j and � in ℝ so that =(j) = =′(�) 

2. The lines ℓPand ℓ> are parallel iff their direction vectors are parallel. That is;   

ℓP//ℓ> iff  f//f′ 

3. If ℓPand ℓ> are intersecting lines, then the angle between ℓPand ℓ> is the angle between 

their direction vectors. That is: 

cos s = f ∙ f′KfKKf′K 

4. Non-parallel and non-intersecting lines are called skew lines. 

5. ℓPis perpendicular to ℓ> iff f is  perpendicular to f′. That is: 

ℓP ⊥ ℓ> ���  f ⊥ f′  �. � f ∙ f′ = 0  
Example: Find the point of intersections of the lines ℓP: =(j) = (� − 6� − 1�) + j(� + 2� + �) 

and 

 ℓ>: =′(�) = (4� − 2�) + �(2� + 2� + 2�) and find the angle between them. 

Solution: =(j) = =′(�) ⇒ (� − 6� − 1�) + j(� + 2� + �) = (4� − 2�) + �(2� + 2� + 2�) 
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¸ 1 + j = 2� … … … … … .1−6 + 2j = 4 + 2� … … .2−1 + j = −2 + 2� … … . .3� 
Multiplying equation (1) by 2 and subtracting equation (2) we get 8 = −4 + 2� which 

implies � = 6. And also j = 11 
Therefore, the point of intersection is (12, 16, 10). 

The angle between the two lines is the same as the angle between their direction vectors   ~P =(1,2,1) Ode ~> = (2,2,2). 

That is, let it be s. Then   cos s = (~1⋅~2)K~1KK~2K  = �Q�q = ��Qq = �/Qq 

 s = �m�YP( �/Qq) 

  

1.8.  Distance between a point and a line 

Theorem1.5.1.2.1 Let ℓ be a line with vector equation z = z· + �f  and let { be any point not 

on ℓ, then the distance between { and ℓ is given by:  

e = |z·{^̂^̂ ^̂ _̂ × f|KfK  

Example: Find the distance between the point {(2, −1,3) and the line with symmetric 

equation  ÂYP> = ÃÄP@ = YÅ[ . 

Solution: z· = (1, −1,0) from the symmetric equation of the line and ~ =  (2, 3, −6) 
So the distance between the point Q(2,-1,3) and the line is e = |ÆÇÈ^̂^̂^̂^̂_×f|KfK   where z·{^̂^̂ ^̂ _̂ = (1,0,3) 

and  KfK = 7 

                                                                                              d = 
K(P,·,@)×(q,/,Y�)KZ = 2.18 �d��. 

Exercise: Let ℓ be a line passing through z(1, 2, 1) and {(3, −1, 4) then find the distance 

between ℓ and the origin.  

1.9.  Planes  

A plane in space is determined by a point z·(`·, a·, b·) on the plane and a vector É that is 

orthogonal to the plane. In the figure below let z(`, a, b)is a point on the plane �. 
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                          Since = − =· is perpendicular to Ê, we have: 

                                                                                                  Ê ∙ (= − =·) = 0.  
This implies Ê ∙ = = Ê. =· … … … … … . . (1)   is vector equation of the plane �. 

Remark: 

1. Let Ê = (O, g, �),  = =  (`, a, b) and =· = (`·, a·, b·) then equation (1) becomes: (O, g, �) ∙ (`, a, b) = (O, g, �) ∙ (`·, a·, b·) ⇒ O` + ga + �b = O`· + ga· + �b· ⇒ O(` − `·) + g(a − a·) + �(b − b·) = 0 … … … … … … … . (2)  

       which is called the scalar equation of the plane �.  

2. Let e = O`· + ga· + �b·, then equation (2) becomes: O` + ga + �b = e … … … … … … . (3)  Ëℎ��ℎ �� called the standard equation of the plane �. 
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Example:  

1. Find the equation of a plane containing the point z(2,4,1) and normal vector Ê(2,3,4). 

2. Determine the line of intersection of the planes;  �P: 2` − a + b = 4 and �>: ` + 3a − b = 2 

Solutions: 

1. Let =(`, a, b) be an arbitrary point on the plane containing the point P(2, 4, 1) and 

normal vector N(2, 3, 4). 

             Then the equation of the plane is (`, a, b) ⋅ (2, 3, 4) =  (2, 4, 1) ⋅ (2, 3, 4) 

                   2` + 3a + 4b = 20 is the standard equation of the plane. 

2. To find the line of intersection of the planes �P: 2` − a + b = 4 and �>: ` + 3a −b = 2 

Ì2` − a + b = 4 ` + 3a − b = 2 �……………..(1). 

Here we have two equations with three variables and it is impossible to solve for the 

three variables at same time. 

 So, we give some value for one of the three variables and solve for the other two in 

order to get two intersection points of the two planes which can help us to find the 

equation of the line of intersection. 

Let  b = 0. Hence (1) becomes Ì2` − a = 4 … … … . . (O) ` + 3a = 2 … … … . (g) �. Multiplying equation (a) 

by 3 and adding the result to (b)  we get  ` = 2 which implies a = 0 . Thus, zP(2, 0, 0)   is one of the intersection point of the two planes. 

Again let b = −1. Then equation (a) becomes Ì2` − a = 5 ` + 3a = 1 �. Solving these 

simultaneously we get ` = P[Z  and a = − @Z  so z>(P[Z , − @Z   , −1) is another point of 

intersection of the two planes. Therefore, the equation of the line of intersection of the 

two planes is given by (`, a, b) =  (2, 0, 0)  + �(z> − zP) for an arbitrary point (x, y, 

z) on the line of intersection of the two planes. 
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So, (`, a, b) = (2 − >Z  �, − @Z  t, −t  ) ⇒ Í¹ = q − q�  º» = − /�  Î½ = −º
�, tÏℝ  is the parametric 

equation of the line of intersection of the two planes. 
 

 Exercise:  

1. Find the equation of the plane that contains the points z(1,3,2), {(3, −1,6) and =(5,2,0)  

which are not collinear but coplanar.  

2. Find the point at which the line with parametric equation ` = 2 + 3�, a = −4�, Odeb =5 + � intersects the plane  �: 4` + 5a − 2b = 18 

3. Find the angle between the planes �P: ` + a + b = 1 and �>: ` − 2a + 3b = 1 and find 

the symmetric equation for the line of intersection ℓ of these planes. 

1.10. Distance between a point and a plane 

Consider the following figure;                                                zP 

                    z·zP^̂ ^̂ ^̂ ^̂ _       s     e       z·                Ê                           
 

 

 

From the figure we have:   cos s =     Ð|ÆÇÆ�^̂ ^̂ ^̂ ^̂ ^̂_|                 ⇒ e = |z·zP^̂ ^̂ ^̂ ^̂ _| cos s 

In addition to this;  Ê ∙ z·zP^̂ ^̂ ^̂ ^̂ _ = KÊK|z·zP^̂ ^̂ ^̂ ^̂ _| cos s       ⇒ Ê ∙ z·zP^̂ ^̂ ^̂ ^̂ _ = KÊKe 

⇒ e =  ÑÊ ∙ z·zP^̂ ^̂ ^̂ ^̂ _ÑKÊK = O`· + ga· + �b· + eQO> + g> + �>  

 

Example: Find the distance between the planes 3` + a − 4b = 2 and the point (1,-1, 0). 

Solution: e =  ÑÒ∙ÆÇÆ�^̂ ^̂ ^̂ ^̂ ^̂_ÑKÒK = �ÂÇÄÓÃÇÄÔÅÇÄÐQ�ÕÄÓÕÄÔÕ  where Ê = (3,1, −4)  and z· = (1, −1,0) = ( `·, a·, b·) 
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1.11. Vector Space 

Definition: A vector space is a non-empty set µ of elements called vectors together with the 

operations of addition (+) and scalar multiplication (∙) over a field F such that the following 

axioms (laws) holds.  

For all vectors V, f, o ∈ µand scalars O, g ∈ Ö we have: 

1. V + f ∈ µ (closure property of vector addition) 

2. V + f = f + V  (commutativity of vector addition ) 

3. V + (f + o) = (V + f) + o   (associability of  vector addition)  

4. ∃T ∈ µ ∋: V + T = V = T + V    (additive identity) 

5. ∃ − V ∈ µ ∋: V + (−V) = T = (−V) + V    (additive inverse) 

6. OV ∈ µ (closed under scalar multiplication) 

7. O(V + f) = OV + Of  (distributive property of scalar over  sum of vectors ) 

8. (O + g)V = OV + gV  (distributive  vector over sum of scalars law) 

9. (Og)V = O(gV) (associative law) 

10. 1V = V(monoidal law) 

Remark: A field F is to mean like ℚ, ℝ,   etc… 

Example: 

1. Let ℝH,for positive integer  H(n-space of real numbers) and let V be a set of n-tuples of 

elements of ℝ.  

We can define operations as follows: 

Addition: (OP, O>, … … … OA) + (gP, g>, … … … gA) = (OP + gP, O> + g>, … … … OA + gA) 

and scalar multiplication j(OP, O>, … … … OA) = (jOP, jO>, … … … jOA) and the zero vector 

is T = (0, 0, … … … 0)then show that ℝH
is a vector space. 

2. Let ]H(�)be the set of polynomials with degree less than or equal to n of the form: ](�) = O· + OP� + O>�> + O@�@ +  … … … + OÚ�Ú , � ∈ ℝ, � ≤ d and we define operations 

as follows: 

Addition: usual addition of polynomials and scalar multiplication: multiplication of a 

polynomial by a number; the zero vector is T=0 then show that ]H(�)is a vector space. 

                Some properties of vector space 

For all vectors V, f, o ∈ µand scalar j ∈ Ö we have: 

1. If V + o = f + o  then  V = f 
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2. jT = T 
3. 0V = T 
4. If j ≠ 0 Ode jV = T �ℎ�d V = T 
5. (−jV) = j(−V) 

Proof: Exercise 

1.12. Sub Spaces  

Definition: A sub set o of the vector space µ is called a subspace of µ  if o is also a vector  

                  space under the addition and scalar multiplication defined on µ.  

Theorem: For a subset o of the vector space µ, o is a subspace of µ iff: 
1. T ∈ o �mn T ∈ µ 

2. ∀ V, f ∈ o,   V + f ∈ o 

3. ∀V ∈ o Odej ∈ Ö, jV ∈ o 

Example: Consider the vector space ℝq; then show that the subset o = Ü(0, a)/ a ∈ ℝÝis a 

subspace of  ℝq. 

Solution:  i. (0, 0) ∈ Þ so W≠ ∅ ii. ß�� ËP =  (0, aP) and Ë> =  (0, a>) be in W. Then ËP + Ë> = (0, aP + a>) for some aP, a> ∈ ℝ which implies ËP + Ë>Ï W. iii. ß�� j Ï ℝ Ode Ë = (0, a)g� �d Þ. jË = (0, ja)ÏÞ for some aÏℝ. 
Therefore, W is a subspace of   ℝq 

Linear Combinations  

Definition: Let µ be a vector space. We say that a vector f ∈ µ is a linear combination of 

vectors VU, Vq, … … … VHif there exists OP, O>, … … … OA ∈ Ö such that: f = OPVU +  O>Vq +  … … … + OAVH 

Example: Consider the vector space  ℝq.Let f = (8, 13), VU = (1, 2)OdeVq = (2, 3) then 

express f as a linear combination of VUOdeVq.  

Solution: Let  jP,j>  ∈ ℝ such that  ~ = jP VU  +  j> Vq  (8, 13) =  jP (1, 2) +   j> (2,3) 

                                                                =    (jP , 2jP  ) + ( 2j> , 3j> )                   
                                                                = ( jP + 2j> , 2jP + 3j>  )                     
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Ì jP + 2j> = 8 … … (1)2jP + 3j> = 13 … … . (2)� 
Multiplying equation (1) by -2 and adding the result to equation (2) gives j> = 3 OdejP =  2. 

Therefore, f is the linear combination of VU GHI  Vq  . 
Example: Consider the space z(�) (space of all polynomials). Let f = 5�> + 2� + 1, and �P = �> + �, �> = � + 1, �@ = �> + 1 then express f as a linear combination of VU, VqOdeV/. 

 Solution: Let jP , j> , j@ Ï ℝ such that ~ = jP �P + j> �> + j@ �@   
                  5�> + 2� + 1 = jP (�> + �) + j> (� + 1) + j@ (�> + 1) 

 � jP + j@ = 5 … … . . (1) jP + j> = 2 … … … … . (2)j> + j@ = 1 … … … … … (3)� 
Solving this system of linear equation simultaneously or by elimination method we get CU =  /,Cq = −U GHI    C/ = q   
Hence f is the linear combination of VU , Vq GHI  V/  

Exercise : 
1. Write each of the following as a linear combination of ` + 1, `> + ` Ode `> + 2 a.  `> + 3` + 2 b.  2`> − 3` + 1 c. `  

1.13. Linear dependence and independence  

Definition: Let µbe a vector space over a field Ö, then a set of vectors ÜfU, fq, … … … fHÝ is 

called linearly independent if there exist  OP, O>, … … … OA ∈ Ö such that OPfU +  O>fq + … … … + OAfH = T ���ℎ �ℎO�   OP = O> = ⋯ = OA = 0. 

A set of vectors that is not linearly independent is said to be linearly dependent. 

Example: Show that Ü(1,0, −1), (2,1,2), (3, −2,0)Ý is linearly independent in ℝ/ over the 

field ℝ. 

Solution:  Let jP j>  , j@ Ïℝ  such that        jP (1,0, −1) +  j> (2,1,2) +    j@ (3, −2,0) = (0,0,0) . 
� jP + 2jP + 3jP = 0 … … . … . . (1)jP − 2jP = 0 … … … (2)            −jP + 2jP = 0 … … … … (3)             � 
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Solving this system of linear equation by elimination method we get jP = 0 , jP =0 Ode  jP = 0    
Thus {(1, 0,-1), (2, 1, 2), (3,-2, 0)} is linearly independent in  ℝ/ 

Example: Show that Ü1 + `, 3` + `>, 2 + ` − `>Ý is linearly independent in ]q(`) over ℝ. 

Solution: Let        jP  ,  j>   ,  j@ á ℝ  such that      jP  (` + 1) +  j> (3` + `>) +j@ (2 + ` − `>) = 0`> + 0` + 0   (j>  − j@  )`> + (jP  + 3  j>  +   j@   )` + (jP  + 2 j@   ) = 0`> + 0` + 0   
�        j2 −  j3 = 0 … … … … … . (1)       j1 + 3 j2 + j3 = 0 … … . . (2)        j1 + 2j3 = 0 … … … … … … . . (3) � by comparing the coefficients of `>, ` Ode the 

constant terms at the left and right  

                                                                             hand-sides. Solving this we get        jP = 0, α> = 0 and α@ = 0 . 
Therefore, ÜU + ¹, /¹ + ¹q, q + ¹ − ¹qÝ is linearly independent in  ]q(`) over ℝ. 

Exercise 

1. suppose that Ü VU, VqÝ is linearly independent set in a vector space µ .  
                  Show that  Ü VU +  Vq,   VU −  VqÝ is linearly independent. 

2.  Let Ü(3, −5,0), (5,0,1), (8, −5,1)Ý be vectors in ℝ@ then show that it is linearly 

independent. 

3. Verify whether the following subsets of the vector space ³ =  ℝ@ are linearly 

independent or dependent. a. Þ = Ü(1, −1,0), (3,2, −1), (3,5, −2)Ý b. ã = Ü(1,1,1), (1, −1,1), (0,0,1)Ý 
1.14. Spanning sets  

Definition: Let µ be a vector space. The set of vectors  ÜfU, fq, … … … fHÝ is called  

                  Spanning set of µ  if every element of µ  is a linear combination of  ÜfU,fq, … … … fHÝ.  

In this case the space µ  is called a span of the vectors and it is denoted by µ =< fU,fq, … … … fH > 
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Example: Consider the vector space ℝ@. Then the vectors fU = (1,0,0), fq = (0,1,0)and  

                    f/ = (0,0,1) form a spanning set of ℝ@. 

Solution: Let ~ = (O, g, �)Ï ℝ@. Then f = (O, g, �) = (O, 0,0) + (0, g, 0) + (0,0, �) = O(1,0,0) +  g(0,1,0) + �(0,0,1) = OfU + gfq + � f/                             
Therefore, {fU = (U, T, T), fq = (T, U, T), f/ = (T, T, U) } is the spanning set of ℝ@. 

Example: Consider the vector space ℝ@; then the vectors fU = (1,1,1), fq = (1,1,0)and f/ = (1,0,0) form a spanning set of  ℝ@. 

Solution: Consider the vector space ℝ@; then show that the vectors fU = (1,1,1), fq =(1,1,0)and f/ = (0,1,1) form a spanning set of ℝ@. 

Definition: A set ÜfU, fq, … … … fHÝ of vectors in a vector space µ  is called a basis of µ  if it 
satisfies the following two conditions: 

1. ÜfU, fq, … … … fHÝ is linearly independent 

2. ÜfU, fq, … … … fHÝ is the spanning set of V 

Example: For the vector space ℝ>, the set of vectors fU = (1,0)Odefq = (0,1) is a basis of ℝ>. 

Example: Let ä = Ü(1,1,1), (1,1,0), (1,0,0)Ý .show that ä forms a Basis for ℝ@. 

Solution: 

i. Let   jP , j> , j@ Ïℝ. Such that CU (U, U, U) + Cq (U, U, T) + C/ (U, T, T) = (T, T, T) 

This implies (jP + j> + j@ , jP +  j> , jP  ) = (0,0,0) 

¸CU + Cq + C/ = TCU +  Cq = TCU = T � which gives  CU = T,  Cq = T, C/ = T . Thus (1,1,1),
(1,1,0)Ode  (1,0,0) On� À�d�OnÀa �de�¶�de�d�. 

ii. Let f = (O, g, �)  á  ℝ@ such that f = CU fU + Cq fq + C/ f/  for ~P = (1,1,1), ~> =(1,1,0), ~@ = (1,0,0)     

                and  jP , j> , j@ Ïℝ.. (O, g, �) = jP (1,1,1) + j> (1,1,0) + j@ (1,0,0) = (jP + j> + j@ , jP +  j> , jP  ) 

                      �jP + j> + j@ = O … . . (1)jP +  j> = g … … . . (2)jP = � … … … … . (3) � .This implies jP = �, j> = g − �, j@ = g . 
                              So, ä = Ü(1,1,1), (1,1,0), (1,0,0)Ý is a spanning set of  ℝ@.  

Therefore, ä = Ü(1,1,1), (1,1,0), (1,0,0)Ý is a basis of  ℝ@. 
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Example: Let ä = Ü(1,0,0), (0,1,0)Ode  (1,0,0)Ý, then show that ä forms a Basis for ℝ@. 

Solution: 

a. Let    jP , j> , j@ Ïℝ  such that jP (1,0,0) + j> (0,1,0) + j@ (1,0,0) = (0,0,0) 

 ⟹ (jP + j@ , j> , 0 ) = (0,0,0). This implies CU + C/ = T such that CU GHI  C/  may have value other than zero. 

Hence no need of verifying whether it spans or not so that ä = Ü(1,0,0), (0,1,0),(1,0,0)Ý is not a basis of  ℝ@. 

Exercises: 

1. Show that æ = Ü(1, −1,1), (2,1, −1), (−1,2,1)Ý is a basis for the vector space  ℝ@ over a 

field ℝ 

Definition: If a vector space µ has a Basis of n elements; then n is called dimension of µand 

written as e�çµ = d 

Example: e�çℝ/ = 3, e�çℝq = 2 Ode e�çℝH = d , ���. 
Miscellaneous Exercises 

1. Given that a = 2i + 3j − k, b = i − j + 2k, and c = 3i + 4j + k, find (a) a + 2b − c, (b) a vector 

d such that a + b + c + d = 0, and (c) a vector d such that a − b + c + 3d = 0. 

2.  Given a = i + 2j + 3k, b = 2i − 2j + k, find (a) a vector c such that 2a + b + 2c = i + k, (b) a 

vector c such that  

a − 2b + c = i + j − 2k 

3. Given that a = 3i + 2j − 3k, b = 2i − j + 5k, and c = 2i + 5j + 2k, find (a) 2a + 3b − 3c, (b) a 

vector d such that 

 a + 3b − 2c + 3d =0, and (c) a vector d such that 2a − 3d = b + 4c. 

4.  Given that A and B have the respective position vectors 2i + 3j − k and i + 2j + 4k, find the 

vector AB and unit vector in the direction of AB. 

5.  Given that A and B have the respective position vectors 3i − j + 4k and 2i + j + k, find the 

vector AB and the position vector c of the mid-point of AB. 

6.  Given that A and B have the respective position vectors a and b, find the position vector of a 

point P on the line AB  located  between A and B such that (length AP)/(length PB) = m/n, 

where m, n > 0 are any two real numbers. 
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7. Find the strength of the magnetic field vector H = 5i + 3j + 7k in the direction of 2i − j + 2k, 

where a unit vector represents one unit of magnetic flux. Ans  7 

8. Find the distance of point P from the origin given that its position vector is r =2i + 4j − 3k. 

(b) If a general point P in space has position vector r = xi + yj + zk, describe the surface 

defined by _r_ = 3 and find its Cartesian equation. 

 Ans a) KèK=Q29  b)  `>+ a> + b> = 9. 

  Three points with position vectors a, b, and c will be collinear (lie on a line) if the 

parallelogram with adjacent sides a − b and  

a – c has zero geometrical area. Use this result in Exercises (9) through (11) to determine 

which sets of points are collinear. 

9. (2, 2, 3), (6, 1, 5), (−2, 4, 3). 

10.   (1, 2, 4), (7, 0, 8), (−8, 5, −2). 

11.  (2, 3, 3), (3, 7, 5), (0,−5,−1) 

12. (1, 3, 2), (4, 2, 1), (1, 0, 2). 

13. The volume of a tetrahedron is one-third of the product of the area of its base and its vertical 

height. Show the volume V of the tetrahedron in Fig. 2.22, in which three edges formed by 

the vectors a, b, and c are directed away from a vertex, is given by 

V = (1/6)|a · (b × c)| 
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Chapter Two 

2. Matrices and Determinants 

INTRODUCTION: Information in science and mathematics is often organized into rows and 

columns to form rectangular arrays, called “matrices” (plural of “matrix”). Matrices are often 

tables of numerical data that arise from physical observations, but they also occur in various 

mathematical contexts. For example, we shall see in this chapter that to solve a system of 

equations such as ` + 2a = 53` − a = 1 

all of the information required for the solution is embodied in the matrix 

é1 2 53 −1 1ê 

and that the solution can be obtained by performing appropriate operations on this matrix. This is 

particularly important in developing computer programs to solve systems of linear equations 

because computers are well suited for manipulating arrays of numerical information. However, 

matrices are not simply a notational tool for solving systems of equations; they can be viewed as 

mathematical objects in their own right, and there is a rich and important theory associated with 

them that has a wide variety of applications. In this chapter we will begin the study of matrices. 

2.1. Definition of Matrix 

Definition:-A matrix is a rectangular array of numbers or variables, which we will enclose in 

brackets. The numbers (or variables) are called entries or, less commonly, elements of the 

matrix. The horizontal lines of entries are called rows, and the vertical lines of entries are called 

columns. A matrix with ë rows and H columns has the form: 

­ = ì OPP OP>O>P O>> ⋯⋯ OPAO>A⋮     ⋮ ⋱ ⋮OïP Oï> ⋯ OïA
ðOr­ = ñO�òó, where � = 1, 2, ..., ç and � = 1,2, … , d 

By an ë × Hmatrix (read as“ë by H matrix”) we mean a matrix with ërows and Hcolumns—

rows always come first! is called the size/order/shape/dimension of the matrix. We shall denote 

matrices by capital boldface letters A, B, C, …, or by writing the general entry in brackets; like ô = ñG�¥ó, and so on..The element G�¥,is called the �¥ entry, appears in row � and column ¥.Thus GqU is the entry in Row 2 and Column 1. 

 



 28 

Example: Consider the following matrices 

­ = õ 1 4 −15 −1 10−1 −8 7
295ö æ = õ4 6 96 0 −25 −8 1 ö 

The dimension/size of matrix A is 3×4 and the dimension/size of matrix B is 3×3. The entry  O@@ 

in matrix A is 7 and the entry  O>p in matrix A is 9.  

NB: Matrices are important because they let us to express large amounts of data and functions in 

an organized and concise form. 

Example: Given a matrix A = õ 3 4 21 −1 10−10 −8 7
−395 ö, then 

a) Find the size of A                   

b) List columns of A 

c) List rows of  A               

d) List elements of A 

Exercise: 

1. Let � be a real number. Assume that B =£�¤. Then, determine: 

a) The size of B                 c) the no of columns of B 

b) The rows of  B              d) the elements B 

2. Construct a 3x3 matrix whose  O�ò entry is given by 2j – i 

2.2.  Types of Matrices 

In matrix theory, there are many special kinds of matrices that are important because they 

possess certain properties. The following is a list of some of these matrices. 

i. Zero Matrix (Null Matrix): Matrix that consists of all zero entries is called a zero 

matrix and is denoted by bold zero,T orTë¹H. 

Example:   0@Â@ = õ0 0 00 0 00 0 0ö 

ii. Square Matrix: any ç`d matrix is called square matrix if ç = d. The order of d`d 

square matrix is d`d or simply d. 

Example:­@Â@ = õ1 5 −32 0 −22 3 7 ö 

iii. Rectangular Matrix: A matrix of any size is called a rectangular matrix; this includes 

square matrices as a special case. 

iv. Row Matrix (row vector): A 1 × d matrix is called a row matrix (row vector). 
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­ = £OPP  OP>  … OPA  ¤ = (OP, O>, … , OA) 

v. Column Matrix (column vector):A d`1 matrix is called a column matrix (column 

vector)     ­ =
÷
øù

O1O2⋮⋮Odú
ûü 

vi. Diagonal Matrix: A d ×  dsquare matrix ýis said to be a diagonal matrix if all its 

entries except the main diagonal entries are zeros. 

 ý = ìePP 0 … 00⋮0
e>>⋮0

…⋱…
0⋮eAA

ð 

Remark: A diagonal matrix each of whose diagonal elements are equal is called a scalar 

matrix.  

vii. Identity Matrix (Unit Matrix): is a diagonal matrix in which all diagonal elements are 1. 

þA = ì1 0 … 00⋮0
1⋮0

…⋱… 0⋮1ð is an d × d identity matrix. 

viii. Triangular Matrix: A square matrix in which all the entries above the main diagonal are 

zero is called lower triangular,  and a square matrix in which all the entries below the 

main diagonal are zero is called upper triangular. A matrix that is either upper triangular 

or lower triangular is called triangular. 

­ = ìOPP OP> … OPA0⋮0
O>>⋮0

…⋱…
O>A⋮OAA

ð   æ = ìOPP 0 … 0O>P⋮OAP
O>>⋮OA>

…⋱…
0⋮OAA

ð 

 

 per Triangular    Lower Triangular 

Remark:Observe that diagonal matrices are both upper triangular and lower triangular since 

they have zeros below and above the main diagonal.  

Example:ô = õq T T� / TU U −qö                                                    � = õq −� UT / �T T −qö 

 

                                          Lower triangular matrix                          Upper triangular matrix 
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2.3. Basic Operations on Matrices 

Equality of Matrices 

Definition: Two matrices are defined to be equal, denoted by � = �,if they have the same size 

and their corresponding entries are equal. 

Example: Find the value of ` and a if matrix ­ is equal to matrixæ. 

  ­ = é` + 1 30 6ê and  æ = �4 30 a − 2� 
Solution: the two matrices are equal if and only if ` = 3 anda = 8. 

  Matrix Addition and Subtraction  

Definition: Let A = ñ O�òóand B = ñ g�òóbe two matrices of the same size, say, ç × d matrices. 

Then the sum of A and B, written A + B, is the matrix obtained by adding the entries of B to the 

corresponding entries of A. The difference A – B is the matrix obtained by subtracting the entries 

of B from the corresponding entries of A. In matrix notation, if A = ñ O�òóand B = ñ g�òóhave the 

same size, then ­ + æ = £O¤�ò + £g¤�ò = £O�ò + g�ò¤ Ode ­ − æ = £O�ò¤ï×A − £g�ò¤ï×A = £O�ò − g�ò¤ï×A 

Example: Consider the following matrices 

­ = õ−1 2 3 41 0 2 59 −2 0 6ö , æ = õ1 6 −1 32 5 0 −43 4 1 2 ö 

Then find­ + æ Ode ­ − æ 

Solution: ­ + æ = õ−1 + 1 2 + 6 3 − 1 4 + 31 + 2 0 + 5 2 + 0 5 − 49 + 3 −2 + 4 0 + 1 6 + 2ö = õ 0 8 2 73 5 2 112 2 1 8ö 

­ − æ = õ−1 − 1 2 − 6 3 + 1 4 − 31 − 2 0 − 5 2 − 0 5 + 49 − 3 −2 − 4 0 − 1 6 − 2ö = õ−2 −4 4 1−1 −5 2 96 −6 −1 4ö 

Remark: Matrices of different sizes cannot be added or subtracted. 

Scalar Multiplication of Matrix 

Definition: If A is any matrix and c is any scalar; then the product cA is the matrix obtained by 

multiplying each entry of the matrix A by c. The matrix cA is said to be a scalar multiple of A.i.e.  

                    �­ = � ì OPP OP> … OPAO>P⋮OïP
O>>⋮Oï>

…⋱…
OPA⋮OïA

ð 
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                         = ì �OPP �OP> … �OPA�O>P⋮�OïP
�O>>⋮�Oï>

…⋱…
�OPA⋮�OïA

ð = ñ�O�òóïÂA 

Example: Let­ = õ−1 2 3 41 0 2 59 −2 0 6ö and æ = õ1 6 −1 32 5 0 −43 4 1 2 ö. Then compute the following  

a. 2­ − æ b. 
P@ ­ + 2­ 

Solution: a. 2A − B = õ−2 4 6 82 0 4 1018 −4 0 12ö − õ1 6 −1 32 5 0 −43 4 1 2 ö = õ−3 −2 7 50 −5 4 1415 −8 −1 10ö 

b.
P@ A + 2A = ���

��YP@ >@ 1 p@P@ 0 >@ X@3 Y>@ 0 2	



� + õ−2 4 6 82 0 4 1018 −4 0 12ö = ���

��YZ@ Pp@ 7 >W@Z@ 0 Pp@ @X@21 YPp@ 0 14	



�
 

Exercise: 

1. Find the values of ` and afor the following matrix equation. 

2 é` + 2 a + 33 0 ê = é3 a6 bê 
2. Find matrix ­ if 2­ = é2 −16 0 ê 

Remark: If ­P, ­>, …,­A are matrices of the same size and �P, �>, …,�A are scalars, then an 

expression of the form�P­P + �>­> + ⋯ + �A­Ais called a linear combination of ­P, ­>, …,­A 

with coefficients�P, �>, …,�A. 

Properties of Matrix Addition and Scalar Multiplication 

Suppose A, B, and C are  ç ×  dmatrices (having the same size) and j and � are scalars. Then 

i. ­ + æ = æ + ­(commutative law of addition) 

ii. (­ + æ) + � = ­ + (æ + �)(Associative  law  of addition) 

iii. ­ + T = T + ­ (Existence of additive identity) 

iv. ­ + (−­) = (−­) + ­ = T(Existence of additive inverse) v. j(­ + æ) =  j­ +  jæ vi. (j +  �)­ =  j­ + �­ vii. (j( �­)) =  j( �­) 
viii. 1­ = ­ and 0­ = T 
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2.4. Product of Matrices 

Definition: Let matrix ­ be an ç × d matrix and æ be an d × � matrix (i.e. the number of 

columns of ­ is equal to the number of rows of æ). Then the product of ­ and æ, denoted by ­æ, 

is an ç × � matrix which is obtained by multiplying the corresponding elements of row � of ­ by 

column � of æ and adding the product, i.e. if ­ = ñO�òóï×A and æ = ñgò
óA×
 , then ­æ = � =£��
¤ï×
 , where ��
 = � O�ògò
Aò�P , for � = 1,2, … , ç 

- Consider the following matrices 

­ = ì OPP OP> … OPAO>P⋮OïP
O>>⋮Oï>

…⋱…
OPA⋮OïA

ð and æ = ìgPP gP> … gP
g>P⋮gAP
g>>⋮gA>

…⋱…
g>
⋮gA


ð 

Rows of ­ are: nP = £OPPOP> … OPA¤n> = £OPPOP> … OPA¤⋮nï = £OïPOï> … OïA¤ 
Columns of æ are: �P = £gPPg>P … gAP¤�> = £gP>g>> … gA>¤⋮�
 = £gP
g>
 … gA
¤ 
Then   

­æ = ì nP. �P nP. �> … nP. �
n>. �P n>. �> … n>. �
⋮ ⋮ ⋱ ⋮nï. �P nï. �> … nï. �
ð = £��
¤ï×
 

Example: Find the product of the matrices 

 

Solution: AB = é12 27 30 138 −4 26 12ê 
Exercise: Determine the size of the product matrix ­æ if the sizes of ­ and æ are 4 × 5 and 5 × 7 respectively.  
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Note: The product of lower triangular matrices is lower triangular, and the product of upper 

triangular matrices is upper triangular. 

Properties of Matrix Multiplication 

1) ­æ ≠  æ­, (matrix product is not commutative.) 

2) ­(æ�)  =  (­æ)�, (matrix multiplication is associative) 

3) ­(æ + �) =  (­æ + ­�) Ode (æ + �)­ =  æ­ +  �­, (multiplication of matrices is 

distributive with respect to addition ) 

4) If ­æ =  T, it does not mean that either A = 0 or B = 0.  

Example: For matrix A and B given by­ = é1100ê æ = é0101ê  we have 

­æ =  é0000êis a null matrix even though ­andæare not a null matrix. 

5) The relation ­æ =  ­� mn æ­ =  �­ does not imply that  æ =  �. In other words the 

cancelation law doesn’t hold as for real numbers. 

Example: if  ­ = õ 11−1
2 1 4 

323ö,  æ = õ 112 
 2 12

3−12 öand � = õ221
 3  2  1

40 1ö 

We have,  ­æ = õ9   6   9   
1078

76−1ö = ­� , butæ ≠ � 

Exercise: If ­ = é 1 3  24ê æ = é 2−3 12ê  and � = é12  01ê, then verify that: 

a) A(BC) =  (AB)C b) A(B + C)  =  AB + AC 
Transpose of a matrix 

Definition: If A is an ç × d matrix, then the transpose of A, denoted by ô�, is defined to be the 

matrix d × ç that results from interchanging the rows and columns of A. 

Remark: The transpose of a row matrix is column matrix and the transpose of a column matrix 

is a row matrix. 

Example: The following are some examples of matrices and their transposes. 
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Properties of Matrix Transpose 

1. (­ +  æ) � = ­� + æ� 
2. (­� ) � = ­ 
3. (­æ)� = æ �­  � 

Proof: Ex. 

Note: The transpose of a lower triangular matrix is upper triangular and the transpose of an 

upper triangular matrix is lower triangular. 

Orthogonal Matrix: An orthogonal matrix A is a matrix such that  ­­�=  ­�­= I. A typical 

orthogonal matrix is: 

­ = ��
1Q2 − 1Q21Q2 1Q2 �� 

Trace of Matrix 

Definition: If A is a square matrix, then the trace of A, denoted by �n(­), is defined to be the 

sum of the entries on the diagonal of A. The trace of A is undefined if A is not a square matrix. 

Example: The following are examples of matrices and their traces.  

 

Polynomial of Matrix  

For any d × dsquare matrix ­ and for any polynomial, �(`) = OA`A + OAYP`AYP + ⋯ + O�where O� are scalars, wedefine �(­) = OA­A +OAYP­AYP + ⋯ + O�þ.If �(­) = (0�ò), then A is a zero (root) of the polynomial.  

Examples: Let­ = é31−41 ê and let �(`) = 2`> + ` + 3. Then compute �(­). 

Exercise: 

1. Let ­ = é3140ê .Then compute: 

a) �(­) �� �(`) = 3`@ − 4`> + 2` b) �(−3­) �� �(`) = 3`> − 2` 
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Symmetric and Skew-Symmetric Matrices: 

Definition:  Let ­ be a square matrix. Then ­is said to be 

� Symmetric if  ­ = ­� ,i.e. O�ò = Oò�. 
� Skew-symmetric (anti-symmetric) if  ­� = −­, i.e.O�ò = −Oò�. 

Example: A = õ 2 −1 3−1 5 13 1 7öB = õ 0 5 −2−5 0 32 −3 0 ö                 C =  õ 0 0 1−5 0 32 −3 0ö 

 

Symmetric Skew-Symmetric Neither 

Exercise: Determine whether the following matrices are symmetric, skew symmetric or neither. 

a) ­ = é3 gg 3ê 
b) æ = é1 0 00 0 1ê 
c) æ = ì 0 5 −4 3−5 0 −7 −24−3 72 01 10 ð 

d) ý = õ 0−34
30−5

−450 ö 
e) � = é0      0     00ê 

2.5. Elementary Row Operations and Echelon Form of Matrices 

i. Elementary Row Operations  

A matrix ô is said to be row equivalent to matrix �, written ô~� if matrix � is obtained from ô by a 

finite sequence of elementary row operations. These elementary row operations are: 

i. Interchanging the ��° row by the ��° row (i.e  =� ↔ =ò) 

ii. Multiplying the ��° row by a none zero scalar (i.e=� → �=�). 
iii. Replacing the ��°row by � times the ��° row plus ��° row (i.e=� → �=ò + =�) 

Example: Apply all elementary row operations on the given matrix: 

ô = õ2 6 11 2 −15 7 −4ö  =P ↔ =@ õ5 7 −41 2 −12 6 1 ö => → 2=> õ2 6 12 4 −25 7 −4ö => → 2=@ + => õ 2 6 111 16 −95 7 −4ö = � 

Exercise: Let ­ = õ 3 −1 24 3 2−1 −2 7ö. Then find matrix � which is row equivalent to ô with GUU =
T andG/q = T. 

Remark: The first non-zero entry in a row is called the leading entry (pivotal entry) of that row. 
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ì 2 0 10 −2 −1−4 0 −30 0 0 ð 

Entries  2, −2 Ode − 4 are leading entries of nmË� 1, 2,3 respectively, and no leading entry for row 3. 

 

ii. Echelon Form of a Matrix 

Definition: An m × n matrix ­is said to be in echelon form (EF) provided the following two conditions 

hold. 

1. Any zero rows (if there is) are at the bottom of the non-zero rows. 

2. The leading entry of all rows is at the right side of the leading entries of the above rows (i.e. all 

entries below the leading entry are zero).   

Example: ô = ì−1 2 00 6 10 0 −10 0 0 ð  � = õ2 6 1 10 2 −2 10 0 3 −4ö  � = õ2 6 9 10 1 7 60 0 0 −4ö� = õ2 6 90 1 70 2 8ö 

Matrices �, �and � are in echelon form, but matrix � is not. 

Definition: An m × n matrix ­is said to be in row-echelon form (REF) provided the following two 

conditions hold. 

1. The matrix is in echelon form. 

2. All leading entries are equal to 1. 

Example: ô = ì1 2 00 1 10 0 10 0 0ð  � = õ1 6 1 10 1 −2 10 0 1 −4ö� = �1 0 00 1 000 00 10
2−500 �� = õ1 6 90 1 70 1 8ö 

Matrices ô,� Ode � are in row echelon form (REF) but � is not. 

Definition3: An m × n matrix ­is said to be in reduced row-echelon form (RREF) provided the 

following two conditions hold. 

1. The matrix is in row echelon form. 

2. All non-leading entries in a column, which contains the leading entries, are equal to 0.   

Example: ô = ì1 0 00 1 00 0 10 0 0ð� = õ1 0 0 00 1 0 00 0 1 0ö� = �1 0 −30 1 000 00 00
 0010�� = �1 0 −30 1 500 00 00

0010� 
Remark: Any matrix can be reduced to its echelon form by applying some elementary row operations 

on the given matrix.  
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Example: Reduce matrix ô to its row echelon form by applying elementary row operations where  

A = õ 3 −10 5−1 12 21 −5 2ö 

Solution: Applying =P ↔ =@ we have: õ 1 −5 2−1 12 23 −10 5ö 

Applying => → =P + => and =@ → =@ − 3=P we get:õ1 −5 20 7 40 5 −1ö 

Applying => → �ÕZ  we get:�1 −5 20 1 4 7�0 5 −1� 
Applying =@ → =@ − 5=> we get:ì1 −5 20 1 4 7�0 0 −27 7� ð 

Appling =@ → − 7 27� =@ we get:�1 −5 20 1 4 7�0 0 1 � 
Applying => → => − p� Z  we get:õ1 −5 20 1 00 0 1ö 

This is in row echelon form.  

Rank of a Matrix 

Suppose an ë × H matrix �is reduced by row operations to an echelon form !. Then the rank of ô, 

denoted byèGH¦(ô), is defined to be, 

Rank(ô) = number of pivots (leading entries) or 

    = number of nonzero rows in ! or 

    = number of basic columns in ô,  

where the basic columns of ôare defined to be those columns in ôwhich contain the pivotal positions. 

Example: Let matrix ô = ì10 0 0
 010 0 

 0 61 0
0 2 0 0

 230 0ð. Then therank (A)=3 since matrix ô is in echelon form and has 

three non-zero rows. 
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Example: Determine the rank, and identify the basic columns in the matrix 

­ = õ1 2 1 12 4 2 23 6 3 4ö 

Solution:­ = õ1 2 1 12 4 2 23 6 3 4ö → õ1 2 1 10 0 0 00 0 0 1ö → õ1 2 1 10 0 0 10 0 0 0ö 

nOd�(­) = q and 

Basic Columns = ¸"Uq/# ,"Uq�#$ 
Exercise: Reduce each of the following matrices to its echelon form and determine its rank & identify 

the basic columns. 

a. ­ = õ1 2 3 32 4 6 92 6 7 6ö 

b. æ =
���
��1 2 32 6 82 6 01 2 53 8 6	




�
 

2.6. Inverse of a Matrix and Its Properties  

Definition: If A is an d × d square matrix, and if a matrix B of the same size can be found such 

that ­æ =  æ­ =  þ, where þ the d × didentity matrix, then A is said to be invertible (non-singular)and 

B is called an inverse of A. If no such matrix B can be found, then A is said to be singular. 

Example: The matrix 

 

Since 

 

And 

 

Remark: 

1. ­YP ≠ P% 

2. Matrices which are not square matrices have no inverses 

3. Not all square matrices have inverse 

4. (­YP)� = (­�)YP 
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Properties of Inverse Matrices 

1. If B and C are both inverses of a matrix A, then B = C. that is the inverse of a matrix is unique 

and is denoted by AYP. 

2. If A and B are invertible matrices of the same size, then  

a) AB is invertible and 

b)  (­æ)YP =  æYP­YP 

3.  ­YP is invertible and  (­YP)YP = ­ 

4. Let ý = ìeP 0 … 00 e> … 0⋮ ⋮ ⋱ 00 0 … eA
ð be an d × d diagonal matrix where all e� ≠ 0 (for � = 1, 2, … , d). 

Then the inverse of ý, denoted by ýYP, is given by ýYP =
���
���

PÐ� 0 … 00 PÐÕ … 0⋮ ⋮ ⋱ 00 0 … PÐ&	





�
 

Exercise: Verify that ýý YP = ýYPý = þ. 

 

Finding Inverse of a Matrix by Using Elementary Row Operations (Gauss-Jordan Elimination 

Method) 

Let ôbe an d × dmatrix and let 'H be an d × d identity matrix. Then to find the inverse of ô. 

1. Adjoin the identity d × dmatrix 'H to ôto form the augmented matrix (ô: 'H). 

2. Compute the reduced echelon form of (ô: 'H). If the reduced echelon form is of the type ('H: �), 
then æ is the inverse of ô. If the reduced echelon form is not of the type ('H: �), in that the first d × dsub matrix is not 'H, then ôhas no inverse. 

Example: Find the inverse of A if 

A =  õ1 2 32 5 31 0 8ö 

Solution:£­: þ@¤ = õ1 2 32 5 31 0 8
⋮⋮⋮
1 0 00 1 00 0 1ö 

Applying => → => − 2=P we get: 
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õ1 2 30 1 −31 0 8
⋮⋮⋮

1 0 0−2 1 00 0 1ö 

Applying =P → =P − 2=> we get: 

õ1 0 90 1 −31 0 8
⋮⋮⋮

5 −2 0−2 1 00 0 1ö 

Applying =@ → =@ − =P we get: 

õ1 0 90 1 −30 0 −1
⋮⋮⋮

5 −2 0−2 1 0−5 2 1ö 

Applying =P → =P + 9=@; => → => − 3=@ and =@ → −=@we get: 

õ1 0 00 1 00 0 1
⋮⋮⋮
−40 16 9−13 −5 −35 −2 −1ö 

Therefore, B = õ−40 16 9−13 −5 −35 −2 −1ö = ­YP 

Example: Find the inverse of  ­ = (1 0 22 −1 34 1 8) by using elementary row operations (Gauss-Jordan 

Method). 

Solution:   £­ ⋮ þ@¤ = õ1 0 22 −1 34 1 8
⋮⋮⋮
1 0 00 1 00 0 1ö 

Applying=>  →   => − 2=P,we get: 

õ1 0 20 −1 −14 1 8
⋮⋮⋮

1 0 0−2 1 00 0 1ö 

Applying=@ → =@ − 4=Pwe get: 

õ1 0 20 −1 −10 1 0
⋮⋮⋮

1 0 0−2 1 0−4 0 1ö 

Applying =@ → =>+=@we get: 

õ1 0 20 −1 −10 0 −1
⋮⋮⋮

1 0 0−2 1 0−6 1 1ö 

Applying=@ → −=@ we get: 
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õ1 0 20 −1 −10 0 1
⋮⋮⋮

1 0 0−2 1 06 −1 −1ö 

Applying=P → =P − 2=@ and   => → => + =@ we get: 

õ1 0 00 −1 00 0 1
⋮⋮⋮
−11 2 24 0 −16 −1 −1ö 

Applying  => → −=> we get: 

õ1 0 00 1 00 0 1
⋮⋮⋮
−11 2 2−4 0 16 −1 −1ö 

£þ@ ⋮ æ¤ =  õ1 0 00 1 00 0 1
⋮⋮⋮
−11 2 2−4 0 16 −1 −1ö 

⇒ æ = õ−11−46
20−1

21−1ö = ­YP 

Example: Determine the inverse of the matrix 

ô = õ 1 −1 −22 −3 −5−1 3 5 ö 

Solution:    (­: '/) = õ 1 −1 −2 ⋮ 1 0 02 −3 −5 ⋮ 0 1 0−1 3 5 ⋮  0 0 1 ö 

Appling => → =>−2=P& =@ → =@ + =Pwe get 

õ1 −1 −2 ⋮ 1 0 00 −1 −1 ⋮ −2 1 00 2 3 ⋮ 1 0 1 ö 

Appling => → −=>we get 

õ1 −1 −2 ⋮ 1 0 00 1 1 ⋮ 2 −1 00 2 3 ⋮ 1 0 1 ö 

Appling =P → =>+=P& =@ → =@ − 2=>we get 

õ1 0 −1 ⋮ 3 −1 00 1 1 ⋮ 2 −1 00 0 1 ⋮ −3 2 1 ö 

Appling =P → =@+=P& => → => − =@we get 

õ1 0 0 ⋮ 0 1 10 1 0 ⋮ 5 −3 −10 0 1 ⋮ −3 2 1 ö         Thus ôYU = õ 0 1 15 −3 −1−3 2 1 ö 
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Exercise:  Determine inverse of the following matrices, if it exists. 

­ = õ1 1 51 2 72 −1 4ö� = õ1 2 −31 2 15 −2 −3ö� = õ2 1 30 2 11 1 2ö ý = õ 1 6 42 4 −1−1 2 5 ö 

2.7. Determinant of a Matrix and Its Properties  

Introduction: In this section, we shall study the “determinant function,” which is a real-valued function 

of a matrix variable in the sense that it associates a real number �(­) with a square matrix A. Our work 

on determinant functions will have important applications to the theory of systems of linear equations 

and will also lead us to an explicit formula for the inverse of an invertible matrix. 

Definition: A “determinant” is a certain kind of function that associates a real number with a square 

matrixô, and it is usually denoted by I+º(ô) orDôD. i.e. if ô is an d × d square matrix, then 

det(­) = �OPP OP> … OPAO>P O>> … O>A⋮ ⋮ ⋱ ⋮OAP OA> … OAA
� 

a. Determinant of U × U , Gºè�t+v 

Let ­ = £OPP¤be 1 × 1 matrix. Then det(­) =  OPP.   

Example: Let  ­ = £2¤. Then det(­) = 2 

b. Determinant of q × q ,Gºè�t+v 
Let ­ = éOPP OP>O>P O>>ê be a2 × 2 matrix. Then det(­) = ¢OPP OP>O>P O>>¢ = OPPO>> − OP>O>P 

Example: Find det(­) if ­ = é 1 2−2 0ê 
Solution: det(­) = 1(0) − 2(−2) = 4 

c. Determinant of H × H matrix 

Definition-1: Let ô be an d × dsquare matrix and ,�¥ be the (d − 1) × (d − 1) matrix obtained from 

matrix ô by deleting ��° row and ��° column containing the entry O�ò. Then -.Î (,�¥) is called the 

minor of O�ò. 

Remark: the matrix ,�¥ is called sub matrix of ô. 

Definition-2: The cofactor of  O�ò, denoted by ��ò, is defined as ��ò = (−1)�Äòdet (/�ò). 

Example: Let ­ = õ2 5 −43 −1 25 4 6 ö. Then find the minor and cofactor of OPP and O>@. 
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Solution: Minor of  OPP = det(/PP) = ¢−1 24 6¢ = −1(6) − 2(4) = −14 

 Cofactor of OPP = �PP = (−1)PÄP det(/PP) = −14 

 Minor of  O>@ = det(/>@) = ¢2 55 4¢ = 2(4) − 5(5) = −17 

 Cofactor of O>@ = �>@ = (−1)>Ä@ det(/>@) = 17 

Definition-3: The determinant of an d × d matrix ­ is given by either of the following two formulas.   

i. det(­) = O�P��P + O�>��> + ⋯ + O�A��A = � O�ò��òAò�P ,   for fixed � = 1,2,3, … 

ii. det(­) = OPò�Pò + O>ò�>ò + ⋯ + OAò�Aò = � O�ò��òA��P ,   for fixed � = 1,2,3, … 

Example: Evaluate the determinant for the matrices  

­ = õ2 −1 31 2 45 −3 6ö  and  æ = ì0 2 3 00 4 5 00 1 0 32 0 1 3ð 

Solution: Let us take row-1 of matrix ­ for  �. Then  

-.Î(ô) = 0 O�ò��ò
A

ò�P = 0 OPò�Pò
@

ò�P = OPP�PP + OP>�P> + OP@�P@ = 2(24) − 1(14) + 3(−13) = −� 

Let us take column-1 of matrix æ for �. 

-.Î(�) = 0 O�ò��ò
A

��P = 0 O�P��P
p

��P = OPP�PP + O>P�>P + O@P�@P + OpP�pP
= 0�PP + 0�>P + 0�@P + 2(6) = Uq 

Example: Let ­ = (OP, O>, O@), æ = (gP, g>, g@)  Ode  � = (�P, �>, �@) be vectors in  =@.  Then show 

that¡OP gP �PO> g> �>O@ g@ �@¡ = ­ ⋅ (æ × �) 

Solution:   ¡OP gP �PO> g> �>O@ g@ �@¡ = OP �g> g@�> �@� − O> �gP g@�P �@� + O@ �gP g>�P �>� 
 = OP(g>�@ − g@�>) − O>(gP�@ − g@�P) + O@(gP�> − g>�P) 

 = (OP, O>, O@) ⋅ (g>�@ − g@�>,  gP�@ − g@�P,  gP�> − g>�P) 

 = ­ ⋅ (æ × �) 

Note: The determinant of a 3×3 square matrix ­ = õOPPO>PO@P
OP>O>>O@>

OP@O>@O@@öis given by 
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e��(­) = ¡OPPO>PO@P
OP>O>>O@>

OP@O>@O@@¡ = OPP ¢O>>O@>O>@O@@¢ − OP> ¢O>PO@PO>@O@@¢ + OP@ ¢O>PO@PO>>O@>¢ 
 

Properties of Determinants 

Letô, �and C be H × H square matrices and ¦ be any scalars. Then 

a. det(­) = det (­�) 

b. det(�­) = �Adet (­), where d is the size of ­. 

c. det(­ + æ) ≠ det(­) + det (æ) 

d. det(­æ) = det(­) det (æ) 

e. det(­YP) = P123 (%),  if ­ is invertible (non-singular) matrix. 

f. Determinant of any d × d triangular matrix ­ is the product of its diagonal entries. 

 i.e. det(­) = OPPO>> … OAA 

g. Determinant of d × d diagonal matrix ýis the product of its diagonal entries.  Thus det(þA) = 1, 

where þA is an d × d identity matrix. 

h. If any rows (or columns) of a square matrix ­ are proportional to each other (i.e. one is the scalar 

multiple of the other), then det(­) = 0. 

i. If any row (or column) of a square matrix ­ is zero, then det(­) = 0.  

Exercise:  

1. Evaluate the determinant for each of the following matrices. 

­ =
���
��2 16 40 16 140 −3 22 −3 −180 0 4 1 200 0 0 5 00 0 0 0 1 	




�
, æ = ìQ2 0 0 0−8 Q2 0 07 0 −1 09 5 0 1ð, � =

���
��1 2 −3 4 54 −5 6 5 −27 8 −8 6 203 6 −9 12 150 −2 3 4 1 	




�
, ý =

õ1 0 63 5 20 0 0ö, � = õ2 0 00 −1 00 0 2ö 

2. Let det(­) = 4 and det(æ) = −3,and let ­ and æ be a 5 × 5 matrices. Then find 

i. det (2­) 

ii. det (­�) 

iii. det (­æ) 

iv. det (­YP) 

3. Let ­ = é` − 1 −2` − 2 ` − 1êand let det(­) = 0. Then find the value/s of `. 
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Theorem-1: Let A be an invertible matrix. Then e��(­YP) = (e��(­))YP. 

Proof: þ = ­­YP then taking determinant on both sides we get: e��(þ) = e��(­­YP) ⇒ 1 = e��(­)e��(­YP) 

⇒ e��(­YP) = 1e��(­) = (e��(­))YP 

Example: If ­ =  é2 13 3ê, then e��(­YP) = PÐ4�(%) = P@. 

Note: We can evaluate the determinant of any square matrix ­ by reducing it to its echelon form by 

keeping the following conditions. 

a. If æ is a matrix which results by applying the elementary row operation of multiplying any 

particular row of ­ by a non-zero constant �, then det(æ) = �e��(­). 

b. If æ is a matrix that results when two rows or two columns of ­ are interchanged, thendet(æ) =−det (­). 

c. If æ is a matrix that results when a multiple of one row of ­ is added to another row or when a 

multiple of one column is added to another column, then det(æ) = det (­). 

Exercise: Let­ = õO g �e � �¬ ℎ �ö and let det(­) = −12. The find det (æ), det (�)and det (ý) if  

� = õ3O 3g 3�e � �¬ ℎ � ö, � = õO g �¬ ℎ �e � �ö and  ý = õ O g �e + 2O g + 2g � + 2�¬ ℎ � ö 

Adjoint and Inverse of a Matrix 

Definition-1: Let ­ = ìOPP OP>O>P O>> ⋯⋯ OPAO>A⋮     ⋮ ⋱ ⋮OAP OA> ⋯ OAA
ðbe and × dsquare matrix and let ��ò be the cofactor of 

O�ò.Then the matrix � = ì�PP �P>�>P �>> ⋯⋯ �PA�>A⋮     ⋮ ⋱ ⋮�AP �A> ⋯ �AA
ðwhose (��)�° entry is ��ò is called matrix of cofactors of 

entries of ­ and its transpose �� = ì�PP �>P�P> �>> ⋯⋯ �AP�A>⋮     ⋮ ⋱ ⋮�PA �>A ⋯ �AA
ðis called the adjoint of ô, denoted by GI¥(ô). 
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Example: Find the matrix of cofactors and adjoint of the matrix 

­ = õ3 31
4 9 2

60−1ö 

Solution:  

The cofactors of each elements of A are �PP = (−1)PÄPdet (/PP) = (−1)PÄP ¢92 0−1¢ = −9   
�P> = (−1)PÄ>e��(/P>) = (−1)PÄ> ¢31 0−1¢ = 3      
�P@ = (−1)PÄ@det (/P@) = (−1)PÄ@ ¢3192¢ = −3       
�>P = (−1)>ÄPdet (/>P) = (−1)>ÄP ¢4260¢ = 12       
�>> = (−1)>Ä>det (/>>) = (−1)>Ä> ¢31 6−1¢ = −9 

�>@ = (−1)>Ä@det (/>@) = (−1)>Ä@ ¢3142¢ = −2    
�@P = (−1)@ÄPdet (/@P) = (−1)@ÄP ¢4960¢ = −54 

�@> = (−1)@Ä>det (/@>) = (−1)@Ä> ¢3360¢ = 18     
�@@ = (−1)@Ä@det (/@@) = (−1)@Ä@ ¢3349¢ = 15      

Matrix of Cofactors= � = õ�PP�>P�@P
�P>�>>�@>

�P@�>@�@@ö = õ −912−54
3−918

−3−215ö 

�-5(�) = �� = õ−93−3
12−9−2

−541815 ö 

Exercise: Find the adjoint of A if: 

­ = õ3 2 −11 6 82 −4 0 ö 

Definition-2: Let ­ be and × d square matrix with det (­) ≠ 0. Then the inverse of a matrix ­, denoted 

by ­YP, is defined as ôYU = U-.Î(ô) GI¥(ô). 

Note: If det(­) = 0, then the matrix ­ has no inverse (i.e. ­ is singular matrix). 

Example: Find the inverse of the matrix  ­ = õ331
492

60−1ö 

Solution: det(­) = −33 

 Adj(A) = õ−93−3
12−9−2

−541815 ö 
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­YP = 1det(­) Oe�(­) = − 133 õ−9  3−3   12−9−2
  −541815 ö =

���
���

311   
− 111111

  
−411   
 311233

   
1911−611−511 	






�
 

Exercise: Verify whether each of the following matrices has an inverse, and find the inverse if it has. 

­ = é1 43 2ê, æ = õ 1 2 30 −1 2−4 5 0ö and ý = õ2 −1 31 2 42 4 8ö 

 

2.8. System of Linear Equations 

A system of ç linear equations with n-unknown (variables) is given by OPP`P + OP>`> + ⋯ + OPA`A = gP O>P`P + O>>`> + ⋯ + O>A`A = g>  ⋮                 ⋮         ⋱         ⋮            ⋮ OïP`P + Oï>`> + ⋯ + OïA`A = gï 

The matrix form of this system of linear equations is 

ì OPP OP> … OPAO>P O>> … O>A⋮ ⋮ ⋱ ⋮OïP Oï> . . OïA
ð ì`P`>⋮̀Að = ì gPg>⋮gï

ð 

 

     A  x  b ô¹ = ¼ 

Where, ­ is the coefficient matrix, ` is the unknown matrix (vector) and g is the known matrix (vector). 

The augmented matrix, £­ ⋮ g¤, for the above system of linear equation is 

ì OPP OP> … OPAO>P O>> … O>A⋮ ⋮ ⋱ ⋮OïP Oï> . . OïA
⋮⋮⋮⋮

gPg>⋮gï
ð 

Remark: If a system of linear equations is the form  ô¹ = T, i.e. all entries of g are equal to 0, then the 

system is called homogeneous system of linear equation, otherwise it is called non-homogeneous.  

Example: write the coefficient matrix and the augmented matrix for the following system of linear 

equations. 
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3`P − `> + `@ = 4 `P + `> + `@ = 6 `P − `> − `@ = −4 

Solution: Coefficient Matrix = ­ = õ3 −1 11 1 11 −1 −1ö 

Augmented Matrix= £­ ⋮ g¤ = õ3 −1 1 ⋮ 41 1 1 ⋮ 61 −1 −1 ⋮ −4ö 

2.9. Solving System of Linear Equations 

I. Cramer’s Rules 

Let ô¹ = ¼ be a system of d linear equations in d unknowns such that det(­) ≠ 0. Then the system has 

a unique solution. This solution is: `P = 123 (%�)123 (%) , `> = 123 (%Õ)123 (%) , …, `A = 123 (%&)123 (%)  

Where ­�(for � = 1, 2, … , d) is the matrix obtained by replacing the entries in the ��°column of ­ by the 

entries in the matrix g = 6gPg>⋮gA
7. 

Example: Using Cramer’s Rule, solve the following system of linear equations. `P + `@ = 6−3`P + `> + `@ = 30−`P − `> + `@ = 8  

Solution: 

­ = õ 1 0 2−3 4 6−1 −2 3ö 

­P = õ 6 0 230 4 68 −2 3ö 

­> = õ 1 6 2−3 30 6−1 8 3ö 

­@ = õ 1 0 6−3 4 30−1 −2 8 ö 

det(­) = 44, det(­P) = −40, det(­>) = 72, and det(­@) = 152 

Thus ¹U = 123 (%�)123 (%) = Yp·pp = YUTUU ¹q = 123 (%Õ)123 (%) = Z>pp = U�UU and   ¹/ = 123 (% )123 (%) = PX>pp = /�UU 
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Exercise: Solve the following system of linear equations using Cramer’s Rule: 

a) ¸ 5` + 7a = 1210` + a + 3b = 14` + 6a + 2b = 9 � 
b) 

2`P − `> − `@ − `p = 6`P − 5`> − 3`@ − `p = 15`P + `> − 7`@ + 6`p = −3−`P − `> − `@ = 3  

II. Gaussian Elimination Method 

Definition: The process of using elementary row operations to transfer an augmented matrix of linear 

system in to one whose augmented matrix is in row echelon form is called Gaussian elimination. 

Let­` = g be a system of linear equations. Then, to solve the system by using Gaussian elimination 

method, use the following procedures. 

I. Write down the augmented matrix for the system. 

II. Reduce this augmented matrix to its row echelon form. 

III. Use back substitution to arrive at the solution. 

Example: By using the Gaussian-Elimination method, solve the following system of linear equations. 2`P − `> − `@ − `p = 6`P − 5`> − 3`@ − `p = 15`P + `> − 7`@ + 6`p = −3−`P − `> − `@ = 3  

Exercise:By using the Gaussian-Elimination method, solve the following system of linear equations. 

i. 

4`P + `> + `@ + `p = 63`P + 7`> − `@ + `p = 17`P + 3`> − 5`@ + 8`p = −3`P + `> + `@ + 2`p = 3  ii. 

−`P − 4`> + 2`@ + `p = −322`P − `> + 7`@ + 9`p = 14−`P + `> + 3`@ + `p = 4`P − 2`> + `@ − 4`p = −4  

III. Inverse Matrix Method 

Theorem: If ô is an invertible d × d matrix, then for each d × 1 matrix �, the system ­` = g has 

exactly one solution namely ` = ­YPg = %Ðò% Ð4�% g 

Example: Solve the following system of linear equations by using inverse method.  

¸ `P + 2`> + 3`@ = 52`P + 5`> + 3`@ = 3               `P + 8`@ = 17� 
In matrix form, this system can be written as:­` = g where  

A = õ1 2 32 5 31 0 8ö ` = õ`P`>`@ö                  and    g = õ 5317ö 
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But ­YP = õ−40 16 9−13 −5 −35 −2 −1ö and we have:    

 

` = ­YPg = õ−40 16 9−13 −5 −35 −2 −1ö õ 5317ö = õ 1−12 ö = õ`1`2`3ö 

Thus`P = 1, `> =  −1 Ode  `@ = 2 On� �ℎ� �mÀ���md� 

Exercise: Solve the following system of linear equations by using inverse method. 

a) 
` + a = 25` + 6a = 9 

b) 

`P + 3`> + `@ = 42`P + 2`> + `@ = −12`P + 3`> + `@ = 3  

Remark:- 

1. A system of equations that has no solution is called inconsistent; if there is at least one solution 

of the system, it is called consistent.  

2. A system of linear equations may not have solutions, or has exactly one solution (unique 

solution), or infinitely many solutions. 

3. Every homogeneous system of linear equations (�. �, . ô¹ = T) is consistent, since all`� = 0 (for  � = 1, 2, 3, … ) is a solution. This solution is called the trivial solution; if there are other solutions, 

they are called nontrivial solutions. If this system has nontrivial solutions, then these solutions are 

infinite.  

4. If the number of variables is greater than the number of equations in a given system of linear 

equations, then the system has infinite solutions. The arbitrary values that are assigned to the free 

variables are often called parameters. 

5. Let ­` = g be a system of non-homogenous linear equations and the number of variables are 

equal to the number of equation (i.e. ­ be a square matrix). And let ­�(for � = 1, 2, … , d) be a 

matrix obtained by replacing the entries in the ��°column of ­ by the entries in the matrix 

g = 6gPg>⋮gA
7. Then  

i. if det(­) ≠ 0, then the system has a unique solution. 

ii. if det(­) = 0, then the system has  

a. infinitely many solutions if det(­�) = 0 for all � = 1,2,3 … 
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b. no solution if at least one of the det(­�) ≠ 0 for some � = 1,2,3 … 

2.10. Eigen values and Eigenvectors  

Definition: Let ­ be an d × d square matrix and ` be a non-zero column vector. Then `is called the 

eigenvector ( or right eigenvector or right characteristic vector) of ­ if there exists a scalar 8 such that ­` = 8` … . . (1) 

Then, 8 is called an eigenvalue or characteristics value of ­. Eigenvalue may be zero, but eigenvector 

cannot be zero vectors. 

Example: show that é 1−1ê is an eigenvector corresponding to the eigenvalue 8 = −2 for the matrix 

é 3 5−2 −4ê. 
Solution: from equation (1) we have 

é 3 5−2 −4ê é 1−1ê = é 2−2ê = −2 é 1−1ê 

From equation (1), ­` − 8` = (­ − 8þA)` = 0 

� D­ − 8þAD is called the characteristic polynomial of ­. 

� The equation D­ − 8þAD = 0 is called the characteristic equation. 

� For each eigenvalue  8, the corresponding eigenvector is found by substituting 8 back into the 

characteristic equation D­ − 8þAD = 0. 

Example: Determine the eigenvalues and corresponding eigenvectors of the matrix ­ = é 3 5−2 −4ê 

Solution: For this matrix ­ − λI = é 3 5−2 −4ê − λ é1 00 1ê = é3 − λ 5−2 −4 − λê and hence  

det(­ − λI) = (3 − λ)(−4 − λ) − 5(−2) = λ> + λ − 2 = 0. Thus, the characteristic equation of A is λ> + λ − 2 = 0 and up on solving this we get λ = 1 and λ = −2 

i. The eigenvectors to : = U will be obtained by solving equation (1) above for ¾ =  é`P`>ê. With 

this value of λ after substituting and rearranging, we get:  

ªé 3 5−2 −4ê − 1 é1 00 1ê« é`P`>ê = é00ê ⇒ é 3 5−2 −4ê é`P`>ê = é00ê 
This is equivalent to the set of linear equations given below:  2`P + 5`> = 0−2`P − 5`> = 0 
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The solution to this system is `P = YX> `> with `> arbitrary, so the eigenvectors corresponding to λ = 1 

are,  

¾ =  é`P`>ê = ;YX> `>`> < = `> ;YX>1 < with `> arbitrary. 

ii. When : = −q, equation (1) above may be written as: 

ªé 3 5−2 −4ê − (−2) é1 00 1ê« é`P`>ê = é00ê ⇒ é 5 5−2 −2ê é`P`>ê = é00ê 
This is equivalent to the set of linear equations given below:  5`P + 5`> = 0−2`P − 2`> = 0 

The solution to this system is `P = −`> with `> arbitrary, so the eigenvectors corresponding to λ = −2 

are,  

¾ =  é`P`>ê = é−`>`> ê = `> é−11 ê with `>arbitrary  

Exercise: Determine the eigenvalue and eigenvector of the following matrices if there exist: 

­ = õ5 2 23 6 36 6 9ö 

æ = õ 3 −2 0−2 3 00 6 5ö 
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CHAPTER THREE 

LIMIT AND CONTINUTY 

3.1. Definition of limit  

Definition: A function is a relation in which no two distinct ordered pairs have the same first 

element. If f is a function with domain A and range a subset of B, we write � ∶  ­ →  æ  
If � ∶  ­ →  æ is given by a rule that maps x from A to y in B, then we write a =  � (`). 

Definition: A function � ∶  ­ →  æ is said to be 

a) Odd, if and only if, for any ` ∈ ­, � (−`) =  −� (`). 
b) Even, if and only if, for any ` ∈ ­, � (−`) =  � (`). The evenness or oddness of a function is called its parity. 

Definition: A function � ∶  ­ →  æ is said to be one-to-one (an injection), if and only if, each 

element of the range is paired with exactly one element of the domain, i.e. � (`P)  =  � (`>)  ⇒ `P  = `>, �mn Oda `P Ode `> ∈ ­. 
Definition: A function � ∶  ­ →  æ is onto (a surjection), if and only if, Range of f = B. 

Definition: A function � ∶  ­ →  æ is a one-to-one correspondence (a bijection), if and only if, f 

is one-to-one and onto. 

From preparatory we have been evaluating the limit of a function by using its intuitive definition. 

That is we have said that limit of f (x) as x approaches to a is L and write; limÂ→� �(`) = ß 

If we can make f (x) close enough to L by choosing x close enough to Obut distinct from O.  

Definition: (Intuitive Definition of Limit): Suppose � is defined when ` is near the number O. 

(This means that � is defined on some open interval that contains O, except possibly at O itself.) 

Then we write  limÂ→� �(`) = ß 

and say “the limit of f (x), as ` approaches O , equals ß ” if we can make the values of   ` arbitrarily close to O(as close to L as we like) by taking x to be sufficiently close to O(on 

either side of O) but not equal to O. 
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Roughly speaking, this says that the values of f (x) approach Oas `approaches O. In other words, 

the values of f (x) tend to get closer and closer to the number ßas `gets closer and closer to the 

number O(from either side of O) but ` ≠ O. 

 

Although this intuitive definition is sufficient for solving limit problems it is not prices enough. 

In this section we see the formal definition of limit, which we call the > − ? definition of limit. 

Definition: (Formal definition of limit): Let �be a function defined on some open interval that 

contains the number O, except possibly at O itself. Then we say that the limit of @(¹)as ` approaches O is L, and we write limÂ→� �(`) = ß 

 

if for every number > > 0there is a number ? > 0such that if 0 < D` − OD < ? then D�(`) − ßD <> 

Since D` − OD is the distance from `to O and D�(`) − ßDis the distance from  �(`) to ß, and since > can be arbitrarily small, the definition of a limit can be expressed in words as follows: limÂ→��(`) = ßMeans that the distance between �(`) and  ß can be made arbitrarily small by 

taking the distance from `to O sufficiently small (but not 0). 

Alternatively, limÂ→��(`) = ßMeans that the values of �(`)can be made as close as we please to L by taking `close enough to O (but not equal to O). 

Diagrammatically observe the following: 

 

 

Examples on limit 
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Even if it is very difficult to use the formal definition of limit to handle all limit problems let us 

see how we can use it for evaluating same important limits that may help us in developing rules 

by the way of which we can evaluate limits without using the formal definition. 

 

How to Find Algebraically a A for a Given @,B, G and C > 0 

The process of finding aA > 0 such that for all x,0 < D` − OD < ? ⇒ D�(`) − ßD < >can be 

accomplished in two steps. 

1. Solve the inequality D�(`) − ßD < >to find an open interval say (c, d) containing a on which the inequality holds for all ` ≠ O. 
2. Find a value of A > 0  that places the open interval (O − ?, O + ?) centered at a inside the interval (c, d). The inequality D�(`) − ßD < > will hold for all ` ≠ O in this A interval.interval.interval.interval. 

Example: show that limÂ→@4` − 5 = 7 

Solution: Based on the definition we have �(`) = 4` − 5, L = 7 and a = 3  

We need to show for every number > > 0 there is a number ? > 0 such that  0 < D` − 3D < ? ⇒ D�(`) − 7D < > 

Now consider  D�(`) − 7D < > we have  D(4` − 5) − 7D = D4` − 12D = D4(` − 3)D = 4D` − 3D 
Thus  0 < D` − 3D < ? ⇒ 4D` − 3D < > 

0 < D` − 3D < ? ⇒ D` − 3D < >4 

 

This suggests us we can choose ? = Ep 

Now for checking if 0 < D` − 3D < ?, then: 0 < D` − 3D < ? ⇒ 4D` − 3D < 4? ⇒ D4(` − 3)D < 4?           ⇒ D4` − 12)D < 4?          ⇒ D(4` − 5) − 7)D < 4? 
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⇒ D(4` − 5) − 7)D < 4 >4 

⇒ D(4` − 5) − 7)D < >     ∴ ga �ℎ� e���d���md m� À�ç��  Ë� ℎO~�;  limÂ→@4` − 5 = 7 

 

 

THE VALUE OF δ IS NOT UNIQUE 

In preparation for our next example, we note that the value of δ in the above Definition is not 

unique; once we have found a value of δ that fulfils the requirements of the definition, and then 

any smaller positive number ?P will also fulfil those requirements. I.e. if it is true that; D�(`) − ßD < > If0 < D` − OD < ?it will also be true thatD�(`) − ßD < > if 0 < D` − OD < ?P 

 This is because Ü` ∶  0 <  D` −  OD  < ?PÝ is a subset of Ü` ∶  0 <  D` −  OD  <  ?Ý 
Example: show that:  a) limÂ→@`> = 9 b) limÂ→> PÂ = P> 
Solution:  a) Here we have �(`) = `>, L = 9 and a = 3  
We need to show for every number > > 0 there is a number ? > 0 such that  0 < D` − OD < ? ⇒ D�(`) − ßD < > 

That is 0 < D` − 3D < ? ⇒ D`> − 9D < > 

Now consider  D`> − 9D < > D`> − 9D = D` + 3DD` − 3D < > We wish to bound the factor |x + 3|. This can be done by setting 

fixed number for ? then let ? ≤ 1 then we have; D` − 3D < 1                    ⇒ −1 < ` − 3 < 1                    ⇒ −1 + 6 =< ` + 3 < 1 + 6 ⇒ 5 < ` + 3 < 7                       
Consequently we can have that D` + 3D < 7 and hence we have;  D`> − 9D = D` + 3DD` − 3D < 7D` − 3D < 7? 

This suggests us we can choose ? = min ÜEZ  ,1Ý. This proves thatlimÂ→@`> = 9.  

b) Here we have �(`) = PÂ, L = P> and a = 2   
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We need to a number ? > 0 given that a number > > 0 such that;  0 < D` − OD < ? ⇒ D�(`) − ßD < > 

 That is 0 < D` − 2D < ? ⇒ ¢PÂ − P>¢ < > 

 Now consider ¢PÂ − P>¢ < > 

H1̀ − 12H = H2 − `2` H = D2 − `DD2`D = 12 D2 − `DD`D  

In similar manner of the second example above we have to bound the factor |x| then let ? ≤ 1 

and we have; D` − 2D < 1⇒−1 < ` − 2 < 1 ⇒ 1 < ` < 3 consequently we can have D`D < 3 and this implies ¢PÂ¢ > P@ hence we have: 

H1̀ − 12H = H2 − `2` H = D2 − `DD2`D = D` − 2D2D`D > D` − 2D6  

⇒DÂY>D[ < DÂY>D>DÂD < > 

⇒DÂY>D[ < > ⇒ D` − 2D = 6> = ?> 

This suggests us we can choose ? = min Ü1, 6>Ý and hence this proves that limÂ→> PÂ = P> 

Exercise: show that: a) limÂ→·`> = 0 b) limÂ→>3` − 5 = 1 UniUniUniUniqqqqueness of lueness of lueness of lueness of limitimitimitimit    
Theorem1: If the limit of a function � at O exists then, this limit is unique. Equivalently if ß and / are both limits of � at O then ß = /. 

Proof: suppose that � has two distinct limits ß Ode / (ß ≠ /) that is limÂ→��(`) = ß  and 

limÂ→��(`) = / 

Now since limÂ→��(`) = ß  then given 
E> > 0 there exist ?P > 0 such that  

0 < D` − OD < ?P ⇒ D�(`) − ßD < >2 

And since limÂ→��(`) = /  then given 
E> > 0 there exist ?> > 0 such that  
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0 < D` − OD < ?> ⇒ D�(`) − /D < >2 

Now take ? = min (?P,?>) and we have: 0 < D` − OD < ? ⇒ D�(`) − ßD < E> And  0 < D` − OD > ? ⇒ D�(`) − /D < E> 

In particular choose  > = Dß − /D and hence we have: Dß − /D = Dß − �(`) + �(`) − /D ≤ Dß − �(`)D + D�(`) − /D = D�(`) − ßD + D�(`) − /D 
= >2 + >2 = > = Dß − /D 

⇒ Dß − /D < Dß − /D This is a contradiction 

Example: show thatlimÂ→·�(`) = 0 where�(`) = ÂÕÂÕÄP(hint¢ ÂÂÕÄP¢ < D`D) 
Solution: Given > > 0 we need to find ? > 0 such that;  

0 < D` − OD < ? ⇒ D�(`) − ßD < >That is0 < D` − 0D < ? ⇒ ¢ ÂÕÂÕÄP − 0¢ < > 

⇒  0 < D`D < ? ⇒ I `>`> + 1I < > 

Now consider  ¢ ÂÕÂÕÄP¢ we have: 

I `>`> + 1I = D`D ¢ ``> + 1¢ < D`DD`D = D`D> < > 

⇒ D`D < Q> 

Now we can choose ? = Q> such that 0 < D`D < ? ⇒ ¢ ÂÕÂÕÄP¢ < Q> 

3.2. Basic limit Theorems 

Theorem:SupposelimÂ→��(`) = LandlimÂ→�¬(`) = Mthen for any real number the followingholds 

true. 1. limÂ→�£�(`) ± ¬(`)¤ = limÂ→��(`) ± limÂ→�¬(`) = ß ± / 2. limÂ→���(`) = �limÂ→��(`) = �ß 3. limÂ→��(`) ∙ ¬(`) = limÂ→��(`) ∙ limÂ→�¬(`) = ß/ 
4. limÂ→� J(Â)K(Â) = L�MN→OJ(Â)L�MN→OK(Â) = PQ , (�mn ¬(`) ≠ 0,/ ≠ 0) 5. limÂ→�£�(`)¤A = £limÂ→��(`)¤R 
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6. limÂ→��J(Â) = e L�MN→OJ(Â) 7. Àd ¢limÂ→��(`)¢ = limÂ→�ÀdD�(`)D for limÂ→��(`) > 0 8. limÂ→�(�(`))K(Â) = e L�MN→OK(Â)SADJ(Â)D�mn  �(`) > 0 
9. limÂ→� N�(`)& = TlimÂ→��(`)&   for n is evenlimÂ→��(`) > 0 

Proof: 1 since limÂ→��(`) = LandlimÂ→��(`) = M then by definition for given >P, >> > 0 there exists  ?P, ?> > 0 such that  0 < D` − OD < ?P ⇒ D�(`) − ßD < >P 0 < D` − OD < ?> ⇒ D¬(`) − /D < >> 

Now choose ? = min Ü?P,?>Ý and >P = >> = E> then  

0 < D` − OD < ? ⇒ D�(`) − ßD < >2 

0 < D` − OD < ? ⇒ D¬(`) − /D < >2 

We need to show 0 < D` − OD < ? ⇒ D�(`) + ¬(`) − (ß + /)D < > 

Now consider D�(`) + ¬(`) − (ß + /)D = D(�(`) − ß) + (¬(`) − /)D ≤ D(�(`) − ß)D + D(¬(`) − /)D 
< >2 + >2 = > 

Hence 0 < D` − OD < ? ⇒ D�(`) + ¬(`) − (ß + /)D < > 

Therefore limÂ→�£�(`) + ¬(`)¤ = ß + / = limÂ→��(`) + limÂ→�¬(`) 

Proof 2. Given that limÂ→��(`) = ß we need to show for every > > 0 (¬�~�d) there exist a ? > 0 

such that 0 < D` − OD < ? ⇒ D��(`) − �ßD < > ⇒ D�DD�(`) − ßD < > 

⇒ D�(`) − ßD < >D�D 
Now we can take D�D> > 0 then there exist ? > 0 such that; 0 < D` − OD < ? ⇒ D��(`) − �ßD < D�D> ⇒ D�DD�(`) − ßD < D�D> D�(`) − ßD < > 

Therefore limÂ→���(`) = �limÂ→��(`) = �ß 
Proof 8. Using number 7 we can prove it informally as follows: 



 60 

Let a = limÂ→�¨�(`)©K(Â)
 

⇒ ln a = Àd UlimÂ→�¨�(`)©K(Â)V 
= limÂ→�Àd¨�(`)©K(Â)(ga d�çg�n 7) 

= limÂ→�¬(`)Àd�(`) 

⇒  �SAÃ = � L�MN→OK(Â)SAJ(Â) ⇒a = � L�MN→OK(Â)SAJ(Â)
 

Therefore limÂ→�(�(`))K(Â) = e L�MN→OK(Â)SADJ(Â)D�mn  �(`) > 0 
Proof the rest as an exercise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: FindlimÂ→· pÂÕÄ[ÂÄ[W�RÕ ÂYP  

Solution: Using the basic limit theorems above we can solve it as follows; since all limits of the 

terms exists we can write it   

limÂ→· 4`> + 6` + 6sin> ` − 1 = limÂ→·4 + limÂ→·6` + limÂ→·6limÂ→· sin> ` − limÂ→·1 = 4lim`>Â→· + 6limÂ→·` + 6limÂ→· sin> ` − 1 = 0 + 0 + 60 − 1 = −6 

Theorem: (Substitution Theorem) 

Activity: 

1. Evaluate the following limits: a) limÂ→pT ÂYZÂÄP                                   e) limÂ→> NPÄQ>ÄÂY@ÂY>  
b) limÂ→@ Â Y>ZÂY@                                      f) limÂ→>� QÂY>�ÄQÂYQ>�QÂÕYp�Õ  
c) limÂ→P ÂYPQÂYP                                      g) limÂ→@�(NÕXYNX ) d) limÂ→p QÂÄXY@ÂYp   2. Show that the following limits are true. a) limÂ→� ªÂZY�ZÂ&Y�& « = ïA OïYA    , ç, d ∈ { b) limÂ→� Â&Y�&ÂY� = dOAYPd ∈ Ê  
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SupposelimÂ→��(`) = �and�(`) ≠ �for all`in some open interval about a with the 

possibleexception of a itself.  Suppose also thatlimÂ→�¬(`)exists, then     limÂ→� ¬¨�(`)© = limÃ→Ô¬(a) 

 Example: Find a) limÂ→·Q1 − x> b) limÂ→ \�ÕQsin 2x 
Solution:  a) let a = 1 − `> then as ` → 0, a = 1 − `> → 1 ⇒ limÂ→·N1 − x> = limÃ→PNy = 1  
   Therefore limÂ→·Q1 − x> = 1 

b) let a = 2` then as ` → �P> , a = 2` → �[ ⇒ limÂ→ �P>Qsin 2x = limÃ→�[Nsin y 
And now let b = sin a then as a → �[ , b = sin a → P> 

⇒ limÃ→�[Nsin y = limÅ→P[Qz = Q22  

Exercise: Find limÂ→Y\̂ tanÕ_ ` 

SSSSqqqqueeueeueeueezzzzing (sandwich) theoreming (sandwich) theoreming (sandwich) theoreming (sandwich) theorem    
Suppose that ¬(`) ≤ �(`) ≤ ℎ(`) for all ` in some open interval containing O except possibly 

at O itself. Suppose also that:  limÂ→�¬(`) = limÂ→�ℎ(`) = ß. Then limÂ→��(`) = ß 

Example: given that 1 − ÂÕp ≤ �(`) ≤ 1 + ÂÕ>  for all ` ≠ 0 then find limÂ→·�(`) 

Solution: observe that limÂ→· ª1 − ÂÕp « = 1 = limÂ→·(1 + ÂÕ> ) then by the sandwich theorem we have 

that limÂ→·�(`) = 1 

3.3.  One sided Limits  

This method is applied to find the limit at ` = O when the function is defined differently for the 

cases when ` > O, ` = O and ` < O. 
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1. Right hand limitRight hand limitRight hand limitRight hand limit: We say that the right hand limit of �(`) at ` = O is ß, if �(`) → ß as ` → O through values greater than O. And we write: limÂ→�`�(`) = ß If for every number > > 0 there is a number ? > 0 such that if O < ` < O + ? then D�(`) − ßD < > 2. Left hand limitLeft hand limitLeft hand limitLeft hand limit: We say that the left hand limit of �(`) at ` = O is /, if �(`) → / as ` → O through values less than O. And we write: limÂ→�X�(`) = / If for every number > > 0 there is a number ? > 0 such that if O − ? < ` < O then D�(`) − /D < > 
Example: Show that limÂ→·`Q` = 0 

Solution: here we have �(`) = Q` , ß = 0 Ode O = 0  then for every number > > 0 we need to 

find a number ? > 0 such that: 0 < ` < 0 + ? ⇒ ÑQ` − 0Ñ < > 0 < ` < ? ⇒ Q` < > 0 < ` < ? ⇒ ` < >> 

Then we can choose ? = >> 

For checking 0 < ` < ? ⇒ Q` < Q? = Q>> = > ⇒ ÑQ` − 0Ñ < > 

Therefore limÂ→·`Q` = 0 

Exercise:  Show that limÂ→PXQ1 − `> = 0 

Limit of a function derived from one-sided limits 

Definition: We say thatlimÂ→��(`) = ß, if limÂ→�`�(`) = ß = limÂ→�X�(`) however, if  limÂ→�`�(`) ≠
limÂ→�X�(`) or if any one of the limits limÂ→�`�(`) mn limÂ→�X�(`) doesn’t exist, then we say that 

limÂ→��(`) doesn’t exist. 

Example: Let �(`) = Ì2` + 1 �mn ` ≤ 2` + 3  �mn ` > 2 � then find limÂ→>�(`) 

Solution: using one sided limits we can solve as follows; limÂ→>`�(`) = limÂ→>`` + 3 = 5and limÂ→>X�(`) = limÂ→>X2` + 1 = 5 

⇒ limÂ→>`�(`) = limÂ→>X�(`) = limÂ→>�(`) = 5 

Exercise: Let ℎ(`) = Ì4 − `> �mn ` ≤ 12 + `>  �mn ` > 1� then find limÂ→Pℎ(`) 

3.4.  Infinite limits and limit at infinity  
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Infinite limits:  

Definition: Let �(`) be defined for all ` in some open interval containing O except possibly that �(`) need not be defined atO. We will write: limÂ→��(`) = ∞ If given any positive number M, we can find a number ? > 0 such that �(`) 

satisfies: �(`) > /  ��  0 < D` − OD < ? that is 0 < D` − OD < ? ⇒ �(`) > / 

Definition: Let �(`) be defined for all ` in some open interval containing O except possibly that �(`) need not be defined atO. We will write: limÂ→��(`) = −∞ If given any negative number M, we can find a number ? > 0 such that �(`) 

satisfies: �(`) < /  ��  0 < D` − OD < ? that is 0 < D` − OD < ? ⇒ �(`) < / 

Example: Show that limÂ→· PÂÕ = ∞ 

Solution: let M be given positive number, then we need to find a number ? > 0 such that  

0 < D`D < ? ⇒ 1̀> > / 

But  
PÂÕ > / ⇔ `> < Pc ⇔ D`D < PQc 

Now if we choose ? = PQc  then 
PÂÕ > / 

Therefore limÂ→· PÂÕ = ∞ 

Limit at Infinity:  

Definition: Let �(`) be defined for all ` in some infinite open interval extending in the positive 

x-direction. We will write:  limÂ→d�(`) = ß If given > > 0, there corresponds a positive number N such that D�(`) − ßD <> if ` > Ê 

Definition: Let �(`) be defined for all ` in some infinite open interval extending in the negative 

x-direction. We will write: limÂ→Yd�(`) = ß If given > > 0, there corresponds a negative number N such that D�(`) − ßD < >  
if ` < Ê 

Example: Prove that limÂ→d PÂ = 0 

Solution: Applying the above definition �(`) = PÂ  Ode ß = 0 we need to find a number N>0 

such that  
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H1̀ − 0H < > �� ` > Ê 

Since ` → ∞ we can assume that ` > 0, then we can write it without absolute values as  1̀ < > �� ` > Ê 

⇒ ` > 1>  �� ` > Ê 

Then we can choose Ê = PE which satisfies the required proof. 

Limits involving 
efgww  

Theorem: limh→· W�Rhh = 1 (s in radians) 

Proof: Consider the following diagram: 

 

The aim is to show that the right-hand and left-hand limits are both 1. Then we will know that 

the two-sided limit is 1 as well. 

From the figure Area iy­z < On�O ����mn y­z < On�O Δy­k. We can express these areas in 

terms of sas follows: 

­n�O iy­z =  12 gO�� ∗ ℎ��¬ℎ� =  12 (1)��d s = 12 ��d s 
On�O ����mn y­z = 12 n>s = s2 

­n�O iy­k = 12 gO�� ∗ ℎ��¬ℎ� = 12 tan s 

kℎ�� 12 ��d s < s2 < 12 tan s 

Dividing all terms by 
P> sin s (s �� ¶m����~� 0 < s < �> ) we get; 

1 < hW�Rh < PmnWh⇒1 > W�Rhh > cos s and by taking limit as s → 0 through and the sandwich 

theorem we get limh→· W�Rhh = 1 
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Example: using limÂ→d W�Rhh = 1 show that: 

a) lim°→· mnW°YP° = 0                     b) limÂ→· W�R>ÂXÂ = >X 
Solution: a) By using the half angle formula cos ℎ = 1 − 2 sin>(°>) then we can have; 

lim°→· mnW°YP° = lim°→· Y> W�RÕ(oÕ)° = −lim°→· W�RÕªoÕ«oÕ = −limh→· Ú�A(h)h ∙ sin s  (by letting  s = °> ) thus we get 

−limh→· ��d(s)s ∙ sin s = −1(1)(0) = 0 

b) limÂ→· W�R>ÂXÂ = >X  since limÂ→· W�R>ÂXÂ = limÂ→· (Õ_)W�R>Â(Õ_)XÂ = >X limÂ→· W�R>Â>Â = >X limh→· W�Rhh  (ga À����d¬ s =2`) thus we get  25 limh→· sin ss = 25 (1) = 25 
Exercise: Find  a) limÂ→· 3pRÂÂ  b) limÂ→· W�R>ÂÂ  c) limÂ→· W�R@ÂXÂ  
 

Asymptotes 1. HoriHoriHoriHorizzzzontal Asymptoteontal Asymptoteontal Asymptoteontal Asymptote: a line a = g is horizontal asymptote of the graph of a function a = �(`) if either: limÂ→d�(`) = g Or limÂ→Yd�(`) = g 
Example: The curve 

XÂÕÄWÂY@@ÂÕÄ>  

Whose sketched is in the Figure below has the line a = X@as a horizontal asymptote on both the 

right and the left because; limÂ→d�(`) = X@ and  limÂ→Yd�(`) = X@ 
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Example: Find limÂ→d sin PÂ 

Solution: we can solve this by substituting a new variable � = PÂ and as ` → ∞ � → 0Ä and hence,  

limÂ→d sin 1̀ = lim�→·` sin � = 0 

2. Vertical AsymptoteVertical AsymptoteVertical AsymptoteVertical Asymptote: a line ` = O is a vertical asymptote of the graph of a function a = �(`) if either:  limÂ→�`�(`) = ±∞ mn limÂ→�X�(`) = ±∞ 
Example: Find the Horizontal and Vertical Asymptotes of the curve �(`) = ÂÄ@ÂÄ> 

Solution: We are interested in the behaviour as ` → ±∞ and as ` → −2  where the denominator 

is zero. Using long division we get; 

a = 1 + 1` + 2 

We now see that the curve in question is the graph of a = PÂshifted 1 unit up and 2 units left as in 

the figure below. The asymptotes, instead of being the coordinate axes, are now the lines a = 1 

and` = −2. 
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3.5. Continuity: 

Definition: A function f is continuous at a point a, if and only if the following three conditions 

are satisfied: 1. �(O) is defined  2. limÂ→��(`) exist 3. limÂ→��(`) = �(O) 
Example: Determine whether the following functions are continuous or not at ` =  2. 

�(`) = `> − 4` − 2 , ¬(`) = �`> − 4` − 2  �� ` ≠ 23            �� ` = 2�  Ode ℎ(`) = �`> − 4` − 2  �� ` ≠ 24            �� ` = 2� 
Solution: now a function f is continuous at a point a, if and only if the above three conditions are 

satisfied; then  

In each case we must determine whether the limit of the function as ` → 2 is the same as the 

value of the function at ` =  2. In all three cases the functions are identical, except at  ` =  2, 

and hence all three have the same limit at ` =  2, which is, 

limÂ→>�(`) = limÂ→>¬(`) = limÂ→>ℎ(`) = limÂ→> `> − 4` − 2 = limÂ→>(` + 2) = 4 

The function f is undefined at ` =  2, and hence is not continuous at ` =  2(Figure a).  

The function g is defined at ` =  2, but its value there is ¬(2)  =  3, which is not the same as the 

limit as x approaches 2; hence, g is also not continuous at ` =  2 (Figure b).  

The value of the function h at` =  2is ℎ(2)  =  4, which is the same as the limit as x approaches 

2; hence, h is continuous at ` =  2 (Figure c). 

 

Exercise: let �(`) = ÂÕYXÂÄpÂÕYq  determine the numbers where f is continuous. 
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Definition: A function � is continuous from the right at a number O if limÂ→�`�(`) = �(O) and f is 

continuous from the left at  O �� limÂ→�X�(`) = �(O). 

Example: The Greatest Integer Function�(`) = r`s. It is discontinuous at every integer because 

the limit does not exist at any integer n: limÂ→AXr`s = d − 1 And limÂ→A`r`s = d 

So the left-hand and right-hand limits are not equal as ` → d. Since rds = d the greatest integer 

function is right-continuous at every integer n (but not left-continuous). 

 

Definition: A function f is continuous on an interval if it is continuous at every number in the 

interval. If f is defined only on one side of an end point of the interval, we understand continuous 

at the end point to mean continuous from the right or continuous from the left. 

Example: Show that the function �(`)  = 1 − Q1 − `> is continuous on £−1,1¤ 
Solution: we are going to check the continuity of � at any point on the interval (-1,1) and at the 

end points of the interval as follows; 

For any O ∈ (−1,1)�. � − 1 < O < 1 using the limit laws we have: 

limÂ→��(`) = limÂ→� ª1 − N1 − `>« = 1 − limÂ→� ªN1 − `>« = 1 − tTlimÂ→�(1 − `>)u = 1 − N1 − O>
= �(O) 

Thus by definition � is continuous at O if −1 < O < 1  now we are going to show that the limit 

exists at the end points, that is: limÂ→YP`�(`) = limÂ→YP`¨1 − Q1 − `>© = 1 = �(−1) And limÂ→PX�(`) = limÂ→PX¨1 − Q1 − `>© = 1 =
�(1) 

Hence f is continuous from the right at -1 and continuous from the left at 1. 
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Therefore f is continuous on £−1,1¤ 
Theorem: If f and g are cont. at O and � is constant, then the following functions are also cont. 

at O.� + ¬ 
1. � − ¬ 
2. �� 
3. �¬ 
4. 

JK  where ¬ ≠ 0 
Proof:  1. Since f and g are continuous at a we have: limÂ→��(`) = �(O)andlimÂ→�¬(`) = ¬(O) ⇒limÂ→�(� + ¬)(`) = limÂ→�£�(`) + ¬(`)¤ = limÂ→��(`) + limÂ→�¬(`) (By limit laws) = �(O) +  ¬(O) = (� + ¬)(O) Thus � + ¬ is continuous at a 
Proof the rest as an exercise 

Theorem:  a) Any polynomial function is continuous everywhere. That is continuous on v = (−∞,∞)    b) Any rational function is continuous where ever it is defined; that is continuous on its domain.    
Theorem: In general the following types of functions are continuous at every number in their 

domains: 

� polynomial function 

� rational function 

� root functions 

� trigonometric and their inverses 

� exponential functions  

� logarithmic functions 

 

Example: where is the function �(`) = LRÂÄ3pRX� ÂÂÕYP  continuous? 

Solution: By the above theorem a = ln ` is continuous for all ` > 0 and a = tanYP ` is 

continuous on v. Thus by theorem of addition from previous theorem a = ln ` + tanYP ` is 

continuous at (0,∞). The denominator a = `> − 1 is polynomial, so it is continuous at all 

positive numbers ` except where`> − 1 = 0. So f is continuous on the interval (0, 1) and (1,∞).  
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Exercise: Evaluate limÂ→� W�RÂ>ÄmnWÂ 

Theorem: If f is continuous at b andlimÂ→�¬(`) = g, thenlimÂ→��(¬(`)) = �(g). In other words 

limÂ→��(¬(`)) = �(limÂ→�¬(`)). 

Proof: Exercise 

Example: Evaluate limÂ→P sinYP ªPYQÂPYÂ « 

Solution: Since inverse trigonometric functions are continuous then we can use the above 

theorem: thus 

limÂ→P sinYP t1 − Q`1 − ` u = sinYP tlimÂ→P 1 − Q`1 − ` u 

= sinYP tlimÂ→P 1 − Q`¨1 − Q`©¨1 + Q`©u (g��O��� 1 − ` = ¨1 − Q`©¨1 − Q`©) 

= sinYP tlimÂ→P 1¨1 + Q`©u 

= sinYP w12x = �6 = 30° 
Exercise: By using the above theorem show that: limÂ→� N¬(`)& = TlimÂ→�¬(`)&  

Theorem: If ¬ is continuous at O and f is continuous at ¬(O) then the composite function �m¬ 

given by �(¬(`)) is continuous at O.  

Proof: Because ¬ is continuous at O we havelimÂ→�¬(`) = ¬(O). Now � is continuous at ¬(O); 

thus, we can apply the above Theorem to the composite function �m¬, thereby giving us 

limÂ→�(�m¬)(`) = limÂ→��¨¬(`)© = � wlimÂ→�¬(`)x = �(¬(O)) 

Therefore �m¬ is continuous at O. 

Example: Where are the following functions continuous?  a) ℎ(`) = sin `> and  b) Ö(`) = ln (1 + cos `) 
Solution: a) ℎ(`) = sin `>, here we can write ℎ(`) = �(¬(`))where ¬(`) = `> Ode �(`) = sin `. Now g is continuous on v,,,, (because g is polynomial) and f is continuous everywhere. Thus  ℎ(`) = �(¬(`)) is continuous on vby the above theorem. 
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b) Ö(`) = ln (1 + cos `), now �(`) = ln `is continuous and ¬(`) = 1 + cos ` is continuous. Then  Ö(`) = ln (1 + cos `) is continuous wherever it is defined. But  ln (1 + cos `) is defined when 1 + cos ` > 0. So it is undefined when cos ` = −1 that is when ` = ±�, ±3�, ±5� … thus F is discontinuous when ` is an odd multiple of � and is continuous on the intervals between these values.   
3.6. The intermediate value theorem 

Suppose that f is continuous on the closed interval £O, g¤ and let Ê be any number between �(O) 

and �(g) where �(O) ≠ �(g). Then there exists a number � in £O, g¤ such that �(�) = Ê 

The Intermediate Value Theorem states that a continuous function takes on every intermediate 

value between the function values �(O) and �(g). It is illustrated by the Figure below. Note that 

the value Ê can be taken on once [as in part (a)] or more than once [as in part (b)]. 

 

Geometrically, the Intermediate Value Theorem says that any horizontal line a = Êcrossing the 

y-axis between the numbers ƒ(a) and ƒ(b) will cross the curve a = �(`) at least once over the 

interval [a, b]. 

Example: Show that there is a root of the equation 4`@ − 6`> + 3` − 2 = 0 between 1 and 2 

Solution: Let �(`) = 4`@ − 6`> + 3` − 2. We are looking for a solution of the given equation, 

that is, a number � between 1 and 2 such that  �(�) = 0 . Therefore we take, O = 1, g = 2  and  Ê = 0in the above Theorem. Then we have �(1) = 4(1)@ − 6(1)> + 3(1) − 2 = −1 < 0 

And  �(2) = 4(2)@ − 6(2)> + 3(2) − 2 = 12 > 0 ⇒�(1) < 0 < �(2), that is Ê = 0 is a number between�(1) Ode �(2). Now �is continuous 

since it is a polynomial, so the Intermediate Value Theorem says there is a number �between 1 
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and 2 such that �(�) = 0. In other words, the equation4`@ − 6`> + 3` − 2 = 0has at least one 

root � in the interval (1, 2). 
 

 

 

From the basic limit theorems which we have seen in the previous section we have the following 

special limits as a summary: 1. limÂ→�� = � 2. limÂ→�` = O 3. limÂ→�`A = OA 4. limÂ→� Q`& = QO&  d ∈ zÄif n is negative we assume that O > 0. 
5. limÂ→� N�(`)& = TlimÂ→��(`)&  , d ∈ z 

Exercises  

1. Evaluate the following limits. a) limÂ→X ÂÕY>XÂYX                                                      d) limÂ→d >ÂÄXÂÕX{N`  b) limÂ→· XÂÕYpÂÄP                                                      e)  limÂ→· DÂDÂ  
c) limÂ→· QÂÄ@YQ@Â  

2. Find the vertical and horizontal asymptotes of the following functions.  
a) �(`) = pÂYX@ÂÄ>                                                b) �(`) = ÂÕYXÂÄ[ÂY@  

3. Show that whether the following functions are continuous or not at ` = 2.  

a) �(`) = ÂÕYÂY>ÂY>                                            b) �(`) = |ÂÕYÂY>ÂY> if ` ≠ 2 1         �� ` = 2 � 
4. Show that the function �(`) = 1 − Q4 − `> is continuous on the interval£−2, 2¤. 
5. Find the value of k, if possible, that will make the function continuous. O) �(`) = Ì 7` − 2  if ` ≤ 1 �`>         �� ` > 1 �                        b) �(`) = Ì �`>    if ` ≤ 2 2` + �         �� ` > 2 � 
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CHAPTER FOUR 

DERIVATIVES AND APPLICATION OF DERIVATIVES Unit oUnit oUnit oUnit out comesut comesut comesut comes    
� At the end of this  chapter theAt the end of this  chapter theAt the end of this  chapter theAt the end of this  chapter the    learners will be able to:learners will be able to:learners will be able to:learners will be able to:    

� Determine the differentiability of a function at a point.Determine the differentiability of a function at a point.Determine the differentiability of a function at a point.Determine the differentiability of a function at a point.    
�     Find derivative of some functionsFind derivative of some functionsFind derivative of some functionsFind derivative of some functions    
� Apply Apply Apply Apply sum, difference product sum, difference product sum, difference product sum, difference product qqqquotientuotientuotientuotient    rule differentiation of function.rule differentiation of function.rule differentiation of function.rule differentiation of function.    
� Find the derivative Find the derivative Find the derivative Find the derivative of of of of inverseinverseinverseinverse    trigonometric trigonometric trigonometric trigonometric and inverseand inverseand inverseand inverse    hyperbolic hyperbolic hyperbolic hyperbolic functions.functions.functions.functions.    
� Apply derivatives  to solve some real life problemsApply derivatives  to solve some real life problemsApply derivatives  to solve some real life problemsApply derivatives  to solve some real life problems    
� Sketch graphs of some Sketch graphs of some Sketch graphs of some Sketch graphs of some functions using derivativesfunctions using derivativesfunctions using derivativesfunctions using derivatives....    

4.1. Definition of derivatives; Basic rules 

Definition : If point ¶(`o, ao) is a point on the graph of a function f then the tangent line to the 

graph of f at p is defined to be the line through p with slope  ç��A = lim°→· }(N~`o)X}(N~)o  

, provides this limit exist. Where ℎ = ` − `o 

 

Example : Find the slope of the tangent line to the graph of �(`) =  `2
, at the point (1,1). 
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Solution: Given �(`)  = `2  which implies that �(`o+ ℎ) = (`o+ ℎ )2
and �(`o) =`o

2 , ¶(`o, ao) = (1,1) 

ç��A = lim   °→· J(Â~Ä°)YJ(Â~)° =  lim        °→· (ÂÇÄ°)ÕY(Â~)Õ°  = lim   °→· Â~ÕÄ>°Â~Ä°ÕYÂ~Õ° =  lim   °→· >°Â~Ä°Õ°  

                      = lim°→· >Â~Ä°�>Â~. 

But our `o= 1, so ç��A = 2 

Normal Line. 

Definition : The normal line to a curve at a given point is the line perpendicular to the tangent 

line at that point. 

Definition: Let a be a number in the domain of �. If limÂ→� J(Â)YJ(�)ÂY�  exist, we call this limit the 

derivative of f at a and we write it �′(O) so that � ′(O) = limÂ→� J(Â)YJ(�)ÂY�  

Or � ′(O) = lim°→� J(�Ä°)YJ(�)°   ,if ` = O + ℎ 

If this limit exist we say that f has a derivative at a. i.e � is differentiable at a or �′(O) exist. 

�′(O) is the slope of the tangent to the graph of � at ¨O, �(O)©. 
Example : Let f(x) =  ÂÕp + 1. Find �′(−1) and �’(3) and draw the lines tangent to the graph of � 

at the corresponding points. 

Solution: �′(`) = limÂ→YP wNÕ̂ÄPxYw(X�)Õ^ ÄPxÂY(YP) = limÂ→YP wNÕ̂ÄPxYP/pÂÄP = −1/2. 

Similarly we obtain �′(3) = 3/2                                                                               

 

Exercise  
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Find �′(O)for the given values of O. 

i)�(`) = 1/` ,a=-2      b)  �(`) = −4` + 7    C)�(`) = x  at a=- 2    

d)�(`) = Ì `> �mn ` < 24` − 4 �mn` ≥ 2    O = 2�  
Derivative notation 

The process of finding a derivative is called differentiation. When the independent variable is `, 

ie a = �(`) the differentiation operation is often denoted by 
ÐÐÂ (�(`)) = � ′(`) = ÐÃÐÂ  

Derivatives of constants 

Theorem : The derivatives of constant function are 0. If �(`)  = �, where c is any real number, 

then �′(`) = 0 

Proof: �(`) = � .From definition derivative we have 

� ′(`) = lim°→· J(Â~Ä°)YJ(Â~)° = lim°→· ÔYÔ° = 0.

 

 

 

Example:  Let �(`) = `5
, then �′(`) = 5`4

 

Definition: A function f is said to be differentiable  at a point  a if ��(O)   exists. It is 

differentiable on an open interval (O, g), £O,∞)mn(−∞, O¤ if it is differentiable at every number 

in the interval. 

Theorem: If  � is differentiable at a then f is continuous at a. 

             Note. The converse of this theorem is not true. 

4.2. Basic rules 
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If f and g are differentiable at x and c is any constant then � + ¬, � − ¬ , �. ¬, ��, �/¬  where ¬ ≠ 0 are differentiable at x 

1) (� + ¬)′ = �′ + ¬′ (sum rule) 

2) (� − ¬)′ = �′ − ¬′ (difference rule) 

3) (�. ¬)′ = �′. ¬ + �. ¬′ (product rule) 4) (��)′ = ��′    constant multiple rule 
5) (�/¬)′ =  J′.KYJ.K′(K)Õ   Provided ¬ ≠ 0. (Quotient rule). 

Proof. (1-4) are left as exercise 

Proof .5 From definition of derivative, we have 

w�¬x′ = lim°→·
�(` + ℎ)¬(` + ℎ) − �(`)¬(`)ℎ = lim                 °→· �(` + ℎ)¬(`) − �(`)¬(` + ℎ)ℎ. ¬(`). ¬(` + ℎ)  

 

Adding and subtracting �(`). ¬(`) in the numerator yields 

w�¬x′ = lim         °→· �(` + ℎ)¬(`) − �(`)¬(`) − �(`)¬(` + ℎ) + �(`)¬(`)ℎ. ¬(`). ¬(` + ℎ)  

= lim°→·�¬(`) �(` + ℎ) − �(`)ℎ − �(`) ¬(` + ℎ) − ¬(`)ℎ¬(`). ¬(` + ℎ) � 

 

.        = 6lim°→· ¬(`) lim°→· �(` + ℎ) − �(`)ℎ − lim°→· �(`) lim°→· ¬(` + ℎ) − ¬(`)ℎlim°→· ¬(`) . lim°→· ¬(` + ℎ) 7 

= ¬(`). � ′(`) − �(`)¬′(`)(¬(`)>  

Example: If �(`) = Q`¬(`) where ¬(4) = 2  Ode  ¬�(4) = 3, find ��(4) 

SolutionSolutionSolutionSolution            Applying the product rule, we get 
��(`) = ee` ñQ`¬(`)ó = Q` ee` £¬(`)¤ + ¬(`) ee` ñQ`ó 

                                                                            =Q`¬�(`) + ¬(`) ÂX�Õ�Õ = Q`¬�(`) + K(Â)>QÂ     
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                                           ��(4) = Q4¬�(4) + K(p)>Qp = 6.5 
Example:  Let ℎ(`) = ÂÕYPÂ^ÄP  ,then find ℎ’(`) 

Solution. Let �(`) = `2−1 and ¬(`) = `4+1, which implies  �′(`) = 2` and ¬′(`) = 4`3
 

= ¬(`). � ′(`) − �(`)¬′(`)(¬(`))> = (2`)(`p + 1) − (`> − 1)(4`@)(`p + 1)>  

= Y>Â_ÄpÂ Ä>Â(Â^ÄP)Õ .  

Example: Find an equation of the tangent line to the curve » = +¹¨UÄ¹q© at the point (U, U/+) 

 

Theorem: The chain Rule 

If ¬ is differentiable at the point ` and f is differentiable at the point ¬(`), then composition �m¬ 

is differentiable at the point ` and (¬m�)′(`) = ¬′(�(`))�′(`). 
Example: ß�� �(`) = 41 x+  then find �′(`) 

Solution: Let �(`) = 1 + `4
 and ¬(`) = x  then �′(`) = 4`3

 and ¬′(`) =
x2

1
 for ` > 0 
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��(`) = ¬�¨�(`)©�′(`) = 4`@2N�(`) = 2`@Q1 + `p 

 
4.3.  Derivatives of some functions 

1) Derivative of trigonometric   function 

Let �(`) = ��d` from the definition of derivative we have ��(`) = lim°→· sin(` + ℎ) − ��d`ℎ = lim°→· sinxcosh + cosxsinh − ��d`ℎ  

                                      = lim°→· é��d` ªÔ�Ú°YP° « + �m�` ªÚ�A°° «ê 
= lim°→· ��m�` w��dℎℎ x − ��d` w1 − �m�ℎℎ x�  

                                             = �m�`lim°→· Ú�A°° − ��d`lim°→· PYÔ�Ú°° = �m�`(−1) − ��d`(0) =�m�` 

                                   

The derivative of ¬(`) = �m�` can be obtained in the same way and  (�m�)’ = −��d`. 

Note 1)(�Od`)′ = ���2`    2)(���`)′ = ���`�Od`     3) (�m�)′ = −���2`         4)(���`)′ =−���`�m�` 

Example : Find �′(`) = `2�Od` 

Solution: using the product rule. 

�′(`) =  `2(�Od`)′ + �Od`(`2)′ = `2���> + 2`�Od`. 
Derivatives of exponential Functions 

Let ß� �(`) = �Â 

From definition of derivatives ��(`) = lim°→· J(ÂÄ°)YJ(Â)° = lim°→· 4N`oY4N° = lim°→· 4N(4oYP)°  

                                                                                                        = �Â lim°→ 4oYP° =�Â ln � = �Â 

Therefore,(�Â)� = �Â ln � = �Â 

If �(`) = OÂ , �mn O > 0 Ode O ≠ 1, then ¨�(`)©� = OÂÀdO 
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Example: Let �(`) = 2Â, then ¨�(`)©� = 2ÂÀd2. 
Example:    Differentiate   y = eW�R�   

SoSoSoSolution:lution:lution:lution: By chain rule 
  ÐÃÐÂ = ÐÐÂ ¨�Ú�AÂ© = �Ú�AÂ ÐÐÂ (��d`) = �Ú�AÂ�m�` 
Derivatives of Logarithmic Functions 

Let �(`) = Àm¬Ó ` , ` > 0 and g > 0  , g ≠ 1,then from the definition of derivative we obtain 

��(`) = lim°→· logÓ(` + ℎ) − logÓ `ℎ = lim°→· 1/ℎ logÓ w` + ℎ` x = lim°→· 1/ℎ logÓ w1 + ℎ̀x 

                       = lim°→· P�Â logÓ(1 + ~)    ( let ~ = ℎ/`) 

= 1/` lim°→· logÓ(1 + ~)P/� = 1/` logÓ élim�→·(1 + ~)P/�ê 
                                                                                      = 1/` logÓ � = PÂSAÓ 

Note. If �(`) = Àd` then �′(`) = 1/` 

Example: Let �(`) = Àd(`2+1), then find �′(`) 

Solution@�(¹) = q¹¹qÄU 

4.4.  Higher order derivatives 

If � is a function then �′ is the function that assigns the number �(`) to each ` at which f is 

differentiable. Since �′ is a function we can carry the process at step further and define �′′(`) by 

�"(O) = limÂ→� J�(Â)YJ�(�)ÂY�   Whenever this limit exists we call �′′(O) the second derivative of  � at a. 

Example: Let �(`) = ��d`, find �′′(`). 

Solution: �(`) = ��d`⇒ �′(`) = �m�`⇒ �′′(`) = −��d`. 
For  d ≥ +3 we define the d�ℎ  

derivative
 
of f   at a by 
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�(A)(O) = limÂ→� �(AYP)(`) − �(AYP)(O)` − O  

� is d times differentiable if �(n)
(`) exists for all ` in the domain. 

Example: If �(`) = 3`p − 2`@ + `> − 4` + 2 

                ��(`) = 12`@ − 6`> + 2` − 4 

     ���(`) = 36`> − 12` + 2 

    ���(`) = 36`> − 12` + 2 

    ����(`) = 72` − 12 

    �(p)(`) = 72 

    �(X)(`) = 0    

     ⋮ 
     �(X)(`) = 0    (d ≥ 5) 

Example : Let �(`) = �cx
. Find a formula for the dth

 derivative of �. 
Solution: �(`) = �cx

⇒ �’(`) = ��cx
⇒ �”(`) = �2�cx

⇒ �(3)(`) = �3�cx
 

In general for any positive integer d. 
�(A)(`) = �n�cx. 
Example: Let:�(`) = PPYÂ,   then find  a formula for the dth

 derivative of f. 

Solution: By applying the quotient rule  

:��(`) = P(PYÂ)Õ ,        �"(`) =  >(PYÂ)   , �(@)(`) = [(PYÂ)^      

 

)
        

Now , 1 = 1! , 2 = 2!    6 = 3! 
So by proceeding in this way we obtain �(A)(`) = A!(PYÂ)&`� 
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 Exercise 

Find a formula for nth derivative of the following function. 

 a)�(`) = �m�`    b) �(`) = ��d`  c) �(`) = PÂ 

4.5. Implicit differentiation 

Function defined explicitly and Implicitly 

Up to now, we have been concerned with differentiating functions that are expressed in the form a = �(`). An equation of this form is said to be defined y explicitly as a function of x, because 

the variable y appears alone on one side of equation. However, sometimes function are defined 

by equation in which y is not alone on one side. 

For example: the equation  a` + a + 1 = `                                      (1) 

is not of the form a = �(`),however, this equation still defines y as a function of ` since it can 

be a = ÂYPÂÄP. Thus we say that (1) defines y implicitly as a function of x the function being a =ÂYPÂÄP 

In general, it is not necessary to solve an equation for a in terms of ` in order to differentiate the 

function defined implicitly. 

Example:   Find  ÐÃÐÂ  if `a = 1 

Solution: One way to find  ÐÃÐÂ is writing this equation as y=1/x⇒
ÐÃÐÂ = −1/`2

 

However, there is another way to obtain this derivative. 

i.e
ÐÐÂ £`a¤ = ÐÐÂ £1¤  ⇒  ` ÐÐÂ + a = 0 

                               ⇒    
ÐÃÐÂ = −a/`     but a = 1/` 

                             ⇒
ÐÃÐÂ = − �NÂ = −1/`>     

This method of obtaining derivative is called implicit differentiation. 

Example: Use implicit differentiation to find     ÐÃÐÂ   if 5a2+��da = `2
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Solution:
ÐÐÂ (5a> + ��da) = ÐÐÂ (`>)   ⇒  5 ÐÐÂ (a>) + ÐÐÂ (��da) = 2`( the chain rule) 

                                                         ⇒   10a ÐÃÐÂ + �m� ÐÃÐÂ = 2` 

Solving for  ÐÃÐÂ, we obtain   ÐÃÐÂ = >ÂP·ÃÄÔ�ÚÃ                        (*) 

Note that this formula involves both ` and a .In order to obtain a formula for   ÐÃÐÂ, that involves ` 

alone, we would have to solve the original equation for a in terms and then substituting in to (*). 

However, it is impossible to do this. So we are forced to leave the formula for 
ÐÃÐÂ in terms of ` 

and a. 

Example: Use implicit differentiation to find   
ÐÕÃÐÂÕ  if 4`2−2a2= 9. 

Solution: Differentiating both side of 4`2−2a2= 9 implicitly yield 

8` − 4a eae` = 0 

                                                                         
ÐÃÐÂ = >ÂÃ              (*)           

Differentiating both side of (*) implicitly yields 
ÐÕÃÐÂÕ = (Ã)(>)Y(>Â)(ÐÃ/ÐÂ)ÃÕ                (**) 

Substituting (*) in to (**) and simplifying using the original equation we obtain 

e>ae`> = 2a − 2` ª2à «a> = 2a> − 4`>a@ = −9/a@ 

Example: Find the slope of the tangent line at (2, −1) and (2,1) to a2−` + 1 = 0. 

Solution: Solving for a in terms of ` and then evaluating the derivative of a = Q` − 1  at (2,1) 

and the derivative of a = −Q` − 1 at (2, −1). 
ee` (a> − ` + 1) = ee` (0) 

                                                             ⇒ 2a ÐÃÐÂ − 1 = 0 
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 ∴            eae` = 1/2a 

At (2, −1), we have a = −1 and at (2, 1) we have a = 1  the slope of the tangent lines at those 

points are 

çtan= 2/12

1 −==
=

x

y
dx

dy       Ode çtan= 2/12

1 =
=
−=

x

y
dx

dy  

 

                                                                      

Exercise  

Find 
ÐÃÐÂ    Ode ,find 

ÐÕÃÐÂÕ ,by implicit differentiation 

1) 3 52 −= xy                                         5) 3`2−4a2= 7 

2) ��d(`2a2) = `                                         6) `3+a = 1 

3) �Od3(`a + a) = `                                   7) a + ��da = ` 

4) `> = Ô��ÃPÄÔÚÔÃ 

 

 

4.6. Derivatives of Inverse functions 

Let � be a function, then f has an inverse provided that there is a function g such that the domain 

of ¬ is the range of � such that that �(`)  = a iff ¬(a)  = `, for all x in the domain of � Ode a 

in the range of �. 
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Definition: Assume that the function � has an inverse and let  �YP 
be the unique function having 

as its domain the range of � satisfying  �(`) = a iff �YP(a) = ` for all ` in the domain of � and a in the range�. Then �YP  
 is the inverse of �. 

From the above definition we can see that, if � is a function the inverse of � is �-1 such that for 

each x in the domain of f 

(�YPm�)(`) = ` = (�m�YP)(`). 
Domain of �= range of �YP 

Range of �YP =domain of � 

Theorem : A function f has an inverse iff for some numbers `1 and `2 in the domain of �, if `1≠ `2, then �(`1) ≠ �(`2). 
i.e.  A function � is said to be invertible iff it is one to one. 

Steps to find inverse of a function 

1) Write a = �(`) 

2) Interchange ` and a 

3) Solve for a in terms of ` in step 2 

4)  Write �-1(a) for a 

Example:  Let �(`) = 3` − 2,then find the inverse of � 

Solution: Let a = 3` − 2 ⇒ ` = 3a − 2  ⇒ ` + a = 3a⇒ a = 3/2
3
+

x
 

⇒ �YP(`) = Â@ + 2/3  

Theorem: Let � be continuous on an intervalþ, and let the values assigned by � to the points in þ 

form an interval�. If � has an inverse, then �YP is continuous on �. 
Theorem:  Suppose that f has an inverse and is continuous on an open interval I containing a. 

Assume also that�′(O)  exists and �′(O) ≠ 0 and �(O) = �.Then(�-1)′(�) exist and 
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      (�-1)′(�) =
)('

1

af
 

Proof. Using the fact that �-1(�) = O and definition of derivatives we find that 

(�YP)′(�) = limÃ→Ô JX�(Ã)YJX�(Ô)ÃYÔ = limÃ→Ô JX�(Ã)Y�J(JX�(Ã))YJ(�)       (*) 

 First notice that �YP is continuous at c. Therefore limÃ→Ô �YP(a) = �YP(�) = O. 

So that if ` = �YP(a) then ` approaches a as a approaches�. 

More over the fact that �YPhas an inverse and�YP(�) = O, implies that �YP(a) ≠ a for a ≠ � 

 �nmç (∗)(�YP)′(�) = limÃ→Ô JX�(Ã)Y�J(JX�(Ã))YJ(�) = limÂ→� ÂY�J(Â)YJ(�) = limÂ→� �}(N)X}(O)ÂY� = PJ�(�)         
Example: Let �(`)  = `7+8`3+4` − 2 , Find (�-1)’(−2) 

Solution: Let us find the value of a for which   �(O) = −2, but  �(0) = −2, so O = 0 

Since  �’(`) = 7`6+24`2+4.  It follows that �′(0) = 4. 
⇒ (�YP)′(−2) = 1/�′(0) = 1/4. 

We conclude this section with brief discussion of the general relation ship between the derivative 

of � and �-1
. For this purpose suppose that both function are differentiable and 

let  a = �-1(`) ⇒ ` = �(`)                                                    (*) 

and differentiating implicitly with respect to x yields 
ÐÐÂ (`) = ÐÐÂ (�(a)) 

⇒ 1 = ��(a) ÐÃÐÂ 

 ⇒   
ÐÃÐÂ = PJ�(Ã). 

Thus from (*) we obtain the formula that relates the derivative of �-1
 to the derivative of � 

ee` ¨�YP(`)© = 1��(�YP(`)) 
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4.7. Inverse Trigonometric Functions and Their Derivatives. 

.None of the six basic trigonometric functions is one to one because they all repeat periodically 

and do not pass the horizontal line test. Thus to define inverse trigonometric function we must 

first restrict the domain of trigonometric function to make them one to one. 

The inverse of these restricted functions are denoted by 

sinYP `,cosYP `  , tanYP `,secYP `,cscYP ` and cotYP `.(or alternatively by On���d`, On��m�`, On��Od`,On����`,On����` and On��m�`) 

y=sinYP ` is equivalent to ��da = ` �� − 1 1≤≤ x  and−�/2 ≤ a ≤ �/2 

a = �m�-1` is equivalent to �m�a = ` if−1 ≤ ` ≤ 1 and 0 ≤ a ≤ �. 
a = �Od-1` is equivalent to �Oda = ` if−∞ < ` < ∞ and−�/2 < a < �/2. 

a = cotYP ` is equivalent to cot a = ` for−∞ < ` < ∞  and 0 < a < �. 
a = ���-1` is equivalent to ���a = `, if  D`D ≥ 1 and 0 ≤ a ≤ � Ode a ≠ �/2. 

a = cscYP ` is equivalent tocsc a = ` if D`D ≥ 1. – �> ≤ a ≤ �> Ode a ≠ 0. 
Identities for inverse trigonometric functions 

1) ��d-1` + �m�-1` = 2/π                                     5)���(�Od-1`) = 21 x+  

2) sin(sinYP `) = Q1 − `>  , −1 ≤ ` ≤ 1               6) ��d(���-1`) =
x

x 12 −  , 1≥x                                     

3) sin(cosYP `) = Q1 − `>  , −1 ≤ ` ≤ 1                                                                  

4)�Od(tanYP `) = ÂQPYÂÕ ,−1 < ` < 1                           
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Now let us use implicit differentiation to obtain the derivative formula for a = ��d-1` 

                       a = sinYP ` if and only if ` = ��da 

                  
ÐÐÂ (`) = ÐÐÂ (��da) 

   ⇒   1 = �m�a ⇒ 
ÐÃÐÂ = PÔ�ÚÃ = PmnW (W�RX� Â) = PQPYÂÕ 

Therefore, 
ÐÃÐÂ = PQPYÂÕ 

By applying the same procedure, we obtain the following 

(cosYP `)� = − PQPYÂÕ                               (secYP `)� = PÂQÂÕYP    

(tanYP `)� = PPÄÂÕ                     
                  

(cotYP `)� = − PPÄÂÕ
                

  

(� scYP `)� = − 1`Q`> − 1 

4.8.  Hyperbolic and inverse hyperbolic functions 

The hyperbolic functions are special combinations of the exponential functions �x
 and �-x

 that 

occurs in certain applications. These functions have properties very similar to the properties of 

trigonometric functions. We shall define the hyperbolic functions and its inverse hyperbolic. 

The two important hyperbolic functions are defined as follows 

Definition: The hyperbolic sine function is defined by �dℎ` = 4NY4XN>  .    

The hyperbolic cosine function is defined by �m�ℎ` = 4NY4XN>  .
 

From the definition, we conclude that the hyperbolic sine and cosine are defined for all real 

number x and y and differentiable 

Notice that sinhx  is an odd function with sinh0=0 and the coshx is an even function with 

cosh0=1 

Since 0<e
x
<1 for x<0 and e

x
>1 for x>0, it follows that sinhx<0 for x<0and sinhx>0 for x>0 and 

coshx>0 for all x. 
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Direct calculation shows that  

�m�ℎ>` − ��dℎ> = 1
 

This can be proved by writing.  
 

�m�ℎ>` − ��dℎ>` = ª4NÄ4XN> «> − ª4NY4XN> «> = Pp (�>Â + 2�· + �Y>Â) − Pp  (�>Â + 2�· + �Y>Â)=1 
We define the other four hyperbolic functions in terms of sinhx and coshx 

�Odℎ` = ��dℎ`�m�ℎ` = �Â − �YÂ�Â + �YÂ                                       ���ℎ` = 1�m�ℎ` = 2�Â + �YÂ 

�m�ℎ` = Ô�Ú°ÂÚ�A°Â = 4NÄ4XN4NY4XN                                                   ���ℎ` = PÚ�A°Â = >4NY4XN 

ee` ��dℎ` = �Â + �YÂ2 = �m�ℎ`                                         ee` �Odℎ` = ���>ℎ` 

ee` �m�ℎ` = �Â − �YÂ2 = ��dℎ` 

ee` ���ℎ` = −���ℎ`�Odℎ` ee` �m�ℎ` = −���>ℎ`                   ee` ���ℎ` = −���ℎ`�m�ℎ` 
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The six hyperbolic functions are related by many identities called hyperbolic identities. We list a 

few of them. 

�Odℎ>` + ���ℎ>ℎ = 1         �m�ℎ>` − ���ℎ>ℎ = 1          

sin h(−`) = −��dℎ`            cosh(−`) = �m�ℎ` 

��dℎ`(` ± a) = ��dℎ`�m�ℎa ± �m�ℎ`��dℎa      (*) 

cosh(` ± a) = �m�ℎ`�m�ℎa ± ��dℎ`��dℎa        (**) 

tanh(` ± a) = �Odℎ` ± �Odℎa1 ± �Odℎ`�Odℎa 

In verifying (*) we use the following relation 

�m�ℎ` + ��dℎ` = �x                      �m�ℎ` − ��dℎ` = �-x 

If we let ` = a in (*) and (**), we obtain the hyperbolic double angle formulas. 

ä�dℎ2` = 2��dℎ`�m�ℎ` 
�m�ℎ2` = �m�ℎ2` + ��dℎ2` 

Using the identity �m�ℎ2` − ��dℎ2` = 1 one can show that 

�m�ℎ2` = 2��dℎ2` + 1 
�m�ℎ2` = 2�m�ℎ2` − 1 

Note To obtain the above hyperbolic formulae from the corresponding trigonometric formulae of 

circular function, replace �m�` by �m�ℎ` and ��d` by ��dℎ` where i= 1− .For instance we 

know that 

�m�2` + ��d2` = 1.Making substitutions described above, we get 

�m�ℎ2` + (���dℎ`)2= 1mn �m�ℎ2` − ��dℎ2` = 1. Other formulae can be similarly obtained 

If u is a differentiable function of x then 

ee` ��dℎ� = �m�ℎ� e�e` 
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ee` �m�ℎ� = ��ℎ� e�e` 

ee` �Odℎ� = ���ℎ>� e�e` 

ee` ���ℎ� = −���ℎ��m�ℎ� e�e` 

4.9. The Inverse Hyperbolic Functions 

The function f(`) = �m�ℎ` is one to one for ` ≥ 0 and has inverse a = �m�ℎ-1` for all ` ≥ 0 

Definition : a) a = ��dℎ-1` ��� ` = ��dℎa for all ` and a. 

                      b) a = �m�ℎ-1` ��� ` = ��dℎa for ` ≥ 1 Ode�mn a ≥ 0  
                     c)  a = �Odℎ-1` ��� ` = �Odℎa for −1 < ` < 1 and for all a 

                     d) a = �m�ℎ-1` ��� ` = �m�ℎa for x >1 and  y≠ 0 

                     e) a = ���ℎ-1` ��� ` = ���ℎa for 0 < ` ≤ 1  anda ≥ 0  

                     f) a = ���ℎ-1` ��� ` = ���ℎa for ` ≠ 0 Ode a ≠ 0  

Theorem  :   1) ��dℎYP`=ln (` + Q`> + 1)  (−∞ < ` < ∞) 

                      2)�m�ℎYP` = ln (` + Q`> − 1)  (` ≥ 1)  

                    3)�OdℎYP` = P> ln ªPÄÂPYÂ«  (-1< ` < 1)  

                   4)�m�ℎYP` = P> ln ªPÄÂÂYP«  (D`D > 1) 

                    5)���ℎYP` = P> ln wPÄQPYÂÕÂ x     (0< ` ≤ 1) . 

                    6) ���ℎYP` = P> ln wPÂ + QPÄÂÕDÂD x       ` ≠ 0 

     ]èuu@1: À�� a = ��dℎYP` 

⇒ ��dℎa = 4�Y4X�> = 4Õ�YP>4�  
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⇒ ` = 4Õ�YP>4�   ⇒   2`�Ã` = �>Ã − 1 mn(�Ã)> − 2`�Ã + 1 = 0 

Our interest is to write y as a function of  x  so using quadratic formula  

 �Ã = 2` + Q4`> + 42 = ` + N`> + 1   ⇒ a = Àd ª` + N`> + 1«    �mn OÀÀ `   

Proof (2-6) left as exercise  

Derivative of inverse Hyperbolic. 

ee` ��dℎYP` = 1 + 2`2Q`> + 1` + Q`> + 1 = 1Q`> + 1 

Theorem ee` ��dℎYP` = 1Q`> + 1 

ee` �m�ℎYP` = 1Q`> − 1 

ee` �OdℎYP` = 11 − `> 

 

4.10.  Application of derivative 

       Extreme of a function. 

Definition   

a. A function ƒ has a maximum value (absolute maximum) on a set I if there is a number e 

in þ such that ƒ (`) ≤ ƒ(e) for all ` in þ (figure below). We call ƒ(e) the maximum value 

of ƒ on þ. 

b. A function ƒ has a minimum value(absolute minimum.) on a set þ if there is a number � 

in þ such that ƒ(`) ≥ ƒ(�) for all ` in þ (see figure below). We call the minimum value of 

ƒ on þ. 

c. A value of ƒ that is either a maximum value or minimum value on þ is called an extreme 

value of ƒ on þ. 

                                                                                                                                                                                                                                   



 

                                                                                               

If the set þ is the complete domain of ƒ, and if ƒ has a maximum value on 

value is called the maximum value or (sometimes global maximum value) of 

exists, the minimum value of ƒ on its domain is the minimum value (or some times the global 

minimum value) of ƒ. 

A function ƒ may or may not have extreme value on a set 

Example:  

1. If �(`) = `, then on £
minimum value of 0 (as shown in the figure a below)

2. If �(`) = tan `, then on 

minimum value (as shown in figure b below)

3. If �(`) =|`D, for −1 ≤ `
has the maximum value of 1 but has no minimum value because 

value 0( as shown in figur

4. If �(`) = ` for −∞ < `
nor a minimum value.  
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is the complete domain of ƒ, and if ƒ has a maximum value on þ, then this maximum 

e maximum value or (sometimes global maximum value) of � similarly, when it 

exists, the minimum value of ƒ on its domain is the minimum value (or some times the global 

A function ƒ may or may not have extreme value on a set þ depending on ƒ and on

£0,1¤ the function �has the maximum value of 1 and                        

minimum value of 0 (as shown in the figure a below) 

, then on (− �> , �>), the function � has neither a maximum value nor a 

minimum value (as shown in figure b below) ` < 0 and 0 < ` ≤ 1and �(0) = 1, then on [-1,1] the function 

has the maximum value of 1 but has no minimum value because � does not assume the 

value 0( as shown in figure  c below). < ∞, then (−∞,∞) the function has neither a maximum value 

, then this maximum 

similarly, when it 

exists, the minimum value of ƒ on its domain is the minimum value (or some times the global 

ng on ƒ and onþ. 

has the maximum value of 1 and                        

a maximum value nor a 

1,1] the function 

does not assume the 

the function has neither a maximum value 
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Theorem (Extreme –value theorem)   

If a function � is continuous on a finite closed interval [O, g], then � has both an absolute 

maximum and an absolute minimum on [O, g] 

Example: The function �(`) = 2` + 1, is continuous and hence has both an absolute maximum 

and absolute minimum on every closed interval and in particular on the interval £0,3¤ i.e �(0) = 1 

(Minimum value) and �(3) = 7 (maximum value) 

Theorem : suppose c is an interior point of an interval I and �(�) is an extreme value of � on I  

and�(�) is an extreme value of � on I . 

If ��(�) exists then  ��(�) = 0 . 

Proof:The statement of the theorem is equivalent to the assertion that if c is any number interior 

to I such that ��(�) exists and is not equal to 0, and then �(�) is not an extreme value of � on I. 

therefore we assume that ��(�) ≠ 0 

Consider the following cases 

Case 1 �′(�) > 0 

Since ��(�) = limÂ→Ô J(Â)YJ(Ô)ÂYÔ > 0 

�(`) − �(�)` − � > 0 

For all ` ≠ � in some open interval about c. 

For such ` 

If ` > �, then �(`) − �(�) = (` − �) J(Â)YJ(Ô)ÂYÔ > 0 

Because (` − �) > 0 

Therefore  �(`) > �(�), so that � does not have a maximum value at c. in the same way 

If ` < �, then �(`) − �(�) = (` − �) ªJ(Â)YJ(Ô)ÂYÔ « < 0 
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Thus �(`) < �(�), so that � does not have a minimum value at c hence if ��(�) > 0 then � has 

neither a maximum value nor minimum value at c. 

The case ��(�) < 0 is treated in the same way. 

The points at which either ��(`) = 0 or � is not differentiable are called the critical points of �. 

Example: Find the critical number for �(`) = 4` − `>
  

Solution: To find critical number c first find ��(`)  

    �(`) = 4` − `> 

��(`) = 4 − 2` 

��(`) = 0 

⇒ 4 − 2` = 0 ⇒ ` = 2(  critical number) 

(2,4) is critical point. 

Finding extreme values on [G, ¼]  

1. Compute the values of � at all critical numbers in (O, g)  

2. Compute the values of � at  the end points  O Ode g. 

3.  The largest of those value  in step 1 and step2 is  the maximum value of � on  £O, g¤  and 

the smallest of those values is  the minimum value of � on £O, g¤ 
Example: Let�(`) = ` − `@, find the extreme values of � on [0, 1] and determine at 

which number in [0,1] they occur. 

Solution: since � is continuous on [0,1] it has extreme value on [0,1]  

First let us find the critical number. �′(`) = 0 this implies that 1 − 3`> = 0 ,⇒ ` = − Q@@  or ` = Q@@   but − Q@@ ∉ £0,1¤ 
Thus the extreme value of � on [0,1] can occur only at one of the end points 0 and 1 or at 

the critical numbers Q@@   in (0,1) �(0) = 0, �(Q@@  ) == Q@@ − ªQ@@ «@ = >Q@q  and �(1) = 0, so 

the maximum value of � on [0,1] is  
>Q@q  occurs at

>Q@q   and its minimum value is 0. Which 

occurs at 0 and 1. 
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Exercise  

1) A sheet of card board 12 in square is used to make an open box by cutting a square of equal   

size from the four corners and folding up the sides. what size squares should be cut to obtain a 

box with largest possible volume? 

2) Find all critical number (if any ) of the given functions 

a. �(`) = ` + PÂ                        c. ¬(`) = PQÂÕÄP 

b. �(`) = sin `                        d. �(`) = D` − 2D                  e. �(`) = `>�Â 

2) Find all extreme value (if any) of the given function on the given interval. Determine at 

which numbers in the interval their value occur.  

a. �(`) = `> − `, [0.2]   

b.  ¬(`) = Q1 + `>, [-2,3] 

c. �(`)= cos �`,( 
P@ , 1) 

3) A mass connected to  spring moves along the x-axis so that its x co-ordinate at a time t is 

given by:     `(�) = 2 sin 2� + Q3�m�2� 

What is the maximum distance of the mass from the origin? 

4.11. Mean value theorem  

Theorem (Rolle’s theorem) 

Let � be continuous on [a,b] and differentiable on [a,b]. if �(O) = �(g), then 

there is a number c in (a,b) such that ��(�) = 0. 
Proof.  If � is constant, then its derivative is 0, so that  ��(�) = 0, for each c in (a,b). 

if � is not constant, then its maximum and minimum values (which exist by the 

maximum-minimum theorem) are distinct. Since �(O) = �(g), either the maximum 

or the minimum must occur at a number c in (a,b). by hypothesis,� is differentiable 

atc so that ��(�) = 0 

 

                   Theorem: (Mean value theorem) 

Let � be continuous on [a,b] and differentiable on (a,b). then there is a number c in 

(a,b) such that ��(�) = J(Ó)YJ(�)ÓY�  
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Proof: 

We introduce an auxilar function ℎ that allows us 

to simplify the proof by using Rolle’s theorem 

(see adjacent fig.) 

 

ℎ is continuous on [a, b] and differentiable on (a, b),  ℎ(O) = ℎ(g) = 0, so by Rolle’s theorem 

there is a number c in (a, b) such that ℎ�(�) = 0 

⇒ ℎ�(`) = ��(`) − J(Ó)YJ(�)ÓY�  , for O < ` < g 

And thus  0 = ℎ�(�) = ��(�) − �(g) − �(O)g − O  

Example: Let �(`) = P@ `@ + 2`, the show that f satisfies the mean value theorem on the interval 

[0, 2] 

Solution:      ��(�) = J(@)YJ(·)@Y· = 5 

We find a number c in (0, 3) such that ��(�) = 5 ��(`) = `> + 2 ⇒ ��(�) = �> + 2 

                                                                              ⇒ 5 = �> + 2 

                                                                              ⇒ �> = 3 ⇒ � = ±Q3 

Since c must be in (0, 3), so � = Q3 

Exercise  

 Find all number c in the interval (a, b) for which the mean value theorem satisfied.  

a. �(`) = `> − 6`;O = 0, g = 4 

b. �(`) = `@ − 6`, O = −2, g = 0 

c. �(`) = −3 + Q` , O = 0, g = 1 
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d. �(`) = 3 ª` + PÂ« , O = P@ , g = 3 

Increasing and decreasing function  

Let  � be defined on an interval I then  

a. �  is increasing on I if �(`P) < �(`>), where ever `P  and `>are in I and x1<x2. 

b. �is decreasing on I if �(`P) > �(`>), where ever `P  and `>are in I and x1<x2. 

Graphically, a function is increasing on I if its graph slopes upward to the 

right and it is decreasing on I if its graph slopes down ward to the right. 

Theorem : Let � be continuous on an interval I and differentiable at each interior point of I  

a. If ��(`) > 0 at each interior point of I then � is increasing on I more over � is 

increasing on I if ��(`) > 0 except for a finite number of points x in I  

b. If ��(`) < 0 at each interior point of I, then � is decreasing on I moreover, � 

is decreasing on I if ��(`) < 0 except for a finite number of points x in I   

Proof .Left as exercise  

Example: Let �(`) = P@ `@ − `> + ` − 5, show that � is increasing on (−∞,∞) 

Solution:  ��(`) = `> − 2` + 1 = (` − 1)> 

Since ��(`) > 0 for all x except x=1, where ��(`) = 0 

Hence f is increasing on (−∞,∞) 

 

Example:Find where the Function �(`) = 3`p − 4`@ − 12`> + 5  is increasing and where  

decreasing. 

Solution: ��(`) = 12`@ − 12`> − 24` = 12`(` − 2)(` + 1)  We divide the real line in to intervals whose end points are the critical numbers -1,0 and 2 and arrange in a chart. 
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4.5.3.The first and second derivative tests. 

Definition: A function � has a relative maximum value (respectively a 

relative minimum value) at c if �(�) is the maximum value (respectively, the 

minimum value) of � on an open interval containing c. A value that is either a 

relative maximum value or relative minimum value is called a relative 

extreme value. 

 

 

 

Theorem:  Let � be differentiable on an open interval about the number c except possibly at c, 

where � is continuous. 

a. If�′ changes sign from positive to negative at c, then � has a relative 

maximum value at c. 

b. If �′ changes sign from negative to positive at c then � has a relative 

minimum value at c. 
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Example: Let (`) = Pp `@ − 3`, find the relative extreme value of � 

Solution: �(`) = Pp `@ − 3` 

             ⇒��(`) = @p `> − 3 = @p (`> − 4) = @p (` + 2)(` − 2) 

                                                                             -2                           2 

` + 2                                           -         -              0             +              +             +            

` − 2                              -         -           -              -               -             0          +         + 

f(`) = @p (` + 2)(` − 2)       +        +                0    -                -         0    +    +        + 

��(`) Changes sign from positive to negative at -2, so �(−2) = 4 is relative maximum value. 

��(`) Changes sign from negative to positive at 2, so �(2) = −4  is relative  minimum  value of �. 

Example: Let � (`) = (` − 1)>(` − 3)>  .Determine the relative extreme of � 

Solution: @�(¹) = 2(` − 1) (` − 3)> + 2(` − 1)>(` − 3)  

                       = 2(` − 1) (` − 3) £(` − 3) + (` − 1)¤ 
                     = 4(` − 1) (` − 2)(` − 3)  

  ___________________________________________________U________q____/_______________________ 
¹ − U − − − T + + + + + +      

                                                      ¹ − q − − − − − − − −T + + + +  +   
¹ − / − − − − − − − − − − −   T + + + 

@�(¹) == 4(` − 1) (` − 2)(` − 3) − − − −0 + + + 0 − −0 + + + + 

From the sign chart  ��(`) Changes sign from positive to negative at 2, so �(2) = 1 is relative 

maximum value. 
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��(`) Changes sign from negative to positive at 1 and 3 so �(1) = 0  and �(3) = 0  are relative  

minimum  value of �. 

      Theorem of second derivative test 

Assume that ��(�) = 0 

a. If ���(�) < 0 then �(�) is a relative maximum value of � 

b. If ���(�) > 0 then �(�) is a relative minimum value of � 

c. If ���(�) = 0 then we cannot draw any conclusion about a relative extreme value of  � at 

c. 

 

Proof: a. by hypothesis ���(�) = limÂ→Ô J�(Â)YJ�(Ô)ÂYÔ < 0 

Since ��(�) = 0 by hypothesis, it follows that for all ` ≠ � in some open interval (� − �, � + �) 

J�(Â)ÂYÔ  =
J�(Â)YJ�(Ô)ÂYÔ <0 

If � − � < ` < � then  ` − � < 0, so that ��(`) > 0. If � < ` < � + � then ` − � > 0 so that ��(`) < 0. This means that �′ changes sign from positive to negative at c. 

So by first derivative test � a. relative maximum value at c. 

The proof (b) is analogous to the proof of (a) 

Example: Let �(`) = `@ − 3` − 2. Using the second derivative test. Find the relative extreme 

value of �. 

Solution  �(`) = `@ − 3` − 2 

           ⇒��(`) = 3`> − 3 = 3(` − 1)(` + 1) and ���(`) = 6` 

���(`) = 0, when ` = −1 mn ` = 1 

Since ���(−1) = −6 < 0 Ode ���(1) = 6 > 0 

�(−1) = 0  is relative maximum value of � where �(−1) = −4 is a relative minimum value of � these are the only relative extreme of �. 
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Exercise  

1. Determine the value of c at which  

a. �(`) = `> + 6` − 11 

b. �(�) = �ÕY�ÄP�ÕÄ�ÄP 

c. �(�) = sin � + P> � 

2. Use the first derivative test to determine the relative extreme values (if any) of the 

following. 

a. �(`) = 4`> − PÂ 

b. �(`) = `Q1 − `> 

3. Use the second derivative test to determine the relative extreme value (if any) of the 

function. 

a. �(`) = −4`> + 3` − 1 

b. �(`) = `@ − 3`> − 24` + 1 

c. �(�) = �� − �Y� 
    Concavity and inflection point 

Definition: If f is differentiable on open interval I, then � is said to be concave up on I if �′ is 

increasing on I and f is said to be concave down if f’ is decreasing on I. 

Theorem : Let f be twice differentiable on an open interval I 

a) If �′′(`) > 0 on I then f is concave up ward on I                                  

b) If �′′(`) < 0 on I then f is concave downward on on I. 

 

Example:  Find open intervals on which on which the function �(`) = `3−3`2+1 is concave up 

and concave down. 

Solution: �(`) =  `@ − 3`> + 1 ⇒ �′(`) = 3`> − 6`. 
⇒ �′′(`) = 6` − 6 = 6(` − 1) 

⇒ �′′(`) < 0 if ` < 1 and �′′(`) > 0 if ` < 1 
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⇒ f is concave up on (1,∞) and concave down ward on (−∞, 1) 

Inflection points 

Definition: If f is continuous on an open interval I containing xo and if f changes the direction of 

concavity at that point then we say that f has an inflection point at xo and we call the point (`� , �(`�)) on the graph of f an inflection point of f. 

How to find inflection point. 

1) Find the value of  c for which �′′(`) = 0 

2) For each value of c found in step 1 determine whether �′′(`) changes sign at c. 

3) If � changes sign at �, the point (�, �(�)) is inflection point of �. 

Example :Let �(`) = `p − 6`> + 8` + 10. Find the inflection point of the graph of � 

Solution: �(`) = `p − 6`> + 8` + 10  

⇒ �’(`) = 4`@ − 12` + 8⇒ �’’(`) = 12`> − 12 = 12(`> − 1) = 12(` − 1)(` + 1) 
_______________________     -1_________________   1______                                                                               ` + 1                   -    -        -           0     +    +     +            +     +    + ` − 1     -     -     -      -        -    -  -   -   -   -   -    -     -    -    0  +     +  �′′(`) = 12(` − 1)(` + 1)   +   +    +   0  -  - -  -  -  -  -   0 + ++ 

From the sign chart  � changes sign  at -1 and 1 (1, �(1)) = (1,13) and (1, �(`)) = (1, −3) are inflection points of � 

 

Exercise  

Find the inflection point of the function �(`) = `�-x
 

4.12. Curve sketching 

A knowledge of derivative helps greatly in sketching the graph of function. 

Example :Let �(`) = >PÄÂÕ, sketch the graph of �  by noting all the relevant properties. 

Solution. a –intercept: �(0) = 2. 

                 No x-intercept because �(`) > 0  for all ` 

�’(`) = −4`(1 + `>)> 
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Since �’(`) > 0 for ` < 0 and �’(`) < 0 for ` > 0, it follows that f is increasing on ]0,(−∞ and 

decreasing on [ )∞,0  and �(0) = 2 is the maximum value of f. 

�”(`) = 4(3`> − 1)(1 + `>)@ = 4¨Q3` − 1©(Q3` + 1)(1 + `>)@  
                                             3
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From the sign chart  

� is concave up ward on (−∞, − Q@@ )  and (Q3/3,∞ ) and concave downward on(-
Q@@ , Q@@ ) with 

inflection point at (
Q@@ , 3/2) and (-

Q@@ , 3/2)  

And limÂ→Yd >PÄÂÕ = limÂ→d >PÄÂÕ = 0 

                                                               
 

This implies  that x-axis is the horizontal asymptote of �. 

 
Exercise  

Sketch the graph of   a)�(`) = `@ − 8`> + 16` − 3. 

                                      b) ¬(`) = ÂÄ>ÂY@ 
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4.13. Related rate 

When spherical balloon is inflated, the radius r and the volume v of the balloon are 

function of time t. ³ = 3

3

4
rπ . 

Using the chain rule to differentiate v with respect to t e~e� = e~e� ene� = 4�n> ene� 

The rates e~/e�and en/e� are related 

Example:  Suppose a spherical balloon is inflated at the rate of 10 cubic centimeter per 

minute 

How fast the radius of the radius of the balloon increasing when the radius is 5cm? 

Solution:
IfIº=4�n> Ð�Ð� But 

Ð�Ð� = 10 ,n = 5�ç. 
⇒ 10=4�(5)

2Ð�Ð� ⇒ Ð�Ð�= PP·�. 
Therefore, when the radius is 5�ç, the radius is increasing at the rate 1/10�  per minute. 

Example: One end of a 13 feet ladder is on the floor and the other end rests on a vertical wall. If 

the bottom end is drawn away from the wall at 3 feet per second, how fast is the top of the ladder 

sliding down the wall when the bottom of the ladder is 5 feet from the wall? 

Solution: Let y be the height of the top of the ladder above the floor and let x be the distance 

beween the base of the wall and the bottom of the ladder. 

e`/e� = 3, we required to find ea/e�. 

From Pythagoras we have 

 

`> + a2= 132
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⇒ 2`e`/e� + 2aea/e� = 0                                                                       
⇒ ea/e� = −`/a e`/e� .at the instant ` = 5⇒ a = 12 
⇒ ea/e� = −5/12(3) = −5/4 
When the bottom of the ladder is 5 feet from the wall, the top is sliding down at the rate 5/4 feet 

per second. 

Example: Suppose that liquid is to be cleared of sediment by pouring it through a conical filter 

that is 16cm high and has a radius of 4cm at the top( fig. below). Suppose that the liquid flows 

out of the cone at constant rate of 2�ç>/ç�d. at what rate is the depth of the liquid changing 

when the level is 8cm? 

  

Solution: Let 

 

 

                       (1) 

By using similarity of triangles we have 
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Substituting this in to (1) gives 

  (2) 

 Differentiating (2) with respect to t gives 

 

 The minus sign indicates  y is decreasing with time 

 

Exercise. 

A ladder 15 feet long leans against a vertical wall .Suppose that when the bottom of the ladder is 

x feet from the wall the bottom is being pushed toward the wall at the rate of `/2 feet per 

second. How fast is the top of the ladder rising at the moment the bottom is 5 feet from the wall. 

4.14. L’Hopital’s rule 

Suppose that limÂ→∗ �(`) and limÂ→∗ ¬(`) are both 0 assume ¬’(`) ≠ 0 for x near ∗ 

Then limÂ→∗ J(Â)K(Â) = limÂ→∗ J�(Â)K�(Â).  
The indeterminate form 0/0 

If limÂ→∗ �(`) = 0 = limÂ→∗ ¬(`), we say that limÂ→∗ J(Â)K(Â)  has indeterminate form 0/0 

Example:  Find limÂ→· Ú�ApÂÚ�A@Â  

Solution:limÂ→· ��d4` = limÂ→· ��d3` = 0.  
By applying L’Hopital’s Rule    
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limÂ→· Ú�ApÂÚ�A@Â = limÂ→· pÔ�ÚpÂ@Ô�@Â = 4/3.   
The indeterminate form ∞/∞ 

Suppose limÂ→∗ �(`)=∞ mn − ∞ Ode limÂ→∗ ¬(`) = ∞ mn − ∞ then we say that limÂ→∗ J(Â)K(Â) 
has indeterminate form ∞/∞, L’ Hopital’s rule is valid in this case. 

limÂ→∗ J(Â)K(Â) = limÂ→∗ J�(Â)K�(Â) (provided that the later limit exist as  a number ∞ mn − ∞). 

Example: In each part confirm that the limit is  an indeterminate form of the type ∞/∞ 

 And apply L’Hopital’s rule 

a)limÂ→d Â4N         b)  limÂ→·` ÂÔÚÔÂ
 

solution:a) The numerator and the denominator have a limit of ∞ so we have indeterminate form 

of the type ∞/∞. 

Applying the L’Hopital’s rule 

limÂ→d �̀Â = limÂ→d 1�Â = 0
 

c) The numerator has a limit of −∞ and the denominator has alimit of +∞ so we have 

indeterminate form of the type ∞/∞. Applying L’Hopital’s rule we  get. limÂ→·` `���` = limÂ→·` 1/`���`�m�` = limÂ→·` ��d``  �Od` = limÂ→·` ��d`` limÂ→·` �Od` = (−1)0 = 0
 

Other Indeterminate Forms 

Indeterminate form                        Example  

1)   0.∞                                                    limÂ→· `Àd` 

2)     0
0                                                                      lim x�Â→·   

3)    
∞1                                                     limÂ→d ª1 + PÂ«Â

 

4)   ∞0

                                                
limÂ→d`P/Â  

5)   ∞ − ∞                                      limÂ→�`(���` − �m�`)
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When we find the limit of the indeterminate forms of the type listed above, we have to 

rewrite the given limit in a way that enable us to L’ Hopital’s rule 

Example: Find lim xlnxÂ→�`  
 

 Solution: 
lim xÂ→·` =0 and 

 limlnxÂ→·` = −∞
      

The limit is of the form
  

             0.∞   limÂ→·` `Àd` = limÂ→·` wÀd`1/`x = limÂ→·` w 1/`−1/`>x = limÂ→·`(−`) 

 ∴ lim xlnxÂ→�` = 0 

 

 

 4.     Review Questions   

1) a) Find the slope of tangent line to the curve  a = ` − `@ at the point (1,0). ans -

2 

    b) Find the equation of the tangent line passing through the origin and tangent to 

the    graph of the function a = Àd`.    ans a = P4 ` 

    c) Find equation of the line tangent to curve a = 1 + `@,which is parallel to the 

line              12` − a = 1     ans a = 12` − 15. 
  

2)  Find  ��(O)   �� �(`) = `�Â,O = 1    ans   2� 

3) Find ��(`)  ��     �)�(`) = �Â��d`       ans  �Â��d` + �Â�m�` 

                              ii) �(`) = cos (��d`)  ans – £sin (��d`)¤�m�` 

                             ���) �(`) = ln (Àd`)      ans 
PÂSAÂ 

4) Use implicit differentiation to find  
ÐÃÐÂ .      

a) 
Ú�AÃÃÕÄP = 3`           ans  @(ÃÕÄP)(ÃÕÄP)Ô�ÚÃY>ÃÚ�AÃ        

    ii)`�Ã = a + `>        ans  
>ÂY4�Â4�YP 

   iii) `> + a> = ÃÕÂÕ       ans   
Â^ÄÃÕÂÃYÂ Ã   

5)Find the dimension of a rectangle with perimeter 100m whose area is as large 

as possible . ans 25m by 25m. 
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6) Differentiate the following. 

    a)�(`) = ���ℎQ`           ans     − P>QÂ ���ℎQ` �OdℎQ` 

   b) �(`) = ��dℎ>Q1 − `>    ans  − >ÂQPYÂÕ ��dℎQ1 − `>  �m�ℎQ1 − `> 

       c) ) �(`) = ��dℎYP(−3`>)   ans 
Y[ÂQqÂÕÄP 

7) If 1200�ç> of material is available to make a box with square base and an 

open top find the largest possible volume of the box.  Ans 4000�ç@       

 

8) Find the point on the line a = 4` + 7 that is closest to the origin. Ans (Y>WPZ , ZPZ) 

 9)Find the  the interval on which f is increasing or decreasing 

 a)�(`) = `@ − 12` + 1.   ans increasing on (−∞, −2) ,(2,∞)   and decreasing 

on     (−2,2) 

 b)�(`) = `�Â. ans  increasing on (−1,∞) ,  and decreasing on     (-∞, −1) 

10)Find the local maximum and local minimum values of the function  �(`) = ` + Q1 − `  .   Ans Local max. � ª@p« = 5/4 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter Five 

Integration Unit out comesUnit out comesUnit out comesUnit out comes    
� At the end of this  chapter theAt the end of this  chapter theAt the end of this  chapter theAt the end of this  chapter the

o Estimating area

o Find The Definite Integral 

o Determining the 

o Defining the Fundamental Theorem of Calculus

o Evaluate Indefinite Integrals and the Substitution Rule

o Integrate different functions by using 

o Define and Evaluate Improper integral.

Introduction 

One of the great achievements of classical geometry was to obtain formulas for the areas and 

volumes of triangles, spheres, and cones. In chapter

of finding formulas and calculate the areas and volumes of these and other more general shapes. 

The method we develop, called integration. The integral has many applications in statistics, 

economics, the sciences, and engineering.
 

5.1. Estimating Area 

Consider the following plane region under the curve y=f(x)=

in the figure below for the function f(x) =

x=2   

Solution: The right end points of the five interval are 

rectangle is 
>X since area of a rectangle is 

rectangles on the intervals 





5

2
,0

i. Evaluate f at the right end point from fig (a)

          Area (a) = 














∑
= 5

2

5

25

1i

i
f

ii. Evaluate f at the left end 
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At the end of this  chapter theAt the end of this  chapter theAt the end of this  chapter theAt the end of this  chapter the    learners will be able to:learners will be able to:learners will be able to:learners will be able to:    
area with Finite Sums 

Find The Definite Integral as a Limit of Riemann Sums 

Determining the Properties of the Definite Integral 

Fundamental Theorem of Calculus 

Indefinite Integrals and the Substitution Rule 

Integrate different functions by using Techniques of integration

Define and Evaluate Improper integral. 

One of the great achievements of classical geometry was to obtain formulas for the areas and 

volumes of triangles, spheres, and cones. In chapter five and chapter six we will study me

of finding formulas and calculate the areas and volumes of these and other more general shapes. 

The method we develop, called integration. The integral has many applications in statistics, 

economics, the sciences, and engineering. 

Area with Finite Sums 

Consider the following plane region under the curve y=f(x)=−x> + 5.Use the five rectangles as 

in the figure below for the function f(x) =- 2x +5 and the x-axis between the graph of x=0 and 

points of the five interval are i
5

2
   where i=1,2,3,4,5 the width of each 

since area of a rectangle is Gè+G = ����º ∗ o�Iº� then the area of the five 




, 





5

4
,

5

2
, 





5

6
,

5

4






5

8
,

5

6
, 





5

10
,

5

8
 is 

Evaluate f at the right end point from fig (a) 





















+







−= ∑
= 5

2
5

5

25

1

2

i

i
 =

25

162
=6.48 

Evaluate f at the left end point from fig (b) 

iques of integration 

One of the great achievements of classical geometry was to obtain formulas for the areas and 

we will study methods 

of finding formulas and calculate the areas and volumes of these and other more general shapes. 

The method we develop, called integration. The integral has many applications in statistics, 

.Use the five rectangles as 

axis between the graph of x=0 and 

 

where i=1,2,3,4,5 the width of each 

then the area of the five 



 111 

        Area (b)= 














 −
∑
= 5

2

5

225

li

i
f   = 




















+







 −
−∑

= 5

2
5

5

225

1

2

i

i
  =

25

202
=8.08 

By combining the results in parts (a) and (b), you can conclude that  

                   6.48≤ (area of the region under f)≤8.08 

We get an upper estimate of the area of R in fig (b) by using five rectangles containing R is 8.08. 

We get lower estimate of the area of R in fig (a) by using five rectangles containing R is 6.08. 

And we know that the area of the region under the curve is between 6.08 and 8.08. 

 Note:  As the number of rectangles increase the upper sum decreases but lower sum increases. 

At some point the two sums will overlap as the number of rectangles tends to infinity. 

Example:. Consider the functionf(x) = x>.
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 Definition: Let f(x) be a nonnegative and continuous function on an interval [ ].,ba and let S be 

the region bounded by the graph of f and the vertical line x=a, x=b and the x-axis as show in 

figure below,  Then, the area A(s) is given by     

 A(S) = limR→∞ � f(z�)R��P ∆x� wherez� = £x�YP, x�¤  i = 1,2,3, … , n and
n

ab
x

−
=∆

 

5.2. The Definite Integral 

The Definite Integral as a Limit of Riemann Sums 

If f is continuous function defined for a ≤ x ≤ b,we divide the interval [a,b] in to n subintervals 

of equal width ∆x = �YpR . We let a = x· < xP < x> < ⋯ < xR = b be the endpoints of these 

subinterval and we let z� = £x�YP, x�¤  i = 1,2,3, … , n be any sample points in these subintervals, 

where  zP = £x·, xP¤,z> = £xP, x>¤  and so on. Then the definite integral of f from a to b is  

� f(x)dx = limR→∞
0 f(z�)R
��P

�
p ∆x 

Note-1.The component parts in the integral has names as follows 

 

Note-2. The sum is called a Riemann sum after the German Mathematician 

Bernhard Riemann (1826-1866). If f(x) is positive then the Riemann Sum can be interpreted as 

the sum areas of the approximating rectangles. 

Note-3. The value of the definite integral of a function over any particular interval depends on 

the function, not on the letter we choose to represent its independent variable. 
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If we decide to use t or u instead of x we simply write the integral as  

� f(t)dt�
p  or � f(u)du  instead of � f(x)dx�

p
�
p  

 

 

 

 

Properties of the Definite Integral 

 
Example: Suppose that f and g are integrable and  

� f(x)dx = −4>
P    ,� f(x)dx = 6X

P   and� g(x)dx = 4X
P  

Then, find 

a.� g(x)dx>
>            b.� f(x)dxP

X         c.  � f(x)dxX
>         d.�(4f(x) − g(x))dxX

P  

 

 

THEOREM 1 

The Existence of Definite Integrals 

A continuous function is integrable. That is, if a function ƒ is continuous on an interval [a, b], 

then its definite integral over [a, b] exists.
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Solution. 

a.� g(x)dx>
> = 0 By rule two (the zero width interval) 

b.� g(x)dxP
X = −� g(x)dx = −(4) = −4  By rule 1X

P  

                         c.  � f(x)dx =X
P � f(x)dx + � f(x)dx  from rule 5X

>
>

P  

                                         � f(x)dxX
> = � f(x)dxX

P − � f(x)dx>
P = 6 − (−4) = 10 

d.�(4f(x) − g(x))dxX
P = 4� f(x)dx − � g(x)dx  combination of rule 3 and 4X

P
X

P  

   4(6) − 4 = 20 

Example: show that the value of  

�Q1 + �m�`e` < 1.5P
·  

Solution: The Max-Min Inequality for definite integrals (Rule 6) says that minf. (b − a) 

is the lowerbound for the value � f(x)dx  and maxf.  (b − a) is the upper bound  �
p  

minf=1 and maxf=Q1 + 1 = Q2 ≈ 1.414 

∴ The upper bound for the integral �Q1 + cosxdx ≤ Q2(1 − 0) = Q2P
·  

Since the integral � Q1 + cosxdxP·  is bounded above by Q2, then it is less than 1.5. 

 

Exercise: 

1. Suppose that f and g are integrable and  

� f(x)dx = 2>
P    ,� f(x)dx = 4@

P   and� g(x)dx = 1@
P  

Then, find  

a.� g(x)dxP
P            b.� f(x)dxP

@         c.  � f(x)dx@
>         d.�(2f(x) + 5g(x))dxX

P  

2. Use the min-max Inequality to find the upper and lower bounds for the values of  
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a.  � 11 + x> dxP
·                    b.  � 11 + x> dx·.X

·  

 

The Fundamental Theorem of Calculus 

The Fundamental Theorem of Calculus is appropriately named because it establishes a 

connection between the two branches of calculus: differential calculus and integral calculus. 

The Fundamental Theorem of Calculus Part 1 

If ƒ is continuous on [a, b] thenÖ(`) = � �(�)e�Â�  is continuous on [a,b] and differentiable on 

(a,b) and its derivative is f(x); F�(x) = ddx� f(t)�
p dt = f(x) 

 

Example:  

Use the Fundamental Theorem to find 

a.  ddx� costdt�
p                                   b.  ddx� 11 + t> dt�

·  

Solution: 
a.  ddx� cosxdt�

p = �m�` 

b.  ddx� 11 + t> dt�
· = 11 + x> 

 

Fundamental Theorem, Part 2 (The Evaluation Theorem) 

If ƒ is continuous at every point of [a, b] and F is any antiderivative of ƒ on [a, b], then  � �(`)e`Ó
� = Ö(g) − Ö(O) , Ëℎ�n� Ö(`)�� �ℎ� Od��e�n�~O��~� m� �(`), �ℎO� ��, Ö�(`) = �(`). 

The theorem says that to calculate the definite integral of ƒ over [a, b] all we need todo is: 

a. Find an antiderivative F of ƒ, and 

b. Calculate the number � �(`)e` = Ö(g) − Ö(O)Ó
�  kℎ� ���OÀ dm�O��md Ö(g) − Ö(O) ��  �                                       Ö(`)¤�Ó or �£Ö(`)�¤�Ó  depending on whether F has one or more terms. 

 

 



 116 

Example  

Use the FTC (Fundamental Theorem of Calculus) to evaluate the following. O.� `>>
P e` 

g.� �m�`�
· e` 

�.� �(`)@
· e`      Ëℎ�n� �(`) = Ì 9 − `, ` < 1`> + 7, ` ≥ 1� 

Solution:  

a. Since the antiderivative of �(`) = `> is Ö(`) = Â @  then  
                                                           � `>>

P e` = �`@3 <P
> = 83 − 13 = 73 

b. Since the antiderivative of �(`) = �m�` is Ö(`) = ��d` then 

  � �m�`�
· e` = ���d`¤·� = ��d� − ��d0 = 0 

c. By using the property-5 we can write as                             � �(`)@
· e` = � �(`)P

· e` + � �(`)@
P e` 

                                                               = � �(`)@
· e` 

= � (9 − `)P
· e` + � (`> + 7)e`@

P  

                                                  =   �9` − `>2 <·
P  + �`@3 + 7`<P

@
 

                                            = ª9 − P>« + ª>Z@ + 21« − ªP@ + 1« = 33.1667      
 

5.3. Indefinite Integrals and the Substitution Rule 

A definite integral is a number defined by taking the limit of Riemann sums associated with 

partitions of a finite closed interval whose norms go to zero. The Fundamental Theorem of 

Calculus says that a definite integral of a continuous function can be computed easily if we can 

find an antiderivative of the function. Antiderivatives generally turn out to be more difficult to 

find than derivatives. However, it is well worth the effort to learn techniques for computing 

them. The set of all antiderivatives of the function ƒ is called the Indefinite integral of ƒ with 

respect to x, and is symbolized by � �(`)e` 
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When we to find the indefinite integral of a function ƒ, remember that it always includes an 

arbitrary constant C. 

 

Note: A definite integral� �(`)e`Ó�  is a number. But an indefinite integral  � �(`)e` is a function plus an arbitrary constant C. 

Here are some examples of derivative formulas and their equivalent integration formulas: 

 

Properties of the indefinite integral 

If f and g are continuous, and if k is any constant, then  

a) ∫ ∫= dxxfkdxxkf )()(  

b) [ ] ∫∫∫ ±=± dxxgdxxfdxxgxf )()()()(  

Some of the most important are given in Table in the table below  

Integration Formulas 

Differentiation Formula     Integration Formula  ee` £`¤ = 1                                                    �e` = ` + � ee` ;`�ÄPn + 1< = `�(n ≠ −1)                        � `�e` = `�ÄPn + 1 + �       (n ≠ −1) ee` £��d`¤ = �m�`                                       � �m�`e` = ��d` + �        ee` £�m�`¤ = −��d`                                    �(−��d`)e` = �m�` + �        ee` £�Od`¤ = ���>`                                    �(���>`)e` = �Od` + �        ee` £−�m�`¤ = ���>`                                  �(���>`)e` = −�m�` + �        
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ee` £���`¤ = ���`�Od`                              �(���`�Od`)e` = ���` + �      ee` £−���`¤ = ���`�m�`                           �(���`�m�`)e` = −���` + �      ee` £�Â¤ = �Â                                                 �(�Â)e` = �Â + �      ee` £ÀdD`D¤ = 1̀                                               �w1̀xe` = ÀdD`D + �      
Example: Describe the anti-derivative of 3x 

Solution We have k=3 and f(x)=x 

∫ ∫= dxxfkdxxkf )()( ⟹ c
x

dxxxdx +==∫ ∫ 2
333

2
1  

Example: Fill the following table using the basic rules of integration  

Original integral Rewrite Integrate simplify 

dx
x∫ 3

1
 dxx∫ −3  

13

13

+−

+−x
+C 

2

2

2

1

2 x
C

x −
=+

−

−

+C 

dxx∫  dxx∫ 2

1

 
1

1

2

1

2

1

+

+
x

+C C
x

+
3

2 2

3

 

dxx∫ sin2  2 dxx∫sin  2(-cosx)+C -2cosx+C 

∫ dxe x2  __________ _________ _________ 

∫ 







dx

x

x
2sin

cos

 ∫ 







dx

xx

x

sinsin

cos
 ∫ xdxx csccot  Cx +csc  

Example: Evaluate 

( ) ( )dxxxbdxxxa ∫∫ ++ 3.cos32.  

Solution: a.  

   Using the above properties 

        
( )∫ + dxxx cos32 = ∫ ∫+ dxxxdx cos32  

   = dxxxdx∫ ∫+ cos32  

   =2 21

2

sin3
2

CxC
x

+++







 

   = Cxx ++ sin32  where C=C1+C2 

Solution: b.  �(x + x@) dx = � `e` + � `@e` = `>2 + �P + `@3 + �> 

                                                          =
ÂÕ> + Â @ + �  where � = �P + �> 
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The above property (b) can be extended to more than two functions, which can be formulated as 

follows: �£�P�P(`) + �>�>(`) + ⋯ + �A�A(`)¤ = �P � �P(`)e` + �> � �>(`)e` + ⋯ + �A � �A(`)e` 

Example: Evaluate 

�2x> + `> Q` − 1xq dx 

Solution: First we need to write the integrand in a simpler form   
� 2x> + `> Q` − 1xq dx = �w2 + `P> − `Y>xe` 

                                           = �w2 + `P> − `Y>xe` 

                                             = 2�e` + � `P>e` − � `Y>e` 

       = 2` + ` Õ − `YP + �                                                   = 2` + `@> − 1̀ + � 

            Exercise: Evaluate the following integrals 

 

                                       

5.4. Techniques of integration 

Integration by Substitution  

Theorem: Let f(x) and g(x) be functions with both fog and g ′  continuous on an interval I. If F is 

an antiderivative (indefinite integral) of f on I, then  

 (i) ( ) CxgFdxxgxgf +=′∫ ))(()()(  

Example:  Find ( )∫ + dxx
21

6  

Solution   To solve this we use integration by substitution  

                    Let g(x)=x+6   implies g
/
(x)=1  and f(g(x))=(g(x))

21 

( ) CxgFdxxgxgf +=∫ ))(()()( /  

1. 
2. 
3. 
4 
5 
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( ) dxxgxg )()( /21∫ = C
x

C
xg

C
xg

+
+

=+=+
+

+

22

)6(

22

))((

121

))(( 2222121

 

Equivalently we can let  

                      � = ` + 6 �ç¶À��� e� = e`    
                     

( ) ( ) ( )
C

x
C

u
duudxx +

+
=+==+ ∫∫ 22

6

22
6

2222
2121

 

Example: consider the following patterns 

Original integral g(x)=u g ′ (x)=du ( ) dxxgxgf )()( /
 

( ) dxxx∫ +
42 12  u=x

2
+1 du=2xdx duu∫ 4  __________ 

( )dxxx∫ +13 32  u=x
3
+1 du=3x

2
dx

 
duu∫  __________ 

dxx∫ 6sin2  u=6x du=6dx 
duu∫sin

3

1
 

__________ 

∫ dxe x32  u=3x du=3dx 
dueu∫3

2
 

__________ 

The logarithm as an integral 

Definition: The natural logarithm is the function defined on the integral (0∞ ) by lnx  =   dt
t

x

∫
1

1

                           Corollary  ( )
x

x
dx

d

x
dt

tdx

d
x

1
ln

11

1

=⇒=









∫  

Example: Evaluate dx
x∫

6

2

1
 in terms of logarithm  

Solution: 3ln
2

6
ln2ln6lnln

1
6

2

6

2

==−== ∫∫ xdx
x

 

                            Note: cxdx
x

+=∫ ln
1

 

Example: Find    dx
x

x
∫ +15

4

 

  Solution: let  15+=xu  so that dxxdu 45=  

        
dx

x

x
∫ +1

4
5

 = ∫ +1

1
5x

dx
u

dxx ∫=
1

5

14  

             cxcu ++=+= 1ln
5

1
ln

5

1 5  
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Exercise: 

1.  Show that  cxxdx +−=∫ coslntan  

2.  Evaluate the integrals  

i) dx
x∫ −1

1

   
ii) dx

x

x
∫ +42

    
iii) dx

x∫ − 41

2

     
iv) dx

x

x
∫ − 2

2

1     
v) dx

xx

x
∫ −−

+1

0

2 14

2

 

Integration by parts 

Theorem Let F and G be differentiable on [ ]ba, , and assume that F’ and G’ are continuous on 

[ ]ba,  then.  

( ) ( ) ( ) ( ) ( ) .)( dxxGxFxGxFdxxGxf ∫∫ ′−=′  

and ( ) ( ) ( ) ( ) ( ) ( )dxxGxFxGxFdxxGxF

b

a

b

a

∫∫ ′−=′ .  

∫ ∫−= vduuvudv  

Example: Find ∫ xdxxcos  

Solution: the integral xxcos can naturally be split in to the two parts x and cosx 

Let  xu =   implies dxdu =     
xv

xdxdv
sin

cos
=
=  

∫ ∫+= udvvduuv  

∫ ∫+= xdxxxdxxx cossinsin  

∫=++ xdxxcxxx coscossin  

Example: Find dxxe x∫ 32  

Since 2x is easily differentiable and e
3x

 is easily integrable we can  

Let xu 2=  and dxedv x3=  

dxdu 2=  and xev 3

3

1
=  

dxxedxexe xxx ∫∫ += 333 2
3

2
2

3

1
cexe xx +−= 33

9

2

3

2
 

Exercise: Find    dxex x−∫
1

0

5  

Reduction Formula 

 Note:  1. xdx
n

n
xx

n
xdx nnn ∫∫ −− −

+
−

= 21 sin
1

cossin
1

sin  

   2. xdx
n

n
xx

n
xdx nnn ∫∫ −− −

+= 21 cos
1

sincos
1

cos  
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Example: Find xdx∫ 5cos  

Let n=5 in the reduction formula  

xdxxxxdx ∫∫ += 345 cos
5

4
sincos

5

1
cos  

A second application  

∫∫∫ += xdxxxxdx cos
2

3
sincos

3

1
cos 23  

                = ,sin
3

2
sincos

3

1 2 cxxx ++  

Consequently 








 +++=∫ cxxxxxxdx sin
3

2
sincos

3

2

5

4
sincos

5

1
cos 245

 

                = cxxxxx +++ sin
15

8
sincos

15

4
sincos

5

1 24  

Tabular Integration 

We have seen that integrals of the form ( ) ( )dxxgxf∫  in which f can be differentiated repeatedly 

to become zero and g can be integrated repeatedly without difficultly, are natural conditions for 

integration by parts. However, if many repeat are required the calculation that saves a great deal 

of work. It is called tabular integration and is illustrated in the following examples. 

Example: Find dxex x∫ 2 by tabular integration  

Solution: with ( ) 2xxf =  and ( ) xexg = , we list 

                     ( )xf and its derivative  ( )xg  and its integrals    

2x                 xe  

x2   (+)  xe  

2              (-)  
xe  

0                          (+)             
xe  

We add the products of the functions connected by the arouse, with the middle sign changed, to 

obtain  

                           � `>�> e`= xexdxex 22 =∫ - ceex xx ++22  

Example: Find xdxx sin3∫ by tabular integration  

     Solution :With ( )xf  = 3x  and ( )xg = sinx, we list,  
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(+) 
(+) 
(-) 

(-) 

( )xf  and its ( )xg   ( )xg  and  

Derivates   its integrals  

                     
3x   (+)     xsin  

                                             xcos  
23x                   

                                               xsin  

x6          

                                               xcos  
6          
 

 

 

We add the products of the functions connected by the arouse, with every other sign changed, 

                            
cxxxxxxxxdxx +−++−=∫ sin6cos6sin3cossin 235  

Exercise  

1. Evaluate the integrals by tabular Method. 

a) dxex x∫ 3

                  

b) ( ) dxexx x∫ −52

                          

c) dpep p−∫ 4  

2. Use integration by parts to evaluate the following integralsEvaluate .cos
6

7

0

5xdx∫  

a) ∫ 2lnxx  

b) dxxe∫ −1  

c) ( )dxxxx∫

Π

+
2

0

sin  

d) dx
e

x
x∫

sin
 

 

Summary of common integrals using integration by parts  

1. for integrating of the form 

 ,sin, kdxxdxex naxn ∫∫ or axdxxn cos∫ ,
 Let nxu =  and let .cos,sin, axdxaxdxdxedv ax=  

2) For integrals of the form  

,ln xdxxn∫  Arcs sin ax, or arctanax Let dxxdv n=  

3) For integrals of the form bxdxeax sin∫   Or bxdxeax cos∫  

Let bxu sin=    or bxcos  and let dxedv ax=  

sinx 0 



 

Note 

 

Partial fraction 

Consider the following rational functions 

1) 
3

2
2

3

+x

x
 We can divide the function by the long division as follows

3

6
2

3

2
22

3

+

−
+=

+ x

x
x

x

x
 

Then dx
x

x
∫ +3

2
2

3

    =    ∫

2) 
23

42
2 ++

+

xx

x
  =     

( )( )12

42

++

+

xx

x

dx
xx

x
∫ ++

+

23

42
2

  =  
x∫ +

2

124 

 

Consider the following rational functions  

We can divide the function by the long division as follows 

 

dx
x

x
xdx∫ ∫ +

−
3

6
2

2
 

  =   
( )

( )( ) 1

2

12

22

+
=

++

+

xxx

x
 

dx
+1

2
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Examples of Integration by partial fraction: 

Example: Evaluate   dx
xxx

x
∫ ++

+
23 2

32
 

Solution:  

xxx

x

++

+
23 2

32
  = 

( )21

2

3
2

+









+

xx

x

          =   
( )211 +

+
+

+
x

C

x

B

x

A
 

Determine A,B and C  

( ) ( )( ) 3211 2 +++++ xxxBxA  

( ) ( ) 3212 22 +=+++++ xcxxxBxxA  

322 22 +=+++++ xCxBxBxAAxAx  

3=A       
3

0

−=
−=
=+

B
AB

BA
 

22 =++ CBA   

1−=C   

( ) ( )22 1

1

1

33

1

32

+
−

+
−=

+

+

xxxxx

x
  

( )
( ) ( )

dx
x

dx
x

dx
x

dx
xx

x
∫∫∫∫ +

−
+

−=
+

+
22 1

1

1

1
3

3

1

32
  

 1
1

1
3ln3ln C

x
xx +

+
++−=  

 = 1
1

1

1
3 C

xx

x
lin +

+
+

+
 

Example: Evaluate dx
xx

xx
∫ −+

++

2

72
23

2

 

Solution:
2

72
25

2

−+

++

xx

xx
    =    

1−x

A
    +

Cxx

CBx

++

+

22
 

Find A and B and C  

,2=A    1−=B 3−=C  

2

72
23

2

−+

++

xx

xx
   =  

1

2

−x
      -    

22

3
2 ++

+

xx

x
 

Thus =
++

++
∫ dx

xx

xx

2

72
23

2

dx
xx

x
dx

x ∫∫ ++

+
+

− 22

3

1

2
2

 

                                  = dx
x∫ −1

2
 +     

( )
dx

x

x
∫ ++

+

11

3
2

 

 Let 1+= xu    1−= ux 23 +=+⇒ ux  
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= du
u

u
dx

x ∫∫ +

+
+

− 1

2

1

2
2

 

= du
u

du
u

u
dx

x ∫∫∫ +
+

+
+

− 1

2

11

2
22

 

= ( )( ) 211ln
2

1
1ln2 22 ++++− xx arctan ( ) cx ++1  

Summary for determining the constants by partial fraction is given as follows.  

1. 
( )( ) ( ) ( )qx

B

px

A

qxpx

numerrator

+
+

+
=

++
 

2. 
( ) ( ) ( )22 px

B

px

A

px

numeantor

+
+

+
=

+
 

3. ( )( ) ( )2222 qx

D

qx

C

px

BAx

qxpx

numerator

+
+

+
+

+
+

=
++

 

The Heaviside “cover-up” method for linear factor  

When the degree of the polynomial f(x) is less than the degree of g(x), and 

( )( ) ( )nrxrxrxxg −−−= ...........)( 21 is a product of n distinct linear factors, each raised to the first 

power, there is a quick way to expand 
( )

( )xg
xf  by partial fraction.  

Example: find A, B, and C in the partial fraction expansion  

( )( )( ) ( ) ( ) ( )321321

12

−
+

−
+

−
=

−−−

+

x

C

x

B

x

A

xxx

x
 

 

Solution: If we multiply both sides of the above expression by ( )1−x  to get  

( )( )
( )
( )

( )
( )3

1

2

1

31

1
2

−
−

+
−
−

+=
−−

+
x

xC

x

xB
A

xx

x
 

And let x=1 

( )( )
100

2

2

21

112

=⇒++==
−−

+
AA  

These the value of A is the number we would have obtained if we covered the factor ( )1−x  in 

the denominator of the original function.  

( )( )( )321

12

−−−

+

xxx

x
and evaluate the rest at x=1  

A=     
( )

( )( )( ) ( )( )
1

21

2

31211

11 2

−=
−−

=
−−−

+

x
 

B=   
( )( )( ) ( )( )

5
11

5

32212

122

−=
−

=
−−−

+

x
 



 

Finally C is found covering the (

 C =  
( )( )( )32313

13
2

=
−−−

+
x

Example: Evaluate  

 ∫ −+

+
dx

xxx

x

103

4
23

 

Solution:  the degree of ( )xf =

( )xg  factored.  

( )( )52

4

103

4
23

=
+−

+
=

−+

+

xxx

x

xxx

x

Therefore:
( )( ) 5

2

52

4
+

−
=

+−

+

xxxx

x

and
( )( )

dx
xxx

x
∫ +−

+

52

4
         =    

−

 

Home Task 

Evaluating the following indefinite integral

a)  
( )( )dx

xxx

x
∫ ++− 121 2

2

 

b)        dz
zzz

z
∫ −− 623
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( )3−x  in above equation and evaluating at x=3  

5
12

10
=

×
=  

4+= x   is less than the degree of ( )xg xx 33+=

( ) ( )52 +
+

−
+

x

C

x

B

x

A
 

 

( ) ( )535

1

27

3

+
−

−
+

xx
 

Cxxx +=−−+
−

5ln
35

1
2ln

7

3
ln

5

2
 

Evaluating the following indefinite integral 

 

x102− , and with 
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Exercise  

    1. a) dx
x

x
∫ +1

               b) ∫ +12

2

x

x
               c) 

( )
dx

x

x
∫ − 22

3
 

 

2. Evaluate the following integrals 

        a. dx
e

e
x

x

∫ − 31
 

b) dx
x

xx
∫ +1sin

cossin
2

2

 

c) ( )dxxe x∫ +12  

3. Verify that 
2

cossin 22 ππ π
k

xdxxdx

ka

a

ka

a

==∫ ∫
+ +

For k is any integer 

 

 

5.5. Trigonometric Integrals 

Trigonometric integrals involve algebraic combinations of the six basic trigonometric functions. 

In principle, we can always express such integrals in terms of sines and cosines,but it is often 

simpler to work with other functions, as in the integral 

Products of Powers of Sines and Cosines 

We begin with integrals of the form: � sinMx cosA`e` 

where m and n are non-negative 

 

� When m is odd (ç = 2� + 1) Substitute ��d>` = 1 − �m�>` 

� If m is even and n is odd  Substitute �m�>` = 1 − ��d>` 

� If both m and n are even 

Substitute    �m�>` = PÄÔ�Ú>Â>    and Substitute 

��d>` = 1 − �m�2`2  

 

 

Example:  

Evaluate the following indefinite integrals O.� ��d@`�m�>`e` 
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g.� �m�@`e` 

�.� ��d>`�m�>`e` 

Solution a. Since m is odd then we Substitute ��d>` = 1 − �m�>` � ��d@`�m�>`e` = �(1 − cos> `)��d`m�>`e` = �(1 − cos> `)�m�>`��d`e` 

   Let � = �m�` ⟹ e� = −��d`e` �ℎ�d �(1 − �>)�>e� = − �(�> − �p)e� = �X5 − �@3 + � = �m�X`5 − �m�@`3 + � 

Solution b. since m=0 is Even and n=3 is Odd then we substitute �m�>` = 1 − ��d>` � �m�@`e` =� �m�>`�m�`e` =�(1 − ��d>`)�m�`e` 

Let � = ��d` ⟹ e� = �m�`e` �ℎ�d �(1 − �>)e� = � − �@3 + � = ��d` − ��d@`3 + � 

Solution c.m=2 and n=2 are both even then we substitute�m�>` = PÄÔ�Ú>Â>    and 

��d>` = 1 − �m�2`2  

� ��d>`�m�>`e` = �w1 − �m�2`2 x w1 + �m�2`2 xe` = 14�(1 − �m�>2`)e` 

 Let � = 2` ⟹ e� = 2e` �ℎ�d 12�(1 − �m�>�)e� =  12 w�1e� −� �m�>�e�x 

                                     = 12 w� − � �m�>�e�x 

                                     = 12 w� − �1 + �m�2�2 e�x 

                                     = 12 w� − 12 � − 14 ��d2�x + �      
                                     = 12 w2` − ` − 14 ��d4`x + � 

                                                                = 12 w` − 14 ��d4`x + � 

Exercise:  

Evaluate the following indefinite integrals O.� ��dX`e` 

g.� 4�Odp`e` 

�.� ��dp`�m�>`e` 
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Products of Sines and Cosines 

Integrals of the form � sinm x sin d` e` ,� sinm x cos d` e`  , Ode � cosm x cos d` e` 

Can be solved by using the following identities 

i. sin ç` sin d` = P> £cos(ç − d)` − cos(ç + d)`¤ 
ii. sin ç` cos d` = P> £sin(ç − d)` + sin(ç + d)`¤ 

iii. cos ç` cos d` = P> £cos(ç − d)` + cos(ç + d)`¤  
Example:  

Evaluate the following indefinite integrals O.� sin 2` cos 3` e` 

g.� cos 4` cos 3` e` 

�.� sin 2` sin 3` e` 

Solution a.By using property (i)with m=2 is Even and n=3 sin ç` sin d` = 12 £cos(ç − d)` − cos(ç + d)`¤ 
sin 2` sin 3` = 12 £cos(2 − 3)` − cos(2 + 3)`¤ sin 2` sin 3` = P> £cos(−`) − cos(5`)¤then 

� sin 2` cos 3` e` = 12�£cos(−`) − cos(5`)¤e` 

                                    = 12�£cos(−`) − cos(5`)¤e` 

                            = 12 Ì� �m�`e` − � �m�5`e`� ��d�� �m��d� �� Od �~�d ��d���md cos(−`) = �m�` 

           =
P> ª��d` − PX ��d5`« + � 

 

Solution b.By using property (iii)with m=4 is Even and n=3 cos ç` cos d` = 12 £cos(ç − d)` + cos(ç + d)`¤ 
cos ç` cos d` = 12 £cos(4 − 3)` + cos(4 + 3)`¤ cos ç` cos d` = P> £cos(`) + cos(7`)¤then 

� cos 4` cos 3` e` = 12�£cos(`) + cos(7`)¤e` 
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                                                 = 12 w� cos(`)e` + � cos(7`)e`x 

                       =
P> ª��d` + PZ ��d7`« + � 

Solution c. Exercise 

Exercise: Evaluate the following definite integrals 

a. � sin 3` sin 3`e`�
Y�  

b.� cos 3` cos 4`e`�
·  

 c.� cos 3` sin 4`e`
�>

·  

 

5.6. Trigonometric Substitutions 

Trigonometric substitutions can be effective in transforming integrals 

involvingQO> − `>QO> + `>  and  Q`>−O>into integrals we can evaluate directly we use the 

table below. 

Expressions in integrand Trigonometric substitution Interval(s) NO> − `> ` = O��ds −�2 ≤ s ≤ �2 , NO> + `> ` = O�Ods −�2 ≤ s ≤ �2 , N`>−O> ` = O���s 0 ≤ s ≤ �2  , mn � ≤ s ≤ 3�2  

 

The substitutions come from the reference of right triangles as shown below 

 
Reference triangles for the three basic substitutions identifying the sides labeled x and Ofor each 

substitution. 



 132 

Example:  

Evaluate the following indefinite integrals O.� `>Q9 − `> e`                          g.� 3Q1 + 9`> e`                     �.� `>
(`> − 1)@> e` 

 

Solution: a. We set` = 3��ds ⇒ e` = 3�m�ses 

  Q9 − `> = Q9 − 9 sin> s = N9(1 − sin> `) = 3�m�` for
Y�> ≤ s ≤ �> 

� `>Q9 − `> e` = � (3��ds)>3�m�s 3�m�ses = 9� ��d>ses 

From the above we substitute ��d>s ga PYÔ�Ú>h>  hence we get  

9� ��d>ses = 9�w1 − �m�2s2 xes = 92 ws − ��d2s2 x + � 

From ` = 3��ds we get s = ��dYP ªÂ@« and  sin 2s = 2 sin s cos s 92 ws − ��d2s2 x + � = 92 ª��dYP ª3̀« − sin s cos s« + �
= 92 t��dYP ª3̀« − 3̀ Q9 − `>3 u + � 

= 92t��dYP ª3̀« − `Q9 − `>9 u + � = 92 ��dYP ª3̀« − `Q9 − `>2 + � 

Solution: b. we set� = 3` ⇒ e� = 3e` and �> = 9`> then from this  � 3Q1 + 9`> e` = � 1Q1 + �> e�  
From the above table we can set � = �Ods ⇒ e� = sec> ses and from the 

trigonometric identities we have 1 + tan> s = sec> s then  � 1Q1 + �> e� = � 1Q1 + �Od>s ���>ses = � ���>sesQsec> s = � ���>sDsec sD es 

For  
Y�> ≤ s ≤ �> , then we can have  

� ���>sDsec sD es = �(1) sec s es
= �wsec s + tan ssec s + tan sx sec ses =� sec> s + sec s tan ssec s + tan s es 

  Let v = sec s + tan s ⇒ e~ = (sec> s + sec s tan s)es  � sec> s + sec s tan ssec s + tan s es = � 1~ e~ = ÀdD~D + �                                       =  ÀdDsec s + tan sD+C but s = tanYP � = tanYP 3` 

              =ÀdDsec(tanYP 3`) + 3`D + � 

Solution c. Exercise 
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Exercise: Evaluate the following indefinite integrals O.� 1`Q4 − Àd>` e` 

g.� 1Q�>Ã − 1 ea 

�.� `>`> + 1 e` 

 

5.7. Improper Integrals 

DEFINITION Type I Improper Integrals 

Integrals with infinite limits of integration are calledimproper integrals of Type I. 

1. If ƒ(x) is continuous on £O,∞), then   

� �(`)d
� e` = limÓ→d� �(`)e`Ó

�  

2. If ƒ(x) is continuous on £−∞, O), then   

� �(`)�
Yd e` = limÓ→Yd� �(`)e`�

Ó  

3. If ƒ(x) is continuous on £−∞,∞), then   

� �(`)d
Yd e` = � �(`)e`Ô

Yd + � �(`)e`d
Ô  

Where c is any real number. 

In each case, if the limit is finite we say that the improper integral converges and that the limit is 

the value of the improper integral. If the limit fails to exist, the improper integral diverges. 

Example:  

Evaluate the following improper integrals O.� 11 + `> e`d
Yd  

g.� s�hes·
Yd  

Solution: a. According to the definition in part 3above we have 

� �(`)d
Yd e` = � �(`)e`·

Yd + � �(`)e`d
·  

� 11 + `> e`d
Yd = � 11 + `> e`·

Yd + � 11 + `> e`d
·  

= limÓ→Yd� 11 + `> e`·
Ó + limÓ→d� 11 + `> e`Ó

·  
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= limÓ→Yd tanYP `¤Ó· + limÓ→d tanYP `¤·Ó = �2 + �2 = � 

           �ℎ�n��mn� � 11 + `> e`d
Yd = � 

Solution b. Exercise 

 

DEFINITION Type II Improper Integrals 

Integrals of functions that become infinite at a point within the interval of integration are 

improper integrals of Type II. 

1. If ƒ(x) is continuous on (a, b] and is discontinuous at a then 

� �(`)Ó
� e` = limÔ→�`� �(`)e`Ó

Ô  

2. If ƒ(x) is continuous on [a, b) and is discontinuous at b then 

� �(`)Ó
� e` = limÔ→ÓX� �(`)e`Ô

�  

3. If ƒ(x) is discontinuous at c, whereO < � < g,and continuous on £O, �) ∪ (�, g¤, then 

� �(`)Ó
� e` = � �(`)e`Ô

� + � �(`)e`Ó
Ô  

In each case, if the limit is finite we say the improper integral converges and thatthe limit is the 

value of the improper integral. If the limit does not exist, the integral diverges. 

Example:  

Show weather the following improper integrals converge or diverge. O.� 11 − ` e`P
·  

g.� 1(` − 1)@> e`@
·  

 

Solution: a.The function 
PPYÂ is discontinuous at x=1 the as defined in 2 above we can have  

� 11 − ` e` =P
· limÔ→PX� 11 − ` e`Ô

· = limÔ→PXÀd�(1 − `)¤·Ô = limÔ→PX£ln(1 − �) − 0¤ = ∞ 

The limit is infinite, so the integral diverges. 

Solution: b. 

The integrand has a vertical asymptote at x=1 and is continuous on [0, 1)and (1, 3] 
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Exercise: 

Show weather the following improper integrals converge or diverge. O.� 11 − ` e`@
·  

g.� (−Àd`)e`P
·  



 136 

 Miscellaneous EMiscellaneous EMiscellaneous EMiscellaneous Exxxxerciseerciseerciseercise    Evaluate the following integralsEvaluate the following integralsEvaluate the following integralsEvaluate the following integrals    1.  ( )dxxxx∫ −+−
2

1

24 243  
2.  dx

x
x∫ 








+

4

1 2

1  
3.  ( ) θθθ d∫ + 22 sec  
4.  ( )dxxx∫ +−

2

4

cos3sin7

π

π

 
5.   ∫2

0

)(

π

dxxf , where  
           f(x)=







≤≤

≤≤

24
csc

0sec

2

4

2

ππ
θ

θ π

xfor

xfor  
6.  ( )∫ − dxxx 125   7.  ( ) dxxxx 242141 +++∫  8.  dxxxx∫ + sec3tansec  ; u=3+secx 
9.  

( )
dx

x

x
∫

+
5

3

3

1
 

10.  Find the indefinite integrals              a)    dxxe x∫ −     
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           b) ∫ xdxx cos3             c)   dxx x∫ 42  12.  Find the integral             a)  dx
x
x∫ +1

           
           b)  dx

xx∫ −− 6

2
2

 
           c)  dx

x

xx
∫
−










+
++0

1

2

1

1  
13. By making the substitution u=1-x show that      ( ) ( )∫∫ −=−

1

0

1

0

11 dxxxdxxx
nmmn   for any non negative integers m and n. 

14. Evaluate the integrals below 
O.� ��dX2`

�W
· �m�2`e` 

g.�(2` − 5)(` − 3)q
�W

· e` 
 15. Evaluate the integrals below 

O.� ��d4`�m�3`e`�
·                      g.� ��dp`�m�@`e`� >�

·  
  �.� w�m�` − ��d2`��d` xe`            e.� (2 − ��d`)>e`� >�

·  
   �.� ��d5`��d`e`                      �.� Q1 − �m�4`e`�/p

·  16. Evaluate the improper integrals below 
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CHAPTER SIX 

APPLICATION OF THE INTEGRAL 

The mathematical application will include area, volume, length of a curve, and surface area and 

the other work, force and momentum and centre of mass so on are for physics, engineering... 

6.1. AREA 

Suppose we want to find the area of a region bounded above by the curve a = �(`) and, 

below by the curve = ¬(`)and on the left and right by lines ` = O Ode ` = g (Ö�¬ 6.1) �� � Ode ¬ On� �md��d�m��  . 

We first approximate the region with n vertical rectangles based on a partition 

P = {`· ,  `P , … , `A} m� £O , g¤ (Fig 6.2)  the area of the ��° rectangle (Fig 6.3) is ∆­
 = ℎO�¬ℎ� × Ë�e�ℎ = £�(�
) −     ¬(�
)¤∆`
 

We then approximate the area of the region by adding the areas of the n rectangles 

A≈ � ∆­
 =A
�P � £�(�
) − ¬(�
)¤∆`
A
�P    which is called Rieman sum 

As K¶K → 0 �ℎ� area of the right approach the limit � £�(`) − ¬(`)¤e` Ó� because  � Ode ¬ are continuous. We take the area of the region to be the value of this integral. 

That is, 

 

­ ≈ limDÆD→· 0£�(�
) − ¬(�
)¤∆`
 = � £�(`) − ¬(`)¤e`Ó
�

A
��P  

 

Fig 6.1                                                  Fig 6.2                         Fig 6.3 

Area between curves 

Definition; If  � Ode ¬ are continuous with �(`) ≥ ¬(`) throughout £O, g¤  then the area 

of the region between the curves a = �(`) and a = ¬(`) from O �m g is the integral 

of ­ = � (Ó� � − ¬)e­ = � (�(`) − ¬(`)Ó� )e` 
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EXAMPLE:  

solution  First we sketch the two curves 

 

Fig 6.4 

The limits of    integration are found 

By solving a = 2 − `> and a = −` simultaneously for ` 2 − `> = −`      ���O�� �(`)Ode ¬(`) 2 − `> − ` = 0    n�Ën��� (` + 1)(` − 2) = 0 �O��mn ` = −1 Ode ` = 2 

The region runs from  ` = −1 Ode ` = −2 is the limit of integration from 

     O = −1 Ode g = 2 then the area between the curves is � (�(`) − ¬(`)Ó� )e` =� £(2 − `>) − (−`>YP )¤e` = q> 

Example: 

 

Solution: Shows that the region upper boundary is the graph of 

region from A and B  
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Figur 6.5 
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Exercises  

1. Let �(`) = 5` Ode ¬(`) = `> , and let R be the region between the graphs of � Ode ¬  md £0,3¤  find the area of the region   

 

6.2. VOLUMES 

If � is a function continuous on an interval £O , g¤ then � �(`)e`Ó�  is the limit of the Riemann 

sums for  � md £O, g¤ as the lengths of the subintervals derived from the partition of £O, g¤ 
approach 0. 

We will describe briefly here our procedure for introducing the other  application of the integral. 

For each application our goal will be to find a formula for a quantity I (such as the volume of 

solid region) we will proceed in the following way 

In each case it will be reasonable to expect that  � �(�
)A
�P ∆`
  should approach I as the 

norm of the partition P tends to 0 this idea is expressed by writing      þ = � �(�
)A
�P ∆`
 

We will conclude that     I = � �(`)e`Ó�  

Volume can be found by different methods 

a. The cross-sectional method 

b.  The disc method 

c. The washer method 

d. The shell method 

 

a. The Cross-Sectional Method 

Consider the cross-sectional area A of the region D is a function that is continuous on £O , g¤   let 

P= (`·, `P, `>..., `A) be a portion of £O. g¤ for each k between 1 and n ,let �
 be an arbitrary 

number in the sub intervals [`
YP, `
], if ∆`
 is small ,the volume ∆~
 of the part of D between `
YP, `
 is approximately equal to the product of the cross-sectional area A(�
) and the length ∆`
  

Thus  ∆³ ≈ (cross-sectional area)×(length) 

               =A (�
)∆`
 

Since the volume V of D is the sum of ∆~P, ∆~>, … , ∆~A. It follows that V should be 

approximately  � ­(�
)A
�P ∆`
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The volume of a solid of known integral cross-sectional area  A(x) from ` =  O  �m ` =  g is the 

integral of A from O �m g       ³ = � ­(`)e`Ó�  
Example:   Find the volume V of the solid D in which cross-section at x is semicircular region 

with radius r is `> for 0≤ ` ≤ 1  

                        Solution: The area of a semicircular region with radius r is   
P> �n>. 

                        Thus the cross-sectional area A(x) of x is given by A(x) = P> �(`>)>. 

There for we conclude that 

V=� ­(`)e`P·  

=� P> �`pP·  

=
�P· 

 

b. The Disc Method 

 When the graph of a continuous non-negative function � on an interval £O, g¤ is revolved about 

the ` axis, it generates a solid region having circular cross-sections, that is cross-sections are 

circular disc (Fig 6.6) ,since the radius of the cross-section at ` �� �(`) it follows that          ­(`) =  �£�(`)¤>                                    (1 )   

 

Figure 6.6                                                                 Figure 6.7        

Thus  we obtain a formula for the volume ³ of the solid that is generated                       ³ = � �£�(`)¤>Ó� e`                    

Because the cross-sections are disc, it  is called the disc method  
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Example: Find the volume ³ of a sphere of radius n  

 

Figure 6.8 

 

Solution: In Figure6.8 A sphere is generated by revolving a semicircle  

about its diameter ,if we let  �(`) = Qn> − `>  �mn  −n ≤ ` ≤ n .Then 

V=� (Qn> − `>)>e` = p@ �n@�Y�  

 

Example: Find the volume of the solid that is obtained when the region under the  

Curve a = Q`  over the interval [1,4] is revolved about the x-axis 

 

 

 

Figure 6.9 

 

Solution: the volume is  
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Exercises 

1. Let R be the region between the graph of the function and the x axis on the given interval. 

Find the volume v of the solid obtained by revolving R about x axis O. �(`) = `> ;[0,3]    g. �(`) = `> ; £1,2¤   �. �(`) = Q`��d` ; £0, �¤ 
c. The Washer Method 

We present a formula for the volume of the solid region generated by revolving a more general 

plane region about the `-axis .let � Ode ¬ be function such that  

0≤ ¬(`) ≤ �(`)    �mnO ≤ ` ≤ g 

Then the plane region between the graph of � and the x-axis on £O, g¤ is composed of the region 

between the graph of ¬  on £O, g¤ and the region between the graph of ¬ and the `-axis on £O, g¤ 

 

Figure 6.10 

The volume ³ of the solid generated by revolving the region between the graph of � Ode ¬ md £O, g¤ �� given by   V=� �£�(`)> − ¬(`)>¤e`                      Ó�  

Example: Find the volume of the solid generated when the region between the graphs 

 

Solution first sketches the region (Figure); then imagine revolving it about the x-axis. From 
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(6.10) the volume is 

 

Exercise 

1. Let R be the region between the graph of � Ode ¬ on the given interval. Find the volume v 

of the solid obtained by revolving R about x axis O. �(`) = Q` + 1, ¬(`) = Q` − 1 ;[1,3]      g. �(`) = ` + 1, ¬(`) = ` − 1 ;[1,4] 

 

The Shell Method  

We obtain a formula for the volume of the solid generated by revolving about the x-axis the 

region between the graphs of � Ode ¬ md £O, g¤.we can also revolve such a region about the a O`�� and find a corresponding formula for the volume of the solid so generated. 

To begin, let us determine the volume V of a cylindrical shell obtained by revolving a rectangle 

about the y-axis  

 

                                                (Fig6.11) 

Suppose the rectangle is bounded by the x-axis, the line y=c, the lines x=a and x=b, where 

b≥ O ≥ 0 Ode � ≥ 0 then since the volume of the cylindrical shell is the difference of the 

volume of the outer and the inner cylinders ,it follows that     

V = volume of outer cylinder – volume of inner cylinder 

                                        = �g>� − �O>� = ��(g> − O>) 

                       If we replace O ga `
YP Ode g ga `
 then we obtain  

                  ³ = ��(`
> − `
YP>) = ��(`
 + `
YP)(`
 − `
YP) ..............(*) 
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Now let � be a continuous nonnegative function on £O, g¤,with  O ≥ 0. We wish to define the 

volume V of the solid region in Figure above ,obtained by revolving about the y-axis the region 

R between the graph of f and the x axis on [a,b]. Let P={`·, `P, `>, … , `A} be any partition of 

[a,b]. For each k between 1 and n, let �
 be the midpoint 
( `
 + `
YP) 2�    of the subinterval 

[`
YP, `
] .if ∆`
 is small, the volume ∆³
 of the portion of the solid between the revolve 

lines` = `
YP Ode ` = `
 is approximately equal to the volume of the corresponding cylindrical 

shell with height �(`) by (*), with �(�
) replacing c, this means that   ∆³ ≈ ��(�
)(`
 +`
YP)(`
 − `
YP) = 2��
�(�
)∆`
 

Therefore the volume V of the solid, which is the sum of ∆~P, ∆~>, … , ∆~A 

Should be approximately    � 2��
�(�
)∆`
A
�P  which is a Riemann sum for 2�`� md £O. g¤ .as a 

result ³ = limK®K→· � 2��
�(�
)∆`
 = � 2�`�(`)e`Ó�A
�P  

Thus we are led to the following formula for volume 

³ = � 2��(`)e`                   Ó
�  

Let � Ode ¬ be continuous on £O, g¤, Ë��ℎ �mn O ≥ 0 ,and suppose that  

¬(`) ≤ �(`) �mn O ≤ ` ≤ g 

Then let R be the region between the graphs of � Ode ¬ on £O, g¤ Figure. 

The volume V of the solid obtain by revolving about the a O`�� is given by  

³ = � 2�`£�(`) − ¬(`)¤e`                  Ó
�  

 

Solution:  First sketch the region (Figure6.12);then imagine revolving about y-axis 
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                                                       Figur 6.12 

Since  �(`) = Q` , O = 1 , Ode g = 4  the volume is given by 

 

  Exercises  

1. Let R be the region between the graph of the function and x axis on the given interval. Find 

the volume v of the solid generated by revolving R about  the y-axis O. �(`) = Q`> + 1; ñ0, Q3ó       g. �(`) = �>ÂÄP; [0,1] �. �(`) = Àd` ; £1,3¤ 
 

6.3. LENGTH OF A CURVE 

Consider the graph of a function � with a continuous derivative on closed interval [a,b]. If  � is 

linear, that is ,if the graph of � is a line segment ,then the length L of the graph is the distance 

between (O, �(O)) Ode (g, �(g))  so that  

ß = N(g − O)> + (�(g) − �(O))> 

 When � is not necessarily linear, we let P = {`·, `P, `>, … , `A} be any partition of [a,b] and  

approximate the graph of f by a polygonal line l whose vertices are (`·, �(`·),( `P, �(`P)),....,( `A, �(`A)) figure. Let ∆ß
 be the length of the portion of the graph of 

f joining (`
YP, �(`
YP)) and (`
 , �(`
)). If ∆`
 is small, ß
is approximately equal to the length 

of the line segment joining (`
YP, �(`
YP) and (`
 , �(`
)). In other words 

∆ß
 = N(`
−`
YP)> + (�(`
) − �(`
YP))>                           (1) 

The Mean value Theorem, applied to � on the interval [`
YP, `
], implies that  
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�(`
) − �(`
YP = � ′(�
)(`
 − `
YP) for some �
 �d (`
YP, `
). Therefore (1) can be 

rewritten  ∆ß
 = N(`
−`
YP)> + (� ′(�
)(`
 − `
YP))>            = N1 + (� ′(�
))>(`
 − `
YP) 

Therefore  the total length L of the graph of � ,which is the sum of the length ßP, ß>, … , ßA  should approximately � N1 + £��(�
)¤> A
�P  ∆`
 is a Riemann sum for N1 + £��¤>  on £O, g¤. Therefore it seems that  

ß = limK®K→·0 N1 + £��(�
)¤Ä>∆`
 = �N1 + £��(`)¤>e`Ó
�

A

�P  

Figure 6.15

 

                                                     Figure 6.13 

  

This leads us to make the following definition 

 

 

Solution     
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           Figure 6.14 

 

  

In Exercises1-3 find the length of the graph of the given function 

1. �(`) = 2` + 3 �mn 1 ≤ ` ≤ 5 

2. ¬(`) = `@ + P>Â  �mn 1 ≤ ` ≤ 3 

3. ¬(`) = `p + P@>ÂÕ   �mn 1 ≤ ` ≤ 2 

 

                 

6.4. Area of a Surface 

A higher-dimensional version of the length of a curve is the area of a surface. It has been known 

that the surface area S of a cube of sides s is given by S =6s
2 

and the surface area S of a cylinder 

of radius r and height h is given by S=2�rh. However , our analysis of the areas of other surfaces 

will be based on the surface area of a frustum of a cone. If the frustum has slant height l and radii 

r1and r2 ,then the surface area S is given by 

ä = 2� wnP + n>2 x À = �(nP + n>)À                         (1)  
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Fig 6.15 

 

More generally, suppose � is defined on£O, g¤, and�(`) ≥ 0 �mn O ≤ ` ≤ g.we will derive a 

formula for the S of the surface obtained by revolving the graph of � about x axis Figure. In 

order to be able to use the length of the graph of � on £O, g¤in our calculations of surface area, we 

will assume that � is continuous differentiable on £O, g¤. Now let P={`·, `P, … , `A} be a partition 

on £O, g¤ ,and let ∆ä be the area of the portion of the surface between the revolved lines ` =`
YPOde ` = `
 . �� ∆`
 is small, the surface area �
 is approximately equal to the surface area 

of the frustum of the corresponding cone. That is the frustum whose slant height is equal to the 

length of the line between (`
YP, �(`
YP)) and `
 , �(`
) and the radii of whose ends are �(`
YP)Ode �(`
)    from (1) this means that    ∆�
 ≈ �£�(`
YP) + �(`
)¤N(`
−`
YP)> + £�(`
) − �(`
YP)¤> The Mean Value theorem can be applied to show that for some �
 �d £`
YP, `
¤, N(`
 , `
YP)> + (�(`
) − �(`
YP))>  =N1 + £��(�
)¤> ∆`
           3 Since ∆`
 is assumed to be small `
YPOde `
are close together, with �
 between them. Since ��Ode � are continuous on £`
 , `
YP¤ it follows that �(`
YP) +  �(`
) should be approximately �(�
) + �(�
)  , �ℎO� �� 2�(�
) .so from (3) and (2) we deduce that  ∆ä
 ≈ �£2�(�
)¤N1 + £��(�
)¤>  Consequently the area S of the complete surface, which equal the sum of   ∆äP, ∆ä>, … , ∆äA should approximately � 2��(�
)N1 + £��(�
)¤>A
�P  ∆`
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Which is a Riemann sum for 2��(�
)N1 + £��(�
)¤> on £O, g¤. Therefore we define  the surface area S by  
ä = limK®K→·0 2��(�
)N1 + £��(�
)¤>   ∆`
 = � 2��(`)N1 + £��(�
)¤>e`Ó

�
A

�P  

 DEFINITION Let � be nonnegative and continuously differentiable on £a,b¤. The area of the surface obtained by revolving the graph of � about the x axis is defined by  S =  � 2��(`)N1 + £��(�
)¤>e`Ó�  
 

  
 

 

 

                           Figure 6.16                                            
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Exercises: 

 Find the area S of the surface generated by revolving about the x axis the graph of f on 

the given interval O.   �(`) = Q4 − `> ;  [1/2,3/2]                         g.   �(`) = P@ `@;[0,Q2] 

       Exercises  

1. Sketch and find the area of the region to the parabola ` = 2a> to the right of the y-axis , 

and between  a = 1 Ode a = 3 
2. Find the area bounded by the curve a = 1 − `Y>  and the lines a = 1 , ` = 1 Ode ` = 4 

 1 − 5  Find the volume the solid that results when the region enclosed by the given curves is 

revolved about `-axis  

1. a = 9 − `> a = 0 

2. a = Q25 − `> a = 3 

3. a = ��d` , a = �m�` ` = 0 , ` = �p 

4. a = 4 NQPÄ4�N ` = 0 , ` = 1, a = 0 

5. a = PQpÄÂÕ  ` = −2, ` = 2 a = 0 
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6 − 10  Find the volume the solid that results when the region enclosed by the given curves 

is revolved about a-axis  

6. ` = ���a a = �p  a = @�p , ` = 0 

7. a = `> , ` = a> 

8. a = TPYÂÕÂÕ    (` > 0) 

9. a = Àd`  , ` = 0 , a = 0 , a = 1 

10. ` = a> , ` = a + 2 

11. Let V be the volume of the solid that results when the region enclosed by a = PÂ  , a =0, a = 0 , ` = 2 Ode ` = g(0 < g < 2) is revolved about the x-axis. Find  the value of b 

for which V=3 

12. Find the length of the arc of  24`a =  `> + 48  from ` = 2 �m ` = 4  

13. Find the length of the arc of a@ = 8`> �nmç ` = 1 �m ` = 8 

 

 

 

 

   


