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Chapter one

1. Vectors and Vector Spaces
Unit objective

Define Scalars and Vectors in R?, R3 and R"

Perform Addition and scalar multiplication Vectors in R?, R®and R"
Perform Scalar product of Vectors in R?, R® and R"

Perform Cross product of Vectors in R3

Define Lines and planes

Define the axioms of a vector space

Define Subspaces, linear combinations and generators

Differentiate Linear dependence and independence of vectors

Define Bases and dimension of a vector space

Define direct sum and direct product of subspaces

1.1. Scalars and Vectors
Definition: A physical quantity which has magnitude but not direction is called a scalar.
Example: speed, distance, temperature, etc.
Definition: A physical quantity which has both magnitude and direction is called a vector.
Example: velocity, acceleration, force, etc.

Notation: Vectors are mostly denoted by bold letters or arrow headed letters and in this chapter
they are denoted by bold letters like u, v and w.

1.1.1. Addition and Scalar Multiplication of Vectors
Definition1.2.1 If u and v are vectors positioned so that the initial point of v is at the terminal

point of u, then the sum u + v is the vector from the initial point of u to the terminal point of v.

4

Graphically: utv

Triangular law of addition of vectors

Parallelogram law of addition of vectors
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The difference of two vectors u and v graphically is shown as follows:

or u u-v

v

Note: A zero vector is denoted by bold zero or 0.
Definition 1.2.2 If a is a scalar and u is a vector, then the scalar multiple au is the vector
whose length is |a| times the length of u and having the same direction as u
if @ > 0 and opposite in direction to u if ¢ < 0.
Note: fa=0oru=0thenau=0
1.1.1 Component form of vectors in R?, R*and R"
1.1.2 Component form of a vector in R 2; A vector u in R ?is given by u = (a;, a,)
where the entries a,, a; are called components of the vector u.
Definition: Let a = (a;, a;) and b = (by, by) be vectors in R?. Then:
1. a+b= (aj,a)+(by,by)=(a; +by,a, +b,) (addition of vectors)

2. a—b=(a;, a)— (b, by) =(a; — by, a —by) (subtraction of vectors)
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3. a=bifand onlyifa,=b;anda, =b, (equality of vectors)

4. aa=a(a;,a)=(aa,aa) (multiplying a vector a by scalar a)
Theorem1.2.1 For any vectors u, v and w in R * and any scalars e and 8 the following relations
hold true:

a) utv=u+yv

b) u+v)+w=u+(v+w)




c) ut0=u

d) a(Bu)=(ap)u=p (au)

e) a(u+tv)=autav

f) (a+ Bpu=au+ fu

g ut(w=0

h) lu=u
Example: If u =(1, 2) and v = (4, 5), then find:

a) utv b)v—u c)2u+3v
Solution:

a) utv=(1,2)+ 4,5=(01+4,2+5=(5,7)
b) v—u= (1,2)-4,5=(1-4,2-5)=(-3,-3)
c) 2u+3v=2(1,2)+34,5=(2,4)+(12,15)=(14,19)
Component form of vectors in R 3: A vector u in R *is given by u = (a;, a, a3) where the
entries a;, a; and as are called components
of the vector u.
Definition1.2.4 Let u = (aj, ay, a3) and v = (by, by, b3) be vectors in R>.
Then:
a) u+v=(aya, az)+ (b, by, b3)=(a; +by,a,+by+as+bs) (addition of vectors)
b) u-v=(aj, a, a3) — (by, by, b3) =(a; — by, a — by, a3 - b3) (subtraction of vectors)
¢) u=vifandonlyifa;=b;, a="b,, and a3 =b; (equality of vectors)
d) au=a(a;, a,a3)=(aa, aa, aa’) (scalar multiplying a vector u by a scalar a)
Definition 1.2.5 The magnitude, length or nor m of a vector u = (ay, a, a3) is denoted by ||u]|,

and defined by:

lul| = \/6112 + a? + a3?
It is similar for vectors in R*

Example: If u = (3, 4, 5), then find||u|| in 3-space.

Solution: |lul| = \/a;2 + a,2 + az2 = V32 + 42 + 52 = /9 + 16 + 25 = /50 = 5v2
Theorem1.2.3 For every vector u and any scalar a the following properties hold true:
a) |lull =0,
b) |lu|l =0 ifand only ifu=20

¢) |lau|l = |al||ull




Proof: left as an exercise for the students.
Definition: A vector u is said to be a unit vector if ||u]| = 1

For any vector u, the unit vector in the direction of u is given by:

1 . u
[l [[a]l

Example: For a vector u = (2, 3, 5), find a unit vector in the direction of u.

Solution: The unit vector in the direction of u is given by ﬁ .

lull = V22 + 32 + 52 = V/38.

u 1 2 3 s
Hencem = \/7—8(2, 3,5) = (ﬁ:ﬁ'ﬁ)

Exercise:

1. Find the norm 0fuifu=(_—2 3 9).

7°7"7

2. Find the unit vector in the direction of v if v =(2, 3, 6).
There are two especial unit vectors in R *and three in R’ sometimes called standard unit
vectors.
These are i=(1,0), j=(0,1)andi=(1,0,0) j=(0,1,0) k= (0,0, 1) respectively. These
unit vectors are used in simplifying the description and operations on vectors. We can write any
vectors in R% and R? as follows:

a) u=(a;,a) =(a;,0)+(0,a)=a;(1,0)+ay(0, 1) =a,it+ ayj

b) u=(a;, ap, a3) =(ay, 0,0)+ (0, ap, 0) + (0, 0, a3) =a;(1,0,0)+a,(0,1,0)+a3(0,0,1)

=aji+ajtak

Note: Vectors given in component form can be expressed by using the unit vectors i, j and k.

Example: Describe the following vectors by using the appropriate unit vectors.

a) u=4,5)
b) v=(1,-2,9)
Solution:
a) u=(4,5) b) v=(1,-2,9)
=4(1,0)+5(0, 1) =1(1, 0, 0) - 2(0, 1, 0) +9(0, 0, 1)
= 4i +5j =i-2j +9k

The position vector of a point P(xy, yj, z;) in R? is the vector OP = ( x1,Y1,21) whose

initial point is the origin O and whose terminal point is P.




z.ﬂ.
zy (x1. ¥1. 21)
x, 20 vy Nl
X
Fig 123

1.2. Dot (Scalar) Product

In this and the following section, we shall consider two kinds of products between vectors that
originate in the study of mechanics, electricity and magnetism. The first of these products is
known as the dot or inner or scalar product, which yields a scalar.

Definition: Let u = (a4, ay, ..., a,) and v = (by, by, ..., b,,) be two vectors in n-

space ( R™). The dot product of u and v is given by u-v =a;b; + a;b; + -+

a,b,.
Example: Let u = (aj, ay, a3) and v = (b, by, b3) be two vectors in 3-space. The dot product of u
and v is denoted by u-v and defined as:

u-v=ajb; +ab, + azbs

Note: The dot product of a vector u with itself is given by:

u-u=aja; +aa; +azas

= a12 + az2 + a32 = |lul|?
Hence |Jul] = vu-u

Example: For vectors u = (1, -2, 4) and v=(3, 0, 2) find u-v.
Solution: u-v=(1,-2,4) :(3,0,2) =(1)3)+(-2)0)+4) (2) =3+0+8 =11

Properties of dot product

1. w-v=v-u(dot product is commutative)
2. u(v+w) =uv+ uw (left distributive property of dot product over addition of

vectors)




3. (w-u)-v=w-(uv)=u-(w-v)(Associative property of dot product)

4. (u+v)-w=uw +v-w(right distributive property of dot product over addition of

vectors)
Definition1.3.2 Two vectors u and v are said to be :
1. parallel if there exists a scalar & # 0 such thatu=a v
2. 1n opposite direction if there exists a scalar & <0 such thatu = a v.
Note: If two vectors u and v are parallel it is denoted by u//v and related by u = a v for
some scalara # 0 .

Example: Verify whether the following three given vectors are parallel or not.

u=(3,2,-1) v=(-6,4,2)and w=(,1,2).
Solution:1) u and w are parallel because u= 2(2, 1, _71) = 2w orw= %u.
2) u and v are also parallel because u= _71v or v= —2u but opposite in direction.

1 . . . .
3) v and w are also parallel because v= —4w or w = — " but opposite in direction.

Exercise: Find a vector having the same direction as u = (-2, 4, 2) but has magnitude 6.
Consider two vectors u and v. The square of the norm of their sum is given as follows:
lu+v|?=@+v)- (u+v) =u-uU+v)+v- (u+v)
=uutuv+v-ut+v-v
= |Jull* +2u - v + ||v|]?
And hence we see that ||u + v||? = ||[u||? + ||v|| ? ifand only if u-v =0
Definition1.3.3 Two vectors u and v are called orthogonal
(Perpendicular) to each other if and only ifu-v =0
Example: Let u = (2, 2, -1) and v = (5, -4, 2) then show that u-v=0
Solution: u-v= (2,2,-1)-(5,—4,2) =0
Exercise
a. Find the value of b so that the vectors u = (-2, 4, 2) and v = (b, b’, b) are orthogonal.
b. Find two vectors orthogonal to u = (1,2,3) and each of their components are non-zero.
Angle Between Two Vectors
Theorem1.3.1 If 6 is the angle between two vectors u and v then u - v = ||u||||v||cos@

Proof: Applying the law of cosine to AOPQ in the figure below we get:




IPGI* = [[og]* + 0| - 2/|0@]|[|0P]| cos 6 (1)
But from the ﬁgureP—Q) = u—v, OP = v and 0Q=u and hence equation (1) becomes:

lu = v||2 = [[u]l2+]Iv]IZ = 2[lulll|v]|coSO -------------- 2)

But [lu— vl = [|ul|? — 2u-v+]||v||2(verify this?) and substituting this in (2) we get:

u-v=lullvlicos@

I

Z
¥
g Q

0 oY

X
Fig 13.1
Corollary 1.3.1 If 6 is the angle between the vectors u and v then: cos 8 = u:ﬁ—;v)u

Example:
a) Find the angle between u = (1, -2, 2) and v = (-3, 6, -6)
b) If [lul]| = 4, ||v|]| = 6 and the angle between them isg = 60° then find u-v
Solution: a) u= (1,-2, 2) and v= (-3, 6,-6)
lull = 1(1, =22l =12+ (-2)2+22 =+9=3
IvIl = 11(=3,6,—6)Il = \/(—3)>+ (6)*+ (—6)? =+/81=9
u-v = (1)(-3)+(-2)(6)*+(2)(-6) = -3-12-12 = -27

And cos@ = ﬁ = _2—277 =—-1 =60 =cos 1(-1) =180°= min radian measure
Exercise

1. Find the angle between the X- axis and v=(1, -2, -2)

2. If the vertices of a triangle are P(1,—3,2), Q(2,0,—4)and R(6,—2,—5) verify the type
of the triangle.

3. Iffu=(2,-3,4)and v=(-1,2.0), and w = (5,-1,2) find the angle between u-2v and u+2w




Definition: Two vectors u and v are said to be ortho-normal if ||Ju|| - ||v]| = 1.
1.3. Orthogonal projection

For two vectors u and v such that v# 0, consider the following figure:

u,, is Orthogonal projection of vector u onto v

»
| o

Now u,have two properties:

1. wu, is parallel to v denoted by u,,//v

2. u — u, is perpendicular to v denoted by(u — u,,) L v.
From (1) since u,,//v then there exists t € R such that w,, = tv and from (2)
since (u — u,) L v, then we have (u—u,) v = 0 thatis:

u-v—u, v=_0

S U V=U, vV
s> u-v=(tv) v

= u-v=t||v|?

uv
t=—
[Iv]|2
u-v
ThenU,, = tV = W‘D ------------------- (1)

Definition: Let u and v be two vectors such that u # 0 and v # 0 then the projections of vector

u on to vector v u,, and vector v

onto u, V,, are given by:
uv uv
u, = W‘D and similarly VU, = Wu
Example: Letu =(1, 2, -1) and v = (3, 0, -2) then find u,, and v,,
Solution: u-v=3+0+2 =5
|ul|> = 6 and ||v||*> = 13
uv

U, =— -3@3,0-2)and v, = —u =2(1,2,-1)
Vo v)|? B % lu? 13




Exercise:

1.

e

Let u = (1,3,—4) and v = (5,—1,0). Find the projection of vector u onto v and v
onto vector u.
Find the angle between the following pairs of vectors:
a. uw=itjtk v=2itj-k
b. u=2i—j+3k,v=2i+j+3k
c. w=3i—-j+tk,v=i—-2j+3k
d. uw=i-—2j+k, v=4i—-8j+ 16k
Given u = 2i — 3j — 3k, v=1i+j + 2k, and w = 3i —2j — k, find the angles between the
following pairs of vectors:
a. utvandv-2w
b. 2u—-wand,u+v-w
c. v+3wandu-2w.

Find the component of the force F = 4i + 3j + 2k in the direction of the vector i + j + k.
Find the component of the force F = 2i + 5j — 3k in the direction of the vector 2i + j — 2k.
Given that u =i+ 2j + 2k and v = 2i — 3j + Kk, find

a. the projection of u onto v, and

b. the projection of v onto u.
Given that a=3i+ 6j + 9k and b =i + 2j + 3k,
a. Find the projection of a onto the line of b and
b. Compare the magnitude of a with the result found in (a) and comment on the result.

1.4. Direction angles and Direction cosines

Definition: The direction angles of a non-zero vector u are the angles @, f and y in the interval

[0, rr] that u makes with the X-, Y- and Z-axes respectively as in the figure below:




The cosine of these direction angles, cos @, cos [ and cos y are called direction cosines of the
vector u.

From the figure above we have:

u-i a, u-j a,
5= il ~ Tl oS B = Tl = Tl
_uk a3
SV = Tl ~ Tull
a; = ||ul| cosa
= a, = ||lu]| cos 8

az = |[ul| cosy
Exercise:

1.  Find the direction cosines and corresponding angles for the following vectors:

a. i+j+k
b. i-2j+2k
c. 4i-2j+3k
2. Find the direction cosines and corresponding angles for the following vectors:
a. i-j-k
b. 2i+2j-5k
c. -4-k

From the equations above we observe that:
u = (a;,a,,a;) = (|lul| cosa, |[ul| cos B, ||ul| cosy) = ||u|[(cos a,cos B, cosy)

= ”uT”= (cosa,cosf,cosy) which indicates that the direction cosines of u are the

components of the unit vector in the direction of u.

Example: Find the direction angles of the vector u = (6, 2, 3).

. o wi a6
Solution: cos & = gy =0, = 3
u-j a, 2
COSPp =T~ Tall — 7
P = il = Tl =7
cosy = = -7
llalllikll (a7

Exercise: If a vector has direction angles a = % and f = g then find the third direction angle y.

10
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1.5. Cross product of vectors
For two non-parallel vectors u and v, how can we find a non-zero vector w which is orthogonal
to both u and v? This problem has a standard solution called the cross product of u and v
denoted by u X v.
Definition: If u = (aq,a,,a3) and v = (by, by, b3) are two vectors, then the cross product of u
and v is defined as:
u X v = (aybz — azb,,a3b; — a1b3, a;b, — a,b,)

Remark:

1. The cross product of two vectors is a vector.

2. An easy way to remember the cross product is as follows:

For u = (aq,a,,a3) = a4i + a,j + azk and
v = (by, by, b3) = byi + byj + b3k

Then by repeating the first and the second column we get:

= uXv = (ay,b; —asb,)i+ (azsh; — a,;b3)j + (a;b, — a,b;)k
3. In determinant form:
J

a, az 4as

by by b3
= (azbz — azby)i — (a;b3 — azby)j + (a,b; — azby)k
= (azbs — azby)i + (azb, — a;b3)j + (a1b; — azby)k

Example: Letu = i —2j + kand v = —i + 2j + 5k then find u X v.

Solution: u x v = [(—=2)(5) — (D(D)]i + [(D(-1) — (VG + [(D(2) = (=2)(-D]k

— —12i — 6]

a, as|. a; a

UXv= :bz b3|l_|zi Z§|J+ by b§|k

Theoerml1.4.1 Let u, v and w be vectors in R3 and t € R, then:

1. uxvliuanduxv .lv
2. uXxXv=-vXu
3. uxu=20
4. (tw) xv=t(uxv)=ux(tv)
5. luxvll? = [lull?lvl* - (u-v)?
(1]



6. UtvV)XWwW=uxXxw+vxw
7. u-(wxw)=v-(wxu)=w-(uxv)
The proof'is left for the students as an exercise.
Theorem1.4.2 If 6 is the angle between the vectors u and v where 0 < 8 < m then:
lu x vl = [[ullllv]l sin(®)
Proof: From the definition of cross product and length of a vector we have:
lu x vl|*> = (azb; — azb,)* + (asb; — asb3)* + (a;b, — azb,)?
= a,%b;? — 2a,bsa3b, + a3?b,? + az2by? — 2a,byazbs + a;2bs* + a;2b,* — 2a,byayb, + ay%b,
= (@ + ar?+ as?)(bs” + bo"+ b3)°) ~ (@bi+ @by +ashy)* = ul2ivll? — (- v)?
= lull?llvll? — lull|[v|* cos* 6
= [ull®vlI*(1 - cos? 6)
= Jlul?|lvI?sin* 0 = [lux v||* = [[ul?[|v]|* sin® 6
Since sinf >0 for 0 <6 <m ,we can take square root and hence we have |luXxv| =
llulll|v]|sin@
Corollary: Two non-zero vectors u and v are parallel if and only if ||u X v|| = 0.

Proof: left as an exercise

1.6. Application of cross product

1. Consider the triangle whose edges are the vectors u and v as in the figure below:

v u+v ||v||Area of A= %base X height = %llullllvll sin@ since

height = |[vllsing == llux vl

2. Letuand v be vectors in R3 and consider the figure below: sin 8 = L sph= ||u|| sin &

o
X

«

Area= base X height = ||ul|||v|| sin8 = ||lu X v||

Thus ||lu X v|| is the area of the parallelogram spanned by the vectors u and v.

12
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3. For vectors u, v and w in R3 as in the figure below; area of the parallelogram is given by

h
Ay = llvxwl| and cos@ =g =>h= ||| cos @

A

>

X Allg'mm — ”1:Jr X W”
Volume = base area X height = |[|[v X w||||lullcos@ = t||lul|l|lv X w|[cos® = tu-(v X

w) = |u- (v X w)

Hence volume of the parallelepiped spanned by the vectors u, v and w is
V=lu-(vxw)|

Note: The expression u - (v X w) is called triple scalar product of u, v and w.

Example: Find the volume of the parallelepiped spanned by u = (2, -1, —1),

v=(1,1,3)andw = (-1,1,5)

i k
Solution:u Xxv=1|2 -1 —-1|= -2i-7j+3k
1 1 3

Therefore, volume V = |w. (u X v)| = [(—=1)(—=2) + 1(—=7) + 5(3)| = 11 unit cube
Exercise:
1. Determine the area of a triangle with vertices p;(1,5,2), p.(—1,3,0)and p5(0,1,4)

2. For vectors u, v and w in R3 show that:

13
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a) ux(wxw)=w-wv—-(uv)w
b) (uxv)xw=Ww-wv— W -wu
1.7. Lines and planes in R3,
Equations of lines in space

Let £ be a line in R3 and py = (X, Yo, Zo) be a point on £ and v be a vector which is parallel to £

as in the figure below:

Z

L

™

pl} = (xﬁr}r[}rzl}j

u
RD R P = [x’};r’zj

0] \::f

X v = (a,b,¢) ¢

Let P be arbitrary point on ¢ so u is the vector PyP, then by triangular method we have:
R=Ry+u
Since vector u is parallel to vector v we have u = tv and hence the above equation becomes
R =Ry + 1tV .oe e et et et e e et e e e e e e (1)
This equation is called vector equation of the line £.
If v = (a,b,c) then tv = (ta,th,tc) andR = (x,y,z), Ry = (xo, V0, Zo) and hence equation
(1) becomes:
(x,¥,2) = (x0, Y0, 20) + t(a, b, c)
(x,y,2) = (xg + ta,yy + tc, zy + tc)

X =xp+ta
=>4y =Yo+tb.......... .. ......(2)iscalled the parametric equation of £.
z=2zy+tc

Example: Find vector equation and parametric equation of a line passing through (5,1,3) and

parallel to the vector i + 4j — 2k.

14
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Another way of describing ¢ is to eliminate the parameter ¢ from equation (2) above;

that is:
x_xo
X=xgtta>t= P a+0
y=y0+tb:>t=y_by°, b+0
Z_ZO
z=Zyttc>t= P c*0

Then for a, b, c # 0 we have:

x—x - z—z .
- 0_7% b)’o =— 0 et et e e et e et e e e e e (3) s called symmetric

equation of £
Exercise:
a) Find the parametric equation of the line that passes through the point
Py =(2,4,—3)and P, = (3,—-1,1).
b) At what point does this line intersect the XY — plane?

Properties of a line in R3

Let £;: R(a) = Ry + av and £,: R'(8) = Ry + fv’ be two distinct lines, then:
1. ¢yand £, will intersect if and only if there are a and 8 in R so that R(a) = R'(B)
2. The lines ¢;and ¢, are parallel iff their direction vectors are parallel. That is;
G/ 16 v/ v
3. If ¢;and ¢, are intersecting lines, then the angle between ¢;and ¢, is the angle between
their direction vectors. That is:

v
lwllllv]l

4. Non-parallel and non-intersecting lines are called skew lines.

cosfO =

5. {yis perpendicular to £, iff v is perpendicular to v'. That is:
O LG iffviviev-v =0
Example: Find the point of intersections of the lines £;: R(a) = (i — 6j — 1k) + a(i + 2j + k)
and
t,:R'(B) = (4 — 2k) + B(2i + 2j + 2k) and find the angle between them.
Solution: R(a) = R'(B) = (i — 6j — 1k) + a(i + 2j + k) = (4 — 2k) + B (2i + 2j + 2k)

15
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14a=2B 1
—6+2a=4+2B.....2
~1+a=-2+2B.....3

Multiplying equation (1) by 2 and subtracting equation (2) we get 8 = —4 + 2 which
implies f = 6. And also a = 11

Therefore, the point of intersection is (12, 16, 10).

The angle between the two lines is the same as the angle between their direction vectors v, =
(1,2,1) and v, = (2,2,2).

i i - WYy _8 _ 8 _ 4
That 1s, let it be 8. Then cosf = Uil V72 o~ 32

0 = cos™1(

32

1.8. Distance between a point and a line
Theorem1.5.1.2.1 Let ¢ be a line with vector equation P = P, + tv and let Q be any point not

on ¢, then the distance between Q and ¢ is given by:

PG x|
vl
Example: Find the distance between the point Q(2,—1,3) and the line with symmetric

. x—1 y+1 -z
equatlon —_— ==
2 3 6

Solution: Py = (1, —1,0) from the symmetric equation of the line and v = (2,3, —6)

So the distance between the point Q(2,-1,3) and the line is d = W where m = (1,0,3)

and ||[v|| =7

_103)%(23,-6)]
7

Exercise: Let ¢ be a line passing through P(1,2,1) and Q(3,—1,4) then find the distance

d = 2.18 unit.

between ¢ and the origin.
1.9. Planes
A plane in space is determined by a point Py(x,, Vo, Zo) on the plane and a vector N that is

orthogonal to the plane. In the figure below let P(x, y, z)is a point on the plane .

16
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=

P (x,y,z); Pﬂ(xﬂfyﬂfzﬂ)j

R /RU
» Y

X

Since R — R, is perpendicular to N, we have:
N-(R —Ry) =0.
This implies N - R = N.Rj ... ... ce. ee ... .. (1) is vector equation of the plane 7.
Remark:
1. LetN = (a,b,c), R= (x,y,2) and R, = (x¢, Yo, Zo) then equation (1) becomes:
(a,b,c) - (x,y,2z) = (a,b,c) - (x0, Y0, Z0)
= ax + by + cz = axy + by, + cz,
Salx—x) +b(y—yo) +c(z—20) =0 vev v v e e (2)
which is called the scalar equation of the plane .
2. Letd = axy + by, + czy, then equation (2) becomes:
ax+by+cz=d....occ.ce. ....(3)

which is called the standard equation of the plane m.

17

——
| —



Example:

1.
2.

Find the equation of a plane containing the point P(2,4,1) and normal vector N(2,3,4).
Determine the line of intersection of the planes;
m:2x —y+z=4andm,:x+3y—z =2

Solutions:

1. Let R(x,y,z) be an arbitrary point on the plane containing the point P(2, 4, 1) and

normal vector N(2, 3, 4).
Then the equation of the plane is
(x,v,2)-(2,3,4) = (2,4,1)-(2,3,4)
2x + 3y + 4z = 20 is the standard equation of the plane.

2. To find the line of intersection of the planes my:2x —y +2z =4 and m,:x + 3y —

z=2

{2x—y+z=4
x+3y—z=2

Here we have two equations with three variables and it is impossible to solve for the

three variables at same time.

So, we give some value for one of the three variables and solve for the other two in

order to get two intersection points of the two planes which can help us to find the

equation of the line of intersection.

2x—y=4........(a)

Let z = 0. Hence (1) becomes { Xx+3y=2 . (b)’

by 3 and adding the result to (b) we get x =2 which implies y =0 . Thus,

P;(2,0,0) is one of the intersection point of the two planes.

. . 2x—y=5
Again let z= —1. Then equation (a) becomes {x +3y=1'

. 16 3 16 3
simultaneously we get x = - and y = —> SO0 P, (7, -

intersection of the two planes. Therefore, the equation of the line of intersection of the

two planes is given by (x,y,z) = (2,0,0) + t(P, — P,) for an arbitrary point (X, y,

z) on the line of intersection of the two planes.

18
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Multiplying equation (a)

Solving these

> ,—1) is another point of



x=2—--t

So, (x,y,z) = (2 —% t, —% t,—t)= teR is the parametric

3
y=—;t
z=—t

equation of the line of intersection of the two planes.

Exercise:
1. Find the equation of the plane that contains the points P(1,3,2), @(3,—1,6) and R(5,2,0)
which are not collinear but coplanar.
2. Find the point at which the line with parametric equation x = 2 + 3t,y = —4t,andz =
5 + t intersects the plane
m:4x + 5y — 2z =18
3. Find the angle between the planes my:x +y+2z =1 and my: x — 2y + 3z = 1 and find
the symmetric equation for the line of intersection £ of these planes.
1.10. Distance between a point and a plane
Consider the following figure;
Py
PoP; d

d Pa—
From the figure we have: cos8 = T =>d = ||P0P1|| cos 6
o1

In addition to this; N - PPy = [IN||||PoP;||cos@ = N-P,P; = |IN||d

Sd e |N-P0P1| _axg +byy+czy+d
IVl VaZ + b% + 2

Example: Find the distance between the planes 3x + y — 4z = 2 and the point (1,-1, 0).

[N-PoPi| _ axo+byo+czo+d

Solution: d = Nl Vaiibiic?

where N = (3,1,—4) and P, = (1,—1,0) = ( x, Vo, Zo)
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1.11. Vector Space

Definition: A vector space is a non-empty set V of elements called vectors together with the

operations of addition (+) and scalar multiplication (-) over a field F such that the following

axioms (laws) holds.

For all vectors u, v,w € Vand scalars a, b € F we have:

1.

A S N

u + v € V (closure property of vector addition)

u + v = v + u (commutativity of vector addition )

u+ (w+w)=(u+v)+w (associability of vector addition)
30eV3:u+0=u=0+u (additive identity)
I-—ueV3:u+(—u)=0=(—u)+u (additive inverse)

au € V (closed under scalar multiplication)

a(u + v) = au + av (distributive property of scalar over sum of vectors )
(a + b)u = au + bu (distributive vector over sum of scalars law)

(ab)u = a(bu) (associative law)

10. 1u = u(monoidal law)

Remark: A field F is to mean like Q, R, etc...

Example:

I.

Let R™ for positive integer m(n-space of real numbers) and let V be a set of n-tuples of
elements of R.

We can define operations as follows:

Addition: (ai, az, e e ene a,) + (by, by, ... ... ... b,) = (ay + by, a; + by, ... ... ... a, + by,)
and scalar multiplication a(a,, a,, ... ... ... a,) = (aa,, aa,, ... ... .. aa,) and the zero vector
is0=(0, 0,....... 0)then show that R™is a vector space.

Let P, (t)be the set of polynomials with degree less than or equal to n of the form:

P(t) = ag+ a;t + a,t? + azt3 + ... + ast5, s € R,s < nand we define operations
as follows:

Addition: usual addition of polynomials and scalar multiplication: multiplication of a
polynomial by a number; the zero vector is 0=0 then show that P,,(t)is a vector space.

Some properties of vector space

For all vectors u, v, w € Vand scalar « € F we have:

1.

fu+w=v+wthenu=v
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2. a0=0

3. Ou=0

4. fa#0and au=0thenu=20
5. (—au) = a(—u)

Proof: Exercise

1.12. Sub Spaces

Definition: A sub set w of the vector space V is called a subspace of V if w is also a vector
space under the addition and scalar multiplication defined on V.

Theorem: For a subset w of the vector space V, w is a subspace of V iff:

1. 0Oewfor0eV

2. Yuv eEw, ut+tvew

3. Vuewanda €F, au ew
Example: Consider the vector space R?; then show that the subset w = {(0,y)/y € R}is a
subspace of R2.
Solution:

i. (0,00eWsoW#0
ii. Letw;= (0,y;) and w, = (0,y,) be in W. Then w; +w, = (0,y; + y,) for some
v1,Y2 € R which implies w; + w,e W.

iii. LetaeRandw = (0,y)bein W.aw = (0,ay)eW for some yeR.

Therefore, W is a subspace of R?
Linear Combinations
Definition: Let V be a vector space. We say that a vector v € V is a linear combination of
vectors Uy, Uy, ... we .. u,if there exists a4, a,, ... ... ... a, € F such that:

V=auq+ auy + ... + a,u,
Example: Consider the vector space RZLet v =(8,13),uy = (1,2)andu, = (2,3) then
express v as a linear combination of uqandu,.
Solution: Let a; a, € Rsuchthat v=a;u; + a, u,
8,13) = a; (1,2) + a5 (2,3)
= (a1,2a; ) +(2a;,3a;)
=(a; +2a,,2a; +3a, )
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1.

{ a, +2a, =8.. .. (D

Multiplying equation (1) by -2 and adding the result to equation (2) gives a, = 3 anda; = 2.
Therefore, v is the linear combination of u; and u, .

Example: Consider the space P(t) (space of all polynomials). Let v = 5t? + 2t + 1, and
u; =t?+t u, =t+1, u; =t? + 1 then express v as a linear combination of u;, uzandus.
Solution: Let o, ,a,,a3€ Rsuchthat v = a; u; + ay,u, + azu;

5t2+2t+1=a;(t*+t)+a,(t+ 1) +az(t?+1)

a, +az =5......(1)
a+a, =2 .. (2)
a, +az =1..........(3)

Solving this system of linear equation simultaneously or by elimination method we get a; = 3,
a, =—1land az; =2

Hence v is the linear combination of u, , u, and u;

Exercise :
Write each of the following as a linear combination of x + 1,x2 + x and x? + 2
a. x2+3x+2
b. 2x2-3x+1
c. X
1.13. Linear dependence and independence
Definition: Let Vbe a vector space over a field F, then a set of vectors {vq, vy, ... ... ... v,} is
called linearly independent if there exist a;, a,, ... ... .. a, € F such thata,v{ + a,v, +

......... + a,v, = 0 such that a, =a, =--=a, =0.

A set of vectors that is not linearly independent is said to be linearly dependent.

Example: Show that {(1,0,—1),(2,1,2),(3,—2,0)} is linearly independent in R3 over the
field R.

Solution: Let aq a5 , a3 €R such that

a, (1,0,—1) + a, (2,1,2) + as(3,—2,0) = (0,0,0) .

a, — 2“1 =0 ........ (2)
(2]



Solving this system of linear equation by elimination method we get a; =0, a; =
Oand a; =0

Thus {(1, 0,-1), (2, 1, 2), (3,-2, 0)} is linearly independent in R3

Example: Show that {1 + x, 3x + x2, 2 + x — x?} is linearly independent in P, (x) over R.
Solution: Let @, ,a, ,az;€R such that a; (x+ 1)+ a, Bx+x2) +
az; 2+x—x%2)=0x*>+0x+0

(a; —az )x*+(a; +3 ay, + a3z )x+(a; +2a3 )=0x2+0x+0

) — A3 = (O (1)
a1 +3a, + a3 =0........(2) by comparing the coefficients of x?, x and the
a1 +2a3 =0 i i . (3)

constant terms at the left and right
hand-sides. Solving this we get
a; =0,a, =0anda; =0.
Therefore, {1 + x, 3x + x%, 2 + x — x?} is linearly independent in P,(x) over R.
Exercise
1. suppose that { uq, u,} is linearly independent set in a vector space V .
Show that { u; + u,, uq — u,}is linearly independent.
2. Let {(3,-5,0),(5,0,1),(8—5,1)} be vectors in R3 then show that it is linearly
independent.
3. Verify whether the following subsets of the vector space V = R3 are linearly
independent or dependent.
a. W={1,-1,0),(3,2,-1),(3,5-2)}
b. U={(1,1,1),(1,-1,1),(0,0,1)}
1.14. Spanning sets
Definition: Let V be a vector space. The set of vectors {vq, va, ... ... ... v, } is called

Spanning set of V if every element of V is a linear combination of {wq,
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Example: Consider the vector space R3. Then the vectors v; = (1,0,0), v, = (0,1,0)and
v3 = (0,0,1) form a spanning set of R3.
Solution: Let v = (a,b,c)e R3. Then v = (a, b, c) = (a,0,0) + (0,b,0) + (0,0, ¢c)
= a(1,0,0) + b(0,1,0) + ¢(0,0,1)
= avq + bv, + c V3
Therefore, {v; = (1,0,0), v, = (0,1,0),v3 = (0,0,1) } is the spanning set of R3.
Example: Consider the vector space R3; then the vectors v; = (1,1,1), v, = (1,1,0)and
v3 = (1,0,0) form a spanning set of R3.
Solution: Consider the vector space R3; then show that the vectors vy = (1,1,1), v, =
(1,1,0)and v3 = (0,1,1) form a spanning set of R3.
Definition: A set {vq, vy, ... ... ... v,} of vectors in a vector space V is called a basis of V if it
satisfies the following two conditions:
1. {v1, V2, e v,,} is linearly independent
2. {vq, V2, e v,,} is the spanning set of V
Example: For the vector space R?, the set of vectors 1 = (1,0)andv, = (0,1) is a basis of R?.
Example: Let S = {(1,1,1), (1,1,0), (1,0,0)} .show that S forms a Basis for R3.
Solution:
i, Let a;,ay,as€R. Suchthat @y (1,1,1) + a, (1,1,0) + a3 (1, 0,0) = (0,0, 0)
This implies (a¢; + @, + a3, a; + a,,a; ) = (0,0,0)

aq + a, + as = 0
a, +a, =0 which  gives ¢y =0, a; =0,az3 =0. Thus (1,1,1),
a, = 0

(1,1,0)and (1,0,0) are linearly independent.
ii. Letv=(ab,c) € R3suchthat v=a,v; +a,v, +azv; for v, = (1,1,1), v, =
(1,1,0), vs = (1,0,0)
and aq,a,,az€eR..
(a,b,c) =a; (1,1,1) + a5, (1,1,0) + a5 (1,0,0) = (a1 + @y, + a3, a; + a3, ;)

a, +a, +az =a....(1)
a, + a, =b......(2) .Thisimpliesa; =c,a, =b—c,a3 =b.

So, S = {(1,1,1), (1,1,0), (1,0,0)} is a spanning set of R3.
Therefore, S = {(1,1,1), (1,1,0), (1,0,0)} is a basis of R3.
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Example: Let S = {(1,0,0), (0,1,0)and (1,0,0)}, then show that S forms a Basis for R3.

Solution:

a. Let a,,a,,as€R such that a; (1,0,0) + a, (0,1,0) + a5 (1,0,0) = (0,0,0)

= (a; +a3,a,,0)=1(0,0,0). This implies a; +az3 =0 such that
a, and a3 may have value other than zero.

Hence no need of verifying whether it spans or not so that S = {(1,0,0), (0,1,0),
(1,0,0)} is not a basis of R3.

Exercises:

1. Show that B = {(1,—1,1),(2,1,—1),(—1,2,1)} is a basis for the vector space R> over a
field R

Definition: If a vector space V has a Basis of n elements; then n is called dimension of Vand

written as dimV = n

Example: dimR3 = 3, dimR? = 2 and dimR™ = n, etc.

Miscellaneous Exercises

1.

Giventhata=2i+3j—k b=1i—j+ 2k, and ¢ =3i+4j + k, find (a) a + 2b — ¢, (b) a vector
d such thata+b +c¢+d =0, and (c) a vector d such thata—b + ¢ +3d =0.

Given a =i+ 2j + 3k, b =2i — 2j + k, find (a) a vector ¢ such that2a+b +2¢c =i+ Kk, (b) a
vector ¢ such that

a—-2b+tc=it+j—2k

Given that a = 3i + 2j — 3k, b =2i — j + 5k, and ¢ = 2i + 5j + 2k, find (a) 2a + 3b — 3¢, (b) a
vector d such that

a+3b —2¢+ 3d =0, and (c) a vector d such that 2a —3d = b + 4ec.

Given that 4 and B have the respective position vectors 2i + 3j — k and i + 2j + 4k, find the
vector AB and unit vector in the direction of 4B.

Given that 4 and B have the respective position vectors 3i — j + 4k and 2i + j + k, find the
vector 4B and the position vector ¢ of the mid-point of 4B.

Given that 4 and B have the respective position vectors a and b, find the position vector of a
point P on the line AB located between A and B such that (length AP)/(length PB) = m/n,

where m, n > 0 are any two real numbers.
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7.

10.
1.
12.
13.

Find the strength of the magnetic field vector H = 5i + 3j + 7k in the direction of 2i — j + 2Kk,
where a unit vector represents one unit of magnetic flux. Ans 7
Find the distance of point P from the origin given that its position vector is r =2i + 4j — 3k.
(b) If a general point P in space has position vector r = xi + yj + zK, describe the surface
defined by r =3 and find its Cartesian equation.

Ans a) |[r]|=V29 b) x%+ y2+2z%2=9.

Three points with position vectors a, b, and ¢ will be collinear (lie on a line) if the
parallelogram with adjacent sides a — b and
a — ¢ has zero geometrical area. Use this result in Exercises (9) through (11) to determine
which sets of points are collinear.
(2,2,3),(6,1,5), (-2, 4, 3).

(1,2,4),(7,0,8), (8,5, —2).

(2,3,3),3,75),(0,-5-1)
(1,3,2),(4 2, 1), (1, 0, 2).
The volume of a tetrahedron is one-third of the product of the area of its base and its vertical
height. Show the volume V of the tetrahedron in Fig. 2.22, in which three edges formed by
the vectors a, b, and ¢ are directed away from a vertex, is given by

V=(1/6)a - (b x ¢)
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Chapter Two

2. Matrices and Determinants
INTRODUCTION: Information in science and mathematics is often organized into rows and
columns to form rectangular arrays, called “matrices” (plural of “matrix”). Matrices are often
tables of numerical data that arise from physical observations, but they also occur in various
mathematical contexts. For example, we shall see in this chapter that to solve a system of

equations such as

x + 2y =5
3x — y =1

all of the information required for the solution is embodied in the matrix

[1 2 5]

3 -1 1
and that the solution can be obtained by performing appropriate operations on this matrix. This is
particularly important in developing computer programs to solve systems of linear equations
because computers are well suited for manipulating arrays of numerical information. However,
matrices are not simply a notational tool for solving systems of equations; they can be viewed as
mathematical objects in their own right, and there is a rich and important theory associated with

them that has a wide variety of applications. In this chapter we will begin the study of matrices.
2.1. Definition of Matrix

Definition:-A matrix is a rectangular array of numbers or variables, which we will enclose in
brackets. The numbers (or variables) are called entries or, less commonly, elements of the
matrix. The horizontal lines of entries are called rows, and the vertical lines of entries are called
columns. A matrix with m rows and n columns has the form:

A1 Az 0 Qi
A= G2 af“ OrA = [a;j] wherei = 1,2,..,mandj = 1,2,...,n
An1 Amz Qg
By an m X nmatrix (read as“m by n matrix”’) we mean a matrix with mrows and ncolumns—
rows always come first! is called the size/order/shape/dimension of the matrix. We shall denote
matrices by capital boldface letters A, B, C, ..., or by writing the general entry in brackets; like

A= [ai]-], and so on..The element a;;,is called the ij entry, appears in row i and column j.Thus

a, is the entry in Row 2 and Column 1.
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Example: Consider the following matrices

1 4 —12 4 6 9
A=|5 -1 109|B=|6 0 =2
-1 -8 75 5 -8 1

The dimension/size of matrix A is 3x4 and the dimension/size of matrix B is 3x3. The entry as;

in matrix A is 7 and the entry a,, in matrix A is 9.

NB: Matrices are important because they let us to express large amounts of data and functions in

an organized and concise form.

3 4 2-3
Example: Givenamatrix A= 1 -1 10 9 |, then
-10 -8 75
a) Find the size of A c) Listrowsof A
b) List columns of A d) List elements of A

Exercise:

1. Let t be a real number. Assume that B =[t]. Then, determine:
a) The size of B ¢) the no of columns of B
b) The rows of B d) the elements B

2. Construct a 3x3 matrix whose a;; entry is given by 2j — 1

2.2. Types of Matrices

In matrix theory, there are many special kinds of matrices that are important because they

possess certain properties. The following is a list of some of these matrices.

i.

il

il

iv.

Zero Matrix (Null Matrix): Matrix that consists of all zero entries is called a zero

matrix and is denoted by bold zero,0 or0,,,,.

0 0 O
Example: 05;,;=]0 0 0
0 0 O

Square Matrix: any mxn matrix is called square matrix if m = n. The order of nxn

square matrix is nxn or simply n.

1 5 -3
Example:4;,; =2 0 -2
2 3 7

Rectangular Matrix: A matrix of any size is called a rectangular matrix; this includes
square matrices as a special case.

Row Matrix (row vector): A 1 X n matrix is called a row matrix (row vector).
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vi.

A=lay ap a1 =(ay, 0, .., a,)

Column Matrix (column vector):A nx1 matrix is called a column matrix (column
aq
(o)

vector) A= ¢
an

Diagonal Matrix: A n X nsquare matrix Dis said to be a diagonal matrix if all its

entries except the main diagonal entries are zeros.

dy 0 .. 0
p=|0 d 7 0
0 0 dnn

Remark: A diagonal matrix each of whose diagonal elements are equal is called a scalar

matrix.

vii.

viii.

Identity Matrix (Unit Matrix): is a diagonal matrix in which all diagonal elements are 1.

10 .. 0
0 1 . . . .
L=1|. . . .|1sannXn identity matrix.

Triangular Matrix: A square matrix in which all the entries above the main diagonal are
zero is called lower triangular, and a square matrix in which all the entries below the
main diagonal are zero is called upper triangular. A matrix that is either upper triangular

or lower triangular is called triangular.

a11 alz aln a11 O 0
0 azy = Q2 a1 Az - 0
. . . : B = : : . .
0 0 = App p1 Qnz - Apn
per Triangular Lower Triangular

Remark:Observe that diagonal matrices are both upper triangular and lower triangular since

they have zeros below and above the main diagonal.

2 0 o 2 -5 1
Example:A=1|4 3 0 B=|0 3 5
1 1 -2 0O 0 -2
Lower triangular matrix Upper triangular matrix
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2.3. Basic Operations on Matrices
Equality of Matrices
Definition: Two matrices are defined to be equal, denoted by A = B,if they have the same size
and their corresponding entries are equal.

Example: Find the value of x and y if matrix A is equal to matrixB.

Az[x-(})_l z]ande[g yEZ]

Solution: the two matrices are equal if and only if x = 3 andy = 8.

Matrix Addition and Subtraction

Definition: Let A = [al- j]and B = [bl- j]be two matrices of the same size, say, m X n matrices.

Then the sum of A and B, written A + B, is the matrix obtained by adding the entries of B to the

corresponding entries of A. The difference A — B is the matrix obtained by subtracting the entries
of B from the corresponding entries of 4. In matrix notation, if A = [ a; j]and B= [ b; ]-]have the

same size, then

A+ B = [a];j + [bl;j = [a;j + bij]l and A — B = [a;jlmxn — [bijlmxn = [@ij — bijlmxn

1 6 -1 3
2 5 0 -4
4

3

Example: Consider the following matrices

-1 2 3 4
1 0 2 5, B =

9 -2 0 6

A=

Then findA + B and A — B

-1+1 2+6 3—-1 4+3 0 8 2 7
1+2 0+5 2+0 5-—-4 =[3 5 2 1]
9+3 -2+44 0+1 6+2 12 2 1 8
-1-1 2-6 3+1 4-3 -2 -4 4 1

EEE

6 —6 -1 4

1-2 0—-5 2—-0 5+4
Remark: Matrices of different sizes cannot be added or subtracted.

Solution: A + B =

A-—B =

9-3 —-2-4 0-1 6-2

Scalar Multiplication of Matrix
Definition: If 4 is any matrix and c is any scalar; then the product cA is the matrix obtained by

multiplying each entry of the matrix 4 by c. The matrix cA4 is said to be a scalar multiple of A.1.e.

ay, %z - gy

A1 Az - Qg
cA=c| : - "

aml amz amn
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ca;; Gz - cagy

Caz1  CAyp = COip|
- : : ) : [Caij]mxn
Cm1 CAmz -+ Camp
-1 2 3 4 1 6 -1 3
Example: LetA = | 1 0 2 5|andB=1|2 5 0 —4|. Then compute the following
9 -2 0 6 3 4 1 2
a. 2A—-B b. SA+24
3
-2 4 6 8 1 6 =1 3] -3 =2 7 5
Solution: a. 2A—B = | 2 0 4 10|—|2 5 0 —-4(=|0 -5 4 14
18 —4 0 12 3 4 1 2 | 15 -8 -1 10
-1 2 4 —7 14 28
{?515|_2468 5 5 73]
1 1 2 5 7 14 35
b.EA+ 2A = 3 0 3 3 + 128 04 El)- 1(2)] =13 0 3 3
l3 2 zJ 21 =2 0 14
3 L 3
Exercise:
1. Find the values of x and yfor the following matrix equation.
x+2 y+3 3y
2 =
[ 3 0 ] [6 z
. o _[2 -1
2. Find matrix A if 24 = [6 0 ]
Remark: If A;, A,, ...,A, are matrices of the same size and ¢4, c,, ...,c,, are scalars, then an

expression of the formc; 4, + ¢, A, + -+ + ¢, A,is called a linear combination of A4, A,, ...,A,
with coefficientsc,, c,, ...,c,.
Properties of Matrix Addition and Scalar Multiplication
Suppose A, B, and C are m X nmatrices (having the same size) and a and f are scalars. Then
1. A+ B = B + A(commutative law of addition)
ii. (A+B)+C=A+ (B+ C)(Associative law of addition)
iii. A+ 0 = 0+ A (Existence of additive identity)
iv. A+ (—A4) = (—A) + A = 0(Existence of additive inverse)
v. a(A+B)= aA+ aB
vi (a+ p)A= ad+PA
vil.  (a(BA)) = a(BA)
vii. 1A=Aand0A=0
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2.4. Product of Matrices
Definition: Let matrix A be an m X n matrix and B be an n X k matrix (i.e. the number of
columns of 4 is equal to the number of rows of B). Then the product of A and B, denoted by AB,
is an m X k matrix which is obtained by multiplying the corresponding elements of row i of A by

column j of B and adding the product, i.e. if A = [aij] N and B = [bjk]nxk ,then AB =C =

mx

— n [ —
[CikJmxk » Where ¢ = Xiog a;jbjy, fori=1,2,...,m

- Consider the following matrices

a11 a12 e aln bll blz e blk

Az1 Az - Qqp b b b
A= o ."land B = |72t 722 TZk

Am1 Umz - Omn bnl bnz bnk

Rows of 4 are:
1 = [a11Q12 ... A1y
T, = [A11012 .. A1y

Tm = [amlamz amn]

Columns of B are:

¢; = [b11byq .. bpq]
€3 = [b12by3 ... bpz]

Ck = [b1kbak - bk ]

Then
7.C, T1.Cp .. T1.Ck
7y.C4  T3.Cp .. T3.Ck
AB = : : . : = [Ciklmxk
Tm-C1 TmeCy o Ty Ck

Example: Find the product of the matrices

& 1 4 3
A=B E ﬂ =0 —1 3 1
2 705 2
Solution:
AB = 12 27 30 13

8 —4 26 12

Exercise: Determine the size of the product matrix AB if the sizes of A and B are 4 X 5 and

5 X 7 respectively.
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Note: The product of lower triangular matrices is lower triangular, and the product of upper
triangular matrices is upper triangular.
Properties of Matrix Multiplication
1) AB # BA, (matrix product is not commutative.)
2) A(BC) = (AB)C, (matrix multiplication is associative)
3) AB+C)= (AB+ AC)and (B+ C)A = BA + CA, (multiplication of matrices is
distributive with respect to addition )

4) If AB = 0, it does not mean that either A =0 or B =0.

Example: For matrix A and B given by4A = [18] B = [(1)(1)] we have

AB = Oo]is a null matrix even though AandBare not a null matrix.

oo
5) The relation AB = AC or BA = CA does not imply that B = C. In other words the

cancelation law doesn’t hold as for real numbers.

123 123 234
Example:if A=|112|, B= 11—1]andC= 220]
—143 222 111
9 107
Wehave, AB=|6 7 6 |=AC,butB #C
9 8-1

Exercise: [f A = [; ﬂ B = [_23; and C = [21 f], then verify that:

a) A(BC) = (AB)C b) A(B+C) = AB+AC
Transpose of a matrix
Definition: If 4 is an m X n matrix, then the transpose of A, denoted by AT, is defined to be the
matrix n X m that results from interchanging the rows and columns of 4.
Remark: The transpose of a row matrix is column matrix and the transpose of a column matrix
1S a row matrix.

Example: The following are some examples of matrices and their transposes.

@11 @17 213 @14 2 3

A=|an az @iz a4/, E=11 4|, O=[1 3 &), D= [4]
| ¥31 @33 33 A3y 56
[a11 az1 as

T @12 2z an T 215 T : T

A" =\a3 am an | 32{34 5} © - ; b
@lg @24 234
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Properties of Matrix Transpose
l. (A+B)"=A"+B"

2. (AT ) T=4
3. AB)T=BTAT
Proof: Ex.

Note: The transpose of a lower triangular matrix is upper triangular and the transpose of an

upper triangular matrix is lower triangular.

Orthogonal Matrix: An orthogonal matrix A is a matrix such that AAT= ATA= 1. A typical

orthogonal matrix is:

11
V2 A2
ATl 1
V2 W2

Trace of Matrix
Definition: If 4 is a square matrix, then the trace of A, denoted by tr(A), is defined to be the
sum of the entries on the diagonal of A. The trace of 4 is undefined if 4 is not a square matrix.
Example: The following are examples of matrices and their traces.
ail @12 a3 _; g _; 3
Rt
4 -2 1 0

triAd) =@y + aaz + dzz twifl=—-1+5+7+0=11
Polynomial of Matrix
For any n X nsquare matrix A and for any polynomial,
f(x) =apx™+a,_x™ 1 +--+a,where a; are scalars, wedefine f(4) = a, A" +
a1 A"+ -4 a,LIf f(A) = (0;;), then A is a zero (root) of the polynomial.
Examples: LetA = [51)_14] and let f(x) = 2x2 + x + 3. Then compute f(4).
Exercise:

1. LetdA = Eg] .Then compute:

a) f(A)if f(x) =3x3 —4x? + 2x b) f(=34)if f(x) =3x%—2x
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Symmetric and Skew-Symmetric Matrices:
Definition: Let A be a square matrix. Then Ais said to be

» Symmetric if A = AT ie. a;; = a;;.

> Skew-symmetric (anti-symmetric) if AT = —A, Le.a;; = —aj.
2 -1 3 0 5 =2 0o 0 1
Example:A=|-1 5 1[B=[-5 0 3 C=|[-5 0 3
3 1 7 2 -3 0 2 -3 0
Symmetric Skew-Symmetric Neither
Exercise: Determine whether the following matrices are symmetric, skew symmetric or neither.
_[3 b 0 3-4
R P d) D=|-30 5]
- 4 -50
b) B = 10 O]
0 0 1 _[0 O
_ e) E= [0 O]
0 5 —4 3
_|-5 0 -7 =2
OB=14 7 01
-3 2 1 0

2.5. Elementary Row Operations and Echelon Form of Matrices
i. Elementary Row Operations
A matrix A is said to be row equivalent to matrix B, written A~B if matrix B is obtained from 4 by a
finite sequence of elementary row operations. These elementary row operations are:
i.  Interchanging the i*" row by the j** row (i.e R; & R))
ii.  Multiplying the i" row by a none zero scalar (i.eR; = kR;).
iii.  Replacing the i*"row by k times the j** row plus i*" row (i.eR; = kR; + R;)

Example: Apply all elementary row operations on the given matrix:

2 6 1 5 7 —4 2 6 1 2 6 1
A=|1 2 —-1|{RieoR;|1 2 —-1|(R,>2R,|2 4 -2|(R,>2R;+R,|11 16 —-9|=B
5 7 —4 2 6 1 5 7 —4 5 7 —4

3 -1 2
Exercise: Let A =| 4 3 2|. Then find matrix B which is row equivalent to A with aqq =
-1 -2 7

0 anda32 =0.

Remark: The first non-zero entry in a row is called the leading entry (pivotal entry) of that row.
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2 0 1

0 -2 -1
-4 0 -3
0 0 0

Entries 2,—2 and — 4 are leading entries of rows 1, 2,3 respectively, and no leading entry for row 3.

ii. Echelon Form of a Matrix
Definition: An m % n matrix Ais said to be in echelon form (EF) provided the following two conditions
hold.
1. Any zero rows (if there is) are at the bottom of the non-zero rows.
2. The leading entry of all rows is at the right side of the leading entries of the above rows (i.e. all

entries below the leading entry are zero).

_01 2 (1) 2 6 1 1 2 6 9 1 2 6 9
Example: A = 0 0 -1 B=|0 2 -2 1|C=|0 1 7 6|D=|0 1 7
0o 0 0 0 0 3 -4 0 0 —4 0 2 8

Matrices A, Band C are in echelon form, but matrix D is not.
Definition: An m X n matrix Ais said to be in row-echelon form (REF) provided the following two
conditions hold.

1. The matrix is in echelon form.

2. All leading entries are equal to 1.

LI e BOIN e
Example: A = 0 0 1 B=0 1 -2 1|C=[j 1_0 D=0 1 7
00 0 0 0 1 -4 00 00 0 1 8

Matrices A, B and C are in row echelon form (REF) but D is not.
Definition;: An m x n matrix Ais said to be in reduced row-echelon form (RREF) provided the
following two conditions hold.

1. The matrix is in row echelon form.

2. All non-leading entries in a column, which contains the leading entries, are equal to 0.

100 Lo o o 1 0 30 1 0 —30
o1 0, _ o1 00|, 0o 1 50
Example: 4=, 13‘8 (1) (1) 8]6‘0 o 01(Plo 0 01
0 0 0 00 00 00 00

Remark: Any matrix can be reduced to its echelon form by applying some elementary row operations

on the given matrix.
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Example: Reduce matrix A4 to its row echelon form by applying elementary row operations where

3 -10 5
A=[-1 12 2]
1 -5 2
1 -5 2
Solution: Applying R; < R; we have: |-1 12 2
3 =10 5
1 -5 2
Applying R, - R; + R, and R; = R; — 3Ry we get:[o 7 4 ‘
0 5 -1
1 -5 2
Applying R, — R—72 we get:{0 1 4/7
0 5 -1
1 -5 2
: o 1 ¥
Applying R3; — Rz — 5R, we get: 7
0 0 —27/7
1 -5 2
Appling R; — — 7/27 R; we get:|0 1 4/7
0 O 1
AR 1 -5 2
Applying R, > R, — 73 weget:l0 1 0
0 0 1

This is in row echelon form.
Rank of a Matrix
Suppose an m X n matrix Ais reduced by row operations to an echelon form E. Then the rank of A,
denoted byrank(A), is defined to be,
Rank(A) = number of pivots (leading entries) or

= number of nonzero rows in E or

= number of basic columns in A4,
where the basic columns of Aare defined to be those columns in Awhich contain the pivetal positions.

10002
01623
00100
00000

Example: Let matrix A = . Then therank (4)=3 since matrix A4 is in echelon form and has

three non-zero rows.
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Example: Determine the rank, and identify the basic columns in the matrix

(1 2 1 1
A=12 4 2 2
3 6 3 4
1 2 1 1 1 2 1 1] 1 2 1 1
Solution:A =12 4 2 2|—-|0 0 0 0O[—=]0 0 0 1
3 6 3 4 0 0 0 1l 0 0 0 O
rank(A) = 2 and

1 1
Basic Columns = <2) , (2)
3 4

Exercise: Reduce each of the following matrices to its echelon form and determine its rank & identify

the basic columns.

1 2 3 3 [1 2 3]

a. A=1|2 4 6 9] |2 6 8|
2 6 7 6 b. B=1|2 6 0

1 2 5J

3 8 6

2.6. Inverse of a Matrix and Its Properties
Definition: If 4 is an n X n square matrix, and if a matrix B of the same size can be found such
that AB = BA = I, where I the n X nidentity matrix, then 4 is said to be invertible (non-singular)and

B is called an inverse of A. If no such matrix B can be found, then 4 is said to be singular.

Example: The matrix

5’=[3 5-‘ 15 an mverse of A=[ 2 _E-‘
-1 3

1 2
Since
2 =513 =& 1 0
f = =f
S P B
And
|3 3 2 =5 |1 0]
Bﬁ_[l 2}[—1 3}_[0 1}_f
Remark:
1. A 122
A

2. Matrices which are not square matrices have no inverses
3. Not all square matrices have inverse
4, (A HT =@H1?
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Properties of Inverse Matrices

1.

If B and C are both inverses of a matrix A, then B = C. that is the inverse of a matrix is unique
and is denoted by A™1.

If A and B are invertible matrices of the same size, then

a) AB is invertible and

b) (AB)™'= B71471

A lisinvertibleand (A™1)"1 =4

d, 0 0
0 d, 0 . . .
Let D =1 . . 0 be an n X n diagonal matrix where all d; # 0 (for i = 1,2, ..., n).
0 0 d,
_L 0 0 -
dy
0 — 0
Then the inverse of D, denoted by D™1, is given by D™ = d>
: : 0
0 o0 =
i dp ]

Exercise: Verify that DD "1 = D7D = [.

Finding Inverse of a Matrix by Using Elementary Row Operations (Gauss-Jordan Elimination

Method)

Let Abe an n X nmatrix and let I,, be an n X n identity matrix. Then to find the inverse of A.

1. Adjoin the identity n X nmatrix I,, to Ato form the augmented matrix (4: I,,).

2. Compute the reduced echelon form of (A: I,,). If the reduced echelon form is of the type (I,,;: B),

then B is the inverse of A. If the reduced echelon form is not of the type (I,,: B), in that the first

n X nsub matrix is not I,,, then Ahas no inverse.

Example: Find the inverse of A if

1 2 3
A=1|2 5 3
1 0 8
1 2 31 0 O
Solution:[A:I;] =2 5 3:0 1 0
1 0 80 0 1
Applying R, = R, — 2R, we get:
( ]
t 3% )



1 2 3:1 0 O
0 1 -3:-2 1 0
1 0 8:0 0 1

Applying Ry = R; — 2R, we get:

[E=y
(e

9:5 =2 0]
-3i=2 1
1 0 8:0 0 1l

(@)
—_
(e}

Applying R3 = Rz — R{ we get:

(1 0 9:5 =2 0]
01 -3-2 1 0
0 0 —-1:-5 2 1l

Applying R; = Ry + 9R;3; R, = R, — 3R5 and R; —» —R3we get:
1 0 0:—=40 16 9 ‘

0 1 0:i=13 -5 -3
0 0 1:5 -2 -1

—40 16 9
Therefore, B =|—-13 -5 -3 =471
5 -2 -1
1 0 2
Example: Find the inverse of A =12 —1 3| by using elementary row operations (Gauss-Jordan
4 1 8
Method).
1 0 211 0 O
Solution: [A:L]=]2 -1 3:0 1 0
4 1 80 0 1

ApplyingR, — R, — 2R;,we get:

S =
o
—_
| o
—_
I
NI—\
= o
o O

ApplyingR; = R3 — 4R ;we get:

(el
o
—_
| o
—_
I
NI—\
= o
o O

(e}
[N
(e}
|
N
(e}
[E

Applying R3; = R,+Rzwe get:

(@]
I
—_
I
—_
I
N
—_
(@]

ApplyingR; - —R3 we get:




1 0 2:1 0
0 -1 -—-1:=2 1

ApplyingR; = Ry — 2R3 and R, — R, + R; we get:

1 0 0:-11 2
0 -1 0: 4 0

Applying R, — —R, we get:

1 0 0:i—=11 2
0 1 0:—-4 O
0 0 1: 6 -1

1 0 0:i-11
[GiB]=[0 1 0:-4
0 0 1 6
-112 2
>B=(—-4 01
6 —1-1
Example: Determine the inverse of the matrix
1 -1 =2
A=|2 =3 —5]
-1 3 5
1 -1 -2 :
Solution: (A 1) = [ 2 -3 =5 :
-1 3 5 :

Appling R, - R,—2R;& R3; = R3 + Rywe get
1 -1 -2 : 1 0
[0 -1 -1 : =2 1
0 2 3+ 10
Appling R, - —R,we get
1 -1 -2 : 1 0
o 1 1 : 2 -1
0 2 3+ 10
Appling Ry - R,+R& R; = R; — 2R, we get
1 0 -1 : 3 -1
01 1 : 2 -1
0 0 1 : =3 2
Appling Ry - R3+R,& R, - R, — Rzwe get
1 0 0 : 0 1 1 0 1 1
010 :5 -3 -1 ThusA™'=|5 -3 -1
0 0 1 : -3 21 -3 2 1

0
0

0 0 1:6 -1 -1

2
-1
0 0 1: 6 -1 -1

© o r

0
0
1

C h o

oo




Exercise: Determine inverse of the following matrices, if it exists.

1 1 5 1 2 -3 2 1 3 1 6 4
A=|1 2 7|B=|1 2 1(C=(0 2 1|D=]2 4 -1
2 -1 4 5 -2 -3 1 1 2 -1 2 5

2.7. Determinant of a Matrix and Its Properties
Introduction: In this section, we shall study the “determinant function,” which is a real-valued function
of a matrix variable in the sense that it associates a real number f(A4) with a square matrix A. Our work
on determinant functions will have important applications to the theory of systems of linear equations
and will also lead us to an explicit formula for the inverse of an invertible matrix.
Definition: A “determinant” is a certain kind of function that associates a real number with a square

matrixA, and it is usually denoted by det(A) or|A|. i.e. if A is an n X n square matrix, then

a1 ai» e Ain

;1 0y e Qon
det(4) = | : -, :

an1 (2% e Qpn

a. Determinant of 1 X 1 M atrices
Let A = [@11]be 1 X 1 matrix. Then det(4) = a,;.
Example: Let A = [2]. Then det(4) = 2

b. Determinant of 2 X 2 Matrices

a1 Qg2
az1 Q2

a,

LetA = [a21

a
a;i] be a2 X 2 matrix. Then det(A) = | | = aq110272 — Aq20421

Example: Find det(4) if A = [_12 (2)]

Solution: det(4) = 1(0) — 2(—-2) =4
c.Determinant of n X n matrix
Definition-1: Let A be an n X nsquare matrix and M;; be the (n — 1) X (n — 1) matrix obtained from
matrix A by deleting i*"* row and j™* column containing the entry g; j- Then det (M) is called the
minor of a;;.
Remark: the matrix Mj; is called sub matrix of 4.

Definition-2: The cofactor of a;;, denoted by Cjj, is defined as C;; = (=1 det (M;;).

2 5 —4
Example: Let A =|3 —1 2 [. Then find the minor and cofactor of a;; and a,5.
5 4 6
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-1 2
4 6

Cofactor of a;; = C;; = (=11 det(M,,) = —14

Solution: Minor of a;; = det(M;;) = | =-1(6) —2(4) = —-14
Minor of a,; = det(M,3) = |§ i =2(4)—-5(5) =-17

Cofactor of a3 = Cp3 = (—1)?*3 det(My3) = 17

Definition-3: The determinant of an n X n matrix A is given by either of the following two formulas.

1. det(A) = al-lCl-l + al-zCl-z + -+ al-nCl-n = ;lzl al-jCl-j, for fixedi = 1,2,3, ...
1i. det(A) = alelj + aszzj + -+ ananj = ?=1 al-jCl-j, for ﬁxedj = 1,23, ...
Example: Evaluate the determinant for the matrices
2 -1 3 045 0
A=|1 2 4|and B=
5 _3 6 0 1 0 3
2 0 1 3

Solution: Let us take row-1 of matrix A for i. Then

n 3

det(A) = Z aijCij = Z aljclj = a11C11 + a12C12 + a13613 = 2(24) — 1(14) + 3(_13) = _5

Let us take column-1 of matrix B for j.

n 4

det(B) = Z a;;C;; = Z a;1Ci1 = a11C11 + a31C51 + a31C31 + a41C4q

i=1 i=1
= OC]_l + 0C21 + OC31 + 2(6) = 12
Example: Let A = (ay,a,,a3), B = (by, by, b3) and C = (cq, ¢y, c3) be vectors in R3. Then show

a, by ¢
that|a, bz | =A4- (B X C)
as by c3
a, by ¢
Solution: |a, b, c¢;|=a; [bz b3] —a, [bl b3] +a, [b1 bz]
2 C3 €1 C3 €1 Gy
as bz c3

=a,(byc3 — b3cy) — ay(byc3 — bacy) + az(bic, — bycy)

=(ay,ay,as3) - (bycs — bzcy, bycz — bscy, bicy, — bycy)

=A-(Bx0C)
A11412a13
Note: The determinant of a 3X3 square matrix A = [A210220a23|is given by
a310a32033
( ]
L ¥ )



a114412013
det(A) = |az1020003| = a |a22a23|_a |a21a23| a |a21a22|
I D] B 30433 12 lazqas; 13 laz as;

3103033

Properties of Determinants
LetA, Band C be n X n square matrices and k be any scalars. Then
a. det(4) = det (47)
b. det(kA) = k™det (A), where n is the size of A.
c. det(A + B) # det(A) + det (B)
det(AB) = det(A) det (B)

i

1
det (4)’

e. det(4™) = if A is invertible (non-singular) matrix.

f. Determinant of any n X n triangular matrix A is the product of its diagonal entries.

i.e. det(4) = a11ay3 .. Anp

g. Determinant of n X n diagonal matrix Dis the product of its diagonal entries. Thus det(l,,) =1,

where [, is an n X n identity matrix.

h. If any rows (or columns) of a square matrix A are proportional to each other (i.e. one is the scalar

multiple of the other), then det(4) = 0.
i. If any row (or column) of a square matrix A is zero, then det(4) = 0.
Exercise:

1. Evaluate the determinant for each of the following matrices.
[2 16 40 16 14 N

1
|0—322—3—18| 0 0 0 4 -5 6 5 -2
A=lo o 4 1 200|B=|8 VY2 0 0lc=|7 8 -8 6 20 D=
looosoJ 70 -10 3 6 -9 12 15
o 0 0 0 1 9 5 0 1 0 -2 3 4 1
10 6 2 0 0
3 5 2,E=|0 -1 0
0 0 0 0 0 2

2. Letdet(A) = 4 and det(B) = —3.,and let A and B be a 5 X 5 matrices. Then find
i, det(24) iii. det(4B)

ii. det(dT) iv. det(A™D)
x—1 -2
3. LetA=[x_2 x_l]andletdet(A)=O. Then find the value/s of x.

44

——
| —



Theorem-1: Let A be an invertible matrix. Then det(4™1) = (det(4))™ L.
Proof: I = AA™?! then taking determinant on both sides we get:
det(I) = det(AA™Y)
= 1 = det(A)det(A™1)

= det(A™1) = = (det(A))?

det(A)
2 1
3 3

Note: We can evaluate the determinant of any square matrix A by reducing it to its echelon form by

Example: If A = ], then det(4A™1) = ! 1

det(4) - 3
keeping the following conditions.
a. If B is a matrix which results by applying the elementary row operation of multiplying any
particular row of A by a non-zero constant k, then det(B) = kdet(A).
b. If B is a matrix that results when two rows or two columns of A are interchanged, thendet(B) =
—det (4).
c. If B is a matrix that results when a multiple of one row of 4 is added to another row or when a

multiple of one column is added to another column, then det(B) = det (4).

a b c
Exercise: LetA = [d e f] and let det(A) = —12. The find det (B), det (C)and det (D) if
g h k
3a 3b 3c a b c a b c
B=|d e f| €C=|g h k]and D=|d+2a b+2b f+2c
g h &k d e f g h k
Adjoint and Inverse of a Matrix
A1 Az 0 Qip
oo 21 Qg v Q2n .
Definition-1: Let A =| . . |be ann X nsquare matrix and let c;; be the cofactor of
an1  Aap2 Ann
€11 G2 0 Cin
. _ €21 €22 = Con . Nth . . .
a;;j.Then the matrix C = | . . . [whose (ij)*" entry is ¢;; is called matrix of cofactors of
Cn1 Cn2 - Cpp
€11 €21 =+ Cm
. . T Ci12 €22 Cn2 |. . . ,
entries of A and its transpose C* = | . . |is called the adjoint of A, denoted by adj(A).
Cin Con .- Cnn
[ s )



Example: Find the matrix of cofactors and adjoint of the matrix

346
A=(390

12-1

Solution:

The cofactors of each elements of A are

Ciy = (D) det (M) = (D) O [ =9 G = (—1)2P3det (M) = (-1)7 27| = -2

Crz = (~D)"W2det(Mi) = (122 | =3 €y = (—1)Pdet (Myy) = (-1)** [30] = =54
Cis = (~)3det (M) = (D3 [0 = =3 €y = (1) det (M) = (-1)**2 [30] = 18

Con = (12 det (M) = (CDPM 0] =12 oy = (—1)%*3det (Ms) = (-1)**3 | Je| = 15

Caz = (—1)**2det (M) = (-1)**? [ © | = -9

1-1
C11C1ZC13] [—9 3 —3]

Matrix of Cofactors= C = [C21C22C23 12 —9-2
C31C32C33] 1541815
—912-54
Adj(A)=C"=]|3 -9 18
—3-2 15
Exercise: Find the adjoint of A if:
3 2 -1
A=1]1 6 8
2 =4 0
Definition-2: Let A be ann X n square matrix with det (A) # 0. Then the inverse of a matrix A4, denoted
_1 . _1 _ 1 -
by A7, is defined as A" = ot(d) adj(A4).

Note: If det(A) = 0, then the matrix A has no inverse (i.e. 4 is singular matrix).

34 6
Example: Find the inverse of the matrix A = |39 0 ]
12—-1
Solution: det(4) = —33
—-912-54
Adj(A) =| 3 -9 18
—-3-2 15
( ]
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3 —4 19
—9 12 547 |11 1L 1l
ATl = ! adj(A) = ——| 3 9 18 | = 3 6
det(4) * 38| 7 5 e 11 11 11
1 2 =5
L 11 33 11d
Exercise: Verify whether each of the following matrices has an inverse, and find the inverse if it has.
1 2 3 2 -1 3
a=[} % B=|o -1 2{amdp=|1 2 4]
3 2
-4 5 0 2 4 8

2.8. System of Linear Equations
A system of m linear equations with n-unknown (variables) is given by
allxl + alzxz + -+ alnxn = bl

ay1X1 + Ay Xo + -+ AornXy = b2

Am1X1 + QpaXy + -+ A X = by

The matrix form of this system of linear equations is

a1 Az . AQp1[*1 b;
21 Q22 - Qon||X2| _ b,
Am1  Am2 e Amn] L Xn bm
L A
A
A X b
Ax=0»>b

Where, A is the coefficient matrix, x is the unknown matrix (vector) and b is the known matrix (vector).

The augmented matrix, [A i b], for the above system of linear equation is

aj;  Qiz - Qipibg
Az1 Q2 ... Qznib,
Am1  Am2 - Omn Ebm

Remark: If a system of linear equations is the form Ax = 0, i.e. all entries of b are equal to 0, then the
system is called homogeneous system of linear equation, otherwise it is called non-homogeneous.
Example: write the coefficient matrix and the augmented matrix for the following system of linear

equations.
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31 —x, +x3 =4

X1 +x, +x3=06

X1 — Xy, —X3=—4
3 -1 1
Solution: Coefficient Matrix=4 =11 1 1
1 -1 -1
3 -1 1 ¢ 4
Augmented Matrix=[A:b] = |1 1 1 : 6
1 -1 -1 : —4

2.9. Solving System of Linear Equations
I.  Cramer’s Rules

Let Ax = b be a system of n linear equations in n unknowns such that det(4) # 0. Then the system has

a unique solution. This solution is:

__det(4q) __det(42) __det(4p)
17 det(a)’ ™27 det(a)’ "7 M T det(a)

Where A;(for i = 1,2, ...,n) is the matrix obtained by replacing the entries in the i*"*column of 4 by the
b

. ) b
entries in the matrix b = :2

by,
Example: Using Cramer’s Rule, solve the following system of linear equations.

x1 +x3:6
—3x1+x2 +x3 = 30
—xl—x2+x3=8

Solution:
1 0o 2 1 6 2
A=|-3 4 6 A, =1-3 30 6
-1 -2 3l -1 8 3
6 0 2] 1 0 6
A;=|(30 4 6 A;=1-3 4 30
8 -2 3l -1 -2 8
det(A) = 44, det(4,) = —40, det(4,) = 72, and det(4;) = 152
Thusx1=w=ﬂ=__wxz=w—z—gandx _ det(43) 152 38

det (4) 44 11 det(4) 44 11 37 deta) T 44 11
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Exercise: Solve the following system of linear equations using Cramer’s Rule:

5x+7y =12 2X1 — Xy — X3 — X4 =6
a) {10x+y+3z=14 b X1 — 5%, —3x3—x, =1
x+6y+2z=9 )5x1+x2—7x3+6x4=—3

—X1— Xy — X3 =3

II.  Gaussian Elimination Method
Definition: The process of using elementary row operations to transfer an augmented matrix of linear
system in to one whose augmented matrix is in row echelon form is called Gaussian elimination.
LetAx = b be a system of linear equations. Then, to solve the system by using Gaussian elimination
method, use the following procedures.

I.  Write down the augmented matrix for the system.

II.  Reduce this augmented matrix to its row echelon form.

III.  Use back substitution to arrive at the solution.
Example: By using the Gaussian-Elimination method, solve the following system of linear equations.

2X1 — Xy —X3— X4 =6
Xy —5x, —3x3—x, =1
5x; + x, —7x3 + 6x, = =3
—X1 — Xy —X3 =3

Exercise:By using the Gaussian-Elimination method, solve the following system of linear equations.

4x, +x, +x3+x, =6 —x1 — 4x, + 2x3 + x4, = —32
) 3x1+7x; —x3+x4, =1 " 2X1 — Xy +7x3 +9x, = 14
- 7x1 + 3x5 — 5x3 + 8x4 = =3 ’ —X1+Xx, +3x3+x, =4

X1+XZ+X3+2.X4=3 x1_2x2+x3_4x4:_4
III. Inverse Matrix Method

Theorem: If A is an invertible n X n matrix, then for each n X 1 matrix B, the system Ax = b has
AdjA
detA

exactly one solution namely x = A~ 1b = b

Example: Solve the following system of linear equations by using inverse method.

2x1 + 5x, + 3x3 =3

{X1+2xZ+3X3=5
X, +8x3 =17

In matrix form, this system can be written as:Ax = b where

1 2 3 X1 5
2 5 3] X = [le and b=1]3 ]
17

1 0 8 X3

A:
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—-40 16 9

ButA™! = [—13 -5 —3] and we have:

5 -2 -1

—40 16 91[5 1 X1
x=A"h=[-13 -5 =3||3]|=|-1]|=|x
5 -2 —1ll17 2 X3

Thusx; =1, x, = —1and x3 = 2 are the solutions

Exercise: Solve the following system of linear equations by using inverse method.

x+y=2 X1+ 3x; +x3=4
2) 5 +6y=9 b) 2x; +2x, +x3=-1
2x1 +3x, +x3 =3
Remark:-
1. A system of equations that has no solution is called inconsistent; if there is at least one solution

of the system, it is called consistent.
A system of linear equations may not have solutions, or has exactly one solution (unique
solution), or infinitely many solutions.
Every homogeneous system of linear equations (i.e,.Ax = 0) is consistent, since allx; = 0 (for
i=1,2,3,...) is a solution. This solution is called the trivial solution; if there are other solutions,
they are called nontrivial solutions. If this system has nontrivial solutions, then these solutions are
infinite.
If the number of variables is greater than the number of equations in a given system of linear
equations, then the system has infinite solutions. The arbitrary values that are assigned to the free
variables are often called parameters.
Let Ax = b be a system of non-homogenous linear equations and the number of variables are
equal to the number of equation (i.e. A be a square matrix). And let A;(for i = 1,2,...,n) be a
matrix obtained by replacing the entries in the i*"*column of A by the entries in the matrix
b,
b= b:Z . Then
by,
i. if det(4) # 0, then the system has a unique solution.
ii. ifdet(A4) = 0, then the system has
a. infinitely many solutions if det(4;) = 0 forall i = 1,2,3 ...
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b. no solution if at least one of the det(4;) # 0 for some i = 1,2,3 ...
2.10. Eigen values and Eigenvectors
Definition: Let A be an n X n square matrix and x be a non-zero column vector. Then xis called the
eigenvector ( or right eigenvector or right characteristic vector) of A if there exists a scalar A such that
Ax = Ax .....(1)
Then, A is called an eigenvalue or characteristics value of A. Eigenvalue may be zero, but eigenvector

cannot be zero vectors.

Example: show that [_11] is an eigenvector corresponding to the eigenvalue A = —2 for the matrix

2 2

Solution: from equation (1) we have

[—32 —54 [—11] - [—22] =2 [—11]
From equation (1), Ax —Ax = (A—A)x =0
» |A — Al,]| is called the characteristic polynomial of A.
» The equation |A — Al,| = 0 is called the characteristic equation.
» For each eigenvalue A, the corresponding eigenvector is found by substituting A back into the

characteristic equation |A — Al,| = 0.

Example: Determine the eigenvalues and corresponding eigenvectors of the matrix A = [_32 _5 4]

. ) ) a3 51 4,1 01_[3—2A
Solution: For this matrix A — Al = [_2 _4] }\[0 1 —[ _9 and hence

5
4=l
det(A—A) = (3—2)(—4—1) —5(—2) =22 + A — 2 = 0. Thus, the characteristic equation of A is
A2 + A — 2 = 0 and up on solving this we get A = 1 and A = —2

x
i.  The eigenvectors to A = 1 will be obtained by solving equation (1) above for X = [x;] With

this value of A after substituting and rearranging, we get:

(5 2=l Dlal=T =15 2=l
This is equivalent to the set of linear equations given below:
2x; +5x, =0
—2x, —5x, =0
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. . . -5 . . . .
The solution to this system is x; = — X2 with x, arbitrary, so the eigenvectors corresponding to A = 1

are,

— xl _ _x2 _ — . .
X = [xz] = l 2x2 l =X lil with x, arbitrary.

ii. When A = —2, equation (1) above may be written as:
3 5 1 01\[*1]_[O 5 5711*%1] _ [0
([_2 _4] - (=2 [0 1 )[Xz] - [0] = [_2 _2] [xz] - [0]
This is equivalent to the set of linear equations given below:
le + 5x2 =0
_2x1 - 2x2 =0
The solution to this system is x; = —x, with x, arbitrary, so the eigenvectors corresponding to A = —2
are,
_[*1] %21 _ -17 . .
X = [xz] =1 x, ] =X, [ 1 ] with x,arbitrary
Exercise: Determine the eigenvalue and eigenvector of the following matrices if there exist:
5 2 2
A=13 6 3
6 6 9
3 =20
B=|-2 3 0
0 6 5
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CHAPTER THREE

LIMIT AND CONTINUTY
3.1. Definition of limit

Definition: A function is a relation in which no two distinct ordered pairs have the same first
element. If f is a function with domain A and range a subset of B, we write

f+A->B
If f: A — Bisgiven by a rule that maps x from A to y in B, then we write y = f (x).
Definition: A function f : A — B is said to be

a) 0dd, ifand only if, forany x € 4, f (—x) = —f (x).
b) Even, if and only if, for anyx € 4, f (—x) = f (x). The evenness or oddness of a
function is called its parity.
Definition: A function f : A — B is said to be one-to-one (an injection), if and only if, each

element of the range is paired with exactly one element of the domain, i.e.
f(x1) = f(x3) x4 =x, forany x; and x, € A.

Definition: A function f : A — B is onto (a surjection), if and only if, Range of f=B.
Definition: A function f : A — B is a one-to-one correspondence (a bijection), if and only if, f
is one-to-one and onto.
From preparatory we have been evaluating the limit of a function by using its intuitive definition.
That is we have said that limit of /' (x) as x approaches to a is L and write;

limf(x) =1L

x-a
If we can make f'(x) close enough to L by choosing x close enough to abut distinct from a.
Definition: (Intuitive Definition of Limit): Suppose f is defined when x is near the number a.
(This means that f is defined on some open interval that contains a, except possibly at a itself.)
Then we write

limf(x) =1L

x-a
and say “the limit of f (x), as x approaches a, equals L” if we can make the values of

x arbitrarily close to a(as close to L as we like) by taking x to be sufficiently close to a(on

either side of a) but not equal to a.

——
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Roughly speaking, this says that the values of f'(x) approach aas xapproaches a. In other words,
the values of f (x) tend to get closer and closer to the number Las xgets closer and closer to the

number a(from either side of a) but x # a.

Although this intuitive definition is sufficient for solving limit problems it is not prices enough.
In this section we see the formal definition of limit, which we call the € — § definition of limit.

Definition: (Formal definition of limit): Let fbe a function defined on some open interval that
contains the numbera, except possibly at a itself. Then we say that the limit of

f(x)as x approaches a is L, and we write

Jlci_r)r‘llf(x) =L

if for every number € > Othere is a number 6 > Osuch that if 0 < |x — a| < 6 then |f(x) — L| <
€

Since |x — a| is the distance from xto a and |f(x) — L|is the distance from f(x) to L, and since
€ can be arbitrarily small, the definition of a limit can be expressed in words as follows:

limf(x) = LMeans that the distance between f(x) and L can be made arbitrarily small by
xX—a

taking the distance from xto a sufficiently small (but not 0).
Alternatively,

limf(x) = LMeans that the values of f(x)can be made as close as we please to L by taking
x—a

xclose enough to a (but not equal to a).

Diagrammatically observe the following:

4 LY i ¥ i Y
ab X =" eTE i 1 L2 o y=L—& M

wher 1 iz m here

T™ i

Examples on limit
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Even if it is very difficult to use the formal definition of limit to handle all limit problems let us
see how we can use it for evaluating same important limits that may help us in developing rules

by the way of which we can evaluate limits without using the formal definition.

How to Find Algebraically a § for a Given f,L,a and € > 0
The process of finding ad > 0 such that for all x,0 < |[x —a| <d = |f(x) — L| < ecan be
accomplished in two steps.

1. Solve the inequality |f (x) — L| < eto find an open interval say (¢ d) containing a on
which the inequality holds for all x # a.
2. Find a value of 6§ > 0 that places the open interval (a — §,a + §) centered at a
inside the interval (¢ d). The inequality |f(x) — L| < & will hold for all x # a in this
6 interval.
Example: show that chi_r)réélx -5=7

Solution: Based on the definition we have f(x) = 4x —5,L=7anda=3
We need to show for every number € > 0 there is a number § > 0 such that
0<|x-3|<d6=2|fx)—-7|<e¢

Now consider |f(x) — 7| < € we have

|(4x = 5) =7
= |4x — 12|

= [4(x = 3)|
= 4|x — 3|

Thus
0<|x—3|<déd=>4|x—-3|<¢

&
0<|x—3|<6:|x—3|<z

. &
This suggests us we can choose § = "

Now for checking if 0 < |x — 3| < §, then:
0<|x—3|<6=>4|x—3| <46
= |4(x —3)| < 48
= |4x — 12)] < 48
= |(4x —5)—7)| < 46

——
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:l@x—S)—7N<:4Z

= |(4x—-5)—-7)| <e¢

~ by the definition of limit we have; lirr;4x —-5=7
X—

THE VALUE OF ¢ IS NOT UNIQUE
In preparation for our next example, we note that the value of ¢ in the above Definition is not
unique; once we have found a value of ¢ that fulfils the requirements of the definition, and then
any smaller positive number §; will also fulfil those requirements. I.e. if it is true that;
|f(x) — L] < e If0 < |x — a| < §it will also be true that|f(x) — L| < €if 0 < |[x —a| < §;
This is because {x : 0 < |x — a| < d;}isasubsetof{x: 0 < |x — a| < &}
Example: show that:
a) limx?=9
x—3
b) lim= ==
x-2X 2

Solution:

a) Here we have f(x) =x%,L=9anda=3

We need to show for every number € > 0 there is a number § > 0 such that
O0<|x—a|l<d=>|f(x)-Ll<e
Thatis0 < |[x — 3| <8 = |x?2—-9|<¢
Now consider |x? —9| < ¢
|x2 — 9| = |x + 3||x — 3| < € We wish to bound the factor |x + 3|. This can be done by setting
fixed number for é then let § < 1 then we have;
|lx — 3| <1
>-1<x-3<1
>-1+6=<x+3<1+6
=>5<x+3<7
Consequently we can have that |x + 3| < 7 and hence we have;
x2—9|=|x+3|lx=3|<7|x—-3] <78

This suggests us we can choose § = min {; ,1}. This proves thatlirr?lx2 =09.
X—

b) Here we have f(x) =%,L=%anda=2

( )
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We need to a number § > 0 given that a number € > 0 such that;

0<|x—a|l<d=>|f(x)-Ll<e

ThatisO<|x—2|<5:>|§—%|<£

. 1 1
Now consider |; — E| <¢g

|1 1 2—x|_|2—x|_1|2—x|
x 2 2x |2x| 2 x|

In similar manner of the second example above we have to bound the factor |x| then let § < 1
and we have;

lx —2| <1=>-1<x—-2<1=1<x < 3 consequently we can have |x| < 3 and this implies

1 1
|;| > 3 hence we have:

|1 1 2—x|_|2—x|_|x—2|>|x—2|
x 2 | 2x | 2x] 2|« 6
Skl 2l

6 2|x|
:@<£:>|x—2|=6£=62

. . . . 1
This suggests us we can choose § = min {1, 6¢} and hence this proves that hrr%i =7
X—

Exercise: show that:
a) limx? =0

x—0

b) lim3x —5 =1

xX—2
Uniqueness of limit
Theoreml: If the limit of a function f at a exists then, this limit is unique. Equivalently if L and

M are both limits of f at a then L = M.
Proof: suppose that f has two distinct limits L and M (L # M) that is limf(x) =L and
xX—-a

limf(x) =M

xX—a

Now since limf (x) = L then given 2 > 0 there exist 6; > 0 such that
x—-a

&
0<|x—a|<51=>|f(x)—L|<§

And since imf(x) = M then given % > 0 there exist 5, > 0 such that
x—a
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€
O<|x—a|<52=>|f(x)—M|<E

Now take § = min (81, 6,) and we have:
0<|x—al<8=|f(x)—LI<-4nd 0<|x—al >&=|f(x)—M| <
In particular choose € = |L — M| and hence we have:
IL=M|=|L—f(x)+f(x) - M|
SIL=fO+f(x) — M|
=f(x) = LI+ |f(x) — M|

=Sti=z=|L-M|
—2T2TET

= |L — M| < |L — M| This is a contradiction

x2
x2+1

x
x2+1

(hint

Example: show thatlingf(x) = 0 wheref (x) = | < |x|)
xX—

Solution: Given € > 0 we need to find § > 0 such that;

x2

O0<|x—a|l<d=|f(x) —L| <eThatisO < |[x —0| < 4§ = =

—0|<£
2

X
x24+1

=>0<|x|]<d6= <e

2
we have:

Now consider |—
xX“+1

xZ

x2+1

x
x2+1

= |x| < e

= x| || < Ixllxl = IxI? < e

2

Now we can choose § = Ve suchthat 0 < |x] < § = e

3.2. Basic limit Theorems

Theorem:Supposelim f(x) = Landlimg(x) = Mthen for any real number the followingholds
xX—a xX—a

true.
L lim[f(x) £ g(0)] = limf(x) £ limg(x) =L+ M
2. chi_r)r(llcf(x) = c)lci_r)réf(x) =cL
3. limf(x)-g(x) = limf(x) - limg(x) = LM

. M _ 9lc1—I>I¢11f(X) _ L
* x>ag(®x) lim g(x) M’ (for g(x) # 0,M # 0)

5. chi_r)%[f(x)]" = [}Cigglf(x)]“

——
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6. llmef(x) = e;l(i_l,%f(x)
xX—-a

7. In limf(x)| = limin|f(x)| for limf(x) >0
x—a xXx—a x—a

8. lim(f(x))9® = e M @lgor £(x) > 0

9. )lcl_r)r{ll,/f(x) = /)lcl_r)r(llf(x) fornis even)lcl_r)rcllf(x) >0

Proof: 1 since limf(x) = Landlimf(x) = M then by definition for given &;, &, > 0 there exists
xX—a xX—a

61,6, > 0 such that
O0<|x—al<é6;=|f(x)—Ll<g
0<|x—al<d,=>|glx)—M|<e,

Now choose § = min {§;,8,} and &; = ¢, = gthen
€
0<|x—a|l<d=|f(x)—L| <§

&
0<|x—a|<5:|g(x)—M|<§

Weneedtoshow 0 < |[x —a| <d=|f(x) +g(x)—(L+M)| <e
Now consider |f(x) + g(x) = (L + M)| = |(f(x) — L) + (g(x) — M)|
<|(F) - DI+ 1(glx) — M)|

<£+£
—_ —=c
2 2

Hence 0 < |[x —a| <d=|f(x)+gx)—(L+M)|<e
Therefore lim[f(x) + g(x)] = L+ M = limf(x) + limg(x)
x—a x—a x-a

Proof 2. Given that limf(x) = L we need to show for every € > 0 (given) there exista § > 0
x—a

suchthat0 < |[x —a| < § = |cf(x) —cL| < ¢
= [cllf(x) - Ll <¢
€
= |f(x) - L| < Tl
Now we can take |c|e > 0 then there exist § > 0 such that;
0<|x—al<d=|cf(x)—cL| <]|cle
= [cllf(x) = LI <cle
lf(x)—Ll<e

Therefore limcf (x) = climf(x) = cL
x—a x—a

Proof 8. Using number 7 we can prove it informally as follows:

( )
N



Lety = )lci_r)rtll(f(x))g(x)

=>Iny=In {glci_r)rlll(f(x))g(x)}

= }Ci_rgln(f(x))g(x) (by number 7)
= limg(x)inf (x)

= ey — eglci_lglg(X)lnf(x)

=y = e)lcijrcllg(x)lnf(x)
Therefore lim (f (x))9%) = eI @l o £y > 0

Proof the rest as an exercise.

Activity:

1. Evaluate the following limits:

.3 x . 1+vV2+x-3
a) lim e) lim ———
x—4\ —7x+1 x—2 x-=2

b) lim x3-27 f) lim Vx—2a+Vx—2a
x—3 X—3 x—=2a Vx2-4a?
x%2-9
. x—1 . (T)
0 I 9 e
d) lirrl\/x+5—3
x—4 X—4

2. Show that the following limits are true.

. xM—qMm m _
a) llm( )=—am” ,m,ne€Q
x—a \ x"t—an n

b) lim 2%

r—n X—a

=na"neNnN

4x%24+6x+6

Example: Findlim —;
x—0 sin?x-1

Solution: Using the basic limit theorems above we can solve it as follows; since all limits of the
terms exists we can write it

. . . . 2 .
4x2_|_6x_|_6_161_1}(1)4+}C1_r)r(1)6x+}c1_1}(1)6_411£r_138 +6}C1_r)r(1)x+6:0+0+6_

im— = - - - = ; ;
x-0 sinZ2x —1 lim sin2 x — lim1 limsinZ2x — 1 0—-1
x—0 x—0 x—0

Theorem: (Substitution Theorem)
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Supposelimf(x) = candf (x) # cfor allxin some open interval about awith the
x—-a
possibleexception of a itself. Suppose also thatlimg(x)exists, then limg(f(x)) = limg(y)
x-a x-a y=c¢

Example: Find
a) limv1 — x?

x—0
b) lim vsin 2x
x—»E
Solution:
a) lety=1—x%thenasx >0, y=1—-x%2->1

) — o2 1 _
ﬂ}cl_r)l’(l) 1—x ill_r)r%\/; 1

Therefore lirré\/ 1—-x2=1
x—

T
6
= lim Vsin 2x = lim,/siny

*>12 Y%

b) lety = 2xthenasx—>%,y=2x—>

And now let z = siny thenas y —>%,z = siny—>§
= lim,/siny = lm}\/E ==

y_)g Z—>g

2
Exercise: Find limn tans x

L
X7

Squeezing (sandwich) theorem
Suppose that g(x) < f(x) < h(x) for all x in some open interval containing a except possibly

at a itself. Suppose also that:
limg(x) = limh(x) = L. Then limf(x) = L
xX—=a x—-a x-a

2 2
Example: given that 1 — x: <u(x)<1+ x? for all x # 0 then find lin(l)u(x)
X—

2 2
Solution: observe that lin(l) (1 — x:) =1= lin(l)(l + x?) then by the sandwich theorem we have
X— X—

that limu(x) = 1
x—0
3.3. One sided Limits
This method is applied to find the limit at x = a when the function is defined differently for the

caseswhenx >a,x =aand x < a.
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1. Right hand limit: We say that the right hand limit of f(x) atx = aisL,if f(x) — L as
x — a through values greater than a. And we write:
lim f(x) =L If for every number &> 0 there is a number § > 0 such that if
X—a

a<x<a+dbthen|f(x)—L|<e

2. Left hand limit: We say that the left hand limit of f(x) at x = a is M, if f(x) - M as
x — a through values less than a. And we write:
xlirgl_f(x) = M If for every number &€ > 0 there is a number § > 0 such that if

a—8 <x<athen|f(x)—M|<e
Example: Show that 1ir(r)1+\/§ =0
X—

Solution: here we have f(x) =+/x,L = 0 and a = 0 then for every number &€ > 0 we need to
find a number § > 0 such that:
0<x<0+8=|Vx—0|<e

0<x<d=2Vx<e
0<x<d=>x<E¢e?

Then we can choose § = €2
For checking0 <x <8 =>Vx<Vd=vVeZ=e= |[Vx—0|<e
Therefore limvx =0
x-0%
Exercise: Show that lir?_\/l -x2=0
xX—
Limit of a function derived from one-sided limits
Definition: We say thatlimf(x) = L, if lim f(x) = L = lim f(x) however, if lim f(x) #
x—-a x—-at x-a~ x—-at
lim f(x) or if any one of the limits lim f(x) or lim f(x) doesn’t exist, then we say that
xX—=a xXx—a xX—-a
lim f (x) doesn’t exist.
xX—a

2x +1forx <2

Example: Let f(x) = {x +3 forx>2 then find }Ci_lgf(x)

Solution: using one sided limits we can solve as follows;
xll)r%f(x) = xll)r%x +3= Sandxllgl_f(x) = xllgl_Zx +1=5
= lim f(x) = lim f(x) = limf(x) =5

x—2+ x—2~ x—2

4—x%forx<1

Exercise: Let h(x ={
xercise: Let h(x) 2+x? forx>1

then find lirqh(x)
X—

3.4. Infinite limits and limit at infinity

——

62

et



Infinite limits:

Definition: Let f(x) be defined for all x in some open interval containing a except possibly that
f (x) need not be defined ata. We will write:

)lci_r)r‘ll f(x) = oo If given any positive number M, we can find a number § > 0 such that f(x)
satisfies: f(x) >M if 0<|x—a|<dthatisO<|x—a|<d=>f(x)>M

Definition: Let f(x) be defined for all x in some open interval containing a except possibly that
f (x) need not be defined ata. We will write:

limf(x) = —oo If given any negative number M, we can find a number § > 0 such that f(x)
X—a
satisfies: f(x) <M if 0<|x—a|<dthatisO<|x—a|<d=>f(x) <M
Example: Show that lim iz = 00
x-0X

Solution: let M be given positive number, then we need to find a number § > 0 such that

1

0<|x|<éd=>=>M
X

But xiz>M(:>x2 <= x| <\/iﬁ

Now if we choose § = \/LM then xiZ >M

Therefore }Ci_r)% xiz =

Limit at Infinity:

Definition: Let f(x) be defined for all x in some infinite open interval extending in the positive

x-direction. We will write:

lim f(x) = L If given € > 0, there corresponds a positive number N such that |f(x) —L| <
X—00

eifx >N
Definition: Let f(x) be defined for all x in some infinite open interval extending in the negative
x-direction. We will write:

lim f(x) = L If given € > 0, there corresponds a negative number N such that |f(x) — L| < &
X——00
ifx <N

Example: Prove that lim Z=0

X—00 X
Solution: Applying the above definition f(x) = % and L = 0 we need to find a number N>0

such that
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1
|——O| <eifx>N
X
Since x — co we can assume that x > 0, then we can write it without absolute values as
1
—<¢€ifx>N
2 f
1.
=>x>—ifx>N
£
Then we can choose N = i which satisfies the required proof.

e el e . sin
Limits involving o

sin @

Theorem: girr(l) = 1 (0 in radians)

Proof: Consider the following diagram:

The aim is to show that the right-hand and left-hand limits are both 1. Then we will know that
the two-sided limit is 1 as well.
From the figure Area AOAP < area sector OAP < area AOAT. We can express these areas in

terms of Gas follows:

1 1 1
Area AOAP = Ebase * height = E(l)sin 0 = Esin 0
area sector OAP = Erze =—

1
Area AOAT = Ebase * height = Etan 0

Th Lo 9<9<1t 0
usz sin 5 <tan

Dividing all terms by%sin 0 (0 is positive 0 < 8 < %) we get;

6 in 6 . o .
, L 1>2%5 cos@and by taking limit as 6 — 0 through and the sandwich
sin@ cos@ 0
. sin@
theorem we get lim = =1
8-0 6

64
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Example: using lim ¥ = 1 show that:
X—00

cosh-1 -0 b) lim sm2x — 2

x—>0 5x 5

a) lim
h—-0 h

Solution: a) By using the half angle formula cosh = 1—251n2(§) then we can have;

lim & h-1 lim —2 sinz(%) — —lim sinz(g) = —li sin(®) , sin@ (by letting 6 = = ) thus we get
h—>0 h—>0 h h—0 g 6-0 Y s ¢
. sin(8)
~lim — sinf = —-1(1)(0) =0
. 2ysin 2 ;
b) lim sin 2x _ 2 since lim sin 2x — lim (5)251n x _ 2 im sin 2x _ El. sin @ (by lettmg 9 =
x—>0 5x 5 x—0 5% x-0  (3)5x 5x-0 2% 56-0

2x) thus we get

2 sinfd 2

58 ~s D=

ull N

Exercise: Find

a) lim

x—>0 X

b) lim sin 2x

x—>0 X

sin 3x
c) lim .
x—>0 X

tanx

Asymptotes

1. Horizontal Asymptote: a line y = b is horizontal asymptote of the graph of a function
y = f(x) if either:
;i_{?of(x) =bOr xl_i)moof(x) =b
5x2+8x—3

Example: The curve ——
3x°+2

Whose sketched is in the Figure below has the line y = Zas a horizontal asymptote on both the

right and the left because; lim f(x) = g and lim f(x) = g
X—00 X—>—00

——
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Example: Find lim sini

X—00

Solution: we can solve this by substituting a new variable t = i and as x > o t —» 07 and hence,
lim sin— = lim sint =0
X—00 X t—0t
2. Vertical Asymptote: a line x = a is a vertical asymptote of the graph of a function
y = f(x) if either:
lim f(x) = toor lim f(x) = o
x—-at x—-a~

Example: Find the Horizontal and Vertical Asymptotes of the curve f(x) = z—:z

Solution: We are interested in the behaviour as x —» +o0 and as x - —2 where the denominator

is zero. Using long division we get;

=1
Y +x+2

We now see that the curve in question is the graph of y = ishifted 1 unit up and 2 units left as in

the figure below. The asymptotes, instead of being the coordinate axes, are now the lines y = 1

andx = —2.
v
Vertical
asymptote, 61—
X2 S_TZA-._'_}
4l x+ 2 |
Horizontal F = x4+ 2
asymptote, 3|
pi—"1 ~ ———
- L
R I L s
S -dN2-10 1 2 a8
1k
2
_3
_4l
[ 6 )



3.5. Continuity:
Definition: A function f is continuous at a point a, if and only if the following three conditions
are satisfied:
1. f(a) is defined
2. limf(x) exist
X—a
3. limf(x) =f(a)
xX—a

Example: Determine whether the following functions are continuous or not at x = 2.

x% — x2_4. 2 X2—4_ )
=5 90 = =2 T** 2 andh) = 7=z I*7
3 if x =2 4 if x =2

Solution: now a function f is continuous at a point a, if and only if the above three conditions are
satisfied; then

In each case we must determine whether the limit of the function as x — 2 is the same as the
value of the function atx = 2. In all three cases the functions are identical, except at x = 2,
and hence all three have the same limit at x = 2, which is,

x% -4

> =}C1_rg(x+2)=4

Ay ) = ime () = k(0 =
The function fis undefined at x = 2, and hence is not continuous at x = 2(Figure a).

The function g is defined at x = 2, but its value there is g(2) = 3, which is not the same as the
limit as x approaches 2; hence, g is also not continuous at x = 2 (Figure b).

The value of the function 4 atx = 2is h(2) = 4, which is the same as the limit as x approaches

2; hence, & is continuous at x = 2 (Figure c).

p Y AY AY

B /:ﬂ.r} B /: g(x)
N 4 =

y=hix)

NJ

N ———

(a) (b) (c)

2
x“—5x+4 . . .
— - determine the numbers where f is continuous.

Exercise: let f(x) =
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Definition: A function f is continuous from the right at a number a if lim f (x) = f(a) and fis
xX—a
continuous from the left at a if lim f(x) = f(a).
xX—a

Example: The Greatest Integer Functionf (x) = |x]. It is discontinuous at every integer because
the limit does not exist at any integer n:

lim|x] =n—1And lim |x] =n

x-n~ x-ont

So the left-hand and right-hand limits are not equal as x = n. Since |n] = n the greatest integer

function is right-continuous at every integer n (but not left-continuous).

e —
Vv = 1int x
3 or .
v = ||
2 — W—
1 *~—
1 1 1 1 > X
—1 1 2 3 4
i —
— el

Definition: A function f is continuous on an interval if it is continuous at every number in the
interval. If f is defined only on one side of an end point of the interval, we understand continuous
at the end point to mean continuous from the right or continuous from the left.

Example: Show that the function f(x) = 1 — V1 — x2 is continuous on [—1,1]

Solution: we are going to check the continuity of f at any point on the interval (-1,1) and at the
end points of the interval as follows;

Forany a € (—1,1)i.e — 1 < a < 1 using the limit laws we have:

lim £ (x) =chi_r)ré(1 -1 —x2) =1—lim (\/1 —x2) = 1—( /ii$(1—x2)> =1—+1-a?

xX—-a

= f(a)
Thus by definition f is continuous at a if —1 < a < 1 now we are going to show that the limit

exists at the end points, that is:

imf(x) = xgr_nl+(1 —V1—x2)=1=f(-1) And Jim £ (x) = 3}1:;1_(1 —V1-x2)=1=
fQ)

Hence f is continuous from the right at -1 and continuous from the left at 1.
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Therefore fis continuous on [—1,1]

Theorem: If f and g are cont. at a and c is constant, then the following functions are also cont.

ata.f +g

1. f—g

2. Cf

3. fg

4. gwheregio
Proof:

1. Since fand g are continuous at a we have:
limf(x) = f(a)andlimg(x) = g(a)
X—a xX—a
Sl (f + g)() = Iim[f () + g(x)]
= limf(x) + limg(x) (By limit laws)
X—a xX—a

= f(a) + g(a)
= +9()
Thus f + g is continuous at a
Proof the rest as an exercise

Theorem:

a) Any polynomial function is continuous everywhere. That is continuous on
R = (—0, )
b) Any rational function is continuous where ever it is defined; that is continuous on its
domain.
Theorem: In general the following types of functions are continuous at every number in their

domains:

polynomial function

rational function

root functions

trigonometric and their inverses
exponential functions
logarithmic functions

YVVVYVYVYVY

Inx+tan™1

Example: where is the function f(x) = 2, ~ continuous?

Solution: By the above theorem y =Inx is continuous for all x >0 and y =tan"1x is
continuous on R. Thus by theorem of addition from previous theorem y = Inx + tan™1x is
continuous at (0,). The denominator y = x? — 1 is polynomial, so it is continuous at all

positive numbers x except wherex? — 1 = 0. So f is continuous on the interval (0, 1) and (1, o).

( 1
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sinx

Exercise: Evaluate lim
x—T 2+C0Ssx

Theorem: If f is continuous at b andlimg(x) = b, thenlimf(g(x)) = f(b). In other words
x—a x—-a

limf(g(x)) = f(limg(x)).

xX—a xX—a

Proof: Exercise

Example: Evaluate lim sin™! (ﬂ)
x-1

Solution: Since inverse trigonometric functions are continuous then we can use the above

theorem: thus

x—-1 — X

1—+x 1—+x
lim sin~?! T =sin™!( lim

. 1—+/x

- s <i‘31(1 — VD)LV
1 1

= SIin (ilil}m)

N —1(1)_7-[_300
= sin > —6—

)(because 1-x=(1-+vx)(1-+x))

Exercise: By using the above theorem show that: lim%/g(x) =" / limg(x)
xX—>a xX—a

Theorem: If g is continuous at a and f is continuous at g(a) then the composite function fog
given by f(g(x)) is continuous at a.

Proof: Because g is continuous at a we havelimg(x) = g(a). Now f is continuous at g(a);
xX—a

thus, we can apply the above Theorem to the composite function fog, thereby giving us

lim(fog)(x) = limf(9(0)) = £ (limg () = £(9(a))
Therefore fog is continuous at a.

Example: Where are the following functions continuous?

a) h(x) =sinx? and
b) F(x) =In (1 + cosx)
Solution:
a) h(x) = sinx?, here we can write h(x) = f(g(x))where g(x) = x? and f(x) = sinx.
Now g is continuous on R, (because g is polynomial) and f is continuous
everywhere. Thus h(x) = f(g(x)) is continuous on Rby the above theorem.

——
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b) F(x) =In(1+cosx), now f(x)=Inxis continuous and g(x) =1+ cosx is
continuous. Then F(x) =In (1 + cosx) is continuous wherever it is defined. But
In (1 + cos x) is defined when 1 + cos x > 0. So it is undefined when cos x = —1 that
is when x = +m, +3m, +5m ... thus F is discontinuous when x is an odd multiple of
m and is continuous on the intervals between these values.

3.6. The intermediate value theorem
Suppose that f is continuous on the closed interval [a, b] and let N be any number between f(a)
and f(b) where f(a) # f(b). Then there exists a number c in [a, b] such that f(c) = N
The Intermediate Value Theorem states that a continuous function takes on every intermediate
value between the function values f(a) and f(b). It is illustrated by the Figure below. Note that

the value N can be taken on once [as in part (a)] or more than once [as in part (b)].

¥ ¥
fib) 7o) __
N . y= _f':.rj!_ P
fla) y=fix) fla)
0 a c b X 0 a c R c, B X
(a) ()

Geometrically, the Intermediate Value Theorem says that any horizontal line y = Ncrossing the
y-axis between the numbers f(a) and f(b) will cross the curve y = f(x) at least once over the
interval [a, b].
Example: Show that there is a root of the equation 4x3 — 6x2 + 3x — 2 = 0 between 1 and 2
Solution: Let f(x) = 4x3 — 6x2 + 3x — 2. We are looking for a solution of the given equation,
that is, a number ¢ between 1 and 2 such that f(c) = 0 . Therefore we take, a =1, b = 2 and
N = 0Oin the above Theorem. Then we have

f(H) =412 -6(1)*+3(1)—-2=-1<0
And

f(2)=412)2-6(22+312)—2=12>0
=f(1) <0< f(2), that is N =0 is a number betweenf (1) and f(2). Now fis continuous

since it is a polynomial, so the Intermediate Value Theorem says there is a number cbetween 1
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and 2 such that f(c) = 0. In other words, the equation4x3 — 6x2 + 3x — 2 = Ohas at least one

root ¢ in the interval (1, 2).

From the basic limit theorems which we have seen in the previous section we have the following

special limits as a summary:

1.

5.

2
3.
4

limc =c
xX—>a

limx = a
xX—>a

limx™ = a™
xX—>a

lim*/x = Yan € Z*ifn is negative we assume that a > 0.
x—-a

limV/f (x) = ”/}Cigrcllf(X) NEZ

Exercises

I.

Evaluate the following limits.

. x%-25 . 2x+5

a) lim=— d) lim ===5
2_

b) lim 22 e) lim 2!

x>0 XxX+1 x-0 X
C) lim x+3—/3

x—0 x
Find the vertical and horizontal asymptotes of the following functions.

4x-5 x2-5x+6

a) flx) =2 b) f(x) = =2

Show that whether the following functions are continuous or not at x = 2.
. x2-x-2,

a) f(x) == b) f(x) = {—x—z ifx # 2

1 if x =2

X
Show that the function f(x) = 1 — V4 — x? is continuous on the interval[—2, 2].
Find the value of k, if possible, that will make the function continuous.

7x —2 ifx <1 kx? ifx <2
a)f(x):{kxz if x> 1 b)f(x):{2x+k if x> 2
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CHAPTER FOUR
DERIVATIVES AND APPLICATION OF DERIVATIVES

Unit out comes

» Atthe end of this chapter the learners will be able to:

v

ANEANERN

<

v

Determine the differentiability of a function at a point.

Find derivative of some functions
Apply sum, difference product quotient rule differentiation of function.
Find the derivative of inverse trigonometric and inverse hyperbolic
functions.
Apply derivatives to solve some real life problems

Sketch graphs of some functions using derivatives.

4.1. Definition of derivatives; Basic rules

Definition : If point p(x,,Y,) is a point on the graph of a function f then the tangent line to the

graph of f at p is defined to be the line through p with slope mq, = limy,_,

fxo+h)—f(x0)
h

, provides this limit exist. Where h = x — x,
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Example : Find the slope of the tangent line to the graph of f(x) = x7, at the point (1,1).
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Solution: Given f(x) = x> which implies that f(xo+h) = (xo+ h)’and f(x,) =
xo",p(x0 o) = (1,1)

. Xo+h)—f(x . Xo+h)?—(x,)? . Xo?+2hx,+h%—x,° . 2hxy,+h?

-0 h h—0 h h—0 h h—0 h
= limh_,o 2Xo+h=2x,.

But our x,= 1, so myy, = 2

Normal Line.

Definition : The normal line to a curve at a given point is the line perpendicular to the tangent

line at that point.

fG)-f(a)
xX—a

Definition: Let a be a number in the domain of f. If lim,_,, exist, we call this limit the

fx)-f(a)

derivative of f at a and we write it f'(a) so that f'(a) = lim,_q —

Or f'(a) = limj,_q f—(a+h;_f(a)

ifx=a+h
If this limit exist we say that f has a derivative at a. i.e f is differentiable at a or f'(a) exist.

f'(a) is the slope of the tangent to the graph of f at (a, f (a)).

Example : Let f(x) = 2—2 + 1. Find f'(—1) and f’(3) and draw the lines tangent to the graph of f

at the corresponding points.

) ' _ (§+1 - (_i)2+1) _ ("—+1)—1/4
Solution: f'(x) = lim,__; D) = lim,_,_, = —-1/2.
Similarly we obtain f'(3) = 3/2

Yy A )
tangent tangent line

line

A
Y

Exercise
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Find f'(a)for the given values of a.
Df(x) =1/x,a=2 b) f(x) =—4x+7 Of(x) = |x| at a=-/2

x% forx <2

4x — 4 forx = 2 a=2

Df ) = |

Derivative notation

The process of finding a derivative is called differentiation. When the independent variable is x,

ie y = f(x) the differentiation operation is often denoted by % fF)=f(x) = %

Derivatives of constants

Theorem : The derivatives of constant function are 0. If f(x) = c, where ¢ is any real number,
then f'(x) =0

Proof: f(x) = c .From definition derivative we have

f(x) = limy_,¢ f—(xo+h;_f(x0) = limy,_, C;_C = 0.

The Power Rule (General Version) If n is any real number, then

d
— {(x"}) = ”_,L..-.‘-I
dx (")

Example: Let f(x) = x°, then f'(x) = 5x*

Definition: A function f is said to be differentiable at a point a if f'(a) exists. It is
differentiable on an open interval (a, b), [a, ©)or(—oo, a] if it is differentiable at every number
in the interval.

Theorem: If f is differentiable at a then fis continuous at a.

Note. The converse of this theorem is not true.

4.2. Basic rules
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If f and g are differentiable at x and c is any constant then f +g,f —g,f.g,¢cf,f/g where
g # 0 are differentiable at x

) (f+g9) =f"+ g'(sumrule)

2) (f —g9)' = f'— g’'(difference rule)
3) (f-9)' =f"g+f.g' (product rule)
4) (cf)'=cf’ constant multiple rule

5) (f/g9)' = L ‘(q )];g Provided g # 0. (Quotient rule).

Proof. (1-4) are left as exercise

Proof .5 From definition of derivative, we have

fx+h)  f(x)

A\ gx+h) g . fG+hgl) —f)glx+h)
(E) = Jim h =lim h.g(x).g(x + h)

Adding and subtracting f(x). g(x) in the numerator yields
(ﬁ) — im fx+h)glx)— f(x)gx) — f(x)glx+h) + f(x)g(x)
g/ o0 h.g(x).g(x + h)
= lim

0 g(x).g(x + h)

_ Ilzi—r>r(1) g(x) Illl_r)%f(x + h})l —f(x) _ }ll_r)r(l)f(x) }li_r%g(x + hf)l —g(x)
) lim g(x).lim g(x + h)

_ 900 f ()~ f®X)g'(x)
(g(x)?

Example: If f(x) = vVxg(x) where g(4) = 2 and g'(4) = 3, find f'(4)

Solution Applying the product rule, we get

f1(x) = —[\/_g(x)] g(x)] +g(x)—[\/_]

= Vag'() + 52
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F'(4) =4g'(4) + g(—g = 6.5

x%-1
x*+1

Example: Let h(x) = ,then find h’(x)
Solution. Let f(x) = x*~1 and g(x) = x*+1, which implies f'(x) = 2x and g'(x) = 4x°

_ 9 S f@g'(x) _ @G+ 1) — (x* — 1)(4x°)

(9(x))? (x*+1)?
_ —2xS+4x3+2x
T (x%+1)2
Example: Find an equation of the tangent line to the curve y = (1i—jc2) at the point (1,1/e)

SOLUTION According to the Quotient Rule, we have

I | . o d .
'I + . _]_{{] _ _,.'l. _{1 _|__-._
dy [ e T ©)

dx (1 + x%)°

(1 + x2)e* — e*(2x) i e*(1 — x)*
(1 + x?%)? (1 + x?)°

So the slope of the tangent line at (1, ¢/2) is

dy
otk | - G

dx |=
This means that the tangent line at (1, e/2) is horizontal and its equation is y = ¢/2.
Theorem: The chain Rule

If g is differentiable at the point x and f is differentiable at the point g(x), then composition fog
is differentiable at the point x and (gof)'(x) = g'(f (X)) f' (x).

Example: Let k(x) = v1+x" then find k'(x)

Solution: Let f(x) = 14 x* and g(x) = +/x then f'(x) = 4x” and g'(x) = 1 forx>0
X

2x
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43 2x3

2\/f (%) - V1 + x*

k') =g'(f)f'(x) =

4.3. Derivatives of some functions

1) Derivative of trigonometric function
Let f(x) = sinx from the definition of derivative we have
sin(x + h) —sinx __  sinxcosh + cosxsinh — sinx

10 = i = = lin h

— I , cosh—-1 sinh
= limy,_,q |SiNX N + cosx -

sinh 1 — cosh
= lim |cosx (T) — sinx <—>]

h-0 h
= cosxlim 22 — sinxlim =2 = cosx(—1) — sinx(0) =
h—0 h h—-0
cosx
The derivative of g(x) = cosx can be obtained in the same way and (cos)’ = —sinx.
Note  1)(tanx)' = sec’x 2)(secx)’ = secxtanx 3)  (cot) = —csc’x 4)(cscx)' =
—cscxcotx
Example : Find f'(x) = x*tanx
Solution: using the product rule.
f'(x) = x*(tanx)’ + tanx(x*)' = x*sec? + 2xtanx.
Derivatives of exponential Functions
Let Lt f(x) = e*
— x+h_,x X(ph_
From definition of derivatives f'(x) = limj_, w = limy_,o —— = limy_,o = (eh 1)
h
s eh-1
= e*lim,,_, — =

e*lne = e*
Therefore,(e*)’ = e*lne = e*

If f(x) =a* fora> 0anda # 1, then (f(x))’ = a*lna
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Example: Let f(x) = 2%, then (f(x))’ = 2*In2.
Example: Differentiate y = eSi™*

Solution: By chain rule

dy  d
dx  dx

. . d : .
(esmx) = eSinx 2 (smx) = eSiNX sy
dx
Derivatives of Logarithmic Functions

Let f(x) = logyx,x > 0and b > 0 ,b # 1,then from the definition of derivative we obtain

log, (x + h) —log, x
h

'(x) = li —1im 1/ 1oz, () = lim 1/h10g, (1 + ™
f(x)—hlg(l) =lim / Ogb< )—hlg(l) / ogb( +;)

= limy_, %logb(l +v) (letv=h/x)
= 1/x limlog, (1 + v)¥¥ = 1/xlog, [lim(l + v)l/”]
h-0 v—-0

=1/xlogy, e =

xinb
Note. If f(x) = Inx then f'(x) = 1/x

Example: Let f(x) = In(x*+1), then find f'(x)

2x
x2+1

Solutionf'(x) =

4.4. Higher order derivatives

If f is a function then f’ is the function that assigns the number f(x) to each x at which f is
differentiable. Since f' is a function we can carry the process at step further and define f''(x) by

f"(a) = limxﬁa% Whenever this limit exists we call f''(a) the second derivative of

f ata.
Example: Let f(x) = sinx, find f"'(x).
Solution: f(x) = sinx= f'(x) = cosx= f'"'(x) = —sinx.

For n > +3 we define the nth derivativeof f at a by
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fO @) - f V()

X —a

f™(a) = lim
x—a
f is n times differentiable if f™(x) exists for all x in the domain.
Example: If f(x) = 3x* — 2x3 + x%2 — 4x + 2
fl(x) =12x3 —6x2+2x —4

f"(x) =36x2—12x +2

f'"(x) =36x%2—12x +2

f"(x) =72x—-12

fF®(x) =72

fOE) =0

fE@=0 (n25)
Example : Let f(x) = €. Find a formula for the n"™ derivative of f.
Solution: f(x) = ecxjf'(x) = ce = £ (x) = Czecxjf@)(x) = c'e™
In general for any positive integer n.
F™(x) = c"e™.
Example: Let:f(x) = é, then find a formula for the n™ derivative of f.

Solution: By applying the quotient rule

L f! — 1 " — 2 3) — 6
‘f (x) (1_x)2’ f (x) (1_x)3 ’f (x) (l_x)4

Now,1=1!,2=2! 6=3!

n!
(1_x)n+1

So by proceeding in this way we obtain f™ (x) =
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Exercise

Find a formula for nth derivative of the following function.
a)f(x) =cosx Db)f(x) =sinx ¢) f(x) = i

4.5. Implicit differentiation
Function defined explicitly and Implicitly

Up to now, we have been concerned with differentiating functions that are expressed in the form
y = f(x). An equation of this form is said to be defined y explicitly as a function of x, because
the variable y appears alone on one side of equation. However, sometimes function are defined
by equation in which y is not alone on one side.

For example: the equation yx + y+ 1 =x (1)

is not of the form y = f(x),however, this equation still defines y as a function of x since it can

be y = i—: Thus we say that (1) defines y implicitly as a function of x the function being y =
x-1

x+1

In general, it is not necessary to solve an equation for y in terms of x in order to differentiate the
function defined implicitly.

. Ldy .
Example: Find é ifxy=1
N dy . .. . . dy _ 2
Solution: One way to find -, 1s writing this equation as y=1/x= e —1/x
However, there is another way to obtain this derivative.

. d d d
1.ea[xy] _E[l] = xa+y—0

dy__ _
e y/x buty=1/x

dy
=>—— =
dx

R [xi=

=—1/x?
This method of obtaining derivative is called implicit differentiation.

Example: Use implicit differentiation to find % if 5y*+siny = x*
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s 4 o2 ; _ 4.2 a2y 4 _ .
Solutlon.dx (5y% + siny) = — (x*) =5 = (y*) + ™ (siny) = 2x( the chain rule)

ay ay
= 10y—+ cos— = 2x
ydx + dx
. dy . dy 2x
Solving for — tain —= = *
& dx’ we ob dx  10y+cosy (*)

Note that this formula involves both x and y .In order to obtain a formula for %, that involves x
alone, we would have to solve the original equation for y in terms and then substituting in to (*).
However, it 1s impossible to do this. So we are forced to leave the formula for % in terms of x
and y.

2
Example: Use implicit differentiation to find ZTy if 4x*—2y*= 9.

2

Solution: Differentiating both side of 4x*—2y*= 9 implicitly yield

dy
8x —4y—=0
T
@ _ = %
ol *)
Di .. . s . . . d?y _ (»)(@)-(2x)(dy/dx) s
ifferentiating both side of (*) implicitly yields i 2 (**)

Substituting (*) in to (**) and simplifying using the original equation we obtain
2x
dzy ~ 2y — 2x (7) _ 2y2 — 42

= = —9/y3
T2 52 >3 1y

Example: Find the slope of the tangent line at (2, —1) and (2,1) to y*—x + 1 = 0.

Solution: Solving for y in terms of x and then evaluating the derivative of y = vx — 1 at (2,1)
and the derivative of y = —vx — 1 at (2, —1).

d(2 +1)—d 0
dx” X _dx()

=2y 2 -1=0
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dy
Ix 1/2y

At (2,—1), we have y = —1 and at (2,1) we have y = 1 the slope of the tangent lines at those
points are

dy dy

=" =-1/2  and mu,= —|1, =1/2
dx

y=-1

Mian=

b

Exercise

2
Find < and find =% by implicit differentiation

1) y=32x-5 5)3x*—4y’=7
2) sin(x’y?) = x 6)x’+y =1
3) tan’(xy +y) =x 7y +siny =x
4) X2 = coty
1+cscy

4.6. Derivatives of Inverse functions

Let f be a function, then f has an inverse provided that there is a function g such that the domain
of g is the range of f such that that f(x) = y iff g(y) = x, for all x in the domain of f and y

in the range of f.
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Definition: Assume that the function f has an inverse and let f~! be the unique function having
as its domain the range of f satisfying f(x) = y iff f~1(y) = x for all x in the domain of f and
y in the rangef. Then f~1 is the inverse of f.

From the above definition we can see that, if f is a function the inverse of f is f' such that for
each x in the domain of f

(ftof)(x) = x = (fof TH(x).
Domain of f=range of f !
Range of f~1 =domain of f

Theorem : A function f has an inverse iff for some numbers x; and x, in the domain of f, if
X1# X2, then f(x1) # f(x2).

i.e. A function f is said to be invertible iff it is one to one.
Steps to find inverse of a function

1) Write y = f(x)

2) Interchange x and y

3) Solve for y in terms of x in step 2

4) Write f'(y) for y

Example: Let f(x) = 3x — 2,then find the inverse of f
Solution: Lety =3x -2 =>x =3y -2 =>x+y=3y=>y= §+2/3

=) = §+ 2/3

Theorem: Let f be continuous on an intervall, and let the values assigned by f to the points in [
form an interval/. If f has an inverse, then f ! is continuous on J.

Theorem: Suppose that f has an inverse and is continuous on an open interval I containing a.
Assume also thatf’(a) exists and f'(a) # 0 and f(a) = c.Then(f™")'(c) exist and
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Proof. Using the fact that f'(c) = a and definition of derivatives we find that

—INTLN 1 -1 _ . f')-a %
(@ = limy. —==——=limy. ==~ O

First notice that f ~* is continuous at ¢. Therefore lim,_,. f~*(y) = f~'(¢) = a.
So that if x = f~1(y) then x approaches a as y approachesc.

More over the fact that f ~thas an inverse andf ~1(c¢) = a, implies that f"1(y) #afory # ¢

xX—a

1
. - 1
= lim,_,, JOT@ _

—1N/ 1 f_l(ZV)_a — 1z - -
from (x)(f ) '(c) = hmy—>c = limy_q FO)-f(@) x-a  f'(a)

fETON-f(@
Example: Let f(x) = x'+8x’+4x — 2, Find (f)’(—=2)
Solution: Let us find the value of a for which f(a) = —2,but f(0) = —-2,s0a =0
Since f’(x) = 7x°+24x°+4. It follows that f'(0) = 4.

= (') =1/f(0) =1/4

We conclude this section with brief discussion of the general relation ship between the derivative
of f and f™'. For this purpose suppose that both function are differentiable and

let y=f'(x) =>x=f(x) ()

and differentiating implicitly with respect to x yields :—x (x) = ;—x (F)

' d
=>1=f(=
y _ 1

dx  fr(y)

Thus from (*) we obtain the formula that relates the derivative of f™' to the derivative of f

1

d -1 —
& 0) = ey
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4.7. Inverse Trigonometric Functions and Their Derivatives.
.None of the six basic trigonometric functions is one to one because they all repeat periodically
and do not pass the horizontal line test. Thus to define inverse trigonometric function we must
first restrict the domain of trigonometric function to make them one to one.
The inverse of these restricted functions are denoted by

1

sin"lx,cos 1 x , tan"!x,sec™! x,csc™! x and cot™! x.(or alternatively by arcsinx, arccosx,

arctanx,arcsecx,arccscx and arccotx)

y=sin~! x is equivalent to siny = x if —1<x<l and—m/2 <y <m/2

y = cos™'x is equivalent to cosy = x if-1 <x <1land0 <y < m.

y = tan’'x is equivalent to tany = x if—o0 < x < 0 and—7/2 < y < /2.

y = cot™! x is equivalent to coty = x for—o0 < x < 00 and 0 <y < .

y = sec”'x is equivalent to secy = x, if |[x| >1and 0 <y <mandy # /2.
y = csc” L x is equivalent tocscy = x if [x| > 1. —% <y< %and y # 0.

Identities for inverse trigonometric functions

1) sin'x +cos'x = 7/2 5)sec(tan’x) = V1+x°

2

-1

2)sin(sinlx) =vi—x2,-1<x<1 6) sin(sec'x) = X, || >1

X
3)sin(cos™x) =v1—x2 ,-1<x <1

-1 _ X _
4tan(tant x) = > 1<x<1
Sin
[ ] = l.':
cosisinT = |
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Now let us use implicit differentiation to obtain the derivative formula for y = sin’'x

y = sin"! x if and only if x = siny

= (%) = == (siny)

= 1l=cosy=>Z=—"= : =1
y dx cosy cos(sinTlx) Vi1-x2

dy 1
Therefore, — = —
dx  V1-x2

By applying the same procedure, we obtain the following

1 1

-1 I -1 [
(cos™ %) = — = (sec™ x)' = —==
1N 1 gy 1
(tan ™' x) =T (cot™x) = 0
1 1
(csc™tx) =-—
xVx? —1

4.8. Hyperbolic and inverse hyperbolic functions

The hyperbolic functions are special combinations of the exponential functions e* and e™ that
occurs in certain applications. These functions have properties very similar to the properties of
trigonometric functions. We shall define the hyperbolic functions and its inverse hyperbolic.

The two important hyperbolic functions are defined as follows

eX—g—X

Definition: The hyperbolic sine function is defined by inhx =

eX—e™*
2

The hyperbolic cosine function is defined by coshx =

From the definition, we conclude that the hyperbolic sine and cosine are defined for all real
number x and y and differentiable

Notice that sinhx 1is an odd function with sinh0=0 and the coshx is an even function with
cosh0=1

Since 0<e*<1 for x<0 and e*>1 for x>0, it follows that sinhx<0 for x<0and sinhx>0 for x>0 and
coshx>0 for all x.
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y=o& * = gmhy
3 ,'.,-"'- A
_‘“w._.- P
g = m
AN g
£ gt
..l"
FIGURE 1
y=cimhr= e’ -

Direct calculation shows that

cosh?x — sinh? = 1

This can be proved by writing.

cosh?x — sinh?x = (

eX+e ™
2

.."".-
1 -
I Y =
1 Ef' F=7q£
- U X
FISURE 2

i z
y=cothr=g 4"

2

FIGIRE 2
v=tmnhr

2 eX—e=X\2 1 1
) - ( ) = Z(ezx +2e% +e7%%) — : (e?* +2e% + e72¥)=1

We define the other four hyperbolic functions in terms of sinhx and coshx

sinhx e*—e”

X

tanhx = =
coshx eX+e™*
coshx eX+e™*
cothx = = = —
sinhx eX—e=X
ik eX+e™* L
— sinhx = ——— = coshx
dx 2
d B eX —e™* i
— coshx = ——— = sinhx
dx 2
— sechx = —sechxtanhx
dx
—cothx = —csc?hx
dx

1

2

sechx =

cschx =

sinhx

coshx e*X+e*

2
eX—_e—X

—tanhx = sec®hx

dx

—cschx = —cschxcothx

dx

——
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The six hyperbolic functions are related by many identities called hyperbolic identities. We list a
few of them.

tanh®x + sech’h = 1 coth?x — csch*h =1
sinh(—x) = —sinhx cosh(—x) = coshx
sinhx(x + y) = sinhxcoshy + coshxsinhy  (*)

cosh(x + y) = coshxcoshy + sinhxsinhy (**)

tanhx + tanhy
1 + tanhxtanhy

tanh(x + y) =

In verifying (*) we use the following relation
coshx + sinhx = e* coshx — sinhx = e™
If we let x = y in (*) and (**), we obtain the hyperbolic double angle formulas.
Sinh2x = 2sinhxcoshx
cosh2x = cosh’x + sinh’x
Using the identity cosh’x — sinh*x = 1 one can show that
cosh2x = 2sinh*x + 1
cosh2x = 2cosh’x — 1

Note To obtain the above hyperbolic formulae from the corresponding trigonometric formulae of

circular function, replace cosx by coshx and sinx by sinhx where i=+/—1 .For instance we
know that

cos’x + sin’x = 1.Making substitutions described above, we get
cosh’x + (isinhx)*= 1or cosh’x — sinh’x = 1. Other formulae can be similarly obtained

If u is a differentiable function of x then

d oy = hdu
7 Sinhu = coshu—
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d hu = sih u
dxcos u = si udx

4.9. The Inverse Hyperbolic Functions

The function f(x) = coshx is one to one for x > 0 and has inverse y = cosh™'x for all x > 0
Definition : a) y = sinh'x if f x = sinhy for all x and y.

b) y = cosh™ x if f x = sinhy for x > 1 andfor y = 0

¢) y = tanh'x if f x = tanhy for —1 < x < 1 and for all y

d)y = coth™x if f x = cothy for |x|>1 and y= 0

e)y = sechx if f x = sechy for 0 < x <1 andy > 0

f)y = csch’'x if f x = cschy forx # 0 and y # 0
Theorem : 1) sinh™'x=In (x + Vx2 + 1) (=0 < x < )

2)cosh™'x =In(x +Vx2 —1) (x = 1)

“1y =L (22
3tanh™ x = . In (1_x) -l<x <1
_ 1, (1+
4)coth™1x = >In (XTT) (Ix| > 1)
5)sech™x =-In (““1"‘2) O<x<1).
6) csch™lx = Z1n (l + 1+x2) x#0
2 x |x|
Proof1:lety = sinh™1x
mhy = eY—e™V  e2V-1
=Sy =——= %
( ]
t %)



e?y-1
Sx=—— = 2xe’x = e? —1lor(e¥)?—2xe? +1=0

Our interest is to write y as a function of x so using quadratic formula

_2x+\/4x2+4

y
¢ 2

=x++/x2+1 zy=ln(x+ x2+1) forall x

Proof (2-6) left as exercise

Derivative of inverse Hyperbolic.

2x

1+ ——
isinh‘lx _ gl 1
dx x+Vx2+1  Vx2+41
Theorem
d - 1
—sinh™'x = ——
dx VxZ +1
d 1
—cosh™x =
d x? -1
d—tanh X = T2

4.10. Application of derivative

Extreme of a function.
Definition

a. A function f has a maximum value (absolute maximum) on a set I if there is a number d
in I such that f (x) < f(d) for all x in I (figure below). We call f(d) the maximum value
of fonl.

b. A function f has a minimum value(absolute minimum.) on a set I if there is a number ¢
in I such that f(x) = f(c) for all x in I (see figure below). We call the minimum value of
fonl.

c. A value of f that is either a maximum value or minimum value on [ is called an extreme
value of f on [.

——
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maximurm

Frinirmurm

If the set I is the complete domain of f, and if f has a maximum value on I, then this maximum
value is called the maximum value or (sometimes global maximum value) of f similarly, when it
exists, the minimum value of f on its domain is the minimum value (or some times the global
minimum value) of f.

A function f may or may not have extreme value on a set I depending on f and onl.
Example:

l. Iff(x) =x, then on [0,1] the function fhas the maximum value of 1 and
minimum value of 0 (as shown in the figure a below)

2. If f(x) =tanx, then on (—%,g), the function f has neither a maximum value nor a

minimum value (as shown in figure b below)

3. If f(x) =|x]|, for =1 <x <0 and 0 < x < 1and f(0) = 1, then on [-1,1] the function
has the maximum value of 1 but has no minimum value because f does not assume the
value 0( as shown in figure c below).

4. 1If f(x) = x for —oo < x < oo, then (—o0, ) the function has neither a maximum value
nor a minimum value.

figa
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Theorem (Extreme —value theorem)

If a function f is continuous on a finite closed interval [a, b], then f has both an absolute
maximum and an absolute minimum on [a, b]

Example: The function f(x) = 2x + 1, is continuous and hence has both an absolute maximum
and absolute minimum on every closed interval and in particular on the interval [0,3] i.e

f0)=1
(Minimum value) and f(3) = 7 (maximum value)

Theorem : suppose c is an interior point of an interval I and f(c) is an extreme value of f on I
andf (¢) is an extreme value of f on 1.

If f'(c) exists then f'(c) =0.

Proof:The statement of the theorem is equivalent to the assertion that if ¢ is any number interior
to I such that f'(c) exists and is not equal to 0, and then f(c) is not an extreme value of f on 1.
therefore we assume that f'(c) # 0

Consider the following cases
Casel f'(c)>0

f)=f(c) >0

Since f'(c) = lim,_, —

f@-f©

xX—c
For all x # ¢ in some open interval about c.

For such x

If x > ¢, then f(x) — f(c) = (x — ¢) F)-£(c) >0

X—C
Because (x —c) >0

Therefore f(x) > f(c), so that f does not have a maximum value at c. in the same way

Ifx <c,then f(x) —f(c) =(x—¢) (M) <0

X—c
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Thus f(x) < f(c), so that f does not have a minimum value at ¢ hence if f'(c) > 0 then f has
neither a maximum value nor minimum value at c.

The case f'(c) < 0 is treated in the same way.

The points at which either f'(x) = 0 or f is not differentiable are called the critical points of f.

Example: Find the critical number for f (x) = 4x — x?

Solution: To find critical number c first find ' (x)

f(x) = 4x — x?

Flx) =4 —2x

f'x) =0

= 4 — 2x = 0 = x = 2( critical number)

(2,4) is critical point.

Finding extreme values on [a, b]

1.

Compute the values of f at all critical numbers in (a, b)

2. Compute the values of f at the end points a and b.

3.

The largest of those value in step 1 and step2 is the maximum value of f on [a, b] and
the smallest of those values is the minimum value of f on [a, b]

Example: Letf(x) = x — x3, find the extreme values of f on [0, 1] and determine at
which number in [0,1] they occur.

Solution: since f is continuous on [0,1] it has extreme value on [0,1]

First let us find the critical number.

f'(x) =0 this implies that 1 —3x2 =0, x = — g orx = \g_g but —ge [0,1]

Thus the extreme value of f on [0,1] can occur only at one of the end points 0 and 1 or at
3

the critical numbers \/3—5 in (0,1) f(0) = O,f(g ) == \g_g - (\g_g) = ¥ and f(1) =0, so

the maximum value of f on [0,1] is %g occurs at%§ and its minimum value is 0. Which

occurs at 0 and 1.
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Exercise

1) A sheet of card board 12 in square is used to make an open box by cutting a square of equal
size from the four corners and folding up the sides. what size squares should be cut to obtain a
box with largest possible volume?

2) Find all critical number (if any ) of the given functions

a. f(x)=x+§ c.g(x)zﬁ
b. f(x) =sinx d f(x) =|x—2| e. f(x) = x%e*

2) Find all extreme value (if any) of the given function on the given interval. Determine at
which numbers in the interval their value occur.
a. f(x)=x?—x,[0.2]
b. g(x) =V1+x2 [-2,3]
c. f(x)= cosmx,( g, 1)
3) A mass connected to spring moves along the x-axis so that its x co-ordinate at a time t is

givenby:  x(t) = 2sin 2t + V3cos2t
What is the maximum distance of the mass from the origin?

4.11. Mean value theorem

Theorem (Rolle’s theorem)

Let f be continuous on [a,b] and differentiable on [a,b]. if f(a) = f(b), then

there is a number ¢ in (a,b) such that f'(c) = 0.
Proof. If f is constant, then its derivative is 0, so that f'(c) = 0, for each c in (a,b).
if f is not constant, then its maximum and minimum values (which exist by the
maximum-minimum theorem) are distinct. Since f(a) = f(b), either the maximum
or the minimum must occur at a number c in (a,b). by hypothesis,f is differentiable
atc so that f'(c) =0

Theorem: (Mean value theorem)
Let f be continuous on [a,b] and differentiable on (a,b). then there is a number ¢ in

(a,b) such that f”(c) = %
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Proof:
We introduce an auxilar function h that allows us
to simplify the proof by using Rolle’s theorem

(see adjacent fig.)

¥4

.{l-_\_-:.q = : \

h is continuous on [a, b] and differentiable on (a, b), h(a) = h(b) = 0, so by Rolle’s theorem
there is a number ¢ in (a, b) such that h'(c) = 0

:h’(x)=f’(x)—M’;(a),fora<x<b

b —
And thus

b) —
0= () = frio) - LB T@

Example: Let f(x) = §x3 + 2x, the show that f satisfies the mean value theorem on the interval

[0, 2]

Solution:  f'(c) = % =5
We find a number ¢ in (0, 3) such that f'(¢) =5
ffxX)=x2+2=f'"(c)=c?*+2

=>5=c?+2
=>c2=3 =3¢c=+/3

Since ¢ must be in (0, 3), so ¢ = V/3

Exercise

Find all number c in the interval (a, b) for which the mean value theorem satisfied.

a. f(x)=x?>—-6x;a=0,b=4

b. f(x)=x3—6x,a=-2,b=0

c. f(x)=-3++Vx,a=0,b=1
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1 1
d. f(x) = 3(x+;),a _E‘b =3
Increasing and decreasing function

Let f be defined on an interval I then

a. f isincreasing on lif f(x;) < f(x;,), where ever x; and x,are in I and x;<x;.

b. fis decreasing on L if f(x;) > f(x,), where ever x; and x,are in I and x;<x;.
Graphically, a function is increasing on I if its graph slopes upward to the
right and it is decreasing on I if its graph slopes down ward to the right.

g(x)

X
fig$ﬂ\g

Theorem : Let f be continuous on an interval I and differentiable at each interior point of |

fig-a fis increasing

a. If f'(x) > 0 at each interior point of I then f is increasing on I more over f is
increasing on I if f'(x) > 0 except for a finite number of points x in I

b. If f'(x) < 0 at each interior point of I, then f is decreasing on I moreover, f
is decreasing on I if f'(x) < 0 except for a finite number of points x in I
Proof .Left as exercise

Example: Let f(x) = §x3 —x%2+x —5, show that f is increasing on
(—00,0)

Solution: f'(x) = x? —2x+ 1 = (x — 1)?

Since f'(x) > 0 for all x except x=1, where f'(x) = 0

Hence f'is increasing on (—oo, 00)

Example:Find where the Function f(x) = 3x* —4x3 — 12x? + 5 is increasing and where
decreasing.

Solution: f'(x) = 12x3 — 12x? — 24x = 12x(x — 2)(x + 1)

We divide the real line in to intervals whose end points are the critical numbers -1,0 and 2
and arrange in a chart.
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[}

Interval 12x x—12 X+ 1 ix) I

¥ <= —1 = — = = decreasing on (—oo, —1)

‘
-

increasmg on (1, 0)
= decreasing on (0. 2)

+ increasing on (2, =°)

[ I S T e
+

4.5.3.The first and second derivative tests.

Definition: A function f has a relative maximum value (respectively a
relative minimum value) at ¢ if f(c) is the maximum value (respectively, the
minimum value) of f on an open interval containing c. A value that is either a
relative maximum value or relative minimum value is called a relative
extreme value.

. . decreasing
incraasin

X

Theorem: Let f be differentiable on an open interval about the number ¢ except possibly at c,
where f is continuous.

a. Iff' changes sign from positive to negative at c, then f has a relative
maximum value at c.

b. If f' changes sign from negative to positive at ¢ then f has a relative
minimum value at c.

| # .III"-,\';-I e
: ! /

I'\.II'” . Flei=a

L — - e = Ck
|
|
|

{a) Local maximun [} Local munimmm (i) Moy mein inmmam or minsmom [l T mamimurn ar minimuom
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Example: Let (x) = 2x3— 3x, find the relative extreme value of
p 4
Solution: f(x) = %x3 —3x

=f'(x) =zx2 -3 =%(x2 —4) =%(x+2)(x—2)

-2 2
x+2 - - 0 + + +
x =2 - - - - - 0 + +
) =2 +2)(x—2) + + 0 - S0+ o+

f'(x) Changes sign from positive to negative at -2, so f(—2) = 4 is relative maximum value.

f'(x) Changes sign from negative to positive at 2, so f(2) = —4 is relative minimum value of

f.
Example: Let f (x) = (x — 1)2(x — 3)? .Determine the relative extreme of f
Solution: f'(x) = 2(x — 1) (x —3)?+ 2(x — 1)?(x — 3)

=2(x—-1) (x=3) [(x=3)+x-1)]

=4(x—-1) (x—2)(x—3)

1 2__3
X—=1———=0++++++
X—2———————= 0++++ +
X—3-——————————— 0+++
f==4(x-1) (x-2)(x-3) ———-0+++0--0++++

From the sign chart f’(x) Changes sign from positive to negative at 2, so f(2) = 1 is relative
maximum value.

——
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f'(x) Changes sign from negative to positive at 1 and 3 so f(1) =0 and f(3) = 0 are relative
minimum value of f.

Theorem of second derivative test
Assume that f'(c) = 0

a. If f""(c) < 0 then f(c) is a relative maximum value of f

b. If f"(c) > 0 then f(c) is a relative minimum value of f

c. If f""(c) = 0 then we cannot draw any conclusion about a relative extreme value of f at
c.

Proof: a. by hypothesis f''(c) = lim,_,, % <0
Since f'(c) = 0 by hypothesis, it follows that for all x # ¢ in some open interval (¢ — g, c + 0)

1) _f'o-£'(© <0

X—c X—C

Ifc—o0<x<cthen x—c<0,sothat f'(x)>0.If c<x<c+ o then x —c > 0 so that
f'(x) < 0. This means that f' changes sign from positive to negative at c.

So by first derivative test f a. relative maximum value at c.
The proof (b) is analogous to the proof of (a)

Example: Let f(x) = x> — 3x — 2. Using the second derivative test. Find the relative extreme
value of f.

Solution f(x) = x3—3x—2

=>f'(x) =3x2—-3=3(x—1)(x+ 1) and f"(x) = 6x
f"(x)=0,whenx =—-1lorx=1
Since f"(=1) = —6 < 0 and f""(1) = 6 > 0

f(—=1) = 0 is relative maximum value of f where f(—1) = —4 is a relative minimum value of
f these are the only relative extreme of f.

——

100

et



Exercise

1. Determine the value of ¢ at which
a. f(x)=x?+6x—11

b. f(t) _ t?2—t+1

t2+t+1
c. f(t) =sint +%t

2. Use the first derivative test to determine the relative extreme values (if any) of the
following.

a. f(x) = 4x? —i
b. f(x) =xV1—x?

3. Use the second derivative test to determine the relative extreme value (if any) of the
function.

a. f(x)=—-4x>+3x—1
b. f(x) =x3—3x%—-24x+1
c. ft)=et—-et

Concavity and inflection point

Definition: If f is differentiable on open interval I, then f is said to be concave up on I if f is
increasing on I and f is said to be concave down if f* is decreasing on 1.

Theorem : Let f be twice differentiable on an open interval |

a) If f""(x) > 0 onIthen fis concave up ward on I
b) If f'"(x) < 0 on I then fis concave downward on on I.

concave up
ward
concave down
ward

v

Example: Find open intervals on which on which the function f(x) = x’—3x+1 is concave up
and concave down.

Solution: f(x) = x3 —3x? + 1 = f'(x) = 3x% — 6.
=>f'x)=6x—6=6(x—1)

= f"(x)<0ifx<1land f'(x) >0ifx <1
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= fis concave up on (1, o) and concave down ward on (—o0, 1)

Inflection points

Definition: If f is continuous on an open interval I containing xo and if f changes the direction of
concavity at that point then we say that f has an inflection point at xo and we call the point

(%, f (x,)) on the graph of f an inflection point of f.
How to find inflection point.

1) Find the value of ¢ for which f"(x) = 0
2) For each value of ¢ found in step 1 determine whether f''(x) changes sign at c.
3) If f changes sign at c, the point (c, f(c)) is inflection point of f.

Example :Let f(x) = x* — 6x2 + 8x + 10. Find the inflection point of the graph of f

Solution: f(x) = x* — 6x2 + 8x + 10

=Sf(x)=4x3—-12x+8= f’(x) =12x? - 12 =12(x* - 1) =12(x — D(x + 1)

-1 1
x+1 - - - 0 + + + + o+ o+
x—=1 - - - - - -- - N
ff =12 =Dx+1) + + + 0------- 0+++

From the sign chart
f changes sign at-1 and 1
(1, (1) =(1,13) and (1, f(x)) = (1, —3) are inflection points of f

Exercise
Find the inflection point of the function f(x) = xe™

4.12. Curve sketching
A knowledge of derivative helps greatly in sketching the graph of function.

Example :Let f(x) = % sketch the graph of f by noting all the relevant properties.

x2’
Solution. y —intercept: f(0) = 2.
No x-intercept because f(x) > 0 for all x

: _ —4x
f(x) = A tx0e
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Since f’(x) > 0 for x < 0 and f’(x) < 0 for x > 0, it follows that f is increasing on (—0,0] and

decreasing on [O,oo) and f(0) = 2 is the maximum value of f.

_4Bx2-1)  4(Bx-1)(3x+1)

I =iz = (1 +x2)°
g N
3
VBx+1 ——— O+++++++++++++++
Br-1 e 0+++
2_
f'(x)=% +++++++0-—————————— 0++++
+x

From the sign chart

f is concave up ward on (—oo, _\g_g) and (v/3/3,%) and concave downward on(-g,\g—g) with

inflection point at (?, 3/2) and (-?, 3/2)

. 2 . 2
And lln’lx_)_oo m = III'I'IX_)oo m =0

This implies that x-axis is the horizontal asymptote of f.

inflection point inflection point

Exercise
Sketch the graph of a)f(x) = x3 — 8x% + 16x — 3.

x+2
x-3

b) g(x) =

——
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4.13. Related rate

When spherical balloon is inflated, the radius r and the volume v of the balloon are
function of time t.

3

V=—xr.
3
Using the chain rule to differentiate v with respect to t
dv _dvdr _ ,ar
a - aa T dr

The rates dv/dtand dr/dt are related
Example: Suppose a spherical balloon is inflated at the rate of 10 cubic centimeter per
minute

How fast the radius of the radius of the balloon increasing when the radius is Scm?
2 dar

—Butﬂ =10,r = 5cm.
dt dt

Solution:ﬂ=4nr
dt

dr dr 1
= 1():47'[(5)2E = E: E

Therefore, when the radius is S5cm, the radius is increasing at the rate 1/10m per minute.

Example: One end of a 13 feet ladder is on the floor and the other end rests on a vertical wall. If
the bottom end is drawn away from the wall at 3 feet per second, how fast is the top of the ladder
sliding down the wall when the bottom of the ladder is 5 feet from the wall?

Solution: Let y be the height of the top of the ladder above the floor and let x be the distance
beween the base of the wall and the bottom of the ladder.

dx/dt = 3, we required to find dy/dt.

From Pythagoras we have

LY
13 feet Building

[ader

x=5feet

x? +y*=13°
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= 2xdx/dt + 2ydy/dt = 0
= dy/dt = —x/y dx/dt .at the instantx = 5=y = 12
=dy/dt = -5/12(3) = -5/4

When the bottom of the ladder is 5 feet from the wall, the top is sliding down at the rate 5/4 feet
per second.

Example: Suppose that liquid is to be cleared of sediment by pouring it through a conical filter
that is 16cm high and has a radius of 4cm at the top( fig. below). Suppose that the liquid flows
out of the cone at constant rate of 2cm?/min. at what rate is the depth of the liquid changing

when the level is 8cm?

gfgﬁfi__j;;g
b |

Solution: Let

r = time elapsed from the nitial observation (min)
V = volume of liquid in the cone at time ¢ (cm’)

v = depth of the liquid n the cone at me 1 (cm)

v = radius of the hiquid surface at time ¢ (cm)

From the [ormula for the volume ol a cone, the volume V, the radius x, and the depth v

are related by

2 | (1)
By using similarity of triangles we have

4 |
— = E or I = I'L
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Substituting this in to (1) gives

2)
Differentiating (2) with respect to t gives

aV T (1 .x;.l"_\' )
= — | 3y —
7T Rl
0Or

dy 16 dv 16 3

B e e

dt Ty di Ty Y-

The minus sign indicates y is decreasing with time

dy 3 0.1¢ .
= e " = —= " —L). | b ¢my min
i T(8) 2

Exercise.

A ladder 15 feet long leans against a vertical wall .Suppose that when the bottom of the ladder is
x feet from the wall the bottom is being pushed toward the wall at the rate of x/2 feet per
second. How fast is the top of the ladder rising at the moment the bottom is 5 feet from the wall.

4.14. L’Hopital’s rule

Suppose that lim,,_,, f(x) and lim,_,, g(x) are both 0 assume g’(x) # 0 for X near *

Then lim,,_,. % = lim,, ; gg

The indeterminate form 0/0

Iflim,._,. f(x) = 0 = lim,_,, g(x), we say that lim,._,, % has indeterminate form 0/0

sin4x

Example: Find lim,_,, v

Solution:lim,_, sin4x = lim,_, sin3x = 0.

By applying L’Hopital’s Rule

——
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The indeterminate form oo /oo

Suppose lim,._,, f (x)= or — o and lim,_,, g(x) = o or — o then we say that lim,._,, %

has indeterminate form oo /oo, L’ Hopital’s rule is valid in this case.

. JICO f1(x)
lim,_,, = lim,_,, ey

7 (provided that the later limit exist as a number o or — 00).

Example: In each part confirm that the limit is an indeterminate form of the type oo /oo
And apply L’Hopital’s rule

. X . X
a)lim,_ e b) lim,_ o+ P~

solution:a) The numerator and the denominator have a limit of co so we have indeterminate form
of the type oo /0.

Applying the L’Hopital’s rule

x 1
lim—=Ilim—=20
x—oeX x-0o eX
c) The numerator has a limit of —co and the denominator has alimit of +c0 so we have
indeterminate form of the type oo /oo. Applying L’Hopital’s rule we get.

_ x _ 1/x . sinx . sinx
lim — = lim —— = lim — tanx = lim lim tanx = (-1)0=0
x—-0*t cscx  x-0tcscxcotx x-0t Xx x—-0t Xx x-0%

Other Indeterminate Forms

Indeterminate form Example

1) 0.00 lim xInx
x—0

2) 0 lim x*
x—0

. . 1n\*

3) 1 lim (1+)

4) oo’ lim x1/*
X—00

5) oo —o0 lim,_,,+(cscx — cotx)
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When we find the limit of the indeterminate forms of the type listed above, we have to
rewrite the given limit in a way that enable us to L’ Hopital’s rule

Example: Find lim xInx
x—ot

Solution: I;Lr‘oz(:o and I}CYE})QX = —00

The limit is of the form

0.0

Y Iy = 1 Inx _ 1/x \ y
lim xinx = lim, (m> = lim <T/x2> = lim (—x)

~lim xlnx =0
x—o*t

4. Review Questions
1) a) Find the slope of tangent line to the curve y = x — x3 at the point (1,0). ans -

2
b) Find the equation of the tangent line passing through the origin and tangent to

the graph of the function y = Inx. ansy = ix

¢) Find equation of the line tangent to curve y = 1 + x3 which is parallel to the
line 12x —y=1 ansy = 12x — 15.

2) Find f'(a) if f(x) =xe*,a=1 ans 2e
3)Find f'(x) if i0)f(x) =e*sinx ans e*sinx + e*cosx
ii) f(x) = cos (sinx) ans - [sin (sinx)]cosx

iii)) f(x) =In (Inx)  ans —

xlnx

4) Use implicit differentiation to find Z—i :

sin 3(y%+1
) Y = 3x ans (" +1) .
y2+1 (y2+1)cosy—2ysiny
.. 2x—eY
ii)xeY =y + x? ans ——
2 4.2
y x +y
i) x* +y? == ans P

5)Find the dimension of a rectangle with perimeter 100m whose area is as large
as possible . ans 25m by 25m.
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6) Differentiate the following.
a)f (x) = sech\/x ans — %sech\/} tanh\/x

b) f(x) = sinh?V¥1 — x2 ans —\/%sinhxﬂ — x2 coshV1 — x2
. -1/ 2 —6Xx
c)) f(x) = sinh™"(—3x*) ans NCrEaE

7) If 1200cm? of material is available to make a box with square base and an

open top find the largest possible volume of the box. Ans 4000cm3

8) Find the point on the line y = 4x + 7 that is closest to the origin. Ans

—-28 7
()

9)Find the the interval on which f'is increasing or decreasing
a)f(x) = x3 —12x + 1. ans increasing on (—o, —2) ,(2,%) and decreasing
on (—2,2)
b)f (x) = xe*. ans increasing on (—1,00), and decreasing on (-00,—1)

10)Find the local maximum and local minimum values of the function
3

f(x)=x++vV1—x . Ans Localmax.f(—) =5/4

4
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Chapter Five

Integration
Unit out comes

» Atthe end of this chapter the learners will be able to:

o Estimating area with Finite Sums

Find The Definite Integral as a Limit of Riemann Sums
Determining the Properties of the Definite Integral
Defining the Fundamental Theorem of Calculus
Evaluate Indefinite Integrals and the Substitution Rule

Integrate different functions by using Techniques of integration
Define and Evaluate Improper integral.

o o0 0 O O O

Introduction

One of the great achievements of classical geometry was to obtain formulas for the areas and
volumes of triangles, spheres, and cones. In chapter five and chapter six we will study methods
of finding formulas and calculate the areas and volumes of these and other more general shapes.
The method we develop, called integration. The integral has many applications in statistics,
economics, the sciences, and engineering.

5.1. Estimating Area with Finite Sums

Consider the following plane region under the curve y=f(x)=—x? + 5.Use the five rectangles as

in the figure below for the function f(x) =-x*+5 and the x-axis between the graph of x=0 and
x=2

fix)
i)

Y
Y

a) A4 812 1.6 2.0 b A4 812 1.6 2.0

Solution: The right end points of the five interval are %i where 1=1,2,3,4,5 the width of each

rectangle is % since area of a rectangle is area = hight x width then the area of the five

) 21 (2446|688 10].
rectangles on the intervals | 0,— |, | =,= |,| =,—= || =>= |,| =>— | IS
5 5515 5]55][5 5

i. Evaluate f at the right end point from fig (a)

i $ 3-8 (2] 2) e

ii. Evaluate f at the left end point from fig (b)

——
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Area (b)=i f(zis_zj@j =i{—(2"5—2j +5]@j =%=8.08

By combining the results in parts (a) and (b), you can conclude that

6.48 <(area of the region under ) <8.08
We get an upper estimate of the area of R in fig (b) by using five rectangles containing R is 8.08.
We get lower estimate of the area of R in fig (a) by using five rectangles containing R is 6.08.
And we know that the area of the region under the curve is between 6.08 and 8.08.
Note: As the number of rectangles increase the upper sum decreases but lower sum increases.
At some point the two sums will overlap as the number of rectangles tends to infinity.

Example:. Consider the functionf(x) = x2.

) _-Il_rl

P-—x #

__I'--

Vi
i
A
/—"[
s TL’Ll | .
1 L
[

o) Lising lelt endpoinis

T

,.
[

=M Ly, = LEER A1 A=50 L,=03234

]

a=10 Ry=0.385

- i

( ]
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Definition: Let f(x) be a nonnegative and continuous function on an interval [a,b} and let S be
the region bounded by the graph of f and the vertical line x=a, x=b and the x-axis as show in
figure below, Then, the area A(s) is given by

Ax

y B L —

flx)

“x1 b > 0 a x X oo Yoy X b x

b—a

A(S) = lim_,, Y-, f(z;)) Ax; wherez; = [xi_1,%;] 1= 1,2,3,...,nand Ax =
n

5.2. The Definite Integral

The Definite Integral as a Limit of Riemann Sums
If f is continuous function defined for a < x < b,we divide the interval [a,b] in to n subintervals

of equal width Ax = %. We let a =%y < x; <X, <+ <X, =Db be the endpoints of these

subinterval and we let z; = [X;_1,%;] i = 1,2,3, ..., n be any sample points in these subintervals,

where z; = [Xq,X1],Z2; = [X1,X3] and so on. Then the definite integral of f from a to b is
b

n
f f(x)dx = lim Z £(z;) Ax
i=1

a
Note-1.The = component parts in the integral has names as  follows
The function is the integrand.

Upper limit of integration
h"*:b» / x is the variable of integration.

A

Integral sign -
L..I_:'\- -g- n-.__\_\_\_\- f‘\l( ) i
. X) dX
LY
+a _ )
Eiad i St o When you find the value
ower limit of integration . 2 /_of the integral, you have

lntegral of f from a to b — evaluated the intepral.

Note-2. The sum ‘=! is called a Riemann sum after the German Mathematician
Bernhard Riemann (1826-1866). If f(x) is positive then the Riemann Sum can be interpreted as
the sum areas of the approximating rectangles.

Note-3. The value of the definite integral of a function over any particular interval depends on
the function, not on the letter we choose to represent its independent variable.
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If we decide to use t or u instead of x we simply write the integral as

b b b
j f(t)dt or j f(u)du instead of j f(x)dx
a a a

THEOREM 1

The Existence of Definite Integrals

A continuous function is integrable. That is, if a function f is continuous on an interval [a, b],
then its definite integral over [a, b] exists.

o b
1. Order of Integration: -/ flx)dx = — / flx) dx A Definition
b a
2. Zero Width Interval: f flx)dx =10 Also a Definition
b b
3. Constant Multiple: f kfix)dx = k / flx) dx Any Number

b b
f—f[x]dx:—f flx)dx

b b b
4.  Sum and Difference: /[f{.‘r]-l_-g{x}}dx= /f{x]dx:l: /‘g{xlcﬁ:

L

b £ r
Additivity: f flx)dx + / flx)dx = / flx) dx
d b Ja

6. Max-Min Inequality: 1f f has maximum value max f and minimum wvalue
min f on [a, b], then

b
min f-(b —a) = f flx)dx = max f+(b — a).
b b
7. Domination: flx) = glx)on [a, b] = /fix]dx = /g{x]ir

b
flx) =0on|a, b] = f flx)dx = 0 (Special Case)

Example: Suppose that f and g are integrable and

2 5 5
jf(x)dx =—4 ,f f(x)dx = 6 andf g(x)dx = 4
Then, ' ' ' find
2 1 5 5
a. | g(x)dx b. | f(x)dx c. | f(x)dx d. | (4f(x) — g(x))dx
Jroanc v Jroon e from e




Solution.
2

a. j g(x)dx = 0 By rule two (the zero width interval)
2

1 5
b.fg(x)dx = —fg(x)dx = —(4) =—4 Byrule 1
5 1
5 2 5
C. ff(x)dx =ff(x)dx +ff(x)dx from rule 5
1 1 2
5 5 2
ff(x)dx = ff(x)dx — f fx)dx=6—-(—4) =10
2 1 1
5 5 5
d. j(4f(x) —g(x))dx = 4J f(x)dx — j g(x)dx combination of rule 3 and 4
1 1 1
4(6) —4 =20
Example: show that the value of
1
j\/l + cosxdx < 1.5
0

Solution: The Max-Min Inequality for definite integrals (Rule 6) says that minf. (b — a)

b
is the lowerbound for the value f f(x)dx and maxf. (b — a) is the upper bound
a

minf=1 and maxf=v1 + 1 =2 =~ 1.414
1
. The upper bound for the integral f\/l + cosxdx <V2(1-10)=+2
0

Since the integral [ 01 V1 + cosxdx is bounded above by V2, then it is less than 1.5.

Exercise:
1. Suppose that f and g are integrable and

2 3 3
ff(x)dx =2 ,f f(x)dx = 4 andfg(x)dx =1

Then, find

1 1 3 5
a..lfg(x)dx b.!f(x)dx C. .fo(x)dx d..l[(Zf(x) + 5g(x))dx

2. Use the min-max Inequality to find the upper and lower bounds for the values of
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0.5

1
J 1 d b J ! d
a 1+ x2 X ' 1+ x2 X

0 0

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus is appropriately named because it establishes a
connection between the two branches of calculus: differential calculus and integral calculus.

The Fundamental Theorem of Calculus Part 1

If f is continuous on [a, b] thenF (x) = f; f(t)dt is continuous on [a,b] and differentiable on

(a,b) and its derivative is f(x);

d X
F'(x) = I j f(t) dt = f(x)

Example:
Use the Fundamental Theorem to find

X
dj tdt
a. o | cos
a

Solution:

1 t
1+ t2

X

s
Q.-lg_
O\N

X
d
a. — j cosxdt = cosx
dx

a
X
b dj 1 i 1
Tdx ) 1+t20 T 14 x2
0

Fundamental Theorem, Part 2 (The Evaluation Theorem)
If f 1s continuous at every point of [a, b] and F is any antiderivative of f on [a, b], then

b
f f(x)dx = F(b) — F(a) ,where F(x)is the antiderivative of f(x), that is,F'(x) = f(x).

The theorem says that to calculate the definite integral of f over [a, b] all we need todo is:
a. Find an antiderivative F of f, and
b. Calculate the number

b
[ fedx = Fo) - F@

The usual notation F(b) — F(a) is
F(x)]5 or [F(x)]2 depending on whether F has one or more terms.

——
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Example
Use the FTC (Fundamental Theorem of Calculus) to evaluate the following.

2
a.f x? dx
1

T
b.j cosx dx
0

3
9 —x, x<1
c.fo f(x)dx where f(x) = {xz +7 >1

Solution:
3
a. Since the antiderivative of f(x) = x2 is F(x) = x? then
Jz 2 4 _x? 2_8 1
TR 7373
1

b. Since the antiderivative of f(x) = cosx is F(x) = sinx then

wl 3

T
f cosx dx = sinx|§ = sinmt — sin0 = 0
0
c. By using the property-5 we can write as

j:f(x) dx = Jolf(x) dx+j13f(x) dx
- [
0

1 3
=j(9—x)dx+j(x2+7)dx
0 1
PSS BN |
= x—g| +gH
0 1

_ (9_§) + (23—7+21) _ (§+ 1) = 33.1667

5.3. Indefinite Integrals and the Substitution Rule

A definite integral is a number defined by taking the limit of Riemann sums associated with
partitions of a finite closed interval whose norms go to zero. The Fundamental Theorem of
Calculus says that a definite integral of a continuous function can be computed easily if we can
find an antiderivative of the function. Antiderivatives generally turn out to be more difficult to
find than derivatives. However, it is well worth the effort to learn techniques for computing
them. The set of all antiderivatives of the function f is called the Indefinite integral of f with
respect to X, and is symbolized by

[ reax
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When we to find the indefinite integral of a function f, remember that it always includes an
arbitrary constant C.

Note: A definite integral f: f(x)dx is a number. But an indefinite integral

[ f(x)dx is a function plus an arbitrary constant C.
Here are some examples of derivative formulas and their equivalent integration formulas:

DERIVATIVE EQUIVALENT
FORMULA INTEGRATION FORMULA
d 3 7 o ) 3

i Td]l = Bt [_a_!r- dx=x"'+C

dx

dx Mx 2nx

:—éltan 1] = sec?r fscczrdr:tanf+f.'
Fil”yz] = %f |2 f%u”j du =+ C

Properties of the indefinite integral

If f and g are continuous, and if k is any constant, then
a) j kf (x)dx = k j F(x)dx
b) [/ £ g0l = [ f(x)dx £ [ g(x)dx

Some of the most important are given in Table in the table below

Integration Formulas

Differentiation Formula

Integration Formula

d

a[x]zl fdx=x+C

d xr+1 xr+1

—_— — r — r — —_
dxr+1] x"(r#-1) fxdx 7‘_|_1+C (r+-1)
d

— [sinx] = cosx f cosxdx = sinx + C

dx

Tx [cosx] = —sinx f(—sinx)dx = cosx + C

d

e [tanx] = sec?x J(seczx)dx = tanx + C

— [—cotx] = csc?x
dx[ ]

f(csczx)dx = —cotx + C

——

117

et




d
— |secx] = secxtanx
7, lsecal

j(secxtanx)dx =secx +C

[—cscx] = cscxcotx

f(cscxcotx)dx = —cscx +C

dx

d

a[ex] =e* f(ex)dx =e*+C

d 1 1

< linlx|] = = f(—)dxz Inlx| + C
dx X X

Example: Describe the anti-derivative of 3x
Solution We have k=3 and f(x)=x

kf (x)dx =k| f(x)dx = |3xdx=3 x'dx=3£+c
2

Example: Fill the following table using the basic rules of integration

Original integral Rewrite Integrate simplify
1 -3 —3+1 ) .
I—3dx jx dx al +C X ic= ~+C
X -3+1 — 2x
d 3 3+ 3
I\/;x .[x dx ler1 e 2x e
j 2sin xdx 2 j sin xdx 2(-cosx)+C -2c0sx+C
J 2e*dx
cscx+C
J-( ctoszx ]dx J'( 'COS‘X jdx Icotxcscxdx X
sin” x sin xsin x

Example: Evaluate

a. 2x +3cosx)dx
J( )

Solution: a.

b.j(erx})ix

Using the above properties
I(Zx +3cos x)dx = I 2xdx + 3.|- cos xdx

Solution:

j(x+x3)dx=fxdx+f

=2dex+3jcosxdx

X

2
=2( 5 J+C1 +3sinx +C,

= x? +3sin x + C where C=C;+C,

——
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The above property (b) can be extended to more than two functions, which can be formulated as
follows:

[l6AG + GG + =+ G @] = 6 [ fildx + ¢, [ fibadx+ =+ G [ i
Example: Evaluate
j 2x% +x%3Yx -1
<2
Solution: First we need to write the integrand in a simpler form

2x% + x23x — 1 1
j X 9;2\/} dx=](2+x?—x‘2)dx
1
=j<2+x?—x‘2)dx
1
=2fdx+fx§dx—fx‘2dx

3
=2x+xz—x"14C

3 1
=2x+x2—=+4C
X

dx

Exercise: Evaluate the following integrals

(a) j.r“ dx (b) f.r“"'"' dx (¢ ] 2 Jadx
s 1 g
{a) vatdx (b Fn’x (c) x"dx

e 7
[ Sxf— ]d’r
3, | 350

fj.r' 3 _ 3x* 4 Bx?|dx
4

ro 4
[ B
5 : i ¥

=

o

5.4. Techniques of integration

Integration by Substitution
Theorem: Let f(x) and g(x) be functions with both fog and g’ continuous on an interval L. If F is

an antiderivative (indefinite integral) of f on I, then
() [ f(g(0)g" (x)dx=F(g(x))+C
Example: Findj(x + 6)2] dx

Solution To solve this we use integration by substitution
Let g(x)=x+6 implies g(x)=1 and f(g(x))=(g(x))*'

[ £(g()g’ (x)dx = F(g(x)+C
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2\, _ (g™ (e (x+6)”
I(g(x) k' (s e 6T YT ¢

Equivalently we can let
u =x+ 6 implies du = dx

22 22
j(x+6)21dx=j(u)21du =L;—2+C= (x-gs) +C

Example: consider the following patterns

Original integral g(x)=u g' (x)=du f (g (x))g / (x)dx
J. Zx()c2 + 1)4dx u=x"+1 du=2xdx I u'du
J'3xz( [ +1)1x u=x"+1 du=3x"dx J'\/;du
J. 2sin 6xdx u=6x du=6dx l I sinudu
3
J2e3xdx u=3x du=3dx gj.e”du
3

The logarithm as an integral

Definition: The natural logarithm is the function defined on the integral (0o ) by Inx =

d(rl 1 d 1
Corollary —| |-dt |=— = —(lnx)=—
Y dx('!t J X dx( ) X

6
1, . .
Example: Evaluate J —dx in terms of logarithm
X
2
6

6
1
Solution: J.—dx = lnxJ. =ln6-1n2 = lng =1n3
2)C

2

Note: Jldx = ln|x| +c
X

4
Example: Find J‘)Sc—ldx
X+

Solution: let u =x’+1 so that du = 5x*dx

4 1 11
J.x)56+1dx B J.x5+1 Kl = gJ.;dx

= l1n|u| +c= lln‘strl‘ +c
5 5

N|'—‘

—_—

——
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Exercise:

1. Show that jtan xdx = —1n|cos x| +c

2. Evaluate the integrals

i)jidx ii)J.xzxﬁdx iii)_fl_zxdx iV).[%dx )j x+2

x4x1

Integration by parts

Theorem Let F and G be differentiable on [a,b], and assume that F’ and G’ are continuous on
[a b] then.

J-f xﬁ' (x)dx = J-F x)G
ande(x)G'(x)dx = F(x)G(x)- jF'(x)G(x)dx

J-udv =uy— Ivdu
Example: Find j X cos xdx

Solution: the integral xcosx can naturally be split in to the two parts x and cosx

dv = cosxdx

Let u =X implies du = d. .
implies 4t = dx v = sinx

uy = Ivdu + judv
xsinx = Isinxdx+jxcosxdx
xsinx+cosx+c = jxcosxdx

Example: Find I 2xe’ dx

Since 2x is easily differentiable and ¢’ is easily integrable we can
Let u =2x and dv =e*"dx

du=2dx and v = %e“

l2xe3)‘= gJ.e”abc + Ier“dx = zxe“—ze“ +c
3 3 9

1
Exercise: Find I x e “dx
0

Reduction Formula

) -1. _ n
Note: 1. Ism”xdx =——sin" 'xcosx +
n

1 oo n
2. Icos”xdx =—cos" 'xsinx +
n

——
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Example: Find I cos’ xdx

Let n=5 in the reduction formula
1 ) 4
J-cossxdx =—cos*xsinx + —Icos3xdx
5 5
A second application

1 . 3
Icos3xdx = j—coszxsm X+ —Icos xdx
3 2
o, 2
= —cos’xsinx +—sin x + ¢,
3 3
Consequently

5 4 42 , . 2 .
Icos xdx = —cos xsmx+§ ECOS xsmx+§smx+c

4 4 . 8 .
COSXSIHX-FECOSXSIHX+ESII’IX+C

nN|—= n|—

Tabular Integration
We have seen that integrals of the form I f (x)g(x)dx in which f can be differentiated repeatedly

to become zero and g can be integrated repeatedly without difficultly, are natural conditions for
integration by parts. However, if many repeat are required the calculation that saves a great deal
of work. It is called tabular integration and is illustrated in the following examples.

Example: Find I x”e"dx by tabular integration

Solution: with f(x)=x" and g(x)=e*, we list
f (x) and its derivative g(x) and its integrals

X — ‘
.......... .
e (). .
............................... .
2 (-) )
..................................... .
0 o y

We add the products of the functions connected by the arouse, with the middle sign changed, to
obtain
[ x2e? dx=fx2edx:x2e"-2x e +2e" +c

Example: Find ‘[ x” sin xdx by tabular integration

Solution :With f (x) = x’ and g(x)= sinx, we list,
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f(x) and its g(x) g(x) and

Derivates its integrals
x’ ‘ () sin x
X
3x )
X
6x T (+)
TT—psx
6 — ()
0 TT——,  sinx

We add the products of the functions connected by the arouse, with every other sign changed,

. 2 . .
Ixs sin xdx = —x>cos x + 3x’sin x + 6xcos x — 6sin x + ¢

Exercise
1. Evaluate the integrals by tabular Method.

a) J.x3e"dx b) J.(xz—Sx)e"dx c)jp“e"”dp
7
6
2. Use integration by parts to evaluate the following integralsEvaluate jcossxdx.
0
a) jxlnxz
b) Ixe"ldx
IT

c) j-(x + xsin x x

Summary of common integrals using integration by parts
1. for integrating of the form

Ix"e‘“dx, I x" sin kdx, or J-x" cosaxdx Let u =x" and let dv =e“dx, sinaxdx, cosaxdbx.

2

2) For integrals of the form
jx” In xdx, Arcs sin ax, or arctanax Let dv =x"dx

3) For integrals of the form I e“ sin bxdx Or I e“ cos bxdx

Let u =sinbx or cosbx and let dv =e“dx

——
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Note

Choose u in this order: LIPET

Logs, Inverse trig, Polynomial, Exponential, Trig

Example:
P Iu dv=uv—J-vdu
Ilnx dx LIPET
logarithmic factor s 7; — In x dv =dx
/uv—JV d< duzldx V=X
X

xInx—x+C

Partial fraction

Consider the following rational functions

2 3
1) 2x 3 We can divide the function by the long division as follows
X+
2
XD | ol
— | 2
— Gx
3
2x PN 26x
x°43 x°+3
2 3
Then [-Z—dx = [2xdx LB
x+3 x +3
2x +4 2x+4 2(x+2) 2
2) — = = =
X 43x +2 (x+2)x+1)  (x+2)x+1) x+1
2x+4 2
J. > Al x = | ——dx
X +3x+2 x+1




Examples of Integration by partial fraction:
2x+3

Example: Evaluate | ———dx
P J‘x3+2xz+x
Solution:
2 )c+E
2x+3 _ 2 £+ B N C
X 42X +x )c(x+l)2 x x+1 (x+1)2
Determine A,B and C
Alx +1P+B(x(x +1))+2x +3
A(x2+2x + 1)+ B(x2+x)+ cx=2x+3
Ax?+2Ax+ A+ Bx*+Bx+ Cx =2x+3
A+B=0
A=3 B=-4
B=-3
24+B+C=2
C=-1
2x+3 3 3 1
()chl)2 x x+1 (x+l)2
2x+3 3 1
—dx -3 dx —
I x+1 '[x Ix+l J.(x+l)2
1
= In|x| - 3In[x + 3|+ —+
x+1
) 1
= 3lin +—+C,
x+1 x+1
X2x+7
Example: Evaluate Igdx
X+xr=2
L X 2x+7 A Bx+C
Solution: ———— = +—
X +x°=2 x—1 x+2x+C
Find A and B and C
A=2, B=-1C=-
XH2x+7 _ 2 x+3
X4+x*-2 x—1 XH2x+2
2
Thus de jidx Ix_”dx
X+x*42 x—1 X*42x+2
x—1 (x+1) +1
Letu=x+1 x=u—-1=>x+3=u+2
( |
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u+2

—J.—dx+.|.u+1
u
I—dx+ ) +1du+ju +1

=21n|x —1| +Eln((x +1P+1 P+2arctan (x +1)+c

Summary for determining the constants by partial fraction is given as follows.

| numerrator _ A N B
C(x+plx+g) (x+p) (x+q)
numeantor A B

= +
(x+pf  (x+p) (x+p)f
numerator _ Ax+ B C N D
' (x2+pr+q)2 P+p x+q (x+qf

The Heaviside “cover-up” method for linear factor
When the degree of the polynomial f(x) is less than the degree of g(x), and
g(x)= (x -7, )(x —rz) ........... (x —rn)is a product of n distinct linear factors, each raised to the first

power, there is a quick way to expand f (%(x) by partial fraction.

Example: find A, B, and C in the partial fraction expansion
x*+1 A B C

G-)r—2Yx=3) (=1 (x=2)" (x-3)

Solution: 1f we multiply both sides of the above expression by (x - 1) to get

x*+1 =A+B(x—1)+C(x—1)
(r=1)x-3) (r-2)  (x-3)
And let x=1
1*+1 2

——=—=A4A+0+0=>4=1
(-1)-2) 2
These the value of A is the number we would have obtained if we covered the factor (x—1) in

the denominator of the original function.

x’+1
and evaluate the rest at x=1
(x—1)x-2)x-3)
_ (1P+1 2
(x-11-2)1-3) (~1)-2)
2
B= 2°+1 _ 5 _ s

2-1)x-2)2-3) (1)-1)

——
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Finally C is found covering the (x - 3) in above equation and evaluating at x=3

3%+1 10
C= =—=5
(B-1)3-2)x-3) 2xI

Example: Evaluate

J x+4
x’+3x°—10x
Solution: the degree of f(x)=x+4 is less than the degree of g(x)=x’+3x"~10x, and with
g(x) factored.
x+4 B x+4 A B C
CH3x>-10x x(x—2)(x+5) - ;+ (x—2) ’ (x+ 5)

x+4 -2 3 1
Th PR s S -
o ) xt5) Sx 7(x=2) 35(x+5)
e Y = e 22~ L =9+ C
x(x - 2Xx+5 5 7 35

—
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Exercise

X x? 3x
1. 2) Imdx b) Iﬁ D) Imdx

2. Evaluate the following integrals

P

a. J.l_e?dx

b) J-sinzxcosx "
sin®x +1

c) Iex(xz—i-l)ix

a+km a+km

3. Verify that j sin “xdx = j cos’xdx = ]%[For k is any integer

5.5. Trigonometric Integrals

Trigonometric integrals involve algebraic combinations of the six basic trigonometric functions.
In principle, we can always express such integrals in terms of sines and cosines,but it is often
simpler to work with other functions, as in the integral

Products of Powers of Sines and Cosines

We begin with integrals of the form:

f sin™x cos™xdx

where m and n are non-negative

> Whenmisodd (m =2k + 1) | Substitute sin’x = 1 — cos?x

» Ifmis even and n is odd Substitute cos?x = 1 — sin’x
Substitute cos?x = 22X and Substitute
» If both m and n are even . 1 — cos2x
sin’x = ———
2
Example:

Evaluate the following indefinite integrals

a.f sin3xcos?xdx
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b.f cos3xdx

c. j sin’xcos®xdx
Solution a. Since m is odd then we Substitute sin®x = 1 — cos?x
jsin3xcoszxdx = j(l — cos? x)sinxos’xdx = j(l — cos? x)cos?xsinxdx

Letu = cosx = du = —sinxdx then
u®  ud cos®x cos3x

1—u?)uld =i[2—4d =L =2
j ( u“)u“du (u* —u*)du z 3 + = 3
Solution b. since m=0 is Even and n=3 is Odd then we substitute cos’x = 1 — sin®x
jcos3xdx =j cos?*xcosxdx =j(1 — sin%x)cosxdx
Let u = sinx = du = cosxdx then

us sin
(1—u2)du=u—?+(] = sinx —

3x

14+cos2x
> and

Solution ¢.m=2 and n=2 are both even then we substitutecos?x =

- 1 — cos2x
sin®x = ———
2
] 1 —cos2x\ /1 + cos2x 1
jsmzxcoszxdx = J ( 5 )( 5 )dx = Zj(l — cos?2x)dx

Letu = 2x = du = 2dx then

1 1
Ef(l — cos*u)du = E(f 1du —f coszudu>

=5 (u= [ costuan)

> cos?udu
1 ( f 1+ cosZu )
—lu-—
~2
1 ( 1 1 5 ) +C
=zlu—gzu 4sm u
1 1
E(Zx —X - —sm4x> +C
1( 4x) + C
> \x 4sm X

Exercise:

Evaluate the following indefinite integrals

a.jsin5xdx
b.f4tan4xdx

c.j sin*xcos?xdx
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Products of Sines and Cosines
Integrals of the form

fsinmxsinnx dx,fsinmxcosnx dx ,and fcosmxcosnx dx

Can be solved by using the following identities

i. sinmxsinnx = %[cos(m —n)x — cos(m + n)x]

1

ii. sinmxcosnx = =[sin(m — n)x + sin(m + n)x]|

N~ N

iii. cosmxcosnx ==[cos(m —n)x + cos(m + n)x]

Example:
Evaluate the following indefinite integrals

a. f sin 2x cos 3x dx
b. j cos 4x cos 3x dx

c. f sin 2x sin 3x dx

Solution a.By using property (i)with m=2 is Even and n=3

1
sinmx sinnx = 3 [cos(m —n)x — cos(m + n)x]
1
sin 2x sin 3x = 3 [cos(2 — 3)x — cos(2 + 3)x]
sin 2x sin 3x = %[cos(—x) — cos(5x)]then

1
j sin 2x cos 3x dx =§J[cos(—x) — cos(5x)]dx

1

= EJ[COS(_X) — cos(5x)]dx

1
= E{f cosxdx —fcosSxdx}

since cosine is an even function cos(—x) = cosx

:% (sinx - %sinSx) +C

Solution b.By using property (iii)with m=4 is Even and n=3

cos mx cosnx = =[cos(m —n)x + cos(m + n)x]

cos mx cosnx = =[cos(4 — 3)x + cos(4 + 3)x]

cos mx cosnx = =[cos(x) + cos(7x)]then

NIPN| RN -

1
j cos 4x cos 3x dx = Ef[cos(x) + cos(7x)]dx

——
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1
=3 (f cos(x)dx + f cos(7x)dx)
=% (sinx + %sin7x) +C

Solution c. Exercise

Exercise: Evaluate the following definite integrals
s

a. j sin 3x sin 3xdx

-1
s

b. j cos 3x cos 4xdx

0
T

2
c.j cos 3x sin 4xdx
0

5.6. Trigonometric Substitutions

Trigonometric substitutions can be effective in transforming integrals
involvingVa? — x2vVa? + x2 and Vx2—a2into integrals we can evaluate directly we use the

table below.

Expressions in integrand Trigonometric substitution Interval(s)
/az_xz x = asinf __”<9<E
2~ T2
[aZ + x2 x = atanf __”<9<E
2 - T2
Vx?-a? x = asech osesg,ornses%n

The substitutions come from the reference of right triangles as shown below

fas 4 x- q x —_—
- X Wt — G-

2 x X
__.-"
il 1 ¥
.-'". ff{l} Ilt I'Ir
F e -
a Was — x° a
r=aftanf x=asni r=asecH
e T L B .
Vel + x> =alsect| Vo' —x = alcos o] W1~ — a- = ajtan 0|

Reference triangles for the three basic substitutions identifying the sides labeled x and afor each

substitution.
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Example:
Evaluate the following indefinite integrals

i dx b.f;dx C.J-de
V9 —x2 V1 +9x2 (x2 — 1)%
Solution: a. We setx = 3sinf = dx = 3cos0d6
Vo —x2 = \/9 —95sin?6 = \/9(1 — sin? x) = 3cosx for—- < 6 <~
M30059d9 = 9fsin29d9
\/_7352 3cos6
From the above we substitute sin6 by 129529 hrence we get
. 1 — cos26 9 sin260
9]sm29d9=9j( ) =—<9— )+C
2 2
From x = 3sinf we get 8 = sin™ (g) and sin260 = 2sin 0 cos 0
;(9 — 5”229> C= z(sm 1 (5) — sin 6 cos 9) +C
O . _,(x xV9 —x2
=§<Sm (5)—5 3 >+C
= §<sin‘1 (g) — x99——xz> +C = ;sin‘1 (g) — x92——x2 +C

Solution: b. we setu=3x=>du=3dx and u?=9x*> then from this

3
—dx = j —du
J V1 + 9x2 V1 + u?
From the above table we can set u = tanf = du =sec?6d6 and from the
trigonometric identities we have 1 + tan? 8 = sec? 6 then

f 1 p J’ 1 2046 sec?6do sec?6 i
—du = | ———sec = =
V1 + u? V1 + tan?6 Vsec? 6 [secd|
For _7” <6< %, then we can have
sec?0
= j(l) secf db
|sec 8]
secHd +tan@ sec? @ + secH tan 6
= .f (—) sec6do =f dé
secH +tan 6 secH +tanf

Letv=secf +tan6 = dv = (sec? 8 + sec § tan 8)d6O
J’ sec? @ + secf tan 6

sec@ + tan 6

1
=f—dv=ln|v|+C
v

= In|secO +tanB|+C but = tan" ' u = tan~! 3x
=In|sec(tan™! 3x) + 3x| + C
Solution c. Exercise
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Exercise: Evaluate the following indefinite integrals
1
a. f ———dx
xV4 — In’x
b f ! d
| T——=ay
ve?y —1
x? p
C'j 2+l

5.7. Improper Integrals

DEFINITION Type I Improper Integrals
Integrals with infinite limits of integration are calledimproper integrals of Type I.
1. If f(x) is continuous on [a, ), then

jof(x) dx = gggo Lbf(x)dx

2. If f(x) is continuous on [—oo, @), then

_[:f(x) dx = bl_i>r_noo fbaf(x)dx

3. If f(x) is continuous on [—oo, ), then

o)

ff(x)dx = fc f(x)dx+foof(x)dx

—00 Cc
—00

Where c is any real number.

In each case, if the limit is finite we say that the improper integral converges and that the limit is
the value of the improper integral. If the limit fails to exist, the improper integral diverges.
Example:

Evaluate the following improper integrals

[ e

a. o 1+ x? x
0

b.j 0e?do

Solution: a. According to the definition in part 3above we have

oo

]f(x) dx = J(;f(x)dx+ jomf(x)dx

— 00

foo ! d—fo ! d+f°° L 4
A+ T e ™ o 1+x2 X

0 1 b

= lim dx lim
bk p 1+x2 +b—>oo o 1+ x2

——
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T om
= lim tan~!'x]) + lim tan" x]} = Sty=m

b—>—o0 b—oo
< 1

2
wl+x

dx =m

therefore j

Solution b. Exercise

DEFINITION Type II Improper Integrals
Integrals of functions that become infinite at a point within the interval of integration are
improper integrals of Type II.

1. If f(x) is continuous on (a, b] and is discontinuous at a then

b
b
jf(x) dx = lim J f(x)dx
coat ).
a
2. If f(x) is continuous on [a, b) and is discontinuous at b then
b
c
ff(x) dx = lim f f(x)dx
c—b~ a
a

3. If f(x) is discontinuous at ¢, wherea < ¢ < b,and continuous on
[a,c) U (c, b], then

ff(x) dx = ch(x)dx+ jcbf(x)dx

In each case, if the limit is finite we say the improper integral converges and thatthe limit is the
value of the improper integral. If the limit does not exist, the integral diverges.

Example:

Show weather the following improper integrals converge or diverge.

1 1 d
a.jo 1—x X

3 1

b dx

o I —
0 (x—1)2

. ) 1 . .. } )
Solution: a.The function 18 discontinuous at x=1 the as defined in 2 above we can have

—X -1 Jy 1—x
The limit is infinite, so the integral diverges.
Solution: b.

The integrand has a vertical asymptote at x=1 and is continuous on [0, 1)and (1, 3]

| €1
f dx = lim dx = limln(1—-x)]§=Ilim[In(1-¢)—0] =00
o 1 1 -1~ -1

——
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_ dx
{x—l}l_L[t—”"‘ [LI—I]E”I

Next, we evaluate each improper integral on the right-hand side of this equation.

/.l—dx = lim f}'—dx
o (x— 1) =1y (x— 17

lim 3(x — 1)\3)
o 3l 1

ﬁiinll_ [3(h— 1)\ +3]1=3

fl dx — tim /3 dx
L (x— 1D =) (x— 1P

lim_3(x — 1)!A]

c—=>1

lim [3(3 = ' = 3(c = 1)'?] =3W2

o=xl

Exercise:

Show weather the following improper integrals converge or diverge.

=
a.ol_xx

1
b.j;) (—Inx)dx

We conclude that




Deternune whether the mtegral converges or diverges, and if 1t converges.

1
PR 1
i_ '—.:f\ : _[_"'ﬂlll
."-.|+"-'- a2l

l ) k4

o

.5
3 I:.l‘_":’ O e e e, |
< __ T = T
e 1
| a,
[ b
#
2]
= E]
*y
T
i3
L]
[}
-
R

Z1Y

1 L3
9, |——iy L0 j—rf\'
Slx+l) A

Miscellaneous Exercise
Evaluate the following integrals

1. j.x4—3x2 +4x—2)1x

o
3. (607 +sec 9}19

V)
2

4. j(— 7sin x + 3 cos x dx
T
7

5. I f(x)dx, where

o

I(xSsz —l)dx

[+ 4xW1+2x +4x dx

J-secxtanx«/3+secxdx ; u=34secx
3\/;

—d

7"

10. Find the indefinite integrals

a) Ixe""dx

® N

9.

find 1ts value.

——
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b) Ix3 cos xdx
0) J-x24’“dx

12. Find the integral
a) [dx

b) J‘;dx

x°—x-6

x +x+1
2 ;[( x+1 jd
13. By making the substitution u=1-x show that
1 1
Ix” (1-x)"dx= Ix'" (1-x)"dx for any non negative integers m and n.

0 0
14. Evaluate the integrals below

a. | sin®2x cos2xdx

b. | 2x —5)(x —3)°dx

0\00':‘0%00':‘

15. Evaluate the integrals below

T 2
a.f sindxcos3xdx b.f sin*xcos3xdx
0 0
cosx — sin2x /2 2
c.j (—) dx d.j (2 — sinx)“dx
sinx 0
/4
e.f sin5xsinxdx f. V1 — cos4xdx
0

16. Evaluate the improper integrals below

——
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CHAPTER SIX
APPLICATION OF THE INTEGRAL
The mathematical application will include area, volume, length of a curve, and surface area and

the other work, force and momentum and centre of mass so on are for physics, engineering...
6.1. AREA

Suppose we want to find the area of a region bounded above by the curve y = f(x) and,
below by the curve = g(x)and on the left and right by lines x = a and
x =b (Fig 6.1) if f and g are continuous .
We first approximate the region with n vertical rectangles based on a partition
P={xy, X1,... ,Xn} Of [a,b] (Fig 6.2) the area of the k' rectangle (Fig 6.3) is
AAy = haight X width = [f(c,) — g(cp)]Axy
We then approximate the area of the region by adding the areas of the n rectangles

A= Yo A, =X F-1[f (cr) — g(ck)]Ax,  which is called Rieman sum
As ||p|| » O the area of the right approach the limit f:[f (x) — g(x)]dx because

f and g are continuous. We take the area of the region to be the value of this integral.

That is,
& b
A= lim D [£e) — gledlax = [ [0 - gldx
K=1 a
:' Lipper cory | T
¥ al — . fx) E L r
I_r [ | i1l
_:l. 1 ey = IT" r.r _ll_LI o T | = ! - _|+ : —————
=1 ” 3 : !
| Linwor cur |I— —rI: | | '|--|-_.; rl.l r ll;J--.l
| 2 r=g . F
Fig 6.1 Fig 6.2 Fig 6.3

Area between curves

Definition; If f and g are continuous with f(x) > g(x) throughout [a, b] then the area

of the region between the curves y = f(x) and y = g(x) from ato b is the integral

of A= [(f = g)dA =[] (f(x) - g(x))dx

( ]
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EXAMPLE:

Find the area of the region enclosed by the parabola y = 2 — x? and the line y = —x.

solution First we sketch the two curves

¥
-~
h“‘_ (x. ix))
/ y=21-x
{—].]}/ — Ax
| | R
=22 0 | 2
N
— |
(x, g(x))
| y=—=X =1
\

Fig6.4
The limits of integration are found
By solving y = 2 — x% and y = —x simultaneously for x
2—x*=—-x equate f(x)and g(x)
2—x>—x=0 rewrite
(x + 1) (x — 2) = 0 factor
x=-1landx =2
The region runs from x = —1 and x = —2 is the limit of integration from

a = —1 and b = 2 then the area between the curves is

9

2@ — gdx =2~ x?) — (~x)Jdx = 2

2
Example:
Find the area of the region in the first quadrant that is bounded above by y = Vx and be-
low by the x-axis and the line y = x — 2.
Solution: Shows that the region upper boundary is the graph of

f(x) = Vx.The lower boundary changes from g(x) = 0for0 = x = 2tog(x) =x — 2
for2 = x = 4 (there is agreement at x = 2). We subdivide the region at x = 2 into subre-
region from A and B

——
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4
Area 2/(\G—x+ 2)d.r

B

X
T 3 y:’v’;

2 Area — ﬂv’}dx (x. flx) (4.2)
(x, fix)) ; \
1 i \ J,.-': X — 2
A (x;, glx))
5 | > X
o S =02 ?
(x, g(x))

Figur 6.5

The limits of integration for region 4 are @ = 0 and # = 2. The lefi-hand limit for re-
gion B is a = 2. To find the right-hand limit, we solve the equations y = Vx and
y = x — 2 simultaneously for x:

VEi=%—2 Equate f{x)and g(x).
=t 2P =% — 414 Square both sides.
x2—5x+4=0 Rewrite.
x—1)x—4)=0 Factor.
x =1 x=4. Solve.

Only the value x = 4 satisfies the equation \VVx = x — 2. The value x = 1 is an extrane-
ous root introduced by squaring. The right-hand limitis b = 4.

For) = x = 2: fx) —gx) = Vx — 0= Vx
For2 =x = 4: fx) —glx)=Vx—(x—2)=Vx—x+2

We add the area of subregions 4 and B to find the total area:

2 4
f\/idx+/(\f’i—x+2)dx
Total area = Jy 2

area of 4 area of B

2 v 4
= |32 4 |2oap X
Lx ]O—rL’x > +2Jr;2

- %(2)3;‘2 -0 + (%(q‘)lfz — g 8) L (%(2)3;2 _ 5 4)

— 2y 5 10
—3(8) 2—3. o
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Exercises

1. Let f(x) =5xand g(x) =x? , and let R be the region between the graphs of
f and g on [0,3] find the area of the region

6.2. VOLUMES

. . : . b : . :
If f is a function continuous on an interval [a, b] then fa f(x)dx is the limit of the Riemann

sums for f on [a,b] as the lengths of the subintervals derived from the partition of [a, b]
approach 0.
We will describe briefly here our procedure for introducing the other application of the integral.
For each application our goal will be to find a formula for a quantity I (such as the volume of
solid region) we will proceed in the following way

In each case it will be reasonable to expect that Yy_, f(tx) Ax; should approach I as the

norm of the partition P tends to 0 this idea is expressed by writing [ = Y.}_; f(tr) Axy
We will conclude that 1= f: f(x)dx

Volume can be found by different methods
a. The cross-sectional method
b. The disc method

The washer method

The shell method

e

o

a. The Cross-Sectional Method
Consider the cross-sectional area A of the region D is a function that is continuous on [a, b] let
P= (xg, X1, X5..., X,) be a portion of [a.b] for each k between 1 and n ,let t; be an arbitrary
number in the sub intervals [x,_q, xi ], if Axj is small ,the volume Av;, of the part of D between
Xr_1, Xy 1s approximately equal to the product of the cross-sectional area A(t;) and the length
Axy,
Thus AV = (cross-sectional area)X(length)

=A (tx)Axy
Since the volume V of D is the sum of Av,,Av,,...,Av,. It follows that V should be

approximately Y.p_; A(t,) Axy

——
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The volume of a solid of known integral cross-sectional area A(x) from x = a tox = b is the

integral of A fromatob V= f; A(x)dx

Example: Find the volume V of the solid D in which cross-section at x is semicircular region

with radius ris x? for0< x < 1

Solution: The area of a semicircular region with radius r is Em”z.

| Thus the cross-sectional area A(x) of x is given by A(x) = %n(xz)z.
There for we conclude that

V=[] A(x)dx

11

—( = 4
027Tx

_ T

10

b. The Disc Method
When the graph of a continuous non-negative function f on an interval [a, b] is revolved about
the x axis, it generates a solid region having circular cross-sections, that is cross-sections are
circular disc (Fig 6.6) ,since the radius of the cross-section at xis f(x) it follows that
A(x) = n[f()]? (1)

AY AY
y = f(x)

|
N x X
a b4 5 1 : b

(a) (b)

Figure 6.6 Figure 6.7

Thus we obtain a formula for the volume V of the solid that is generated

V=[] nlf () dx

Because the cross-sections are disc, it is called the disc method

——
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Example: Find the volume V of a sphere of radius r

.".
| 1 ] 3
i TN =

_( : M.\, T

Figure 6.8

Solution: In Figure6.8 A sphere is generated by revolving a semicircle

about its diameter ,if we let
f(x) =Vr?2 —x? for —r < x <r .Then
V=[" (VrZ = x2)%dx = =r®

—r 3

Example: Find the volume of the solid that is obtained when the region under the

Curve y = /x over the interval [1,4] is revolved about the x-axis

Figure 6.9

Solution: the volume is

i 4
4 n_xz
= 8 —

= [ .*E[j'(x}]z di= / xdx = 5

Ja 4 B

S
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Exercises

1. Let R be the region between the graph of the function and the x axis on the given interval.
Find the volume v of the solid obtained by revolving R about x axis

a. f(x) =x%;[0,3] b.f(x)=x2;[1,2] c.f(x) =Vxsinx;[0,m]

c¢. The Washer Method

We present a formula for the volume of the solid region generated by revolving a more general
plane region about the x-axis .let f and g be function such that

0<Sgx)<f(x) fora<x<bh

Then the plane region between the graph of f and the x-axis on [a, b] is composed of the region

between the graph of g on [a, b] and the region between the graph of g and the x-axis on [a, b]

.

» — f(x)
i [=

¥y = g(x)

A

N
- 1
7 i\ R 1

(et

CHy

Figure 6.10

The volume V of the solid generated by revolving the region between the graph of f
and g on [a, b] is given by V=f:n[f(x)2 — g(x)?]dx

Example: Find the volume of the solid generated when the region between the graphs

of the equations f(x) = {—. + x2 and g(x) = x over the interval [0, 2] is revolved about the
X-axIs.

Solution first sketches the region (Figure); then imagine revolving it about the x-axis. From
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(6.10) the volume is

f (A FCHT? — 8GO dx — f_n ([4 + x2]2 — x2) ax
g 8]

f " 2 69
4+r r_”Jr 5 o 10

1. Let R be the region between the graph of f and g on the given interval. Find the volume v

Exercise

of the solid obtained by revolving R about x axis

a.f(x) =vx+1,gx)=vx—1;[1,3] b.f(x)=x+1,9gx)=x—1;14]

The Shell Method

We obtain a formula for the volume of the solid generated by revolving about the x-axis the
region between the graphs of f and g on [a, b].we can also revolve such a region about the
y axis and find a corresponding formula for the volume of the solid so generated.

To begin, let us determine the volume V of a cylindrical shell obtained by revolving a rectangle

about the y-axis

&V s
|

Fr-.--.l.:ngl-.- appraximating Cylindrical shell generated
the k™ sirip by the fectangle

() (b)
(Fig6.11)

Suppose the rectangle is bounded by the x-axis, the line y=c, the lines x=a and x=b, where
b>a = 0and c = 0 then since the volume of the cylindrical shell is the difference of the
volume of the outer and the inner cylinders ,it follows that
V = volume of outer cylinder — volume of inner cylinder

=nb%c — wa?c = mc(b? — a?)

If we replace a by x;,_, and b by xj, then we obtain

V =mc(x,? — xp—12) = me(xg + Xp—1) (X — Xg—1) coveveenenn. (*)
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Now let f be a continuous nonnegative function on [a, b],with a = 0. We wish to define the
volume V of the solid region in Figure above ,obtained by revolving about the y-axis the region

R between the graph of f and the x axis on [a,b]. Let P={x, x4, x5, ..., X, } be any partition of

(xp + xk—l)/z

[a,b]. For each k between 1 and n, let t; be the midpoint of the subinterval

[X—1,Xk] Af Axp is small, the volume AV} of the portion of the solid between the revolve
linesx = xj,_, and x = x;, is approximately equal to the volume of the corresponding cylindrical
shell with height f(x) by (*), with f(t;) replacing c, this means that AV = mf(t;)(x, +

Xpe—1) (X — Xpe—1) = 21ty f (E) Axy
Therefore the volume V of the solid, which is the sum of Av,, Av,, ..., Av,

Should be approximately Y.y, 21ty f (t;)Ax; which is a Riemann sum for 2mxf on [a.b] .as a

result V = limy, 50 Xk=1 27ty f (Ex) Axy = f: 2nxf (x)dx

Thus we are led to the following formula for volume

b
sz 2rf (x)dx

Let f and g be continuous on [a, b], with for a = 0 ,and suppose that
gxX) < fx) fora<x<b
Then let R be the region between the graphs of f and g on [a, b] Figure.

The volume V of the solid obtain by revolving about the y axis is given by

b
V= J 2rx[f (x) — g(x)]dx

» Example 1 LUse cylindrical shells to find the volume of the solid generated when
the region enclosed belween y = Jx, v = |, x = 4, and the x-axis is revolved aboul the
=S

Solution: First sketch the region (Figure6.12);then imagine revolving about y-axis
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Figur 6.12

Since f(x) =+x,a=1,and b = 4 the volume is given by

w4 4 -~ 4 4 al¥
2 T 1247
Vo= 2mxxdx =2m | M dx = |27 27| = —[32-1]= E
| I 8 5

Exercises

1. Let R be the region between the graph of the function and x axis on the given interval. Find
the volume v of the solid generated by revolving R about the y-axis

a.f(x) =VxZ+1;[0,v3] b.f(x) =e?**;[0,1]c. f(x) = Inx;[1,3]

6.3. LENGTH OF A CURVE

Consider the graph of a function f with a continuous derivative on closed interval [a,b]. If f is
linear, that is ,if the graph of f is a line segment ,then the length L of the graph is the distance
between (a, f(a)) and (b, f (b)) so that

L=+/(b—a)?+ (f(b) - f(a))?

When f is not necessarily linear, we let P = {xq, xq, x5, ..., X, } be any partition of [a,b] and
approximate the graph of f by a polygonal line 1 whose vertices are
(20, f (20),(x1, f(%1))seeees( Xy, f (x)) figure. Let AL; be the length of the portion of the graph of
fjoining (x,_1, f (xx—1)) and (xy, f (xx)). If Axj, is small, L,is approximately equal to the length

of the line segment joining (x;_4, f (xx_1) and (x, f (xx)). In other words

ALy =/ (re—x5-1)% + (f Cti) — f(x=1))? (1)

The Mean value Theorem, applied to f on the interval [x;_4, x) ], implies that
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Flxe) — f(xpr = f (t) (X — x4—1) for some ty in (xy_q1,%;). Therefore (1) can be

rewritten ALy =/ (X —%—1)? + (f (tie) (X — Xk-1))? =1+ (f(&))* Ok — Xp-1)
Therefore  the total length L of the graph of f ,which is the sum of the length

Ly, Ly, ... , L, should approximately »jp_,+/1+[f'(tx)]? Ax, is a Riemann sum for

1+ [f']? on [a, b]. Therefore it seems that

= 1o Zk NIF @120, = jmdx

6.15
47
JIx}
fle. )
Pk_ *’:”1
I x
Y Xy e Xl 0 Yk-1 Y '
a = x b=x,
(a) (b)
Figure 6.13

This leads us to make the following definition

DEFINITION If vy = f(x) is a smooth curve on the interval [a, b], then the arc
length L of this curve over [a, b] is defined as

b
L =f V1+[f(x)]* dx
» Example 1 Find the arc length of the curve y = 12 from (1, 1) to (2,2+/2)

Solution

dy

3
B S T
dx T and since the curve extends fromx = 1 to x = 2, it follows

-

2 i o3 | f
L:f -,vajl—l—(%x”j)'dx:f V14 3xdx
1 1
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A 202)

i Too evaluste (i infegral we make the u-substitution
A
y=1x n=] +ﬁ1. it = 3 d
il (ke n'Il;ng e 1-lits of (lEgrano (¥ = | i= 210 fhe |:|Irr-,".p|11|1||||g =is
= E,u :Tl
I R U L o 03 b At e
L=- Hdi= =" == ) -[—)
(1,1) Oy T | 1 ‘.4. }
" -1 "
> - T

Figure 6.14

In Exercises1-3 find the length of the graph of the given function
. f(x)=2x+3for1<x<5

2. g(x)=x3+%for13xg3
1
32x2

3. glx) =x*+ for1<x<2

6.4. Area of a Surface
A higher-dimensional version of the length of a curve is the area of a surface. It has been known
that the surface area S of a cube of sides s is given by S =6s” and the surface area S of a cylinder
of radius r and height h is given by S=2rrh. However , our analysis of the areas of other surfaces
will be based on the surface area of a frustum of a cone. If the frustum has slant height 1 and radii
riand r; ,then the surface area S is given by

ntn
2

S = 27T< )l =n(r + 1)l (D
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Fig 6.15

More generally, suppose f is defined on[a, b], andf(x) = 0 for a < x < b.we will derive a
formula for the S of the surface obtained by revolving the graph of f about x axis Figure. In
order to be able to use the length of the graph of f on [a, b]in our calculations of surface area, we
will assume that f is continuous differentiable on [a, b]. Now let P={x,, x4, ..., X,,} be a partition
on [a,b] ,and let AS be the area of the portion of the surface between the revolved lines x =
Xp_1and x = xy. if Ax is small, the surface area s, is approximately equal to the surface area
of the frustum of the corresponding cone. That is the frustum whose slant height is equal to the
length of the line between (x,_q,f(xkx_1)) and x, f(x;) and the radii of whose ends are

f(xi-1)and f(x;) from (1) this means that
Asi = m[f (g—1) + f G W (e—21-1)? + [f (i) — f (=)

The Mean Value theorem can be applied to show that for some t;, in [x;_q, Xx],

VO x-1)? + (fF (i) — f(xk—1))? =1+ [/ (t)]? Axy 3

Since Ax; is assumed to be small x;_;and x,are close together, with t, between them.

Since f'and f are continuous on [xi,x,_,] it follows that f(x,_;) + f(x;) should be

approximately f(t;) + f(ty) ,that is 2f(t;) .so from (3) and (2) we deduce that

ASy = [2f ()] 1 + [f'(t)]?

Consequently the area S of the complete surface, which equal the sum of AS;,AS,, ..., AS,

should approximately ».}}_; 2tf (t;, )/ 1 + [f' (tx)]? Axy
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Which is a Riemann sum for 2rf(t,)+/1 + [f'(tx)]? on [a, b]. Therefore we define the

surface area S by
b
n

S= lim 2 f GONTF P @OT Axi = [ 2nf (o T+ [ ol

Ipll-0 Lfe=1
a

DEFINITION Let f be nonnegative and continuously differentiable on [a,b]. The area of the
surface obtained by revolving the graph of f about the x axis is defined by

b
S= [ 2nf(x)y1+[f'(tx)]?dx
DEFINITION If f is a smooth, nonnegative function on [a, b]. then the surface

area S of the surface of revolution that is generated by revolving the portion of the curve
v = f(x) between x = a and x = b about the x-axis is defined as

b
S = f 2 f(x)/1 4+ [f(x)Pdx

» Example 1 Find the area of the surface that is generated by revolving the portion of
the curve y = x° between x = 0 and x = 1 about the x-axis.

Solution. First sketch the curve: then imagine revolving it about the x axis (Figure

Figure 6.16
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Since ¥ = x?, we have dy/dx = 3x?, and hence from (4) the surface area S is

A
l ||I d\'-' 2
S:f 2,1+ (—) dx
0 ¥ dx

|
:f 2nxy 1+ (3x2)2 dx
0

2r [0

2 In _ i

— u'? du u=1+9x
I du = 36x" dx

10
— T2l = a0 1)~ 3.56 <
27

Exercises:

Find the area S of the surface generated by revolving about the x axis the graph of f on

the given interval
a. f(x)=vad—x2; [1/2,32] b. f(x) = §x3;[0,\/§]

Exercises

1. Sketch and find the area of the region to the parabola x = 2y? to the right of the y-axis ,
and between y=1landy =3

2. Find the area bounded by the curve y = 1 —x~2 and thelinesy =1,x = 1and x = 4

1 — 5 Find the volume the solid that results when the region enclosed by the given curves is

revolved about x-axis

l. y=9—-x%y=0
2. y=V25—-x2y=3

3. y=sinx,y=cosxx=0,x=%
3x

4. y:\/;szo’le’yZO
1

5. y= T+x2x=—2,x=2y=

(
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6 — 10 Find the volume the solid that results when the region enclosed by the given curves

is revolved about y-axis

— _F,=3"
6.x—cscyy—4y—4,x—0
7. ,

8. / (x>0)
9. y=Inx ,x=0,y=0,y=1

10.x—y X =y +2

11. Let V be the volume of the solid that results when the region enclosed by y = % Y =
0,y=0,x=2and x = b(0 < b < 2) is revolved about the x-axis. Find the value of b
for which V=3

12. Find the length of the arc of 24xy = x2 + 48 fromx = 2tox = 4

13. Find the length of the arc of y3 = 8x? fromx = 1tox = 8
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